Índice 7

Índice

Glosario y diccionario de los símbolos más comunes		11
1 Introduce	ión	13
1.1 Los	sistemas que se utilizan como soporte del estudio	13
1.2 El proceso empírico de creación de modelos		14
1.3 Esq	1.3 Esquema de la memoria	
2 Redes neu	ronales para el modelado de sistemas dinámicos: los módulos neuronales	19
2.1 El n	nodelo escogido: redes neuronales artificiales	20
2.1.1	Aproximación de funciones con ANN	21
2.1.2	Identificación de sistemas dinámicos con ANN	21
2.1.3	Control de sistemas dinámicos con ANN	24
2.2 <i>Mód</i>	dulos Neuronales	26
2.2.1	Motivación	26
2.2.2	Estructura del modelo que se utiliza en este trabajo	27
2.2.3	Definición de módulo neuronal	27
2.3 Dise	eño de módulos neuronales	28
2.3.1	Pertenencia a intervalos	29
2.3.2	Función de pendiente constante en un rango y nula fuera de él	31
2.3.3	Aproximación de funciones lineales a tramos	39
2.3.4	Proceso de diseño de un módulo neuronal	40
2.4 Dise	eño de un conjunto de NMs útil para el modelado de sistemas no lineales	42
2.4.1	No-linealidad tipo umbral	43
2.4.2	No-linealidad tipo relé con histéresis	43
2.4.3	No-linealidad tipo saturación	45
2.4.4	No-linealidad tipo zona muerta	46
2.4.5	No-linealidad tipo valor absoluto	47

2.4.6	No-linealidad tipo fricción	48
2.4.7	No-linealidad tipo juego de engranajes	49
2.4.8	No-linealidad tipo tope mecánico	51
2.4.9	No-linealidad tipo limitador de velocidad	52
2.4.10	O Sistemas lineales	54
3 Estudio o	le la capacidad aproximativa de las redes de módulos neuronales	57
3.1 For	rmalización de los elementos básicos y los operadores	58
3.2 Co.	njunto de elementos que generan Σ_b y Θ	60
3.2.1	Álgebra de las redes de módulos neuronales	60
3.2.2	Elementos de $\Sigma_{ m NM}$	61
3.2.3	Discusión sobre el conjunto de sistemas $\Sigma_{\rm NM}$	70
3.3 Ca _j	pacidad aproximativa de los elementos de $\Sigma_{ extit{ iny{NM}}}$	70
3.3.1	Planteamiento del problema	71
3.3.2	Cálculo de una cota para $ \mathbf{s}y - y $	73
3.3.3	Discusión de los resultados	75
3.4 Dis	cusión sobre las σ-aproximaciones y los módulos neuronales	75
3.4.1	Módulos estáticos	76
3.4.2	Módulos dinámicos	76
4 Modelad	o de sistemas dinámicos utilizando técnicas evolutivas y redes neuronales modulares	81
4.1 Mo	delado de sistemas dinámicos con redes neuronales modulares	81
4.1.1	Redes modulares	81
4.1.2	Redes modulares e identificación de sistemas dinámicos	83
4.2 Apr	rendizaje en redes neuronales modulares	83
4.2.1	Conceptos básicos de BP y BPTT	85
4.2.2	Aprendizaje modular (Modular BackPropagation, MBP)	88
4.3 Téc	rnicas evolutivas como herramientas de optimización y MANN	95
4.3.1	Introducción a las técnicas evolutivas de optimización	95
4.3.2	Utilización de técnicas evolutivas en la optimización de redes neuronales	97
4.3.3	Programación evolutiva	98

Índice 9

	cripción de la herramienta de modelado de sistemas no lineales con redes neuronales	
	lulares	99
4.4.1	Funcionamiento general de la herramienta de modelado	100
4.4.2	Entorno de optimización evolutiva	101
4.4.3	Simulador de MANN	104
4.4.4	Simulador de redes neuronales	105
4.4.5	Poblaciones de redes neuronales modulares	106
5 Resultado	s experimentales	107
5.1 Prod	ceso de modelado con la herramienta de optimización evolutiva y redes de módulos	
пеин	conales	107
5.1.1	Obtención y análisis de datos	108
5.1.2	Planteamiento y ejecución de las pruebas	109
5.1.3	Recolección de resultados	111
5.1.4	Validación, análisis y refinado de modelos	112
5.2 Mot	or de corriente continua	114
5.2.1	Datos de entrada y salida e información previa	115
5.2.2	Pruebas realizadas	116
5.2.3	Resultados	117
5.2.4	Análisis de los resultados	120
5.3 Siste	ema no lineal simulado, con histéresis	121
5.3.1	Descripción	121
5.3.2	Descripción de los datos	123
5.3.3	Pruebas realizadas	123
5.3.4	Resultados	124
5.4 Elen	nento piezoeléctrico	126
5.4.1	Descripción	126
5.4.2	Descripción de los datos	127
5.4.3	Pruebas realizadas	129
5.4.4	Resultados	129
5.4.5	Validación y análisis de los modelos	131
6 Conclusio	nes del estudio	135

6.1	Conclusiones y aportaciones principales	135
6.2	Vías futuras de trabajo	138
Bibliografía		141
Apénd	ice A: Sintonía de los parámetros del entorno de optimización evolutiva	147
A.1	Sintonía de los parámetros del simulador neuronal	147
A.2	Descripción del marco de sintonía	148
A.3	Parámetros del operador de selección	149
A.4	Parámetros del operador de mutación	150
Apénd	ice B: Resultados de las pruebas de modelado	153
B.1	Resultados de modelado del motor de corriente continua simulado	154
B.2	Resultados de modelado del sistema con histéresis	167
В.3	Resultados de modelado del elemento piezoeléctrico	177