Development and Characterisation of Completely Degradable Composite Tissue Engineering Scaffolds

PhD Thesis by Montse Charles-Harris Ferrer

PhD Supervisor: Josep A. Planell i Estany

Barcelona, July 2007

Appendix

Appendix Chapter 2

Composition n°	Porosity (%)	Standard deviation
1	80,99	1,38
2	95,01	0,37
3	66,44	5,97
4	95,96	0,30
5	79,25	0,71
6	95,05	0,21
7	72,04	0,88
8	96,58	0,92
9	81,60	1,59
10	94,57	0,09
11	81,08	17,09*
12	95,02	0,68
13	71,15	0,65
14	94,70	0,28
15	95,02	3,72
16	72,07	0,13

Table App2. 1: Porosity results for composition 1-16. Porosity was measured by mercury pycnometry. Composition n° 11 was very heterogeneous and thus had a large standard deviation.

Composition n°	Stiffness (MPa)	Standard deviation
1	0.620	0.16
2	0.131	0.01
3	0.468	0.03
4	0.109	0.01
5	0.676	0.18
6	0.123	0.02
7	0.445	0.09
8	0.107	0.01
9	0.279	0.12
10	0.191	0.02
11	0.368	0.08
12	0.144	0.01
13	0.381	0.11
14	0.128	0.02
15	0.556	0.15
16	0.117	0.01

Table App2. 2: Stiffness results for compositions 1-16. Stiffness was measured by compression tests.

Composition nº	NaCl wt%	NaCI particle size	Size Glass particle Glass wt%		Porosity (%)	s.d.
1	-1	-1	-1	1	80,99	1,38
2	1	-1	-1	1	95,01	0,37
3	-1	1	-1	1	66,44	5,97
4	1	1	-1	1	95,83	0,30
5	-1	-1	1	1	79,25	0,71
6	1	-1	1	1	95,05	0,21
7	-1	1	1	1	72,04	0,88
8	1	1	1	1	96,58	0,92
9	-1	-1	-1	-1	81,6	1,59
10	1	-1	-1	-1	95,02	0,09
11	-1	1	-1	-1	72,07	17,09
12	1	1	-1	-1	94,57	0,68
13	-1	-1	1	-1	81,08	0,65
14	1	-1	1	-1	95,02	0,28
15	-1	1	1	-1	71,15	3,72
16	1	1	1	-1	94,7	0,13

Table App2. 3: Experiment Design Calculations for the factors influencing the porosity of the solvent cast scaffolds

Vector	Matrix														
Porosity (%)	NaCl wt% = X1	NaCI particle size= X2	Glass particle size = X3	Glass wt% = X4	X1X2	X1X3	X1X4	X2X3	X2X4	X3X4	X1X2X3	X1X3X4	X2X3X4	X1X2X4	X1X2X3X4
80,99	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1
95,01	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	1	-1	1
66,44	-1	1	-1	1	-1	1	-1	-1	1	-1	1	1	-1	-1	1
95,83	1	1	-1	1	1	-1	1	-1	1	-1	-1	-1	-1	1	-1
79,25	-1	-1	1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1
95,05	1	-1	1	1	-1	1	1	-1	-1	1	-1	1	-1	-1	-1
72,04	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	1	-1	-1
96,58	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
81,6	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1
95,02	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	-1	1	-1
72,07	-1	1	-1	-1	-1	1	1	-1	-1	1	1	-1	1	1	-1
94,57	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	1	1	-1	1
81,08	-1	-1	1	-1	1	-1	1	-1	1	-1	1	1	1	-1	-1
95,02	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	-1	1	1	1
71,15	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	-1	1	1
94,7	1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1

Response Factor

Calculation of the value of the β s (SUMPRODUCT of the response vector and the factor vector)

Factor	NaCl wt% = X1	NaCl particle size= X2	Glass particle size = X3	Glass wt% = X4	X1X2	X1X3	X1X4	X2X3	X2X4	X3X4	X1X2X3	X1X3X4	X2X3X4	X1X2X4	X1X2X3X4
Coeficients (βs)	9,82	-2,48	0,21	-0,25	2,68	-0,09	0,65	0,49	0,05	0,37	-0,38	-0,29	0,52	0,34	-0,45

Coeficients (βs)	absolute value β (in ascending order)	i	corrected accumulated frequencies	probability	semi z
9,8225	0,05125	1	0,033333	0,516666667	0,041789008
-2,4775	0,09375	2	0,100000	0,55	0,125661472
0,20875	0,20875	3	0,166667	0,583333333	0,210428652
-0,25125	0,25125	4	0,233333	0,616666667	0,296738563
2,675	0,29	5	0,300000	0,65	0,385321073
-0,09375	0,33875	6	0,366667	0,683333333	0,477040203
0,64625	0,3725	7	0,433333	0,716666667	0,57296802
0,48625	0,38125	8	0,500000	0,75	0,674490366
0,05125	0,4475	9	0,566667	0,783333333	0,783500127
0,3725	0,48625	10	0,633333	0,816666667	0,902734882
-0,38125	0,52	11	0,700000	0,85	1,036432877
-0,29	0,64625	12	0,766667	0,883333333	1,1918155
0,52	2,4775	13	0,833333	0,916666667	1,382995833
0,33875	2,675	14	0,900000	0,95	1,644853
-0,4475	9,8225	15	0,966667	0,983333333	2,128044798

Calculations for the significance of the factors

non significant βs	significant βs
0,05125	
0,09375	
0,20875	
0,25125	
0,29	
0,33875	
0,3725	
0,38125	
0,4475	
0,48625	
0,52	
0,64625	
	2,4775
	2,675
	9,8225

SCR = 8*(Σ of non significant β) ²	27,613
SCEx= $8^{*}(\Sigma \text{ of significant } \beta)^{2}$	1756,4022
SCT= (Σ of all β)	1784,0152
R ² =SCEx/SCT	0,98452199
average	85,4

Linear model : porosity = 85,4+9,8225*X1-2,4775*X2+2,675*X1X2

βs	Porosity (%)	NaCl wt% = X1	NaCl particle size = X2	X1X2	Calculated Y =Y^	error = e (Y^-Y)
9,8225	80,99	-1	-1	1	80,73	0,26
-2,4775	95,01	1	-1	-1	95,025	-0,015
2,675	66,44	-1	1	-1	70,425	-3,985
	95,83	1	1	1	95,42	0,41
	79,25	-1	-1	1	80,73	-1,48
	95,05	1	-1	-1	95,025	0,025
	72,04	-1	1	-1	70,425	1,615
	96,58	1	1	1	95,42	1,16
	81,6	-1	-1	1	80,73	0,87
	95,02	1	-1	-1	95,025	-0,005
	72,07	-1	1	-1	70,425	1,645
	94,57	1	1	1	95,42	-0,85
	81,08	-1	-1	1	80,73	0,35
	95,02	1	-1	-1	95,025	-0,005
	71,15	-1	1	-1	70,425	0,725
	94,7	1	1	1	95,42	-0,72

Error calculations Linear model : porosity = 85,4+9,8225*X1-2,4775*X2+2,675*X1X2

Composistion nº	NaCl particle size	Glass particle size	Glass wt%	Stiffness (MPa)	s.d.
2	-	-	+	0,131	0,01
4	+	-	+	0,109	0,01
6	-	+	+	0,123	0,02
8	+	+	+	0,107	0,01
10	-	-	-	0,191002	0,02
12	+	-	-	0,143896	0,01
14	-	+	-	0,127898	0,02
16	+	+	-	0,116974	0,01

Response vector Factor matrix

Stiffness (MPa)	NaCl particle size = X2	Glass particle size = X3	Glass wt%= X4	X2X3	X2X4	X3X4	X2X3X4
0,131	-1	-1	1	1	-1	-1	1
0,109	1	-1	1	-1	1	-1	-1
0,123	-1	1	1	-1	-1	1	-1
0,107	1	1	1	1	1	1	1
0,191002	-1	-1	-1	1	1	1	-1
0,143896	1	-1	-1	-1	-1	1	1
0,127898	-1	1	-1	-1	1	-1	1
0,116974	1	1	-1	1	-1	-1	-1

Calculation of the value of the β s (SUMPRODUCT of the response vector and the factor matrix)

Factors	X2	X3	X4	X2X3	X2X4	X3X4	X2X3X4
Coeficients (_{βs})	-0,01200375	-0,01250325	-0,01372125	0,00527275	0,00250375	0,01000325	-0,00377275

estimated Bs						non	
	β abs ord	i	frec corr.	prob	semi z	significant βs	significant βs
-0,01200375	0,00250375	1	0,071429	0,535714286	0,08964207	0,00250375	
-0,01250325	0,00377275	2	0,214286	0,607142857	0,2718798	0,00377275	
0,01372125	0,00527275	3	0,357143	0,678571429	0,46370815	0,00527275	
0,00527275	0,01000325	4	0,500000	0,75	0,67449037		0,01000325
-0,00250375	0,01200375	5	0,642857	0,821428571	0,92082246		0,01200375
-0,01000325	0,01250325	6	0,785714	0,892857143	1,24186727		0,01250325
0,00377275	0,01372125	7	0,928571	0,964285714	1,80274583		0,01372125

SCR = 8*(Σ of non significant β) ²	0,00038643
SCEx= $8^*(\Sigma \text{ of significant } \beta)^2$	0,00471007
SCT= (Σ of all β)	0,00509651
R ² =SCEx/SCT	0,92417661
average	
mitja=	0,13122125

linear model = stiffness = 0,13122-0,01372X4-0,01250X3-0,0120X2+0,01X3X4

linear model - stiffness - 0 13122-0 01372X4-0 01250X3-0 0120X2+0 01X	371
linear model = stiffness = 0.13122-0.01372X4-0.01250X3-0.0120X2+0.01X	3X4

β's	Stiffness (MPa)	NaCI particle size = X2	Glass particle size = X3	Glass wt%= X4	X3X4	۲^	е
-0,01200375	0,131	-1	-1	-1	-0,131	0,16813907	-0,03713907
-0,01250325	0,109	1	-1	-1	0,109	0,14653235	-0,03753235
-0,01372125	0,123	-1	1	-1	-0,123	0,1432126	-0,0202126
0,01000325	0,107	1	1	-1	0,107	0,12150585	-0,01450585
	0,191002	-1	-1	1	-0,191002	0,14009636	0,05090564
	0,143896	1	-1	1	0,143896	0,11943893	0,02445707
	0,127898	-1	1	1	-0,127898	0,1157211	0,0121769
	0,116974	1	1	1	0,116974	0,09416312	0,02281088

Calculation of the volume fraction of PLA, G5 and NaCl in the composites.

The composite is made of PLA and 20wt% or 50wt% of glass particles. The NaCl particles added to the mix measure either [80-210]µm or [295-590]µm.

The volume fraction of PLA, f_{PLA}, is:

$$f_{PLA} = \frac{Vol_{PLA}}{Vol_{Total}} = \frac{Vol_{PLA}}{Vol_{PLA} + Vol_{G5}} = \frac{\frac{M_{PLA}}{\rho_{PLA}}}{\frac{M_{PLA}}{\rho_{PLA}} + \frac{M_{G5}}{\rho_{G5}}}$$

At 20wt% of G5 glass, 4M_{G5}=M_{PLA};

$$20wt\% \longrightarrow f_{PLA} = \frac{\frac{M_{PLA}}{\rho_{PLA}}}{\frac{M_{PLA}}{\rho_{PLA}} + \frac{M_{G5}}{\rho_{G5}}} = \frac{\frac{4M_{G5}}{\rho_{PLA}}}{\frac{4M_{G5}}{\rho_{PLA}} + \frac{M_{G5}}{\rho_{G5}}} = \frac{\frac{4}{\rho_{PLA}}}{\frac{4}{\rho_{PLA}} + \frac{1}{\rho_{G5}}} = \frac{4\rho_{G5}}{4\rho_{G5} + \rho_{PLA}} = \frac{1}{1 + \frac{\rho_{PLA}}{4\rho_{G5}}}$$

At 50 wt% of G5 glass, $M_{G5} = M_{PLA}$;

$$50wt\% \longrightarrow f_{PLA} = \frac{\frac{M_{PLA}}{\rho_{PLA}}}{\frac{M_{PLA}}{\rho_{PLA}} + \frac{M_{G5}}{\rho_{G5}}} = \frac{\frac{M_{G5}}{\rho_{PLA}}}{\frac{M_{G5}}{\rho_{FLA}} + \frac{M_{G5}}{\rho_{G5}}} = \frac{\frac{1}{\rho_{PLA}}}{\frac{1}{\rho_{PLA}} + \frac{1}{\rho_{G5}}} = \frac{1\rho_{G5}}{1\rho_{G5}} = \frac{1}{1 + \frac{\rho_{PLA}}{\rho_{G5}}}$$

At 94 wt% of NaCl, and $M_{comp} = 0.06M_{Total}$; $M_{NaCl} = 0.94M_{NaCl}$

If ρ_{comp} at 20 wt% G5= 1.37 gcm⁻³, If ρ_{comp} at 50 wt% G5= 1.71 gcm⁻³, and $\rho_{NaCl}=2.2$ gcm⁻³. The volume fraction of composite, f_{comp}, in each case would be:

$$20wt\% \longrightarrow f_{comp} = \frac{1}{1 + \frac{0.94\rho_{comp}}{0.06\rho_{NaCl}}} = 0.093 = 9.3\%$$

$$50wt\% \longrightarrow f_{comp} = \frac{1}{1 + \frac{0.94\rho_{comp}}{0.06\rho_{NaCl}}} = 0.075 = 7.5\%$$

In order to calculate the thickness of the pore wall, we will assume the NaCl particles are spherical and the average NaCl particle radius is: 145µm in the case of NaCl particles ranging between [80-210]µm, and 440µm in the case of NaCl particles ranging between [295-590]µm.

The volume of a NaCl particle would be:

$$Vol_{NaCl} \xrightarrow{d=440\,\mu m} \frac{4}{3}\pi \left(\frac{440}{2}\right)^3 = 45*10^6\,\mu m^3$$

$$Vol_{NaCl} \xrightarrow{d=145\,\mu m} \frac{4}{3}\pi \left(\frac{145}{2}\right)^3 = 1.6*10^6\,\mu m^3$$

The volume fraction of composite in the mix is:

$$f_{comp} = \frac{Vol_{comp}}{Vol_{Total}} = \frac{Vol_{comp}}{Vol_{comp} + Vol_{NaCl}}$$

$$f_{comp}Vol_{comp} + f_{comp}Vol_{NaCl} = Vol_{comp}$$

$$f_{comp}Vol_{NaCl} = Vol_{comp}(1 - f_{comp})$$

$$Vol_{NaCl} = Vol_{comp} \frac{(1 - f_{comp})}{f_{comp}}$$

$$Vol_{comp} = Vol_{NaCl} \frac{f_{comp}}{(1 - f_{comp})}$$

At 50wt% glass, $f_{comp} = 7.5\%$.

At large NaCl particle sizes, the volume of composite for each volume of NaCl is:

$$Vol_{comp} \xrightarrow{r=440\,\mu m} 45*10^6 \frac{0.075}{(1-0.075)} = 3.6*10^6\,\mu m^3$$

Development and Characterisation of Completely Degradable Composite Tissue Engineering Scaffolds PhD Thesis by Montse Charles-Harris Ferrer

At small NaCl particle sizes;

$$Vol_{comp} \xrightarrow{r=145\,\mu m} 1.6*10^6 \frac{0.075}{(1-0.075)} = 0.13*10^6\,\mu m^3$$

If we assume each NaCl particle is surrounded by composite:

The total volume of the NaCl particle plus the composite coating for large NaCl particles at 50wt% of glass would be:

$$Vol_{Total} (NaCl + composite) \xrightarrow{d = 440 \, \mu m} = 4\pi R^3 = 45 * 10^6 \, \mu m^3 + 3.6 * 10^6 \, \mu m^3 = 48.6 * 10^6 \, \mu m^3$$

Taking: $Vol_{Total} = \frac{4}{3} \pi R^3$:

$$R = 227 \,\mu m$$
, $\Delta r = 227 - \frac{440}{2} = 7 \,\mu m$

And the total volume of the NaCl particle plus the composite coating for small NaCl particles would be:

$$Vol_{Total} (NaCl + composite) \xrightarrow{d=145 \mu m} = \frac{4}{3} \pi R^3 = 1.6 * 10^6 \mu m^3 + 0.13 * 10^6 \mu m^3 = 1.73 * 10^6 \mu m^3$$
$$R = 76 \mu m, \ \Delta r = 76 - \frac{145}{2} = 3.5 \mu m$$

Thus the pore walls measure 7 μm in the case of large NaCl particles, and 3.5 μm in the case of small NaCl particles.

At 20wt% glass,
$$f_{comp} = 9.3\%$$
.

At large NaCl particle sizes, the volume of composite for each volume of NaCl is:

$$Vol_{comp} \xrightarrow{r=440\,\mu m} 45*10^6 \frac{0.093}{(1-0.093)} = 4.7*10^6\,\mu m^3$$

At small NaCl particle sizes;

$$Vol_{comp} \xrightarrow{r=145\,\mu m} 1.6*10^6 \frac{0.093}{(1-0.093)} = 0.16*10^6\,\mu m^3$$

The total volume of the NaCl particle plus the composite coating for large NaCl particles at 20wt% of glass would be:

$$Vol_{Total} (NaCl + composite) \xrightarrow{d = 440 \, \mu m} = 4\pi R^3 = 45 * 10^6 \, \mu m^3 + 4.7 * 10^6 \, \mu m^3 = 49.7 * 10^6 \, \mu m^3$$

Taking: $Vol_{Total} = \frac{4}{3} \pi R^3$:

Development and Characterisation of Completely Degradable Composite Tissue Engineering Scaffolds PhD Thesis by Montse Charles-Harris Ferrer

$$R = 228 \mu m$$
, $\Delta r = 227 - \frac{440}{2} = 8 \mu m$

And the total volume of the NaCl particle plus the composite coating for small NaCl particles would be:

$$Vol_{Total} (NaCl + composite) \xrightarrow{d=145\mu m} = \frac{4}{3}\pi R^3 = 1.6 \times 10^6 \mu m^3 + 0.16 \times 10^6 \mu m^3 = 1.76 \times 10^6 \mu m^3$$
$$R = 74\mu m, \ \Delta r = 74 - \frac{145}{2} = 1.5\mu m$$

Thus the pore walls measure 8 µm in the case of large NaCl particles, and 1.5 µm in the case of small NaCl particles.

Appendix Chapter 3

Composition nº	Porosity (%)	s.d.
1F	95,11	0,13
2F	88,46	2,43
3F	96,13	0,36
4F	89,01	0,91
5E	94,86	0,03
5F	96,03	0,05
6E	82,60	5,19
7E	95,22	0,17
7F	95,78	0,69
8E	85,74	0,50
8F	87,25	1,94
9E	93,87	0,54
9F	95,85	0,28
10E	83,78	1,73
10F	88,28	0,14
11E	92,94	0,47
11F	96,21	0,14
12E	82,46	1,81
12F	87,73	0,32

Table App3. 1: Porosity results for compositions 1-12. Porosity was measured by mercury pycnometry

Composition n ^o	Porosity (%)	s.d.
J1	95,14	0,69
J2	95,41	0,20
J3	87,58	1,52
J4	88,46	1,38
J5	95,33	0,48
J6	95,66	1,01
J7	86,69	0,38
J8	86,79	0,49
J9	94,76	0,24
J10	95,74	0,41
J11	87,21	0,54
J12	87,52	0,50
J13	94,88	0,37
J14	94,91	1,11
J15	86,95	0,56
J16	86,57	0,83

Table App3. 2: Porosity results for compositions J1-J16

Composition nº	Stiffness (MPa)	s.d.
J1	0,29	0,07
J2	0,53	0,22
J3	6,35	0,76
J4	7,23	3,00
J5	0,22	0,05
J6	0,43	0,08
J7	4,78	1,28
J8	6,23	1,83
J9	0,23	0,04
J10	0,74	0,17
J11	8,82	3,71
J12	10,16	2,27
J13	0,22	0,05
J14	0,43	0,09
J15	4,55	1,27
J16	7,08	1,28

Table App3. 3: Compression tests results for compositions nº J1-J16

Compositions n°	Crystallinity (%)
J1	21,2
J2	31,5
J3	30,0
J4	28,3
J5	21,0
J6	56,5
J7	27,0
J8	39,4
J9	24,7
J10	24,4
J11	17,3
J12	23,8
J13	24,9
J14	46,6
J15	28,1
J16	30,4
Unprocessed PLA	31,8

Table App3. 4: Crystallinity results for compositions nº J1-J16

Composition n°	Tg (°C)
J1	48,52
J2	47,23
J3	58,72
J4	55,81
J5	53,0
J6	52
J7	53,31
J8	57,28
J9	61,53
J10	60,53
J11	61,19
J12	61,06
J13	61,2
J14	60,9
J15	60,47
J16	60,56
Unprocessed PLA	61,9

Tab	le App3.	5: Tg	results	for co	ompositions	J1-J16

Table App3. 6: Experiment Design Calculations for the factors influencing the porosity of the phase-separated scaffolds. Preliminary study, without glass particles

Composition n ^o	w/v% PLA	v/v% H₂O	Quenching Temp.	Solvent removal method	Porosity (%)
5F	-1	-1	1	1	96,0285483
6F	1	-1	1	1	88,85411649
7F	-1	1	1	1	95,78376248
8F	1	1	1	1	87,24554746
9F	-1	-1	-1	1	95,84554535
10F	1	-1	-1	1	88,28261668
11F	-1	1	-1	1	96,20947201
12F	1	1	-1	1	87,72769388
5E	-1	-1	1	-1	94,86207562
6E	1	-1	1	-1	82,59932691
7E	-1	1	1	-1	95,2203058
8E	1	1	1	-1	85,74265553
9E	-1	-1	-1	-1	93,86985173
10E	1	-1	-1	-1	83,77863423
11E	-1	1	-1	-1	92,94222436
12E	1	1	-1	-1	82,45983793

Freeze-extraction =-1 Freeze-drying =+1

Porosity (%)	w/v% PLA = X1	v/v % H₂O= X2	Quenching T.= X3	Solvent removal method = X4	X1X2	X1X3	X1X4	X2X3	X2X4	X3X4	X1X2X3	X1X2X4	X2X3X4	X1X3X4	X1X2X3X4
96,029	-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1
88,854	1	-1	1	1	-1	1	1	-1	-1	1	-1	-1	-1	1	-1
95,784	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	1	-1	-1
87,246	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
95,846	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1
88,283	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	1	-1	1
96,209	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	-1	1	1
87,728	1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1
94,862	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1
82,599	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	1	-1	1
95,22	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	-1	1	1
85,743	1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1
93,87	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1
83,779	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	-1	1	-1
92,942	-1	1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1
82,46	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1

Calculation of the value of the β s (SUMPRODUCT of the response vector and the factor vector)

Factors	X1	X2	X3	X4	X1X2	X1X3	X1X4	X2X3	X2X4	X3X4	X1X2X3	X1X2X4	X2X3X4	X1X3X4	X1X2X3X4
Coeficients (βs)	-4,62946	-0,04933	0,326278901	1,531399	0,006956	-0,0522	0,65979	0,255351	-0,20622	-0,34545	0,170708	-0,29229	-0,46315	0,093678	-0,22633

ni z	non significant βs	significant βs
1789	0,006957	
5661	0,049327	
0429	0,052171	
6739	0,093679	
5321	0,170708	
7704	0,206219	
2968	0,226324	
7449	0,255352	
7835	0,292286	
2735	0,326281	
6433	0,345449	
1815	0,463146	
2996		0,659791
4853		1,531399
8045		4,629459

Coefficients (βs)	β abs ord	i	corrected accumulated frequencies	probability	semi z
-4,62945938	0,006957	1	0,033333333	0,51666667	0,041789
-0,04932687	0,049327	2	0,1	0,55	0,125661
0,326280625	0,052171	3	0,166666667	0,58333333	0,210429
1,531399375	0,093679	4	0,233333333	0,61666667	0,296739
0,006956875	0,170708	5	0,3	0,65	0,385321
-0,05217063	0,206219	6	0,366666667	0,68333333	0,47704
0,659790625	0,226324	7	0,4333333333	0,71666667	0,572968
0,255351875	0,255352	8	0,5	0,75	0,67449
-0,20621938	0,292286	9	0,566666667	0,78333333	0,7835
-0,34544938	0,326281	10	0,633333333	0,81666667	0,902735
0,170708125	0,345449	11	0,7	0,85	1,036433
-0,29228563	0,463146	12	0,766666667	0,88333333	1,191815
-0,46314563	0,659791	13	0,833333333	0,91666667	1,382996
0,093679375	1,531399	14	0,9	0,95	1,644853
-0,22632438	4,629459	15	0,966666667	0,98333333	2,128045

SCR = 8*(Σ of non significant β) ²	11,64485
SCEx= $8^*(\Sigma \text{ of significant } \beta)^2$	387,3984
SCT= (Σ of all β)	399,0433
R ² =SCEx/SCT	0,970818
average	90,46576

β	Porosity (%)	w/v% PLA = X1	Solvent removal method = X4	X1X4	۲۸	e
-4,62946	96,02855	-1	1	-1	95,96707	0,061480171
1,531399	88,85412	1	1	1	88,02773	0,826385864
0,659791	95,78376	-1	1	-1	95,96707	-0,18330564
	87,24555	1	1	1	88,02773	-0,782183165
	95,84555	-1	1	-1	95,96707	-0,121522779
	88,28262	1	1	1	88,02773	0,254886058
	96,20947	-1	1	-1	95,96707	0,242403886
	87,72769	1	1	1	88,02773	-0,30003675
	94,86208	-1	-1	1	94,22385	0,638224997
	82,59933	1	-1	-1	83,64535	-1,046023719
	95,22031	-1	-1	1	94,22385	0,996455174
	85,74266	1	-1	-1	83,64535	2,097304904
	93,86985	-1	-1	1	94,22385	-0,353998892
	83,77863	1	-1	-1	83,64535	0,133283608
	92,94222	-1	-1	1	94,22385	-1,281626266
	82,45984	1	-1	-1	83,64535	-1,1855127

Error calculations linear model = porosity = 90,47 - 4,63X1 + 1,53X4 +0,66 X1X4

Composition nº	Temperature	w/v% PLA	v/v% H₂0	Solvent removal method (E/F)	Porosity (%)
J1	-1	-1	-1	-1	95,1
J2	1	-1	-1	-1	95,4
J3	-1	1	-1	-1	87,6
J4	1	1	-1	-1	88,5
J5	-1	-1	1	-1	95,3
J6	1	-1	1	-1	95,7
J7	-1	1	1	-1	86,7
J8	1	1	1	-1	86,8
J9	-1	-1	-1	1	94,8
J10	1	-1	-1	1	95,7
J11	-1	1	-1	1	87,2
J12	1	1	-1	1	87,5
J13	-1	-1	1	1	94,9
J14	1	-1	1	1	94,9
J15	-1	1	1	1	86,9
J16	1	1	1	1	86,6

Table App3. 7: Experiment Design Calculations for the factors influencing the porosity of the phase-separated scaffolds. Optimisation study, with glass particles.

Porosity (%)	Temperature = X1	w/v% PLA = X2	v/v% H2O = X3	E/F = X4	X1X2	X1X3	X1X4	X2X3	X2X4	X3X4	X1X2X3	X1X2X4	X1X3X4	X2X3X4	X1X2X3X4
95,1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1
95,4	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1
87,6	-1	1	-1	-1	-1	1	1	-1	-1	1	1	1	-1	1	-1
88,5	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1
95,3	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1
95,7	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	1
86,7	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	1
86,8	1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1
94,8	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1
95,7	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1
87,2	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1
87,5	1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1
94,9	-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1
94,9	1	-1	1	1	-1	1	1	-1	-1	1	-1	-1	1	-1	-1
86,9	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	-1
86,6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Factors	X1	X2	X3	X4	X1X2	X1X3	X1X4	X2X3	X2X4	X3X4	X1X2X3	X1X2X4	X1X3X4	X2X3X4	X1X2X3X4
Coefficients	0.457	4.005	0.050	0.450	0.040	-	0.040	0.010	0.001	0.014	0.020	0.001	0.050	0.455	0.000
(ps)	0,157	-4,005	-0,253	-0,158	-0,043	0,148	-0,040	-0,219	-0,001	0,014	-0,036	-0,091	-0,058	0,155	0,068

Coefficients βs	β abs ord	i	corrected accumulated frequencies	probability	semi z
0,157	0,001	1	0,03333333	0,51666667	0,041789
-4,005	0,014	2	0,1	0,55	0,125661
-0,253	0,036	3	0,16666667	0,58333333	0,210429
-0,158	0,040	4	0,23333333	0,61666667	0,296739
-0,043	0,043	5	0,3	0,65	0,385321
-0,148	0,058	6	0,36666667	0,68333333	0,47704
-0,040	0,068	7	0,43333333	0,71666667	0,572968
-0,219	0,091	8	0,5	0,75	0,67449
-0,001	0,148	9	0,56666667	0,78333333	0,7835
0,014	0,155	10	0,63333333	0,81666667	0,902735
-0,036	0,157	11	0,7	0,85	1,036433
-0,091	0,158	12	0,76666667	0,88333333	1,191815
-0,058	0,219	13	0,83333333	0,91666667	1,382996
0,155	0,253	14	0,9	0,95	1,644853
0.068	4.005	15	0.96666667	0.98333333	2.128045

non significant βs	significant βs
0,001	
0,014	
0,036	
0,040	
0,043	
0,058	
0,068	
0,091	
0,148	
0,155	
0,157	
0,158	
0,219	
0,253	
	4,005

semi z

SCR = $8^*(\Sigma \text{ of non significant } \beta)^2$	3,6595137
SCEx= 8*(Σ of significant β) ²	256,59738
SCT= (Σ of all β)	260,25689
R ² =SCEx/SCT	0,9859388
average	91,2
-	

linear model = porosity = 91,2 -4,005 * X2

β	Porosity (%)	X2	Y^	е
-4,005	95,1	-1	4,005	91,13957
	95,4	-1	4,005	91,41021
	87,6	1	-4,005	91,5865
	88,5	1	-4,005	92,46467
	95,3	-1	4,005	91,32554
	95,7	-1	4,005	91,65207
	86,7	1	-4,005	90,69273
	86,8	1	-4,005	90,79326
	94,8	-1	4,005	90,75498
	95,7	-1	4,005	91,73159
	87,2	1	-4,005	91,21015
	87,5	1	-4,005	91,52532
	94,9	-1	4,005	90,87928
	94,9	-1	4,005	90,90557
	86,9	1	-4,005	90,95282
	86,6	1	-4,005	90,57336

Error Calcultations linear model = porosity = 91,2 -4,005 * X2

Table App3. 8: Experiment Design Calculations for the factors influencing the stiffness of the phase-separated scaffolds. Optimisation study, with glass particles.

omposition nº	Temperature	w/v% PLA	v/v% H₂0	Solvent removal method (E/F)	Stiffness (MPa)
J1	-1	-1	-1	-1	0,29
J2	1	-1	-1	-1	0,53
J3	-1	1	-1	-1	6,35
J4	1	1	-1	-1	7,23
J5	-1	-1	1	-1	0,22
J6	1	-1	1	-1	0,43
J7	-1	1	1	-1	4,78
J8	1	1	1	-1	6,23
J9	-1	-1	-1	1	0,23
J10	1	-1	-1	1	0,74
J11	-1	1	-1	1	8,82
J12	1	1	-1	1	10,16
J13	-1	-1	1	1	0,22
J14	1	-1	1	1	0,43
J15	-1	1	1	1	4,55
J16	1	1	1	1	7,08

Stiffness (MPa)	Temperatur = X1	e ^{w/v%} PLA = X2	v/v% H2O X3	= E/F = X4	X1X2	X1X3	X1X4	X2X3	X2X4	X3X4	X1X2X3	X1X2X4	X1X3X4	X2X3X4	X1X2X3X4
0,29	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1
0,53	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1
6,35	-1	1	-1	-1	-1	1	1	-1	-1	1	1	1	-1	1	-1
7,23	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1
0,22	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1
0,43	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	1
4,78	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	1
6,23	1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1
0,23	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1
0,74	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1
8,82	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1
10,16	1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1
0,22	-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1
0,43	1	-1	1	1	-1	1	1	-1	-1	1	-1	-1	1	-1	-1
4,55	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	-1
7,08	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Factors	X1	X2	X3	X4	X1X2	X1X3	X1X4	X2X3	X2X4	X3X4	X1X2X3	X1X2X4	X1X3X4	X2X3X4	X1X2X3X4
Coefficients	0.460	2 257	0.650	0.297	0.214	0.000	0.110	0.590	0.267	0.209	0 1 2 1	0.070	0.022	0.000	0.055
Coefficients (βs)	0,460	3,257	-0,650	0,387	0,314	0,090	0,112	-0,589	0,367	-0,308	0,131	0,079	0,	022	022 -0,288

estimated β s	β abs ord	i	corrected accumulated frequencies	probability	semi z
0,460	0,022	1	0,033333333	0,51666667	0,022
3,257	0,055	2	0,1	0,55	0,055
-0,650	0,079	3	0,166666667	0,58333333	0,079
0,387	0,090	4	0,233333333	0,61666667	0,090
0,314	0,112	5	0,3	0,65	0,112
0,090	0,131	6	0,366666667	0,68333333	0,131
0,112	0,288	7	0,4333333333	0,71666667	0,288
-0,589	0,308	8	0,5	0,75	0,308
0,367	0,314	9	0,566666667	0,78333333	0,314
-0,308	0,367	10	0,6333333333	0,81666667	0,367
0,131	0,387	11	0,7	0,85	0,387
0,079	0,460	12	0,7666666667	0,88333333	0,460
0,022	0,589	13	0,8333333333	0,91666667	0,589
-0,288	0,650	14	0,9	0,95	0,650
0.055	3.257	15	0.966666667	0.98333333	3.257

non significant βs	significant βs
0,022	
0,055	
0,079	
0,090	
0,112	
0,131	
0,288	
0,308	
0,314	
0,367	
0,387	
	0,460
	0,589
	0,650
	3,257

Т

Г

significance

SCR = $8^*(\Sigma \text{ of non significant } \beta)^2$	9,73496306
SCEx= $8^{*}(\Sigma \text{ of significant } \beta)^{2}$	185,368534
SCT= (Σ of all β)	195,103497
R ² =SCEx/SCT	0,9501036
average	3,64

linear model = stiffness = 3,64 +3,527*X2 - 0,650*X3 +0,460 *X1 -0,589* X2X3

293

βs	Stiffness (MPa)	X2	Х3	X1	X2X3	۲^	e
3,527	0,3	-1	-1	-1	1	0,892	-0,604448
-0,65	0,5	-1	-1	1	1	1,812	-1,28219
0,46	6,3	1	-1	-1	-1	6,768	-0,4180633
0,589	7,2	1	-1	1	-1	7,688	-0,461418
	0,2	-1	1	-1	-1	-1,586	1,806234
	0,4	-1	1	1	-1	-0,666	1,096642
	4,8	1	1	-1	1	6,646	-1,868538
	6,2	1	1	1	1	7,566	-1,33606
	0,2	-1	-1	-1	1	0,892	-0,6594725
	0,7	-1	-1	1	1	1,812	-1,0702075
	8,8	1	-1	-1	-1	6,768	2,05242
	10,2	1	-1	1	-1	7,688	2,467795
	0,2	-1	1	-1	-1	-1,586	1,8070575
	0,4	-1	1	1	-1	-0,666	1,095182
	4,6	1	1	-1	1	6,646	-2,0913625
	7,1	1	1	1	1	7,566	-0,483638

Error calculations linear model = stiffness = 3,64 +3,527*X2 - 0,650*X3 +0,460 *X1 -0,589* X2X3

	Ŭ		1 1		
Composition nº	Temperature	w/v% PLA	v/v% H₂0	Solvent removal method (E/F)	Cristallinity (%)
J1	-1	-1	-1	-1	21,2
J2	1	-1	-1	-1	31,5
J3	-1	1	-1	-1	30,0
J4	1	1	-1	-1	28,3
J5	-1	-1	1	-1	21,0
J6	1	-1	1	-1	56,5
J7	-1	1	1	-1	27,0
J8	1	1	1	-1	39,4
J9	-1	-1	-1	1	24,7
J10	1	-1	-1	1	24,4
J11	-1	1	-1	1	17,3
J12	1	1	-1	1	23,8
J13	-1	-1	1	1	24,9
J14	1	-1	1	1	46,6
J15	-1	1	1	1	28,1
J16	1	1	1	1	30,4

Table App3. 9: Experiment Design Calculations for the factors influencing the crystallinity of the phase-separated scaffolds. Optimisation study, with glass particles.

Cristallinity (%)	Temperature = X1	w/v% PLA = X2	v/v% H2O = X3	E/F = X4	X1X2	X1X3	X1X4	X2X3	X2X4	X3X4	X1X2X3	X1X2X4	X1X3X4	X2X3X4	X1X2X3X4
21,2	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1
31,5	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1
30,0	-1	1	-1	-1	-1	1	1	-1	-1	1	1	1	-1	1	-1
28,3	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1
21,0	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1
56,5	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	1
27,0	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	1
39,4	1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1
24,7	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1
24,4	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1
17,3	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1
23,8	1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1
24,9	-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1
46,6	1	-1	1	1	-1	1	1	-1	-1	1	-1	-1	1	-1	-1
28,1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	-1
30,4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Factors	X1	X2	X3	X4	X1X2	X1X3	X1X4	X2X3	X2X4	X3X4	X1X2X3	X1X2X4	X1X3X4	X2X3X4	X1X2X3X4
Coefficients															
(β s)	5,411	-1,660	4,546	-2,181	-2,978	3,571	-1,640	-1,356	-0,962	0,417	-2,337	1,410	-1,338	0,733	-0,929

$^{\beta}$ estimada	β abs ord	i	corrected accumulated frequencies	probability	semi z	non significant βs	significant βs
5,411	0,417	1	0,033333333	0,5166667	0,417	0,417	
-1,660	0,733	2	0,1	0,55	0,733	0,733	
4,546	0,929	3	0,166666667	0,5833333	0,929	0,929	
-2,181	0,962	4	0,233333333	0,6166667	0,962	0,962	
-2,978	1,338	5	0,3	0,65	1,338	1,338	
3,571	1,356	6	0,366666667	0,6833333	1,356	1,356	
-1,640	1,410	7	0,4333333333	0,7166667	1,410	1,410	
-1,356	1,640	8	0,5	0,75	1,640	1,640	
-0,962	1,660	9	0,566666667	0,7833333	1,660	1,660	
0,417	2,181	10	0,633333333	0,8166667	2,181	2,181	
-2,337	2,337	11	0,7	0,85	2,337	2,337	
1,410	2,978	12	0,766666667	0,8833333	2,978		2,978
-1,338	3,571	13	0,833333333	0,9166667	3,571		3,571
0,733	4,546	14	0,9	0,95	4,546		4,546
-0,929	5,411	15	0,966666667	0,9833333	5,411		5,411

significance

SCR = 8*(Σ of non significant β) ²	380,419148
SCEx= 8*(Σ of significant β) ²	1145,118
SCT= (Σ of all β)	1525,53715
R ² =SCEx/SCT	0,75063266
average	29,688

linear model = crystallinity= 29,688 +5,411X1 +4,546X3 + 3,571X1X3 -2,978X1X2

297

Error ca	alculations
----------	-------------

βs	Cristallinity (%)	X1	Х3	X1X3	X1X2	۲^	е
5,411	21,2	-1	-1	1	1	20,324	0,902638
4,546	31,5	1	-1	-1	-1	29,960	1,511536
3,571	30,0	-1	-1	1	-1	26,280	3,6877766
-2,978	28,3	1	-1	-1	1	24,004	4,288159
	21,0	-1	1	-1	1	22,274	-1,244999
	56,5	1	1	1	-1	46,194	10,347353
	27,0	-1	1	-1	-1	28,230	-1,183813
	39,4	1	1	1	1	40,238	-0,860986
	24,7	-1	-1	1	1	20,324	4,3806187
	24,4	1	-1	-1	-1	29,960	-5,577615
	17,3	-1	-1	1	-1	26,280	-8,969581
	23,8	1	-1	-1	1	24,004	-0,223119
	24,9	-1	1	-1	1	22,274	2,6024769
	46,6	1	1	1	-1	46,194	0,3580945
	28,1	-1	1	-1	-1	28,230	-0,174146
	30,4	1	1	1	1	40,238	-9,840578

linear model = crystallinity= 29,688 +5,411X1 +4,546X3 + 3,571X1X3 -2,978X1X2

Table App3. 10: Experiment Design Calculations for the factors influencing the crystallinity of the phase-separated scaffolds. Optimisation study, with glass particles.

Composition nº	Temperature	w/v% PLA	v/v% H₂0	Solvent removal method (E/F)	Тg
J1	-1	-1	-1	-1	48,52
J2	1	-1	-1	-1	47,23
J3	-1	1	-1	-1	58,72
J4	1	1	-1	-1	55,81
J5	-1	-1	1	-1	53,0
J6	1	-1	1	-1	52
J7	-1	1	1	-1	53,31
J8	1	1	1	-1	57,28
J9	-1	-1	-1	1	61,53
J10	1	-1	-1	1	60,53
J11	-1	1	-1	1	61,19
J12	1	1	-1	1	61,06
J13	-1	-1	1	1	61,2
J14	1	-1	1	1	60,9
J15	-1	1	1	1	60,47
J16	1	1	1	1	60,56

Tg	Temperature = X1	e w/v% PLA = X2	v/v% H2O = X3	E/F = X4	X1X2	X1X3	X1X4	X2X3	X2X4	X3X4	X1X2X3	X1X2X4	X1X3X4	X2X3X4	X1X2X3X4
48,52	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1
47,23	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1
58,72	-1	1	-1	-1	-1	1	1	-1	-1	1	1	1	-1	1	-1
55,81	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1
53,0	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1
52	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	1
53,31	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	1
57,28	1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1
61,53	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1
60,53	1	-1	-1	1	-1	-1	1	1	-1	-1	1	-1	-1	1	1
61,19	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1
61,06	1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1
61,2	-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1
60,9	1	-1	1	1	-1	1	1	-1	-1	1	-1	-1	1	-1	-1
60,47	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	-1
60,56	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Factor	X1	X2	X3	X4	X1X2	X1X3	X1X4	X2X3	X2X4	X3X4	X1X2X3	X1X2X4	X1X3X4	X2X3X4	X1X2X3X4
Coefficients	-0,161	1,468	0,258	3,848	0,288	0,506	-0,007	-0,903	-1,578	-0,406	0,382	-0,131	-0,391	0,746	-0,442

β estimada	β abs ord	i	corrected accumulated frequencies	probability	semi z
-0,161	0,007	1	0,033333333	0,516666667	0,007
1,468	0,131	2	0,1	0,55	0,131
0,258	0,161	3	0,166666667	0,583333333	0,161
3,848	0,258	4	0,233333333	0,616666667	0,258
0,288	0,288	5	0,3	0,65	0,288
0,506	0,382	6	0,366666667	0,683333333	0,382
-0,007	0,391	7	0,433333333	0,716666667	0,391
-0,903	0,406	8	0,5	0,75	0,406
-1,578	0,442	9	0,566666667	0,783333333	0,442
-0,406	0,506	10	0,633333333	0,816666667	0,506
0,382	0,746	11	0,7	0,85	0,746
-0,131	0,903	12	0,766666667	0,883333333	0,903
-0,391	1,468	13	0,833333333	0,916666667	1,468
0,746	1,578	14	0,9	0,95	1,578
-0.442	3.848	15	0.966666667	0.9833333333	3.848

non significant β s	significant β s
0,007	
0,131	
0,161	
0,258	
0,288	
0,382	
0,391	
0,406	
0,442	
0,506	
0,746	
0,903	
	1,468
	1,578
	3,848

SCR = $8^{*}(\Sigma \text{ of non significant } \beta)^{2}$	39,648075
SCEx= 8*(Σ of significant β) ²	311,26297
SCT= (Σ of all β)	350,91104
R ² =SCEx/SCT	0,8870139
average	57,082

Linear model = Tg= 57,82 + 3,848X4 -1,578*X2*X4 +1,468X2

_ineai mouei – ry–	$57,02 \pm 5,0$	54074 - 1,570	J NZ N4 +1,400			
β s	Тg	X4	X2X4	X2	Y^	e
3,85	48,52	-1	1	-1	50,926	-2,406
-1,58	47,23	-1	1	-1	50,926	-3,696
1,468	58,72	-1	-1	1	57,018	1,702
	55,81	-1	-1	1	57,018	-1,208
	53,0	-1	1	-1	50,926	2,074
	52	-1	1	-1	50,926	1,074
	53,31	-1	-1	1	57,018	-3,708
	57,28	-1	-1	1	57,018	0,262
	61,53	1	-1	-1	61,778	-0,248
	60,53	1	-1	-1	61,778	-1,248
	61,19	1	1	1	61,558	-0,368
	61,06	1	1	1	61,558	-0,498
	61,2	1	-1	-1	61,778	-0,578
	60,9	1	-1	-1	61,778	-0,878
	60,47	1	1	1	61,558	-1,088
	60,56	1	1	1	61,558	-0,998

Error calculations

Appendix Chapter 4

Weeks in SBF	Pore	osity (%)
	Solvent Casting	Phase Separation
0	94,8 ± 0,09	88,8 ± 0,55
2	94,6 ± 0,25	88,2 ± 0,70
4	94,1 ± 0,42	88,3 ± 0,86
6	93,6 ± 0,39	88,8 ± 0,65
8	93,7 ± 0,53	89,0 ± 0,48
10	94,3 ±0,08	89,1 ± 0,93

 Table App4. 1: Porosity results for the solvent cast and phase-separated scaffolds during the ten weeks of degradation in SBF.

Weeks in SBF	Solvent Casting Stiffness (kPa)	Phase Separation Stiffness (MPa)
0	78,81 ±19,8	7,10 ± 1,4
2	70,75 ± 16,2	6,09 ± 1,9
4	68,64 ± 15,1	6,50 ± 1,2
6	68,26 ± 10,0	6,48 ± 2,1
8	60,84 ± 6,5	1
10	49,22 ± 6,7	6,59 ± 2,3

Table App4. 2: Stiffness results for the solvent cast and phase-separated scaffolds during the ten weeks of degradation in SBF. Note, results for the solvent cast scaffolds are given in kPa.

Weeks in SBF	% weight loss						
	Solvent Casting	Phase Separation					
0	1	Ī					
2	0,63% ± 0,93%	1,32% ± 0,29%					
4	4,04% ± 1,52%	3,94% ± 0,60%					
6	8,47% ± 1,99%	6,86% ± 1,16%					
8	9,93% ± 0,90%	8,01% ± 2,24%					
10	1	11,08% ± 2,31%					

 Table App4. 3: % weight loss results for the solvent cast and phase separated scaffolds during the ten weeks of degradation in SBF.

Weeks in SBF	Glass particle content (%)						
	Solvent Casting	Phase Separation					
0	43,92% ± 1,69%	47,85% ± 0,45%					
2	43,58% ± 1,16%	46,82% ±0,18%					
4	42,01% ± 1,28%	47,52% ± 1,47%					
6	40,65% ± 0,41%	45,18% ± 0,42%					
8	39,63% ± 0,89%	41,79% ± 0,21%					
10	37,49% ± 0,73%	43,04% ± 0,25%					

 Table App4. 4: Glass particle content results for the solvent cast and phase separated scaffolds during the ten-week degradation in SBF.

Week	Tg (°C) (2 nd ramp)	Tm(°C) (1 st ramp)	Hf (J/g) (1 st ramp)	Tc (°C) (2 nd ramp)	Hc (J/g) (2 nd ramp)	% X _c 1 st ramp)
0	63.05 ± 0.47	158.20 ± 0.90	8.07 ± 1.29	129.73 ± 0.98	2.85 ± 1.11	12.0% ± 6.3%
2	62.81 ± 0.54	158.11 ± 0.55	11.07 ± 1.04	125.94 ± 1.35	9.58 ± 1.70	21.1% ± 2.0%
4	61.97 ± 0.42	157.78 ± 0.26	12.85 ± 0.54	125.48 ± 0.43	13.37 ± 1.80	23.8% ± 1.0%
6	61.93 ± 0.17	159.15 ± 0.53	13.11 ± 0.09	123.87 ± 1.37	12.54 ± 1.58	$23.7\%\pm0.2\%$
8	61.70 ± 0.09	159.69 ± 0.45	13.85 ± 1.50	120.67 ± 0.53	17.31 ± 1.58	24.6% ± 2.7%
10	61.70 ± 0.45	159.25 ± 0.21	12.60 ± 0.26	123.49 ± 3.56	15.42 ± 3.18	$21.6\% \pm 0.5\%$

 Table App4. 5: Evolution of the thermal properties of the solvent cast scaffolds during the ten-week degradation in SBF.

Week	Tg (°C)Tm(°C)Hf (J/g)(2 nd ramp)(1 st ramp)(1 st ramp)		Tc (°C) (2 nd ramp)	Hc (J/g) (2 nd ramp)	% X _c 1 st ramp)	
0	59.35 ± 1.13	158.56 ± 1.56	13.16 ± 1.08	130.40 ± 2.10	2.05 ± 0.46	27.1% ± 2.2%
2	60.22 ± 1.05	160.63 ± 0.92	15.64 ± 0.45	126.44 ± 3.07	12.46 ± 3.43	$31.6\% \pm 0.9\%$
4	61.36 ± 0.24	161.37 ± 0.64	15.77 ± 0.76	130.04 ± 0.61	7.31 ± 1.21	32.3% ± 1.6%
6	61.01 ± 0.70	162.57 ± 1.07	16.71 ± 0.12	125.28 ± 4.16	12.24 ± 3.61	$32.7\% \pm 0.2\%$
8	60.20 ± 1.03	163.00 ± 0.98	17.81 ± 1.45	118.35 ± 4.16	16.33 ± 1.52	32.9% ± 2.7%
10	59.43 ± 0.39	163.46 ± 0.94	19.44 ± 1.46	115.31 ± 2.46	19.05 ± 1.05	36.7% ± 2.8%

 Table App4. 6: Evolution of the thermal properties of the phase-separated scaffolds during the ten-week degradation in SBF.

Appendix Chapter 5

Figure App5. 1: ESEM images of the lower surface of the composite films made of PLA dissolved in chloroform with 0%, 20% and 50 wt% glass particles.

Figure App5. 2: ESEM images of the lower surface of the composite films made of PLA dissolved in dioxane with 0%, 20% and 50 wt% glass particles.

Composition	Sa (nm)	Sku	Ssk	SAI
0%C lower face	497.20 ± 131.89	64.00 ± 66.43	-1.40 ± 3.09	1.06 ± 0.01
20%C lower face	890.00 ± 137.78	47.10 ± 40.79	-2.67 ± 2.91	1.12 ± 0.04
50%C lower face	2778.06 ± 429.00	7.91 ± 1.90	-1.39 ± 0.43	1.52 ± 0.10
0%D lower face	525.73 ±70.50	19.05 ± 7.24	0.86 ± 0.82	1.06 ± 0.01
20%D lower face	728.52 ± 77.00	51.58 ± 24.79	-3.10 ± 1.79	1.12 ± 0.03
50%D lower face	3106.99 ± 307.40	6.00 ± 0.98	-0.73 ± 0.40	1.43 ± 0.10

Table App5. 1: Roughness parameters of the lower faces of the composite films. Sa= spacing between
local peaks, Sku = hurtosis of the surface, Ssk = skewdness of the surface plane, and SAI = surface area
index.

Composition	Sa (nm)	Sku	Ssk	SAI
0%C sterilised	80.30 ± 25.13	90.67 ± 136.60	-3.74 ± 6.43	1.0 ± 0.001
20%C sterilised	1617.49 ± 186.60	9.80 ± 2.26	0.44 ± 0.47	1.11 ± 0.02
50%C sterilised	3759.11 ± 459.00	5.15 ± 1.29	$\textbf{-0.42} \pm 0.31$	1.54 ± 0.11
0%D sterilised	264.89 ± 46.60	1532 ± 26.20	-0.90 ± 2.34	1.02 ± 0.02
20%D sterilised	1560.35 ± 145.71	14.62 ± 8.21	-1.06 ± 1.13	1.09 ± 0.02
50%D sterilised	4476.10 ± 207.70	3.58 ± 0.17	-0.022 ± 0.21	1.67 ± 0.03

Table App5. 2: Roughness parameters of the upper face of the sterilised composite films. Sa= spacingbetween local peaks, Sku = hurtosis of the surface, Ssk = skewdness of the surface plane, and SAI =surface area index.

0%-50%	X1	X2	X3	
Composition n ^o	Glass wt% Solvent - -1=0% 1=chloroform +1=50% +1 =dioxane		Sterilisation -1=no +1=yes	Contact Angle (·)
1	-	-	-	84,457
2	+	-	-	77,57
3	-	+	-	80,638
4	+	+	-	90,596
5	-	-	+	75,539
6	+	-	+	72,311
7	-	+	+	77,471
8	+	+	+	85,529

			_	4 1	• •		1 1 / 1			• •	•				0 11		• .	011
	011100	A m	n •		Trongener	dogan	00 011 0tion	ton t	ha taat	ONG INT	11000100	the	aantaat	onglo	ot th	\mathbf{n}	n n n n n	tilma
		A I I		1 : D.	хпегнненн	Hesiyii	сясшанов		петаст	0181001	песния	ние	сониясь	апуе		• •••••••	DUSTIE	IIIIIS.
- ·,	hai c				apper miterie	acoign	calcalation		ne nace		accuring	viiv	contract	wing iv			PODICC	
		_																

Contact Angle (·)	Glass wt% = X1	Solvent = X2	Sterilisation = X3	X1X2	X1X3	X2X3	X1X2X3
84,457	-1	-1	-1	1	1	1	-1
77,57	1	-1	-1	-1	-1	1	1
80,638	-1	1	-1	-1	1	-1	1
90,596	1	1	-1	1	-1	-1	-1
75,539	-1	-1	1	1	-1	-1	1
72,311	1	-1	1	-1	1	-1	-1
77,471	-1	1	1	-1	-1	1	-1
85,529	1	1	1	1	1	1	1
Term	X1	X2	X3	X1X2	X1X3	X2X3	X1X2X3
Coefficient	0,987625	3,044625	-2,801375	3,516375	0.219875	0,742875	-0,694875

stimated βs	β abs ord	i	frec corr.	prob	semi z	non significant βs	significant βs
0,987625	0,219875	1	0,071429	0,535714286	0,0896421	0,219875	
3,044625	0,694875	2	0,214286	0,607142857	0,2718798	0,694875	
-2,801375	0,742875	3	0,357143	0,678571429	0,4637081	0,742875	
3,516375	0,987625	4	0,500000	0,75	0,6744904	0,987625	
0,219875	2,801375	5	0,642857	0,821428571	0,9208225		2,801375
0,742875	3,044625	6	0,785714	0,892857143	1,2418673		3,044625
-0,694875	3,516375	7	0,928571	0,964285714	1,8027458		3,516375

16,4677015

235,8586914

252,3263929

0,934736508

80,51

SCR = 8*(Σ of non significant β)² SCEx= 8*(Σ of significant β)² SCT= (Σ of all β)

R²=SCEx/SCT

average

linear model: Contact Angle =Y= 80,51+3,52X1X2+3,04X2-2,80X3 = 80,51 +3,52*Glasswt%*SolventType + 3,042* Solvent Type - 2,80* Sterilisation

linear mode	el: Contact Angle= Y= 80,51+3,52X1X2+3,04X2-2,80X3
betas	
3,516375	
3,044625	
-2,801375	

Contact Angle (·)	X1*X2	X2	Х3	۲^	е
84,457	1	-1	-1	83,787	0,67
77,57	-1	-1	-1	76,75425	0,81575
80,638	-1	1	-1	82,8435	-2,2055
90,596	1	1	-1	89,87625	0,71975
75,539	1	-1	1	78,18425	-2,64525
72,311	-1	-1	1	71,1515	1,1595
77,471	-1	1	1	77,24075	0,23025
85,529	1	1	1	84,2735	1,2555

