

UNIVERSITAT POLITÈCNICA DE CATALUNYA

DEPARTAMENT DE CIÈNCIA DELS MATERIALS I ENGINYERÍA METAL.LÚRGICA

COMPORTAMIENTO ELASTOPLÁSTICO DE COMPACTOS PULVIMETALÚRGICOS

MEMORIA

que para optar al Grado de Doctor Ingeniero Industrial presenta

MARÍA DOLORES RIERA COLOM

Barcelona, 1999

(Aunque lo anteriormente expuesto define un comportamiento general, la realidad no es tan sencilla: la morfología de las partículas imprime ciertas diferencias: el polvo tipo *MH 80.23*, de partícula abierta, se muestra más influido por la fricción interna, especialmente a bajas densidades; las figuras 5.20 y 5.21 corroboran esta afirmación).

Esta variación de resultados entre las primeras y las siguientes cargas de cada bloque de ciclos proviene del estado del compacto al inicio de cada carga: no hay que olvidar que la primera carga compresiva de cada bloque actúa sobre una muestra que ha podido recuperarse elásticamente en todas las direcciones (la descarga previa ha sido total); las cargas siguientes, en cambio, se aplican sobre una probeta confinada axialmente (mediante una fuerza compresiva constante de 20 N), pero que tiene libertad para expandirse radialmente. Así, pues, mientras que en las primeras cargas la fricción interna afecta intensamente el inicio de la deformación en todas sus componentes, las cargas subsiguientes sólo se ven afectadas por este fenómeno en dirección radial. En todos los casos, la componente **radial** de la deformación elástica evoluciona con un fuerte efecto de la fricción interna. Las figuras 5.24 a 5.29 representan un ejemplo para cada tipo de polvo metálico analizado.

Para las cargas con menor incidencia de la fricción interna, la relación entre la componente hidrostática de la tensión aplicada, p, y la deformación volumétrica elástica, ε_{v}^{el} , puede representarse mediante una ecuación tal como la siguiente:

$$p = K' \left(\varepsilon_{\nu}^{el} \right)^{n_{\nu}} \tag{5.3}$$

en la que K' y n_v son dos parámetros del material a determinar experimentalmente.

En la ecuación constitutiva (5.3), se utiliza la presión hidrostática ya que, por tradición, se asume que es la única componente de la tensión que causa cambio de volumen.

En términos de la tensión axial, σ_{ax} , la expresión (5.3) puede escribirse como:

$$p = \frac{\sigma_{ax}}{3} = K'(\varepsilon_v^{el})^{n_v}$$
(5.4)

De donde,

$$\sigma_{ax} = 3K'(\varepsilon_v^{el})^{n_v} \tag{5.5}$$

O bien,

$$\sigma_{ax} = \exp K_{\nu} \left(\varepsilon_{\nu}^{el} \right)^{n_{\nu}} \tag{5.6}$$

La aplicación de la ecuación (5.6) a los resultados experimentales, permite obtener los distintos valores de K_{ν} y n_{ν} . Los datos obtenidos demuestran que, a cada ciclo de carga aplicado, el

compacto se comporta con K_v y n_v distintos, aunque linealmente relacionados entre sí, tal como se observa en las figuras 5.30 a 5.32.

En el polvo tipo ASC 100.29, la relación K_{ν} - n_{ν} aparece más dependiente de la densidad inicial del compacto; sin embargo, y a diferencia de lo que ocurre con los tipos MH 80.23 y DISTALOY AE, el valor de estos parámetros varía menos a lo largo del ensayo, tal como se observa en la figura 5.33, que presenta, conjuntamente, los datos correspondientes a los tres tipos de polvos estudiados.

De estos resultados podría concluirse que el material tipo ASC 100.29 se ve menos afectado que los otros dos por fenómenos de fricción interna; su comportamiento depende más directamente del estado de endurecimiento del compacto

No obstante, y proponiendo para un trabajo futuro el estudio más detallado de este aspecto, la figura 5.33 sugiere que, grosso modo, el comportamiento elástico de los tres tipos de polvos ensayados es tal que sus parámetros definen una familia de rectas muy próximas entre sí; para un primer análisis, en el presente trabajo se propone una visión simplificada y que consiste en suponer que todos los puntos K_{ν} - n_{ν} se disponen sobre una única recta, tal como la dibujada en la propia figura 5.33.

Así pues, el comportamiento elástico de los compactos pulvimetalúrgicos depende de un solo parámetro, a semejanza de lo que ocurre en la elasticidad lineal clásica.

La ecuación (5.6) puede escribirse, en términos de las deformaciones axial y radial, de la forma siguiente:

$$\sigma = \exp K_{\nu} \left(\varepsilon_{\nu}^{el} \right)^{n_{\nu}} = \exp K_{\nu} \left(2\varepsilon_{r}^{el} + \varepsilon_{ax}^{el} \right)^{n_{\nu}}$$
(5.7)

Aplicando el concepto de *relación de Poisson*, se obtiene una expresión que liga la tensión aplicada a la deformación axial de la manera siguiente:

$$\sigma = \exp K_{\nu} \left[\varepsilon_{ax}^{el} \left(l - 2\nu \right) \right]^{n_{\nu}}$$
(5.8)

O bien,

$$\sigma = E' \left(\varepsilon_{ax}^{el} \right)^{n_{\nu}} \tag{5.9}$$

En la que:

$$E' = \exp K_{\nu} (l - 2\nu)^{n_{\nu}}$$
(5.10)

Pero, además, los resultados experimentales demuestran que la componente axial de la deformación sigue, también, una ley potencial:

$$\sigma_{ax} = \exp K_{ax} \left(\varepsilon_{ax}^{el} \right)^{\eta_{ax}}$$
(5.11)

Las figuras 5.34 a 5.36 muestran dichos resultados para una probeta representativa de cada tipo de polvo metálico.

Fig. 5.36.- Deformación axial durante las cargas elásticas. *DISTALOY AE*. D= 6.7537 Mg/m³.

Del análisis de la componente axial durante la parte elástica de cada ciclo de carga aplicado, se obtienen valores de n y K que, al igual que en la deformación volumétrica elástica, están linealmente relacionados entre sí. En las figuras 5.37, 5.38 y 5.39 se representan los resultados correspondientes a las mismas muestras anteriores.

Fig. 5.38.- Relación entre los parámetros *n* y *K* de la deformación axial elástica. *MH 80.23*

También en este caso, los resultados para los tres tipos de polvos metálicos se disponen sobre una sola recta, tal como se observa en la figura 5.40.

Fig. 5.40.- Relación entre los parámetros *n* y *K* de la deformación elástica axial para los tres tipos de polvos metálicos en estudio. En el capítulo segundo de esta memoria, se han presentado, entre otros, unos modelos de plasticidad basados en el arreglo de las partículas metálicas (llamados actualmente *modelos micromecánicos*). Se basan, como allí se expone, en el estudio de la evolución de los contactos entre partículas durante la compactación y permiten definir una relación entre la tensión compresiva y la deformación volumétrica elastoplástica.

En el campo elástico, un modelo de esferas puede, también, ayudar a la comprensión de los fenómenos involucrados en el proceso de deformación; un modelo reducido al análisis del *problema unitario*, consistente en un único contacto entre dos partículas.

Hertz [86], como es bien sabido, planteó el problema del *contacto elástico entre dos cuerpos* mediante un modelo micromecánico sencillo, a partir del cual determinó la distribución de la presión y de la deformación. Aplicando su trabajo al caso de dos partículas esféricas de igual tamaño, tal como se esquematiza en la figura 5.41, puede derivarse la clásica relación entre la tensión y la deformación.

Para un material que cumple la ley de Hooke, con módulo elástico E y relación de Poisson v, la solución del *problema de la indentación Hertziana* se representa mediante las evoluciones del área de contacto, a, y la distancia entre centros, u:

$$a = \left(\frac{3R}{4} \cdot \frac{(1 - v^2)}{E} \cdot F\right)^{\frac{1}{3}}$$
(5.12)

$$u = \left(\frac{9}{2R} \cdot \left(\frac{1 - v^2}{E}\right)^2 F^2\right)^{1/3}$$
(5.13)

A partir de estos resultados, la relación entre la tensión axial aplicada, s, y la deformación unitaria media, $e^{e_{ax}}$, puede representarse matemáticamente de la forma siguiente:

$$s = \frac{4E}{3\pi (1 - v^2)} (e_{ax}^{el})^{3/2}$$
(5.14)

Expresión del mismo tipo que las ecuaciones (5.3) y (5.11), aplicadas a los datos experimentales de las componentes volumétrica y axial de la deformación elástica de los compactos pulvimetalúrgicos.

En el modelo de Hertz, tal como muestra la ecuación (5.14), el exponente, n, de la deformación es igual a 1.5. En la compresión elástica de los compactos metálicos en estudio, n no presenta un único valor, tal como se observa en los datos presentados anteriormente. Hay que destacar que el punto de n=1.5 sobre la recta K_{ax} - n_{ax} (Fig. 5.40) tiene como coordenada K_{ax} el valor del término

 $K_{Hertz/axial} = \ln \frac{4E}{3\pi(1-v^2)}$ tomando para E y v los valores correspondientes al material en estado

denso (suponiendo los siguientes datos para el hierro: E=196 GPa; v=0.33, se obtiene $K_{\text{Hertz/axial}}=11.44$); y esto se cumple, aproximadamente, en todos los casos estudiados. En la figura 5.42 se repite la relación entre los dos parámetros de la deformación elástica axial, en la que se destaca, ahora, el punto de n=1.5.

Fig. 5.42.- Relación K_{ax} - n_{ax} para los tres tipos de polvos metálicos. Se indica, además, el valor de $K_{Hertz / axial} = ln \frac{4E}{3\pi (1-v^2)}$ para el material totalmente denso.

Para la deformación volumétrica elástica, los tres tipos de materiales se comportan de manera que n_v y K_v se relacionan, también, mediante una única recta. El valor del parámetro K_v , para $n_v=1.5$, es de 11.88, tal como se indica en la figura 5.43.

Durante los distintos ciclos de carga, el parámetro n_{ax} de cada probeta ensayada, presenta un amplio intervalo de valores, que, para las muestras de mayor densidad, parece tender a 1.5; la figura 5.44 recoge los resultados para varias probetas de los tres tipos de polvos estudiados. Los resultados para la deformación volumétrica, n_{y} , están representados en la figura 5.45.

Fig. 5.44.- Evolución del parámetro n_{ax} con la densidad inicial del compacto.

En estas circunstancias, es difícil asignar un valor de n_{ax} a un compacto y resulta muy útil definir un criterio. La primera fase de la compresión de un compacto metálico, tal como se detalló en el capítulo 4°, consiste en una intensa deformación permanente, debida, a efectos ajenos al material; puede entenderse como una etapa transitoria, fuertemente influida por la fricción interna. Por lo tanto, el compacto pulvimetalúrgico encuentra su situación más estable tras superar esta deformación plástica y antes de comenzar la dilatación. Así, se tomará como representativo el valor que el parámetro n_{ax} presenta justo al inicio de este fenómeno. Se aplicará el mismo tratamiento a la deformación volumétrica. En las tablas 5.I a 5.XV se indican los valores de los parámetros n_{ax} , K_{ax} , n_v y K_v para las cargas más significativas de cinco probetas de cada tipo de polvo ensayado.

Tabla 5.I Valores de los	parámetros n y	K. ASC 100.29.	$D= 5.6390 \text{ Mg/m}^{\circ}$
			<u> </u>

Ciclo de	nax	Kax	n _v	Kv	Densidad	Deformación
carga					inicial, Mg/m ³	volumétrica
b2	1.70	11.90	1.72	12.74	5.6888	-0.00879
b3	1.71	12.02	1.73	12.94	5.6908	-0.00915
c2	1.72	12.15	1.70	12.91	5.6898	-0.00889
c3	1.72	12.25	1.72	13.15	5.6885	-0.00875
d2	1.69	12.06	1.61	12.60	5.6858	-0.00827

Ciclo de	n _{ax}	Kax	n _v		Densidad	Deformación
carga				-	inicial, Mg/m ³	volumétrica
b2	1.68	12.32	1.83	13.90	6.0415	-0.00539
b3	1.71	12.45	1.81	13.86	6.0428	-0.00562
c2	1.71	12.55	1.69	13.25	6.0588	-0.00661
c3	1.70	12.60	1.64	13.10	6.0496	-0.00673
d2	1.72	12.65	1.64	13.08	6.0530	-0.00730
d3	1.72	12.62	1.66	13.18	6.0522	-0.00716
f2	1.70	12.48	1.55	12.64	6.0525	-0.00722
f3	1.62	12.10	1.51	12.49	6.0504	-0.00687

Tabla 5.II.- Valores de los parámetros n y K. ASC 100.29. D= 6.0090 Mg/m³

Tabla 5.III.- Valores de los parámetros n y K. ASC 100.29. D= 6.5013 Mg/m³

Ciclo de	n _{ax}	Kax	n _v	K _v	Densidad	Deformación
carga					inicial, Mg/m ³	volumétrica
b3	1.75	12.54	1.62	12.49	6.5254	-0.00371
c2	1.83	13.00	1.73	13.10	6.5265	-0.00387
d2	1.81	12.92	1.68	12.91	6.5287	-0.00420
d3	1.78	12.78	1.71	13.08	6.5290	-0.00426
e2	1.77	12.75	1.71	13.08	6.5291	-0.00427
f2	1.76	12.74	1.73	13.17	6.5296	-0.00435
f3	1.75	12.65	1.73	13.22	6.5298	-0.00438
g2	1.71	12.46	1.66	12.83	6.5297	-0.00436
g3	1.70	12.39	1.67	12.91	6.5293	-0.00430
i2	1.65	12.19	1.61	12.67	6.5415	-0.00617
i3	1.63	12.09	1.66	12.88	6.5302	-0.00444
j2	1.48	11.47	1.49	12.15	6.5282	-0.00413

Tabla 5.IV.- Valores de los parámetros n y K. ASC 100.29. D= 6.8640 Mg/m³

Ciclo de	n _{ax}	Kax	n _v		Densidad	Deformación
carga					inicial, Mg/m ³	volumétrica
b3	1.69	12.70	1.53	12.12	6.9012	-0.00541
c2	1.68	12.34	1.62	12.31	6.9076	-0.00633
c3	1.66	12.18	1.61	12.21	6.9095	-0.00661
d2	1.64	12.06	1.61	12.20	6.9163	-0.00760
d3	1.64	12.05	1.60	12.17	6.9177	-0.00780
e2	1.64	12.01	1.61	12.18	6.9227	-0.00852
e3	1.64	12.06	1.62	12.33	6.9240	-0.00870
f2	1.64	12.13	1.68	12.64	6.9270	-0.00914
f3	1.62	12.04	1.68	12.65	6.9276	-0.00923
g2	1.64	12.14	1.71	12.87	6.9296	-0.00951
g3	1.60	11.95	1.68	12.68	6.9291	-0.00944
h2	1.61	12.01	1.67	12.66	6.9273	-0.00919

Ciclo de	n _{ax}	Kax	N _v	K _v	Densidad	Deformación
carga					inicial, Mg/m ³	volumétrica
b3	1.71	12.38	1.66	12.68	7.1221	-0.00948
c2	1.71	12.46	1.58	12.29	7.1285	-0.01038
c3	1.70	12.47	1.60	12.42	7.1296	-0.01054
d2	1.68	12.34	1.59	12.39	7.1332	-0.01104
d3	1.66	12.24	1.58	12.34	7.1336	-0.01109
e2	1.63	12.14	1.53	12.11	7.1377	-0.01167
e3	1.60	12.00	1.52	12.07	7.1387	-0.01181
f2	1.60	12.02	1.52	12.09	7.1403	-0.01204
f3	1.58	11.90	1.51	12.04	7.1405	-0.01207
g2	1.57	11.88	1.48	11.95	7.1395	-0.01193
h2	1.55	11.80	1.47	11.90	7.1397	-0.01195
h3	1.52	11.68	1.45	11.83	7.1378	-0.01169

Tabla 5.V.- Valores de los parámetros n y K. ASC 100.29. D= 7.0549 Mg/m³

Tabla 5.VI.- Valores de los parámetros n y K. MH 80.23. D= 4.6303 Mg/m³

Ciclo de carga	n _{ax}	Kax	n _v	K _v	Densidad inicial. Mg/m ³	Deformación volumétrica
b2	2.01	13.52	2.07	14.94	4.6369	-0.00143
c2	2.00	13.49	2.08	14.96	4.6370	-0.00144
c3	1.98	13.41	2.09	15.16	4.6373	-0.00152
d2	1.95	13.28	2.16	15.74	4.6353	-0.00109

Tabla 5.VII.- Valores de los parámetros n y K. MH 80.23. D= 5.4562 Mg/m³

	n _{ax}	Kax	n _v	K _v	Densidad inicial, Mg/m ³	Deformación volumétrica
b2	2.06	13.74	1.85	13.16	5.4777	-0.00393
b3	2.04	13.71	1.84	13.17	5.4788	-0.00414
c2	2.06	13.83	1.87	13.41	5.4805	-0.00445
c3	2.04	13.73	1.87	13.45	5.4814	-0.00461
d2	2.01	13.63	1.88	13.60	5.4829	-0.00488
d3	1.98	13.50	1.89	13.72	5.4838	-0.00505
e2	1.96	13.42	1.92	13.91	5.4838	-0.00505
e3	1.95	13.30	1.93	13.94	5.4834	-0.00498
f2	1.87	13.04	1.90	13.98	5.4754	-0.00352

Ciclo de	n _{ax}	Kax	n _v	K _v	Densidad	Deformación
carga					inicial, Mg/m ³	volumétrica
d2	1.91	13.29	2.21	15.08	5.9411	-0.00699
d3	1.95	13.50	2.19	15.02	5.9423	-0.00719
e2	1.96	13.55	2.19	15.08	5.9464	-0.00788
e3	1.90	13.28	2.13	14.80	5.9480	-0.00815
f2	1.95	13.52	2.13	14.85	5.9512	-0.00869
f3	1.91	13.35	2.07	14.59	5.9525	-0.00892
g2	1.88	13.21	2.03	14.40	5.9561	-0.00951
g3	1.85	13.06	2.00	14.26	5.9569	-0.00965
h2	1.81	12.91	1.95	14.10	5.9595	-0.01009
h3	1.81	12.93	1.95	14.17	5.9600	-0.01015

Tabla 5. VIII.- Valores de los parámetros n y K. MH 80.23. D= 5.8997 Mg/m3

Tabla 5.IX.- Valores de los parámetros n y K. MH 80.23. D= 6.4368 Mg/m³

Ciclo de	n _{ax}	Kax	n _v		Densidad	Deformación
carga					inicial, Mg/m ³	volumétrica
b3	1.83	12.95	1.82	13.21	6.4645	-0.00429
c2	1.89	13.33	1.91	13.80	6.4698	-0.00511
c3	1.86	13.21	1.87	13.63	6.4716	-0.00539
d2	1.88	13.29	1.90	13.77	6.4765	-0.00615
d3	1.86	13.21	1.88	13.67	6.4777	-0.00633
e2	1.87	13.23	1.91	13.81	6.4821	-0.00701
e3	1.85	13.16	1.89	13.75	6.4832	-0.00718
f2	1.88	13.29	1.92	13.94	6.4873	-0.00782
f3	1.85	13.14	1.90	13.82	6.4885	-0.00801
g2	1.84	13.14	1.90	13.85	6.4928	-0.00867
g3	1.81	12.97	1.86	13.68	6.4932	-0.00873
h2	1.83	13.04	1.88	13.78	6.4965	-0.00924
h3	1.79	12.87	1.83	13.58	6.4959	-0.00914

Tabla 5.X.- Valores de los parámetros n y K. MH 80.23. D= 6.5665 Mg/m³

Ciclo de carga	n _{ax}	Kax	n _v		Densidad inicial, Mg/m ³	Deformación volumétrica
d2	1.93	13.41	1.95	13.82	6.6081	-0.00632
d3	1.92	13.33	1.94	13.77	6.6092	-0.00649
e2	1.84	13.01	1.85	13.38	6.6125	-0.00699
e3	1.81	12.91	1.81	13.24	6.6138	-0.00718
g2	1.75	12.68	1.74	13.00	6.6171	-0.00768
g3	1.71	12.43	1.71	12.82	6.6180	-0.00781
h2	1.67	12.33	1.66	12.67	6.6181	-0.00783
h3	1.67	12.27	1.66	12.61	6.6170	-0.00766
i2	1.64	12.14	1.63	12.53	6.6157	-0.00746

Ciclo de	n _{ax}	Kax	n _v		Densidad	Deformación
carga					inicial, Mg/m ³	volumétrica
b2	1.85	12.70	2.11	15.24	5.7746	-0.00211
b3	1.85	12.75	2.09	15.13	5.7756	-0.00229
b4	1.84	12.75	2.00	14.70	5.7766	-0.00247
c2	1.85	12.76	1.90	14.17	5.7773	-0.00259
C3	1.84	12.70	1.86	13.92	5.7769	-0.00251
C4	1.83	12.63	1.84	13.81	5.7761	-0.00237

Tabla 5.XI.- Valores de los parámetros n y K. DISTALOYAE. D= 5.7624 Mg/m³

Tabla 5.XII.- Valores de los parámetros n y K. DISTALOYAE. D= 6.0290 Mg/m³

Ciclo de carga	n _{ax}	Kax	n _v		Densidad inicial, Mg/m ³	Deformación volumétrica
a2	1.88	12.93	2.14	14.92	6.0478	-0.00311
b2	1.90	13.11	2.14	15.10	6.0498	-0.00344
c2	1.91	13.21	2.15	15.28	6.0499	-0.00347
d2	1.85	12.97	2.07	14.99	6.0483	-0.00320
e2	1.81	12.81	2.21	15.69	6.0403	-0.00187

Tabla 5.XIII.- Valores de los parámetros n y K. DISTALOY AE. D= 6.2142 Mg/m³

Ciclo de carga	n _{ax}	K _{ax}	n _v		Densidad inicial, Mg/m ³	Deformación volumétrica
e2	2.10	14.30	2.26	15.66	6.2270	-0.00206
f2	2.10	14.33	2.23	15.55	6.2279	-0.00220
g2	2.09	14.28	2.20	15.40	6.2280	-0.00222
h2	2.06	14.17	2.18	15.29	6.2281	-0.00224
i2	2.07	14.21	2.16	15.18	6.2282	-0.00226
k2	2.00	13.91	2.03	14.56	6.2297	-0.00249
12	2.00	13.91	2.02	14.49	6.2298	-0.00251
m2	1.95	13.69	1.92	13.97	6.2308	-0.00267
n2	1.90	13.45	1.93	14.05	6.2301	-0.00256

Tabla 5.XIV.- Valores de los parámetros n y K. DISTALOY AE. D= 6.7537 Mg/m³

Ciclo de carga	n _{ax}	Kax	n _v	K _v	Densidad inicial, Mg/m ³	Deformación volumétrica
b2	1.78	12.66	1.94	14.00	6.7822	-0.00422
c2	1.78	12.72	1.93	14.05	6.7829	-0.00431
d2	1.76	12.55	1.87	13.70	6.7845	-0.00456
e2	1.74	12.39	1.77	13.20	6.7862	-0.00481
f2	1.69	12.30	1.73	13.13	6.7870	-0.00492
g2	1.68	12.25	1.70	12.97	6.7861	-0.00479
h2	1.65	12.17	1.66	12.90	6.7857	-0.00473
i2	1.63	12.09	1.65	12.87	6.7831	-0.00434

Ciclo de carga	n _{ax}	Kax	n _v	Kv	Densidad inicial, Mg/m ³	Deformación volumétrica
c2	1.65	11.98	1.69	13.09	7.1534	-0.00890
d2	1.71	12.40	1.66	12.88	7.1536	-0.00894
e2	1.73	12.40	1.64	12.77	7.1547	-0.00908
f2	1.69	12.32	1.58	12.56	7.1548	-0.00910
g2	1.64	12.14	1.56	12.45	7.1540	-0.00899
h2	1.61	12.00	1.55	12.39	7.1514	-0.00862

Tabla 5.XV.- Valores de los parámetros n y K. DISTALOY AE. D= 7.0900 Mg/m³

A partir de estos datos, se ha podido representar la dependencia de los parámetros n_{ax} y n_{v} con la densidad inicial del compacto. En las figuras 5.46 a 5.48 se muestran los resultados para los tres tipos de polvos metálicos. En estas mismas figuras se dibuja la *tendencia* de la evolución de n_{ax} y n_{v} , considerando los puntos de inicio de dilatación de los compactos.

Las curvas dibujadas en las figuras 5.46 a 5.48 representan, tan sólo, la forma en la que n_{ax} y n_{ν} dependen de la densidad del compacto al inicio de cada ciclo de carga. Durante el ensayo de cargas y descargas, los parámetros n parten de valores altos y van disminuyendo hasta el valor teórico (1.5). No obstante, esta evolución sólo es posible en las probetas más densas; las de menor densidad se desconsolidan antes de llegar a esta situación.

En estas representaciones vuelve a quedar patente un comportamiento general similar en los tres materiales, con una mayor incidencia de la fricción interna en los tipos *MH 80.23* y *DISTALOY* AE.

Este efecto puede cuantificarse suponiendo que la tensión compresiva axial, σ_{ax} , está constituida por dos contribuciones: a) la que deforma elásticamente las partículas a través de sus contactos, $\sigma_{Hertz/axial}$, y b) la requerida para *vencer* la fricción interna, $\sigma_{fi/axial}$. Asumiendo que las contribuciones son aditivas, se cumpliría la siguiente igualdad:

$$\sigma_{ax} = \sigma_{Hertz \,/\, axial} + \sigma_{fi \,/\, axial} \tag{5.15}$$

A partir de esta expresión, y siendo ya conocidas las componentes aplicada durante el ensayo y de Hertz, se deduce fácilmente la tensión σ_{fi} , que suponemos ligada a un fenómeno de fricción interna y que puede representarse mediante la siguiente ecuación:

$$\sigma_{fi/axial} = \exp K_{ax} \left(\varepsilon_{ax}^{el} \right)^{n_{ax}} - \exp K_{Hertz/axial} \left(\varepsilon_{ax}^{el} \right)^{3/2}$$
(5.16)

Los resultados se presentan en las figuras 5.49 a 5.51. Se incluyen, tan sólo, los datos correspondientes a una probeta representativa de cada tipo de polvo (la de mayor densidad, en todos los casos).

Fig. 5.49.- Componente de fricción de la tensión, durante la carga elástica, frente a la deformación axial. (Segundas cargas). ASC 100.29. D= 7.0549 Mg/m³.

Fig. 5.51.- Componente de fricción de la tensión, durante la carga elástica, frente a la deformación axial. (Segundas cargas).
DISTALOY AE. D= 7.0090 Mg/m³.