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6 Dynamic Recrystallization: Multiple Peak and Monotonic Stress Behavior 
 
6.1 An Introduction to Dynamic Recrystallization 
 

Dynamic recrystallization (DRX) is the name of a recognized phenomenon, 
which occurs during straining of metals at high temperature, characterized by a 
nucleation rate of low dislocation density grains and a posterior growth rate that can 
produce a homogeneous grain size when equilibrium is reached. DRX, also known as 
discontinuous dynamic recrystallization by some authors [1], occurs after a critical 
amount of strain, εc, which is dependent on the type of strain path, the initial grain size, 
D0, temperature, T, and strain rate, ε& . When the critical strain is reached, on face 
centered cubic (fcc) metals of medium to low stacking fault energy [2], strain-hardening 
and dynamic recovery cease to be the principle mechanisms responsible of the stress-
strain response, DRX accompanies the process. However, DRX is not a phenomenon 
restricted to fcc metals, it has been described on ice [3], some minerals [4], and even 
high purity α–Fe [5, 6, 7]. The relay of softening mechanism from strain-hardening and 
dynamic recovery to DRX is the reason the term discontinuous has been earned. At a 
microstructural level DRX begins when strain hardening plus recovery can no longer 
store more immobile dislocations. The grain becomes saturated of dislocation barriers in 
the form of cells and the grain boundaries bulge until a new grain is formed [8, 9, 10]. If 
the equilibrium or stable state is reached in a single cycle the hot flow curve is said to 
have a monotonic stress behavior. Upon the peak stress, σp, the stress descends 
following a particular kinetic rate until arriving to the steady state stress, σss. If stress 
oscillations appear before reaching the steady state then several recrystallization and 
grain growth cycles occur and the stress behavior is said to be of the multiple peak type. 
The particular stress behavior before reaching the steady state depends, once again, on 
the initial grain size, temperature, and strain rate.  The present work analyses recent 
theories that predict either a monotonic or multiple peak stress behaviors, and also 
proposes a stress-strain model, which represents both recrystallization paths. 

Several criteria exist to predict a monotonic or multiple peak stress behavior, 
some are restricted to certain materials and test conditions, however the more recent and 
general theories profit earlier analyses and acknowledge the interrelationships between 
temperature, strain rate, the initial grain size and the stable dynamically recrystallized 
grain size, Drex. The onset of DRX had been noticed by a stress peak on a true stress-
true strain hot flow curve, however the corresponding peak strain, εp, does not 
necessarily coincide with the microstructural critical strain, εcr. In copper at higher 
strain rates or lower temperatures εcr occurs much earlier than εp, but at slower strain 
rates and higher temperatures εp -εcr is smaller and almost coincide [11]. More recently 
analysis done on steels have shown that the ratio εcr/εp remains constant [12], which 
would not make earlier observations untrue. This apparent contradiction will be 
explained during the subsection on the onset of DRX. A separation of both strain related 
concepts is needed to understand the difficulties of microstructural prediction, which is 
an objective of any complete model.  

When the grain nucleation and growth rate have reached an equilibrium the 
microstructural change due to DRX is considered to have stopped and the original 
grains have been consumed or have been replaced by newer relatively dislocation free 
grains. DRX is of industrial interest when the new homogeneous dynamically 
recrystallized grains are smaller than the initial grains, because as a result room 
temperature mechanical properties improve. After the microstructural change due to 
DRX the stress remains relatively constant despite continued strain. One early criterion  
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Fig. 6.1. The critical-strain model [13] 
proposed that multiple peak DRX happens 
when the critical strain to initiate 
recrystallization, εcr (marked εc above), is 
larger than the strain to recrystallize a large 
fraction of initial volume, εx. 

Fig. 6.2. The opposite of situation 
happening on fig. 1 is shown above, also 
from ref. [13]. The critical strain is smaller 
than εx. The graph implies that εx ≅ εs - εp.  

 
 
presented by Luton and Sellars [13] required comparison between the peak strain, εp, 
and the strain of the first DRX cycle, εx, see fig. 1 and 2. If the critical strain, εcr, was 
greater than a DRX cycle, εx, then a multiple peak stress behavior was expected.  

The εcr > εx criterion of the Critical-Strain model remained a useful analysis for 
the particular applications for which it was conceived, however methodological 
difficulties in the calculation of the involved strains and in the verification by other 
researchers [14, 15, 16] prompted further investigation. The end of the first DRX cycle 
according to Luton and Sellars is shown in figures 6.1 and 6.2 to be at the strain value εs 
after the first stress minimum when the hot flow curve reaches the steady state. An 
experimentally difficult matter to determine from a real hot flow curve is the steady 
state stress value. A horizontal stress line would ideally appear after the first or multiple 
DRX cycles, however during hot compression of the coppers in this study a clear 
horizontal stage was never present. The same observation is not unique to this study but 
can also be seen on hot flow curves in Pb [17, 15], Cu [18, 19], Ni and Ni-Fe [13], low 
carbon Steel [15] and HSLA Steel [20] just to mention few examples. Sakui et al. [14] 
and Weiss et al. [15] were unable to directly verify the Critical-Strain model during 
tension or compression tests of low carbon steel. Sandström and Lagneborg [21] also 
argued that εx depended on the average grain size and, because the average grain size 
during recrystallization varies then εx varies also. Sakai and Jonas [16] using carbon 
steels concluded that the critical-strain model could be applied only during torsion (see 
fig. 6.3). Sakui et. al. [22, 14] using a 0.16% carbon steel  in tension noticed a final 
stable dynamic grain size when only the strain rate was varied (see fig. 6.4). A 
relationship between the Zener-Hollomon parameter, ( )RTQZ expε&= , and the stable 
dynamically recrystallized grain size, Drex, was possible. Furthermore Sakui et al. 
without discarding the concept of a critical strain continued developing microstructural  
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Fig. 6.3. Dependence of εp and εx on the peak stress σp after ref. [16]. (a) Determined 
from the torsion flow curves of ref. [23] (note intersection). (b) Determined from the 
tension data of ref. [14, 22]. Note that εp and εx do not intersect in this case. (c) 
Determined from the axisymetric compression data of ref. [24]. Again the εp and εx 
curves do not intersect. 

 

Fig. 6.4. The plot shows the strain dependence of the dynamically recrystallized grain 
size during the tensile deformation of a 0.16% C steel at 940ºC from ref. [14]. The 
strains at which stress peaks were observed are identified as P1, P2, etc. Notice that at 
strain rate 0.02s-1 multiple peaks occurred despite a grain refinement of the initial 
austenitic grain size (32µm). 
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Fig. 6.5. The relationship found by Sakui et al. [14] between the dynamically 
recrystallized grain size Drex (shown as Ds above) and the Zener-Hollomon parameter 
Z. The dashed line is a parallel to the Drex-Z relation and marks the Z conditions when 
Drex is doubled. The grain-size-based model assumes a near equality of the Zc-D0 
relation and the Z-2Drex relation. The Zc-D0 relation establishes the transition between 
single peak and multiple peak DRX. 

 
 
relationships first pointing out that the initial grain size, D0, was related to a critical 
temperature and strain rate conditions, Zc, which limited the appearance of multiple 
peak DRX and single peak DRX. The Zc conditions almost matched the curve where the 
Drex is doubled (see fig. 6.5). However this Grain-Size-Based critical condition [16] 
would require more experimental analysis to understand the microstructural 
consequences. 

The 2Drex<D0 criterion for a monotonic stress behavior seemed true, but 
incomplete. The assumption implied that a monotonic stress behavior would refine the 
initial grain size and that a multiple peak behavior (2Drex>D0) would coarsen the grain 
size. However, experimental deviations in copper [25] showed that a multiple peak 
behavior could refine an initial grain size of 78µm to 57µm. These and other [26, 27, 
28] experimental observations lead to improve the earlier criterion. An illustrative 
explanation of the evolved Grain-Size-Based criterion is shown on fig. 6.6. The 
condition shown on type I represents the original Grain-Size-Based criterion. Types II, 
III, IV and V illustrate what occurs mechanically and microstructurally after Montheillet 
and Jonas [1] re-examined experimental evidence. The second column shows real hot 
flow curves during compression of copper. The hot flow curve shown for the type II 
behavior is from ref. [25], however the curve is actually an example of type I behavior 
(Drex < 0.5D0), but was placed as an example because shows what happens when twins 
are considered. The hot flow behavior for type II, excluding twins, looks much like type 
I. The five types of hot flow behavior when twins are excluded can be seen on ref. [29].  
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D0 Drex 

Type I: Single Peak DRX 
and Grain Refinement 

Drex < 0.5D0 and Z > ZC Copper A of this study tested at 850ºC and 0.1s-1. Grain size 
excluding twins: D0 = 637µm and Drex = 83µm. 

Type II: Single Peak DRX 
and Grain Refinement 

2Drex = D0 and Z = ZC 

Copper from ref. [25] tested at 602ºC and 0.002s-1. Grain size 
(µm) excluding/including twins: D0= 164 / 78 and Drex= 47 / 34. 

Type III: Multiple Peak 
DRX & Grain Refinement 

D0>Drex >0.5D0 and Z < ZC 
Copper A of this study tested at 950ºC and 0.001s-1. Grain size 
excluding twins: D0 = 637µm and Drex = 396µm. 

Type IV: Multiple Peak 
DRX, No Grain Size 
Change 
 
 
 
 
  
Drex = D0 and Z < ZC 

Copper from ref. [29] tested at 405ºC and 0.0004s-1. Grain size 
excluding twins: D0= 62µm and Drex = 62.3µm. 

Type V: Multiple Peak 
DRX & Grain Coarsening 

Drex > D0 and Z < ZC 
Copper from ref. [30] tested at 597ºC and 0.0014s-1. Grain size 
excluding twins: D0= 9µm and Drex = 31µm. 

Fig. 6.6 Type I is the original Grain-Size-Based criterion. To see the 5 plot types see ref. [29]. 
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Fig. 6.7. Double-logarithmic plot illustrating the relative-grain-size model from ref. [1]. 
The ZC-D0 and Z-Drex relations are represented here by two parallel straight lines. The 
crosshatched area corresponds to the Zener-Hollomon Parameter conditions associated 
with single-peak DRX.  
 
 
Montheillet and Jonas [1] have named this contemporary approach the Relative-Grain-
Size model and is theoretically explained by fig. 6.7. 

The relationship between the dynamically recrystallized grain size, Drex, and the 
Zener-Hollomon parameter, Z, and the relationship between the initial grain size, D0, 
and the critical Zener-Hollomon value, Zc, were schematically redrawn on a same Log-
Log graph, which makes the curves presented by Sakui et al. straight. Both are power 
law relationships, which are expressed as 

 
                                         rexm

rexrex ZKD =                                                        (6.1) 
and 

                                           0
00

m
cZKD =                                                          (6.2) 

 
where K and m are constants particular to the metal employed. The line on fig. 6.7 
marking the Zc-D0 relationship divides the temperature and strain rate conditions that 
produce a monotonic stress behavior (hatched area) from the conditions that produce a 
multiple peak stress behavior. The Z-Drex line represents the final grain size to which 
any initial grain size will tend during DRX. As means of explaining the relative-grain-
size model two types of experiments can be designed. Hot flow tests at identical Z 
values can be performed on three different initial grain sizes, D01, D02, and D03, 
hopefully laying on the three different stress behavior zones; monotonic stress behavior 
while refining, multiple peak stress behavior while refining, and multiple peak stress 
behavior while grain coarsening. The other type of experiment is the most commonly 

Zener- 
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Parameter 

Z, 
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performed; hot flow tests at identical initial grain sizes, D01 shown on fig. 6.7, where 
different Z values are tried, and hopefully the three condition types are found, this was 
the case of Sakui et al. on fig. 6.4. On both types of hot flow experiments the initial 
grain size will move horizontally (as shown on fig. 6.7) until reaching the Drex. In the 
analysis of this study the abscissas and ordinates will be interchanged so that in Eq. 6.1 
and 6.2 the grain size may remain as the dependent variable (as a result at a constant Z 
value grain sizes will change only vertically). Some unresolved matters concerning the 
Zc-D0 relationship are, for instance, the appropriate slope value, m0. Is the Zc-D0 relation 
just a 2Drex offset from the Drex-Z relation maintaining m0 constant? In the original 
article by Sakui et al. [14, 22] full congruence of the Zc-D0 relationship was attained at 
1.8Drex, and for simplicity a 2Drex offset was used on the Grain-Size-Based critical 
condition [16]. The slope m0 is believed to be the same as mrex on the contemporary 
Relative-Grain-Size model [1]. A method to identify a value for Zc will be shown as part 
of a stress-strain model to be proposed. A model that predicts not only monotonic DRX 
[13], but also multiple peak DRX will be presented as an objective of this study. 
 
 
6.2 Relevant Experimental Procedure 
 

A fire-refined 99.9% pure copper with low oxygen (see Cu A on table 6.1) was 
chosen to study the stress-strain transition from monotonic to multiple peak DRX. 
Copper is an fcc metal that readily demonstrates both DRX behaviors within the heating 
and strain rate capacity of normal laboratory hot compression machines. The fire-
refined copper billet was received as the surplus material after a hot extrusion cycle, 
which allowed a grain size much finer than the grain after only solidification. 
Cylindrical samples of 10mm diameter and 15 mm height were machined. Before each 
test the samples were annealed at 950ºC during 5 minutes until reaching an initial grain 
size of 637µm. The annealing prevented any static recrystallization due to an unknown 
residual stress state. The hot compression tests were performed using a software 
enhanced Instron 4507 electromechanical testing machine to produce a constant strain 
rate. The samples were protected during the tests by a flow of nitrogen gas inside the 
furnace chamber. The test temperature was monitored by a thermocouple adjacent to the 
sample. Copper A was tested at eight different temperatures from 600ºC to 950ºC at 
50ºC intervals and at six different strain rates, namely 0.3s-1, 0.1s-1, 0.03s-1, 0.01s-1, 
0.003s-1, and 0.001s-1. The strain rate attained in each test was 0.8. After each 
compression test quenching in cool water retained the resulting microstructure. The 
apparent activation energy, Qapp, of Cu A is 213kJ/mole [31], which is a value close 
enough to the lattice self-diffusion activation energy, Qsd = 197kJ/mole, of purer 
coppers [32, 33]. The proximity of the activation energy values has allowed use of the 
self-diffusion activation energy as means of analyzing the stress and strain values in 
correlation with the Zener-Hollomon parameter [34, 35]. Self-diffusion is the ultimate 
rate controlling process for pure metals [36]. The low content of oxygen made choosing 
Cu A fit for analyzing with a single activation energy value as will be explained. 
 
Table 6.1. Residual chemical composition in ppm of the 99.9% Cu employed and the 
initial grain size D0 (µm) before hot compression tests. 
ppm P Sn Pb Ni Ag S Fe Zn O D0 
Cu A 297 86.2 63.5 31.7 30.8 22.0 17.2 15.6 26 637µm
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a) b) 

c) d) 
Fig. 6.8. Hot compression stress-strain curves performed at 600, 650, 700 and 750ºC. 
 
 
6.3 Experimental Hot Flow Curves 
 

The selected strain rates, temperatures and initial grain size allowed hot flow 
curves of the types I, II, and III shown on fig. 6.6. Examples of incomplete DRX at a 
strain rate of 0.8 were also obtained. If the incompleteness was doubtful then the 
metallographical observation provided the answer [37]. Figures 6.8 and 6.9 show the 
true stress-true strain behavior at each of the eight temperatures and six strain rates. The 
common description of any hot flow curve of types III and IV is of an initial stress peak 
followed by damped oscillations whose amplitudes decrease to a central steady state 
stress value. Upon reaching certain minimum amplitude the hot flow becomes a 
horizontal straight line. However, a close examination of the curves pointed to redefine 
the common description given for the multiple peak behavior. First, the oscillations 
tended to a lower value instead of a central value, see fig. 6.10. Probably even further 
deformation was needed to reach a horizontal steady state. In compression further 
deformation is not realistic due to the loss of strain homogeneity. The lower value 
appreciated on the zoomed plots on fig. 6.10 should tend towards a saturation steady 
state stress value. The steady state stress value should be reached with enough strain. A 
model should reflect this last observation if the prediction is to match experimental data. 
A second objection from the general belief is that the oscillations on plots of fig. 6.10 
do not disappear abruptly into a straight line instead oscillations attenuate to small 
amplitude. And finally, the first stress peaks and troughs appear periodic, and  
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a) b) 

c) d) 
 
Fig. 6.9. Hot compression stress-strain curves performed at 800, 850, 900 and 950ºC. 

 
 

predictable.  However no attempt had ever been made to describe their regularity as a 
function of Z. One geometric aspect of hot compression tests that should not be 
mistaken by a hardening mechanism is the small increment of stress registered near the 
end of the test. The small increase of stress responds to the approach or contact of the 
two cone shape volumes within the test sample, which accumulate less strain than the 
rest of the volume. The low strain accumulation results from the friction between the 
areas of the compression sample in contact with the anvils. When both cone shape 
volumes approach the effect is like deforming an initial grain of lower dislocation 
density, which will harden. No attempt will be made to model the hardening at the end 
of the compression test. The objections exposed through this work are not particular to 
this experimental study but as said earlier similar hot flow behaviors can be appreciated 
on other materials [13, 15, 17-20].          
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a) b) 

c) d) 

e) f) 
Fig. 6.10. A zoom shows the oscillating and descending behavior during DRX. 
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6.4 Avrami Models for DRX 
 
Luton and Sellars [13] suggested the use an Avrami [38, 39] mathematical equation, 
 
                                                    ( )An

AtKX −−= exp1 ,                                              (6.3) 
 
 to characterize the kinetics of the dynamically recristallized volume fraction, X, which 
consumes an initial grain size. The Avrami equation had been used to quantify static 
recrystallization and grain growth kinetics among other transformation rates. The use of 
mathematical modeling to describe an ordered behavior, i. e. DRX, is commonly 
frowned upon, but the industrial necessity for kinetics prediction and the lack of 
acceptable correlations from physically based theories [40] urged a deductive reasoning. 
The deductively proposed Avrami equation has been modified to better describe the 
existing relationships between strain, strain rate, and temperature during DRX. In eq. 6. 
3 t represents the time during a single DRX cycle. If the peak strain, εp, the strain rate, 
ε& , and the progressing strain, ε, are known then 
 

                                                           
( )

ε
εε
&

pt
−

= .                                                       (6.4) 

 
The time for DRX to consume 50% of the initial grain volume, t50%, is an easier value to 
measure from hot flow data. The time for 100% DRX may stabilize at a low slope, 
which would increase the error while calculating the coefficient KA. Since exp(-0.693) ≅ 
0.5 the relationship between the coefficient KA and t50% can be expressed as 
 

                                                       






 −
=

AnA t
K

%50

693.0 .                                                   (6.5) 

 
Hence by combining equations 6.3, 6.4 and 6.5 the dynamically recrystallized volume 
fraction X is commonly [41, 42] expressed as 
 

                                               


















 −
−−=

An
p

t
X

%50

693.0exp1
ε

εε
&

.                                  (6.6) 

 
Equation 6.6 describes the rate at which the tested sample will soften from the peak 
stress, σp, to the steady state stress, σss. From a mechanical point of view eq. 6.6 can be 
written as 
 

                                                       
ssp

pX
σσ
σσ

−

−
=                                                        (6.7) 

 
where σ is the registered stress. As a first step to characterize the kinetics of DRX the 
exponent nA is calculated by measuring the slope of ( )[ ]{ }X−11lnln  vs. ( )( )[ ]εεε &1ln p− , 
which is a result of substituting equations 6.4 and 6.7 into eq. 6.3 and expanding into a 
linear equation. The value of nA is calculated for the first cycle of DRX whether 
monotonic or multiple peak. The exponent nA can be plotted against the Zener- 
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Fig. 6.11. The usual Avrami technique produced the shown dispersion of nA values, 
which gather into two groups at around nA ~ 2 for lower Z and around nA ~ 1 for higher 
Z values. 
 
 
Hollomon parameter as means of noting an ordered behavior, however for Cu A in the 
range of conditions studied, only two clouds of points could be appreciated (see fig. 
6.11). 
The measured exponent nA had values near one for higher Z values, which present 
monotonic DRX, and presented values around two for lower Z values, which result in 
multiple peak DRX. 
 Despite the low correlation between nA and Z the Avrami equation has been used 
to describe with some degree of success the hot flow curve of the copper in this study 
[34, 35] and of most metals. A reproduction of earlier results [34, 35] where the Avrami 
equation was used to model DRX kinetics in terms of strain rate and temperature is 
shown on fig. 6.12 and enlarged on fig. 6.13. The constitutive equation that describes 
stress is given by 
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As can be seen from fig. 6.13 the Avrami model simulates only the first DRX cycle and 
stabilizes at a constant steady state stress value despite the multiple peak stress 
behavior. In part the simple trajectory of the prediction is because from the beginning 
the model was not conceived to oscillate. A simple trajectory without oscillations 
predicts stress values with relatively little error margin. A conceptual mistake of the 
Avrami implementation is that the recrystallized volume fraction, X, is commonly 
calculated using the mechanical definition given by eq. 6.7, which is not 
microstructurally true. Experimental evidence has shown that DRX begins before the 
peak stress, hence when X is zero according to eq. 6.7 the material already has a certain 
recrystallized volume. Sandström and Lagneborg later proposed a theoretical definition 
for X as will be explained by eq. 6.9. Multiple peak DRX has remained an academic 
curiosity probably because multiple peaks are only observed at temperatures near the  
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Fig. 6.12. An example is shown of the predictions when the Avrami equation is used to 
model DRX. The result is reliable, but multiple peak DRX requires a different solution. 
 
 

Fig. 6.13. Is a closer view of fig. 6.12 showing that the prediction is precise in 
magnitude, but accurate values are out of the question because the Avrami model can 
not adopt any other shape. 
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melting point and at slow strain rates. However some attempts have been made to model 
the multiple peak behavior using other means: a dislocation distribution model [21], 
Monte Carlo simulation methods [43], Cellular Automata algorithms for simulation [44] 
and complicated mathematical models that tend to be briefly explained, see references 
[45- 48]. 
 
 
6.5 The Sandström and Lagneborg DRX Model 
 
 In 1975 a theoretical model was presented [21] that explained oscillations during 
DRX and, was also validated using published experimental data on nickel [13], 
vacuum-melted iron [7] and, zone-refined iron [7]. The Sandström and Lagneborg 
model divided the hot flow behavior according to the arrangement of dislocation density 
locally present. As deformation progresses dislocation cell structures within the grain 
begin to form. Further deformation makes the dislocation cell walls acquire a higher 
local dislocation density if compared to the cell interior. A homogeneous dislocation 
density was defined, ( )tg ,ρ , which corresponded to the density within the substructures 
and, presumably behaved following a well-known relationship ( ραµτ b= ). The other 
dislocation density was the one that formed sub-grain walls, ( )tG d ,ρ , which was 
considered to contribute little to the total stress. At each time interval εε &  a particular 
statistical volume distribution function existed for both dislocation densities defined. 
The homogeneous dislocation density within sub-grains adopted a normal shaped 
distribution function. The recrystallized volume fraction X caused ( )tg ,ρ  to widen, but 
increasing strain-hardening increased the frequency of a particular dislocation density 
value. The volume distribution function for the dislocation density in the sub-grain 
walls, ( )tG d ,ρ , adopted an oscillatory behavior starting at a non-zero frequency for a 
zero dislocation density value, but as a critical dislocation density was reached the 
frequency tended to zero, i. e. almost no sub-grain wall sites with a dislocation density 
higher than the critical value. Both distribution functions were directly interrelated. The 
volume fraction of material dynamically recrystallized per unit time was defined as 
 

                                           ( ) ( ) dddMGB dtGA
dt
dX

CR

ρρρυ
ρ∫
∞

= , ,                                   (6.9) 

 
where MGBA  is the moving grain boundary area and ( )dρυ  is the velocity of the 
recrystallizing grain boundary. Sandström and Lagneborg used  
 

                                                         ∗=
dA

A

EUD

Surf
CR

4
ρ                                                  (6.10) 

 
as the critical dislocation density, defined by Bailey and Hirsch [9], where SurfA  is the 
grain boundary energy per unit area, EUDA  is the average energy per unit length of a 
dislocation and ∗d  is the diameter of the recrystallization nucleus. The advancing 
dynamically recrystallized volume provided fresh material to be included in ( )tg ,ρ .  
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Fig. 6.14. The above plot shows the experimental curves from ref. [7] after performing 
hot torsion tests on vacuum-melted iron at 850ºC. The plot below is the theoretical 
prediction of the Sandström and Lagneborg DRX model [21]. 
 
 
Stress at a particular time was calculated using the average dislocation density, ρ , of 

( )tg ,ρ  and using ραµτ b= . 
 The Sandström and Lagneborg model represents a singular attempt to include 
DRX into a strain-hardening and dynamic recovery model, however predictions could 
not follow a detailed match [21] with experimental evidence. The stress-strain 
predictions made by the Sandström and Lagneborg model are shown on figs. 6.14, 6.15 
and, 6.16. Sandström and Lagneborg recognized that to improve the agreement between 
experimental and theoretical curves the grain boundary mobilities had to be multiplied 
by a factor. Also the mean free path value a dislocation in ( )tG d ,ρ  can travel was made 
to be much larger than possible (10-25µm). Apart from the difficult task to reproduce 
the irregular experimental behavior the model was capable of predicting the periodicity 
of the oscillations as well as the peak and steady state stress magnitudes. The 
dependency of the model with temperature was not validated, but temperature enters the 
model via the change the grain boundary mobilities have with the change in 
temperature. Sandström and Lagneborg attributed the occurrence of oscillations on the 
relative magnitudes of the rate of recrystallization, dtdX , and the rate of dislocation 
production, dtdρ . When the rate of recrystallization is sufficiently large compared to  
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Fig. 6.15. The above plot shows the experimental results from ref. [7] after hot torsion 
tests at 850ºC on zone-refined iron. The plot below is the theoretical prediction of the 
Sandström and Lagneborg DRX model [21]. On the plot below the grain size variation 
is taken into account in the full drawn curves, but on the dashed curves the variation is 
neglected. 
 
 
the rate of dislocation production (low strain rates) then the recrystallized material is 
capable of gradually filling with dislocations and another recrystallization cycle will 
occur. If, on the other hand, the rate of recrystallization is small relative to the rate of 
dislocation production (high strain rates) then dislocations will be generated at a high 
rate behind recrystallizing grain boundaries. The critical dislocation density is reached 
long before the first recrystallization cycle is completed. As a consequence 
distinguishing between various cycles will not be possible and no stress oscillations will 
appear. The conceptual ideas put forth by the model seem to be on the right path, 
however the free use of ραµτ b=  to describe strain-hardening and recovery beyond 
stage II needs revision, nonetheless the Sandström and Lagneborg approach has 
successfully inspired other experiments, like Cellular Automata [44] simulations. 
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Fig. 6.16. The above plot shows the experimental curves from ref. [13] after hot torsion 
tests at 934ºC on Nickel. The lower plot is the theoretical prediction of the Sandström 
and Lagneborg DRX model [21]. 
 
 
 
6.6 Monte Carlo Computerized Models for DRX 
 

Rollett et. al. [43] employed a computerized Monte Carlo algorithm to simulate 
the microstructural change during DRX by theoretically creating a two-dimensional 
triangular lattice where each node or site is assigned a texture, Si, and a periodically 
increased stored energy, H, to account for work-hardening. Neighboring sites with 
different textures marked a grain boundary. Nucleation of recrystallized grains was 
achieved by adding new grains at randomly chosen positions. Grains would grow or not 
when the orientation of a site was randomly changed as part of the Monte Carlo method. 
Then an associated stored energy was added, ∆H, and the total energy, E, was calculated 
using a particular algorithm. Rollett et. al. defined the total energy as  
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where J scaled the grain boundary energy, the first sum was over all of the sites in the 
model, the second sum was over the nearest neighbors of site i (m = 6), and δab was the 
Kronecker delta function. If the total energy change was less or equal to zero then the 
randomly chosen site would retain the new orientation (growth), otherwise the old 
orientation was maintained (no growth). The only nexus to any particular metal came 
from the proportionality of stored energy, H, to the dislocation density, ρ, which is 
related to the flow stress, σ, through the known [49] relation 

 
                                            ραµσ bM=                                                     (6.12) 
 

where µ is the shear modulus, b is the Burgers vector, M  is the Taylor factor [50-52], 
and α is a geometrical constant of order 0.5. The time was measured in steps or Monte 
Carlo steps (mcs), which correspond to the number of reorientation attempts of a site. 
Fig. 6.17 after [43] shows how pseudo stress-strain curves can be plotted by application 
of H=σ  and the assumption that the work hardening rate is directly proportional to 
strain rate. Unfortunately the multiple peak stress behavior does not approach the stress 
or strain magnitudes of real hot flow tests. Further analysis seems to be needed to find 
the appropriate values of M  and α that could make of the pseudo stress-strain curves a 
prediction of the hot flow behavior of a metal. If appropriate values of M  and α were 
 

Fig. 6.17. The plot shows a Monte Carlo computerized prediction of DRX behavior from 
ref. [43]. A series of pseudo stress-strain curves are computed by applying H=σ  and 
the assumption that the work-hardening rate is proportional to strain rate. 
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Fig. 6.18. The plot above shows a Monte Carlo computerized prediction from ref. [53]. A 
comparison between the general shapes of the Monte Carlo generated stress-strain curves 
above and the experimental curves of fig. 6.8 at least indicates that a detailed match will 
never be achieved. On the plot below the stress-strain curves for strain rates in the range 
0.001≤ε& ≤0.06MCS-1 and T = Tmelting (solid lines) and ε& =0.004MCS-1 and the temperature 
in the range 0.5 Tmelting ≤ T ≤ Tmelting (dashed lines). Letters A, B, C, and D, correspond to 
ε& =0.09, 0.06, 0.04 and 0.03 MCS-1, while e, f, g, h and i correspond to T / Tmelting= 0.7, 
0.75, 0.8, 0.9 and 1.0 respectively. The curves were obtained for a microstructure with D0 
≅  12.1. 
 
 
to be found then a lack of resemblance with experimental data could be a problem, 
compare Figs. 6.8 and Fig. 6.18. Another attempt to model multiple peak DRX was 
done by Peczak [53, 54] shown on fig. 6.18 where the total energy was instead defined 
by a modified q-state Potts model Hamiltonian [55], again with similar results. 
 
 
6.7 Cellular Automata models for DRX 
 

Goetz and Seetharaman [44] developed the first Cellular Automaton whose 
deterministic rules modeled DRX. Like the Monte Carlo method the Cellular Automata 
technique creates a grid of uniform cells, which are updated every time step with a finite 
value or state using deterministic rules that consider the neighborhood of cells around. 
However the phenomenological relationships to simulate grain boundary motion and the 
use of the Potts energy model in the Monte Carlo method mark a fundamental 
difference [44].  The Cellular Automaton created by Goetz and Seetharaman is based on 
the technique developed by Hesselbarth and Göbel [56] for Static Recrystallization. The 
method relied on keeping track of the dislocation density of each cell, Cρ , which 
determined nucleation and growth. A 7-cell neighborhood was used to control growth 
by impingement after nucleation, when two recrystallized grains came in contact then 
growth was stopped on both. New grain boundaries were allowed to migrate until the 
dislocation density of a cell became greater or equal to a critical dislocation density, 

CRρ . Critical dislocation densities have been defined elsewhere in literature [9, 57]. The 
first step of the process [44] required the creation of an initial microstructure. Then 
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simultaneously four operations were performed at each time step. The dislocation 
density, ρ , was increased, which simulated strain hardening by assuming that ρε ∝  
and dtdρε ∝& . The dislocation density was halved in a certain number of cells, N, 
which simulated Dynamic Recovery. Nucleation was achieved by checking the density 
of an arbitrary fraction ( dtd 1000ρ ) of grain boundary cells. If Cρ  exceeded the 
average dislocation density during Dynamic Recovery, DRρ , then the cell became a 
nucleus and the density was reset to zero. And fourth, boundary cells of new grains 
were allowed to migrate. The number of cells to be dynamically recovered, N, was 
made to be a function of the increase of dislocation density per time step, dtdρ , and 
thus 
 
                                                    ( ) 6.03170 dtdN ρ= .                                               (6.13) 
 

Several questionable assumptions were made to arrive to an expression for N. 
Like in the Monte Carlo methods instead of directly using eq. 6.12, a physically based 
equation, the steady state stress during Dynamic Recovery was made equal to ( ) 21

Tρ . 
The total number of dislocations, Tρ , was equal to the total number of cells (Goetz and 
Seetharaman had 4902) multiplied by DRρ . As means of obtaining a value for DRρ  
another assumption had to be made, which was based on the concept that during steady 
state Dynamic Recovery the amount of dislocations generated or increased should be 
equal to the amount of dislocations annihilated, hence 
 
                                                ( )( ) ( ) 24902

DRNdtd ρρ = .                                       (6.14) 
 
The right-hand side represented the number of cells whose dislocations were halved, 
however no explanation is given of how annihilating dislocations by half reflected the 
recovery behavior in a real material. One last unclear value is K = 6030, which was 
used to calculate the coefficient of eq. 6.13, where ( )( )[ ]2212 24903170 K= . Eq. 6.14 
allowed calculating DRρ , which was needed for comparison after randomly choosing a 
fraction of grain boundary cells. Goetz and Seetharaman believed that growth of 
recrystallized grains would also be deformation-controlled by making 

( ) 7.088.15 dtdCR ρρ = . However the lack of an associated deformation on all grains 
when the dislocation density was varied made grains change only their area by growth 
and not their shape by true strain. On both Monte Carlo methods and the Cellular 
Automata techniques one visual flaw exists that grains do not flatten despite creating 
recrystallization collars. Incomplete DRX is experimentally observed on flattened 
(previously deformed) grains. Nevertheless the Cellular Automata, like the Monte Carlo 
methods, are also capable of predicting hot flow behavior for different dtdρ  inputs as 
fig. 6.19 from Goetz and Seetharaman [44] showed. As happened with the Monte Carlo 
method no reference was made of how temperature would play a role in the model. 
Other Cellular Automata models have been created [58, 59] (see fig. 6.20), which reveal 
the influence of nucleation rate on the hot flow curves, however the results do not seem 
to improve the attempt of Goetz and Seetharaman. The simulations performed to 
reproduce the stress-strain behavior did not predict the real behavior at different 
temperatures for any particular material.  
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Fig. 6.19. Cellular Automaton results from ref. [44] show stress as a function of (a) 
time and (b) strain for different dtdρ  inputs: 10, 100 and, 1000. A transition from 
single peak to multiple peak DRX is noticed. Strain rate has been modelled to be 
proportional to dtdρ . 

 

Fig. 6.20. On (a) the Cellular Automaton from ref. [58] shows the influence of 
different initial grain sizes on the stress-strain curves simulated at various 
temperatures: D0 = 2.9 (solid lines) and D0 = 7.0 (dashed lines). The simulations were 
carried out at same deformation conditions. On (b) the same Cellular Automaton but 
from ref. [59] helps conclude that single peak DRX is characterized by low grain 
boundary velocity whereas multiple peak DRX is associated to high grain boundary 
velocity. 

 
 
 One Cellular Automaton created by Ding and Guo [60] compares simulations to 
the experimental results obtained by Blaz et al. [25] on copper, and seems to have 
applied eq. 6.12 correctly with remarkable results (see figs. 6.21 and 6.22). Ding and 
Guo were able to introduce temperature into the simulations, probably by the use of a 
shear modulus, µ, as a function of temperature [40]. Ding and Guo did not mention 
what proportionality was used between strain and dislocation density or between strain 
rate and the increase in dislocation density, but their results show they were also able to  
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Fig. 6.21. A comparison of the stress-strain curves obtained by the Cellular 
Automaton in ref. [60] and the experimental curves obtained after hot compression of 
copper from ref. [25]. The simulated curves are shown on (a). The experimental 
curves (b) were performed at temperatures from 725K to 1075K and at a strain rate of 
0.002s-1. The initial grain size was 83µm for the simulated results and 78µm 
(including twin boundaries) for the experimental results. 

 

Fig. 6.22. A comparison of the influence of different initial grain sizes on the stress-
strain curves obtained by the Cellular Automaton in ref. [60] and the experimental 
curves obtained after hot compression of copper from ref. [25]. The simulated curves 
are shown on (a). The experimental curves (b) were performed at 975K and at a strain 
rate of 0.002s-1. The initial grain sizes marked D0T on (b) include twin boundaries. The 
dynamically recrystallized grain size for the Z conditions is 57µm. 
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Fig. 6.23. The influence of initial grain size on DRX behavior is shown according to a 
mathematical model from ref. [45]. 

 

Fig. 6.24. A Monte Carlo computerized model from ref. [61] predicts oscillations, 
which are represented as normalized stress versus time. The oscillation behavior on 
(a) corresponds to a rectangular initial distribution of cell elements and (b) is the 
behavior for a bell shaped initial distribution. 

 
 
represent true strain correctly instead of using Cellular Automata steps. The work of 
Ding and Guo still did not address the lack of shape change in the initial grains (initial 
grains are only consumed by new grains). However without diminishing the remarkable 
resemblance of the experimental and the simulated curves two differences can be 
mentioned. The simulated stress-strain curves initially recrystallize at a faster rate than 
the experimental curves. Secondly the simulated curves oscillate more without 
attenuating than the experimental curves (see figs. 6.21 and 6.22). The present author 
believes that the oscillation period and dampening can be described in terms of the 
Zener-Hollomon parameter as will be shown on a proposed model. 
 
 
6.8 Other Models for DRX 
 
 At least four other DRX models exist, which account for the multiple peak stress 
behavior. One is a mathematical model presented only at the Recrystallization’92 
conferences by Kaptsan et al. [45]. The Kaptsan mathematical model includes concepts  
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Fig. 6.25. A Monte Carlo computerized model from ref. [61] presents normalized 
stress versus time curves. The yield drop behavior for three deformation rates is 
shown: curve (a) represents the highest deformation rate and curve (c) is the smallest 
deformation rate. 

 
 
of dislocation density evolution in old and new grains, grain boundary migration and, 
formation of new nuclei. No reference is made to any particular metal, but Kaptsan et al. 
claim to have obtained a stress-strain graph showing the influence of initial grain size 
on the multiple peak stress behavior (see fig. 6.23). This model is “too complex to be 
used in practice” [60]. Another DRX model, which also accounts for the multiple peak 
stress behavior, is the one presented by Kroc et al. [61]. Monte Carlo simulations were 
used in combination with mathematical, physical and numerical approaches to represent 
normalized stress versus time curves (see figs. 6.24 and 6.25). These other [45- 48, 61] 
stress-strain models still need to be compared to real recrystallizing materials. Ponge 
and Gottstein [62, 63] presented a Percolation model for DRX, but the aim was to 
model different recrystallizing kinetics on different materials (metals and 
intermetallics). The question of how to describe the hot flow during multiple peak stress 
behavior was not addressed. However, a demonstration was presented of how the initial 
collar of recrystallized grains contributes differently to the total registered stress. The 
flow behavior of surrounding or percolating new soft grains with low immobile 
dislocation densities and of initial but hardened grains was expressed as 
 
                                                     ( ) DRXdef XX σσσ +−= .1                                      (6.15) 
 
where .defσ  is the stress contribution of the initial grain and DRXσ  is the stress 
contribution of new grains, which should have a higher strain hardening exponent. The 
concept of a registered stress being a contribution of (1) the stress during deformation of 
initial grains and also of (2) the stress required to deform the new recrystallized grains 
will be used on this study to model more accurately the transition from single peak to 
multiple peak DRX. 
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Table 6.2. The strain increment between the marked lines on fig. 6.26 shows that 
oscillations may have a relatively constant oscillation period. At higher strain values the 
marked strain increments seem to decrease slightly. 
εp ε2-εp ε3-ε2 ε4-ε3 ε5-ε4 ε6-ε5 ε7-ε6 ε8-ε7 ε9-ε8 ε10-ε9 
0.0737 0.0307 0.0367 0.0330 0.0225 0.0250 0.0195 0.0284 0.0219 0.0231 
  

Fig. 6.26. A typical multiple peak hot flow curve shows that oscillation periods are 
relatively periodic only after the first stress peak, εp. The stress peaks and troughs are 
marked with a line and a corresponding strain εn. The somewhat constant value 
between peaks and troughs can be seen on Table 6.2. 

 
 
 
6.9 A Damped Cosine Avrami Model for DRX 
 
 Engineers have modeled dynamic systems of the spring-mass-damper type or the 
capacitance-inductance-resistance type [64], whose behavior resembles the attenuated 
oscillations during multiple peak DRX [65]. Another analogy is that of graphed 
equations used to model transient response characteristics [66] with that of the stress-
strain behavior of hot flow curves. The similitude could lead to believe that the 
fundamental laws that explain DRX have the form of a damped sine mathematical 
expression. However a comparison would show that damped sine equations have a 
constant oscillation period whereas in hot flow curves the oscillation period remains 
somewhat constant only after the first stress peak. Table 6.2 shows the strain registered 
after each stress peak of fig. 6.26, a typical hot flow curve where multiple peaks are 
present. The strain necessary for the first stress peak is almost equal to the period during 
oscillations. One single damped sine equation could never resemble the described 
behavior during multiple peak DRX.  

Some hot flow models, like the Avrami model, have assumed a discontinuity 
when DRX appears, and separate the hot flow model into two parts: restoration until the 
peak stress and then by DRX. A comprehensive separation of the two processes would 
allow use of a damped oscillatory equation to describe the DRX behavior of the hot 
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flow curves of Cu A. As pointed before for Cu A and other metals the oscillations 
dampen towards a lower value instead of a central value. The present author in the 
absence of a reliable model to physically describe the oscillations that may appear 
during DRX will propose a mathematical equation, which can help describe 
quantitatively the hot flow behavior patterns. The proposed constitutive equation for 
DRX after the peak strain can be divided into two stresses: a damped oscillatory stress 
and a descending stress of the Avrami type, this last stress serves as the mean 
oscillatory stress value. And represents the stress as the advancing recrystallization 
collar consumes the initial now hardened grain. An analogy of the hardened grain with a 
composite material would allow imagining the un-recrystallized volume fraction as the 
hard particles of the composite. The recrystallized volume would represent a softer 
continuous path that allows a heterogeneous strain rate under the same stress. The 
damped oscillatory stress value fluctuates above and below the mean oscillatory stress 
value. The fluctuations correct the mean oscillatory stress value and thus a better 
account is made of the percolating recrystallized volume around hardened initial grain. 

When most of the initial grain volume has been consumed, the first 
recristallization collars have grown and if those first collars are strain-hardened until 
reaching once again a critical dislocation density then an oscillatory stress behavior is 
noted. In an analogy to the model proposed by Ponge and Gottstein, eq. 6.15, the mean 
oscillatory stress represents the initial grain size volume contribution, which has not 
been consumed despite reaching a trough on the stress-strain curve.  However the 
damped oscillatory stress does not represent the percolating collars of new grains, but is 
a correction due to inhomogeneous strain-hardening rates. New grains grow, harden and 
recrystallize at a faster rate than the initial grain size volume. The higher grain boundary 
area on the newer smaller grains increases the nucleation rate locally, but the nucleation 
rate for the remaining initial grain size is slower, thus two behaviors need to be 
considered. One behavior is the mean oscillatory stress, σmo, which has the Avrami form 
of eq. 6.8 and is written as 

                                ( )[ ]{ }pfdmo g εεσσσ −−−−= exp1
                               (6.16) 

 
where σd is only equal to the peak stress, σp, when DRX is considered monotonic but, 
as the multiple peak stress behavior appears σd represents the maximum value the mean 
oscillatory stress will have in the absence of stress oscillations. On fig. 6.11 the Avrami 
exponent nA had been shown to be approximately equal to one during monotonic stress 
behavior. The Avrami term on eq. 6.16 proposes that nA is always equal to one and that 
other values commonly measured are the result of measuring the oscillatory stress 
component of DRX. The DRX rate or rate of stress descent is given by g. The steady 
state stress, σss, to which the hot flow tends to, is given by 
 
                                                       fdss σσσ −= .                                                    (6.17) 
 
Figures 6.27, 6.28, 6.29 and 6.30 show the values obtained for σd and σf, which are a 
function of Z, however g, which is almost constant, has been correlated to the strain 
rate. Figures 6.31 and 6.32 show an example of how to calculate these values from an 
experimental compression test. The values were obtained after performing a number of 
Levenberg-Marquardt iterations until chi squared could not be reduced. The iterations 
were performed using commercial data analysis software, Origin 6.0. Only the part of 
hot flow after the peak stress is analyzed that is why the peak strain is subtracted from  
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Fig. 6.27. The plot shows the dependency 
of σd with the Zener-Hollomon parameter 
( ( )RTQZ expε&= ). 

Fig. 6.28. The plot shows the dependency 
of σf with the Zener-Hollomon parameter 
( ( )RTQZ expε&= ). 

 
 

Fig. 6.29. There exists a low dependency 
of the unit less parameter g with strain rate.

Fig. 6.30. The dispersion of data from fig. 
6.29 cannot be attributed to an influence of 
T. 
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a) b) 

c) d) 
Fig. 6.31. Plots show the calculation method and best fit of the parameters involved on the mean 
oscillatory stress (σmo) equation 6.16. The examples belong to higher Z conditions where single 
peak DRX occurs. The fitted curve evidently does not follow the same DRX kinetic path and 
will be corrected to account for the steeper slope, which is a consequence of the smaller 
contribution by dynamically recrystallized grains. 
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a) b) 

c) d) 
Fig. 6.32. Plots show the calculation method and best fit of the parameters involved on the mean 
oscillatory stress (σmo) equation 6.16. The examples shown are of lower Z conditions where 
multiple peak DRX occurs. The mean oscillatory stress measures the decrease in stress as the 
initial grain volume is consumed by DRX. The plots show that during the multiple peak 
behavior parts of the initial volume have yet not recrystallized. The diminishing contribution to 
total stress of hardened initial volume is evident by the direction of the oscillations. A saturation 
steady state stress value can easily be foreseen. 
 
 
the strain axis. Figure 6.31 shows examples of single peak stress behaviors and fig. 6.32 
shows examples of tests with multiple peak stress behaviors. 
 The second behavior is introduced through the damped oscillatory stress, σdo, 
which is a cosine expression attenuated by an exponential term that tends to zero. When 
the Z conditions for monotonic DRX are present then the damped oscillatory stress is 
almost non-existent, but gradually when the temperature and strain rate approach the so-
called Zc conditions the damped oscillatory stress increases. The gradual appearance of 
multiple peak DRX is contrary to the general description of hot flow curves however an 
abrupt appearance of oscillations has not been proven yet. The line drawn by the D0-Zc 
relationship implies that when D0 is immediately above the line then single peak DRX 
is expected and that when D0 is immediately below then multiple peak DRX happens. 
Instead a gradual change is what has been observed during this study. The damped 
oscillatory stress, σdo, is written as 
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                                          ( )[ ] ( )[ ]pprdo vs εεεεσσ −−−= cosexp
                             (6.18) 

 
where σr is a complementary stress to the maximum value of the mean oscillatory stress 
and is only significant during multiple peak DRX. Thus the peak stress, σp, can be 
defined as 
                                                         drp σσσ += .                                                   (6.19) 
 
The coefficients s and v are semi-logarithmically dependent on Zener-Hollomon 
parameter, Z. Consequently, as Ding and Guo [60] concluded, oscillations depend on 
the rate of dislocation accumulation in the new recrystallized grains and on the initial 
grain size, so will the coefficients s and v depend on such conditions, however during 
this study only one grain size was tested. For copper Blaz et al. [25] had already shown 
that the magnitude of the peak stress depended on the initial grain size (see fig. 6.33 
from [25]), hence the parameters that describe hardening until the peak strain (i. e. σr 
and σd) also depend on the initial grain size. Figures 6.34, 6.35 and 6.36 show the 
relationship of σr, s and v with the Zener-Hollomon parameter. The data seems scattered 
on fits of σr and s, however the value range is small, 1.8 MPa for σr and 18 for s. A 
remarkable measurement this proposed model allows is shown on fig. 6.36, which 
describes how the period in the oscillations during DRX is completely predictable in 
terms of temperature and strain rate. Earlier filters [67] had not been able to quantify the 
variation from experimental data. The period, vπ2 , is the amount of strain between 
stress peaks, which is smaller at lower Z values (higher temperatures and slower strain 
rates). If the Luton and Sellars nomenclature is remembered, half a period corresponds 
to the strain necessary for one DRX cycle, εx, and thus can easily be calculated knowing 
v . At lower Z values the initial amplitude, rσ2 , of the damped oscillatory stress is 
maximum. Figures 6.37, 6.38, 6.39 and 6.40 show the values obtained for σr, s and v 
after performing a number of Levenberg-Marquardt iterations until chi squared could 
not be reduced. 
 

Fig. 6.33. The plot from ref. [25] demonstrates the dependence of the peak stress, σp, 
with the initial grain size (denoted above as D0T, which includes twin boundaries). A 
larger initial grain size produces a higher peak stress. The steady state stress 
dependence (denoted above as σs) with the initial grain size was only observed for Z = 
1010.  
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 Fig. 6.34. The plot shows the dependency 
of σr with the Zener-Hollomon parameter 
( ( )RTQZ expε&= ). 

 Fig. 6.35. The plot shows the dependency 
of s with the Zener-Hollomon parameter 
( ( )RTQZ expε&= ). 

 
 

Fig. 6.36. The plot shows the close dependency of v with the Zener-Hollomon 
parameter ( ( )RTQZ expε&= ). The parameter v is related to the period of the 
oscillations during multiple peak DRX and thus is related to the strain necessary to 
dynamically recrystallize a major fraction of initial volume (a recrystallization cycle, 
εx). The plot demonstrates that the oscillation period is predictable. 
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a) b) 

c) d) 
Fig. 6.37. The plots at 800ºC show the fitting method for evaluating σr, s and v once the 
parameters involved in the mean oscillatory stress are known. The fitting is achieved by 
individually adding the mean oscillatory stress (eq. 6.16) to the damped oscillatory 
stress (eq. 6.18) whose values are unknown. The damped oscillatory stress corrects the 
mean oscillatory stress for the influence dynamically recrystallized grains have on the 
total stress. The match created between the fit and the experimental data is 
unprecedented in literature.  
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a) b) 

c) d) 

e) f) 
Fig. 6.38. The plots at 850ºC show a reliable match between fit and experimental data. 
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a) b) 

c) d) 

e) f) 
Fig. 6.39. The plots at 900ºC show a reliable match between fit and experimental data. 
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a) b) 

c) d) 

e) f) 
Fig. 6.40. The plots at 950ºC show a reliable match between fit and experimental data. 
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The proposed model was able to discern from experimental noise and DRX 
cycles. The assumption that not all the initial volume or not all places of the test sample 
recrystallize after the first cycle is needed to describe stress during multiple peak DRX. 
The stress registered during hot flow, σ , is then expressed as 
 
                                                           domo σσσ +=                                                  (6.20) 
 
where the mean oscillatory stress, σmo,  is the contribution of the initial grain volume or 
places in the test sample that are about to undergo DRX even during the multiple peak 
behavior. And the damped oscillatory stress, σdo, is the correction due to the first 
dynamically recrystallized grains that are able to harden and recrystallize more than 
once. In a sense, the concept suggested by Ponge and Gottstein [62, 63] still prevails, 
the registered stress during hot flow is a contribution of a hardened grain volume and of 
a new grain volume that percolates around harder grains. However the new grain 
volume can recrystallize again if strain rate and temperature conditions allow. 

At slower strain rates less critical strain is necessary to recrystallize a major 
fraction of the initial volume, but the driving force for growth is higher, because enough 
time ( εε & ) produces a slow increase the dislocation density of the new grains, thus new 
nuclei will also have time to grow considerably before hardening once again and the 
onset DRX occurs. The result is nuclei that grow beyond their initial DRX grain size; 
consequently multiple peaks are created on the stress-strain curve. At higher strain rates 
more critical strain is necessary to recrystallize a smaller fraction of the initial grain 
volume. The new nuclei are not only smaller but have less driving force for growth, 
because fast strain accumulation increases the dislocation density within new grains 
faster than the growth rate. The driving force for growth (i.e. a difference of dislocation 
density on both sides of an advancing grain boundary) rapidly disappears. It has been 
said [1, 13] that recrystallization collars are not synchronized during single peak stress 
behavior, because before the initial volume is consumed several collars have reached a 
critical strain to recrystallize once again. The small stress contribution of the first DRX 
collars as they soften again by another DRX cycle during the single peak behavior is 
only noticeable enlarging the graph (see the single peak DRX curves on figs. 6.37, 6.38, 
6.39 and 6.40). Even when enlarged one may believe that the small oscillations belong 
to noise on the load cell of the testing apparatus, however eq. 6.20 (at high Z values) of 
the proposed model only recognizes the larger strain periods and smaller oscillating 
amplitudes due to DRX of a major fraction of initial volume. When multiple peak 
behavior occurs the DRX collars have consumed most of the initial grain volume and 
thus most of the volume will recrystallize again at the same time in a synchronous 
manner. The damped oscillatory stress component of eq. 6.20 acquires more relevance 
during a more synchronized DRX. 

The Damped Cosine Avrami Model only explains the hot flow behavior during 
DRX of types I, II, III and VI (explained earlier on fig. 6.6), which were the grain 
refinement cases found during this study. The multiple peak DRX of type V where grain 
coarsening is the result still needs to be explored using the proposed model. However a 
change in sign on eq. 6.16 can be expected as a result of having a higher growth rate 
than a dislocation accumulation rate before approaching steady state conditions where 
the sum of dislocations accumulated and restored should be almost zero. The developed 
model fits well into existing hot flow theories. No mention has been made yet of 
important stress-strain curve characteristics, because other researchers have dealt with 
these characteristics and presented adequate prediction models. Some of the important 
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stress-strain characteristics to successfully model a hot flow curve are: the peak stress, 
the onset of DRX, the strain-hardening rate and dynamic recovery. Briefly some 
prediction theories will be reviewed as means of demonstrating that the proposed 
Damped Cosine Avrami Model can adequately be used to better predict the hot flow 
behavior during DRX. One other self-criticism is the fact that during the development 
of the proposed model the strain, ε, was used as a state variable of the hot flow process 
when in reality the local and average dislocation densities are the variables that promote 
deformation. Strain as used on the proposed model is dependent on the history of strain 
accumulated. However an approximate dislocation density, ρ, can be calculated using 
eq. 6.12, because eq. 6.16 and eq. 6.18 provide values for the stress contribution of the 
advancing DRX and the necessary correction due to dynamically recrystallized grains. 
The density values would be approximate because beyond a certain value of stress α in 
eq. 6.12 loses validity. In light that the proposed model has been shown to reliably 
predict the stress-strain values, thus the dislocations densities calculated with eq. 6.12 
should allow better estimates of a new stress-strain curve when temperature and/or 
strain rate conditions are varied. Hence with aid of eq. 6.12 the proposed model acquires 
an independence from strain history requirements. However the first aim of the 
proposed Damped Cosine Avrami Model is to help predict the stress-strain behavior 
during a compression strain path of a particular 99.9% pure copper as critical Zc 
conditions are approached. 
 
 
6.10 Modeling the Peak Stress 
 

The prediction of the peak stress and steady state stress had been an earlier 
challenge for scientists. Zener and Hollomon [68] cited the work of Nadai and Manjoine 
[69] on copper where an Arrhenius graph was able to unify stress-strain rate data at 
different temperatures using a temperature compensated time parameter, now called the 
Zener-Hollomon parameter. Time rate relationships associated to the deformation of 
materials and their dependence on temperature and stress have been developed using 
Arrhenius type equations where an activation energy, Q, governs the process. Table 6.3 
shows some of the stress, temperature and strain rate relationships developed.  
 
Table 6.3. Arrhenius equations developed to express strain rate, ε& , temperature, T, and, 
stress, σ . Where R  is the universal gas constant. E  is the elastic modulus. D  is the 
diffusion coefficient (see [40]). αα ′′′′′′′′′′′′ ,,,,,, AAAAA  and, α ′′′  are material constants. 
 

Equation Equation number 
 

[ ] ( )RTQEA n
s −′= ′ expσε&  (6.21) 

( ) ( )RTQAs −′′′′′= expexp σαε&  (6.22) 

( )n
s A ′′′′′′′′= σαε sinh&  (6.23) 

( ) [ ]RTQsinhA app
n −′′′= expασε&  (6.24) 

( )[ ] ( )[ ]( )[ ] 5TEsinhATD σαε =&  (6.25) 
 
 
The study of creep has rendered the understanding of several deformation mechanisms, 
which are also explained by Arrhenius type diffusion laws [40]. Power laws have 
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described creep rates (see eq. 6.21 on table 6.3) when stresses are intermediate to low or 
by exponential expressions (see eq. 6.22 on table 6.3) when the stresses are high. 
However the transition point to use eq. 6.21 or eq. 6.22 was never established, instead a 
more general expression was proposed to solve the power law breakdown. Garofalo 
[70] proposed eq. 6.23 that seemed to unify high and low stress values. Later Sellars 
and Tegart [71] proposed eq. 6.24, which unified stress data at high and low Z values. 
Weertman [36] had demonstrated the near equality of the activation energy of high 
temperature creep, Qcreep, and the activation energy for self-diffusion, Qsd. The ultimate 
rate controlling process during high temperature creep of pure materials was attributed 
to self-diffusion. Thus the proper Q value to use in equations 6.21, 6.22 or 6.24 should 
be the activation energy for self-diffusion, however researchers found that using the 
activation energy for self-diffusion did not produce acceptable correlations when 
studying alloyed or precipitate bearing materials. The calculation of an apparent 
activation energy, Qapp, is a common practice [72] to best describe data from a wide 
range of Z values. The apparent activation energy controls the rate of the process and is 
not necessarily equal to the activation energy of self-diffusion, because Qapp is increased 
to engulf the additional energy required by other strengthening mechanisms (e.g. 
precipitation hardening in coppers [31]).  

Earlier during the introduction of this work it had been mentioned that for Cu A 
the apparent activation energy and the activation energy for self-diffusion were 
relatively the same (213KJ/mole and 197KJ/mole respectively). The reason for the 
proximity is the low oxygen content in Cu A, only 26 ppm, which forms few 
precipitates that may raise the hot flow stress. The activation energy for self-diffusion 
has been used during this work, which allowed the study of partial values involved in 
the description of flow stress (σr, σd, and σf) and coefficients involved in the description 
of strain (s, v, g, and εp). If another copper or material with different apparent and self-
diffusion activation energies had been chosen then both energies would have been 
necessary when applying the Damped Cosine Avrami Model. The apparent activation 
energy would best fit values correlated to σr, σd, and σf. And the activation energy for 
self-diffusion would best fit values correlated to s, v, g, and εp. The selection of Cu A 
conveniently allows a clear explanation of the Damped Cosine Avrami Model.  

Ever since Sellars and Tegart [71] presented eq. 6.24 much discussion has been 
raised over the lack of physical basis or the proper means to calculate A ′′′ ,α , n  and 
even Qapp. Frost and Ashby [40] wrote:  “Lacking any physical model it must be 
considered fortuitous that any set of n  and α  can correctly describe the behavior over a 
wide range of stresses”. Tanaka et al. [73] reviewed the difficulties in calculating n, α 
and, appQ  where a best fit was not possible because of the data’s temperature range. 
Tanaka et al. also showed that 10% variation of parameters n  and α  did not produce 
serious effects over the regression. However appQ , which is dependent on temperature, 
strongly affects the regression. Other algorithms to best fit the stress-strain rate data 
have followed [74]. The stress-temperature-strain rate relationship of eq. 6.24 has been 
rearranged to have a more physical meaning by acknowledging the role of diffusion and 
the elastic modulus have on high temperature deformation processes. As a consequence 
on eq. 6.25 the diffusion coefficient, D(T), normalizes the strain rate, and the elastic 
modulus, E(T), normalizes the registered stress (see [40]). The exponent n  has been 
found to be close to 5 for many metals [70, 71] when deformation is controlled by 
dislocation climb and glide over obstacles. The diffusion coefficient is an Arrhenius 
type equation, which contains the activation energy to be calculated. The graph on  
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 Fig. 6.41. The relationship existent 
between the peak stress, σp, and strain rate 
using eq. 6.25. 

Fig. 6.42. The relationship existent 
between the σd and strain rate using eq. 
6.25. The sum of σd and σr equal σp. 

 
 
fig. 6.41 shows the best fit of the peak stress-strain rate data of Cu A using eq. 6.25. A 
value of Ap = 438 and αp = 1583 had been reported earlier [34] for the relationship 
between σp and ε& . However eq. 6.19 of the proposed model divides the peak stress into 
two contributing components of which σd is always present and is of higher value. 
Figure 6.42 shows the relationship between σd and ε&  where the best fitted values are Ad 
= 445 and αd = 1565. The correlation coefficient r2 is almost the same for both 
regressions 0.96929 for σp and 0.96947 for σd. An objection may be raised to the use of 
eq. 6.25 to correlate σd values when σd values are not actual points on the observed 
stress-strain curve. The value of σd represents the maximum value of the mean 
oscillatory stress. An optimum correlation would and should not be possible, but the 
correlation coefficient values tell otherwise. Equation 6.25 is equally capable in 
predicting values of σd or σp. 

The point in exposing the unifying limitations of eq. 6.25 is to justify the use of 
a power law relationship to better correlate values of σd with ε&  and T. Application of 
the Damped Cosine Avrami model needs that the prediction of σd be as close as 
possible to the actual value. For that matter at low Z values a power law relationship of 
the form 
 
                                                                dn

dd ZK=σ                                               (6.26) 
 
is used to make a prediction. Unfortunately using a power law relationship for higher 
temperatures and low stresses instead of using a hyperbolic sine equation is going back 
to the time when different relationships needed to be used depending on the data range, 
but no other choice is available to improve the correlation. Hyperbolic sine equations, 
like eq. 6.24 and eq. 6.25, unify data at low and high Z values, but do so sacrificing 
precision at both ends of the data range. Figure 6.27 showed the best fitted values of the 
power law relationship represented by eq. 6.26 where dK = 0.62749 and dn = 0.21697. 
The correlation coefficient, r2, obtained using eq. 6.26 is 0.9895, which substantially 
improves the needed prediction of σd. The constant dK  is function of the initial grain 
size so that dm

dd DCK 0= , however the latter relationship was not set as an objective of 
this experiment. A transition point where to stop using a power law relationship has 
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never been established, here and based on observations for Cu A the transition point is 
set when Z = 1.5 X 108. When Z values are above 1.5 X 108 then the hyperbolic sine 
expression shown on fig. 6.42 will be used. At higher Z values the relative absence of σr 
(because σd is much larger) makes less important the precision when predicting the 
value of σd.  
           The other contributing stress to completely describe the peak stress, σp, 
according to eq. 6.19 is the maximum value of the damped oscillatory stress, σr. Figure 
6.34 showed the linear semi-log relationship of the form  
 
                                                            rrr bZLogm +=σ                                         (6.27) 
 
where rm = -0.52997 and rb = 4.73648. The correlation would seem poor (r = -0.81595) 
however σr only ranges 0 to 1.8MPa thus deviations from the actual value are even 
smaller (0.6MPa at the most). An unexpected additional tool the Damped Cosine 
Avrami Model would allow to quantify is the value of Zc where the theorized transition 
from single peak to multiple peak stress lies. When eq. 6.27 produces a value for σr 
lower than 0.4MPa the oscillations due to synchronized DRX waves should cease to be 
significant. Equation 6.27 becomes zero when Z = 8.65 X 108. However the value of σr 
= 0.4MPa was chosen because the experimental points on fig. 6.34 almost reach zero 
and, coincidentally the corresponding value for Z is 1.5 X 108, the value chosen to be 
the transition point where power law breaks down. Hence for Cu A of initial grain size, 
D0, of 637µm the corresponding Zc = 1.5 X 108. This latter value is 8.2 times the 
dynamically recrystallized grain size, Drex. The value of Zc is 2.87 X 105 if Drex = D0/2 = 
318.5µm according to the relative-grain size model. The relative-grain size model (fig. 
6.7) defines Zc as an offset twice the dynamically recrystallized grain size, however as 
Sakai and Jonas [16] have recognized the offset is an estimate based on observations of 
the stress-strain curve. The proposed eq. 6.20 detects oscillating behaviors at a much 
higher Z value. Figure 6.43 shows the plot for the relative-grain size model applied to 
the experimental observations of Cu A.  The value of Krex is 5385.7; the value of the 
exponent mrex is - 0.22503 and the recrystallized grain diameter of eq. 6.1 is expressed 
in µm. In the present study yet another factor may be increasing the value of Zc, the 
much larger size of D0 compared to Drex. The stress oscillations as explained depend on 
the volume of dynamically recrystallized material that can synchronously begin another 
cycle before the entire initial grain volume has been consumed. When D0 is much larger 
than Drex more strain has to be accumulated before the advancing DRX collars consume 
all of the initial grain and in these cases enough strain can also be accumulated on new 
grains for oscillations to be observed. The sum of the maximum value of the mean 
oscillatory stress, σd, and of the maximum value of the damped oscillatory stress, σr, 
completely describe the value of the peak stress, σp, however the amount of strain 
needed to reach σp is not considered by the latter equations. 
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 Fig. 6.43. The plot shows the relative-grain-size model applied to Copper A. The 
initial grain size D0 for all Z conditions tested was 637µm. And as can be appreciated 
all conditions produced a grain refinement. An offset of 2Drex from the Drex-Z 
relationship (solid line) should mark the Zc conditions that divide a monotonic DRX 
from a multiple peak behavior. However as has been experimentally shown the 
theorized D0-Zc relationship (dashed line) could not be corroborated for Cu A. The 
Damped Cosine Avrami model has predicted a Zc transition value at 1.5 X 108, which 
is marked with an X on the plot. The Z values below presented a multiple peak stress 
behavior whereas higher Z values showed a monotonic stress behavior. Higher Z 
values have not been plotted, because upon a microstructural inspection DRX had 
begun but was incomplete at 0.8 strains. 

 
 
 
6.11 The Onset of Dynamic Recrystallization 
 
            The peak stress, σp, is a characteristic value of many hot-flow curves and is 
commonly associated to the onset of DRX where the corresponding strain, εp, is often 
described as a power function of the form 
 
                                                           pnp

p ZDB 0=ε .                                               (6.28) 
 
The dependence of the initial grain size with the peak strain εp was not taken into 
account during the experimental design of the present study, so p

p KDB =0 . However 
Blaz et al. [25] using copper with 5ppm of oxygen has shown that the higher the 
temperature the less sensitive is εp to the initial grain size. The sensitivity could increase 
on tests with initial grain sizes below 40µm (see fig. 6.44 from [25]). The graph on fig.  
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Fig. 6.44. Plot taken from ref. [25] shows the influence of initial grain size, D0, on the 
peak strain in copper. At lower temperatures the peak strain occurs before for smaller 
initial grain sizes. The full circles from ref. [75] show that the peak strain is more 
sensible to initial grain sizes lower than 40µm.  

 
 

Fig. 6.45. The plot expresses the relationship between the peak strain and Z according 
to eq. 6.28. 
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6.45 shows the relationship expressed by eq. 6.28 for Cu A. At lower temperatures and 
higher strain rates the value of εp is higher for Cu A within the range of conditions 
studied, however there presumably exists a temperature below which the material will 
fail without presenting any DRX. The value of Kp is 0.0077689 and np is 0.18483. If the 
purpose is to model the stress-strain curve, as is for this study then the description given 
by eq. 6.28 is enough. However it is well known that before DRX can be noticed on the 
stress-strain curve DRX has to microstructurally initiate first. Much experimental and 
laboratory work needs to be done to microstructurally find the critical strain, εcr, 
required for the onset of DRX at a particular Z conditions so this path is usually 
avoided. Although the critical strain is not a characteristic point on the stress-strain 
curves an analysis of the strain-hardening rate, θ, can reveal a point where the tendency 
to only harden and recover begins to change.  

On constant strain rate tests Ryan and McQueen [76, 77] observed that the 
presence of a stress peak leads to an inflection in the stress dependence of the strain-
hardening rate ( ( ) σεσ −∂∂  plots). The inflections have been shown to be due to the 
initiation of DRX [78]. More recently Poliak and Jonas [79] have shown that inflections 
can be seen on θ-σ plots, ln θ-ln σ plots and, ln θ-ε plots even when a clear peak stress 
is not present on the stress-strain curves. The exact inflection point can be determined 
by plotting the derivative of the strain-hardening rate ( σθ ∂∂− ) where the minimum 
points to the critical stress value where DRX begins. The critical strain can also be 
determined from the minimum of εθ ∂∂− ln  plots. A drawback to the latter analyses is 
that differentiation causes substantial noise and a double differentiation increases the 
problem. Poliak and Jonas [79] have suggested using Fourier transform-based 
procedures to filter the plots. Also the use of logarithmic plots (e.g. ln θ) further 
smoothens the noise from the differentiation and is therefore more convenient. One 
issue that draws attention is that inflections on θ-σ plots also appear for [80] 
polycrystalline copper tested at temperatures close to the room temperature (and below), 
however DRX does not occur. Manonukul and Dunne [81] studied the critical strain for 
DRX in 99.9% pure copper (oxygen content was not reported) and observed that the 
εcr/εp ratio remains between 0.68 and 0.63 for conditions tested at 400ºC. Table 6.4 
resumes the findings of Manonukul and Dunne [81] for the three Z conditions studied. 
 
Table 6.4. Critical strain to initiation for 99.9% pure copper isothermally deformed at 400ºC 
after ref. [81]. 
Strain rate (s-1) 5 X 10-4 5 X 10-3 5 X 10-2 
Critical Strain εcr 0.15 0.19 0.23 
Peak Strain εp 0.22 0.30 0.36 
εcr/εp 0.68 0.63 0.64 
 
 
Earlier Sample et al. [11] based on experimental work had pointed out that the 
difference between the peak and critical strain (εp -εcr) increases as Z values increase. 
The observation made by Sample et al. is not contradictory to the accepted principle 
that the εcr/εp ratio remains almost constant. A plot of ε versus Log Z shows that as Z 
increases the distance between εp and εcr increases (see fig. 6.46 from [79] as an 
example) however the ratio remains constant. If the above reasoning is true then the 
power function of the form of eq. 6.28 that describes εcr is given by Kcr = 0.65Kp and ncr 
= np. Where the εcr/εp ratio is an average of the work of Manonukul and Dunne [81].  
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Fig. 6.46. The plot taken from ref. [79] shows the difference between εp and εcr 
(denoted as εc above) as Z increases, however the ratio remains approximately 
constant. 

 

Fig. 6.47. The experimental data allows calculating the relationship for the peak 
strain, εp, (solid line). The relationship for the critical strain (dashed line), εcr, is taken 
from literature [81]. The Damped Cosine Avrami model enables to calculate the strain 
necessary for one DRX cycle (dotted line), εx. If the critical strain criterion [13] is 
applied then the transition from multiple peak to monotone DRX is at Z = 9.73 X 108 
and ε = 0.23150. The Z value predicted by the Damped Cosine Avrami model is 1.5 X 
108, which is also in the vicinity. 

 
 
However the temperature used to calculate the εcr/εp ratio lies outside the temperature 
ranges of this study and the activation energy used to evaluate Z may not be valid. See 
fig. 6.47, which shows the calculated critical strain and the peak strain using 
experimental data. The strain necessary for one DRX cycle, εx, is also plotted. Figure 
6.47 also shows that the εcr > εx criterion for multiple peak DRX presented earlier by 
Luton and Sellars [13] would almost work for Cu A. We predict a behavior change at Z 
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= 1.5 X 108 using the Damped Cosine Avrami model and the critical-strain model 
predicts a change at Z = 9.73 X 108. Earlier εp and εcr had been plotted against stress; 
here the abscissas are the corresponding Z values. Strain-hardening plots have been 
proven to provide information as to when the onset of DRX occurs, but the reason why 
nucleation occurs needs to be searched microstructurally and here twinning could be 
playing an important role. 

Microstructural evidence of the steps towards the nucleation of dynamically 
recrystallized grains is difficult to observe after hot flow tests performed at temperatures 
closer to the melting point (Tm) when grain growth rates are high. Nucleation of new 
grains should occur at sites that reach a critical dislocation density, CRρ , first. As is 
known the preferential sites for nucleation are grain boundaries [82, 83], deformation 
bands [25, 84, 85], precipitates [82, 86], hard particles [87] and grain boundary triple 
junctions [88, 89], because higher stress concentrations and strain accumulations 
localize first at such sites. Wusatowska-Sarnek et al. [90, 91] have studied nucleation of 
copper at 0.35 to 0.53Tm and have been able to distinguish two mechanisms, which 
occur whether deformation is performed at low or high Z conditions. The work of 
Wusatowska-Sarnek et al. [91] further adds evidence to a model proposed by Miura et 
al. [83] and later corroborated by Belyakov et al. [92] using 304 stainless steel. The 
model is best explained by fig. 6.48 from ref. [46]. However an earlier but simpler 
 

Fig. 6.48. The schematic representation from ref. [46] shows the steps prior to 
nucleation of a dynamically recrystallized grain. On (a) and (b) boundary corrugation 
accompanied by the evolution of sub-boundaries. Partial grain boundary sliding 
occurs which leads to the development of inhomogeneous local strains. On (c) the 
bulging parts of a serrated grain boundary accompanied by the evolution of 
dislocation sub-boundaries or twinning cause the formation of a new recrystallized 
grain. 
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Fig. 6.49. Schematic showing various 
morphologies of annealing twins observed 
in fcc crystals (ref. [95]). 

Fig. 6.50. A schematic representation from 
ref. [95] showing a {111} step, i. e. 
MNRQ, on a migrating boundary LMNO 
and PQRS. Due to the boundary migration 
grain I grows at the expense of grain II. 

 
 
model for bulging at grain boundaries was first suggested by Hirsch and Bailey [8, 9, 
93]. In the more recent model [46] at higher temperatures or lower strain rates the 
observed serrations or protrusions finally separate from the initial grain by the 
formation of a twin boundary, which could later with more strain lose coherency and 
become a grain boundary. Annealing twin boundaries are formed by the dissociation of 
migrating grain boundaries [94]. At lower temperatures or higher strain rates the 
observed bulging parts on the serrated grain boundary finally separate as strain induced 
sub-boundaries close in and allow a crystallographic rotation that creates the new grain 
boundary. Sample et al. [11] using unique quenching facilities were able to observe a 
partially recrystallized structure and concluded that DRX proceeds from the formation 
and growth of dislocation-free annealing twins. The hot flow tests performed during this 
study, which range 0.64Tm to 0.90Tm, are above the range studied by Wusatowska-
Sarnek et al. and, as would be expected, because of the increased grain boundary 
mobility, twinning should be the mechanism mostly responsible for nucleation of new 
grains.  

Several mechanisms have been proposed [94] to explain why the migrating grain 
boundaries of low stacking fault f.c.c. metals and alloys dissociate to form annealing 
twin boundaries. Mahajan et al. [95] have proposed that migrating grain boundaries 
contain {111} propagating steps, which may find accidents that generate Shockley 
partial dislocations contiguous to the grain boundary. The partial dislocations with same 
Burgers vector would repel each other and glide away from the boundary to produce a 
twin. The glide away of certain partial dislocations causes stacking faults, which may 
form packets of complicated morphology that nucleate twins [96]. Figure 6.49 from ref. 
[95] shows various types of annealing twins formed by slightly different dissociations 
of the migrating grain boundaries. A sequence of shadowed images on amorphous 
copper where growing grain boundaries leave behind various types of annealing twins 
can be seen on ref. [97]. Figure 6.50 from ref. [95] shows a schematic drawing of the 
grain boundary of grain I growing at the expense of grain II and how a propagating  
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Fig. 6.51. Model proposed by Mahajan et al. [95] schematically shows the stacking 
fault arrangements of {111} planes within a one-, two-, three-layer twin and a perfect 
crystal. Partials ± P1, ± P2 and ± P3 delineate the position of Shockley partials that 
separate the faulted and unfaulted regions. 

 
 
{111} step moving upward may find an accident that forms partial dislocations, which 
may repel each other and change the habit plane of the boundary creating a twin as 
shown schematically on fig. 6.51. Mahajan et al. explain that a single {111} step can 
produce annealing twins at different locations and of different thickness. Also the 
number of twins should increase with increasing grain size, because the probability that 
the {111} may act as a Shockley partial generator increases with the distance the grain 
boundary moves. If the latter explanations are kept in mind then the concept that at 
higher temperatures (lower Z values) the bulged grain boundaries finally nucleate 
because a twin is formed seems reasonable. At lower Z values the driving force for grain 
growth is promoted making the possibility for the appearance of a twin boundary high, 
then the twin would lose coherency and the bulging would become a new dynamically 
recrystallized grain. 

Mahajan et al. also presented experimental evidence of factors that could 
decrease or increase the formation of annealing twins during grain growth. An addition 
of 200ppm of boron in nickel reduced slightly the twin to grain boundary intersections. 
Also an increase of twins per cm2 was noticed on surfaces of copper that were closer to 
a face that was mechanically ground previously before annealing. The possibility that 
certain elements or certain pre-straining could enhance the formation of twins during 
DRX at lower Z values remains open for investigation. 
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6.12 Strain Hardening and Dynamic Recovery 
 
 Before DRX can happen a certain amount of strain hardening is needed to reach 
critical dislocation densities at the preferred nucleation sites. Strain hardening can be 
defined as the evolution in dislocation structure as a metallic material is deformed. The 
continued change in dislocation structure requires increasing stress. From another 
standpoint the movement of dislocations, which causes their rearrangement, is 
associated to the magnitude of a resolved shear stress. Equation 6.12 explains well the 
relationship between stress and dislocation density during the initial stages of 
deformation [10], however after a certain stress value deviations occur as the dislocation 
structure becomes increasingly affected by strain rate and temperature. Equation 6.12 
describes a quasi-athermal component [98] of strain hardening, only slightly affected by 
the elastic shear modulus, µ(T). If strain hardening was not affected by strain-rate and 
temperature a σσσ −∆  plot would be a straight line, as described by the Cottrell-
Stokes law [99] but deviations occur as a thermally dependent component of strain 
hardening affects the dislocation structure. The thermally dependent component is 
called the dynamic recovery rate [10], which is a temperature and strain rate dependent 
evolution of the dislocation density with strain. At particular stress conditions 
dislocations will move, immobilize, remobilize, multiply and, annihilate, and the rates 
at which that happens will describe the response during a stress-strain curve.  

At a micrometric scale within each annealed grain the initial low dislocation 
density will first start to move, dislocation tangles and forests appear, which help to 
delimit areas of high and low dislocation densities. The increase of stress causes 
dislocations coming from the low dislocation areas to pile-up. These intersections 
between dislocations stop their movement and form increasingly tighter barriers, which 
produce dislocation cells. The movement of dislocations from the cell interior to the cell 
boundary can cause enough crystallographic reorientation to consider the dislocation 
cell a sub-grain within the grain. The continued strain hardening may cause dislocations 
to adopt a geometrically necessary arrangement: cell blocks, micro-bands (elongated 
strands of smaller cell blocks) and dense dislocation walls [100]. Further straining 
results in the appearance of elongated shear bands. However at higher temperatures the 
latter dislocation structures are less likely to appear due to the increased recovery rate 
[101, 102]. Dynamic recovery (DRV) is associated to stress decreasing mechanisms by 
an increase in cross slip leading to higher dislocation annihilation when screw 
dislocations of opposite sign cancel each other [103] or when dislocations reach sinks 
such as grain borders or the surface. Annihilation is a process that happens from early 
stage II and is indirectly related to dynamic recovery. When a metal presents a high 
dynamic recovery rate dislocation cell walls are tighter [2, 104], like in the case of high 
purity aluminum where strains of 0.2 can cause the sub-grains to reorient themselves 
until forming new grains, which decreases stress as if nucleation through dynamic 
recrystallization had occurred [105]. The micrometric scale where dislocations can be 
observed has not been the concern of this study instead dislocations have been treated as 
deformation carriers whose result is seen through a mechanical response, i. e. the stress-
strain curve. 

Many researchers have studied and proposed models [80, 106-122] to explain 
the experimental characteristics of strain hardening in metals, but a review belongs to a 
separate communication. The concern here is to demonstrate that the proposed Damped 
Cosine Avrami model can adequately couple with a single or several existing strain-
hardening and recovery models. One empirical model that has given rise to several 
phenomenological models is the one proposed by Voce [108, 109], which was later 
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given a physical interpretation by Kocks [110]. The mechanical characteristics of the 
Voce model are that stress will tend to saturate at higher strains and that the initial 
strain-hardening rate is a constant. The model is simple and is compatible with the 
principle that strain hardening is composed of two components, the quasi-athermal 
strain-hardening minus a recovery rate. The Voce model was chosen over the Estrin and 
Mecking [115] model used earlier [34, 35] for Cu A, because the large initial grain size 
(D0 = 637µm) at high temperatures makes the quasi-athermal strain-hardening less 
important than the recovery rate. A description of the Kocks interpretation will follow 
to best understand the latter statements. A comparison between the predicted and 
experimental hot flow curves will help validate the strain-hardening model selection. 

The fact that stress rather than strain is related to the dislocation density 
( ραµσ bM= ) during the initial stages of strain-hardening makes stress the parameter 
that can most adequately describe the micrometric structure responsible for hot flow 
despite the strain history. However before a saturation level can be reached, stress and 
strain are inseparable. A parameter that marks the tendency to a specific saturation level 
is the strain-hardening parameter,  
 

                                                              
T,εε

σ
&∂

∂
=Θ ,                                                  (6.29) 

 
where the change of stress as strain increases describes the slope of the hot flow curve. 
The initial strain-hardening rate, 0Θ , during a hot flow curve is modeled to represent 
the quasi-athermal hardening and can be defined as 

 

                                                  
C

Sat

ε
σ .

0 =Θ ,                                                   (6.30) 

 
which can be explained if stress is imagined to tend to the saturation stress, .Satσ  
(implicitly towards a the dislocation structure also) and, Cε  is the strain value where if a 
 

  
Fig. 6.52. The plots compare the strain-hardening rate calculated from experimental 
data at 750ºC and 900ºC. The strain-hardening rate decreases with a steeper slope as the 
strain rate is lower and as the temperature is higher. The derivative of the stress-strain 
curve becomes noisier as the strain rate is lower.  
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 Fig. 6.53. A schematic average volume, V, containing a homogeneous dislocation 
density. 

 
 
vertical line was to be drawn the intersection with the initial strain-hardening slope 
would be the saturation stress. Figure 6.52 shows the experimental σ−Θ  plots at 750ºC 
and 900ºC for Cu A. The general shape of the curves is similar to others presented for 
copper single crystals at similar temperatures [123, 124]. The Θ  peak at low σ  is also 
observed in the cited reference. Phenomenological models [109-112, 115, 117, 119] 
exist, which propose several evolution functions to describe the decrease of strain-
hardening rate from the initial value ( 0Θ ) to the highest stress value ( 0=Θ ). The 
success of a phenomenological model is in part due to the appropriate selection of an 
evolution function that describes Θ .  
 There exists a physical explanation that validates choosing an evolution function 
of the Voce type when considering an average volume of metallic lattice within a large 
grain. If the average volume is much smaller than the average grain size then dislocation 
interactions with the grain border are reduced. If an average volume V  having a 
homogeneous density of dislocations, ρ , is considered like the one shown on fig. 6.53 
then the mean free path, Λ , between obstacle dislocations can be statistically defined 
[125, 49] as inversely proportional to the squared root of dislocation density by a factor 
of β . The relationship is 
 
                                                            ρβ=Λ .                                                    (6.31) 
 
Also in fig. 6.53 the element dx  defines the average distance a mobile dislocation 
travels before immobilizing. When a dislocation moves a distance dx  the portion of the 
slip plane behind has moved a distance equal to one Burgers vector, b . However the 

 

Λ 

dx

Ln

da 

b = dγ 
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event of displacing a portion of the slip plane happens for every mobile dislocation, 
mobρ , on that plane. The change in shear strain on that plane is then 

 
                                                          dxbd mobργ = .                                                 (6.32) 
 
From fig. 6.53 the total dislocation density can be easily expressed as the sum of all 
lengths of dislocation segments, ρLLn =∑ , divided by the volume, and thus 
 
                                                             VLρρ = .                                                    (6.33) 
 
Also an area element on a slip plane is defined as da , which in a real metallic lattice 
can have a minimum displacement equal to the Burgers vector, b , because that is the 
least distance two parallel planes can move as a dislocation passes. The change in shear 
strain, γd , on a slip plane as da  moves is equal to displacing one minimum distance b  
over the volume in consideration. The relationship deduced is 
 

                                                              
V
b

da
d

=
γ .                                                       (6.34) 

 
The change in dislocation density may be considered to consist of two basic 
components [110]: 
 
                                                       covReρρρ ddd Stor −= .                                          (6.35) 
 
The term Stordρ  describes a change in obstacle density due to the fact that a certain 
fraction of mobile dislocations has been stored in the crystal after moving a distance 
dx . The term covReρd  represents the change of mobile dislocations annihilated by 
interaction with other dislocations of opposite sign. A potential recovery site on a slip 
plane is associated to the existence of a dislocation, which is still to be annihilated, thus 
the number of potential recovery sites is daρ . If a dislocation length at a potential 
recovery site, covReL , is annihilated then the dislocation density recovered for the 
concerned volume changes by VL covRe . The latter reasoning allows expressing 
 

                                                          da
V

Ld ρρ ⋅= covRe
covRe                                       (6.36) 

 
where the change of recovered dislocation density is the product of the minimum 
dislocation density reduction per volume and the potential recovery sites. The 
probability that a moving dislocation becomes immobilized will depend on the average 
distance dx  traveled within the available mean free path Λ . If a dislocation is only 
capable of traveling a small distance dx  compared to the available mean free path then 
the dislocation will probably travel the distance dx  without encountering an obstacle 
thus the probability of being stored is low. On the other hand if a dislocation is capable 
of traveling a greater distance dx  then the probability of encountering an obstacle is 
high. The change of stored dislocations depends on the existing mobile dislocation 
density times the probability of finding an obstacle. The relationship is  
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Λ

⋅=
dxd mobStor ρρ .                                           (6.37) 

 
Equations 6.31 through 6.37 allow defining expression 6.38, a description of the change 
in dislocation density as shear strain on a slip plane changes. 
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If the known relationship ( ραµτ b= ) is supposed to prevail slightly unchanged 
during several stages of hardening then eq. 6.39, the change of shear stress as 
dislocation density changes, can be deduced. 
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If equations 6.38 and 6.39 are combined then expression 6.40 for shear strain-hardening 
rate is possible. 
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The above equation describes hardening on a particular slip plane, however in a 
polycrystalline material grains are randomly oriented (if no particular texture is present) 
and an average orientation factor M  may most appropriately [2] help describe stress 
and strain as follows: 
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For the case of {111}〈110〉 slip in FCC metals and {110}〈111〉 slip in BCC metals [50, 
51] the average orientation factor has been shown to be equal to 3.07. The expression 
for strain-hardening rate, θ , would then be 
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The theoretically deduced strain-hardening law (eq. 6.42) has a linear behavior 

composed of a quasi-athermal hardening and a temperature and strain rate dependent 
hardening. Strain-hardening during deformation will begin at values close to the quasi-
athermal hardening (∼ 20µ  according to [119]) and decrease until a hypothetical 
saturation stress, .Satσ  that in practice is never reached because dynamic recovery 
reduces further dislocation structure evolution. Equations 6.42, 6.30 and 6.29 may be 
condensed into the form 
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which is an evolution function that fulfills the characteristics deduced. A stress-strain 
law is possible for isothermal and, constant strain-rate loading. 
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The stress-strain relationship (eq. 6.44) describes the hardening behavior at constant 
strain rate and temperature conditions. A test performed at a higher temperature would 
lower the saturation stress and as a consequence the strain-hardening evolution would 
also decrease at a faster rate. If the strain rate were increased instead the strain-
hardening evolution would decrease with a more horizontal slope. Besides the thermally 
dependent recovery component the hot flow data of this study also includes dynamic 
recrystallization, which is an additional contribution that decreases the strain-hardening 
rate, θ . The influence of strain rate and temperature on eq. 6.43 has been dealt with at 
lower temperature regimes [110, 119] when dynamic recrystallization is not present. 
The problem at temperatures above 600ºC for an almost pure copper is simpler. Beyond 
600ºC the activation energy for self-diffusion is somewhat constant and as has been 
established before during the present development; self-diffusion is the ultimate rate 
controlling process for high temperature deformation. In the forthcoming the activation 
energy for self-diffusion will be used to correlate parameters on eq. 6.44 within the 
Zener-Hollomon parameter, Z. First for convenience let CW ε1= , also the values of 

0σ  and 0ε  for the annealed large grained copper of this study can be assumed to be 
equal to zero then eq. 6.44 adopts the form of 
 
                                                   ( )[ ]εσσ WSat −−= exp1. ,                                          (6.45) 
 
which is the equation that can be fitted to the available data. Figure 6.54 shows the 
correlation of W  with the Zener-Hollomon parameter. The relationship that describes 
parameter W  of eq. 6.45 is 
 
                                                         Wn

W ZKW = ,                                                     (6.46) 
 
which is a conventional power law. The values obtained for wK  and Wn  are 88.60 and –
0.11 respectively.  
 

 Fig. 6.54. The plot shows the existing relationship between W and Z. 
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The manner the present author accommodates eq. 6.45 to influences by the shear 
modulus, dynamic recrystallization, and of course the test conditions, differs to 
accommodations used at lower temperatures. Kocks [110] had suggested that eq. 6.47 
phenomenologically expressed the relationship between .Satσ , ε&  and, T  of eq. 6.43 
through the use of an activation energy, here called 76A . The subscript 76 represents the 
year the article was written, no other reason.  
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On eq. 6.47 the stress KSat 0.σ  represents the saturation value on a test performed at 0K, 
the term 76ε&  is a constant and k  is the Boltzmann constant. Kocks [110, 114, 119] and 
several researchers [2] agree that 0θ  is roughly equal to 20µ  or in shear resolved 
stress and strain terms 0θ  is approximately 020µ  regardless of the metal. If instead of 
using eq. 6.47 to find ( )TSat ,. εσ & , the use of eq. 6.46 to find ( )TW ,ε&  could seem to 
contradict the observed constant value of 0θ . However the Voce-Kocks model was not 
envisaged to include dynamic recrystallization nor is any present strain-hardening and 
recovery model, thus saturation stress during hot flow is a never achievable dislocation 
structure state. On the Voce-Kocks model, first the data is corrected for the elastic 
modulus, then ( )TSat ,. εσ &  is defined and because 0θ  is a fixed value the slope of the 
Voce eq. 6.43, i.e. W , changes. A different procedure will be used to correct for the 
shear modulus and to adapt the strain-hardening and recovery model to include dynamic 
recrystallization. Equation 6.46 establishes the general kinetic behavior of the decrease 
in strain-hardening rate. Studies on dynamic recrystallization have defined the stress 
value when 0=θ , which allow the use of eq. 6.45 to define ( )TSat ,. εσ & . If equations 
6.19, 6.25, 6.26, 6.27, 6.28, 6.45 and, 6.46 are combined then eq. 6.48 for saturation 
stress is possible, which accounts for dynamic recrystallization without changing the 
general kinetic behavior of W . 
 

                                                     ( )p

p
Sat Wε

σ
σ

−−
=

exp1.                                            (6.48) 

 
An ambiguous situation seems to have been created, because when fitting for eq. 6.45 
not only values for W  are generated, but also values for .Satσ , which could be 
correlated with strain rate and temperature by relationships used for hot flow processes 
(eq. 6.25). If only strain-hardening and dynamic recovery was present then values for 

.Satσ  should be predicted by the relationship established on eq. 6.47. The existence of 
dynamic recrystallization on the experimental data of Cu A and the required task to 
correct for the shear modulus justifies the use of eq. 6.48 to adapt the Voce-Kocks 
model. Figures 6.55 through 6.62 show comparisons between the experimental data, 
Voce-Kocks model and, the proposed Damped Cosine Avrami Model. Relationships 
necessary to model hot flow during either monotonic or multiple peak behavior given 
the temperature and strain rate for the particular case of an initial grain size larger than 
the dynamically recrystallized grain size have been explained. 
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a) b) 

c) 
d) 

e) f) 
 

Fig. 6.55. The plots at 600ºC compare the adapted Voce-Kocks model and the Damped 
Cosine Avrami model with the experimental data. At 600ºC and below the models 
developed breakdown, because the normalizing self-diffusion activation energy ceases 
to be constant. 
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a) b) 

c) d) 

e) f) 
 

Fig. 6.56. The plots at 650ºC compare the adapted Voce-Kocks model and the Damped 
Cosine Avrami model with the experimental data. 
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a) b) 

c) d) 

e) f) 
 

Fig. 6.57. The plots at 700ºC compare the adapted Voce-Kocks model and the Damped 
Cosine Avrami model with the experimental data. 
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a) b) 

c) d) 

e) f) 
 

Fig. 6.58. The plots at 750ºC compare the adapted Voce-Kocks model and the Damped 
Cosine Avrami model with the experimental data. 
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a) b) 

c) d) 

e) e) 
 

Fig. 6.59. The plots at 800ºC compare the adapted Voce-Kocks model and the Damped 
Cosine Avrami model with the experimental data. 
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a) b) 

c) d) 

e) f) 
 

Fig. 6.60. The plots at 850ºC compare the adapted Voce-Kocks model and the Damped 
Cosine Avrami model with the experimental data. 

 
 
 
 
 
 

                                        

                                        

                                        

                                        

                                        

                                        

0,0 0,2 0,4 0,6 0,8
0
2
4
6
8

10
12
14
16

 Cu A tested at 850ºC and 0.001s-1

 Experimental Data
 Predicted Values

Tr
ue

 S
tre

ss
 (M

Pa
)

True Strain

                                        

                                        

                                        

                                        

                                        

                                        

0,0 0,2 0,4 0,6 0,8
0

5

10

15

20

 Cu A tested at 850ºC and 0.003s-1

 Experimental Data
 Predicted Values

Tr
ue

 S
tre

ss
 (M

Pa
)

True Strain

                                        

                                        

                                        

                                        

                                        

                                        

0,0 0,2 0,4 0,6 0,8
0

5

10

15

20

25

30

 Cu A tested at 850ºC and 0.03s-1

 Experimental Data
 Predicted Values

Tr
ue

 S
tre

ss
 (M

Pa
)

True Strain

                                        

                                        

                                        

                                        

                                        

                                        

0,0 0,2 0,4 0,6 0,8
0

10

20

30

40

50
 Cu A tested at 850ºC and 0.3s-1

 Experimental Data
 Predicted Values

Tr
ue

 S
tre

ss
 (M

Pa
)

True Strain

                                        

                                        

                                        

                                        

                                        

                                        

0,0 0,2 0,4 0,6 0,8
0

10

20

30

40
 Cu A tested at 850ºC and 0.1s-1

 Experimental Data
 Predicted Values

Tr
ue

 S
tre

ss
 (M

Pa
)

True Strain

                                        

                                        

                                        

                                        

                                        

                                        

0,0 0,2 0,4 0,6 0,8
0

5

10

15

20

25

 Cu A tested at 850ºC and 0.01s-1

 Experimental Data
 Predicted Values

Tr
ue

 S
tre

ss
 (M

Pa
)

True Strain



Chapter 6     Dynamic Recrystallization: Multiple Peak & Monotonic Stress... 
 

188 

 
 

a) b) 

c) d) 

e) f) 
 

Fig. 6.61. The plots at 900ºC compare the adapted Voce-Kocks model and the Damped 
Cosine Avrami model with the experimental data. 
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a) b) 

c) d) 

e) 
f) 

 
Fig. 6.62. The plots at 950ºC compare the adapted Voce-Kocks model and the Damped 
Cosine Avrami model with the experimental data. 
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6.13 Implementation Implications 
 

The comparisons between the models and the experimental data shown on figs. 
6.55 to 6.62 represent the best correlation between a specific metal and a prediction that 
the author has found to this date. The joint models break down at temperatures below 
600ºC as can be seen on fig. 6.55. The reason of the increasing dispersion lays in the 
activation energy for self-diffusion, Qsd, which normalizes the coefficients throughout 
the relationships presented and that is no longer the sole normalizing constant below 
600ºC. For comparisons at 600ºC not only the relationship describing pε  begins to 
predict a sooner pσ , but also the hyperbolic relationship that predicts pσ  starts to 
scatter. The activation energy for self-diffusion plays a key role. Prediction trials outside 
the experimental range still need corroboration. However the beginning limitation for 
the models developed is that a pure metal must be the object of study, because 
otherwise Qsd cannot normalize stress related parameters. For a less pure metal an 
additional apparent activation energy would need to be used. Also the initial grain size, 
D0, has to be larger than the dynamically recrystallized grain size, eq. 6.1, because when 
grain growth occurs multiple peaks may begin before reaching a maximum stress. The 
model has been envisaged to predict oscillations after the maximum stress. In the future 
different initial grain sizes will need to be tested to further complete the Zc-D0 
relationship, which seems to be different than theoretically predicted. The slope of the 
Zc-D0 relationship may not be equal to the slope of the Z-Drex relationship, at least for 
copper. The developed models along with the relative-grain size model are tools that 
can more accurately predict the final microstructure and the stress-strain behavior 
during constant strain rate conditions. 
 
 
6.14 Summary and Conclusions 
 
 A review of the contributions to understand monotone or multiple peak DRX has 
been presented. A review of the relative-grain size model has also helped understand the 
final microstructure. An analysis of concepts and experimental data of other researchers 
has lead to propose an empirical solution for hot flow description that uses the 
physically based self-diffusion activation energy. An elegantly deduced strain-
hardening and recovery model by Kocks has been adapted to include DRX by 
introducing a correction that uses established hot flow relationships. Earlier the relative-
grain size model had been calculated for steels and stainless steels [57, 77, 126], 
however organized data for copper had not been presented until now. The lack of 
normalization of the Z-Drex data for 70Cu-30Zn brass presented by Roberts [127] is 
probably due to the difficulty in finding an approximate apparent activation energy. In 
the future an apparent activation energy besides the self-diffusion activation energy will 
be shown to help correlate better the Z-Drex data of copper, but for the moment no 
reasonable explanation can be given for the size of the apparent activation energy value. 
The stress-strain description begins by predicting the strain hardening and recovery 
necessary to reach a critical dislocation density (eq. 6.45) then the peak strain is 
determined (eq. 6.28) and ultimately the Damped Cosine Avrami model is applied (eq. 
6.20). A behavioral division is made at a Z of 1.5 X 108 where at lower values a power 
law relationship more accurately predicts stress (eq. 6.26), but at higher values a 
hyperbolic sine law is used (eq. 6.25).  The proposed models, validated here using 
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copper, use three initial state variables strain-rate, temperature and initial grain size to 
predict the stress-strain behavior and final microstructure. 
 The criticism on the details of other models do not consist a failure at any level, 
but represent honest attempts to organize concepts, translate ideas into mathematical 
expressions and actual comparisons whose limitations help further comprehension. An 
initial objection began with the absence of any particular correlation of Z with the nA 
exponent of the Avrami equation (eq. 6.8), which raised questions about the calculation 
method. Errors in calculation could be introduced if an initial nA exponent exists for 
consuming an initial grain and, a change of nA is due to an increasing contribution of 
already recrystallized grains, which also may re-recrystallize. The evaluation method for 
the volume fraction X may also be flawed, as has been explained, the onset of DRX 
happens before the first stress peak and thus the conventional manner of calculation 
using eq. 6.7 may be representing delayed values. The Damped Cosine Avrami Model 
has avoided calculating a volume fraction for that reason. The new model also avoids 
introducing an arbitrary steady state stress value from hot flow curves that may have not 
reached a true steady state. Instead a saturation steady stress value is obtained by use of 
eq. 6.17. In the same manner eq. 6.45 tends to a saturation stress value. The Monte 
Carlo Simulations and Cellular Automata Models have established that strain-hardening 
and recovery models already explain the kinetics of hot deformation except that the 
development of low dislocation nuclei still needs to be introduced as part of more 
complete strain-hardening model. Dynamically recrystallized grains are responsible for 
a heterogeneous strain-hardening behavior. Nucleation on computer simulations is 
carried out by either a random manner or a value imposed occurrence. The Sandström 
and Lagneborg model did conceptualized the heterogeneous strain-hardening behavior, 
but the strain-hardening description proved to be too elemental. There exists a 
widespread use of ραµτ b=  to describe hardening stages beyond stage II. The known 
relationship describes stage II of strain-hardening [114, 98] and, stage III constitutes the 
breakdown of the mentioned law. Unfortunately no other high temperature strain-
hardening and dynamic recovery model includes the extra softening rate caused by 
recrystallized grains. Also the needed model should describe the σθ −  hot flow 
behavior specifically regarding the inflection that points to the onset of DRX. Such a 
model would help filter experimental noise in the same manner the Damped Cosine 
Avrami model discerns between irrelevant stress vibrations and DRX oscillations. The 
presented Damped Cosine Avrami model is a solution when accurate industrial 
predictions are needed however no physical basis is implied here. It should be 
mentioned that a resemblance exists between the description of the mean oscillatory 
stress during DRX (eq. 6.16) and the Voce-Kocks model (eq. 6.45), because both 
equations suppose a saturation value. The Damped Cosine model is an option to 
quantitatively solve for the hot flow behavior of pure copper especially as low Zener-
Hollomon conditions are approached and along with the relative-grain size model can 
be of help to better control properties and processing not only of copper but of other 
materials. 
 
Some of the quantitative conclusions allowed by this study have been: 

1) The Damped Cosine Avrami model points to a behavior change during hot flow. 
The transition Zener-Hollomon value below which multiple peak DRX occurs 
on a copper like Cu A is Zc = 1.5 X 108s-1. Cu A is an initially large grained 
99.9% pure copper, which contains only 26ppm of oxygen and allows 
correlations with the self-diffusion activation energy, Qsd = 197KJ/mole. 
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2) The stable dynamically recrystallized grain diameter, Drex, is described by eq. 
6.1. For a commercially pure copper, like Cu A, the coefficient Krex is 5385.7 
and the exponent mrex is 0.22503. A copper regardless of the initial grain 
diameter will tend to have the described final microstructure. 

3) The relative-grain size model predicts a hot flow transition value at 2Drex where 
smaller initial grain diameters, D0, produce a multiple peak DRX behavior. 
However experimental evidence on large grained Cu A has not been able to 
corroborate the theoretical prediction. The Damped Cosine Avrami model 
allows a quantitative decision as to when a stress-strain curve can be considered 
of single or multiple peak DRX. Here we have chosen that when the maximum 
stress oscillation (given by the σr stress) is less than 0.4MPa then the stress-
strain curve can be considered to be of the single peak DRX type. The transition 
value for Cu A is then 8.2Drex. 

4) The Damped Cosine Avrami model and published constants [81] have allowed 
re-plotting a version of the critical strain model (εcr > εx criterion), which had 
been used to predict multiple peak DRX. The ε-Z plot instead of the ε-σ predicts 
a transition from multiple peak DRX to single peak for Cu A at a Z value of 9.73 
X 108s-1, which almost coincides with the observed value using the Damped 
Cosine Avrami model (Zc = 1.5 X 108s-1). 

5) The comparison between the experimental and predicted hot flow curves shows 
a reliable agreement except for the temperature of 600ºC. As is known for 
copper the self-diffusion activation energy tends to stabilize to 197KJ/mole for 
temperatures above 600ºC. Thus the constant value used in the Zener-Hollomon 
parameter to normalize data and allowing high correlation coefficients loses 
validity. Below 600ºC the proposed models breakdown and a different 
temperature-dependent activation energy would best correlate data. 

 
Other conclusions deduced after reviewing knowledge opere citato: 

1) Investigations have demonstrated that nucleation during DRX at low Z 
values is finally accomplished by annealing twins, however no existing 
model includes the influence of twin formation during hot flow or before hot 
flow. As deformation begins twin boundaries lose coherency and become 
grain borders (a preferred nucleation site). Relationships involving the initial 
grain size may be affected. A good strain-hardening and recovery model 
capable of predicting the formation of sub-grains and their increasing 
misorientation until the nucleation of a new grain would only describe DRX 
at high Z values. If the twinning phenomenon is not included the envisaged 
model is limited from start. 

2) Monte Carlo computerized models and Cellular Automata algorithms 
continue [128] to demonstrate that the existing strain-hardening and recovery 
models are capable of describing the stress-strain behavior even during 
DRX, because computer simulations allow a localized analysis of the 
contributions to the total stress. However the lack of a grain shape change 
associated to an increase of dislocation density and the artificial manner of 
introducing new recrystallized grains may be preventing a more adequate 
prediction.  

3) Before DRX can occur strain-hardening and dynamic recovery must create a 
certain dislocation structure that serves as a driving force for migrating grain 
boundaries, which play a role either at high Z DRX (by bulging grain 
borders) or at low Z DRX (by creating twins as moving grain boundaries 
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disassociate). Strain-hardening and dynamic recovery models have been 
adapted successfully to include DRX by anomalously increasing the weight 
of the recovery component on strain-hardening rate evolution functions. This 
study chose a strain-hardening model developed for large grained pure 
metals where the influence of grain boundary sinks is little compared to the 
mean free path a dislocation can travel. A fine grained Cu A would require a 
different adaptation of a strain-hardening model that assumes a grain size 
constrained mean free path.  
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