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Analysis and Design of Real-Time Control Systems 
with Varying Control Timing Constraints 

Summary 

The analysis and design of real-time control systems is a complex task, requiring the 
integration and good understanding of both control and real-time systems theory. 
Traditionally, such systems are designed by differentiating two separate stages: first, control 
design and then its computer implementation, leading to sub-optimal solutions in terms of 
both system schedulability and controlled systems performance. 

Traditional discrete-time control models and methods consider implementation constraints 
only to a very small extent. This is due to the fact that in the control design stage, controllers 
are assumed to execute in dedicated processors and processors are assumed to be fast and 
deterministic enough not to worry about the timing that the controlling activities may have 
on the implementation. However, when resources (e.g., processors) are limited, timing 
variations in the execution of control algorithms occur. Specifically, a control algorithm in 
traditional real-time scheduling is implemented as a periodic task characterized by standard 
timing constraints such as period and deadline. In real-time scheduling, timing variations in 
task instance executions (i.e., jitters) are allowed as far as the schedulability constraints are 
preserved. Consequently, the resulting jitters for control task instances do not comply with 
the strict timing demanded by discrete-time control theory.  

This has two pervasive effects: the presence of jitters for control tasks degrades the 
controlled system performance, even causing instability. On the other hand, minimizing the 
likelihood of jitters for control tasks by over-constraining the control task specification 
reduces the schedulability of the entire task set.  

It is worth mentioning that control theory offers no advice on how to include, into the design 
of controllers, the effects that implementation constraints have in the timing of the control 
activities (e.g., scheduling inherent jitters). Also, real-time theory lacks task models and 
timing constraints that can be used to guarantee a periodic task execution free of jitters 
without over-constraining system schedulability.  

In this thesis we present a flexible integrated scheduling and control analysis and design 
framework for real-time control systems that solves the problems outlined above: poor 
system schedulability and controlled systems performance degradation. We show that by 
merging the activities of the control and real-time communities, that is, by integrating 
control design with computer implementation, both system schedulability and controlled 
systems performance are improved.  

We present a new approach to discrete-time controller design that takes implementation 
constraints into account and relaxes the equidistant sampling and actuation assumptions of 
traditionally designed discrete-time controllers. Instead of specifying a single value for the 
sampling period and a single value for the time delay at the design stage, we specify a set of 



 

values for both the sampling period and for the time delay. This new approach for the 
controller design relies on the idea of adjusting controller parameters at run time according 
to the specific implementation timing behaviour, i.e., scheduling inherent jitters. The 
resulting closed-loop systems are based on irregularly sampled discrete-time system models 
with varying time delays. We have used state space formulation to present a complete 
stability and response analysis for such models. 

We also show how to derive more flexible timing constraints for control tasks by exploiting 
the timing properties imposed by this new approach to discrete-time controller design. Real-
time scheduling standard timing constraints for periodic tasks are constant for all task 
instances. That is, a single value of a constraint (e.g., period or deadline) holds for all task 
instances. Our flexible timing constraints for control tasks do not set specific values. Rather, 
they provide ranges and combinations to choose from (at each control task instance 
execution), taking into account, for example, schedulability of other tasks.  

That is, these more flexible timing constraints for control tasks allow us to obtain feasible 
schedules and stable control systems from task sets (including control and non-control tasks) 
that are not feasible using traditional real-time scheduling and discrete-time control design 
methods. In addition, by associating control performance information with these new timing 
constraints for control tasks, we show how scheduling decisions, going beyond meeting 
timing constraints, can be taken to improve the performance of the controlled systems when 
they are affected by perturbations.   

 

 



 

Anàlisi i Disseny de Sistemes de Control de Temps 
Real amb Restriccions Temporals Variables de 
Control 

Resum 

L’anàlisi i el disseny dels sistemes de control de temps real és una tasca complexa, que 
requereix la integració de dues disciplines, la dels sistemes de control i la dels sistemes de 
temps real. Tradicionalment però, els sistemes de control de temps real s’han dissenyat 
diferenciant, de forma independent, dues fases, primerament el disseny del controlador, i 
després, la seva implementació en un computador. Això ha desembocat en solucions no 
òptimes tant en termes de planificabilitat del sistema i com en el rendiment dels sistemes 
controlats. 

Normalment, els mètodes i models de la teoria de control de temps discret no consideren 
durant la fase de disseny dels controladors les limitacions que es puguin derivar de la 
implementació. En la fase de disseny s’assumeix que els algorismes de control s’executaran 
en processadors dedicats i que els processadors seran prou ràpids i determinístics per no 
haver-se de preocupar del comportament temporal que aquests algorismes de control tindran 
en temps d’execució. Tot i així, quan els recursos - per exemple, processadors - són limitats, 
apareixen variacions temporals en l’execució dels algorismes de control. En concret, en els 
sistemes de planificació de tasques de temps real, un algorisme de control s’implementa en 
una tasca periòdica caracterizada per restriccions temporals estàndards com períodes i 
terminis. És sabut que, en la planificació de tasques de temps real, les variacions temporals 
en l’execució d’instàncies de tasques és permesa sempre i quan les restriccions de 
planificabilitat estiguin garantides. Aquesta variabilitat per tasques de control viola l’estricte 
comporament temporal que la teoria de control de temps discret pressuposa en l’execució 
dels algorismes de control. 

Això té dos efectes negatius: la variabilitat temporal en l’execució de les tasques de control 
degrada el rendiment del sistema controlat, fins i tot causant inestabilitat. A més, si es 
minimitza la probabilitat d’aparició d’aquesta variabilitat en l’execució de les tasques de 
control a través d’especificacións més limitants, la planificabilitat del conjunt de tasques del 
sistema disminueix. 

Cal tenir en compte que la teoria de control no dóna directrius de com incloure, en la fase de 
disseny dels controladors, aquesta variabilitat en l’execució de tasques que es deriva de les 
limitacions d’implementació. A més, la teoria de sistemes de temps real no proporciona ni 
models de tasques ni restriccions temporals que puguin ser usats per garantir l’execució 
periòdica, i sense variabilitats temporals, de tasques sense sobrelimitar la planificabilitat 
dels sistema. 

En aquesta tesi es presenta un entorn integrat i flexible de planificació i de control per a 
l’anàlisi i el disseny de sistemes de control de temps real que dóna solucions als problemes 



 

esmentats anteriorment (baixa planificabilitat en el sistema i degradació del rendiment dels 
sistemes controlats). Mostrem que, fusionant les activitats de la comunitat de temps real 
amb les de la comunitat de control, això és, integrant la fase de disseny de controladors amb 
la fase d’implementació en un computador, es millora tant la planificabilitat del sistema com 
el rendiment dels sistemes controlats. 

També es presenta una nova aproximació al disseny de controladors de temps discret que té 
en compte les limitacions derivables de la implementació i relaxa les tradicionals 
assumpcions dels controladors de temps discret (mostreig i actuació equidistants). En lloc 
d’especificar, en la fase de disseny, únics valors pel període de mostreig i pel retard 
temporal, especifiquem un conjunt de valors tant per l’un com per l’altre. Aquesta nova 
aproximació al disseny de controladors es basa en la idea d’ajustar, en temps d’execució, els 
paràmetres del controlador d’acord amb el comportament temporal específic de la 
implementació (per exemple, d’acord amb la variabilitat en l’execució de les tasques deguda 
a la planificació). Els llaços de control resultants esdevenent sistemes variants en el temps, 
amb mostreig irregular i retards temporals variables. Per a aquests sistemes, i utilitzant 
formulació en l’espai d’estat, presentem una anàlisi completa d’estabilitat, així com l’anàlisi 
de la resposta.   

També mostrem com, a partir de les propietats temporals d’aquesta nova aproximació al 
disseny de controladors, podem obtenir restriccions temporals més flexibles per a les 
tasques de control. Les restriccions temporals estàndards, per a les tasques periòdiques en 
els sistemes de temps real, són constants per a totes les instàncies d’una tasca. Això és, 
només un sol valor per a una restricció és aplicable a totes les instàncies. Les noves 
restriccions temporals que presentem per a tasques de control no forcen a aplicar un valor 
específic, sinó que permeten aplicar valors diferents a cada instància d’una tasca, tenint en 
compte, per exemple, la planificabilitat d’altres tasques. 

Aquestes restriccions temporals flexibles per a tasques de control ens permeten obtenir 
planificacions viables i sistemes de control estables a partir de conjunts de tasques (incloent 
tasques de control i d’altres) que no eren planificables en usar mètodes estàndards tant de 
planificació de temps real com de disseny de controladors. A més, associant informació de 
rendiment de control a aquestes noves restriccions temporals per a tasques de control, 
mostrem com podem prendre decisions de planificació que, anant més enllà de complir amb 
les restriccions temporals, milloren el rendiment dels sistemes controlats quan aquests 
sofreixen perturbacions. 
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Chapter 1 

Introduction 
The objective of computer control is to use computers to manipulate the available inputs of 
a dynamic system in order to cause the system to behave in a manner more desirable than it 
otherwise would [LUE79]. Computer control is used in many application areas, such as 
factory automation, process control, robotics, automotive systems, and others. In such 
applications, computers are used to control processes, and are expected to react within 
precise time constraints to external events according to the application requirements. 
Computer control systems1 are expected to behave correctly both in the value and timing 
domains: they process inputs and provide the adequate outputs with an accurate timing.  

Computing systems in which meeting timing constraints is essential to correctness, i.e., their 
correctness depends not only on the logical results of the computations but also on the time 
at which these results are produced [STA88], are called real-time systems. Therefore, 
computer-controlled systems must be considered real-time systems. In real-time systems, by 
means of algorithms, task scheduling deals with the problem of meeting the timing 
constraints of the tasks. These timing constraints are derived from the application timing 
requirements. During the last three decades, real-time scheduling has been a very active 
research area and many different scheduling models and methods have been presented. 
Scheduling approaches are based on standard task timing constraints such as periods and 
deadlines [BUT97]. 

Computer-controlled systems theory assumes a highly deterministic timing of an 
implementation [AST97]. The classic mathematical models for computer-controlled systems 
transform a continuous-time system into a discrete-time system by considering the behaviour 
of the signals (measured and control signals) at the sampling instants only. That is, 
continuous-time signals are replaced by sequences of numbers, which represent the values 
of the signals at certain synchronised times. As a consequence, computers for control 
applications are expected to behave as the mathematical models demand. For that reason, 
the most stringent timing constraints for real-time systems have their origin in the timing 
requirements imposed by discrete-time control theory.  

The application of standard timing constraints for control tasks impairs system 
schedulability because those timing constraints, which are artificial constraints rather than 
constraints able to comply with the control timing requirements, over-constrain the schedule 
[FOH97]. On the other hand, real-time scheduling introduces variability in the starting and 
completion times of successive instances of a same task, i.e., jitters [BAR97]. The jitters 
inherent to scheduling for control tasks prevent controllers from fulfilling the control 

                                                      
1 Also known as computer-controlled systems, sampled data systems or discrete-time systems [AST97]. 
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performance requirements, thus degrading the controlled system response. This degradation 
appears because these jitters in the control tasks violate the strict timing assumptions that 
discrete-time control theory imposes.  

In this thesis we present a flexible integrated scheduling and control analysis and design 
framework for real-time control systems that improves both system schedulability and 
controlled systems performance. We present a new controller design method for control 
tasks that takes scheduling inherent jitters into account, thus removing the control 
performance degradation that would otherwise occur. In addition, by exploiting the timing 
properties imposed by this new controller design method, we show how to derive more 
flexible timing constraints for control tasks. These allow us to obtain feasible schedules 
from task sets (including control and non-control tasks) that are not schedulable using 
traditional scheduling and control design methods, thus improving system schedulability. 
Finally, we formulate a novel scheduling problem, Quality-of-Control scheduling, in which 
improving both system schedulability and controlled systems performance is of main 
concern. Specifically, we show that the control performance information that can be 
associated to each control task timing constraint can be used to improve the performance of 
the controlled processes in the presence of perturbations. 

1.1 Motivation 
The development of real-time control systems is a complex task, requiring the integration 
and good understanding of both control and real-time systems theory. However, control 
theory and real-time scheduling theory have been relatively independent research areas 
[TOR98]. This fact arises from the traditional way real-time control systems have been 
developed; that is, differentiating two separate stages, each in isolation [SET96]: first, 
control design and then its computer implementation.  

This has allowed the control community to focus on its own problem domain without being 
really concerned about how the implementation is being done. The control community sees 
the computing platform as providing the determinism that discrete-time control theory 
requires. Control theory has considered implementation other than dedicated processors 
systems only to a very small extent. Consequently, when computing resources (processor 
time and communication bandwidth) are limited, control theory rarely advises on how to 
design controllers to take these limitations into account [ARZ00].  

On the other hand, this has released the scheduling community from the need to understand 
what impact scheduling inherent jitters have on the stability and performance of control 
systems. Real-time scheduling generally assumes that a control algorithm implemented as a 
periodic task with standard timing constraints such as period and deadline will meet the 
control requirements (in terms of stability and control performance). However, since a 
periodic task execution in scheduling theory is an execution that takes place anywhere 
within its deadline, small time variations (i.e., jitters) occur at each task instance execution. 
Consequently, the resulting jitters for control task instances do not comply with the 
deterministic timing demanded by discrete-time control theory in the implementation. 

Specifically, as we show in this thesis, the negative effects of bringing together the separate 
results of control and scheduling theories for computer-based control systems are: 
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•  Poor computing system schedulability: in general, when discrete-time control theory 
timing requirements are expressed with traditional periodic task timing constraints 
(periods and deadlines), the task set schedulability becomes unfeasible. 

•  Controlled system performance degradation: scheduling inherent jitters for periodic 
control tasks (which implement controllers designed using classic2 discrete-time control 
theory) degrade the performance of the controlled system, and can even cause a critical 
failure (instability). 

The integrated control and scheduling framework we present in this thesis bridges the gap 
between the two communities, joining control and scheduling theory so as to provide 
solutions to both problems.  

1.2 Objectives 
In the thesis we show how to use a combination of control and scheduling principles in 
order to design controllers that deal with new and more flexible timing constraints and to 
allow scheduling approaches to take scheduling decisions considering both system 
schedulability and control performance. Specifically, we demonstrate that combining offline 
scheduling analysis and offline control analysis with online scheduling and dynamic control 
compensations we obtain better system schedulability, and better control performance. 

The integrated control and scheduling framework that we present as an analysis and design 
methodology for real-time control systems is based on two novel paradigms: 

•  Flexible control design: we present a new controller design method, compensation 
approach, that goes beyond the classic discrete-time control theory timing assumptions 
of equidistant sampling and equidistant actuation given by the constant sampling period 
and constant time delay specified at the design stage. Instead of specifying a single 
value for the sampling period and a single value for the time delay, we design 
controllers to account for a set of feasible sampling intervals and for a set of feasible 
sampling-actuation delays. This controller design method, which includes new stability 
and response analysis, relies on the idea of adjusting controller parameters at runtime 
(compensations) according to the specific implementation timing behaviour, i.e., 
scheduling inherent jitters. In addition, design decisions are also taken regarding 
implementation details such as space and time overheads. We consider two alternatives: 
(a) performing the compensation calculations online - if these incur only negligible 
overheads - or (b) determining offline the compensation parameters for table look-up at 
runtime. We characterise when each of these alternatives is suitable.  

•  Flexible control task scheduling: we present new flexible timing constraints for 
control tasks. Controllers based on the compensation approach assume a closed-loop 
implementation with irregular sampling and varying time delays. The new timing 
assumptions behind the compensation approach give the potential to derive more 

                                                      
2 Classic discrete-time control theory refers generically to well known discrete-time control methods and models 
based on regularly sampled discrete-time systems (regardless of whether they belong to classical or modern 
control theory, a distinction made within the control community to differentiate methods based on transfer 
function or state-space models. See section 2.2.1 for further details). 
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flexible timing constraints for control tasks, beyond task periods and deadlines 
necessary to apply standard periodic task scheduling. Control tasks are no longer seen as 
classic real-time tasks with fixed values assigned to their timing constraints (such as 
periods and deadlines). They are characterised by flexible timing constraints in terms of 
feasible instance separation and feasible response time sets. That is, at each control task 
instance execution, scheduling approaches can choose for the instance separation and 
response time constraints different values from these sets, taking into account, for 
example, schedulability of other tasks or performance improvement of the controlled 
processes. These constraints are defined on a per control task instance basis, as opposed 
to fixed values, such as periods and deadlines, applicable to all instances – as assumed 
by standard scheduling schemes such as Rate Monotonic (RM) [LIU73], Earlier 
Deadline First (EDF) [LIU73] and Fixed Priority Scheduling (FPS) [TIN94]. Thus, our 
methods provide more flexibility than the one obtained by using fixed timing 
constraints. 

Using these novel paradigms, we show how to solve the two problems outlined in the 
previous section: 

•  With the flexibility given by the compensation approach controller design method, we 
eliminate the control performance degradation that control tasks subject to scheduling 
inherent jitters introduce in the controlled processes. Although the scheduling 
community has tried to minimise jitters by designing specific purpose real-time task 
models and algorithms, jitter is an inherent scheduling problem and cannot be 
completely removed. Nevertheless, we show that by accepting jitters in the control 
design, control task implementing controllers designed with the compensation approach 
solve the degradation that would otherwise occur. In summary, we solve the problems 
posed by scheduling inherent jitters for periodic control tasks, which in general are not 
addressable using traditional offline and online scheduling based approaches nor by 
previous real-time and control integration approaches. 

•  With the new flexible timing constraints for control task scheduling we provide the 
instruments that can be used to transform unfeasible schedules and instable control 
systems into feasible schedules and stable control systems. The application of fixed 
timing constraints for control tasks impairs system schedulability by over-constraining 
the schedule. However, the compensation approach affords us the possibility of relaxing 
the strict periodicity and deadline requirements for traditional control task scheduling 
(based on fixed timing constraints); instead, we demonstrate how we can take advantage 
of the new flexible timing constraints for control tasks scheduling in order to improve 
system schedulability. Note that we do not propose a specific scheduling approach, 
rather a new set of flexible control timing constraints for control tasks that we show can 
be used to achieve stable control systems when the same control tasks characterized by 
fixed timing constraints were not schedulable. 

In addition, by taking advantage of the compensation approach and flexible timing 
constraints for control tasks, we define a Quality-of-Control (QoC) metric that associates 
with each feasible flexible timing constraint a quantitative value expressing control 
performance in terms of the controlled system error resulting from the use of that timing 
constraint. This offers the possibility of taking scheduling decisions at each control task 
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instance execution considering this control information, thus demanding novel scheduling 
approaches. We present a new scheduling paradigm, QoC scheduling, in which we 
demonstrate that the QoC information of task timing constraints can be used to improve the 
performance of the controlled processes in the presence of perturbations. After 
formulating the QoC scheduling problem, we categorise the main scheduling issues and 
identify feasible solutions. Specifically, we show how the problem of reacting to 
perturbations with control tasks specified with control timing constraints expressing QoC 
can be achieved applying standard guarantee techniques 

1.3 System model 
In this section we describe the system model for the approach to scheduling and control co-
design we present. We consider a distributed control system that consists of a set of 
processing nodes that run one or several tasks, some of them in charge of controlling 
physical systems (plants/processes), which communicate data across a communication 
network. See Figure 1.1 for a full view of the system model. 
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In a node, at the operating system level, a dispatcher (also called scheduler), at each time it 
is invoked, either assigns a task to the processor or leaves it idle. A task is executed 
uninterruptedly during the granularity length g. The task execution lengths are a multiple of 
the granularity. We regard the actual time to perform the dispatching and the task context 
switching to be negligible with respect to g3. If the dispatching and the task context 
switching are too long, it can be included in the worst-case execution time of the task. 

The allocation of tasks to processors is carried out using any of the allocation published 
methods, such as in [FOH95] or [RAM90]. Therefore, the scheduling strategies we present 
are in a node level context.  

1.4 Thesis structure 
The thesis is organized as follows:  

Chapter 2 gives a brief overview of basic but important concepts of both real-time and 
control systems theory and practice. Also, the state of the art concerning this thesis is 
reviewed. 

In Chapters 3 and 4 we identify the two main problems this thesis solves. In Chapter 3 we 
explore the impact of classic control timing requirements on real-time scheduling. We show 
that in general this leads to unfeasible scheduling scenarios. Chapter 4 explains the impact 
of scheduling inherent jitters on control tasks. We show that jitters in control task instance 
executions degrade the controlled system response, even causing instability. 

In Chapter 5 we discuss the necessity of developing a) new flexible control design methods 
and b) more flexible timing constraints for control task scheduling for solving the problems 
identified in the previous two chapters. 

In Chapter 6 we define the compensation approach controller design method. We discuss its 
completeness in terms of coping with all possible closed-loop implementations. We then 
formulate the new controller design method problem based on state-space models. 

After the problem formulation, in Chapter 7 we present the new controller design method 
that includes new stability and response analysis, all based on state-space models. We also 
address practical aspects such as code implementation details and different strategies for the 
controller parameter adjustment required for the application of the compensation approach. 

In Chapter 8 we explain the use of the compensation approach as a control-based solution to 
eliminate the degradation that scheduling inherent jitters introduce in the controlled system 
response. In this context, we also present a performance evaluation of the application of the 
compensation approach. 

In Chapter 9 we present new flexible timing constraints for control task scheduling: firstly 
we demonstrate how to use them to obtain feasible schedules of task sets that were not 
feasible using fixed timing constraints; secondly, after presenting the QoC metric and 

                                                      
3 For example, in the real-time kernel S.Ha.R.K. (Soft and Hard Real-time Kernel) [GAI01], the task context 
switch and dispatcher execution is 15µs. We regard such times for our system model negligible because the 
granularity we use is of the order of milliseconds. 



1. Introduction 

 

7

formulating the QoC scheduling problem, we demonstrate that scheduling decisions can be 
taken accounting for both schedulability and control performance improvement.  

Finally, Chapter 10 draws the conclusions of this thesis, lists the main contributions and 
points out directions for future work. 

At the end all references are listed. We also include three appendices: Appendix A with code 
details of the controllers we design and use, Appendix B with a numerical stability analysis 
of two of the examples we use and Appendix C with the closed loop matrices we found in 
the system evolution for one of the examples we use. 
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Chapter 2 

Background and state of the art 
The successful design and implementation of real-time control systems requires the 
interaction between two technical disciplines: real-time systems and control systems. 
However, as pointed out in [TOR98], control theory and real-time theory have been 
relatively independent research areas. The aim of this chapter is to provide a brief overview 
of basic but important concepts of both real-time and control systems theory and practice. In 
this way, we introduce the fundamental ideas for understanding the integrated control and 
scheduling framework we present while bridging the existing gap between both real-time 
and control communities. 

In this chapter we also review related work. We show that the practical problems posed by: 

a) scheduling inherent jitter in control tasks, i.e., controlled system degradation,  

b) fixed timing constraints to meet the stringent timing requirements assumed by 
discrete-time control theory, i.e., poor system schedulability,  

have not been formally addressed. In addition, neither controlled systems performance nor 
system schedulability have been, in any of the previous works, jointly improved as we do 
with the application of more flexible controller designs and more flexible timing constraints 
for control tasks scheduling. 

2.1 Real-time systems  
Real-time systems can be constructed out of sequential programs, but are typically built 
from concurrent programs, called tasks. A real-time task is an executable entity of work 
that, at a minimum, is characterized by a worst-case execution time (WCET) [PUS89] and a 
time constraint [RAM96]. The WCET is an estimation of the maximum time required by the 
processor to execute the task. A typical timing constraint on a real-time task is the relative 
deadline, i.e. the time interval within which the task must complete its execution. The 
objective of real-time computing is to meet the individual timing constraints of tasks. Real-
time systems are computing systems in which the correctness of the computations depends 
not only on the logical results but also on the time at which the results are produced 
[STA88]. These systems have a unique set of requirements that are not always taken into 
consideration, leading to serious misconceptions about real-time computing [STA88]. The 
main objective of real-time computing is not fast computing, it is predictability [STA90]. 
The fast computing objective is to minimize the average response time of a given set of 
tasks. Predictability implies that it has to be possible to prove that timing requirements are 
met, in accordance to system specifications. Regarding timing requirements, real-time 
scheduling is the main concern. 
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In real-time systems, scheduling theory addresses, by means of algorithms, the problem of 
meeting the specified timing requirements in order to have understandable and predictable 
system timing behaviour. Therefore, scheduling involves the allocation of resources and 
time in such a way that certain performance requirements are met [RAM94]. 

2.1.1 Tasks constraints 
Real-time tasks are computing entities that must process inputs and provide the adequate 
outputs (see Figure 2.1) within a time interval, i.e. relative deadline, which is dictated by the 
requirements of the application.  

 

 

 

Figure 2.1. Task structure 

Depending on the consequences of a missed deadline, real-time tasks can be characterized 
according to its criticality as: 

•  Hard real-time tasks: the completion of the task must be within its deadline, otherwise 
serious consequences occur. 
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that there is a current debate on the previous definitions. 

Another timing characteristic that can be specified in a real-time task concerns the regularity 
of its activation. Depending on this, a task is defined as a periodic, aperiodic and sporadic. 
Periodic tasks consist of a sequence of identical activities, called instances, which are 
recurrently activated on a regular basis. We denote the kth instance of a periodic task taski by 
taski,k. Figure 2.2 shows an example of tasks instances for a periodic task. 
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Figure 2.2. Sequence of instances for a periodic task 
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processor to execute the task), its relative deadline Di (which is the time interval within 
which the task should be completed), which is often considered to coincide with the end of 
the period.  

On the other hand, a task that is not invoked at regular intervals is an aperiodic task. 
Aperiodic tasks characterized by a minimum inter-arrival time are called sporadic. For 
further details on tasks characterization, see for example [BUT97].  

Standard timing constraints for a periodic task (such as period and deadline) are fixed, i.e. a 
single value holds for all instances of the task [FOH94]. We have to point out that some 
works, for example [DOB01], distinguish between simple constraints, i.e. period and 
deadlines, and complex constraints such as end-to-end deadlines. We do not make this 
distinction. For a discussion on task constraints, see [RAM96]. 

Other typical constraints that can be specified in real-time tasks, apart from timing 
constraints, are precedence relations and resource constraints. Precedence constraints refer 
to the fact that computational activities cannot be executed in arbitrary order but have to 
respect some precedence relations defined at the design stage. Resource constraints refer to 
the fact that computational activities that share resources have to be synchronized. 

2.1.2 Real-time Scheduling  
When a processor has to execute a set of concurrent tasks, the processor has to be assigned 
to the various tasks according to a predefined criterion, called a scheduling policy. There are 
a great variety of algorithms proposed for scheduling of real-time systems today. A schedule 
is an assignment of tasks to the processor, so that each task is executed until completion. 

The dispatcher allocates the processor to the task selected by the scheduling policy. 
Consequently, a task that could potentially be executed by the processor (active task) can be 
either in execution (running task) or waiting (ready task) in the ready queue if another task 
is executing. Context switches allow the running task exchange on the processor. 

In this context, we introduce the following notation to facilitate the description of schedules 
(and scheduling policies): 

r(taski,k)  denotes the release time of the kth instance of task taski, i.e. the time at 
which a task instance becomes ready for its execution 

s(taski,k) denotes, the start time of the kth instance of task taski, i.e. the time at which 
a task instance starts its execution 

f(taski,k)  denotes the finishing time (also called completion time) of the kth instance of 
task taski, i.e. the time at which a task instance completes its execution 

In Figure 2.3, these concepts are portrayed.  

 
                     

taski          taski,k           
                     

Figure 2.3. Task instance description 
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As described in [BUT97], in general, to define a scheduling problem we need to specify 
three sets: a set of tasks, a set of processors and a set of types of resources. Moreover, 
precedence relations among tasks can be specified through a direct acyclic graph, and timing 
constraints can be associated with each task. In this context, scheduling means to assign 
processors and resources to tasks in order to complete all tasks under the imposed 
constraints. This problem, in this general form, has been shown to be NP-complete 
[GAR79] and hence computationally intractable. Note that the complexity of scheduling 
algorithms is highly relevant when scheduling decisions must be taken on-line, during task 
execution. 

In order to reduce the complexity of constructing a feasible schedule, one may simplify the 
computer architecture (e.g., by restricting it to the case of uniprocessor systems), or may 
make simplifying assumptions on the tasks (e.g., remove precedence constraints). A 
schedule is said to be feasible if all tasks can be completed according to a set of specified 
constraints. In order to check the feasibility of the schedule before tasks execution, the 
system has to plan its actions by looking ahead to the future and by assuming a worst-case 
scenario. Recall that in hard real-time applications that require highly predictable behaviour, 
the feasibility of the schedule should be guaranteed in advance, that is, before tasks 
execution. Feasibility tests (see [JEF93] for further discussion) can be based on the 
processor utilization approach (which measures the fraction of processor time spent in the 
execution of the task set) and/or on response time analysis techniques [JOS98] (which uses 
recurrent formulas to calculate the worst-case finishing time of any task). 

For example, a necessary condition for achieving schedulability using the processor 
utilization (U) approach on a single processor is given by (2.1). 

 
(2.1) 

 

where Ci and Ti are the task taski worst-case execution time and period, respectively. Known 
sufficient schedulability conditions for scheduling algorithms such as RM and EDF [LIU93] 
are given by (2.2), where U=1 for EDF and U=n(21/n-1) for RM. 

 
(2.2) 

 

In the following, we give a short description of the main types of scheduling algorithms (this 
classification is based on the assumptions made about the system or the tasks). Rather than 
providing an exhaustive description, we pick up the most important concepts and properties 
that are of special interest for the work of this thesis.    

Offline vs. online scheduling 

Among the great variety of real-time scheduling approaches that have been presented, real-
time scheduling algorithms fall into two categories [STA95], depending on the time 
scheduling decisions are taken: offline and online scheduling.  
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In offline scheduling, the scheduler has complete knowledge of the task set and its 
constraints, such as deadlines, computation times, precedence constraints and so on. The 
schedule construction is based on fixed parameters, assigned to tasks before their activation. 
The entire offline guaranteed schedule is stored in a table (which contains all guaranteed 
tasks arranged in the proper order) and dispatched later during system runtime. The main 
advantage of offline scheduling is that it provides determinism, as all times for task 
executions are determined and known in advance. In addition, the runtime overhead does 
not depend on the complexity of the algorithm. This allows very sophisticated algorithms to 
be used to solve complex problems (e.g., control constraints). However, as all actions have 
to be planned before startup, run-time flexibility is lacking. Offline scheduling is also 
referred as static or pre-runtime scheduling.  

In contrast, online scheduling algorithms make their scheduling decisions at runtime. Online 
schedulers are flexible and adaptive, but they can incur significant overheads because of 
runtime processing. Besides, online scheduling algorithms do not need to have complete 
knowledge of the task set or its timing constraints. For example, with an external event that 
arrives at the runtime of the system, we need to deal with it upon its arrival. In online 
scheduling algorithms, scheduling decisions are taken every time a new task enters the 
system, when a task becomes ready and/or when a running task terminates. Although online 
scheduling can provide more flexibility, it is limited with respect to predictability, as actual 
start and completion times of execution depend on run-time events. It is worth noting that 
depending on the algorithm, the guarantee must be done on-line (e.g., when a new task 
enters the system). In such cases, since the guarantee algorithm is based on worst-case 
assumptions, a task could be unnecessarily rejected. On the other hand, the benefit of having 
an online guarantee mechanism is that a potential overload situation can be detected in 
advance, thus avoiding negative effects on the systems. Online scheduling is often referred 
to as dynamic or runtime scheduling. 

These are also scheduling approaches that fall into both categories. For example [FOH95] 
combines offline and online scheduling, taking advantage of the determinism provided by 
offline scheduling, and the flexibility provided by online scheduling. 

To illustrate the determinism provided by offline and online scheduling policies in terms of 
knowing the exact task executions times before run-time, consider the following task set 
(Table 2.1) with two periodic tasks, where Ti is the task period and Ci is the WCET. We 
assume deadlines equal to periods. 

 
 Ti Ci 

task2 5 2 
task1 4 1 

Table 2.1. Task set 

Applying an offline scheduling strategy, we can construct, according to task timing 
constraints, the feasible offline schedule over the tasks periods LCM (Least Common 
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Multiple)1 that we show in Figure 2.4 (where boxes mark task periods and shaded areas 
mark worst-case execution times). 

 
task2                       
task1                       

                       

Figure 2.4. Offline schedule 

Given this offline schedule, at run time, the dispatcher will execute task in
according to the ordering provided by the constructed table (Table 2.2) for ea

 
Time 0 2 4 5 8 10 12 

Task instance task2,1 task1,1 task1,2 task2,2 task1,3 task2,3 task1,4 t

Table 2.2. Dispatcher table 

Therefore, looking at the schedule (Figure 2.4) and dispatcher table (Table 2
the execution start time of each instance will coincide with the offline instan
However, looking at the completion times, since the offline schedule is base
execution time, the run time completion times may be different to the offl
times, because at run time, each task instance can execute less than the assu
(as we show in Figure 2.5 for one of the LCM executions, where shaded a
actual execution times).  

 
task2                       
task1                          

                       

Figure 2.5. Run time execution of the offline schedule of Figure

Note for example that the first, third and fourth instances of task task2 (star
10 and 15 respectively, Figure 2.5) executes less than its WCET. Instead of 
time units (as assumed by the worst case scenario, Table 2.1), the first and
execute 1 time unit while the fourth instance executes 1.5 time units. Sim
occur in the finishing times of instances of task task1 (Figure 2.5) Therefor
starting times of each task instance is known before run time, the actual fin
the offline schedule is constructed in terms of the tasks WCET, may not co
offline finishing times. 

However, if what characterises each task (in Table 2.1) is the exact execution
a reasonable assumption for most real-time control systems [BUT98]) instea
case execution time, the run time completion times will also coincide w
completion times. 

                                                      
1 Although theoretically, offline scheduling can construct non-periodic schedules, for practica
schedules are constructed over the LCM of the task’s periods, which implies a LCM periodic p

 

0     1     2     3     4     5     6     7     8     9    10    11   12  13   14    15   16   17   18   19   20 

0     1     2     3     4     5     6     7     8     9    10    11   12  13   14    15   16   17   18   19   20 
 
Repeated
schedule 

 
 

stances (taski,k) 
ch LCM. 

15 17 
ask2,4 task1,5 

.2), at run time, 
ces start times. 

d on worst-case 
ine completion 
med worst-case 
reas mark now 

 
 
 

 2.4 

ting at times 0, 
executing for 2 
 third instances 
ilar phenomena 
e, although the 
ishing times, if 
incide with the 

 time (which is 
d of the worst-
ith the offline 

l purposes, offline 
attern. 

time 

time  



2.  Background and state of the art 

 

15

However, none of these properties (known start and completion times) apply to online 
scheduling. For example, we apply EDF [LIU73] to the task set specified in Table 2.1. 
Recall that EDF is an online scheduling policy where tasks instances are dispatched at run 
time according to the earlier deadline.  

The set of tasks complies the EDF schedulability test (2.2) as detailed in (2.3). 

 
(2.3) 

 
An example of the schedule that we obtain over the tasks periods LCM is shown in Figure 
2.6, where boxes mark task periods and shaded areas mark WCET. 

 
task2                        
task1                        

                        

Figure 2.6. Example of schedule produced by EDF 

In this case, at run time, every time a task instance terminates its execution (which can 
execute its worst execution time or less), the scheduler assigns the processor to another task 
instance. Consequently, before run time, the exact start and completion times of each task 
instance is not known. 

The previous problem (knowing task start and completion times before run time) increases 
when the online scheduling policy takes scheduling decisions upon arrival of aperiodic or 
sporadic tasks. 

Pre-emptive vs. non pre-emptive  

Looking at the run-time behaviour of different scheduling policies, two modes can be 
distinguished: pre-emptive and non pre-emptive scheduling. With pre-emptive scheduling, 
the running task can be interrupted at any time by another task, according to some 
predefined scheduling policy. In non pre-emptive scheduling, a task, once started, is 
executed by a processor until its completion. 

When the application tasks have different levels of criticalness expressing task importance, 
i.e., priority, pre-emption permits us to anticipate the execution of the most critical tasks, 
producing more efficient schedules in terms of system responsiveness. However, this also 
implies that predictability in terms of knowing times for task executions decreases. 

To illustrate the decrease of determinism that pre-emptive scheduling policies implies in 
terms of knowing task executions times before run-time, we again consider the task set we 
used before (Table 2.1). For example, we apply to the task set RM [LIU73] scheduling 
approach, which is a pre-emptive scheduling policy based on the following priority 
assignment scheme: to give the tasks a priority level based on its period: the smaller the 
period, the higher the priority; that is, Ti < Tj, Pi > Pj, where Ti and Pi denotes the task period 
and priority of each task taski. Table 2.3 also gives the priority assignment for the task set 
we are considering (recall that task deadlines are assumed to be equal to task periods). 
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 Ti Ci Pi 

task2 5 2 2 
task1 4 1 1 

Table 2.3. Priority assignment for RM 

The set of tasks complies with the RM schedulability test (2.2) as detailed in (2.4) 

 
(2.4) 

 
An example of the schedule that we obtain over the tasks periods LCM is shown in Figure 
2.7, where boxes mark task periods and shaded areas worst-case execution times. 

 
task2                        
task1                        

                        

Figure 2.7. Example of schedule produced by RM 

As can be seen in Figure 2.7, the fourth instance of task task2 is pre-empted at time 16 by 
the fifth instance of task task1. This interruption adds more variability in the completion 
time of the fourth instance of task task2. 

Time triggered vs. event triggered 

There are two fundamentally different principles that determine the activation of tasks in a 
real-time system, event-triggered and time-triggered. In event-triggered systems, all 
activities are activated in reaction to relevant events external to the system. When a 
significant event in the outside world happens, it is detected by some sensor, which then 
causes the attached device (processor) to get an interrupt signal. For soft real-time systems 
with lots of computing power to spare, this approach is simple, and works well. The main 
problem with event-triggered systems is that they can fail under heavy load conditions, i.e., 
when many events are happening at once. Event-triggered designs give a faster response at 
low load but more overhead and chance of failure at high load. This approach is more 
suitable for dynamic environments, where dynamic activities can arrive at any time. 

In a time-triggered system, all activities are activated at certain points in time that are 
known a priori. Accordingly, all nodes in time-triggered systems have a common notion of 
time, based on synchronised clocks. One of the most important advantages of time-triggered 
systems is the deterministic temporal behaviour of the system, which eases system 
validation and verification considerably. Time-triggered systems are suitable in static 
environments in which the system behaviour can be completely known in advance. 

Summary 

As we have seen in the previous scheduling examples, as far as task timing constraints are 
fulfilled, the periodic task execution given by scheduling theory is an execution that takes 
place some time within the task relative deadline. This has the effect of introducing start-
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time delays in task instance executions, as well as introducing variable completion times. 
We call the variability caused by scheduling policies on task instance executions scheduling 
inherent jitters. 

Although a great variety of scheduling policies have been presented (for handling periodic, 
aperiodic and sporadic tasks, on a single and multiprocessor architecture, with simple and 
complex constraints, etc) in this work we will mainly focus on offline constructed schedules 
as well as traditional Earliest Deadline First (EDF) [LIU73] and Fixed Priority Scheduling 
(FPS) [TIN94] based scheduling approaches. The main reason is that if the methods we 
present work well for these standard approaches, they should improve further if applied to 
more sophisticated scheduling algorithms based on the former. 

Note that in the following chapters, we do not propose any scheduling algorithm. Rather, we 
provide instruments to be used to improve the controlled systems responses and system 
schedulability, which we show to be applicable to standard scheduling approaches. This 
explains why we will not compare any scheduling algorithms. 

In this section, specific features and types of scheduling algorithms have been described. 
For further reading, see [SHI94], [AUD95], [BUR97], [BUT97], [TIN97] and [STA98]. 

2.2 Control systems  
A control system is an interconnection of components forming a system configuration that 
will provide a desired system response [DORF95]. The basis for analysis of a system is the 
foundation provided by linear system theory, which assumes a cause-effect relationship for 
the components of the systems. A component or process to be controlled (also called 
physical system or plant) can be represented by a block (as shown in Figure 2.8) where the 
input-output relationship represents the cause-effect relationship.  

 
 

Figure 2.8. Process to be controlled 

In control terms, the controlled variable is the quantity or condition that is measured and 
controlled (i.e., process output). The manipulated variable is the quantity or condition (i.e., 
process input) that is varied by the controller so as to affect the value of the controlled 
variable. Depending on the type of information that the controller uses to vary the 
manipulated variable, we distinguish between open-loop control and closed-loop control. 
The defining feature of an open-loop control is that the controller function that varies the 
manipulated variable is determined completely by an external process that accounts only for 
the desired output response (Figure 2.9) 

 

 

Figure 2.9. Open-loop (also called feedforward) control system 

Process Input Output

Controller Process Desired output response Output 
Input 
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A closed-loop control system (also called closed-loop system) utilizes an additional measure 
of the actual output (controlled variable) to compare it with the desired output. 
Consequently, the controller function is determined on a continuing basis by the behaviour 
of the system itself (as expressed by the behaviour of the outputs). The measure of the 
output is called the feedback signal, because it is fed back (possibly in modified form due to 
the controller action) to the process. In summary, in closed-loop systems, to control means 
measuring the value of the controlled variable of the system and applying the manipulated 
variable to the system to correct or limit deviation of the measured value from a desired 
value. A simple closed-loop control system is shown in Figure 2.10. 

 

 

 

Figure 2.10. Closed-loop (also called feedback) control system  

There are many reasons why closed-loop control is often preferable to open-loop control. 
Feedback is often superior to open-loop from a performance standpoint and it can 
automatically adjust to unforeseen system changes or to unanticipated disturbance inputs. A 
disturbance is a signal that tends to adversely affect the value of the output of the system. 

A distributed control system is a control system whose processors (sensors, controllers and 
actuators), which run one or several tasks, are distributed geographically and the processors 
communicate data through some communication medium. The key for distributed control 
systems is that almost no local control action can be taken in isolation from the rest of the 
system.  

Broadly speaking, a control system basically has three main subsystems: a sensory 
subsystem, a controller subsystem and an actuator subsystem (Figure 2.11). In a distributed 
control system, each of these subsystems can be physically divided into separate units, and 
control loops are closed over communication networks. 

 

 

 

 

 
Figure 2.11. Subsystems in a closed-loop control system 

The general functionality of control systems can be described as follows: firstly, the sensory 
system collects data from the process to be controlled. Secondly, the control system, by 
means of a control law, processes this data and calculates the control signal, considering the 
desired process behaviour. Finally, the actuator system performs the action on the process 
according to the control signal. 

Controller 
subsystem 

Actuator 
subsystem 

Sensory 
subsystem 

Process 
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The feedback concept has been the foundation for control systems analysis and design, 
which enables us to control the desired output and improve accuracy while maintaining 
stability. Traditionally, closed-loop systems were analogue-control systems (also called 
continuous-time systems); practically all the control systems implemented today are based 
on computer control, i.e., they are computer-controlled systems (also called discrete-time 
systems).  

2.2.1 Analysis and design of control systems 
To understand and control systems (or processes), one must obtain quantitative 
mathematical models of these systems by analysing the relationships between the system 
variables. Because the systems are dynamic in nature, when describing the dynamic 
behaviour of a physical system by physical laws, the descriptive equations are usually 
differential equations. Physical systems are inherently non-linear (i.e., the relation between 
their variables is not linear). However, in many systems, if the system signals do not vary 
over too wide a range, the system responds in a linear manner (satisfies the properties of 
superposition and homogeneity). Consequently, even though we deal with non-linear 
systems, in order to design the control law, the usual procedure that we follow is to work 
with a linearised approximation model (if it is not already linear) of the system, concerning 
the functional parameters. In addition, depending on whether the properties of the system 
change with time, a system is time-varying or time-invariant (i.e., whether the coefficients 
of the equations that describe the system behaviour vary with time or not). In a time-varying 
control system, the response of the system will depend on the time at which an input is 
applied. 

In the following subsections, we introduce important concepts for the analysis and design of 
control systems. For further details, see for example [AST97], [DORF95], [OGA97], 
[PHI95] and [VAC95]. 

Mathematical models 

The first step in the analysis of a dynamic system is to derive its mathematical model. We 
must always keep in mind that deriving a reasonable mathematical model is the most 
important part of the entire analysis. In control theory, two types of mathematical models 
are used to describe the system dynamics: transfer function models and state-space models. 
Although the different models are equivalent (in the sense that there are methods of 
changing from one representation to another and vice versa), depending on the particular 
system and the particular circumstances (e.g., in optimal control problems, it is 
advantageous to use state-space models, while for single input, single-output systems, the 
transfer function may be more convenient), one mathematical model may be better suited 
than other models. Once a mathematical model of the system is obtained, various tools can 
be used for purposes of analysis and synthesis. 

In addition, classical control theory utilizes the transfer function concepts extensively. The 
transfer function describes the dynamics of the system, and represents the relationship of the 
input and output variables (cause-effect relationship). The transfer function replaces the 
differential equations that describe the system by algebraic equations in terms of a complex 
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variable (s for linear time-invariant continuous-time systems or z for linear time-invariant 
discrete-time systems) that are easier to solve. Analysis and design are done in the s, z 
and/or frequency domain. Modern control theory, which is based on state-space concepts 
(where the state of the system is represented by the state variables), extensively utilizes the 
vector-matrix analysis. State-space models allow us to describe the future response of a 
system, given the present state (characterized by the state variables), the excitation inputs 
and the equations describing its dynamics. These models can be used for both continuous-
time and discrete-time systems, the latter only considering the system at the sampling 
points. Analysis and design are done in the time domain. 

Controller design 

The goal of controller design is to achieve certain desired closed-loop system 
characteristics. The desired characteristics, or performance specifications, generally relate to 
the controlled system response (such as transient response and steady-state accuracy) and 
stability. The interplay of performance and stability can be somewhat subtle, and there is 
often a trade-off to be made in this regard. The desired controlled system characteristics, in 
a formal specification of the problem, are given through the design parameters, which can 
be met by specifying the closed-loop poles location for both analogue and discrete-time 
control systems. However, rather than specifying design parameters, usually it is more 
meaningful to specify quantities, such as at which time the controlled system recovers from 
a perturbation, or the allowed error of the controlled system response to certain anticipated 
inputs. As a consequence, the relation between these quantities and the formal design 
parameters has been extensively studied. 

Closed-loop poles 

Closed-loop poles represent the system's autonomous behaviour. A system subject to a 
perturbation follows a specific trajectory. The characteristics of the trajectory (shape, 
velocity, etc) depend on the closed-loop poles. That is, the closed-loop poles location 
determines the stability and response of the system. The poles of a closed-loop system can 
be mathematically obtained either from the transfer function or state-space model of the 
system. For a transfer function, the closed-loop poles are the roots of the polynomial 
denominator; for state-space models, they are the eigenvalues of the system matrix. Poles of 
a continuous-time system have a direct mapping to the poles of a discrete-time system, for a 
given sampling period. 

Stability analysis of closed-loop systems 

Stability is a basic requirement of all control systems, and therefore it is the first design 
specification to account for in the analysis and design of control systems. The concept of 
stability is very important when analysing dynamic systems. A control system is said to be 
in equilibrium if in the absence of any perturbation or input, the system output remains in 
the same state. A linear time-invariant control system is stable if the system output returns 
to the equilibrium state when the control system is subject to an initial condition (e.g., 
perturbation). If the system output neither converges nor becomes unbounded (e.g., bounded 
oscillation), the system is said to be marginally stable. A linear time-invariant control 
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system is unstable when the system output unboundedly diverges from the equilibrium state 
when the control system is subject to an initial condition (e.g., perturbation). Figure 2.12 
illustrates these stability concepts: 

 

 

 

 

 
Figure 2.12. (a) Stable, (b) marginally stable or (c) unstable linear time-invariant control 

system 

The stability of a closed-loop system can be determined by the location of its closed-loop 
poles. A linear time-invariant control system is stable when in the (see Figure 2.13): 

•  continuous-time domain, all its closed-loop poles lie in the left half plane of the s-plane 

•  discrete-time domain, all its closed-loop poles lie within the unit circle in the z-plane 

 

 

 

 

 

 
Figure 2.13. Linear time-invariant control system stability according to the closed-loop 

poles location in the (a) s-plane and (b) z-plane (the crossed area marks the stability zones) 

There are several techniques to analyse the stability of closed-loop systems. 

Response analysis of closed-loop systems 

Apart from stability, transient response (also called relative stability) and steady-state 
accuracy are also a focus of attention in the design (whether continuous-time or discrete-
time) of control systems. The transient response appears because systems cannot react 
instantaneously when they are subject to inputs or perturbations. Analytically, it refers to 
that portion of response due to the closed-loop poles of the system. The steady-state 
response refers to the ability of a control system to follow or track certain inputs (such as 
classic pulse, step, ramp or sinusoidal inputs) with minimum error. Analytically, it refers to 
that portion of the response due to the input (or forcing function). Figure 2.14 illustrates 
these concepts. 

In many practical cases, the desired performance characteristics of control systems, either 
for continuous-time or discrete-time design methods, are specified in terms of time domain 
quantities (note that in most of the cases, the controlled plants are continuous, thus the plant 
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s-poles to z-poles 

s-plane  z-plane  

1  



2.  Background and state of the art 

 

22

output signals are also continuous). Specifically, the performance characteristics of a control 
system are specified in terms of the transient response to a unit step input (this is due to the 
fact that the unit step input is easy to generate and is sufficiently drastic to provide useful 
information on both the transient and steady-state response characteristics of the system). 
Figure 2.14 shows the unit step response of a standard second order system2, with the 
following descriptors:  

•  Rise time (tr): is the time required for the response to rise from 10% to 90% of its final 
value. 

•  Maximum overshoot: is the maximum peak value of the response curve measured form 
unity3 

•  Peak time (tp): is the time required for the response to reach the maximum overshoot 

•  Settling time (ts): is the time required for the response curve to reach and stay within a 
range about the final value of a size specified as an absolute percentage of the final 
values (usually a δ of 2% or 5%) 

 

 

 

 

 

 

 

 

Figure 2.14. Unit step response of a standard second order system. 

The transient response characteristics of a closed-loop system, which often exhibits damped 
oscillations before reaching the steady-state, can be determined by the location of its closed-
loop poles. Frequently, we define the closed-loop system with a pair of dominant poles as 
one that can be modelled with reasonable accuracy by a second order transfer function. 
Consider then the standard second order transfer function for a linear time invariant 
continuous-time system (2.5):      

 
(2.5) 

 
 
It has the poles at (2.6): 

                                                      
2 Practical control systems responses often reduce to first or second order like responses 
3 If the final steady-state value of the response differs from unity, then it is common to use the maximum 
percentage overshoot 
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(2.6) 

 
where ζ is the damping ratio and ωn is the natural frequency. Closed-loop poles are 
characterized by parameters ζ and ωn. Parameter ζ influences the relative damping of the 
response (overshoot), and ωn influences the response speed (settling time). It is also known 
that by increasing ωn, the magnitude of the control signal is increased. Therefore, we cannot 
increase the speed of the response without limit. In summary, the damping ratio and the 
natural frequency are directly related to the transient response characteristics. 

Observe that not all specifications necessarily apply to any given system and they can be 
easily accommodated to other inputs (such as pulse or ramps) rather than unit-step.  

The steady-state performance of a stable control system is generally judged by the steady-
state error due to different system inputs. Depending on the type of system and input, 
different steady-state errors apply. A compromise between steady-state accuracy and 
transient response characteristics is always required.  

Closed-loop system performance evaluation 

In classic control theory, several properties are used to evaluate the performance of closed-
loop systems. The primary evaluation is concerned with meeting the closed-loop response 
performance specifications and stability. Beyond these requirements, looking at the closed-
loop response, since controller designs attempts to minimize the system error to certain 
anticipated inputs or perturbations, traditional performance criteria focus on the system 
error. The system error is defined as the difference between the desired response of the 
system and the actual response of the system. Figure 2.15 illustrates these concepts. 

 

 

 

 

 

 

Figure 2.15. Right - Closed-loop system. Left - System error (shaded area) 

The usual criteria used to evaluate (and design) controllers that give quantitative measures 
of closed-loop system responses in terms of errors are the performance criteria ISE (Integral 
of Square Error), ITSE (Integral of Time-weighted Square Error), IAE (Integral of the 
Absolute Error) or ITAE (Integral of Time-weighted Absolute Error) [DOR95], defined as 
follows (where e(t) denotes the closed-loop system error):  

•  Integral of the Absolute value of the Error (IAE):  
 

•  Integral of Square Error (ISE):  
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•  Integral of Time-weighted Absolute Error (ITAE):  

 
•  Integral of Time-weighted Square Error (ITSE):  

 
All performance criteria measure the system error, but in different ways (absolute or square 
error and either time-weighted or not). Criteria that weight errors with time penalize later 
errors (steady-state errors) more heavily and discount the transient response errors, whereas 
the other weights all errors equally. Depending on the application and on what the 
performance evaluation should focus on, one of the previous criteria is chosen (see for 
example [LIA02]). 

Classic control problems 

Control problems can broadly speaking be classified in regulation problems and command 
signal following (tracking). The major issue in regulation problems is to react to 
disturbances or perturbations (that can be modelled as impulses that occur irregularly and so 
widely spread that the system settles between impulses). The major issue in command signal 
following is to track changes of the input signals (which can be modelled using the standard 
step, ramp or sinusoidal inputs). 

2.2.2 Computer control 
When a closed-loop is closed with a digital computer, i.e., computer-controlled systems, 
models and/or designs must be transferred to digital form (discrete-time domain). A 
computer-controlled system can be described schematically as in Figure 2.16.  

 

 

 

 

 

 
Figure 2.16. Diagram of a computer-controlled system  

The output of the process, y(t) is a continuous-time signal. The output is converted to digital 
form by the AD converter. The conversion is done at the sampling instants, tk. The time 
between successive sampling instants is called the sampling period and is denoted by h. The 
computer interprets the converted signal, {y(tk)}, as a sequence of numbers, processes the 
measurements using an algorithm, and gives a new sequence of numbers, {u(tk)}. This 
sequence, (called control signal or process input) is converted to an analogue signal, u(t), by 
a DA converter. A real-time clock in the computer synchronizes the events. Therefore, a 
computer-controlled system contains both continuous-time signals and sampled, or discrete-
time signals. 

Process D-AAlgorithm A-D 
{u(tk)} {y(tk)} u(t) y(t) 

Clock
 Computer 



2.  Background and state of the art 

 

25

When transferring models and/or designs to digital form, two different design approaches 
can be used: discrete-time design or discretization of a continuous-time design. In both cases 
the interface to the process consists of AD and DA converters. The AD converter acts as a 
sampler that returns a snapshot value of a continuous-time signal, and the DA converter acts 
as a hold circuit that takes a discrete-time signal and converts it into a continuous-time 
signal. Usually, zero-order hold is used, in which case the resulting continuous-time signal 
is piecewise constant between successive DA conversions. 

Discrete-time (or sampled) control theory only considers the system through the values of 
the system inputs and outputs at the sampling instants (from the point of view of the 
computer). To do this, a sampled version of the continuous system model is derived. 
Usually, strictly periodic sampling is assumed. By doing this, well-known discrete-time 
system descriptions are obtained [AST97] and a wide range of discrete-time controller 
design methods (pole placement design, linear quadratic design, or model predictive 
control) can be applied in order to obtain the desired discrete-time controller. 

Discretization of continuous-time design means to design the controller in the continuous-
time domain, and then to approximate this design by an implementation (computer-based 
controller) through fast sampling. Using this approach it is not necessary to employ any 
special sampled control design theory. The price that one pays for this is higher 
requirements on fast sampling, because in the first approximation, the faster the sampling, 
the better the match between the discretization and the continuous-time system. 

The sampling period for discrete-time control designs, beyond conforming to the Shannon 
theorem, can be chosen following one of various so-called rules-of-thumb, depending on the 
desired performance of the closed-loop system and the dynamics of the process to be 
controlled. An accepted rule-of-thumb is that the sampling frequency should be 4 to 20 
times the system’s cut-off frequency (which is usually approximated by the system natural 
frequency ωn) [AST97]. This gives the possibility of choosing relatively long sampling 
intervals, compared to what is used when discretization-based design is used. We further 
discuss this issue later in this section. 

In the end, in both cases, the discrete-time controller is a control computation algorithm to 
be executed at every sampling period h. In addition, the controller can be designed to 
account for a time delay τ. This time delay, traditionally assumed to be constant [AST97], 
would correspond to the execution time of the controller, given that it has to be computer 
implemented. It has to be pointed out that the resulting controller is characterized by several 
design parameters that are highly dependent on the constant sampling period (and constant 
time delay, if any) assumed at the design stage. 

Examples 

In the rest of this thesis we will use two examples to illustrate all the concepts we introduce: 

•  DC (Direct Current) servo problem, controlled by a discretization of a continuous-time 
designed PID (Proportional, Integral and Derivative) controller 

•  Inverted pendulum problem, controlled by a discrete-time state feedback controller 
(SFC) obtained using pole placement observer design.  
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We have chosen these two examples for the following reasons: 

a) The control approach: the DC servo problem we present is based on input-output 
models while the inverted pendulum is based on state-space models. 

b) The computer control approach: the state feedback controller obtained by pole 
placement observer design is designed in the discrete-time domain while the PID 
controller is obtained through discretization of a continuous-time design.  

c) The controller design method we use: nowadays, PID controller design is widely used in 
many practical control problems [AST97]. Therefore, PID controllers are one of the 
most popular types of controllers. On the other hand, state-space controller design is 
considered the most modern approach for the design and synthesis of discrete-time 
systems [PHI95]. And specifically, pole placement observer design is a realistic 
approach (in the sense of state estimation [PHI95]) based on estimating the present 
condition of a system, and using this additional information to achieve better control. 

d) The control problem we deal with: The DC servo problem falls into the tracking type of 
problems while the inverted pendulum, which is one of the most demanding 
benchmarks for the control community, falls into the regulation type.  

Both examples are considered standard processes [AST97] for computer control. Although 
in this section we introduce these two control problems, which will be used throughout this 
work to illustrate the different concepts we introduce, usually we will focus on one of them 
(because the results we present are not application specific, being applicable to both 
examples). Only when the concepts we explain require comparisons of both examples will 
we use both.  

Example 1 

In the servo problem, the major goal is to follow the command signal, which in this case we 
model as a squared pulse signal. Consider the PID control of a DC servo described by the 
following continuous-time transfer function (2.7): 
 

(2.7) 
 
Following the specified requirements in order to have a percentage overshoot of less than 
15%, we heuristically tune the PID parameters to the following values Kp = 1.8, Ki = 0.1 and 
Kd = 0.09 (see [AST97] for PID controller design). Once the PID controller has been 
designed in the continuous-time domain and with the appropriate sampling period (h=2ms, 
see [AST97] for sampling period selection), we obtained its discrete approximation by 
approximating the integral part by a forward approximation and the derivative part by taking 
backward differences (see [AST97] for PID discrete approximation). 

The resulting discrete approximation can be seen in Figure 2.17, where e(t) is the error 
(difference between r(t), the reference signal (command signal), and y(t), the actual response 
(process output or measured variable)) , Kp, Ki, and Kd are the PID primary parameters, h is 
the sampling period, u(t) is the control signal (process input) and k denotes the kth PID 
execution. 
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Figure 2.17. PID discretization 

We implemented the obtained controller as a control task named taskPID using a single task 
with period TPID=2ms and estimated worst case execution time CPID=0.2ms (in this case, the 
task deadline, DPID, is assumed equal to period). In Figure 2.18 we show the task pseudo 
code: at the sampling instant tk after reading the reference signal r(tk) and the actual response 
y(tk), we calculate the control signal u(tk) from the error e(tk). Note that the sampling period 
h is a constant parameter used in the calculations. For a more detailed code, see Section A1 
in Appendix A. 
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taskPID  
{      
       read_inputs (y(tk), r(tk)); 
  e(tk)=  r(tk)  -  y(tk); 

u(tk) = calculate_output (pk(e(tk)),  ik(h, e(tk)), dk(h, e(tk)));
       write_output (u(tk)); 
} 
Figure 2.18. PID controller implementation in a control task 

gure 2.19 the response of the DC servo controlled by taskPID executing in 
ingle processor given a squared pulse signal as input. Due to the fact that PID 
n problem is beyond the scope of this work, we assume that our PID is good 
strative purposes. Note that the response we obtain fulfils the overshot 
quirement, as illustrated in Figure 2.19. That is, the response tracks the 
l without crossing the marked maximum overshoot. 

2.19. DC servo system response showing the reference signal tracking 

Maximum overshot

Maximum overshot
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Example 2 

The inverted pendulum control problem can be stated as follows: the inverted pendulum (of 
length l and mass m) can only swing in a vertical plane parallel to the direction of the cart 
(of mass M), where g is gravity. In the presence of a perturbation, to balance the pendulum, 
the cart is pushed back and forth on a track of limited length. Balancing fails when the 
inclination of the pendulum exceeds preset limits, or when the cart hits the stops at the end 
of the track. The aim is to find a controller to balance the inverted pendulum, preventing it 
from failing, and to bring the cart to the centre of the track. A sketch of an inverted 
pendulum mounted on a motor driven cart is shown in Figure 2.20. 

 

 

 

 

 

Figure 2.20. Inverted pendulum 

The state of the inverted pendulum on a cart is described by the cart position (x), its velocity 
(v), the pendulum angle (θ) and the angular velocity (ω). The force provided to the cart (u) 
is the controlling action calculated according to the actual angle and position (y, controlled 
variables). A linear time invariant state-space model of the inverted pendulum, used for the 
control design is (2.8) (where for the example M=2kg, m=0.1kg, l=0.5m and g=9.81m/s2): 

 
 

(2.8) 
 
 

For the sake of simplicity, we will focus only on the angle (θ). Therefore, the goal of our 
controller is to maintain the desired vertical position of the inverted pendulum at all times. It 
can be seen that the open-loop system is unstable, i.e., the open-loop system poles do not lie 
within the unit circle in the z-plane.  

To stabilize the inverted pendulum, we close the loop by designing a state feedback 
controller using pole placement observer design [AST97], taking into account the 
performance requirement: to recover from a perturbation (modelled by a pulse) in less than 
two seconds. In control terms, the settling time is 2s. By  

a) setting ωn=6rad/s and ζ =0.707 for the closed-loop dominant poles4,  

                                                      
4 Apart from the pair of dominant poles (d1,2) the remaining three poles (notice that the time delay adds an extra 
state variable which represents the past value of the control signal) apart from the observer poles are set to 
real(d1)/2, real(d1)/3 and real(d1)/4. The observer poles are set to the closed-loop poles divided by 10, in order to 
be faster than the closed-loop poles (see [AST97]) 
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b) with the appropriate sampling period h (80ms) and taking into account an estimated 
time delay τ of 20ms, and 

c) through pole placement observer design (using Ackerman formula, see [AST97])  

we obtain a state feedback controller that locates the closed-loop poles in such a way that 
the specified closed-loop requirements are met.  

We implemented the state feedback controller in a control task named tasksfc (with period 
Tsfc = 80ms and estimated worst case execution time Csfc = 20ms, assuming as before 
deadline Dsfc equal to period). Figure 2.21 shows the code of the task: at the sampling 
instant tk, after reading the controlled variable (angle) y(tk) and the reference signal r(tk), we 
calculated the control signal u(tk) according to the current state x(tk), the reference signal 
r(tk) and the gain matrix L(h,τ). Afterwards, the state x(tk+1) is updated according to the 
actual state, output, input, and closed-loop matrices (Φ(h,τ), Γ(h,τ) and C) and observer 
matrix K(h,τ). Almost all the matrices depend on the sampling period h and time delay τ, 
which are constant parameters of the controller algorithm, specified at the design stage. 
Therefore, h and τ are supposed to remain constant at run time (see Section A3 in Appendix 
A for a more detailed code). 

 

 

 

 

Figure 2.21. State feedback controller implementation in a control task 

The response of the task tasksfc executing in isolation on a single processor in the presence 
of a perturbation (modelled as a discrete pulse) can be seen in Figure 2.22. Since it is 
beyond the scope of this work to specifically discuss state feedback controller design with 
pole placement techniques, we assume that our controller is good enough for illustrative 
purposes. Note that the performance requirement is met; that is, the pendulum recovers from 
the perturbation in less than two seconds. 

 

 

 

 

 

 

 

 

Figure 2.22. Inverted pendulum system response 

tasksfc 
{      read_input (y(tk), r(tk)); 
       u(tk) = calculate_output (x(tk), -L(h,τ), r(tk)); 
       write_output (u(tk)); 
       x(tk+1) = update_state (x(tk), Φ(h, τ), Γ(h, τ), C, u(tk), K(h, τ), y(tk ));
} 
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Sampling period and time delay effects on the system response 

Previously we concluded that a discrete-time controller depends on the constant sampling 
period h and constant time delay τ assumed in the controller design. We have also explained 
that the stability and transient response characteristics of a closed-loop system can be 
determined by the location of its closed-loop poles (specifically, by its dominant poles, 
recall Equations (2.5) and (2.6)). The equivalent z-plane poles (in the discrete-time domain) 
occur at (2.9).  
 

(2.9) 
 
where h is the sampling period. Note that the location of the closed-loop poles for discrete-
time control systems depends on the sampling period. Consequently, the sampling period 
selection is of importance with respect to the closed-loop stability and system response. The 
sampling period selection is described next. 

According to [PHI95] it is reasonable to choose at least N > 10 (preferable N=25 to 75) and 
ωnh < 1, where N gives the number of samples per period of dominating mode of the closed-
loop system (2.10), h is the sampling period, ωn is the natural frequency and ζ is the 
damping ratio.  
 

(2.10) 
 
In [AST97] it is suggested that the sampling period must be chosen to give ωnh=0.1 to 0.6. 
In [PHI95] it is also suggested that for discrete-time control systems, pole locations should 
be placed in the vicinity of z=1 if the system constraints allow a sufficiently high sampling 
rate to be chosen. 
 

Closed-loop specification (ωωωωn=4 rad/s and ζζζζ =0.707) 
h (ms) Dominant poles (d1,2) N ωωωωnh 

30 0.9154 ± 0.0779i 74 0.12 
40 0.8873 ± 0.1008i 55 0.16 
50 0.8595 ± 0.1224i 44 0.20 
60 0.8318 ± 0.1426i 37 0.24 
70 0.8044 ± 0.1614i 31 0.28 
80 0.7772 ± 0.1790i 27 0.32 
90 0.7503 ± 0.1953i 24 0.36 
100 0.7237 ± 0.2104i 22 0.40 
110 0.6975 ± 0.2243i 20 0.44 
120 0.6716 ± 0.2372i 18 0.48 
130 0.6461 ± 0.2489i 17 0.52 
140 0.6210 ± 0.2596i 16 0.56 
150 0.5963 ± 0.2694i 15 0.60 

Table 2.4. Closed-loop system properties 

For example, given as performance requirements ωn=4rad/s (which gives a reasonably small 
settling time of approx. 2s.) and ζ=0.707 (which gives reasonable damping while 
minimizing the settling time), the previous equations give us a sampling period choice of 
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h={30 to 150} ms5. Table 2.4 shows for each sampling period the location of the pair of 
closed-loop dominant poles, the N parameter and the relation ωnh. Table 2.4 also indicates 
that any sampling period from 30 to 150 ms will fulfil the sampling period selection 
requirements referred above while meeting the performance requirements. It has to be 
pointed out that other closed-loop poles (apart from the pair of dominant poles) of the 
closed-loop system (if any) should be placed on the left of the pair of dominant poles, 
having then little effect on the system response [AST97]. 

Observe from Equation (2.9) that the location of the closed-loop poles in the z-plane does 
not depend on the time delay. However, since a time delay in a controller implies that each 
control signal is sent after this time delay, the effect on the closed-loop system response are 
to delay the response, which, for example, implies that the response settles later. In the 
following, we show the effects of the previous different poles locations and sampling 
periods as well as different time delays on the closed-loop system response. We use the 
inverted pendulum controlled by control task tasksfc (see Figure 2.21) (but with the state 
feedback controller designed with ωn=4rad/s and ζ=0.707 for the closed-loop dominant 
poles) with different sampling periods and time delays. First of all, we look at the inverted 
pendulum responses for each acceptable sampling period h=30 to 150ms (acceptable in term 
of fulfilling the restrictions set on parameters N and product ωnh). For this set-up, a constant 
time delay of τ=1ms is assumed. With these specifications, for each sampling period we 
obtain a specific controller, which gives a different system response in terms of 
performance. Figure 2.23 shows each particular system response for selected h=40, 60, 80, 
100, 120 and 140ms. 

 

 

 

 

 

 

 

 

 
Figure 2.23. Inverted pendulum system response for different sampling periods 

Looking at the different responses, we see that the performance of the transient system 
response (rise time, overshoot, settling time, etc) clearly depends on the sampling period, 
given the same performance requirements (ωn=4rad/s and ζ=0.707). Therefore, when 
selecting the sampling period, we have to take into account its effects on the system 
response (provided system stability is also guaranteed). 
                                                      
5 Notice that the theoretical longest sampling period (derived from Shanon’s theorem) is h=2π/ωs, where ωs=2ωN, 
where the Nyquist frequency ωN can be approximated by ωn. Therefore, the theoretical longest sampling period is 
approximately 800 ms with poles at -0.0664 ± 0.0801i. 
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Focusing on the effects of time delays, given a sampling period, in Figure 2.24, we show 
different inverted pendulum responses depending on the time delay, with the same 
specification as before, with h=80 ms. Time delays vary from τ=1ms to 80ms (in a 20ms 
granularity). 

 

 

 

 

 

 

 
 

Figure 2.24. Inverted pendulum system response for different time delays (complete view - 
left- and detailed view –right.) 

We can see in Figure 2.24 (left) that the response of the inverted pendulum is delayed 
proportionally to the time delay assumed in the controlled design stage. It can also be seen 
in the detailed view (Figure 2.24 - right) that each response is delayed according to the time 
delay we assumed in the controller.  

Summary 

In the preceding sections we have described fundamental concepts of control systems 
analysis and design: given a plant, we must first obtain its mathematical model. Then, using 
the mathematical models obtained, we design a controller such that the closed-loop system 
will satisfy the given specifications (stability and specific response characteristics). It has 
been shown that the sampling period and time delay that we use in the design of discrete-
time controllers is of prime importance, because the performance of the closed-loop systems  

2.3 State of the art 
In this section, we give a brief survey of the so-called integrated real-time control systems 
approaches. In [ÅRZ99] there is a good, extended account of the state of the art in the field 
of control and real-time systems. Here, we survey existing relevant work in this area that 
relates to the results presented in this thesis. We categorize the existing work of this area in 
four major tendencies (without clear demarcation): feedback control real-time scheduling, 
control approaches, scheduling approaches, and integrated control and scheduling. 

2.3.1 Feedback control real-time scheduling 
The main idea behind these approaches is to treat the scheduling problem as a feedback 
control problem. Scheduling algorithms traditionally work in open-loop. That is, once 
schedules (or scheduling rules) are created, they are not adjusted based on continuous 

τ=1ms 
τ=20ms 
τ=40ms 
τ=60ms 
τ=80ms 

20ms
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feedback. While open-loop scheduling algorithms can perform well in static or dynamic 
systems in which the workloads can be accurately modelled, they can perform poorly in 
unpredictable dynamic systems. For these latter cases, feedback control real-time scheduling 
aims to look at the scheduling problem as a feedback control problem, defining error terms 
for schedules, monitoring the error, and continuously adjusting the schedules in order to 
maintain stable performance. The main goal of these approaches is to present solutions for a 
computer-based problem such as task scheduling using control techniques instead of using 
the traditional scheduling techniques, which are computer-based.  

Important contributions in this area can be found in [STA99], [LU99], and [LU00]. In 
[STAN99] a general architecture for feedback control real-time scheduling and a new real-
time scheduling algorithm called Feedback Control Earliest Deadline First (FC-EDF) is 
presented. The new scheduling algorithm has proved to be robust in overload situations. 
Proportional, Integral and Derivative (PID) control loop is used. In [LU99], a performance 
evaluation of the FC-EDF using deadlines-based metrics is presented. [LU00] presents a 
control-theory-based framework that enables system designers to specify the performance 
specifications (stability, transient and steady-state performance), and apply existing control 
methods to analytically design an adaptive real-time system to achieve the specifications. 

Although in our approach we take advantage of the feedback behind control systems, we do 
not treat scheduling as a feedback control problem. We use the feedback paradigm to adjust 
control tasks periods according to the controlled system performance in the Quality-of-
Control (QoC) scheduling approach we present. 

2.3.2 Control approaches 
These approaches have the common feature of interpreting the control task scheduling 
effects on the system performance from a control viewpoint. Firstly, they detect the effects 
of jitters and other computer implementation problems in the controlled system 
performance. Afterwards, they model, study and propose control design based solutions, 
using different techniques in order to compensate for the introduced degradation. 

For example, in [TÖR95] many fundamental issues in implementing real-time control 
applications in distributed control systems are discussed. [TÖR97] derives timing 
requirements and constraints for implementation of multirate control applications. [SHI96] 
and [WIT95] give interpretations of time varying delays as computer induced disturbances. 
Specifically, [WIT95] investigated the effects of time varying delays on control system 
stability and performance. It is shown that time varying delays can cause instability and 
diminish the controlled systems performance. [WIT98] have treated deficiencies in the 
computer system implementation of the control system with respect to time-variations and 
time-restrictions in control-networked systems. In a similar way, [NIL98a] discusses some 
problems that can be found in real-time control. In [SCH01] an optimal controller design for 
sampled data control is suggested where the sampling time varies due to the control task 
scheduling. [WIT01] study sampled-induced delays in synchronous multirate control 
systems. In [NIL98b] a stochastic analysis and control approach of real-time systems with 
random time delays is presented. As pointed out in [MIT01], real-time (time delays) issues 
and feedback in communications are questions that have received inadequate attention. In 



2.  Background and state of the art 

 

34

[ZHA01], a stability analysis for networked control systems is presented where time delays 
are assumed to be constant.  

Although particular solutions have been presented to deal with irregularly sampled discrete-
time control systems [WIT80], [ALB90], [ALB99], [ÅRZ00] and [SCH01], or systems with 
varying time delays (which may include communication-induced delays) [CHA95] [SHI96], 
[NIL98], [WIT98], [MOT00], no integrated controller design method has provided a 
solution for both problems, as we do with the compensation approach. 

2.3.3 Scheduling approaches 
As jitter is an inherent scheduling problem, several works have treated the jitter problem 
from a scheduling viewpoint. That is, by designing specific real-time purpose task models 
and algorithms, they try to minimize the jitter itself.  

[STA94] has studied jitter minimization in the context of providing end-to-end timing 
guaranties in distributed real-time systems. In [BAR97] a model for periodic tasks is 
proposed that explicitly incorporates jitter. Feasibility analysis of systems of such tasks is 
studied in the context of dynamic-priority, pre-emptive, uniprocessor scheduling. In 
[BAR99] a formal quantitative model for output jitter for periodic task scheduling is 
proposed.  

With our approach, we do not aim to minimize scheduling inherent jitters. We accept jitters 
by characterizing them and designing controllers that take into account the jitters that 
control tasks are subject to (note that even though jitter is minimized in previous works, it 
continues to exist, thus causing the problems that we solve by accepting jitters in the control 
design). 

2.3.4 Control and scheduling integration 
The goal of these integrated approaches is to combine control systems and real-time systems 
theory is such a way that they achieve control performance optimization using different 
techniques. 

Focusing on the jitter problem itself, some works have presented specific scheduling-based 
solutions when the scheduled tasks are control tasks [KIM98, CRE99, BAL02, ALB00, 
CER99]. A new task scheduling problem with a suitable control performance index that 
includes scheduling and control perspectives is formulated in [KIM98]. [CRE99] propose a 
method to determine the minimum interval where the control action or the data acquisition 
has to be allocated avoiding the jitter effects on control tasks. [BAL02] extend the previous 
results providing also new schedulability analysis. [ALB00] suggest a method to reduce 
output jitter variability and its degrading effects on control performance by splitting control 
tasks with a new priority assignment. In a similar way, [CER99] show that by scheduling 
two parts of a control algorithm as separate tasks the computational delay can be 
significantly reduced and, as a consequence, the system performance is improved.  

The optimization of control system performance subject to schedulability has been also 
treated in [SET96] and [REH00]. In [SET96], at the design stage, tasks frequencies are 
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optimized in order to make all tasks schedulable and to enhance control system 
performance. In [REH00] an offline scheduling method is proposed based on optimal 
control theory.  

Runtime control performance and schedulability optimization is treated in [CAC00], 
[BUT98], [SHA00], [PAL00] and [BUT02]. In these approaches, the major goal has been to 
adapt properties of the schedule at runtime, modifying the scheduling algorithm in order to 
improve schedulability and optimize the control performance. In [CAC00], the main idea is 
that tasks’ computation times are allowed to range from average to worst case computation 
times and periods are adjusted at runtime to optimize control performance and enhance 
schedulability by using server approaches. In [BUT98], an elastic task model for control 
tasks is presented. Using this task model, periodic tasks can intentionally change their 
execution rate at runtime to provide a different quality of service, and the other tasks can 
automatically adapt their periods to keep the system under-loaded. In [BUT02], a smooth 
rate adaptation through impedance control is presented for the elastic model. In [SHA00], an 
integration of load driven online scheduling with direct digital design to optimize control 
performance as a function of varying workload is presented. An integrated real-time control 
design approach is also presented in [PAL00]. In [PAL02], synthesis of real-time embedded 
controllers taking into account constraints derived form the implementation platform is 
addressed. 

In all the previous approaches, the problem posed by jitters for control task scheduling, 
controlled system degradation, and the problems posed by fixed timing constraints for 
control task scheduling, over constrained schedules, are not addressed. We address them by 
combining the compensation approach we present along with the flexible timing constraints. 

In summary, existing approaches have either studied the deleterious effects of computer 
implementations on control system performance and stability, or have attempted quite 
successfully to interpret such effects from a control viewpoint or have tried to optimize 
control system performance through the optimized selection of periods, by designing special 
purpose task models, or scheduling algorithms. However, practical problems posed by 
scheduling inherent jitter in control tasks have not been formally addressed, and both control 
performance and systems schedulability have not been, in any of the previous works, jointly 
improved. 

It is important to stress that several works have presented computer-aided tools for the 
analysis and design of real-time control systems. In [MAR00a] a MatlabTM based framework 
for the design of distributed control systems was presented. It covers all the required steps 
(from specification to system maintenance) for the analysis and design of real-time control 
systems, with special emphasis on distributed architectures based on fieldbus systems (as 
shown in [MAR99]). In [EKER99] a MatlabTM toolbox for real-time and control systems co-
design was presented. The basic idea is to simulate a real-time kernel in parallel with 
continuous plant dynamics. The toolbox allows the user to explore the timely behaviour of 
control algorithms, and to study the interaction between the control tasks and the scheduler. 
Most of the simulations presented in this thesis have been carried out using the latter 
simulator.  
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2.4 Summary 
In this chapter we have reviewed key concepts of real-time and control systems. Some 
formal definitions have been given. Note however, that we have focused on specific 
concepts that are relevant to the work we present in this thesis. Also, a brief survey of the 
state of the art on the field of real-time control systems has been presented, pointing out 
what make our methods and solutions different and better.  
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Chapter 3 

Control impact on schedulability 
In this chapter we study the timing assumptions made in discrete-time control theory. When 
transferring continuous-time control models and/or designs to a digital form, a specific 
timing is assumed. Consequently, the computer-controlled system implementation must 
preserve this timing in order to achieve the specified closed-loop characteristics (stability 
and desired controlled system response). From these timing assumptions made by discrete-
time control theory, we derive the timing requirements that the implementation must 
deterministically fulfil [AST97]. However, we show in this chapter that the timing 
requirements imposed by discrete-time control theory on a closed-loop implementation are 
not realistic regarding the timing behaviour of possible implementations. Moreover, these 
timing requirements derived from discrete-time control theory assumptions pose real-time 
demands on a closed-loop implementation. As pointed out in [KOP97], the most stringent 
timing constraints for real-time systems have their origin in the timing requirements of 
closed-loops. In this chapter, we also show how to express these real-time demands using 
traditional timing constraints for control tasks, such as periods and deadlines. Furthermore, 
we discuss the different ways of implementing closed-loops in real-time systems using 
periodic tasks.  

We finally show that when using traditional real-time task models to express discrete-time 
control theory timing requirements, the system schedulability decreases. That is, scheduling 
algorithms, when trying to fulfil the timing requirements posed by closed-loops, over-
constrain the schedule (because task models are based on fixed timing constraints that lack 
flexibility) resulting in poor system schedulability. Therefore, the implementation of 
discrete-time controllers in a multitasking real-time system impairs schedulability. 

The work explained in this chapter has been partially presented in [MAR00b].  

3.1 Discrete-time control theory timing analysis 
The general functionality of a computer-controlled system was described in Section 2.2.2. 
The functional scheme of a closed-loop system can be split into three main activities: 
sampling, control algorithm computation and actuation. Discrete-time control theory 
regards these three main activities with specific timing. That is, models and methods used in 
discrete-time control theory implicitly impose the timing that sampling, control 
computation, and actuation must have in the computer implementation.  

Next, we discuss the timing assumptions which discrete-time control theory relies on and we 
show that the timing requirements that the closed-loop implementation must meet (to fulfil 
the discrete-time control theory timing assumptions) are not realistic for current computing 
platforms. 
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3.1.1 Closed-loop timing assumptions 
From classical discrete-time control theory, we can derive the following timing assumptions 
about the three main parts of a closed-loop: 

•  The input data collection or sampling is performed at the sampling instants, tk, i.e., 
times when the measured signals (inputs, y(tk)) are converted to digital form 
(through the AD converter) 

•  The output data transmission or actuation is performed at the actuation instants, 
i.e., times when the control signals (outputs, u(tk)) are converted to a continuous 
form (through the DA converter) 

•  Sampling is performed at equidistant time instants given by the sampling period, h 

•  The time delay, τ, i.e., time elapsed between related1 sampling and actuation 
instants, is constant (either instantaneous2 - or not, depending on how the controller 
was designed)  

•  The control computation, i.e., the algorithm implementing the controller design, 
calculates the output as soon as the input (sample) is available.  

•  The events are synchronized by the real-time clock of the computer 

Although these assumptions are the basis for discrete-time control theory, in practice it is 
not possible to keep all of them in a computer implementation (as we further discuss in the 
next Section). For example, it is clear that computations take time, therefore the time delay, 
which includes the control computation execution, can not be instantaneous. The 
implementation approach behind assuming an instantaneous time delay is to build the 
system in such a way that the time delay is minimized in order to ignore it in the controller 
design. However, this does not mean that the control computation execution time is zero. It 
means that the control computation execution time is not relevant to the controlling 
purposes if compared to the closed-loop system dynamics.  

However, due to the fact that computations take time, a more realistic approach is to assume 
a time delay, τ > 0, which includes the control computation worst-case execution time, 
which is then taken into account in the controller design. Discrete-time control theory 
provides several approaches for dealing with this delay. The most common approach is to 
assume that the delay is constant. However, depending on the control model we assume 
when designing a discrete-time controller (see [AST97] or [VAC95] for further details) the 
constant time delay has different semantics.  

                                                 
1 Related sampling and actuation instants refers to the sampling and actuation actions performed at each 
execution of a closed-loop. 
 
2 Recall that the idea of using digital computers as components in control systems started around 1950 [AST97]. 
The notion of instantaneousness comes from the theory of linear time-invariant continuous-time systems, from 
which discrete-time systems theory emerged. In continuous-time systems, analogue controllers are 
instantaneous. As a consequence, some of the models and methods used in discrete-time theory, coming from 
continuous-time theory, maintain the instantaneous assumption.   
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In the following, we use time diagrams to discuss and illustrate the exact closed-loop timing 
assumptions that are implicit in the three major and most commonly used classical discrete-
time system models for discrete-time controller design, where h denotes the sampling period 
and τ a constant delay.  

Regularly sampled discrete-time system model 

This model is the most commonly used for discrete-time controller design and its timing 
assumptions emerge from sampling continuous-time systems. The timing assumptions 
behind this model are: 

•  sampling is performed at equidistant time instants given by the sampling period, h 

•  time delay is zero (τ=0) 

•  actuation is performed at the same sampling time instants. 

Notice that this is the most unrealistic case. The control model does not take into account 
any time delay. In practice, this means that the control computation execution time is 
assumed to be short enough to not affect the controlled system response when sending the 
actuation after the control computation. In Figure 3.1 we illustrate the timing assumptions of 
this model. At each closed-loop execution, denoted by k-1, k, k+1, etc, sampling and 
actuation are performed, theoretically, at the same time instant every sampling period (h). 

 

 

 

 
Figure 3.1. Timing assumptions of regularly sampled discrete-time system models 

Regularly sampled discrete-time system model with constant time delay  

This model is more realistic because it takes into account that the control computation takes 
time. This is represented by a constant time delay. The timing assumptions behind this 
model are: 

•  sampling is performed at equidistant time instants given by the sampling period, h 

•  time delay is constant and less than the sampling period (0<τ<h) 

•  actuation is performed immediately after the time delay. 

Notice that this model is the closest to reality. The control model accounts for a constant 
time delay, which is assumed to be equal to the control computation execution time. In 
Figure 3.2 we illustrate the timing assumptions of this model. At each closed-loop 
execution, denoted by k-1, k, k+1, etc, sampling and actuation are performed at the same 
time instants given by the sampling period (h), with an elapsed time between them equal to 
the control computation execution time given by the time delay (τ). 
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Figure 3.2. Timing assumptions of regularly sampled discrete-time system models with 

constant time delays 

Notice that this model imposes a strict timing requirement on the implementation with 
respect to the control computation execution: at each closed-loop execution, the control 
computation execution time must always be the same and also be equal to the time delay (τ) 
assumed by the control model.  

Regularly sampled discrete-time system model with actuation at the next sampling 
instant  

This model assumes that the actuation instant of the kth closed-loop execution occurs at the 
sampling instant of the k+1th closed-loop execution. The timing assumptions behind this 
model are: 

•  sampling is performed at equidistant time instants given by the sampling period, h 

•  time delay is constant and equal to the sampling period (τ=h) 

•  actuation is performed immediately after the time delay, that is, at the next sampling 
instant. 

In Figure 3.3 we illustrate the timing assumptions of this model. At each closed-loop 
execution, denoted by k-1, k, k+1, etc, sampling and actuation are performed at the same 
time instants given by the sampling period h, with an elapsed time between them equal to 
the sampling period (τ=h). 

 

 

 

 
Figure 3.3. Timing assumptions of regularly sampled discrete-time system models with 

actuation at the next sampling instant 

Summary 

Taking into account the general description of computer-controlled system we gave in 
Section 2.2.2, Figure 3.4 shows the three different models in terms of the relation between 
controller inputs y(tk), which are the measured variables, controller outputs u(tk), which are 
the control signals, and sampling instants tk: 
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Figure 3.4. Input-output synchronization depending on the time delay: (left) τ = 0, (middle) 
0 < τ < h and (right) τ = h (Notice that tk+1-tk = h) 

These three models we analysed are the most common for the analysis and design of 
discrete-time control systems. From a control theory point of view, the main difference 
between them is given by the assumptions made on the time delay. It is known ([AST97] or 
[CER99]) that the shorter the delay, the better the control. However, depending on the 
system to be controlled and on the digital implementation platform characteristics, one 
model can be more suitable than another.  

Looking at the system itself, if its dynamics and inertias are slow, any of the three models 
can be successfully applied, with no major difference. However, if the system is fast, the 
timing given by each model can be of importance, in terms of achieving the desired closed-
loop system specifications with different levels of performance. 

Looking at the three models from an implementation point of view, the following 
considerations must be evaluated. Although the disadvantage of the third model (Figure 3.4 
right) is that control signals u(tk) are delayed unnecessarily, its implementation can be 
successfully achieved by hardware interrupts. The advantage of the second model (Figure 
3.4 middle) is that it has a shorter time delay than the third model (Figure 3.4 right). 
However, due to the fact that its computer implementation is not usually done through 
hardware interrupts, depending on the computer implementation (depending on the 
programming and on the processing node mechanisms, e.g., scheduling), the assumed 
constant time delay can actually vary. The advantage of the first model (Figure 3.4 left) is 
that there is “no delay”. However, it is not realistic because there will always be a time 
delay when a control law is implemented using a computer. 

Apart from the three models we analysed, there are other possible models that can include 
constant time delays such as system with time delays longer than the sampling period or 
systems with internal time delays apart from those with input (or output) delays. For further 
reading, see [AST97]. 
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In the end, although different control models give different semantics to the time delay, the 
control timing assumptions behind discrete-time control system theory can be summarized 
as follows: 

a) Sampling occurs at equidistant time instants given by the sampling period, h 

b) Time delay, τ, is constant 

c) Actuation occurs at the time delay completion 

Note that from a control point of view, sampling period and time delay are the timing 
parameters of interest in the analysis and design of discrete-time controllers. This means that 
the existing well-known control models and methods used in discrete-time control theory 
are for systems with a constant sampling period (h) and a constant time delay (τ). That is, 
the (realistic) timing requirements posed by discrete-time control theory timing assumptions 
that a computer implementation must meet are: 

1. Constant sampling period 

2. Constant time delay  

3.1.2 From theoretical timing to applied timing 
In the previous section we have explained the timing assumptions for closed-loop systems 
that are implicit in discrete-time control theory and we have derived the timing requirements 
that an implementation must meet. However, we have not discussed the influence of any 
specific closed-loop architecture on the timing behaviour of an implementation. In this 
section, we give an overview of the real expected timing behaviour of closed-loops systems 
that are either implemented locally or distributed. Afterwards, we point out the problem that 
arise when mapping the theoretical timing assumed by discrete-time control theory to the 
real timing of the implementations. 

The two main architectures for implementing closed-loops are the local closed-loop 
architecture and the distributed closed-loop architecture:  

•  Local closed-loop: the three main parts of a closed-loop (sampling, control 
computation and actuation) take place in the same processing node.  

•  Distributed closed-loop: the three main parts of a closed-loop (sampling, control 
computation and actuation) take place in different processing nodes and a 
communication network is used for transmission of signals between nodes. 

Figure 3.5 shows the two different architectures. For the local closed-loop (Figure 3.5 left), 
the timing parameters that characterize the functionality of the system are the sampling 
period (h) and the time delay (τc), understood to be the control computation execution time. 
We regard the conversion operation delay for analogue-to-digital (AD) and digital-to-
analogue (DA) to be negligible. If these operations are too long, they can be included for the 
timing analysis in the time delay τc. For the distributed closed-loop, the timing parameters 
that characterize the functionality of the system are the sampling period (h), the time delay 
(τc) understood to be the control computation execution time, and the network-induced 
delays, that is, the sampler to controller delay (τsc) and the controller to actuator delay (τca). 
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As before, we regard the conversion operations to be negligible. If these operations are too 
long, they can be included for the timing analysis in the time delay τc. In Figure 3.5, the 
measured variables and the control signals are marked by y(t) and u(t) respectively. 

 

 

 

 

 

 

 

 

 

Figure 3.5. Local (left) vs. distributed (right) closed-loop system 

If we take a closer look at the significant timing behaviour behind each architecture (see 
Figure 3.5), we conclude that the same timing problems arise when mapping the timing 
assumptions that discrete-time control theory requires in an implementation with the timing 
behaviour of each architecture.  

Focusing on the local closed-loop architecture, the following functionality is expected (see 
[MAR00b] for further reading): 

•  The sampler samples the process to be controlled with a given sampling period h. 
The time of the kth sampling is given by (3.1) 

t k  = tk-1 + h            (3.1) 

•  The kth control computation execution start time is given the sampling time tk. The 
control computation introduces a delay (τc) in order to calculate the actuation 
signal(s). Notice that the delay τc may be different at each closed-loop execution. 
Finally the actuator performs the actuation at time given by (3.2) 

ak = t k  + τc      (3.2) 

Consequently, for these local closed-loop architectures, the time delay is given by τc. 

Focusing on the distributed closed-loop architecture, the following functionality is expected 
(see [MAR01c] for further reading): 

•  The sampler samples the process to be controlled with a given sampling period h. 
The time of the kth sampling is given by (3.3) 

t k  = t k-1 + h      (3.3) 

•  When the data has been collected by the sampler it is forwarded to the controller, 
introducing a communication delay τsc. Notice that the delay τsc may be different at 
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each closed-loop execution. The control computation introduces a time delay (τc) in 
order to derive the actuation signal(s). The controller forwards the actuation 
signal(s) to the actuator, introducing another communication delay τca. Notice that 
delays τc and τca may be different at each closed-loop execution. Finally the actuator 
performs the actuation at the time given by (3.4) 

ak = t k + τsc + τc + τca    (3.4) 

Consequently, for these distributed closed-loop architectures, the time delay is given by τsc + 
τc + τca. 

Summary 

In both cases, the constant time delay τ (time elapsed between related sampling and 
actuation instants) assumed for discrete-time control theory requires the different time 
delays that appear in both architectures (τc for the local closed-loop and τsc + τc + τca for the 
distributed closed-loop) to be constant for each closed-loop execution. However, neither τc 
nor τsc + τc + τca can be considered to be constant. Network-induced delays (τsc and τca) may 
vary depending on the network traffic, medium access protocol, etc. Computation-induced 
delays (τc) may vary depending on the processing node load, programming, scheduling, etc.  

Therefore, we conclude that the timing requirements derived from the timing assumptions 
behind discrete-time control theory models and methods are not realistic for actual 
computer implementations. 

3.2 Control systems schedulability 
In the previous section we have derived the timing requirements that control systems impose 
on a computer implementation; namely a constant sampling period (h) and a constant time 
delay (τ). Real-time implementations of control applications must take these timing 
requirements into account in order to achieve the expected behaviour of the control system. 
That is, real-time scheduling of control tasks must be able to preserve the inherent timing 
behaviour that control models imply. In this section we firstly discuss how real-time tasks 
models can be used to meet the timing requirements imposed by discrete-time control 
theory. Afterwards, we point out the implications of expressing the control timing 
requirements with traditional real-time task models timing constraints on the whole system 
schedulability.  

3.2.1 Mapping control timing requirements to real-time task timing 
constraints  

As we explained in Section 2.1.1, depending on the regularity of task activation, a task can 
be defined as periodic or aperiodic. For closed-loop systems designed using discrete-time 
control theory, it is standard practice that control activities, due to their periodic nature, are 
mapped into periodic tasks.  

A periodic task is characterized by several attributes (also called task timing constraints), 
such as period and deadline, and properties, such as worst-case execution time. Common 
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practice is that for control tasks, the period of the task taski, Ti, is given by the sampling 
period, h, used in the controller design and an estimation of the maximum time required by 
the node to execute the control algorithm is assigned as a worst-case execution time, Ci.  

However, the deadline assignment is not clear [RAM96]. In [LIU73], the deadline for 
periodic tasks is equal to the task period. This relies on the idea that each task must be 
completed before the next request occurs. Later research has extended the schedulability 
analysis to handle deadlines shorter [TIN94] or longer than the tasks period [STA98]. 
However, the origin of deadlines and their relation to control theory is rarely mentioned, 
except in [SHI85] and [SHI92], where deadlines are derived according to the allowed 
maximum time delay considering different regions of the state space and stability. In the 
examples they show, deadlines are typically found to be several times longer than the 
sampling period. This is due to the fact that the sampling period of a controller is not only 
chosen to satisfy Shannon sampling theorem but also to achieve the desired controlled 
system performance (see Section 2.2). 

From a control perspective, deadlines must primarily be used to bound the time delay of 
controllers. We have seen in Section 3.1.1 that discrete-time control theory requires a 
constant time delay in an implementation. It has been also argued in Section 3.1.1 that the 
shorter the delay, the better the control. Therefore, the deadline for control task is given by 
the time delay. 

Notice that this deduction may lead to an unrealistic situation. We have explained in Section 
3.1.1 that the most commonly used discrete-time control model assumes the time delay to be 
zero, although the control computation execution time is not zero. Therefore, for these 
cases, if we assign the deadline equal to the time delay (which is zero), each control task 
instance execution will miss its deadline. Therefore, for these cases, the realistic approach is 
to assign the deadline equal to the worst-case execution time of the closed-loop3 although in 
the controller design no delay has been accounted for. 

In summary, the deadline for control tasks can be specified as follows:  

a) the time delay assumed in the controller design if τ > 0, which must include the 
worst-case execution time of the closed-loop.  

b) the worst-case execution time of the closed-loop, if the time delay was assumed 
zero in the controller design. 

Henceforth, we will use the term 'time delay' for both cases. Notice that the following 
relation will hold: the time delay τ will be always equal to or greater than the worst-case 
execution time of the closed-loop. 

3.2.2 Real-time implementation of closed-loops  
As mentioned earlier in Section 3.1, the three main parts of a closed-loop are sampling, 
control computation and actuation. There are two possible ways of implementing a closed-

                                                 
3 The worst-case execution time of a closed-loop is an upper bound estimation of the maximum time required by 
the processor (if local closed-loop) or processors and networks (if distributed closed-loop) for executing the three 
main parts of a closed-loop (sampling, control computation and actuation) 
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loop in real-time systems using periodic tasks: the single task approach or the multiple task 
approach.  

•  Single task approach: in this case, the closed-loop is implemented as a single periodic 
control task taskci. That is, the different activities of a closed-loop (sampling, control 
computation and actuation) are implemented sequentially within a single periodic task. 
In this case, sampling (the AD conversion) takes place when each control task instance 
starts its execution, and actuation (the DA conversion) takes place when the control task 
instance completes its execution. Therefore, tk=s(taskci,k) and ak=f(taskci,k). 

•  Multiple task approach: in this case, the three different activities of a closed-loop are 
implemented in separate periodic tasks. Typically one task performs the sampling 
(tasksi), another the control computation (taskcci) and another the actuation (taskai). The 
three tasks must execute according to the logic sequence sampling/control 
computation/actuation (for each closed-loop), that is, s(taskai,k)≥f(taskcci,k) and 
s(taskcci,k)≥f(tasksi,k)4. Therefore, the sampling will take place when the sampling task 
starts its execution (tk=s(tasksi,k)), and the actuation will take place when the actuation 
task completes its execution (ak=f(taskai,k)). 

Note that what is important in order to meet the control timing requirements derived from 
the discrete-time control theory assumptions is to guarantee a constant sampling period and 
a constant time delay for each closed-loop implementation. To do so, for each closed-loop 
system, the following relations - expressed by standard real-time task timing constraints 
(periods and deadlines) and properties (worst-case execution time) - must hold: 

•  Each task (in the single task approach) or set of tasks (in the multiple task approach) in 
charge of controlling a physical system (or plant) has a period given by the sampling 
period used in the controller design stage. 

•  Each task (in single task approach) or set of tasks (if multiple task approach) in charge 
of controlling a physical system (or plant) has a deadline given by the time delay used in 
the controller design (which should coincide - as a best approximation - with the worst-
case execution time of the task or task set) 

By holding these relations, at each closed-loop execution, sampling will occur at the start of 
each period, thus keeping the constant sampling period assumption. In addition, actuation 
will occur at some time instant between the start of each period and the start of the period 
plus the worst-case execution time, which is the best approximation to the constant time 
delay assumption that can be achieved using real-time task models. Note that the smaller the 
difference between the worst-case execution time and the actual execution time, the better 
the approximation will be. In fact, as we introduced in Section 2.1.2 (and we further discuss 
in Section 8.1.1), if we assume that each task (in the single task approach) or set of task (in  
the multiple task approach) is characterized by its exact execution time (rather than its 
worst-case execution time) and the deadline is equal to the exact execution time, the 

                                                 
4 The start time of the kth instance of the control computation task (taskcci) must occur after the finishing time of 
the related kth instance of the sampling task (tasksi) and the start time of the kth instance of the actuation task 
(taskai) must occur after the finishing time of the related kth instance of the control computation task (taskcci). 
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actuation will occur after a constant time interval after the start of each period, thus keeping 
the constant time delay assumption.  

These timing requirements translated into task timing constraints for the single and multiple 
task can be summarized as follows (note that if we assume the exact - ci - rather than the 
worst - Ci - execution time, all the following still holds), where h and τ are the sampling 
period and time delay used in the controller design stage: 

•  In the single task approach, for a periodic task taskci characterized by (Tci,Cci,Dci) where 
i relates the task to a specific closed-loop, the following assignation must hold: 

Tci =h, Cci = τi, and Dci = Cci 

Figure 3.6 portrays a sequence of closed-loops executions implemented using this single 
task approach (shaded boxes mark executions of instances of the control task taskci. 
Each instance of task taskci, taskci,k, periodically performs sampling (s), control 
computation (c) and actuation (a) sequentially). 

 

                     
taskci  s c a    s c a    s c a     
                     

Figure 3.6. Closed-loop implemented using a single periodic task 

•  In the multiple task approach, for the three periodic tasks tasksi, taskcci, taskai (each 
characterized by (Tsi,Csi,Dsi), (Tcci,Ccci,Dcci) and (Tai,Cai,Dai)), where i relates the three 
tasks to a specific closed-loop, the following relations must hold: 

Tsi=Tcci=Tai=h, Csi + Ccci + Cai = τ and Dai = Csi + Ccci + Cai 

Note that the previous relations must hold for each three tasks implementing a closed-
loop. This can easily be fulfilled by specifying offsets5 as follows: Occi = Osi + Csi and Oai 
= Occi + Ccci and deadlines as follows: Dsi = Csi + Osi, Dcci = Ccci + Occi and Dai = Cai + Oai.  

 
                     
taskai                        
taskcci                        
tasksi                        
                     

 
Figure 3.7. Closed-loop implemented using multiple periodic tasks 

In Figure 3.7 we show a scheme of a closed-loop implemented using the multiple task 
approach where the previous relations hold. For the sake of clarity, we have omitted all 
the offsets. Shaded boxes mark executions of instances of the three tasks tasksi, taskcci 
and taskai. 

                                                 
5 An offset or phase for a periodic task [BUT97], Oi, specifies the activation time of each instance relative to the 
start of its period. If Oi is the offset of a periodic task taski, the activation time of the kth instance is given by 
Oi+(k-1)Ti.  
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Summary 

Henceforth, if we don’t specify the task approach used for implementing a closed-loop, we 
assume the following: when we use the term “control task”, we refer to a closed-loop 
system where a physical process (or plant) is controlled using either the single task approach 
or multiple task approach. We do that because the results we present in this thesis hold for 
both approaches. However, when necessary, we will distinguish between these two 
approaches.  

Note that in order to fulfil the discrete-time control theory timing assumptions, if the 
deadline assignment is given by the WCET (or by the exact execution time, as we assume 
for control tasks, see Section 8.1.1. for further discussion) no major difference in terms of 
flexibility exists on implementing a closed-loop using either of the two approaches. This is 
due to the fact that this deadline assignment over-constrains system schedulability, as we 
explain in the next section. However, if this deadline assignment is relaxed to Di > Ci (with 
Di ≤ h), the multiple task approach provides more flexibility and, as can be seen in [CER99] 
and [CRE99], from a schedulability and control point of view may be advantageous. 
However, as we explain in Chapter 4, this can lead to other types of disadvantages (i.e., 
controlled systems performance degradation). 

3.2.3 Limits of control task scheduling 
Setting deadlines equal to WCET6 for control tasks (characterized with standard timing 
constraints) over-constrain the schedulability of the system because it implies that each time 
a control task instance is released, it has to start its execution immediately. That means that 
whatever schedule policy we use to schedule a set of tasks that includes control and non-
control tasks, to find feasible schedules, in the general case, is not possible. However, we 
must consider the following scenarios: 

•  One control task: if our system only has one control task, obviously, to schedule this 
task is straightforward. As an example, if we have a control task taski with the following 
characterization: (Ti=6, Ci=1, Di=1), a feasible offline schedule is shown in Figure 3.8, 
where shaded boxes mark tasks instances executions. 

                  
taski                 
                

Figure 3.8. Feasible offline schedul

•  Two or more control tasks: if our system has more than
feasible schedule that meets the control timing requireme
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 Ti Ci Di 

task1 2 1 1 
task2 3 1 1 

 
Table 3.1. Task set 

If we explore over the task periods LCM (6 time units) all possible task instance 
orderings, none of the combinations meets the constant sampling period requirement. 
For the first task, task1, the two possible instances orderings meeting the constant 
sampling period requirement is shown in Figure 3.9, where boxes mark period intervals 
and shaded areas instance executions. 
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Figure 3.9. Possible orderings for
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1) Given a set of control tasks with periods {T1, T2, T3, …, Tn} (each Ti corresponding 
to the specific sampling period used in each controller at the design stage), we 
define that periods Ti have a strict harmonic relation if they are related as follows: 
Ti+1=n*Ti, where GCD(T1, T2, T3, …, Tn)=T1, LCM(T1, T2, T3, …, Tn)=Tn, periods 
{T1, T2, T3, …, Tn} in increasing order and n is an integer. Such period relations 
simplify control systems analysis and scheduling. As an example, having a set of 
two control tasks characterized as indicated in Table 3.2 with strict harmonic 
periods, we show that a feasible schedule exists.  

 Ti Ci Di 

task1 3 1 1 
task2 6 2 2 

Table 3.2. Task set with two control tasks with strict harmonic period relation 

In Figure 3.11 we show a feasible schedule (over two times the task periods LCM) 
for the two control tasks (where boxes mark task periods intervals and shaded areas 
mark task instances executions). 
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Figure 3.11. Feasible schedule of two control tasks with stri
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In Figure 3.12 we show a feasible schedule (over the task periods LCM) for the two 
control tasks (where boxes mark task period intervals and shaded areas mark task 
instances executions). 

task2                  
task1                 
                 

Figure 3.12. Feasible schedule of two control tasks with soft h
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Chapter 4 

Schedulability impact on control 
In this chapter, we discuss the timing effects that standard real-time scheduling algorithms 
have on task instance executions. Since the early work on real-time scheduling presented by 
[LIU73], real-time tasks can be scheduled using a wide variety of scheduling algorithms. As 
we show in this chapter, one common feature of scheduling algorithms is that they introduce 
different forms of jitter in task instance execution, i.e., scheduling inherent jitters. We 
characterize these jitters in terms of control theory when the scheduled tasks are control 
tasks. Finally, we give examples to show the effects of control tasks subject to jitters in the 
controlled systems performance. 

In the previous chapter we concluded that applying standard timing constraints for control 
tasks to express the timing requirements (constant sampling period and constant time delay) 
imposed by discrete-time control theory results in poor system schedulability. This is due to 
the fact that deadlines for control tasks have to be assigned equal to their worst-case 
execution time (or to be more accurate, to their exact execution time, see Section 3.2.2), 
which implies that each time a control task instance is released, it has to start its execution 
immediately. One way to solve this problem is to relax the strict deadline assignment for 
control tasks (as we pointed out in Section 3.2.3), in such a way that system schedulability 
can be improved. However, when the scheduled tasks are control tasks with relaxed 
deadlines (that is, deadlines equal to periods, for example), we show in this chapter that 
scheduling inherent jitters for control tasks have an undesirable effect on the closed-loop 
system: they produce a degradation of the controlled system response, and may even cause a 
critical failure, i.e., instability. 

The work explained in this chapter has been partially presented in [MAR01a]. 

4.1 Real-time scheduling timing analysis 
Real-time theory has provided scheduling algorithms that use task models characterized by 
fixed timing constraints (or attributes) such as periods and deadlines to express the 
application timing requirements. In Section 2.1 we described the task models that are 
usually used in real-time scheduling, and we gave a brief review of different types of 
scheduling policies. In this section, we investigate the timing effects of such scheduling 
algorithms in task instance executions. 

4.1.1 Jitters characterization 
In real-time scheduling, a task can be seen as a successive execution of instances (also 
called jobs). As we pointed out in Section 2.1, the kth instance of a feasible periodic task 
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taski, taski,k, fulfils the following constraints: it has to execute within its period, which starts 
at (k-1)Ti and finishes at kTi (where Ti is its period), and has to complete before or at time 
(k-1)Ti+Di, where Di is its relative deadline (provided Ci≤Di≤Ti, where Ci is the task worst-
case execution time). This means that each instance must start and finish its execution 
within an interval of Di time units.  

Note that in the case of characterizing the task taski by its exact execution time ci and 
assigning its deadline as Di=ci, the exact start and completion time of each kth instance 
execution will be given by kTi and kTi+ci, respectively.  

However, in the general case, no matter which deadline assignment we have for a given 
periodic real-time task, if deadline complies with Ci≤Di≤Ti, no assurances can be made on 
the exact start and completion time of each task instance execution.  

This variability in task instance executions, i.e. jitters, is an inherent timing property of real-
time scheduling policies. That is, jitters in each task instance execution are allowed as long 
as the schedulability constraints are preserved. Recall that Figure 2.2 already showed this 
property. In general, periodic tasks can be subject to jitters in their instance executions due 
to the following reasons:  

•  After an instance of a periodic task has been released, its execution start time is delayed 
because other instances of other tasks are executing. 

•  After an instance of a task has started its execution, it can be interrupted by the 
execution of other instances of other tasks or can be blocked when trying to access 
shared resources other than the processor. 

These two reasons imply that: 

a) The start times of successive instances of a periodic task are not equidistant (successive 
instances do not start at the same time instant within every period). As a consequence, 
the time intervals between successive task instance start times are not constant. 

b) The finishing times (or completion times) of successive instances of a periodic task are 
not equidistant (successive instances do not finish at the same time instant within every 
period). As a consequence, the time elapsed between the start and finishing time of an 
instance of a periodic task will vary from instance execution to instance execution. 

These jitters on task instance executions are illustrated in Figure 4.1, where we portray three 
instances of a periodic task taski characterized by Ci (marked with shaded areas), Ti, Di. 
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Figure 4.1 shows that that the time interval between the k-2th task instance start time and the 
k-1th task instance start time (4) is shorter than the time interval between the k-1th task 
instance start time and the kth task instance start time (5). This is because the start times of 
those instances occur at different time instants within every period. It can also be seen in 
Figure 4.1 that the time elapsed between the start and finishing time of each instance, 
denoted by (1), (2) and (3), varies.  

In the following, using an example, we illustrate the jitter property. Let us schedule the task 
set described in Table 4.1 using the Rate Monotonic (RM) algorithm presented in [Liu73] 
(where deadlines are equal to periods). 

 Ti Ci 
task2 7 2 
task1 4 2 

Table 4.1. Task set 

The set of tasks (as shown in equation 4.1) complies the RM schedulability test (see 
equation 2.2 in Section 2.1.2): 

 
(4.1) 

 

The resulting schedule, over the LCM of the task periods (28 = LCM (7,4)), can be seen in 
Figure 4.2, where boxes mark period and shaded areas mark instance executions (on the 
basis of the worst-case execution time). In this case, although all instances of task task1 are 
not subject to jitters, for instances of task task2, the presence of jitters is clear.  
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•  the second instance takes 4 time units to complete from its start time (e) while  

•  the remaining instances take 2 time units to complete from their start time (f).  

The immediate consequence of the two previous properties is that successive instances 
finishing times are not equidistant.  

Remark 

Note that the worst-case execution time assumption for periodic tasks increases the run time 
task instance execution timing variability, thus increasing the jitter problem. This is due to 
the fact that at run time, task instances will probably execute for less that the assumed 
worst-case execution time (see Section 2.1.2). 

4.1.2 Effects of scheduling inherent jitters on control tasks  
In this section we categorize from a control standpoint the effects that scheduling inherent 
jitters have on the timing of closed-loops when the controlling activities are implemented by 
real-time periodic tasks (as we explained in Section 3.2.2) with relaxed deadlines (deadlines 
equal to periods) in a multitasking-computing platform. Recall that whatever task approach 
(single or multiple task approach) we use to implement the three main parts of a closed loop 
(sampling, control computation and actuation), sampling takes place at the beginning of 
each closed-loop execution and actuation takes place at the end of each closed-loop 
execution. 

In the previous section, we identified two major jitter consequences on task instance 
executions. If these tasks are control tasks following the models we explained in Section 
3.2.2, from a control point of view, scheduling inherent jitters in control tasks have the 
following effects1: 

•  Sampling jitter:  Having non-equidistant control task instance start times implies 
having irregular sampling. That is, time intervals between 
consecutive sampling instants are not constant; they vary from one 
control task instance execution to another.  We call this variability 
sampling jitter.  

Given a control task taski,  

•  we call sampling interval each specific time interval between 
two successive sampling instants 

•  we denote each sampling interval by h(taski,k), where i and k 
refer to the kth instance of the control task taski, which is given 
by (4.2). 

h(taski,k) = s(taski,k+1) - s(taski,k)  (4.2) 
                                                      
1 For the sake of simplicity, the definitions are given in terms of the single task approach. However, they can be 
easily extended to cope with the multiple task approach: sampling jitter is the variability on start times of 
successive sampling tasks, and sampling-actuation jitter is the variability between related sampling task start 
time and actuation task completion time.  
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•  Sampling-actuation jitter: To have a varying elapsed time between the start and 
finishing time of each instance of a control task implies that 
the separation between sampling instants and actuation 
instants vary between control task instance executions. That 
is, time intervals between related sampling and actuation 
instants are not constant. We call this variability sampling-
actuation jitter. 

Given a control task taski, 

•  we call sampling-actuation delay each time interval 
between related sampling and actuation instants 

•  we denote each sampling-actuation delay by ττττ(taski,k), 
where i and k refer to the kth instance of the control task 
taski, which is given by (4.3). 

τ(taski,k) = f(taski,k) - s(taski,k) (4.3) 

If we do not need to identify the specific control task because it is clear from the context, in 
the following, we will omit all i-subscripts. In this case, for a given control task, h(taskk) and 
τ(taskk) will denote the sampling interval and sampling-actuation delay of the kth instance of 
the control task. An immediate consequence of the two previous jitters is that the time 
interval between consecutive actuation instants is not constant, which means irregular 
actuation.  

Using the following examples we show different scheduling situations where control tasks 
are subject to sampling jitter, sampling-actuation jitter or both. In all the examples, for all 
control tasks, we assume deadlines equal to periods because we are now interested in 
relaxing the deadline assignment (which we discussed in Section 3.2.2) for control tasks, in 
order to characterize scheduling inherent jitters for control tasks. 

Sampling jitter example 

Let us suppose we have two control tasks (each one in charge of controlling an independent 
process/plant), characterized as shown in Table 4.2 (deadlines equal to periods), that have to 
share a processor. 

 Ti Ci 
task2 5 1 
task1 4 2 

Table 4.2. Task set 

Notice that each control task period Ti is given by the sampling period h used in the 
controller design stage (Ti=h) (see Section 3.2.2). That is, each control task with period Ti is 
implementing a control law that has been designed assuming a constant sampling period h in 
the implementation. For this task set, which is schedulable by RM [LIU73], we show in 
Figure 4.3 the partial schedule over the LCM of the tasks periods that we obtain using the 
RM algorithm, where boxes mark task periods and shaded areas execution times. 
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task2                          
task1                          
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Figure 4.3. Sampling jitter: partial schedule 

Despite the fact that control task task1 is not subject to any jitters, control task task2 is 
subject to sampling jitter. That is, the time intervals between successive sampling instants 
are not constant. Over the task periods LCM, sampling jitters for control task task2 originate 
the following sampling intervals sequence: 4, 4, 5 and 7. Note that according to the resulting 
schedule, task2 will execute with varying sampling intervals instead of having a constant 
sampling period (equal to 5), as it was supposed to have in the implementation from the 
controller design stage.  

Sampling-actuation jitter example 

Let us suppose we have two control tasks to execute in a single processor (each one in 
charge of controlling an independent process/plant), characterized as shown in Table 4.3 
(we assume deadlines equal to period), with the following fixed task priority assignment: 
task1 has higher priority than task2. 

 Ti Ci Oi Pi 

task2 6 2 1 2 
task1 4 1 0 1 

Table 4.3. Task set 

Notice that in this case we are also relaxing the deadline assignment for control tasks. The 
deadline Di for each control task should coincide with the worst-case (if not exact) execution 
time of the control task Ci, which is given by each time delay τ assumed in each controller 
design (see Section 3.2.2). However, although each task deadline is now equal to the task 
period (Di=Ti), each control task is implementing a control law that has been designed 
assuming a constant time delay τ (that for illustrative purpose now coincides with Ci) in the 
implementation. 

For this task set, which is schedulable by FPS [TIN94], we show in Figure 4.4 the partial 
schedule over the LCM of the tasks periods that we obtain using FPS, where boxes mark 
task periods and shaded areas execution times. 
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Figure 4.4. Sampling-actuation jitter: partial schedule 

Despite the fact that control task task1 is not subject to any jitters, control task task2 is 
subject to sampling-actuation jitter. That is, the time intervals between related sampling and 
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τ2(task2,1)=3τ(task2,1)=2 



4. Schedulability impact on control 

 

59

actuation instants are not constant. Over the task periods LCM, sampling-actuation jitter for 
control task task2 produces the following sampling-actuation delay sequence: τ(task2,1)=2 
and τ(task2,2)=3. Note that according to the resulting schedule, task2 will execute with 
varying sampling-actuation delays instead of having a constant time delay (equal to 2), as 
was assumed in the controller design stage.  

Sampling jitter and sampling-actuation jitter example 

Let us suppose we have two control tasks to execute on a single processor (each one in 
charge of controlling an independent process/plant), with the characterization given by 
Table 4.4 (we assume deadlines equal to periods). 

 Ti Ci 
task2 5 2 
task1 4 2 

Table 4.4. Task set 

As in the previous two cases, each control task is implementing a control law that has been 
designed assuming a constant sampling period h and a constant time delay τ in the 
implementation. 

For this task set, which is schedulable by RM [LIU73], in Figure 4.5 we show the partial 
schedule over the LCM of the tasks periods that we obtain using the RM algorithm, where 
boxes mark task periods and shaded areas execution times. 
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Figure 4.5. Sampling jitter and sampling-actuation jitter: partial schedule 

Despite the fact that control task task1 is not subject to any jitters, control task task2 is 
subject to sampling jitter and sampling-actuation jitter. Over the task periods LCM, we 
summarize jitters for control task task2 in Table 4.5. 

 Instances of task2 (task2,k) 
Jitters task2,1 task2,2 task2,3 task2,4 

h(task2,k) 4 4 5 7 
τ( task2,k) 2 2 2 4 

Table 4.5. Jitters summary for the partial RM schedule 

Note that according to the resulting schedule, task2 will execute with both varying sampling 
intervals and sampling-actuation delays instead of both having a constant sampling period 
(equal to 5) and time delay (equal to 2), as was assumed at the controller design stage.  
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(5) τ (task2,1)=2
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(8) τ (task2,4)=4

Where: 
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4.1.3 Sampling and sampling-actuation jitters properties 
In this section, we present the timing properties of sampling intervals and sampling-
actuation delays that can be derived from periodic task scheduling of control tasks. In the 
previous section we characterized from a control point of view the effects of scheduling 
inherent jitters for control tasks: sampling jitter and sampling-actuation jitter. These jitters 
imply that at run time, for each closed-loop system (for each task – if the closed loop is 
implemented using the single task approach – or for each set of tasks – if the closed loop is 
implemented using the multiple task approach, see Section 3.2.2), varying sampling 
intervals and varying sampling-actuation delays apply. In this section, for each closed-loop, 
we characterize this variability, taking into account that control tasks are feasibly scheduled 
by a periodic scheduling policy.  

For each closed loop system, generically denoted by taski,2 

•  implemented by one or more periodic control tasks (single or multiple task 
approach, Section 3.2.2), 

•  in charge of controlling a physical system or plant (see Section 1.3) 

•  implementing a control law assuming a constant sampling period (h) and constant 
time delay (τ, where 0 ≤ τ ≤ h),  

•  that is executing in one or multiple nodes (locally or distributed, Section 3.1.2) 

•  characterized by a relative deadline equal to or less than the task period (Di≤Ti),  

•  characterized by an exact execution time ci 

•  belonging to a set of feasible tasks (each task instance taski,k must start and finish its 
execution within Di, see Section 4.1.1) 

we characterize  

1. the maximum and minimum sampling intervals that appear at run time for all control 
task instances taski,k as follows (we illustrate this property in Figure 4.6.): 

•  maximum sampling interval: ∀ k, max(h(taski,k)) = Ti+Di-ci 

•  minimum sampling interval: ∀ k, min(h(taski,k))  = ci+(Ti-Di) 

 
             
             
    

taski    
    
    

taski    
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2. the maximum and minimum sampling-actuation delays that can appear at run time for 
all control task instances taski,k as follows (we illustrate this property in Figure 4.7): 

•  maximum sampling-actuation delay: ∀ k, max(τ(taski,k)) = Di 

•  minimum sampling-actuation delay: ∀ k, min(τ(taski,k)) = ci 
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4.2 Jitter impact on control  
In this section we show and explain the impact on the controlled system performance when 
control tasks are subject to the previously identified scheduling inherent jitters. We show 
through two examples and by using simulations (obtained using the simulator presented by 
[EKE99]) that the presence of jitters in control task instance executions degrades the 
performance of the control system, even causing a critical failure (instability).  

4.2.1 Illustrative examples 
The two examples we use are the DC servo problem, controlled by a discretization of a 
continuous-time designed PID controller, and the inverted pendulum problem, controlled by 
a discrete state feedback controller obtained using pole placement observer design (see 
Section 2.2.2) 

Specifically, for illustrating the degrading effects of sampling jitter and sampling-actuation 
jitter on the controlled systems performance, we use both examples to show that the 
degradation appears whatever the control problem we are dealing with or whatever 
controller design approach we are using.  

Example 1 

In the servo problem, the major goal is to follow the command (reference) signal. To study 
the scheduling effects on the control performance of the DC servo closed-loop, we used the 
task taskPID we presented in Section 2.2.2. However, in this case, it has to share the 
processor with other tasks. For illustrative purposes, we use RM as a scheduling algorithm 
(tasks are assigned rate monotonic priorities, i.e., the task with the shortest period gets the 
highest priority). It is easy to verify that the task set (Table 4.6), with task deadlines equal to 
periods, is schedulable [LIU73]4. 

 Ti ci 
taskPID 2 ms 0.2 ms 
task1 1.3 ms 0.5 ms 

Table 4.6. Task set 

 

 

 

 

 

 

Figure 4.8. DC servo response (left - expected response) with jitter degradation (right)  
                                                      
4 Note that taskPID is characterized in Table 4.6 by its exact execution time. The same effects (or even worse) in 
the system response would occur if the task would have been characterized by the worst-case execution time. 
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Figure 4.8 (right) shows the effects of scheduling on the DC servo response performance 
when the taskPID is scheduled along with other tasks. The system response, which was to 
track the square pulse input, suffers important degradation, which drives the system 
response out of the specified requirements: the response goes beyond the maximum allowed 
overshoot. In comparison, Figure 4.8 (left) also shows the response we obtained when the 
task taskPID was executed in isolation. 

This degradation is caused by the inherent jitters that RM scheduling policy introduces in 
task instance execution. Specifically, taskPID is subject to sampling jitter and sampling-
actuation jitter, as seen in Figure 4.9, where we show the RM partial schedule over the task 
periods LCM (0.026 seconds). For each task, high-level marks instance executions, 
medium-level marks either pre-emption or start time delays at each instance execution, and 
low-level marks task sleeping. Therefore, looking at taskPID, its instance executions are 
subject to sampling jitter (marked, for example, by (a)) and sampling-actuation jitter 
(marked, for example, by (b)). 

 

 

 

Figure 4.9. RM partial schedule for the task set over the task periods LCM (26ms) 

The system response degradation can be explained as follows. Firstly, control actions are 
calculated using the PID algorithm, where the parameter h is constant (2ms). However, due 
to sampling jitter, at run time, sampling intervals for each PID control task instance 
execution are no longer constant. They vary from 1.5ms to 2.5 ms. Secondly, sampling-
actuation delays were supposed to be constant (0.2ms). However, at run time, they also vary 
(from 0.2 ms to 0.7ms). 

Example 2 

In the inverted pendulum control problem, where the controller has to maintain the desired 
vertical position of the inverted pendulum at all times, the major goal is to recover from a 
perturbation in less than two seconds.  

To study the scheduling effects on the response performance of the inverted pendulum 
closed-loop, we use the task tasksfc we presented in Section 2.2.2. However, for illustrative 
purposes, in this case, it has to share the processor with other tasks.  

In this case, firstly we isolate each jitter type to see what the effects of sampling jitter or 
sampling-actuation jitter are on the performance of the inverted pendulum system response. 
Afterwards, we show the effects when the task tasksfc controlling the inverted pendulum is 
affected by the combination of both jitters. For this example, we use RM and EDF as 
scheduling algorithms with the set of tasks described in Table 4.7 (where deadlines are 
equal to periods, and ci denotes the exact execution time). Before running the system, we 
have verified for each task set the schedules feasibility in terms of the response time 
analysis [JOS86]. 

taskPID 

task1

(a) (b) 
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 Ti ci 
task1 50ms 10ms 
task2 60ms 10ms 
tasksfc 80ms 20ms 
task3 100ms 20ms 

Table 4.7. Task set 

In Figure 4.10 we can see the resulting schedules over the task periods LCM (1.2 seconds) 
when using RM and EDF. Specifically, in both resulting schedules, tasksfc is affected for 
sampling jitter and sampling-actuation jitter, as seen in Figure 4.10. For example, looking at 
tasksfc in each schedule, tasksfc instance executions are subject to sampling jitter (marked, for 
example, by (a) and (b)) and sampling-actuation jitter (marked, for example, by (c) and (d)). 
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In Figure 4.11 we show the degradation on the inverted pendulum response (solid line) due 
to sampling jitter, for both RM (right) and EDF (left) scheduling algorithms. As can be seen, 
the degradation in both cases leads the system to instability (the inverted pendulum falls 
down). We also plot in Figure 4.11 the inverted pendulum response (dotted line) we 
obtained earlier (Figure 2.22, when the inverted pendulum was controlled by task tasksfc 
executing in isolation on a single processor), for comparative purposes. Note that from 
Figure 2.22 to Figure 4.11 we have changed the y-axis scale (angle) in order to allow a 
better appreciation of the type of degradation introduced by jitters for each scheduling 
policy. 

For both the RM and EDF scheduling algorithms, the response suffers important 
degradation. The period (Tsfc) of task tasksfc was set to 80ms, equal to the sampling period h 
used in the controller design. However, due to the sampling jitter introduced by each 
schedule, sampling intervals h(tasksfc,k) vary, taking values of 60, 70, 80, 90, or 100ms at 
each instance execution, following a periodic pattern over the LCM of the task periods for 
both scheduling algorithms.  

However, since RM and EDF give different schedules using the same task set, the sampling 
interval variability over the task periods LCM is also different. This is why the degradation 
on the system response also varies if RM or EDF is used. Although in both cases the system 
response is unstable, when using EDF, the system becomes unstable faster than when using 
RM. 

If we analyse the sampling interval (h(tasksfc,k)) variability over the task periods LCM (1.2s) 
of the task set, we can see that the periodic sequence of sampling intervals that appears 
when RM or EDF is used (as stressed in Table 4.8 in italics) differs in 6 values. Therefore, 
the effects on the system responses are rather different. 

h(tasksfc,k) k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15 
RM 60 80 100 60 90 80 70 80 90 80 70 90 70 80 100 
EDF 60 80 100 80 70 80 70 80 100 70 70 90 70 90 90 

Table 4.8. Sampling interval (h(tasksfc,k)) variability (in ms) 

Note also an interesting property of the sampling interval variability obtained either by RM 
or EDF. In both cases, the mean variability of the sampling intervals h(tasksfc,k) is 80ms, 
equal to the theoretical sampling period used at the design stage of the controller. 

We secondly study the response of the inverted pendulum when the task tasksfc is only 
affected by sampling-actuation jitter. In Figure 4.12 we show the degradation on the 
inverted pendulum response (solid line) due to sampling-actuation jitter, for both RM (right) 
and EDF (left) scheduling algorithms. As can be seen, the degradation in both cases, 
although present, is not as critical as it was when the task tasksfc was subject to sampling 
jitter. In this case, the system remains stable. We also plot in Figure 4.12 the inverted 
pendulum response (dotted line) we obtained earlier (Figure 2.22, when the inverted 
pendulum was controlled by task tasksfc executing in isolation on a single processor), for 
comparative purposes (note that the y-axis scales have changed again from Figure 4.11 to 
4.12, in order to make the degrading effects of sampling-actuation jitter more visible in this 
case).  
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Figure 4.12. EDF (left) and RM (right) sampling-actuation jitter degradation 

As before, for either RM or EDF scheduling algorithms, the response suffers degradation. 
Although the time delay assumed in the controller design was 20ms, at run time, due to the 
sampling-actuation jitter introduced by each schedule, sampling-actuation delays τ(tasksfc,k) 
vary, taking values of 20, 30, or 40ms in the RM schedule or values of 20 or 30ms in the 
EDF schedule. This different sampling-actuation delays variability that appears in each 
schedule explains why the degradation on the system response also varies if RM or EDF is 
used. Although with RM the system response suffers a more significant degradation, in both 
cases the system response remains stable. If we analyse the sampling-actuation delay 
(τ(tasksfc,k)) variability over the tasks periods LCM (1.2s) of the task set, we can see that the 
sampling-actuation delays (that follow a periodic sequence) that appear when RM or EDF is 
used (Table 4.9) differ in 2 values (marked in italics in Table 4.9). thus, the effects on the 
inverted pendulum responses are also different. 

ττττ(tasksfc,k) k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15 
RM 20 20 20 20 20 30 30 20 40 20 20 20 20 30 20 
EDF 20 20 20 20 20 20 30 20 30 20 20 20 20 30 20 

Table 4.9. Sampling-actuation delay (τ(tasksfc,k)) variability (in ms) 

 

 

 

 

 

 

 

 

Figure 4.13. EDF (left) and RM (right) sampling jitter and sampling-actuation jitter effects 
on the inverted pendulum response 
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Finally, Figure 4.13 shows the inverted pendulum response when the task tasksfc is subject to 
both sampling jitter and sampling-actuation jitter due to EDF (left) or RM (right) scheduling 
algorithms (the y-axis scale again coincides with the one used in Figure 4.11). In each case, 
the system response, which should keep the inverted pendulum in the vertical position, leads 
to instability; that is, it falls. This degradation is again due to sampling jitter and sampling-
actuation delays. 

4.2.2 Impact explanation 
In this section, we explain the degrading effects that scheduling inherent jitters (sampling 
jitter and sampling-actuation jitter) in control task instance execution have in the controlled 
systems response. This degradation in the controlled systems response is due to two main 
reasons: 

a) The control (measured) variables (from which the controller calculates the control 
signals) are taken at the wrong time instants (thus acquiring wrong values) and the 
control signals are also transmitted at wrong time instants 

b) Control signals are calculated according to a constant sampling period (h) and a constant 
time delay (τ) while at run time, sampling intervals and sampling-actuation delays vary 
at each control task instance execution.  

To illustrate these reasons with numbers let us focus on the DC servo example (note that a 
similar reasoning would also apply to the inverted pendulum example). After tuning the PID 
controller, in the discretization, we use a constant sampling period h. That is, we assume 
that at run time, samples are taken at equidistant times, with a constant interval of h between 
sampling times. However, since at run time task taskPID suffers sampling jitter, the time 
elapsed between successive sampling times is not constant. Therefore, the samples we are 
acquiring and thus the successive errors e(tk) from which we calculate each control signal 
are not correct. In addition the integration and differentiation parts are calculated assuming a 
constant sampling period when what we have are different sampling intervals applying at 
each task instance execution. As a result, the numerical value of the output (control signal) 
is inaccurate.  

Note also that when we designed the controller, we assumed zero time delay, as is usually 
done at the design stage (see Section 3.1.1 for further discussion). However, when we 
implemented the controller in task taskPID, we assigned 0.2ms of exact execution time 
(because execution takes time). As a result, at run time, the outputs we are sending are not 
performed at the actuation times we expected. In addition, due to the fact that task taskPID 
suffers sampling-actuation delays, even designing the PID controller with a 0.2ms of time 
delay, the outputs will still not be performed at the expected times. 

In summary, at run time, due to sampling jitter, we are reading wrong values and thus 
calculating wrong outputs, which in turn are sent at wrong times due to sampling-actuation 
jitter. That’s why at run time, the DC servo response is not as good as we expected from the 
PID controller design. In Table 4.11 we show, over the task periods LCM of the set of tasks 
we used in the DC servo example, when the reference signal (that has to be tracked) changes 
from 0 to 1, what the values of the correct controller should be, and what the values of the 
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task taskPID are. Note the difference between the times in which the correct sampling should 
occur (and the corresponding value of the measured variable), and the times (in bold in 
Table 4.10) in which task taskPID performs its sampling (and the corresponding value of the 
measured variable). Note also the difference between the correct outputs and the actuation 
times at which these are sent, and the wrong outputs calculated from wrong samples, which 
are sent at wrong actuation times (in bold in Table 4.10). It is also easy to follow in Table 
4.10 that sampling intervals (looking at column “Wrong sampling – time (s)”) and 
sampling-actuation delays (looking at columns “Wrong sampling – time (s)” and “Wrong 
output – time (s)”) for task taskPID vary instead of being constant. Observe that none of the 
values of both the correct and wrong sampling and actuation (output) coincide, except for 
the first one. 

Correct sampling Wrong sampling Correct output Wrong output 
Time (s) Value Time (s) Value Time (s) Value Time (s) Value 
0.6020 0 0.6024 0 0.6022 46.8001 0.6026 46.8001 
0.6040 0.1687 0.6040 0.2262 0.6042 -6.0965 0.6042 -8.7850 
0.6060 0.5193 0.6063 0.5652 0.6062 -14.9082 0.6065 -14.4747 
0.6080 0.7885 0.6080 0.9502 0.6082 -11.7335 0.6082 -17.2345 
0.6100 0.9491 0.6102 1.1294 0.6102 -7.1371 0.6104 -8.2939 
0.6120 1.0320 0.6120 1.2486 0.6122 -3.7861 0.6122 -5.8118 
0.6140 1.0696 0.6141 1.2922 0.6142 -1.8163 0.6143 -2.4879 
0.6160 1.0839 0.6160 1.3072 0.6162 -0.7930 0.6162 -1.2296 
0.6180 1.0873 0.6180 1.3054 0.6182 -0.3092 0.6182 -0.4684 
0.6200 1.0860 0.6200 1.2964 0.6202 -0.0995 0.6206 -0.1259 
0.6220 1.0831 0.6220 1.2847 0.6222 -0.0172 0.6222 0.0132 
0.6240 1.0797 0.6245 1.2723 0.6242 0.0109 0.6247 0.0687 
0.6260 1.0762 0.6260 1.2572 0.6262 0.0181 0.6262 0.2163 

Table 4.10. PID correct values vs. taskPID wrong values 

For illustrative purposes, observe that a correct sample should have been taken at time 
0.6060s, expecting a value of 0. 0.5193, while the actual sampling due to sampling jitter, 
occurs at time 0.6063s, with a measured value of 0.5652 (the sampling interval in this 
instance execution has been 0.6063-0.6040=0.0023s, instead of the assumed constant 
sampling period of 0.0020s). In the same way, observe that a correct output should have 
been sent at time 0.6202s, expecting a value of -0.0995, while the actual actuation, due to 
sampling-actuation jitter, occurs at time 0.6206s, with a calculated value of -0.1259 (the 
sampling-actuation delay in this instance execution has been 0.6206-0.6200= 0.0006s, 
instead of the assumed constant time delay of 0.0002s). 

This explanation for the DC servo response degradation can be also extended to the inverted 
pendulum example. Recall that in the state feedback controller we designed for the inverted 
pendulum, although we were more realistic in the sense of not assuming zero time delay, we 
have exactly the same problems as in the DC servo. Due to sampling jitter, we are reading 
inputs at wrong sampling instants, thus obtaining wrong values. As a consequence we are 
calculating wrong output values, which are sent at wrong actuation instants due to sampling-
actuation jitters. 
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4.3 Summary 
In the implementation of real-time control systems, real-time scheduling algorithms and 
classical control theory cannot be developed separately because unexpected controlled 
systems performance may occur. In both examples presented, we have followed the standard 
design procedure. That is, we have first designed the controller according to the specified 
system requirements, assuming a constant sampling period and a constant time delay. Once 
the controller has been designed, its computer implementation has been carried out. In the 
implementation, we have basically mapped the sampling period used in the control design to 
the period of the periodic control task implementing the control law. We also assigned to 
each control task an exact execution time. However, to overcome the poor schedulability 
problem detected in Chapter 3, we have set each control task deadline equal to its period, 
instead of setting the deadline equal to its exact execution time. By doing this, the system 
becomes less constrained, allowing better schedulability. However, by doing this, we also 
allow each control task instance to take the whole period to complete, causing effects like 
sampling jitter and sampling-actuation jitter. We have shown that jitter effects on control 
task instance execution damage the controlled system response, even causing a critical 
failure in the system, i.e., instability. 
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Chapter 5 

Integrated scheduling and control co-design  
In this chapter we provide an image of the approach to scheduling and control co-design we 
present in order to build effective real-time control systems is such a way that  

a) we solve the problems identified in Chapter 3, poor system schedulability, and 
Chapter 4, controlled systems response degradation, and  

b) we improve the control and scheduling performance of real-time control systems 
compared to classic control and scheduling approaches. 

In the two previous chapters we explained the control impact on schedulability and the 
schedulability impact on control. On the one hand, in Chapter 3 we have seen that when 
standard task timing constraints are used to express the timing requirements derived from 
discrete-time control models and methods, specifications become over-constrained, thus 
resulting in poor system schedulability. On the other hand, in Chapter 4 we have seen that 
general purpose real-time scheduling algorithms introduces different form of jitters in task 
instance execution. These jitters in control tasks produce unexpected controlled systems 
performance degradation. 

Henceforth, we will show how these problems can be addressed using a combination of 
control and real-time scheduling principles so that control systems can exploit new (and 
more flexible) scheduling approaches and scheduling approaches can take advantage of 
properties of new (and more flexible) control design approaches.  

In this chapter we firstly identify the problems we wish to solve and what we need to solve 
them, followed by an overview of the solutions we present. Finally, we introduce the main 
applications of our approach to build effective real-time control systems in such a way that 
the identified problems are solved.  

5.1 Motivation 
In the design and implementation of real-time control systems, we have clearly identified 
two main problems: poor system schedulability and controlled systems performance 
degradation. These two problems arise when such systems are designed in a traditional way, 
that is, differentiating two separate stages: first, control design and then its computer 
implementation. This separate design procedure has made it difficult to establish a clear 
flow of information between the activities of the control and the real-time communities, thus 
losing the possibility of sharing critical parameters of the computer implementation (e.g., 
scheduling inherent jitters) that may be considered in the control design stage and vice 
versa, sharing critical parameters of the control design (e.g., constant sampling period and 
constant time delay) that the computer platform could have taken into account in the 
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implementation. This lack of connection between the two communities results in system 
designs that do not fulfil the expected performance, from a schedulability and control 
performance point of view, as we have seen in the two previous chapters. 

Specifically, when facing the two problems (poor real-time system schedulability and 
controlled systems response degradation), we encounter two major difficulties: 

•  Discrete-time control models and methods consider implementation issues to a very 
little extent. This is due to the fact that in the control design stage, controllers are 
assumed to execute in dedicated processors and these processors are assumed to be fast 
and deterministic enough not to worry about the timing that the controlling activities 
may have in the implementation. This also explains terms like instantaneous execution, 
which are hard to understand (if not unrealistic) when talking about execution of control 
algorithms. However, as we have shown (Chapter 4), when resources (e.g., processors) 
are limited, the timing variations in the execution of control algorithms (e.g., scheduling 
inherent jitters) do affect the controlled systems performance, introducing degradation 
and even causing instability (this is due to the fact that jitters violate the timing 
assumptions that are classically undertaken in discrete-time controller design). It is 
worth mentioning that control theory offers no advice on how to account for 
implementation issues (e.g., execution timing variations) in control designs. 

•  Real-time scheduling policies are based on standard timing constraints for periodic tasks 
(such as period and deadlines) that are used to express the application timing 
requirements. Those timing constraints are assumed to be constant for all task instances. 
However, this does not necessary imply that each task instance execution will have the 
same timing. In real-time, timing variation in instance executions (i.e., jitters) is allowed 
as long as the schedulability constraints are preserved. Because control designs regard 
the computer platform as deterministic, this variation for control task instance 
executions has to be eliminated (otherwise, the controlled systems performance 
degrades, see Chapter 4). Using standard timing constraints, this can be achieved by 
assigning the deadline for control tasks equal to their worst-case execution time. 
However, by doing this, the control task specification becomes over-constrained, 
resulting in poor system schedulability (Chapter 3). It is worth mentioning that real-time 
theory has no task models and constraints that can be used to ensure a periodic task 
execution free of jitters without over-constraining system schedulability. 

Therefore, to build effective real-time control systems, we need a more integrated analysis 
and design approach, bringing together control and real-time community activities in such a 
way that control design and computer implementation are jointly considered. Specifically, to 
solve the problems we outlined and to overcome the difficulties posed by discrete-time 
control theory and real-time task timing constraints for control tasks, we need  

1) more flexible control design approaches: classic discrete-time control design 
approaches are based on the assumption of equidistant sampling and actuation, 
requirements that over-constrain system schedulability if those assumptions are 
expressed by standard real-time task timing constraints. However, if we use a more 
flexible control design approach based on the assumption of non-equidistant sampling 
and non-equidistant actuation, we will be providing more flexible requirements to the 
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timing of control activities, thus relaxing control task specifications that may lead to 
better system schedulability.  

2) more flexible timing constraints for control tasks: standard task timing constraints for 
periodic tasks, although being constant for all task instances, allow jitter in task instance 
execution, which for control tasks implies degradation in the controlled systems 
response. However, if we use more flexible timing constraints that do not introduce 
unexpected jitters while expressing the control timing requirements, the control 
performance requirements will be met.  

In this thesis we provide both a new discrete-time controller design approach based on 
irregular sampling and irregular actuation that we call the compensation approach, and a set 
of new flexible timing constraints for control task scheduling which are able to express the 
control timing requirements derived from the compensation approach. In the next two 
sections, we give an overview of each main contribution. 

5.2 Flexible control design 
The controller design method we present, called compensation approach, is based on the 
assumption of non-equidistant sampling and non-equidistant actuation. The compensation 
approach controller design method is based on the same classic controller design methods 
(such as pole placement or optimization approaches) used in discrete-time control theory 
(that is for systems with constant sampling period (h) and constant time delay (τ, where 0 ≤ 
τ ≤ h)). However, instead of specifying a single value for the sampling period and a single 
value for the time delay at the design stage, we specify several values. Then, at each 
controller execution, we allow a run time controller parameters adjustment according to a 
specific setting for the sampling period and time delay from the set of values we specified at 
the design stage. That is, at run time, at each control task instance execution, specific values 
for both the sampling period and the time delay will apply (Chapter 6). To implement a 
controller designed using the compensation approach, the code resulting from implementing 
a control law designed using traditional discrete-time controller design methodologies 
(assuming constant sampling period and constant time delay) is slightly modified in order to 
allow the run time parameters adjustment (Chapter 7).  

In summary, we present a control approach to deal with irregularly sampled discrete-time 
systems with varying time delays. This approach is based on more flexible timing 
assumptions than the rigid assumptions (constant sampling period and constant time delay) 
assumed by classic discrete-time control theory. Controllers obtained using the 
compensation approach depend on a finite set of values for both the sampling period and the 
time delay. This relaxes the timing requirements that an implementation must guarantee for 
control tasks instance executions. Variation of control task instance executions is allowed as 
long as this variability conforms to the different values for the sampling period and time 
delay assumed in the controller design stage.  

It is important to point out that the compensation approach can be used to design controllers 
that can deal with the scheduling inherent jitters, solving the degradation that would 
otherwise occur, as we have shown in Chapter 4. We investigate these issues in Chapter 8. 
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5.3 Flexible timing constraints for control tasks  
The compensation approach controller design method permits us to derive more flexible 
timing constraints for control tasks scheduling, as we show in Chapter 8. It allows us to 
design controllers that depend on a finite set of sampling period values and on a finite set of 
time delays values. From the timing assumptions behind the compensation approach, we 
define new flexible timing constraints for control tasks. The idea of flexible timing 
constraints for task scheduling was presented in [FOH97]. The flexible timing constraints 
we present are new specific constraints for control tasks, which express the timing 
assumptions of the compensation approach.  

Standard (also called traditional or fixed) timing constraints for periodic tasks are constant 
for all task instances. That is, a single value holds for a constraint (e.g., period or deadline) 
for all task instances. In contrast, our flexible timing constraints for control tasks do not set 
specific values. Rather, they provide ranges and combinations to choose from (at each 
control task instance execution), taking into account, for example, schedulability of other 
tasks or controlled systems performance (Chapter 9).  

In addition, feasible periodic tasks characterized by standard timing constraints suffer jitter 
in their instance executions, which is an undesired scheduling property if these tasks 
implement classically designed discrete-time controllers. Our timing constraints eliminate 
the jitter phenomena by allowing control task instances to start and complete their execution 
at specific time instants that belong to a set of pre-determined time instants. Although 
control tasks instance execution can have different timings, these specific timings are known 
a priori, and are thus analysable offline. Note that this allows feasible control tasks to 
execute with more flexibility while keeping the timing requirements posed by the 
compensation approach, thus meeting the control systems performance specifications.  

In is important to point out that these new timing constraints for control tasks allow us to 
obtain feasible schedules from task sets that are not feasible when scheduled using 
traditional fixed timing constraints. In addition, by associating control performance 
information with flexible timing constraints, we show how scheduling decisions can also be 
taken to improve the quality of the controlled systems responses. In Chapter 9 we explore 
these issues.  

5.4 Applications 
The integrated approach we present in this thesis combines both control and scheduling 
principles. It combines a new flexible controller design method, the compensation approach, 
and more flexible timing constraints for control task scheduling. This combination allows us 
to apply our approach to the analysis and design of real-time control systems in different 
ways. In the following, we point out the three most relevant applications that we present in 
this thesis.  

Eliminating control system response degradation caused by scheduling inherent jitters  

The objective of this application is to use the compensation approach design method to 
solve the problems posed by jitters in control tasks that are scheduled by real-time 
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scheduling algorithms. The main idea is to design flexible controllers that take into account 
the scheduling inherent jitters that control tasks (characterized by fixed timing constraints) 
are subject to.  

This design method is based on a two-step procedure. We assume that we have a) a set of 
tasks, which includes control and non-control tasks, all of them characterized by traditional 
timing constraints such as periods and deadlines, and b) the scheduling algorithm that we 
will use. For each control task (or set of control tasks) in charge of controlling a plant, we 
do: 

1. Offline jitter analysis: we analyse the jitters that can appear at run time. Depending on 
the scheduling policy, this analysis is done in different ways: 

•  Offline scheduling and a run time dispatcher that guarantees that at run time, task 
instance start and completion times coincide with the task instance start and 
completion times specified in the offline schedule: by analysing the offline 
schedule, we obtain the exact sampling intervals and sampling-actuation delays 
that will apply at run time.  

•  Offline scheduling and a run time dispatcher that does not guarantee that at run 
time, task instance start and completion times coincide with the task instance start 
and completion times specified in the offline schedule, or online schedule: before 
run time we don’t know the exact task instance timing (start and completion times) 
that will apply at run time. However, if the task set is feasible, we can derive all 
possible sampling intervals and sampling-actuation delays that will apply at run 
time (see Section 4.1.3) 

At the end, we group all the specific values of sampling intervals and sampling-
actuation delays that will apply at run time into two sets. 

2. Offline control analysis: Given the two sets of sampling intervals and sampling 
actuation delays derived from the offline jitter analysis, we design each controller to be 
implemented in each periodic control task (specified with fixed timing constraints such 
as period and deadline) in such a way that these two sets are included in the sampling 
period values and time delay values on which we base the compensation approach 
controller design method.  

Consequently, at run time, the analysed control tasks, still characterized by fixed timing 
constraints and subject to jitters, by executing a slightly modified code (which we will 
explain in Section 7.2.2), will be readjusting their controllers parameters according to the 
run time jitters. These run time jitters for each control task match the jitters a) obtained in 
the first step (offline jitter analysis) and b) used in the design of the controller (that each 
control task will implement) in the second step (offline control analysis). In this way, 
control tasks designed under the compensation approach and still characterized by the 
traditional timing constraints such as periods and deadlines, will be accepting the scheduling 
inherent jitters that they are subject to. That is, the degradation that these jitters imply in the 
controlled systems response will be eliminated because the controller design that control 
tasks are executing has been designed precisely to take these jitters into account, thus again 
meeting the control performance specifications (stability and response characteristics). 
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In summary, using this procedure, the compensation approach controller design method can 
be used for control tasks in standard scheduling policies to compensate for the degradation 
that scheduling inherent jitters for traditional designed control tasks would otherwise 
introduce in the controlled systems response (see Chapter 8 for more details).  

Transforming unfeasible schedules into feasible schedules and stable control systems 

The objective of this application is to use the flexible timing constraints we derive from the 
compensation approach in order to solve the problems posed by applying standard timing 
constraints for control tasks (i.e., poor system schedulability). The main idea is to use 
flexible timing constraints for control tasks scheduling in such a way that, while meeting the 
control demands, we obtain feasible schedules of tasks sets that are not feasible when 
scheduled using traditional timing constraints. 

Assuming that we have a) a set of tasks, that includes control and non-control tasks, all of 
them characterized by traditional fixed timing constraints such as periods and deadlines, and 
b) the scheduling algorithm that we will use, the method to be applied in this case is divided 
into the following steps:  

1. We look for the scheduling conflicting situations1 involving control tasks that impair the 
feasibility of the task set that is scheduled using fixed timing constraints.  

2. From the conflicting scheduling situations we derive feasible values for the control tasks 
timing constraints (in terms of different values for each control task period and deadline, 
which will result in new timing constraints for such control tasks) in such a way that the 
system becomes feasible. These different values are grouped into two sets. 

3. Given these two sets, we design the controller implemented by each of these control 
tasks using the compensation approach controller design method, as we explain in 
Chapters 6 and 7. For each control task, we use the two sets of feasible values for the 
period and deadline as the different values for sampling periods and time delays needed 
to apply the compensation approach. The resulting controllers a) keep the system stable 
and b) fulfil the performance requirements in terms of the controlled system response, 
whatever settings of the period and deadline (of each control task) applies at run time, 
provided they belong to the feasible values obtained in step 2. 

4. Given the control tasks characterized by the new timing constraints we derived in step 2, 
we schedule them jointly with the remaining tasks (which are characterized by the 
traditional timing constraints) is such a way that  

a. non-control tasks meet their original constraints  

b. control tasks meet the new timing constraints 

c. the controlled system meets the performance requirements due to the fact that 
control tasks will be readjusting their controllers parameters according to the 
two sets of feasible values (step 2) used in the controller design stage (step 3). 

                                                      
1 By scheduling conflicting situations we mean scheduling scenarios where two or more instances of different 
tasks need to be executed in order to meet their constraints. However, not all them can be feasibly 
accommodated, which imply that some of them will not meet their constraints. 
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In this way, we obtain feasible schedules that meet the scheduling and control demands of 
task sets that were not feasible when scheduled using fixed timing constraints (see Chapter 9 
for more details).  

Scheduling control tasks to improve the quality of the controlled systems response 

The objective of this procedure is, when taking scheduling decisions, to use the control 
performance information that the flexible timing constraints for control tasks implicitly have 
in order to obtain feasible schedules that improve the performance of the controlled systems 
response. Flexible timing constraints are derived from the control timing assumptions which 
the compensation approach controller design method relies on. This means that these 
flexible timing constraints, apart from providing temporal information, incorporate control 
information. By making this control information explicit and available to the scheduling 
policy, control tasks can be scheduled in such a way that the performance of the controlled 
systems can be improved.  

Assuming that we have control tasks characterized by the new flexible timing constraints 
and implementing controllers designed using the compensation approach, the method to be 
applied in this case can be divided into the following steps: 

1. We associate with each flexible timing constraint (which characterizes each control 
task) value, a new value (attribute) that expresses control performance information in 
terms of the characteristics of the controlled system response resulting from the use of 
that timing constraint. 

2. Given this new characterization of control task, we have to provide the mechanisms for 
taking scheduling decisions based on this control information for each control task 
invocation. 

In this way, although the responsibility of meeting each closed-loop performance 
requirements still falls on the controller, the possibility of dynamically improving the 
performance of each closed-loop (in certain identified situations, e.g., perturbation arrivals) 
will depend on the specific run time timing of each control task, which is given by the 
scheduling policy. In Chapter 9 we investigate these issues. 

5.5 Summary 
In the analysis and design of real-time control systems we identified two main problems in 
Chapters 3 and 4, namely poor system schedulability and controlled systems response 
degradation. We have discussed why it is difficult to solve these problems and we have 
identified that we need more flexible controller design methods and more flexible timing 
constraints for control tasks in order to deal with these problems. As a solution to these 
problems, we have introduced a new control and scheduling co-design approach based on a) 
the compensation approach controller design method and b) flexible control timing 
constraints for control tasks. Finally, we have presented the main applications of our novel 
approach. In the next chapters, we investigate all of the concepts and methods we have 
introduced here in detail. 
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Chapter 6 

Adapting control algorithms to implementation 
constraints 
In this chapter we present the compensation approach controller design method. Controllers 
designed following classic discrete-time controller design methods [AST97] depend on a 
constant sampling period (h) and a constant time delay (τ); timing requirements that have 
proven difficult to maintain in complex computer implementations (Chapters 3 and 4). With 
the compensation approach, we want to be able to design controllers based on timing 
assumptions which are more realistic for complex computer implementations: the timing 
requirements that we impose on controllers designed using the compensation approach are 
to depend on a set of feasible values for both the sampling period and the time delay. After 
defining the compensation approach in terms of these new timing requirements, and before 
formulating the controller design problem that the compensation approach implies, we show 
that the definition of the compensation approach covers all possible implementation cases. 
We do so by discussing the effects that implementations of closed-loops have on the timing 
parameters of classically designed controllers (sampling period and time delay). We 
categorize them in six cases, which in turn, without losing generality from a control point of 
view, we reduce to three cases for the control formulation and analysis. We then show how 
the new timing parameters of the controllers obtained using the compensation approach can 
cope with the three main effects that possible implementations have on the timing of closed-
loops systems. Finally, we formulate the compensation approach controller design method 
problem based on state space models to deal with closed-loops characterized by these new 
timing assumptions (set of feasible values for both the sampling period and the time delay). 

The work explained in this chapter has been partially presented in [MAR01d] and 
[MAR01e]. 

6.1 Control algorithms design adjustment 
In this section we define the compensation approach in terms of new timing parameters that 
are based on more appropriate timing assumptions for actual computer implementations. We 
also prove that the definition is complete, from a control point of view, in the sense of 
covering all the possible implementations. 

6.1.1 Problem definition 
The compensation approach controller design method is based on the same classic controller 
design methods (such as pole placement or optimization approaches [AST97]) used in 
discrete-time control theory. However, the main difference is that a controller designed 
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using the compensation approach does not depend on a single value for the constant 
sampling period h and constant time delay τ, but rather on a set of several different values 
for the sampling period and time delay that we specify at the design stage. Specifically, 
given a control task taski (implemented either using the single or multiple task approach, 
Section 3.2.2), we define these two sets at the design stage as (where g is the granularity 
length, see Section 1.3): 

•  Set of feasible sampling intervals (FHi):  

FHi = {hi,j|  where i refers to the control task taski, j=1…m, j∈ N, and 

                   each feasible sampling interval hi,j is a multiple of g} 

•  Set of feasible sampling-actuation delays (FTi):  

FTi = {τi,j|  where i refers to the control task taski, j=1…n, j∈ N, and 

each feasible sampling-actuation delay τi,j is a multiple of g} 

For the sake of clarity, if we don’t need to specify the control task that we are characterizing 
with these two sets (because it is clear from the context), we will omit the i-subscript (which 
identifies each task) in all the related symbols1. Note that each set contains a finite number 
of values, that is, a finite set of feasible sampling intervals and a finite set of feasible 
sampling-actuation delays. Note also that feasible means meeting the control performance 
specifications of each specific closed-loop, an issue that we address in Section 7.1 where we 
explain the compensation approach controller design method. These feasible sampling 
intervals and feasible sampling-actuation delays are the different values of the sampling 
period and the time delay, specified at the controller design stage2.  

Then, at run time, the controller parameters, which depend on the constant sampling period 
and the constant time delay assumed in classic control design methodology, are updated in 
each control task taski code according to specific values of the sampling period, feasible 
sampling intervals hi,j∈ FHi, and according to specific values of the time delay, feasible 
sampling-actuation delays τi,j∈ FTi. Therefore, using the compensation approach, we design 
controllers assuming irregular sampling and varying time delays. At run time, at each 
controller execution, different feasible sampling intervals and different feasible sampling-
actuation delays will apply. In summary, each controller obtained using the compensation 
approach depends on a finite set of feasible sampling intervals (FHi) and on a finite set of 
feasible sampling-actuation delays (FTi).  

The compensation approach is based on the notion of compensations wherein controller 
parameters are adjusted at run time for the presence of jitters. This technique was originally 
suggested as an ad hoc technique for PID controller design in [WIT80], [ALB90] and 
[ÅRZ00] in order to compensate for the degradation of the controlled system response due 
to variations from sample to sample, that is, due to sampling jitter. We not only extend the 
                                                      
1 For example, instead of writing FTi, we will write FT or instead of writing τi,j, we will write τj. 
2 Note that hi,j and τi,j, although having a similar name like the effects of jitters for control tasks (sampling 
intervals, h(taski,k) due to sampling jitter, and sampling-actuation delays, τ(taski,k) due to sampling-actuation 
jitter, see Section 4.1.3), denote the timing parameters specified at the controller design stage for controllers 
designed using the compensation approach. 
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applicability of the compensation technique to deal with both varying sampling intervals and 
varying sampling-actuation delays but also provide a complete control analysis of the 
compensation approach as a discrete-time controller design method based on state space 
models. Apart from introducing the new controller design problem formulation in a state 
space form (Section 6.2), we present the controller design method, which includes new 
stability and response analysis (Section 7.1). Note that with the compensation approach, we 
jump from strict, regularly sampled discrete-time systems with constant time delays to 
irregularly sampled discrete-time systems with varying time delays. Control theory provides 
well-known methods of analysing and designing regularly sampled discrete-time systems 
with constant time delays [AST97]. However, for the analysis and design of irregularly 
sampled discrete-time systems with varying time delays, no formal approach based on state 
space models has been presented (as far as we know). Although particular solutions have 
been presented to deal with irregularly sampled discrete-time systems [WIT80], [ALB90], 
[ÅRZ00] and [SCH01] or systems with varying time delays [CHA95] [SHI96], [NIL98] and 
[WIT98] no integrated controller design method has provided a solution to both problems.  

6.1.2 Closed-loop implementation effects on the controller timing 
parameters 

In this section we categorize the effects that closed-loop implementations have on the timing 
of the control activities. A classically designed discrete-time controller depends on a 
sampling period (h) and time delay (τ, where 0 ≤ τ ≤ h), which are supposed to be kept at a 
constant value in the controller computer implementation (see Section 3.1.1). However, 
depending on the assurances that the implementation platform can give us in terms of the 
sampling type (regular or irregular sampling) and time delay type (instantaneous, constant 
or varying time delay), these discrete-time control theory assumptions may no longer hold. 
We show that in some cases, the constant sampling period and constant time delay 
assumption is not valid because varying values of the sampling period and/or varying values 
of the time delay appear in the implementation. Depending on the sampling and time delay 
type, we have to consider the following six cases.  

1. Equidistant sampling instants, with insignificant3 time delays. 

The closed-loop implementation strategy guarantees that samples are taken periodically, i.e., 
at equidistant sampling instants (h, sampling period). In addition, the time delay (between 
when a sample is taken and when the corresponding actuation is completed) does not have 
to be accounted for in the controller design because the implementation guarantees a 
negligible controller execution with respect to the closed-loop system dynamics (see Figure 
6.1 for the timing scheme of such an implementation). Control theory provides well-known 
methods for dealing with this case, based on regularly sampled discrete-time systems 
[AST97]. 

                                                      
3 Insignificant sampling-actuation delays refers to the control assumption of instantaneous execution time (see 
Section 3.1.1): sampling and actuation are regarded as occurring at the sampling instants, if perfect 
synchronization is assumed [AST97] and the execution time of the controller is negligible with respect to the 
closed-loop dynamics. 
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Figure 6.1. Implementation guaranteeing equidistant sampling  

2. Equidistant sampling instants, with constant time delays. 

The closed-loop implementation strategy guarantees that samples are taken periodically, i.e., 
at equidistant sampling instants (h, sampling interval), and that there is a constant time delay 
(τ) between when a sample is taken and the actuation is completed. As before, control 
theory also provides well-known methods, based on regularly sampled discrete-time 
systems with constant time delays, for dealing with this case [AST97]. Comparing this case 
with the previous one, what is important is to have a constant time delay, regardless of 
whether 

•  the execution of the control computation is assumed to be instantaneous (Figure 6.2),  

 

 

 

Figure 6.2. Implementation guaranteeing equidistant sampling and constant time delay (1) 

•  the execution of the control computation is constant (Figure 6.3),  

 

 

 

Figure 6.3. Implementation guaranteeing equidistant sampling and constant time delay (2) 

•  the execution of the control computation constant but with a delay in its execution start 
time due to the execution of other instances of higher priority tasks (Figure 6.4),  

 

 

 

Figure 6.4. Implementation guaranteeing equidistant sampling and constant time delay (3) 

•  the execution of the control computation varies due to varying execution times and/or 
pre-emptions (Figure 6.5) or  
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Figure 6.5. Implementation guaranteeing equidistant sampling and constant time delay (4) 

•  the execution of the control computation varies due to varying execution times and pre-
emptions, and with a delay in its execution start time (Figure 6.6). 

 

 

 

Figure 6.6. Implementation guaranteeing equidistant sampling and constant time delay (5) 

A similar case occurs when the implementation allows the actuation to be completed at the 
beginning of the next sampling. This latter case is a special case, when the constant 
sampling-actuation delay is equal to the sampling period (τ = h). Control theory also 
provides well-established methods (regularly sampled discrete-time systems with actuation 
in the next sample) for dealing with closed-loops implementations that guarantee the 
actuation in the next sampling instant [VAC95]. As before, for this case, the assumptions 
that can be made on the control computation execution time are not important (as long as the 
implementation guarantees that the execution takes places within the sampling period). 

3. Equidistant sampling instants, with varying time delays. 

The closed-loop implementation guarantees that samples are taken periodically, i.e., at 
equidistant sampling instants (h, sampling period). However, a constant time delay is not 
guaranteed: different values for the time delay (τ) will appear. As we have seen in Section 
4.1.2, sampling-actuation jitter for control task instance executions produces this situation. 
In this case, although the closed-loop implementation strategy can guarantee a constant 
sampling interval, no assurances are given about the time delays that each control task 
instance execution may be subject to. For this case, control theory has recently provided 
methods for dealing with this problem (see for example [NIL98]). Although we have regular 
sampling, varying time delays apply at run time. This problem is due to start time delays in 
the control computations, regardless of whether  

•  the execution time of the control computation is assumed to be instantaneous (Fig. 6.7) 

 

 

 

Figure 6.7. Implementation guaranteeing equidistant sampling but with different values 
(τ’,τ’’) for the time delay (1) 
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•  the execution time of the control computation is constant (Figure 6.8) 

 

 

 

Figure 6.8. Implementation guaranteeing equidistant sampling but with different values 
(τ’,τ’’) for the time delay (2) 

•  the execution time of the control computation varies due to varying execution times 
and/or pre-emptions (regardless of whether execution start times of task instances are 
delayed) (Figure 6.9) 

 

 

 

Figure 6.9. Implementation guaranteeing equidistant sampling but with different values 
(τ’,τ’’) for the time delay (3) 

•  the execution time of the control computation varies due to varying execution times 
and/or pre-emptions (regardless of whether execution start times of task instances are 
delayed) (Figure 6.10) 

 

 

 

 

Figure 6.10. Implementation guaranteeing equidistant sampling but with different values 
(τ’,τ’’) for the time delay (4) 

4. Non-equidistant sampling instants, with insignificant time delays  

The closed-loop implementation cannot guarantee equidistant sampling instants (as can be 
seen in Figure 6.11, where h’ and h’’ are different values that apply as a sampling period) 
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instance executions introduces this problem. As a consequence, time intervals between 
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instants and assuming insignificant time delays implies not having equidistant actuation. But 
from the point of view of the controller timing parameters, this non-equidistant actuation is 
irrelevant, since there is no time delay between sampling instants and actuations instants. 
For this case, (irregularly sampled discrete-time systems), we cannot apply classic discrete-
time control theory [AST97] because the assumption of equidistant sampling is not met. 
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Figure 6.11. Implementation that does not guarantee equidistant sampling 

5. Non-equidistant sampling instants, with constant time delays. 

The closed-loop implementation does not guarantee equidistant sampling instants (as 
supposed by the sampling period h), but it does guarantee a constant time delay (τ) between 
when a sample is taken and when the actuation is completed. As in the previous case, this 
situation may appear due to sampling jitter in control task instances executions. Having 
irregular sampling in a closed-loop implementation requires a new theory of control system 
analysis and design. However, as far as the closed-loop implementation ensures a constant 
time delay for each control task instance execution, control theory provides well-known 
methods to deal with this delay. However, since we have non-equidistant sampling, classic 
discrete-time control theory [AST97] cannot be applied because it relies on the assumption 
of equidistant sampling instants. Note that in this case, apart from having irregular sampling, 
what is important is to have a constant time delay, regardless of whether 

•  the execution of the control computation is assumed to be instantaneous (Figure 6.12), 

 

 

 

Figure 6.12. Implementation guaranteeing constant time delay but with different values 
(h’,h’’) for the sampling period (1) 

•  the execution of the control computation is constant (Figure 6.13),  

 

 

 

Figure 6.13. Implementation guaranteeing constant time delay but with different values 
(h’,h’’) for the sampling period (2) 

•  the execution of the control computation is constant but with a delay in its execution 
start time due to execution of other instances of higher priority tasks (Figure 6.14),  

 

 

 

Figure 6.14. Implementation guaranteeing constant time delay but with different values 
(h’,h’’) for the sampling period (3) 
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•  the execution of the control computation varies due to varying execution times and/or 
pre-emptions (Figure 6.15) 

 

 

 

Figure 6.15. Implementation guaranteeing constant time delay but with different values 
(h’,h’’) for the sampling period (4) 

•  the execution of the control computation varies due to varying execution times and pre-
emptions, and with a delay in the execution start time (Figure 6.16). 
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Figure 6.18. Implementation with different values for the sampling period (h’, h’’) and time 
delay (τ’, τ’’) (2) 

•  the execution time of the control computation varies due to varying execution times and 
pre-emptions (regardless of whether task instances suffer start time delays) (Figure 
6.19)  

 

 

 

Figure 6.19. Implementation with different values for the sampling period (h’, h’’) and time 
delay (τ’, τ’’) (3) 

•  the execution time of the control computation varies due to varying execution times and 
pre-emptions (regardless of whether task instances do not suffer start time delays) 
(Figure 6.20). 

 

 

 

Figure 6.20. Implementation with different values for the sampling period (h’, h’’) and time 
delay (τ’, τ’’) (4) 

6.1.3 Summary of the variation in the controller timing parameters 
Depending on the guarantees the closed-loop implementation provides, we have analysed all 
possible implementation effects on the controller timing parameters. Looking at the 
controller timing parameters, the next list summarizes all the cases: 

•  Case 1: constant sampling period  

•  Case 2: constant sampling period and constant time delay  

•  Case 3: constant sampling interval and different values for the time delay  

•  Case 4: different values for the sampling period  

•  Case 5: different values for the sampling period and constant time delay  

•  Case 6: different values for the sampling period and for the time delay  
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Case reduction 

Given the implementation case study of Section 6.1.2, in the rest of this chapter, without 
losing generality, we will focus on cases 3, 4 and 6 for the control analysis. Note that we do 
not lose generality because from a control analysis point of view, the remaining cases (cases 
1, 2 and 5) are already included in the three cases 3, 4, and 6 or classic discrete-time control 
theory provides the required methods for analysing them. This is detailed next. 

We keep for the analysis: 

•  Case 6: non-equidistant sampling and different values for the time delay occur at run 
time, violating the discrete-time control assumptions of a) equidistant sampling 
instants and b) actuations which have to be performed at fixed time instants 
after the sampling instants. In consequence we are in irregularly sampled 
discrete-time systems with varying time delays.   

•  Case 4:  non-equidistant sampling occurs at run time, violating the discrete-time control 
assumption of equidistant sampling instants. In consequence we are in 
irregularly sampled discrete-time systems with constant time delays.   

•  Case 3: different values for the time delay occur at run time, violating the discrete-time 
control assumptions that actuations have to be performed at fixed instants after 
the sampling instants. Consequently we are in regularly sampled discrete-time 
systems with varying time delays.   

Note that case 6, which requires new control analysis (classic discrete-time control theory 
does not provide integrated models and methods for the analysis and design of irregularly 
sampled discrete-time systems with varying time delays, as we pointed out in Section 6.1.1), 
already includes case 4 (if all values for the time delay in case 6 are equal to 0) and 3 (if all 
values for the sampling period in case 6 are equal, that is, to have a single value for h). 
However, we keep cases 4 and 3 to clarify the control analysis we present in this chapter. 
We are not keeping:  

•  Cases 1 and 2: control theory provides well-known methods of dealing with controllers 
with constant sampling period h and constant (or zero) time delay τ, that is, for regularly 
sampled discrete-time systems (case 1 and 2) with constant time delays (case 2). Note 
also that in keeping case 4 for the analysis, we are implicitly analysing case 1, which is 
a particular situation of case 4 (when all values for the sampling period in case 4 are 
equal to h of case 1). Similarly, in keeping case 6 for the analysis, we are implicitly 
keeping case 2, which is a particular situation of case 4 (when all values for the 
sampling period and time delay in case 6 are equal to h and τ of case 2 respectively) 

•  Case 5: different values of the sampling period occur at run time. However, from a 
control point of view, it can be modelled similar to case 6, which is already included for 
analysis. Note that in keeping case 6 for the analysis, we are addressing case 5, which is 
a particular situation of case 6 (when all values for the time delay in case 6 are equal to 
τ of case 5). Note also that since discrete-time theory provides well-known methods of 
dealing with constant time delays, as we have in this case, the delay in case 5 is not 
relevant in terms of needing new control analysis; what is relevant is the non-equidistant 
sampling, which is analysed in case 4.  
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In summary, for the three cases 3, 4, and 6 that we have kept, we will provide new control 
analysis, starting with the compensation approach controller design problem formulation we 
present in Section 6.2. 

6.1.4 Completeness of the compensation approach 
In this section we show the completeness of the definition of the compensation approach 
(Section 6.1.1) in terms of being an approach to discrete-time controller design able to cope 
with all the timing effects that closed-loop implementations may have in the controller 
timing parameters. A controller (to be implemented by a control task taski) designed using 
the compensation approach depends (see Section 6.1.1) on a finite set of feasible sampling 
intervals (FHi) and on a finite set of feasible sampling-actuation delays (FTi). 

To demonstrate the completeness of the compensation approach in terms of covering all the 
implementation cases, we have to show that all the different values for the sampling period 
and time delay that occur at run time for cases 3, 4 and 6 are a finite number. If all the 
possible values that occur at run time for the sampling period and all the possible values for 
the time delay  

1. are a finite number and  

2. can be known before run time,  

by including them at the design stage into sets FHi and FTi respectively, a controller 
designed with the compensation approach with sets FHi and FTi will be able to cope with 
the timing variations that occur for cases 3, 4 and 6, thus covering all the implementation 
cases. 

Note that as we explained in cases 3, 4, and 6 (Section 6.1.2), all the different values of the 
sampling period and time delay that apply at run time can be caused, for example, by 
sampling jitter and/or sampling-actuation jitter in control task instance executions. As we 
concluded in Section 4.1.3, the sampling intervals and sampling-actuation delays that can 
appear at run time for a given control task subject to sampling jitter and/or sampling 
actuation jitter are a finite number. In addition, in Section 4.1.3, we explained how these 
sampling intervals and sampling-actuation delays (due to jitters) could be known before run 
time (that is, by analysing their maximum variability while taking into account the discrete-
time model that we presented in Section 1.3). 

Consequently, all the possible values that occur at run time for the sampling period and time 
delay for cases 3, 4 and 6 are finite numbers and can be known before run time. Therefore, 
if sets FHi and FTi (which the compensation approach relies on) include them, for all the 
cases, we have demonstrated that the compensation approach is complete in the sense of 
covering all possible timing variations that closed-loop implementations may introduce in 
the timing of the control activities. 

6.2 Controller design problem formulation 
In this section, we first describe the process of designing a classic discrete-time controller 
and its consequences on the closed-loop system evolution. Afterwards, by imposing the 
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compensation approach requirements on discrete-time controllers (to depend on a set of 
feasible sampling intervals and on a set of feasible sampling-actuation delays), we raise the 
new controller design problem.  

Recall that with the compensation approach, feasible sampling intervals and feasible 
sampling-actuation delays will vary between closed-loop executions. Therefore the system 
evolution (and the controller implemented in a control task) depends on varying values for 
the sampling period and time delay, rather than on a single value for the sampling period h 
and the time delay τ. 

In order to formalize the control problem introduced by the compensation approach in this 
design procedure, we proceed in the following way: in the first approximation, we assume 
that the controller we are designing depends on a set of feasible sampling intervals (which is 
case 4 in Section 6.1.2), and that no time delay is accounted for. After formulating this first 
approximation in what we call an irregularly sampled discrete-time system model; we 
analyse the case with feasible sampling-actuation delays. That is, the controller to be 
designed depends on a set of feasible sampling-actuation delays, in what we call a discrete-
time system model with varying time delays (which is case 3 in Section 6.1.2). Finally, both 
models are combined in what we call an irregularly sampled discrete-time system model 
with varying time delays (case 6 in Section 6.1.2).  

In Figure 6.21 we show an overview of the control implementation problem formulation we 
explain in the following subsections. 
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all matrices of suitable dimension. Equation (6.2) is the output equation. For periodic 
sampling with constant sampling period h (tk=kh), the discrete-time system can be described 
by (6.3) and (6.4), where Φ(h) and Γ(h) are obtained from (6.1) and (6.2) as detailed in (6.5) 
and (6.6) [AST97]. 
 

(6.3) 
 

(6.4) 
 

(6.5) 
 

(6.6) 
 
To meet the closed-loop requirements, the system specified by (6.3) and (6.4) is controlled 
using state feedback (6.7), where gain matrix (or state feedback matrix) L can be obtained 
by a design method such as pole placement or optimization approach [AST97]. 
 

     (6.7) 
 

At the end, the closed-loop time-invariant system is characterized by Equations (6.3), (6.4), 
and (6.7). Equation (6.3) can be rewritten in terms of (6.7) as in (6.8). 
 

(6.8) 
 
The closed-loop matrix (described previously in Equation (6.8)), where Φ(h), L(h), and Γ(h) 
are constant matrices in terms of a constant sampling period h, is given by (6.9). 

 
(6.9) 

 
For discrete-time systems with a closed-loop matrix specified by (6.7), we can describe the 
closed-loop system evolution by (6.10) 

k=1 
k=2  
k=3                        (6.10) 
k=4 
.... 
k  

Note that in this first approximation we want the system evolution and thus the controller (to 
be implemented in a control task) to depend on a set of feasible sampling intervals (FH)4 
rather than on a single value for the sampling period h. 

                                                      
4 Note that we omit the i-subscript (which relates each set of feasible sampling intervals to a control task) 
because it is clear in the context that we don’t have to identify the control task that will implement the controller. 
Consequently, feasible sampling intervals belonging to FH will not have the i-subscript either. 
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Specifically, in this case, feasible sampling intervals will vary from one closed-loop 
execution to another. That is, at each closed-loop execution the controller parameters are 
adjusted according to each specific feasible sampling interval hj

2 belonging to FH. 
Consequently, the discrete-time system is no longer time-invariant. If we denote the actual 
feasible sampling interval of each kth closed-loop execution by hj, we model systems 
described by Equations (6.3), (6.4) and (6.7) but with irregular sampling by Equations 
(6.11), (6.12), (6.13) and (6.14). 
 

(6.11) 
 

(6.12) 
 

(6.13) 
 

(6.14) 
 
where matrices Φ(hj), Γ(hj) are obtained from (6.5) and (6.6) at each controller execution for 
each specific feasible sampling interval (hj, hj∈ FH). Similarly, the state feedback controller 
L(hj) is obtained at each controller execution using the same control design approach as in 
(6.7) for the same specific feasible sampling intervals.  

For such systems, the closed-loop time-variant system is characterized by Equations (6.11), 
(6.12), (6.13) and (6.14). Therefore, the closed-loop matrix that applies at the kth closed-loop 
execution specified in (6.15) depends on Φ(hj), Γ(hj), and L(hj), which are varying matrices 
in terms of each feasible sampling interval hj, hj∈ FH. 
 
  (6.15) 
 
For discrete-time systems with a closed-loop matrix specified by (6.15), we can describe the 
closed-loop system evolution by (6.16), where tk is given by (6.14). 

k=1  
k=2  
k=3           (6.16) 
.... 
k  

The closed-loop system evolution (6.16) will depend on a product-sequence of closed-loop 
matrices Φclk (as in (6.15)), each one depending on each feasible sampling interval hj, as 
indicated in (6.17): 
 

(6.17) 
 
Since the closed-loop system evolution when having varying feasible sampling intervals is 
different (6.16) from that of classic discrete-time systems (6.10), in the controller design 
method we have to analyse the stability and response of these new systems (see Chapter 7). 
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6.2.2 Discrete-time system model with varying time delays 
A continuous linear time-invariant process with a constant time delay τ is modelled by 
(6.18) and (6.19) [AST97]. 
         

(6.18) 
 

(6.19) 
 
In (6.13) τ is assumed to be less than or equal to the sampling period h [AST97]. For 
periodic sampling with constant sampling period h (tk=kh), the discrete-time system can be 
described by (6.20) and (6.21) [AST97]. 
 

(6.20) 
   

(6.21) 

Matrices Φ(h,τ), Γ0(h,τ) and Γ1(h,τ) are obtained from (6.18) and (6.19) as detailed in 
Equations (6.22), (6.23) and (6.24) [AST97]. 
 

(6.22) 
 

(6.23) 
 

(6.24) 
 
A state space model of (6.20) and (6.21) is given by (6.25) 
 

(6.25) 
  
Notice that r extra state variables u(kh-h), which represent the past values of the control 
signal, are introduced.  

As in the previous section, to meet the closed-loop systems requirements, the system 
specified by (6.20) and (6.21) is controlled using state feedback (6.26) where the gain 
matrix L can be obtained using the same methods.  
 

     (6.26) 
 
Equation (6.25) can be rewritten in terms of (6.26) as in (6.27). 
 

(6.27) 
 

At the end, the closed-loop time-invariant system is characterized by Equations (6.20), 
(6.21), and (6.26). Therefore, the closed-loop matrix (6.28) described previously in Equation 
(6.27) depends on Φ(h), Γ0(h,τ), Γ1(h,τ) and L(h,τ), which are constant matrices in terms of 
a constant sampling period h and a constant time delay τ. 
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(6.28) 

 
For discrete-time systems with a closed-loop matrix specified by (6.28), we can describe the 
closed-loop system evolution by (6.29) 

k=1 
k=2  
k=3              (6.29) 
k=4 
.... 
k  

Note that in this second approximation we want the system evolution and thus the controller 
(to be implemented in a control task) to depend on a set of feasible sampling-actuation 
delays (FT)5 rather than on a single value for the time delay (τ). 

Specifically, in this case, feasible sampling-actuation delays will vary between one closed-
loop execution and another. That is, at each closed-loop execution the controller parameters 
are adjusted according to each specific feasible sampling-actuation delay τj belonging to FT. 
Consequently, the discrete-time system is no longer time-invariant. If we denote the actual 
feasible sampling-actuation delay of each kth closed-loop execution by τj

3, we model 
systems described by Equations (6.20), (6.21), and (6.26) but with varying sampling-
actuation delays by Equations (6.30), (6.31) and (6.32). 
 

(6.30) 
 

(6.31) 
 

(6.32) 
 
Matrices Φ(h), Γ0(h, τj), Γ1(h, τj) and L(h, τj) are obtained from (6.22), (6.23) and (6.24) at 
each controller execution for each specific feasible sampling-actuation delay (τj, τj∈ FT). 
Similarly, the state feedback controller L(h, τj) is obtained at each controller execution using 
the same control design approach as in (6.26) for the same specific feasible sampling-
actuation delays.  

For such systems, the closed-loop time-variant system is characterized by Equations (6.30), 
(6.31) and (6.32). Therefore, the closed-loop matrix that applies at the kth closed-loop 
execution specified in (6.33) depends on Φ(h), Γ0(h, τj), Γ1(h, τj) and L(h, τj), which are 
varying matrices in terms of each feasible sampling-actuation delay τj, τj∈ FT. 
 
 

                                                      
5 Note that, as we did before with FH, here we also omit the i-subscript (which relates each set of feasible 
sampling-actuation delays to a control task) because it is clear in the context that we do not have to identify the 
control task that will implement the controller. Consequently, feasible sampling-actuation delays belonging to 
FT will not have the i-subscript either. 
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(6.33) 

 
For discrete-time systems with a closed-loop matrix specified by (6.33), we can describe the 
closed-loop system evolution by (6.34) 

k=1 
k=2  
k=3           (6.34) 
.... 
k  

The closed-loop system evolution (6.34) will depend on a product-sequence of closed-loop 
matrices Φclk (as in (6.33)), each one depending on each sampling-actuation delay τj, as 
indicated in (6.35): 
 

(6.35) 
 
Since the closed-loop system evolution when having varying feasible sampling-actuation 
delays (6.34) is different from that of classic discrete-time systems with constant time delay 
(6.29), in the controller design method we have to analyse the stability and response of these 
new systems (see Chapter 7). 

6.2.3 Irregularly sampled discrete-time system model with varying 
time delays 

By combining the two models described in the two previous subsections appropriately, we 
impose the compensation approach timing requirements, that is, to support controllers that 
depend on a set of feasible sampling intervals (FH) and on a set of feasible sampling-
actuation delays (FT)6. If we denote the actual sampling interval and sampling-actuation 
delay of each kth closed-loop execution by hj and τj

4, we model systems described by 
Equations (6.20), (6.21), and (6.26) but with irregular sampling and varying time delays by 
Equations (6.36), (6.37), (6.38) and (6.39). 
 

(6.36) 
 

(6.37) 
 

(6.38) 
 

(6.39) 
 

                                                      
6 Note that here again we also omit the i-subscript because it is clear in the context that we do not have to 
identify the control task that will implement the controller. Consequently, feasible sampling intervals belonging 
to FH and feasible sampling-actuation delays belonging to FT will not have the i-subscript either. 
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Matrices Φ(hj), Γ0(hj, τj), Γ1(hj, τj) and L(hj, τj) are obtained from (6.22), (6.23) and (6.24), 
at each closed-loop execution for each specific feasible sampling interval (hj, hj∈ FH) and 
feasible sampling-actuation delay (τj, τj∈ FT). Similarly, the state feedback controller L(hj, 
τj) is obtained at each closed-loop execution using a classic discrete-time controller design 
method such as pole placement or optimization approach for the same specific feasible 
sampling intervals and feasible sampling-actuation delays (as was used in (6.26)). 

For such systems, the closed-loop time-variant system is characterized by Equations (6.36), 
(6.37), (6.38) and (6.39). Therefore, the closed-loop matrix that applies at the kth closed-loop 
execution specified in (6.40) depends on Φ(hj), Γ0(hj, τj), Γ1(hj, τj) and L(hj, τj), which are 
varying matrices in terms of each feasible sampling interval hj, hj∈ FH and each feasible 
sampling-actuation delay τj, τj∈ FT. 
  

(6.40) 
 
For discrete-time systems with a closed-loop matrix specified by (6.40), we can describe the 
closed-loop system evolution by (6.41), where tk is given by (6.39). 

k=1 
k=2  
k=3               (6.41) 
.... 
k  

The closed-loop system evolution (6.41) will depend on a product-sequence of closed-loop 
matrices Φclk (as in (6.40)), each one depending on each feasible sampling interval hj and on 
each feasible sampling-actuation delay τj, as indicated in (6.42). 
 

(6.42) 
 
Since the closed-loop system evolution with varying sampling-actuation delays is different 
(6.42) from that of classic discrete-time systems (6.29), in the controller design method we 
have to analyse the stability and response of these new systems (see Chapter 7). 

6.2.4 Sequences of feasible sampling intervals and sampling-
actuation delays 

We have seen, therefore, that for each system (irregularly sampled discrete-time systems, 
discrete-time systems with varying time delays and irregularly sampled discrete-time 
systems with varying time delays), the closed-loop system evolution depends on a product-
sequence of matrices. We can describe the system evolution at the kth closed-loop execution 
by (6.43), which depends on a product of closed-loop matrices Φclk, each one depending on 
each specific hj and/or τj. 
 

(6.43) 

Depending on the closed-loop implementation, feasible sampling intervals and feasible 
sampling-actuation delays will follow different sequences at run time. That is, the feasible 
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sampling intervals and feasible sampling-actuation delays sequences that will apply are 
combinations of values taken from sets FH and FT.  

From all possible combinations, depending on the closed-loop implementation, we 
distinguish three types of sequences that can apply at run time: 

1. a known constant feasible sampling interval (hj, hj∈ FH) with a known constant feasible 
sampling-actuation delay (τj, τj∈ FT). 

2. a finite sequence of pairs of known feasible sampling intervals taken from FH and 
known feasible sampling-actuation delays taken from FT, (<(h1,τ1), (h2,τ2), …, (hn,τn)>, 
hj∈ FH ,τj∈ FT), that repeats periodically. 

3. an infinite sequence of feasible sampling intervals taken randomly from FH (<h1, h2,…>, 
hj∈ FH ) with an infinite sequence of feasible sampling-actuation delays taken randomly 
from FT (<τ1, τ2, ...>, τj∈ FT).  

Observe that although the three different types of sequences are specific combinations of all 
possible combinations of values of sets FH and FT, they cover all feasible sampling 
intervals and feasible sampling-actuation delays types of sequences that can appear in a 
closed-loop implementation. 

The closed-loop system evolution when using the compensation approach depends on a 
product of closed-loop matrices Φclk (6.43), which in turn depends on the specific feasible 
sampling intervals and feasible sampling-actuation delays that will apply at run time. Since 
we distinguished three different types of feasible sampling intervals and feasible sampling-
actuation delays sequences that possible closed-loop implementation produces, three 
different types of product-sequences of closed-loop matrices will have to be taken into 
account in the analysis of the compensation approach controller design method we explain 
in Chapter 7.  

6.3 Summary 
In this chapter we have defined the compensation approach as a discrete-time controller 
design method of designing controllers that depend on a set of a finite number of feasible 
sampling intervals and on a set of finite number of feasible sampling-actuation delays. The 
compensation approach, as we shown in this chapter, can be used to handle all possible 
types of closed-loop implementations regarding the guarantees that the implementation 
gives in terms of the sampling type (regular or irregular sampling) and time delay type 
(instantaneous, constant or varying time delay) that will apply at run time.  

By imposing the compensation approach requirements on the implementation of discrete-
time controllers, we have formulated the new controller design problem, for which we 
provide a solution in the next chapter. 

Remark 

Note that the case study (Section 6.1.2) we presented to characterize the closed-loop 
implementation effects on the controller timing parameters includes local or distributed 
implementations (see Section 3.1.2). For example, the different values applying for the time 
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delay at each closed-loop execution can be produced by network-induced delays in a 
distributed closed-loop implementation or by scheduling inherent jitters for a control task in 
a local closed-loop implementation. Therefore, the results we present in the next chapter 
(stability and response analysis of closed-loops systems with controllers designed with the 
compensation approach), which solve the control problems posed by timing variations in the 
control activities, can be applied for controllers implemented locally or distributed. 
Although in chapters 8 and 9 we apply the compensation approach control results focusing 
on closed-loops implemented in a node level and focusing on real-time scheduling, their 
applicability has also been successfully tested when closed-loops are closed over 
communication networks (see [MAR01c] and [YEP02] for further details).  
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Chapter 7 

Flexible discrete-time controller design 
In this chapter we address the theoretical and practical aspects of the compensation 
approach. As we explained in Section 6.1.1, the compensation approach is a flexible control 
design approach that allows us to design controllers which surpass both the equidistant 
sampling and actuation instants assumptions (see Section 3.1.1) on which classic discrete-
time control theory (see for example [AST97] or [PHI95]) is based.  

Firstly, we explain the controller design method that includes response and stability 
analysis, the latter focusing on these three cases. The stability analysis includes a new 
sufficient stability condition for irregularly sampled discrete-time systems with varying time 
delays in a state space formulation based on matrix algebra. Afterwards, we show some of 
the implications that affect the controlled system response when a process is controlled by a 
control tasks that adjusts its controller parameters at each controller execution according to 
different feasible sampling intervals and feasible sampling-actuation delays (specified at the 
design stage). Finally, we discuss the practical aspects of the application of the 
compensation approach in terms of code implementation details, computational and memory 
costs. 

The work explained in this chapter has been partially presented in [MAR01d], [MAR01e] 
and [MAR02c]. 

7.1 Compensation approach controller design method 
The compensation approach controller design method is based on the same classic controller 
design methods (such as pole placement or optimization approaches [AST97]) used in 
discrete-time control theory. However, the main difference is that in the controller design 
stage, for a given controller, we neither select a single (therefore constant) value (constant) 
for the sampling period (h) nor specify a single (therefore constant) value for the time delay 
(τ). We specify a finite set of feasible sampling intervals (FH) and a finite set of feasible 
sampling-actuation delays (FT)1 (see Section 6.1.1). Then, at run time, the controllers 
parameters of the task implementing the controller are adjusted according to the different 
specific pairs of feasible sampling intervals and feasible sampling-actuation delays that 
apply at each controller execution, (hj,τj). Therefore, using the compensation approach, we 
design controllers assuming varying sampling feasible intervals (irregular sampling) and 
varying feasible sampling-actuation delays (varying time delays). 

                                                      
1 Note that we omit the i-subscript of FH and FT because it is clear in the context that we don’t have to identify 
the control task that will implement the controller.  
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In the analysis and design of discrete-time controllers supporting a set of a finite number of 
feasible sampling intervals and a set of finite number of feasible sampling-actuation delays, 
we have to proceed in two steps: given 

•  the process (system to be controlled) 

•  the set of feasible sampling intervals (FH) and feasible sampling-actuation delays (FT) 

•  the type of sequence of feasible sampling intervals and feasible sampling-actuation 
delays guaranteed by the implementation 

•  the closed-loop performance specifications  

we have to analyse whether  

1. the closed-loop system response will meet the performance specifications and  

2. the closed-loop system will be stable. 

7.1.1 Closed-loop system response analysis 
First of all, we have to analyse for each pair (hj,τj), with hj∈ FH and τj∈ FT (pairs of feasible 
sampling intervals and feasible sampling-actuation) the closed-loop system response 
resulting from its use. That is, by using a particular classic discrete-time controller design 
methodology (specified in terms of the sampling period and time delay), we have to study 
whether we can locate the closed-loop poles in such a way that the different system 
responses (resulting from the use of each pair for the former sampling period and time 
delay) meet the closed-loop performance specifications.  

Note that in the compensation approach, although we are able to use the same controller 
design methodologies as classic discrete-time control theory (such as pole placement or 
optimization approach), we have to be aware that for each feasible sampling interval, when 
updating the controller parameters at each controller execution (which results in a new 
controller L(hj,τj) at each controller execution, see Section 6.2.3), we have different closed-
loop pole locations. This implies that for each closed-loop poles location, we have different 
closed-loop system responses, which means being able to meet different performance 
specifications. Moreover, for each feasible sampling-actuation delay we have a different 
delay in the closed-loop system response. 

Extensive simulations have shown that if all the system responses we obtain for all possible 
combinations of specific hj and τj are good enough (in terms of meeting the set of closed-
loop performance specifications), the closed-loop system response we will obtain from the 
run time controller parameter adjustment will still fulfil these requirements.  

Although it is beyond the scope of this work to characterise the closed-loop system response 
mathematically when the controller parameters are adjusted at each closed-loop execution, a 
short qualitative analysis is given next. Given the different closed-loop system responses 
corresponding to all possible combinations of specific feasible sampling intervals and 
specific feasible sampling-actuation delays, if we change the controller parameters at each 
execution according to any (hj,τj), what we are doing is driving the closed-loop system 
according to each particular controller L(hj,τj) at each closed-loop execution. Therefore, as a 
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result, the final closed-loop system response we obtain is a mixture of all the closed-loop 
system responses we obtained for each pair of all possible combinations of feasible 
sampling intervals and feasible sampling-actuation delays (belonging to sets FH and FT). 

7.1.2 Stability analysis 
Using the compensation approach, looking at the system evolution (Equation 6.43), the 
stability of the system depends on a product of closed-loop matrices Φclk. In Section 6.2.4 
we identified three different types of feasible sampling intervals and feasible sampling-
actuation delays sequences that can appear in a closed-loop implementation, which produces 
three different types of product-sequences of closed-loop matrices. For the stability analysis, 
we specify three cases depending on the type of sequence that the closed-loop 
implementation originates. 

For systems following sequence 1 (in Section 6.2.4), the following Case 1 applies. 

Case 1: the closed-loop system will be characterized by only one closed-loop matrix, Φclk 
(which depends on a specific single hj and τj). This is the classic case for discrete-
time control systems. That is, for systems with a constant sampling period h (which 
in this case is the specific hj) and a constant time delay τ (which in this case is 
specific τj). In this case, the system evolution at the kth closed-loop execution 
specified in (6.43) can be re-specified as follows (7.1), where Φcl is the closed-loop 
matrix we specified in (6.28): 

(7.1) 

As explained in [AST97], if it is possible to diagonalize Φcl, then the solution of 
x(kh+h)= Φcl

kx(0) is a combination of terms λ i
k, where λ i, i=1, ..., n are the 

eigenvalues of Φcl. In the general case, when Φcl can not be diagonalized, the 
solution is instead a linear combination of the terms pi(k)λ i

k, where pi(k) are 
polynomials in k of order one less than the multiplicity of the corresponding 
eigenvalue. To have asymptotic stability, all solutions must go to zero as k increases 
to infinity. The eigenvalues of Φcl then have the property (7.2): 

|λ i| < 1 i=1,… , n       (7.2) 

Consequently, in this case, the stability condition can be formulated as follows: the 
system is stable iff the spectral radius of the closed-loop matrix Φcl is less than one 
(7.3). 

Stable ⇔ ρ(Φcl) < 1      (7.3) 

where the spectral radius ρ of a matrix A is defined as in (7.4). 

ρ(A) = max{|λ| | λ is an eigenvalue of A}     (7.4) 

For systems following sequences 2 or 3 (in Section 6.2.4) (note that these systems are no 
longer time-invariant and Equations (6.36), (6.37), (6.38) and (6.39) can describe them), we 
can apply Case 2 and Case 3. 
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Case 2: in this case, the closed-loop system will be characterized by a known, finite set of 
matrices that repeats periodically (<Φcl1, Φcl2 , ... ,Φcln>, Φclk is the closed-loop 
matrix that depends on each specific pair (hj,τj), hj∈ FH ,τj∈ FT that will appear at 
each controller execution). Therefore, a known repeating sequence of known 
matrices will apply. In this case, the stability test can be performed by checking the 
stability of the product of the repeating sequence of matrices (7.5), as presented in 
[DOG95]. 

Stable ⇔ ρ( Φcl1· Φcl2 · ... · Φcln) < 1    (7.5) 

Case 3: in this case, the closed-loop system will be characterized by a product of an infinite 
number of matrices (<Φcl1, Φcl2 , ...>, Φclk is the closed-loop matrix that depends on 
each specific pair (hj,τj), hj∈ FH, τj∈ FT that will appear at run time) taken randomly 
from a finite set of matrices, which we specify in (7.6). 

Ω = {Φclk | Φclk  is the kth closed-loop matrix that depends   (7.6) 

on (hj,τj), hj∈ FH, τj∈ FT, for all possible combinations of (hj,τj)} 

In this case, the stability test (7.5) cannot be used. However, [DOG95], in corollary 
2, also gives the necessary and sufficient stability condition (where inequalities are 
in the sense of positive or negative definiteness [STR80]), as in (7.7) 

Ω asymptotically stable ⇔ ∃  P>0: ΦT
clk· P · Φclk – P < 0, ∀Φ clk∈  Ωk, k ≥ 1    (7.7) 

Explanation of (7.7): all power sets of the closed-loop matrix set Ω (combining 
them two by two, three by three, and so on) should be 
checked to see whether there is a positive definite matrix P 
in such a way that satisfies all closed-loop matrices,      
ΦT

clk· P · Φclk – P < 0 .  

Note that the application of this condition is not easy in terms of computability. The 
use of a linear matrix inequalities (LMI) solver [GAH95] can be helpful. However, 
to make it easier to analyse the stability of systems that fall into Case 3, in the 
following we list two sufficient although not necessary stability conditions that can 
also be applied. The first (7.8) was presented in [DOG95], corollary 1, and also 
needs the use of a LMI solver. The second (7.9) was presented in [MAR01b] and 
does not require the use of a LMI solver. However, it is more conservative than the 
previous one: 

If ∃  P>0: ∀  Φclk ∈  Ω, ΦT
clk· P · Φclk – P < 0 ⇒ Ω asymptotically stable     (7.8) 

Explanation of (7.8):  if there is a positive definite matrix P>0 such that it verifies 
that ΦT

clk·P·Φclk– P < 0 for all closed-loop matrices Φclk∈  
Ω, then, the set of matrices Ω is asymptotically stable, 
which means that the discrete-time systems will be stable. 

If ∀Φ clk∈ Ω, ΦT
clk·Φclk-I<0 ⇒ Ω asymptotically stable   (7.9) 

Explanation of (7.9):  if each matrix Φclk satisfies that all eigenvalues of (ΦT
clk· 

Φclk – I) are less than zero (each (ΦT
clk · Φclk – I) is negative 

definite), each matrix Φclk will guarantee immediate decay 
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(so that ║xk+1║=║Φclkxk║<║xk║ for all non-zero starting 
vectors xk). In this case, any product of an infinite number 
of such matrices Φclk will guarantee stability in the system. 

Proof. of (7.9): If eig(ΦT
clk· Φclk – I)<0 (that is, ΦT

clk · Φclk – I is negative definite) 
then, for negative definite matrix definition, for all xk non-zero 
vectors, it holds that xk

T(ΦT
clk· Φclk – I) xk <0.  

From xk
T(ΦT

clk· Φclk – I) xk <0 and performing some operations: 

xk
T(ΦT

clk· Φclk – I)xk <0 

(xk
TΦT

clk· Φclk – xk
T)xk <0 

xk
TΦT

clk· Φclk xk – xk
Txk <0 

   we obtain 

xk
TΦT

clk· Φclk xk < xk
Txk 

Using the Euclidean norm definition (║xk║=( xk
Txk)1/2), the 

following holds: 

║Φclkxk║2= (Φclk xk)TΦclk xk = xk
TΦT

clk· Φclk xk < xk
Txk = ║xk║2 

Therefore, ║Φclkxk║ < ║xk║ 

 

Observe that systems described by Equations (6.11), (6.12), (6.13) and (6.14), that is, 
systems with varying feasible sampling intervals and zero time delay, are a specific case of 
systems described by (6.36), (6.37), (6.38) and (6.39), that is, systems with varying feasible 
sampling intervals and varying feasible sampling-actuation delays (when all τj∈ FT are equal 
to zero). Therefore, the stability analysis of Cases 2 and 3 also applies to them.  

Similarly, systems described by Equations (6.30), (6.31) and (6.32), that is, systems with 
constant sampling period but with varying feasible sampling-actuation delays, are specific 
cases of systems described by (6.36), (6.37), (6.38) and (6.39), that is, systems with varying 
feasible sampling intervals and varying feasible sampling-actuation delays (when all hj∈ FH 
are equal to the specific value for the sampling period). Therefore, the stability analysis of 
Cases 2 and 3 also applies to them. 

The presented stability analysis has covered three types of product-sequences of matrices 
that may appear if controller parameters are adjusted at each closed-loop execution 
according to the specifics pairs of feasible sampling intervals and feasible sampling-
actuation delays belonging to sets FH and FT. Since the three types of sequences cover all 
possible combinations of feasible sampling intervals and feasible sampling-actuation delays 
that can appear at run time, the three cases provide a complete stability analysis. 

7.1.3 Summary 
If all the system responses we obtain for the use of each pair of feasible sampling intervals 
and feasible sampling-actuation delays (as we explained in Section 7.1.1) fulfil the closed-
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loop performance requirements and the system is stable (as we explained in Section 7.1.2), 
we have found the controller we were looking for. Note that in this case, the controller 
obtained depends on a finite set of feasible sampling intervals (FH) and on a finite set of 
feasible sampling-actuation delays (FT). If we do not meet the closed-loop requirements in 
terms of stability or closed-loop system response, we can either change the specifications, 
the design methodology, sets FH and/or FT, or re-specify the whole control problem.  

7.1.4 Example 
In this section we use an example to illustrate the application of the compensation approach 
design method. The system to control is the inverted pendulum (Section 2.2.2). Recall that 
the goal of our controller is to maintain the desired vertical position of the inverted 
pendulum at all times. For this example, the performance specification is to recover from a 
perturbation (modelled by a pulse) in less than one second. That is, the settling time is 1s. 
Let us assume that the set of feasible sampling intervals and set of feasible sampling-
actuation delays that we specify at the design stage are FH={50,60} (in ms) and 
FT={10,20} (in ms) respectively. 

Design 

First of all, we analyse whether we can locate the closed-loop poles in such a way that we 
obtain different system responses for all possible combinations of feasible sampling 
intervals and feasible sampling-actuation delays that meet the closed-loop performance 
requirements (as explained in Section 7.1.1). By setting ωn=8rad/s and ζ =0.6 (see Sections 
2.2.1 and 2.2.2), and using pole placement observer design [AST97], we obtain a location 
for the closed-loop poles for each feasible sampling interval of FH in such a way that, taking 
into account each feasible sampling-actuation delay of FT, we meet the specified 
performance requirements.  

 

 

 

 

 

 

 

 

 

Figure 7.1. Inverted pendulum responses if the controller is characterized each time for one 
of all possible combinations of feasible sampling intervals and feasible sampling-actuation 

delays. 
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In Figure 7.1 we show the four closed-loop system responses we have obtained if the 
controller (which has been classically designed through pole placement with observer, see 
Section A3 in Appendix A for further details)) is characterized each time for one of all 
possible pairs (four pairs) of combinations of feasible sampling intervals and feasible 
sampling-actuation delays taken from sets FH and FT ((50,10), (50,20), (60,10) and 
(60,20)). All responses meet the performance specifications, that is, the inverted pendulum 
recovers from the perturbation in less than 1 second. 

For the stability analysis, for illustrative purposes, we assume that at run time, we will have 
two different implementations, which give two types of sequences of feasible sampling 
intervals and feasible sampling-actuation delays (Section 6.2.4). In this way, we can apply 
two different stability cases of Section 7.1.2, Case 2 and Case 3 (note that in this example 
we are not interested in case 1, because it corresponds to the classic stability case, given by 
Equation 7.3). 

Example 1:  Let us assume that the implementation we have gives a finite sequence of 
pairs of known feasible sampling intervals and feasible sampling-actuation 
delays taken from FH and FT, which is of sequence type 2 (Section 6.2.4). 
Specifically, the periodic sequence we have is: (<(60,20), (50,10), (50,20), 
(60,10)>, in ms). 

Therefore, we have to apply the stability analysis given in Case 2 (Section 
7.1.2). The closed-loop system is characterized by a known, finite set of 
matrices that repeats periodically: <Φcl1, Φcl2 , Φcl3, Φcl4> where Φclk is the 
closed-loop matrix that depends on each pair (hj,τj), hj∈ FH ,τj∈ FT we listed 
before. The stability test is performed by checking the stability of the 
product of the repeating sequence of matrices (Equation 7.5, that is: Stable 
⇔ ρ( Φcl1· Φcl2 · Φcl3 · Φcl4) < 1).  

Applying this test, we conclude that the system is stable because ρ( Φcl1· 
Φcl2 · Φcl3 · Φcl4) = 0.349 < 1 (see Section B1 in Appendix B for further 
details). 

Example 2: The implementation we have gives an infinite sequence of feasible 
sampling intervals and feasible sampling-actuation delays taken randomly 
from FH and FT, which is of sequence type 3 (Section 6.2.4).  

Therefore, we have to apply case 3 for the stability analysis (Section 7.1.2). 
The closed-loop system is characterized by a product of an infinite number 
of matrices (<Φcl1, Φcl2 , ...>, where Φclk is the closed-loop matrix that 
depends on each pair (hj,τj), hj∈ FH ,τj∈ FT) taken randomly from a set of 
finite number of matrices, specified in (7.5). Set Ω will have the four 
closed-loop matrices that we had before in the previous example (note that 
in this case, all the possible combinations that characterize each closed-loop 
matrix coincide with the combinations we had in the previous example): 
Ω={Φcl(50,10), Φcl(50,20), Φcl(60,10), Φcl(60,20)}. 

In this case, applying the sufficient stability condition given in (7.9) (that is: 
if ∃  P>0: ∀  Φclk ∈  Ω, ΦT

clk· P · Φclk – P < 0 ⇒ Stable), we conclude that the 
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set of matrices Ω fulfils the condition. That is, we obtain a matrix P>0 such 
as for all four closed-loop matrices Φclk of Ω, ΦT

clk· P · Φclk – P < 0 (see 
Section B2 in Appendix B for further details):  

 

 

 

 

P=P’·1.0e+004 

Therefore, no matter which of the four matrices apply at each controller 
execution, the closed-loop system that includes the inverted pendulum and 
the controller designed using the compensation approach for sets 
FH={50,60} (in ms) and FT={10,20} (in ms) will be stable. 

In summary, we have obtained the controller we were looking for because all the system 
responses we obtained fulfil the closed-loop performance requirements and the system, for 
both implementation case examples, is stable. 

Implementation 

Finally, we show what kind of response we obtain by doing the run time parameters 
adjustment. The actual response we obtain when controlling the inverted pendulum with this 
control task performing the run time parameters adjustment can be seen in Figure 7.2.  

 

 

 

 

  

 

 

 

 

Figure 7.2. Two of all the possible responses of Figure 7.1 (dotted) and the compensated 
(solid curve) 

It can be seen in Figure 7.2 that the thick-solid line is the actual response we obtain with the 
control task performing the run time parameters adjustment. It is a combination of the four 
possible ones we gave as acceptable in the control design. It can also be seen that the 
response obtained by the compensation approach still meets the control performance 
requirements. 
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For this case, at each controller execution, the feasible sampling interval and feasible 
sampling-actuation delay that applied was chosen randomly from sets FH and FT. To 
implement a controller designed under the compensation approach, the code resulting from 
implementing a control law designed using traditional discrete-time controller design 
methodologies (assuming constant sampling period and constant time delay) is slightly 
modified in order to allow the run time parameters adjustment (see Section 7.2.2 for an 
overview and Section A4 in Appendix A for a more detailed code). That is, at run time, at 
each control task instance execution, different feasible sampling intervals (FH={60, 70, 80, 
90, 100}), and different feasible sampling-actuation delays (FT={20,30}) apply and are used 
to update the controller parameters. 

7.2 Practical implementation considerations 
In this section we give details on how to implement the control computation in order to 
allow the run time parameters adjustment. First of all, we discuss when feasible sampling 
intervals and feasible sampling-actuation delays are needed by control tasks for the run time 
parameters adjustment on which the compensation approach is based. Additionally we show 
how the code of the control task should be implemented to account for these varying 
feasible sampling intervals and feasible sampling-actuation delays. 

In addition, since the parameters adjustment is performed at run time, we investigate the 
implementation cost. This leads us to assess what the computational overhead and memory 
requirements are in order to apply the run time controller parameters adjustment. With 
respect to the implementation cost, at each control task instance execution the controller 
parameters must be updated according to each specific feasible sampling interval and 
feasible sampling-actuation delay. Two strategies apply: run time or offline calculations.  

If the controller parameter adjustment is performed by online extra calculations, the 
introduced computational overhead will depend on the process (the system to be controlled), 
the control design method and controller design strategy being used. If the computational 
overhead is not negligible, the controller parameter adjustment can be performed online by 
accessing offline pre-calculated look-up tables. These tables will contain the necessary 
parameters to allow the control computation parameters to be adjusted according to the 
different feasible sampling intervals and/or feasible sampling-actuation delays that apply at 
run time. In this case, the memory required to store these tables must be assessed. We will 
estimate the size of the tables, which depends on both the design method and the controller 
design strategy. 

7.2.1 Temporal information required for the controller parameters 
adjustment 

At the implementation level, when applying the compensation approach, control tasks 
require that at run time we know the controller timing parameters, i.e., feasible sampling 
intervals and feasible sampling-actuation delays, for the parameters adjustment. As we have 
seen in Section 6.2.3, a generic state feedback controller designed using the compensation 
approach to be implemented in a control task (for irregularly sampled discrete-time systems 
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with varying time delays) depends on each particular feasible sampling interval and feasible 
sampling-actuation delay that appears at run time, L(hj, τj) (see Equation 6.38 in Section 
6.2.3). This means that the implementation of the control strategies used in the 
compensation approach requires each hj and/or τj to be known at the beginning of each 
control task instance execution.  

Consequently, in this section, we firstly address which type of controller timing parameters 
are needed for the run time parameters adjustment, which depends on the implementation 
guarantees on the controller timing parameters (see Section 6.1.2). Secondly, we identify 
who, at run time, is in charge of providing or obtaining each value of the required controller 
timing parameters, and finally we discuss what requirements/restrictions the application of 
the compensation approach imposes on the implementation. 

In Section 6.1.2, we reviewed the six different cases we can have in the implementation of 
closed-loop systems, which we reduced in Section 6.1.3 to three cases without losing 
generality. In the following, for each of these three cases, we analyse which controllers 
timing parameters the control tasks need in order to readjust their controller parameters at 
run time2. Note that since the three cases cover all the others (as we discussed in Section 
6.1.3), the following study is complete: 

•  In Case 4 (Section 6.1.2), the closed-loop implementation cannot guarantee a constant 
sampling period, thus preventing the application of classic discrete-time control theory. 
For this case, a control computation implementing a design obtained using the 
compensation approach (based on the irregularly sampled discrete-time system model 
specified in Section 6.2.1) can solve the problem. By specifying at the design stage a set 
FH including all possible values that can apply at run time for the sampling period, at 
each instance execution, the control computation can adjust its controller parameters 
according to each specific hj that applies. In this case, control computations only need to 
know each different hj at their execution start times. 

•  In Case 3 (Section 6.1.2), the closed-loop implementation cannot guarantee a constant 
time delay, thus preventing the application of classic discrete-time control theory. For 
this case, a control computation implementing a design obtained using the compensation 
approach (based on the regularly sampled discrete-time system model with varying time 
delays specified in Section 6.2.2) can solve the problem. By specifying at the design 
stage a set FT including all possible values that can apply at run time for the time delay, 
at each instance execution, the control computation can adjust its controller parameters 
according to each specific τj that applies. In this case, control computations only need to 
know each different τj at their execution start times. 

•  In Case 6 (Section 6.1.2), which is a combination of case 3 and 4, the implementation 
cannot guarantee a constant sampling period and constant time delay, thus preventing 
the application of classic discrete-time control theory. For this case, a control 

                                                      
2 For a generic controller obtained through the compensation approach, the controller timing parameters are the 
feasible sampling intervals and feasible sampling-actuation delays (hj,τj) while the controller parameters are all 
the other parameters that depend on hj, and τj. If we denote the controller (as in Equation 6.38 in Section 6.2.3) 
by L(hj,τj), L itself, the gain matrix, is the controller parameters. For each pair (hj,τj), L will have different 
values.  
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computation implementing a design obtained using the compensation approach (based 
on the irregularly sampled discrete-time system model with varying time delays 
specified in Section 6.2.3) can solve the problem. By specifying at the design stage sets 
FH in FT including all possible values that can apply at run time for the sampling period 
and time delay, at each instance execution, the control computation can adjust its 
controller parameters according to each specific pair (hj,τj) that applies. In this case, 
control computations need to know each pair (hj,τj) at their execution start times. 

In summary, the type of timing parameter (feasible sampling interval and/or feasible 
sampling-actuation delay) that the control computation requires for the controller parameters 
adjustment varies, depending on the closed-loop implementation. Next, we discuss for each 
type of timing parameter, the different implementation possibilities we have in order to 
obtain their precise value at each control task instance start time execution.  

Feasible sampling interval: each hj that applies at run time can be easily obtained by online 
time measurements carried out by the control task at each sampling instant. That is, at the 
beginning of the current instance, at the sampling time instant, we have to measure the time 
elapsed from the previous sampling instant. This is illustrated in Figure 7.3, where the 
current instance (the kth instance), at its execution start time (that may or not correspond to 
the sampling time instant), uses the measured hj.  

 

 

 

 

Figure 7.3. Feasible sampling interval measurement  

Therefore, in this case, the application of the compensation approach does not impose any 
specific restriction on the implementation apart from guaranteeing that the time intervals 
between consecutive sampling instants will occur at run time according to the feasible 
sampling intervals specified at the design stage in FH. 

Feasible sampling-actuation delay: each τj, in the general case, cannot be obtained by 
online time measurements. As we pointed out in the previous section, for the parameters 
recalculation, the control computation needs to know -at its execution start time- for the 
parameters recalculation, the elapsed time from its sampling instant to its actuation 
completion time instant.   

 

 

 

 

Figure 7.4. Feasible sampling-actuation delay measurement 
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However, in the general case, at the sampling instant, it is physically impossible to 
measure the time elapsed from sampling to actuation. Figure 7.4 illustrates this problem. 
For each current instance, the sampling-actuation delay (τj) must be known by the control 
computation at its execution start time. But, since the actuation completion still has to 
occur, the time elapsed from sampling to actuation cannot be measured. 

Note that we have said that in the general case, the sampling-actuation delay cannot be 
measured at run time. There is a specific case in which the sampling-actuation delay can 
indeed be measured online by the control computation: i.e., if we consider at the controller 
design stage that the control computation execution time (and the actuation) is not 
significant in terms of time delay (see Section 3.11). In this case, the sampling-actuation 
delay is either zero (see Figures 6.1 and 6.11 in Section 6.1.2) if the sampling and actuation 
are assumed to execute at the same time instant, or it can be obtained through online time 
measurements by the control computation (see Figures 6.7 and 6.17 in Section 6.1.2). In the 
latter case, since control computation execution time and actuation are not significant in 
terms of time delay, the elapsed time from the sampling instant to the actuation instant can 
be measured online and used for the control computation, thus not imposing any tight 
restriction on the implementation apart from guaranteeing that the time intervals between 
pairs of sampling instant/actuation instants of the same control task instance will occur at 
run time according to the feasible sampling-actuation delays specified at the design stage in 
FT.  

However, apart from the previous specific scenario, in general, since the time elapsed from 
related sampling instants and actuation instants can not be measured online by the control 
task at each instance execution and thus used at the control computation execution start 
time, the application of the compensation approach requires other implementation strategies 
which go beyond time measurements. This can be achieved by the application of scheduling 
techniques (as we discuss in Chapter 8), and making the scheduler responsible for providing 
at each control task instance execution the exact time that will elapse from the current 
sampling to actuation. Note that this transfers to the scheduling approach the responsibility 
of guaranteeing that the time intervals between related sampling and actuation time instants 
will occur at run time according to the feasible sampling-actuation delays specified at the 
design stage in FT.  

7.2.2 Controller parameters adjustment code implementation 
details 

In this section, we will show how the control computation implements a controller obtained 
through the compensation approach controller design method (Section 7.1). Recall that the 
compensation approach controller design method is based on the same design methods (such 
as pole placement or optimization approaches [AST97]) used in classic discrete-time 
controller design with the particularity that the controller parameters are adjusted at each 
control task instance execution according to specific pairs of feasible sampling intervals and 
feasible sampling-actuation delays (belonging to sets FH and FT specified in the controller 
design stage). The controller parameters 2 refer to all parameters that influence the 
calculation of the control signal.  
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For classic computer control, the calculation of the control signal given by the controller 
L(h,τ) (see Equation 6.26 in Section 6.2.2) depends on the sampling period and time delay 
assumed in the controller design stage. Using the compensation approach, the control signal 
given by the controller L(hj,τj) (see Equation (6.38) in Section 6.2.3) depends on each 
specific feasible sampling interval and feasible sampling-actuation delay that apply at run 
time at each controller execution. Therefore, the code of a control task implementing a 
design obtained through the compensation approach must allow the controller to be updated 
at each control task instance execution.  

Figure 7.5 (left) gives the generic code of a controller obtained using classic discrete-time 
controller design methods, and Figure 7.5 (right) gives the generic code obtained using the 
compensation approach controller design method. In Figure 7.5, y(tk) and r(tk) are, 
respectively, the output of a controlled process and reference signals at the sampling 
instants, from which the error (e(tk)) is calculated. Observe however that in the calculation 
of the control signal, u(tk), in the Generic controller, the gain matrix L(h,τ) is constant, 
while in the Compensation approach controller, the gain matrix L(hj,τj) has to be updated 
according to the specific pair (hj,τj) that applies at each control task instance execution and 
that has to be adequately obtained (Section 7.2.1). Recall that the hj and τj that apply at run 
time belong to the set of feasible sampling intervals (FH) and to the set of feasible sampling-
actuation delays (FT) specified at the design stage. Finally, in both codes, the actuation 
takes place (represented by write_output (u(tk))). 
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Generic controller 
{      read_inputs (y(tk), r(tk)); 

 e(tk) = r(t k) – y(tk); 

 u(tk) = calculate_output (L(h,ττττ),e(tk));
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Compensation approach controller 
{      read_inputs (y(tk), r(tk)); 

 obtain (hj, ττττj); 

 e(tk) = r(tk) – y(tk); 

 obtain (L(hj, τj))  

 u(tk) = calculate_output (L(hj,ττττj),e(tk));

 write_output (u(tk)); 
t - compensation approach controller code 
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consider the usual control computation and the computation adjusting for feasible sampling 
intervals and/or feasible sampling-actuation delays (using online calculations, see Section 
7.2.3 for further discussion).  

Example 1 

The first example (Section 2.2.2, Example 1) is for a discrete PID controller (obtained 
through a discretization of a continuous time design), now compensating (only) for varying 
feasible sampling intervals. Note that in Section 2.2.2, no time delay was taken into account 
in the discretization of the continuous time designed PID controller. The reason is that in 
practice, PID controllers are designed without time delays due to the fact that their 
execution time is not considered relevant for controlling purposes. 

As we explained in Example 1 in Section 2.2.2, for a discretization of a continuous time 
designed PID controller, at each execution of a task taskPID (Figure 7.6 left) the usual 
computations involve the calculation of the three actions (pk, ik, dk) according to the current 
error (e(tk)) in order to obtain the control signal (u(tk)). Note that the integral (ik) and the 
derivative (dk) actions depend on the sampling period h. The reference signal is r(tk) and the 
controlled variable is y(tk). 
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taskCPID 
{      read_inputs (y(tk), r(tk)); 

 e(tk) = r(tk) – y(tk); 

 obtain(hj); 
 u(tk) = calculate_output (pk(e(tk)),ik(hj,e(tk)),dk(hj,e(tk)));

 write_output (u(tk)); 
taskPID  
{      read_inputs (y(tk), r(tk)); 

       e(tk) = r(tk) – y(tk); 

       u(tk) = calculate_output (pk(e(tk)), ik(h,e(tk)), dk(h,e(tk)));

      write_output (u(tk)); 

} 
e 7.6. Top - Classic PID code. Bottom - Compensated PID code 

 same task executing this code has to update its controller parameters 
h specific feasible sampling interval hj as imposed by the compensation 
uired code modification is shown in Figure 7.6 right (named taskCPID). The 
etween the task codes in Figure 7.6 is that in the modified code (marked in 
 obtained at each instance execution because this value is used in the rest of 
However, regardless of whether it is hj (in Figure 7.6 right) or h (in Figure 
unt of computations to obtain the control signal (u(tk)) is the same. For a 
e, see Section A1 and A2 in Appendix A. 

} 
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Example 2 

The second example (Section 2.2.2, Example 2) is the state feedback controller (where the 
gain matrix is obtained by state feedback using pole placement observer discrete design), 
now compensating for both varying feasible sampling intervals and varying feasible 
sampling-actuation delays. For the sake of clarity, we omit the observer part. However, for a 
more detailed code including the observer part, see Sections A3 and A4 in Appendix A.  

As we explained in Example 2 in Section 2.2.2, in this case, at each control task instance 
execution implementing a state feedback controller obtained through pole placement design 
(Figure 7.7 top, named task tasksfc), the usual computation involves the calculation of the 
control signal (u(tk)) according to the state (x(tk)), reference signal (r(tk)) and gain matrix 
L(h,τ), apart from updating the state for the next controller execution according to the 
current state, output, input (y(tk)), closed-loop matrices (Φ(h, τ), Γ(h, τ) and C). Note that 
the gain matrix and the closed-loop matrices, which depend on the sampling period h and 
time delay τ, are fixed parameters of the controller algorithm, calculated at the design stage, 
because h and τ are supposed to remain constant at run time.  
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tasksfc 

{      read_input (y(tk), r(tk)); 

       u(tk) = calculate_output (x(tk), -L(h,τ), r(tk)); 

       write_output (u(tk)); 

       x(tk+1) = update_state (x(tk), Φ(h, τ), Γ(h, τ), C, u(tk), y(tk ));
 - Classic state feedback controller code designed using pole placement. 
pensated state feedback controller code designed using pole placement 

ame task executing this code has to update its controller parameters 
 specific feasible sampling interval, hj, and feasible sampling-actuation 
sed by the compensation approach, the required code modification is 
7.7 (bottom), named taskCsfc). We can see that the extra calculations 
n the readjusted controller can be important. First of all, we obtain hj and 
 have to recalculate the discretization of the system model (Φ(hj, τj), Γ(hj, 

kCsfc 
  read_input (y(tk), r(tk)); 

  obtain (hj , ττττj) ; 

  (ΦΦΦΦ(hj, ττττj), ΓΓΓΓ(hj, ττττj)) = system _discretization (A, B, hj, ττττj)) ; 

  L(hj , ττττj) = Controller_design(pole_placement, ΦΦΦΦ(hj, ττττj), ΓΓΓΓ(hj, ττττj)); 

  u(tk) = calculate_output (x(tk), -L(hj , τj), r(tk)); 

  write_output (u(tk)); 

  x(tk+1) = update state (x(tk), Φ(hj, τj), Γ(hj, τj), C, u(tk), y(tk)); 

} 
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τj)) because the controller has been designed in the discrete-time domain, that is, from a 
discretization of the inverted pendulum model. In addition, since the location of the closed-
loop poles depends on the sampling period (Section 2.2.2), to have varying feasible 
sampling intervals implies recalculating the gain matrix using pole placement design (L(hj, 
τj)) given the same performance specifications. In summary, in this case, the discretization 
of the system model and the controller design are the main recalculations required in order 
to apply the compensation approach (see Sections A3 and A4 in Appendix A for a more 
detailed code and Appendix C for the closed loop matrices that have to be recalculated at 
each controller execution for the inverted pendulum case)  

7.2.3 Computational overhead 
In the previous section we have seen that the extra calculations of each controller designed 
with the compensation approach depend on the controller design method (PID or state 
feedback pole placement observer design) and the control strategy (discretization of a 
continuous design or discrete design). For the PID, the computational overhead is 
insignificant because only the new computation is obtain(hj). However, for the state 
feedback controller, the computational overhead may be significant. Therefore, we evaluate 
it precisely now, applied to the inverted pendulum example (described in Section 2.2.2). 

To control the angle of the inverted pendulum, we have obtained a state feedback controller 
from the discrete-time pole placement observer design approach using Ackerman’s formula 
[AST97]. In this case, we estimate the computational overhead (which includes a 
recalculation of a matrix inverse and the evaluation of the closed-loop matrix characteristics 
polynomial on a (n x n) matrix) of the control task taskCsfc (Section 7.2.2) performing the 
extra-calculation of the compensation approach to be O(n4), where n is the closed-loop 
system matrix dimension. For the example of the inverted pendulum model (4x4 matrix) we 
introduced in Section 2.2.2 and for a simplified model (2x2 matrix) of the same system (see 
[MAR01a]), Table 7.1 details the approximate numbers of flops, obtained via simulations 
using MatlabTM for each control task instance execution (executing the code of the task 
taskCsfc in Section A4 of Appendix A), with and without the extra-calculation necessary to 
update the controller parameters according to feasible sampling intervals and feasible 
sampling-actuation delays. 

 Number of Flops 
(without extra calculations) 

Number of Flops 
(with extra calculations) 

simplified pendulum (2x2 matrix) 25 250 
example pendulum (4x4 matrix) 60 2000 

Table 7.1. Computational overhead 

Table 7.1 shows that the overhead of extra calculations required to apply the compensation 
approach with the online recalculations strategy may be too high (sometimes, orders of 
magnitudes higher) depending, for example, on the processor speed and operating system. 
In summary, if the computational overhead is insignificant, run time calculation of 
controller parameters is a feasible approach. However, if the computational overhead is 
significant, the offline calculation approach, taking advantage of the look-up tables, must be 
considered. However, we must determine the memory required to store these tables.  
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7.2.4 Memory requirements 
If the overhead of online calculations is significant, the offline calculation approach taking 
advantage of the look-up tables must be considered. However, we must determine the 
memory requirements of these tables because they will store the controller parameters. In 
the following, we derive the size of this table for the three main cases, that is, for control 
tasks subject to varying feasible sampling intervals, or varying feasible sampling-actuation 
delays, or both. These tables, where the controller parameters must be stored, will have hj as 
an input parameter (if subject to varying feasible sampling intervals), and for each hj, τj as a 
second input parameter (if subject to varying feasible sampling-actuation delays). The 
worst-case assumption is to assume that the control task is subject to both varying feasible 
sampling intervals and varying feasible sampling-actuation delays. Knowing that for each 
control task taski, the feasible sampling intervals and feasible sampling-actuation delays that 
appear at run time belong to sets FHi and FTi (see Section 6.1.1), the size of the table for the 
taski (tablei) is specified by (7.10) 

Size(tablei)= cardinal(FHi) * cardinal(FTi) * size(controller parameters of taski)  (7.10) 

The size of the table if the control task is subject only to varying feasible sampling intervals 
is specified by (7.11) 

Size(tablei)= cardinal(FHi) * size(controller parameters of taski)     (7.11) 

If the control task is subject only to varying feasible sampling-actuation delays, the table 
size is specified by (7.12) 

Size(tablei)= cardinal(FTi) * size(controller parameters of taski)     (7.12) 

In order to give specific numbers, in Table 7.2, we show the size of the look-up table that 
the control task controlling the inverted pendulum (Section 2.2.2) needs for each of the three 
cases, if hj and τj are allowed to take 100 different values (taking into account that a float is 
coded using, for example, 32 bits): 

 Size (table) 
Feasible sampling intervals 8 Kb 
Feasible sampling-actuation delays 8 Kb 
Feasible sampling intervals and feasible sampling-actuation delays 64 Kb 

Table 7.2. Memory requirements for the inverted pendulum 

From this analysis, we can conclude that these tables with the offline calculations are small 
enough to be stored in any micro-controller’s RAM. For the specific values for these tables, 
see next Chapter, Section 8.1.3. 

In Section 7.2.2 we presented the generic code of a control task prepared for the run time 
parameters adjustment required for the application of the compensation approach (see 
Figure 7.6 right). This generic code applies for both run time controller parameters 
adjustment strategies, that is, for the run time recalculations or for the run time look-up table 
access. However, in the examples we presented in Section 7.2.2, the exact codes for the 
controllers prepared for the run time parameters adjustment are based on the run time 
recalculations strategy. 
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Since we discussed in Section 7.2.3 that for the PID, the computational overhead is 
insignificant while for the state feedback controller it may be significant, in the following 
we show the required code modification for the control task implementing the state 
feedback controller if the run time parameters adjustment is performed by the look-up table 
access strategy. If the task tasksfc (Section 2.2.2) is finally using the look-up table access 
approach at run time, the pseudo-code that should execute it can be seen in Figure 7.8 
(compare to Figure 7.7 bottom in Section 7.2.2), task named taskCTsfc. For a more detailed 
code, see Section A4 in Appendix A.  

 

 

 

 

 

 

 

Figure 

Note tha
Φ(hj,τj),
the com
paramet
are, apa
actuatio
overhea

7.3 S
In this c
design m
samplin
this new
analysis

In addi
controll
Afterwa
codes t
compen
paramet
and the
characte

 

taskCTsfc 

{  read_input (y(tk), r(tk)); 

  obtain (hj , ττττj) ; 

  (ΦΦΦΦ(hj, ττττj), ΓΓΓΓ(hj, ττττj), L(hj , ττττj)) = ParametersTableIndexedAccess (Table, hj, ττττj)) ;

  u(tk) = calculate_output (x(tk), -L(hj , τj), r(tk)); 

  write_output (u(tk)); 

  x(tk+1) = update state (x(tk), Φ(hj, τj), Γ(hj, τj), C, u(tk), y(tk)); 
7.8. Compensated State Feedback Controller code designed through pole placement 
with access to the controller parameters table 

t after obtaining hj and τj, instead of calculating the system discretization (matrices 
 Γ(hj, τj)) and the controller (L(hj , τj)) at each instance execution (which increases 
putational cost), these matrices are obtained accessing the pre-calculated controller 
ers table. Therefore, at run time, the required extra computations (marked in bold) 
rt from obtaining the specific feasible sampling interval and feasible sampling-
n delay, to perform the indexed table access, thus eliminating the computational 
d introduced when calculating all those matrices at each instance execution. 

ummary 
hapter we have presented the compensation approach as a discrete-time controller 
ethod of designing controllers that depend on a set of a finite number of feasible 

g intervals and on a set of finite number of feasible sampling-actuation delays. For 
 approach to controller design, we have provided a new response and stability 

, illustrating all the controller design steps with examples.  

tion, we have discussed the implementation aspects for the applicability of 
ers obtained through the compensation approach controller design method. 
rds, we have explained, with pseudo code details, how to modify existing controller 
o prepare controllers for the run time controller parameters adjustment that the 
sation approach requires. We have also distinguished two strategies for the run time 
ers adjustment: the online recalculation approach if this incurs negligible overheads, 
 online access to pre-calculated tables. We have provided exact numbers for 
rizing when each strategy is feasible.  

} 
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Chapter 8 

Compensation approach in standard real-time 
scheduling policies 
In this chapter we investigate the implications of using the compensation approach 
controller design method for control tasks scheduling. First of all, we address the practical 
aspects of the application of the compensation approach when the implementation is based 
on standard real-time systems technology. Specifically we focus on the aspects that the 
application of the compensation approach imposes on standard real-time scheduling 
strategies. We show that the compensation approach can be used to design controllers to be 
implemented in standard real-time periodic tasks that are scheduled by standard scheduling 
policies. After analysing the scheduling inherent jitters that control tasks are subject to, the 
controller is designed in such a way that the control task code can accept these jitters by 
adjusting its controller parameters at run time while meeting the closed-loop performance 
specifications, thus solving the degradation that would otherwise occur, as we have 
explained in Chapter 4. 

In addition, we present a control performance study in which we evaluate the compensation 
approach in terms of closed-loop systems performance when jitters are included in the 
controller design stage and they are accounted for at each control task instance execution for 
the run time controller parameters adjustment.  

The work explained in this chapter has been partially presented in [MAR01b] and 
[MAR01e] and [MAR02c]. 

8.1 Compensation approach as a control-based solution for 
dealing with jitters 

In this section we explain how the compensation approach can be used to design controllers 
that can accept scheduling inherent jitters (sampling jitter and sampling-actuation jitter, see 
Section 4.1.2), thus solving the controlled system response degradation that would otherwise 
occur (as we show in Section 4.2) if real-time scheduled control tasks subject to jitters 
implement classically designed discrete-time controllers. 

Specifically, we present the procedure for designing controllers (to be implemented in 
control tasks) in such a way that all sampling intervals and all sampling-actuation delays 
that apply at run time (for a given control task) due to sampling jitter and sampling-
actuation jitter are grouped into sets FH and FT used in the compensation approach 
controller design stage (see Section 6.1.1). Consequently, we show that closed-loops 
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implemented by periodic control tasks (specified with standard fixed timing constraints, 
such as periods and deadlines, and scheduled by standard real-time scheduling policies) and 
implementing these new controllers, although subject to scheduling inherent jitters, will 
meet the control performance requirements. 

However, we first concentrate on the requirements that the application of the compensation 
approach imposes on real-time scheduling (as we introduced in Section 7.2.1) in terms of 
meeting the timing constraints on which controllers obtained through the compensation 
approach controller design method are based. Recall that controllers designed using the 
compensation approach depend on a finite set of feasible sampling intervals (FH) and on a 
finite set of feasible sampling-actuation delays (FT) (Section 6.1.1).  

8.1.1 Requirements of the compensation approach in real-time 
scheduling 

As we discussed in Section 7.2.1, to apply the compensation approach, control tasks need, at 
each instance execution start time, information about the specific feasible sampling interval 
and feasible sampling-actuation delay for the run time parameters adjustment (Section 
7.2.1). However, while feasible sampling intervals can be obtained by control task instances 
through online time measurements, in the general case, at run time the scheduler must 
provide the feasible sampling-actuation delay that will apply at each control task instance 
execution. This requirement imposes different constraints on real-time scheduling 
depending on the type of jitter (sampling jitter or sampling-actuation jitter) which is 
accounted for in the compensation approach controller design stage. 

Requirements on feasible sampling intervals 

As we discussed in Section 7.2.1, feasible sampling intervals can be obtained by online time 
measurements carried out by the control task. Therefore, as far as the controller is designed 
(using the compensation approach) to account for all possible sampling intervals caused by 
sampling jitter that can apply at run time for a given periodic control task (see Section 
4.1.3), the application of the compensation approach does not impose any restriction on the 
scheduling policy.  

Therefore, if for each controller to be implemented in a control task taski (specified with 
standard fixed timing constraints) we specify at its design stage the set of feasible sampling 
intervals, FHi, as in Equation 4.4 in Section 4.1.3 (containing all possible sampling intervals 
due to sampling jitter that will appear at run time for the feasible periodic control task), the 
control task, although subject to sampling jitter, will meet the closed-loop system 
performance requirements  

•  by measuring at each instance execution the sampling interval caused by sampling jitter 
and 

•  by adjusting its controller parameters at run time according to the measured sampling 
interval 

Note that the controller implemented in the control task has been designed to account for 
any of the possible sampling intervals that may apply at run time due to sampling jitter. 
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Therefore, whatever specific sampling interval applies at each instance execution, it has 
been already taken into account in the compensation approach controller design stage. This 
implies that the control task will update its controller parameters for that specific measured 
sampling interval, according to the specifications already used at the design stage. 

In summary, standard offline and online scheduling approaches (or combined offline/online 
approaches) can be used with the compensation approach without any restrictions in terms 
of meeting the feasible sampling intervals used in the controller design stage. 

Preserving feasible sampling-actuation delays 

As we discussed in Section 7.2.1, sampling-actuation delays, in the general case, cannot be 
obtained by online time measurements carried out by the control task. Therefore, in this 
case, the scheduler is in charge of providing the control task with the specific values for 
each feasible sampling-actuation delay that applies at each control task instance execution. 

In this case, regardless of designing the controller to account for all theoretical sampling-
actuation delays caused by sampling-actuation jitter (as in Equation 4.5 in Section 4.1.3) 
that can apply at run time for a given periodic control, the application of the compensation 
approach imposes new restrictions on the scheduling policy. This is due to the fact that at 
each control task instance execution start time, the scheduler must guarantee the time instant 
at which the corresponding actuation will be completed. 

For example, looking at EDF or FPS based scheduling approaches or even at offline 
scheduling approaches, at each instance execution start time, in the general case, there is no 
guarantee of when each instance will complete its execution. This may be due, for example, 
to varying execution times or pre-emption. Therefore, for periodic tasks, there are no 
guarantees regarding the time intervals that will appear at run time from each instance 
execution start time to its completion time. However, we are interested in control tasks.  

By assuming an exact execution time for control tasks as we introduced in Section 2.1.2 and 
formally specified in Section 3.2.2, the varying execution times problem disappears. 
Observe that the assumption of exact execution time for control tasks (which we introduced 
in Section 2.1.2) is valid. Looking at control tasks, their execution times can be completely 
assessed. In general, control tasks execute a sequential code, with no conditional or loop 
sequences. For example, the code of a PID controller or the code of a state feedback 
controller, whether it is adjusting the controller parameter or not, is completely sequential 
(see Section 7.2.2). In this case, an exact execution time rather than a worst-case one can be 
calculated. Therefore, although general real-time task models require us to take into account 
for task scheduling the worst-case execution time for tasks, which may be too pessimistic 
[BUT98] and thus waste the processor resource (due to shorter executions than the assumed 
worst-case), for control task, we can assign the exact execution time1.  

Consequently, assuming an exact execution time for control tasks, offline scheduling can be 
used at run time to meet the set of feasible sampling-actuation delays used in the controller 

                                                      
1 Note also that in general, in the hardware used in the implementation of closed-loops systems, features of 
modern architectures such as cache memories or pipelined processors that can introduce variation in the 
execution time of tasks are not usual. 
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design stage and given by the offline schedule sampling and actuation instants (if the offline 
schedule is enforced at run time, preserving then the offline sampling and actuation instants, 
see for example [FOH94] or [RAM90] or Section 2.1.2)2. However, although offline 
scheduling provides determinism, as all times for tasks (including control and non-control 
tasks) executions are determined and known in advance, run time flexibility is lacking. 
Since we are only interested in enforcing the offline schedule of the control tasks at run 
time, we can also use scheduling approaches that combine offline and online scheduling 
(such as [FOH95]), taking advantage of the determinism provided by the offline scheduling 
for the sampling and actuation instants, and the flexibility provided by the online scheduling 
for the rest of the tasks.  

However, online scheduling approaches such as EDF or FPS still impose problems because 
pre-emption prevents us from knowing the exact completion time at each control task 
instance start time. One way of solving this problem and meeting the control task finishing 
time requirement is by setting the deadline equal to the exact execution time. By doing this, 
we guarantee that each control task instance will execute without interruption. However, as 
we discussed in Section 3.2.3, with this deadline assignment, to find feasible schedules, in 
general, is not possible. To overcome this problem we can use the same scheduling 
approaches but with non pre-emptive control task execution. That is, to relax the deadline 
assignment to improve system schedulability while ensuring that each control task instance 
will execute without any interruption at run time.  

Therefore, whatever scheduling approach is used (taking into account the restrictions 
explained above), the set of feasible sampling-actuation delays, FTi, (grouping all possible 
sampling actuation-delays caused by sampling-actuation jitter in a control task taski) used in 
the compensation approach controller design stage will be adequately preserved at run time. 
Consequently, at run time, the scheduler will be able to give the specific feasible sampling-
actuation delay required for the run time parameters adjustment to each control task 
instance, at its execution start time. 

In summary, we have discussed how control tasks can adjust their controller parameters at 
run time according to the specific sampling intervals (due to sampling jitter) and sampling-
actuation delays (due to sampling-actuation jitter) that apply at run time at each instance 
execution if controllers designed using the compensation approach are implemented by 
control tasks characterized by standard timing constraints and scheduled by standard real-
time scheduling approaches. 

8.1.2 Application of the compensation approach for scheduled 
control tasks 

In this section we explain how to use the compensation approach controller design method 
to solve the problems imposed by jitters (controlled system response degradation) when 
                                                      
2 It is assumed that the offline schedule is created in such a way that no pre-emptions will occur at run time. 
However, if they do occur at run time, the pre-empted control tasks in the offline schedule can be split into new 
artifact tasks (as in [DOB01]). This would solve the problem that the varying execution time of the pre-empting 
task will introduce in the run time timing of the control task (see example 1 in Section 8.1.3 for further 
discussion). 
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control tasks (specified by fixed timing constraints such as periods and deadlines) are 
scheduled by real-time scheduling algorithms. 

As we introduced in Section 5.4 (in Eliminating control system response degradation 
caused by scheduling inherent jitters), this procedure has two steps: offline jitter analysis 
and offline control analysis.  

The objective of the offline jitter analysis is to obtain for each control task the sampling 
intervals and sampling actuation delays that will apply at run time if the control task is 
subject to sampling jitter and sampling-actuation jitter in order to group them into the sets 
FH and FT (sets of feasible sampling intervals and feasible sampling-actuation delays) that 
will be used in the controller design stage. As we explained in Section 4.1.3, there is a finite 
number of all possible sampling intervals and sampling-actuation delays (that appear at run 
time) caused by sampling jitter and sampling-actuation jitter for each feasible periodic 
control task and which therefore can be known before run time (see Equations 4.4 and 4.5 in 
Section 4.1.3). Therefore, before run time, it possible to group them into two finite sets that 
will act as sets FH and FT. However, depending on the online scheduling policy or offline 
schedule, not all the possible sampling intervals and sampling-actuation delays caused by 
jitters and given by Equation 4.4 and 4.5 will apply at run time. Consequently, FH and FT 
may not have to include all of them, but only a subset.  

Therefore, the objective of the offline jitter analysis is, for each control task taski, to group 
in FHi and FTi the exact sampling intervals and sampling actuation delays that will apply at 
run time due to jitters. Once we have these two sets, we proceed with the offline control 
analysis, that is, we design each controller to be implemented in each periodic control task 
(specified with fixed timing constraints such as period and deadline) using the previous sets 
FHi and FTi.  

Regarding the offline control analysis, in Section 7.1.2 we explained that for the stability 
analysis required in the compensation approach controller design method, we had to account 
for the type of sequences (Section 6.2.4) of feasible sampling intervals and feasible 
sampling actuation delays that the implementation guarantees for each control task. In the 
following, we discuss what type of sequences real-time scheduling causes; what we call 
jitter patterns. In this way, we are able to map different types of jitter patterns that offline 
schedules and online scheduling policies cause for periodic tasks with the different types of 
sequences of feasible sampling intervals and feasible sampling-actuation delays on which 
the stability analysis (cases, in Section 7.1.2) of the compensation approach controller 
design method is based. 

Scheduling jitters patterns vs. stability analysis 

As we saw in Section 2.1.2, real-time scheduling policies can be divided into two major 
categories according to the time when jitters are generated and analysable:  

•  Offline: the whole schedule is constructed before run time (e.g., see [FOH94] or 
[RAM90]). Therefore, all the sampling intervals and sampling-actuation delays due to 
jitters are known or could be specified beforehand. Although, theoretically, offline 
scheduling can construct non-periodic schedules, for practical purposes offline 
schedules are constructed over the LCM of the task’s periods, which implies a LCM 
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periodic pattern. Depending on how the offline schedule is constructed and looking at 
the sampling intervals and sampling actuation delays of the control tasks over the LCM, 
two kinds of jitter periodic patterns apply for each control task:  

a) a single value for all sampling intervals with a single value for all sampling-
actuation delays through all the executions of a controller task3 or  

b) a finite sequence of pairs of known sampling intervals and known sampling-
actuation delays that repeat periodically for each LCM throughout the execution of 
a controller task. 

if the run time execution preserves the offline scheduled control task instances start and 
finishing times.  

•  Online: task instances are dispatched at run time according to the scheduling algorithm 
being used. Therefore, before run time we know the task set and the scheduling policy. 
However, before run time we don’t know the exact timing for control tasks instances 
that will apply at run time. The same situation occurs if the run time dispatcher cannot 
preserve the start and finishing times of the offline scheduled control tasks. In this case, 
if the task set is feasible according the given scheduling policy, the only available 
knowledge is that at run time,  

c) an infinite sequence of unknown sampling intervals will apply with an infinite 
sequence of unknown sampling-actuation delays throughout the execution life of a 
controller task.4 

Note that patterns a), b) and c) characterize the sampling intervals and sampling-actuation 
delays due to jitter that will apply at run time for a given control task. With these patterns, in 
the offline control analysis, we simplify the use of the compensation approach controller 
design method (which we explained in Section 7.1) for designing the controllers 
implemented in the scheduled control tasks. That is, when designing a controller using the 
compensation approach that will be implemented in a control task subject to scheduling 
inherent jitters, for the stability analysis, the following procedure applies: at the controller 
design stage, given the scheduling specifications, that is:  

•  offline schedule for patterns a) and b), or  

•  the task set and scheduling policy for pattern c),  

after obtaining in the offline analysis the specific sets FH and FT for the controller design 
stage, for the stability analysis, we use (see Section 7.1.2 for the stability cases): 

•  case 1 if the scheduling specifications fall into pattern a) 

•  case 2 if the scheduling specifications fall into pattern b) 

                                                      
3 Note that for this pattern, we don’t have to redesign the controller (using the compensation approach) because 
to have a single value for all sampling intervals with a single value for all sampling-actuation delays is to have a 
constant sampling period (h) and a constant sampling actuation dealy (τ), which are already the timing 
assumptions for classic discrete-time controllers (Section 3.1.1).  
4 Unknown refers to the fact that, although they will match the values belonging to sets FH and FT, the exact 
values are not known before run time. 
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•  case 3 if the scheduling specifications fall into pattern c) 

Observe that the stability analysis procedure is also applicable to scheduling approaches that 
combine online and offline scheduling, such as in [FOH95].  

8.1.3 Examples 
In this section, using two examples, we illustrate all the concepts we discussed in the 
previous two sections when analysing the requirements and procedures for applying the 
compensation approach to deal with the scheduling inherent jitters. Recall that as we 
showed in Section 4.2.1, control tasks, implementing a classic designed controller, and 
subject to sampling jitter and sampling-actuation jitter, do not meet the control performance 
requirements, that is, the closed-loop system response undergoes important degradation. 

As a controlled plant we use the inverted pendulum presented in Section 2.2.2, which is 
controlled by control task tasksfc that implements a discrete-time state feedback controller 
designed to meet the performance requirements (to recover from a perturbation in less than 
two seconds) using pole placement observer design. To produce jitters, we use the set of 
tasks specified in Section 4.2.1 (see Table 8.1 for each control task characterization), which 
includes the control task tasksfc. Recall that for those tasks, deadline is equal to period. In 
addition, we regard the execution time of the control task to be the exact execution time, 
rather than the worst-case. 

 Ti Ci 
task1 50ms 10ms 
task2 60ms 10ms 
tasksfc 80ms 20ms 
task3 100ms 20ms 

Table 8.1. Task set 

In the following, given this task set, for illustrative purposes, we apply offline scheduling (in 
example 1) and EDF (in example 2). 

Example 1: offline scheduling 

Given the set of tasks, the first thing we have to do is to obtain a feasible offline schedule 
with the objective of obtaining the jitter variability for each control task in the offline jitter 
analysis: in this case, that is, to obtain sets FHsfc and FTsfc for tasksfc. For example, a feasible 
offline schedule over the task periods LCM (1.2sec) is shown in Figure 8.1. 

 

 

 

 

 

Figure 8.1. Offline schedule  

task1 

task2 

tasksfc 

task3 

(1)        (2)         (3)               (4)       (5)             (6)           (7)        (8)            (9)          (10)         (11)      (12)          (13)     (14)       (15)

(a) 
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The sequence of sampling intervals, h(tasksfc,k), and sampling-actuation delays, τ(tasksfc,k), 
caused by sampling jitter and sampling-actuation jitter we obtain from the offline schedule 
for the control task tasksfc, a sequence that keeps a periodic pattern (marked with the 
instance number in Figure 8.1), and which is shown in Table 8.2. 

Instance  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 
h(tasksfc,k) 60 80 100 60 90 80 70 80 90 80 70 90 70 80 100 
ττττ(tasksfc,k) 20 20 20 20 20 30 30 20 40 20 20 20 20 30 20 

Table 8.2. Sequence of sampling intervals and sampling-actuation delays due to scheduling 
inherent jitters (in ms) 

Note that although this jitter characterization is obtained offline, we have to study if at run 
time, all these sampling intervals and sampling-actuation delays will also apply. For the 
sampling intervals variability, all sampling intervals that we obtain from the offline schedule 
will apply at run time because offline scheduling permits us to enforce the offline schedule 
instance start times at run time [FOH94]. However, for the sampling-actuation delays 
variability, this does not always apply. For instances of tasksfc that are not interrupted by the 
execution of other instances of other tasks (in the schedule, instances 1, 2, 3, 4, 5, 8, 10, 11, 
12, 13, and 15), the corresponding sampling-actuation delays that we obtain from the offline 
schedule will apply at run time. Recall that, as we discussed in Section 8.1.1, offline 
scheduling permits us to enforce at run time the offline schedule instance start and finishing 
times (recall also that the control task has been scheduled, taking into account its exact 
execution time). However, for instances of tasksfc that are interrupted due to the execution of 
other instances of other tasks (in the schedule, instances 6, 7, 9, and 14), the corresponding 
sampling-actuation delays that we obtain from the offline schedule, in the general case, will 
not apply at run time. This is due to the fact that the interrupting instances (for example, 
instance (a) of task task2 for the sixth instance of the control task tasksfc), at run time, may 
execute sooner than the worst case assumed in the offline schedule, resulting in an earlier 
execution of the remaining part of the interrupted instance that implies an earlier completion 
time. However, this problem can be solved by using methods that can enforce – at run time 
– the equivalent offline starting times of the remaining parts of the interrupted instances (see 
[DOB01] for further details).At the end of the offline jitter analysis, we obtain the sets FHsfc 
and FTsfc (grouping the sampling intervals and sampling-actuation delays that can appear at 
run time due to jitters) for the control task tasksfc (required for the offline control analysis), 
as shown in the following (in ms): 

FHsfc={60,70,80,90,100} 

FTsfc={20,30,40} 

Note, for example, that the sampling intervals due to sampling jitter for the first and fourth 
instances (h(tasksfc,1) and h(tasksfc,4)) of the sequence of sampling intervals specified in Table 
8.2 are equal to the first feasible sampling interval of set FHsfc (hsfc,1=60ms). Similarly, the 
sampling-actuation delays due to sampling-actuation jitter for the sixth, seventh and 
fourteenth instances (τ(tasksfc,6), τ(tasksfc,7), τ(tasksfc,14)) of the sequence of sampling-
actuation delays specified in Table 8.2 are equal to the second feasible sampling intervals of 
set FTsfc (τsfc,2=30ms). 



8. Compensation approach in standard real-time scheduling policies 

 

125

At this point, we can start with the offline control analysis. That is, we have to design a 
controller using the compensation approach controller design method using sets FH and FT. 
First of all, (as we explained in Section 7.1.1) we analyse whether the closed-loop 
performance specifications (inverted pendulum recovering from a perturbation in less than 
two seconds) are fulfilled given all combinations of feasible sampling intervals and feasible 
sampling-actuation delays belonging to FHsfc and FTsfc. However, looking at the sequence 
specified in Table 8.2, only 8 different combinations will apply at run time. Therefore, we 
need only look at the different inverted pendulum responses obtained by the control task 
tasksfc, each time characterized by one of these 8 different combinations.  

In Figure 8.2 we show the inverted pendulum responses we have obtained for the 8 possible 
pairs of feasible sampling intervals and feasible sampling-actuation delays that will apply at 
run time: (60,20), (80,20), (100,20), (90,30), (80,30), (70,30), (90,40) and (70,20). To do so, 
at each simulation, the inverted pendulum is controlled by a task executing in isolation on a 
processor and implementing a classic controller designed through pole placement with 
observer (see Section A3 in Appendix A for code details) with each particular pair of values 
applying for the sampling period and time delay. Although it is difficult to distinguish in 
Figure 8.2 which curve corresponds to each specific combination of feasible sampling 
interval and feasible sampling-actuation delay, we can see that all curves meet the 
performance specifications (the pendulum is brought to angle zero – recovers from the 
perturbation – in less than 2 seconds). 

 

 

 

 

 

 

 

 

Figure 8.2. Inverted pendulum responses (resulting from the use of each pair – of feasible 
sampling interval, feasible sampling-actuation delay – generated by the offline schedule). 

For the stability analysis, note that the sequence of jitters we have is pattern b) (Section 
8.1.2). That is, we have a finite sequence of 15 pairs of known feasible sampling intervals 
and known feasible sampling-actuation delays that repeats periodically for each LCM. 
Therefore, for the stability analysis, we have to test case 2 of Section 7.1.2. The closed-loop 
system is characterized by a known finite set of 15 closed-loop matrices that repeats 
periodically: <Φcl1, Φcl2 , Φcl3, Φcl4, Φcl5 , Φcl6, Φcl7, , Φcl8, Φcl9 , Φcl10, Φcl1, Φcl11 , Φcl12, Φcl13, 
Φcl14 , Φcl15> where Φclk is the closed-loop matrix that depends on each pair 
(h(tasksfc,k),τ(tasksfc,k)) we listed earlier in Table 8.2. The stability test is performed by 
checking the stability of the product of the repeating sequence of matrices (Stable ⇔  ρ( 
Φcl1· Φcl2 · Φcl3 ·…· Φcl15) < 1). Applying this test, we conclude that the system is stable. 
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As a consequence, we have obtained the controller we were looking for because all the 
inverted pendulum responses we obtained for all possible pairs of feasible sampling 
intervals and feasible sampling-actuation delays that will appear at run time fulfil the 
closed-loop performance specifications (and the closed-loop system is stable). At this point 
then, we can run the system, taking into account that the control task will adjust its 
parameters at each closed-loop execution. That is, the code executed by the control task will 
be slightly different to the classic one, in order to facilitate the controller parameters 
adjustment (for this case we use taskCTsfc, see Section 7.2.2, which performs the run time 
parameters adjustment by accessing online pre-calculated tables. For more details of the 
code, see Section A4 in Appendix A). The actual response we obtain when controlling the 
inverted pendulum with the task taskCTsfc performing the run time parameters adjustment 
according to the sequence of jitters specified in Table 8.2 can be seen in Figure 8.3 left. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.3. System response resulting from the offline schedule. Left- Compensated 
response. Right-all the possible responses (thin curves) and the compensated (thick curve) 

It can be seen in Figure 8.3-right that the actual response we obtain with the control task 
taskCTsfc, performing the run time parameters adjustment, is a combination of the possible 
ones we gave as acceptable in the offline control design, as we explained in Section 7.1.1. 

Remember that in the case of not compensating for the scheduling inherent jitters, the 
system controlled by a control task subject to similar jitters without adjusting the controller 
parameters leads to instability (Section 4.2.1). 

In Table 8.3 we show the look-up table used for task taskCTsfc.  

hj (ms) ττττ j (ms) Controller parameters 

60 20 

                     1.0373    0.0607        0            0        -0.0010 
                     1.2514    1.0373        0            0        -0.0205 
Φ(60, 20) =   -0.0009  -0.0000   1.0000   0.0600    0.0005 
                     -0.0298   -0.0009       0        1.0000    0.0100 
                            0             0             0            0             0 
Γ(60, 20)  =  [-0.0008   -0.0402    0.0004    0.0200   1.0000] 
L(60, 20)  =  [-273.5148  -57.8381 -127.0538  -69.4594  0.4046] 
K(60, 20)  =  [1.8871   15.9001   0.0310    0.4441   0.4527] 
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20 

                      1.0509    0.0712        0           0        -0.0012 
                      1.4665    1.0509        0           0        -0.0208 
Φ(70, 20) =    -0.0012  -0.0000   1.0000   0.0700    0.0006 
                      -0.0349  -0.0012        0       1.0000    0.0100 
                             0              0           0           0              0 
Γ(70, 20)  =  [-0.0013   -0.0504    0.0006   0.0250   1.0000] 
L(70, 20)  =  [-221.8512  -47.4701  -94.6528  -54.0628  0.3605] 
K(70, 20)  =  [2.0590   16.3363   -0.0159   -0.2387   -0.1452] 70 

30 

                      1.0509    0.0712         0          0         -0.0017 
                      1.4665    1.0509         0          0         -0.0310 
Φ(70, 20) =    -0.0012  -0.0000   1.0000   0.0700    0.0008 
                      -0.0349  -0.0012         0       1.0000    0.0150 
                            0            0              0           0              0 
Γ(70, 30)  =  [-0.0008    -0.0402   0.0004   0.0200   1.0000] 
L(70, 30)  =  [-231.5949  -49.7370  -94.6528  -55.0094  0.5738] 
K(70, 30)  =  [ 2.0767  16.5885   -0.0228   -0.3341   0.0747] 

20 

                      1.0667    0.0818         0           0        -0.0014 
                      1.6845    1.0667         0           0        -0.0210 
Φ(80, 20) =    -0.0016  -0.0000   1.0000   0.0800    0.0007 
                      -0.0401   -0.0016       0       1.0000    0.0100 
                            0             0            0            0            0 
Γ(80, 20)  =  [-0.0018   -0.0607    0.0009    0.0300   1.0000] 
L(80, 20)  =  [-186.5671  -40.2808  -73.3730  -43.6299  0.3280] 
K(80, 20)  =  [2.0178  14.1495   0.0165     0.1514    0.2422] 80 

30 

                      1.0667    0.0818         0           0        -0.0020 
                      1.6845    1.0667         0           0        -0.0313 
Φ(80, 30) =    -0.0016  -0.0000   1.0000   0.0800    0.0010 
                      -0.0401  -0.0016         0      1.0000    0.0150 
                            0             0            0           0             0 
Γ(80, 30)  =  [-0.0013   -0.0504   0.0006    0.0250   1.0000] 
L(80, 30)  =  [-194.8445  -42.1875  -73.3730  -44.3636  0.5202] 
K(80, 30)  =  [2.0403   14.4212   0.0073    0.0474    0.0570] 

20 

                     1.0846     0.0925         0           0        -0.0016 
                     1.9061     1.0846         0           0        -0.0213 
Φ(90, 20) =   -0.0020   -0.0001   1.0000    0.0900    0.0008 
                     -0.0454   -0.0020         0       1.0000    0.0100 
                          0              0             0           0               0 
Γ(90, 20)  =  [-0.0025   -0.0712   0.0012   0.0350    1.0000] 
L(90, 20)  =  [-161.1375  -35.0308  -58.6093  -36.1711  0.3029] 
K(90, 20)  =  [2.1461  14.3327   -0.0212   -0.2592    0.1487] 90 

40 

                     1.0846    0.0925         0           0         -0.0029 
                     1.9061    1.0846         0           0         -0.0421 
Φ(90, 40) =   -0.0020  -0.0001   1.0000    0.0900    0.0014 
                     -0.0454  -0.0020        0        1.0000    0.0200 
                           0            0            0             0              0 
Γ(90, 40)  = [-0.0013   -0.0504    0.0006   0.0250   1.0000] 
L(90, 40)  = [-175.8940  -38.3988  -58.6093  -37.3432  0.6691] 
K(90, 40)  = [2.0281   13.0412   0.0746    0.7462    0.1075] 

100 20 

                     1.1048    0.1035          0            0       -0.0019 
                     2.1316    1.1048          0            0        -0.0217 
Φ(100, 20)=  -0.0025   -0.0001    1.0000    0.1000   0.0009 
                     -0.0508   -0.0025        0         1.0000   0.0100 
                           0            0             0              0            0 
Γ(100, 20) = [-0.0032   -0.0818    0.0016    0.0400   1.0000] 
L(100, 20) = [-142.0324  -31.0413  -47.9226  -30.6136  0.2829] 
K(100, 20) = [2.0805   12.6090   0.0615    0.5377    0.3382] 

Table 8.3. Table for task taskCTsfc containing the parameters for the run time adjustment. 

The table, indexed by the feasible sampling intervals and feasible sampling actuation delays 
that will apply at run time (according to the sequence specified in Table 8.2), contain all the 
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matrices (and vectors) that are required to update the controller parameters. Taking into 
account that the controller has been designed in the discrete-time domain using pole 
placement with observer, the required parameters, as we discussed in Section 7.2.4, are the 
discretization of the system model (matrices Φ and Γ), the gain matrix (L) and the observer 
matrix (K). For this case, the look-up parameters table should be of 320 floats. Taking into 
account that a float is coded using, for example, 32 bits, the resulting table would require 
approximately 10Kb. 

Example 2: EDF 

If we schedule the tasks set using EDF, the inverted pendulum response becomes instable, 
as we saw in Section 4.2.1 (the same effect RM had). Therefore, to solve the problem, we 
can design the controller implemented by the control task tasksfc (characterized by standard 
timing constraints) in charge of controlling the inverted pendulum using the compensation 
approach controller design method, in order to meet the scheduling inherent jitters criterion. 

The first thing we have to do, given the task set and EDF as a scheduling policy, is to obtain 
the jitter variability (offline jitter analysis). In this case, due to the nature of the scheduling 
policy, we don’t know the exact task timing that will occur at run time. However, what we 
can obtain given the task set and EDF are the limits of the maximum jitter variability (see 
Section 4.1.3 for the general case). Given the task set and knowing that the system time 
granularity length g is 10ms, the jitter variability is, for sampling intervals, 
60ms≤h(tasksfc,k)≤100ms, and, for sampling-actuation delays, 20ms≤τ(tasksfc,k)≤30ms. 
Therefore, sets FHsfc and FTsfc for the control task tasksfc are5:  

FHsfc = {60, 70, 80, 90, 100} 

FTsfc = {20, 30} 

At this point, as before, we can start with the offline control analysis. That is, we have to 
design a controller using the compensation approach controller design method, which uses 
these FHsfc and FTsfc sets. 

First of all, we analyse whether the closed-loop performance requirements (inverted 
pendulum recovering from a perturbation in less than two seconds) are fulfilled if the 
inverted pendulum is controlled by a control task specified in terms of each specific 
combination of feasible sampling interval and feasible sampling-actuation delay (from all 
combinations of feasible sampling intervals and feasible sampling-actuation delays 
belonging to FHsfc and FTsfc). In Figure 8.4 we show the inverted pendulum responses we 
have obtained for all possible pairs of sampling intervals and sampling-actuation delays that 
will apply at run time. To do so, at each simulation, the inverted pendulum is controlled by a 
task implementing a classic controller designed through pole placement with observer (see 
Section A3 in Appendix A for code details) with each particular pair of values applying for 
the sampling period and time delay.  

                                                      
5 Note that if this way of obtaining sets FH and FT is not feasible (for example, because simulations of the 
schedule are not available, as we have in Section 4.2.1), we can always define these sets as in Equations 4.4 and 
4.5 in Section 4.1.3 
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Figure 8.4. Inverted pendulum responses (resulting from the use of each pair of - feasible 
sampling interval, feasible sampling-actuation delay - that may apply due to EDF 

scheduling). 

Although it is difficult to distinguish in Figure 8.4 which curve corresponds to each specific 
combination of feasible sampling interval and feasible sampling-actuation delay, we can see 
that all curves meet the performance requirements (the pendulum is brought to angle zero – 
i.e. recovers from the perturbation – in less than 2 seconds). 

For the stability analysis, the sequence of jitters we have falls into pattern c) of Section 
8.1.2. Therefore, for the stability analysis, we have to test case 3 of Section 7.1.2. The 
closed-loop system will be characterized by a product of an infinite number of matrices 
taken randomly from a finite set of matrices Ω specified by all possible combinations of hsfc,j 
and τsfc,j belonging to FHsfc and FTsfc: 

Ω = {Φcl1(60, 20), Φcl2(60, 30), Φcl3(70, 20), Φcl4(70, 30), Φcl5(80, 20), Φcl6(80, 30),  

     Φcl7(90, 20), Φcl8(90, 30), Φcl9(100, 20), Φcl10(100,30)} 

We apply the following stability test:  

Ω is asymptotically stable iff there is a positive definite matrix P such that ΦT
clk· P · Φclk – P 

< 0, ∀Φ clk∈  Ωk, for some k ≥ 1, where the inequality is in the sense of negative definiteness. 

Applying this condition to our set of 10 closed-loop matrices, we conclude that the system is 
stable.  

At this point then, we can run the system, taking into account that the control task will 
adjust its parameters at each closed-loop execution. That is, the code executed by the control 
task will be slightly different to the classic one in order to facilitate the controller parameters 
adjustment (for this case we use taskCsfc - see Section 7.2.2 -, which performs the run time 
parameters adjustment through online calculations). The actual response we obtain when 
controlling the inverted pendulum with the task taskCsfc performing the run time parameters 
adjustment can be seen in Figure 8.5 left. 
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Figure 8.5. System response resulting from the EDF scheduling. Left- Compensated 
response. Right-all the possible responses (thin curves) and the compensated (thick curve) 

It can be seen in Figure 8.5 right that the actual response we obtain with the control task 
taskCsfc, performing the run time parameters adjustment, is a combination of the possible 
ones we gave as acceptable in the offline control design, as we explained in Section 7.1.1. 

Remember that in the case of not compensating for the EDF scheduling inherent jitters, the 
system controlled by the same control task without doing the parameters adjustment 
becomes unstable (Section 4.2.1, Figure 4.13, left). 

8.2 Compensation approach control performance 
evaluation 

The objective of this section is to evaluate, in terms of control performance, the 
compensation approach as a design methodology to eliminate the degradation that jitters for 
control task cause in the closed-loop performance. As we have seen in the previous section, 
the introduced degradation can be completely eliminated. Therefore, the benefits of this 
design methodology are clear. In this section, we formally specify what performance index 
can be used for this evaluation, and we present a case study based on the inverted pendulum 
example (Section 2.2.2) using this performance index. 

8.2.1 Performance criterion selection 
To evaluate the control performance of the compensation approach as a design methodology 
to eliminate the degradation that jitters for control task cause in the closed-loop performance 
we define a performance loss criterion. The applicability of this criterion allows us to 
compare two different closed-loop system responses. 

As introduced in Section 2.2.1, the usual criteria to evaluate the performance of closed-loop 
systems are based on the integral of some function of the closed-loop system error. 
Typically, the ISE (Integral of Square Error), ITSE (Integral of Time-weighted Square 
Error), IAE (Integral of the Absolute Error) or ITAE (Integral of Time-weighted Absolute 
Error) are used. These criteria give a measure of the error of the closed-loop system 
response. We want to measure the difference between two closed-loop system responses. 
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Therefore, using the same idea of these classic performance criteria, but by considering the 
difference between two closed-loop systems responses as error, we define the following four 
performance loss criteria:  

•  Square performance loss error 

•  Time-weighted square performance loss error 

•  Absolute performance loss error 

•  Time-weighted absolute performance loss error 

where  

•  ynom is the nominal system response (obtained when the system to control is controlled 
by a task, which we call nominal task, executing at a nominal sampling period with a 
nominal time delay), which is used as a reference and  

•  yact is the actual system response (obtained when the system to control is controlled by a 
task that is implementing a controller designed using the compensation approach)  

Therefore, the error is understood as the difference between a given reference system 
response and the actual, that is, the response obtained applying the notions of 
compensations. Consequently, any of the performance loss criteria defined above can be 
chosen for our performance evaluation study.However, before choosing one of them, we 
investigate their sensitivity with respect to different values of the controller timing 
parameters. Since with the compensation approach controller parameters are adjusted at run 
time according to varying feasible sampling intervals and varying feasible sampling-
actuation delays, we evaluate the relation of the different performance loss criteria with 
respect to different values for the sampling period and time delay.  

To proceed with this performance loss criteria evaluation, we use the inverted pendulum as 
a system to control and the task tasksfc we have been using as a control task (see Section A3 
in Appendix A for the code details). In Section 2.2.2 we concluded that for the inverted 
pendulum problem, several values for the sampling period and time delay fulfilled the 
closed-loop performance specifications. From these feasible values, we choose a reduced set 
of feasible sampling intervals ({40, 50, 60, 70, 80, 90, 100, 110 and 120}) and feasible 
sampling-actuation delays ({20, 40, 50, 60, 70, 80}) because we are interested in the 
tendency of the values obtained by these performance loss criteria, not in the exact values. 
We evaluate their influence on each tendency separately. First of all, we have to define the 
ynom, which will be the response obtained by tasksfc with a constant sampling period of 40ms 
(nominal sampling period) and a time delay of 20ms (nominal time delay)6. The nominal 
response will be compared to the actual response, yact, which is the inverted pendulum 
response when it is controlled by tasksfc implementing a controller designed using the 
compensation approach with:  

                                                      
6 Note that we set the nominal period to 40ms because 40ms is, among the selected values for the evaluation, the 
one that gives (Section 2.2.2) a better system response in terms of the closed-loop system error (Section 2.2.1). 
For the same reason we choose 20 ms as a nominal time delay. 
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a) A single value for the feasible sampling interval (from the previous set of values and 
20ms as time delay) for all task instance executions, for each simulation.  

b) A constant value for the feasible sampling-actuation delay (from the previous set of 
values and 80ms as a sampling period) for all task instance executions, for each 
simulation. 

The evaluation a) is summarized in Table 8.4. The equivalent curves (which we obtain by 
joining the actual measurements) can be seen in Figure 8.6. Observe that the scales of the 
four curves are different because the criteria we evaluate are different, each one 
characterized by suitable units. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6 Influence of different values for feasible sampling intervals on each performance 
loss criterion values tendency  

hj (ms) P. Loss (e2) * Vq P. Loss (te2) * Vtq P. Loss (|e|) * Va P. Loss (t|e|) * Vta 
120 0.03223 0.01371 5.42 3.34 
110 0.02108 0.00853 4.31 2.57 
100 0.01313 0.00503 3.33 1.92 
90 0.00765 0.00276 2.49 1.38 
80 0.00406 0.00137 1.77 0.94 
70 0.00186 0.00058 1.16 0.59 
60 0.00065 0.00019 0.67 0.32 
50 0.00012 0.00003 0.28 0.13 
40 0 0 0 0 

Table 8.4. Influence of different values for feasible sampling intervals on each performance 
loss criterion values tendency 

As can be seen in Figure 8.6, all the curves look like the exponential type. The evaluation b) 
is summarized in Table 8.5. The equivalent curves (which we obtain by joining the actual 
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measurements) can be seen in Figure 8.7. Observe that the scales of the four curves are 
different because the criteria we evaluate are different, each one specified by suitable units. 

ττττ j (ms) P. Loss (e2) * Vq P. Loss (te2) * Vtq P. Loss (|e|) * Va P. Loss (t|e|) * Vta 
80 0.00208 0.00049 1.05 0.39 
70 0.00150 0.00034 0.88 0.32 
60 0.00098 0.00021 0.71 0.25 
50 0.00056 0.00012 0.53 0.19 
40 0.00025 0.00005 0.36 0.12 
30 0.00006 0.00001 0.18 0.06 
20 0 0 0 0 

Table 8.5. Influence of different values for feasible sampling-actuation delays on each 
performance loss criterion values tendency 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8.7. Influence of different values for feasible sampling-actuation delays on each 
performance loss criterion values tendency 

Note that in this case (Figure 8.7), not all the curves look like the exponential type. The 
criteria based on the absolute error (either time-weighted or not), give a linear relation 
between time delays and errors. Since all the performance loss criteria give similar results, 
we choose the Absolute performance loss error criterion (denoted either by Va or |e|) simply 
because it gives a better linear relation between timing parameters and errors. In this way, in 
the compensation approach performance evaluation, using criterion Va we will have a better 
discretization between different closed-loop system responses, although any of the 
performance loss criteria could have been selected. Note also that there is no need to weight 
the Va criterion with time because the difference between the nominal response and the 
actual response will already depend on delays (which are the parameter that usually needs to 
be weighted by time due to its temporal nature). 
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8.2.2 Evaluation study 
In this section, we evaluate in different scenarios the compensation approach as a design 
methodology for eliminating the degradation that jitters for control task cause in the closed-
loop performance in different situations of interest. This study is based on the inverted 
pendulum example (Section 2.2.2). The scenarios in which we evaluate the performance of 
the compensation approach, either comparing closed-loop system responses or using the 
Absolute performance loss error criterion (Va), are the following:  

•  A: Control tasks subject to sampling jitter and sampling-actuation jitter. 

•  B: Compensation approach performance depending on scheduling policies. 

•  C: Compensation approach performance depending on specific jitter sequences. 

•  D: Compensation approach performance with fixed actuation instants. 

Scenario A: Control tasks subject to sampling jitter and sampling-actuation jitter 

As we have seen in Section 8.1.3, the degradation in closed-loop systems caused by jitters in 
control tasks can be completely eliminated if these tasks use a controller designed using the 
compensation approach. Then, the benefits of using the compensation approach are clear. 

For example, comparing the performance of the closed-loop system when the inverted 
pendulum was controlled by a control task executing a classic controller code (which is not 
compensating for scheduling inherent jitters, see Section 4.2.1) and by a control task 
executing a slightly modified code, adjusting its parameters according to actual jitters 
(Section 8.1.3), the evaluation is obvious. That is, in the first case the closed-loop system 
became unstable while in the second case the closed-loop system met the performance 
requirements. Therefore, in this case, there is no point in using the Absolute performance 
loss error criterion (Va) to compare a non-compensated response with the compensated 
response of the inverted pendulum. However, to compare the improvement obtained by the 
compensation approach, as a example, in Figure 8.8 we compare (left) the degradation 
caused by jitters in EDF (corresponding to Figure 4.13 left in Section 4.2.1) with (right) the 
response obtained when applying the compensation approach in EDF (corresponding to 
Figure 8.5-left in Section 8.1.3).  

 

 

 

 

 

 

 

 

Figure 8.8. Inverted pendulum response. Left - Degradation. Right - Compensation 
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Scenario B: Compensation approach performance depending on scheduling policies 

In this situation we analyse the performance of the compensation approach when the same 
set of tasks are performed using different scheduling policies. As we have seen in Section 
4.2.1, different scheduling policies give different jitter patterns (sequences of sampling 
intervals and sampling-actuation delays for the same set of tasks) for each control task. Note 
that the calculation of each control signal at each control task instance execution depends on 
each specific sampling interval and sampling-actuation delay accounted for by the run time 
parameters adjustment. Therefore, the response we obtain for the same control task 
compensating for different jitter patterns will also be different, although all meet the closed-
loop performance specifications.  

However, if we compare the responses we obtain for the inverted pendulum controlled by a 
control task adjusting its controller parameters at each instance execution when the set of 
tasks (specified Table 4.7 in Section 4.2.1) is scheduled by RM or EDF, we observe no 
significant difference, as shown in Figure 8.9. 

 

 

 

 

 

 

 

 

Figure 8.9. Inverted pendulum response. RM vs EDF compensation 

However, if we evaluate the two responses with the absolute performance loss error (Va) 
criterion by comparing the actual compensated responses with a nominal response obtained 
by controlling the inverted pendulum by using a control task with a constant sampling 
period of 40ms and a constant time delay of 20ms, we can see in Table 8.6 that the 
compensated responses are not equal. 

 Absolute performance loss error (Va) 
EDF scheduling 1.156 
RM scheduling 1.144 

Table 8.6. Absolute performance loss error due to EDF and RM 

Therefore, it is clear that for a given control task adjusting its controller parameters at run 
time according to different jitter patterns produces different closed-loop system responses. 
That is, the performance of the compensation approach depends on the actual sequence of 
jitters. 
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Scenario C: Compensation approach performance depending on specific jitter 
sequences 

Since in the previous situation we have seen that a specific jitter pattern (which a control 
task is compensating for) influences the performance of the compensation approach, in this 
situation we investigate if the jitter sequence ordering is important with respect to the 
performance of the compensation approach. That is, taking a known cyclic jitter sequence, 
we want to study the response of the inverted pendulum controlled by a control task 
designed using the compensation approach when the perturbation (modelled as a pulse) 
arrives at different specific times giving a cyclic schedule.  

In Example 1 in Section 8.1.3, we have seen that the actual response of the inverted 
pendulum we obtain with the control task designed using the compensation approach is a 
combination of the 8 possible ones we consider acceptable in the control design stage 
(offline control analysis). However, we showed only one response obtained by the 
compensation approach, where at each controller execution the sampling interval and 
sampling-actuation delay that applied followed the jitter sequence specified by the offline 
schedule (Figure 8.1 in Section 8.1.3). Note that the jitter sequence has 15 pairs (of 
sampling interval, sampling-actuation delay), as we show again in Table 8.7.  

Instance  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 
h(taskk) 60 80 100 60 90 80 70 80 90 80 70 90 70 80 100 
ττττ(taskk) 20 20 20 20 20 30 30 20 40 20 20 20 20 30 20 

Table 8.7. Sequence of sampling intervals and sampling-actuation delays due to scheduling 
inherent jitters 

Therefore, to evaluate the influence of the ordering of the jitters sequence on the inverted 
pendulum response, we run 15 different simulations. In each simulation, we force the 
perturbation to arrive at a different task instance execution, which corresponds to a different 
pair of sampling interval and sampling-actuation delay. 

Perturbation arrival Absolute performance loss error (Va) 
Worst-case (100,40) 3.41 
At instance (1): (60,20) 1.14 
At instance (2): (80,20) 2.11 
At instance (3): (100,20) 2.09 
At instance (4): (60,20) 1.12 
At instance (5): (90,20) 2.77 
At instance (6): (80,30) 1.70 
At instance (7): (70,30) 0.88 
At instance (8): (80,20) 3.25 
At instance (9): (90,40) 1.39 
At instance (10): (80,20) 1.68 
At instance (11): (70,20) 1.53 
At instance (12): (90,20) 1.90 
At instance (13): (70,20) 2.05 
At instance (14): (80,30) 1.65 
At instance (15): (100,20) 2.28 

Table 8.8. Performance values depending on the ordering of the jitter sequence  
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In Table 8.8, we show the performance loss values (with respect to a nominal response 
obtained for a control task when h=40 ms and τ = 20ms) of the 15 simulations. In addition, 
we know that the longest sampling interval in the jitter sequence is 100ms (h(task3) or 
h(task15) in Table 8.7), and the longest sampling-actuation delay is 40ms (h(task9) in Table 
8.7). In Table 8.8 we also evaluate the performance loss of the response of the inverted 
pendulum when it is controlled by a control task with a constant sampling period of 100ms 
and constant computational delay of 40ms, which we call the worst-case response, in order 
to give a reference value. 

In Figure 8.10, we show the performance values for the 15 simulations (series). We also 
added in Figure 8.10, the mean value of the 15 series we ran (Average). 

 

 

 

 

 

 

 

 

Figure 8.10. Performance values depending on the ordering of the jitter sequence 

From Figure 8.10 we can see that the response of the inverted pendulum controlled by a task 
designed using the compensation approach strongly depends on the jitter ordering. Figure 
8.10 suggests an important property: the performance of the compensation approach, at least 
for this example, is unexpectedly good. That is, any of the inverted pendulum responses 
obtained by the task adjusting its controller parameters according to jitters is better (in terms 
of the performance criterion) than the so-called worst-case response. Note the three 
following facts: 

a) the so-called worst-case response is obtained by a control task executing a classic 
control algorithm executing with a constant sampling period and a constant time delay.  

b) in contrast, all of the compensated responses are obtained by a control task that executes 
the slightly modified code, adjusting its parameters according to different pairs of 
sampling intervals and sampling-actuation delays. 

c) looking at the sampling intervals and sampling actuation delays sequence we are dealing 
with, it is clear that the specific sampling interval and sampling-actuation delay the 
control task is compensating for are always equal to or shorter than the constant 
sampling period and time delay of the task giving the so-called worst-case response.  

However, from a theoretical control response analysis point of view (Section 2.2.2), as far as 
we know, no assurances have been given about the fact that 1) a controlled system response 
obtained by a control task adjusting its controller parameters according to different values 
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for the sampling period and time delay is better than 2) the response obtained by a classic 
controller task designed with values for its constant sampling period and constant time 
delay that are equal to the longest sampling interval and sampling-actuation delay that 
appeared in 1). Consequently, because in this example we have shown this fact, we 
conclude that the performance of the compensation approach is better than expected. 

Scenario D: Compensation approach performance with fixed actuation instants. 

In Section 3.2.2, we explained two possible ways of implementing a control loop: the single 
task and the multiple task approach. Recall that in the multiple task approach, the three main 
activities of a closed-loop, sampling, control computation and actuation are implemented in 
separate tasks. In the single task approach, the three main activities of a control loop are 
implemented within a task. One of the main advantages of the multiple task approach over 
the single task approach is its ability to provide more flexibility in terms of schedulability 
(see Section 3.2.2 for further discussion). In addition, the flexibility provided by the 
multiple task approach could be used to eliminate the actuation instants variability by 
enforcing (through the scheduling policy) the actuation task execution at a fixed time after 
the sampling occurs for all control task instances executions, as assumed by classic discrete-
time control theory (see Section 3.1.1). As a consequence, rather than compensating for 
varying feasible sampling-actuation delays, we should compensate for a constant time delay. 
However, in this case, the constant time delay should be longer than or equal to any of the 
feasible sampling-actuation delays for which we provide compensations. 

Therefore, it is also interesting to evaluate the performance of the compensation approach in 
this scenario. The easiest way to set up this evaluation is to consider a control task with 
constant sampling period and either  

a) a method of compensating for varying feasible sampling-actuation delays: since τ<h (as 
assumed in the compensation approach controller design method, see Chapter 6), if we 
fix the sampling interval hj at 80ms (constant sampling period), then we can allow the 
feasible sampling-actuation delay to go from 20ms to 80 ms (in steps of 10ms), in a 
randomly generated way at each controller execution.  

b) a constant but longer time delay: having a sampling period of 80ms, we choose 80 as a 
constant sampling-actuation delay, which is the longest sampling-actuation delay that 
can appear in simulations a).  

In all the cases, the nominal response used in the performance loss criterion Va is obtained 
by a control task with a constant sampling period of 40 ms and a constant sampling-
actuation delay of 20ms. 

To simulate a), we run 10 simulations (series). The performance evaluation of the inverted 
pendulum response we obtained is summarized in Table 8.9, along with the performance 
evaluation of the response obtained by simulating b). Note that because in each of the 10 
simulations of a) the feasible sampling-actuation delays were randomly generated for each 
controller execution in the single task approach, the performance loss for each inverted 
pendulum response varies. However, as can also be seen in Figure 8.11, which graphically 
represents Table 8.9, the performance loss of the system response of the cases with varying 
sampling-actuation delays is always smaller than the case with constant time delay. 
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Series Absolute performance loss error (Va) 
S0 0.42 
S1 0.27 
S2 0.30 
S3 0.15 
S4 0.38 
S5 0.19 
S6 0.21 
S7 0.32 
S8 0.34 
S9 0.64 

Fixed (80,80) 1.05 

Table 8.9. Performance study. Varying feasible sampling-actuation delays vs. a fixed time 
delay 

 

 

 

 

 

 

Figure 8.11. Performance study. Varying feasible sampling-actuation delays (series) vs. a 
constant time delay 

From Figure 8.11 we can conclude that, for the inverted pendulum example, compensating 
for varying values for the time delay is better than having a constant but longer value for the 
time delay. In summary, the multiple task approach has the potential to use its flexibility to 
eliminate the variability (caused by sampling-actuation jitter) in the actuation instants. 
However, if this results in a constant but longer time delay for the controller design, the 
performance of the closed-loop system decreases. 

8.3 Summary 
In this chapter we explained how to use standard scheduling approaches to schedule control 
tasks that implement controllers designed using the compensation approach. In addition, we 
have shown that using the compensation approach we eliminate the degradation that 
scheduling inherent jitters for control tasks introduce in the controlled system response.  

We also have formally defined a performance criterion to evaluate the compensation 
approach as a design methodology to eliminate the degradation that jitters for control task 
cause in the closed-loop performance. Through studying different scenarios given by 
different scheduling situations, we have concluded that the benefits of using the 
compensation approach are clear. It is interesting to point out that we have also shown that 
the performance of the compensation approach depends on the specific sequence of 
sampling intervals and sampling-actuation delays (caused by jitter) that are used for the run 
time parameters adjustment. This latter issue is further investigated in the next chapter. 

 



 



9. Flexible control task scheduling 

 

141

Chapter 9 

Flexible control task scheduling 
Our compensation approach provides another advantage that leads to better system 
schedulability. This comes from its ability to derive more flexible timing constraints than 
just periods and deadlines necessary to apply standard scheduling policies such as EDF and 
FPS. After defining these new flexible timing constraints for control tasks, we demonstrate 
how to exploit them to improve system schedulability. Specifically, we show that by using 
flexible timing constraints for control tasks, we obtain feasible schedules for task sets 
(which include control and non-control tasks) that are not feasible when scheduled using 
scheduling methods based on fixed timing constraints for periodic tasks. 

We also introduce a new approach to control task scheduling called Quality-of-Control 
(QoC) scheduling that takes advantage of the control performance information that these 
new flexible timing constraints implicitly have. First of all, we define a Quality-of-Control 
(QoC) metric that associates each feasible timing constraint with a quantitative value 
expressing control performance in terms of the closed-loop system error (see Section 2.2.2) 
resulting from the use of that timing constraint. This offers the possibility of taking 
scheduling decisions based on this control information for each control task invocation, 
rather than using fixed timing constraints with constant periods and deadlines.  

This opens up a novel scheduling problem, QoC scheduling, in which the QoC information 
of control task timing constraints is used to improve the performance of the closed-loop 
systems in the presence of perturbations. We present the main scheduling issues that 
underlie this problem and also identify feasible solutions. In sum, we show (a) how the 
problem of reacting to perturbations during control can be addressed by specifying flexible 
timing constraints and associated QoC, and (b) how these timing constraints in turn can be 
satisfied by applying standard scheduling techniques. 

The work explained in this chapter has been partially presented in [MAR01e], [MAR02a] 
and [MAR02b]. 

9.1 Control task scheduling with flexible timing constraints 
In this section we discuss how the temporal constraints imposed by our jitter compensation 
approach can be exploited to improve real-time system schedulability. First, we address 
fixed timing constraints as demanded by standard scheduling schemes. Then we show how 
novel, flexible timing constraints for control tasks can be used to fully exploit the flexibility 
provided by our approach in order to improve system schedulability. Note that we do not 
propose a scheduling approach, but rather a new set of flexible timing requirements for 
control tasks. 



9. Flexible control task scheduling 

 

142

9.1.1 Fixed timing constraints for control tasks 
Classical discrete-time control theory [AST97] assumes equidistant sampling and actuation 
within the closed-loops: the timing requirements that an implementation must guarantee are 
a constant sampling period, h, (between successive sampling instants), and a constant time 
delay, τ, (from related sampling to actuation instants) (see Section 3.1.1). Although several 
values of the sampling period and time delay guarantee stability and fulfil the control 
response performance specifications, at the design stage, the control designer is faced with 
selecting specific values for h and τ. 

Standard scheduling schemes are based on fixed timing constraints such as periods and 
deadlines. Here, fixed means that a single value for a constraint holds for all instances of a 
task. Normally, in real-time control systems, control task periods and deadlines are selected 
as follows (as explained in Section 3.2.2):  

•  Period: after the control analysis (which includes stability and response analysis), for a 
classic discrete-time controller design, a sampling period h is chosen. When this 
controller is implemented in a real-time task, the task period (T) is set equal to the 
sampling period (h).  

•  Deadline: deadline (D) is set equal to the period (T) or at a relative fixed time with 
respect to the start of the period (deadline<period or deadline>period), given by the 
time delay (τ) assumed in the controller design stage  

However, note that to meet the semantics of control models, the exact finishing time is 
required rather than an upper Limit on the completion time of the control task (see Section 
3.2.1 for further discussion)1. As stressed in Chapter 3, this imposes additional restrictions 
on control task scheduling that can impair schedulability, e.g., non pre-emptive execution, 
or setting a deadline equal to start time plus execution time. This is summarized in Figure 
9.1. 

Discrete-time control 
design 

 Fixed timing 
constraints 

Sampling period, h ⇒ Period, T = h 
Time delay, τ  Deadline, D = τ 

Figure 9.1. Fixed timing constraints for control tasks 

The selection of fixed timing parameters for a task has to be based on worst-case 
assumptions about load scenarios, task phasing, etc. That is, should the load situation be 
because of a single instance, the timing constraints to meet this worst-case demand have to 
be imposed on all instances. This reduces schedulability and may even render the tasks 
unschedulable although all demands may be met from a control perspective. The approach 
we describe next enables the derivation and setting of timing constraints on a per-instance 
basis, adjusting the task instance timing constraints to the situation faced by that instance. 
Thus, the timing constraints may vary from instance to instance, but the overall goal of 
control stability is ensured [MAR01e]. 
                                                      
1 Otherwise, scheduling inherent jitters for control tasks will degrade the performance of the closed-loop system 
(Chapter 4). 



9. Flexible control task scheduling 

 

143

9.1.2 Flexible timing constraints for control tasks 
The compensation approach (see Section 6.1.1) is based on the assumption of non-
equidistant sampling and actuation. It allows us to design discrete-time controllers that 
depend on a finite set of feasible sampling intervals hi,j, and on a finite set of feasible 
sampling-actuation delays, τi,j, derived during the controller design stage. 

From these new timing requirements, for control tasks we define new flexible timing 
constraints. For each control task taski, flexible timing constraints are defined in the form of 
instance separations and response times, which are given by the feasible sampling intervals 
(of set FHi) and feasible sampling-actuation delays (of FTi) used in the compensation 
approach controller design stage (as summarized in Figure 9.2):  

•  Instance separation: the time interval between the start of two consecutive instances of 
a control task taski, (instance separation), is limited by the discrete range of feasible 
sampling intervals hi,j (hi,j∈ FHi) used in the compensation approach controller design 
stage:  

∀  taski,k, taski,k+1 : s(taski,k+1) – s(taski,k) ∈ FHi 

•  Response time: the time interval from the start time to the finishing time of a task 
instance, (response time), is limited by the discrete range of feasible sampling-actuation 
delays τi,j (τi,j∈ FTi) used in the compensation approach controller design stage:  

∀  taski,k: f(taski,k) – s(taski,k) ∈ FTi 

Recall that at run time, the current sampling-actuation delay for a particular instance has 
to be known at the execution start time of the control computation for the application of 
the appropriate compensation. That is, the response time constraint, while flexible, has 
to be kept such that the actuation finishes at rather than before the specified time. 

Compensation approach  Flexible timing constraints 
Feasible sampling intervals: 

hi,j∈ FHi ⇒ 
Instance separations: 

∀  taski,k, taski,k+1 : s(taski,k+1) – s(taski,k) ∈ FHi 
Feasible sampling-actuation delays: 

τi,j∈ FTi 

 Response times: 
∀  taski,k: f(taski,k) – s(taski,k) ∈ FTi 

Figure 9.2. Flexible timing constraints for control tasks 

Our flexible timing method does not set specific values for the timing constraints of control 
tasks. Rather, it provides ranges and their combinations to choose from, taking into account, 
for example, the schedulability of other tasks. The application of flexible timing constraints 
allows us, at run time, to choose different settings (instance separation and response time) 
for each control task instance execution. Thus, our methods provide more flexibility than 
can be expressed by fixed timing constraints, as is suggested in [FOH97]. 

Recall that for each control tasks taski, the different settings (instance separation and 
response time) have to be chosen from sets FHi and FTi. Therefore, instance separations and 
response times defined as the flexible timing constraints for the control task taski coincide 
with sets FHi and FTi specified in the compensation approach design stage. Therefore, in the 
rest of this chapter, each hi,j∈ FHi will be referred to either as instance separation or feasible 
sampling interval and each τi,j∈ FTi will be referred to either as response time or feasible 
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sampling-actuation delay. Note that while similar for subsequent instances, these constraints 
differ from the fixed ones: using period Ti, the kth instance of a task taski can start at (k-
1)*Ti, whereas with the constraints here it can start at tk (given by equation (6.39), where tk 
is the sum of all hi,j already applied before kth instance, hi,j∈ FHi). Since the hi,j can vary, the 
instance start times will be different. 

Figure 9.3 illustrates the flexible timing constraints in comparison with the fixed timing 
constraints. Assume we have a control task, characterized by fixed timing constraints such 
as a period (T) of 50ms and the deadline (D) of 10ms. The exact execution time is 10ms. 
Figure 9.3 first row shows the first four instances of the control task with fixed timing 
constraints, where boxes mark periods and executions are shaded. As defined by fixed 
timing constraints, the kth instance of the task will start at (k-1)*50ms. For example, the 
fourth instance will start at 150ms. Assume now that the same control task is characterized 
by flexible timing constraints, with 40 or 50ms as possible instance separations. Deadline 
and exact execution time is 10ms (as before). In this case, the fourth instance of the control 
task need not start at any fixed time. It can start at any time ranging from 120 to 150ms (in 
steps of 10ms). Note that for the case of the control task with flexible timing constraints, 
Figure 9.3 (from the second row) shows all possible instances separation sequences for the 
first four instances. Our method provides the possible values to be used and ensures control 
stability by compensation. 
 0 1 30 40 50 6 80 90 100 1 130 140 150 160 170 180 190 
Fixed constraints                  
   
Flexible constraints (40,40,40)  
  
Flexible constraints (40,40,50)  
  
Flexible constraints (40,50,40)  
   
Flexible constraints (40,50,50)   
   
Flexible constraints (50,40,40)   
   
Flexible constraints (50,40,50)   
   
Flexible constraints (50,50,40)   
   
Flexible constraints (50,50,50)   

Figure 9.3. Fixed timing c
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9.1.3 Example  
In the previous section we have explained that our new timing constraints for control tasks 
provide more flexibility than can be expressed by fixed timing constraints. In this section, 
using an offline schedule construction approach, we will show how flexible timing 
constraints for control tasks can be used to improve system schedulability. First, we present 
an example of a task set that cannot be scheduled using fixed timing constraints. By 
exploiting flexible timing constraints, however, we can construct a schedule that meets 
control demands (as we suggested in Section 5.4, in Transforming unfeasible schedules into 
feasible schedules and stable control systems). 

Consider the task set shown in Table 9.1, where task tasksfc is a control task implementing a 
classic state feedback controller designed through pole placement with observer for the 
inverted pendulum (see Section 2.2 for further details of the control design and Section A3 
in Appendix A for the code details). Tasks task1 and task2 were added in order to introduce 
the jitters into the control task taskc. 

 Ti Ci Di Oi 
task1 100 60 100 0 
task2 200 20 20 0 
tasksfc hsfc,j 20 20 40 

Table 9.1. Task set (in ms), where Ti, Ci, Di and Oi denotes period, computation time, 
deadline and offset 

Let us suppose that after control analysis (see Section 2.2.2), feasible values for the 
sampling period are 60, 80, or 100ms.  

Firstly, consider scheduling using fixed timing constraints. If we schedule using fixed 
timing constraints, a single value for the period has to be assigned to task tasksfc. Therefore, 
for illustrative purposes an hsfc,j of 80ms has been chosen as the period for tasksfc, as must be 
done when using fixed timing constraints (see Section 9.1.1). Therefore in this example, hsfc,j 
for all instances of the control task tasksfc is set to 80ms. Note that tasksfc has a deadline 
equal to its computation time (20ms) and an offset of 40ms. It is obvious that both tasksfc 
and task2 need to execute between 200ms and 220ms to meet their respective deadlines, 
which is not possible, as shown in Figure 9.4. Therefore, a conflicting scheduling situation 
occurs at time 200ms. Figure 9.4 shows a partial schedule for 400ms, which corresponds to 
the LCM of the task periods. Note that this schedule is executed repeatedly where boxes 
mark periods of tasks and executions correspond to shaded areas.  
  0     100     200     300      

task1 …                                         … 

task2 …                                         … 

tasksfc …                                         … 

Instances of tasksfc tasksfc,1   tasksfc,2   tasksfc,3   tasksfc,4   tasksfc,5  
hsfc,j - constant   hsfc,j=80     hsfc,j = 80   hsfc,j = 80   hsfc,j = 80  hsfc,j = 80 

Figure 9.4. Non-feasible schedule (in ms) 

schedule 
repeated
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Now, consider associating flexible timing constraints with tasksfc. Instead of selecting only 
one fixed hsfc,j for tasksfc, flexible timing constraints allow us to choose a specific hsfc,j for 
each instance. As we explained in Section 9.1.2, if we group the three feasible values for the 
sampling period in the set of feasible sampling intervals (FHsfc) and use them to design the 
controller implemented in the control task using the compensation approach, we will have 
the three possible values to choose from as instance separations (FHsfc={60,80,100} (in 
ms)). As in the schedule above, if we set, for instance tasksfc,2, hsfc,2 (80ms), it will cause a 
scheduling conflict with task2. Instead, we choose hsfc,1 (60ms) and so tasksfc,3 finishes before 
task2 starts. Then, we choose for tasksfc,3 hsfc,3 (100ms) and hsfc,2 (80ms) for the remaining 
instances. Using these hsfc,j values instead of a fixed period, the task set can be scheduled, as 
shown in Figure 9.5.  

  0     100     200     300      

task1 …                                         … 

task2 …                                         … 

tasksfc …                                         … 

Instances of tasksfc tasksfc,1   tasksfc,2  tasksfc,3    tasksfc,4   tasksfc,5  
hsfc,j - varying    hsfc,2=80   hsfc,1=60    hsfc,3=100   hsfc,2=80  hsfc,2 =80 

Figure 9.5. Feasible schedule (in ms) 

Therefore, by taking advantage of flexible timing constraints, we obtain feasible schedules 
from non-feasible schedules based on fixed timing constraints.  

Still, as Figure 9.6 shows (solid line), because the new controlled implemented now by 
tasksfc has been designed using the compensation approach (like task taskCsfc in Section A4 
in Appendix code), which takes into account the specific hsfc,j used at each instance 
execution to update its controller parameters, stability is maintained and the inverted 
pendulum response meets the performance specifications (see Section 2.2.2) – even though 
task instances have different timing constraints.  

 

 

 

 

 

 

 

 

 

Figure 9.6. Inverted pendulum response of a task scheduled using flexible timing 
constraints (either using compensations or not), which was not schedulable using fixed 

timing constraints. 

schedule 
repeated
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Note that in Figure 9.6 we do not compare this response with the response obtained by fixed 
timing constraints because the task set is not feasible. The dotted line in Figure 9.6 
corresponds to the response if no compensations are used: in this case, although the task set 
is feasible due to the use of flexible timing constraints, the response is not good because the 
controllers parameters are not adjusted at run time. Therefore, the control performance 
requirements (to recover from a perturbation in less than two seconds) are not met, although 
the task set is feasible. 

As the main conclusion, by applying flexible constraints for control tasks, the task set, 
which is not schedulable using fixed constraints, can be scheduled to meet the control 
demands, that is, the task set is feasible from both a scheduling and a control perspective. 

9.2 Quality-of-Control (QoC) scheduling 
Control systems are dynamic systems in which perturbation handling determines their 
performance, thus challenging the controlling strategy. To dynamically optimize the quality 
of the closed-loop system response when perturbations occur, we present in this section a 
new approach to control task scheduling, QoC scheduling, which is able to react to 
perturbations by tuning the control task execution.  

To do so, we first discuss the impact of the different type of flexible timing constraints 
(instance separation and response time) on the closed-loop system error (Section 2.2.1). We 
argue and show experimentally that by selecting specific values of instance separations 
rather than of response times, the effective improvement we obtain on the closed-loop 
system performance - in terms of minimizing the system error - is considerable. This allows 
us to define a Quality-of-Control (QoC) metric that we firstly use to associate each instance 
separation value with a quantitative value expressing control performance in terms of the 
system error resulting from the use of that timing constraint. Then, using the QoC metric, 
we investigate the influence of different orderings of instance separation values on the 
overall QoC. We show how the QoC of the controlled system response can be optimized by 
appropriately selecting specific values for each control task instance separation constraint.  

This offers the possibility of taking scheduling decisions based on the control information 
for each control task invocation (rather than fixed timing constraints with constant periods 
and deadlines), thus demanding novel scheduling approaches. We present a new scheduling 
problem, QoC scheduling, in which the QoC information of task timing constraints can be 
used to improve the performance of the controlled processes in the presence of 
perturbations. Throughout the specification of the QoC scheduling problem, we categorize 
the main scheduling issues and identify feasible solutions. In particular, we show how the 
problem of reacting to perturbations with control tasks specified with timing constraints 
expressing QoC can be solved applying standard guarantee techniques. 

Note that controller designs attempt to minimize the system error for certain anticipated 
inputs or perturbations, i.e., to bring the actual response closer to the desired one, which 
also, for example, reduces the control signal magnitude and thus the required energy 
[AST97]. By defining the QoC metric and providing a solution for the QoC scheduling 
problem, we associate the responsibility for minimizing the system error with both the 
controller design and the schedule.  
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9.2.1 Quality-of-control criterion definition 
In order to make the control information that control task flexible timing constraints 
incorporate explicit and available to the scheduler, we define a Quality-of-Control (QoC) 
metric that relates the performance of closed-loop systems with the timing of the controlling 
tasks. Instance separations (time intervals between consecutive samples) and response times 
(time intervals between related sampling and actuation instants) determine the timing of a 
controlling task. Consequently, we are interested in the influence of these timing parameters 
on the performance of the closed-loop system. 

Performance of closed-loop systems 

As we introduced in Section 2.2.2, the primary evaluation of closed-loop systems concerns 
meeting response characteristics and stability. Beyond these requirements, controller 
designs attempt to minimize the system error for certain anticipated inputs or perturbations. 
Since the compensation approach controller design method already ensures stability and 
meets the performance requirements (Section 7.1), we define a quality-of-control criterion 
in terms of controlled system response error, which is the difference between the desired 
response of the system and the actual response of the system (Section 2.2.1).  

 

 

 

 

 

Figure 9.7. Inverted pendulum response error 

For example, in the inverted pendulum problem (Section 2.2.2), the desired response is to 
maintain the vertical position (that is specified with angle zero as a reference) of the 
inverted pendulum at all times. However, a perturbation may unbalance the pendulum. The 
controller then is in charge of balancing it again, preventing it from falling. In this case, the 
system error is the difference between the desired response (zero angle) of the inverted 
pendulum and the actual response (oscillatory decreasing curve) in the presence of the 
perturbation, as we show in Figure 9.7. 

As we reviewed in Section 2.2.1, classic performance indices used in control that give 
quantitative measures of closed-loop system responses in terms of errors are ISE (Integral of 
Square Error), ITSE (Integral of Time-weighted Square Error), IAE (Integral of the 
Absolute Error) or ITAE (Integral of Time-weighted Absolute Error) [DOR95].  

Impact of flexible timing constraints on the closed-loop system error 

As we explained in Section 2.2.2, sampling periods affect the location of the closed-loop 
poles, thus giving different degrees of performance. On the other hand, time delays only 
affect the controlled system performance in terms of delaying the response. Despite having 
different responses depending on different values for the sampling period (instance 

    Desired inveted pendulum response 

   Actual inverted pendulum response  

Perturbation arrival 

Error No error No error 

Settling time 

time 
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separations) or time delays (response times), we define the QoC metric in terms of the 
instance separation constraint because it has a more drastic impact on the control 
performance than the impact of response times. To confirm this hypothesis, we evaluate 
separately the influence of different values of the task instance separation constraint and 
different values of the task response time constraint on the controlled system error. 

For this evaluation, the IAE (or ISE) index would give the same evaluation (looking at the 
system error) for closed-loops designed with or without time delays, because they weight all 
the errors equally, regardless of the time they occur. Therefore, we use one of the indices 
that weight errors with time, ITAE or ITSE, thus penalizing delayed responses. We choose 
the ITAE index2 (9.1): 

 

(9.1) 

 
where ydes is the desired system response, yact is the actual system response and t0 and tf are 
the initial and final times of the evaluation period. 

To proceed with this evaluation, we use an inverted pendulum as a controlled process and 
we introduce a perturbation that causes an imbalance in the pendulum. As we saw in Section 
2.2.2, several values for the sampling period (from 30 to 150ms, in steps of 10ms) and time 
delay (20 to 80ms, in steps of 10ms) guarantee stability and fulfil the control response 
performance specifications. Figure 9.8 shows the evaluation of the system error using the 
ITAE criterion (from the perturbation arrival to the settling time) when the inverted 
pendulum, in the presence of a perturbation, is controlled by a control task executing with a: 

•  constant value for all instance separations, ranging from 30 to 150 ms (Figure 5 left) and  

•  constant value for all response times, ranging from 20 to 80ms (Figure 5 right). 
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 the ITSE index the results will be similar. However, the ITAE index, using the absolute error 
 the squared error, gives a better linear relation between system errors resulting from the use of 
 separations. 



9. Flexible control task scheduling 

 

150

:( <act seqyQoC

 

 

 

 

 

 

Figure 9.8. ITA

From Figure 9.8 w
the system error t
thus penalizing lo
determining the s
relation between t
defining the QoC m

We define the Qo
closed-loop system
interested in weigh
for measuring the
example, a specif
weighting all the 
separating the erro
 

where ydes is the d
the initial and fina

Since the aim of co
better the QoC. T
proportional. For 
response error for 

 

•  where the IAE
occurrence of 

                              
3 In the following, we 
task taski if this relatio
Response 
times 

ITAE 

20 1.0468 
30 1.0670 
40 1.0872 
50 1.1074 
60 1.1276 
70 1.1478 
80 1.1680 
∫ −=
ft

t
actdes dttytyIAE

0

)()(

)):(
1

):(
1

):(
1

):(
1

) ,

max,min,

max,,
,,

><
−

><

><
−

><
=∈>

iactiact

iactjiact
ijiji

hseqyIAEhseqyIAE

hseqyIAEhseqyIAE
FHhh

E index depending on different instance separations (top) and response 
times (bottom) 

e confirm our hypothesis: instance separations have stronger effects on 
han response times. Although ITAE weights later errors more heavily, 
nger response times, instance separations still have more influence on 
ystem error. This conclusion leads us to decide to focus only on the 
he values for the instance separation constraint and the system error in 

etric. 

C metric for each sequence of instance separation values in terms of the 
 error. Here, we use the IAE criterion (9.2) because now we are 
ting all the errors equally. Note that we are defining an absolute metric 

 quality of the controlled system response given a control strategy (for 
ic sequence of instance separations for a control task). Therefore, by 
errors equally, the measured values will not be time-dependent, thus 
r magnitude from the time it happens. 

(9.2) 

esired system response, yact is the actual system response and t0 and tf are 
l times of the evaluation period. 

ntrollers is to minimize the error, we define that the smaller the error, the 
hat is, the relation between the IAE index and the QoC is inversely 

that reason, we define the QoC metric in terms of the controlled system 
a control task taski as follows3: 

 

(9.3) 

 error evaluation time interval is the time elapsed from the time of 
the perturbation (t0) to the settling time (tf). Note that, due to the control 
                        
will omit in all the symbols the i-subscript index that relates each symbol with the control 
n is already clear from the context. 
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analysis done at the design stage, the closed-loop performance specifications are met by 
all instance separation values. Consequently, the settling time is the same for all of 
them. 

•  where yact:seq<hi,j> denotes that the actual system response has been obtained with a 
specific sequence of instance separation values for the control task, all belonging to the 
set given by all feasible sampling intervals (FHi, Section 6.1.1). Note that 
yact:seq<hi,min> denotes the actual system response when all instance separation values 
are equal to the hi,min, which is the shortest instance separation of FHi (similarly is 
yact:seq<hi,max>). 

Note that if all instance separation values that apply are the same (∀ hi,p,hi,q∈ seq<hi,j> → 
hi,p=hi,q), the QoC metric allows us to associate each single instance separation value with a 
QoC measure. Note also that given different values for the instance separations that apply 
for a control task, the resulting QoC values will fall in the range of [0,1] (due to the 
normalization), where zero is equivalent to the worst QoC and one is the best QoC. In 
Figure 9.9 we show, numerically and graphically, the different values expressing control 
performance in terms of the QoC metric that can be associated with each instance separation 
value. The inverted pendulum, in the presence of a perturbation, is controlled by a control 
task executing with a constant value for the instance separation (ranging from 60 to 100 ms, 
in steps of 10ms) and a constant value of 20ms for the response time. 
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In the previous
(given by the in
a lower freque
assigned a con
Instance 
separation 

IAE QoC 

60 0.43 1.00 
70 0.68 0.53 
80 1.00 0.27 
90 1.42 0.11 
100 2.00 0.00 
Figure 9.9. QoC of sequences of constant instance separations 

it can be clearly seen that a control task running at a constant instance 
0ms gives a better QoC than a task running at a constant instance separation 
efore, the main conclusion we draw is that the shorter instance separation 
tant for all its execution) a control task has, the smaller the system error (the 
). This corroborates the results from control theory [AST97]. 

ence of different instance separation sequences on the 

 section we concluded that a control task running with a higher frequency 
stance separation) gives better QoC than the same control task running with 

ncy. Recall that the control task, during each simulation (Figure 9.9), was 
stant instance separation. However, since our flexible timing constraints 
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allow us to choose specific values for the instance separation constraint at each instance 
execution, we are specifically interested in the influence of different instance separation 
orderings on the QoC of the controlled system in the presence of perturbations. 

First of all, it is important to point out that the time elapsed from the perturbation arrival to 
the perturbation detection is important in terms of the initial error that the controller will 
have to account for. That is, the longer it takes to detect the perturbation, the bigger the 
system response deviation which needs to be controlled. In the following, assuming that the 
initial error is equal for all the simulations, we divide the study into four cases in order to 
cover all relevant situations when evaluating the influence of different instance separation 
orderings on the QoC.  

 

 

 

 

 

 

 

 

 

 

Figure 9.10. Instance separations sequences vs QoC 

Figure 9.10 gives representative graphs of these four cases (in each graph, each x-axis 
column represents a sequence of instance separations, to be read from top to bottom, which 
has a QoC value associated in the y-axis). Note that we focus our simulations on the 
instance separations we used in the previous section (FH={60, 70, 80, 90, 100}, in ms). In 
all the simulation represented in Figure 9.10, the controlling task is executing at the lowest 
rate (100ms for all its instance separations) before the perturbation arrival. In each case, 
after the perturbation arrival, we study the effects of: 

•  First instance separation: Figure 9.10 a) shows that the first instance separation of each 
sequence has an important influence on the QoC of the inverted pendulum response. If 
the control task can arbitrarily choose any of the instance separations after the 
perturbation arrival, the smaller the chosen interval, the better the QoC (recall that a 
QoC of 1 is the best quality we can obtain and a QoC of 0 the worst, as we explained in 
Section 9.2.1). For example, if we look at the sequence starting with 60ms and the 
sequence starting with 80ms, choosing a first instance separation of 60 ms rather than 80 
ms gives a better QoC. 

•  Second (and successive) instance separations: apart from the first instance separation 
selection, we have studied how different successive instance separations also affect 

a) b) c) d)
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QoC. Simulations have shown that whatever the first instance separation is, the next 
instance separation of each sequence also has an influence on the QoC of the system. It 
can also be observed that the smaller the value chosen for the second instance 
separation, the better the QoC. Figure 9.10 b) exemplifies this property: given a first 
instance separation of 60ms, the chosen second instance separation clearly determines 
the QoC of the system response. The same holds for successive instance separations. 

•  Instance separation effectiveness: we have seen in the previous two cases that the 
shorter the  instance separation, the better the QoC. Figure 9.10 c) shows the influence 
of a short instance separation (60ms) on the QoC depending on the time it is applied. It 
can be seen that the later a short instance separation applies, the less influence it has on 
improving the QoC. Extensive simulations indicate that short instance separations that 
apply later than the peak time (when the system error reaches its maximum value, see 
Section 2.2.1) have no significant effect on the QoC. The time elapsed from the 
perturbation arrival to the peak time, i.e., perturbation reaction interval, is the interval 
in which a short instance separation significantly improves the QoC of the system 
response. 

•  Instance separation ordering: we now focus on the ordering of such instance separations. 
In Figure 9.10 d) we show the effects of the different orderings of three instance 
separations (60, 80, and 100ms) on the QoC. The main conclusion we draw from this 
simulation is that the ordering of different instance separations is important in the sense 
that the earlier a short instance separation applies, the better the QoC. 

To conclude, the influence of different instance separation orderings on the QoC of the 
controlled system response in the presence of perturbations can be summarized as follows: 
the shorter and earlier, although varying, instance separations we have for instances of a 
control task, the better the QoC. 

9.2.3 Formulation of the QoC scheduling problem 
Having described the QoC metric and the impact of instance separations on the QoC, we 
now formulate the issue of handling perturbations to optimize control response as a real-
time scheduling problem. As we want to react to perturbations by executing a sequence of 
control task instances with short instance separations, the classic real-time approach based 
on fixed timing constraints with constant task parameter does not suffice. 

Scheduling Objective 

We mandate the following behaviour for a control task taski in terms of instance separation 
sequences:  

•  During the time the controlled system is in equilibrium (no error area in Figure 9.7), 
the control task instance separation should have the longest possible value (hi,max). 
This way, the processor demand of the control task will be minimum, allowing an 
improvement in the schedulability of other tasks. 

•  Upon detection of a perturbation at the controlled system we want to achieve high 
QoC to counteract the perturbation. 
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We can achieve this by assigning shorter values for the control task instance separations 
(from the set of feasible sampling intervals) until equilibrium is reached again. Figure 9.11 
illustrates the scheduling objective. 

 

 

 

 

 

Figure 9.11. Scheduling objective 

To be more accurate, since we observed (Section 9.2.2) that short instance separations later 
than the peak time have an insignificant effect on the QoC, we can reduce the application of 
short instance separations during the perturbation reaction interval. We can achieve these 
objectives with the following scheduling guidelines for each control task taski: 

•  Guarantee the execution of each control task with an instance separation of hi,max. 

•  In the perturbation reaction interval, schedule the control task with the shortest 
possible instance separation values hi,j (from the possible values given by set FHi) 
based on schedulability of all tasks. In the worst case, we might fall back on a 
sequence of guaranteed hi,max separations – this ensures stability while providing the 
ability to improve the control response.4 

Two issues arise from a scheduling perspective: 

•  At the beginning of the perturbation reaction interval, we will not execute the 
control task periodically with an instance separation of hi,max but have to abruptly 
change to the shortest possible instance separation value (de-phasing). 

•  Once the system is in equilibrium again, we want the control task to execute again 
with an instance separation of hi,max, such that it conforms with the phasing before 
the perturbation to meet schedulability assumptions (re-phasing). If the control was 
executing at times t+p×hi,max, we want it to execute at times t+p×hi,max after the 
perturbation reaction interval. As the hi,j values used in between will, in general, not 
be integer divisors of hi,max, we have to construct a specific sequence of hi,j values to 
achieve the original phasing t+p×hi,max again. 

Note that the de-phasing/re-phasing problem becomes more difficult since for each control 
task taski we do not have a continuous range of hi,j values, but only a finite set of values. 
Thus, while being similar in objective to the period adjustment methods of the elastic task 
model ([BUT98] and [BUT02]), there is an important difference. The compression and 
decompression mechanisms in the elastic model regard the actual period of a task to be in a 

                                                      
4 Obviously, shorter instance separations with better control performance can be guaranteed by scheudling 
assuming a value of hj that is smaller than hmax however, this is at the expense of wasted resources when the 
controlled system is in equilibrium. 
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range of [Tmin, Tmax] and any task can vary its period according to its needs within the 
specified range. Our de-phasing and re-phasing problem is performed by selecting specific 
values for the control task instance separation from among the feasible ones given by the set 
FHi. In summary, we don’t have continuous time, as the elastic model requires, we have 
discrete values. Furthermore, the control tasks in our scenario have to complete at an exact 
point in time, as opposed to simply before deadlines, as in other approaches. 

Scheduling strategies for the perturbation reaction interval 

We propose the scheduling of the control tasks during the perturbation reaction interval to 
be done by an ensemble of control task instances with individual timing constraints 
reflecting the Quality-of-Control demands individually. The algorithm then tries to 
guarantee the ensemble in the presence of other, non-control tasks in a fashion similar to 
aperiodic tasks. As a consequence, our method is not bound to a specific scheduling 
algorithm. Rather it formulates a scheduling problem, which can be solved by a variety of 
algorithms ([LIU73], RAM89] and [FOH95]). 

While the creation and guarantee testing of the task ensemble with appropriate individual 
timing constraints for the control instances is straightforward, re-phasing poses an additional 
problem. We have to find a sequence of instances such that the continuity of executing the 
control task taski at t+p×hi,max is assured, while guaranteeing all instances in the presence of 
the other tasks and trying to minimize the length of the sequence. This is an optimization 
problem. 

Optimum sequence: The construction of an optimum sequence to handle a perturbation can 
be done offline if the control task is the only task in the system. However, it is not possible 
in the realistic case of a set of control and non-control tasks, since the arrival time of the 
perturbation is unpredictable. At run time, on the other hand, limited resources will prevent 
the application of methods to determine an optimum sequence of instance separations. 
Consequently, we consider heuristic methods.  

Ad-hoc sequence: We propose to create the task instance sequence in an ad-hoc fashion, 
i.e., from instance to instance. While not being optimum, we have the fallback option of the 
guaranteed hi,max value, which provides stable control, albeit of lower quality. Thus, when 
we can see that selecting shorter hi,j values will not re-phase within a reasonable number of 
instances, we stay with the guaranteed hi,max even after the perturbation. 

Scheduling problem formulation 

Assume a mixed task set: 

•  Task set: {task1, …, taskn, taskn+1, …, taskm | taski is a periodic task if i ≤ n or a  

      control task if i > n,  

  and 0 ≤ n < m, n,m∈ N} 

•  Periodic tasks: every periodic task taski is characterized by fixed timing constraints: 
(Ti, Di, Ci), where Ti is the period, Di is the relative deadline and Ci is the worst-case 
execution time 
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•  Control tasks: every control task taski is characterized by flexible timing constraints: 
(FHi, rti, prii), where FHi (set of feasible sampling intervals hi,j obtained in the control 
analysis) give the instance separation values, rti is the response time and is equal to the 
exact control task execution time and prii is the perturbation reaction interval.  

•  Scheduling goal: To find a feasible schedule, capable of meeting periodic and control 
tasks constraints, in such a way that,  

1. before each perturbation reaction interval, each control task taski is 
executing at its minimum rate, hi,max 

2. during each perturbation reaction interval prii for each control task taski, the 
Σhi,j should be minimized in order to improve the QoC (where ∀ hi,p,hi,q∈ pri, 
if ∀ hi,p<hi,q, hi,p precedes hi,q).  

3. after each perturbation reaction interval, each control task has to recover its 
initial rate with the same phasing (hi,max) 

Moreover, looking at control tasks, recall that we focus on the instance separation constraint 
rather than the response time constraint. Instead of having a set of response times, we have a 
single - exact - value for the response time, which is given by the exact execution time of 
the control task (see Section 8.1.1).  

9.2.4 Solution for the QoC scheduling problem 
In this section we use an algorithm to illustrate how standard real-time scheduling 
techniques can be used to solve the QoC scheduling problem we formulated in the previous 
section. This particular solution is a best effort algorithm on a control task instance basis, to 
be mounted on top of the slot shifting method [FOH95]. However, first we present an 
example in order to illustrate the benefits of solving the QoC scheduling problem by 
exploiting flexible timing constraints (Section 9.1.1) and its QoC properties (Section 9.2.1) 
in such a way that the schedule meets the timing constraints while the QoC is improved. 

Example 

Let us suppose we have the set of tasks, including one control task, tasksfc, characterized 
using fixed timing constraints, as specified in Table 9.2, where the control task tasksfc in 
charge of controlling the inverted pendulum (Section 2.2.2) implements a controller 
designed using classic pole placement techniques (see Section A3 in Appendix A for the 
code details). Deadlines are equal to periods and the control task is characterized by its exact 
execution time (see Section 8.1.1). 

 Ti Ci 
task1 40 20 
taskc 80 20 
task2 120 20 
task3 240 20 

Table 9.2. Task set (ms) 
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Using offline scheduling (note that the total utilization is 1, see Section 2.1.2), we construct 
the schedule that can be seen in Figure 9.12 over 240ms, which corresponds to the LCM of 
the tasks periods. Note that this schedule is executed repeatedly where boxes mark periods 
of tasks and shaded areas mark executions. 

  0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230  
task3 …                          … 
task2 …                          … 
taskc …                          … 
task1 …                          … 

Figure 9.12. Offline construction (schedule repeated) 

Due to the harmonic relationship between periods (Section 3.2.3), the control task tasksfc, in 
the offline schedule, keeps a constant instance separation (sampling interval) of 80ms. In 
addition, the offline schedule preserves a constant sampling-actuation delay of 20ms for the 
control task. Therefore, since it is not suffering any jitter apart from a start time delay of 
20ms at each instance execution (which can be enforced by specifying an offset, see Section 
2.1.1), the control task can execute a classic control law designed with a sampling period of 
80ms and time delay of 20ms; parameters that meet the specifications for the inverted 
pendulum. As a consequence, the inverted pendulum system response we obtain is as good 
as can be expected (Figure 9.14, dotted line). 

However, it is possible to find a better schedule in terms improving the QoC of the inverted 
pendulum response. If the control task is executing a code prepared for the run time 
parameters adjustment (task taskCsfc in Section A4 in Appendix A), by taking advantage of 
the flexible timing constraints and the QoC notions, we can improve the performance of the 
system response while meeting the periodic task constraints.  

Let us suppose that the control task, referred as taskCsfc, is now defined in terms of flexible 
timing constraints for the instance separation constraint, that is, it has a set of feasible 
sampling intervals to choose from, FH={60,80,100,120} (in ms), an exact computation time 
(c=20ms), and a perturbation reaction interval of 2s. For this case, rather than using an 
arbitrary offline schedule, we use a hypothetical online scheduling algorithm that solves the 
QoC scheduling problem. Assuming that the perturbation arrives at time 20ms, the online 
scheduling algorithm, at run time, obtains a new task ordering over the LCM of the periodic 
tasks (Figure 9.13) aimed at improving the QoC of the response. Note that in this case we 
keep the LCM of the periodic tasks as the time interval for which we want to improve the 
QoC by finding a better ordering of control tasks instances. The reason behind this 
particular restriction is to maintain a periodic pattern for all tasks instances executions 
during the LCM. 

  0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230  
task3 …                          … 
task2 …                          … 
taskCsfc …                          … 
task1 …                          … 

Figure 9.13. Run time schedule (schedule repeated) 

80ms 80ms 80ms 

60ms 60ms 120ms
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In Figure 9.13 it can be seen that after the perturbation arrival time, the instance separations 
of the two successive control task instances are set to 60ms instead of 80ms as it was before. 
Note that since the processor utilization of the task set is already 1, the number of control 
task instances over the LCM cannot be increased. Therefore, in order to improve the QoC of 
the inverted pendulum response, the only change we can make in the schedule is to shift 
instances. In order to improve the QoC , it would be desirable, in less constrained schedules 
(in terms of processor utilization), to add as many control tasks instances as possible, while 
meeting the control task flexible timing constraints along with the periodic tasks fixed 
timing constraints. 

 

 

 

 

 

 

 

Figure 9.14. Inverted pendulum response obtained by the control task in the offline 
schedule (dotted) or by the ordering produced by the online algorithm (solid)  

However, in this case, due to the actual schedule we have, in order to have two consecutive 
sampling intervals of 60ms for the control task and to keep the same periodic LCM 
execution pattern, the third sampling interval has to be set to 120ms, as can be seen in 
Figure 9.13. As a consequence, although in the first schedule the control task has 80ms as a 
constant sampling period, the response we obtain from the control task in the second 
schedule (Figure 9.14, solid line) is better in terms of QoC. Note that in the second schedule, 
during the perturbation reaction interval, the control task instance separations follow a 
periodic pattern of 60, 60 and 120 ms over the LCM. But since the first sampling intervals 
are shorter than 80ms, the QoC of the response is improved. 

At this point it is important to stress that without increasing the processor utilization it is 
possible, given a set of tasks, to order these tasks in such a way that periodic task meets its 
timing constraints and control tasks improve the QoC of the closed-loop system response. 

As we said before, in less constrained schedules (in terms of processor utilization), in order 
to improve the QoC, it would be desirable to add as many control tasks instances as 
possible. This is illustrated next. 

If in the original task set (Table 9.2) we remove task3, we obtain 20ms of idle time at each 
LCM. Then, during the perturbation reaction interval, the online algorithm could use the 20 
ms to execute an extra instance of the control task taskCsfc, as we show in Figure 9.15. 
Observe that in this case, during the perturbation reaction intervals, the sequence of instance 
separations will occur with the shortest possible value (according to set FH), that is, 60ms. 
As before, periodic tasks constraints are still met. 
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  0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230  
task2 …                          …
taskCsfc …                          …
task1 …                          …

Figure 9.15. New run time schedule (schedule repeated) 

In this case, the improvement in the inverted pendulum response is even better than when 
we had 60, 60 and 120 as a repeating sequence of instances separations during the 
perturbation reaction interval over the LCM (see Figure 9.16 solid line). However, it has to 
be pointed out that the price we pay for the trade off is an increase in the processor 
utilization, since four control task instances (instead of three) are executed over the LCM 
during the perturbation reaction interval. 

 

 

 

 

 

 

 

 

 

Figure 9.16. Inverted pendulum responses obtained by the control task in the ordering 
produced by the online algorithm whether new instances are added (solid line) or not (dotted 

line) during the LCM of the tasks periods 

As a summary, the specific QoC obtained by each schedule is summarized in Table 9.3. We 
distinguish the three cases we studied: the response obtained by an arbitrary offline schedule 
and the responses obtained by the online algorithm case. 

 Sequence of instance separations during the 
perturbation reaction interval QoC 

Arbitrary offline schedule always 80ms 0.27 
60, 60,120ms 0.76 Online algorithm 60, 60, 60, 60 ms 1 

Table 9.3. Achieved QoC for each scheduling strategy 

We have shown that an online algorithm solving the QoC scheduling problem formulated in 
Section 9.2.3 can improve the QoC of closed-loop systems. With or without increasing the 
processor load, taking advantage of our flexible timing constraints and the QoC metric we 
defined, it is possible to find particular schedules for both control and non-control tasks, in 
such a way that non-control and control task constraints are maintained and the QoC of the 
closed-loop systems is improved. 

60ms 60ms 60ms 60ms 
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Scheduling algorithm - an example 

In this section we present a particular solution of an online algorithm that solves the QoC 
scheduling problem. We assume an offline scheduled task set where each control task taski 
has been scheduled according to hi,max and its exact response time (rti). In addition, the 
unused resources, i.e., processor idle time, are determined and grouped in the form of spare 
capacities for disjoint intervals [FOH95]. This allows us to use the slot shifting based 
scheduling algorithm. Slot shifting provides for the feasible integration of aperiodic tasks 
into offline schedules by allowing the offline scheduled tasks to be shifted in time while still 
meeting their original timing constraints.  

As the focus of our method is quality-of-control and the construction of instance separation 
sequences rather than the actual scheduling, we do not detail the exact code of the guarantee 
algorithm. However, in Figure 9.17, we show its pseudo-code for illustrative purposes. 
Recall that the algorithm has to be executed upon detection of a perturbation in the process 
controlled by a control task taski). In fact, the same procedure for sequence construction can 
be performed by applying a variety of scheduling algorithms.  

 

 

 

 

For k=1:LCM(hi,max,hi,min)/hi,min   

    hi,j= first(hi,j∈ FHi)      % selects an instance separation value 

    While (hi,j<hi,max) and (instance at (t+hi,j) ⊄  [ Ij | sc(Ij) - rti ≥ 0])  % checks if de-phasing is feasible 

        hi,j=next(hi,j∈ FHi)     % selects an instance separation value 

    End     
    If hi,j<hi,max      % Is current instance separation shorter? 

recall updating: sc(Ij) = sc(Ij) - rti   % to update in the offline schedule 

          new instance at (t+hi,j)            
    Else 
    Stop        % test fails: end 

    End 

    If ∃ hi,j∈ FHi: (k* hi,max)-(t+hi,j) ≥ hi,j    % is the re-phasing is feasible? 

update and remove (sc, new instances, old instances) % updates the offline schedule 
Stop        % test success: end   

    Else 
recall to remove old instance at (k* hi,max)   % to remove in the offline schedule 

    End 
    t=t+hi,j 

End 
where  

•  t is the time at which an instance of the control task taski starts executing, after the perturbation detection. 

•  hi,max and hi,min are the minimum and maximum instance separation given by FHi 

•  Ij are disjoint execution intervals 

•  sc(Ij) expresses unused resources  

•  FHi is the set of feasible instance separations (ordered in increasing order) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.17. Best effort algorithm 
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The algorithm is based on the following idea: at run time, upon perturbation detection, we 
test whether the control task instance separation can be decreased (hi,j<hi,max, better QoC), 
i.e., de-phasing, and smoothly increased again to recover the original rate (hi,max), i.e., re-
phasing. This is done, first of all, by selecting from all possible instance separations (given 
by set FHi), a specific (and short) instance separation that allows a feasible execution (in the 
sense of having enough available processor idle time) of the next instance of the control 
task. Once this instance separation is found, the algorithm checks if the re-phasing is 
feasible from the time the new control task instance (given by the instance separation) 
executes. This is done by selecting again, in a monotonic fashion, new instances separations 
that give feasible executions of new control task instances until the re-phasing is meet. 

If the test fails, no further action is taken. If the test does not fail, the offline scheduled tasks 
are shifted (without violating their feasibility), thus accommodating the new rate for the 
control task taski. Note that this algorithm is a particular solution of the QoC scheduling 
problem. It shows that by using standard scheduling techniques, the QoC problem can be 
solved. 

We illustrate the algorithm with a short example. Let us suppose we have a control task taski 
with FHi={70,90,100}. We have an offline schedule based on the longest hi,j, which is 100 
(first row in Figure 9.18). At run time, the perturbation is detected before the first instance 
executes. Therefore, at t=0, we invoke the best effort algorithm to check if we can 
accommodate successive instances in such a way that: 

1. the following instance will have an instance separation of hi<100 ms (instead of 100 
according to the offline schedule) and  

2. the original phasing can be met again.  

If this is possible, we update the offline schedule according to the decisions taken by the 
algorithm.  

In Figure 9.18, second row, we show, upon perturbation detection (t=0) a new execution 
pattern when the instance separation sequence is the optimum one (taking into account that 
we have a limited set of three instance separations): 70, 70, 70, 90, 100, 100, … ms. In 
Figure 9.18, third row, we show a new execution pattern (90, 70, 70, 70, 100, 100, … ms) 
that while not as good as the previous one, also improves the QoC because it applies shorter 
instance separations than the original offline schedule (100, 100, 100, … ms). 

0 10 20 30 40 50 60 70 89 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
          (2)          (4)           
                               
0 10 20 30 40 50 60 70 89 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
       (1)       (3)       (5)          
                               
0 10 20 30 40 50 60 70 89 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
         (1)       (3)       (5)        

Figure 9.18. Offline schedule (first row), optimum schedule (second row) and sub optimum 
schedule (third row) de-phasing and re-phasing found by the best effort algorithm. 
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Table 9.4. Algorithm execution corresponding to the second row Figure 9.18 (top)  
and to the third row Figure 9.18 (bottom) 

In Table 9.4 we illustrate the step-by-step execution of the best-effort algorithm (we have 
simplified the steps in the interest of clarity) corresponding to the execution of the second 
and third row of Figure 9.18 (numbers in bold in Figure 9.18 represent algorithm steps of 
Table 9.4). It has two main sections: in the first one, it checks whether increasing the task 
rate (de-phasing) is possible. If it is not possible, the test fails. If it is possible, a shorter 
instance separation than the one specified in the offline schedule can be accommodated. In 
this case, in the second section, it checks whether decreasing the task rate (re-phasing) will 
be possible for that specific new instance separation. The test succeeds when, after finding a 
sequence of one or more instance separations shorter than the ones specified in the offline 
schedule, re-phasing is guaranteed. For this simple case, the QoC improvement on the 
inverted pendulum responses (executing at hmax or executing with the second or third 
execution pattern for the control task taski implementing a code prepared for the run time 
parameters adjustment) can be seen in Figure 9.19. 

In Figure 9 (where (4) is the desired system response), each of the curves corresponds to the 
inverted pendulum response if the controlling task, upon perturbation arrival, executes: 

•  the sequence given by offline schedule (first row Figure 9.18): curve (1) in Figure 9.19 

•  the optimum sequence corresponding to second row Figure 9.18: curve (3) in Figure 
9.19  

•  the sub optimum sequence corresponding to third row Figure 9.18: curve (2) in Figure 
9.19 
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Figure 9.19. QoC improvement 

It can be clearly seen in Figure 9.19 that response (2) offers the better QoC because it gives 
a better minimization of the error (difference between actual response (2) and desired 
response (4)). It is important to point out that beyond the different levels of QoC, all the 
responses ((1), (2) and (3)) fulfil the performance specifications (to recover from a 
perturbation in less than two seconds, see Section 2.2.2). 

9.3 Summary 
Control applications have timing requirements that cannot be expressed with deadlines and 
periods or which over-constrain the system strongly if expressed by standard timing 
constraints. In this chapter we have also defined novel, flexible timing constraints for 
control task scheduling that meet the control timing requirements better and we have 
demonstrated how to use them in order to improve system schedulability. Specifically, we 
have shown that by using these new flexible timing constraints along with the 
compensations, we obtain stable systems that are not feasible when scheduled using fixed 
standard timing constraints. 

In addition, we have presented the QoC metric that associates control performance 
information with each feasible instance separation constraint. Through simulation results, 
we have shown that different orderings of instance separation values give different degrees 
of control performance. Also, we showed the larger impact that instance separation interval 
values have compared to response times. This has allowed us to formulate a new scheduling 
problem, QoC scheduling, where the problem specification considers both flexible timing 
constraints that incorporate control information as well as perturbation arrivals that occur in 
the controlled system. We have discussed different scheduling strategies to deal with the 
QoC scheduling problem (optimum vs. ad-hoc sequences) and we have shown that the 
problem of reacting to perturbations can be addressed by the application of existing 
scheduling guarantee techniques. This is an important observation because it shows the 
generality of previous approaches and also allows us to capitalize on extant algorithms. 
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Chapter 10 

Conclusions 
In this thesis we have presented novel methods and tools for the analysis and design of real-
time control systems. The topics we covered can be divided into two main parts: one part 
dealing with the analysis and design of discrete-time controllers for irregularly sampled 
discrete-time systems with varying time delays and the other part focusing on flexible 
control task scheduling when control tasks are characterized by varying control timing 
constraints. 

The integration of the two parts provides an adequate framework for the analysis and design 
of real-time control systems that fulfils the objectives of the thesis: it creates the adequate 
synergies between the activities of the control and real-time communities in such a way that 
integrating implementation characteristics into the controller design and control properties 
into real-time scheduling schemes improves the resulting real-time control systems in terms 
of both system schedulability and controlled system performance. 

First of all, we suggested that the design of real-time control systems, which concerns the 
design of controllers and its computer implementation by means of scheduling techniques, 
requires the integration and good understanding of the activities of both control and real-
time communities. However, as control theory and real-time scheduling theory have been 
relatively independent research areas, we started by describing, in a tutorial fashion, key 
concepts of real-time and control systems that are relevant for understanding the approach 
we have proposed.  

Afterwards, we showed the negative effects of considering the results of control and real-
time scheduling theory separately. We showed that the use of real-time standard task timing 
constraints (periods and deadlines) to express the inherent timing of classic discrete-time 
control models and methods produces over-constrained specifications for control tasks, 
which impairs system schedulability. On the other hand, scheduling inherent jitters for less 
constrained control tasks specifications violate the deterministic timing assumed by classic 
discrete-time control theory, resulting in a degradation of the controlled systems responses.  

In addition, by surveying the state of the art in the field of real-time control systems, we 
pointed out that control theory offers no advice on how to include, in the design of 
controllers, the effects that scheduling inherent jitters have on the timing of the control 
activities. On the other hand, real-time theory lacks task models and timing constraints that 
can be used to guarantee a periodic task execution free of jitters without over-constraining 
system schedulability. We concluded that the practical problems posed by the constrained 
timing of discrete-time control theory in real-time scheduling (poor system schedulability) 
and by scheduling inherent jitters in control tasks (control performance degradation) have 



10. Conclusions 

 

166

not been formally addressed, and both control performance and systems schedulability have 
not been, in any of the previous works, jointly improved. 

To solve the problems we outlined, and to overcome the difficulties posed by the application 
of discrete-time control theory and real-time task timing constraints, we proposed a more 
integrated approach to the analysis and design of real-time control systems, based on the use 
of more flexible controller design approaches and more flexible timing constraints for 
control tasks. Using more flexible controller design approaches based on the assumption of 
non-equidistant sampling and non-equidistant actuation, we are able to provide more 
flexible requirements for the timing of control activities, thus relaxing control task 
specifications and leading to higher levels of system schedulability. In addition, by using 
more flexible timing constraints for control tasks that do not introduce unexpected jitters 
while expressing the control timing requirements, the control performance requirements are 
met. 

After analysing the effects that current computing implementations have on the timing 
parameters (sampling period and time delay) of classically designed controllers, we have 
formulated in state space models, the realistic timing requirements with which discrete-time 
controller design methods have to deal. Accordingly, we have presented a new approach to 
discrete-time controller design, called compensation approach, that takes these new 
requirements into account. The compensation approach can be used to handle all possible 
types of closed-loop implementations regarding the guarantees that the implementation 
gives in terms of the sampling type (regular or irregular sampling) and time delay type 
(instantaneous, constant or varying time delay) that will apply at run time. 

Consequently, the compensation approach controller design method goes beyond the 
traditional discrete-time control assumptions presupposed by discrete-time control systems 
theory. Instead of selecting/specifying a single (and thus constant) value for the sampling 
period and time delay, we specify two finite sets of feasible values for the sampling period 
and time delay at the controller design stage. Then, at run time, control tasks adjust their 
controller parameters according to the specific timing that applies. This implies that closed-
loop systems are no longer time invariant. Closed-loop system parameters vary depending 
on the specific setting for the sampling period and time delay that applies at each controller 
execution. For such closed-loop systems, we have used state-space notation to provide a 
complete stability analysis based on linear matrix inequalities algebra and response analysis.  

In addition, we have discussed the implementation aspects of the applicability of controllers 
obtained through the compensation approach controller design method. We have used 
pseudo code details to explain how to modify existing controller codes to prepare controllers 
for the run time controller parameters adjustment that is required for the compensation 
approach. We have also distinguished two strategies for the run time parameters adjustment: 
the online recalculation approach, if this incurs negligible overheads, and the online access 
to pre-calculated tables. We have provided exact numbers for characterizing when each 
strategy is feasible. 

Using the compensation approach we have shown how to eliminate the degradation that 
scheduling inherent jitters introduce in closed-loop systems. First of all, we have explained 
how to use standard scheduling approaches to schedule control tasks that implement 
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controllers designed using the compensation approach. In addition, we have shown that by 
using the compensation approach, we can remove the degradation that scheduling inherent 
jitters for control tasks introduce in the controlled system response. This is achieved by an 
offline analysis of all sampling intervals and sampling-actuation delays that apply at run 
time (for a given control task) due to sampling jitter and sampling-actuation jitter. All these 
values are then used to design the controller used in the compensation approach. 
Consequently, we showed that closed-loops implemented by periodic control tasks 
(specified with standard fixed timing constraints, such as periods and deadlines, and 
scheduled by standard real-time scheduling policies) and implementing these new 
controllers, although subject to scheduling inherent jitters, meet the control performance 
requirements.  

We also have formally defined a performance criterion for evaluating the compensation 
approach as a design methodology for eliminating the degradation that jitters (for control 
tasks) cause in the closed-loop system performance. Through studying different scenarios 
given by different scheduling situations, we have stressed the benefits of using the 
compensation approach.  

Our new approach to control task scheduling, which takes control properties into account, 
relies on the timing assumptions on which the compensation approach is based. From these 
timing assumptions (to depend on a set of feasible sampling intervals and on a set of feasible 
sampling-actuation delays), we have defined more flexible timing constraints for control 
tasks, in terms of two finite sets of values (instead of a single value for the former task 
period and deadline) of feasible instance separations and response times.  

Therefore, we provide a range of values for control task timing constraints that can be 
selected on a “per task” instance basis by the scheduler to account for schedulability. 
According to these new control timing constraints, scheduling decisions can be taken to 
accommodate control task instances more flexibly. We have proved that unfeasible systems 
(with task sets including control and non-control tasks) characterized by standard timing 
constraints can be transformed into feasible and stable control systems by applying our 
flexible timing constraints and the use of the compensation approach. 

New control task timing constraints allowed us to specify the scheduling problem, going 
beyond the classical “meeting deadlines”. Standard timing constraints express temporal 
requirements. Control task timing constraints, even those expressing temporal requirements, 
have been shown to also express control performance information.  

We have used simulation results to show that different orderings of instance separation 
values give different degrees of control performance. Also, we showed that instance 
separation values have a larger impact than response times. Accordingly, we have defined a 
new metric, QoC metric, that allows us to associate control performance information (in 
terms of the controlled system error) with each feasible instance separation.  

By associating QoC to each feasible instance separation, we have formulated a new 
scheduling problem, QoC scheduling, where controlled systems performance and 
schedulability are both of prime concern. We have also shown that standard scheduling 
techniques can be used to solve the QoC scheduling problem. We have explained how 
schedules can be adjusted at run time when perturbations are detected in the controlled 
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systems in order to execute control task instances more appropriately (that is, considering 
the QoC information) in order to improve the performance of the controlled systems.  

In summary, we have proved that by integrating control and scheduling principles, better 
system schedulability and controlled systems performance improvement can be achieved in 
real-time control systems. 

10.1 Contributions 
The main contributions of this thesis, which extends the state of the art with respect to both 
control theory and real-time scheduling, are: 

•  To show the effects of degradation on  

a) controlled system performance due to scheduling inherent jitters in control task 
instance execution, and 

b) system schedulability when timing requirements of classically-designed 
discrete-time controllers are expressed with fixed timing constraints in periodic 
control tasks. 

(work partially presented in [MAR00b] and [MAR01a]). 

•  The state space formulation of closed-loop systems with irregular sampling and/or 
varying time delays, partially presented in [MAR01d] 

•  A new approach to discrete-time controller design, called compensation approach, 
based on the assumption of irregular sampling and varying time delays, including new 
stability and response analysis, partially presented in [MAR01d] and [MAR02c]. 

•  The overhead analysis and implementation strategies for the use of the compensation 
approach, partially presented in [MAR01e] 

•  The application of the compensation approach as a control-based solution to eliminate 
the degradation that scheduling inherent jitters introduce in the controlled system 
response, partially presented in [MAR01b] and [MAR01e] 

•  The application of the compensation approach for the analysis and design of networked 
control systems, partially presented in [MAR01c] 

•  A performance metric for the evaluation of the compensation approach, partially 
presented in [MAR02c] and [YEP02] 

•  New flexible timing constraints for control task scheduling, partially presented in 
[MAR01e]. 

•  The application of flexible timing constraints for control tasks to obtain feasible 
schedules of tasks sets that are not feasible if control tasks are characterised by fixed 
timing constraints, partially presented in [MAR01e] 

•  A Quality-of-Control (QoC) metric that characterizes task timing constraints in terms of 
control performance, partially presented in [MAR02a] and [MAR02b]. 
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•  The formulation and solution of the QoC scheduling problem in terms of reacting to 
perturbations with control tasks specified with flexible timing constraints expressing 
QoC, partially presented in [MAR02b]. 

10.2 Future work 
There are many research topics that could extend the work presented in this thesis, bearing 
in mind the following points: 

•  We have shown that flexible timing constraints for control tasks can be used to 
transform unfeasible schedules into feasible schedules. Note that we have not proposed 
a scheduling approach, rather a new set of flexible timing requirements. Up to this point, 
we have used an offline schedule construction approach. An immediate extension of this 
thesis could be to investigate new scheduling schemes to handle these new types of 
constraints for control tasks.  

•  The use of standard scheduling techniques has been shown to solve the QoC scheduling 
problem we formulated. For example, we proposed a best effort approach to solve the 
problem. However, it could be a good extension of this thesis to develop new 
scheduling policies based on this new QoC paradigm. 

•  Real-time scheduling introduces variability in task instance executions. We have shown 
that with the use of the compensation approach, control tasks subject to jitters no longer 
degrade the performance of closed-loop systems. However, an extension of this thesis 
could be to develop and apply novel control approaches to the analysis and design of 
time-varying control systems, modelling this variability by uncertainties in the closed-
loop system. Robust control techniques could be a starting point. 

•  In the compensation approach controller design, we did not mathematically formalize 
the characteristics of the controlled system response obtained with controllers designed 
using the compensation approach. Another interesting line of research points to the use 
of interval models based control approaches for the response analysis of control systems 
subject to time-varying parameters. 

•  The integration of control and real-time activities has proved to solve the problems that 
had no solution if the results of the control and real-time communities were applied in 
isolation. Continuing with this integration, an interesting area of research could be to 
treat schedules or scheduling policies as the plants to be controlled, and then to apply 
control theory to them. 

•  In this thesis we have defined flexible timing constraints for control tasks. One 
interesting extension could be the generalization of our varying control timing 
constraints to more flexible timing constraints for any type of task. Timing constraints 
are primarily used to express the application timing requirements. If the application 
timing requirements change at run time, timing constraints should be able to express 
these changes, according to the application dynamics. These would also require new 
scheduling approaches to deal with these new flexible timing constraints. 
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Appendix A: Code implementation details 

A1. Classic PID controller code 
Pseudo-code of a classic designed PID controller, used in the simulations: 

  
taskPID()

{
r = analogIn(rChan);
y = analogIn(yChan);
E = r-y;
P = Kp·E;
I = Iold+(Ki·h/2)·(E+Eold);
D = (Kd/h)·(E-Eold);
u = P + I + D;
analogOut(uChan,u);
Iold = I;
Eold = E;

} 
 

 

A2. PID controller code prepared for the run time parameters 
adjustment  

In this case, the only change in the code of the PID controller is to obtain the feasible 
sampling interval hk that applies at each controller executions. In this case, there is no 
difference in adjusting the parameters through online computations or online access to 
indexed tables (because the overhead of the online computations, compared to the classic 
code (A1) is negligible). 
 

TaskCPID()
{

r = analogIn(rChan);
y = analogIn(yChan);
E = r-y;
obtain(hk);
P = Kp·E;
I = Iold+(Ki·hk/2)·(E+Eold);
D = (Kd/hk)·(E-Eold);
u = P + I + D;
analogOut(uChan,u);
Iold = I;
Eold = E;

} 
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A3. Classic State feedback controller code based on pole placement 
observer design 

Pseudo-code for a classic state feedback controller, used in the simulation (note that all the 
matrices are calculated before system run time): 

Tasksfc()
{

r = analogIn(rChan);
y = analogIn(yChan);
u = -(L·ob)+r;
analogOut(uChan,u);
ob=Φ·ob+Γ·u+KT·(y-C·ob);

}

A4. Classic State feedback controller code based on pole placement 
observer design prepared the run time parameters adjustment 

In this case, the change in the code of the state feedback controller is made to obtain the 
feasible sampling interval hk and feasible sampling actuation-delay τk that apply at each 
controller execution, as well as the system discretization, gain, and observer matrices. 
Therefore, depending on whether we consider the overhead of the extra computations to be 
negligible or not, in the following, we show the two possible solutions. 
 
Through online computations: 
 

TaskCsfc()
{

r = analogIn(rChan);
y = analogIn(yChan);
obtain(hk,τk);
Ad = substitute(Ac,hk→h,τk→τ);
B0d = evaluate(B0c,hk→h,τk→τ);
B1d = evaluate(B1c,hk→h,τk→τ);
Φ = [Ad B1d; 0 0];
Γ = [Bd0; I];
dominantpole1 = -2·exp(-ζ·ω·hk)·cos(ω·h·sqrt(1-ζ2));
dominantpole2 = exp(-ζ·ω·hk);
desiredpol = [function(dominantpole1,dominantpole2);
L = poleplacement_akerman(desiredpol,Φ,Γ);
observerpoles = function(desiredpol);
K = poleplacement_Akerman(observerpoles,ΦT,CT);
u = -(L·ob)+r;
analogOut(uChan,u);
ob=Φ·ob+Γ·u+KT·(y-C·ob);

} 
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Through online access to indexed tables: 

 
TaskCTsfc()

{
r = analogIn(rChan);
y = analogIn(yChan);
obtain(hk,τk);
(Φ,Γ,L,K) = Indexedtableacess(table,hk,τk)
u = -(L·ob)+r;
analogOut(uChan,u);
ob=Φ·ob+Γ·u+KT·(y-C·ob);

  } 
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Appendix B: Stability analysis 
 

B1. Stability analysis of Example 1 in Section 7.1.4 

The periodic sequence of feasible sampling intervals and feasible sampling-actuation delays 
we have is: (<(60,20),(50,10),(50,20),(60,10)>, in ms). 

The stability test is performed by checking the stability of the product of the repeating 
sequence of closed loop matrices. The four closed loop matrices are 

 























=Φ=Φ

.0005008- 1.8110195.5624461.1910316.053064
0.000000-0.0462290.1112780.0238170.120795
0.000002 0.0013240.0122250.0004760.002412
0.000003-0.072839-0.223722-0.037530-0.230940-
0.000006-0.001452-0.004462-0.000348-0.005517

)20,60(
1 clcl

 

 

 

 























=Φ=Φ

0.002605-2.2984877.7956541.4387427.632311
0.000002-0.0559810.1559530.0287760.152438
0.0000010.0014190.0131180.0005750.003047
0.0000020.092445-0.313542-0.047607-0.296583-
0.000002-0.001843-0.006253-0.000649-0.004135

)10,50(
2 clcl

 

 

 

 























=Φ=Φ

0.005692-2.37644437.7956541.5165167.925202
0.0000140.04565190.1169520.0227440.118648
0.0000020.00103470.0117540.0003410.001777
0.000032-0.071513-0.234592-0.035377-0.228102-
0.000005-0.001071-0.003513-0.000179-0.006686

)20,50(
3 clcl

 

 

 

 























=Φ=Φ

0.002312-1.75539525.5624461.1316635.822601
0.000007-0.05390280.1391180.0282940.145326
0.0000010.00169730.0134770.0007070.003630
0.0000130.088525-0.280515-0.046697-0.281121-
0.000002-0.002203-0.006982-0.000813-0.003063

)10,60(
4 clcl

 

 

 

 

Applying this test we are satisfied that the system is stable because ρ( Φcl1· Φcl2 · Φcl3 · Φcl4) 
= 0.349 < 1, where matrix Φcl1· Φcl2 · Φcl3 · Φcl4  is:  

 

 

 

 





















=Φ⋅Φ⋅Φ⋅Φ

0.02851637.747148-42.825478- 21.186792-82.016508- 
0.0000232.568315-14.058272- 1.305419-8.118195-
0.000107-0.4496301.3373050.2362411.034929
0.000174-4.89080021.8848912.49807713.312320
0.0001650.629691-1.181209-0.332271-1.138678-

4321 clclclcl
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B2. Stability analysis of Example 2 in Section 7.1.4 

We have an infinite sequence of feasible sampling intervals taken randomly from 
FH={50,60} with an infinite sequence of feasible sampling-actuation delays taken randomly 
from FT={10,20} (granularity g=10 ms).  

Ω = {Φclk | Φclk is the closed loop matrix that depends on (hj,τj), hj∈H ,τj∈T, for all possible 
combinations of pairs (hj,τj) }.  

ossible combinations of pairs (hj,τj) are (50,10), (50,20), (60,10) and (60,20), in ms.  

herefore, set Ω has four matrices (which coincide with the matrices listed in the previous 
ase, B1):  Ω ={Φcl(50,10), Φcl(50,20), Φcl(60,10), Φcl(60,20)} 

If ∃ P>0: ∀ Φ ∈ Ω, ΦT · P · Φ – P < 0 ⇒   Stable1 

ur closed loop matrices Φclk of Ω, Φ clk· P · Φclk – 
P < 0. 

 

Details of the stability test 

 

% we define the four m

Φcl1 = Φcl(50,10) %
cl2 = Φcl(50,20) %named cl5020 

Φcl3 = Φcl(60,10) %named cl6010 
Φ = Φ (60,20) %named cl6020 

 

                                                     

P

T
c

Applying 

clk clk clk 

we we are satisfied that the set of matrices Ω fulfils the condition. That is, we we are 
satisfied that a matrix P>0 such as for all fo T

 
 0.35264282.3229543

 




 0.0000580-0.19202430.46046310.10379810.3526428

 

 





=′

0.350.86268530.19202430.6544445
0.0002955-0.86268534.71768750.46046313.0679626P

 

P=P’·1.0e+004 

To solve this linear matrix inequality problem, we use the Linear Matrix Inequality (LMI) 
solver included in the Matlab LMI toolbox.  

(in Matlab pseudo code, using Matlab LMI solver): 

atrices  

named cl5010 
Φ

cl4 cl

 

 







 0.00000080.0001056-0.0002955-0.0000580-0.0004749-
0.0001056-85137

0.0004749-0.65444453.0679626

1 P>0 in the sense of positive definiteness (eig(P)>0) and ΦT
clk

· P · Φclk – P < 0 in the sense of negative 
definiteness (eig(ΦT

clk
· P · Φclk – P)<0). 
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% using the LMI solve editor of the Matlab LMI toolbox, we define the LMI problem 

etlm
=lm
iterm
iterm
iterm
iterm
iterm
iterm
iterm

lmiterm
LMI #5: -P 

Test=getlmis; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

% the equivalent matlab commands are: 

is([]); 
ivar(1,[5 1]); 

([-1 1 1 P],1,1);                        % LMI #1: P 
([2 1 1 P],cl5010',cl5010);       % LMI #2: cl5010'*P*cl5010 
([2 1 1 P],1,-1);                        % LMI #2: -P 
([3 1 1 P],cl5020',cl5020);       % LMI #3: cl5020'*P*cl5020 
([3 1 1 P],1,-1);                        % LMI #3: -P 
([4 1 1 P],cl6010',cl6010);       % LMI #4: cl6010'*P*cl6010 
([4 1 1 P],1,-1);                        % LMI #4: -P 
([5 1 1 P],cl6020',cl6020);       % LMI #5: cl6020'*P*cl6020 

s
P
lm
lm
lm
lm
lm
lm
lm

lmiterm([5 1 1 P],1,-1);                        % 
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% we evaluate the feasibility of the defined problem 

m 

 R(x) + t*I 

st,Pconstraints,[1 5]) 

We have to prove that the obtained matrix fulfils the conditions  

P>0    and     ∀ Φclk ∈ Ω, ΦT
clk· P · Φclk – P < 0 

a) P>0     

eig(P)= 

           

 

b) Now we check if for all Φclk ∈ Ω, ΦT
clk· P · Φclk – P < 0 

• For Φ = Φ (50,10) 

 

 

 

 

eig(Φ · P · Φ – P) = 1.0e+003 *-2.852630,   1.0e+003 *-0.661630,    

1.0e+003 *,1.0e+003 *-0.000002 

 P iv i eigenvalues are less than zero) 


















0.00000080.0001056-
0.0001056-0.35851370.86268530.19202430.6544445

0.0000580-0.19202430.46046310.1037981
0.0004749-0.65444453.06796260.35264282.3229543




















+=−

0.0000080.0003850.0010920.0001900.003028

0.0010920.459454-1.233114-0.281389-1.015906-
0.000190
0.0030280.404800-1.015906-0.239306-1.872119-

*0030.1 eP

[tmin,Pconstraints]=feasp(Test) 

% we are satisfied that there is a matrix P that satisfies the LMI proble
 
%       “Solver for LMI feasibility problems L(x) < R(x) 
%              This solver minimizes  t  subject to  L(x) <
%              The best value of t should be negative for feasibility” 
%        Result:  best value of t: -2.421599e-004 

% we obtain the specific matrix we need  

P=dec2mat(Te

 

  0.3526428
 


+= 0.0002955-0.86268534.71768750.46046313.0679626*0040.1 eP

 
 0.0002955-0.0000580-0.0004749-

 

Proof  

1.0e+004*0.00071196,   1.0e+004*0.00000062,   1.0e+004*0.16870757,        

1.0e+004*0.29115451,   1.0e+004 *7.04237994 

Therefore, matrix P is positive definite (all its eigenvalues are positive). 

cl1 cl

 0.334920-0.281389-0.199389-0.239306-
Φ⋅⋅Φ

11
P cl

T
cl

 0.0003850.574081-0.459454-0.334920-0.404800-

T


cl1 cl1 

1.0e+003 *-0.361639,   1.0e+003 *-0.002810,    

Consequently, ΦT
cl1· P · Φcl1 –  is negat e defin te (all its 
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• For Φcl2 = Φcl(50,20)  

 

 

 

 

ig(ΦT
cl2· P · Φcl2 – P)= 1.0e+003 *-6.412360, 1.0e+003 *-0.683253,1.0e+003 *-0.349660, 

1.0e+003 *-0.002240,1.0e+003 *-0.000002 

onsequently, ΦT
cl2· P · Φcl2 – P is negative definite (all its eigenvalues are less than zero) 

 For Φcl3 = Φcl(60,10)  

 

 

Φclk ∈ Ω, ΦT
clk· P ·Φclk– d loop matrix applies 
























=−Φ⋅⋅Φ

0.000008-0.0003850.0012550.0002120.003057

0.0012551.133297-6782
0.0002122
0.0030574

0.1
33

ePP cl
T
cl









 0.000006-0.000483-0.000748-0.000328-0.000851

0.000483-0.561842-1.090615-0.310879-0.496271-

0.000328-10879












+=−Φ⋅⋅Φ

0.0000060.0003850.001134-0.000410-0.000742
0.0003850.452806-0.656657-0.250258-0.299674-
0.001134-0.656657-4.358931-0.349731-2.721416-
0.000410-0.250258-0.349731-0.141770-0.137641-
0.0007420.299674-2.721416-0.137641-2.494002-

*0030.1
22

ePP cl
T
cl

e

C

•

eig(ΦT
cl3· P · Φcl3 – P)=   1.0e+003 *-9.219464, 1.0e+003 *-0.773747, 1.0e+003 *-0.583834,    

1.0e+003 *-0.003521, 1.0e+003 *-0.000003, 

Consequently, ΦT
cl3· P · Φcl3 – P is negative definite (all its eigenvalues are less than zero) 

• For Φcl4 = Φcl(60,20) 

eig(

ummary 

ΦT
cl4· P · Φcl4 – P)=   1.0e+004*-1.0590080,1.0e+004*-0.0766065,1.0e+004*-0.0327174,

   1.0e+004 *-0.0002690, 1.0e+004 *-0.0000004 

Consequently, ΦT
cl3· P · Φcl3 – P is negative definite (all its eigenvalues are less than zero) 

S

Since we have found a positive definite matrix P that complies with the condition that for all 
P<0, the system will be stable, whatever close

at run time. 





 0.0003850.710531-1.133297-0.407882-0.770644-



+ 5.88-0.644769-3.962794-*003

 0.40788-0.644769-0.238891-0.432162-
 0.77064-3.962794-0.432162-3.744356-

 0.0008510.496271-4.534288-0.244081-3.528794-





+=−Φ⋅⋅Φ 0.000748-1.090615-7.419128-0.590618-4.534288-*0030.1

44
ePP cl

T
cl


 0.3-0.590618-0.176242-0.244081-
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Appendix C: Closed-loop matrices 
A state feedback controller is characterized by its closed loop matrix, which depends on the 
sampling period h and the time delay τ: 
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1 ),(where                   ,                                   and                                        and where L(h, τ) is 

the state feedback matrix obtained by pole placement observer design (using the Ackerman 
formula). As can be seen, the closed loop matrix, which characterizes the stability and the 
performance of the system, depends on h and τ. The equivalent Φ(h), Γ0(h, τ), Γ1(h, τ) for 
the inverted pendulum are: 

 

 

 

nd L(h, τ), obtained through the Ackerman formula, takes different values according to 
each specific h and τ. 

 
 
 
 
 
 
 
 
 

 
a



 



 


	UNIVERSITAT POLITÈCNICA DE CATALUNYA
	Tesi doctoral
	Pau Martí Colom


	Ack Final.pdf
	Agraïments

	Figures Final.pdf
	List of Figures

	Tables Final.pdf
	List of Tables

	Symbols Final.pdf
	List of symbols

	Acronyms Final.pdf
	List of acronyms

	Chapter1 Final.pdf
	Chapter 1
	Introduction
	Motivation
	Objectives
	System model
	Thesis structure


	Chapter2 Final.pdf
	Chapter 2
	Background and state of the art
	Real-time systems
	Tasks constraints
	Real-time Scheduling

	Control systems
	Analysis and design of control systems
	Computer control

	State of the art
	Feedback control real-time scheduling
	Control approaches
	Scheduling approaches
	Control and scheduling integration

	Summary


	Chapter3 Final.pdf
	Chapter 3
	Control impact on schedulability
	Discrete-time control theory timing analysis
	Closed-loop timing assumptions
	From theoretical timing to applied timing

	Control systems schedulability
	Mapping control timing requirements to real-time task timing constraints
	Real-time implementation of closed-loops
	Limits of control task scheduling

	Summary


	Chapter4 Final.pdf
	Chapter 4
	Schedulability impact on control
	Real-time scheduling timing analysis
	Jitters characterization
	Effects of scheduling inherent jitters on control tasks
	Sampling and sampling-actuation jitters properties

	Jitter impact on control
	Illustrative examples
	Impact explanation

	Summary


	Chapter5 Final.pdf
	Chapter 5
	Integrated scheduling and control co-design
	Motivation
	Flexible control design
	Flexible timing constraints for control tasks
	Applications
	Summary


	Chapter6 Final.pdf
	Chapter 6
	Adapting control algorithms to implementation constraints
	Control algorithms design adjustment
	Problem definition
	Closed-loop implementation effects on the controller timing parameters
	Summary of the variation in the controller timing parameters
	Completeness of the compensation approach

	Controller design problem formulation
	Irregularly sampled discrete-time system model
	Discrete-time system model with varying time delays
	Irregularly sampled discrete-time system model with varying time delays
	Sequences of feasible sampling intervals and sampling-actuation delays

	Summary


	Chapter7 Final.pdf
	Chapter 7
	Flexible discrete-time controller design
	Compensation approach controller design method
	Closed-loop system response analysis
	Stability analysis
	Summary
	Example

	Practical implementation considerations
	Temporal information required for the controller parameters adjustment
	Controller parameters adjustment code implementation details
	Computational overhead
	Memory requirements

	Summary


	Chapter8 Final.pdf
	Chapter 8
	Compensation approach in standard real-time scheduling policies
	Compensation approach as a control-based solution for dealing with jitters
	Requirements of the compensation approach in real-time scheduling
	Application of the compensation approach for scheduled control tasks
	Examples

	Compensation approach control performance evaluation
	Performance criterion selection
	Evaluation study

	Summary


	Chapter9 Final.pdf
	Chapter 9
	Flexible control task scheduling
	Control task scheduling with flexible timing constraints
	Fixed timing constraints for control tasks
	Flexible timing constraints for control tasks
	Example

	Quality-of-Control (QoC) scheduling
	Quality-of-control criterion definition
	Influence of different instance separation sequences on the QoC
	Formulation of the QoC scheduling problem
	Solution for the QoC scheduling problem

	Summary


	Chapter10 Final.pdf
	Chapter 10
	Conclusions
	10.1 Contributions
	10.2 Future work


	ReferencesFinal.pdf
	References

	ApendixACode Final.pdf
	Appendix A: Code implementation details

	Summary Final.pdf
	Analysis and Design of Real-Time Control Systems with Varying Control Timing Constraints
	Summary

	Resum Final.pdf
	Anàlisi i Disseny de Sistemes de Control de Temps Real amb Restriccions Temporals Variables de Control
	Resum

	Chapter1 Final.pdf
	Chapter 1
	Introduction
	Motivation
	Objectives
	System model
	Thesis structure


	Chapter1 Final.pdf
	Chapter 1
	Introduction
	Motivation
	Objectives
	System model
	Thesis structure


	Chapter2 Final.pdf
	Chapter 2
	Background and state of the art
	Real-time systems
	Tasks constraints
	Real-time Scheduling

	Control systems
	Analysis and design of control systems
	Computer control

	State of the art
	Feedback control real-time scheduling
	Control approaches
	Scheduling approaches
	Control and scheduling integration

	Summary


	Chapter3 Final.pdf
	Chapter 3
	Control impact on schedulability
	Discrete-time control theory timing analysis
	Closed-loop timing assumptions
	From theoretical timing to applied timing

	Control systems schedulability
	Mapping control timing requirements to real-time task timing constraints
	Real-time implementation of closed-loops
	Limits of control task scheduling

	Summary


	Chapter4 Final.pdf
	Chapter 4
	Schedulability impact on control
	Real-time scheduling timing analysis
	Jitters characterization
	Effects of scheduling inherent jitters on control tasks
	Sampling and sampling-actuation jitters properties

	Jitter impact on control
	Illustrative examples
	Impact explanation

	Summary


	Chapter6 Final.pdf
	Chapter 6
	Adapting control algorithms to implementation constraints
	Control algorithms design adjustment
	Problem definition
	Closed-loop implementation effects on the controller timing parameters
	Summary of the variation in the controller timing parameters
	Completeness of the compensation approach

	Controller design problem formulation
	Irregularly sampled discrete-time system model
	Discrete-time system model with varying time delays
	Irregularly sampled discrete-time system model with varying time delays
	Sequences of feasible sampling intervals and sampling-actuation delays

	Summary



