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Abstract
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Doctor of Philosophy in Applied Mathematics

A Contribution to Consensus Modeling in Decision-Making by means of
Linguistic Assessments

by Jordi MONTSERRAT-ADELL

Decision-making is an active field of research. Specifically, in recent times, a
lot of contributions have been presented on decision-making under linguistic assess-
ments. To tackle this kind of processes, hesitant fuzzy linguistic term sets have been
introduced to grasp the uncertainty inherent in human reasoning when expressing
preferences. This thesis introduces an extension of the set of hesitant fuzzy lin-
guistic term sets to capture differences between non-compatible assessments. Based
on this extension, a distance between linguistic assessments is defined to quantify
differences between several opinions. This distance is used in turn to present a rep-
resentative opinion from a group in a decision-making process. In addition, different
consensus measures are introduced to determine the level of agreement or disagree-
ment within a decision-making group and are used to define a decision maker’s pro-
file to keep track of their dissension with respect to the group as well as their level
of hesitancy. Furthermore, with the aim of allowing decision makers to choose the
linguistic terms that they feel more comfortable with, the concept of free double hi-
erarchy hesitant fuzzy linguistic term set is developed in this thesis. Finally, a new
approach of the TOPSIS methodology for processes in which the assessments are
given by means of free double hierarchy hesitant fuzzy information is presented to
rank alternatives under these circumstances.
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Chapter 1

Introduction

1.1 Motivation

Making decisions is a daily action. Should I stay or should I go? Where should I go
on vacation? Which car model should I buy? What is the best candidate for a job po-
sition? Yet, to make a decision is not only part of people’s daily life, it is also part of
business. It is quite common that company managers have to make relevant decisions
and support them under complex and uncertain problems. Because of this everyday
nature and its usefulness for some important research fields, decision-making has
been an increasingly interesting topic in the recent years, specially when it comes to
Multiple-Criteria Decision-Making (MCDM).

MCDM refers to structuring and solving decision problems in the presence of
multiple criteria. For instance, to decide where to go on vacation, these criteria could
be, for example, the price, weather, cultural interest and amusement of each destina-
tion. Instead, to choose one car model to buy, the criteria would be the reviews in
different car magazines of the models that we are considering.

As the previous examples show, MCDM methodologies can be used for different
kind of decision-making problems. On the one hand, we can deal with Multiple-
Attribute Decision-Making (MADM) situations in which the different criteria cor-
respond to several features of the alternative or candidate to be assessed. Focusing
on the job candidate example, the owner of a clothing store, trying to choose the
best shop assistant would be an MADM process. In this case, one single person, the
owner, has to make the decision based on several aspects such as previous experience,
languages, references and so on.

On the other hand, MCDM tools can be used as well to approach situations in
which the different criteria correspond to the opinion of a set of experts or Decision
Makers (DMs). Under these circumstances, we talk about Group Decision-Making
(GDM) situations. Back to the job candidate example, a case in which a consulting
firm wants to hire the best job candidate basing the decision on the global opinion
about the candidate from several members of a human resources recruitment com-
mittee would be a GDM process.

Finally, these two kind of situations can be combined together when each mem-
ber of the group has to consider different attributes before giving their assessment.
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Chapter 1. Introduction

In this case we talk about Multi-Attribute Group Decision-Making (MAGDM) prob-
lems. This would be the case, for instance, of a recruitment committee in which each
member of the committee evaluate separately different aspects of the candidate’s
profile instead of giving a global opinion.

MCDM has been an active discipline of research for the last 50 years. Since 1970s
several methodologies have been studied and presented to try to improve how to deal
with these widespread situations [16, 38]. A valuable branch of these contributions
is focused on linguistic MCDM problems, in which a qualitative opinion is preferred
rather than a quantitative opinion. Computing with words was introduced in 1999 and
was widely accepted given that qualitative descriptions are much more accepted than
quantitative ones in some non-technological fields, and even in some technological
ones, given that it is closer to usual language [79]. Because of this acceptance, the
development of structures using linguistic assessments has speeded up a lot in recent
times.

To this aim, fuzzy sets are a useful tool to mathematically deal with qualitative
descriptions [77]. In this regard, Likert scales such as totally disagree, disagree,
neither disagree nor agree, agree, totally agree can be understood as fuzzy linguistic
term sets. This kind of structures have been very used in the literature to ease the
study of linguistic MCDM situations.

Nevertheless, indecision is quite common in human reasoning and DMs could
not be very sure about which linguistic label from the scale to choose. In front of
this, a possible solution is to allow the DMs to hesitate and choose more than one
label. This fact led to the introduction of absolute order-of-magnitude qualitative
models [64] and, later, Hesitant Fuzzy Linguistic Terms Sets (HFLTSs) in 2012 to
better capture such uncertainty [53].

The motivation of this tesis is to present, based on the initial studies on the fields
of Qualitative Reasoning (QR) [63] and HFLTSs [53], a contribution to MCDM by
means of hesitant fuzzy linguistic assessments, with a special focus on the study of
consensus modeling, which includes from finding a consensus opinion to calculating
consensus measures for GDM situations.

Consensus opinions can be understood as central opinions of the group, which
are useful in any of the previous examples. In the store shop example, it can be
used to determine the overall suitability of each candidate, while in the consulting
firm example, it can be used to aggregate the opinion of the different members of the
committee. In addition, consensus measures are appropriate to determine the level of
agreement or disagreement between the different criteria, either features or DMs.

1.2 State of the Art

The research line in which this thesis is framed is the study of new mathematical
structures for multi-criteria decision aiding under uncertainty. To deal with this kind
of processes, Zadeh introduced in 1965 the concept of fuzzy sets [77]. Ever since

2



1.2. State of the Art

then, several extensions such as the intuitionistic fuzzy sets [5, 6] or the Hesitant
Fuzzy Sets (HFSs) [28, 62, 72] have been presented.

However, given that in some areas people prefer to use a qualitative reasoning
better than a quantitave one, this thesis focuses on decision-making processes in
which opinions are given by means of linguistic assessments. To this end, Zadeh also
introduced the concepts of linguistic variable [78] and computing with words [79].
From then on, several contributions have been developed on that field, some of them
focusing on different linguistic representation models [27, 39, 65] and some others
dealing with decision systems that are able to compute with linguistic variables [24,
40, 42].

Furthermore, different studies have shown that, in general, humans do not use
purely quantitative models when expressing preferences and interests but are more
comfortable using global or abstract forms based on qualitative or linguistic infor-
mation [4, 24, 65]. Similarly, in MAGDM environments, the design of systems
that try to aid decision-making is considered appropriate to allow the description or
evaluation of alternatives to be made by non-numerical values. It is also capable to
reflect the available knowledge, which is, in general, imprecise and involving un-
certainty [14, 25, 29, 61]. In the literature, this uncertainty has been modeled with
intervals or fuzzy values through a linguistic approach [52, 53, 58].

With regards to the set of linguistic labels used, two main groups of approaches for
linguistic modeling in a considered fuzzy environment can be defined. The models
in the first group are based on a totally ordered set of linguistic labels [73]. On
the contrary, the models in the second group involve different levels of accuracy or
multi-granularity and, therefore, they do not rely on a fully ordered set of linguistic
labels [10, 22, 24, 49].

In addition, it should be noted that the different methods of MAGDM include a
stage of aggregation or information fusion. While some of them use aggregation op-
erators [60, 73], others are based on reference point methods [2], and others involve
a consensus process to obtain a compromise solution [4, 7, 41, 49].

Once this general overview on MAGDM has been presented, let us confine our-
selves to the most recent contributions in the literature with respect to the most
closely related concepts to the contents of this thesis. Therefore, the following para-
graphs focus with much more detail on the state of the art of the specific research
line of this thesis: absolute order-of-magnitude qualitative models and HFLTSs.

Following previous studies framed in the order-of-magnitude qualitative reason-
ing [65], Prats et al. constructed the extended set of qualitative labels L over a well-
ordered set and they proved its lattice structure [50]. The qualitative descriptions
of a given set are also defined as L-fuzzy sets. The underlying idea of L-fuzzy sets
is analogous to the concept of subset or the concept of fuzzy set [17]. In the same
way that any function f : Λ → {0, 1} defines an ordinary subset of a set Λ, whose
characteristic function is f , and any function f : Λ → [0, 1] defines a fuzzy set
on Λ, whose membership function is f , an L-fuzzy set is defined by a membership
function Q : Λ → L. The elements of an L-fuzzy set are assigned to elements of a
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lattice rather than degrees of membership. In this case, the lattice is the extended set
of qualitative labels L over a well-ordered set.

In addition, in the case where the well-ordered set is finite, a suitable distance be-
tween L-fuzzy sets is introduced based on the properties of the lattice L, as well as the
concept of the information contained in a qualitative label, leading to a formal defini-
tion of the entropy of an L-fuzzy set as a Lebesgue integral. In the discrete case, this
integral becomes a weighted average of the information of the labels, corresponding
to the Shannon entropy in information theory.

Prats et al. provided a new general representation of linguistic descriptions by
unifying ordinal and fuzzy perspectives [51]. It proposes fuzzy-qualitative labels as
a generalization of the concept of qualitative labels over a well-ordered set. Fuzzy-
qualitative descriptions are defined to model the assessments of a group of experts
when evaluating different alternatives by using linguistic descriptions. A remark-
able theorem that characterizes finite fuzzy partitions using fuzzy-qualitative labels,
the cores and supports of which are qualitative labels, is established. This theorem
provides a mathematical justification for commonly-used fuzzy partitions of real in-
tervals via trapezoidal (or triangular) fuzzy sets.

A mathematical framework and new methodologies for group decision-making
under multi-granular and multi-attribute linguistic assessments have been thoroughly
investigated [2, 56, 57]. On the one hand, a new approach is presented based upon
qualitative reasoning techniques for representing and synthesizing the information
given by a group of evaluators [2]. To represent non-trivial domain knowledge, the
alternatives to be ranked are characterized by a set of features, which are evaluated
by each member of the group through linguistic labels corresponding to ordinal val-
ues. Different levels of precision are considered to draw the distinctions required by
evaluators’ reasoning processes. The method used for ranking alternatives is based
on comparing distances to an optimal reference point or gold standard.

On the other hand, a degree of consensus and distances between linguistic assess-
ments for multi-criteria group decision-making are presented [56, 57]. Distances in
the space of qualitative assessments are defined from the geodesic distance in graph
theory and the Minkowski distance. The degree of consensus is introduced through
the concept of entropy of a qualitatively-described system. Optimal assessments in
terms of both proximity to all the expert opinions in the group and the degree of
consensus are used to compare opinions and to define a methodology to rank multi-
attribute alternatives. This new approach is able to manage situations where the
assessments given by experts involve different levels of precision.

Subsequently, Rodríguez et al. introduced in 2012 the concept of Hesitant Fuzzy
Linguistic Term Set (HFLTS) [53] with the aim of combining HFSs and QR. Due to
the parallelism between the extended set of qualitative labels L over a well-ordered
set (in the case where the well-ordered set is finite), and the set of Hesitant Fuzzy
Linguistic Term Sets (HFLTSs) over a well-ordered set, some of the results obtained
on the first field [2, 50, 57] can also be analyzed in the HFLTSs framework.

HFLTSs were later redefined by Liao et al. in a mathematical form [35]. From
then on, several aspects of the HFLTSs have been studied such as hesitant fuzzy
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linguistic information aggregation techniques [19, 68], hesitant fuzzy linguistic mea-
sure methods [20, 32, 33, 35], hesitant fuzzy linguistic operational laws [18], hesitant
fuzzy linguistic preference relations [35, 36, 80, 81] and hesitant fuzzy linguistic de-
cision making methods [20, 32].

Amongst all the related topics, this thesis focuses on the study of consensus of
a GDM situation by means of HFLTSs. Several contributions have been presented
in this field. While the aim of some of them is to present a consensus reaching
algorithm [11], some others focus on introducing consensus measures to quantify the
level of agreement in this kind of scenarios. Within this second kind of approaches,
two main group can be defined based on a key difference. On the one hand, some
results seek to determine the level of agreement of the whole group [55, 69, 70]. On
the other hand, the aim of the second kind of approaches is to gauge the agreement
of a certain DM of the group with respect to the whole group [12, 71]. In Chapter 4,
a further study on the differences between these approaches is developed.

Notwithstanding the utility of HFLTSs, in some situations, this kind of linguistic
expressions are not able to depict the complexity inherent in human reasoning when
evaluating with linguistic assessments with enough details. Some authors have stud-
ied how to define linguistic expressions more complex than single linguistic terms as
reviewed by Rodríguez et al. [54]. In order to provide a more precise tool, Gou et
al. presented the concept of Double Hierarchy Hesitant Fuzzy Linguistic Term Sets
(DHHFLTSs) [21]. This structure allows each decision maker to choose one term
from a first hierarchy Linguistic Term Set (LTS) and later choose another term from
a second hierarchy LTS gaining more accuracy on the linguistic assessment. There-
fore, linguistic expression such as very bad or almost perfect may arise as possible
linguistic assessments to be used by the DMs. A deeper explanation on DHHFLTS
is given in Chapter 5.

Finally, in the last years, in the frame of multi-criteria decision aiding methods
based on preference modeling, several approaches to enhance existing methods have
been introduced. As an example, Afsordegan et al. present a modified Technique
for Order of Preference by Similarity to Ideal Solution (TOPSIS) method for multi-
criteria group decision-making with qualitative linguistic labels [1] and Gou et al.
introduce a new approach of the Multiple Objective Optimization on the basis of
Ratio Analysis plus Full Multiplicative Form (MULTIMOORA) method for GDM
processes in which the assessments are made by means of DHHFLTSs [21].

1.3 Objectives of the Thesis

From a theoretical point of view, the main goal of this Ph.D. thesis is to define and
study new mathematical structures, metrics, and criteria aggregation methods. In
addition, these concepts are used throughout this thesis to introduce new consensus
models and ranking methodologies that take into account some aspects that were
disregarded by the already existing ones. All these contributions are based on fuzzy
and qualitative reasoning for group decision-making and social interaction.

To this aim, this Ph.D. thesis is oriented towards the following specific objectives:
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O1 To define new metrics between HFLTSs that better describe the concept of
distance between DMs, users’ or experts’ opinions when those are expressed
by means of linguistic assessments. These new metrics must capture details
that were disregarded by the existing ones.

O2 To extend the set of HFLTSs into a larger set with negative elements that offsets
the main drawbacks of the existing structure of HFLTSs. This extension must
enable us to discriminate between pairs of non-overlapping assessments by
calculating the gap between them.

O3 To redefine the new metrics in the extended set of HFLTSs in order to analyze
and measure differences among linguistic assessments for group or collabora-
tive decision-making.

O4 To use the introduced metrics to present a method for determining a central
opinion in a GDM situation as a representative assessment of the group. This
method must consider the aforementioned gap between non overlapping as-
sessments and must be computed in a reasonable time.

O5 To define consensus measures for GDM environments to quantify the level of
agreement within the group. These measures must improve the properties of
the already existing ones.

O6 To present a DM’s profile that keeps track of their previous performances in
other GDM situations. This profile must consider both the level of hesitancy
of the DM when assessing and the level of discrepancy between their opinion
and the group’s opinion.

O7 To introduce a new mathematical structure based on the HFLTSs that enable
the DMs of a GDM process to choose their own linguistic expressions. These
expressions do not necessarily have to be the same for all the DMs involved.
This structure will give more freedom to the DMs by letting them choose the
linguistic expressions that they feel more comfortable with.

O8 To develop a ranking method based on GDM processes in which assessments
are given by means of the aforesaid structure. This method must deal with the
fact that each DM can be using different linguistic expressions.

1.4 Contributions of the Thesis

The contributions of this Ph.D. thesis can be summarized as follows:

C1 The first contribution of this thesis is the introduction of a new distance mea-
sure within the set HFLTSs based on the previous work of Agell et al. [3], in
which a distance measure was already defined. The drawbacks of the already
defined distances have been pointed out and offset with the introduction of the
new distance. The main novelty of the introduced distance with respect to the
already existing ones is the fact that it is based on a concept called concordance
of HFLTSs instead of the usual intersection of HFLTSs. This concordance
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provides more details than just the empty set for non-overlapping assessments.
This contribution covers the objective O1.

The results of this study have been published in the following article:

• Jordi Montserrat-Adell, Núria Agell, Mónica Sánchez, Francesc Prats,
Francisco Javier Ruiz. Modeling group assessments by means of hesi-
tant fuzzy linguistic term sets. Journal of Applied Logic, 27 (2017) 40–
50. DOI: 10.1016/j.jal.2016.11.005. Impact Factor: 0.838. Quartile: Q1
(JCR Category: Logic).

C2 The second contribution is the extension of the set of HFLTSs to a larger set.
Besides the usual HFLTSs that are now called positive HFLTSs, this new set
also contains negative HFLTSs, which represent gaps between assessments,
and zero HFLTSs, which represents consecutiveness of assessments. This ex-
tended model enables the generalization of the distance from the objective O1
to the whole new set. In addition, this extended structure is used to provide
a group representative assessment based on the idea of central opinion of the
group by minimizing the addition of distances to each DM’s opinion. This
contribution covers the objectives O2, O3, and O4.

Preliminary works on this topic have been presented in the following interna-
tional conferences:

• Jordi Montserrat-Adell, Núria Agell, Mónica Sánchez, Francisco Javier
Ruiz. Extended set of hesitant fuzzy linguistic term sets. In XVIII Con-
greso Español sobre Tecnologías y Lógica Fuzzy (ESTYLF), Donostia,
Spain, 2016.

• Jordi Montserrat-Adell, Núria Agell, Mónica Sánchez, Francisco Javier
Ruiz. From qualitative absolute order-of-magnitude to the extended set
of hesitant fuzzy linguistic term sets. In 29th International Workshop on
Qualitative Reasoning (QR), New York, USA, 2016.

The results of this study have been published in the proceedings of the follow-
ing international conference:

• Jordi Montserrat-Adell, Núria Agell, Mónica Sánchez, Francisco Javier
Ruiz. A representative in group decision by means of the extended set
of hesitant fuzzy linguistic term sets. In proceedings of the 13th Mod-
eling Decisions for Artificial Intelligence (MDAI), Sant Julià de Lòria,
Andorra, 2016. Lecture Notes in Artificial Intelligence, Springer Interna-
tional Publishing (2016) 56–67. DOI: 10.1007/978-3-319-45656-0_5.

C3 The third contribution is the study of consensus (agreement or discrepancy)
in a GDM process. To this end, different degrees of consensus are defined.
These degrees, which quantifies the level of agreement in GDM processes,
are approached in two different ways. On the one hand, a collective degree of
consensus is presented to determine the overall level of agreement of the whole
group. On the other hand, an individual degree of consensus is also introduced
to measure the level of agreement a specific DM with respect to the rest of
the group. Furthermore, this individual degree of consensus, together with a
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measure of the level of hesitancy of each DM, are used to present a precision-
dissension profile for each expert. This profile is useful to summarize the main
characteristics of the assessments of a DM: hesitant or not and discrepant or
not. This contribution covers the objectives O5 and O6.

Preliminary works on this topic have been presented in the following interna-
tional conference:

• Jordi Montserrat-Adell, Núria Agell, Mónica Sánchez, Francisco Javier
Ruiz. A consensus degree for hesitant fuzzy linguistic decision-making.
In 26th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
Naples, Italy, 2017.

The results of this study have been published in the following article:

• Jordi Montserrat-Adell, Núria Agell, Mónica Sánchez, Francisco Javier
Ruiz. Consensus, dissension and precision in group decision making by
means of an algebraic extension of hesitant fuzzy linguistic term sets.
Information Fusion, 42 (Supplement C) (2018) 1–11. DOI: 10.1016/
j.inffus.2017.09.004. Impact Factor: 5.667. Quartile: Q1 (JCR Cate-
gories: Computer Sciences & Artificial Intelligence and Computer Sci-
ences, Theory & Methods).

C4 The last contribution is the introduction of a new methodology that let the DMs
choose their own linguistic terms. Gou et al. introduced a second hierarchy
of linguistic terms to let the DMs be more precise on their assessments [21].
Based on this work, this thesis proposes an extensions of this model in which
the second hierarchy can be different for each linguistic term and for each DM.
The aim of this methodology is to let the DMs feel more comfortable by using
the linguistic expressions that they prefer. Finally, this model is used to present
a new approach of the TOPSIS method suitable to rank alternatives in this kind
of situations. This contribution covers the objectives O7 and O8.

The results of this study have been submitted to the following journal and are
currently under review:

• Jordi Montserrat-Adell, Zeshui Xu, Xunjie Gou, Núria Agell. Free dou-
ble hierarchy hesitant fuzzy linguistic term sets: An application on rank-
ing alternatives in GDM. Information Fusion. Currently under review.
Impact Factor: 5.667. Quartile: Q1 (JCR Categories: Computer Sciences
& Artificial Intelligence and Computer Sciences, Theory & Methods).

Table 1.1 summarizes the main contributions of this PhD thesis.

From a different point of view, this thesis has also contributed to establish re-
search collaborations between UPC-BarcelonaTech, ESADE Business School and
Sichuan University. This partnership arose due to the stage that I did in Chengdu to
collaborate with Professor Zeshui Xu. Chapter 5 of this thesis is the result of this
collaboration.

In addition, not only research collaborations with Sichuan University have been
established, but also with University of Granada, where I am planning to go on stage
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TABLE 1.1: Summary of the main contributions of this thesis.

Obj. Cont. Conferences Journal Chapter

O1 C1 Journal of Applied
Logic [47] (Q1) 2

O2

O3

O4

C2

ESTYLF 2016a

QR 2016a

MDAI 2016

Lecture Notes
on Artificial

Intelligence [45]
3

O5

O6
C3 FUZZ-IEEE 2017a Information

Fusion [46] (Q1) 4

O7

O8
C4 Information

Fusionb (Q1)
5

a Preliminary works.
b Currently under review.

to work with the Soft Computing and Intelligent Information Systems (SCI2S) re-
search group, leaded by Professor Francisco Herrera to explore the lines of future
research opened by this thesis.

Finally, the results of this thesis are framed on and have contributed to the de-
velopment of the INVITE Research Project (TIN2016-80049-C2-1-R and TIN2016-
80049-C2-2-R (AEI/FEDER, UE)), funded by the Spanish Ministry of Science and
Information Technology.

1.5 Outline of the Thesis

The rest of the present document is structured into the following chapters that corre-
spond to the articles that present the previously summarized contributions:

• Chapter 2 is the article Modeling group assessments by means of hesitant fuzzy
linguistic term sets, which presents the results from the contribution C1.

• Chapter 3 is the article A representative in group decision by means of the
extended set of hesitant fuzzy linguistic term sets, which presents the results
from the contribution C2.

• Chapter 4 is the article A consensus degree for hesitant fuzzy linguistic decision-
making, which presents the results from the contribution C3.
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• Chapter 5 is the article Free double hierarchy hesitant fuzzy linguistic term
sets: An application on ranking alternatives in GDM, which presents the re-
sults from the contribution C4.

• Chapter 6 presents the main conclusions of the thesis and some lines of future
research.

The link between each contribution of the thesis and the chapter that it corre-
sponds to is also summarized in Table 1.1.
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Chapter 2

Modeling Group Assessments by
means of Hesitant Fuzzy Linguistic
Term Sets

2.1 Introduction

Different approaches have been developed in the fuzzy set literature involving lin-
guistic modeling to handle the imprecision and uncertainty inherent in human pref-
erence reasoning [14, 25, 29, 49, 61]. In addition, several extensions of classic fuzzy
sets theory have been established to include different levels of precision or multi-
granularity in linguistic modeling [10, 22, 53]. Hesitant Fuzzy Linguistic Term Sets
(HFLTSs) were introduced to capture the human way of reasoning involving differ-
ent levels of precision. To this end, a set of linguistic expressions is defined based on
the concept of hesitancy [53].

L-fuzzy sets are considered as a generalization of the classic fuzzy sets with range
values of membership functions in a lattice L [17]. Classic fuzzy sets can be con-
sidered as a special case of the L-fuzzy sets with L = [0, 1]. The relation between
L-fuzzy sets and other extensions of fuzzy sets, such as intuitionistic fuzzy sets and
interval-valued fuzzy sets, has been analyzed in several studies [10, 66].

In this chapter, we define a lattice structure on the set of HFLTSs over a set of
linguistic terms, HS , based on the literature related to absolute order-of-magnitude
spaces with different levels of precision or multi-granularity [15, 50, 65]. This allows
us to consider hesitant fuzzy linguistic descriptions (HFLDs) as L-fuzzy sets based
on this lattice. The set FH of all theHS -fuzzy sets is also introduced.

In group assessment processes where decision makers (DMs) are assessing dif-
ferent alternatives by means of hesitant fuzzy linguistic term sets, the assessments
provided by each DM are modeled as a HFLD. To study differences between HFLDs
representing the assessments of each DM of a group, we present two distances inHS
between HFLTSs, and their associated distances in FH between HFLDs.

Taking into consideration the different perspectives of the DMs in the decision-
making group, we present a HFLD that characterizes the group via an aggregation of
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linguistic preferences. In addition, a centroid of the group is presented for each dis-
tance in FH, as the HFLD that minimizes the addition of distances to the HFLDs of
all the DMs in the group. Distances between HFLDs are used to measure differences
between the DMs.

The rest of this chapter is organized as follows: first, Section 2.2 presents the
lattice of hesitant fuzzy linguistic term sets. The concept of hesitant fuzzy linguis-
tic description is introduced in Section 2.3. In Section 2.4, two distances between
HFLDs are defined by means of two distances between HFLTSs. A new approach
for group preference modeling based on an aggregation of HFLDs and the distances
between them is presented in Section 2.5. Finally, Section 2.6 contains the main
conclusions and lines of future research.

2.2 The Lattice of Hesitant Fuzzy Linguistic Term Sets

In this section, we briefly review some basic concepts related to HFLTSs [2, 50, 53,
56]. This enables us to provide the set of HFLTSs with a lattice structure, to define a
partial order and a compatibility relation in this set.

From here on, let S be a finite totally ordered set of linguistic terms,
S = {a1, . . . , an}, with a1 < . . . < an.

Definition 2.1. ([53]) A hesitant fuzzy linguistic term set (HFLTS) over S is a subset
of consecutive linguistic terms of S , i.e. {x ∈ S | ai ≤ x ≤ aj}, for some i, j ∈
{1, . . . , n} with i ≤ j.

The HFLTS S is called the full HFLTS. and it is also denoted by the symbol ?.
Moreover, the empty set {} = ∅ is also considered as a HFLTS and it is called the
empty HFLTS.

From now on, the non-empty HFLTS H = {x ∈ S | ai ≤ x ≤ aj} is also denoted
by [ai, aj]. If i = j, [ai, ai] is the singleton {ai}. The set of all HFLTSs over S is
denoted byHS :

HS = {[ai, aj] | i, j ∈ {1, . . . , n}, i ≤ j} ∪ {∅}

A simple calculation proves that the cardinality ofHS is |HS | = 1 + n(n+1)
2 .

The union and complement [53] are not closed operations on the setHS . Indeed,
the union of two non-empty HFLTSs [ai, aj] and [ai′ , aj′ ] is a HFLTS if and only
if [ai, aj] ∩ [ai′ , aj′ ] 6= ∅ or i = j′ + 1 or i′ = j + 1. On the other hand, the
complement of a non-empty HFLTS [ai, aj] is a HFLTS if and only if i = 1 or j = n.
The intersection of HFLTSs is a closed binary operation on the setHS .

The connected union, t, of HFLTSs [50] is a closed binary operation on the set
HS , which is defined as follows:

Definition 2.2. The connected union of two HFLTSs is the least element of HS ,
based on the subset inclusion relation ⊆, that contains both HFLTSs.
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As proven in the general case of order-of-magnitude spaces over a well-ordered
(finite or infinite) set [50], the binary operations intersection and connected union
provide a lattice structure to the setHS of HFLTSs.

Proposition 2.1. (HS ,t,∩) is a lattice.

Proof. The two operations t and ∩ are clearly idempotent and commutative. The
intersection is associative, and (H1 t H2) t H3 = H1 t (H2 t H3) because H1 t
(H2 t H3) is the least element that contains H1 t H2 and H3. The two absorption
laws can be checked in a similar straightforward manner.

The lattice (HS ,t,∩) is not distributive. A counterexample in which the prop-
erty H1 ∩ (H2 t H3) = (H1 ∩ H2) t (H1 ∩ H3) does not hold is given in the case
where S has at least three linguistic terms, considering a1, a2, a3 ∈ S such that a1 <
a2 < a3 and the following three HFLTSs: H2 = {a1}, H1 = {a2}, H3 = {a3}.

The partial order ≤ in the lattice is given by: H1 ≤ H2 ⇔ H1 t H2 = H1 ⇔
H1 ∩ H2 = H2 ⇔ H1 ⊇ H2. Therefore, this order is the inverse subset inclusion
relation and we call it to be less or equally precise than.

Definition 2.3. For any non-empty HFLTS [ai, aj] and [ai′ , aj′ ], we say that [ai, aj] is
less or equally precise than [ai′ , aj′ ] if and only if [ai, aj] ⊇ [ai′ , aj′ ], i.e., i ≤ i′ and
j′ ≤ j.

Then, the least element in the lattice HS is 0HS = ? = S because it is the
least precise HFLTS, and the greatest element is 1HS = ∅ because H ⊇ ∅ for all
H ∈ HS .

In Figure 2.1 the diagram of the lattice (HS ,t,∩) is depicted.

{a1} {a2} {an}{an−1}. . .

0HS = ?

[a1, a2] [an−1, an]

[a1, an−1] [a2, an]

1HS = ∅

{a3} {an−2}

[a2, a3] [an−2, an−1]

FIGURE 2.1: Diagram of the lattice (HS ,t,∩) [50].

The relation to be compatible between non-empty HFLTSs is defined, inspired by
the concept of qualitative equality in absolute order-of-magnitude qualitative spaces [65]
as follows:
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Definition 2.4. For any non-empty HFLTS [ai, aj] and [ai′ , aj′ ], we say that [ai, aj]
and [ai′ , aj′ ] are compatible if and only if [ai, aj]∩ [ai′ , aj′ ] 6= ∅, i.e., j ≥ i′ or j′ ≥ i.

Let us consider a simple example to illustrate the above definitions.

Example 2.1. Given the set of linguistic terms: S = {a1, a2, a3, a4} with: a1 =
slightly good , a2 = moderately good , a3 = very good , a4 = extremely good , and
the following HFLTSs:

{a3} = very good,

[a1, a3] = not extremely good,

? = [a1, a4] = unknown, and

{a1} = slightly good,

identifying ai = {ai}, ∀i = {1, 2, 3, 4}.
The relation to be less or equally precise than among the first three HFLTSs gives:

? ⊇ [a1, a3] ⊇ {a3}. However, {a1} are {a3} are not comparable by this relation.
In addition, {a3}, [a1, a3] and ? are compatible since their pairwise intersections are
non-empty, while {a1} and {a3} are not compatible.

Two distances between HFLTSs will be introduced in Section 2.4 based on the
properties of the lattice (HS ,t,∩).

2.3 Hesitant Fuzzy Linguistic Descriptions

The concept of an L-fuzzy set on a non-empty set Λ was introduced by Goguen [17]
as a function f : Λ → L, where L is a lattice. This concept is applied to the case of
the lattice (HS ,t,∩) of HFLTSs over a finite totally ordered set of linguistic terms
S in the following definitions.

Definition 2.5. AnHS -fuzzy set on Λ is a function FH : Λ→ HS .

Note that any f : Λ → {0, 1} defines an ordinary set or crisp set on Λ, that is, a
subset of Λ, whose characteristic function is f . If f : Λ → [0, 1], then f defines a
fuzzy set on Λ, where for each λ ∈ Λ, f (λ) is the degree of membership of λ. We
can therefore consider an HS -fuzzy set as a function FH : Λ → HS that assigns to
each element of Λ a HFLTS fromHS instead of a degree of membership.

Definition 2.6. The set FH of HS -fuzzy sets on Λ is:

FH = (HS)Λ = {FH | FH : Λ→ HS}.

Definition 2.7. A Hesitant fuzzy linguistic description (HFLD) of the set Λ by HS
is an HS -fuzzy set FH on Λ such that for all λ ∈ Λ, FH(λ) is a non-empty HFLTS,
i.e., FH(λ) ∈ HS − {∅}.
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From now on, the set Λ will represent a set of alternatives, and a HFLD will be
used to model a DM’s assessment of the alternatives in Λ. Note that missing values
(such as DK/NA/REF) will be considered as ?.

Example 2.2. Following Example 2.1, and given the same set S of linguistic terms,
let us consider Λ = {λ1, λ2, λ3, λ4}, then

FH : Λ −→ HS
λ1 7→ {a3}
λ2 7→ [a1, a3]
λ3 7→ ?
λ4 7→ {a1}

is a HFLD of the set Λ.

2.4 Distances between Hesitant Fuzzy Linguistic De-
scriptions

In order to define a first distance between HFLDs, that measures differences in the
assessments of DMs, we previously consider the following distance between non-
empty HFLTSs:

Definition 2.8. Given H1, H2 ∈ HS − {∅}, the distance D1 between H1 and H2 is
defined as:

D1(H1, H2) = card(H1 t H2)− card(H1 ∩ H2)

As proven in the case of order-of-magnitude spaces over a finite well-ordered
set [50], D1 fulfills the distance requirements. This distance between non-empty
HFLTSs induces a distance between HFLDs as follows:

Definition 2.9. Let us consider F1
H and F2

H two HFLDs of a finite set Λ = {λ1, . . . , λr}
by means ofHS , with F1

H(λi) = H1
i and F2

H(λi) = H2
i , for all i ∈ {1, . . . , r}. Then,

the distance DF1 between these two HFLDs is defined as:

DF1 (F1
H, F2

H) =
r

∑
t=1

D1(H1
t , H2

t ) (2.I)

Expression 2.I provides a distance in the set (HS − {∅})Λ, i.e., a distance between
HFLDs. In fact, each HFLD FH of the set Λ by HS can be identified with the r-
dimensional vector (H1, . . . , Hr) ∈ (HS − {∅})r = (HS − {∅})× · · · × (HS −
{∅}) whose components are Hi = FH(λi), for all i ∈ {1, . . . , r}. Therefore the set
(HS − {∅})Λ can be identified with the Cartesian product (HS − {∅})r, and the
Cartesian product of metric spaces is a metric space using the product distance and
the city-block norm, which in this case results in Formula 2.I.

Remark 2.1. The maximum value for D1 between two HFLTSs from HS − {∅},
where S = {a1, . . . , an}, is n. This case is given, for instance, when H1 = {a1}

15



Chapter 2. Modeling Group Assessments by means of Hesitant Fuzzy Linguistic Term Sets

and H2 = {an}, among others. Consequently, the maximum value for DF1 between
two HFLDs of the set Λ = {λ1, . . . , λr} is r · n.

Let us consider a simple example to illustrate the computation of this distance
between HFLDs.

Example 2.3. Let us consider S = {a1, a2, a3, a4} as in Examples 2.1 and 2.2, and
F1

H and F2
H two HFLDs of the set Λ = {λ1, λ2, λ3, λ4} byHS given in Table 2.1.

TABLE 2.1: F1
H and F2

H from Example 2.3.

F1
H F2

H
λ1 {a3} {a1}
λ2 [a1, a3] {a4}
λ3 ? [a2, a4]

λ4 {a1} {a4}

Therefore:

DF1 (F1
H, F2

H) =
4

∑
t=1

(card(H1
t t H2

t )− card(H1
t ∩ H2

t )) =

(3− 0) + (4− 0) + (4− 3) + (4− 0) = 12.

In this case, the distance between two HFLDs ranges from 0 to 16, which gives
us a reference to frame the obtained result.

To capture differences among pairs of HFLTSs that are at the same distance D1,
we introduce the following measure of agreement that takes into consideration the
gap between a pair of HFLTSs:

Definition 2.10. Given H1, H2 ∈ HS − {∅}, the concordance between H1 and H2
is defined as:

C(H1, H2) =

{
card(H1 ∩ H2) if H1 ∩ H2 6= ∅
−card((H1 t H2) ∩ H1 ∩ H2) if H1 ∩ H2 = ∅

where H = {x ∈ S | x 6∈ H} is the complement of H with respect to S .

It is straightforward to see that if H1 = [ai, aj] and H2 = [aj+k, al], with k > 0,
then C(H1, H2) = −(k − 1). Moreover, notice that the concordance between two
HFLTSs is positive if and only if the two HFLTSs are compatible. In addition, the aim
of the concordance is to consider how much in common two HFLTSs have or how
big is the gap between them in case that they have nothing in common. According to
the concordance, we present a new distance between non-empty HFLTSs as:

Definition 2.11. Given H1, H2 ∈ HS − {∅}, the distance D2 between H1 and H2
is defined as:

D2(H1, H2) = card(H1 t H2)− C(H1, H2)
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In order to prove that D2 is a distance, we will see that it is equivalent to the
geodesic distance in the graph HS − {∅}, based on measuring the length of the
shortest path between two elements of the graph [23]. In HS − {∅}, the shortest
path between two HFLTSs can always be reached passing through the connected
union of both of them. In Figure 2.2, we can see, as an example, the shortest path
between {a1} and [a2, a3] working with S = {a1, a2, a3, a4}. In this case, the length
of the shortest path is 3.

{a1}

[a2, a3]

[a1, a3]

{a2} {a3} {a4}

?

=

{a1} t [a2, a3]

FIGURE 2.2: Shortest path between {a1} and [a2, a3].

Lemma 2.1. D2 can be equivalently expressed as:

D2(H1, H2) = 2 · card(H1 t H2)− card(H1)− card(H2)

Proof. We see that 2 · card(H1 t H2)− card(H1)− card(H2) = card(H1 t H2)−
card(H1 ∩ H2) + card((H1 t H2)∩ H1 ∩ H2). Indeed, if H1 ∩ H2 6= ∅, both parts
are equal to card(H1 t H2) − card(H1 ∩ H2), while if H1 ∩ H2 = ∅, then both
parts are card(H1 t H2) + card((H1 t H2) ∩ H1 ∩ H2).

Proposition 2.2. D2 is equivalent to the geodesic distance in the graphHS − {∅}.

Proof. By Lemma 2.1, D2(H1, H2) = 2 · card(H1tH2)− card(H1)− card(H2) =
(card(H1tH2)− card(H1))+ (card(H1tH2)− card(H2)) = `(H1, H1tH2)+
`(H2, H1tH2) = `(H1, H2), where `(H, H′) is the length of the shortest path from
H to H′.

Once we have proved that D2 is a distance between HFLTSs, we can use it to
define an associated distance between HFLDs, analogously to what we did for D1:

Definition 2.12. Let us consider F1
H and F2

H two HFLDs of a set Λ = {λ1, . . . , λr}
by means of HS , with F1

H(λi) = H1
i and F2

H(λi) = H2
i , for all i ∈ {1, . . . , r}.

Then, the distance DF2 between these two HFLDs is defined as:

DF2 (F1
H, F2

H) =
r

∑
t=1

D2(H1
t , H2

t )

Remark 2.2. The maximum value for D2 between two HFLTSs from HS − {∅},
where S = {a1, . . . , an}, is 2n− 2. This case is given only when H1 = {a1} and
H2 = {an}. Consequently, the maximum value for DF2 between two HFLDs of the
set Λ = {λ1, . . . , λr} is r · (2n− 2).

In order to illustrate this new distance, let us see the following example:
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Example 2.4. Let F1
H and F2

H be the two HFLDs from Example 2.3 of the set Λ by
HS given in Table 2.1. Therefore:

DF2 (F1
H, F2

H) =
4

∑
t=1

(card(H1
t t H2

t )− C(H1
t , H2

t )) =

(3− (−1)) + (4− 0) + (4− 3) + (4− (−2)) = 15.

In this case, the distance between two HFLDs ranges from 0 to 24, which gives
us a reference to frame the obtained result.

The two distances that have been proposed can be compared as follows:

Proposition 2.3. Given two non-empty HFLTSs, H1 and H2, fromHS − {∅},

D1(H1, H2) ≤ D2(H1, H2).

Proof. It is enough to rewrite D2(H1, H2) as:

D2(H1, H2) = card(H1 t H2)− card(H1 ∩ H2) + card((H1 t H2)∩ H1 ∩ H2) =

D1(H1, H2) + card((H1 t H2) ∩ H1 ∩ H2) ≥ D1(H1, H2).

Proposition 2.3 can be generalized to the distance between HFLDs as follows:

Proposition 2.4. Given two HFLDs, F1
H and F2

H, of a set Λ = {λ1, . . . , λr},

DF1 (F1
H, F2

H) ≤ DF2 (F1
H, F2

H).

Proof. Taking into account Definitions 2.9 and 2.12, then, by Proposition 2.3, the
proof becomes trivial.

To illustrate these two propositions, Table 2.2 summarizes the results from Exam-
ples 2.3 and 2.4.

TABLE 2.2: Distances between F1
H and F2

H from Example 2.3.

F1
H F2

H D1(H1
t , H2

t ) D2(H1
t , H2

t )

λ1 {a3} {a1} 3 4

λ2 [a1, a3] {a4} 4 4

λ3 ? [a2, a4] 1 1

λ4 {a1} {a4} 4 6

DF1 (F1
H, F2

H) = 12 DF2 (F1
H, F2

H) = 15
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2.5 Modeling Group Assessments

In this section, we analyze from two different perspectives how to summarize the as-
sessments given by a group of DMs that are assessing a set of alternatives by means of
HFLTSs. To this end, the lattice structure ofHS -fuzzy sets and the distances defined
in Section 2.4 are considered to aggregate the DMs’ assessments of alternatives.

We consider two possible representatives to summarize the group’s assessments:
Firstly, the connected union in HS -fuzzy sets and secondly, the HFLD of the set of
alternatives Λ that minimizes the addition of distances to the assessments of all the
DMs in the group, with respect to the two distances presented in Section 2.4, DF1
and DF2 .

The connected union among HS -fuzzy sets can be considered as a reasonable
way to model the group assessment, because it provides a HFLD compatible with all
the HFLDs in the group for all the alternatives. Notice that the intersection among
HS -fuzzy sets cannot be used to model the group assessments because some of its
values may result in the null HFLTS. If so, the intersection would not be a HFLD.

Definition 2.13. Let Λ be a set of alternatives and G a group of k DMs. Let
F1

H, . . . , Fk
H be the HFLDs of Λ provided by the DMs in G. The HFLD of Λ as-

sociated to the connected union of the assessments in group G is defined as:

FG
H : Λ −→ HS − {∅}

λ 7→ FG
H(λ) = F1

H(λ) t . . . t Fk
H(λ)

However, this way of representing the group’s assessment tends very fast to ? in
most of cases, because it is very sensitive to outliers. In addition, it does not consider
the precision that DMs in the group use. For this reason, to solve these drawbacks, a
representative of the group of DMs as a centroid of the group is defined by means of
the concept of a distance as follows:

Definition 2.14. Let Λ be a set of r alternatives, G a group of k DMs and F1
H, . . . , Fk

H
the HFLDs of Λ provided by the DMs in G, then, for any distance DF in FH, a
centroid of the group with respect to DF is:

FC
H = arg min

FX
H∈(HS−{∅})r

k

∑
t=1

DF (FX
H , Ft

H),

identifying each HFLD FH with the vector (H1, . . . , Hr) ∈ (HS − {∅})r, where
FH(λi) = Hi, for all i = 1, . . . , r.

In the specific case of the two distances presented in Section 2.4, DF1 and DF2 ,
the corresponding centroids will be denoted as FC

H1 and FC
H2 respectively.

Note that, for a given distance, more than one HFLD can produce the minimum
value for the sum of distances in the above definition. Thus, a group of DMs can
have more than one centroid with respect to the same distance. In addition, neither
the HFLD of the connected union nor those of the centroids of the group with respect
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to any distance have necessarily to coincide with any HFLD provided by a DM in the
group.

Example 2.5. Following Examples 2.1, 2.2, 2.3 and 2.4, where S = {a1, a2, a3, a4}
and Λ = {λ1, λ2, λ3, λ4}, let us consider a group G of five DMs. The HFLDs of the
set Λ byHS corresponding to the DMs in G are given in Table 2.3 (columns from 1
to 5). Column 6 shows the HFLD associated to the connected union, FG

H , columns 7
and 8 show the two centroids of the group, FC1

H 1 and FC2
H 1, according to DF1 , and in

the last column we find the unique centroid of the group, FC
H2, with respect to DF2 .

An exhaustive search has been conducted to obtain the centroids of the group FC1
H 1,

FC2
H 1 and FC

H2.

TABLE 2.3: All HFLDs of Λ from Example 2.5.

F1
H F2

H F3
H F4

H F5
H FG

H FC1
H 1 FC2

H 1 FC1
H 2

λ1 {a3} {a1} [a1, a2] [a1, a3] {a2} [a1, a3] [a1, a2] [a1, a2] [a1, a2]

λ2 [a1, a3] {a4} {a1} {a4} {a1} ? {a1} {a1} [a1, a3]

λ3 ? [a2, a4] {a3} {a1} [a3, a4] ? [a3, a4] [a2, a4] [a2, a4]

λ4 {a1} {a4} [a3, a4] {a3} [a3, a4] ? [a3, a4] [a3, a4] [a3, a4]

Note that, as it can be seen in Table 2.3, the considered group of DMs has two
centroids according to DF1 that just differ in their values corresponding to λ3: [a3, a4]

and [a2, a4]. However, since [a2, a4] ⊇ [a3, a4], one can choose FC1
H 1 as the most

precise centroid representing the group with respect to DF1 .

Figure 2.3 depicts, for each element in Λ, a graphical representation of the HFLTSs
given by the DMs in G, together with the HFLTSs corresponding to the HFLD as-
sociated to the connected union, FHG, and to the three centroids of the group, FC1

H 1,
FC2

H 1 and FC
H2.

FG
H FC

H 2FC1

H 1
FC2

H 1

λ1 λ2

λ3 λ4

1

23 45

1

2

34

5

1 2

3

4

5

12

3

4

5

FIGURE 2.3: Graphical representation of Example 2.5.
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2.6. Conclusions

Finally, Table 2.4 presents the distance matrices, with respect to DF1 and DF2
respectively, computed for each pair of HFLDs in the group G expanded with FG

H
and the corresponding centroids for each distance: FC1

H 1 and FC2
H 1 in the first case,

and FC
H2 in the second case.

TABLE 2.4: Distance matrices from Example 2.5.

(A) Distance DF1 .

DF1 F1
H F2

H F3
H F4

H F5
H FG

H FC1
H 1 FC2

H 1

F1
H 0 12 12 12 10 6 11 10

F2
H 0 8 8 8 10 7 6

F3
H 0 9 2 9 1 2

F4
H 0 11 9 10 10

F5
H 0 9 1 2

FG
H 0 8 7

FC1
H 1 0 1

FC2
H 1 0

(B) Distance DF2 .

DF2 F1
H F2

H F3
H F4

H F5
H FG

H FC
H2

F1
H 0 15 12 13 11 6 9

F2
H 0 10 8 10 9 6

F3
H 0 12 2 9 4

F4
H 0 14 9 10

F5
H 0 9 4

FG
H 0 5

FC
H2 0

We can observe similar results by analyzing the values of the distances provided
in Tables 2.4a and 2.4b. Assessments corresponding to the descriptions given by DM
3 and DM 5 are the closest ones with respect to both distances. In the same way, the
most distant pairs of assessments correspond to the pairs: DM 1 and DM 2, DM 1
and DM 3 and DM 1 and DM 4 with respect to DF1 , Whilst according to DF2 , the tie
is broken and the most distant ones are DM 1 and DM 2. We can also observe that
assessments provided by DM 3 and DM 5 are the closest ones to the centroids of the
group in both cases. Finally, the assessment corresponding to the descriptions given
by DM 1 is the closest one to the assessment associated to the connected union with
respect to both distances. It is also one of the two most distant assessments from the
centroids of the group, together with the assessment given by DM 4.

Note that these distances matrices quantifying the similarity in between pairwise
linguistic expressions could be used in other pattern recognition contexts, such as
clustering, classification or ranking [8, 30]. In addition, the use of HFLTSs will allow
the definition of fuzzy outputs able to capture the inherent complexity underlying in
end-users’ opinions

2.6 Conclusions

This chapter proposes a theoretical framework to model group assessments on the ba-
sis of HFLTSs. To this aim, the concept of distance between DMs in group decision-
making when DMs’ assessments are expressed using HFLTSs is studied. This con-
cept allows similarities and differences among DMs’ opinions to be analyzed.

From a well-ordered set S of linguistic terms, the set of hesitant fuzzy linguistic
term sets HS has been provided with two closed aggregation operations, connected
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union and intersection, which are suitable to be used on reasoning and comparisons.
In addition, the two operations provide HS with a lattice structure. The hesitant
fuzzy linguistic descriptions of a set Λ are defined asHS -fuzzy sets.

Two distances between HFLDs have been proposed. The first distance, D1, is built
directly from connected union and intersection. The second distance, D2, coincides
with D1 in the case that there is a non-empty intersection between the considered
pair of HFLTSs and, intuitively, corresponds to adding the gap between them to D1
if their intersection is empty.

Finally, the concept of centroid of a decision-making group is introduced by min-
imizing the addition of distances to the assessments of all the DMs in the group. The
two proposed distances are used to do a further study of the corresponding centroids,
which can be used as representatives of the opinions of the group of DMs. Moreover,
the distances between each DM and the centroid can be considered as a measure of
agreement within the group. Lastly, most dissident DMs in the group can be easily
identified by means of distances to the centroid.

The proposed structure based on distances and centroids is not only limited to de-
cision making scenarios. It provides a general model suitable for comparing opinions
between end-users in general when expressed in terms of ordered linguistic terms.

Future research is oriented towards three main directions. First, the design of an
algorithm for the computation of the proposed centroids of a decision-making group.
Second, based on the proposed centroids, a study will be addressed to analyze risk
measurement and validity assurance of the actions derived from a decision outcome.
This analysis will be oriented towards the improvement of consensus reaching pro-
cesses by focussing in the dissident DMs. Finally, a real case study will be conducted
in the marketing research area to analyze customers preferences in a retailing context.
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Chapter 3

A Representative in Group Decision
by means of the Extended Set of
Hesitant Fuzzy Linguistic Term Sets

3.1 Introduction

Different approaches involving linguistic assessments have been introduced in the
fuzzy set literature to deal with the impreciseness and uncertainty connate with hu-
man preference reasoning [14, 25, 29, 49, 61]. Additionally, different extensions of
fuzzy sets have been presented to give more realistic assessments when uncertainty
increases [10, 22, 53]. In particular, Hesitant Fuzzy Sets were introduced by Torra
to capture this kind of uncertainty and hesitancy [62]. Following this idea, Hesi-
tant Fuzzy Linguistic Term Sets (HFLTSs) were introduced to deal with situations in
which linguistic assessments involving different levels of precision are used [53]. In
addition, a lattice structure is provided to the set of HFLTSs [47].

In this chapter, we present an extension of the set of HFLTSs, HS , based on an
equivalence relation on the usual set of HFLTSs. This enables us to establish differ-
ences between non-compatible HFLTSs. An order relation and two closed operation
over this set are also introduced to define a new lattice structure inHS .

In order to describe group decision situations in which Decision Makers (DMs)
are evaluating different alternatives, Hesitant Fuzzy Linguistic Descriptions (HFLDs)
were presented [47]. A distance between HFLTSs is defined based on the lattice of
HS . This allows us to present a distance between HFLDs that we can use to quantify
differences among assessments of different DMs. Taking into consideration this dis-
tance, a group representative is suggested to describe the whole group assessment.
Due to this representative is the HFLD that minimizes distances with the assessments
of all the DMs, it is called the centroid of the group.

The rest of this chapter is organized as follows: first, Section 3.2 presents a brief
review of HFLTSs and its lattice structure. The lattice of the extended set of HFLTSs
is introduced in Section 3.3. In Section 3.4, the distances between HFLTSs and
HFLDs are defined and the centroid of the group is presented in Section 3.5. Lastly,
Section 3.6 contains the main conclusions and lines of future research.

23



Chapter 3. A Representative in Group Decision by means of the Extended Set of Hesitant
Fuzzy Linguistic Term Sets

3.2 The Lattice of Hesitant Fuzzy Linguistic Term Sets

In this section we present a brief review of some concepts about HFLTSs already
presented in the literature that are used throughout this chapter [47, 53].

From here on, let S denote a finite total ordered set of linguistic terms, S =
{a1, . . . , an} with a1 < · · · < an.

Definition 3.1. ([53]) A hesitant fuzzy linguistic term set (HFLTS) over S is a subset
of consecutive linguistic terms of S, i.e. {x ∈ S | ai ≤ x ≤ aj}, for some i, j ∈
{1, . . . , n} with i ≤ j.

The HFLTS S is called the full HFLTS. Moreover, the empty set {} = ∅ is also
considered as a HFLTS and it is called the empty HFLTS.

For the rest of this chapter, the non-empty HFLTS, H = {x ∈ S | ai ≤ x ≤ aj},
is denoted by [ai, aj]. Note that, if j = i, the HFLTS [ai, ai] is expressed as the
singleton {ai}.

The set of all the possible HFLTSs over S is denoted by HS , being H∗S =
HS − {∅} the set of all the non-empty HFLTSs. This set is provided with a lattice
structure with the two following operations: on the one hand, the connected union
of two HFLTSs, t, which is defined as the least element of HS , based on the subset
inclusion relation ⊆, that contains both HFLTSs, and on the other hand, the intersec-
tion of HFLTSs, ∩, which is defined as the usual intersection of sets [47]. The reason
of including the empty HFLTS inHS is to make the intersection of HFLTSs a closed
operation inHS .

For the sake of comprehensiveness, let us introduce the following example that is
used throughout all this chapter to depict all the concepts defined.

Example 3.1. Given the set of linguistic terms S = {a1, a2, a3, a4, a5}, being a1 =
very bad, a2 = bad, a3 = regular, a4 = good, a5 = very good, possible linguistic
assessments and their corresponding HFLTSs by means of S would be:

TABLE 3.1: Assessments and their corresponding HFLTSs by means of S
from Example 3.1.

Assessments HFLTSs

A = "between bad and regular" HA = [a2, a3]

B = "bad" HB = {a2}
C = "above regular" HC = [a4, a5]

D = "below regular" HD = [a1, a2]

E = "not very good" HE = [a1, a4]
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3.3 The Extended Lattice of Hesitant Fuzzy Linguis-
tic Term Sets

With the aim of describing differences between couples of HFLTSs with empty in-
tersections, an extension of the intersection of HFLTSs is presented in this section,
resulting their intersection if it is not empty or a new element that we will call nega-
tive HFLTS related to the rift, or gap, between them if their intersection is empty. In
order to present said extension of the intersection between HFLTSs, we first need to
introduce the mathematical structure that allows us to define it as a closed operation.
To this end, we define the extended set of HFLTSs in an analogous way to how in-
teger numbers are defined based on an equivalence relation on the natural numbers.
To do so, we first present some needed concepts:

Definition 3.2. Given two non-empty HFLTSs, H1, H2 ∈ H∗S , we define:

(a) The gap between H1 and H2 as:

gap(H1, H2) = (H1 t H2) ∩ H1 ∩ H2,

where H = {x ∈ S | x 6∈ H} is the complement of H with respect to S .

(b) H1 and H2 are consecutive if and only if H1∩H2 = ∅ and gap(H1, H2) = ∅.

Proposition 3.1. Given two non-empty HFLTSs, H1, H2 ∈ H∗S , the following prop-
erties are met:

1. gap(H1, H2) = gap(H2, H1).

2. If H1 ⊆ H2, gap(H1, H2) = ∅.

3. If H1 ∩ H2 6= ∅, gap(H1, H2) = ∅.

4. If H1 ∩ H2 = ∅, gap(H1, H2) 6= ∅ or H1 and H2 are consecutive.

5. If H1 and H2 are consecutive, there exist j ∈ {2, . . . , n− 1}, i ∈ {1, . . . , j}
and k ∈ {j + 1, . . . , n}, such that H1 = [ai, aj] and H2 = [aj+1, ak] or H2 =
[ai, aj] and H2 = [aj+1, ak].

Proof. The proof is straightforward.

Note that neither [a1, aj] nor [ai, an] can ever be the result of the gap between two
HFLTSs for any i and for any j.

Notation. Given two consecutive HFLTSs, H1 = [ai, aj] and H2 = [aj+1, ak], then
aj and aj+1 are called the linguistic terms that provide the consecutiveness of H1 and
H2.

Example 3.2. Following Example 3.1, gap(HB, HC) = {a3}, while the HFLTSs
HA and HC are consecutive and their consecutiveness is given by {a3} and {a4}.
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Definition 3.3. Given two pairs of non-empty HFLTSs, (H1, H2) and (H3, H4), the
equivalence relation ∼, is defined as:

(H1, H2) ∼ (H3, H4) ⇐⇒



H1 ∩ H2 = H3 ∩ H4 6= ∅
∨

gap(H1, H2) = gap(H3, H4) 6= ∅
∨

both pairs are consecutive and
their consecutiveness is provided

by the same linguistic terms

It can be easily seen that ∼ relates couples of non-empty HFLTSs with the same
intersection if they are compatible, with consecutiveness provided by the same lin-
guistic terms if they are consecutive and with the same gap between them in the case
that they are neither compatible nor consecutive.

Example 3.3. Following Example 3.1, the pairs of HFLTSs (HA, HB) and (HA, HD)
are related according to ∼ given that they have the same intersection, {a2}. Addi-
tionally, (HC, HB) ∼ (HC, HD) since they have the same gap between them, {a3}.

Applying this equivalence relation over the set of all the pairs of non-empty
HFLTSs, we get the quotient set (H∗S)2/ ∼, whose equivalence classes can be la-
beled as:

• [ai, aj] for the class of all pairs of compatible non-empty HFLTSs with inter-
section [ai, aj], for all i, j = 1, . . . , n with i ≤ j.

• −[ai, aj] for the class of all pairs of incompatible non-empty HFLTSs whose
gap is [ai, aj], for all i, j = 2, . . . , n− 1 with i ≤ j.

• αi for the class of all pairs of consecutive non-empty HFLTSs whose consecu-
tiveness is provided by {ai} and {ai+1}, for all i = 1, . . . , n− 1.

For completeness and symmetry reasons, (H∗S)2/ ∼ is represented as shown in
Figure 3.1 and stated in the next definition.

Example 3.4. Subsequent to this labeling, and following Example 3.1, the pair
(HC, HB) belongs to the class −{a3} and so does the pair (HC, HD). The pair
(HC, HA) belongs to the class α3 and the pair (HC, HE) belongs to the class {a4}.
Definition 3.4. Given a set of ordered linguistic term sets S = {a1, . . . , an}, the
extended set of HFLTSs,HS , is defined as:

HS = (−H∗S) ∪A ∪H∗S ,

where −H∗S = {−H | H ∈ H∗S} and A = {α0, . . . , αn}.
In addition, by analogy with real numbers −H∗S is called the set of negative

HFLTSs, A is called the set of zero HFLTSs, and, from now on, H∗S is called the
set positive HFLTSs.

Note that HFLTSs can be characterized by couples of zero HFLTSs. This leads us
to introduce a new notation for HFLTSs:
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{a1} {a2} {an−1} {an}

−{a1} −{a2} −{an−1} −{an}

[a1, a2] [an−1, an]

−[a1, a2] −[an−1, an]

[a1, an−1] [a2, an]

[a1, an]

[a1, a3] [an−2, an]

−[a1, a3] −[an−2, an]

−[a1, an−1] −[a2, an]

−[a1, an]

{a3}

−{a3}

{an−2}

−{an−2}

· · ·

· · · · · · · · ·

· · ·

α0 α1 α2 αn−2 αn−1 αn

FIGURE 3.1: Graph of the extended set of HFLTSs.

Notation. Given a HFLTS, H ∈ HS , it can be expressed as H = 〈αi, αj〉, where
the first zero HFLTS identifies the bottom left to top right diagonal and the second
one identifies the top left to bottom right diagonal. Thus, 〈αi, αj〉 corresponds with
[ai+1, aj] if i < j, with −[ai+1, aj] if i > j and αi if i = j.

This notation is used in the following definition that we present in order to latter
introduce an order relation withinHS .

Definition 3.5. Given H ∈ HS described by 〈αi, αj〉 the coverage of H is defined
as:

cov(H) = {〈αi′ , αj′〉 ∈ HS | i′ ≥ i ∧ j′ ≤ j}.
Example 3.5. The coverage of HA from Example 3.1 can be seen in Figure 3.2.

{a1} {a2} {a3} {a5}

i ≥ 1

j ≤ 3

α1α0 α3 α5

HA = 〈α1, α3〉

FIGURE 3.2: Coverage of HA from Example 3.1.
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The concept of coverage of a HFLTS enables us to define the extended inclusion
relation between elements ofHS .

Definition 3.6. The extended inclusion relation inHS , 4, is defined as:

∀H1, H2 ∈ HS , H1 4 H2 ⇐⇒ H1 ∈ cov(H2).

Note that, restricting to only the positive HFLTSs, the extended inclusion relation
coincides with the usual subset inclusion relation. According to this relation in HS ,
we can define the extended connected union and the extended intersection as closed
operations within the setHS as follows:

Definition 3.7. Given H1, H2 ∈ HS , the extended connected union of H1 and H2,
H1 t H2, is defined as the least element that contains H1 and H2, according to the
extended inclusion relation.

Definition 3.8. Given H1, H2 ∈ HS , the extended intersection of H1 and H2,
H1 u H2, is defined as the largest element being contained in H1 and H2, according
to the extended inclusion relation.

It is straightforward to see that the extended connected union of two positive
HFLTSs coincides with the connected union presented by Montserrat-Adell et al. [47].
This justifies the use of the same symbol. About the extended intersection of two
positive HFLTSs, it results the usual intersection of sets if they overlap and the gap
between them if they do not overlap. Notice that the empty HFLTS is not needed to
make the extended intersection a closed operation inHS .

Proposition 3.2. Given two non-empty HFLTSs, H1, H2 ∈ H∗S , if H1 4 H2, then
H1 t H2 = H2 and H1 u H2 = H1.

Proof. The proof is straightforward.

Example 3.6. Figure 3.3 provides an example with the extended connected union
and the extended intersection of HB and HC and of HA and HE from Example 3.1:
HB t HC = [a2, a5], HB u HC = −{a3}, HA t HE = HE and HA u HE = HA .

{a1} {a5}

−{a1} −{a5}

HB

HC

HB tHC = [a2, a5]

HB uHC

= −{a3}

α5α0

(A) HB t HC and HB u HD.

{a1} {a5}

−{a1} −{a5}

HA = HA uHE

HE = HA tHE

α0 α5

(B) HA t HE and HA u HE.

FIGURE 3.3: t and u of HFLTSs.
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Proposition 3.3. (HS ,t,u) is a distributive lattice.

Proof. According to their respective definitions, both operations, t and u, are triv-
ially commutative and idempotent.

The associative property of t is met since (H1 t H2) t H3 = H1 t (H2 t H3)
given that both parts equal the least element that contains H1, H2 and H3. About the
associativeness of u, (H1 u H2) u H3 = H1 u (H2 u H3) given that in both cases
it results the largest element contained in H1, H2 and H3.

Finally, the absorption laws are satisfied given that: on the one hand H1 t (H1 u
H2) = H1 given that H1 u H2 4 H1 and on the other hand H1 u (H1 t H2) = H1
given that H1 4 H1 t H2.

Furthermore, the lattice (HS ,t,u) is distributive given that none of its sublat-
tices are isomorphic to the diamond lattice, M3, or the pentagon lattice, N5.

3.4 A Distance between Hesitant Fuzzy Linguistic Term
Sets

In order to define a distance between HFLTSs, we introduce a generalization of the
concept of cardinal of a positive HFLTS to all the elements of the extended set of
HFLTSs.

Definition 3.9. Given H ∈ HS , the width of H is defined as:

W(H) =


card(H) i f H ∈ H∗S ,
0 i f H ∈ A,
−card(−H) i f H ∈ (−H∗S).

Note that the width of a HFLTS could be related as well with the height on the
graph of HS , associating the zero HFLTSs with height 0, the positive HFLTSs with
positive heights and the negative HFLTSs with negative values of heights as shown
in Figure 3.4.

Proposition 3.4. D(H1, H2) = W(H1 t H2)−W(H1 u H2) provides a distance
in the lattice (HS ,t,u).

Proof. D(H1, H2) defines a distance given that it is equivalent to the geodesic dis-
tance in the graph HS . The geodesic distance between H1 and H2 is the length of
the shortest path to go from H1 to H2. Due to the fact that H1 u H2 4 H1 t H2,
W(H1 t H2)−W(H1 u H2) is the length of the minimum path between H1 t H2
and H1 u H2. Thus, we have to check that the length of the shortest path between
H1 t H2 and H1 u H2 coincides with the length of the shortest path between H1 and
H2.

If one of them belong to the coverage of the other one, let us suppose that H1 4
H2, then H1 t H2 = H2 and H1 u H2 = H1 and the foregoing assertion becomes
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obvious. If not, H1, H1 t H2, H2 and H1 u H2 define a parallelogram on the graph.
Two consecutive sides of this parallelogram define the shortest path between H1tH2
and H1 u H2 while two other consecutive sides of the same parallelogram define the
shortest path between H1 and H2. Thus, the assertion becomes true as well.

Proposition 3.5. Given two HFLTSs, H1, H2 ∈ HS , then D(H1, H2) ≤ 2n. If, in
addition, H1, H2 ∈ H∗S , then D(H1, H2) ≤ 2n− 2.

Proof. If H1, H2 ∈ HS , then, the most distant pair is α0 and αn. Then,

W(α0 t αn)−W(α0 u αn) =W([a1, an])−W(−[a1, an]) =

n− (−n) = 2n.

If H1, H2 ∈ H∗S , then, the most distant pair is {a1} and {an}. Then,

W({a1} t {an})−W({a1} u {an}) =W([a1, an])−W(−[a2, an−1]) =

n− (−(n− 2)) = 2n− 2.

Notice that for positive HFLTSs, D(H1, H2) coincides with the distance D2(H1, H2)
introduced by Montserrat-Adell et al. [47]. Additionally, in this case, the distance
presented can also be calculated as D([ai, aj], [ai′ , aj′ ]) = |i− i′|+ |j− j′|.
Example 3.7. Figure 3.4 shows the width of the extended connected union and the
extended intersection of HB and HC from Example 3.1. According to these results,
D(HB, HC) =W(HB t HC)−W(HB u HC) = 4− (−1) = 5.

{a1} {a5}

−{a1} −{a5}

0

1

2

3

4

5

−1

−2

−3

−4

−5

W

HB

HC

HB tHC

HB uHC

α0 α5

FIGURE 3.4: Distance between HB and HC from Example 3.1.

3.5 A Representative of a Group Assessment

The aim of this section is to model the assessments given by a group of Decision
Makers (DMs) that are evaluating a set of alternatives Λ = {λ1, . . . , λr} by means
of positive HFLTSs over S = {a1, . . . , an}. To do so, we use the definition of
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Hesitant Fuzzy Linguistic Description (HFLD) introduced by Montserrat-Adell et
al. [47].

Definition 3.10. A Hesitant fuzzy linguistic description of the set Λ by HS − {∅}
is a function FH on Λ such that for all λ ∈ Λ, FH(λ) is a non-empty HFLTS, i.e.,
FH(λ) ∈ HS − {∅}.

According to this definition, we can extend the distance between HFLTSs pre-
sented in Section 3.4 to a distance between HFLDs as follows:

Definition 3.11. Let us consider F1
H and F2

H two HFLDs of a set Λ = {λ1, . . . , λr}
by means of HS , with F1

H(λi) = H1
i and F2

H(λi) = H2
i , for all i ∈ {1, . . . , r}.

Then, the distance DF between these two HFLDs is defined as:

DF (F1
H, F2

H) =
r

∑
t=1

D(H1
t , H2

t ).

Thus, given a set ok k DMs, we have k different HFLDs of the set of alternatives
Λ. In order to summarize this k different assessments, we propose a HFLD that
serves as a group representative.

Definition 3.12. Let Λ be a set of r alternatives, G a group of k DMs and F1
H, . . . , Fk

H
the HFLDs of Λ provided by the DMs in G, then, the centroid of the group is:

FC
H = arg min

Fx
H∈(H∗S )r

k

∑
t=1

DF (Fx
H, Ft

H),

identifying each HFLD FH with the vector (H1, . . . , Hr) ∈ (H∗S)r, where FH(λi) =
Hi, for all i = 1, . . . , r.

Note that the HFLD of the centroid of the group does not have to coincide with
any of the HFLDs given by the DMs. In addition, there can be more than one HFLDs
minimizing the addition of distances to the assessments given by the DMs, so the
centroid of the group is not necessarily unique. Consequently, we proceed with a
further study of the possible unicity of the centroid of the group.

Proposition 3.6. For a specific alternative λ, let F1
H(λ), . . . , Fk

H(λ) be the HFLTSs
given as assessments of λ by a group of k DMs. Then, if Fp

H(λ) = [aip , ajp ], ∀p ∈
{1, . . . , k}, the set of all the HFLTSs associated to the centroid of the group for λ is:

{[ai, aj] ∈ H∗S | i ∈ med(i1, . . . , ik), j ∈ med(j1, . . . , jk)},

where med( ) contains the median of the values sorted from smallest to largest if k
is odd or any integer number between the two central values sorted in the same order
if k is even.

Proof. It is straightforward to check that the distance D between HFLTSs is equiva-
lent to the Manhattan distance, also known as taxicab distance, because the graph of
HS can be seen as a grid. Thus, finding the HFLTSs that corresponds to the centroid
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of the group is reduced to finding the HFLTSs in the grid that minimizes the addition
of distances to the other HFLTSs given by the DMs.

The advantage of the taxicab metric is that it works with two independent com-
ponents, in this case, initial linguistic term and ending linguistic term. Therefore, we
can solve the problem for each component separately. For each component, we have
a list of natural numbers and we want to find the one minimizing distances. It is well
known that the median is the number satisfying a minimum addition of distances to
all the points, generalizing the median to all the numbers between the two central
ones if there is an even amount of numbers.

Thus, all the HFLTSs satisfying a minimum addition of distances are:

{[ai, aj] ∈ HS | i ∈ med(i1, . . . , ik), j ∈ med(j1, . . . , jk)}.

Finally, we have to check that the HFLTSs associated to the centroid are positive
HFLTSs for the FC

H to be a HFLD. If Fp
H(λ) = [aip , ajp ] ∈ H∗S , ∀p ∈ {1, . . . , k},

that means ip ≤ jp, ∀p ∈ {1, . . . , k}. Therefore, if k is odd, the median of i1, . . . , ik
is less than or equal to the median of j1, . . . , jk, and if k is even, the minimum value
of med(i1, . . . , ik) is less than or equal than the maximum value of med(j1, . . . , jk).
Accordingly, there is always at least one HFLTS associated to the centroid which is
a positive HFLTS. Thus,

{[ai, aj] ∈ H∗S | i ∈ med(i1, . . . , ik), j ∈ med(j1, . . . , jk)}.

Example 3.8. Let us assume that HA, HB, HC, HD, HE from Example 3.1 are the as-
sessments given by 5 DMs about the same alternative. In such case, med(2, 2, 4, 1, 1) =
2 and med(3, 2, 5, 2, 4) = 3, and, therefore, the central assessment for this alternative
is [a2, a3].

Corollary 3.1. For a group of k DMs, if k is odd, the centroid of the group is unique.

Proof. If k is odd, both medians are from a set with an odd amount of numbers,
so both medians are unique. Therefore, the corresponding HFLTS minimizing the
addition of distances is also unique.

Corollary 3.2. For each alternative in Λ, the set of all the HFLTSs corresponding to
any centroid of the group is a connected set in the graph ofHS .

Proof. If k is odd, by Corollary 3.1, the proof results obvious. If k is even, by the
definition of med( ), the set of possible results is also connected.

Example 3.9. Let G be a group of 5 DMs assessing a set of alternatives Λ =
{λ1, . . . , λ4} by means of HFLTSs over the set S = {a1, a2, a3, a4, a5} from Ex-
ample 3.1, and let F1

H, F2
H, F3

H, F4
H, F5

H the HFLDs describing their corresponding as-
sessments shown in Table 3.2 together with the HFLD corresponding to the centroid
of the group.
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TABLE 3.2: HFLDs from Example 3.9.

F1
H F2

H F3
H F4

H F5
H FC

H

λ1 [a2, a3] {a2} [a4, a5] [a1, a2] [a1, a4] [a2, a3]

λ2 [a1, a2] {a1} [a2, a3] [a1, a2] {a2} [a1, a2]

λ3 [a3, a5] {a3} {a4} [a1, a4 [a2, a4] [a3, a4]

λ4 [a4, a5] {a5} {a5} {a5} [a1, a2] {a5}

As the last alternative shows, the centroid of the group is not sensible to outliers,
due to the fact that is based on the calculation of two medians.

3.6 Conclusions and future research

This chapter presents an extension of the set of Hesitant Fuzzy Linguistic Term Sets
by introducing the concepts of negative and zero HFLTSs to capture differences be-
tween pair of non-compatible HFLTSs. This extension enables the introduction of
a new operation studying the intersection and the gap between HFLTSs at the same
time. This operation is used to define a distance between HFLTSs that allows us to
analyze differences between the assessments given by a group of decision makers.
Based on the study of these differences, a centroid of the group has been proposed.

Future research is focused in two main directions. First, the study of the consen-
sus level of the total group assessments to analyze the agreement or disagreement
within the group. And secondly, a real case study will be performed in the marketing
research area to examine consensus and heterogeneities in consumers’ preferences.
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Chapter 4

Consensus, Dissension and Precision
in Group Decision Making by means
of an Algebraic Extension of Hesitant
Fuzzy Linguistic Term Sets

4.1 Introduction

Several studies have shown that, in general, people do not use purely quantitative
models when expressing preferences and interests and are more comfortable using
global or abstract forms, which can be understood as models based on qualitative or
linguistic information [4, 24, 65]. Analogously, in Group Decision-Making (GDM)
environments, the design of systems to facilitate decision-making processes is con-
sidered suitable for describing alternatives to be made in terms of non-numerical
values and reflect the uncertainty inherent in human reasoning [25, 29, 34, 48, 75].
In the literature, this impreciseness has been modeled with intervals or fuzzy values
through a linguistic approach [52, 53, 58].

Rodríguez et al. introduced the Hesitant Fuzzy Linguistic Term Sets (HFLTSs)
over a well-ordered set of linguistic labels to deal with decision-making situations
through hesitant fuzzy linguistic assessments [53]. In this way, one can express
not only the uncertainty but also the hesitancy inherent in human reasoning. There
are several contributions in the literature that have studied HFLTSs, their proper-
ties, aggregation functions, preference relations, distances and so on [12, 21, 33, 47,
67]. These approaches have contributed either from a theoretical point of view or
by proposing different applications. An algebraic extension of the set of HFLTSs
is presented by Montserrat-Adell et al. to take into account the gap between non-
overlapping assessments[45].

In recent times, consensus in GDM problems through HFLTSs has been studied
by several approaches [11, 12, 55, 69, 70, 71]. While some of them focus on the aim
of quantifying the level of agreement, some others focus on the consensus reaching
process. The problem is set, for all of them, with a group of experts or Decision
Makers (DMs) evaluating a set of several alternatives by means of HFLTSs. De-
spite this, some differences emerge among the approaches that try to quantify the
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consensus level. A first key difference between them is that, while some approaches
study, for each alternative, the consensus of an expert with respect to the rest of the
group [12, 71], others study the consensus of the whole group on each alternative [55,
69, 70]. Both types of consensus approaches might be useful under different kinds
of situations: while approaches of the first type can be used to evaluate the relation
of each expert with respect to the group, approaches of the second type can be used
to evaluate the available alternatives. For instance, when in a GDM process the most
dissenting decision makers are asked to reconsider their opinion, a measure of the
first kind should be used. On the contrary, when everyone is asked to reconsider
his or her assessment on the most controversial alternative, a second type measure
should be used instead. In this chapter, we propose a new measure of consensus that
can be adapted to the measurement of both individual and collective consensus.

The second main difference among approaches lies in whether the definition of
the measure of consensus is based on the concept of distance or on the concept of
similarity. On the one hand, the consensus level presented by Dong et al. [12] is a
distance-based measure. According to the distance that they use, if two opinions do
not overlap, the consensus level is always zero, regardless how far apart the opin-
ions are. This null value for the measure is because the distance used does not take
into consideration the gap between HFLTSs in the cases in which the intersection is
the empty set. In this chapter we define more accurate agreement measures, based
on the distance presented by Montserrat-Adell that does take into consideration this
gap [47]. On the other hand, the rest of the measures [55, 69, 70, 71] are not distance-
based but similarity-based. The concept of similarity between HFLTSs is presented
by Rodríguez and Martínez [55], and later used by Wu and Xu, based on the compar-
ison, between two experts, of their preferences for a given alternative over another
one [69] and extended as a comparison, between two experts, of their assessment of
a specific alternative. In any case, this similarity concept neither takes into consid-
eration how distant non-overlapping assessments are nor the level of hesitancy used
by the experts when assessing an alternative [70]. The measures presented in this
chapter solve these issues by considering both the hesitancy of the assessments and
the gap between them if they do not overlap.

Selecting or prioritizing suitable experts or DMs is a frequent problem in GDM
applications in real situations [9, 31]. This chapter introduces the concepts of pre-
ciseness and dissent of an expert assessing a set of alternatives. These concepts allow
the definition of an expert’s profile, which keeps track of how experts have made
his/her previous assessments with respect to how precise or how dissenting they are.
These profiles characterize the up-to-date behavior of experts in GDM processes and
can be useful for the task of selecting the appropriate experts to form part of future
committees or decision groups.

The rest of this chapter is structured as follows: first, Section 4.2 presents a sum-
mary of the basic concepts in the literature that are used throughout the chapter. A
new degree of consensus for the whole group on each alternative is introduced in
Section 4.3 with a further comparison study with other similar measures. Section 4.4
defines a different degree of consensus for an expert with respect to the group and it
is also compared with the similar existing measures. A precision-dissension profile
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is presented in Section 4.5 to keep track of the assessments of a DM within several
groups. Finally, Section 4.6 presents the main conclusion and lines of future research.

4.2 Theoretical framework

The aim of this section is to provide a summary of basic concepts related to HFLTSs
that appear throughout this chapter. In particular, a special focus on the distance
between HFLTSs that is used in this work is required.

From this point onwards, let S denote a finite total ordered set of linguistic terms,
S = {a1, . . . , an} with a1 < · · · < an.

Definition 4.1. ([53]) A hesitant fuzzy linguistic term set (HFLTS) over S is a subset
of consecutive linguistic terms of S , i.e., {x ∈ S | ai ≤ x ≤ aj}, for some i, j ∈
{1, . . . , n} with i ≤ j.

Following the concept of uncertain linguistic term introduced by Xu [74], in this
chapter we will denote HFLTSs by linguistic intervals. Thus, for the rest of this
chapter, the HFLTS defined as {x ∈ S | ai ≤ x ≤ aj} is denoted as [ai, aj] or, if
j = i, {ai}. In addition, HS represents the set of all the possible HFLTSs over S
including the empty HFLTS, ∅.

In order to define a suitable distance between two HFLTSs that takes into con-
sideration not just the intersection of them, but also the gap between them if they
do not intersect, an algebraic extension of the set H∗S = HS − {∅} is presented
by Montserrat-Adell et al. [45] as HS different than the extension presented by
Wang [67] that includes HFLTS with non-consecutive linguistic terms from S . This
algebraic extension includes the concepts of the negative HFLTSs,−H∗S = {−H|H ∈
H∗S}, the zero HFLTSs,A = {α0, . . . , αn} and the positive HFLTSs,H∗S . The graph
of this set is presented in Figure 4.1.

{a1} {a2} {an−1} {an}

−{a1} −{a2} −{an−1} −{an}

[a1, a2] [an−1, an]

−[a1, a2] −[an−1, an]

[a1, an−1] [a2, an]

[a1, an]

[a1, a3] [an−2, an]

−[a1, a3] −[an−2, an]

−[a1, an−1] −[a2, an]

−[a1, an]

{a3}

−{a3}

{an−2}

−{an−2}

· · ·

· · · · · · · · ·

· · ·

α0 α1 α2 αn−2 αn−1 αn

FIGURE 4.1: Graph of the extended set of HFLTSs,HS .
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In the frame of HS , an extended inclusion relation is introduced based on the
graph of HS (Figure 4.1) and the usual inclusion relation between HFLTSs. Fig-
ure 4.2 shows, as an example, all the elements of HS included in [a1, a2] according
to the extended inclusion relation. Additionally, this extended inclusion relation is
used to extend the connected union and the intersection of HFLTSs to an operation
between elements ofHS .

Definition 4.2. ([45]) Given H1, H2 ∈ HS , then:

a) The extended connected union of H1 and H2, H1 t H2, is defined as the least
element that contains H1 and H2, according to the extended inclusion relation.

b) The extended intersection of H1 and H2, H1 u H2, is defined as the largest
element being contained in H1 and H2, according to the extended inclusion
relation.

As an example, Figure 4.3 shows the extended connected union and the extended
intersection of [a1, a2] and {a4}.

{a1} {a2} {a3} {a4} {a5}

[a1, a2]

FIGURE 4.2: El-
ements of HS in-

cluded in [a1, a2].

{a1} {a2} {a3} {a4} {a5}

[a1, a2]

[a1, a2] t {a4} = [a1, a4]

= −{a3}
[a1, a2] u {a4}

FIGURE 4.3: t and
u of [a1, a2] and

{a4}.

The negative and zero HFLTSs appear only as a result of the extended intersection
of two elements H1 and H2 from H∗S . If H1 u H2 = −[ai, aj] with i ≤ j, then there
is a gap of [ai, aj] between them. Whilst, if H1 u H2 = αi, then H1 and H2 are
consecutive, with one of them ending at ai and the other one starting at ai+1.

Finally, given H ∈ HS , the width of H, W(H), is defined as the cardinal of H
if H ∈ H∗S , −card(−H) if H is a negative HFLTS or 0 if H is a zero HFLTS. All
these concepts are used to introduce the following distance between HFLTSs:

Definition 4.3. ([45]) Let H1, H2 ∈ HS , then D(H1, H2) := W(H1 t H2) −
W(H1 u H2) provides a distance inHS .

Remark 4.1. Notice that since theW operator is based on the concept of cardinal,
it works under the assumption of a uniformly distributed set of linguistic terms S . If
this is not the case, the cardinal operator should be replaced in the definition of width
by a measure µ onHS , such that µ(H) represents the size of the semantic content of
H, for all H ∈ HS .

The distance provided by Definition 4.3 has three main advantages with respect to
other measures between HFLTSs existing in the literature [33]: first of all, this new
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measure takes explicitly into consideration the gap between two non-overlapping
HFLTSs; secondly, it is simply computed even between HFLTSs with different car-
dinalities and, finally, this measure satisfies the triangle inequality and, therefore, it
is a distance. From here on, all computations of distances between HFLTSs appear-
ing in this chapter are done based on this definition. For this reason, and for the
sake of comprehensiveness, let us present the following example to illustrate all the
foregoing concepts:

Example 4.1. Let a1 = very bad, a2 = bad, a3 = regular, a4 = good and a5 =
very good be 5 linguistic labels defining the set S = {a1, a2, a3, a4, a5}. Then, three
possible assessments by means of S are A = “below regular", B = “very good" and
C = “neither very good nor very bad" and their corresponding HFLTS by means of
S are HA = [a1, a2], HB = {a5} and HC = [a2, a4] respectively. The extended
connected union and extended intersection of all the possible pairs among HA, HB
and HC are shown in Figure 4.4.

{a1} {a2} {a3} {a4}

HA tHB = [a1, a5]

HA uHB = −[a3, a4]
W(HA uHB) = −2

W(HA tHB) = 5

HB = {a5}
HA = [a1, a2]

(A) HA and HB.

{a1} {a5}{a3} {a4}

HA tHC = [a1, a4]

HA uHC = {a2}
W(HA uHC) = 1

W(HA tHC) = 4

HC = [a2, a4]
HA = [a1, a2]

(B) HA and HC.

{a1} {a2} {a3} {a4}

HB tHC = [a2, a5]

HB uHC = α4

W(HB uHC) = 0

W(HB tHC) = 4

HC = [a2, a4]

HB = {a5}

(C) HB and HC.

FIGURE 4.4: Extended connected unions and extended intersections from
Example 4.1.

According to these results, D(HA, HB) = 5− (−2) = 7, D(HA, HC) = 4−
1 = 3 and D(HB, HC) = 4− 0 = 4.

Remark 4.2. In order to ease future computations, it is important to note that, as
proved by Montserrat-Adell et al. , the presented distance is equivalent to the taxicab
metric in the graph ofHS [45]. Therefore, if H1 = [ai1 , aj1 ] and H2 = [ai2 , aj2 ], then
D(H1, H2) can be calculated as |i1 − i2|+ |j1 − j2|. This fact can be easily seen in
the previous example and in Figure 4.1.

The next step in any GDM situation is to assess not just one single alternative, but
a set of them. With the aim of dealing with this kind of situations, Montserrat-Adell
et al. developed the concept of Hesitant Fuzzy Linguistic Description (HFLD) of a
set of alternatives Λ = {λ1, . . . , λr} as a function FH on Λ such that for all λ ∈ Λ,
FH(λ) ∈ H∗S [47]. For the rest of this chapter, each DM or expert is modeled by a
HFLD.

Following this definition, the distance D between HFLTSs is extended to a dis-
tance, DF , between HFLDs as the addition of the distances between the correspond-
ing HFLTSs for each alternative in Λ. Formally,

Definition 4.4. ([45]) Let F1
H and F2

H be two HFLDs of a set Λ = {λ1, . . . , λr} by
means of HS , with F1

H(λi) = H1
i and F2

H(λi) = H2
i , for all i ∈ {1, . . . , r}. Then,

39



Chapter 4. Consensus, Dissension and Precision in Group Decision Making by means of an
Algebraic Extension of Hesitant Fuzzy Linguistic Term Sets

the distance DF between F1
H and F2

H is defined as:

DF (F1
H, F2

H) =
r

∑
t=1

D(H1
t , H2

t ).

Finally, the distance DF is used to propose a central opinion (or centroid) of a
group of DMs about a set of alternatives Λ as the HFLD that minimizes the addition
of distances to the opinion of each expert.

Definition 4.5. ([45]) Let Λ be a set of r alternatives, G a group of k DMs and
F1

H, . . . , Fk
H the HFLDs of Λ provided by the DMs in G. Then, a centroid of the

group is:

FC
H = arg min

Fx
H∈(H∗S )r

k

∑
i=1

DF (Fx
H, Fi

H).

Notice that this centroid does not have to be unique and this might lead us to
some issues when working with the centroid. To fix this problem, let us consider the
following remark.

Remark 4.3. For an easier calculation of the centroid, let us note that it is already
proved [45] that, for each specific alternative λ ∈ Λ, if Fp

H(λ) = [aip , ajp ] for
p ∈ {1, . . . , k}, then the set of all the HFLTSs associated to the centroid of the group
for λ is:

{[ai, aj] ∈ H∗S | i ∈ M(i1, . . . , ik), j ∈ M(j1, . . . , jk)},
where M( ) is the set that contains just the median of the index values if k is odd
or any integer number between the two central index values sorted from smallest to
largest if k is even. Therefore, if k is odd, the centroid is unique, while if k is even,
the controid might be not unique. Henceforth, to avoid possible problems with a
non-unique centroid, when there are more than one possible centroid of the group,
the one with a highest cardinality, which can be understood as the most hesitant one,
is considered as FC

H(λ). Thus, FC
H(λ) = [ai∗ , aj∗ ], where i∗ = min (M(i1, . . . , ik))

and j∗ = max (M(j1, . . . , jk)).

Example 4.2. Let G be a group of 5 DMs assessing a set of alternatives Λ =
{λ1, . . . , λ4} by means of HFLTSs over the set S = {a1, . . . , a5} from Example 4.1,
and let F1

H, F2
H, F3

H, F4
H, F5

H be the HFLDs modeling their corresponding assessments
shown in the Table 4.1. Then, the centroid of the group, FC

H, can be easily computed
by median calculations as stated in Remark 4.3 providing the results shown in the
same table.

TABLE 4.1: Centroid of the group G for Λ from Example 4.2.

F1
H F2

H F3
H F4

H F5
H FC

H

λ1 [a1, a2] {a2} [a1, a5] [a4, a5] [a2, a3] [a2, a3]

λ2 [a2, a4] {a3} [a1, a5] [a3, a4] [a2, a3] [a2, a4]

λ3 [a4, a5] {a5} [a4, a5] [a1, a2] [a4, a5] [a4, a5]

λ4 {a3} {a3} [a2, a3] [a3, a4] {a3} {a3}
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Note that, contrary to some other common aggregation operators such as the
union, the centroid of the group is robust with respect to extreme hesitancies in one
expert. When aggregating with the union, a big hesitancy in the opinion of one of the
experts implies a big hesitancy in the central opinion. That is not the case with the
centroid from Definition 4.5. This can be seen, for instance, in alternative λ1, where
the assessment of one of the experts is [a1, a5], but the centroid is [a2, a3]. That it to
say that a large hesitancy of a DM does not necessarily imply a lack of precision of
the centroid.

Note that, since in this example there are 5 DMs, which is an odd number, the
centroid of the group obtained from Definition 4.5 is unique.

4.3 Collective consensus

In this section, a new degree of consensus of the whole group on a specific alternative
or a set of alternatives is introduced based on the distance proposed by Montserrat-
Adell et al. [45]. This new measure seeks to quantify the level of agreement within
a group of DMs on a specific alternative or a set of alternatives. A further study on
the properties of the introduced measure and a comparison with the similar existing
measures in the literature are also presented in this section. Finally, an example is
provided to illustrate the commented properties.

4.3.1 A collective degree of consensus

The idea of this new degree of consensus arises with the need of finding a measure
that depends neither on the number of DMs assessing the alternatives nor on the
number of linguistic labels used in S . Thus, the degree of consensus presented in
this section is a normalization of the addition of distances between the centroid of
the group and each of the HFLDs given by the DMs. In order to define this normal-
ization, the first step is to study the maximum value that this addition of distances
can take.

Lemma 4.1. Let F1
H, F2

H be two HFLDs of the set of alternatives Λ = {λ1, . . . , λr}
by means of S = {a1, . . . , an}. Then,

DF (F1
H, F2

H) ≤ r · (2n− 2).

Proof. According to Definition 4.3, the most distant HFLTSs are H1 = {a1} and
H2 = {an}. In this case, H1 t H2 = [a1, an] and H1 u H2 = −[a2, an−1]. Thus,
D(H1, H2) =W([a1, an])−W(−[a2, an−1]) = n− (−(n− 2)) = 2n− 2. Con-
sequently, the most distant HFLDs are those that for all the alternatives, the corre-
sponding two HFLTSs used by each HFLD are the most distant ones. In such case,

DF (F1
H, F2

H) =
r

∑
i=1

(2n− 2) = r · (2n− 2).
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Therefore, Lemma 4.1 can be used to find an upper bound for the addition of
distances between the centroid of a group and each of the DMs of the assessing
group.

Proposition 4.1. Let F1
H, . . . , Fk

H be the HFLDs of a group of k DMs of the set of
alternatives Λ = {λ1, . . . , λr} by means of S = {a1, . . . , an}, and let FC

H be the
centroid of the group. Then,

k

∑
i=1

DF (FC
H, Fi

H) ≤ k · r · (n− 1).

Proof. If k is even, the worst-case scenario is given when, for each of the alternatives
k/2 of the DMs have assessed it with {a1}, and the other k/2 of the DMs have
assessed it with {an}. In such case, calculating the corresponding medians, we get
that any HFLD could be considered as the centroid of the group given that all of them
give the same addition of distances, but, according to Remark 4.3, FC

H(λi) = [a1, an]
for i = 1, . . . , r, then:

k

∑
i=1

DF (FC
H, Fi

H) =
k
2
· r · (n− 1) +

k
2
· r · (n− 1) = k · r · (n− 1).

If k is odd, the worst-case scenario is met when, for each of the alternatives, bk/2c
of the DMs have assessed it with {a1} and bk/2c of the DMs have assessed it with
{an}, regardless what is the last HFLTS. If so, based on the median calculations,
the centroid of the group is equal, for each alternative, to this last HFLTS, and the
addition of distances is equal to (k− 1) · r · (n− 1). Choosing, for example, the last
HFLTS to be {a1} for all the alternatives, then:

k

∑
i=1

DF (FC
H, Fi

H) =

(⌊
k
2

⌋
+ 1
)
· 0 +

⌊
k
2

⌋
· r · (2n− 2)

= (k− 1) · r · (n− 1) ≤ k · r · (n− 1).

Corollary 4.1. Under the same conditions as in Property 4.1, in the particular case
where r = 1, just one single alternative to be assessed, the upper bound results to be
k · (n− 1).

The upper bounds provided in Proposition 4.1 and Corollary 4.1 for the total ad-
dition of distances between the centroid of the group and all the HFLD of the group
enables us to proceed with the normalization that leads us to the definition of a mea-
sure of agreement within the group, in a similar way to other measures [12, 70], as
follows:

Definition 4.6. Let F1
H, . . . , Fk

H be the HFLDs given by a group G of k DMs about
the set of alternatives Λ = {λ1, . . . , λr} by means of S = {a1, . . . , an} and let
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FC
H the centroid of the group, being Hi

j = Fi
H(λj) for i ∈ {1, . . . , k, C}. Then, the

degree of consensus of G on λj is defined as:

δλj(G) = 1−

k
∑

i=1
D(HC

j , Hi
j)

k · (n− 1)
.

Analogously, the degree of consensus of G on Λ is defined as:

δΛ(G) = 1−

k
∑

i=1
DF (FC

H, Fi
H)

k · r · (n− 1)
.

Note that, by Proposition 4.1, 0 ≤ δΛ(G) ≤ 1. The closer to 0 δΛ(G) is, the
closer to its maximum value the addition of distances is, which implies a lot of dis-
agreement. On the contrary, the closer to 1 δΛ(G) is, the smaller the addition of
distances is, and that means a high level of agreement. The same reasoning is valid
for the degree of consensus of one specific alternative.

Notice also that, the upper bound given by Proposition 4.1 can be reached only
when k is even. Thus, if k is odd, the degree of consensus cannot be zero. This fact
is coherent given that situations with maximum disagreement arise when half of the
experts assess an alternative with the worst linguistic label and the other half do it
with the best linguistic label. Obviously, this situation is only possible with an even
number of opinions.

Property 4.1. Let G be a group of k DMs assessing a set of alternatives Λ =
{λ1, . . . , λr} by means of S = {a1, . . . , an}. Then,

δΛ(G) =

r
∑

j=1
δλj(G)

r
.

Proof. Let F1
H, . . . , Fk

H be the HFLDs given by the DMs and FC
H the centroid of the

group, being Hi
j = Fi

H(λj) for i ∈ {1, . . . , k, C}. Then,

r
∑

j=1
δλj(G)

r
=

r
∑

j=1
1−

k
∑

i=1
D(HC

j ,Hi
j)

k·(n−1)

r
=

r−
k
∑

i=1

r
∑

j=1
D(HC

j ,Hi
j)

k·(n−1)

r

= 1−

k
∑

i=1
DF (FC

H, Fi
H)

k · r · (n− 1)
= δΛ(G).

This property states the consistency between the degree of consensus on each
alternative and on the whole set of alternatives.
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4.3.2 Comparison with existing measures

This section presents a comparison of the degree of consensus defined in Section 4.3.1
with similar existing measures. Out of all the agreement measures for GDM by
means of HFLTSs summarized in the Introduction, the ones defined as a degree of
consensus on the alternatives are those presented by Rodríguez and Martínez [55] and
by Wu and Xu [69, 70]. When calculating the agreement on an alternative λj, there is
a main difference between these two measures: the first and third degrees are defined
based on the preference of said alternative over another alternative λk, ∀k 6= j, while
the second one is based just on the assessment of λj, regardless the assessment of the
rest of alternatives. This leads us to the automatic conclusion that the most similar
measure to the one presented in this chapter is the second one. For this reason, we
proceed with a further study to compare the results provided by both measures.

To begin with, let us summarize the measure presented by Wu and Xu [70]. They
defined the consensus level within all the DMs for an alternative as the average of all
the similarity degrees between any pair of DMs about this alternative. This similarity
degree is based on what they call the mean (or expected value) of a HFLTS, which
is just the center of the HFLTS in the case of a set S with uniform and symmetric
linguistic labels. Translated to the notation used in this chapter, in which Hi =
[axi , ayi ] for i ∈ {1, . . . , k} are the assessments given by a group of k DMs about an
alternative λ by means of S = {a1, . . . , an}, the consensus level within all the DMs
for λ defined by Wu and Xu can be calculated as

caλ =

k

∑
i=1

k

∑
j>i

1−

∣∣∣ xj+yj
2 − xi+yi

2

∣∣∣
(n− 1)


(

k
2

) . (4.I)

Remark 4.4. The fact that this measure ignores the width of the HFLTSs and, in the
case with uniform and symmetric linguistic labels, is based just on the mean of the
HFLTSs, implies that the hesitancy of each expert is not taken into consideration.
Therefore, the similarity degree of two experts assessing an alternative with HFLTSs
with the same expected value but with different levels of hesitancy would be 1, the
maximum.

On the other hand, the degree of consensus presented in Section 4.3.1 can be
rewritten in a similar way as shown in the following lemma:

Lemma 4.2. Let H1, . . . , Hk be the assessments of a group G of k DMs about an
alternative λ, and let HC be the centroid of G for λ, where Hi = [axi , ayi ] for
i ∈ {1, . . . , k, C}. Then,

δλ(G) = 1−

k
∑

i=1
|xi − xC|+ |yi − yC|

k · (n− 1)
.

Proof. The proof is straightforward by Definition 4.6 and Remark 4.3.
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In order to compare the two consensus measures, we first need the following
definition:

Definition 4.7. Let H1, . . . , Hk be a collection of HFLTSs over S , where Hi =
[axi , ayi ] for i ∈ {1, . . . , k}. Then,

(a) Hi is lower than H j, Hi 4 Hj, if xi ≤ xj and yi ≤ yj.

(b) H1, . . . , Hk are sorted if H1 4 H2 4 . . . 4 Hk.

(c) H1, . . . , Hk are sortable if there exists a permutation of them which is sorted.

Property 4.2. Let H1, . . . , Hk be the assessments of a group G of k DMs about an
alternative λ. Then,

δλ(G) ≤ caλ

and the equality is met when H1, . . . , Hk are sortable and the k− 2 central opinions
are the same.

Proof. For this proof, let us assume Hi = [axi , ayi ] for i ∈ {1, . . . , k, C}. Thus,
beginning with Equation 4.I,

caλ =

k

∑
i=1

k

∑
j>i

1−

∣∣∣ xj+yj
2 − xi+yi

2

∣∣∣
(n− 1)


(

k
2

)

=

(
k
2

)
− 1

2 · (n− 1)
·

k

∑
i=1

k

∑
j>i

(∣∣xj + yj − xi − yi
∣∣)

(
k
2

)

= 1−

k
∑

i=1

k
∑
j>i

∣∣xj + yj − xi − yi
∣∣

k · (k− 1)
2

· 2 · (n− 1)

≥ 1−

k
∑

i=1

k
∑
j>i

∣∣xj − xi
∣∣+ ∣∣yj − yi

∣∣
k · (k− 1) · (n− 1)

= 1−

k
∑

i=1

k
∑
j>i

∣∣xj − xC − xi + xC
∣∣+ ∣∣yj − yC − yi + yC

∣∣
k · (k− 1) · (n− 1)

≥ 1−

k
∑

i=1

k
∑
j>i

∣∣xj − xC
∣∣+ |xi − xC|+

∣∣yj − yC
∣∣+ |yi − yC|

k · (k− 1) · (n− 1)
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= 1−

k
∑

i=1
(k− 1) · |xi − xC|+ (k− 1) · |yi − yC|

k · (k− 1) · (n− 1)

= 1−
(k− 1)

(
k
∑

i=1
|xi − xC|+ |yi − yC|

)
k · (k− 1) · (n− 1)

= 1−

k
∑

i=1
|xi − xC|+ |yi − yC|

k · (n− 1)
= δλ(G).

Additionally, for the first inequality to be an equality (xj − xi) and (yj − yi)

have to have the same sign for any j > i, which means that H1, . . . , Hk have to be
sorted. Since the order of the DMs is not important, it is enough for H1, . . . , Hk to
be sortable. On the other hand, for the equality to be met in the second inequality,
(xi − xC) and (xj − xC) have to have opposite signs or be zero for any j > i,
and analogously for (yi − yC) and (yj − yC). Given that, because of the previous
condition, we can assume H1, . . . , Hk to be sorted, this happens only if x2 = . . . =
xk−1 = xC and y2 = . . . = yk−1 = yC.

The reason why δλ(G) ≤ caλ is explained by the fact that caλ does not take
into account the hesitancy of the experts and, therefore, for some alternatives the
consensus level is higher that what it would be expected.

Additionally, if these degrees of consensus are applied to to end-users of a product
instead of a set of experts, then the number of DMs might be very large, and the time
complexity of calculating the consensus level for an alternative becomes a crucial
point. Given that the degree of consensus presented by Rodríguez and Martínez [55]
and by Wu and Xu [69] compute the similarity between each pair of DMs about
the preference of the studied alternative over all the other ones one by one, its time
complexity is O(rk2), where k is the number of DMs within the group and r is the
number of alternatives to be assessed. The consensus level introduced by Wu and
Xu [70] studies the similarity between each pair of DMs on a specific alternative,
without comparing it with the rest of alternatives. Thus, its time complexity is O(k2).
On the contrary, the degree of consensus presented in Section 4.3.1 only makes one
comparison with the central opinion. Therefore, its time complexity is O(1) once
the centroid of the group for the studied alternative is computed. Since this centroid,
as staten before, is based on the median calculation, which is known to be done in
linear time, the time complexity of δλi(G) is O(k).

Table 4.2 summarizes the main characteristics of the different collective degrees
of consensus using HFLTSs.

4.3.3 An illustrative example on collective consensus

For an easier understanding of the introduced degree of consensus, in this subsection
we present a clarifying example to illustrate its computation. The same example
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TABLE 4.2: Comparison of the presented collective degrees of consensus.
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9]
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[7
0]
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t-

A
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Year 2015 2016 2016 2017
Groupal consensus X X X X

Individual consensus
Distance-based X

Similarity-based X X X
Preference similarity X X
Alternative similarity X
Pairwise comparison X X X

Central opinion comparison X
Considers gap X

Considers hesitancy X
Time complexitya,b O(rk2) O(rk2) O(k2) O(1) + TC

a TC stands for the time complexity of calculating the central opinion.
b For the overall degree of consensus of a set of r alternatives, all times are

multiplied by r.

is also used to point out its properties commented in Section 4.3.2 with respect to
similar existing measures.

Example 4.3. Following Example 4.2, where G is a group of 5 DMs assessing
a set of alternatives Λ = {λ1, . . . , λ4} by means of HFLTSs over the set S =
{a1, . . . , a5}, with the assessments provided in Table 4.1, we can now proceed to
compute the degree of consensus on each of the alternatives in Λ as shown in Ta-
ble 4.3, where Di

j stands for D(HC
j , Hi

j), as well as the degree of consensus for the
whole set Λ.

TABLE 4.3: Degree of consensus on each alternative and on the set Λ from
Example 4.3.

D1
j D2

j D3
j D4

j D5
j

5
∑

i=1
Di

j δλj(G)

λ1 2 1 3 4 0 10 0.5
λ2 0 2 2 1 1 6 0.7
λ3 0 1 0 6 0 7 0.65
λ4 0 0 1 1 0 2 0.9
Λ 2 4 6 12 1 25 0.6875

In order to illustrate the properties presented in Section 4.3.2, we can now use the
methodology introduced by Wu and Xu [70] to calculate their degree of consensus
on each alternative λj, caj, for j = 1, . . . 4. To this end, the first step is to calculate
the similarity matrix for each alternative, showing, in a scale from 0 to 1, the agree-
ment between each pair of experts on the corresponding alternative. These similarity
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coefficients are calculated as one minus the difference between the middle points of
the corresponding HFLTSs over n− 1, where n is the cardinality of S (n = 5 in this
example). These similarity matrices are shown in Figure 4.5.


− 0.875 0.625 0.25 0.75

− 0.75 0.375 0.875
− 0.625 0.875

− 0.5
−


(A) λ1


− 1 1 0.875 0.875
− 1 0.875 0.875
− 0.875 0.875

− 0.75
−


(B) λ2

− 0.875 1 0.25 1
− 0.875 0.125 0.875

− 0.25 1
− 0.25

−


(C) λ3


− 1 0.875 0.875 1
− 0.875 0.875 1

− 0.75 0.875
− 0.875

−


(D) λ4

FIGURE 4.5: Similarity matrices for each alternative from Example 4.3.

Once these matrices are calculated, the next step to get caj is, for each alternative,
to compute the average of the similarity between each pair of experts. Table 4.4
presents a comparison of the results of δλj(G) and caj on each alternative.

TABLE 4.4: δλj and caj for the alternatives in Λ from Example 4.3.

δλj(G) caj

λ1 0.5 0.65
λ2 0.7 0.9
λ3 0.65 0.65
λ4 0.9 0.9

As staten in Property 4.2, δλj(G) ≤ caj for all the alternatives, being the equality
met in alternatives λ3 and λ4. In Table 4.1, it can be seen that, for λ3, the assessments
are sortable as F4

H(λ3) 4 F1
H(λ3) = F3

H(λ3) = F5
H(λ3) 4 F2

H(λ3), while for λ4,
they are sortable as F3

H(λ4) 4 F1
H(λ4) = F2

H(λ4) = F5
H(λ4) 4 F4

H(λ4). On the
contrary, the assessments for alternatives λ1 and λ2 are not sortable, for instance
F3

H(λ1) and F5
H(λ1) or F1

H(λ2) and F3
H(λ2), and, therefore, δλj(G) < caj.

Additionally, alternatives λ2 and λ4 are a clear example for Remark 4.4. Again,
in Table 4.1, it can be seen that the HFLTSs used by the experts to assess the two
alternatives have the same mean, but the level of hesitancy of the answers is dif-
ferent in the two cases. Given that there is much more hesitancy on λ2, it seems
intuitive that the degree of consensus on this alternative is lower than the one on λ4,
where there is much more coincidence of opinions. Table 4.4 shows that ca2 = ca4
given that this measure does not take into account the hesitancy of the experts while
δλ2(G) < δλ4(G).
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This leads us to the conclusion that, under the HFLTSs-based GDM framework,
δλj(G) provides a measure of the consensus of a group of experts on a set of alterna-
tives closer to common-sense reasoning.

4.4 Individual consensus

This section studies the idea of consensus within a group of DMs as the agreement of
an expert with respect to the group instead of the agreement of the whole group on an
alternative as in Section 4.3. To this end, a convenient degree of consensus is defined
for each expert. Even though there are some other measures already defined in the
literature, the convenience of a new measure is explained by the fact that the previous
ones present some issues like not considering the hesitancy of the assessments or not
considering the gap between non-overlapping assessments. Additionally, this degree
is compared with similar already existing measures and also exemplified to point out
its properties.

4.4.1 An individual degree of consensus

As in Definition 4.6, this new measure is thought to be on a scale from 0 to 1 inde-
pendently from the number of linguistic labels used in S and the number of DMs in
the group. The degree of consensus presented in this section is a normalization of the
distance between the opinion of the expert and the centroid of the group as follows:

Definition 4.8. Let G be a group of DMs, ε1, . . . , εk, assessing a set of alternatives
Λ = {λ1, . . . , λr} by means of HFLTSs over S = {a1, . . . , an}, and let Fi

H and FC
H

be the HFLDs of εi for i = 1, . . . , k and the centroid of the group respectively, with
Hi

j = Fi
H(λj) for i ∈ {1, . . . , k, C}. Then, the degree of consensus of εi with respect

to G on λj is defined as:

δG
λj
(εi) = 1−

D(HC
j , Hi

j)

2n− 2
.

Analogously, the degree of consensus of εi with respect to G on Λ is defined as:

δG
Λ(εi) = 1− DF (FC

H, Fi
H)

r · (2n− 2)
.

By Lemma 4.1, the upper bound for the distance between two HFLTSs is 2n− 2
and the one for the distance between two HFLDs is r · (2n − 2). Thus, it can be
easily seen that both δG

λj
(εi) and δG

Λ(εi) range between 0 and 1. The closer to 1 these
coefficients are, the more similar the opinion of εi is to the centroid, while the closer
to 0 the more dissidence there is.
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Note that this degree of consensus is 1 only when the opinion of the expert coin-
cides with the centroid of the group and it is 0 if and only if the opinion of the expert
is {a1} and the centroid is {an} or vice versa.

Property 4.3. Let G be a group of DMs, ε1, . . . , εk, assessing a set of alternatives
Λ = {λ1, . . . , λr} by means of S = {a1, . . . , an}. Then, for i = 1, . . . , k,

δG
Λ(εi) =

r
∑

j=1
δG

λj
(εi)

r
.

Proof. Let F1
H, . . . , Fk

H be the HFLDs given by the DMs and FC
H the centroid of the

group, being Hi
j = Fi

H(λj) for i ∈ {1, . . . , k, C}. Then,

r
∑

j=1
δG

λj
(εi)

r
=

r
∑

j=1
1− D(HC

j ,Hi
j)

(2n−2)

r
=

r−
r
∑

j=1
D(HC

j ,Hi
j)

(2n−2)

r

= 1− DF (FC
H, Fi

H)

r · (2n− 2)
= δG

Λ(εi).

In the same way than Property 4.1, this property provides consistency to the defi-
nition of the degree of consensus of an expert with respect to a group on an alternative
and on a set of alternatives.

4.4.2 Comparison with existing measures

As staten before, the degree of consensus for experts introduced in Section 4.4.1 is
similar to some of the measures presented in the literature. The aim of this section
is to compare the degree of consensus defined in Section 4.4.1 with the most similar
existing ones.

From the agreement measures by GDM by means of HFLTSs presented in the
Introduction, those defined as degrees of consensus for an expert are the ones intro-
duced by Dong et al. [12] and by Wu and Xu [71].

On the one hand, Dong et al. defined the consensus level of εi on an alternative
based on the intersection and the union of the opinion of εi and a central opinion as:

CLi =
card(Hi ∩ HC)

card(Hi ∪ HC)
,

being Hi the opinion of εi and HC the central opinion. The main issue with this
consensus level is that, in the case of an empty intersection between the opinion of
the expert and the central opinion, the result is always 0, without taking into consid-
eration how far Hi is from HC. The reason that explains this is the fact that CLi is
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based on a distance between HFLTSs, that contrarily to the one from Definition 4.3,
does not take into account the gap between two HFLTSs with null intersection.

Because of this reason, we have considered more interestingly to proceed with a
further study to compare the results provided by the consensus measure for experts
introduced by Wu and Xu [71] with the one given by the degree of consensus for
experts presented in this chapter.

In order to carry on this comparison, we first need to introduce the consensus
level proposed by Wu and Xu It is based on the same idea of similarity than caj in
Equation 4.I, but in this case, between the opinion of the expert and a central opinion.
In this case, we use the centroid from Definition 4.5 as central opinion. Therefore,
if Fi

H(λ) = [axi , ayi ] is the opinion of expert εi on λ and FC
H(λ) = [axC , ayC ] is the

centroid of the group on λ, then the degree of consensus presented by Wu and Xu is
defined as:

SMi
λ = 1−

∣∣∣ xi+yi
2 − xC+yC

2

∣∣∣
n− 1

, (4.II)

where n is the cardinal of S . Additionally, they defined the overall consensus level
for expert εi on the set of alternatives Λ = {λ1, . . . , λr}, SMi, as the average of
SMi

1, . . . , SMi
r.

On the other hand, the following lemma rewrites the degree of consensus from
Section 4.4.1 in a similar way.

Lemma 4.3. Let G be a group of DMs, ε1, . . . , εk, whose assessments about alterna-
tive λ are Hi = [axi , ayi ] for i = 1, . . . , k, and let HC = [axC , ayC ] be the centroid of
the group for λ. Then,

δG
λ (εi) = 1− |xi − xC|+ |yi − yC|

(2n− 2)
.

Proof. The proof is straightforward from Definition 4.8 and Remark 4.2.

With the foregoing lemma, we can proceed to compare the two measures.

Property 4.4. Let G be a group of DMs, ε1, . . . , εk, whose assessments about alter-
native λ are H1, . . . , Hk respectively. Then,

δG
λ (εi) ≤ SMi

λ

and the equality is met when Hi and HC are sortable, being HC the centroid of group
G for λ.

Proof. For this proof, let us assume Hi = [axi , ayi ] for i ∈ {1, . . . , k}. Thus, begin-
ning with Equation 4.II,

SMi
λ = 1−

∣∣∣ xi+yi
2 − xC+yC

2

∣∣∣
n− 1

= 1−
1
2 |xi + yi − xC − yC|

n− 1
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= 1− |xi − xC + yi − yC|
2n− 2

≥ 1− |xi − xC|+ |yi − yC|
2n− 2

= δG
λ (εi).

In addition, for the inequality to be an equality, xi − xC and yi − yC must have the
same sign or at least one of them has to be 0, which is equivalent to xi ≤ xC and
yi ≤ yC, i.e. Hi 4 HC, or xi ≥ xC and yi ≥ yC, i.e. HC 4 Hi. Therefore, Hi and
HC have to be sortable.

Corollary 4.2. Let G be a group of k DMs assessing a set of alternatives Λ. Then,
for any expert εi, i ∈ {1, . . . , k}, δG

Λ(εi) ≤ SMi. In addition, the equality is met
when, for any alternative λj ∈ Λ, Fi

H(λj) and FC
H(λj) are sortable, being Fi

H and FC
H

the HFLDs of εi and the centroid of the group respectively.

Proof. The proof is straightforward from Properties 4.3 and 4.4 and the definition of
SMi.

In an analogous way to Property 4.2 in Section 4.3, this property and its corollary
show that the degree of consensus for experts introduced in Section 4.4.1 can capture
differences among situations in which the measure presented by Wu and Xu cannot.

Lastly, referring to the time complexity, measures presented in by Dong et al. [12]
and by Wu and Xu [71] have the same time complexity than the one presented in
Section 4.4.1, which is a constant time plus the time of computing the central opinion
for λj. Using the centroid from Definition 4.5, which is computed in linear time as
commented in the previous section, the time complexity for δG

λj
(εi) is O(k) where k

is the number of DMs within the group.

Table 4.5 summarizes the main characteristics of the presented individual consen-
sus measures.

4.4.3 An illustrative example on individual consensus

For the seek of clarifying the calculation of the degree of consensus for each expert,
let us present an example. In the same example, the foregoing properties can also be
checked.

Example 4.4. Following Example 4.2, where G is a group of 5 DMs assessing
a set of alternatives Λ = {λ1, . . . , λ4} by means of HFLTSs over the set S =
{a1, . . . , a5}, with the assessments provided in Table 4.1, we can now use the pre-
sented methodology to compute the degree of consensus for each expert. For in-
stance,

δG
λ1
(ε1) = 1− D(HC

1 , H1
1)

2n− 2
= 1− D([a2, a3], [a1, a2])

2n− 2
= 1− 2

8
= 0.75.

Following the same steps for all the experts and alternatives, we get the results shown
in Table 4.6.
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TABLE 4.5: Comparison of the presented individual degrees of consensus.
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Year 2015 2016 2017
Groupal consensus

Individual consensus X X X
Distance-based X X

Similarity-based X
Preference similarity
Alternative similarity X
Pairwise comparison

Central opinion comparison X X X
Considers gap X

Considers hesitancy X X
Time complexitya,b O(1) + TC O(1) + TC O(1) + TC

a TC stands for the time complexity of calculating the central opinion.
b For the overall degree of consensus of a set of r alternatives, all times are

multiplied by r.

TABLE 4.6: Degrees of consensus δG
λj
(εi) and δG

Λ(εi) from Example 4.4.

δG
λj
(εi) ε1 ε2 ε3 ε4 ε5

λ1 0.75 0.875 0.625 0.5 1
λ2 1 0.75 0.75 0.875 0.875
λ3 1 0.875 1 0.25 1
λ4 1 1 0.875 0.875 1
Λ 0.9375 0.875 0.8125 0.625 0.96875

Analogously, we can calculate the consensus level presented by Wu and Xu [71]
following Equation 4.II, as for instance,

SM1
1 = 1−

∣∣∣1+2
2 − 2+3

2

∣∣∣
n− 1

= 1− |−1|
4

= 0.75.

In the same way, we can compute all the consensus levels as shown in Table 4.7.

Property 4.4 can be easily checked by comparing results from Tables 4.6 and 4.7.
It is clear that δG

λj
(εi) = SMi

j except for expert ε2 on alternative λ2 and expert ε3 on

alternatives λ1 and λ2, where δG
λj
(εi) < SMi

j. In this three cases, the opinion of the
expert is not sortable with the centroid of the group, while in any other case, it is.

Notice also that, in the cases where the two consensus measures are different,
the one presented by Wu and Xu [71] is greater given the fact that it only cares
about the center of the HFLTS without taking into consideration either the hesitancy
of the DMs or the existing gaps between opinions. For this reason, for instance,
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TABLE 4.7: Consensus levels SMi
j and SMi from Example 4.4.

SMi
j ε1 ε2 ε3 ε4 ε5

λ1 0.75 0.875 0.875 0.5 1
λ2 1 1 1 0.875 0.875
λ3 1 0.875 1 0.25 1
λ4 1 1 0.875 0.875 1
Λ 0.9375 0.9375 0.9375 0.625 0.96875

SM2
2 = SM3

2 = 1, even if the opinions of experts ε2 and ε3 are not the same than
the centroid of the group for alternative λ2. This leads us to a situation in which,
experts ε1, ε2 and ε3 share the same overall consensus level, SM1 = SM2 = SM3,
but, comparing F1

H, F2
H and F3

H with respect to FC
H, it seems quite intuitive that their

coincidence with the central opinion should not be the same. By contrast, in Table 4.6
we can see that this problem is fixed given that δG

Λ(ε3) < δG
Λ(ε2) < δG

Λ(ε1).

4.5 A precision-dissension profile

Sometimes, when choosing DMs to assess a set of alternatives, a more precise expert
is preferable to a more hesitant one. Sometimes a more dissenting expert is interest-
ing to open a door to innovation, or sometimes it is just the other way around. The
aim of this section is to present an expert’s profile that keeps track of how experts
have done their previous assessments to know how precise or how dissenting they
are.

This profile might be useful to whoever has to choose among several decision
makers to be part of a GDM situation because he or she can know beforehand the
main characteristics of each expert’s assessments. For instance, if we want to have a
committee where common decisions are easily taken, we will choose un certain de-
cision makers whose opinions are always close to the average opinion, which means
a low precision and a low dissension. On the contrary, if we prefer a committee
where polarized opinions are strongly defended, we should choose determined de-
cision makers whose opinions tend to be far away from the central opinion, which
means a high precision as well as a high dissension.

To this end, we present two numerical descriptors that characterize the assessment
of a decision maker. Firstly, similarly to the notion of determinacy presented by Ma
et al. [37], we introduce the concept of preciseness of an expert assessing a set
of alternatives as a discrete version of determinacy. Both the preciseness and the
determinacy seek to quantify the certainty of an expert but, while the determinacy is
based on areas calculated as fuzzy integrals, the preciseness is based on the number
of linguistic labels from S that the experts uses.

Definition 4.9. Let εi be a DM assessing a set of alternatives Λ = {λ1, . . . , λr} by
means of HFLTSs over S = {a1, . . . , an}, and let Fi

H be his HFLD about Λ, being
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Hi
j = Fi

H(λj). Then, the preciseness of εi on Λ is defined as:

πΛ(εi) =

r
∑

j=1

n−card(Hi
j)

n−1

r
.

Note that, given that card(Hi
j) is between 1 and n for any j ∈ {1, . . . , r}, πΛ(εi)

ranges from 0 to 1, being 0 when card(Hi
j) = n for any j and being 1 when

card(Hi
j) = 1 for any j. Thus, the closer to 1 πΛ(εi) is, the more precise εi has

been with his assessments. Whilst, if πΛ(εi) is close to 0, it means that there is more
hesitancy in the assessments of εi about Λ.

Secondly, we also introduce the concept of dissent of an expert with respect to a
group as follows:

Definition 4.10. Let ε1, . . . , εk be a group G of DMs assessing a set of alternatives
Λ = {λ1, . . . , λr} by means of HFLTSs over S = {a1, . . . , an}, and let Fi

H be the
HFLD of εi for i = 1, . . . , k and FC

H the centroid of the group. Then, the dissent of εi
on Λ with respect to G is defined as:

σG
Λ(εi) = 1− δG

Λ(εi).

Notice that, again, σG
Λ(εi) moves between 0 and 1 for any i ∈ {1, . . . , k}. The

smaller σG
Λ(εi) is, the closer the opinion of the expert εi and the central opinion are,

being exactly 0 if Fi
H = FC

H.

With these two measures, a profile for each expert assessing a set of alternatives
can be defined as:

Definition 4.11. Let ε1, . . . , εk be a group G of DMs assessing a set of alterna-
tives Λ = {λ1, . . . , λr} by means of HFLTSs over S = {a1, . . . , an}. Then, the
precision-dissension profile of εi on Λ with respect to G is defined as:

φG
Λ(εi) = (πΛ(εi), σG

Λ(εi)).

For the seek of a better understanding, let us present the following example illus-
trating the previous concepts.

Example 4.5. Following Example 4.2, with the assessments about the set of alter-
natives Λ shown in Table 4.1, the preciseness and the dissent of each expert can be
calculated, as, for instance,

πΛ(ε1) =
5−2

4 + 5−3
4 + 5−2

4 + 5−1
4

4
= 0.75

and
σG

Λ(ε1) = 1− 0.9375 = 0.0625,
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given that δG
Λ(ε1) was already calculated in Example 4.4. Thus,

φG
Λ(ε1) = (0.75, 0.0625).

Repeating this process for all the experts, we get the results shown in Table 4.8.

TABLE 4.8: Preciseness and dissent of each expert on Λ from Example 4.5.

ε1 ε2 ε3 ε4 ε5

πΛ(εi) 0.75 1 0.375 0.75 0.8125
σG

Λ(εi) 0.0625 0.125 0.1875 0.375 0.03125
φG

Λ(εi) (0.75, 0.0625) (1, 0.125) (0.375, 0.1875) (0.75, 0.375) (0.8125, 0.03125)

It can be seen that ε2 has a preciseness of 1 given that he has assessed all the
alternatives with just one linguistic label without hesitation. In contrast, ε3 has a
very low preciseness due to a a big hesitancy on his assessments. For instance, he
has assessed two alternatives with all the possible linguistic labels.

On the other hand, ε4 has the highest dissent of the whole group. This fact can be
corroborated by having a look at Figure 4.6, which is a graphical representation of
the assessments provided in Table 4.1, where it is clear than F4

H is the most distant
assessment to the central opinion in almost all the alternatives. On the contrary, F1

H
and F5

H are equal to the central opinion in almost all the alternatives, and that is why
ε1 and ε5 have the lowest dissent of the group.

{a1} {a2} {a3} {a4} {a5} {a1} {a2} {a3} {a4} {a5}

{a1} {a2} {a3} {a4} {a5} {a1} {a2} {a3} {a4} {a5}

F 1
H FC

H

λ1 λ2

λ3 λ4

F 2
H F 3

H F 4
H F 5

H

FIGURE 4.6: HFLDs from Example 4.2.

Finally, if an expert has assessed more than one set of alternatives within several
groups, the information of each different situation can be combined as follows:

Definition 4.12. Let ε be a DM that has assessed the sets of alternatives Λ1, . . . , Λm
within the groups G1, . . . , Gm respectively. Then:

(a) The preciseness of ε is defined as πm(ε) =

m
∑

l=1
πΛl

(ε)

m .
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(b) The dissent of ε is defined as σm(ε) =

m
∑

l=1
σ

Gl
Λl
(ε)

m .

(c) The precision-dissension profile of ε is defined as Φm(ε) = (m, πm(ε), σm(ε)).

With Φm(ε) one can know the characteristics of the assessments of expert ε
regarding precision and dissension after evaluating m different sets of alternatives
within their respective groups.

4.6 Conclusions and future work

Based on the weak points of existing consensus measures for GDM by means of
HFLTSs, two consensus measures are defined in this chapter in order to capture dif-
ferences among situations in which the previous measures are not able to make a
difference.

On the one hand, a consensus level is defined for the whole group on a specific
alternative as a normalization of the addition of distances from a central opinion to
the opinion of each expert of the group, and an analogous definition is given for
a set of several alternatives instead of just one of them. On the other hand, the
consensus level is defined for each expert with respect to the rest of the group based
on the distance between his/her opinion and the central opinion for both one specific
alternative and a set of alternatives.

Additionally, a study is carried out to compare the presented measures with the
similar existing ones and concludes that the measures presented in this chapter are
more accurate in situations in which existing measures consider the level of agree-
ment to be the same but where common sense suggests they should be different.
Moreover, the comparison study also shows that the collective degree of consensus
presented in this chapter has a lower time complexity than the existing measures.

Lastly, a profile of an expert is presented to keep track of the precision and dissen-
sion in his/her assessments with a view to using this information for future experts
selection processes.

Future work will focus on two main directions. From a theoretical point of view,
a dynamical study will be carried out on both the consensus-reaching process and
the precision-dissension profile of DMs in several GDM processes. In particular, the
proposed consensus measures will be used to measure polarization in this kind of
scenarios. From a practical point of view, all the introduced concepts are already
being implemented in a real case example framed in the city tourism management
field.
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Chapter 5

Free Double Hierarchy Hesitant
Fuzzy Linguistic Term Sets: An
Application on the TOPSIS
Methodology

5.1 Introduction

Fuzzy sets were introduced by Zadeh to deal with uncertain decision-making pro-
cesses [77]. Several extensions have been presented since then such as the Intuition-
istic Fuzzy Sets [5, 6] or the Hesitant Fuzzy Sets (HFSs) [28, 62, 72]. However,
in some areas, people prefer to use a qualitative reasoning better than a quantitative
reasoning. To this end, Zadeh also introduced the concept of linguistic variable [78].
From then on, several studies have been developed on that field [24, 39, 40, 42, 43,
65].

With the aim of combining HFSs and qualitative reasoning, Rodríguez et al. intro-
duced the concept of Hesitant Fuzzy Linguistic Term Set (HFLTS) [53] that was later
redefined in a mathematical form by Liao et al. [35]. So far, several contributions pre-
sented in the literature have studied several aspects of the HFLTSs such as hesitant
fuzzy linguistic information aggregation techniques [19, 68], hesitant fuzzy linguistic
measure methods [20, 33, 35], hesitant fuzzy linguistic operational laws [18], hes-
itant fuzzy linguistic preference relations [35, 36, 81] and hesitant fuzzy linguistic
decision-making methods [20, 45, 46].

Nonetheless, in some situations, HFLTSs are not able to depict with enough de-
tails the complexity inherent in human reasoning when evaluating with linguistic
assessments. Some authors have studied how to define linguistic expressions more
complex than single linguistic terms as reviewed by Rodríguez et al. [54]. In order
to provide a more precise tool, Gou et al. presented the concept of Double Hierarchy
Hesitant Fuzzy Linguistic Term Sets (DHHFLTSs) [21]. This structure allows each
decision maker to choose one term from a first hierarchy Linguistic Term Set (LTS)
and later choose another term from a second hierarchy LTS gaining more accuracy
on the linguistic assessment.
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DHHFLTSs are a very useful tool to deal with qualitative assessments, yet they
present some shortcomings given that the second hierarchy LTS has to be the same
for every single term of the first hierarchy LTS. This leads us to three main issues:

Firstly, misleading or meaningless linguistic expressions may appear as a result
of using a fixed second hierarchy LTS. For instance, while “extremely” has a strong
positive meaning on “good”, it does not have the same positive meaning when it is
applied to “regular”. In addition, while a term like “close to” makes sense when
applied to “perfect”, it should not be applied to a linguistic term like “normal”. This
is due to the fact that “close to normal” can be understood in two different meanings
(worse than average or better than average).

Secondly, not all linguistic terms need the same range of precision for their cor-
responding second hierarchy LTSs. As an example, linguistic terms such as “bad”
or “good”, in general, accept a much wider variety of precision than terms such as
“null” or “perfect”.

Lastly, all decision makers are forced to use the same second hierarchy LTS. It
is known that the decision makers have their own preferences about which linguis-
tic expressions to use. For instance, for the linguistic term “perfect”, one decision
maker could prefer to use the second hierarchy LTS {“not far from”, “almost”, “com-
pletely”}, and another one could feel more comfortable by using {“close to”, “to-
tally”}.

In this chapter, we present a new structure that overcomes these three issues called
Free Double Hierarchy Hesitant Fuzzy Linguistic Term Sets (FDHHFLTSs), whose
elements are called Free Double Hierarchy Hesitant Fuzzy Linguistic Elements (FD-
HHFLEs). Based on the introduced structure, each decision maker involved in Group
Decision-Making (GDM) situation is allowed to choose the second hierarchy LTS
that he or she thinks that suits it better, with as many terms as desired.

Furthermore, an order and a distance between FDHHFLEs are also presented in
this chapter in order to compare and quantify distances between linguistic assess-
ments provided by the decision makers by means of the aforementioned structure.
These order and distance are used to introduce a free double hierarchy approach
based on the well-known multi-criteria decision-making TOPSIS ranking method,
enabling us to rank alternatives that have been assessed by means of free double
hierarchy hesitant fuzzy linguistic information.

The rest of this chapter is structured as follows: First, Section 5.2 summarizes
basic concepts already introduced in the literature that will be used throughout the
work. The new free double hierarchy structure is introduced in Section 5.3. Sec-
tion 5.4 introduces an order and a distance for FDHHFLEs. A free double hierarchy
approach based on the TOPSIS method is presented in Section 5.5 as well as a sim-
ulated example to illustrate the presented approach. Finally, Section 5.6 summarizes
the main conclusions and points out the directions of future research.
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5.2 Preliminaries

This section presents an overview of some concepts already introduced in the litera-
ture regarding HFLTSs and DHHFLTSs that will be used throughout the chapter to
present the new contributions.

Note that, since this chapter of the thesis is a collaboration with Sichuan Univer-
sity, and it is oriented towards the lines of research opened by Gou et al. [21], the
terminology of this chapter slightly differs from the rest of the thesis. Specifically,
the expression hesitant fuzzy linguistic element refers to the assessment of a sin-
gle feature of a certain alternative, which in the previous chapters was called hesitant
fuzzy linguistic term set, while the expression hesitant fuzzy linguistic term set refers
to the assessment of all the features of a certain alternative, which was called hesitant
fuzzy linguistic description in the previous chapters.

5.2.1 Hesitant Fuzzy Linguistic Term Sets

HFSs were introduced by Torra [62] as a function that returns a subset of [0, 1] as
possible membership degrees. Later, Xia and Xu [72] expressed the concept of HFS
in a mathematical way as A = {< x, hA(x) >| x ∈ X} with hA(X) ⊂ [0, 1] denot-
ing the possible membership degrees of the element x ∈ X to the set A. Moreover,
h = hA(x) is called a Hesitant Fuzzy Element (HFE) and Θ denotes the set of all
HFEs.

Rodríguez et al. extended the HFSs to define the concept of HFLTS as an ordered
finite subset of consecutive linguistic terms of a given LTS [53]. An extension of this
definition was presented in a mathematical way by Liao et al. [35] as follows:

Definition 5.1 ([35]). Let X = {x1, x2, . . . , xn} be a fixed set and S = {st |
t = −τ, . . . ,−1, 0, 1, . . . , τ} be a LTS. Then, a Hesitant Fuzzy Linguistic Term
Set (HFLTS) on X, HS , can be expressed in a mathematical form as:

HS = {< xi, hS(xi) >| xi ∈ X},

where hS(xi) is a subset of some linguistic terms in S and can be expressed as:

hS(xi) = {sφl(xi) | sφl(xi) ∈ S ; l = 1, . . . , Li; φl ∈ {−τ, . . . ,−1, 0, 1, . . . , τ}}

being Li the number of linguistic terms in hS(xi) and sφl(xi), for l = 1, . . . , Li, the
consecutive terms of S in hS(xi). Analogous to the HFSs and HFEs, hS(xi) denotes
the possible membership degrees of the linguistic variable xi to S and it is called
a Hesitant Fuzzy Linguistic Element (HFLE) and Φ denotes the set of all possible
HFLEs.

Some contributions have presented approaches on how to extend the discrete form
of S to a continuous form [19, 27, 76], such as the introduction of the following
transformation function between the continuous HFLE and HFE:
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Definition 5.2 ([19]). Let S = {st | t = −τ, . . . ,−1, 0, 1, . . . , τ} be a LTS, hS =
{sφl | sφl ∈ S ; l = 1, . . . , L; φl ∈ [−τ, τ]} be a continuous HFLE containing L
linguistic terms in it and hγ = {γl | γl ∈ [0, 1]; l = 1, . . . , L} be a HFE. Then:

a) The transformation functions g and g−1 between each subscript φl of the lin-
guistic term sφl and the membership degree γl that expresses the equivalent
information are, respectively:

� g : [−τ, τ] −→ [0, 1]

φl 7−→ g(φl) =
φl + τ

2τ
= γl,

� g−1 : [0, 1] −→ [−τ, τ]
γl 7−→ g−1(γl) = (2γl − 1)τ = φl.

b) The transformation functions G and G−1 between the continuous HFLE hS
and the HFE hγ are, respectively:

� G : ΦC −→ Θ
hS 7−→ G(hS) = {γl | γl = g(φl)} = hγ,

� G−1 : Θ −→ ΦC
hγ 7−→ G−1(hγ) = {sφl | φl = g−1(γl)} = hS ,

being ΦC the set of all possible continuous HFLEs.

These functions allow us to translate descriptions from a qualitative context into
the equivalent ones from a quantitative context.

5.2.2 Double Hierarchy Hesitant Fuzzy Linguistic Term Sets

In GDM problems, it is common that linguistic labels such as “good” or “low” are
not suitable enough to describe the opinion of the decision maker. To this aim, Gou
et al. presented a double hierarchy approach for HFLTSs in which more accurate
evaluations like “just right good” or “a little low” can be provided [21]. Linguistic
hierarchy has been classical concept in the literature of computing with words [13,
26]. Yet, the approach considered in this chapter follows the direction of Gou et
al. [21].

Definition 5.3 ([21]). Let S = {st | t = −τ, . . . ,−1, 0, 1, . . . , τ} and O = {ok |
k = −ζ, . . . ,−1, 0, 1, . . . , ζ} be the first and second hierarchy LTSs, respectively,
being fully independent. A Double Hierarchy Linguistic Term Set (DHLTS), SO, can
be expressed in a mathematical way as:

SO = {st<ok> | t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ζ, . . . ,−1, 0, 1, . . . , ζ}.

Each st<ok> is called a Double Hierarchy Linguistic Term (DHLT), where ok ex-
presses the second hierarchy linguistic term when the first hierarchy linguistic term
is st.
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The concept of DHLTS is used on hesitant fuzzy linguistic information to incor-
porate the second hierarchy to the idea of HFLTS and HFLE as follows:

Definition 5.4 ([21]). Let SO = {st<ok> | t = −τ, . . . ,−1, 0, 1, . . . , τ; k =
−ζ, . . . ,−1, 0, 1, . . . , ζ} be a DHLTS, then a Double Hierarchy Hesitant Fuzzy Lin-
guistic Term Set (DHHFLTS) on X, HSO , can be expressed in a mathematical form
as:

HSO = {< xi, hSO(xi) >| xi ∈ X}
where hSO(xi) is a set of some values in SO, denoted as:

hSO(xi) = {sφl<oϕl>
(xi) | sφl<oϕl>

∈ SO; l = 1, . . . , Li;

φl ∈ {−τ, . . . ,−1, 0, 1, . . . , τ}; ϕl ∈ {−ζ, . . . ,−1, 0, 1, . . . , ζ}}

being Li the number of DHLTs in hSO(xi) and sφl<oϕl>
(xi), for i = 1, . . . , Li, the

consecutive terms of SO in hSO(xi). Analogous to the case of HFLTSs and HFLEs,
hSO(xi) denotes the possible membership degrees of the linguistic variable xi to SO
and it is called a Double Hierarchy Hesitant Fuzzy Linguistic Element (DHHFLE),
and Φ×Ψ denotes the set of all possible DHHFLEs.

To clarify the foregoing definition, let us present the following example:

Example 5.1. Let S = {s−2 = “null”, s−1 = “bad”, s0 = “regular”, s1 =
“good”, s2 = “per f ect”} be the first hierarchy LTS with τ = 2 and let O =
{o1
−3 = “hardly”, o1

−2 = “slightly”, o1
−1 = “pretty”, o1

0 = “simply”, o1
1 =

“very”, o1
2 = “unusually”, o1

3 = “extremely”} with ζ = 3. Then, “hardly good”
is a DHLT from SO and “between pretty good and very good” is a possible linguistic
assessment that corresponds to the DHHFLE {s1<o−1>, s1<o0>, s1<o1>}. Figure 5.1
shows the second hierarchy for the linguistic term s1 = “good” from the first hierar-
chy.

s−2 s−1 s0 s1 s2

null bad regular good perfect

hardly slightly pretty simply very unusually extremely

o−3 o−2 o−1 o0 o1 o2 o3

FIGURE 5.1: DHLTS SO from Example 5.1.

Lastly, a way to extend DHHFLEs to the continuous DHHFLEs was also pre-
sented by Gou et al. [21] just based solely on the continuation of the second hierarchy
while the first hierarchy remains discrete and the corresponding functions to trans-
form the continuous DHHFLEs into HFEs and vice versa were also defined. Despite
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this, in Section 5.3.1 we present a more accurate definition of those functions taking
into consideration some cases that were disregarded by the original definition.

5.3 Free Double Hierarchy

In some situations, the second hierarchy cannot be the same for all the linguistic
terms in the first hierarchy. Additionally, we often want a larger second hierarchy
LTS for some first hierarchy linguistic terms than for others. In order to present a
more suitable approach for these kinds of situations, in this section, the concept of
DHLTS is extended to a new definition that allows the second hierarchy terms to be
different for each of the first hierarchy terms. So, the introduced methodology can
capture in a better way the linguistic assessments given by the decision makers when
assessing alternatives. Furthermore, this structure is applied to depict hesitant fuzzy
linguistic information and to present an extension of the DHHFLTSs. Finally, the last
part of this section presents the corresponding transformation functions that allow us
to extend the aforementioned concepts from the discrete form to the continuous one
in an analogous way to the double hierarchy case. To this end, we start this section
by developing the preliminaries on DHHFLTSs a bit more.

5.3.1 Developed Preliminaries

For the sake of the consistency of this chapter, in this section we present a more
accurate definition of the transformation functions for DHHFLTSs from the discrete
version to the continuous one.

Definition 5.5. Let SO = {st<ok> | t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ζ, . . . ,−1,
0, 1, . . . , ζ} be a DHLTS, hSO = {sφl<oϕl>

| sφl<oϕl>
∈ SO; l = 1, . . . , L; φl ∈

{−τ, . . . , τ}; ϕl ∈ [−ζ, ζ]} be a continuous DHHFLE containing L linguistic terms
in it and hγ = {γl | γl ∈ [0, 1]; l = 1, . . . , L} be a HFE. Then:

a) The transformation functions f and f−1 between each pair of subscripts (φl, ϕl)
of the linguistic term sφl<oϕl>

and the membership degree γl that expresses the
equivalent information are, respectively:

� f : {−τ, . . . , τ} × [−ζ, ζ]−→ [0, 1]

(φl, ϕl) 7−→ f (φl, ϕl) =
ϕl + (τ + φl)ζ

2ζτ
= γl,

� f−1 : [0, 1] −→{−τ, . . . , τ} × [−ζ, ζ]

γl 7−→ f−1(γl) = (φl, ϕl) =
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=




(2τγl − τ − 1, ζ) (only if γl 6= 0)

∨
(2τγl − τ, 0)

∨
(2τγl − τ + 1,−ζ) (only if γl 6= 1)

 if (2τγl − τ) ∈ Z,

[
(b2τγl − τc, (2τγl − τ − b2τγl − τc)ζ)

∨
(d2τγl − τe, (2τγl − τ − d2τγl − τe)ζ)

]
if (2τγl − τ) /∈ Z.

b) The transformation functions F and F−1 between the continuous DHHFLE
hSO and the HFE hγ are, respectively:

� F : Φ×ΨC −→ Θ
hSO 7−→ F(hSO) = {γl | γl = f (φl, ϕl)} = hγ,

� F−1 : Θ −→ Φ×ΨC
hγ 7−→ F−1(hγ) = {sφl<oϕl>

| (φl, ϕl) = f−1(γl)} = hSO ,

being Φ×ΨC the set of all possible continuous DHHFLEs.

Remark 5.1. Note that the function f is not a bijection given that it is not injective.
As an example, for φl = −τ + 1, . . . , τ − 1, f (φl − 1, ζ) = f (φl, 0) = f (φl +

1,−ζ) =
τ + φl

2τ
, as shown in Figure 5.2a for φl = −1. Therefore, f−1 is not

uniquely defined and it leads to different results for the same value of γl ∈ [0, 1].
Figure 5.2b shows another example in which we can see that s0<o1.5> and s1<o−1.5>

share the same image for the function f , which is 15
25 . In addition, we can see that,

among others, a hypothetical s0.5<o0> would also have the same image. However, it
is not considered given that, as stated before, the extension from the discrete version
to the continuous one is made based solely on the second hierarchy.

s−2 s−1 s0 s1 s2

null bad regular good perfect

f(s−2<o3>) = f(s−1<o0>) = f(s0<o−3>) =
1
4

(A) f−1( 1
4 ).

s−2 s−1 s0 s1 s2

null bad regular good perfect

f(s0<o1.5>) = f(s1<o−1.5>) =
15
24

s0.5

(B) f−1( 15
24 ).

FIGURE 5.2: DHLTs with the same value of the transformation function f .

5.3.2 Free Double Hierarchy Linguistic Term Sets

DHLTSs are a useful tool to describe, in a mathematical way, possible linguistic as-
sessments provided by the decision makers in a group decision-making problem. Yet
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they present some shortcomings such as the fact that the second hierarchy scale is the
same for all the linguistic terms of the first hierarchy. However, whilst “extremely”
applies well for some linguistic terms such as “good” (resulting in “extremely good”),
it does not apply that well for some other linguistic terms, leading to confused, or
even meaningless, linguistic terms such as “extremely regular”. Same thing happens
with “almost perfect”, which is a clear and common linguistic expression, and “al-
most regular”, which is not clear. In order to fix this issue, we propose the following
extension of the DHLTSs:

Definition 5.6. Let S = {st | t = −τ, . . . ,−1, 0, 1, . . . , τ} and Ot = {ot
k |

k = −ζt, . . . ,−1, 0, 1, . . . , ζt} for all t ∈ {−τ, . . . ,−1, 0, 1, . . . , τ} be the first and
second hierarchies of LTSs respectively. Then, a Free Double Hierarchy Linguistic
Term Set (FDHLTS), SFO , can be expressed in a mathematical form as:

SFO = {st<ot
k>
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ζt, . . . ,−1, 0, 1, . . . , ζt}.

Each st<ot
k>

is called a Free Double Hierarchy Linguistic Term (FDHLT), where ot
k

expresses the second hierarchy linguistic term when the first hierarchy linguistic term
is st.

Remark 5.2. For symmetry reasons, as it can be seen in Figure 5.3, the FDHLTs con-
tained in O−τ

− = {s−τ<o−τ
−ζ−τ

>, s−τ<o−τ
−ζ−τ+1>

, . . . , s−τ<o−τ
−1>
} as well as in Oτ

+ =

{sτ<oτ
1>

, sτ<oτ
2>

, . . . , sτ<oτ
ζτ
>} should be dismissed. Therefore, from now on,O−τ,

Oτ and SFO are used throughout this chapter, without loss of generality, for (O−τ r
O−τ
− ), (Oτ rOτ

+) and SFO r (O−τ
− ∪Oτ

+) respectively to simplify the notation.

Notice that, according to Definition 5.6, in a FDHLTS, the granularity of the sec-
ond hierarchy can be different for each linguistic term of the first hierarchy. This fact
fixes another shortcoming presented by the DHLTSs.

Even though it has been shown that the granularity of a linguistic term set must
be smaller than 9 because of limitation of human ability [44, 59], in this case, since
we are considering two different hierarchies, we understand that each hierarchy takes
part of a different linguistic term set. In addition, given that each decision maker will
be asked to choose, for each linguistic term of the first scale, the granularity that he or
she prefers for the second hierarchy, the number of total linguistic expressions could
be as low as the cardinality of the first linguistic scale.

With the aim of simplifying the introduction of the concepts presented throughout
this work, we define the following order relation between FDHLTs:

Definition 5.7. Let s
t1<o

t1
k1
>

and s
t2<ot2

k2
>

be two FDHLTs of SFO , then we define:

s
t1<o

t1
k1
>
4 s

t2<ot2
k2
>
⇐⇒ (t1 < t2) ∨ ((t1 = t2) ∧ (k1 ≤ k2)),

with the equality satisfied only when t1 = t2 and k1 = k2.

For a better comprehension of the FDHLTSs, in the following, let us illustrate the
foregoing definition with an example:
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Example 5.2. Let S = {s−2 = “null”, s−1 = “bad”, s0 = “regular”, s1 =
“good”, s2 = “per f ect”} be the first hierarchy LTS with τ = 2 and let

O−2 = {o−2
0 = “completely”, o−2

1 = “almost”, o−2
2 = “close to”},

O−1 = {o−1
−3 = “extremely”, o−1

−2 = “unusually”, o−1
−1 = “very”, o−1

0 = “simply”,
o−1

1 = “pretty”, o−1
2 = “slightly”, o−1

3 = “hardly”},
O0 = {o0

−2 = “very low”, o0
−1 = “low”, o0

0 = “medium”, o0
1 = “high”,

o0
2 = “very high”},

O1 = {o1
−3 = “hardly”, o1

−2 = “slightly”, o1
−1 = “pretty”, o1

0 = “simply”,
o1

1 = “very”, o1
2 = “unusually”, o1

3 = “extremely”},
O2 = {o2

−2 = “close to”, o2
−1 = “almost”, o2

0 = “completely”}

be the respective second hierarchy LTSs for each st, for t = −2, . . . , 2 (with ζ−2 =
ζ0 = ζ2 = 2 and ζ−1 = ζ1 = 3), defining the associated FDHLTS SFO represented
in Figure 5.3. Thus, the possible linguistic assessments such as “slightly bad” or
“almost perfect” can be expressed by means of FDHLTs of SFO as s−1<o−1

2 > and
s2<o2

−1>
.

O−2
− O−2 O0 O2 O2

+

O−1 O1

s−2 s−1 s0 s1 s2

null bad regular good perfect

s2<o2−1
>s−1<o−1

2 >

“slightly bad” “almost perfect”

FIGURE 5.3: FDHLTS SFO from Example 5.2.

Example 5.2 brings to light the utility of the FDHLTs as they can properly describe
linguistic assessments in a more precise way.

5.3.3 Free Double Hierarchy Hesitant Fuzzy Linguistic Term Sets

Even though FDHLTs are useful to describe in a mathematical way a possible linguis-
tic assessment from a decision maker, they cannot capture the vacillation inherent in
human reasoning. In an analogous way to how HFLTSs are defined from ordinary
LTSs, a new structure can be defined from the FDHLTSs to capture such indecision:

Definition 5.8. Let SFO = {st<ot
k>
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ζt, . . . ,−1,

0, 1, . . . , ζt} be a FDHLTS, then, a Free Double Hierarchy Hesitant Fuzzy Linguistic
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Term Set (FDHHFLTS) on X, HSFO , can be expressed in a mathematical form as:

HSFO = {< xi, hSFO (xi) >| xi ∈ X},

where hSFO is a set of some consecutive linguistic terms of SFO denoted as:

hSFO (xi) = {sφl<o
φl
ϕl
>
(xi) | s

φl<o
φl
ϕl
>
∈ SFO ; l = 1, . . . , Li;

φl ∈ {−τ, . . . ,−1, 0, 1, . . . , τ}; ϕl ∈ {−ζφl , . . . ,−1, 0, 1, . . . , ζφl}}

with Li being the number of FDHLTs in hSFO (xi), and s
φl<o

φl
ϕl
>
(xi), for l = 1, . . . , Li,

the consecutive terms of SFO in hSFO (xi).

Additionally, hSFO (xi) denotes the possible membership degrees of the linguistic

variable xi to SFO and, for convenience, it is called a Free Double Hierarchy Hesitant
Fuzzy Linguistic Element (FDHHFLE), and Φ ⊗ Ψ denotes the set of all possible
FDHHFLEs.

Remark 5.3. Note that, since the terms in hSFO (xi) have to be continuous, any FD-
HHFLE will always contain all the terms between two FDHLTs. Therefore, if all
the FDHLTs included in hSFO (xi) are from the same linguistic term from the first
hierarchy, st, then we write one by one all the FDHLTs. Otherwise, for simplicity,
hSFO (xi) can be characterized by one single element per each linguistic term from the
first hierarchy that, to a greater or lesser extent, take part of hSFO (xi). Thus, if for a
linguistic term of the first hierarchy, st, all the possible second hierarchy terms are
included in hSFO (xi), we just write st without specifying the second hierarchy. On
the contrary, for the linguistic terms of the first hierarchy st whose possible second
hierarchy terms are not all included in hSFO (xi), we just write the lower or upper
bound of the FDHLTs taking part of the FDHHFLE.

For instance, on the one hand, let hSFO (x1) be the FDHHFLE including all the
FDHLTs from s1<o1

−1>
to s1<o1

2>
, then hSFO (x1) is written as {s1<o1

−1>
, s1<o1

0>
,

s1<o1
1>

, s1<o1
2>
}. On the other hand, let hSFO (x2) be the FDHHFLE including all the

FDHLTs from s0<o0
−1>

to s2<o2
1>

, then hSFO (x2) is written as {s0<o0
−1>

, s1, s2<o2
1>
}.

For GDM problems, it is convenient to consider the following context-free gram-
mar that generates the suitable language for assessing the different alternatives.

Definition 5.9. Let SFO = {st<ot
k>
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ζt, . . . ,−1,

0, 1, . . . , ζt} be a FDHLTS, then the Free Double Hierarchy Hesitant context-free
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grammar, ΓH = {V̈N, V̈T, Ï, P̈}, can be defined as follows:

V̈N = {〈FDH primary term〉, 〈FDH composite term〉,
〈1H-term [−τ]〉, 〈1H-term [−τ + 1]〉, . . . , 〈1H-term [τ]〉,
〈[−τ] 2H-term〉, 〈[−τ + 1] 2H-term〉, . . . , 〈[τ] 2H-term〉,
〈unary relation〉, 〈binary relation〉, 〈conjunction〉},

V̈T = {at least, at most, between, and, s−τ, s−τ+1 . . . , sτ,

o−τ
0 , o−τ

1 , . . . , o−τ
ζ−τ

, o−τ+1
−ζ−τ+1

, o−τ+1
−ζ−τ+1+1, . . . , o−τ+1

ζ−τ+1
, . . . ,

oτ−1
−ζτ−1

, oτ−1
−ζτ−1+1, . . . , oτ−1

ζτ−1
, oτ
−ζτ

, oτ
−ζτ+1, . . . , oτ

0},

Ï = {〈FDH primary term〉, 〈FDH composite term〉} ∈ V̈N,

P̈ = {〈FDH composite term〉 ::= 〈unary relation〉〈FDH primary term〉|
〈binary relation〉〈FDH primary term〉〈conjunction〉〈FDH primary term〉;
〈FDH primary term〉 ::= 〈[−τ] 2H-term〉〈1H-term [−τ]〉|
〈[−τ + 1] 2H-term〉〈1H-term [−τ + 1]〉, | . . . |,
〈[τ] 2H-term〉〈1H-term [τ]〉;
〈1H-term [−τ]〉 ::= s−τ;

〈[−τ] 2H-term〉 ::= o−τ
0 |o−τ

1 | . . . |o−τ
ζ−τ

;

〈1H-term [−τ + 1]〉 ::= s−τ+1;

〈[−τ + 1] 2H-term〉 ::= o−τ+1
−ζ−τ+1

|o−τ+1
−ζ−τ+1+1| . . . |o−τ+1

ζ−τ+1
;

...
〈1H-term [τ − 1]〉 ::= sτ−1;

〈[τ − 1] 2H-term〉 ::= oτ−1
−ζτ−1

|oτ−1
−ζτ−1+1| . . . |oτ−1

ζτ−1
;

〈1H-term [τ]〉 ::= sτ;
〈[τ] 2H-term〉 ::= oτ

−ζτ
|oτ
−ζτ+1| . . . |oτ

0 ;

〈unary relation〉 ::= at least | at most;
〈binary relation〉 ::= between;
〈conjunction〉 ::= and}.

The language generated by the context-free grammar ΓH, L(ΓH), defines the set
of expressions that can be used by the decision makers to provide their assessments
that are later translated into FDHHFLEs by means of the following transformation
function:

Definition 5.10. Let SFO = {st<ot
k>
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ζt, . . . ,−1,

0, 1, . . . , ζt} be a FDHLTS and L(ΓH) be the language generated by ΓH, then the
transformation function

EΓH : L(ΓH) −→ Φ⊗Ψ
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can be defined as:

• EΓH(o
t
k st) = {st<ot

k>
};

• EΓH(at least ot
k st) =

{
{st<ot

k>
, st+1, st+2, . . . , sτ} if t < τ,

{st<ot
k>

, st<ot
k+1>

, . . . , st<ot
0>
} if t = τ;

• EΓH(at most ot
k st) =

{
{s−τ, s−τ+1, . . . , st−1, st<ot

k>
} if t > −τ,

{st<ot
0>

, st<ot
1>

, . . . , s−t<ot
k>
} if t = −τ;

• EΓH(between ot1
k1

st1 and ot2
k2

st2) = EΓH(between ot2
k2

st2 and ot1
k1

st1) =

=



{s
t1<o

t1
k1
>

, st1+1, . . . , st2−1, s
t2<ot2

k2
>
} if t1 < t2,

{s
t2<ot2

k2
>

, st2+1, . . . , st1−1, s
t1<o

t1
k1
>
} if t2 < t1,

{s
t1<o

t1
k1
>

, s
t1<o

t1
k1+1>

, . . . , s
t1<o

t1
k2
>
} if (t1 = t2) ∧ (k1 < k2),

{s
t1<o

t1
k2
>

, s
t1<o

t1
k2+1>

, . . . , s
t1<o

t1
k1
>
} if (t1 = t2) ∧ (k2 < k1),

{s
t1<o

t1
k1
>
} if (t1 = t2) ∧ (k1 = k2).

Finally, the concept of envelope can be generalized for FDHHFLEs as follows:

Definition 5.11. Let hSFO be a FDHHFLE by means of the FDHFLTS SFO , then the
envelope of hSFO , env(hSFO ), is defined as a double hierarchy linguistic interval whose

limits are the lower and upper bounds of hSFO , h−SFO
and h+SFO

respectively. Thus,

env(hSFO ) = [h−SFO
, h+SFO

].

Example 5.3. Considering the FDHLTS, SFO , from Example 5.2, some of the possi-
ble linguistic assessments are “at least very good”, “between slightly bad and pretty
good”, “between very good and extremely good” and “almost null”. By Defini-
tions 5.9, 5.10, and 5.11, the associated FDHHFLEs and their respective envelopes
can be obtained as follows:

Linguistic
assessment FDHHFLE envelope

“at least very good” h1 = {s1<o1
1>

, s2} [s1<o1
1>

, s2<o2
0>
]

“between slightly bad
and pretty good” h2 = {s−1<o−1

2 >, s0, s1<o1
−1>
} [s−1<o−1

2 >, s1<o1
−1>

]

“between very good
and extremely good” h3 = {s1<o1

1>
, s1<o1

2>
, s1<o1

3>
} [s1<o1

1>
, s1<o1

3>
]

“almost null” h4 = {s−2<o−2
1 >} [s−2<o−2

1 >, s−2<o−2
1 >]

Furthermore, we can define some operations between FDHHFLEs that are used
in Section 5.4.2 to present a distance between FDHHFLEs.

70



5.3. Free Double Hierarchy

Definition 5.12. Let SFO = {st<ot
k>
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ζt, . . . ,−1,

0, 1, . . . , ζt} be a FDHLTS, and h1 and h2 be two FDHHFLEs by means of SFO whose
envelopes are [s

t−1 <o
t−1
k−1

>
, s

t+1 <o
t+1
k+1

>
] and [s

t−2 <o
t−2
k−2

>
, s

t+2 <o
t+2
k+2

>
] respectively. Then:

• The connected union of h1 and h2, h1 t h2, is defined as:

h1 t h2 = {st<ot
k>
∈ SFO |

min{s
t−1 <o

t−1
k−1

>
, s

t−2 <o
t−2
k−2

>
} 4 st<ot

k>
4 max{s

t+1 <o
t+1
k+1

>
, s

t+2 <o
t+2
k+2

>
}}.

• The intersection of h1 and h2, h1 ∩ h2, is defined as:

h1 ∩ h2 = {st<ot
k>
∈ SFO |

max{s
t−1 <o

t−1
k−1

>
, s

t−2 <o
t−2
k−2

>
} 4 st<ot

k>
4 min{s

t+1 <o
t+1
k+1

>
, s

t+2 <o
t+2
k+2

>
}}.

• The gap between h1 and h2, h1 G h2, is defined as:

h1 G h2 = {st<ot
k>
∈ SFO |

min{s
t+1 <o

t+1
k+1

>
, s

t+2 <o
t+2
k+2

>
} ≺ st<ot

k>
≺ max{s

t−1 <o
t−1
k−1

>
, s

t−2 <o
t−2
k−2

>
}}.

Notice that, extending SFO with a hypothetical empty FDHHFLE, these three op-
erations between FDHHFLEs are closed operations. Instead, the ordinary union of
sets has not been considered because of the fact that it is not a closed operation given
that its elements do not have to be the continuous FDHLTs.

Remark 5.4. For two given FDHHFLEs, h1 and h2, if h1 ∩ h2 6= ∅, then h1 G h2 =
∅ and vice versa. On the contrary, the reciprocals are not true. That is to say that
the intersection and the gap between two FDHHFLEs can be both empty at the same
time but they cannot be non-empty simultaneously.

Example 5.4. Following Example 5.3, we can obtain the connected union, intersec-
tion and gap of each pair of FDHHFLEs. As an example:

(hi, hj) hi t hj hi ∩ hj hi G hj

(h1, h2) {s−1<o−1
2 >, s0, s1, s2} ∅ {s1<o1

0>
}

(h1, h3) {s1<o1
1>

, s2} {s1<o1
1>

, s1<o1
2>

, s1<o1
3>
} ∅

5.3.4 From the Discrete Version to the Continuous One

As it has been done with HFLEs and DHHFLEs in previous approaches, FDHHFLEs
can also be extended from their discrete definition to a continuous one. There are
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several ways in which this extension can be done, but in this chapter we focus on
a continuation based on the LTS corresponding to the second hierarchy similar to
what has been done by Gou et al. for DHHFLEs [21]. Thus, the general form of a
continuous FDHHFLE is

hSFO (xi) = {sφl<o
φl
ϕl
>
(xi) | s

φl<o
φl
ϕl
>
∈ SFO ; l = 1, . . . , Li;

φl ∈ {−τ, . . . ,−1, 0, 1, . . . , τ}; ϕl ∈ [−ζφl , ζφl ]},

with the corresponding extension of the continuous FDHLTS as:

SFO = {st<ot
k>
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k ∈= [−ζt, ζt]}.

Note that the same graphical representation presented in Section 5.3.3 is useful for
the continuous FDHHFLEs as well.

Thereupon, the corresponding transformation function between the continuous
FDHHFLEs and HFEs can be defined as follows:

Definition 5.13. Let SFO = {st<ot
k>
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ζt, . . . ,−1,

0, 1, . . . , ζt} be a FDHLTS, hSFO = {s
φl<o

φl
ϕl
>
| s

φl<o
φl
ϕl
>
∈ SFO ; l = 1, . . . , L; φl ∈

{−τ, . . . , τ}; ϕl ∈ [−ζφl , ζφl ]} be a continuous FDHHFLE containing L linguistic
terms in it and hγ = {γl | γl ∈ [0, 1]; l = 1, . . . , L} be a HFE. Let ζ = max{ζ0,
ζ1, . . . , ζk}, then:

a) The transformation functions fF and f−1
F between each pair of subscripts

(φl, ϕl) of the linguistic term s
φl<o

φl
ϕl
>

and the membership degree γl that ex-

presses the equivalent information are, respectively:

� fF : {−τ, . . . , τ} × [−ζ, ζ] −→ [0, 1]
(φl, ϕl) 7−→ fF (φl, ϕl) = γl =

=


(τ + φl)

2τ
+

ϕl
2ζφl τ

if ϕl ∈ [−ζφl , ζφl ],

@ if ϕl /∈ [−ζφl , ζφl ],

� f−1
F : [0, 1] −→ {−τ, . . . , τ} × [−ζ, ζ]

γl 7−→ f−1
F (γl) = (φl, ϕl) =

=




(2τγl − τ − 1, ζ2τγl−τ−1) (only if γl 6= 0)

∨
(2τγl − τ, 0)

∨
(2τγl − τ + 1,−ζ2τγl−τ+1) (only if γl 6= 1)

 if (2τγl − τ) ∈ Z,

(b2τγl − τc, (2τγl − τ − b2τγl − τc)ζb2τγl−τc)
∨

(d2τγl − τe, (2τγl − τ − d2τγl − τe)ζd2τγl−τe)

 if (2τγl − τ) /∈ Z.
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b) The transformation functions FF and F−1
F between the continuous FDHHFLE

hSFO and the HFE hγ are, respectively:

� FF : Φ⊗ΨC −→ Θ
hSFO 7−→ FF (hSFO ) = {γl | γl = fF (φl, ϕl)} = hγ,

� F−1
F : Θ −→ Φ⊗ΨC

hγ 7−→ F−1
F (hγ) = {s

φl<o
φl
ϕl
>
| (φl, ϕl) = f−1

F (γl)} = hSFO ,

being Φ⊗ΨC the set of all possible continuous FDHHFLEs.

As stated in Remark 5.1, once again this transformation function is not a bijection,
so f−1

F is not uniquely defined. Figure 5.4a shows an example of two continuous
FDHLTs sharing the same image according to the function fF . Thus, the expected
value for DHHFLEs introduced by Gou et al. [21], that is based on the transformation
function, presents some issues because of this reason. As an example, the linguistic
assessments such as “at least very good” and “between very good and extremely
good” from Example 5.3 would have the same expected value.

5.4 Order and Distance among Free Double Hierar-
chy Hesitant Fuzzy Linguistic Elements

In this section, we present two mathematical relations within the set of FDHHFLEs.
On the one hand, an order is defined to allow linguistic assessments by means of FD-
HHFLEs to be sorted. On the other hand, to capture the differences among opinions,
a distance is presented.

5.4.1 An Order among Free Double Hierarchy Hesitant Fuzzy
Linguistic Elements

The presented order is based on the idea of expected value of a linguistic assessment.
As stated at the end of Section 5.3, the transformation function and the expected
value introduced by Gou et al.present some issues [21]. Hence, in order to define
a new definition of expected value that gets rid of these issues, we propose a new
transformation function between FDHLTSs and the continuous interval [0,1], similar
to a cumulative area function.

Definition 5.14. Let SFO = {st<ot
k>
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ζt, . . . ,−1,

0, 1, . . . , ζt} be a FDHLTS, then, the cumulative function, A, maps the continuous
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FDHLTSs onto [0, 1] as follows:

A : SFO −→ [0, 1]

st<ot
k>
7−→ A(st<ot

k>
) =

 (t + τ) · 1
2τ

+
k
/
(2τζt )

2
if ζt 6= 0,

(t + τ) · 1
2τ

if ζt = 0.

Note that the function A is indeed a bijection, so both the images and the preim-
ages of the function are uniquely defined. As shown in Figures 5.4b and 5.4c, the
two FDHLTs that in Figure 5.4a have the same image for the function fF , they have
different images for the function A.

s−2 s−1 s0 s1 s2

null bad regular good perfect

f(s0<o01>
) = f(s1<o1−1.5>

) = 15
24

(A) Possible FDHLTs for f−1
F ( 15

24 ).

s−2 s−1 s0 s1 s2

null bad regular good perfect

A(s0<o01>
) = 9

16

(B) Cumulative area up to s0<o0
1>

.

s−2 s−1 s0 s1 s2

null bad regular good perfect

A(s1<o1−1.5>
) = 11

16

(C) Cumulative area up to s1<o1
−1.5>

.

FIGURE 5.4: FDHLTs with the same value of fF but different values of A.

The function A can also be used to introduce a new measure of hesitancy of a
FDHHFLE as follows:

Definition 5.15. Let SFO = {st<ot
k>
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ζt, . . . ,−1,

0, 1, . . . , ζt} be a FDHLTS and hSFO be a continuous FDHHFLE by means of SFO
whose envelope is [st−<ot−

k−>
, st+<ot+

k+
>
], then, the area of hSFO is defined as:

Area(hSFO ) = A(st+<ot+
k+

>
)−A(st−<ot−

k−>
).
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If only the discrete FDHHFLEs are used, which is the common case in any GDM
problem, then a continuity correction factor has to be applied, and then:

Area(hSFO ) =



δ[A(st<ot
k+ 1

2
>),

1/2
2τ ]−

δ[A(st<ot
k− 1

2
>), 0]

if t = −τ,

δ[A(st<ot
k+ 1

2
>),

t+τ+1/2
2τ ]−

δ[A(st<ot
k− 1

2
>),

t+τ−1/2
2τ ]

if t = −τ + 1, . . . , τ − 1,

δ[A(st<ot
k+ 1

2
>), 1]−

δ[A(st<ot
k− 1

2
>),

2τ − 1/2

2τ
]

if t = τ,

where δ[a, b] takes as value a, if it exists, or b if a does not exist.

Additionally, for convenience of future uses of the function Area, we extend this
definition to a hypothetical empty FDHHFLE, ∅, as Area(∅) = 0.

For an easier understanding of this continuity correction factor, Figure 5.5 shows
a graphical representation of the areas of the FDHHFLEs from Example 5.3. No-
tice that the FDHHFLEs corresponding to the assessments “at least very good" and
“between very good and extremely good" (Figures 5.5a and 5.5c respectively) have
different areas. Thus, whatever it is defined based on the area will show different
results for this two assessments.

s−2 s−1 s0 s1 s2

null bad regular good perfect

“very
good”

“completely
perfect”A(h1) =

11
48

(A) “At least very good".

s−2 s−1 s0 s1 s2

null bad regular good perfect

“slightly
bad”

“pretty
good” A(h2) =

5
12

(B) “Between slightly bad and pretty good".

s−2 s−1 s0 s1 s2

null bad regular good perfect

“very
good”

“extremely
good”A(h3) =

5
48

(C) “Between very good and extremely good".

s−2 s−1 s0 s1 s2

null bad regular good perfect

“almost
null” A(h4) =

1
16

(D) “Almost null".

FIGURE 5.5: Graphical representation of the FDHHFLEs from Example 5.3.
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Hence, based on the definition of the area of a FDHHFLE, we can now propose
a new definition for the expected value of a FDHHFLE that fixes the issue presented
by the one proposed by Gou et al. [21].

Definition 5.16. Let SFO = {st<ot
k>
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ζt, . . . ,−1,

0, 1, . . . , ζt} be a FDHLTS and hSFO be a continuous FDHHFLE by means of SFO
whose envelope is [st−<ot−

k−>
, st+<ot+

k+
>
], then, the expected value of hSFO is defined

as:

E(hSFO ) =
A(st+<ot+

k+
>
) +A(st−<ot−

k−>
)

2
.

If only the discrete FDHHFLEs are used, then the continuity correction factor has to
be applied again, resulting in:

E(hSFO ) =



1
2

(
δ[A(st<ot

k+ 1
2
>),

1/2
2τ ]+

δ[A(st<ot
k− 1

2
>), 0]

) if t = −τ,

1
2

(
δ[A(st<ot

k+ 1
2
>),

t+τ+1/2
2τ ]+

δ[A(st<ot
k− 1

2
>),

t+τ−1/2
2τ ]

) if t = −τ + 1, . . . , τ − 1,

1
2

(
δ[A(st<ot

k+ 1
2
>), 1]+

δ[A(st<ot
k− 1

2
>),

2τ−1/2
2τ ]

) if t = τ.

Finally, the expected value of a FDHHFLE can be used to introduce an order
within the set Φ⊗Ψ as follows:

Definition 5.17. Let h1
SFO

and h2
SFO

be two FDHHFLEs of Φ⊗Ψ, then we define:

h1
SFO
4© h2

SFO
⇐⇒


E(h1

SFO
) < E(h2

SFO
)

∨
E(h1

SFO
) = E(h2

SFO
) ∧ Area(h1

SFO
) ≥ Area(h2

SFO
),

with the equality satisfied only when

E(h1
SFO

) = E(h2
SFO

) ∧ Area(h1
SFO

) = Area(h2
SFO

).

Let us present the following example to clarify the foregoing concepts:
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Example 5.5. Following Example 5.3, the area and the expected value of each as-
sessment can be calculated by Definitions 5.15 and 5.16. For instance,

Area(h1) = 1− 37
48

=
11
48

and E(h1) =
1 + 37/48

2
=

85
96

.

For the rest of assessments, the calculations can be proceeded in an analogous way
leading to the following results:

Linguistic
assessment FDHHFLE Area Expected

value

“at least very good” h1 = {s1<o1
1>

, s2} 11/48 85/96

“between slightly bad
and pretty good” h2 = {s−1<o−1

2 >, s0, s1<o1
−1>
} 5/12 25/48

“between very good
and extremely good” h3 = {s1<o1

1>
, s1<o1

2>
, s1<o1

3>
} 5/48 79/96

“almost null” h4 = {s−2<o−2
1 >} 1/16 1/16

Therefore, the four assessments can be sorted as h4 4© h2 4© h3 4© h1.

Remark 5.5. The best possible FDHHFLE according to the order from Defini-
tion 5.17 is {sτ<oτ

0>
}. Note that E({sτ<oτ

0>
}) is not exactly 1 because of the conti-

nuity correction factor. In fact, the more elements there are in the second hierarchy
LTS for sτ, the closer to 1 E({sτ<oτ

0>
}) is. This makes sense because the more

you know about a certain topic the more precise you can be, so you can choose a
larger second hierarchy LTS and the alternatives assessed with {sτ<oτ

0>
} are closer

to perfection. On the contrary, if someone is not very comfortable assessing a spe-
cific topic, he or she can choose a less precise second hierarchy LTS and, therefore,
the alternatives assessed with {sτ<oτ

0>
} are not necessarily that close to perfection,

so E({sτ<oτ
0>
}) is farther away from 1. Analogously, the same thing happens with

the worst possible FDHHFLE, {sτ<oτ
0>
}, whose expected value is not exactly 0.

5.4.2 A Distance between Free Double Hierarchy Hesitant Fuzzy
Linguistic Elements

Based on the distance between HFLTSs introduced by Montserrat-Adell et al. [47],
the following distance between FDHHFLEs is proposed:

Proposition 5.1. Let SFO be a FDHLTS, and Φ ⊗ Ψ be the set of all possible FD-
HFHLEs by means of SFO . Then,

D(h1, h2) = Area(h1 t h2)− Area(h1 ∩ h2) + Area(h1 G h2)

defines a distance in Φ⊗Ψ, where h1 and h2 are two FDHHFLEs.

Proof. In order to ease the reading of this chapter, the proof of this property is pro-
vided in Appendix 5.A at the end of the chapter.
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This distance is based on the classical distance provided by the difference be-
tween the union and the intersection of two elements with an essential change. This
variation is the fact that, in case that the two considered elements have an empty
intersection, then the gap between them is also taken into consideration to compute
the distance between them. This gap is used as a measure of how far from coinciding
these opinions are.

Remark 5.6. Note that the two most distant FDHHFLEs are {s−τ<o−τ
0 >} and {sτ<oτ

0>
}.

In this case, d({s−τ<o−τ
0 >}, {sτ<oτ

0>
}) = 1 + (1− ε−τ − ετ), being ε−τ and ετ

the areas of {s−τ<o−τ
0 >} and {sτ<oτ

0>
}, which depend on ζ−τ and ζτ respectively.

In fact, as stated in Remark 5.5, the larger ζ−τ and ζτ are, the smaller ε−τ and ετ

will be. Consequently, the supremum value for this distance is 2.

Let us illustrate the foregoing distance with an example as follows:

Example 5.6. Following Examples 5.3 and 5.4, we can graphically represent the
connected unions, intersections and gaps of the FDHHFLEs h1 and h2 and between
h1 and h3 as in Figure 5.6.

s−2 s−1 s0 s1 s2

null bad regular good perfect

“slightly
bad”

“pretty
good”

“very
good”

“completely
perfect”

(A) h1 t h2 and h1 G h2.

s−2 s−1 s0 s1 s2

null bad regular good perfect

“very
good”

“extremely
good”

(B) h1 t h3 and h1 ∩ h3.

FIGURE 5.6: Connected unions (all shaded regions), intersections (green)
and gaps (red) from Example 5.6.

Now, we just need to calculate the respective areas in order to get the distance
value:

(hi, hj) Area(hi t hj) Area(hi ∩ hj) Area(hi G hj) D(hi, hj)

(h1, h2) 11/16 0 1/24 35/48

(h1, h3) 11/48 5/48 0 1/8

After introducing an order and a distance between FDHHFLEs, we can now pro-
ceed to present a free double hierarchy approach based on the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) method.

5.5 Free Double Hierarchy Hesitant Fuzzy Linguistic
TOPSIS Approach

In this section, we present a free double hierarchy approach based on the well-
known TOPSIS method to rank alternatives in a GDM problem. Among all the
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multiple-criteria decision-making ranking methods, we have chosen to use the TOP-
SIS method because it is known to be useful for those problems in which the eval-
uations of the alternatives are given in different units and magnitudes. In this case,
each DM can use a different second hierarchy LTS, which could lead us to a sim-
ilar situation than working with different magnitudes. To illustrate the usefulness
of this approach, a simulated example on tourism management in Barcelona is also
presented.

5.5.1 Free Double Hierarchy Hesitant Fuzzy Linguistic TOPSIS
Methodology

A GDM problem with free double hierarchy hesitant fuzzy linguistic information can
be described as follows: Let A = {A1, A2, . . . , Am} be a set of alternatives that have
to be assessed by a set of experts E = {E1, E2, . . . , En} by means of FDHHFLEs.
Let S = {st | t = −τ, . . . , τ} be a LTS used as a common first hierarchy LTS, and
let each decision maker choose the second hierarchy LTS that he or she prefers to
use for each linguistic term in S. Let Γ1

H, Γ2
H, . . . , Γn

H be the context-free grammars
generated by the the second hierarchy LTSs chosen by each decision maker. Then,
each expert, Ei, assesses all the alternatives in A by means of linguistic expressions
from the context-free grammar Γi

H. The aim of the Free Double Hierarchy Hesitant
Fuzzy Linguistic TOPSIS (FDHHFL-TOPSIS) approach that we will develop below
is to rank the alternatives taking into account the opinions of all the decision makers.

To this end, the following steps have to be followed:

1. We express as FDHHFLEs all the linguistic assessments given by the experts
to evaluate the alternatives and create the following decision-making matrix:

M =


h11 h12 . . . h1n
h21 h22 . . . h2n

...
... . . . ...

hm1 hm2 . . . hmn

 ,

where hij stands for the FDHHFLE that corresponds to the linguistic assess-
ment used by the expert Ej to assess the alternative Ai.

2. For each decision maker, Ej, we find his or her best and worst assessments
according the order provided in Definition 5.17:

h+j and h−j .

3. For each alternative Ai, we calculate the distance between the FDHHFLE used
by Ej to evauate it and h+j and h−j , using the distance from Proposition 5.1:

D+
ij = D(hij, h+i ) and D−ij = D(hij, h−i ).
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4. For each alternative, Ai, we add the distances between each expert’s assess-
ment of Ai and his or her best assessment and repeat the same with the dis-
tances to the worst assessment:

D+
i =

n

∑
j=1

D+
ij and D−i =

n

∑
j=1

D−ij .

5. For each alternative, Ai, we find its similarity to an ideal solution as:

Si =
D−i

D+
i + D−i

,

which is obviously a value between 0 and 1. It takes the value 1 only when
D+

i = 0, which means that the alternative Ai gets the best assessment from all
the experts, and it takes the value 0 only when D+

i = 0, which means that Ai
gets every expert’s worst assessment.

6. The alternatives in A can be sorted according to their value of Si, being the
alternative with the largest Si the highest ranked one.

This approach can be applied to any GDM problem with the aim of ranking alter-
natives as long as the assessments of the decision makers are provided as free double
hierarchy hesitant fuzzy linguistic information. The usefulness of this structure is
that it allows the experts to be more precise using their own words, given that they
can use the second hierarchy that they prefer.

5.5.2 A Simulated Example on Tourism Management in Barcelona

In this section, we apply the FDHHFL-TOPSIS method presented in 5.5.1 into a sim-
ulated practical GDM problem involving tourist attractions in the city of Barcelona.

In recent years, tourism has increased a lot in Barcelona and it has become a trend-
ing topic of discussion due to the skepticism of some residents about how beneficial
this increase of tourism is for Barcelona inhabitants and for the city itself. Because
of this, a new phenomenon called tourismphobia has arisen in some sectors of the
city.

Frequently, what is good for tourist does not coincide with what is good for resi-
dents and this non-coincidence leads to a debate on what to prioritize. This confronta-
tion between locals and tourists’ interests turns specially intense in areas surrounding
some of the most visited tourist attractions in the city.

Hence, tourism management policies carried out by the different entities that take
care of the tourist attractions are extremely important to find a balance between the
great number of tourists and their needs, such as restaurants, guided tours, souvenirs
shops or going out places among others, and the daily life of residents and their
serenity, specially at night. For this reason, the city council is interested into knowing
which of the current policies are giving better results.
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In order to evaluate these policies, a member of the city council, a spokesperson
of neighborhood associations, a manager of the tourist agencies labor union and a
representative of the tertiary sector (E1, E2, E3 and E4 respectively) are asked to
assess the management of five of the most famous attractions of the city: Sagrada
Familia, Camp Nou, Ciutat Vella neighborhood, Park Güell and Tibidabo (A1, A2,
A3, A4 and A5 respectively). The aim is to aggregate the opinion of the four experts
to determine which tourist attractions are carrying out better policies.

To provide these assessments, the experts are asked to use a common scale S =
{s−2 = “null”, s−1 = “bad”, s0 = “regular”, s1 = “good”, s2 = “per f ect”}
as a first hierarchy LTS, but they are allowed to choose a second hierarchy LTS in
their own words, to express themselves as they feel more comfortable, for each of
the labels of the first hierarchy. Thus, for instance, while the city council member
(E1) chooses to evaluate with the same second hierarchy than in Example 5.2, the
neighborhood associations spokesperson (E2) prefers to not use a second hierarchy
and assess the alternatives just with the linguistic labels in S . Table 5.1 shows the
second hierarchy LTSs chosen by each expert for each linguistic term in S .

TABLE 5.1: Second hierarchy LTSs used by each expert.

E1 E2 E3 E4

s−2

o−2
0 = “completely"

o−2
1 = “almost"

o−2
2 = “close to"

o−2
0 = “ ” o−2

0 = “totally"
o−2

1 = “roughly"
o−2

0 = “totally"
o−2

1 = “roughly"

s−1

o−1
−3 = “extremely"

o−1
−2 = “unusually"

o−1
−1 = “very"

o−1
0 = “simply"

o−1
1 = “pretty"

o−1
2 = “slightly"

o−1
3 = “hardly"

o−1
0 = “ ”

o−1
−3 = “extremely"

o−1
−2 = “unusually"

o−1
−1 = “very"

o−1
0 = “simply"

o−1
1 = “pretty"

o−1
2 = “slightly"

o−1
3 = “hardly"

o−1
−1 = “very"

o−1
0 = “simply"

o−1
1 = “slightly"

s0

o0
−2 = “very low"

o0
−1 = “low"
o0

0 = “medium"
o0

1 = “high"
o0

2 = “very high"

o0
0 = “ ” o0

0 = “ ”
o0
−1 = “lower"
o0

0 = “middle"
o0

1 = “upper"

s1

o1
−3 = “hardly"

o0
−2 = “slightly"

o0
−1 = “pretty"
o0

0 = “simply"
o0

1 = “very"
o0

2 = “unusually"
o0

3 = “extremely"

o1
0 = “ ”

o1
−3 = “hardly"

o0
−2 = “slightly"

o0
−1 = “pretty"
o0

0 = “simply"
o0

1 = “very"
o0

2 = “unusually"
o0

3 = “extremely"

o1
−1 = “slightly"
o1

0 = “simply"
o1

1 = “very"

s2

o2
−2 = “close to"

o2
−1 = “almost"
o2

0 = “completely"
o2

0 = “ ” o2
−1 = “roughly"
o2

0 = “totally"
o2
−1 = “roughly"
o2

0 = “totally"

Later, each expert is given a list of criteria that he or she has to take into account
when evaluating the different alternatives, such as price, accessibility, noise or influx
among others. For this reason, since several criteria have to be considered for the
final assessment, then a hesitant result is allowed.

According to all the aforementioned arguments, the assessments gathered from
the five experts are given as free double hierarchy hesitant fuzzy linguistic informa-
tion and, therefore, the FDHHFL-TOPSIS method can be used to rank the alterna-
tives according to the results achieved by the corresponding policies carried out in
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each of the studied tourist attractions. Table 5.2 shows all the linguistic assessments
provided by the each expert on each of the alternatives.

TABLE 5.2: Assessments given by the experts using a free double hierarchy.

E1 E2 E3 E4

A1
“between very bad
and slightly bad” “at most regular” “between regular

and pretty good”
“between slightly good
and roughly perfect”

A2
“between high regular”

and slightly good” “at least good” “hardly good” “between simply bad”
and upper regular”

A3
“between close to null

and very bad” “null” “between regular
and slightly good”

“between lower regular
and simply good”

A4
“between pretty good”
and extremely good” “good” “at least extremely good” “at least very good’

A5 “at least very good” “perfect” “regular” “between roughly null”
and slightly bad”

Now we have to follow the steps described in Section 5.5.1 one by one to get the
final ranking:

Step 1: To translate the linguistic assessments into FDHHFLEs to get the decision-
making matrix M. Table 5.3 shows the resulting matrix M.

TABLE 5.3: FDHHFLEs corresponding to the assessments given by the ex-
perts.

E1 E2 E3 E4

A1 [s−1<o−1
−1>

, s−1<o−1
2 >] [s−2<o−2

0 >, s0<o0
0>

] [s0<o0
0>

, s1<o1
−1>

] [s1<o1
−1>

, s2<o2
−1>

]

A2 [s0<o0
1>

, s1<o1
−2>

] [s1<o1
0>

, s2<o2
0>

] {s1<o1
−3>
} [s−1<o−1

0 >, s0<o0
1>

]

A3 [s−2<o−2
2 >, s−1<o−1

−1>
] {s−2<o−2

0 >} [s0<o0
0>

, s1<o1
−2>

] [s0<o0
−1>

, s1<o1
0>

]

A4 [s1<o1
−1>

, s1<o1
3>

] {s1<o1
0>
} [s1<o1

3>
, s2<o2

0>
] [s1<o1

1>
, s2<o2

0>
]

A5 [s1<o1
1>

, s2<o2
0>

] {s2<o2
0>
} {s0<o0

0>
} [s−2<o−2

1 >, s−1<o−1
1 >]

Step 2: To find the best and worst assessments from each expert based on the order
from Definition 5.7. Table 5.4 shows h+j and h−j for each expert Ej.

TABLE 5.4: Best and worst assessments from each expert.

E1 E2 E3 E4

h+j [s1<o1
1>

, s2<o2
0>
] {s2<o2

0>
} [s1<o1

3>
, s2<o2

0>
] [s1<o1

1>
, s2<o2

0>
]

h−j [s−2<o−2
2 >, s−1<o−1

−1>
] {s−2<o−2

0 >} {s0<o0
0>
} [s−2<o−2

1 >, s−1<o−1
1 >]

Step 3: To calculate, for each alternative, the distance between the assessment of an
expert and his or her best assessment and repeat the same process with the
worst assessment, using the distance from Proposition 5.1. Table 5.5a shows
the corresponding distances to the best assessment while Table 5.5b shows
the distances to the worst assessment.
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TABLE 5.5: Distances to best and worst assessments.

(A) Distances to best assessment.

Ai D+
i1 D+

i2 D+
i3 D+

i4 D+
i

A1 1.2292 1.25 0.75 0.25 3.4792
A2 0.5521 0.25 0.5833 1 2.3854
A3 1.4479 1.75 0.7917 0.625 4.6146
A4 0.2083 0.375 0 0 0.5833
A5 0 0 0.8542 1.375 2.2292

(B) Distances to worst assessment.

Ai D−i1 D−i2 D−i3 D+
i4 D−i

A1 0.2188 0.5 0.1042 1.125 1.9479
A2 0.8958 1.5 0.2708 0.375 3.0417
A3 0 0 0.0625 0.75 0.8125
A4 1.2396 1.375 0.8542 1.375 4.8438
A5 1.4479 1.75 0 0 3.1979

Step 4: To add, for each alternative, the distances from Step 3, for both the best and
worst assessments respectively. Last column of Table 5.5a shows D+

i for each
alternative Ai and so does Table 5.5b with D−i .

Step 5: To calculate the similarity degree of each alternative to an ideal solution. Ta-
ble 5.6 shows these values for all of the alternatives.

TABLE 5.6: Similarities to ideal solution.

Ai A1 A2 A3 A4 A5

Si 0.3589 0.5605 0.1497 0.8925 0.5893

Step 6: To rank the alternatives based on their similarity degrees from Step 5. The
ranking results are as follows:

A3C A1C A2C A5C A4.

Therefore, after applying the FDHHFL-TOPSIS method, we can conclude that the
management of Park Güell is the one working better while Sagrada Familia and spe-
cially the neighborhood of Ciutat Vella, should work harder in order to find solutions
to the relationship between tourists and residents.

Comparison with Different Linguistic TOPSIS Methods

To evaluate the effectiveness of the FDHHFL-TOPSIS methodology, we now solve
the same GDM problem using the HFL-TOPSIS and the DHHFL-TOPSIS method-
ologies to compare the obtained results.

A) Hesitant Fuzzy Linguistic TOPSIS

In this case, each expert is asked to provide their assessments using a HFLE by means
of S = {s−2 = “null”, s−1 = “bad”, s0 = “regular”, s1 = “good”, s2 =
“per f ect”} without using any second hierarchy. Under these circumstances, the
assessments provided by the experts are as shown in Table 5.7.

Then, following Step 1, these assessment have to be rewritten as HFLEs; by Step 2,
the best and worst assessments have to be found; and by Steps 3 and 4, the distances
between each alternative and the best and worst assessments have to be computed.
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TABLE 5.7: Assessments given by the experts using a single hierarchy.

E1 E2 E3 E4

A1 “bad” “at most regular” “between regular
and good”

“between good
and perfect”

A2
“between regular”

and good” “at least good” “good” “between bad”
and regular”

A3
“between null

and bad” “null” “between regular
and good”

“between regular
and good”

A4 “good” “good” “at least good” “at least good’

A5 “at least good” “perfect” “regular” “between null”
and bad”

In this case, since the assessments are given as HFLEs, we use the distance between
HFLEs introduced by Montserrat-Adell et al. [47], in which the distance used for the
FDHHFL-TOPSIS method is inspired. In addition, according to Step 5, the similarity
degrees of each alternative to an ideal solution are calculated. All of these steps are
shown in Table 5.8.

TABLE 5.8: Similarity degrees of each alternative to an ideal solution.

E1 E2 E3 E4 D+
i D−i Si

A1 {s−1} [s−2, s0] [s0, s1] [s1, s2] 11 10 0.4762
A2 [s0, s1] [s1, s2] {s1} [s−1, s0] 8 15 0.6522
A3 [s−2, s−1] {s−2} [s0, s1] [s0, s1] 14 5 0.2631
A4 {s1} {s1} [s1, s2] [s1, s2] 2 20 0.9091
A5 [s1, s2] {s2} {s0} [s−2, s−1] 9 14 0.6087

h+j [s1, s2] {s2} [s1, s2] [s1, s2]

h−j [s−2, s−1] {s−2} {s0} [s−2, s−1]

Finally, following Step 6, the five alternatives can be ranked according to their simi-
larity degree to an ideal solution as follows:

A3C A1C A5C A2C A4.

As it can be seen, the alternatives A2 and A5 have reversed their ranking with respect
to the FDHHFL-TOPSIS results. This is due to the fact that the free double hierarchy
allows the experts to be more precise when assessing the alternatives and to feel more
comfortable with the linguistic scale that they have to use. For these reasons, a lot of
details that are disregarded using a single hierarchy can be captured using FDHHFL
assessments.

If we carefully analyze the original assessments (using FDHHFL information) of
alternatives A2 and A5, we realize that the ones for A2 use lower labels of the second
hierarchy. In particular E1 uses o1

−2 and E3 uses o1
−3. On the contrary, among the

assessments for A5 no one has used any negative label of the second hierarchy. This
distinction is not captured by using a single hierarchy, and that is the reason why the
two alternatives reverse their orders with respect to the case in which a free double
hierarchy is used.
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B) Double Hierarchy Hesitant Fuzzy Linguistic TOPSIS

In this case, each expert is asked to provide their assessments using a DHHFLE by
means of S = {s−2 = “null”, s−1 = “bad”, s0 = “regular”, s1 = “good”, s2 =
“per f ect”} and the same fixed second hierarchy for all the experts and for all the lin-
guistic terms. In this case, the second hierarchy is O = {o1

−1 = “slightly”, o1
0 =

“simply”, o1
1 = “very”}, sorted in the reverse order for the negative term of S .

Under these circumstances, the assessments provided by the experts are as shown in
Table 5.9.

TABLE 5.9: Linguistic assessments given by the experts using a free double
hierarchy.

E1 E2 E3 E4

A1
“between simply bad

and slightly bad”
“at most

very regular”
“between slightly regular

and simply good”
“between slightly good
and slightly perfect”

A2
“between very regular”

and slightly good”
“at least

slightly good” “slighty good” “between simply bad”
and very regular”

A3
“between slightly null

and simply bad”
“at most

slightly null”
“between slightly regular

and slightly good”
“between slightly regular

and simply good”

A4
“between simply good”

and very good”
“between slightly good

and very good” “at least very good” “at least very good’

A5 “at least simply good” “at least
slightly perfect”

“between slightly regular”
and very regular”

“between slightly null”
and slightly bad”

Now, following Step 1, these assessments have to be rewritten as DHHFLEs; by
Step 2, the best and worst assessments have to be found. These results are shown in
Table 5.10.

TABLE 5.10: DHHFLEs corresponding to the assessments given by the ex-
perts.

E1 E2 E3 E4

A1 [s−1<o−1
0 >, s−1<o−1

1 >] [s−2<o−2
0 >, s0<o0

1>
] [s0<o0

−1>
, s1<o1

0>
] [s1<o1

−1>
, s2<o2

−1>
]

A2 [s0<o0
1>

, s1<o1
−1>

] [s1<o1
−1>

, s2<o2
0>

] {s1<o1
−1>
} [s−1<o−1

0 >, s0<o0
1>

]

A3 [s−2<o−2
1 >, s−1<o−1

0 >] [s−2<o−2
0 >, s−2<o−2

1 >] [s0<o0
−1>

, s1<o1
−1>

] [s0<o0
−1>

, s1<o1
0>

]

A4 [s1<o1
0>

, s1<o1
1>

] [s1<o1
−1>

, s1<o1
1>

] [s1<o1
1>

, s2<o2
0>

] [s1<o1
1>

, s2<o2
0>

]

A5 [s1<o1
0>

, s2<o2
0>

] [s2<o2
−1>

, s2<o2
0>

] [s0<o0
−1>

, s0<o0
1>

] [s−2<o−2
1 >, s−1<o−1

1 >]

h+j [s1<o1
0>

, s2<o2
0>

] [s2<o2
−1>

, s2<o2
0>

] [s1<o1
1>

, s2<o2
0>

] [s1<o1
1>

, s2<o2
0>

]

h−j [s−2<o−2
1 >, s−1<o−1

0 >] [s−2<o−2
0 >, s−2<o−2

1 >] [s0<o0
−1>

, s0<o0
1>

] [s−2<o−2
1 >, s−1<o−1

1 >]

For this case, given that the DHHFLEs ca be understood as a special case of FD-
HHFLEs, we can use the same distance presented in Proposition 5.1. Hence, we can
proceed with Steps 3, 4 & 5 to calculate the similarities degrees of each alternative
to an ideal solution. These results are shown in Table 5.11.

Lastly, following Step 6, the five alternatives can be ranked according to their simi-
larity degree to an ideal solution as follows:

A3C A1C A2 = A5C A4.
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TABLE 5.11: Similarity degrees using the DHHFL-TOPSIS.

D+
i D−i Si

A1 3.25 2 0.381
A2 2.1875 3.0625 0.5833
A3 4.4375 0.8125 0.1548
A4 0.5 4.75 0.9048
A5 2.1875 3.0625 0.5833

In this case, we can see that the similarity degrees of the alternatives A2 and A5 are
the same, so the method is not able to sort them as one being higher ranked than the
other one.

To summarize the results, Table 5.12 shows the similarity degrees obtained by the
different methodologies.

TABLE 5.12: Comparison of the different similarity degrees.

A1 A2 A3 A4 A5

HFL-TOPSIS 0.4762 0.6522 0.2631 0.9091 0.6087
DHHFL-TOPSIS 0.381 0.5833 0.1548 0.9048 0.5833

FDHHFL-TOPSIS 0.3589 0.5605 0.1497 0.8925 0.5893

We can see that, when a single hierarchy is used, the alternative A2 is better ranked
than the alternative A5 because of the aforementioned reasons. When the DMs are
allowed to use a double hierarchy, they can be more precise and capture some of
the details disregarded by the single hierarchy. Yet, in this case, the two alternatives
are equally ranked. Instead, by using a free double hierarchy in which the DMs are
asked to choose the linguistic labels that they prefer for the second hierarchy to be
more precise or less precise depending on their knowledge the level of accuracy of
the results is higher. In this case, we can finally conclude that the alternative A5 is
higher ranked than the alternative A2.

5.6 Conclusions and future work

Based on the weak points that HFLTSs and DHHFLTSs have in the GDM problems,
a new structure is presented in this chapter to capture linguistic assessments with
more details. This structure enables the decision makers to be more accurate when
evaluating an alternative by means of linguistic terms.

On the one hand, Free Double Hierarchy Linguistic Term Sets are introduced as
a double hierarchy LTS in which the second hierarchy LTS can be different for each
term of the first hierarchy LTS. Thus, each decision maker can choose the second
hierarchy LTS that better suits each linguistic term of the first hierarchy according to
his/her criterion.
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On the other hand, Free Double Hierarchy Hesitant Fuzzy Linguistic Elements
and Free Double Hierarchy Hesitant Fuzzy Linguistic Term Sets are defined as a
useful tool to depict the hesitancy inherent in human reasoning.

Lastly, an order and a distance between FDHHFLEs are defined to enable us to
present a free double hierarchy approach based on the TOPSIS method, called the
FDHHFL-TOPSIS. This method is useful to sort alternatives in a GDM situation
when the decision makers provide their assessments by means of free double hierar-
chy linguistic information in order to be more precise.

Future research is focused on two main directions: on the one hand, other meth-
ods to aggregate free double hierarchy hesitant fuzzy linguistic information will be
studied as well as new measures within the set of FDHHFLTSs such as other distance
definitions, similarity measures or preference relations.

On the other hand, the structure of FDHHFLTSs will also be applied on the field
of recommender systems among end-users that express their opinions by means of
this kind of linguistic information.

5.A Proof of Proposition 5.1

In order to prove Proposition 5.1, let us first present two useful lemmas in order to
simplify the proof:

Lemma 5.1. Given two FDHHFLEs, h1 and h2, D2(h1, h2) can be equivalently ex-
pressed as:

D(h1, h2) = 2 · Area(h1 t h2)− Area(h1)− Area(h2).

Proof. We must see that 2 · Area(h1 t h2)− Area(h1)− Area(h2) = Area(h1 t
h2) − Area(h1 ∩ h2) + Area(h1 G h2). If h1 ∩ h2 6= ∅, both parts are equal
to Area(h1 t h2) − Area(h1 ∩ h2), while if h1 ∩ h2 = ∅, then both parts are
Area(h1 t h2) + Area(h1 G h2).

Lemma 5.2. Given three FDHHFLEs, h1, h2 and h3,

Area(h1 t h3) ≤ Area(h1 t h2) + Area(h2 t h3)− Area(h2).

Proof. To start with, let us express the value of the function Area of the connected
union of any pair of FDHHFLEs as:

Area(h t h′) = Area(h) + Area(h′)− Area(h ∩ h′) + Area(h G h′). (5.I)

Using this expression with h = h1 t h3 and h′ = h2, we get:

Area((h1 t h3) t h2) = Area(h1 t h3) + Area(h2)−
Area((h1 t h3) ∩ h2) + Area((h1 t h3) G h2),
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which, after rearranged, becomes:

Area(h1 t h3) = Area(h1 t h2 t h3)− Area(h2)+

Area((h1 t h3) ∩ h2)− Area((h1 t h3) G h2). (5.II)

Recalculating Area(h1t h2t h3) using again Equation 5.I, we get that Area(h1t
h2 t h3) = Area((h1 t h2) t (h2 t h3)) = Area(h1 t h2) + Area(h2 t h3) −
Area((h1 t h2) ∩ (h2 t h3)) + Area(∅) = Area(h1 t h2) + Area(h2 t h3) −
Area((h1 t h2) ∩ (h2 t h3)), and replacing in 5.II:

Area(h1 t h3) = Area(h1 t h2) + Area(h2 t h3)−
Area((h1 t h2) ∩ (h2 t h3))− Area(h2)+
Area((h1 t h3) ∩ h2)− Area((h1 t h3) G h2)

= Area(h1 t h2) + Area(h2 t h3)− Area(h2)+
Area((h1 t h3) ∩ h2)− Area((h1 t h2) ∩ (h2 t h3))−
Area((h1 t h3) G h2)

= Area(h1 t h2) + Area(h2 t h3)− Area(h2) + ∆.

At this point, we just need to study the sign of the term ∆ = Area((h1 t h3) ∩
h2)− Area((h1 t h2) ∩ (h2 t h3))− Area((h1 t h3) G h2).

• If (h1 t h3) ∩ h2 6= ∅, then:

Area((h1 t h3) ∩ h2) ≤ Area(h2)
Area((h1 t h2) ∩ (h2 t h3)) ≥ Area(h2)
Area((h1 t h3) G h2) = 0

 =⇒ ∆ ≤ 0.

• If (h1 t h3) ∩ h2 = ∅, then:

Area((h1 t h3) ∩ h2) = 0
Area((h1 t h2) ∩ (h2 t h3)) ≥ Area(h2)
Area((h1 t h3) G h2) ≥ 0

 =⇒ ∆ ≤ 0.

Thus, in any case, ∆ ≤ 0, and, therefore,

Area(h1 t h3) ≤ Area(h1 t h2) + Area(h2 t h3)− Area(h2).

With these two lemmas, we can now proceed with our aim of proving Proposi-
tion 5.1. For an easier reading, let us recall it:

Proposition 5.1. Let SFO be a FDHLTS, and Φ ⊗ Ψ be the set of all possible FD-
HFHLEs by means of SFO . Then,

D(h1, h2) = Area(h1 t h2)− Area(h1 ∩ h2) + Area(h1 G h2)
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defines a distance in Φ⊗Ψ, where h1 and h2 are two FDHHFLEs.

Proof. We will check the conditions that D must satisfy to be a distance using the
equivalent definition, presented in Lemma 5.1, D(h1, h2) = 2 · Area(h1 t h2) −
Area(h1)− Area(h2).

• Non-negativity: D(h1, h2) = 2 · Area(h1 t h2)− Area(h1)− Area(h2) ≥ 0
given that h1 ⊂ h1 t h2 and h2 ⊂ h1 ∩ h2.

• Identity of indiscernibles: If D(h1, h2) = 0, then 2 ·Area(h1t h2) = Area(h1)+
Area(h2), and for the same reason above, h1 = h1 t h2 and h2 = h1 t h2,
which implies h1 = h2. On the other hand, D(h1, h1) = 2 · Area(h1 t h1)−
Area(h1)− Area(h1) = 0 given that h1 t h1 = h1. Thus, D(h1, h2) = 0⇔
h1 = h2.

• Symmetry: D(h1, h2) = D(h2, h1) given the symmetry of the connected
union, the intersection and the gap operators.

• Triangular inequality: D(h1, h2)+D(h2, h3) = 2 ·Area(h1t h2)−Area(h1)−
Area(h2) + 2 · Area(h2 t h3) − Area(h2) − Area(h3) = 2 · (Area(h1 t
h2) + Area(h2 t h3)− Area(h2))− Area(h1)− Area(h3) ≥ 2 · Area(h1 t
h3)− Area(h1)− Area(h3) = D(h1, h3) by Lemma 5.2.

Acknowledgements

This research has been partially supported by the INVITE Research Project (TIN2016-
80049-C2-1-R and TIN2016-80049-C2-2-R (AEI/FEDER, UE)), funded by the Span-
ish Ministry of Science and Information Technology and in part by the National Nat-
ural Science Foundation of China (No. 71571123, 71771155).

89





Chapter 6

Conclusion

6.1 Conclusions

The main contributions of this thesis are framed on the research line of the devel-
opment of mathematical structures to deal with multiple-criteria decision problems
under linguistic assessments. Yet, this is a large discipline of research including a lot
of different topics. This thesis is oriented towards the study of situations in which the
decision makers are allowed to hesitate when giving their assessments. Under these
circumstances, the assessments provided by the decision makers of a GDM group are
known as hesitant fuzzy linguistic assessments.

To deal with this situations, Rodríguez et al. introduced in 2012 the Hesitant
Fuzzy Linguistic Term Sets (HFLTSs) [53]. The most remarkable results on this
field obtained in this thesis are summarized in this chapter.

Chapter 2 proposes a theoretical framework to model group assessments on the
basis of HFLTSs. To this end, the concept of distance between DMs in GDM by
means of hesitant fuzzy linguistic information is a key notion. This conception allows
similarities and differences between DM’s assessments to be analyzed.

From a well-ordered set S of linguistic terms, the set of hesitant fuzzy linguistic
term sets HS has been provided with two closed aggregation operations, connected
union and intersection. These two operations provideHS with a lattice structure and
are suitable to be used on reasoning and comparisons. The hesitant fuzzy linguistic
descriptions of a set Λ are defined asHS -fuzzy sets to describe the opinion of a DM
about a set of alternatives.

Therefore, the first main contribution of this thesis is the introduction of a new
distance measure within the set HFLTSs. This distance is based on previous work
done by Agell et al., in which a distance is already defined [3]. Yet, the existing dis-
tance presents some drawbacks such as returning equal values of distances between
pairs of assessments that, according to human common sense, they should not be
at the same distance. This issue is due to the fact that it is computed just based on
the difference between the cardinalities of the connected union and the intersection.
Hence, it is not taking into consideration that when two elements have an empty
intersection, they might be very close or very far away from each other.
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To overcome this point, not only the intersection between two HFLTSs has to be
taken into consideration, but also the gap between them in case that these assessments
do not overlap. To this end, the concept of concordance between two HFLTSs is
defined. This concordance returns the cardinality of the intersection between them
in case it is not empty and the cardinality of the gap between them in case that the
intersection is empty.

The introduced distance is based on the difference between the cardinality of the
connected union and the concordance in such a way that it is able to distinguish
between couples of non overlapping assessments.

In addition, Chapter 2 also presents the concept of the centroid of a decision-
making group by minimizing the addition of distances to the assessments of all the
DMs in the group. This centroid can be understood as a central opinion of the group
and the distances from each DM to the centroid can be thought as a measure of
disagreement of the DM with respect to the group.

The proposed structure based on distances and centroids is not only limited to
decision making scenarios. It also provides a general model suitable for comparing
opinions between end-users when they express their preferences in terms of ordered
linguistic terms.

The results from Chapter 2 have been published in the Journal of Applied Logic
(Impact Factor: 0.838 [Q1 (JCR Category: Logic)]).

Following this research line, Chapter 3 presents the second main contribution
of this thesis, which is an extension of the set of HFLTSs with new elements that
are used to determine the gaps between non-overlapping HFLTSs. This extension
is made by defining an equivalence relation in an analogous way to how negative
numbers are defined from positive numbers. This leads us to the introduction of
positive, negative and zero HFLTSs. The positive HFLTSs are the original ones, the
negatives HFLTSs are the ones used to describe a gap and the zero HFLTSs are those
used to describe consecutiveness of two HFLTSs, i.e., empty intersection and empty
gap between them.

Additionally, all results from Chapter 2 are redefined in terms of this new set,
including, among others, the order relation, operations, lattice structure and HFLDs.
Special attention is paid to the distance between HFLTSs and the centroid of a GDM
group. With the basis of the presented extended model, the computation of the dis-
tance and the centroid is simplified. In particular, the centroid is proved to be found
as the median of a set of values, which can be calculated in linear time.

Preliminary works on the results from Chapter 3 have been presented in XVIII
Congreso Español sobre Tecnologías y Lógica Fuzzy (ESTYLF) and 29th Interna-
tional Workshop on Qualitative Reasoning (QR). The final results have been pre-
sented in 13th Modeling Decisions for Artificial Intelligence (MDAI) and they have
been published in Lecture Notes in Artificial Intelligence.

Chapter 4 focuses on the study of the consensus of a GDM situation. On this field,
the third main contribution of this thesis is the introduction of two new consensus
measures for GDM processes by means of HFLTSs based on the weak points of the
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already existing similar measures. These two degrees of consensus are introduced to
capture differences among situations in which the previous measures are not able to
make a difference.

On the one hand, a degree of consensus is defined for the whole group on a specific
alternative. This degree of consensus is computed as a normalization of the addition
of distances from the central opinion to the opinion of each DM of the group, being
the central opinion modeled by the centroid introduced in the previous chapters. In
addition, an analogous definition is given not just for one single alternative but for
the whole set of alternatives.

On the other hand, the other degree of consensus is defined for each DM with
respect to the whole group, based on the distance between his or her opinion and the
central opinion. Once again, this degree of consensus is presented for one specific
alternative and for a whole set of alternatives. This degree can be understood as a
measure of the dissent of the DM with respect to the rest of the group.

Furthermore, for both degrees of consensus a comparison study with similar exist-
ing measures is carried out. As a conclusion, the measures presented in Chapter 4 are
more accurate in situations in which existing measures consider the level of agree-
ment to be the same but where common sense suggests they should be different. This
is because the new measures take into account two important things that the already
existing measures do not take. Firstly, since the presented measures are based on the
distance from the previous chapters, the gap between non-overlapping assessments
is considered. Secondly, the level of hesitancy in the assessments provided by the
DMs is also disregarded by most of the existing measures, while, with the proposed
ones, it is not.

On top of that, the comparison study also shows that the new measures have a
lower complexity time than the existing measures, which is explained, among other
factors, because of the low complexity time of finding the centroid.

Finally, a profile of a DM is introduced to keep track of his or her performances
in GDM processes by means of hesitant fuzzy linguistic information. This profile
is useful for situations in which the DMs that take part of a decision-making group
have to be chosen with certain characteristics such as, for instance, not hesitating at
all when assessing alternatives or having very different opinions from the majority of
people. To this end, the profile records his or her level of precision and dissent with
respect to the whole group in previous GDM processes as well as the total number of
groups that he has been part of.

Preliminary works on the results from Chapter 4 have been presented in 26th IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE) and the final results have
been published in the journal Information Fusion (Impact Factor: 5.667 [Q1 (JCR
Categories: Computer Sciences & Artificial Intelligence and Computer Sciences,
Theory & Methods)]).

Chapter 5 follows the line of research opened by Gou et al. with the introduction
of the Double Hierarchy Hesitant Fuzzy Linguistic Term Sets (DHHFLTSs) [21].
DHHFLTSs include a second hierarchy LTS to create more accurate linguistic ex-
pressions such as almost perfect. Yet, this second hierarchy LTS has to be the same
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for all the linguistic terms in the first LTS and for all the DMs in the group. Hence,
the last main contribution of this thesis is the introduction of a new structure called
Free Double Hierarchy Hesitant Fuzzy Linguistic Term Sets (FDHHFLTSs) that off-
sets the drawbacks presented by the DHHFLTSs. The aim of this new structure is to
capture linguistic assessments with more detail.

FDHHFLTSs are introduced as a double hierarchy LTS in which each DM can
choose the second hierarchy LTS that better suits each linguistic term of the first
hierarchy according to his or her criterion.

In addition, the distance from previous chapters is extended to this new model
to present a free double hierarchy ranking method based on the TOPSIS method,
called the FDHHFL-TOPSIS. This method enables us to rank alternatives in GDM
processes in which the DMs provide their assessments by means of free double hier-
archy linguistic information in order to be more precise.

In this chapter, we apply the presented FDHHFL-TOPSIS method into a simulated
practical GDM problem involving tourist attractions in the city of Barcelona. This
problem illustrates the usefulness of the presented methodology.

The results from Chapter 5 have been submitted to the journal Information Fu-
sion (Impact Factor: 5.667 [Q1 (JCR Categories: Computer Sciences & Artificial
Intelligence and Computer Sciences, Theory & Methods)]) and are currently under
review.

6.2 Future work

The work presented in this thesis is a contribution in the exploration of the GDM
problems under linguistic assessments. This is an interesting and relevant field of
research with a big variety of topics to explore. Several directions of future work
regarding the concepts introduced by this thesis have been identified while working
on it. These directions are grouped in two main different perspectives: theoretical
research and applied research.

From a theoretical point of view, there are several research lines. Firstly, an inter-
esting direction of research is to extend all the concepts presented un Chapters 2, 3,
and 4 to the structure of FDHHFLTSs introduced in Chapter 5. This theoretical ex-
tension would lead us to the appearance of positive, negative, and zero FDHHFLTSs
to capture, respectively, intersections, gaps, and consecutiveness between opinions,
as well as two degrees of consensus for GDM situations with free double hierarchy
hesitant fuzzy linguistic information and decision maker’s profile to keep track of his
or her previous performances in this kind of situations.

Secondly, another interesting line of future research is the introduction of a con-
sensus reaching process based on the degrees of consensus proposed in Chapter 4
extended to the structure of FDHHFLTSs. This consensus reaching process is an
iterative process in which, in each round of the process, both the collective and the
individual degrees of consensus are computed. The individual degrees of consensus
enables us to identify the most dissident DMs to ask them to reconsider their opinion
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in order to increase the collective degree of consensus until we reach a certain con-
sensus threshold. This process will permit each DM to utilize linguistic terms that
reflect more adequately their level of uncertainty and to be dynamically aware of their
agreement in each round. It will also has the ability to reach consensus automatically
with no need for either a moderator or a final interaction among DMs.

In addition, it is quite common that some DMs are more demanding than other
DMs. Because of this, there might be two DMs with the same opinion about an
alternative but giving different assessments to it. Hence, a different direction of fu-
ture research is to use the DM’s profile to introduce a strictness measure for each
DM. With this strictness measure, the assessments provided by each DMs could be
rescaled depending on how harsh he or she is.

Lastly, we have to take into consideration that it is likely that DMs are much
more reticent to change their mind from very good to almost perfect than from above
average to slightly good. Thus this changes could be treated different to compute the
value of the distance between two opinions. To fix this problem, another possible
line of future research is to give weights to the edges of the graph of the lattice of the
extended set of HFLTSs.

From an applied point of view, an attractive research line is to interpret all the
proposed methodologies in terms of a large groups of decision makers such as the
set of all the end-users of a certain service. In this case, these methodologies could
be used in the field of recommender systems given that the end-users with similar
opinions could be identified by means of the proposed distance and the proposed
degrees of consensus.

In this direction, some ongoing work is going on on applying the introduced tech-
niques into a real case application framed in the INVITE research project (TIN2016-
80049-C2-1-R and TIN2016-80049-C2-2-R (AEI/FEDER, UE)), funded by the Span-
ish Ministry of Science and Information Technology. We are currently working on
an application on hotels rating that can be used as a pilot test for future uses of this
methodology. This application is based on real data of the reviews of hotels in Rome
obtained from a review website. In the future, we would also like to apply it to
tourism real data obtained from Barcelona City Hall.

Said application associates an interval rating (hesitant term) together with a mea-
sure of consensus to the hotel ratings derived from a group of reviewers. Specifically,
it gives recommender systems the ability to extend reviewer opinions from ratings to
hesitant fuzzy linguistic term sets by combining the opinion of ratings and written
reviews. From each set of extended reviewer opinions it considers the centroid to be
the global opinion of each hotel. In this way, group consensus can be measured for
each hotel and used to differentiate hotels having the same ratings.

The contributions of this application are threefold. First, it introduces hesitancy
in the assessment of each reviewer by means of sentiment analysis. Second the cen-
troid allows us to fuse the information introduced in the text and the reviewer?s rat-
ing. Third, the consensus measure allows us to better understand previous ratings
allowing reviewers of recommenders systems to immediately identify which of the
hotels will have more variability in their reviews. From a general perspective, the
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ability to distinguish between items having the same ratings could be beneficial to
intelligent personal assistants. Rather than offering a list of the top items based on
ratings, an intelligent personal assistant may suggest a single alternative to the user.
This scenario would be more reflective of a conversation between friends. Further-
more, some experiments will be run to test the applicability of the methodology in
real recommendation scenarios.

In addition, in the frame of the INVITE research project, we are currently de-
veloping a method which uses behavioral attributes to segment visitors and tourists
when visiting an attraction. Our degrees of consensus will be used in a hierarchi-
cal agglomerative clustering algorithm to work with ordinal variables and select the
best segmentation. The method will be implemented in an application to a particular
tourist attraction in Barcelona (Park Güell) considering a period over the course of
two years and surveys from 2937 visitors.

As seen, the modeling of consensus in decision-making processes by means of
linguistic assessments opens a wide range of options to be considered for future
research, including from the most theoretical ones to its application on real case
situations.
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