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Abstract: 

The present thesis aims at the analysis of the fragmentation of rockfalls. The fragmentation is a 

complex phenomenon poorly understood with a lack of tools to reproduce it on rockfall 

simulators. The effect of fragmentation on the hazard assessment and mapping is significant and 

it may substantially modify the risk scenario. The analysis of the empirical data acquired in a 

series of inventoried natural rockfalls and real-scale drop tests, clearly suggests that fragmentation 

displays a fractal behavior. Based on these observations, a fractal fragmentation model is 

proposed heare, adapting the basics of Perfect (1997) to the specific case of rockfalls. An 

important development of the thesis presented is the procedure to characterize the rockfall mass 

before and after the fragmentation, which include the methodology to measure the block size 

distributions of the deposit, the use of Unmaned Aerial Vehicles (UAV) equipped with digital 

camera digital, and the photogrammetric analysis to reconstruct the detached block volumes based 

on 3D models and discrete joint characterization. The block size distributions before and after the 

fragmentation are related with the proposed model, using the real data to calibrate the model 

parameters by back analysis. The methodologies and the model proposed contribute to the 

understanding of the fragmentation phenomenon and have the capability to reproduce the entire 

block size distribution and the calculation of the number and volume of the fragments. They also 

allow the quantification of the areas of the fresh faces created due to breakage, which may be 

related to the required fragmentation energy. The final goal of the ongoing research is the 

implementation of fragmentation behavior on a rockfall simulator which is currently under 

developed within the Rockmodels project (https://rockmodels.upc.edu/es), and modify the criteria 

to calculate the probability of impact used in hazard mapping and in quantitative risk assessment 

studies. The results of the fragmentation model may also contribute to the analysis of the 

efficiency and to the design of the rockfall protection systems. 
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Resum: 

La present tesis es centra en el fenomen de la fragmentació en despreniments rocosos. La 

fragmentació és un fenomen complex de difícil caracterització i de la que ens manquen eines per 

a la seva modelació en programes de simulació de caiguda de blocs. Tanmateix, els efectes de la 

fragmentació sobre les prediccions i els conseqüents mapes de perill  poden comportar 

modificacions en l’escenari de risc. A partir d’un conjunt de dades empíriques obtingudes 

mitjançant l’inventari de despreniments naturals, s’ha observat un clar comportament fractal. A 

partir d‘aquestes observacions, s’ha proposat un model de fragmentació fractal adaptant la 

descripció de Perfect (1997) al cas específic del despreniment rocós. Una part important del 

desenvolupament de la tesi són les metodologies utilitzades per a la caracterització de la massa 

rocosa abans i després de la fragmentació, des de metodologia per mesurar distribucions de 

volums de blocs al dipòsit, fins a la utilització de drons i fotogrametria digital per reconstruir el 

volums dels blocs abans de caure a partir de models 3D i de la caracterització discreta de les 

discontinuïtats del massís. Les distribucions de volums de blocs abans i després de la fragmentació 

és relaciones mitjançant el model de fragmentació proposat, utilitzant les dades reals per calibrar 

els paràmetres del model per retro anàlisis. La utilització de les metodologies proposades i del 

model de fragmentació ajuden a la comprensió del fenomen, permeten la reproducció de la 

distribució de blocs sencera amb una estimació del nombre de blocs i el seus volums. També 

permet una quantificació de la superfície nova creada en cares fresques degut a la ruptura, que es 

vincula amb l’energia dedicada a la fragmentació. L’objectiu final d’aquesta recerca és la 

implementació de la fragmentació en un simulador de caiguda de blocs que es troba en 

desenvolupament en el marc del projecte Rockmodels (https://rockmodels.upc.edu), així com 

modificar els criteris de càlcul de probabilitat d’arribada que s’utilitzen per elaborar els mapes de 

perill i els estudis quantitatius del risc. Les conclusions poden canviar la manera com es dissenyen 

els sistemes de protecció contra despreniments. 
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Resumen 

La presente tesis se centra en el fenómeno de la fragmentación en desprendimientos 

rocosos. La fragmentación es un fenómeno complejo de difícil caracterización y de la que nos 

faltan herramientas para su modelación en programas de simulación de caída de bloques. 

Sin embargo, los efectos de la fragmentación sobre las predicciones y los consecuentes 

mapas de peligro pueden conllevar modificaciones en el escenario de riesgo. A partir de un 

conjunto de datos empíricos obtenidos mediante el inventario de desprendimientos naturales, 

se ha observado un claro comportamiento fractal. A partir de estas observaciones, se 

ha propuesto un modelo de fragmentación fractal adaptando la descripción de Perfect (1997) 

en el caso específico del desprendimiento rocoso. Una parte importante del desarrollo de la tesis 

son las metodologías utilizadas para la caracterización de la masa rocosa antes y después de la 

fragmentación, desde metodología para medir distribuciones de volúmenes de bloques en el 

depósito, hasta la utilización de drones y fotogrametría digital para reconstruir el volúmenes 

de los bloques antes de caer a partir de modelos 3D y de la caracterización discreta de las 

discontinuidades del macizo. Las distribuciones de volúmenes de bloques antes y después 

de la fragmentación se relacionan mediante el modelo de fragmentación propuesto, 

utilizando los datos reales para calibrar los parámetros del modelo mediante retro análisis. La 

utilización de las metodologías propuestas y del modelo de fragmentación ayudan a la 

comprensión del fenómeno, permiten la reproducción de la distribución de bloques 

entera con una estimación del número de bloques y sus volúmenes. También permite una 

cuantificación de la superficie nueva creada en caras frescas debido a la ruptura, que se vincula 

con la energía dedicada a la fragmentación. El objetivo final de esta investigación es la 

implementación de la fragmentación en un simulador de caída de bloques que se 

encuentra en desarrollo en el marco del proyecto Rockmodels (https://

rockmodels.upc.edu), así como modificar los criterios de cálculo de probabilidad de alcance 

que se utilizan para elaborar los mapas de peligro y los estudios cuantitativos del riesgo. Las 

conclusiones pueden cambiar la forma en que se diseñan los sistemas de protección contra 

desprendimientos. 
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1. Introduction  
 

Evans and Hungr (1993) and Hungr et al. (2014) reserved the term fragmental rockfall for the 

events in which, the individual fragments move as independent rigid bodies interacting with the 

ground surface by means of episodic impacts. They distinguished it from the term rock avalanche 

in which masses of fragments move as a granular flow. In fragmental rockfalls, the detached rock 

mass, which often includes discontinuities, disaggregates breaks or both, after the first impacts 

on the ground. The resultant fragments propagate independently downhill (Figure 1). The deposit 

of a fragmental rockfall is a set of rock blocks of different sizes scattered on the ground surface. 

In the case of mid to large-size fragmental rockfalls (over several hundred of cubic meters), a 

more or less continuous Young Debris Cover (YDC) can be formed as well. Understanding the 

fragmentation process is fundamental for the analysis of the rockfall hazard, since it is a critical 

input datum for calculating the trajectories and the run-out of the rock fragments, the encounter 

probability with the elements at risk and the expected impact energies.  

 
Figure 1. Fragmental rockfall at Gurp, Central Pyrenees, Spain. A Young Debris Cover (YDC) is formed just below 

the rockfall source (purple polygon). Four large individual blocks (blue circles) followed both independent and 

divergent trajectories after the impact on the ground.  
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The block size distribution of the blocks deposited in a rockfall event, or Rockfall Block Size 

Distribution (RBSD) is product of the fragmentation phenomenon.  

The detached mass from the cliff can be a single block or a rock mass with joints, defining an 

initial distribution of block volumes known as the In situ Block Size Distribution (IBSD) (Lu and 

Latham, 1999). Our studies focus on the fragmentation phenomenon based on the changes of the 

block size distribution from the initial state (IBSD), to the final deposit (RBSD) (Figure 2). We 

also propose a fragmentation model that uses the IBSD as input, and using 2 or 3 control 

parameters, is able to reproduce the natural observed RBSD. 

Figure 2. Fragmental rockfall of Cadí, near the village of Vilanova de Banat, Catalan Pyrenees. The detached rock mass 

may be formed by a group of block precutted by the joint pattern on the massif. 

Our research is based on empirical observations and measurements, collecting data from real 

fragmental rockfalls and from real-scale tests in a quarry. For this reason, PART I of the thesis is 

focused on “Rockfall characterization and measurements” and PART II is focused on “Real-

scale fragmentation tests”. The data obtained show a fractal pattern of the fragments 

block size distributions. Based on these observations, a fractal fragmentation model is 

proposed and calibrated, which is presented in PART III: “Rockfall Fractal 

Fragmentation Model”. The methodologies developed for the characterization of rockfalls 

and the unstable rock masses as well as the lessons learned on the fragmentation process can be 

easily implemented.  This is shown in PART IV: “Applications”, where they have been applied to 

the indentification of the maximum credible failure in the steep slopes of Andorra and in the 

Quantitative Risk Assessment analysis 
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considering fragmentation in a natural resort in which visitors are exposed. The thesis is composed 

of a set of publications and original chapters as follows: 
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1.1 Thesis objectives 
 

The thesis is focused on two main objectives: 

 

1. Unstable rock mass identification and failure characterization based on 3D models 

obtained by Lidar or digital photogrammetric technics with UAV pictures. 

 

2. Fragmentation on rockfalls: block size distributions characterization from the initial state 

of the rock mass in the cliff to the final deposit of rockfall fragments. To propose a 

fragmentation model able to simulate the fragmental behavior, based on real 

observations. 

 

In order to improve the understanding of the fragmentation phenomenon in rockfalls, the present 

thesis focusses on: 1. Characterization of unstable rock masses on a cliff. In particular, their initial 

state defined by the total volume and the joint pattern defined by the In situ Block Size 

Distribution (IBSD). 2. Characterization of the fragmental rockfalls through the Rockfall Block 

Size Distribution (RBSD) of the deposited blocks. 3. Proposition of a model which input is either 

a single block or an initial IBSD, allowing the simulation of the observed RBSD data using a set 

of parameters. Figure 3 is a sketch showing the fragmental rockfall and the block size distributions 

in terms of relative frequency. 

 
Figure 3. Fragmental rockfall conceptual scheme and block size distributions in terms of relative frequency: IBSD as 

intial state, RBSD obtained from field measurements and RFFM as results of the proposed fractal model. 
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1.2 Fragmentation of rockfalls 

Fragmentation of brittle materials is a stochastic phenomenon, adding uncertainty to the 

modelling efforts of calculating risk associated to rockfall events. The last decades, the 

research has been focused on blocks shape characterization, the description of the terrain, the 

roughness, the restitution parameters and so on. It is fundamental to address the knowledge of 

fragmentation and the characterization of the whole fragment size distribution for its 

implication in the analysis of hazard.  

As an example of a fragmental rockfall, the scheme of Figure 4 shows the case of Gurp 

rockfall (See Chapter 6). The rockfall event involves 100 m3 of rock mass, falling from about 

100 meters height. At the base of the cliff, a high energy impact creates an explosive 

fragmentation with a wave of dust covering the vegetation and flying debris causing impacts up 

to a height of 5 meters. As a result of the impact, it is formed a Young Debris Cover (YDC) 

with a gradational range of block sizes (Ruiz-Carulla et al, 2015, Hantz et al, 2014). Part of 

the blocks remain in-place deposited and the rest are ejected downslope. Some of them will 

break in subsequent impacts between the two reference sections named Trail 1 and  Trail 2 

(Figure 4). Large blocks may cover large runout distances. In the Gurp rockfall, 3 large 

blocks crossed the Trail 2 and continues rolling and bouncing over the field, two of them 

reaching the road.  

The probability of impact over the Trail 1 section (crossing the YDC zone) should take into 

account the number of fragments and their velocities and heights (Figure 5).  Trail 2 and Road 

sections have lower density of blocks, less block per square meter of the affected section. 

However, the bigger blocks reach the road.  

In fragmental rockfall scenarios, the probability of impact is not the percentage of blocks of a 

certain volume that reach or cross a defined section (like Trail 1), simulated individually. Notice 

that a single block may generate a distribution of fragments in terms of volumes and in terms of 

spatial distribution that increases the probability of impact. For this reason, we focus our efforts 

in to measure, describe and reproduce block size distribution generated in fragmentation process. 
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Figure 4: Fragmental rockfall scheme based on the 3D model obtained in the inventoried rockfall on Gurp. 

Figure 5: Schematic reference sections of Trail 1, 2 and Road with the fragments crossing the section. 

Notice how the fragmentation of the rock mass, generating hundreds of fragments, may increase the 

probability of impact against somebody walking along the Trail 1, Trail 2 or a vehicle travelling along the 

road. However, the blocks mass reduction implies a decrease of the runouts and a reduction of the impact 

energy of each block. 
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The description above, consider the whole rock mass detached as a massive single block of 100 

m3. This assumption may overestimate the impact energy on the bottom of the cliff. Another 

possibility is that the rock mass breaks in its first impact against the cliff at the mid height (Figure 

4) and then the remaining energy and trajectories of each block has to be estimated individually

from this point. Moreover, the total rock mass detached may be a single massive rock mass or a 

group of blocks already separated by joints. The list of block volumes from the cliff is defined as 

In Situ Block Size Distributions. In this case, the rock mass released may disaggregate when 

tilting after its detachment (Figure 6). An accurate study of the potential unstable rockfall mass 

on the cliff, and the characterization of the joint sets that define the IBSD, are necessary.  The 

former is input parameter in a fragmentation characterization study or for modelling purposes. 

Figure 3 shows an example of disaggregation of the mass from the source when the rock mass tilt 

as consequence of the detachment. In the example obtained from a recording of cleaning tasks, 

an operator pushes the rock mass tilting it, producing the toppling of the whole unstable mass. 

When the tilt angle reaches the 60 degrees, the mass disaggregates completely following the joint 

set as there is not enough cohesion in the joints to hold the blocks together. Then the question is, 

should the impact energy be calculated for each individual block or for the total detached mass? 

On the other hand, fragmentation will reduce the volume of the biggest blocks: Therefore, in 

trajectory analyses they cannot be used to calibrate directly the restitution parameters of the 

ground. Furthermore, the blocks forming the IBSD will probably interact and collide each against 

the other. The knowledge  total volume detached is required and is a good descriptor of the total 

energy involved in the phenomenon. However, the whole IBSD is necessary to describe the initial 

state of the rock mass, for the fragmentation analysis comparing it with the deposited fragments 

distribution. 

Figure 6: Sequence extracted from the video “Major Rock Fall Occurs Next to a Climber in Chulilla, Spain” on 

Youtube, showing the disaggregation of a rock mass in a toppling failure mechanism describing an IBSD. 
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The hazard analysis of rockfall is focused on trajectory simulators. A huge effort was made by 

many authors in developing trajectory simulators and methodologies to characterize the rockfall 

hazard: using high resolution 3D numerical models (Agliardi et al 2003); trajectory simulator with 

an stochastic impact model (Bourrier et al, 2009); evaluating the parameters that control de 

propagation simulation (Crosta et al, 2004); reviewing the rockfall mechanics (Dorren 2003) and 

characterizing the hazard zones based on the kinetic energy (Jaboyedoff et al 2005). Recent 

studies evaluate the effect of different resolutions of the Digital Elevation Model used in raster 

format and the advantatges of the use of Point Clouds to describe the terrain and the overhangs 

(Noël, et al 2017a). Restitution parameters and the terrain roughness influence on the energy 

consumption in order to predict the runout of the blocks (Agliardi et al. 2009; Crosta et al. 2015; 

Gischig et al. 2015; Matas et al, 2016; Nöel et al, 2017b,). Hazard characterization of a rockfall 

scenario is based on trajectory simulations, where a significant part of the tasks is the calibration 

of the restitution parameters (Kim et al. 2015). In places with previous rockfall events, it is 

common to use the volume and location of some big blocks in order to calibrate the restitution 

parameters, considering the blocks unbreakable during the propagation (Chau et al. 2002; Gischig 

et al. 2015; Asteriou et al. 2012, Li and Lan, 2015). The main hypothesis is that there is no 

fragmentation. However, fragmentation often occurs during the propagation, and the blocks 

observed on the deposit are fragments from bigger blocks that breaks due to impacts. Then, the 

use of the location and volume of these fragments to calibrate the restitution coeficients may 

involve errors in terms of energies absorbed by the terrain. The restitution parameters may become 

artificial parameters to control the energy balance and stop the blocks close to the observations.  

The probability of impact of rockfalls is often defined as the percentage of blocks of a certain 

volume that reach a certain point from a high number of simulations (Guzzetti et al., 2002; 

Jaboyedoff et al 2005). In reality, a single block can produce hundreds of fragments after 

its breakage as we observe in real-scale tests (Gili et al. 2016; Ruiz-Carulla et al. 2016). Then, 

the probability of impact after fragmentation depends on the whole fragment size 

distribution, the total number of fragments generated and the velocity and trajectory of each 

one defining the impact energy. Focusing on structures and protection systems, the multi-

impact effect due to fragmentation is obviated in the design processes. Multiple fragments 

increase the probability of impact against an important part of structures, as piles in protective 

fences or in house structures. The fragility curves of the exposed elements should consider it.  

Another interesting effect of fragmentation are “flight bullets”. These smaller fragments, 

generated in fragmentation explosive stage, can be ejected at high velocities and create new 

parabolic trajectories with high heights, trespassing fences and reaching longer runout distances. 

An efficient fragmentation may produce a “rain” of fragments over a road, and may be more 
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hazardous than the same total volume concentrated in a single block in terms of affected area and 

probability of impact, also impacting to multiple objects or vehicles. Restitution parameters 

obtained based on the location of these small fragments considering the rockfall source area will 

yield unreliable results. 

The fragmentation of a rock block is a very complex phenomenon due to the high degree of 

anisotropies and weakness structures in contrast of the main industrial man created materials. 

Rock fragmentation, has been considered in a wide range of fields of study related with tunneling 

or blasting, often related with mining proposes (Aler et al. 1996; Bakar et al. 2014; Chakraborty 

et al. 2004; Cunningham  1983 and 1987; Faramarzi et al. 2013; Gheibie et al. 2009; Hudaverdi 

et al. 2010; Peng et al 2009; Saavedra et al. 2006). However, for rockfall trajectory analyses 

purposes it is usually obviated. 

T he type of a single impact can be exemplified hitting a rock block with a geological hammer. A 

single impact can be applied on a corner, an edge or a face of the block (Figure 4). On a real 

rockfall, multiple impacts can be produced at the same time over an edge or a face of the block. 

The impact direction relative to a joint set or weakness plane of anisotropy produce different 

results. Tavallali (2010) analyzed the effect of the layer orientation on Brazilian tests, observing 

larger relative fracture length and smaller energies required with the alignment of the applied 

forces and the bedding planes of the tested sandstones. We can imagine it hitting a sedimentary 

block with a hammer parallel or not to the predominant planes of weakness (Figure 4). Real rock 

masses may have multiple planes of weaknesses, related to the genesis of the material and to the 

stress history. Then, the probability to get a more or less efficient impact direction is related to 

the number of anisotropies and the shape of the block. As we can observe this behavior on 

real-scale test (Giacomini et al. 2009 ; Gili et al 2016; Ruiz-Carulla et al. 2016) it is a 

stochastic process difficult to be modelled, but may be managed using stochastic or a 

controlled variation of some parameters, for example, over a survival rate of each block.  

 Figure 7: Types of single or multiple impacts on a rock block and examples of impact direction relative to 

planes of weakness. 
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Discrete elements methods can work considering the anisotropy, the joint sets and the shape of 

the blocks (Wang & Tonon 2010; Shen et al. 2017; Zhao et al. 2017). However, it is not a 

deterministic problem in terms of capability to describe with high degree of certainty what will 

happen due to the high number of factors dealing with fragmentation phenomenon. For these 

reasons, the impact type and relative direction are not been taken into account in this approach. 

However, for a real judgment expertise criterion, the shape of the blocks and the number of 

different imperfections systems has to be considered. Studies from energetic estimation on 

fragmentation (Hou et al 2017) and supported by real scale tests (Giacomini et al. 2009 ; Gili et 

al. 2016) reach this conclusion. 

Due to difficulties to study the impact forces directions and the wave of stress propagated inside 

the block, the energetic analysis is widely applied (Hou et al, 2017). The basis of many 

fragmentation theories uses the crushing work ratio that denotes the work used to break a volume 

of rock. This ratio is used to relate the energy and the size reduction commonly described as a 

diameter before breakage (D) and after breakage (d) (Rittinger  1867; Kick 1885 and Bond 1952, 

1961; Cunnungham, 1987; Grady DE. 1985; Hardin 1985). This description means that the rock 

mass redistribution after fragmentation is described using an average size. Alternatively, they are 

measured by sieving characterized by a diameter or areas in image analysis. The more relevant 

theories from Rittinger (1867), Kick (1885) and Bond (1952, 1960) uses this descriptor, and also 

all the theories based on these. The mentioned theories consider different aspects on 

fragmentation energy consumption and how to estimate the crushing ratio. However, they use a 

single diameter as average size to describe the final fragments distribution and sometimes a shape 

coefficient for the whole distribution (Hou et al. 2017).  

The main dominant idea is that the energy consumption on fragmentation should be proportional 

to the area of the new fractures generated or propagated if they already exist (Blasio & Crosta 

2016). Part of the energy is transferred to the fragments generated which propagate with a certain 

velocity after the impact. Both, the energy transferred and the kinematics of the fragments after 

the breakage upon the impact may be determined using Discrete Elements Methods analysis 

(Zhao et al. 2017).  

Part of the energy is absorbed by the ground and the elastic parameters both the falling rock mass 

and the terrain are considered in the elastic impact theory (Hou et al, 2017). The breakage criterion 

based on the energy or the velocity (Hou et al, 2017) can help in the comprehension of the 

phenomenon. However, from our point of view, a single average size of the falling mass is not 

enough, and the whole fragment size distribution is necessary to characterize the rockfall hazard 

and improve the quantitative risk evaluation. 
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Haug (2016) analysed the energy budget of fragmentation in rockfalls and rockslides using 

experiments.  In a way similar than Bowman (2012), different angles of the inclined plane were 

tested and a block sliding until its impact against the bottom base. The geometrical descriptors 

that defined the scenario were the relative fall height of the center of mass, the aspect ratio of the 

mass, and the travel distance. Another parameter used in this study was the potential energy 

relative to the cohesion, used as a descriptors of the energy available and the resistance to 

breakage, respectively. The parameter describing the fragmentation is the “degree of 

fragmentation”, which is defined as the proportion between the largest fragment volume and the 

initial volume. This definition of the degree of fragmentation assumes that the size of largest 

fragments describe the entire fragment size distribution.  

 

The fragments of the forefront of the block may be ejected at high velocities during the impact 

(Haug et al, 2017; Zhao et al, 2017). At the same time, other fragments from the bottom and rear 

part of the block may move at lower velocities. Haug (2017) observed a power law relationship 

between the degree of fragmentation and the ratio between the specific potential energy and the 

cohesion, and that the aspect ratio depends linearly with the degree of fragmentation. The increase 

of the degree of fragmentation reduces the run out distance of the center of mass of the deposit 

(Haug 2017, Bowman et al, 2014, Matas et al, 2017). He concluded that the front of the deposit 

travel farther away with increased degree of fragmentation. We argue this reasoning, because  the 

increase of the  fragmentation  degree (or other descriptor) should diminish the energy of each 

fragment, and then, the reduction of the run out distance in a natural fragmental rockfall scenario. 

However, in a single impact, fragmentation may generate small and medium fragments from the 

frontal part of the block that can describe new parabolic trajectories with longer runout distance. 

As mentioned in the introduction, the “flight bullets” fit to this behavior. Another specific case is 

when the shape of block may control the stoppage of the block, and if the block breaks, a new 

mobility possibility appears, which increasing the run out distance of the new fragments. These 

are the cases of the studies of Haug (2017) and Zhao (2017). We have observed this behavior in 

real-scale fragmentation test in quarry (Gili et al 2016).  

 

The energy scenario is also an important point in the fragmentation analysis. Considering the 

energy consumption proportional to the new area created, the bigger a block, the greater is the 

energy required to break it. An increase of the number of fragments implies an increase of new 

areas created, and then, more energy is  spent in breakage. At the same time, the type of impact 

contact (face, edge or a vertex of the block) and the relative orientation between the maximum 

impact force direction and the main weakness anisotropy may control de fragmentation pattern. 

For all these reasons, fragmentation process is a very stochastic process and difficult to describe 

and understand. Experimental studies (Giacomini et al 2009); Gili et al, 2016) were not able to 
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find an energy threshold in real scale fragmentation tests. It is necessary to notice that all the tests 

were carried out within the same order of magnitude of energy. 

Haug et al 2016 studied the energy budgets of the fragmentation in rockfalls and rockslides. The 

focused on the displacement of the center of mass and the energy budget of 109 experimental 

rockslides using a rock analogue material. They defined a characteristic fragment size and the 

largest fragment. The fragmentation degree is found to depend linearly on the aspect ratio of the 

experimental sample and on its cohesion (as power law). In these rockslides experimetns, the 

travel distance of the front of the deposit increases with the degree of fragmentation. In contrast, 

the center of mass reduces the mobility with the degree of fragmentation, suggesting an  increased 

energy consumption. The characteristic fragment size that describes the degree of fragmentation 

is taken as the largest fragment due to the difficult in sieving the deposited material and obtain 

the whole size distribution. Therefore, the degree of fragmentation (defined as mc) is the relation 

between the initial mass and the largest fragment mass after the experiment. It has also been used 

by Nocilla et al, 2009 to characterize the degree of fragmentation of rockfalls. In the present 

thesis, the whole size distribution of the deposits (Rockfall Block Size Distribution) is considered. 

The degree of fragmentation in terms of mc may describe well the single block cases. However, 

in the cases where the detached mass is a set of blocks (IBSD), is not possible to link the largest 

fragment with a single initial block. In the model (RFFM) proposed in this thesis,  survival rate 

parameter is defined which is the analogue to the degree of fragmentation in terms of mc, and a 

set of parameters is used to generate the rest of the fragment size distribution. In rock avalanches, 

Charriere et al, (2015) follow a similar criterion and compare the initial and the deposited block 

size distribution. In rock avalanches, more energetic than rockfalls, part of the rock mass may 

produce clouds of dust (Crosta et al, 2007) completely disintegrating the rock mass, and exerting 

some control on the run out distances (Davies et al 1999, Locat et al 2006). 

The fragmentation is a natural phenomenon that may be characterized by means of fractals 

(Perfect 1997). In order to study it, the author highlights the requirement of well detailed 

descriptions of the rigid bodies before and after the fragmentation phenomenon. The present 

research is focused on the observation and description of the main geometric descriptors and the 

block size distribution characterization on real fragmental rockfall based on a fractal 

fragmentation concept. In order to characterize the intial state of the rock mass, we have to 

reconstruct the detached rock mass and the IBSD based on the joint pattern present on the cliff. 

In order to achieve it, the use of UAV and digital photogrammetrics techniques should be 

considered. 3D models of the scar, in point cloud format are useful in order to quantify the joint 

pattern on the cliff (Gates et al, 2012; Gigli & Casagli 2011; Haneberg et al, 2006; Buyer, et al 

2017). Also in order to define geometries for dicrete elements methods (Firpo, et al 2011). 
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1.2 Summary  
 

PART I: Rockfall measurements and characterization 

 

The PART I of the present thesis, describes the methodologies and techniques used and developed 

in order to collect the relevant parameters of the rock mass and for the characterization of the 

fragmental rockfalls. Chapter 2, “A methodology to obtain the block size distribution of 

fragmental rockfall” describes how to obtain the RBSD of a rockfall debris by means of 

sampling plots. The results show a clear fractal behavior on the block size distribution that can be 

fitted to a power law. The analysis of the RBSD of several rockfall events is included in Chapter 

3, “Comparison of block size distributions in rockfalls”. It presents the different RBSD 

obtained in rockfalls with a wide range of conditions in terms of total volume, geometrical 

conditions of the slope, lithology and terrain properties. The paper ends with the correlation 

between the free fall height and the exponent (or slope) of the power laws that can be fitted to 

each RBSD, which relates the amount of energy to the slope of the fitted power law. The main 

conclusion is that the fragmentation process cannot be characterized only by the final product of 

the process, which is the RBSD. The analysis and characterization of the fragmentation have to 

consider the initial state of the rock mass and the comparison between the IBSD and the RBSD. 

This reason motivated the study of the unstable rock masses, the reconstruction of the detached 

volume and the joint pattern characterization in order to obtain the IBSD to be compared against 

the RBSD on each rockfall inventoried. To this end, we first ensembled our own UAV (Unmanned 

Aerial Vehicles or drones) to take pictures and prepare high-resolution 3D models using digital 

photogrammetric techniques such as the structure from motion algorithms. Chapter 4, 

“Experiences with UAV on mass movements characterization” is a short publication 

reviewing how these new technologies allow the obtention of a high amount of information that 

can be used to deal with: real terrain profiles (with overhangs), joint pattern characterization, 

unstable rock mass identification, 4D measurements for erosion-deposition studies or landslide 

deformation. The main advantage in using these techniques is the increase of the measurement 

capabilities and, at the same time, the reduction of risk during the field works by avoiding the 

exposure to the hazardous locations.  Chapter 5: “Unstable rock mass characterization with 

UAV”, presents more in detail the procedure we developed (including applications for rockfalls 

inventories), the acquisition systems tested, the data formats and how to manage the 3D 

information in order characterize the joint pattern and identify unstable rock masses. Finally, with 

all this new knowledge in data acquisition, we revisit the inventoried rockfalls as well as new 

ones, collecting the data that is presented in Chapter 5: “Fragmental rockfall inventory”. These 

data are then used to calibrate the proposed fragmentation model, as well as to support other 
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research lines like trajectographic simulators 

or RBSD measurements based on raster or 

3D point cloud analyses. Figures 8 to 10 are 

examples of tools, products and results of the 

field work carried out to characterize the 

fragmental rockfalls. Figure 8 shows the 

RBSD obtained and pictures of the rockfall 

inventoried. The inventory contains data of a 

wide range of rockfalls volumes, from 2,6 m3 

to 10,000 m3, and different lithologies 

(limestone, schist, sandstone and 

conglomerate).  

Figure 8: RBSD obtained (up right) and photos of the seven inventoried fragmental rockfall events. 
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Figure 9 shows a 3D model of a fragmental rockfall inventoried (Monasterio de Piedra) and the 

drone used (DJI-Inspire 2). After the rockfall event, an important unstable rock mass was 

characterized for further risk studies. Figure 10 shows the visual joint identification over a 

texturized 3D model and the outcrop modeling of the joints that define the unstable volume using 

a 3D point cloud. 

 
Figure 9: Texturized 3D model of a fragmental rockfall inventoried (Monasterio de Piedra), whereafter the 

rockfall event, an important unstable rock mass (orange volume) was characterized for further risk studies. 

 

 

 

 

Part 2 

 

 

 

 

 

 

 

 

 
Figure 10: Visual identification of joints on a texturized 3D model (left) and joints outcrop modeling (right). 
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PART 2: Real-scale fragmentation test 

 

The study of fragmentation phenomenon in natural rockfalls involves important uncertainties 

particularly on the size and characteristics of the initially detached rock mass and on the deposit 

of fragments. The real-scale fragmentation tests carried out in quarries (Figure 11) have provided 

high-quality data in a very controlled scenario with the possibility to repeat the test several times.  

 
Figure 11: Picture of real-scale fragmentation test (test nº 4) performed in a limestone quarry. 

 

We performed 4 real-scale fragmentation tests (Figure 12) dropping rock blocks with volumes 

ranging between 0.17 m3 and 5 m3. The main features recorded during the tests are: initial volume 

using a tape and a 3D photogrammetric reconstruction, fragments’ volumes, 3 high-speed cameras 

for trajectories reconstruction by videommetry, seismic recording, targets located on the scenario 

coordinates and UAV flights for 3D scenario reconstruction and measurements improvements. 

 
Figure 12: 3D models of the test sites with a profile coloured by the slope angle. 
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The Chapter 7: “Analysis of rock block fragmentation by means of real-scale test” is a short 

communication presenting the preliminary results of the test nº 1 and 2. The communication 

contains the correlation between the exponent of the fitted power laws of the block size 

distributions (BSD) of the fragments, and the number of fragments measured. No correlation is 

found between the number of fragments and the kinetic energy nor with the Schmidt hammer 

measurements. However, it must be taken into account that the range of kinetic energies generated 

in the quarry tests is much less than the range observed in nature (natural rockfalls). The Chapter 

8: “Comparative analysis from 4 real-scale test” discusses more in-depth the data obtained 

from the four tests realized. The first part of the chapter is focused on the techniques and 

methodologies used to capture as much information as possible on each test, with special attention 

on the measure of volumes. For the purpose of this thesis, the most relevant information collected 

is the BSD of the fragments for each block tested (Figure 13). A total of 124 blocks were tested 

and 2907 fragments were measured with a tape. The BSD obtained are colorized by low (purple), 

medium (orange) or high (green) exponent of the fitted power law.  

Blocks tested: 30 
Fragments: 594 

Blocks tested: 26 
Fragments: 680 

Blocks tested: 44 
Fragments: 392 

Blocks tested: 24 
Fragments: 1241 

Figure 13: BSD of fragments measured for each block tested, from test 1 to 4, colored by low, 

medium or high exponent of the fitted power law on each distribution. 
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The Survival rate (Sr) is defined here as the largest fragment volume measured over the initial 

volume. Then, a Sr=1 means that the block remains intact. Two blocks with the same Sr may 

produce a different number of blocks. Then, the Sr and the number of fragments are both 

necessary to characterize fragmentation. Figure 14 (left) shows the Survival rate and the number 

of fragments produced in each block tested. The smaller the Sr value, the larger the number of 

fragments produced. However, it is not a direct relation, and the same number of fragments may 

be generated with a wide range of Sr and vice-versa. Furthermore, Sr is not directly related to the 

potential energy as shown in Figure 14 (right) exemplifying that is not possible establish a fixed 

energetic threshold. All the blocks from the same test site were dropped from the same height, 

however, the potential energy varies because a range of block volumes was used in the test.  

Figure 14: Survival rate versus number of fragments produced on each block tested (left) and versus the 

potential energy of each block (right). 

Plotting the number of fragments versus the Sr by test sites (Figure 15) distinct patterns are 

observed. Blocks of Test 1 show a wide range of behaviors. Some blocks remain intact while 

others break completely, with Sr ranging from 1 to 0.2 and progressively increasing the number 

of fragments. The impact angle, whether the impact takes place on a vertex, edge or face of the 

block, the relative orientation between the anisotropies of the rock block and the impact surface, 

and the rigidity of the ground, are controlling factors of the fragmentation process. Blocks from 

test 2 show a contrasting behavior represented by two differentaited groups of Sr>0.85 and 

Sr<0.55, generating less or more than 20 fragments, respectively. In this test, blocks impacting 

against a more rigid substrate, doing a sharp impact sound (high frequency), generate more 

fragments and lower values of Sr.  
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Test 3 is a steep slope with soft materials at the flat platform below. The blocks released impact 

tangentially over the slope and remain intact until their contact with the flat platform below.  As 

the latter is composed of fine soft material, most of the blocks of Test 3 remain virtually unbroken, 

with Sr > 0.8-0.9. Despite the high Sr values, the number of blocks generated ranges from 1 (no 

breakage) to 50. Only one of the blocks broke because it impacted upon a deposited block, (similar 

rigidity). The breakage yielded Sr close to 0.3 and more than 50 fragments. Finally, Test 4 the 

blocks were dropped from a height of 8.5 meters above a stiff fault plane surface inclined 42º. 

The total height of the fall is 23.6 m. As the fault plane (see Figure 11) has high rigidity and the 

slope geometry allows a more normal component of the impact force than the other tests, the 

blocks break in an explosive way, most of them producing more than 40 fragments and even more 

than 100. However, the Sr ranges from 1 (or 0.8) to 0.2. Test 3 and 4 show opposite behavior, 

highlighting the importance of terrain rigidity and impact angle. 

Figure 15: Survival rate versus number of fragments produced on each block tested separtly by test sites. 
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PART 3: Rockfall Fractal Fragmentation Model 

 

The block size distributions collected in our fragmental rockfall inventory, and also from real-

scale fragmentation tests, show a fractal pattern. Based on this, a fractal fragmentation model is 

proposed in Chapter 9: “A fractal fragmentation model for rockfalls”. The initially detached 

rock mass consists of either an individual block or a jointed rock mass. In the latter, the 

intersection of the joints individualizes rock blocks whose volumetric distribution is the In-situ 

Block Size Distribution (IBSD), that will be the input of the model. The methodology to obtain 

the estimation of the IBSD is also explained in this chapter. The size distribution of the fragments 

generated as a result of the impact and breakage of the initial blocks is the Rockfall Block Size 

Distribution (RBSD), used in order to calibrate the model. The fragmentation of a rock mass can 

be quantified by comparing the block size distributions before and after the impact. Figure 16 is 

a sketch showing the fragmental rockfall and the block size distributions in terms of relative 

frequency.  

 
Figure 16: conceptual scheme (left) of the block size distributions from the initial state (IBSD) to the final 

deposit (RBSD), and the adjusting of the proposed Rockfall Fractal Fragmentation Model (RFFM) to the 

measured RBSD from the IBSD as input (right). 

 

The main idea of fractal behavior is the reproduction of the same behavior in several orders of 

magnitude, in this case, creating fragments from an initial volume. Figure 17 shows a conceptual 

scheme of the RFFM proposed, where: 1) the geometric factor “b” controls the proportions 

between the initial volume and the fragments generates; 2) the Probability of failure “P(1/bi)” 
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defines the proportions of the block that break producing fragments. The model proposed in 

chapter 9 works with iterations, applying the same construction rules in each iteration (“i” on 

Figure 17) using the before generated fragments as new initial blocks. 

Figure 17: Scheme of the fractal fragmentation model (scale-invariant) using b=2 and examples of smaller block 

generation for P(1/bi)=1/8, 2/8, 3/8 and 4/8=0.5, considering 1 or 2 iterations. 

The model input is the IBSD as a list of volumes. In order to estimate the IBSD, a 3D model of 

the scar is obtained by means of digital photogrammetry techniques. The latter is used to 

reconstruct the detached volume and to indentify the joint sets. Finally, we cut the reconstructed 

volume with the modeled joints assuming infinite persistence. Figure 18 shows two possible 

volume reconstruction (A and B) and the IBSD obtained using 4 or 5 sets of joints to cut it. 

Figure 18: IBSD generated taking a prismatic volume (A) or a reconstructed irregular volume of the 

detached rock mass (B), and the corresponding IBSD (C) considering 4 or 5 fully persistent joint sets. 
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The model is calibrated using the inventoried Cadi rockfall event. Figure 19 shows the results in 

terms of relative frequency (A) and in terms of the cumulative number of blocs (B). The IBSD is 

the input distribution (blue), the RBSD is the distribution of blocks obtained from field 

measurements (red), and the block size distribution resultant of the model (green) is named 

RBSD_RFFM. The proposed model in Chapter 9 works using bins, classifying the blocks in size 

classes. Then, each block is defined by an average size of the bin. Due to this, the mass balance 

cannot be accomplished. A survival rate is defined in order to quantify the proportion of blocks 

of each bin size that breaks, allowing a percentage of blocks remaining unbroken. 

Figure 19: IBSD (irregular shape, 5 joint sets), RBSD from the measurements in the field and RFFM_RBSD 

generated using the Rockfall Fractal Fragmentation Model; in terms of relative frequency (A) and the 

cumulative number of blocks (B) versus block size. 

We identify the main limitations of the proposed mode: 1) cannot accomplish the mass balance 

due to the use of bins: 2) the shape of the block size distributions produced depends on the number 

of iterations; 3) the methodology follows implies the generation of fragments of equal sized in 

each iteration. The latter is arguable when the initiator is a single block like the used in the real-

scale fragmentation tests or in small rockfalls. In order to overcome these limitations, we propose 

some model upgrades in Chapter 10: Performance of a rockfall fractal fragmentation 

model”.  The most important upgrade of the model is the use of the formulation in terms of the 

cumulative number of blocks, avoiding the classification in bins and applying the model on each 

initiator block. With this upgrade: 1) the iteration process is not requiered, and then, the 

parameters of the model no longer depend on the number of iterations; 2) the model satisfies the 

mass balance and 3) the model produces a distribution of fragments in a cumulative way, with 

fragments continuously decreasing in size as it is observed in reality. Another upgrade of the 

model is the use of scale-variant behavior with the formulation proposed also by Perfect (1997), 

allowing the reproduction of block size distributions with an irregular shape. Notice that the 
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Survival rate (Sr) defined in Chapter 9 as the proportion of blocks of each bin that remain 

unbroken have no sense in the upgraded model without bins, because all the input blocks are 

initiators that may break or not. At the same time, the use of scale-variant formulation introduces 

a parameter defined by Perfect (1997) as a probability of survival, that defines the largest fragment 

produced by an initiator. Here, the probability of survival has been renamed as Survival rate to 

define the largest fragment over the initial block volume. We calibrate the upgraded model using 

the data collected from 7 inventoried rockfalls. We use the same set of parameters for all the 

blocks of each rockfall event, being a set of average parameters of the fragmentation model, 

despite the fact that the set of parameters may be specific of each block, depending on the impact 

conditions. Figure 20 shows the results of the model calibration with the rockfall events of Gurp, 

Monasterio de Piedra, Malanyeu, and Cadi. 

Figure 20: RFFM calibrated using the RBSD and the IBSD of the Gurp, Monasterio de Piedra, Malanyeu 

and Cadi rockfall events. 
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The model is able to reproduce correctly the number of blocks as well as the entire block size 

distribution. The number of fragments increases with the total rockfall volume as may be expected 

(Figure 21, left). Pont de Gulleri rockfall (PdG in Figure 21) shows a higher number of blocks 

than the other cases, also normalizing the number of blocks by the total rockfall volume (Figure 

21, right). The higher or lower value of the initial number of blocks is related to the degree of 

fracturation of the rock mass, as well as to the uncertainties in the IBSD estimation procedure.  

 

Figure 21: Left: Total number of initial blocks (from the IBSD estimation, blue dots), fragments measured 

on the deposit (red dots) and fragments resultant from the model calibration (green squares); Right: number 

of blocks normalized by the total rockfall volume.  

 

We calculate the new surface area created by comparing the total fragment surface area and the 

initial surface area of the IBSD. The new area created, which may be related to the fragmentation 

energy, shows good correlations with the total rockfall volume and with the total potential energy 

(Figure 22). 

 

 

 

 

 

 

 

 

 

 

Figure 22: New surface area versus Total rockfall volume (left) and versus Total Potential Energy and 

1st Impact Potential Energy (right). 
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The Specific Surface Area (SSA) is calculated normalizing the surfaces areas by the total rockfall 

volume, obtaining the Initial, the New and the Total Specific Surface Area (ISSA, NSSA, and 

TSSA respectively) plotted in Figure 23 (left). Also, the proportion of NA/TA (equal to 

NSSA/TSSA) is plotted as a percentage. The ISSA column represents the initial surfaces area per 

volume unit of the IBSD, defining the initial degree of fracturation of the rock mass. The NSSA 

quantify the new area created by breakage. Then, from our point of view of fragmentation, the 

bars represent the proportion between disaggregation (surfaces already existing in the IBSD) and 

breakage (new surfaces). Pont de Gulleri rockfall (PdG) shows the higher values of TSSA, but 

only the 21% is related with the new area, being the disaggregation the predominant mechanism 

in this case. Monasterio de Piedra (MdP), Cadi and Omells events, show TSSA values close to 10 

m2/m3 with different proportion of new surfaces: 87%, 65%, and 49% respectively, being the 

Monasterio de Piedra the event with greater breakage, followed by the Cadi event. In comparison, 

Lluçà, Gurp and Malanyeu cases show smaller values of TSSA, and may be interpreted as events 

with less breakage. In the latter events, a few blocks remain unbroken or less affected: Lluçà with 

a block of 8,5 m3 over the 10,7 m3 of total detached mass; Gurp with two blocks of more than 20 

m3 over the total 100 m3 of rockfall; and Malanyeu, where the deposit includes 7 blocks greater 

than 100 m3, and more than 60 blocks greater than 10m3, with a maximum boulder of 445 m3. 

The model parameters (b and Sr) show a good correlation with the proportion of new area over 

the total area (NA/TA) (Figure 23, right). By decreasing the model parameters, the proportion of 

breakage over disaggregation increases. 

Figure 23: Left: Initial (blue), new (orange) and total (red) specific surface areas of each rockfall 
inventoried. Right: Model parameters versus Nea Area over Total Area (NA/TA).
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PART 4: Applications 

The improvements in data acquisition systems by means of UAV surveys and digital 

photogrammetric techniques, as well as the joint pattern characterization and identification 

unstable volumes identification, are useful in other research lines. The Chapter 11: “Magnitude 

and Frequency relations: are there geological constraints to the rockfall size?” presents an 

application of these methodologies in identifying the maximum credible volume at a particular 

cliff in Andorra. The analysis of the geological structure of the rock mass at the Solà d’Andorra 

allows us conclude that the size of the failures is controlled by the fracture pattern and that the 

maximum size of the failure is constrained. by the existence of faults in the rock mass. Finally, 

fragmentation strongly affects the results of the quantitative risk analysis (QRA). Chapter 12: 

“Quantitative Analysis of Risk due to Fragmental Rockfalls” presents an example of a QRA 

of fragmental rockfalls. The fragmentation of the falling rock mass is integrated in a rockfall 

trajectory simulator to quantify runout, impact energy, and the probability of impact. The 

identification of unstable volumes is also an important part of the risk analysis. Figure 24 shows 

a group of unstable rock volumes identified and colored by failure susceptibility based on expert 

judgment and some indicators as previous failures, aperture of fissures, and persistence. 

Figure 24: 3D models of the unstable rock volumes identified in Monasterio de Piedra, colored by failure 

susceptibility from low (green) to medium (orange) and high (red). 

The results of the QRA analysis show that fragmentation has a significant but contrasting effect 

on the calculation of risk.  The overall risk may be reduced if the slope where blocks propagate is 

both long and gentle enough before reaching the analyzed section. The reason is that, compared 
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to the unfragmented rock masses, the new fragments generate short travel distances with lesser 

kinetic energy. This effect vanishes in case of large rockfalls. Conversely, the risk increases if 

rock blocks propagate over steep slopes and the distance to the analyzed section is short.  The 

reason is that the exposure increments due to the generation of a cone of fragments.  Our 

simulations also have shown that the segregation of the visitors’ flow has only a minor influence 

on the results of the risk analysis. Finally, the consideration of fragmentation provides additional 

criteria for the assessing the efficiency of the rockfall protective measures. Figure 25 shows the 

results of a rockfall simulation with fragmentation in a case where fragmentation may be 

favorable in terms of reducing the fragments runout. Figure 26 shows two simulations in a 

steeper slope (with a single block or an IBSD as the initiator, left and right respectively) where 

fragmentation plays an unfavorable effect increasing the number of fragments that reach the trail 

below, increasing the probability of impact and modifying the hazard map characterization. 

Figure 25: Rockfall simulation considering fragmentation in a case where fragmentation may play a 

favorable role due to the decrease the runout and the impact energy of each block (from Gerard Matas). 
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Figure 26: Rockfall simulation considering fragmentation in a case where fragmentation may play an 

unfavorable role due to the increase of fragments and then, the increase of the probability of impact. Left: 

with a single block as the initiator. Right: with an IBSD as initiator (from Gerard Matas). 

Now, every time that we have to deal with rockfalls and perform risk analysis, hazard maps or 

trajectory simulations, we have to start asking whether the hypothesis of “no fragmentation” is on 

the ssafe side. It will depend on each scenario geometry. Figure 27 summarises some of the 

questions that must be asked in front of a fragmental rockfall analysis. For example, a steeped (a) 

or a long and gentle slope (b).  

Figure 27: Schema of fragmental rockfall scenarios and possible fragmentation scenarios. 
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1.3 Tools developed 

In order to achieve the main objectives of the present thesis, some tools have been developed. An 

important time-consuming task has been devoted to the construction of our own drones at the 

beginning of this technology for civil purposes (2013-2015). In the inventoried rockfalls, the 

UAV surveys and the digital photogrammetry has played an important role. The huge amount of 

information and high resolution allows a full recording of the event and the storage of a big 

amount of data that will be used in future research. To this end, the author of this thesis obtained 

the drone pilot license necessary to operate under the Spanish regulations. Futhermore, he 

constructed, in collaboration with Sjædric Moreno, 3 drones: a DJI F-450 quadcopter (Figure 28); 

an original design of a fiber hexacopter (Figure 29) and a DJI S900 (Figure 30). We also use other 

drones like DJI Inspire 1 Pro (Figure 30 on the right) and DJI Inspire 2 (Figure 9). 

Figure 28: DJI F450 quadcopter mounted and used at the beginning of our research. 

Figure 29: Self-constructed and based on our own design of a hexacopter (HexaCarbonFrame), in 

collaboration with Sjædric Moreno Coscoll as designer, constructor and drone pilot. 
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Figure 30: DJI-S900 sefl-mounted with a Sony NEX5 camera (left) and DJI-Inspire 1Pro with the camera 

X5 (right). 

 

From another point of view, some tools have been developed in order to implement the 

fragmentation models proposed. The fragmentation model proposed in Chapter 9 has been 

implemented in an Excel worksheet in order to calibrate the model and learn how it works (Figure 

31). 

 
Figure 31: Excel sheet programmed with the Rockfall Fractal Fragmentation Model proposed. 
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Chapter 10 presents the upgrades of the model, with a completely new code and new features. 

The model allows the generation of large and continuously decreasing fragment size distribution 

from a single block or an IBSD as input. Scale-invariant and scale variant behavior has been 

implemented with automatic input parameters modifications. The new code has been 

implemented in Matlab. A graphic interface (Figure 32) is developed to load easily the IBSD and 

the RBSD from excel files using a button, as well as the exportation of the RFFM results in .txt 

or excel format. An optimization method has been implemented, minimizing the error (described 

by the reduced Xi2) using the RBSD as truth and obtaining the best fitting model parameters on a 

predefined range of values and precision.  

The graphics interface shows the results in terms of the cumulative number of blocks, relative 

frequency, the percentage of blocks passing, the percentage of volume passing and cumulative 

volume, all of them versus block size in log-log plots. The program also shows the Xi2 fragment 

per fragment and the variation of the probability of failure and the fractal fragmentation dimension 

in the case of scale variant behavior. 

Figure 32: Graphics interface of the Matlab code developed with the upgraded Rockfall Fractal 

Fragmentation Model presented in Chapter 10. 
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1.4 Conclusions and future work 

The main conclusion of this thesis is that fragmentation of rockfalls cannot be neglected due to 

its effects on the rockfall risk quantification. The assumption of “no fragmentation” is not always 

at the safe side.  

Fragmentation on rockfalls is a natural process in earth surface dynamics. By measuring 

fragments from natural rockfalls and listing their volumes, a clear power law is observed (straight 

line on log-log plot). It indicates the same behavior in several orders of magnitude, becoming a 

fractal behavior. In order to characterize and reproduce the phenomenon, a fractal fragmentation 

model for rockfalls is proposed. The model has the capability to reproduce the observed block 

size distribution by defining the volume and number of fragments. The calibration of the model 

is carried out using the data from an exhaustive rockfall inventory of 7 fragmental rockfall events. 

The UAV systems combined with digital photogrammetry are very efficient and useful in order 

to characterize the scenario generating high-resolution 3D models. To calibrate the results, we 

measured 7200 fragments in the field with a tape to estimate their volumes.  

Breakage of a rock block implies the creation of a new surface area which is related to the energy 

spent on it. The new surface area created in the fragments of inventoried rockfalls is calculated 

and shows a satisfactory correlation with the total rockfall volume and with the potential energy 

of each event. However, real-scale fragmentation tests in a very controlled scenario, show a wide 

range of results, without correlation with the potential or kinetic energy. This means that there is 

not possible to define an energetic threshold for each individual block. However, as we introduce 

more energy in the system, a higher number of fragments and new surfaces are produced. 

The real-scale fragmentation tests allow the identification of the factors controlling fragmentation, 

such as the terrain rigidity or the impact angle. The type of impact (vertex, edge or face) and the 

anisotropies and planes of weakness inside the rock are difficult to evaluate beforehand and often 

impossible to predict. Due to this, the phenomenon has a stochastic behavior that should be 

considered in the analyses. 

From the point of view of the risk, fragmentation has contrasting effects: on one hand, the 

breakage of the falling rock mass increases the number of fragments, and then, and increases the 

probability of impact. Sometimes, multimpact may be more dangerous than a single impact, 

depending on the elements exposed and their vulnerability. On the other hand, the breakage 

implies the reduction in volume, which reduces both  the impact energy and the runout distance. 
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Thus, depending on the geometry of each scenario, as well as the vulnerability of the exposed 

elements, fragmentation may increase or reduce the rockfall hazard. 

In order to identify the control factors, in the future we will enlarge the inventories and carry out 

more real-scale tests. All the data collected may be used in a Rock Engineering System to weight 

each controlling factor. Another research line is the simulations with discrete elements methods 

to build a meta-model to be integrated on a trajectory simulator. It is currenly possible to carry 

out simulations from “no fragmentation increasing block breakage progressively in order to 

identify the worst case of each specific scenario. 

For these reasons, the main conclusion is the following: Is the assumption of no fragmentation at 

the safe side of security when performing rockfall simulations? It depends. The disaggregation of 

the rock mass due to the preexisting block volumes is unavoidable. The breakage behavior may 

be different at each event, even the rockfall occurs in the same cliff as we observe on specific site 

inventories in Andorra or in the real-scale fragmentation tests.  

Detailed conclusions and future works by parts: 

PART I: Rockfall measurements and characterization 

About methodologies and techniques to characterize rockfall events 

-A sampling procedure is proposed in Chapter 2 for the construction of the block size distribution 

of a fragmental rockfall deposit (Rockfall Block Size Distribution, RBSD). The fragments follow 

power law distributions. The exponent of the fitted power law is related with the fractal dimension 

and could be used as a descriptor of the fragmentation process. The RBSD from different 

inventoried rockfalls (Chapter 3) suggests that these exponents could be related to the height of 

fall and to the proportion of new surfaces generated by breakage, among other factors. 

-The RBSD is not enough to study the fragmentation phenomenon, and it should be compared 

with the initial state of the detached rock mass, defined by the In situ Block Size Distribution 

(IBSD). 
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-The estimation of an IBSD depends on the volume detached (shape and location), the joint sets 

present in the cliff that predefine the number of blocks, and their relative position. For these 

reasons, a detailed 3D model of the source area is required to estimate the IBSD. The procedure 

is done by means of 3D point cloud analysis and 3D texturized mesh as best formats to deal with 

this kind of procedures. 

- UAV combined with photogrammetry techniques can provide a large amount of information of 

high quality. Their use in the description of slope instabilities, characterization of discontinuities, 

delimitation of unstable volumes, as well as monitoring tasks, will be essential in order to improve 

the performance, safety and efficiency of the field work (Chapter 4). 

-The 3D models allow the generation of high-resolution maps (topography, orthophotos, DEM, 

etc) as well as the obtention of real terrain profiles from point clouds, particularly the overhangs. 

The high-resolution orthophotos (0.7 cm/px to 3 cm/px) enable the elaboration of very detailed 

cartographies and the identification of missing elements in field work.  

- The collected data in the fragmental rockfall inventory (Chapter 6) will be used in future 

developments of rockfall propagation models and to calibrate procedures for automatic volume 

identification and calculation of fragments using image and 3D analyses. 

-The safety during the inventory tasks is importantly enhanced using the UAV, substantially 

reducing the exposure in the hazardous zones and, at the same time, obtaining a huge amount of 

high-quality information.  

About joint pattern characterization: 

-The parameters used in order to fit facets on a point cloud (joint face identification with the 

plugin Facet Matching or other tools) should be tested at every site, due to the variation of the 

point cloud density, the degree of roughness, the waviness; and the scale relation between the 

interesting joints and the scenario studied. All of them controls the resultant facets or joints 

identified. 

-The Compass tool from CloudCompare (Thiele, et al 2017) is very useful in order to characterize 

in a fast way the more evident joint faces. Also, the capability to characterize traces improves the 

characterization of the joint pattern. It may be exported to create volume reconstructions or an 

IBSD with software like Rhinoceros, Polyworks, or directly to be used in discrete elements 

methods codes. 
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-The estimation of the IBSD of each case is based on observed joint faces or traces that are 

extended with the assumption of infinite persistence. Neither joint spacing measurements nor 

statistical reconstructions are used. The influence of the IBSD is very important on a rockfall 

event, defining the initial block volumes that may create different trajectories and breakage 

processes depending on the propagation scenario. For this reason, the unstable volume 

identification and the joint pattern characterization is a fundamental tasks in rockfall prevention 

and analysis studies. 

PART 2: Real-scale fragmentation tests 

- Real-scale fragmentation tests allow the measurement and observation of the rock fragmentation 

phenomenon in a very controlled scenario and with the capability of to repeat the experiment. The 

results show large variations of the breakage behavior for the same conditions within each test. 

-The results indicate that the size distribution of rockfall fragments can be expressed by power 

laws, which exponents are indicators of the degree of fragmentation. Although an energy 

threshold could be expected for the breakage of the blocks, the kinetic energies measured, the 

potential energy and the Schmidt hammer values show poor correlations with the number of 

fragments generated.  

- We propose the combination of the Survival rate and the number of fragments as descriptor of 

the fragmentation. Different behaviors were observed at the testing sites. 

-Comparing the data obtained from 4 real-scale fragmentation test, some insights of controlling 

factors may be derived. The difference between the Test 3 and the Test 4, ranging from Sr and 

number of fragments defines the possibles ranges that may be used in stochastic simulations. 

-All range of fragmentation features are observed in test site 1. A contrasting behaviors is 

observed in test site 2, the rock blocks that break and the ones that not too much. test site 3, 

involved very soft terrain of the ground surface. Most of the blocks remain unbroken, with Sr > 

0.85, but producing fragments between 2 to 100 fragments. At the other end, testing site # 4, Sr 

ranges from 0.2 to 0.8. Most of the blocks generate more than 40 fragments. Based on these 

observations, we conclude that, despite some trends are identified, the fragmentation cannot be 

modelled in a deterministic way. 
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-The rigidity or capacity to absorb energy of the terrain is found a main controlling factor of 

fragmentation in the drop tests. Similarly occurs with the impact angle. Other parameters such as 

the relative impact direction of the main rock block anisotropies (fissures or planes of weakness 

of the block) as well of the type of impact (vertex, edge or face) are features that can be hardly 

taken into account in the simulations. Only discrete elements methods can deal with these features 

and the deterministic modelling of real events is still a challenge. 

-The real-scale fragmentation tests therefore provide a large amount of high-quality data that we 

will be precoessed in the future:  energies, impact angles, initial block fractures studies, as well 

as all the information needed in order to calibrate fragmentation models, propagation models and 

discrete elements methods. 

PART 3. Rockfall Fractal Fragmentation Model 

- Based on the empiricial observations presented in PART I and PART II, we proposed a Rockfall 

Fractal Fragmentation Model (RFFM). It is model that simulates the passage from from the In 

Situ Block Distribution (IBSD), to the Rockfall Block Size Distribution, RBSD. The models is 

based on fractal laws and works using three-parameter. The results of the model may vary 

depending on the assumptions made for the joint pattern in the procedure to estimate the IBSD. 

-The RFFM proposed in Chapter 9 uses bins to classify the IBSD and the RBSD, as well as the 

results. Because of this, the condition of mass balance is not fulfilled. To overcome this problem, 

we present in chapter 10 the upgraded model that works with all the blocks from the IBSD, 

applying the model on each block, avoiding the use of bins and accomplishing the mass balance. 

-The upgraded model is able to reproduce the block size distributions observed in both natural 

fragmental rockfall events and real scale tests. The input of the model may be either a single block 

or the IBSD. An interesting upgrade of the model is the use of scale-variant formulation, that is 

able to generate block size distributions with irregular shapes. 

- The model parameters are calibrated using the same set of parameters b, r, and Sr for all the 

blocks of each rockfall event. The calibrated values of the geometric factor “b” range between 

1.235 and 2.34, and the Survival rate from 0.18 to 0.9. In all the cases, the Xir
2 used to calibrate 

the model ranges between 0.0004 and 0.018. 

-Future trajectory simulators considering fragmentation will be able to apply a different set of 

parameters for each block at each impact. The controlling factors are the focus of our future 



52 

research. Currently, the capacity to absorb the energy of the terrain, despite its relevance is 

difficult to quantify, as well as the total potential energy, the impact conditions (impact angle) 

and the shape of the blocks. 

-The rock mass properties such as the RMR show a positive correlation with the survival rate, 

however, the correlation with the geometric factor b is weak. Similarly occurs with the correlation 

with the Uniaxial Compressive Strength and the Tensile Strength without direct correlations. It 

may be noticed a relation between the 3d surface area of the scar and the total rockfall volume, as 

well as the number of fragments and new area created in a wide range of orders of magnitude. 

The new area created is related with the fragmentation energy and seems to be directly correlated 

with the total rockfall volume as well as total potential energy.  

-The specific surface area of the initial blocks (ISSA) and of the resultant fragments (TSSA) are 

used as fragmentation indicators. The proportions of Initial, New and Total Specific Surface Area 

of the blocks characterize the fragmentation event. The ISSA (Initial Specific Surface Area) is 

the one defined by the preexisting discontinuities, and is determined by the IBSD. There exists a 

direct relationship between the NSSA (New Specific Surface Area) and the breakage of the rock 

creating new surfaces. Based on this, we interpret the more or less predominant fragmentation 

behavior based on the proportion of New Surface Area over Total Surface Area (NA/TA = 

NSSA/TSSA). The model parameters show a clear correlation with the proportion of NA/TA. 

-Unfortunately, the number of inventoried cases is too small to generalize these findings. The 

fragmentation process is a very complex phenomenon where small details that may affect the final 

results. From real-scale fragmentation test, we observed how 30 similar blocks dropped from the 

same height on the same place yields Sr ranging between 0.2 and 1 (unbroken) depending on the 

local impact conditions and the block shape. For these reasons, a probabilistic approach of the 

fragmentation should still be used. 

-The final purpose of this ongoing research is to highlight the influence of the fragmentation on 

rockfall propagation and provide tools to consider it on a trajectory rockfall simulator. 

Quantitative risk assessment studies should also consider the implications of fragmentation that 

can modify the hazard by the number of fragments, the runout, the mass distribution, and then, 

the impact energies and probabilities of impact. 
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PART 4. Aplications 

-All the knowledge about fragmentation and the tools and data acquisition systems developed and 

improved during the research for this thesis, can be applied other research domains and to real 

rockfall assessment cases. 

-The magnitude frequency relations are used in a wide range of natural phenomena. Also, for the 

period of return of a rockfall (or mass movements) of a certain size or magnitude. This relation is 

also characterized by a power law, and then, can be interpreted as a fractal or with fractal behavior. 

-As we observe from the real-scale fragmentation test and from the rockfalls inventories, the 

fractals laws are not completely scale-invariant, and often the trend on a singular order of 

magnitude, varies for some reason. The change of behavior can be controlled by the scale of the 

rock mass with joints, the spacing of the joints, and below the minimum spacing, the rock matrix 

might affect the slope of the power law.  

-The results from the QRA analysis show that fragmentation has a significant but contrasting 

effect on the calculation of risk.  The overall risk may be reduced if the slope where blocks 

propagate is both long and gentle enough before reaching the analyzed section. The reason is that, 

compared to the unfragmented rock masses, the new fragments generate short travel distances 

with lesser kinetic energy. This effect vanishes in case of large rockfalls. Conversely, the risk 

increases if rock blocks propagate over steep slopes and the distance to the analyzed section is 

short.  The reason is that the exposure increments due to the generation of a cone of fragments. 

Our simulations also have shown that the segregation of the visitors’ flow has only a minor 

influence on the results of the risk analysis. Finally, the consideration of fragmentation provides 

additional criteria for the assessing the efficiency of the rockfall protective measures  
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2. A methodology to obtain the block size distribution of 

fragmental rockfall deposits  
 

This chapter reproduces the article published in the Landslides journal, on the procedure to 
determine the distribution of rock blocks volumes of a fragmental rockfall. 

 

Publication reference: 

Ruiz-Carulla R, Corominas J & Mavrouli O (2015). A Methodology to Obtain the Block Size 

Distribution of Fragmental Rockfall Deposits. Landslides, Volume 12, Issue 4: 815–25. 

doi:10.1007/s10346-015-0600-7. 

  

 

 

 

Abstract: 

 

Rock masses detached as rockfalls usually disintegrate upon impact on the ground surface. The 

knowledge of the Rockfall Block Size Distribution (RBSD) generated in the rockfall deposit is 

useful for the analysis of the trajectories of the rock blocks, run-out distances, impact energies 

and for the quantitative assessment of the rockfall hazard. Obtaining the RBSD of a large rockfall 

deposit may become a challenge due to the high number of blocks to be measured. In this paper, 

we present a methodology developed for mid-size fragmental rockfalls (103 up to 105m3) and its 

application to the Cadí massif, Eastern Pyrenees. The methodology consists of counting and 

measuring block fragments in selected sampling plots within homogeneous zones in the young 

debris cover generated by the rockfall along with all the large scattered rock blocks. The size 

distribution of blocks obtained in the sampling plots is extrapolated to the whole young debris 

cover and summed to the inventoried large scattered blocks to derive the RBSD of the whole 

rockfall event. The obtained distributions from the fragments can be well fitted by a power law 

distribution, indicating the scale invariant character of the fragmentation process (Hartmann 1969 

; Turcotte, 1986). The total volume of the rockfall fragments has been checked against the volume 

at the rockfall source. The latter has been calculated comparing 3D digital surface models before 

and after the rockfall event.  

 

 

Keywords: rockfall, fragmental rockfall, block size distribution, volume estimation  
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1. Introduction  

 

Evans and Hungr (1993) and Hungr et al. (2014) reserved the term fragmental rockfall, for the 

events in which the individual fragments move as independent rigid bodies interacting with the 

ground surface by means of episodic impacts. They distinguished it from the term rock avalanche 

in which masses of fragments move in a flow-like way. In fragmental rockfalls, the detached rock 

mass, which often includes discontinuities, disaggregates, breaks or both, after the first impacts 

on the ground. The resultant fragments propagate independently downhill. The deposit of a 

fragmental rockfall is a set of rock blocks of different sizes scattered on the ground surface. In the 

case of mid to large-size fragmental rockfalls (more than thousands of cubic meters) a more or 

less continuous Young Debris Cover (YDC) can be formed as well (Fig. 1). Understanding the 

fragmentation process is fundamental for the analysis of the rockfall hazard, since it is a critical 

input datum for calculating the trajectories and the run-out of the rock fragments, the encounter 

probability with the elements at risk and the expected impact energies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Fragmental rockfall at La Guingueta, Central Pyrenees, Spain. The trajectories of the large scattered blocks 
diverge after the impact of the rock mass upon the ground surface. A young debris cover, composed of small-size 
blocks, has been deposited close to the rockfall source. 
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The importance of the rockfall fragmentation in the analysis of the rockfall hazard has been 

discussed by Jaboyedoff et al. (2005) and Corominas et al. (2012). The definition of the initial 

rockfall volume is crucial when performing the trajectographic analysis. Run-out analyses 

performed with the originally detached rock mass volume produce results, which are significantly 

different from those using individual rock blocks (Okura et al., 2000 ; Dorren 2003).  Considering 

the initial rock mass leads to the overestimation of the rockfall kinetic energy and run-out. If the 

modal or the maximum block fragment size is used instead, the travel distances and the energies 

obtained are more realistic. However, the frequency and the impact probability are largely 

underestimated as in reality, the original rock mass splits into a large number of rock fragments, 

leading to the multiplication of the impact probability by a factor “n” equal to the number of new 

blocks generated. Taking this into consideration, the assessment of the size and number of blocks 

produced from an original rock mass is of primary importance for the rockfall risk analysis (Hungr 

et al. 1999). An indicator of the rockfall fragmentation is given by the Rockfall Block Size 

Distribution (RBSD). 

 

Several parameters influence the fragmentation process and the RBSD (Dussauge et al. 2003; 

Wang & Tonon 2010; Hantz et al 2014): the presence of discontinuities in the detached rock mass 

as well as their persistence, aperture and orientation at the moment of the impact, the impact 

energy, the rigidity of the ground and the impact angle. However, rockfall fragmentation is a 

complex physical mechanism that it is still poorly understood and difficult to simulate (Chau 

2002; Zhang et al. 2000). A few codes incorporate a fragmentation module for propagation 

analysis such as HY-STONE (Agliardi & Crosta 2003). It includes a trained neural network 

(Hecht-Nielsen 1987; Schalkoff 1997) which determines the mass and velocities of the fragments 

right after the impact. The model is efficient in predicting whether a rock block is broken or not 

on given impact conditions. It can also approximate well the energy loss due to the failure process 

and the energy transformation upon impact. However, it has some difficulties in reproducing the 

fragment size distribution as observed in reality. Salciarini et al. (2009) used a Discrete Elements 

Model approach to model the fragmentation effects using the software UDEC, and the results of 

the simulations indicated that the position and the extent of the accumulation zone is strongly 

affected by rock mass fragmentation. Tests performed in quarries provided some insight into the 

phenomenon but were not able to indicate impact energy thresholds that produce breakage of the 

blocks (Giacomini et al. 2009).  The observations of Dussauge et al. (2003) suggest that the 

rockfall fragment sizes are associated with the fracture pattern of the detached rock mass volume 

at the source. Hantz et al. (2014) found that the deposited rockfall blocks follow a power law.  

 

The investigation of the rockfall phenomenon for the development of predictive models requires 

the existence of rockfall inventories. Commonly, the rockfall inventories record the total volume 
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of the detached mass (Dussauge et al. 2002, 2003) or the largest blocks with the longest run out. 

Complete inventories including deposited blocks of all sizes are difficult to obtain. Several 

researchers mainly working on rock blasts, have used photoanalytical techniques to obtain the 

fragment size distribution (Crosta et al. 2007). However these provide results only for the block 

area and not for the volume. In large rockfall deposits, the large amount of blocks and the extent 

of the deposits make difficult obtaining the RBSD. To this end, field work should be systematic 

and well-organized. In this paper we present a methodology to obtain the RBSD based on field 

measurements.  

 
 

2. Methodology  
 
 

Mid-size fragmental rockfalls often generate a more or less continuous young cover of small 

debris and larger scattered blocks (Fig. 2). Some debris covers have a large extent and display a 

progressive downhill increase of the average block size. Because of this, obtaining the RBSD may 

become a challenging task.  

 

Two complementary activities may be performed for measuring the rock blocks and obtaining the 

RBSD: a) the selective sampling of the young debris cover (YDC); and b) the systematic 

measurement of the large scattered blocks. The methodology is summarized in Fig. 2. 

 

First, the YDC is divided into homogeneous zones of similar average block size based on visual 

field observation and orthophoto interpretation (in this case, A1 to A3). At each zone, several 

sampling plots are defined in which all the blocks larger than a minimum size are measured to 

obtain the respective block size distribution of the plot. The large scattered blocks are 

georeferenced using a GPS GARMIN Montana 650 and measured one by one. A few small blocks 

outside the YDC were also measured and included in this group. Three lengths more or less 

orthogonal to each other are measured at each block to estimate the volume, assuming that the 

shape of the blocks is prismatic. 
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Fig. 2: Methodology followed to prepare the RBSD. The scheme shows the Young Debris Cover (YDC), the 
sampling plots (orange squares) for each homogeneous zone A1 to A3 (the symbol X stands for weighted 
multiplication, see step 2 in the text below), and the large scattered blocks. The plots display the block size 
distribution where "Fr" is the cumulative relative frequency for each block size bin “M”. 
 

 

The RBSD is obtained as follows (Fig. 2):  

 

 (1) The measured blocks of each sampling plot (orange squares) are classified in bins (j) of 

different block size ranges. It is convenient to test several bin ranges before choosing one of them 

(see Clauset 2007), in order to define correctly the shape of the distribution (specially the tail). 

 

(2) Then, the block size distribution for each sampling plot is extrapolated to the whole 

homogeneous zone. The extrapolation is done for each defined zone (i) (for example, in the 

methodology scheme of the Fig.2  i=3), multiplying the number of measured blocks of each block 

size bin (n(Vj)i
measured) with a scaling factor Ri (Eq. 1): 

 

( ) ( ) ·RBSD measured
j i j i in V n V R=  (Eq.1) 

 
Where:; n(Vj)i

RBSD: is the number of blocks in the block volume bin (j) representing the zone (i) 

in the RBSD;  n(Vj)i
measured: is the number of measured blocks in the block volume bin (j) in the 

zone (i) ;  The scaling factor Ri is defined as: 

i
i sp

i

AR
A

=  (Eq. 2) 
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Ri : is the scaling factor ; Ai : is the area of the homogeneous zone (i); Asp
i : is the area of the 

sampling plot selected in the zone (i).   

 

The block size distribution of the Large Scattered Blocks (LSB) is prepared independently. The 

LSB includes only individual blocks, and does not represent a continuous surface covered by 

blocks. Hence the LSB distribution is not extrapolated. 

 

Finally, the RBSD is obtained by adding all the afore-mentioned distributions. 

1
: ( ) ( ) ( )

r
RBSD RBSD

j j i LSB j
i

RBSD n V n V n V
=

= +∑        (Eq. 3) 

 
Where n(Vj)RBSD: is the estimated number of blocks in the block volume bin (j) in the RBSD 

representative of the whole deposit; n(Vj)i
RBSD: is the estimated number of blocks in the block 

volume bin (j) in each defined zone i ;  nLSB(Vj): is the number of Large Scattered Blocks in the 

block volume bin (j). Finally, the obtained RBSD can be represented either in terms of cumulative 

number of blocks or as relative frequency.  

 

Several constraints must be overcome. In case that rockfall fragments stop over a previously 

existing talus slope, only the new deposited blocks associated to the recent event are measured. 

A key issue is thus differentiating young from old rock fragments. When the reconnaissance is 

made shortly after the occurrence of the event, this should not be a difficulty. New blocks show 

distinct fresh broken surfaces, including faces with stained coatings and clay fills, and bright 

colours (Fig. 3 and 4). If the YDC is formed by a thick continuous deposit in which a percentage 

of blocks are buried and cannot be measured, then the counting becomes uncertain and this 

becomes a restriction of the proposed approach. 

 

The definition of the homogeneous zones is based on visual field observation and orthophoto 

interpretation. It is recommended to select more than one sampling plots at each homogeneous 

zone in order to double check the distribution obtained. The influence of the number of 

homogenous zones and the selection of the sampling plots is discussed at section 4(d). The length 

of the sampling plots must be at least one order of magnitude greater than the length of the 

measured blocks. Consequently, the area of the sampling plots increases with the size of the 

blocks. Big boulders found in the YDC are considered large scattered blocks when they are more 

than one order of magnitude bigger than the rest of the blocks. 
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Fig. 3: Large scattered blocks laying on a previously existing talus deposit. New blocks stand out from the old ones 
by their most vivid (reddish, yellowish) colours. An almost continuous young debris cover is noticeable at the 
background. The red dot is the location of the picture in Figure 4. Vilanova de Banat rockfall at the Cadí massif, 
Eastern Pyrenees. 

 
 
 

 

 
Fig. 4: View of the lower zone of the YDC. Almost continuous debris cover generated by the Vilanova de Banat 
rockfall, lying on a previously existing talus deposit. New blocks stand out from the old ones by their most vivid 
colours (reddish, yellowish). Distinct fresh fractures and spalling as a consequence of the impacts are also observed.  
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3. Application to a case-study 
 

The proposed methodology has been applied to obtain the RBSD of a mid-size fragmental rockfall 

event occurred near the village Vilanova de Banat in November 2011, on a limestone cliff in the 

Cadí Sierra, Eastern Pyrenees (Fig. 3 and Fig 4). The rockfall has an initially estimated detached 

mass of about 10000 m3 (Fig. 5a, red line). The source area measures 40 meters in width, 40 

meters in height (from 2270 m to 2310 m of altitude) and 14 meters in thickness approximately, 

and it has a wedge shape. A 3D model of the source area and the potentially detachable mass is 

presented in section 5.  

 

The YDC covers an area of approximately 30000 m2 extended between the altitudes of 1950 m 

and 2138 m, with a maximum length of 260 meters and a maximum width of 115 meters (yellow 

line in Fig. 5b). The YDC is an almost continuous layer of boulders of variable size, between few 

decimeters in the upper zone of the talus up to one meter in the lowest zone. 

 
Fig. 5: Rockfall event occurred in November 2011 in Cadí massif, Eastern Pyrenees. 5a shows the rockfall source 
area before the occurrence of the rockfall event. 5b shows the same area after the rockfall event, including the source 
area (dashed red line), the young debris cover (dashed yellow line) formed in the upper zone of the talus and the 
large scattered blocks (dashed red ellipses) deposited in the lower zone of the talus. 
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Three roughly homogeneous block size zones have been visually identified: the higher, middle 

and lower zone of the YDC. We further divided the zones in sectors in order to check their size-

homogeneity and select sampling plots (SP1 to SP6 in Fig. 6). Table 1 shows the area of the 

sampling plots (that varies between 25 m2 and 400 m2) and the number of blocks measured in 

each SP. A total of 1500 blocks larger than 0.015 m3 were measured, which includes both the large 

scattered blocks (272), and the blocks inside the sampling plots (1252). Block sizes under 0.015 

m3 were not measured due to their large number and because many of them were lost in voids 

existing among large older blocks. The locations of each large block, and of the corners of the 

sampling plots, were georeferenced with a GPS.  

 

4. Results  
  

The deposit of the November 2011 rockfall event was mapped including the location of all the 

measured large scattered blocks, the sampling plots, the delimitation of the defined sectors and 

the source area (Fig. 6). 

 

(a) Large Scattered Blocks 

 

The large scattered blocks (LSB: green dots in Fig. 6) were mainly found in the western part of 

the deposit (inside a predominant trajectory path), and also in the lower zone of the deposit, with 

larger run out than the YDC. Some very big blocks found in the YDC were also considered LSB 

when they are at least one order of magnitude larger than the rest of the blocks in the sampling 

plot. The volume of the biggest measured boulder is 30.8 m3, and the measured maximum runout 

distance from the source area is 683 meters. 

 

(b) Sampling Plots 

 

The sampling plots 1, 2, 3 and 4 are located in the higher and middle zones in the young debris 

cover. The sampling plots 1 and 2 have an area of 100 m2, while the sampling plots 3 and 4 of 25 

m2. The sampling plots 3 and 4 were selected to double check the mesurements of the highest 

zone where sampling plot 2 is found. The sampling plots 5 and 6, which are located at the lowest 

part of the YDC, have a predominance of big blocks, and their areas are larger, 400 m2 and 225 

m2 respectively. We used two sampling plots in the lower zone to double check the block size 

distribution of the YDC. 
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Fig. 6: Orthophoto map showing the location of the six homogeneous sectors of the YDC, sampling plots, the large 

scattered blocks, and the source area.  
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(c) Block size distributions 

 

The blocks measured in each sampling plot, as well as the blocks measured as large scattered 

blocks, were plotted in the Fig. 7, in terms of cumulative number of blocks versus block volume. 

We tested different bin ranges. The shape distributions obtained using 5, 12 and 19 bins were 

compared to the original distribution. Our results show low precision shape of distribution using 

5 bins, whereas using 12 or 19 the shape is well defined. Based on these results we finally classify 

the blocks in bins as 0.01-0.02 ; 0.02-0.05 ; 0.05-0.1 ; 0.1-0.2 ; 0.2-0.5 ; 0.5-1 ; 1-2 ; 2-5 ; 5-10 ; 

10-20 and 20-50, all of them in cubic meters, covering 4 orders of magnitude.  

 

These block size distributions obtained directly from the measurements in the sampling plots have 

a very similar slope in a log-log plot, and can be well fitted by power laws. In section 4(d) we 

have performed a sensitivity analysis of the final RBSD with respect to the SP used (using 6, 4 or 

3 SP). 
 

 
 

Fig. 7. Cumulative number of blocks measured versus block volume obtained directly from the measurements in 
the sampling plots (SP) and from the large scattered blocks (LSB) 

 
Figure 7 shows that the block size distributions from the highest zone of the YDC (SP2, SP3 and 

SP4) are very similar to each other and also to SP1 (middle zone). Furthermore, SP5 and SP6 

show a substantial overlap confirming the size homogeneity of the lowest unit of the YDC. It is 

noticeable that the slope of the obtained distributions is similar for all of them. The measured 

volumes cover a range of 4 orders of magnitude without gaps.  
 

We classified the data in bins to extrapolate the block size distributions from the sampling plots 

to the corresponding homogeneous sectors, using the scaling factor for each defined sector (Fig. 
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8).  Adding all of them and the large scattered blocks distribution we obtain the final RBSD 

representative of the whole deposit, allowing the estimation of the total volume of the rock mass 

detached. Table 1 shows the scaling factors used to extrapolate the data from the sampling plots 

to the homogeneous sectors. The extrapolated data, the fitted power laws by linear regression, and 

the resultant RBSD obtained, are shown in the Fig. 8. 
 

 
 

Fig. 8: Block size distributions obtained from the extrapolation of the measurements using the areas ratios, in 
terms of cumulative number of blocks versus block volume.  The obtained RBSD is representative of the whole 

deposit. The power laws fitted to these distributions are also represented. 
 
 

The minimum total volume of the rockfall deposit calculated with this procedure is approximately 

8000 m3, involving more than 60000 blocks over 0.015 m3, based on the data plotted in the Fig. 

8.  

 

As a final step, the same block size distributions shown in the Fig. 8 were expressed in terms of 

cumulative relative frequency. The frequency (Fr or P) block size (Vo) distributions (Fig. 9) of the 

sampling plots and the large scattered blocks can be also fitted by power laws (Dussauge et al. 

2002 ; Crosta 2007) characterized by: a) a constant C associated with the minimum significant 

block size (Vmin), and b) an exponent b which is the slope of the distribution in a log-log 

representation (Eq. 4). 
 

min( ) · b
o oP V V C V −≤ =       Eq. 4 

 
To estimate the exponent, b value, we used the linear regression method and the maximum 

likelihood estimator because they are the two methods classically suggested in the literature 

(Dussauge 2003 ; Pickering et al, 1995 ; Clauset et al, 2009). A minimum block size is used to fit 

the power law to each distribution. Table 2 shows the obtained C and b values and the minimum 
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volume used for each frequency - block size distribution plotted in the Fig. 9. The exponent b of 

the fitted power laws ranges between 0.8 and 1.3 obtained using the linear regression method, and 

between 0.8 and 1.2 obtained using the maximum likelihood estimator method. The fitted power 

laws using the linear regression show a very good fitting with R2 ranging between 0.94 and 0.98. 

The values of the reduced χr
2 test for the fitted power laws (using both methods) range between 

0.010 and 0.014 (Table 2), significantly lower than 1. 

 

Therefore the proposed power laws describing the global RBSD can be well accepted given the 

reduced χr
2 values of 0.222 and 0.082 for the linear regression and the maximum likelihood 

methods respectively. The final RBSD obtained was fitted by a power law with C=0.01 and 

b=1.26 using the linear regression method, and a C=0.01 and b=1.16 using the maximum 

likelihood method.  

 

The SP and LSB data represented in the Fig. 9 are plotted block by block in cumulative frequency 

terms. To obtain the RBSD a previous classification of the data in bins was made to extrapolate 

the data and to sum it up. This figure, and the same block density of the sectors of each defined 

zone (Table 1), confirms that the visual selection of the homogeneous zones was appropriate. The 

block size distributions of SP5 and SP6 show a perfect overlap. For SP2, SP3 and SP4 collected 

in the highest zone only the SP4 shows a slight shift. In any case, the difference in frequency is 

less than one order of magnitude for most of the sizes.  
 

 
 

Fig.9: Block size distribution obtained from the 6 sample plots: SP1-6; from the large scattered blocks: LSB; the 
obtained Rockfall Block Size Distribution: RBSD, and the fitted power law by linear regression method.  
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The frequency - block size distributions in the Cadí case (Fig. 9) cannot be extrapolated for 

volumes bigger than the biggest blocks found. Therefore the right end of the total RBSD is 

determined by the maximum block volume measured, while the extrapolation to the left end is 

restricted by the total volume of the rock mass detached. For rockfall events bigger than the 

November 2011 event, the frequency - block size distribution can be used to calculate the 

probability of having blocks bigger than a given volume. Fig. 10 shows the frequency - block size 

distribution and the fitted power laws by the linear regression and the maximum likelihood 

method. It may be observed that the linear regressions yield relative frequencies greater than 1 

for block sizes close to the minimum volume used (SP1, SP4, SP5 or RBSD), which does not 

make sense. This occurs because the method is not able to impose the condition Fr=1 when 

Vol=Vmin. This drawback does not appear when using the maximum likelihood method. In the 

RBSD case, if the Xr
2 test is used to minimize the error of the fitting, this condition is not fulfilled, 

maybe due to a rollover effect in blocks size under 0.1 m3. 

 
Table 1: Summary of blocks measured, area of the sampling plots, area of the homogeneous sectors and scaling 
factors. 

 Nº of blocks 
measured 

SP area 
(m2) 

Area of the 
homogeneous sector 

(m2) 

Block  
Density  

(nºblocks/m2) 

Scaling factor 
R 

SP1 284 100 16125 2.84 161.3 
SP2 400 100 2659 4.00 26.6 
SP3 113 25 629 4.52 25.2 
SP4 103 25 1810 4.12 72.4 
SP5 209 400 3994 0.52 10 
SP6 143 225 5610 0.64 24.9 
LSB 272 - - - - 

TOTAL 1524 875 m2 30830 m2   
RBSD           60231 (number of  blocks calculated by the extrapolation) 

 
 
 

Table 2: Obtained values of the fitted power laws using Linear Regression and Maximum Likelihood methods. 
 

  Power Law fitted by Linear Regression Power Law fitted by Maximum  Likelihood  

 
Min. 

Volume 
(m3) 

C b 
Standard 
Deviation 
for b (σ) 

Test 
Χr

2 C b 
Standard 
Deviation 
for b (σ) 

Test 
Χr

2 

SP1 0.01 0.011 1.04 0.07 0.009 0.025 0.79 0.05 0.010 
SP2 0.01 0.004 1.22 0.07 0.020 0.012 0.96 0.05 0.011 
SP3 0.01 0.013 0.96 0.10 0.002 0.014 0.91 0.09 0.010 
SP4 0.01 0.021 0.89 0.09 0.014 0.036 0.72 0.07 0.012 
SP5 0.1 0.088 1.18 0.09 0.006 0.117 0.93 0.07 0.010 
SP6 0.1 0.121 1.02 0.09 0.004 0.157 0.83 0.07 0.010 
LSB 1 1 1.28 0.11 0.029 1 1.06 0.09 0.007 

RBSD  0.01 1.26 0.38 0.222 0.01 1.16 0.35 0.082 
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Fig.10: Comparison of the fitted power laws using linear regression or maximum likelihood methods for the 

frequency - block size distribution for each sampling plot data, the large scattered blocks and the final RBDS.  
 
 
 
 

(d) Repeatability of the block size distributions obtained in the sampling plots 

 
 

 The selected sampling plots in the YDC were: SP2, SP3 and SP4 (higher zone); SP1 (middle 

zone); and SP 5 and SP6 (lower zone). To verify the degree of representativeness and repeatability 

of the selected sampling plots we have generated several RBSD using alternatively the data of 3, 

4 or 6 sampling plots, with the following combinations:  SP1, SP2, and SP6; SP1, SP2, SP5 and 

SP6; and all of them. In all these cases, the LSB distribution is also used. The merged zones have 

the same block density (Table 1). 

 

The generated RBSDs have similar shapes and are fitted well by power laws (Fig. 11).  The 

obtained exponents range between 1.26 (six sampling plots), 1.25 (four sampling plots) and 1.22 

(three sampling plots). The results show that the visual selection of the block-size homogeneous 

zones and the sampling plots does not produce significant differences in the obtained RBSD. 
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Fig.11: RBSD obtained using six, four or three sampling plots. 
 
 
 

5. Checking the obtained rockfall volume.  

 

To validate the proposed procedure, we used an alternative method to calculate the total detached 

volume from the cliff for the Cadí rockfall event. The total detached volume obtained with the 

RBSD was approximately 8000 m3. This corresponds to the minimum volume because blocks 

smaller than 0.015 m3 were not measured. This value has been checked against the volume 

obtained subtracting two Digital Surface Models (DSM). We used the topographic model at 

1:5000 scale, of the Cartographic Institute of Catalonia, generated by aerial photogrammetry 

before the rockfall occurrence. To obtain a DSM of the rockfall scar after the rockfall, we used a 

digital photogrammetry software with pictures taken from the ground. 

 

The use of two consecutive 3D models to estimate a volume detached from a cliff has been 

discussed before (Sturzenegger et al., 2009; Firpo et al., 2011 ; Viero 2012). The main limitation 

of this case is that the topographic model is obtained with aerial photogrammetry (with an 

accuracy of about 1 metre in X and Y coordinates, and 1.5 m in Z for the 90% of the defined 

points). Meanwhile, the photogrammetric model of the scar is realised using terrestrial pictures, 

taken from a direction which is almost perpendicular to the aerial orthophoto. Consequently, the 

errors of these models are maximum in different directions. To estimate the detached volume, we 

proceed with the following steps: 
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a) We used 17 pictures taken by a camera Nikon D90 with a focal length of 60 mm and a resolution 

of 4288x2848px (12Mp).  

 

b) We tested all the pictures using the software Agisoft PhotoScan and VisualSFM. It uses the 

Structure from Motion algorithms to identify the matching pixels between pictures, thus allowing 

working with more than two pictures.  It also reconstructs the position where the pictures were 

taken, readjusts the distortion parameters of the lens, and generates a 3D point cloud (Wu 2011). 

The final scar DSM used is a mesh based on the 3D point cloud generated. 

 

c) The DSM of the rockfall scar was scaled and georeferenced using seven Ground Control Points 

(GCP) (Fig.12). The coordinates of these seven GCP were obtained from the orthophoto and from 

the topographic maps.  

 
Fig.12: 3D visualisation with the location of the used pictures (blue rectangles) and the Ground Control Points 

(yellow points) 
 

 

d) We generated a DSM based on the topographic map at 1:5000 scale prior to the event.  

 

e) Both DSMs have been aligned with the software CloudCompare. To this end, we have first 

excluded the rockfall detached zone. In this alignment the difference analysis show a distance 

ranging from 0 to 9.2 m, with a standard deviation of 3.7 m. and a mean distance of 1.1m. The 

difference here is attributed to the different precision between the topographic DSM, which 

includes topographic data smoothing where abrupt rock corners are present, and the scar DSM. 

 

f) Then, a new difference analysis between the scar DSM (including the detached zone) and the 

topographic DSM show differences ranging between 0 and 18.4m (due to inclusion of the 
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detached volume), a standard deviation of 3.2 m and mean distance of 2.1 m. This difference map 

(Fig.13b) was used to delineate the detached zone in the cliff (Fig.13a) and to estimate the 

detached volume. 

Fig.13: a) Picture of the scar (the rockfall detachment zone is outlined in red). b) Topographic DSM (green mesh), 
scar DSM coloured by the distances to the topographic DSM. 
 
 
 

g) Finally, we used the software Rhinoceros to define a volume using the topographic DSM, the 

scar DSM, and two main joints identified in the cliff (Fig. 14). The joints are identified in the 

pictures and over the scar DSM. Their use allows to define the volume according with the field 

observations where the recent scar is distinguished by its red colour and fresh faces (Fig.13a).  
 

 
Fig. 14. Detached volume reconstruction (orange volume) based on the topographic DSM (top), the scar DSM 

coloured in brown (back, laterals and bottom parts) and two main joints (frontal face). 



81 
 

The estimated volume is approximately 10000 m3, which is bigger than the volume based on 

measured rock fall blocks (8000 m3). The 2000 m3 of difference between both volumes is possibly 

ought to the fact that approximately the 20% of the rock mass can result in dust and blocks smaller 

than 0.015 m3 that were not measured in the field. In fact, by extrapolating the RBSD to a block 

size of 0.005 m3, a volume of 10000 m3 is obtained. Another possible reason for this difference is 

the uncertainties and the errors associated to the topographic DSM and the scar DSM.  
 

 
6. Conclusions 

 

The presented sampling procedure allows the construction of the block size distribution of a 

fragmental rockfall deposit in a consistent and reliable way. Double checking of the sampling 

plots has shown that the visual selection of the block-size homogeneous zones was appropriate, 

obtaining the same block density in the sectors inside each defined zone. The fitted power laws 

of the RBSD generated using 6, 4, and 3 SP, yielded the following exponents:1.26, 1.25 and 1.22, 

respectively. 

 

The application to a case study, a mid-size fragmental rockfall deposit in the Eastern Pyrenees, 

has yielded a RBSD which is well fitted by a power law. In the case of the large scattered blocks, 

a rollover effect appears related to the voluntary censoring of blocks smaller than 1 m3 at our 

measurements. The rest of the obtained block size distributions show a sight rollover effect and 

can be very well fitted directly with power laws. The RBSD for this particular case shows a 

rollover effect, suggesting that there is bias due to undersampling of the blocks under 0.1 m3, as 

it occurred in SP5 and SP6.  

 

The obtained power law distributions are consistent with the observations of Hartmann (1969), 

Perfect (1997) and Turcotte (1986) about fragmentation in rocks, where the number of fragments 

versus size generated by the fragmentation process follow a power law. The exponent of the fitted 

power law, is related with the fractal dimension, and could be used as a descriptor of the 

fragmentation process.   

 

The measured volumes cover a range of 4 orders of magnitude. It is also noticeable that the similar 

slope of these distributions indicates the homogeneity or the scale invariant behaviour of the 

samples. The power law related with the block size distribution generated at a fragmental rockfall 

is truncated on the right branch by the maximum volume block detached and on the left branch, 

by the minimum sampled volume. 
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The maximum likelihood method used to fit the RBSD with a power law represent better the 

whole data than the fit using the linear regression method. However the biggest blocks are better 

fitted by the linear regression method. The power law describing the RBSD can be alternatively 

calculated excluding bigger volumes as outliers  

 

The total detached volume was estimated 8000 m3 based on the field measurements. This volume 

was checked against the volume of the rockfall scar. The latter was obtained by subtracting the 

scar DSM based on terrestrial digital photogrammetry and the DSM derived from the topographic 

map prior to the event giving a total of 10000 m3. The difference in the two volumes can be 

attributed to the precision errors of the DSMs. Nevertheless, the extrapolation of the RBSD to 

block volumes up to 0.005 m3 which were not sampled, can as well compensate for the missing 

volume.   
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3. Comparison of block size distributions in rockfalls 
 

This chapter reproduces an article presented in the 12th International Symposium on Landslides 

(ISL 2016) and published in the book Landslides and Engineered Slopes. Experience, Theory and 

Practice – Aversa et al. (Eds) © 2016. The chapter is focused on the comparison of blocks size 

distributionsa from different inventoried rockfalls. 

 

Publication reference: 

Ruiz-Carulla, R., Corominas, J. and Mavrouli, O. (2016) Comparison of block size distribution 

in rockfalls. 12th International Symposium on Landslides (ISL 2016) Landslides and Engineered 

Slopes. Experience, Theory and Practice – Aversa et al. (Eds) © 2016 Associazione Geotecnica 

Italiana, Rome, Italy, ISBN 978-1-138-02988-0. 

 

 

 

 

 

 

 

 

 

 

Abstract: Rock masses detached as rockfalls usually disintegrate upon impact on the ground 

surface. The Rockfall Block Size Distribution (RBSD) generated by the propagation of the 

rockfall mass is required for the analysis of the trajectories of the blocks, the run-out distances, 

the impact energies, the quantitative assessment of the rockfall hazard and for the understanding 

of the fragmentation process. We have measured the volume of the blocks detached in 5 rockfall 

cases, obtaining the corresponding RBSD. The total volume involved in these rockfall events 

ranges from 2.6 m3 to 10000 m3. The obtained RBSD can be well fitted by power laws with 

exponents ranging from 0.51 to 1.27. The results suggest that these exponents may be related to 

the height of fall (potential energy) and to the proportion of new fractures generated in the rock 

mass, among other factors. 

 

 

Keywords: rockfall, fragmental rockfall, block size distribution comparison 
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1. Introduction 

 

Evans and Hungr (1993) and Hungr et al. (2014) re-served the term fragmental rockfall, for the 

events in which the rock fragments move as independent rigid bodies interacting with the ground 

surface through scattered impacts. They distinguished it from the term rock avalanches in which 

masses of fragments move in a flow-like way. In fragmental rockfalls, the detached rock mass, 

which often includes discontinuities, it disaggregates, breaks or both after the first impacts on the 

ground. The resultant fragments propagate independently downhill. The deposit of a fragmental 

rockfall includes blocks of different sizes scattered on the ground surface. In the case of large 

fragmental rockfalls (thousands or tens of thousands of cubic meters) a more or less continuous 

Young Debris Cover (YDC) can be formed.  

 

Understanding the fragmentation process is fundamental for the analysis of the rockfall hazard 

(Jaboyedoff et al. 2005; Corominas et al. 2012), since it is a critical input datum for calculating 

the trajectories and the run-out of the rock fragments, the encounter probability with the elements 

at risk and the expected impact energies. Run-out analyses per-formed with the originally 

detached rock mass volume produce results, which are significantly different from those using 

individual rock blocks (Okura et al. 2000; Dorren 2003).  The initial rock mass may lead to the 

overestimation of the rockfall kinetic energy and run-out. If the modal or the maximum block 

fragment size is used instead, the travel distances and the energies obtained are more realistic. 

However, the frequency and the impact probability are largely underestimated as in reality, the 

original rock mass splits into a large number of rock fragments, leading to the multiplication of 

the impact probability by a factor “n” equal to the number of new blocks generated.  

 

An indicator of the fragmentation degree is given by the Rockfall Block Size Distribution (RBSD) 

(Giacomini et al. 2009; Hantz et al. 2014; Hartmann 1969).  Several parameters influence the 

fragmentation process and the RBSD (Dussauge et al. 2003; Wang & Tonon 2010) namely: the 

presence of dis-continuities in the detached rock mass as well as their persistence, aperture and 

orientation at the moment of the impact, the impact energy, the rigidity of the ground, the impact 

angle and the velocity. 

 

We have defined different scenarios for the fragmentation of the rockfalls (Figure 1). First, the 

detached rock mass consist of a single block. The block can either remain intact or break when 

hitting the ground if there is enough impact energy. Alternatively, the detached rock mass may 

include joint sets. Within the rock mass, individual blocks of different sizes and shapes may result 

from the mutual intersection of the joint sets. 
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Figure 1. Scheme showing the scenarios of rockfall fragmentation considered. Left: the detached rock mass 

consist of a single block; Right: the detached rock mass is characterized by an IBSD.  

 

The range of volumes of these blocks can be characterized by the In Situ Block Size Distribution 

(IBSD). With low impact energy levels, the rock mass will be simply disaggregated and blocks 

will be bounded mostly by the preexisting joints, generating a RBSD similar to the original IBSD. 

If the impact energy is enough to break blocks, the generated RBSD must differ from the original 

IBSD. These differences can be used to characterize the fragmentation phenomenon and to 

identify the predominant mechanism as disaggregation, pure breakage or a combination of both. 

The comparison between the IBSD and the RBSD is used to characterize the fragmentation 

phenomenon in other cases like rock avalanches (Bowman et al. 2014; Locat et al. 2006) or in 

blastability (Faramarzi et al.2013, Hudaverdi et al. 2012; Latham et al. 1999). 

 

 

2. Study cases 

 

We have measured the volume of the blocks deposited in 5 rockfall cases located in Catalonia, 

Spain, obtaining the corresponding RBSD. The rockfall volume involved in these events ranges 
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from 2.6 m3 to 10000 m3. The rockfall cases represent 5 different scenarios of volume, lithology, 

height of fall and surface morphology.  

 

To obtain the RBSD, we measured the blocks using a tape, assuming either a rectangular or 

triangular prismatic shape of the blocks and measuring 3 dimensions of each one. In the case of 

large fragmental rockfalls, the size distribution in the Young Debris Cover (YDC), is obtained by 

measuring all the blocks over a certain volume inside sampling plots, and then extrapolating the 

distribution over the homogenous zone represented by the sampling plot. The definition of the 

homogeneous zones, the selection of the sampling locations and the extrapolation procedure is 

described in detail in Ruiz et al. 2015. The obtained RBSD can be well fitted by power laws with 

exponents ranging from 0.51 to 1.27. 

 

2.1 Pont de Gullerí rockfall 

 

Pont de Gullerí rockfall took place near Sant Romà de Tavèrnoles village. The measurement of 

the accumulated blocks gave a detached rock mass volume of 2.6 m3, and a height of fall of 12 

meters (Figure 2 left). The cliff is composed of Cambro-Ordivician schists with a high persistence 

joint pattern. The fallen blocks are bounded by preexisting joints (Figure 2 right). This allows us 

to assume that the detached rock mass was disaggregated following the joint pattern. Only one 

block shows fresh breaks. The block size distribution (RBSD) was obtained by measuring 116 

blocks in the deposit, and the curved shape could be related with the In Situ Block Size 

Distribution (IBSD) (Elmouttie & Poropat 2011) in the cliff. The minimum block volume 

measured is 1.2*10-4 m3, and the maximum is 0.28 m3. 

Figure 2. Left: Scheme of the Pont de Gulleri rockfall (distanc-es in meters). Right: Deposited blocks. 
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2.2 Lluçà rockfall 

 

In the Lluçà rockfall the detached volume is 10.7 m3. The rupture mechanism is predominantly 

top-pling caused by differential erosion of the underly-ing weak rocks (Figure 3). The rock is grey 

sand-stone of Upper Eocene age. The detached mass was a single block bounded by two joints 

filled with roots. The latter might have facilitated their devel-opment. The fallen blocks show 

fresh faces generat-ed by the impact and abundant fine material gener-ated by the breakage. We 

measured 77 blocks, with a minimum volume of 6.7*10-4 m3 and a maximum volume of 8.47 

m3. The RBSD obtained can be very well fitted by a power law with an exponent of 0.51. 

Figure 3. Scheme of the Lluçà rockfall (distances in meters). The high number of small blocks results from 

the fragmenta-tion of a initial one. 

 

 

2.3 Omells de na Gaia rockfall 

 

The Omells de na Gaia rockfall is a small-size rock-fall that propagated on a stepped soft ground. 

It ini-tiated with a free fall of 0.8 m, and the farthest block stopped by impacting on a wall at 22 

meters from the source (Figure 4). In the lowest part, the blocks trajectories crossed a paved road 

and dam-aged a barrier (Figure 5 and Figure 6). The detached rock mass is sandstone of Oligocene 

age with a vol-ume of 4.2 m3. We measured 48 blocks, with a min-imum and maximum volume 

of 7*10-4 and 1.1 m3, respectively. The blocks generated by fragmentation show fresh faces 

formed by the breakage as well as preexisting dis-continuities, mostly sedimentary planes.  
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The fragmentation of the rock mass during the propagation of the rockfall changed the trajectories 

of the blocks, modifying the impact energies (Figure 6). The RBSD obtained is well fitted by a 

power law with an exponent of 0.53. 

Figure 4. Omells de na Gaia rockfall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Omells rockfall scheme, with the source area, the tra-jectories and some of the deposited blocks. 
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Figure 6. Map of the Omells rockfall, with the source area, the trajectories, the impacts, the deposited blocks 

and the dam-aged barriers. 

 

2.4 Malanyeu rockfall 

 

The Malanyeu rockfall is a large rockfall, with a total volume detached close to 5000 m3. The 

rock is Maastrichtian limestone. The free fall height is less than 10 meters, and the maximum run-

out distance is 100 meters, reaching the valley bottom (Figure 7). We measured 2721 blocks, with 

a minimum vol-ume of 4.2*10-5 m3 and a maximum volume of 445 m3. The deposit includes 7 

blocks greater than 100 m3, and more than 60 blocks greater than 10m3.  

 

In this case, the fragmental rockfall generated a more or less continuous Young Debris Cover 

(YDC) in the upper part of the deposit with a high concentration of small-size blocks (Figure 8). 

To obtain the block size distribution from the YDC, we defined 3 homogenous zones, where block 

sizes are relatively similar. In each zone, we selected a sampling plot. We measured all the blocks 

over a certain volume inside it (zone 1: 4.2*10-5 m3, zone 2: 1.4*10-4 m3 and zone 3: 1.6*10-4 

m3). 

 



92 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Scheme of the Malanyeu rockfall.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 8. View of the Malanyeu rockfall. 
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The sampling plots have a square shape, and the area is proportional to the size of the blocks 

inside (sampling plot in zone 1: 4 m2, zone 2: 16 m2 and zone 3: 6.25 m2). Finally, we 

extrapolated the block size distribution obtained at the sampling plots to each homogeneous zone. 

To this end, we used the ratio between the area of the homogenous zone and the area of the 

sampling plot representative of the zone. See Ruiz et al. (2015), for further details.  

 

The faces of the accumulated blocks are mostly preexisting discontinuities in the rock mass (joints 

and bedding surfaces). Figure 9 depicts the source area, the boundaries of the homogeneous zones 

used and the biggest blocks deposited at the lower part of the deposit.  

Figure 9. Spatial distribution of the rockfall blocks in Malanyeu and the sampling zones selected. 

 

This case corresponds to a large fragmental rock-fall where the fragmentation is related to both 

the disaggregation of the rock mass along preexisting discontinuities (joints and bedding planes), 

and pure breakage. A proof of this is the presence of huge blocks, bounded by preexisting 

discontinuities in the lower part of the deposit and, on the other side, the blocks of the YDC, 

showing multiple new faces. The obtained RBSD is well fitted with a power law with an exponent 

of 0.72. 
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2.5 Vilanova de Banat rockfall 

 

Vilanova de Banat rockfall is located in Cadi Sierra, in the Eastern Pyrenees. The cliff is made of 

limestone of Paleocene age. The volume detached is close to 10.000 m3, based on field 

measurements and on the reconstruction of the detached mass from a 3D model of the scar 

generated by photogrammetric techniques (Ruiz et al., 2015). The free fall height is 40 m, and the 

maximum run-out distance is 740 m (Figure 10).  

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Scheme of the Vilanova de B. rockfall. 

 

The first impacts generated a YDC of 30.000 m2 (Figure 11). Three roughly homogenous block 

sizes zones have been identified: the highest, middle and lowest parts of the YDC. We further 

divided the highest part in 3 zones, and the lowest part in 2 zones (Figure 12). We measured 1252 

blocks in 6 sampling plots (one per each defined zone) and 272 as Large Scattered Blocks (LSB). 

The corners of the sampling plots and each LSB measured were georeferenced with a GPS (Figure 

12). 

 

The extrapolation of the block size obtained from the sampling plots to the homogenous zones is 

explained in detail in Ruiz et al. (2015). The minimum and maximum block volume measured is 

1.53*10-3 and 30.8 m3, respectively.  We measured 1524 blocks, in the sampling plots which 

resulted in 60.000 blocks in the deposit after their extrapolation to the whole YDC.  

 

The blocks deposited have an irregular shape, showing fresh faces related to the breakage and 

some faces defined by the preexisting joints. Field observations suggest that the deposit was 

mainly originated by breakage. This is confirmed by the large number of small and medium 

blocks and the predominance of fresh faces in the blocks. The obtained RBSD can be very well 

fitted with a power law with an exponent of 1.27. 
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Figure 11. Picture of the Vilanova de Banat rockfall.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 12. Orthophoto map showing the location of the six ho-

mogeneous zones of the YDC, samplings plots, the large scat-

tered blocks and the source area in the Vilanova de Banat 

rockfall case (Ruiz et al. 2015). 
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3. RBSD comparison 

 

The obtained RBSD is expected to be related to the predominant fragmentation mechanism of the 

rock mass during the propagation. The final RBSD de-pends on the IBSD, the geomechanical 

characteristics of the rock, the impacts energies, the total volume detached and the morphology 

and rigidity of the ground. The obtained RBSD based on field measurements are plotted in relative 

frequency terms (Figure 13), while the main attributes are summarized in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. RBSD obtained in relative frequency versus block size. 

 

Table 1. Attributes of the studied rockfalls and their RBSD. 

Rockfall 

case 

Exponent of the 

fitted power law (b) 
R2 

Total 

Volume  (m3) 

Free fall 

height (m) 
Lithology 

Pont de G 0.92 0.94 2.6 12 Schist 
Lluçà 0.51 0.95 10.7 0.6 Sandstone 

Omells 0.53 0.89 4.2 0.8 Sandstone 
Malanyeu 0.72 0.98 5000 10 Limestone 
Vilanova 1.27 0.95 10000 40 Limestone 

 

 

The description of the RBSD in relation to the observed field features follows:  

 

-Pont de Gullerí case is a disaggregation case, with the blocks clearly delimited by preexisting 

joints.  
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-Lluçà rockfall is a case with pure breakage. The total volume detached is 10.7 m3, and the biggest 

block measures 8.47 m3. The 20% of the original mass was broken from the detached block, 

generating a distribution of blocks that clearly follows a power law.  

 

-Omells rockfall involves a low fall which progresses on a soft and stepped ground, and the rock 

is very weak. The fragmentation occurs by breakage of the blocks but is strongly controlled by 

the anisotropy of the rock produced by the bedding planes. This case is very similar to the Lluçà 

case.  

 

-The deposit in Malanyeu rockfall shows the influence from the IBSD in the cliff, related with 

the shape and the volume of the blocks. The fragmentation by breakage is observable mainly in 

the YDC. The preexisting discontinuities are prevalent features in the faces of the bigger blocks. 

The low energy (limited fall height) of the rockfall could account for the large number of big 

unbroken blocks.  

 

-The deposit in Vilanova de Banat rockfall shows more fragmentation by breakage, less big blocks 

and a high exponent of the fitted power law. Probably, this high degree of fragmentation by 

breakage is related to the free fall height and to the volume detached, which generate high impact 

energies at the beginning of the propagation. Furthermore, the IBSD could have an important 

influence as well.  

 

4. Conclusions 

 

We conclude that the exponent of the fitted power laws to the RBSD can be used to characterize 

the block size distribution generated in a fragmental rockfall, and it may also provide information 

on the fragmentation phenomenon. The results suggest that these exponents could be related to 

the height of fall (Figure 14) and to the proportion of new fractures generated in the rock mass, 

among other factors. However, to characterize the fragmentation more information is needed on 

the IBSD, the total volume detached, the impact energies and the morphology and the rigidity of 

the ground. The disaggregation of the blocks in the case of Pont de Gullerí rockfall suggests that 

the RBSD is controlled by the preexisting joints in the detached rock mass. The cases of Lluçà 

and Omells show a very similar behavior, with the difference that in the Omells case, the stepped 

ground allows more impacts. The Lluçà rockfall has only one impact, allowing the survival of a 

large block in a low energy scenario. This is confirmed in the latter case by the accumulation of 

several very large blocks and by the higher presence of preexisting discontinuities in the faces of 

deposited blocks. 
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Figure 14. Exponent of the fitted power laws versus free fall height. 
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4. Experiences with UAV on mass movements characterization  

 
Conference Publication reference: 

Ruiz-Carulla R, Corominas J & Hürlimann M (2017). Experiencias con drones para el estudio de 

movimientos de ladera. IX Simposio Nacional de Taludes y Laderas Inestables, Santander.  

 

Translated from Spanish to the English language 

Ruiz-Carulla R, Corominas J & Hürlimann M (2017). Experiences with UAV for the stady of 

slope mass movements. IX Simposio Nacional de Taludes y Laderas Inestables, Santander.  

 

Communication awarded by the Scientific Committee of the IX Simposio Nacional de Taludes 

y Laderas Inestables (Santander, 2017) as the “Best communication” in “Site investigation, 

characterization, and mapping” category. 

 

 

 

 

 

 

 

Abstract: 

The UAV (Unmanned Aerial Vehicle or drone) technology has been exponentially developed on 

the last years. High resolution 3d models from the terrain can be generated by using digital 

photogrammetry techniques from a collection of pictures obtained with an UAV. These new 

technologies allow the geometrical characterization in a more efficient way, more secure and 

with a high resolution. The present communication shows some practical experiences in the 

measurement of erosion and the associated morphological changes, in rockfall characterization 

and inventorying, and in the characterization of the joint pattern, necessary for the stability 

analysis and unstable rock mass identification. 

 

 

 

Keywords: UAV, drone, digital photogrammetry, terrain profile, 3d models, point cloud, mass 

movements, change detection. 
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1. Introduction 

 

The use of UAV in order to take pictures, combined with the last digital photogrammetric 

techniques, allow to obtain a wide range of different mapping, geometric and graphic products 

that can be applied to studies in studies on the field of earth science and engineering. The low 

height of flight allows collecting high-resolution images and the generation of high quality 

orthophotos with the desired periodicity. Furthermore, a 3D point cloud reconstruction may be 

obtained, as well as a 3D texturized mesh and a Digital Elevation Model (DEM) on raster format. 

From the last, other products are generated like the contour lines, terrain profiles, slope and 

orientation maps, etc. Also from the point cloud may generate other products like the point cloud 

by dip or dipdirection, geometrical measurements like Euclidian distance, or separately by X, Y, 

Z, as well as areas, volumes or terrain profiles. This communication shows the differences 

between generate a terrain profile from DEM or from point cloud. Without get into the post-

processing steps and details, the communication aims to show some possibilities on the use of 

UAV with digital photogrammetry on mass movements studies. 

 

 

2. UAV and digital photogrammetry 

 

The popular known as drones should be more technically defines as UAV (Unmanned Aerial 

Vehicles) or RPAS (Remotely Pilot Aircraft Systems). A wide range of dimensions and types of 

UAV exist, while the common aircrafts used on science and engineering are drones of less than 

25 kg of weight, with 1 meters or less of diameter and typically with a photographic camera as 

data acquisition tool. These kind of vehicles are controlled by the 18/2014 law in Spain, where 

the requests to their use are defined, as a specific pilot license, civil responsibility insurance and 

an entity as flight operator to manage the legal requests.  

 

The UAV are able to flight autonomously thanks to the satellite positioning system and the inertial 

main unit (GPS and IMU). Drone types can be divided into multirotors and fixed wings devices. 

Multirotors (Figure 1) have less time of flight per battery than a fixed wings, but multirotors can 

stay immobile on the air and move it side by side. These lateral displacements, combined with the 

camera stabilization (or Gimbal), allow to take pictures on frontal and oblique perspectives in 

front of a cliff, furthermore than the classic zenithal pictures.  
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Figure 1: Main relevant parts of a UAV multirotor:  

 

Other important elements on a multirotor UAV are the battery, the Power Main Unit (PMU), the 

Electronic Speed Controls (ESC) and the motors. A 2.4GHz receptor allows that the drone pilot 

manage the vehicle with a digital programmable radio, and a secondary communication system 

(DataLink) allows the control of the drone using a tablet or computer in order to execute 

autonomous programmed flights. Finally, the camera or the sensor mounted will be the most 

important part of the drone in terms of data acquisition system. For this reason, the 3 axes 

stabilization system (or Gimbal) is very important in order to obtain high quality pictures. 

 
Digital photogrammetric software like VisualSFM, Agisoft Photoscan, PIX4D, Accute 3D or 

others, allows the generation of a wide range of cartographic products and 3D reconstructions. 

All of them depends on the quality of the images, the focus, the lightening, and the final resolution 

depends on the distance between the camera and the terrain, the focal length and the sensor size 

(Thoeni et al, 2014). The low height of flight, below the 120 meters over the ground, allows high 

resolutions with common values of 3 cm/px (considering a 18mm width sensor with 4608 pixels 

and a focal length of 15 mm). Reducing the distance between the camera and the terrain the 

resolution increase, with 1 cm/px at 40 meters of height (p.e.). The velocity of the drone on the 

air should be properly combined with the pictures frequency in order to arrange a correct 

overlapping on consecutives pictures to allow a correct photogrammetric reconstruction.  

 

Model georeferentiation may depend on the GPS metadata of the pictures. However, using this 

data, the obtained models can be erroneously moved between 1 and 10 meters on real referencing. 

In function of the requirements of each study, may be opportune reduce the position errors to 1 – 
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5 cm. To this end, it is common the use of a set of targets that can be well identified on the pictures 

(circles of 30 cm of diameter) and their coordinates measurements with a GPS-RTK to fix the 

model on more precise coordinates.  

 

For all of these, it is necessary to have some background on topography and photogrammetry 

knowledge in order to design a flight plan in order to obtain homogeneous results. On the same 

way, we consider important the drone systems and piloting background, especially on high 

mountain flights. 

 

 

3. Application on rockfalls inventories 

 

On landslides characterization, detailed 3D models reconstruction as soon as possible may be 

very useful in order to characterize the event and register it with other products like orthophotos, 

digital elevation models and topographic representation, that can helps on cartography, 

characterization and interpretation tasks.  

 

A rockfall of 100 m3 occurred in April of 2016, on the village of Gurp, on Tremp basin, in 

Catalonia. This rockfall event was inventoried in the framework of a research project focused on 

fragmentation of rockfall. 500 blocks were measured on the deposit by tape attending to measure 

all the blocks generated by fragmentation. Furthermore, a UAV flight allows the generation of a 

3D model of the whole cliff and the deposit zone (Figure 2). The georeferenced model allows the 

estimation of the detached rock mass based on a detailed 3D model of the scar and an 

interpretation of the fresh faces and the joint pattern that delimited the detached mass. 

 

These type of 3D models, with the orthophoto and the digital elevation models, allow the 

measurements of distances, areas, volumes, runouts, and so on, on an easy way, with high 

precision and in a very secure mode. ·D models make easier the Euclidian distance measurement 

between two points, as the decomposition in X, Y and Z components or in the opportune system. 

Angle measurements on 3D models are easier than the required conversions related to the angle 

measurements on planimetric representation on GIS or CAD. 

 

Is important to notice that the zenithal projection of the study environment that is used on GIS 

and CAD tools, difficult to deal with cliff and very vertical scenarios, due to a huge amount of 

information from the cliff surface is comprised on few pixels on zenithal representations. 3D 

models allow a better representation of these scenarios, as well as obtain frontal or oblique 

orthophotos in order to work on 2D on high resolution if is required. 
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Fig. 2: 3D model of the inventoried Gurp rockfall, in Conca de Tremp, Catalonia. 

 
 

One of the main benefits on the use of the 3D point cloud instead of Digital Elevation Models 

(DEM), is in order to obtain terrain profiles. Terrain profiles are the classic and necessary 

representation on stability and geomorphological studies as well as for evolution interpretation 

and monitoring. Figure 3 shows the terrain profile from the Gurp rockfall 3D point cloud, and the 

profiles obtained with digital elevation model, generated with the same point cloud, using 

10cm/px (blue) and 2 m/px (red), As DEM are 2D representation, is not able to define two heights 

on the same XY point, missing the information from overhangs and erosioned zones. The 

geomorphological, mechanical and evolutive interpretation of this cliff cloud be completely 

different on these 3 different profiles generated. 
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Fig. 3: Terrain profiles from: 3D point cloud (brown); a DEM of 10 cm/px (blue) and a DEM of 2 m/px 

(red), showing the information missed on overhangs and changing the stability and geomorphology 

interpretations.  

 

4. Joint pattern characterization 

 

Joint pattern characterization is an important task on rock slope stability analysis. Outcrop 

modelling and 3D point cloud analysis can be used to characterize joint patterns from 3D point 

clouds. The normal vector of each point can be calculated considering a buffer zone per each 

point, and then, the point cloud can be colored by dip or dip direction.  Some codes exist in order 

to identify the joint sets from point cloud like COLTOP3D (Jaboyedoff et al. 2007), 

DiscontinuitySelfExtractor (Riquelme et al. 2014), CloudCompare (Girardeau-Montaut 2006) o 

GaiaGeoRoc (Assali 2014). Figure 4 shows a point cloud from Pala Morrano zone on the Natural 

Park of Aigüestortes (Catalonia), by real color (up) and colored by dip direction (down). 
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Figure 4 Point cloud from Pala Morrano on real color (up) and colored by dip direction (down). 

 

 

From 3D point cloud, different procedures may be applied in order to fit and characterize the joint 

set that creates relief. Figure 5 show a set of joints characterized by planes with a maximum 

distance of 1 meter against the point cloud, from which a set of families may be identified and 

plot on a stereographic representation. 

 

100 m 
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Fig. 5: Planes fitted on the point cloud (a) and the stereographic projection of the joint sets identified (b). 

 

For trace elements, may be useful the use of 3D modeling programs, such as the Rhinoceros, the 

Polygon or the 3DMAX, for the characterization and the model of the joints, in this case on 3D 

textured meshes to facilitate their identification. These programs allow to cut the meshes with the 

modeled joints and with other planes imported from other procedures, facilitating the delimitation 

of kinematically unstable volumes. 

 
Fig. 6. Unstable rock mass delimitation based on 3D joints modeling. 

 

5. Morphological temporal changes evaluation 

 

The total control in the periodicity of the flights allows the monitoring of zones with the 

desired frequencies. It is true that weather conditions can be an important inconvenience, but 

in general, "ad hoc" flights can be made to the measures considered appropriate. For example, 

a) b) 

100 m 
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it may be of interest to monitor an area before and after major rain events or volcanic eruptions 

(Baldi et al 2005). 

 

In Fig. 7 a) there is a general view of the El Rebaixader basin, in front of the town of Senet 

in the Catalan Pyrenees. It is an active basin with a large area of erosion in the head that 

contributes sediments of till to generate rockfalls, rocky avalanches or torrential flows 

depending on the rainfall regimes and the available and accumulated material. It is an 

inventoried study area with exhaustive control of its activity (Hürlimann et al 2014). In 2016, 

a series of UAV flights was carried out, which allowed obtaining a digital model of very good 

quality elevations. The data were contrasted with the last model of elevations that was 

available obtained by LIDAR airborne techniques in light aircraft (ALS). Fig. 7 b) shows the 

erosion mapping (in red scale) based on the comparison of the two DEMs at a resolution of 2 

meters / pixel conditioned by the resolution of the ALS 

  

 
 

The second case of monitoring is a small landslide in a quarry slope. The following Fig. 8 shows 

the orthophoto obtained in 2016 (a) and that of 2017 (b). In them, with resolutions of 3 cm, may 

be perfectly observe the cracks that have ended up generating escarpments, as well as the advance 

of the lobes of the slide in the west direction. The treatment of these orthophotos with GIS tools 

allows the cartography of the slide in great detail. 

 

a) b) 

Fig.7 a) General view of the El Rebaixader basin, and b) calculated erosion in the scarp area comparing the 

DEMs obtained by drone and ALS. The cell size is 2m. 
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Fig. 8: Orthophoto of 2016 (a) and of 2017 (b) of a rupture of slope of quarry with resolution of 3cm / px. 

 

At the same time, digital terrain models were obtained with which a direct comparison analysis 

can be carried out in the Z direction. From this, a new map of elevations with the values of increase 

or decrease of elevation of the points of the terrain is obtained. Fig. 9 shows the comparison of 

DEMs from 2016 to 2017, perfectly delimiting the area that has fallen losing height (in reds) and 

the zone that has gained altitude or on which the landslide has been deposited (in blues). The red 

zones define the escarpments in great detail, while the blue areas define the lobes of the landslide. 

 

 

 

a) b) 
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Fig. 9: Map of differences between the two digital models of elevations of 2016 and 2017. In red areas 

where the level has been reduced (escarpments, high zone of the landslide) and in blue areas that have 

gained elevation due to the deposit of the lobes of the landslide.  

 

It may make sense to perform the analysis of differences between 2016 and 2017 models in a 

point cloud format, obtaining the minimum distances between the two models, or the 

decomposition in X, Y and Z or in the system considered appropriate. Fig. 10 a) shows the point 

cloud of the 2017 model colored according to the distance to the 2016 model, with the 

Legend 
-Orthophoto 2017 

- 2017 - 2016 differences in Z 

               3.6 m (+) 

           

               2.9 m (-) 
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escarpments in red and the lobes of the slip in blue. The results are slightly different, and 

according to the sliding morphology it can be important to measure the Euclidean distances in 

3D, as well as the internal rotations in the slip body. The escarpments are better identified on the 

cloud of points represented by slope (Fig. 10b). 

 
Fig. 10: a) 2017 points cloud colored based on the minimum distance to the 2016 point cloud; and b) Point 

cloud of 2017 colored according to the slope (red 90º, green 0º). 

 

a) 

b) 
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Finally, it seems interesting the extraction of profiles on the point clouds that allow us to compare 

the evolution of the profile and colored ground by minimum distance between the two models, 

where the rotation and the displacement of mass are clearly observed (Fig. 11 

 
Fig. 11: Profiles on point clouds: 2016 in black and 2017 colored by minimum distance between models. 

 

6. CONCLUSIONS 

 

The uses of drones combined with photogrammetry techniques can provide a large amount of 

information of high quality. Its application in the description of slope instabilities, 

characterization of discontinuities, delimitation of unstable volumes, as well as monitoring tasks, 

will make it an essential tool to improve performance, access to more and better information and 

improve safety and efficiency in the field works. 
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5. Unstable rock mass characterization with UAV 
 

This chapter is focused on the methodologies followed in order to identify and characterize 

unstable rock volumes based on 3D models obtained with UAV and digital photogrammetric 

techinques. The methodology is used also for the rockfall inventory (Chapter 6), as well as for the 

applications presented on Chapters 11 and 12. 

 

Original unpublished chapter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abstract: 

The identification of unstable rock mass is always an important part of the hazard assessment. 

Nowadays, the use of both UAV and digital photogrammetry allows an easy and safe 

methodology to characterize a rock cliff. This chapter describes the methodology used to identify 

and characterize unstable volumes based on 3D point clouds, joint pattern characterization with 

semi-automatic and manual tools, volume delimitation and kinematic analysis. 

 

 

Keywords: Unstable rock mass, joint set, UAV, drone, digital photogrammetry, point cloud 
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1. Introduction 

 

In rockfall hazard or risk assessment studies, the identification and quantification of the potential 

unstable rock volumes is an important part of the hazard characterization. This chapter presents 

the methodology used on this thesis in order to identify and quantify potential unstable rock 

volumes. The methodology is also used to characterize the inventoried rockfalls and other mass 

movements. 

 

Vertical cliff or steeped terrain are sources of rockfalls. When overhangs are present in the slopes, 

they often erroneously displayed in 2D representations like topographic maps, digital elevation 

models and orthophotos. To improve the representation and the information quality, the 3D 

models should be used. The methodology presented here (flowchart of Figure 1) may be divided 

in 4 steps: 1. Data acquisition (properly planning and executing an UAV flight); 2. Products 

generation (by digital photogrammetry techniques); 3. Joint sets identification (using semi-

automatic and manual tools); and 4. Potential Volume delimitation (3D mesh cutting). The 

products generated can be used for slope stability analysis such as the limit equilibrium methods, 

or, using the accurate 3D models, for define the geometries in discrete element methods. 

Figure 1: Flowchart of the main steps from UAV flight to the potential volume identification and 

calculation. 
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2. Data acquisition 

 

The first step, and one of the most important part on acquisition works, is the selection of the 

sensor used. In the case of UAV and digital photogrammetry, the camera and the drone will define 

the quality of the original data obtained. We tested different drones in several landslides scenarios: 

a little Hubsan H107C (toy) with a camera of 1.3Mp; a self-constructed DJI-F450 with a GoPro 

Hero 4; a self-constructed HexaCarbonFrame; the DJI-Inspire 1 Pro; the DJI-Inspire 2 and a self-

constructed hexacopter DJI-S900 (Figure 2). We used a SONY-NEX5 (14Mp, APS-C sensor) on 

the hexacopters (HexaCarbonFrame and DJI-S900) and the cameras X5 (16Mp, micro 4/3 sensor) 

and X5S (20.8, Mp micro 4/3 sensor) with the Inspires 1 Pro and Inspire 2 respectively.  

 
Figure 2: UAV devices tested on landslides site investigation. 

 

The Hubsan H107C, is mounted with a camera of 1.3 Mp.  However, it has no GPS neither camera 

stabilization device (or Gimbal). It was our first experience in 2013. It allowed the generation of 

a 3D model of a steep rock wall with satisfactory results. DJI-F450 and our own 

HexaCarbonFrame are drones with a GPS incorporated. It has the capability to program the flight 

to perform autonomous paths. The gimbal, in these devices, allows the stabilization of the camera 

obtaining well aligned and clear pictures. The flight time, or battery life, is an important issue in 

order to plan the acquisition works. Flight duration is usually short, like 10 minutes per battery 

on DJI-F450 and HexaCarbonFrame. The DJI-Inspire series are “ready to flight” drones, with 

very good performance in terms of camera and gimbal quality, as well as the communication 
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systems. On the other hand, the Inspire series is restricted to the cameras that can mount due to 

the specific camera/gimbal port. In this way, the DJI-S900 allow the mount of different typology 

of acquisition systems, like multispectral cameras or a Lidar. As a powerful hexacopter, the S900 

is a good option to flight in high mountain environments with possible strong wind hits. However, 

as a personal election, the DJI-Inspire 2 has a very good quality image (with the X5S camera), 

that is the origin of our data, as well as good systems to avoid and detect obstacles, strong wind 

resistance. It is easy to pilot, and brings more than 20 minutes of flight per battery, being our 

favorite drone today. 

 

The flight plan has to take into account the Ground Sample Distance (GSD), the real dimension 

of a pixel projected on the terrain. The GSD depends on the focal length, the sensor dimensions 

and the distance between the camera and the object or terrain. Typical values of GSD are 3 cm/px 

from 120 meters of height, the maximum height altitude by law in Spain. Flying close to the 

terrain or with bigger sensors, the GSD obtained are typically 1.5 – 2 cm/px, creating high 

resolution 3D models and orthophotos that allows a very detailed maps and a new era of data 

acquisition in the field. 

 

In order to maintain the same GSD for all the products generated, the distance between the drone 

(camera) and the terrain should be more or less the same. We prepare always two flight plans: the 

first, with the camera taking pictures with a Zenital perspective in order to cover the whole study 

area; and a second flight with frontal and oblique point of view of the cliff and vertical zones to 

obtain all the information of the rock wall face (Figure 3). To maintain the GSD, the flight plan 

should maintain the height from the terrain in vertical, and similar distance in frontal and oblique 

point of views. This can be achieve using preexisting topographic maps and adapting the height 

of the flight lines, typically flying parallel to the contour lines. Some flight plans can be designed 

with a secondary path of flight, perpendicular to the first one, in order to obtain more points of 

view to avoid shadow zones in very irregular terrains like blocky deposits on rock avalanches or 

fragmental rockfalls (Figure 4). 

 

Programming the frontal and oblique points of view flights and the estimation of the picture size 

above the ground may be difficult due to the tilted camera position. Often, the oblique pictures 

are obtained by manual piloted flight, where the main goal is to optimize the picture information 

on rock face avoiding the sky or the cliff toe. Often is normal to pay more attention to the unstable 

zones that can be observed on real time during the flight, focusing the pictures on specific parts 

of the cliff to obtain the best information possible from different point of view, typically to 

observe the aperture of fractures (Figure 5). 
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Figure 3: Zenital and Oblique pictures (blue rectangle) on Isona rockfall case study on Catalonia. 

 

 
Figure 4: Flight plan on GoogleEarth: two perpendiculars schemes are used in order to cover the whole area 

from different points of view 
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Figure 5: Drone pictures from different points of view to observe joint aperture on unstable rock mass 

identification. The rotation against the unstable volume allows a good view to identify it. 

 

When using frontal and oblique perspectives, it is important to take into account the change of 

the direction in the sequence of pictures that will be captured. The camera sensor has a rectangular 

shape. Normally, in a zenital point of view, picture over picture are taken moving the camera to 

the longer direction of the sensor, going to the upper part of the caption. On the other hand, in 

frontal and oblique captions, the natural drone movement is a lateral displacement, when picture 

a picture, the direction is to the right or to the left (Figure 6), against the shorter side of the camera 

sensor. Then, the overlap calculation is based on the time interval between pictures and the drone 

velocity, calculating the percentage of area overlapped between two consecutive pictures against 

the shorter side (or longer side in zenital perspective) of the sensor.   

 
Figure 6: Exemple of frontal pictures, with a lateral displacement of the drone. 
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In order to design and execute the flight plan, we use the app “Litchi” that allow the creation of 

the flight path on the website (or in a GIS and import it then in .csv format to Litchi server) and 

execute it using an Ipad. We also use the “Ground Station” apps originals from DJI to manage, 

design and execute the flight plans on the HexaCarbonFrame, the DJI S900 and the Inspire drones.   

 

Piloting a drone may be dangerous, and the law at each country must be respected. The Spanish 

law requires: a pilot license (it requires overcoming both theoretical and practical exams), an 

insurance and an operational entity as a responsible of the pilots, the drones and the insurances. 

Security should be always the most important issue in a drone flight, and accidents are common 

in the drone world. 

 

3. Products generations 

 

The first step is checking the images’ quality and rejecting the low quality pictures if any (pictures 

with sky, wrong focused or lightened). We use Agisoft Photoscan Professional in order to realize 

the photogrammetric tasks and the products generation. The software offers a picture quality 

index in order to identify with a quantitative value from 0 to 1 the unacceptable pictures.  

 

The pictures obtained have an EXIF information on the metadata with the latitude, longitude  and 

altitude, typically in WGS84 reference system. Depending on the final goal, the georeferencing 

of the final products may be achieved only with the pictures metadata. However, the GPS 

precisions may leave the final product between 2 and 10 meters moved. In order to fix and 

improve the quality of the products generated, a set of targets is used, measuring the coordinates 

with a GPS-RTK. The localization of the center of the target, manually, on the first pictures, is 

already the first post-processing step. 

 

After locating the targets in the pictures and the alignment of the camera, the dense point cloud 

can be generated. In order to create different products (2D or 3D) with different information, the 

point cloud is classified. Classify ground points tool allow the definition of ground points 

following the next criteria: starts with a grid of cell size length defined, where the lowest point 

will be defined as “ground”; the besides points will be classified as ground if: the angle between 

the new point analyzed and the horizon is lower than a defined angle, and if the maximum vertical 

distance is also lower than a defined distance. Notice how the points that have another point 

above, on the same planimetric (XY) position but with another altitude, typically ground under 

vegetation, are already the overhangs on cliff zones. After some iterations on the values to classify 

automatically the ground points, manual classification is required in order to define the vegetation 

on a supervised manner.  We classify the points in ground, vegetation, overhang (taking the 
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already classified points as low points) and also buildings. Figure 7 and 8 shows an example of 

the point cloud (in natural colors and classified respectively) obtained from the Castell de Mur 

rockfall that occurred in April of 2018 in the Eastern Pyrenees. The ground classification tool 

allow a good classification of the ground points (brown in Figure 7). Then, the non-classified 

points are defined as vegetation (green). However, the ground classification tool can be used also 

to identify the more relevant fragments on a rockfall deposit (red on Figure 7). The classified 

points as “low points” are identified as overhangs on the cliff zone (purple) and the ground points 

that have lower points can be defined also as prominent parts of the cliff (blue on Figure 7). 

 
Figure 7: Point cloud by original color from Castell de Mur rockfall. 

 
Figure 8: Classified point cloud by: Ground (brown), vegetation (green), main fragments on the deposit 

(red), overhangs on the cliff (purple) and points above overhangs (blue). 
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The generation of different products is divided in two ways: for cartographic or 2D representation, 

and for 3D products. 

 

The points classified as ground are used to create the digital elevation model, avoiding the 

distortion that vegetation may introduce. Based on this digital elevation model, others products 

are generated, like the orthophoto, the slope map and the contour lines map (Figure 9). In a study 

in which unstable rock masses are identified, it may be useful divide the whole study area in zones 

with the same orientation. For each the cliff face orientation, the unfavourable joint sets on each 

zone may be defined. Figure 9 shows the maps generated at the site of Monasterio de Piedra. The 

unstable rock mass identification tasks, as well as the maps and the obtained 3d models, are used 

in a quantitative risk assessment study (Corominas et al, 2018 submitted) also presented in the 

chapter 12 of this thesis. The products at high resolution are very useful for rockfall inventorying 

tasks (chapter 6) and also to locate the final unstable rock mass identified. 

 
Figure 9: Cartographic product generated for the case of Monasterio de Piedra study (see Chapter 12). 

Orthophoto and Digital Elevation Model (upper left), Topographic map (upper right), Slope map (lower 

left) and the Zonation map of each cliff to be analyzed one by one. 
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The second way to produce models uses the points classified as ground and overhangs, that should 

be the best option to deal with the cliff information and characterize the joint pattern and identify 

the unstable volumes. To this end, the ground and overhangs points are exported as point cloud 

to be analyzed on specific point cloud analysis software like CloudCompare (Figure 10). A simple 

colorization of the point cloud by dip (slope) may allow the identification of the main patterns 

and morphology of a rock face. These points are used to create a 3D mesh texturized with the 

purpose to identify the joint traces.  

 

 
Figure 10: Example of a point cloud of a quarry considering ground and overhangs, colored by dips in order 

to analyze the joints pattern and the potential unstable volumes. 

 

Another interesting product that can be generated, is the frontal or oblique orthophotos. The 

frontal orthophotos enable mapping of the joint sets and rock bridges characterization based on 

high resolution frontal images (Figure 11 up). The original pictures, also in real time during the 

inspection flight, allow the visual identification of unstable rock mass (Figure 11 down). 
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Figure 11: Up: Frontal orthophoto from Castell de Mur rockfall cliff obtained to identify unstable volumes. 

Down: Original picture from the drone (Castell de Mur rockfall) where an unstable rock mass can be 

identified.  
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3. Joint set identification by outcrop modelling 

 

Joint set identification on 3D point cloud is a common activity in rock mechanics and stability 

analysis. There exists a number of algorithms and software products to deal with it: COLTOP 3D 

(Jaboyedoff et al. 2007), DiscontinuitySelfExtractor (Riquelme et al. 2014), CloudCompare 

(Girardeau-Montaut 2006) or GaiaGeoRoc (Assali 2014). The main ideas are the calculation of 

the normal on each point and define coplanarity criteria to define facets or joints sets. The normal 

vector calculation on each point using a defined radius of influence allows the representation of 

the point cloud in terms of dip direction or dip (Figure 12, left and right respectively, on Zone A 

of Monsaterio de Piedra case).  Then, we use the plugin Facet Matching in order to identify the 

main joint sets on the point cloud (Figure 13).  

 
Figure 12: Dip direction and dip colored points cloud from Zone A on Monasterio de Piedra. 

 
Figure 13: Identified facets with the Facet Matching plugin in Zone A on Monasterio de Piedra. 
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Semi-automatic identification using the Facet Matching plugin on Cloud Compare 

 

We use the plugin Facet Matching from Cloud Compare to identify the existing joint sets in the 

rock mass (Dewez et al, 2016). The plugin uses the point cloud with normal vectors to create 

facets that are mesh format elements, with groups of points that satisfy some coplanarity criteria. 

Depending on the scale of the joint set that we are interested, the parameters can be modified. The 

plugin works with 3 parameters: (1) maximum distance, that is the maximum distance between a 

point and the facet assigned; (2) minimum number of points, which is the smallest allowing to 

create new facets; and (3) the Maximum Edge Length, controlling the maximum length a facet 

without including points. The last one control the perimeter of the facets and how irregular may 

be considering only the information from points or extrapolating to create more regular facet 

shapes as shown in Figure 14. 

 
Figure 14: Identified facets with Facet Matching plugin on Cloud Compare, comparing the Maximum Edge 

Length parameter that control the irregularity on the defined facets perimeters. 

 

The maximum distance is the main parameter that control the scale of our joint set identification 

task. If we are interested on the main morphological features which characterize cliff, then the 

use of high values of maximum distance allows higher tolerance between the points and the 

matched facets. Because of this, a more general pattern on a large scale is obtained. As the 

maximum distance reduces, the resolution increases, and the scale of the generated facets becomes 

progressively smaller (Figure 15). Decreasing the maximum distance, the coplanarity criteria 

becomes more restrictive and then, smaller areas of facets are obtained. For this reason, it may be 

wise to reduce the minimum number of points for the generation of small-size facets, related with 

less number of points. From our point of view, the perfect set of parameters does not exist, and 

depending on the scale of the joint set we are interested, the parameters should be adapted. As 

natural rock exposures are also fractal surfaces, similar patterns are found at different scales.  
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Furthermore, not all the facets generated are real joint sets, and the interpretation of the data is 

always necessary. Not all the facets fitted are real joints, due to any irregular plane may be 

adjusted with the enough maxim distance tolerance. 

 
Figure 15: Facet matching plugin applied with different set of parameters using a 3D point cloud from Pala 

Morrano (a study site in the Aigüestortes-Sant Maurici Natural Park, Central Pyrenees). 
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At each slope, depending on the rock wall orientation, the joint sets may become unfavourable 

based on kinematic tests such as the Markland or Goodman. These joint sets can be identified, 

selected and exported as relevant sets on a mesh format. This is illustrated in the study of the 

maximum credible rockfall volume at the Borrassica slope  in Andorra (Corominas et al 2018, 

and chapter 11). There, the main joint set that defines planar sliding mechanism (blue facets on 

Figure 16), the one that controls the detachment of rockfalls in the area, was selected in order to 

identify potentially unstable volumes. A back analysis of the dip of the scars related with this joint 

set can be carried out to identify the critical dip. The sliding surfaces will be used to be 

extrapolated inside the rock mass in order to define the base of the potential unstable volumes. 

Then, in order to delimitated the volumes, other joint sets are identified and modeled.  

 
Figure 16: Joint set identified related to the sliding failures on Borrassica cliff, Andorra. 

 

Manual joint set identification and modelling 

 

The semi-automatic procedure to identify joint sets takes into account geometrical properties of 

the point cloud, namely the normal vector and coplanarity criteria. However, numerous joints do 

not generate relief and only their trace can be identified. To this aim, the texturized mesh is used 

to identify the joint traces and modelled them manually. The joints can be manual modelled using 

3D modelling software like Rhinoceros, Polyworks, Blender or others. Using the case of the 

Borrassica slope in Andorra, the unstable potential volumes are bounded by the basal 

cinematically unstable planes and the joint sets that define tension cracks.  The potentially 
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unstable masses were manually modelled using Rhinoceros (Figure 17) by identifying the joint 

traces. 

 
Figure 17: Manual modelling of joint sets by trace identification over 3D mesh texturized on Borrassica 

cliff (Andorra) 

 

A new interesting tool is available on Cloud Compare named Compass (Thiele, et al 2017). This 

tool allows the manual selection of a group of points inside a circle to fit a plane on it. This tool 

can be very useful in order to measure the most relevant joint set within the point cloud used. 

However, the best improvement of this tool is the capability to use the point cloud information 

(colour, darkness, curvature, etc) in order to assist the manual joint mapping and an automatic 

plane definition based on the coplanarity of the points selected. The tool works especially well 

when the trace is clearly visible due to its color.  

 

In Figure 18, an unstable rock mass is identified resting on a joint set that allows planar failure. 

The points on the base can be cropped and coloured by dip in order to analyze how the dip of this 

plane vary. Then, different tension joints can be modelled using the Compass tool in order to 

define possible unstable volumes. 
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Figure 18: Joint modelling using Compass trace tool on Cloud Compare. Two possible tensile 

joints are modelled following the point cloud color. 

 

4. Volume delimitation  

 

In order to calculate a volume, it is mandatory to work with closed 3D objects. On this case, the 

mesh format seems to be the natural way to close a volume. The main idea is to delimitate the 

volume defined by the unfavorable joint sets on each defined zone. Then, in some cases, different 

options may be considered in order to identify different possible failures. To this end, the 3D 

mesh texturized is cut using the facets and the manually modeled joints in mesh formats (Figure 

19, on the same example data of Figure 18) 

 

All the delimitated volumes can be exported to different maps and to general 3D models of the 

zone. Some expert judgement on the evidence of instability and/or stability analysis may be used 

to define a range of susceptibility in order to manage the information (Figure 20) 
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Figure 19: Volume delimitations by cutting the 3d mesh with the modelled joint sets from Figure 15. 

 

  
Figure 20: Delimitated unstable volumes on a 3D texturized model as inventory, ranged by susceptibility 

from low (green) to high (red). 
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The representation of the identified volumes in 3D models is not just an aesthetic issue. Often, 

the unstable volumes that cannot be represented appropriately in classical zenital maps or images, 

due to they are located in the same vertical section (Figure 21), or directly on overhang zones 

(Figure 22) that are completed occluded is orthophotos and topographic maps. 

 
Figure 21: Delimitated unstable volumes on a 3D texturized model as inventory, ranged by susceptibility 

from low (yellow) to high (red). 

 
Figure 22: Delimitated unstable volumes on a 3D texturized model as inventory, ranged by susceptibility 

from low (green) to high (red). 



134 
 

5. Conclusions 

 

The use of UAV systems combined with the digital photogrammetric techniques creates a new 

era of data acquisition in geological risk assessment. The techniques and the methodologies 

shown in this chapter allow the generatin of high resolution ortophotos, DEM, coutour lines, as 

well as frontal or obliques orthophotos, the 3D point cloud and 3D texturized mesh. The flexibility 

of the tool is very useful to acquiere data just after and event or with the periodicity required. 

 

It is important to know the legislation of each country about the use of UAV. It is also important 

have a detailed knowledge about the devices used, the drone and the camera, and decide which 

kind of drone and camera should be better on each case. 

 

The methodologies will change fast, as the technology and the algorithms are in continuous 

developing. By now, the procedure shown on this chapter is our methodology to obtain an 

important part of the field data. Start with an accurately planification of the flight plan and a safety 

execution. Continue with the digital photogrammetric processing in order to obtain the 3D points 

cloud and classify it in order to work with clean data without vegetation. Few algorithms may be 

used to identify the joints pattern based on the point cloud coplanarity, as well as for manual 

modelling. It is important to keep in mind that all surfaces may be adjusted with a plane with the 

enough tolerances, and the supervision of real joints sets is required to select the adjusting 

parametrs on each scenario. Depending on the scenario scale and the interesting joints pattern, the 

adjusting parametrers will be defined and testes in an iterative process. Finally, the manual 

selection of points to fit a plane, and the manual modelling using the Compass tool (Cloud 

Compare) or 3D texturized meshes (for exemple in Rhinoceros) will be very useful. 

 

The unstable rock volumes may be identified using a very safe methodology, reducing the time 

or complety avoiding the exposition to the higher hazardous zones, and at the same time, obtaining 

a high quality information from the scenario.  
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6. Fragmental rockfall inventory 
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Abstract: After the improvements on UAV and digital photogrammetric techniques, the rockfalls 

presented in Chapter 3 were revisited as well as new ones. A new field works campaing was 

carried out obtaining, from the UAV surveys, the 3D models of each scenario, high resolution 

ortophotos and the scar 3D models in detail, allowing the generation of cartographies, real terrain 

profiles, detached volume reconstructions, joint pattern characterization and IBSD estimations. 

Our research plan is based on the emprical data collected on this inventory of natural fragmental 

rockfalls. The fragmentation model proposed on the PART III is calibrated with the data collected. 

 

 

Keywords: rockfall, fragmental rockfall, block size distribution, inventory, 3D models 
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1.Introduction 

 

The bases of our research looks to empirical data from natural behavior, starting from the 

measurements of natural fragmental rockfall events, collecting how much data as possible on each 

case. 7 rockfall cases are inventoried to represent different fragmentation scenarios, in terms of 

failure mechanism, lithology (Limestone, Sandstone, Conglomerate and Schist), total volume 

detached (between 2 m3 and 10.000 m3), and different slopes and terrain conditions.  

 

We tested in laboratory three samples of rock of each event, obtaining the mineralogical 

description, the density, the uniaxial compressive strength, the Young modulus, the Poison ratio 

and the tensile strength. The total volume detached reconstructed (IBSD) and the total volume 

estimated on the deposit (RBSD) may differ, but less than a 10-20%. Part of this volume lost is 

interpreted as dust or fragments too small to be measured in the field.  

 

The relevant data collected are presented in Table 1. Notice that just for these 7 cases, we 

measured manually more than 7200 fragments with a tape, taking 3 distance of each fragment. 

Based on this, we consider the RBSD obtained a well-defined description of the volumes of the 

fragments of the inventoried rockfall events and a good data quality in order to calibrate 

fragmentation models.  

 
Table 1: Rockfall inventory cases, summary data, rock properties and measured fragments. 

ROCKFALL INVENTORY 1.PdG 2.Omells 3.Lluca 4.Gurp 5.MdP 6.Malanyeu 7.Cadi 

Failure Mechanism Slide Toe erosion 
slide Toppling Toppling Toppling 

Slide Toppling Slide 

Lithology Schist Sandstone Sandstone Conglomerate Limestone Limestone Limestone 
Total Volume RBSD (m3) 2.6 4.2 10.7 100 900 4350 6351 

Total Volume IBSD(m3) 2.61 4.2 10.7 100 997 4945 7663 
        

ROCK PROPERTIES        

Density(kg/cm3) 2.72 2.35 2.46 2.69 2.5 2.64 2.68 
RMR 76 64 72 82 70 74 60 

Tensile Strength (Mpa) 6.53 2.03 2.07 5.47 10.00 7.03 12.10 
UCS (MPa) 32.17 21.38 21.77 38.36 35 13.33 35.29 

E Young (MPa) 17385 5185 730 74831 20000 12992 22761 
Poisson 0.27 0.006 0.18 0.21 0.1 0.05 0.07 

        
FRAGMENTS MEASURED        

RBSD Total number blocks 116 48 78 500 10790 28788 60980 
RBSD nº of measured blocks 116 48 78 500 2256 2721 1524 

Min. Vol. Measured (m3) 0.0001 0.0007 0.0007 0.01 0.001 0.0001 0.01 

Max. Vol. Measured (m3) 0.28 1.1 8.5 22 27 445 31 
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The 3D models of each rockfall event obtained by UAV and digital photogrammetry technics, are 

very useful in order to measure distances, 2D and 3D areas, volumes, generate profiles with 

overhangs, create cartographies and so on. Table 2 summarize the main geometrical descriptors 

used for rockfalls. Bigger total rockfall volumes tends to increase all the others geometrical 

descriptors, however, the Coef. of correlation r-squared with the 3D scar area is 0.99 (Figure 1).  

 
Table 2: Summary of geometrical descriptors measured on the 3D models of each scenario: 

SCENARIO & DEPOSIT 1.PdG 2.Omells 3.Lluca 4.Gurp 5.MdP 6.Malanyeu 7.Cadi 

Scar 3D Area (m2) 9.55 15 32 87 578 2120 3532 
Total Cliff Height (m) 15 3.3 6.8 100 50 70 150 
1th Impact Height (m) 12 1 0.6 39 35 10 50 

CoG Height (m) 13 5 2.8 110 60 80 230 
Max. Height difference (m) 13 14.5 6.6 150 70 100 520 

Max. Runout (m) 5 22 9.2 152 70 130 710 
Max. Volume Runout (m) 5 3 5.6 152 40 80 200 

Reach Angle (degrees) 69 33 36 45 45 38 36 
Deposit Width (m) 2.5 15 5 40 50 80 130 
Deposit Area(m2) 5 300 45 2000 4200 6000 44000 

YDC Area (m2) 5 6 35 1625 3743 1150 30000 
YDC Width (m) 3 2 5 40 50 40 110 
YDC Length (m) 1.7 3 3.5 63 35 50 260 
 

 
Figure 1: Scar area measured on a 3D surface and total rockfall volume of the study cases. 

 

 

 



140 
 

2. Inventoried rockfalls 

 

Pont de Gulleri rockfall (1) 

 

Pont de Gullerí (PdG) rockfall took place near Sant Romà de Tavèrnoles village, in Catalonia. 

The block size distribution (RBSD) was obtained by measuring 116 blocks on the deposit with a 

tape. The sum of the volumes estimates the total detached rock mass volume in 2.6 m3. The cliff 

is composed of Cambro-Ordivician schists with a high persistence joint pattern. The fallen blocks 

observed on the deposit are bounded by preexisting joints (Figure 2). This allows us to assume 

that the detached rock mass was mainly disaggregated following the joint pattern. Only few block 

shows fresh breaks. The minimum block volume measured is 1.2*10-4 m3, and the maximum is 

0.28 m3. The rock mass impact against a wall of an old stone house creating a hole of 1 meter of 

height and 0.5 meters of width, considering the case as an obstructed rockfall from propagation 

point of view.  

Figure 2: Deposit of the Pont de Gulleri (PdG) rockfall event, stopped against a stone home wall. 

 

From fragmentation point of view, this is a case where disaggregation is predominant over pure 

breakage, where the RBSD from the deposit should be very similar to the original IBSD from the 

cliff. In this case, the blocks weren’t break to much, and a high survival rate should define a results   

very controlled by the original IBSD. 
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Lluçà rockfall (2) 

 

The second rockfall take place on the village of Lluçà, center of Catalonia, with a detached volume 

of  10.7 m3. The rupture mechanism is predominantly toppling caused by differential erosion of 

the underlying weak rocks over a flat terrain. The rock is grey sandstone of Upper Eocene age. 

The detached mass was a single block bounded by two joints filled with roots. The latter might 

have facilitated their development. The fallen blocks show fresh faces generated by the impact 

and abundant fine material generated by the breakage. We measured 77 blocks, with a minimum 

volume of 6.7*10-4 m3 and a maximum volume of 8.47 m3 that represent an important part of the 

whole deposit as a clearly large fragment (Figure 3). The cartography of the event (Figure 4) 

shows this large block or part of the rock mass not affected by breakage, and the smaller fragments 

ejected a little bit further due to the breakage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Picture of the Lluçà rockfall case inventoried. A huge block conserve the main part of the total 

rock mass detached. 
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Figure 4: Deposit cartography of the Lluçà rockfall case inventoried. 
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Omells de Na Gaia rockfall (3) 

 

The Omells de Na Gaia rockfall is a small-size rockfall that propagated on a stepped soft ground. 

It initiated with a free fall of 1 meter, and the farthest block stopped by impacting on a wall at 22 

meters from the source. In the lowest part, the blocks trajectories crossed a paved road and 

damaged a barrier (Figure 5). The detached rock mass is sandstone of Oligocene age with a total 

volume of 4.2 m3. We measured 48 blocks, with a minimum and maximum volume of 7*10-4 and 

1.1 m3, respectively.  

Figure 5: Panoramic photography of the Omells de Na Gaia (Omells) rockfall inventoried. 

 

The blocks generated by fragmentation show fresh faces formed by the breakage as well as pre-

existing discontinuities, mostly sedimentary planes. The fragmentation of the rock mass affects 

the trajectories of the blocks, modifying the impact energies (Figure 6). 

Figure 6: Omells de Na Gaia rockfall cartography with dispersion of trajectories due to fragmentation. 
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Gurp rockfall (4) 

 

On 5th of April of 2016, a rock mass of 100 m3 deatached from the top af cliff of 100 m close to 

the village of Gurp, in the Conca de Tremp area in Catalonia (Figure 7). The rock mass falls 

impacting against the slope and creating an explosive fragmentation event (Figure 8), defining a 

Young Debris Cover (YDC) zone. The quaternary silts and clays from the ground were ejected in 

a cloud of dust with little fragments, covering the trees until 5 meters of height. The central part 

of the YDC erase completely the trees and the vegetation. 3 major blocks achieve the lower part 

of the profile, crossing a field. Two of them, with volume close to the 20 m3, cross the entire field 

producing important craters with the shape of the boulders (Figure 9), and finally stopping against 

a road.  

 
Figure 7: Photography of the Gurp rockfall. Two blouders of 20 m3 stop against a road. See also the 

cartography of Figure  
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Figure 8: Photography of the main impact zone on the Gurp rockfall. Trees and vegetation were completely 

erased, and a cloud of dust and clays covers the trees until 7 meters of height. 

 

A photogrammetric UAV flight allows us the generation of 3D models, ortophotos and the 

topographic cartographies necessaries to describe the case. 500 blocks were measured using a 

tape. The 500 blocks were delimitated in a high resolution ortophoto (2 cm/px) obtaining also an 

areal distribution of fragments. However, the RBSD used on this study is the obtained by 

measuring 3 distance of each fragment on field works, avoiding the area to volume conversions 

and the assumptions for this. 
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Figure 9: Trace craters of one of the two boulders that cross the field reaching the road on Grup rockfall. 

 

The cartography of the Gurp rockfall (Figure 10) shows a “body shape” rockfall: with the scar as 

the head; the YDC as the main body of the deposit; and some arms and legs as Large Scattered 

Blocks (LSB) that shows more lateral dispersion or longer runouts. This is a very interesting case 

study example, due to it is a common pattern on fragmental rockfalls where the inventories are 

focused on the 2 or 3 major blocks that reach the road, and not in the rest of the deposit. Then, 

possible reconstruction of this rockfall event using the larger boulders without considering the 

fragmentation phenomenon could be erroneous in terms of restitution coefficients or energy 

dissipations hypothesis. 
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Figure 10: Gurp rockfall cartography with the scar, the Young Debris Cover zone and 500 blocks elaborated 

over an ortophoto, the topographic cartography and colored by the digital elevation model. 
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Monasterio de Piedra rockfall (5) 

 

Monasterio de Piedra is a natural park near Calatayud (Spain), with some trails to visit cascades, 

lakes, rivers, and a beautiful chalk rock massif landscape with different vegetation and fishes, 

becoming a familiar attraction. On April of 2017, an important rockfall occurs involving 1000 

m3, reaching a visitor’s trail (Figure 11). Part of the 50 meters of the deposit width impact against 

a dynamic barrier that has been completely turned down. The size of the blocks observed on the 

dynamic barrier are not enough to reach the maximum kinetic energy of these barriers (5000 KJ). 

However, the multiple and simultaneous impacts with these huge number of fragments allow to 

reach the maximum energy and total volume that these barriers resist. At the same, the rockfall 

width and density of blocks, increase to 1 the probability to impact against a vital part of the 

barrier, like a pile or the anchors. The vegetation was completely erased and the distal part of the 

deposit falls on the water lake. 

 
Figure 11: UAV photography of the Monasterio de Piedra (MdP or Calatayud) rockfall inventoried. 

 

An UAV flight was carried out obtaining the 3D model and the others cartographic products. A 

specific flight was carried out to obtain a high resolution model from the scar, and another from 

the deposit, obtaining a ground sample distance of 5 mm and 7 mm respectively (using a DJI 

Inspire 2 with X5S camera with 20 – 30 meters of distance or height). However, we trust on 
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manual measurements, and more than 2200 fragments were measured by a tape, part of them in 

two sampling plots with the methodology used before in (Ruiz-Carulla et al, 2015).  

 

The obtained ortophoto reveal some blocks under the water (Figure 12). The deposit shows a very 

compact shape, where the whole deposit may be considered as Young Debris Cover, without large 

scattered blocks, in part, due to the topography, with a step before the lake on one side, and the 

flat trail also with the lake on the other side.  

 

Fragmentation seems to affect also in the final position of the center of geometry of the deposit, 

reducing the runout of the blocks due to the decrease of each volume, the energy dedicated on 

breakage and the mutual interactions between the blocks. The own blocks generate a roughness 

on the talus slope that can stop the propagation of the smaller blocks. 

Figure 12: Cartography of the Monasterio de Piedra (MdP or Calatayud) rockfall.   
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Malanyeu rockfall (6) 

 

The Malanyeu rockfall is an important rockfall, with a total volume detached close to 5000 m3, 

characterized by a remarkable scar formed by two main joint sets and the stratification of the 

Maastrichtian limestone rock (Figure 13). The free fall height is less than 10 meters, however, 

may be considered as 80 meters due to the apparent direct toppling failure mechanism. The 

maximum run-out distance is 100 meters, reaching the valley bottom (Figure 14). 

 

In this case, the fragmental rockfall generated a more or less continuous Young Debris Cover in 

the upper part of the deposit with a high concentration of small-size blocks. We measured 2721 

blocks, part of them on 3 sampling plots, with a minimum volume of 4.2*10-5 m3 and a maximum 

volume of 445 m3 (the maximum inventoried fragment). The deposit includes 7 blocks greater 

than 100 m3, and more than 60 blocks greater than 10m3. The faces of the larger blocks are mostly 

preexisting discontinuities in the rock mass (joints and bedding surfaces).  

Figure 13. View of the Malanyeu rockfall.    Figure 14: Malanyeu rockfall cartography. 

 

This case corresponds to a large fragmental rockfall where the fragmentation is related to both 

the disaggregation of the rock mass along preexisting discontinuities (joints and bedding planes), 

and pure breakage. A proof of this is the presence of huge blocks, bounded by preexisting 

discontinuities in the lower part of the deposit and, on the other side, the blocks of the YDC, 

showing multiple new fresh faces.  
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Cadi rockfall (7) 

 

The last and the bigger rockfall, with 10.000 m3 involved, is located in Cadi Sierra, in the Eastern 

Pyrenees, near the village of Vilanova de Banat. The case has been studied and published on 

(Ruiz-Carulla et al, 2015 and 2016). The cliff is made of limestone of Paleocene age. The free 

fall height is 40-50 m, and the maximum run-out distance is 740 m. The first impacts generated a 

YDC of 30.000 m2. We measured more than 1500 blocks: 1252 blocks in 6 sampling plots and 

272 as Large Scattered Blocks (LSB). The minimum and maximum block volume measured is 

1.53*10-3 and 30.8 m3, respectively.  

 

The blocks deposited have an irregular shape, showing fresh faces related to the breakage and 

some faces defined by the preexisting joints. Field observations suggest that the deposit was 

mainly originated by breakage. This is confirmed by the large number of small and medium 

blocks and the predominance of fresh faces in the blocks. The scenario, with a remarkable scar 

on red and brown colors over the grey limestone cliff (Figure 15), have a large talus to propagate 

the blocks with 35º degrees of slope without obstructions. However, we observe how as much 

volume is involved on a rockfall event, more feasible is the interaction between blocks, and also 

the comminution of the own rock mass on its bottom on the first impact zone creating the YDC. 

 
Figure 15: Cadi rockfall, with red and brown colors on the scar and a long talus to propagate the blocks. 
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3. Scenario characterisation and detached volume reconstruction 

 

Rockfall profiles 

 

The reach angle may be used to study the runout and the mobility of a rockfall. We measured the 

reach angle of each cases from profiles obtained from 3D point clouds. (Figures 16 and 17). 

Figure 16: Reach angle of each inventoried rockfall and profiles of PdG, Omells and Lluçà cases. 

 

The reach angle can be calculated with the empirical estimations (Corominas 1996) for scenarios 

of unobstructed, obstructed, deflected or all the cases mean. Based on this, we compare the 

measured reach angles from the inventory to the theoretical reach angles on different scenarios 

(Figure 16 upper left). Pont de Gulleri case have an abnormal reach angle of 70º degrees, a clearly 

obstructed case due to the old house. Llucà and Omells events shows lower reach angle than the 

expected, due to the fragmentation may produce ejected fragments that increase their mobility. 

However, the fragments with smaller volume can easily be stopped. The other four cases, from 
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100 m3 to 10000 m3, shows a reach angle between obstructed and deflected expectative, being 

fragmentation another phenomenon that may reduce the runout of a rockfall. 

 

Figure 17: Profiles of Gurp, Monasterio de Piedra, Malaneyu and Cadi inventoried rockfalls. 
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Scar and deposit dimensions 

 

The 3D models of each rockfall event obtained by UAV and digital photogrammetry technics, are 

very useful in order to measure distances, 2D and 3D areas, volumes, generate profiles with 

overhangs, create cartographies and so on. Table 2 (presented before) summarize the main 

geometrical descriptors used for rockfalls. Bigger total rockfall volumes tends to increase all the 

others geometrical descriptors, however, the Coef. of correlation r-squared with the 3D scar area 

is 0.99, and with the maximum runout and maximum deposit width are 0.78 and 0.84 respectively 

(Figure 18).  

 
Figure 18: Correlation between scar 3D area, max. runout, max deposit width and total rockfall volume. 

 

In order to characterize the fragmentation scenario, we consider very relevant the part of the cliff 

with high slopes (>45º) where the tendency is to accelerate and is the “energetic part” (colored 

from yellow to red on 3D models of Figures 19, 20 and 21), and the part of the slopes where the 

main impact and the rest of the propagation take place, with lower slopes (<45º) where the blocks 

tends to break or stop (colored from green to blue), related also with the type of propagation. Only 

Lluçà 3D model is colored by height of the fragments due to the scenario is very flat. Notice how 

on Gurp scenario (Figure 20, up), a blue zone on the half of the cliff can be identified, being a 

lower slope part of the profile that may produce impacts with high trajectory variation and also 

breakage. 
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Figure 19: 3D models of Pont de Gulleri, Lluçà and Omells rockfalls, coloring the rockfall zone by higher 

or lower than 45º of slope. Lluça rockfall is colored by the height of the fragments. 
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Figure 20: 3D models of Gurp and Monasterio de Piedra rockfalls, coloring the zone affected by the rockfall 

by higher or lower than 45º of slope. 
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Figure 21: 3D models of Malanyeu and Cadi rockfalls, coloring the zone affected by the rockfall by higher 

or lower than 45º of slope. Cadí model obtained from Catalan Cartographic and Geologic Institute data. 
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Reconstruction of the detached rock mass and generation of the IBSD  

 

The RFFM requires initiators, which can be individual rock blocks or rock masses that include 

one or more discontinuity sets predefining a group of blocks. The characterization of the latter 

requires the 3D reconstruction of the detached volume and the generation of the IBSD based on 

a discrete fracture network (DFN). This task requires considering several assumptions and 

hypotheses. 

 

The detached rockfall volume at each site was calculated following the methodology described in 

Ruiz-Carulla et al. (2015). The detached volume is calculated by subtracting the Digital Surface 

Model (DSM, 3d mesh surface) of the cliff before and after the event. The DSM before the event 

is based on the LIDAR point cloud provided by the Cartographic and Geological Institute of 

Catalonia (ICGC), except for the case of Monasterio de Piedra, provided by the National 

Geographic Institute of Spain. When the morphology of the cliff and/or pictures before the event 

are available, we manually modified the DSM in order to reproduce the before scenario on the 

more realistic morphology possible. 

 

The DSM of the cliff after the event was generated from pictures taken with UAV (DJI Inspire 2, 

X5S camera), except in the case of Vilanova de Banat where the DSM after the event was obtained 

from ground pictures taken with a camera Nikon D90, in all cases, with the subsequent 

photogrammetry treatment. The difference between the DSM of the scar before and after the 

rockfall yielded a detached rock mass volumes presented at table 1 (Total Volume from IBSD). 

 

The joint set characterization is based on 3D point cloud analysis combining semi-automatic and 

manual modelling. The joint pattern characterization was carried out using the plugins Facet 

Matching (Dewez et al., 2016) on Cloud Compare (Girardeau-Montaut 2006), and also the tool 

Compass (Thiele et al. 2017). The parameters used on Facet Matching to define the fitted facets 

are accommodated to the scale of the joints. High tolerances, allowing high values of the 

minimum distance between the 3d points and the facet planes, will define facets with larger areas. 

Depending on the scale of each scar, the parameters used should be calibrated and the results 

supervised. Often, can be useful the manual selection of well-defined planes and adjusting a facet 

using the Compass tool, also for joint trace identification. Combining the semi-automatic and the 

manual joints defined, a well detailed Discrete Fracture Network (DFN) can be exported in mesh 

formats. The total volume detached reconstructed and the DFN can be handle in a 3D modelling 

software (CloudComapre, Rhinoceros, Polyworks, etc) to create an IBSD cutting the volume with 

the DFN. The main hypothesis on this step is the infinite persistence of the modelled joints. The 

joints used are located on its real position based on adjusted facets or by manual modelling. 
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The 3D blocks created composing the IBSD are listed and both the volume and the 3D surface 

area of each block, is measured. The list of volumes is used as input for the fragmentation model. 

The list of the areas and the accumulated area of the rock blocks will be compared to the areas of 

the new surfaces created by fragmentation. The number of joint sets, number of blocks on each 

IBSD, maximum and minimum blocks and minimum spacing are summarized on Table 3. 

 

Table 3: Summary of IBSD characteristics 

IBSD 1.PdG 2.Omells 3.Lluçà 4.Gurp 5.MdP 6.Malanyeu 7.Cadi 

Nº of joint sets 5 3 4 5 5 4 5 

IBSD Total number of blocks 40 3 5 14 19 95 6800 

Min. Block Volume (m3) 0.0001 0.0007 0.0007 0.0015 0.001 0.0015 0.01 

Max. Block Volume (m3) 0.28 4 10.7 30 96 492 45 

Min joint spacing  0.3 0.2 2 0.5 1 3 1 
 

 

The scar 3d models can be plotted in terms of dip direction or dip, and the semi-automatic and 

manual joint characterization allows to export mean planes or hundreds of data to obtain the mean 

or modals planes. In the case of a scar, the discrete fractures modelled may be the important 

measure and also its location. We used the DFN to cut the reconstructed volumes to obtain the 

IBSD as shown in Figures 22 and 23. Cadi case is already published on (Ruiz-Carulla et al, 2016, 

however some actualization has been carried out). 
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Figure 22: Stereographic projection of the joint sets identified on the 3D model of the scar, used to cut the 

reconstructed detached volumes in order to estimate the IBSD of Pont de Gulleri, Lluçà and Omells cases.   
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Figure 23: Stereographic projection of the joint sets identified on the 3D models of the scar, used to cut the 

reconstructed detached volumes in order to estimate the IBSD of Gurp, Monasterio and Malanyeu cases. 
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4. Rockfall block size distribution collected 

 

From our point of view, the most important information collected on the rockfall inventory is the 

RBSD from each deposit (Figure 24, left). The data is used on the calibration process of the fractal 

fragmentation model proposed on Chapter 9 and 10. Also the IBSD will be used as input data for 

the fragmentation model. The total number of blocks from the IBSD and from the RBSD are 

plotted on Figure 24 (right), as well as the total number of blocks reproduced by the Rockfall 

Fractal fragmentation model (Chapter 10: calibration process), showing a very good agrrement. 

 
Figure 24: RBSD collected on the rockfall inventory (lefr). Total number of blocks from the IBSD and the 

RBSD collected, as well as the results of the fragmentation model proposed on chapter 9 and 19 (right) 

 

5. Conclusions 

 

The use of UAV and digital photogrammetry allow the obtention of very high resolution 

orthophotos, very useful for cartography proposes and to identify blocks and elements that on the 

field may be difficult to observe. The 3D models with high degree of detail are very useful also 

for profile generation, scenario analysis, and for the reconstruction of the detached rock mass. On 

the same way, the detailed 3D models from the scar allow the joint pattern characterization to be 

used on unstable rock mass identification and for IBSD estimations. The definition of the IBSD 

implies take some assumptions about the persistent of the joints. Howerver, the joints used are 

located on their real position and from real plane measurements or trace modeling. The data 

collected (specially the RBSD and the IBSD) will be very useful in order to calibrate the proposed 

fragmetattion model as well as other research lines, like trajectory simulators or RBSD 

measurement from raster or 3D point cloud segmetation analysis. 
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Real-scale fragmentation tests

7- Analysis of rock block fragmentation by means of real-scale test 

8- Comparative analysis of 4 real-scale fragmentation tests 
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7. Analysis of rock block fragmentation by means of real-scale 

test 
 

This chapter reproduces the article published in the proceedings of the International Symposium 

on Landslides held in 2016 in Naples, on the results of drop tests carried out in a quarry and the 

characteristics of the rock fragments volume distribution. 

 

Publication reference: 

R. Ruiz-Carulla, G. Matas, A. Prades, J.A. Gili, J. Corominas, N. Lantada, F. Buill, O. Mavrouli, 

M.A. Núñez-Andrés, J. Moya (2016). Analysis of rock block fragmentation by means of real-

scale test. Internation Symposium Rock Slope Stability 2016, Proceedings 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract: 

 

Rockfalls are frequent instability processes in road cuts, open pit mines and quarries, steep slopes 

and cliffs (Cruden & Varnes, 1996). Quite often the detached rock masses become fragmented 

after the first impacts on the ground. Knowing the size and trajectory of the blocks resulting from 

the fragmentation is critical in determining the impact energies on the exposed elements and 

protection structures (Jaboyedoff et al. 2005; Corominas et al. 2012). In this work we present the 

results of two real scale rock fall tests carried out as part of the activities of the research project 

Rockrisk (rockrisk.upc.edu/en). The aim of the project is to quantify the risk induced by rockfalls, 

improving the tools to prevent, to protect and to mitigate its effects. 

 

 

Keywords: rockfall test, fragmentation, quarry 
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1. Real-scale rockfall test design 

 

Two real scale rock fall tests were carried out in a limestone quarry located at Vallirana 

(Barcelona, Spain). Test site 1 (TS#1) was a single benched slope (Figure 1, left) while test site 2 

(TS#2) was a three benched slope. The total fall height, including the bulldozer blade height, was 

16.5 m for TS#1 and 27.5 m for TS#2. A total of 56 blocks with volumes ranging between 0.2 

and 4.8 m3 were released (30 for TS#1 and 26 for TS#2). The block size and the strength of rock 

surface (Schmidt L-hammer rebound) were measured before the tests. A ‘circular 

photogrammetric survey’ was realized block per block which allowed to build 3D models of each 

block for precise volume and center of gravity measurements (Figure 1, center). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1:  Left: TS#1 monitoring scheme. 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2:  3d model reconstruction by digital photogrammetry of a block before be tested. 
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Figure 3:  Frame of TS#1 block #19.  

 

The tests were recorded using three High-Speed (HS) and High-Definition cameras Sony NEX-

FS700R at 400fps and two GOPRO Hero4 for a general view of the scene. Six Ground Control 

Points (GCP) where placed on the slopes to georeference the images while the location of the 

rock fragments was recorded using Unmanned Aerial Vehicles (UAV). An accelerometer was 

also installed to capture the seismic signal induced by the impacts. Figure 1 left, shows the 

location of the sensors for TS#1. The HS cameras were strategically placed to provide a three-

dimensional multi-view (with one extra camera). The shots were synchronized using a flashlight 

visible from all cameras. The high frame rate allows visualizing precisely how a block is 

fragmented (Figure 1, right).  
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2. Test results 

 

The kinematic reconstruction of each rock release has been made by video-triangulating the 

approximate position of the center of gravity of the block using a code developed by us. The 

velocity and the energy at the impact point have been computed using the trajectories obtained 

with this methodology. 19 over 30 blocks and 21 over 26 blocks broke at TS#1 and 2 respectively, 

generating a Block Size Distribution (BSD) of fragments. In Figure 2 we plot the original block 

volumes and the BSD for all the fragments generated in TS#1 and 2. 

 

Figure 2:  Original Block Volumes and the Block Size Distribution (Left: TS#1: Center: TS#2); Right: Nº 

of fragments generated versus the exponent of the fitted power law for each fragmented block 

 

The BSD generated from each broken block may be well fitted by a power law. It shows a rollover 

effect under 10-4 m3. The total volume of the generated fragments under 0.2 m3 (the smallest block 

tested) represents the 33% of the total volume of the blocks. The exponent of the fitted power law 

at each BSD increases with the total number of fragments generated (Figure 2, right). Using the 

high speed videos, the velocity of each block before the impact was measured, allowing the 

calculation of the kinetic energies, which range between 100 and 600 KJ. No meaningful relation 

was observed between the kinetic energy or the Schmidt Hammer values and the number of 

fragments generated (Figure 3). These results suggest that other factors such as the presence of 

fissures in the blocks or the impact location must be taken into account. The maximum run-out 

distance measured from the bottom of the wall was 20 m and the maximum dispersion angle 

measured from the impact point was 120º. 
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Figure 3: Nº of fragments generated versus Kinetic Energy (Left) and versus Mean value of Schmidt 

Hammer measures (Right) 

 

 

3.Concluding remarks 

 

The results indicate that the size distribution of rockfall fragments can be expressed by power 

laws, which exponents are indicators of the degree of fragmentation. The fragmentation of the 

blocks induces a higher dispersion angle. Although an energy threshold could be expected for the 

breakage of the blocks, the kinetic energies measured and the Schmidt hammer values shows poor 

correlations with the number of fragments generated.  
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8. Comparative analysis of 4 real-scale fragmentation tests 
 

 

Original unpublished chapter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract: Real-scale fragmentation tests provide high quality data in order to study the 

fragmentation phenomenon on rockfalls. In the real scale tests carried out, the initial rock mass is 

well known in terms of both volume and shape, thanks to the 3D photogrammetric reconstruction. 

The fragments size distribution for each block tested, was measured by hand using a tape. The 

successive tests allowed obtaining a range of behaviors from the series of blocks dropped under 

the same conditions. We carried out drop tests in four different scenarios, testing a total of 124 

blocks and measuring 2907 fragments. The survival rate (Sr), which is the proportion of the block 

that remain intact (or the maximum fragment volume over the initial volume) shows a wide range 

of values. The number of fragments produced and the Sr are the parameters that characterize the 

fragmentation phenomenon. Finally, influence of the local conditions of each test site is also 

discussed. 

 

Keywords: rockfall, fragmental rockfall, block size distribution 
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1. Introduction 

 

The study of fragmentation phenomenon in natural rockfalls involves important uncertainties 

particularly on the size and characteristics of the initially detached rock mass and in the deposit 

of fragments. Real-scale fragmentation test (Figure 1 and 2) may provide high quality data in a 

very controlled scenario with the possibility to repeat the test several times. We performed four 

real-scale fragmentation test in quarries dropping rock blocks of volumes ranging between 0.17 

m3 and 5 m3. The main features recorded during the tests are: initial volume using a tape and a 3D 

photogrammetric reconstruction, volume of fragments, blocks trajectories (using 3 high speed 

video cameras), and recording of the seismic waves. Distancemeters and targets as well as UAV 

flights were used for the 3D scenario reconstruction. In this chapter, we will focus only on the 

data from initial volumes and the final block size distributions of fragments. 

 
Figure 1: Picture of real-scale fragmentation test on a quarry (Test 4). 

 
Figure 2: Breaking instant of a block on the 4th real´-scale fragmentation test. 
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2. Experimental set up 

 

The real-scale test were carried out at 4 different experimental set ups (Figure 3). The geometry 

are benches on quarries with height from 11 meters to 20 meters, however, the blocks are released 

from a greater height using the machinery. An UAV flight was used to generate high resolution 

3D models of each experimental setting, as well as ortophotos and profiles that may display the 

slope angle at each point.  The impact point surface has a variable inclination ranging from 42º to 

71º. The heights and slope angles are shown in Figure 4. 

 

 
Figure 3: 3D models of the 4 fragmentation test settings, coloured according to the local slope angle. 

 

 
Figure 4: Profiles of the 4 settings. Local slope angles are represented with a color code and both the height 

of drop and the average angle of the impact surface are indicated as well. 
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3.  Initial block volume and fragments measurements 

 

Before the test, the block volumes were measured one by one using two different procedures: (a) 

by means of a tape, measuring 3 lengths of the block, assuming a prismatic shape and (b) using a 

set of 30 to 60 pictures to create a high resolution 3D model by means of digital photogrammetric 

techniques (Figure 5). After each test, all the fragments generated by the breakage of the blocks 

were measured with a tape up to a certain minimum size. Ideally, the sum of the fragment volumes 

should yield the initial volume (Figure 6, 7 and 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 5: Picture of a block with rules to be scaled (left) and the 3D model obtained (right) 

 
Figure 6: Initial block volume measured with a tape, 3D models and sum of fragment’s volumes originated 

during the drop test, in test 1. 
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However, a fraction of the broken block is lost because the fragments are too small to be 

measured. In test 2, some of the initial blocks could not be reconstructed in 3d due to the lack of 

time to take the images. The volumes calculated using the 3D models are considered as ground 

truth. 

Figure 7: Initial block volumes measured with a tape, 3D models and sum of fragment’s volumes originated 

during the drop test in test 2.  

Figure 8: Initial block volumes measured with a tape, 3D models and sum of fragment’s volumes originated 

during the drop test in test 3. 

 

A drone flight of the park of blocks before the tests at the testing site 4 was carried out. From the 

flight pictures, a 3D point cloud was generated. The classification of the points of the point cloud 

in ground points and not ground points has allowed the automatic segmentation of the blocks 

(Figure 9). Two different approaches were used to obtain the volume of the initial blocks from 

the UAV surveys: (1) Creating a mesh and cutting the blocks at their base with another mesh 

created only with the ground points. Then, each volume is a closed 3D  reconstructed mesh with 
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a defined volume; (2) A 2.5D volume calculation is used based on a high resolution digital 

elevation model. The base was also a surface, also in raster, created with the ground points. In 

both cases, the topographical surface (base surface) is not considered as a flat surface due to the 

presence irregularities of the ground that might be the source of important errors (Figure 10). 

 
Figure 9: Blocks before test 4: Point cloud in real color (up) and point cloud classified in ground or not 
ground (down). 

 
Figure 10: Blocks before test 4: Point cloud of blocks in real color and ground colored by altitude. 

 

Therefore, the initial volume of the blocks in testing site 4 was calculated using 4 techniques 

(Figure 11): tape measurements; 3D photogrammetric reconstruction by pictures; 3D mesh 

reconstruction from UAV surveys; and 2.5D volume calculation based on DEM (also from UAV 

surveys).  

Figure 11: Initial block volume by tape, 3D model, from UAV surveys using a mesh or using a DEM 

estimation, and sum of fragments volumes, on test 4. 
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In the testing site 4, the volumes obtained from the measurement with a tape of all the fragments 

after each block test are smaller than the rest of techniques used. This looks like a bias due to we 

change the personnel in charge of the measurements with the tape and may underestimate the 

volumes of the fragments of each measure. 

 

4.  Deposit volume reconstruction by UAV photogrammetric survey 

 

A flight with a UAV Inspire 2 Pro was carried out after each test. A 3D reconstruction is obtained 

by means of digital photogrammetric techniques. A first flight was carried out before the tests to 

generate a reference surface as an initial stage. This model was cleaned and smoothed in other to 

obtain a homogeneous and regular surface.  

 

The point cloud of the block B2 at the testing site 4 was cropped taking the deposited fragments. 

A cloud to cloud difference between the fragments point cloud and the reference surface is used 

to calculate the volume of the fragments defining a minimum height of difference. The point cloud 

is filtered by means of a minimum different to the reference surface in order to select the 

fragments.  The point cloud with the fragments is used to obtain the total volume of the fragments 

using the “Volume 2.5D” tool on CloudCompare (Figure 12), comparing against the reference 

surface. In the case of B2, the total volume obtained is 1.57 m3 using a cell size of 5 cm. 

 
Figure 12: 2.5D volume calculation the fragments of the block B2 of test 4, based on a point cloud 

comparison and a minim diference of 4 cm against the point cloud of the initial and clean scenario. 
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An alternative volume estimation is carried out by using the point cloud of the fragments and 

apply a surface reconstruction in order to obtain a mesh. The reconstruction obtained create an 

important part of volume under the ground. In order to eliminate this part of the fragments that 

are not real, the reference surface point cloud can be cropped focused on the deposit and converted 

also in a mesh to be used to cut the fragments mesh. The result is a mesh of fragments base 

delimited by the ground mesh (Figure 13). Then, a simple volume request gives the 1.315 m3 of 

volume estimated. Then, a final volume estimation techniques comparison is shown on the next 

bars chart for the volume estimation of the block B2 from the test 4 (Figure 14), ranging from 

0.65 m3 to 1.57 m3. 

Figure 13: Mesh of framgents cutted with a ground base mesh to avoid unreal volumes under the ground. 

 
Figure 14: Volume estimation comparison from initial volume and fragments on the deposit. 
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5. Number of fragments generated 

 

Figure 15 and Table 1 show the number of fragments measured for each block dropped, arranged 

test by test. Test 1 has 6 trials that generate more than 40 fragments, and one with more than 120 

fragments generated. Test 2 shows 4 blocks that generates more than 50 fragments, and one with 

more than 160 fragments. Test 3 shows a lack of fragmentation, with a low number of fragments 

per block and a lot of blocks without fragmentation. Finally, test 4 shows high fragmentation with 

more than 40 fragments generated in most of the blocks. A Multiply Factor (MF) may be used to 

estimate how fragments produce per block each scenario as a mean, from 9 to 50 in our tests. 

 
Table 1: Number of initial blocs, fragments measured and multiply factor of each test and in total. 

 Test 1 Test 2 Test 3 Test 4 Total 

Nº of Blocks tested 30 26 44 24 124 

Fragments measured 594 680 392 1241 2907 

Multiply Factor (MF) 19.8 26.1 8.9 51.7 23.4 

 

 Figure 15: Number of fragments measured for each block dropped, arranged by testing sites (from 1 to 4). 
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6. Block Size Distributions 

 

We measured all the block volumes of each testing site before they were dropped and plotted as 

a list of initial volumes (blue, Figure 16). Then, all the fragments measured at each test were 

added in a single list of fragments and sorted also by volume, yielding the RBSD of the tests (red, 

Figure 17). It is interesting to observe how the obtained distributions are similar to the 

distributions observed on natural rockfalls. The biggest fragments of the RBSD are the remains 

of the originals blocks. The arrangement of the biggest fragments of the RBSD is parallel to the 

original block volume distribution. The rest of the fragments fit roughly to a power law, with a 

less steep slope or exponent. Finally, the distribution shows rollover. Notice that the distribution 

of the original blocks and the largest fragments at the test site 3 are very close due to the lack of 

breakage. Instead, the distributions are more separately due to the intense breakage at test site 4. 

Figure 16: Original blocks volumes distribution (like an IBSD) and RBSD (all the fragments measured together) for 
each test. 

Blocks tested: 30 
Fragments: 594 

Blocks tested: 26 
Fragments: 680 

Blocks tested: 44 
Fragments: 392 

Blocks tested: 24 
Fragments: 1241 
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 We plot all the fragments’ distributions obtained from each block tested, arranged also by testing 

sites (Figure 17). We have coloured the distributions defining three classes: low, medium and 

high values of the exponent of the fitted power law (slope of the power law). In this way, we can 

observe the variation of the breakage at each testing site. In test site 1, we observe blocks that 

remain intact (single points without line) and blocks that progressively breaks more and more 

until reaching the maximum (>100 fragments). Test site 2 may be differenciate by the blocks that 

generate more or less than 20 fragments, with a change of tendency of the exponent of the fitted 

power laws. Most of the blocks at the testing site # 3did not break. The majority of the fragments 

distributions show low exponent of the fitted power laws. Finally, the distributions of the 

fragments volumes of the test site 4 show mostly high exponents of the fitted power law and  a 

high number of fragments generated. Just looking the legend, the green colors indicates how much 

the blocks breaks creating steeped distributions. 
 

 

Figure 17: Block size distributions of all the fragments measured on each block dropped, arrenged by test 

site. The distributions are colored by: low, medium and high value of the exponent of the fitted power law.  

Blocks tested: 30 
Fragments: 594 

Blocks tested: 26 
Fragments: 680 

Blocks tested: 44 
Fragments: 392 

Blocks tested: 24 
Fragments: 1241 
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The number of fragments generated is directly correlated to the exponent of the fitted power law 

of the fragments’ size distribution (Figure 18, left). It is interesting to observe the contrasting 

behavior of testing sites 3 and 4, with respectively, low and high values of the number of 

fragments and exponent of the fitted power laws. Adding the information of the natural fragmental 

rockfall inventory (purple dots in Figure 18, right), the trend is kept with the increase of the 

number of fragments and also for exponents. Each block size distribution has two important 

limits, the maximum fragment, that control the bottom right position of the BSD, and the total 

number of fragments, that implies higher slope for higher values of fragments. 

 

 

Figure 18: Correlation between the number of fragments and the exponent of the fitted power laws of the 

BSD obtained from the real-scale fragmentation tests (left) and adding the data of the natural fragmental 

rockfall inventory (right). 

 

 

7. Survival rate  

 

The Survival rate (Sr) is the largest fragment volume measured over the initial volume. Then, a 

Sr=1 means that the block remains intact. Two blocks with the same Sr may produce different 

number of blocks. Then, the Sr and the number of fragments are necessary to characterize 

fragmentation results. Figure 19 (left) shows the Survival rate and the number of fragments 

produced in each block tested. As the Sr decreases (the size of largest fragment remaining 

reduces), the number of fragments produced increases. However, it is not a direct relation, and 

the same number of fragments can be generated within a wide range of Sr and vice versa. The Sr 
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in the tests performed can not be directly related to the potential energy as shown in Figure 19 

(right) exemplifying that is not possible stablish a fixed energetic threshold. All the blocks of each 

testing site were dropped from the same height, however, the potential energy varies as each block 

has its own volume 

 
Figure 19: (left) show the Survival rate and the number of fragments produced in each block tested. 

 

Plotting the number of fragments versus Sr separately by testing sites (Figure 20), a distinct 

behavior is observed. Blocks at Testing site #1 may remain virtually intact or completely breaks 

with Sr ranging from 1 to 0.2, progressively increasing the number of blocks. Some of the blocks 

break impacting against the slope while others when impacting against the flat ground below. The 

impact angle, the block shape, the relative orientation between the anisotropies of the rock and 

the impact direction, and the rigidity of the ground at the impact point, control the fragmentation 

process.  Blocks from testing site # 2 may be grouped in two sets of Sr>0.85 or Sr<0.55 with less 

or more than 20 fragments respectively. In this case, blocks impacting on a more rigid substrate, 

generate a higher number of fragments and low values of Sr. Testing site # 3 is a very steeped 

slope with a flat surface below composed of soft materials. Due to this, the blocks impact 

tangentially to the slope surface and fall on the soft ground surface below. None of the blocks 

broke during the impact on the slope. Most of the blocks in the Testing site # 3 remained virtually 

intact, with high values of Sr (>0.8-0.9). Despite of these high values of Sr, the number of blocks 

ranges from 1 (no breakage) to 50. Only a block that impacted against other deposited block, 

(similar rigidity), broke showing a Sr close to 0,3 producing more than 50 fragments. On the other 

side, Tests at site # 4 were carried out dropping the blocks 8,5 meters above a fault plane of 42º 
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of slope and a total height of 23,6 m. As the fault plane (see Figure 4) is highly rigid (the same as 

the rocks or higher) and the slope geometry allows an important normal component of the impact 

force, the blocks break in a very explosive way, most of them producing more than 40 fragments 

up to more than 100. However, the Sr ranges from 1 (or 0.8) to 0.2. Testing sites # 3 and 4 show 

opposite behavior, highlighting the importance of the terrain rigidity and impact angle. 

 

 
Figure 20: Survival rate versus number of fragments produced on each block tested separtly by test sites. 
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8. Conclusions and further works 

 

Real-scale fragmentation tests allow the measurement and observation of the rock fragmentation 

phenomenon in a very controlled scenario and with the capability of to repeat the experiment. The 

results show large variations of the breakage behavior for the same conditions within each test. 

Test by test, we can identify different behavior, just using the multiply factor MF (mean number 

of fragments produced per block tested), from a low value of 9 on test site 3 to a high value of 50 

on test site 4, being 20 and 26 in test site 1 and 2 respectively; or looking to the number total 

number of fragments generated or the exponent of the fitted power laws. We propose the 

combination of the Survival rate and the number of fragments as descriptor of the fragmentation. 

Different behaviors were observed at the testing sites. All range of fragmentation features are 

observed in Testing site # 1. Two groups of behaviors are observed in Testing site #2, the ones 

that break and the ones that not too much. Testing site # 3, involved very soft terrain of the ground 

surface. Most of the blocks remain unbroken, with Sr > 0.85, but producing fragments between 2 

to 100 fragments. At the other end, testing site # 4, Sr ranges from 0.2 to 0.8, but most of the 

blocks generate more than 40 fragments. Based on these observations, we conclude that, despite 

some trends are identified, the fragmentation cannot be modelled in a deterministic way. 

 

The rigidity or capacity to absorb energy of the terrain is found a main controlling factor of 

fragmentation. Similarly occurs with the impact angle. Other parameters such as the relative 

impact direction of the main rock block anisotropies (fissures or planes of weakness of the block) 

as well of the type of impact (vertex, edge or face) are features that can be hardly taken into 

account in the simulations. Only discrete elements methods can deal with these features and the 

deterministic modelling of real events is still a challenge. 

 

The capture of the block’s images, obtaining a 3D reconstruction of the shape and volume before 

the test is used not only for the analysis of fragmentation but also for the analysis of the trajectory 

of the block and for obtaining the kinematic parameters.  

 

The UAV flight over block fragments has provided orthophotos and the 3D point clouds. The 

point cloud thus generated is used to obtain the center of each fragment as well as its stopping 

point (Figure 21). It will be used in future research lines for statistics about fragment distribution, 

the divergence of the trajectories of the fragments, as well for calibration purposes of trajectory 

simulators considering fragmentation like the one developed by Matas (2017) (exemple, Figure 

22). 
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Figure 21: 3D model of the initial clean scenario with the center of each fragment identified (pink points). 

 

 

Figure 22 show an example of the trajectory simulator considering fragmentation with the 

trajectories colored by fragments velocity (provided by Gerard Matas). 

 

Figure 22: 3D simulation of a block tested on a trajectory simulator considering fragmentation developed 

by Gerard Matas (Matas et al, 2017) 
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The use of high-speed cameras triangulation allows the videogrammetry reconstruction of the 

blocks trajectories during the test (Prades et al, 2017), and the velocity calculation decomposed 

by its components. Figure 23 presents an example of a trajectory reconstructed colored by the 

velocity in the vertical (Z) direction, being evident the impact against the slope by the change 

from red (high) to green (low) vertical velocity. 

 
Figure 23: 3d models of the test site 1, with the central part colored by dip angle, and the trajectory of a 

tested block reconstructed by means of videogrammetry based on highi speed cameras recordings. 

 

The real-scale fragmentation tests therefore provide a large amount of high-quality data that we 

will be precoessed in the future:  energies, impact angles, initial block fractures studies, as well 

as all the information needed in order to calibrate fragmentation models, propagation models and 

discrete elements methods. 
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Rockfall Fractal Fragmentation Model 
 

9- A fractal fragmentation model for rockfalls 

 

10- Performance of a fractal fragmentation model for rockfalls   
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Abstract: 

 

The impact-induced rock mass fragmentation in a rockfall is analyzed by comparing the In Situ 

Block Size Distribution (IBSD) of the rock mass detached from the cliff face and the resultant 

Rockfall Block Size Distribution (RBSD) of the rockfall fragments on the slope. The analysis of 

several inventoried rockfall events suggests that the volumes of the rockfall fragments can be 

characterized by a power law distribution.  We propose the application of a three-parameter 

Rockfall Fractal Fragmentation Model (RFFM) for the transformation of the IBSD into the 

RBSD. A Discrete Fracture Network model is used to simulate the discontinuity pattern of the 

detached rock mass and to generate the IBSD.  Each block of the IBSD of the detached rock mass 

is an initiator. A survival rate is included to express the proportion of the unbroken blocks after 

the impact on the ground surface. The model was calibrated using the volume distribution of a 

rockfall event in Vilanova de Banat in the Cadí Sierra, Eastern Pyrenees, Spain. The RBSD was 

obtained directly in the field, by measuring the rock blocks fragments deposited on the slope. The 

IBSD and the RBSD were fitted by exponential and power-law functions, respectively. The results 

show that the proposed fractal model can successfully generate the RBSD from the IBSD and 

indicate the model parameter values for the case study.  

 

 

Keywords: rockfall, fragmentation model, fractal, fragmental rockfall, block size distribution 
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1.  Introduction: 

 

A fragmental rockfall is characterized by the separation of the rockfall mass into smaller pieces 

after impact upon the ground surface (Evans and Hungr, 1993). The generated individual rock 

fragments move as independent rigid bodies, which propagate with different velocities and follow 

divergent trajectories (Figure 1). Fragmental rockfalls are distinguished from rock avalanches as, 

during the latter, the mass of fragments moves in a flow-like mode. The deposit of a fragmental 

rockfall consists of blocks of different sizes scattered on the ground surface (Figure 1). In the case 

of large fragmental rockfalls (thousands to tens of thousands of cubic meters) a more or less 

continuous Young Debris Cover (YDC) is formed. The size distribution of the deposit depends 

on the fragmentation degree. 

 

Rock fragmentation is the progressive change in the particle size of an initial rock mass by 

application of actions. Incorporating the fragmentation in rockfall analysis is fundamental in 

many aspects. For hazard and risk assessments, its effect on the number, magnitude and intensity 

(kinetic energy) of the rock blocks is major (Corominas et al. 2012; Ruiz-Carulla et al. 2015, 

Jaboyedoff et al. 2005). As the rockfall mass splits into pieces, the number of blocks is multiplied 

(Corominas and Mavrouli, 2013) and their energy changes (Agliardi and Crosta, 2003). This 

affects their trajectories and run-out, as well the encounter probability with elements at risk (e.g. 

building, people, vehicle) and their destructive potential. Therefore, a rockfall analysis 

considering large unbroken rockfall masses may produce unrealistic results (Okura et al. 2000; 

Dorren 2003) and instead the fragmentation should be taken into account. Fragmentation may 

also affect the propagation mode in rockfalls, rockslides and rock avalanches, modify the location 

of the front of the deposit and the position of the final center of gravity (Haug et al. 2016). The 

design of protection structures such as barriers and rockfall sheds also requires data for the number 

and size of the rock blocks after fragmentation. 

 

Although, rock fragmentation has been frequently observed during rockfalls it is rarely considered 

for the rockfall analysis. This can be attributed to the complexity of the physical process. Many 

parameters may have an influence such as the presence of discontinuities in the boulders including 

their persistence, aperture and orientation at the moment of the impact, the intact and joined rock 

resistance, the impacting energy, rigidity of ground conditions, impact angle and velocity 

(Dussage et al. 2003; Wang and Tonon, 2010). Further references on the advances regarding the 

fragmentation process and analysis are given in section 2 of this paper. 

 

Important contributions on the analysis of the rock fragmentation come from the field of blast 

design and rock avalanche analysis. To the knowledge of the authors, there are almost no rockfall 
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kinematic models to simulate the fragmentation of the rock mass in the case of fragmental 

rockfalls. An exception is the model incorporated at the trajectory analysis software Hy-Stone 

(Wang, 2009), which applies a trained neural network to determine the mass and velocities of the 

fragments right after the impact.  

 

This work aims to contribute to the modeling of the fragmentation of fragmental rockfalls, through 

the proposal of a three-parameter rockfall fractal fragmentation model, RFFM (section 3). The 

model is based on the assumption that the fragmentation can be considered as a transformation 

from the state with the In Situ Block Size Distribution (IBSD) at the cliff face (Lu and Latham, 

1999) and the resultant Rockfall Block Size Distribution (RBSD) (Hantz, 2014; Ruiz-Carulla et 

al. 2015). This assumption is supported by the relationship between the intact rock properties and 

discontinuity structure of the rock mass, with the fragmentation degree and has been proved 

efficient for the characterization of the blastability of rocks (Lu, 1997). The proposed transition 

model from the IBSD to the RBSD is a three-parameter fractal model, based on that of Perfect 

(1997), where the resulting number-size distribution of fragments depends on the probability of 

failure, P(b); a survival rate,  Sr; and a scaling factor, b.  

 

Using field-obtained data from a large rockfall event that occurred in 2011 in Vilanova de Banat 

in the Cadí Sierra, Eastern Pyrenees, Spain, we explore the applicability of the proposed 

fragmentation model (section 4). We investigate the potential for calibration of the three 

parameters that are involved in the calculation of the RBSD using the proposed model, to fit the 

observed deposits.  

 

Section 5 discusses the efficiency of the proposed model and the main controlling factors. It also 

casts a light on the points to focus on, for developing and advancing the model with a view to 

general application.   
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Fig. 1. Fragmental rockfall at Gurp, Central Pyrenees, Spain. A Young Debris Cover (YDC) is formed just below the 

rockfall source (purple polygon). Four large individual blocks (blue circles) followed both independent and divergent 

trajectories after the impact on the ground.  

 

 

2. Rock Fragmentation 

 

Rock fragmentation is a topic that has been addressed in a variety of scientific disciplines, such 

as in structural geology interested in the fracture pattern of rocks as the result of the tectonic 

activity (Molnar et al. 2007; Sammis and King, 2007); in fracture mechanics for the analysis of 

the response of cracks to both static and dynamic loading (Atkinson, 1987); in the assessment of 

the performance of the drilling equipment, mechanical excavators, tunnel boring machines 

(TBM),  and for the consumption of disc cutters (Bakar et al. 2014); and in the mining industry, 

interested in the size distribution of muck piles after blasting and on the subsequent crushing and 

grinding (Aler et al. 1996; Morin et al. 2006; Kulatilake et al. 2010; Sanchidrián et al. 2014). At 

rock mass instabilities the fragmentation of the detached rock mass has been acknowledged by 

several researchers either for rockfalls (Dussauge 2003, Giacomini et al. 2009, Wang and Tonon 
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2010, Agliardi et al. 2009, Crosta et al. 2015) or for rock avalanches (Locat et al. 2006; Crosta et 

al. 2007; Davies et al. 1999; Hewitt, 1998, 1999; Hermanns et al. 2006; McSaveney and Davis, 

2007; Weidinger et al. 2014).  

 

Different types of mechanisms are invoked to explain the progressive change in grain size by 

application of actions. Crushing, grinding, comminution, fragmentation and dynamic 

fragmentation are the mechanisms usually quoted (Crosta et al. 2007). Fragmentation can occur 

as a result of dynamic crack propagation during compressive or tensile loading (dynamic 

fragmentation) or due to stress waves and their reflection during impact loading (ballistic 

fragmentation).  

 

Davies et al. (1999) introduced the term fragmentation to describe the breaking of rocks into 

pieces smaller than those defined by the joint system of the parent rock mass. Nevertheless, for 

the purposes of this paper, fragmentation is used as a generic and inclusive term, meaning the 

division of an initial rock block or rock mass caused by either the breakage of the rock pieces, the 

disaggregation of joint-determined blocks, or both (Ruiz-Carulla et al. 2015).  The breakage takes 

place under stresses that exceed the strength of the intact rock, resulting into new fractures. 

 

 

2.1 Characterizing the fragmentation degree 

 

The characterization of the rock fragmentations involves the measuring of the block size of the 

fragments. This is commonly performed either manually or by means of image analysis, the latter 

considering different assumptions for the extraction of block volumes from the image data (Locat 

et al. 2006, Crosta et al. 2007). 

 

A range of descriptors can be used for the fragment size characterization. The d50 diameter or the 

mean size before and after the fragmentation are frequently used. In mine blasting, Kuznetsov 

(1973) associated the latter with the explosive energy and powder factors. Locat et al. (2006) also 

determined the degree of fragmentation for rock avalanches, by comparing the mean diameters 

of the blocks within the intact rock mass and the deposited fragments. Cunningham (1983 & 1987) 

further introduced a uniformity index “n”, depending on blast characteristics to describe the block 

size variation. Having obtained the mean size and the uniformity coefficient, statistical 

distributions can be fitted to the sizes of the fragmented blocks. The Rosin-Ramler model (Latham 

et al. 2006, Morin et al. 2006, Gheibie et al. 2009, Kulatilake et al. 2010 and Hudaverdi et al. 

2010) is one of the most commonly used in rock blast fragmentation. Alternatively, if data are 

available, the characterization can be realized based on the block size distribution BSD of the 
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entire fragmented deposit (Hardin, 1985). The BSD is typically represented as a grain size curve, 

in terms of percentage of material passing a certain size in a length unit as millimeters or meters, 

typically with 3 or 4 orders of magnitude of sizes.  

 

The observation of different BSD has indicated that the fragments size follows a fractal 

distribution or power law (Turcotte 1986 & 1992, Poulton et al. 1990, Crum 1990, Hartmann 

1969, Xu et al. 2016, and Peng et al. 2009. The power-law gradient is variable and it increases 

with the intensity of the fragmentation process (Hartmann 1969). Turcotte (1986) added that the 

fragmentation is often a scale invariant process, and the preexisting zones or planes of weakness 

where failure occurs exist on all scales. Crosta et al. (2007) collecting data for the deposit of a 

rock avalanche indicated that its size distribution is characterized by a fractal dimension that was 

found consistent with other rock avalanche deposits (Dunning, 2006). Perfect (1997) discussed 

the use of the fractal theory and presented alternative models to analyze fragmentation in rock 

and soils. 

 

The authors reported a fractal pattern in the volume distribution of six inventoried rockfalls in the 

Pyrenees, Catalonia, which exponents range between 0.5 and 1.3 (Ruiz-Carulla et al. 2016). The 

obtained RBSD from the direct measure of the blocks deposited in each inventoried rockfall are 

plotted in Figure 2 in terms of relative frequency versus block size in cubic meters. Table 1 shows 

the characteristics of each case. The mentioned literature and our empirical observation supports 

the use of fractal patterns to perform a fragmentation analysis of fragmental rockfalls. 

 
Fig. 2: Rockfall Block Size Distribution (RBSD) from 6 fragmental rockfalls events inventoried in Catalonia. 
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Table 1: Characteristics of the inventoried rockfalls: 

 Pont de 
Gulleri Lluçà Omells Malanyeu Vilanova 

de Banat Gurp 

Lithology Schist Sandstone Sandstone Limestone Limestone Conglomerate 

Total rockfall volume (m3) 2.6 10.7 4.2 5000 10000 100 

Max block size (m3) 0.28 8.5 1.1 445 31 22 

Min block volume measured (m3) 0.0001 0.0007 0.0007 0.0001 0.01 0.01 

Nº of blocks measured  116 78 48 2721 1524 500 

Nº of blocks estimated 116 78 48 25500 60000 500 

Exponent of the fitted power law 0.92 0.51 0.53 0.72 1.27 0.74 

Min block vol considered for fitting (m3) 0.001 0.001 0.01 0.001 0.01 0.01 

R2 of the fitted power law 0.94 0.95 0.89 0.98 0.95 0.98 

 

 

2.2 Obtaining the BSD from the IBSD 
 
 
The influence of the IBSD of the rock mass in the BSD is well known in the mining industry. 

Latham et al. (1999) focused on the blasting energy needed to convert the IBSD into a new 

fragment-size distribution. Locat et al. (2006) analyzed the fragmentation in rock avalanches 

comparing as well the IBSD and the BSD of the deposit, and assessed the equivalent energy for 

the generation of the latter. To determine fragment sizes produced during a dynamic event, Grady 

(1982) and Grady and Kipp (1987) adopted an energy approach to the dynamic loading regime in 

which a balance between local kinetic energy and fracture energy is made. Lu (1997) proposed 

models for the transition of the size distribution of the initial rock mass to the size distribution of 

the fragments after blasting. Alternative approaches include the use of Rock Engineering Systems 

(RES) to study the influence of each controlling parameter of the fragmentation phenomenon by 

blasting and predict the resultant fragment size distribution (Faramarzi et al. 2013), multivariate 

analysis (Aler et al. 1996, Chakraborty et al. 2004 and Hudaverdi et al. 2010), Monte Carlo 

simulations (Morin and Ficarazzo, 2006) or neural network and artificial intelligence methods 

(Kutilake et al. 2010,  Monjezi et al. 2009, Saavedra et al. 2006).   

 

There is a scarcity of models for the prediction of fragmentation in the case of rock instabilities. 

Viero et al. (2012) carried out a mass balance of a rockfall case. They calculated that 80% of the 

material was converted in a cloud of dust. The real scale tests of Giacomini et al. (2009) and Gili 

et al. (2016) for fragmental rockfalls indicate the complexity in predicting the size distribution of 

the fragments based on impact energy thresholds. Wang & Tonon (2010) used a Discrete Element 

Method, DEM, code to simulate impact-induced rock fragmentation in rockfall analysis, and 

developed a trained neural network code that was integrated into the HY-STONE trajectory 

software (Crosta & Agliardi 2003). Bowman et al. (2014) studied the effect of the IBSD on the 
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fragmentation and the runout of collapsed chalk cliffs. They performed several laboratory tests 

using different block assemblages and their findings for the amount of fragmentation showed 

consistency with use of Hardin (1985) breakage parameters for the definition of how much 

fragmentation has taken place during a breakage event related with the total runout of the rock 

mass.  Charrière et al. (2015) also presented a model to calculate the successive block size 

distribution after fragmentation during a rock slide, which describes the breaking of a cubic block 

into two fragments with a random volume ratio, and in their turn their successive breaking in two 

more fragments each, for a chosen number of cycles. Further work is needed to develop transition 

models from the IBSD to the RBSD for fragmental rockfalls. 

 

 

3. A Rockfall Fractal Fragmentation Model  

 

This study defines different scenarios for the fragmentation of the rockfalls (Figure 3). The 

detached mass from a cliff may consist of an individual block or a rock mass. In case of an 

individual block, when hitting on the ground it can either remain intact or break if there is enough 

impact energy (Figure 3a and b, respectively). Alternatively, failure may consist of the 

detachment of a coherent rock mass including joint sets. Within the rock mass, individual blocks 

of different sizes and shapes are present due to the mutual intersection of the joint sets. The range 

of volumes of these blocks is characterized by the IBSD. After its detachment from the rock wall 

and/or due to a low energy impact on the ground, the rock mass disaggregates. In this case, the 

block fragments are basically bounded by the preexisting joints and the RBSD generated is similar 

to the initial IBSD (Figure 3c). If the impact energy is enough to break the blocks, the generated 

RBSD will differ from the initial IBSD (Figure 3d). Different volume distribution of fragments 

(RBSD) should be expected from an initial IBSD which must reflect the predominant mechanisms 

involved in the fall. The RBSD can be used therefore to characterize the fragmentation 

phenomenon and to identify the predominant mechanism as disaggregation, pure breakage or a 

combination of both. 
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Fig. 3: Considered mechanisms in the fragmentation of falling rock blocks and rock masses. Conceptual schemes of 

changes in the block size distribution in the case of fragmentation by: a) lack of breakage of a single block; b) Breakage 

of a single block; c) Disaggregation of the rock mass through the preexisting joints; c) Disaggregation and breakage of 

the detached rock mass.  

 

We proposed a Rockfall Fractal Fragmentation model RFFM that can express the aforementioned 

scenarios. In this model, the fragmentation of the rock mass initiates with the disaggregation of 

the rock mass along preexisting discontinuities and continues with the breakage of the rock blocks 

generating new fresh faces. Based on this, we consider the disaggregation of the mass, as 

controlled by the joint pattern, the first step for the fragmentation.  

 

The RFFM proposed is based on the generic fractal fragmentation model of Perfect (1997). The 

model uses an initiator, which is either a single block or the individual blocks forming a rock 

mass. According to the model, if breakage does not takes place the initial volume distribution is 

preserved (Figure 3a and 3c). If the impact energy is high enough, the individual blocks will break 

either all of them or a percentage only (Figure 3b and 3d). Each broken block will produce a new 

distribution of fragments. The model is used to generate a RBSD from an initial IBSD.  The 
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fragmentation is assumed as scale-invariant, although the model may also perform as scale-

variant.  

 

The RFFM considers a cubic block of unit length that breaks into smaller pieces following a 

power law. Fractals are hierarchical, often highly irregular, geometric systems generated using 

iterative algorithms with relatively simple scaling rules (Mandelbrot, 1982). The size distribution 

of elements in a fractal system is given by (Eq.1): 

(1/ ) 1/ ; 0,1, 2...
Di iN b k b i

−
 = = ∞      Eq. 1 

Where N(1/bi) is the total number of fragments at the ith level of hierarchy; k is the number of 

initiators of unit length; b is a scaling factor >1, that define the geometric proportion between the 

original block and the generated blocks; and D is the fractal dimension. N is rounded to the lower 

nearest integer. 

 

The actual number of fragments produced depends on the probability of failure at the ith level, 

P(1/bi), which is defined as: 
1(1/ ) / (1/ )
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and then                  
3(1/ ) /i

iP b n b=               Eq. 3 

Where ni is the number of fragments generated in the ith level. P(1/bi) is the proportion of block 

that breaks. The P(1/bi) can be physically related to subunit interfaces and their boundary strength, 

like in the case of fractured rocks, these interfaces represent preexisting planes of weakness, like 

anisotropy or non-persistent joints (Perfect, 1997). If the probability of failure is scale-invariant 

P(1/bi) = P(1/bi+1), it can be expressed as: 

           
3(1/ )i DfP b b −=     Eq. 4 

or 
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D

b
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Where Df is the fragmentation fractal dimension. The range for the probability of failure is b-

3<P(1/bi)<1. When P(1/bi)=1 and Df=3 the whole block is fragmented, while for P(1/bi) ≤ b-3 the 

block remains unbroken. 

 

The scale-invariant case is the simplest version of the fractal fragmentation model, where the 

parameters to be calibrated are the scaling factor b and the probability of failure P(1/bi). Looking 

for the physical interpretation of the probability of failure, if the block impact energy on the 
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ground is low, the probability of failure is almost b-3, and in the opposite scenario, if the block 

impacts energy is high, the probability of failure is close to 1.  

 

An example of how the model works is presented in the Figure 4. A simple cubic block is 

considered as the initiator (original block). Defining the geometric factor as b=2 the original block 

contains 8 possible breakables blocks. The probability of failure 1/8, defines the threshold for new 

block generation. For values of P(1/bi) below 1/8, the block will remain unbroken. For values just 

above 1/8, new blocks will be generated. The example shows the cases of: P(1/bi)=2/8=0.25, 

where 2 blocks are generated; P(1/bi)=3/8 where 3 blocks are generated and the case where 

P(1/bi)=4/8=0.5 where 4 blocks are generated. P(1/bi) can take values up to 8/8 or 1, where the 

whole original block will be fragmented generating 8 new blocks. The number of new blocks 

generated is a natural number. The example shows that the same generation rules over the blocks 

apply for successive iterations. This example is scale-invariant, where P(1/bi)= P(1/bi+1), then, 

P(1/b1)= P(1/b2). 

Fig. 4: Scheme of the fractal fragmentation model (scale-invariant) using b=2 and examples of smaller block generation 

for P(1/bi)=1/8, 2/8, 3/8 and 4/8=0.5, considering 1 or 2 iterations. 

 

One of the limitations of the model is that the blocks generated at each iteration have exactly the 

same volume. The real block size distribution obtained from the field measurements shows a 

progressive decrease of the volume of the blocks in a continuous variation. To avoid this 

limitation, Perfect (1997) proposed to apply the model using the cumulative number of fragments 

in terms of l/lmax where lmax is the maximum fragment size (length), and l is the size (length) of 



202 
 

each fragment generated. With this procedure, the 1/bi is substituted by l/lmax. This methodology 

could be useful when considering the scenario in which only one single block is detached. 

 

We have modified the model of Perfect (1997) to adapt the fractal fragmentation model to the 

case of rockfalls. The first modification is that the number k refers to an individual rock block 

(k=1) for the fragmentation of a single rock block, or to the IBSD if a rock mass is analyzed 

instead. In the latter case the IBSD should first be classified into bins. The second modification 

is the idea that not all the blocks will be fragmented. We define the Survival rate, Sr, as the ratio 

of blocks of each block size bin that remain unbroken after propagation. According to this, the 

final scheme of the fractal fragmentation model proposed for rockfalls is shown in the Fig.5 for a 

given IBSD classification bin. 

 

A simple example is presented here (Figure 5): We assume 3 blocks in the bin 1-2 m3 of the IBSD. 

We define the survival rate i.e., Sr=0.33. In this case, 33% of the blocks from the IBSD will 

survive the propagation, and will be added directly to the RBSD. The rest 66% of the blocks of 

this bin will be fragmented using the fractal law. We used a mean volume for each bin to represent 

the volume of the blocks inside it. (Using b=2; P(1/bi)=0.5 ; Sr=0.33 and 2 iterations) 

Fig. 5: Scheme of the fractal fragmentation model applied over a bin 1-2 m3 with 3 blocks (average size 1.5m3) from 

the IBSD with a survival rate Sr=0.33, probability of failure P(1/bi)=0.5, scaling factor b=2 and using 2 iterations. 

 

The geometric factor “b” controls the change of the average size. The number of blocks increases 

when the geometric factor “b”  increases, allowing the generation of a larger number of fragments 
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with two or three orders of magnitude smaller than the original blocks (Figure 6 A), also due to 

the use of two iterations. When “b” increases, the d50 (median) of the generated block size 

distributions decreases, as Figure 6 shows, (B plot in terms of % of material passing versus block 

size in cubic meters). The comparison of the geometric factor influence shown in Figure 6 is 

realized using two iterations, and considering the P(1/bi)=1, that implies a D=3, and a Sr=0.  

 
Fig.6: Effect of the geometric factor b considering a P(1/bi)=1, that implies a D=3, and a Sr=0. Notice that the increase 

of the b-factor generates the increase of the number of blocks (A) and the reduction of the d50 size (B).  

 

With a P(1/bi)=1, the effect of the fractal behavior is less evident because each fragment is fully 

broken in all the possible blocks of volume defined by the geometric factor “b”. The same “b” 

effect analysis was carried out using a P(1/bi)=0.5 (as the case of P(1/bi)=4/8 in the example of 

Figure 4). In this case, as shown in Figure 7, the fractal behavior of the model is more evident as 

the block size distributions generated is well fitted by a power law in the log-log plot. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



204 
 

 

Fig.7: Effect of the geometric factor “b” considering a P(1/bi)=0.5 and a Sr=0. (A) The upper and lower envelopes of 

the fitted power laws are shown as dashed lines.  

 

Field observations indicate that during a rockfall, not all the blocks break (Figure 8) and in the 

extreme case just blocks bounded by preexisting joints are found (pure disaggregation). To 

simulate this, the survival rate is introduced. For high survival rates, the breakage is minimal. For 

the particular case of Sr=1, the distribution obtained will be identical to the IBSD. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.8: Example of a fragmental rockfall where the RBSD is very similar to the original IBSD. The rock mass was 

disaggregated along preexisting joint faces and no new fresh faces were generated by breakage 
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The proposed model considers only the IBSD and the final RBSD, however, it can run several 

cycles with different model parameters to characterize the high energy conditions from the first 

impacts (with higher probability of failure and lower survival rate) and the following impacts 

(with lower probability of failure and higher survival rate). In this case, the results from the first 

impacts should be used as an input again in the model to use it with another set of parameters for 

the rest of the impacts with a lower energy scenario (Fig. 9). 

 
Fig. 9: Scheme of the cycle method in which different model parameters are used to simulate the scenarios generated 

by the successive impacts. 

 

 

4.  Application of the RFFM to a the rockfall event of Serra del Cadí 

 

The model has been applied to a large fragmental rockfall event that occurred in November 2011 

in the Cadí massif, Eastern Pyrenees, near Vilanova de Banat hamlet. The source area is a fault 

zone composed of Eocene limestones. The rockfall detached a mass of about 10000 m3 and the 

young debris cover (YDC) extending over an area of 30000 m2 (Figure 10).  
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Fig.10: Rockfall event occurred in November 2011 in Cadí massif, Eastern Pyrenees, Spain. The source area is 

delimited by a dashed blue line, where the IBSD is estimated. The deposit is delimited by a dashed red line, where the 

measurements to obtain the RBSD were performed. 

 

We obtained the RBSD measuring the deposit, the IBSD by reconstructing the joint pattern of the 

missing rock mass at the cliff and applied the RFFM to convert the original IBSD (estimated) to 

the RBSD (measured). This task has been carried out by an error minimization process in which 

the model parameters have been calibrated. Even though several solutions are possible, the model 

coefficients obtained vary only within a limited range of values.  

 

 

4.1 Obtaining the RBSD 

 

In small rockfall events, it is feasible to manually measure all the blocks in situ and thus obtain 

the RBSD. In the case of large fragmental rockfalls, the measurement of all blocks becomes a 

tedious task that is often limited by access and economical restrictions. We developed a 

methodology to obtain the RBSD in the case of large fragmental rockfalls (Ruiz-Carulla et al. 

2015). Mid-size to large fragmental rockfalls often generate a more or less continuous Young 

Debris Cover (YDC) of smaller debris and Large Scattered Blocks (LSB). Given the difficulty in 

measuring the volume of all the blocks in the YDC, we defined several size-homogeneous zones 

and Sampling Plots (SP) inside them (Figure 11). The SP have a square shape and variable 
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dimensions proportional to the size of the blocks. All blocks (over a certain size) inside each SP 

were measured. The block size distribution obtained at each SP is extrapolated to the 

corresponding size-homogeneous zone, according to the ratio between the respective areas (Ruiz-

Carulla et al. 2015). All the Large Scattered Blocks were measured and georeferenced 

individually. The volumes of all the blocks were measured in the field as the product of three 

dimensions, assuming that their shape is prismatic. Finally, all the block size distributions were 

added to generate the RBSD representative of the whole rockfall deposit.  

 
Fig .11 Scheme of the methodology to obtain the RBSD in the case of large fragmental rockfalls (Ruiz-Carulla et al. 

2015) 

 

We measured 272 Large Scaterred Blocks (LSB) and 1252 blocks within 6 Sampling Plots (SP). 

The volume of the biggest measured boulder is 30.8 m3, and the measured maximum runout 

distance from the source area is 683 m. The area of the Sampling Plots ranges between 25 m2 and 

400 m2. The area of the plots increases with the size of the largest blocks found inside the plot. 

The minimum block size measured was 0.015 m3. Further details of the procedure followed are 

included in Ruiz-Carulla et al. (2015). The volume of the overall rockfall deposit calculated with 

this procedure is approximately 8000 m3, and it includes more than 60000 blocks larger than 0.015 

m3.  

 

 

4.2 Generation of the IBSD 

 

Different methods to generate the IBSD of a cliff are available. Some of them use statistical 

simulations of the joint pattern based on data obtained from scanlines. The lack of accessibility 
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often forces the measurements being collected at the bottom of the rock wall, which may not 

represent the fracture pattern at the source. This issue has been discussed in the literature and 

several procedures have been proposed to overcome it (Da Gama, 1977: Miles, 1972; Hudson and 

Priest, 1979; Lu and Latham, 1999; Kalenchuk et al. 2006; Stavropoulou, 2014; Elmouttie and 

Poropat, 2012). The common idea is to use the field measurements of the joints set attributes to 

develop algorithms which generate stochastically combinations of the joint sets that follow the 

statistical distributions fitted in the real field measurements.  A  Monte Carlo simulation of the 

joint spacing, the location, and the orientation, and considering either fully or partially persistent 

joints, may be performed to generate Discrete Fracture Networks (DFN). The volume and shape 

of blocks obtained in this way can be measured. Some limitations may appear related to the 

number of joint sets, typically 3, and whether they intersect at right angles or not. In any case, the 

effect of the persistence of the joints in a simulated IBSD is found more significant than the angle 

between the joint sets used (Kim et al. 2006).  

 

Alternatively, 3D Digital Surface Models (DSM) of the rock wall may be prepared with either 

digital photogrammetry or LiDAR, which allow obtaining the actual joint pattern at the source 

area (Brideau et al. 2012; Firpo et al. 2011; Gates et al. 2012; Haneberg et al. 2006; Lato et al. 

2012; Pate et al. 2011; Riquelme et al. 2016; Sturzenegger et al. 2009). The discontinuities can 

be extracted either from 3D point clouds (Riquelme et al. 2014) or 3D meshes (Umili et al. 2013) 

of LiDAR images, by means of specialized software such as Coltop3D (Jaboyedoff et al. 2007), 

Cloud-Compare (Girardeau-Montaut 2006), Split-FX, or Sirovision. These methods work with 

geometrical concepts like the normal vector, the coplanarity of the points and clustering of vectors 

to define the joint pattern. However, the joints that do not generate relief cannot be identified. 

Instead, digital photogrammetry (using the software Agisoft Photoscan, http://www.agisoft.com) 

generates DSM that have the geometrical information and also the texture, thus allowing the 

visual identification of traces of joints in a rock wall (Ferrero et al. 2011, Firpo et al. 2011, 

Haneberg et al. 2006, Gates and Haneberg 2012, Lato et al. 2012, Sturzenegger et al. 2009) 

 

In the Cadí rockfall, the joint pattern of the rock mass was obtained by manual identification of 

the joints on digital images and modelling of their surfaces using Rhinoceros 3d software 

(http://www.rhino3d.com) over a DSM of the cliff. The procedure for the generation of the IBSD, 

then, involves two steps: (i) the calculation of the volume of the detached rock mass (Ruiz-Carulla 

et al. 2015), (ii) the overlay of the joint pattern on the detached rock mass for the generation of 

the IBSD. The intersection of the joint sets generates rock volumes that can be listed and provides 

an estimation of the IBSD. Both steps (i) and (ii) are performed by means of the Rhinoceros 

software. Several assumptions have been considered, namely: (a) all the joint sets have infinite 

persistence, and (b) the same mean dip angles and dip directions have been assigned to each 

http://www.agisoft.com/
http://www.rhino3d.com/
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individual plane of the set. However, the location and the spacing of the joints are the real ones 

identified in the 3d photogrammetric model. The methodology is summarized in the following 

paragraphs. 

 

The detached rockfall volume was calculated by subtracting the DSM of the cliff before and after 

the event. The DSM before the event is based on model provided by the Cartographic and 

Geological Institute of Catalonia (ICGC), while the DSM of the cliff after the event was generated 

from ground pictures taken with a camera Nikon D90 with a focal length of 60 mm and a 

resolution of 4288x2848 px (12Mp) and subsequent photogrammetry treatment. The difference 

between the DSM of the scar before and after the rockfall yielded a detached rock mass volume 

close to 10000 m3 (Fig 12A). 

Fig.12: A) 3D photogrammetric DSM of the scar with the detached rock mass reconstructed. B) Facets based on clusters 

of points colored with the same dip and dip direction on the 3D photogrammetric DSM of the scar. 

 

In order to identify the joint pattern and obtain the IBSD, we represented the DSM of the scar in 

terms of dip and dip direction. We draw all the joints on a picture and then we modelled the same 

joints over the DSM of the scar using Rhinoceros, obtaining a Discrete Fracture Network (DFN). 

Automatic and semi-automatic software like CloudCompare or Coltop3d allow identifying only 

the joints that generate relief (Fig. 12B). The manual modelling using the texture over the DSM 

has allowed us to define joints that do not generate relief. We identified up to 5 joint sets plotted 

at a stereographic representation in (Fig. 13, A) and modelled with their real spacing (Fig. 13, B). 
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Fig. 13: Stereographic representation of the 5 joint sets (A) and the 3d modelled joints over the DSM of the scar 

assuming the same dip and dip direction for each joint family (B). 

 

The detached rock mass volume is then cut by overlapping the facture pattern obtained in the 

previous step to it. In order to check how the shape of the detached rock mass may affect the 

ISBD, we have worked with two missing rock mass shapes, the one reconstructed from the scar 

(irregular shape) and a prismatic mass with the same volume. We have identified five joint sets 

which have been assumed to have an infinite persistence. However, the analysis is repeated 

without the less frequent set in order to account for the presence of rock bridges.  The generated 

blocks are listed by volume and plotted in relative frequency versus block size, which is an 

estimation of the IBSD of the detached rock mass. Four scenarios in terms of number of joints 

and the shape of the overall rock mass detached have been analyzed. Figure 14 shows the joint 

pattern cutting the prismatic shape (A) and the same joint pattern cutting the reconstructed 

detached volume from the scar (B). Figure 14 (C) shows the IBSD obtained by: cutting the 

reconstructed detached volume using 5 joint sets (blue), cutting the prismatic shape volume using 

5 joint sets (purple), 4 joint sets (pink) and using only the half part of the prismatic shape with a 

volume of 5000 m3 and 4 joint sets (orange). The distribution of the volumes of the LSB is also 

seen (green). The IBSD generated can be well fitted by exponential laws with coefficients of 

determination close to 1.   
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Figure 14: IBSD generated taking a prismatic volume (A) or a reconstructed irregular volume of the detached rock 

mass (B), and the corresponding IBSD (C) considering 4 or 5 fully persistent joint sets. 

 
 

 4.3 Comparison of the IBSD and RBSD 

 

The estimated volume at the source area is approximately 10000 m3, which is bigger than the 

volume of 8000 m3 based on measured rock fall blocks. The 2000 m3 of difference between both 

volumes is likely ought to the fact that approximately the 20% of the rock mass can result in dust 

and blocks smaller than 0.015 m3 that were not measured in the field. In fact, by extrapolating the 

RBSD to a block size of 0.005 m3, a volume of 10000 m3 is obtained. Another possible reason for 

this difference is the uncertainties and the errors associated to the topographic DSM and the scar 

DSM. 

 

Comparing the obtained IBSD and the RBSD we can observe changes in the shape of the 

distributions and in terms of both, the total number of blocks and sizes. Four IBSD were obtained 

considering different assumptions and all of them follow exponential laws. However, all the block 

size distributions for the deposits and the final RBSD are very well fitted by power laws (Ruiz-

Carulla et al. 2015). Figure 15 (A) shows the IBSD obtained using the reconstructed detached 

volume and 5 joint sets, and the final RBSD, plotted in terms of relative frequency versus block 

size. By comparing them in terms of cumulative number of blocks (Figure 15, B) a significant 

reduction of the number of blocks bigger than one cubic meter, and a sharp increase of blocks 

with volumes smaller than a cubic meter are observed. The total number of blocks estimated in 

the IBSD is close to 6000 blocks, increasing to 60000 blocks estimated in the RBSD after the 

propagation and the fragmentation of the rock mass. The difference between the area defined by 

the IBSD and that of the RBSD is typically attributed to the fragmentation energy in blastability 

studies. In the case of rockfalls it must be related to the impact energy. Even though rockfall 
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blocks can be generated by disaggregation of the originally detached rock mass, in what concerns 

the Cadí case, the substantial increase of small-size blocks indicates that block breakage is the 

predominant mechanism during the propagation. 

Fig. 15: IBSD (irregular shape, 5 joint sets) and RBSD, in terms of relative frequency (A) and cumulative number of 

blocks (B) versus block size. 

 

As expected, the impact of the rock masses on the ground causes the reduction of both the number 

and size of the largest blocks and the increase of the small ones.  The central size of the distribution 

is found around 1m3.  The number of blocks larger than this size is notably reduced. However, 

the large number of new blocks generated smaller than 1 m3, and specially smaller than 0.1m3, 

suggests that besides the breakage of the blocks by impact on the ground, breakage by pressing 

(crushing) may play an important role.  

 

 

4.4 Application of the RFFM 

 

The rockfall fractal fragmentation model RFFM was used in order to obtain the RBSD from the 

IBSD as an input. Three parameters have to be defined to apply the model: Pf, probability of 

failure; b, geometric factor; and Sr, survival rate (see Section 3). The parameters were calibrated, 

matching the modelled RBSD with the observed one, by a trial and error process. Four different 

scenarios were considered, depending on the number of joint sets and the shape of the detached 

rock mass, to generate the initial IBSD (Figure 14, B). The procedure allows performing several 

iterations in order to generate new fragments. The more the iterations performed the smaller the 

fragments will be. We tested performing 1 and 2 iterations to generate blocks sizes as observed 

in the field. Figure 16 shows the IBSD obtained from the irregular reconstructed volume, the 
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RBSD measured in the field and the RBSD obtained from the fragmentation model calibration 

using 2 iterations.  

 

Table 1 summarizes the values of the parameters obtained for the different IBSD. We obtained a 

range of values: between 0.05 and 0.34 for the Sr, between 0.73 and 0.80 for the Pf and between 

1.6 and 3.4 for b. We used the reduced Xi2 test (Dussauge, 2003) to optimize the Pf, Sr and b 

values and to test the goodness of the results obtaining a range between 0.02 and 0.06 for the four 

cases of different IBSD as input and using 1 or 2 iterations. In the case of the IBSD generated 

using 4 joint sets, the size of the blocks of the detached rock mass is bigger than in the case of the 

IBSD generated using 5 joint sets. Thus, to generate the observed RBSD, it is required using a 

bigger geometric factor b, generating smaller fragments, or using a smaller survival rate in order 

to break more blocks. Using only one iteration, bigger values of the geometric factor are required 

to obtain the observed RBSD. Different combinations of these parameters generate very similar 

results.  

 

The results show that it is possible to successfully generate the RBSD from the ISBD. The best 

results are obtained in the case 3 of the table 1, where the input is the IBSD based on a prismatic 

shape with 10000 m3 using 4 joint sets. However, the procedure followed is a trial and error 

process until the fitting between both the modelled and observed RBSD is reached. Further work, 

is required to relate Pf, Sr and b to the local geological, geomechanical, and morphological 

characteristics of the detached rock mass and the slope. 

 

Fig. 16: IBSD (irregular shape, 5 joint sets), RBSD from the measurements in the field and RBSD generated using the 

Fractal Fragmentation Model; in terms of relative frequency (A) and cumulative number of blocks (B) versus block 

size. 
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Table 1: Summary of the calibrated parameters of the rockfall fractal fragmentation model, 

considering four (4f) and five (5f) fully persistent discontinuity sets.  

 2 iterations 1 iterations 
IBSD b P(1/bi) Sr rXi2 Df b P(1/bi) Sr rXi2 Df 

Case 1: Irreg. 10000m3 5f 1.6 0.80 0.34 0.02 2.52 3 0.75    0.04 0.06 2.73 

Case 2: Prism, 10000m3 5f 1.75 0.75 0.20 0.03 2.48 3 0.75    0.02 0.04 2.73 

Case 3: Prism. 10000m3 4f 1.75 0.80 0.10 0.02 2.49 3 0.75    0.01 0.02 2.73 
Case 4: Prism. 5000m3 4f 2.15 0.73 0.20 0.05 2.58 3.4 0.75    0.01 0.05 2.76 

 

 

Small errors in the mass balance between the IBSD and the RBSD can be justified by the use 

of bins for the block size classification.  The use of a mean volume for each bin generates 

uncertainty in the calculation of the real volume of each block. Figure 17 (A) shows the volume 

of the rock mass for each bin in the IBSD, the observed RBSD and the RBSD generated by 

the fragmentation model for the mean volume of each bin. The results indicate that the RBSD 

generated with the RFFM tends to reduce the total volume of rock mass in bigger blocks 

generating volume of rock mass in smaller volumes. The difference of volume of rock mass 

in each bin between the IBSD and the observed RBSD or the RBSD generated by the RFFM 

shows the decrease of the total volume of blocks bigger than 1 m3, and the increase of the 

accumulated volume of blocks smaller than 1 m3 (Fig. 17, B).   

  
Fig. 17: A) Total rock mass volume of blocks in each bin for the IBSD, RBSD and the Rockfall Fractal 

Fragmentation Model results. B) Volume difference between IBSD versus RBSD and IBSD versus the RFFM 

results. 
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5. Conclusions  

 

Few models exist for obtaining the size distribution of fragments at rockfalls. We proposed a 

three-parameter rockfall fractal fragmentation model RFFM to be applied to this aim. It is a 

transition model from the In Situ Block Distribution (IBSD), to the Rockfall Block Size 

Distribution, RBSD, that is based on fractal laws. The three parameters required to perform the 

model are: 1) the probability of failure which express the degree of breakage of each initiator 

block 2) the survival rate, which expresses the percentage of the blocks in a rock mass that remain 

unbroken, and 3) the scaling factor b, which expresses the ratio of sizes between block and its 

fragments. The procedure is iterative for a given number i of hierarchies. Successive iterations 

result in a progressively smaller fragment sizes. The fragmentation is assumed scale-invariant, 

although the model may also perform as scale-variant. For Sr=1, the RBSD reproduces the IBSD, 

as only disaggregation and no breakage takes place. The model allows the reproduction of two 

fragmentation mechanism defined as disaggregation and pure breakage. 

 

An advantage of this model is that it is simple enough to be incorporated into rockfall trajectory 

analyses. Additionally, the proposed RFFM allows the possibility of considering different model 

parameters according to the energetic scenario of each impact. The minimum size of the deposit 

can be efficiently reproduced using proper number of iterations i.  

 

At the proposed model, the mass balance is not fulfilled. This is due to the classification of the 

fragmented block sizes into bins, and the use of the lower, average and upper bin values for the 

calculation of the total volume after fragmentation. To overcome this problem it is possible to 

work with all the listed volumes from the IBSD avoiding the use of the classification in bins. 

 

The application of the RFFM to the rockfall event of 2011 to the Sierra del Cadí, in the East 

Pyrenees, Spain, has shown that the model is efficient in providing with sufficient accuracy the 

RBSD, provided that the IBSD is known beforehand. The results of the model may vary 

depending on the assumptions made for the joint pattern at the rockfall source as well as the 

strength of the rock, the impact energy and the ground rigidity. The obtained ranges of values for 

the parameters were: between 0.05 and 0.34 for the Sr, between 0.73 and 0.80 for the Pf and 

between 1.6 and 3.4 for b. The application of the model to the case study of Sierra del Cadí has 

also shown that two iterations are sufficient for reproducing the block size distribution was 

observed in the field.  
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Despite of this performance, further work including more rockfall events, lithologies, heights of 

fall, ground surface rigidity and joint patterns, is needed before assigning beforehand values to 

the model parameters, in order to be able to use it as a forward predictive model. 
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Division of Geotechnical Engineering and Geosciences 

Department of Civil and Environmental Engineering. Universitat Politècnica de Catalunya-

BarcelonaTech 

Abstract: 

We present the performance of the rockfall fractal fragmentation model developed by Ruiz-

Carulla et al. (2017). The parameters of the model are calibrated by back analysis using data of 

seven fragmental rockfall events. The model has been upgraded and additional capabilities are 

added.  The input of the model is either a single block or a rock mass characterized by its In situ 

Block Size Distribution (IBSD). Some recommendations are given on how to obtain the latter 

using the UAV, photogrammetric techniques, 3D point cloud analysis and joint pattern 

characterization. The deposited fragments volume distribution (Rockfall Block Size Distribution) 

of several rockfall events, is measured in the field to describe the deposit and calibrate the 

fragmentation model. The model may run considering scale-invariant or scale-variant breakage 

condition over several orders of magnitude. The results of the calibrated model fit well to the 

volume distributions observed. In addition, the model is able to calculate the amount of the new 

fresh surfaces generated by breakage, which is related to the fragmentation energy.  

Keywords: rockfall, fragmentation model, rockfall inventory, fragmental rockfall, block size distribution 
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1. Introduction: 

 

Fragmentation of a rock mass is the reduction in particle size due to an external action. Despite 

the increasing number of studies on rockfalls, the fragmentation as consequence of the impact of 

a rock mass on the ground surface is a process poorly understood. The detached volume may 

consist of either an individual block or a jointed rock mass. In the latter, the intersection of the 

joints individualizes rock blocks whose volumetric distribution is the In-situ Block Size 

Distribution (IBSD). The size distribution of the fragments generated as result of the impact and 

breakage of the initial blocks is the Rockfall Block Size Distribution (RBSD). The fragmentation 

may be quantified by comparing of the block size distributions before and after the impact (Ruiz-

Carulla et al. 2017). 

 

To simulate fragmentation, we proposed a Rockfall Fractal Fragmentation Model (RFFM) (Ruiz-

Carulla et al. 2017) based on an original approach of Perfect (1997). The RFFM uses three 

parameters to calculate the number and size distribution of the resultant fragments: the probability 

of failure, P(1/bi) that expresses degree of breakage of each initiator block; a survival rate, Sr or 

percentage of unbroken blocks after the impact; and a scaling factor, b that defines the ratio of 

sizes between block and its fragment. 

  

The present study presents the calibration of the model parameters using seven fragmental rockfall 

events. In addition, the model has been upgraded to overcome some of the limitations found in 

the previous version of Ruiz-Carulla et al. (2017). Specifically, the fact the RFFM does not 

preserve the mass balance (due to the use of bins) and the difficulty to simulate adequately the 

RBSD in case of the breakage of an individual rock block. Finally, the model has been improved 

by allowing the scale-variant behavior in order to reproduce RBSD with irregular shapes.  

 

We explain the improvements of the fractal fragmentation model in section 2, the performance of 

the model using 7 inventoried rockfall cases in section 3, and the results and discussion in section 

4. 

 

 

2. Upgrade of the Rockfall Fractal Fragmentation Model (RFFM)  

 

The RFFM of (Ruiz-Carulla et al, 2017), generates a block size distribution (RBSD) from a single 

block or a list of blocks (IBSD). Each broken block will produce a new distribution of fragments 

using the main equation for fractal systems (Perfect, 1997), which is written as (Eq.1):  
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(1/ ) 1/ ; 0,1, 2...
Di iN b k b i

−
 = = ∞     Eq. 1 

Where N(1/bi) is the total number of fragments at the ith level of hierarchy; k is the number of 

initiators of unit length; b is a scaling factor >1, that define the geometric proportion between the 

original block and the generated blocks; and Df is the fractal dimension. N is rounded to the lower 

nearest integer. The actual number of fragments produced depends on the probability of failure at 

the ith level, P(1/bi), which is defined as: 
3(1/ ) /i

iP b n b=               Eq. 2 

Where ni is the number of fragments generated in the ith level. P(1/bi) expresses the proportion 

of block that breaks. If the probability of failure is scale-invariant P(1/bi) = P(1/bi+1), it can be 

expressed as: 

           
3(1/ )i DfP b b −=     Eq. 3 

or 
[ ]

[ ]
log (1/ )

3
log

i
f

P b
D

b
= +     Eq. 4 

Where Df is the fragmentation fractal dimension. The probability of failure ranges between  

b-3<P(1/bi)<1. When P(1/bi)=1 and Df=3 the whole block is fragmented, while for P(1/bi) ≤ b-3 

the block remains unbroken. 

 

In the case of scale variant (or scale-dependent) behavior, the number of fragments generated 

changes with the scale. Then, the probability of failure is (Perfect, 1997): 

(1/ ) 1 ( )i i rP b q b= −                 Eq. 5 

Where “Sr” is the probability of survival as defined by Perfect (1997) with a slightly different 

meaning than the survival rate or proportion of unbroken blocks defined by Ruiz-Carulla et al 

(2017). For 1/bi < Sr
1/r, the P(1/bi) = 0 and the block remains unbroken. The interpretation of the 

survival rate is explained next. The fractal dimension for scale variant behavior is: 

[ ]
log ( )

3
log

r i r

f

b q b
D

b

 − = +     Eq. 6 

The scale variant behavior is characterized by the change of behavior of different sizes. The 

increase or decrease of the strength of the rock block as the block size diminishes is simulated by 

the negative or positive value of “r”, respectively. For r=0, the scale variant is equal to the scale 

invariant case. Based on this, we adopt the scale variant case, that will become invariant for r=0. 

 

As mentioned above, the RFFM of Ruiz-Carulla et al (2017) does not preserve the mass balance 

due to the use of bins. Each bin considers the average volume of the blocks rather than the exact 

volume. To solve it, we apply the model over each initiator, which can be either a single block or 
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each of the blocks of the IBSD. A threshold value is established for the minimum volume of the 

fragments generated. To comply with the mass conservation, the remaining mass below the 

threshold is computed as fine fraction. The newly generated fragments (RBSD) are listed by 

volumes. First, the largest fragment and then the rest of fragments ordered by decreasing sizes are 

added until either the initial block volume is completed or until the fragments become smaller 

than the threshold defined. 

 

Finally, in the previous version, the RFFM is applied iteratively to distribute the mass of the 

blocks among the fragments. The size of the new blocks generated is a function of the number i 

of iterations. With this procedure all the fragments generated at each iteration are equally sized. 

This may be acceptable in case of an initial rock mass involving hundreds or thousands of blocks 

but it may yield unreliable results in the case of a single block initiator. Furthermore, the number 

of iterations modifies the shape of the RBSD and the exponent of the fitted power law. 

 

In the upgraded model, the iteration over the geometric factor “b” defining the volumes in terms 

of (1/bi) is replaced by (l/lmax), where “lmax” is the length of the largest fragment generated, and 

“l”, the length of each new fragment smaller generated (Perfect, 1997). This description lists the 

cumulative number of fragments in descending order of sizes, fragment by fragment. The resultant 

RBSD is a continuous and decreasing list of rock fragments.  

 

Consequently, the Eq.1 describing the number of fragments of size “1/bi” is rewritten in terms of 

the cumulative number of fragments of size greater than or equal to “l/lmax”. As we apply the 

model over every block, either a single volume or the blocks of the IBSD, the number of initiators 

is always 1 (k=1).  

[ ] [ ]max max max min( / ) / ; ,fDl l l l l l l−= =          Eq. 7 

The length “l” of the fragments generated starts from “lmax”, then “lmax/lmax” is 1, and the 

cumulative number of fragments for the largest fragment is 1. Then, “l” decreases generating 

“N” accumulated number of fragments. As we are only interested in natural numbers of 

fragments, we define a variable “n”, ranging from 1 to infinite, for the accumulated fragments 

generated. Thus, Eq.7 maybe rewritten as function of the number of fragments accumulated n, 

obtaining the length “l” that defines the following fragment size: 

1/
max· ; 1, 2...fDl l n n−= = ∞              Eq. 8 

The variable “n” increases until the total volume of the fragments generated equals the initial 

block volume.   



229 
 

Figure 1 illustrates the difference between “1/bi” and “l/lmax”. The former generates a number of 

equally sized fragments (Figure 1 left). Considering P(1/bi)=0.5 and b=2, the initial volume “Vo” 

is fragmented creating 4 fragments of size “1/b1” and the remaining unbroken portion of the block 

(Rem). In the second iteration, 2 of the 4 fragments generated in the first iteration break again 

yielding 16 new fragments of size “1/b2”, while the remaining fragments are 2 of “1/b1” size 

(from the first iteration) and the unbroken portion (Rem) of the initial block. Thus, a total of 19 

blocks are generated of 3 different sizes. The use of “l/lmax”, generates an accumulated number 

of fragments of decreasing size (Figure 1, right) that fits better to the observations. 

 
Figure 1: Comparison on fragments size distributions construction with “1/bi” using iterations (left) or using “l/lmax” 

in a cumulative way (right). 

 

Finally, to convert the characteristics lengths into volumes, the initial volume “Vo” is used to 

rescale the magnitude. The equation that generates fragment volumes in a cumulative number is:  

1/
max( ) · · ; 1, 2...fD

oVfrag n V l n n−= = ∞           Eq. 9 

The maximum length “lmax” is defined as lmax = 1 – P(l/lmax) on scale invariant formulation, and 

lmax = qbn^r for the scale variant case (both by definition). Notice that “b” still controls the 

proportions between the initiator and the fragments, instead of their behavior is inversed. 

 

Generating irregular and continuous distributions from a single block (initiator) 

 

The upgraded RFFM can now generate block size distributions of different shapes. Figure 4 shows 

the results of real-scale test (Gili et al. 2016).  For the sake of brevity, only four cases are plotted.  

These examples illustrate the capability of the upgraded RFFM to generate both irregular and 

continuous BSD distributions, using the scale variant behavior and the continuous generation of 

fragments (l/lmax).  
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Figure 3 presents the results of the fragmentation tests of the four individual blocks tested. The 

original size of the block was measured with digital digital photogrammetric reconstruction (blue 

circles in Figure 3). At each test, the block is dropped from a height of 17 meters, impacting 

against the ground surface and breaking in smaller fragments. We used a tape to measure 3 block 

dimensions of each fragment and calculate the volume assuming a prismatic shape. The volumes 

of the fragments define the RBSD (Rockfall Block Size Distribution) of each trial (red squares in 

Figure 3). Each case is used to calibrate the model parameters, minimizing the difference between 

the real measured volumes and the results from the RFFM (green diamonds in Figure 3). We run 

the model until the values of the reduced Xi2 fall between 10^-4 and 10^-2. Under the same 

conditions, blocks with similar volume and mechanical properties display contrasting behavior. 

The may display either a survival rate of 0.95 and generate only few fragments several orders of 

magnitude smaller than the remaining unbroken block (Figure 3 upper left, T1-B16 case), or 

disintegrate with a survival rate of only 0.4 or 0.34 and producing 50, 100 or more new fragments 

(Figure 3, T1-B10), sometimes with a progressively curved shape distribution (Figure 3, T1-B2). 

Notice that by breaking less than the 20% of the block in terms of total volume (Sr = 0.817), more 

than 20 fragments can easily have been produced (Figure 3, T1-B12),  

 
 Figure 3: Calibration of the model with data from real-scale test. IBSD (blue dot) is the initial block volume. 

RBSD (red dots) is the fragments measured BSD, and the RFFM (green dots) is the results of the model 

after calibrate the parameters minimizing the reduced Xi2. 
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3. Performance of the upgraded RFFM 

 

The performance of the upgraded RFFM is tested with seven inventories rockfall events. The 

goals of the simulation are on one side, testing the sensitivity of the parameters and calibrate the 

model using a variety of detached volumes, lithologies, rock strengths, heights of fall and slope 

conditions. On the other hand, we aim at establishing (identifying) the relation between the model 

parameters and the results in order to carry out forward prediction in the future. 

 

 

3.1 Inventoried rockfall events 

 

The 7 rockfall cases analyzed in represent different fragmentation scenarios, in terms of failure 

mechanism, lithology (limestone, sandstone, conglomerate and schist), total volume detached 

(between 2 m3 and 10.000 m3), and different slopes and terrain conditions.  

 

Three samples of each rockfall event were collected for the mineralogical description and testing. 

The parameters determined are: the rock density, the uniaxial compressive strength, the Young 

modulus, the Poison ratio and the tensile strength (table 1). The total volume of the detached rock 

mass (IBSD) and the total volume the deposit measured (RBSD) differ less than a 10-20%. The 

difference is interpreted as fine fraction, that corresponds to the fragments too small to be 

measured in the field.  

 

The relevant data collected are presented in Table 1. Notice we measured manually three lengths 

of the rock fragments with a tape, totaling more than 7200 fragments. We consider the RBSD 

obtained an accurate description of the volume distribution of the fragmental rockfalls 

inventoried. 

 

Figure 4 is a mosaic of pictures from the inventoried cases. Pont de Gulleri (PdG) rockfall is a 

schist with an important fracture system that defines a very blocky rock mass with a high number 

of planes of weakness. Omells de Na Gaia (Omells) and Lluçà (Lluca) rockfalls are sandstones 

with bedding defining the main weakness planes of the rock mass. Lluçà rockfall is 10 m3 of rock 

that topple over a flat and soft terrain. A huge block of 8.7 m3 remained unbroken. At Omells 

rockfall, the rock mass detached is scattered due to the breakage of the blocks. At Gurp rockfall, 

100 m3 of conglomerate rock mass was detached falling down 100 meters of freefall height, likely 

impacting at mid cliff. The main impacts at the cliff base destroyed trees (>500 m2 affected) and 

produced blow of soil covering the trees. Two blocks of 20 m3 reached the paved road after 

leaving a path of craters on the ground (see Figure 6 also). Monasterio de Piedra (MdP), Malanyeu 
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and Cadi rockfalls are rockfall cases in limestone rocks. The rock mass detached at Monasterio 

impacted on the ground terrain after 35 m of free fall.  The impact ground is rigid and generate a 

substantial fragmentation. Breakage at Malanyeu was lesser and the deposit includes 7 blocks 

greater than 100 m3, and more than 60 blocks greater than 10m3, with a maximum boulder of 445 

m3. The Cadi rockfall is the biggest events and the rock mass detached is very jointed due to the 

presence of an inverse fault zone in the source area. 

 

Figure 4: Pictures of the inventoried rockfalls. 
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Table 1: Rockfall inventory cases, summary data, rock properties and measured fragments. 

ROCKFALL INVENTORY 1.PdG 2.Omells 3.Lluca 4.Gurp 5.MdP 6.Malanyeu 7.Cadi 

Failure Mechanism Slide Toe erosion 
slide Toppling Toppling Toppling 

Slide Toppling Slide 

Lithology Schist Sandstone Sandstone Conglomerate Limestone Limestone Limestone 
Total Volume RBSD (m3) 2.6 4.2 10.7 100 900 4350 6351 

Total Volume IBSD(m3) 2.61 4.2 10.7 100 997 4945 7663 

RMR 76 64 72 82 70 74 60 
        

ROCK PROPERTIES        

Density(kg/cm3) 2.72 2.35 2.46 2.69 2.5 2.64 2.68 
Tensile Strength (Mpa) 6.53 2.03 2.07 5.47 10.00 7.03 12.10 

UCS (MPa) 32.17 21.38 21.77 38.36 35 13.33 35.29 
E Young (MPa) 17385 5185 730 74831 20000 12992 22761 

Poisson ratio 0.27 0.006 0.18 0.21 0.1 0.05 0.07 
        

FRAGMENTS MEASURED        

RBSD Total number blocks 116 48 78 500 10790 28788 60980 
RBSD nº of measured blocks 116 48 78 500 2256 2721 1524 

Min. Vol. Measured (m3) 0.0001 0.0007 0.0007 0.001 0.001 0.0001 0.01 

Max. Vol. Measured (m3) 0.28 1.1 8.5 22 27 445 31 
 

The 3D models of each rockfall event obtained with UAV and digital photogrammetry, were used 

to measure distances, 2D and 3D areas, volumes, generate profiles with overhangs, and contour 

maps. Table 2 summarizes the main geometrical descriptors used for rockfalls. Bigger total 

rockfall volumes tend to increase all geometrical descriptors, however, the Coef. of determination 

r-squared with the 3D scar area is 0.99 (Figure 5).  

 
Table 2: Summary of geometrical descriptors measured on the 3D models of each scenario: 

SCENARIO & DEPOSIT 1.PdG 2.Omells 3.Lluca 4.Gurp 5.MdP 6.Malanyeu 7.Cadi 

Scar 3D Area (m2) 9.55 15 32 87 578 2120 3532 
Total Cliff Height (m) 15 3.3 6.8 100 50 70 150 
1st Impact Height (m) 12 1 0.6 39 35 10 50 

CoG Height (m) 13 5 2.8 110 60 80 230 
Max. Height difference (m) 13 14.5 6.6 150 70 100 520 

Max. Runout (m) 5 22 9.2 152 70 130 710 
Max. Volume Runout (m) 5 3 5.6 152 40 80 200 

Reach Angle (degrees) 69 33 36 45 45 38 36 
Deposit Width (m) 2.5 15 5 40 50 80 130 
Deposit Area(m2) 5 300 45 2000 4200 6000 44000 

YDC Area (m2) 5 6 35 1625 3743 1150 30000 
YDC Width (m) 3 2 5 40 50 40 110 
YDC Length (m) 1.7 3 3.5 63 35 50 260 
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Figure 5: Scar area (SA) measured on a 3D surface and total rockfall volume (V) of the study cases, with a 

lineal correlation described by SA=V*0.4476+32.963 with R2=0.99. 

 

In order to characterize fragmentation, the steepest part of the cliff (>45º) plays a relevant role as 

the falling mass tends to accelerate and is the highest “energetic part” (colored from yellow to red 

on 3D models of Figure 6). The less inclined part of the slope (<45º) is where the main impact 

and the rest of the propagation take place and where blocks tends to break or stop (coloured from 

green to blue), depending on the type of propagation.  

 

At Gurp (Figure 6, up), a natural berm inclined less than 45º (blue zone located at the half of the 

cliff) is observed. Some trajectories may impact on this berm, causing breakage of the rock mass, 

thus changing the direction followed by the fragments. The gentle surfaces at the upper part of 

the cliff in Gurp and Monasterio de Piedra (Figure 6), define the base of the rockfall scar. 
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Figure 6: 3D models of Gurp and Monasterio de Piedra rockfalls, coloring the zone affected by the rockfall 

by higher or lower than 45º of slope. 
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3.2 Reconstruction of the detached rock mass and generation of the IBSD  

 

The initiator of the model can be either an individual rock block or a rock mass intersected by one 

or more discontinuity sets. The characterization of the latter requires the 3D reconstruction of the 

detached volume and the generation of the IBSD by means of a discrete fracture network (DFN). 

This task requires considering several assumptions and hypotheses. 

 

The detached rockfall volume at each site is calculated following the methodology described in 

Ruiz-Carulla et al. (2015). The detached volume is calculated by subtracting the Digital Surface 

Model (DSM, 3d mesh surface) of the cliff before and after the event. The DSM before the event 

is generated from the LIDAR point cloud provided by the Cartographic and Geological Institute 

of Catalonia (ICGC), except for the case of Monasterio de Piedra, which is provided by the 

National Geographic Institute of Spain. When the morphology of the cliff and/or pictures before 

the event are available, we manually modified the DSM in order to define the pre-event scenario 

as real as possible. 

 

The DSM of the cliff after the event is generated from the pictures taken using an UAV (DJI 

Inspire 2, X5S camera), except in the case of Vilanova de Banat that was obtained from ground 

pictures taken with a camera Nikon D90. 

 

The joint pattern identification is based on 3D point cloud analysis combining semi-automatic 

and manual modelling, using the plugins Facet Matching (Dewez et al., 2016) on Cloud Compare 

(Girardeau-Montaut 2006), and also the tool Compass (Thiele et al. 2017). The parameters of the  

Facet Matching to define the fitted facets are accommodated to the scale of the main joint sets. 

High tolerances, allowing high values of the minimum distance between the 3d points and the 

facet planes, will define facets with larger areas. The parameters used are calibrated according to 

the scale of each rockfall scar, and the results are supervised. Often, the manual selection of well-

defined planes and to adjustment to a facet with the Compass tool is required, also for joint trace 

identification. The Discrete Fracture Network (DFN) is obtained by combining the semi-

automatic and the manual detection of joints, and exported as mesh format. The total volume 

detached reconstructed and the DFN is handled in a 3D modelling software (Rhinoceros) to create 

an IBSD cutting the volume with the DFN. The joints are assumed fully persistent and placed in 

its real position, thus providing the actual spacing. 

 

The 3D blocks created composing the IBSD are listed and both the volume and the 3D surface 

area of each block are measured. The list of volumes is the input of the fragmentation model. Both 

the list of the areas and the accumulated areas of the rock blocks will be compared to the areas of 
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the newly generated rock fragments. The joint sets, the number of blocks of each IBSD, the 

maximum and minimum block size and minimum spacing are summarized in Table 3 while some 

examples are provided in Figure 8. 

 

Table 3: Summary of IBSD characteristics 

IBSD 1.PdG 2.Omells 3.Lluçà 4.Gurp 5.MdP 6.Malanyeu 7.Cadi 
Nº of joint sets 5 3 4 5 5 4 5 

IBSD Total number of blocks 40 3 5 14 19 95 6800 
Min. Block Volume (m3) 0.0001 0.0007 0.0007 0.0015 0.001 0.0015 0.01 
Max. Block Volume (m3) 0.28 4 10.7 30 96 492 45 

Min joint spacing  0.3 0.2 2 0.5 1 3 1 
 

 

The 3d model of the scars can be plotted in terms of dip direction or dip angle. The semi-automatic 

and manual joint characterization allows to export only the main planes or hundreds of data to 

obtain the mean or modals planes. In the case of a scar, the discrete fractures manually modelled 

may be the best measures.  The reconstructed volumes are cut with the DFN to obtain the IBSD 

as shown as example of Gurp, Monasterio and Malanyeu cases in Figure 7. The Cadi case is 

presented in Ruiz-Carulla et al (2017), following the same methodology. The block size 

distributions before and after the breakage were compared in a similar way than Charriere et al 

(2015). 
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Figure 7: Stereographic projection of the joint sets identified on the 3D models of the scar. The sets have 

been overlaid to the detached volumes to obtain the IBSD of Gurp, Monasterio and Malanyeu events. 
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3.3 Calibration of the model 

 

 Rock blocks may break differently. It has been observed that blocks of the same lithology and 

similar size may display different fragmentation behaviour, even under controlled environmental 

conditions as the found in real scale drop tests in quarries (Giacomini et al 2006, Gili et al, 2016). 

In this study, we calibrate the model parameters using the same set of parameters b, and Sr (q of 

Perfect, 1997) for or all the blocks of each rockfall event. The resultant block size distribution 

(RFFM_RBSD) is fitted to the rockfall fragments distribution measured in the field (RBSD) 

(Figure 8 and Figure 9). We use the average parameters of the fragmentation model, despite the 

fact that the set of parametrs may be specific of each block, depending on the impact conditions. 

Figure 8: RBSD measured in the field (upper left) and RFFM calibrated using the RBSD and the IBSD of 

the Pont de Gulleri, Lluçà and Omells rockfalls. 
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Figure 9: RFFM calibrated using the RBSD and the IBSD of the Gurp, Monasterio de Piedra, Malanyeu 

and Cadi rockfall events. 

 

 

The biggest blocks of the deposit are the strongest ones, and their volumes are often close to the 

biggest blocks of the IBSD. It is worth noticing that the curve of the volume distribution of the 

largest fragments (either RBSD or RFFM distributions) is substantially parallel and very close to 

the curve of the IBSD, in all the cases. It is also interesting the change in the shape of the volume 

distribution for the smallest fragments. The distributions tend to flatten, evolving from a power 

law (straight line on a log-log plot) to an exponential curve (Figure 9). Two possible explanations 

are proposed for such a behavior. On one hand, the undersampling of the small-size fragments, 

on the other hand, the change of the pattern of breakage of the particles, when the reduction of 

the particle size requires the breakage of the mineralogical bonds or the rock matrix. This may 



241 
 

occur when the fragment size is smaller than the minimum joint spacing or weakness planes 

within the rock. This issue is related with the scale-variant behavior. 

 

In order to obtain the calibrated model parameters, the reduced Chi squared (Xir
2) test is 

performed, comparing the fragment volumes’ distribution of the  RFFM and the measured RBSD, 

which is considered that real observation. The model parameters are summarized in Table 4. 

Notice the values of the geometric factor “b” range between 1.235 and 2.34, and the Survival rate 

from 0.18 to 0.9. The parameter “r” controls the variant or invariant behavior, yields 4 cases 

where it is equal to 0 (table 4), characterizing these rockfall events as a predominant invariant 

behavior. In all the cases, the Xir
2 ranges between 0.0004 and 0.018 

 

The size of the smallest fragment measured in the field is the threshold used for the calibration of 

each rockfall event. The RFFM generates fragments until the minimum fragment size is reached. 

Then, the difference until the initial volume is considered fine fraction, in order to preserve the 

mass balance. 

 

The Fractal Fragmentation Dimensions for the scale variant cases vary between a minimum and 

a maximum value (Dmin and Dmax in Table 4), as well as the probability of failure (Pmin and 

Pmax in Table 4), depending on the survival rate “Sr” and the exponent “r”. 

 
Table 4: Summary of the model parameters calibrated and measured errors. 

 

 

 

 

 

 

 

 

 

Rockfall b r Sr Dmin Dmax Pmin Pmax Xir2 Vmin 
(m3) 

Fine fragments   
(m3) 

1.PdG 2.34 -0.1 0.9 0.19 1.224 0.17 0.30 0.0001 0.0001 4.28E-08 

2.Omells 1.76 0 0.52 1.701 1.701 0.48 0.48 0.0061 0.0007 0.00034 

3.Lluçà 1.9 0 0.77 0.710 0.710 0.23 0.23 0.0180 0.0007 0.038 

4.Gurp 1.54 -0.05 0.67 0.382 2.219 0.34 0.34 0.0054 0.0015 0.1 

5.MdP 1.235 0 0.18 2.169 2.169 0.82 0.82 0.0048 0.001 62 

6.Malanyeu 1.757 0 0.61 1.322 1.330 0.39 0.39 0.0049 0.0015 10 

7.Cadi 1.36 -0.02 0.23 2.121 2.465 0.77 0.88 0.0022 0.01 489 
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4. Discussion 

 

4.1 Survival rate 

 

The survival rate “Sr” expreses the prortion of the original volume that remains unbroken and it 

is applied to each of the blocks of the IBSD. It defines the largest fragment “lmax” generated after 

the impact. In the presented calibration, the same set of  model parameters are used for all the 

blocks of the rockfall events. 

 

Despite the survival rate “Sr” (or largest fragment normalized by the total volume) has been 

suggested as descriptor of the degree of fragmentation (Bowman et al, 2012; Haug et al, 2016), 

we claim that the size of the largest fragment generated alone is not enough. Figure 10 shows two 

synthetic cases of the breakage of a 1 m3 block, with the same survival rate (Sr=0.58) but with 

different number of fragments generated (3 on left and 10 on right). Despite being characterized 

with the same “Sr”, the scenarios generated are different. In the rockfall simulation, the results 

may differ substantially because the number and size of the new fragments determines the run-

out, impact probabilities and the resultant kinetic energies. In risk analysis, this can have strong 

influence in the assessment.  
Figure 10: Comparison of two synthetic cases with the same Survival rate and different number of 

fragments. 

 

The two Block Size Distributions (BSD) shown in Figure 10, are plot in Figure 11. The largest 

fragment in both cases has the same volume (0.58 m3), as defined by the Survival rate, but the 

rest of the distribution changes due to the volumes generated in each case. The surface area of the 

initiator block is a 3D surface of 4.5 m2, and the total surface area of the generated fragments 

increases up to 6.6 m2 and 8.33 m2 for the case of 3 and 10 fragments, respectively. The relation 

between the energy required to break the rock block and the amount of new area (fresh faces) 

generated in the fragments is known since long time ago. The third theory of fragmentation of 

Bond (1952), as unification of the first and second theories from Rittinger (1867) and Kick (1885 



243 
 

cited on Bond 1952) respectively, consider that the work needed to break particles of certain size 

although is initially proportional to their volume, it becomes proportional to the area as new 

surfaces are created. Consequently, besides Sr, additional descriptors are required to characterize 

the fragmentation process, due to the largest fragment (normalized by the initial volume as a 

proportion) is not enough to describe the new fragments distribution and the different energetic 

scenarios. 

 

 
 

Figure 11: Comparison of two BSD from synthetic cases (Figure 2, a and b) with the same Survival rate 

and different number of fragments. Notice the increase on total surface from 4.5 m2to 6.6 m2 and 8.33 m2. 

 

 

According to the equation 6, the model parameters, “Sr” and “b”, are related to the Fractal 

Fragmentation Dimension, and the trend can be observed graphically in the Figure 12 left.  

Comparing the model parameters with some rock mass properties, the RMR shows a positive 

correlation with the survival rate as may be expected, (Figure 12 right) however, the correlation 

with the geometric factor b is weak. Similarly occurs with the correlation with the Uniaxial 

Compressive Strength and the Tensile Strength (Figure 13). 
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Figure 12: Calibrated model parameters “b” and “Sr” versus Max. Fractal Fragmentation Dimension (left) 

and Rock Mass Ratio, RMR (right). 

 

 

 
Figure 13: Calibrated model parameters “b” and “Sr” versus Uniaxial Compressive Strength (left) and 

Tensile Strength (right). 
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4.2 Number of fragments 

 

The analysis of number of fragments generated is relevant because directly affects the probability 

of impact. Given the uncertainties of the quantification of the persistence of the joints, the number 

of initial blocks of the IBSD has to be considered a rough estimation. Instead, the total number 

rockfall fragments is well constraint.  

 

Figure 14 (left) displays the total number of initial blocks (IBSD, blue dots), the deposited rockfall 

fragments (RBSD, red squares) and the results of the calibrated model (RFFM, green squares). 

The fitting the last two is satisfactory. The vertical displacement from the IBSD to both the RBSD 

and the RFFM shows the increase of the number of new blocks generated in each rockfall case. 

It is worth noticing that the total number of fragments increases as the total rockfall volume 

increases, as expected. Figure 14 (right) show the number of blocks normalized by the total 

rockfall volume. The normalized number of fragments ranges between 5 and 10 blocks/m3 for 

event volumes of less than 100m3, except in the Pont de Gulleri case, with 45 blocks/m3. 

 

Notice that Pont de Gulleri (PdG) and Cadi rockfalls contain more initial blocks than the 

expected from the observed trend. This is because the initial rock mass is intensely fractured 

becoming a very blocky rock mass. Monasterio de Piedra (MdP) and Malanyeu fall at the 

opposite end, with lesser number of initial blocks than the trend.  

 

 

Figure 14: Left: Total number of initial blocks (of the IBSD, blue dots), fragments measured (red dots) and 

modelled fragments (green squares); Right: number of blocks normalized by the total rockfall volume. 
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4.3 Newly generated surfaces and energy 

 

The breakage of the blocks generates new surfaces and the energy required to break the block can 

be related to the new area created (Kick 1885, Bond 1952, Locat et al, 2006, Crosta et al 2007). 

In order to analyze the latter, we measured the increase of the new surface area created. 

 

We listed the 3D surface that bounds every block of the IBSD, and we sum all of them to obtain 

the total Initial Area (IA3D). We also calculate the equivalent surface area of cubes having the 

same volume than the blocks of the IBSD (IAcubic). This allows the comparison between the IAcubic 

and the IA3D, being the latter bigger than the first one (blue columns in Figure 15). We also plot 

the rockfall scar 3D surface as the reference surface. 

 

We define the Total Area (TA) as the total surface area of the deposited fragments, based on the 

the RFFM results (TARFFM) and based on the RBSD list of volumes (TARBSD) also ploted in Figure 

15 (green and red columns respectively). The estimated cubic area is included in both cases 

because usually only the available data are a list of volumes, not the areas. Figure 15 shows that 

the area can reasonably be calculated from the volume.  

 

The cubic estimation of the areas was also applied to the RBSD. We measured 3 lengths of each 

fragment of the inventoried rockfalls and calculated the surface area of each fragment assuming 

a prismatic shape. Adding all of them, we obtain the total surface area based on the 3 lengths 

measured (TARBSD measurements prismatic). We also used the cubic estimation based on the list 

of volumes measured (TARBSD measurements cubic estimation). The comparison (last two 

columns in Figure 15) shows that there is not significant difference between the prismatic and the 

cubic estimation to obtain the total surface area of the fragments.  

 

The TARBSD (red column in Figure 15) and the TARBSD from measurements (the last two columns 

in Figure 15) differ in the Monasterio de Piedra (Mdp), Malanyeu and Cadi cases. This may be 

explained by the use of sampling plots for estimating the block size distribution of the fragments. 

In the other cases, all the blocks of the deposit were measured directly, and then, shows similar 

or equal values of TA. Furthermore, the proposed fragmentation model reproduces the TA in a 

satisfactory way, being the TARBSD (red column) and the TARFFM (green column) very similar in 

all the cases, 
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Figure 15: Surface areas calculated and/or estimated of: 3D scar surface (first column); Initial surface area 

(IA) from the IBSD using a cubic estimation or from 3d shapes of the blocks modelled (blue columns); 

Total surface area (TA) from RFFM and RBSD list of volumes using a cubic estimation (gren and red 

columns respectively); Total surface area (TA) from fragments measurements, assuming a prismatic shape 

using the distnaces measured or the cubic estimation from the list of volumes (las two columns) 
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The difference between the IAcubic and the TA (using TARBSD or TARFFM , both cubic estimations), 

yields the new surface area (NA) generated by breakage, defined as:   NARBSD = TARBSD -  IAcubic 

and NARFFM = TARFFM -  IAcubic. A very good correlation is found by fitting a power law to the 

total volume of the rockfall (Figure 16, left). The coefficients of determination R-squared are 

0.971 for the NARFFM and 0.96 for the NARBSD.  

 

Spreafico et al (2017) and  Blasio & Crosta (2016) stated that there exists a relation between the 

new surface area generated (NA) and the fragmentation energy. This is confirmed in Figure 16 

right, the total potential energy of the rockfall event and the potential energy of the first impact 

on the ground have been plotted against the new surface area created.  A power law can be fitted 

with coefficients of determination R-squared of 0.96 (based on Total Potential Energy) and 0.90 

(based on 1st impact potential energy), both cases using the NARFFM. 

 

 
Figure 16: Left: New surface area from RBSD (NARBSD) or from RFFM (NARFFM) versus Total rockfall 

volume. Right:  New surface area (NARFFM) versus Total Potential Energy and the 1st Impact Potential 

Energy. 

 

 

The Specific Surface Area (SSA) is a property of solids defined as the total surface area of a 

material per unit volume (m2/m3). The total surface areas IA, TA and NA are normalized by the 

total rockfall volume, obtaining the Initial Specific Surface Area (ISSA), the Total Specific 

Surface Area (TSSA) and the New Specific Surface Area (NSSA) with units of m2/m3, 

summarized on the Table 5. 
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Table 5: Initial Specific Surface Area (ISSA) representing the initial state in the cliff; Total Specific Surface 

Area (TSSA) representing the deposited fragments; New Specific Surface Area (NSSA) representing the 

new surfaces related with the breakage; and the proportion of NA over TA in percentatge (equal to 

NSSA/TSSA). 

Rockfall 

Initial Area /  
Total volume  

ISSA (m2 /m3 )  

New Area /  
Total volume  

NSSA (m2 /m3) 
 

Total Area /  
Total Volume  

TSSA (m2 /m3 ) 
NA / TA 

(%) 

1.PdG 12.5 3.4 15.9 21 
2.Omells 5.2 5.0 10.2 49 
3.Lluca 3.7 2.0 5.7 35 
4.Gurp 2.7 3.4 6.1 56 
5.MdP 1.3 8.8 10.1 87 

6.Malanyeu 1.3 1.6 2.9 56 
7.Cadi 3.5 6.5 10.0 65 

 

Figure 17 shows the ISSA (in blue), the NSSA (stacked in orange) and the TSSA (adjacent column 

in red). Also the proportion of NA/TA (equal to NSSA/TSSA) is plotted as a percentage. The 

ISSA column represents the initial surfaces per volume unit, defining the initial degree of 

fracturation of the rock mass. The NSSA quantify the new area created by breakage. From our 

point of view of fragmentation, vertical bars represent the proportion between disaggregation 

(previously existing surfaces) and breakage (new surfaces). 

 

 
Figure 17: Initial, New and Total Specific Surface Area (ISSA, NSSA and TSSA). Left bar stacks the ISSA 

(in blue, from IBSD) and the NSSA generated by breakage (in orange, with the percentage that represent 

over the TSSA labelled on the top). Right bar represents the TSSA representing the deposited blocks (in 

red, from RBSD). 
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Pont de Gulleri case (PdG) shows the higher value of TSSA, however, only the 21% of the 

surfaces are related with new surfaces and breakage. It means that the 79% of the surfaces are 

preexisting from a very jointed rock mass as show the ISSA value of 12.5 m2/m3. From our point 

of view, the fragmentation is predomined by dissagregation on this case. 

 

Monasterio de Piedra (MdP), Cadi and Omells events, shows TSSA values close to 10 m2/m3 with 

different proportion of newly surfaces: 87%, 65% and 49% respectively, being the Monasterio de 

Piedra the event with the highest breakage ratio, followed by the Cadi event. In comparison, 

Lluçà, Gurp and Malanyeu cases show low values of TSSA and are interpreted as events with less 

breakage. In the latter events, a few blocks remain unbroken or less affected: Lluçà with a block 

of 8,5 m3 over the 10,7 m3 of total detached mass; Gurp with two blocks of more than 20 m3 over 

the total 100 m3 of rockfall; and Malanyeu, where the deposit includes 7 blocks greater than 100 

m3, and more than 60 blocks greater than 10m3, with a maximum boulder of 445 m3.  

 

The ISSA values of MdP and Malanyeu events are 1.3 m2/m3, suggesting similar initial joint 

pattern conditions. However, Malanyeu is 5 times bigger and MdP generates more new surfaces 

(TSSA of 10 m2/m3 compared to 3 m2/m3 in Malanyeu).  

 

The model p arameters  show a trend with the NA (Figure 18, left) and a distinct correlation with 

the proportion of NA/TA (Figure 18, right). By decreasing the geometric factor “b” and the 

survival rate “Sr”, the NA/TA increase, increasing the proportion of new fresh faces related to 

breakage. 

 

Figure 18: Model parameters “b” and “Sr” versus New Surface Area created, NA (Left), and versus the 

proportion of New Area over the Total Area (NA/TA). 
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5. Summary and conclusions 

 

Perfect (1997) highlights the importance of describing describe the initial state of a brittle material 

before and after the fragmentation to study properly the phenomenon. We make efforts in order 

to characterize as well as possible the IBSD (In situ Block Size Distribution) and the RBSD 

(Rockfall Block Size Distribution) in order to improve the fragmentation understanding and to 

test the proposed fractal fragmentation model with real data.  

 

UAV and digital photogrammetric techniques are very useful in order to obtain detailed 3D 

models of the whole scenario, and specifically, of the scar. From the latter, it is possible to 

reconstruct the detached volume and characterize the joint pattern. We worked with the real 

position of the modelled joints and assumed infinite persistence, as hypothesis (as a first 

approach). The reconstructed volume is cut in order to estimate the IBSD. We inventoried 7 

rockfalls with total volumes ranging between 2,6 m3 and 10.000 m3, measuring more than 7200 

fragments of the deposits (3 lengths with a tape assuming prismatic shape) in order to obtain the 

RBSD of each inventoried rockfall event. Using the IBSD as input, and the RBSD as real results, 

we calibrate the model parameters to simulate the RBSD and the estimation of the new surfaces 

created. Both outputs are useful for energetic estimations propagations models, and QRA analysis 

considering multiple impacts due to fragmentation. 

 

The model is able to reproduce satisfactorily the measured RBSD, from the IBSD. In this paper, 

the model is upgraded, introducing two main improvements:  

 

1) Avoidance of bins, working in cumulative form and conserving the mass balance: With the use 

of bins, all the fragments from each size bin in the IBSD is defined by an average size, and the 

fragments created on each iteration are equal size. Due to this, the mass balance cannot be 

achieved. The upgraded model uses each initial block of the IBSD (list of volumes) as initiator, 

and generates an accumulated number of fragments of decreasing size that fits better to the 

observations, specially in the case of a single block as initiator like in the real-scale fragmentation 

test on quarry. The model generates fragments until the sum of fragments is equal to the initiator 

initial volume, or until the fragments become smaller than a threshold value. The remaining mass 

is computed as volume of fine fragments (finer than the threshold defined). Thus, the upgraded 

model conserves the mass balance.  

 

2) The use of the scale-variant behavior: Based on the RBSD measured in the deposits and from 

the block size distributions measured in real-scale fragmentation tests, a scale-variant (or scale-

dependent) behavior is observed. The upgraded model uses the formulation proposed by Perfect 
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(1997) for scale-variant fragmentation. The probability of failure is defined by the probability of 

survival or Survival rate (Sr), and represents the largest unbroken part of the block normalized by 

the initial block volume. The survival rate controls whether a block breaks or not, being 1 for 

unbroken blocks. In Ruiz-Carulla et al (2017), the survival rate represented the proportion of 

unbroken blocks of each bin size from the IBSD. Here, the Sr is applied over each initiator instead 

to the global number of initial blocks. Then, a new parameter “r” controls de scale dependency 

making blocks either stronger or weaker by decreasing their size. This happens when the fragment 

size is smaller than the minimum joint spacing or weakness planes within the rock mass. The 

geometrical factor “b” still controls the proportion between the size of the blocks and fragments 

generated. The upgraded model is able to reproduce all kind of block size distributions observed 

in natural rockfall deposits and of real-scale fragmentation test, even when the initiator is a single 

block. 

 

In this study, we calibrate the model parameters using the same set of parameters b, r and Sr for 

all the blocks of each rockfall event. The calibrated values of the geometric factor “b” range 

between 1.235 and 2.34, and the Survival rate from 0.18 to 0.9. The parameter “r” controls the 

variant or invariant behavior, yields 4 cases where it is equal to 0, characterizing these rockfall 

events as a predominant invariant behavior. In all the cases, the Xir
2 used to calibrate the model 

ranges between 0.0004 and 0.018. We use the average parameters of the fragmentation model, 

despite the fact that the set of parameters can be specific of each block, depending on the impact 

conditions. Future trajectory simulators considering fragmentation will be able apply a different 

set of parameters for each block at each impact. The controlling factors is the focus of our future 

research. By now, the capacity to absorb energy of the terrain, despite its relevance is difficult to 

quantify, as well as the total potential energy, the impact conditions (impact angle) and the shape 

of the blocks. 

 

The RMR shows a positive correlation with the survival rate, however, the correlation with the 

geometric factor b is weak. Similarly occurs with the correlation with the Uniaxial Compressive 

Strength and the Tensile Strength without direct correlations. It may be noticed a relation between 

the 3d surface area of the scar and the total rockfall volume, as well as the number of fragments 

and new area created in a wide range of orders of magnitude. The new area created is related with 

the fragmentation energy, and seems to be directly correlated with the total rockfall volume as 

well as total potential energy.  

 

The specific surface area of the initial blocks (ISSA) and the resultant fragments (TSSA) is 

estimated. The proportions of Initial, New and Total Specific Surface Area of the blocks 

characterize the fragmentation scenario. The ISSA (Initial Specific Surface Area) is the one 
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generated by disaggregation of the rock mass through the preexisting discontinuities, and is 

determined by the IBSD. There exists a direct relation between the NSSA (New Specific Surface 

Area) and the breakage of the rock creating new surfaces. Based on this, we interpret the more or 

less predominant fragmentation behavior based on the proportion of New Surface Area over Total 

Surface Area (NA/TA = NSSA/TSSA). The model parameters show a clear correlation with the 

proportion of NA/TA. 

 

However, the number of inventoried cases is too small to generalize these findings. The 

fragmentation process is a very complex phenomenon where small details that may affect the final 

results. From real-scale fragmentation test, we observed how 30 similar blocks dropped from the 

same height on the same place yields Sr ranging between 0.2 and 1 (unbroken) depending on the 

local impact conditions and the block shape. For these reasons, a probabilistic approach of the 

fragmenation should still be used. 
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ANNEX A: Block size distribution from calibration process on the 

inventoried cases. 

Block size distribution from calibration process on the inventoried cases. 
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PART IV 

Applications 

11- Magnitude and Frequency relations: are there geological constraints to the rockfall size? 

12- Quantitative Analysis of Risk due to Fragmental Rockfalls 
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11. Magnitude and Frequency relations: are there geological

constraints to the rockfall size? 

Publication reference: 

Corominas J, Mavrouli O & Ruiz-Carulla R, (2018) Magnitude and Frequency relations: are there 

geological constraints to the rockfall size? Landslides Landslides, Volume 15 Issue 5, pages: 829-

845. https://doi.org/10.1007/s10346-017-0910-z 

Abstract. There exists a transition between rockfalls, large rock mass failures and rock 

avalanches. The magnitude and frequency relations (M/F) of the slope failure are increasingly 

used to assess the hazard level. The management of the rockfall risk requires the knowledge of 

the frequency of the events but also defining the worst case scenario, which is the one associated 

to the maximum expected (credible) rockfall event.  

The analysis of the volume distribution of the historical rockfall events in the slopes of the Solà 

d’Andorra during the last 50 years, shows that they can be fitted to a power law. We argue that 

the extrapolation of the F-M relations far beyond the historical data is not appropriate in this case. 

Neither geomorphological evidences of past events nor the size of the potentially unstable rock 

masses identified in the slope support the occurrence of the large rockfall/rock avalanche volumes 

predicted by the power law. We have observed that the stability of the slope at the Solà is 

controlled by the presence of two sets of unfavorably dipping joints (F3, F5) that act as basal 

sliding planes of the detachable rock masses. The area of the basal sliding planes outcropping at 

the rockfall scars were measured with a Terrestrial Laser Scanner. The distribution of the areas 

of the basal planes may be also fitted to a power law that shows a truncation for values bigger 

than 50 m2 and a maximum exposed surface of 200 m2. The analysis of the geological structure 

of the rock mass at the Solà d’Andorra make us conclude that the size of the failures is controlled 

by the fracture pattern and that the maximum size of the failure is constrained.  Two sets of steeply 

dipping faults (F1 and F7) interrupt the other joint sets and prevent the formation of continuous 

failure surfaces (F3 and F5). We calculated the likelihood of generation of a large sliding surface 

by connecting the basal sliding planes displaced by the fault sets, with a Monte Carlo simulation. 

The results obtained are consistent with the size of the exposed failure surfaces measured in the 

slopes. We conclude that due to the structural control, large slope failures in Andorra are not 

randomly distributed thus confirming the findings in other mountain ranges.   

Keywords: rockfall, maximum volume, structural constraints, unstable volumes identification
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1.  Introduction 

 

Rockfalls are widespread phenomena in mountain ranges, coastal cliffs, volcanos, river banks, 

and slope cuts. Most of them take place in remote places, but they may cause significant damage 

in residential areas and transport corridors (Hungr et al. 1999; Chau et al. 2003; Corominas et al. 

2005). They are extremely rapid processes that even in the case of small events, they exhibit high 

kinetic energies and damaging capability (Turner and Jayaprakash, 2012).   

 

Cruden and Varnes (1996) defined rockfall as the detachment of a rock from a steep slope along 

a surface on which little or no shear displacement takes place. The detached mass experiences 

free fall and, after impacting on the ground, it continues by bouncing and rolling. Strictly 

speaking, rockfalls are individual blocks or relatively small rock masses that propagate without 

interaction between the most mobile fragments (Hungr el al. 2014). Rock avalanche is a large 

rock mass volume that propagates as granular flow, involving crushing and pulverisation of the 

particles (Scheidegger, 1973; Hungr et al. 2014). 

 

Rochet (1987) distinguished: (i) falls of boulders up to few hundred of cubic meters, in which no 

interaction exists between the rock fragments, which follow independent trajectories; (ii) rock 

mass fall up to few hundreds of thousands of cubic meters in which the interaction between 

particles is weak as they follow independent trajectories or soon they become independent. This 

sort of propagation is known as fragmental rockfall (Evans and Hungr, 1993); (iii) very large rock 

mass fall (>105- 106 m3) showing strong interaction of particles within the moving mass with the 

development of internal pressures (possible fluidification) and low energy dissipation; and (iv) 

mass propagation (> 106 m3) that progresses mostly by a translational displacement. 

Differentiating between all these mechanisms is relevant because rockfalls and fragmental 

rockfalls are modelled as ballistic trajectories while rock avalanches are simulated as granular 

flows (Bourrier et al. 2013). The passage from a falling of independent particles to a granular flow 

is gradual and both mechanisms can coexist in some events. The transition may take place at 

volumes as small as 5x104m3 (Davis and McSaveney, 2002) although other authors raise it up to 

107m3 (Hsü, 1978). The current practice shows that the agreement in using terms such as rockfall, 

rockslide and rock avalanche has not yet reached (Hungr et al. 1999; Chau et al. 2003; Dussauge-

Peisser et al. 2002; Guzzetti et al. 2003; Hewitt et al. 2008). In light of these considerations, in 

this paper we will not consider any volumetric threshold between rockfall and rock avalanches, 

as recommended by Turner and Jayaprakash (2012). 

 

The management of the rockfall hazard may be based on the Quantitative Risk Analysis (QRA). 

The QRA is a formal and structured framework that considers the probability and consequences 
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for all the credible hazard scenarios (Ho, 2004; Fell et al. 2008). The management of the rockfall 

risk is a challenging task. There is a demand for assessing not only the hazard and socio-economic 

impact in the short term but also for evaluating the consequences of large often unrecorded events. 

The UN/ISDR (2004) introduced the concept of living with risk in order to develop strategies and 

undertake actions oriented to the prevention and mitigation of the consequences in developed 

areas. Living with risk requires the analysis of the potentially hazardous scenarios (Brundl et al. 

2009) and in particular, the scenario associated to the Maximum Credible Event (MCE).  

 

The magnitude of landslide is expressed by either the area or volume (Corominas et al. 2014). 

The former is widely used for landslides because they can be readily measured from maps, aerial 

photographs or satellite images. The rockfall magnitude is usually expressed as the volume. Risk 

assessment requires considering the probability or the frequency of different magnitude scenarios 

for landslides (Picarelli et al. 2005; Rossi et al. 2010; Lari et al. 2014) and rockfalls (Hungr et al. 

1999; Agliardi et al. 2009; Wang et al. 2014). The frequency may be expressed as a simple 

cumulative or non-cumulative manner (Guzzetti et el 2002) or as a frequency density (i.e. number 

of landslides of a given size divided by the size of the bin) (Guzzetti et al. 2003, Malamud et al. 

2004). 

 

Landslides occurring in a specific study site may be characterized by magnitude-frequency 

relations derived from the empirical data. These relations can be prepared using different 

approaches and data sources (Picarelli et el 2005): (i) landslide of different ages mapped at one 

time from aerial photographs and field surveys (Guzzetti et al. 2002; Malamud et al. 2004); 

landslides for a defined time interval (i.e. from successive aerial photographs); from triggering 

events such as rain storms or earthquakes (Malamud et al. 2004); from continuous inventories 

(Hungr et al. 1999; Guzzetti et la. 2003; Rossi et al 2010). The M-F relations often follow a power 

law over a limited scale range, with deviations at both high and low magnitudes (Brardinoni and 

Church, 2004; Guthrie and Evans, 2004). To explain the positive exponent at smaller volumes, 

Stark and Hovius (2001) proposed a double Pareto distribution while Malamud et al (2004) fitted 

an inverse-gamma distribution but in both cases the tail of the distribution follows a power law. 

 

A scale invariance of the M/F relation has been observed over several orders of magnitudes in 

landslides and rockfalls, in different geological contexts and associated to different triggering 

events (Guzzetti et al. 2003; Marques, 2008). Malamud et al. (2004) noted that rockfalls show a 

behaviour different than the other types of landslides. This was attributed to the fact that rockfall 

involves the disintegration of the rock mass. Guzzetti et al. (2003), Dussauge et al. (2003), and 

Hergarten (2012) claimed that the negative exponent of the power law is similar for several 

rockfalls inventories. A wider review of the available literature indicates however that the scaling 
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parameters of the power law for rockfalls may vary between 0.4 and 0.9 according to regional 

differences in structural geology, morphology, hydrology and climate (Barlow et al. 2012) (see 

also Table 1) 

 
Table 1. Exponents of the power law fitted distributions obtained for different rockfall inventories 

Reference Location Length of 

the record 

(yr) 

Range of 

volumes fitted 

(m3) 

number of 

events  

N 

Scaling 

parameter  b 

Hungr et al. 1999 Highway 99 British 

Columbia,  

40 101 to 8x108 390 - 0.43 

BCR line 12 100 to 104 403 -0.4 

 Highway 1  100 to 104 226 -0.7 

CP Line 22 100 to 104 918 -0.65 

Gardner 1970a Lake Louis Two 

summers 

10-1 to 103 409 -0.72 

Chau et al. 2003 Hong Kong, China   201 -0.87 

Dussauge-Peisser 

et al 2002 

Upper Arly, gorge 

French Alps 

 100 to 104 59 -0.45 

Grenoble, French Alps 60 10-2 to 106 87 -0.41 

Yosemite, USA 77 100 to 105 101 -0.46 

Royán et al. 2015 Puigcercós, Spain 6.87 10-2 to 102 3096 -0.72 

Wang et al. 2014 Feifeng Mountain, 

China 

200 100 to 102 27 -0.62 

a Cited in Hungr et al 1999 

 

The fact that different sets of rock falls and rock slides exhibit the same magnitude-frequency 

relation has supported the idea that the frequency of large unrecorded events can be estimated by 

extrapolating the power law obtained for the small-size events provided that the record of the 

latter is complete (Dussage-Peisser et al. 2002; Guzzetti el al., 2002, 2003; Picarelli 2005).  This 

exercise raises the question on the range of validity of the extrapolation (Corominas and Moya, 

2008). The analysis of the probability of occurrence of rockfalls along large cliffs is affected by 

uncertainties due to the different site-specific characteristics (Wang et al 2014), while the 

temporal resolution over which power laws can be applied is poorly constrained (Cruden and Hu, 

1993). 

 

The question posed here is to what extent the empirically-based models are capable to extrapolate 

short-term observations to the spatial and temporal scales required for reliable rockfall risk 

management. This requires the understanding of the scaling behaviour of rockfall processes.  Two 

issues must be addressed. The first one is that several authors (Picarelli et al 2005; Cascini et al. 
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2005; Corominas and Moya 2008) argue that a major difficulty for the assumption of M/F 

invariance is whether the rate of landslide occurrence will persist in the future. In that respect, 

Cruden and Hu (1993) noticed a decay in time of the number of large landslides in the Canadian 

Rockies, that contradicts the stationarity implicit in the power law.  The second one is the 

definition of the largest volume that can be predicted with the extrapolation of the M/F relations.  

 

In this paper we attempt to address the last issue with the analysis of the rockfall activity in the 

Sola d’Andorra, Eastern Pyrenees. We will first present the results of the F/M of rockfalls in 

Andorra using historical data what can be expected from them. Secondly, we will address the 

definition of a cut-off value for the size of the maximum expected rockfall/rock avalanche event, 

and we will discuss the role of the geological factors in possible constraining the maximum 

volumes.  

 

2.  Rockfall hazard management in Andorra 

 

The slopes of the Solà d’Andorra bound the right bank of the Valira d’Orient river in the 

Principality of Andorra. This stretch of the valley is a basin that was deepened and widened by 

glaciers during the Pleistocene. After the glacier retreat, a lake was formed and the basin filled 

with lacustrine, deltaic and colluvial sediments up to a depth of 100m. Nowadays it forms a 1km-

wide alluvial valley (Turu et al. 2007).    

 

The Solà is the lower part of the Enclar massif (2383m), extending between the urban settlements 

of Santa Coloma and Andorra la Vella. The rock mass is made up of highly fractured granodiorite 

and hornfels. The slope is characterized by the presence of V-shaped couloirs alternating with 

steep walls for a length of about 3km  (Figure 1). The couloirs extend from 990 m to about 1300 

m.a.s.l. The rockfall activity at the Santa Coloma wall has an average frequency of 1 event bigger 

than 1m3 every 2 years. In the last decades (since the 1960s) the maximum recorded rockfall 

events attained a volume of of 1000 m3 in its the Tartera de la Pica (April 1969) and 150 m3 

(April, 2008) in the chute of Forat Negre. The average annual rainfall precipitation is of 1071.9 

mm. Although some events occurred after rainfall episodes, a direct relation between precipitation 

and rockfalls could not be established so far (Copons et al. 2004). Freeze-thaw process might also 

play a role for the onset of the failure.  
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Figure 1. The slope above the town of Santa Coloma and the chute of Forat Negre. 

 

The efforts of the Andorran administration in the management of natural hazards began in the 

eighties of last century (Corominas, 2007). The first global initiative took place between 1989 

and 1991 with the preparation hazards maps at 1:25,000 scale, that included landslides and flood-

prone areas. The main impulse in management of the natural hazards was given by the Urban and 

Land-Use Planning Law approved in 1998. The key points of this law in terms of hazard 

management are the following (Escalé, 2001): (a) the zones exposed to natural hazard cannot be 

developed; (b) local development plans must take into account the presence of zones exposed to 

natural hazards; (c) the Andorra government will commission both geological-geotechnical 

studies and hazard mapping. This means that the Andorra government has to provide hazard 

inventories, hazard zoning and regulations for management of the threatened areas. In those sites 

where hazard can be mitigated and reduced to an acceptable level, the Andorran government will 

establish the requirements of the protective works that have to be undertaken. After the 

implementation of the law, several studies were completed and among them: the Geotechnical 

and Landslide Hazard Zoning Plan of Andorra (1999-2001). The purpose of the Plan was to 

identify, locate and assess the natural hazards as well as the geological and geotechnical 

constraints that may affect future construction works in the Andorran territory. The scale of work 

was 1:5,000 (Corominas, 2007). 
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In January 1997, a falling rock block hit a building in Santa Coloma, causing an injury. This event 

persuaded the Andorran administration to implement the Rockfall Risk Management Master Plan 

(RFMP) of the Solà d’Andorra which was completed in 1998 (Copons et al. 2004). This Plan 

established, the restriction to the development in the most threatened sectors and it was published 

in the official journal of the Principality in the year 2000. The RFMP, based on a rockfall 

trajectographic analysis, defined an upper boundary line above which development is forbidden. 

Several existing buildings were already within the exclusion area. For all these cases, the RFMP 

contemplated the design of rockfall defenses (Copons et al. 2001). The cost of the protective 

works raised over 4.5 million euro (Escalé, 2001). After the construction of the fences several 

events have occurred with minor only consequences. However, a residual risk exists as large 

rockfall events might not be fully retained due to excessive energy or bouncing height 

(Corominas, et al. 2005).  

 

The RFMP has been complemented with a Surveillance Plan that started in 1998. This Plan aimed 

at (Amigó et al. 2001): (a) the inventory of the rock falls occurring in the valley side; (b) the 

update and validation of the trajectographic models used to design the protective structures 

(rockfall paths, height of bounces, among other parameters); and (c) the detection of possible 

large rockfall events (exceeding thousands of m3). It is expected that before the large rock mass 

failure, premonitory signs such as the increase the number of small rockfall events or the opening 

of new fractures, could be timely identified. 

 

The risk management practice requires assessing the scenario associated to the maximum credible 

event (MCE). The MCE is a very conservative estimate of the event considered sufficiently 

unlikely, sometimes associated to a notional return period of the order of 1,000 years (Ho, 2004). 

In any case, it should correspond to the largest event observed in historical data, 

geomorphological evidence in the area and its vicinity and any other relevant evidence from 

similar terrain (Ho, 2004). 

 

We have attempted to estimate the size of rockfall events that can be expected in the future. A 50-

yr length record of rockfall events bigger than 1 m3 is nowadays available in Andorra and can be 

considered complete since 1999. This length is similar to the length used in other M/F studies 

(Hungr et al. 1999; Dussauge-Peisser et al 2002). The record has been used for the construction 

of the M/F relation for the Solà d’Andorra. Table 2 contains the historical rockfalls inventoried 

and their volumes, while the plot of Figure 2 shows the relationship between the volumes and the 

cumulative frequency expressed as the number of events greater than a given volume per year. 
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Table 2. Historical rockfalls at the Solà d'Andorra and their volumes. The rockfall volumes of the boxes 

framed in pink are estimations based on the volume of the largest block observed. Source: Copons, 2007 

and unpublished data from Surveillance Plan of the Ministry of Land Management (MOT). 

Location Year of 

occurrence 

source Volume                             

(m3) 

Largest block                  

(m3) 

Canal de la Pica 1969 Copons, 2007 1000 60 

Canal Ramenada 2012 MOT 450  

Canal de la Pica 20003 Copons, 2007 300 70 

Forat Negre 2008 MOT 150 32 

Canal de l’Alzina 1997 Copons, 2007 125 25 

Canal Ramenada End of 1960s Copons, 2007 100 10 

Roc Sant Vicenç 2002 MOT 30 14 

Forat Negre 1968 Copons, 2007 30 7.5 

Forat Negre 2009 MOT 30 7 

Forat Negre 2004 MOT 25 4 

Canal Coll d’Eres 1983 Copons, 2007 25 7 

Forat Negre 2014 MOT 20 8 

Cementiri 2011 MOT 20 1.3 

Forat Negre 1984 Copons, 2007 10 1 

Forat Negre 2002 MOT 10 2 

Forat Negre 2003 MOT 10 2.3 

Canal Boneta 2001 MOT 10  

Canal Boneta 2002 MOT 10 1 

Canal de la Pica 1996 Copons, 2007 10 2 

Canal de la Pica 2000 MOT 10  

Forat Negre 1994 Copons, 2007 5  

Forat Negre 1996 Copons, 2007 5  

Canal de l’Alzina 1999 Copons, 2007 5  

Forat Negre 2000 MOT 4  

Forat Negre 2001 MOT 4  

 

 

The inventory includes 25 cases since the late 60s of last century. The data before 1999 might not 

complete and, in some events, the initial rockfall volume is not well known. For this reason, an 

estimate has been made (boxes highlighted in green) from the descriptions available of the events. 
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Figure 2. Relationship between the volume (m3) of the inventoried rockfall event at the Solà and the 

cumulative relative frequency (N events larger than a certain size per year) 

 

The relation shown in Figure 2 fits well to the power law of Equation [1]: 

 

N = 1,193. V-0.537        [1] 

 

Being N, the number of rockfalls per year exceeding the volume V. 

 

The extrapolation of this relationship to rockfall volumes much larger than the inventoried, would 

result in the frequency for each range of return periods and volumes shown in Table 3 

 

 
Table 3. Cumulative frequency and return periods obtained from the extrapolation of the power law fitted 

to the rockfalls observed at the Solà d’Andorra during the last 50 years.. 

 

Volume range (m3) Fr (events/year) Return period (years) 

≥1 1.1933 0.84 

≥10  0.3465 3 

≥100  0.1006 10 

≥1,000 0.0292 34 

≥10,000 0.0085 118 

≥100,000 0.0025 406 

≥1,000,000 0.0007 1397 
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The extrapolation of the power law defines a scenario in which cliff failures with a magnitude of 

a hundred of thousands of cubic meters (i.e. large rock slides or rock avalanches) have a 

recurrence period of about 400 years.  

 

3.  Are there evidences supporting the extrapolation of M/F relation obtained at the Sola 

d’Andorra? 

 

A number of studies have shown that the occurrence of large rockslides and rock avalanches has 

geomorphic consequences which can be deciphered by means of the analysis of the landscape. 

Two main distinct features of rock avalanches are the deposits and the scar left at the source 

(Soeters and Van Westen, 1996; Hewitt, 2002; Ballantyne and Stone, 2004). 

 

3.1 Rockfall deposits 

 

Rock slide and rock avalanche deposits as old as tens of thousands of years remain blanketing the 

valley bottoms of the main alpine chains (Voight and Pariseau, 1978; Cave and Ballantyne, 2016; 

Crosta et al. 2016). Some old rock-avalanche deposits are remarkably well preserved such as 

those of the Karakoram range (Hewitt et al. 2008) or in the northern Chilean coast (Crosta et al. 

2016), partly due to semi-arid conditions of these regions. Others are less preserved because they 

run onto glaciers and became dispersed by ice flow or removed by the fluvial erosion (Hewitt et 

al. 2008).  However, even in the latter case the deposits may remain for thousands of years.  

 

The Valira d’Orient glacier resided in the Andorra la Vella basin until ca. 18 ka (Turu et al. 2016). 

After the glacier retreat any landslide or rockfall deposit would have emplaced on ice-free valley 

floor. At present, only talus deposits from rockfalls and the debris cones from debris flow events 

accumulate at the foot of the slopes, bounding plain of the Valira river. According to the results 

of Table 2, rockfalls of the order of 10,000 m3 should have occurred almost every 120 years and 

two events of 100,000 m3 each millennium. However, the bottom of the the Solà d’Andorra lacks 

of debris deposits that could be associated with the release of a large rockfall or rock avalanche. 

In case they had occurred, the deposits should lay over the alluvial plain of Santa Coloma. Figure 

3 shows the topographic profile of the Santa Coloma slope, the alluvial plain of the Valira river, 

and the expected runout for different rockfall/rock avalanche sizes detached from the walls of the 

Solà d’Andorra. The runout has been determined using the equations for unobstructed 

rockfalls/rock avalanches prepared by Corominas (1996) Corominas et al. (2003). 
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Figure 3. Maximum runout that could be achieved by rockfall events with sizes between 5,000 and 200,000 

m3 originating from the slopes of the Borrassica in Santa Coloma if they had occurred in the past. The 

runout has been calculated following the criterion of reach angle for unobstructed rockfall events 

(Corominas 1996; Corominas et al. 2003). 

 

 

Based on the distances obtained shown in Figure 3, rockfall events of tens of thousands of cubic 

meters would blanket much of the valley bottom. In the event that the volume increased to 

100,000 m3 or greater, the deposits would reach the opposite slope. However, in the historical 

archives of the valley there is no record of events of any of these sizes. Figure 4 is an aerial 

photograph taken before the extensive development of the basin of Andorra la Vella and Figure 

5 is the geomorphological map prepared by Turu et al (2007). Both figures show the lack of 

rockfall/ avalanche deposits over the valley bottom. These type of deposits have not been found 

either in the boreholes drilled in the fluvial plane or in the interpretation of geoelectrical surveys 

carried out in the basin for hydrogeological purposes (Gutiérrez-Rodríguez and Turu, 2013). 
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Figure 4. Aerial photograph of the Andorra la Vella basin taken in 1948. 

 
Figure 5. Geomorphological map of Santa Coloma – Andorra la Vella – Les Escaldes: (1) stream, (2) debris 

fan, (3) talus deposit and colluvium, (4) alluvial deposit, (5) till, (6) reconstructed glacial margins, (7) 

glacial cirque, (8) hummocks (modified from Turu et al. 2007). 
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3.2 Analysis of the rockfall scars 

 

The availability of modern data capture techniques facilitates the analysis of the rockfall scars. 

Successive surveys with the TLS allow the identification and measure of the volumes missing 

from the rock wall (Rosser et al. 2007) and the preparation of M/F relations (Royan et al. 2014). 

We argue that cliff faces contain the record of rockfall events that occurred during the last 

hundreds or thousands of years. Each rockfall scar bounds the mass that was detached from the 

rock wall as a single or multiple events (Figure 6). Consequently, the volume distribution of the 

rockfall scars can be used as a quantitative proxy the rockfall volume distribution (Santana et al. 

2012). 

 

 
 

Figure 6. Rockfall scar defined by three intersecting joint sets. The detached block was resting on a basal 

plane (B) which is bounded by planes (A) and (C). The height of the scar (h) may involve several spacings 

 
The dimensions of the rockfall scars can be determined from a point cloud obtained with a 

Terrestrial Laser Scanner, TLS. In the the Solà d’Andorra this was carried out at the slope of 

Borrassica-Forat Negre, following the methodology of Santana et al. (2012). Eight joint sets 

present in the rock mass were first identified (F1 to F8). Four sets are directly involved in the 

formation of the scars (Table 4). 

 

 

 

B 

B 

B A 

A 

C 

C 

C 

C 

h 

h 



280 
 

Table 4. Dip direction and dip angle of the discontinuity sets that contribute to the formation of scars. 

 Dip direction (°) Dip angle (°) Role 

F1  54  59  Lateral plane/tension crack 

F3  157  56  Basal sliding plane 

F5  182  47  Basal sliding plane 

F7  141  89  Tension crack 

 

 
Figure 7. Stereoplot showing the joint sets involved in the formation of unstable volumes at the slope of 

Borrassica-Forat Negre. The slope is mostly oriented to 180º 
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The observation of historical events as well as the kinematic analysis of the fracture pattern 

(Figure 7) show that most of the rockfalls initiate by sliding of the detached rock mass over an 

unfavourable dipping discontinuity plane (F3 and F5). Each rockfall scar is therefore defined by 

a basal plane and two tension cracks (F1, F7 joint sets).  The area of each discontinuity plane and 

the height of the scar was obtained from the treatment of the point cloud generated with the TLS. 

The volume of the rockfalls was generated stochastically by combining the measured areas and 

the scar heights following a Monte Carlo simulation approach. The procedure accounted for 

stepped failures sliding over parallel discontinuity surfaces spaced less than 0.2 m.  It is assumed 

that each scar on the slope face corresponds at least to an event.  

 

To measure the size distribution of the missing volume from the scars, the points of the point 

cloud belonging to each sets were extracted and planes were adjusted to them. Afterwards, the 

areas were measured (Figure 8) as well as their maximum width (along the strike) and length 

(along the dip direction).  

 

 
Figure 1. Magnitude (area in m2) - Cumulative frequency of the discontinuity surfaces of the sets F3 and 

F5, calculated from the point cloud  

 

 

The areas of F3 and F5 (basal planes of the scars) were well fitted to a power law. The scar heights 

were measured as intersections of the tension cracks F1 and F7. Eventually, the size distribution 

of the scars was calculated past a Monte Carlo simulation by the multiplication of the scar areas 

with the scar heights (see details in Santana et al. 2012).  
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The results were fitted to the f power law of Equation [2].  

 

N (>V) = 1919V-0.92       [2] 

 

Where N is the number scars bigger than V and V, the volume of the scar in m3.  

  

Five thousand scars were randomly generated, based on the observed distribution of the areas and 

heights, which is of the same order of magnitude of the number of scars identified on the point 

cloud in Borrassica-Forat Negre. The maximum scar volume calculated using this method is about 

3000 m3. This volume is substantially smaller than the predicted with the extrapolation of the 

M/F relation of the historical rockfalls. 

 

The analysis of large rockslides, show that the sliding surface may be a single plane or it may be 

composed of a series discontinuity planes and lateral release surfaces with both down-dip and 

laterally stepped morphology as in the Aknes (Ganerod et al. 2008) or Palliser Rockslide 

(Sturzenegger and Stead, 2012). In the latter case, a composite surface is generated, which is 

characterized by a combination of low persistence discontinuities, cross joints and broken rock 

bridges. Steps can be as high as 35m (Sturzenegger and Stead, 2012).  The approach followed by 

Santana et al (2012) in the slopes of Borrassica-Forat Negre has the restriction that only step path 

basal surfaces involving steps heights of less than 0.2m were considered.   

 

3.3 Identification of massive rock mass failure scars 

 

To check the possibility of occurrence of a large stepped failure at the Borrassica-Forat Negre 

slope in the past, we have looked for remnant of an old rockslide or rock avalanche scar in the 

slope.  Source areas of large rock slides and massive rock failures are usually characterized by 

the presence of a more or less continuous sliding surface that terminates against large lateral and 

or back release surfaces forming prominent scarps (Cruden 1975; 1985; Eberhardt et al 2004; 

Willenberg et al. 2008; Sturzenegger and Stead, 2012; Stead and Wolter, 2015). Lateral and back 

release surfaces can form by the presence of cross joints, by the breakage of rock bridges or by 

the combination of both. In highly unstable mountain fronts, adjacent scars may coalesce to form 

large niches several kilometres length (Crosta et al. 2016). These features can persist for millennia 

or even longer (Hewitt et al 2008). 

 

The exposed basal sliding planes (failure surface) are therefore a reasonable indicator of both the 

occurrence and size of rock slide (rock mass failure). 
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Figure 9. Type I and III steps (Sturzenegger and Stead, 2012) formed at the down-dip and laterally stepped 

basal failure surface of a rockslide at the Pic of Freser, Eastern Pyrenees, Spain   

 

 

At the scale of the whole slope, both rear and lateral scarps and either single or step path sliding 

surface may be identified as a distinct macro forms (Figure 9). The steps of the stepped sliding 
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surfaces, can be approximated as roughness features (Wolter et al. 2014; Stead and Wolter, 2015) 

that can be scaled (Barton and Bandis, 1982).  

 

We have attempted to fit a large step path surface at the slope of the Borrassica-Forat Negre, 

assuming that the surface can be a down-dip (type I) or a laterally (type II) stepped basal failure 

surface or both. We expect the large stepped failure to be composed of more or less parallel, 

relatively long, straight stretches alternating with steps of different heights produced by F7 joint 

set. The direction of the movement will follow the dip direction of either F3 or F5 joint sets. It 

may be also expected that lateral steps (type III) may develop in a direction more or less parallel 

to F1 joint set. In this case, transverse cross sections should show straight (almost horizontal) 

stretches alternating with the steps generated by F1 joint set, similarly to what is shown in Figure 

10. 

 

We used the program CloudCompare. to fit a large rupture surface to a sequence of down-dip 

stepped planes and the cross-sections. As seen in Figure 10, it is not possible to adjust a large 

stepped surface to Borrassica-Forat Negre slope because despite the longitudinal profile being 

compatible with the presence of a large stepped surface, the transverse profiles suggest otherwise. 

The transverse profiles show protuberances that prevent the definition of a sliding surface. We 

have included the profile generated in the outcrop of Pala de Morrano in the Aigüestortes-Sant 

Maurici National Park, Central Pyrenees, for comparison. 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Top: profiles extracted from a point cloud in Pala de Morrano, Aigüestortes-Sant Maurici National Park, Eastern Pyrenees. The straight stretches of the step-path 

failure surface are clearly observable in both longitudinal and transverse cross-section. Bottom: profiles extracted from the point cloud of the slope of Borrassica-Forat Negre. 

Transverse sections exhibit protuberances that interrupt any possible large sliding surface 



286 
 

4.  Defining the maximum credible volume 

 

In risk management, the design of mitigation measures and the delimitation of the hazardous areas 

are based on analyses for a range of expected potential rockfall volumes (Corominas et al. 2005; 

Abruzzese et al. 2009; Agliardi et al. 2009; Li et al. 2009). The question posed in our work is 

what the range of validity of the historical power law is and specifically, what the largest rock 

slope failure or maximum credible event (MCE) can be in the Borrassica-Forat Negre slope. The 

MCE is usually characterized by volumes of rock masses of several orders of magnitude greater 

than the events commonly observed in the study area.  

 

As already mentioned, power laws for rockfalls-rock avalanches have been verified by a range of 

volumes spanning several orders of magnitude as in Yosemite, U.S.A. (Guzzetti et al. 2003) but 

in the case of the Solà d’Andorra, the M/F calculated from the historical rockfalls differ 

significantly from the geological record. On the other hand, the maximum volume cannot be 

unlimited. It is evident that for a given slope, the failure cannot exceed the size of the slope 

(Guzzetti et al. 2002). In the Solà d’Andorra this would be the scenario of an unfavorably oriented 

fully persistent discontinuity outcropping at the base of the cliff, crossing the entire massif. 

However, the largest credible rockfall event is the reasonable largest event, not the largest 

conceivable event. 

 

The analysis of the MCE for rockfalls is not a standardized procedure. In other scientific 

disciplines, concepts such as the maximum credible earthquake or the probable maximum flood 

were already introduced in the 90s. For earthquakes, the maximum credible event is the one that 

can be justified by all the known geological and seismic data (US Bureau of Reclamation, 2015). 

The estimation of largest hypothetical earthquake takes into account the characteristics of the fault 

or other seismic source and the current tectonic setting. It can be evaluated either deterministically 

or probabilistically.  As regards the calculation of annual exceedance probabilities of maximum 

flood discharge, the use of data from multiple sources is recommended. Moreover, procedures 

have been proposed to obtain the optimal range for the credible extrapolation of the magnitudes 

and return periods (Swain et al. 2006). In these cases, an upper boundary for the size of the 

maximum event is obtained.  

 

We assume in our work that the MCE for rockfalls is the largest reasonably conceivable slope 

failure that appears possible in the geographically contained slope, under the presently known or 

presumed geostructural and geomechanical setting. Several factors account for the occurrence of 

a slope failure of a given size, reflecting the complex interaction between the rock strength 

properties, the rock mass structure, the geomorphic context and the triggers. 
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4.1 MCE based on a simple kinematic analysis (Markland test) 

 

As mentioned, the rockfall events in the Solà d’Andorra are mostly governed by the presence of 

unfavorably dipping joint sets (the discontinuity sets F3 and F5). The potential of a large slope 

failure generated by this structural setting has been analyzed by Mavrouli et al (2015) and 

Mavrouli and Corominas (2017). They carried out an analysis aimed at identifying large 

kinematically detachable rock masses on a Digital Elevation model, DEM. The potentially 

unstable volumes were detected by checking the compliance of the joint sets with the Markland 

criteria at every cell. Adjacent unstable cells on the DEM, were merged to form larger unstable 

zones (Figure 11). 

 
Figure 11.  Rock wall and its projection on the mesh of the Digital Elevation Model. It assumes infinite 

lateral persistence of the unfavourable joint sets. Thus, adjacent cells which meet the requirements of the 

Markland test merge to form a single  kinematically movable rock mass. (from Mavrouli et al. 2015) 

 

 

The calculation of the volume of the detachable masses was simplified, assuming either cubic or 

prismatic shape of the detachable rock masses. The distribution of the potential rockfall volumes 

was calculated. The largest volumes obtained are of the order of 50,000 and 25,000 m3 for cubic 

and prismatic volumes respectively. The largest basal area was estimated at 1,361 m2.  
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The results may be fitted to the power laws of Equations [3] and [4].  

 

N (>V) =817.74V-0.572             [3] 

N (>V) =952.42V-0.546        [4] 

 

For cubic and prismatic shapes, respectively and volumes V>100 m3 

 

Where N is the number scars bigger than V and V, the volume of the scar in m3.  

 

 

4.2 MCE based on discrete potentially movable volumes 

 

We have here aproached the assessment of the MCE using an alternative way. In this procedure, 

we identified and calculated the volume of real rock spurs  resting on unfavourable dipping basal 

planes (F3 / F5 sets) of the Borrassica-Forat Negre slope, with several unconstrained faces. The 

basal sliding surfaces are actual outcropping discontinuities that have been identified one by one. 

The surfaces have been extracted from the TLS-generated point cloud and confirmed with digital 

photos. A similar approach was used by Gigli et al. 2014. 

 

The calculation of the volumes has been made with the program Rhinoceros. We have followed 

these steps: 

 

1) Identification of rock spurs having at least three unconstrained slope faces (front, crest 

and lateral), permitting mobilization.  

2) Location of both the basal and lateral discontinuity planes that bound the rock spur and 

definition of the volume of the rock mass. 

3) Estimation of the volume of the rock mass formed by the intersection of these 

discontinuity planes with the surface topography.   

 

An example of the procedure followed is shown in the Figure 12 (A to C). 
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Figure 12. (A)  Identification and definition of the rock spur volumes kinematically detachable at the 

Borrassica and Forat Negre slope. Each volume is delimited by real discontinuity planes observed in the 

slope and at least, three unconstrained faces; (B) Extraction of the of rock mass volume defined at (A); and 



290 
 

(C) Representation and calculation of the volume of rock mass defined at (A). In this case, the calculated 

volume is 8,000 m3. 

 

Following this procedure, we have characterized the five largest rock masses of the Borrassica 

slope resting on a basal plane, matching with the orientations of F3 or F5 joint sets whose outcrops 

have been double-checked in the photographs (Figure 13). Each of these rock masses is bounded 

by the topographic surface (open slope) and the highly persistent planes of F1 and F7 joint sets. 

It is assumed that the basal plane maintains its continuity under the rock mass until intersecting 

the persistent planes of the F1 and F7 joint sets or the topographic surface on the other side of the 

ridge are intersected. Table 5 shows the geometric characteristics of the volumes identified. 

 
Figure 13. Texturized point cloud showing the largest volumes of rock spurs defined at the slope of 

Borrassica-Forat Negre 
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Table 5. Volumes of the rock spurs identified at the slope of Borrassica – Forat Negre 

 

Roc spur Basal plane area    

( F3 or F5 set ) (m2) 

Volume of the rock 

mass (m3) 

BO-01 400 2600 

BO-02 2190 9100 

BO-03 3268 20200 

BO-04 2050 7400 

BO-05 900 8100 

 

We compared the volumes and basal areas of the rock spurs with the volumes estimated from the 

theoretical criteria of the test Markland used in the previous section. While the largest basal area 

identified from the Markland test is about 1300 m2, the basal area of rock spurs is significantly 

bigger (up to 3270 m2). However, the calculated volumes of the rock spurs are much smaller. 

This is due to the assumptions made in Mavrouli et al. (2015) on the persistence of the sliding 

planes and for converting areas to volumes. This supports the argument that the procedure used 

to calculate volumes with the simple kinematic approach overestimates the volume of potentially 

unstable rock masses and may set the highest bound for the MCE. Using this new approach (of 

5volumes), the volumes that we obtain are lower than the 50,000 m3 calculated previously.  

 

The size distribution of scars obtained in equation [1] is the empirical evidence of rockfall events 

that have occurred in the past. However, the kinematically movable rock masses from individual 

rock spurs are scenarios that might occur in the future. Comparing the size of the largest volume 

calculated from the scars (approximately 3,000 m3) and that of the most prominent rock spur 

(20,000 m3) or of the rock wall under the criteria of the Markland test (50,000 m3) is one order 

of magnitude. Although the difference is remarkable, it is worth noticing that none of the 

procedures used is capable to justify the volumes extrapolated from the F-M relation of Figure 2.  

 

The areas of the basal plans under the rock spurs may reach up to > 3200 m2. However, planes of 

this size are not observed in the basal plane of the scars, as the maximum surface measured basal 

plane of rupture is 213 m2 (Mavrouli and Corominas, 2017), and cannot be justified either by 

fitting large planes to stepped down-dip adjacent planes. 

 

An interesting detail of the area distribution of the planes measured with TLS (Figure 8) is that a 

truncation of the power relationship (area - cumulative frequency) occur for both F3 and F5 joint 

sets, which causes a significant reduction of the number of planes over 100 area m2 in relation to 

what is expected from the corresponding power law. 
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The truncation of the relationship is not fictitious as it applies to areas that have actually been 

identified and measured. Truncation may have a geological reason as it will be discussed in the 

next section. The truncation or deviation from the trend is also observed in other rockfall records 

(Figure 144), thus reducing the frequency of large rockfalls several orders of magnitude in relation 

to the provisions of the power law (Hungr et al. 1999; Guzzetti et al. 2003; Böhme et al. 2015). 

 
Figure 14. Truncation of the power law for rockfalls in Yosemite (from Guzzetti et al. 2003) 

 

 

5.  Role of the geologic structure 

 

Lithology, structure and erosion history (i.e. glacial steepening and debutressing) are predisposing 

factors of rock slope failures (Evans and Clague, 1988). The role of the geologic structure for the 

generation of large rockslides and avalanches is well documented in the literature. The fracture 

pattern frequently facilitates the kinematic release of large slope failures (Guzzetti et al., 1996; 

Agliardi et al., 2001, 2009b; Badger, 2002; Massironi et al., 2003; Ambrosi and Crosta, 2006; 

Stead and Wolter, 2015). The sliding planes of large slope failures often develop along pre-

existing planar features in the rock mass such as bedding planes, exfoliation joints, faults or 

cleavage dipping unfavourably towards de valley (Hermanns and Strecker, 1999; Keller, 2017) 

although in some regions this is not a requisite for the development large slope slope failures 

(Jarman, 2006; Cave and Ballantyne, 2016). On the contrary, the role of the geologic structure in 

constraining the size of the rock slope failures is less known.  
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In the Borrassica Forat Negre slope, Mavrouli and Corominas (2017) observed the frequent 

interruption of the basal planes (discontinuities F3 and F5) at their intersection with the tension 

crack and lateral release planes F7 and F1, respectively, which prevent the formation of large 

failures. Using independent procedures, they showed that the distribution of the exposed lengths 

along the dip of the F3 and F5 planes are similar to the distribution of the spacings of planes of 

F7.  Furthermore, the analysis of the largest exposed lengths of F3 and F5 showed that, in some 

cases, these planes are up to four times longer than the maximum spacing of F7.  This fact 

suggested that in the Forat Negre slope, the failure surface may also generate by coalescence of 

several (although few) unfavourable dipping F3/F5 planes and/or by brittle failure of minor rock 

bridges.  Some of these cases were identified on photos (Figure 15). The maximum volume will 

therefore depend on the length of the basal plane and on the resistance of the rock bridges, if any.    

 
Figure 15. Rockfall scar of April 20th, 2008. The failure developed over several adjacent down-dipping 

planes (F3) generating a stepped sliding surface (black solid line). Steps are formed F7 planes (yellow 

dashed polygons) and broken rock bridges. The failure is bounded laterally by planes of F1 set. 
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We performed a structural analysis of the joint sets of the Forat Negre looking for the reason of 

the interruption of the kinematically unstable joint sets that could justify the greater b-value of 

the scar volume distribution and a cutoff value for the largest expected volume. The field survey 

was carried out in the slopes of the granodiorite massif of Borrassica and Forat Negre, aiming at 

determining the relative chronology of the tectonic features affecting the rock mass (Figure 16).  

It was performed at key outcrops where discontinuities are well exposed. The outcrops were 

studied by combining scanlines and detailed structural observations. It is found that set F6 was 

formed first as it is affected by other sets that interrupt and displace its planes. A second phase is 

characterized by sets F2 poorly identified with LiDAR and merged with F7. They should be 

interpreted as conjugate faults. F3 is a joint set that could be associated to this phase. It shows 

high scattering and undulation with amplitude up to 20cm. The last phase is characterized by the 

occurrence of F1 and F4, which include both very persistent conjugate faults and joints that 

interrupt the rest of sets.  

 

Fault sets (F1, F7) have a twofold role: they interrupt the continuity of the planes of the F3 and 

F5 joint sets; at the same time, they act as weak zones facilitating the formation of both the lateral 

and back release surfaces of the sliding rock masses. 

 
Figure 16. (left) Outcrop of conjugated faults F4 and F1; (right) intersection of planes of sets F1, F3 and F2 

(from Corominas et al. 2017) 

 

 

6.  May the geological structure constraint the rockfall size in the Solà d’Andorra? 

 

We have evaluated how the displacement of F1 and F7 faults affects the persistence of the F3/F5 

planes (basal failure surface).  We have developed a procedure for the probabilistic calculation of 

the distribution of the length, width and area of the planes of the sets F3 and F5, taking into 

account their displacement when intersected by F1 and F7 fault planes. The procedure 
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incorporates the probability of the F3 and F5 planes preserving or losing their continuity. The 

dimensions of the continuous F3 and F5 planes then depend on the number and dimensions of the 

sections of planes F3 and F5 between successive spacings of F1 and F7 that can be considered 

continuous. The continuity criterion is based on the perpendicular distance between two joints of 

the same set, in two successive sections. A general representation of the rock mass fracture pattern 

with 3 discontinuity sets is seen in Figure 17.  

 

This threshold was selected because it was found to efficiently distinguish undulation from 

spacing at most cases in the study area (Santana et al. 2012), although some overlapping may 

exist for distances 0.10-0.25 m. 

 
Figure 17. Rock mass with 3 discontinuity sets for the calculation of the probability mass function (pmf) of 

generating a continuous plane of set A containing i=1,2,3…n spacings, in the direction of length or width. 

At their intersection with either B or C faults, planes of set A are displaced a distance “d”. If dik<0.2 m, the 

successive sections of plane A form a single continuous basal plane.  

 

In Figure 17, the rock mass is composed by columns bounded by two vertical sets of faults (B 

and C). The columns contain “k” series of planes of the joint set A. A section of plane A may or 

may not lose its continuity at each intersection with planes B or C. Two sections of plane A form 

a continuous plane if their perpendicular distance (dik) at the intersection is smaller than 0.20 m. 

This threshold was selected because it was found to efficiently distinguish undulation from 
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spacing at most cases in the study area (Santana et al. 2012). Through this process, the size of the 

planes of the set A can grow by connecting a number of “i" sections that yield a displacement 

“dik” smaller than the threshold, in either width or length or both (Figure 17, in red). 

 

As the displacement along each fault plane is not known, the A planes in each column were 

generated randomly and independently, with the only requirement to maintain the actual spacing 

distribution. Similarly, the spacings of sets B and C comply with their observed distribution. For 

the application, the joint set A corresponds to the sets F3 and F5. For F3, the joint sets B and C 

correspond to F7 and F1, respectively and for F5, to F1 and F7, respectively. 

 

The application of the procedure requires as an input sample data for the spacing of the sets F3 

and F5 (basal planes) and of the sets F1 and F7 (tension crack and lateral planes). The spacing 

data was obtained for each joint set using the Lidar point cloud of the slope face. We identified a 

representative sample of planes and we measured the perpendicular distance between the adjacent 

ones, using the software Rhinoceros®. Having obtained the discrete set of spacings S we 

proceeded with the following two steps which were performed for each F3 and F5. 

 

Step 1: Calculation of the probability mass function (pmf) of a continuous plane of a given joint 

set being composed by i=1,2,3…n sections along a direction.  

 

For each set, F3 and F5, we generated i=[1,2,3,...n] columns (sections), of k=[1,2,3,...m] planes 

within each column.  Between the planes k=m-1 and k=m, there is random spacing of distance s, 

that takes values from the discrete spacing sets S (s ϵ S) of F3/F5. The number “i" of columns 

represents the number of spacings F1 or F7 included between successive intersection points of 

the planes F3 and F5 with the sets F1 and F7. We investigated the continuity of planes F3/F5 for 

a maximum of 13 intersections and accordingly n=13 columns. For the calculation of the 

probability mass function (pmf) using the Monte Carlo method, we simulated k=5000 planes 

within each column.  

 

First, the vertical distances yik of all the generated planes with i=[1,2,3,...n] and k=[1,2,3,...m] 

from a common reference plane with i=1 and k=1, were calculated. This permitted the 

identification of the minimum distance dik of each plane of a column “i” from the planes of the 

column “i+1” (Figure 17). As aforementioned, if the minimum distance between a plane of the 

column “i” from a plane of the column “i+1” was found smaller than 0.20 m, the planes were 

considered continuous. If not, they were considered interrupted and separate. We must take into 

account however, that not all the planes of joint sets F1 and F7 are fault planes. 
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Using the generated sample of “i” columns and ¨k¨ planes within each column, and also the 

distances dik, we calculated the probability mass function (pmf) of a continuous plane being 

composed by i=1,2,3…n sections. The probability of a continuous plane being composed by 

i=1,2,3…n sections, along a direction is given by Equation [4]:  

 

P(i)=(Number of dik<0.2 m/ Number of d1k), for i=[1,2,3,...n]   [4] 

 

In equation [4], the “number of dik<0.2 m” is the number of measurements that fulfill the plane 

continuity criterion dik<0.2 m for each column “i” and all previous columns. 

 

The pmf depends on the spacing of F3 and F5. When the spacing of a set is smaller (denser), then 

the probability of having longer and wider continuous planes increases. 

 

Step 2:  Calculation of the probability density function (pdf) of the length, width and area of the 

continuous planes  

 

The intersection of the joint sets for the formation of the basal sliding planes is shown in Figure 

17. The span of each section is determined by the spacing of the intersecting joints. Thus, using 

Monte Carlo simulations (N=5000 random samples), the probability density functions of the 

length L, width W of the planes of F3 and F5, can be assessed by Equations [5] to [8]. 

 

LF3=NF3 x sF7       [5] 

WF3= NF3 x sF1      [6] 

LF5= NF5 x sF1      [7] 

WF3= NF5 x sF7      [8] 

 

Where : N: number i=[1,2,3,...n] of successive discontinuities of a given set composing a 

continuous plane, and  s: spacing s ϵ S of the intersecting set  

 

The random sample of N follows the pmf that were calculated at step 1 for F3 and F5, and the 

spacings s, take random discrete values from the input spacing set of F1 and F7.  

For the basal planes F3, the intersecting set in the direction of its length is F7 and in the direction 

of its width is F1. Respectively, for the basal planes F5, the intersecting set in the direction of its 

length is the F1 and of its width is the F7. 

 

Then the distribution of the areas of the continuous planes of F3 and F5 were assessed by Eqs [9] 

and [10], assuming for simplicity, rectangular basal areas.   
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A F3= LF3 x WF3      [9] 

A F5= LF5 x WF5      [10] 

 

N=5000 random samples of lengths and widths, were also used for Monte Carlo simulations of 

the areas.   

 

The results of step 1 for the calculation of the probability mass function of a continuous plane 

being composed by i=1,2,3…n spacings are presented in Figure 18, for the sets F3 and F5. Table 

6 shows these probabilities. It also resumes the number of planes (values have been rounded) that 

is expected to contain “i” spacings, out of the total of number of planes that were identified on 

the point cloud for each set, that 4760 for F3 and 3920 for F5. 

 
Figure 18. Probability mass function for the number of spacings of either F1 or F7 being contained in a 

continuous plane, for the set F3 (left) and F5 (right) 

 

Table 6. Probability of a plane containing “i" spacings (5000 simulations) and number of planes with “i" 

spacings (out of 4760 for F3 and 3920 for F5) 

Number of spacings 

contained 

Probability Set 

F3 (±0,1) 

Probability Set 

F5 (±0,1) 

Number of 

planes F3 

Number of 

planes F5 

1 0.7994 0.5419 3805 2124 

2 0.1606 0.2533 764 993 

3 0.0320 0.1105 152 433 

4 0.0064 0.0541 30 212 

5 0.0012 0.0216 6 85 

6 0.0004 0.0110 2 43 

7 0.0000 0.0030 0 12 

8 0.0000 0.0032 0 13 

9 0.0000 0.0006 0 2 

10 0.0000 0.0004 0 2 

11 0.0000 0.0004 0 2 

12 0.0000 0.0000 0 0 

13 0.0000 0.0000 0 0 
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We compared the results from the application of this procedure with the dimensions of the 

exposed planes of the sets F3 and F5, as observed on the Lidar point cloud following the procedure 

of Santana et al. (2012). 

 
Table 7 and Table 8 summarize the median, maximum and standard deviation that were calculated for the 

length, width and area of the planes of F3 and F5, as well as the respective observed values on the point 

cloud. 

 

Table 7. Geometrical features of the planes F3: calculated (proposed procedure) and observed (Santana et 

al. 2012) 

   Median   Max  Standard 

deviation  

Calculated 

with Monte 

Carlo 

Simulation 

 Length (m) 1.1 35 1.4  

 Width (m) 2.1 48 2.7  

 Area (m2) 4 584 7 

Observed   Length (m) 1.0 27 1.5 

 Width (m) 2.2 40 2.7 

 Area (m2) 0.7 236 10 

 

Table 8. Geometrical features of the planes F5: calculated (proposed procedure) and observed (Santana et 

al. 2012) 

  Median   Max  Standard deviation  

Calculated with 

Monte Carlo 

Simulation 

Length (m)  2.9 59 4.6 

Width (m)  1.4 50 2.5 

Area (m2) 4 705 19 

Observed  Length (m)  0.7 15 0.9 

Width (m)  0.8 20 1.2 

Area (m2) 0.38 144 5 

 

Values greater than those of Table 7 and Table 8 are possible with a probability of occurrence lower than 

2x10-4.  

 

The analysis of 5,000 simulations, shows that the dimensions of the generated basal surfaces for 

F3 are very similar to the measured with the TLS.  For the basal surfaces of F5, the calculated 

length, width and area are bigger than the observed ones. The largest F5 basal area generated is 

705 m2, which is about 5 times bigger than the largest area measured. Despite of this, the sizes of 

the generated basal surfaces are of the same order of magnitude than the measured using the TLS 
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by Santana et al. (2012). This exercise confirms that the presence of the F1 and F7 faults could 

restrict the extent of the F3/F5 sliding surfaces and bound the size of the potential slope failures.  

 

7.  Discussion 

 

We argue that we should not expect a random distribution of large landslides, in particular large 

rockslides and rock avalanches. In some regions there may exist a truncation for large volumes 

(upper size limit) and that geological factors may partially explain this behaviour. 

 

7.1 Spatial distribution of large slope failures 

 

Rock slope failures (RSF) is a term coined frequently found in geomorphological studies that 

encompasses three main slope instability forms (Ballantyne, 2002; Jarman, 2006; Cave and 

Ballantyne, 2016): catastrophic failures in the form rockslides, rock avalanches and major 

toppling; deep-seated gravitational slope deformations; complex failures involving two or more 

of the above.  In the main mountain belts, RSF are often considered as paraglacial, implying that 

failure was preconditioned by the preceding episode of glaciation and deglaciation (Ballanyte, 

2002; McColl, 2012).  Despite a number of studies have focused on RSF, the knowledge of their 

distribution at a regional scale, timing and causes is still incomplete. The spatial analysis of the 

RSF suggests that a relation exists between the occurrence of the failures and the type of 

geological structures, the lithologies involved, and the inherited glacier relief/geomorphological 

setting (Jarman, 2006) or the triggers (Cave and Ballanyte, 2016; Crosta et al. 2016).  

 

Regional inventories of large RSF have shown that: 

 

a) RSF are uneven spatially distributed (Whalley et al 1983; Jarman 2006; Jarman et al. 

2014; Strom 2015; Keller, 2017)  

b) Greater density of occurrence on some susceptible lithologies (Cave and Ballantyne, 

2016) but this is not a requisite in other locations (Strom, 2015) 

c) Some events are recurrent in the same location (Shang et al. 2003; Hermanns et al. 2004; 

Evans et al. 2009; Delaney and Evans, 2015; Strom, 2015; Crosta et al. 2016) 

d) Some regions are relatively rockslides-free areas (Strom, 2015). 

 

Literature review shows that the density of landslides varies from one region to another and large 

rock slope failures are not evenly distributed in mountain regions. Jarman (2006) found in the 

Scottish Highlands that 65% of the large slope failures were concentrated in seven main clusters 

while the rest were non-randomly scattered.  In Iceland, large rockslides occur almost entirely on 
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(within) a particular lithological unit (Tertiary lavas), particularly in locations where the lava 

layers dip towards the valley (Whalley et al. 1983).  

 

The first comprehensive study of large-scale rock slope failures in the Eastern Pyrenees where 

the Solà d’Andorra is located, identified 30 main large slope failures and further 20 smaller or 

uncertain cases (Jarman et al. 2014). The inventory did not show any obvious regional pattern or 

clustering and a surprisingly sparse population that affects 45–60 km2 or 1.5–2.0% of the 3000 

km2 glaciated core of the mountain range and neighbouring fluvial valleys. From them, only 27% 

can be considered as large catastrophic events (rock or debris avalanches) and none of them were 

located in the Valira river valley. For comparison, in the Alps, 5.6% of the entire 6200 km2 

montane area is affected by deep-seated gravitational slope deformations alone (Crosta et al. 

2013) and up to 11% in the Upper Rhone basin (Pedrazzini et al (2016). This sparsity has been 

interpreted by a low-intensity glaciation and less subsequent debuttressing, relative tectonic 

stability and small fluvial incision (Jarman et al. 2014). When compared to other mountain ranges, 

the Pyrenees have been less steepened and incised by the Pleistocene glaciers. The slopes in the 

Valira valleys commonly rise 1000m from valley bottoms, reaching a maximum of up to1400m. 

In the Karakoram, the Southern Alps of New Zealand and in the Pacific Coastal Ranges of USA 

and Canada, the slopes usually rise 3000m and some may attain more than 6000m (Hewitt et al. 

2008). 

 

7.2 Truncation of the power laws 

 

Many natural processes are described by power law distributions such as fault displacements 

(Kakimi, 1980), fault trace length (Bonnet el al 2001), earthquakes (Gutenberg and Richter, 

1954). Data collected to measure the parameters of such distributions only represents samples 

from some underlying population. Without proper consideration of the scale and size limitations 

of such data, estimates of the population parameters, particularly the exponent of the power law, 

are likely to be biased (Pickering et al. 1995). As stated by Hovius et al. 1997, extrapolating short-

term geomorphic observation to time scales pertinent to landscape development requires an 

understanding of the scaling behaviour of the processes involved, in particular the magnitude and 

frequency with which they occur (Wolman and Miller, 1960; Hovius et al. 1997). All power law 

and fractal characteristics in nature must have upper and lower bounds (Bonnet el al. 2001).  

 

All the evidences suggest that an upper limit to the size of the slope failures in the Sola d’Andorra 

might exist. These observations are consistent with the findings of Hergarten (2012), who applied 

a simple model for rock detachment in the Alps, Southern Rocky Mountains and the Himalayas. 

He found a breakdown of the power law distributions at large events. Large slope failures occur 
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less frequently than predicted by the power laws and the size at which the cut-off takes place, 

varies from one region to other. Furthermore, the size of largest event at each region may differ 

more than one order of magnitude. These differences were attributed to the different geologic and 

climatic context although a detailed work was not carried out. Clarke and Burbank (2010) 

compared the occurrence of rock slope failures in Fiorland and western Southern Alps in New 

Zealand. These two regions are subjected to similar climate but different uplift rates and 

lithologies. They observed that despite failures initiate on slopes steeper than the modal hillslope 

angle in both regions, the frequency-magnitude distributions revealed one order of magnitude 

difference, being considerably smaller in Fiorland. These authors conclude based on geophysical 

surveys that the dense geomorphic fracturing in Fiorland appears to limit the depth and magnitude 

of the slope failures. Conversely, in the Southern Alps, fractures are more pervasive and result in 

larger and deeper landslides. 

 

The incompleteness of the record or the use of different criteria for fitting of the power laws to 

the volume distributions may therefore produce significant differences in the estimation of the 

frequency of large events.  

 

7.3 Role of the geological factors 

 

The assumption of random distribution of the slope failures overlooks the basic geomechanical 

prerequisites (rock strength, fracture pattern, relief,..) for failure (Selby, 1992; Jarman, 2006) as 

it is evident that some geological contexts (i.e. steeply dipping discontinuities or weak lithologies) 

favour the occurrence of the slope failures. Tectonic damage has also been accounted for several 

stepped large rock slope failures (Brideau et al 2009). In our work, we argue that the fracture 

pattern (geological context) of the Solà d’Andorra plays a key role in constraining the size 

(defining the cutoff size) of large rockslope failures.  Fault sets (F1, F7) have a twofold role: they 

interrupt the continuity of the planes of the F53 and F5 joint sets; at the same time, they act as 

weak zones facilitating the formation of both the lateral and back release surfaces of the sliding 

rock masses. 

 

It is also evident that other factors can be accounted for. In alpine mountain glacial and fluvial 

incision of the valley bottoms causes steepening of the valley slopes that induces slope failures 

(Selby, 1980). In tectonically active regions, the sustained rock uplift and valley incision 

perpetuates this process and results in a landslide-dominated landscape (denudation) (Burbank, et 

al. 1996). The analysis of the slope angles distribution in tectonically active mountain belts has 

shown that there exists threshold conditions of slope inclination or height at which they fail readily 

because of limitations in material strength (Korup et al. 2007). 
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Therefore, the scarce number of large rock slope failures and rock avalanche deposits in Andorra 

should not be considered an exception. Low density of RSF has been also observed in Scotland 

(Cave and Ballantyne, 2016) 

 

8.  Conclusions  

 

This paper through the analysis of the rockfall occurrence at the rock wall of Borrassica-Forat 

Negre of the Solà d’Andorra addresses the validity of the extrapolation of the M-F relations 

obtained far beyond the temporal window used for their preparation. We argue that despite the 

M-F relation is well fitted, there exist no evidences supporting the occurrence large slope failures 

(larger than 100,000m3) in the Solà d’Andorra at least, during the last 10,000 years. Neither 

rockslide/rock avalanche deposits were found in the Valira river valley bottom nor evident large 

detachment scars (rockfall cavities) are identified in the rock walls from the analysis of the TLS-

generated point cloud of the outcropping surfaces. 

 

According to the geo-structural analysis (fracture pattern) and the geomorphological evidences, 

the most predominant slope failure mechanism is planar sliding surfaces. The largest exposed 

sliding surface has an area of 200 m2 while the M-F relation of the surfaces measured is truncated 

at around 50m2. The volume distribution of 5000 rockfall scars generated stochastically by 

combining the measured areas of the basal sliding surfaces and the scar heights, which may cover 

a time span of several thousands of year, yielded a maximum rockfall scar volume of 3000 m3 

(Santana et al. 2012). No evidences have been found that could justify the occurrence of a large 

stepped failure in the past. 

 

Two independent procedures have been applied to measure the size of the kinematically 

detachable rockfall masses according to Markland instability criteria (Mavrouli and Corominas 

2017) and the size of rock spurs lying over unfavourable dipping highly persistent joints. The 

largest volumes identified are of a few tens of thousands of cubic meters only. These results are 

consistent with the absence of rock slide or rock avalanche deposits at the bottom of the Andorra 

la Vella basin.  

 

The detachment of large rock masses via step-path failures is prevented by the geological 

structure. The interruption of the sliding planes by two orthogonal highly persistent sets of faults 

(F1 and F7), restrict the development of large rock mass volumes.  The volume restriction can be 

overcome to some extent either by coalescence of basal planes or through step-path failures 

involving the breakage of rock bridges. This situation however, will necessarily involve smaller 
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volumes than in the case of fully persistent basal joints. Because of this, we conclude that the 

maximum credible volume for Forat Negre is significantly smaller than the expected from the 

basic kinematical analysis of the rock slope. The case of Andorra provides empirical evidence 

that rockfall could be size-constraint due to the geological structure. 

 

The lack of evidences of large slope failures in this reach of the Valira river valley should not be 

considered as an anomaly because several studies in mountainous ranges worldwide have 

demonstrated that large rockslides and rock avalanches are not randomly distributed in the space 

and that local geological and geomorphic conditions exert some control the development of the 

slope failures. 
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Publication reference: 

Corominas J, Matas G & Ruiz-Carulla R, (2018) Quantitative Analysis of Risk due to Fragmental 

Rockfalls (paper submitted) 

Abstract: 

Rockfalls are ubiquitous diffuse hazard in mountain regions, with the potential of causing victims 

and severely damaging buildings and infrastructures. The quantitative risk analysis (QRA) is a 

tool to evaluate the risk in a reproducible manner and to assess the performance of mitigation 

measures. Considering or not the fragmentation of the detached mass, affects significantly the 

results of the QRA and the risk management criteria. The number of new fragments generated 

increases the probability of impact while the kinetic energy of blocks and the run-out is reduced.  

In this paper, we present the performance of a rockfall fractal fragmentation model (Ruiz-Carulla 

et al.  2017), in combination with the RockGIS code (Matas et al. 2017), a rockfall propagation 

model that accounts for fragmentation.  The inclusion of fragmentation has required the 

redefinition of the probability of reach and to develop a specific procedure to quantify the 

exposure. A worked example of QRA is carried out at the Monasterio de Piedra, Spain. The results 

show that fragmentation has a significant but contrasting effect in the calculation of risk.  The 

overall risk may be reduced if the slope where blocks propagate is both long and gentle enough 

before reaching the analyzed section. The reason is that, compared to the unfragmented rock 

masses, the new fragments generate short travel distances with lesser kinetic energy. This effect 

vanishes in case of large rockfalls. Conversely, the risk increases if rock blocks propagate over 

steep slopes and the distance to the analyzed section is short.  The reason is that the exposure 

increments due to the generation of a cone of fragments.  Our simulations also shown that the 

segregation of the visitors flow has only a minor influence in the results of the risk analysis. 

Finally, the consideration of fragmentation provides additional criteria for the assessing the 

efficiency of the rockfall protective measures. 

Keyworks: rockfall, fragmentation, Quantitative Risk Analysis, modelling, case study 
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1. Introduction 

 

Rockfalls are one of the most ubiquitous diffuse hazard in mountain regions. Despite the vast 

majority of rockfalls are local small-size events, the aggregated damage they cause and the 

number of casualties is high (Hungr et al. 1999; Chau et al. 2003). Compared to other landslide 

types, such as the slow moving landslides, rockfalls may become much more damaging due to 

the high impact velocity of the rock blocks (Turner and Jayaprakash, 2012).   

 

Cruden and Varnes (1996) defined  a rockfall as the detachment of a rock mass from a steep slope, 

that experiences free fall and, after impacting on the ground, it continues by bouncing and rolling.  

Despite this definition can be applied to events with volumes ranging many orders of magnitude 

(from less than 1 m3 up to >106m3), in this paper we will refer to rockfall events of less than 

5x104m3, which is the size proposed as the transition from rockfalls to rock avalanches  (Davis 

and McSaveney, 2002). 

 

A complete rockfall study involves several issues (Volkwein et al 2011). On one side, the 

characterization of the source and the predisposing conditions (Mozzocola and Hudson, 1996; 

Guzzetti et al. 2003; Marquínez et al. 2003; Jaboyedoff et al. 2004; Loye et al. 2009), which 

control the occurrence and frequency of the events. On the other side, the dynamics of the falling 

masses, which determines the trajectory, velocity, runout, and therefore, the consequences (Giani 

et al. 2004; Bourrier and Hungr, 2011; Asteriou et al. 2012). Rockfall simulations are strongly 

affected by the stochasticity of all the processes involved (Bourrier et al. 2012; Gischig et al. 

2015; Macciotta et al. 2015; Preh et al. 2015). 

 

The analysis of rockfalls has improved significantly during the last years. The use of 3D rockfall 

models has been generalized (Guzzetti et al. 2002; Lan et al . 2007; Dorren 2012; Gischig et al. 

2015). These models highlight the relevance for the modelling results of the input parameters 

such as the scale dependency of topographic features (Agliardi and Crosta, 2003; Lan et al. 2010; 

Corona et al. 2017), the resolution of the DEM (Crosta and Agliardi, 2004; Lambert, et al. 2013); 

or the ground stiffness (Dorren et al. 2006; Wyllie, 2014). Modelling requires a substantial effort 

in calibration, which is usually carried out by trial and error approach, for parameter optimization. 

To this aim, minimum amount of quality data is needed (Crosta and Agliardi, 2004; Bourrier et 

al. 2009; Frattini et al. 2013; Macciota et al. 2014). The criteria used for calibration include among 

others: the percentage of simulated blocks stopping close to the actual blocks; the passing 

frequencies through reference sections and maximum run-out distances; the mean values and 

standard deviations of passing heights and translational kinetic energies (Stoffel et al. 2006; 

Bourrier et al. 2009; Frattini et al. 2013). 
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Rockfall hazard and risk analysis has also benefited of the improvement of data capture 

techniques and of the availability of 3D rockfall propagation models. This kind of analyses is 

often carried out for land use planning purposes (Raetzo et al. 2002; Copons et al. 2003; 

Corominas, et al. 2005) and for management of infrastructures (Hungr et al. 1999; Budetta, 2004; 

Guzzetti et al. 2004; Macciotta et al. 2016). It requires identifying the potential rockfall source 

areas and accounting for the processes affecting the descending mass,  the knowledge of the 

trajectory, passing height and velocity at each point along the path as well as the stopping point 

or runout (Guzzetti et al. 2002; Dorren et al. 2011). The analysis of the rockfall hazard is a very 

demanding due to the complexity of the mechanisms involved and the intrinsic stochasticity 

(Agliardi et al 2009). 

 

The quantitative analysis of risk (hereinafter QRA) of slope instabilities has undergone 

remarkable development in recent years (Chau and Lee, 2002; Lee, 2004; Fell et al. 2008). The 

objective of the QRA is to evaluate the consequences (i.e. damages, casualties) in case of 

occurrence of the event and their associated probabilities. The QRA provides an objective 

evaluation of risk because the assumptions and uncertainties are declared (Straub and Schubert, 

2008). It yields reproducible results, which allow the analysis of different scenarios and the 

comparison of their results. The interpretation of the QRA results may be carried out in terms of 

risk acceptability criteria (Corominas and Mavrouli, 2011; Corominas et al. 2014).  

 

In QRA, for each potential rockfall source, the probability of occurrence of the event, the 

trajectories of the falling blocks, the kinetic energies and the passing heights for the points along 

their path, and the stopping points must be determined. For rockfalls, risk (R) is expressed as 

follows (adapted from Fell et al. 2005; Hungr and Beckie, 1998; Agliardi et al. 2009): 

 

              [1] 

 

where:  

R: risk due to the detachment from a cliff of a rock mass of magnitude (volume) “i” on an exposed 

element “j” located at a reference distance “x” from the source.  

Ni: the annual frequency of rockfalls of volume class “i”. 

P (X │ D)i: the probability that the detached rock mass of the size class “i” reaches a point located 

at a distance “x” from the source,  

P (T │ X):  the exposure or the probability that an element “j” be in the trajectory of the rock fall 

at the distance “x”, at the timing of the arrival of the rock fall debris. 

Vij: the vulnerability of an exposed element “j” being impacted by a block of magnitude “i” 
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The summation indicates that the expression of the risk is calculated for a range of rockfall 

magnitudes (volumes) because each one is characterized by a probability of occurrence, runout, 

and probability of impact. Therefore, the consequences are specific of each rockfall volume. 

Basically, hazard grows with the mean frequency and with the intensity of the rockfall event 

(Jaboyedoff et al. 2005; Labiouse and Abruzzese 2011; Agliardi et al. 2009). 

P (X │ D) or reach probability is usually calculated with propagation models, which take into 

account initial volume, the topography and characteristics of the path, the stiffness of the ground, 

as well as the presence of obstacles. Hundreds or thousands of trajectories can be generated with  

rockfall models and P (X │ D) is calculated as the proportion of rockfall events that travel up to 

the reference point or section, for each rockfall magnitude. A refinement of the analysis is 

achieved by determining the spatial distribution of the velocity, kinetic energy (or intensity) of 

the blocks.  

 

The procedure for evaluating exposure of elements moving along linear features has long been 

known, but only a few practical examples have been recently published for its calculation 

(Roberds, 2005; Ferlisi et al., 2012, Nicolet et al., 2016; Macciotta et al. 2016). It is usually 

performed for infrastructures such as roads, railways and it is applicable to trail paths as well. 

Hazard and risk are calculated either for the whole length of the infrastructure or in some selected 

sections (stretches).  

 

The exposure of people walking along a trail is the probability of a person (or group of persons) 

being in the trajectory of the rockfall at the moment of its occurrence. The exposure, P (T │ X) is 

therefore dependent on the number of moving exposed elements and the width of the section 

affected by the rockfall event. For people in movement, the encounter probability with a rockfall 

is as follows (adapted from Nicolet et al., 2016): 

 

   [2] 

 

where:  

fp: flow of visitors (persons/day) 

Wr: width of the rockfall debris front (m) 

lp: length of the trail occupied of the person or group of persons (m) 

vp: is the mean velocity of the person or group of persons (km/h) 

 

In this expression, a uniformly distributed flow of elements or constant moving element frequency 

is usually assumed (Macciotta et al. 2016). 
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In the practical examples mentioned above, only intact blocks are considered. However, rockfall 

masses often fragment along the path. Fragmentation consists of the separation of the initial mass 

into several smaller pieces, which follow both independent and divergent trajectories. 

Fragmentation can appear during the initial instants in which the rock mass is detached from the 

cliff but it becomes evident upon the first impact(s) on the ground surface. The rock mass can be 

either dislodged by the separation of the blocks delimited by discontinuities, broken or both (Ruiz-

Carulla et al. 2015). Rockfalls that experience fragmentation along the path are called fragmental 

rockfalls (Evans and Hungr, 1993).  

 

The fragmentation has received little attention in the scientific literature despite being a process 

often observed in rockfalls. Its analysis is affected to great uncertainty because the variables 

involved cannot be determined with confidence (Dussauge et al. 2003; Wang and Tonon 2010; 

Hantz et al. 2014). Among these variables, the presence of discontinuities in the initial rock mass, 

their persistence, orientation relative to the ground surface at the time of impact, energy and angle 

of impact and the ground stiffness have to be considered. Several researchers, have shown fractal 

models may be adequate to characterize the phenomenon of fragmentation of rock masses and to 

estimate the number and size of the resultant blocks (Turcotte, 1986; Perfect, 1997; Crosta et al. 

2007). The volume distributions of the fragments of some inventoried rockfall events and from 

real scale tests confirm the power-law distribution of the fragments. They also show that different 

exponents may be obtained in different locations and/or contexts (Ruiz-Carulla et al., 2016; Gili 

et al. 2016). Based on these field observations we developed a rockfall fractal fragmentation 

model (RFFM) which simulates rockfall fragmentation (Ruiz-Carulla et al. 2017). The model is 

based on a generic fractal fragmentation model of Perfect (1997) in which a cubic block of unit 

length, is broken into small pieces according to a power law. Either an intact block or a detached 

rock mass characterized by an in situ block size distribution (IBSD) is used as input of the model. 

The results consist of a block size distribution of the rockfall fragments (RBSD). The RFFM can 

be integrated into the RockGIS (Matas et al. 2017). The latter is a GIS-Based model that simulates 

stochastically the fragmentation of rockfalls, considering a lumped mass approach. It requires as 

input data the digital surface model, land use map and the rockfall sources. In RockGIS, the 

fragmentation initiates by the disaggregation of the detached rock mass through the pre-existing 

discontinuities. An energy threshold has to be defined in order to determine whether the rock 

block breaks or not at each impact upon the ground surface. The distribution of the initial mass 

between the set of newly generated rock fragments is carried out stochastically, according to a 

power law. The envelop of the trajectories of the new rock fragments downslope, defines a cone  

and the remaining energy after the impact and subsequent breakage is distributed proportionally 

to the mass of each fragment. All  fragments generated propagate downslope and the process 

continues iteratively until all fragments stop. 
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In this paper, we present the effect of the rockfall fragmentation in the results of the QRA. To this 

end, we have analyzed two scenarios within the premises of the Monasterio de Piedra, Spain. 

Although the risk will be quantified, our aim is to show how the risk assessment procedure has to 

be adapted to take into account fragmentation and how it affects the results and their 

interpretation. 

 

2. QRA of fragmental rockfalls 

 

The QRA for fragmental rockfalls has some specificities. Fragmentation causes the initial mass 

being redistributed among the new generated fragments. The overall effect is that the smaller 

fragments travel shorter distances and mobilize lesser kinetic energy, thus reducing P (X │ D) 

and the intensity of impacts (Corominas et al. 2012). Furthermore, the maximum bouncing height 

of the blocks, which is an important parameter for the design of the rockfall protection barriers, it 

is also affected by the size of the fragments (Agliardi et al. 2009). On the contrary, the probability 

of impact on the exposed element, P (T │ X), increases substantially with the fragmentation 

because a number of new fragments are generated and due to the divergence of the trajectories, 

which enlarges the area affected by the trajectories (Jaboyedoff et al. 2005; Corominas et al. 2012; 

Ruiz-Carulla et al. 2015). Despite all these effects have been known for some time, to the authors’ 

knowledge, no attempt has been made so far to quantify the effect of rockfall fragmentation on 

the runout, the velocity of the rock blocks, the exposure and, consequently on hazard and risk. 

 

The risk analysis of fragmental rockfall requires the redefinition of the way how both the reach 

probability  P (X │ D) and the exposure P (T │ X) are calculated. Compared to the analysis of 

individual rock blocks, fragmentation may produce paradoxical results in the computation of P 

(X │ D) The simplest way to assess the probability of reach is to calculate the percentage of all 

simulated block trajectories that cross a point, reference line or area (Guzzetti et al., 2002; 

Jaboyedoff et al 2005). However, when the rock mass  fragments, this procedure may yield 

probabilities >1. The reason is that fragmentation may generate a number of rock fragments which 

are able to reach the reference point or section, much higher that the number of initiators. To 

overcome this, here the P (X│ D). is calculated as the proportion of the simulated events that 

reach the point or reference section, regardless whether it consist of one fragment only, or several 

fragments. The number of fragments, however, will be considered in the calculation of the 

exposure. 

 



318 
 

The encounter probability or exposure P (T │ X) has to consider both the width of the falling 

mass (Wr) and the length of the trail (lp) occupied by the person or group of persons (Nicolet et 

al. 2016). It is calculated with equation [2], whose parameters are shown in Figure 1. 

 
Figure 1. Length of the affected section and of the exposed element or elements used in equation [2]  

 

Equation [2] is used for a variety of hazardous processes such as mudslides, snow avalanches, or 

debris flows. These type of slope movements progress downslope forming a continuous front, 

whose width is Wr.   

 

For fragmental rockfalls this scenario is somehow different. After the impact of the falling rock 

mass on the ground and its fragmentation, the rock fragments follow divergent trajectories that 

can be simplified as forming a cone (Figure 2). In plan view, the affected area is defined by the 

projected cone of fragments. The width of the cone (wcx) varies (e.g. increases) with the 

downslope travelled distance (x).  
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Figure 2. Sketch of the fragmentation of a falling rockfall mass upon its impact on the ground surface.  The 

projected width of the cone of fragments (Wc) generated varies with the distance (x) to the rockfall source. 
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Therefore, Wcx is spatially dependent and must be calculated at each point or analyzed section. 

Large rockfall events  may form a continuous front (Figure 3 B), in this case Wr=Wcx (equation 

[2]). However, in case of small to mid-size events (usually, up to several hundred of cubic meters), 

the rock fragments might not completely occupy the width (wcx) of the cone defined by the 

trajectories (Figure 3 A). 

 
Figure 3 A: young debris cover generated at the point of impact of the falling mass  (red polygon). At the 

section of analysis (purple line), the divergent trajectories of the scattered blocks form a discontinuous 

debris front. B: Massive rockfall event. The the rockfall debris form continuous front which is wider in the 

middle part of the slope than in the lowest one (purple lines).  

 

In case of a discontinuous cone, the width of the rockfall (Wr) in equation [2] is calculated 

considering the fraction of the cone width actually occupied by the blocks. By increasing the size 

of the rockfall and the number of fragments, the proportion of the rockfall width (Wr) actually 

occupied by the rock blocks growths until it reaches the whole cone width (Wcx).   To the sole 

effect of estimating Wr in equation [2], here we assume that all the rock fragments reaching the 

analyzed section located at a distance “x” from the source, are equally sized to the modal block 

size (Wmx). The number of blocks reaching the analyzed section are counted in each simulation. 

Thus, the rockfall width Wr is: 

 

Wr = n. Wmx    [3] 
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Where “n” is the number of blocks reaching the analyzed trail section (at a distance “x”) 

Wmx: is the modal block width reaching the analyzed trail section at a distance “x” from the 

source 

 

If  n.Wm≥ Wcx, then Wr = Wcx  

Where Wcx is the width of the cone of trajectories at a distance “x” from the source 

 

As example, let’s assume that a 50 m3 rockfall generates trajectories forming a 10m-width cone 

at a distance of 100m from the source and the modal width Wm100 of the fragments generated is 

1 m. In case of one, five, ten, or fifteen fragments reaching the reference line, Wr is respectively: 

0.1 Wcx, 0.5 Wcx, Wcx. and Wcx.  

 

In large rockfall events (> 103 m3), the rock fragments usually generate a continuous young debris 

cover (YDC) (Figure 3 B) although large scattered blocks may travel far away from it. For the 

YDC, Wr = Wcx. For scattered blocks travelling farther away from the YDC, equation [3] has to 

be used.  

 

3. The site: Monasterio de Piedra, a case study in Spain 

 

The Monasterio de Piedra is a protected natural space located in the lower reach of the River 

Piedra, in the central Iberian Range, NE Spain, a NW–SE trending alpine intraplate fold belt 

(Figure 4). The climate is predominantly of a continental Mediterranean type with strong seasonal 

contrasts. The mean annual precipitation is around 400mm. The geological setting corresponds to 

a series of Mesozoic carbonate materials, Miocene detrital formations and Quaternary tufa 

(Arenas et al. 2014). The River Piedra incised and down cut the carbonate rock  during the 

Quaternary forming a number of small gorges and canyons, in which thick Pleistocene and 

Holocene tufa deposits were generated (Osácar et al. 2013).  One of these gorges extends around 

the Lago del Espejo (Mirror lake), whose 100m-high cliffs are composed of a sequence of 

dolostones and limestones of Upper Cretaceous age. At the base of the cliffs predominate finely 

stratified limestone (30 to 50 cm-thick layers) while in the upper part the strata are massive white 

limestones (Figure 5).  In addition to the stratification, which displays different dip angle at both 

sides of the lake, the rock mass is crossed by two main orthogonal joint sets (figure 6). This 

carbonate formation is also affected by dissolution processes that left karstic features easily 

identifiable in the outcrops. 
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Figure 4. (top) Geographical location and (bottom) geological sketch of the Monasterio de Piedra area 

(modified from Osácar et al. 2013) 
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Figure 5. Overall view of the cliffs around the Lago del Espejo (Mirrow lake) and the trail at Monasterio 

de Piedra. At the foot of the cliff, in the background, the rockfall debris of February 2017. On the lower 

right slope, between the trees, several rockfall barriers have been installed. On the left, the steep cliff of 

Peña del Diablo (Devil’s rock) 

 

 
Figure 6. Main discontinuity sets present at the rock mass that form the cliffs  around the Lago del Espejo. 

Cliff sector D is located at the SW margin of the lake and Cliff Sector H is located at the NE margin (Peña 

del Diablo).  The cliff and bedding planes represented by purple and green color great circles, respectively. 
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The stability of the rock masses is determined by both the rock strength and discontinuities. 

Limestone and dolostone rocks outcropping at the Piedra river gorge are highly resistant 

materials, allowing them to form vertical slopes of more than a hundred meters high. In the 

Monasterio de Piedra, the stability is mainly associated to the presence of discontinuities 

(stratification, joints, faults, among others) since they facilitate the individualization of the rock 

blocks although the failure mechanism is complex.  Back analyzed failures sometimes do not 

comply with the criterion of kinematic instability (Hoek and Bray, 1981) because the toppling 

mechanism is mostly driven by rock deterioration and slaking processes (Figure 7A) or if they 

comply, they may be constrained by the presence of rock bridges  (Figure 7B). Using an 

Unmanned Aerial Vehicle (UAV) more than 40 potentially unstable rock masses bigger than 

10m3 where identified on the cliffs around the lake. 

 
Figure 7. (A) Potentially unstable rock column at the cliff face. None of the two joints bounding the rock 

the block: the tension crack and the basal plane (stratification), meet the criterion of kinematic instability. 

Nevertheless, the base of the column is cracking due to its compression and slaking. Loose rock fragments 

filling the tension crack, favor the development of toppling. (B) partial view of the cliff of the Peña del 

Diablo. Bedding is dipping to the right while two orthogonal joint set facilitate the generation of potential 

planar failures. 
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On February 17th, 2017 a rock mass of about 800 m3 detached from the cliff above the Lago del 

Espejo  in Monaterio de Piedra, Spain (Figure 8). The mass fell from a 60m height and fragmented 

upon the impact on the ground. The debris extended downslope up to the lake, burying a section 

of the visitors trail. Several modules of the rockfall barrier of 1500 kJ, located just below the cliff, 

were destroyed. Previously, in October 1986 another rockfall event of a volume of about 600m3 

occurred, generating a young debris cover of 500m2 approximately. Its source is located close to 

that of the 2017 event.   

 
Figure 8. left: general view of the rockfall event of February 2017. 
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A QRA has been carried out in the premises of the Lago del Espejo in the  Monasterio de Piedra 

to assess the risk considering different scenarios. The quantification of the risk is based on 

equation [1]. We present here the results of the QRA with emphasis on the influence of the 

fragmentation on the resulting hazard and risk as well as the lessons for the management of the 

site. The analysis is performed at a variable distance “x” from the cliff, which corresponds to two 

alternative trails around the Lago del Espejo used by the visitors (Figure 9).  One trail runs along 

the SW margin of the lake, separated from cliff by a gentle slope and the other by the NE margin, 

just under the Peña del Diablo. For the sake of brevity, the analysis of only one section of each 

trail is presented here. 

 
Figure 9. Orthoimage of the cliff sectors contributing to the rockfall hazard to the two trail sections analyzed 

(red and blue discontinuous lines). Each sector presents conditions of homogeneity in relation to stability.  

The location of the rockfall event of February 2017 is also shown (purple lines). 

 

Scenarios analyzed/considered and assumptions 

 

Trail is threatened by rockfalls originated from the cliffs of sectors D-C. The rockfalls propagate 

over a partially forested gentle slope. Below the cliff sector D, five flexible rockfall fences of 

1500kJ capacity were built in 2002, one of them was destroyed by the event of 2017. Trail 2 is 

threatened by rockfalls originated from cliff H of the Peña del Diablo. 
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Table 1. Characteristics of the two alternative trails analyzed. 

Trail section Trail section 

length (m) 

Length of the 

contributing cliff (m) 

Proportion of the 

contributing cliffs 

1 194.8 294.1 0.319 

2 143.9 132.0 0.143 

 

The frequency of rockfalls assigned to each trail section is the value that corresponds to it 

according to the proportion of contributing cliff. 

 

Two scenarios are analyzed: (1) the original situation without any protection work; (2) presence 

of the 1500 kJ-capacity barriers (for trail 1 only) 

 

The estimation of the risk on moving elements from the binomial theorem (Bunce et al., 1997), is 

based on several simplifying assumptions such as the flow of visitors is uniformly distributed in 

space and time, and it is independent of the rockfalls.  All the exposed elements (visitors) occupy 

the same space. Similarly, rock falls are distributed uniformly in time and space along the cliffs 

(Hantz, 2011), and their occurrence is independent of the flow of visitors. Two flows of visitors 

will be considered here (see Table 6): uniformly distributed flow and segregated flow. 

 

In this type of analysis, the geological structure and slope geometry is basically ignored. Each 

rockfall that reaches the section of the trail around the Lago del Espejo is a Bernouilli trial with 

binary result: whether there is impact or not on the target object (visitor or group of visitors) 

(Hungr and Beckie, 1998; Agliardi et al. 2009).  

 

The source areas of the rockfalls are homogeneously distributed along the crest line of the cliffs 

(294 sources, one every meter). This hypothesis accommodates well to the large-size potentially 

detachable rock masses identified but it is quite conservative for mid-size rockfalls (up to 50 m3) 

because a percentage of them originates in middle and lower sectors of the cliff face. Failures 

from the mid-lowest cliff sectors will produce smaller kinetic energies and run-out. 

 

This case study analyses the risk associated to the direct impact of rockfalls on visitors walking 

around the lake premises. Other circumstances such as people stopping for a while in the trail (for 

instance, working, resting, picnicking or camping) or wandering out of the trail, are beyond the 

scope of this analysis. 

 

In what follows, we present how the different components of equation 1 have been determined. 
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Frequency of the rockfall events (Ni) 

 

The first step consist of calculating the average frequency of rockfalls.  Using the available 

information of the rockfall inventories as done in other case studies (Bunce et al. 1997; Lee and 

Jones, 2004; Hungr et al. 1999; Guzetti et al. 2002; Ferlisi et al. 2012). There exists no complete 

record of rockfall events that affected the Monasterio de Piedra premises. We prepared the 

magnitude-frequency relation of rockfall events at the site, using two sources: (i) the count of 

rock blocks intercepted by the barriers installed 15 years ago (in 2002), and (ii) the inventory of 

three large events (>400 m3), two historical (1986 and 2017) and the third of unknown age.  

A total of 209 rock blocks were measured in four barriers. The volume distribution of the blocks 

covers three orders of magnitude and it fits to a potential law (Figure 10). The distribution is 

similar to that observed in other locations affected by rockfalls (e.g. Hungr et al., 1999; Dussage-

Peisser et al. 2002; Guzzetti et al., 2003). 

 
Figure 10. Volume distribution of the rock blocks retained in the four rockfall fences  

 

The rockfall rate obtained in the barriers during the 15 years since their installation is 14 events / 

year. This value is only an approximate estimation of the frequency because some small-size 

blocks did not reach the fences (a small percentage) while some of the blocks retained could be 

part of the same fragmental rockfall event, thus underestimating its size.   

 

The fences collect the rockfalls originated within the cliff section D only. Because of this, the 

frequency-magnitude relation has been extrapolated to the whole cliff length around the Lago del 

Espejo. In addition, the three large rockfalls inventoried were also included. The corrected 
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frequency and the volumetric distribution of the events (arranged in bins) is presented in Table 2. 

The extrapolated frequency relation yields an accumulated volume of rock fall debris of about 

4200 m3 in 1000 years. Considering the exposed surface of all cliffs around the Lago del Espejo, 

which is 57600 m2 (921 m in length and 60 m in height), a denudation rate of the cliffs of 76 

mm/ka is obtained. This rate is of the same order of magnitude as the observed in the same 

regional climatic context (Sancho et al., 1988; Gutiérrez et al., 2001). Because of this, we consider 

the extrapolation representative. 

 
Table 2. Frequency of rockfall events by the extrapolation of the volumes retained in the barriers and of the 

three major events identified to the 921m of accumulated length of cliffs. 

Volume 

class 

Rockfall volume 

(m3) 

Events/yr Annual volume 

m3/yr 

Volume (m3)  

per ka 

Cumulative volume  

(m3) in 1 ka 

A ≤ 0.005 45.1463 0.226 226 226 

0.005< x  ≤ 0,05 5.9514 0.298 298 523 

B 0,05< x    ≤0,5 0.7846 0.392 392 916 

C 0,5 < x  ≤5 0.1034 0.517 517 1433 

D 5 < x  ≤50 0.0136 0.682 682 2114 

E 50 < x  ≤500 0.0018 0.899 899 3013 

F  500 < x   0.0002 1.185 1185 4198 

 

 

Reach probability P (X │ D)i 

 

To calculate P (X │ D)i, the probability of the rockfall event reaching the study section of the 

trails, we used the RockGIS simulation program developed by our research group, whose details 

and characteristics are explained in Matas et al. 2017. 

 

The parameters of the model for both fragmentation and propagation were calibrated using the 

rockfall event of February 2017, the location of a few blocks (volume ranging between 0.5 and 

5m3) that were removed from the cliff during scaling works carried out in March 2015 (Figure 

11), and the blocks retained at the rockfall barriers.  The fragmentation law was calibrated with 

the 2017 event, using the in-situ block size distribution (IBSD) estimated from the rockfall source 

captured with a drone  and measurement in the field of the rockfall blocks size distribution 

(RBSD), following the approach described in Ruiz-Carulla et al. (2015). Figure 12, Figure 13 and 

Figure 14, show the results of the simulation of the 2017 rockfall event  and the ISBD and RBSD 
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obtained. The spatial distribution of rock fragments and the run-out distances were checked using 

the procedure described in Matas et al. (2017). 

 
Figure 11. Blocks resting at the bottom of cliff B. These blocks were removed from the cliff during the 

scaling works carried out in 2015 and are used to calibrate the RockGIS model. 

 

 
Figure 12. Simulation of the rockfall event of February 2017. The rock block volume is indicated by the 

size and color of the circles 
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Figure 13. In situ block size distribution (IBSD) of the rock mass detached in February 2017 and both the 

computed and observed rock block size distribution (RBSD) of the fragments. 

  

 
Figure 14.  Simulation of the rockfall event of February 2017. The velocity of the falling blocks is illustrated 

by means of the color code. 
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The calibration has accounted for the fact that low-velocity impacts are considered relatively 

elastic while high-velocity impacts consume additional energy through plastic deformation of the 

ground and breakage of the rock blocks, producing smaller rebounds (Pfeiffer and Bowen, 1989; 

Dorren 2012). Therefore, for the determination of the normal restitution factor Rn, the hyperbolic 

formulation adapted from Gischig et al. (2015) is used. Figure 15 shows the normal restitution 

factors for different block sizes. The figure corresponds to the factor for impacts with the medium 

stiff ground, for impacts on sound rock surfaces the Rn for the lowest velocities  has been 

incremented from 0.68 to 0.91. 

 
Figure 15. Normal restitution coefficients depending on the volume and the normal impact velocity in the 

case of isolated blocks (<10m3) (adapted from Gischig et al. 2015). 

 

The trajectory analysis considers a rockfall source every 1m (294  and 132 potential rockfall 

sources, for trail 1 and 2, respectively). Each source releases 100 rock masses than remain intact 

along the path and 10 rock masses that fragment, totaling 29,400 and 2,940 simulations 

respectively for trail 1 and 13200 and 1320 for trail 2.  

 

The effect of fragmentation on the rockfall runout is illustrated in Figure 16. For the sake of 

visualization only one trajectory of intact rockfall from a few selected detachment sources is 

shown (top). For the same reason, only one fragmental rockfall event is shown as well (bottom). 

In the latter, the trajectories of the rock fragments are also displayed. The quantitative results are 
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summarized in Table 3. Proportion of rockfall trajectories P(X|D) reaching the trail sections for 

both with (F) and without fragmentation (NF). 

 

 
Figure 16. Top: trajectories of rockfall masses of 10m3 without fragmentation. Considering the presence 

(right) or absence of rockfall barriers; Bottom: trajectories of 10m3 rockfall masses with fragmentation. 

Considering the presence (right) or absence of rockfall barriers; The existing rockfall barrier are represented 

by blue lines. The kinetic energies are displayed following a color code (from high to low: red orange, 

yellow and green). 

 

The runout is strongly affected by both the size of the event and fragmentation. The positive 

relation of the size of the rockfall event with the runout is illustrated by the examples shown. Only 

12% of the modelled smallest rockfalls (<0.05m3) reach the trail section 1 compared to the 87% 

in case of occurrence of the largest events (>500m3). This effect is less evident in trail section 2 

because the slope is steeper. Despite of this, in trail section 2, 61% of the smallest rockfalls reach 

the trail while virtually all the rockfall events larger than 50m3 as well. For fragmental rockfalls 

reaching the trail means that at least one block fragment has arrived to the trail section analyzed. 

The results of Figure 16 and Table 3show that fragmentation may strongly affect propagation if 

the slope is both gentle and long enough. None of the simulated rockfall events smaller than 0.5m3 

is able to reach trail section 1. However, the influence of fragmentation on the reduction of the 

runout vanishes progressively with the increase of the rockfall size. Thus, for rockfall volumes 

larger than 50 m3, the  runout reduction is barely perceptible.  On the other hand, on trail section 
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2 that runs under the steep slope of the Peña del Diablo, the fragmentation only has a minor effect 

on the distance traveled by the blocks. 

 
Table 3. Proportion of rockfall trajectories P(X|D) reaching the trail sections for both with (F) and without 

fragmentation (NF) 

 Trail Section 1 Trail Section 2 

Rockfall 

volume (m3) 

Natural state Flexible fences 1500kJ Natural state 

NF F NF F NF F 

<0,05  0.1194 0 0.0220 0 0.6105 0.2940 

0,05 < x <0,5  0.3280 0 0.0647 0 0.8394 0.5700 

0,5 < x <5 0.5896 0.0425 0.1455 0.0124 0.9446 0.7910 

5 < x <50 0.7647 0.2327 0.7361 0.1310 0.9699 0.9515 

50 < x <500 0.8320 0.6309 0.8312 0.5135 0.9792 0.9886 

>500 0.8735 0,7996 0.8736 0.7574 0.9820 0.9917 

 

The RockGIS code allows counting the number of blocks reaching the section. This information 

will be used to calculate the exposure as it will be shown in the following chapters. 

 

Exposure P (T │ X)j 

 

The probability of the rockfall encountering visitors at a distance “x” from the source, P (T │ X), 

takes into account two components: the probability that the person or group of persons is located 

within the rockfall trajectory at the moment of its occurrence and the width of the trail section 

intersected by the cone of rock fragments (Wr) (equation 2). In the simulation of intact rock fall 

masses, Wr is the width of the fallen rock block assuming a cubic shape. For fragmental rockfalls, 

Wr is the fraction of the cone of debris width Wcx actually occupied by the rock fragments 

calculated with the information provided by the RockGIS code 

 

Fragmentation of rockfalls generates a completely different scenario (see example of 10m3 in 

Error! Reference source not found.). First, fragmentation generates a number of divergent 

trajectories. In the study area, the width of the cone of block fragments (Wcx) increases with the 

distance (x) from the source and with the number of impacts. Compared to unbroken rock blocks, 

the length of the trail section intersected by the rock fragments (Wcx) is found to increase up to an 

order of magnitude (Error! Reference source not found.).  This has a direct effect on the 

exposure. 
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Table 4. Wcx values for different fragmental rockfall volumes, calculated with the RockGIS code 

Rockfall volume 

(m3) 

Trail section 1 Trail section 2 

Intact blocks fragmental Intact blocks fragmental 

<0,05 0.2 None reaching 0.2 6 

0,05 < x <0,5 0.8 None reaching 0.8 9 

0,5 < x <5 1.5 17.5 1.5 13 

5 < x <50 3.5 20 3.5 18 

50 < x <500 8 40 8 25 

>500 10 55 10 32 
 

The modal size and number “n” of fragments reaching the analyzed section provided by RockGIS 

code are included in equation 3 to calculate Wr. An example is provided in Figure 17 and  Table 

5. The annual frequency of a 10 m3 fragmental rockfall event is assigned as 10-2. To calculate 

P(X|D) a total of 10 trajectories are simulated.  The number of rock fragments reaching the trail 

section in each simulation are counted. In the example of  Figure 17 only 21% of the trajectories 

(reach probability=1-0.79) of the simulated fragmental rockfall events, reach the trail. This 

percentage may be split considering the number of fragments that reach the trail in each 

simulation. Thus, the trail is intersected by only one rock fragment in 6.5% of the simulated 

trajectories (reach probability=0.855-0.79); by 2 rock fragments in 2% of the simulated 

trajectories (reach probability=0.875-0.855); by 3 rock fragments in 1% of the simulated 

trajectories; by 4 rock fragments in 1% of the simulated trajectories; by 5 or more rock fragments 

in 10.5% of the simulated trajectories. 
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Figure 17   Cumulative probability of the simulated trajectories for each number of reaching fragments, in 

the case of a 10m3 fragmental rockfall. 

In case of block fragments with a modal width (Wmx) of 1m and a width of the cone of fragments 

(Wcx) of 5m at its intersection with the trail, the equations 3, yields the results shown at Table 5. 

 
Table 5.Value of Wr and its associated probability for the case example of a 10-m3 fragmental rockfall 

occurring with an annual frequency of 10-2, and considering the reach probability for one or more blocks 

of figure 18.  In the example, the block fragments have a modal with (Wm) of 1 m and the width of the 

cone of fragments at its intersections with trail is Wcx=5m. 

Distribution of the daily visitors flow (≈700 visitors) in groups 

type individuals Groups of 2 Groups of 4 Groups of 10 

percentage 10% 45% 35% 10% 

# of persons 70 313 243 70 

# of sets 70 157 61 7 

 

This procedure for estimating Wr in fragmental rockfall events must be repeated for each rockfall 

size and for each analyzed trail section.  

 

The exposure, P (T │ X) also requires considering the number and velocity of the visitors or, in 

other words, the flow of visitors (fp). During the last 16 years, the Monasterio de Piedra natural 

site has received an average number of 250,040 visitors per year (696 ≈ 700 visitors/day).  Most 

QRA studies for infrastructures such as roads and railways, assume a continuous (constant) flow 

of vehicles (Hungr et al. 1999; Ferlisi et al. 2012; Nicolet et al. 2016). This assumption is arguable 

in the case of Lago del Espejo as the visitors usually walk in small groups. For this reason, we 

have carried out two calculations: 

- Uniformly distributed flow of visitors 

- Flow of visitors distributed in groups as follows: 10% individuals, 45% in couples, 35% in 

groups of 4 people, 10% in groups of 10 people (Table 6) 

 
Table 6. Distribution of the visitors’ flow within the premises of the Lago del Espejo, used in the QRA 

Distribution of the daily visitors flow (≈700 visitors) in groups 

type individuals Groups of 2 Groups of 4 Groups of 10 

percentage 10% 45% 35% 10% 

# of persons 70 313 243 70 

# of sets 70 157 61 7 
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In equation 2, all the visitors whatever they are individuals or groups of any size, move at an 

average speed (vp) of 2 km/h. The width or length of the person (lp) is assumed 0.5m as suggested 

by Hantz (2011). 

Risk calculation 

 

Different vulnerability values are heuristically assigned based on the size of the rock block and 

the number of persons in the group (Table 7Table 7). For risk calculation purposes, the assigned 

vulnerability is multiplied by the number of persons to obtain number of victims. Thus, a 

vulnerability value of 1 for a group of 4, implies 4 victims. 

 

Table 7. Estimated vulnerability values for different rockfall sizes and groups of visitors. 

Rockfall 

volume (m3) 

# persons 

individuals Groups of 2 Groups of 4 Groups of 10 

≤ 0,05 0.5 0.3 0.1 0.05 
0,05 a ≤0,5 0.9 0.6 0.3 0.2 

0,5 a ≤5 1.0 0.9 0.6 0.4 
5 a ≤50 1.0 1.0 0.8 0.8 

50 a ≤500 1.0 1.0 1.0 1.0 
> 500 1.0 1.0 1.0 1.0 

 

The risk is calculated for each of the six rockfall magnitude classes because each one is 

characterized by a specific probability of occurrence, runout, impact probability and vulnerability 

 

 

4. Results  

 

The results are summarized in tables 8 to 13. The two following scenarios are analyzed: 

 

Scenario 1 

 

 Corresponds to the initial situation, without the presence of flexible rockfall protection fences, 

for intact (non fragmented) rockfall masses and for fragmental rockfalls and for an uniformly 

distributed flow of visitors (Table 8 and Table 9) and segregated flow of visitors (Table 10 and 

Table 11) 

 

 



338 
 

 

 
Table 8. Individual risk (annual probability of loss of life) for intact (top) and fragmental (bottom) rockfalls 

at the trail section 1. A uniformly distributed flow of visitors (700 visitors/day) is considered 

Trail Section 1 length: 194,8m 

Unfragmented rockfalls 

Class Mi (m3) Ni P(X:D) P(T:X) V Risk 
≤ 0,05 16.31851 0.1194 0.010 0.5 0.009945 

0,05 a ≤0,5 0.25049 0.3280 0.019 0.9 0.001402 
0,5 a ≤5 0.03301 0.5896 0.022 1.0 0.000426 
5 a ≤50 0.00434 0.7647 0.066 1.0 0.000218 

50 a ≤500 0.00057 0.8320 0.124 1.0 0.000059 
> 500 0.00008 0.8735 0.153 1.0 0.000010 

Annual probability of loss of life 0.012060 
Fragmental rockfalls 

≤ 0,05 16.31851 0.0000 0.0000 0.5 0.000000 
0,05 a ≤0,5 0.25049 0.0000 0.0000 0.9 0.000000 

0,5 a ≤5 0.03301 0.0425 0.0338 1.0 0.000047 
5 a ≤50 0.00434 0.2327 0.1204 1.0 0.000122 

50 a ≤500 0.00057 0.6309 0.3738 1.0 0.000136 
> 500 0.00008 0.7996 0.6778 1.0 0.000042 

Annual probability of loss of life 0.000346 
 
Table 9. Individual risk (annual probability of loss of life) for intact (top) and fragmental (bottom) rockfalls 

at the trail section 2. A uniformly distributed flow of visitors (700 visitors/day) is considered 

Trail Section 2 length: 143.9m 

Non fragmented rockfalls 

Class Mi (m3) Ni P(X:D) P(T:X) V Risk 
≤ 0,05 7.32419 0.6105 0.010 0.5 0.022823 

0,05 a ≤0,5 0.11243 0.8394 0.019 0.9 0.001610 
0,5 a ≤5 0.01482 0.9446 0.022 1.0 0.000306 
5 a ≤50 0.00195 0.9699 0.066 1.0 0.000124 

50 a ≤500 0.00026 0.9792 0.124 1.0 0.000031 
> 500 0.00003 0.9820 0.153 1.0 0.000005 

Annual probability of loss of life 0.024900 
Fragmental rockfalls 

≤ 0,05 7.32419 0.2940 0.0407 0.5 0.043771 
0,05 a ≤0,5 0.11243 0.5700 0.0620 0.9 0.003579 

0,5 a ≤5 0.01482 0.7908 0.1561 1.0 0.001829 
5 a ≤50 0.00195 0.9507 0.2443 1.0 0.000453 

50 a ≤500 0.00026 0.9886 0.3668 1.0 0.000094 
> 500 0.00003 0.9917 0.4718 1.0 0.000016 

Annual probability of loss of life 0.049741 
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Table 10. Risk segregated by groups of visitors for unfragmented and fragmental rockfall events at trail section 1. 
Volume Events/yr  Unfragmented rock falls  Fragmental rockfalls 
Class Mi 

 
Ni P(X:D) P(T:X) V #persons Risk 

 
P(X:D) P(T:X) V #persons Risk 

 ≤ 0,05 16.31851 0.1194 0.001021 0.5 1 0.000995 0.0000 0.0000 0.5 1 0.000000 
0,05 a ≤0,5 0.25049 0.3280 0.001896 0.9 1 0.000140 0.0000 0.0000 0.9 1 0.000000 
0,5 a ≤5 0.03301 0.5896 0.002188 1.0 1 0.000043 0.0425 0.0034 1.0 1 0.000005 
5 a ≤50 0.00434 0.7647 0.006563 1.0 1 0.000022 0.2327 0.0120 1.0 1 0.000012 
50 a ≤500 0.00057 0.8320 0.012396 1.0 1 0.000006 0.6309 0.0374 1.0 1 0.000014 
> 500 0.00008 0.8735 0.015313 1.0 1 0.000001 0.7996 0.0678 1.0 1 0.000004 

Individuals (10% visitors) 
 

  0.001210   0.000035 
≤ 0,05 16.31851 0.1194 0.003925 0.3 2 0.004589 0.0000 0.0000 0.3 2 0.000000 
0,05 a ≤0,5 0.25049 0.3280 0.005888 0.6 2 0.000580 0.0000 0.0000 0.6 2 0.000000 
0,5 a ≤5 0.03301 0.5896 0.006542 0.9 2 0.000229 0.0425 0.0092 0.9 2 0.000023 
5 a ≤50 0.00434 0.7647 0.014719 1.0 2 0.000098 0.2327 0.0286 1.0 2 0.000058 
50 a ≤500 0.00057 0.8320 0.029438 1.0 2 0.000028 0.6309 0.0855 1.0 2 0.000062 
> 500 0.00008 0.8735 0.035979 1.0 2 0.000005 0.7996 0.1537 1.0 2 0.000019 
Groups of 2 (45% of visitors) 

      
 

  0.005529   0.000162 
≤ 0,05 16.31851 0.1194 0.002160 0.1 4 0.001684 0.0000 0.0000 0.1 4 0.000000 
0,05 a ≤0,5 0.25049 0.3280 0.002923 0.3 4 0.000288 0.0000 0.0000 0.3 4 0.000000 
0,5 a ≤5 0.03301 0.5896 0.003177 0.6 4 0.000148 0.0425 0.0042 0.6 4 0.000014 
5 a ≤50 0.00434 0.7647 0.006990 0.8 4 0.000074 0.2327 0.0118 0.8 4 0.000038 
50 a ≤500 0.00057 0.8320 0.012073 1.0 4 0.000023 0.6309 0.0338 1.0 4 0.000049 
> 500 0.00008 0.8735 0.014615 1.0 4 0.000004 0.7996 0.0603 1.0 4 0.000015 
Groups of 4 (35% of visitors) 

 
  0.002222   0.000116 

≤ 0,05 16.31851 0.1194 0.000613 0.05 10 0.000597 0.0000 0.0000 0.05 10 0.000000 
0,05 a ≤0,5 0.25049 0.3280 0.000700 0.2 10 0.000115 0.0000 0.0000 0.2 10 0.000000 
0,5 a ≤5 0.03301 0.5896 0.000729 0.4 10 0.000057 0.0425 0.0008 0.4 10 0.000005 
5 a ≤50 0.00434 0.7647 0.001167 0.8 10 0.000031 0.2327 0.0017 0.8 10 0.000014 
50 a ≤500 0.00057 0.8320 0.001750 1.0 10 0.000008 0.6309 0.0042 1.0 10 0.000015 
> 500 0.00008 0.8735 0.002042 1.0 10 0.000001 0.7996 0.0073 1.0 10 0.000004 
Groups of 10 (10% of visitors)   0.000809   0.000038 

 Overall risk for unfragmented rockfalls 0.009766 Overall risk for fragmental rockfalls 0.000351 
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Table 11. Risk segregated by groups of visitors for unfragmented and fragmental rockfall events at trail section2. 

Volume Events/yr  Unfragmented  rock falls  Fragmental rockfalls 
Class Mi 

 
Ni P(X

 
P(T:X

 
V #perso

 
Risk 

 
P(X:D

 
P(T:X

 
V #perso

 
Risk 

 ≤ 0,05 7.32419 0.61
 

0.001 0.5 1 0.0022
 

0.2940 0.0041 0.5 1 0.0043
 0,05 a 

 
0.11243 0.83

 
0.002 0.9 1 0.0001

 
0.5700 0.0062 0.9 1 0.0003

 0,5 a ≤5 0.01482 0.94
 

0.002 1.0 1 0.0000
 

0.7908 0.0156 1.0 1 0.0001
 5 a ≤50 0.00195 0.96

 
0.007 1.0 1 0.0000

 
0.9507 0.0244 1.0 1 0.0000

 50 a ≤500 0.00026 0.97
 

0.012 1.0 1 0.0000
 

0.9886 0.0367 1.0 1 0.0000
 > 500 0.00003 0.98

 
0.015 1.0 1 0.0000

 
0.9917 0.0472 1.0 1 0.0000

 Individuals (10% visitors) 
 

  0.0024
 

  0.0049
 ≤ 0,05 7.32419 0.61

 
0.0039

 
0.3 2 0.0105

 
0.2940 0.0108 0.3 2 0.0138

 0,05 a 
 

0.11243 0.83
 

0.0058
 

0.6 2 0.0006
 

0.5700 0.0156 0.6 2 0.0011
 0,5 a ≤5 0.01482 0.94

 
0.0065

 
0.9 2 0.0001

 
0.7908 0.0366 0.9 2 0.0007

 5 a ≤50 0.00195 0.96
 

0.0163
 

1.0 2 0.0000
 

0.9507 0.0564 1.0 2 0.0002
 50 a ≤500 0.00026 0.97

 
0.0294

 
1.0 2 0.0000

 
0.9886 0.0839 1.0 2 0.0000

 > 500 0.00003 0.98
 

0.0359
 

1.0 2 0.0000
 

0.9917 0.1075 1.0 2 0.0000
 Groups of 2 (45% of 

 
  0.0114

 
  0.0161

 ≤ 0,05 7.32419 0,.6
 

0.0021
 

0.1 4 0.0038
 

0.2940 0.0048 0.1 4 0.0041
 0,05 a 

 
0.11243 0.83

 
0.0029

 
0.3 4 0.0003

 
0.5700 0.0067 0.3 4 0.0005

 0,5 a ≤5 0.01482 0.94
 

0.0031
 

0.6 4 0.0001
 

0.7908 0.0149 0.6 4 0.0004
 5 a ≤50 0.00195 0.96

 
0.0069

 
0.8 4 0.0000

 
0.9507 0.0226 0.8 4 0.0001

 50 a ≤500 0.00026 0.97
 

0.0120
 

1.0 4 0.0000
 

0.9886 0.0332 1.0 4 0.0000
 > 500 0.00003 0.98

 
0.0146

 
1.0 4 0.0000

 
0.9917 0.0424 1.0 4 0.0000

 Groups of 4 (35% of 
  

  0.0043
 

  0.0052
 ≤ 0,05 7.32419 0.61

 
0.0006

 
0.05 10 0.0013

 
0.2940 0.0009 0.05 10 0.0009

 0,05 a 
 

0.11243 0.83
 

0.0007
 

0.2 10 0.0001
 

0.5700 0.0011 0.2 10 0.0001
 0,5 a ≤5 0.01482 0.94

 
0.0007

 
0.4 10 0.0000

 
0.7908 0.0021 0.4 10 0.0000

 5 a ≤50 0.00195 0.96
 

0.0011
 

0.8 10 0.0000
 

0.9507 0.0030 0.8 10 0.0000
 50 a ≤500 0.00026 0.97

 
0.0017

 
1.0 10 0.0000

 
0.9886 0.0042 1.0 10 0.0000

 > 500 0.00003 0.98
 

0.0020
 

1.0 10 0.0000
 

0.9917 0.0052 1.0 10 0.0000
 Groups of 10 (10% of 

 
  0.0015

 

 

 

  0.0012
  Overall risk for unfragmented rockfalls 0.0198

 
Overall risk for fragmental rockfalls 0.0276
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Some contrasting results of the rockfall fragmentation must be highlighted from Table 8 and Table 

10.  On one side in the example of trail section 1, fragmentation reduces the risk totally for rockfall 

volumes of less than 0.5m3. This is because fragmentation prevents the rock fragments from 

reaching the trail section that is, P(X:D)=0. On the opposite side, for rockfall volumes larger than 

50m3, fragmentation raises the risk to the visitors. The reason is that the generation of the cone 

of fragments increases substantially the exposure or the P(T:X) value, particularly for large 

rockfall events whose fragments virtually occupy the whole Wcx. In contrast, for rockfall volumes 

ranging between 0.5 and 50m3, the increase of exposure is either partially or fully compensated 

by the reduction of the runout. 

 

As shown in Table 10 and, as it will be discussed later in this chapter, the mentioned effects have 

a direct consequence on the overall risk value as most of the risk originate from high-frequency 

small-magnitude rockfall events, the runout of which is strongly affected by the fragmentation. 

Instead, the runout of large rockfall events (>50m3) is only slightly affected (from 0.3 to 0.63 and 

from 0.87 to 0.80 for rockfalls in the range of 50 – 500 m3 and over 500m3, respectively. The 

annual probability of loss of life for a uniformly distributed flow of individual visitors is reduced 

from 1.2·10-2 to 3.5·10-4, which is almost two orders of magnitude. The segregation of the 

visitors flow in groups has only a minor influence in the results. For non-fragmented rockfalls the 

annual probability of loss of life is reduced from 1.21·10-2 to 9.8·10-3 while for fragmental 

rockfalls it remains virtually the same as 3.5·10-4.  

 

The analysis of trail section 2 of Table 9 shows that risk has increased for all the range of rockfall 

volumes, without exception. In this case, the slight reduction of the probability of reach P(X:D) 

that fragmentation causes, does not compensate the increase of exposure. As the slope of trail 2 

is steeper and shorter than section trail 1, Wcx is narrower. This is confirmed by the results of 

Table 11, for the segregated flow of visitors. Quantitatively the increase of risk is mostly due to 

the small rockfall events (volumes <0.5m3) 
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Scenario 2 

 

The situation considering the presence of flexible rockfall protection fences is analyzed for trail 

section 1 only. It is carried out for both the unfragmented rockfall masses and for fragmental 

rockfalls and for uniformly distributed flow of visitors (table 12) and segregated flow of visitors 

(table 13). 

 

Furthermore, this analysis allows assessing the performance of the rockfall fences in terms of its 

spatial arrangement and their efficiency to cope with the fragmental rockfalls. 

 

Table 12. Individual risk (annual probability of loss of life) for intact (top) and fragmental (bottom) rockfalls 

considering the presence of flexible rockfall protection fences. Uniformly distributed flow of visitors (700 

visitors/day) is considered. 

Section length: 194,8m 

Unfragmented rockfalls 

Class Mi (m3) Ni P(X:D) P(T:X) V Risk 
≤ 0,05 16.31851 0.0220 0.010208 0.5 0.001832 

0,05 a ≤0,5 0.25049 0.0647 0.018958 0.9 0.000277 
0,5 a ≤5 0.03301 0.1455 0.021875 1.0 0.000105 
5 a ≤50 0.00434 0.7361 0.065625 1.0 0.000210 

50 a ≤500 0.00057 0.8312 0.123958 1.0 0.000059 
> 500 0.00008 0.8737 0.153125 1.0 0.000010 

Annual probability of loss of life 0.00249 
Fragmental rockfalls 

0,00121 ≤ 0,05 16.31851 0.0000 0.0000 0.5 0.000000 
0,05 a ≤0,5 0.25049 0.0000 0.0000 0.9 0.000000 

0,5 a ≤5 0.03301 0.0122 0.0370 1.0 0.000015 
5 a ≤50 0.00434 0.1310 0.1216 1.0 0.000069 

50 a ≤500 0.00057 0.5135 0.3590 1.0 0.000106 
> 500 0.00008 0.7574 0.6504 1.0 0.000038 

Annual probability of loss of life 0.000228 
  



344 
 

Table 13. Residual risk remaining after the construction of 1500kJ rockfall fences, segregated by groups of visitors for unfragmented and fragmental rockfall events. 
Volume Events/yr  Unfragmented rock falls  Fragmental rockfalls 
Class Mi (m3) Ni P(X:D) P(T:X) V #persons Risk 

 
P(X:D) P(T:X) V #persons Risk 

 ≤ 0,05 16.31851 0.0220 0.001021 0.5 1 0.000183 0.0000 0.0000 0.5 1 0.000000
 0,05 a ≤0,5 0.25049 0.0647 0.001896 0.9 1 0.000028 0.0000 0.0000 0.9 1 0.000000
 0,5 a ≤5 0.03301 0.1455 0.002188 1.0 1 0.000011 0.0122 0.0037 1.0 1 0.000001
 5 a ≤50 0.00434 0.7361 0.006563 1.0 1 0.000021 0.1310 0.0122 1.0 1 0.000006
 50 a ≤500 0.00057 0.8312 0.012396 1.0 1 0.000006 0.5135 0.0359 1.0 1 0.000010
 > 500 0.00008 0.8737 0.015313 1.0 1 0.000001 0.7574 0.0650 1.0 1 0.000003
 Individuals (10% visitors) 

 
  0.00025   0.000023 

≤ 0,05 16.31851 0.0220 0.003925 0.3 2 0.000845 0.0000 0.0000 0.3 2 0.000000 
0,05 a ≤0,5 0.25049 0.0647 0.005888 0.6 2 0.000114 0.0000 0.0000 0.6 2 0.000000 
0,5 a ≤5 0.03301 0.1455 0.006542 0.9 2 0.000057 0.0122 0.0099 0.9 2 0.000007 
5 a ≤50 0.00434 0.7361 0.014719 1.0 2 0.000094 0.1310 0.0289 1.0 2 0.000033 
50 a ≤500 0.00057 0.8312 0.029438 1.0 2 0.000028 0.5135 0.0821 1.0 2 0.000048 
> 500 0.00008 0.8737 0.035979 1.0 2 0.000005 0.7574 0.1475 1.0 2 0.000017 
Groups of 2 (45% of visitors) 

 
  0.00114   0.000106 

≤ 0,05 16.31851 0.0220 0.002160 0.1 4 0.000310 0.0000 0.000 0.1 4 0.000000 
0,05 a ≤0,5 0.25049 0.0647 0.002923 0.3 4 0.000057 0.0000 0.000 0.3 4 0.000000 
0,5 a ≤5 0.03301 0.1455 0.003177 0.6 4 0.000037 0.0122 0.004 0.6 4 0.000004 
5 a ≤50 0.00434 0.7361 0.006990 0.8 4 0.000071 0.1310 0.012 0.8 4 0.000022 
50 a ≤500 0.00057 0.8312 0.012073 1.0 4 0.000023 0.5135 0.033 1.0 4 0.000038 
> 500 0.00008 0.8737 0.014615 1.0 4 0.000004 0.7574 0.058 1.0 4 0.000013 
Groups of 4 (35% of visitors) 

 
  0.00050   0.000078 

≤ 0,05 16.31851 0.0220 0.000613 0.05 10 0.000110 0.0000 0.000 0.05 10 0.000000 
0,05 a ≤0,5 0.25049 0.0647 0.000700 0.2 10 0.000023 0.0000 0.000 0.2 10 0.000000 
0,5 a ≤5 0.03301 0.1455 0.000729 0.4 10 0.000014 0.0122 0.001 0.4 10 0.000001 
5 a ≤50 0.00434 0.7361 0.001167 0.8 10 0.000030 0.1310 0.002 0.8 10 0.000008 
50 a ≤500 0.00057 0.8312 0.001750 1.0 10 0.000008 0.5135 0.004 1.0 10 0.000012 
> 500 0.00008 0.8737 0.002042 1.0 10 0.000001 0.7574 0.007 1.0 10 0.000004 
Groups of 10 (10% of visitors)   0.000186   0.000025 
 Overall risk for unfragmented 

 
 0.002081 Overall risk for fragmental 

 
 0.000232 
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In this scenario, fragmentation reduces the overall risk by an order of magnitude. The effects 

observed in the natural conditions, such as the runout reduction and the increase of exposure are 

found here as well. However, the efficacy of the flexible rockfall fences in halting the falling 

blocks and the subsequent risk reduction is better observed in the analysis of unfragmented 

rockfalls.  There is a reduction of 80% of the annual risk for both the uniformly distributed flow 

of visitors and the segregated flow of visitors (from 0.012 to 0.0025 and from 0.0098 to 0.0021, 

respectively). Most of the reduction is due to the trapping of small-size rockfall events. The 

reduction of risk for fragmental rockfall is less significant. The annual risk is reduced to around 

35% for both the uniformly distributed flow of visitors and the segregated flow of visitors (from 

0.00035 to 0.00023). The reason is that most of the mid and large-size fragmental rockfalls cannot 

be stopped by the fences. There exist however an additional cause for this particular example. 

The probability of reach P(X:D) for fragmental rockfalls in the volume range of 0.5 to 5m3, has 

been reduced from 0.04 to 0.01 only. This contrast with the significant reduction observed for the 

non-fragmented events which is from 0.59 to 0.15. The explanation for such a behavior is found 

in Figure 16. A small percentage of modelled trajectories are not intercepted by the fences while 

some rebounds are higher than the height of the fences. This percentage cannot be reduced unless 

further protection works are carried out. 

 

A significant percentage (over 50%) of the large rockfalls for both unfragmented and fragmental 

rockfalls reach the trail. The existing protection fences are not capable to intercept their 

trajectories. It is worth noticing however, that for the range of fragmental rockfall volumes 

between 5 and 50m3, the reach probability is reduced up to 0.13.  

 

 

5. Discussion 

 

Rockfall simulation is highly sensitive to the quality of the input data (Van Westen et al. 2008). 

In the example of Monasterio de Piedra, we worked with a high-resolution DEM  (0.2x0.2m) 

generated from digital images captured with a drone.  There are, however, several sources of 

uncertainty in all the steps followed. Because of this, the example we provide is not aimed at 

yielding a precise value of risk but to highlight the effect of fragmentation in the value on risk 

and in the interpretation of the results. 

 

The first source of uncertainty is the frequency-magnitude relation, which has been prepared using 

a 15-yr record of rock blocks trapped in the existing fences. It is assumed that each block 

corresponds to one independent event obviating the fact that several of the retained blocks might 

be fragments belonging to the same rockfall event. This assumption underestimates the magnitude 
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of the events (all the blocks trapped are less than1m3). Conversely, rock blocks located upslope 

of the flexible fences were not count because their age cannot be constraint, which underestimates 

their frequency. At the other end, three large rockfall events (>500m3) were identified on the 

slopes bordering the lake. The age of two samples of tufa deposited at the bottom of the river 

Piedra valley, close to the Lago del Espejo are respectively 760±45 and 945±45 yr BP (Sancho et 

al. 2010). These values yield the minimum age of the gorge and consequently, of the length of the 

rockfall series obtained. They are consistent with the erosion rate of Table 2 and with the 

magnitude-frequency relation prepared for the study area. Another source of uncertainty are the 

rockfall release points. All the detachment points are assumed homogeneously distributed along 

the crest line of the cliffs. Although this hypothesis fits well for large rockfall volumes, it is clearly 

conservative for both small and mid-size events (up to 50 m3) since a percentage of them 

originates in middle and lower sectors of the cliff face and, therefore, they develop lower kinetic 

energies and run-out. Furthermore, despite the RockGIS model has been calibrated with the 

rockfall event of 2017 and with the back analysis of the blocks released during scaling works in 

2015, the model is based on a lumped mass approach whose restrictions are already known. The 

roughness is included in the restitution factors and is assumed constant for the whole slope while 

the vegetation has not been considered. Finally, the exposure is calculated considering a variable 

debris front width (Wr). calculated based on the modal rock block size (Wmx) rather than the 

actual size distribution of the blocks reaching the analyzed section. 

 

In spite of all the uncertainties and limitations of the approach, the results indicate that 

fragmentation affects strongly the results of the risk analysis. However, the consequences are not 

obvious and must be checked at each location or analyzed section.  The main reason is that both 

the reach probability and the exposure are spatially dependent. This contrasting behavior is 

observed in the two trail sections analyzed.  

 

The risk in trail section 1 is clearly benefited by the fragmentation. The length of the propagation 

slope facilitates the occurrence of additional impacts that, due to the smaller size of the newly 

generated fragments, a higher energy is dissipated (Figure 15) and consequently, travel shorter 

distances. As the volume of the rock fall increases, so does the size of the blocks, the divergence 

of the trajectories (Wcx), and the exposure P(T│X), thereby partially compensating the reduction 

of the run out.  The analysis of trail section 2 of Table 11 provides a different perspective, as due 

to the steepness of the slope, most of the new fragments generated are able to reach the section of 

analysis. In this case, the beneficial effect of the fragmentation on the run-out is lost. We must 

take into account that the topography also affects the trajectories and consequently, an effect on 

both the run-out and the exposure. This is illustrated by the Figure 3B, where the initially 

divergent flow of debris finally converge at the lowest part of the slope, thus reducing Wcx.          
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The analysis of the design  remedial measures is beyond the scope of this paper. The scenario 

analyzed with flexible rockfall fences considers the present conditions at the site. The simulations 

show that the efficacy of the fences for mid-size events increases with the fragmentation. After 

the impact, the velocity of the broken mass is transferred to the smaller rock fragments, whose 

energies are substantially reduced. In that respect, fragmentation improves the efficiency of the 

protections. In the example of trail section 1, the existing barriers intercept virtually all (98.8%) 

the fragments generated by the 0.5 to 5 m3 rockfall events, and a high percentage (87%) of the 

fragments generated by the 5 to 50 m3 rockfall events. The analysis also shows that a few 

trajectories may avoid the barriers by either passing between them or by bouncing over them.  

However, the interpretation of the performance of the rockfall fences must take into account the 

various assumptions of the analysis. First and most importantly, the analysis does not account for 

the multiple block impacts. Furthermore, no damage function is applied to the fences. In the 

simulations, all impacts with kinetic energies below 1500 kJ are trapped without affecting the 

future performance of the fence. This is an arguable assumption as the performance of the rockfall 

fences is much complex. The efficiency of the fence may decrease below the maximum impact 

load (Duffy and Badger, 2012; Volkwein et al. 2011) while small blocks with kinetic energy lower 

than the design values, may puncture the fence panel by the bullet effect (Spadari et al. 2012). As 

consequence, our evaluation most likely overestimates the efficiency of the existing barriers.  

 

 

6. Conclusions 

 

The quantitative risk analysis of fragmental rockfall has to confront a variety of challenges related 

to the evaluation the occurrence probability or frequency of the events, the runout modelling and 

the behavior of the falling mass. It must also account for the uncertainties due to inherently 

complex physical processes involved and the stochastic variability of all the relevant parameters. 

This is the first attempt to address the QRA of fragmental rockfalls. It is carried out with 

simulations using the RockGIS code and considering a fragmentation law for the falling rock 

masses. Despite all the limitations, the example we present highlights the relevance of the 

fragmentation for the exposed elements and in the quantification of the risk.  

 

One of the most important effects of fragmentation is on the rockfall runout. Fragmentation may 

significantly reduce the rockfall propagation if the slope is both gentle and long enough. This is 

clearly illustrated in the analysis of trail section 1 in the Monasterio de Piedra. None of the rock  

fragments of the small size (<0.5m3) fragmented rock masses reaches the trail section. This is the 

reason for the substantial reduction (more than one order of magnitude) compared to the value of 

risk for intact blocks for this magnitude range. However, the favorable effect of fragmentation 
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vanishes when rockfalls propagate along steep slopes. The blocks can hardly stop and the 

generated cone of fragments increase the exposure, as shown in the analysis of trail section 2.  

Considering fragmentation in the risk analysis forces the redefinition of the reach probability 

P(X│D) because a paradoxical situation may appear if a number of block fragments bigger than 

the number of initiators attain the distance of the analyzed section. In addition, our analysis has 

required a new procedure to quantify the exposure. The fragmentation due to the impact of small 

to mid-size rock masses (e.g. <100m3) on the ground, generates divergent trajectories of the new 

fragments, which define a cone. The projected width of the cone of the ground surface determines 

the length of the trail section affected by the arrival of rock fragments (Wcx). The procedure 

followed includes the calculation of the number of fragments that reach the section and the 

proportion that they really occupy of the debris front width (Wr). An important effect of 

fragmentation is that the exposure P(T:X) is spatially dependent, as shown by the variability of 

the cone of fragments. 

 

In the worked example, for rockfall events larger than 50 m3, fragmentation increases notably the 

exposure or the impact probability, due to the generation of the cone of fragments. In the case of 

trail section 1, the increase is counterbalanced by the reduction of the runout. The results show 

that the value of risk associated to both unfragmented and fragmental rockfalls is similar but the 

contribution of factors is different. This fact has to be taken into account in order not to reach 

misleading conclusions. 

 

The performance of the existing protection flexible fences has been analyzed as well.  The 

efficacy of rockfall fences for rockfall events up to 50m3 increases with the fragmentation. This 

fact opens the possibility of using this type of protections to manage the risk. However, additional 

work is needed on the performance of these structures before the efficiency and the residual risk 

could be evaluated reliably. 

 

In summary, fragmentation has both a significant and contrasting effect on the calculation of risk 

and it should not be obviated in risk analysis. Risk is significantly reduced if the slope where 

blocs propagate is both long and gentle enough. In this case, the new fragments generated 

mobilize less energy and can be trapped by the topographic irregularities, obstacles and the 

protection measures.  Conversely, a wide range of block sizes are able to reach the trails located 

either next or below steep slopes. In such a situation, fragmentation increases notably risk by 

generating of cone of fragments, which increase exposure of visitors. Our simulations also shown 

that the segregation of visitors’s flow has only a minor influence in the results of the risk analysis.  

The analysis of fragmentation is not straightforward. It requires the availability of a diversity of 

input data and working with high-resolution DEM. The use of the RockGIS propagation model 
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entails the multiparametric calibration and validation. The simulations illustrate the importance 

of the topography in the generation of preferential trajectories and the sensitivity of both run out 

and the kinetic energies of the blocks to the fragmentation criteria as shown in Matas et al. 2017.  
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