
High-level Compiler Analysis for
OpenMP

Sara Royuela Alcázar

PhD Dissertation

Doctoral programme on Computers Architecture

Technical University of Catalonia

April, 2018

iii

High-level Compiler Analysis for OpenMP

Sara Royuela Alcázar

A dissertation submitted to the Department of Computer Architecture at Technical University of Catalonia
in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Thesis Supervisor:
Prof. Xavier Martorell Bofill, Universitat Politècnica de Catalunya

Dissertation Pre-defence Committee:
Prof. Jesús Labarta Mancho, Universitat Politècnica de Catalunya
Prof. Daniel Jiménez González, Universitat Politècnica de Catalunya
Prof. Josep Llosa Espuny, Universitat Politècnica de Catalunya

External Reviewers:
Prof. Edmond Schonberg, New York University
Dr. Michael Klemm, Intel Corporation

Dissertation Defence Committee:
Prof. Edmond Schonberg, New York University
Dr. Michael Klemm, Intel Corporation
Prof. Jesús Labarta Mancho, Universitat Politècnica de Catalunya

Prof. Daniel Jiménez González, Universitat Politècnica de Catalunya
Dr. Harald Servat, Intel Corporation

Barcelona, April 2018

Abstract

Nowadays, applications from dissimilar domains, such as High-Performance Computing

(HPC) and high-integrity systems, require levels of performance that can only be achieved

by means of sophisticated heterogeneous architectures. However, the complex nature of such

architectures hinders the production of efficient code at acceptable levels of time and cost.

Moreover, the need for exploiting parallelism adds complications of its own (e.g., deadlocks,

race conditions,...). In this context, compiler analysis is fundamental for optimizing parallel

programs. There is however a trade-off between complexity and profit: low complexity analyses

(e.g., reaching definitions) provide information that may be insufficient for many relevant

transformations, and complex analyses based on mathematical representations (e.g., polyhedral

model) give accurate results at a high computational cost.

A range of parallel programming models providing different levels of programmability,

performance and portability enable the exploitation of current architectures. However, OpenMP

has proved many advantages over its competitors: 1) it delivers levels of performance comparable

to highly tunable models such as CUDA and MPI, and better robustness than low level libraries

such as Pthreads; 2) the extensions included in the latest specification meet the characteristics

of current heterogeneous architectures (i.e., the coupling of a host processor to one or more

accelerators, and the capability of expressing fine-grained, both structured and unstructured, and

highly-dynamic task parallelism); 3) OpenMP is widely implemented by several chip (e.g., Kalray

MPPA, Intel) and compiler (e.g., GNU, Intel) vendors; and 4) although currently the model lacks

resiliency and reliability mechanisms, many works, including this thesis, pursue their introduction

in the specification.

This thesis addresses the study of compiler analysis techniques for OpenMP with two main

purposes: 1) enhance the programmability and reliability of OpenMP, and 2) prove OpenMP as a

suitable model to exploit parallelism in safety-critical domains. Particularly, the thesis focuses on

the tasking model because it offers the flexibility to tackle the parallelization of algorithms with

load imbalance, recursiveness and uncountable loop based kernels. Additionally, current works

have proved the time-predictability of this model, shortening the distance towards its introduction

in safety-critical domains.

To enable the analysis of applications using the OpenMP tasking model, the first contribution

of this thesis is the extension of a set of classic compiler techniques with support for OpenMP.

As a basis for including reliability mechanisms, the second contribution consists of the

development of a series of algorithms to statically detect situations involving OpenMP tasks, which

may lead to a loss of performance, non-deterministic results or run-time failures.

A well-known problem of parallel processing related to compilers is the static scheduling of a

v

vi ABSTRACT

program represented by a directed graph. Although the literature is extensive in static scheduling

techniques, the work related to the generation of the task graph at compile-time is very scant.

Compilers are limited by the knowledge they can extract, which depends on the application and

the programming model. The third contribution of this thesis is the generation of a predicated task

dependency graph for OpenMP that can be interpreted by the runtime in such a way that the cost

of solving dependences is reduced to the minimum.

With the previous contributions as a basis for determining the functional safety of OpenMP,

the final contribution of this thesis is the adaptation of OpenMP to the safety-critical domain

considering two directions: 1) indicating how OpenMP can be safely used in such a domain, and

2) integrating OpenMP into Ada, a language widely used in the safety-critical domain.

Keywords: Compiler analysis, OpenMP, task dependency graph, correctness, safety-critical

Acknowledgements

To the two persons who have been essential in the development of this thesis. Alex, I will never

be too grateful to you, for you gave me the very first chance to start my research career, and you

provided me with the tools and environments I needed to develop myself. And Edu, I would never

have finished without you. You trusted me and believed what I was doing was worth it, and this

was all I needed.

Dario, your support, not only professionally, but of course personally, has been priceless. It

does not matter if we live apart, if stress gets us grumpy, or if the future is uncertain. In all the

twists and turns, you are my rock, and indeed an intrinsic part of this thesis.

My dear colleagues and friends. Roger, you taught me many of the things I know about

compilers. Working with you was a challenge that allowed me to learn from an incredible engineer.

Diego, sharing with you our very first years as researchers has been an honor. I really miss you

and I hope our lives come closer again sometime.

A special mention to my advisor, Xavi, who allowed me to develop all my ideas, and supported

(and bore) me all these years. Thanks for your infinite patience and compliance. And also a

mention to Miguel, who’s knowledge about Ada and accessibility have been essential to complete

the last part of this thesis.

Last but not least, mum, dad and my dear Quim. You are the reasons why I am here, or

anywhere else. You help me, understand me, bear me and love me no matter what. You are

invaluable to me.

Thank you all for coming along with me in this wonderful journey.

The people mentioned in this acknowledgment are (in order of appearance): Alejandro Duran, Eduardo Quiñones,
Dario Garcia, Roger Ferrer, Diego Caballero, Xavier Martorell, Luis Miguel Pinho, Carmen Alcázar, José Marı́a
Royuela, Quim Garcia.

vii

viii ACKNOWLEDGEMENTS

This work has been partly supported by:

– The P-SOCRATES European project (FP7-ICT-2013-10).

– The Severo Ochoa Program (grant SEV-2011-00067), awarded by the Spanish Government.

– The Spanish Ministry of Science and Innovation (under contracts TIN2012-34557 and

TIN2015-65316-P).

– The Departament d’Innovació, Universitats i Empresa of the Generalitat de Catalunya (under

contracts MPEXPAR - Models de Programació i Entorns Parallels - and 2014-SGR-1051).

– The U.S. Department of Energy by Lawrence Livermore National Laboratory (under Contract

DE-AC52-07NA27344).

Contents

Cover i

Abstract v

Acknowledgements vii

Contents ix

1 Introduction 1
1.1 Motivation . 1

1.2 Goals of this thesis . 2

1.3 Contributions . 3

1.4 Document organization . 4

2 Background 5
2.1 Programming models . 5

2.1.1 OpenMP . 5

2.1.1.1 The execution model . 6

2.1.1.2 The memory model . 8

2.1.2 OmpSs . 9

2.1.2.1 The execution model . 9

2.1.2.2 The memory model . 10

2.1.3 Ada . 10

2.1.3.1 Concurrency model . 11

2.1.3.2 Safety . 14

2.2 Execution environment . 15

2.2.1 The Mercurium source-to-source compiler 15

2.2.1.1 Intermediate representation . 16

2.2.1.2 Compiler phases . 18

2.2.2 The libgomp runtime library . 19

2.3 Architectures . 20

2.3.1 HPC architectures: Intel Xeon . 20

2.3.2 Real-time embedded architectures: the Kalray MPPA® processor 22

ix

x CONTENTS

3 Compiler analysis for OpenMP 25
3.1 Internal Representation of the code . 25

3.2 Classic analysis adapted to OpenMP . 26

3.2.1 The Parallel Control Flow Graph . 26

3.2.1.1 Tasks synchronization data-flow algorithm 28

3.2.2 Use-Definition analysis . 32

3.2.3 Liveness . 34

3.2.4 Reaching definitions . 35

3.3 Impact . 36

3.4 Conclusion . 37

4 Correctness in OpenMP 39
4.1 Contributions of the M.S. thesis . 39

4.1.1 Automatic scope of variables . 39

4.1.2 Automatic detection of task dependences 40

4.2 Related work . 40

4.3 Automatic solution of common mistakes involving OpenMP tasks 41

4.3.1 Variables’ storage . 41

4.3.2 Data-race conditions . 43

4.3.3 Dependences among non-sibling tasks . 45

4.3.4 Incoherent data-sharing . 46

4.3.5 Incoherent task dependences . 48

4.4 Evaluation of the correctness tool . 49

4.4.1 Usefulness . 49

4.4.2 Comparison with other frameworks: Oracle Solaris Sudio 12.3 51

4.5 Impact . 51

4.6 Conclusion . 52

5 A Static Task Dependency Graph for OpenMP 55
5.1 Applicability . 55

5.2 Related work . 56

5.3 Compiler analysis . 57

5.3.1 Control and data flow analysis . 58

5.3.2 Task expansion . 59

5.3.3 Missing information when deriving the TDG 60

5.3.4 Communication with the runtime . 61

5.3.5 Complexity . 61

5.4 Runtime support . 61

5.5 Evaluation . 62

5.5.1 Experimental setup . 62

5.5.2 Performance speed-up and memory usage 63

CONTENTS xi

5.5.3 Impact of missing information when expanding the TDG 64

5.6 Impact . 65

5.7 Conclusions . 65

6 Towards a Functional Safe OpenMP 67
6.1 Is OpenMP a suitable candidate for critical real-time systems? 67

6.2 The OpenMP specification from a safety-critical perspective 68

6.2.1 Related work . 68

6.2.2 OpenMP hazards for real-time embedded systems 69

6.2.2.1 Unspecified behavior . 69

6.2.2.2 Deadlocks . 71

6.2.2.3 Data race conditions . 72

6.2.2.4 Cancellation . 72

6.2.2.5 Other features to consider . 73

6.2.3 Adapting the OpenMP specification to the real-time domain 75

6.2.3.1 Changes to the specification . 75

6.2.3.2 Automatic definition of the contracts of a safety-critical

OpenMP library . 78

6.2.3.3 Implementation considerations 79

6.2.4 Conclusion . 80

6.3 Application of OpenMP to a safe language: Ada 81

6.3.1 Related work . 81

6.3.2 Analysis of the Ada and OpenMP parallel models 82

6.3.2.1 Forms of parallelism . 82

6.3.2.2 Execution model . 84

6.3.2.3 Use of resources . 85

6.3.2.4 Memory model . 85

6.3.2.5 Safety . 86

6.3.3 Supporting the Ada parallel model with OpenMP 87

6.3.3.1 Preemption . 87

6.3.3.2 Progression Model . 87

6.3.3.3 Fork-join Model . 88

6.3.4 Supporting the OpenMP Tasking Model in Ada 89

6.3.5 Evaluation . 89

6.3.5.1 Experimental setup . 89

6.3.5.2 Structured parallelism: Ada parallel model, Ada tasks and Paraffin 90

6.3.5.3 Unstructured parallelism: Ada parallel model and OpenMP task

dependences . 91

6.3.5.4 Performance benefit of OpenMP: Ada vs. C 91

6.3.5.5 Interplay of Ada and OpenMP runtimes 93

6.3.6 Managing persistent tasks . 93

xii CONTENTS

6.3.7 Conclusion . 94

6.4 Correctness for Ada/OpenMP . 94

6.4.1 Related work . 95

6.4.2 Compiler analysis for mixed Ada/OpenMP programs 95

6.4.2.1 Concurrency in mixed Ada/OpenMP programs 97

6.4.2.2 Representation of an Ada/OpenMP program 98

6.4.2.3 Correctness analysis . 99

6.4.2.4 Extending the approach . 101

6.4.3 Conclusion . 102

6.5 Impact . 102

6.6 Conclusion . 102

7 Discussion 105
7.1 Conclusion . 105

7.2 Impact . 106

7.2.1 European projects . 106

7.2.2 Programming models . 107

7.2.3 Other thesis . 107

7.3 Future work . 108

7.4 Publications . 109

Bibliography 111

Figures 123

Tables 125

Listings 127

Algorithms 131

A Diagrams 133
A.1 Ada task states and transitions . 133

B Benchmark Source Codes 135
B.1 Benchmarks for correctness checking in OpenMP 135

B.1.1 Fibonacci . 135

B.1.2 Dot product . 137

B.1.3 Matrix multiplication . 138

B.1.4 Pi . 140

B.1.5 Sudoku solver . 141

B.2 Benchmarks for the OpenMP integration into Ada 143

B.2.1 Cholesky decomposition . 143

CONTENTS xiii

B.2.1.1 C . 143

B.2.1.2 C + OpenMP . 143

B.2.1.3 Ada . 145

B.2.1.4 Ada + OpenMP . 145

B.2.1.5 Ada tasks . 147

B.2.1.6 Ada + Paraffin . 150

B.2.2 LU factorization . 151

B.2.2.1 C . 151

B.2.2.2 C + OpenMP . 151

B.2.2.3 Ada . 152

B.2.2.4 Ada + OpenMP . 153

B.2.2.5 Ada tasks . 155

B.2.2.6 Ada + Paraffin . 159

B.2.3 Matrix . 160

B.2.3.1 C . 160

B.2.3.2 C + OpenMP . 160

B.2.3.3 Ada . 161

B.2.3.4 Ada + OpenMP . 161

B.2.3.5 Ada tasks . 162

B.2.3.6 Ada + Paraffin . 163

B.2.4 Synthetic: Ada tasks + OpenMP tasks . 164

C Acronyms 167

1
Introduction

This thesis has been developed within the scope of the Open Multi-Processing (OpenMP)

programming model and high-level compiler analysis techniques. This introductory chapter

explains first the motivation that led us to develop this work, then the goals of this thesis as well

as its contributions, and finally the remainder of this document.

1.1 Motivation

Current applications in dissimilar domains such as HPC (e.g., simulation, modeling, deep

learning, etc.) and safety-critical systems (e.g., autonomous driving, avionics, etc.) require

high levels of performance that can only be achieved by means of multi-core devices with

different kinds of accelerators, such as many-cores, GPUs (Graphic Processing Unit) or FPGAs

(Field Programmable Gate Array). However, boosting performance is not only in the hands of

hardware. Parallel programming models are indeed of paramount importance to leverage the

inherent parallelism of the devices. That said, the success of a multi-core platform relies on its

productivity, which combines performance, programmability and portability. With such a goal,

multitude of programming models coexist and, as a result, there is a noticeable need to unify

programming models for many-cores [154].

In that context, OpenMP has proved to have many advantages over its competitors. On one

hand, different evaluations demonstrate that OpenMP delivers performance and efficiency levels

comparable to highly tunable models such as Threading Building Blocks (TBB) [76], CUDA

[83], Open Computing Language (OpenCL) [140], and Message Passing Interface (MPI) [79].

On the other hand, OpenMP has different advantages over low level libraries such as Pthreads

[106]: a) it offers robustness without sacrificing performance [81], and b) it does not lock the

software to a specific number of threads. Furthermore, OpenMP code can be easily compiled

as a single-threaded application, thus easing debugging. As a result, OpenMP has emerged as

a de facto standard for shared-memory systems by virtue of its benefits: portability, scalability

and programmability; in brief, productivity. Furthermore, the extensions included in the latest

specification meet the needs of current heterogeneous architectures: a) the coupling of a main host

processor to one or more accelerators, where highly-parallel code kernels can be offloaded for

improved performance/power consumption; and b) the capability of expressing fine-grained, both

1

2 1. INTRODUCTION

structured and unstructured, and highly-dynamic task parallelism. Besides, the model is widely

implemented by several chip (e.g., TI Keystone [144], Kalray MPPA [42] and STM P2012 [28])

and compiler vendors (e.g., GNU [60], Intel [69], and IBM [66]), thus easing portability.

On the other hand, the importance of compilers has increased alongside the development of

multiprocessors. Writing correct and efficient parallel code is hard because concurrency gives

rise to a number of problems that are nonexistent in sequential programming: race conditions,

deadlocks and livelocks, synchronizations, memory partitioning, load balancing, starvation, etc.

In this context, compilers are the keystone to achieve performance by means of static analysis and

optimization techniques. For that reason, a multitude of techniques has been developed over the

years. Nonetheless, the number of specific analyses for OpenMP in general, and the OpenMP

task-parallel model in particular, are very scant. Thus, there is a need to develop mechanisms that

enable the analysis of OpenMP applications.

Beyond the HPC domain, the importance of program analysis may become crucial for different

reasons: limited resources (e.g., embedded systems), system restrictions (critical systems), etc.

Such environments, specially critical embedded systems, impose several constraints focused in

two areas: functional safety and time-predictability [77]. For this reason, safety-critical systems

are commonly developed with programming languages where concepts as safety and reliability are

inherent to the language, such as Ada [23]. The characteristics that have made Ada a widespread

language in safety-critical domains are the analyzability (e.g., minimizing data coupling across

modules), the real-time support (e.g., allowing the specification of restrictions on the features that

will be used) and the concurrency capabilities.

But the most advanced safety-critical systems, such as autonomous driving, include

applications typical from the HPC domain (e.g., image recognition, sensor fusion, neural networks,

etc.). These applications are pushing the introduction of parallel capabilities in current embedded

architectures [137] and programming languages [147]. The integration of such capabilities is

however troublesome because of the tight restrictions of such systems, and hence efforts must be

in the direction of ensuring these restrictions are preserved.

Overall, there is a clear need to converge the HPC and the safety-critical domains. Based

on this necessity, programming models need to fulfill the requirements of both environments:

high productivity and safety (including correctness and time-predictability). In our opinion, the

problem needs to be tackled from the two perspectives. On one hand, the components used in the

HPC domain must be adapted to the necessities of the safety-critical domain. On the other hand,

the safety-critical domain must include support for such new components.

1.2 Goals of this thesis

In the context of this thesis we define the following goals:

1. Establish a compiler analysis infrastructure with support for OpenMP, specially focused in the

tasking model, to serve as a solid basis for building more complex and specific techniques.

2. Extend the compiler analysis techniques dedicated to evaluate functional safety in OpenMP

codes using the tasking model.

1. INTRODUCTION 3

3. Implement compiler support for the static generation of a Task Dependency Graph (TDG)

based on OpenMP tasks dependences. With this, enable the use of OpenMP in systems with

low memory resources such as embedded systems, and also enhance the performance in HPC.

4. Exploit the benefits of HPC in the safety-critical domain while preserving the tight

requirements of such systems. In this context, consider OpenMP as a suitable candidate to

exploit fine-grain parallelism in Ada, as well as develop analysis techniques for ensuring

functional safety in combined Ada and OpenMP applications.

1.3 Contributions

In this thesis we present several contributions in the field of the OpenMP programming model

considering three aspects: the specification of OpenMP, compiler analysis techniques and runtime

development. The analysis and results presented in this thesis are also applicable to the OmpSs

programming model, for that reason, although the rest of the document only refers to OpenMP,

the reader can imply we allude to OmpSs as well. The contributions are listed as follows:

1. Compiler analysis infrastructure. This thesis introduces an analysis framework developed in

the Mercurium source-to-source compiler. This includes the development of a set of classic

compiler analyses such as control-flow graph, use-definition, liveness, and reaching definitions

analyses. This work also extends the previously mentioned analyses with support for the

OpenMP tasking model.

2. Compiler analysis for OpenMP correctness. Based on the previous contribution, this thesis

includes a set of high-level analyses that allow the detection of situations involving OpenMP

tasks that may lead to run-time errors, non-deterministic results or loss of performance. This

work identifies a set of cases that users should be aware of, and implements in the Mercurium

compiler the techniques that allow supplying hints about errors that may occur at run-time for

the presented cases. The usefulness of this work is evaluated using different groups of students,

and the information provided by the compiler is compared to that obtained with Solaris Sudio

to evaluate its quality.

3. Compile-time generation of a TDG. Also based on the compiler analysis infrastructure, this

thesis includes the implementation in the Mercurium compiler of a new phase that computes

a TDG based on the tasks of an OpenMP program. We use the support implemented in the

libgomp runtime library in the frame of the P-SOCRATES European project [121] to evaluate

the performance of a static TDG against of that of generating the graph at run-time. This

evaluation shows the benefits obtained in memory usage, and thus the feasibility of using

OpenMP in embedded systems with limited resources.

4. Integration of OpenMP into safety-critical environments. The previous works derive in the

exploration of OpenMP for domains where correctness and memory bounds are crucial, such

as safety-critical real-time systems. The issue is approached from three different perspectives:

(a) An OpenMP specification for safety-critical domains. This thesis analyzes the

specification of OpenMP in pursuit of features that can be a hazard in safety-critical

systems, and proposes solutions for those features.

4 1. INTRODUCTION

(b) Integration of OpenMP into a safe language: Ada. This thesis also builds up the

introduction of OpenMP into Ada to exploit fine-grain parallelism. In this regard, the

thesis covers all the pillars of the integration:

i. language syntax: proposal of a new syntax for introducing OpenMP directives in Ada.

ii. compiler analysis: development of new compiler analysis techniques specific for Ada

and OpenMP to detect race conditions in situations were the Ada concurrent model

and OpenMP interplay, as well as in pure Ada applications.

iii. runtime support: study of the compatibility between the Ada and the OpenMP

runtimes considering the use of OpenMP to implement the Ada tasklet model1 to

exploit structured parallelism, and the use of OpenMP directives in Ada to exploit

unstructured parallelism.

A thorough analysis of the Ada and the OpenMP programming models, including

execution model, memory model and safety, drives this integration.

(c) An analysis technique for functional safety in Ada applications using OpenMP. Finally,

this thesis presents an analysis technique aimed at detecting data-race conditions in

applications combining Ada and OpenMP. This is meant to be the starting point for a series

of techniques that are to cover all issues that concern functional safety in Ada OpenMP

applications.

1.4 Document organization

The rest of this document is organized as follows: Chapter 2 expounds the background of

this thesis, including different programming models (OpenMP, OmpSs and Ada), software

components (the Mercurium source-to-source compiler and the libgomp runtime library for

OpenMP), and architectures (an Intel Xeon-based supercomputer and, the Kalray MPPA

real-time embedded multiprocessor). Chapter 3 describes the analysis infrastructure for OpenMP

implemented in Mercurium. Chapter 4 introduces the analysis techniques implemented in

Mercurium for detecting functional correctness issues in OpenMP codes using tasks, as well as the

evaluation of this work. Chapter 5 explains the generation of a static TDG based on OpenMP tasks

dependences, and evaluates its use in the Kalray MPPA embedded system. Chapter 6 addresses

the integration of OpenMP in safety-critical real-time embedded systems from three perspectives:

the OpenMP specification, the safe language Ada (considering the three pillars of the integration:

language syntax, compiler analysis and runtime support), and the analysis techniques required for

applications combining both languages. Chapter 7 presents the conclusions and future work, and

Appendix B illustrates the most important parts of the benchmarks used in the development and

evaluation of this thesis.

1The Ada tasklet model is a fine-grain model of parallelism which is currently under discussion, and is to be part
of the Ada202X standard. See details in Section 6.4.

2
Background

This chapter introduces relevant information about the key components used during the

development of this thesis. First, the programming models: OpenMP, OmpSs and Ada. Second,

the execution environment, involving the Mercurium compiler and the libgomp runtime library.

And last, the architectures; particularly, an HPC machine composed by Intel Xeon processors, and

a real-time embedded architecture, the MPPA Kalray processor.

2.1 Programming models

From the vast amount of programming models that allow expressing parallelism, we have focused

on two. On one hand, OpenMP, because it is a widely spread parallel programming model,

with broad support from chip and compiler vendors, and has proved many benefits to obtain

productivity. We take advantage of the similarity between OpenMP and OmpSs, and also use

OmpSs applications to evaluate some of our work. On the other hand, Ada, a concurrent

programming model commonly used in critical domains by virtue of its reliability. We introduce

the main characteristics of all three languages below.

2.1.1 OpenMP

OpenMP (Open Multi Processing) is a standard Application Program Interface (API) for defining

multi-threaded programs. The main purpose of the language is to provide programmers with a

simple yet complete and flexible platform to develop parallel applications with C/C++ and Fortran.

OpenMP is based on high-level compiler directives, library calls and environment variables,

and relies on compiler and runtime support to process and implement its functionalities.

The language is built around systems where multiple concurrent threads have access to a

shared-memory space. A relaxed-consistency memory model describes the visibility of each

thread for a given variable. This visibility, defined by means of data-sharing attributes, may be

shared among threads or private to a specific thread or team of threads. Furthermore, a fork-join

execution model defines where threads are spawned and joined based on the directives inserted by

the programmer.

5

6 2. BACKGROUND

OpenMP 1.0
(Fortran)

1997 2000

OpenMP 2.0
(Fortran)

2005

OpenMP 2.5
(C/C++ and Fortran)

2008

OpenMP 3.0
OpenMP 1.0

(C/C++)

1998

OpenMP 2.0
(C/C++)

2002 2011

OpenMP 3.1

2013

OpenMP 4.0

2015

OpenMP 4.5

2018

OpenMP 5.0

Figure 2.1: Time-line of the OpenMP releases.

Initial versions of OpenMP, up to version 2.5 [108], implemented a thread-centric model of

parallelism that defines a conceptual abstraction of user-level threads. These conceptual threads

work as proxies for physical processors, and thus is a model somehow aware of the underlying

resources. The parallel and a series of worksharing constructs allow creating and distributing

computational work. On account of all that, this model enforces a rather structured parallelism.

The following two releases, versions 3.0 [109] and 3.1 [110], introduced support for a

task-centric model (also called tasking model) of parallelism. This model is oblivious of the

physical layout, and programmers focus on exposing parallelism rather than mapping parallelism

to threads. As a result, the language allows defining unstructured and highly dynamic parallelism.

The latest versions of OpenMP, versions 4.0 [111] and 4.5 [113], include support for

accelerators, error handling, thread affinity and SIMD extensions, expanding the language beyond

its traditional boundaries. Furthermore, the specification includes improvements to the tasking

model, such as task dependences, and augmentations of the allowed reduction operations, by

means of user-defined reductions.

Figure 2.1 shows the time-line of the OpenMP releases from the first Fortran version in 1997,

until the upcoming OpenMP 5, by the end of 2018.

An important feature of OpenMP is the fact that neither the compiler nor the runtime

must validate the conformity1 of programs. The correctness of the code depends only on the

programmer. Thus, frameworks do not need to check for issues such as data dependences, race

conditions or deadlocks. As a result, the implementation of the standard is quite easy and light,

and that boosts the spreading of the language even in architectures with few resources.

2.1.1.1 The execution model

OpenMP implements a fork-join model of parallelism. The program begins as a single thread of

execution, called the initial thread, and parallelism is created through the parallel construct.

When such a construct is found, a team of threads is spawned, which are joined at the implicit

barrier encountered at the end of the parallel region. Within that region, the threads of the team

execute work following two different patterns:

– The thread-centric model, which defines a conceptual abstraction of user-level threads

that work as proxies for physical processors, enforcing a rather structured parallelism.

Representative constructs are for and sections.
1An OpenMP program is conforming if it follows all rules defined in the specification.

2. BACKGROUND 7

– The task-centric model, which is oblivious of the physical layout, and allows programmers to

focus on exposing parallelism rather than mapping parallelism onto threads. Representative

constructs are task and taskloop. Furthermore, tasks can be either tied, if they are tied to

the thread that starts the execution of the task, or untied, if they are not tied to any thread.

In OpenMP, mutual exclusion is accomplished via the critical and atomic constructs,

and synchronization by means of the barrier construct. Additionally, the tasking model offers

the taskwait construct to impose a less restrictive synchronization (while a barrier synchronizes

all threads in the current team, a taskwait only synchronizes child tasks of the binding task2, and

the dependence clauses, that allow a data-flow driven synchronization among tasks). The values

allowed for the dependence clauses are the following:

– in: a task with an l-value as input dependence is eligible to run when all previous tasks with

the same l-value as output dependence have finished its execution.

– out: a task with an l-value as output dependence is eligible to run when all previous tasks

with the same l-value as input or output dependence have finished its execution.

– inout: a with an l-value as inout dependence behaves as if it was an output dependence.

As an illustration, Listing 2.1 and 2.2 show the addition of two arrays using the for construct

(thread model) and the taskloop construct (tasking model). In both cases, when the parallel

construct is found, a team of threads is created. Also, in both cases all threads wait for the

completion of the whole computation in the implicit barrier at the end of the parallel region.

After that, all the threads are released and the master thread3 keeps executing sequentially. The

difference appears when the work has to be distributed. In the thread-centric example, the for

worksharing splits the iteration space and distributes work among the different threads of the

team, which will execute until there is no more work to do. On the other hand, in the task-centric

example, a single construct is needed to indicate that just the master thread of the team will

execute the code inside the region. Then, when the taskloop construct is found, a number

of tasks is created and the iterations are distributed among them. These tasks can be executed

immediately by one of the threads of the team, or may be deferred.

1 void a d d a r r a y s (i n t n , f l o a t *a ,
2 f l o a t *b , f l o a t * c)
3 {
4 #pragma omp parallel f o r
5 f o r (i n t i = 1 ; i < n ; i ++)
6 c [i] = a [i] + b [i] ;
7 }

Listing 2.1: Addition of two arrays using
the OpenMP thread-centric model.

1 void a d d a r r a y s (i n t n , f l o a t *a ,
2 f l o a t *b , f l o a t * c)
3 {
4 #pragma omp parallel
5 #pragma omp master
6 #pragma omp taskloop
7 f o r (i n t i = 1 ; i < n ; i ++)
8 c [i] = a [i] + b [i] ;
9 }

Listing 2.2: Addition of two arrays using
the OpenMP task-centric model.

2The binding region is the enclosing region that determines the execution context, and limits the scope of the effects
of the bound region.

3The OpenMP specification defines the master thread as a thread that has thread number 0. This can be the initial
thread or the thread that encounters a parallel construct, creates a team, generates a set of implicit tasks, and then
executes one of those tasks as thread number 0.

8 2. BACKGROUND

read(&data);

#pragma omp flush

flag = 1;

#pragma omp flush

#pragma omp flush

while (!flag) {

 #pragma omp flush

}

#pragma omp flush

process(&data);

Thread 0 Thread 1

Ensure flag is written after data

Ensure flag is written to memory
Ensure flag is read from memory

Ensure correct ordering of flushes

Figure 2.2: Producer-consumer pattern implemented using OpenMP flush constructs.

2.1.1.2 The memory model

OpenMP is based on a relaxed-consistency, shared-memory model. This means there is a memory

space shared for all threads, called memory. Additionally, each thread has a temporary view of the

memory. Intuitively, the temporary view is not always required to be consistent with the memory.

Instead, each private view synchronizes with the main memory by means of the flush operation.

Hence, memory operations can be freely reordered except around flushes. This synchronization

can be implicit (in any, implicit or explicit, synchronization operation causing a memory fence)

or explicit (using the flush directive). Data cannot be directly synchronized between two

different threads temporary view. Figure 2.2 shows an example of a producer-consumer pattern

implemented using OpenMP flushes. There, some flushes are used to ensure the memory

consistency across the different views of the memory, and some others are used to ensure the

correct order of execution, as explained in the figure.

The view each thread has for a given variable is defined using data-sharing clauses, which can

determine the following sharing scopes:

– private: a new fresh variable is created within the scope.

– firstprivate: a new variable is created in the scope and initialized with the value of the

original variable.

– lastprivate: a new variable is created within the scope and the original variable is updated

at the end of the execution of the region.

– shared: the original variable is used in the scope, opening the possibility of race conditions.

The data-sharing attributes for variables referenced in a construct can be predetermined,

explicitly determined or implicitly determined. Predetermined variables are those that, regardless

of their occurrences, have a data-sharing attribute determined by the OpenMP model. Explicitly

determined variables are those that are referenced in a given construct and are listed in a

data-sharing attribute clause on the construct. Implicitly determined variables are those that are

referenced in a given construct, do not have predetermined data-sharing attributes and are not

listed in a data-sharing attribute clause on the construct.

2. BACKGROUND 9

2.1.2 OmpSs

OmpSs [20, 45] is a parallel programming model developed at Barcelona Supercomputing Center

(BSC) with the goal of working as a precursor of OpenMP in two main directions: asynchronous

parallelism and heterogeneity. The former is accomplished be means of data-dependence clauses,

and the latter through the target construct. The implementation of OmpSs is based on two

tools: the Mercurium compiler (see Section 2.2.1 for further details), which transforms high-level

directives into parallel code, and the Nanos++ [149] runtime system, which provides the services

to manage parallelism. Although OpenMP and OmpSs have many similarities, this section

introduces some important differences that concern both the execution and the memory models.

2.1.2.1 The execution model

In contrast to the fork-join model defined in OpenMP, parallelism is implicitly created when an

OmpSs application starts. This means that the OmpSs model starts with a team of threads, the

initial team, where there is a single master thread and a set of worker threads. The master thread is

the one that starts running sequentially the user program. The rest of threads wait until concurrency

is exposed (e.g., through a task or for directive). Instead, OpenMP starts the execution with a

team of just one thread and creates and destroys a team of threads each time a parallel directive

is found. Because the OmpSs model ignores any parallel construct, undesired results may

appear if executing an OpenMP program in an OmpSs environment due to differences in the data

accessibility within parallel regions.

Furthermore, OmpSs allows the annotation of function declarations or definitions in addition

to structured-blocks. Thus, a function annotated with the task construct causes each invocation

to become a task creation point. The evaluation of the arguments does not form part of the task.

Since tasks may be deferred, a restriction forces such a task not to have any return value.

Finally, OmpSs offers a rich variety of mechanisms for fine-grain synchronization basides

dependence clauses associated to OpenMP tasks, and the taskwait construct:

– new dependence clauses that can be associated to the task construct:

* concurrent, a special version of the inout clause where the dependences are

computed with respect to in, out, inout and commutative, but not to other

concurrent clauses.

* commutative, which forces to check dependences with respect to in, out, inout and

concurrent clauses, but not other commutative clauses. Although different ready

commutative tasks cannot run in parallel, they can run in any order.

– support for dependence clauses (in, out and inout) on the taskwait construct. This

forces to synchronize only those tasks that declare dependences on the same variables the

taskwait does.

– multi-dependences, a novel syntax to define a dynamic number of task dependences over an

specific l-value. For a C/C++ program, the syntax, illustrated in Listing 2.3, is the following:

dependence � type�memory � reference � list, iterator � name � lower; size�

10 2. BACKGROUND

1 void foo (i n t n , i n t *v)
2 {
3 / / T h i s dependence i s e q u i v a l e n t t o i n o u t (v [0] , v [1] , . . . , v [n�1])
4 #pragma omp task inout ({ v [i] , i =0 ; n })
5 {
6 i n t j ;
7 f o r (i n t j = 0 ; j < n ; ++ j)
8 v [j] + + ;
9 }

10 }

Listing 2.3: OmpSs multidependences syntax example.

– Dependence clauses allow extended l-values from those of C/C++. Along with the array

sections, already supported in OpenMP, OmpSs accepts shaping expressions, which allow

recasting pointers into array types to recover the size of dimensions that could have been lost

across function calls. A shaping expression is one or more [size] expressions before a pointer.

2.1.2.2 The memory model

OmpSs offers a single address space view, meaning that heterogeneous systems such as clusters

of Symmetric Multi-Processing (SMP) machines and accelerators can be accessed as if only one

memory address space existed. This feature allows OmpSs programs to run in different system

configurations without being modified. For this property to hold, users are constrained to specify

the data each task accesses using the following data-copying clauses:

– copy in(list-of-variables) indicates the referenced shared data may need to be

transfered to the device before the code associated to the task can be executed.

– copy out(list-of-variables) indicates the referenced shared data may need to be

transfered from the device after the code associated to the task is executed.

– copy inout(list-of-variables) is equivalent to having copy in and copy out

clauses for the same variable.

– copy deps(list-of-variables) indicates to use the data-dependence clauses as if

they were data-copying clauses.

2.1.3 Ada

Ada is a standard programming language where reliability and efficiency are essential. For that

reason, it is specially focused on embedded systems, and it is widespread in high-integrity,

safety-critical and high-security domains including commercial and military aircraft avionics,

air traffic control, railroad systems, and medical devices. The whole language is designed to

maintain safeness: it enforces strong typing, checks ranges in loops and so eliminates buffer

overflows, provides actual contracts in the form of pre- and post-conditions, prevents access

to deallocated memory, etc. A long list of language decisions allows compilers to implement

correctness techniques to certify algorithms regarding their specification.

2. BACKGROUND 11

2.1.3.1 Concurrency model

Ada includes tasking features as part of the language standard. A task is a language entity of

concurrent execution, with its internal state and defined behavior. There is a conceptual task, called

the environment task, which is responsible for the program elaboration. This task is generally the

operating system thread which initializes the runtime and executes the main subprogram. Before

calling the main procedure, the environment task elaborates all library units referenced to in the

main procedure. This elaboration will cause library-level tasks to be created and activated before

the main procedure is called. There are two types of tasks:

– Declared tasks: these start (are activated) implicitly when the parent unit begins.

– Dynamic tasks: these start (are activated) at the point of allocation. This reduces the possibility

of a high start-up overhead.

A task (both declared and dynamic) completes execution by reaching the end of the task body.

A local task (that is, a task declared within a subprogram, block, or another task) must finish

before the enclosing unit can itself be left, so the enclosing unit will be suspended until the local

task terminates. This rule prevents dangling references4 to data that no longer exist. Additionally,

tasks can be created as a one of a kind task or as a task type, which can be used to create many

identical task objects. Both are defined in two parts: the first part defines the public interface of

the task, and the second part contains the implementation of the task code (body).

Figure 2.3 shows a simplified diagram of the states of a task and the transitions among them.

A task is inactive when it has just been created. After the runtime associates a thread of control to

this task, it can be terminated, if the elaboration of the task fails, or runnable instead, so the user

code of the task is executed. If this code executes some operation that blocks the task (protected

operation, rendezvous or delay statement) it goes to sleep and later returns to the runnable state.

When the task executes a terminate alternative or finalizes the execution of the user code, it is

terminated. The complete diagram of task states and transitions is shown in Appendix A.

The mapping of the tasks to processors can be handled by the runtime/operating system [107]

or, since Ada 2012, statically assigned by the programmer [1].

Inactive Terminated

Sleep

Runnable

Figure 2.3: Diagram of Ada task states.

4A dangling reference is a reference (address) that does not resolve to a valid destination. This may happen when
accessing an object through a pointer after the object has been freed: either a local variable that has gone out of scope,
or a dynamically allocated object that has been explicitly freed through some other pointer.

12 2. BACKGROUND

2.1.3.1.1 Mutual exclusion
Mutually exclusive access to shared data is a necessary feature for concurrent languages to avoid

race conditions. Ada offers two different mechanisms to achieve mutual exclusion: protected

objects (with an associated locking policy), further divided into non-blocking and blocking

operations, and the rendezvous.

Protected procedures and protected functions Protected procedures and protected functions

are non-blocking operations. They differ in that protected procedures provide mutually exclusive

read/write access to the encapsulated data, and protected functions provide concurrent read-only

access to the encapsulated data. Hence, several function calls can run simultaneously, but calls

to a protected function are still executed mutually exclusive with calls to a protected procedure.

Communication between tasks using protected objects for data sharing is asynchronous.

Protected entries Protected entries are similar to protected procedures in that they offer

mutually exclusive read/write access to the protected data, and differ in that protected entries

are guarded by a boolean expression. When the boolean evaluates to false, the calling task is

suspended until the condition evaluates to true and no other task is active inside the protected

object. Each entry has an associated queue where the callers that has been suspended are stored.

Then, when a subprogram with a write access to a protected object finishes, all conditions with

queued tasks are re-evaluated. The core language does not specify any particular order in the

execution of the tasks in an entry’s queue, however the real-time annex (annex D [3]) provides

specific rules in the Priority Queueing policy [5]5. Ada also specifies language mechanisms for

the calling task to timeout (timed [2]), or canceling a call if the condition is not true (conditional

entry calls [4]). Protected entries are a conditional synchronization mechanism.

Rendezvous The rendezvous mechanism is based on a client/server model. Clients are active

objects that initiate spontaneous actions, and servers are reactive objects that perform actions

only when invoked by active objects. Thus, a server task offers services to the client tasks by

declaring public entries in its specification, and rendezvous is requested when a task calls an

entry of another task. For the rendezvous to take place, the called task must accept the entry

call. Meanwhile, the calling task waits while the accepting task executes and, when the accepting

task ends the rendezvous, both tasks may continue their execution. If a client task calls an entry

of a server task, and this is not waiting at an accept statement for that entry, then the caller

is queued. Alternatively, if the server task reaches an accept and no task is waiting on the

associated queue, then the server is suspended. Server tasks may use the selective wait statement

to allow a task to wait for a call on any entry, avoiding to be held-up on a particular entry. The

rendezvous synchronous behavior is hard to analyze in the context of the real-time domain due

to two main reasons: a) the time expended in the waiting queues cannot be evaluated, and b) the

non-deterministic selection of entry calls introduces unpredictability. For these reasons, this model

of communication is not used for real-time applications.

5The variable and unknown arrival instants of calls to a protected entry introduce non-determinism. For this reason,
a sound Ada program shall not depend on a particular order of execution of pending entry calls.

2. BACKGROUND 13

Examples Listings 2.4, 2.5 and 2.6 show different approaches to implement a Stock data

structure. The first illustrates non-blocking operations in the form of procedures. In this case, when

the procedures complete, the corresponding output variable, Full or Empty, is updated accordingly.

The second illustrates equivalent behavior with blocking operations in the form of entries. In this

case, the calling tasks block when the condition (Full or Empty) is true. And the third shows a

server task that implements synchronous communication for updating the Stock.

1 p r o t e c t e d Stock i s
2 procedure Add (N : in I n t e g e r ; F u l l : out Boolean) ;
3 procedure Remove (N : in I n t e g e r ; Empty : out Boolean) ;
4 p r i v a t e
5 T o t a l : I n t e g e r := 0 ;
6 end Stock ;
7 p r o t e c t e d body Stock i s begin
8 procedure Add (N : in I n t e g e r ; F u l l : out Boolean) i s begin
9 i f N + T o t a l > 1000 then

10 T o t a l := 1000 ; F u l l := True ;
11 e l s e
12 T o t a l := T o t a l + N; F u l l := F a l s e ;
13 end i f ;
14 end Add ;
15 procedure Remove (N : in I n t e g e r ; Empty : out Boolean) i s begin
16 i f N > T o t a l then
17 T o t a l := 0 ; Empty := True ;
18 e l s e
19 T o t a l := T o t a l � N; Empty := F a l s e ;
20 end i f ;
21 end Remove ;
22 end Stock ;

Listing 2.4: Stock data-structure implemented using
synchronization-free Ada protected objects.

1 p r o t e c t e d Stock i s
2 entry Add (N : in I n t e g e r) ;
3 entry Remove (N : in I n t e g e r) ;
4 p r i v a t e
5 T o t a l : I n t e g e r := 0 ;
6 end Stock ;
7 p r o t e c t e d body Stock i s begin
8 entry Add (N : in I n t e g e r)
9 when T o t a l < 1000 i s
10 begin
11 i f N + T o t a l > 1000 then
12 T o t a l := 1000 ;
13 e l s e
14 T o t a l := T o t a l + N;
15 end i f ;
16 end Add ;
17 entry Remove (N : in I n t e g e r)
18 when T o t a l > 0 i s
19 begin
20 i f N > T o t a l then
21 T o t a l := 0 ;
22 e l s e
23 T o t a l := T o t a l � N;
24 end i f ;
25 end Remove ;
26 end Stock ;

Listing 2.5: Stock data-structure
implemented using Ada protected

objects with synchronization.

1 ta sk Stock i s
2 entry Add (N : in I n t e g e r) ;
3 entry Remove (N : in I n t e g e r) ;
4 end Stock ;
5 ta sk body Stock i s
6 T o t a l : I n t e g e r := 0 ;
7 begin
8 loop
9 s e l e c t when T o t a l < 1000 =>

10 a cc ep t Add (N : in I n t e g e r) do
11 i f N + T o t a l > 1000 then
12 T o t a l := 1000 ;
13 e l s e
14 T o t a l := T o t a l + N;
15 end i f ;
16 end Add ;
17 or when T o t a l > 0
18 a cc ep t Remove (N : in I n t e g e r) do
19 i f N > T o t a l then
20 T o t a l := 0 ;
21 e l s e
22 T o t a l := T o t a l � N;
23 end i f ;
24 end Remove ;
25 end s e l e c t ;
26 end loop ;
27 end Stock ;

Listing 2.6: Stock data-structure implemented
using the Ada rendezvous mechanism.

14 2. BACKGROUND

2.1.3.2 Safety

One key aspect in the Ada is that the language preserves the system’s integrity, considering safety

(the software must not harm the world) and security (the world must not harm the software)

[23]. For that reason, Ada introduces restrictions and checks that allow certifying software with

respect to its specification. Among the most important considerations, Ada provides: a robust

syntax that prevents typing errors, strong typing, access types modeling pointers that avoid the

most common errors associated to this objects (type safety violations, dangling references and

storage exhaustion), checks for avoiding memory leaks such as buffer overflow, and mechanisms

for optimizing the use of the stack and the heap (storage pools).

Additionally, the language introduces the type Time, which is used in delay statements timed

entry calls, and timed selective waits. The existence of these features makes Ada very convenient

for real-time systems, where time constraints must be controlled as part of the safety requirements.

Furthermore, the concurrency model of Ada has been designed to fulfill the safety

requirements of the language. The fact that Ada provides tasking facilities within the language

by means of built-in syntactic constructions has two main advantages: a) Ada provides a level of

abstraction that hides low level details and thus prevents certain errors from being made, and b)

built-in constructions allow the compiler to be aware of concurrent execution and thus detect some

data races. As a result, the typically used operations in a tasking program are safe:

– tasks can be prevented from violating the integrity of data.

– tasks can be controlled in order to meet specific timing requirements.

– tasks can be scheduled in order to use resources efficiently and to meet their overall deadlines.

The Ravenscar profile In 1997 appeared the Ravenscar profile [34], a subset of the tasking

model, restricted to meet the real-time community requirements for determinism, schedulability

analysis and memory-boundedness (note that the profile does not address any non-tasking aspect

of the language6). The rationale behind this restriction of the language is summarized as follows:

– The set of tasks and interrupts must be fixed and have static properties after program

elaboration, so it can be analyzed to prove its safety (no task should get into an

unsafe state such as a deadlock or a livelock) and liveness (all desirable states of

the task must be reached eventually). Related restrictions include preventing dynamic

priorities (No Dynamic Priorities), abort statements (No Abort Statements), task

hierarchies (No Task Hierarchy), and task termination (No Task Termination).

– The set of protected objects must be known statically to allow schedulability analysis, and

these cannot be declared locally, because then they are meaningless for mutual exclusion

and task synchronization. Related restrictions include preventing local protected objects

(No Local Protected Objects), select statements (No Select Statements), and

task entries avoiding the rendezvous mechanism (Max Task Entries => 0).

– Memory cannot be dynamically allocated. Related restrictions are preventing from

implicit head allocations (No Implicit Heap Allocations), and the use of the
6The sequential aspects of Ada (such as exception handling) are covered in the “Guide for the Use of the Ada

Programming Language in High Integrity Systems” [162], where different forms of static analysis are proposed.

2. BACKGROUND 15

Ada.Task Attributes package (No Task Attributes Package), which may allocate

memory dynamically to store task attributes.

– Execution must be deterministic. Related restrictions include limiting the number of protected

entries to 1 entry (Max Protected Entries => 1), limiting the length of the queues to

1 element (Max Entry Queue Length => 1), and the use of a high precision timing

mechanism (restriction No Calendar forces use of the Ada.Real Time time type, or an

implementation defined time type).

Furthermore, the Ravenscar profile defines a series of dynamic semantics that include:

– The required task dispatching policy is FIFO Within Priorities, which is a FIFO queue where

the active priority7 of the tasks is taken into account.

– The required locking policy8 is Ceiling Locking, because it provides one of the lowest worst

case blocking times for contention for shared resources, hence maximizing schedulability

when preemptive scheduling is used. Using this policy, a task executing a protected action

inherits the ceiling priority of the corresponding protected object during that execution.

– The queuing policy is meaningless in the Ravenscar profile because no entry queues can form.

– The profile drastically reduces the number of runtime errors to two: a) violation of the priority

ceiling, and b) more that one task waiting concurrently on a suspension object. On the other

hand, the profile also introduces some additional two concurrency-related checks: a) checking

that all task are non-terminating, and b) checking that the maximum number of calls that are

queued concurrently on an entry does not exceed one.

2.2 Execution environment

The execution environment related to this thesis mainly involves two tools: the Mercurium

compiler and the libgomp runtime library. The following sections introduce both systems.

2.2.1 The Mercurium source-to-source compiler

Mercurium [52] is a source-to-source compiler developed by the Programming Models [22] group

at BSC. Dedicated to research, its main goal is to provide an infrastructure for fast prototyping of

new parallel programming models. It currently has support for C99 [128], C++11 [73] and Fortran

95 [118] languages, and also implements several programming models such as OpenMP 3.1 [110],

OmpSs [15], CUDA [40] and OpenCL [143].

Mercurium uses a plugin architecture, where each plugin represents a phase of the compiler.

Figure 2.4 shows a high-level scheme with the most representative phases of the compiler relevant

to this thesis. The compiler is structured in three main parts. The first one is a front-end that fully

supports C, C++ and Fortran. During this part of the compilation, the system gathers symbolic

and typing information, and structures it in an Intermediate Representation (IR) shared by all
7The priority of an Ada task is an integer value that indicates a degree of urgency and is the basis for resolving

competing demands of tasks for resources. The base priority of a task is the priority with which it was created, or to
which it was later set by Dynamic Priorities.Set Priority. At all times, a task also has an active priority, which generally
reflects its base priority as well as any priority it inherits from other sources [6].

8The Ada locking policy specifies the interactions between priority task scheduling and protected object ceilings.

16 2. BACKGROUND

Input source code
C/C++/Fortran

OpenMP
frontend

Data-flow
analyses

SIMD
transformations

Correctness
report

Intermediate
phases

SMP Accelerator

Lowering

C/C++/Fortran
codegen

Native
compilation

Linking
OpenMP

binary

Embedding
OpenMP RTL

User libraries

User files
Compiler components
External tools
Runtime libraries

C/C++/Fortran
frontend

Figure 2.4: Mercurium compilation diagram.

three languages. The second one is a pipelined sequence of phases that performs source-to-source

transformations to meet the target programming model and runtime. Finally, the last part is the

code generator. During this part, the compiler generates the final source code based on the IR. The

generated output is compiled and linked with the corresponding native compiler.

2.2.1.1 Intermediate representation

Mercurium’s front-end parses the source code to generate an Abstract Syntax Tree (AST)9 that

holds an accurate high-level representation of the input. Classical type checking is performed

using the AST to create a symbol table for each scope and remove ambiguities, while synthesizing

expression types. The result of this step is a non-ambiguous tree, called Nodecl, which is the IR

that will be used in the different phases of the compiler. The IR is also an AST, but differs from

the initial one in some aspects: a) it does not contain declarations, instead includes context nodes

everywhere a block of code creates a new scope, and b) it represents with the same structure all C,

C++ and Fortran languages, easing the following phases of the compiler since they will be (almost)

language-independent. Symbolic data such as types, symbols and scopes (i.e., global, namespace,

function block and current) are stored separately from the AST, although they are accessible from

the corresponding nodes. Figure 2.5 shows a simplified version of the AST generated for the

OpenMP code computing the Fibonacci sequence depicted in Listing 2.7. Nodes of the AST are

printed in black, whereas information about symbols is printed in orange, information about types

in green, and information about scopes in blue (for ease of reading, we illustrate the scoping

information only of two context nodes). Additionally, nodes holding parallel semantics have gray

background.

9An abstract syntax tree is a tree representation of the abstract syntactic structure of a source code written in a
programming language.

2. BACKGROUND 17

1 i n t f i b (i n t n) {
2 i n t i , j ;
3 i f (n < 2)
4 re turn n ;
5

6 #pragma omp task shared (i)
7 i = f i b (n � 1) ;
8 #pragma omp task shared (j)
9 j = f i b (n � 2) ;

10 #pragma omp taskwait
11 re turn i + j ;
12 }

Listing 2.7: Recursive Fibonacci computation using OpenMP tasks.

TOP_LEVEL

FUNCTION_CODE

CONTEXT

fib

sym

COMPOUND_STATEMENT

Context

global namespace function block current

contextCONTEXT

IF_ELSE_STATEMENT
Context

global namespace function block current

context

LOWER_THAN
signed int

CONTEXT

CONTEXT

CONVERSION
signed int

INTEGER_LITERAL
signed int

SYMBOL
lvalue & to signed int

n

sym

(int32_t)2

const

COMPOUND_STATEMENT

RETURN_STATEMENT

SYMBOL
signed int

sym

COMPOUND_STATEMENT

OPENMP_TASK NODECL_OPENMP_TASK NODECL_OPENMP_TASKWAIT

RETURN_STATEMENT

LIST

0 1

CONTEXT

OPENMP_FIRSTPRIVATE

OPENMP_SHARED

SYMBOL
lvalue & to signed int

SYMBOL
lvalue & to signed int

sym

i

sym

EXPRESSION_STATEMENT

ASSIGNMENT
lvalue & to signed int

SYMBOL
lvalue & to signed int

FUNCTION_CALL
signed int

sym

SYMBOL
function (signed int) returning signed int

MINUS
signed int

sym

CONVERSION
signed int

INTEGER_LITERAL
signed int

SYMBOL
lvalue & to signed int

sym

(int32_t)1

const

LIST

0 1

CONTEXT

OPENMP_FIRSTPRIVATE OPENMP_SHARED

SYMBOL
lvalue & to signed int

SYMBOL
lvalue & to signed int

sym

j

sym

EXPRESSION_STATEMENT

ASSIGNMENT
lvalue & to signed int

SYMBOL
lvalue & to signed int

FUNCTION_CALL
signed int

sym

SYMBOL
function (signed int) returning signed int

MINUS
signed int

sym

CONVERSION
signed int

INTEGER_LITERAL
signed int

SYMBOL
lvalue & to signed int

sym

const

ADD
signed int

CONVERSION
signed int

CONVERSION
signed int

SYMBOL
lvalue & to signed int

sym

SYMBOL
lvalue & to signed int

sym

NAMESPACE_SCOPE

FUNCTION_SCOPE BLOCK_SCOPE

unnamed symbol

sym

contained_in

BLOCK_SCOPE

contained_in

Figure 2.5: Mercurium simplified AST for Fibonacci computation in Listing 2.7.

18 2. BACKGROUND

A single grammar describes the AST nodes that represent all C, C++ and Fortran. Most of

the nodes are shared by the three languages, nonetheless there are a few specific nodes aimed at

representing their particularities. This grammar also describes OpenMP and OmpSs semantics

with specific nodes. As an illustration, Listing 2.8 shows different (incomplete) rules: OpenMP

(parallel-execution and task-construct rules), expressions shared among all languages (add and

minus nodes in expression rule), expressions specific to C/C++ (predecrement and throw nodes

in c-cxx-expressions rule), and expressions specific to Fortran (boz literal and use only nodes in

fortran-expressions rule). Each AST node is composed of: 1) a kind, 2) up to 4 child nodes,

and 3) a set of external attributes that are node-kind dependent (e.g., the type of the node, a

symbol, a scope, and an associated constant value). This grammatical description is translated to

a non-hierarchical class system that is then used in the subsequent phases of the compiler.

1 p a r a l l e l � e x e c u t i o n : t a s k � c o n s t r u c t
2 | p a r a l l e l � c o n s t r u c t
3 | c r i t i c a l � c o n s t r u c t
4 | . . .
5

6 t a s k � c o n s t r u c t : NODECL OPEN M P*TASK ([e n v i r o n m e n t] omp�exec�env i ronment �seq�opt ,
7 [s t a t e m e n t s] s t a t e m e n t �seq�o p t)
8

9 e x p r e s s i o n : NODECL ADD ([l h s] e x p r e s s i o n , [r h s] e x p r e s s i o n) t y p e c o n s t �va lue �o p t
10 | NODECL MINUS ([l h s] e x p r e s s i o n , [r h s] e x p r e s s i o n) t y p e c o n s t �va lue �o p t
11 | c�cxx� e x p r e s s i o n s
12 | f o r t r a n � e x p r e s s i o n s
13 | . . .
14

15 c�cxx� e x p r e s s i o n s : NODECL PREDECREMENT ([r h s] e x p r e s s i o n) t y p e c o n s t �va lue �o p t
16 | NODECL THROW([r h s] e x p r e s s i o n �o p t) t y p e c o n s t �va lue �o p t
17 | . . .
18

19 f o r t r a n � e x p r e s s i o n s : NODECL FORTRAN BOZ LITERAL () t y p e t e x t c o n s t �v a l u e
20 | NODECL FORTRAN USE ONLY ([module] name , [o n l y i t e m s] name�seq)
21 | . . .

Listing 2.8: Example of rules of the grammar generating the Mercurium’s IR.

2.2.1.2 Compiler phases

Mercurium implements a set of phases that translate the code modeled in the high-level IR

generated by the front-end. These phases transform the code guided by user directives. The

compiler accepts a relaxed form of the pragma directive syntax, meaning that the initial parsing

only recognizes tokens (directive name, clauses, and expressions and values associated with these

clauses). It is a subsequent phase that gives meaning to the different directives and clauses while

it checks them for correctness. The compiler front-end and initial semantic passes offer the basic

IR to the rest of the passes. Each transformation phase can enrich the IR with new information,

which can be later used by subsequent passes.

Each compiler pass is implemented as a shared library, and is dynamically loaded into the

compiler process as a plugin. This flow is driven by a configuration file associated with the driver

that is used to invoke the compilation. The configuration file describes the way that a particular

invocation of the compiler must proceed. Listing 2.9 shows a portion of the configuration file used

2. BACKGROUND 19

1 # when �� i n s t r u m e n t i s g iven , a c t i v a t e an i n t e r n a l v a r i a b l e i n d i c a t i n g so
2 { i n s t r u m e n t } o p t i o n s = �� v a r i a b l e = i n s t r : 1
3 # load t h e pro pe r c o m p i l e r p l u g i n
4 { i n s t r u m e n t } c o m p i l e r p h a s e = l i b t l i n s t r . s o
5 # and l i n k a g a i n s t t h e pro pe r (i n s t r u m e n t e d) l i b r a r i e s
6 { i n s t r u m e n t } l i n k e r o p t i o n s = \�L@NANOX LIBS@/ i n s t r u m e n t a t i o n � l n an ox

Listing 2.9: Example of a configuration file of Mercurium.

for instrumenting the code, where a set of compiler passes are indicated to be loaded and executed

in order. This passes can be conditionally activated given a compiler flag, as it happens with the

instrument passes.

The Data Transfer Object (DTO) pattern is used to transfer data between phases. The DTO

is just a dictionary containing a string as the key, and an object as the value. At any point of the

compilation process we can find available the translation unit10 IR with the processed code. The

visitor pattern is implemented to perform traversals through the Nodecl, this way the traversal is

completely separated from the operation to be performed.

2.2.2 The libgomp runtime library

The GOMP project [60] has implemented support for OpenMP in the GNU Compiler Collection

by means of two tools: a) the OpenMP compiler, GOMP, which is an extension of the GCC

compiler that converts OpenMP directives into threading calls, and b) the OpenMP runtime library,

libgomp, which allows parallel execution by mapping OpenMP threads onto different thread

implementations. Although current versions of GCC (6 and later) support OpenMP 4.5, we have

used GCC 5.4 [56], which implements support for OpenMP 4.0 plus offloading [58], because it

was the latest version at the moment this part of the project was developed. In the context of this

thesis, we are interested only in those aspects regarding the definition and scheduling of OpenMP

tasks. The following paragraphs introduce the operation of GOMP and libgomp for those matters.

In regard to the compiler, when a task construct is found, GCC offloads the code within the

directive into a function, wraps the arguments to be passed to the outlined function in a data

structure, and replaces the whole directive with a call to GOMP task (the libgomp function that

implements the creation of a task). This function receives different arguments: a pointer to the

outlined function, a pointer to the data structure with the arguments of the outlined function,

and information about the dependences, among others. Specifically, dependences are stored as a

void** array containing the addresses of the variables referenced in the dependence clauses.

In regard to the runtime, when the method GOMP task is called, a new task is created. This

task can either be executed immediately (e.g., the task is created inside a final task, or the task

has an if clause that evaluates to false), or deferred (e.g., the task has unfulfilled dependences).

The library uses three different queues to store the tasks that are ready to be executed (either

because they do not have dependences, or because their dependences have been fulfilled): 1) the

10According to the standard C++[73], a translation unit is the basic unit of compilation in C++, which consists of
the contents of a single source file, plus the contents of any header files directly or indirectly included by it, minus those
lines that were ignored using conditional preprocessing statements.

20 2. BACKGROUND

ready tasks queue of the team to which the task belongs (this queue is used when a barrier is

encountered); 2) the children queue of the parent of the task (this queue is used when a taskwait

is encountered); and 3) the children queue of the taskgroup to which the task belongs (if the

task is inside a taskgroup directive). Additionally, the library uses a hash table per task region

to manage the tasks with unfulfilled dependences. The hash table is addressed with the address

of each dependence variable, and each key points to the list of tasks that define that dependence.

Furthermore, each task also stores pointers to its dependent tasks.

According to the previous explanation, when a new task is created, the variables in its

dependence clauses are checked in the hash table. If none is found, the task is included in the

proper queues as it is ready to be executed. Otherwise, it is stored in the hash table of its parent

task. A counter keeps track of all the unfulfilled dependences of a task. When this counter reaches

zero, the task is added to the queues to be instantiated when possible.

2.3 Architectures

Different parts of this thesis have been evaluated on two kind of architectures: SMP machines

and embedded multi-processors. This section introduces the most important features of these

architectures, as well as the details of the specific machines that have been used.

2.3.1 HPC architectures: Intel Xeon

21st century supercomputers can use over 100,000 processors, combining CPUs with GPUs,

connected by fast connections. Typically, processors are first combined in an on-board SMP

system. Then, several such systems are likewise combined to form a Non-Unified Memory Access

(NUMA) system. Different NUMA systems are in turn integrated into clusters, which finally

communicate on a grid organization.

SMP involves a multiprocessor architecture where several symmetric processors (all

processors can perform the same functions) are connected to a single, shared memory. For that

reason, all processors require similar time to access any part of the memory. Additionally, all

processors have full access to all I/O devices, and are controlled by a single operating system

instance. All the components (memory, I/O devices, processors, etc.) are connected using a

system bus, a crossbar switch or a mesh topology. Figure 2.6 depicts a high-level diagram of a

common SMP system connected through a single bus.

NUMA is a type of shared memory architecture that involves several processors that can

access their own local memory faster than non-local memory (the local memory of other

processors or memory shared among processors). A particular version of this kind of architecture,

cache-coherent NUMA systems (ccNUMA), maintains cache coherence across shared memory by

using inter-processor communication between cache controllers. Many NUMA environments can

be implemented as if they were SMP machines because the details of the architecture are hidden

from the user. Figure 2.7 depicts a high-level diagram of a common NUMA system, connecting

four SMP systems.

2. BACKGROUND 21

Shared memory

CPU 1 CPU N

Operative System

Bus

Cache 1 Cache N

I/O
Controller

I/O
Controller

…

…

Figure 2.6: Diagram of an SMP system.

Shared memory

CPU 1 CPU N

Operative System

Bus

Cache 1 Cache N

I/O
Controller

I/O
Controller

…

…

Shared memory

CPU 1 CPU N

Operative System

Bus

Cache 1 Cache N

I/O
Controller

I/O
Controller

…

…

Shared memory

CPU 1 CPU N

Operative System

Bus

Cache 1 Cache N

I/O
Controller

I/O
Controller

…

…

Shared memory

CPU 1 CPU N

Operative System

Bus

Cache 1 Cache N

I/O
Controller

I/O
Controller

…

…

Scalable Network

Figure 2.7: Diagram of a NUMA system.

A computer cluster consists of a set of loosely or tightly connected computers that work

together so that, in many respects, they can be viewed as a single system. Computer clusters have

each node set to perform the same task, controlled and scheduled by software. The components

of a cluster are usually connected to each other through fast local area networks, with each node

running its own instance of the same operating system.

22 2. BACKGROUND

Finally, grid computing involves many networked loosely coupled computers acting together

to perform large tasks. Unlike clusters, each node of the grid is set to perform a different

task/application. Additionally, grid computers also tend to be more heterogeneous and

geographically dispersed.

Different HPC architectures have been used in the context of this thesis. Those dedicated to

evaluate correctness are not presented because the specific details are not relevant to the results.

The HPC systems used for performance comparisons are Marenostrum III [18] and Marenostrum

IV [19]. Both supercomputers are based on Intel Xeon processors. The former is composed by

37 iDataPlex compute racks, with 84 IBM dx360 M4 compute nodes each. Each node has two

E5-2670 SandyBridge-EP processors (illustrated in Figure 2.8) running at 2.6GHz with a thermal

design power of 115 Watts, and featuring 8 cores each with 20MB L3. The latter has a general

purpose block composed by 48 SD530 compute racks housing 3456 compute nodes. Each node

has two Intel Xeon Platinum 8160 processors (illustrated in Figure 2.9) running at 2.1GHz with a

thermal design power of 150 Watts, and featuring 24 cores each with 33MB L3.

CPU 1

QPI Agent

Cache 1

IIO

CPU 2 Cache 2

CPU 3 Cache 3

CPU 4 Cache 4

Cache 5

Cache 6

Cache 7

Cache 8

CPU 5

CPU 6

CPU 7

CPU 8

DDR3

Bidirectional Full Ring

Figure 2.8: High-level view of the Intel
Xeon E5-2670.

CPU

Cache

Inter-Socket
Link

Memory
Controller

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Memory
Controller

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

PCIe PCIe
Inter-Socket

Link …

…

…

…

…

…

…

…

…

D
D

R
4

D
D

R
4

Mesh

Figure 2.9: High-level view of the Intel
Xeon Platinum 8160.

2.3.2 Real-time embedded architectures: the Kalray MPPA® processor

Multiprocessor System-on-Chip (MPSoC) systems are widespread (e.g., communications, vehicle

systems and traffic control among many others), and their processing capacities are increasing.

However, programmers not always make the most of these capacities because the development

of parallel programs for those systems is difficult. Basically, the heterogeneity of the different

embedded systems that currently exist prevent portability. Furthermore, the complexity of the

systems forces programmers to manage low-level aspects such as scheduling work units and

managing synchronizations between cores. Furthermore, many embedded systems are used for

real-time purposes, which imposes even more constraints: guaranteed worst-case response times

to critical events, and acceptable average-case response times to non-critical events.

2. BACKGROUND 23

Different proposals exist to adopt OpenMP as an standard for implementing parallel embedded

architectures. However, support in the architecture side is still scarce. In that sense, the Kalray

MPPA® processor has some advantages over other embedded multi-cores because it does support

OpenMP. The MPPA® is a single-chip programmable 256-core processor manufactured in 28nm

CMOS technology. The processor targets low to medium volume professional applications, where

low energy per operation and time predictability are the primary requirements [91]. It has an

operating frequency of 400MHz and a typical power consumption of 5 Watts, performing up to

700 Giga operations per second and 230 GFLOPS.

The MPPA® integrates a total of 288 identical Very Long Instruction Word (VLIW) cores

including 256 user cores (processing engines, PE) dedicated to the execution of the user

applications, and 32 system cores (resource manager, RM) dedicated to the management of the

software and processing resources. Figure 2.10 shows a high-level description of this architecture.

Cores are organized in 16 compute clusters (the inner blue boxes) holding 16 PEs and 1 RM

each, and 4 I/O subsystems (the green boxes located at the periphery of the chip) holding 4 RMs

each (the orange boxes). Each compute cluster and I/O subsystem owns a private address space

with a total capacity of 2MB. The 4 IOS are dedicated to PCIe, Ethernet, Interlaken and other

I/O devices, and each one runs a rich OS such as Linux or a RTOS that supports the MPPA I/O

drivers. Communication and synchronization between different I/Os and clusters is ensured by

data and control Networks-On-Chip (D-NoC and C-NoC, respectively). The former is optimized

for bulk data transfers, while the latter is optimized for small messages at low latency. At this

level, program parallelism is provided.

compute
cluster

compute
cluster

compute
cluster

compute
cluster

compute
cluster

compute
cluster

compute
cluster

compute
cluster

compute
cluster

compute
cluster

compute
cluster

compute
cluster

compute
cluster

compute
cluster

compute
cluster

compute
cluster

Quad-smp
subsystem

PCIe USMC NoCX DDR GPIOs

Q
u

ad
-sm

p

su
b

system

P
C

Ie
U

SM
C

N

o
C

X

D
D

R

G
P

IO
s

Q
u

ad
-s

m
p

su

b
sy

st
em

P

C
Ie

U

SM
C

N

o
C

X

D
D

R

G
P

IO
s

Quad-smp
subsystem

PCIe USMC NoCX DDR GPIOs

Figure 2.10: High-level view of the MPPA processor.

24 2. BACKGROUND

Figure 2.11 shows the high-level description of a compute cluster, where thread parallelism is

exposed by means of a POSIX-based programming. This enables OpenMP, the implementation

of which is based on a proprietary compiler and runtime for the K1 processor. Furthemore,

Figure 2.12 shows the high-level description of a VLIW core, which exploits the instruction-level

parallelism. This unit is able to execute up to five RISC-like instructions every cycle and eliminates

timing anomalies11 to support accurate static timing analysis [41].

Shared
memory

C8

C10 C11

C9

C0

C2 C3

C1

C12

C14 C15

C13

C4

C6 C7

C5

C-NoC

C-NoC router

DSU
(debug

support unit)

DMA

D-NoC router

System
core

Figure 2.11: High-level view of an MPPA compute cluster.

PFB
ID

Fetch
Align

Decode
Dispatch

RF

BCU (branch control)

ALU0

MAU
Multiply-accumulate

Floating-point

ALU1

LSU
Load
Store

 PF ID RR E1 E2 E3 E4

ALUtiny

MUL

FPU

ACC

Figure 2.12: High-level view of an MPPA VLIW core.

11A timing anomaly is a situation where a local worst-case execution time does not contribute to the global
worst-case.

3
Compiler analysis for OpenMP

The compilation process not only translates code from one language to another, but also

performs a series of analyses with two main purposes: optimize the code and check its correctness.

Classic compiler techniques include control-flow and data-flow analysis. The former aims to

discover the hierarchical flow of control within a procedure, which is typically represented using a

type of directed graph called Control Flow Graph (CFG). This representation allows the analysis

of the different execution paths of a program. The latter, data-flow analysis, comprises several

techniques aiming to gather information about the possible set of values calculated at various

points of a program. Data-flow analyses are flow-sensitive and, generally, a CFG is used to traverse

the structure of the program and perform calculations in each portion of code.

The incorporation of parallelism represents a challenge when it comes to efficiently represent

the structure of the program and its parallel semantics. Furthermore, each parallel programming

model represents its own paradigm, implementing different constructions and semantics. Focusing

on OpenMP, the main challenges we faced regarding control-flow and data-flow analyses were

two: the relaxed memory consistency model, and the unstructured parallelism of the tasking model

(further details about OpenMP can be found in Section 2.1.1).

The following sections in this chapter explain the details of the analyses we extended to support

OpenMP. All of them are implemented in the Mercurium compiler (see further details about the

compiler in Section 2.2.1). Although Mercurium keeps a unique representation for all C, C++ and

Fortran, we have focused on C and C++ codes. Nonetheless, we have performed some proofs of

concept to extend the following analyses to Fortran, and the task has been quite straight-forward

due to the common representation it uses to model all languages.

3.1 Internal Representation of the code

Traditionally, the Static Single Assignment (SSA)1 form has been used for a wide range of

compiler analysis and optimizations that include use-definition chains and reaching definitions

among the former, and constant propagation and dead code elimination among the latter. This is

so because it simplifies the properties of the variables, and hence facilitates the analysis.
1SSA is a property of an intermediate representation that requires that each variable is assigned exactly once, and

also forces every variable to be defined before it is used.

25

26 3. COMPILER ANALYSIS FOR OPENMP

However, SSA is a low level representation that transforms the code in such a way that, most

of the times, it does not allow to return to the original code. This is not a suitable property in

the context of this thesis because we intend to provide information to the user at a high level

of abstraction. Furthermore, this thesis does not focus on code optimization, but on correctness,

where the benefits of SSA are still to be proved. For these reasons, the analyses presented in the

following sections are not based on SSA, but on the high-level representation of the Mercurium

compiler, which allows us to communicate with the user in a more understandable way, and to

reproduce the code almost as it originally was.

3.2 Classic analysis adapted to OpenMP

3.2.1 The Parallel Control Flow Graph

A CFG is a directed graph G � �N,E� where N is a set of nodes each representing a basic block2,

and E is a set of directed edges each connecting a pair of nodes. To describe the parallel model

implemented in OpenMP, we draw from two Parallel Control Flow Graph (PCFG) representations

developed at the same time as this work: the one developed in the OpenUH compiler [64, 65],

and the one developed in the Cetus compiler [26]. These representations extend the classic CFG

expressing parallelism based on barrier and flush synchronizations. Both descriptions are focused

on the OpenMP thread-centric model of parallelism. We focus on the tasking model instead. As

a result, our PCFG implements support for tasks synchronizations and, additionally, simplifies the

structure by reducing the number of different types of both nodes and edges. As for classic CFGs,

the scope of the constructed graph is a function. This allows both intra- and inter-procedural

analysis. While intra-procedural analysis is self-contained in a function’s graph, inter-procedural

analysis is achieved by propagating the argument values of a function call to its corresponding

PCFG. Besides, the return value of the called function is propagated back when possible.

A PCFG G is a tuple

G � `N,nEN , nEX ,EF ,EC ,ESe

where:

– N is the set of nodes. There are two types of nodes: simple nodes, representing either

sequential execution of one or more statements, or parallel semantics for stand-alone directives

(e.g., barrier or flush); and structured nodes, representing control flow (selection and

iteration statements) or parallel semantics which have some user code associated (e.g., task

or parallel constructs). Structured nodes are PCFGs themselves.

– nEN > N and nEX > N are the entry and exit nodes. These are the unique entry and exit

points respectively, unless a goto statement jumps into or out of the graph.

– EF b N � N � L is the set of flow edges which correspond to the usual control flow of a

program. Given an edge �n1, n2, l� > EF , n1 is the source, n2 is the target, and l is the label,

where L � �u, t, f� (standing for unconditional, true and false, respectively).

2A basic block is a code sequence with no branches in except to the entry, and no branches out except at the exit.

3. COMPILER ANALYSIS FOR OPENMP 27

– EC b N �N is the set of task creation edges. When the program execution encounters a task

construct, a task is created. Since the task may be deferred, there is no flow edge from the task

creation node nTC to the task statement node nT (task node henceforth). Instead, there is a

task creation edge �nTC , nT �.

– ES b N �N �K is the set of task synchronization edges. Given a task synchronization edge

�n1, n2, k� > ES , n1 is the synchronized construct, n2 is the synchronization point, and k is

the kind of synchronization, where K � �strict,maybe,post� (The meaning of each kind is

further explained in Section 3.2.1.1).

The PCFG is built in two steps. The first step is a conventional construction of a CFG

with the singularities of the OpenMP support. Task nodes have no successor3 at this stage

because task synchronization edges are computed in the second step (explained in Section 3.2.1.1).

PCFGsimple and PCFGstruct are the functions that build the graph. Both receive two parameters:

the code to be represented (i.e., expression or statement), and the last node created in sequential

order, nlast (nlast may be a list of nodes, e.g., the exit node of an if-statement has two last nodes,

one from each branch of the statement). Furthermore, both methods return the node built, nret:

PCFGsimple returns the only simple node node it creates, and PCFGstruct returns an structured

node containing a graph. As an illustration, Figure 3.1 specifies some syntax-directed definitions

of these functions representing those constructions that will be used more often in this document.

For ease of reading, we do not specify the label for those flow-edges that are unconditional.

PCFGsimple�expr, nlast� � `�nret�,NULL,NULL,��nlast, nret��,g,ge
PCFGstruct�if �expr� then stmt1 else stmt2, nlast� �

`�n1, n2, n3, nret�, nEN , nEX ,

��nEN , n1�, �n1, n2, t�, �n1, n3, f�, �n2, nEX�, �n3, nEX�, �nlast, nret��,
g,ge
where n1 � PCFGsimple�expr, nEN�,

n2 � PCFGstruct�stmt1, n1�,
n3 � PCFGstruct�stmt2, n1�

PCFGstruct�#pragma omp task list of clauses stmtT , nlast� �
`�nTC , nT , nret�, nEN , nEX ,

��nEN , nTC�, �nTC , nEX�, �nlast, nret��,
��nTC , nT ��,ge
where nT � PCFG�stmtT �

PCFGsimple�#pragma omp taskwait, nlast� �
`�nret�,NULL,NULL,��nlast, nret��,g,ge

PCFGsimple�#pragma omp barrier, nlast� �
`�nret�,NULL,NULL,��nlast, nret��,g,ge

Figure 3.1: Examples of functions PCFGsimple and PCFGstruct, which build the PCFG.

3The concepts of predecessor and successor have the usual definitions of graph theory, i.e., if a path leads from x
to y, then y is said to be a successor of x, and x is said to be a predecessor of y.

28 3. COMPILER ANALYSIS FOR OPENMP

3.2.1.1 Tasks synchronization data-flow algorithm

The second step of the PCFG construction is the computation of the synchronization edges. For

that purpose, first we recognize the nodes that are able to synchronize tasks:

– Task nodes (nT) synchronize previous sibling tasks whose dependences match (the next

paragraph explains the algorithm that computes whether two tasks’ dependences match).

– Taskwait nodes (nTW) synchronize previous tasks that are child tasks of the current task.

– Barrier nodes (nB) synchronize any previous task in the same binding region.

– Virtual post-synchronization node (nV PS) is a unique node added to every PCFG that needs to

virtually synchronize those tasks that may not be synchronized within the scope of the graph.

The methods involved in the tasks synchronization algorithm are described in Figure 3.2.

There, given that an inout dependence is equivalent to an out dependence, a task T2

synchronizes a task T1 if the tasks are siblings and one of the following conditions fulfill: a)

T1 designates an out object that T2 designates as in or out (RAW and WAW data hazards

respectively), and/or b) T1 designates an in object that T2 designates as out (WAR data hazard).

It may not be possible to statically determine if two tasks synchronize because it cannot be asserted

if two dependences designate the same object (e.g., dependences of the form var�expr�). Thus,

this process, modeled with function 3, can answer {yes, no, unknown}.

Consider NT the set of nodes nT in a given PCFG, and Ndeps the maximum number of

dependence clauses a task directive has. The cost of computing all synchronizations over that

PCFG, which means calling synchronizes for each pair of nodes in NT , is O�NT
2
�Ndeps

2�.

match�d1, d2� �

¢̈̈
¨̈̈̈
¨̈̈̈
¦̈
¨̈̈̈
¨̈̈̈
¤̈

Y ES, if �d1 � v1 , d2 � v2 , v1 � v2�
-�d1 � v�k1� , d2 � v�k2� , k1 � k2�

NO, if d1 � v1�e1� , d2 � v2�e2� , v1 x v2

, v1, v2 are arrays or restrict pointers
UNK, otherwise

a 3 b �

¢̈̈
¨̈
¦̈
¨̈̈
¤

Y ES, if a � Y ES - b � Y ES

NO, if a � NO , b � NO

UNK, otherwise

siblings�nT1 , nT2� �
¢̈̈
¦̈
¤̈
Y ES, if nT1 , nT2are child tasks of the same task region
NO, otherwise

synchronizes�nT1 , nT2� � siblings�nT1 , nT2� , ��
¦d1 > out�nT1

�

¦d2 > in�nT2
� 8 out�nT2

�

match�d1, d2� 3�
¦d1 > in�nT1

�

¦d2 > out�nT2
�

match�d1, d2��

Figure 3.2: Process that determines if two tasks synchronize.

3. COMPILER ANALYSIS FOR OPENMP 29

Synchronization edges have a kind k that may take one of the following values:

– strict: a task node nT1 certainly synchronizes in a node n because either:

* n � nTW and both are in the same binding region.

* n � nB and n is a region that encloses, or is the same region as, the binding region of nT1 .

* n � nT2 and synchronizes�nT1 , nT2� � Y ES.

– maybe: a task node nT1 cannot be statically decided to synchronize with nT2 (i.e.,

synchronizes�nT1 , nT2� � UNK)

– post: the synchronization may occur any time after the function ends.

Synchronization edges are computed using a forward data-flow algorithm that defines the tasks

live at the entry point, LITask b N , and the exit point, LOTask b N , of each node in a PCFG.

A task node nT > LITask�n� if:

nT > ancestor�n� ,
~§ n�

> predecessor�n� � e � �nT , n
�, strict� > ES�n��

A task node nT > LOTask�n� if:

synchronizes�nT , n� � �NO,UNK� -
all matched dependences in n are inputs -

nT has unmatched dependences

Additionally, when computing the LOTask set, those tasks that remain alive because all

target’s matched dependences are inputs are singled out. These tasks may be the source

dependence of several target tasks with input dependences on the same variables, and definitely

synchronize when a taskwait or barrier is reached.

Theorem 1 TSDFAF � `L,Tf e is the bounded monotone forward Tasks Synchronization

Data-Flow Algorithm that computes the task synchronizations over a graph G, and consists of:

– L = `S � R,Ae is the meet-semilattice[8] that imposes a partial order over all possible

data-flow values in the algorithm, where:

* S b �nT > N� is a subset of all task nodes, with two special elements: �, the lattice top

element equivalent to the empty set, and �, the lattice bottom element equivalent to S.

* R = N �KIND�, where KIND�
� �strict,maybe�, is the set of kind relationships of

two synchronized nodes.

* A = (8, g) is the meet operator that merges flow values and imposes an order over the

lattice by using just the first element in the pair representing each data-flow value.

The meet operator is used to compute the live tasks at the entry of a node n > N as follows:

LITask�n� � � �
p>pred�n�

LOTask�p�,g�

The meet operator is monotone. Given the elements x1, x2, y1 and y2, it fulfills:

x1 Z y1 , x2 Z y2 � �x1 A x2� Z �y1 A y2�

30 3. COMPILER ANALYSIS FOR OPENMP

– Tf = �f � S �R � S �R� is the family of transfer functions that maps the program behavior

onto A computing LOTask�n� for each n > N as follows:

f�nT � � ��nT
�SnT

�
> LITask�nT � , � siblings�nT , nT

��
- synchronizes�nT , nT

�� x Y ES��,
��nT

�,strict�SnT
�
> LITask�nT �

, siblings�nT , nT
�� , synchronizes�nT , nT

�� � Y ES�
8 ��nT

��,maybe�SnT
��
> LITask�nT �

, siblings�nT , nT
���

, synchronizes�nT , nT
��� � UNK�� /*task*/

f�nTW � � ��nT SnT > LITask�nTW � , siblings�nTW , nT ��,
��nT ,strict�SnT > LITask�nTW �

, siblings�nTW , nT ��� /*taskwait*/

f�nB� � �g, ��nT ,strict�SnT > LITask�nB��� /*barrier*/

f�n� � ��nT SnT > LITask�n��,g� /*any other node*/

All transfer functions are monotonic. Given the elements x and y, they fulfill:

x Z y� f�x� Z f�y�

Each transfer function computes the pair `LOTask�m�, SynchronizedTask�m�e of a given

node m. The first element is the set of tasks that are still live after the execution of m. The second

element is the set S �R of tasks synchronized in m. E.g., for a task node nT , the transfer function

f�nT � returns a pair where: a) the first element contains those tasks nT � in the set LITask�nT �
that, either are not siblings of nT , or are not synchronized in nT (synchronizes�nT , nT �� x

Y ES), or b) the second element contains those tasks in the set of LITask�nT � that are siblings

of nT and are certainly synchronized in nT (synchronizes�nT , nT �� � Y ES).

The semi-lattice L is monotone and of finite height (the number of tasks in a program is finite,

thus, the number of sets with the different combinations of these tasks is finite). Because of that,

the algorithm is guaranteed to converge.

Algorithm 1 shows the high-level iterative algorithm that computes the tasks synchronizations

over a PCFG G. The algorithm initializes the root node of the graph with the lattice least

upper bound, �. Then, it performs forward traversals over G, computing the LITask�n� and

LOTask�n� sets of each node n, until no data-flow value changes. At this point there may still be

live tasks at the exit node of G, which shall be synchronized with the virtual post-synchronization

node, nV PS , of the graph.

3. COMPILER ANALYSIS FOR OPENMP 31

Algorithm 1 High-level algorithm for synchronizing tasks within a PCFG.
1: LITask�nEN� = LOTasknew�nEN� = �

2: for each n > N LOTasknew�n� = � do
3: worklist = p — p > succ�nEN�
4: while !worklist.empty() do
5: worklist = worklist - n

6: LITask�n� = �p>pred�n�LOTasknew�p�
7: LOTaskold�n� = LOTasknew�n�
8: LOTasknew�n� = f�n�
9: if LOTaskold�n� x LOTasknew�n� then

10: worklist = worklist 8 s — s > succ�n�
11: end if
12: end while
13: for each nT > LOTask�nEX� do
14: add edge(nT , nV PS , post, NULL) to G

15: end for
16: end for

As an illustration, Figure 3.3 shows a simplified version of the PCFG resulting from the code

in Listing 3.1, a blocked matrix multiplication using OpenMP tasks. The information related

to the tasks is drawn in red (task and task creation nodes, and synchronization edges with their

corresponding labels). Note the synchronization edge from the task to the task itself tagged as

Maybe because the inout dependence on C�i � BS��j � BS� cannot be statically decided at this

point, as its value may vary between task instances (A and B are not considered to compute this

edge because both are input dependences. Furthermore, the task escapes its scope because there is

no synchronization, so it is connected to the virtual post-synchronization node.

1 void matmul depend (int N, int BS , float A[N] [N] , float B[N] [N] , float C[N] [N]) {
2 for (int i = 0 ; i < N; i +=BS)
3 for (int j = 0 ; j < N; j +=BS)
4 for (int k = 0 ; k < N; k+=BS)
5 #pragma omp task private (i i , j j , kk) \
6 depend (in : A[i : BS] [k : BS] , B[k : BS] [j : BS]) \
7 depend (inout : C[i : BS] [j : BS])
8 for (int i i = i ; i i < i +BS ; i i ++)
9 for (int j j = j ; j j < j +BS ; j j ++)

10 for (int kk = k ; kk < k+BS ; kk ++)
11 C[i i] [j j] = C[i i] [j j] + A[i i] [kk] * B[kk] [j j] ;
12 }

Listing 3.1: Matrix multiplication using OpenMP tasks (Example task dep.5.c from the
specification examples [112])

32 3. COMPILER ANALYSIS FOR OPENMP

[3] FunctionCode

[30] LoopFor

[45] LoopFor

[60] LoopFor

[65] OmpTask

[79] LoopFor

[95] LoopFor

[111] LoopFor

[4] ENTRY

[23] i = 0

[31] ENTRY

[26] i < N

[38] j = 0

TRUE

[153] EXIT

FALSE

[46] ENTRY

[41] j < N

[53] k = 0

TRUE

[150] EXIT

FALSE

[61] ENTRY

[56] k < N

[64] TASK_CREATION

TRUE

[147] EXIT

FALSE

[59] k += BS[66] ENTRY

Create

[44] j += BS

[29] i += BS

[156] EXIT

[144] FLUSH

[71] ii = i

[80] ENTRY

[76] ii < i + BS

[87] jj = j

TRUE

[141] EXIT

FALSE

[96] ENTRY

[92] jj < j + BS

[103] kk = k

TRUE

[138] EXIT

FALSE

[112] ENTRY

[108] kk < k + BS

[133] C[ii][jj] = C[ii][jj] + A[ii][kk] * B[kk][jj]

TRUE

[135] EXIT

FALSE

[110] kk++[94] jj++

[78] ii++

[145] FLUSH

[143] EXIT

Maybe

[158] POST_SYNC

Post

Figure 3.3: PCFG for code in Listing 3.1.

3.2.2 Use-Definition analysis

Use-definition is an inter-procedural context-sensitive4 analysis that computes the variables that

are used and defined at each point of a program. This means that, for each node n in the PCFG,

we compute the following sets:

– UE(n) is the set of upwards exposed variables5.

– Kill(n) is the set of variables which have at least one write access within the node.

– Undef(n) is the set of variables which use cannot be determined, e.g., the pointed value of a

pointer passed as argument to a function which code is not reachable at compile-time.

4Context-sensitive analysis is an inter-procedural analysis that considers the calling context when analyzing the
target of a function call.

5An upwards exposed variable is that whose first use is a read.

3. COMPILER ANALYSIS FOR OPENMP 33

The rules that classify the variables are the following: a) if a variable is first classified as UE,

it can also be classified as Kill (if it is first read and then written), or be reclassified as Undef (if at

some point the access cannot be determined), b) if a variable is first classified as Kill, it cannot be

later classified as UE or Undef, c) if a variable is first classified as UE and Kill, it cannot later be

classified as Undef, and d) if a variable is first classified as Undef, it cannot be later reclassified.

The forward data-flow algorithm that computes use-definition information works from top

to bottom, regarding the control flow, and from inside to outside, regarding the topology of

the graph (the PCFG is a graph where some nodes -structured nodes- are graphs themselves).

Generally, usage information is propagated to structured nodes following a backwards traversal of

the inner nodes. For each inner node, the information of its children is merged with the information

computed for its own statements using the following equations:

UEmerge�n� � �
m>Successor�n�

UE�m� �Kill�n�

Killmerge�n� � �
m>Successor�n�

Kill�m� �Undef�n�

Undefmerge�n� � �
m>Successor�n�

Undef�m� � �vSv > UE�n� , v >Kill�n��

In the last step of the propagation process, when the information computed for the last inner

node (the entry node of the structured node) is propagated to the structured node, the visibility of

the variables is taken into account. In that sense, the algorithm considers the context where the

variables are declared, and the data-sharing attributes in case of evaluating a node representing

an OpenMP node. Hence, variables local to the structured node, and private variables (including

private and firstprivate for the Kill and the Undef sets, and only private and lastprivate for the UE

set) are removed from the final sets, and all firstprivate variables are included in the UE set. The

use of private variables refers indeed to different symbols from the use of the original variables.

Additionally, the asynchronism introduced by the OpenMP tasking model requires considering

the propagation of the information computed for task nodes in a different way. Consider the

code shown in Figure 3.2. Since the three tasks can execute in any order, the usage computation

for function foo must note that although x is undefined in Task3, it is both upwards exposed

and killed in Task1, so it can be removed from the Undef set. Conversely, y is undefined in

Task3, and only killed in Task1. The compiler cannot decide whether the variable is also upwards

exposed, and thus it can be removed from the Kill set to remain only in the Undef set.

Use-definition is inter-procedural, so the analysis of a called function is propagated to

wherever it is called when possible (although Mercurium does not have the utilities for whole

program analysis, hence we can only perform Interprocedural Analysis (IPA) for methods

contained in the same source file, this is not a problem because an application can always be

34 3. COMPILER ANALYSIS FOR OPENMP

1 void b a r (i n t &) ;
2

3 i n t x =0;
4 i n t y ;
5

6 void foo () { / / UE: x , K i l l : x , Undef : y
7 #pragma omp task / / T a s k 1 . UE: x , K i l l : x , y
8 {
9 #pragma omp task / / T a s k 2 . K i l l : x

10 x = 1 ;
11 y = x ;
12 }
13 #pragma omp task / / T a s k 3 . Undef : x , y
14 b a r (x) ;
15 #pragma omp taskwait
16 }

Listing 3.2: OpenMP example illustrating the propagation of usage
information to outer nodes.

analyzed by embedding all the code in the same file). The compiler also defines the behavior of

common C standard library methods, so when they are called, their behavior is propagated.

Use-definition analysis is a previous step for many other data-flow analyses such as liveness

and reaching definitions. The following sections introduce these analyses.

3.2.3 Liveness

Liveness analysis is a data flow analysis that computes, for each program point, the variables that

may be potentially read before their next write. Therefore, a variable is live if it holds a value

that may be needed in the future. This means that, for each node n in the PCFG, we compute the

following sets:

– LI(n) is the set of the variables that are live at the entry of node n.

– LO(n) is the set of variables that are live at the exit of node n.

The backward data-flow algorithm that performs liveness analysis works from bottom to top,

regarding the control flow, and from inside to outside, regarding the topology of the graph (relevant

for structured nodes). Figure 3.4 shows the equations that compute the LI and LO sets of a given

node n. The computation depends on the type of node (simple or structured) and on the OpenMP

semantics (if applicable). Hence, for simple nodes, we use the common data-flow equations for

defining liveness, which use the upper exposed variables, UE(n), and the defined variables, Kill(n).

And for structured nodes, we propagate the information computed in the inner nodes (concretely,

the entry node nEN of n) to the outer node. Furthermore, for structured nodes representing

OpenMP constructs, we take into account the visibility of the variables. Accordingly, private

and lastprivate variables are not propagated to outer nodes when computing the LI set, and private

and firstprivate are not propagated to the outer node when computing the LO set.

In addition to the visibility of the variables, liveness analysis must also take into account

the asynchronism introduced by the OpenMP tasking model, and how this affects to the PCFG

representation. In that sense, when a task is encountered within a loop, we add the task itself to

the list of successors of the task (in case it was not there due to dependence expressions), because

a task instance could use data produced in other task instances.

3. COMPILER ANALYSIS FOR OPENMP 35

LI�n� �
¢̈̈
¦̈
¤̈
UE�n� � �LO�n� �Kill�n��, if n is simple

LI�PCFG�n�� nEN� � �Private�n� 8Lastprivate�n��, if n is structured

LO�n� �
¢̈̈
¦̈̈
¨̈¤

�
m>Successor�n�

LI�m�, if n is simple

LO�PCFG�n�� nEX� � �Private�n� 8 Firstprivate�n��, if n is structured

Figure 3.4: Equations that determine the liveness attributes of a PCFG node.

This analysis is inter-procedural at the same level as use-definition chains. This means the

same limitations apply to the results of liveness analysis, thus IPA is only possible for methods

contained in the same source file.

3.2.4 Reaching definitions

Reaching definitions is a data-flow analysis that determines which definitions may reach a given

point in the code. This means that, for each node n in the PCFG, we compute the following sets:

– RI(n) is the set of definitions reaching the entry point of node n.

– RO(n) is the set of definitions reaching the exit point of node n.

We compute reaching definitions over the PCFG following a common iterative forward

data-flow algorithm that traverses the graph from top to bottom, regarding the control flow,

and from inside to outside, regarding the topology of the graph (relevant for structured nodes).

Figure 3.5 shows the equations that compute the RI and RO sets of a given node n. These equations

depend on the type of node (simple or structured). Hence, for simple nodes, we use the common

data-flow equations for defining reaching definitions, which use the set of generated (declared and

initialized) variables, Gen(n), and the set of defined variables, Kill(n). And for structured nodes,

we propagate the information computed in the inner nodes (precisely, the entry node nEN of n for

the RI set, and the exit node nEX of n for the RO set) to the outer node.

RI�n� �
¢̈̈
¦̈̈
¨̈¤

�
m>Predecessor�n�

RO�m�, if n is simple

RI�PCFG�n�� nEN�, if n is structured

RO�n� �
¢̈̈
¦̈
¤̈
Gen�n���RI�n� �Kill�n��, if n is simple

RO�PCFG�n�� nEX�, if n is structured

Figure 3.5: Equations that determine the reaching definitions of a PCFG node.

The asynchronism introduced by the OpenMP tasking model requires special attention because

statements within a task can give rise to definitions that reach points out of the regular control flow.

For this reason, it is necessary to compute all regions of code that are concurrent with a task [129],

36 3. COMPILER ANALYSIS FOR OPENMP

and propagate the reaching definitions across those regions of code. The code in Listing 3.6a and

the simplified version of its corresponding PCFG in Figure 3.6b show an example of this situation,

where the regular control flow traversal is not enough to correctly compute reaching definitions:

definition of res in Task1 may reach Task2, and definition of res in Task2 may reach Task1.

Reaching definitions are used to analyze loops, particularly induction variables and their

boundaries. This information is later used for optimizations out of the scope of this thesis,

such as user-directed vectorization [37], and transformations such as the static generation of task

dependency graphs (detailed in Chapter 5).

1 i n t baz ()
2 {
3 i n t r e s = 0 ;
4 #pragma omp parallel
5 #pragma omp single
6 {
7 #pragma omp task / / Task1
8 {
9 #pragma omp critical

10 {
11 / / R I . r e s : 0 , r e s+bar ()
12 r e s += foo () ;
13 }
14 }
15

16 #pragma omp task / / Task2
17 {
18 #pragma omp critical
19 {
20 / / R I . r e s : 0 , r e s+f o o ()
21 r e s += b a r () ;
22 }
23 }
24 }
25 re turn r e s ;
26 }

(a)

OmpParallel

OmpSingle

OmpTask

OmpCritical

OmpTask

OmpCritical

res = 0

TASK_CREATION

TASK_CREATION res += foo()

Create

BARRIERres += bar()

Create

BARRIER

return res;

Static

Static

(b)

Figure 3.6: Example illustrating the impact of OpenMP tasks regarding reaching definitions:
(a) code snippet (b) simplified PCFG.

3.3 Impact

The works developed in the context of classic compiler analysis for OpenMP have been used in the

doctoral thesis of Caballero [36] to develop a user-directed vectorization infrastructure aimed at

improving the exploitation of SIMD instructions with OpenMP. The results of this work, in turn,

have been used to define the SIMD extensions included in version 4.0 of the OpenMP specification.

Additionally, under the umbrella of the TERAFLUX European project [55, 148], Patejko

analyzed the properties of masks used in vector instructions (so-called Mersenne masks) using

our analysis framework, particularly, the PCFG and liveness analysis.

3. COMPILER ANALYSIS FOR OPENMP 37

3.4 Conclusion

Classic compiler techniques are incredibly powerful to both compiler optimization and correctness

checking. However, these techniques require some revision if they are to be used with languages

expressing parallelism. This chapter addresses the adaptation of four fundamental compiler

analysis algorithms to incorporate parallel semantics, including control-flow analysis by means of

a PCFG adapted to the OpenMP tasking model, and data-flow analysis by means of use-definition,

liveness and reaching definition analyses built on top of the PCFG. The four algorithms presented

here create the basis for the rest of the work presented in this thesis.

4
Correctness in OpenMP

This section presents a series of analyses aimed at tackling correctness in the OpenMP tasking

model. As a foreword, we briefly present the contributions presented in the context of the Master’s

thesis that precedes this PhD thesis. Then, we identify a set of cases that users should be aware

of because they may lead different problems (loss of performance or race conditions). After that,

we present a set of analyses based on the framework presented in Chapter 3 and implemented

in the Mercurium compiler that can supply hints about errors that may occur at run-time for the

presented cases. Finally, we test the mechanism with several students and benchmarks, and also

compare our results with those of Oracle Solaris Studio 12.3 compiler [114].

4.1 Contributions of the M.S. thesis

During the preceding Master’s thesis [130] we started our research about high-level compiler

analysis and its application to correctness. We developed a primary version of the classic analyses

(i.e., CFG, use-definition and liveness analyses) in an old version (1.3) of the Mercurium compiler

(see Section 2.2.1 for further details on the current implementation of Mercurium). On top of

that, we implemented two algorithms to automatically determine some clauses of the OpenMP

and OmpSs task constructs: the data-sharing clauses, and the dependence clauses. The basics of

these algorithms are introduced in this section.

4.1.1 Automatic scope of variables

All variables appearing within an OpenMP construct have default data-sharing as defined in the

specification (either predetermined or implicitly determined, see Section 2.15.1 of the specification

[113] for more details). Nonetheless, users usually need to explicitly scope most of these variables

changing the default data-sharing values in order to ensure the correctness of their codes (e.g.,

avoiding data race conditions) and enhance their performance (e.g., privatizing shared variables).

We proposed an algorithm to automatically determine the data-sharing attributes of any

OpenMP task triggered by a new keyword AUTO attached to the task’s clause default [129].

The algorithm determines the regions of code that are concurrent with a given task and defines the

39

40 4. CORRECTNESS IN OPENMP

data-sharing attributes based on two factors: a) the usage of the variables in all concurrent regions,

and b) their liveness properties after the execution of the task.

The algorithm is perfectly accurate: it neither reports negatives nor false positives. However,

the algorithm is limited to the visibility of the concurrent code at compile-time. Thus, specific

rules cover the cases where the algorithm cannot determine the data-sharing attribute of a variable,

and the undetermined variables are reported back to the user for manual scoping.

4.1.2 Automatic detection of task dependences

OpenMP implements a fine-grain synchronization mechanism that enables the data-flow driven

execution of tasks by means of data-dependence clauses. These dependences regulate the

generation of a TDG that represents the order in the tasks that cannot be broken, and honors

the semantics of the values allowed for these clauses: in, out and inout.

We proposed an algorithm to automatically determine the data-dependence attributes of any

OpenMP task triggered by the new keyword AUTO DEPS attached to the task’s clause default

[131]. The algorithm works in 3 steps: 1) define the regions of code that run concurrently with

a given task, 2) compute the data-sharing attributes of all involved variables, and 3) compute the

data-dependence attributes for all variables determined as shared in step 2, based on possible races

and liveness properties.

The algorithm is perfectly accurate, however it is limited to the visibility available at

compile-time. Thus, specific rules cover the cases when the algorithm cannot determine the

data-sharing attributes or the portions of code that are concurrent with a given task. In these

cases, undetermined variables are reported to the user to manually define the dependence clauses.

4.2 Related work

Despite the flexibility and programmability delivered by OpenMP, the language introduces some

difficulties of its own. Süß and Leopold described fifteen OpenMP mistakes typical of novel

programmers [146] in the context of OpenMP 3.0. They classified these mistakes in two groups:

those regarding correctness (e.g., unprotected access to shared variables and variables improperly

privatized), and those regarding performance (e.g., use of a critical construct that could be replaced

by an atomic construct to improve efficiency, and unnecessary flushes). Later, Münchhalfen et

al. [102] further classified OpenMP errors considering the tasking and the accelerator models.

They divide the possible errors in two groups: a) defects, which are programming errors (i.e.,

incorrect source code) and include non-conforming programs (e.g., uninitialized locks, and invalid

nesting of regions) and conceptual defects (e.g., locks as barriers, and missing data mapping

to the accelerator), and b) failures, which are error manifestations (e.g., execution abortion and

deadlocks) and include situations such as race conditions and deadlocks.

Several approaches have been proposed for OpenMP run-time correctness checking. Li et

al. [85] presented a tool based on a hybrid methodology involving on-line testing (comparing

the results of serial and parallel executions) and off-line testing (recording the values of the

4. CORRECTNESS IN OPENMP 41

variables at the entry and the exit of parallel constructs of a serial execution, and comparing these

values with those of parallel executions). Ha et al. [61] used a hybrid technique that combines

happens-before analysis and lockset analysis for efficiently detecting data races at run-time. There

are also production tools available for OpenMP and other parallel languages, such as Intel® Thread

Checker [117], TotalView [39] debugger, and the Valgrind based tool Helgrind+ [74].

The common aspect of all the tools and methodologies described above is that they work

at run-time, as they require the execution of the program to detect errors. The main benefit of

using a runtime tool is that all variables have a known value, thus no disambiguation processes

are necessary (e.g., alias analysis). Unfortunately, this approach requires users to execute their

programs along with the runtime tools in order to find errors and, as a result, some overhead

is introduced in the execution. Additionally, there is no guarantee that the error will occur in

that particular execution, as well as compiler optimizations may hide some errors (e.g., variables

stored in registers may hide race conditions). A few compile-time techniques aiming at checking

OpenMP correctness have been published as an alternative to runtime tools. Lin [87] described a

CFG and a region tree used to statically detect non-concurrent blocks of code and race conditions

in OpenMP 2.5 programs with the Sun Studio 9 Fortran compiler. Basupalli et al. [27] presented

ompVerify, a tool based on the polyhedral model that is able to detect several errors in OpenMP

parallel loops.

4.3 Automatic solution of common mistakes involving OpenMP tasks

Different mistakes in the use of OpenMP tasks may lead to run-time errors, non-deterministic

results or loss of performance. The reasons that cause these problems are mainly:

1. Bad synchronization of the tasks, either using synchronization directives (e.g., barrier and

taskwait), or task dependence clauses.

2. Bad usage of the variables involved in the construct due to a bad specification of the

data-sharing attributes.

The following sections describe the set of case studies we have identified. For each case, a

simple code snippet illustrates the scenario, and a simplified version of its PCFG accompanies

the algorithm that allows discovering correctness issues. All these methods are also adapted to the

OmpSs programming model.

4.3.1 Variables’ storage

Scenario Variables with automatic storage duration are those that are allocated and deallocated

automatically when the program flow enters and leaves the enclosing code block. When such

a variable is shared in a task, the task shall be executed before the block of the variable ends.

Otherwise the variable may not be accessible any more and a run-time error may occur.

Example This scenario is illustrated in Figure 4.1a, where variable a is local to function foo and

its storage will disappear once this function exits. Its data-sharing is explicitly determined to be

shared, so the task will access the original block of storage. If the task is deferred until the function

42 4. CORRECTNESS IN OPENMP

returns, a will have disappeared. In the corresponding PCFG, Figure 4.1b, the task is synchronized

in nV PS , a virtual post-synchronization node indicating the task may scape the function.

1 void foo ()
2 {
3 i n t a [1000000] = {0} ;
4 #pragma omp task shared (a)
5 { . . . }
6 }

(a) code snippet (b) simplified PCFG

Figure 4.1: Scenario illustrating an automatic storage variable that may be accessed after its
lifetime ends.

Compiler analysis Algorithm 2 shows the code that, given a complete PCFG, determines the

variables that may be accessed after their storage lifetime has ended. For each task node, the

method gathers the nodes where the task synchronizes, synclist. Then, for each memory location

(consider also array subscripts, class member accesses and dereferences) accessed as shared within

the task, vS , the method looks for the context node nCTX where the variable is declared, and

checks whether nCTX contains all nodes in synclist. Variable vS will potentially be wrongly

accessed if at least one node in synclist is not contained in nCTX .

Algorithm 2 High-level algorithm to detect accesses to variables in
OpenMP tasks whose lifetime may have ended.

1: result = g

2: for each nT > N do
3: synclist = {n > N : e=(nT , n,KIND)}
4: for each vS > shared�nT � do
5: nCTX = context node where vS is declared

6: if (nCTX is global context) then
7: break
8: end if
9: for each n > synclist do

10: if nCTX does not contain n then
11: result = result 8 vS

12: break
13: end if
14: end for
15: end for
16: end for
17: return result

4. CORRECTNESS IN OPENMP 43

Applied to the example in Figure 4.1a and according to Figure 4.1b, the context node nCTX

of a does not contain the virtual post-synchronization node nV PS where the task nT synchronizes,

so a may be accessed after it is deallocated.

Compiler solution To avoid this situation the compiler proposes one of the following solutions:

– Change the data-sharing attribute of the variable to private or firstprivate: suitable

for basic data types (integer, floating point and pointer).

– Introduce a taskwait before the enclosing block ends: suitable for arrays and structures,

since privatizing them may lead to a loss of performance.

4.3.2 Data-race conditions

Scenario A data race occurs when two or more threads access shared data and at least one of

the accesses is a write. Tasks accessing shared variables must synchronize the accesses in such a

situation, otherwise there exists a race condition.

Example We illustrate this case in Figure 4.2a, where variable x is implicitly determined as

shared. No synchronization assures the post-increment of x is executed before the call to the

function printf, and thus the result of this code is non-deterministic.

1 i n t x = 0 ;
2 void foo ()
3 {
4 #pragma omp task / / T
5 x ++;
6 p r i n t f (”x=%d\n” , x) ;
7 }

(a) code snippet (b) simplified PCFG

Figure 4.2: Scenario illustrating a race condition due to a wrong synchronization of a task.

Compiler analysis Algorithm 3 shows the code that, given a complete PCFG, determines the

variables in a race situation. For each task node, the algorithm first computes all regions in the

task enclosing function that are concurrent with the task, considering other tasks and sequential

code. This first step is an extension of a previously developed method to automatically determine

data-sharing attributes [129], and takes into account different aspects:

– The storage of variables: global variables, dynamic storage locations and reference parameters

may be used outside the function.

– The data-sharing attributes of the OpenMP constructs enclosing the task: variables which are

private in a region cannot cause a race with uses outside that region.

– The outermost iterative statement enclosing the task: different instances of the task may run

concurrently, and the task instances may be concurrent with different iterations of the code

inside the loops that enclose the task construction.

– The points where the task may be synchronized: code after these points cannot be concurrent.

44 4. CORRECTNESS IN OPENMP

Once all concurrent code has been identified, for each vS , shared memory access, the algorithm

gathers the nodes in the concurrent regions using vS and the nodes in the task using vS , and

checks that at least one of those accesses is a write. If so, the method checks whether all accesses

are synchronous (protected in a critical or atomic construct) and, if not, the variable is

reported as a race. Variables that cannot be determined to be in a race condition because their

storage outlives the function are also reported.

Algorithm 3 High-level algorithm to detect race conditions in OpenMP tasks.
1: true race list = maybe race list = g

2: for each nT > N do
3: R = {n > N � n > concurrent regions�nT �}
4: for each vS > shared�nT � do
5: UT = {uT > N � uT is inner node of nT , uT uses vS}
6: UR = g

7: for each r > R do
8: UR = {uR > N � uR is inner node of R , uR uses vS , uR ~> UT } 8 UR

9: if §uR > UR,§uT > UT � �uR is write - uT is write�
, �uR !is synchronous - uT !is synchronous� then

10: true race list = true race list 8 vS

11: break
12: end if
13: if vS is global - vS is dynamic storage - vS is reference parameter then
14: maybe race list = maybe race list 8 vS

15: end if
16: end for
17: end for
18: end for
19: return true race list, maybe race list

Applied to code in Figure 4.2a and according to Figure 4.2b, there is no task concurrent with

the task T . Only sequential code between the task creation and the exit node is concurrent with

T (we use the exit node because the task synchronizes in a virtual post-synchronization node,

meaning that the synchronization occurs sometime after the function). So, there is a concurrent

usage of x, one read and one write, and no access is synchronous, hence a race condition exists.

Note that, if there was no call printf, there will still be a possible race on x, because it is a global

variable and might be used outside the function concurrently with the task.

Compiler solution To avoid this situation, the compiler proposes two solutions:

– Insert a taskwait between the two uses.

– Protect the accesses to the variables with critical or atomic constructs.

4. CORRECTNESS IN OPENMP 45

4.3.3 Dependences among non-sibling tasks

Scenario OpenMP allows the definition of task dependences only among sibling tasks (i.e., tasks

that are children of the same task region). Other synchronization constructs such as barrier or

taskwait must be used to impose an order between tasks created in different regions.

Example Consider the code in Figure 4.3a and its corresponding PCFG in Figure 4.3b. This

example defines Task1 and Task3 in the region of the initial task1, and Task2 in the explicit task

region associated with Task1. We define TR�n� as the inner most enclosing node nT that contains

node n. In the example, TR�nTask1� = TR�nTask3� = G , and TR�nTask2� � nTask1. Therefore,

dependences of Task2 are not checked with dependences of Task3, because the tasks belong to

different task regions. As a consequence, the result is non-deterministic and depends on the order

of execution of Task2 and Task3.

1 void foo (int x) {
2 #pragma omp task / / Task1
3 {
4 #pragma omp task depend (out : x) / / Task2
5 { . . . }
6 }
7 #pragma omp task depend (in : x) / / Task3
8 { . . . }
9 #pragma omp taskwait

10 }

(a) code snippet (b) simplified PCFG

Figure 4.3: Scenario illustrating a useless definition of dependences between non-sibling tasks.

Compiler analysis Algorithm 4 shows the code that, given a complete PCFG, discovers tasks

that may define dependences among non-sibling tasks. It takes into account only nested tasks nT

with dependence clauses and at least one outgoing edge whose target is not contained in TR�nT �.

For each of such tasks, the algorithm gathers the dependence clauses of nT and the dependence

clauses of all those tasks defined after nT in any context enclosing TR�nT �. Then, we use the

previously defined synchronizes method to check whether the two tasks could synchronize. If

the result is not NO,then nT is reported to have dependences with a non-sibling task.

Applied to the example in Figure 4.3a and according to Figure 4.3b, nested Task2 has matching

dependences with Task3, which is defined after Task2 in a context containing TR�nTask2�.

Compiler solution To avoid such an scenario, the compiler proposes two possible solutions:

– Synchronize the nested task with a taskwait before its task region ends (i.e., within its

parent task).

– Propagate the dependences from the nested task to its parent task.

1The initial task is an implicit task associated with the inactive implicit parallel region surrounding the whole
OpenMP program. It completes at program exit.

46 4. CORRECTNESS IN OPENMP

Algorithm 4 High-level algorithm to detect dependences among non-sibling OpenMP tasks.
1: result := g

2: for each nT > N do
3: if nT has dependence clauses , §e � �nT , n,KIND� � e ~> TR�nT �.ES then
4: T := tasks defined after nT within any context enclosing TR�nT �
5: for each nT � > T do
6: if synchronizes�T,T �� then
7: result := result 8 �nT , nT ��
8: break
9: end if

10: end for
11: end if
12: end for
13: return result

4.3.4 Incoherent data-sharing

Scenario As explained in Section 2.1.1.2, OpenMP defines rules to determine the data-sharing

attributes of any construct. Users have to understand these rules to resolve each default attribute,

as well as to explicitly the attributes for those variables whose default value is not correct. Both

mechanisms are error-prone due to the large amount of variables that may be involved in each task.

In that sense, the compiler can check the following incoherences regarding data-sharing attributes:

Incoherent Dead: variables defined within a task and never used in that task, but used after the

task synchronization, should be shared.

Incoherent Private: upwards exposed variables in a task should not be private.

Incoherent Firstprivate: variables that are not upwards exposed within a task should be either

private or shared (depending on the liveness of the variable and the chances of a data race).

Example Figure 4.4a illustrates an example of all these situations: variable x is implicitly

determined as firstprivate and thus the modifications to this variable will not be visible after the

task; variable y is explicitly determined as private, therefore its value inside the task is undefined

at compile-time; and variable z is implicitly determined as firstprivate but its initial value is never

read. Figure 4.4b shows the corresponding PCFG with additional information about use-definition

and liveness analyses for the nodes significant to this case. In these nodes, UE stands for upwards

exposed, Kill stands for killed (defined), and LI stands for Live In.

Compiler analysis Algorithm 5 shows the code that, given a complete PCFG, checks the

coherency of the data-sharing attributes of all tasks. For each task node, it first uses use-definition

and liveness analyses to detect private variables that are defined within the task and the definition is

dead, while the corresponding original variable is alive after the task synchronization. If a variable

is reported to be in such a situation, no other checks are performed. Otherwise, the algorithm

checks if firstprivate variables are upwards exposed and private variables are not upwards exposed.

4. CORRECTNESS IN OPENMP 47

1 i n t foo (i n t y)
2 {
3 i n t x =0 , z ;
4 #pragma omp task private (y)
5 {
6 z = x ˆ y ;
7 x = z * z ;
8 }
9 #pragma omp taskwait

10 re turn x ;
11 }

(a) code snippet (b) simplified PCFG

Figure 4.4: Scenario illustrating different incoherences in the data-sharing attributes of a task.

Algorithm 5 High-level algorithm to detect incoherences in the data-sharing
attributes of OpenMP tasks.

1: incoherent dead = incoherent p = incoherent fp = g

2: for each nT > N do
3: for each v > �private�nT � 8 firstprivate�nT �� do
4: if §nv � �nT encloses nv , v >DEF �nv��

, ~§ n � �nT encloses n , nv dominates n

, v > UE�n�� , §n�, e � �nT , n
�,KIND� � v > LI�n�� then

5: incoherent dead = incoherent dead 8 v

6: else
7: if v > private�nT � , v > UE�nT � then
8: incoherent p = incoherent p 8 v

9: else if v > firstprivate�nT � , v ~> UE�nT � then
10: incoherent fp = incoherent fp 8 v

11: end if
12: end if
13: end for
14: end for
15: return incoherent dead, incoherent p, incoherent fp

Applied to the example in Figure 4.4a: a) variable x� (task’s local copy of variable x) is defined

within the task but it is dead after that definition; the original x however is live after the task

synchronization; b) variable y� (task’s local copy of variable y) is private within the task and it is

upwards exposed; and c) variable z� (task’s local copy of variable z) is firstprivate within the task,

and it is defined before being used.

Compiler solution The compiler suggests changes depending on each case:

– For incoherently dead variables like x it proposes to define the variable as shared.

– For incoherently private variables like y it proposes to define them as firstprivate.

– For incoherently firstprivate variables like z it proposes to define them as private.

48 4. CORRECTNESS IN OPENMP

4.3.5 Incoherent task dependences

Scenario OpenMP task dependences are used to impose an order in the execution of the tasks.

This order has an impact on the performance because it reduces the parallelism of the tasks. There

are three types of incoherences:

Incoherent Pointer: objects accessed via pointer must specify the dependence in the accessed

storage instead of the pointer.

Incoherent In: input dependences should be upwards exposed and should not be defined.

Incoherent Out: output dependences should not be upwards exposed, and should be defined.

Example Figure 4.5a demonstrates that an over restrictive definition of the dependences of a

task may cause the serialization of tasks that could run in parallel. Specifically, Task2 defines an

inout dependence on A whereas A is just read inside the task. Therefore, the dependence could be

defined as input. As a consequence, Task2 cannot start until Task1 finishes its execution.

1 void foo (int* A, int* B , int* C , int i)
2 {
3 #pragma omp task depend (in :A) depend (out : B) / / Task1
4 B[i] += A[i] ;
5 #pragma omp task depend (inout :A) depend (out : C) / / Task2
6 C[i] = A[i] ;
7 }

(a) code snippet (b) simplified PCFG

Figure 4.5: Scenario illustrating the wrong specification of task dependences.

Compiler analysis Algorithm 6 shows the code that, given a complete PCFG, checks the

coherency of the dependence clauses in all tasks. For each task node, the method gathers the

input and output dependences. For each set, it uses use-definition analysis to check whether a

dependence specified on a pointer variable should be instead specified on the pointed object. If

not, it checks if input dependences are upwards exposed, and output dependences are defined.

Applied to the example in Figure 4.5a, all dependences should specify the pointed object

(A[i], B[i] and B[i]), instead of the pointer, which is never modified. In case the pointed objects

were specified as dependences, then the algorithm will find that Task2 has an incoherent output

dependence on A[i], which should be an input dependence.

Compiler solution To avoid this situation, the compiler suggests two actions in a specific order:

– First, define the dependences on the pointed objects in all four clauses.

– Then, after applying the first change, remove the output dependence on A[i].

4. CORRECTNESS IN OPENMP 49

Algorithm 6 High-level algorithm to detect incoherences in the dependence clauses of
OpenMP tasks.

1: incoherent ptr in = incoherent ptr out = g

2: incoherent in = incoherent out = g

3: for each nT > N do
4: for each v > in�nT � do
5: if v is pointer , §v� subobject of v � v� > UE�nT � then
6: incoherent ptr in = incoherent ptr in 8 v
7: else if v ~> UE�nT � then
8: incoherent in = incoherent in 8 v
9: end if

10: end for
11: for each v > out�nT � do
12: if v ~> UE�nT � then
13: incoherent ptr out = incoherent ptr out 8 v
14: else if v ~>Kill�nT � then
15: incoherent out = incoherent out 8 v
16: end if
17: end for
18: end for
19: return incoherent in, incoherent out, incoherent ptr in, incoherent ptr out

4.4 Evaluation of the correctness tool

To evaluate the correctness framework we take two approaches: evaluate the usefulness based on

the experience of novel programmers, and evaluate the accuracy compared to other similar tools.

This section introduces the details of both evaluations.

4.4.1 Usefulness

In order to evaluate the usefulness of our tool we have used it in three courses of undergraduate

students. The first was the “Course on programming models using OmpSs” [16] that took place

in June 2014, in Bucaramanga, Colombia. This course had 21 participants, lasted for one week,

and introduced basic and intermediate levels of OmpSs. The second and third courses were part

of the “Parallelism” subject [153] of the Computer Science degree at the Technical University

of Catalonia, Spain, which took place during May 2014 and October 2014. These courses had

23 participants (10 groups of 2 or 3 students) and 26 (13 groups of 2 students) respectively. Each

course lasted for 3 weeks, and covered strategies for task decomposition and mechanisms for tasks

synchronization. During the lectures, the students were asked to parallelize different algorithms

using OpenMP and OmpSs tasking models, and analyze the performance and correctness of their

implementations.

The students were provided with serial implementations or incomplete parallel versions of a

series of benchmarks. They were given directions to perform the parallelization, and we applied

quality checks on the results of the correctness tool at two different steps: a) before the tool was

50 4. CORRECTNESS IN OPENMP

given to the students, the expected mistakes were tested by myself, and b) during the lectures,

the results were checked by the different professors of the lectures and myself. The assignments

involve the next medium size programs:

– Compute the nth number in the Fibonacci sequence: simple version and linked list version

(appendix B.1.1).

– Compute the dot product of two equal-length arrays (appendix B.1.2).

– Compute the multiplication of two matrices (appendix B.1.3).

– Compute the number Pi with a Monte Carlo method (appendix B.1.4).

– Compute a solution for a random Sudoku puzzle (appendix B.1.5).

Figure 4.6 displays the results of this test. While all codes used in this evaluation involved

data-sharing attributes, only one of them involved dependence clauses. This is the cause of having

the most common mistakes related with the data-sharing attributes. The mistakes ordered by

frequency are as follows:

1. Defining a variable that is never used, thus dead, due to using the firstprivate default

data-sharing instead of explicitly defining it as shared.

2. Using a variable as firstprivate instead of private when its initial value is never read.

3. Having a race condition, either because a variable is not protected in an atomic or

critical construct, or because the task is not properly synchronized.

4. Using an automatic storage variable in a task which is not synchronized in the scope of the

variable.

5. Defining dependences on a pointer variable instead of on the pointed object.

6. Defining a variable as private when it should be firstprivate because it is upwards exposed.

7. Defining a variable as an input dependence when its value is never read.

The two last cases are not common because users have to explicitly determine the data-sharing

attribute or the dependence clause, whereas for the other cases, the default data-sharing rules apply

for the variables and usually programmers forget to explicitly change it.

0

50

100

150

200

250

300

Dead Incoherent
firstprivate

Race Automatic
as shared

Incoherent
pointer

Incoherent
input

Incoherent
private

O
cc

u
rr

en
ce

s

Error type

Figure 4.6: Occurrences of different correctness mistakes.

4. CORRECTNESS IN OPENMP 51

4.4.2 Comparison with other frameworks: Oracle Solaris Sudio 12.3

We also have compared our messages with those from the Oracle Solaris Studio 12.3 compiler

[114]. The Studio compiler warns two different situations: parallelized loops with data

dependences between different loop iterations, and problematic data-sharing attributes (e.g.,

declare as shared variables whose accesses in a parallel region might cause data race, and declare

as private a variable whose value in a parallel region is used after the parallel region). The first

situation is not useful for us to compare because it does not involve tasks, so we only analyze the

second situation. Studio does not implement OpenMP 4.0 however, so the case study regarding

dependence clauses (Section 4.3.5) cannot be compared.

We use the code snippets shown in each of the case studies presented in Section 4.3. The

results are shown in Table 4.1 and analyzed as follows:

Case 1. Mercurium advices to synchronize the task instead of privatizing the variable because it

is an array. Studio advises to firstprivatize the variable instead. We have used GCC to test the

performance of the two versions with this simple code snippet. After 5 executions, the average

time used in the version using firstprivate is 6.656ms, and the time used in the taskwait version

is 2.709ms, which results in losing 4ms for this simple example.

Case 2. Studio shows a wrong message, since x is a global variable, meaning that it is accessible

from every scope (unless it has been shadowed). In the example, the variable is around at

any moment the task is executed. Additionally, the compiler does not warn about the real

problem, i.e., the race condition. If we wrap the task and the call to printf in a parallel

construct, then Studio is able to recognize the race. It remains unclear to us why the lack of

a parallel construct results in a wrong message. Studio compiler is proprietary software

and the only documentation is the Oracle web site, so we cannot analyze their algorithm.

Case 3. Oracle is not considering the possible loss of performance of firstprivatizing a variable

which value is never read. We already proved in case 1 that copying arrays may be

unnecessarily expensive.

4.5 Impact

The works developed in the context of OpenMP correctness and programmability have had quite

an influence in the community.

On one hand, Wang and Chen [160] drew from our algorithm for automatically determining

the data-sharing clauses in OpenMP tasks to develop a different approach with the same goal.

Their technique, however, is based on introducing taskwaits instead of analyzing the concurrent

code, hence the performance can be severely affected. Additionally, Aldea [9] also considered our

work on automatic scoping for OpenMP to develop an automatic generator of OpenMP directives

and clauses needed to parallelize source code speculatively (thread-level speculation2).

2Thread-level speculation is a dynamic parallelization technique that depends on out-of-order execution to achieve
speedup on multiprocessor CPUs [142].

52 4. CORRECTNESS IN OPENMP

Case Oracle Solaris Studio 12.3 Mercurium

1
Fig. 4.1a

test.c, line 4: Warning: inappropriate scoping,
variable ’a’ may be scoped inappropriately as ’shared’

* may not be around during the execution
of task at line 4 is executed

* consider ’firstprivate’

test.c: 4: warning: OpenMP task defines as
’shared’ local data ’a’ whose lifetime may
have ended when the task is executed.
Consider synchronizing the task before
the local data is deallocated.

2
Fig. 4.2a

Without using a parallel construct:
test.c, line 4: Warning: inappropriate scoping,
variable ’x’ may be scoped inappropriately as ’shared’

* may not be around during the execution
of task at line 5 is executed

* consider ’firstprivate’

Using a parallel construct:
"test.c", line 4: Warning: inappropriate scoping,
variable ’x’ may be scoped inappropriately as ’shared’

* read at line 6 and write at line 5 may
cause data race

test.c: 4: warning: OpenMP task may have a
race condition on ’x’ because other threads
access concurrently to the same data.
Consider synchronizing all concurrent
accesses or privatizing the variable.

3
Fig. 4.4a

"test.c", line 4: Warning: inappropriate scoping,
variable ’x’ may be scoped inappropriately
as ’firstprivate’

* write at line 7 may be used outside:
read at line 10

"test.c", line 4: Warning: inappropriate scoping,
variable ’y’ may be scoped inappropriately
as ’private’

* read at line 6 may be undefined

* consider ’firstprivate’

test.c:4: omp-warning: Variable ’x’ is
firstprivate, therefore, updates on this
variable will not be visible after the task.
Consider defining it as shared.

test.c:4: omp-warning: Variable ’y’ is private
in the task, but its input value would have
been used in a serial execution.
Consider defining it as firstprivate instead,
to capture the initial value.

test.c:4: omp-warning: Variable ’z’ is
firstprivate in the task, but its input value
is never read.
Consider defining it as private instead

Table 4.1: Oracle Solaris Studio and Mercurium messages for different correctness situations.

On the other hand, Papakonstantinou et al. [115] distinguishes our work on the automatic

definition of task dependence clauses, together with SCOOP [165], as the only off-line tools for

task dependence detection. They study the possibilities of a combined off- and on-line tool and

and compare their results with those of Mercurium/Nanos.

4.6 Conclusion

Using OpenMP to easily parallelize applications is attractive because of its programmability.

Nonetheless, knowing the internals of the language may not be as easy as expected. Furthermore,

debugging parallel programs to find errors at run-time can be arduous. In this context, the compiler

is a key tool to help programmers finding correctness errors.

The presented algorithms are based on classic techniques of control and data-flow analysis.

They include OpenMP support to detect correctness mistakes related with synchronizations,

data-sharing attributes and dependence clauses associated with tasks. We classify these mistakes

in different case studies and propose solutions to fix them. We also implement all the algorithms

in the Mercurium source-to-source compiler, which we use to test the usefulness of the proposal

with a number of end-users and benchmarks. On one hand we test our tool with several students,

gathering logs of their executions to study the more common errors. On the other hand, we

compare our results with those of Oracle Solaris Studio which, to the best of our knowledge,

is the only compiler implementing such a correctness checking feature.

Based on our tests, OpenMP beginner programmers often make mistakes related to the

data-sharing attributes and the dependence clauses. These mistakes are mainly related with the

default data-sharing attributes, e.g., programmers forget to explicitly determine as shared variables

4. CORRECTNESS IN OPENMP 53

which are firstprivate by default, or they forgot the explicitly determine as private variables which

are firstprivate by default. The first case leads to a wrong result of the program, whereas the second

leads to a loss of performance due to an unnecessary copy. The other most common mistake is to

define a program with race conditions as a result of a wrong synchronization of either the tasks or

the access to the variables. This mistake leads to non-deterministic results.

According to our comparison with Oracle Solaris Studio, the algorithms implemented in

Mercurium cover more cases and propose more accurate hints. While Mercurium addresses both

correctness and performance issues, Studio only tackles correctness. Messages related with the

variables involved in a race condition are more accurate in the Studio compiler though in the sense

that they point out which accesses are in a race.

Even experienced programmers can make mistakes very hard to find at run-time, especially

in large codes. This is why a compile-time tool providing correctness tips is always useful and

effortless from the programmer point of view.

5
A Static Task Dependency Graph for

OpenMP

OpenMP is increasingly being adopted by modern many-core embedded processors to exploit

their parallel computation capabilities. Unfortunately, current OpenMP runtime libraries are

not suitable for processors relying on small and fast on-chip memories, due to its memory

consumption. In this part of the thesis we present a complete tool-chain that enables the execution

of codes based on the OpenMP tasking model on such systems. The tool-chain is based on a

compiler transformation that is able to statically generate a TDG, and the runtime support to

execute this TDG instead of the regular mechanism for dynamic checking. The reduction in

memory consumption is accomplished as a result of the efficiency of the mechanism used to store

and access the TDG.

5.1 Applicability

Although OpenMP was originally focused on massively data-parallel loop-intensive applications,

the latest specifications have evolved to support dynamic and irregular parallelism, as well as

heterogeneity. By virtue of these extension, the language has gained much attention in the

real-time embedded domain [32, 159]. Furthermore, real-time applications are usually modeled as

a Directed Acyclic Graph (DAG) to analyze its timing and functional properties, and the OpenMP

tasking model can be represented as a TDG [155], a type of DAG. For that reason, the tasking

model is suitable to exploit the capabilities of current many-core embedded platforms (e.g., Kalray

MPPA [41], STM P2012 [28], TI Keystone II [144]), and thus deliver the level of performance

required to face current and future challenges of embedded systems.

Current implementations of OpenMP (e.g., libgomp [60], Nanos++[15]) generate the TDG

at run-time for two reasons: 1) the TDG depends on the tasks that are instantiated, which is

determined by the CFG, and 2) the addresses of the data elements upon which dependences

are built are known at run-time. Consequently, large data structures are required to manage the

tasking model, as shown in Table 5.1 (The size of the structure that holds a task depends on the

variables used within the task and the dependencies the task may have with other tasks. Nanox

uses significantly more memory because it supports a more complex model to that of OpenMP, as

55

56 5. A STATIC TASK DEPENDENCY GRAPH FOR OPENMP

Runtime library
libgomp

Nanox++
GCC 5.4 GCC 7.1

Size(Bytes) 176 208 1056

Table 5.1: Minimum memory (in Bytes) used to store an OpenMP task in different runtimes.

introduced in Section 2.1.2). Modern many-core embedded designs, however, rely on computing

platforms with small on-chip memories that are accessible by a limited number of cores (usually

organized in clusters), making these runtimes unsuitable.

As an illustration, we examine the memory consumption of the libgomp runtime library. In

this implementation, when a new task is created, its in and out dependences are matched against

those of the existing tasks. To do so, each task region maintains a hash table that stores the

memory address of each data element defined in the out and inout clauses, and the list of tasks

associated with the task it represents. Each position of the hash table is linked to those tasks

depending on the object it represents. The runtime can quickly identify which successors may be

ready for execution when the task completes by accessing its hash table. This table is cleared when

a task reaches a taskwait or a barrier, when all pending tasks must be resolved. Removing

the information of a single task at completion may turn out to be very costly, because dependent

tasks are tracked in multiple linked lists. As a result, memory consumption may significantly

increase as the number of concurrently instantiated tasks increases.

We prove that storing a complete statically generated TDG can result in a huge reduction of

the memory used at run-time. Although this idea may seem counter-intuitive, the data structures

needed to store a static TDG are much lighter than those necessary to dynamically build the TDG.

Moreover, statically deriving the TDG provides an extra benefit: it allows applying real-time DAG

scheduling models [24], from which timing guarantees can be derived [96, 139].

5.2 Related work

Sarkar et al. [136] presented a framework for partitioning and scheduling tasks at compile-time

balancing tasks granularity, and thus overhead and parallelism. Vijaykumar et al. [157] proposed a

set of heuristics to generate a TDG for massively data-parallel applications based on the CFG and

use-definition analysis, aiming at reducing communication and synchronization overheads. Yet

none of these methodologies are able to create at compile-time a TDG for complex and irregular

algorithms.

Pugh et al. [30] proposed a new technique to detect dependencies at compile-time and map

HPC kernels into cluster nodes. The disadvantage is that it is expensive and introduces overhead

to the compiler while, in our proposal, much simpler dependency analyses are enough to check

tasks parallelism.

Tzenakis et al. [152] implemented task instantiation, dependence analysis and scheduling

techniques, and proved their efficiency over runtimes such as SMPSs [13]. However, this method

has runtime overhead and requires heavy data-structures for dynamic dependency checking.

5. A STATIC TASK DEPENDENCY GRAPH FOR OPENMP 57

Finally, Arandi et al. [10] presented a hybrid approach to try to get the best of both static and

dynamic methods, but the technique still introduces too much overhead, as the authors admit.

Furthermore, Liu et al. [89] proposed an OpenMP runtime for multi-core platforms with

limited memory resources. However, this runtime only implements OpenMP 2.5, in which the

tasking model is not supported.

5.3 Compiler analysis

Based on the analyses introduced in Chapter 3, we have developed a new phase in the Mercurium

compiler (see Section 2.2.1 for further details) that generates a TDG out of a source code based

on the OpenMP tasking model. The following sections explain the analyses, transformations and

implementation decisions that apply to this feature. To illustrate all stages, we use the code shown

in Listing 5.1, that performs a computation over a matrix using a wavefront strategy, meaning that

the processing of block �i, j� depends on blocks �i � 1, j�, �i, j � 1� and �i � 1, j � 1�. These

dependences are expressed in the dependence clauses of each task.

1 #define N 2
2 #define BS 16
3

4 extern void c o m p u t e b l o c k (int i , int j) ;
5

6 void w a v e f r o n t (long m[N] [N] [BS] [BS])
7 {
8 #pragma omp parallel
9 #pragma omp single nowait

10 {
11 for (int i =0 ; i<=N; i ++) {
12 for (int j =0 ; j<=N; j ++) {
13 if (i ==0 && j ==0)
14 { / / I n i t i a l b l o c k
15 #pragma omp task depend (inout :m[i] [j]) / / T1
16 c o m p u t e b l o c k (i , j) ; / / Task r e g i o n T1
17 }
18 else if (i == 0)
19 { / / B l o c k s i n t h e upper edge
20 #pragma omp task depend (in :m[i] [j �1] , inout :m[i] [j]) / / T2
21 c o m p u t e b l o c k (i , j) ; / / Task r e g i o n T2
22 }
23 else if (j == 0)
24 { / / B l o c k s i n t h e l e f t edge
25 #pragma omp task depend (in :m[i �1] [j] , inout :m[i] [j]) / / T3
26 c o m p u t e b l o c k (i , j) ; / / Task r e g i o n T3
27 }
28 else
29 { / / I n t e r n a l b l o c k s
30 #pragma omp task depend (in :m[i �1] [j] , in :m[i] [j �1] , \\ / / T4
31 in :m[i �1] [j �1] , inout :m[i] [j])
32 c o m p u t e b l o c k (i , j) ; / / Task r e g i o n T4
33 }
34 }
35 }
36 }
37 }

Listing 5.1: OpenMP tasks example traversing a matrix with a wavefront strategy.

58 5. A STATIC TASK DEPENDENCY GRAPH FOR OPENMP

5.3.1 Control and data flow analysis

The generation of a TDG requires the identification of the control flow statements1 that determine

if a task is instantiated, and the conditions to fulfill for two tasks to be dependent. To that end, we

generate a PCFG (see Section 3.2.1 for further details) where synchronization edges are augmented

with predicates defining the condition to be fulfilled for the edge to exist. Furthermore, the

compiler evaluates the iteration statements to discover the induction variables and their evolution

over the iterations, and therefore the iteration space. This information is sufficient to generate

a flow TDG (fTDG). This is a TDG with one node per each task, taskwait or barrier

node found in the PCFG. Additionally, each node in the fTDG is augmented with information

about the control flow structures surrounding it. Finally, nodes are connected according to the

synchronizations they may cause (tasks are connected between them based on the dependence

clauses, and tasks are connected to taskwait and barrier nodes according to the specification).

Hence, a flow Task Dependency Graph, fTDG , is a tuple

fTDG � `N,E,Ce

where:

– N � �V � TN� is the set of nodes with its type TN � �Task, Taskwait,Barrier�.

– E � �N �N � P� is the set of possible synchronization edges with the predicate P that must

fulfill for the edge to exist.

– C � N � �F� is the set of control flow statements involved in the instantiation of any node

(task, taskwait or barrier), n > N , where F � S � �TF �, being S the condition to instantiate

the node and TF � �Loop, IfElse, Switch�, the type of the structure.

Figure 5.1 shows the fTDG of the OpenMP program in Listing 5.1. It includes:

– the set of nodes N � �T1, T2, T3, T4,B� from lines 15, 20, 25, 30 and 36. The four first

nodes with type TN � Task, and the last, corresponding to the implicit barrier at the end of

the parallel region, with type TN � Barrier.

– the control flow statements for and if fi > F from lines 11, 12, 13, 18, 23 and 28, attached to

the corresponding tasks in N . These include information about: a) the induction variables of

each loop i, j, both with lower bound lb � 0, upper bound ub � 2 and stride str � 1 (dashed-line

boxes), b) the conditions of the selection statements enclosing each task (solid-line boxes), and

c) the ranges of the variables in those conditions, e.g., T3 is instantiated if i � 1 or 2 and j � 0.

– the predicates p > P associated with the synchronization edges in E, where the left hand side

of the equality corresponds to the value of the variable at the point in time the source task is

instantiated, and the right side corresponds to the value when the target task is instantiated. For

example, the predicate p1 � ��is �� it SS is �� it�1�&& js �� jt� of the edge between T1 and

T3, evaluates to true, meaning that the edge exists, when is � 0, js � 0 for T1 and it � 1, jt � 0

for T3. For simplicity, the fTDG only shows the dependencies that are actually expanded in

the next stage (Section 5.3.2). The actual fTDG has edges between any possible pair of tasks

because they all have inout dependences on the element m�i��j�.
1In a C/C++ program, control flow statements are selection statements, iteration statements, and jump statements.

5. A STATIC TASK DEPENDENCY GRAPH FOR OPENMP 59

T1

T3 T2

T4

p2 p1

p3 p3

select: j==0

select: i==0

select: i==0 && j==0

loop: j=[0,2,1]

loop: i=[0,2,1]

Barrier

true true
true

true

p2

p1

p3

p3

 p1: (is==it || is==it-1) && js==jt

 p2: is==it && (js==jt || js==jt-1)

 p3: (is==it || is==it-1) && (js==jt || js==jt-1)

Figure 5.1: fTDG of the OpenMP program in Listing 5.1.

5.3.2 Task expansion

The fTDG contains the information necessary to expand a complete TDG representing all tasks

that will actually be executed, and the synchronizations existing among them. The expansion is

performed from outer to inner nodes, and the values of the constants and variables involved in the

expansion (and resolved in the previous expansion stage) are propagated to inner nodes.

A crucial aspect is to match the tasks expanded at compile-time with the tasks instantiated at

run-time. With that goal, the compiler inserts two identifiers: 1) a unique identifier for each task

construct, tcid (we use consecutive values starting by one), and 2) a unique identifier for each loop

expansion step of each loop, lid. The equation used to determine the identifier of a given task

instance, tid, in both the compiler and the runtime, is the following:

tid � tcid � T � ������l1 � I� � l2� � I� � ...� � lL� � I�

where,

– tcid is the identifier of the task construct that is being expanded.

– T is the total number of task constructs in the source code.

– ln is the unique identifier of loop at nesting level n (n > �1, L�, where L is the number of loops

involved in the expansion of tid).

– I is the maximum number of iterations of any loop used during expansion.

Since a task construct can generate multiple task instances, we use loop properties (ln, L

and I) to guarantee that each task instance identifier is unique. As a result, task instances from

different loop iterations will result in different tid because every nesting level ln is multiplied by

the maximum number of iterations I .

Each time a task is expanded, the possible dependences with previous tasks are resolved by

evaluating the predicates of the fTDG (all values involved in the predicates must be known at

this point). Additionally, all transitive dependences are removed because they are redundant.

60 5. A STATIC TASK DEPENDENCY GRAPH FOR OPENMP

49
T1

86
T3

122
T3

63
T2

75
T2

100
T4

112
T4

136
T4

148
T4

Figure 5.2: TDG of the OpenMP program in
Listing 5.1.

Figure 5.2 shows the expanded TDG of the

program in Listing 5.1. It contains all task

instances and all dependences that could exist

at run-time (redundant edges such as that

between task 100 and task 148 do not appear).

Each instance contains the task id tid.

As an illustration of the expansion of a

TDG, consider task T4 with identifier 136

from Figure 5.2, which corresponds to the

computation of the matrix block m�2,1�. The

identifier tid is computed as follows: 1) tcid �

4, because T4 is the fourth task in sequential

order found while traversing the source code; 2) T � 4 because there are four task constructs in

the source code; 3) LT4 � 2 because there are two loops enclosing T4; 4) I � 3 because three

is the maximum number of iterations in any of the two considered loops; 5) l1 � 3 because the

instance is created in the third iteration of the first loop (outer loop), and l2 � 2 because the

instance is created in the second iteration of the second loop (inner loop). Putting all together:

T4id � 4�4����3�3��2��3� � 136. Then, the dependences with previous tasks are resolved by

evaluating the predicates. We perform a bottom-up breadth-first traversal, and we stop traversing

when we find a node whose predicate evaluates to true. This way, we avoid creating transitive

edges. Predicate p3 is the only one to be evaluated for task 136. For task instance 122, the

predicate evaluates as �2 �� 2 SS2 �� 2 � 1� && �0 �� 1 SS 0 �� 1 � 1� � TRUE, and for task

instance 100, the predicate evaluates as �1 �� 2 SS 1 �� 2� 1� && �1 �� 1 SS 1 �� 1� 1� � TRUE.

5.3.3 Missing information when deriving the TDG

The compiler is able to fully expand the TDG when all variables involved in the control flow

structures that are to be expanded are known at compile-time. This may not be possible when using

pointers or complex array indexes. However, missing information cannot prevent the application

from validating, and we propose the following solutions for each case:

– If a selection statement cannot be evaluated, all the possible paths are expanded.Two situations

are equivalent at run-time: 1) a predecessor task never existed because the associated condition

evaluates to false, and 2) a predecessor task has already been executed. As a result, it is not

wrong to define a dependency between two tasks if one of them eventually does not exist.

– If a loop cannot be expanded because its boundaries are unknown, parallelism across iterations

can be disabled by inserting a barrier (if there is nested parallelism) or a taskwait

(otherwise) at the end of the loop.

– If the predicate of a dependence cannot be evaluated, we assume it evaluates to true and hence

we keep the dependence. This forces the tasks to be sequentialized.

Some of these solutions come at a cost. On one hand, if many selection statements cannot be

evaluated, the TDG may increase considerably. This has no impact in the performance, but the

5. A STATIC TASK DEPENDENCY GRAPH FOR OPENMP 61

amount of resources required by the application to run may increase considerably. On the other

hand, when a loop cannot be evaluated, the performance may be affected because the solution

proposed results in the sequentialization of that particular loop. The impact in performance

for sequentialized loops depends on the weight these loops have in the total execution time of

the application. Finally, in the worst-case scenario, where no information can be derived at

compile-time, the TDG corresponds to the sequential execution of the program.

5.3.4 Communication with the runtime

The runtime must be able to compute the same identifier for a given task instance as the compiler

does. For that reason, the compiler introduces the following modifications in the generated code:

– The identifier of the task construct is introduced as a new clause of the form task id(int).

– The total number of task constructs, T , and the maximum number of iterations of any loop, I ,

are defined in an intermediate file generated by the compiler and linked with the final binary.

– In order to obtain the same ln at compile-time and at run-time, the compiler introduces a loop

stack for each loop, and push and pop before the loop begins and after it ends, respectively. At

every loop iteration the top of the stack is increased by 1. These operations are only included

in those loops containing tasks, and the overhead introduced by these operations is negligible

compared to the time expended in the creation and destruction of the tasks.

5.3.5 Complexity

The complexity of the compiler is defined by the complexity of the two phases of the process that

derives the TDG: 1) the generation of the PCFG and the analysis of induction variables, and 2) the

expansion of the TDG.

The complexity of the control-flow and data-flow analysis stage is dominated by the

complexity of the PCFG, which is related to the number of control flow statements present in

the source code, in which Cyclomatic Complexity [95] metric is usually used.

The complexity of the task expansion stage is dominated by the computation of the

dependences among tasks, which is performed using a Cartesian product: the input dependence of

a task can be generated by any of the previously created task instances. As a result, the complexity

is quadratic on the number of instantiated tasks.

5.4 Runtime support 2

The runtime uses a sparse matrix to store the TDG, and schedules tasks while honoring their

dependences based on this TDG instead of using the dependence clauses. Figure 5.3 shows

the sparse matrix implementation of the TDG presented in Figure 5.2. Each entry of the matrix

contains an unique task identifier tid, and stores in separate arrays the tasks it depends on (input

2The runtime support has been developed by Vargas et.al [156], but we find interesting to explain some details here
to understand the whole tool-chain.

62 5. A STATIC TASK DEPENDENCY GRAPH FOR OPENMP

dependences), and the tasks depending on it (output dependences). Moreover, the sparse matrix is

sorted using the tid, so a dichotomic search can be applied.

49

63

49

63

86

75

100

86

100

122

112

136

49 0 2

63 1 2

75 1 1

86 1 2

100 2 2

112 2 1

122 1 1

136 2 1

148 2 0

63

86

75

100

112

100

122

112

136

148

136

148

inputs outputs id #in #out

Figure 5.3: Hash table that stores the TDG depicted
in Figure 5.2, corresponding to the OpenMP

program in Listing 5.1.

Additionally, each task instance entry ti in

the sparse matrix has an associated counter

(not shown in the figure) indicating the

state as the number of tasks of which the

entry still depends on (these tasks have been

created and not completed yet). The counter

is �1 if the task has not been instantiated or

has finished; it is 0 if the task is ready to

run; and it is A 0 if the task is waiting its

input tasks to finish.

The runtime task scheduler works as

follows: when a new task is created, the

runtime checks the state of its input tasks.

If all counters are �1, then the task is

ready to execute, and its counter is set to

0; otherwise, the counter of the new task is

initialized with the number of input tasks with a state C 0. When a task finishes, it decrements by

1 the counters of all its output tasks whose counter is A 0.

5.5 Evaluation

The evaluation of this work has been performed in the frame of the P-Socrates European project

[121], where the Kalray MPPA processor was used (see Section 2.3.2 for more details). The board

used supports GCC 4.7.2.

5.5.1 Experimental setup

OpenMP framework. All the analysis and transformations presented in Section 5.3 have been

developed in the Mercurium compiler (see Section 2.2.1 for more details). The runtime support

has been developed in libgomp from GCC 4.7.2 (see Section 2.2.2 for more details). This version

of GCC implements OpenMP 3.1, thus dependence clauses are not supported. We also consider

the libgomp from GCC 4.9.2, which implements OpenMP 4, for comparison purposes.

Applications. For the evaluation we consider applications from two different domains:

– From the HPC domain, we consider a Cholesky factorization [25], useful for efficient linear

equation solvers and Monte Carlo simulations. Cholesky can also be used to accelerate

Kalman filter, implemented in autonomous vehicle navigation systems to detect pedestrians

and bicyclists positions [84].

– From the embedded domain, we consider an application resembling the 3D path

planning [127] (r3DPP), used for airborne collision avoidance.

5. A STATIC TASK DEPENDENCY GRAPH FOR OPENMP 63

(a) Cholesky Intel Xeon speed-up (b) Cholesky memory usage (c) Cholesky MPPA speed-up

(d) r3DPP Intel Xeon speed-up (e) r3DPP memory usage (f) r3DPP MPPA speed-up

Figure 5.4: Performance speed-up and memory usage (in KB) of Cholesky and r3DPP
applications running with lightweight omp4, omp4 and omp 3.1, and varying the number of tasks.

We have implemented two versions of both applications: one using task dependence clauses, and

the other using the taskwait construct as synchronization method.

Platform setup. We run our experiments in two different systems: 1) a computing node of

the MareNostrum III supercomputer, which consists of two Intel Xeon CPU E5-2670 processors,

featuring 8 cores each, with 20 MB L3, and 2) the MPPA processor featuring 256 cores organized

in 16 clusters of 16 cores each, and 2 MB of private on-chip memory per cluster. The former

executes a complete Linux system, in which OpenMP 3.1 and OpenMP 4.0 are supported; the

latter, only supports OpenMP 3.1. (Details of these platforms are provided in Section 2.3.)

5.5.2 Performance speed-up and memory usage

Figure 5.4a and Figure 5.4d show the performance speed-up achieved by Cholesky and r3DPP

respectively in the Intel Xeon processor, when varying the number of instantiated tasks, ranging

from 1 to 5984 and 4096 respectively. We consider three libgomp runtimes: OpenMP 4.0,

OpenMP 3.1 and OpenMP 3.1 augmented with our dependency checker (labeled as omp4, omp

3.1 and lightweight omp4 respectively).

The performance has been computed with the average of 100 executions. Similarly,

Figure 5.4b and Figure 5.4e show the heap memory usage (in KB) of the three OpenMP runtimes

when executing Cholesky and r3DPP respectively in the Intel Xeon processor and varying the

number of instantiated tasks as well. The memory usage has been extracted using Valgrind Massif

[104] tool, which allows profiling the heap memory consumed by the runtime in which the TDG

structure is maintained.

We observe that both performance and memory usage depend on the number of instantiated

tasks: the higher the number of instances, the better the performance, as the chances of parallelism

increase. When the number of tasks is too high, however, the overhead introduced by the

runtime, the small workload of each task and the NUMA effect slows-down the performance.

64 5. A STATIC TASK DEPENDENCY GRAPH FOR OPENMP

Cholesky
Tasks 4 20 120 816 5984
KB 0.11 0.59 3.80 27.09 204.19

r3DPP
Tasks 16 64 256 1024 4096
KB 0.47 1.94 7.88 31.75 127.5

Table 5.2: Memory usage of the sparse matrix (in KB), varying the number of tasks instantiated.

Our lightweight omp4 obtains the same speed-ups as the omp4 implementation, and outperforms

omp 3.1. However, in case of omp4, the memory usage rapidly increases, requiring much more

memory than our runtime.

The parallelization opportunities brought by the depend clause make the performance of

Cholesky (Figure 5.4a) to increase significantly compared to the OpenMP 3.1 model, with a

speed-up increment from 4x to 12x when instantiating 5984 tasks. At this point, omp4 consumes

2.5MB while our lightweight omp4 requires less than 1.3MB. The memory consumed by omp3.1

is less than 100KB (Figure 5.4b). In fact, the omp3.1 memory consumption is similar for all the

applications because no structure for dependencies management is needed.

For the r3DPP (Figure 5.4d), the tasking model achieves a performance speed-up of 5.2x

and 5.8x with omp4 and lightweight omp4 respectively, when instantiating 1024 tasks. At

this point, omp4 consumes 400 KB in front of the 200 KB consumed by lightweight omp4

(Figure 5.4e). omp31 achieves a maximum performance of 4.5x when 256 tasks are instantiated.

When the number of task instances increases to 4096, all runtimes suffer a significant performance

degradation because the number of instantiated tasks is too high compared to the workload

computed by each task. The lightweight omp4 suffers a higher performance penalization due

to the dichotomic search.

Taking a deeper look into the memory consumption reported in Figures 5.4b and 5.4e, we show

in Table 5.2 the size of the sparse matrix data structure implementing the TDG of each application

when varying the number of instantiated tasks.

Finally, to evaluate the benefit of OpenMP 4.0 on a memory constrained many-core

architecture, we run our lightweight runtime on the MPPA processor. Figures 5.4c and 5.4f show

the performance speed-up of Cholesky and r3DPP executed in one MPPA cluster, considering the

lightweight omp4 and omp31 runtimes, and varying the number of tasks (omp4 experiments are

not provided because MPPA does not support it). Memory consumption is the same as the one

shown in Figures 5.4b and 5.4e. r3DPP increases the performance speed-up from 9x to 12x when

using our lightweight omp4, and only consumes 200 KB. Cholesky presents a significant speed-up

increment when instantiating 816 tasks, from 2.5x to 9x, consuming only 220 KB.

5.5.3 Impact of missing information when expanding the TDG

The impact of missing information when expanding the TDG may vary depending on the amount

of unknown data. For example, if a task is in a selection statement and we are not able to evaluate

it, then the less time the task is actually instantiated, the bigger the noise introduced in the TDG in

order to keep correctness.

5. A STATIC TASK DEPENDENCY GRAPH FOR OPENMP 65

In order to properly measure the impact of missing information in terms of TDG size we

evaluate the case in which the compiler cannot obtain all information from r3DPP. First, we

identify those if-else statements with the highest and lowest impact (in each scenario the compiler

is unable to determine 25% of the conditions). Assuming that 1024 tasks are instantiated (peak

performance), the scenario with the highest impact increases the TDG by 126.67% (71.97 KBs);

the scenario with the lowest impact increases the TDG by only 7.77% (34.22 KBs).

5.6 Impact

The static generation of a TDG has had an important impact in the field of real-time and

schedulability analysis. Both Melani et al. [96, 138] and Serrano et al. [138] have used the static

TDGs generated by Mercurium to argue about different scheduling techniques and response-time

analysis for OpenMP. This is a very important milestone because the vast majority of literature

about scheduling is based on synthetic graphs, while those works are based on real applications

with real graphs. Furthermore, Guan et al. [145, 161] substantiates its work on scheduling

OpenMP tied tasks in our method.

At the same time, the HPC domain also benefits from this work in three different directions:

– The use of the TDG for the study and implementation of a data-flow runtime [54] for the

Xilinx All Programmable SoC [92]. Without the complete TDG expanded at compile time it

would not be possible to generate code for such a runtime, because each task must know the

tasks that will depend on it prior to generating code.

– The development of static scheduling techniques for OmpSs clusters [31]. In this case, the use

of a TDG at compile time can be used to predict better schedulers for FPGAs based on the

cost of the tasks, the cost of the communication, the data locality, etc.

– The exploitation of different degrees of granularity in parallel codes. In this regard, a statically

generated TDG could be used for enhancing the performance of the smallest kernels by

preallocating data at compile time, and implementing prefetching policies.

5.7 Conclusions

Memory consumption is not a problem in HPC systems, in which large amounts of memory are

available. However, this is not the case in the newest many-core embedded architectures, as the

MPPA processor, integrating 16 clusters of 16-cores each, with a 2 MB on-chip private memory per

cluster. Despite the overall size of the MPPA memory is 32 MB, clusters only have access to their

private memory. The rest of memory is accessible through DMA operations (with a significant

performance penalization), and so the complete program (including the OpenMP runtime library)

must reside within the private memory. Therefore, it is of paramount importance that the memory

consumed by the runtime is reduced to the bare minimum.

Considering its characteristics, the MPPA (like other many-core embedded processors) only

supports older OpenMP specifications (version 3.1) with no task dependence features. There

66 5. A STATIC TASK DEPENDENCY GRAPH FOR OPENMP

is therefore a need to implement memory efficient OpenMP 4.0 runtimes to fully exploit the

performance opportunities of these platforms.

Our proposal to statically build the TDG allows the creation of a more lightweight OpenMP

4.0 runtime that reduces the memory consumed by the tasking data structures, while maintaining

the same performance of current implementations. This enables the execution of OpenMP 4.0

programs in memory-constrained environments such as the MPPA.

Regarding the limitations during task expansion, we prove that the tool-chain is always

able to run valid applications, although performance may be compromised. Nonetheless,

embedded applications frequently allow deriving all the required information to complete the TDG

expansion, as it is required for timing analysis [163] as well.

6
Towards a Functional Safe OpenMP

Critical real-time embedded systems can benefit from the flexibility delivered by OpenMP.

Yet, the impact of the language in such a domain is very limited. The reason is that critical

real-time systems require functional safety guarantees, imposing the system to operate correctly

in response to its inputs from both functional and timing perspectives. Functional safety is

verified by means of safety standards as the ISO26262 [72] for automotive, the DO178C [43] for

avionics or the IEC61508 [71] for industry. The use of reliability and resiliency mechanisms allow

guaranteeing the correct operation of the (parallel) execution. Moreover, the complete system

stack must be guaranteed, from the processor architectural perspective (e.g., multi-core processor

designs ARM Cortex-A57 [11] and Infineon AURIX [68] are safety compliant) to the operating

system (e.g., PikeOS [75], VxWorks [126] and Erika Enterprise [141] are safety compliant).

In this chapter we address the application of OpenMP to critical real-time systems, from

the specification to the implementation. The contributions of this chapter (organized in the next

sections) are as follows:

1. Analysis of the specification of OpenMP to identify the features that may entail a hazard

regarding functional safety, and solution proposed for each threat.

2. Study of the application of OpenMP to Ada, a language widely used in critical real-time

systems by virtue of its specification. This entails the analysis of the Ada and the OpenMP

execution and memory models and the study of its compatibility. This work also includes the

empirical research of the interoperability of the two runtimes.

3. Development of compiler correctness techniques specific for mixed Ada/OpenMP applications

to ensure safety in such programs.

6.1 Is OpenMP a suitable candidate for critical real-time systems?

The current OpenMP specification lacks the reliability and resiliency mechanisms necessary in

safety-critical systems, at both compiler and runtime levels, to meet its safety requirements.

However, OpenMP is still a suitable candidate to exploit parallelism in such systems by virtue

of many factors (already introduced across the chapters of this thesis):

1. During 30 years, the OpenMP community has built a solid and productive model gathering the

virtues of many other languages:

67

68 6. TOWARDS A FUNCTIONAL SAFE OPENMP

(a) It delivers levels of performance comparable to highly tunable models such as TBB [76],

CUDA [83], OpenCL [140] and MPI [79].

(b) It has different advantages over low level libraries such as Pthreads [106]: i) it offers

robustness without sacrificing performance [81], and ii) it does not lock the software to a

specific number of threads.

(c) The code can be compiled as a single-threaded application just disabling support for

OpenMP, thus easing debugging.

2. The extensions included in the latest specification meet the characteristics of current

heterogeneous architectures:

(a) The coupling of a main host processor to one or more accelerators, where highly-parallel

code kernels can be offloaded for improved performance/power consumption.

(b) The capability of expressing fine-grained, both structured and unstructured, and

highly-dynamic task parallelism.

(c) The model is widely implemented by several chip (e.g., TI Keystone [144], Kalray MPPA

[42], STM P2012 [28]) and compiler vendors (e.g., GNU [60], Intel [69], and IBM [66]),

thus easing portability.

3. Although lacking resiliency and reliability mechanisms in its current specification, many

works, including ours, pursue the introduction of such concepts:

(a) Several compiler and runtime analysis techniques [27, 47, 87, 93, 103] have been

developed over the years specifically for OpenMP shortening the distance towards a more

reliable language.

(b) Many algorithms have been presented to enhance the programmability [129, 131] and

provide correctness information to the user [86, 133].

(c) There are attempts to introduce resiliency mechanisms [46, 164] in the specification, and

the last specification already included one of them, the cancellation.

(d) Current works have analyzed the response time of both the thread-centric [53, 82] and the

task-centric model [139, 155] to be time predictable.

All these reasons have inspired us to study the fitting of OpenMP in the domain of

safety-critical applications, which we dissect in the next sections.

6.2 The OpenMP specification from a safety-critical perspective

This section discusses the OpenMP specification with the aim of: a) detecting those features that

can be a hazard regarding functional safety, and b) proposing solutions to avoid the hazard at

design-time, compile-time or run-time, depending on the case.

6.2.1 Related work

Parallel heterogeneous embedded architectures certainly require the use of parallel programming

models to provide high throughput, low latency and energy-efficient solutions. Efforts to introduce

OpenMP in such environments [38, 94] reveal that OpenMP runtimes can efficiently be aware of

6. TOWARDS A FUNCTIONAL SAFE OPENMP 69

the heterogeneity and the memory hierarchy to deliver good performance. However, all works

that intend to introduce OpenMP in the embedded domain conclude that, although the language is

very useful in such environments, some extensions with real-time processing and power-awareness

functionalities are needed [62].

Critical real-time embedded systems add additional, more restrictive, constraints to those

of the embedded domain. Concretely, timing guarantees and functional safety. Regarding the

former, significant attempts to analyze the time predictability properties of OpenMP [139, 155]

as well as deriving response time analysis for both work-conserving dynamic and purely static

schedulers [82, 96, 138], confirm the OpenMP tasking model as a perfectly suitable parallel

pattern for safety-critical environments. In this sense, the suitability of the thread-centric model

still remains unproved. Furthermore, situations such as starvation when a barrier construct is

found shall be addressed. Regarding the latter, functional safety, different works have tried to

study, classify and solve mistakes commonly appearing in OpenMP applications [102, 146]. These

works are very useful mostly for inexperienced programmers in order to avoid errors. Beyond the

theoretical approaches, many articles propose different techniques tackling correctness in general,

and OpenMP correctness in particular. Section 6.2 introduces several techniques for detecting

specific errors in concurrent programs (i.e., race conditions and dead-locks). Additionally, some

techniques have been developed specifically for OpenMP to compute and verify data scoping, task

dependencies and locks among others [86, 129, 131, 133].

6.2.2 OpenMP hazards for real-time embedded systems

This section analyzes the OpenMP specification to bring forth the features that may jeopardize

functional safety. Related work addressing the detection of correctness errors is also included.

6.2.2.1 Unspecified behavior

OpenMP defines the situations that result in an unspecified behavior as: non-conforming

programs, implementation-defined features and issues documented to have an unspecified

behavior. The impact of each situation to the safety-critical domain, as well as the solutions we

propose, are exposed below.

6.2.2.1.1 Non-conforming programs
The OpenMP specification defines several requirements to applications that are parallelized

with OpenMP. Programs that do not follow these rules are called non-conforming. According

to the specification, OpenMP compliant implementations are not required to verify conformity.

However, safety-critical environments compel frameworks to do this validation to certify

functional safety.

OpenMP restrictions affect directives, clauses and the associated user code. Checking some

restrictions just requires the verification of OpenMP constructions (e.g., which clauses and how

many times a clause can be associated with a specific directive may be restricted, e.g., at most one

if clause can appear on the task directive). Conversely, checking other restrictions requires

70 6. TOWARDS A FUNCTIONAL SAFE OPENMP

visibility of different parts of the application (e.g., some regions cannot be nested and/or closely

nested in other regions, e.g., atomic regions must not contain OpenMP constructs).

Compilers must implement inter-procedural analysis to have access to the whole application.

This capability has been successfully implemented in many compilers following different

approaches, such as Intel IPO [70] or GCC LTO [59]. Nevertheless, access to the whole code is

possible only for monolithic applications. This is not very common in the critical domain, where

systems consist of multiple components developed by different teams, and rely on third-party

libraries. In these cases, additional information may be needed. We discuss this situation and

propose a solution to it in Section 6.2.3.1. This solution is based on new directives that provide the

required information. Henceforward, we assume that the information needed to perform whole

program analysis is always accessible.

6.2.2.1.2 Implementation-defined behavior
Some aspects of the implementation of an OpenMP-compliant system are not fixed in the

specification. These aspects are said to have an implementation-defined behavior, and they may

indeed vary between different compliant implementations. The different aspects can be grouped

as follows:

1. Aspects that are naturally implementation-defined, so the specification can be used in multiple

architectures: definitions for processor, device, device address and memory model.

2. Aspects that are implementation-defined to allow flexibility: internal control variables (e.g.,

nthreads-var and def-sched-var among others); selection, amount and distribution of threads

(e.g., single construct); dynamic adjustment of threads; etc.

3. Aspects caused by bad information specified by the user: values out of range passed to runtime

routines or environment variables (e.g., the argument passed to omp set num threads is

not a positive integer).

Aspects in groups 1 and 2 may not lead to an execution error or prevent the program from

validating. This is not the case for aspects in group 3, where an implementation may decide to

finish the execution if a value is not in the range it was expected to be. Besides, cases in group 2

may result in different outcomes depending on the platform used for the execution. For example,

when the runtime or the auto kinds are used in the schedule clause, the decision of how the

iterations of a loop is scheduled is deferred until run-time.

In the light of all that, some aspects in groups 2 and 3 are not suitable in a safety-critical

environment because they are non-deterministic and may cause an undesired result. Situations

such as the application aborting due to an unexpected value passed to either an environment

variable or a runtime routine can be solved by defining a default value that prevents the application

to end (note that this value can be different across implementations without that affecting

functional safety). Situations such as an auto or runtime value in the schedule clause can

be solved by taking a conservative approach at compile-time (i.e., if a deadlock may occur for any

possible scheduling option, then the compiler will act as if that scheduling happens). Situations

such as runtimes defining different default values for ICVs like nthreads-var do not need to be

addressed, because they do not bring on any hazard regarding functional safety.

6. TOWARDS A FUNCTIONAL SAFE OPENMP 71

6.2.2.1.3 Other unspecified behavior
The rest of situations resulting in an undefined behavior are errors and need to be addressed to

guarantee functional safety. These situations can be classified in three groups, depending on the

moment at which they can be detected:

1. Situations that can be detected at compile-time. In this case we can distinguish those that

can be solved by the compiler (e.g., data-race conditions could be solved by automatically

protecting accesses with a critical construct or synchronizing the accesses –Section

6.2.2.3 shows more details about data race management–), and those that need user

intervention (e.g., compilers should abort compilation and report to the user situations such

as the use of non-invariant expressions in a linear clause).

2. Situations that can be detected at run-time. In this case, safety relies on programmers because

the results deriving from these situations cannot be handled automatically. Thus, users are

compelled to handle errors such as reduction clauses that contain accesses out of the range of

an array section, or using the omp target associate ptr routine to associate pointers

that share underlying storage (Section 6.2.2.5.1 explores error handling techniques).

3. Situations that cannot be detected. These involve the semantics of the program (e.g., a program

that relies on the task execution order being determined by a priority-value), and are further

discussed in Section 6.2.2.5.2 .

6.2.2.2 Deadlocks

OpenMP offers two ways to synchronize threads: via directives (master and synchronization

constructs such as critical and barrier), and via runtime routines (lock routines such as

omp set lock and omp unset lock). Although both mechanisms may introduce deadlocks,

the latter is much more error-prone because these routines work in pairs. Furthermore, OpenMP

introduces the concept of nestable locks, which differ from the regular locks in that they can be

locked repeatedly by the same task without blocking.

Synchronization directives may cause deadlocks if various critical constructs with the

same name are nested. Synchronization directives can introduce other problems as well, like

enclosing a barrier construct in a condition that is special to a thread. Since barriers must

always be encountered by all threads of a team, the previous situation will be non-conforming.

Conservative compiler analysis (meaning that false positives may appear) can easily catch these

errors if whole program analysis is supported.

Locking routines may cause errors in the following situations: attempt to access an

uninitialized lock, attempt to unset a lock owned by another thread, and attempt to set a simple

lock that is in the locked state and is owned by the same task. There exist numerous techniques for

deadlock detection, such as Chord [103] and Sherlock [47], that apply to different programming

models. Most of the approaches pursue scalability without losing accuracy, thus effectiveness.

However, safety-critical environments require soundness. In this regard, the only sound approach,

to the best of our knowledge, for detecting deadlocks in C/Pthreads programs is the one developed

by Kroening et al. [80]. OpenMP simple locks are comparable to Pthreads mutex, so the previous

72 6. TOWARDS A FUNCTIONAL SAFE OPENMP

technique can be extended to OpenMP. Nestable locks have other peculiarities and it may not be

possible to detect deadlocks at compile-time. In such a case, they should not be permitted.

The use of untied tasks may cause deadlocks that are nonexistent when using tied tasks.

This is because the OpenMP Task Scheduling Constraint (TSC) number 21 prevents from certain

situations involving tied tasks to cause a deadlock by restricting the tasks that can be scheduled

at a certain point. Based on that, using tied tasks may seem more suitable for critical real-time

embedded systems. It has been, however, demonstrated that timing analysis for untied tasks is

much more accurate than for tied tasks [139]. There is thus a trade-off between functional safety

and predictability. For the sake of correctness, untied tasks may be disabled at compile-time only

when the static analysis detects that a deadlock caused by untied tasks may occur.

6.2.2.3 Data race conditions

Race conditions appear in a concurrent execution when two or more threads simultaneously access

the same resource and at least one of them is a write. This situation is not acceptable for a

safety-critical environment since the results of the algorithm are non-deterministic. The problem

of detecting data races in a program is NP-hard [105]. On account of this, a large variety of static,

dynamic and hybrid data race detection techniques have been developed over the years.

On one hand, dynamic tools extract information from the memory accesses of specific

executions. Despite this, there exists an algorithm capable of finding at least one race when races

are present, as well as not reporting false positives [14]. On the other hand, static tools still seek

a technique with no false negatives and minimal false positives. Current static tools have been

proved to work properly on specific subsets of OpenMP such as having a fixed number of threads

[93], or using only affine constructs [27]. A more general approach exists to determine the regions

of code that are definitely non-concurrent [87]. Although inaccurate, it does not produce false

negatives, which is paramount in the safety-critical domain. Therefore, the previously mentioned

techniques can be combined to deliver conservative and fairly accurate results.

6.2.2.4 Cancellation

OpenMP 4.0 incorporates the cancellation constructs (i.e., cancel and cancellation

point), which allow jumping to the end of a parallel computation at a certain point within

that region. Unlike other models such as the Pthreads, OpenMP only accepts synchronous

cancellations at cancellation points. Although this eliminates resource leak risks, the technique

introduces non-determinism, which is not desirable in safety-critical environments. Due to the use

of cancellation constructs, non-determinism appears in the following situations:

1. The order of execution between one thread that activates cancellation and another thread that

encounters a cancellation point.

2. The final value of a reduction or lastprivate variable in a canceled construct.

3. The behavior of nested regions suitable of being canceled.
1OpenMP TSC 2 states that “scheduling of new tied tasks is constrained by the set of task regions that are currently

tied to the thread, and that are not suspended in a barrier region. If this set is empty, any new tied task may be scheduled.
Otherwise, a new tied task may be scheduled only if it is a descendent task of every task in the set”.

6. TOWARDS A FUNCTIONAL SAFE OPENMP 73

If a code is well written, case 1 may only affect performance, but the code will still deliver a

valid result whether cancellation occurs or not. Case 2, instead, may lead to errors if some threads

have not finished their computation. Nonetheless, static analysis can verify that reduction and

lastprivate variables are not used within a construct that may be subject to cancellation, or that the

variables are used only when no cancellation occurs. Finally, case 3 can be solved by statically

verifying that regions subject to cancellation are not nested.

Another issue arises when locks are used in regions subject to cancellation, because users

are responsible for releasing those locks. Current deadlock detection techniques do not take into

account the semantics of the cancellation constructs. Nonetheless, these techniques can easily be

adopted because the effect of a cancellation is similar to the existence of a jump to the end of the

region.

6.2.2.5 Other features to consider

Although they do not necessarily entail a hazard, there are other issues that are worth mentioning in

the context of this study. These are explored in this section, and include error handling techniques,

semantic mistakes and nested parallelism.

6.2.2.5.1 Error handling
Resiliency is a crucial feature in safety-critical domains. However, OpenMP does not prescribe

how implementations must react to situations such as the runtime not being able to supply the

number of threads requested, or the user passing an unexpected value to a routine. While the

former is a problem caused by the runtime environment, the latter is an error produced by the user.

Both eventually become an unspecified behavior according to the specification, but they can be

addressed differently. On one hand, if the error is produced by the environment, users may want

to define what recovery method needs to be executed. On the other hand, errors produced by the

user are better caught at compile-time or handled by the runtime (e.g., static analysis techniques

for data-race and deadlock detection).

Several approaches have been proposed with the aim of adding resiliency mechanisms to

OpenMP. There are four different strategies for error handling [164]: exceptions, error codes,

call-backs and directives. Each technique can be applied according to its features to different

languages and situations. Exception based mechanisms fit well in programs exploiting the

characteristics of exception-aware languages (e.g., C++, Ada) [49]. Error code based techniques

are a good candidate when using a language unaware of exceptions (e.g., C, Fortran). Call-back

methods have the advantage of isolating the code that is to be executed when an exception occurs,

and thus enhance readability and maintainability [46]. Finally, the use of specific OpenMP

directives has the advantage of being simple, although they cannot cover all situations and users

cannot define an exact behavior. The latter is the only approach already adopted in the specification

with the cancellation constructs (see more details in Section 6.2.2.4).

A safety-critical framework supporting OpenMP will require the implementation of

error-handling methodologies in order to ensure functional safety.

74 6. TOWARDS A FUNCTIONAL SAFE OPENMP

6.2.2.5.2 Semantics of OpenMP
For an analysis tool, it is possible to address correctness based on how the program is written.

However, addressing whether the program behaves as the user wants is another matter altogether.

This said, some features of OpenMP may be considered as hazardous because their use may result

in errors involving the semantics of the program. We discuss some of them as follows:

– A program that relies on a specific order of execution of the tasks based on their priorities is

non-conforming.

– When and how some expressions are to be executed is not defined in OpenMP. For example:

whether, in what order, or how many times any side effects of the evaluation of the

num threads or if clause expressions of a parallel construct occur is unspecified;

likewise, the order in which the values of a reduction are combined is unspecified as well.

Thus, an application that relies on any ordering of the evaluation of the expressions mentioned

before is non-conforming.

– The storage location specified in task dependences must be identical or disjoint. Thus,

runtimes are not forced to check whether two task instances have partially overlapping storage

(which eases considerably the implementation of the feature in the runtime).

– The use of flushes is highly error-prone, and makes it extremely hard to test whether the code

is correct. However, the use of the flush operation is necessary for some cases such as the

implementation of the producer-consumer pattern.

Frameworks cannot prevent users from writing senseless code. However, some of the features

mentioned before could be deactivated if the level of criticality demands it. It is a matter of

balance between functionality and safety. Thus, if necessary, support for task priorities and the

flush directive could be deactivated. The case regarding side-effects could be simplified to

using associative and commutative operations in reductions, and expressions without side-effects

in the rest of clauses. Finally, the case regarding dependence clauses could be solved at

run-time by resuming parallel execution (i.e., initiate sequential execution) when a task contains

non-conforming expressions in its dependence clauses, although this solution causes a serious

impact in the performance of the application.

6.2.2.5.3 Nested parallelism
OpenMP allows nesting parallel regions to get better performance in cases where parallelism is

not exploited at the same level. A distributed shared-memory machine with an appropriate memory

hierarchy is necessary to exploit the benefits of this feature (the major HPC architectures).

The nature of critical real-time embedded systems is quite different, where both memory size

and processor speed are usually constrained. Furthermore, the use of nested parallelism can be

costly due to the overhead of creating multiple parallel regions, possible issues with data locality,

and the risk of oversubscribing system resources. For the sake of simplicity, and considering that

current embedded architectures will not leverage the use of nested parallelism, this feature could

be deactivated by default.

6. TOWARDS A FUNCTIONAL SAFE OPENMP 75

6.2.3 Adapting the OpenMP specification to the real-time domain

This section presents our proposal to enable the use of OpenMP in safety-critical environments

without compromising functional safety. It is based on the discussion in Section 6.2, and the

proposal can be divided in two facets: different changes to the specification, and a series of

compiler and runtime implementation considerations.

6.2.3.1 Changes to the specification

As we introduce in Section 6.2.2.1, whole program analysis may not be enough if the system

includes multiple components developed by different teams, or make use of third-party libraries

implemented with OpenMP. In such a case, we propose that these components or libraries augment

their API with information about the OpenMP features used in each method. As a result, compilers

will be able to detect situations such as illegal nesting of directives and data accessing clauses

(i.e., data-sharing attributes, data mapping, data copying and reductions), data-race conditions and

deadlocks even when the code of all components is not accessible at compile time.

To tackle illegal nesting and deadlocks, we propose to add a new directive called usage.

This directive is added to a function declaration and followed by a series of clauses. The clauses

determine the features of OpenMP that are used within the function and any function in its call

graph, and can cause an illegal nesting. Overall, the clauses that can follow the pragma usage

are one of the following:

– Directive related: parallel, worksharing (which epitomizes single, for/do,

sections and workshare), master, barrier, critical, ordered, cancel,

distribute construct (which epitomizes distribute, distribute simd,

distribute parallel loop and distribute parallel loop SIMD), target construct (which

epitomizes target, target update, target data, target enter data and

target exit data), teams, any (which epitomizes any directive not included in the

previous items).

– Clause related: firstprivate, lastprivate, reduction, map, copyin and

copyprivate.

Based on the restrictions that apply to the nesting of regions (Section 2.17 of the specification

[113]) and the restrictions that apply to the mentioned data accessing clauses, Algorithm 7 extracts

the set of rules that define when the a specific directive or clause has to be added to the list of

clauses of the directive usage.

To avoid data races, we propose to add a new directive called globals. This directive, added

to a function declaration, defines which data is used within the function while it can be accessed

concurrently from outside the function, thus producing a data-race. Different clauses accompany

this directive: read, write, protected read and protected write, all accepting a list

of items. While read and protected read must be used when global data is only read,

write and protected write are required when global data is written, independently of it

being read as well. The protected versions of these clauses must be used when the access is within

an atomic or a critical construct.

76 6. TOWARDS A FUNCTIONAL SAFE OPENMP

Algorithm 7 Rules to determine the clauses of the usage directive to be added to the contract of
a safety-critical function.

– Clauses parallel, worksharing, master, barrier and ordered are required when
the corresponding construct is the outermost construct.

– Clauses critical and target construct are required if there is any occurrence of the
corresponding construct.

– Clause teams is required if the corresponding construct is orphaned.
– Clauses cancel and cancellation point are required if the corresponding constructs

are not nested in their corresponding binding regions.
– Clause any must be specified if OpenMP is used and no previous case applies.
– Data accessing clauses are required when they apply to data that is accessible outside the

application, and particular constraints apply to them:
* Clause firstprivate is required if used in a worksharing, distribute, task or
taskloop construct not enclosed in a parallel or teams construct.

* Clauses lastprivate and reduction are required if used in a worksharing not
enclosed in a parallel construct.

* Clauses copyin, copyprivate and map are required in any case.

Listings 6.1 and 6.2 illustrate the use of the two mentioned directives. The former contains

the definition of function foo, which uses an essential feature for the use of OpenMP in

parallel heterogeneous embedded architectures: the target construct. The function defines an

asynchronous target task that offloads some parallel computation (spawned in the parallel

construct and distributed in the for construct) to a device. The parallel computation within the

device is synchronized using the critical construct, and is canceled if the cancel directive

is reached. The latter contains the declaration of function foo, augmented with the usage

and globals directives. All possible clauses associated with these directives are explained as

follows:

– Clauses target construct and critical associated with directive usage indicate

that the function executes one or more target and critical constructs. A programmer

and/or compiler can avoid calling function foo from within a target or a critical

construct, thus avoiding an illegal nesting or even deadlocks.

– Clause map associated with directive usage indicates the variables that are mapped to/from

a target device. A programmer and/or compiler can avoid mapping threadprivate variables,

which is forbidden in the specification.

– The usage directive does not contain any other clause for the following reasons:

clause cancel is not included because it is nested in its binding region, clauses

task and parallel for are not included because no rule apply to them, and clause

firstprivate is not included because it does not concern to data that is visible from

outside the function.

– Clauses write and protected write associated with directive globals indicate that

variables arr[0:N-1] and sum are both written, being sum written within a synchronization

construct. This information allows determining if the variables are in a race condition without

analyzing the function, and therefore synchronize the accesses to the variables appropriately.

6. TOWARDS A FUNCTIONAL SAFE OPENMP 77

1 void foo (f l o a t * a r r , unsigned N, unsigned M,
2 f l o a t &sum , f l o a t MAX SUM) {
3 #pragma omp target map (tofrom : a r r [0 : N�1] , sum) \
4 firstprivate (N, M, MAX SUM) nowait
5 #pragma omp parallel
6 #pragma omp f o r
7 f o r (i n t i =0 ; i<N; ++ i) {
8 a r r [i] = b a r (i) ;
9 i f (i % M == 0) {
10 #pragma omp critical
11 sum += a r r [i] ;
12 }
13 i f (sum > MAX SUM) {
14 #pragma omp cancel f o r
15 }
16 }
17 }

Listing 6.1: Example of OpenMP function using several constructs.

1 #pragma omp usage target_construct critical map (tofrom : a r r [0 : N�1])
2 #pragma omp globals write (a r r [0 : N�1]) protected_write (sum)
3 void foo (f l o a t * a r r , unsigned N, unsigned M,
4 f l o a t &sum , f l o a t MAX SUM) ;

Listing 6.2: Function declaration of method in Listing 6.1 using the
proposed extensions for safety-critical systems.

Listings 6.3 and 6.4 show another example of the proposed directives. In this case, the function

definition in the former listing performs the factorial computation parallelized using the for

worksharing; and the function declaration in the latter listing shows the clauses required for the

method to be used in a functional safe environment. Clause any is specified because no rule

applies to directive for, and clause reduction is specified because the reduction is used in a

worksharing not enclosed in a parallel region. With this information a programmer and/or compiler

can check whether the variable being reduced is shared in the parallel regions to which any of the

worksharing regions bind. Analysis may also verify if the factorial function is not called from

within an atomic region, thus causing the program to be non-conforming. Finally, race analysis

can detect whether the variable factorial is in a race condition by means of the clause write.

1 void f a c t o r i a l (i n t N, i n t &f a c t) {
2 f a c t = 1 ;
3 #pragma omp f o r reduction (* : f a c t)
4 f o r (i n t i =2 ; i <= N; ++ i)
5 f a c t *= i ;
6 }

Listing 6.3: Factorial computation parallelized with OpenMP.

1 #pragma omp usage any \
2 reduction (f a c t o r i a l)
3 #pragma omp globals write (f a c t o r i a l)
4 void f a c t o r i a l (i n t N, i n t &f a c t o r i a l) ;

Listing 6.4: Function declaration for method in Listing 6.3 using the extensions for
safety-critical OpenMP.

78 6. TOWARDS A FUNCTIONAL SAFE OPENMP

6.2.3.2 Automatic definition of the contracts of a safety-critical OpenMP library

The use of the usage and the globals directives is a promise that something happens

(either the existence of a particular construct, or the use of a global variable), not only in

the function where the directive is placed, but in any possible path reachable from within that

function. These contracts are to be defined by the programmer when the code of the application

will no be reachable to others. However, for the application to be safe, compiler analysis

techniques are required to certify its correctness considering the proposed directives. For this

reason, inter-procedural whole-program analysis together with static call graph generation2 and

use-definition analysis are necessary in order to check whether the contracts are correct, or to

automatically determine these contracts.

The process to define the contracts (i.e., the usage and globals directives) of the API of a

safety-critical library is depicted in Algorithm 8. The methodology consists on generating the call

graph of each method that is visible from outside the library. Then, each call graph is traversed

from the leaves to the roots (avoiding cycles) and, for each node: 1) propagates to the current node

the directives computed in the called nodes, and 2) computes the information of the current node

to purge the propagated information and define the final information of the current node.

Algorithm 8 High-level algorithm to compute the contracts of a safety-critical OpenMP library.
1: for each call graph whose root can be called from outside the library do
2: for each node in the call graph (traversed from leaves to roots) do
3: Propagate the usage and globals directives from the called nodes.
4: for each OpenMP directive used within the function do
5: if it allows removing some clause propagated from called nodes to the usage directive

then
6: Remove the corresponding clauses from the usage directive.
7: end if
8: end for
9: for each OpenMP directive and clause used within the function do

10: Follow the rules defined in Algorithm 7 to decide if the directive/clause has to be added
to the usage directive.

11: end for
12: Add all variables that can be used outside the function (parameters by reference,

parameters with pointer type, and variables shared across applications -e.g., errno-) to
the usage directive.

13: end for
14: end for

As an illustration, Figure 6.1 shows the propagation of the usage and globals directives

over the call graph of a snippet of an application. Consider method library entry as the entry point

of the application, hence the method to augment with the contract. Function A defines the usage

of the master directive (because it is the outermost construct) and the critical directive

(because it just appears). Additionally, this method also specifies that the variable s is read and

2A call graph is a type of control flow graph which represents calling relationships between subroutines in a
program.

6. TOWARDS A FUNCTIONAL SAFE OPENMP 79

written within a synchronization construct. Function B defines the usage of the cancel construct

because it does not appear within its binding region. When this information is propagated to the

function library entry, the master and the cancel constructs disappear from the list of clauses

of the usage directive because the reason for them to be there does not fulfill anymore. The

globals information is propagated because variable s is visible outside the function. Finally,

the information of the node itself is added to the final contract of the function including the

parallel clause to the usage directive.

void A(int * s)

{

 #pragma omp master

 {

 #pragma omp critical

 (*b)++;

 }

}

void B()

{

 ...

 #pragma omp cancel parallel

 ...

}

void library_entry(int * s)

{

 #pragma omp parallel

 {

 A(&s);

 B();

 }

}

#pragma omp usage cancel(parallel)

#pragma omp usage master critical

#pragma omp globals protected_read(s) protected_write(s)

#pragma omp usage parallel critical

#pragma omp globals protected_read(s) protected_write(s)

Figure 6.1: Example of propagation of the usage and global directives over a call graph.

6.2.3.3 Implementation considerations

Both compilers and runtimes used in critical systems must be qualified following the relative

functional safety standard, e.g., ISO26262 for automotive or DO178C for avionics, to preserve

functional safety. The following paragraphs introduce which constraints apply in our case.

6.2.3.3.1 Compiler contract
The development tools used for critical real-time systems need to qualify to the same integrity

level3 as the application they are helping to develop. Features such as determinism, correctness,

robustness, and conformance to standards are considered for qualification. Nonetheless, current

guidelines make the qualification of development tools very difficult [78]. As an example,

the standard for Software Considerations in Airborne Systems and Equipment Certification

3The integrity level, also called criticality level, refers to the consequences of the incorrect behavior of a system.
These levels are defined in different scales such as the Safety Integrity Level (SIL) for automotive and the Development
Assurance Level (DAL) for avionics.

80 6. TOWARDS A FUNCTIONAL SAFE OPENMP

(DO-178C) [44] reads: “Upon successful completion of verification of the software product, the

compiler is considered acceptable for that product”. As a result, sometimes compilers do not need

to be qualified. Nonetheless, to gain assurance, some characteristics must be incorporated, such

as being fully tested for complete coverage analysis4, and being used in the same configuration,

options and environment as the one used to compile any other objects related to the application.

However, for an OpenMP compiler to be valid in a critical real-time environment, it must

ensure the source code is compliant with the OpenMP specification. For that reason, the compiler

must implement the necessary analysis techniques to allow whole program analysis. Additionally,

the compiler must also include specific and sound techniques for data-race and deadlock detection,

as well as the correctness analysis that allows statically detecting and fixing the unspecified

behaviors commented in Section 6.2.2.1.

6.2.3.3.2 Runtime contract
As a result of the analysis presented in Section 6.2, we conclude that runtime libraries used in

safety-critical environments shall follow some requirements to avoid unexpected aborts and fix

some programmer errors. The following list is a starting point for these systems to address such

undesired results:

– Runtimes should define a default value for all environment variables. This value shall be used

when the value specified in the application is out of range, e.g., OMP NUM THREADS could be

1 by default, and OMP NESTED could be false.

– Some clauses, such as num threads and device, take a number as a parameter that must

evaluate to a positive integer. Runtimes should define the value to be used if the expression is

out of range, for example, 1.

– Other errors can be caught and fixed at run-time, e.g., different instances of the same task

or sibling tasks expressing dependence clauses on list items which storage location is neither

identical nor disjoint may be executed sequentially.

6.2.4 Conclusion

OpenMP is increasingly being considered as a suitable candidate to be used in critical real-time

embedded systems considering its benefits: programmability, portability and efficiency, among

others. However, such systems impose strict constraints to ensure safety in terms of functional

correctness and time predictability.

This section is focused on functional safety, and proves that most features of OpenMP can be

used without compromising functional safety, as long as compilers implement a comprehensive

analysis that can prevent errors such as dead-locks and race conditions. Indeed, analysis must

involve the entire program, and this can be a challenging scenario. To ease this, we propose to

add some new directives that allow whole program analysis even when third-party libraries are

used. The majority of the unspecified behaviors defined in the specification can be solved at

compile time either automatically by the compiler (e.g., synchronizing variables that otherwise
4Code coverage is a measure used to describe the amount of the source code of a program being executed when a

particular test suite runs.

6. TOWARDS A FUNCTIONAL SAFE OPENMP 81

could be accessed after their life-time has ended), or by the programmer (e.g., the use of

non-invariant expressions in a linear clause). Other issues can be successfully addressed at runtime

(e.g., unexpected values passed to environment variables and runtime libraries can be solved by

defining default values to be used in such cases). In some cases, supporting the required level of

criticality might incur more overhead than a traditional OpenMP implementation (e.g., tracking

the overlapping among task dependencies). Last but not least, there are a series of features that can

be used erroneously if their semantics are not properly exploited (e.g., tasks priorities or flushes).

We conclude that support for these features can be deactivated if the level of criticality requires so.

The small modifications we propose back up OpenMP’s safety. Nonetheless, there are

some lacks in the current specification, e.g., error handling techniques to improve resiliency.

Furthermore, despite we deeply address the functional safety aspect, the same analysis concerning

time predictability, including starvation, remains as future work.

6.3 Application of OpenMP to a safe language: Ada

This section evaluates the use of OpenMP with Ada at two different levels: 1) using OpenMP as a

runtime to run the Ada parallel model, and 2) using raw OpenMP in Ada codes to further exploit

unstructured parallelism and heterogeneous architectures. With such a purpose, we first introduce

the recently proposed Ada parallel model. Then, we analyze the compatibility between this model

and OpenMP. Finally, we analyze the performance of OpenMP with Ada.

6.3.1 Related work

As we introduce in Section 2.1.3, Ada supports a concurrency model based on Ada tasks

(independent threads of control) and a set of language mechanisms for inter-task communication

(i.e., protected objects). The rationale is that providing language concurrency mechanisms,

the compiler has valuable information on the tasking behavior, and this allows building safer

programs. The Ada concurrency model is mainly suitable for coarse grain parallelism. For that

reason, there has been a significant effort to add support for fine grain parallelism to Ada.

On one hand, there is a proposal to extend the Ada core with extensions that support structured

parallelism in the form of parallel blocks and parallel loops (including reductions) [120]. This

technique is based on the notion of tasklets [98], which are concurrent logical units within an

Ada task. Adding parallelism also means adding a source of errors (due to concurrent accesses to

global data and synchronizations). For this reason, the mentioned proposal addresses safety using

new annotations that enable the compiler to detect data race conditions and blocking operations5.

On the other hand, there is a user-level library, Paraffin [101, 116], that consists of a set of

generic Ada libraries that dynamically manage fine grain parallelism, incorporating mechanisms

for parallel loops and reductions, parallel blocks and recursive parallelism. This library provides

parallelism managers following work-sharing, work-stealing and work-seeking approaches, on top

5Blocking operations are defined in Ada to be one of the following: entry calls; select, accept, delay and abort
statements; task creation or activation; external calls on a protected subprogram with the same target object as that of
the protected action; and calls to a subprogram containing blocking operations.

82 6. TOWARDS A FUNCTIONAL SAFE OPENMP

of pools of worker tasks. Using Ada generics, it provides a simple interface to create and manage

parallel execution, and delivers comparable performance to OpenMP or Cilk [29] on structured

parallelism for a small number of cores [100].

The proposed extensions, which are currently under discussion and may evolve before being

included in the standard (maybe in Ada202X) target only structured parallelism, based on a

fully strict fork-join model, on shared memory architectures. For that reason, introducing more

advanced parallel programming models to Ada can benefit the exploitation of more complex

(unstructured) parallelism and the use of heterogeneous computation. In that respect, Section

6.2 already demonstrate that OpenMP provides the safety properties required by Ada.

6.3.2 Analysis of the Ada and OpenMP parallel models

6.3.2.1 Forms of parallelism

The Ada tasklet model and OpenMP implement a fork-join execution model where parallelism

is spawned when a parallel statement (in Ada) or a parallel construct (in OpenMP) is reached,

and it is joined at the end of the parallel region. Both models define execution containers, named

executor in Ada and thread in OpenMP, and managed by the respective runtimes.

The Ada parallel model introduces two new statements to the language in charge of spawning

and distributing the parallel work to executors. These statements allow defining three forms of

parallelism: parallel blocks, parallel loops, and reductions. All three mechanisms define a form of

structured parallelism, and are defined as follows:

– The parallel block statement allows defining several blocks of code that can execute in parallel.

Listing 6.5 shows the syntax of this statement.

– The parallel loop statement denotes that loop iterations can execute in parallel. In a parallel

loop, both the compiler and the runtime are given the freedom to chunk iterations. Although

not mandatory, programmers may gain control by defining chunk sizes. Listing 6.6 shows the

syntax of this statement. Additionally, the concept of parallel array is introduced to define

data being updated within a parallel loop. The syntax is shown in Listing 6.7, where the use

of <> indicates an array of unspecified bounds. In that case, the compiler may choose the

size based on the number of chunks chosen for the parallelized loops where the array is used.

Alternatively, the programmer may provide a bound, thus forcing a specific partitioning.

1 parallel
2 x := a * a ;
3 and
4 y := b * b ;
5 end parallel ;
6 r e s := x + y ;

Listing 6.5: Ada syntax for parallel blocks.

1 f o r I in parallel l b . . u b loop
2 a (I) := a (I) + b (I) ;
3 end loop ;

Listing 6.6: Ada syntax for a parallel loop.

1 Arr : array (parallel <>) of a t y p e
2 := (o t h e r s => i n i t i a l v a l u e) ;

Listing 6.7: Ada syntax for a not chuncked parallel.

6. TOWARDS A FUNCTIONAL SAFE OPENMP 83

– Reductions are defined to be an operation for values in a parallel array that consists in

combining the different values of the array at the end of the processing with the appropriate

reduction operation. The syntax for parallel reductions is still under discussion [119] and the

current proposal is to define the reduction in the type, as in Listing 6.8.

1 . . .
2 type P a r t i a l A r r a y T y p e i s new array (parallel <>) of F l o a t ;
3 with Reducer => ”+” , I d e n t i t y => 0 . 0 ;
4 P a r t i a l S u m : P a r t i a l A r r a y T y p e := (o t h e r s => 0 . 0) ;
5 Sum : F l o a t := 0 . 0 ;
6 begin
7 f o r I in parallel Arr ' Range loop
8 P a r t i a l S u m (<>) := P a r t i a l S u m (<>) + Arr (I) ;
9 end loop ;

10 Sum := P a r t i a l S u m (<>) ' Reduced ; �� r ed uc e v a l u e e i t h e r here or
11 �� d u r i n g t h e p a r a l l e l l oop
12 . . .

Listing 6.8: Parallel reduction with proposed Ada extensions.

A transfer of control6 or exception7 within one parallel sequence (in a parallel loop, each

chunk is treated as a separate sequence) aborts the execution of parallel sequences that have not

started, and potentially initiates the abortion of those sequences not yet completed8. Once all

parallel sequences complete, then the transfer of control or exception occurs.

Unlike Ada, OpenMP splits the spawning and distribution of parallel work in different

statements: the parallel construct spawns work, and several constructs distribute this work

to threads. The constructs for distribution can be classified in two different models:

– The thread-centric model exploits structured parallelism distributing work by means of

work-sharing constructs. It provides a fine grain control of the mapping between work and

threads. The most representative constructs are for and sections.

– The task-centric model exploits both structured and unstructured parallelism distributing work

by means of tasking constructs. It provides a higher abstraction level in which threads are fully

controlled by the runtime. The most representative constructs are task and taskloop.

The two models have comparable performance [122]. Listings 6.9 and 6.10 are the equivalent

to Listings 6.5 and 6.6 using the OpenMP tasking model. The notation is adapted to fit the

syntax of Ada: a) since Ada already defines pragmas of the form pragma Name (Parameter

List);, we propose to introduce a new kind of pragma OMP together with the directive name

(e.g., task, barrier, etc.), and b) we follow the syntax of Ada to group sequences of statements

(i.e., use a closing statement to match the beginning of the group instead of brackets).

Figure 6.2 illustrates the flexibility of the OpenMP fork-join model compared to that of

Ada. Due to the separation of the spawn and distribution operations, OpenMP allows executing

simultaneously several constructs: the example in the figure shows two parallel loops executing

6A transfer of control causes the execution of a program to continue from a different address instead of the next
instruction (e.g., a return instruction).

7Exceptions are anomalous conditions requiring special processing. Ada has predefined exceptions
(language-defined run-time errors) and user-defined exceptions.

8The rules for abortion of parallel computations are still under discussion [119].

84 6. TOWARDS A FUNCTIONAL SAFE OPENMP

1 pragma OMP (parallel) ;
2 pragma OMP (single) ;
3 begin
4 pragma OMP (ta sk) ;
5 x := a * a ;
6 pragma OMP (ta sk) ;
7 y := b * b ;
8 end ;
9 r e s := x + y ;

Listing 6.9: OpenMP syntax for parallel blocks.

1 pragma OMP (taskloop) ;
2 f o r I in range l b . . u b loop
3 a [I] := a [I] + b [I] ;
4 end loop ;

Listing 6.10: OpenMP syntax for a
parallel loop.

parallel

loop

end loop

end loop

parallel

loop

sp
aw

n
 &

d

is
tr

ib
u

te

jo
in

sp

aw
n

 &

d
is

tr
ib

u
te

jo

in

parallel

single

taskgroup

taskloop

taskloop

sp
aw

n

barrier

d
is

tr
ib

u
te

jo

in

Figure 6.2: Concurrency available with the Ada parallel model (left) and OpenMP tasks (right).

concurrently due to the use of the taskgroup directive, which avoids the implicit barrier

after the first taskloop. This feature can potentially increase parallelism and reduce unnecessary

synchronizations. Besides, in OpenMP the thread that spawns work may not be the same as the

one that distributes it, while in Ada, the sames thread does the two operations.

6.3.2.2 Execution model

The Ada parallel model defines the tasklet as the unit of parallelism. Tasklets come into existence

when the parallel work starts, and terminate at the end of the parallel work. With this, the Ada

execution model is based on a limited form of run-to-completion where tasklets are typically

executed by a unique executor, unless they perform an operation that requires blocking or

suspension; at these points, the tasklet is allowed to migrate to a different executor. Note that,

even if the tasklet does not change executor, it is not mandatory for it to run uninterruptedly or to

execute in the same core, since executors may be scheduled in a preemptive scheduler.

The concept of tasklet is very similar to the concept of OpenMP task. First, both are containers

that enable fine grain parallelism. Second, the existence of the container is limited to the work

it encloses. Third, and most important, OpenMP tasks, as Ada tasklets, can be prioritized and

preempted. In that regard, OpenMP defines a Task Scheduling Point (TSP) as the moment at

which a thread can stop executing a specific task and start executing a different one9. The runtime

9OpenMP associates TSPs to different points in a program, e.g., after the generation of an explicit task (see the

6. TOWARDS A FUNCTIONAL SAFE OPENMP 85

is responsible of deciding whether the task being executed is preempted (and potentially migrated)

or not. Similarly to Ada, OpenMP tasks (both tied and untied) are not forced to run uninterruptedly.

Furthermore, there are two final considerations to take into account: 1) the main difference

between Ada tasklets and OpenMP tasks is that OpenMP allows users to explicitly define tasks

whereas in Ada, tasklets are transparent, and 2) the equivalence with the OpenMP thread-centric

model is not straight-forward because OpenMP maps the logical concurrent units of work to

threads directly, and neither the specification nor the runtime provide any feature for preempting

work-sharings.

6.3.2.3 Use of resources

OpenMP allows programmers to define the amount of computing resources to be used in a parallel

region by means of the num threads clause attached to the parallel construct. If none is

defined, then the number is implementation-defined (although the number of cores is commonly

considered).

For the Ada parallel model, it is still not defined if the programmer can control the number of

executors assigned to a parallel region, although a mechanism shall exist to control the number of

executors per Ada task. In this direction, the current proposal defines three kinds of parallel

progression model. Ada denotes that the parallel execution progresses if at least one of the

spawned tasklets is being executed by an executor:

– Immediate progress. Ready tasklets can always execute if there are available cores.

– Eventual progress. Ready tasklets may have to wait for the availability of an executor even

if cores are available, but it is guaranteed that one executor will become available so that the

tasklet will eventually be executed.

– Limited progress. Ready tasklets may have to wait for the availability of an executor even if

cores are available, and it is not guaranteed that one executor will eventually become available.

This may happen when there is a limited number of executors and all are blocked.

Note that runtimes only need to support one such model. The two first cases guarantee

progression for any program, even if the runtime does not support tasklet migration between

executors when tasklets block. The third one requires static analysis to determine the tasks neither

starve nor deadlock, and it is suitable when the resources of the program and the runtime structures

are statically determined.

The OpenMP specification does not impose any model of progression, as it is responsibility of

the programmer to guarantee that the execution neither stalls nor starves. However, the execution

model enables to mimic progression defined by Ada, as will be explained in Section 6.3.3.2.

6.3.2.4 Memory model

The memory model defined for tasklets is based on that of the Ada base language. Ada does

not define a memory model as such, instead it defines specific types and subclauses that allow

complete list in Section 2.9.5 of the specification [113]). The language also defines the directive taskyield to
explicitly introduce a TSP.

86 6. TOWARDS A FUNCTIONAL SAFE OPENMP

describing how shared data is accessed by the different threads. These are: a) protected objects

(provide a mutual exclusion mechanism to access data items), b) volatile objects (force all tasks of

the program that read or update the object to see the same order of updates), and c) atomic objects

(force all reads and updates of the object as a whole to be indivisible). Furthermore, the initial

proposal of Ada tasklets considers that all variables within a parallel section should be volatile

for the sake of simplicity. However, this may be too costly, and a different approach could be the

introduction of data-sharing attributes, either computed by the compiler (improving safeness) or

specified by the user (allowing for finer accuracy).

On the other hand, OpenMP defines a relaxed-consistency memory model with three different

types of memory: 1) the memory, where all threads have access to, 2) the temporary view of each

thread, that eventually may be consistent with the memory, and 3) the threadprivate view of each

thread, which cannot be accessed by other threads. The flush operation allows for consistency

among the different views of the memory. The operation can be explicitly requested by the user,

by means of the flush directive, or implicitly forced by the programming model (i.e., OpenMP

introduces implicit flushes at strategic points in the code such as barrier regions, and the entry and

the exit of atomic operations.

In OpenMP, the visibility of the variables can be defined using three different approaches: 1)

apply the default data-sharing attributes defined in the specification and based in the storage of

the variables; 2) manually define the visibility be means of data-scoping clauses (i.e., shared,

firstprivate, lastprivate and private); and 3) use the auto-scoping technique [129]

to automatically determine the visibility based on the usage and liveness of the variables. The

auto-scoping technique is a sound mechanism to determine the data-sharing attributes of a tasklet,

as they serve to determine the attributes of an OpenMP task. Since the memory model of the

Ada tasklet model is not final, the current analysis indicates that, so far, OpenMP is a candidate to

mimic the Ada tasklet model. Also considering that protected objects can always be used as shared

within an OpenMP task, hence releasing OpenMP from the duty of managing the consistency of

those variables.

6.3.2.5 Safety

Despite the clear benefits of parallel computation in terms of performance, parallel programming

is complex and error prone, and that may compromise correctness and so safety. Hence, it is

of paramount importance to incorporate compiler and run-time techniques that detect errors in

parallel programming.

There are two main sources of errors when dealing with parallel code: a) the concurrent access

to shared resources in a situation of race condition, and b) an error in the synchronization between

parallel operations leading to a deadlock. To guarantee safety, Ada parallel code must use atomic

variables and protected objects to access shared data. Moreover, the compiler shall be able to

complain if different parallel regions might have conflicting side-effects.

In that respect, due to the difficulty of accessing the complete source code to perform

a full analysis, the proposed Ada extensions suggests a two-fold solution [147]: a) address

6. TOWARDS A FUNCTIONAL SAFE OPENMP 87

race conditions by adding an extended version of the SPARK Global aspect to identify the

memory locations that are read and written, and b) address deadlocks by the defined execution

model, together with a new aspect called Potentially Blocking that indicates whether a

subprogram contains statements that are potentially blocking.

In the same line, as we propose in Section 6.2.3.1, directives globals and usage

critical may allow identifying potential data races and deadlocks when third-party code is

used. These directives have been proposed to cover the lack of support provided by C/C++ and

Fortran. Hence, they are not needed when using OpenMP with Ada, as the previously mentioned

aspects can be used.

6.3.3 Supporting the Ada parallel model with OpenMP

This section further analyses the OpenMP and Ada execution models, and demonstrates that

OpenMP is a firm candidate to implement Ada parallel blocks and loops statements.

6.3.3.1 Preemption

As we introduce in Section 6.3.2.2, the limited form of run-to-completion implemented in the

tasklet model is mappable to the OpenMP tasking model. The points where a tasklet can be

preempted (at blocking or suspension) can be implemented using the OpenMP taskyield

operation.

The OpenMP tasking model defines two different types of tasks: tied and untied (see details in

Section 2.1.1.1). Untied tasks are more suitable to implement tasklets, because this model allows

tasks to migrate between threads. Moreover, untied tasks have better time predictability than tied

tasks, due to their work-conserving nature [139].

6.3.3.2 Progression Model

The OpenMP specification does not impose any model of progression, however it supports

progress as defined in the Ada parallel model. Although the OpenMP runtime cannot dynamically

modify the number of threads in a team (and therefore it cannot create a new thread when a task

blocks), it can move blocked tasks to a waiting queue and reuse threads to execute other tasks. To

implement immediate progress, the OpenMP runtime must enforce a work-conserving scheduler,

and the number of threads assigned to parallel regions must be bigger or equal than the number of

cores. This way, whenever there are resources available, tasks will be scheduled.

Note that OpenMP tied tasks are not suitable to implement immediate progress due to the

non-work-conserving nature of the scheduler, but even in this case eventual progress is possible,

as long as threads are reused when tasks block. The same happens if the number of threads is

smaller than the number of cores.

88 6. TOWARDS A FUNCTIONAL SAFE OPENMP

6.3.3.3 Fork-join Model

The fully strict fork-join model required by the Ada parallel model is fully supported by OpenMP.

Since OpenMP does not force the distribution of work to be done at the same point as the spawn

of parallelism, explicit synchronizations may be needed. This is the case when implementing

nested parallelism in Ada. Figure 6.3a presents a code snippet with nested parallelism using Ada

nested parallel blocks, which spawns and distributes twice (at lines 1 and 3). This code can be

transformed in two ways using the OpenMP tasking model: 1) using nested parallel regions as

shown in Figure 6.3c, which supposes spawning parallelism twice as well (lines 1 and 7), and 2)

using nested tasks as shown in Figure 6.3b, which supposes spawning parallelism just once (line

1), and requires a taskwait before code 4 to force synchronization of the inner block.

1 parallel
2 �� code 1
3 parallel
4 �� code 2
5 and
6 �� code 3
7 end parallel
8 �� code 4
9 and
10 �� code 5
11 end parallel ;

(a) Ada

1 pragma OMP (parallel) ;
2 pragma OMP (single) ;
3 begin
4 pragma OMP (task , untied) ;
5 begin
6 �� code 1
7 pragma OMP (task , untied) ;
8 �� code 2
9 pragma OMP (task , untied) ;
10 �� code 3
11 pragma OMP (taskwait) ;
12 �� code 4
13 end ;
14 pragma OMP (task , untied) ;
15 �� code 5
16 end ;

(b) OpenMP with nested tasks

1 pragma OMP (parallel) ;
2 pragma OMP (single) ;
3 begin
4 pragma OMP (task , untied) ;
5 begin
6 �� code 1
7 pragma OMP (parallel) ;
8 pragma OMP (single) ;
9 begin

10 pragma OMP (task , untied) ;
11 �� code 2
12 pragma OMP (task , untied) ;
13 �� code 3
14 end ;
15 �� code 4
16 end ;
17 pragma OMP (task , untied) ;
18 �� code 5
19 end ;

(c) OpenMP with nested parallels

Figure 6.3: Mapping nested parallelism between Ada and OpenMP.

The Ada tasklet model does not specify how the runtime manages resources of parallel

executions, therefore both transformations are possible. The version shown in Figure 6.3b may

reduce the overhead of creating and destroying an extra team of threads. However, it is interesting

to have the possibility of exploiting two different levels of parallelism for those cases where the

parallelism is not exposed at the same level, or where there are load balancing problems.

6. TOWARDS A FUNCTIONAL SAFE OPENMP 89

6.3.4 Supporting the OpenMP Tasking Model in Ada

Section 6.3.3 proposed OpenMP as an implementation of the Ada parallel model. This section

evaluates the use of OpenMP on top of Ada to increase its parallel capabilities, enabling the use

of unstructured parallelism and advanced parallel heterogeneous architectures.

Although the Ada parallel model provides a simple yet powerful model to exploit structured

parallelism in shared memory architectures, the fact that spawning and distribution of work occurs

at the same point limits the exploitation of unstructured parallelism, where a task may depend

only on some other concurrent tasks. In that respect, OpenMP supports partial synchronizations

by means of the depend clause, which defines the input and/or output data dependencies existing

between tasks. The TDG that honors these dependences is used to drive the execution. As

demonstrated in Section 6.3.5, the use of data dependencies can significantly improve performance

of parallel Ada programs.

A fundamental requirement of Ada systems is safety. In that regard, OpenMP has been

proven to provide the safety requirements imposed by such systems [134]. The main in parallel

execution are deadlocks and race conditions. Deadlocks can be palliated using Ada protected

objects instead of OpenMP synchronizations. There are sound static analysis techniques [80] if

OpenMP mechanisms are still to be used. Race conditions can be solved with concurrency analysis

techniques [14], including the automatic discovery of task dependences [131].

Additionally, OpenMP supports an accelerator model featuring the efficient distribution of

parallelism in heterogeneous systems the makes the model a firm candidate to be used with Ada,

enabling safety-critical systems to efficiently exploit parallel heterogeneous architectures.

6.3.5 Evaluation

This section shows the evaluation of integrating OpenMP in Ada applications from four different

angles: 1) we evaluate the performance benefits of OpenMP compared to other implementations

that exploit parallelism in Ada, i.e., native Ada tasks [67] and the Paraffin suite [101]; 2) we

evaluate the introduction of raw OpenMP into Ada to exploit fine grain parallelism by means of

task dependences; 3) we show that Ada with OpenMP achieves a comparable performance to that

of C with OpenMP; and 4) we show the interplay between Ada and OpenMP runtimes.

6.3.5.1 Experimental setup

Runtimes. We use three runtime implementations that support parallelism: 1) the GNU libgomp

library for OpenMP from GCC 7.1 [60] 2) the GNAT runtime library for Ada from GCC 7.1

[7], and 3) the Paraffin suit for Ada [101].

Applications. We consider four different applications: 1) a matrix intensive computation

resembling image processing algorithms (Matrix), 2) a LU factorization (LU), 3) a

Cholesky decomposition (Cholesky), 4) a synthetic application that combines several OpenMP

constructs and Ada tasks (Synthetic). The Matrix, LU and Cholesky benchmarks, have

been parallelized using four different approaches: 1) the Ada parallel model implemented

90 6. TOWARDS A FUNCTIONAL SAFE OPENMP

b]

2 4 8 16 24 48
Number of workers

0

10

20

30

40

50

Sp
ee

du
p

Ada/OpenMP
Ada tasks
Ada Paraffin

(a) Matrix

2 4 8 16 24 48
Number of workers

5

10

15

20

25

30

35

Sp
ee

du
p

Ada/OpenMP
Ada tasks
Ada Paraffin

(b) LU

2 4 8 16 24 48
Number of workers

2

3

4

5

6

7

8

9

Sp
ee

du
p

Ada/OpenMP
Ada tasks
Ada Paraffin

(c) Cholesky

Figure 6.4: Performance speedup of the Ada parallel programming model implemented with
OpenMP, Ada tasks and Paraffin.

with OpenMP (Ada/OpenMP10), 2) native Ada tasks, 3) Paraffin and 4) C plus OpenMP

(C/OpenMP). The most representative functions of these implementations can be found in

Appendix B.2. Additionally, we parallelize the Ada implementation of Cholesky using

OpenMP partial synchronizations (task dependences) to demonstrate the benefits of fully

integrating OpenMP into Ada by exploiting unstructured parallelism. Finally, Synthetic is used

to demonstrate how Ada and OpenMP runtimes coexist by combining OpenMP constructs

and Ada tasks managed by the OpenMP and Ada runtimes respectively (OpenMP-parallel

constructs are called within Ada tasks).

Platform. We run our experiments in a computing node of the MareNostrum IV supercomputer,

which consists of a 2-socket Intel Xeon Platinum 8160 CPU with 24 cores each. The processor

operates at 2.10GHz, and features a 33MB L3 cache. (Details of this platform are provided in

Section 2.3.1.)

Libraries. We use two instrumentation libraries to analyze the correct interoperability of Ada and

OpenMP runtimes: 1) Extrae [17], a tool that gathers information about the performance of

parallel applications and generates traces in textual files, and 2) Paraver [21], a performance

visualization and analysis tool that uses Extrae traces.

6.3.5.2 Structured parallelism: Ada parallel model, Ada tasks and Paraffin

This section compares the performance speedup of the Ada parallel model (implemented

with OpenMP because there is yet no implementation of the Ada tasklet model) with the

use of Ada tasks and Paraffin. For such a purpose, we use the Matrix, LU and Cholesky

benchmarks. Figure 6.4 shows the speedup obtained for the three benchmarks, considering the

three implementations.

In the Matrix example (Figure 6.4a), Ada/OpenMP and Ada tasks produce equivalent

speedups. The regular nature of the algorithm can be efficiently mapped to both Ada tasks and

OpenMP tasks. On the other hand, Paraffin drops down when the number of workers grows up

10Since there is yet no compiler support for Ada using OpenMP directives, and the tasklet model has no
implementation either, we simulate this behavior by manually implementing calls to the libgomp runtime library from
the source Ada code.

6. TOWARDS A FUNCTIONAL SAFE OPENMP 91

to 48. Note that for Ada and Paraffin, the number of tasks spawned is the same as the number

of workers, while in Ada/OpenMP we always use 512 tasks. In LU and Cholesky (Figures 6.4b

and 6.4c), Ada/OpenMP clearly outperforms the other implementations because the fine grain

synchronization mechanisms provided by OpenMP are more efficient than the manual mapping

of parallelism into Ada tasks and the parallelism management performed by Paraffin. In both

cases the performance worsens significantly when using the 48 cores because of two reasons: the

implementation uses a non-blocked matrix, which introduces overhead in the memory accesses,

and 2-socket nature of the machine introduces overhead due to the NUMA effect.

6.3.5.3 Unstructured parallelism: Ada parallel model and OpenMP task dependences

OpenMP allows the definition of partial synchronizations by means of dependence clauses

attached to task constructs. This feature allows to further exploit parallelism in highly unstructured

parallel applications. As an illustration, we use the Cholesky application from Appendix B.2.1.2

implemented with C and two versions of OpenMP: a) tasks synchronized with taskwaits, and

b) tasks synchronized with dependences. Figure 6.5 shows the TDG generated for the version

implemented with taskwaits. To generate this graph, we consider all kernels as tasks (omp potrf

and omp syrk are not tasks in the original version because they cannot run in parallel with any

other task), and we eliminate each taskwait by connecting all its inputs with all its outputs.

The figure exhibits that taskwaits are a coarse grain synchronization mechanism that limit the

parallelism existing in the application. Figure 6.6 shows the TDG for the version implemented

with dependences, which allow exploiting the high level of parallelism (width of the graph)

existing in the application.

Figure 6.7 shows the results obtained with the two implementations of Cholesky. The version

with dependences outperforms when the number of threads is between 16 and 24, because there are

enough resources to exploit the fine grain parallelism existing in the application. Again, the drop

in the performance corresponds to a bad memory layout and the NUMA effect of the underlying

machine.

6.3.5.4 Performance benefit of OpenMP: Ada vs. C

The OpenMP API efficiently supports the development of parallel applications written in C and

Fortran. In this section we prove that OpenMP can be used as well to augment Ada applications

with fine grain parallelism, by comparing the performance of three Ada and C codes parallelized

with OpenMP: Matrix, LU and Cholesky. Figure 6.8 shows the performance obtained for these

three codes implemented with Ada and C, using the same OpenMP parallelization. Ada scales

similarly to C in all cases, proving that OpenMP can be used to satisfactorily exploit parallelism

in Ada applications. Furthermore, OpenMP reduces the effect of the differences in the underlying

languages (C and Ada) when being executed sequentially, delivering a similar execution time for

the best parallel versions of both languages11.

11It is not relevant in the context of this thesis to evaluate the differences between C and Ada.

92 6. TOWARDS A FUNCTIONAL SAFE OPENMP

omp_potrf
omp_trsm
omp_gemm
omp_syrk

Figure 6.5: TDG of Cholesky kernel
implemented using tasks and taskwaits.

omp_potrf
omp_trsm
omp_gemm
omp_syrk

Figure 6.6: TDG of Cholesky kernel
implemented using tasks with dependences.

2 4 8 16 24 48
Number of workers

2

4

6

8

10

12

14

16

Sp
ee

du
p

OpenMP taskwaits
OpenMP dependences

Figure 6.7: Speedup of Ada/OpenMP (structured parallelism) and OpenMP with dependences
(unstructured parallelism).

6. TOWARDS A FUNCTIONAL SAFE OPENMP 93

2 4 8 16 24 48
Number of workers

0

5

10

15

20

25

30

Ex
ec

ut
io

n
tim

e
C + OpenMP
Ada + OpenMP

(a) Matrix

2 4 8 16 24 48
Number of workers

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n
tim

e

C + OpenMP
Ada + OpenMP

(b) LU

2 4 8 16 24 48
Number of workers

0

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n
tim

e

C + OpenMP
C + OpenMP (dependences)
Ada + OpenMP
Ada + OpenMP (dependences)

(c) Cholesky

Figure 6.8: Execution time of OpenMP running with Ada and C.

6.3.5.5 Interplay of Ada and OpenMP runtimes

We use a synthetic application to show the coexistence of Ada and OpenMP tasks. The algorithm

contains two Ada tasks (one executing periodically every 200ns, and one executing sporadically),

and two OpenMP tasks (one performing the intensive computation of Matrix, and one performing

light arithmetic computations). OpenMP parallelism is executed within Ada tasks, and the Ada

sporadic tasks are released by calling Ada protected objects from within OpenMP tasks.

Figure 6.9 shows a trace of the execution of this algorithm. The x axis represents time, and the

y axis represents available workers (labeled THREADS in the figure). The horizontal bars contain

a unit of execution run in a given period in a given worker, where each color represents a different

conceptual unit: the Ada sporadic tasks in yellow (executed in threads 1 and 2), the Ada periodic

tasks in turquoise (executed in thread 1), the OpenMP heavy tasks in lilac, and the OpenMP light

tasks in pink (the last two executed in all threads). The trace shows how Ada and OpenMP tasks

share resources and interplay correctly.

Figure 6.9: Execution trace of the OpenMP and Ada tasks mixed benchmark.

6.3.6 Managing persistent tasks

An important feature in real-time applications is the concept of persistent (or periodic) task. For

example, avionics navigation systems receive periodically multiple input variables of the current

flight condition, including air density, throttle lever position, engine temperatures, and engine

pressures, among others. These tasks differ from other (sporadic) tasks in that they must be

executed at regular intervals.

94 6. TOWARDS A FUNCTIONAL SAFE OPENMP

1 ta sk body P e r i o d i c i s
2 T : Time := Clock ;
3 P e r i o d : Time Span := M i l l i s e c o n d s (2 0 0) ;
4 begin
5 loop
6 de lay u n t i l T ;
7 �� do work here
8 T := T + P e r i o d ;
9 end loop ;

10 end P e r i o d i c ;

Listing 6.11: Example of Ada periodic task using a delay statement.

Ada periodic tasks are usually implemented using the delay statement for an interval

calculated at the end of every period. Listing 6.11 is an example of such behavior.

The current specification of OpenMP does not consider the concept of periodic task, but

there have been off-line conversations between members of the OpenMP ARB regarding this

matter. One of the achievements of this thesis (further detailed in Section 7.2) is the creation

of a discussion group within the ARB in order to tackle real-time aspects. We plan to address this,

and other issues, within this group to push their introduction in the specification.

6.3.7 Conclusion

This section takes a step forward in the convergence between the safety-critical and the HPC

domains by addressing the integration of OpenMP into Ada. The comparison of the two

language specifications reveals that the OpenMP runtime can be used to implement the recently

proposed Ada tasklet model, and thus exploit structured fine grain parallelism in Ada applications.

Concretely, the OpenMP tasking model, using tied tasks, supports all the preemption model, the

progression model and the memory model defined for Ada tasklets.

There are though other implementations that exploit parallelism in Ada, such as Ada tasks

and Paraffin. So as to motivate the use of OpenMP to implement tasklets, we compare the three

implementations in several benchmarks. The results show the important benefit obtained with

OpenMP, mainly because of the efficiency of its fine grain synchronization mechanisms in front

of those of Ada tasks and Paraffin. Furthermore, we explore the direct use of OpenMP from

Ada to exploit unstructured fine grain parallelism with the use of task dependence clauses. Our

results demonstrate the benefits of this kind of partial synchronization against the use of full barrier

synchronizations (implemented with the use of taskwaits).

6.4 Correctness for Ada/OpenMP

This section joins the efforts presented in Chapter 4 regarding correctness techniques for OpenMP,

and those presented in previous sections of this chapter regarding the adaptation of OpenMP to

Ada. Hence, the purpose of this section is to analyze the correctness issues arising from mixed

Ada/OpenMP applications, and then define the proper compiler techniques to detect problems in

such applications. Particularly, to define an algorithm for detecting data-race conditions in mixed

Ada/OpenMP programs.

6. TOWARDS A FUNCTIONAL SAFE OPENMP 95

6.4.1 Related work

In previous sections of this Chapter we have already introduced the different works have already

explored the safety requirements necessary for OpenMP to be used in safety-critical environments.

On one hand, those that evaluate the time-predictability of OpenMP [96, 138, 139, 145]; on the

other hand, those that evaluate the functional safety [132, 134].

This section addresses the functional safety from a compiler perspective. In this regard,

previous sections already introduced several compiler analysis techniques to check OpenMP

programs for diverse errors, mainly deadlocks [80] and race conditions [27, 93, 133]. However,

this techniques do not consider Ada semantics, since they are developed for C, C++ and/or Fortran

applications using OpenMP.

The aim of this section is to analyze Ada applications using OpenMP, so we need a unique

representation to express the semantics of the two languages. In this respect, different approaches

have been used to represent the concurrent semantics of Ada programs: petri nets [48], control flow

graphs [51] and different forms of task graphs such as program reachability graphs [124], real-time

task digraphs [99] and system dependence nets [158], among others. These representations enable

a series of analysis that range from deadlock detection to slicing12 to complexity measurement.

On another level, most correctness tools for Ada are based on model checking13, a technique

that allows the automatic verification of the correctness of a system. Faria et al. developed ATOS

[50], a tool that automatically extracts a SPIN model [63] from an Ada program, as well as a

set of desirable properties from a specification annotated by the user in the program, inspired by

the SPARK annotation language. Resembling ATOS, GNATprove [123] is a formal verification

tool for Ada, based on the GNAT compiler [57] and Meyer’s design by contract paradigm [97].

These contracts must be explicitly stated by programmers as preconditions and postconditions for

functions and procedures, and loop invariants, all in the syntax of Ada 2012.

6.4.2 Compiler analysis for mixed Ada/OpenMP programs

This section exposes our proposal to solve race conditions in mixed Ada and OpenMP programs.

It is structured as follows: first we present the singularities of Ada/OpenMP programs, then

we show how we represent Ada/OpenMP programs, next we introduce the algorithm used

to detect race conditions in such programs, and finally we show the results of applying the

algorithm to a particular test case. For illustration purposes, we use the Ada application

Ravenscar, defined in Section 7 of the “Ada Ravenscar Profile Guide” [35] as test case. The

system modeled in this application includes a periodic process (Regular Producer) that handles

offers for a variable amount of workload (Small Whetstone). When the requested workload

exceeds a given threshold (Due Activation), the excess load is processed by a sporadic process

12Program slicing is a technique that consists on reducing a subset of a programs behavior to a minimal form
that still produces the same behavior. This technique is used in processes such as program analysis, optimization and
debugging.

13Model checking mechanisms allow exhaustively and automatically the checking of a given model regarding a
given specification. Typically, hardware or software components are checked against safety requirements such as the
absence of deadlocks and other critical states that can cause a system to crash.

96 6. TOWARDS A FUNCTIONAL SAFE OPENMP

REGULAR PRODUCER
7 C

ON CALL PRODUCER
5 S

REQUEST BUFFER

Deposit

Extract

9 Pr

EXTERNAL EVENT SERVER
11 I

EVENT_QUEUE
Handler

Wait

Signal

Pr

PRODUCTION WORKLOAD

Small_Whetstone

P

ACTIVATION LOG READER
3 S

EVENT_QUEUE
Interrupt_Simulator

‘Last I

ACTIVATION LOG

Read

Write

Pr ACTIVATION LOG READER

Signal

Wait

P

AUXILIARY

Due_Activation

Check_Due

P

ON CALL PRODUCER

Start

P

ACTIVATION MANAGER

Synchronize_Activation_Cyclic

Synchronize_Activation_Sporadic

P

Task

Protected Object

Function/Procedure

PACKAGE NAME
Subprogram name

priority Type

P Passive object

Pr Protected object

S Sporadic object

C Cyclic object

I Interrupt sporadic object

Figure 6.10: HRT-HOOD representation of the Ravenscar application defined in Section 7 of the
“Ada Ravenscar Profile Guide”.

(On Call Producer). Additionally, interrupts may appear at any point (External Event Server),

and different priorities are used to ensure preference among the different tasks.

Figure 6.10 shows the HRT-HOOD14 representation of the Ravenscar application. There, red

boxes represent tasks, blue boxes represent packages with functions and procedures, and yellow

boxes represent protected objects with the main entries and procedures.

The Ravenscar code illustrates the expressiveness of the Ravenscar profile, for it includes

several features of Ada that are of our interest: protected objects, other shared data, synchronous

and asynchronous synchronizations, etc. To exemplify how the analysis handles the two levels of

parallelism (Ada coarse grain tasks and OpenMP fine grain tasks), we have introduced an OpenMP

computation in the Small Whetstone procedure, which turns into the entry point of a sensor fusion

operation. Now, the parameter of the function indicates the operation to carry out: 1 means reading

sensor A, 2 means reading sensor B, and 3 means fusing the two sensors by adding up its values.

The reading of sensor A is performed periodically from Regular Producer, the reading of sensor B

is performed sporadically from On Call Producer, and the fusion is performed sporadically from

Activation Log Reader.

Listing 6.12 uses the syntax proposed in Ada to use OpenMP [134] to illustrate the behavior

of the extended OpenMP code. There, the parallel construct initiates the parallel execution,

although the single construct indicates that only one thread will execute the inner statements.

Then, the taskloop construct indicates that the iterations of the outermost loop are split into

chunks that can be executed in parallel using OpenMP tasks.

14Hard Real-Time Hierarchical Object-Oriented Design (HRT-HOOD) is an object-based structured design method

6. TOWARDS A FUNCTIONAL SAFE OPENMP 97

1 package body P r o d u c t i o n W o r k l o a d i s
2 type Dim i s range 1 . . 512 ;
3 type M i s array (Dim , Dim) of F l o a t ;
4 M A, M B , M C : M;
5

6 procedure Read Sensor A i s
7 begin
8 pragma OMP (parallel) ;
9 pragma OMP (single) ;

10 pragma OMP (taskloop) ;
11 f o r I in Dim loop
12 f o r J in Dim loop
13 M A(I , J) := s e n s o r (1 , I , J) ;
14 end loop ;
15 end loop ;
16 end Read Sensor A ;
17

18 procedure Read Sensor B i s
19 begin
20 pragma OMP (parallel) ;
21 pragma OMP (single) ;
22 pragma OMP (taskloop) ;
23 f o r I in Dim loop
24 f o r J in Dim loop
25 M B(I , J) := s e n s o r (2 , I , J) ;
26 end loop ;
27 end loop ;
28 end Read Sensor B ;

29

30

31 procedure F u s e S e n s o r s i s
32 begin
33 pragma OMP (parallel) ;
34 pragma OMP (single) ;
35 pragma OMP (taskloop) ;
36 f o r I in Dim loop
37 f o r J in Dim loop
38 M C(I , J) := M A(I , J)
39 + M B(I , J) ;
40 end loop ;
41 end loop ;
42 end F u s e S e n s o r s ;
43

44 procedure S m a l l W h e t s t o n e
45 (Workload : P o s i t i v e) i s
46 begin
47 case Workload i s
48 when 1 => Read Sensor A ;
49 when 2 => Read Sensor B ;
50 when 3 => F u s e S e n s o r s ;
51 when o t h e r s => n u l l ;
52 end case ;
53 end S m a l l W h e t s t o n e ;
54

55 end P r o d u c t i o n W o r k l o a d ;

Listing 6.12: OpenMP code inserted in the Production Workload package of the Ravenscar
application.

6.4.2.1 Concurrency in mixed Ada/OpenMP programs

As introduced previously, pure Ada programs define concurrency by means of tasks, while

OpenMP creates parallelism by means of the parallel construct, and distributes parallelism

by means of worksharing and tasking constructs. When both languages are used together,

concurrency may be defined at multiple levels: between Ada tasks, between OpenMP tasks, and

between Ada and OpenMP tasks.

Ada protected objects are a robust and lightweight language mechanism for mutual exclusion

and data synchronization. For this reason, they are to be used whenever possible to solve race

conditions, i.e., when race conditions occur between Ada tasks, between Ada and OpenMP

tasks, and between OpenMP tasks that belong to different binding regions (i.e., different parallel

regions). This last case is particularly interesting because in C/C++/Fortran OpenMP programs,

tasks belonging to different binding regions cannot be concurrent unless there is nested parallelism

in the form of nested parallel regions. For that reason, OpenMP does not offer any mechanism to

synchronize tasks that belong to different binding regions, except for data synchronizations in the

form of flushes. The extra layer of concurrency introduced by Ada opens the door to this kind of

situation, and hence, the only mechanism available to synchronize such tasks is the Ada protected

object. Finally, to exploit the flexibility of OpenMP, race conditions between OpenMP tasks that

belong to the same binding region are to be solved using OpenMP mechanisms: mutual exclusion

for hard real-time systems [33].

98 6. TOWARDS A FUNCTIONAL SAFE OPENMP

Race condition between Solution

Ada tasks
Ada and OpenMP tasks

different binding regions

Ada mechanisms: protected object

OpenMP tasks
same binding region

OpenMP mechanisms:

* Sincronization constructs and clauses:

taskwait, barrier, depend

* Mutual exclusion constructs:

critical, atomic

* Data-sharing attributes:

private, firstprivate, lastprivate

Table 6.1: Solutions for race conditions in an Ada/OpenMP application.

constructs (atomic and critical constructs), synchronization constructs (e.g., taskwait

and barrier), synchronization clauses (depend) and data-sharing clauses (e.g., private,

firstprivate and lastprivate). Table 6.1 summarizes our approach to resolve race

conditions in each case.

6.4.2.2 Representation of an Ada/OpenMP program

As already pointed out in Section 6.4.1, several representations allow expressing the semantics

of an Ada program (e.g., reachability graphs, petri nets, control flow graphs, etc.). However,

some representations are not suitable for our purpose, for instance petri nets and reachability

graphs, because these express states whereas data flow information is hidden. Furthermore, these

representations have other limitations such as the state explosion problem, and the inability of

representing recursive programs. Hence, to represent the behavior of an Ada/OpenMP program

we use the classic control flow graph (CFG) representation extended to support Ada concurrency

and OpenMP parallelism. Our graph draws from the parallel control flow graph presented in

Section 3.2.1, and the control flow graph for Ada developed by Fechete et al. [51] and based on

the abstract syntax tree (AST) generated by ASIS-for-GNAT [135].

To ease the reading we show the CFGs of the original Ravenscar application and the new

OpenMP code separately, in Figures 6.11 and 6.12 respectively. The CFG of the original

Ravenscar code shows the code executed at elaboration time (top of the figure), and the Ada

code run during the execution of the program (rest of the figure). Each partial CFG represents

a task (Regular Producer, On Call Producer and Activation Log Reader). The special nodes En

and Ex express the entry and the exit points of each task, and the OpenMP code is pointed in

purple. Finally, the turquoise boxes in the bottom represent some significant shared data, and the

edges relating this boxes to the CFG nodes symbolize the type of access to the data: read (dark

red) and write (orange).

Regarding the OpenMP code, it is independent from the Ada code because the data structures

they manage are different. Note however that the OpenMP parallel tasks are inherently concurrent

because they are called from within different Ada tasks, which are in turn concurrent.

6. TOWARDS A FUNCTIONAL SAFE OPENMP 99

Request_Buffer.
Deposit

Activation_Manager.
Synchronize_Activation_

Sporadic

Activation_Log
_Reader.Wait

Production_Workload.
Small_Whetstone

Activation_Log.
Read

En

Ex

Activation_Manager.
Synchronize_Activation_

Cyclic

Production_Workload.
Small_Whetstone

Auxiliary.
Due_Activation

On_Call_Producer.
Start

Auxiliary.
Check_Due

Activation_Log
_Reader.Signal

En

Ex

Activation_Manager.
Synchronize_Activation_

Sporadic

En

Request_Buffer.
Extract

Production_Workload.
Small_Whetstone

Ex

Activation_Manager.
Synchronize_Activation_

Sporadic

Event_Queue.
Handler.Wait

Activation_Log
.Write

En

Ex

On_Call_Producer

Activation_Manager.
Initialize

Regular_Producer Activation_Log_Reader External_Event_Server

Event_Queue.
Handler.Signal

En

Ex

Interrupt_Simulator

Activation_Time

Barrier

Activation_Counter

OPENMP CODE

Request_Counter

Run_Count

Factor

Read

Write

Read/Write

Current_Size

Insert_Index

Barrier

Response

My_Request_Buffer(Insert_Index)

Task_Start_Time

System_Start_Time Next_Time

Local_Suspension_Object

Activation_Time

Poll_Time :=
Ada.Real_Time.Clock +

WaitTime;

delay until
Poll_Time;

Poll_Time := Poll_Time
+ WaitTime;

Poll_Time

Wait_Time

Elaboration
time

Program
execution

Figure 6.11: Control flow graph of the Ravenscar application defined in Section 7 of the “Ada
Ravenscar Profile Guide”.

Definition 1 A block of concurrency, or concurrent block, is a set of portions of code that may

execute in parallel.

Since the application meets the Ravenscar profile, the CFG is particularly simple because

all tasks are created at library level, meaning that they start executing at the beginning of the

program (after elaboration) and terminate when the program ends (task allocators, task termination

and abortion, and task hierarchies, among others, are not allowed). Hence, there are only two

blocks of concurrency (split by blue lines in the CFG) that correspond to the code executed during

elaboration, and the rest of the code.

6.4.2.3 Correctness analysis

Inspired by the algorithms presented in the scope of OpenMP to automatically determine the

data-scoping attributes [129] and the dependence clauses [131] of an OpenMP task, we present

an algorithm to find data-race conditions in Ada concurrent programs using OpenMP tasks. Thus,

we tackle the race-condition problem from all possible angles: 1) between Ada tasks, 2) between

Ada tasks and OpenMP tasks, and 3) between OpenMP tasks. The high-level description of this

technique is outlined in Algorithm 9.

Applying the two first steps of the algorithm to our test case results in the CFGs presented in

Section 3.2.1. All Ada and OpenMP tasks correspond to the same block of concurrency, hence

potential race conditions may occur among all Ada and OpenMP tasks. However, since OpenMP

and Ada tasks manage different share data, we can treat them separately.

100 6. TOWARDS A FUNCTIONAL SAFE OPENMP

En

I := 1

J := 1

M_A(I,J) := 1.0

J := J + 1

I := I + 1

En

Ex

En

Regular_Producer.
Small_Whetstone(1)

I

On_Call_Producer.
Small_Whetstone(2)

Activation_Log_Reader.
Small_Whetstone(3)

J

M_A(I,J)

I := 1

J := 1

M_B(I,J) := 1.0

J := J + 1

I := I + 1

Ex

I J

M_B(I,J)

I := 1

J := 1

M_C(I,J) :=
M_A(I,J) + M_B(I,J)

J := J + 1

I := I + 1

Ex

I J

M_C(I,J)

taskloop

Read_Sensor_B Fuse_Sensors

OpenMP
parallelism

Ada
concurrency

Read

Write

Read/Write

taskloop taskloop

Read_Sensor_A

Figure 6.12: Control flow graph of the OpenMP code introduced in the Small Whetstone
procedure from the Ravenscar application defined in Section 7 of the “Ada Ravenscar Profile

Guide”.

Applying the third step on the original Ravenscar code reveals that accesses to Activation Time

are not in a race condition because the write access is in a different concurrent block than the read

accesses, the accesses to My Request Buffer(Insert Index) are not in a race condition because the

object is part of the protected object Request Buffer, and the accesses to Local Suspension Object

are not in a race condition because these operation are atomic with respect to each other, as

the standard says. The results of the algorithm on the original Ravenscar application found

successfully that the code contains no race conditions.

Regarding the analysis of the OpenMP code, the data-sharing rules force a private copy of

the induction variable of the taskloop for each thread. Also, the variables declared within the

taskloop are private to each thread. As a result, applying the third step of the algorithm on the

OpenMP code reveals that accesses to variables I and J are not in a race condition because they

are private to each thread. On the other hand, accesses to the matrices M A, M B and M C are in a

race condition because the write access to M A and M B from Read Sensor A and Read Sensor B

respectively collide with the read access to both variables from Fuse Sensor. The results of the

algorithm point to the use of partial synchronizations in the form of task dependence clauses. Task

from Read Sensor A has an output dependency on M A(Dim, Dim), task from Read Sensor B has

an output dependency on M B(Dim, Dim), and task from Fuse Sensor has an input dependency on

M A(Dim, Dim) and M B(Dim, Dim), and an output dependency on M C(Dim, Dim).

6. TOWARDS A FUNCTIONAL SAFE OPENMP 101

Algorithm 9 High-level algorithm to detect race conditions in Ada/OpenMP programs.
1: Build the inter-procedural CFG of the program.
2: Recognize the block of concurrency (in a Ravenscar application this is as simple as splitting

the elaboration code and the rest of the code).
3: for each block of concurrency do
4: if there are concurrent accesses to shared data, and at least one is a write then
5: if all accesses are within OpenMP tasks that belong to the same binding region then
6: if the operations are commutative[88] then
7: Protect the accesses with an atomic or critical construct.
8: else
9: There are two approaches:

10: * Use full synchronizations: insert a taskwait or barrier construct between
the two accesses.

11: * Use partial synchronizations: follow the algorithm to automatically determine the
dependence clauses of an OpenMP tasks.

12: end if
13: else
14: Propose to wrap the shared data in a protected object.
15: end if
16: end if
17: end for

6.4.2.4 Extending the approach

This work currently assumes a restricted model, where Ada applications follow the Ravenscar

profile [35], and considering only the sharing of variables declared in the same scope. This

restriction is not related to the approach per se, but instead relate to the complexity of the control

flow graph as well as the program code visibility required for the analysis.

In fact, if we consider a more complex concurrency model than Ravenscar, it is necessary

to introduce further edges in the graph, as tasks will have other dependencies (e.g., master

dependencies, rendezvous, etc.), as well as making the process of determining the concurrency

blocks more complex. This will make the analysis more accurate, at the cost of a higher

complexity.

Similarly, if full program analysis is available, it will allow to address any data sharing.

However, this will introduce further complexity in the approach, as per the complexity of

understanding which variables are actually shared. In this context, proposals to cope with this

limitation exist for both Ada [147] and OpenMP [132], both consisting in annotations added to

APIs of those applications which are to be used as third-party libraries. The Ada annotations

include the aspects Global and Potentially Blocking to resolve race conditions and

deadlocks respectively. The OpenMP annotations, introduced in Section 6.2.3.1, include the

directives globals and usage to resolve race conditions and illegal nesting15 (including nested

regions that can cause deadlocks).

15The OpenMP specification (Section 2.17 [113]) defines a series of rules that determine which constructs cannot
be nested within each other.

102 6. TOWARDS A FUNCTIONAL SAFE OPENMP

6.4.3 Conclusion

This section enhances the use of OpenMP in safety-critical environments by addressing the safety

of Ada programs in the presence of parallel computation implemented with OpenMP. Hence,

it provides one step further in the work presented in the current chapter to enable OpenMP

fine-grained parallelism in Ada. With this purpose, the section introduces a new compiler

analysis technique that can identify potential race conditions in Ada, both considering Ada tasks

and parallel OpenMP code. The technique is built on top of three components: a) a graph

representation that includes both control- and data-flow dependencies of concurrent and parallel

code, b) an adaptation of existent compiler techniques developed for sequential languages to

consider Ada tasks, and c) compiler methods that detect data races and guide the programmer

in solving them.

6.5 Impact

On one hand, the works regarding the adaptation of OpenMP to the safety critical domain are

being taken into account by the OpenMP ARB. Currently, a mailing list has started with the aim of

defining the topics to be discussed regarding safety from two different perspectives: functionality

and time-predictability. These discussions shall serve as the basis for determining how safety

issues must be tackled within the structure of committee.

On the other hand, the works regarding the introduction of OpenMP into Ada have made an

impression on the Ada community and are going to be discussed in the next IRTAW, to be hold on

April 2018. This will represent another step in the introduction of fine grain parallelism in Ada, a

topic that has already been under discussion in previous editions of the workshop, where only the

tasklet model was under consideration.

6.6 Conclusion

This chapter aims to widen the use of OpenMP in new areas, particularly the safety-critical

real-time domain. We tackle this issue from two different angles: 1) how the OpenMP specification

can be adapted to meet the requirements of safety-critical systems, and 2) how safe languages

can benefit from OpenMP. Regarding the former, OpenMP shall be analyzed in two directions:

functional safety and time predictability. Regarding the latter, three aspects must be considered:

language syntax, compiler analysis and runtime support. Figure 6.13 shows an schema of this

scenario, and displays as well the status of our work regarding each of these angles.

Regarding OpenMP, we tackle functional safety in the specification, and let time-predictability

out of the scope of this thesis16. In this context, we provide prove that the OpenMP specification

has few features that can jeopardize the safety of a system. Particularly, we detect features that

could be solved at compile-time and/or run-time, and provide solutions for them. A small subset

16The analysis of the timing properties of OpenMP has been addressed in other works [96, 139, 145, 155] cited
along the sections of this chapter.

6. TOWARDS A FUNCTIONAL SAFE OPENMP 103

OpenMP

Functional
safety

Time
predictability

Ada

Language:
syntax

Runtime:
execution model

Compiler:
correctness

Figure 6.13: Schema of the issues addressed in the context of applying OpenMP in the
safety-critical domain by means of Ada.

of features is identified as not analyzable, and we propose to restrict the use of these features

depending on the level of criticality of the system. Furthermore, we propose the use of two new

directives to enable whole program analysis even when third-party libraries are used.

Furthermore, we address the runtime support for integrating OpenMP into Ada, and analyze

the OpenMP and the Ada tasklet models proving that both models have equivalent features, hence

the same safety properties. This proves that OpenMP can be used to implement the tasklet model

to exploit structured fine-grain parallelism. Additionally, we show how Ada can further exploit the

OpenMP tasking model and its partial synchronizations to implement unstructured parallelism.

Finally, we cover the compiler support regarding static analysis by designing a new analysis

technique that allows discovering data-race conditions in Ada codes including Ada tasks and/or

OpenMP tasks. The algorithm is sound and is analyzed using a well known Ravenscar example.

The model used to represent the semantics of an Ada/OpenMP program, the CFG, is trivial for a

Ravenscar application. It remains as a future work the extension of this representation to cover

non-Ravenscar features such as dynamic task allocation or task abortion among others.

Regarding Ada, we tackle the problem at all possible levels. First, we propose a new syntax

for OpenMP adapted to that of Ada to keep its safety properties. Second, we prove the equivalence

between the OpenMP execution model and that of Ada tasklets. Hence, we show evidence

of how OpenMP can be used to implement the tasklet model, and how OpenMP can be used

directly in Ada codes to exploit its fine-grain parallel capabilities. Third, we propose a new

compiler technique able to detect data-race conditions in Ada codes using or not Ada tasks and

OpenMP tasks. In this sense, it remains as future work to test this technique with non-Ravenscar

applications, and also to extend it to detect not only race conditions but also deadlocks and other

issues related to parallel execution.

7
Discussion

7.1 Conclusion

In this thesis, we present different contributions that tackle compiler analysis within the scope

of the OpenMP programming model from three different perspectives: compiler algorithms,

language constructions and runtime algorithms. These contributions, thoroughly described in

Section 1.3, include: 1) compiler analysis techniques dedicated to determine OpenMP’s functional

safety, 2) compiler techniques dedicated to enlighten OpenMP runtimes, 3) the study of the

suitability of OpenMP for the safety-critical domain, 4) the integration of OpenMP into Ada,

and 5) the development of compiler analysis techniques tacking Ada programs parallelized with

OpenMP.

Generally speaking, we conclude that there is a need to include methodologies for determining

functional safety in OpenMP. Programmers may take profit of correctness mechanisms to avoid

undesired results at both compile-time and run-time. In this context, solutions may come from

different angles. On one hand, the OpenMP specification could introduce new features to help

detecting correctness issues. In that regard, we propose new directives that enable whole program

analysis even when third-party libraries are used. We also note the need to introduce error

handling techniques in the specification. On the other hand, we describe a variety of analyses

that should be implemented in safety-OpenMP compliant compilers to detect situations that may

entail a hazard regarding the correctness of the program. Among these, we highlight the necessity

of mechanisms for detecting race-conditions and deadlocks. Furthermore, we present different

techniques, specifically designed for OpenMP tasks, that allow detecting not only races and

deadlocks, but also incongruities regarding the use of OpenMP tasks data-sharing attributes and

dependences. Finally, we propose some changes to be applied in OpenMP runtimes to cover those

cases that cannot be tackled at the specification level, nor in the compiler.

The previously mentioned mechanisms lead us to a scenario where OpenMP could easily be

applied to environments that are currently beyond its reach, as it currently is the safety-critical

domain. In that sense, we conclude that functional safety can be ensured in OpenMP programs

if the methodologies we propose are introduced at all levels (programming language, compiler

and runtime). As to materialize the use of OpenMP in safety-critical systems, we integrate

OpenMP and Ada and demonstrate the usefulness of OpenMP in boosting the performance of

105

106 7. DISCUSSION

Ada applications. In this context, the complete integration of OpenMP in safety-critical domains

still requires an accurate study of OpenMP regarding response-time analysis.

Also in the direction of using OpenMP in new environments, we propose a compiler technique

to statically generate a TDG. This graph guides the scheduling of OpenMP tasks by considerably

reducing the memory usage because only a very light mechanism is needed at runtime to decide

whether a task is dependent on other tasks or not. This feature is very useful in systems where

memory constraints are tight, such as embedded systems.

7.2 Impact

Several works in this thesis have had and are having an impact in the international community.

This section introduces the repercussion of this work in three different facets: 1) the European

projects where this work has been, is being or will be used, 2) the influence on the evolution

of different programming models, and 3) other Master’s and PhD thesis where this work has a

significant impact.

7.2.1 European projects

P-SOCRATES, Parallel Software Framework for Time-Critical Many-core Systems
P-SOCRATES is a European project that lasted between 2013 and 2016 [121, 150]. The

goal of the project was to develop a complete framework, from the conceptual design to the

physical implementation, to combine real-time embedded mapping and scheduling techniques

with high-performance parallel programming models and associated tools.

The static generation of a task dependency graph based on an OpenMP/OmpSs application

is integrated as part of the software stack of P-SOCRATES, and enables two important fields of

study within the project:

1. The application of the sporadic-DAG scheduling model, a well-known technique in scheduling

theory to represent real-time systems, upon which schedulability guarantees can be derived.

2. The development of task-to-thread work-conserving mapping strategies based on the OpenMP

tied and untied tasking models: breadth-first scheduling, work-first scheduling, fully static

mapping and limited preemption scheduling.

AXIOM, Agile, eXtensible, fast I/O Module for the cyber-physical era
AXIOM is a 3-year European project that started in 2015 [12, 151]. It aims at researching

new software/hardware architectures for the future Cyber-Physical Systems (CPSs). These

systems are expected to react in real-time, provide enough computational power for the assigned

tasks consuming the least possible energy, scale up through modularity and allow for an easy

programmability across performance scaling.

The static generation of a task dependency graph for OpenMP/OmpSs applications is being

used with two main purposes:

1. The study and implementation of new scheduling policies for OmpSs clusters . The use

of static TDGs enables the estimation and exploration of different scheduling policies by

7. DISCUSSION 107

assigning weights representing communication costs, data copies, execution costs, etc. to

the nodes and edges of the graph. Furthermore, the static TDGs may help to reduce the cost

of creating tasks and controlling the dependences because this may be done off-line.

2. The implementation of a code generator from OmpSs code for the data-flow based xsmll

(eXtended Shared Memory Low Level specification) runtime [54]. In the xsmll model, threads

executing tasks must receive a descriptor of its successors. Hence, the whole task dependency

graph must be expanded prior to the generation of the code.

CLASS, Edge and CLoud Computation: A Highly Distributed Software Architecture for
BigData AnalyticS

CLASS is a 3-year European project that started in January 2018. The main objective of the

project is to develop a novel software architecture to help big data developers to fully benefit from

a combined data-in-motion and data-at-rest analysis by efficiently distributing data and process

mining along the compute continuum (from edge to cloud resources) in a complete and transparent

way, while providing sound real-time guarantees imposed by autonomous vehicles.

The static generation of a TDG based on an OpenMP/OmpSs application is to be used within

the software stack to be developed in the project in order to help in the scheduling of different tasks

among the compute continuum. The use of the static TDG will be enclosed in the frame of the

COMPSs programming model [90], which already uses a dynamically generated task dependency

graph equivalent to that of OpenMP and OmpSs.

7.2.2 Programming models

The works that have been conducted in the scope of this thesis related to the convergence of the

HPC and the real-time domains are having a significant impact in two communities:

– the OpenMP language committee. Our work has motivated the creation of a discussion group

within the OpenMP ARB in order to tackle real-time aspects in the OpenMP specification.

This group is currently defining the topics to be discussed and the members that want to

participate in the discussion.

– the Ada language committee. In the last years, the committee has been considering the

expansion of the core language to support fine grain parallelism. OpenMP is now another

option under consideration that may avoid the burden of developing new syntax for that

purpose, such as the tasklet model presented in Section 6.4, as well as bring in the fore many

interesting features.

7.2.3 Other thesis

The analysis platform developed during this PhD has been and is being used by other students to

carry out their own thesis. Next we show the list of Degree, Master’s and PhD thesis that take

profit from our framework:

108 7. DISCUSSION

– Diego Caballero. SIMD@OpenMP: A Programming Model Approach to Leverage SIMD

Features. Ph.D. programme by ”Computer Architecture”, Final Dissertation. Department

of Computer Architecture, Universitat Politècnica de Catalunya. November, 2015.

– Maria A. Serrano. Time-predictable parallel programming models. Ph.D. programme

by ”Computer Architecture”, Final Dissertation. Department of Computer Architecture

Universitat Politècnica de Catalunya. To be presented in 2019.

– Daniel Peyrolon. Code generation for the dataflow-based xsmll runtime. Master in Innovation

and Research in Informatics, Final Thesis. Facultat d’Informàtica de Barcelona. October,

2017.

– Juan López. Task scheduling in a disjoint global memory model for FPGA accelerated

clusters. Bachelor Degree in Informatics Engineering. Final Degree Project. To be presented

in 2018.

7.3 Future work

The analysis infrastructure build on the Mercurium compiler as part of this thesis lays a solid basis

for further research on analysis techniques focused on OpenMP. This research can include new

compiler analysis algorithms to enhance the accuracy of the results obtained with our correctness

analysis tool. In this regard, we are currently working on the extension of range analysis techniques

[125] to support OpenMP, which could be used to accurately determine overflows in the use of

task dependence expressions. Along the same lines, new analysis algorithms can address different

correctness issues regarding the use of OpenMP tasks.

In the context of the generation of the TDG at compile-time, we are working on different

directions. On one hand, we plan to augment the information collected around the TDG to

enable the study of static scheduling techniques. Concretely, we plan to use the previously

mentioned range analysis to argue about the data consumed and produced in OpenMP tasks,

and also we will extract other information such as tasks weight, communications cost, etc., to

elaborate new static scheduling strategies. Furthermore, we want to use the static TDG generation

to enhance productivity in high-performance domains by preallocating data from the compiler,

and prefetching data from the runtime scheduler.

Regarding the integration of OpenMP in the safety-critical domain, there are different issues to

consider. On one hand, we develop about the suitability of OpenMP regarding functional safety. In

this regard, there is still a need to analyze the OpenMP specification in terms of time-predictability.

On the other hand, the Ada and OpenMP runtimes still have to be integrated, and the issues raised

from this integration need to be addressed. Furthermore, are currently working on the adaptation

of the algorithms developed for automatically scoping variables and for automatically determining

the dependence clauses in task constructs, in order to adapt them to both the Ada concurrent model

and the Ada parallel model.

7. DISCUSSION 109

7.4 Publications

The work conducted in this thesis resulted in six publications, which are listed as follows:

– Sara Royuela, Roger Ferrer, Diego Caballero, and Xavier Martorell. Compiler analysis

for OpenMP tasks correctness. Proceedings of the 12th ACM International Conference on

Computing Frontiers, CF. Ischia, Italy. May 18-21, 2015.

– Roberto E. Vargas, Sara Royuela, Maria A. Serrano, Eduardo Quiñones, and Xavi Martorell.

A Lightweight OpenMP4 Run-time for Embedded Systems. 21st Asia and South Pacific Design

Automation Conference, ASP-DAC. Macau, China. January 25-28, 2016.

– Sara Royuela, Xavier Martorell, Eduardo Quiñones, and Luis Miguel Pinho. OpenMP Tasking

Model for Ada: Safety and Correctness. 22nd International Conference on Reliable Software

Technologies, Ada-Europe. Vienna, Austria. June 12-16, 2017.

– Sara Royuela, Alejandro Duran, Maria A. Serrano, Eduardo Quiñones, and Xavier Martorell.

Functional Safety for Hard Real-Time OpenMP. Proceedings of the 13th International

Workshop on OpenMP, IWOMP. Stony Brook, New York, USA. September 21-22, 2017.

– Sara Royuela, Eduardo Quiñones, and Luis Miguel Pinho. Converging Safety and

High-performance Domains: Integrating OpenMP into Ada. Proceedings of the 21st

Conference on Design, Automation and Test in Europe, DATE. Dresden, Germany. March

19-23, 2018.

– Sara Royuela, Xavier Martorell, Luis Miguel Pinho and Eduardo Quiñones. Safe Parallelism:

Compiler Analysis Techniques for Ada and OpenMP. 23rd International Conference on

Reliable Software Technologies, Ada-Europe. Lisbon, Portugal. June 18-22, 2018.

Additionally, some of the work presented in this thesis was used in the following publication:

– Diego Caballero, Sara Royuela, Roger Ferrer, Alejandro Duran, and Xavier Martorell.

Optimizing overlapped Memory Accesses in User-directed vectorization. Proceedings of the

29th ACM on International Conference on Supercomputing. Newport Beach, California, USA.

June 8-11, 2015.

Furthermore, as part of the future work, there are three ongoing publications listed as follows:

– Maria A. Serrano, Sara Royuela, and Eduardo Quiñones. Chapter 3 - Predictable

Parallel Programming with OpenMP from the book High-performance and Time-predictable

Embedded Computing. River Publishers, 2018.

– Luis Miguel Pinho, Eduardo Quiñones and Sara Royuela. Position paper: combining the

tasklet model with OpenMP. 19th International Real-Time Ada Workshop. Benicàssim, Spain.

April 18-20, 2018.

– Sara Royuela, Luis Miguel Pinho and Eduardo Quiñones. Solving race conditions in Ada

OpenMP parallel programs. International Symposium on Code Generation and Optimization.

Vienna, Austria. 2019.

Finally, it is also worth to mention the publications presented in the context of the master’s thesis

because they are the basis of many of the work presented in this thesis:

– Roger Ferrer, Sara Royuela, Diego Caballero, Alejandro Duran, Xavier Martorell, and Eduard

Ayguade. Mercurium: Design Decisions for a S2S Compiler. Cetus Users and Compiler

110 7. DISCUSSION

Infrastructure Workshop in conjunction with PACT. Galveston Island, Texas, USA. October

10, 2011.

– Sara Royuela, Alejandro Duran, Chunhua Liao, and Daniel J. Quinlan. Auto-scoping for

OpenMP Tasks. Proceedings of the 8th International Workshop on OpenMP, IWOMP. Rome,

Italy. June 11-13, 2012.

– Sara Royuela, Alejandro Duran, and Xavier Martorell. Compiler automatic discovery of

OmpSs task dependencies. International Workshop on Languages and Compilers for Parallel

Computing, LCPC. Tokyo, Japan. September 11-13, 2012.

Bibliography

[1] Ada Conformity Assessment Authority. Rationale for Ada 2012: Multiprocessors. 2014.

URL: {{http://www.ada-auth.org/standards/12rat/html/Rat12-5-

3.html}}.

[2] Ada-Europe. Ada Reference Manual ISO/IEC 8652:2012(E) – Timed Entry Calls. 2012.

URL: {{http://www.adaic.org/resources/add_content/standards/

12rm/html/RM-9-7-2.html}}.

[3] Ada-Europe. Ada Reference Manual ISO/IEC 8652:2012(E) – Annex D: Real-Time

Systems. 2013. URL: {{http://www.adaic.org/resources/add_content/

standards/12rm/html/RM-D.html}}.

[4] Ada-Europe. Ada Reference Manual ISO/IEC 8652:2012(E) – Conditional Entry Calls.

2013. URL: {{http : / / www . adaic . org / resources / add _ content /

standards/12rm/html/RM-9-7-3.html}}.

[5] Ada-Europe. Ada Reference Manual ISO/IEC 8652:2012(E) – Entry Queuing Policies.

2013. URL: {{http : / / www . adaic . org / resources / add _ content /

standards/12rm/html/RM-D-4.html}}.

[6] Ada-Europe. Ada Reference Manual ISO/IEC 8652:2012(E) – Task Priorities. 2013. URL:

{{http://www.adaic.org/resources/add_content/standards/

12rm/html/RM-D-1.html}}.

[7] AdaCore. GNAT User’s Guide for Native Platform. 2017. URL: {https://gcc.gnu.

org/onlinedocs/gnat_ugn.pdf}.

[8] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools.

Addison Wesley Boston, 1986.

[9] S. Aldea López. “Compile-time support for thread-level speculation”. PhD thesis.

Universidad de Valladolid, 2014.

[10] S. Arandi, G. Michael, P. Evripidou, and C. Kyriacou. “Combining compile and run-time

dependency resolution in data-driven multithreading”. In: Data-Flow Execution Models

for Extreme Scale Computing (DFM), 2011 First Workshop on. IEEE. 2011, pp. 45–52.

[11] Arm. Cortex-A57. 2017. URL: {https://developer.arm.com/products/

processors/cortex-a/cortex-a57}.

[12] AXIOM. Agile, eXtensible, fast I/O Module for the cyber-physical era. 2015. URL: http:

//www.axiom-project.eu.

111

{{http://www.ada-auth.org/standards/12rat/html/Rat12-5-3.html}}
{{http://www.ada-auth.org/standards/12rat/html/Rat12-5-3.html}}
{{http://www.adaic.org/resources/add_content/standards/12rm/html/RM-9-7-2.html}}
{{http://www.adaic.org/resources/add_content/standards/12rm/html/RM-9-7-2.html}}
{{http://www.adaic.org/resources/add_content/standards/12rm/html/RM-D.html}}
{{http://www.adaic.org/resources/add_content/standards/12rm/html/RM-D.html}}
{{http://www.adaic.org/resources/add_content/standards/12rm/html/RM-9-7-3.html}}
{{http://www.adaic.org/resources/add_content/standards/12rm/html/RM-9-7-3.html}}
{{http://www.adaic.org/resources/add_content/standards/12rm/html/RM-D-4.html}}
{{http://www.adaic.org/resources/add_content/standards/12rm/html/RM-D-4.html}}
{{http://www.adaic.org/resources/add_content/standards/12rm/html/RM-D-1.html}}
{{http://www.adaic.org/resources/add_content/standards/12rm/html/RM-D-1.html}}
{https://gcc.gnu.org/onlinedocs/gnat_ugn.pdf}
{https://gcc.gnu.org/onlinedocs/gnat_ugn.pdf}
{https://developer.arm.com/products/processors/cortex-a/cortex-a57}
{https://developer.arm.com/products/processors/cortex-a/cortex-a57}
http://www.axiom-project.eu
http://www.axiom-project.eu

112 BIBLIOGRAPHY

[13] R. M. Badia, J. R. Herrero, J. Labarta, J. M. Pérez, E. S. Quintana-Ortı́, and G.

Quintana-Ortı́. “Parallelizing dense and banded linear algebra libraries using SMPSs”. In:

Concurrency and Computation: Practice and Experience 21.18 (2009), pp. 2438–2456.

[14] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen. “A theory of data race detection”. In: Parallel

and distributed systems: testing and debugging. ACM. 2006, pp. 69–78.

[15] Barcelona Supercomputing Center. OmpSs User Guide. URL: {https://pm.bsc.

es/ompss-docs/user-guide}.

[16] Barcelona Supercomputing Center. Course on programming models using OmpSs. 2014.

URL: {https : / / eventos . redclara . net / indico / event / 311 /

overview}.

[17] Barcelona Supercomputing Center. Extrae. 2017. URL: {https://tools.bsc.es/

extrae}.

[18] Barcelona Supercomputing Center. MareNostrum III User’s Guide. 2017. URL: {https:

//www.bsc.es/support/MareNostrum3-ug.pdf}.

[19] Barcelona Supercomputing Center. MareNostrum IV User’s Guide. 2017. URL: {https:

//www.bsc.es/support/MareNostrum4-ug.pdf}.

[20] Barcelona Supercomputing Center. OmpSs specification. 2017. URL: {https://pm.

bsc.es/ompss-docs/spec/index.html}.

[21] Barcelona Supercomputing Center. Paraver. 2017. URL: {https://tools.bsc.es/

paraver}.

[22] Barcelona Supercomputing Center. Programming Models group at BSC. 2017. URL:

{https://pm.bsc.es}.

[23] J. Barnes. Safe and secure software: An invitation to Ada 2012. AdaCore, 2015,

pp. 107–126. URL: {http://www.adacore.com/uploads/technical-

papers/SafeSecureAdav2015-covered.pdf}.

[24] S. Baruah. “Improved multiprocessor global schedulability analysis of sporadic dag task

systems”. In: Real-Time Systems (ECRTS), 2014 26th Euromicro Conference on. IEEE.

2014, pp. 97–105.

[25] N. Bascelija. “Sequential and Parallel Algorithms for Cholesky Factorization of Sparse

Matrices”. In: WSEAS: Mathematical Applications in Science and Mechanics (2013).

[26] A. Basumallik and R. Eigenmann. “Incorporation of OpenMP memory consistency into

conventional dataflow analysis”. In: International Workshop on OpenMP. Springer. 2008,

pp. 71–82.

[27] V. Basupalli, T. Yuki, S. Rajopadhye, A. Morvan, S. Derrien, P. Quinton, and

D. Wonnacott. “ompVerify: polyhedral analysis for the OpenMP programmer”. In:

International Workshop on OpenMP. Springer. 2011, pp. 37–53.

{https://pm.bsc.es/ompss-docs/user-guide}
{https://pm.bsc.es/ompss-docs/user-guide}
{https://eventos.redclara.net/indico/event/311/overview}
{https://eventos.redclara.net/indico/event/311/overview}
{https://tools.bsc.es/extrae}
{https://tools.bsc.es/extrae}
{https://www.bsc.es/support/MareNostrum3-ug.pdf}
{https://www.bsc.es/support/MareNostrum3-ug.pdf}
{https://www.bsc.es/support/MareNostrum4-ug.pdf}
{https://www.bsc.es/support/MareNostrum4-ug.pdf}
{https://pm.bsc.es/ompss-docs/spec/index.html}
{https://pm.bsc.es/ompss-docs/spec/index.html}
{https://tools.bsc.es/paraver}
{https://tools.bsc.es/paraver}
{https://pm.bsc.es}
{http://www.adacore.com/uploads/technical-papers/SafeSecureAdav2015-covered.pdf}
{http://www.adacore.com/uploads/technical-papers/SafeSecureAdav2015-covered.pdf}

BIBLIOGRAPHY 113

[28] L. Benini, E. Flamand, D. Fuin, and D. Melpignano. “P2012: Building an ecosystem for a

scalable, modular and high-efficiency embedded computing accelerator”. In: Conference

on Design, Automation & Test in Europe. EDA Consortium. 2012, 983–987.

[29] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou.

“Cilk: An efficient multithreaded runtime system”. In: Journal of parallel and distributed

computing 37.1 (1996), pp. 55–69.

[30] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra.

“DAGuE: A generic distributed DAG engine for high performance computing”. In:

Parallel Computing 38.1 (2012), pp. 37–51.

[31] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M. Badia, E. Ayguade, and

J. Labarta. “Productive cluster programming with OmpSs”. In: European Conference on

Parallel Processing. Springer. 2011, pp. 555–566.

[32] P. Burgio, G. Tagliavini, A. Marongiu, and L. Benini. “Enabling fine-grained OpenMP

tasking on tightly-coupled shared memory clusters”. In: Conference on Design,

Automation & Test in Europe. EDA Consortium. 2013, 1504–1509.

[33] A. Burns and A. J. Wellings. “HRT-HOOD: A structured design method for hard real-time

systems”. In: Real-Time Systems 6.1 (1994), pp. 73–114.

[34] A. Burns, B. Dobbing, and G. Romanski. “The Ravenscar tasking profile for high integrity

real-time programs”. In: International Conference on Reliable Software Technologies.

Springer. 1998, pp. 263–275.

[35] A. Burns, B. Dobbing, and T. Vardanega. “Guide for the use of the Ada Ravenscar Profile

in high integrity systems”. In: ACM SIGAda Ada Letters 24.2 (2004), pp. 1–74.

[36] D. Caballero. “SIMD@OpenMP: a programming model approach to leverage SIMD

features”. PhD thesis. Universitat Politècnica de Catalunya · BarcelonaTech (UPC), 2015.

[37] D. Caballero, S. Royuela, R. Ferrer, A. Duran, and X. Martorell. “Optimizing Overlapped

Memory Accesses in User-directed Vectorization”. In: Proceedings of the 29th ACM on

International Conference on Supercomputing. Newport Beach, California, USA: ACM,

2015, pp. 393–404.

[38] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A. Shrivastava, and A. Gatherer.

“Implementing OpenMP on a high performance embedded multicore MPSoC”. In:

International Symposium on Parallel & Distributed Processing. IEEE. 2009, pp. 1–8.

[39] J. Cownie and S. Moore. “Portable OpenMP debugging with totalview”. In: European

Workshop on OpenMP. 2000.

[40] N. CUDATM . Nvidia CUDA C Programming Guide. 2012. URL: {{http : / /

developer.download.nvidia.com/compute/DevZone/docs/html/C/

doc/CUDA_C_Programming_Guide.pdf}}.

{{http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf}}
{{http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf}}
{{http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf}}

114 BIBLIOGRAPHY

[41] B. D. De Dinechin, D. Van Amstel, M. Poulhiès, and G. Lager. “Time-critical computing

on a single-chip massively parallel processor”. In: Conference on Design, Automation &

Test in Europe. IEEE. 2014, pp. 1–6.

[42] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo, J. Reybert, and

T. Strudel. “A distributed run-time environment for the kalray mppa®-256 integrated

manycore processor”. In: Procedia Computer Science 18 (2013), pp. 1654–1663.

[43] R. DO. “178C”. In: Software considerations in airborne systems and equipment

certification (2011).

[44] R. DO. “178C”. In: Software considerations in airborne systems and equipment

certification (2011).

[45] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and J. Planas.

“Ompss: a proposal for programming heterogeneous multi-core architectures”. In: Parallel

Processing Letters 21.02 (2011), pp. 173–193.

[46] A. Duran, R. Ferrer, J. J. Costa, M. Gonzàlez, X. Martorell, E. Ayguadé, and J. Labarta.

“A proposal for error handling in OpenMP”. In: International Journal of Parallel

Programming 35.4 (2007), pp. 393–416.

[47] M. Eslamimehr and J. Palsberg. “Sherlock: scalable deadlock detection for concurrent

programs”. In: International Symposium on Foundations of Software Engineering. ACM.

2014, pp. 353–365.

[48] S. Evangelista, C. Kaiser, J.-F. Pradat-Peyre, and P. Rousseau. “Quasar: a new tool for

concurrent Ada programs analysis”. In: Ada-Europe. Springer. 2003, pp. 168–181.

[49] X. Fan, M. Mehrabi, O. Sinnen, and N. Giacaman. “Exception Handling with OpenMP

in Object-Oriented Languages”. In: International Workshop on OpenMP. Springer. 2015,

pp. 115–129.

[50] J. M. Faria, J. Martins, and J. S. Pinto. “An Approach to Model Checking Ada Programs”.

In: 17th Ada-Europe International Conference on Reliable Software Technologies. Ed. by

M. Brorsson and L. M. Pinho. Stockholm, Sweden: Springer, 2012, pp. 105–118.

[51] R. Fechete and G. Kienesberger. “A Framework for CFG-Based Static Program Analysis

of Ada Programs”. In: 13th Ada-Europe International Conference on Reliable Software

Technologies. Ed. by F. Kordon and T. Vardanega. Venice, Italy: Springer, 2008,

pp. 130–143.

[52] R. Ferrer, S. Royuela, D. Caballero, A. Duran, X. Martorell, and E. Ayguadé. “Mercurium:

Design decisions for a s2s compiler”. In: 2011.

[53] D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu. “A real-time scheduling

service for parallel tasks”. In: 19th Real-Time and Embedded Technology and Applications

Symposium. IEEE. 2013, pp. 261–272.

BIBLIOGRAPHY 115

[54] R. Giorgi, P. Gai, B. Morelli, and S. Garzarella. D7.1 – Initial AXIOM Evaluation Platform

(AEP) definition and initial tests. Tech. rep. 2016. URL: http : / / www . axiom -

project.eu/wp-content/uploads/2015/04/AXIOM-D71-v1.pdf.

[55] R. Giorgi et al. “TERAFLUX: Harnessing dataflow in next generation teradevices”. In:

Microprocessors and Microsystems 38.8 (2014), pp. 976–990.

[56] GNU. GCC 5.4 manuals. 2016. URL: {https://gcc.gnu.org/onlinedocs/5.

4.0}.

[57] GNU. GNAT. https://www.gnu.org/software/gnat. 2016.

[58] GNU. Offloading Support in GCC. 2016. URL: {https://gcc.gnu.org/wiki/

Offloading}.

[59] GNU. Link Time Optimization. 2017. URL: {https : / / gcc . gnu . org /

onlinedocs/gccint/LTO.html}.

[60] GNU. The GOMP project. 2017. URL: {https://gcc.gnu.org/projects/

gomp}.

[61] O.-K. Ha, I.-B. Kuh, G. M. Tchamgoue, and Y.-K. Jun. “On-the-fly detection of data

races in OpenMP programs”. In: Workshop on Parallel and Distributed Systems: Testing,

Analysis, and Debugging. ACM. 2012, pp. 1–10.

[62] T. Hanawa, M. Sato, J. Lee, T. Imada, H. Kimura, and T. Boku. “Evaluation of multicore

processors for embedded systems by parallel benchmark program using OpenMP”. In:

International Workshop on OpenMP. Springer. 2009, pp. 15–27.

[63] G. J. Holzmann. “The model checker SPIN”. In: IEEE Transactions on software

engineering 23.5 (1997), pp. 279–295.

[64] L. Huang, D. Eachempati, M. W. Hervey, and B. Chapman. “Extending global

optimizations in the OpenUH compiler for OpenMP”. In: Open64 Workshop at CGO.

Citeseer. 2008.

[65] L. Huang, G. Sethuraman, and B. Chapman. “Parallel data flow analysis for openmp

programs”. In: International Workshop on OpenMP. Springer. 2007, pp. 138–142.

[66] IBM. IBM Parallel Environment. 2016. URL: {http : / / www - 03 . ibm . com /

systems/power/software/parallel}.

[67] IEC. “8652: 2012 Programming Languages and their Environments–Programming

Language Ada”. In: International Standards Organization ().

[68] Infineon. AURIXTM– Safety joins Performance. 2017. URL: {https : / / www .

infineon.com/cms/en/product/microcontroller/32-bit-tricore-

tm- microcontroller/aurix- tm- family/channel.html?channel=

db3a30433727a44301372b2eefbb48d9}.

[69] Intel®. OpenMP Runtime Library. 2016. URL: {https://www.openmprtl.org}.

http://www.axiom-project.eu/wp-content/uploads/2015/04/AXIOM-D71-v1.pdf
http://www.axiom-project.eu/wp-content/uploads/2015/04/AXIOM-D71-v1.pdf
{https://gcc.gnu.org/onlinedocs/5.4.0}
{https://gcc.gnu.org/onlinedocs/5.4.0}
https://www.gnu.org/software/gnat
{https://gcc.gnu.org/wiki/Offloading}
{https://gcc.gnu.org/wiki/Offloading}
{https://gcc.gnu.org/onlinedocs/gccint/LTO.html}
{https://gcc.gnu.org/onlinedocs/gccint/LTO.html}
{https://gcc.gnu.org/projects/gomp}
{https://gcc.gnu.org/projects/gomp}
{http://www-03.ibm.com/systems/power/software/parallel}
{http://www-03.ibm.com/systems/power/software/parallel}
{https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9}
{https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9}
{https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9}
{https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9}
{https://www.openmprtl.org}

116 BIBLIOGRAPHY

[70] Intel® Corporation. Interprocedural Optimization. 2017. URL: {https://software.

intel.com/en-us/node/522666}.

[71] International Electrotechnical Comission. IEC 61508 Edition 2.0, Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-related Systems. 2009.

[72] International Organization for Standardization. ISO/DIS 26262. Road Vehicles –

Functional Safety. 2009.

[73] ISO/IEC JTC 1/SC 22. ISO/IEC 14882:2011 Information technology – Programming

languages – C++. 2011. URL: {https://www.iso.org/standard/50372.

html}.

[74] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy. “Helgrind+: An efficient dynamic

race detector”. In: International Symposium on Parallel & Distributed Processing. IEEE.

2009, pp. 1–13.

[75] R. Kaiser and S. Wagner. “Evolution of the PikeOS microkernel”. In: First International

Workshop on Microkernels for Embedded Systems. 2007.

[76] P. Kegel, M. Schellmann, and S. Gorlatch. “Using OpenMP vs. Threading Building Blocks

for medical imaging on multi-cores”. In: Euro-Par Conference on Parallel Processing

(2009), pp. 654–665.

[77] H. Kopetz. Real-time systems: design principles for distributed embedded applications.

Springer Science & Business Media, 2011.

[78] A. J. Kornecki. Software Development Tools for Safety-Critical, Real-Time Systems

Handbook. Office of Aviation Research and Development, Federal Aviation Administration,

2007.

[79] G. Krawezik. “Performance comparison of MPI and three OpenMP programming styles

on shared memory multiprocessors”. In: ACM symposium on Parallel algorithms and

architectures. ACM. 2003, pp. 118–127.

[80] D. Kroening, D. Poetzl, P. Schrammel, and B. Wachter. “Sound static deadlock analysis

for C/Pthreads”. In: International Conference on Automated Software Engineering. IEEE.

2016, pp. 379–390.

[81] B. Kuhn, P. Petersen, and E. O’Toole. “OpenMP versus threading in C/C++”. In:

Concurrency - Practice and Experience 12.12 (2000), pp. 1165–1176.

[82] K. Lakshmanan, S. Kato, and R. Rajkumar. “Scheduling Parallel Real-Time Tasks on

Multi-core Processors”. In: IEEE Real-Time Systems Symposium. 2010, pp. 259–268.

[83] S. Lee, S.-J. Min, and R. Eigenmann. “OpenMP to GPGPU: a compiler framework

for automatic translation and optimization”. In: ACM Sigplan Notices 44.4 (2009),

pp. 101–110.

[84] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer,

O. Pink, V. Pratt, et al. “Towards fully autonomous driving: Systems and algorithms”. In:

Intelligent Vehicles Symposium (IV). IEEE. 2011, pp. 163–168.

{https://software.intel.com/en-us/node/522666}
{https://software.intel.com/en-us/node/522666}
{https://www.iso.org/standard/50372.html}
{https://www.iso.org/standard/50372.html}

BIBLIOGRAPHY 117

[85] J. Li, D. Hei, and L. Yan. “Correctness analysis based on testing and checking for openmp

programs”. In: ChinaGrid Annual Conference. IEEE. 2009, pp. 210–215.

[86] C. Liao, D. J. Quinlan, T. Panas, and B. R. De Supinski. “A ROSE-based OpenMP 3.0

research compiler supporting multiple runtime libraries”. In: International Workshop on

OpenMP. Springer. 2010, pp. 15–28.

[87] Y. Lin. “Static nonconcurrency analysis of openmp programs”. In: International Workshop

on OpenMP. Springer, 2008, pp. 36–50.

[88] E. Lippe and N. van Oosterom. “Operation-based Merging”. In: Proceedings of the Fifth

ACM SIGSOFT Symposium on Software Development Environments. SDE 5. Tyson’s

Corner, Virginia, USA: ACM, 1992, pp. 78–87.

[89] T. Liu, Z. Ji, and Q. Wang. “Research on OpenMP algorithms on memory limited

embedded multicore platform”. In: Journal of Computational Information Systems 6.13

(2010), pp. 4453–4460.

[90] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Álvarez, F. Marozzo, D. Lezzi, R. Sirvent,

D. Talia, and R. M. Badia. “Servicess: An interoperable programming framework for the

cloud”. In: Journal of Grid Computing 12.1 (2014), pp. 67–91.

[91] M. Lundstrom. “Moore’s law forever?” In: Science 299.5604 (2003), pp. 210–211.

[92] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford. “Enhanced architectures,

design methodologies and CAD tools for dynamic reconfiguration of Xilinx FPGAs”. In:

International Conference on Field Programmable Logic and Applications. IEEE. 2006,

pp. 1–6.

[93] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan, and Z. Yang. “Symbolic analysis

of concurrency errors in OpenMP programs”. In: International Conference on Parallel

Processing. IEEE. 2013, pp. 510–516.

[94] A. Marongiu, P. Burgio, and L. Benini. “Supporting OpenMP on a multi-cluster embedded

MPSoC”. In: Microprocessors and Microsystems 35.8 (2011), pp. 668–682.

[95] T. J. McCabe. “A complexity measure”. In: IEEE Transactions on software Engineering 4

(1976), pp. 308–320.

[96] A. Melani, M. A. Serrano, M. Bertogna, I. Cerutti, E. Quiñones, and G. Buttazzo. “A static

scheduling approach to enable safety-critical OpenMP applications”. In: Asia and South

Pacific Design Automation Conference. IEEE. 2017, pp. 659–665.

[97] Meyer, Bertrand. Object-oriented software construction. Vol. 2. Prentice hall New York,

1988.

[98] S. Michell, B. Moore, and L. M. Pinho. “Tasklettes – a fine grained parallelism for Ada on

multicores”. In: Ada-Europe International Conference on Reliable Software Technologies.

Springer. 2013, pp. 17–34.

118 BIBLIOGRAPHY

[99] M. Mohaqeqi, J. Abdullah, N. Guan, and W. Yi. “Schedulability analysis of synchronous

digraph real-time tasks”. In: 28th Euromicro Conference on Real-Time Systems. Ed. by L.

O’Conne. Toulouse, France: IEEE, 2016, pp. 176–186.

[100] B. Moore. “Paraffin: a Parallelism API for Multiple Languages”. In: Ada User Journal

37.2 (2016).

[101] B. J. Moore. “Parallelism generics for Ada 2005 and beyond”. In: Ada Letters. Vol. 30. 3.

ACM. 2010, pp. 41–52. URL: http://paraffin.sourceforge.net.

[102] J. F. Münchhalfen, T. Hilbrich, J. Protze, C. Terboven, and M. S. Müller. “Classification

of common errors in OpenMP applications”. In: International Workshop on OpenMP.

Springer. 2014, pp. 58–72.

[103] M. Naik, C.-S. Park, K. Sen, and D. Gay. “Effective static deadlock detection”. In:

International Conference on Software Engineering. IEEE. 2009, pp. 386–396.

[104] N. Nethercote and J. Seward. “Valgrind: a framework for heavyweight dynamic binary

instrumentation”. In: ACM Sigplan notices. Vol. 42. 6. ACM. 2007, pp. 89–100.

[105] R. H. Netzer and B. P. Miller. “What are race conditions?: Some issues and

formalizations”. In: Programming Languages and Systems 1.1 (1992), pp. 74–88.

[106] B. Nichols, D. Buttlar, and J. Farrell. Pthreads programming: A POSIX standard for better

multiprocessing. ”O’Reilly Media, Inc.”, 1996.

[107] D.-I. Oh, T. P. Baker, and S.-J. Moon. “The GNARL implementation of POSIX/Ada signal

services”. In: International Conference on Reliable Software Technologies. Springer.

1996, pp. 275–286.

[108] OpenMP ARB. OpenMP Application Program Interface, version 2.5. 2005. URL: {http:

//www.openmp.org/wp-content/uploads/spec25.pdf}.

[109] OpenMP ARB. OpenMP Application Program Interface, version 3.0. 2008. URL: {http:

//www.openmp.org/wp-content/uploads/spec30.pdf}.

[110] OpenMP ARB. OpenMP Application Program Interface, version 3.1. 2011. URL: {http:

//www.openmp.org/wp-content/uploads/OpenMP3.1.pdf}.

[111] OpenMP ARB. OpenMP Application Program Interface, version 4.0. 2013. URL: {http:

//www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf}.

[112] OpenMP ARB. OpenMP Application Program Interface: Examples, version 4.5. 2015.

URL: {http : / / www . openmp . org / wp - content / uploads / openmp -

examples-4.5.0.pdf}.

[113] OpenMP ARB. OpenMP Application Program Interface, version 4.5. 2015. URL: {http:

//www.openmp.org/wp-content/uploads/openmp-4.5.pdf}.

[114] Oracle Solaris Studio 12.3 OpenMP User’s Guide. 2012. URL: {{https://docs.

oracle.com/cd/E24457_01/pdf/E21996.pdf}}.

http://paraffin.sourceforge.net
{http://www.openmp.org/wp-content/uploads/spec25.pdf}
{http://www.openmp.org/wp-content/uploads/spec25.pdf}
{http://www.openmp.org/wp-content/uploads/spec30.pdf}
{http://www.openmp.org/wp-content/uploads/spec30.pdf}
{http://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf}
{http://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf}
{http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf}
{http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf}
{http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf}
{http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf}
{http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf}
{http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf}
{{https://docs.oracle.com/cd/E24457_01/pdf/E21996.pdf}}
{{https://docs.oracle.com/cd/E24457_01/pdf/E21996.pdf}}

BIBLIOGRAPHY 119

[115] N. Papakonstantinou, F. S. Zakkak, and P. Pratikakis. “Hierarchical Parallel Dynamic

Dependence Analysis for Recursively Task-Parallel Programs”. In: Parallel and

Distributed Processing Symposium. IEEE. 2016, pp. 933–942.

[116] Paraffin. 2017. URL: {http://paraffin.sourceforge.net}.

[117] P. Petersen and S. Shah. “OpenMP support in the Intel® thread checker”. In: International

Workshop on OpenMP Applications and Tools. Springer. 2003, pp. 1–12.

[118] PGI®. Fortran Reference Guide. 2017. URL: {https : / / www . pgroup . com /

resources/docs/17.9/pdf/pgi17fortref.pdf}.

[119] L. M. Pinho and S. Michell. “Session Summary: Parallel and Multicore Systems”. In: Ada

Lett. 36.1 (2016), pp. 83–90.

[120] L. M. Pinho, B. Moore, S. Michell, and S. T. Taft. “Real-Time Fine-Grained Parallelism

in Ada”. In: ACM SIGAda Ada Letters 35.1 (2015), pp. 46–58.

[121] L. M. Pinho, V. Nélis, P. M. Yomsi, E. Quiñones, M. Bertogna, P. Burgio, A. Marongiu,

C. Scordino, P. Gai, M. Ramponi, et al. “P-SOCRATES: A parallel software framework

for time-critical many-core systems”. In: Microprocessors and Microsystems 39.8 (2015),

pp. 1190–1203.

[122] A. Podobas and S. Karlsson. “Towards Unifying OpenMP Under the Task-Parallel

Paradigm”. In: International Workshop on OpenMP. 2016, pp. 116–129.

[123] Project Hi-Lite. GNATprove. http://www.open-do.org/projects/hi-lite/

gnatprove. 2017.

[124] X. Qi and B. Xu. “An approach to slicing concurrent Ada programs based on program

reachability graphs”. In: International Journal of Computer Science and Network Security

6.1 (2005), pp. 29–37.

[125] F. M. Quintao Pereira, R. E. Rodrigues, and V. H. Sperle Campos. “A fast and

low-overhead technique to secure programs against integer overflows”. In: International

Symposium on Code Generation and Optimization. IEEE Computer Society. 2013,

pp. 1–11.

[126] W. River. VxWorks programmer’s guide. 2003. URL: {http://www.windriver.

com}.

[127] C. Rochange, A. Bonenfant, P. Sainrat, M. Gerdes, J. Wolf, T. Ungerer, Z. Petrov,

and F. Mikulu. “WCET analysis of a parallel 3D multigrid solver executed on the

MERASA multi-core”. In: OASIcs-OpenAccess Series in Informatics. Vol. 15. Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik. 2010.

[128] T. Rothwell and J. Youngman. The GNU C Reference Manual. 2016. URL: {https:

//www.gnu.org/software/gnu-c-manual/gnu-c-manual.pdf}.

[129] S. Royuela, A. Duran, C. Liao, and D. J. Quinlan. “Auto-scoping for OpenMP Tasks”. In:

Proceedings of the 8th International Conference on OpenMP in a Heterogeneous World.

Rome, Italy: Springer-Verlag, 2012, 29–43.

{http://paraffin.sourceforge.net}
{https://www.pgroup.com/resources/docs/17.9/pdf/pgi17fortref.pdf}
{https://www.pgroup.com/resources/docs/17.9/pdf/pgi17fortref.pdf}
http://www.open-do.org/projects/hi-lite/gnatprove
http://www.open-do.org/projects/hi-lite/gnatprove
{http://www.windriver.com}
{http://www.windriver.com}
{https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.pdf}
{https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.pdf}

120 BIBLIOGRAPHY

[130] S. Royuela, A. Duran, and X. Martorell. “Compiler Analysis and its application to

OmpSs”. PhD thesis. Universitat Politècnica de Catalunya · BarcelonaTech (UPC), 2012.

[131] S. Royuela, A. Duran, and X. Martorell. “Compiler automatic discovery of ompss task

dependencies”. In: International Workshop on Languages and Compilers for Parallel

Computing. Springer. 2012, pp. 234–248.

[132] S. Royuela, A. Duran, M. A. Serrano, E. Quiñones, and X. Martorell. “A Functional Safety

OpenMP* for Critical Real-Time Embedded Systems”. In: Scaling OpenMP for Exascale

Performance and Portability – 13th International Workshop on OpenMP. Ed. by B. R. de

Supinski, O. S. L., C. Terboven, B. M. Chapman, and M. S. Müller. Stony Brook, NY,

USA: Springer, 2017, pp. 231–245.

[133] S. Royuela, R. Ferrer, D. Caballero, and X. Martorell. “Compiler analysis for OpenMP

tasks correctness”. In: International Conference on Computing Frontiers. ACM. 2015.

[134] S. Royuela, X. Martorell, E. Quiñones, and L. M. Pinho. “OpenMP tasking model for Ada:

safety and correctness”. In: Ada-Europe International Conference on Reliable Software

Technologies. Springer. 2017.

[135] S. Rybin, A. Strohmeier, and E. Zueff. “ASIS for GNAT: Goals, Problems and

Implementation Strategy”. In: ACM SIGAda Ada Letters 16.2 (1996), pp. 39–49.

[136] V. Sarkar and J. Hennessy. “Compile-time partitioning and scheduling of parallel

programs”. In: ACM Sigplan Notices. Vol. 21. 7. ACM. 1986, pp. 17–26.

[137] M. Schmidt, D. Fey, and M. Reichenbach. “Parallel Embedded Computing Architectures”.

In: Embedded Systems-High Performance Systems, Applications and Projects. InTech,

2012.

[138] M. A. Serrano, A. Melani, M. Bertogna, and E. Quiñones. “Response-time analysis of

DAG tasks under fixed priority scheduling with limited preemptions”. In: Conference on

Design, Automation & Test in Europe. IEEE. 2016, pp. 1066–1071.

[139] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and E. Quiñones.

“Timing characterization of OpenMP4 tasking model”. In: Proceedings of the

International Conference on Compilers, Architecture and Synthesis for Embedded

Systems. IEEE Press. 2015, pp. 157–166.

[140] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu. “Performance gaps between OpenMP

and OpenCL for multi-core CPUs”. In: International Conference on Parallel Processing

Workshops. IEEE. 2012, pp. 116–125.

[141] E. Srl. “Erika enterprise”. In: (2017). URL: {erika.tuxfamily.org}.

[142] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. “A Scalable Approach

to Thread-level Speculation”. In: International Symposium on Computer Architecture.

Vancouver, Canada: ACM, 2000, pp. 1–12.

{erika.tuxfamily.org}

BIBLIOGRAPHY 121

[143] J. E. Stone, D. Gohara, and G. Shi. “OpenCL: A parallel programming standard for

heterogeneous computing systems”. In: Computing in Science & Engineering 12.3 (2010),

pp. 66–73.

[144] E. Stotzer, A. Jayaraj, M. Ali, A. Friedmann, G. Mitra, A. P. Rendell, and I. Lintault.

“Openmp on the low-power ti keystone ii arm/dsp system-on-chip”. In: International

Workshop on OpenMP. Springer. 2013, pp. 114–127.

[145] J. Sun, N. Guan, Y. Wang, Q. He, and W. Yi. “Scheduling and analysis of real-time openmp

task systems with tied tasks”. In: IEEE Real-Time Systems Symposium. 2017.

[146] M. Süß and C. Leopold. “Common mistakes in OpenMP and how to avoid them”. In:

International Workshop on OpenMP. Springer, 2008, pp. 312–323.

[147] S. T. Taft, B. Moore, L. M. Pinho, and S. Michell. “Safe parallel programming in Ada with

language extensions”. In: ACM SIGAda Ada Letters 34.3 (2014), pp. 87–96.

[148] TERAFLUX Consortium. TERAFLUX: Exploiting Dataflow Parallelism in Teradevice

Computing. 2014. URL: {http://www.teraflux.eu/}.

[149] X. Teruel, X. Martorell, A. Duran, R. Ferrer, and E. Ayguadé. “Support for OpenMP

tasks in Nanos v4”. In: Conference of the Center for Advanced Studies on Collaborative

Research. IBM Corp. 2007, pp. 256–259.

[150] The P-SOCRATES Consortium. The P-SOCRATES Project. 2014. URL: http://www.

p-socrates.eu/.

[151] D. Theodoropoulos, D. Pnevmatikatos, C. Alvarez, E. Ayguade, J. Bueno, A. Filgueras,

D. Jimenez-Gonzalez, X. Martorell, N. Navarro, C. Segura, C. Fernandez, D. Oro,

J. Rodriguez Saeta, P. Gai, A. Rizzo, and R. Giorgi. “The AXIOM project (agile,

extensible, fast i/o module)”. In: Embedded Computer Systems: Architectures, Modeling,

and Simulation. IEEE. 2015, pp. 262–269.

[152] G. Tzenakis, A. Papatriantafyllou, J. Kesapides, P. Pratikakis, H. Vandierendonck, and

D. S. Nikolopoulos. “BDDT: block-level dynamic dependence analysis for deterministic

task-based parallelism”. In: ACM SIGPLAN Notices. Vol. 47. 8. New York, NY, USA:

ACM, 2012, pp. 301–302.

[153] U. P. d. C. ·. B. (UPC). Parallelism. 2014. URL: {http://www.fib.upc.edu/en/

estudiar-enginyeria-informatica/assignatures/PAR.html}.

[154] A. L. Varbanescu, P. Hijma, R. Van Nieuwpoort, and H. Bal. “Towards an effective unified

programming model for many-cores”. In: Parallel and Distributed Processing Workshops

and Phd Forum. IEEE. 2011, pp. 681–692.

[155] R. Vargas, E. Quiñones, and A. Marongiu. “OpenMP and timing predictability: a possible

union?” In: Conference on Design, Automation & Test in Europe. EDA Consortium. 2015,

617–620.

{http://www.teraflux.eu/}
http://www.p-socrates.eu/
http://www.p-socrates.eu/
{http://www.fib.upc.edu/en/estudiar-enginyeria-informatica/assignatures/PAR.html}
{http://www.fib.upc.edu/en/estudiar-enginyeria-informatica/assignatures/PAR.html}

122 BIBLIOGRAPHY

[156] R. E. Vargas, S. Royuela, M. A. Serrano, X. Martorell, and E. Quiñones. “A lightweight

OpenMP4 run-time for embedded systems”. In: Asia and South Pacific Design Automation

Conference. IEEE. 2016, pp. 43–49.

[157] T. Vijaykumar and G. S. Sohi. “Task selection for a multiscalar processor”. In:

International Symposium on Microarchitecture. IEEE Computer Society Press. 1998,

pp. 81–92.

[158] B. Wang, H. Gao, and J. Cheng. “Definition-Use Net and System Dependence Net

generators for Ada 2012 programs and their applications”. In: Ada User Journal 38.1

(2017), pp. 37–55.

[159] C. Wang, S. Chandrasekaran, B. Chapman, and J. Holt. “libEOMP: a portable OpenMP

runtime library based on MCA APIs for embedded systems”. In: Proceedings of the

International Workshop on Programming Models and Applications for Multicores and

Manycores. ACM. 2013, pp. 83–92.

[160] C.-K. Wang and P.-S. Chen. “Automatic scoping of task clauses for the OpenMP tasking

model”. In: The Journal of Supercomputing 71.3 (2015), pp. 808–823.

[161] Y. Wang, N. Guan, J. Sun, M. Lv, Q. He, T. He, and W. Yi. “Benchmarking OpenMP

programs for real-time scheduling”. In: Embedded and Real-Time Computing Systems and

Applications. IEEE. 2017, pp. 1–10.

[162] B. A. Wichmann. “Guide for the Use of the Ada Programming Language in High Integrity

Systems”. In: ACM SIGAda Ada Letters XVIII.4 (1998), pp. 47–94.

[163] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C.

Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Pauaut, P. Puschner, J. Staschulat, and

P. Stenström. “The worst-case execution-time problem—overview of methods and survey

of tools”. In: ACM Transactions on Embedded Computing Systems 7.3 (2008), p. 36.

[164] M. Wong, M. Klemm, A. Duran, T. Mattson, G. Haab, B. R. de Supinski, and A.

Churbanov. “Towards an error model for OpenMP”. In: International Workshop on

OpenMP. Springer. 2010, pp. 70–82.

[165] F. S. Zakkak, D. Chasapis, P. Pratikakis, A. Bilas, and D. S. Nikolopoulos. “Inference

and declaration of independence in task-parallel programs”. In: International Workshop

on Advanced Parallel Processing Technologies. Springer. 2013, pp. 1–16.

Figures

2.1 Time-line of the OpenMP releases. 6

2.2 Producer-consumer pattern implemented using OpenMP flush constructs. 8

2.3 Diagram of Ada task states. 11

2.4 Mercurium compilation diagram. 16

2.5 Mercurium simplified AST for Fibonacci computation in Listing 2.7. 17

2.6 Diagram of an SMP system. 21

2.7 Diagram of a NUMA system. 21

2.8 High-level view of the Intel Xeon E5-2670. 22

2.9 High-level view of the Intel Xeon Platinum 8160. 22

2.10 High-level view of the MPPA processor. 23

2.11 High-level view of an MPPA compute cluster. 24

2.12 High-level view of an MPPA VLIW core. 24

3.1 Examples of functions PCFGsimple and PCFGstruct, which build the PCFG. . . 27

3.2 Process that determines if two tasks synchronize. 28

3.3 PCFG for code in Listing 3.1. 32

3.4 Equations that determine the liveness attributes of a PCFG node. 35

3.5 Equations that determine the reaching definitions of a PCFG node. 35

3.6 Example illustrating the impact of OpenMP tasks regarding reaching definitions:

(a) code snippet (b) simplified PCFG. 36

4.1 Scenario illustrating an automatic storage variable that may be accessed after its

lifetime ends. 42

4.2 Scenario illustrating a race condition due to a wrong synchronization of a task. . . 43

4.3 Scenario illustrating a useless definition of dependences between non-sibling tasks. 45

4.4 Scenario illustrating different incoherences in the data-sharing attributes of a task. 47

4.5 Scenario illustrating the wrong specification of task dependences. 48

4.6 Occurrences of different correctness mistakes. 50

5.1 fTDG of the OpenMP program in Listing 5.1. 59

5.2 TDG of the OpenMP program in Listing 5.1. 60

5.3 Hash table that stores the TDG depicted in Figure 5.2, corresponding to the

OpenMP program in Listing 5.1. 62

123

124 FIGURES

5.4 Performance speed-up and memory usage (in KB) of Cholesky and r3DPP

applications running with lightweight omp4, omp4 and omp 3.1, and varying the

number of tasks. 63

6.1 Example of propagation of the usage and global directives over a call graph. . . . 79

6.2 Concurrency available with the Ada parallel model (left) and OpenMP tasks (right). 84

6.3 Mapping nested parallelism between Ada and OpenMP. 88

6.4 Performance speedup of the Ada parallel programming model implemented with

OpenMP, Ada tasks and Paraffin. 90

6.5 TDG of Cholesky kernel implemented using tasks and taskwaits. 92

6.6 TDG of Cholesky kernel implemented using tasks with dependences. 92

6.7 Speedup of Ada/OpenMP (structured parallelism) and OpenMP with dependences

(unstructured parallelism). 92

6.8 Execution time of OpenMP running with Ada and C. 93

6.9 Execution trace of the OpenMP and Ada tasks mixed benchmark. 93

6.10 HRT-HOOD representation of the Ravenscar application defined in Section 7 of

the “Ada Ravenscar Profile Guide”. 96

6.11 Control flow graph of the Ravenscar application defined in Section 7 of the “Ada

Ravenscar Profile Guide”. 99

6.12 Control flow graph of the OpenMP code introduced in the Small Whetstone

procedure from the Ravenscar application defined in Section 7 of the “Ada

Ravenscar Profile Guide”. 100

6.13 Schema of the issues addressed in the context of applying OpenMP in the

safety-critical domain by means of Ada. 103

A.1 Diagram of Ada task states and transitions . 133

Tables

4.1 Oracle Solaris Studio and Mercurium messages for different correctness situations. 52

5.1 Minimum memory (in Bytes) used to store an OpenMP task in different runtimes. 56

5.2 Memory usage of the sparse matrix (in KB), varying the number of tasks instantiated. 64

6.1 Solutions for race conditions in an Ada/OpenMP application. 98

125

Listings

2.1 Addition of two arrays using the OpenMP thread-centric model. 7

2.2 Addition of two arrays using the OpenMP task-centric model. 7

2.3 OmpSs multidependences syntax example. 10

2.4 Stock data-structure implemented using synchronization-free Ada protected objects. 13

2.5 Stock data-structure implemented using Ada protected objects with synchronization. 13

2.6 Stock data-structure implemented using the Ada rendezvous mechanism. 13

2.7 Recursive Fibonacci computation using OpenMP tasks. 17

2.8 Example of rules of the grammar generating the Mercurium’s IR. 18

2.9 Example of a configuration file of Mercurium. 19

3.1 Matrix multiplication using OpenMP tasks (Example task dep.5.c from the

specification examples [112]) . 31

3.2 OpenMP example illustrating the propagation of usage information to outer nodes. 34

5.1 OpenMP tasks example traversing a matrix with a wavefront strategy. 57

6.1 Example of OpenMP function using several constructs. 77

6.2 Function declaration of method in Listing 6.1 using the proposed extensions for

safety-critical systems. 77

6.3 Factorial computation parallelized with OpenMP. 77

6.4 Function declaration for method in Listing 6.3 using the extensions for

safety-critical OpenMP. 77

6.5 Ada syntax for parallel blocks. 82

6.6 Ada syntax for a parallel loop. 82

6.7 Ada syntax for a not chuncked parallel. 82

6.8 Parallel reduction with proposed Ada extensions. 83

6.9 OpenMP syntax for parallel blocks. 84

6.10 OpenMP syntax for a parallel loop. 84

6.11 Example of Ada periodic task using a delay statement. 94

6.12 OpenMP code inserted in the Production Workload package of the Ravenscar

application. 97

B.1 Incomplete parallel computation of the Fibonacci sequence using OpenMP. 135

B.2 Incomplete parallel computation of several Fibonacci sequences, one per each

element of a linked list, using OpenMP. 136

B.3 Incomplete parallel computation of a dot product, using OpenMP. 137

B.4 Incomplete parallel matrix multiplication, using OpenMP (main and kernel

methods). 138

127

128 LISTINGS

B.5 Incomplete parallel matrix multiplication, using OpenMP (support methods). . . . 139

B.6 Incomplete parallel computation of number pi approximating the area under the

curve f�x� � 4~�1 � x � x� between 0 and 1, using OpenMP. 140

B.7 Incomplete parallel computation of a Sudoku problem using OpenMP (kernel). . . 141

B.8 Incomplete parallel computation of a Sudoku problem using OpenMP (main

function). 142

B.9 Cholesky kernel implemented with C. 143

B.10 Cholesky kernel implemented with C and OpenMP tasks, and synchronizing tasks

with taskwaits. 143

B.11 Cholesky kernel implemented with C and OpenMP tasks, and synchronizing tasks

with dependences. 144

B.12 Cholesky kernel implemented with Ada. 145

B.13 Cholesky kernel implemented with Ada and OpenMP tasks, and synchronizing

tasks with taskwaits. 145

B.14 Cholesky kernel implemented with Ada and OpenMP tasks, and synchronizing

tasks with dependences. 146

B.15 Cholesky kernel implemented with Ada tasks: synchronization mechanisms. . . . 147

B.16 Cholesky kernel implemented with Ada tasks: secondary kernels. 148

B.17 Cholesky kernel implemented with Ada tasks: main kernel. 149

B.18 Cholesky kernel implemented with Paraffin. 150

B.19 LU kernel implemented with C. 151

B.20 LU kernel implemented with C and OpenMP tasks, and synchronizing tasks with

taskwaits. 151

B.21 LU kernel implemented with C and OpenMP tasks, and synchronizing tasks with

dependences. 152

B.22 LU kernel implemented with Ada. 152

B.23 LU kernel implemented with Ada and OpenMP tasks, and synchronizing tasks

with taskwaits. 153

B.24 LU kernel implemented with Ada and OpenMP tasks, and synchronizing tasks

with dependences. 154

B.25 LU kernel implemented with Ada tasks: synchronization mechanisms. 155

B.26 LU kernel implemented with Ada tasks: secondary kernels. 156

B.27 LU kernel implemented with Ada tasks: more secondary kernels. 157

B.28 LU kernel implemented with Ada tasks: main kernel. 158

B.29 LU kernel implemented with Ada and Paraffin: synchronization mechanisms. . . 159

B.30 Matrix kernel implemented with C. 160

B.31 Matrix kernel implemented with C and OpenMP tasks, and synchronizing tasks

with taskwaits. 160

B.32 Matrix kernel implemented with Ada. 161

B.33 Matrix kernel implemented with Ada and OpenMP tasks, and synchronizing tasks

with taskwaits. 161

LISTINGS 129

B.34 Matrix kernel implemented with Ada tasks. 162

B.35 Matrix kernel implemented with Paraffin. 163

B.36 Synthetic kernel with interaction between Ada tasks and OpenMP tasks, using

Extrae instrumentation tool: Ada tasks. 164

B.37 Synthetic kernel with interaction between Ada tasks and OpenMP tasks, using

Extrae instrumentation tool: OpenMP tasks. 165

B.38 Synthetic kernel with interaction between Ada tasks and OpenMP tasks, using

Extrae instrumentation tool: global objects and main function. 166

List of Algorithms

1 High-level algorithm for synchronizing tasks within a PCFG. 31

2 High-level algorithm to detect accesses to variables in OpenMP tasks whose

lifetime may have ended. 42

3 High-level algorithm to detect race conditions in OpenMP tasks. 44

4 High-level algorithm to detect dependences among non-sibling OpenMP tasks. . . 46

5 High-level algorithm to detect incoherences in the data-sharing attributes of

OpenMP tasks. 47

6 High-level algorithm to detect incoherences in the dependence clauses of OpenMP

tasks. 49

7 Rules to determine the clauses of the usage directive to be added to the contract

of a safety-critical function. 76

8 High-level algorithm to compute the contracts of a safety-critical OpenMP library. 78

9 High-level algorithm to detect race conditions in Ada/OpenMP programs. 101

131

A
Diagrams

This appendix contains extended diagrams.

A.1 Ada task states and transitions

non-existing

created

activating

waiting child
activation

abnormal

completed

finishing

terminated

delayed

waiting for
rendezvous to end

waiting on an entry
call

waiting on a
protected entry call

waiting on an accept

waiting dependent
termination

executing

waiting on select

abort

abort

abort

abort

abort abort abort abort abort

suspend
on select

rendezvous
started or
time out

call server
task

server task
completed
or time out terminate

alternative
taken

request
rendezvous
with clients

termination of
dependent tasks

exit master block

completion of
task body

dependent tasks
terminate

create child task

child task
activation complete

child activation
completes

create child task

delay
expires

delay

rendezvous
started

rendezvous
completed

call
protected
object

barrier open
or time out
or exception

Figure A.1: Diagram of Ada task states and transitions

133

B
Benchmark Source Codes

This appendix contains the source code of the benchmarks used in this thesis.

B.1 Benchmarks for correctness checking in OpenMP

B.1.1 Fibonacci

1 long long f i b (i n t n)
2 {
3 long long x , y ;
4 i f (n < 2) re turn n ;
5

6 #pragma omp task / / sh are d (x) f i r s t p r i v a t e (n)
7 x = f i b (n � 1) ;
8

9 #pragma omp task / / sh are d (y) f i r s t p r i v a t e (n)
10 y = f i b (n � 2) ;
11

12 / / pragma omp t a s k w a i t
13

14 re turn x + y ;
15 }
16

17 i n t main (i n t argc , char ** a rgv)
18 {
19 c o n s t char Usage [] = ”Usage : f i b <num> (t r y 20)\n” ;
20 i f (a r g c < 2) {
21 f p r i n t f (s t d e r r , Usage) ;
22 e x i t (1) ;
23 }
24

25 i n t num = a t o i (a rgv [1]) ;
26 long long r e s ;
27 #pragma omp parallel
28 #pragma omp single
29 r e s = f i b (num) ;
30

31 p r i n t f (”The F i b o n a c c i number o f %s i s %l l d \n” , a rgv [1] , r e s) ;
32

33 re turn 0 ;
34 }

Listing B.1: Incomplete parallel computation of the Fibonacci sequence using OpenMP.

135

136 B. BENCHMARK SOURCE CODES

1 # d e f i n e N 5
2 # d e f i n e FS 1
3 s t r u c t node { i n t d a t a ; i n t f i b d a t a ; s t r u c t node * n e x t ; } ;
4

5 i n t f i b (i n t n) {
6 i f (n < 2) re turn (n) ;
7 e l s e re turn f i b (n � 1) + f i b (n � 2) ;
8 }
9

10 void p r o c e s s w o r k (s t r u c t node * p) {
11 p�> f i b d a t a = f i b (p�>d a t a) ;
12 }
13

14 s t r u c t node * i n i t l i s t (s t r u c t node * p) {
15 s t r u c t node * head = m a l l oc (s i z e o f (s t r u c t node)) ;
16 p = head ;
17 p�>d a t a = FS ;
18 p�> f i b d a t a = 0 ;
19 f o r (i n t i = 0 ; i < N; i ++) {
20 s t r u c t node * temp = m al lo c (s i z e o f (s t r u c t node)) ;
21 p�>n e x t = temp ;
22 p = temp ;
23 p�>d a t a = FS + i + 1 ;
24 p�> f i b d a t a = i +1 ;
25 }
26 p�>n e x t = NULL;
27 re turn head ;
28 }
29

30 i n t main () {
31 s t r u c t node *p , * temp , * head ;
32 p = i n i t l i s t (p) ;
33 head = p ;
34

35 #pragma omp parallel

36 #pragma omp single

37 {
38 p = head ;
39 whi le (p) {
40 #pragma omp task / / f i r s t p r i v a t e (p)
41 p r o c e s s w o r k (p) ;
42 p = p�>n e x t ;
43 }
44 }
45

46 p = head ;
47 whi le (p != NULL) {
48 temp = p�>n e x t ;
49 f r e e (p) ;
50 p = temp ;
51 }
52 f r e e (p) ;
53 re turn 0 ;
54 }

Listing B.2: Incomplete parallel computation of several Fibonacci

sequences, one per each element of a linked list, using OpenMP.

B. BENCHMARK SOURCE CODES 137

B.1.2 Dot product

1 long N, CHUNK SIZE ;
2 s t a t i c vo id i n i t i a l i z e (long l e n g t h , double d a t a [l e n g t h])
3 {
4 f o r (long i = 0 ; i < l e n g t h ; i ++)
5 d a t a [i] = ((double) r and () / (double)RAND MAX) ;
6 }
7

8 double d o t p r o d u c t (long N, long CHUNK SIZE , double A[N] , double B[N])
9 {
10 long N CHUNKS = N / CHUNK SIZE ;
11 i f (N CHUNKS * CHUNK SIZE < N) N CHUNKS++;
12 double *C = ma l l oc (N CHUNKS * s i z e o f (double)) ;
13 double acc = 0 . 0 ;
14 i n t j = 0 ;
15 long a c t u a l s i z e = (N � CHUNK SIZE >= CHUNK SIZE) ? CHUNK SIZE
16 : N � CHUNK SIZE ;
17 f o r (long i = 0 ; i < N; i += CHUNK SIZE) {
18 #pragma omp task firstprivate (j , i , a c t u a l s i z e)
19 / / depend (i n : A[i : i+ a c t u a l s i z e �1] , B[i : i+ a c t u a l s i z e �1])
20 / / depend (i n o u t :C[j])
21 {
22 C[j] = 0 ;
23 f o r (long i i =0 ; i i <a c t u a l s i z e ; i i ++)
24 C[j] += A[i + i i] * B[i + i i] ;
25 }
26 #pragma omp task firstprivate (j) / / sh ar ed (acc) i n o u t (acc) i n (C[j])
27 acc += C[j] ;
28 j ++;
29 }
30 / / #pragma omp t a s k w a i t
31 re turn (acc) ;
32 }
33

34 i n t main (i n t argc , char ** a rgv)
35 {
36 N = a t o l (a rgv [1]) * 1024L ;
37 CHUNK SIZE = a t o l (a rgv [2]) * 1024L ;
38

39 double *A = m al lo c (N* s i z e o f (double)) ;
40 double *B = ma l l oc (N* s i z e o f (double)) ;
41 i n i t i a l i z e (N, A) ;
42 i n i t i a l i z e (N, B) ;
43

44 double r e s u l t ;
45 #pragma omp parallel

46 #pragma omp single

47 r e s u l t = d o t p r o d u c t (N, CHUNK SIZE , A, B) ;
48

49 p r i n t f (” R e s u l t o f Dot p r o d u c t : %l e \n” , r e s u l t) ;
50 re turn 1 ;
51 }

Listing B.3: Incomplete parallel computation of a dot product, using OpenMP.

138 B. BENCHMARK SOURCE CODES

B.1.3 Matrix multiplication

1 void matmul (double *A, double *B , double *C , unsigned long NB)
2 {
3 unsigned I ;
4 double tmp ;
5 f o r (unsigned i = 0 ; i < NB; i ++)
6 {
7 I = i * NB;
8 f o r (unsigned j = 0 ; j < NB; j ++)
9 {

10 tmp = C[I + j] ;
11 f o r (unsigned k = 0 ; k < NB; k ++)
12 tmp += A[I +k] * B[k*NB+ j] ;
13 C[I + j] = tmp ;
14 }
15 }
16 }
17

18 void compute (unsigned long NB, unsigned long DIM,
19 double *A[DIM] [DIM] , double *B[DIM] [DIM] , double *C[DIM] [DIM])
20 {
21 f o r (unsigned i = 0 ; i < DIM; i ++)
22 f o r (unsigned j = 0 ; j < DIM; j ++)
23 f o r (unsigned k = 0 ; k < DIM; k ++)
24 #pragma omp task

25 / / i n (A[i] [k] , B[k] [j]) i n o u t (C[i] [j])
26 matmul ((double *)A[i] [k] , (double *)B[k] [j] , (double *)C[i] [j] , NB) ;
27

28 / / #pragma omp t a s k w a i t
29 }
30

31 i n t main (i n t argc , char * a rgv [])
32 {
33 i f (a r g c != 3) {
34 p r i n t f (” usage : %s DIM NB\n” , a rgv [0]) ;
35 e x i t (0) ;
36 }
37

38 unsigned long DIM = a t o i (a rgv [1]) ;
39 unsigned long NB = a t o i (a rgv [2]) ;
40 unsigned long N = NB * DIM;
41 double **A, **B , **C ;
42 i n i t (&A, &B , &C , N, DIM, NB) ;
43

44 compute (NB, DIM, (void *)A, (void *)B , (void *)C) ;
45

46 re turn 0 ;
47 }

Listing B.4: Incomplete parallel matrix multiplication, using OpenMP (main and kernel

methods).

B. BENCHMARK SOURCE CODES 139

1 void c o n v e r t t o b l o c k s (unsigned long NB, unsigned long DIM,
2 unsigned long N,
3 double * Alin , double *A[DIM] [DIM])
4 {
5 f o r (unsigned i = 0 ; i < N; i ++)
6 f o r (unsigned j = 0 ; j < N; j ++)
7 A[i /NB] [j /NB] [(i%NB) *NB + j%NB] = Al in [j *N + i] ;
8 }
9

10 void f i l l r a n d o m (double * Alin , i n t NN)
11 {
12 f o r (i n t i = 0 ; i < NN; i ++)
13 Al in [i] = ((double) r and ()) / ((double)RAND MAX) ;
14 }
15

16 void i n i t (double ***A, double ***B , double ***C ,
17 unsigned long N, unsigned long DIM, unsigned long NB)
18 {
19 double * Al in = (double *) ma l l oc (N * N * s i z e o f (double)) ;
20 double * B l i n = (double *) ma l l oc (N * N * s i z e o f (double)) ;
21 double * C l i n = (double *) ma l l oc (N * N * s i z e o f (double)) ;
22

23 s r a n d (0) ;
24 f i l l r a n d o m (Alin , N * N) ;
25 f i l l r a n d o m (Bl in , N * N) ;
26 f o r (i n t i = 0 ; i < N * N; i ++)
27 C l i n [i] = 0 . 0 ;
28

29 *A = (double **) m a l l oc (DIM * DIM * s i z e o f (double *)) ;
30 *B = (double **) m a l l oc (DIM * DIM * s i z e o f (double *)) ;
31 *C = (double **) m a l l oc (DIM * DIM * s i z e o f (double *)) ;
32

33 f o r (i n t i = 0 ; i < DIM*DIM; i ++) {
34 (*A) [i] = (double *) ma l l oc (NB * NB * s i z e o f (double)) ;
35 (*B) [i] = (double *) ma l l oc (NB * NB * s i z e o f (double)) ;
36 (*C) [i] = (double *) ma l l oc (NB * NB * s i z e o f (double)) ;
37 }
38 c o n v e r t t o b l o c k s (NB, DIM, N, Alin , (double * (*) [DIM]) (*A)) ;
39 c o n v e r t t o b l o c k s (NB, DIM, N, Bl in , (double * (*) [DIM]) (*B)) ;
40 c o n v e r t t o b l o c k s (NB, DIM, N, Cl in , (double * (*) [DIM]) (*C)) ;
41

42 f r e e (A l in) ;
43 f r e e (B l i n) ;
44 f r e e (C l i n) ;
45 }

Listing B.5: Incomplete parallel matrix multiplication, using OpenMP (support methods).

140 B. BENCHMARK SOURCE CODES

B.1.4 Pi

1 i n t main (i n t argc , char * a rgv [])
2 {
3 double x , sum=0 .0 , p i =0 . 0 ;
4 i n t i ;
5

6 c o n s t char Usage [] = ”Usage : p i <num s teps> (t r y 1000000000)\n” ;
7 i f (a r g c < 2) {
8 f p r i n t f (s t d e r r , Usage) ;
9 e x i t (1) ;

10 }
11

12 i n t n u m s t e p s = a t o i (a rgv [1]) ;
13 double s t e p = 1 . 0 / (double) n u m s t e p s ;
14

15 #pragma omp parallel

16 #pragma omp single

17 {
18 #pragma omp task

19 / / p r i v a t e (i , x) sh ar ed (sum)
20 f o r (i =0 ; i < n u m s t e p s / 2 ; i ++) {
21 x = (i +0 . 5) * s t e p ;
22 / / #pragma omp a t om ic
23 sum += 4 . 0 / (1 . 0 +x*x) ;
24 }
25

26 #pragma omp task

27 / / p r i v a t e (i , x) sh ar ed (sum)
28 f o r (i = n u m s t e p s / 2 ; i < n u m s t e p s ; i ++) {
29 x = (i +0 . 5) * s t e p ;
30 / / #pragma omp a t om ic
31 sum += 4 . 0 / (1 . 0 +x*x) ;
32 }
33

34 / / #pragma omp t a s k w a i t
35

36 #pragma omp task

37 p i = s t e p * sum ;
38 }
39

40 p r i n t f (” Value o f p i = %12 . 1 0 f \n” , p i) ;
41

42 re turn EXIT SUCCESS ;
43 }

Listing B.6: Incomplete parallel computation of number pi approximating the area

under the curve f�x� � 4~�1 � x � x� between 0 and 1, using OpenMP.

B. BENCHMARK SOURCE CODES 141

B.1.5 Sudoku solver

1 unsigned long n u m s o l u t i o n s = 0 ;
2 i n t * f i r s t s o l u t i o n = NULL;
3

4 i n t s o l v e (i n t s i z e , i n t * g , i n t l o c)
5 {
6 i n t i , num guesses , s o l v e d =0;
7 i n t l e n = s i z e * s i z e * s i z e * s i z e ;
8 i n t a l l G u e s s e s [s i z e * s i z e] ;
9

10 i f (l o c == l e n) {
11 / / #pragma omp a t om ic
12 n u m s o l u t i o n s ++;
13 / / #pragma omp c r i t i c a l
14 i f (! f i r s t s o l u t i o n)
15 f i r s t s o l u t i o n = n e w g r i d (s i z e , g) ;
16 re turn 1 ;
17 }
18

19 i f (g [l o c] != 0) {
20 s o l v e d = s o l v e (s i z e , g , l o c +1) ;
21 re turn s o l v e d ;
22 }
23

24 a l l g u e s s e s (s i z e , loc , g , a l l G u e s s e s , &num guesses) ;
25 f o r (i = 0 ; i < num guesses ; i ++) {
26 i f (l o c < 10) {
27 #pragma omp task

28 / / sh ar ed (a l l G u e s s e s , s o l v e d)
29 {
30 i n t * h e l p = n e w g r i d (s i z e , g) ;
31 h e l p [l o c] = a l l G u e s s e s [i] ;
32 i f (s o l v e (s i z e , he lp , l o c +1))
33 / / #pragma omp c r i t i c a l
34 s o l v e d = 1 ;
35 f r e e (h e l p) ;
36 }
37 }
38 e l s e {
39 g [l o c] = a l l G u e s s e s [i] ;
40 i f (s o l v e (s i z e , g , l o c +1))
41 / / #pragma omp c r i t i c a l
42 s o l v e d = 1 ;
43 g [l o c] = 0 ;
44 }
45 }
46 / / #pragma omp t a s k w a i t
47

48 re turn s o l v e d ;
49 }

Listing B.7: Incomplete parallel computation of a Sudoku problem

using OpenMP (kernel).

142 B. BENCHMARK SOURCE CODES

1 i n t main (i n t argc , char ** a rgv) {
2 i n t s o l v e d ;
3 i n t s i z e ;
4

5 i f (a r g c != 2) {
6 f p r i n t f (s t d e r r , ”Usage : %s <p u z z l e f i l e n a m e > \n” , a rgv [0]) ;
7 re turn (0) ;
8 }
9

10 FILE* fd = fopen (a rgv [1] , ” r ”) ;
11 i f (fd == NULL) {
12 p r i n t f (” Error : F a i l e d t o open f i l e w i t h i n i t i a l p u z z l e \n”) ;
13 re turn (0) ;
14 }
15

16 s o l v e d = f s c a n f (fd , ”%d” , &s i z e) ;
17 i n t * g = n e w g r i d (s i z e , NULL) ;
18

19 r e a d p u z z l e (s i z e , g , fd) ;
20 p r i n t f (”\ n I n i t i a l p u z z l e (s i z e %d) :\ n” , s i z e) ;
21 w r i t e p u z z l e (s i z e , g) ;
22

23 #pragma omp parallel

24 #pragma omp single

25 s o l v e d = s o l v e (s i z e , g , 0) ;
26

27 i f (s o l v e d == 1)
28 p r i n t f (”\nFound %l u s o l u t i o n s , f i r s t one b e i n g :\ n” , n u m s o l u t i o n s) ;
29 e l s e
30 p r i n t f (”\ n F a i l e d t o f i n d a s o l u t i o n \n”) ;
31

32 re turn (! s o l v e d) ;
33 }

Listing B.8: Incomplete parallel computation of a Sudoku problem using OpenMP

(main function).

B. BENCHMARK SOURCE CODES 143

B.2 Benchmarks for the OpenMP integration into Ada

B.2.1 Cholesky decomposition

B.2.1.1 C

1 void c h o l e s k y c s e q u e n t i a l (double M[NB] [NB] [BS*BS]) {
2 f o r (i n t k = 0 ; k < NB; k ++) {
3 o m p p o t r f (M[k] [k] , BS , BS) ;
4 f o r (i n t i = k + 1 ; i < NB; i ++)
5 omp trsm (M[k] [k] , M[k] [i] , BS , BS) ;
6 f o r (i n t i = k + 1 ; i < NB; i ++) {
7 f o r (i n t j = k + 1 ; j < i ; j ++)
8 omp gemm (M[k] [i] , M[k] [j] , M[j] [i] , BS , BS) ;
9 omp syrk (M[k] [i] , M[i] [i] , BS , BS) ;
10 }
11 }
12 }

Listing B.9: Cholesky kernel implemented with C.

B.2.1.2 C + OpenMP

1 void c h o l e s k y c t a s k t a s k w a i t s (s t r u c t p a r a l l e l d a t a * a r g s) {
2 double (**M) [NB] [BS*BS] = (* a r g s) .M ;
3 i f (o m p g e t t h r e a d n u m () == 0) {
4 f o r (i n t k = 0 ; k < NB; k ++) {
5 o m p p o t r f ((*M) [k] [k] , BS , BS) ;
6 f o r (i n t i = k + 1 ; i < NB; i ++) {
7 s t r u c t o m p t r s m d a t a t a r g s ;
8 t a r g s . M = M; t a r g s . k = k ; t a r g s . i = i ;
9 GOMP task ((void (*) (void *)) o m p t r s m t a s k ,

10 &t a r g s , (void (*) (void * , void *)) 0 , 24 , 8 , 1 ,
11 GOMP TASK UNTIED , 0 , 0) ;
12 }
13 GOMP taskwait () ;
14

15 f o r (i n t i = k + 1 ; i < NB; i ++) {
16 f o r (i n t j = k + 1 ; j < i ; j ++) {
17 s t r u c t omp gemm data t a r g s ;
18 t a r g s . M = M; t a r g s . k = k ; t a r g s . i = i ; t a r g s . j = j ;
19 GOMP task ((void (*) (void *)) omp gemm task ,
20 &t a r g s , (void (*) (void * , void *)) 0 , 32 , 8 , 1 ,
21 GOMP TASK UNTIED , 0 , 0) ;
22 }
23 GOMP taskwait () ;
24 omp syrk ((*M) [k] [i] , (*M) [i] [i] , BS , BS) ;
25 }
26 }
27 }
28 }

Listing B.10: Cholesky kernel implemented with C and OpenMP tasks, and
synchronizing tasks with taskwaits.

144 B. BENCHMARK SOURCE CODES

1 void c h o l e s k y c t a s k d e p e n d e n c e s (s t r u c t p a r a l l e l d a t a * a r g s) {
2 double (**M) [NB] [BS*BS] = (* a r g s) .M ;
3 i f (o m p g e t t h r e a d n u m () == 0) {
4 f o r (i n t k = 0 ; k < NB; k ++) {
5 s t r u c t o m p p o t r f d a t a t a r g s ;
6 t a r g s . M = M; t a r g s . k = k ;
7 void * deps [3L] = { [0] = (void *) 1U, [1] = (void *) 1U,
8 [2] = (*M) [k] [k] } ;
9 GOMP task ((void (*) (void *)) o m p p o t r f t a s k ,
10 &t a r g s , (void (*) (void * , void *)) 0 , 32 , 8 , 1 ,
11 UNTIED DEPEND , deps , 0) ;
12 f o r (i n t i = k + 1 ; i < NB; i ++) {
13 s t r u c t o m p t r s m d a t a t a r g s ;
14 t a r g s . M = M; t a r g s . k = k ; t a r g s . i = i ;
15 void * deps [4L] = { [0] = (void *) 2U, [1] = (void *) 1U,
16 [2] = (*M) [k] [k] , [3] = (*M) [k] [i] } ;
17 GOMP task ((void (*) (void *)) o m p t r s m t a s k ,
18 &t a r g s , (void (*) (void * , void *)) 0 , 32 , 8 , 1 ,
19 UNTIED DEPEND , deps , 0) ;
20 }
21 f o r (i n t i = k + 1 ; i < NB; i ++) {
22 f o r (i n t j = k + 1 ; j < i ; j ++) {
23 s t r u c t omp gemm data t a r g s ;
24 t a r g s . M = M; t a r g s . k = k ; t a r g s . i = i ; t a r g s . j = j ;
25 void * deps [5L] = { [0] = (void *) 3U, [1] = (void *) 1U,
26 [2] = (*M) [k] [j] , [3] = (*M) [k] [j] ,
27 [4] = (*M) [j] [i] } ;
28 GOMP task ((void (*) (void *)) omp gemm task ,
29 &t a r g s , (void (*) (void * , void *)) 0 , 40 , 8 , 1 ,
30 UNTIED DEPEND , deps , 0) ;
31 }
32 s t r u c t o m p s y r k d a t a t a r g s ;
33 t a r g s . M = M; t a r g s . k = k ; t a r g s . i = i ;
34 void * deps [4L] = { [0] = (void *) 2U, [1] = (void *) 1U,
35 [2] = (*M) [k] [i] , [3] = (*M) [i] [i] } ;
36 GOMP task ((void (*) (void *)) o m p s y r k t a s k ,
37 &t a r g s , (void (*) (void * , void *)) 0 , 32 , 8 , 1 ,
38 UNTIED DEPEND , deps , 0) ;
39 }
40 }
41 }
42 }

Listing B.11: Cholesky kernel implemented with C and OpenMP tasks, and
synchronizing tasks with dependences.

B. BENCHMARK SOURCE CODES 145

B.2.1.3 Ada

1 procedure c h o l e s k y a d a s e q u e n t i a l (M : in out Mat r ix Type) i s
2 begin
3 f o r k in 0 . . NB�1 loop
4 Omp potr f (M(k , k) , BS , BS) ;
5 f o r i in k + 1 . . NB�1 loop
6 Omp trsm (M(k , k) , M(k , i) , BS , BS) ;
7 end loop ;
8 f o r i in k + 1 . . NB�1 loop
9 f o r j in k + 1 . . i �1 loop

10 Omp gemm (M(k , i) , M(k , j) , M(j , i) , BS , BS) ;
11 end loop ;
12 Omp syrk (M(k , i) , M(i , i) , BS , BS) ;
13 end loop ;
14 end loop ;
15 end c h o l e s k y a d a s e q ;

Listing B.12: Cholesky kernel implemented with Ada.

B.2.1.4 Ada + OpenMP

1 procedure c h o l e s k y a d a t a s k w a i t s (a r g s : S y s t e m . A d d r e s s) i s
2 . . . �� F u n c t i o n d e c l a r a t i o n s
3 a r g s A c c : P a r a l l e l D a t a T y p e A c c e s s := C o n v e r t t o P a r a l l e l (a r g s) ;
4 M Acc : M a t r i x A c c e s s := C o n v e r t t o M a t r i x (a rgs Acc .M Addr) ;
5 deps : OpenMP.Vo id P t r P t r := n u l l ;
6 begin
7 i f (OpenMP.Ada OMP Get Thread Num = 0)
8 then
9 f o r k in 0 . . NB�1 loop

10 Omp potr f (M A c c . a l l (k , k) , BS , BS) ;
11 f o r i in k + 1 . . NB�1 loop
12 . . . �� D e c l a r a t i o n s
13 begin
14 t a r g s . M A d d r := args Acc .M Addr ; t a r g s . k := k ; t a r g s . i := i ;
15 OpenMP.Ada GOMP Task (o m p t r s m t a s k ' U n r e s t r i c t e d A c c e s s , t a r g s . a l l ' Address ,
16 nul l , 16 , 8 , TRUE, GOMP TASK UNTIED , deps , 0) ;
17 end ;
18 end loop ;
19 OpenMP.Ada GOMP Taskwait ;
20 f o r i in k + 1 . . NB�1 loop
21 f o r j in k + 1 . . i �1 loop
22 . . . �� D e c l a r a t i o n s
23 begin
24 t a r g s . M A d d r := args Acc .M Addr ; t a r g s . k := k ; t a r g s . i := i ; t a r g s . j := j ;
25 OpenMP.Ada GOMP Task (omp gemm task ' U n r e s t r i c t e d A c c e s s ,
26 t a r g s . a l l ' Address , nul l , 20 , 8 , TRUE, GOMP TASK UNTIED , deps , 0) ;
27 end ;
28 end loop ;
29 OpenMP.Ada GOMP Taskwait ;
30 Omp syrk (M A c c . a l l (k , i) , M A c c . a l l (i , i) , BS , BS) ;
31 end loop ;
32 end loop ;
33 end i f ;
34 end c h o l e s k y a d a t a s k t a s k w a i t s ;

Listing B.13: Cholesky kernel implemented with Ada and OpenMP tasks, and synchronizing
tasks with taskwaits.

146 B. BENCHMARK SOURCE CODES

1 procedure c h o l e s k y a d a t a s k d e p e n d e n c e s (a r g s : S y s t e m . A d d r e s s) i s
2 . . . �� D e c l a r a t i o n s
3 begin
4 i f (OpenMP.Ada OMP Get Thread Num = 0) then
5 f o r k in 0 . . NB�1 loop
6 d e c l a r e
7 t a r g s : Omp po t r f Acces s Type := new Omp pot r f Type ;
8 d e p s a r r : a l i a s e d array (1 . . 3) of a l i a s e d OpenMP.Void Ptr :=
9 (PTR 1U , PTR 1U , S u b m a t r i x t o V o i d P t r (M A c c . a l l (k , k))) ;
10 begin
11 t a r g s . M A d d r := args Acc .M Addr ; t a r g s . k := k ;
12 OpenMP.Ada GOMP Task (o m p p o t r f t a s k ' U n r e s t r i c t e d A c c e s s , t a r g s . a l l ' Address ,
13 nul l , 12 , 8 , TRUE, UNTIED DEPEND , d e p s a r r (1) ' U n r e s t r i c t e d A c c e s s , 0) ;
14 end ;
15 f o r i in k + 1 . . NB�1 loop
16 d e c l a r e
17 t a r g s : Omp trsm Access Type := new Omp trsm Type ;
18 d e p s a r r : a l i a s e d array (1 . . 4) of a l i a s e d OpenMP.Void Ptr :=
19 (PTR 2U , PTR 1U , S u b m a t r i x t o V o i d P t r (M A c c . a l l (k , k))
20 S u b m a t r i x t o V o i d P t r (M A c c . a l l (k , i))) ;
21 begin
22 t a r g s . M A d d r := args Acc .M Addr ; t a r g s . k := k ; t a r g s . i := i ;
23 OpenMP.Ada GOMP Task (o m p t r s m t a s k ' U n r e s t r i c t e d A c c e s s , t a r g s . a l l ' Address ,
24 nul l , 16 , 8 , TRUE, UNTIED DEPEND , d e p s a r r (1) ' U n r e s t r i c t e d A c c e s s , 0) ;
25 end ;
26 end loop ;
27 f o r i in k + 1 . . NB�1 loop
28 f o r j in k + 1 . . i �1 loop
29 d e c l a r e
30 t a r g s : Omp gemm Access Type := new Omp gemm Type ;
31 d e p s a r r : a l i a s e d array (1 . . 5) of a l i a s e d OpenMP.Void Ptr :=
32 (PTR 3U , PTR 1U , S u b m a t r i x t o V o i d P t r (M A c c . a l l (k , i)) ,
33 S u b m a t r i x t o V o i d P t r (M A c c . a l l (k , j)) ,
34 S u b m a t r i x t o V o i d P t r (M A c c . a l l (j , i))) ;
35 begin
36 t a r g s . M A d d r := args Acc .M Addr ;
37 t a r g s . k := k ; t a r g s . i := i ; t a r g s . j := j ;
38 OpenMP.Ada GOMP Task (omp gemm task ' U n r e s t r i c t e d A c c e s s ,
39 t a r g s . a l l ' Address , nul l , 20 , 8 , TRUE,
40 UNTIED DEPEND , d e p s a r r (1) ' U n r e s t r i c t e d A c c e s s , 0) ;
41 end ;
42 end loop ;
43 d e c l a r e
44 t a r g s : Omp syrk Access Type := new Omp syrk Type ;
45 d e p s a r r : a l i a s e d array (1 . . 4) of a l i a s e d OpenMP.Void Ptr :=
46 (PTR 2U , PTR 1U , S u b m a t r i x t o V o i d P t r (M A c c . a l l (k , i)) ,
47 S u b m a t r i x t o V o i d P t r (M A c c . a l l (i , i))) ;
48 begin
49 t a r g s . M A d d r := args Acc .M Addr ; t a r g s . k := k ; t a r g s . i := i ;
50 OpenMP.Ada GOMP Task (o m p s y r k t a s k ' U n r e s t r i c t e d A c c e s s , t a r g s . a l l ' Address ,
51 nul l , 16 , 8 , TRUE, UNTIED DEPEND , d e p s a r r (1) ' U n r e s t r i c t e d A c c e s s , 0) ;
52 end ;
53 end loop ;
54 end loop ;
55 end i f ;
56 end c h o l e s k y a d a t a s k d e p e n d e n c e s ;

Listing B.14: Cholesky kernel implemented with Ada and OpenMP tasks, and synchronizing

tasks with dependences.

B. BENCHMARK SOURCE CODES 147

B.2.1.5 Ada tasks

1 procedure c h o l e s k y a d a t a s k s (M : in out Mat r ix Type) i s
2 . . . �� My Barr i e r d e c l a r a t i o n
3 p r o t e c t e d body M y B a r r i e r i s
4 entry Wait when F i n i s h e d T a s k s = Num Tasks i s
5 begin
6 F i n i s h e d T a s k s := 0 ;
7 end ;
8 procedure F i n i s h e d i s
9 begin

10 F i n i s h e d T a s k s := F i n i s h e d T a s k s + 1 ;
11 end F i n i s h e d ;
12 procedure R e s e t i s
13 begin
14 F i n i s h e d T a s k s := 0 ;
15 end R e s e t ;
16 end M y B a r r i e r ;
17 Phase 1 , P ha s e 2 : M y B a r r i e r ;
18 . . . �� Phases 1 d e c l a r a t i o n
19 p r o t e c t e d body P h a s e s 1 i s
20 entry Wait 1 (F i r s t P o s , L a s t P o s , K: out I n t e g e r ; ToEnd : out Boolean)
21 when L o c a l N e x t 1 = True or Local ToEnd = True i s
22 begin
23 F i r s t P o s := L o c a l F i r s t P o s 1 ; L a s t P o s := L o c a l L a s t P o s 1 ;
24 K := Loca l K 1 ; ToEnd := Local ToEnd ; L o c a l N e x t 1 := F a l s e ;
25 end Wait 1 ;
26 procedure S t a r t 1 (F i r s t P o s , L a s t P o s , K: I n t e g e r) i s
27 begin
28 L o c a l F i r s t P o s 1 := F i r s t P o s ; L o c a l L a s t P o s 1 := L a s t P o s ;
29 Loca l K 1 := K; L o c a l N e x t 1 := True ;
30 end S t a r t 1 ;
31 procedure F i n i s h e d i s
32 begin
33 Local ToEnd := True ;
34 end F i n i s h e d ;
35 end P h a s e s 1 ;
36 . . . �� Phases 2 d e c l a r a t i o n
37 p r o t e c t e d body P h a s e s 2 i s
38 entry Wait 2 (F i r s t P o s , L a s t P o s , K, I : out I n t e g e r ; ToEnd : out Boolean)
39 when L o c a l N e x t 2 = True or Local ToEnd = True i s
40 begin
41 F i r s t P o s := L o c a l F i r s t P o s 2 ; L a s t P o s := L o c a l L a s t P o s 2 ;
42 K := Loca l K 2 ; I := L o c a l I ; ToEnd := Local ToEnd ; L o c a l N e x t 2 := F a l s e ;
43 end Wait 2 ;
44 procedure S t a r t 2 (F i r s t P o s , L a s t P o s , K, I : I n t e g e r) i s
45 begin
46 L o c a l F i r s t P o s 2 := F i r s t P o s ; L o c a l L a s t P o s 2 := L a s t P o s ;
47 Loca l K 2 := K; L o c a l I := I ; L o c a l N e x t 2 := True ;
48 end S t a r t 2 ;
49 procedure F i n i s h e d i s
50 begin
51 Local ToEnd := True ;
52 end F i n i s h e d ;
53 end P h a s e s 2 ;
54

55 P r o c e s s P h a s e s 1 : array (0 . .Num Tasks �1) of P h a s e s 1 ;
56 P r o c e s s P h a s e s 2 : array (0 . .Num Tasks �1) of P h a s e s 2 ;
57 �� c o n t i n u e s . . .

Listing B.15: Cholesky kernel implemented with Ada tasks: synchronization mechanisms.

148 B. BENCHMARK SOURCE CODES

1 �� c o n t i n u e s . . .
2 . . . �� P r o c e s s 1 d e c l a r a t i o n
3 ta sk body P r o c e s s 1 i s
4 L o c a l F i r s t P o s , L o c a l L a s t P o s , Local K : I n t e g e r ;
5 L o c a l I d : I n t e g e r ;
6 ToEnd : Boolean ;
7 begin
8 a cc ep t Id (My Id : I n t e g e r) do
9 L o c a l I d := My Id ;
10 end Id ;
11 loop
12 P r o c e s s P h a s e s 1 (L o c a l I d) . w a i t 1 (L o c a l F i r s t P o s , L o c a l L a s t P o s ,
13 Local K , ToEnd) ;
14 e x i t when ToEnd = True ;
15 f o r I in L o c a l F i r s t P o s . . L o c a l L a s t P o s loop
16 Omp trsm (M(Local K , Local K) , M(Local K , I) , BS , BS) ;
17 end loop ;
18 P h a s e 1 . F i n i s h e d ;
19 end loop ;
20 end P r o c e s s 1 ;
21

22 . . . �� P r o c e s s 2 d e c l a r a t i o n
23 ta sk body P r o c e s s 2 i s
24 L o c a l F i r s t P o s , L o c a l L a s t P o s , Local K , L o c a l I : I n t e g e r ;
25 L o c a l I d : I n t e g e r ;
26 ToEnd : Boolean ;
27 begin
28 a cc ep t Id (My Id : I n t e g e r) do
29 L o c a l I d := My Id ;
30 end Id ;
31 loop
32 P r o c e s s P h a s e s 2 (L o c a l I d) . w a i t 2 (L o c a l F i r s t P o s , L o c a l L a s t P o s ,
33 Local K , L o c a l I , ToEnd) ;
34 e x i t when ToEnd = True ;
35 f o r J in L o c a l F i r s t P o s . . L o c a l L a s t P o s loop
36 Omp gemm (M(Local K , L o c a l I) , M(Local K , J) , M(J , L o c a l I) , BS , BS) ;
37 end loop ;
38 P h a s e 2 . F i n i s h e d ;
39 end loop ;
40 end P r o c e s s 2 ;
41

42 F i r s t P o s , L a s t P o s : I n t e g e r ;
43 Temp Size , O f f s e t : I n t e g e r ;
44 P r o c e s s T a s k s 1 : array (0 . .Num Tasks �1) of P r o c e s s 1 ;
45 P r o c e s s T a s k s 2 : array (0 . .Num Tasks �1) of P r o c e s s 2 ;
46 �� c o n t i n u e s . . .

Listing B.16: Cholesky kernel implemented with Ada tasks: secondary kernels.

B. BENCHMARK SOURCE CODES 149

1 �� c o n t i n u e s . . .
2 begin
3 f o r I in 0 . .Num Tasks �1 loop
4 P r o c e s s T a s k s 1 (I) . I d (I) ;
5 P r o c e s s T a s k s 2 (I) . I d (I) ;
6 end loop ;
7 f o r K in 0 . . NB � 1 loop
8 Omp potr f (M(K, K) , BS , BS) ;
9 Temp Size := (NB�1) � (K + 1) + 1 ;

10 O f f s e t := K +1;
11 I f Temp Size < Min Chunk Size * Num Tasks then
12 f o r I in K + 1 . . NB�1 loop
13 Omp trsm (M(K, K) , M(K, I) , BS , BS) ;
14 end loop ;
15 e l s e
16 f o r TI in 0 . .Num Tasks �1 loop
17 F i r s t P o s := O f f s e t + TI * (Temp Size / Num Tasks) ;
18 L a s t P o s := O f f s e t + (TI +1) * (Temp Size / Num Tasks) � 1 ;
19 i f TI = Num Tasks�1 then
20 L a s t P o s := O f f s e t + Temp Size � 1 ;
21 end i f ;
22 P r o c e s s P h a s e s 1 (TI) . S t a r t 1 (F i r s t P o s , L a s t P o s , K) ;
23 end loop ;
24 P h a s e 1 . W a i t ;
25 end i f ;
26 f o r I in K + 1 . . NB�1 loop
27 I f Temp Size < Min Chunk Size * Num Tasks then
28 f o r J in K + 1 . . i �1 loop
29 Omp gemm (M(K, I) , M(K, J) , M(J , I) , BS , BS) ;
30 end loop ;
31 e l s e
32 f o r TI in 0 . .Num Tasks �1 loop
33 F i r s t P o s := O f f s e t + TI * (Temp Size / Num Tasks) ;
34 L a s t P o s := O f f s e t + (TI +1) * (Temp Size / Num Tasks) � 1 ;
35 i f TI = Num Tasks�1 then
36 L a s t P o s := O f f s e t + Temp Size � 1 ;
37 end i f ;
38 P r o c e s s P h a s e s 2 (TI) . S t a r t 2 (F i r s t P o s , L a s t P o s , K, I) ;
39 end loop ;
40 P h a s e 2 . W a i t ;
41 end i f ;
42 Omp syrk (M(K, I) , M(I , I) , BS , BS) ;
43 end loop ;
44 end loop ;
45

46 f o r I in 0 . .Num Tasks �1 loop
47 P r o c e s s P h a s e s 1 (I) . F i n i s h e d ;
48 P r o c e s s P h a s e s 2 (I) . F i n i s h e d ;
49 end loop ;
50 end c h o l e s k y a d a t a s k s ;

Listing B.17: Cholesky kernel implemented with Ada tasks: main kernel.

150 B. BENCHMARK SOURCE CODES

B.2.1.6 Ada + Paraffin

1 procedure c h o l e s k y a d a p a r a f f i n (M : in out Mat r ix Type) i s
2 type Matr ix Dim i s range 0 . . NB � 1 ;
3 package P a r a l l e l L o o p s i s new P a r a l l e l . L o o p s (Matr ix Dim) ;
4 package I t e r a t e i s new P a r a l l e l L o o p s . W o r k S h a r i n g ;
5

6 Global K , G l o b a l I : I n t e g e r ;
7 Num Workers : P a r a l l e l . W o r k e r C o u n t T y p e := P a r a l l e l . W o r k e r C o u n t T y p e (Num Tasks) ;
8 Min Chunk Size : I n t e g e r := 1 ;
9 Manager : I t e r a t e . W o r k S h a r i n g M a n a g e r := I t e r a t e . C r e a t e ;
10 Temp Size : I n t e g e r ;
11

12 procedure P h a s e 1 (S t a r t , F i n i s h : Matr ix Dim) i s
13 L o c a l S t a r t : I n t e g e r := I n t e g e r (S t a r t) ;
14 L o c a l F i n i s h : I n t e g e r := I n t e g e r (F i n i s h) ;
15 begin
16 f o r I in L o c a l S t a r t . . L o c a l F i n i s h loop
17 Omp trsm (M(Global K , Global K) , M(Global K , I) , BS , BS) ;
18 end loop ;
19 end P h a s e 1 ;
20 procedure P h a s e 2 (S t a r t , F i n i s h : Matr ix Dim) i s
21 L o c a l S t a r t : I n t e g e r := I n t e g e r (S t a r t) ;
22 L o c a l F i n i s h : I n t e g e r := I n t e g e r (F i n i s h) ;
23 begin
24 f o r J in L o c a l S t a r t . . L o c a l F i n i s h loop
25 Omp gemm (M(Global K , G l o b a l I) , M(Global K , J) , M(J , G l o b a l I) , BS , BS) ;
26 end loop ;
27 end P h a s e 2 ;
28 begin
29 f o r K in 0 . . NB�1 loop
30 Global K := K;
31 Omp potr f (M(K, K) , BS , BS) ;
32 Temp Size := (NB�1) � (K + 1) + 1 ;
33 I f Temp Size < Min Chunk Size * I n t e g e r (Num Workers) then
34 f o r I in K + 1 . . NB�1 loop
35 Omp trsm (M(K, K) , M(K, I) , BS , BS) ;
36 end loop ;
37 e l s e
38 M a n a g e r . E x e c u t e P a r a l l e l L o o p (P r o c e s s => Phase 1 ' Access ,
39 From => Matr ix Dim (K + 1) , Worker Count => Num Workers) ;
40 end i f ;
41 f o r I in K + 1 . . NB�1 loop
42 G l o b a l I := I ;
43 I f Temp Size < Min Chunk Size * I n t e g e r (Num Workers) then
44 f o r J in K + 1 . . i �1 loop
45 Omp gemm (M(K, I) , M(K, J) , M(J , I) , BS , BS) ;
46 end loop ;
47 e l s e
48 M a n a g e r . E x e c u t e P a r a l l e l L o o p (P r o c e s s => Phase 2 ' Access ,
49 From => Matr ix Dim (K + 1) , Worker Count => Num Workers) ;
50 end i f ;
51 Omp syrk (M(K, I) , M(I , I) , BS , BS) ;
52 end loop ;
53 end loop ;
54 end c h o l e s k y a d a p a r a f f i n ;

Listing B.18: Cholesky kernel implemented with Paraffin.

B. BENCHMARK SOURCE CODES 151

B.2.2 LU factorization

B.2.2.1 C

1 void l u c s e q u e n t i a l (double M[NB] [NB] [BS*BS]) {
2 f o r (i n t kk =0; kk<S ; kk ++) {
3 l u 0 (M[kk] [kk]) ;
4 f o r (i n t j j =kk +1; j j <S ; j j ++)
5 fwd (M[kk] [kk] , M[kk] [j j]) ;
6 f o r (i n t i i =kk +1; i i <S ; i i ++)
7 bd iv (M[kk] [kk] , M[i i] [kk]) ;
8 f o r (i n t i i =kk +1; i i <S ; i i ++)
9 f o r (j j =kk +1; j j <S ; j j ++)

10 bmod (M[i i] [kk] , M[kk] [j j] , M[i i] [j j]) ;
11 }
12 }

Listing B.19: LU kernel implemented with C.

B.2.2.2 C + OpenMP

1 void l u c t a s k t a s k w a i t s (s t r u c t p a r a l l e l d a t a * a r g s) {
2 f l o a t (** c o n s t M) [S] [BS] [BS] = &(*(* a r g s) .M) ;
3 i f (G O M P s i n g l e s t a r t ())
4 f o r (i n t kk =0; kk<S ; kk ++) {
5 l u 0 ((*M) [kk] [kk]) ;
6 f o r (i n t j j =kk +1; j j <S ; j j ++) {
7 s t r u c t f w d d a t a t a r g s ;
8 t a r g s . M = (f l o a t (* *) [S] [BS] [BS]) M;
9 t a r g s . k k = kk ; t a r g s . j j = j j ;

10 GOMP task ((void (*) (void *)) f w d t a s k , &t a r g s ,
11 (void (*) (void * , void *)) 0 , 16 , 8 , 1 ,
12 GOMP TASK UNTIED , 0 , 0) ;
13 }
14 f o r (i n t i i =kk +1; i i <S ; i i ++) {
15 s t r u c t b d i v d a t a t a r g s ;
16 t a r g s . M = (f l o a t (* *) [S] [BS] [BS]) M;
17 t a r g s . k k = kk ; t a r g s . i i = i i ;
18 GOMP task ((void (*) (void *)) b d i v t a s k , &t a r g s ,
19 (void (*) (void * , void *)) 0 , 16 , 8 , 1 ,
20 GOMP TASK UNTIED , 0 , 0) ;
21 }
22 GOMP taskwait () ;
23 f o r (i n t i i =kk +1; i i <S ; i i ++)
24 f o r (i n t j j =kk +1; j j <S ; j j ++) {
25 s t r u c t bmod args t a r g s ;
26 t a r g s . M = (f l o a t (* *) [S] [BS] [BS]) M;
27 t a r g s . k k = kk ; t a r g s . j j = j j ; t a r g s . i i = i i ;
28 GOMP task ((void (*) (void *)) bmod task , &t a r g s ,
29 (void (*) (void * , void *)) 0 , 24 , 8 , 1 ,
30 GOMP TASK UNTIED , 0 , 0) ;
31 }
32 GOMP taskwait () ;
33 }
34 }

Listing B.20: LU kernel implemented with C and OpenMP tasks, and
synchronizing tasks with taskwaits.

152 B. BENCHMARK SOURCE CODES

1 void l u c t a s k d e p e n d e n c e s (s t r u c t p a r a l l e l d a t a * a r g s) {
2 f l o a t (** c o n s t M) [S] [BS] [BS] = &(*(* a r g s) .M) ;
3 i f (G O M P s i n g l e s t a r t ())
4 f o r (i n t kk =0; kk<S ; kk ++) {
5 s t r u c t d e p s t a s k a r g s t a r g s ;
6 t a r g s . M = (f l o a t (* *) [S] [BS] [BS]) M; t a r g s . k k = kk ;
7 void * deps [3L] = { [0] = (void *) 1U, [1] = (void *) 1U,
8 [2] = (*M) [kk] [kk] } ;
9 GOMP task ((void (*) (void *)) l u 0 t a s k , &t a r g s , (void (*) (void * , void *)) 0 ,
10 16 , 8 , 1 , UNTIED DEPEND , deps , 0) ;
11 f o r (i n t j j =kk +1; j j <S ; j j ++) {
12 s t r u c t f w d d a t a t a r g s ;
13 t a r g s . M = (f l o a t (* *) [S] [BS] [BS]) M;
14 t a r g s . k k = kk ; t a r g s . j j = j j ;
15 void * deps [4L] = { [0] = (void *) 2U, [1] = (void *) 1U,
16 [2] = (*M) [kk] [kk] , [3] = (*M) [kk] [j j] } ;
17 GOMP task ((void (*) (void *)) f w d t a s k , &t a r g s , (void (*) (void * , void *)) 0 ,
18 16 , 8 , 1 , UNTIED DEPEND , deps , 0) ;
19 }
20 f o r (i n t i i =kk +1; i i <S ; i i ++) {
21 s t r u c t d e p s t a s k a r g s t a r g s ;
22 t a r g s . M = (f l o a t (* *) [S] [BS] [BS]) M;
23 t a r g s . k k = kk ; t a r g s . i i = i i ;
24 void * deps [4L] = { [0] = (void *) 2U, [1] = (void *) 1U,
25 [2] = (*M) [kk] [kk] , [3] = (*M) [i i] [kk] } ;
26 GOMP task ((void (*) (void *)) b d i v t a s k , &t a r g s , (void (*) (void * , void *)) 0 ,
27 16 , 8 , 1 , UNTIED DEPEND , deps , 0) ;
28 }
29 f o r (i n t i i =kk +1; i i <S ; i i ++)
30 f o r (i n t j j =kk +1; j j <S ; j j ++) {
31 s t r u c t d e p s t a s k a r g s t a r g s ;
32 t a r g s . M = (f l o a t (* *) [S] [BS] [BS]) M;
33 t a r g s . k k = kk ; t a r g s . j j = j j ; t a r g s . i i = i i ;
34 void * deps [5L] = { [0] = (void *) 3U, [1] = (void *) 1U, [2] = (*M) [i i] [kk] ,
35 [3] = (*M) [kk] [j j] , [4] = (*M) [i i] [j j] } ;
36 GOMP task ((void (*) (void *)) bmod task , &t a r g s ,
37 (void (*) (void * , void *)) 0 , 24 , 8 , 1 , UNTIED DEPEND , deps , 0) ;
38 }
39 }
40 }

Listing B.21: LU kernel implemented with C and OpenMP tasks, and synchronizing tasks with
dependences.

B.2.2.3 Ada

1 procedure l u a d a s e q u e n t i a l (M : in out Mat r ix Type) i s
2 begin
3 f o r kk in 0 . . S�1 loop
4 Lu0 (M(kk , kk)) ;
5 f o r j j in kk+1 . . S�1 loop
6 Fwd (M(kk , kk) , M([kk , j j)) ;
7 f o r i i in kk+1 . . S�1 loop
8 Bdiv (M(kk , kk) , M(i i , kk)) ;
9 f o r i i in kk+1 . . S�1 loop

10 f o r j j in kk+1 . . S�1 loop
11 Bmod(M(i i , kk) , M(kk , j j) , M(i i , j j)) ;
12 end loop ;
13 end l u a d a s e q u e n t i a l ;

Listing B.22: LU kernel implemented with Ada.

B. BENCHMARK SOURCE CODES 153

B.2.2.4 Ada + OpenMP

1 procedure l u a d a t a s k t a s k w a i t s (a r g s : S y s t e m . A d d r e s s) i s
2 . . . �� D e c l a r a t i o n s
3 a r g s A c c : P a r a l l e l D a t a T y p e A c c e s s := C o n v e r t t o P a r a l l e l (a r g s) ;
4 M Acc : M a t r i x A c c e s s := C o n v e r t t o M a t r i x (a rg s A cc . M A dd r e s s) ;
5 Depend Clauses : OpenMP.Vo id P t r P t r := n u l l ;
6 begin
7 i f (OpenMP.Ada OMP Get Thread Num = 0) then
8 f o r KK in 0 . . S�1 loop
9 Lu0 (M A c c . a l l (KK, KK)) ;
10 f o r J J in KK + 1 . . S�1 loop
11 . . . �� D e c l a r a t i o n s
12 begin
13 t a r g s . M A d d r e s s := a r gs A cc . M A dd r e s s ;
14 t a r g s . K K := KK; t a r g s . J J := J J ;
15 t a r g s := t a r g s . a l l ' Address ;
16 OpenMP.Ada GOMP Task (Fwd task ' U n r e s t r i c t e d A c c e s s ,
17 t a r g s . a l l ' Address , nul l , 16 , 8 , TRUE,
18 GOMP TASK UNTIED , Depend Clauses , 0) ;
19 end ;
20 end loop ;
21 f o r I I in KK + 1 . . S �1 loop
22 . . . �� D e c l a r a t i o n s
23 begin
24 t a r g s . M A d d r e s s := a r gs A cc . M A dd r e s s ;
25 t a r g s . K K := KK; t a r g s . I I := I I ;
26 OpenMP.Ada GOMP Task (B d i v t a s k ' U n r e s t r i c t e d A c c e s s ,
27 t a r g s . a l l ' Address , nul l , 16 , 8 , TRUE,
28 GOMP TASK UNTIED , Depend Clauses , 0) ;
29 end ;
30 end loop ;
31 OpenMP.Ada GOMP Taskwait ;
32 f o r I I in KK + 1 . . S �1 loop
33 f o r J J in KK + 1 . . S�1 loop
34 . . . �� D e c l a r a t i o n s
35 begin
36 t a r g s . M A d d r e s s := a r gs A cc . M A dd r e s s ;
37 t a r g s . K K := KK; t a r g s . J J := J J ; t a r g s . I I := I I ;
38 OpenMP.Ada GOMP Task (Bmod task ' U n r e s t r i c t e d A c c e s s ,
39 t a r g s . a l l ' Address , nul l , 20 , 8 , TRUE,
40 GOMP TASK UNTIED , Depend Clauses , 0) ;
41 end ;
42 end loop ;
43 end loop ;
44 OpenMP.Ada GOMP Taskwait ;
45 end loop ;
46 end i f ;
47 end l u a d a t a s k t a s k w a i t s ;

Listing B.23: LU kernel implemented with Ada and OpenMP tasks, and synchronizing
tasks with taskwaits.

154 B. BENCHMARK SOURCE CODES

1 procedure l u a d a t a s k d e p e n d e n c e s (a r g s : S y s t e m . A d d r e s s) i s
2 . . . �� D e c l a r a t i o n s
3 begin
4 i f (OpenMP.Ada OMP Get Thread Num = 0) then
5 f o r KK in 0 . . S�1 loop
6 d e c l a r e
7 t a r g s : Lu0 Access Type := new Lu0 Type ;
8 D e p e n d C l a u s e s A r r a y : a l i a s e d array (1 . . 3) of a l i a s e d OpenMP.Void Ptr :=
9 (DEPS PTR 1U , DEPS PTR 1U , S u b m a t r i x t o V o i d P t r (M A c c . a l l (kk , kk))) ;
10 begin
11 t a r g s . M A d d r e s s := a r gs A cc . M A dd r e s s ; t a r g s . K K := KK;
12 OpenMP.Ada GOMP Task (T a s k s F u n c t i o n T a s k 1 ' U n r e s t r i c t e d A c c e s s ,
13 t a r g s . a l l ' Address , nul l , 12 , 8 , TRUE, UNTIED DEPEND ,
14 D e p e n d C l a u s e s A r r a y (1) ' U n r e s t r i c t e d A c c e s s , 0) ;
15 end ;
16 f o r J J in KK + 1 . . S�1 loop
17 d e c l a r e
18 t a r g s : Fwd Access Type := new Fwd Type ;
19 D e p e n d C l a u s e s A r r a y : a l i a s e d array (1 . . 4) of a l i a s e d OpenMP.Void Ptr :=
20 (DEPS PTR 2U , DEPS PTR 1U , S u b m a t r i x t o V o i d P t r (M A c c . a l l (kk , kk)) ,
21 S u b m a t r i x t o V o i d P t r (M A c c . a l l (kk , j j))) ;
22 begin
23 t a r g s . M A d d r e s s := a r gs A cc . M A dd r e s s ; t a r g s . K K := KK; t a r g s . J J := J J ;
24 OpenMP.Ada GOMP Task (T a s k s F u n c t i o n T a s k 2 ' U n r e s t r i c t e d A c c e s s ,
25 t a r g s . a l l ' Address , nul l , 16 , 8 , TRUE, UNTIED DEPEND ,
26 D e p e n d C l a u s e s A r r a y (1) ' U n r e s t r i c t e d A c c e s s , 0) ;
27 end ;
28 end loop ;
29 f o r I I in KK + 1 . . S �1 loop
30 d e c l a r e
31 t a r g s : Bd iv Access Type := new Bdiv Type ;
32 D e p e n d C l a u s e s A r r a y : a l i a s e d array (1 . . 4) of a l i a s e d OpenMP.Void Ptr :=
33 (DEPS PTR 2U , DEPS PTR 1U , S u b m a t r i x t o V o i d P t r (M A c c . a l l (kk , kk)) ,
34 S u b m a t r i x t o V o i d P t r (M A c c . a l l (i i , kk))) ;
35 begin
36 t a r g s . M A d d r e s s := a r gs A cc . M A dd r e s s ; t a r g s . K K := KK; t a r g s . I I := I I ;
37 OpenMP.Ada GOMP Task (T a s k s F u n c t i o n T a s k 3 ' U n r e s t r i c t e d A c c e s s ,
38 t a r g s . a l l ' Address , nul l , 16 , 8 , TRUE, UNTIED DEPEND ,
39 D e p e n d C l a u s e s A r r a y (1) ' U n r e s t r i c t e d A c c e s s , 0) ;
40 end ;
41 end loop ;
42 f o r I I in KK + 1 . . S �1 loop
43 f o r J J in KK + 1 . . S�1 loop
44 d e c l a r e
45 t a r g s : Bmod Access Type := new Bmod Type ;
46 D e p e n d C l a u s e s A r r a y : a l i a s e d array (1 . . 5) of a l i a s e d OpenMP.Void Ptr :=
47 (DEPS PTR 3U , DEPS PTR 1U , S u b m a t r i x t o V o i d P t r (M A c c . a l l (i i , kk)) ,
48 S u b m a t r i x t o V o i d P t r (M A c c . a l l (kk , j j)) ,
49 S u b m a t r i x t o V o i d P t r (M A c c . a l l (i i , j j))) ;
50 begin
51 t a r g s . M A d d r e s s := a r gs A cc . M A dd r e s s ;
52 t a r g s . K K := KK; t a r g s . J J := J J ; t a r g s . I I := I I ;
53 OpenMP.Ada GOMP Task (T a s k s F u n c t i o n T a s k 4 ' U n r e s t r i c t e d A c c e s s ,
54 t a r g s . a l l ' Address , nul l , 20 , 8 , TRUE, UNTIED DEPEND ,
55 D e p e n d C l a u s e s A r r a y (1) ' U n r e s t r i c t e d A c c e s s , 0) ;
56 end ;
57 end loop ;
58 end loop ;
59 end loop ;
60 end i f ;
61 end l u a d a t a s k d e p e n d e n c e s ;

Listing B.24: LU kernel implemented with Ada and OpenMP tasks, and synchronizing tasks with
dependences.

B. BENCHMARK SOURCE CODES 155

B.2.2.5 Ada tasks

1 procedure l u a d a t a s k s (M : in out Mat r ix Type) i s
2 Num Tasks : I n t e g e r := Num Tasks ;
3 Min Chunk Size : I n t e g e r := 1 ;
4 S i z e : I n t e g e r := S ;
5

6 p r o t e c t e d type M y B a r r i e r i s
7 entry Wait ;
8 procedure F i n i s h e d ;
9 procedure R e s e t ;

10 p r i v a t e
11 F i n i s h e d T a s k s : I n t e g e r := 0 ;
12 N Tasks : I n t e g e r := Num Tasks ;
13 end M y B a r r i e r ;
14 p r o t e c t e d body M y B a r r i e r i s
15 entry Wait when F i n i s h e d T a s k s = N Tasks i s
16 begin
17 F i n i s h e d T a s k s := 0 ;
18 end ;
19 procedure F i n i s h e d i s
20 begin
21 F i n i s h e d T a s k s := F i n i s h e d T a s k s + 1 ;
22 end F i n i s h e d ;
23 procedure R e s e t i s
24 begin
25 F i n i s h e d T a s k s := 0 ;
26 end R e s e t ;
27 end M y B a r r i e r ;
28

29 Phase 1 , Phase 2 , P h as e 3 : M y B a r r i e r ;
30 �� c o n t i n u e s . . .

Listing B.25: LU kernel implemented with Ada tasks:

synchronization mechanisms.

156 B. BENCHMARK SOURCE CODES

1 �� c o n t i n u e s . . .
2 p r o t e c t e d body Ph as e s i s
3 entry Wait 1 (F i r s t P o s , L a s t P o s , KK: out I n t e g e r ; ToEnd : out Boolean)
4 when L o c a l N e x t 1 = True or Local ToEnd = True i s
5 begin
6 F i r s t P o s := L o c a l F i r s t P o s 1 ; L a s t P o s := L o c a l L a s t P o s 1 ;
7 KK := Local KK 1 ; ToEnd := Local ToEnd ; L o c a l N e x t 1 := F a l s e ;
8 end Wait 1 ;
9 procedure S t a r t 1 (F i r s t P o s , L a s t P o s , KK: I n t e g e r) i s

10 begin
11 L o c a l F i r s t P o s 1 := F i r s t P o s ; L o c a l L a s t P o s 1 := L a s t P o s ;
12 Local KK 1 := KK; L o c a l N e x t 1 := True ;
13 end S t a r t 1 ;
14

15 entry Wait 2 (F i r s t P o s , L a s t P o s , KK: out I n t e g e r ; ToEnd : out Boolean)
16 when L o c a l N e x t 2 = True or Local ToEnd = True i s
17 begin
18 F i r s t P o s := L o c a l F i r s t P o s 2 ; L a s t P o s := L o c a l L a s t P o s 2 ;
19 KK := Local KK 2 ; ToEnd := Local ToEnd ; L o c a l N e x t 2 := F a l s e ;
20 end Wait 2 ;
21 procedure S t a r t 2 (F i r s t P o s , L a s t P o s , KK: I n t e g e r) i s
22 begin
23 L o c a l F i r s t P o s 2 := F i r s t P o s ; L o c a l L a s t P o s 2 := L a s t P o s ;
24 Local KK 2 := KK; L o c a l N e x t 2 := True ;
25 end S t a r t 2 ;
26

27 entry Wait 3 (F i r s t P o s , L a s t P o s , KK: out I n t e g e r ; ToEnd : out Boolean)
28 when L o c a l N e x t 3 = True or Local ToEnd = True i s
29 begin
30 F i r s t P o s := L o c a l F i r s t P o s 3 ; L a s t P o s := L o c a l L a s t P o s 3 ;
31 KK := Local KK 3 ; ToEnd := Local ToEnd ; L o c a l N e x t 3 := F a l s e ;
32 end Wait 3 ;
33 procedure S t a r t 3 (F i r s t P o s , L a s t P o s , KK: I n t e g e r) i s
34 begin
35 L o c a l F i r s t P o s 3 := F i r s t P o s ; L o c a l L a s t P o s 3 := L a s t P o s ;
36 Local KK 3 := KK; L o c a l N e x t 3 := True ;
37 end S t a r t 3 ;
38

39 procedure F i n i s h e d i s
40 begin
41 Local ToEnd := True ;
42 end F i n i s h e d ;
43 end Ph as e s ;
44

45 P r o c e s s P h a s e s : array (0 . .Num Tasks �1) of Ph as e s ;
46 �� c o n t i n u e s . . .

Listing B.26: LU kernel implemented with Ada tasks: secondary kernels.

B. BENCHMARK SOURCE CODES 157

1 �� c o n t i n u e s . . .
2 . . . �� Task d e c l a r a t i o n
3 ta sk body P r o c e s s i s
4 . . . �� D e c l a r a t i o n s
5 begin
6 a cc ep t Id (My Id : I n t e g e r) do
7 L o c a l I d := My Id ;
8 end Id ;
9

10 loop
11 P r o c e s s P h a s e s (L o c a l I d) . w a i t 1 (L o c a l F i r s t P o s , L o c a l L a s t P o s ,
12 Local KK , ToEnd) ;
13 e x i t when ToEnd = True ;
14 f o r J J in L o c a l F i r s t P o s . . L o c a l L a s t P o s loop
15 Changed Fwd (M, Local KK , J J) ;
16 end loop ;
17 P r o c e s s P h a s e s (L o c a l I d) . w a i t 2 (L o c a l F i r s t P o s , L o c a l L a s t P o s ,
18 Local KK , ToEnd) ;
19 e x i t when ToEnd = True ;
20 f o r I I in L o c a l F i r s t P o s . . L o c a l L a s t P o s loop
21 Changed Bdiv (M, Local KK , I I) ;
22 end loop ;
23 P h a s e 2 . F i n i s h e d ;
24

25 P r o c e s s P h a s e s (L o c a l I d) . w a i t 3 (L o c a l F i r s t P o s , L o c a l L a s t P o s ,
26 Local KK , ToEnd) ;
27 e x i t when ToEnd = True ;
28

29 f o r I I in L o c a l F i r s t P o s . . L o c a l L a s t P o s loop
30 f o r J J in Local KK + 1 . . S �1 loop
31 Changed Bmod (M, Local KK , I I , J J) ;
32 end loop ;
33 end loop ;
34 P h a s e 3 . F i n i s h e d ;
35 end loop ;
36 end P r o c e s s ;
37

38 F i r s t P o s , L a s t P o s : I n t e g e r ;
39 P r o c e s s T a s k s : array (0 . .Num Tasks �1) of P r o c e s s ;
40 Temp Size , O f f s e t : I n t e g e r ;
41 �� c o n t i n u e s . . .

Listing B.27: LU kernel implemented with Ada tasks: more secondary kernels.

158 B. BENCHMARK SOURCE CODES

1 �� c o n t i n u e s . . .
2 begin
3 f o r I in 0 . .Num Tasks �1 loop
4 P r o c e s s T a s k s (I) . I d (I) ;
5 end loop ;
6

7 f o r KK in 0 . . S � 1 loop
8 Changed Lu0 (M, KK) ;
9

10 Temp Size := (S�1) � (KK + 1) + 1 ;
11 O f f s e t := KK + 1 ;
12

13 I f Temp Size < Min Chunk Size * Num Tasks then
14 f o r J J in KK+1 . . S �1 loop
15 Changed Fwd (M, KK, J J) ;
16 end loop ;
17 f o r I I in KK+1 . . S�1 loop
18 Changed Bdiv (M, KK, I I) ;
19 end loop ;
20 f o r I I in KK +1 . . S �1 loop
21 f o r J J in KK + 1 . . S �1 loop
22 Changed Bmod (M, KK, I I , J J) ;
23 end loop ;
24 end loop ;
25 e l s e
26 f o r I in 0 . .Num Tasks �1 loop
27 F i r s t P o s := O f f s e t + I * (Temp Size / Num Tasks) ;
28 L a s t P o s := O f f s e t + (I +1) * (Temp Size / Num Tasks) � 1 ;
29 i f I = Num Tasks�1 then
30 L a s t P o s := O f f s e t + Temp Size � 1 ;
31 end i f ;
32 P r o c e s s P h a s e s (I) . S t a r t 1 (F i r s t P o s , L a s t P o s , KK) ;
33 end loop ;
34 f o r I in 0 . .Num Tasks �1 loop
35 F i r s t P o s := O f f s e t + I * (Temp Size / Num Tasks) ;
36 L a s t P o s := O f f s e t + (I +1) * (Temp Size / Num Tasks) � 1 ;
37 i f I = Num Tasks�1 then
38 L a s t P o s := O f f s e t + Temp Size � 1 ;
39 end i f ;
40 P r o c e s s P h a s e s (I) . S t a r t 2 (F i r s t P o s , L a s t P o s , KK) ;
41 end loop ;
42 P h a s e 2 . W a i t ;
43

44 f o r I in 0 . .Num Tasks �1 loop
45 F i r s t P o s := O f f s e t + I * (Temp Size / Num Tasks) ;
46 L a s t P o s := O f f s e t + (I +1) * (Temp Size / Num Tasks) � 1 ;
47 i f I = Num Tasks�1 then
48 L a s t P o s := O f f s e t + Temp Size � 1 ;
49 end i f ;
50 P r o c e s s P h a s e s (I) . S t a r t 3 (F i r s t P o s , L a s t P o s , KK) ;
51 end loop ;
52 P h a s e 3 . W a i t ;
53 end i f ;
54 end loop ;
55 f o r I in 0 . .Num Tasks �1 loop
56 P r o c e s s P h a s e s (I) . F i n i s h e d ;
57 end loop ;
58 end l u a d a t a s k s ;

Listing B.28: LU kernel implemented with Ada tasks: main kernel.

B. BENCHMARK SOURCE CODES 159

B.2.2.6 Ada + Paraffin

1 procedure l u a d a p a r a f f i n (M : in out Mat r ix Type) i s
2 type Matr ix Dim i s range 0 . . S � 1 ;
3 Min Chunk Size : I n t e g e r := 1 ;
4 Num Workers : P a r a l l e l . W o r k e r C o u n t T y p e := P a r a l l e l . W o r k e r C o u n t T y p e (Num Tasks) ;
5 Global KK : I n t e g e r := 0 ;
6 Temp Size : I n t e g e r ;
7 package P a r a l l e l L o o p s i s new P a r a l l e l . L o o p s (Matr ix Dim) ;
8 package I t e r a t e i s new P a r a l l e l L o o p s . W o r k S h a r i n g ;
9 Manager : I t e r a t e . W o r k S h a r i n g M a n a g e r := I t e r a t e . C r e a t e ;

10

11 procedure P h a s e 1 2 (S t a r t , F i n i s h : Matr ix Dim) i s
12 L o c a l S t a r t : I n t e g e r := I n t e g e r (S t a r t) ; L o c a l F i n i s h : I n t e g e r := I n t e g e r (F i n i s h) ;
13 begin
14 f o r J J in L o c a l S t a r t . . L o c a l F i n i s h loop
15 Changed Fwd (M, Global KK , J J) ;
16 end loop ;
17 f o r I I in L o c a l S t a r t . . L o c a l F i n i s h loop
18 Changed Bdiv (M, Global KK , I I) ;
19 end loop ;
20 end P h a s e 1 2 ;
21

22 procedure P h a se 3 (S t a r t , F i n i s h : Matr ix Dim) i s
23 L o c a l S t a r t : I n t e g e r := I n t e g e r (S t a r t) ; L o c a l F i n i s h : I n t e g e r := I n t e g e r (F i n i s h) ;
24 begin
25 f o r I I in L o c a l S t a r t . . L o c a l F i n i s h loop
26 f o r J J in Global KK + 1 . . S �1 loop
27 Changed Bmod (M, Global KK , I I , J J) ;
28 end loop ;
29 end loop ;
30 end P h a se 3 ;
31 begin
32 f o r KK in 0 . . S � 1 loop
33 Changed Lu0 (M, KK) ;
34 Global KK := KK;
35 Temp Size := (S�1) � (KK + 1) + 1 ;
36

37 I f Temp Size < Min Chunk Size * I n t e g e r (Num Workers) then
38 f o r J J in KK+1 . . S �1 loop
39 Changed Fwd (M, KK, J J) ;
40 end loop ;
41 f o r I I in KK+1 . . S�1 loop
42 Changed Bdiv (M, KK, I I) ;
43 end loop ;
44 f o r I I in KK +1 . . S �1 loop
45 f o r J J in KK + 1 . . S �1 loop
46 Changed Bmod (M, KK, I I , J J) ;
47 end loop ;
48 end loop ;
49 e l s e
50 M a n a g e r . E x e c u t e P a r a l l e l L o o p (P r o c e s s => Phase 1 2 ' Access ,
51 From => Matr ix Dim (KK + 1) , Worker Count => Num Workers) ;
52

53 M a n a g e r . E x e c u t e P a r a l l e l L o o p (P r o c e s s => Phase 3 ' Access ,
54 From => Matr ix Dim (KK + 1) , Worker Count => Num Workers) ;
55 end i f ;
56 end loop ;
57 end l u a d a p a r a f f i n ;

Listing B.29: LU kernel implemented with Ada and Paraffin: synchronization mechanisms.

160 B. BENCHMARK SOURCE CODES

B.2.3 Matrix

B.2.3.1 C

1 void m a t r i x c o m p u t a t i o n (f l o a t * A)
2 {
3 f l o a t r e s = 0 ;
4 f o r (i n t i =1 ; i<=Simul Load ; ++ i)
5 r e s += *A * 2 . 0 ;
6 *A = r e s ;
7 }
8 void m a t r i x c s e q (f l o a t ***M)
9 {
10 f o r (i n t i =0 ; i<S i z e ; ++ i)
11 f o r (i n t j =0 ; j<S i z e ; ++ j)
12 m a t r i x c o m p u t a t i o n (&((*M) [i] [j])) ;
13 }

Listing B.30: Matrix kernel implemented with C.

B.2.3.2 C + OpenMP

1 void m a t r i x c o m p u t a t i o n t a s k (s t r u c t m a t r i x t a s k * a r g s)
2 {
3 f o r (i n t i = a rgs�>F i r s t P o s ; i<=args�>L a s t P o s ; ++ i)
4 f o r (i n t j =0 ; j<S i z e ; ++ j)
5 m a t r i x c o m p u t a t i o n (&((* a rgs�>M) [i] [j])) ;
6 }
7 void m a t r i x c t a s k t a s k w a i t s (f l o a t ***M)
8 {
9 i f (o m p g e t t h r e a d n u m () == 0) {
10 i n t F i r s t P o s , L a s t P o s ;
11 f o r (i n t K=0; K<n t a s k s ; ++K)
12 {
13 F i r s t P o s = K * (S i z e / n t a s k s) ;
14 L a s t P o s = (K+1) * (S i z e / n t a s k s) � 1 ;
15 i f (K == n t a s k s �1)
16 L a s t P o s = Size �1;
17

18 s t r u c t m a t r i x d a t a t a r g s ;
19 t a r g s . M = args�>M;
20 t a r g s . F i r s t P o s = F i r s t P o s ;
21 t a r g s . L a s t P o s = L a s t P o s ;
22 GOMP task ((void (*) (void *)) m a t r i x c o m p u t a t i o n t a s k ,
23 &t a r g s , 0 , 16 , 4 , 1 , 0 , 0 , 0) ;
24 }
25 GOMP taskwait () ;
26 }
27 }

Listing B.31: Matrix kernel implemented with C and OpenMP tasks, and

synchronizing tasks with taskwaits.

B. BENCHMARK SOURCE CODES 161

B.2.3.3 Ada

1 procedure m a t r i x c o m p u t a t i o n (A: in out F l o a t) i s
2 Res : F l o a t := 0 . 0 ;
3 begin
4 f o r I in 1 . . S imul Load loop
5 Res := Res + A * 2 . 0 ;
6 end loop ;
7 A := Res ;
8 end m a t r i x c o m p u t a t i o n t a s k ;
9

10 procedure m a t r i x a d a s e q (M : in out Ma t r ix) i s
11 begin
12 f o r I in Matr ix Dim loop
13 f o r J in Matr ix Dim loop
14 m a t r i x c o m p u t a t i o n t a s k (M(I , J)) ;
15 end loop ;
16 end loop ;
17 end P r o c e s s S e q ;

Listing B.32: Matrix kernel implemented with Ada.

B.2.3.4 Ada + OpenMP

1 procedure m a t r i x c o m p u t a t i o n t a s k (a r g s : S y s t e m . A d d r e s s) i s
2 . . . �� D e c l a r a t i o n s
3 begin
4 f o r I in a r g s A c c . F i r s t P o s . . a r g s A c c . L a s t P o s loop
5 f o r J in Matr ix Dim loop
6 m a t r i x c o m p u t a t i o n (M A c c e s s . a l l (Matr ix Dim (I) , Matr ix Dim (J))) ;
7 end loop ;
8 end loop ;
9 end m a t r i x c o m p u t a t i o n t a s k ;

10

11 procedure m a t r i x a d a t a s k t a s k w a i t s (M : in out Ma t r ix) i s
12 Depend Clauses : OpenMP.Vo id P t r P t r := n u l l ;
13 begin
14 f o r K in 0 . . Num Tasks�1 loop
15 . . . �� D e c l a r a t i o n s
16 begin
17 F i r s t P o s := K * (S i z e / Num Tasks) + 1 ;
18 L a s t P o s := (K+1) * (S i z e / Num Tasks) ;
19 t a r g s . M A d d r e s s := M' Address ;
20 t a r g s . F i r s t P o s := F i r s t P o s ; t a r g s . L a s t P o s := L a s t P o s ;
21 OpenMP.Ada GOMP Task (m a t r i x c o m p u t a t i o n t a s k ' U n r e s t r i c t e d A c c e s s ,
22 t a r g s . a l l ' Address , nul l , 16 , 4 , TRUE, 0 , Depend Clauses , 0) ;
23 end ;
24 end loop ;
25 OpenMP.Ada GOMP Taskwait ;
26 end m a t r i x a d a t a s k t a s k w a i t s ;

Listing B.33: Matrix kernel implemented with Ada and OpenMP tasks, and

synchronizing tasks with taskwaits.

162 B. BENCHMARK SOURCE CODES

B.2.3.5 Ada tasks

1 procedure m a t r i x a d a t a s k s (M : in out Ma t r ix) i s
2 . . . �� P r o c e s s d e c l a r a t i o n
3 ta sk body P r o c e s s i s
4 L o c a l F i r s t P o s , L o c a l L a s t P o s : P o s i t i v e ;
5 begin
6 a cc ep t S t a r t (F i r s t P o s , L a s t P o s : P o s i t i v e) do
7 L o c a l L a s t P o s := L a s t P o s ;
8 L o c a l F i r s t P o s := F i r s t P o s ;
9 end S t a r t ;
10 f o r I in L o c a l F i r s t P o s . . L o c a l L a s t P o s loop
11 f o r J in Matr ix Dim loop
12 m a t r i x c o m p u t a t i o n (M(Matr ix Dim (I) , Matr ix Dim (J))) ;
13 end loop ;
14 end loop ;
15 end P r o c e s s ;
16

17 F i r s t P o s , L a s t P o s : P o s i t i v e ;
18 P r o c e s s T a s k s : array (1 . .Num Tasks) of P r o c e s s ;
19

20 begin
21 f o r I in 0 . .Num Tasks �1 loop
22 F i r s t P o s := I * (S i z e / Num Tasks) +1;
23 L a s t P o s := (I +1) * (S i z e / Num Tasks) ;
24 i f I = Num Tasks then
25 L a s t P o s := I n t e g e r (Matrix Dim ' L a s t) ;
26 end i f ;
27 P r o c e s s T a s k s (I +1) . S t a r t (F i r s t P o s , L a s t P o s) ;
28 end loop ;
29 end m a t r i x a d a t a s k s ;

Listing B.34: Matrix kernel implemented with Ada tasks.

B. BENCHMARK SOURCE CODES 163

B.2.3.6 Ada + Paraffin

1 procedure m a t r i x a d a p a r a f f i n (M : in out Mat r ix Type) i s
2 package P a r a l l e l L o o p s i s new P a r a l l e l . L o o p s (Matr ix Dim) ;
3 package I t e r a t e i s new P a r a l l e l L o o p s . W o r k S h a r i n g ;
4

5 procedure G e n e r i c I t e r a t e (S t a r t , F i n i s h : Matr ix Dim ; Row : Matr ix Dim) i s
6 begin
7 f o r I in S t a r t . . F i n i s h loop
8 m a t r i x c o m p u t a t i o n (M(Row , I)) ;
9 end loop ;

10 end G e n e r i c I t e r a t e ;
11

12 procedure Process Row (Row : Matr ix Dim) i s
13 Manager : I t e r a t e . W o r k S h a r i n g M a n a g e r := I t e r a t e . C r e a t e ;
14 f u n c t i o n C o n v e r t t o W o r k e r C o u n t i s new Ada .Unchecked Conver s ion (
15 Source=> I n t e g e r , Target=>Worker Count Type) ;
16 Nthreads WC : Worker Count Type := C o n v e r t t o W o r k e r C o u n t (N t h r e a d s) ;
17

18 procedure I t e r a t i o n (S t a r t , F i n i s h : Matr ix Dim) i s
19 begin
20 G e n e r i c I t e r a t e (S t a r t , F i n i s h , Row) ;
21 end I t e r a t i o n ;
22 begin
23 M a n a g e r . E x e c u t e P a r a l l e l L o o p
24 (P r o c e s s => I t e r a t i o n ' Access , Worker Count => Nthreads WC) ;
25 end Process Row ;
26 begin
27 f o r I in Matr ix Dim loop
28 Process Row (I) ;
29 end loop ;
30 end m a t r i x a d a p a r a f f i n ;

Listing B.35: Matrix kernel implemented with Paraffin.

164 B. BENCHMARK SOURCE CODES

B.2.4 Synthetic: Ada tasks + OpenMP tasks

1 . . . �� Task D e c l a r a t i o n
2 ta sk body P e r i o d i c i s
3 T0 : Time ;
4 P e r i o d : Time Span := M i l l i s e c o n d s (2 0 0) ;
5 Next : Time ;
6 begin
7 T0 := Clock ;
8 Next := T0 + P e r i o d ;
9 f o r i in 1 . . 5 0 loop
10 de lay u n t i l Next ;
11 E x t r a e . A d a E x t r a e e v e n t (6 0 0 0 , 1) ;
12 f o r i in 1 . . 1 0 0 0 0 0 0 loop
13 Coun te r . I n c ;
14 end loop ;
15 Next := Next + P e r i o d ;
16 E x t r a e . A d a E x t r a e e v e n t (6 0 0 0 , 0) ;
17 end loop ;
18 end P e r i o d i c ;
19

20 . . . �� P r o t e c t e d O b j e c t D e c l a r a t i o n
21 p r o t e c t e d body Event i s
22 procedure R e l e a s e i s
23 begin
24 Open := True ;
25 end R e l e a s e ;
26 entry Wait when Open = True i s
27 begin
28 E x t r a e . A d a E x t r a e e v e n t (6 0 0 0 , 2) ;
29 f o r i in 1 . . 1 0 0 0 0 0 0 0 loop
30 Coun te r . I n c ;
31 end loop ;
32 Open := F a l s e ;
33 E x t r a e . A d a E x t r a e e v e n t (6 0 0 0 , 0) ;
34 end Wait ;
35 end Event ;
36

37 . . . �� Task D e c l a r a t i o n
38 ta sk body S p o r a d i c i s
39 begin
40 f o r I in 1 . . 2 loop
41 S p o r a d i c E v e n t . Wait ;
42 end loop ;
43 end S p o r a d i c ;
44

45 S p o r a d i c E v e n t : Event ;

Listing B.36: Synthetic kernel with interaction between Ada tasks

and OpenMP tasks, using Extrae instrumentation tool: Ada tasks.

B. BENCHMARK SOURCE CODES 165

1 procedure s y n t h e t i c o m p t a s k 1 (a r g s : System . Address) i s
2 . . . �� D e c l a r a t i o n s
3 begin
4 E x t r a e . A d a E x t r a e e v e n t (6 0 0 0 , 3) ;
5 f o r I in a r g s A c c . F i r s t P o s . . a r g s A c c . L a s t P o s loop
6 f o r J in Matr ix Dim loop
7 m a t r i x c o m p u t a t i o n (M Access . a l l (Matr ix Dim (I) , Matr ix Dim (J))) ;
8 end loop ;
9 end loop ;

10 Coun te r . I n c ;
11 E x t r a e . A d a E x t r a e e v e n t (6 0 0 0 , 0) ;
12 end s y n t h e t i c o m p t a s k ;
13

14 procedure s y n t h e t i c o m p t a s k 2 (Task Params : System . Address) i s
15 . . . �� D e c l a r a t i o n s
16 begin
17 E x t r a e . A d a E x t r a e e v e n t (6 0 0 0 , 4) ;
18 f o r i in 1 . . 1 0 0 0 0 0 0 0 0 loop
19 Res := Res + 1 ;
20 end loop ;
21 E x t r a e . A d a E x t r a e e v e n t (6 0 0 0 , 0) ;
22 end s y n t h e t i c o m p t a s k 2 ;
23

24 procedure s y n t h e t i c o m p t a s k (M : in out Ma t r ix) i s
25 Depend Clauses : OpenMP . V o i d P t r P t r := n u l l ;
26 begin
27 f o r K in 0 . . Num Tasks�1 loop
28 . . . �� D e c l a r a t i o n s
29 begin
30 F i r s t P o s := K * (S i z e / Num Tasks) + 1 ;
31 L a s t P o s := (K+1) * (S i z e / Num Tasks) ;
32 i f K = Num Tasks then
33 L a s t P o s := I n t e g e r (S i z e) ;
34 end i f ;
35

36 t a r g s . M Address := M' Address ;
37 t a r g s . F i r s t P o s := F i r s t P o s ;
38 t a r g s . L a s t P o s := L a s t P o s ;
39 t a r g s := T a s k D a t a A c c e s s . a l l ' Address ;
40 OpenMP . Ada GOMP Task (s y n t h e t i c o m p t a s k 1 ' U n r e s t r i c t e d A c c e s s ,
41 t a r g s , nul l , 16 , 4 , TRUE, 0 , Depend Clauses , 0) ;
42 OpenMP . Ada GOMP Task (s y n t h e t i c o m p t a s k 2 ' U n r e s t r i c t e d A c c e s s ,
43 t a r g s , nul l , 16 , 4 , TRUE, 0 , Depend Clauses , 0) ;
44 end ;
45 end loop ;
46 OpenMP . Ada GOMP Taskwait ;
47 end s y n t h e t i c o m p t a s k ;

Listing B.37: Synthetic kernel with interaction between Ada tasks and OpenMP tasks,

using Extrae instrumentation tool: OpenMP tasks.

166 B. BENCHMARK SOURCE CODES

1 . . . �� P r o t e c t e d O b j e c t D e c l a r a t i o n
2 p r o t e c t e d body Coun te r i s
3 procedure I n c i s
4 begin
5 Count := Count +1;
6 end I n c ;
7 f u n c t i o n Read re turn N a t u r a l i s
8 begin
9 re turn Count ;

10 end Read ;
11 end Coun te r ;
12

13 procedure s y n t h e t i c m a i n (P a r a l l e l P a r a m s : System . Address) i s
14 . . . �� D e c l a r a t i o n s
15 begin
16 i f (OpenMP . Ada OMP Get Thread Num = 0) then
17 s y n t h e t i c o m p t a s k (M Access . a l l) ;
18 S p o r a d i c E v e n t . R e l e a s e ;
19 e l s i f OpenMP . Ada OMP Get Thread Num = 1 then
20 S p o r a d i c E v e n t . R e l e a s e ;
21 end i f ;
22 f o r i in 1 . . 1 0 0 0 0 0 0 loop
23 Coun te r . I n c ;
24 end loop ;
25 end s y n t h e t i c m a i n ;

Listing B.38: Synthetic kernel with interaction between Ada tasks and

OpenMP tasks, using Extrae instrumentation tool: global objects and main

function.

C
Acronyms

API Application Program Interface

AST Abstract Syntax Tree

BSC Barcelona Supercomputing Center

CFG Control Flow Graph

DAG Directed Acyclic Graph

DTO Data Transfer Object

HPC High-Performance Computing

IPA Interprocedural Analysis

IR Intermediate Representation

MPI Message Passing Interface

MPSoC Multiprocessor System-on-Chip

NUMA Non-Unified Memory Access

OpenMP Open Multi-Processing

OpenCL Open Computing Language

PCFG Parallel Control Flow Graph

SMP Symmetric Multi-Processing

SSA Static Single Assignment

TBB Threading Building Blocks

TDG Task Dependency Graph

TSC Task Scheduling Constraint

TSP Task Scheduling Point

VLIW Very Long Instruction Word

167

	Cover
	Abstract
	Acknowledgements
	Contents
	Introduction
	Motivation
	Goals of this thesis
	Contributions
	Document organization

	Background
	Programming models
	OpenMP
	The execution model
	The memory model

	OmpSs
	The execution model
	The memory model

	Ada
	Concurrency model
	Safety

	Execution environment
	The Mercurium source-to-source compiler
	Intermediate representation
	Compiler phases

	The libgomp runtime library

	Architectures
	HPC architectures: Intel Xeon
	Real-time embedded architectures: the Kalray MPPA® processor

	Compiler analysis for OpenMP
	Internal Representation of the code
	Classic analysis adapted to OpenMP
	The Parallel Control Flow Graph
	Tasks synchronization data-flow algorithm

	Use-Definition analysis
	Liveness
	Reaching definitions

	Impact
	Conclusion

	Correctness in OpenMP
	Contributions of the M.S. thesis
	Automatic scope of variables
	Automatic detection of task dependences

	Related work
	Automatic solution of common mistakes involving OpenMP tasks
	Variables' storage
	Data-race conditions
	Dependences among non-sibling tasks
	Incoherent data-sharing
	Incoherent task dependences

	Evaluation of the correctness tool
	Usefulness
	Comparison with other frameworks: Oracle Solaris Sudio 12.3

	Impact
	Conclusion

	A Static Task Dependency Graph for OpenMP
	Applicability
	Related work
	Compiler analysis
	Control and data flow analysis
	Task expansion
	Missing information when deriving the TDG
	Communication with the runtime
	Complexity

	Runtime support
	Evaluation
	Experimental setup
	Performance speed-up and memory usage
	Impact of missing information when expanding the TDG

	Impact
	Conclusions

	Towards a Functional Safe OpenMP
	Is OpenMP a suitable candidate for critical real-time systems?
	The OpenMP specification from a safety-critical perspective
	Related work
	OpenMP hazards for real-time embedded systems
	Unspecified behavior
	Deadlocks
	Data race conditions
	Cancellation
	Other features to consider

	Adapting the OpenMP specification to the real-time domain
	Changes to the specification
	Automatic definition of the contracts of a safety-critical OpenMP library
	Implementation considerations

	Conclusion

	Application of OpenMP to a safe language: Ada
	Related work
	Analysis of the Ada and OpenMP parallel models
	Forms of parallelism
	Execution model
	Use of resources
	Memory model
	Safety

	Supporting the Ada parallel model with OpenMP
	Preemption
	Progression Model
	Fork-join Model

	Supporting the OpenMP Tasking Model in Ada
	Evaluation
	Experimental setup
	Structured parallelism: Ada parallel model, Ada tasks and Paraffin
	Unstructured parallelism: Ada parallel model and OpenMP task dependences
	Performance benefit of OpenMP: Ada vs. C
	Interplay of Ada and OpenMP runtimes

	Managing persistent tasks
	Conclusion

	Correctness for Ada/OpenMP
	Related work
	Compiler analysis for mixed Ada/OpenMP programs
	Concurrency in mixed Ada/OpenMP programs
	Representation of an Ada/OpenMP program
	Correctness analysis
	Extending the approach

	Conclusion

	Impact
	Conclusion

	Discussion
	Conclusion
	Impact
	European projects
	Programming models
	Other thesis

	Future work
	Publications

	Bibliography
	Figures
	Tables
	Listings
	Algorithms
	Diagrams
	Ada task states and transitions

	Benchmark Source Codes
	Benchmarks for correctness checking in OpenMP
	Fibonacci
	Dot product
	Matrix multiplication
	Pi
	Sudoku solver

	Benchmarks for the OpenMP integration into Ada
	Cholesky decomposition
	C
	C + OpenMP
	Ada
	Ada + OpenMP
	Ada tasks
	Ada + Paraffin

	LU factorization
	C
	C + OpenMP
	Ada
	Ada + OpenMP
	Ada tasks
	Ada + Paraffin

	Matrix
	C
	C + OpenMP
	Ada
	Ada + OpenMP
	Ada tasks
	Ada + Paraffin

	Synthetic: Ada tasks + OpenMP tasks

	Acronyms

