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Chapter 1

Introduction

This thesis concerns about global instability in nearly-integrable Hamiltonian systems,
also called “Arnold diffusion”. In [Arn64], V.I. Arnold proposed an example of a nearly-
integrable Hamiltonian with 2 + 1/2 degrees of freedom

H(q, p, ϕ, I, t) =
1

2

(
p2 + I2

)
+ ε(cos q − 1) (1 + µ(sinϕ+ cos t)) ,

and asserted that given any δ,K > 0, for any 0 < µ� ε� 0, there exists a trajectory of
this Hamiltonian system such that

I(0) < δ and I(T ) > K for some time T > 0.

Notice that this a global instability result for the variable I, since

İ = −∂H
∂ϕ

= −εµ(cos q − 1) cosϕ

is zero for ε = 0, so I remains constant, whereas I can have a drift of finite size for any
ε > 0 small enough.

Arnold’s Hamiltonian can be written as a nearly-integrable Hamiltonian with 3 degrees
of freedom

H∗(q, p, ϕ, I, s, A) =
1

2

(
p2 + I2

)
+ A+ ε(cos q − 1) (1 + µ(sinϕ+ cos s)) ,

which for ε = 0 is an integrable Hamiltonian h(p, I, A) = 1
2

(p2 + I2) +A. Since h satisfies
the (Arnold) isoenergetic non-degeneracy∣∣∣∣ D2h Dh

Dh> 0

∣∣∣∣ = −1 6= 0,

by the KAM theorem proven by Arnold in [Arn63], the 5D phase space of H is filled, up to
a set of relative measure O(

√
ε) , with 3D-invariant tori Tω with Diophantine frequencies

ω = (ω1, ω2, 1):

|k1ω1 + k2ω2 + k0| ≥ γ/|k|τ for any 0 6= (k1, k2, k0) ∈ Z,
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where γ = O(
√
ε), and τ ≥ 2.

Since the 3D KAM invariant tori do not separate the 5D phase space, there can exist
irregular orbits ‘traveling’ between tori. Arnold conjectured in the KAM theorem in 1963
that this was the general case.

In the first part of this thesis we consider an a priori unstable Hamiltonian with 2+1/2
degrees of freedom

Hε(p, q, I, ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+
I2

2
+ εh(q, ϕ, s) (1.1)

consisting of a pendulum and a rotor plus a time periodic perturbation h(q, ϕ, s).
A priori unstable Hamiltonian systems like the above one were introduced by [Loc92,

CG94]. They consist on a rotor in the variables (I, ϕ) as an integrable Hamiltonian in
action-angle variables, a pendulum in the variables (p, q) which carries out a separatrix
associated to a saddle point, plus a small perturbation of size ε. For ε = 0, Hamiltonian
(1.1) is integrable and, in particular, the action I is constant. We want to describe the
global instability in the variable I for |ε| non-zero but otherwise arbitrary small.

For simplicity, we refer to global instability in this paper simply as Arnold diffusion.
Nevertheless, it is worth remarking that originally the term Arnold diffusion was coined
for a priori stable Hamiltonian systems, which are perturbations of integrable Hamiltonian
systems written in action-angle variable. See [Ber10] for a careful exposition of a priori
unstable and a priori stable Hamiltonian systems. For instance, replacing V (q) by εV (q),
our Hamiltonian (1.1) becomes a priori stable. In that case, Arnold diffusion would con-
sisting on finding trajectories with large deviations (p(T ), I(T ))− (p(0), I(0)). This would
be a much more difficult problem that the one considered here, because one has to confront
to exponentially small splitting of invariant manifolds with respect to the parameter ε as
well as to the passage through double resonances in the action variables p, I. In particular,
exponential large estimates of the time of diffusion with respect to ε due to Nekhoroshev
[Nek77, LM05, BM11] would apply.

The main characteristic of an a priori unstable Hamiltonian system with 2+1/2 degrees
of freedom is that there exists a 3D Normally Hyperbolic Invariant Manifold (NHIM) which
is a large invariant object with 4D unstable and stable invariant manifolds.

Inside this NHIM there exists an inner dynamics given by a Hamiltonian system with
1 + 1/2 degrees of freedom. This Hamiltonian possesses 2D invariant tori which prevent
global instability inside the 3D NHIM.

For ε = 0, the stable and unstable invariant manifold coincide along a huge separatrix
filled with homoclinic orbits to the NHIM.

For small |ε| 6= 0, the unstable and stable manifolds of the NHIM in general do not
coincide, but otherwise intersect transversely along 3D homoclinic invariant manifolds.
Through each point on each 3D homoclinic manifold, there exists a homoclinic orbit which
begins in a point of the NHIM and finishes on another point of the NHIM, not necessarily
the same one. This assignment between an initial and the final point on the NHIM is called
the scattering map. In practice, one must select an adequate domain for any scattering
map.
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Under the action of a scattering map, the variable I can increase (or decrease). The
geometric mechanism of global instability consists on looking for trajectories of the scatter-
ing map with a large change on the variable I. Standard shadowing arguments provide the
existence of nearby trajectories of Hamiltonian (1.1) with a large change on the variable I.

We are going to assume that the perturbation h(q, ϕ, s) depends on two harmonics in
the variables (ϕ, s):

h(q, ϕ, s) = f(q)g(ϕ, s),

f(q) = cos q, g(ϕ, s) = a1 cos(k1ϕ+ l1s) + a2 cos(k2ϕ+ l2s),
(1.2)

with k1, k2, l1, l2 ∈ Z.
One of the main goals of this thesis is to prove that for any non-trivial perturbation

a1a2 6= 0 depending on any two independent harmonics
∣∣∣k1 k2

l1 l2

∣∣∣ 6= 0, there is global insta-

bility of the action I for any ε > 0 small enough.
Our first result is that the global instability happens for any arbitrary perturbation

(1.2).

Theorem 1. Assume that a1a2 6= 0 and k1l2− k2l1 6= 0 in Hamiltonian (1.1)-(1.2). Then,
for any I∗ > 0, there exists ε∗ = ε∗(I∗, a1, a2) > 0 such that for any ε, 0 < ε < ε∗, there
exists a trajectory (p(t), q(t), I(t), ϕ(t)) such that for some T > 0

I(0) ≤ −I∗ < I∗ ≤ I(T ).

Remark 2. For a rough estimate of ε∗ ∼ exp(−πI∗/2) at least for |a1/a2| < 0.625, k1 =
l2 = 1 and l1 = k2 = 0, and T = T (ε∗, I∗, a1, a2) ∼ (Ts(I

∗, a1, a2)/ε) log(C(I∗, a1, a2)/ε) for
the diffusion time, see 2.4. Analogous estimates could be obtained for all the other values
of the parameters.

The proof is based on the geometrical method introduced in [DLS06] and relies on the
concrete computation of several scattering maps. A scattering map is a map of transverse
homoclinic orbits to a NHIM. For Hamiltonian (1.1), the NHIM turns out to be simply

Λ̃ε = Λ̃ =
{

(0, 0, I, ϕ, s) : (I, ϕ, s) ∈ R× T2
}
. (1.3)

In the unperturbed case, i.e., ε = 0, for any I∗ > 0 the NHIM Λ̃ possesses a 4D separatrix,
that is to say, coincident stable and unstable invariant manifolds

W 0Λ̃ =
{

(p0(τ), q0(τ), I, ϕ, s) : τ ∈ R, I ∈ [−I∗, I∗] , (ϕ, s) ∈ T2
}
,

where (p0, q0) are the separatrices to the saddle equilibrium point of the pendulum

(p0(t), q0(t)) =

(
±2

cosh t
, 4 arctan e±t

)
.

In the perturbed case, i.e., for small ε > 0, W u(Λ̃ε) and W s(Λ̃ε) do not coincide (this
is the so-called splitting of separatrices), and every local transversal intersection between
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them gives rise to a (local) scattering map which is simply the correspondence between
a past asymptotic motion in the NHIM to the corresponding future asymptotic motion
following a homoclinic orbit. Since the NHIM has also an inner dynamics, an adequate
combination of these two dynamics on the NHIM, the inner one and the outer one provided
by the scattering map, generates the Arnold diffusion as long as the outer dynamics does
not preserve the invariant objects of the inner dynamics.

Necessity of the assumptions

If the determinant ∆ := k1l2 − k2l1 or some coefficient a1, a2 vanishes, for instance,
if there is only one harmonic in g, there is no global instability for the action I. Indeed,
looking at the equations associated to Hamiltonian (1.1)

q̇ = ±p ṗ = [±1 + ε (a1 cos(k1ϕ+ l1s) + a2 cos(k2ϕ+ l2s))] sin q

ϕ̇ = I İ = ε cos q (k1a1 sin(k1ϕ+ l1s) + k2a2 sin(k2ϕ+ l2s)) (1.4)

ṡ = 1

this is clear for k1 = k2 = 0, since in this case I is a constant of motion. If k1 or k2 6= 0,
say k1 6= 0, the change of variables

ϕ̄ = k1ϕ+ l1s, rϕ̄− s̄ = k2ϕ+ l2s, Ī = k1I + l1,

where r = k2/k1 can be assumed to satisfy 0 ≤ r ≤ 1 without loss of generality, casts
system (1.4) into

q̇ = ±p ṗ = [±1 + ε (a1 cos ϕ̄+ a2 cos(rϕ̄− s̄))] sin q

˙̄ϕ = Ī ˙̄I = εk2
1 cos q (a1 sin ϕ̄+ ra2 sin(rϕ̄− s̄))

˙̄s = ∆/k1

which is a Hamiltonian system with the Hamiltonian given by

H̄ε(p, q, Ī, ϕ̄, s̄) =±
(
p2

2
+ cos q − 1

)
+
Ī2

2

+ εk2
1 cos q (a1 cos ϕ̄+ a2 cos(rϕ̄− s̄)) .

(1.5)

If ∆ = 0 Hamiltonian (1.5) is autonomous with 2 degrees of freedom, and therefore a
global drift for the action I is not possible. Only drifts of size

√
ε are possible due to KAM

theorem. Analogously one easily checks that for a1a2 = 0 Hamiltonian (1.1) is integrable
or autonomous.

Reduction of the harmonic types

Under the hypothesis (k1l2 − k2l1) a1a2 6= 0 of Theorem 1, the case k2 = 0 of Theorem 1
is proved in Chapter 2. Indeed, k2 = 0 implies r := k2/k1 = 0 and it turns out from (1.5)
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that Hamiltonian (1.1) is equivalent to the one with k1 = 1, k2 = 0, l1 = 0, l2 = 1:

Hε(p, q, I, ϕ, t) = ±
(
p2

2
+ cos q − 1

)
+
I2

2
+ ε cos q (a1 cosϕ+ a2 cos s) , (1.6)

which is just the Hamiltonian studied in Chapter 2. In Chapter 3 we prove Theorem 1 for
k1k2 6= 0 or equivalently for r ∈ (0, 1]. For the sake of clarity we will explain in full detail
and prove Theorem 1 along Section 3.3 just for r = 1, which by (1.5) is equivalent to the
case k1 = 1, k2 = 1, l1 = 0, l2 = −1:

Hε(p, q, I, ϕ, t) = ±
(
p2

2
+ cos q − 1

)
+
I2

2
+ ε cos q (a1 cosϕ+ a2 cos(ϕ− s)) . (1.7)

To finish the proof of Theorem 1, in Section 3.3 we will sketch the modifications needed
for the case r ∈ (0, 1).

Scattering map types

By the definition given at Section 2.2.2, a scattering map is in principle only locally
defined, that is, for a small ball of values of the variables (I, ϕ, s) or (I, θ = ϕ−Is), since it
depends on a non-degenerate critical point τ ∗ = τ ∗(I, ϕ, s) of a real function (2.6), depend-
ing smoothly on the variables (I, ϕ, s), already introduced in [DLS06]. In the study carried
out in Section 3.2, it will be described whether, in terms of the parameter µ := a1/a2

and the variable I, a local scattering map can or cannot be smoothly defined for all the
values of the angles (ϕ, s) or θ = ϕ − Is, becoming thus a global or extended scattering
map. This description will depend essentially on a geometrical characterization of the func-
tion τ ∗(I, ϕ, s) in terms of the intersection of crests and NHIM lines, following [DH11]. Any
degeneration of the critical point τ ∗ = τ ∗(I, ϕ, s) may give rise to more non-degenerate crit-
ical points and a bifurcation to multiple local scattering maps or to a non global scattering
map. Different critical points τ ∗ = τ ∗(I, ϕ, s) give rise to different local scattering maps,
and putting together different local scattering maps, one can sometimes obtain piecewise
smooth global scattering maps, which are very useful to design paths of instability for the
action I, and are simply called diffusion paths.

For instance, in Chapter 2 devoted to the Hamiltonian (1.6), it will be proven that
for 0 < µ = a1/a2 < 0.625, there exist two different global scattering maps. Among
the different kinds of associated orbits of these scattering maps, there will appear two of
them called highways, where the drift of the action I was very fast and simple. As will be
described in Section 3.2, such highways do not appear for Hamiltonian (1.7). Nevertheless,
as will be proven in Section 3.4, there exist piecewise smooth global scattering maps, and
the possible diffusion along the discontinuity sets opens the possibility of applying the
theory of piecewise smooth dynamical systems [Fil88].

About the model chosen and related work

Hamiltonian (1.1) is a standard example of an a priori unstable Hamiltonian sys-
tem [CG94] formed by a pendulum, a rotor and a perturbation. It is usual in the literature
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to choose a perturbation depending periodically only on the positions—which turn out to
be angles in our case—and time. Our perturbation h(q, ϕ, s) (1.2) is a little bit special since
it is a product of a function f(q) times a function g(ϕ, s). This choice makes easier the
computations of the Poincaré-Melnikov potential (3.11), which is based on the Cauchy’s
residue theorem. Theorem 1 can be easily generalized to any trigonometric polynomial or
meromorphic function f(q), although the computations of poles of high order become more
complicated. In the same way, it could also be generalized to more general perturbations
h(q, ϕ, s), as long that h is a trigonometric polynomial or meromorphic in q. The depen-
dence on more than two harmonics gives rise to the appearance of more resonances in the
inner dynamics, which requires more control of their sizes, see for instance [DH09, DS97].
Apart from more difficulty in the computations of the Poincaré-Melnikov potential and
the inner Hamiltonian, we do not foresee substantial changes, so we believe that Hamilto-
nian (1.1) could be considered as a paradigmatic example of an a priori unstable Hamilto-
nian system.

Chapter 3 is a natural culmination of Chapter 2, which deals with the simpler Hamil-
tonian (1.6), and where a detailed description of NHIM lines and crests is carried out. An
“optimal” estimate of the diffusion time close to some special orbits of the scattering map,
called highways, is also given there. The study in Chapter 3 of Hamiltonian (1.7) is more
complicated, due to a greater complexity of the evolution of the NHIM lines and crests
with respect to the action I and the parameters of the system. In particular, the absence
of highways prevents us of showing an estimate of diffusion time close to them.

Let us mention that results about global instability are not new. Indeed one can find
related results in [Loc92, BCV01, Cre01, CG03, Cre03, DLS06, KL08a, KL08b, CY09,
DH09, BKZ11, DH11, Zha11, Mat12, Tre12, KZ15, GT14, LMS16, Mar16, Che17, GM17,
LPS17] involving the geometrical method or variational methods. Our approach is very
similar to [DH11], and one of the novelties of the present thesis is that we can prove the
existence of global instability for any value of µ = a1/a2 6= 0, whereas in [DH11] this was
only proven for 0 < |µ| < 0.625. Let us mention [DT16] which contains a similar approach
to the function τ ∗ of [DLS06] and the crests of [DH11]. Nevertheless, the main purpose of
this work is to describe the paths of instability that can be chosen as well as to estimate
the time of diffusion for some cases.

We notice that in this thesis we stress the interaction between NHIM lines and crests,
since this allows us to describe the diverse scattering maps, as well as their domains, that
appear in our problem. In more complicated models of Celestial Mechanics the Melnikov
potential is not available. In these cases the computations of scattering maps rely on the
numerical computation of invariant manifolds of a NHIM or some of its selected invariant
objects, and the search of diffusion orbits is performed in a more crafted way (see [CDMR06,
DMR08, DGR13, CGL16, DGR16]).

Partial results for a case with 3 + 1/2 degrees of freedom

A natural question is whether the results presented in Chapter 2 and Chapter 3 hold for
more dimensions. In Chapter 4, we consider an analogous nearly-integrable Hamiltonian
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system with a similar perturbation but now, with 3 + 1/2 degrees of freedom, i.e., the
following Hamiltonian given by

Hε(p, q, I1, I2, ϕ1, ϕ2, s) = ±
(
p2

2
+ cos q − 1

)
+ h(I1, I2) + εf(q) g(ϕ1, ϕ2, s),

where f(q) = cos q, h(I1, I2) = Ω1I
2
1/2 + Ω2I

2
2/2 and

g(ϕ1, ϕ2, s) = a1 cosϕ1 + a2 cosϕ2 + a3 cos(k · ϕ− s),

with k = (k1, k2) ∈ Z2 and ϕ = (ϕ1, ϕ2) ∈ T2.
This case is much more complicated than the case studied in Chapter 2 and Chapter 3.

There are 7 parameters and to handle them it is not easy. In this thesis we present the
results obtained until now for an analogous Hamiltonian studied in Chapter 2 and we
expect to complete this study in a future work. We emphasize that we do not know other
work with a similar approach for this dimension.

In Chapter 4, our object of study is the Hamiltonian given by

Hε(p, q, I1, I2, ϕ1, ϕ2, s) = ±
(
p2

2
+ cos q − 1

)
+ h(I1, I2) + εf(q) g(ϕ1, ϕ2, s), (1.8)

where f(q) = cos q, h(I1, I2) = Ω1I
2
1/2 + Ω2I

2
2/2 and

g(ϕ1, ϕ2, s) = a1 cosϕ1 + a2 cosϕ2 + a3 cos s. (1.9)

As in the previous chapters, we begin by describing the crests and its dependence with
respect to the parameters µ1 := a1/a3 and µ2 := a2/a3, and the values of I1 and I2. We
detect a new behavior for the crests, since they can form a unique surface. In consequence
we restrict our study to the case where |µ1| + |µ2| < 0.625. In this case, the crests are
horizontal and there is no tangency between NHIM lines and the crests. This case is very
similar to the case in [DH11] and the simplest case in Chapter 2.

In Chapter 4 the main result is

Theorem 3. Consider the Hamiltonian (1.8)+(1.9). Assume a1a2a3 6= 0 and |µ1|+ |µ2| <
0.625. Then, for every δ there exists 0 < ε0 such that for every 0 < |ε| < ε0, given
I± ∈ I∗ \ {(0, 0)}, there exists an orbit x̃(t) and T > 0, such that

|I(x̃(0))− I−| ≤ Cδ

|I(x̃(T ))− I+| ≤ Cδ

Besides, in Section 4.3 we explicit the symmetries of the scattering map. In Section 4.4
we show an initial study about the Highways with a description to a very special case and
for I1 and I2 close to infinity. The final chapter of this thesis contains some open questions
related to the problems considered in this thesis. Some of these open questions have not
been solved simply by lack time, whereas other open questions require more substantial
time, since they are related to deeper problems.

We finish this introduction by noticing that the first two chapters of this thesis are very
based on the papers [DS17a, DS17b] and we apologize for any repetition.
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Chapter 2

The first case for 2 + 1/2 degrees of
freedom

2.1 The System

We consider the following a priori unstable Hamiltonian with 2+1/2 degrees of freedom
with 2π-periodic time dependence:

Hε(p, q, I, ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+
I2

2
+ εf(q)g(ϕ, s), (2.1)

where p, I ∈ R, q, ϕ, s ∈ T and ε is small enough.
In the unperturbed case, that is, ε = 0, the Hamiltonian H0 represents the standard

pendulum plus a rotor:

H0(p, q, I, ϕ, s) =
p2

2
+ cos q − 1 +

I2

2
,

with associated equations

q̇ =
∂H0

∂p
= p ṗ = −∂H0

∂q
= sin q

ϕ̇ =
∂H0

∂I
= I İ = −∂H0

∂ϕ
= 0

ṡ = 1

and associated flow

φt(p, q, I, ϕ, s) = (p(t), q(t), I, ϕ+ It, s+ t) .

In this case, (0, 0) is a saddle point on the plane formed by variables (p, q) with associated
unstable and stable invariant curves. Introducing P (p, q) = p2/2 + cos q − 1, we have that
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P−1(0) divides the (p, q) phase space, separating the behavior of orbits. The branches of
P−1(0) are called separatrices and are parameterized by the homoclinic trajectories to the
saddle point (p, q) = (0, 0),

(p0(t), q0(t)) =

(
2

cosh t
, 4 arctan e±t

)
. (2.2)

Fig. 2.1: Phase Space - Unperturbed problem

For any initial condition (0, 0, I, ϕ, s), the unperturbed flow is φt(0, 0, I, ϕ, s) = (0, 0, I, ϕ+
It, s + t), that is, any torus T 0

I = {(0, 0, I, ϕ, s); (ϕ, s) ∈ T2} is an invariant set for the
flow. T 0

I is called whiskered torus, and we call whiskers its unstable and stable manifolds,
which turn out to be coincident:

W 0T 0
I = {(p0(τ), q0(τ), I, ϕ, s); τ ∈ R, (ϕ, s) ∈ T2)}.

For any positive value I∗, consider the interval [−I∗, I∗] and the cylinder formed by an
uncountable family of tori

Λ̃ = {T 0
I }I∈[−I∗,I∗] = {(0, 0, I, ϕ, s); I ∈ [−I∗, I∗] , (ϕ, s) ∈ T2}.

The set Λ̃ is a 3D-normally hyperbolic invariant manifold (NHIM) with 4D-coincident
stable and unstable invariant manifolds:

W 0Λ̃ =
{

(p0(τ), q0(τ), I, ϕ, s); τ ∈ R, I ∈ [−I∗, I∗] , (ϕ, s) ∈ T2
}
.

We now come back to the perturbed case, that is, small |ε| 6= 0. By the theory of
NHIM (see for instance [DLS06] for more information), if f(q)g(ϕ, s) is smooth enough,

there exists a smooth NHIM Λ̃ε close to Λ̃ and the local invariant manifolds W u
loc(Λ̃ε) and

W s
loc(Λ̃ε) are ε-close to W 0(Λ̃). Indeed,

W u,s
loc (Λ̃ε) =

⋃
x̃∈Λ̃ε

W u,s
loc (x̃),
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where W u,s
loc (x̃) are the unstable and stable manifolds associated to a point x̃ ∈ Λ̃ε (more

precise information about the differentiability of Λ̃ε and W u,s(Λ̃ε) can be found in [DLS06]).
Notice that if f ′(0) = 0, Λ̃ε = Λ̃, that is, Λ̃ is a NHIM for all ε. But even in this case, in
general W u(Λ̃ε) and W s(Λ̃ε) do not need to coincide, that is, the separatrices split.

Along this chapter, we are going to take

f(q) = cos q and g(ϕ, s) = a00 + a10 cosϕ+ a01 cos s, (a10a01 6= 0) (2.3)

so that there exists a normally hyperbolic invariant manifold Λ̃ε = Λ̃ in the dynamics
associated to the Hamiltonian (1.1)+(1.2)

Hε(p, q, I, ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+
I2

2
+ ε cos q (a00 + a10 cosϕ+ a01 cos s) .

Remark 4. We are choosing f(q) as in [DH11] and a similar g(ϕ, s). Indeed, in [DH11],
g(ϕ, s) =

∑
(k,l)∈N2 ak,l cos(kϕ− ls− σk,l) is a full trigonometrical series with the condition

α̂ρβkrβl ≤ |ak,l| ≤ αρkrl,

for 0 < ρ ≤ ρ∗ and 0 < r ≤ r∗, where ρ∗(λ, α, α̂, β) and r∗(λ, α, α̂, β) are small enough.
Under these hypothesis, the Melnikov potential, after ignoring terms of order greater or
equal than 2, is the same Melnikov potential that we will obtain in subsection 2.2.2. How-
ever, the inner dynamics in [DH11] is different. In our case, as we will see, it is integrable,
therefore it is trivial and we will not worry about KAM theory to study the perturbed
dynamics inside Λ̃ε.

2.2 The inner and the outer dynamics

We have two dynamics associated to Λ̃ε, the inner and the outer dynamics. For the
study of the inner dynamics we use the inner map and for the outer one we use the
scattering map. When it be convenient we will combine the scattering map and the inner
dynamics to show the diffusion phenomenon.

2.2.1 Inner map

The inner dynamics is the dynamics in the NHIM. Since Λ̃ε = Λ̃, the Hamiltonian Hε

restricted to Λ̃ε is

K(I, ϕ, s; ε) =
I2

2
+ ε (a00 + a10 cosϕ+ a01 cos s) , (2.4)

with associated Hamiltonian equations

ϕ̇ = I İ = ε a10 sinϕ ṡ = 1. (2.5)

13



Note that the first two equations just depend on the variables I and ϕ, thus using that

F (I, ϕ) :=
I2

2
+ ε a10 (cosϕ− 1) = K(I, ϕ, s)− ε (a00 + a10 cos s− 1)

is a first integral and, indeed, a Hamiltonian function for equations (2.5), one has that the
inner Hamiltonian system (2.4) is integrable. Therefore, here does not appear a genuine
“big gap problem”, and KAM is not needed theorem to find invariant tori, since there is
a continuous foliation of invariant tori simply given by F = constant. When ε is small
enough we have that the solutions are close to I = constant, that is, the level curves of F
are almost ‘flat’ or ‘horizontal’ in the action I (see Fig. 2.2).

Fig. 2.2: Inner dynamics in the variables (ϕ, I) for a10 = 0.6 and ε = 0.01

2.2.2 Scattering map: Melnikov potential and crests

The scattering map was introduced in [DLS00] and is our main object of study. Let Λ̃
be a NHIM with invariant manifolds intersecting transversally along a homoclinic manifold
Γ. A scattering map is a map S defined by S(x̃−) = x̃+ if there exists z̃ ∈ Γ satisfying

|φt(z̃)− φt(x̃±)| −→ 0 as t −→ ±∞

that is, W u
ε (x̃−) intersects (transversally) W s

ε (x̃+) in z̃.
For a more computational and geometrical definition of scattering map, we have to

study the intersections between the hyperbolic invariant manifolds of Λ̃ε. We will use the
Poincaré-Melnikov theory.

Melnikov potential

We have the following proposition [DH11, DLS06].

Proposition 5. Given (I, ϕ, s) ∈ [−I∗, I∗] × T2, assume that the real function

τ ∈ R 7−→ L(I, ϕ− I τ, s− τ) ∈ R (2.6)

14



has a non degenerate critical point τ ∗ = τ ∗(I, ϕ, s), where

L(I, ϕ, s) =

∫ +∞

−∞
(f(q0(σ))g(ϕ+ Iσ, s+ σ; 0)− f(0)g(ϕ+ Iσ, s+ σ; 0)) dσ.

Then, for 0 < |ε| small enough, there exists a unique transversal homoclinic point z̃ to Λ̃ε,
which is ε-close to the point z̃∗(I, ϕ, s) = (p0(τ ∗), q0(τ ∗), I, ϕ, s) ∈ W 0(Λ̃):

z̃ = z̃(I, ϕ, s) = (p0(τ ∗) +O(ε), q0(τ ∗) +O(ε), I, ϕ, s) ∈ W u(Λ̃ε) t W s(Λ̃ε). (2.7)

The function L is called the Melnikov potential of Hamiltonian (1.1). In our case, from
(2.2) and (2.3)

L(I, ϕ, s) = A00 + A10(I) cosϕ+ A01 cos s, (2.8)

where

A00 = 4 a00, A10(I) =
2π I a10

sinh(π I
2

)
and A01 =

2 π a01

sinh(π
2
)
. (2.9)

Fig. 2.3: The Melnikov potential, µ = a10/a01 = 0.6 and I = 1.

We now look for the critical points of (2.6) which indeed are the solutions of

∂L
∂τ

(I, ϕ− Iτ, s− τ) = 0.

Equivalently, τ ∗ = τ ∗(I, ϕ, s) satisfies

I A10(I) sin(ϕ− I τ ∗) + A10 sin(s− τ ∗) = 0. (2.10)

From a geometrical view-point, for any (I, ϕ, s) ∈ [−I∗, I∗]×T2, finding τ ∗ = τ ∗(I, ϕ, s)
satisfying (2.10) is equivalent to looking for the extrema of L on the NHIM line

R(I, ϕ, s) = {(I, ϕ− Iτ, s− τ), τ ∈ R}, (2.11)
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which corresponds to the unperturbed trajectory of Hamiltonian H0 through (I, ϕ, s) along
the unperturbed NHIM.

Thus we can define the scattering map as in [DH11]. Let W be an open subset of
[−I∗, I∗]× T2 such that the map

(I, ϕ, s) ∈ W 7→ τ ∗(I, ϕ, s),

where τ ∗(I, ϕ, s) is a critical point of (2.6) or, equivalently, a solution of (2.10), is well de-
fined and C2. Therefore, there exists a unique z̃ satisfying (2.7). Let Γ = {z̃(I, ϕ, s; ε), (I, ϕ, s) ∈
W}. For any z̃ ∈ Γ there exist unique x̃+,− = x̃+,−(I, ϕ, s; ε) ∈ Λ̃ε such that z̃ ∈
W s
ε (x̃−) ∩W u

ε (x̃+). Let

H+,− =
⋃
{x̃+,−(I, ϕ, s; ε), (I, ϕ, s) ∈ W}.

We define the scattering map associated to Γ as the map

S : H− −→ H+

x̃− 7−→ S(x̃−) = x̃+.

By the geometric properties of the scattering map (it is an exact symplectic map
[DLS08]) we have, see [DH09] and [DH11], that the scattering map has the explicit form

S(I, ϕ, s) =

(
I + ε

∂L∗

∂ϕ
(I, ϕ, s) +O(ε2), ϕ− ε ∂L

∗

∂I
(I, ϕ, s) +O(ε2), s

)
, (2.12)

where
L∗(I, ϕ, s) = L(I, ϕ− I τ ∗(I, ϕ, s), s− τ ∗(I, ϕ, s)). (2.13)

The new variable θ = ϕ− Is

Notice that if τ ∗(I, ϕ, s) is a critical point of (2.6), τ ∗(I, ϕ, s) − σ is a critical point
of

τ 7−→ L(I, ϕ− I(τ + σ), s− (τ + σ)) = L(I, ϕ− Iσ − Iτ, s− σ − τ). (2.14)

Since τ ∗(I, ϕ − Iσ, s − σ) is a critical point of the right hand side of (2.14), by the
uniqueness in W we can conclude that

τ ∗(I, ϕ− Iσ, s− σ) = τ ∗(I, ϕ, s)− σ. (2.15)

Thus, by (2.13),

L∗(I, ϕ− Iσ, s− σ) = L(I, ϕ− Iσ − I(τ ∗ − σ), s− σ − τ ∗)
= L(I, ϕ− Iτ ∗, s− τ ∗) = L∗(I, ϕ, s),
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and, in particular for σ = s,

L∗(I, ϕ− Is, 0) = L∗(I, ϕ, s).

Introducing the new variable
θ = ϕ− Is,

we define the Reduced Poincaré function

L∗(I, θ) := L∗(I, ϕ− Is, 0) = L∗(I, ϕ, s). (2.16)

We can write the scattering map on the variables (I, θ). From (I ′, ϕ′, s′) = S(I, ϕ, s),
we have that

θ′ = ϕ′ − I ′s′ =

(
ϕ− ε∂L

∗

∂I
(I, ϕ, s)

)
−
(
I + ε

∂L∗

∂ϕ
(I, ϕ, s)

)
s+O(ε2)

= θ − ε
(
∂L∗

∂I
(I, ϕ, s) +

∂L∗

∂ϕ
(I, ϕ, s)s

)
+O(ε2).

Since
∂L∗

∂I
(I, ϕ, s) =

∂L∗

∂I
(I, θ)− s∂L

∗

∂θ
(I, θ) and

∂L∗

∂ϕ
=
∂L∗

∂θ
(I, θ),

we conclude that

θ′ = θ − ε
(
∂L∗

∂I
(I, θ)

)
+O(ε2) and I ′ = I + ε

(
∂L∗

∂θ
(I, θ)

)
+O(ε2).

Then, in the variables (I, θ), the scattering map takes the simple form

S(I, θ) =

(
I + ε

∂L∗

∂θ
(I, θ) +O(ε2), θ − ε ∂L

∗

∂I
(I, θ) +O(ε2)

)
, (2.17)

so up to O(ε2) terms, S(I, θ) is the −ε times flow of the autonomous Hamiltonian L∗(I, θ).
In particular, the iterates under the scattering map follow the level curves of L∗ up to
O(ε2).

Remark 6. We notice that the variable θ is periodic in the variable ϕ and quasi-periodic
in the variable s. Fixing s, then θ becomes periodic.

Remark 7. Note that if for some values of (I, θ) we have that ∇L∗(I, θ) = O(ε), then
ε∂L∗/∂θ(I, θ) = O(ε2) and ε∂L∗/∂I(I, θ) = O(ε2). In this case, the level curves of L∗(I, θ)
do not provide the dominant part of the scattering map S. Therefore, we will be able to
describe properly the scattering map through the level curves of the Reduced Poincaré
function on the set of (I, θ) such that ‖∇L∗(I, θ)‖ � ε.
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Remark 8. Using Eq.(2.15) and setting s = σ, we have that τ ∗(I, ϕ−Is, 0) = τ ∗(I, ϕ, s)−
s. So we can define

τ ∗(I, θ) := τ ∗(I, ϕ, s)− s (2.18)

and from (2.13) and (2.16) we can write L∗ as

L∗(I, θ) = L(I, θ − Iτ ∗(I, θ),−τ ∗(I, θ)). (2.19)

Remark 9. In the variables (I, θ), the variable s does not appear at all in the expression
(2.17) for the scattering map, at least up toO(ε2). However, s does appear in the expression
(2.12) in the original variables (I, ϕ), so we have in (2.12) a family of scattering maps
parameterized by the variable s. Playing with the parameter s, we can have scattering
maps with different properties. See Lemma 14 for an application of this phenomenon.

The crests

For the computation of the scattering maps, we use an important geometrical object
introduced in [DH11], the crests.

Definition 10. Fixed I, we define by crests C(I) the curves on {(I, ϕ, s), (ϕ, s) ∈ T2},
satisfying

I
∂L
∂ϕ

(I, ϕ, s) +
∂L
∂s

(I, ϕ, s) = 0.

In our case
I A10(I) sinϕ+ A01 sin s = 0. (2.20)

Note that a point (I, ϕ, s) belongs to a crest C(I) if it is a minimum or maximum, or
more generally, a critical point of L along a NHIM line (2.11), that is, τ ∗(I, ϕ, s) = 0 in
(2.10), see Fig. 2.4.

Fig. 2.4: Level curves of L for µ = a10/a01 = 0.5 and I = 1.2. Crests (dashed) in blue and green and the
NHIM lines in black.
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Remark 11. Note that any critical point of L(I, ·, ·) belongs to the crest C(I). In general
we have two curves satisfying Eq.(2.20), the maximum crest CM(I), and the minimum
crest Cm(I). The maximum crest contains the point (I, ϕ = 0, s = 0), and the minimum
crest the point (I, ϕ = π, s = π). For a10 > 0, a01 > 0, the Melnikov function L(I, ·, ·)
given in (2.8) has a maximum point at the point (I, ϕ, s) = (I, 0, 0), and a minimum at
(I, π, π), and the function (2.6) has a maximum on CM(I), and a minimum on Cm(I). For
other combinations of signs of a10, a01, the location of maxima and minima changes, but
for simplicity, we have preserved the name of maximum and minimum crest.

We now proceed to study the crests. By (2.9) we can rewrite Eq. (2.20) as

µα(I) sinϕ+ sin s = 0, (2.21)

where

α(I) =
IA10(I)

µA01

=
sinh(π

2
) I2

sinh(π I
2

)
and µ =

a10

a01

. (2.22)

Note that if |µα(I)| < 1 we can write s as a function of ϕ for any value of ϕ. On the
other hand, if |µα(I)| > 1 we can write ϕ as a function of s. So, we have two different
kinds of crests:

• For |α(I)| < 1/ |µ|, the two crests are horizontal, see Fig. 2.5(a), with

CM,m(I) = {(I, ϕ, ξM,m(I, ϕ)) : ϕ ∈ T},

ξM(I, ϕ) = − arcsin(µα(I) sinϕ) mod 2π (2.23)

ξm(I, ϕ) = arcsin(µα(I) sinϕ) + π mod 2π.

(a) Horizontal crests: µ = a10/a01 =
0.6 and I = 1.2.

(b) Vertical crests: µ = a10/a01 =
1.2 and I = 1.

Fig. 2.5: Types of crests.

• For |α(I)| > 1/ |µ|, the two crests are vertical, see Fig. 2.5(b), with

CM,m(I) = {(I, ηM,m(I, s), s) : s ∈ T},

ηM(I, s) = − arcsin(sin s/ (µα(I))) mod 2π (2.24)

ηm(I, s) = arcsin(sin s/ (µα(I))) + π mod 2π.
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Remark 12. The case |α(I)| = 1/ |µ| is singular, since both crests are piecewise NHIM
lines and they touch each other at the points (ϕ, s) = (π/2, 3π/2) , (3π/2, π/2). See Fig. 2.6.

Fig. 2.6: Singular case: Crests for I = 1 and µ = 1.

We can describe the relation between the crests C(I) and the NHIM lines R(I, ϕ, s)
through the following Proposition:

Proposition 13. Consider the crest C(I) defined by (2.21) and the NHIM line R(I, ϕ, s)
defined in (2.11).

a) For |µ| < 0.625 the crests are horizontal and the intersections between any crest and
any NHIM line is transversal.

b) For 0.625 ≤ |µ| ≤ 0.97 the two crests C(I) are still horizontal, but for some values of
I there exist two NHIM lines R(I, ϕ, s) which are quadratically tangent to the crests.

c) For |µ| > 0.97, the same properties as stated in b) hold, except that for |µα(I)| > 1,
the crests C(I) are vertical.

Proof. The “horizontality” of a) and b) and the “verticality” of c) are due the upper bound
of |µ|. Since |α(I)| < 1/0.97 (see Fig.2.7), for |µ| ≤ 0.97, the crests are horizontal, that is,
they can be expressed by equations (2.23).

The condition of transversality is proved in [DH11]. Essentially, the proof is to ob-
serve that |Iα(I)| < 1.6 and that there exists a ϕ such that ∂ξ(I, ϕ)/∂ϕ = 1/I if, only if,
|Iα(I)| < 1/ |µ|(we will prove it in a slightly different context, see the proof of Proposi-
tion 20.)

About the amount of NHIM lines tangents to C(I), the proof is given in subsection
2.2.2.

In Figs. 2.5(a) and 2.5(b) we have displayed a segment of the the NHIM line R(I, ϕ, s),
|τ | < π, and we see that it intersects each crest CM(I) and Cm(I) transversally, giving rise
to two values τ ∗M and τ ∗m , therefore to two different scattering maps. We denote by τ ∗M the
τ with minimum absolute value such that given (I, ϕ, s), (I, ϕ− Iτ, s− τ) ∈ CM(I) and τ ∗m
is defined analogously when (I, ϕ− Iτ, s− τ) ∈ Cm(I) (see [DH11]).
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Fig. 2.7: Graph of |α(I)|

Scattering maps and crests

Note that τ ∗m and τ ∗M are associated to different homoclinic points to the NHIM Λ̃, and
consequently, to different homoclinic connections. From this we build different scattering
maps. The most natural way is to associate one scattering map to each crest. And we will
do this on the variables (I, ϕ, s) and (I, θ), where θ = ϕ− Is.

Before, we make some considerations about the NHIM lines defined in (2.11). Note that

θ := ϕ− Is = (ϕ− Iτ)− I (s− τ) ,

that is, θ is constant on each NHIM line R(I, ϕ, s), so we will also introduce another
notation for a NHIM line R(I, ϕ, s), namely

Rθ(I) := {(I, ϕ, s) : ϕ− Is = θ}.

Since (ϕ, s) ∈ T2, R(I, ϕ, s) is a closed line if I ∈ Q, whereas it is a dense line on T2 if
I /∈ Q. In this case, R(I, ϕ, s) intersects the crests C(I) along an infinite number of points.

Recall (see Remark 6) that θ is quasi-periodic in the variable s ∈ T. To avoid mon-
odromy with respect to this variable, we are going to consider from now on, in this Chapter,
s as a real variable in an interval of length 2π, −π/2 < s ≤ 3π/2. Under this restriction,
the NHIM line R(I, ϕ, s) defined in (2.11) becomes a NHIM segment

R(I, ϕ, s) = {(I, ϕ− Iτ, s− τ) ;−π/2 < s− τ ≤ 3π/2}, (2.25)

as well as Rθ(I), which can be written as

Rθ(I) = {(I, ϕ, s) : ϕ− Is = θ, (ϕ, s) ∈ T× (−π/2, 3π/2]}. (2.26)

From now on, when we refer to R(I, ϕ, s) and Rθ(I), they will be these line segments.
Notice that θ ∈ T.

We begin to consider the primary scattering map SM associated to the maximum crest
CM, that is, we look only at the intersections between the segment R(I, ϕ, s) given in (2.25)
and CM(I), parameterized by τ ∗M(I, ϕ, s) = τ ∗M(I, θ) + s (see (2.18)):

CM(I) ∩R(I, ϕ, s) = {(I, ϕ− Iτ ∗M(I, ϕ, s), ξM(I, ϕ− Iτ ∗M(I, ϕ, s)))} (2.27)

= {(I, ϕ− Iτ ∗M(I, ϕ, s), s− τ ∗M(I, ϕ, s))} (2.28)
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Equation (2.27) motivates us to introduce a new variable ψ = ϕ− Iτ ∗M(I, ϕ, s) that will
be useful in many contexts.

The variable ψ: a variable on the crest.

Let C(I) be a crest such that it can be parameterized by ξ(I, ϕ) as in (2.23). Since
τ ∗(I, ϕ, s) is the value of τ such that R(I, ϕ, s), given in (2.25), intersects C(I), we define

ψ := ϕ− Iτ ∗(I, ϕ, s). (2.29)

By (2.18) we can also write ψ in terms of the variable θ:

ψ = ϕ− I (τ ∗(I, θ) + s) = θ − Iτ ∗(I, θ). (2.30)

By (2.27) and (2.28),

s− τ ∗(I, ϕ, s) = ξ(I, ϕ− Iτ ∗(I, ϕ, s)) = ξ(I, ψ). (2.31)

In particular, for s = 0, ξ(I, ψ) = −τ ∗(I, ϕ, 0) = −τ ∗(I, θ) again by (2.18) and from (2.30)
we have the expression of θ in terms of ψ:

θ = ψ − Iξ(I, ψ). (2.32)

All the relations between the variables (ϕ, s), θ and ψ are written in Table 2.1 and are
displayed in Fig. 2.8. By the definitions of L∗(I, ϕ, s) in (2.13), and L∗(I, θ) in (2.16) and
(2.19), we have that

L∗(I, θ) = L∗(I, ϕ, s) = L(I, ψ, ξ(I, ψ)), (2.33)

So we can define the reduced Poincaré function in terms of (I, ψ) simply as the restriction
of the Melnikov potential L(I, ϕ, s) on the crest C(I) = {(I, ψ, ξ(I, ψ), ψ ∈ T)}, i.e.,

L∗(I, ψ) := L(I, ψ, ξ(I, ψ)), (2.34)

which in our case takes the simple and computable form

L∗(I, ψ) = A00 + A10(I) cosψ + A01 cos ξ(I, ψ), (2.35)

for a horizontal crest (3.21).
Therefore, as (I, ψ, ξ(I, ψ)) are points on the crest, the domain of L∗(I, ·, ·) is a subset

of C(I). So, if there exist different subsets where L∗(I, ·, ·) can be well defined, we can
build different scattering maps associated to C(I).

Denote L∗i (I, θ) = L(I, ϕ − Iτ ∗i (I, ϕ, s), s − τ ∗i (I, ϕ, s)), i = m,M, and L∗i (I, ψ) =
L(I, ψ, ξi(I, ψ)) from (2.33) and (2.34). We state the following lemma

Lemma 14. a) The Poincaré Reduced functions L∗M(I, ψ) and L∗M(I, θ) are even func-
tions in the variable I, that is, L∗M(I, ψ) = L∗M(−I, ψ) and L∗M(I, θ) = L∗M(−I, θ),
and consequently SM(I, θ) is symmetric in this variable I. The same happens for
Sm(I, θ), that is, for the scattering map associated to Cm(I).
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0 π/2 π 3π/2
-π/2

ξ(I,ψ)

0

π/2

π

{ (ϕ
−Iτ

,s
−τ)
}

−τ ∗ (I,ϕ,s)

−Iτ ∗ (I,ϕ,s)

−τ ∗ (I,θ)

−Iτ ∗ (I,θ)

θ

ψ

(ϕ,s)

Fig. 2.8: The three variables on the plane (ϕ, s):
ϕ, θ and ψ.

θ = ψ − Iξ(I, ψ) ψ = θ − Iτ∗(I, θ)

θ = ϕ− Is ϕ = θ + Is

ψ = ϕ− Iτ∗(I, ϕ, s) ϕ = ψ + I (s− ξ(I, ψ))

Table 2.1: Relation between variables.

b) The scattering map for a value of µ and s = π, associated to the intersection between
Rθ(I) and Cm(I) has the same geometrical properties as the scattering map for −µ
and s = 0, associated to the intersection between Rθ(I) and CM(I), i.e.,

Sµ,m(I, ϕ, π) = S−µ,M(I, ϕ, 0) = S−µ,M(I, θ)

Proof. a) This is an immediate consequence of the fact that function A10(I) is even and
ξM(I, ϕ) is odd in the variable I, see (2.9) and (2.23).

b) First, we look for τ ∗m such that the NHIM segment Rθ(I) intersects the crest Cm(I).
If we fix s = π, we have by (2.13) and (2.8):

L∗µ,m(I, ϕ, π) = A00 +A10(I) cos(ϕ− Iτ ∗m(I, ϕ, π)) +A01 cos(π − τ ∗m(I, ϕ, π)). (2.36)

Besides, we have by (2.10)

IA10(I) sin(ϕ− Iτ ∗m) + A01 sin(π − τ ∗m) = 0,

which, introducing µ (2.22), is equivalent to

µα(I) sin(ϕ− Iτ ∗m) + sin(π − τ ∗m) = 0, (2.37)

or
−µα(I) sin(ϕ− Iτ ∗m) + sin(−τ ∗m) = 0. (2.38)

By (2.31) and (2.23) we have that π− τ ∗m = ξm(I, ϕ− Iτ ∗m) for π/2 ≤ ξm ≤ 3π/2 and
therefore −π/2 ≤ −τ ∗m ≤ π/2.

By looking at (2.37) and (2.38), τ ∗m(I, ϕ, π) for µ is solution of the same equation
as τ ∗M(I, ϕ, 0) for −µ, and lies in the same interval −π/2 ≤ −τ ∗M ≤ π/2. Therefore
τ ∗m(I, ϕ, π) for µ is equal to τ ∗M(I, ϕ, 0) for −µ. From (2.36), L∗µ,m(I, ϕ, π) satisfies

L∗µ,m(I, ϕ, π) = A00 + A10(I) cos(ϕ− τ ∗M(I, ϕ, 0)) + (−A01) cos(−τ ∗M(I, ϕ, 0))

= L∗−µ,M(I, ϕ, 0).
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Since L∗µ,m(·, ·, π) and L∗−µ,M(·, ·, 0) coincide, their derivatives too and this implies
that Sµ,m(I, ϕ, π) = S−µ,M(I, ϕ, 0) = S−µ,M(I, θ).

The importance of the part b) of this lemma is that, concerning diffusion, the study for
a positive µ using SM(I, θ) is equivalent to the study for −µ using Sm(I, ϕ, π), i.e., if we
ensure the diffusion for a positive µ, we can ensure it for a negative one (just changing the
scattering map). Besides, since SM(I, θ) symmetric in the variable I (from the first part of
the lemma), from now on we will consider always I ≥ 0, µ > 0 and SM.

Now we are going to describe the influence of the intersections between the crests and
the NHIM segments with respect to the parameter µ described in Proposition 13 on the
scattering map associated to such crests.

Single scattering map: µ < 0.625

As in [DH11], assuming µ < 1/1.6 = 0.625, the crests are horizontal and there is no
tangency between Rθ(I) and CM(I), so that τ ∗M(I, θ) is well defined and by (2.19) and
(3.11) the reduced Poincaré function takes the form

L∗M(I, θ) = A00 + A10(I) cos(θ − Iτ ∗M(I, θ)) + A01 cos(−τ ∗M(I, θ)), (2.39)

and therefore SM(I, θ) takes the form (2.17).

Example To illustrate this construction, we fix µ = 0.6. In this case the crests are
horizontal for all I, and we display CM(I) parametrized by ξM (see (3.21)) in Fig.2.9 for
I = 1.2. We can see how Rθ(I) intersects transversally CM(I), as well as the phase space
of scattering map SM generated by this intersection given by the level curves of L∗M(I, θ).

Remark 15. Recall from Remark 9 that s does not appear in the expression (2.17) for
S(I, θ) and is a parameter in the expression (2.12) for S(I, ϕ, s). Computationally, one
difference is that in expression (2.12), once fixed a value of s, one throws from any “initial
point” (ϕ, s) the NHIM segment R(I, ϕ, s) until it touches the crest C(I) after a time
τ ∗(I, ϕ, s), obtaining a value for L∗(I, ϕ, s) given by (2.13), while in expression (2.17), s is
fixed equal to 0 or, equivalently, the initial point to throw the NHIM segment Rθ(I) is of
the form (θ, 0) (see Fig. 2.8).

Multiple scattering maps: 0.625 ≤ µ ≤ 0.97

As said before, for µ < 1/1.6 = 0.625 and any value of I, the two crests CM(I) and
Cm(I) are horizontal, and the NHIM segment Rθ(I) intersects transversely each of them,
giving rise to a unique scattering map SM and Sm associated to each crest. We will now
explore larger values of µ to detect tangencies between C(I) and Rθ(I), that is, when there
exists (ϕ, I) such that

∂ξ

∂ϕ
(I, ϕ) = 1/I,
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(a) Intersection between Rθ(I) and
CM(I) (in blue) for µ = 0.6 and
I = 1.2.

(b) The level curves of L∗
M(I, θ).

Fig. 2.9: Rθ(I) ∩ CM(I) and SM(I, θ).

where ξ(I, ϕ) is the parameterization (3.21) of the crest.

Tangencies between C(I) and Rθ(I) and multiple scattering maps

We take CM(I) parameterized by ξM as in (3.21). For the other crest Cm(I) is analogous.
Suppose that there exists a tangency point between CM(I) and Rθ(I). This is equivalent to
the existence of ψ such that ∂ξM/∂ψ(I, ψ) = 1/I. Using (3.21), this condition is equivalent
to

− µα(I) cosψ√
1− µ2α(I)2 sin2 ψ

=
1

I
, (2.40)

where α(I) is introduced in (2.22). Therefore

ψ = ± arctan

(√
I2µ2α(I)2 − 1

1− µ2α(I)2

)
+ π,

where the expression under the square root is non-negative for 0.625 ≤ µ ≤ 0.97 for some
values of I by Proposition 13. We are considering just these values of I.

Equation (2.40) implies cosψ < 0, say ψ ∈ (π/2, 3π/2). Denote the two tangent
points by ψ1 and ψ2 and, without loss of generality, ψ1 ≤ ψ2 with ψ1 ∈ (π/2, π] and
ψ2 = 2π − ψ1 ∈ [π, 3π/2).

We consider the function relating the variables θ and ψ (see Table 2.1)

θ(ψ) = ψ − IξM(I, ψ), (2.41)

and define
θ1 = ψ1 − IξM(I, ψ1) and θ2 = ψ2 − IξM(I, ψ2).

The function θ(ψ) has only two critical points, ψ1 and ψ2, except for the case where
ψ1 = ψ2 = π. Besides, we have

I
∂ξM
∂ψ

(I, ψ) = − Iµα(I) cosψ√
1− µ2α(I)2 sin2 ψ

< 0, ∀ψ ∈ (0, π/2) ∪ (3π/2, 2π)
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Therefore, −I∂ξM/∂ψ > 0, thus dθ/dψ = 1− I∂ξM/∂ψ > 0 ∀ψ ∈ (0, π/2) ∪ (3π/2, 2π) .
By continuity of dθ/dψ and since θ(ψ) has only two critical points, we have

dθ

dψ
> 0 ∀ψ ∈ (0, ψ1) ∪ (ψ2, 2π)

dθ

dψ
< 0 ∀ψ ∈ (ψ1, ψ2) .

Therefore θ1 = θ(ψ1) ≥ θ2 = θ(ψ2). Note that θ([ψ2, 2π]) = [θ2, 2π]. As θ1 ∈ [θ2, 2π],
there is a ψ̃1 ∈ [ψ2, 2π] such that θ(ψ̃1) = θ1. As dθ/dψ is positive, ψ̃1 is unique in that
interval. Analogously, we have ψ̃2 ∈ (0, ψ1) such that θ(ψ̃2) = θ2. We have ψ̃2 ≤ ψ1 ≤
ψ2 ≤ ψ̃1. We can build, at least, three bijective functions:

θA : DA :=
[
0, ψ̃2

]
∪ (ψ2, 2π] −→ [0, 2π] (2.42)

θB : DB := [0, ψ1) ∪
[
ψ̃1, 2π

]
−→ [0, 2π]

θC : DC :=
[
0, ψ̃2

]
∪ (ψ1, ψ2) ∪

[
ψ̃1, 2π

]
−→ [0, 2π]

If ψ1 < ψ2, that is, the tangency point is different from ψ = π, we have, at least, three
scattering maps associated to CM, the scattering map associated to L∗(I, θj), j = A,B,C.

Remark 16. Those three scattering maps appear because the NHIM line Rθ(I) intersects
CM(I) three times for θ in the interval (θ1, θ2).

Definition 17. We call tangency locus the set{
(I, θ(ψ)) :

∂ξ

∂ψ
(I, ψ) =

1

I
and I ∈ [−I∗, I∗]

}
.

Fixed I such that there exist tangencies, as we have seen before, there exist θ1 ≤ θ2 such
that (I, θ1), (I, θ2) belong to the tangency locus. We have that for any θ /∈ (θ1, θ2) there is
only one scattering map. But we have three different scattering maps for θ ∈ (θ1, θ2). We
can see this behavior on the example below.

Example We illustrate the scattering maps of CM(I) for µ = 0.9 in Fig. 2.10. We can
see the three scattering maps and we emphasize their difference showing a zoom around
the tangency locus. In this zoom, we can see curves with three different colors. Each color
represents a different scattering map.

The scattering maps “with holes”: µ > 0.97

We study now the case when µ is large enough such that µα(I) > 1 for some I, that
is, for µ > 0.97. In this case, the horizontal crests become vertical crests for some values
of I. But locally, the structure of the parameterizations ξM and ξm are preserved, that is,
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(a) The three intersections between
Rθ(I) and CM(I) for µ = 0.9 , I =
1.5.

(b) Level curves of L∗
M(I, θ).

(c) Zoom around the tangency locus

Fig. 2.10: Tangencies: Multiple scattering maps.

even if the crests are vertical from a global view-point, these crests are formed by pieces
of horizontal crests. So, some intersections between Rθ(I) and C(I) parameterized by the
vertical parameterization η, given in (2.24), can be seen, indeed, as intersections between
Rθ(I) and C(I) parameterized by ξ, given in (3.21). Using this idea, we can extend the
scattering map associated to the reduced Poincaré function, given in (2.34), for the values of
(I, ϕ) such that µα(I) > 1 but |µα(I) sinϕ| < 1. For some values of ϕ like ϕ = π/2, 3π/2,
this is not possible, and for those values of ϕ some “holes” appear in the definition of the
scattering map when the horizontal parameterization ξ is used.

Remark 18. For the diffusion, a priori, the existence of such values can be a problem.
However, one can avoid these holes using the inner map, or using another scattering map
associated to the vertical parameterization η given in (2.24).

Example We illustrate this case in Fig. 2.11. We display in (a) an example of intersection
between Rθ(I) and CM(I) and in (b) the level curves of L∗M(I, θ) (recall that they provide
an approximation to the orbits of the scattering map SM(I, θ)). The green region in (b) is
the region where the scattering map is not defined, that is, for a point (I, θ) in this region,
Rθ(I) does not intersect CM(I).
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(a) Intersection between CM(I) and
Rθ(I). µ = 1.5 and I = 1.

(b) Level curves of L∗
M(I, θ). In

green, the region which the level
curves are not defined.

Fig. 2.11: Scattering map with holes

Summary of the scattering maps

Taking into account the results of the last three sub-subsections 2.2.2–2.2.2 on the
primary scattering map SM, Sm for µ > 0 as well as Lemma 54 we can complete Proposition
13.

Theorem 19. Consider the crests C(I) defined in (2.21) and the NHIM lines R(I, θ)
defined in (2.26)

• For 0 < |µ| < 0.625 the two crests are horizontal and the intersection between any
crest and any NHIM lines is transversal. There exist two primary scattering maps
S(I, θ) defined on the whole range of θ ∈ T.

• For 0.625 ≤ |µ| ≤ 0.97 the two crests are still horizontal, but for some values of I
there exist two NHIM lines Rθ1(I), Rθ2(I) which are geometrically tangent to the
crests. There exist two or six scattering maps defined for θ 6= θ1, θ2.

• For |µ| > 0.97, the same properties stated in b) hold, except that for some bounded
interval of |I| there exists a sub-interval of θ ∈ T such that the scattering maps are
not defined.

2.3 Arnold diffusion

In the rest of the chapter, our goal will be the study of Arnold diffusion using adequately
chosen scattering maps. For this diffusion, it will be important to describe the level curves of
the reduced Poincaré function L∗(I, θ), since the scattering map is up to an error O(ε2), the
−ε time flow of the Hamiltonian L∗(I, θ). Among the level curves of L∗(I, θ), we will first
describe two candidates for fast diffusion, namely the ones of equation L∗(I, θ) = A00+A01,
that will be called “highways”. Indeed, such highways will be taken into account in the two
theorems about the existence of diffusion that will be proven in this section.
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In the next proposition we prove that L∗(I, θ) = A00 + A01 is a union of two “ver-
tical” curves in a rectangle T × B, that is, it can be written as Hl ∪ Hr where Hk =
{(I, θk(I)) : I ∈ B}, θk(I) is a smooth function, and the index k takes the value l for left
(0 < θl(I) < π) o r for right (π < θr(I) < 2π). To prove this, we only need to prove that

∂L∗M
∂θ

(I, θ) 6= 0 ∀(I, θ) ∈ {(I, θ) : L∗M(I, θ) = A00 + A01 and I ∈ B} .

2.3.1 A geometrical proposition: The level curves of L∗(I, θ)
Proposition 20. Assuming a10 a01 6= 0, the level curve L∗(I, θ) = A00 +A01 of the reduced
Poincaré function (2.16) is a union of two “vertical” curves on a cylinder (θ, I) ∈ T× B,
where the set B is given by

• for |µ| < 0.625, B is the real line.

• for 0.625 ≤ |µ|, B = (−∞,−I++) ∪ (−I+, I+) ∪ (I++,+∞) , where

I++ = max

{
I > 0 :

I3 sinh(π/2)

sinh(Iπ/2)
=

1

|µ|

}
and

– I+ = min {I > 0 : I3 sinh(π/2)/ sinh(Iπ/2) = 1/ |µ|} , for |µ| ≤ 1

– I+ = min {I > 0 : I2 sinh(π/2)/ sinh(Iπ/2) = 1/ |µ|} , for |µ| ≥ 1

Proof. Consider the real set A:

A =

{
I ≥ 0 : |α(I)| ≤ 1

|µ|

}
. (2.43)

For I ∈ A, the maximum crest CM(I) is horizontal and can be parameterized by the
expression (3.21) and ξM(I, 0) = ξM(I, π) = ξM(I, 2π) = 0.

Consider now the subset of A

B = {I ∈ A : there is no tangency between CM(I) and Rθ(I)}. (2.44)

As already mentioned, for I ∈ B one has ∂ξM/∂ψ(I, ψ) 6= 1/I, ∀ψ ∈ [0, 2π]. In par-
ticular, for I ∈ B the change (2.32) ψ ∈ T 7→ θ = ψ − Iξ(I, ψ) ∈ T is smooth with
inverse

ψ = θ − Iτ ∗M(I, θ) ∀θ ∈ T. (2.45)

Then we can rewrite for I ∈ B and θ ∈ T the reduced Poincaré function L∗M(I, θ) of (2.39)
in terms of this variable ψ as

L∗M(I, ψ) = A00 + A10(I) cosψ + A01 cos ξM(I, ψ).
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Notice that L∗M(I, ψ) is well defined for all (I, ψ) ∈ A×T and it is immediate to see that
for any I ∈ A there exists exactly one ψ0 ∈ (0, π) and another one ψ1 ∈ (π, 2π) such that
L∗M(I, ψ0) = L∗M(I, ψ1) = A00 + A01. Restricting now to I ∈ B, the same property holds
for L∗(I, θ), since the relation between θ and ψ is a change of variables sending θ = 0, π
to ψ = 0, π respectively. In other words, introducing the projection Π : R × T → R,
Π(I, θ) = I, B ⊂ Π

(
L∗−1

M (A00 + A01)
)
.

We can characterize B defined in (2.44) by the following property

I ∈ B ⇔ β(I) := Iα(I) <
1

|µ|
. (2.46)

Indeed, by definition (2.43), A is characterized by I ∈ A⇔ α(I) ≤ 1/ |µ|, where α(I) ≥ 0
is defined in (2.22), and it satisfies limI→0+ α(I) = 0 = limI→+∞ α(I) and it has a unique
positive critical point Iα ≈ 1.219 which is a global maximum, see Fig.2.12. Therefore

α(I) ≤ α(Iα) =
1

0.97
∼ 1.03. (2.47)

On the other hand, for I ∈ A there exist tangencies between CM(I) and Rθ(I) as long as
the condition (2.40) holds, which can only take place for |Iα(I)| ≥ 1/µ, which justifies the
characterization (2.46) for B.

The function β(I) is very similar to α(I), that is, β(I) is always positive for I > 0 , it
has a unique positive critical point Iβ = 1.9 and β(I) → 0 as I → 0 and I → +∞. This
positive critical point is a global maximum point,

β(I) ≤ β(Iβ) = 1.6. (2.48)

Besides, by (2.46), for I < 1, β(I) < α(I), β(1) = α(1) = 1 and for I > 1, β(I) > α(I).
See Fig. 2.12.

Fig. 2.12: Graph of α(I), in red, and β(I), in blue (dashed).

Now we consider the three case of the proposition, that is, 1) |µ| < 0.625, 2) 0.625 ≤
|µ| ≤ 1 and 3) |µ| ≥ 1.
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• Case 1 |µ| < 0.625, that is, 1/ |µ| > 1.6. Then, by (2.47) and (2.48),

α(I) ≤ 1.03 <
1

µ
and β(I) ≤ 1.6 <

1

|µ|
,

for all I, that is, for I > 0, B = [0,+∞) .

• Case 2 Note that for 0.625 ≤ |µ| < 0.97

α(I) ≤ 1.03 = 1/0.97 <
1

|µ|
≤ 1.6 = β(Iβ),

and by (2.47), A = [0,+∞). But, now β(Ib) ≥ 1/ |µ|. Then there exist two values
I ∈ A such that β(I) = 1/ |µ|. Define

I+ = min {I : β(I) = 1/ |µ|} and I++ = max {I : β(I) = 1/ |µ|} . (2.49)

By the characterization (2.46) of the set B we have B = [0, I+) ∪ (I++,+∞).

For 0.97 ≤ |µ| ≤ 1, there exist Ia < Iā such that α(Ij) = 1/ |µ|, j ∈ {a, ā} and
A = [0, Ia) ∪ (Iā,+∞). Analogously, there exist Ib < Ib̄ such that β(Ij) = 1/ |µ|,
j ∈ {b, b̄}. As Ib ≤ Ia and Iā < Ib̄, we have B = [0, Ib) ∪ (Ib̄,+∞), see Fig. 2.12.
But this the equivalent to B = [0, I+) ∪ (I++,+∞), where I+ and I++ are given by
(2.49).

• Case 3 This case is similar to the Case 2 for 0.97 ≤ |µ| ≤ 1. But now, as |µ| ≥ 1, we
have Ia ≤ Ib. So, in this case we have B = [0, Ia)∪(Ib̄,∞), or B = [0, I+)∪(I++,+∞) ,
where I+ = min {I : α(I) = 1/ |µ|} and I++ = max {I : β = 1/ |µ|}.

Finally, we see that L∗M(I, θ) = A00 + A01 is composed by two curves in rectangles
(θ, I) ∈ ((0, π) ∪ (π, 2π))×B. This is equivalent to prove that the derivative of this curve
with respect to the variable θ is different from 0 for all I in B. For any I ∈ B, we compute
the expression for ∂L∗M/∂θ(I, θ) which using (2.10) and the change of variables (2.45) takes
the form

∂L∗M
∂θ

(I, θ) = −A10(I) sin(ψ), (2.50)

and never vanishes for ψ ∈ (0, π) ∪ (π, 2π), or equivalently, for θ ∈ (0, π) ∪ (π, 2π). Then
L∗M(I, θ) = A00 + A01 is composed by two vertical curves on B.

As we have seen in Lemma 54, L∗(−I, θ) = L∗(I, θ). Then, the level curve L∗M(I, θ) =
A00 + A01 is also defined for I < 0, which concludes the proof.

Remark 21. Using the expressions above for I+ and I++ one can check that

I+ ∼
π

2 |µ| sinh(π/2)
and I++ ∼

(
2

π

)
log(|2 sinh(π/2)µ|), as |µ| → +∞.
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Definition 22. We call highways the two curves Hl ⊂ (0, π)×T and Hr ⊂ (π, 2π)×T such
that L∗(I, θ) = A00 + A01. By Proposition 20, they exist at least for I ∈ (−∞,−I++) ∪
(−I+, I+) ∪ (I++,+∞) for |µ| ≥ 0.615 and for any value I for |µ| < 0.625. If a10 > 0,
by (2.50), ∂L∗/∂θ is positive (respectively negative) along the highway Hr (resp. Hl). If
a10 < 0, change Hl to Hr.

Proposition 23. Consider the Hamiltonian

Hε(p, q, I, ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+
I2

2
+ ε cos q (a1 cosϕ+ a2 cos s) ,

a1a2 6= 0. The highways take the form

θh(I) =

arccos
(
A2(1−f(I))

A1(I)

)
+ I arccos(f(I)), I ≤ 0;

arccos
(
A2(1−f(I))

A1(I)

)
− I arccos(f(I)), I > 0;

and

θH(I) =

− arccos
(
A2(1−f(I))

A1(I)

)
− I arccos(f(I)), I ≤ 0;

− arccos
(
A2(1−f(I))

A1(I)

)
+ I arccos(f(I)), I > 0;

where θh ∈ (0, π) and θH ∈ (π, 2π).

Proof. From (2.20), (2.33) and the definition of the highways, we have the following two
equations

A1(I) cos(θ − Iτ ∗) + A2 cos(−τ ∗) = A2 (2.51)

IA1(I) sin(θ − Iτ ∗) + A2 sin(−τ ∗) = 0.

Multiplying by I the first equation we obtain

IA1(I) cos(θ − Iτ ∗) + IA2 (cos(−τ ∗)− 1) = 0

IA1(I) sin(θ − Iτ ∗) + A2 sin(−τ ∗) = 0.

or equivalently

IA1(I) cos(θ − Iτ ∗) = −IA2 (cos(−τ ∗)− 1)

IA1(I) sin(θ − Iτ ∗) = −A2 sin(−τ ∗).

We sum these two equations squared and we obtain

I2A2
1(I) = [IA2 (cos(−τ ∗)− 1)]2 + A2

2 sin2(−τ ∗).

After some arithmetical manipulations we obtain the following equation of second de-
gree in cos(−τ ∗)

(I2 − 1)A2
2 cos2(−τ ∗)− 2I2A2

2 cos(−τ ∗) + A2
2(I2 + 1)− I2A2

1(I) = 0.
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Solving this equation we have

cos(−τ ∗) =
2I2A2

2 ±
√

4I4A4
2 − 4(I2 − 1)A2

2 [A2
2(I2 + 1)− I2A2

1(I)]

2(I2 − 1)A2
2

.

After more arithmetical manipulation and considering that −1 ≤ cos(−τ ∗) ≤ 1 we have

cos(−τ ∗) =
I2A2 −

√
A2

2 + (I2 − 1)I2A2
1(I)

(I2 − 1)A2

.

In order to simplify the notation we define

f(I) :=
I2A2 −

√
A2

2 + (I2 − 1)I2A2
1(I)

(I2 − 1)A2

And therefore,
⇒ −τ ∗(I, θ) = ± arccos(f(I)).

Remember that we have two highways. This explains why we have found two different
values for the function τ ∗. Then we can rewrite the first equation of (2.51) as

A1(I) cos(θ ± I arccos(f(I))) + A2f(I) = A2.

This immediately implies

θ = ± arccos

(
A2 (1− f(I))

A1(I)

)
∓ I arccos(f(I)).

From the four possibilities, by comparing with numerical results we obtain

θh(I) =

arccos
(
A2(1−f(I))

A1(I)

)
+ I arccos(f(I)), I ≤ 0;

arccos
(
A2(1−f(I))

A1(I)

)
− I arccos(f(I)), I > 0;

and

θH(I) =

− arccos
(
A2(1−f(I))

A1(I)

)
− I arccos(f(I)), I ≤ 0;

− arccos
(
A2(1−f(I))

A1(I)

)
+ I arccos(f(I)), I > 0;

.

2.3.2 Results about global instability

Now we are going to prove two results about existence of the diffusion phenomenon
in our model. The first one is a direct application of the geometrical Proposition 20 just
proved and describes the diffusion that takes place close to the highways. The second is a
more general type of diffusion, valid also for the values of the action I where there are no
highways.
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Fig. 2.13: Highways in black for µ = 0.6.

Diffusion close to highways

Theorem 24. Assume that a10 a01 6= 0 in the Hamiltonian (2.1)+(2.3). Then, for any
I∗ there exists ε∗ = ε∗(I∗) > 0 such that for 0 < ε < ε∗, there exists a trajectory
(p(t), q(t), I(t), ϕ(t)) such that for some T > 0

I(0) ≤ −I∗; I(T ) ≥ I∗,

where the admissible values for I∗ = I∗(µ) satisfy

• For |µ| < 0.625, I∗ is arbitrary I∗ ∈ (0,+∞).

• For 0.625 ≤ |µ| ≤ 1, I∗ ∈ (0, I+), where I+ = min{I > 0 : I3 sinh(π/2)/ sinh(πI/2) =
1/ |µ|}.

• For |µ| ≥ 1, I∗ ∈ (0, I+), where I+ = {I > 0 : I2 sinh(π/2)/ sinh(πI/2) = 1/ |µ|}.

Proof. Recall that the reduced Poincaré function, given in (2.39), is

L∗M(I, θ) = A00 + A10(I) cos(θ − Iτ ∗M(I, θ)) + A01 cos(−τ ∗M(I, θ)).

During this proof, we denote τ ∗M(I, θ) simply by τ ∗M. For ε small enough, the scattering
map SM(I, θ) takes the form (2.17) for L∗ = L∗M, so that orbits under the scattering map
are contained in the level curves of the reduced Poincaré function L∗M, up to error of O(ε2).

Proposition 20 ensures the existence of the highways as two vertical level curves L∗M(I, θ) =
A00 + A01 for I in

• (−∞,+∞) for |µ| < 0.625.

• (−I+, I+) , where

– I+ = min{I > 0 : I3 sinh(π/2)/ sinh(πI/2) = 1/ |µ|} for 0.625 ≤ |µ| ≤ 1;

– I+ = min{I > 0 : I2 sinh(π/2)/ sinh(πI/2) = 1/ |µ|} for |µ| ≥ 1.
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Take a10 > 0. Then given I∗ > 0 (with the restriction I∗ < I+ if |µ| > 0.625), ∂L∗M > 0
along the highway Hr. Note that (I0, θ0) := (0, 3π/2) ∈ Hr. Taking any (Ii, θi) ∈ Hr, Ii > 0,

its image under the scattering map (Ĩi+1, θ̃i+1) = SM(Ii, θi) satisfies Ĩi+1−Ii = O(ε) > 0 and

is O(ε2)-close to Hr. Using the inner map on Λ̃, we find (Ii+1, θi+1) = φti+1
(Ĩi+1, θ̃i+1) ∈ Hr

with Ii+1 − Ii = O(ε) > 0. Continuing recursively in this way, we get a pseudo-orbit
{(Ii, θi), i = 0, . . . , N} ⊂ Hr with IN ≥ I∗ formed by applying successively the scattering
map and the inner map. Using the symmetry of Hr, introducing Ii = −Ii for i < 0,
we have the pseudo-orbit {(Ii, θi), |i| ≤ N} ⊂ Hr. Using standard shadowing results
in [FM00, FM03] based on the existence of transverse heteroclinic orbits between non-
resonant tori (changing slightly Ii to obtain an irrational frequency of the inner map, if
necessary) or newer results like the corollary 3.5 of [GLS14] where the recurrence property
of the inner dynamics is also used, there exists a trajectory of the system such that for
some T , I0 ≤ −I∗ and I(T ) ≥ I∗. If a10 < 0, changing Hr to Hl all the previous reasoning
applies.

Fig. 2.14: The diffusion trajectory in SM for µ = 0.6.

The general diffusion

Now we present a theorem that ensures the diffusion for all values of the parameter
a10, a01 (as long as a10a01 6= 0) and for any value of I∗. Besides, we prove it using the
geometrical properties of the scattering map that we have explored up to now.

Theorem 25. Assume that a10 a01 6= 0 in the Hamiltonian (2.1)+(2.3). Then, for any
I∗ > 0, there exists ε∗ = ε∗(I∗) > 0 such that for any ε, 0 < ε < ε∗, there exists a trajectory
(p(t), q(t), I(t), ϕ(t)) such that for some T > 0

I(0) ≤ −I∗ < I∗ ≤ I(T ).

Proof. Our proof consists on showing the existence of adequate orbits under several scatter-
ing maps, whose orbits will be given approximately by the level curves of the corresponding
reduced Poincaré functions, in such a way the value of I will be increasing. Later on, we
will combine them with orbits under the inner map to produce adequate pseudo-orbits for
shadowing.
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We begin with the simplest case. Assume |µ| < 0.625. In this case the highways, by
Proposition 20, are defined for any value of I ∈ R and Theorem 24 ensures the diffusion
phenomenon.

We now assume 0.625 ≤ |µ| ≤ 0.97. In this case for some value of I there may exist
tangencies between the crests CM(I) and the NHIM lines Rθ(I). Again by Proposition
20, in this case the highways are defined for all I ∈ (−∞,−I++) ∪ (−I+, I+) ∪ (I++,+∞)
where 0 < I+ ≤ I++. The case I∗ ∈ (0, I+) is contained in the result of Theorem 24. So,
we are going to consider I∗ ∈ [I+,+∞).

As before, we have one SM-orbit contained in one highway where I is increasing. We
have to study the region of I where the highways are not defined.

Our strategy is proving the existence of a scattering map in the side of θ where the I is
increasing, that is, for θ ∈ (0, π) or θ ∈ (π, 2π) (this depends on sign(a10)) where ∂L∗M/∂θ
is positive. Then, we will use the inner map (or another scattering map S ′) for changing
of pseudo-orbit (level curve) of L∗M. In this way, we continue the growth of I.

For any I ∈ (−I++,−I+)∪ (I+, I++), there exist tangencies between CM(I) and Rθ(I),
i.e., there exists ψ such that ∂ξM/∂ψ = 1/I, and therefore there exist three different
scattering maps.

Consider the case with µ > 0. As we have seen in Subsection 2.2.2, ψ ∈ T 7→ θ ∈ T given
in (2.41) is no longer a change of variables, but we have three bijections θi : Di(I) → T,
i ∈ {A,B,C} (see (2.42)). And for each bijection we have a scattering map associated to
it. Among these three scattering maps, we will chose only one for the diffusion. Consider
first the case a10 > 0 (recall that the highway Hr goes from −I+ toward I+). We chose
for instance, the scattering map associated to the reduced Poincaré function L∗M,A(I, θ) =
L∗M(I, θA(ψ)), ψ ∈ DA(I) since

∂L∗M
∂θ

(I, θA(ψ)) = −A10(I) sin(ψ) > 0 for ψ ∈ DA(I) ∩ (π, 2π)

and therefore the iterates under the scattering map SM.A(I, θ) (2.17) associated to L∗M,A(I, θ)
increase the values of I for θ ∈ (π, 2π). Notice that by definition of DA(I) for ψ ∈
DA(I) ∩ (π, 2π) = (ψ2, 2π) with ψ2 ∈ (π, 3π/2) (see Subsection 2.2.2) there are no tangen-
cies between the crest and the NHIM segment.

We can now proceed in the following way. We first construct a pseudo-orbit {(Ii, θi) :
i = 0, . . . , N1} ⊂ Hr with I0 = 0 and IN = I+, as in the proof of Theorem 24. Note
that all these points lie in the same level curve of L∗M, that is, L∗M(Ii, θi) = A00 + A01, i =
0, . . . , N1. Applying the inner dynamics, we get (IN1+1, θN1+1) = φtN1

(IN1 , θN1) with θN1+1 ∈
(θA(ψ2(IN1)), 2π) and then we construct a pseudo-orbit {(Ii, θi) : i = N1 +1, ..., N1 +M1} ⊂
L∗M,A(IN1+1, θN1+1) = lN1+1 with θi ∈ (θN1+1, 2π), 2π − θN1+M1 = O(ε2). Applying the
inner dynamics, we get (IN1+M1+1, θN1+M1+1) = φtN1+M1

(IN1+M1 , θN1+M1) with θN1+M1+1 ∈
θA(ψ2(IN1+M1), 2π)). Recursively, we construct pseudo-orbit {(Ii, θi) : i = N1 + 1, ...,N2}
such that IN2 ≥ I++. We finally follow the highway from I++ to I∗ constructing a pseudo-
orbit {Ii, θi) : i = N2, ..., IN3} ⊂ Hr with IN3 = I∗.

Using the symmetry properties (see Lemma 54) introducing Ii = −Ii for i < 0 we
have a pseudo-orbit {(Ii, θi) : |i| ≤ N3} with I−N3 = −I∗, IN3 = I∗. Using now the same
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shadowing techniques as in the proof of Theorem 25, there exists a diffusion trajectory. If
a10 < 0, changing Hr to Hl all the previous reasoning applies.

Remark 26. For the proof of this theorem we have chosen a simple pseudo-orbit, just
choosing the scattering map SM,A when it was not unique. Of course, there is a lot of
freedom in choosing pseudo-orbits, and we do not claim that the one chosen here is the
best one concerning minimal time of diffusion.

(a) SM for µ = 1.5 (b) SM combined with inner map (in
red)

Fig. 2.15: For µ = 1.5, highways are not preserved. Inner map and scattering map can be adequately
combined

Remark 27. A rough estimate for ε∗ = ε∗(I∗) of Theorem 25 . The scattering map
S(I, θ) (2.17) is the −ε time map of the Hamiltonian L∗(I, θ) given in (2.39), up to order
O(ε2). Therefore, as already noticed in Remark 7, if |∂L∗/∂θ(I, θ)| ≤ ε or |∂L∗/∂I(I, θ)| ≤
ε, the level curves of L∗(I, θ) are not useful enough to describe the orbits of S. It is easy
to check that ∇L∗(I, θ) only vanishes for I = 0, θ = 0, π mod 2π and that ‖∇L∗(I, θ)‖ .
8π |a10I| e−π|I|/2 for |I| → +∞. Thus, in general one has to avoid small neighborhoods of
(I, θ) = (0, 0), (0, π) and take care in regions where |I| is very large. In particular, the
highways Hl, Hr are far from (I, θ) = (0, 0), (0, π) and on them ‖∇L∗(I, θ)‖ ≥ A10(I)(1−
O(β(I)µ)) & 4π |a10I| e−π|I|/2 for large |I|, from which we get an upper bound for ε∗(I∗),
which is exponentially small in |I∗| for large |I∗| :

ε∗(I∗) < 4π |a10| |I∗| exp(−π |I∗| /2).

For smaller values of I∗, one can compute numerically the level curves of ‖∇L∗(I, θ)‖ = ε
and obtain ε∗ > ε∗(I∗) such that ‖∇L∗(I, θ)‖ = ε∗ implies |I| > |I∗|. See Table 2.2 for
some values of I∗, and µ = 0.9.

2.4 The time of diffusion

In this section we will provide an estimate of the diffusion time. For simplicity, we are
going to estimate the time for a diffusion using a highway (see Definition 22) as a guide,
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I∗ 1 2 3 4

ε∗(I∗) 1.4 0.75 0.25 0.07

Table 2.2: Estimates of ε∗ for µ = 0.9

that is, we are going to construct a pseudo-orbit close a the highway. This implies to
iterate the scattering map using as initial point a point on a highway. As we have seen
before, see Subsection 2.2.2, one iterate of SM(I, θ) is approximated by −ε time map of the
Hamiltonian L∗M(I, θ) up to O(ε2). However, if we iterate the scattering map a number n
of times, it generates a propagated error with respect to the level curve of L∗M(I, θ).

So, first we study the error generated by n iterates of the scattering map. Later, we will
estimate the time of diffusion along the highway combining the scattering and the inner
maps.

2.4.1 Accuracy of the scattering map

Equation (2.17) for the scattering map S is good enough up to an error of O(ε2) for
understanding one iterate of S. But if we consider Sn, that is, n-iterates of S, some
problems appear. These problems are related with the lack of precision of the equation
(2.17):

• Equation (2.17) of the scattering map has a relative error of order O(ε) and an
absolute errorO(ε2). Therefore, for n-iterates, when n is large, the error is propagated
in a such way that it cannot be discarded.

• Highways are unstable, i.e., the nearby level curves of L∗ move away from highways
(see instance Fig.2.9.b).

Now, our goal is to show how we can control these errors along a region U in the phase
space (I, θ) close to a highway. Basically, the control is to choose a good moment and
interval to apply the inner map to come back to the highway and to maintain the errors
small enough.

The propagated error

After iterating n times formula (2.17) for the scattering map, one gets for (In, θn) =
Sn(I0, θ0):

In = I0 + ε
n−1∑
j=0

∂L∗

∂θ
(Ij, θj) +O(nε2), and also θn = θ0 − ε

n−1∑
j=0

∂L∗

∂I
(Ij, θj) +O(nε2).

(2.52)
From now on, in this section, we will use the following notation:
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• S(I, θ) is the scattering map, see (2.17).

• ST(I, θ) = (I + ε ∂L∗/∂θ(I, θ), θ − ε ∂L∗/∂I(I, θ)) is the truncated scattering map.

• S0,t(I, θ) = (I(t), θ(t)) is the solution of the Hamiltonian system

İ(t) =
∂L∗

∂θ
(I(t), θ(t)) θ̇(t) = −∂L

∗

∂I
(I(t), θ(t)), (2.53)

with initial condition (I(0), θ(0)) = (I, θ).

Let (Ih, θh) be a point in the highway. The error between the scattering map and the
level curve of the reduced Poincaré function after n-iterates is given by

‖Sn(Ih + ∆I, θh + ∆θ)− S0,nε(Ih, θh)‖ , (2.54)

where ∆I and ∆θ are small. Note that we can rewrite (2.54) as

‖(Sn(Ih + ∆I, θh + ∆θ) − SnT(Ih + ∆I, θh + ∆θ))

+(SnT(Ih + ∆I, θh + ∆θ) − S0,nε(Ih + ∆I, θh + ∆θ))

+S0,nε(Ih + ∆I, θh + ∆θ)) − S0,nε(Ih, θh))‖.

We now proceed to study each subtraction.

• We begin with Sn(Ih + ∆I, θh + ∆θ) − SnT(Ih + ∆I, θh + ∆θ). From (2.52), we can
readily obtain by induction that

Sn(Ih + ∆I, θh + ∆θ)− SnT(Ih + ∆I, θh + ∆θ) = O(nε2). (2.55)

• Now we consider SnT(Ih + ∆I, θh + ∆θ)− S0,nε(Ih + ∆I, θh + ∆θ). By the definition
of ST we have that SnT is the n-step of the Euler method with step size ε in each
coordinate for solving the system (2.53). It is not difficult to check the standard
bound (see, for instance, [SB02])

‖SnT(Ih + ∆I, θh + ∆θ)− S0,nε(Ih + ∆I, θh + ∆θ)‖ ≤ Lε

2
[(1 + εK)n − 1] , (2.56)

where K := max(I,θ)∈U
∥∥JH(I, θ) (J∇L∗(I, θ))T

∥∥ , L = max(I,θ)∈U ‖∇L∗(I, θ)‖ and
H(I, θ) is the Hessian matrix of L∗(I, θ).

• Now we look for the last subtraction S0,nε(Ih + ∆I, θh + ∆θ))− S0,nε(Ih, θh). Apply-
ing Grönwall’s inequality on the variational equation associated to the Hamiltonian
vector field −∇L∗(I, θ), one gets

‖S0,εn(Ih + ∆I, θh + ∆θ))− S0,εn(Ih, θh)‖ ≤ ‖(∆I,∆θ)‖ eKεn. (2.57)
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We can now conclude from (2.55), (2.56) and (2.57), that the propagated error is

‖Sn(Ih + ∆I, θh + ∆θ)− S0,nε(Ih, θh)‖ ≤ O(nε2) +
Lε

2
[(1 + εK)n − 1] + ‖(∆I,∆θ)‖ eKεn

To avoid large propagated errors, one has to choose n such that nε� 1. For instance,
taking

n = ε−c, (2.58)

with 0 < c < 1 (which implies nε� 1) and ‖(∆I,∆θ)‖ = εa, a > 0, one gets

‖Sn(Ih + ∆I, θh + ∆θ)− S0,nε(Ih, θh)‖ = O(ε2−c, εa). (2.59)

2.4.2 Estimate for the time of diffusion

In this section our goal is to estimate the time of diffusion along the highway. We have
three different types of estimates associated to the time of diffusion.

• The total number of iterates Ns of the scattering map. This is the number of iterates
that scattering map spends to cover a piece of a level curve of the reduced Poincaré
function L∗.

• The time under the flow along the homoclinic invariant manifolds of Λ̃. This is the
time spent by each application of the scattering map following the concrete homoclinic
orbit to Λ̃ up to a distance δ of Λ̃. This time is denoted by Th = Th(δ).

• The time under the inner map. This time appears if we use the inner map between
iterates of the scattering map (it is sometimes called ergodization time) and we
denoted it by Ti.

For each iterate of the scattering map we have to consider the time Th. Besides, we have
seen in the previous subsection that to control the propagated error, we iterate successively
the scattering map just a number n = ε−c of times, 0 < c � 1. From now on we denote
this number n by Nss. So, after Nss iterates of the scattering maps we apply the inner
dynamics during some time Ti to come back to a distance εa to the highway. Therefore,
the total time spent under the inner map is bNs/NsscTi. We estimate that the diffusion
time along the highway is thus

Td = NsTh + bNs/NsscTi. (2.60)

Theorem 28. The time of diffusion Td close to a highway of Hamiltonian (2.1)+(2.3)
between −I∗ to I∗, for any 0 < I∗ < I+, with I+ given in Proposition 20, satisfies the
following asymptotic expression

Td =
Ts
ε

[
2 log

(
C

ε

)
+O(εb)

]
, for ε→ 0, where 0 < b < 1,
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with

Ts = Ts(I
∗, a10, a01) =

∫ I∗

0

− sinh(πI/2)

πa10I sinψh(I)
dI,

where ψh(I) is the parameterization (2.45) of the highway L∗(I, ψh) = A00 + A01, and

C = C(I∗, a10, a01) = 16 |a10|

(
1 +

1.465√
1− µ2A2

)

where A = maxI∈[0,I∗] α(I), with α(I) given in (2.22) and µ = a10/a01.

The proof of this Proposition is a consequence of the following four subsections.

Number of iterates Ns of the scattering map

The scattering map (I ′, θ′) = S(I, θ) given in (2.17) can be rewritten as

I ′ − I
ε

=
∂L∗

∂θ
(I, θ) +O(ε)

θ′ − θ
ε

= −∂L
∗

∂I
(I, θ) +O(ε).

Hence, disregarding the O(ε) terms, we define

dI

dυ
=
∂L∗

∂θ
(I, θ)

dθ

dυ
= −∂L

∗

∂I
(I, θ), (2.61)

where υ is a new parameter of time. Note that L∗(I, θ) is a first integral of (2.61) and
that the highway has the equation L∗(I, θ) = A00 + A01. Recalling formula (2.50) for
∂L∗/∂θ(I, θ), the equation for I reads as

dI

dυ
=
∂L∗

∂θ
(I, θ) = −A10(I) sinψ,

where ψ = θ − Iτ ∗(I, θ) as given in (2.45). We choose the highway Hr for a10 > 0 (or H
for a01 < 0) to ensure that ∂L∗/∂θ(I, θ) > 0 (see Definition 22). This implies that we can
rewrite the equation above as

dυ

dI
=

−1

A10(I) sinψh

so that

Ts := υ =

∫ If

I0

−1

A10(I) sinψh(I)
dI =

∫ If

I0

− sinh(πI/2)

2πIa10 sinψh(I)
dI

is the time of diffusion in the interval [I0, If ] of values of I following the flow (2.61).

Remark 29. If we consider an interval of diffusion as in Theorem 25, that is, [−I∗, I∗],
the time Ts is

Ts =

∫ I∗

0

− sinh(πI/2)

πIa10 sinψh(I)
dI.
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Remark 30. Observe that

Ts ≥
1

2πa10

(
Shi

(
Ifπ

2

)
− Shi

(
I0π

2

))
,

where the function Shi(x) is defined as

Shi(x) :=

∫ x

0

sinhσ

σ
dσ.

The time Ts has been computed from the continuous dynamics (2.61) . But the scat-
tering map generates a discrete dynamics with a ε-step. Then for us, the important infor-
mation is the number of iterations of the scattering map (2.17) from I0 to If which is given
by

Ns =
Ts

ε
(1 +O(ε)).

Time of the travel Th on the invariant manifold

Let x̃− and x̃+ be on Λ̃ such that S(x̃−) = x̃+. We now estimate the time of the flow
from a point δ-close to x̃− to a point δ-close to x̃+.

Recall that the unperturbed separatrices (2.2) are given by

(p0(t), q0(t)) =
(
2/ cosh t, 4 arctan et

)
.

We have (pε(τ), qε(τ)) = (2/ cosh τ, 4 arctan eτ ) + O(ε), where (pε(τ), qε(τ)) ∈ Bδ(0) ∩
W s,u
ε (0).

Note that when τ → ±∞,

p0(τ) =
4

e|τ |
(
1− e−2|τ | + e−4|τ | + . . .

)
=

4

e|τ |
(
1 +O(e−2|τ |)

)
.

Besides, as q̇0(τ) = ∂H0/∂p = p0(τ), we also have

q0(τ) = ∓ 4

e|τ |
(
1 +O(e−2|τ |)

)
mod 2π when τ → ±∞.

We consider starting and ending points on ∂Bδ(0, 0). Then, denoting by τf = −τi the initial
and final points, we have

q2
0(τi) + p2

0(τi) = q2
0(τf) + p2

0(τf) =

[
4

eu
(
1 +O(e−2u)

)]2

+

[
− 4

eu
(
1 +O(e−2u)

)]2

= δ2,

where u = |τi| , |τf|. Therefore,

4
√

2

eu
(
1 +O(e−2u)

)
= δ. (2.62)
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Note that by the above equation δ = O(e−u), thus e−2u = O(δ2). Hence, we can rewrite
equation (2.62) as

eu =
4
√

2

δ

(
1 +O(δ2)

)
. (2.63)

So,

u = log

[
4
√

2

δ

(
1 +O(δ2)

)]
= log

(
4
√

2

δ

)
+O(δ2).

Since ∆τ = 2u, we finally have

Th = 2 log

(
4
√

2

δ

)
+O(δ2) +O(ε). (2.64)

It is now necessary to estimate a value for δ and we want δ small enough such that this
choice does not affect significantly the scattering map (2.17), that is, that the level curves
of the reduced Poincaré remain at a distance of O(ε). From Proposition 5 the Melnikov
potential, using that p2

0/2 + cos q0 − 1 = 0, is

L(I, ϕ, s) =
1

2

∫ +∞

−∞
p2

0(σ) (a00 + a10 cos(ϕ+ Iσ) + a01 cos(s+ σ)) dσ.

The reduced Poincaré function (2.16) L∗(I, θ) is

L∗(I, θ) =
1

2

∫ +∞

−∞
p2

0(σ) (a00 + a10 cos(ϕ+ I(σ − τ ∗(I, ϕ, s)))

+a01 cos(s− τ ∗(I, ϕ, s) + σ)) dσ.

Considering the diffusion along the highways, recall that ψ, given in (2.29), is well
defined and, as in(2.35), we can write the reduced Poincaré function on the variables (I, ψ)
as

L∗(I, ψ) =
1

2

∫ +∞

−∞
p2

0(σ) (a00 + a10 cos(ψ + Iσ) + a01 cos(ξ(I, ψ) + σ)) dσ

= A00 + A10(I) cosϕ+ A01 cos ξ(I, ϕ).

As we want to preserve the level curves of the reduced Poincaré function up to O(ε), we
need ti and tf such that the integration above along all the real numbers does not change
much when the interval of integration is [ti, tf], more precisely, given a ε > 0

∣∣∣∣∂L∗∂I (I, ψ)−
(
∂L∗

∂I
(I, ψ)

)
δ

∣∣∣∣ < ε and

∣∣∣∣∂L∗∂ψ
(I, ψ)−

(
∂L∗

∂ψ
(I, ψ)

)
δ

∣∣∣∣ < ε, (2.65)

where
(
∂L∗

∂γ
(I, ψ)

)
δ

is given, for γ ∈ {ψ, I} by

−1

2

∫ tf

ti

∂

∂γ

(
p2

0(σ) (a00 + a10 cos(ϕ+ I(σ − τ ∗(I, ϕ, s))) + a01 cos(s− τ ∗(I, ϕ, s) + σ))
)
dσ.
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Using that |α′(I)| < 1.465, one computes for ti = −tf that∣∣∣∣∂L∗∂γ
(I, ψ)−

(
∂L∗

∂γ
(I, ψ)

)
δ

∣∣∣∣ < Ce−tf γ ∈ {ψ, I},

where C = 16
(
|a10|+ 1.465 |a01| |µ| /

√
1− µ2A2

)
, A = maxI∈[0,I∗] α(I). By (2.63) with

u = tf, this is equivalent to∣∣∣∣∂L∗∂γ
(I, ψ)−

(
∂L∗

∂γ
(I, ψ)

)
δ

∣∣∣∣ < Cδ(1 +O(δ2))

4
√

2
.

To satisfy Eq.(2.65) we have to take a δ such that the above right hand side is less or
equal than ε. For simplicity, we take δ satisfying the equality, that is,

δ =
4
√

2ε

C
(1 +O(ε2

0)).

Inserting this value of δ in (2.64), we can conclude that

Th = 2 log

16 |a10|
(

1 + 1.465√
1−µ2A2

)
ε

+O(ε).

Time Ti under the inner map

To build of the pseudo-orbit which shadows the real diffusion orbit, we need, after each
Nss-iterates of the scattering map (Nss = dε−ce, see (2.58)), to apply the inner flow to
return to the same level curve of L∗ (or close enough). The time spent by the inner flow is
the time Ti, which we are going to estimate.

Recall that Λ̃ε = Λ̃, where Λ̃ is a NHIM of the unperturbed case (see Section 2.1). We
will calculate the time for the flow of the unperturbed case because in our case it is a good
approximation, that is, along NHIM lines (I, ϕ+ It, s+ t) (see Section 2.1).

Given ε > 0 small enough, our goal is to calculate t > 0 such that

|(I, ϕ+ It, s+ t)− (I, ϕ, s)| < εa, (2.66)

that is, |I(2πk)− 2πl| < εa for some integer k, l, or equivalently∣∣∣∣I − l

k

∣∣∣∣ < εa

2πk
. (2.67)

We now recall the Dirichlet Box Principle:

Proposition 31. (Dirichlet Box Principle) Let N be a positive integer and let α be
any real number. Then there exists positive integers k ≤ N and l ≤ αN such that∣∣∣∣α− l

k

∣∣∣∣ ≤ 1

k(N + 1)
.
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Define N := d2π/εa − 1e, the smaller natural number such that it is greater or equal
than 2π/εa − 1. Then from the Dirichlet Box Principle, there exist k, l satisfying the
condition (2.67) such that k ≤ N and l ≤ IN . Then Ti = 2πk is the time required for
(2.66), called the ergodization time. Note that for any ϕ,

Ti ≤ 2πN = 2π

⌈
2π

εa
− 1

⌉
,

So that Ti = O(ε−a).

Dominant time and the order of diffusion time

We finally put together the estimates of Ns, Th and Ti, jointly with Nss = ε−c in the
formula for the time of diffusion (2.60). If we look just at the order of the time of diffusion
we have

Td = NsTh + bNs/NsscTi = O(ε−1 log ε−1) +O(εc−a−1).

Choosing 0 < a < c the term containing the time Ti under the inner map is negligi-
ble compared with the term containing the time of travel Th along the homoclinic orbit:
εc−a−1 � (1/ε) log 1/ε. We finally obtain the desired estimate for the time of diffusion

Td =
Ts

ε

[
2 log

C

ε
+O(εb)

]
,

where b = c − a. Since c < 1, 0 < b < 1. Notice that by the choice of the parameter
0 < a < c� 1, the accuracy of the scattering map given in (2.59) is O(εa).
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Chapter 3

Second case for 2+1/2 degrees of
freedom

This Chapter, as explained in the Introduction, concerns about the case given by Hamil-
tonian

Hε(p, q, I, ϕ, t) = ±
(
p2

2
+ cos q − 1

)
+
I2

2
+ ε cos q (a1 cosϕ+ a2 cos(ϕ− s)) . (3.1)

We notice that this case completes the study of the diffusion for Hamiltonian (1.1)+(1.2).
All considerations about the unperturbed Hamiltonian are exactly the same described in
Section 2.1 and we do not repeat here.

We begin by describing the inner dynamics and a brief description of the resonant
region. In Section 3.2, we describe the scattering maps and their geometrical properties.
In Section 3.3, we prove our theorem of diffusion. Finally, we describe a new kind of
scattering maps in Section 3.4 and the new possibilities of study with them.

3.1 Inner dynamics

The inner dynamics is derived from the restriction of Hε in (3.1) and its equations to
Λ̃, that is,

K(I, ϕ, s) =
I2

2
+ ε (a1 cosϕ+ a2 cos(ϕ− s)) , (3.2)

and differential equations

ϕ̇ = I ṡ = 1 İ = ε (a1 sinϕ+ a2 sin(ϕ− s)) . (3.3)

Note that in this case the inner dynamics is slightly more complicated than in Chapter 2
where there was just one resonance, namely, in I = 0. In the current case we have two
resonant regions of size O(

√
ε) where secondary KAM tori appear. To describe these

regions, we use normal forms as in [DLS06].
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Consider the autonomous extended Hamiltonian

K(I, A, ϕ, s) =
I2

2
+ A+ ε (a1 cosϕ+ a2 cos(ϕ− s)) , (3.4)

with associated differential equations

ϕ̇ =I İ =ε (a1 sinϕ+ a2 sin(ϕ− s))
ṡ =1 Ȧ =− εa2 sin(ϕ− s).

This system is equivalent to the system represented by (3.2)+(3.3). We wish to eliminate
the dependence on the angle variables. Consider a change of variables ε-close to the identity

(ϕ, s, I, A) = g(φ, σ, J,B) = (φ, σ, J,B) +O(ε)

such that it is the one-time flow for a Hamiltonian εG, i.e., g = gt=1, where gt is solution
of

dgt
dt

= J2∇εG ◦ gt, where J2 is the symplectic matrix

(
0 1
−1 0

)
.

Composing K with g and expanding in a Taylor series around t = 0, one obtains

K ◦ g = K +
{
K, εG

}
+

1

2

{{
K, εG

}
, εG

}
+ . . . ,

where {·} is the Poisson bracket. Using the expansion (3.4) of K, the equation above can
be written as

K ◦ g =
J2

2
+B + ε

(
a1 cosφ+ a2 cos(φ− σ) +

{
J2

2
+B,G

})
+
ε2

2

{{
J2

2
+B,G

}
, G

}
+O(ε3).

(3.5)

We want to find G such that a1 cosφ+ a2 cos(φ− σ) +
{
J2

2
+B,G

}
= 0, or equivalently,

J
∂G

∂φ
+
∂G

∂σ
= a1 cosφ+ a2 cos(φ− σ).

Given a < b < 1, consider any function Ψ ∈ C∞(R) satisfying Ψ(x) = 1 for x ∈ [−a, a]
and Ψ(x) = 0 for |x| ≥ b and introduce

G(J,B, φ, σ) :=
a1

J
(1−Ψ(J)) sinφ+

a2

J − 1
(1−Ψ(J − 1)) sin(φ− σ),

Substituting the above function G(J,B, φ, σ) in (3.5) we have

K ◦ g =
J2

2
+B +O(ε2), (3.6)
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for J, J − 1 /∈ [−b, b]. For J ∈ [−a, a],

K ◦ g =
J2

2
+B + εa1 cosφ+O(ε2). (3.7)

Finally, for J − 1 ∈ [−a, a],

K ◦ g =
J2

2
+B + εa2 cos(φ− σ) +O(ε2). (3.8)

From (3.7) and (3.8), one sees that on J = 0 and J = 1 there are resonances of first order
in ε with a pendulum-like behavior.

Coming back to the original variables, three kinds of invariant tori are obtained. For
the first order resonance I = 0, there is a positive a such that the invariant tori are given
by F 0(I, ϕ, s) = constant with

F 0(I, ϕ, s) =
I2

2
+ εa1 cosϕ+O(ε2). (3.9)

for I ∈ [−a, a].
Analogously, for the first order resonance I = 1, with

F 1(I, ϕ, s) =
(I − 1)2

2
+ εa2 cos(ϕ− s) +O(ε2),

for I − 1 ∈ [−a, a].

Remark 32. As commented in [DLS06], there exists a secondary resonance in I = 1/2,
but the size of the gap in its resonant region is much smaller than the size of gaps in
resonant regions associated to I = 0 and I = 1.

Remark 33. For Hamiltonian (1.5) with r 6= 1, the resonances take place in I = 0 and
I = 1/r.

From (3.6), on the non-resonant region the invariant tori has equations F nr(I) =
constant with

F nr(I) =
I2

2
+O(ε2).

An illustration of the inner dynamics is displayed in Figure 3.1.

3.2 Scattering map

We are going to explore the properties of the scattering maps of Hamiltonian (3.1). The
notion of scattering map on a NHIM was introduced in [DLS00]. Let W be an open set of
[−I∗, I∗]×T2 such that the invariant manifolds of the NHIM Λ̃ introduced in (1.3) intersect
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Fig. 3.1: Plane ϕ× I of inner dynamics for µ = 0.75 and ε = 0.01.

transversally along a homoclinic manifold Γ = {z̃(I, ϕ, s; ε), (I, ϕ, s) ∈ W} so that for any
z̃ ∈ Γ there exist unique x̃+,− = x̃+,−(I, ϕ, s; ε) ∈ Λ̃ such that z̃ ∈ W s

ε (x−) ∩W u
ε (x̃+). Let

H+,− =
⋃
{x̃+,−(I, ϕ, s; ε) : (I, ϕ, s) ∈ W} .

The scattering map associated to Γ is the map

S : H− −→ H+

x̃− 7−→ S(x̃−) = x̃+.

For the characterization of the scattering maps, it is required to select the homoclinic
manifold Γ and this is done using the Poincaré-Melnikov theory. From [DH11, DLS06], we
have the following proposition (compare with Chapter 2, Prop. 5)

Proposition 34. Given (I, ϕ, s) ∈ [−I∗, I∗] × T2, assume that the real function

τ ∈ R 7−→ L(I, ϕ− I τ, s− τ) ∈ R (3.10)

has a non degenerate critical point τ ∗ = τ ∗(I, ϕ, s), where

L(I, ϕ, s) :=

∫ +∞

−∞
(f(q0(σ))− f(0)) g(ϕ+ Iσ, s+ σ; 0)dσ.

Then, for 0 < ε small enough, there exists a unique transversal homoclinic point z̃ to Λ̃ε

of Hamiltonian (1.1), which is ε-close to the point

z̃∗(I, ϕ, s) = (p0(τ ∗), q0(τ ∗), I, ϕ, s) ∈ W 0(Λ̃) :

z̃ = z̃(I, ϕ, s) = (p0(τ ∗) +O(ε), q0(τ ∗) +O(ε), I, ϕ, s) ∈ W u(Λ̃ε) t W s(Λ̃ε).

The function L is called the Melnikov potential of Hamiltonian (1.1). For the concrete
Hamiltonian (3.1) it takes the form

L(I, ϕ, s) = A1(I) cosϕ+ A2(I) cos(ϕ− s), (3.11)
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where

A1(I) =
2πIa1

sinh(πI/2)
and A2(I) =

2π(I − 1)a2

sinh(π(I − 1)/2)
.

The homoclinic manifold Γ is characterized by the function τ ∗(I, ϕ, s). Once a τ ∗(I, ϕ, s) is
chosen, which under the conditions of Proposition 34, is locally smoothly well defined, by
the geometric properties of the scattering map, see [DH09, DH11, DLS08], the scattering
map has the explicit local form

S(I, ϕ, s) =

(
I + ε

∂L∗

∂ϕ
(I, ϕ, s) +O(ε2), ϕ− ε∂L

∗

∂I
(I, ϕ, s) +O(ε2), s

)
,

where
L∗(I, ϕ, s) = L(I, ϕ− Iτ ∗(I, ϕ, s), s− τ ∗(I, ϕ, s)). (3.12)

Notice that the variable s is fixed under the scattering map. As a consequence, see
[DH11], introducing the variable

θ = ϕ− Is

and defining the reduced Poincaré function

L∗(I, θ) := L∗(I, ϕ− Is, 0) = L∗(I, ϕ, s), (3.13)

in the variables (I, θ), the scattering map has the simple form

S(I, θ) =

(
I + ε

∂L∗

∂θ
(I, θ) +O(ε2), θ − ε∂L

∗

∂I
(I, θ) +O(ε2)

)
,

so up to O(ε2) terms, S(I, θ) is the ε times flow of the autonomous Hamiltonian −L∗(I, θ).
In particular, the iterates under the scattering map follow the level curves of L∗ up to
O(ε2).

3.2.1 Crests and NHIM lines

We have seen that the function τ ∗ plays a central role in our study. Therefore, we are
interested in finding the critical points τ ∗ = τ ∗(I, ϕ, s) of function (3.10). For our concrete
case (3.11), τ ∗ is a solution of

IA1(I) sin(ϕ− Iτ ∗) + (I − 1)A2(I) sin(ϕ− s− (I − 1)τ ∗) = 0. (3.14)

This equation can be viewed from two equivalently geometrical viewpoints. The first one
is that to find τ ∗ = τ ∗(I, ϕ, s) satisfying (3.14) for any (I, ϕ, s) ∈ [−I∗, I∗]×T2 is the same
as to look for the extrema of L on the NHIM line

R(I, ϕ, s) = {(I, ϕ− Iτ, s− τ) : τ ∈ R} . (3.15)

Remark 35. Since (ϕ, s) ∈ T2, R(I, ϕ, s) is a closed line if I ∈ Q and it is a dense line on
{I} × T2 if I /∈ Q.
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The other viewpoint is that, fixing (I, ϕ, s), a solution τ ∗ of (3.14) is equivalent to
finding intersections between a NHIM line (3.15) and a curve defined by

IA1(I) sinϕ+ (I − 1)A2(I) sin(ϕ− s) = 0.

These curves are called crests, and in a general way can be defined as follows.

Definition 36. [DH11] We define by Crests C(I) the curves on (I, ϕ, s), (ϕ, s) ∈ T2, such
that

∂L
∂τ

(I, ϕ− Iτ, s− τ)|τ=0 = 0, (3.16)

or equivalently,

I
∂L
∂ϕ

(I, ϕ, s) +
∂L
∂s

(I, ϕ, s) = 0.

As in our case L(I, ϕ − Iτ, s − τ) = A1(I) cos(ϕ − Iτ) + A2(I) cos(ϕ − s − (I − 1)τ),
equation (3.16) takes the form (3.16). Introducing

σ = ϕ− s, (3.17)

equation (3.16) can be rewritten as

µα(I) sinϕ+ sinσ = 0, (3.18)

for I 6= 1, where

µ =
a1

a2

and α(I) =
I2 sinh(π

2
(I − 1))

(I − 1)2 sinh(πI
2

)
. (3.19)

From now on, when we refer to crests C(I) we mean the set of points (I, ϕ, σ) satisfying
equation (3.18). See an illustration in Fig. 3.3.

Remark 37. In Chapter 2 the crests were described on the plane (ϕ, s), whereas now such
curves lie on the plane (ϕ, σ). Besides, differently from the cases studied in [DH11] and in
Chapter 2, the function α(I) introduced in (3.19) is not defined for all I. More precisely,
it is not defined for I = 1. For this value of I, equation (3.18) is not adequate, and one
has to use (3.16) to check that for I = 1 the crests are just two vertical straight lines on
the plane (ϕ, σ) given by ϕ = 0 and ϕ = π.

Remark 38. For Hamiltonian (1.5) and r ∈ (0, 1), αr(I) is not defined for I = 1/r and is
given by

αr(I) =
I2 sinh

(
π
2
(rI − 1)

)
(rI − 1)2 sinh

(
πI
2

) . (3.20)
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We are interested in understanding the behavior of these crests because, as we have seen
in[DH11] and Chapter 2, their intersection with the NHIM lines determine the existence
and behavior of scattering maps.

From (3.18), when |α(I)| < 1/ |µ|, σ can be written as a function of ϕ for all ϕ ∈ T on
the crest C(I). On the other hand, if |α(I)| > 1/ |µ|, ϕ can be written as a function of σ for
all σ ∈ T. These two conditions give us two kinds of crests: horizontal for |α(I)| < 1/ |µ|
and vertical for |α(I)| > 1/ |µ|. These names are due to their forms on the plane (ϕ, σ).
We consider the same characterization used in Chapter 2:

• For |α(I)| < 1/ |µ|, there are two horizontal crests σ = ξM,m(I, ϕ)

CM,m(I) = {(I, ϕ, ξM,m(I, ϕ)) : ϕ ∈ T},

ξM(I, ϕ) = − arcsin(µα(I) sinϕ) mod 2π (3.21)

ξm(I, ϕ) = arcsin(µα(I) sinϕ) + π mod 2π.

• For |α(I)| > 1/ |µ|, there are two vertical crests ϕ = ηM,m(I, σ)

CM,m(I) = {(I, ηM,m(I, σ), σ) : σ ∈ T},

ηM(I, σ) = − arcsin(sinσ/ (µα(I))) mod 2π

ηm(I, σ) = arcsin(sin σ/ (µα(I))) + π mod 2π.

Remark 39. |α(I)| = 1/ |µ| is a singular or bifurcation case. In this case, the crests are
straight lines and are not differentiable in ϕ = π/2 and ϕ = 3π/2. See Fig. 2.6.

Remark 40. The crest containing the point (ϕ, σ) = (0, 0) will be denoted by CM(I) and
the crest containing the point (ϕ, σ) = (π, π) by Cm(I).

Note that the function |α(I)| is not bounded, indeed

lim
I→1
|α(I)| = +∞.

This implies that for any µ there exists a neighborhood U of I = 1 such that for all I ∈ U
the crests are vertical. On the other hand, since α(0) = 0 there exists a neighborhood V
of I = 0 such that for all I ∈ V the crests are horizontal. We notice here a remarkable
difference with the Hamiltonians studied in [DH11] and Chapter 2, where, for |µ| ≤ 0.97,
all the crests are horizontal for all I.

Now take a look at the properties of the function α(I) introduced in (3.19) to describe
under which conditions in µ the crests are horizontal or vertical. First of all, observe that
for I 6= 1, α(I) is smooth and α′(I) 6= 0, and for I = 1 α(I) is not bounded, indeed it has
a vertical asymptote

lim
I→1−

α(I) = −∞ and lim
I→1+

α(I) = +∞.
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Given a µ 6= 0, since α(0) = 0, there exists a unique Ic ∈ (0, 1) such that |α(I)| = 1/ |µ|.
So, the crests are horizontal for I ∈ [0, Ic) and vertical for I ∈ (Ic, 1).

Others important limits are

lim
I→−∞

α(I) = exp(π/2) and lim
I→+∞

α(I) = exp(−π/2).

The first limit implies that |α(I)| < exp(π/2) for I ∈ (−∞, 0). Thus, if exp(π/2) ≤ 1/ |µ|
the crests are horizontal for I ∈ (−∞, 0). Otherwise, if 1/ |µ| < exp(π/2), there exists a
unique Il ∈ (−∞, 0) such that |α(I)| = 1/ |µ| and the crests are vertical for I ∈ (−∞, Il)
and horizontal for I ∈ (Il, 0).

The second limit implies that |α(I)| > exp(−π/2) for I ∈ (1,+∞). Then, if exp(−π/2) ≥
1/ |µ|, the crests are vertical for I ∈ [1,+∞). if exp(−π/2) < 1/ |µ|, there exists a
unique Ir ∈ (1,+∞), such that the crests are vertical for any I in [1, Ir) and horizon-
tal for I ∈ (Ir,+∞).

Summarizing, for 1/ |µ| ≥ exp(π/2), crests are horizontal for I ∈ (−∞, Ic) ∪ (Ir,+∞)
and vertical for I ∈ (Ic, Ir). For exp(−π/2) < 1/ |µ| < exp(π/2), crests are horizontal for
I ∈ (Il, Ic)∪(Ir,+∞) and vertical for I ∈ (−∞, Il)∪(Ic, Ir). Finally, if 1/ |µ| < exp(−π/2),
crests are horizontal for I ∈ (Il, Ic) and vertical for I ∈ (−∞, Il) ∪ (Ic,+∞).

Remark 41. For r ∈ (0, 1), αr(I) (3.20) is not bounded on a neighborhood of the resonance
I = 1/r, i.e., limI→1/r− αr(I) = −∞ and limI→1/r+ αr(I) = +∞. The same behavior takes
place for r = 1 and close to I = 1. On the other hand, for I → ±∞, αr(I) has the same
behavior as in the case for r = 0, limI→±∞ αr(I) = 0. This implies that for any value of
µ, for I close enough to I = 1/r the crests are vertical, and for |I| large enough the crests
are horizontal.

Example To illustrate this discussion, we present a concrete example. Taking µ = 0.5,
we have exp(−π/2) < 1/µ = 2 < exp(π/2). In this case we have Il ≈ −1.807, Ic ≈ 0.701
and Ir ≈ 1.367. The crests are horizontal in (−1.807, 0.701) ∪ (1, 367,+∞) and vertical in
(−∞,−1.807) ∪ (0.701, 1.367). We emphasize that this scenario is very different from the
case in Chapter 2. There, for µ = 0.5 the crests are horizontal for all I.

Now, we are going to focus on the transversality of the intersection between NHIM lines
R(I, ϕ, s) and crests C(I). On the plane (ϕ, σ) the NHIM lines can be written as

RI(ϕ, σ) = {(ϕ− Iτ, σ − (I − 1)τ), τ ∈ R}, (3.22)

so that its slope is (I − 1)/I in such plane. Therefore, there exists an intersection between
NHIM lines and crests that is not transversal if, and only if, there exists a tangent vector
of C(I) at a point that is parallel to (I, I − 1), or, using the parameterizations,

∂ξ

∂ϕ
(I, ϕ) =

I − 1

I
or

∂η

∂σ
(I, σ) =

I

I − 1
.
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Considering a horizontal parameterization of C(I), the tangency condition is equivalent
to

±α(I)µ cosϕ√
1− µ2α2(I) sin2 ϕ

=
I − 1

I
.

Therefore, there exists a ϕ satisfying the above condition if, and only if,

|β(I)| ≥ 1

|µ|
, where β(I) =

Iα(I)

I − 1

and ϕ takes the form

ϕ = ± arctan

(√
β(I)2 − (1/µ)2

(1/µ)2 − α(I)2

)
.

In an analogous way, for a vertical parameterization η(I, σ), there are tangencies if, and
only if,

|β(I)| ≤ 1

|µ|
with σ = ± arctan

(∣∣∣∣I − 1

I

∣∣∣∣
√

(1/µ)2 − β(I)2

α(I)2 − (1/µ)2

)
.

Remark 42. Observe that in both cases, horizontal and vertical crests, there are tangencies
if, and only if, (

|α(I)| − 1

|µ|

)(
|β(I)| − 1

|µ|

)
< 0.

The function |β(I)| is smooth in R \ {1} and d |β(I)| /dI = 0 only for I = 0. Besides,
we have (see Figs. 3.2(a) and 3.2(b))

lim
I→1
|β(I)| = +∞, lim

I→−∞
|β(I)| = exp(π/2) and lim

I→+∞
|β(I)| = exp(−π/2).

Therefore, there are three possibilities:

• for 1/ |µ| ≥ exp(π/2), there exist I0 ∈ (1/2, 1) and I+ ∈ (1,+∞) such that I0 and
I+ are solutions of |β(I)| − 1/ |µ| = 0. Besides, |β(I)| < 1/ |µ| for I ∈ (−∞, I0) ∪
(I+,+∞) and |β(I)| > 1/ |µ| for I ∈ (I0, 1) ∪ (1, I+).

• for exp(−π/2) < 1/ |µ| < exp(π/2), there exist I− ∈ (−∞, 0), I0 ∈ (0, 1) and
I+ ∈ (1,+∞) such that I−, I0 and I+ are solutions of |β(I)| − 1/ |µ| = 0. Besides,
|β(I)| < 1/ |µ| for I ∈ (I−, I0) ∪ (I+,+∞) and |β(I)| > 1/ |µ| for I ∈ (−∞, I−) ∪
(I0, 1) ∪ (1, I+).

• For 1/ |µ| ≤ exp(−π/2), there exist I− ∈ (−∞, 0) and I0 ∈ (0, 1/2) such that I− and
I0 are solutions of |β(I)| − 1/ |µ| = 0. Besides, |β(I)| < 1/ |µ| for I ∈ (I−, I0) and
|β(I)| > 1/ |µ| for I ∈ (−∞, I−) ∪ (I0, 1) ∪ (1,∞).
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Putting together this description of |β(I)| with the study about vertical and horizontal
crests and adding that

|β(I)| < |α(I)| ∀I ∈ (−∞, 0) ∪ (0, 1/2);

|β(I)| > |α(I)| ∀I ∈ (1/2, 1) ∪ (1,+∞);

|β(0)| = |α(0)| = 0 |β(1/2)| = |α(1/2)| = 1

we can state the proposition below.

Proposition 43. Consider the two crests C(I) defined by (3.18) and the NHIM line
RI(ϕ, σ) defined in (3.15) for Hamiltonian (3.1).

• For |µ| ≤ exp(−π/2), there exist Ib < Ia < IA < IB such that

– for I < Ib or IB < I, C(I) are horizontal and intersect transversally any
RI(ϕ, σ);

– for Ib ≤ I < Ia or IA < I ≤ IB, the crests C(I) are horizontal, but now, there
exist tangencies between C(I) and two NHIM lines RI(ϕ, σ);

– for Ia < I < IA, the crests C(I) are vertical and intersect transversally any
RI(ϕ, σ).

• For exp(−π/2) < |µ| < exp(π/2) there exist Ib < Ia < Ic ≤ IC < IA < IB such that

– for I < Ib or IC < I < IA, C(I) are vertical and intersect transversally any
RI(ϕ, σ);

– for Ib ≤ I < Ia, the crests C(I) are vertical and there exist tangencies between
C(I) and two NHIM lines RI(ϕ, σ);

– for Ia < I < Ic or IB < I, C(I) are horizontal and intersect transversally any
RI(ϕ, σ);

– for IA ≤ I ≤ IB, the crests C(I) are horizontal and there exist tangencies between
C(I) and two NHIM lines RI(ϕ, σ);

– for Ic ≤ I ≤ IC, if Ic < 1/2, the crests C(I) are vertical and there exist tan-
gencies between C(I) and RI(ϕ, σ). If Ic = 1/2, from the properties of α(I) and
β(I) this interval is just one point. If Ic > 1/2, the crests C(I) are horizontal
and there exist tangencies.

• For |µ| ≥ exp(π/2) there exist Ib < Ia < IA < IB such that

– for I < Ib or IB < I, C(I) are vertical and intersect transversally any RI(ϕ, σ);

– for Ib ≤ I < Ia or IA < I ≤ IB, the crests C(I) are vertical and there exist
tangencies between C(I) and two NHIM lines RI(ϕ, σ);

– for Ia < I < IA, the crests C(I) are horizontal and intersect transversally any
RI(ϕ, σ).

Remark 44. Note that we are not considering the singular case |α(I)| = 1/ |µ| described
in Remark 39.
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Example Again, to illustrate this proposition, we take the case with µ = 0.5, see
Fig. 3.2(a). In this case, we have |β(I)| = 1/µ for I ≈ −2.942, 0.595, 1.85 and

• for I ∈ (−∞,−2.942) ∪ (0.701, 1) ∪ (1, 1.367)⇒
{
|α(I)| > 1/ |µ| ⇒ vertical crests
|β(I)| > 1/ |µ| ⇒ no tangencies

• for I ∈ [−2.942,−1.807)⇒
{
|α(I)| > 1/ |µ| ⇒ vertical crests
|β(I)| ≤ 1/ |µ| ⇒ tangencies

• for I ∈ (−1.807, 0.595) ∪ (1.85,+∞)⇒
{
|α(I)| < 1/ |µ| ⇒ horizontal crests
|β(I)| < 1/ |µ| ⇒ no tangencies

• for I ∈ [0.595, 0.701) ∪ (1.367, 1.85]⇒
{
|α(I)| < 1/ |µ| ⇒ horizontal crests
|β(I)| ≥ 1/ |µ| ⇒ tangencies

Once more, we compare with the Hamiltonian (1.6) studied in Chapter 2. For Hamilto-
nian (1.6) and µ = 0.5 there is no tangency, but for Hamiltonian (3.1) we can find tangencies
for horizontal and vertical crests. Indeed, for Hamiltonian (1.6) and any 0 < |µ| < 0.625
there is no tangency, whereas for any µ 6= 0 there are tangencies for Hamiltonian (3.1).

(a) |α(I)| and |β(I)|:µ = 0.5, Ib ≈ −2.942,
Ia ≈ −1.807, Ic ≈ 0.595, IC ≈ 0.701, IA ≈
1.367 and IB ≈ 1.85

(b) |αr(I)| and |βr(I)|: µ = 0.5 and r = 0.5.

Fig. 3.2: |α(I)| and |β(I)| : Behavior of the crests and tangencies.

Remark 45. For r ∈ (0, 1) in Hamiltonian (1.5), βr(I) is defined by βr(I) = Iαr(I)/(rI−
1). In this case, limI→1/r |βr(I)| = +∞ and limI→±∞ |βr(I)| = 0. In Fig. 3.2(b), a compar-
ison between the functions αr(I), βr(I) and the straight line 1/ |µ| for r = 1/2 is displayed.

For each crest, where it is well defined, there exists, at least, a value τ ∗ such that

(ϕ− Iτ ∗, σ − (I − 1)τ ∗) = (ϕ− Iτ ∗, ξ(I, ϕ− Iτ ∗)) or (η(I, σ − (I − 1)τ ∗), σ − (I − 1)τ ∗),

which means that RI(ϕ, σ) ∩ C(I) 6= ∅. This intersection is intrinsically associated to a
homoclinic orbit to the NHIM. To make a choice about how to take such τ ∗ is to choose in
which homoclinic manifold Γ the homoclinic points z̃∗ lie. Even more, it is to choose what
scattering map we are going to use.
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3.2.2 Construction of scattering maps

We have now several goals. First, to explain, given (I, θ), how to find the intersection
between one of the NHIM lines and one of the two crests, and consequently, to define the
function τ ∗. Second, to show how each crest can give rise to many scattering maps. And
third, to explain the different scattering maps or combinations of them that can be defined.

Let us first study the intersection between NHIM lines and crests. From the definition of
the function τ ∗ = τ ∗(I, ϕ, s) in equation (3.14) and the definition of a NHIM line R(I, ϕ, s)
in (3.15) and a crest C(I) in Definition 36, it turns out that

R(I, ϕ, s) ∩ C(I) = {(I, ϕ− Iτ ∗(I, ϕ, s), s− τ ∗(I, ϕ, s))} .

Moreover, from the equation satisfied by the function τ ∗, one can get (see Eq. (2.15) in
Chapter 2) that for any γ

τ ∗(I, ϕ− Iγ, s− γ) = τ ∗(I, ϕ, s)− γ.

In particular, for the change (3.17) s = ϕ− σ and γ = ϕ− σ one gets

τ ∗(I, ϕ, ϕ− σ) = τ ∗(I, θ) + ϕ− σ, (3.23)

where θ = ϕ − Is = (1 − I)ϕ + Iσ. In the variables (I, ϕ, σ), taking into account the
expression (3.22) for the NHIM lines R(I, ϕ, ϕ− σ) and again equation (3.14) satisfied by
τ ∗(I, ϕ, s), we have that

R(I, ϕ, ϕ− σ) ∩ C(I) = {(I, ϕ− Iτ ∗(I, ϕ, ϕ− σ), σ − (I − 1)τ ∗(I, ϕ, ϕ− σ))}
= {(I, θ − Iτ ∗(I, θ), θ − (I − 1)τ ∗(I, θ))} ,

where (3.23) has been used, and θ = (1− I)ϕ+ Iσ.
From a geometrical point of view, to find an intersection between a NHIM line and a

crest, one throws from a point (θ, θ) on the plane (ϕ, σ) a straight line with slope (I−1)/I,
until it touches the crest C(I). The function τ ∗(I, θ) is the time spent to go from a point
(θ, θ) in the diagonal σ = ϕ up to C(I) with a velocity vector v = −(I, I − 1), see Fig. 3.3.

One has to decide the direction for τ ∗ using the idea explained above. For example, if
we are on a point on the straight line σ = ϕ, we have to decide if we go up or go down along
the NHIM line, i.e., to look for a negative or a positive τ ∗(I, θ) (to look at the past or the
future). In both cases we are going to detect an intersection with the desired crest, but, in
general, different choices give rise to different scattering maps, because we are looking for
different homoclinic invariant manifolds Γ.

To show another difference between scattering maps from the choice of τ ∗ we begin by
introducing each kind of scattering map. The first one is inspired in [DH11] and Chapter 2
for |µ| < 0.97. In these cited cases all scattering maps studied were associated to one of the
horizontal crests like in (3.21). In the same way, we can separate completely the scattering
maps associated to the horizontal crests from the scattering maps associated to the vertical
crests. Notice that the scattering maps associated to horizontal crests are defined only for
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Fig. 3.3: Finding τ∗(I, θ) using the straight line σ = ϕ.

values of I satisfying |α(I)| < 1/ |µ| whereas the scattering maps associated to the vertical
crests are defined only for values of I satisfying |α(I)| > 1/ |µ|.

As noted previously, crests are vertical in a neighborhood of I = 1 for any value of
µ. Therefore, close to I = 1 there is no scattering map associated to a horizontal crest.
Analogously, since |α(0)| = 0, crests are horizontal in a neighborhood of I = 0 for any
value of µ and, therefore, there is no scattering map associated to a vertical crest close to
I = 0. This implies that these “horizontal” or “vertical” scattering maps are just locally
defined, in other words, they are not defined on the whole plane (θ, I). This motivates to
define global scattering maps. Global scattering maps are important because they describe
the outer dynamics for large intervals of I and are defined as follows

Definition 46. A scattering map S(I, θ) is called a global scattering map if it is defined
on all θ ∈ T for any fixed I.

Note that S(I, θ) is a global scattering map as long as τ ∗(I, θ) is a global function, i.e.,
defined on all θ ∈ T for any fixed I. If τ ∗(I, θ) is smoothly defined, the same will happen
to S(I, θ). Tangencies between NHIM lines and crests, as well as discontinuities in their
intersections give rise to non-smooth scattering maps.

Remark 47. For instance, in Chapter 2 devoted to the Hamiltonian (1.6), it was proven
that for 0 < µ = a1/a2 < 0.625, there exist two different global scattering maps. Let us
add that for 0.625 ≤ µ < 0.97, due to the existence of tangencies between the NHIM lines
and the crests, there appear two or six scattering maps, see Section 2.2.2. Such multiple
scattering maps are indeed piecewise smooth global scattering maps, see Figs. 2.9–2.11.
Their discontinuities lie along the tangency locus and were avoided there to construct
diffusion paths, just for the sake of simplicity.

For Hamiltonian (3.1), to extend scattering maps which are in principle only locally
defined we have now two options: to combine a scattering map associated to a horizontal
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crest with a scattering map associated to a vertical crest or to extend the previously
called “horizontal” or “vertical” scattering maps. Although the first option may provide
a global scattering map, they may appear complex discontinuity sets which give rise to a
complicated phase space.

The second option is to apply the same idea used in Chapter 2 when we defined the
scattering map “with holes”. When |α(I)| > 1/ |µ|, the horizontal crests are no longer
defined for all ϕ ∈ T, indeed, they become vertical crests defined for all σ ∈ T. Nevertheless,
the vertical crests are formed by pieces of horizontal crests. This implies that even for
these values of I we can use ξ given in (3.21) to parameterize some intersections between
R(I, ϕ, σ) and C(I). As we can see in Fig. 3.4, the vertical and horizontal crests CM are very
close in a neighborhood of ϕ = 0. When we have a bifurcation from horizontal to vertical
crests (or vice versa), it is natural just to change the parameterization from ξM to ηM for
these values of ϕ. With this choice the orbits of the scattering map are continuous for θ
close to 0 or 2π. The same happens with ξm and ηm for values of ϕ close to π. Scattering
maps associated to horizontal crests for values of I satisfying |µα(I)| < 1 are defined for
all ϕ ∈ T. The extension of them to values of I for ϕ ∈ T such that |µα(I) sinϕ| < 1 are
called extended scattering maps.

Definition 48. A scattering map S(I, θ) is called an extended scattering map if it is
associated to horizontal crests for which |µα(I)| < 1, and is continuously extended to the
pieces of the vertical crests where they behave as horizontal crests, that is, for the values
ϕ such that |µα(I) sinϕ| < 1.

Since we have already seen in Proposition 43 that there exist tangencies between NHIM
lines and crests for any value of µ, there are no global scattering maps for Hamiltonian
(3.1). However, there exist extended scattering maps with a domain large enough to provide
diffusion paths.

(a) A piece of ξM(I, ϕ) for I = 0.68. (b) A piece of ηM(I, σ) for I = 0.72.

Fig. 3.4: Comparison between ξM(I, ϕ) and ηM(I, σ) for µ = 0.5, I = 0.68 and I = 0.72 respectively.

To illustrate the current scenario we will display the level curves of the reduced Poincaré
function L∗(I, θ) defined in (3.13), which up to O(ε2) contain orbits of the scattering map
S(I, θ). We begin by considering µ = 0.6 and the horizontal crest CM(I). In Fig. 3.5(a) we
display the scattering map built using τ ∗ defined by the first intersection between RI(ϕ, σ)
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and CM(I) from σ = ϕ going down along RI(ϕ, σ). In Fig.3.5(b), we use a similar idea,
but now, form σ = ϕ going up along RI(ϕ, σ). Alternatively, if we choose τ ∗ with minimal
absolute value, independently of going up or down, we obtain the scattering map plotted
on Fig. 3.5(c). In this last case, there are orbits of the scattering maps that are not smooth
in θ = π. This happens because we change the homoclinic manifold Γ, so we are using,
indeed, two different scattering maps. In Chapter 2 we chose scattering maps associated to
a function τ ∗ with the minimal absolute value, which were called primary scattering maps.
This example show us that is not enough to say what crest is associated to a scattering
map, but it is also necessary to make explicit the criterion used for τ ∗ (going up or down
along the NHIM lines, or choosing a minimal |τ ∗|).

(a) Going down along the NHIM
lines RI(ϕ, σ).

(b) Going up along the NHIM lines
RI(ϕ, σ).

(c) Minimal absolute value of τ∗.

Fig. 3.5: Different phase space of scattering maps S(I, θ) associated to the same horizontal crest CM(I),
for µ = 0.6 and ε = 0.01. The orbits of scattering maps are represented by the blue lines which are, up to
O(ε2), level sets of the reduced Poincaré function L∗(I, θ). In the red zones the values of I on such orbits
decrease, in the green one the values of I increase. The white regions are regions where |µα(I) sinϕ| > 1
is satisfied.

The next lemma is a good example about the criteria for τ ∗(I, θ) and its consequences,
and is used to prove Proposition 51. Before, a new notation is introduced. An even
subindex k is assigned to the branches Ck(I) of CM(I) when considering σ, ϕ ∈ R

ξk(I, ϕ) = − arcsin (α(I)µ sinϕ) + kπ and ηk = − arcsin

(
sinσ

α(I)µ

)
+ kπ
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and an odd subindex k to the branches Ck(I) of Cm(I) when considering σ, ϕ ∈ R

ξk(I, ϕ) = arcsin (α(I)µ sinϕ) + kπ and ηk = arcsin

(
sinσ

α(I)µ

)
+ kπ.

We notice that the crests C(I) are naturally defined for (ϕ, σ) ∈ T2 and give rise to two
different crests CM(I), Cm(I) (except for the singular case |µα(I)| = 1). When we run now
over real values of ϕ, σ, we may have an infinite number of crests Ck(I), where even (odd)
values of k are assigned to the branches of CM(I) (Cm(I)). Among them, we are going to
use C0(I), C1(I) and C2(I).

Lemma 49. Let L∗0 and L∗2 be reduced Poincaré functions associated to the same crest
C(I), where for L∗0 we look at the first intersection points “under” σ = ϕ, that is, with
C0(I), and for L∗2 we look at the first intersection points “over” σ = ϕ, that is, with C2(I).
Then we have

∂L∗0
∂θ

(I, θ) = −∂L
∗
2

∂θ
(I, 2π − θ) . (3.24)

Remark 50. We say “under” σ = ϕ and “over” σ = ϕ for intersection points going
down or up along RI(ϕ, σ), respectively on (ϕ, ξ0(I, ϕ)) and (ϕ, ξ2(I, ϕ)), because when
the horizontal crest CM(I) is defined for all ϕ ∈ T the graphs (ϕ, ξ0(I, ϕ)) of C0(I) and
(ϕ, ξ2(I, ϕ)) of C2(I) are under and over the straight line σ = ϕ.

Proof. Let L∗ be a reduced Poincaré function (3.13)-(3.11), then

∂L∗

∂θ
(I, θ) =

A1(I) sin(θ − Iτ ∗(I, θ))
I − 1

.

So, equation (3.24) is satisfied if, and only if

sin(θ − Iτ ∗0 (I, θ)) = sin(θ − I(−τ ∗2 (I, 2π − θ))). (3.25)

We assume that the crest is horizontal and given by the graph of ξM, the other cases
are analogous. Indeed, we are going to use

ξ0(I, ϕ) = − arcsin(µα(I) sinϕ) and ξ2(I, ϕ) = ξ0(I, ϕ) + 2π. (3.26)

This implies that the intersection point“under”σ = ϕ is a point on the curve parameterized
by ξ0(I, ϕ). Otherwise, the intersection “over” σ = ϕ is a point on the curve parameterized
by ξ2(I, ϕ). As the slope of the NHIM lines is (I − 1)/I, given a point (θ, θ), we obtain

ξ2(I, θ − Iτ ∗2 (I, θ))− θ
θ − Iτ ∗2 (I, θ)− θ

=
I − 1

I
,

which can be rewritten as

2π + ξ0(I, θ − Iτ ∗2 (I, θ))− θ
−Iτ ∗2 (I, θ)

=
I − 1

I
.
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From this equation, we obtain an expression for τ ∗2 (I, θ)

τ ∗2 (I, θ) =
− (2π + ξ0(I, θ − Iτ ∗2 (I, θ))− θ)

I − 1
.

From the expressions of τ ∗2 (I, θ) above and (3.26),

τ ∗2 (I, 2π − θ) =
(ξ0(I, θ − I (−τ ∗2 (I, 2π − θ))) + θ)

I − 1
,

and therefore

θ − (I − 1)(−τ ∗2 (I, 2π − θ)) = ξ0(I, θ − (I − 1)(−τ ∗2 (I, 2π − θ))),

which implies that −τ ∗2 (I, 2π− θ) is a time of intersection between the NHIM line and the
curve parameterized by ξ0. In the case that there exists only one intersection point, this
implies

τ ∗0 (I, θ) = τ ∗2 (I, 2π − θ).
So, condition (3.25) is satisfied.

Proposition 51. Let S1(I, θ) be the scattering map associated to the graphs of ξ1 and η1
of C1(I). Assuming a1, a2 > 0, for any I there exists a θ+ such that İ > 0 for θ ∈ (π, θ+).
Moreover, θ+ ≥ 3π/2 for I /∈ (−1/2, 1/2).

Proof. We have

İ =
∂L∗

∂θ
(I, θ) =

A1(I) sin(θ − Iτ ∗(I, θ))
I − 1

= −A2(I) sin(θ − (I − 1)τ ∗(I, θ)

I
. (3.27)

where A1(I) and A2(I) are positive, because a1, a2 > 0. Notice that µ = a1/a2 > 0.
Note that as (I, ϕ = π, θ = π) is always on the crest Cm(I), τ ∗(I, π) = 0 for all I.
Consider first the case of horizontal crests (|α(I)µ| < 1).

a) For I < 0, the function α(I) introduced in (3.19) satisfies α(I) > 0, and from
(3.21), sin(ξ1(I, ϕ)) sinϕ = −µα(I) sinϕ ≤ 0. Take θ = 3π

2
; since I < 0, the slope

m = (I − 1)/I of the NHIM lines is greater than 1. Therefore, 3π/2− Iτ ∗1 (I, 3π/2) ∈
(π, 3π/2). This implies that for any θ ∈ (π, 3π/2), θ − Iτ ∗1 (I, θ) ∈ (π, 3π/2), so
sin(θ − Iτ ∗1 ) < 0. From (3.27), İ > 0.

b) For 0 < I < 1, α(I) < 0, so sin ξ1(I, ϕ) sinϕ ≥ 0. Besides, m < 0, so if we look for
θ∗ satisfying

θ − Iτ = 2π (3.28)

θ − (I − 1)τ = π,

we have that for any θ ∈ (π, θ∗), θ − Iτ ∗1 ∈ (π, 2π). By solving (3.28) and defining
θ+ := θ∗, we obtain θ+ = (2− I)π. Then, sin(θ − Iτ ∗1 (I, θ)) < 0 and therefore İ > 0
for any θ ∈ (π, θ+ = (2− I)π). In particular, θ+ < 3π/2 if, and only if, I ∈ (1/2, 1).
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c) For I > 1, one more time α(I) > 0 and sin ξ1(I, ϕ) sin(ϕ) < 0, but now 0 < m =
1− 1/I < 1. We first fix θ = 3π/2 and search for I such that

3π

2
− Iτ ∗(I, 3π/2) = 0

3π

2
− (I − 1)τ ∗(I, 3π/2) = π.

We obtain I = 3/2, so θ− Iτ ∗1 (I, θ) ∈ (0, π) for any I ≥ 3/2 and θ ∈ (π, θ+ = 3π/2).
Consequently, sin(θ − Iτ ∗1 (I, θ)) > 0 and İ > 0. For the values of I ∈ (1, 3/2) we
change the strategy. We look for θ∗ such that

θ − Iτ ∗(I, θ) = 0

θ − (I − 1)τ ∗(I, θ) = π.

We have θ∗ = πI and θ − Iτ ∗1 (I, θ∗) ∈ (0, π) for any I ∈ (1, 3/2) and θ ∈ (π, θ∗), so
İ > 0. Note that θ∗ < 3π/2 and we can define θ+ := θ∗.

Observe that for I = 1 the crests are vertical, and for I = 0, θ = θ − Iτ ∗1 (I, θ), and İ > 0
for θ ∈ (π, 3π/2).

Consider now the case of vertical crests (|α(I)µ| > 1).

a) For I < 0, sin η1(I, σ) sinσ = −µα(I) sin2 σ ≤ 0 and m > 1. We fix θ = 3π/2 and
look for I such that

3π/2π − Iτ ∗ = π

3π/2− (I − 1)τ ∗(I, 3π/2) = 0.

We obtain I = −1/2 and therefore, sin(θ − (I − 1)τ ∗1 (I, θ)) > 0 for I ∈ (−∞,−1/2)
and θ ∈ (π, 3π/2). Consequently, İ > 0 from (3.27). For I ∈ (−1/2, 0), we have that
θ+ = (1− I)π satisfies

θ − Iτ ∗(I, θ+) = π

θ+ − (I − 1)τ ∗(I, θ+) = 0.

Therefore, sin(θ − (I − 1)τ ∗1 )(I, θ) > 0 and İ > 0 for any θ ∈ (π, θ+).

b) For 0 < I < 1 sin η1(I, σ) sinσ ≥ 0 and m < 0. θ+ = (I + 1)π satisfies

θ − Iτ ∗(I, θ+) = π

θ+ − (I − 1)τ ∗(I, θ+) = 2π.

So, sin(θ − (I − 1)τ ∗1 (I, θ)) > 0 and İ > 0 for any θ ∈ (π, θ+). Note that θ+ < 3π/2
for I ∈ (0, 1/2).

c) Finally, for I > 1, sin η1(I, σ) sinσ ≤ 0. We have that θ − (I − 1)τ ∗1 (I, θ) ∈ (π, 2π),
so sin(θ − (I − 1)τ ∗1 (I, θ)) < 0 and İ > 0 for any θ ∈ (π, 3π/2).

63



For I = 0 the crests are horizontal. For I = 1, θ = θ − (I − 1)τ ∗1 (I, θ), so İ > 0 for
θ ∈ (π, 2π).

Remark 52. If a1 < 0, we have that there exists a θ− such that İ > 0 for any θ ∈ (θ−, π).

Remark 53. An analogous proposition holds for S2(I, θ), the scattering map associated
to the graphs of ξ2 and η2 of C2(I). In such case, there is a θ+ such that İ ≥ 0 for any
θ ∈ (θ+, 2π) where θ ≥ 3π/2 for I ∈ (1/2, 3/2).

Note that this proposition leads us to ensure the diffusion in an analogous way to the
one used to prove Theorem 25. Next, the diffusion mechanism is stated and the Arnold
diffusion is proven.

3.3 Arnold Diffusion

In this section we are going to complete our goal proving the existence of global insta-
bility or Arnold diffusion, that is, Theorem 1.

We begin by presenting some general geometrical properties of the scattering maps that
we have to take into account to prove the theorem of diffusion. The first one reduces the
study of scattering maps to positive values of µ. More precisely, we have the lemma below

Lemma 54. The scattering map for a value of µ and s = π, associated to the intersection
between R(I, ϕ, s) and Cm(I) (CM(I)) has the same geometrical properties as the scattering
map for −µ and s = 0, associated to the intersection between Rθ(I) and CM(I) (Cm(I)),
i.e.,

Sµm(M)(I, ϕ, π) = S−µM(m)(I, ϕ, 0) = S−µM(m)(I, θ)

Proof. First, we look for τ ∗m such that the NHIM segment R(I, ϕ, s) intersects the crest
Cm(I). If we fix s = π, we have from (3.11) and (3.12):

L∗µ,m(I, ϕ, π) =A1(I) cos(ϕ− Iτ ∗m(I, ϕ, π))

+ A2(I) cos(ϕ− π − (I − 1)τ ∗m(I, ϕ, π)).
(3.29)

Besides, τ ∗ satisfies

µα(I) sin(ϕ− Iτ ∗m) + sin(ϕ− π − (I − 1)τ ∗m) = 0,

or
−µα(I) sin(ϕ− Iτ ∗m) + sin(ϕ− (I − 1)τ ∗m) = 0.

We have that ϕ − π − (I − 1)τ ∗m (mod 2π) = ξm(I, ϕ − Iτ ∗m) with π/2 ≤ ξm ≤ 3π/2.
Then, for each τ ∗m there exists a K ∈ Z such that

π

2
< ϕ− π − (I − 1)τ ∗m + 2πK <

3π

2
.
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This implies

3π

2
< ϕ− (I − 1)τ ∗m + 2πK and ϕ− (I − 1)τ ∗m + 2π(K − 1) <

π

2
.

Therefore,

ϕ− (I − 1)τ ∗m (mod 2π) <
π

2
or ϕ− (I − 1)τ ∗m (mod 2π) >

3π

2
.

We can conclude that ϕ− (I − 1)τ ∗m (mod 2π) = ξM(I, ϕ− Iτ ∗m). Therefore τ ∗m(I, ϕ, π) for
µ is equal to τ ∗M(I, ϕ, 0) for −µ. From (3.29), L∗µ,m(I, ϕ, π) satisfies

L∗µ,m(I, ϕ, π) = A1(I) cos(ϕ− τ ∗M(I, ϕ, 0)) + (−A2(I)) cos(ϕ− (I − 1)τ ∗M(I, ϕ, 0))

= L∗−µ,M(I, ϕ, 0).

Since L∗µ,m(·, ·, π) and L∗−µ,M(·, ·, 0) coincide, their derivatives too and this implies that

Sµm(I, ϕ, π) = S−µM (I, ϕ, 0) = S−µM (I, θ).

From now on, just to simplify the exposition, a1 and a2 are considered positive. The
same strategy used in Chapter 2, Section 2.3, is applied to prove the existence the diffusion:
we combine the scattering map in an interval of θ where İ > 0 and the inner map to build a
diffusion pseudo-orbit. Then we apply shadowing results to get the existence of a diffusion
orbit.

Since I = 0 and I = 1 are resonance values, the application of the inner map must be
more careful, because in these resonance regions, for some orbits, the value of I decreases
in order O(

√
ε), i. e., the tori cannot be considered flat. We study the transversality

between the foliations of invariant sets of the inner and the scattering map in resonant and
non-resonant regions and its image under the scattering map S. For more details and a
more general case, the reader is referred to [DH09].

Consider the resonant region associated to I = 0. In such region, the tori can be
approximated by F 0(I, ϕ) given in (3.9). The tranversality between invariant sets of the
inner and the scattering map holds if the gradient vectors of the level curves of F 0 and L∗
are not parallel vectors, or equivalently,{

F 0(I, θ),L∗(I, θ)
}
6= 0,

where {, } is the Poisson bracket,{
F 0,L∗

}
=
∂F 0

∂θ

∂L
∂I
− ∂F 0

∂I

∂L
∂θ
.

From (3.9), the partial derivatives of F 0 are

∂F 0

∂I
= I and

∂F 0

∂θ
= −εa1 sin θ,
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and since L∗(I, θ) = A1(I) cos(θ − Iτ ∗(I, θ)) + A2(I) cos(θ − (I − 1)τ ∗(I, θ)), we have the
partial derivatives given by

∂L∗

∂θ
=
A1(I) sin(θ − Iτ ∗)

I − 1
,

∂L∗

∂I
=A′1(I) cos(θ − Iτ ∗) + A′2(I) cos(θ − (I − 1)τ ∗)

+ A1(I)τ ∗ sin(θ − Iτ ∗) + A2(I)τ ∗ sin(θ − (I − 1)τ ∗).

Note that if |I| > O(ε), ∂F 0/∂I dominates ∂F 0/∂θ, so the Poisson bracket above can
be reduced to {

F 0,L∗
}
' −∂F

0

∂I

∂L
∂θ

=
−IA1(I) sin(θ − Iτ ∗)

I − 1

Expanding sin(θ − Iτ ∗) in Taylor’s series around I = 0, we have

sin(θ − Iτ ∗) = sin θ +O(I),

which implies {F 0,L∗} = 0 if, and only if, θ ≈ 0, π, assuming that O(I) is small enough.
Now, we consider I = O(ε) and look at the intersections between the NHIM lines and

the graph of ξ1. Note that as the value of I is close to 0 we can assume that the crests are
horizontal. Using Taylor’s series we can write

sin(θ − Iτ ∗) = sin θ +O(I) cos(θ − Iτ ∗) = cos θ +O(I)

sin(θ − (I − 1)τ ∗) = O(I) cos(θ − (I − 1)τ ∗) = −1 +O(I).

This implies {
F 0,L∗

}
=− IA1(I) sin θ

I − 1
− εa1 sin θ (A′1(I) cos θ − A′2(I)

+A1(I)τ ∗ sin θ) +O(I2, εI).

(3.30)

Taylor expanding the functions A1(I), A′1(I) and A′2(I) around I = 0, we obtain

A1(I) = 4a1 +O(I2), A′1(I) = O(I) and A′2(I) = a2π(π cothπ/2− 2)csch(π/2) +O(I)

Plugging these expressions in (3.30), we set{
F 0,L∗

}
=− 4a1I sin θ

I − 1
− εa1 sin θ [a2π(π cothπ/2− 2)csch(π/2)

+4a1(π − θ) sin θ] +O(I2, Iε).

Therefore, {
F 0,L∗

}
= 0⇔a1 sin θ

[
−4I

I − 1
− εa2π

(
π coth

(π
2

)
− 2
)

csch
(π

2

)
)

+ε4(π − θ) sin θ] = 0.
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In other words, we do not have transversality if, and only if, θ = 0, π or satisfies

(π − θ) sin θ =
I

εa1

+
π(cothπ/2− 2)cschπ/2)

4
,

which is not an horizontal curve in the plane (θ, I) and is transversal to an invariant torus
of the inner dynamics.

For the other resonant region I = 1, F 1 is very similar. Assuming I − 1 = O(ε), we
have{

F 1,L∗
}

= a2 sin θ

{
4

(
I − 1

I

)
− ε [πa1(2− π coth(π/2))csch(π/2) + 4a2 sin θ]

}
.

Applying the same methodology, we obtain an analogous result for the other resonant
region F 1. In short, we conclude that the image S(Ti) of an invariant torus Ti of the inner
map under the scattering map intersects tranversally another invariant torus Ti+1 of the
inner map.

Finally, in the non-resonant region, we notice that

{F nr,L∗} = −∂F
nr

∂I

∂L∗

∂θ
= −IA1(I) sin(θ − Iτ ∗)

I − 1
,

just the same expression as the one for the resonance I = 0, so the transversality between
invariant sets of the inner and the scattering map follows.

Now, a constructive proof of Theorem 1 is presented. This proof is similar to the proof
presented in Subsection 2.3.2 of Chapter 2, but now, there is no any piece of “highway” or
fast vertical lines where |I| is large. So, the inner map is applied more times.

3.3.1 Proof of Theorem 1

Proof. We consider r = 1 in Hamiltonian (1.5). First of all we have to choose what
scattering map we use. This choice depends on the sign of µ as explained in Lemma 54.
Assuming µ > 0, we take S1(I, θ), the global scattering map associated to the graphs of ξ1

and η1. If a1 > 0, by Proposition 51 for any I there exists an interval θ ∈ (π, θ+) where
İ > 0. Define Hr the set (ρ, θ+) × [−I∗, I∗], where ρ = π + δ is such that π < ρ < θ+

and the transversality between NHIM lines and L∗1 holds. We first construct a pseudo-
orbit {(Ii, θi) : i = 0, . . . , N1} ⊂ Hr with I0 = −I∗ and θN1 as close as possible to ρ.
Note that all these points lie in the same level curve of L∗1, that is, L∗1(I0, θ0) = L∗1(Ii, θi),
i = 1, . . . , N1. Applying the inner dynamics, we get (IN1+1, θN1+1) = φtN1

(IN1 , θN1) with
θN1+1 ∈ (ρ, θ+) and then we construct a pseudo-orbit {(Ii, θi) : i = N1 + 1, . . . , N1 +M1} ⊂
L∗1(IN1+1, θN1+1) = lN1+1 with θi ∈ (ρ, θN1+1), θ+ − θN1+M1 = O(ε2). Applying the inner
dynamics, we get (IN1+M1+1, θN1+M1+1) = φtN1+M1

(IN1+M1 , θN1+M1) with θN1+M1+1 ∈ (ρ, θ+).
Recursively, we construct a pseudo-orbit {(Ii, θi) : i = N1 + 1, . . . ,N2} such that IN2 ≥ I∗.
In the same way, as in the proof of Teorem 25, we can apply shadowing techniques of
[FM00, FM03, GLS14], due to the fact that the inner dynamics is simple enough to satisfy
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the required hypothesis of these references, to prove the existence of a diffusion trajectory.
If a10 < 0, changing Hr to Hl = (θ+, π) all the previous reasoning applies.

Considering Remark 33, Remark 38, Remark 41 and Remark 45, for any r ∈ (0, 1), an
equivalent diffusion result is readily obtained. And, finally, the case for r = 0 is proved in
Theorem 25 in Chapter 2.

3.4 Piecewise smooth global scattering maps

In this section, the geometric freedom of the choice of τ ∗ is explored. Until now, only
two different scattering maps have been used to build a global one, and this was enough
to ensure diffusion. But, with this approach, finding a diffusion pseudo-orbit is not always
easy enough and this pseudo-orbit can be also complicated. This depends simply on the
“aspect” of the scattering map obtained.

We now suggest a new criterion to choose τ ∗: to take the minimal value for |τ ∗| for
any (θ, I). This provides us with a piecewise smooth global scattering map with a good
property: the phase space of this scattering map which is O(ε2)-close to the level sets of the
reduced Poincaré function L∗(I, θ) associated to the chosen τ ∗ is simpler and“cleaner” than
the phase spaces of other scattering maps displayed up to now. By a cleaner scattering
map, we mean that we can easily identify and understand the orbits of the scattering maps,
except for a small region which contains the tangency locus.

Besides, the zones where the value of I is increased or decreased under the scattering
map is well behaved. I decreases for θ ∈ (0, π) (the red region on all pictures in Fig. 3.6)
and I increases for θ ∈ (π, 2π) (the green region on all pictures in Fig. 3.6). So it is easy to
infer that for finding a diffusion pseudo-orbit it is enough to build a combination between
the inner map and this scattering map restricted to (π, 2π), for example if an increased
value of I is wished. The same idea used in the proof of Theorem 1.

Observe that the scattering maps we are now considering are a mix of the scattering
maps studied previously. As an example, we illustrate the scattering map obtained for
µ = 0.9. Such scattering map can be divided into three regions and in each region, the
scattering map coincides with a scattering map studied before.

In Fig. 3.7, for regions I (0 < θ < π/2), II (π/2 < θ < 3π/2) and III (3π/2 < θ < 2π)
the scattering map has the following correspondence:

I Extended scattering map S0(I, θ) associated to the horizontal CM(I) “under” σ = ϕ.

II Extended scattering map S1(I, θ) associated to the horizontal Cm(I).

III Extended scattering map S2(I, θ) associated to the horizontal CM(I) “over” σ = ϕ.

If extended scattering maps are not considered and we just use scattering maps associ-
ated to horizontal and vertical crests, one can see that these scattering maps can be divided
into 6 regions, i.e., they can be viewed as a combination of up to 6 scattering maps.
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(a) Piecewise scattering map for µ =
0.3.

(b) Piecewise scattering map for µ = 0.5.

(c) Piecewise scattering map for µ =
0.9.

(d) Piecewise scattering map for µ =
1.5.

Fig. 3.6: Examples of piecewise smooth global scattering maps. The orbits of scattering maps are
represented by the blue lines. In the red zones the values of I on such orbits decrease, in the green one
the values of I increase.

Another property of these scattering maps is the loss of differentiability on the straight
lines θ = π/2 and θ = 3π/2. The vector field associated to the Hamiltonian −L∗i defined
around these discontinuity lines behaves as the vector fields studied in non-smooth dynam-
ics theory. More precisely, we can find regions with slide and unstable slide behavior [Fil88].
In a future work, we envisage to design special pseudo-orbits along these discontinuity lines
using such theory. Note that these pseudo-orbits would be very similar to the “highways”
defined in 2.3 of Chapter 2, so in principle, one can expect fast and simple diffusion along
these discontinuity lines.
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Fig. 3.7: A piecewise smooth global scattering map divided into 3 regions. The vertical black lines are
the boundaries of the domains of smooth scattering maps.
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Chapter 4

A case of 3+1/2 degrees of freedom

After a study about an a priori unstable Hamiltonian system with 2 + 1/2 degrees
of freedom, a natural question is what happens for a similar system with more degrees
of freedom. In this chapter, we try to answer, at least partially, this question. Partially
because we consider a particular case for 3 + 1/2 degrees of freedom.

We are going to consider a generalization of the Hamiltonian considered in Chapters 2
and 3, which is given by the a priori unstable Hamiltonian with 3 + 1/2 degrees of freedom

Hε(p, q, I1, I2, ϕ1, ϕ2, s) = ±
(
p2

2
+ cos q − 1

)
+ h(I1, I2) + εf(q) g(ϕ1, ϕ2, s), (4.1)

where f(q) = cos q, h(I1, I2) = Ω1I
2
1/2 + Ω2I

2
2/2 and

g(ϕ1, ϕ2, s) = a1 cosϕ1 + a2 cosϕ2 + a3 cos(k · ϕ− s),

with k = (k1, k2) ∈ Z2 and (ϕ1, ϕ2) ∈ T2.

Remark 55. In [DLS16], the authors dealt with k = (1, 1) as an example for their results.

In this thesis, we restrict our attention to the case with k = (0, 0). There are two main
reasons for this restriction: First, this system is a direct generalization of Hamiltonian
(2.1)+(2.3) in Chapter 2. So, for this Hamiltonian, we can expect to find a similar behav-
ior of the crests, the existence of global scattering maps and, moreover, the existence of
highways. Besides, we have a well-known case to compare with the new results obtained.
The second reason is that it is much easier to handle it because we reduced the number of
parameters and its inner dynamics is simplified.

Therefore, from now on, we are always assume

g(ϕ1, ϕ2, s) = a1 cosϕ1 + a2 cosϕ2 + a3 cos s. (4.2)

For a simpler notation, we denote I = (I1, I2) and ϕ = (ϕ1, ϕ2).
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4.1 Unperturbed case

In the unperturbed case (ε = 0), such system is the Hamiltonian system with Hamilto-
nian

H0(p, q, I, ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+ h(I),

and equations

q̇ = p ṗ = sin q

ϕ̇1 = ω1 İ1 = 0

ϕ̇2 = ω2 İ2 = 0

ṡ = 1,

where ωi = ΩiIi, i = 1, 2. This system consists of a pendulum plus two rotors. From the
equations above, I1 and I2 are constants and the flow has the form

Φt(p, q, I, ϕ) = (p(t), q(t), I, ϕ+ tω),

where ω = (ω1, ω2). And we have an invariant set (on the extend phase space)

TI = {(0, 0, I, ϕ, s);ϕ, s ∈ T3}.

In this case, the NHIM is

Λ̃ = {(0, 0, I, ϕ, s) : (I, ϕ, s) ∈ R2 × T3}, (4.3)

4.2 Inner dynamics

The inner dynamics is derived from the restriction of the Hamiltonian (4.1) and its
equations to Λ̃, given in (4.3), i.e.,

Kε(I, ϕ, s) = h(I) + ε (a1 cosϕ1 + a2 cosϕ2 + a3 cos s)

and its equations

ϕ̇1 = ω1 İ1 = εa1 sinϕ1

ϕ̇2 = ω2 İ2 = εa2 sinϕ2

ṡ = 1.

Note that the inner dynamics is integrable, with first integrals

F1(I1, ϕ1) =
Ω1I

2
1

2
+ a1 (cosϕ1 − 1) and F2(I2, ϕ2) =

Ω2I
2
2

2
+ a2 (cosϕ2 − 1)

in involution. The inner dynamics is just the product in the spaces (I1, ϕ1), (I2, ϕ2) of the
dynamics described in Fig. 2.2, so there are two resonances centered at I1 = 0 and I2 = 0.

72



Remark 56. There is a double resonance in I1 = I2 = 0. The study of the dynamics close
to double resonances is a very hard problem, and it is out of the scope of this work. For
a interested reader we give some references for about it [Nek77, Las93, CGS03, LMS03,
FGL05, LGF09, KZ12, GSV13] . As, in our case, the double resonance is just the point
I = (0, 0) and we simply avoid it.

4.3 Scattering map

4.3.1 Definition of scattering map

We are going to explore the properties of the scattering maps of Hamiltonian (4.1)+(4.2).
The notion of scattering map on a NHIM was introduced in Chapter 2, Subsection sub:Meln
pot and crests. Let W be an open set of [−I∗1 , I∗1 ] × [−I∗2 , I∗2 ] × T3 such that the invari-
ant manifolds of the NHIM Λ̃ introduced in (4.3) intersect transversally along a homo-
clinic manifold Γ = {z̃(I, ϕ, s; ε), (I, ϕ, s) ∈ W} and for any z̃ ∈ Γ there exists an unique
x̃+,− = x̃+,−(I, ϕ, s; ε) ∈ Λ̃ such that z̃ ∈ W s

ε (x−) ∩W u
ε (x̃+). Let

H+,− =
⋃
{x̃+,−(I, ϕ, s; ε) : (I, ϕ, s) ∈ W} .

The scattering map associated to Γ is the map

S : H− −→ H+

x̃− 7−→ S(x̃−) = x̃+.

For the characterization of the scattering maps, it is required to select the homoclinic
manifold Γ and this be done using the Poincaré-Melnikov theory. Again, from [DLS06,
DH11], we have the following proposition

Proposition 57. Given (I, ϕ, s) ∈ [−I∗1 , I∗1 ]×[−I∗1 , I∗1 ]× T3, assume that the real function

τ ∈ R 7−→ L(I, ϕ− τω, s− τ) ∈ R (4.4)

has a non degenerate critical point τ ∗ = τ ∗(I, ϕ, s), where ω = (ω1, ω2) and

L(I, ϕ, s) :=

∫ +∞

−∞
(f(q0(ρ))− f(0)) g(ϕ+ ρω, s+ ρ; 0)dρ.

Then, for 0 < ε small enough, there exists a unique transversal homoclinic point z̃ to Λ̃ε

of Hamiltonian (4.1), which is ε-close to the point z̃∗(I, ϕ, s) = (p0(τ ∗), q0(τ ∗), I, ϕ, s) ∈
W 0(Λ̃):

z̃ = z̃(I, ϕ, s) = (p0(τ ∗) +O(ε), q0(τ ∗) +O(ε), I, ϕ, s) ∈ W u(Λ̃ε) t W s(Λ̃ε).
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The function L is called the Melnikov potential of Hamiltonian (4.1). The Melnikov
potential takes the form

L(I, ϕ, s) = A1 cosϕ1 + A2 cosϕ2 + A3 cos s, (4.5)

where

Ai := A(ωi) =
2πωiai

sinh(πωi/2)
, i = 1, 2 and A3 =

2πa3

sinh(π/2)
(4.6)

The homoclinic manifold Γ is characterized by the function τ ∗(I, ϕ, s). Once a function
τ ∗(I, ϕ, s) is chosen, by the geometric properties of the scattering map, see [DLS08, DH09,
DH11], the scattering map has the explicit form

S(I, ϕ, s) =
(
I + ε∇ϕL

∗ + (O(ε2),O(ε2)), ϕ− ε∇IL
∗ + (O(ε2),O(ε2)), s

)
,

where
L∗ = L∗(I, ϕ, s) = L(I, ϕ− τ ∗(I, ϕ, s)ω, s− τ ∗(I, ϕ, s)). (4.7)

Notice that the variable s is fixed under the scattering map. As a consequence [DH11],
introducing the variable

θ = ϕ− s ω
and defining the reduced Poincaré function

L∗(I, θ) := L∗(I, ϕ− sω, 0) = L∗(I, ϕ, s), (4.8)

in the variables (I, θ) the scattering map has the simple form

S(I, θ) =

(
I + ε

∂L∗

∂θ
(I, θ) + O(ε2), θ − ε∂L

∗

∂I
(I, θ) + O(ε2)

)
, (4.9)

where O(ε2) = (O(ε2),O(ε2)). So up to O(ε2) terms, S(I, θ) is the ε times flow of the
autonomous Hamiltonian −L∗(I, θ). In particular, the iterates under the scattering map
follow the level curves of L∗ up to O(ε2).

4.3.2 Crests and NHIM lines

We have seen that the function τ ∗ plays a central role in our study. Therefore, we are
interested in finding the critical points τ ∗ = τ ∗(I, ϕ, s) of function (4.4) or, for our concrete
case (4.5), τ ∗ solution of

∂L
∂τ

(I, ϕ− ωτ, s− τ) = ω1A1 sin(ϕ1 − ω1τ) + ω2A2 sin(ϕ2 − ω2τ) + A3 sin(s− τ). (4.10)

This equation can be viewed from two equivalently geometrical viewpoints. The first one
is that to find τ ∗ = τ ∗(I, ϕ, s) satisfying (4.10) for any (I, ϕ, s) ∈ [−I∗1 , I∗1 ]× [−I∗2 , I∗2 ]×T3

is the same as to look for the extrema of L on the NHIM line

R(I, ϕ, s) = {(I, ϕ− τω, s− τ) : τ ∈ R} . (4.11)
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The other viewpoint is that, fixing (I, ϕ, s), a solution τ ∗ of (4.10) is equivalent to finding
intersections between a NHIM line (4.11) and a surface defined by

ω1A1 sinϕ1 + ω2A2 sinϕ2 + A3 sin s = 0. (4.12)

These surfaces are called crests, and in a general way can be defined by

Definition 58. [DH11] We define by Crests C(I) the surfaces on (I, ϕ, s), (ϕ, s) ∈ T3, such
that

∂L
∂τ

(I, ϕ− τω, s− τ)|τ=0 = 0,

or equivalently,

ω · ∂L
∂ϕ

(I, ϕ, s) +
∂L
∂s

(I, ϕ, s) = 0.

Note that equation (4.12) can be rewritten as

α1(I1)µ1 sinϕ1 + α2(I2)µ2 sinϕ2 + sin s = 0 (4.13)

where, for i = 1, 2,

µi =
ai
a3

and αi(Ii) = (ωi)
2 sinh(π/2)

sinh(ωiπ/2)
. (4.14)

Observe that αi is well defined for any value of Ii. To understand the intersection between
NHIM lines and the crests C(I), first we need to study how these surfaces look like for
different values of µi and ωi, for i = 1, 2.

Remark 59. With Eq. (4.13) we wish to emphasize the similarity between such crests
with the crests studied in Chapters 2 and 3, in Sections 2.2 and 3.2 respectively.

As explained before, when we have introduced the crests, we are interested in their
geometrical behavior. For this purpose, we study their possible parameterization. One can
see from (4.13) that if

|α1(I1)µ1 sinϕ1 + α(I2)µ2 sinϕ2| ≤ 1 (4.15)

we can write s as a function of ϕ1 and ϕ2, more exactly

s =

{
ξM(I, ϕ) = arcsin (α1(I1)µ1 sinϕ1 + α2(I2)µ2 sinϕ2) mod 2π

ξm(I, ϕ) = − arcsin (α1(I1)µ1 sinϕ1 + α2(I2)µ2 sinϕ2) + π mod 2π.

In accordance with the notation used in Chapters 2 and 3, in Sections 2.2 and 3.2
respectively, the crests C(I) are formed by two surfaces, they are parameterized by ξM(I, ϕ)
and ξm(I, ϕ) and are called horizontal crests. From expression of the function αi(Ii) given
in (4.14), we have |αi(Ii)| < 1.03. This implies

|α1(I1)µ1 sinϕ1 + α2(I2)µ2 sinϕ2| ≤ 1.03(|µ1|+ |µ2|).
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Fig. 4.1: Horizontal Crests C(I) : µ1 = µ2 = 0.4 and ω1 = ω2 = 1.

Therefore, if
|µ1|+ |µ2| ≤ 1/1.03 ≈ 0.97,

the two surfaces of the crests C(I) are horizontal for any value of I1 and I2.
If condition (4.15) is not satisfied, s cannot be written as a function of ϕ1 and ϕ2, then

we have two possibilities: a) we can write ϕi as a function of ϕj and s, or b) the projection
of the crests C(I) on each plane ( (ϕ1, ϕ2) , (ϕ1, s) and (ϕ2, s)) has holes.

Case a) is only possible if
∣∣∣ α(Ij)µj
αi(Ii)µi

sinϕj + sin s
αi(Ii)µi

∣∣∣ ≤ 1. Then, the crests C(I) are formed

by two surfaces, they are called vertical crests and can be parameterized by

ϕi =


ηM,i(I, ϕj, s) = arcsin

(
1

αi(Ii)µi
(sin s− αj(Ij)µj sinϕj)

)
ηm,i(I, ϕj, s) = − arcsin

(
1

αi(Ii)µi
(sin s− αj(Ij)µj sinϕj)

)
+ π.

In case b), Eq. (4.12) defines a unique surface for any crest C(I), see Fig. 4.2(b).
Note that for horizontal and vertical crests C(I) are formed by two surfaces that can be
parameterized separately. In case b), C(I) is called unseparated crest.

To write ϕi as a function of ϕj and s |µi| is needed to be greater than 0.97. In fact,
suppose that there exists an I such that ϕi = ϕi(ϕj, s). From Eq. (4.12), we have

sinϕi = −
(
Aj(Ij)ωj sinϕj

Ai(Ii)ωi
+
A3 sin s

Ai(Ii)ωi

)
,

for any ϕj and s with
∣∣∣Aj(Ij)ωj sinϕj

Ai(Ii)ωi
+ A3 sin s

Ai(Ii)ωi

∣∣∣ ≤ 1. In particular for ϕj = 0 and s = π/2, so∣∣∣∣ A3

Ai(Ii)ωi

∣∣∣∣ ≤ 1, or equivalentely

∣∣∣∣ 1

αi(Ii)µi

∣∣∣∣ ≤ 1.
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(a) Vertical Crests C(I) : µ1 = 1.7, µ2 =
0.4 and ω1 = ω2 = 1.

(b) Unseparated Crest C(I) : µ1 = 0.7,
µ2 = 0.7 and ω1 = ω2 = 1.

Fig. 4.2: Different kinds of Crests

Therefore, we obtain

0.97 ≈ 1

1.03
<

∣∣∣∣ 1

αi(Ii)

∣∣∣∣ ≤ |µi| .
As a consequence, if |µ1| + |µ2| > 0.97, but |µ1| , |µ2| < 0.97 then there are no vertical
crests, only horizontal or unseparated crest.

Tangency condition

We now explore the existence of tangency between the crests C(I) and the linesR(I, ϕ, s).
The crests are a family of surfaces, so there exists a tangency such tangency if a tangent
vector of the straight line R(I, ϕ, s) lies on the bundle tangent of one of these surfaces.

The vector tangent of R(I, ϕ, s) at any point is v = −(ω1, ω2, 1). Consider the function
FI : T3 7→ R,

FI(ϕ, s) = α1(I1)µ1 sinϕ1 + α2(I2)µ2 sinϕ2 + sin s,

we note that the crests C(I) can be defined as (ϕ, s) ∈ T3 such that FI(ϕ, s) = 0. Fixing a
point p = (ϕ, s) in C(I), the normal vector of C(I) at the point p is

∇FI(p) = (α1(I1)µ1 cosϕ1, α2(I2)µ2 cosϕ2, cos s).

The vector v lies on the tangent space of the crests at the point p if, and only if ∇F (p)·v =
0. This condition is equivalent to

α1(I1)ω1µ1 cosϕ1 + α2(I2)ω2µ2 cosϕ2 + cos s = 0. (4.16)

From (4.13) and (4.16), there is tangency between a horizontal crest C(I) and the NHIM
lines R(I, ϕ, s) for ϕ1 and ϕ2 satisfying

(ω1α1(I1)µ1 cosϕ1 + ω2α2(I2)µ2 cosϕ2)2 + (α1(I1)µ1 sinϕ1 + α2(I2)µ2 sinϕ2)2 = 1
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Denote by

fI(ϕ) = (ω1α1(I1)µ1 cosϕ1 + ω2α2(I2)µ2 cosϕ2)2 + (α1(I1)µ1 sinϕ1 + α2(I2)µ2 sinϕ2)2 .

Note that, if there are values of µ1 and µ2 such that fI(ϕ) < 1 for any I, there is no
tangency. As commented before, |αi(Ii)| < 1.03 From (4.14), we obtain |αi(Ii)ωi| < 1.6.
This implies

fI(ϕ) < (1.6)2 (|µ1 cosϕ1|+ |µ2 cosϕ2|)2 + (1.03)2 (|µ1 sinϕ1|+ |µ2 sinϕ2|)2

< 1.62 |µ1|2 + 1.62 |µ2|2 + 2 |µ1| |µ2|
(
1.62 |cosϕ1| |cosϕ2|+ 1.032 |sinϕ1| |sinϕ2|

)
< 1.62(|µ1|+ |µ2|)2.

It is enough to require |µ1| + |µ2| < 1/1.6 = 0.625 to ensure fI(ϕ) < 1 for any value of I.
It is easy to verify that if |µ1|+ |µ2| > 1/1.6 there are a I and a ϕ such that fI(ϕ) > 1.

Proposition 60. Consider the crest C(I) defined by (58) and the NHIMlines R(I, ϕ, s)
defined in (4.11).

a) For |µ1| + |µ2| > 0.625 the crests are horizontal and the intersections between any
crest and any NHIMline are transversal.

b) For 0.625 ≤ |µ1| + |µ2| ≤ 0.97 the two crests C(I) are still horizontal, but for some
value of I there are NHIMlines which are tangent to the crests.

c) For 0.97 < |µ1| + |µ2| and |µ1| , |µ2| < 0, 97, the crests C(I) are horizontal or un-
separated and for some value of I there are NHIMlines which are tangent to the
crests.

d) For For 0.97 < |µ1|+ |µ2| and 0.97 < |µi|, The crests C(I) can be horizontal, vertical
or unseparated and for some value of I there are NHIMlines which are tangent to the
crests.

4.3.3 Symmetry of the scattering map

Proposition 61. a) The reduced Poincaré function L∗0(I, θ) is an even function in the
variable I, that is, L∗0(I, θ) = L∗0(−I, θ), and consequently the image of S0(I, θ) is
geometrically symmetric in this variable I.

b) The reduced Poincaré function L∗0(I, θ) is symmetric with respect to the straight line
θ = (π, π), that is, L∗0(I, θ) = L∗0(I, 2π − θ), where 2π − θ = (2π, 2π) − (θ1, θ2),
and consequently the image of S0(I, θ) is geometrically symmetric with respect to
θ = (π, π).

Proof. a) From (4.5), (4.7) and (4.8), we have

L∗(I, θ) = A1 cos(θ1 − ω1τ
∗(I, θ)) + A2 cos(θ2 − ω2τ

∗(I, θ)) + A3 cos(−τ ∗(I, θ)).
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From (4.6), it is to verify that Ai is an even function, and therefore,

L∗(−I, θ) = A1 cos(θ1 +ω1τ
∗(−I, θ))+A2 cos(θ2 +ω2τ

∗(−I, θ))+A3 cos(−τ ∗(−I, θ)).
(4.17)

From (4.12) and (4.12), τ ∗(I, θ) is the solution of

ω1A1 sin(θ1 − ω1τ) + ω2A2 sin(θ2 − ω2τ) + A3 sin(−τ) = 0. (4.18)

Analogously, τ ∗(−I, θ) is the solution of

−ω1A1 sin(θ1 + ω1τ)− ω2A2 sin(θ2 + ω2τ) + A3 sin(−τ) = 0.

Note that the above equation can be written as

ω1A1 sin(θ1 − ω1(−τ))ω2A2 sin(θ2 − ω2(−τ)) + A3 sin(−(−τ)) = 0. (4.19)

From the local uniqueness of the solution of (4.18) and (4.19) we can conclude
τ ∗j (I, θ) = −τ ∗−j(−I, θ), so τ ∗0 (I, θ) = −τ ∗0 (−I, θ) Applying this equality in (4.17),
we obtain

L∗0(−I, θ) = A1 cos(θ1 − ω1τ
∗
0 (I, θ)) + A2 cos(θ2 − ω2τ

∗
0 (I, θ)) + A3 cos(τ ∗0 (I, θ)).

Therefore, L∗0(I, θ) = L∗0(−I, θ).
Let (I+, θ+) = S0(I, θ) and (I−, θ−) = S−1

0 (−I, θ), where S−1
0 is the inverse image of

the scattering map. We are going to prove that I+ = −I− and θ+ = θ−. From (4.9)
we have

I+ = I + ε
∂L∗0
∂θ

(I, θ) +O(ε2) and θ+ = θ − ε∂L
∗
0

∂I
(I, θ) +O(ε2).

On the other hand, it is easy to verify that S−1
0 (−I, θ) is

I− = −I + (−ε)∂L
∗
0

∂θ
(−I, θ) +O(ε2) and θ− = θ − (−ε)∂L

∗
0

∂I
(−I, θ) +O(ε2).

Now, we use the fact that L∗0(I, θ) = L∗0(−I, θ), and so

I− = −I + (−ε)∂L
∗
0

∂θ
(I, θ) +O(ε2) = −I+

θ− = θ − (−ε)
(
−∂L

∗
0

∂I
(I, θ)

)
+O(ε2) = θ+.

b) Analogously to the above case, τ ∗(I, 2π − θ) is the solution of

ω1A1 sin(2π − θ1 − ω1τ) + ω2A2 sin(2π − θ2 − ω2τ) + A3 sin(−τ) = 0.
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Or, equivalently,

ω1A1 sin(θ1 − ω1(−τ)) + ω2A2 sin(θ2 − ω2(−τ)) + A3 sin(−(−τ)) = 0.

This implies τ ∗(I, θ) = −τ ∗(I, 2π − θ).
As the related scattering map depends on which interval the function τ ∗(I, θ) belongs,
we can write τ ∗j (I, θ) = −τ ∗−j(I, 2π − θ), j ∈ Z. Therefore, we have τ ∗0 (I, θ) =
−τ ∗0 (I, 2π − θ). Using this equality and the 2π periodicity of the cosine,

L∗0(I, 2π − θ) = A1 cos(−θ1 + ω1τ
∗
0 (I, θ)) + A2 cos(−θ2 + ω2τ

∗
0 (I, θ)) + A3 cos(τ ∗0 (I, θ))

= A1 cos(θ1 − ω1τ
∗
0 (I, θ)) + A2 cos(θ2 − ω2τ

∗
0 (I, θ)) + A3 cos(−τ ∗0 (I, θ))

= L∗0(I, θ).

Let (I+, θ+) = S0(I, 2π− θ) and (I−, θ−) = S−1
0 (I, θ), where S−1

0 is the inverse image
of the scattering map. We want to prove I− = I+ and θ+ = 2π − θ−.

From (4.9) we have

I+ = I + ε
∂L∗0
∂θ

(I, 2π − θ) +O(ε2) = I + ε

(
−∂L

∗
0

∂θ
(I, θ)

)
+O(ε2)

= I + (−ε)∂L
∗
0

∂θ
(I, θ) +O(ε2) = I−.

In the same way,

θ+ = (2π − θ)− ε∂L
∗
0

∂I
(I, 2π − θ) +O(ε2)

= 2π −
[
θ − (−ε)∂L

∗
0

∂I
(I, θ) +O(ε2)

]
= 2π − θ−.

Theorem 62 (The general diffusion). Consider the Hamiltonian (4.1)+(4.2). Assume
a1a2a3 6= 0 and |a1/a3| + |a2/a3| < 0.625. Then, for every δ < 1 there exists ε0 > 0 such
that for every 0 < |ε| < ε0, given I± ∈ I∗ \ {(0, 0)}, there exists an orbit x̃(t) and T > 0,
such that

|I(x̃(0))− I−| ≤ Cδ

|I(x̃(T ))− I+| ≤ Cδ

Proof. Consider first the case that I2− = I2+ so that I−, I+ are joined by a horizontal line
γ : [0, t∗]→ R2 such that γ(0) = I−, γ(t∗) = I+, I1− < I1+ and γ(t) 6= (0, 0) for t ∈ [0, t∗].
Given a positive δ, define the finite open covering of the image of the curve γ

N⋃
i=0

Bδ(γ(ti)),
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where Bδ(γ(ti)) = {p ∈ R2 : ‖γ(ti)− p‖∞ < δ} .
Let I i ∈ Bδ(γ(ti)) and I i /∈ Bδ(γ(ti+1)). This implies I i1 < γ1(ti) < γ1(ti+1). We take

the vector ui = γ(ti+1)− I i. We want to find a vector vi satisfying

vi1u
i
1 > 0 and vi2u

i
2 > 0.

Assume ui2 > 0 (ui1 = γ1(ti+1)− I i1 > 0 ). In this case we wish vj > 0, j = {1, 2}. This
implies I i2 < γ2(ti) = γ2(ti+1). Since

vi = İ(I i, θ∗) =
(
−A1(I1) sin(θ∗1 − ωi1τ ∗(I i, θ∗),−A2(I2) sin(θ∗2 − ωi2τ ∗(I i, θ∗))

)
and assuming a1, a2 > 0, vj > 0 if, and only if, θ∗j − ωijτ ∗(I i, θ∗) ∈ (π, 2π).

Since the initial values (I i, θi), we want to use the inner dynamics to displace θi to a
point θ∗ ∈ (π, 2π)2. The inner dynamics is very simple and as Chapter 2 we are going to
assume that it is horizontal, i.e., it is described by the equations

İj = 0 and ϕ̇j = ωj, j = 1, 2.

And therefore, ϕ(t) = ωt+ ϕ(0). So, we wish to prove the existence of a t∗ such that

θ(t∗)− ωiτ ∗(I i, θ(t∗)) ∈ (π, 2π)2,

where θ(t) = θi + ωit.
Define ψj(t) = θij(t)−ωijτ ∗(I i, θ(t)). Without loss of generality we can assume ωi1 ≥ ωi2,

we have

ψ2 =
ωi2
ωi1
ψ1 + ψ̄,

where ψ̄ = θi2 − ωi2θi1/ωi1. For ωi2/ω
i
1 ∈ R \Q, (ψ1, ψ2(ψ1)) is dense in T2, then there exists

a t∗ such that (ψ1(t∗), ψ2(t∗)) ∈ (π, 2π).
For ωi2/ω

i
1 = p/q ∈ Q, q, p ∈ Z, assume without loss of generality q p > 0, this implies

0 < p/q ≤ 1. Now, we look at ψ2(ψ1) = 2πpψ1/q + ψ̄ as a rotation by the angle 2πp/q of
C on the S1. So, we write

rl(ψ̄) =
2πp

q
l + ψ̄.

We want to prove that for any ψ̄ there exists a l ∈ N such that rl(ψ̄) ∈ (π, 2π], so that the
straight lines (ψ1, ψ2(ψ1)) intersects (π, 2π)2.

Suppose by contradiction that rl(ψ̄) ∈ (0, π], l ∈ N. Note that rl(ψ̄) is a q-periodic
function. This implies that there exists a l′ ∈ N \ 0 such that rl′(ψ̄) = ψ̄. Therefore,
if ψ̄ ∈ (π, 2π] we obtain a contradiction. So, assume ψ̄ ∈ (0, π] and consider the orbit
O =

{
0, r1(ψ̄), . . . , rq−1(ψ̄)

}
. For q 6= 1, if we sort the points of the orbit we have to obtain

q equidistant points in S1. Impossible if rl(ψ̄) ∈ (0, π], l ∈ {0, . . . , q − 1}.
For q = 1, ωi1 = ωi2 and it is easy to verify that (ψ1, ψ2(ψ1)) does not intersect (π, 2π]2

only for ψ̄ = π. We first prove the case that it does not happen.
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We want to prove for any k ∈ {0, . . . , N}, Ik is δ-close to the curve γ. We have

I i+1 = I i + εvi +O(ε2). (4.20)

So, I i+1 is δ-close to γ if the following conditions are satisfied

I i+1
2 < γ2(ti) + δ and I i+1

1 < γ1(ti+1) + δ.

From (4.20) and if we consider only the terms of the first order, these conditions are
equivalent to

ε <
γ2(ti)− I i2 + δ

vi2
and ε <

γ1(ti+1)− I i1 + δ

vi1
.

Note that γ2(ti)− I i2 < δ and γ(ti+1)− I i1 > δ. Besides, vi1, v
i
2 ≤ ‖vi‖∞. Therefore, it is

enough to require

ε <
γ2(ti)− I i2 + δ

‖vi‖∞
. (4.21)

Define εi = sup
{
ε : ε <

γ2(ti)−Ii2+δ

‖vi‖∞

}
,we obtain for any 0 < ε ≤ εi, I

i+1 is δ-close to γ. For

u2 ≤ 0, (4.21) takes the form

ε <
I i2 − γ2(ti) + δ

‖vi‖∞
.

Now we wish to obtain a similar result for any iterate of scattering map. Observe that
‖vi‖∞ < 4a, for any i and a = max {a1, a2}. Therefore, the result is hold if we consider

ε <
δ

4a
.

That is, we take ε0 = sup
{
ε : 0 < ε < δ

4a

}
, and thus for any ε < ε0 we obtain a pseudo-orbit

δ-close to γ.
Now we come back to the case where ωi1 = ωi2 and ψ̄ = π. In this case (ψ1, ψ2(ψ1))

intersects just ((0, π)× (π, 2π))
⋃

((π, 2π)× (0, π)). Now, we consider a finite open cover
of the image of the straight line γ given by

N⋃
i=0

Bδ/2(γ(ti)),

where Bδ/2(γ(ti)) = {p ∈ R2 : ‖γ(ti)− p‖∞ < δ/2} . As ui1, u
i
2 > 0, we take vi1 > 0 and

vi2 < 0. The image of the scattering map in the variable I is given by

I i+1
1 = I i1 + εvi1 +O(ε2) and I i+1

2 = I i2 + εvi2 +O(ε2). (4.22)

The problem is when I i+1
2 < γ2(ti)− δ. From (4.22),

I i+1
2 > γ2(ti)− δ ⇔ δ > γ2(ti)− I i2 − vi2εi2 +O(ε2).
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As I i ∈ Bδ(γ(ti)), we have γ2(ti)− I i2 < δ/2. Besides, ‖vi‖∞ < 4a. Therefore,

I i+1
2 > γ2(ti)− δ ⇔ δ/2 > 4aε.

Or explicitly, I i+1
2 < γ2(ti)− δ for any ε satisfying

ε <
δ

8a
.

We prove now that this situation is not invariant, we mean, it is not possible in our
purpose to obtain ωi+1

1 = ωi+1
2 and θi+1

2 − θi+1
1 = π. We have

θi+1
2 − θi+1

1 = θi2 − εvi2 − θi1 + εvi1 +O(ε2)

= π − ε
(
vi2 − vi1

)
+O(ε2).

Then, θi+1
2 − θi+1

1 = 0 if, and only if, −ε (vi2 − vi1) +O(ε2) = 2πK, K ∈ Z. Since vi1v
i
2 < 0,

K 6= 0. From the definition of vi, we have

vi1 = −A1(I1) sin(θ1 − ω1τ
∗(I i, θi)) and vi2 = −A2(I2) sin(θ2 − ω2τ

∗(I i, θi))

From ωi1 = ωi2 and θi2 = θi1 + π, we obtain A2(I1) = a2A1(I1)/a1 and

vi2 − vi1 =

(
a2 + a1

a1

)
A1(I1) sin(θ1 − ω1τ

∗(I, θ)).

Therefore

ε
∣∣vi2 − vi1∣∣ < δ

8a
4(|a1|+ |a2|) < δ.

So, −ε (vi2 − vi1) +O(ε2) = 2πK is satisfied only for a delta satisfying

δ > 2π +O(ε2).

But this δ is too big and it is out our interest.
For vertical lines, the same result can be stated mutatis mutandis.
For a more general case, that is, C1-curve γ : [0, t∗] → R2 such that γ(0) = I−,

γ(t∗) = I+, we take a stairstep curve γstep, a combination of horizontal and vertical lines,
in a such way that γstep is a good enough approximation of γ, where “good enough” we
mean, the result is hold for γ applying the above results (for horizontal and vertical lines)
for γstep.

Using the shadowing lemmas of [FM00, FM03, GLS14] we obtain the desired orbit.

4.4 Highways

In analogy with Definition 22, in Chapter 2, we define a Highway as an invariant set
H = {(I,Θ(I))} of the Hamiltonian given by the reduced Poincaré function L∗(I, θ) which
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is contained in the level energy L∗(I, θ) = A3. It is therefore a Lagrangian manifold, that
is, Θ(I) is gradient function, i.e., there exists a function F (I) such that Θ(I) = ∇F (I).
As Θ is a gradient function, it has to satisfy the following condition

∂Θ1

∂I2

=
∂Θ2

∂I1

.

This condition is equivalent to
∂2F

∂I2∂I1

=
∂2F

∂I1∂I2

.

Proposition 63. Consider the Hamiltonian (4.1)+(4.2). Assume a1a2a3 6= 0 and |a1/a3|+
|a2/a3| < 0.625. For I1 and I2 close to infinity, the function F takes the asymptotic form

F (I) =
3π

2
(I1 + I2)−

∑
i=1,2

2ai sinh(π/2)

π4Ωi

(
π3ω3

i + 6π2ω2
i + 24πωi + 48

)
e−πωi/2

+O(ω2
1ω

2
2e
π(ω1+ω2)/2),

(4.23)

Proof. Assume a candidate of a function F (I) given by (4.23), such that Θ = ∇F (I). Θ(I)
has to satisfy the energy level for highways in the reduced Poincaré function

A1(I1) cos(Θ1 − ω1τ
∗(I,Θ)) + A2(I2) cos(Θ2 − ω2τ

∗(I,Θ)) (4.24)

+ A3 (cos(−τ ∗(I,Θ))− 1) = 0,

and τ ∗(I, θ) has to satisfy the equation of the crest

ω1A1(I1) sin(Θ1 − ω1τ
∗(I,Θ)) + ω2A2(I2) sin(Θ2 − ω2τ

∗(I,Θ))

+ A3 sin(−τ ∗(I, θ)) = 0.
(4.25)

We want to write their version for I1 and I2 close to infinity. Using (4.23) we notice
that Θi = Θi(I) takes the form

Θi = 3π/2− ai sinh(π/2)ω3
i e
−πωi/2 +O(ω2

1ω
2
2e
π(ω1+ω2)/2).

This implies

cos(Θi − ωiτ ∗) = −ai sinh(π/2)ω3
i e
−πωi/2 − ωiτ ∗∞ +O(ω2

1ω
2
2e
π(ω1+ω2)/2)

and
sin(Θi − ωiτ ∗) = −1 +O(ω6

i e
−πωi),

Besides,

cos(−τ ∗(I,Θ)) = 1− τ ∗2∞
2

+O(τ ∗4∞ ), sin(−τ ∗) = −τ ∗∞ +O(τ ∗∞),

where τ ∗∞ is an asymptotic approximation of τ ∗ that we are going to estimate below. First,
we notice that the functions A1(I1) and A2(I2) can be approximated by

Ai(Ii) = 4πaiωie
−πωi/2

(
1 + e−2πωi + . . .

)
= 4πaiωie

−πωi/2 +O
(
ωie
−5πωi/2.

)
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From (4.13), the function τ ∗(I,Θ) satisfies

−τ ∗(I,Θ) = − arcsin

(
A1(I1)ω1

A3

sin(Θ1 − ω1τ
∗(I,Θ)) +

A2(I2)ω2

A3

sin(Θ2 − ω2τ
∗)

)
,

and therefore,

τ ∗∞ ≈
∑
i=1,2

2ai sinh(π/2)ω2
i e
−πωi/2 +O

(
ωie
−5πωi/2

)
.

Applying these estimates in Eq. (4.24) we obtain that the left hand of Eq. (4.24) satisfies∑
i=1,2

{
4πaiωie

−πω1/2
[
−ai sinh(π/2)ω3

i e
−πωi/2 − ωi

(
2a1 sinh(π/2)ω2

1e
−πω1/2

+2a2 sinh(π/2)ω2
2e
−πω2/2

)]}
− A3

2

(∑
i=1,2

2ai sinh(π/2)ω2
i e
−πωi/2

)2

+O(ω2
1ω

2
2e
−π(ω1+ω2)/2) = O(ω2

1ω
2
2e
−π(ω1+ω2)/2).

In the same way, applying in Eq. (4.25) the estimates obtained, we have that the left
hand of Eq. (4.25) satisfies

− 4πa1ω
2
1e
−πω1/2 − 4πa2ω

2
2e
−πω2/2 + A3

(∑
i=1,2

2ai sinh(π/2)ω2
i e
−πωi/2

)
+O(ω2

1ω
2
2e
−π(ω1+ω2)/2) = O(ω2

1ω
2
2e
−π(ω1+ω2)/2).

Therefore, up to order O(ω2
1ω

2
2e
−π(ω1+ω2)/2), the equation of the crest and the energy

level of the reduced Poincaré function are satisfied.

We finish this chapter with an explicit equation of the highway in a special case.

Proposition 64. (Highways in a very special case) Consider the Hamiltonian (4.1)+(4.2)
and a1 = a2 = a satisfying 2 |a/a3| < 0.625 and Ω1 = Ω2 = Ω.

Let O =
{

(I0, θ0), . . . , (IN , θN)
}

be an orbit in a highway, N ∈ N such that I0
1 = I0

2 and
θ0

1 = θ0
2. Then, I i1 = I i2 = Ī i and θi1 = θi2 = θ̄i for any i ∈ {0, . . . , N} and can be described

by

θ̄h(Ī) =

arccos
(
A3(1−f−(Ī))

A(Ī)

)
+ ω̄ arccos(f−(Ī)), Ī ≤ 0;

arccos
(
A3(1−f−(Ī))

A(Ī)

)
− ω̄ arccos(f−(Ī)), I > 0;

or

θ̄H(I) =

− arccos
(
A3(1−f−(Ī))

A(Ī)

)
− ω̄ arccos(f−(Ī)), Ī ≤ 0;

− arccos
(
A3(1−f−(Ī))

A(Ī)

)
+ ω̄ arccos(f−(Ī)), Ī > 0;

,

where f−(Ī) = ω̄A3 −
√
A2

3 + (ω̄ − 1)Ī2A2(Ī)/ [A3(ω̄2 − 1)] and ω̄ = ĪΩ1.
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Proof. We have that the trajectories of the scattering map are given by the ε-time flow
of the Hamiltonian −L∗(I, θ) up to order O(ε2). And such flow is given by the following
differential equations:

İi = −Ai(Ii) sin(θi − ωiτ ∗(I, θ)) (4.26)

θ̇i = −Ωi
dAi
dωi

(Ii) (cos(θi − ωiτ ∗) + τ ∗(I, θ)Ai(Ii) sin(θi − ωiτ ∗(I, θ))) ,

for i = 1, 2. Assuming Ω1 = Ω2 =: Ω and a1 = a2 =: a and taking initial conditions
satisfying I(0) = I0 and θ(0) = θ0 where I0

1 = I0
2 and θ0

1 = θ0
2, the solution (I(t), θ(t)) of

(4.26) satisfies θ1(t) = θ2(t) and I1(t) = I2(t). Let O =
{

(I0, θ0), (I1, θ1), . . . , (IN , θN)
}

be
an orbit of the scattering map in a ε-time flow of the Hamiltonian −L∗(I, θ) up to order
O(ε2), N ∈ N. Therefore, I l1 = I l2 and θl1 = θl2 for any l ∈ {0, . . . , N}. We simply denote
I1 = I2 and θ1 = θ2.

If the orbit O is a highway, it has to satisfy two equations: the equation of the crests
given in (4.12) and

L∗(I, θ) = A3.

But now, as I1 = I2 =: Ī, θ1 = θ2 =: θ̄, Ω1 = Ω2 and a1 = a2, these equations can be
rewritten as

A(Ī) cos(θ̄ − ω̄τ ∗(Ī , θ̄)) + A3 cos(−τ ∗(Ī , θ̄)) = A3

ω̄A(ω̄) sin(θ̄ − ω̄τ ∗(Ī , θ̄)) + A3 sin(−τ ∗(Ī , θ̄)) = 0,

where ω̄ := ω1 = ω2 and A(Ī) = 4πω̄a/ sinh(πω̄/2). From a similar approach used in
Proposition 23, we obtain the crests are described by

θ̄h(Ī) =

arccos
(
A3(1−f−(Ī))

A(Ī)

)
+ ω̄ arccos(f−(Ī)), Ī ≤ 0;

arccos
(
A3(1−f−(Ī))

A(Ī)

)
− ω̄ arccos(f−(Ī)), I > 0;

and

θ̄H(I) =

− arccos
(
A3(1−f−(Ī))

A(Ī)

)
− ω̄ arccos(f−(Ī)), Ī ≤ 0;

− arccos
(
A3(1−f−(Ī))

A(Ī)

)
+ ω̄ arccos(f−(Ī)), Ī > 0;

,

where f−(Ī) = ω̄A3 −
√
A2

3 + (ω̄ − 1)Ī2A2(Ī)/ [A3(ω̄2 − 1)].
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Chapter 5

Some open questions

5.1 Highways in piecewise smooth global scattering

maps

As we showed in Section 3.4, in the piecewise smooth global scattering maps there exist
two lines of discontinuity in the vector field of the scattering map. It seems that we can
define two special orbits using the theory developed by [Fil88], such that these orbits lie
on the lines of discontinuity and behave like the highways defined in Chapter 1.

In a future work we plan to perform numerical experiments to verify whether it is
possible to find real orbits of the Hamiltonian behaving like these special orbits in this
region of the phase space. After that we wish to exploit these orbits to obtain fast and
simple diffusion.

5.2 About the case with 3 + 1/2 degrees of freedom

For the case studied in this thesis, i.e., the Hamiltonian system given by (4.1)+(4.2), in
Proposition 63 we obtain an asymptotic approximation of the highways. A next step is to
check that this approximation is good enough in order to continue globally those highways
to obtain a global description.

Besides, here we have presented results for a restricted set of values of a1 and a2, more
precisely, for a1 and a2 satisfying |a1|+ |a2| ≤ 0.625. And we have obtained similar results
to the part of the results in Chapter 2. The next step is to eliminate this restriction over the
values of a1 and a2 and to study the bifurcation of crests, the bifurcation of the scattering
maps and the existence of the highways.

Finally, we expect to study the case of a complementary perturbation with respect
to (4.2) to cover the complete family case, in an analogous way that we have done in
Chapter 3.
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5.3 About Shadowing lemmas

Taking into account our numerical experiments, the geometrical mechanisms used in
our proof and our estimates for the time, we wish to understand the real role played by
the inner map in this mechanism.

Our main question is: Is it really necessary to use the inner dynamics in the building
of a pseudo-orbit to guarantee the existence of real orbit of the system?

In our theorems we were able to use the results of [FM00, FM03, GLS14]. In [GLS14]
they proved a shadowing lemma for pseudo-orbits built by using a number of iterates of
scattering map. But the result appears not to be very practical for fast diffusion.

In the ongoing work we plan to use numerical experiments to verify the existence of real
orbits close to pseudo-orbits of a scattering map (or a combination of multiple scattering
maps). Besides, in the future we wish to carry out an analytic approach as well.

5.4 Relation between the formulas of the scattering

and separatrix maps

The separatrix map was introduced by Zaslavskii and Filonenko in [ZF68], and has
been studied and developed in [Tre98, Tre02, Pif06, PT07, GKZ16, DT16]. Under certain
conditions we believe that the formulas obtained in [Tre02] can be improved as

I∗ = I + ε∂ϕL∗(I∗, ϕ, s)−
∂ϕω0

λ
log
∣∣∣κω0

λ

∣∣∣+O2

ϕ∗ = ϕ+ ν − ε∂IL∗(I∗, ϕ, s) +
∂Iω0

λ
log
∣∣∣κω0

λ

∣∣∣+O1

h∗ = H0 + ε∂sL∗(I∗, ϕ, s)−
∂sω0

λ
log
∣∣∣κω0

λ

∣∣∣+O2

s∗ = s+ t̄
∂hω0

λ
log
∣∣∣κω0

λ

∣∣∣+O1,

where λ, κ and µ are functions of I∗, t̄ is an integer.∣∣∣∣s+ t̄+
∂hω0

λ
log
∣∣∣κω0

λ

∣∣∣∣∣∣∣ < c−1

and O1 = O(ε
1
4 )(ε

7
8 ) log2 ε,O2 = O(ε

1
4 )(ε

5
4 ) log2 ε and L∗ is a reduced Poincaré function.

Since the Scattering map takes the explicit form

Sε(I, θ) =

(
I + ε

∂

∂θ
L∗(I, θ) +O(ε2), θ − ε ∂

∂I
L∗(I, θ) +O(ε2)

)
.

We expect to verify analytically and numerically these equations.
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5.5 About the amount of diffusion trajectories

Along this thesis, we have proved along only the existence of “a” or “some” diffusing
trajectories satisfying I(0) < −I∗, I(T ) > I∗. It would be very important to verify, at least
numerically, how many of such diffusion trajectories exist, depending on ε. This probably
would amount to massive computations, but it would provide a better global understanding
of the diffusion of the diffusion process that really takes place.

5.6 And more and more

There are several problems in Celestial Mechanics which give rise naturally to NHIMs,
like the center manifolds associated to libration points of the elliptic restricted three body
problem, spatial restricted three body problem, the same with Hill problem, double colli-
sion in the mentioned problems. There have been already some numerical approximations
searching for diffusion, but we think that one can get better understanding searching sys-
tematically for crests and (symplectic) scattering maps.

Finally, for general Hamiltonian of 3 + 1/2 d.o.f one expect to have to use several
NHIMs, and combine thus different kinds of scattering maps plus the transition between
the different NHIMs. This problem appears to be more difficult than the case of diffusion
only along one NHIM considered in this thesis, but it is of course more general and deserves
a deep attack.
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