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Abstract

The growing interest that multimedia processing has experimented during the last
decade is motivating processor designers to reconsider which execution paradigms
are the most appropriate for general-purpose processors. On the other hand, as
the size of transistors decreases, power dissipation has become a relevant limitation
to increases in the frequency of operation. Thus, the efficient exploitation of the
different sources of parallelism is a key point to investigate in order to sustain the
performance improvement rate of processors and face the growing requirements of
future multimedia applications. We belief that a promising option arises from the
combination of the Very Long Instruction Word (VLIW) and the wvector processing
paradigms together with other ways of exploiting coarser grain parallelism, such as
Chip MultiProcessing (CMP).

As part of this thesis, we analyze the problem of memory disambiguation in mul-
timedia applications, as it represents a serious restriction for exploiting Instruction
Level Parallelism (ILP) in VLIW architectures. We state that the real handicap for
memory disambiguation in multimedia is the extensive use of pointers and indirect
references usually found in those codes, together with the limited static information
available to the compiler on certain occasions. Based on the observation that the
input and output multimedia streams are commonly disjointed memory regions, we
propose and implement a memory disambiguation technique that dynamically an-
alyzes the region domain of every load and store before entering a loop, evaluates
whether or not the full loop is disambiguated and executes the corresponding loop
version. This mechanism does not require any additional hardware or instructions
and has negligible effects over compilation time and code size. The performance
achieved is comparable to that of advanced interprocedural pointer analysis tech-
niques, with considerably less software complexity. We also demonstrate that both
techniques can be combined to improve performance.

In order to deal with the inherent Data Level Parallelism (DLP) of multimedia ker-
nels without disrupting the existing core designs, major processor manufacturers
have chosen to include MMX-like uSIMD extensions. By analyzing the scalabil-
ity of the DLP and non-DLP regions of code separately in VLIW processors with
uSIMD extensions, we observe that the performance of the overall application is
dominated by the performance of the non-DLP regions, which in fact exhibit only
modest amounts of ILP. As a result, the performance achieved by very wide issue
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configurations does not compensate for the related cost. To exploit the DLP of the
vector regions in a more efficient way, we propose enhancing the pSIMD-VLIW core
with conventional vector processing capabilities. The combination of conventional
and sub-word level vector processing results in a 2-dimensional extension that com-
bines the best of each one, including a reduction in the number of operations, lower
fetch bandwidth requirements, simplicity of the control unit, power efficiency, scala-
bility, and support for multimedia specific features such as saturation or reduction.
This enhancement has a minimal impact on the VLIW core and reaches more par-
allelism than wider issue pSIMD implementations at a lower cost. Similar proposals
have been successfully evaluated for superscalar cores. In this thesis, we demonstrate
that 2-dimensional Vector-puSIMD extensions are also effective with static scheduling,
allowing for high-performance cost-effective implementations.
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Chapter 1

Introduction

This chapter presents the motivations behind this thesis. An overview of the different
sources of parallelism usually found in multimedia codes and the most significant
trends in their exploitation is also included. The chapter ends up defining the main
goals of this work.

1.1 Motivation

There has always been a lively interest in improving the interface between human
and machines. In the course of time, advances in microprocessors technology and
design have made possible thinking on more ambitious applications that offer a more
comfortable and friendly environment to the user, either to aid in work, for personal
tasks, or simply for entertainment. As a result, new forms of communication have
emerged that integrate multiple information content and processing, including (but
not limited to) text, audio, graphics, animation, video, and interactivity. Speech
recognition, cryptography, video-conference, web-TV, or the new generation of video
games are just a few examples of the great variety of this kind of applications, widely
known as multimedia applications.

Processors had been traditionally designed for technical and scientific applications.
At present, it is widely assumed that the multimedia workload dominates desktop cy-
cles and that it will continue to increase in importance |[KP98]. Multimedia workload
has significantly different characteristics from other existing applications. Current
computers have to face increasing requirements in computational power and memory
bandwidth and it is not clear what kind of architecture deals better with present and
future multimedia requirements.

During the last three decades, microprocessors have undergone an exceptional in-
crease in performance. The number of transistors on an integrated circuit doubles
every 18 months approximately, exceeding Moore’s original statement [Moo65|. Fur-
thermore, advances in microarchitecture design provide more aggressive techniques
to exploit greater degrees of parallelism. As technology evolves, the number of tran-
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sistors to be included on a single chip will continue increasing [Yu96]. Nevertheless,
having more and faster transistors does not involve the same performance improve-
ment rates than some years ago.

On the one hand, the available Instruction Level Parallelism is limited by the amount
of dependences and conditional branches that exists in programs, hence taking little
benefit from more aggressive processor implementations. On the other hand, the
growing gap between processor speed and memory access time leads to a memory
wall in which memory accesses dominate code performance [WM95|. Finally, as the
size of transistors decreases, there is a significant increase in the concentration of heat,
which can even make the chip burn. According to Intel, the power consumption of
their chips has doubled approximately every 36 months [MNW02|. Increasing power
dissipation, and particularly, the need to cool regions of local power concentrations,
also known as hot spots, has become a major problem.

The Very Long Instruction Word (VLIW) paradigm provides a promising alternative
to traditional superscalar designs, as it requires considerably less hardware com-
plexity, thus reducing power consumption. It has demonstrated to do well in the
embedded media domain [Pur98, BLO02, FG00, Ses98, RS96|. Furthermore, in the
general-purpose domain, the Itanium Processor Family [SA00] has recently arisen as
a competitive option against commonly extended out-of-order superscalar processors.
Nevertheless, a high degree of Instruction Level Parallelism in VLIW architectures
still requires decoding more operations in parallel and a large register file, which may
affect overall performance due to the increased access time.

Our work concentrates on improving VLIW architectures in the context of multi-
media workload. As we will see in next section, the performance of this kind of
applications can be improved by exploiting different sources of parallelism. In this
thesis, we face two problems. First, we analyze the problem of memory disambigua-
tion, as it imposes a significant restriction on the exploitation of Instruction Level
Parallelism. Second, we study how to exploit the inherent Data Level Parallelism of
multimedia applications in a cost effective way, reducing the fetch bandwidth and
power requirements of very wide issue architectures.

1.2 Sources of Parallelism in Multimedia Applications

We can distinguish at least three forms of parallelism in multimedia applications:
instruction level parallelism, data level parallelism, and thread level parallelism.

1.2.1 Instruction Level Parallelism

The Instruction Level Parallelism (ILP) paradigm speeds up execution by causing
individual machine operations to execute in parallel [RF93|. The amount of ILP de-
pends on each particular application. Video and imaging codes, for instance, exhibit
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more ILP than cryptography applications. Nevertheless, multimedia workloads are
in general characterized by larger amounts of ILP than integer ones.

Most of the traditional hardware and compilation techniques focus on exploiting ILP
to speed-up execution. Superscalar processors are the most extended ILP implemen-
tation for the general-purpose domain. The hardware must determine at run-time the
dependences between operations and decide at which particular time and on which
functional unit and registers the operations must be executed (a detailed analysis
of superscalar hardware can be found in [Joh91]). However, it is widely assumed
that current superscalar processors cannot be scaled by simply fetching, decoding
and issuing more instructions per cycle. Conditional branches, the instruction cache
bandwidth, the instruction window size, the register file and the memory wall are
some of the aspects that currently limit the scalability of superscalar processors.

Very Long Instruction Word (VLIW) processors are another form of exploiting ILP
that requires less hardware complexity. Table 1.1 summarizes the main differences
between superscalar and classic VLIW architectures. The compiler and not the
hardware is responsible for identifying groups of independent operations, assign-
ing a functional unit to each operation, and packaging them together into a single
VLIW instruction |Fis81|. Due to the regularity of multimedia applications, static
scheduling arises as a promising option over dynamic scheduling. The first generation
of VLIW processors were successful in the scientific domain [CNO'88, RYYTS89],
and it has also been the architecture of choice for most media embedded proces-
sors [Sem99, Dev99, TI199|. However, some relevant facts, such as binary incompati-
bility across different implementations, the increased code size as a result of aggres-
sive scheduling techniques, and the lack of flexibility in front of non-deterministic
latencies, have contributed to the belief that VLIW processors are not appropriate
for the general-purpose domain.

Superscalar

Classic VLIW

Requires dependency checking hardware
Control logic does not scale well (O(n2))

Requires routing hardware for assignment of
instructions to functional units

Hardware has full information about depen-
dences

Flexibility in front of variable latency mem-
ory operations

Binary compatibility across different imple-
mentations

The compiler is responsible for grouping in-
dependent operations

Simplified hardware for decoding and issuing
instructions

Static assignment of operations to functional
units

Limited static information available to the
compiler

Impact of non-deterministic latencies

Increased code size

Object code incompatibility across different
implementations

Table 1.1. Comparison between superscalar an VLIW architectures
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During the last decades, there has been considerable advances regarding these issues
and, at present, a revival of the VLIW execution paradigm is observed. The IBM’s
tree-based VLIW architecture, for example, provides binary compatibility for VLIW
implementations of varying width through dynamic binary translation |[EFK*98|.
Furthermore, each company has developed its own compression scheme to avoid
code expansion. The Philips’ Trimedia architecture [RS96]|, for example, stores the
instructions in a compressed format, and a decompressor unit expands it during the
instruction fetch. In the Texas Instruments’ VelociT1 |Ses98|, the fetch packets are
delimited by parallel instruction link bits in the instruction format.

On the other hand, HP and Intel have recently introduced a new style of architecture
named Ezxplicitly Parallel Instruction Computing (EPIC) [SR00| (also called indepen-
dence architecture [RF93|). The compiler determines the grouping of independent
instructions and communicates this via explicit information in the instruction set,
but the hardware makes the final decision of which operations execute on each func-
tional unit at run-time [Smo02|; hence EPIC retains compatibility across different
implementations without the complexity of superscalar control logic. The specific
instruction set architecture, known either as 1A-64 or as Itanium Processor Family
(IPF) |SA00], includes a large number of registers, predicated execution to reduce
control hazards, unbundled branches support, compiler control of the memory hier-
archy, and speculative loads support.

Table 1.2 summarizes the evolution of the IPF. The first implementation of the TA-
64, the Itanium processor (code-named Merced), was released in 2001, two years later
than originally expected. It was offered at speeds of 733 and 800 MHz, with a choice
of 2 or 4 MB off-die L3 cache. Although it was the fastest floating point processor in
the market, it was not commercially successful mainly because of the launch delay, the
lack of optimized code, and its low performance when running ITA-32 applications,
among other reasons. Hence, it was replaced in 2002 by the [ltanium2 processor,
which is intended for use in high-end enterprise servers. In the first version of the
Itanium?2 processor (code-named McKinley), Intel shortened the pipeline from ten
to eight stages, tripled the system bus bandwidth and moved the L3 cache onto the
chip. The Itanium?2 processor can issue up to six operations per cycle in a fixed set of
combinations. It includes 128 floating point, 128 integer, 64 predicate and 8 branch
registers. As far as functional units, it has six integer, three branch, two floating
point, one SIMD, two load, and two store units. In July 2006, Intel released the first
dual-core Itanium? processor (code-named Montecito). Intel reports that it doubles
the performance of its single-core predecessor, while reducing power consumption by
approximately 20 percent [Int06]. It also features multithreading capabilities, being
able to execute two threads per core. From the available information about coming
generations, we can envision that future implementations of the [A-64 will relay on
multi-core chips, even having as many as 16 cores on the chip die.
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Version Clock Speed Bus Speed L1 Instr/Data Technology
Processor Bandwidth L2 Cache Transistors
Date L3 Cache Die size

Power envelope
Merced 733 or 800 MHz 133 MHz 16 KB / 16 KB 180 nm
Ttanium DDR 96 KB 25 (4+295) M
07/2001 2.1 GB/s 2 MB or 4 MB off-die 300 nm?2

116-130 W
McKinley 900 MHz or 1 GHz 100 MHz 16 KB / 16 KB 180 nm
Ttanium?2 QDR 256 KB 221 M
07/2002 6.4 GB/s 1.5 MB or 3 MB on-die 421 nm?2

90-100 W
Madison 1.3 to 1.67 GHz 100 MHz 16 KB / 16 KB 130 nm
Ttanium?2 QDR 256 KB 410-592 M
06/2003 6.4 GB/s 1.5 MB to 9 MB on-die 374-432 nm?2
-07/2005 91-130 W
Deerfield 1 GHz 100 MHz 16 KB / 16 KB 130 nm
Ttanium?2 QDR 256 KB 221 M
08/2003 6.4 GB/s 1.5 MB on-die 421 nm?2

62 W
Fanwood 1.3 or 1.6 GHz 100 or 133 MHz 16 KB / 16 KB 130 nm
Itanium?2 QDR 256 KB 410 M
11/2004 6.4 or 8.5 GB/s 3 MB on-die 374 nm2

99 W
Montecito 1.4 to 1.67 GHz 100 to 166 MHz 32 KB / 32 KB 90 nm
Ttanium2S QDR 2.5 MB 1720 M
Dual Core 6.4 to 10.6 GB/s 8 to 24 MB on-die 596 nm?2
07/2006 104 W

Table 1.2. Evolution of the ltanium Processor Family

1.2.2 Data Level Parallelism

Another kind of parallelism that can be found in programs is Data Level Parallelism
(DLP) (or Single Instruction Multiple Data (SIMD) [Fly72|). The DLP paradigm
tries to specify with a single vector instruction a large number of operations to be
performed on independent data elements. As each individual operation is indepen-
dent of all others, vector instructions are highly parallel and pipelineable, which
simplifies the control unit considerably.

One of the main advantages of using vector instructions is the reduction in the
overall number of instructions to be executed, as one single vector instruction specifies
several scalar instructions. Furthermore, many control operations are also removed,
as they are embedded in the semantics of the vector instruction [QEV98]. As a
result, the pressure on the fetch unit diminishes significantly.
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Other advantages are related to the way the memory system is accessed. As a
single vector memory instruction specifies a long sequence of memory addresses, the
hardware has advance knowledge regarding memory references. This information can
be used to improve the memory system [VLPA95|. Additionally, a vector instruction
is able to amortize the start-up latencies of functional units and memory over a
potentially long stream of elements.

In the supercomputing domain, DLP has been successfully exploited by vector [Rus78,
BS00, vdSDO01] and array [Hor82, Red73] processors. During the last decade, the in-
creasing significance of media processing has motivated a great interest in exploiting
sub-word level parallelism (also called uSIMD parallelism [Lee99]). DLP is commonly
present in multimedia applications in the form of small loops that operate streams of
small data elements, such as pixels or audio samples. In the general-purpose domain,
#SIMD multimedia extensions such as SSE [Int99] or Altivec [NJ99| have been a fast
and cost effective option to deal with this kind of parallelism: short data are packed
into a single register and operations are carried out simultaneously on the different
register elements. However, the efficiency of sub-word level implementations is re-
duced by the effect of unaligned and non-unit stride memory accesses. On the other
hand, while traditional vector processors can be easily scaled by just replicating the
functional units and widening the paths to the vector registers (with just the limit
of the maximum vector length), the scalability of sub-word level implementations is
limited by the width of the uSIMD registers.

A third way of exploiting DLP comes from the combination of both traditional vec-
tor and sub-word level parallelism [CEV99, JVTWO01, Ko0z99|. These architectures
adapt to typical multimedia patterns by extending the scope of vectorization to two
dimensions. They overcome some of the limitations of sub-word level implementa-
tions and yield better performance than scaling the word size of a sub-word level
parallel architecture [SAS105]

1.2.3 Thread Level Parallelism

As the gap between processor operation frequency and memory access time increases,
ILP techniques become insufficient to tolerate memory latency. The hardware com-
plexity and power cost of the structures needed to keep the processor busy during a
cache miss are prohibitive. In consequence, there is a growing trend towards exploit-
ing higher levels of parallelism, such as Thread Level Parallelism (TLP). A program
exhibit TLP if it can be decomposed in different threads, or groups of instructions,
that can be executed concurrently. This kind of parallelism is commonly found in
commercial server applications, such as databases.

Future media applications are expected to process several media streams concur-
rently, such as video, audio and encryption, which are controlled by a higher layer of
the protocol. We can find an example in the MPEG4 standard [Koe99|, an object-
based approach to describe and compose interactive audiovisual scenes. Uncorrelated
objects are coded, encrypted and transmitted separately in order to be composed
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again at reception. These objects may include digital video, still image, audio,
speech and even audio synthesis or 3D-graphics. Dealing with multiple concurrent
media streams means that we have high levels of coarse level parallelism together
with the intra-threaded real time requirements of each media source.

One of the main techniques to exploit TLP is called simultaneous multithreading
(SMT) [TEL95|. In SMT, instructions from multiple threads can be issued in
one processor cycle. The first commercial SMT processor was the Alpha 21/6/
(EVS8) [Eme99|. Although the processor was never released, the technology devel-
oped for this processor did probably set the bases for later processor designs. The
Intel Pentium 4 [BBHT04] was the first desktop processor to implement SMT ( Hyper-
Threading Technology (HTT) in Intel’s terminology).

On the other hand, interleaved multithreading consists on issuing multiple instruc-
tions from different threads on an interleaved way. We can distinguish different levels
of multithreading depending on the frequency of the interleaving. In fine-grain mul-
tithreading, for example, instructions from different threads are issued after every
cycle. On the contrary, coarse-grain multithreading switches from one thread to
another when the current executing thread causes some long latency event.

Another implementation of TLP is chip multiprocessing (CMP). It integrates two
or more processor cores into one chip, so that different threads can be executed
independently. The main manufacturers of high performance processors are following
this trend [TDJ102, SKTT05, Joh05, KAO05, AMD06, GMNR06, MB04, KDHT05].
Nevertheless, different TLP implementations are not exclusive and can be combined
to improve performance. Intel’s Montecito and Sun’s UltraSPARC T1 are examples
of coarse-grain multithreading multi-core processors.

1.3 Thesis Overview

1.3.1 Objectives

We can distinguish two main objectives in this thesis. As we will demonstrate, mem-
ory disambiguation is a key optimization to exploit ILP, specially in static scheduling
implementations, such as classic VLIW architectures. Furthermore, memory disam-
biguation is also required in order to generate vector code. Even in the case of having
hard-to-deal control and data dependences in the computation, typical media kernels
usually process disjointed streams of data; nevertheless, common commercial com-
pilers fail to disambiguate them mainly because of the extensive use of pointers and
indirect references. One of the main goals of this thesis is to analyze the problem of
memory disambiguation in multimedia codes. As part of this thesis, we will propose,
implement, and evaluate a software memory disambiguation technique based on the
memory access patterns of most media kernels.
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On the other hand, we think that the combination of the vector and the VLIW
paradigms is a promising alternative to exploit the fine-grain parallelism of multi-
media codes. Hence, the second main goal of this work is to evaluate the potential
of enhancing a reference pSIMD-VLIW architecture with conventional vector capa-
bilities. We will show that multimedia applications are composed of heterogeneous
regions of code, some of them with high levels of DLP and other ones with only mod-
est amounts of ILP. Vector-uSIMD multimedia extensions have proved to be a good
option to exploit the parallelism of the DLP-regions [Cor02|, as they adapt well to
typical multimedia data structures, providing good performance and overcoming the
scaling limitations of existing 4SIMD extensions. Furthermore, simplicity and power
efficiency are features of both, vector and VLIW architectures, which allows for lower
clock rates and lower voltages. We will demonstrate that Vector-uSIMD extensions
are also effective with static scheduling, allowing for high-performance cost-effective
implementations. Additionally, TLP implementations, such as chip-multiprocessors
can be used to exploit coarse-grain parallelism.

1.3.2 Organization of this Document

In this chapter we have exposed the motivation and the main objectives behind this
thesis. The rest of this document is organized as follows. Chapter 2 surveys the
main implications that multimedia processing is involving in computer architecture
and overviews the most significant processor architectures that have been proposed
for multimedia.

The working environment is presented in Chapter 3, including the compilation and
simulation framework, the extensions built into the original tool set, and the reference
architecture used in the evaluations. Next, Chapter 4 analyze the main characteris-
tics of multimedia codes, both at the application and at the loop level. Our set of
benchmarks is introduced and characterized for the reference VLIW architecture.

Chapter 5 discusses the problem of memory disambiguation in the context of mul-
timedia codes and proposes a dynamic memory disambiguation technique specially
targeted at multimedia loops or any other applications with similar memory access
patterns. The proposal is fully described, implemented and evaluated, as well as
compared against advanced interprocedural pointer analysis.

Chapter 6 is concerned with our proposal of adding vector capabilities to uSIMD-
VLIW processors. We start by performing a scalability study of the DLP and non-
DLP regions of the benchmarks in VLIW architectures with pSIMD multimedia
extensions. Next, we present the proposed architecture and discuss the main compi-
lation issues. The chapter ends with a performance evaluation of the architecture.

Finally, Chapter 7 concludes the thesis by summarizing the achieved goals and sug-
gesting new directions for future research.



Chapter 2

Processor Architectures for
Multimedia

Multimedia processing has motivated strong changes in the focus and design of pro-
cessors. Current computers have to face increasing requirements in computational
power for videoconferencing, image compression and processing, 3D graphic games,
encryption, speech recognition and so on. In this chapter, we overview the impact
that multimedia processing is having on computer architecture and briefly describe
some of the most relevant proposed architectures.

2.1 Architectural Challenges

The importance of multimedia processing has produced a revolution in the design
of both embedded and general-purpose processors. In the general-purpose domain,
these changes have been very straightforward with the inclusion of MMX-like 4SIMD
multimedia extensions. These extensions have become the most important change
to the basic ISA since the inclusion of the FP units inside the processor core. Nev-
ertheless, the significance that media processing has been taking on during the last
years has not been limited to the general-purpose domain. On the contrary, the em-
bedded domain has experimented a revolution based on new and harder demands.
Near future applications such as personal mobile computing, Web-TV devices, DVD
players or even next generation of game consoles are just a few examples.

Traditional Digital Signal Processors (DSPs) were designed to support specific and
regular computation-intensive tasks. Most of them included special-purpose oper-
ations, complex memory addressing modes, and support for counted loops, among
other features. However, such levels of specialization limit the use of high-performance
compilers and lack flexibility enough to adapt to variations in the applications. Dur-
ing the last decade, thanks to advances in technology and compilation techniques,
and motivated by the evolution of the multimedia market, DSP processors have
experimented a change of trend towards simpler and more general load-store RISC-
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like architectures. Most of them include pSIMD operations, support for unaligned
memory accesses and prefetching, and DMA transfers.

To satisfy the great variety of consumer products, these processors must provide high
performance at low cost. At the same time, they must be programmable in order to
support the different standards and reduce application development time. Therefore,
these processing elements are limited by the trade-offs between performance and flex-
ibility. The increasing importance of these emerging class of processors has deserve
its own term: the media processor. A media processor is defined as a programmable
processor dedicated to simultaneously accelerating the processing of multiple data
types, including digital video, digital audio, computer animation, text, and graph-
ics [Kon98|.

According to this, Fritts distinguishes three forms of industry support for multimedia:
application-specific processors, multimedia extensions to general-purpose processors,
and media processors [Fri00|. A similar classification is done by Talla, who dis-
tinguishes between general-purpose processors with SIMD extensions, VLIW media
processors, and application specific integrated circuits (ASICs) |Tal01]. On the other
hand, Dasu proposes a complete categorization of existing microprocessors based on
both the evolution of processing architectures and the functionality of the proces-
sors (see Figure 2.1) [DP02|. While from an evolution point of view special-purpose
programmable processors assimilate features of DSP and RISC architectures, from
a functional perspective they are including VLIW and SIMD implementations to
exploit parallelism at many levels.

From another perspective, El-Mahdy proposes a taxonomy of multimedia processing
based on three architecture models: vector processors, superscalar processors, and
multiprocessors [EM01]. DSPs and multimedia approaches are considered as varia-
tions of these three architecture models. As we are interested on the architectural
point of view, we have also organized the different approaches on three architectural
groups: VLIW processors, vector processing, and chip multiprocessors.

The VLIW paradigm has been the architecture of choice for most media proces-
sors. Chromatic Research’s Mpact [Pur98|, Equator’s MAP-CA [BLO02|, Analog
Devices’ TigerSHARC |[FG00], Texas Instruments’ VelociTI [Ses98|, and Philips’ T'ri-
Media [RS96] are just a few examples. These architectures rely on the compiler to
avoid the overhead of run-time parallelism extraction and become a cost-effective op-
tion to provide more flexibility to support the large variety of multimedia standards.

From the supercomputing domain, the vector and systolic paradigms have also in-
fluenced new DSP processors. Examples of vector microprocessor designs are the
Torrent-0 [ABIT95] and the VIRAM project [KP98]. Additionally, there are projects
using streaming SIMD architectures to address 3D graphics processing, such as the
Imagine processor [RDKT98]. Another research line considers the inclusion of a con-
ventional vector ISA extension [QCEV99| and a matrix ISA extension [CEV99] into
a superscalar core.
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Figure 2.1. Hybrid classification of microprocessors [DP02]

Finally, a natural way of exploiting coarse grain parallelism consists on integrat-
ing multiple processor cores into a single chip. In fact, the main manufacturers
of high performance processors are following this trend: see for example IBM’s
Powers [SKT105], HP’s PA-8900 [Joh05], SUN’s UltraSPARC T1 [KAOO05|, AMD’s
Opteron |[AMDO6], Intel’s Code Duo |GMNRO06| and Montecito [MBO04|, and the
Cell Broadband Engine [KDHT05| from Sony, Toshiba and IBM. Chip MultiProces-
sors (CMPs) have the potential to provide high scalability, although they are still
limited by the lack of programming tools and their dependency on hand-written li-
braries [Kon98|. In particular, the combination of the CMP, the VLIW, and the
SIMD paradigms appears as a good option to exploit the heterogeneous parallelism
found in multimedia applications, being able to provide high performance at low
cost. Typical examples of VLIW CMPs are SUN’s MAJC [Gwe99|, Improvisys’
JAZZ [Imp01], BOPS’ ManArray [PP99], and HP’s LX [FBF100].

2.2 VLIW Processors

As stated before, the VLIW execution paradigm arises as a good candidate to deal
with the regular patterns found in multimedia applications. Next, we describe two
of the most representative examples of VLIW architectures for multimedia: Texas
Instruments’ VelociTI and Philips’ TriMedia.

VelociTl

VelociTI |Ses98] is a load-store RISC-like VLIW architecture suitable for multichan-
nel vocoding for telephony and wireless, modems, imaging, and high performance
systems in communications and multimedia. It focuses on minimizing design com-
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plexity to allow the development of a high performance compiler, with the objective
of increasing performance and reducing application development time.

The first implementation of the architecture, the fixed-point TMS320C62x fam-
ily, has eight independent units, including two multipliers and six ALUs. The
TMS320C7x adds floating-point capability to six of the eight units. The processor
core is divided into two identical datapaths with four functional units and 16 32-bit
registers each. Up to eight operations can be packed into one single VLIW instruc-
tion. The instruction set provides saturation and normalize operations, but it does
not include uSIMD operations. Almost every operation can be guarded by a predi-
cate register. The TMS320C6201 memory architecture includes 64 Kbytes of on-chip
program memory configurable either as mapped memory or as direct mapped cache,
64 Kbytes of interleaved data memory, a DMA controller, and an external memory
interface.

The compiler includes classical optimizations such as control-flow simplification, copy
propagation, common subexpression elimination, loop-invariant code motion, and so
on. In addition, it also performs software pipelining, if-conversion, memory address
cloning to allow vectorization and unrolling, memory address-dependence elimina-
tion, and memory-bank disambiguation to avoid memory-bank conflicts.

TriMedia

TriMedia is a programmable high-performance VLIW family of processors specially
designed for real-time processing of video, audio, graphics and communication data
streams. Backward source code compatibility is ensured between the different mem-
bers of the TriMedia family. Nevertheless, the codes must be re-compiled, as binary
compatibility is not guaranteed. Unlike the VelociTI architecture, it integrates mul-
timedia specific co-processors and pSIMD extensions.

The first implementation of the architecture, the TM1000 [RS96], has 27 functional
units and 128 32-bit registers. Up to five operations can be scheduled in parallel
into a single VLIW instruction. The instruction set contains load/store operations,
arithmetical and logical operations, floating point operations, and uSIMD operations,
including special operations to perform convolution and distance computation. The
architecture also provides support for guarded execution. The memory architecture
includes 32 Kbytes of on-chip instruction cache and 16 Kbytes of on-chip data cache.
Two memory requests can be served in parallel provided that they access different
banks, but a stall cycle is imposed otherwise. The chip also incorporates two co-
processors, an Image co-processor and a Variable Length Decoder co-processor, video
input and output, digital audio input and output, and two serial interfaces.

One successor to the TriMedia TM1000 is the TriMedia CPU64 [vESVT99] archi-
tecture, which is targeted for embedded use in electronic devices such as digital
televisions and set-top boxes. Improvements over the TM1000 include the extension
of the wordsize from 32 to 64 bits and the extension of the instruction set with a
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large set of multimedia operations. The data cache maintains the 16 Kbytes size,
but changes to a true dual-port design, thus allowing two memory requests to be
served simultaneously even if they access the same memory bank.

The latest TriMedia processor, the TM3270 [vdWVD™05], is designed to address the
performance demands of standard definition video processing. It is typically used
as an embedded processor in a System-on-a-Chip (SoC). Table 2.1 summarizes the
main parameters of the architecture. It must be noted that the data cache has been
enlarged up to 128 Kbytes and supports penalty-free non-aligned accesses.

Architecture 5 issue slot VLIW, guarded RISC-like operations

Pipeline depth 7-12 stages

Address width 32 bits

Data width 32 bits

Register file Unified, 128 32-bit registers

Functional units 31

IEEE-754 floating point Yes

SIMD capabilities 1 x 32-bit, 2 x 16-bit, 4 x 8-bit

Instruction cache 64 Kbyte, 128-byte lines, 8 way set-associative, LRU replacement
Data cache 128 Kbyte, 128-byte lines, 4 way set-associative, LRU replacement,

allocate-on-write miss policy

Table 2.1. Parameters of the TM3270 architecture [vdWVD™05]

One of the main improvements of the TM3270 over previous TriMedia processors
is the extension of the instruction set with a significant number of new instructions
specially targeted to improve performance in video processing kernels. One of these
enhancements is the inclusion of two-slot operations, that is operations which are
executed by two functional units, thus allowing up to four source operands and up to
two destination operands. It also includes collapsed load operations with interpolation
on the retrieved data, specially suitable to reduce the computational complexity
of the motion estimation algorithm. Additionally, there are also specific CABAC
operations for the Context-Based Adaptive Binary Arithmetic Coding (CABAC)
algorithm of the H.264/AVC video standard. Finally, it also provides memory region
based prefetching, which is specially effective for block-based image processing.

2.3 Vector Processing

Vector architectures have traditionally been the most successful way of exploiting
DLP in the supercomputing domain for scientific and engineering tasks. As they
allow for low-cost implementations, vector architectures also appear as a good alter-
native to deal with the new computation intensive tasks of multimedia applications.

There are several proposals based on the vector model, ranging from cost-effective
implementations of conventional vector processors to stream or n-dimensional vector
alternatives. In this section we briefly describe some of the most relevant ones. We
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have classified them into four different groups: conventional vector architectures,
uSIMD extensions, n-dimensional vector architectures, and stream processors.

2.3.1 Conventional Vector Architectures

Cost-effective implementations of conventional vector microprocessors try to adapt
to multimedia data patterns mainly by reducing the maximum vector length and
adding sub-word level processing capabilities. Two representative examples of this
kind of processors are the Torrent-0 and the VIRAM.

Torrent-0

Torrent-0 (T0) |[ABIT95] is a single-chip fixed-point vector microprocessor designed
for multimedia, human-interface, neural network, and other digital signal processing
tasks. The first use of T0 was as the core of the Synthetic Perceptron Testbed 11
(SPERT-II) workstation accelerator board [WAK™'96|, originally designed to accel-
erate multiparameter neural network training for speech recognition research.

The T0 architecture consist of a MIPS-II compatible 32-bit integer RISC core, an on-
chip 1 KB instruction cache, a high performance fixed-point vector unit co-processor,
a 128-bit wide external memory interface, and a byte-serial host interface. The vector
unit includes a vector register file, two vector arithmetic functional units, and one
vector memory unit. The vector register file contains 16 vector registers of 32 32-
bit elements each. The vector arithmetic functional units perform integer arithmetic
and logic operations and vector fixed-point operations that include scaling, rounding,
and result saturation. Finally, the vector memory unit performs scalar memory
operations, vector memory operations, and vector editing operations, and provides
support for unit-stride, constant-stride, and indexed addressing modes. As there is
only one memory address port, non-unit stride and indexed memory accesses are
served at one element transfer per cycle.

All three vector functional units consist of 8 parallel pipelines, with the elements
of a vector register striped across them. A vector functional unit accepts a new
instruction with a maximum vector length of 32 every four cycles. The T0 is able to
dispatch one 32-bit instruction per cycle to each vector functional units in turn, thus
sustaining up to 24 operations per cycle. All vector pipeline hazards are interlocked
in hardware.

VIRAM

The Vector IRAM (VIRAM) [Koz99] is a vector architecture that combines vector
processing with the the concept of Intelligent RAM (IRAM), that is the integration of
logic an DRAM on a single chip. It was specially designed to match the requirements
of the mobile personal environment.
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Figure 2.2. Architecture of the VIRAM vector processor

Figure 2.2 shows the architecture of the VIRAM. It consists of a scalar unit, a vector
co-processor, and a network interface, all connected to the on-chip memory system.
The scalar unit is based on an in-order, dual-issue superscalar MIPS processor and
includes 16 KB instruction and data caches.

The vector unit has six vector functional units: two arithmetic, two flag processing,
and two load/store units. It provides support for multimedia data types, short vec-
tors, and other DSP features such as scaling, rounding and saturation. A special
bypassing path is also implemented to manage reductions. The vector unit is clus-
terized into four parallel lanes. The vector register file holds 32 vector registers of
32 64-bit elements each, with the elements of the vector registers distributed along
the different lanes. Additionally, vector registers can be subdivided to hold 64 32-bit
elements or 128 16-bit elements in order to exploit sub-word level parallelism.

The main memory of VIRAM is based on embedded DRAM, which provides high
memory bandwidth and low energy consumption, but at the cost of higher memory
latency. In order to tolerate the high DRAM latency, the vector pipeline is modified
to include the worst case memory access latency. Both memory units support unit-
stride memory accesses, but only one can perform strided and indexed operations.
Vector memory accesses are not cached, but coherence is maintained between scalar
cache and vector accesses.
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2.3.2 uSIMD Extensions

Starting in 1994 with the HP’s MAX |[Lee95| instruction set, and closely followed
by SUN’s VIS [TONL96|, MIPS’s MDMX [SIG97|, and Intel’s MMX [PW96], mul-
timedia extensions have become essential on any general-purpose processor. They
appeared with the objective of accelerating the execution of the emerging multimedia
kernels while trying to minimize the impact on the overall processor design.

Based on the observation that multimedia applications use to spend a lot of time
in loops that process streams of small data types (typically 8 or 16 bits), these
ISA extensions exploit SIMD parallelism by packing several elements into a single
register and operating simultaneously on the different register elements. In order to
differentiate it from traditional SIMD execution, where a vector register is composed
by a set of registers but there is only one element per register, some authors call it
microSIMD (or pSIMD) execution [Lee99].

Initially, most pSIMD extensions included only integer capability. Additionally, to
take advantage of the already existing register files, the floating-point register file
was typically used to map the new set of uSIMD registers, thus limiting the register
width to 64-bit. These uSIMD extensions provide the capacity to operate over
two 32-bit, four 16-bit, or eight 8-bit elements in parallel. In the course of time,
the increasing significance of the 3D processing domain drove to the inclusion of
floating-point pSIMD instructions. Next multimedia extensions, such as AMD’s
3DNow! |AMDO00|, Motorola’s Altivec |[NJ99|, and Intel’s SSE [Int99], included 32-
bit floating-point pSIMD arithmetic and a dedicated register file. Additionally, both
Altivec and SSE are implemented in 128-bit. A summary of the main characteristics
of available pSIMD multimedia extensions is given in Table 2.2

Year Name Company Processor Datapath Registers Instructions FP
1995 Max HP PA RISC 64-bit 32 (Int) 8 No
1995 VIS Sun Ultra Sparc 64-bit 32 (FP) 121 No
1997 MDMX MIPS R1000/PA8000 64-bit 32 (FP) 74 Yes
1997 MMX Intel Pentium II 64-Dbit 8 (FP) 57 No
1999 3DNow! AMD K6-2 64-bit 8 24 Yes
1999 Altivec  Motorola MPC7400 128-bit 32 162 Yes
1999 SSE Intel Pentium ITT 128-bit 8 70 Yes
2000 SSE2 Intel Pentium 4 128-bit 8 144 Yes
2004 SSE3 Intel Pentium 4 128-bit 8 157 Yes
2006 SSSE3 Intel Xeon, Core 2 128-bit 8 173 Yes

Table 2.2. 4SIMD multimedia extensions

The extended ISA generally contains a full set of vector instructions, including
multiply-add operations, special multimedia instructions such as the sum of absolute
differences, and instructions for data reorganization such as packing and unpacking.
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Figure 2.3. Examples of uSIMD instructions

They also provide support for scaling, rounding and saturation. Figure 2.3 shows
some examples of common pSIMD instructions.

Nevertheless, the efficiency of this kind of uSIMD extensions is greatly reduced by the
overhead to pack/unpack data to/from the uSIMD registers, the effect of unaligned
and non-unit stride memory accesses, and the mismatch between the storage and
computational formats. It must also be noted that the amount of parallelism that
can be exploited is limited by the width of the uSIMD registers. Furthermore,
even though there has been a great effort working into compilation techniques, hand
optimization is still need to produce efficient uSIMD code.

2.3.3 N-dimensional Vector Architectures

To overcome some of the above mentioned limitations of uSIMD extensions, several
approaches try to exploit two or more dimensions of parallelism to adapt to common
multimedia data structures in a more efficient way. MOM, CSI, and MediaBreeze
are examples of N-dimensional vector architectures.

MOM

The Matriz Oriented Multimedia (MOM) extension [CEV99]| combines the intra-word
parallelism capabilities of uSIMD extensions together with the inter-word parallelism
exploitation of traditional vector architectures. Basically, it can be seen as a conven-
tional short vector ISA where each vector sub-operation is a uSIMD one.
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The proposed architecture consists of a superscalar core with the addition of a mul-
timedia unit with its own register file. It offers 16 MOM registers of 16 64-bit words
each to the programmer, vector load and vector store instructions to move data
between memory and the MOM registers, and a set of computation instructions
that operate on MOM registers. A MOM implementation executes as many pSIMD
operations per cycle as the number of parallel lanes in the MOM functional unit.
Furthermore, the architecture includes two 192-bit packed accumulators to handle
reductions. Additional details about the MOM extension are given in Chapter 6.

A related proposal but targeting high performance for technical, scientific, and bio-
informatics workloads is Tarantula [EAE102]. It is based on adding aggressive vector
capabilities to the EV8 processor. It includes two vector units with 16 parallel
lanes each, allowing up to 32 double-precision operations per cycle. Vector memory
accesses are performed directly to the second level cache, which is able to serve up
to 16 words per cycle.

CSI

Complex Streamed Instruction (CSI) [JVTWO01] is a memory-to-memory architecture
for two-dimensional data streams of arbitrary length. Each stream is specified by
six 32-bit stream control registers, containing information which includes the base
address, the stream length, the strides in the two dimensions, the size of the stream
elements, the scale factor, and the sign and saturation features.

The number of elements is not explicitly codified in the program, instead the hard-
ware is responsible for dividing the data streams into sections which are processed in
parallel. Data conversion and rearrangement is pipelined with computation and it is
also performed by hardware, thus minimizing the packing/unpacking overhead typ-
ical of multimedia extensions. It also includes hardware support for data alignment
and loop control.

One of the main differences between CSIand MOM is that CSI allows any stride in
both dimensions, while MOM allows an arbitrary stride between consecutive rows,
but not between consecutive elements inside one row.

MediaBreeze

The MediaBreeze |TJ01] architecture was designed to accelerate uSIMD codes by de-
coupling the true computation from the related overhead instructions, and providing
explicit hardware support for processing the overhead instructions, including mem-
ory access, addressing arithmetic, loop branches and data reorganization (permute,
pack, unpack, and transpose).

In the MediaBreeze architecture, the Breeze unit fetches and reorganizes input data
and transfers them to the input queues in the Data Station, which acts as the register
file for SIMD computation and is implemented as a set of FIFOs. A conventional
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#SIMD unit performs computation and stores back the resulting stream on the out-
put queue of the Data Station.

The Breeze unit is controlled by means of a special multidimensional instruction,
called the Breeze instruction. This instruction describes the semantics of up to
five nested loops and the architecture allows for up to three input and one output
data structures. Thus, up to three 5-dimensional input streams can be operated to
produce one 5-dimensional output stream. Information specified in the instruction
includes the five loop index counts, the start address, stride, multicast and data types
of each stream, the operation code, and the sign, saturation and scaling features of
the result. Such a complex instruction requires a specific instruction memory to be
hold and a specific decoder block inside the Breeze unit.

2.3.4 Stream Processors

The stream programming model tries to separate the description of data from the com-
putation. Applications are coded as streams of data and a set of computation kernels
that process them. These architectures are usually integrated as a co-processor into
a SoC. Examples of stream architectures are Imagine from the Standford research
group, Sony’s Emotion Engine and Motorola’s RSVP.

Imagine

Imagine [RDKT98]| is a programmable load/store architecture for one-dimensional
streams. It is specially suitable for applications performing many operations on each
element in a long stream, such as image processing and 3D rendering

Imagine is organized around a large stream register file of 64 KB (see Figure 2.4).
The unit of work is the stream descriptor, that specifies the base address in the
stream register file, the stream length, and the record size of data elements in the
stream. The architecture provides load/store operations to move entire streams of
data between memory and the stream register file. The memory system consists
of four independent SDRAM banks and is able to perform up to two simultane-
ous stream memory transfers. It provides support for sequential, constant-stride,
indexed, and bit-reversed addressing modes. A single micro-controlled handles 8
arithmetic clusters with 6 functional units each (three adders, two multipliers and
one divide/square root unit). The arithmetic clusters work in parallel on different
elements of the stream and each cluster operate under VLIW control. Intermediate
results are kept local to each cluster.

Applications are written in high-level language using a set of library functions and
are executed on the host processor. Kernels are written in Imagine’s microassem-
bly language using C-like expressions. The kernel compiler applies common high
level optimizations such as loop unrolling, iterative copy propagation, and dead code
elimination, and generates VLIW microcode instructions that control the arithmetic
cluster.
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Figure 2.4. Architecture of the Imagine stream processor [RDK*98]

Emotion Engine

The Emotion Engine [KIlea00] is the core of the Sony’s PlayStation 2 video game
consoles. It was jointly designed by Toshiba and Sony to support high-quality 3D
graphics, especially geometry and perspective transformations. It is basically a 2-
way MIPS core with 128-bit 4SIMD extensions and 2 vector co-processors connected
via a shared 128-bit internal bus.

Each vector unit include four parallel floating-point multiply-accumulate units and a
high-speed floating-point division unit, and can operate as a stand-alone 2-way VLIW
processor. One of the vector units is mainly used to execute flexible calculations,
such as characters movement, in collaboration with the CPU core. The second one
has four times more memory than the other one, as it is mainly used as stand-alone
processor responsible for conventional 3D graphics calculations, such as processing
the background objects of the scene.

RSVP

The Reconfigurable Streaming Vector Processor (RSVP) [CELT03] is a streaming
vector co-processor architecture targeted to image and video capture devices and
portable computation and communication devices, including handwriting recogni-
tion, voice recognition and synthesis, and graphics.

The RSVP architecture consists of operand access units, called vector stream units
(VSUs), which communicate with the processing units via interlocked FIFO queues
(see Figure 2.5). Thus, it achieves to decouple and overlap data access and data
processing. The number of input and output VSUs depend on the particular im-
plementation, but are defined by the architecture to be between 3 and 64 for input
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Figure 2.5. Architecture of the RSVP [CELT03]

VSUs and between 1 and 64 for the output ones. It also defines between 2 and 64
64-bit accumulators and between 16 and 64 32-bit scalar registers.

Programming the RSVP consists of describing the input and output vectors and
scalar values, and describing the computation itself as a data-flow graph. Conditional
branches, subroutine calls, and so on are managed by the host processor. A vector is
specified by a pointer to the first element and the shape of the vector data in memory,
which includes stride, span, and skip values. The span describes how many elements
to access at stride spacing before applying the skip offset. Vector operations are
expressed as nodes in a data-flow graph where all dependencies are explicitly stated.
Each node is specified by the input operands, the operation to be performed, the
precision of the output and the sign.

2.4 Chip Multiprocessors

Given current limitations to increase performance by simply increasing the number
of transistors, there is a growing trend towards the integration of multiple processors
into a single chip. These multiple processors are not tied to be the same. On the
contrary, new heterogeneous designs are appearing where general-purpose processor
cores are packaged together with special-purpose ones for higher efficiency in pro-
cessing multimedia and networking. Next we describe the MAJC architecture, an
example of homogeneous VLIW CMP, and the Cell, which is currently the most
representative example of heterogeneous CMP for multimedia.

MAJC

SUN’s Microprocessor Architecture for Java Computing (MAJC) [TCCT00] is a high
performance general-purpose microprocessor exceptionally suitable for multimedia
computing. Its modular design provides scalability and the ability to exploit paral-
lelism at a hierarchy of levels: at the data level through uSIMD instructions, at the
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Figure 2.6. Architecture of the MAJC-5200 processor

instruction level through multiple functional units, at the thread-of-execution level,
and at the system level through multiple processor units on a chip.

MAJC supports vertical multithreading inside each processor unit. Vertical multi-
threading allows another thread to use resources that a stalled thread is not using.
The system can hold the state of up to four threads at the same time, so that con-
text switch is very fast. On the other hand, MAJC supports processor clusters,
each containing multiple processor units, thus allowing different threads to run on
separate processor units concurrently. Additionally, MAJC also allows speculative
threads (future instruction streams) to execute on separate processors. The specula-
tive threads operate in their own memory space and future time. Sun refers to this
technique with the term space-time computing (STC).

The instruction set includes DSP-like features, such as saturation and puSIMD op-
erations for both integer and floating-point data, powerful instructions for graphic
applications, and a set of operations to facilitate byte and bit manipulation.

The first implementation of the MAJC architecture, the MAJC-5200 [Sud00], is
shown in Figure 2.6. It is a multithreaded dual 32-bit microprocessor with a high in-
put/output bandwidth. The two processors units share a coherent dual-ported 4-way
set-associative 16 KB data cache and common external interfaces. Each processor
unit is a 4-issue VLIW processor with four functional units: one General Function
Unit (GFU), which is able to execute memory, flow or arithmetic operations, and
three Media Functional Units (MFUs) for operations of compute type. Moreover,
each processor unit contains its own 2-way set-associative 16 KB instruction cache.

The general-purpose register file is data type agnostic, that is, any register can hold
information of any data type. All functional units within a processor unit share
96 registers, which are then called general (or global) registers. Additionally, each



2.4. CHIP MULTIPROCESSORS 23

SPE SPE SPE SPE SPE SPE SPE SPE
SPU SPU SPU SPU SPU SPU SPU SPU
Lsxu ||| [l sxu || [l sxu || [l sxu || [l sxu || [l sxu [ [l sxu || ||| sxu |
|
s [0 {es 00 es J0 I es QI es QI es I s | ks |
[+ 14 L4 L4 [+ 14 L4 L4
s || || sme || || smr || || smr || |{ sue || || sue || || swF || || swF|
A ] A ]

] L] A ] A ] ] L]
[ 1 [ v [ ¥ [ ¥ [ 1 [ v [ 1 [ ¥
| Element Interconnect Bus (EIB)

H L bt

L2 PPE Memory Interface Bus Interface
Controller (MIC) Controller (BIC)

Power 3 1 l ' 1

core

Figure 2.7. Cell system architecture

functional unit also has access to a set of 32 private (or local) registers. The 96 global
registers plus the 4 sets of 32 private registers allow programs to use a maximum
of 224 registers. Logically, the register file has 12 read ports and 5 write ports;
physically, it is distributed into 4 register files of 3 read ports and 5 write ports each.

The only use of the MAJC-5200 was as the core of the XVR-1000 and XVR-4000
graphics accelerators. Nevertheless, many of the design ideas, specially in the multi-
threading scope, laid the foundations for the design of next UltraSPARC processors.

Cell

The Cell Broadband Engine Architecture (CBEA) [KDH105], also known as the Cell
or the CellBE architecture, is a heterogeneous CMP jointly designed by Sony, Toshiba
and IBM (also called the STI alliance). Although it was originally designed for
the Sony’s PlayStation 3, it is suitable to face a wide range of digital applications.
Toshiba, for example, plans to incorporate Cell in high definition television sets,
and IBM has recently released the ()S20 blade module using double Cell proces-
sors [IBM06a|. These modules are also expected to be a part of the IBM Roadrun-
ner [IBMOG6b]| supercomputer that will be operational in 2008.

The first implementation of the Cell architecture consists of a dual-threaded dual-
issue Power Processor Element (PPE) (based on a 64-bit Power 970 core) augmented
with eight specialized Synergistic Processor Elements (SPEs) (based on a novel SIMD
architecture), an on-chip memory controller, and a controller for a configurable 1/0
interface (see Figure 2.7). These units are interconnected with a coherent on-chip
Element Interconnect Bus (EIB).
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Each SPE [GHF 06| consists of a Synergistic Processor Unit (SPU) and a Synergistic
Memory Flow Controller (SMF). The SPU operates on a Local Store (LS) memory
that contains instructions and data. All the transfers between this local memory
and the system memory is performed via a DMA-based interface. It must be noted
that the SPU cannot directly access the system memory. The SPU is an in-order
dual-issue statically scheduled architecture based on the pervasively data parallel
computing (PDPC) concept, in which wide datapaths are exploited throughout the
system. The execution units are organized around a 128-bit dataflow. There is only
one unified register file with 128 128-bit entries, which can be used for scalar data
types ranging from 8-bits to 128-bits in size or for uSIMD computations on a variety
of integer and floating point formats.

2.5 Summary

The significance of multimedia applications have produce a revolution in a great
variety of markets, from the embedded to the high performance general-purpose
domain. Technology advances allow current DSP processors to include features that
were restricted not far ago to just the general-purpose domain. In fact, the 32-bit
embedded processors have already narrowed the gap between embedded and desktop
Systems.

In order to face the performance, cost, and flexibility trade-offs of constantly changing
multimedia applications, processors designers have been compelled to investigate for
new processor architectures. Some of them try to accelerate multimedia execution
by adding some specific support, such as uSIMD extensions or special-purpose co-
processors, to existing microprocessors designs. On the other hand, ideas from the
supercomputing domain have also been adapted to exploit the data level parallelism
of multimedia codes.

In spite of the variety of existing alternatives, it is widely assumed that the com-
bination of different paradigms is needed to exploit the heterogeneous parallelism
of multimedia applications. Most of the current designs provide multicore and/or
multithreaded functionality to support thread level parallelism, either static or dy-
namic superscalar capabilities to exploit instruction level parallelism, and some kind
of SIMD support to deal with data level parallelism.

Realizing the computational demands, together with the cost and power consumption
requirements of these new applications, it can be easily predicted that even more
aggressive approaches are going to be implemented in future media processors.



Chapter 3

Compilation and Simulation
Framework

This chapter overviews the compilation and simulation framework used in this thesis,
Trimaran, and describes the main extensions built into the infrastructure to make it
suitable for our work. These extensions include the possibility to extract statistics
at the loop or region defined level, the insertion of a new module to perform loop
disambiguation, the addition of new Vector-uSIMD units and Vector-uSIMD regis-
ters to the HPL-PD architecture, the extension of the compiler and the simulator
to recognize, schedule and emulate the new operations, and the development of a
simulator of the memory hierarchy. Finally, we summarize the main parameters of
the reference architecture used in the evaluations.

3.1 Trimaran Choice

In this work we propose adding vector capabilities to high-performance uSIMD-
VLIW processors to improve the performance of multimedia applications. The eval-
uation of the proposed architecture require developing new tools or adapting existing
ones. Specifically, the target framework must allow experimentation in the architec-
ture and in both the compilation and the simulation processes.

All the proposals presented in this thesis have been evaluated using the public do-
main Trimaran compilation and simulation framework [CGHT04]. Trimaran began
as a collaborative effort between the Compiler and Architecture Research (CAR)
Group (once a member of Hewlett Packard Laboratories), the IMPACT Group at
the University of Illinois, and the ReaCT-ILP Laboratory at New York University
(now known as CREST, the Center for Research on Embedded Systems and Tech-
nology at the Georgia Institute of Technology).

Although there are several compiler infrastructures available to the research com-
munity, Trimaran is especially useful for our research for several reasons. First, it is
especially geared for ILP research. Second, it provides a rich compilation framework.
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The parameterized ILP architecture (HPL-PD) space allows the user to experiment
with machines that vary considerably in the number and kinds of functional units
and register files and can vary in their instruction latencies. These machine config-
urations can be described using a machine description facility (MDES). Moreover,
the modular nature of the compiler back-end (Elcor) and the intermediate program
representation used throughout it allows the construction and insertion of new com-
pilation modules into the compiler.

3.2 Overview of the Trimaran Compiler Infrastructure

Trimaran is a compiler infrastructure for supporting state of the art research in
compiling for ILP architectures. The system is currently oriented towards Fzplicitly
Parallel Instruction Computing (EPIC) [SRO0] architectures, and supports compiler
research in what is typically considered to be back-end techniques, such as instruction
scheduling, register allocation, and machine-dependent optimizations.

The Trimaran compiler infrastructure is mainly comprised of the following compo-
nents:

e A parameterized ILP Architecture, called HPL-PD.

e A machine description facility, called MDES, for describing ILP architectures.

A compiler front-end for C, called IMPACT, which performs parsing, type
checking, and a large suite of high-level (i.e. machine independent) classical
and ILP optimizations.

e A compiler back-end, called Elcor, parameterized by a machine description,
performing instruction scheduling, register allocation, and machine-dependent
optimizations.

o A cycle-level simulator of the HPL-PD architecture which is configurable by
a machine description and provides run-time information on execution time,
branch frequencies, and resource utilization.

Figure 3.1 displays a block diagram of the overall system organization. Each com-
ponent is described in more detail in the following lines.

3.2.1 Architecture Space

The architecture space targeted by Trimaran is the HPL-PD parametric proces-
sor [KSR00|]. HPL-PD is a parametric architecture in that it admits machines of
different composition and scale, especially with respect to the amount of parallelism
offered. The HPL-PD parameter space includes the number and types of functional
units, the composition of the register files, operation latencies and descriptors that
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Figure 3.1. Trimaran compiler infrastructure

specify when operands may be read and written, instruction formats, and resource
usage behavior of each operation.

The HPL-PD instruction set is similar to that of a RISC load /store architecture, with
standard integer, floating point and memory operations. In addition, it provides a
number of advanced features for enhancing and exploiting parallelism in programs,
such as speculative and predicated execution, compiler exposed memory systems, a
decoupled branch mechanism, and software pipelining.

Speculative execution is used to break certain types of dependences between oper-
ations. HPL-PD supports two forms of speculation: control speculation for code
motion across conditional branches and data speculation for run-time disambigua-
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tion. The architecture supports speculative execution of most operations; exceptions
are stores and branches. To correctly handle exceptions generated by speculative
operations, the architecture provides speculative and non-speculative versions of op-
erations and speculative tag bits on registers.

Predicated or guarded ezecution refers to the conditional execution of operations
based on a boolean-valued source operand, called a predicate. Predicated execution
is often an efficient method to handle conditional branches and provides much more
freedom in code motion. Predicate execution is also used in software pipelining as
noted further on. To support predicated execution, the architecture provides 1-bit
predicate register files and a rich set of compare-to-predicate operations which set
predicate registers. In addition, most operations have a predicate input to condi-
tionally nullify their execution. The compare-to-predicate operations are unique in
that they can define two predicate registers simultaneously, for example, a compare
may write the value of a comparison to one predicate, and the complementary value
to the other predicate. Furthermore, the architecture permits multiple operations to
write into a register simultaneously, provided all producers generate the same value.
These write semantics are particularly valuable for the efficient evaluation of boolean
reductions as carried out by the compare operations.

The memory hierarchy is unusual in that it is visible to the compiler. The ISA in-
cludes instructions for managing data across the hierarchy, for saving and restoring
registers, and for performing run-time data disambiguation. The architecture pro-
vides latency and cache-control modifiers with load/store operations, which permit
a compiler to explicitly control the placement of data in the memory hierarchy. the
default in the absence of the use of these directives, is the conventional hardware
management.

The branch architecture permits different pieces of branch related information to be
specified as soon as they become available, in the hope the information can be used
to reduce the adverse effect of the branch. A prepare-to-branch operation is used
to specify the target address and the static prediction. The architecture provides a
separate type of register file, called the branch target register file, to store this in-
formation. Compare-to-predicate operations are used to compute branch conditions,
which are stored in predicate registers. Finally, branch operations test predicates
and perform the actual transfer of control. The operation repertoire includes special
branch operations to support software pipelining.

Software pipelining [Rau95| is a technique for exploiting parallelism across iterations
of a loop. In software pipelining, the loop iterations are overlapped such that new
iterations begin execution before previous iterations are complete. The set of in-
structions that are in flight at steady state constitute the kernel. To reach steady
state, a subset of the instruction in the kernel are executed during a prologue stage;
similarly, another subset is executed during an epilogue stage to complete the loop.
During the prologue and epilogue stages, predication is used to nullify the appro-
priate subsets of the kernel. The architecture supports rotating registers in integer,
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floating-point and predicate registers in order to generate efficient software pipelined
code.

3.2.2 Machine Description Model

HPL-PD adopts an EPIC philosophy whereby the compiler is responsible for stati-
cally leading the execution of a program. Thus, a compiler must have exact informa-
tion pertaining to the particulars of the architecture definition within the HPL-PD
space. In Trimaran, a machine-description (MDES) database specifies those partic-
ulars which include the register file structure, the operation repertoire, the set of
resources in the architecture, the resource utilization patterns for each instruction,
and the latency descriptors that define when an operand may be read or written
after an instruction is issued.

The architecture is defined using a human-readable, high-level machine description
(HMDES) language |[GHR96|. The machine structure is described as a hierarchy of
types called sections. Figure 3.2 shows the hierarchy of sections defined within the
database file format. The description is then translated to a low-level language that
specifies the same information but in a format that is suitable for a compiler. A
MDES Query System (mQS) relays the information to a compiler through a proce-
dural interface. The MDES methodology allows for a retargetable compiler infras-
tructure and enables experimentation with numerous performance-oriented compiler
algorithms as well as architecture-exploration algorithms.

3.2.3 Compiler Front-end

The Trimaran front-end is based on IMPACT, an optimizing C compiler. IMPACT
is an acronym for the Illinois Microarchitecture Project utilizing Advanced Compiler
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Technology. The front-end is divided into three different modules depending on the
level of intermediate representation (IR) used. The first level of IR, called Pcode, is
a parallel C code representation with loop constructs intact. In Pcode, dependence
analysis, parallelization, loop transformations, and memory system optimizations can
be performed. Pcode functions are then translated into the Hcode format. Hcode is
a flattened C representation containing only basic if-then-else and goto control flow
constructs. The Hcode module is responsible for basic-block profiling, profile-guided
code layout and function inline expansion. Finally, the code is translated to the
Leode format. Lcode is a machine-independent assembly like representation similar
to many load/store RISC instruction sets. The Lcode module carries out classical
code optimizations, Superblock [HMCT93| and Hyperblock [MLC'92| formation and
ILP code optimizations. At the end of the process, the resultant code is translated
into a bridge code readable for the Trimaran back-end.

3.2.4 Compiler Back-end

Elcor forms the back-end of the Trimaran compiler, and it is mainly responsible for
scheduling and register allocation. In the Elcor IR, a program unit consists of a
graph of operations connected by edges. This operation graph represents both, a
traditional control flow graph and a data flow graph. The edges between operations
model different kinds of control flow, data and memory dependences. The Elcor IR
provides the necessary infrastructure to build, manipulate and transverse this graph.

The internal representation of the Elcor IR consist of a set of C++ objects. All
optimization modules in the Elcor IR use the interface provided by these objects to
carry out optimizations. Thus, optimizations are simply IR to IR transformations.
The Elcor IR also has a textual representation, known as Rebel, with conversion
routines between the two. Elcor is designed to allow implementing and testing new
compilation modules. These new modules may augment or replace existing Elcor
modules.

3.2.5 Simulator

The Trimaran infrastructure also includes an instruction set simulator (ISS). The
ISS consumes the output of the Trimaran compiler to generate an executable binary
which can simulate the original program.

The code generator module generates C files which correspond with the pseudo as-
sembly files used as Elcor’s IR. Because the assembly-equivalent files generated are in
C, the simulation is completely platform independent. These files contain external
variable declarations, global data and a set of emulation tables, which are arrays
of HPL-PD machine operations. The main simulation loop processes these tables of
operations and for each operation it invokes a function in the emulation library that
implements the semantics of the opcode. There is a separate emulation function for
each HPL-PD operation. The scheduling and latency information is present in the
execution stream of instructions.
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The simulator also aggregates structures to collect statistics at the block, procedure,
and program level. Basically, it gives the scheduling length of each block and opera-
tion and cycle count and operations breakdown at the procedure level. In addition,
the simulator can also produce an execution trace. The events that are recorded in
the trace are: block entry, procedure entry, procedure exit, operation nullification,
and memory accesses performed by the loads and stores in the program.

3.3 Extending the Trimaran Compiler Infrastructure

This section overviews the main extensions built into the Trimaran infrastructure.
The first one is the addition of a new module into the Elcor back-end to manage loops.
This module provides a great range of information about the loops in the compiled
code. Our proposal for memory disambiguation [SCAV02] has also been implemented
as part of this module. Second, we have extended the HPL-PD architecture with new
Vector-uSIMD operations, functional units and register files [SV05b|. The compiler
and the simulator have also been modified to recognize, schedule and emulate them.
Finally, we have also developed a simulator of the memory hierarchy specially target
to VLIW architectures simulation. Figure 3.3 shows the new Trimaran infrastructure
with the more relevant additions and modifications.

3.3.1 The Loops Module

The main aim of this module is the development of a tool that allows to identify,
characterize, and manage the most significant loops in a C program. The new loop
driver routine is executed at the beginning of the Elcor compiler main driver. For
each loop, it creates an object of a new class, called Loop Region. Loop detection
and general control flow information are taken from the existing Control module. On
the other hand, some functions in the Stats and Visualize modules have been adapted
to work at the loop level, rather than at the procedure level. The loop driver is called
again at the end of the Elcor driver to collect post-scheduling information such as
scheduling and operation statistics. The blocks weights obtained from the IMPACT
profiling are used to compute dynamic statistics. As the architecture parameters
(number of functional units, latencies, and so on) have already been considered in the
scheduling, static values does not differ significantly from those obtained dynamically.

An important contribution is the possibility to characterize memory operations. In
order to do so, we have extended the concept of induction variable. The Elcor
Control module identifies as induction variables those register operands which are
unique defined in the loop by an addition or subtraction operation, in which the
register is both the destination and the first operand and the second operand is loop
invariant. These registers are classified as basic induction variables. The one related
to the loop control branch is given the name of primary induction variable. We have
defined the extended induction variables to be any register operand unique defined
in the loop as the addition or subtraction of two operands, in which both operands
can be either any induction variable (itself or another) or a loop invariant. Register
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operands which are the result of a shift operation over an induction variable are also
considered to be extended induction variables. The step value for each induction
variable is computed by tracking the operations performed over each variable and
the involved literal values.

For each memory operation, if the address operand is an induction variable, either
basic or extended, we can say that it is an strided reference whose stride is the step
value of the variable. A deeper data flow analysis provides the compiler the ability
to detect references whose address registers differ only in a constant term, that is,
accesses to different elements of the same array.

The output produced by the Loops module can be controlled by the following flags:

o print loop list: If this flag is set to "yes", the whole list of loops is written
out to a file. This file contains a line for each loop with the following data:
source file name, loop name, dynamic cycle count, dynamic operation count,
operation per cycle rate, number of invocations, average number of invocations
per iteration, nesting level, being innermost or not, category (do-loop or while-
loop), being modulo-scheduled or not, containing function calls or not, static
number of operations, and the static number of loads and stores. This option
is useful to get quick information about all the loops in a program, either to
get main trends or to select the most relevant ones.

e print_loop info: This option produces a file with detailed information about
the loops in a more pleasant and readable format. A list of the loops to be an-
alyzed can be specified by means of an input file. In addition to the data listed
for print_loop list, it provides operations breakdown, scheduling information,
induction variables information, and memory operations information.

e print loop mdg, print loop dfg, and print loop cfg: These flags enable draw-
ing the memory dependence graph, the data flow graph and the control flow
graph of the loop respectively.

e do_memory _disambiguation: If this flag is set to "yes", loop memory disam-
biguation is performed at the beginning of the Elcor compilation chain. It
can perform static memory disambiguation, dynamic memory disambiguation,
and/or just delete the memory dependences listed in an input file, depending on
the configuration parameters. It is independent of any memory disambiguation
performed by the Impact front-end, so that both processes are not exclusive
and can be used together [SV05al.

Finally, the simulator has also been extended to produce dynamic statistics (mainly
cycle count, instruction and operation count and operation breakdown) at the loop
level rather than at a procedure level.
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3.3.2 Modifying the Architecture and the Instruction Set

Addition of Instruction Set Extensions to a compiler toolchain cannot be considered
to be trivial. The first step involves defining the new machine operations and the new
resources in the architecture. Specifically, we have extended the machine description
with two new kind of register files (Vector-uSIMD registers and packed accumulator
registers), two new kind of resources (Vector-uSIMD functional units and second

level memory units), and 128 new operations.

The generic definitions of the Register File and Resource HMDES sections have
been extended with two new properties respectively: the optional length property, to
specify the number of elements in a vector register, and the optional lanes property
to specify the number of vector parallel lanes in a vector unit. On the other hand,
introducing a new operation also involves defining the operation format, latency,
resource usage and reservation table, and the possible scheduling alternatives.

Second, the compiler must be modified to be able to make use of the new operations.
As our compiler front-end is not able to generate automatic code for the new archi-
tecture, the vector parts of the application C code have been hand-written using a
function call for each operation (see an example in Figure 3.4.a). The correspond-
ing emulation functions are defined in an external emulation library to verify code
correctness.

At the input of the Elcor back-end, each function call appears in the form of a set
of operations performing parameter passing and branch and link (Figure 3.4.b). We
have inserted a new module at the beginning of the Elcor toolchain that identifies the
branches to the emulation functions and replaces all the related set of operations by
a new node in the IR which corresponds to a new Elcor operation (Figure 3.4.c). The
source and destination operands of this new operation are obtaining by processing
the parameter passing operations. A new virtual register number is assigned to each
defined register operand and subsequent source registers are renamed accordingly.
The compiler back-end will then treat it as any other standard operation.

The MDES interface has been extended to be able to generate the correct latency
descriptors to the compiler. Additional minor modifications, including extending all
reader /writer modules, have been performed along the Elcor compiler in order to
recognize the new elements of the architecture and consider them in the scheduling
and register allocation phases. Finally, the new elements have also been added to the
simulator and the new operations semantics have been defined inside the emulation
library.

3.3.3 TrimaCache

TrimaCache is a cycle-level simulator of the memory hierarchy specially designed for
VLIW architectures. It is implemented as a set of layers. Each layer is composed by
a set of banks and ports, a write buffer and a miss status holding register (MSHR).
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M_PCK_SS_W(VR1, VR2, VR3);
M_V_ADD_SS_W(VR1, VR1, VR4);

(a) Vector-uSIMD C source code with emulation function calls

op 154 (MOVE [m<int_p1>] [i<1>] p<t>)

op 155 (MOVE [m<int_p2>] [i<2>] p<t>)

op 156 (MOVE [m<int_p3>] [i<3>] p<t>)

op 255 (PBRR [r<93:b btr>] [1l:g_abs<_$fn_M_PCK_SS_W> i<1>] p<t> ...)
op 157 (BRL [m<ret_addr>] [r<93:b btr>] p<t> ...)

op 158 (MOVE [m<int_p1>] [i<1>] p<t>)

op 159 (MOVE [m<int_p2>] [i<1>] p<t>)

op 160 (MOVE [m<int_p3>] [i<4>] p<t>)

op 256 (PBRR [r<94:b btr>] [1l:g_abs<_$fn_M_V_ADD_SS_W> i<1>] p<t> ...)
op 161 (BRL [m<ret_addr>] [r<94:b btr>] p<t> ...)

(b) Elcor IR before emulation function calls replacement

op 313 (M_PCK_SS_W [r<129:vx vxr>] [r<127:vx vxr> r<128:vx vxr>] p<t> ...)
op 314 (M_V_ADD_SS_W [r<130:vx vxr>] [r<129:vx vxr> r<120:vx vxr>] p<t> ...)

(c) Elcor IR after emulation function calls replacement

Figure 3.4. Emulation code replacement

The user can define the model of hierarchy, the number of layers, and the main char-
acteristics of each layer (such as number and type of ports, banks, sets, associativity,
block size, write policy, allocate policy, latency, write buffer size, and MSHR size).

At this moment, the simulator admits three possible hierarchy models: conventional
superscalar model, a vector cache in the first level of the hierarchy, and a vector cache
in the second level of the hierarchy. The wvector cache has been implemented following
the design presented in [QCEV99|. Basically, it is a two-bank interleaved cache
targeted at accessing unit-stride vector requests by loading two whole cache lines (one
per bank) instead of individually loading the vector elements. Then, an interchange
switch, a shifter, and a mask logic correctly align the data (see Figure 3.5). If the port
is B elements wide, these accesses are performed at a maximum rate of B elements
per cycle when the stride is one, and at 1 element per cycle for any other stride.

Two cache models and three port definitions are implemented. Classical or perfect
(always hit) multi-banked cache models can be combined with either a true (so
many simultaneous memory accesses as the number of ports), a pseudo (so many
simultaneous memory accesses as the number of ports as long as the references are
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Figure 3.5. The dual bank structure of the vector cache

to different cache banks) or an ideal (infinite simultaneous memory accesses) multi-
ported system.

The modeled write buffer is a coalescing write buffer of multiple entries, where each
entry holds one cache line [SC97]. The retirement order is FIFO, except when a
load hits a write buffer entry. In that case, we use a flush-item-only policy combined
with data bypass. The normal retirement follows a retire-at-X policy, that is, it is
produced when the number of valid entries is greater or equal than X, where X is a
user defined parameter (usually half the number of entries).

TrimaCache accepts traces in both textual and binary formats. The trace can be
seen as a succession of memory packets. One memory packet is composed by all
memory operations issued on the same cycle. Figure 3.6 describes a memory packet
in binary format. The first element of each packet is the cycle count in the global
clock of the program simulation. The second element indicates the overall number
of memory operations issued on that cycle. Next, for each operation, we find the
operation type (scalar load, scalar store, vector load or vector store), the size (data
width in the case of a scalar operation or the vector length and the vector stride in
the case of a vector one), and the initial address being accessed. TrimaCache process
each packet and accumulates the extra cycles needed to serve the memory requests.

Additionally, two special commands can be inserted in the trace: the start region
command and the close region command. These commands are followed by an inte-
ger argument which identifies the region of code being entered or exited respectively.
TrimaCache will then generate separate statistics for each region and for the full
program.
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4 bytes 1 byte 2-7(11) bytes e 5(9)-7(11) bytes
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Figure 3.6. Memory trace packet description (binary form)

Two mechanisms have been implemented into Trimaran to take benefit from the
possibility of defining multiple regions. The first one allows the user to define the
regions directly in the source code by means of explicit calls to two empty emulation
functions. These calls are later replaced in Elcor by two pseudo-operations. When
these operations are simulated, the corresponding command is written to the memory
trace. The second option consists on giving the simulator a list of the basic blocks
which are part of each region. This is useful to use in combination with elcor outputs
to automatically generate the list of interesting regions.

As a result of the simulation, TrimaCache produce a file with more than seventy
statistic parameters for each memory hierarchy layer and for each program region
separately, including memory activity cycles, hit rates on each structure, number and
cycles of processor stalls due to different reasons, and so on. The Cacti model [SJO1]
has also been integrated into TrimaCache in order to estimate time, energy and area
cost of the evaluated configurations.

3.4 Reference Architecture

The focus of this thesis in on optimizing general-purpose VLIW processors, rather
than extremely specific multimedia architectures. Any desktop computer is already
able to execute a wide range of multimedia applications, including videoconference,
3D games, or DVD video. As multimedia workload continues increasing significance,
processor designers must offer improved processors with powerful media performance.

Our reference architecture is a generic VLIW processor based in the HPL-PD archi-
tecture space, with guarded execution and software pipelining. Neither speculative
execution nor exposed memory hierarchy are used, as they are not completely sup-
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ported by the compiler. Table 3.1 summarizes the general parameters for 2-, 4-, and
8-issue width configurations. In order to support the high computational demand
of multimedia applications, our configurations are quite aggressive in the number of
arithmetic functional units. Latencies are based on those of the [ltanium2 proces-
sor [Int04].

Functional Units Memory Hierarchy
2w 4w Sw latency L1 L2 L3
integer 2 4 8 1,4(x,/) size (bytes) 16K 256K 1M
floating point 1 2 4 4 number of ports 1/2/4 1 1
memory 1 2 4 4 port width (bytes) 8 32 128
branch 1 1 1 2 number of banks 8 2 16
sets per bank 16 128 64
Register Files associativity 4 8 8
2w 4w 8w line size (bytes) 32 128 128
integer 96 128 160 write policy WT WB WB
floating point 96 128 160 allocate policy NWA NWA WA
predicate 64 96 128 mshr size 8 8 8
branch target 8 16 24 write buffer size 8 8 8
retire-at-X 4 4 4
latency 1 5 12

Table 3.1. Modeled processor configurations

The cache hierarchy is decoupled into three on-chip levels. The first level data cache is
a 16 KB, 4-way set associative cache with one port for the 2-issue width architecture.
We consider pseudo-multi-ported caches for the configurations with greater number
of ports. There is a 256 KB cache in the second level and a 1IMB cache in the third
level. Latencies are 1 cycle to the L1, 5 cycles to the L2, 12 cycles to the L3 and
500 cycles to main memory. We have not simulated the instruction cache since our
benchmarks have small instruction working sets. The compiler schedules all memory
operations assuming they hit in the first level cache and the processor stalls in case
of a cache miss or a bank conflict.

3.5 Summary

To evaluate the architectural improvements and compilation techniques proposed
in this thesis, we have used and extended version of the Trimaran compilation and
simulation framework. The choice of this tool set was mainly due to its potential
to be adapted, not only in the instruction set simulation, but also in the machine
description and the compilation process.

The developed tools allows us to characterize entire applications at the loop or region
level, evaluate a new loop memory disambiguation technique, experiment with a new
Vector-pSIMD-VLIW architecture, and perform a detailed simulation of the memory
hierarchy. This chapter has also described the general VLIW architecture used as
referenced along this work.



Chapter 4

Workload Characterization

Understanding the behavior of multimedia applications is essential for processor de-
sign research. Nevertheless, workload analyses are compromised by the difficult to
isolate the effects of the implementation of the algorithm, the compiler optimiza-
tions, and the underlying architecture. This chapter is an attempt to verify and
quantify main trends and characteristics rather than to perform a thorough charac-
terization. We start by summarizing the main characteristics of multimedia codes.
Next, we introduce and discuss the selection of benchmarks used along this study.
Finally, we present some experimental results to verify these characteristics in our
set of applications. As fine grain parallelism is mainly found in the form of small
loops that operate on streams of data, we analyze the behavior of loops and complete
applications separately.

4.1 General Characteristics of Multimedia Codes

Typical media programs consist of a set of kernels that process data in a stream-
like fashion, with the addition of some protocol related overhead such as header
processing and output encoding. As the kernels are invoked over the streams like
different stages in a pipeline, the behavior of these kernels in isolation differs from
their behavior inside the complete application. This section overviews the main
conclusions found in the literature about the characteristics of multimedia codes.
First, we describe the general behavior at the kernel level, and then, how these
features are modified when they are considered inside the scope of the complete
application.

4.1.1 Characteristics of Multimedia Kernels

Most authors in the literature agree that the main characteristics of multimedia
kernels are the following [LS96, DD97, CDJ*97|:

o Small data type sizes. Multimedia data items often derive from sampling an
analog signal in the time domain, such as video or audio. In contrast with
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other kind of applications where 32 or 64 bit precision is needed, media data
types are usually 8 or 16 bits, since human sense cannot discriminate beyond
that range.

o Significant data parallelism. Input data streams are frequently large collections
of small data elements such as pixels, vertexes or audio samples. Furthermore,
the same set of operations are performed over the elements inside the stream.
Thus, media kernels exhibit high amounts of data level parallelism.

o High instruction reference locality. Media applications often consist of a set of
computationally intensive small loops that dominate over the processing time,
which results in high instruction cache hit rates.

e Low data reference locality. Data is usually loaded, processed, and returned
back to memory. As the streams are reused only once, temporal locality is low.
On the other hand, as the streams often exhibit a multi-dimensional nature,
spatial locality is also difficult to exploit.

e High memory bandwidth. The huge working sets of some type of applications,
such as 3D imaging, means that processors will need to provide high memory
bandwidth and tolerate long memory latencies.

o Real-time constraints. Multimedia applications, such as video conferencing,
often require real time response and a certain quality of service.

4.1.2 Characteristics of Multimedia Applications

As it has been stated before, kernels process data in a streaming way, and these
streams can be sparse across different dimensions. Nevertheless, as these kernels are
repeatedly invoked on sets of related data, there is often some kind of overlapping
between the different streams. Furthermore, the stream produced in one stage of
the pipeline is consumed by the following stage. Thus, these stream-like patterns
exhibit temporal and spatial locality at the scope of the complete program, which
makes the use of cache hierarchies desirable. Several works coincide that data caches
do not perform worse for multimedia than for traditional integer and floating point
workloads [LPMS97, SS01, RAJ99|.

Lee et al. [LPMS97] introduced and analyzed the MediaBench suite. They found
that the MediaBench programs exhibit higher instruction cache hit rates than the
SPECint ones, and that data caches are more effective for reads on MediaBench than
on SPECint, although they are less effective for writes. They also noted that the
SPECint applications require almost three times more bus bandwidth and achieve
lower IPC than the MediaBench ones.

Slingerland and Smith [SS01] analyzed the cache behavior of the Berkeley Multimedia
Workload [SS02]. They obtained that, except for 3D and document applications, a
32 KB cache is large enough to get extremely low miss ratios.
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Ranganathan et al. [RAJ99| provided a quantitative understanding of the perfor-
mance of image and video processing applications on general-purpose processors,
with and without media ISA extensions. They also observed some differences be-
tween kernels and complete applications. While the kernels exhibit poor data locality
and take benefit from software prefetching techniques, they conclude that software
prefetching is not needed for complete applications

It is also widely assumed that multimedia applications exhibit more parallelism than
conventional applications. Liao and Wolfe [LW97]| analyzed the available parallelism
in some video applications. They obtained a high amount of ILP ranging from
32.8 to over 1,000 independent instructions per cycle using an idealized execution
model (perfect branch prediction, perfect memory disambiguation, infinite resources
and infinite scheduling window); whereas Wall [Wal91a| concluded that less than 10
instructions can be issued in parallel for conventional integer applications.

However, Fritts |[Fri00] added two extra video processing applications to MediaBench
and conducted a set of experiments on an intermediate low-level format. And he
found that the basic-blocks in multimedia applications are so small than the paral-
lelism is not within basic-blocks.

On the other hand, although media kernels are characterized by high amounts of data
parallelism, complete applications also contain first order recurrences, table look-ups
and non-streaming memory patterns with large amounts of indirections, like in the
SPECint. Therefore, there is a significant portion of multimedia codes that is difficult
to vectorize [JVTWO1]. Moreover, although most of the algorithms in the standard
have a vector nature, there has been a great effort on reducing the overall number of
required operations especially oriented towards scalar architectures, hiding in most
cases the data parallel nature of the original algorithm.

One representative example is the DCT algorithm. This transformation can be
represented as a matrix operation using a 8x8 transform matrix A to obtain the 8x8
transform coefficients matrix C' based on a bilinear transformation: C = A- B - AT,
where B is the input block and AT denotes the transpose of A. This would involve
1024 multiplications for each input block. Nevertheless, several fast algorithms have
been introduced in the literature aimed at reducing the number of multiplications
involved in the transform [Lee84|. The algorithm used in the JPEG standard only
needs to perform 192 products to produce one resultant block; but because of this
optimization, the new code cannot be directly vectorized.

4.2 Benchmarks Description

The difficulty to capture all of the essential elements of modern multimedia and
communication systems is reflected in the lack of any standardized benchmark suite.
Parameters that influence the overall application behavior, such as the predominance
of each media source, the size of its working set, or the level of protocol overhead
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are hard to determine. Even already standardized protocols such as MPEG4 are
still slightly ambiguously defined and it is difficult to obtain reliable, non research-
oriented source codes. Furthermore, the difference characteristics that we find when
we look at a different scopes of media processing, as seen in previous sections, strongly
suggest that study of kernels in isolation may bring to misleading conclusions.

As highlighted by its authors, the MediaBench is composed of full programs that
capture the essential characteristics of media and communication systems, including
video, audio, still-image, 3D and encryption standard algorithms. To expedite the
next generation of systems research, the MediaBench Consortium is developing the
MediaBench II benchmark suite [FST05|, incorporating benchmarks from the lat-
est technologies and providing both a single composite benchmark suite as well as
separate benchmark suites for each area of multimedia.

Our methodology is based on selecting a set of multimedia programs from the Me-
diaBench suite that approximate the contents of current image, video and audio
applications. For every standard, both the encoding and decoding are included. Ta-
ble 4.1 describes the set of benchmarks selected, together with a brief description
and the input sets used for simulation.

Benchmark Description and input set

jpeg_enc Descr: JPEG image compression encoder
Input: penguin.ppm (ppm file, 24-bit color 1024x739 image)
jpeg_dec Descr: JPEG image compression decoder
Input: penguin.jpg (JPEG file, 1024x739 image)
mpeg2 enc Descr: MPEG2 digital video encoder
Input: meil6v2rec.Y/Cb/Cr (four 24-bit color 352x480 frames Y-Cb-Cr)
mpeg2 dec Descr: MPEG2 digital video decoder
Input: meil6v2rec.mpg (MPEG?2 video stream, four 352x480 frames)

gsm__enc Descr: GSM 06.10 speech encoder

Input: clinton.pcm (8KHz sampling rate, 300KB PCM audio stream)
gsm _dec Descr: GSM 06.10 speech decoder

Input: clinton.gsm (13Kb/s GSM audio stream)
epic_enc Descr: Image compression encoder

Input: test image.pgm (pgm file, gray scale 256x256 image)
epic_dec Descr: Image compression decoder

Input: test image.pgm.E (EPIC file, 256x256 image)

Table 4.1. Benchmarks description and input sets characteristics

JPEG is a compression standard for either grayscale and color digital images based on
the DCT-method [Wal91b|. The codification is performed in three stages: color space
conversion and downsample, forward DCT transform and quantization, and entropy
coding. In color space conversion, each pixel from the source image is converted
from the RGB to its YUV representation and then the chrominance components
(U and V) are downsampled by a factor of two on both spatial dimensions. The
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forward DCT processing step lays the foundation for achieving data compression
by concentrating most of the signal in the lower spatial frequencies. Source images
samples are grouped into 8x8 blocks and input to the DCT. The output is another
block of 64 coefficients with the property that most of them have zero or near-zero
amplitude and do not need to be encoded. Afterwards, each coefficient is quantized
with the purpose to achieve further compression by representing the coefficients with
no greater precision than is necessary to achieve the desired image quality. Finally,
all the quantized coefficients are ordered into a zig-zag sequence, so that they can be
encoded more compactly based on their statistical characteristics (Huffmann coding).
The decoder just performs the inverse operations in the reverse order.

The MPEG2 video compression standard was developed by the Motion Picture Fx-
perts Group [Sik95|. Video sequences usually contain statistical redundancies in
both temporal and spatial direction. Spatial correlation is exploited for each frame
in the same way as JPEG, and motion compensated prediction techniques are used
to reduce temporal redundancies between frames. Motion estimation searches which
block of the previous image matches better with the block being compressed (this
becomes the most computationally-intensive part of the process), and the resulting
displacement between the two blocks is called the motion vector. Usually, the block
size is 16x16 pixels for the luminance component (Y') and 8x8 for the chrominance
components (U and V). A motion compensated difference block is then formed by
subtracting the pixel values of the predicted block from that of the current block.
The difference block is then transformed, quantized and entropy coded.

The GSM vocoder is the standard algorithm to perform voice compression for the
Global System for Mobile Communications or GSM, that is one of the most important
second-generation digital mobile phone systems today (especially in Europe) [Tri01].
While there are more than one implementations, this version is the original Euro-
pean vocoder (standard GSM 06.10), which uses residual pulse excitation/long term
prediction (RPE-LTP speech encoder) coding at 13 Kb/s blocks of 260 bits (from
frames consisting of 160 13-bit samples). The RPE-LTP process is commonly mul-
tiplexed by a VAD (Voice Activity Detection) unit, that is responsible for detecting
frames of time where the speaker is not talking (so that bandwidth and processing
overhead can be saved).

Finally, EPIC is an experimental lossy image compression utility. The compression
algorithm is based on a critically-sampled non-orthogonal (imperfect-reconstruction)
dyadic wavelet decomposition and a combined run-length/Huffman entropy coder
[AS90]. The filters are designed for extremely fast decoding on non-floating point
hardware, at the expense of slower encoding and a slight degradation in compression
quality (as compared to a good orthogonal wavelet decomposition). This property
makes it useful for applications that involve asymmetric computational resources,
such as centralized image databases.
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4.3 Loop Level Analysis

In order to analyze the main characteristics of media loops, this section presents
some quantitative data such as coverage, loop size, operation per cycle rate, data
size, and stride and length of array memory references. Results are presented on the
scope of each application, but detailed information about each loop in particular can
be found in Appendix A.

4.3.1 Coverage

For each application, Table 4.2 shows the number of innermost, do-loops, and modulo
scheduling loops together with the percentage of the overall dynamic cycles and
operations they represent. Note that each category is a subset of the previous one.

Innermost Do-loop Mod Sched
Benchmark #L  %Cyc %Ops #L %Cyc %Ops #L %Cyc %Ops
jpeg_enc 32 48.49% 61.74% 23 47.97% 61.41% 23 47.97% 61.41%
jpeg_dec 33 83.02% 85.05% 25 82.87% 84.89% 21 25.54% 26.48%

mpeg2 enc 59 63.94% 78.13% 45 63.86% 78.11% 43 60.99% 76.34%
mpeg2 dec 26 36.93% 34.37% 17 31.92% 30.85% 15 10.41% 10.11%

gsm_enc 30 59.563% 76.20% 23 57.72% 74.93% 22 57.29% 74.66%
gsm_dec 13 93.39% 92.82% 8 6.08% 6.74% 7 5.63% 6.24%
epic__enc 38 55.85% 58.37% 15 39.73% 47.10% 15 39.73% 47.10%
epic__dec 32 70.81% 80.75% 23 48.48% 52.75% 23 48.48% 52.75%

sum/average 263 64.00% 70.93% 179 47.33% 54.60% 169 37.01% 44.39%

Table 4.2. Coverage of innermost, do-loops and modulo scheduling loops (number of loops and
percentage of the overall dynamic cycles and operations)

In average, the applications spend the 64.00% of the overall execution time in in-
nermost loops. The application with the lowest coverage is the mpeg2_dec, in which
the innermost loops only represent the 36.93% of the overall execution time. This
is mainly due to the high amount of overhead to deal with different input configu-
rations. A different case is the gsm_dec. In spite of having a very reduced number
of loops, this benchmark exhibits the highest coverage (93.39%). However, the main
loop, which means the 80% of the overall execution time, is not a do-loop. As a
result, this benchmark exhibits the lowest coverage when considering do-loops or
modulo scheduling loops.

4.3.2 Loop Size

To analyze the size of the loops, Table 4.3 shows the average number of static op-
erations, invocations and iterations per invocation for the loops of each application.
We have also classified the loops into three categories depending on the number of
iterations per invocations: below 16, between 16 and 64, and above 64.
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Stc Ops Inv Iter/Inv  Tter/Inv<16 16<Iter/Inv<64 64<Iter/Inv

Benchmark Avg Avg Avg # %Cyc. # %Cyc. #  %Cyec.
ipeg_enc 18 6,875 71 24 9.06% 4 2271% 4 16.65%
jpeg_dec 45 1,529 81 26 57.49% 2 0.01% 5 25.53%
mpeg2 enc 28 135,361 59 48 59.05% 6 4.31% 5 0.58%
mpeg2 _dec 48 5,244 112 19 35.76% 4 1.13% 3 0.04%
gsm__enc 32 7,182 42 18 24.14% 6 10.75% 6 24.64%
gsm_dec 31 2,281 57 8 1.47% 2 3.55% 3 88.37%
epic_enc 12 79,118 3,717 33 50.95% 1 059% 4  4.31%
epic_dec 59 838 5,193 9 18.12% 16 0.75% 7 51.95%
sum/average 34 29,804 1,166 185 32.00% 41 5.48% 37 26.51%

Table 4.3. Loop-body size (average number of static operations, invocations, and iterations per
invocation, and distribution of loops according to the number of iterations per invocation)

It can be observed that we are mainly dealing with small loops (34 static operations
per loop in average), with small loop counters, and which are executed a lot of times.
A particular case is the EPIC applications. These benchmarks include loops which
are executed thousands of times but with only one iteration per invocation, and other
loops with thousands of iterations but only one invocation. This leads to confusing
results when looking at average numbers. On the other hand, it can be noted that
most loops execute less than 16 iterations per invocation, and only jpeg_enc and
gsm_enc have representative loops in the category between 16 and 64.

4.3.3 Memory References

In this section we evaluate the main characteristics of the memory accesses performed
in the loops. First, the distribution of the data size and stride values of all memory
operations in the loops are shown in Tables 4.4 and 4.5 respectively. Then, array
references are analyzed separately in Table 4.6.

Benchmark 1 byte 2 bytes 4 bytes 8 bytes

jpeg_enc 31.52%  38.52% 29.96%  0.00%
jpeg_dec 58.81% 5.65% 35.54% 0.00%
mpeg2_enc  93.35% 284%  0.51%  3.29%
mpeg2 _dec 54.17% 34.93% 10.90% 0.00%

gsm__enc 0.00%  89.15% 10.85%  0.00%
gsm_dec 0.00% 100.00% 0.00% 0.00%
epic_enc 3.98% 1.85% 92.20% 1.98%
epic_dec 3.14% 5.86% 81.59%  9.41%
average 30.62%  34.85% 32.70% 1.83%

Table 4.4. Data size of memory references

As can be observed, most of the memory accesses (about 75% in average) require
16 bits or less. Moreover, most of the applications have a characteristic data size:
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one byte for video applications, two bytes for audio, and four bytes (floating point)
for the EPIC applications. Note that, although these are the predominant storage
widths, higher data sizes are normally used during computation due to precision
requirements. In the JPEG image applications, input and output data are one byte,
but intermediate data is stored in two or even four bytes. On the other hand, about
75% of the memory operations have a stride of 1, 2, 3 or 8; the remaining 25% are
either invariant or non-strided references. Non-strided references correspond mainly
to the use of memory tables to perform computation, such as multiplications or
saturation.

Benchmark Invariant Stride 1 Stride 2 Stride 3 Stride 8 Non-strided

jpeg_enc 0.00% 43.32% 6.66% 9.98% 10.08% 29.95%
jpeg_dec 0.28% 38.58% 6.62% 9.95% 5.65% 38.92%
mpeg2 _enc 0.51% 97.81% 0.00% 0.00% 1.30% 0.38%
mpeg2 dec 10.78%  72.50% 0.00% 0.00% 5.85% 10.87%
gsm_enc 10.93%  88.25% 0.00% 0.20% 0.00% 0.61%
gsm_dec 12.49%  48.53% 0.00% 0.00% 0.00% 38.98%
epic_enc 6.07%  90.93% 0.00% 0.00% 0.00% 2.99%
epic__dec 10.31%  44.82%  19.15% 0.00% 0.00% 25.72%
average 6.42%  65.60% 4.05% 2.52% 2.86% 18.55%

Table 4.5. Stride of memory references

The previous data were obtained considering each memory operation in isolation.
However, different memory operations can in fact be referencing elements of the same
array, and form what it is call a reference group (see Section 5.2.3 in Chapter 5). In
color conversion, for example, the input stream contains three bytes for pixel (one
for each color component). The innermost loop processes one row of pixels, so that
the three components of one pixel are loaded each iteration. If we look at each
component load independently, we will see three memory references with a stride of
three and length the image width; but in fact we are accessing one single array with
a stride of one and length three times the image width.

Length Stride

Benchmark Avg Most frequent lengths 1 2 8

jpeg_enc 586 8 (17.45%) 64 (37.18%) 1,024 (26.42%) 89.58% 7.56% 2.86%
ipeg_dec 996 8 (12.12%) 510 (24.30%) 1 024 (36.55%)  90.19% 0.00% 9.81%
mpeg2 enc 17 2 (5.13%) 8 (5.65% ) 6 (84.84%) 98.76% 0.00% 1.24%
mpeg2 dec 19 8 (23.34%) 1 (31.94%) 2 (16.09%) 98.47% 0.00% 1.53%
gsm_enc 27 8 (49.11%) 40 (40.05%) 160 (3.95%)  99.38% 0.00% 0.00%
gsm _ dec 205 40 (16.09%) 120 (19.31%) 320 (51.49%) 100.00% 0.00% 0.00%
epic_enc 6554 2 (13.07%) 4 (34.26%) 5.041 (24.36%) 100.00% 0.00% 0.00%
epic_dec 24509 90 (19.57%) 5,041 (21.92%) 65,536 (32.87%) 83.39% 16.61% 0.00%
average 4114 8 (14.16%) 16 (10.99%) 1.024 (7.87%) 94.97% 3.02% 1.93%

Table 4.6. Length and stride of array references.
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Table 4.6 shows the length and stride of array references considering a reference
group as one array reference. For the length, the table shows the average and the
three most frequent values, which are different for each application. For example,
typical lengths for jpeg_enc are 8, 64, and the image width (1024 for the reference
input). As far as the stride is concerned, we observe that 95% of the arrays are
accessed with a stride of one.

4.3.4 Operations per Cycle

To conclude the loop level analysis, Table 4.7 shows the average operation per cycle
(OPC) rates achieved in the innermost loops for the 2, 4 and 8-issue width VLIW
architectures. The percentage in brackets indicates the increase over the OPC of the
previous issue width.

Benchmark 2-issue 4-issue 8-issue
jpeg_enc 1.64 212 (+29.00%) 222 (+4.7%)
jpeg_dec 1.64 1.87 (+14.37%) 1.93  (+ 2.70%)
mpeg2 _enc 1.72 262 (+52.40%) 3.57 (+36.41%)
mpeg?_dec 1.55 175 (+12.81%)  L77 (+ 0.82%)
gsm_enc 1.69 2.56 (+51.52%) 3.28 (+27.84%)
gsm_dec 1.36 1.47  (+ 7.64%) 1.46 (- 0.69%)
epic_enc 0.78 1.05 (+34.71%)  1.06 (+ 0.51%)
epic_dec 1.27 1.40 (+10.17%) 142 (+ 1.37%)
average 1.46 1.86 (+26.58%) 2.09 (4 9.21%)

Table 4.7. Operations per cycle rate in innermost loops for different issue widths

Results confirm that multimedia kernels exhibit more ILP than integer ones. Except
for the epic_enc application, all benchmarks achieve fair OPC rates in the innermost
loops. Nevertheless, for most of the benchmarks, scaling the architecture from 4 to
8-issue is not specially attractive. Only loops in mpeg2_enc and gsm_enc show a
significant improvement when increasing the issue width from 4 to 8.

4.4 Application Level Analysis
This section provides quantitative data about our set of multimedia applications. It

includes the analysis of the following topics: static and dynamic code size, operation
per cycle rate, operation breakdown, data locality and memory hierarchy.

4.4.1 Static Code Size

Table 4.8 shows the overall number of static operations, blocks (either basic-blocks
or hyper-blocks), and functions in each benchmark, together with the number and
percentage of them which are in fact executed.
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Operations Blocks Functions

Benchmark Overall Touched Overall Touched Overall Touched

jpeg_enc 46,726 16,886 (36.14%) 3,540 506 (14.29%) 311 106 (34.08%)
jpeg_dec 45,346 21,188 (46.73%) 3,065 533 (17.45%) 266 104 (39.10%)
mpeg2 enc 37,306 30,248 (81.08%) 1,607 662 (41.19%) 93 78 (83.87%)
mpeg2 dec 23,635 13,665 (57.82%) 1,436 348 (24.23%) 112 63 (56.25%)
gsm_enc 31,030 15,954 (51.41%) 1,078 322 (29.87%) 94 57 (60.64%)
gsm_ dec 30,795 8,799 (28.57%) 1,265 185 (14.62%) 94 44 (46.81%)
epic_enc 10,476 6,590 (62.91%) 899 254 (28.25%) 46 27 (58.70%)
epic_ dec 8,858 6,643 (74.99%) 408 188 (46.08%) 34 14 (41.18%)
average 29,272 14,997 (54.96%) 1,661 375 (27.00%) 131 62 (52.58%)

Table 4.8. Static operation, block and function counts

It can be observed that a significant amount of code is not touched during the
execution of the reference inputs. Half of the static operations and functions and
two thirds of the basic-blocks are not used during the execution of the program. This
low code utilization implies that either the applications contain superfluous code, or
their inputs do not exercise many of the control paths. The superfluous code includes
functions without any call in the rest of the code, functions that are only used in the
opposite codec side, and functions to support options which are not included in the
definition of the standard.

A thorough categorization of the unused code can be found in |[HH02|. The authors
also show that additional inputs often introduce very little variation in the control
flow pattern. They claim that these factors must be carefully taken into account, as
they can skew a wide variety of experiments, such as the evaluation of techniques
whose impact is measured in terms of code size.

4.4.2 Dynamic Code Size

Table 4.9 reports the dynamic operation, block, and function counts. The bench-
marks execute a few hundred million operations for the reference inputs. Results
confirm the assumption that codecs are designed to allow faster decodification, in
clear detrimental of the codification side. This is especially true for MPEG2 and
EPIC, where the decoders require to execute about twenty and nine times less oper-
ations than the encoders.

The block size (31 operations per block in average) is slightly larger than those re-
ported in the literature. Fritts reports than the average basic block size of multimedia
applications is similar to that of integer applications [Fri00]|. It must be taken into
account that hyperblock formation is performed by the Impact front-end. During hy-
perblock formation, if-conversion [PS91]| is used to form larger blocks of operations,
and thus providing a greater opportunity for code motion to increase ILP. We have
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Blocks Functions
Benchmark Operations Blocks Ops/Block Funcs Ops/Func
ipeg_enc 204,894,494 6,792,840 30 377,714 542
jpeg dec 171,402,016 2,488,973 69 64,516 2,657
mpeg2 enc  1,677,337,176 172,260,841 10 1,470,927 1,140
mpeg?2 dec 86,580,636 4,241,564 20 264,393 327
gsm_enc 935,933,412 4,636,447 51 145,329 1,623
gsm_dec 125,935,930 2,680,835 47 94,074 1,339
epic_enc 75,233,661 16,332,469 5 1,864 40,361
epic_dec 8,912,338 631,708 14 314 28,383
average 323,278,708 26,258,210 31 302,391 9,547

Table 4.9. Dynamic operation, block and function counts
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Figure 4.1. Operation breakdown

also noticed that the compiler introduces a high amount of spill code, especially in
jpeg_dec, mpeg2_dec, and gsm_dec.

4.4.3 Operation Breakdown

The graph in Figure 4.1 shows the distribution of dynamic operations classified
into memory operations (load and store), arithmetic operations (integer and floating
point), and control operations (compare, prepare-to-branch, and branch).

The percentage of floating point operations is relatively low, which confirm that
multimedia programs are mostly integer. Only epic_enc and epic_dec use floating
point arithmetic. The mpeg2_enc application has a minimal floating point operation
ratio of 1.17%. These operations are used to compute the forward DCT, which is
implemented using the double precision matrix product algorithm instead of a fast
scalar algorithm, and to compute some statistics.
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Figure 4.2. Data locality histograms

Load and store operations are relatively higher for video and image processing ap-
plications. It is worth noting again that encoders have more computational require-
ments than decoders. As a result, the percentage of memory operations increases
significantly in the decoders.

The branch per operation ratio is 6.01%, which means that only one out of every 17
operations is a branch. The same ratio is reported by Talla [Tal01], who also reports
that one out of every 6 instructions is a branch in the SPECint benchmark suite,
and one out of 25 instructions is a branch in the case of SPECfp. The low branch
ratio fits in with the large block size and the potentially high ILP of multimedia
applications.

4.4.4 Data Locality

Figure 4.2 shows the data locality histogram for each benchmark. Horizontal axis
represents the percentage of referenced memory locations, and the vertical axis is
the accumulated percentage of references. As both axis are sorted, the point (X,Y)
indicates that the Y% of the references are performed over the X% of the most
referenced memory locations.
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In general, the benchmarks exhibit very low data reuse: in average, the 90% of
all memory references are performed over the 36% of the most referenced addresses.
This behavior is closer to that of the SPECfp, which also exhibit low data reuse, than
to the SPECint, which are characterized by very high data locality. The exception
is the mpeg2_dec application, in which the 90% of the references are performed over
the 7% of the most referenced memory locations.

4.4.5 Memory Hierarchy
Cache size and memory latency

We have evaluated the memory behavior for different data cache sizes. Table 4.10
shows the obtained hit rates for load and store operations separately. In spite of the
low data reuse reported in previous section, very high hit rates demonstrate that
data caches are very effective for multimedia applications, even for low cache sizes.

Load Hit Rate Store Hit Rate
Benchmark 16K 64K 256K 1024K 16K 64K 256K  1024K
jpeg_enc 99.37% 99.99% 100.00% 100.00% 94.53% 99.71% 99.89% 99.89%
jpeg_dec 99.72%  99.99% 100.00% 100.00%  95.02% 99.86% 99.92% 99.92%

mpeg2 enc 99.88% 99.90% 99.92% 99.99% 96.65% 96.78% 96.66% 98.04%
mpeg2 dec 99.59% 99.75% 99.85% 99.99%  98.48% 98.97% 99.10% 99.20%
gsm_enc 100.00% 100.00% 100.00% 100.00%  99.99% 99.99% 99.99% 99.99%
gsm_dec 100.00% 100.00% 100.00% 100.00% 99.99% 99.99% 99.99% 99.99%

epic__enc 98.26% 98.59% 99.40% 100.00% 70.25% 69.30% 66.37% 66.02%
epic__dec 94.73% 95.94% 97.71% 100.00% 74.57% 75.57% 74.85% 78.62%
average 98.94% 99.27% 99.61% 100.00% 91.18% 92.52% 92.09% 92.71%

Table 4.10. Hit rate of load and store operations for different cache sizes

This can be explained by the fact that the spatial data locality is more emphasized
than the temporal data locality in streaming data access patterns. Spatial data
locality is still higher in audio applications (gsm_enc and gsm_dec), whose main
kernels process one-dimensional data structures, and besides, the same data stream
but with a small initial offset is processed in consecutive iterations. On the other
hand, image and video applications tends to have two-dimensional spatial locality,
which is more difficult to exploit by conventional data caches.

As it was stated by Lee et al. [LPMS97], it can also be observed that data caches are
more effective for loads than for stores. This makes sense as input streams usually
have more temporal locality than the output stream. EPIC exhibit lower store hit
rates than the other applications due to the way it is programmed. While other
benchmarks, like JPEG, do not need a full-image buffer, EPIC allocates both input
and output full-images.
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Figure 4.3. Slow-down of a real memory hierarchy vs perfect memory for different cache sizes
and memory latencies

Figure 4.3 shows the performance slow-down due to memory stalls for different cache
sizes and main memory latencies. For clearness, the vertical scale of the epic_dec
graph is more than three times greater than for the other benchmarks.

The JPEG and GSM applications exhibit very low cache size requirements, even for
long latencies to main memory. The MPEG2 video and EPIC applications require
higher cache sizes to compensate for long main memory latencies. In all cases, a
1MB cache is large enough to guarantee very low slow-downs due to memory stalls,
even for very long latencies to main memory.

Memory ports

Multi-porting a cache enlarges the overall area of the memory array considerably. It
also has a great impact in access time and power consumption. Another alternative to
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Figure 4.4. Performance speed-up for different memory ports configurations vs 1-port perfect

memory

support multiple accesses is to divide the cache in independent banks, each mapping a
different address space. This banking model is able to provide simultaneous memory
accesses as long as the references are to different banks. However, banking also
adds the decoding overhead of routing each address to the right bank and detecting

collisions.

The main issue of multi-banked memories are the effect of the bank conflicts. While
a bank conflict does not necessarily result in a processor slow-down in dynamic
scheduling architectures, in our model of VLIW architecture, a bank conflict means
one stall cycle of penalty. This effect could be reduced by using scheduling algorithms
more sensitive to data storage in memory (like trying not to schedule references to
consecutive elements in the same cycle).

Figure 4.4 shows the performance speed-up obtained when the number of ports is
increased. The solid line represents the perfect case in which there are not memory
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stalls (all memory accesses are executed with the latency they were scheduled). The
dashed line includes realistic memory hierarchy simulation in a true multi-ported
system (so many simultaneous memory accesses as the number of ports). Finally,
the long dashed line shows performance speed-up for pseudo multi-ported caches (so
many simultaneous memory accesses as the number of ports as long as the references
are to different cache banks). It was assumed the same cycle time can be achieved for
all designs. All speed-ups are referred to the one port perfect memory configuration.

Performance trade-offs of true multi-ported caches help to determine cache ports
requirements. Results do not show a significant improvement when increasing the
number of ports above two. On the other hand, the true multi-ported configuration
performs closer to the perfect memory than to the pseudo multi-ported one. This
confirms that bank conflicts are an important source of memory performance degra-
dation (more than fifty per cent of the overall memory stalls are due to bank con-
flicts). Increasing the number of ports also increases the potential for bank conflicts.
In gsm_enc, for example, the three-ports configuration outperforms the four-ports
one because of the negative effect of the increase in the number of bank conflicts.

4.4.6 Operations per Cycle

Finally, Table 4.11 shows the average operation per cycle rates. The OPC rates in
the innermost loops have been replicated from Table 4.7 for comparison purpose.

Loops Application
Benchmark 2-issue 4-issue 8-issue 2-issue 4-issue 8-issue
ipeg_enc 164 212 (+29.00%) 2.22 (+ 4.75%) 141 1.71 (+21.47%) 1.74 (+ 1.61%)
ipeg_dec 164 1.87 (+14.37%) 1.93 (+ 2.70%) 158 1.84 (+16.26%) 1.88 (+ 2.59%)
mpeg2 enc 172 2.62 (+52.40%) 3.57 (+36.41%)  1.63 2.35 (+44.17%) 2.92 (+24.38%)
mpeg2_dec 155 1.75 (+12.81%) 1.77 (+ 0.82%) 157 1.86 (+18.50%) 1.90 (+ 1.85%)
gsm_enc 169 256 (+51.52%) 3.28 (+27.84%)  1.68 2.32 (+37.79%) 2.56 (+10.38%)
gsm_dec 1.36  1.47 (+ 7.64%) 1.46 (- 0.69%) 1.37 147 (+ 7.83%) 1.46 (- 0.56%)
epic_enc 0.78  1.05 (+34.71%) 1.06 (+ 0.51%)  0.83 1.01 (+21.75%) 1.01 (+ 0.50%)
epic_dec 1.27 140 (+10.17%) 1.42 (+ 1.37%) 112 1.23 (+ 9.98%) 1.24 (+ 1.05%)
average 146  1.86 (+26.58%) 2.09 (+ 9.21%) 140 1.72 (+22.22%) 1.84 (+ 5.23%)
Table 4.11. Operations per cycle rate in innermost loops and applications for different issue
widths

The OPC achieved in the complete applications is slightly lower than in the loops,
and exhibit less potential to scale with the way of the architecture. The exceptions
are mpeg2_dec and gsm_dec applications, which are also the benchmarks with lowest
coverage of modulo scheduling loops. This shows the relevance of software pipelin-
ing techniques like modulo scheduling to exploit the parallelism of loops in VLIW
architectures.
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4.5 Summary

In this chapter we have evaluated the main characteristics of multimedia applications.
These applications are usually composed by a set of kernels that process streams of
data like different stages in a pipeline. Results show that most of the benchmarks
exhibit low data reuse. However, the streaming data access patterns promote spatial
locality, which leads to very high cache hit rates, even for small cache sizes.

Several reasons contribute to the conclusion that caches with a small number of wide
ports are preferable to caches with a large number of ports. First, both the per-
centage of memory operations (23% in average) and port requirements are low, and
results do not show a significant improvement when the number of ports is increased
above two for perfect memory simulation. On the other hand, multi-porting a cache
is more expensive than widen the ports, and alternative feasible multi-banking cache
designs entail the issue of bank conflicts. We have observed that bank conflicts are an
important source of performance degradation in VLIW architectures, and they are
potentially increased with the number of ports. Furthermore, as multimedia mem-
ory accesses are mostly unit-stride accesses to short arrays of small elements, wide
accesses to memory seems a good option to be included in multimedia architectures.
Packing several references to the same array into one wide access reduces both the
number of memory access and the potential for bank conflicts.

Results also show that these applications exhibit more parallelism than integer ones.
Software pipelining techniques, like modulo scheduling, arise as a key optimization
to exploit instruction level parallelism in wide issue architectures. Nevertheless, this
parallelism is not so high as it was to be expected from the definition of the algo-
rithms. On the one hand, applications often include a lot of overhead to deal with
different options and formats. On the other hand, some algorithms have been imple-
mented with the objective of reducing the number of scalar operations, mainly costly
operations such as multiplication, which contributes to hide the existing parallelism.
Furthermore, small loop counters also difficult the use of conventional vectorization
to exploit data level parallelism. MMX-like uSIMD vectorization arise as a good op-
tion to deal with the small data sizes, small loops, and unit-stride memory accesses.
The performance of this kind of multimedia extensions will be studied in Chapter 6.






Chapter 5

Memory Disambiguation in
Multimedia Applications

This chapter analyzes the problem of memory disambiguation in the context of multi-
media applications and proposes a run-time memory disambiguation technique based
in the specific behavior of multimedia memory access patterns. We perform a de-
tailed evaluation of the approach, which has been completely implemented into the
Trimaran compiler. We also compare it against an advanced interprocedural pointer
analysis framework and analyze the possibility of using both of them together to
improve performance.

5.1 Relevance of Memory Disambiguation

Ambiguous memory dependences often limit the ability of the compiler to detect the
existing parallelism, thus preventing it from generating vector code. If there is any
possibility that two memory operations ever reference the same memory location,
the compiler must place dependence arcs between them to ensure they are executed
in sequential order.

Multimedia applications share different traits with both numerical and integer ap-
plications. As in numerical applications, multimedia programs make extensive use of
multi-dimensional data structures with relatively simple patterns. As in integer ap-
plications, multimedia applications make extensive use of pointers (since C and C++
are the languages of choice of multimedia code developers), sometimes with several
levels of indirection to match the multimedia structures of standardized protocols.

At the same time, multimedia applications differ from these two wide fields in the
characteristics of the data processing. As we saw in Chapter 4, multimedia appli-
cations are streaming; that is, typical multimedia kernels process one or more input
streams of data to produce one or more output streams. Additionally, the input and
output streams are typically disjointed regions.
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h2v2_fancy_upsample (unsigned char **input_data,
unsigned char **output_data_ptr, ...)
{
register unsigned char *inptrQO, *inptrl, *outptr;
register int thiscolsum, lastcolsum, nextcolsum;

inptr0 = input_datalinrow];

if (v == 0) inptrl = input_datalinrow-1];
else inptrl = input_datal[inrow+1];
outptr = output_dataloutrow++];

for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr-) {
nextcolsum = (int) (*inptr0++) * 3 + (int) (*inptri++);
*outptr++ = (unsigned char) ((thiscolsum * 3 + lastcolsum + 8) » 4);
*outptr++ = (unsigned char) ((thiscolsum * 3 + nextcolsum + 7) » 4);
lastcolsum = thiscolsum; thiscolsum = nextcolsum;

(a) C source code

(b) Dependence graph

Figure 5.1. Source code and memory dependence graph of the innermost loop in the
h2v2 _fancy upsample function

Techniques to detect aliasing between access patterns of array elements are quite
effective for many numeric applications. However, although multimedia codes usually
follow very regular memory access patterns, current commercial compilers remain
unsuccessful in disambiguating them due mainly to complex pointer references. By
way of illustrating, figure 5.1.a shows a code fragment of the upsampling algorithm
in jpeg_dec. It performs linear interpolation between pixel centers, also known as a
triangle filter. The centers of the output pixels are 1/4 and 3/4 of the way between
input pixel centers.
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Cyc OpO Opl Op2 Op3 Op4 Op5 Op6 Op7
<0> 1:ADD;  4:ADD;  8:SHL;  10:ADD; 19:ADD; 20:STy 21:ADD;  22:MOV;
<1> 2:LDy 3:LD; 9:ADD;  24:ADD;

<2> 5:SHL;  11:ADDq

<3> 6:ADDy 12:SHR;

<4> 7 :ADDq 13:AND,

<5> 14:STq 15:ADD;  23:MOVy

<6> 16:ADD;

<7> 17 :SHR;

<8> 18:AND;  25:BRF

(a) Non-disambiguated modulo scheduling

Cyc OpO Opl Op2 Op3 Op4 Op5 Op6 Op7
<0> 1:ADD; 3:LDg 4:ADDq 7 :ADDo 10:ADD; 11:ADDp 18:AND3 19:ADD;
<1> 2:LDy 12:SHR2 15:ADDy  20:ST3 21:ADD; 23:MOV2 24:ADD;

<2> 5:SHL; 8:SHL; 13:AND2 16:ADDp 22:MOV;

<3> 6:ADD; 9:ADD; 14:STo 17:SHR2  25:BRF

(b) Disambiguated modulo scheduling

Figure 5.2. Non-disambiguated vs disambiguated code scheduling of the innermost loop in the
h2v2 fancy upsample function

The assembly code of the innermost loopbody has four memory operations, twenty
integer arithmetic and logical operations, and one branch. All the memory operations
have a stride of one; however, the initial addresses and the loop count are obtained
from complex indirect references. As a result, the independence of the input and
output streams cannot be probed at compile time, and the compiler must place
memory dependence arcs between the two loads and the two stores. Trimaran also
fails to disambiguate the two stores (see the memory dependence graph generated by
Trimaran in Figure 5.1.b). Due to these false dependences, a vector compiler would
not generate vector code for this loop.

Ambiguous memory dependences also limit the ability of the compiler to perform
ILP-oriented code optimizations, which are crucial to make effective use of VLIW
processors. In the example before, the potential loop-carried dependences from the
two stores to the two loads prevent the compiler from generating an optimal modulo
scheduling [Rau95]. Specifically, the initiation interval for a 8-issue width architec-
ture is nine (you can see the code scheduling generated by Trimaran in Figure 5.2.a).
However, if the compiler was able to disambiguate them, different iterations could be
overlapped in a more efficient way; and, as a result, the same code would be executed
more than twice faster (see code scheduling in Figure 5.2.b).

Based in the specific behavior of multimedia memory access patterns, we propose the
Dynamic Memory Interval Test (DMIT). The DMIT is a run-time memory disam-
biguation technique that makes sense in the context of multimedia applications, or
other kind of programs where input and output data streams are usually disjointed.
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Disambiguation can be easily determined by dynamically analyzing the region do-
main of every load and store before each invocation of a loop. As we will see,
significant gains are obtained at nearly no cost and without the inherent complexity
of pointer analysis techniques.

5.2 Memory Disambiguation

Both static and dynamic memory disambiguation approaches have been proposed
in the literature to determine if dependence actually exists for a pair of ambiguous
memory references.

Static dependence analysis attempts to solve the ambiguity at compile time. On the
other hand, dynamic memory disambiguation determines at run-time whether two
memory operations reference the same location. The compiler provides different exe-
cution paths, and at run-time it is determined which one must be followed depending
on the existence or not of the dependence.

Whether static, dynamic, or a combination of both is better depends on the particular
kind of application being targeted and on the desired trade-off between performance
and cost. Gallagher et al. investigate the application of both static and dynamic
memory disambiguation approaches and provides a quantitative analysis of the trade-
offs between the two approaches |GCM194].

5.2.1 Static Dependence Analysis

Much work has been done to deal with multidimensional arrays and complex array
subscripts [GKT91, MHLI1, Fea91, PHP98|. However, these techniques are ineffec-
tive when the access pattern is non-linear or when some essential information, such
as loop bounds, is not known at compile-time.

Pointer dereferencing is also one of the most important impediments to dependence
analysis. Pointer Alias Analysis attempts to determine at compile-time when two
pointer expressions refer to the same memory location. Due to the undecidability
of this static analysis |[Lan92, Ram94|, existing approaches offer a trade-off between
efficiency and precision. Although proposed interprocedural analysis techniques pro-
vide good pointer disambiguation, especially for pointer-intensive applications such
as those of SPECint, they often increase compilation time and memory requirements.

A pointer analysis algorithm can be classified as flow-sensitive if it uses control-
flow information during the analysis. On the other hand, it is context-sensitive if
it distinguishes different caller contexts for a common callee. Several approaches
are flow-sensitive and context-sensitive [LR92, CBC93, EGH94, WL95|; by contrast,
other algorithms are flow-insensitive [And94, Ste96, SH97|. Qualitative comparisons
among algorithms are difficult due to varying infrastructure, benchmarks, and per-
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formance metric. An empirical comparison of the effectiveness of different pointer
algorithms on C programs can be found in [HP00].

The pointer analysis used in this thesis employs a flow-insensitive but context-
sensitive interprocedural algorithm which can handle all C features. Pcode inter-
procedural analysis [Gal95| determines what dependences exist with regard to global
variables across function boundaries. This analysis also performs intraprocedural
pointer disambiguation and dependence analysis, gathers alias and side effect infor-
mation, and identifies targets of indirect function calls. This information is then
merged back into the Pcode and is used by subsequent stages of the compilation.

5.2.2 Run-time Dependence Tests

Dynamic data dependence tests can be used to check at run-time whether two refer-
ences access the same location. Dynamic memory disambiguation techniques usually
require significantly less compile-time investment than static approaches, especially
in languages such as C which require interprocedural analysis to provide high accu-
racy. Dynamic approaches are also more accurate than static ones, as they know the
exact memory address being accessed by each reference during program execution.

The obvious downside of run-time tests is the overhead they introduce into the pro-
gram. They usually require the insertion of extra instructions to check dependences.
Some approaches also require new instructions and/or additional hardware support.

Nicolau was the first to introduce run-time memory disambiguation [Nic89]. He pro-
posed a software data speculation technique that inserts explicit address comparisons
and conditional branch instructions which allow memory flow dependences to safely
be removed. Huang et al. proposed speculative disambiguation, a combined hard-
ware and software technique to allow aggressive code reordering using predicated
instructions [HSS94|.

A different point of view is to consider the problem of deciding if a loop is fully dis-
ambiguated or not, that is, determining whether or not there is a dependence in any
iteration [BCM94|. The Privatizing DoAll Test [RP94], for instance, identifies fully
parallel loops at run-time and dynamically privatizes scalars and arrays; significant
speed-ups were obtained on Fortran loops running on multiprocessor architectures.
Other sophisticated approaches exist that produce predicates that may be used either
at compile time or at run-time depending on whether there is enough information
available [MH99, PW98§|.

The run-time test proposed in this thesis identifies a type of ambiguous dependences
commonly found in multimedia applications. Explicit operations are inserted to
compute and check the address space of each memory operation before the execution
of the loop. It requires no instructions or hardware support, and thus can be applied
to any existing architecture.
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Figure 5.3. Typical multimedia memory access patterns

The concept of calculating non-intersecting data access ranges was probably first
explored in [BE94|, and later expanded by [PHP98|, to handle symbolic array sub-
scripts in scientific applications at compile-time. Our work differs from previous
works by observing that, in multimedia loops, the indexing functions are so simple
that data access ranges can be easily computed at run-time. The intersecting or
non-intersecting of these ranges cannot be determined at compile-time mainly due
to the use of pointers, but not because of the complexity of the indexing functions.

5.2.3 The Alias Analysis Problem in Multimedia Loops

As it has been said before, array references in multimedia applications usually follow
strided and very simple access patterns. Figure 5.3 summarizes the kind of loops
commonly found in these codes. The loop in (a) operates over one or several streams
to produce a disjointed one, thus no memory dependence exists. Nevertheless, when
these arrays are accessed through pointers, as is usual in multimedia codes, an ac-
curate interprocedural pointer analysis is required to ensure that no aliasing occurs.
Such techniques are not generally included in common commercial compilers, so they
must be conservative and place dependence arcs between the memory operations to
ensure correctness.
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Output dependences (dependences between two stores) and anti dependences (when
a load precedes a dependent store) usually have little impact on the generated
code, but flow dependences (when a store precedes a dependent load) tend to be
a severe restriction for the compiler. In the example, the potential loop-carried
dependences from the store in the iteration ¢ to the loads in the iteration ¢ + 1
would probably restrict modulo scheduling techniques significantly (remember the
h2v2_fancy_upsample code example in Section 5.1).

In loop (b), the input and output streams coincide. However, loop-carried depen-
dences do not exist in this case either, as loads from iteration ¢z + 1 never refer the
same memory location as stores from iteration i. The opposite case is shown in (c),
where there is a recurrence with distance one. In this case, loads from iteration
i + 1 must not precede the stores from iteration i. The last case (d) shows a loop
that operates on array elements and accumulates the result on a scalar variable S.
A register will probably be assigned to the scalar, and dependences between two
loads (input dependences) are not a problem, so there are not ambiguous memory
dependences in that case.

In numerical applications, the identification of the array elements accessed by a
particular reference is important for compiler optimizations. In contrast, we observe
that memory references on multimedia loops are always dependent or non-dependent
at all. In other words, we have found that in multimedia we have two main kinds of
stream behavior: one where all the input and output streams are totally independent,
and other one where the streams have recurrences between themselves. A cost-
effective approach to perform memory disambiguation would just need to determine,
for every loop, which case we are facing. Non-linear array indices or linked lists of
data are not common in multimedia loops. The main limitation to our approach
is the use of non-streaming (sparse) data structures to perform computations via
memory tables.

Reference groups

References with similar array index functions that differ only in the constant term
(like A[i], Afi+1] and A[i + 2] in the code example in Figure 5.4.a) are also frequent
in multimedia loops. These memory access patterns are known in the literature
as uniformly generated references [WL91| or reference groups |CMT94|. Moreover,
when the input and the output reference groups are the same (like in the example),
we call them coincident reference groups.

In a reference group, two references with different constant term are independent
inside each iteration. On the other hand, if the stride of the variable term is greater
or equal to the maximum difference between the constant terms, loop-carried de-
pendences do not exist either. Thus, all dashed arcs in the dependence graph in
Figure 5.4.b. can be safely eliminated.
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Figure 5.4. Example of coincident reference groups

5.3 The Dynamic Memory Interval Test

5.3.1 Description

The Dynamic Memory Interval Test (DMIT) is a software only mechanism based
on the multimedia memory access patterns described in Section 5.2.3. The compiler
generates both disambiguated and non-disambiguated versions of the loop, and in-
serts a simple test block before the loop that decides at run-time which one must be
executed (see Figure 5.5). This decision is made by computing and comparing the
lower and upper memory addresses that will be accessed by each stream. Complex
pointer references or unknown parameters, such as loop bounds, prevent the compiler
from making the decision at compile-time.

The test block is executed once on each invocation of the loop. In most cases, reduc-
ing the length of the disambiguated loop schedule will compensate for the already
low overhead involved in the calculation of the intervals. Otherwise, the penalty in-
troduced by this block (if it turns out that the original loop is executed) is minimal,
and has no relevant impact on performance.

5.3.2 Terminology

We define the Dynamic Memory Interval (DMI) of a memory reference as the memory
space delimited by the lower and upper locations accessed by that operation during
one invocation of the loop. Figure 5.6.a shows the DMI of a memory reference with
a stride of S inside a loop of N iterations. The shadow boxes represent the memory
addresses that are actually accessed. Following this terminology, if we are able to
prove before entering a loop that the DMIs of two references do not overlap, we can
ensure that they are independent in that invocation. Note that scalar references are
also included in this definition, as they are in fact references with a stride of zero.
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Figure 5.5. Dynamic Memory Interval Test

In the case of a reference group, if we were to apply the test between each pair of
references inside the group, they would fail, as their individual DMIs overlap. When
the compiler detects a reference group, it builds only one DMI for all the group. The
stride of the reference group is the same as that of each individual reference. The
group data size is the size of the memory space traveled by the different references
of the group on each iteration (see Figure 5.6.b).

The following notation is used in the figures and algorithm description:

e T'B: test block

e LB: loopbody

e Ref: memory reference

o AR;: address register of Ref;

e S;: stride of Ref; (in bytes)

e DW;: data size of Ref; (in bytes)

e N: number of loop iterations in current invocation

e [;: the lowest location referred by Ref; in current invocation

e U;: the next location to the highest one referred in current invocation
o [W;: size of the memory region between L; and U;

e F;;: dependence arc from Ref; to Ref;
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(b) Memory reference group
L: lower bound DW: datawidth N: number of iterations
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Figure 5.6. Dynamic Memory Interval representation

5.3.3 Implementation
Main algorithm

This section describes the main features of the implementation. The main algorithm
is shown in Figure 5.7. Solving ambiguous memory dependences becomes especially
profitable to software pipelining techniques such as modulo scheduling, where just
one ambiguous loop-carried memory dependence is enough to prevent the compiler
from overlapping different iterations of the loop. In this study, we consider only
loops that are targeted with modulo scheduling by the baseline compiler.

The first step consists on building the list of testable memory dependences. Memory
dependences in which one of the two references is neither strided nor loop invariant
are discarded, as their DMIs cannot be computed before each execution of the loop.
Dependences between references which can be statically determined to refer the same
location are also excluded, as they are definitely dependent.

The length of the test block should be controlled not only because of performance,
but also because it increases the register pressure. For our study, we have used a
simple heuristic that limits the maximum number of dependences to be tested. Loop
duplication is also avoided if it does not reduce the minimum initiation interval for
modulo scheduling.
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foreach (LB;) do
if (is_modulo scheduling(LB;)—false) then

continue
endif

foreach (E;; in LB;) do
if (is_strided(Ref;)—false and is _invariant(Ref;)—false) then
continue
endif
if (is_ strided(Ref; )=false and is_invariant(Ref;)=false) then
continue
endif
if (is_static_ dep(E;; )=true) then
continue
endif
if (is_static_indep(E;; )=true) then
delete_memdep(E;;)
continue
endif
test_dep list += E;;
enddo
if (1 < test dep list size < MAX SizZE and
check  MII reduction(LBy, test dep list)—true) then

LB, = create_loop_copy(LB;)
TB; = create_test_block(LB;, LB, test_dep_list)
foreach (E;; in test dep list) do
del _memdep(E;;, LB,.)
enddo

endif
enddo

Figure 5.7. DMIT. Main algorithm

If any pair of memory references still remains in the list, the compiler duplicates the
loop and inserts the test block. This block contains the operations needed to test
each of the selected dependences. Finally, dependences in the list are removed in the
disambiguated loop version.

The test block

Suppose an ambiguous memory dependence exists between two references whose
DMIs are [L;,U;) and [Lj,U;j). Then, to ensure they are disjointed intervals, we
must test that:

LjZUiOI‘LiZUj
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where L; and U can be computed in this way:

if (S >=0) then

L, = ARy,
Up= AR + (N — 1) % S + DW},
else

Lk:ARk—I-(N—l)*Sk
U, = AR, + DWW,
endif

Note that it handles both positive and negative strides. In case of a reference group,
the group data width is used instead of the data width. The group data width can
be computed as the difference between the highest and lowest constant terms of
the array index functions plus the data width. The stride and the data width are
usually known at compile time, while the address register and sometimes the number
of iterations are not.

The main steps to create the test block are summarized in Figure 5.8. The insert -
previous ops function takes into account the case in which the value of the reg-
ister AR before entering the loop is not the value it will have when the memory
operation is executed in the first iteration. This is the case when the address reg-
ister is defined inside the loopbody before being used by the memory operation.
In that case, the compiler must also insert an equivalent copy of the define oper-
ation before the bounds computation in order to get the right value of AR. In
this copy, the register is renamed to avoid modifying the real value. Note that
wmsert  previous_ ops is a recursive function, as it must now ensure data depen-
dences are maintained for each operand of the define operation. The function in-
sert interval computation ops creates the low level products and additions to com-
pute L and U, and insert compare_intervals ops inserts the operations to compare
these limits. Finally, insert branch op inserts the conditional branch.

At first sight, for each pair of intervals to be compared, we would need two products,
six adds and two compare operations. Such a quantity of operations could become
prohibitive as the number of dependences to be tested increases. However, they are
actually reduced if we take into account some trivial considerations. For instance,
intervals with the same stride share a single product. Furthermore, if a memory
reference must be compared with more than one other, the interval bounds are
computed just once, so that only the compare operations are added.

5.3.4 Code Example

As a case of study, we will describe the generation of the test block for the innermost
loop of the h2v2_fancy_upsample function in Figure 5.1. This case also proves the
relevance of detecting reference groups. Without grouping, the two stores would
produce two single DMIs with a stride of two and data width one byte, and each one
should be compared with the DMIs of all other references. However, if the compiler
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foreach (E;; in test dep list) do
if (is_dominator(define _op(AR;, LB;), Ref;)—true) then
insert_previous_ ops(T B;, LBy, Ref;)
endif
if (is_ dominator(define_op(AR;, LB;), Ref;)=true) then
insert_ previous_ ops(T' By, LBy, Ref;)
endif
insert_interval_ computation_ ops(T By, Ref;)
insert_interval_ computation_ ops(T By, Ref;)
insert_ compare_ intervals _ops(T'B;, Ref;, Ref;)
enddo
insert_ conditional_ branch_op(TB,, LB;, LB.)

Figure 5.8. DMIT. Test block generation algorithm

detects the group, it will consider just one DMI with a stride of two and group
data size two bytes (see Figure 5.9.a), saving an important number of arithmetic
and compare operations. The impact is even greater for loops with large reference
groups, such as the DCT computation, where the size of the groups is eight. More
important is the fact that, in the first case, the DMI of the two stores would be

compared with each other, and the test would fail.

The code of the test block created and inserted by the compiler is given in Fig-
ure 5.9.b. Let us assume that registers r3, r4, and r5 are the address registers
pertaining to inptr0, inptrl, and outptr respectively, and the control register LC
(loop counter) contains the number of iterations. Then, operations from 3 to 11 are
inserted to compute the interval bounds (73, r4, and r5 are the lower bounds and
r13, r14, and r15 the upper ones).

Next, the compiler introduces the operations from 12 to 15 to check whether the
DMIs overlap. To support predicated execution, the HPL-PD architecture [KSROO0]
provides 1-bit predicate register files and a rich set of compare-to-predicate operations
which set predicate registers. We make use of these capabilities to generate the code
of the test block. In the example, predicate registers are denoted as pn. The OR-
compare operations (e.x., p2 | = (r3 < r15) if p3) write a 1 into the destination
register (p2) only if both the predicate input (p3) and the result of the comparison
are true. Otherwise, they leave the destination unchanged.

The conditional branch is performed in two steps. First, the prepare-to-branch
(PBRR) operation loads the target address into a branch-target register (btrn). Sec-
ond, the branch-conditional (BRCT) operation branches to the address contained
in the btrn operand if the branch condition (available in the specified predicate) is
true. In the example, operation 2 sets the branch-target register btr2 to hold the
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1: p2 =0

2: btr2 = BB_50

3: rd4d = r2 + ri7

4: LC=LC -1

5: r7 =LC « 1

6: rl10 = r3 + LC

7: rll = r4 + LC

8: rl12 = rb + 17

9: r13 =r10 + 1

10: r14 = r11 + 1

11: r15 = r12 + 2

12: p3 = (r3<r1b)

13: p4 = (r4<rib)

14: p2 |= (r5<r13) if p3
15: p2 |= (r5<ri14) if pd
16: BRCT btr2 if p2

(b) Test block code

Figure 5.9. Test block code generated for the h2v2 fancy upsample innermost loop

address of the non-disambiguated loop (BB _50), and operation 16 branches to it if
the result of the comparisons is true.

5.4 Evaluation

The before described algorithm has been completely built into the Trimaran com-
piler. The original release of the compiler only performs intraprocedural analysis on
low level code, which is quite representative of current commercial compilers. We
have implemented a new compilation module into the Elcor back-end to do loop dis-
ambiguation. Loop disambiguation is performed at the intermediate code level just
before any scheduling or register allocation (see Figure 5.10).

For the pointer analysis comparison, we have replaced the original Impact front-end
by an internal release able to perform Interprocedural Pointer Analysis (IPA) [Gal95].
Therefore, both techniques are evaluated using the same compilation and simulation
framework.
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Figure 5.10. Incorporation of the Loop Memory Disambiguation module into the Elcor back-end
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5.4.1 Coverage

Current implementation of the DMIT only applies to innermost modulo scheduling
loops. This means that it cannot disambiguate multi-dimensional array accesses
(except when the innermost loop has been fully unrolled). The algorithm could be
extended to work on nested loops. However, this would increase the implementation
complexity, which is one of the main advantages of our approach.

There are also some loops that have no potential to be disambiguated, as they contain
no store operations. This is the case, for example, of the main loop in the motion
estimation algorithm of the mpeg2_enc, where the sum of absolute differences is
computed for two arrays of 16x16 elements.

Table 5.1 shows the number and fraction of cycles and dynamic operations of in-
nermost, modulo scheduling, and modulo scheduling loops with store operations for
each application when they are executed in the 2-issue width architecture. Only
loops that account for more than 0.5% of the overall program cycles are included.
Loops in the last column are the input candidates to DMIT.

Innermost +Mod.Sched. +Store Ops.
Benchmark  #L  %Cyc  %Ops #L  %Cyc  %Ops #L  %Cyc  %Ops
jpeg_enc 6 47.96% 61.40% 6 47.96% 61.40% 6 47.96% 61.40%
jpeg_dec 4 82.85% 84.87T% 2 25.52% 26.46% 2 25.52% 26.46%
mpeg2 enc 15 61.85% 76.47% 13 58.97% 74.711% 5  4.75% 1.91%
mpeg?2 dec 11 35.49% 33.23% 7 10.31%  10.04% 6 9.18% 7.69%
gsm __enc 11 56.62% 73.68% 10 55.68% 73.04% 7 42.24% 33.60%
gsm_dec 5 91.92% 91.15% 3 5.11% 5.75% 3 5.11% 5.75%
epic__enc 12 53.25% 55.76% 7 39.20% 45.90% 1 2.18% 1.52%
epic_dec 12 69.22% 78.18% 7 47.73% 51.67% 5 45.64% 44.50%
sum/average 76 62.40% 69.34% 55 36.31% 43.62% 35 22.82% 22.85%

Table 5.1. DMIT. Coverage

Four of the benchmarks show low potential for improvement based on coverage issues.
The rest of the benchmarks present a sufficient number of loops to optimize to give
good performance improvements as a result of including memory disambiguation. It
is important to note that our technique adds near-zero overhead over those codes
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that could not benefit from memory disambiguation, thus overcoming the fact that
there exist benchmarks without potential for improvement.

5.4.2 Loop Level Analysis

Table 5.2 shows the results of applying DMIT to the candidate loops for the 8-
issue width architecture. It includes the coverage of the loop, the operations per
cycle rate of the non-disambiguated and the disambiguated loopbodies, the cycle
and operation count of the test block, the percentage of times the loop passes the
test at run-time, and finally the overall speed-up achieved in the loop (including the
test block overhead).

LBbase LBdis TB TB Loop

Benchmark Loop name %Cyc OPC OPC Cyc Ops %Dis SP
jpeg_enc _forward_D.9 22.77% 1.53  6.75 9 18 100%  4.28
Trgb_yee_cb  1407% 265 316 11 26 100% 1.19
“forward_D.6 338% 149 320 9 12 100% 1.46

_h2v2 down.4 2.58% 2.37 6.30 8 17 100%  2.64
“jpeg_fdct.3 2.73% 430 455 @ —  — — 1.00
__jpeg_fdct.5 2.44% 4.91 5.90 6 100% 1.16

jpeg_dec _ycc_rgb_c¢.b 17.12% 1.70  1.98 1 23 100% 1.7
_h2v2 fanc.8 8.40% 2.46 5.83 16 100%  2.36

mpeg2 enc  iquant no.5 1.26% 1.08  1.08 19 0% 0.99
__quant_non.3 1.12% 1.21 1.21 22 0% 0.99
__quant_int.6 1.01% 1.10 1.10 22 0% 0.99

_iquant in.5 0.92% 1.09 1.09 19 0% 0.99

“add_pred .4 0.44% 170 3.67 21 100%  1.63

15 100%  1.69
17 100%  1.54
15 100%  1.50
12 100%  0.98
17 100%  1.76
27 100%  1.43

mpeg2 dec  Add Block.31 3.51% 1.59 3.64
_form comp.58 2.18% 148 271
_Add_Block.36  1.57% 132 247
_form comp.18 0.85% 1.96 2.63
_form comp.38 0.52% 1.77  3.87
_form_comp.73 0.56% 205 334

Q0 OO0 00 00 00 © =] © 00 00 00 00 00 00 00 W O O © W N Ut

gsm_enc _ Short_ter.5 20.01% 2.79  3.63 14 100% 1.16
_ Autocorre.42 11.33% 1.11 6.87 11 100%  6.14
_ Weighting.3 4.62% 1.91 3.97 2 97 100% 1.97
_Long term.8 2.95% 1.09 6.04 25 100%  5.16
“Gsm_Coder.5  1.48% 174 174 17 0% 0.98
_ Reflectio.52 1.19% 1.11 4.62 23 100%  3.40
_ Calculati.25 0.66% 2.45 7.36 12 100% 3.15
gsm dec ~ Gsm Long .16  3.03% 232 684 17 100%  2.95

_Gsm_Long .24 156% 228  6.58 - - 1.00

_ Gsm_ Decod.5 0.53% 1.19  5.86 8 12 100%  4.57
epic_enc __quantize .11 2.18% 0.71  4.75 9 14 100% 6.70
epic_ dec _unquantiz.3 18.00% 0.86  4.63 9 15 100%  5.35
_main.18 16.46% 094  5.67 9 12 100% 6.00
~collapse .9 8.74% 1.84 1.84 - - - 1.00
_write_pgm.3 1.83% 3.50 7.00 8 14 100%  2.00
_collapse 191 0.60% 3.00 6.00 11 15 100% 2.00

Table 5.2. DMIT. Loop level analysis for the 8-issue width architecture



5.4. EVALUATION 73

The test results support the assumption that multimedia loops are characterized
by high amounts of parallelism. First, a high percentage of the loop candidates
disambiguate (only 5 loops out of 32 fail the test). Furthermore, the result of the
test is always the same in all invocations of the loops. On the other hand, 3 loops
out of the 32 candidates do not require DMIT. In these cases, static disambiguation
(coincident memory references and/or store reference groups detection) is enough
to determine the dependence or independence of the memory references, without
the requirement of a complex array dependence analysis. As the existing parallelism
becomes visible to the compiler, the average operation per cycle rate in the loopbodies
increases in a 138%.

As can be seen, common sizes of the test blocks range from 11 to 27 static operations,
which are usually scheduled in 8 or 9 cycles. This code is executed only once on each
invocation of the loop, and it is minimal compared with the reduction in the schedule
length of the loopbody. In the _Weighting.3 loop in gsm_enc, the compiler fails to
detect a reference group of nine loads and the independence of the store operation
is tested for each load operation, resulting in a very large test block of 97 static
operations. But even in that case, the overall execution time of the loop is reduced
in nearly 50%. On average, as a result of applying the DMIT we obtain a speed-up
of 2.60X in the loops.

5.4.3 Applications Analysis

Figure 5.11 shows the performance speed-up obtained in complete applications for
different issue widths, both with and without DMIT. All speed-ups are related to
the 2-issue width architecture without DMIT.

Results show that memory disambiguation is a key technique to allow an effective
exploitation of the available ILP when the architecture is scaled. In the original
versions of code, increasing the issue width from 2 to 8 introduces an average perfor-
mance speed-up of 1.29X. In sharp contrast, the disambiguated versions of code show
higher performance improvements when scaling the reference machine, especially for
those benchmarks with high coverage, and scaling from 2 to 8 produces an average
speed-up of 1.40X. For the 8-issue width architecture, the DMIT exceeds the baseline
performance in a factor of 1.13X.

On the other hand, we have observed a degradation of the memory behavior in the
disambiguated versions. As an effect of increasing the parallelism, memory pressure
also increases, and the number of bank conflicts grows up significantly. Moreover, as
processor cycles go down, memory cycles become a greater percentage of the total
execution time. For example, in the epic_dec benchmark, the 9.32% of the execution
time is due to memory stalls in the 8-issue width baseline, and this percentage
increases to 14.67% in the 8-issue width disambiguated version. These memory offset
cycles make the speed-up decrease from an ideal 1.68X (without processor memory
stalls) to the 1.55X shown in the graph.
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Figure 5.11. DMIT. Performance speed-up of 2-, 4- and 8-issue width architectures over the
2-issue width baseline

5.4.4 Test Block Overhead

The DMIT also involves an overhead in code size and execution time. Neverthe-
less, this overhead is negligible when compared with the rest of the code. For each
application, Table 5.3 reports the average size in both cycles and operations, and
what percentage of the loops and applications they mean. Results show that only
0.59% of the overall execution time is spent in test blocks. Even for the mpeg2_enc,
a benchmark without coverage and in which four of the five candidate loops fail the
test, there is not a relevant impact in performance.

As far as static code size is concerned, experimental results show that the duplicated
loopbodies and the test blocks have an average size of 34 and 16 static operations
respectively. The increase of the overall static code size ranges from 0.24% to 1.97%
(0.83% in average).
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Cycles Operations
Benchmark avg  %loop %appl avg  %loop %appl
jpeg_enc 845 4.11% 1.20% 1211 1.37% 0.75%
jpeg_dec 10.00 0.13% 0.03% 19.00 0.09% 0.02%
mpeg2 enc 8.28 1.88% 0.09% 20.86 3.74% 0.07%
mpeg2 dec 8.00 20.52% 1.28% 15.33 13.92% 1.24%
gsm_enc 932 7.12% 2.04% 16.39 3.34% 1.16%
gsm__dec 8.00 7.79% 0.07% 14.50 2.48% 0.08%
epic__enc 9.00 0.05% 0.00% 14.00 0.02% 0.00%
epic_ dec 9.28 0.03% 0.00% 14.78 0.01% 0.00%

sum/average 879 520% 0.59%  15.87 3.12% 0.42%

Table 5.3. DMIT. Test block overhead

5.4.5 Comparison with Interprocedural Pointer Analysis

As complex pointer references is the main issue targeted by DMIT, it is of interest to
compare it against advanced interprocedural pointer analysis techniques. Moreover,
as they are not exclusive techniques, we also report the results obtained when using
a combination of both; that is, static Pcode interprocedural analysis is first applied
at the front-end, and then DMIT is used before the scheduling to disambiguate those
loops that have not been previously disambiguated.

Loop level analysis

Table 5.4 shows the operations per cycle rate and the speed-up achieved at loop level
by each compilation model. For the models that include DMIT, we also report the
number of loops that require the dynamic test to be disambiguated.

We observe that DMIT achieves in general better results than IPA (1.20X speed-up
over IPA in average), even though it requires lower implementation complexity. After
interprocedural pointer analysis, the test block is avoided for 16 loops. However, loop
duplication is still performed to 16 of the remaining loops, which means that dynamic
information is still needed to determine the existence or not of the dependence in
those loops. On the other hand, five loops achieve significant gains over pointer
analysis without doing the test; these loops are examples of coincident references
(case b in Figure 5.3) and/or store reference groups.

Furthermore, most of the benchmarks exhibit a beneficial effect when both techniques
are used together. In mpeg2_dec, for example, the DMIT succeeds in disambiguating
four loops (_form_comp.x) which pointer analysis does not, while pointer analysis is
able to disambiguate another one (_Add_Block.42). This loop uses a table to perform
saturation, and DMIT is unable to deal with this kind of non-strided references.
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Base DMIT IPA IPA+DMIT
Benchmark OPC T/L OPC SP OPC SP T/L OPC SP
jpeg_enc 2.23 5/6 4.44 191 5.14 2.30 1/6 5.60 2.39
jpeg_dec 1.95 2/2 2.74 1.40 3.48 1.79 1/2 5.15 2.64

mpeg2 enc 1.18 5/5 1.24 1.03 1.19 1.01 5/5 1.25 1.04
mpeg?2 dec 1.59 6/6 3.06 1.51 1.91 1.19 4/6  3.16 1.55

gsm__enc 2.04 7/7 390 1.75 3.20 1.55 2/7 391 1.75
gsm_dec 1.65 2/3  6.34 3.62 2.26 1.37 1/3  6.34 3.62
epic__enc 0.71 1/1  4.75 6.70 4.75 6.70 0/1 4.75 6.70
epic_dec 1.21 4/5 3.45 2.84 1.79 147 2/5 345 2.84

sum/average 1.57 32/35 3.74 2.60 296 217 16/35 4.20 2.82

Table 5.4. DMIT vs IPA. Loop level analysis for the 8-issue width architecture

On the other hand, five loops fail the test at run-time with and without pointer anal-
ysis. Their dependences were probably proved to be certain at the interprocedural
pointer analysis phase, but this information is lost before DMIT, so that it can not
differentiate between likely and certain dependences. Maintaining this information
would be useful to avoid unnecessary tests.

Complete applications analysis

One advantage of IPA is that it is performed at the beginning of the compilation
process, so that it can provide useful information to other phases of code optimization
such as loop invariant code removal. On the contrary, DMIT is only applied to a
fraction of the code and it only aids the scheduling process.

Figure 5.12 shows the speed-up obtained for the 2, 4 and 8-issue width architectures
over the 2-issue width baseline. Although DMIT outperforms IPA in an average
16% in the targeted loops, these loops are only a 23% of the overall execution time.
At the scope of the complete applications, the average gains obtained with TPA
(1.04X, 1.34X and 1.46X) are very similar to those obtained with DMIT (1.03X,
1.33X, 1.45X). Moreover, the average speed-up increase when both techniques are
used together (1.05X, 1.38X and 1.53X).

To facilitate the comparison, Figure 5.13 shows the speed-up achieved by the three
options over the original compiler for the 8-issue width architecture. The benchmarks
do not show a regular behavior. Although they perform similar in average, DMIT
outperforms interprocedural pointer analysis for three of the eight benchmarks, but
it does worse in the remaining five. More interesting are the additional gains ob-
tained with the combination of both, specially for the jpeg_dec and the mpeg2_dec
applications.
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Figure 5.12. DMIT vs IPA. Performance speed-up of 2-, 4- and 8-issue width architectures over
the 2-issue width baseline

5.4.6 Effect of DSP Oriented Scalar Optimizations

Due to the intrinsic significance of most multimedia algorithms, there has been a
great effort focusing on reducing the overall number of required operations. Un-
fortunately, this effort has been oriented towards low-end DSP scalar architectures,
hiding in most cases the data parallel nature of the original algorithm.

For example, the color conversion function (which stands for a 18% of jpeg_enc ex-
ecution time) uses memory tables to perform multiplications. These table references
cannot be disambiguated using DMIT, as they do not have strided patterns. A simi-
lar case occurs with saturation (clipping a result to a maximum /minimum value if it
exceeds a given range), which is also implemented using memory tables in jpeg_dec
and mpeg2_dec.
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Figure 5.13. DMIT vs IPA. Performance speed-up over the 8-issue width baseline

Another typical scalar optimization is a break condition inside a loop. In the IDCT,
for example, computation is avoided for those rows and columns whose elements are
all zero. Nevertheless, on machines with fast multiplication, it is possible that the
test takes more time than it is worth. Moreover, our compiler does not target the
optimized code as modulo scheduling; thus producing worse code scheduling than
the same code without the break condition.

We are interested in evaluating the performance of our technique when we revert
to the original ways of performing the computation. Thus, we have analyzed the
following explicit parallel versions:

e jpeg_enc_dlp: uses explicit products to perform color conversion instead of
the tables.

e jpeg_dec_dlp: inverse color conversion and saturation are implemented with-
out tables, and the zero condition of the inverse DCT has been removed.

e mpeg2_dec_dlp: saturation is implemented without tables and the zero condi-
tion of the inverse DCT has been removed

Figure 5.14 compares performance of DMIT, IPA, and the combination of both over
the base compiler for the 8-issue width architecture. As can be observed, the per-
formance results leveraged by our technique have improved significantly. Especially
noticeable are the significant improvement of DMIT over IPA in jpeg_dec_dlp and
the results leveraged by the combination of both techniques in mpeg2_dec_dlp.

5.5 Summary

Memory disambiguation of multimedia applications is compromised by the fact that
they are often written in languages that support pointer referencing, such as C or
C++. In this chapter, we have evaluated a simple but efficient memory disam-
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Figure 5.14. DMIT vs IPA. Performance speed-up over the 8-issue width baseline for explicit
parallel versions of code

biguation technique specifically targeted at multimedia loops, or any other kind of
applications with similar memory access patterns.

Taking into account the disjointed behavior of common multimedia memory streams,
our algorithm is able to evaluate at run-time whether or not the full loop is disam-
biguated and execute the corresponding loop version. By calculating at run-time
the dynamic memory intervals of every memory reference in a very efficient way, we
avoid having to perform comparisons inside every loop iteration.

In contrast with other dynamic approaches, the Dynamic Memory Interval Test
does not require any additional hardware or instructions. It has negligible effects
over compilation time and code size, and near-zero cost for all those loops without
potential for disambiguation. Nevertheless, one current limitation of this analysis is
the inability to deal with non-streaming data structures.

Experimental results also confirm that memory disambiguation is a key technique
for exploiting the inherent parallelism of multimedia applications. The Dynamic
Memory Interval Test provides significant performance gains in most of our bench-
marks. Furthermore, it allows performance scalability of wider-issue machines in
sharp contrast with our baseline.

Although the Dynamic Memory Interval Test outperforms Pcode interprocedural
analysis at the loop level, they perform similarly when we consider complete appli-
cations. This can be explained by the fact that pointer analysis has the advantage of
being applied to the complete program code (not only to modulo scheduling loops),
and at an earlier stage of the compilation, so that the alias analysis information can
be used by further stages of the process. On the other hand, Pcode pointer anal-
ysis lacks array dependence analysis, which could be overcome with simple static
optimizations (such as the detection of reference groups).
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Furthermore, we have shown that a combination of both techniques provides im-
proved results. There is a significant number of loops for which some information
is missing at compile time, and they still benefit from Dynamic Memory Interval
Test after interprocedural pointer analysis. On the other hand, the test overhead is
avoided for those loops that can be statically disambiguated.



Chapter 6

A Vector-uSIMD-VLIW
Architecture

In this chapter, we propose and evaluate adding vector capabilities to a uSIMD-
VLIW core to speed-up the execution of the regions with data level parallelism,
while, at the same time, reducing the fetch bandwidth requirements. We also dis-
cuss the main implications in the compilation process, and more specifically in the
scheduling process. This enhancement has a minimal impact on the VLIW core and
provides high performance with considerably less hardware complexity and power
consumption than wider issue pSIMD architectures.

6.1 Scalar and Vector Regions

As it has already been stated, media kernels exhibit high amounts of DLP. Never-
theless, there is also a significant portion of code that is difficult to vectorize. That
is some protocol related processing overhead such as first order recurrences, table
look-ups and non-streaming memory patterns with large amounts of indirections.
Therefore, a real media program is composed of heterogeneous regions of code with
highly variable levels of parallelism: some of them with high amounts of DLP and
the other ones with only modest amounts of ILP. We will refer to those regions that
can be vectorized with the term of Vector Regions and to the remaining non-DLP
regions of code with the term of Scalar Regions.

In the media domain, uSIMD-VLIW processors have been widely proposed [Gwe99,
Sem99, Dev99, FBFT00|, as they are able to exploit DLP by means of the uSIMD
operations and ILP by the use of wide-issue static scheduling. Our claim is that, in
media applications, the remaining non-DLP part of code is significant in terms of
execution time and it exhibits only modest amounts of ILP, thus taking little benefit
from increasing the processor resources. Even though VLIW processors are simpler
than superscalar designs, very high issue rates also require decoding more operations
in parallel and complicate the register files, which clearly increases access time and
power consumption.
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In order to evaluate the scalability of scalar and vector regions separately, we have
marked the start and end point of the most computational intensive vector regions
in the source codes. These regions generally correspond to one or two levels of nested
loops plus some previous initializations. Table 6.1 lists the selected benchmarks, the
parts of each program that have been considered as vector regions, and the percentage
of the execution time they represent in a 2-issue width pSIMD-VLIW architecture.

Benchmark  %Vect Vector Regions

jpeg_enc 29.56 % R1: RGB to YCC color conversion
R2: Forward DCT
R3: Quantification

jpeg_dec 18.46 % R1: YCC to YCC color conversion
R2: H2v2 up-sample

mpeg2 enc 52.29% R1: Motion estimation
R2: Forward DCT
R3: Inverse DCT
mpeg2 dec 23.11% R1: Form component prediction
R2: Inverse DCT
R3: Add block

gsm__enc 18.66 % R1: LTP parameters
R2: Autocorrelation

gsm _dec 0.91% R1: Long term filtering

Table 6.1. Vector regions

Figure 6.1 shows the speed-up of 2, 4 and 8-issue width uSIMD-VLIW architectures
over the 2-issue width pSIMD-VLIW. The dashed lines represent the speed-up in the
vector/scalar regions over the vector /scalar regions of the 2-issue width architecture.
The solid lines refer to the speed-up in the complete application.

From the graphs, it can be inferred that, except for the gsm_enc, the scalar regions
fail to scale above 4-issue width. While increasing the width of the architecture from
2 to 4 provides an average speed-up of 1.24X in the scalar regions, moving from 4 to
8-issue only introduces a small 1.03X performance improvement. As far as the vector
regions is concerned, they exhibit potential to benefit from wider issue scheduling,
but this parallelism could be exploited in a more efficient way by conventional DLP
oriented techniques. Furthermore, even though the vector regions scale up to 3.19X
for the jpeg_dec application (2.49X in average), the vectorization percentage is low
(24 % in average) and the lack of scalability in the scalar regions (1.28X in average)
limits the performance of the complete application.

Results state that the actual performance achieved is very far from the theoretical
peak performance and do not pay off the hardware complexity inherent in very
aggressive architectures. We claim that Vector-uSIMD extensions arise as a better
candidate to invest in, as they clearly reduce the fetch pressure, simplify the control
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Figure 6.1. Scalability of scalar and vector regions in uSIMD-VLIW architectures

flow and memory access, and speed-up the performance of the vector regions without
detrimental effects over the scalar part.

In [Cor02], a superscalar processor is enhanced with MOM, a matrix ISA extension
that is basically an hybrid between conventional vector and MMX-like ISAs. We
have used the same ISA to enhance our reference pSIMD-VLIW architecture. It
must be stressed that additional issues arise mainly in the compiler side, as it must
now be able to schedule vector operations.

6.2 Adding Vector Units to a VLIW processor

This section deals with the main implications of adding vector units to a uSIMD-
VLIW processor. First, we overview the main features of the Vector-uSIMD ISA
extension used for the study. Next, we describe the proposed architecture, including
the datapath and the memory hierarchy. Finally, we discuss the main implications
in the compilation, and more specifically in the scheduling process.

6.2.1 Vector-uSIMD ISA Overview

Our Vector-uSIMD ISA is based on the Matriz Oriented Multimedia (MOM) exten-
sion [CEV99|. It can be viewed as a conventional vector ISA where each operation
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Figure 6.2. Comparison between conventional vector, uSIMD and Vector-uSIMD ISAs

is a uSIMD operation (see Figure 6.2). It was designed to exploit the advantages of
both conventional vector architectures (low fetch requirements, simple control logic
and strided accesses) and pSIMD ISAs (sub-word level parallelism and multimedia
oriented features such as saturation). It does not include costly vector operations,
such as conditional execution, gathers or scatters.

It provides vector registers of 16 64-bit words each, vector load and vector store
operations to move data from/to memory to/from the vector registers, and a set
of computation operations that operate on vector registers. Since each word can
pack either eight 8-bit, four 16-bit or two 32-bit items, each vector register can
hold a matrix of up to 16x8, 16x4 or 16x2 elements. The architecture also provides
192-bit packed accumulators similar to those proposed in the MDMX multimedia
extension [SIGI7].

Additionally, two special registers are required to control the execution of vector
operations: the vector length register and the vector stride register. The vector length
register specifies how many words (out of 16) of the vector register are involved in
the vector operation being performed. The vector stride register is specific to vector
memory operations and dictates the distance between two consecutive words in the
vector register.
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Figure 6.3. Vector-uSIMD-VLIW architecture

As far as terminology is concerned, we reserve the term operation to refer to each
independent machine operation codified into a VLIW instruction. Each vector op-
eration executes so many sub-operations as the vector length dictates. Finally, as
the maximum vector length is 16 and each sub-operation can operate on either eight
8-bit, four 16-bit or two 32-bit items, a vector operation can perform up to 16x8,
16x4 or 16x2 maicro-operations.

6.2.2 Vector-uSIMD-VLIW Architecture

Figure 6.3 shows the main components of the proposed architecture. Essentially, it
is a VLIW processor with the addition of a vector register file, one or more vector
functional units, and a modified cache hierarchy specially targeted to serve vector
accesses.

Both, the vector register file and the vector functional units can be clusterized in inde-
pendent vector lanes. This can be achieved with relatively simple logic by replicating
the functional units, splitting each vector register across each lane and assigning each
functional unit to a certain lane. The different elements of a vector register are inter-
leaved across lanes, allowing all lanes to work independently. The architecture also
includes a simple accumulator register file and adds limited connection between the
lanes to be able to perform the last series of accumulation in a reduction operation.
Only one of the lanes needs to read and write the source and destination packed
accumulator. This lane is the responsible for performing the last reduction. In this
work, we use four independent vector lanes; as our vector lengths are relatively short,
a larger number of lanes would not pay off.
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(b) Distributed register file in Vector-uSIMD(1 FU, 1 L2 port, 4 lanes, 5 ports/bank)

Figure 6.4. Comparison between centralized and distributed register file organizations

From the point of view of implementation, a vector register file scales better than
a centralized one, due to the organization in lanes, which reduces the number of
ports per cluster (see Figure 6.4). When scaling a centralized puSIMD register file,
the register file storage and communication between arithmetic units become critical
factors, dominating in area, cycle time and power dissipation of the processor.

Table 6.2 shows the characteristics of different uSIMD and Vector-uSIMD register
files configurations. Register file area, delay and power have been estimated using
the models described in [RDKT00]. Register file area is measured in square wire
tracks (wt2). Delays are given in units of fan-out-of-four inverter (FO4) delays'. A
cycle time of 20 FO4 is assumed, which corresponds to a clock frequency greater
than 500 MHz. Normalized values over the 2-issue with pSIMD configuration are
also included.

As we can observe, for aggressive configurations, a vector register file can provide
larger storage capacity with less area cost and access time. Thus, the proposed
architecture appears as a good candidate not only in terms of performance, but also
in terms of cost-efficiency.

As far as the memory hierarchy is concerned, we use a wvector cache in the second
level of the memory hierarchy (see Section 3.3.3 for further details). Scalar accesses
are made to the L1 data cache, while vector accesses bypass the L1 to access directly

!An FO4 delay is less than 100ps for a 0.18um process.



6.2. ADDING VECTOR UNITS TO A VLIW PROCESSOR 87

uSIMD Vector-pSIMD

2w2u 4wdu 8w8u 2wlvd 2w2v4 4w2v4 dwdv4

SIMD units 2 4 8 1x4 2x4 2x4 4x4
memory ports 1 2 4 1x4 1x4 1x4 1x4
SIMD registers 80 96 128 20 20 32 32
bits per register 64 64 64 16x64 16x64 16x64 16x64
number of lanes 1 1 1 4 4 4 4
banks per lane 1 1 1 1 1 1 2
ports per bank 8 16 32 5 8 8 8
Accumulator registers 0 0 0 4 4 6 6
bits per register 0 0 0 192 192 192 192
ports per bank 0 0 0 2 4 4 4
RF size (bytes) 640 768 1,024 2,656 2,656 4,240 4,240
RF area cost (wt?) 675,840 2,334,720 10,321,920 1,497,600 2,746,368 4,389,888 4,389,888
RF access time (FO4) 10.31 12.17 15.80 9.71 10.31 11.31 9.86
RF peak power (fJ/FO4) 5,340 18,953 83,044 11,057 21,692 34,257 34,913
RF size (norm) 1.00 1.20 1.60 4.15 4.15 6.63 6.63
RF area cost (norm) 1.00 3.45 15.27 2.22 4.06 6.50 6.50
RF access time (norm) 1.00 1.18 1.53 0.94 1.00 1.10 0.96
RF peak power (norm) 1.00 3.55 15.55 2.07 4.06 6.42 6.54

Table 6.2. Estimated area, delay and power of different uSIMD and Vector-uSIMD register file
configurations

the L2 vector cache. A coherency protocol based on an exclusive-bit policy plus
inclusion is used to guarantee coherency.

6.2.3 Compilation Issues

The success of the proposed architecture is strongly dependent on the compiler.
First, it must be able to generate Vector-uSIMD code. Second, it must perform the
scheduling and register allocation for the new operations.

Vector-uSIMD code generation

Nowadays there are compilers that allow basic autovectorization for uSIMD architec-
tures, and the same compilation techniques could be used to generate Vector-uSIMD
code. In the case of short nested loops (typical in image and video applications), the
vectorization process can be decoupled into two steps: first, generation of uSIMD op-
erations over the inner loop, and second, conventional vectorization of those uSIMD
operations over the outer loop. In the case of only one larger loop (such as those of
audio applications), the process is in practice the same: first, unrolling the loop in a
factor suitable to allow pSIMD vectorization, and second, conventional vectorization
of the resulting loop.
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As we do not have a reliable compiler at our disposal yet, we have used emulation
libraries to hand-write uSIMD and Vector-uSIMD code to evaluate the approach.
The compiler has been modified to replace the emulation functions calls by the
corresponding operations.

Static scheduling of Vector-uSIMD operations

The scheduler is the module that needs the most detailed information about the tar-
get architecture, as it is responsible for assigning a schedule time to each operation,
subject to the constraints of data dependence and resource availability. The new
register files and functional units have been added to the machine description file.
Flow analysis is then used to determine the dependence constraints between opera-
tions that define or use the same register. For every input and output operand, an
earliest and a latest read and write latency must be specified respectively |AKR9S].

Figure 6.5.a depicts the execution of a 2 cycles fully-pipelined scalar operation. In
this example, the source registers are read sometime during the first cycle after the
initiation of the operation, and the result is written at the end of two cycles.

In the case of a vector operation, these values also depend on the vector length
(VL) and on the number of parallel vector lanes (LN). As up to LN sub-operations
are initiated per cycle, the last input operand will be read at [(VL —1)/LN|, and
the last output will be written at L + [(VL — 1)/LN|, being L the latency of one
sub-operation (see Figure 6.5.b).

The number of parallel vector lanes is a fixed parameter from the architecture and
it is known at compile time. On the contrary, the vector length is variable for each
operation, and will be dynamically set. Nevertheless, the vector length register is
usually initialized with an immediate value, and a simple data flow analysis is able to
provide the right value to the compiler. In the few cases in which the vector length
is not known at compile time, the compiler must assume the maximum vector length
(16) in order to ensure correctness. Note that, for a vector unit with four parallel
lanes, the penalty to pay would be three extra cycles at worst (that is, if the vector
length turns out to be four or less).

The same latency descriptors are taken for vector memory operations, but replacing
the number of vector lanes by the width of the L2 port (in elements). In the proposed
memory architecture, the execution time of a vector memory operation also depends
on the stride. For simplicity, our compiler schedules all vector memory operations
as having a stride of one and hitting in the L2 vector cache, and the processor stalls
at run-time if either of the two assertions is not true.

On the other hand, providing a register file which supports concurrent accesses to
the same vector register, the compiler can do chaining [Rus78| of two vector opera-
tions with a dependence on a vector register operand by just scheduling the second
operation before the first one has completed execution. Assuming the same number
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Figure 6.5. Latency descriptors (Ter = earliest read, Tlr = latest read, Tew = earliest write,
Tlw = latest write, L = flow latency, VL = vector length, LN = vector lanes)

of lanes, the distance between the initiation of these operations must be at least L
cycles. It is worth noting that no additional hardware is needed.

6.2.4 Code Example

As a case of study, we show the Vector-puSIMD code of the motion estimation kernel
and the scheduling generated by our compiler. Motion estimation is one of the key
elements of many video compression schemes. A video sequence consists of a series of
frames. To achieve compression, the temporal redundancy between adjacent frames
can be exploited. That is, a frame is selected as a reference, and subsequent frames
are predicted from the reference using a technique known as motion estimation.

In the mpeg2_enc implementation of the algorithm, the current frame is divided into
macroblocks, typically 16 x 16 pixels in size for the luminance component and 8 x 16
for the chrominance components. Each macroblock is compared to a macroblock
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Figure 6.6. Vector-uSIMD implementation of the motion estimation algorithm

in the reference frame using the sum of absolute differences (SAD) as error mea-
sure, and the best matching macroblock is selected. The search is conducted over a
predetermined search area.

Figure 6.7 shows the Vector-uSIMD code of the motion estimation kernel that com-
putes the SAD of two 8 x 16 blocks. It is assumed that registers r1 and r3 keep the
initial address of each block, and lz (the image width) is the stride between consec-
utive rows. As the registers are 64 bit wide and the stride between rows is not one,
we need two vector registers to hold each block. The SAD operation is implemented
using a packed accumulator that allows parallel execution over the vector elements.
Finally, the values packed in the accumulators are reduced and the final result is
stored.

The corresponding scheduling is given in Figure 6.7. The target architecture is a
2-issue width VLIW processor with two integer units, two vector units with four
parallel lanes, one port to the first level cache and a 4 x 64 bit port to the second
level vector cache. Latencies are 1 cycle for the integer units and first level cache, 2
cycles for the vector units and 5 cycles for the vector cache.

As can be observed in the resource usage table, the Vector-uSIMD code of this kernel
is memory bound. In fact, the second vector unit is not used at all, as the second
SAD operation (1) must wait for the data being loaded from memory and cannot be
scheduled earlier. Chaining is performed between two vector loads (¢ and h) and the
vector SAD operations (k and [). Note also that the vector loads are scheduled as
having a stride of one, that is, as if they produce four elements per cycle. As this
assumption is not true, the processor will be stalled at run-time, thus incurring in a
great penalty in performance, as we will see in the evaluation section.
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Figure 6.7. Scheduling of motion estimation for a 2-issue Vector-uSIMD-VLIW processor

We must highlight that the Vector-uSIMD code totally eliminates the two innerloops
present in the scalar version to scan the blocks. Furthermore, the Vector-uSIMD code
only needs to decode 16 operations to process one complete block, in front of the 172
operations required in the uSIMD versions of code.

6.3 Evaluation

This section provides quantitative data in order to analyze the behavior of the
proposed architecture. Different Vector-uSIMD-VLIW configurations are compared
against pSIMD-VLIW and plain VLIW architectures. We must point out that the
scalar versions of code include memory disambiguation, both Pcode Interprocedu-
ral Pointer Analysis and the Dynamic Memory Interval Test technique proposed in
Chapter 5.

First, we evaluate the impact of the multimedia extensions in the overall number of
operations. Next, we present performance results on the vector regions and analyze
the influence of the number of vector units and lanes and the impact of the memory
hierarchy. To end up, we report the speed-up and operations per cycle rates obtained
in the complete applications.

6.3.1 Operation Breakdown

Figures 6.8.a and 6.8.b show the dynamic operation count for the different architec-
tures (VLIW, uSIMD-VLIW and Vector-uSIMD-VLIW) normalized by the dynamic
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Figure 6.8. Normalized operation count

operation count of the base VLIW architecture. The first graph shows the opera-
tions classified into five categories: control, scalar memory, scalar arithmetic, vector
memory and vector arithmetic. In the second graph, we have distinguished the con-
tribution of each region. Regions from R1 to R3 are the fractions of code that have
been vectorized in the puSIMD and Vector-uSIMD versions in the same order they
are listed in Table 6.1 (for example, in mpeg2_enc, R1 accounts for the motion esti-
mation and R2 and R3 for the forward and inverse two dimensional DCT). Region
RO always refers to the remaining scalar part.

The results confirm that the uSIMD and Vector-pSIMD versions of code require to
execute much less operations than the scalar versions. This may not seem so obvious
if we take into account that these versions are sometimes based on algorithms that
require to execute much more operations [SCEV99|. For example, the uSIMD and
Vector-uSIMD versions of the DCT are based in the matrix product, which requires
significantly more operations than the optimized scalar algorithm. We must also
point out that, in the scalar version of the mpeg2_dec benchmark, we are using
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the Fast IDCT (a fast scalar algorithm) instead of the Reference IDCT (double
precision matrix product algorithm) also included in the standard, as the former is
ten times faster and we are interested in comparing against the best scalar version.
On the one hand, the semantic richness of the uSIMD and Vector-uSIMD ISAs to
perform operations such as the sum of absolute differences or saturation arithmetic
contributes to decrease the operation count. Furthermore, there is an additional
reduction on the number of operations involved in the loop-related control. This
reduction in the number of operations to fetch and decode also translates into a
decrease in power consumption.

As can be observed, the Vector-uSIMD architecture executes an average of 84% fewer
operations in the vector regions than the puSIMD one (19% fewer in the complete
application). The obvious reason is that Vector-uSIMD ISA can pack more micro-
operations into a single operation (a maximum of 128 in the Vector-uSIMD in front
of a maximum of 8 in the uSIMD). Table 6.3 reports the average vector length for
each benchmark. V Lx refers to the number of elements packed on one word. V Ly
corresponds with the vector length register, that is, the number of operations to
perform in a vector operation, and it is always one in a ySIMD operation. Finally,
V Lzy represents the overall vector length in a Vector-uSIMD operation, that is
the product of V Lz and V Ly, or in other words, the number of micro-operations
packed in one vector operation. Although most multimedia kernels are characterized
by small loop counts, which usually results on low or moderate vector lengths in
conventional vector architectures, the Vector-uSIMD ISA leverages quite fair micro-
operations per operation rates (an average vector length of 81.10 micro-operations
for the jpeg_dec application), due to its capability to vectorize two inner nested
loops.

+pSIMD +Vector

VLx VLx VLy Vixy
jpeg_enc 3.55 3.88 7.59 2847
jpeg_dec 5.11 5.08 15.96 81.10
mpeg2 enc 6.53 743 6.12 46.97
mpeg2 dec 3.57 4.23 397 17.46
gsm_enc 247 399 577 2299
gsm_ dec 3.36 3.22 10.61 35.67
average 4.10 4.64 834 38.78

Table 6.3. Average vector length

Finally, the reduction in the overall dynamic operation count depends also on the
vectorization percentage, which is around 43% of the scalar code in average. As we
already saw in Section 6.1, the exceptions are the mpeg2_enc and the gsm_dec appli-
cations. In the first one, the motion_estimation and the DCT transforms account for
the 87% of the overall dynamic operation count. On the contrary, gsm_dec exhibits
a very low coverage (only 5% of the code has been vectorized). As can be seen in
Figure 6.8.b, the Vector-uSIMD ISA achieves to reduce the number of operations
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Figure 6.9. Speed-up in vector regions

of the vector regions to a minimum (less than 10% of the total dynamic operation
count).

6.3.2 Speed-up in Vector Regions

We have evaluated the performance of 2- and 4-issue width Vector-pSIMD-VLIW ar-
chitectures with one and two vector units and four vector lanes respectively. Results
are compared against 2-, 4- and 8-issue width VLIW and pSIMD-VLIW architec-
tures with so many integer and uSIMD units as the issue width respectively. Atten-
tion must be paid to the fact that the Vector-uSIMD architectures are not balanced
against the same issue width VLIW or uSIMD architectures, as we consider them as
an alternative to wider issue processors. For example, the arithmetic capability of
the 4-issue Vector-uSIMD configuration is comparable to that of the 8-issue pSIMD
configuration, not to the 4-issue puSIMD.

For each architecture, Figure 6.9 shows the speed-up of the vector regions over the
execution time of the vector regions in the 2-issue width VLIW architecture. As it
was to be expected, both uSIMD and Vector-uSIMD architectures clearly outperform
the same issue width VLIW. Moreover, the 2- and 4-issue width Vector-uSIMD
architectures outperform the same issue width pSIMD in a factor ranging from 2.0X
to 6.5X (3.2X in average) and 1.6X to 5.4X (2.8X in average) respectively. On the
other hand, the 8-issue puSIMD architecture is outperformed by the 4-issue width
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Figure 6.10. Speed-up in vector regions for different number of units and lanes

Vector-pSIMD in a factor of up to 4.1X (1.9X in average), with the same arithmetic
capability and considerably less hardware complexity.

It is worth noting that, even the 2-issue width Vector-uSIMD architecture outper-
forms the 8-issue uSIMD architecture for most of the benchmarks, with half the arith-
metic capability and four times less issue width. The exceptions are the jpeg_enc
and jpeg_dec applications, which as we will see next, are characterized by having
higher computational demand than other applications.

Number of vector units

To analyze the effect of increasing the number of vector units, Figure 6.10.a shows
the performance improvement obtained in the vector regions when increasing the
number of vector units from 1 to 8. The graph shows speed-up with respect to the
execution of the vector regions in the 4-issue width VLIW. The 4-issue width uSIMD
architecture is also included as a reference.

We observe that half of the benchmarks do not take much benefit from increasing the
number of vector units. This is because they have vector regions similar to the mo-
tion_ estimation code studied in section 6.2.3, with small loops and very short vector
lengths. Examples of this include the form component prediction and the add_ block
regions in mpeg2_dec and the calculation of the long term_ parametersin gsm_enc.
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On the contrary, other benchmarks such as the jpeg_enc and jpeg_dec, whose vector
regions are characterized by larger vector lengths (ex. color conversions or upsam-
pling) and/or larger loop sizes (ex. DCT’s), exhibit a significant improvement in
performance when the number of vector units is increased.

Number of vector units vs number of vector lanes

The Vector-uSIMD architecture can be scaled not only in the number of vector
functional units, but also in the number of vector parallel lanes. To analyze the
trade-off between them, Figure 6.10.b shows the speed-up in the vector regions for
different vector configurations over the 4-issue width VLIW architecture, but now
keeping the overall computational capacity constant.

Results confirm that distributing the register file and units in four parallel lanes
is a good choice for our set of benchmarks. Apart from increasing the area cost
and power, reducing the number of lanes below four also results in performance
degradation. This can be explained by the fact that there are not enough vector
operations to be executed in parallel to feed a greater number of units. On the
contrary, there are data dependences between operations, and a smaller number
of lanes translates into a greater execution time for each operation. On the other
hand, having more units than lanes benefits those operations that do not depend on
the vector length, such as accumulator reductions, as they can then be executed in
parallel.

Effect of the memory hierarchy

To analyze the influence of the memory hierarchy, Figure 6.9 shows the performance
speed-up obtained in the vector regions with perfect memory simulation for the
different architectures. By perfect memory we consider that all accesses hit in cache,
but with the corresponding latency. That is, all scalar accesses are served after 1
cycle of latency and all vector accesses in the Vector-uSIMD configurations go to
the L2 and take 5 cycles plus the additional cycles to serve all vector data elements
(which slightly favours the VLIW and pSIMD-VLIW configurations). The shadow
line represents the speed-up obtained with real memory simulation. All speed-ups
are referred to the execution time of the vector regions in the 2-issue width VLIW
architecture with perfect memory simulation.

We observe that the Vector-uSIMD architectures exhibit the highest performance
degradations when considering a realistic memory system. This fact may seem coun-
terintuitive, since vector architectures are well known for their capability to tolerate
memory latency. Two reasons explain this behavior. First, the vector lengths are not
long enough to take benefit from this characteristic. Second, VLIW architectures are
very sensitive to non-deterministic latencies.

As it was explained before, in the scheduling the compiler assumes that all vector
accesses have a stride of one, and the processor stalls at run-time if this assertion is
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Figure 6.11. Speed-up in vector regions with perfect memory and impact of real memory

not true. That is what happens in the mpeg2_enc benchmark, in which the stride
of the main region (the motion_ estimation code example analyzed in Section 6.2.4)
is the image width. Moreover, in this kernel, these memory operations represent an
important fraction of the overall code, resulting in a high performance degradation
(close to 200%). Apart from this, all benchmarks exhibit high hit ratios and very
low performance degradation when considering realistic memory.

6.3.3 Speed-up in Applications

Figure 6.12 shows the speed-up for complete applications. As it was to be expected,
the benchmark that exhibits the highest performance improvement is the mpeg2_enc
(up to 4.2X speed-up for the 4-issue Vector-uSIMD configuration). Even though
there are other benchmarks (such as gsm_enc) with considerably greater speed-ups
in the vector regions, the impact in the overall performance is not so significant,
due to the low vectorization percentage. Note also that the 4-issue Vector-uSIMD
architecture slightly outperforms the 8-issue uSIMD in all the applications.

It can also be observed that the gap between the different architectures decrease
with the issue width of the processor. For example, while the 2-issue Vector-uSIMD
exhibits an average factor of 1.22X of performance improvement over the 2-issue
uSIMD, the 4-issue Vector-pSIMD only outperforms the 4-issue pSIMD in a 1.14X.
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Figure 6.12. Speed-up in applications

This can be explained by the fact that a wide enough puSIMD-VLIW architecture
is able to exploit as ILP the parallelism that the Vector-uSIMD-VLIW exploits as
DLP.

On the other hand, the vector regions represent less than 40% of the total execution
time in the 2-issue VLIW architecture. When most of the available DLP parallelism
is exploited via multimedia extensions, the remaining scalar part becomes the bottle-
neck. In the 4-issue Vector-uSIMD-VLIW architecture, the vector cycles represent
less than 10% of the overall execution time (except for the mpeg2_enc). By the
Amhdal Law, further improvements in the execution of the vector regions would be
imperceptible in the complete application.

6.3.4 Operations per Cycle

To conclude the analysis, Table 6.4 reports the average number of operations per cycle
in the scalar and vector regions of code separately, and in the complete applications.
For the puSIMD and Vector-uSIMD versions, the operations per cycle rate gives
information about the fetch bandwidth requirements, but is not representative of the
exploited parallelism. To take this into account, the table also include the average
number of micro-operations executed per cycle.
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Scalar regions Vector regions Application
OoprC Sp OrC uOPC Sp OorC upOPC SP
2w VLIW 1.44 1.00 1.80 1.80 1.00 1.59 1.59 1.00
+uSIMD (2u) 1.44 1.00 1.78 4.68 2.87 1.52 2.32 1.47
+Vector (1v4) 1.44 1.00 0.87 7.91 9.32 1.36 2.12 1.79
+Vector (2v4) 1.44 1.00 0.98 10.10  10.60 1.37 2.15 1.80
4w VLIW 1.77 1.23 3.03 3.03 1.66 2.14 2.14 1.34
+uSIMD (4u) 178 1.24 2.95 7.80  4.62 198  3.05 1.94
+Vector (2v4) 1.76 1.23 1.27 11.86 13.14 1.67 2.62 2.21
+Vector (4v4) 1.76 1.23 1.37 14.00 14.09 1.69 2.64 2.22
8w VLIW 1.84 1.28 4.54 4.54 2.47 2.42 2.42 1.50
+uSIMD (8u) 1.84 1.29 4.47 12.07 6.76 2.18 3.38 2.15

Table 6.4. Average operations per cycle (OPC), micro-operations per cycle (1OPC), and speed-
up (SP) in the scalar and vector regions and in the full application

Results confirms our belief that the non-vector regions of code do not benefit from
scaling the width of the machine above 4 issue width. Fetching 1.84 operations per
cycle does not pay off the hardware complexity of a 8-issue width architecture. The
Vector-puSIMD ISA obtains the highest speed-ups by exploiting more data parallelism
in the vector regions (up to 14.00 micro-operations per cycle) and with the lowest
fetch bandwidth requirements (just 1.37 operations per cycle), making it an ideal
candidate for embedded systems, where high issue rates are not an option. However,
for wide issues, the uSIMD ISA exhibits more flexibility to benefit from wide static
scheduling and also reaches significant micro-operations per cycle rates, but at a
higher cost.

6.4 Summary

The actual performance achieved by very wide issue VLIW architectures is very
far from the theoretical peak performance and do not pay off the related hardware
complexity. By analyzing the scalability of the scalar and vector regions of code
separately, we have shown that the scalar regions do not benefit from increasing the
width of the machine above 4-issue width. On the other hand, the kind of parallelism
found in the vector regions could be exploited in a more efficient way by means of
SIMD execution.

To exploit the data parallelism inherent in the vector regions without increasing the
way of the architecture, we have proposed the addition of one or more vector units
together with a vector register filer and a wide port to the L2 that provides the band-
width required by the vector regions. This extension can be viewed as a conventional
short vector ISA where each element is operated in a MMX-like fashion. This en-
hancement has a minimal impact on the VLIW core and provides high performance
in the vector regions for low issue rates.
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We have evaluated the proposed architecture for complete applications of audio,
video and image processing and compared it against a VLIW architecture with and
without uSIMD extensions. In the vector regions, a 4-issue width Vector-uSIMD-
VLIW architecture outperforms the 8-issue uSIMD-VLIW architecture in a factor of
up to 4.1X (1.9X in average). Due to the low vectorization percentage, the impact
in the complete applications is not so significant, but a 4-issue Vector-uSIMD-VLIW
achieves greater or similar performance to that of the 8-issue pSIMD-VLIW with
considerably less hardware complexity and power consumption.

On the other hand, it has been seen that Vector-uSIMD-VLIW architectures do not
perform well in front of non-unit stride memory references and exhibit the highest
performance degradations when considering a realistic memory system, mainly due
to the high sensitivity of VLIW architectures to non-deterministic latencies. Future
research must be done to improve the memory hierarchy and to test more flexible
scheduling techniques.

Finally, we have observed that, once the high performance requirements of the kernels
have been satisfied by the use of special DLP-oriented multimedia extensions, mul-
timedia applications become dominated by the scalar performance. To address this
problem, other sources of parallelism, such as Thread Level Parallelism (TLP) must
be exploited together with ILP and DLP to accomplish the real-time constraints and
high computational throughput requirements of next generation of media workloads.



Chapter 7

Conclusions

We conclude summarizing the main contributions and some future research options.

7.1 Contributions

We started this thesis realizing the growing interest that multimedia applications
have experimented in the desktop and embedded domains and the increasing com-
putational power demands they involve. On the other hand, advances in integration
technology do not involve the same performance improvement rates than some years
ago, mainly due to the limited available instruction level parallelism, the memory
wall and the problem of power dissipation. There is an extended concern about these
constraints and whether the next generation of processors will be able to meet with
success the increasing requirements of future media applications. Current trends in
microprocessor design point to the exploitation of different sources of parallelism,
the integration of larger caches on-chip, and a great interest in energy efficient im-
plementations.

We think that the combination of 2-dimensional vector processing and the VLIW
paradigm together with other ways of exploiting coarser grain parallelism, such as
simultaneous multithreading and chip multiprocessing, are a promising alternative
to face the requirements of future multimedia workload and the emerging technol-
ogy constraints. VLIW architectures perform well for multimedia processing, while
avoiding the expensive and strongly technology dependent scalability of superscalar
processors. On the other hand, 2-dimensional vector extensions are an efficient way
of exploiting the inherent DLP of multimedia kernels. They combine the advantages
of both conventional vector and sub-word level parallelism implementations, while
overcoming the scalability limitations of current pSIMD multimedia extensions. Fi-
nally, exploiting thread level parallelism is needed to deal with the processing of
multiple concurrent media streams.

Our work has concentrated on improving the exploitation of instruction and data
level parallelism in the context of VLIW architectures and multimedia workload.
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More specifically, we have addressed two main topics: the problem of memory disam-
biguation and the problem of exploiting DLP by means of Vector-uSIMD extensions
in static scheduling architectures. In order to evaluate the architectural improve-
ments and compilation techniques proposed in this thesis, we have enhanced the
Trimaran compilation and simulation framework. The resulting tool set provides
new functionalities, such as obtaining a great range of statistics of the loops or re-
gions in the scope of the programs, simulation of the memory hierarchy, loop memory
disambiguation, and scheduling and simulation of uSIMD and Vector-uSIMD code.
Next, we summarize the main contributions that this work has originated.

Characterization of multimedia applications in VLIW architectures

Understanding the behavior of multimedia applications is essential for our research.
Thus, we started our work performing a quantitative analysis of the execution of
a set of image, video and audio applications on VLIW architectures. Results have
corroborated that the streaming data access patterns promote spatial locality, which
leads to very high cache hit rates, even for small cache sizes. We have also observed
that bank conflicts are an important source of performance degradation in VLIW
architectures. Hence, we concluded that widening the ports is preferable to increasing
the number of them; multi-porting a cache is more expensive than widen the ports
and alternative feasible multi-banking cache designs produce the non-desired bank
conflicts. Packing several unit-stride array references into one wide access would
reduce both the number of memory access and the potential for bank conflicts.

Results also confirmed that multimedia codes exhibit more parallelism than integer
ones. Nevertheless, this parallelism is not so high as it was to be expected from
the definition of the algorithms. One of the reasons that explain this fact is that
these applications use to include a lot of overhead to deal with different options and
formats. On the other hand, in the course of time, some of the algorithms have
gone through a set of optimizations mainly oriented towards reducing the number
of instructions in scalar implementations, going so far as to hide the inherent vector
nature of the algorithm. Furthermore, we noticed that in most cases the compiler was
unable to take benefit from aggressive ILP optimizations, such as modulo scheduling;,
mainly due to the existence of ambiguous memory references.

Run-time memory disambiguation for multimedia loops

The last observation motivated us to analyze the problem of memory disambiguation
in the context of multimedia applications. We realized that one of the main obstacles
to memory disambiguation in multimedia codes is that they are often written in
languages that support pointer referencing, such as C or C++. The inability of
the compiler to demonstrate at compile-time that two pointers are not going to
reference the same memory location in any iteration of the loop, forces it to generate
conservative code in which different iterations of the loop cannot be overlapped.
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Taking into account the disjointed nature of most input and output multimedia mem-
ory streams, we have proposed a memory disambiguation technique that dynamically
analyzes the region domain of every load and store to evaluate, before entering the
loop, whether or not the full loop is disambiguated and execute the corresponding
loop version. This technique has been completely implemented into the Trimaran
compiler. In contrast with other dynamic approaches, it does not require any addi-
tional hardware or instructions. It has negligible effects over compilation time and
code size, and near-zero cost for all those loops without potential for disambiguation.

We have also compared our proposal against advanced interprocedural pointer anal-
ysis. Results show that, on average, our technique outperforms the later at the
loop level (2.60X in front of 2.17X with relative to the non-disambiguated codes),
although the average performance achieved is similar at the scope of the complete
applications (1.13X on average). Furthermore, it is worth to remark that most of
the benchmarks exhibit a beneficial effect when both techniques are used together.
This is due to the fact that, while pointer analysis overcomes some limitations of
our technique, such as the access to non-streaming data structures, run-time mem-
ory disambiguation addresses the cases in which dynamic information is required to
determine the independence of two memory references. For the 8-issue width VLIW
reference architecture, the combination of the two mechanisms increases the speed-up
up to an average of 2.82X in the loops and 1.19X in the complete applications.

Study of scalability of the scalar and vector regions in ySIMD-VLIW
architectures

The general characteristics of multimedia kernels, which are basically small loop-
bodies that process streams of small data types, have lead to the extended trend
of exploiting DLP by means of sub-word level (or pSIMD) multimedia extensions.
However, the efficiency of sub-word level implementations is affected by the exis-
tence of unaligned and non-unit stride memory accesses and the overhead needed to
arrange the elements in the appropriate way.

Another contribution of this thesis is the identification of the scalar and vector re-
gions of each program. The vector regions are those parts of the code that can be
vectorized, and the scalar regions are the remaining non-vectorizable parts of code.
In order to evaluate the efficiency of aggressive configurations with multimedia ex-
tensions, we have separately analyzed the scalability of the scalar and vector regions
of our set of benchmarks in pSIMD-VLIW processors. Results confirm our assump-
tion that the scalar regions do not have enough ILP to take benefit from increasing
the width of the architecture above 4-issue width. On the other hand, although the
vector regions exhibit potential to scale, the vectorization percentage is not high
enough, and the actual performance achieved in the complete applications does not
compensate the increase in cost of wider issue architectures.
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2-dimensional vector extensions in static scheduling architectures

To exploit the DLP in the vector regions without increasing the way of the archi-
tecture, we have proposed what stands for the main goal of this thesis: the Vector-
uSIMD-VLIW architecture. This architecture is based on the addition of one or
more vector units together with a vector register filer and a wide port to the L2
that provides the bandwidth required by the vector regions. This enhancement has
a minimal impact on the VLIW core and reaches more parallelism than wider issue
uSIMD at a lower cost.

Vector processing has several inherent advantages, such as the reduction in the num-
ber of executed operations, a lower pressure in the instruction fetch unit, the sim-
plicity of the control unit, the advance knowledge of the memory accesses, the ability
to amortize functional units and memory start-up latencies, and the easiness to be
scaled by just replicating the functional units. The union of conventional vector pro-
cessing with sub-word level vector processing can be seen as a 2-dimensional matrix
extension that combines the best of each one.

Given that similar proposals have been successfully evaluated for superscalar cores,
the main potential handicaps we could think of are in the compilation side. In our
proposal, the assignment of operations to each functional unit, the scheduling, and
the register allocation have to be performed at compile-time. Dynamic values, such
as the vector length and the vector stride, are potential issues for static scheduling.
Nevertheless, these values can be obtained most of the times at compile-time by
means of data-flow analysis. In the few cases in which they cannot, the compiler
assume default values. The penalty to pay if the assumption fails is acceptable, as we
are working with short vector lengths. Nevertheless, the study under a realistic cache
hierarchy has evidenced some bottlenecks related to strided memory accesses, mainly
due to the high sensitivity of VLIW architectures to non-deterministic latencies.

We have reported performance gains in the vector regions of up to 4.1X (1.9X on
average) for a 4-issue width architecture with two vector units of four lanes each with
relative to a 8-issue width with eight uSIMD units. Both configurations performs
similarly at the the scope of complete applications (the average gain is reduced to
1.02X). Nevertheless, this is specially meaningful taking into account that the Vector-
uSIMD configuration has half the fetch bandwidth, the same computational power,
and a register file that, even though being four times larger than the centralized
uSIMD one, it allows for 70% less access time and 30% less power and area cost.

Overall, the original performance of the non-disambiguated codes running in the
reference 8-issue width VLIW architecture has been improved in a factor of up to
2.72X (1.64X on average) by using a 4-issue width Vector-uSIMD processor with
two vector units, and even up to 2.26X (1.33X on average) with a 2-issue width
Vector-puSIMD processor with only one vector unit.
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7.2 Future Work

This research opens several fields for further analysis. Next, we enumerate some
future work to be done regarding both the compiler and the architecture.

Vector-uSIMD autovectorization

Compiler support is a key issue to exploit the full potential of the proposed ar-
chitecture. In this thesis, we have faced the problem of scheduling Vector-uSIMD
operations, but we have used emulation libraries to handwrite Vector-uSIMD code.
We think that any compiler able to generate code for a uSIMD ISA could be en-
hanced to vectorize in a second dimension and generate code for a Vector-uSIMD

ISA.

The proposed memory disambiguation test could be used to aid in those cases in
which ambiguous memory dependences prevent the compiler from generating vector
code. The compiler generates both, the scalar and the vector versions of code, and
the proposed test evaluates at run-time which version must be executed.

Memory hierarchy

Memory performance is critical for overall performance. The main bottlenecks of
the memory hierarchy must be identified in order to suggest possible improvements.
In this thesis, we have observed a significant performance degradation in front of
strided memory access. Work to be done include the search of both, more flexible
scheduling algorithms on the compilation side and alternative designs to the vector
cache on the hardware side.

Low-end Vector-uSIMD-VLIW processors

The achieved results suggest that the proposed architecture exhibit a high potential
for the embedded domain, as it provides high performance at lower cost and without
compromising the cycle time. It would be interesting to evaluate the potential of
Vector-puSIMD-VLIW embedded processors. Given the growing interest on cost-
effective designs, special attention must be paid to energy and area efficiency.

Vector-uSIMD-VLIW Chip-Multiprocessors

This work has also demonstrated that, once the high performance requirements of
the vector regions have been addressed, the low performance of the scalar regions
dominate program cycles, resulting into low resource usage. Given the high amount
of TLP that seems to characterize current and future multimedia applications, we
think that TLP must be exploited together with ILP and DLP to accomplish the real-
time constraints and high computational throughput requirements of next generation
of media workloads.
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Currently, there is a growing trend towards exploiting TLP by means of Chip-
Multiprocessors (CMPs). CMPs have the potential to provide high scalability thanks
to better cache coherence mechanisms. There exists some commercial systems that
combines the VLIW and the Chip-Multiprocessor (CMP) paradigms to provide high
performance for multimedia at low cost. We think that Vector-uSIMD-VLIW CMPs
are a good match to efficiently exploit the heterogeneous parallelism of multimedia
workload.

Alternative application domains

Finally, although this work has been motivated by our interest in improving the
performance of multimedia applications, the proposals behind this thesis are not
restricted to this area. On the contrary, the ideas presented in this thesis can be
extended to other DLP applications. We are currently analyzing the bioinformatic
domain. It would be interesting to evaluate the potential of VLIW CMPs with vector
extensions to face the computational intensive algorithms of this kind of applications.
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Loop Statistics

This appendix provides detailed information about the loops of the eight applica-
tions used in this thesis. For each application, we present first a table with the
general information of all innermost loops in the benchmark, and second, a more
detailed description of the most representative loops.Reported data were obtained
compiling the benchmarks with the original compiler for the 8-issue width reference
architecture, and simulating them with the reference inputs.

The table of innermost loops is sorted by their contribution to the overall execution
time of the application in descending order, and includes the following information:

e Loop name: The name of the loop is composed by the first twenty characters
of the function it belongs to and the identifier of the header basic-block of the
loop. It has been truncated to ten characters for limitation of the table width.

e Dyn Cyc (%acc): Dynamic cycle count. The percentage in brackets indicates
the accumulated percentage of the complete application excution time.

e Dyn Ops (%acc): Dynamic operation count. The percentage in brackets indi-
cates the accumulated percentage of the complete application operation count.

e OPC: Operations per cycle rate.

e [nv: Invocations. Number of times the loop is executed.

e Jter: Average number of iterations per invocation.

o Nest: Nesting level. The lowest level corresponds to the outer nested loop.
e Cat: Category. The loops have been classified into the following categories:

— WHILE__LOOP(W): NOT COUNTED LOOPS
— Do _Loopr(D): DO-LOOPS WHICH ARE NOT MODULO SCHEDULING

— Mobp ScHED(M): DO-LOOPS WHICH ARE MODULO SCHEDULING.
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e (Ops: Static operation count.
e [.Ds: Number of static load operations.

e STs: Number of static store operations.

More detailed information is given for those loops which represent more than 1% of
the overall execution time. It includes:

e General information: source file name, function name, header block, loop
blocks, nesting level, category, invocations, iterations per invocations, dynamic
operation count and percentage of the complete application, dynamic cycle
count and percentage of the complete application, operation per cycle rate,
and stall cycles due to memory and percentage of the dynamic cycle count. In
the name of the blocks, BB stands for basic-block and HB for hyper-block.

e Scheduling: In the case of modulo scheduling loops, it shows:

— RecMII: minimum initiation interval due to recurrences.
— ResMII: minimum initiation interval due to resource limitation.
— [I: resulting initiation interval.

— ESC: epilogue stage counter.

In the other loops, it shows for each block:

wsl: weighted scheduling length.

pesl: scheduling length of the most likely exit.

per: probability of the most likely exit.

— wgt: weight (number of times the block is executed).
In both cases, the overall scheduling length of the loop is reported.

o Operations breakdown: dynamic and static operation counts classified into eight
categories: loads, stores, integer arithmetic and logic, floating point arithmetic
and logic, integer compares, floating point compares, prepare-to-branch, and
branches. The number in brackets indicates the percentage of each type.

o Memory operations: A list of all memory operations with the following infor-
mation:

— Name of the operation: composed by the prefix L for loads and S for
stores plus an identifier.

— Size: data size in bytes.

— Stride: distance between elements of consecutive iterations.

Moreover, for each reference group, that is, uniformly generated references to
the same array (see chapter 5), we show:
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— nOps: number of memory operations in the group.
— ¢Size: data width of the group in bytes.

— ¢Str: stride between consecutive elements of the group.

Spill counts are also included for those loops in which the compiler has gener-

ated spill code.
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A.1 Jpeg enc

Innermost loops list

# Loop name Dyn Cyc (%acc) Dyn Ops (%acc) OPC Inv Iter Nest Cat Ops LDs STs
1 forward D.9 26,790,400 (23%) 40,919,950 (20%) 1.53 17,920 64 12 M 39 2 1
2 rgb ycc cb 16,549,691 (37%) 43,891,427 (41%) 2.65 739 1,024 L1 M 58 12 3
3 forward D.6 3,980,553 (40%) 5,949,440 (44%) 1.49 91,450 8 L2 M 9 1 1
4 jpeg fdct.3 3,208,256 (43%) 13,780,480 (51%) 4.30 17,920 8 L1 M 96 & 8
5 h2v2 down.4 3,038,515 (46%) 7,199,460 (55%) 2.37 740 512 L1 M 19 4 1
6 jpeg fdct.5 2,867,200 (48%) 14,067,200 (61%) 4.91 17,920 8 L1 M 98 & 8
7 encode on.23 413,292 (48%) 444,975 (62%) 1.08 57,312 1 L2 W 5 0 0
8 encode on.5 187,590 (48%) 214,870 (62%) 1.1515694 2 L1 W 5 0 0
9 jpeg add .7 4,436 (48%) 4,116 (62%) 0.93 4 64 L1 M 19 2 1
10 _jpeg make.10 3,723 (48%) 5,220 (62%) 1.40 69 7 L2 W 10 1 1
11 jpeg make.13 3,720 (48%) 8,880 (62%) 2.39 6 8 L1 M 17 4 2
12 jpeg make.6 2,679 (48%) 4,176 (62%) 1.56 69 7 L2 W 8 1 1
13 rgb ycc 8.3 2,313 (48%) 8,705 (62%) 3.76 1 256 L1 M 34 0 8
14 start pas.19 975 (48%) 1,731 (62%) 1.78 3 64 L2 M 9 1 1
15 compress .53 576 (48%) 896 (62%) 1.56 32 2 L4 W 14 4 1
16 jpeg make.37 361 (48%) 235 (62%) 065 69 1 L2 W 7 0 0
17 alloc_sma.14 264 (48%) 227 (62%) 0.86 31 1 LI W 12 2 0
18 emit dqt .5 201 (48%) 1,170 (62%) 5.82 3 64 LI M 7 1 0
19 alloc_sar.12 98 (48%) 9225 (62%) 2.30 6 6 L2 M 5 0 1
20 emit dht .9 72 (48%) 328 (62%) 4.56 4 16 L1 M 5 1 0
21 jpeg set .7 51 (48%) 129 (62%) 2.53 1 16 L1 M 8 0 3
92 per scan .22 48 (48%) 75 (62%) 1.56 3 2 L1 W 14 1 2
23 jpeg supp.7 40 (48%) 47 (62%) 1.18 1 4 L1 M 13 2 2
24 select sc.9 22 (48%) 36 (62%) 1.64 1 3 L1 W 12 2 1
95 jinit huf.3 20 (48%) 41 (62%) 2.05 1 4 L1 M 10 0 4
26 jpeg_supp.3 20 (48%) 30 (62%) 1.50 1 4 L1 M 8 1 1
27 jinit_c_c.10 11 (48%) 51 (62%) 4.64 1 10 L1 M 5 0 1
98 write fra.19 10 (48%) 33 (62%) 3.30 1 3 L1 M 11 2 0
929 jinit_for.8 5 (48%) 25 (62%) 5.00 1 4 11 M 6 0 2
30 jpeg Crea.9 5 (48%) 25 (62%) 5.00 1 4 L1 M 6 0 2
31 jpeg Crea.7 5 (48%) 17 (62%)  3.40 1 4 11 M 4 0 1
32 jinit mem.9 3 (48%) 13 (62%) 4.33 1 2 L1 M 6 0 2

Table A.1. Jpeg enc innermost loops list

Description of the most representative loops

LOOP 0  forward DCT jedctmgr.9

Program: jpeg enc
File: jedetmegr.c
Function: forward DCT _jedctmgr

Header block: HB 9
Loop blocks: HB 9
Nesting level: 2

Innermost: yes

Category: MOD_SCHED
Invocations: 17920

Iterations: 1146880
Tter/Invoc: 64

Operations: 40919950 (19.97%)
Cycles: 26790400 (22.77%)
Ops/Cyc: 1.53

Stall cycles: 0 (0.00%)
Scheduling

RecMII ResMII 11 ESC
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HB 9

23 5

Sched length: 1495
Operation breakdown

Load:
Store:
iAlu:
fAlu:

Cmpp:

Pbr:

Branch:

Total:

Dynamic counts
2293760 (6%)
1146880 (3%)
32820110  (80%)
0 (0%)
)
)
)

3494400 (9%
0 (0%
1164800 (3%

40919950

Memory operations

L_72
L_76

S 135

Size  Stride

2 1
2 1
2 1

LOOP 1  rgb ycc convert jcco.b

Program:
File:
Function:

Header block:

Loop blocks:

Nesting level:

Innermost:
Category:
Invocations:
Iterations:
Iter/Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

BB 5

jpeg _enc
jecolor.c

rgb ycc convert jcco
BB 5

BB 5

1

yes

MOD SCHED
739

756736

1024

43891427 (21.42%)
16549691 (14.07%)
2.65

1400191 (8.46%)

RecMII ResMII
19 8

Sched length: 20500
Operation breakdown

Load:
Store:
iAlu:
fAlu:

Cmpp:

Pbr:

Branch:

Total:

Dynamic counts
9080832  (21%)
2270208 (5%)

31782912 (72%)
0 (0%)
)
)
)

0 (0%

0 (0%

757475 (2%
43891427

Memory operations

L_47
L_49
51
L_56
59
L_63
L_70
L 73
L_77
84
L_87
L_91
S 67
S 81

Size  Stride

N U QY SO SO NG NG
|

23 1

Static counts

2 (%)
1 (3%)
32 (82%)
0 (0%)
3 (8%)
0 (0%)
1 (3%)
39

11 ESC
20 1

Static counts

12 (21%)
3 (5%)
42 (72%)
0 (0%)
0 (0%)
0 (0%)
1 (2%)
58

Group nOps
G 47 3

gSize

gSize
3

gStr

gStr
1

111
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S 95 1 1
LOOP 2  forward DCT jedctmgr.6
Program: jpeg _enc
File: jedetmegr.c
Function: forward DCT _jedctmgr
Header block: BB 6
Loop blocks: BB 6
Nesting level: 2
Innermost: yes
Category: MOD SCHED
Invocations: 91450
Iterations: 731605
Tter/Invoc: 8
Operations: 5949440 (2.90%)
Cycles: 3980553 (3.38%)
Ops/Cyc: 1.49
Stall cycles: 38153 (0.96%)
Scheduling
RecMIl ResMII 11 ESC
BB 6 5 2 5 1
Sched length: 45

Operation breakdown
Dynamic counts

Static counts

Load: 645120  (11%) 1 (11%)
Store: 645120 (11%) 1 (11%)
iAlu: 3870720  (65%) 6 (67%)
fAlu: 0 (0%) 0 (0%)
Cmpp: 0 (0%) 0 (0%)
Pbr: 0 (0%) 0 (0%)
Branch: 788480  (13%) 1 (11%)
Total: 5949440 9
Memory operations
Size  Stride Group nOps gSize
L 46 1 1
S 54 2 1
LOOP 3  jpeg fdct islow.3
Program: jpeg _enc
File: jfdctint.c
Function: jpeg fdct islow
Header block: BB 3
Loop blocks: BB 3
Nesting level: 1
Innermost: yes
Category: MOD SCHED
Invocations: 17920
Iterations: 143360
Tter/Invoc: 8
Operations: 13780480 (6.73%)
Cycles: 3208256 (2.73%)
Ops/Cyc: 4.30
Stall cycles: 627776 (19.57%)
Scheduling
RecMII ResMII 11 ESC
BB 3 14 12 16 1

Sched length: 144
Operation breakdown

Dynamic counts Static counts

Load: 1146880  (8%) 8 (8%)
Store: 1146880  (8%) 8 (8%)
iAlu: 11325440 (82%) 79 (82%)

gStr
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fAlu:

Cmpp:

Pbr:

Branch:

Total:

0 (0%)

0 (0%)

0 (0%)

161280  (1%)
13780480

Memory operations

L 11
L_12
L_19
20
L_27
28
L 35
.36
S 53
S 56
S 64
S_69
S_105
S 110
S 115
S 120

Size  Stride

NN N DNDNDNDNDNDDNDNDNDNNDNNN
00 00 00 00 00 QO GO Co Co 0o Co 00 GO 00 0o o

LOOP 4  h2v2 downsample jcsa.4

Program:
File:
Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Iter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

BB 4

jpeg_enc
jesample.c
h2v2 downsample jcsa

BB 4
BB 4

1

yes

MOD SCHED
740

378880

512

7199460 (3.51%)
3038515 (2.58%)
2.37

1555 (0.05%)

RecMII ResMII
8 3

Sched length: 4104
Operation breakdown

Load:
Store:
iAlu:
fAlu:

Cmpp:

Pbr:

Branch:

Total:

Dynamic counts
1515520  (21%)
378880 (5%)
4925440  (68%)
0 (0%)
)
)
)

0 (0%
0 (0%
379620 (5%

7199460

Memory operations

40
L_41
43
L_45
S 54

LOOP 5  jpeg fdct islow.5

G 11 8
- n
n
n
n
n
n
n
G 53 8
n
n
n
n
n
n
n
1 ESC
8 1

Static counts

4 (21%)
1 (5%)
13 (68%)
0 (0%)
0 (0%)
0 (0%)
1 (5%)
19

gSize
16

16

gSize

gStr
1

gStr
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Program:
File:
Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Tter/Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

BB 5

jpeg _enc
jfdctint.c

jpeg fdct islow
BB 5

BB 5

1

yes

MOD SCHED
17920

143360

8

14067200 (6.87%)
2867200 (2.44%)
4.91

286720 (10.00%)

RecMIT ResMIT
14 13

Sched length: 144
Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:

Branch:

Total:

Dynamic counts

Memory operations

L 129
130
L_ 137
138
L_145
146
I 153
L_154
S 172
S 176
S 184
S 189
S 225
S 230
S 235
S_ 240

1146880 (8%)

1146880 (8%)

11612160  (83%)

0 (0%)

0 (0%)

0 (0%)

161280 (1%)
14067200

Size  Stride

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

11 ESC
16 1

Static counts

8 (8%)
8 (8%)
81  (83%)
0 (0%)
0 (0%)
0 (0%)
1 (1%)
98
Group nOps
G 129 8
G 172 8
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gSize
114

114

gStr
8
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A.2 Jpeg dec

Innermost loops list

115

# Loop name Dyn Cyc (%acc) Dyn Ops (%acc) OPC Inv Iter Nest Cat Ops LDs STs
1 jpeg idct.8 36,858,048 (40%) 68,989,748 (40%) 1.87 17,920 8 LI D 532 114 107
2 ycc_rgb c.5 15,618,672 (58%) 26,486,499 (56%) 1.70 739 1,024 L1 M 35 10 3
3 jpeg idct.3 15,433,064 (74%) 31,127,431 (74%) 2.02 17,920 8 L1 D 510 110 97
4 h2v2 fanc.8 7,660,055 (83%) 18,871,480 (85%) 2.46 1,480 510 L3 M 25 2 2
5 decompres.13 132,352 (83%) 265,088 (85%) 2.00 12,016 1 L4 W 30 7 0
6 jpeg make.21 4,809 (83%) 12,215 (85%) 2.54 87 17 L2 M 8 1 2
7 ipeg make.10 3,723 (83%) 5220 (85%) 140 69 7 L2 W 10 1 1
8 build ycc.4 3,084 (83%) 6,401 (85%) 2.08 1 256 L1 M 25 4 4
9 jpeg make.6 2,679 (83%) 4,176 (85%) 156 69 7 L2 W 8 1 1
10 start pas.25 1,560 (83%) 1,347 (85%) 0.86 3 64 12 M 7 1 1
11 jpeg make.13 1,326 (83%) 1,893 (85%) 1.43 6 16 L1 M 22 4 4
12 _make funn.9 1,082 (83%) 23 (85%) 0.02 3 1 L2 M 5 1 1
13 prepare r.5 385 (83%) 1,537 (85%) 3.99 1 384 L1 M 4 0 1
14 jpeg make.57 361 (83%) 935 (85%) 0.65 69 1 L2 W 7 0 0
15 jpeg make.42 312 (83%) 720 (85%) 2.31 6 8 L2 D 20 2 0
16 alloc_sma.l4 264 (83%) 227 (85%) 0.86 43 1 L1 W 12 2 0
17 prepare 1.3 957 (83%) 1,025 (85%) 3.9 1 256 L1 M 4 0 1
18 make funn.s 176 (83%) 323 (85%) 1.84 3 13 L3 M 8 1 2
19 set wrapa.18 108 (83%) 83 (85%) 0.77 3 01 L2 M 2 4 4
20 alloc_sar.12 98 (83%) 225 (85%) 2.30 5 8 L2 M 5 0 1
21 set wrapa.4 84 (83%) 156 (85%) 1.86 3 1 12 W 57 14 4
92 set botto.10 74 (83%) 105 (85%) 1.42 3 1 LI W 43 9 2
93 jinit mar.3 68 (83%) 129 (85%) 1.90 1 16 L1 M 8 1 1
94 per scan .22 48 (83%) 75 (85%) 1.56 3 2 LI W 14 1 2
95 make funn.7 44 (83%) 99 (85%) 2.25 3 02 L2 M 12 2 2
2 get sos j.46 36 (83%) 36 (85%) 1.00 3 2 12 D 8 1 0
27 set botto.9 34 (83%) 51 (85%) 1.50 3 2 LI M 6 1 1
28 get soi j.5 17 (83%) 129 (85%) 7.59 1 16 L1 M 8 0 3
29 jinit d_c.12 11 (83%) 51 (85%) 4.64 1 10 L1 M 5 0 1
30 jinit huf.3 10 (83%) 25 (85%) 2.50 1 4 11 M 6 0 2
31 jpeg Crea.9 5 (83%) 25 (85%) 5.00 1 4 11 M 6 0 2
32 jpeg Crea.7 5 (83%) 17 (85%) 3.40 1 4 L1 M 4 0 1
33 jinit mem.9 3 (83%) 13 (85%) 4.33 1 2 1 M 6 0 2

Table A.2. Jpeg dec innermost loops list

Description of the most representative loops

LOOP 0

Program:
File:
Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Iter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

_jpeg_idct islow.8

jpeg dec
jidctint.c

jpeg idct islow
HB 8

HB 8 HB 17

1

yes

DO _ LOOP
17920

143360

8

68989748 (40.25%)
36858048 (40.41%)
1.87

157874 (0.43%)
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wsl pesl per wgt
HB 8 254.87 270 0.78 143360
HB 17 10.12 10 0.88 16071

Sched length: 2048

Operation breakdown

Dynamic counts Static counts
Load: 15092060  (22%) 114 (21%)
Store: 13549800  (20%) 107 (20%)
iAlu: 39615017  (57%) 304 (57%)
fAlu: 0 (0%) 0 (0%)
Cmpp: 143360 (0%) )
Pbr: 302791 (0%) )
Branch: 286720 (0%) )
Total: 68989748 532

Memory operations

xa
N
@
o)
=+
=.
o
@
)
B
=)
=
T
5
o
kel
w

gSize gStr
L 202
L 225
. 206
L. 207
L 209
L 211
L 213
L 215
L 217
L. 220
L 259
L 333
L. 340
L 347
I. 354
L 361
. 368
L 375
I. 382
S 228
S 230
S 232
S 234
S 236
S 238
S 240
S 242
S 334
S 341
S 348
S 355
S 362
S 369
S 376
S 383

e e e e e e e e e e i T =N SN SN ST N T
|

Dynamic count Static count
Spill: 25162322  (36%) 186  (35%)

LOOP 1  ycc_ rgb convert jdco.5

Program: jpeg dec

File: jdcolor.c

Function: ycc_rgb convert jdco
Header block: BB 5

Loop blocks: BB 5

Nesting level: 1

Innermost: yes

Category: MOD SCHED
Invocations: 739
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Iterations:
Iter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

BB 5

756736
1024

26486499 (15.45%)
15618672 (17.12%)
1.70

469172 (3.00%)

RecMIT ResMIT
20 5

Sched length: 20500

Operation breakdown

Load:
Store:
iAlu:
fAlu:

Cmpp:

Pbr:

Branch:

Total:

Dynamic counts
7567360  (29%)
2270208 (9%)
15891456  (60%)
0 (0%)
)
)
)

0 (0%
0 (0%
757475 (3%

26486499

Memory operations

Size  Stride

L 56 1 1
.59 1 1
L 62 1 1
. 65 4 -
L 68 1 -
L 7 4 -
L 73 4 -
L 78 1
L 81 4 -
L 84 1 -
S 69 1 3
S 79 1 3
S 85 1 3
LOOP 2 jpeg idct islow.3

Program: jpeg dec

File: jidctint.c

Function: jpeg idct islow

Header block: HB 3

Loop blocks: HB 3 HB 15

Nesting level: 1

Innermost: yes

Category: DO _LOOP

Invocations: 17920

Iterations: 143360

Iter /Invoc: 8

Operations: 31127431 (18.16%)

Cycles: 15433064 (16.92%)

Ops/Cyc: 2.02

Stall cycles: 756401 (4.90%)

Scheduling

wsl pesl

HB 3 22.10 23
HB 15 244.12 244
Sched length: 819

Operation breakdown

Load:
Store:
iAlu:
fAlu:

Cmpp:

Dynamic counts
6628985  (21%)
5542765  (18%)

18191738  (58%)
0 (0%)
143360 (0%)

11 ESC
20 1

Static counts

10 (29%)
3 (9%)
21 (60%)
0 (0%)
0 (0%)
0 (0%)
1 (3%)
35

Group nOps

G 69 3
n
n
per wgt
0.59 143360
0.88 47143

Static counts

110 (22%)
97 (19%)
296  (58%)
0 (0%)
1 (0%)

gSize

gStr
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Pbr: 333863 (1%) 3 (1%)
Branch: 286720  (1%) 3 (1%)
Total: 31127431 510

Memory operations
Size  Stride Group nOps gSize gStr
L 24 G 38 8 114 8
L 25
L 27
L 29
L 31
. 33
L 35
I. 38
L 75
L 39
L 59
. 63
. 76
L 80
. 98
L 102
I._106
L 110
S 43
S 44
S 45
S 46
S 47
S 48
S 49
S 50
S 159
S 163
S 167
S 171
S 175
S 179
S 183
S 187

G 39 8 228 8

G 43 8 228 8

R R B R B R R R R R R R R R R R R R R R R R R R NN DNNNRNNNN
e el el e e e e e e e e e e e

Dynamic count Static count
Spill: 9310343  (30%) 173 (34%)

LOOP_ 3  h2v2 fancy upsample .8

Program: jpeg dec

File: jdsample.c

Function: h2v2 fancy upsample

Header block: BB 8

Loop blocks: BB 8

Nesting level: 3

Innermost: yes

Category: MOD_SCHED

Invocations: 1480

Tterations: 754800

Iter/Invoc: 510

Operations: 18871480 (11.01%)

Cycles: 7660055 (8.40%)

Ops/Cyc: 2.46

Stall cycles: 853535 (11.14%)

Scheduling

RecMIT ResMII 11 ESC

BB 8 9 4 9 1
Sched length: 4599

Operation breakdown
Dynamic counts Static counts
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Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:
Branch:
Total:

Memory operations

95
L 97
S_109
S 119

1509600
1509600
15096000
0

0

0

756280
18871480

Size
1

1
1
1

Group

G_109

gSize

gStr
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A.3 Mpeg2 enc

Innermost loops list

APPENDIX A. LoopP STATISTICS

# Loop name Dyn Cyc (%acc) Dyn Ops (%acc) OPC Inv Iter Nest Cat Ops LDs STs
1 distl mot.9 237,589,058 (41%) 968,846,938 (58%) 4.08 6,232,293 16 L2 M 10 2 0
2 distl mot.45 22,955,002 (45%) 103,208,256 (64%) 4.50 318,544 16 L2 M 21 5 0
3 fdct.5 14,601,432 (48%) 27,844,608 (66%) 1.91 344,899 8 L2 M 11 2 0
4 fdct.11 14,159,915 (50%) 26,695,680 (67%) 1.89 384,516 8§ L2 M 9 2 0
5 idct.8 12,000,482 (53%) 21,116,739 (68%) 1.76 8,448 4 L1 D 567 133 105
6 distl mot.24 9,118,042 (54%) 37,927,920 (71%) 4.16 164,904 16 L2 M 15 3 0
7 iquant no.5 7,236,353 (55%) 7,828,077 (T1%) 1.08 4,494 64 L1 M 31 2 1
8 distl mot.37 6,807,065 (57%) 37,524,960 (73%) 5.51 163,152 16 L2 M 15 3 0
9 quant non.3 6,402,057 (58%) 7,773,563 (74%) 121 4,494 64 L1 M 31 3 1
10 quant_int.6 5,807,013 (59%) 6,359,104 (74%) 1.10 3,954 63 L1 M 29 3 1
11 iquant in.5 5,269,067 (60%) 5,758,632 (75%) 1.09 3,954 63 L1 M 25 2 1
12 idct.3 4,506,548 (60%) 8,464,749 (75%) 1.88 8448 3 L1 D 332 66 63
13 bdistl mo.4 3,376,753 (61%) 13,111,296 (76%) 3.88 22,528 16 L2 M 37 9 0
14 _add pred 4 2,539,391 (61%) 4,325,376 (76%) 1.70 43112 8 L2 M 14 4 1
15 calcSNR1 .4 2,509,345 (62%) 6,088,320 (76%) 2.43 1,920 264 L3 M 12 2 0
16 det type 12 2,110,992 (62%) 3,435,520 (77%) 1.63 11,264 16 L4 M 19 5 2
17 sub_pred .4 1,311,950 (62%) 2,804,736 (77%) 214 43112 8 L2 M 9 2 1
18 variance .4 1,210,878 (63%) 2,635,776 (77%) 2.18 22,528 16 L2 M 7 1 0
19 pred comp.49 1,098,653 (63%) 1,359,824 (77%) 1.24 11,376 11 L2 M 10 2 1
20 bdist2 mo.4 867,816 (63%) 3,316,512 (77%) 3.82 5,776 16 L2 M 36 9 0
21 var sblk .4 856,510 (63%) 3,289,088 (77%) 3.84 5748 8 L2 M 7 1 0
22 dct_type .15 729,545 (63%) 3,066,624 (78%) 4.20 1,408 128 L3 M 17 2 0
23 pred comp.4d 642,629 (63%) 780,712 (78%) 1.23 4,880 11 L1 M 14 3 1
24 pred comp.15 429,506 (63%) 478,704 (78%) 111 8320 11 L2 M 5 1 1
25 pred comp.61 363,223 (64%) 633,712 (78%) 1.74 2,968 13 L1 M 16 4 1
26 dist2 mot.34 307,986 (64%) 1,369,520 (78%) 4.45 4240 16 L2 M 20 5 0
27 pred comp.10 273,000 (64%) 362,272 (78%) 1.33 3,464 11 L2 M 9 2 1
98 pred comp.56 260,018 (64%) 443,704 (78%) 1.71 1,536 13 L1 M 21 5 1
29 dist2 mot.9 242,505 (64%) 789,096 (78%) 3.25 5,368 16 L2 M 9 2 0
30 dist2 mot.19 236,476 (64%) 883,024 (78%) 3.73 3,840 16 L2 M 14 3 0
31 clearbloc.7 181,458 (64%) 687,440 (78%) 3.79 10,544 16 L2 M 4 0 1
32 fullsearc.69 154,566 (64%) 128,805 (78%) 0.83 25,761 1 L2 W 8 0 0
33 pred comp.32 129,126 (64%) 186,288 (78%) 1.44 1,304 13 L2 M 10 2 1
34 border ex.8 105,097 (64%) 169,088 (78%) 1.61 128 264 L2 M 5 1 1
35 pred comp.48 68,064 (64%) 68,064 (78%) 1.00 11,376 1 L2 W 13 0 0
36  putDC_put.17 50,932 (64%) 59,240 (78%) 1.16 3,528 3 L1 W 5 0 0
37 dist2 mot.29 48,886 (64%) 939,992 (78%) 4.91 1,032 16 L2 M 14 3 0
38 clearbloc.25 47,835 (64%) 174,504 (78%) 3.65 5,272 8§ L2 M 4 0 1
39 clearbloc.18 47,592 (64%) 174,504 (78%) 3.67 5,272 8§ L2 M 4 0 1
40 pred comp.27 38,296 (64%) 50,456 (78%) 1.32 296 12 L2 M 14 3 1
41 clearbloc.17 31,728 (64%) 15,864 (78%) 0.50 5,272 1 L2 W 7 0 0
42 clearbloc.24 31,728 (64%) 15,864 (78%) 050 5272 1 12 W 7 0 0
43 pred comp.45 31,219 (64%) 52,145 (78%) 1.67 4,880 1 L1 W 11 0 0
44 pred comp.62 19,299 (64%) 34,737 (78%) 1.80 2968 1 LI W 12 0 0
45 stats.12 12,672 (64%) 58,353 (78%) 4.60 1,408 6 L2 M 6 0 0
46  putseq.84 12,076 (64%) 20,448 (78%) 1.69 1408 1 L2 W 15 1 0
47 pred comp.57 10,060 (64%) 19,652 (78%) 1.95 1,536 1 L1 W 13 0 0
48  putpict.190 5,939 (64%) 9,633 (78%) 1.62 657 1 L3 W 13 1 0
49 init idct.3 3,075 (64%) 10,755 (78%)  3.50 11,04 L1 M 12 1 1
50 init mpeg.26 3,075 (64%) 10,115 (78%) 3.29 11,024 L1 M 11 1 1
51  putpict.193 2,984 (64%) 9,698 (78%) 3.25 748 3 L3 M 4 0 1
52 readparmf.17 1,096 (64%) 67 (78%)  0.06 1 3 L1 M 22 5 5
53 border ex.T 768 (64%) 384 (78%) 0.50 122 1 L2 W 7 0 0

Table A.3. Mpeg2 enc innermost loops list
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# Loop name Dyn Cyc (%acc) Dyn Ops (%acc) OPC Inv Iter Nest Cat Ops LDs STs
54  predict.3 384 (64%) 320 (78%) 083 64 1 L2 W 8 0 0
55 calc actj.43 384 (64%) 192 (78%) 050 64 1 L2 W 6 0 0
56 dct type .3 384 (64%) 192 (78%) 050 64 1 L2 W 6 0 0
57 putpict.18 336 (64%) 980 (78%) 292 64 3 L3 M 4 0 1
58 readquant.4 136 (64%) 321 (78%) 236 1 64 L1 M 5 1 1
59 readquant.20 65 (64%) 257 (78%) 395 1 64 L1 M 4 0 1
Table A.3. Mpeg2 enc innermost loops (cont.)
Description of the most representative loops
LOOP 0  distl motion i 1920 .9
Program: mpeg2 enc
File: motion.c
Function: dist] motion i 1920
Header block: HB 9
Loop blocks: HB 9
Nesting level: 2
Innermost: yes
Category: MOD SCHED
Invocations: 6232293
Iterations: 99716688
Iter /Invoc: 16
Operations: 968846938 (57.76%)
Cycles: 237589058 (41.41%)
Ops/Cyc: 4.08
Stall cycles: 13226582 (5.57%)
Scheduling
RecMIl ResMII 11 ESC
HB 9 1 2 2 2
Sched length: 36
Operation breakdown
Dynamic counts Static counts
Load: 199433312 (21%) 2 (20%)
Store: 0 (0%) 0 (0%)
iAlu: 545051150  (56%) 6 (60%)
fAlu: 0 (0%) 0 (0%)
Cmpp: 112181238  (12%) 1 (10%)
Pbr: 0 (0%) 0 (0%)
Branch: 112181238  (12%) 1 (10%)
Total: 968846938 10
Memory operations
Size  Stride Group nOps gSize gStr
L 36 1 1
38 1 1

LOOP 1

Program:
File:
Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Tterations:

_dist] motion i 1920 .45

mpeg2_enc

motion.c

dist1 _motion i 1920
HB 45

HB 45

2

yes

MOD_ SCHED

318544

5096704

121
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Iter/Invoc: 16
Operations: 103208256 (6.15%)
Cycles: 22955002 (4.00%)
Ops/Cyc: 4.50
Stall cycles: 5753626 (25.06%)
Scheduling
RecMIl ResMII
HB 45 1 3
Sched length: 54
Operation breakdown
Dynamic counts
Load: 25483520  (25%)
Store: 0 (0%)
iAlu: 66257152  (64%)
fAlu: 0 (0%)
Cmpp: 5733792 (6%)
Pbr: 0 (0%)
Branch: 5733792 (6%)
Total: 103208256
Memory operations
Size  Stride
L 155 1 1
L 158 1 1
L 161 1 1
L 165 1 1
L 170 1 1
LOOP_2  fdct.5
Program: mpeg2 enc
File: fdctref.c
Function: fdct
Header block: BB 5
Loop blocks: BB 5
Nesting level: 2
Innermost: yes
Category: MOD SCHED
Invocations: 344899
Iterations: 2759196
Tter/Invoc: 8
Operations: 27844608 (1.66%)
Cycles: 14601432 (2.54%)
Ops/Cyc: 1.91
Stall cycles: 543960 (3.73%)
Scheduling
RecMII ResMII
BB 5 4 2
Sched length: 40

Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:

Branch:

Total:

Dynamic counts

Memory operations

L_18
22

LOOP 3  fdct.11

4866048  (17%)

0 (0%)

14598144  (52%)

4866048  (17%)

0 (0%)

0 (0%)

3514368  (13%)
27844608

Size  Stride

8 1

2 1

11 ESC

Static counts

5 (24%)
0 (0%)
14 (67%)
0 (0%)
1 (5%)
0 (0%)
1 (5%)

21
Group nOps
G 155 2
G_161 2
11 ESC
4 2

Static counts

N
—
=
%
X

= =0 O NOOO
—
[e=)
X

—

Group

APPENDIX A. LoopP STATISTICS

gSize gStr
2 1
2 1
gSize gStr
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Program: mpeg2 enc
File: fdctref.c
Function: fdct
Header block: BB_ 11
Loop blocks: BB 11
Nesting level: 2
Innermost: yes
Category: MOD_ SCHED
Invocations: 384516
Iterations: 3076128
Iter /Invoc: 8
Operations: 26695680 (1.59%)
Cycles: 14159915 (2.47%)
Ops/Cyc: 1.89
Stall cycles: 372779 (2.63%)
Scheduling
RecMII ResMII
BB 11 4 2
Sched length: 36

Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:
Branch:
Total:

Dynamic counts
5812224  (22%)
0 (0%)
14530560  (54%)
2906112 (11%)
)

)

)

0 (0%

0o (0%

3446784 (13%
26695680

Memory operations

L 51
.56

LOOP 4 idct.8

Program:
File:
Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Iter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

HB 8

Size  Stride
8 1
8 8

mpeg2 enc
idct.c

idct

HB 8

HB 8

1

yes

DO _LOOP
8448

39163

5

21116739 (1.26%)
12000482 (2.09%)
1.76

250379 (2.09%)

wsl pesl
300.10 315

Sched length: 1391
Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:
Branch:
Total:

Dynamic counts
4911481  (23%)
3906285  (18%)

12107748  (57%)
0 (0%)
)
)
)

39157 (0%
78314 (0%
73754 (0%

21116739

11 ESC

Static counts
2 (22%

©—~oo ;o
—
o
X

Group nOps

per wgt
0.78 39163

Static counts

133 (23%)
105 (19%)
324 (57%)
0 (0%)
1 (0%)
2 (0%)
2 (0%)

567

gSize

gStr
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Memory operations
Size  Stride Group nOps gSize gStr
G 232 8 114 8

L_166
L_170
L 173
I 176
L_179
L_182
185
L 232
302
L_306
I 308
L_312
314
318
L_320
I 324
L_326
L 330
L 332
I 336
L 338
L_342
I 344
L 348
S_ 307
S 313
S 319
S 325
S 331
S 337
S_ 343
S 349

1
1
1
1
1 n
1
1
1
0

NN N DNDNDNDNDNDNEDNERDNEAENPERDNEBENESEDNDEDNDESEDNDNDNNNDNDNDN
[ = = = = = e =

e

Dynamic count Static count
Spill: 7671902  (36%) 206 (36%)

LOOP 5  distl motion i 1920 .24

Program: mpeg2 enc

File: motion.c

Function: distl motion i 1920

Header block: HB_ 24

Loop blocks: HB 24

Nesting level: 2

Innermost: yes

Category: MOD_SCHED

Invocations: 164904

Iterations: 2638464

Tter /Invoc: 16

Operations: 37927920 (2.26%)

Cycles: 9118042 (1.59%)

Ops/Cyc: 4.16

Stall cycles: 2851690 (31.28%)

Scheduling

RecMIT ResMII 11 ESC

HB 24 1 2 2 3
Sched length: 38

Operation breakdown

Dynamic counts Static counts

Load: 7915392  (21%) 3 (20%)
Store: 0 (0%) 0 (0%)
iAlu: 23746176  (63%) 10 (67%)
fAlu: 0 (0%) 0 (0%)
Cmpp: 3133176 (8%) )
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Pbr:
Branch:
Total:

Memory operations

L 73
L_76
81

0 (0%) 0 (0%)
3133176 (8%) 1 (7%)
37927920 15
Size  Stride Group nOps gSize
1 1 G 73 2 2
1 1 n
1 1

LOOP_6 _iquant non_intra.5

Program:
File:
Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Iter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

HB 5

mpeg2 enc
quantize.c
iquant non _intra
HB 5

HB 5

1

yes

MOD SCHED
4494

287616

64

7828077 (0.47%)
7236353 (1.26%)
1.08

244433 (3.38%)

RecMII ResMII 11 ESC
24 4 24 1

Sched length: 1560
Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:
Branch:
Total:

Dynamic counts Static counts

Memory operations

L 24
I 34
S 48

573696 (7%) 2 (6%)
286848 (4%) 1 (3%)
5510883  (70%) 23 (74%)
0 (0%) 0 (0%)
1165320  (15%) 4 (13%)
0 (0%) 0 (0%)
291330 (4%) 1 (3%)
7828077 31
Size  Stride Group nOps gSize
2 1
1 1
2 1

LOOP 7  distl motion i 1920 .37

Program:
File:
Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Iter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

mpeg2 enc
motion.c
dist1_motion i 1920
HB 37

HB_ 37

2

yes

MOD SCHED
163152

2610432

16

37524960 (2.24%)
6807065 (1.19%)
5.51

607289 (8.92%)

gStr

gStr

125



126
RecMIl ResMII
HB 37 1 2
Sched length: 38
Operation breakdown
Dynamic counts
Load: 7831296  (21%)
Store: 0 (0%)
iAlu: 23493888  (63%)
fAlu: 0 (0%)
Cmpp: 3099888 (8%)
Pbr: 0 (0%)
Branch: 3099888 (8%)
Total: 37524960
Memory operations
Size  Stride
L 117 1 1
L 119 1 1
L 124 1 1
LOOP 8  quant non_intra.3
Program: mpeg2 enc
File: quantize.c
Function: quant_mnon_intra
Header block: HB 3
Loop blocks: HB 3
Nesting level: 1
Innermost: yes
Category: MOD_SCHED
Invocations: 4494
Iterations: 287616
Iter/Invoc: 64
Operations: 7773563 (0.46%)
Cycles: 6402057 (1.12%)
Ops/Cyc: 1.21
Stall cycles: 284127 (4.44%)
Scheduling
RecMII ResMII
HB 3 21 4
Sched length: 1365
Operation breakdown
Dynamic counts
Load: 860544  (11%)
Store: 286848 (4%)
iAlu: 4586861  (59%)
fAlu: 0 (0%)
Cmpp: 1747980  (22%)
Pbr: 0 (0%)
Branch: 291330 (4%)
Total: 7773563
Memory operations
Size  Stride
L 17 2 1
L 20 1 1
. 36 4 0
S 48 2 1
LOOP 9  quant intra.6
Program: mpeg2 enc
File: quantize.c
Function: quant_intra
Header block: HB 6
Loop blocks: HB 6

11 ESC

Static counts

3 (20%)
0 (0%)
10 (67%)
0 (0%)
1 (7%)
0 (0%)
1 (7%)
15
Group nOps
11 ESC
21 1

Static counts

3 (10%)
1 (3%)
20 (65%)
0 (0%)
6 (19%)
0 (0%)
1 (3%)
31
Group nOps

APPENDIX A. LoopP STATISTICS

gSize gStr

gSize gStr
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Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Iter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

HB 6

1
yes

MOD SCHED
3954

249102

63

6359104 (0.38%)
5807013 (1.01%)
1.10

222885 (3.84%)

RecMII ResMII
22 4

Sched length: 1408
Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:
Branch:
Total:

Dynamic counts
749574 (12%)
249858 (4%)
3836728  (60%)
0 (0%)
1269120  (20%)
)

)

0 (0%
253824 (4%
6359104

Memory operations

L 35
.38
L_59
s 71

Size  Stride
2 1

1 1
4 0
2 1

11 ESC
22 1

Static counts

3 (10%)
1 (3%)
19 (66%)
0 (0%)
5 (17%)
0 (0%)
1 (3%)
29

gSize

gStr
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A.4 Mpeg2 dec

Innermost loops list

# Loop name Dyn Cyc (%acc) Dyn Ops (%acc) OPC Inv Tter Nest Cat Ops LDs STs
1 Fast IDCT.8 7,054,772 (15%) 12,637,191 (15%) 1.79 7,920 3 L1 D 567 133 105
2 Fast IDCT.3 2,759,648 (22%) 5,319,957 (21%) 1.93 7,920 2 L1 D 332 66 63
3 Add Block.31 1,600,930 (25%) 2,539,680 (24%) 1.59 29,456 8§ L2 M 12 4 1
4 form comp.58 995,785 (27%) 1,470,272 (25%) 1.48 12,352 11 L2 M 10 2 1
5 form comp.50 889,066 (29%) 1,133,312 (27%) 1.27 5,152 11 L1 W 29 3 2
6 form comp.10 785524 (31%) 987,392 (28%) 1.26 5872 12 LI W 24 2 2
7 Add Block.36 715,310 (32%) 945,120 (29%) 1.32 10,961 7 L2 M 12 3 1
8 Clear Blo.3 514,800 (34%) 2,035,440 (31%) 3.95 7,920 64 LI M 4 0 1
9 form comp.18 388,284 (34%) 761,536 (32%) 1.96 12,736 11 L1 M 5 1 1
10 form comp.73 254,821 (35%) 522,736 (33%) 2.05 2,544 12 L2 M 16 4 1
11 _form comp.38 235644 (35%) 416,592 (33%) 1.77 3,152 13 L1 M 10 2 1
12 form comp.65 218,971 (36%) 368,640 (34%) 1.68 928 13 L2 W 38 7 2
13 form comp.30 214,640 (36%) 291,840 (34%) 1.36 1,200 12 L2 W 27 3 2
14 form comp.19 85,963 (37%) 124,924 (34%) 1.45 12,736 1 L1 W 10 0 0
15 form comp.9 37,804 (37%) 57,620 (34%) 152 5872 1 L1 W 10 0 0
16 form comp.49 33,064 (37%) 55,672 (34%) 1.68 5,152 1 L1 W 11 0 0
17 Flush Buf.15 27,613 (37%) 24,588 (34%) 0.89 1,311 1 L1 M 17 5 2
18 form comp.37 20,456 (37%) 34,136 (34%) 1.67 3,52 1 L1 W 11 0 0
19 Fill Buff.10 9,310 (37%) 10,270 (34%) 1.10 1 489 L1 M 21 4 4
20 Initializ.3 3,609 (37%) 10,755 (34%) 2.98 11,024 L1 M 12 1 1
21 _ Initializ.5 3,105 (37%) 10,115 (34%) 3.26 11,024 L1 M 11 1 1
22~ Update Pi.3 710 (37%) 248 (34%) 0.35 4 3 L1 M 23 5 5
23 sequence .17 650 (37%) 1,089 (34%) 1.68 1 64 L1 M 17 4 2
24 ~sequence .7 260 (37%) 577 (34%)  2.22 1 64 LI M 9 2 1
25 sequence .14 260 (37%) 449 (34%) 1.73 1 64 L1 M 7 1 1
26 Fill Buff.8 15 (37%) 18 (34%) 1.20 1 2 L1 w 9 1 1

Table A.4. Mpeg2 dec innermost loops list

Description of the most representative loops

LOOP 0  Add Block getpic i 1.31

Program: mpeg2 dec
File: getpic.c
Function: Add_Block getpic i 1

Header block: BB 31
Loop blocks: BB 31
Nesting level: 2

Innermost: yes
Category: MOD_SCHED
Invocations: 29456
Iterations: 235648
Iter/Invoc: 8
Operations: 2539680 (2.93%)
Cycles: 1600930 (3.51%)
Ops/Cyc: 1.59
Stall cycles: 77122 (4.82%)
Scheduling
RecMII ResMII 11 ESC
BB 31 6 2 6 1
Sched length: 54
Operation breakdown
Dynamic counts Static counts
Load: 831168  (33%) 4 (33%)

Store: 207792 (8%) 1 (8%)
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iAlu: 1246752 (49%) 6
fAlu: 0 (0%) 0
Cmpp: 0 (0%) 0
Pbr: 0 (0%) 0
Branch: 253968  (10%) 1
Total: 2539680 12
Memory operations
Size  Stride Group
L 175 4 0
L 176 2 1
L 177 1 1
L 180 1 -
S 181 1 1
LOOP 1  form component predi.58
Program: mpeg2 dec
File: recon.c
Function: form component predi
Header block: BB 58
Loop blocks: BB 58
Nesting level: 2
Innermost: yes
Category: MOD SCHED
Invocations: 12352
Iterations: 145792
Iter /Invoc: 12
Operations: 1470272 (1.70%)
Cycles: 995785 (2.18%)
Ops/Cyc: 1.48
Stall cycles: 205065 (20.59%)
Scheduling
RecMIl ResMII 11
BB 58 5 2 5
Sched length: 64

Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:
Branch:
Total:

Dynamic counts

Memory operations

L_231
234
S_239

291584  (20%) 2
145792  (10%) 1
874752  (60%) 6
0 (0%) 0
0 (0%) 0
0 (0%) 0
158144  (11%) 1
1470272 10
Size  Stride Group

1 1

1 1

1 1

LOOP 2  form component predi.50

Program:
File:
Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Iter /Invoc:

mpeg2 dec

recon.c

form component predi
HB_50

HB 50 BB 52 HB 116
1

yes

WHILE LOOP

5152

59648

12

ESC

Static counts

gSize

gSize

gStr

gStr
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Operations: 1133312 (1.31%)
Cycles: 889066 (1.95%)
Ops/Cyc: 1.27
Stall cycles: 108490 (12.20%)
Scheduling
wsl pesl per wgt
HB 50 13.09 13 0.91 59648
BB 52 1.00 1 1.00 0
HB 116 9.00 9 1.00 0
Sched length: 152
Operation breakdown
Dynamic counts Static counts
Load: 178944  (16%) 3 (10%)
Store: 59648 (5%) 2 (7%)
iAlu: 536832  (47%) 13 (45%)
fAlu: 0 (0%) 0 (0%)
Cmpp: 119296  (11%) 3 (10%)
Pbr: 119296  (11%) 4 (14%)
Branch: 119296  (11%) 4 (14%)
Total: 1133312 29
Memory operations
Size  Stride Group nOps gSize gStr
L 194 1 1
L 196 1 1
L 199 1 1
S 212 1 1
S 590 1 1
LOOP 3  form component predi.10
Program: mpeg2 dec
File: recon.c
Function: form component predi
Header block: HB 10
Loop blocks: HB_10 BB_12 HB_114
Nesting level: 1
Innermost: yes
Category: WHILE _LOOP
Invocations: 5872
Iterations: 70528
Iter/Invoc: 12
Operations: 987392 (1.14%)
Cycles: 785524 (1.72%)
Ops/Cyc: 1.26
Stall cycles: 74372 (9.47%)
Scheduling
wsl pesl per wgt
HB 10 10.08 10 0.92 70528
BB 12 1.00 1 1.00 0
HB 114 9.00 9 1.00 0
Sched length: 121
Operation breakdown
Dynamic counts Static counts
Load: 141056  (14%) 2 (8%)
Store: 70528 (7%) 2 (8%)
iAlu: 352640  (36%) 9 (38%)
fAlu: 0 (0%) 0 (0%)
Cmpp: 141056  (14%) 3 (12%)
Pbr: 141056  (14%) 4 (17%)
Branch: 141056  (14%) 4 (17%)
Total: 987392 24
Memory operations
Size  Stride Group nOps gSize gStr

L 64 1 1
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L_66 1 1
S 76 1 1
S_ 583 1 1

LOOP 4  Add Block getpic i 1.36

Program: mpeg2 dec
File: getpic.c
Function: Add_Block getpic i

Header block: BB _ 36
Loop blocks: BB 36
Nesting level: 2

Innermost: yes
Category: MOD SCHED
Invocations: 10961
Iterations: 87694
Iter /Invoc: 8
Operations: 945120 (1.09%)
Cycles: 715310 (1.57%)
Ops/Cyc: 1.32
Stall cycles: 53726 (7.51%)
Scheduling
RecMIl ResMII
BB 36 7 2
Sched length: 63

Operation breakdown
Dynamic counts

Load: 231984  (25%)
Store: 77328 (8%)
iAlu: 541296 (57%)
fAlu: 0 (0%)
Cmpp: 0 (0%)
Pbr: 0 (0%)
Branch: 94512 (10%)
Total: 945120

Memory operations
Size  Stride

L_201 4 0
L_202 2 1
205 1 -
s 211 1 1

LOOP 5  Clear Block getpic i.3

Program: mpeg2 dec
File: getpic.c
Function: Clear Block getpic_i

Header block: BB 3
Loop blocks: BB 3
Nesting level: 1

Innermost: yes
Category: MOD SCHED
Invocations: 7920
Iterations: 506880
Iter /Invoc: 64
Operations: 2035440 (2.35%)
Cycles: 514800 (1.13%)
Ops/Cyc: 3.95
Stall cycles: 0 (0.00%)
Scheduling
RecMII ResMII
BB 3 1 1
Sched length: 65

Operation breakdown

1

11 ESC

Static counts
3 (25%

N—=O OO~

Group nOps gSize

11 ESC

gStr
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Dynamic counts Static counts
Load: 0 (0%) 0 (0%)
Store: 506880  (25%) 1 (25%)
iAlu: 1013760  (50%) 2 (50%)
fAlu: 0 (0%) 0 (0%)
Cmpp: 0 (0%) 0 (0%)
Pbr: 0 (0%) 0 (0%)
Branch: 514800 (25%) 1 (25%)
Total: 2035440 4

Memory operations
Size  Stride Group nOps gSize gStr
S 16 2 1
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A.5 Gsm_enc

Innermost loops list
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# Loop name Dyn Cyc (%acc) Dyn Ops (%acc) OPC Inv Iter Nest Cat Ops LDs STs
1 Short ter.5 18,440,000 (20%) 51,484,480 (22%) 2.79 147,520 8 12 MS 47 2 1
2 Calculati.27 11,152,512 (32%) 88,104,845 (59%) 7.90 3,688 81 L1 MS 310 52 1
3 Autocorre.d2 10,438,884 (43%) 11,632,874 (64%) 1.11 922 152 L1 MS 83 18 9
4  Weighting.3 4,259,728 (48%) 8,124,664 (68%) 1.91 3,688 40 L1 MS 57 9 1
5 TLong term.8 2,721,744 (51%) 2,961,464 (69%) 1.09 3,688 40 L1 MS 22 2 2
6 Gsm_Coder.5 1,360,872 (52%) 2,371,384 (70%) 1.74 3,688 40 L2 MS 18 2 1
7 Reflectio.52 1,097,180 (54%) 1,219,806 (70%) 1.11 6454 4 L2 MS 50 6 2
8 gsm div .11 868,952 (55%) 1,528,864 (71%) 1.76 7,364 15 LI W 15 0 0
9 Calculati.3 634,336 (55%) 2,638,037 (72%) 4.16 3,688 40 L1 MS 20 1 0
10 Calculati.25 604,832 (56%) 1,478,888 (73%) 2.45 3,688 40 L1 MS 10 2 1
11 Autocorre.3 598,495 (57%) 2,301,585 (74%) 3.85 922 160 L1 MS 18 1 0
12 LARp to r.4 390,385 (57%) 634,917 (74%) 1.63 3,688 8 LI D 66 1 4
13 RPE grid .12 376,710 (57%) 800,296 (74%) 2.12 3,688 13 L1 W 17 1 3
14  Calculati.42 324,544 (58%) 1,342,432 (75%) 4.14 3,688 40 L1 MS 9 1 0
15 Autocorre.51 276,146 (58%) 434,473 (75%) 1.57 247 160 L1 W 11 1 1
16 APCM quan.3 236,032 (58%) 894,977 (75%) 3.79 3,688 13 L1 MS 20 1 0
17 Autocorre.24 189,336 (59%) 282,436 (76%) 1.49 196 160 L1 MS 9 1 1
18 Coefficie.4 168,338 (59%) 211,138 (76%) 1.25 922 8§ L1 MS 32 3 2
19 Coefficie.4 167,804 (59%) 211,138 (76%) 1.26 922 8 L1 MS 32 3 2
20 RPE grid .9 154,896 (59%) 435,184 (76%) 2.81 3,688 13 L1 MS 9 1 1
21 _ Coefficie.4 84,824 (59%) 135,534 (76%) 1.60 922 8§ L1 MS 20 2 1
22 Autocorre.45 56,242 (59%) 98,654 (76%) 1.75 922 9 L1 W 12 1 1
23 Autocorre.27 49,266 (59%) 73,491 (76%) 1.49 51 160 L1 MS 9 1 1
24 Autocorre.38 39,646 (59%) 65,462 (76%) 165 922 9 L1 W 8 0 1
25  Reflectio.18 36,880 (59%) 75,604 (76%) 2.05 922 9 L1 MS 9 1 1
26 RPE grid .30 28,233 (59%) 34,255 (76%) 121 1404 1 L1 W 13 0 1
27  Reflectio.22 27,660 (59%) 67,306 (76%) 2.43 922 9 L1 MS 8 1 1
98  Coefficie.4 24,894 (59%) 52,554 (76%) 211 922 8 L1 MS 7 1 1
29 APCM _quan.7 22,801 (60%) 30,745 (76%) 1.35 1,516 1 L1 W 13 0 0
30  Reflectio.20 92,128 (60%) 52,554 (76%) 238 922 7 L1 MS 8 1 1

Table A.5. Gsm _enc innermost loops list

Description of the most representative loops

Short term analysis

LOOP 0  Short term analysis .5
Program: gsm_enc
File: short term.c
Function:
Header block: HB 5
Loop blocks: HB 5

Nesting level: 2

Innermost: yes

Category: MOD_SCHED

Invocations: 147520

Iterations: 1180160

Iter /Invoc: 8

Operations: 51484480 (21.82%)

Cycles: 18440000 (20.01%)

Ops/Cyc: 2.79

Stall cycles: 1180160 (6.40%)

Scheduling

RecMIT ResMII 11

HB 5 13 6 13
Sched length: 117

ESC
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Operation breakdown
Dynamic counts
Load: 2360320 (5%)
Store: 1180160 (2%)
iAlu: 41305600  (80%)
fAlu: 0 (0%)
Cmpp: 5310720  (10%)
Pbr: 0 (0%)
Branch: 1327680 (3%)
Total: 51484480
Memory operations
Size  Stride
L 27 2 1
L 30 2 1
S 35 2 1
LOOP 1  Calculation of the L.27
Program: gsm_enc
File: long term.c
Function: Calculation of the L

Header block: HB_ 27
Loop blocks: HB 27
Nesting level: 1
Innermost: yes
Category: MOD SCHED
Invocations: 3688
Iterations: 298728
Tter/Invoc: 81
Operations: 88104845 (37.34%)
Cycles: 11152512 (12.10%)
Ops/Cyc: 7.90
Stall cycles: 0 (0.00%)
Scheduling
RecMIl ResMII
HB 27 2 36
Sched length: 3024

Operation breakdown

Dynamic counts

Load: 15533856 (17%)
Store: 15388 (0%)
iAlu: 75325620  (82%)
fAlu: 0 (0%)
Cmpp: 309792 (0%)
Pbr: 0 (0%)
Branch: 309792 (0%)
Total: 88104845
Memory operations

Size  Stride
L 111 2 1
L_118 2 -1
L 126 2 1
L 134 2 1
L 142 2 -1
L 150 2 1
158 2 -1
L 166 2 1
L 174 2 1
L 182 2 1
190 2 -1
198 2 -1
L 206 2 1
L 214 2 -1
L 222 2 1
230 2 -1

Static counts

2 (4%)
1 (2%)
39  (83%)
0 (0%)
4 (9%)
0 (0%)
1 (2%)
47
Group nOps
11 ESC
36 3

Static counts

52 (17%)
1 (0%)
255 (82%)
0 (0%)
1 (0%)
0 (0%)
1 (0%)
310
Group nOps
G 111 40
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gSize

gSize
80

gStr

gStr
1
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L_238
. 246
L_254
262
L_270
278
L_286
L_294
302
L_310
318
L_326
T334
L_342
L350
I 358
L_366
374
L_ 382
L 390
L_398
406
L_414
L_422

Spill:

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

Dynamic count
3600124 (4%)

NN DN DND NDDND DND DD DND ND ND ND DND ND ND ND ND DND DND DND DND DND N N

LOOP 2  Autocorrelation lpc .42

Program:
File:
Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Iter/Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

BB 42

gsm_enc
Ipc.c
Autocorrelation Ipc
BB 42

BB 42

1

yes

MOD SCHED

922

140144

152

11632874 (4.93%)
10438884 (11.33%)
1.11

0 (0.00%)

RecMII ResMII
74 11

Sched length: 11322
Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:
Branch:
Total:

Dynamic counts
2522592  (22%)
1261296  (11%)
7707920  (66%)
0 (0%)

)
)
)

0 (0%
0 (0%
141066 (1%

11632874

Memory operations

442
L_449
1. 456
L_ 463
470

Static count

13 (4%)
11 ESC
74 1

Static counts

18 (22%)
9 (11%)
55 (66%)
0 (0%)
0 (0%)
0 (0%)
1 (1%)
83

gSize
36

gStr
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L_477
484
L_491
498
L_440
452
L_459
L_466
473
L_480
I, 487
L_494
501
S_448
S 455
S_462
S_ 469
S 476
S_483
S~ 490
S_497
S 504

LOOP 3

Program:
File:
Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Tter/Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

HB 3

AR R R R RERNNDNDRNDNDNDNDRNDNDN &S &
S OO OO OO0 === -0 0o 0

~ Weighting filter rpe.3

gsm_enc
rpe.c

Weighting filter rpe
HB 3

HB 3

1

yes

MOD SCHED

3688

147520

40

8124664 (3.44%)
4259728 (4.62%)

1.91

781944 (18.36%)

RecMII ResMII
22 8

Sched length: 943
Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:

Branch:

Total:

Dynamic counts

Memory operations

L 14
20
L_26
32
38
L_44
50
L_56
62

1327680  (16%)

147520 (2%)

6195840  (76%)

0 (0%)

302416 (4%)

0 (0%)

151208 (2%)
8124664

Size  Stride

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

G_501 9
n
n
n
n
n
n
n
n
G_ 448 9
n
n
n
n
n
n
n
n
1 ESC
23 1

Static counts

9 (16%)
1 (2%)
44 (77%)
0 (0%)
2 (4%)
0 (0%)
1 (2%)
57
Group nOps
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18

36

gSize

gStr
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LOOP 4  Long term analysis f.8

Program:
File:
Function:

Header block:

Loop blocks:

Nesting level:

Innermost:
Category:
Invocations:
Iterations:
Iter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

HB 8

gsm_enc
long term.c

Long term analysis f
HB_ 8

HB_ 8

1

yes

MOD SCHED

3688

147520

40

2961464 (1.26%)
2721744 (2.95%)

1.09

0 (0.00%)

RecMIl ResMII 11 ESC
18 3 18 1

Sched length: 738
Operation breakdown

Load:
Store:
iAlu:
fAlu:

Cmpp:

Pbr:

Branch:

Total:

Dynamic counts Static counts

Memory operations

L_36
43
S 41
S 58

LOOP 5  Gsm_Coder.5

Program:
File:
Function:

Header block:

Loop blocks:

Nesting level:

Innermost:
Category:
Invocations:
Iterations:
Iter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

HB 5

295040  (10%) 2 (9%)
295040  (10%) 2 (9%)
1917760  (65%) 15 (68%)
0 (0%) 0 (0%)
302416  (10%) 2 (9%)
0 (0%) 0 (0%)
151208 (5%) 1 (5%)
2961464 22
Size  Stride Group nOps gSize
2 1
2 1
2 1
2 1
gsm_enc
code.c
Gsm_ Coder
HB 5
HB 5
2
yes
MOD SCHED
3688
147520
40
2371384 (1.01%)
1360872 (1.48%)
1.74
0 (0.00%)
RecMII ResMII 11 ESC
9 3 9 1

Sched length: 369
Operation breakdown

Load:

Dynamic counts Static counts
295040  (12%) 2 (11%)

gStr
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Store: 147520 (6%) 1 (6%)
iAlu: 1475200  (62%) 12 (67%)
fAlu: 0 (0%) 0 (0%)
Cmpp: 302416  (13%) 2 (11%)
Pbr: 0 (0%) 0 (0%)
Branch: 151208 (6%) 1 (6%)
Total: 2371384 18

Memory operations

Size  Stride Group nOps gSize gStr
L 80 2 1
L_ 82 2 1
S 96 2 1
LOOP 6  Reflection coefficie.52

Program: gsm_enc

File: Ipc.c

Function: Reflection coefficie

Header block: HB 52

Loop blocks: HB_52

Nesting level: 2

Innermost: yes

Category: MOD_SCHED

Invocations: 6454

Iterations: 25816

Iter/Invoc: 4

Operations: 1219806 (0.52%)

Cycles: 1097180 (1.19%)

Ops/Cyc: 1.11

Stall cycles: 0 (0.00%)

Scheduling

RecMIT ResMII 11 ESC

HB 52 34 7 34 1
Sched length: 170

Operation breakdown

Dynamic counts Static counts

Load: 154896  (13%) 6 (12%)
Store: 51632 (4%) 2 (4%)
iAlu: 851928  (70%) 37 (74%)
fAlu: 0 (0%) 0 (0%)
Cmpp: 129080 (11%) 4 (8%)
Pbr: 0 (0%) 0 (0%)
Branch: 32270 (3%) 1 (2%)
Total: 1219806 50

Memory operations

Size  Stride Group nOps gSize gStr

L 194 2 1
L 195 2 0
L 203 2 1
L 224 2 1
L 225 2 0
L 232 2 1
S 220 2 1
S 249 2 1
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A.6 Gsm_dec

Innermost loops list

139

# Loop name Dyn Cyc (%acc) Dyn Ops (%acc) OPC Inv Iter Nest Cat Ops LDs STs
1 _Short ter.6 70,375,431 (82%) 102,670,232 (82%) 1.46 3,688 320 L1 W 131 19 13
2 Postproce.4 4,276,812 (87%) 4,867,238 (85%) 1.14 922 160 L1 W 37 1 1
3 Gsm_Long .16 2,602,389 (90%) 3,108,984 (88%) 1.19 3,688 40 L1 M 23 2 1
4 Gsm_ Long .24 1,339,309 (91%) 3,101,608 (90%) 2.32 3,688 120 L1 M 7 1 1
5 Gsm_Decod.5 453,705 (92%) 1,036,328 (91%) 2.28 3,688 40 L2 M 7 1 1
6 LARp to r.4 390,385 (92%) 634,917 (92%) 1.63 3,688 8 L1 D 66 1 4
7 RPE grid .12 376,710 (93%) 800,296 (92%) 2.12 3,688 13 L1 W 17 1 3
8 Coefficie.4 168,338 (93%) 211,138 (92%) 125 922 8 L1 M 32 3 2
9 Coefficie.4 167,804 (93%) 211,138 (93%) 1.26 922 8 L1 M 32 3 2
10 _ Coefficie.4 84,824 (93%) 135,534 (93%) 1.60 922 8 L1 M 20 2 1
11 RPE grid .30 28,233 (93%) 34,255 (93%) 1.21 1,404 1 L1 W 13 0 1
12 Coefficie.4 24,894 (93%) 52,554 (93%) 211 922 8 L1 M 7 1 1
13 APCM quan.7 22,801 (93%) 30,745 (93%) 135 1,516 1 L1 W 13 0 0
Table A.6. Gsm _dec innermost loops list
Description of the most representative loops
LOOP 0  Short term synthesis.6
Program: gsm_dec
File: short term.c
Function: Short term synthesis
Header block: HB 6
Loop blocks: HB 6 HB 31
Nesting level: 1
Innermost: yes
Category: WHILE LOOP
Invocations: 3688
Iterations: 1180160
Iter /Invoc: 320
Operations: 102670232 (81.53%)
Cycles: 70375431 (81.84%)
Ops/Cyc: 1.46
Stall cycles: 753367 (1.07%)
Scheduling
wsl pesl per wgt
HB 6 56.75 57 0.88 1180160
HB 31 17.95 18 0.97 147520
Sched length: 18878
Operation breakdown
Dynamic counts Static counts
Load: 13129280  (13%) 19 (14%)
Store: 10178880  (10%) 13 (10%)
iAlu: 64613760  (63%) 82 (63%)
fAlu: 0 (0%) 0 (0%)
Cmpp: 9588800 (9%) 9 (7%)
Pbr: 2655360 (3%) 4 (3%)
Branch: 2504152 (2%) 4 (3%)
Total: 102670232 131
Memory operations
Size  Stride Group nOps gSize gStr
L 31 2 -
L 34 2 -
L 190 2 1
S 114 2 -



140 APPENDIX A. LoopP STATISTICS

S 122 2 0
S 129 2 1
Dynamic count Static count
Spill: 19325120  (19%) 26 (20%)
LOOP 1  Postprocessing decod.4
Program: gsm _dec
File: decode.c
Function: Postprocessing decod
Header block: HB 4
Loop blocks: HB 4
Nesting level: 1
Innermost: yes
Category: WHILE _LOOP
Invocations: 922
Iterations: 147520
Tter/Invoc: 160
Operations: 4867238 (3.86%)
Cycles: 4276812 (4.97%)
Ops/Cyc: 1.14
Stall cycles: 576 (0.01%)
Scheduling
wsl pesl per wgt
HB 4 28.99 29 0.99 147520
Sched length: 4638

Operation breakdown

Dynamic counts Static counts

Load: 147520 (3%) 1 (3%)
Store: 147520 (3%) 1 (3%)
iAlu: 3245440  (67%) 26 (70%)
fAlu: 0 (0%) 0 (0%)
Cmpp: 737600  (15%) 5 (14%)
Pbr: 295040 (6%) 2 (5%)
Branch: 294118 (6%) 2 (5%)
Total: 4867238 37

Memory operations

Size  Stride Group nOps gSize gStr
L 21 2 1
S 54 2 1
LOOP_2  Gsm_Long Term Synthe.16

Program: gsm _dec

File: long term.c

Function: Gsm_Long Term Synthe

Header block: HB 16

Loop blocks: HB 16

Nesting level: 1

Innermost: yes

Category: MOD_SCHED

Invocations: 3688

Iterations: 147520

Iter/Invoc: 40

Operations: 3108984 (2.47%)

Cycles: 2602389 (3.03%)

Ops/Cyc: 1.19

Stall cycles: 31853 (1.22%)

Scheduling

RecMII ResMII 11 ESC

HB 16 17 3 17 1

Sched length: 697
Operation breakdown

Dynamic counts Static counts
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Load:
Store:
iAlu:
fAlu:

Cmpp:

Pbr:

Branch:

Total:

295040  (9%)
147520  (5%)
2212800  (71%)
0 (0%)
302416  (10%)
)

)

0 (0%
151208 (5%
3108984

Memory operations

L_73
L 79
S 95

Size  Stride

2 1
2 1
2 1

LOOP 3  Gsm_ Long Term Synthe.24

Program:
File:
Function:

Header block:

Loop blocks:

Nesting level:

Innermost:
Category:
Invocations:
Iterations:
Iter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

BB 24

gsm_dec
long term.c

Gsm Long Term Synthe

BB_ 24
BB_24

1

yes
MOD_SCHED
3688

442560

120

3101608 (2.46%)
1339309 (1.56%)
2.32

565 (0.04%)

RecMII ResMII
3 1

Sched length: 363
Operation breakdown

Load:
Store:
iAlu:
fAlu:

Cmpp:

Pbr:

Branch:

Total:

Dynamic counts

442560  (14%)

442560  (14%)

1770240  (57%)
0 (0%)
)

)

)

0 (0%
0 (0%

446248 (14%

3101608

Memory operations

L_103
S_106

Size  Stride
2 1
2 1

—_
WHEONON~N

[\

Group nOps

—
—

ESC

Static counts
1 (14%

R =R =
—
o
X

Group nOps

gSize

gSize

gStr

gStr
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A.7 Epic_enc

Innermost loops list

# Loop name Dyn Cyc (%acc) Dyn Ops (%acc) OPC Inv  Tter Nest Cat Ops LDs STs
1 _internal .75 24,301,056 (33%) 29,508,864 (39%) 1.21 1,243,968 1 L4 M 11 2 0
2 internal .73 7,463,808 (43%) 3,731,904 (44%) 0.50 1,243,968 1 L4 W 7 0 0
3 quantize .11 1,617,596 (45%) 1,145,883 (46%) 0.71 13 5041 L1 M 19 3 1
4 “main.5 1,048,577 (46%) 1,245,184 (47%) 1.19 16553 L1 W 19 5 1
5 internal .71 937,344 (48%) 1,093,568 (49%) 1.17 156,224 1 L3 W 15 0 1
6 _internal .127 920,832 (49%) 849,408 (50%) 0.92 56,096 1 L4 M 11 2 0
7 _internal .26 920,832 (50%) 849,408 (51%) 0.92 56,096 1 L3 M 11 2 0
8 encode st.7 547,930 (51%) 951,819 (52%) 1.74 13,998 3 L2 W 22 3 2
9 internal .58 471,552 (51%) 809,088 (53%) 1.72 16,256 4 L4 M 11 2 0
10 _internal .93 471,552 (52%) 809,088 (54%) 1.72 16,256 4 L4 M 11 2 0
11 run lengt.5 438,094 (53%) 398,944 (55%) 0.91 3072 18 L2 W 7 1 0
12 quantize .3 408,868 (53%) 557,019 (56%) 1.36 13 5,041 L1 M 10 1 0
13 _internal .16 342,722 (54%) 412,808 (56%) 1.20 7,201 3 L2 W 21 2 2
14 internal .125 336,576 (54%) 168,288 (57%) 0.50 56,096 1 L4 W 7 0 0
15 internal .24 336,576 (55%) 168,288 (57%) 0.50 56,096 1 L3 W 7 0 0
16 reflect1.108 181,602 (55%) 514,656 (57%) 2.83 6,696 1 L2 M 41 2 1
17 huffman e.3 129,321 (55%) 262,145 (58%) 2.03 165,536 L1 M 4 0 1
18 internal .4 129,168 (55%) 53,820 (58%) 0.42 7,201 1 12 W 5 0 0
19 internal .56 97,536 (55%) 48,768 (58%) 0.50 16,256 1 L4 W 7 0 0
20 internal .91 97,536 (55%) 48,768 (58%) 0.50 16,256 1 L4 W 7 0 0
21 reflect1.36 40,176 (56%) 26,784 (58%) 0.67 6,696 1 L2 W 7 0 0
22 internal .54 27,648 (56%) 32,256 (58%) 1.17 4,608 1 L3 W 15 0 1
23 internal .89 27,648 (56%) 18,432 (58%) 0.67 4,608 1 L3 W 12 0 1
24 internal .123 24,768 (56%) 16,512 (58%) 0.67 4,128 1 L3 W 12 0 1
25 internal .22 24,768 (56%) 16,512 (58%) 0.67 4,128 1 L2 W 14 1 1
26 _internal .11 17,664 (56%) 18,816 (58%) 1.07 992 1 L3 M 11 2 0
27 “internal 112 17,664 (56%) 18,816 (58%) 1.07 992 1 L3 M 11 2 0
28 internal .142 17,664 (56%) 18,816 (58%) 1.07 992 1 L3 M 11 2 0
29 internal .41 17,664 (56%) 18,816 (58%) 1.07 992 1 L2 M 11 2 0
30 internal .69 15,984 (56%) 17,760 (58%) 1.11 1,776 1 L2 W 20 4 0
31 insert in.13 15,605 (56%) 16,320 (58%) 1.05 106 14 L1 W 11 3 0
32 reflectl.21 10,368 (56%) 49,248 (58%) 4.75 648 15 LI M 5 0 1
33 _internal .110 5,952 (56%) 2,976 (58%) 0.50 992 1 L3 W 7 0 0
34 internal .140 5,952 (56%) 2,976 (58%) 0.50 992 1 L3 W 7 0 0
35 internal .39 5,952 (56%) 2,976 (58%) 0.50 992 1 L2 W 7 0 0
36 _internal .9 5,952 (56%) 2,976 (58%)  0.50 992 1 L3 W 7 0 0
37 pack tree.4 1,035 (56%) 1,449 (58%) 1.40 69 2 L1 M 10 2 2
38 parse epi.90 117 (56%) 85 (58%) 0.73 1 4 L1 W 22 3 1

Table A.7. Epic_enc innermost loops list

Description of the most representative loops

LOOP 0  internal filter.75

Program: epic_enc
File: convolve.c
Function: internal filter

Header block: HB_ 75

Loop blocks: HB 75
Nesting level: 4

Innermost: yes

Category: MOD_SCHED
Invocations: 1243968
Iterations: 2343360
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Iter /Invoc: 2
Operations: 29508864 (39.22%)
Cycles: 24301056 (32.72%)
Ops/Cyc: 1.21
Stall cycles: 0 (0.00%)
Scheduling
RecMII ResMII
HB_75 4 2
Sched length: 20

Operation breakdown

Load:
Store:
iAlu:
fAlu:

Cmpp:

Pbr:

Branch:

Total:

Dynamic counts
4686720  (16%)
0 (0%)
11716800  (40%)
7030080  (24%)
)

)

)

0 (0%

0 (0%

6075264  (21%
29508864

Memory operations

L322
L_324

Size  Stride
4 1
4 1

LOOP 1  internal filter.73

Program:
File:
Function:

epic_enc
convolve.c
internal filter

Header block: HB 73
Loop blocks: HB 73
Nesting level: 4
Innermost: yes
Category: WHILE _LOOP
Invocations: 1243968
Iterations: 1243968
Iter /Invoc: 1
Operations: 3731904 (4.96%)
Cycles: 7463808 (10.05%)
Ops/Cyc: 0.50
Stall cycles: 0 (0.00%)
Scheduling
wsl pesl
HB 73 6.00 6
Sched length: 6

Operation breakdown

Load:
Store:
iAlu:
fAlu:

Cmpp:

Pbr:

Branch:

Total:

Dynamic counts
0 (0%)

0 (0%)
1243968  (33%)
0 (0%)
2487936  (67%)
0 (0%)

0 (0%)
3731904

Memory operations

Size  Stride

LOOP_2  quantize image.11

Program:
File:
Function:
Header block:

epic_enc
quantize.c
quantize image
HB 11

11 ESC

Static counts
2 (18%

—— oo wwmo
—
o
X

Group nOps

per wgt
1.00 1243968

Static counts

0 (0%

NN WO
—
%)
©
X

Group nOps

gSize

gSize

gStr

gStr
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Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Iter/Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

HB 11

HB 11
1

yes

MOD SCHED
13

65536

5041

1145883 (1.52%)
1617596 (2.18%)
0.71

44420 (2.75%)

RecMIT ResMIT
24 3

Sched length: 121014
Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:
Branch:
Total:

Dynamic counts

Memory operations

L 56
L 133
L 135
S 71
LOOP 3  main.b
Program:
File:
Function:

Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Tter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

HB 5

163499  (14%)
65536 (6%)
491179  (43%)
294571 (26%)
65549 (6%)
0 (0%)
65549 (6%)
1145883
Size  Stride
4 1
8 0
8 0
2 1
epic_enc
epic.c
main
HB 5
HB 5
1
yes

WHILE LOOP
1

65536

65536

1245184 (1.66%)
1048577 (1.41%)
1.19

0 (0.00%)
wsl pesl
16.00 16

Sched length: 1048577
Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:
Branch:
Total:

Dynamic counts

327680  (26%)
65536  (5%)
589824 (47%)
65536  (5%)
65536  (5%)
65536  (5%)
65536  (5%)
1245184

Memory operations

11 ESC
24 1

Static counts

3 (16%)
1 (5%)

8  (42%)

5 (26%)

1 (5%)

0 (0%)

1 (5%)

19

Group nOps
per wgt
1.00 65536

Static counts
5  (26%

Rl i NN
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gSize

gStr
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Size  Stride

I. 88 4 0
L 90 4 -
L 99 4 0
L 100 4 0
I. 686 4 0
S 96 4 -
LOOP 4  internal filter.71
Program: epic_enc
File: convolve.c
Function: internal filter
Header block: HB_ 71
Loop blocks: HB 71
Nesting level: 3
Innermost: yes
Category: WHILE LOOP
Invocations: 156224
Iterations: 156224
Iter /Invoc: 1
Operations: 1093568 (1.45%)
Cycles: 937344 (1.26%)
Ops/Cyc: 1.17
Stall cycles: 0 (0.00%)
Scheduling
wsl pesl
HB 71 6.00 6
Sched length: 6

Operation breakdown

Load:
Store:
iAlu:
fAlu:

Cmpp:

Pbr:

Branch:

Total:

Dynamic counts
0 (0%)

0 (0%)
624896  (57%)
156224  (14%)
312448  (29%)
)

)

0 (0%
0 (0%
1093568

Memory operations

S 343

Size  Stride
4 1

LOOP _5  internal filter.127

Program:
File:
Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Iter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

HB 127

epic_enc
convolve.c
internal filter
HB 127

HB 127

4

yes

MOD_ SCHED
56096

61920

1

849408 (1.13%)
920832 (1.24%)
0.92

0 (0.00%)

RecMIT ResMIT
4 2

Sched length: 16

Group nOps gSize

per wgt
1.00 156224

Static counts

0 (0%

U= = N = O =
—
—
w
X

Group nOps gSize

11 ESC

gStr

gStr
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Operation breakdown

Dynamic counts Static counts

Load: 123840 (15%) 2 (18%)
Store: 0 (0%) 0 (0%)
iAlu: 309600  (36%) 5  (45%)
fAlu: 185760  (22%) 3 (27T%)
Cmpp: 0 (0%) 0 (0%)
Pbr: 0 (0%) 0 (0%)
Branch: 230208  (27%) 1 (9%)
Total: 849408 11
Memory operations
Size  Stride Group nOps gSize gStr
L 495 4 1
L 497 4 1
LOOP 6  internal filter.26
Program: epic_enc
File: convolve.c
Function: internal filter
Header block: HB_ 26
Loop blocks: HB 26
Nesting level: 3
Innermost: yes
Category: MOD_SCHED
Invocations: 56096
Iterations: 61920
Tter/Invoc: 1
Operations: 849408 (1.13%)
Cycles: 920832 (1.24%)
Ops/Cyc: 0.92
Stall cycles: 0 (0.00%)
Scheduling
RecMII ResMII 11 ESC
HB 26 4 2 4 3
Sched length: 16
Operation breakdown
Dynamic counts Static counts
Load: 123840 (15%) 2 (18%)
Store: 0 (0%) 0 (0%)
iAlu: 309600  (36%) 5 (45%)
fAlu: 185760  (22%) 3 (27T%)
Cmpp: 0 (0%) 0 (0%)
Pbr: 0 (0%) 0 (0%)
Branch: 230208  (27%) 1 (9%)
Total: 849408 11
Memory operations
Size  Stride Group nOps gSize gStr
L 151 4 1
L 153 4 1
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A.8 Epic dec

Innermost loops list
# Loop name Dyn Cyc (%acc) Dyn Ops (%acc) OPC Inv  Iter Nest Cat Ops LDs STs
1 _unquantiz.3 1,289,469 (18%) 1,114,151 (13%) 0.86 13 5041 L1 M 21 1 3
2 main.18 1,179,666 (34%) 1,114,015 (25%) 0.94 165536 L1 M 19 4 3
3 collapse .9 626,525 (43%) 1,149,793 (38%) 1.84 236 90 L3 M 54 10 9
4 collapse .56 412,965 (49%) 855,097 (47%) 2.07 3,254 1 L6 W 214 50 40
5 collapse .147 364,726 (54%) 577,318 (54%) 1.58 235 90 L3 W 212 48 38
6 _internal .16 345,804 (59%) 412,808 (59%) 1.19 7,201 3 L2 W 21 2 2
7 collapse .102 224,085 (62%) 463,910 (64%) 2.07 1,949 1 L4 W 214 50 40
8 internal .4 191,592 (65%) 53,820 (64%) 0.28 7,201 1 12 W 5 0 0
9 write pgm.3 131,074 (67%) 458,753 (70%) 3.50 165536 L1 M 7 1 1
10 collapse .4 87,628 (68%) 348,164 (73%) 3.97 421760 L2 M 4 0 1
11 run_lengt.6 62,704 (69%) 290,676 (77%) 4.64 5,711 9 L2 M 5 0 1
12 _collapse .191 43,014 (69%) 129,027 (78%) 3.00 3 7,068 L2 M 6 1 1
13 collapse .263 17,001 (69%) 35,872 (79%) 2.11 236 1 L3 W 165 29 26
14 collapse .268 14,632 (70%) 32,096 (79%) 2.19 236 1 L3 W 151 22 26
15 collapse .273 14,632 (70%) 32,096 (79%) 2.19 236 1 L3 W 151 22 26
16 _ collapse .278 14,632 (70%) 32,096 (80%) 2.19 236 1 L3 W 151 22 26
17 collapse .19 4,849 (70%) 8,976 (80%) 1.85 4 59 L2 M 38 7 6
18 collapse .72 4,800 (70%) 7,374 (80%) 1.54 4 59 L2 M 38 7 6
19 collapse .125 4,800 (70%) 7,246 (80%) 151 4 59 L2 M 38 7 6
20 collapse .178 4,800 (70%) 7,230 (80%) 1.51 4 59 L2 M 38 7 6
21 collapse_.171 4,800 (70%) 7,146 (80%) 149 4 59 L2 M 38 7 6
22 collapse .65 4,800 (70%) 6,876 (80%) 1.43 4 59 L2 M 38 7 6
23 collapse .118 3,840 (71%) 6,913 (80%) 1.80 4 59 L2 M 37 7 6
24 collapse .26 3,153 (71%) 8,032 (80%) 255 4 59 L2 M 34 7 6
25 collapse .33 2,645 (71%) 5,436 (80%) 2.06 4 59 L2 M 23 4 3
26 collapse .79 2,640 (71%) 4611 (80%) 175 4 59 L2 M 23 4 3
27 collapse .86 2,640 (71%) 4,403 (80%) 1.67 4 59 L2 M 21 4 3
28 collapse .40 2,400 (71%) 5200 (81%) 217 4 59 L2 M 22 4 3
29 collapse .132 2,400 (71%) 4,618 (81%) 1.92 4 59 L2 M 22 4 3
30 collapse .164 2,400 (71%) 4546 (81%) 1.89 4 59 L2 M 22 4 3
31 collapse .111 1,440 (71%) 4341 (81%) 301 4 59 L2 M 23 4 3
32 collapse .157 1,200 (71%) 4,105 (81%) 3.42 4 59 L2 M 22 4 3

Table A.8. Epic_ dec innermost loops list

Description of the most representative loops

LOOP 0

Program:
File:
Function:

Header block:
Loop blocks:
Nesting level:

Innermost:
Category:

Invocations:

Iterations:
Iter /Invoc:

Operations:

Cycles:
Ops/Cyc:

Stall cycles:

Scheduling

_unquantize image.3

epic_dec
quantize.c
unquantize image
HB 3

HB 3

1

yes
MOD _ SCHED
13

65536

5041

1114151 (12.50%)
1289469 (18.00%)
0.86

44038 (3.42%)

RecMII ResMII 11

ESC
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HB 3

Sched length:

19 3
95802

Operation breakdown

Dynamic counts

19 1

Static counts

APPENDIX A. LoopP STATISTICS

Load: 65536 (6%) 1 (5%)
Store: 65536 (6%) 3 (14%)
iAlu: 458752  (41%) 9 (43%)
fAlu: 327680  (29%) 5 (24%)
Cmpp: 131098  (12%) 2 (10%)
Pbr: 0 (0%) 0 (0%)
Branch: 65549 (6%) 1 (5%)
Total: 1114151 21

Memory operations

Size  Stride Group nOps gSize gStr
L 22 2 1
S 32 4 1
S 45 4 1
S 48 4 1
LOOP 1  main.18

Program: epic_dec

File: unepic.c

Function: main

Header block: HB 18

Loop blocks: HB 18

Nesting level: 1

Innermost: yes

Category: MOD_SCHED

Invocations: 1

Iterations: 65536

Iter/Invoc: 65536

Operations: 1114015 (12.50%)

Cycles: 1179666 (16.46%)

Ops/Cyc: 0.94

Stall cycles: 0 (0.00%)

Scheduling

RecMIl ResMII 11 ESC

HB 18 18 3 18 1
Sched length: 1179666

Operation breakdown

Dynamic counts Static counts

Load: 262094  (24%) 4 (21%)
Store: 65536 (6%) 3 (16%)
iAlu: 327630  (29%) 5  (26%)
fAlu: 262144 (24%) 4 (21%)
Cmpp: 131074  (12%) 2 (11%)
Pbr: 0 (0%) 0 (0%)
Branch: 65537 (6%) 1 (5%)
Total: 1114015 19

Memory operations

Size  Stride Group nOps gSize gStr

L. 390 4 1
L 392 8 0
. 652 8 0
L 654 8 0
S 398 4 1
S 403 4 1
S 408 4 1

LOOP 2  collapse pyr.9
Program: epic_dec
File: collapse pyr.c
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Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Iter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

HB 9

collapse pyr
HB 9

HB 9

3

yes

MOD_ SCHED
236

21284

90

1149793 (12.90%)
626525 (8.74%)
1.84

2445 (0.39%)

RecMIT ResMIT
28 7

Sched length: 2644
Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:

Branch:

Total:

Dynamic counts
212840  (19%)
191547  (17%)
702366  (61%)
0 (0%)
)
)
)

21520 (2%

0 (0%

21520 (2%
1149793

Memory operations

L_47
51
L_60
67
L_77
.86
L 93
104
L_110
L_117
S 54
S 64
s 71
S_80
S 90
s 97
s_107
S 114
S 121

Size  Stride

R R R BRRRRRERRARARBRRBRBRBRPBRB~PB
NN DN DN NN N N N ND ND ND ND ND DD N N ND =

LOOP 3  collapse pyr.56

Program:
File:
Function:
Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Iter/Invoc:
Operations:
Cycles:
Ops/Cyc:

epic_dec
collapse pyr.c
collapse pyr
HB 56

HB 56

6

yes

WHILE LOOP
3254

3996

1

855097 (9.59%)
412965 (5.76%)
2.07

11 ESC
29 1

Static counts

10 (19%)
9 (17%)
33 (61%)
0 (0%)
1 (2%)
0 (0%)
1 (2%)
54

Group nOps

G 64 3
n
n

G_90 3
n
n

G 114 3

gSize

12

12

12

gStr
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Stall cycles: 0 (0.00%)
Scheduling
wsl pesl
HB_ 56 103.78 104
Sched length: 127
Operation breakdown
Dynamic counts
Load: 199800  (23%)
Store: 159840  (19%)
iAlu: 471528  (55%)
fAlu: 0 (0%)
Cmpp: 7992 (1%)
Pbr: 7992 (1%)
Branch: 7945 (1%)
Total: 855097
Memory operations
Size  Stride
L 466 4 -
I._475 4 -
L 482 4 -
. 492 4 -
L 501 4 -
L 508 4 -
L 519 4 -
L 525 4 -
L 532 4 -
L 3497 4 1
S 469 4 -
S 479 4 -
S 486 4 -
S 495 4 -
S 505 4 -
S 512 4 -
S 522 4 -
S 529 4 -
S 536 4 -
Dynamic count
Spill: 283716  (33%)
LOOP 4  collapse pyr.147
Program: epic_dec
File: collapse pyr.c
Function: collapse pyr

Header block:
Loop blocks:
Nesting level:
Innermost:
Category:
Invocations:
Iterations:
Tter /Invoc:
Operations:
Cycles:
Ops/Cyc:
Stall cycles:
Scheduling

HB 147
HB 148
Sched length:

HB_ 147

HB 147 HB 148
3

yes

WHILE LOOP
235

21284

90

577318 (6.48%)
364726 (5.09%)

1.58
0 (0.00%)
wsl pesl
8.66 9
97.98 98
1546

Operation breakdown

Load:
Store:

Dynamic counts
107811 (19%)
69958  (12%)

per wgt
0.80 3996

Static counts

50  (23%)
40  (19%)
118 (55%)
0 (0%)
2 (1%)
2 (1%)
2 (1%)

214
Group nOps
G 479 3
G 505 3
G 529 3

Static count

71 (33%)
per wgt
0.90 21284
0.99 1841

Static counts
48  (23%)
38  (18%)

APPENDIX A. LoopP STATISTICS

gSize

12

12

12

gStr
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iAlu:
fAlu:
Cmpp:
Pbr:
Branch:
Total:

Memory operations

L1296
L1300
1309
L1316
1326
L1335
1342
L1353
1359
. 1366
S_1303
S 1313
S 1320
S 1329
S 1339
S 1346
S 1356
S_1363
S_1370

Spill:

266362  (46%)

0 (0%)

42568 (7%)

46250 (8%)

44369 (8%)
577318

Size  Stride

4 1

4 _

4 _

4 _

4 _

4 _

4 _

4 _

4 _

4 _

4 _

4 _

4 _

4 _

4 _

4 _

4 _

4 _

4 _

Dynamic count
123347  (21%)

LOOP_5 _internal int transpo.16

Program:
File:
Function:
Header block:

epic_dec

collapse pyr.c
internal int transpo
HB 16

Loop blocks: HB 16
Nesting level: 2
Innermost: yes
Category: WHILE LOOP
Invocations: 7201
Iterations: 21752
Iter /Invoc: 3
Operations: 412808 (4.63%)
Cycles: 345804 (4.83%)
Ops/Cyc: 1.19
Stall cycles: 74048 (21.41%)
Scheduling
wsl pesl
HB 16 12.33 12
Sched length: 37

Operation breakdown

Load:
Store:
iAlu:
fAlu:
Cmpp:
Pbr:
Branch:
Total:

Dynamic counts
43504  (11%)
21520 (5%)

195528  (47%)

0 (0%)
65252  (16%)
43504  (11%)
43500  (11%)

412808

Memory operations

L_23
26

Size  Stride
4 _
4 1

Static count

67

per
0.67

(32%)

wgt
21748

Static counts

2
2
10
0

NN W

Group

gSize

12

12

12

gSize

gStr

gStr
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LOOP 6  collapse pyr.102

Program: epic_dec
File: collapse pyr.c
Function: collapse pyr

Header block: HB 102
Loop blocks: HB 102
Nesting level: 4

Innermost: yes
Category: WHILE _LOOP
Invocations: 1949
Iterations: 2168
Iter/Invoc: 1
Operations: 463910 (5.21%)
Cycles: 224085 (3.13%)
Ops/Cyc: 2.07
Stall cycles: 0 (0.00%)
Scheduling
wsl pesl per wgt
HB 102 103.87 104 0.89 2168
Sched length: 116
Operation breakdown
Dynamic counts Static counts
Load: 108400  (23%) 50 (23%)
Store: 86720 (19%) 40  (19%)
iAlu: 255824  (55%) 118  (55%)
fAlu: 0 (0%) 0 (0%)
Cmpp: 4336 (1%) 2 (1%)
Pbr: 4336 (1%) 2 (1%)
Branch: 4294 (1%) 2 (1%)
Total: 463910 214
Memory operations
Size  Stride Group nOps gSize gStr
I. 878 4 -
L 887 4 -
. 894 4 -
L 904 4 -
L 913 4 -
L 920 4 -
L 931 4 -
. 937 4 -
L 944 4 -
. 3503 4 1
S 881 4 - G 891 3 12 1
S 891 4 - "
S 898 4 - !
S 907 4 - G 917 3 12 1
S 917 4 - !
S 924 4 - !
S 934 4 - G941 3 12 1
S 941 4 - !
S 948 4 - !
Dynamic count Static count
Spill: 153928  (33%) 71 (33%)

LOOP_7 internal int_transpo.4

Program: epic_dec
File: collapse pyr.c
Function: internal int transpo

Header block: HB 4



A.8. EriC DEC

Loop blocks: HB 4
Nesting level: 2

Innermost: yes

Category: WHILE _LOOP
Invocations: 7201

Iterations: 10764
Iter/Invoc: 1

Operations: 53820 (0.60%)
Cycles: 191592 (2.67%)
Ops/Cyc: 0.28

Stall cycles: 62424 (32.58%)
Scheduling

wsl pesl
HB 4 11.67 12
Sched length: 17

Operation breakdown
Dynamic counts

Load: 0 (0%)
Store: 0 (0%)
iAlu: 21528  (40%)
fAlu: 0 (0%)
Cmpp: 10764  (20%)
Pbr: 10764 (20%)
Branch: 10764  (20%)
Total: 53820

Memory operations
Size  Stride

LOOP 8  write pgm image.3

Program: epic_dec
File: fileio.c
Function: write pgm image

Header block: BB 3
Loop blocks: BB 3
Nesting level: 1

Innermost: yes

Category: MOD SCHED
Invocations: 1

Iterations: 65536

Iter /Invoc: 65536
Operations: 458753 (5.15%)
Cycles: 131074 (1.83%)
Ops/Cyc: 3.50

Stall cycles: 0 (0.00%)
Scheduling

RecMIl ResMII
BB 3 2 1
Sched length: 131074
Operation breakdown
Dynamic counts

Load: 65536 (14%)
Store: 65536 (14%)
iAlu: 262144 (57%)
fAlu: 0 (0%)
Cmpp: 0 (0%)
Pbr: 0 (0%)
Branch: 65537  (14%)
Total: 458753

Memory operations
Size  Stride
L 23 4 1
S 25 1 1

per
0.67

wgt
10764

Static counts

0

Ul = = = O N O

Group

11

ESC

Static counts

1

~N = O OO -

Group

gSize

gSize

gStr

gStr
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LOOP 9  collapse pyr.4
Program: epic_dec
File: collapse pyr.c
Function: collapse pyr
Header block: BB 4
Loop blocks: BB 4

Nesting level: 2

Innermost: yes

Category: MOD SCHED
Invocations: 4

Iterations: 87040

Tter /Invoc: 21760
Operations: 348164 (3.91%)
Cycles: 87628 (1.22%)
Ops/Cyc: 3.97

Stall cycles: 584 (0.67%)
Scheduling
RecMII ResMII
BB 4 1 1
Sched length: 21761
Operation breakdown
Dynamic counts

Load: 0 (0%)
Store: 87040  (25%)
iAlu: 174080 (50%)
fAlu: 0 (0%)
Cmpp: 0 (0%)
Pbr: 0 (0%)
Branch: 87044  (25%)
Total: 348164

Memory operations
Size  Stride
S 32 4 1

APPENDIX A. LoopP STATISTICS

ESC

Static counts

0

B _0 OO N

Group

gSize gStr
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