
Optimizing VLIW Ar
hite
turesfor Multimedia Appli
ationsEsther Salamí San Juan
A thesis submitted in ful�llmentof the requirements for the degree ofDo
tor in Tele
ommuni
ations Engineering

Advisor: Mateo Valero CortésDepartament d'Arquite
tura de ComputadorsUniversitat Politè
ni
a de CatalunyaMar
h 2007





To my parents and my husband,whose love and un
onditional supportgave me the strength to 
arry out this work.





A
knowledgments
First of all, I would like to express my gratitude to my thesis advisor, Mateo Valero,for his invaluable guidan
e, 
on�den
e and support during all these years. I greatlyappre
iate the amount of time and energy he has devoted to this work despite allthose pressing duties taking up his agenda. But most of all, I appre
iate his enthu-siasm for this thesis.I would also like to thank Jesús Corbal for introdu
ing me to the department and,parti
ularly, to the multimedia group. His interest and his own work on multimediapro
essing 
learly motivated the beginning of this thesis.Thanks to Ali
ia Bustos and Àlex Ramírez for the good times we had in San Fran-
is
o. Àlex's 
omments and suggestions have been very helpful to my resear
h.Thanks to so many 
olleagues, friends, and relatives who have 
ontributed to theending of this thesis with their words of en
ouragement. I am spe
ially grateful toBeatriz Otero for her friendship and lively support, and to Vanessa Moreno for somany 
o�ees whenever I needed a break.Finally, I also wish to thank the LCAC people and the administrative sta� for their
onstant assistan
e, and the Centre de Super
omputa
ió de Catalunya (CESCA) forsupplying the 
omputing resour
es for our resear
h.





Abstra
t
The growing interest that multimedia pro
essing has experimented during the lastde
ade is motivating pro
essor designers to re
onsider whi
h exe
ution paradigmsare the most appropriate for general-purpose pro
essors. On the other hand, asthe size of transistors de
reases, power dissipation has be
ome a relevant limitationto in
reases in the frequen
y of operation. Thus, the e�
ient exploitation of thedi�erent sour
es of parallelism is a key point to investigate in order to sustain theperforman
e improvement rate of pro
essors and fa
e the growing requirements offuture multimedia appli
ations. We belief that a promising option arises from the
ombination of the Very Long Instru
tion Word (VLIW) and the ve
tor pro
essingparadigms together with other ways of exploiting 
oarser grain parallelism, su
h asChip MultiPro
essing (CMP).As part of this thesis, we analyze the problem of memory disambiguation in mul-timedia appli
ations, as it represents a serious restri
tion for exploiting Instru
tionLevel Parallelism (ILP) in VLIW ar
hite
tures. We state that the real handi
ap formemory disambiguation in multimedia is the extensive use of pointers and indire
treferen
es usually found in those 
odes, together with the limited stati
 informationavailable to the 
ompiler on 
ertain o

asions. Based on the observation that theinput and output multimedia streams are 
ommonly disjointed memory regions, wepropose and implement a memory disambiguation te
hnique that dynami
ally an-alyzes the region domain of every load and store before entering a loop, evaluateswhether or not the full loop is disambiguated and exe
utes the 
orresponding loopversion. This me
hanism does not require any additional hardware or instru
tionsand has negligible e�e
ts over 
ompilation time and 
ode size. The performan
ea
hieved is 
omparable to that of advan
ed interpro
edural pointer analysis te
h-niques, with 
onsiderably less software 
omplexity. We also demonstrate that bothte
hniques 
an be 
ombined to improve performan
e.In order to deal with the inherent Data Level Parallelism (DLP) of multimedia ker-nels without disrupting the existing 
ore designs, major pro
essor manufa
turershave 
hosen to in
lude MMX-like µSIMD extensions. By analyzing the s
alabil-ity of the DLP and non-DLP regions of 
ode separately in VLIW pro
essors with
µSIMD extensions, we observe that the performan
e of the overall appli
ation isdominated by the performan
e of the non-DLP regions, whi
h in fa
t exhibit onlymodest amounts of ILP. As a result, the performan
e a
hieved by very wide issue



iv Abstra
t
on�gurations does not 
ompensate for the related 
ost. To exploit the DLP of theve
tor regions in a more e�
ient way, we propose enhan
ing the µSIMD-VLIW 
orewith 
onventional ve
tor pro
essing 
apabilities. The 
ombination of 
onventionaland sub-word level ve
tor pro
essing results in a 2-dimensional extension that 
om-bines the best of ea
h one, in
luding a redu
tion in the number of operations, lowerfet
h bandwidth requirements, simpli
ity of the 
ontrol unit, power e�
ien
y, s
ala-bility, and support for multimedia spe
i�
 features su
h as saturation or redu
tion.This enhan
ement has a minimal impa
t on the VLIW 
ore and rea
hes more par-allelism than wider issue µSIMD implementations at a lower 
ost. Similar proposalshave been su

essfully evaluated for supers
alar 
ores. In this thesis, we demonstratethat 2-dimensional Ve
tor-µSIMD extensions are also e�e
tive with stati
 s
heduling,allowing for high-performan
e 
ost-e�e
tive implementations.



Contents
1 Introdu
tion 11.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Sour
es of Parallelism in Multimedia Appli
ations . . . . . . . . . . . 21.2.1 Instru
tion Level Parallelism . . . . . . . . . . . . . . . . . . 21.2.2 Data Level Parallelism . . . . . . . . . . . . . . . . . . . . . . 51.2.3 Thread Level Parallelism . . . . . . . . . . . . . . . . . . . . . 61.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.1 Obje
tives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.2 Organization of this Do
ument . . . . . . . . . . . . . . . . . 82 Pro
essor Ar
hite
tures for Multimedia 92.1 Ar
hite
tural Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 VLIW Pro
essors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.3 Ve
tor Pro
essing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.3.1 Conventional Ve
tor Ar
hite
tures . . . . . . . . . . . . . . . 142.3.2 µSIMD Extensions . . . . . . . . . . . . . . . . . . . . . . . . 162.3.3 N-dimensional Ve
tor Ar
hite
tures . . . . . . . . . . . . . . . 172.3.4 Stream Pro
essors . . . . . . . . . . . . . . . . . . . . . . . . 192.4 Chip Multipro
essors . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Compilation and Simulation Framework 253.1 Trimaran Choi
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.2 Overview of the Trimaran Compiler Infrastru
ture . . . . . . . . . . 263.2.1 Ar
hite
ture Spa
e . . . . . . . . . . . . . . . . . . . . . . . . 263.2.2 Ma
hine Des
ription Model . . . . . . . . . . . . . . . . . . . 293.2.3 Compiler Front-end . . . . . . . . . . . . . . . . . . . . . . . . 293.2.4 Compiler Ba
k-end . . . . . . . . . . . . . . . . . . . . . . . . 303.2.5 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.3 Extending the Trimaran Compiler Infrastru
ture . . . . . . . . . . . 313.3.1 The Loops Module . . . . . . . . . . . . . . . . . . . . . . . . 313.3.2 Modifying the Ar
hite
ture and the Instru
tion Set . . . . . . 343.3.3 TrimaCa
he . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.4 Referen
e Ar
hite
ture . . . . . . . . . . . . . . . . . . . . . . . . . . 373.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



vi CONTENTS4 Workload Chara
terization 394.1 General Chara
teristi
s of Multimedia Codes . . . . . . . . . . . . . 394.1.1 Chara
teristi
s of Multimedia Kernels . . . . . . . . . . . . . 394.1.2 Chara
teristi
s of Multimedia Appli
ations . . . . . . . . . . 404.2 Ben
hmarks Des
ription . . . . . . . . . . . . . . . . . . . . . . . . . 414.3 Loop Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 444.3.1 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444.3.2 Loop Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444.3.3 Memory Referen
es . . . . . . . . . . . . . . . . . . . . . . . . 454.3.4 Operations per Cy
le . . . . . . . . . . . . . . . . . . . . . . . 474.4 Appli
ation Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . 474.4.1 Stati
 Code Size . . . . . . . . . . . . . . . . . . . . . . . . . 474.4.2 Dynami
 Code Size . . . . . . . . . . . . . . . . . . . . . . . . 484.4.3 Operation Breakdown . . . . . . . . . . . . . . . . . . . . . . 494.4.4 Data Lo
ality . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.4.5 Memory Hierar
hy . . . . . . . . . . . . . . . . . . . . . . . . 514.4.6 Operations per Cy
le . . . . . . . . . . . . . . . . . . . . . . . 544.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 Memory Disambiguation in Multimedia Appli
ations 575.1 Relevan
e of Memory Disambiguation . . . . . . . . . . . . . . . . . 575.2 Memory Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . . 605.2.1 Stati
 Dependen
e Analysis . . . . . . . . . . . . . . . . . . . 605.2.2 Run-time Dependen
e Tests . . . . . . . . . . . . . . . . . . . 615.2.3 The Alias Analysis Problem in Multimedia Loops . . . . . . . 625.3 The Dynami
 Memory Interval Test . . . . . . . . . . . . . . . . . . 645.3.1 Des
ription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.3.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 665.3.4 Code Example . . . . . . . . . . . . . . . . . . . . . . . . . . 685.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705.4.1 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715.4.2 Loop Level Analysis . . . . . . . . . . . . . . . . . . . . . . . 725.4.3 Appli
ations Analysis . . . . . . . . . . . . . . . . . . . . . . 735.4.4 Test Blo
k Overhead . . . . . . . . . . . . . . . . . . . . . . . 745.4.5 Comparison with Interpro
edural Pointer Analysis . . . . . . 755.4.6 E�e
t of DSP Oriented S
alar Optimizations . . . . . . . . . 775.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 A Ve
tor-µSIMD-VLIW Ar
hite
ture 816.1 S
alar and Ve
tor Regions . . . . . . . . . . . . . . . . . . . . . . . . 816.2 Adding Ve
tor Units to a VLIW pro
essor . . . . . . . . . . . . . . . 836.2.1 Ve
tor-µSIMD ISA Overview . . . . . . . . . . . . . . . . . . 836.2.2 Ve
tor-µSIMD-VLIW Ar
hite
ture . . . . . . . . . . . . . . . 856.2.3 Compilation Issues . . . . . . . . . . . . . . . . . . . . . . . . 876.2.4 Code Example . . . . . . . . . . . . . . . . . . . . . . . . . . 89



CONTENTS vii6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916.3.1 Operation Breakdown . . . . . . . . . . . . . . . . . . . . . . 916.3.2 Speed-up in Ve
tor Regions . . . . . . . . . . . . . . . . . . . 946.3.3 Speed-up in Appli
ations . . . . . . . . . . . . . . . . . . . . 976.3.4 Operations per Cy
le . . . . . . . . . . . . . . . . . . . . . . . 986.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997 Con
lusions 1017.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105A Loop Statisti
s 107A.1 Jpeg_en
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110A.2 Jpeg_de
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115A.3 Mpeg2_en
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120A.4 Mpeg2_de
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128A.5 Gsm_en
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133A.6 Gsm_de
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139A.7 Epi
_en
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142A.8 Epi
_de
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147





List of Figures
2.1 Hybrid 
lassi�
ation of mi
ropro
essors [DP02℄ . . . . . . . . . . . . 112.2 Ar
hite
ture of the VIRAM ve
tor pro
essor . . . . . . . . . . . . . . 152.3 Examples of µSIMD instru
tions . . . . . . . . . . . . . . . . . . . . 172.4 Ar
hite
ture of the Imagine stream pro
essor [RDK+98℄ . . . . . . . 202.5 Ar
hite
ture of the RSVP [CEL+03℄ . . . . . . . . . . . . . . . . . . 212.6 Ar
hite
ture of the MAJC-5200 pro
essor . . . . . . . . . . . . . . . 222.7 Cell system ar
hite
ture . . . . . . . . . . . . . . . . . . . . . . . . . 233.1 Trimaran 
ompiler infrastru
ture . . . . . . . . . . . . . . . . . . . . 273.2 HMDES se
tion hierar
hy . . . . . . . . . . . . . . . . . . . . . . . . 293.3 Extension of the Trimaran 
ompiler infrastru
ture . . . . . . . . . . 323.4 Emulation 
ode repla
ement . . . . . . . . . . . . . . . . . . . . . . . 353.5 The dual bank stru
ture of the ve
tor 
a
he . . . . . . . . . . . . . . 363.6 Memory tra
e pa
ket des
ription (binary form) . . . . . . . . . . . . 374.1 Operation breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . 494.2 Data lo
ality histograms . . . . . . . . . . . . . . . . . . . . . . . . . 504.3 Slow-down of a real memory hierar
hy vs perfe
t memory for di�erent
a
he sizes and memory laten
ies . . . . . . . . . . . . . . . . . . . . 524.4 Performan
e speed-up for di�erent memory ports 
on�gurations vs1-port perfe
t memory . . . . . . . . . . . . . . . . . . . . . . . . . . 535.1 Sour
e 
ode and memory dependen
e graph of the innermost loop inthe h2v2_fan
y_upsample fun
tion . . . . . . . . . . . . . . . . . . 585.2 Non-disambiguated vs disambiguated 
ode s
heduling of the inner-most loop in the h2v2_fan
y_upsample fun
tion . . . . . . . . . . . 595.3 Typi
al multimedia memory a

ess patterns . . . . . . . . . . . . . . 625.4 Example of 
oin
ident referen
e groups . . . . . . . . . . . . . . . . . 645.5 Dynami
 Memory Interval Test . . . . . . . . . . . . . . . . . . . . . 655.6 Dynami
 Memory Interval representation . . . . . . . . . . . . . . . 665.7 DMIT. Main algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 675.8 DMIT. Test blo
k generation algorithm . . . . . . . . . . . . . . . . 695.9 Test blo
k 
ode generated for the h2v2_fan
y_upsample innermostloop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705.10 In
orporation of the Loop Memory Disambiguation module into theEl
or ba
k-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



x LIST OF FIGURES5.11 DMIT. Performan
e speed-up of 2-, 4- and 8-issue width ar
hite
turesover the 2-issue width baseline . . . . . . . . . . . . . . . . . . . . . 745.12 DMIT vs IPA. Performan
e speed-up of 2-, 4- and 8-issue width ar-
hite
tures over the 2-issue width baseline . . . . . . . . . . . . . . . 775.13 DMIT vs IPA. Performan
e speed-up over the 8-issue width baseline 785.14 DMIT vs IPA. Performan
e speed-up over the 8-issue width baselinefor expli
it parallel versions of 
ode . . . . . . . . . . . . . . . . . . . 796.1 S
alability of s
alar and ve
tor regions in µSIMD-VLIW ar
hite
tures 836.2 Comparison between 
onventional ve
tor, µSIMD and Ve
tor-µSIMDISAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846.3 Ve
tor-µSIMD-VLIW ar
hite
ture . . . . . . . . . . . . . . . . . . . 856.4 Comparison between 
entralized and distributed register �le organi-zations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866.5 Laten
y des
riptors (Ter = earliest read, Tlr = latest read, Tew =earliest write, Tlw = latest write, L = �ow laten
y, VL = ve
torlength, LN = ve
tor lanes) . . . . . . . . . . . . . . . . . . . . . . . . 896.6 Ve
tor-µSIMD implementation of the motion estimation algorithm . 906.7 S
heduling of motion estimation for a 2-issue Ve
tor-µSIMD-VLIWpro
essor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916.8 Normalized operation 
ount . . . . . . . . . . . . . . . . . . . . . . . 926.9 Speed-up in ve
tor regions . . . . . . . . . . . . . . . . . . . . . . . . 946.10 Speed-up in ve
tor regions for di�erent number of units and lanes . . 956.11 Speed-up in ve
tor regions with perfe
t memory and impa
t of realmemory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976.12 Speed-up in appli
ations . . . . . . . . . . . . . . . . . . . . . . . . . 98



List of Tables
1.1 Comparison between supers
alar an VLIW ar
hite
tures . . . . . . . 31.2 Evolution of the Itanium Pro
essor Family . . . . . . . . . . . . . . . 52.1 Parameters of the TM3270 ar
hite
ture [vdWVD+05℄ . . . . . . . . . 132.2 µSIMD multimedia extensions . . . . . . . . . . . . . . . . . . . . . . 163.1 Modeled pro
essor 
on�gurations . . . . . . . . . . . . . . . . . . . . 384.1 Ben
hmarks des
ription and input sets 
hara
teristi
s . . . . . . . . 424.2 Coverage of innermost, do-loops and modulo s
heduling loops (numberof loops and per
entage of the overall dynami
 
y
les and operations) 444.3 Loop-body size (average number of stati
 operations, invo
ations, anditerations per invo
ation, and distribution of loops a

ording to thenumber of iterations per invo
ation) . . . . . . . . . . . . . . . . . . 454.4 Data size of memory referen
es . . . . . . . . . . . . . . . . . . . . . 454.5 Stride of memory referen
es . . . . . . . . . . . . . . . . . . . . . . . 464.6 Length and stride of array referen
es. . . . . . . . . . . . . . . . . . . 464.7 Operations per 
y
le rate in innermost loops for di�erent issue widths 474.8 Stati
 operation, blo
k and fun
tion 
ounts . . . . . . . . . . . . . . 484.9 Dynami
 operation, blo
k and fun
tion 
ounts . . . . . . . . . . . . . 494.10 Hit rate of load and store operations for di�erent 
a
he sizes . . . . . 514.11 Operations per 
y
le rate in innermost loops and appli
ations for dif-ferent issue widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545.1 DMIT. Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715.2 DMIT. Loop level analysis for the 8-issue width ar
hite
ture . . . . . 725.3 DMIT. Test blo
k overhead . . . . . . . . . . . . . . . . . . . . . . . 755.4 DMIT vs IPA. Loop level analysis for the 8-issue width ar
hite
ture . 766.1 Ve
tor regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826.2 Estimated area, delay and power of di�erent µSIMD and Ve
tor-

µSIMD register �le 
on�gurations . . . . . . . . . . . . . . . . . . . . 876.3 Average ve
tor length . . . . . . . . . . . . . . . . . . . . . . . . . . . 936.4 Average operations per 
y
le (OPC), mi
ro-operations per 
y
le (µOPC),and speed-up (SP) in the s
alar and ve
tor regions and in the full ap-pli
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



xii LIST OF TABLESA.1 Jpeg_en
 innermost loops list . . . . . . . . . . . . . . . . . . . . . . 110A.2 Jpeg_de
 innermost loops list . . . . . . . . . . . . . . . . . . . . . . 115A.3 Mpeg2_en
 innermost loops list . . . . . . . . . . . . . . . . . . . . . 120A.4 Mpeg2_de
 innermost loops list . . . . . . . . . . . . . . . . . . . . . 128A.5 Gsm_en
 innermost loops list . . . . . . . . . . . . . . . . . . . . . . 133A.6 Gsm_de
 innermost loops list . . . . . . . . . . . . . . . . . . . . . . 139A.7 Epi
_en
 innermost loops list . . . . . . . . . . . . . . . . . . . . . . 142A.8 Epi
_de
 innermost loops list . . . . . . . . . . . . . . . . . . . . . . 147



Chapter 1Introdu
tion
This 
hapter presents the motivations behind this thesis. An overview of the di�erentsour
es of parallelism usually found in multimedia 
odes and the most signi�
anttrends in their exploitation is also in
luded. The 
hapter ends up de�ning the maingoals of this work.1.1 MotivationThere has always been a lively interest in improving the interfa
e between humanand ma
hines. In the 
ourse of time, advan
es in mi
ropro
essors te
hnology anddesign have made possible thinking on more ambitious appli
ations that o�er a more
omfortable and friendly environment to the user, either to aid in work, for personaltasks, or simply for entertainment. As a result, new forms of 
ommuni
ation haveemerged that integrate multiple information 
ontent and pro
essing, in
luding (butnot limited to) text, audio, graphi
s, animation, video, and intera
tivity. Spee
hre
ognition, 
ryptography, video-
onferen
e, web-TV, or the new generation of videogames are just a few examples of the great variety of this kind of appli
ations, widelyknown as multimedia appli
ations.Pro
essors had been traditionally designed for te
hni
al and s
ienti�
 appli
ations.At present, it is widely assumed that the multimedia workload dominates desktop 
y-
les and that it will 
ontinue to in
rease in importan
e [KP98℄. Multimedia workloadhas signi�
antly di�erent 
hara
teristi
s from other existing appli
ations. Current
omputers have to fa
e in
reasing requirements in 
omputational power and memorybandwidth and it is not 
lear what kind of ar
hite
ture deals better with present andfuture multimedia requirements.During the last three de
ades, mi
ropro
essors have undergone an ex
eptional in-
rease in performan
e. The number of transistors on an integrated 
ir
uit doublesevery 18 months approximately, ex
eeding Moore's original statement [Moo65℄. Fur-thermore, advan
es in mi
roar
hite
ture design provide more aggressive te
hniquesto exploit greater degrees of parallelism. As te
hnology evolves, the number of tran-



2 Chapter 1. Introdu
tionsistors to be in
luded on a single 
hip will 
ontinue in
reasing [Yu96℄. Nevertheless,having more and faster transistors does not involve the same performan
e improve-ment rates than some years ago.On the one hand, the available Instru
tion Level Parallelism is limited by the amountof dependen
es and 
onditional bran
hes that exists in programs, hen
e taking littlebene�t from more aggressive pro
essor implementations. On the other hand, thegrowing gap between pro
essor speed and memory a

ess time leads to a memorywall in whi
h memory a

esses dominate 
ode performan
e [WM95℄. Finally, as thesize of transistors de
reases, there is a signi�
ant in
rease in the 
on
entration of heat,whi
h 
an even make the 
hip burn. A

ording to Intel, the power 
onsumption oftheir 
hips has doubled approximately every 36 months [MNW+02℄. In
reasing powerdissipation, and parti
ularly, the need to 
ool regions of lo
al power 
on
entrations,also known as hot spots, has be
ome a major problem.The Very Long Instru
tion Word (VLIW) paradigm provides a promising alternativeto traditional supers
alar designs, as it requires 
onsiderably less hardware 
om-plexity, thus redu
ing power 
onsumption. It has demonstrated to do well in theembedded media domain [Pur98, BLO02, FG00, Ses98, RS96℄. Furthermore, in thegeneral-purpose domain, the Itanium Pro
essor Family [SA00℄ has re
ently arisen asa 
ompetitive option against 
ommonly extended out-of-order supers
alar pro
essors.Nevertheless, a high degree of Instru
tion Level Parallelism in VLIW ar
hite
turesstill requires de
oding more operations in parallel and a large register �le, whi
h maya�e
t overall performan
e due to the in
reased a

ess time.Our work 
on
entrates on improving VLIW ar
hite
tures in the 
ontext of multi-media workload. As we will see in next se
tion, the performan
e of this kind ofappli
ations 
an be improved by exploiting di�erent sour
es of parallelism. In thisthesis, we fa
e two problems. First, we analyze the problem of memory disambigua-tion, as it imposes a signi�
ant restri
tion on the exploitation of Instru
tion LevelParallelism. Se
ond, we study how to exploit the inherent Data Level Parallelism ofmultimedia appli
ations in a 
ost e�e
tive way, redu
ing the fet
h bandwidth andpower requirements of very wide issue ar
hite
tures.1.2 Sour
es of Parallelism in Multimedia Appli
ationsWe 
an distinguish at least three forms of parallelism in multimedia appli
ations:instru
tion level parallelism, data level parallelism, and thread level parallelism.1.2.1 Instru
tion Level ParallelismThe Instru
tion Level Parallelism (ILP) paradigm speeds up exe
ution by 
ausingindividual ma
hine operations to exe
ute in parallel [RF93℄. The amount of ILP de-pends on ea
h parti
ular appli
ation. Video and imaging 
odes, for instan
e, exhibit



1.2. Sour
es of Parallelism in Multimedia Appli
ations 3more ILP than 
ryptography appli
ations. Nevertheless, multimedia workloads arein general 
hara
terized by larger amounts of ILP than integer ones.Most of the traditional hardware and 
ompilation te
hniques fo
us on exploiting ILPto speed-up exe
ution. Supers
alar pro
essors are the most extended ILP implemen-tation for the general-purpose domain. The hardware must determine at run-time thedependen
es between operations and de
ide at whi
h parti
ular time and on whi
hfun
tional unit and registers the operations must be exe
uted (a detailed analysisof supers
alar hardware 
an be found in [Joh91℄). However, it is widely assumedthat 
urrent supers
alar pro
essors 
annot be s
aled by simply fet
hing, de
odingand issuing more instru
tions per 
y
le. Conditional bran
hes, the instru
tion 
a
hebandwidth, the instru
tion window size, the register �le and the memory wall aresome of the aspe
ts that 
urrently limit the s
alability of supers
alar pro
essors.Very Long Instru
tion Word (VLIW) pro
essors are another form of exploiting ILPthat requires less hardware 
omplexity. Table 1.1 summarizes the main di�eren
esbetween supers
alar and 
lassi
 VLIW ar
hite
tures. The 
ompiler and not thehardware is responsible for identifying groups of independent operations, assign-ing a fun
tional unit to ea
h operation, and pa
kaging them together into a singleVLIW instru
tion [Fis81℄. Due to the regularity of multimedia appli
ations, stati
s
heduling arises as a promising option over dynami
 s
heduling. The �rst generationof VLIW pro
essors were su

essful in the s
ienti�
 domain [CNO+88, RYYT89℄,and it has also been the ar
hite
ture of 
hoi
e for most media embedded pro
es-sors [Sem99, Dev99, TI99℄. However, some relevant fa
ts, su
h as binary in
ompati-bility a
ross di�erent implementations, the in
reased 
ode size as a result of aggres-sive s
heduling te
hniques, and the la
k of �exibility in front of non-deterministi
laten
ies, have 
ontributed to the belief that VLIW pro
essors are not appropriatefor the general-purpose domain.Supers
alar Classi
 VLIWRequires dependen
y 
he
king hardware The 
ompiler is responsible for grouping in-dependent operationsControl logi
 does not s
ale well (O(n2)) Simpli�ed hardware for de
oding and issuinginstru
tionsRequires routing hardware for assignment ofinstru
tions to fun
tional units Stati
 assignment of operations to fun
tionalunitsHardware has full information about depen-den
es Limited stati
 information available to the
ompilerFlexibility in front of variable laten
y mem-ory operations Impa
t of non-deterministi
 laten
iesIn
reased 
ode sizeBinary 
ompatibility a
ross di�erent imple-mentations Obje
t 
ode in
ompatibility a
ross di�erentimplementationsTable 1.1. Comparison between supers
alar an VLIW ar
hite
tures



4 Chapter 1. Introdu
tionDuring the last de
ades, there has been 
onsiderable advan
es regarding these issuesand, at present, a revival of the VLIW exe
ution paradigm is observed. The IBM'stree-based VLIW ar
hite
ture, for example, provides binary 
ompatibility for VLIWimplementations of varying width through dynami
 binary translation [EFK+98℄.Furthermore, ea
h 
ompany has developed its own 
ompression s
heme to avoid
ode expansion. The Philips' Trimedia ar
hite
ture [RS96℄, for example, stores theinstru
tions in a 
ompressed format, and a de
ompressor unit expands it during theinstru
tion fet
h. In the Texas Instruments' Velo
iTI [Ses98℄, the fet
h pa
kets aredelimited by parallel instru
tion link bits in the instru
tion format.On the other hand, HP and Intel have re
ently introdu
ed a new style of ar
hite
turenamed Expli
itly Parallel Instru
tion Computing (EPIC) [SR00℄ (also 
alled indepen-den
e ar
hite
ture [RF93℄). The 
ompiler determines the grouping of independentinstru
tions and 
ommuni
ates this via expli
it information in the instru
tion set,but the hardware makes the �nal de
ision of whi
h operations exe
ute on ea
h fun
-tional unit at run-time [Smo02℄; hen
e EPIC retains 
ompatibility a
ross di�erentimplementations without the 
omplexity of supers
alar 
ontrol logi
. The spe
i�
instru
tion set ar
hite
ture, known either as IA-64 or as Itanium Pro
essor Family(IPF) [SA00℄, in
ludes a large number of registers, predi
ated exe
ution to redu
e
ontrol hazards, unbundled bran
hes support, 
ompiler 
ontrol of the memory hier-ar
hy, and spe
ulative loads support.Table 1.2 summarizes the evolution of the IPF. The �rst implementation of the IA-64, the Itanium pro
essor (
ode-named Mer
ed), was released in 2001, two years laterthan originally expe
ted. It was o�ered at speeds of 733 and 800 MHz, with a 
hoi
eof 2 or 4 MB o�-die L3 
a
he. Although it was the fastest �oating point pro
essor inthe market, it was not 
ommer
ially su

essful mainly be
ause of the laun
h delay, thela
k of optimized 
ode, and its low performan
e when running IA-32 appli
ations,among other reasons. Hen
e, it was repla
ed in 2002 by the Itanium2 pro
essor,whi
h is intended for use in high-end enterprise servers. In the �rst version of theItanium2 pro
essor (
ode-named M
Kinley), Intel shortened the pipeline from tento eight stages, tripled the system bus bandwidth and moved the L3 
a
he onto the
hip. The Itanium2 pro
essor 
an issue up to six operations per 
y
le in a �xed set of
ombinations. It in
ludes 128 �oating point, 128 integer, 64 predi
ate and 8 bran
hregisters. As far as fun
tional units, it has six integer, three bran
h, two �oatingpoint, one SIMD, two load, and two store units. In July 2006, Intel released the �rstdual-
ore Itanium2 pro
essor (
ode-named Monte
ito). Intel reports that it doublesthe performan
e of its single-
ore prede
essor, while redu
ing power 
onsumption byapproximately 20 per
ent [Int06℄. It also features multithreading 
apabilities, beingable to exe
ute two threads per 
ore. From the available information about 
ominggenerations, we 
an envision that future implementations of the IA-64 will relay onmulti-
ore 
hips, even having as many as 16 
ores on the 
hip die.



1.2. Sour
es of Parallelism in Multimedia Appli
ations 5Version Clo
k Speed Bus Speed L1 Instr/Data Te
hnologyPro
essor Bandwidth L2 Ca
he TransistorsDate L3 Ca
he Die sizePower envelopeMer
ed 733 or 800 MHz 133 MHz 16 KB / 16 KB 180 nmItanium DDR 96 KB 25 (+295) M07/2001 2.1 GB/s 2 MB or 4 MB o�-die 300 nm2116-130 WM
Kinley 900 MHz or 1 GHz 100 MHz 16 KB / 16 KB 180 nmItanium2 QDR 256 KB 221 M07/2002 6.4 GB/s 1.5 MB or 3 MB on-die 421 nm290-100 WMadison 1.3 to 1.67 GHz 100 MHz 16 KB / 16 KB 130 nmItanium2 QDR 256 KB 410-592 M06/2003 6.4 GB/s 1.5 MB to 9 MB on-die 374-432 nm2-07/2005 91-130 WDeer�eld 1 GHz 100 MHz 16 KB / 16 KB 130 nmItanium2 QDR 256 KB 221 M08/2003 6.4 GB/s 1.5 MB on-die 421 nm262 WFanwood 1.3 or 1.6 GHz 100 or 133 MHz 16 KB / 16 KB 130 nmItanium2 QDR 256 KB 410 M11/2004 6.4 or 8.5 GB/s 3 MB on-die 374 nm299 WMonte
ito 1.4 to 1.67 GHz 100 to 166 MHz 32 KB / 32 KB 90 nmItanium2S QDR 2.5 MB 1720 MDual Core 6.4 to 10.6 GB/s 8 to 24 MB on-die 596 nm207/2006 104 WTable 1.2. Evolution of the Itanium Pro
essor Family
1.2.2 Data Level ParallelismAnother kind of parallelism that 
an be found in programs is Data Level Parallelism(DLP) (or Single Instru
tion Multiple Data (SIMD) [Fly72℄). The DLP paradigmtries to spe
ify with a single ve
tor instru
tion a large number of operations to beperformed on independent data elements. As ea
h individual operation is indepen-dent of all others, ve
tor instru
tions are highly parallel and pipelineable, whi
hsimpli�es the 
ontrol unit 
onsiderably.One of the main advantages of using ve
tor instru
tions is the redu
tion in theoverall number of instru
tions to be exe
uted, as one single ve
tor instru
tion spe
i�esseveral s
alar instru
tions. Furthermore, many 
ontrol operations are also removed,as they are embedded in the semanti
s of the ve
tor instru
tion [QEV98℄. As aresult, the pressure on the fet
h unit diminishes signi�
antly.



6 Chapter 1. Introdu
tionOther advantages are related to the way the memory system is a

essed. As asingle ve
tor memory instru
tion spe
i�es a long sequen
e of memory addresses, thehardware has advan
e knowledge regarding memory referen
es. This information 
anbe used to improve the memory system [VLPA95℄. Additionally, a ve
tor instru
tionis able to amortize the start-up laten
ies of fun
tional units and memory over apotentially long stream of elements.In the super
omputing domain, DLP has been su

essfully exploited by ve
tor [Rus78,BS00, vdSD01℄ and array [Hor82, Red73℄ pro
essors. During the last de
ade, the in-
reasing signi�
an
e of media pro
essing has motivated a great interest in exploitingsub-word level parallelism (also 
alled µSIMD parallelism [Lee99℄). DLP is 
ommonlypresent in multimedia appli
ations in the form of small loops that operate streams ofsmall data elements, su
h as pixels or audio samples. In the general-purpose domain,
µSIMD multimedia extensions su
h as SSE [Int99℄ or Altive
 [NJ99℄ have been a fastand 
ost e�e
tive option to deal with this kind of parallelism: short data are pa
kedinto a single register and operations are 
arried out simultaneously on the di�erentregister elements. However, the e�
ien
y of sub-word level implementations is re-du
ed by the e�e
t of unaligned and non-unit stride memory a

esses. On the otherhand, while traditional ve
tor pro
essors 
an be easily s
aled by just repli
ating thefun
tional units and widening the paths to the ve
tor registers (with just the limitof the maximum ve
tor length), the s
alability of sub-word level implementations islimited by the width of the µSIMD registers.A third way of exploiting DLP 
omes from the 
ombination of both traditional ve
-tor and sub-word level parallelism [CEV99, JVTW01, Koz99℄. These ar
hite
turesadapt to typi
al multimedia patterns by extending the s
ope of ve
torization to twodimensions. They over
ome some of the limitations of sub-word level implementa-tions and yield better performan
e than s
aling the word size of a sub-word levelparallel ar
hite
ture [SAS+05℄1.2.3 Thread Level ParallelismAs the gap between pro
essor operation frequen
y and memory a

ess time in
reases,ILP te
hniques be
ome insu�
ient to tolerate memory laten
y. The hardware 
om-plexity and power 
ost of the stru
tures needed to keep the pro
essor busy during a
a
he miss are prohibitive. In 
onsequen
e, there is a growing trend towards exploit-ing higher levels of parallelism, su
h as Thread Level Parallelism (TLP). A programexhibit TLP if it 
an be de
omposed in di�erent threads, or groups of instru
tions,that 
an be exe
uted 
on
urrently. This kind of parallelism is 
ommonly found in
ommer
ial server appli
ations, su
h as databases.Future media appli
ations are expe
ted to pro
ess several media streams 
on
ur-rently, su
h as video, audio and en
ryption, whi
h are 
ontrolled by a higher layer ofthe proto
ol. We 
an �nd an example in the MPEG4 standard [Koe99℄, an obje
t-based approa
h to des
ribe and 
ompose intera
tive audiovisual s
enes. Un
orrelatedobje
ts are 
oded, en
rypted and transmitted separately in order to be 
omposed



1.3. Thesis Overview 7again at re
eption. These obje
ts may in
lude digital video, still image, audio,spee
h and even audio synthesis or 3D-graphi
s. Dealing with multiple 
on
urrentmedia streams means that we have high levels of 
oarse level parallelism togetherwith the intra-threaded real time requirements of ea
h media sour
e.One of the main te
hniques to exploit TLP is 
alled simultaneous multithreading(SMT) [TEL95℄. In SMT, instru
tions from multiple threads 
an be issued inone pro
essor 
y
le. The �rst 
ommer
ial SMT pro
essor was the Alpha 21464(EV8) [Eme99℄. Although the pro
essor was never released, the te
hnology devel-oped for this pro
essor did probably set the bases for later pro
essor designs. TheIntel Pentium 4 [BBH+04℄ was the �rst desktop pro
essor to implement SMT (Hyper-Threading Te
hnology (HTT) in Intel's terminology).On the other hand, interleaved multithreading 
onsists on issuing multiple instru
-tions from di�erent threads on an interleaved way. We 
an distinguish di�erent levelsof multithreading depending on the frequen
y of the interleaving. In �ne-grain mul-tithreading, for example, instru
tions from di�erent threads are issued after every
y
le. On the 
ontrary, 
oarse-grain multithreading swit
hes from one thread toanother when the 
urrent exe
uting thread 
auses some long laten
y event.Another implementation of TLP is 
hip multipro
essing (CMP). It integrates twoor more pro
essor 
ores into one 
hip, so that di�erent threads 
an be exe
utedindependently. The main manufa
turers of high performan
e pro
essors are followingthis trend [TDJ+02, SKT+05, Joh05, KAO05, AMD06, GMNR06, MB04, KDH+05℄.Nevertheless, di�erent TLP implementations are not ex
lusive and 
an be 
ombinedto improve performan
e. Intel's Monte
ito and Sun's UltraSPARC T1 are examplesof 
oarse-grain multithreading multi-
ore pro
essors.
1.3 Thesis Overview1.3.1 Obje
tivesWe 
an distinguish two main obje
tives in this thesis. As we will demonstrate, mem-ory disambiguation is a key optimization to exploit ILP, spe
ially in stati
 s
hedulingimplementations, su
h as 
lassi
 VLIW ar
hite
tures. Furthermore, memory disam-biguation is also required in order to generate ve
tor 
ode. Even in the 
ase of havinghard-to-deal 
ontrol and data dependen
es in the 
omputation, typi
al media kernelsusually pro
ess disjointed streams of data; nevertheless, 
ommon 
ommer
ial 
om-pilers fail to disambiguate them mainly be
ause of the extensive use of pointers andindire
t referen
es. One of the main goals of this thesis is to analyze the problem ofmemory disambiguation in multimedia 
odes. As part of this thesis, we will propose,implement, and evaluate a software memory disambiguation te
hnique based on thememory a

ess patterns of most media kernels.



8 Chapter 1. Introdu
tionOn the other hand, we think that the 
ombination of the ve
tor and the VLIWparadigms is a promising alternative to exploit the �ne-grain parallelism of multi-media 
odes. Hen
e, the se
ond main goal of this work is to evaluate the potentialof enhan
ing a referen
e µSIMD-VLIW ar
hite
ture with 
onventional ve
tor 
apa-bilities. We will show that multimedia appli
ations are 
omposed of heterogeneousregions of 
ode, some of them with high levels of DLP and other ones with only mod-est amounts of ILP. Ve
tor-µSIMD multimedia extensions have proved to be a goodoption to exploit the parallelism of the DLP-regions [Cor02℄, as they adapt well totypi
al multimedia data stru
tures, providing good performan
e and over
oming thes
aling limitations of existing µSIMD extensions. Furthermore, simpli
ity and powere�
ien
y are features of both, ve
tor and VLIW ar
hite
tures, whi
h allows for lower
lo
k rates and lower voltages. We will demonstrate that Ve
tor-µSIMD extensionsare also e�e
tive with stati
 s
heduling, allowing for high-performan
e 
ost-e�e
tiveimplementations. Additionally, TLP implementations, su
h as 
hip-multipro
essors
an be used to exploit 
oarse-grain parallelism.1.3.2 Organization of this Do
umentIn this 
hapter we have exposed the motivation and the main obje
tives behind thisthesis. The rest of this do
ument is organized as follows. Chapter 2 surveys themain impli
ations that multimedia pro
essing is involving in 
omputer ar
hite
tureand overviews the most signi�
ant pro
essor ar
hite
tures that have been proposedfor multimedia.The working environment is presented in Chapter 3, in
luding the 
ompilation andsimulation framework, the extensions built into the original tool set, and the referen
ear
hite
ture used in the evaluations. Next, Chapter 4 analyze the main 
hara
teris-ti
s of multimedia 
odes, both at the appli
ation and at the loop level. Our set ofben
hmarks is introdu
ed and 
hara
terized for the referen
e VLIW ar
hite
ture.Chapter 5 dis
usses the problem of memory disambiguation in the 
ontext of mul-timedia 
odes and proposes a dynami
 memory disambiguation te
hnique spe
iallytargeted at multimedia loops or any other appli
ations with similar memory a

esspatterns. The proposal is fully des
ribed, implemented and evaluated, as well as
ompared against advan
ed interpro
edural pointer analysis.Chapter 6 is 
on
erned with our proposal of adding ve
tor 
apabilities to µSIMD-VLIW pro
essors. We start by performing a s
alability study of the DLP and non-DLP regions of the ben
hmarks in VLIW ar
hite
tures with µSIMD multimediaextensions. Next, we present the proposed ar
hite
ture and dis
uss the main 
ompi-lation issues. The 
hapter ends with a performan
e evaluation of the ar
hite
ture.Finally, Chapter 7 
on
ludes the thesis by summarizing the a
hieved goals and sug-gesting new dire
tions for future resear
h.



Chapter 2Pro
essor Ar
hite
tures forMultimedia
Multimedia pro
essing has motivated strong 
hanges in the fo
us and design of pro-
essors. Current 
omputers have to fa
e in
reasing requirements in 
omputationalpower for video
onferen
ing, image 
ompression and pro
essing, 3D graphi
 games,en
ryption, spee
h re
ognition and so on. In this 
hapter, we overview the impa
tthat multimedia pro
essing is having on 
omputer ar
hite
ture and brie�y des
ribesome of the most relevant proposed ar
hite
tures.2.1 Ar
hite
tural ChallengesThe importan
e of multimedia pro
essing has produ
ed a revolution in the designof both embedded and general-purpose pro
essors. In the general-purpose domain,these 
hanges have been very straightforward with the in
lusion of MMX-like µSIMDmultimedia extensions. These extensions have be
ome the most important 
hangeto the basi
 ISA sin
e the in
lusion of the FP units inside the pro
essor 
ore. Nev-ertheless, the signi�
an
e that media pro
essing has been taking on during the lastyears has not been limited to the general-purpose domain. On the 
ontrary, the em-bedded domain has experimented a revolution based on new and harder demands.Near future appli
ations su
h as personal mobile 
omputing, Web-TV devi
es, DVDplayers or even next generation of game 
onsoles are just a few examples.Traditional Digital Signal Pro
essors (DSPs) were designed to support spe
i�
 andregular 
omputation-intensive tasks. Most of them in
luded spe
ial-purpose oper-ations, 
omplex memory addressing modes, and support for 
ounted loops, amongother features. However, su
h levels of spe
ialization limit the use of high-performan
e
ompilers and la
k �exibility enough to adapt to variations in the appli
ations. Dur-ing the last de
ade, thanks to advan
es in te
hnology and 
ompilation te
hniques,and motivated by the evolution of the multimedia market, DSP pro
essors haveexperimented a 
hange of trend towards simpler and more general load-store RISC-



10 Chapter 2. Pro
essor Ar
hite
tures for Multimedialike ar
hite
tures. Most of them in
lude µSIMD operations, support for unalignedmemory a

esses and prefet
hing, and DMA transfers.To satisfy the great variety of 
onsumer produ
ts, these pro
essors must provide highperforman
e at low 
ost. At the same time, they must be programmable in order tosupport the di�erent standards and redu
e appli
ation development time. Therefore,these pro
essing elements are limited by the trade-o�s between performan
e and �ex-ibility. The in
reasing importan
e of these emerging 
lass of pro
essors has deserveits own term: the media pro
essor. A media pro
essor is de�ned as a programmablepro
essor dedi
ated to simultaneously a

elerating the pro
essing of multiple datatypes, in
luding digital video, digital audio, 
omputer animation, text, and graph-i
s [Kon98℄.A

ording to this, Fritts distinguishes three forms of industry support for multimedia:appli
ation-spe
i�
 pro
essors, multimedia extensions to general-purpose pro
essors,and media pro
essors [Fri00℄. A similar 
lassi�
ation is done by Talla, who dis-tinguishes between general-purpose pro
essors with SIMD extensions, VLIW mediapro
essors, and appli
ation spe
i�
 integrated 
ir
uits (ASICs) [Tal01℄. On the otherhand, Dasu proposes a 
omplete 
ategorization of existing mi
ropro
essors based onboth the evolution of pro
essing ar
hite
tures and the fun
tionality of the pro
es-sors (see Figure 2.1) [DP02℄. While from an evolution point of view spe
ial-purposeprogrammable pro
essors assimilate features of DSP and RISC ar
hite
tures, froma fun
tional perspe
tive they are in
luding VLIW and SIMD implementations toexploit parallelism at many levels.From another perspe
tive, El-Mahdy proposes a taxonomy of multimedia pro
essingbased on three ar
hite
ture models: ve
tor pro
essors, supers
alar pro
essors, andmultipro
essors [EM01℄. DSPs and multimedia approa
hes are 
onsidered as varia-tions of these three ar
hite
ture models. As we are interested on the ar
hite
turalpoint of view, we have also organized the di�erent approa
hes on three ar
hite
turalgroups: VLIW pro
essors, ve
tor pro
essing, and 
hip multipro
essors.The VLIW paradigm has been the ar
hite
ture of 
hoi
e for most media pro
es-sors. Chromati
 Resear
h's Mpa
t [Pur98℄, Equator's MAP-CA [BLO02℄, AnalogDevi
es' TigerSHARC [FG00℄, Texas Instruments' Velo
iTI [Ses98℄, and Philips' Tri-Media [RS96℄ are just a few examples. These ar
hite
tures rely on the 
ompiler toavoid the overhead of run-time parallelism extra
tion and be
ome a 
ost-e�e
tive op-tion to provide more �exibility to support the large variety of multimedia standards.From the super
omputing domain, the ve
tor and systoli
 paradigms have also in-�uen
ed new DSP pro
essors. Examples of ve
tor mi
ropro
essor designs are theTorrent-0 [ABI+95℄ and the VIRAM proje
t [KP98℄. Additionally, there are proje
tsusing streaming SIMD ar
hite
tures to address 3D graphi
s pro
essing, su
h as theImagine pro
essor [RDK+98℄. Another resear
h line 
onsiders the in
lusion of a 
on-ventional ve
tor ISA extension [QCEV99℄ and a matrix ISA extension [CEV99℄ intoa supers
alar 
ore.



2.2. VLIW Pro
essors 11
Media Processing Approaches

Programmable

Special Purpose General Purpose Monolithic Modular

Speculative Control

ReconfigurableDedicated

Instruction Level Parallelism Thread Level Parallelism

VLIW/Superscalar

With Media Extended ISA Without Media Extended ISA

RISCCISC

Data Level Parallelism

SIMD Figure 2.1. Hybrid 
lassi�
ation of mi
ropro
essors [DP02℄Finally, a natural way of exploiting 
oarse grain parallelism 
onsists on integrat-ing multiple pro
essor 
ores into a single 
hip. In fa
t, the main manufa
turersof high performan
e pro
essors are following this trend: see for example IBM'sPower5 [SKT+05℄, HP's PA-8900 [Joh05℄, SUN's UltraSPARC T1 [KAO05℄, AMD'sOpteron [AMD06℄, Intel's Code Duo [GMNR06℄ and Monte
ito [MB04℄, and theCell Broadband Engine [KDH+05℄ from Sony, Toshiba and IBM. Chip MultiPro
es-sors (CMPs) have the potential to provide high s
alability, although they are stilllimited by the la
k of programming tools and their dependen
y on hand-written li-braries [Kon98℄. In parti
ular, the 
ombination of the CMP, the VLIW, and theSIMD paradigms appears as a good option to exploit the heterogeneous parallelismfound in multimedia appli
ations, being able to provide high performan
e at low
ost. Typi
al examples of VLIW CMPs are SUN's MAJC [Gwe99℄, Improvisys'JAZZ [Imp01℄, BOPS' ManArray [PP99℄, and HP's LX [FBF+00℄.2.2 VLIW Pro
essorsAs stated before, the VLIW exe
ution paradigm arises as a good 
andidate to dealwith the regular patterns found in multimedia appli
ations. Next, we des
ribe twoof the most representative examples of VLIW ar
hite
tures for multimedia: TexasInstruments' Velo
iTI and Philips' TriMedia.Velo
iTIVelo
iTI [Ses98℄ is a load-store RISC-like VLIW ar
hite
ture suitable for multi
han-nel vo
oding for telephony and wireless, modems, imaging, and high performan
esystems in 
ommuni
ations and multimedia. It fo
uses on minimizing design 
om-



12 Chapter 2. Pro
essor Ar
hite
tures for Multimediaplexity to allow the development of a high performan
e 
ompiler, with the obje
tiveof in
reasing performan
e and redu
ing appli
ation development time.The �rst implementation of the ar
hite
ture, the �xed-point TMS320C62x fam-ily, has eight independent units, in
luding two multipliers and six ALUs. TheTMS320C7x adds �oating-point 
apability to six of the eight units. The pro
essor
ore is divided into two identi
al datapaths with four fun
tional units and 16 32-bitregisters ea
h. Up to eight operations 
an be pa
ked into one single VLIW instru
-tion. The instru
tion set provides saturation and normalize operations, but it doesnot in
lude µSIMD operations. Almost every operation 
an be guarded by a predi-
ate register. The TMS320C6201 memory ar
hite
ture in
ludes 64 Kbytes of on-
hipprogram memory 
on�gurable either as mapped memory or as dire
t mapped 
a
he,64 Kbytes of interleaved data memory, a DMA 
ontroller, and an external memoryinterfa
e.The 
ompiler in
ludes 
lassi
al optimizations su
h as 
ontrol-�ow simpli�
ation, 
opypropagation, 
ommon subexpression elimination, loop-invariant 
ode motion, and soon. In addition, it also performs software pipelining, if-
onversion, memory address
loning to allow ve
torization and unrolling, memory address-dependen
e elimina-tion, and memory-bank disambiguation to avoid memory-bank 
on�i
ts.TriMediaTriMedia is a programmable high-performan
e VLIW family of pro
essors spe
iallydesigned for real-time pro
essing of video, audio, graphi
s and 
ommuni
ation datastreams. Ba
kward sour
e 
ode 
ompatibility is ensured between the di�erent mem-bers of the TriMedia family. Nevertheless, the 
odes must be re-
ompiled, as binary
ompatibility is not guaranteed. Unlike the Velo
iTI ar
hite
ture, it integrates mul-timedia spe
i�
 
o-pro
essors and µSIMD extensions.The �rst implementation of the ar
hite
ture, the TM1000 [RS96℄, has 27 fun
tionalunits and 128 32-bit registers. Up to �ve operations 
an be s
heduled in parallelinto a single VLIW instru
tion. The instru
tion set 
ontains load/store operations,arithmeti
al and logi
al operations, �oating point operations, and µSIMD operations,in
luding spe
ial operations to perform 
onvolution and distan
e 
omputation. Thear
hite
ture also provides support for guarded exe
ution. The memory ar
hite
turein
ludes 32 Kbytes of on-
hip instru
tion 
a
he and 16 Kbytes of on-
hip data 
a
he.Two memory requests 
an be served in parallel provided that they a

ess di�erentbanks, but a stall 
y
le is imposed otherwise. The 
hip also in
orporates two 
o-pro
essors, an Image 
o-pro
essor and a Variable Length De
oder 
o-pro
essor, videoinput and output, digital audio input and output, and two serial interfa
es.One su

essor to the TriMedia TM1000 is the TriMedia CPU64 [vESV+99℄ ar
hi-te
ture, whi
h is targeted for embedded use in ele
troni
 devi
es su
h as digitaltelevisions and set-top boxes. Improvements over the TM1000 in
lude the extensionof the wordsize from 32 to 64 bits and the extension of the instru
tion set with a



2.3. Ve
tor Pro
essing 13large set of multimedia operations. The data 
a
he maintains the 16 Kbytes size,but 
hanges to a true dual-port design, thus allowing two memory requests to beserved simultaneously even if they a

ess the same memory bank.The latest TriMedia pro
essor, the TM3270 [vdWVD+05℄, is designed to address theperforman
e demands of standard de�nition video pro
essing. It is typi
ally usedas an embedded pro
essor in a System-on-a-Chip (SoC). Table 2.1 summarizes themain parameters of the ar
hite
ture. It must be noted that the data 
a
he has beenenlarged up to 128 Kbytes and supports penalty-free non-aligned a

esses.Ar
hite
ture 5 issue slot VLIW, guarded RISC-like operationsPipeline depth 7-12 stagesAddress width 32 bitsData width 32 bitsRegister �le Uni�ed, 128 32-bit registersFun
tional units 31IEEE-754 �oating point YesSIMD 
apabilities 1 x 32-bit, 2 x 16-bit, 4 x 8-bitInstru
tion 
a
he 64 Kbyte, 128-byte lines, 8 way set-asso
iative, LRU repla
ementData 
a
he 128 Kbyte, 128-byte lines, 4 way set-asso
iative, LRU repla
ement,allo
ate-on-write miss poli
yTable 2.1. Parameters of the TM3270 ar
hite
ture [vdWVD+05℄One of the main improvements of the TM3270 over previous TriMedia pro
essorsis the extension of the instru
tion set with a signi�
ant number of new instru
tionsspe
ially targeted to improve performan
e in video pro
essing kernels. One of theseenhan
ements is the in
lusion of two-slot operations, that is operations whi
h areexe
uted by two fun
tional units, thus allowing up to four sour
e operands and up totwo destination operands. It also in
ludes 
ollapsed load operations with interpolationon the retrieved data, spe
ially suitable to redu
e the 
omputational 
omplexityof the motion estimation algorithm. Additionally, there are also spe
i�
 CABACoperations for the Context-Based Adaptive Binary Arithmeti
 Coding (CABAC)algorithm of the H.264/AVC video standard. Finally, it also provides memory regionbased prefet
hing, whi
h is spe
ially e�e
tive for blo
k-based image pro
essing.2.3 Ve
tor Pro
essingVe
tor ar
hite
tures have traditionally been the most su

essful way of exploitingDLP in the super
omputing domain for s
ienti�
 and engineering tasks. As theyallow for low-
ost implementations, ve
tor ar
hite
tures also appear as a good alter-native to deal with the new 
omputation intensive tasks of multimedia appli
ations.There are several proposals based on the ve
tor model, ranging from 
ost-e�e
tiveimplementations of 
onventional ve
tor pro
essors to stream or n-dimensional ve
toralternatives. In this se
tion we brie�y des
ribe some of the most relevant ones. We



14 Chapter 2. Pro
essor Ar
hite
tures for Multimediahave 
lassi�ed them into four di�erent groups: 
onventional ve
tor ar
hite
tures,
µSIMD extensions, n-dimensional ve
tor ar
hite
tures, and stream pro
essors.2.3.1 Conventional Ve
tor Ar
hite
turesCost-e�e
tive implementations of 
onventional ve
tor mi
ropro
essors try to adaptto multimedia data patterns mainly by redu
ing the maximum ve
tor length andadding sub-word level pro
essing 
apabilities. Two representative examples of thiskind of pro
essors are the Torrent-0 and the VIRAM.Torrent-0Torrent-0 (T0) [ABI+95℄ is a single-
hip �xed-point ve
tor mi
ropro
essor designedfor multimedia, human-interfa
e, neural network, and other digital signal pro
essingtasks. The �rst use of T0 was as the 
ore of the Syntheti
 Per
eptron Testbed II(SPERT-II) workstation a

elerator board [WAK+96℄, originally designed to a

el-erate multiparameter neural network training for spee
h re
ognition resear
h.The T0 ar
hite
ture 
onsist of a MIPS-II 
ompatible 32-bit integer RISC 
ore, an on-
hip 1 KB instru
tion 
a
he, a high performan
e �xed-point ve
tor unit 
o-pro
essor,a 128-bit wide external memory interfa
e, and a byte-serial host interfa
e. The ve
torunit in
ludes a ve
tor register �le, two ve
tor arithmeti
 fun
tional units, and oneve
tor memory unit. The ve
tor register �le 
ontains 16 ve
tor registers of 32 32-bit elements ea
h. The ve
tor arithmeti
 fun
tional units perform integer arithmeti
and logi
 operations and ve
tor �xed-point operations that in
lude s
aling, rounding,and result saturation. Finally, the ve
tor memory unit performs s
alar memoryoperations, ve
tor memory operations, and ve
tor editing operations, and providessupport for unit-stride, 
onstant-stride, and indexed addressing modes. As there isonly one memory address port, non-unit stride and indexed memory a

esses areserved at one element transfer per 
y
le.All three ve
tor fun
tional units 
onsist of 8 parallel pipelines, with the elementsof a ve
tor register striped a
ross them. A ve
tor fun
tional unit a

epts a newinstru
tion with a maximum ve
tor length of 32 every four 
y
les. The T0 is able todispat
h one 32-bit instru
tion per 
y
le to ea
h ve
tor fun
tional units in turn, thussustaining up to 24 operations per 
y
le. All ve
tor pipeline hazards are interlo
kedin hardware.VIRAMThe Ve
tor IRAM (VIRAM) [Koz99℄ is a ve
tor ar
hite
ture that 
ombines ve
torpro
essing with the the 
on
ept of Intelligent RAM (IRAM), that is the integration oflogi
 an DRAM on a single 
hip. It was spe
ially designed to mat
h the requirementsof the mobile personal environment.



2.3. Ve
tor Pro
essing 15
DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank 4

DRAM
Bank 5

DRAM
Bank 6

DRAM
Bank 7

Memory Crossbar

Lane 0 Lane 1 Lane 3

ALU1

LSU1

FLAGS1

Vector Register

ALU0

FLAGS0

LSU0

ALU1

LSU1

FLAGS1

ALU1

LSU1

FLAGS1

Vector RegisterVector Register

ALU0

FLAGS0

LSU0

ALU0

FLAGS0

LSU0

ALU1

LSU1

FLAGS1

Vector Register

ALU0

FLAGS0

LSU0
Lane 2

Memory Crossbar

DRAM DRAM DRAM
Bank 10

DRAM DRAM DRAM
Bank 12 Bank 13Bank 11Bank 9Bank 8

DRAM DRAM
Bank 15Bank 14

MIPS Core

I Cache

D Cache

Figure 2.2. Ar
hite
ture of the VIRAM ve
tor pro
essor
Figure 2.2 shows the ar
hite
ture of the VIRAM. It 
onsists of a s
alar unit, a ve
tor
o-pro
essor, and a network interfa
e, all 
onne
ted to the on-
hip memory system.The s
alar unit is based on an in-order, dual-issue supers
alar MIPS pro
essor andin
ludes 16 KB instru
tion and data 
a
hes.The ve
tor unit has six ve
tor fun
tional units: two arithmeti
, two �ag pro
essing,and two load/store units. It provides support for multimedia data types, short ve
-tors, and other DSP features su
h as s
aling, rounding and saturation. A spe
ialbypassing path is also implemented to manage redu
tions. The ve
tor unit is 
lus-terized into four parallel lanes. The ve
tor register �le holds 32 ve
tor registers of32 64-bit elements ea
h, with the elements of the ve
tor registers distributed alongthe di�erent lanes. Additionally, ve
tor registers 
an be subdivided to hold 64 32-bitelements or 128 16-bit elements in order to exploit sub-word level parallelism.The main memory of VIRAM is based on embedded DRAM, whi
h provides highmemory bandwidth and low energy 
onsumption, but at the 
ost of higher memorylaten
y. In order to tolerate the high DRAM laten
y, the ve
tor pipeline is modi�edto in
lude the worst 
ase memory a

ess laten
y. Both memory units support unit-stride memory a

esses, but only one 
an perform strided and indexed operations.Ve
tor memory a

esses are not 
a
hed, but 
oheren
e is maintained between s
alar
a
he and ve
tor a

esses.



16 Chapter 2. Pro
essor Ar
hite
tures for Multimedia2.3.2 µSIMD ExtensionsStarting in 1994 with the HP's MAX [Lee95℄ instru
tion set, and 
losely followedby SUN's VIS [TONL96℄, MIPS's MDMX [SIG97℄, and Intel's MMX [PW96℄, mul-timedia extensions have be
ome essential on any general-purpose pro
essor. Theyappeared with the obje
tive of a

elerating the exe
ution of the emerging multimediakernels while trying to minimize the impa
t on the overall pro
essor design.Based on the observation that multimedia appli
ations use to spend a lot of timein loops that pro
ess streams of small data types (typi
ally 8 or 16 bits), theseISA extensions exploit SIMD parallelism by pa
king several elements into a singleregister and operating simultaneously on the di�erent register elements. In order todi�erentiate it from traditional SIMD exe
ution, where a ve
tor register is 
omposedby a set of registers but there is only one element per register, some authors 
all itmi
roSIMD (or µSIMD) exe
ution [Lee99℄.Initially, most µSIMD extensions in
luded only integer 
apability. Additionally, totake advantage of the already existing register �les, the �oating-point register �lewas typi
ally used to map the new set of µSIMD registers, thus limiting the registerwidth to 64-bit. These µSIMD extensions provide the 
apa
ity to operate overtwo 32-bit, four 16-bit, or eight 8-bit elements in parallel. In the 
ourse of time,the in
reasing signi�
an
e of the 3D pro
essing domain drove to the in
lusion of�oating-point µSIMD instru
tions. Next multimedia extensions, su
h as AMD's3DNow! [AMD00℄, Motorola's Altive
 [NJ99℄, and Intel's SSE [Int99℄, in
luded 32-bit �oating-point µSIMD arithmeti
 and a dedi
ated register �le. Additionally, bothAltive
 and SSE are implemented in 128-bit. A summary of the main 
hara
teristi
sof available µSIMD multimedia extensions is given in Table 2.2Year Name Company Pro
essor Datapath Registers Instru
tions FP1995 Max HP PA RISC 64-bit 32 (Int) 8 No1995 VIS Sun Ultra Spar
 64-bit 32 (FP) 121 No1997 MDMX MIPS R1000/PA8000 64-bit 32 (FP) 74 Yes1997 MMX Intel Pentium II 64-bit 8 (FP) 57 No1999 3DNow! AMD K6-2 64-bit 8 24 Yes1999 Altive
 Motorola MPC7400 128-bit 32 162 Yes1999 SSE Intel Pentium III 128-bit 8 70 Yes2000 SSE2 Intel Pentium 4 128-bit 8 144 Yes2004 SSE3 Intel Pentium 4 128-bit 8 157 Yes2006 SSSE3 Intel Xeon, Core 2 128-bit 8 173 YesTable 2.2. µSIMD multimedia extensionsThe extended ISA generally 
ontains a full set of ve
tor instru
tions, in
ludingmultiply-add operations, spe
ial multimedia instru
tions su
h as the sum of absolutedi�eren
es, and instru
tions for data reorganization su
h as pa
king and unpa
king.



2.3. Ve
tor Pro
essing 17
A A AA

B B B B

A A AA B B B B

3 2 1 0

0123

3 3 2 2 1 1 0 0++ + +

+ + + +

A A AA

B B B B

A A AA B B B B++* * * *

3 2 1 0

0123

3 3 2 2 1 1 0 0

* * * *

+ +(a) Parallel add (b) Multiply-add
AA 1 0

B 1 B 0

0A1AB 0B 1

A A AA 0123

A 1 A 0(
) Pa
king (d) Unpa
kingFigure 2.3. Examples of µSIMD instru
tionsThey also provide support for s
aling, rounding and saturation. Figure 2.3 showssome examples of 
ommon µSIMD instru
tions.Nevertheless, the e�
ien
y of this kind of µSIMD extensions is greatly redu
ed by theoverhead to pa
k/unpa
k data to/from the µSIMD registers, the e�e
t of unalignedand non-unit stride memory a

esses, and the mismat
h between the storage and
omputational formats. It must also be noted that the amount of parallelism that
an be exploited is limited by the width of the µSIMD registers. Furthermore,even though there has been a great e�ort working into 
ompilation te
hniques, handoptimization is still need to produ
e e�
ient µSIMD 
ode.2.3.3 N-dimensional Ve
tor Ar
hite
turesTo over
ome some of the above mentioned limitations of µSIMD extensions, severalapproa
hes try to exploit two or more dimensions of parallelism to adapt to 
ommonmultimedia data stru
tures in a more e�
ient way. MOM, CSI, and MediaBreezeare examples of N-dimensional ve
tor ar
hite
tures.MOMTheMatrix Oriented Multimedia (MOM) extension [CEV99℄ 
ombines the intra-wordparallelism 
apabilities of µSIMD extensions together with the inter-word parallelismexploitation of traditional ve
tor ar
hite
tures. Basi
ally, it 
an be seen as a 
onven-tional short ve
tor ISA where ea
h ve
tor sub-operation is a µSIMD one.



18 Chapter 2. Pro
essor Ar
hite
tures for MultimediaThe proposed ar
hite
ture 
onsists of a supers
alar 
ore with the addition of a mul-timedia unit with its own register �le. It o�ers 16 MOM registers of 16 64-bit wordsea
h to the programmer, ve
tor load and ve
tor store instru
tions to move databetween memory and the MOM registers, and a set of 
omputation instru
tionsthat operate on MOM registers. A MOM implementation exe
utes as many µSIMDoperations per 
y
le as the number of parallel lanes in the MOM fun
tional unit.Furthermore, the ar
hite
ture in
ludes two 192-bit pa
ked a

umulators to handleredu
tions. Additional details about the MOM extension are given in Chapter 6.A related proposal but targeting high performan
e for te
hni
al, s
ienti�
, and bio-informati
s workloads is Tarantula [EAE+02℄. It is based on adding aggressive ve
tor
apabilities to the EV8 pro
essor. It in
ludes two ve
tor units with 16 parallellanes ea
h, allowing up to 32 double-pre
ision operations per 
y
le. Ve
tor memorya

esses are performed dire
tly to the se
ond level 
a
he, whi
h is able to serve upto 16 words per 
y
le.CSIComplex Streamed Instru
tion (CSI) [JVTW01℄ is a memory-to-memory ar
hite
turefor two-dimensional data streams of arbitrary length. Ea
h stream is spe
i�ed bysix 32-bit stream 
ontrol registers, 
ontaining information whi
h in
ludes the baseaddress, the stream length, the strides in the two dimensions, the size of the streamelements, the s
ale fa
tor, and the sign and saturation features.The number of elements is not expli
itly 
odi�ed in the program, instead the hard-ware is responsible for dividing the data streams into se
tions whi
h are pro
essed inparallel. Data 
onversion and rearrangement is pipelined with 
omputation and it isalso performed by hardware, thus minimizing the pa
king/unpa
king overhead typ-i
al of multimedia extensions. It also in
ludes hardware support for data alignmentand loop 
ontrol.One of the main di�eren
es between CSI and MOM is that CSI allows any stride inboth dimensions, while MOM allows an arbitrary stride between 
onse
utive rows,but not between 
onse
utive elements inside one row.MediaBreezeThe MediaBreeze [TJ01℄ ar
hite
ture was designed to a

elerate µSIMD 
odes by de-
oupling the true 
omputation from the related overhead instru
tions, and providingexpli
it hardware support for pro
essing the overhead instru
tions, in
luding mem-ory a

ess, addressing arithmeti
, loop bran
hes and data reorganization (permute,pa
k, unpa
k, and transpose).In the MediaBreeze ar
hite
ture, the Breeze unit fet
hes and reorganizes input dataand transfers them to the input queues in the Data Station, whi
h a
ts as the register�le for SIMD 
omputation and is implemented as a set of FIFOs. A 
onventional



2.3. Ve
tor Pro
essing 19
µSIMD unit performs 
omputation and stores ba
k the resulting stream on the out-put queue of the Data Station.The Breeze unit is 
ontrolled by means of a spe
ial multidimensional instru
tion,
alled the Breeze instru
tion. This instru
tion des
ribes the semanti
s of up to�ve nested loops and the ar
hite
ture allows for up to three input and one outputdata stru
tures. Thus, up to three 5-dimensional input streams 
an be operated toprodu
e one 5-dimensional output stream. Information spe
i�ed in the instru
tionin
ludes the �ve loop index 
ounts, the start address, stride, multi
ast and data typesof ea
h stream, the operation 
ode, and the sign, saturation and s
aling features ofthe result. Su
h a 
omplex instru
tion requires a spe
i�
 instru
tion memory to behold and a spe
i�
 de
oder blo
k inside the Breeze unit.2.3.4 Stream Pro
essorsThe stream programming model tries to separate the des
ription of data from the 
om-putation. Appli
ations are 
oded as streams of data and a set of 
omputation kernelsthat pro
ess them. These ar
hite
tures are usually integrated as a 
o-pro
essor intoa SoC. Examples of stream ar
hite
tures are Imagine from the Standford resear
hgroup, Sony's Emotion Engine and Motorola's RSVP.ImagineImagine [RDK+98℄ is a programmable load/store ar
hite
ture for one-dimensionalstreams. It is spe
ially suitable for appli
ations performing many operations on ea
helement in a long stream, su
h as image pro
essing and 3D renderingImagine is organized around a large stream register �le of 64 KB (see Figure 2.4).The unit of work is the stream des
riptor, that spe
i�es the base address in thestream register �le, the stream length, and the re
ord size of data elements in thestream. The ar
hite
ture provides load/store operations to move entire streams ofdata between memory and the stream register �le. The memory system 
onsistsof four independent SDRAM banks and is able to perform up to two simultane-ous stream memory transfers. It provides support for sequential, 
onstant-stride,indexed, and bit-reversed addressing modes. A single mi
ro-
ontrolled handles 8arithmeti
 
lusters with 6 fun
tional units ea
h (three adders, two multipliers andone divide/square root unit). The arithmeti
 
lusters work in parallel on di�erentelements of the stream and ea
h 
luster operate under VLIW 
ontrol. Intermediateresults are kept lo
al to ea
h 
luster.Appli
ations are written in high-level language using a set of library fun
tions andare exe
uted on the host pro
essor. Kernels are written in Imagine's mi
roassem-bly language using C-like expressions. The kernel 
ompiler applies 
ommon highlevel optimizations su
h as loop unrolling, iterative 
opy propagation, and dead 
odeelimination, and generates VLIW mi
ro
ode instru
tions that 
ontrol the arithmeti

luster.



20 Chapter 2. Pro
essor Ar
hite
tures for Multimedia
SDRAM SDRAM SDRAM SDRAM

Streaming Memory System

Stream Register File Interface
Network

A
LU

 C
lu

st
er

 0

A
LU

 C
lu

st
er

 1

A
LU

 C
lu

st
er

 2

A
LU

 C
lu

st
er

 3

A
LU

 C
lu

st
er

 4

A
LU

 C
lu

st
er

 5

A
LU

 C
lu

st
er

 7

A
LU

 C
lu

st
er

 6Micro−
Controller

Host
Interface

Figure 2.4. Ar
hite
ture of the Imagine stream pro
essor [RDK+98℄Emotion EngineThe Emotion Engine [KIea00℄ is the 
ore of the Sony's PlayStation 2 video game
onsoles. It was jointly designed by Toshiba and Sony to support high-quality 3Dgraphi
s, espe
ially geometry and perspe
tive transformations. It is basi
ally a 2-way MIPS 
ore with 128-bit µSIMD extensions and 2 ve
tor 
o-pro
essors 
onne
tedvia a shared 128-bit internal bus.Ea
h ve
tor unit in
lude four parallel �oating-point multiply-a

umulate units and ahigh-speed �oating-point division unit, and 
an operate as a stand-alone 2-way VLIWpro
essor. One of the ve
tor units is mainly used to exe
ute �exible 
al
ulations,su
h as 
hara
ters movement, in 
ollaboration with the CPU 
ore. The se
ond onehas four times more memory than the other one, as it is mainly used as stand-alonepro
essor responsible for 
onventional 3D graphi
s 
al
ulations, su
h as pro
essingthe ba
kground obje
ts of the s
ene.RSVPThe Re
on�gurable Streaming Ve
tor Pro
essor (RSVP) [CEL+03℄ is a streamingve
tor 
o-pro
essor ar
hite
ture targeted to image and video 
apture devi
es andportable 
omputation and 
ommuni
ation devi
es, in
luding handwriting re
ogni-tion, voi
e re
ognition and synthesis, and graphi
s.The RSVP ar
hite
ture 
onsists of operand a

ess units, 
alled ve
tor stream units(VSUs), whi
h 
ommuni
ate with the pro
essing units via interlo
ked FIFO queues(see Figure 2.5). Thus, it a
hieves to de
ouple and overlap data a

ess and datapro
essing. The number of input and output VSUs depend on the parti
ular im-plementation, but are de�ned by the ar
hite
ture to be between 3 and 64 for input



2.4. Chip Multipro
essors 21

Memory
Subsystem

Unit
Processing

. . .

. . .

. . .

. . .

Input Streams

Output Stream

Figure 2.5. Ar
hite
ture of the RSVP [CEL+03℄VSUs and between 1 and 64 for the output ones. It also de�nes between 2 and 6464-bit a

umulators and between 16 and 64 32-bit s
alar registers.Programming the RSVP 
onsists of des
ribing the input and output ve
tors ands
alar values, and des
ribing the 
omputation itself as a data-�ow graph. Conditionalbran
hes, subroutine 
alls, and so on are managed by the host pro
essor. A ve
tor isspe
i�ed by a pointer to the �rst element and the shape of the ve
tor data in memory,whi
h in
ludes stride, span, and skip values. The span des
ribes how many elementsto a

ess at stride spa
ing before applying the skip o�set. Ve
tor operations areexpressed as nodes in a data-�ow graph where all dependen
ies are expli
itly stated.Ea
h node is spe
i�ed by the input operands, the operation to be performed, thepre
ision of the output and the sign.2.4 Chip Multipro
essorsGiven 
urrent limitations to in
rease performan
e by simply in
reasing the numberof transistors, there is a growing trend towards the integration of multiple pro
essorsinto a single 
hip. These multiple pro
essors are not tied to be the same. On the
ontrary, new heterogeneous designs are appearing where general-purpose pro
essor
ores are pa
kaged together with spe
ial-purpose ones for higher e�
ien
y in pro-
essing multimedia and networking. Next we des
ribe the MAJC ar
hite
ture, anexample of homogeneous VLIW CMP, and the Cell, whi
h is 
urrently the mostrepresentative example of heterogeneous CMP for multimedia.MAJCSUN's Mi
ropro
essor Ar
hite
ture for Java Computing (MAJC) [TCC+00℄ is a highperforman
e general-purpose mi
ropro
essor ex
eptionally suitable for multimedia
omputing. Its modular design provides s
alability and the ability to exploit paral-lelism at a hierar
hy of levels: at the data level through µSIMD instru
tions, at the



22 Chapter 2. Pro
essor Ar
hite
tures for Multimedia
Data CacheInstruction Cache Instruction Cache

Global Registers

Registers

Local

Registers

Local

Registers

Local

Registers

Local

GFU MFU0 MFU2MFU1

Global Registers

Registers

Local

Registers

Local

Registers

Local

Registers

Local

GFU MFU0 MFU2MFU1Figure 2.6. Ar
hite
ture of the MAJC-5200 pro
essorinstru
tion level through multiple fun
tional units, at the thread-of-exe
ution level,and at the system level through multiple pro
essor units on a 
hip.MAJC supports verti
al multithreading inside ea
h pro
essor unit. Verti
al multi-threading allows another thread to use resour
es that a stalled thread is not using.The system 
an hold the state of up to four threads at the same time, so that 
on-text swit
h is very fast. On the other hand, MAJC supports pro
essor 
lusters,ea
h 
ontaining multiple pro
essor units, thus allowing di�erent threads to run onseparate pro
essor units 
on
urrently. Additionally, MAJC also allows spe
ulativethreads (future instru
tion streams) to exe
ute on separate pro
essors. The spe
ula-tive threads operate in their own memory spa
e and future time. Sun refers to thiste
hnique with the term spa
e-time 
omputing (STC).The instru
tion set in
ludes DSP-like features, su
h as saturation and µSIMD op-erations for both integer and �oating-point data, powerful instru
tions for graphi
appli
ations, and a set of operations to fa
ilitate byte and bit manipulation.The �rst implementation of the MAJC ar
hite
ture, the MAJC-5200 [Sud00℄, isshown in Figure 2.6. It is a multithreaded dual 32-bit mi
ropro
essor with a high in-put/output bandwidth. The two pro
essors units share a 
oherent dual-ported 4-wayset-asso
iative 16 KB data 
a
he and 
ommon external interfa
es. Ea
h pro
essorunit is a 4-issue VLIW pro
essor with four fun
tional units: one General Fun
tionUnit (GFU), whi
h is able to exe
ute memory, �ow or arithmeti
 operations, andthree Media Fun
tional Units (MFUs) for operations of 
ompute type. Moreover,ea
h pro
essor unit 
ontains its own 2-way set-asso
iative 16 KB instru
tion 
a
he.The general-purpose register �le is data type agnosti
, that is, any register 
an holdinformation of any data type. All fun
tional units within a pro
essor unit share96 registers, whi
h are then 
alled general (or global) registers. Additionally, ea
h



2.4. Chip Multipro
essors 23

Power
core

L2

L1

PPE

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SXU

LS

SMF

SPU

SPE SPE SPE SPE SPE SPE SPE SPE

Element Interconnect Bus (EIB)

Memory Interface
Controller (MIC)

Bus Interface
Controller (BIC)

Figure 2.7. Cell system ar
hite
turefun
tional unit also has a

ess to a set of 32 private (or lo
al) registers. The 96 globalregisters plus the 4 sets of 32 private registers allow programs to use a maximumof 224 registers. Logi
ally, the register �le has 12 read ports and 5 write ports;physi
ally, it is distributed into 4 register �les of 3 read ports and 5 write ports ea
h.The only use of the MAJC-5200 was as the 
ore of the XVR-1000 and XVR-4000graphi
s a

elerators. Nevertheless, many of the design ideas, spe
ially in the multi-threading s
ope, laid the foundations for the design of next UltraSPARC pro
essors.CellThe Cell Broadband Engine Ar
hite
ture (CBEA) [KDH+05℄, also known as the Cellor the CellBE ar
hite
ture, is a heterogeneous CMP jointly designed by Sony, Toshibaand IBM (also 
alled the STI allian
e). Although it was originally designed forthe Sony's PlayStation 3, it is suitable to fa
e a wide range of digital appli
ations.Toshiba, for example, plans to in
orporate Cell in high de�nition television sets,and IBM has re
ently released the QS20 blade module using double Cell pro
es-sors [IBM06a℄. These modules are also expe
ted to be a part of the IBM Roadrun-ner [IBM06b℄ super
omputer that will be operational in 2008.The �rst implementation of the Cell ar
hite
ture 
onsists of a dual-threaded dual-issue Power Pro
essor Element (PPE) (based on a 64-bit Power 970 
ore) augmentedwith eight spe
ialized Synergisti
 Pro
essor Elements (SPEs) (based on a novel SIMDar
hite
ture), an on-
hip memory 
ontroller, and a 
ontroller for a 
on�gurable I/Ointerfa
e (see Figure 2.7). These units are inter
onne
ted with a 
oherent on-
hipElement Inter
onne
t Bus (EIB).



24 Chapter 2. Pro
essor Ar
hite
tures for MultimediaEa
h SPE [GHF+06℄ 
onsists of a Synergisti
 Pro
essor Unit (SPU) and a Synergisti
Memory Flow Controller (SMF). The SPU operates on a Lo
al Store (LS) memorythat 
ontains instru
tions and data. All the transfers between this lo
al memoryand the system memory is performed via a DMA-based interfa
e. It must be notedthat the SPU 
annot dire
tly a

ess the system memory. The SPU is an in-orderdual-issue stati
ally s
heduled ar
hite
ture based on the pervasively data parallel
omputing (PDPC) 
on
ept, in whi
h wide datapaths are exploited throughout thesystem. The exe
ution units are organized around a 128-bit data�ow. There is onlyone uni�ed register �le with 128 128-bit entries, whi
h 
an be used for s
alar datatypes ranging from 8-bits to 128-bits in size or for µSIMD 
omputations on a varietyof integer and �oating point formats.2.5 SummaryThe signi�
an
e of multimedia appli
ations have produ
e a revolution in a greatvariety of markets, from the embedded to the high performan
e general-purposedomain. Te
hnology advan
es allow 
urrent DSP pro
essors to in
lude features thatwere restri
ted not far ago to just the general-purpose domain. In fa
t, the 32-bitembedded pro
essors have already narrowed the gap between embedded and desktopsystems.In order to fa
e the performan
e, 
ost, and �exibility trade-o�s of 
onstantly 
hangingmultimedia appli
ations, pro
essors designers have been 
ompelled to investigate fornew pro
essor ar
hite
tures. Some of them try to a

elerate multimedia exe
utionby adding some spe
i�
 support, su
h as µSIMD extensions or spe
ial-purpose 
o-pro
essors, to existing mi
ropro
essors designs. On the other hand, ideas from thesuper
omputing domain have also been adapted to exploit the data level parallelismof multimedia 
odes.In spite of the variety of existing alternatives, it is widely assumed that the 
om-bination of di�erent paradigms is needed to exploit the heterogeneous parallelismof multimedia appli
ations. Most of the 
urrent designs provide multi
ore and/ormultithreaded fun
tionality to support thread level parallelism, either stati
 or dy-nami
 supers
alar 
apabilities to exploit instru
tion level parallelism, and some kindof SIMD support to deal with data level parallelism.Realizing the 
omputational demands, together with the 
ost and power 
onsumptionrequirements of these new appli
ations, it 
an be easily predi
ted that even moreaggressive approa
hes are going to be implemented in future media pro
essors.



Chapter 3Compilation and SimulationFramework
This 
hapter overviews the 
ompilation and simulation framework used in this thesis,Trimaran, and des
ribes the main extensions built into the infrastru
ture to make itsuitable for our work. These extensions in
lude the possibility to extra
t statisti
sat the loop or region de�ned level, the insertion of a new module to perform loopdisambiguation, the addition of new Ve
tor-µSIMD units and Ve
tor-µSIMD regis-ters to the HPL-PD ar
hite
ture, the extension of the 
ompiler and the simulatorto re
ognize, s
hedule and emulate the new operations, and the development of asimulator of the memory hierar
hy. Finally, we summarize the main parameters ofthe referen
e ar
hite
ture used in the evaluations.3.1 Trimaran Choi
eIn this work we propose adding ve
tor 
apabilities to high-performan
e µSIMD-VLIW pro
essors to improve the performan
e of multimedia appli
ations. The eval-uation of the proposed ar
hite
ture require developing new tools or adapting existingones. Spe
i�
ally, the target framework must allow experimentation in the ar
hite
-ture and in both the 
ompilation and the simulation pro
esses.All the proposals presented in this thesis have been evaluated using the publi
 do-main Trimaran 
ompilation and simulation framework [CGH+04℄. Trimaran beganas a 
ollaborative e�ort between the Compiler and Ar
hite
ture Resear
h (CAR)Group (on
e a member of Hewlett Pa
kard Laboratories), the IMPACT Group atthe University of Illinois, and the ReaCT-ILP Laboratory at New York University(now known as CREST, the Center for Resear
h on Embedded Systems and Te
h-nology at the Georgia Institute of Te
hnology).Although there are several 
ompiler infrastru
tures available to the resear
h 
om-munity, Trimaran is espe
ially useful for our resear
h for several reasons. First, it isespe
ially geared for ILP resear
h. Se
ond, it provides a ri
h 
ompilation framework.



26 Chapter 3. Compilation and Simulation FrameworkThe parameterized ILP ar
hite
ture (HPL-PD) spa
e allows the user to experimentwith ma
hines that vary 
onsiderably in the number and kinds of fun
tional unitsand register �les and 
an vary in their instru
tion laten
ies. These ma
hine 
on�g-urations 
an be des
ribed using a ma
hine des
ription fa
ility (MDES). Moreover,the modular nature of the 
ompiler ba
k-end (El
or) and the intermediate programrepresentation used throughout it allows the 
onstru
tion and insertion of new 
om-pilation modules into the 
ompiler.3.2 Overview of the Trimaran Compiler Infrastru
tureTrimaran is a 
ompiler infrastru
ture for supporting state of the art resear
h in
ompiling for ILP ar
hite
tures. The system is 
urrently oriented towards Expli
itlyParallel Instru
tion Computing (EPIC) [SR00℄ ar
hite
tures, and supports 
ompilerresear
h in what is typi
ally 
onsidered to be ba
k-end te
hniques, su
h as instru
tions
heduling, register allo
ation, and ma
hine-dependent optimizations.The Trimaran 
ompiler infrastru
ture is mainly 
omprised of the following 
ompo-nents:
• A parameterized ILP Ar
hite
ture, 
alled HPL-PD.
• A ma
hine des
ription fa
ility, 
alled MDES, for des
ribing ILP ar
hite
tures.
• A 
ompiler front-end for C, 
alled IMPACT, whi
h performs parsing, type
he
king, and a large suite of high-level (i.e. ma
hine independent) 
lassi
aland ILP optimizations.
• A 
ompiler ba
k-end, 
alled El
or, parameterized by a ma
hine des
ription,performing instru
tion s
heduling, register allo
ation, and ma
hine-dependentoptimizations.
• A 
y
le-level simulator of the HPL-PD ar
hite
ture whi
h is 
on�gurable bya ma
hine des
ription and provides run-time information on exe
ution time,bran
h frequen
ies, and resour
e utilization.Figure 3.1 displays a blo
k diagram of the overall system organization. Ea
h 
om-ponent is des
ribed in more detail in the following lines.3.2.1 Ar
hite
ture Spa
eThe ar
hite
ture spa
e targeted by Trimaran is the HPL-PD parametri
 pro
es-sor [KSR00℄. HPL-PD is a parametri
 ar
hite
ture in that it admits ma
hines ofdi�erent 
omposition and s
ale, espe
ially with respe
t to the amount of parallelismo�ered. The HPL-PD parameter spa
e in
ludes the number and types of fun
tionalunits, the 
omposition of the register �les, operation laten
ies and des
riptors that



3.2. Overview of the Trimaran Compiler Infrastru
ture 27
C program

Program
Simulation

ModuloAcyclic
Scheduling

Code

ELCOR

Emulation

SIMULATOR

IMPACT

Register
Scheduling Allocation Scheduling

Generator Library

Machine
Description

Post-pass

HCODE

DYN_STATS

ELCOR_STATS

Superblock Formation
Classical Optimizations

Hyperblock Formation
ILP Transformations

LCODE

Function Inlining
C Source File Splitting
Control-Flow Profiling
Renaming & Flattening

Memory Optimizations

Dependence Analysis
Loop Transformations

K&R/ANSI-C Parsing

PCODE

Figure 3.1. Trimaran 
ompiler infrastru
turespe
ify when operands may be read and written, instru
tion formats, and resour
eusage behavior of ea
h operation.The HPL-PD instru
tion set is similar to that of a RISC load/store ar
hite
ture, withstandard integer, �oating point and memory operations. In addition, it provides anumber of advan
ed features for enhan
ing and exploiting parallelism in programs,su
h as spe
ulative and predi
ated exe
ution, 
ompiler exposed memory systems, ade
oupled bran
h me
hanism, and software pipelining.Spe
ulative exe
ution is used to break 
ertain types of dependen
es between oper-ations. HPL-PD supports two forms of spe
ulation: 
ontrol spe
ulation for 
odemotion a
ross 
onditional bran
hes and data spe
ulation for run-time disambigua-



28 Chapter 3. Compilation and Simulation Frameworktion. The ar
hite
ture supports spe
ulative exe
ution of most operations; ex
eptionsare stores and bran
hes. To 
orre
tly handle ex
eptions generated by spe
ulativeoperations, the ar
hite
ture provides spe
ulative and non-spe
ulative versions of op-erations and spe
ulative tag bits on registers.Predi
ated or guarded exe
ution refers to the 
onditional exe
ution of operationsbased on a boolean-valued sour
e operand, 
alled a predi
ate. Predi
ated exe
utionis often an e�
ient method to handle 
onditional bran
hes and provides mu
h morefreedom in 
ode motion. Predi
ate exe
ution is also used in software pipelining asnoted further on. To support predi
ated exe
ution, the ar
hite
ture provides 1-bitpredi
ate register �les and a ri
h set of 
ompare-to-predi
ate operations whi
h setpredi
ate registers. In addition, most operations have a predi
ate input to 
ondi-tionally nullify their exe
ution. The 
ompare-to-predi
ate operations are unique inthat they 
an de�ne two predi
ate registers simultaneously, for example, a 
omparemay write the value of a 
omparison to one predi
ate, and the 
omplementary valueto the other predi
ate. Furthermore, the ar
hite
ture permits multiple operations towrite into a register simultaneously, provided all produ
ers generate the same value.These write semanti
s are parti
ularly valuable for the e�
ient evaluation of booleanredu
tions as 
arried out by the 
ompare operations.The memory hierar
hy is unusual in that it is visible to the 
ompiler. The ISA in-
ludes instru
tions for managing data a
ross the hierar
hy, for saving and restoringregisters, and for performing run-time data disambiguation. The ar
hite
ture pro-vides laten
y and 
a
he-
ontrol modi�ers with load/store operations, whi
h permita 
ompiler to expli
itly 
ontrol the pla
ement of data in the memory hierar
hy. thedefault in the absen
e of the use of these dire
tives, is the 
onventional hardwaremanagement.The bran
h ar
hite
ture permits di�erent pie
es of bran
h related information to bespe
i�ed as soon as they be
ome available, in the hope the information 
an be usedto redu
e the adverse e�e
t of the bran
h. A prepare-to-bran
h operation is usedto spe
ify the target address and the stati
 predi
tion. The ar
hite
ture provides aseparate type of register �le, 
alled the bran
h target register �le, to store this in-formation. Compare-to-predi
ate operations are used to 
ompute bran
h 
onditions,whi
h are stored in predi
ate registers. Finally, bran
h operations test predi
atesand perform the a
tual transfer of 
ontrol. The operation repertoire in
ludes spe
ialbran
h operations to support software pipelining.Software pipelining [Rau95℄ is a te
hnique for exploiting parallelism a
ross iterationsof a loop. In software pipelining, the loop iterations are overlapped su
h that newiterations begin exe
ution before previous iterations are 
omplete. The set of in-stru
tions that are in �ight at steady state 
onstitute the kernel. To rea
h steadystate, a subset of the instru
tion in the kernel are exe
uted during a prologue stage;similarly, another subset is exe
uted during an epilogue stage to 
omplete the loop.During the prologue and epilogue stages, predi
ation is used to nullify the appro-priate subsets of the kernel. The ar
hite
ture supports rotating registers in integer,



3.2. Overview of the Trimaran Compiler Infrastru
ture 29
Elcor_Operation_FlagOperation

Field_Type Operand_LatencyResource_Usage

Register_File Resource

Register

Operation_Format Operation_LatencyReservation_Table

Scheduling_Alternative

Elcor_Operation

Figure 3.2. HMDES se
tion hierar
hy�oating-point and predi
ate registers in order to generate e�
ient software pipelined
ode.3.2.2 Ma
hine Des
ription ModelHPL-PD adopts an EPIC philosophy whereby the 
ompiler is responsible for stati-
ally leading the exe
ution of a program. Thus, a 
ompiler must have exa
t informa-tion pertaining to the parti
ulars of the ar
hite
ture de�nition within the HPL-PDspa
e. In Trimaran, a ma
hine-des
ription (MDES) database spe
i�es those parti
-ulars whi
h in
lude the register �le stru
ture, the operation repertoire, the set ofresour
es in the ar
hite
ture, the resour
e utilization patterns for ea
h instru
tion,and the laten
y des
riptors that de�ne when an operand may be read or writtenafter an instru
tion is issued.The ar
hite
ture is de�ned using a human-readable, high-level ma
hine des
ription(HMDES) language [GHR96℄. The ma
hine stru
ture is des
ribed as a hierar
hy oftypes 
alled se
tions. Figure 3.2 shows the hierar
hy of se
tions de�ned within thedatabase �le format. The des
ription is then translated to a low-level language thatspe
i�es the same information but in a format that is suitable for a 
ompiler. AMDES Query System (mQS) relays the information to a 
ompiler through a pro
e-dural interfa
e. The MDES methodology allows for a retargetable 
ompiler infras-tru
ture and enables experimentation with numerous performan
e-oriented 
ompileralgorithms as well as ar
hite
ture-exploration algorithms.3.2.3 Compiler Front-endThe Trimaran front-end is based on IMPACT, an optimizing C 
ompiler. IMPACTis an a
ronym for the Illinois Mi
roar
hite
ture Proje
t utilizing Advan
ed Compiler



30 Chapter 3. Compilation and Simulation FrameworkTe
hnology. The front-end is divided into three di�erent modules depending on thelevel of intermediate representation (IR) used. The �rst level of IR, 
alled P
ode, isa parallel C 
ode representation with loop 
onstru
ts inta
t. In P
ode, dependen
eanalysis, parallelization, loop transformations, and memory system optimizations 
anbe performed. P
ode fun
tions are then translated into the H
ode format. H
ode isa �attened C representation 
ontaining only basi
 if-then-else and goto 
ontrol �ow
onstru
ts. The H
ode module is responsible for basi
-blo
k pro�ling, pro�le-guided
ode layout and fun
tion inline expansion. Finally, the 
ode is translated to theL
ode format. L
ode is a ma
hine-independent assembly like representation similarto many load/store RISC instru
tion sets. The L
ode module 
arries out 
lassi
al
ode optimizations, Superblo
k [HMC+93℄ and Hyperblo
k [MLC+92℄ formation andILP 
ode optimizations. At the end of the pro
ess, the resultant 
ode is translatedinto a bridge 
ode readable for the Trimaran ba
k-end.3.2.4 Compiler Ba
k-endEl
or forms the ba
k-end of the Trimaran 
ompiler, and it is mainly responsible fors
heduling and register allo
ation. In the El
or IR, a program unit 
onsists of agraph of operations 
onne
ted by edges. This operation graph represents both, atraditional 
ontrol �ow graph and a data �ow graph. The edges between operationsmodel di�erent kinds of 
ontrol �ow, data and memory dependen
es. The El
or IRprovides the ne
essary infrastru
ture to build, manipulate and transverse this graph.The internal representation of the El
or IR 
onsist of a set of C++ obje
ts. Alloptimization modules in the El
or IR use the interfa
e provided by these obje
ts to
arry out optimizations. Thus, optimizations are simply IR to IR transformations.The El
or IR also has a textual representation, known as Rebel, with 
onversionroutines between the two. El
or is designed to allow implementing and testing new
ompilation modules. These new modules may augment or repla
e existing El
ormodules.3.2.5 SimulatorThe Trimaran infrastru
ture also in
ludes an instru
tion set simulator (ISS). TheISS 
onsumes the output of the Trimaran 
ompiler to generate an exe
utable binarywhi
h 
an simulate the original program.The 
ode generator module generates C �les whi
h 
orrespond with the pseudo as-sembly �les used as El
or's IR. Be
ause the assembly-equivalent �les generated are inC, the simulation is 
ompletely platform independent. These �les 
ontain externalvariable de
larations, global data and a set of emulation tables, whi
h are arraysof HPL-PD ma
hine operations.The main simulation loop pro
esses these tables ofoperations and for ea
h operation it invokes a fun
tion in the emulation library thatimplements the semanti
s of the op
ode. There is a separate emulation fun
tion forea
h HPL-PD operation. The s
heduling and laten
y information is present in theexe
ution stream of instru
tions.



3.3. Extending the Trimaran Compiler Infrastru
ture 31The simulator also aggregates stru
tures to 
olle
t statisti
s at the blo
k, pro
edure,and program level. Basi
ally, it gives the s
heduling length of ea
h blo
k and opera-tion and 
y
le 
ount and operations breakdown at the pro
edure level. In addition,the simulator 
an also produ
e an exe
ution tra
e. The events that are re
orded inthe tra
e are: blo
k entry, pro
edure entry, pro
edure exit, operation nulli�
ation,and memory a

esses performed by the loads and stores in the program.3.3 Extending the Trimaran Compiler Infrastru
tureThis se
tion overviews the main extensions built into the Trimaran infrastru
ture.The �rst one is the addition of a new module into the El
or ba
k-end to manage loops.This module provides a great range of information about the loops in the 
ompiled
ode. Our proposal for memory disambiguation [SCAV02℄ has also been implementedas part of this module. Se
ond, we have extended the HPL-PD ar
hite
ture with newVe
tor-µSIMD operations, fun
tional units and register �les [SV05b℄. The 
ompilerand the simulator have also been modi�ed to re
ognize, s
hedule and emulate them.Finally, we have also developed a simulator of the memory hierar
hy spe
ially targetto VLIW ar
hite
tures simulation. Figure 3.3 shows the new Trimaran infrastru
turewith the more relevant additions and modi�
ations.3.3.1 The Loops ModuleThe main aim of this module is the development of a tool that allows to identify,
hara
terize, and manage the most signi�
ant loops in a C program. The new loopdriver routine is exe
uted at the beginning of the El
or 
ompiler main driver. Forea
h loop, it 
reates an obje
t of a new 
lass, 
alled Loop_Region. Loop dete
tionand general 
ontrol �ow information are taken from the existing Control module. Onthe other hand, some fun
tions in the Stats and Visualize modules have been adaptedto work at the loop level, rather than at the pro
edure level. The loop driver is 
alledagain at the end of the El
or driver to 
olle
t post-s
heduling information su
h ass
heduling and operation statisti
s. The blo
ks weights obtained from the IMPACTpro�ling are used to 
ompute dynami
 statisti
s. As the ar
hite
ture parameters(number of fun
tional units, laten
ies, and so on) have already been 
onsidered in thes
heduling, stati
 values does not di�er signi�
antly from those obtained dynami
ally.An important 
ontribution is the possibility to 
hara
terize memory operations. Inorder to do so, we have extended the 
on
ept of indu
tion variable. The El
orControl module identi�es as indu
tion variables those register operands whi
h areunique de�ned in the loop by an addition or subtra
tion operation, in whi
h theregister is both the destination and the �rst operand and the se
ond operand is loopinvariant. These registers are 
lassi�ed as basi
 indu
tion variables. The one relatedto the loop 
ontrol bran
h is given the name of primary indu
tion variable. We havede�ned the extended indu
tion variables to be any register operand unique de�nedin the loop as the addition or subtra
tion of two operands, in whi
h both operands
an be either any indu
tion variable (itself or another) or a loop invariant. Register



32 Chapter 3. Compilation and Simulation Framework
+

C program
Vector-uSIMD

emulation library
Vector-uSIMD

Simulation
Program

Renaming & Flattening

Function Inlining

K&R/ANSI-C Parsing
Dependence Analysis
Loop Transformations C Source File Splitting
Memory Optimizations

Control-Flow Profiling

HCODE

Recognizes Vector-uSIMD Operations, FUs and RFs

Acyclic

Recognizes Vector-uSIMD Operations, Functional Units and Register Files

ELCOR_LOOP_STATS

Generator
Code

SIMULATOR

Scheduling
Modulo

SchedulingAllocation
Post-passRegister

Scheduling

ELCOR

PCODE

IMPACT

MEM_STATS

DYN_STATS

Vector-uSIMD

Description

DYN_LOOP_STATS

MEM_TRACE

CACHE
TRIMA

Machine

uSIMD
Vector-

ELCOR_STATS

Library
Emulation

Disambiguation
Loop Memory

Replacement
Emulation Code

Superblock Formation
Classical Optimizations

Hyperblock Formation
ILP Transformations

LCODE

Figure 3.3. Extension of the Trimaran 
ompiler infrastru
ture



3.3. Extending the Trimaran Compiler Infrastru
ture 33operands whi
h are the result of a shift operation over an indu
tion variable are also
onsidered to be extended indu
tion variables. The step value for ea
h indu
tionvariable is 
omputed by tra
king the operations performed over ea
h variable andthe involved literal values.For ea
h memory operation, if the address operand is an indu
tion variable, eitherbasi
 or extended, we 
an say that it is an strided referen
e whose stride is the stepvalue of the variable. A deeper data �ow analysis provides the 
ompiler the abilityto dete
t referen
es whose address registers di�er only in a 
onstant term, that is,a

esses to di�erent elements of the same array.The output produ
ed by the Loops module 
an be 
ontrolled by the following �ags:
• print_loop_list: If this �ag is set to "yes", the whole list of loops is writtenout to a �le. This �le 
ontains a line for ea
h loop with the following data:sour
e �le name, loop name, dynami
 
y
le 
ount, dynami
 operation 
ount,operation per 
y
le rate, number of invo
ations, average number of invo
ationsper iteration, nesting level, being innermost or not, 
ategory (do-loop or while-loop), being modulo-s
heduled or not, 
ontaining fun
tion 
alls or not, stati
number of operations, and the stati
 number of loads and stores. This optionis useful to get qui
k information about all the loops in a program, either toget main trends or to sele
t the most relevant ones.
• print_loop_info: This option produ
es a �le with detailed information aboutthe loops in a more pleasant and readable format. A list of the loops to be an-alyzed 
an be spe
i�ed by means of an input �le. In addition to the data listedfor print_loop_list, it provides operations breakdown, s
heduling information,indu
tion variables information, and memory operations information.
• print_loop_mdg, print_loop_dfg, and print_loop_
fg: These �ags enable draw-ing the memory dependen
e graph, the data �ow graph and the 
ontrol �owgraph of the loop respe
tively.
• do_memory_disambiguation: If this �ag is set to "yes", loop memory disam-biguation is performed at the beginning of the El
or 
ompilation 
hain. It
an perform stati
 memory disambiguation, dynami
 memory disambiguation,and/or just delete the memory dependen
es listed in an input �le, depending onthe 
on�guration parameters. It is independent of any memory disambiguationperformed by the Impa
t front-end, so that both pro
esses are not ex
lusiveand 
an be used together [SV05a℄.Finally, the simulator has also been extended to produ
e dynami
 statisti
s (mainly
y
le 
ount, instru
tion and operation 
ount and operation breakdown) at the looplevel rather than at a pro
edure level.



34 Chapter 3. Compilation and Simulation Framework3.3.2 Modifying the Ar
hite
ture and the Instru
tion SetAddition of Instru
tion Set Extensions to a 
ompiler tool
hain 
annot be 
onsideredto be trivial. The �rst step involves de�ning the new ma
hine operations and the newresour
es in the ar
hite
ture. Spe
i�
ally, we have extended the ma
hine des
riptionwith two new kind of register �les (Ve
tor-µSIMD registers and pa
ked a

umulatorregisters), two new kind of resour
es (Ve
tor-µSIMD fun
tional units and se
ondlevel memory units), and 128 new operations.The generi
 de�nitions of the Register_File and Resour
e HMDES se
tions havebeen extended with two new properties respe
tively: the optional length property, tospe
ify the number of elements in a ve
tor register, and the optional lanes propertyto spe
ify the number of ve
tor parallel lanes in a ve
tor unit. On the other hand,introdu
ing a new operation also involves de�ning the operation format, laten
y,resour
e usage and reservation table, and the possible s
heduling alternatives.Se
ond, the 
ompiler must be modi�ed to be able to make use of the new operations.As our 
ompiler front-end is not able to generate automati
 
ode for the new ar
hi-te
ture, the ve
tor parts of the appli
ation C 
ode have been hand-written using afun
tion 
all for ea
h operation (see an example in Figure 3.4.a). The 
orrespond-ing emulation fun
tions are de�ned in an external emulation library to verify 
ode
orre
tness.At the input of the El
or ba
k-end, ea
h fun
tion 
all appears in the form of a setof operations performing parameter passing and bran
h and link (Figure 3.4.b). Wehave inserted a new module at the beginning of the El
or tool
hain that identi�es thebran
hes to the emulation fun
tions and repla
es all the related set of operations bya new node in the IR whi
h 
orresponds to a new El
or operation (Figure 3.4.
). Thesour
e and destination operands of this new operation are obtaining by pro
essingthe parameter passing operations. A new virtual register number is assigned to ea
hde�ned register operand and subsequent sour
e registers are renamed a

ordingly.The 
ompiler ba
k-end will then treat it as any other standard operation.The MDES interfa
e has been extended to be able to generate the 
orre
t laten
ydes
riptors to the 
ompiler. Additional minor modi�
ations, in
luding extending allreader/writer modules, have been performed along the El
or 
ompiler in order tore
ognize the new elements of the ar
hite
ture and 
onsider them in the s
hedulingand register allo
ation phases. Finally, the new elements have also been added to thesimulator and the new operations semanti
s have been de�ned inside the emulationlibrary.3.3.3 TrimaCa
heTrimaCa
he is a 
y
le-level simulator of the memory hierar
hy spe
ially designed forVLIW ar
hite
tures. It is implemented as a set of layers. Ea
h layer is 
omposed bya set of banks and ports, a write bu�er and a miss status holding register (MSHR).



3.3. Extending the Trimaran Compiler Infrastru
ture 35...M_PCK_SS_W(VR1, VR2, VR3);M_V_ADD_SS_W(VR1, VR1, VR4);...(a) Ve
tor-µSIMD C sour
e 
ode with emulation fun
tion 
alls...op 154 (MOVE [m<int_p1>℄ [i<1>℄ p<t>)op 155 (MOVE [m<int_p2>℄ [i<2>℄ p<t>)op 156 (MOVE [m<int_p3>℄ [i<3>℄ p<t>)op 255 (PBRR [r<93:b btr>℄ [l:g_abs<_$fn_M_PCK_SS_W> i<1>℄ p<t> ...)op 157 (BRL [m<ret_addr>℄ [r<93:b btr>℄ p<t> ...)op 158 (MOVE [m<int_p1>℄ [i<1>℄ p<t>)op 159 (MOVE [m<int_p2>℄ [i<1>℄ p<t>)op 160 (MOVE [m<int_p3>℄ [i<4>℄ p<t>)op 256 (PBRR [r<94:b btr>℄ [l:g_abs<_$fn_M_V_ADD_SS_W> i<1>℄ p<t> ...)op 161 (BRL [m<ret_addr>℄ [r<94:b btr>℄ p<t> ...)... (b) El
or IR before emulation fun
tion 
alls repla
ement...op 313 (M_PCK_SS_W [r<129:vx vxr>℄ [r<127:vx vxr> r<128:vx vxr>℄ p<t> ...)op 314 (M_V_ADD_SS_W [r<130:vx vxr>℄ [r<129:vx vxr> r<120:vx vxr>℄ p<t> ...)... (
) El
or IR after emulation fun
tion 
alls repla
ementFigure 3.4. Emulation 
ode repla
ement
The user 
an de�ne the model of hierar
hy, the number of layers, and the main 
har-a
teristi
s of ea
h layer (su
h as number and type of ports, banks, sets, asso
iativity,blo
k size, write poli
y, allo
ate poli
y, laten
y, write bu�er size, and MSHR size).At this moment, the simulator admits three possible hierar
hy models: 
onventionalsupers
alar model, a ve
tor 
a
he in the �rst level of the hierar
hy, and a ve
tor 
a
hein the se
ond level of the hierar
hy. The ve
tor 
a
he has been implemented followingthe design presented in [QCEV99℄. Basi
ally, it is a two-bank interleaved 
a
hetargeted at a

essing unit-stride ve
tor requests by loading two whole 
a
he lines (oneper bank) instead of individually loading the ve
tor elements. Then, an inter
hangeswit
h, a shifter, and a mask logi
 
orre
tly align the data (see Figure 3.5). If the portis B elements wide, these a

esses are performed at a maximum rate of B elementsper 
y
le when the stride is one, and at 1 element per 
y
le for any other stride.Two 
a
he models and three port de�nitions are implemented. Classi
al or perfe
t(always hit) multi-banked 
a
he models 
an be 
ombined with either a true (somany simultaneous memory a

esses as the number of ports), a pseudo (so manysimultaneous memory a

esses as the number of ports as long as the referen
es are



36 Chapter 3. Compilation and Simulation Framework

1616

16

Shift and Mask

Interchange Switch

Bank 1Bank 0

A0

A0 mod 16Figure 3.5. The dual bank stru
ture of the ve
tor 
a
he
to di�erent 
a
he banks) or an ideal (in�nite simultaneous memory a

esses) multi-ported system.The modeled write bu�er is a 
oales
ing write bu�er of multiple entries, where ea
hentry holds one 
a
he line [SC97℄. The retirement order is FIFO, ex
ept when aload hits a write bu�er entry. In that 
ase, we use a �ush-item-only poli
y 
ombinedwith data bypass. The normal retirement follows a retire-at-X poli
y, that is, it isprodu
ed when the number of valid entries is greater or equal than X, where X is auser de�ned parameter (usually half the number of entries).TrimaCa
he a

epts tra
es in both textual and binary formats. The tra
e 
an beseen as a su

ession of memory pa
kets. One memory pa
ket is 
omposed by allmemory operations issued on the same 
y
le. Figure 3.6 des
ribes a memory pa
ketin binary format. The �rst element of ea
h pa
ket is the 
y
le 
ount in the global
lo
k of the program simulation. The se
ond element indi
ates the overall numberof memory operations issued on that 
y
le. Next, for ea
h operation, we �nd theoperation type (s
alar load, s
alar store, ve
tor load or ve
tor store), the size (datawidth in the 
ase of a s
alar operation or the ve
tor length and the ve
tor stride inthe 
ase of a ve
tor one), and the initial address being a

essed. TrimaCa
he pro
essea
h pa
ket and a

umulates the extra 
y
les needed to serve the memory requests.Additionally, two spe
ial 
ommands 
an be inserted in the tra
e: the start_region
ommand and the 
lose_region 
ommand. These 
ommands are followed by an inte-ger argument whi
h identi�es the region of 
ode being entered or exited respe
tively.TrimaCa
he will then generate separate statisti
s for ea
h region and for the fullprogram.



3.4. Referen
e Ar
hite
ture 37
partsizeop

operation N

2-7(11) bytes 5(9)-7(11) bytes. . . 

N . . . operation 1cycle

1 byte4 bytes

32(64) bit2 bit 2 bit2 bit2 bit

undef

special command

(stride != 1)

vector operation
0 stride addressvlop

(stride 1)

vector operation

scalar operation

com region

vl 1 addressop

address

16 bit1 bit

6 bit2 bit

5 bit 1 bit 32(64) bit2 bit

2 bit 32(64) bit5 bit

Figure 3.6. Memory tra
e pa
ket des
ription (binary form)Two me
hanisms have been implemented into Trimaran to take bene�t from thepossibility of de�ning multiple regions. The �rst one allows the user to de�ne theregions dire
tly in the sour
e 
ode by means of expli
it 
alls to two empty emulationfun
tions. These 
alls are later repla
ed in El
or by two pseudo-operations. Whenthese operations are simulated, the 
orresponding 
ommand is written to the memorytra
e. The se
ond option 
onsists on giving the simulator a list of the basi
 blo
kswhi
h are part of ea
h region. This is useful to use in 
ombination with el
or outputsto automati
ally generate the list of interesting regions.As a result of the simulation, TrimaCa
he produ
e a �le with more than seventystatisti
 parameters for ea
h memory hierar
hy layer and for ea
h program regionseparately, in
luding memory a
tivity 
y
les, hit rates on ea
h stru
ture, number and
y
les of pro
essor stalls due to di�erent reasons, and so on. The Ca
ti model [SJ01℄has also been integrated into TrimaCa
he in order to estimate time, energy and area
ost of the evaluated 
on�gurations.3.4 Referen
e Ar
hite
tureThe fo
us of this thesis in on optimizing general-purpose VLIW pro
essors, ratherthan extremely spe
i�
 multimedia ar
hite
tures. Any desktop 
omputer is alreadyable to exe
ute a wide range of multimedia appli
ations, in
luding video
onferen
e,3D games, or DVD video. As multimedia workload 
ontinues in
reasing signi�
an
e,pro
essor designers must o�er improved pro
essors with powerful media performan
e.Our referen
e ar
hite
ture is a generi
 VLIW pro
essor based in the HPL-PD ar
hi-te
ture spa
e, with guarded exe
ution and software pipelining. Neither spe
ulativeexe
ution nor exposed memory hierar
hy are used, as they are not 
ompletely sup-



38 Chapter 3. Compilation and Simulation Frameworkported by the 
ompiler. Table 3.1 summarizes the general parameters for 2-, 4-, and8-issue width 
on�gurations. In order to support the high 
omputational demandof multimedia appli
ations, our 
on�gurations are quite aggressive in the number ofarithmeti
 fun
tional units. Laten
ies are based on those of the Itanium2 pro
es-sor [Int04℄.Fun
tional Units Memory Hierar
hy2w 4w 8w laten
y L1 L2 L3integer 2 4 8 1, 4 (×, /) size (bytes) 16K 256K 1M�oating point 1 2 4 4 number of ports 1/2/4 1 1memory 1 2 4 4 port width (bytes) 8 32 128bran
h 1 1 1 2 number of banks 8 2 16sets per bank 16 128 64Register Files asso
iativity 4 8 82w 4w 8w line size (bytes) 32 128 128integer 96 128 160 write poli
y WT WB WB�oating point 96 128 160 allo
ate poli
y NWA NWA WApredi
ate 64 96 128 mshr size 8 8 8bran
h target 8 16 24 write bu�er size 8 8 8retire-at-X 4 4 4laten
y 1 5 12Table 3.1. Modeled pro
essor 
on�gurationsThe 
a
he hierar
hy is de
oupled into three on-
hip levels. The �rst level data 
a
he isa 16KB, 4-way set asso
iative 
a
he with one port for the 2-issue width ar
hite
ture.We 
onsider pseudo-multi-ported 
a
hes for the 
on�gurations with greater numberof ports. There is a 256KB 
a
he in the se
ond level and a 1MB 
a
he in the thirdlevel. Laten
ies are 1 
y
le to the L1, 5 
y
les to the L2, 12 
y
les to the L3 and500 
y
les to main memory. We have not simulated the instru
tion 
a
he sin
e ourben
hmarks have small instru
tion working sets. The 
ompiler s
hedules all memoryoperations assuming they hit in the �rst level 
a
he and the pro
essor stalls in 
aseof a 
a
he miss or a bank 
on�i
t.3.5 SummaryTo evaluate the ar
hite
tural improvements and 
ompilation te
hniques proposedin this thesis, we have used and extended version of the Trimaran 
ompilation andsimulation framework. The 
hoi
e of this tool set was mainly due to its potentialto be adapted, not only in the instru
tion set simulation, but also in the ma
hinedes
ription and the 
ompilation pro
ess.The developed tools allows us to 
hara
terize entire appli
ations at the loop or regionlevel, evaluate a new loop memory disambiguation te
hnique, experiment with a newVe
tor-µSIMD-VLIW ar
hite
ture, and perform a detailed simulation of the memoryhierar
hy. This 
hapter has also des
ribed the general VLIW ar
hite
ture used asreferen
ed along this work.



Chapter 4Workload Chara
terization
Understanding the behavior of multimedia appli
ations is essential for pro
essor de-sign resear
h. Nevertheless, workload analyses are 
ompromised by the di�
ult toisolate the e�e
ts of the implementation of the algorithm, the 
ompiler optimiza-tions, and the underlying ar
hite
ture. This 
hapter is an attempt to verify andquantify main trends and 
hara
teristi
s rather than to perform a thorough 
hara
-terization. We start by summarizing the main 
hara
teristi
s of multimedia 
odes.Next, we introdu
e and dis
uss the sele
tion of ben
hmarks used along this study.Finally, we present some experimental results to verify these 
hara
teristi
s in ourset of appli
ations. As �ne grain parallelism is mainly found in the form of smallloops that operate on streams of data, we analyze the behavior of loops and 
ompleteappli
ations separately.4.1 General Chara
teristi
s of Multimedia CodesTypi
al media programs 
onsist of a set of kernels that pro
ess data in a stream-like fashion, with the addition of some proto
ol related overhead su
h as headerpro
essing and output en
oding. As the kernels are invoked over the streams likedi�erent stages in a pipeline, the behavior of these kernels in isolation di�ers fromtheir behavior inside the 
omplete appli
ation. This se
tion overviews the main
on
lusions found in the literature about the 
hara
teristi
s of multimedia 
odes.First, we des
ribe the general behavior at the kernel level, and then, how thesefeatures are modi�ed when they are 
onsidered inside the s
ope of the 
ompleteappli
ation.4.1.1 Chara
teristi
s of Multimedia KernelsMost authors in the literature agree that the main 
hara
teristi
s of multimediakernels are the following [LS96, DD97, CDJ+97℄:

• Small data type sizes. Multimedia data items often derive from sampling ananalog signal in the time domain, su
h as video or audio. In 
ontrast with



40 Chapter 4. Workload Chara
terizationother kind of appli
ations where 32 or 64 bit pre
ision is needed, media datatypes are usually 8 or 16 bits, sin
e human sense 
annot dis
riminate beyondthat range.
• Signi�
ant data parallelism. Input data streams are frequently large 
olle
tionsof small data elements su
h as pixels, vertexes or audio samples. Furthermore,the same set of operations are performed over the elements inside the stream.Thus, media kernels exhibit high amounts of data level parallelism.
• High instru
tion referen
e lo
ality. Media appli
ations often 
onsist of a set of
omputationally intensive small loops that dominate over the pro
essing time,whi
h results in high instru
tion 
a
he hit rates.
• Low data referen
e lo
ality. Data is usually loaded, pro
essed, and returnedba
k to memory. As the streams are reused only on
e, temporal lo
ality is low.On the other hand, as the streams often exhibit a multi-dimensional nature,spatial lo
ality is also di�
ult to exploit.
• High memory bandwidth. The huge working sets of some type of appli
ations,su
h as 3D imaging, means that pro
essors will need to provide high memorybandwidth and tolerate long memory laten
ies.
• Real-time 
onstraints. Multimedia appli
ations, su
h as video 
onferen
ing,often require real time response and a 
ertain quality of servi
e.4.1.2 Chara
teristi
s of Multimedia Appli
ationsAs it has been stated before, kernels pro
ess data in a streaming way, and thesestreams 
an be sparse a
ross di�erent dimensions. Nevertheless, as these kernels arerepeatedly invoked on sets of related data, there is often some kind of overlappingbetween the di�erent streams. Furthermore, the stream produ
ed in one stage ofthe pipeline is 
onsumed by the following stage. Thus, these stream-like patternsexhibit temporal and spatial lo
ality at the s
ope of the 
omplete program, whi
hmakes the use of 
a
he hierar
hies desirable. Several works 
oin
ide that data 
a
hesdo not perform worse for multimedia than for traditional integer and �oating pointworkloads [LPMS97, SS01, RAJ99℄.Lee et al. [LPMS97℄ introdu
ed and analyzed the MediaBen
h suite. They foundthat the MediaBen
h programs exhibit higher instru
tion 
a
he hit rates than theSPECint ones, and that data 
a
hes are more e�e
tive for reads on MediaBen
h thanon SPECint, although they are less e�e
tive for writes. They also noted that theSPECint appli
ations require almost three times more bus bandwidth and a
hievelower IPC than the MediaBen
h ones.Slingerland and Smith [SS01℄ analyzed the 
a
he behavior of the Berkeley MultimediaWorkload [SS02℄. They obtained that, ex
ept for 3D and do
ument appli
ations, a32 KB 
a
he is large enough to get extremely low miss ratios.



4.2. Ben
hmarks Des
ription 41Ranganathan et al. [RAJ99℄ provided a quantitative understanding of the perfor-man
e of image and video pro
essing appli
ations on general-purpose pro
essors,with and without media ISA extensions. They also observed some di�eren
es be-tween kernels and 
omplete appli
ations. While the kernels exhibit poor data lo
alityand take bene�t from software prefet
hing te
hniques, they 
on
lude that softwareprefet
hing is not needed for 
omplete appli
ationsIt is also widely assumed that multimedia appli
ations exhibit more parallelism than
onventional appli
ations. Liao and Wolfe [LW97℄ analyzed the available parallelismin some video appli
ations. They obtained a high amount of ILP ranging from32.8 to over 1,000 independent instru
tions per 
y
le using an idealized exe
utionmodel (perfe
t bran
h predi
tion, perfe
t memory disambiguation, in�nite resour
esand in�nite s
heduling window); whereas Wall [Wal91a℄ 
on
luded that less than 10instru
tions 
an be issued in parallel for 
onventional integer appli
ations.However, Fritts [Fri00℄ added two extra video pro
essing appli
ations to MediaBen
hand 
ondu
ted a set of experiments on an intermediate low-level format. And hefound that the basi
-blo
ks in multimedia appli
ations are so small than the paral-lelism is not within basi
-blo
ks.On the other hand, although media kernels are 
hara
terized by high amounts of dataparallelism, 
omplete appli
ations also 
ontain �rst order re
urren
es, table look-upsand non-streaming memory patterns with large amounts of indire
tions, like in theSPECint. Therefore, there is a signi�
ant portion of multimedia 
odes that is di�
ultto ve
torize [JVTW01℄. Moreover, although most of the algorithms in the standardhave a ve
tor nature, there has been a great e�ort on redu
ing the overall number ofrequired operations espe
ially oriented towards s
alar ar
hite
tures, hiding in most
ases the data parallel nature of the original algorithm.One representative example is the DCT algorithm. This transformation 
an berepresented as a matrix operation using a 8x8 transform matrix A to obtain the 8x8transform 
oe�
ients matrix C based on a bilinear transformation: C = A · B · AT ,where B is the input blo
k and AT denotes the transpose of A. This would involve1024 multipli
ations for ea
h input blo
k. Nevertheless, several fast algorithms havebeen introdu
ed in the literature aimed at redu
ing the number of multipli
ationsinvolved in the transform [Lee84℄. The algorithm used in the JPEG standard onlyneeds to perform 192 produ
ts to produ
e one resultant blo
k; but be
ause of thisoptimization, the new 
ode 
annot be dire
tly ve
torized.4.2 Ben
hmarks Des
riptionThe di�
ulty to 
apture all of the essential elements of modern multimedia and
ommuni
ation systems is re�e
ted in the la
k of any standardized ben
hmark suite.Parameters that in�uen
e the overall appli
ation behavior, su
h as the predominan
eof ea
h media sour
e, the size of its working set, or the level of proto
ol overhead



42 Chapter 4. Workload Chara
terizationare hard to determine. Even already standardized proto
ols su
h as MPEG4 arestill slightly ambiguously de�ned and it is di�
ult to obtain reliable, non resear
h-oriented sour
e 
odes. Furthermore, the di�eren
e 
hara
teristi
s that we �nd whenwe look at a di�erent s
opes of media pro
essing, as seen in previous se
tions, stronglysuggest that study of kernels in isolation may bring to misleading 
on
lusions.As highlighted by its authors, the MediaBen
h is 
omposed of full programs that
apture the essential 
hara
teristi
s of media and 
ommuni
ation systems, in
ludingvideo, audio, still-image, 3D and en
ryption standard algorithms. To expedite thenext generation of systems resear
h, the MediaBen
h Consortium is developing theMediaBen
h II ben
hmark suite [FST05℄, in
orporating ben
hmarks from the lat-est te
hnologies and providing both a single 
omposite ben
hmark suite as well asseparate ben
hmark suites for ea
h area of multimedia.Our methodology is based on sele
ting a set of multimedia programs from the Me-diaBen
h suite that approximate the 
ontents of 
urrent image, video and audioappli
ations. For every standard, both the en
oding and de
oding are in
luded. Ta-ble 4.1 des
ribes the set of ben
hmarks sele
ted, together with a brief des
riptionand the input sets used for simulation.Ben
hmark Des
ription and input setjpeg_en
 Des
r: JPEG image 
ompression en
oderInput: penguin.ppm (ppm �le, 24-bit 
olor 1024x739 image)jpeg_de
 Des
r: JPEG image 
ompression de
oderInput: penguin.jpg (JPEG �le, 1024x739 image)mpeg2_en
 Des
r: MPEG2 digital video en
oderInput: mei16v2re
.Y/Cb/Cr (four 24-bit 
olor 352x480 frames Y-Cb-Cr)mpeg2_de
 Des
r: MPEG2 digital video de
oderInput: mei16v2re
.mpg (MPEG2 video stream, four 352x480 frames)gsm_en
 Des
r: GSM 06.10 spee
h en
oderInput: 
linton.p
m (8KHz sampling rate, 300KB PCM audio stream)gsm_de
 Des
r: GSM 06.10 spee
h de
oderInput: 
linton.gsm (13Kb/s GSM audio stream)epi
_en
 Des
r: Image 
ompression en
oderInput: test_image.pgm (pgm �le, gray s
ale 256x256 image)epi
_de
 Des
r: Image 
ompression de
oderInput: test_image.pgm.E (EPIC �le, 256x256 image)Table 4.1. Ben
hmarks des
ription and input sets 
hara
teristi
sJPEG is a 
ompression standard for either grays
ale and 
olor digital images based onthe DCT-method [Wal91b℄. The 
odi�
ation is performed in three stages: 
olor spa
e
onversion and downsample, forward DCT transform and quantization, and entropy
oding. In 
olor spa
e 
onversion, ea
h pixel from the sour
e image is 
onvertedfrom the RGB to its Y UV representation and then the 
hrominan
e 
omponents(U and V ) are downsampled by a fa
tor of two on both spatial dimensions. The



4.2. Ben
hmarks Des
ription 43forward DCT pro
essing step lays the foundation for a
hieving data 
ompressionby 
on
entrating most of the signal in the lower spatial frequen
ies. Sour
e imagessamples are grouped into 8x8 blo
ks and input to the DCT. The output is anotherblo
k of 64 
oe�
ients with the property that most of them have zero or near-zeroamplitude and do not need to be en
oded. Afterwards, ea
h 
oe�
ient is quantizedwith the purpose to a
hieve further 
ompression by representing the 
oe�
ients withno greater pre
ision than is ne
essary to a
hieve the desired image quality. Finally,all the quantized 
oe�
ients are ordered into a zig-zag sequen
e, so that they 
an been
oded more 
ompa
tly based on their statisti
al 
hara
teristi
s (Hu�mann 
oding).The de
oder just performs the inverse operations in the reverse order.The MPEG2 video 
ompression standard was developed by the Motion Pi
ture Ex-perts Group [Sik95℄. Video sequen
es usually 
ontain statisti
al redundan
ies inboth temporal and spatial dire
tion. Spatial 
orrelation is exploited for ea
h framein the same way as JPEG, and motion 
ompensated predi
tion te
hniques are usedto redu
e temporal redundan
ies between frames. Motion estimation sear
hes whi
hblo
k of the previous image mat
hes better with the blo
k being 
ompressed (thisbe
omes the most 
omputationally-intensive part of the pro
ess), and the resultingdispla
ement between the two blo
ks is 
alled the motion ve
tor. Usually, the blo
ksize is 16x16 pixels for the luminan
e 
omponent (Y ) and 8x8 for the 
hrominan
e
omponents (U and V ). A motion 
ompensated di�eren
e blo
k is then formed bysubtra
ting the pixel values of the predi
ted blo
k from that of the 
urrent blo
k.The di�eren
e blo
k is then transformed, quantized and entropy 
oded.The GSM vo
oder is the standard algorithm to perform voi
e 
ompression for theGlobal System for Mobile Communi
ations or GSM, that is one of the most importantse
ond-generation digital mobile phone systems today (espe
ially in Europe) [Tri01℄.While there are more than one implementations, this version is the original Euro-pean vo
oder (standard GSM 06.10), whi
h uses residual pulse ex
itation/long termpredi
tion (RPE-LTP spee
h en
oder) 
oding at 13 Kb/s blo
ks of 260 bits (fromframes 
onsisting of 160 13-bit samples). The RPE-LTP pro
ess is 
ommonly mul-tiplexed by a VAD (Voi
e A
tivity Dete
tion) unit, that is responsible for dete
tingframes of time where the speaker is not talking (so that bandwidth and pro
essingoverhead 
an be saved).Finally, EPIC is an experimental lossy image 
ompression utility. The 
ompressionalgorithm is based on a 
riti
ally-sampled non-orthogonal (imperfe
t-re
onstru
tion)dyadi
 wavelet de
omposition and a 
ombined run-length/Hu�man entropy 
oder[AS90℄. The �lters are designed for extremely fast de
oding on non-�oating pointhardware, at the expense of slower en
oding and a slight degradation in 
ompressionquality (as 
ompared to a good orthogonal wavelet de
omposition). This propertymakes it useful for appli
ations that involve asymmetri
 
omputational resour
es,su
h as 
entralized image databases.



44 Chapter 4. Workload Chara
terization4.3 Loop Level AnalysisIn order to analyze the main 
hara
teristi
s of media loops, this se
tion presentssome quantitative data su
h as 
overage, loop size, operation per 
y
le rate, datasize, and stride and length of array memory referen
es. Results are presented on thes
ope of ea
h appli
ation, but detailed information about ea
h loop in parti
ular 
anbe found in Appendix A.4.3.1 CoverageFor ea
h appli
ation, Table 4.2 shows the number of innermost, do-loops, and modulos
heduling loops together with the per
entage of the overall dynami
 
y
les andoperations they represent. Note that ea
h 
ategory is a subset of the previous one.Innermost Do-loop Mod S
hedBen
hmark #L %Cy
 %Ops #L %Cy
 %Ops #L %Cy
 %Opsjpeg_en
 32 48.49% 61.74% 23 47.97% 61.41% 23 47.97% 61.41%jpeg_de
 33 83.02% 85.05% 25 82.87% 84.89% 21 25.54% 26.48%mpeg2_en
 59 63.94% 78.13% 45 63.86% 78.11% 43 60.99% 76.34%mpeg2_de
 26 36.93% 34.37% 17 31.92% 30.85% 15 10.41% 10.11%gsm_en
 30 59.53% 76.20% 23 57.72% 74.93% 22 57.29% 74.66%gsm_de
 13 93.39% 92.82% 8 6.08% 6.74% 7 5.63% 6.24%epi
_en
 38 55.85% 58.37% 15 39.73% 47.10% 15 39.73% 47.10%epi
_de
 32 70.81% 80.75% 23 48.48% 52.75% 23 48.48% 52.75%sum/average 263 64.00% 70.93% 179 47.33% 54.60% 169 37.01% 44.39%Table 4.2. Coverage of innermost, do-loops and modulo s
heduling loops (number of loops andper
entage of the overall dynami
 
y
les and operations)In average, the appli
ations spend the 64.00% of the overall exe
ution time in in-nermost loops. The appli
ation with the lowest 
overage is the mpeg2_de
, in whi
hthe innermost loops only represent the 36.93% of the overall exe
ution time. Thisis mainly due to the high amount of overhead to deal with di�erent input 
on�gu-rations. A di�erent 
ase is the gsm_de
. In spite of having a very redu
ed numberof loops, this ben
hmark exhibits the highest 
overage (93.39%). However, the mainloop, whi
h means the 80% of the overall exe
ution time, is not a do-loop. As aresult, this ben
hmark exhibits the lowest 
overage when 
onsidering do-loops ormodulo s
heduling loops.4.3.2 Loop SizeTo analyze the size of the loops, Table 4.3 shows the average number of stati
 op-erations, invo
ations and iterations per invo
ation for the loops of ea
h appli
ation.We have also 
lassi�ed the loops into three 
ategories depending on the number ofiterations per invo
ations: below 16, between 16 and 64, and above 64.



4.3. Loop Level Analysis 45St
 Ops Inv Iter/Inv Iter/Inv≤16 16<Iter/Inv≤64 64<Iter/InvBen
hmark Avg Avg Avg # %Cy
. # %Cy
. # %Cy
.jpeg_en
 18 6,875 71 24 9.06% 4 22.77% 4 16.65%jpeg_de
 45 1,529 81 26 57.49% 2 0.01% 5 25.53%mpeg2_en
 28 135,361 59 48 59.05% 6 4.31% 5 0.58%mpeg2_de
 48 5,244 112 19 35.76% 4 1.13% 3 0.04%gsm_en
 32 7,182 42 18 24.14% 6 10.75% 6 24.64%gsm_de
 31 2,281 57 8 1.47% 2 3.55% 3 88.37%epi
_en
 12 79,118 3,717 33 50.95% 1 0.59% 4 4.31%epi
_de
 59 838 5,193 9 18.12% 16 0.75% 7 51.95%sum/average 34 29,804 1,166 185 32.00% 41 5.48% 37 26.51%Table 4.3. Loop-body size (average number of stati
 operations, invo
ations, and iterations perinvo
ation, and distribution of loops a

ording to the number of iterations per invo
ation)It 
an be observed that we are mainly dealing with small loops (34 stati
 operationsper loop in average), with small loop 
ounters, and whi
h are exe
uted a lot of times.A parti
ular 
ase is the EPIC appli
ations. These ben
hmarks in
lude loops whi
hare exe
uted thousands of times but with only one iteration per invo
ation, and otherloops with thousands of iterations but only one invo
ation. This leads to 
onfusingresults when looking at average numbers. On the other hand, it 
an be noted thatmost loops exe
ute less than 16 iterations per invo
ation, and only jpeg_en
 andgsm_en
 have representative loops in the 
ategory between 16 and 64.4.3.3 Memory Referen
esIn this se
tion we evaluate the main 
hara
teristi
s of the memory a

esses performedin the loops. First, the distribution of the data size and stride values of all memoryoperations in the loops are shown in Tables 4.4 and 4.5 respe
tively. Then, arrayreferen
es are analyzed separately in Table 4.6.Ben
hmark 1 byte 2 bytes 4 bytes 8 bytesjpeg_en
 31.52% 38.52% 29.96% 0.00%jpeg_de
 58.81% 5.65% 35.54% 0.00%mpeg2_en
 93.35% 2.84% 0.51% 3.29%mpeg2_de
 54.17% 34.93% 10.90% 0.00%gsm_en
 0.00% 89.15% 10.85% 0.00%gsm_de
 0.00% 100.00% 0.00% 0.00%epi
_en
 3.98% 1.85% 92.20% 1.98%epi
_de
 3.14% 5.86% 81.59% 9.41%average 30.62% 34.85% 32.70% 1.83%Table 4.4. Data size of memory referen
esAs 
an be observed, most of the memory a

esses (about 75% in average) require16 bits or less. Moreover, most of the appli
ations have a 
hara
teristi
 data size:



46 Chapter 4. Workload Chara
terizationone byte for video appli
ations, two bytes for audio, and four bytes (�oating point)for the EPIC appli
ations. Note that, although these are the predominant storagewidths, higher data sizes are normally used during 
omputation due to pre
isionrequirements. In the JPEG image appli
ations, input and output data are one byte,but intermediate data is stored in two or even four bytes. On the other hand, about75% of the memory operations have a stride of 1, 2, 3 or 8; the remaining 25% areeither invariant or non-strided referen
es. Non-strided referen
es 
orrespond mainlyto the use of memory tables to perform 
omputation, su
h as multipli
ations orsaturation.Ben
hmark Invariant Stride 1 Stride 2 Stride 3 Stride 8 Non-stridedjpeg_en
 0.00% 43.32% 6.66% 9.98% 10.08% 29.95%jpeg_de
 0.28% 38.58% 6.62% 9.95% 5.65% 38.92%mpeg2_en
 0.51% 97.81% 0.00% 0.00% 1.30% 0.38%mpeg2_de
 10.78% 72.50% 0.00% 0.00% 5.85% 10.87%gsm_en
 10.93% 88.25% 0.00% 0.20% 0.00% 0.61%gsm_de
 12.49% 48.53% 0.00% 0.00% 0.00% 38.98%epi
_en
 6.07% 90.93% 0.00% 0.00% 0.00% 2.99%epi
_de
 10.31% 44.82% 19.15% 0.00% 0.00% 25.72%average 6.42% 65.60% 4.05% 2.52% 2.86% 18.55%Table 4.5. Stride of memory referen
esThe previous data were obtained 
onsidering ea
h memory operation in isolation.However, di�erent memory operations 
an in fa
t be referen
ing elements of the samearray, and form what it is 
all a referen
e group (see Se
tion 5.2.3 in Chapter 5). In
olor 
onversion, for example, the input stream 
ontains three bytes for pixel (onefor ea
h 
olor 
omponent). The innermost loop pro
esses one row of pixels, so thatthe three 
omponents of one pixel are loaded ea
h iteration. If we look at ea
h
omponent load independently, we will see three memory referen
es with a stride ofthree and length the image width; but in fa
t we are a

essing one single array witha stride of one and length three times the image width.Length StrideBen
hmark Avg Most frequent lengths 1 2 8jpeg_en
 586 8 (17.45%) 64 (37.18%) 1,024 (26.42%) 89.58% 7.56% 2.86%jpeg_de
 996 8 (12.12%) 510 (24.30%) 1,024 (36.55%) 90.19% 0.00% 9.81%mpeg2_en
 17 2 (5.13%) 8 (5.65% ) 16 (84.84%) 98.76% 0.00% 1.24%mpeg2_de
 19 8 (23.34%) 11 (31.94%) 12 (16.09%) 98.47% 0.00% 1.53%gsm_en
 27 8 (49.11%) 40 (40.05%) 160 (3.95%) 99.38% 0.00% 0.00%gsm_de
 205 40 (16.09%) 120 (19.31%) 320 (51.49%) 100.00% 0.00% 0.00%epi
_en
 6554 2 (13.07%) 4 (34.26%) 5.041 (24.36%) 100.00% 0.00% 0.00%epi
_de
 24509 90 (19.57%) 5,041 (21.92%) 65,536 (32.87%) 83.39% 16.61% 0.00%average 4114 8 (14.16%) 16 (10.99%) 1.024 (7.87%) 94.97% 3.02% 1.93%Table 4.6. Length and stride of array referen
es.



4.4. Appli
ation Level Analysis 47Table 4.6 shows the length and stride of array referen
es 
onsidering a referen
egroup as one array referen
e. For the length, the table shows the average and thethree most frequent values, whi
h are di�erent for ea
h appli
ation. For example,typi
al lengths for jpeg_en
 are 8, 64, and the image width (1024 for the referen
einput). As far as the stride is 
on
erned, we observe that 95% of the arrays area

essed with a stride of one.4.3.4 Operations per Cy
leTo 
on
lude the loop level analysis, Table 4.7 shows the average operation per 
y
le(OPC) rates a
hieved in the innermost loops for the 2, 4 and 8-issue width VLIWar
hite
tures. The per
entage in bra
kets indi
ates the in
rease over the OPC of theprevious issue width.Ben
hmark 2-issue 4-issue 8-issuejpeg_en
 1.64 2.12 (+29.00%) 2.22 (+ 4.75%)jpeg_de
 1.64 1.87 (+14.37%) 1.93 (+ 2.70%)mpeg2_en
 1.72 2.62 (+52.40%) 3.57 (+36.41%)mpeg2_de
 1.55 1.75 (+12.81%) 1.77 (+ 0.82%)gsm_en
 1.69 2.56 (+51.52%) 3.28 (+27.84%)gsm_de
 1.36 1.47 (+ 7.64%) 1.46 (- 0.69%)epi
_en
 0.78 1.05 (+34.71%) 1.06 (+ 0.51%)epi
_de
 1.27 1.40 (+10.17%) 1.42 (+ 1.37%)average 1.46 1.86 (+26.58%) 2.09 (+ 9.21%)Table 4.7. Operations per 
y
le rate in innermost loops for di�erent issue widthsResults 
on�rm that multimedia kernels exhibit more ILP than integer ones. Ex
eptfor the epi
_en
 appli
ation, all ben
hmarks a
hieve fair OPC rates in the innermostloops. Nevertheless, for most of the ben
hmarks, s
aling the ar
hite
ture from 4 to8-issue is not spe
ially attra
tive. Only loops in mpeg2_en
 and gsm_en
 show asigni�
ant improvement when in
reasing the issue width from 4 to 8.4.4 Appli
ation Level AnalysisThis se
tion provides quantitative data about our set of multimedia appli
ations. Itin
ludes the analysis of the following topi
s: stati
 and dynami
 
ode size, operationper 
y
le rate, operation breakdown, data lo
ality and memory hierar
hy.4.4.1 Stati
 Code SizeTable 4.8 shows the overall number of stati
 operations, blo
ks (either basi
-blo
ksor hyper-blo
ks), and fun
tions in ea
h ben
hmark, together with the number andper
entage of them whi
h are in fa
t exe
uted.



48 Chapter 4. Workload Chara
terizationOperations Blo
ks Fun
tionsBen
hmark Overall Tou
hed Overall Tou
hed Overall Tou
hedjpeg_en
 46,726 16,886 (36.14%) 3,540 506 (14.29%) 311 106 (34.08%)jpeg_de
 45,346 21,188 (46.73%) 3,055 533 (17.45%) 266 104 (39.10%)mpeg2_en
 37,306 30,248 (81.08%) 1,607 662 (41.19%) 93 78 (83.87%)mpeg2_de
 23,635 13,665 (57.82%) 1,436 348 (24.23%) 112 63 (56.25%)gsm_en
 31,030 15,954 (51.41%) 1,078 322 (29.87%) 94 57 (60.64%)gsm_de
 30,795 8,799 (28.57%) 1,265 185 (14.62%) 94 44 (46.81%)epi
_en
 10,476 6,590 (62.91%) 899 254 (28.25%) 46 27 (58.70%)epi
_de
 8,858 6,643 (74.99%) 408 188 (46.08%) 34 14 (41.18%)average 29,272 14,997 (54.96%) 1,661 375 (27.00%) 131 62 (52.58%)Table 4.8. Stati
 operation, blo
k and fun
tion 
ountsIt 
an be observed that a signi�
ant amount of 
ode is not tou
hed during theexe
ution of the referen
e inputs. Half of the stati
 operations and fun
tions andtwo thirds of the basi
-blo
ks are not used during the exe
ution of the program. Thislow 
ode utilization implies that either the appli
ations 
ontain super�uous 
ode, ortheir inputs do not exer
ise many of the 
ontrol paths. The super�uous 
ode in
ludesfun
tions without any 
all in the rest of the 
ode, fun
tions that are only used in theopposite 
ode
 side, and fun
tions to support options whi
h are not in
luded in thede�nition of the standard.A thorough 
ategorization of the unused 
ode 
an be found in [HH02℄. The authorsalso show that additional inputs often introdu
e very little variation in the 
ontrol�ow pattern. They 
laim that these fa
tors must be 
arefully taken into a

ount, asthey 
an skew a wide variety of experiments, su
h as the evaluation of te
hniqueswhose impa
t is measured in terms of 
ode size.4.4.2 Dynami
 Code SizeTable 4.9 reports the dynami
 operation, blo
k, and fun
tion 
ounts. The ben
h-marks exe
ute a few hundred million operations for the referen
e inputs. Results
on�rm the assumption that 
ode
s are designed to allow faster de
odi�
ation, in
lear detrimental of the 
odi�
ation side. This is espe
ially true for MPEG2 andEPIC, where the de
oders require to exe
ute about twenty and nine times less oper-ations than the en
oders.The blo
k size (31 operations per blo
k in average) is slightly larger than those re-ported in the literature. Fritts reports than the average basi
 blo
k size of multimediaappli
ations is similar to that of integer appli
ations [Fri00℄. It must be taken intoa

ount that hyperblo
k formation is performed by the Impa
t front-end. During hy-perblo
k formation, if-
onversion [PS91℄ is used to form larger blo
ks of operations,and thus providing a greater opportunity for 
ode motion to in
rease ILP. We have



4.4. Appli
ation Level Analysis 49Blo
ks Fun
tionsBen
hmark Operations Blo
ks Ops/Blo
k Fun
s Ops/Fun
jpeg_en
 204,894,494 6,792,840 30 377,714 542jpeg_de
 171,402,016 2,488,973 69 64,516 2,657mpeg2_en
 1,677,337,176 172,260,841 10 1,470,927 1,140mpeg2_de
 86,580,636 4,241,564 20 264,393 327gsm_en
 235,933,412 4,636,447 51 145,329 1,623gsm_de
 125,935,930 2,680,835 47 94,074 1,339epi
_en
 75,233,661 16,332,469 5 1,864 40,361epi
_de
 8,912,338 631,708 14 314 28,383average 323,278,708 26,258,210 31 302,391 9,547Table 4.9. Dynami
 operation, blo
k and fun
tion 
ounts

jpeg_enc

jpeg_dec

mpeg2_enc

mpeg2_dec

gsm_enc

gsm_dec

epic_enc

epic_enc

average

0

20

40

60

80

100

branch
pbr
cmpp
falu
ialu
store
load

Figure 4.1. Operation breakdownalso noti
ed that the 
ompiler introdu
es a high amount of spill 
ode, espe
ially injpeg_de
, mpeg2_de
, and gsm_de
.4.4.3 Operation BreakdownThe graph in Figure 4.1 shows the distribution of dynami
 operations 
lassi�edinto memory operations (load and store), arithmeti
 operations (integer and �oatingpoint), and 
ontrol operations (
ompare, prepare-to-bran
h, and bran
h).The per
entage of �oating point operations is relatively low, whi
h 
on�rm thatmultimedia programs are mostly integer. Only epi
_en
 and epi
_de
 use �oatingpoint arithmeti
. The mpeg2_en
 appli
ation has a minimal �oating point operationratio of 1.17%. These operations are used to 
ompute the forward DCT, whi
h isimplemented using the double pre
ision matrix produ
t algorithm instead of a fasts
alar algorithm, and to 
ompute some statisti
s.



50 Chapter 4. Workload Chara
terization
0 10 20 30 40 50 60 70 80 90 100

%addr

0

20

40

60

80

100

%
re

f

jpeg_enc

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

jpeg_dec

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

mpeg2_enc

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

mpeg2_dec

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100
%

re
f

gsm_enc

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

gsm_dec

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

epic_enc

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

epic_enc

0 10 20 30 40 50 60 70 80 90 100
%addr

0

20

40

60

80

100

%
re

f

averageFigure 4.2. Data lo
ality histogramsLoad and store operations are relatively higher for video and image pro
essing ap-pli
ations. It is worth noting again that en
oders have more 
omputational require-ments than de
oders. As a result, the per
entage of memory operations in
reasessigni�
antly in the de
oders.The bran
h per operation ratio is 6.01%, whi
h means that only one out of every 17operations is a bran
h. The same ratio is reported by Talla [Tal01℄, who also reportsthat one out of every 6 instru
tions is a bran
h in the SPECint ben
hmark suite,and one out of 25 instru
tions is a bran
h in the 
ase of SPECfp. The low bran
hratio �ts in with the large blo
k size and the potentially high ILP of multimediaappli
ations.4.4.4 Data Lo
alityFigure 4.2 shows the data lo
ality histogram for ea
h ben
hmark. Horizontal axisrepresents the per
entage of referen
ed memory lo
ations, and the verti
al axis isthe a

umulated per
entage of referen
es. As both axis are sorted, the point (X,Y )indi
ates that the Y % of the referen
es are performed over the X% of the mostreferen
ed memory lo
ations.



4.4. Appli
ation Level Analysis 51In general, the ben
hmarks exhibit very low data reuse: in average, the 90% ofall memory referen
es are performed over the 36% of the most referen
ed addresses.This behavior is 
loser to that of the SPECfp, whi
h also exhibit low data reuse, thanto the SPECint, whi
h are 
hara
terized by very high data lo
ality. The ex
eptionis the mpeg2_de
 appli
ation, in whi
h the 90% of the referen
es are performed overthe 7% of the most referen
ed memory lo
ations.4.4.5 Memory Hierar
hyCa
he size and memory laten
yWe have evaluated the memory behavior for di�erent data 
a
he sizes. Table 4.10shows the obtained hit rates for load and store operations separately. In spite of thelow data reuse reported in previous se
tion, very high hit rates demonstrate thatdata 
a
hes are very e�e
tive for multimedia appli
ations, even for low 
a
he sizes.Load Hit Rate Store Hit RateBen
hmark 16K 64K 256K 1024K 16K 64K 256K 1024Kjpeg_en
 99.37% 99.99% 100.00% 100.00% 94.53% 99.71% 99.89% 99.89%jpeg_de
 99.72% 99.99% 100.00% 100.00% 95.02% 99.86% 99.92% 99.92%mpeg2_en
 99.88% 99.90% 99.92% 99.99% 96.65% 96.78% 96.66% 98.04%mpeg2_de
 99.59% 99.75% 99.85% 99.99% 98.48% 98.97% 99.10% 99.20%gsm_en
 100.00% 100.00% 100.00% 100.00% 99.99% 99.99% 99.99% 99.99%gsm_de
 100.00% 100.00% 100.00% 100.00% 99.99% 99.99% 99.99% 99.99%epi
_en
 98.26% 98.59% 99.40% 100.00% 70.25% 69.30% 66.37% 66.02%epi
_de
 94.73% 95.94% 97.71% 100.00% 74.57% 75.57% 74.85% 78.62%average 98.94% 99.27% 99.61% 100.00% 91.18% 92.52% 92.09% 92.71%Table 4.10. Hit rate of load and store operations for di�erent 
a
he sizesThis 
an be explained by the fa
t that the spatial data lo
ality is more emphasizedthan the temporal data lo
ality in streaming data a

ess patterns. Spatial datalo
ality is still higher in audio appli
ations (gsm_en
 and gsm_de
), whose mainkernels pro
ess one-dimensional data stru
tures, and besides, the same data streambut with a small initial o�set is pro
essed in 
onse
utive iterations. On the otherhand, image and video appli
ations tends to have two-dimensional spatial lo
ality,whi
h is more di�
ult to exploit by 
onventional data 
a
hes.As it was stated by Lee et al. [LPMS97℄, it 
an also be observed that data 
a
hes aremore e�e
tive for loads than for stores. This makes sense as input streams usuallyhave more temporal lo
ality than the output stream. EPIC exhibit lower store hitrates than the other appli
ations due to the way it is programmed. While otherben
hmarks, like JPEG, do not need a full-image bu�er, EPIC allo
ates both inputand output full-images.



52 Chapter 4. Workload Chara
terization

100c 500c 900c
1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

jpeg_enc
100c 500c 900c

1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

jpeg_dec

16K
64K
256K
1024K

100c 500c 900c
1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

mpeg2_enc

100c 500c 900c
1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

mpeg2_dec
100c 500c 900c

1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

gsm_enc
100c 500c 900c

1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n
gsm_dec

100c 500c 900c
1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

epic_enc
100c 500c 900c

2

4

6

8

10

sl
ow

-d
ow

n

epic_enc
100c 500c 900c

1.0

1.5

2.0

2.5

3.0

sl
ow

-d
ow

n

averageFigure 4.3. Slow-down of a real memory hierar
hy vs perfe
t memory for di�erent 
a
he sizesand memory laten
iesFigure 4.3 shows the performan
e slow-down due to memory stalls for di�erent 
a
hesizes and main memory laten
ies. For 
learness, the verti
al s
ale of the epi
_de
graph is more than three times greater than for the other ben
hmarks.The JPEG and GSM appli
ations exhibit very low 
a
he size requirements, even forlong laten
ies to main memory. The MPEG2 video and EPIC appli
ations requirehigher 
a
he sizes to 
ompensate for long main memory laten
ies. In all 
ases, a1MB 
a
he is large enough to guarantee very low slow-downs due to memory stalls,even for very long laten
ies to main memory.Memory portsMulti-porting a 
a
he enlarges the overall area of the memory array 
onsiderably. Italso has a great impa
t in a

ess time and power 
onsumption. Another alternative to



4.4. Appli
ation Level Analysis 53
1 2 3 4

nports

0.9

1.0

1.1

sp
ee

d-
up

jpeg_enc

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

jpeg_dec

PERFECT
TRUE
PSEUDO

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

mpeg2_enc

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

mpeg2_dec

1 2 3 4
nports

0.9

1.0

1.1
sp

ee
d-

up

gsm_enc

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

gsm_dec

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

epic_enc

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

epic_enc

1 2 3 4
nports

0.9

1.0

1.1

sp
ee

d-
up

averageFigure 4.4. Performan
e speed-up for di�erent memory ports 
on�gurations vs 1-port perfe
tmemorysupport multiple a

esses is to divide the 
a
he in independent banks, ea
h mapping adi�erent address spa
e. This banking model is able to provide simultaneous memorya

esses as long as the referen
es are to di�erent banks. However, banking alsoadds the de
oding overhead of routing ea
h address to the right bank and dete
ting
ollisions.The main issue of multi-banked memories are the e�e
t of the bank 
on�i
ts. Whilea bank 
on�i
t does not ne
essarily result in a pro
essor slow-down in dynami
s
heduling ar
hite
tures, in our model of VLIW ar
hite
ture, a bank 
on�i
t meansone stall 
y
le of penalty. This e�e
t 
ould be redu
ed by using s
heduling algorithmsmore sensitive to data storage in memory (like trying not to s
hedule referen
es to
onse
utive elements in the same 
y
le).Figure 4.4 shows the performan
e speed-up obtained when the number of ports isin
reased. The solid line represents the perfe
t 
ase in whi
h there are not memory



54 Chapter 4. Workload Chara
terizationstalls (all memory a

esses are exe
uted with the laten
y they were s
heduled). Thedashed line in
ludes realisti
 memory hierar
hy simulation in a true multi-portedsystem (so many simultaneous memory a

esses as the number of ports). Finally,the long dashed line shows performan
e speed-up for pseudo multi-ported 
a
hes (somany simultaneous memory a

esses as the number of ports as long as the referen
esare to di�erent 
a
he banks). It was assumed the same 
y
le time 
an be a
hieved forall designs. All speed-ups are referred to the one port perfe
t memory 
on�guration.Performan
e trade-o�s of true multi-ported 
a
hes help to determine 
a
he portsrequirements. Results do not show a signi�
ant improvement when in
reasing thenumber of ports above two. On the other hand, the true multi-ported 
on�gurationperforms 
loser to the perfe
t memory than to the pseudo multi-ported one. This
on�rms that bank 
on�i
ts are an important sour
e of memory performan
e degra-dation (more than �fty per 
ent of the overall memory stalls are due to bank 
on-�i
ts). In
reasing the number of ports also in
reases the potential for bank 
on�i
ts.In gsm_en
, for example, the three-ports 
on�guration outperforms the four-portsone be
ause of the negative e�e
t of the in
rease in the number of bank 
on�i
ts.4.4.6 Operations per Cy
leFinally, Table 4.11 shows the average operation per 
y
le rates. The OPC rates inthe innermost loops have been repli
ated from Table 4.7 for 
omparison purpose.Loops Appli
ationBen
hmark 2-issue 4-issue 8-issue 2-issue 4-issue 8-issuejpeg_en
 1.64 2.12 (+29.00%) 2.22 (+ 4.75%) 1.41 1.71 (+21.47%) 1.74 (+ 1.61%)jpeg_de
 1.64 1.87 (+14.37%) 1.93 (+ 2.70%) 1.58 1.84 (+16.26%) 1.88 (+ 2.59%)mpeg2_en
 1.72 2.62 (+52.40%) 3.57 (+36.41%) 1.63 2.35 (+44.17%) 2.92 (+24.38%)mpeg2_de
 1.55 1.75 (+12.81%) 1.77 (+ 0.82%) 1.57 1.86 (+18.50%) 1.90 (+ 1.85%)gsm_en
 1.69 2.56 (+51.52%) 3.28 (+27.84%) 1.68 2.32 (+37.79%) 2.56 (+10.38%)gsm_de
 1.36 1.47 (+ 7.64%) 1.46 (- 0.69%) 1.37 1.47 (+ 7.83%) 1.46 (- 0.56%)epi
_en
 0.78 1.05 (+34.71%) 1.06 (+ 0.51%) 0.83 1.01 (+21.75%) 1.01 (+ 0.50%)epi
_de
 1.27 1.40 (+10.17%) 1.42 (+ 1.37%) 1.12 1.23 (+ 9.98%) 1.24 (+ 1.05%)average 1.46 1.86 (+26.58%) 2.09 (+ 9.21%) 1.40 1.72 (+22.22%) 1.84 (+ 5.23%)Table 4.11. Operations per 
y
le rate in innermost loops and appli
ations for di�erent issuewidthsThe OPC a
hieved in the 
omplete appli
ations is slightly lower than in the loops,and exhibit less potential to s
ale with the way of the ar
hite
ture. The ex
eptionsare mpeg2_de
 and gsm_de
 appli
ations, whi
h are also the ben
hmarks with lowest
overage of modulo s
heduling loops. This shows the relevan
e of software pipelin-ing te
hniques like modulo s
heduling to exploit the parallelism of loops in VLIWar
hite
tures.



4.5. Summary 554.5 SummaryIn this 
hapter we have evaluated the main 
hara
teristi
s of multimedia appli
ations.These appli
ations are usually 
omposed by a set of kernels that pro
ess streams ofdata like di�erent stages in a pipeline. Results show that most of the ben
hmarksexhibit low data reuse. However, the streaming data a

ess patterns promote spatiallo
ality, whi
h leads to very high 
a
he hit rates, even for small 
a
he sizes.Several reasons 
ontribute to the 
on
lusion that 
a
hes with a small number of wideports are preferable to 
a
hes with a large number of ports. First, both the per-
entage of memory operations (23% in average) and port requirements are low, andresults do not show a signi�
ant improvement when the number of ports is in
reasedabove two for perfe
t memory simulation. On the other hand, multi-porting a 
a
heis more expensive than widen the ports, and alternative feasible multi-banking 
a
hedesigns entail the issue of bank 
on�i
ts. We have observed that bank 
on�i
ts are animportant sour
e of performan
e degradation in VLIW ar
hite
tures, and they arepotentially in
reased with the number of ports. Furthermore, as multimedia mem-ory a

esses are mostly unit-stride a

esses to short arrays of small elements, widea

esses to memory seems a good option to be in
luded in multimedia ar
hite
tures.Pa
king several referen
es to the same array into one wide a

ess redu
es both thenumber of memory a

ess and the potential for bank 
on�i
ts.Results also show that these appli
ations exhibit more parallelism than integer ones.Software pipelining te
hniques, like modulo s
heduling, arise as a key optimizationto exploit instru
tion level parallelism in wide issue ar
hite
tures. Nevertheless, thisparallelism is not so high as it was to be expe
ted from the de�nition of the algo-rithms. On the one hand, appli
ations often in
lude a lot of overhead to deal withdi�erent options and formats. On the other hand, some algorithms have been imple-mented with the obje
tive of redu
ing the number of s
alar operations, mainly 
ostlyoperations su
h as multipli
ation, whi
h 
ontributes to hide the existing parallelism.Furthermore, small loop 
ounters also di�
ult the use of 
onventional ve
torizationto exploit data level parallelism. MMX-like µSIMD ve
torization arise as a good op-tion to deal with the small data sizes, small loops, and unit-stride memory a

esses.The performan
e of this kind of multimedia extensions will be studied in Chapter 6.





Chapter 5Memory Disambiguation inMultimedia Appli
ations
This 
hapter analyzes the problem of memory disambiguation in the 
ontext of multi-media appli
ations and proposes a run-time memory disambiguation te
hnique basedin the spe
i�
 behavior of multimedia memory a

ess patterns. We perform a de-tailed evaluation of the approa
h, whi
h has been 
ompletely implemented into theTrimaran 
ompiler. We also 
ompare it against an advan
ed interpro
edural pointeranalysis framework and analyze the possibility of using both of them together toimprove performan
e.5.1 Relevan
e of Memory DisambiguationAmbiguous memory dependen
es often limit the ability of the 
ompiler to dete
t theexisting parallelism, thus preventing it from generating ve
tor 
ode. If there is anypossibility that two memory operations ever referen
e the same memory lo
ation,the 
ompiler must pla
e dependen
e ar
s between them to ensure they are exe
utedin sequential order.Multimedia appli
ations share di�erent traits with both numeri
al and integer ap-pli
ations. As in numeri
al appli
ations, multimedia programs make extensive use ofmulti-dimensional data stru
tures with relatively simple patterns. As in integer ap-pli
ations, multimedia appli
ations make extensive use of pointers (sin
e C and C++are the languages of 
hoi
e of multimedia 
ode developers), sometimes with severallevels of indire
tion to mat
h the multimedia stru
tures of standardized proto
ols.At the same time, multimedia appli
ations di�er from these two wide �elds in the
hara
teristi
s of the data pro
essing. As we saw in Chapter 4, multimedia appli-
ations are streaming; that is, typi
al multimedia kernels pro
ess one or more inputstreams of data to produ
e one or more output streams. Additionally, the input andoutput streams are typi
ally disjointed regions.



58 Chapter 5. Memory Disambiguation in Multimedia Appli
ationsh2v2_fan
y_upsample (unsigned 
har **input_data,unsigned 
har **output_data_ptr, ...){ register unsigned 
har *inptr0, *inptr1, *outptr;register int this
olsum, last
olsum, next
olsum;... inptr0 = input_data[inrow℄;if (v == 0) inptr1 = input_data[inrow-1℄;else inptr1 = input_data[inrow+1℄;outptr = output_data[outrow++℄;...for (
ol
tr = 
ompptr->downsampled_width - 2; 
ol
tr > 0; 
ol
tr�) {next
olsum = (int)(*inptr0++) * 3 + (int)(*inptr1++);*outptr++ = (unsigned 
har) ((this
olsum * 3 + last
olsum + 8) � 4);*outptr++ = (unsigned 
har) ((this
olsum * 3 + next
olsum + 7) � 4);last
olsum = this
olsum; this
olsum = next
olsum;}...} (a) C sour
e 
ode
2:LD 3:LD

20:ST14:ST(b) Dependen
e graphFigure 5.1. Sour
e 
ode and memory dependen
e graph of the innermost loop in theh2v2_fan
y_upsample fun
tion
Te
hniques to dete
t aliasing between a

ess patterns of array elements are quitee�e
tive for many numeri
 appli
ations. However, although multimedia 
odes usuallyfollow very regular memory a

ess patterns, 
urrent 
ommer
ial 
ompilers remainunsu

essful in disambiguating them due mainly to 
omplex pointer referen
es. Byway of illustrating, �gure 5.1.a shows a 
ode fragment of the upsampling algorithmin jpeg_de
. It performs linear interpolation between pixel 
enters, also known as atriangle �lter. The 
enters of the output pixels are 1/4 and 3/4 of the way betweeninput pixel 
enters.



5.1. Relevan
e of Memory Disambiguation 59Cy
 Op0 Op1 Op2 Op3 Op4 Op5 Op6 Op7<0> 1:ADD1 4:ADD1 8:SHL1 10:ADD1 19:ADD1 20:ST2 21:ADD1 22:MOV1<1> 2:LD1 3:LD1 9:ADD1 24:ADD1<2> 5:SHL1 11:ADD1<3> 6:ADD1 12:SHR1<4> 7:ADD1 13:AND1<5> 14:ST1 15:ADD1 23:MOV1<6> 16:ADD1<7> 17:SHR1<8> 18:AND1 25:BRF(a) Non-disambiguated modulo s
hedulingCy
 Op0 Op1 Op2 Op3 Op4 Op5 Op6 Op7<0> 1:ADD1 3:LD1 4:ADD1 7:ADD2 10:ADD1 11:ADD2 18:AND3 19:ADD1<1> 2:LD1 12:SHR2 15:ADD2 20:ST3 21:ADD1 23:MOV2 24:ADD1<2> 5:SHL1 8:SHL1 13:AND2 16:ADD2 22:MOV1<3> 6:ADD1 9:ADD1 14:ST2 17:SHR2 25:BRF(b) Disambiguated modulo s
hedulingFigure 5.2. Non-disambiguated vs disambiguated 
ode s
heduling of the innermost loop in theh2v2_fan
y_upsample fun
tionThe assembly 
ode of the innermost loopbody has four memory operations, twentyinteger arithmeti
 and logi
al operations, and one bran
h. All the memory operationshave a stride of one; however, the initial addresses and the loop 
ount are obtainedfrom 
omplex indire
t referen
es. As a result, the independen
e of the input andoutput streams 
annot be probed at 
ompile time, and the 
ompiler must pla
ememory dependen
e ar
s between the two loads and the two stores. Trimaran alsofails to disambiguate the two stores (see the memory dependen
e graph generated byTrimaran in Figure 5.1.b). Due to these false dependen
es, a ve
tor 
ompiler wouldnot generate ve
tor 
ode for this loop.Ambiguous memory dependen
es also limit the ability of the 
ompiler to performILP-oriented 
ode optimizations, whi
h are 
ru
ial to make e�e
tive use of VLIWpro
essors. In the example before, the potential loop-
arried dependen
es from thetwo stores to the two loads prevent the 
ompiler from generating an optimal modulos
heduling [Rau95℄. Spe
i�
ally, the initiation interval for a 8-issue width ar
hite
-ture is nine (you 
an see the 
ode s
heduling generated by Trimaran in Figure 5.2.a).However, if the 
ompiler was able to disambiguate them, di�erent iterations 
ould beoverlapped in a more e�
ient way; and, as a result, the same 
ode would be exe
utedmore than twi
e faster (see 
ode s
heduling in Figure 5.2.b).Based in the spe
i�
 behavior of multimedia memory a

ess patterns, we propose theDynami
 Memory Interval Test (DMIT). The DMIT is a run-time memory disam-biguation te
hnique that makes sense in the 
ontext of multimedia appli
ations, orother kind of programs where input and output data streams are usually disjointed.



60 Chapter 5. Memory Disambiguation in Multimedia Appli
ationsDisambiguation 
an be easily determined by dynami
ally analyzing the region do-main of every load and store before ea
h invo
ation of a loop. As we will see,signi�
ant gains are obtained at nearly no 
ost and without the inherent 
omplexityof pointer analysis te
hniques.5.2 Memory DisambiguationBoth stati
 and dynami
 memory disambiguation approa
hes have been proposedin the literature to determine if dependen
e a
tually exists for a pair of ambiguousmemory referen
es.Stati
 dependen
e analysis attempts to solve the ambiguity at 
ompile time. On theother hand, dynami
 memory disambiguation determines at run-time whether twomemory operations referen
e the same lo
ation. The 
ompiler provides di�erent exe-
ution paths, and at run-time it is determined whi
h one must be followed dependingon the existen
e or not of the dependen
e.Whether stati
, dynami
, or a 
ombination of both is better depends on the parti
ularkind of appli
ation being targeted and on the desired trade-o� between performan
eand 
ost. Gallagher et al. investigate the appli
ation of both stati
 and dynami
memory disambiguation approa
hes and provides a quantitative analysis of the trade-o�s between the two approa
hes [GCM+94℄.5.2.1 Stati
 Dependen
e AnalysisMu
h work has been done to deal with multidimensional arrays and 
omplex arraysubs
ripts [GKT91, MHL91, Fea91, PHP98℄. However, these te
hniques are ine�e
-tive when the a

ess pattern is non-linear or when some essential information, su
has loop bounds, is not known at 
ompile-time.Pointer dereferen
ing is also one of the most important impediments to dependen
eanalysis. Pointer Alias Analysis attempts to determine at 
ompile-time when twopointer expressions refer to the same memory lo
ation. Due to the unde
idabilityof this stati
 analysis [Lan92, Ram94℄, existing approa
hes o�er a trade-o� betweene�
ien
y and pre
ision. Although proposed interpro
edural analysis te
hniques pro-vide good pointer disambiguation, espe
ially for pointer-intensive appli
ations su
has those of SPECint, they often in
rease 
ompilation time and memory requirements.A pointer analysis algorithm 
an be 
lassi�ed as �ow-sensitive if it uses 
ontrol-�ow information during the analysis. On the other hand, it is 
ontext-sensitive ifit distinguishes di�erent 
aller 
ontexts for a 
ommon 
allee. Several approa
hesare �ow-sensitive and 
ontext-sensitive [LR92, CBC93, EGH94, WL95℄; by 
ontrast,other algorithms are �ow-insensitive [And94, Ste96, SH97℄. Qualitative 
omparisonsamong algorithms are di�
ult due to varying infrastru
ture, ben
hmarks, and per-



5.2. Memory Disambiguation 61forman
e metri
. An empiri
al 
omparison of the e�e
tiveness of di�erent pointeralgorithms on C programs 
an be found in [HP00℄.The pointer analysis used in this thesis employs a �ow-insensitive but 
ontext-sensitive interpro
edural algorithm whi
h 
an handle all C features. P
ode inter-pro
edural analysis [Gal95℄ determines what dependen
es exist with regard to globalvariables a
ross fun
tion boundaries. This analysis also performs intrapro
eduralpointer disambiguation and dependen
e analysis, gathers alias and side e�e
t infor-mation, and identi�es targets of indire
t fun
tion 
alls. This information is thenmerged ba
k into the P
ode and is used by subsequent stages of the 
ompilation.5.2.2 Run-time Dependen
e TestsDynami
 data dependen
e tests 
an be used to 
he
k at run-time whether two refer-en
es a

ess the same lo
ation. Dynami
 memory disambiguation te
hniques usuallyrequire signi�
antly less 
ompile-time investment than stati
 approa
hes, espe
iallyin languages su
h as C whi
h require interpro
edural analysis to provide high a

u-ra
y. Dynami
 approa
hes are also more a

urate than stati
 ones, as they know theexa
t memory address being a

essed by ea
h referen
e during program exe
ution.The obvious downside of run-time tests is the overhead they introdu
e into the pro-gram. They usually require the insertion of extra instru
tions to 
he
k dependen
es.Some approa
hes also require new instru
tions and/or additional hardware support.Ni
olau was the �rst to introdu
e run-time memory disambiguation [Ni
89℄. He pro-posed a software data spe
ulation te
hnique that inserts expli
it address 
omparisonsand 
onditional bran
h instru
tions whi
h allow memory �ow dependen
es to safelybe removed. Huang et al. proposed spe
ulative disambiguation, a 
ombined hard-ware and software te
hnique to allow aggressive 
ode reordering using predi
atedinstru
tions [HSS94℄.A di�erent point of view is to 
onsider the problem of de
iding if a loop is fully dis-ambiguated or not, that is, determining whether or not there is a dependen
e in anyiteration [BCM94℄. The Privatizing DoAll Test [RP94℄, for instan
e, identi�es fullyparallel loops at run-time and dynami
ally privatizes s
alars and arrays; signi�
antspeed-ups were obtained on Fortran loops running on multipro
essor ar
hite
tures.Other sophisti
ated approa
hes exist that produ
e predi
ates that may be used eitherat 
ompile time or at run-time depending on whether there is enough informationavailable [MH99, PW98℄.The run-time test proposed in this thesis identi�es a type of ambiguous dependen
es
ommonly found in multimedia appli
ations. Expli
it operations are inserted to
ompute and 
he
k the address spa
e of ea
h memory operation before the exe
utionof the loop. It requires no instru
tions or hardware support, and thus 
an be appliedto any existing ar
hite
ture.



62 Chapter 5. Memory Disambiguation in Multimedia Appli
ationsfor (i=0; i<N; i++)*p++ = f (*q++, *r++, ...); for (i=0; i<N; i++)*p++ = f (*p, ...);
p[0] p[N-1]

q[0] q[N-1] r[0] r[N-1] p[0] p[N-1]

p[0] p[N-1](a) Disjointed (b) Coin
identfor (i=0; i<N-2; i++)*p = f (*p++, ...); for (i=0; i<N; i++)S += f (*p++, *q++, ...);
p[0] p[N-2]

p[N-1]p[1] S

p[0] p[N-1] q[0] q[N-1](
) Re
urren
e (d) Redu
tionFigure 5.3. Typi
al multimedia memory a

ess patternsThe 
on
ept of 
al
ulating non-interse
ting data a

ess ranges was probably �rstexplored in [BE94℄, and later expanded by [PHP98℄, to handle symboli
 array sub-s
ripts in s
ienti�
 appli
ations at 
ompile-time. Our work di�ers from previousworks by observing that, in multimedia loops, the indexing fun
tions are so simplethat data a

ess ranges 
an be easily 
omputed at run-time. The interse
ting ornon-interse
ting of these ranges 
annot be determined at 
ompile-time mainly dueto the use of pointers, but not be
ause of the 
omplexity of the indexing fun
tions.5.2.3 The Alias Analysis Problem in Multimedia LoopsAs it has been said before, array referen
es in multimedia appli
ations usually followstrided and very simple a

ess patterns. Figure 5.3 summarizes the kind of loops
ommonly found in these 
odes. The loop in (a) operates over one or several streamsto produ
e a disjointed one, thus no memory dependen
e exists. Nevertheless, whenthese arrays are a

essed through pointers, as is usual in multimedia 
odes, an a
-
urate interpro
edural pointer analysis is required to ensure that no aliasing o

urs.Su
h te
hniques are not generally in
luded in 
ommon 
ommer
ial 
ompilers, so theymust be 
onservative and pla
e dependen
e ar
s between the memory operations toensure 
orre
tness.



5.2. Memory Disambiguation 63Output dependen
es (dependen
es between two stores) and anti dependen
es (whena load pre
edes a dependent store) usually have little impa
t on the generated
ode, but �ow dependen
es (when a store pre
edes a dependent load) tend to bea severe restri
tion for the 
ompiler. In the example, the potential loop-
arrieddependen
es from the store in the iteration i to the loads in the iteration i + 1would probably restri
t modulo s
heduling te
hniques signi�
antly (remember theh2v2_fan
y_upsample 
ode example in Se
tion 5.1).In loop (b), the input and output streams 
oin
ide. However, loop-
arried depen-den
es do not exist in this 
ase either, as loads from iteration i + 1 never refer thesame memory lo
ation as stores from iteration i. The opposite 
ase is shown in (
),where there is a re
urren
e with distan
e one. In this 
ase, loads from iteration
i + 1 must not pre
ede the stores from iteration i. The last 
ase (d) shows a loopthat operates on array elements and a

umulates the result on a s
alar variable S.A register will probably be assigned to the s
alar, and dependen
es between twoloads (input dependen
es) are not a problem, so there are not ambiguous memorydependen
es in that 
ase.In numeri
al appli
ations, the identi�
ation of the array elements a

essed by aparti
ular referen
e is important for 
ompiler optimizations. In 
ontrast, we observethat memory referen
es on multimedia loops are always dependent or non-dependentat all. In other words, we have found that in multimedia we have two main kinds ofstream behavior: one where all the input and output streams are totally independent,and other one where the streams have re
urren
es between themselves. A 
ost-e�e
tive approa
h to perform memory disambiguation would just need to determine,for every loop, whi
h 
ase we are fa
ing. Non-linear array indi
es or linked lists ofdata are not 
ommon in multimedia loops. The main limitation to our approa
his the use of non-streaming (sparse) data stru
tures to perform 
omputations viamemory tables.Referen
e groupsReferen
es with similar array index fun
tions that di�er only in the 
onstant term(like A[i], A[i+1] and A[i+2] in the 
ode example in Figure 5.4.a) are also frequentin multimedia loops. These memory a

ess patterns are known in the literatureas uniformly generated referen
es [WL91℄ or referen
e groups [CMT94℄. Moreover,when the input and the output referen
e groups are the same (like in the example),we 
all them 
oin
ident referen
e groups.In a referen
e group, two referen
es with di�erent 
onstant term are independentinside ea
h iteration. On the other hand, if the stride of the variable term is greateror equal to the maximum di�eren
e between the 
onstant terms, loop-
arried de-penden
es do not exist either. Thus, all dashed ar
s in the dependen
e graph inFigure 5.4.b. 
an be safely eliminated.



64 Chapter 5. Memory Disambiguation in Multimedia Appli
ationsfor (i=0; i<N; i+=3) {...= A[i℄;...= A[i+1℄;...= A[i+2℄;A[i℄ = ...;A[i+1℄ = ...;A[i+2℄ = ...;} ST1 ST2

LD2LD1

ST0

LD0

(a) C 
ode (b) Dependen
e graphFigure 5.4. Example of 
oin
ident referen
e groups5.3 The Dynami
 Memory Interval Test5.3.1 Des
riptionThe Dynami
 Memory Interval Test (DMIT) is a software only me
hanism basedon the multimedia memory a

ess patterns des
ribed in Se
tion 5.2.3. The 
ompilergenerates both disambiguated and non-disambiguated versions of the loop, and in-serts a simple test blo
k before the loop that de
ides at run-time whi
h one must beexe
uted (see Figure 5.5). This de
ision is made by 
omputing and 
omparing thelower and upper memory addresses that will be a

essed by ea
h stream. Complexpointer referen
es or unknown parameters, su
h as loop bounds, prevent the 
ompilerfrom making the de
ision at 
ompile-time.The test blo
k is exe
uted on
e on ea
h invo
ation of the loop. In most 
ases, redu
-ing the length of the disambiguated loop s
hedule will 
ompensate for the alreadylow overhead involved in the 
al
ulation of the intervals. Otherwise, the penalty in-trodu
ed by this blo
k (if it turns out that the original loop is exe
uted) is minimal,and has no relevant impa
t on performan
e.5.3.2 TerminologyWe de�ne the Dynami
 Memory Interval (DMI) of a memory referen
e as the memoryspa
e delimited by the lower and upper lo
ations a

essed by that operation duringone invo
ation of the loop. Figure 5.6.a shows the DMI of a memory referen
e witha stride of S inside a loop of N iterations. The shadow boxes represent the memoryaddresses that are a
tually a

essed. Following this terminology, if we are able toprove before entering a loop that the DMIs of two referen
es do not overlap, we 
anensure that they are independent in that invo
ation. Note that s
alar referen
es arealso in
luded in this de�nition, as they are in fa
t referen
es with a stride of zero.



5.3. The Dynami
 Memory Interval Test 65

(b) New control flow(a) Original control flow

DIS.

MEM.

COPY

LOOP
LOOP

LOOP

TEST

Figure 5.5. Dynami
 Memory Interval TestIn the 
ase of a referen
e group, if we were to apply the test between ea
h pair ofreferen
es inside the group, they would fail, as their individual DMIs overlap. Whenthe 
ompiler dete
ts a referen
e group, it builds only one DMI for all the group. Thestride of the referen
e group is the same as that of ea
h individual referen
e. Thegroup data size is the size of the memory spa
e traveled by the di�erent referen
esof the group on ea
h iteration (see Figure 5.6.b).The following notation is used in the �gures and algorithm des
ription:
• TB: test blo
k
• LB: loopbody
• Ref : memory referen
e
• ARi: address register of Refi

• Si: stride of Refi (in bytes)
• DWi: data size of Refi (in bytes)
• N : number of loop iterations in 
urrent invo
ation
• Li: the lowest lo
ation referred by Refi in 
urrent invo
ation
• Ui: the next lo
ation to the highest one referred in 
urrent invo
ation
• IWi: size of the memory region between Li and Ui

• Eij : dependen
e ar
 from Refi to Refj



66 Chapter 5. Memory Disambiguation in Multimedia Appli
ations

. . . . . . i N-1

(b) Memory reference group

(a) Single memory reference

DW

GDW

IW

10

S

L U

. . . i N-110

UL

. . . 

N: number of iterations
S: strideGDW: group data width

IW: interval width

DW: data width
U: upper bound
L: lower bound

S

IW

DW

Figure 5.6. Dynami
 Memory Interval representation5.3.3 ImplementationMain algorithmThis se
tion des
ribes the main features of the implementation. The main algorithmis shown in Figure 5.7. Solving ambiguous memory dependen
es be
omes espe
iallypro�table to software pipelining te
hniques su
h as modulo s
heduling, where justone ambiguous loop-
arried memory dependen
e is enough to prevent the 
ompilerfrom overlapping di�erent iterations of the loop. In this study, we 
onsider onlyloops that are targeted with modulo s
heduling by the baseline 
ompiler.The �rst step 
onsists on building the list of testable memory dependen
es. Memorydependen
es in whi
h one of the two referen
es is neither strided nor loop invariantare dis
arded, as their DMIs 
annot be 
omputed before ea
h exe
ution of the loop.Dependen
es between referen
es whi
h 
an be stati
ally determined to refer the samelo
ation are also ex
luded, as they are de�nitely dependent.The length of the test blo
k should be 
ontrolled not only be
ause of performan
e,but also be
ause it in
reases the register pressure. For our study, we have used asimple heuristi
 that limits the maximum number of dependen
es to be tested. Loopdupli
ation is also avoided if it does not redu
e the minimum initiation interval formodulo s
heduling.



5.3. The Dynami
 Memory Interval Test 67forea
h (LBl) doif (is_modulo_s
heduling(LBl)=false) then
ontinueendifforea
h (Eij in LBl) doif (is_strided(Refi)=false and is_invariant(Refi)=false) then
ontinueendifif (is_strided(Refj)=false and is_invariant(Refj)=false) then
ontinueendifif (is_stati
_dep(Eij)=true) then
ontinueendifif (is_stati
_indep(Eij)=true) thendelete_memdep(Eij)
ontinueendiftest_dep_list += Eijenddoif (1 ≤ test_dep_list_size ≤ MAX_SIZE and
he
k_MII_redu
tion(LBl, test_dep_list)=true) then
LBc = 
reate_loop_
opy(LBl)
TBl = 
reate_test_blo
k(LBl, LBc, test_dep_list)forea
h (Eij in test_dep_list) dodel_memdep(Eij , LBc)enddoendifenddo Figure 5.7. DMIT. Main algorithmIf any pair of memory referen
es still remains in the list, the 
ompiler dupli
ates theloop and inserts the test blo
k. This blo
k 
ontains the operations needed to testea
h of the sele
ted dependen
es. Finally, dependen
es in the list are removed in thedisambiguated loop version.The test blo
kSuppose an ambiguous memory dependen
e exists between two referen
es whoseDMIs are [Li, Ui) and [Lj , Uj). Then, to ensure they are disjointed intervals, wemust test that:

Lj ≥ Ui or Li ≥ Uj



68 Chapter 5. Memory Disambiguation in Multimedia Appli
ationswhere Lk and Uk 
an be 
omputed in this way:if (Sk >= 0) then
Lk = ARk

Uk = ARk + (N − 1) ∗ Sk + DWkelse
Lk = ARk + (N − 1) ∗ Sk

Uk = ARk + DWkendifNote that it handles both positive and negative strides. In 
ase of a referen
e group,the group data width is used instead of the data width. The group data width 
anbe 
omputed as the di�eren
e between the highest and lowest 
onstant terms ofthe array index fun
tions plus the data width. The stride and the data width areusually known at 
ompile time, while the address register and sometimes the numberof iterations are not.The main steps to 
reate the test blo
k are summarized in Figure 5.8. The insert_-previous_ops fun
tion takes into a

ount the 
ase in whi
h the value of the reg-ister AR before entering the loop is not the value it will have when the memoryoperation is exe
uted in the �rst iteration. This is the 
ase when the address reg-ister is de�ned inside the loopbody before being used by the memory operation.In that 
ase, the 
ompiler must also insert an equivalent 
opy of the de�ne oper-ation before the bounds 
omputation in order to get the right value of AR. Inthis 
opy, the register is renamed to avoid modifying the real value. Note thatinsert_previous_ops is a re
ursive fun
tion, as it must now ensure data depen-den
es are maintained for ea
h operand of the de�ne operation. The fun
tion in-sert_interval_
omputation_ops 
reates the low level produ
ts and additions to 
om-pute L and U , and insert_
ompare_intervals_ops inserts the operations to 
omparethese limits. Finally, insert_bran
h_op inserts the 
onditional bran
h.At �rst sight, for ea
h pair of intervals to be 
ompared, we would need two produ
ts,six adds and two 
ompare operations. Su
h a quantity of operations 
ould be
omeprohibitive as the number of dependen
es to be tested in
reases. However, they area
tually redu
ed if we take into a

ount some trivial 
onsiderations. For instan
e,intervals with the same stride share a single produ
t. Furthermore, if a memoryreferen
e must be 
ompared with more than one other, the interval bounds are
omputed just on
e, so that only the 
ompare operations are added.5.3.4 Code ExampleAs a 
ase of study, we will des
ribe the generation of the test blo
k for the innermostloop of the h2v2_fan
y_upsample fun
tion in Figure 5.1. This 
ase also proves therelevan
e of dete
ting referen
e groups. Without grouping, the two stores wouldprodu
e two single DMIs with a stride of two and data width one byte, and ea
h oneshould be 
ompared with the DMIs of all other referen
es. However, if the 
ompiler



5.3. The Dynami
 Memory Interval Test 69forea
h (Eij in test_dep_list) doif (is_dominator(de�ne_op(ARi, LBl), Refi)=true) theninsert_previous_ops(TBl, LBl, Refi)endifif (is_dominator(de�ne_op(ARj , LBl), Refj)=true) theninsert_previous_ops(TBl, LBl, Refj)endifinsert_interval_
omputation_ops(TBl, Refi)insert_interval_
omputation_ops(TBl, Refj)insert_
ompare_intervals_ops(TBl, Refi, Refj)enddoinsert_
onditional_bran
h_op(TBl, LBl, LBc)Figure 5.8. DMIT. Test blo
k generation algorithmdete
ts the group, it will 
onsider just one DMI with a stride of two and groupdata size two bytes (see Figure 5.9.a), saving an important number of arithmeti
and 
ompare operations. The impa
t is even greater for loops with large referen
egroups, su
h as the DCT 
omputation, where the size of the groups is eight. Moreimportant is the fa
t that, in the �rst 
ase, the DMI of the two stores would be
ompared with ea
h other, and the test would fail.The 
ode of the test blo
k 
reated and inserted by the 
ompiler is given in Fig-ure 5.9.b. Let us assume that registers r3, r4, and r5 are the address registerspertaining to inptr0, inptr1, and outptr respe
tively, and the 
ontrol register LC(loop counter) 
ontains the number of iterations. Then, operations from 3 to 11 areinserted to 
ompute the interval bounds (r3, r4, and r5 are the lower bounds and
r13, r14, and r15 the upper ones).Next, the 
ompiler introdu
es the operations from 12 to 15 to 
he
k whether theDMIs overlap. To support predi
ated exe
ution, the HPL-PD ar
hite
ture [KSR00℄provides 1-bit predi
ate register �les and a ri
h set of 
ompare-to-predi
ate operationswhi
h set predi
ate registers. We make use of these 
apabilities to generate the 
odeof the test blo
k. In the example, predi
ate registers are denoted as pn. The OR-
ompare operations (e.x., p2 | = (r3 < r15) if p3) write a 1 into the destinationregister (p2) only if both the predi
ate input (p3) and the result of the 
omparisonare true. Otherwise, they leave the destination un
hanged.The 
onditional bran
h is performed in two steps. First, the prepare-to-bran
h(PBRR) operation loads the target address into a bran
h-target register (btrn). Se
-ond, the bran
h-
onditional (BRCT) operation bran
hes to the address 
ontainedin the btrn operand if the bran
h 
ondition (available in the spe
i�ed predi
ate) istrue. In the example, operation 2 sets the bran
h-target register btr2 to hold the



70 Chapter 5. Memory Disambiguation in Multimedia Appli
ations
1

inptr1

r4
2

outptr

r5

2

11
1

inptr0

r3 (a) Dynami
 Memory Intervals1: p2 = 02: btr2 = BB_503: r4 = r2 + r174: LC = LC - 15: r7 = LC � 16: r10 = r3 + LC7: r11 = r4 + LC8: r12 = r5 + r79: r13 = r10 + 110: r14 = r11 + 111: r15 = r12 + 212: p3 = (r3<r15)13: p4 = (r4<r15)14: p2 |= (r5<r13) if p315: p2 |= (r5<r14) if p416: BRCT btr2 if p2(b) Test blo
k 
odeFigure 5.9. Test blo
k 
ode generated for the h2v2_fan
y_upsample innermost loopaddress of the non-disambiguated loop (BB_50), and operation 16 bran
hes to it ifthe result of the 
omparisons is true.5.4 EvaluationThe before des
ribed algorithm has been 
ompletely built into the Trimaran 
om-piler. The original release of the 
ompiler only performs intrapro
edural analysis onlow level 
ode, whi
h is quite representative of 
urrent 
ommer
ial 
ompilers. Wehave implemented a new 
ompilation module into the El
or ba
k-end to do loop dis-ambiguation. Loop disambiguation is performed at the intermediate 
ode level justbefore any s
heduling or register allo
ation (see Figure 5.10).For the pointer analysis 
omparison, we have repla
ed the original Impa
t front-endby an internal release able to perform Interpro
edural Pointer Analysis (IPA) [Gal95℄.Therefore, both te
hniques are evaluated using the same 
ompilation and simulationframework.



5.4. Evaluation 71
SchedulingAllocationScheduling
Post-passRegister

ELCOR

Modulo
Scheduling

Acyclic
Disambiguation
Loop MemoryFigure 5.10. In
orporation of the Loop Memory Disambiguation module into the El
or ba
k-end5.4.1 CoverageCurrent implementation of the DMIT only applies to innermost modulo s
hedulingloops. This means that it 
annot disambiguate multi-dimensional array a

esses(ex
ept when the innermost loop has been fully unrolled). The algorithm 
ould beextended to work on nested loops. However, this would in
rease the implementation
omplexity, whi
h is one of the main advantages of our approa
h.There are also some loops that have no potential to be disambiguated, as they 
ontainno store operations. This is the 
ase, for example, of the main loop in the motionestimation algorithm of the mpeg2_en
, where the sum of absolute di�eren
es is
omputed for two arrays of 16x16 elements.Table 5.1 shows the number and fra
tion of 
y
les and dynami
 operations of in-nermost, modulo s
heduling, and modulo s
heduling loops with store operations forea
h appli
ation when they are exe
uted in the 2-issue width ar
hite
ture. Onlyloops that a

ount for more than 0.5% of the overall program 
y
les are in
luded.Loops in the last 
olumn are the input 
andidates to DMIT.Innermost +Mod.S
hed. +Store Ops.Ben
hmark #L %Cy
 %Ops #L %Cy
 %Ops #L %Cy
 %Opsjpeg_en
 6 47.96% 61.40% 6 47.96% 61.40% 6 47.96% 61.40%jpeg_de
 4 82.85% 84.87% 2 25.52% 26.46% 2 25.52% 26.46%mpeg2_en
 15 61.85% 76.47% 13 58.97% 74.71% 5 4.75% 1.91%mpeg2_de
 11 35.49% 33.23% 7 10.31% 10.04% 6 9.18% 7.69%gsm_en
 11 56.62% 73.68% 10 55.68% 73.04% 7 42.24% 33.60%gsm_de
 5 91.92% 91.15% 3 5.11% 5.75% 3 5.11% 5.75%epi
_en
 12 53.25% 55.76% 7 39.20% 45.90% 1 2.18% 1.52%epi
_de
 12 69.22% 78.18% 7 47.73% 51.67% 5 45.64% 44.50%sum/average 76 62.40% 69.34% 55 36.31% 43.62% 35 22.82% 22.85%Table 5.1. DMIT. CoverageFour of the ben
hmarks show low potential for improvement based on 
overage issues.The rest of the ben
hmarks present a su�
ient number of loops to optimize to givegood performan
e improvements as a result of in
luding memory disambiguation. Itis important to note that our te
hnique adds near-zero overhead over those 
odes



72 Chapter 5. Memory Disambiguation in Multimedia Appli
ationsthat 
ould not bene�t from memory disambiguation, thus over
oming the fa
t thatthere exist ben
hmarks without potential for improvement.5.4.2 Loop Level AnalysisTable 5.2 shows the results of applying DMIT to the 
andidate loops for the 8-issue width ar
hite
ture. It in
ludes the 
overage of the loop, the operations per
y
le rate of the non-disambiguated and the disambiguated loopbodies, the 
y
leand operation 
ount of the test blo
k, the per
entage of times the loop passes thetest at run-time, and �nally the overall speed-up a
hieved in the loop (in
luding thetest blo
k overhead). LBbase LBdis TB TB LoopBen
hmark Loop name %Cy
 OPC OPC Cy
 Ops %Dis SPjpeg_en
 _forward_D.9 22.77% 1.53 6.75 9 18 100% 4.28_rgb_y

_
.5 14.07% 2.65 3.16 11 26 100% 1.19_forward_D.6 3.38% 1.49 3.20 9 12 100% 1.46_h2v2_down.4 2.58% 2.37 6.30 8 17 100% 2.64_jpeg_fd
t.3 2.73% 4.30 4.55 − − − 1.00_jpeg_fd
t.5 2.44% 4.91 5.90 5 6 100% 1.16jpeg_de
 _y

_rgb_
.5 17.12% 1.70 1.98 12 23 100% 1.17_h2v2_fan
.8 8.40% 2.46 5.83 9 16 100% 2.36mpeg2_en
 _iquant_no.5 1.26% 1.08 1.08 9 19 0% 0.99_quant_non.3 1.12% 1.21 1.21 9 22 0% 0.99_quant_int.6 1.01% 1.10 1.10 9 22 0% 0.99_iquant_in.5 0.92% 1.09 1.09 9 19 0% 0.99_add_pred_.4 0.44% 1.70 3.67 8 21 100% 1.63mpeg2_de
 _Add_Blo
k.31 3.51% 1.59 3.64 8 15 100% 1.69_form_
omp.58 2.18% 1.48 2.71 8 17 100% 1.54_Add_Blo
k.36 1.57% 1.32 2.47 8 15 100% 1.50_form_
omp.18 0.85% 1.96 2.63 8 12 100% 0.98_form_
omp.38 0.52% 1.77 3.87 8 17 100% 1.76_form_
omp.73 0.56% 2.05 3.34 8 27 100% 1.43gsm_en
 _Short_ter.5 20.01% 2.79 3.63 9 14 100% 1.16_Auto
orre.42 11.33% 1.11 6.87 7 11 100% 6.14_Weighting.3 4.62% 1.91 3.97 29 97 100% 1.97_Long_term.8 2.95% 1.09 6.04 8 25 100% 5.16_Gsm_Coder.5 1.48% 1.74 1.74 8 17 0% 0.98_Re�e
tio.52 1.19% 1.11 4.62 8 23 100% 3.40_Cal
ulati.25 0.66% 2.45 7.36 8 12 100% 3.15gsm_de
 _Gsm_Long_.16 3.03% 2.32 6.84 8 17 100% 2.95_Gsm_Long_.24 1.56% 2.28 6.58 − − − 1.00_Gsm_De
od.5 0.53% 1.19 5.86 8 12 100% 4.57epi
_en
 _quantize_.11 2.18% 0.71 4.75 9 14 100% 6.70epi
_de
 _unquantiz.3 18.00% 0.86 4.63 9 15 100% 5.35_main.18 16.46% 0.94 5.67 9 12 100% 6.00_
ollapse_.9 8.74% 1.84 1.84 − − − 1.00_write_pgm.3 1.83% 3.50 7.00 8 14 100% 2.00_
ollapse_.191 0.60% 3.00 6.00 11 15 100% 2.00Table 5.2. DMIT. Loop level analysis for the 8-issue width ar
hite
ture



5.4. Evaluation 73The test results support the assumption that multimedia loops are 
hara
terizedby high amounts of parallelism. First, a high per
entage of the loop 
andidatesdisambiguate (only 5 loops out of 32 fail the test). Furthermore, the result of thetest is always the same in all invo
ations of the loops. On the other hand, 3 loopsout of the 32 
andidates do not require DMIT. In these 
ases, stati
 disambiguation(
oin
ident memory referen
es and/or store referen
e groups dete
tion) is enoughto determine the dependen
e or independen
e of the memory referen
es, withoutthe requirement of a 
omplex array dependen
e analysis. As the existing parallelismbe
omes visible to the 
ompiler, the average operation per 
y
le rate in the loopbodiesin
reases in a 138%.As 
an be seen, 
ommon sizes of the test blo
ks range from 11 to 27 stati
 operations,whi
h are usually s
heduled in 8 or 9 
y
les. This 
ode is exe
uted only on
e on ea
hinvo
ation of the loop, and it is minimal 
ompared with the redu
tion in the s
hedulelength of the loopbody. In the _Weighting.3 loop in gsm_en
, the 
ompiler fails todete
t a referen
e group of nine loads and the independen
e of the store operationis tested for ea
h load operation, resulting in a very large test blo
k of 97 stati
operations. But even in that 
ase, the overall exe
ution time of the loop is redu
edin nearly 50%. On average, as a result of applying the DMIT we obtain a speed-upof 2.60X in the loops.5.4.3 Appli
ations AnalysisFigure 5.11 shows the performan
e speed-up obtained in 
omplete appli
ations fordi�erent issue widths, both with and without DMIT. All speed-ups are related tothe 2-issue width ar
hite
ture without DMIT.Results show that memory disambiguation is a key te
hnique to allow an e�e
tiveexploitation of the available ILP when the ar
hite
ture is s
aled. In the originalversions of 
ode, in
reasing the issue width from 2 to 8 introdu
es an average perfor-man
e speed-up of 1.29X. In sharp 
ontrast, the disambiguated versions of 
ode showhigher performan
e improvements when s
aling the referen
e ma
hine, espe
ially forthose ben
hmarks with high 
overage, and s
aling from 2 to 8 produ
es an averagespeed-up of 1.40X. For the 8-issue width ar
hite
ture, the DMIT ex
eeds the baselineperforman
e in a fa
tor of 1.13X.On the other hand, we have observed a degradation of the memory behavior in thedisambiguated versions. As an e�e
t of in
reasing the parallelism, memory pressurealso in
reases, and the number of bank 
on�i
ts grows up signi�
antly. Moreover, aspro
essor 
y
les go down, memory 
y
les be
ome a greater per
entage of the totalexe
ution time. For example, in the epi
_de
 ben
hmark, the 9.32% of the exe
utiontime is due to memory stalls in the 8-issue width baseline, and this per
entagein
reases to 14.67% in the 8-issue width disambiguated version. These memory o�set
y
les make the speed-up de
rease from an ideal 1.68X (without pro
essor memorystalls) to the 1.55X shown in the graph.



74 Chapter 5. Memory Disambiguation in Multimedia Appli
ations
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

jpeg_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

jpeg_dec

DMIT
BASE

2w 4w 8w
1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

mpeg2_enc

2w 4w 8w
1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

mpeg2_dec
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

gsm_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

gsm_dec

2w 4w 8w
1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

epic_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

epic_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8
sp

ee
d-

up

averageFigure 5.11. DMIT. Performan
e speed-up of 2-, 4- and 8-issue width ar
hite
tures over the2-issue width baseline
5.4.4 Test Blo
k OverheadThe DMIT also involves an overhead in 
ode size and exe
ution time. Neverthe-less, this overhead is negligible when 
ompared with the rest of the 
ode. For ea
happli
ation, Table 5.3 reports the average size in both 
y
les and operations, andwhat per
entage of the loops and appli
ations they mean. Results show that only0.59% of the overall exe
ution time is spent in test blo
ks. Even for the mpeg2_en
,a ben
hmark without 
overage and in whi
h four of the �ve 
andidate loops fail thetest, there is not a relevant impa
t in performan
e.As far as stati
 
ode size is 
on
erned, experimental results show that the dupli
atedloopbodies and the test blo
ks have an average size of 34 and 16 stati
 operationsrespe
tively. The in
rease of the overall stati
 
ode size ranges from 0.24% to 1.97%(0.83% in average).



5.4. Evaluation 75Cy
les OperationsBen
hmark avg %loop %appl avg %loop %appljpeg_en
 8.45 4.11% 1.20% 12.11 1.37% 0.75%jpeg_de
 10.00 0.13% 0.03% 19.00 0.09% 0.02%mpeg2_en
 8.28 1.88% 0.09% 20.86 3.74% 0.07%mpeg2_de
 8.00 20.52% 1.28% 15.33 13.92% 1.24%gsm_en
 9.32 7.12% 2.04% 16.39 3.34% 1.16%gsm_de
 8.00 7.79% 0.07% 14.50 2.48% 0.08%epi
_en
 9.00 0.05% 0.00% 14.00 0.02% 0.00%epi
_de
 9.28 0.03% 0.00% 14.78 0.01% 0.00%sum/average 8.79 5.20% 0.59% 15.87 3.12% 0.42%Table 5.3. DMIT. Test blo
k overhead5.4.5 Comparison with Interpro
edural Pointer AnalysisAs 
omplex pointer referen
es is the main issue targeted by DMIT, it is of interest to
ompare it against advan
ed interpro
edural pointer analysis te
hniques. Moreover,as they are not ex
lusive te
hniques, we also report the results obtained when usinga 
ombination of both; that is, stati
 P
ode interpro
edural analysis is �rst appliedat the front-end, and then DMIT is used before the s
heduling to disambiguate thoseloops that have not been previously disambiguated.Loop level analysisTable 5.4 shows the operations per 
y
le rate and the speed-up a
hieved at loop levelby ea
h 
ompilation model. For the models that in
lude DMIT, we also report thenumber of loops that require the dynami
 test to be disambiguated.We observe that DMIT a
hieves in general better results than IPA (1.20X speed-upover IPA in average), even though it requires lower implementation 
omplexity. Afterinterpro
edural pointer analysis, the test blo
k is avoided for 16 loops. However, loopdupli
ation is still performed to 16 of the remaining loops, whi
h means that dynami
information is still needed to determine the existen
e or not of the dependen
e inthose loops. On the other hand, �ve loops a
hieve signi�
ant gains over pointeranalysis without doing the test; these loops are examples of 
oin
ident referen
es(
ase b in Figure 5.3) and/or store referen
e groups.Furthermore, most of the ben
hmarks exhibit a bene�
ial e�e
t when both te
hniquesare used together. In mpeg2_de
, for example, the DMIT su

eeds in disambiguatingfour loops (_form_
omp.x) whi
h pointer analysis does not, while pointer analysis isable to disambiguate another one (_Add_Blo
k.42). This loop uses a table to performsaturation, and DMIT is unable to deal with this kind of non-strided referen
es.



76 Chapter 5. Memory Disambiguation in Multimedia Appli
ationsBase DMIT IPA IPA+DMITBen
hmark OPC T/L OPC SP OPC SP T/L OPC SPjpeg_en
 2.23 5/6 4.44 1.91 5.14 2.30 1/6 5.60 2.39jpeg_de
 1.95 2/2 2.74 1.40 3.48 1.79 1/2 5.15 2.64mpeg2_en
 1.18 5/5 1.24 1.03 1.19 1.01 5/5 1.25 1.04mpeg2_de
 1.59 6/6 3.06 1.51 1.91 1.19 4/6 3.16 1.55gsm_en
 2.04 7/7 3.90 1.75 3.20 1.55 2/7 3.91 1.75gsm_de
 1.65 2/3 6.34 3.62 2.26 1.37 1/3 6.34 3.62epi
_en
 0.71 1/1 4.75 6.70 4.75 6.70 0/1 4.75 6.70epi
_de
 1.21 4/5 3.45 2.84 1.79 1.47 2/5 3.45 2.84sum/average 1.57 32/35 3.74 2.60 2.96 2.17 16/35 4.20 2.82Table 5.4. DMIT vs IPA. Loop level analysis for the 8-issue width ar
hite
tureOn the other hand, �ve loops fail the test at run-time with and without pointer anal-ysis. Their dependen
es were probably proved to be 
ertain at the interpro
eduralpointer analysis phase, but this information is lost before DMIT, so that it 
an notdi�erentiate between likely and 
ertain dependen
es. Maintaining this informationwould be useful to avoid unne
essary tests.
Complete appli
ations analysisOne advantage of IPA is that it is performed at the beginning of the 
ompilationpro
ess, so that it 
an provide useful information to other phases of 
ode optimizationsu
h as loop invariant 
ode removal. On the 
ontrary, DMIT is only applied to afra
tion of the 
ode and it only aids the s
heduling pro
ess.Figure 5.12 shows the speed-up obtained for the 2, 4 and 8-issue width ar
hite
turesover the 2-issue width baseline. Although DMIT outperforms IPA in an average16% in the targeted loops, these loops are only a 23% of the overall exe
ution time.At the s
ope of the 
omplete appli
ations, the average gains obtained with IPA(1.04X, 1.34X and 1.46X) are very similar to those obtained with DMIT (1.03X,1.33X, 1.45X). Moreover, the average speed-up in
rease when both te
hniques areused together (1.05X, 1.38X and 1.53X).To fa
ilitate the 
omparison, Figure 5.13 shows the speed-up a
hieved by the threeoptions over the original 
ompiler for the 8-issue width ar
hite
ture. The ben
hmarksdo not show a regular behavior. Although they perform similar in average, DMIToutperforms interpro
edural pointer analysis for three of the eight ben
hmarks, butit does worse in the remaining �ve. More interesting are the additional gains ob-tained with the 
ombination of both, spe
ially for the jpeg_de
 and the mpeg2_de
appli
ations.



5.4. Evaluation 77
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

jpeg_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

jpeg_dec

IPA+DMIT
IPA
DMIT
BASE

2w 4w 8w
1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

mpeg2_enc

2w 4w 8w
1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

mpeg2_dec
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

gsm_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

gsm_dec

2w 4w 8w
1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

epic_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

epic_enc
2w 4w 8w

1.0

1.2

1.4

1.6

1.8

sp
ee

d-
up

averageFigure 5.12. DMIT vs IPA. Performan
e speed-up of 2-, 4- and 8-issue width ar
hite
tures overthe 2-issue width baseline
5.4.6 E�e
t of DSP Oriented S
alar OptimizationsDue to the intrinsi
 signi�
an
e of most multimedia algorithms, there has been agreat e�ort fo
using on redu
ing the overall number of required operations. Un-fortunately, this e�ort has been oriented towards low-end DSP s
alar ar
hite
tures,hiding in most 
ases the data parallel nature of the original algorithm.For example, the 
olor 
onversion fun
tion (whi
h stands for a 18% of jpeg_en
 ex-e
ution time) uses memory tables to perform multipli
ations. These table referen
es
annot be disambiguated using DMIT, as they do not have strided patterns. A simi-lar 
ase o

urs with saturation (
lipping a result to a maximum/minimum value if itex
eeds a given range), whi
h is also implemented using memory tables in jpeg_de
and mpeg2_de
.



78 Chapter 5. Memory Disambiguation in Multimedia Appli
ations
jpeg_enc

jpeg_dec
mpeg2_enc

mpeg2_dec

gsm_enc
gsm_dec

epic_enc
epic_enc

average

1.0

1.2

1.4

Sp
ee

d-
up DMIT

IPA

DMIT+IPA

1.
29

1.
08

1.
00 1.

03

1.
19

1.
05

1.
02

1.
40

1.
13

1.
41

1.
21

1.
02 1.
03

1.
18

1.
02 1.
04

1.
17

1.
14

1.
45

1.
28

1.
02 1.

06

1.
23

1.
05

1.
04

1.
41

1.
19

Figure 5.13. DMIT vs IPA. Performan
e speed-up over the 8-issue width baselineAnother typi
al s
alar optimization is a break 
ondition inside a loop. In the IDCT,for example, 
omputation is avoided for those rows and 
olumns whose elements areall zero. Nevertheless, on ma
hines with fast multipli
ation, it is possible that thetest takes more time than it is worth. Moreover, our 
ompiler does not target theoptimized 
ode as modulo s
heduling; thus produ
ing worse 
ode s
heduling thanthe same 
ode without the break 
ondition.We are interested in evaluating the performan
e of our te
hnique when we revertto the original ways of performing the 
omputation. Thus, we have analyzed thefollowing expli
it parallel versions:
• jpeg_en
_dlp: uses expli
it produ
ts to perform 
olor 
onversion instead ofthe tables.
• jpeg_de
_dlp: inverse 
olor 
onversion and saturation are implemented with-out tables, and the zero 
ondition of the inverse DCT has been removed.
• mpeg2_de
_dlp: saturation is implemented without tables and the zero 
ondi-tion of the inverse DCT has been removedFigure 5.14 
ompares performan
e of DMIT, IPA, and the 
ombination of both overthe base 
ompiler for the 8-issue width ar
hite
ture. As 
an be observed, the per-forman
e results leveraged by our te
hnique have improved signi�
antly. Espe
iallynoti
eable are the signi�
ant improvement of DMIT over IPA in jpeg_de
_dlp andthe results leveraged by the 
ombination of both te
hniques in mpeg2_de
_dlp.5.5 SummaryMemory disambiguation of multimedia appli
ations is 
ompromised by the fa
t thatthey are often written in languages that support pointer referen
ing, su
h as C orC++. In this 
hapter, we have evaluated a simple but e�
ient memory disam-



5.5. Summary 79
jpeg_enc dlp

jpeg_dec dlp

mpeg2_dec dlp

1.0

1.2

1.4

Sp
ee

d-
up DMIT

IPA

DMIT+IPA

1.
37 1.
39

1.
04

1.
40

1.
27

1.
03

1.
43 1.

48

1.
12

Figure 5.14. DMIT vs IPA. Performan
e speed-up over the 8-issue width baseline for expli
itparallel versions of 
ode
biguation te
hnique spe
i�
ally targeted at multimedia loops, or any other kind ofappli
ations with similar memory a

ess patterns.Taking into a

ount the disjointed behavior of 
ommon multimedia memory streams,our algorithm is able to evaluate at run-time whether or not the full loop is disam-biguated and exe
ute the 
orresponding loop version. By 
al
ulating at run-timethe dynami
 memory intervals of every memory referen
e in a very e�
ient way, weavoid having to perform 
omparisons inside every loop iteration.In 
ontrast with other dynami
 approa
hes, the Dynami
 Memory Interval Testdoes not require any additional hardware or instru
tions. It has negligible e�e
tsover 
ompilation time and 
ode size, and near-zero 
ost for all those loops withoutpotential for disambiguation. Nevertheless, one 
urrent limitation of this analysis isthe inability to deal with non-streaming data stru
tures.Experimental results also 
on�rm that memory disambiguation is a key te
hniquefor exploiting the inherent parallelism of multimedia appli
ations. The Dynami
Memory Interval Test provides signi�
ant performan
e gains in most of our ben
h-marks. Furthermore, it allows performan
e s
alability of wider-issue ma
hines insharp 
ontrast with our baseline.Although the Dynami
 Memory Interval Test outperforms P
ode interpro
eduralanalysis at the loop level, they perform similarly when we 
onsider 
omplete appli-
ations. This 
an be explained by the fa
t that pointer analysis has the advantage ofbeing applied to the 
omplete program 
ode (not only to modulo s
heduling loops),and at an earlier stage of the 
ompilation, so that the alias analysis information 
anbe used by further stages of the pro
ess. On the other hand, P
ode pointer anal-ysis la
ks array dependen
e analysis, whi
h 
ould be over
ome with simple stati
optimizations (su
h as the dete
tion of referen
e groups).



80 Chapter 5. Memory Disambiguation in Multimedia Appli
ationsFurthermore, we have shown that a 
ombination of both te
hniques provides im-proved results. There is a signi�
ant number of loops for whi
h some informationis missing at 
ompile time, and they still bene�t from Dynami
 Memory IntervalTest after interpro
edural pointer analysis. On the other hand, the test overhead isavoided for those loops that 
an be stati
ally disambiguated.



Chapter 6A Ve
tor-µSIMD-VLIWAr
hite
ture
In this 
hapter, we propose and evaluate adding ve
tor 
apabilities to a µSIMD-VLIW 
ore to speed-up the exe
ution of the regions with data level parallelism,while, at the same time, redu
ing the fet
h bandwidth requirements. We also dis-
uss the main impli
ations in the 
ompilation pro
ess, and more spe
i�
ally in thes
heduling pro
ess. This enhan
ement has a minimal impa
t on the VLIW 
ore andprovides high performan
e with 
onsiderably less hardware 
omplexity and power
onsumption than wider issue µSIMD ar
hite
tures.6.1 S
alar and Ve
tor RegionsAs it has already been stated, media kernels exhibit high amounts of DLP. Never-theless, there is also a signi�
ant portion of 
ode that is di�
ult to ve
torize. Thatis some proto
ol related pro
essing overhead su
h as �rst order re
urren
es, tablelook-ups and non-streaming memory patterns with large amounts of indire
tions.Therefore, a real media program is 
omposed of heterogeneous regions of 
ode withhighly variable levels of parallelism: some of them with high amounts of DLP andthe other ones with only modest amounts of ILP. We will refer to those regions that
an be ve
torized with the term of Ve
tor Regions and to the remaining non-DLPregions of 
ode with the term of S
alar Regions.In the media domain, µSIMD-VLIW pro
essors have been widely proposed [Gwe99,Sem99, Dev99, FBF+00℄, as they are able to exploit DLP by means of the µSIMDoperations and ILP by the use of wide-issue stati
 s
heduling. Our 
laim is that, inmedia appli
ations, the remaining non-DLP part of 
ode is signi�
ant in terms ofexe
ution time and it exhibits only modest amounts of ILP, thus taking little bene�tfrom in
reasing the pro
essor resour
es. Even though VLIW pro
essors are simplerthan supers
alar designs, very high issue rates also require de
oding more operationsin parallel and 
ompli
ate the register �les, whi
h 
learly in
reases a

ess time andpower 
onsumption.



82 Chapter 6. A Ve
tor-µSIMD-VLIW Ar
hite
tureIn order to evaluate the s
alability of s
alar and ve
tor regions separately, we havemarked the start and end point of the most 
omputational intensive ve
tor regionsin the sour
e 
odes. These regions generally 
orrespond to one or two levels of nestedloops plus some previous initializations. Table 6.1 lists the sele
ted ben
hmarks, theparts of ea
h program that have been 
onsidered as ve
tor regions, and the per
entageof the exe
ution time they represent in a 2-issue width µSIMD-VLIW ar
hite
ture.Ben
hmark %Ve
t Ve
tor Regionsjpeg_en
 29.56 % R1: RGB to YCC 
olor 
onversionR2: Forward DCTR3: Quanti�
ationjpeg_de
 18.46 % R1: YCC to YCC 
olor 
onversionR2: H2v2 up-samplempeg2_en
 52.29 % R1: Motion estimationR2: Forward DCTR3: Inverse DCTmpeg2_de
 23.11 % R1: Form 
omponent predi
tionR2: Inverse DCTR3: Add blo
kgsm_en
 18.66 % R1: LTP parametersR2: Auto
orrelationgsm_de
 0.91% R1: Long term �lteringTable 6.1. Ve
tor regionsFigure 6.1 shows the speed-up of 2, 4 and 8-issue width µSIMD-VLIW ar
hite
turesover the 2-issue width µSIMD-VLIW. The dashed lines represent the speed-up in theve
tor/s
alar regions over the ve
tor/s
alar regions of the 2-issue width ar
hite
ture.The solid lines refer to the speed-up in the 
omplete appli
ation.From the graphs, it 
an be inferred that, ex
ept for the gsm_en
, the s
alar regionsfail to s
ale above 4-issue width. While in
reasing the width of the ar
hite
ture from2 to 4 provides an average speed-up of 1.24X in the s
alar regions, moving from 4 to8-issue only introdu
es a small 1.03X performan
e improvement. As far as the ve
torregions is 
on
erned, they exhibit potential to bene�t from wider issue s
heduling,but this parallelism 
ould be exploited in a more e�
ient way by 
onventional DLPoriented te
hniques. Furthermore, even though the ve
tor regions s
ale up to 3.19Xfor the jpeg_de
 appli
ation (2.49X in average), the ve
torization per
entage is low(24% in average) and the la
k of s
alability in the s
alar regions (1.28X in average)limits the performan
e of the 
omplete appli
ation.Results state that the a
tual performan
e a
hieved is very far from the theoreti
alpeak performan
e and do not pay o� the hardware 
omplexity inherent in veryaggressive ar
hite
tures. We 
laim that Ve
tor-µSIMD extensions arise as a better
andidate to invest in, as they 
learly redu
e the fet
h pressure, simplify the 
ontrol



6.2. Adding Ve
tor Units to a VLIW pro
essor 83

2w 4w 6w 8w
1

2

3

sp
ee

d-
up

jpeg_enc
2w 4w 6w 8w

1

2

3

sp
ee

d-
up

jpeg_dec

APPLICATION
SCALAR REGIONS
VECTOR REGIONS

2w 4w 6w 8w
1

2

3

sp
ee

d-
up

mpeg2_enc

2w 4w 6w 8w
1

2

3

sp
ee

d-
up

mpeg2_dec
2w 4w 6w 8w

1

2

3

sp
ee

d-
up

gsm_enc
2w 4w 6w 8w

1

2

3

sp
ee

d-
up

gsm_decFigure 6.1. S
alability of s
alar and ve
tor regions in µSIMD-VLIW ar
hite
tures�ow and memory a

ess, and speed-up the performan
e of the ve
tor regions withoutdetrimental e�e
ts over the s
alar part.In [Cor02℄, a supers
alar pro
essor is enhan
ed with MOM, a matrix ISA extensionthat is basi
ally an hybrid between 
onventional ve
tor and MMX-like ISAs. Wehave used the same ISA to enhan
e our referen
e µSIMD-VLIW ar
hite
ture. Itmust be stressed that additional issues arise mainly in the 
ompiler side, as it mustnow be able to s
hedule ve
tor operations.6.2 Adding Ve
tor Units to a VLIW pro
essorThis se
tion deals with the main impli
ations of adding ve
tor units to a µSIMD-VLIW pro
essor. First, we overview the main features of the Ve
tor-µSIMD ISAextension used for the study. Next, we des
ribe the proposed ar
hite
ture, in
ludingthe datapath and the memory hierar
hy. Finally, we dis
uss the main impli
ationsin the 
ompilation, and more spe
i�
ally in the s
heduling pro
ess.6.2.1 Ve
tor-µSIMD ISA OverviewOur Ve
tor-µSIMD ISA is based on the Matrix Oriented Multimedia (MOM) exten-sion [CEV99℄. It 
an be viewed as a 
onventional ve
tor ISA where ea
h operation



84 Chapter 6. A Ve
tor-µSIMD-VLIW Ar
hite
ture
B

. . .

A B

BA

. . .

0

15

0 0

1515

+

+

A

A

. . .

0

15

1 x 64 bits

VL = 16

B

+ =(a) Ve
tor
3 2 1 0BBBB BBBB 22 0

VL = 16

1

4 x 16 bits

013 2A AAA 3 3 1 0A AAA 1=+ ++++(b) µSIMD
++

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . VL = 16

+

B

B B

B B B

BB

+ =

+ + + +

+

0,00,3

15,015,115,215,3

0,00,10,20,3

15,015,115,215,3

0,1

4 x 16 bits

0,2 0,00,10,10,20,3 0,3 0,2

15,015,015,115,115,215,215,315,3

0,0

A BABAA BBA

A A A A

AAA

BA B A B A B A

(
) Ve
tor-µSIMDFigure 6.2. Comparison between 
onventional ve
tor, µSIMD and Ve
tor-µSIMD ISAsis a µSIMD operation (see Figure 6.2). It was designed to exploit the advantages ofboth 
onventional ve
tor ar
hite
tures (low fet
h requirements, simple 
ontrol logi
and strided a

esses) and µSIMD ISAs (sub-word level parallelism and multimediaoriented features su
h as saturation). It does not in
lude 
ostly ve
tor operations,su
h as 
onditional exe
ution, gathers or s
atters.It provides ve
tor registers of 16 64-bit words ea
h, ve
tor load and ve
tor storeoperations to move data from/to memory to/from the ve
tor registers, and a setof 
omputation operations that operate on ve
tor registers. Sin
e ea
h word 
anpa
k either eight 8-bit, four 16-bit or two 32-bit items, ea
h ve
tor register 
anhold a matrix of up to 16x8, 16x4 or 16x2 elements. The ar
hite
ture also provides192-bit pa
ked a

umulators similar to those proposed in the MDMX multimediaextension [SIG97℄.Additionally, two spe
ial registers are required to 
ontrol the exe
ution of ve
toroperations: the ve
tor length register and the ve
tor stride register. The ve
tor lengthregister spe
i�es how many words (out of 16) of the ve
tor register are involved inthe ve
tor operation being performed. The ve
tor stride register is spe
i�
 to ve
tormemory operations and di
tates the distan
e between two 
onse
utive words in theve
tor register.



6.2. Adding Ve
tor Units to a VLIW pro
essor 85

Figure 6.3. Ve
tor-µSIMD-VLIW ar
hite
tureAs far as terminology is 
on
erned, we reserve the term operation to refer to ea
hindependent ma
hine operation 
odi�ed into a VLIW instru
tion. Ea
h ve
tor op-eration exe
utes so many sub-operations as the ve
tor length di
tates. Finally, asthe maximum ve
tor length is 16 and ea
h sub-operation 
an operate on either eight8-bit, four 16-bit or two 32-bit items, a ve
tor operation 
an perform up to 16x8,16x4 or 16x2 mi
ro-operations.6.2.2 Ve
tor-µSIMD-VLIW Ar
hite
tureFigure 6.3 shows the main 
omponents of the proposed ar
hite
ture. Essentially, itis a VLIW pro
essor with the addition of a ve
tor register �le, one or more ve
torfun
tional units, and a modi�ed 
a
he hierar
hy spe
ially targeted to serve ve
tora

esses.Both, the ve
tor register �le and the ve
tor fun
tional units 
an be 
lusterized in inde-pendent ve
tor lanes. This 
an be a
hieved with relatively simple logi
 by repli
atingthe fun
tional units, splitting ea
h ve
tor register a
ross ea
h lane and assigning ea
hfun
tional unit to a 
ertain lane. The di�erent elements of a ve
tor register are inter-leaved a
ross lanes, allowing all lanes to work independently. The ar
hite
ture alsoin
ludes a simple a

umulator register �le and adds limited 
onne
tion between thelanes to be able to perform the last series of a

umulation in a redu
tion operation.Only one of the lanes needs to read and write the sour
e and destination pa
keda

umulator. This lane is the responsible for performing the last redu
tion. In thiswork, we use four independent ve
tor lanes; as our ve
tor lengths are relatively short,a larger number of lanes would not pay o�.



86 Chapter 6. A Ve
tor-µSIMD-VLIW Ar
hite
ture
(a) Centralized register �le in µSIMD(4 FUs, 4 L1 ports, 20 ports)

Lane 3 Lane 2 Lane 1 Lane 0(b) Distributed register �le in Ve
tor-µSIMD(1 FU, 1 L2 port, 4 lanes, 5 ports/bank)Figure 6.4. Comparison between 
entralized and distributed register �le organizationsFrom the point of view of implementation, a ve
tor register �le s
ales better thana 
entralized one, due to the organization in lanes, whi
h redu
es the number ofports per 
luster (see Figure 6.4). When s
aling a 
entralized µSIMD register �le,the register �le storage and 
ommuni
ation between arithmeti
 units be
ome 
riti
alfa
tors, dominating in area, 
y
le time and power dissipation of the pro
essor.Table 6.2 shows the 
hara
teristi
s of di�erent µSIMD and Ve
tor-µSIMD register�les 
on�gurations. Register �le area, delay and power have been estimated usingthe models des
ribed in [RDK+00℄. Register �le area is measured in square wiretra
ks (wt2). Delays are given in units of fan-out-of-four inverter (FO4) delays1. A
y
le time of 20 FO4 is assumed, whi
h 
orresponds to a 
lo
k frequen
y greaterthan 500 MHz. Normalized values over the 2-issue with µSIMD 
on�guration arealso in
luded.As we 
an observe, for aggressive 
on�gurations, a ve
tor register �le 
an providelarger storage 
apa
ity with less area 
ost and a

ess time. Thus, the proposedar
hite
ture appears as a good 
andidate not only in terms of performan
e, but alsoin terms of 
ost-e�
ien
y.As far as the memory hierar
hy is 
on
erned, we use a ve
tor 
a
he in the se
ondlevel of the memory hierar
hy (see Se
tion 3.3.3 for further details). S
alar a

essesare made to the L1 data 
a
he, while ve
tor a

esses bypass the L1 to a

ess dire
tly1An FO4 delay is less than 100ps for a 0.18µm pro
ess.



6.2. Adding Ve
tor Units to a VLIW pro
essor 87
µSIMD Ve
tor-µSIMD2w2u 4w4u 8w8u 2w1v4 2w2v4 4w2v4 4w4v4SIMD units 2 4 8 1x4 2x4 2x4 4x4memory ports 1 2 4 1x4 1x4 1x4 1x4SIMD registers 80 96 128 20 20 32 32bits per register 64 64 64 16x64 16x64 16x64 16x64number of lanes 1 1 1 4 4 4 4banks per lane 1 1 1 1 1 1 2ports per bank 8 16 32 5 8 8 8A

umulator registers 0 0 0 4 4 6 6bits per register 0 0 0 192 192 192 192ports per bank 0 0 0 2 4 4 4RF size (bytes) 640 768 1,024 2,656 2,656 4,240 4,240RF area 
ost (wt2) 675,840 2,334,720 10,321,920 1,497,600 2,746,368 4,389,888 4,389,888RF a

ess time (FO4) 10.31 12.17 15.80 9.71 10.31 11.31 9.86RF peak power (fJ/FO4) 5,340 18,953 83,044 11,057 21,692 34,257 34,913RF size (norm) 1.00 1.20 1.60 4.15 4.15 6.63 6.63RF area 
ost (norm) 1.00 3.45 15.27 2.22 4.06 6.50 6.50RF a

ess time (norm) 1.00 1.18 1.53 0.94 1.00 1.10 0.96RF peak power (norm) 1.00 3.55 15.55 2.07 4.06 6.42 6.54Table 6.2. Estimated area, delay and power of di�erent µSIMD and Ve
tor-µSIMD register �le
on�gurationsthe L2 ve
tor 
a
he. A 
oheren
y proto
ol based on an ex
lusive-bit poli
y plusin
lusion is used to guarantee 
oheren
y.6.2.3 Compilation IssuesThe su

ess of the proposed ar
hite
ture is strongly dependent on the 
ompiler.First, it must be able to generate Ve
tor-µSIMD 
ode. Se
ond, it must perform thes
heduling and register allo
ation for the new operations.Ve
tor-µSIMD 
ode generationNowadays there are 
ompilers that allow basi
 autove
torization for µSIMD ar
hite
-tures, and the same 
ompilation te
hniques 
ould be used to generate Ve
tor-µSIMD
ode. In the 
ase of short nested loops (typi
al in image and video appli
ations), theve
torization pro
ess 
an be de
oupled into two steps: �rst, generation of µSIMD op-erations over the inner loop, and se
ond, 
onventional ve
torization of those µSIMDoperations over the outer loop. In the 
ase of only one larger loop (su
h as those ofaudio appli
ations), the pro
ess is in pra
ti
e the same: �rst, unrolling the loop in afa
tor suitable to allow µSIMD ve
torization, and se
ond, 
onventional ve
torizationof the resulting loop.



88 Chapter 6. A Ve
tor-µSIMD-VLIW Ar
hite
tureAs we do not have a reliable 
ompiler at our disposal yet, we have used emulationlibraries to hand-write µSIMD and Ve
tor-µSIMD 
ode to evaluate the approa
h.The 
ompiler has been modi�ed to repla
e the emulation fun
tions 
alls by the
orresponding operations.Stati
 s
heduling of Ve
tor-µSIMD operationsThe s
heduler is the module that needs the most detailed information about the tar-get ar
hite
ture, as it is responsible for assigning a s
hedule time to ea
h operation,subje
t to the 
onstraints of data dependen
e and resour
e availability. The newregister �les and fun
tional units have been added to the ma
hine des
ription �le.Flow analysis is then used to determine the dependen
e 
onstraints between opera-tions that de�ne or use the same register. For every input and output operand, anearliest and a latest read and write laten
y must be spe
i�ed respe
tively [AKR98℄.Figure 6.5.a depi
ts the exe
ution of a 2 
y
les fully-pipelined s
alar operation. Inthis example, the sour
e registers are read sometime during the �rst 
y
le after theinitiation of the operation, and the result is written at the end of two 
y
les.In the 
ase of a ve
tor operation, these values also depend on the ve
tor length(V L) and on the number of parallel ve
tor lanes (LN). As up to LN sub-operationsare initiated per 
y
le, the last input operand will be read at ⌊(V L − 1)/LN⌋, andthe last output will be written at L + ⌊(V L − 1)/LN⌋, being L the laten
y of onesub-operation (see Figure 6.5.b).The number of parallel ve
tor lanes is a �xed parameter from the ar
hite
ture andit is known at 
ompile time. On the 
ontrary, the ve
tor length is variable for ea
hoperation, and will be dynami
ally set. Nevertheless, the ve
tor length register isusually initialized with an immediate value, and a simple data �ow analysis is able toprovide the right value to the 
ompiler. In the few 
ases in whi
h the ve
tor lengthis not known at 
ompile time, the 
ompiler must assume the maximum ve
tor length(16) in order to ensure 
orre
tness. Note that, for a ve
tor unit with four parallellanes, the penalty to pay would be three extra 
y
les at worst (that is, if the ve
torlength turns out to be four or less).The same laten
y des
riptors are taken for ve
tor memory operations, but repla
ingthe number of ve
tor lanes by the width of the L2 port (in elements). In the proposedmemory ar
hite
ture, the exe
ution time of a ve
tor memory operation also dependson the stride. For simpli
ity, our 
ompiler s
hedules all ve
tor memory operationsas having a stride of one and hitting in the L2 ve
tor 
a
he, and the pro
essor stallsat run-time if either of the two assertions is not true.On the other hand, providing a register �le whi
h supports 
on
urrent a

esses tothe same ve
tor register, the 
ompiler 
an do 
haining [Rus78℄ of two ve
tor opera-tions with a dependen
e on a ve
tor register operand by just s
heduling the se
ondoperation before the �rst one has 
ompleted exe
ution. Assuming the same number



6.2. Adding Ve
tor Units to a VLIW pro
essor 89
L

I0_0

I0_1

0

1 430 2 t65

a1

a0

Ter = 0

Tlr = 0

Tew = 0

Tlw = L0(a) S
alar operation
0L

V0_0

V0_1

0 21 t6543

a0(8) a0(12)a0(0)

a1(0) a1(4) a1(8) a1(12)

a0(4)

Ter = 0

Tlr =
⌊

V L0−1

LN0

⌋

Tew = 0

Tlw = L0 +
⌊

V L0−1

LN0

⌋(b) Ve
tor operation
0

V1_1

V1_0

V0_0

V0_1

L

50 2 t61 3 4

b1(8)

a1(12)a1(8)a1(4)a1(0)

a0(4)a0(0) a0(12)a0(8)

b1(12)b1(4)b1(0)

b0(12)b0(8)b0(4)b0(0)

if (LN0 ≥ LN1)
L0→1 = L0else
L0→1 = L0 +

⌊

V L0−1

LN0

⌋

+
⌊

V L1−1

LN1

⌋

(
) ChainingFigure 6.5. Laten
y des
riptors (Ter = earliest read, Tlr = latest read, Tew = earliest write,Tlw = latest write, L = �ow laten
y, VL = ve
tor length, LN = ve
tor lanes)of lanes, the distan
e between the initiation of these operations must be at least L
y
les. It is worth noting that no additional hardware is needed.6.2.4 Code ExampleAs a 
ase of study, we show the Ve
tor-µSIMD 
ode of the motion estimation kerneland the s
heduling generated by our 
ompiler. Motion estimation is one of the keyelements of many video 
ompression s
hemes. A video sequen
e 
onsists of a series offrames. To a
hieve 
ompression, the temporal redundan
y between adja
ent frames
an be exploited. That is, a frame is sele
ted as a referen
e, and subsequent framesare predi
ted from the referen
e using a te
hnique known as motion estimation.In the mpeg2_en
 implementation of the algorithm, the 
urrent frame is divided intoma
roblo
ks, typi
ally 16×16 pixels in size for the luminan
e 
omponent and 8×16for the 
hrominan
e 
omponents. Ea
h ma
roblo
k is 
ompared to a ma
roblo
k



90 Chapter 6. A Ve
tor-µSIMD-VLIW Ar
hite
ture

V3V2 V4V1

8

16 x 8 bits

A2A1

lx

lx

r3

r1

a: VL_MOV 8b: VS_MOV lx
: ADD r2, r1, 8d: ADD r4, r3, 8e: V_LD v1, r1f: V_LD v2, r2g: V_LD v3, r3h: V_LD v4, r4i: LVALACC_B a1, 0j: LVALACC_B a2, 0k: V_SAD_B a1, v1, v3l: V_SAD_B a2, v2, v4m: SSRCA_S_B r5, a1n: SSRCA_S_B r6, a2o: ADD r7, r5, r6p: S_MOV_REG r7,sFigure 6.6. Ve
tor-µSIMD implementation of the motion estimation algorithmin the referen
e frame using the sum of absolute di�eren
es (SAD) as error mea-sure, and the best mat
hing ma
roblo
k is sele
ted. The sear
h is 
ondu
ted over apredetermined sear
h area.Figure 6.7 shows the Ve
tor-µSIMD 
ode of the motion estimation kernel that 
om-putes the SAD of two 8× 16 blo
ks. It is assumed that registers r1 and r3 keep theinitial address of ea
h blo
k, and lx (the image width) is the stride between 
onse
-utive rows. As the registers are 64 bit wide and the stride between rows is not one,we need two ve
tor registers to hold ea
h blo
k. The SAD operation is implementedusing a pa
ked a

umulator that allows parallel exe
ution over the ve
tor elements.Finally, the values pa
ked in the a

umulators are redu
ed and the �nal result isstored.The 
orresponding s
heduling is given in Figure 6.7. The target ar
hite
ture is a2-issue width VLIW pro
essor with two integer units, two ve
tor units with fourparallel lanes, one port to the �rst level 
a
he and a 4 × 64 bit port to the se
ondlevel ve
tor 
a
he. Laten
ies are 1 
y
le for the integer units and �rst level 
a
he, 2
y
les for the ve
tor units and 5 
y
les for the ve
tor 
a
he.As 
an be observed in the resour
e usage table, the Ve
tor-µSIMD 
ode of this kernelis memory bound. In fa
t, the se
ond ve
tor unit is not used at all, as the se
ondSAD operation (l) must wait for the data being loaded from memory and 
annot bes
heduled earlier. Chaining is performed between two ve
tor loads (g and h) and theve
tor SAD operations (k and l). Note also that the ve
tor loads are s
heduled ashaving a stride of one, that is, as if they produ
e four elements per 
y
le. As thisassumption is not true, the pro
essor will be stalled at run-time, thus in
urring in agreat penalty in performan
e, as we will see in the evaluation se
tion.



6.3. Evaluation 91

k

l
l

l

k
kk

j
j

j
j

h
h

i

a

p
o

n
n

m
m

id
c

b

l

h:

g:

f:

k:

m:
l:

n:

o:
p:

e:
i:

S_MOV_REG r7,s
ADD r7,r5,r6

SSRCA_S_B r6,a2

V_SAD_B a2,v2,v4
SSRCA_S_B r5,a1

V_SAD_B a1,v1,v3
V_LD v4,r4

V_LD v2,r2

V_LD v3,r3
LVALACC_B a1,0
V_LD v1,r1
VS_MOV lx a:VL_MOV 8

d:
j:

c:

LVALACC_B a2,0
ADD r4,r3,8
ADD r2,r1,8

b:

e

g
g

g
g

g
g

g
g

g
g

e
e
e

ee
ee

e

e

h
h

h
h
h

h
h f

h

f
f
f

f

f

f

f
f

f
V

U
1_

0

1

2

3

4

9

5

6

7

8

10

pL
2_

3

V
U

0_
0

IU
1_

0

IU
0_

0

p
L

2_
0

p
L

1_
0

V
U

0_
1

V
U

1_
1

pL
2_

4

pL
2_

2

pL
2_

1

cyc

0

18

17

16

15

14

13

12

11

Figure 6.7. S
heduling of motion estimation for a 2-issue Ve
tor-µSIMD-VLIW pro
essorWe must highlight that the Ve
tor-µSIMD 
ode totally eliminates the two innerloopspresent in the s
alar version to s
an the blo
ks. Furthermore, the Ve
tor-µSIMD 
odeonly needs to de
ode 16 operations to pro
ess one 
omplete blo
k, in front of the 172operations required in the µSIMD versions of 
ode.6.3 EvaluationThis se
tion provides quantitative data in order to analyze the behavior of theproposed ar
hite
ture. Di�erent Ve
tor-µSIMD-VLIW 
on�gurations are 
omparedagainst µSIMD-VLIW and plain VLIW ar
hite
tures. We must point out that thes
alar versions of 
ode in
lude memory disambiguation, both P
ode Interpro
edu-ral Pointer Analysis and the Dynami
 Memory Interval Test te
hnique proposed inChapter 5.First, we evaluate the impa
t of the multimedia extensions in the overall number ofoperations. Next, we present performan
e results on the ve
tor regions and analyzethe in�uen
e of the number of ve
tor units and lanes and the impa
t of the memoryhierar
hy. To end up, we report the speed-up and operations per 
y
le rates obtainedin the 
omplete appli
ations.6.3.1 Operation BreakdownFigures 6.8.a and 6.8.b show the dynami
 operation 
ount for the di�erent ar
hite
-tures (VLIW, µSIMD-VLIW and Ve
tor-µSIMD-VLIW) normalized by the dynami




92 Chapter 6. A Ve
tor-µSIMD-VLIW Ar
hite
ture
 VLIW

 +uSIM
D

 +Vector

 VLIW
 +uSIM

D

 +Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

0.0

0.2

0.4

0.6

0.8

1.0

valu
vmem
salu
smem
ctrl

jpeg_enc jpeg_dec mpeg2_enc mpeg2_dec gsm_enc gsm_dec average(a) By type
 VLIW

 +uSIM
D

 +Vector

 VLIW
 +uSIM

D

 +Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

VLIW
+uSIM

D

+Vector

0.0

0.2

0.4

0.6

0.8

1.0

R3
R2
R1
R0

jpeg_enc jpeg_dec mpeg2_enc mpeg2_dec gsm_enc gsm_dec average(b) By regionsFigure 6.8. Normalized operation 
ountoperation 
ount of the base VLIW ar
hite
ture. The �rst graph shows the opera-tions 
lassi�ed into �ve 
ategories: 
ontrol, s
alar memory, s
alar arithmeti
, ve
tormemory and ve
tor arithmeti
. In the se
ond graph, we have distinguished the 
on-tribution of ea
h region. Regions from R1 to R3 are the fra
tions of 
ode that havebeen ve
torized in the µSIMD and Ve
tor-µSIMD versions in the same order theyare listed in Table 6.1 (for example, in mpeg2_en
, R1 a

ounts for the motion esti-mation and R2 and R3 for the forward and inverse two dimensional DCT). Region
R0 always refers to the remaining s
alar part.The results 
on�rm that the µSIMD and Ve
tor-µSIMD versions of 
ode require toexe
ute mu
h less operations than the s
alar versions. This may not seem so obviousif we take into a

ount that these versions are sometimes based on algorithms thatrequire to exe
ute mu
h more operations [SCEV99℄. For example, the µSIMD andVe
tor-µSIMD versions of the DCT are based in the matrix produ
t, whi
h requiressigni�
antly more operations than the optimized s
alar algorithm. We must alsopoint out that, in the s
alar version of the mpeg2_de
 ben
hmark, we are using



6.3. Evaluation 93the Fast IDCT (a fast s
alar algorithm) instead of the Referen
e IDCT (doublepre
ision matrix produ
t algorithm) also in
luded in the standard, as the former isten times faster and we are interested in 
omparing against the best s
alar version.On the one hand, the semanti
 ri
hness of the µSIMD and Ve
tor-µSIMD ISAs toperform operations su
h as the sum of absolute di�eren
es or saturation arithmeti

ontributes to de
rease the operation 
ount. Furthermore, there is an additionalredu
tion on the number of operations involved in the loop-related 
ontrol. Thisredu
tion in the number of operations to fet
h and de
ode also translates into ade
rease in power 
onsumption.As 
an be observed, the Ve
tor-µSIMD ar
hite
ture exe
utes an average of 84% feweroperations in the ve
tor regions than the µSIMD one (19% fewer in the 
ompleteappli
ation). The obvious reason is that Ve
tor-µSIMD ISA 
an pa
k more mi
ro-operations into a single operation (a maximum of 128 in the Ve
tor-µSIMD in frontof a maximum of 8 in the µSIMD). Table 6.3 reports the average ve
tor length forea
h ben
hmark. V Lx refers to the number of elements pa
ked on one word. V Ly
orresponds with the ve
tor length register, that is, the number of operations toperform in a ve
tor operation, and it is always one in a µSIMD operation. Finally,
V Lxy represents the overall ve
tor length in a Ve
tor-µSIMD operation, that isthe produ
t of V Lx and V Ly, or in other words, the number of mi
ro-operationspa
ked in one ve
tor operation. Although most multimedia kernels are 
hara
terizedby small loop 
ounts, whi
h usually results on low or moderate ve
tor lengths in
onventional ve
tor ar
hite
tures, the Ve
tor-µSIMD ISA leverages quite fair mi
ro-operations per operation rates (an average ve
tor length of 81.10 mi
ro-operationsfor the jpeg_de
 appli
ation), due to its 
apability to ve
torize two inner nestedloops. +µSIMD +Ve
torVLx VLx VLy Vlxyjpeg_en
 3.55 3.88 7.59 28.47jpeg_de
 5.11 5.08 15.96 81.10mpeg2_en
 6.53 7.43 6.12 46.97mpeg2_de
 3.57 4.23 3.97 17.46gsm_en
 2.47 3.99 5.77 22.99gsm_de
 3.36 3.22 10.61 35.67average 4.10 4.64 8.34 38.78Table 6.3. Average ve
tor lengthFinally, the redu
tion in the overall dynami
 operation 
ount depends also on theve
torization per
entage, whi
h is around 43% of the s
alar 
ode in average. As wealready saw in Se
tion 6.1, the ex
eptions are the mpeg2_en
 and the gsm_de
 appli-
ations. In the �rst one, the motion_estimation and the DCT transforms a

ount forthe 87% of the overall dynami
 operation 
ount. On the 
ontrary, gsm_de
 exhibitsa very low 
overage (only 5% of the 
ode has been ve
torized). As 
an be seen inFigure 6.8.b, the Ve
tor-µSIMD ISA a
hieves to redu
e the number of operations



94 Chapter 6. A Ve
tor-µSIMD-VLIW Ar
hite
ture

2w 4w 6w 8w
0

5

10

15

20

25

sp
ee

d-
up

jpeg_enc
2w 4w 6w 8w

0

5

10

15

20

25

sp
ee

d-
up

jpeg_dec

VLIW (2i/4i/8i)
+uSIMD (2u/4u/8u)
+Vector (1v4/2v4)

2w 4w 6w 8w
0

5

10

15

20

25

sp
ee

d-
up

mpeg2_enc

2w 4w 6w 8w
0

5

10

15

20

25

sp
ee

d-
up

mpeg2_dec
2w 4w 6w 8w

0

5

10

15

20

25

sp
ee

d-
up

gsm_enc
2w 4w 6w 8w

0

5

10

15

20

25

sp
ee

d-
up

gsm_decFigure 6.9. Speed-up in ve
tor regionsof the ve
tor regions to a minimum (less than 10% of the total dynami
 operation
ount).6.3.2 Speed-up in Ve
tor RegionsWe have evaluated the performan
e of 2- and 4-issue width Ve
tor-µSIMD-VLIW ar-
hite
tures with one and two ve
tor units and four ve
tor lanes respe
tively. Resultsare 
ompared against 2-, 4-, and 8-issue width VLIW and µSIMD-VLIW ar
hite
-tures with so many integer and µSIMD units as the issue width respe
tively. Atten-tion must be paid to the fa
t that the Ve
tor-µSIMD ar
hite
tures are not balan
edagainst the same issue width VLIW or µSIMD ar
hite
tures, as we 
onsider them asan alternative to wider issue pro
essors. For example, the arithmeti
 
apability ofthe 4-issue Ve
tor-µSIMD 
on�guration is 
omparable to that of the 8-issue µSIMD
on�guration, not to the 4-issue µSIMD.For ea
h ar
hite
ture, Figure 6.9 shows the speed-up of the ve
tor regions over theexe
ution time of the ve
tor regions in the 2-issue width VLIW ar
hite
ture. As itwas to be expe
ted, both µSIMD and Ve
tor-µSIMD ar
hite
tures 
learly outperformthe same issue width VLIW. Moreover, the 2- and 4-issue width Ve
tor-µSIMDar
hite
tures outperform the same issue width µSIMD in a fa
tor ranging from 2.0Xto 6.5X (3.2X in average) and 1.6X to 5.4X (2.8X in average) respe
tively. On theother hand, the 8-issue µSIMD ar
hite
ture is outperformed by the 4-issue width



6.3. Evaluation 95
jpeg_enc jpeg_dec mpeg2_enc mpeg2_dec gsm_enc gsm_dec average

0

5

10

15

VLIW (4w)
+uSIMD (4u)
+Vector (1v4)
+Vector (2v4)
+Vector (4v4)
+Vector (8v4)

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
001.

76

1.
60

4.
37

2.
61

2.
58 3.

95

2.
81

3.
02

1.
76

6.
70

5.
02

11
.6

0

9.
23

6.
22

4.
49

2.
85

6.
98

6.
07

13
.8

0

11
.8

2

7.
67

5.
33

3.
97

6.
98

6.
12

13
.8

7

12
.9

4

8.
20

5.
84

5.
01

6.
98

6.
12

13
.8

7

12
.9

4

8.
46

(a) In�uen
e of in
reasing the number of ve
tor units
jpeg_enc jpeg_dec mpeg2_enc mpeg2_dec gsm_enc gsm_dec average

0

5

10

15

VLIW (4w)
+uSIMD (4u)
+Vector (1v8)
+Vector (2v4)
+Vector (4v2)
+Vector (8v1)

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
001.

79

1.
51

4.
36

2.
70

2.
69 3.

80

2.
814.

37

2.
69

6.
74

5.
80

14
.4

7

10
.2

6

7.
39

4.
57

2.
70

6.
95

6.
27

14
.4

4

11
.3

6

7.
72

4.
45

2.
63

6.
55

6.
19

14
.1

1

11
.3

6

7.
55

3.
84

2.
47

6.
09

5.
30

13
.6

9

10
.2

6

6.
94

(b) Number of ve
tor units vs number of ve
tor lanesFigure 6.10. Speed-up in ve
tor regions for di�erent number of units and lanesVe
tor-µSIMD in a fa
tor of up to 4.1X (1.9X in average), with the same arithmeti

apability and 
onsiderably less hardware 
omplexity.It is worth noting that, even the 2-issue width Ve
tor-µSIMD ar
hite
ture outper-forms the 8-issue µSIMD ar
hite
ture for most of the ben
hmarks, with half the arith-meti
 
apability and four times less issue width. The ex
eptions are the jpeg_en
and jpeg_de
 appli
ations, whi
h as we will see next, are 
hara
terized by havinghigher 
omputational demand than other appli
ations.Number of ve
tor unitsTo analyze the e�e
t of in
reasing the number of ve
tor units, Figure 6.10.a showsthe performan
e improvement obtained in the ve
tor regions when in
reasing thenumber of ve
tor units from 1 to 8. The graph shows speed-up with respe
t to theexe
ution of the ve
tor regions in the 4-issue width VLIW. The 4-issue width µSIMDar
hite
ture is also in
luded as a referen
e.We observe that half of the ben
hmarks do not take mu
h bene�t from in
reasing thenumber of ve
tor units. This is be
ause they have ve
tor regions similar to the mo-tion_estimation 
ode studied in se
tion 6.2.3, with small loops and very short ve
torlengths. Examples of this in
lude the form_
omponent_predi
tion and the add_blo
kregions in mpeg2_de
 and the 
al
ulation_of_the_long term_parameters in gsm_en
.



96 Chapter 6. A Ve
tor-µSIMD-VLIW Ar
hite
tureOn the 
ontrary, other ben
hmarks su
h as the jpeg_en
 and jpeg_de
, whose ve
torregions are 
hara
terized by larger ve
tor lengths (ex. 
olor_
onversions or upsam-pling) and/or larger loop sizes (ex. DCT's), exhibit a signi�
ant improvement inperforman
e when the number of ve
tor units is in
reased.Number of ve
tor units vs number of ve
tor lanesThe Ve
tor-µSIMD ar
hite
ture 
an be s
aled not only in the number of ve
torfun
tional units, but also in the number of ve
tor parallel lanes. To analyze thetrade-o� between them, Figure 6.10.b shows the speed-up in the ve
tor regions fordi�erent ve
tor 
on�gurations over the 4-issue width VLIW ar
hite
ture, but nowkeeping the overall 
omputational 
apa
ity 
onstant.Results 
on�rm that distributing the register �le and units in four parallel lanesis a good 
hoi
e for our set of ben
hmarks. Apart from in
reasing the area 
ostand power, redu
ing the number of lanes below four also results in performan
edegradation. This 
an be explained by the fa
t that there are not enough ve
toroperations to be exe
uted in parallel to feed a greater number of units. On the
ontrary, there are data dependen
es between operations, and a smaller numberof lanes translates into a greater exe
ution time for ea
h operation. On the otherhand, having more units than lanes bene�ts those operations that do not depend onthe ve
tor length, su
h as a

umulator redu
tions, as they 
an then be exe
uted inparallel.E�e
t of the memory hierar
hyTo analyze the in�uen
e of the memory hierar
hy, Figure 6.9 shows the performan
espeed-up obtained in the ve
tor regions with perfe
t memory simulation for thedi�erent ar
hite
tures. By perfe
t memory we 
onsider that all a

esses hit in 
a
he,but with the 
orresponding laten
y. That is, all s
alar a

esses are served after 1
y
le of laten
y and all ve
tor a

esses in the Ve
tor-µSIMD 
on�gurations go tothe L2 and take 5 
y
les plus the additional 
y
les to serve all ve
tor data elements(whi
h slightly favours the VLIW and µSIMD-VLIW 
on�gurations). The shadowline represents the speed-up obtained with real memory simulation. All speed-upsare referred to the exe
ution time of the ve
tor regions in the 2-issue width VLIWar
hite
ture with perfe
t memory simulation.We observe that the Ve
tor-µSIMD ar
hite
tures exhibit the highest performan
edegradations when 
onsidering a realisti
 memory system. This fa
t may seem 
oun-terintuitive, sin
e ve
tor ar
hite
tures are well known for their 
apability to toleratememory laten
y. Two reasons explain this behavior. First, the ve
tor lengths are notlong enough to take bene�t from this 
hara
teristi
. Se
ond, VLIW ar
hite
tures arevery sensitive to non-deterministi
 laten
ies.As it was explained before, in the s
heduling the 
ompiler assumes that all ve
tora

esses have a stride of one, and the pro
essor stalls at run-time if this assertion is



6.3. Evaluation 97

2w 4w 6w 8w
0

5

10

15

20

25

sp
ee

d-
up

jpeg_enc
2w 4w 6w 8w

0

5

10

15

20

25

sp
ee

d-
up

jpeg_dec

Perfect memory VLIW (2i/4i/8i)
Perfect memory +uSIMD (2u/4u/8u)
Perfect memory +Vector (1v4/2v4)
Real memory

2w 4w 6w 8w
0

5

10

15

20

25

sp
ee

d-
up

mpeg2_enc

2w 4w 6w 8w
0

5

10

15

20

25

sp
ee

d-
up

mpeg2_dec
2w 4w 6w 8w

0

5

10

15

20

25

sp
ee

d-
up

gsm_enc
2w 4w 6w 8w

0

5

10

15

20

25

sp
ee

d-
up

gsm_decFigure 6.11. Speed-up in ve
tor regions with perfe
t memory and impa
t of real memorynot true. That is what happens in the mpeg2_en
 ben
hmark, in whi
h the strideof the main region (the motion_estimation 
ode example analyzed in Se
tion 6.2.4)is the image width. Moreover, in this kernel, these memory operations represent animportant fra
tion of the overall 
ode, resulting in a high performan
e degradation(
lose to 200%). Apart from this, all ben
hmarks exhibit high hit ratios and verylow performan
e degradation when 
onsidering realisti
 memory.6.3.3 Speed-up in Appli
ationsFigure 6.12 shows the speed-up for 
omplete appli
ations. As it was to be expe
ted,the ben
hmark that exhibits the highest performan
e improvement is the mpeg2_en
(up to 4.2X speed-up for the 4-issue Ve
tor-µSIMD 
on�guration). Even thoughthere are other ben
hmarks (su
h as gsm_en
) with 
onsiderably greater speed-upsin the ve
tor regions, the impa
t in the overall performan
e is not so signi�
ant,due to the low ve
torization per
entage. Note also that the 4-issue Ve
tor-µSIMDar
hite
ture slightly outperforms the 8-issue µSIMD in all the appli
ations.It 
an also be observed that the gap between the di�erent ar
hite
tures de
reasewith the issue width of the pro
essor. For example, while the 2-issue Ve
tor-µSIMDexhibits an average fa
tor of 1.22X of performan
e improvement over the 2-issue
µSIMD, the 4-issue Ve
tor-µSIMD only outperforms the 4-issue µSIMD in a 1.14X.



98 Chapter 6. A Ve
tor-µSIMD-VLIW Ar
hite
ture

2w 4w 6w 8w
1

2

3

4

sp
ee

d-
up

jpeg_enc
2w 4w 6w 8w

1

2

3

4

sp
ee

d-
up

jpeg_dec

VLIW (2i/4i/8i)
+uSIMD (2u/4u/8u)
+Vector (1v4/2v4)

2w 4w 6w 8w
1

2

3

4

sp
ee

d-
up

mpeg2_enc

2w 4w 6w 8w
1

2

3

4

sp
ee

d-
up

mpeg2_dec
2w 4w 6w 8w

1

2

3

4

sp
ee

d-
up

gsm_enc
2w 4w 6w 8w

1

2

3

4

sp
ee

d-
up

gsm_decFigure 6.12. Speed-up in appli
ationsThis 
an be explained by the fa
t that a wide enough µSIMD-VLIW ar
hite
tureis able to exploit as ILP the parallelism that the Ve
tor-µSIMD-VLIW exploits asDLP.On the other hand, the ve
tor regions represent less than 40% of the total exe
utiontime in the 2-issue VLIW ar
hite
ture. When most of the available DLP parallelismis exploited via multimedia extensions, the remaining s
alar part be
omes the bottle-ne
k. In the 4-issue Ve
tor-µSIMD-VLIW ar
hite
ture, the ve
tor 
y
les representless than 10% of the overall exe
ution time (ex
ept for the mpeg2_en
). By theAmhdal Law, further improvements in the exe
ution of the ve
tor regions would beimper
eptible in the 
omplete appli
ation.6.3.4 Operations per Cy
leTo 
on
lude the analysis, Table 6.4 reports the average number of operations per 
y
lein the s
alar and ve
tor regions of 
ode separately, and in the 
omplete appli
ations.For the µSIMD and Ve
tor-µSIMD versions, the operations per 
y
le rate givesinformation about the fet
h bandwidth requirements, but is not representative of theexploited parallelism. To take this into a

ount, the table also in
lude the averagenumber of mi
ro-operations exe
uted per 
y
le.



6.4. Summary 99S
alar regions Ve
tor regions Appli
ationOPC SP OPC µOPC SP OPC µOPC SP2w VLIW 1.44 1.00 1.80 1.80 1.00 1.59 1.59 1.00+µSIMD (2u) 1.44 1.00 1.78 4.68 2.87 1.52 2.32 1.47+Ve
tor (1v4) 1.44 1.00 0.87 7.91 9.32 1.36 2.12 1.79+Ve
tor (2v4) 1.44 1.00 0.98 10.10 10.60 1.37 2.15 1.804w VLIW 1.77 1.23 3.03 3.03 1.66 2.14 2.14 1.34+µSIMD (4u) 1.78 1.24 2.95 7.80 4.62 1.98 3.05 1.94+Ve
tor (2v4) 1.76 1.23 1.27 11.86 13.14 1.67 2.62 2.21+Ve
tor (4v4) 1.76 1.23 1.37 14.00 14.09 1.69 2.64 2.228w VLIW 1.84 1.28 4.54 4.54 2.47 2.42 2.42 1.50+µSIMD (8u) 1.84 1.29 4.47 12.07 6.76 2.18 3.38 2.15Table 6.4. Average operations per 
y
le (OPC), mi
ro-operations per 
y
le (µOPC), and speed-up (SP) in the s
alar and ve
tor regions and in the full appli
ationResults 
on�rms our belief that the non-ve
tor regions of 
ode do not bene�t froms
aling the width of the ma
hine above 4 issue width. Fet
hing 1.84 operations per
y
le does not pay o� the hardware 
omplexity of a 8-issue width ar
hite
ture. TheVe
tor-µSIMD ISA obtains the highest speed-ups by exploiting more data parallelismin the ve
tor regions (up to 14.00 mi
ro-operations per 
y
le) and with the lowestfet
h bandwidth requirements (just 1.37 operations per 
y
le), making it an ideal
andidate for embedded systems, where high issue rates are not an option. However,for wide issues, the µSIMD ISA exhibits more �exibility to bene�t from wide stati
s
heduling and also rea
hes signi�
ant mi
ro-operations per 
y
le rates, but at ahigher 
ost.6.4 SummaryThe a
tual performan
e a
hieved by very wide issue VLIW ar
hite
tures is veryfar from the theoreti
al peak performan
e and do not pay o� the related hardware
omplexity. By analyzing the s
alability of the s
alar and ve
tor regions of 
odeseparately, we have shown that the s
alar regions do not bene�t from in
reasing thewidth of the ma
hine above 4-issue width. On the other hand, the kind of parallelismfound in the ve
tor regions 
ould be exploited in a more e�
ient way by means ofSIMD exe
ution.To exploit the data parallelism inherent in the ve
tor regions without in
reasing theway of the ar
hite
ture, we have proposed the addition of one or more ve
tor unitstogether with a ve
tor register �ler and a wide port to the L2 that provides the band-width required by the ve
tor regions. This extension 
an be viewed as a 
onventionalshort ve
tor ISA where ea
h element is operated in a MMX-like fashion. This en-han
ement has a minimal impa
t on the VLIW 
ore and provides high performan
ein the ve
tor regions for low issue rates.



100 Chapter 6. A Ve
tor-µSIMD-VLIW Ar
hite
tureWe have evaluated the proposed ar
hite
ture for 
omplete appli
ations of audio,video and image pro
essing and 
ompared it against a VLIW ar
hite
ture with andwithout µSIMD extensions. In the ve
tor regions, a 4-issue width Ve
tor-µSIMD-VLIW ar
hite
ture outperforms the 8-issue µSIMD-VLIW ar
hite
ture in a fa
tor ofup to 4.1X (1.9X in average). Due to the low ve
torization per
entage, the impa
tin the 
omplete appli
ations is not so signi�
ant, but a 4-issue Ve
tor-µSIMD-VLIWa
hieves greater or similar performan
e to that of the 8-issue µSIMD-VLIW with
onsiderably less hardware 
omplexity and power 
onsumption.On the other hand, it has been seen that Ve
tor-µSIMD-VLIW ar
hite
tures do notperform well in front of non-unit stride memory referen
es and exhibit the highestperforman
e degradations when 
onsidering a realisti
 memory system, mainly dueto the high sensitivity of VLIW ar
hite
tures to non-deterministi
 laten
ies. Futureresear
h must be done to improve the memory hierar
hy and to test more �exibles
heduling te
hniques.Finally, we have observed that, on
e the high performan
e requirements of the kernelshave been satis�ed by the use of spe
ial DLP-oriented multimedia extensions, mul-timedia appli
ations be
ome dominated by the s
alar performan
e. To address thisproblem, other sour
es of parallelism, su
h as Thread Level Parallelism (TLP) mustbe exploited together with ILP and DLP to a

omplish the real-time 
onstraints andhigh 
omputational throughput requirements of next generation of media workloads.



Chapter 7Con
lusions
We 
on
lude summarizing the main 
ontributions and some future resear
h options.7.1 ContributionsWe started this thesis realizing the growing interest that multimedia appli
ationshave experimented in the desktop and embedded domains and the in
reasing 
om-putational power demands they involve. On the other hand, advan
es in integrationte
hnology do not involve the same performan
e improvement rates than some yearsago, mainly due to the limited available instru
tion level parallelism, the memorywall and the problem of power dissipation. There is an extended 
on
ern about these
onstraints and whether the next generation of pro
essors will be able to meet withsu

ess the in
reasing requirements of future media appli
ations. Current trends inmi
ropro
essor design point to the exploitation of di�erent sour
es of parallelism,the integration of larger 
a
hes on-
hip, and a great interest in energy e�
ient im-plementations.We think that the 
ombination of 2-dimensional ve
tor pro
essing and the VLIWparadigm together with other ways of exploiting 
oarser grain parallelism, su
h assimultaneous multithreading and 
hip multipro
essing, are a promising alternativeto fa
e the requirements of future multimedia workload and the emerging te
hnol-ogy 
onstraints. VLIW ar
hite
tures perform well for multimedia pro
essing, whileavoiding the expensive and strongly te
hnology dependent s
alability of supers
alarpro
essors. On the other hand, 2-dimensional ve
tor extensions are an e�
ient wayof exploiting the inherent DLP of multimedia kernels. They 
ombine the advantagesof both 
onventional ve
tor and sub-word level parallelism implementations, whileover
oming the s
alability limitations of 
urrent µSIMD multimedia extensions. Fi-nally, exploiting thread level parallelism is needed to deal with the pro
essing ofmultiple 
on
urrent media streams.Our work has 
on
entrated on improving the exploitation of instru
tion and datalevel parallelism in the 
ontext of VLIW ar
hite
tures and multimedia workload.



102 Chapter 7. Con
lusionsMore spe
i�
ally, we have addressed two main topi
s: the problem of memory disam-biguation and the problem of exploiting DLP by means of Ve
tor-µSIMD extensionsin stati
 s
heduling ar
hite
tures. In order to evaluate the ar
hite
tural improve-ments and 
ompilation te
hniques proposed in this thesis, we have enhan
ed theTrimaran 
ompilation and simulation framework. The resulting tool set providesnew fun
tionalities, su
h as obtaining a great range of statisti
s of the loops or re-gions in the s
ope of the programs, simulation of the memory hierar
hy, loop memorydisambiguation, and s
heduling and simulation of µSIMD and Ve
tor-µSIMD 
ode.Next, we summarize the main 
ontributions that this work has originated.Chara
terization of multimedia appli
ations in VLIW ar
hite
turesUnderstanding the behavior of multimedia appli
ations is essential for our resear
h.Thus, we started our work performing a quantitative analysis of the exe
ution ofa set of image, video and audio appli
ations on VLIW ar
hite
tures. Results have
orroborated that the streaming data a

ess patterns promote spatial lo
ality, whi
hleads to very high 
a
he hit rates, even for small 
a
he sizes. We have also observedthat bank 
on�i
ts are an important sour
e of performan
e degradation in VLIWar
hite
tures. Hen
e, we 
on
luded that widening the ports is preferable to in
reasingthe number of them; multi-porting a 
a
he is more expensive than widen the portsand alternative feasible multi-banking 
a
he designs produ
e the non-desired bank
on�i
ts. Pa
king several unit-stride array referen
es into one wide a

ess wouldredu
e both the number of memory a

ess and the potential for bank 
on�i
ts.Results also 
on�rmed that multimedia 
odes exhibit more parallelism than integerones. Nevertheless, this parallelism is not so high as it was to be expe
ted fromthe de�nition of the algorithms. One of the reasons that explain this fa
t is thatthese appli
ations use to in
lude a lot of overhead to deal with di�erent options andformats. On the other hand, in the 
ourse of time, some of the algorithms havegone through a set of optimizations mainly oriented towards redu
ing the numberof instru
tions in s
alar implementations, going so far as to hide the inherent ve
tornature of the algorithm. Furthermore, we noti
ed that in most 
ases the 
ompiler wasunable to take bene�t from aggressive ILP optimizations, su
h as modulo s
heduling,mainly due to the existen
e of ambiguous memory referen
es.Run-time memory disambiguation for multimedia loopsThe last observation motivated us to analyze the problem of memory disambiguationin the 
ontext of multimedia appli
ations. We realized that one of the main obsta
lesto memory disambiguation in multimedia 
odes is that they are often written inlanguages that support pointer referen
ing, su
h as C or C++. The inability ofthe 
ompiler to demonstrate at 
ompile-time that two pointers are not going toreferen
e the same memory lo
ation in any iteration of the loop, for
es it to generate
onservative 
ode in whi
h di�erent iterations of the loop 
annot be overlapped.



7.1. Contributions 103Taking into a

ount the disjointed nature of most input and output multimedia mem-ory streams, we have proposed a memory disambiguation te
hnique that dynami
allyanalyzes the region domain of every load and store to evaluate, before entering theloop, whether or not the full loop is disambiguated and exe
ute the 
orrespondingloop version. This te
hnique has been 
ompletely implemented into the Trimaran
ompiler. In 
ontrast with other dynami
 approa
hes, it does not require any addi-tional hardware or instru
tions. It has negligible e�e
ts over 
ompilation time and
ode size, and near-zero 
ost for all those loops without potential for disambiguation.We have also 
ompared our proposal against advan
ed interpro
edural pointer anal-ysis. Results show that, on average, our te
hnique outperforms the later at theloop level (2.60X in front of 2.17X with relative to the non-disambiguated 
odes),although the average performan
e a
hieved is similar at the s
ope of the 
ompleteappli
ations (1.13X on average). Furthermore, it is worth to remark that most ofthe ben
hmarks exhibit a bene�
ial e�e
t when both te
hniques are used together.This is due to the fa
t that, while pointer analysis over
omes some limitations ofour te
hnique, su
h as the a

ess to non-streaming data stru
tures, run-time mem-ory disambiguation addresses the 
ases in whi
h dynami
 information is required todetermine the independen
e of two memory referen
es. For the 8-issue width VLIWreferen
e ar
hite
ture, the 
ombination of the two me
hanisms in
reases the speed-upup to an average of 2.82X in the loops and 1.19X in the 
omplete appli
ations.
Study of s
alability of the s
alar and ve
tor regions in µSIMD-VLIWar
hite
turesThe general 
hara
teristi
s of multimedia kernels, whi
h are basi
ally small loop-bodies that pro
ess streams of small data types, have lead to the extended trendof exploiting DLP by means of sub-word level (or µSIMD) multimedia extensions.However, the e�
ien
y of sub-word level implementations is a�e
ted by the exis-ten
e of unaligned and non-unit stride memory a

esses and the overhead needed toarrange the elements in the appropriate way.Another 
ontribution of this thesis is the identi�
ation of the s
alar and ve
tor re-gions of ea
h program. The ve
tor regions are those parts of the 
ode that 
an beve
torized, and the s
alar regions are the remaining non-ve
torizable parts of 
ode.In order to evaluate the e�
ien
y of aggressive 
on�gurations with multimedia ex-tensions, we have separately analyzed the s
alability of the s
alar and ve
tor regionsof our set of ben
hmarks in µSIMD-VLIW pro
essors. Results 
on�rm our assump-tion that the s
alar regions do not have enough ILP to take bene�t from in
reasingthe width of the ar
hite
ture above 4-issue width. On the other hand, although theve
tor regions exhibit potential to s
ale, the ve
torization per
entage is not highenough, and the a
tual performan
e a
hieved in the 
omplete appli
ations does not
ompensate the in
rease in 
ost of wider issue ar
hite
tures.



104 Chapter 7. Con
lusions2-dimensional ve
tor extensions in stati
 s
heduling ar
hite
turesTo exploit the DLP in the ve
tor regions without in
reasing the way of the ar
hi-te
ture, we have proposed what stands for the main goal of this thesis: the Ve
tor-
µSIMD-VLIW ar
hite
ture. This ar
hite
ture is based on the addition of one ormore ve
tor units together with a ve
tor register �ler and a wide port to the L2that provides the bandwidth required by the ve
tor regions. This enhan
ement hasa minimal impa
t on the VLIW 
ore and rea
hes more parallelism than wider issue
µSIMD at a lower 
ost.Ve
tor pro
essing has several inherent advantages, su
h as the redu
tion in the num-ber of exe
uted operations, a lower pressure in the instru
tion fet
h unit, the sim-pli
ity of the 
ontrol unit, the advan
e knowledge of the memory a

esses, the abilityto amortize fun
tional units and memory start-up laten
ies, and the easiness to bes
aled by just repli
ating the fun
tional units. The union of 
onventional ve
tor pro-
essing with sub-word level ve
tor pro
essing 
an be seen as a 2-dimensional matrixextension that 
ombines the best of ea
h one.Given that similar proposals have been su

essfully evaluated for supers
alar 
ores,the main potential handi
aps we 
ould think of are in the 
ompilation side. In ourproposal, the assignment of operations to ea
h fun
tional unit, the s
heduling, andthe register allo
ation have to be performed at 
ompile-time. Dynami
 values, su
has the ve
tor length and the ve
tor stride, are potential issues for stati
 s
heduling.Nevertheless, these values 
an be obtained most of the times at 
ompile-time bymeans of data-�ow analysis. In the few 
ases in whi
h they 
annot, the 
ompilerassume default values. The penalty to pay if the assumption fails is a

eptable, as weare working with short ve
tor lengths. Nevertheless, the study under a realisti
 
a
hehierar
hy has eviden
ed some bottlene
ks related to strided memory a

esses, mainlydue to the high sensitivity of VLIW ar
hite
tures to non-deterministi
 laten
ies.We have reported performan
e gains in the ve
tor regions of up to 4.1X (1.9X onaverage) for a 4-issue width ar
hite
ture with two ve
tor units of four lanes ea
h withrelative to a 8-issue width with eight µSIMD units. Both 
on�gurations performssimilarly at the the s
ope of 
omplete appli
ations (the average gain is redu
ed to1.02X). Nevertheless, this is spe
ially meaningful taking into a

ount that the Ve
tor-
µSIMD 
on�guration has half the fet
h bandwidth, the same 
omputational power,and a register �le that, even though being four times larger than the 
entralized
µSIMD one, it allows for 70% less a

ess time and 30% less power and area 
ost.Overall, the original performan
e of the non-disambiguated 
odes running in thereferen
e 8-issue width VLIW ar
hite
ture has been improved in a fa
tor of up to2.72X (1.64X on average) by using a 4-issue width Ve
tor-µSIMD pro
essor withtwo ve
tor units, and even up to 2.26X (1.33X on average) with a 2-issue widthVe
tor-µSIMD pro
essor with only one ve
tor unit.



7.2. Future Work 1057.2 Future WorkThis resear
h opens several �elds for further analysis. Next, we enumerate somefuture work to be done regarding both the 
ompiler and the ar
hite
ture.Ve
tor-µSIMD autove
torizationCompiler support is a key issue to exploit the full potential of the proposed ar-
hite
ture. In this thesis, we have fa
ed the problem of s
heduling Ve
tor-µSIMDoperations, but we have used emulation libraries to handwrite Ve
tor-µSIMD 
ode.We think that any 
ompiler able to generate 
ode for a µSIMD ISA 
ould be en-han
ed to ve
torize in a se
ond dimension and generate 
ode for a Ve
tor-µSIMDISA.The proposed memory disambiguation test 
ould be used to aid in those 
ases inwhi
h ambiguous memory dependen
es prevent the 
ompiler from generating ve
tor
ode. The 
ompiler generates both, the s
alar and the ve
tor versions of 
ode, andthe proposed test evaluates at run-time whi
h version must be exe
uted.Memory hierar
hyMemory performan
e is 
riti
al for overall performan
e. The main bottlene
ks ofthe memory hierar
hy must be identi�ed in order to suggest possible improvements.In this thesis, we have observed a signi�
ant performan
e degradation in front ofstrided memory a

ess. Work to be done in
lude the sear
h of both, more �exibles
heduling algorithms on the 
ompilation side and alternative designs to the ve
tor
a
he on the hardware side.Low-end Ve
tor-µSIMD-VLIW pro
essorsThe a
hieved results suggest that the proposed ar
hite
ture exhibit a high potentialfor the embedded domain, as it provides high performan
e at lower 
ost and without
ompromising the 
y
le time. It would be interesting to evaluate the potential ofVe
tor-µSIMD-VLIW embedded pro
essors. Given the growing interest on 
ost-e�e
tive designs, spe
ial attention must be paid to energy and area e�
ien
y.Ve
tor-µSIMD-VLIW Chip-Multipro
essorsThis work has also demonstrated that, on
e the high performan
e requirements ofthe ve
tor regions have been addressed, the low performan
e of the s
alar regionsdominate program 
y
les, resulting into low resour
e usage. Given the high amountof TLP that seems to 
hara
terize 
urrent and future multimedia appli
ations, wethink that TLP must be exploited together with ILP and DLP to a

omplish the real-time 
onstraints and high 
omputational throughput requirements of next generationof media workloads.



106 Chapter 7. Con
lusionsCurrently, there is a growing trend towards exploiting TLP by means of Chip-Multipro
essors (CMPs). CMPs have the potential to provide high s
alability thanksto better 
a
he 
oheren
e me
hanisms. There exists some 
ommer
ial systems that
ombines the VLIW and the Chip-Multipro
essor (CMP) paradigms to provide highperforman
e for multimedia at low 
ost. We think that Ve
tor-µSIMD-VLIW CMPsare a good mat
h to e�
iently exploit the heterogeneous parallelism of multimediaworkload.Alternative appli
ation domainsFinally, although this work has been motivated by our interest in improving theperforman
e of multimedia appli
ations, the proposals behind this thesis are notrestri
ted to this area. On the 
ontrary, the ideas presented in this thesis 
an beextended to other DLP appli
ations. We are 
urrently analyzing the bioinformati
domain. It would be interesting to evaluate the potential of VLIW CMPs with ve
torextensions to fa
e the 
omputational intensive algorithms of this kind of appli
ations.



Appendix ALoop Statisti
s
This appendix provides detailed information about the loops of the eight appli
a-tions used in this thesis. For ea
h appli
ation, we present �rst a table with thegeneral information of all innermost loops in the ben
hmark, and se
ond, a moredetailed des
ription of the most representative loops.Reported data were obtained
ompiling the ben
hmarks with the original 
ompiler for the 8-issue width referen
ear
hite
ture, and simulating them with the referen
e inputs.The table of innermost loops is sorted by their 
ontribution to the overall exe
utiontime of the appli
ation in des
ending order, and in
ludes the following information:

• Loop name: The name of the loop is 
omposed by the �rst twenty 
hara
tersof the fun
tion it belongs to and the identi�er of the header basi
-blo
k of theloop. It has been trun
ated to ten 
hara
ters for limitation of the table width.
• Dyn Cy
 (%a

): Dynami
 
y
le 
ount. The per
entage in bra
kets indi
atesthe a

umulated per
entage of the 
omplete appli
ation ex
ution time.
• Dyn Ops (%a

): Dynami
 operation 
ount. The per
entage in bra
kets indi-
ates the a

umulated per
entage of the 
omplete appli
ation operation 
ount.
• OPC: Operations per 
y
le rate.
• Inv: Invo
ations. Number of times the loop is exe
uted.
• Iter: Average number of iterations per invo
ation.
• Nest: Nesting level. The lowest level 
orresponds to the outer nested loop.
• Cat: Category. The loops have been 
lassi�ed into the following 
ategories:� While_Loop(W): not 
ounted loops� Do_Loop(D): do-loops whi
h are not modulo s
heduling� Mod_S
hed(M): do-loops whi
h are modulo s
heduling.



108 Appendix A. Loop Statisti
s
• Ops: Stati
 operation 
ount.
• LDs: Number of stati
 load operations.
• STs: Number of stati
 store operations.More detailed information is given for those loops whi
h represent more than 1% ofthe overall exe
ution time. It in
ludes:
• General information: sour
e �le name, fun
tion name, header blo
k, loopblo
ks, nesting level, 
ategory, invo
ations, iterations per invo
ations, dynami
operation 
ount and per
entage of the 
omplete appli
ation, dynami
 
y
le
ount and per
entage of the 
omplete appli
ation, operation per 
y
le rate,and stall 
y
les due to memory and per
entage of the dynami
 
y
le 
ount. Inthe name of the blo
ks, BB stands for basi
-blo
k and HB for hyper-blo
k.
• S
heduling: In the 
ase of modulo s
heduling loops, it shows:� Re
MII: minimum initiation interval due to re
urren
es.� ResMII: minimum initiation interval due to resour
e limitation.� II: resulting initiation interval.� ESC: epilogue stage 
ounter.In the other loops, it shows for ea
h blo
k:� wsl: weighted s
heduling length.� pesl: s
heduling length of the most likely exit.� per: probability of the most likely exit.� wgt: weight (number of times the blo
k is exe
uted).In both 
ases, the overall s
heduling length of the loop is reported.
• Operations breakdown: dynami
 and stati
 operation 
ounts 
lassi�ed into eight
ategories: loads, stores, integer arithmeti
 and logi
, �oating point arithmeti
and logi
, integer 
ompares, �oating point 
ompares, prepare-to-bran
h, andbran
hes. The number in bra
kets indi
ates the per
entage of ea
h type.
• Memory operations: A list of all memory operations with the following infor-mation:� Name of the operation: 
omposed by the pre�x L for loads and S forstores plus an identi�er.� Size: data size in bytes.� Stride: distan
e between elements of 
onse
utive iterations.Moreover, for ea
h referen
e group, that is, uniformly generated referen
es tothe same array (see 
hapter 5), we show:



109� nOps: number of memory operations in the group.� gSize: data width of the group in bytes.� gStr: stride between 
onse
utive elements of the group.Spill 
ounts are also in
luded for those loops in whi
h the 
ompiler has gener-ated spill 
ode.



110 Appendix A. Loop Statisti
sA.1 Jpeg_en
Innermost loops list# Loop name Dyn Cy
 (%a

) Dyn Ops (%a

) OPC Inv Iter Nest Cat Ops LDs STs1 _forward_D.9 26,790,400 (23%) 40,919,950 (20%) 1.53 17,920 64 L2 M 39 2 12 _rgb_y

_
.5 16,549,691 (37%) 43,891,427 (41%) 2.65 739 1,024 L1 M 58 12 33 _forward_D.6 3,980,553 (40%) 5,949,440 (44%) 1.49 91,450 8 L2 M 9 1 14 _jpeg_fd
t.3 3,208,256 (43%) 13,780,480 (51%) 4.30 17,920 8 L1 M 96 8 85 _h2v2_down.4 3,038,515 (46%) 7,199,460 (55%) 2.37 740 512 L1 M 19 4 16 _jpeg_fd
t.5 2,867,200 (48%) 14,067,200 (61%) 4.91 17,920 8 L1 M 98 8 87 _en
ode_on.23 413,292 (48%) 444,975 (62%) 1.08 57,312 1 L2 W 5 0 08 _en
ode_on.5 187,590 (48%) 214,870 (62%) 1.15 15,694 2 L1 W 5 0 09 _jpeg_add_.7 4,436 (48%) 4,116 (62%) 0.93 4 64 L1 M 19 2 110 _jpeg_make.10 3,723 (48%) 5,220 (62%) 1.40 69 7 L2 W 10 1 111 _jpeg_make.13 3,720 (48%) 8,880 (62%) 2.39 6 87 L1 M 17 4 212 _jpeg_make.6 2,679 (48%) 4,176 (62%) 1.56 69 7 L2 W 8 1 113 _rgb_y

_s.3 2,313 (48%) 8,705 (62%) 3.76 1 256 L1 M 34 0 814 _start_pas.19 975 (48%) 1,731 (62%) 1.78 3 64 L2 M 9 1 115 _
ompress_.53 576 (48%) 896 (62%) 1.56 32 2 L4 W 14 4 116 _jpeg_make.37 361 (48%) 235 (62%) 0.65 69 1 L2 W 7 0 017 _allo
_sma.14 264 (48%) 227 (62%) 0.86 31 1 L1 W 12 2 018 _emit_dqt_.5 201 (48%) 1,170 (62%) 5.82 3 64 L1 M 7 1 019 _allo
_sar.12 98 (48%) 225 (62%) 2.30 6 6 L2 M 5 0 120 _emit_dht_.9 72 (48%) 328 (62%) 4.56 4 16 L1 M 5 1 021 _jpeg_set_.7 51 (48%) 129 (62%) 2.53 1 16 L1 M 8 0 322 _per_s
an_.22 48 (48%) 75 (62%) 1.56 3 2 L1 W 14 1 223 _jpeg_supp.7 40 (48%) 47 (62%) 1.18 1 4 L1 M 13 2 224 _sele
t_s
.9 22 (48%) 36 (62%) 1.64 1 3 L1 W 12 2 125 _jinit_huf.3 20 (48%) 41 (62%) 2.05 1 4 L1 M 10 0 426 _jpeg_supp.3 20 (48%) 30 (62%) 1.50 1 4 L1 M 8 1 127 _jinit_
_
.10 11 (48%) 51 (62%) 4.64 1 10 L1 M 5 0 128 _write_fra.19 10 (48%) 33 (62%) 3.30 1 3 L1 M 11 2 029 _jinit_for.8 5 (48%) 25 (62%) 5.00 1 4 L1 M 6 0 230 _jpeg_Crea.9 5 (48%) 25 (62%) 5.00 1 4 L1 M 6 0 231 _jpeg_Crea.7 5 (48%) 17 (62%) 3.40 1 4 L1 M 4 0 132 _jinit_mem.9 3 (48%) 13 (62%) 4.33 1 2 L1 M 6 0 2Table A.1. Jpeg_en
 innermost loops listDes
ription of the most representative loopsLOOP_0 _forward_DCT_j
d
tmgr.9Program: jpeg_en
File: j
d
tmgr.
Fun
tion: forward_DCT_j
d
tmgrHeader blo
k: HB_9Loop blo
ks: HB_9Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 17920Iterations: 1146880Iter/Invo
: 64Operations: 40919950 (19.97%)Cy
les: 26790400 (22.77%)Ops/Cy
: 1.53Stall 
y
les: 0 (0.00%)S
heduling Re
MII ResMII II ESC



A.1. Jpeg_en
 111HB_9 23 5 23 1S
hed length: 1495Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 2293760 (6%) 2 (5%)Store: 1146880 (3%) 1 (3%)iAlu: 32820110 (80%) 32 (82%)fAlu: 0 (0%) 0 (0%)Cmpp: 3494400 (9%) 3 (8%)Pbr: 0 (0%) 0 (0%)Bran
h: 1164800 (3%) 1 (3%)Total: 40919950 39Memory operations Size Stride Group nOps gSize gStrL_72 2 1L_76 2 1S_135 2 1LOOP_1 _rgb_y

_
onvert_j

o.5Program: jpeg_en
File: j

olor.
Fun
tion: rgb_y

_
onvert_j

oHeader blo
k: BB_5Loop blo
ks: BB_5Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 739Iterations: 756736Iter/Invo
: 1024Operations: 43891427 (21.42%)Cy
les: 16549691 (14.07%)Ops/Cy
: 2.65Stall 
y
les: 1400191 (8.46%)S
heduling Re
MII ResMII II ESCBB_5 19 8 20 1S
hed length: 20500Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 9080832 (21%) 12 (21%)Store: 2270208 (5%) 3 (5%)iAlu: 31782912 (72%) 42 (72%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 757475 (2%) 1 (2%)Total: 43891427 58Memory operations Size Stride Group nOps gSize gStrL_47 1 3 G_47 3 3 1L_49 1 3 "L_51 1 3 "L_56 4 -L_59 4 -L_63 4 -L_70 4 -L_73 4 -L_77 4 -L_84 4 -L_87 4 -L_91 4 -S_67 1 1S_81 1 1



112 Appendix A. Loop Statisti
sS_95 1 1LOOP_2 _forward_DCT_j
d
tmgr.6Program: jpeg_en
File: j
d
tmgr.
Fun
tion: forward_DCT_j
d
tmgrHeader blo
k: BB_6Loop blo
ks: BB_6Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 91450Iterations: 731605Iter/Invo
: 8Operations: 5949440 (2.90%)Cy
les: 3980553 (3.38%)Ops/Cy
: 1.49Stall 
y
les: 38153 (0.96%)S
heduling Re
MII ResMII II ESCBB_6 5 2 5 1S
hed length: 45Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 645120 (11%) 1 (11%)Store: 645120 (11%) 1 (11%)iAlu: 3870720 (65%) 6 (67%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 788480 (13%) 1 (11%)Total: 5949440 9Memory operations Size Stride Group nOps gSize gStrL_46 1 1S_54 2 1LOOP_3 _jpeg_fd
t_islow.3Program: jpeg_en
File: jfd
tint.
Fun
tion: jpeg_fd
t_islowHeader blo
k: BB_3Loop blo
ks: BB_3Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 17920Iterations: 143360Iter/Invo
: 8Operations: 13780480 (6.73%)Cy
les: 3208256 (2.73%)Ops/Cy
: 4.30Stall 
y
les: 627776 (19.57%)S
heduling Re
MII ResMII II ESCBB_3 14 12 16 1S
hed length: 144Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 1146880 (8%) 8 (8%)Store: 1146880 (8%) 8 (8%)iAlu: 11325440 (82%) 79 (82%)



A.1. Jpeg_en
 113fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 161280 (1%) 1 (1%)Total: 13780480 96Memory operations Size Stride Group nOps gSize gStrL_11 2 8 G_11 8 16 1L_12 2 8 "L_19 2 8 "L_20 2 8 "L_27 2 8 "L_28 2 8 "L_35 2 8 "L_36 2 8 "S_53 2 8 G_53 8 16 1S_56 2 8 "S_64 2 8 "S_69 2 8 "S_105 2 8 "S_110 2 8 "S_115 2 8 "S_120 2 8 "LOOP_4 _h2v2_downsample_j
sa.4Program: jpeg_en
File: j
sample.
Fun
tion: h2v2_downsample_j
saHeader blo
k: BB_4Loop blo
ks: BB_4Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 740Iterations: 378880Iter/Invo
: 512Operations: 7199460 (3.51%)Cy
les: 3038515 (2.58%)Ops/Cy
: 2.37Stall 
y
les: 1555 (0.05%)S
heduling Re
MII ResMII II ESCBB_4 8 3 8 1S
hed length: 4104Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 1515520 (21%) 4 (21%)Store: 378880 (5%) 1 (5%)iAlu: 4925440 (68%) 13 (68%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 379620 (5%) 1 (5%)Total: 7199460 19Memory operations Size Stride Group nOps gSize gStrL_40 1 2L_41 1 2L_43 1 2 G_43 2 2 1L_45 1 2 "S_54 1 1LOOP_5 _jpeg_fd
t_islow.5



114 Appendix A. Loop Statisti
sProgram: jpeg_en
File: jfd
tint.
Fun
tion: jpeg_fd
t_islowHeader blo
k: BB_5Loop blo
ks: BB_5Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 17920Iterations: 143360Iter/Invo
: 8Operations: 14067200 (6.87%)Cy
les: 2867200 (2.44%)Ops/Cy
: 4.91Stall 
y
les: 286720 (10.00%)S
heduling Re
MII ResMII II ESCBB_5 14 13 16 1S
hed length: 144Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 1146880 (8%) 8 (8%)Store: 1146880 (8%) 8 (8%)iAlu: 11612160 (83%) 81 (83%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 161280 (1%) 1 (1%)Total: 14067200 98Memory operations Size Stride Group nOps gSize gStrL_129 2 1 G_129 8 114 8L_130 2 1 "L_137 2 1 "L_138 2 1 "L_145 2 1 "L_146 2 1 "L_153 2 1 "L_154 2 1 "S_172 2 1 G_172 8 114 8S_176 2 1 "S_184 2 1 "S_189 2 1 "S_225 2 1 "S_230 2 1 "S_235 2 1 "S_240 2 1 "



A.2. Jpeg_de
 115A.2 Jpeg_de
Innermost loops list# Loop name Dyn Cy
 (%a

) Dyn Ops (%a

) OPC Inv Iter Nest Cat Ops LDs STs1 _jpeg_id
t.8 36,858,048 (40%) 68,989,748 (40%) 1.87 17,920 8 L1 D 532 114 1072 _y

_rgb_
.5 15,618,672 (58%) 26,486,499 (56%) 1.70 739 1,024 L1 M 35 10 33 _jpeg_id
t.3 15,433,064 (74%) 31,127,431 (74%) 2.02 17,920 8 L1 D 510 110 974 _h2v2_fan
.8 7,660,055 (83%) 18,871,480 (85%) 2.46 1,480 510 L3 M 25 2 25 _de
ompres.13 132,352 (83%) 265,088 (85%) 2.00 12,016 1 L4 W 30 7 06 _jpeg_make.21 4,809 (83%) 12,215 (85%) 2.54 87 17 L2 M 8 1 27 _jpeg_make.10 3,723 (83%) 5,220 (85%) 1.40 69 7 L2 W 10 1 18 _build_y

.4 3,084 (83%) 6,401 (85%) 2.08 1 256 L1 M 25 4 49 _jpeg_make.6 2,679 (83%) 4,176 (85%) 1.56 69 7 L2 W 8 1 110 _start_pas.25 1,560 (83%) 1,347 (85%) 0.86 3 64 L2 M 7 1 111 _jpeg_make.13 1,326 (83%) 1,893 (85%) 1.43 6 16 L1 M 22 4 412 _make_funn.9 1,082 (83%) 23 (85%) 0.02 3 1 L2 M 5 1 113 _prepare_r.5 385 (83%) 1,537 (85%) 3.99 1 384 L1 M 4 0 114 _jpeg_make.57 361 (83%) 235 (85%) 0.65 69 1 L2 W 7 0 015 _jpeg_make.42 312 (83%) 720 (85%) 2.31 6 8 L2 D 20 2 016 _allo
_sma.14 264 (83%) 227 (85%) 0.86 43 1 L1 W 12 2 017 _prepare_r.3 257 (83%) 1,025 (85%) 3.99 1 256 L1 M 4 0 118 _make_funn.5 176 (83%) 323 (85%) 1.84 3 13 L3 M 8 1 219 _set_wrapa.18 108 (83%) 83 (85%) 0.77 3 1 L2 M 20 4 420 _allo
_sar.12 98 (83%) 225 (85%) 2.30 5 8 L2 M 5 0 121 _set_wrapa.4 84 (83%) 156 (85%) 1.86 3 1 L2 W 57 14 422 _set_botto.10 74 (83%) 105 (85%) 1.42 3 1 L1 W 43 9 223 _jinit_mar.3 68 (83%) 129 (85%) 1.90 1 16 L1 M 8 1 124 _per_s
an_.22 48 (83%) 75 (85%) 1.56 3 2 L1 W 14 1 225 _make_funn.7 44 (83%) 99 (85%) 2.25 3 2 L2 M 12 2 226 _get_sos_j.46 36 (83%) 36 (85%) 1.00 3 2 L2 D 8 1 027 _set_botto.9 34 (83%) 51 (85%) 1.50 3 2 L1 M 6 1 128 _get_soi_j.5 17 (83%) 129 (85%) 7.59 1 16 L1 M 8 0 329 _jinit_d_
.12 11 (83%) 51 (85%) 4.64 1 10 L1 M 5 0 130 _jinit_huf.3 10 (83%) 25 (85%) 2.50 1 4 L1 M 6 0 231 _jpeg_Crea.9 5 (83%) 25 (85%) 5.00 1 4 L1 M 6 0 232 _jpeg_Crea.7 5 (83%) 17 (85%) 3.40 1 4 L1 M 4 0 133 _jinit_mem.9 3 (83%) 13 (85%) 4.33 1 2 L1 M 6 0 2Table A.2. Jpeg_de
 innermost loops listDes
ription of the most representative loopsLOOP_0 _jpeg_id
t_islow.8Program: jpeg_de
File: jid
tint.
Fun
tion: jpeg_id
t_islowHeader blo
k: HB_8Loop blo
ks: HB_8 HB_17Nesting level: 1Innermost: yesCategory: DO_LOOPInvo
ations: 17920Iterations: 143360Iter/Invo
: 8Operations: 68989748 (40.25%)Cy
les: 36858048 (40.41%)Ops/Cy
: 1.87Stall 
y
les: 157874 (0.43%)S
heduling



116 Appendix A. Loop Statisti
swsl pesl per wgtHB_8 254.87 270 0.78 143360HB_17 10.12 10 0.88 16071S
hed length: 2048Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 15092060 (22%) 114 (21%)Store: 13549800 (20%) 107 (20%)iAlu: 39615017 (57%) 304 (57%)fAlu: 0 (0%) 0 (0%)Cmpp: 143360 (0%) 1 (0%)Pbr: 302791 (0%) 3 (1%)Bran
h: 286720 (0%) 3 (1%)Total: 68989748 532Memory operations Size Stride Group nOps gSize gStrL_202 4 1L_225 1 -L_206 4 8 G_259 8 32 1L_207 4 8 "L_209 4 8 "L_211 4 8 "L_213 4 8 "L_215 4 8 "L_217 4 8 "L_220 4 8 "L_259 4 8 "L_333 1 -L_340 1 -L_347 1 -L_354 1 -L_361 1 -L_368 1 -L_375 1 -L_382 1 -S_228 1 - G_334 8 8 1S_230 1 - "S_232 1 - "S_234 1 - "S_236 1 - "S_238 1 - "S_240 1 - "S_242 1 - "S_334 1 - "S_341 1 - "S_348 1 - "S_355 1 - "S_362 1 - "S_369 1 - "S_376 1 - "S_383 1 - "Dynami
 
ount Stati
 
ountSpill: 25162322 (36%) 186 (35%)LOOP_1 _y

_rgb_
onvert_jd
o.5Program: jpeg_de
File: jd
olor.
Fun
tion: y

_rgb_
onvert_jd
oHeader blo
k: BB_5Loop blo
ks: BB_5Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 739



A.2. Jpeg_de
 117Iterations: 756736Iter/Invo
: 1024Operations: 26486499 (15.45%)Cy
les: 15618672 (17.12%)Ops/Cy
: 1.70Stall 
y
les: 469172 (3.00%)S
heduling Re
MII ResMII II ESCBB_5 20 5 20 1S
hed length: 20500Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 7567360 (29%) 10 (29%)Store: 2270208 (9%) 3 (9%)iAlu: 15891456 (60%) 21 (60%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 757475 (3%) 1 (3%)Total: 26486499 35Memory operations Size Stride Group nOps gSize gStrL_56 1 1L_59 1 1L_62 1 1L_65 4 -L_68 1 -L_71 4 -L_73 4 -L_78 1 -L_81 4 -L_84 1 -S_69 1 3 G_69 3 3 1S_79 1 3 "S_85 1 3 "LOOP_2 _jpeg_id
t_islow.3Program: jpeg_de
File: jid
tint.
Fun
tion: jpeg_id
t_islowHeader blo
k: HB_3Loop blo
ks: HB_3 HB_15Nesting level: 1Innermost: yesCategory: DO_LOOPInvo
ations: 17920Iterations: 143360Iter/Invo
: 8Operations: 31127431 (18.16%)Cy
les: 15433064 (16.92%)Ops/Cy
: 2.02Stall 
y
les: 756401 (4.90%)S
heduling wsl pesl per wgtHB_3 22.10 23 0.59 143360HB_15 244.12 244 0.88 47143S
hed length: 819Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 6628985 (21%) 110 (22%)Store: 5542765 (18%) 97 (19%)iAlu: 18191738 (58%) 296 (58%)fAlu: 0 (0%) 0 (0%)Cmpp: 143360 (0%) 1 (0%)



118 Appendix A. Loop Statisti
sPbr: 333863 (1%) 3 (1%)Bran
h: 286720 (1%) 3 (1%)Total: 31127431 510Memory operations Size Stride Group nOps gSize gStrL_24 2 1 G_38 8 114 8L_25 2 1 "L_27 2 1 "L_29 2 1 "L_31 2 1 "L_33 2 1 "L_35 2 1 "L_38 2 1 "L_75 2 1 "L_39 4 1 G_39 8 228 8L_59 4 1 "L_63 4 1 "L_76 4 1 "L_80 4 1 "L_98 4 1 "L_102 4 1 "L_106 4 1 "L_110 4 1 "S_43 4 1 G_43 8 228 8S_44 4 1 "S_45 4 1 "S_46 4 1 "S_47 4 1 "S_48 4 1 "S_49 4 1 "S_50 4 1 "S_159 4 1 "S_163 4 1 "S_167 4 1 "S_171 4 1 "S_175 4 1 "S_179 4 1 "S_183 4 1 "S_187 4 1 "Dynami
 
ount Stati
 
ountSpill: 9310343 (30%) 173 (34%)LOOP_3 _h2v2_fan
y_upsample_.8Program: jpeg_de
File: jdsample.
Fun
tion: h2v2_fan
y_upsample_Header blo
k: BB_8Loop blo
ks: BB_8Nesting level: 3Innermost: yesCategory: MOD_SCHEDInvo
ations: 1480Iterations: 754800Iter/Invo
: 510Operations: 18871480 (11.01%)Cy
les: 7660055 (8.40%)Ops/Cy
: 2.46Stall 
y
les: 853535 (11.14%)S
heduling Re
MII ResMII II ESCBB_8 9 4 9 1S
hed length: 4599Operation breakdownDynami
 
ounts Stati
 
ounts



A.2. Jpeg_de
 119Load: 1509600 (8%) 2 (8%)Store: 1509600 (8%) 2 (8%)iAlu: 15096000 (80%) 20 (80%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 756280 (4%) 1 (4%)Total: 18871480 25Memory operations Size Stride Group nOps gSize gStrL_95 1 1L_97 1 1S_109 1 2 G_109 2 2 1S_119 1 2 "



120 Appendix A. Loop Statisti
sA.3 Mpeg2_en
Innermost loops list# Loop name Dyn Cy
 (%a

) Dyn Ops (%a

) OPC Inv Iter Nest Cat Ops LDs STs1 _dist1_mot.9 237,589,058 (41%) 968,846,938 (58%) 4.08 6,232,293 16 L2 M 10 2 02 _dist1_mot.45 22,955,002 (45%) 103,208,256 (64%) 4.50 318,544 16 L2 M 21 5 03 _fd
t.5 14,601,432 (48%) 27,844,608 (66%) 1.91 344,899 8 L2 M 11 2 04 _fd
t.11 14,159,915 (50%) 26,695,680 (67%) 1.89 384,516 8 L2 M 9 2 05 _id
t.8 12,000,482 (53%) 21,116,739 (68%) 1.76 8,448 4 L1 D 567 133 1056 _dist1_mot.24 9,118,042 (54%) 37,927,920 (71%) 4.16 164,904 16 L2 M 15 3 07 _iquant_no.5 7,236,353 (55%) 7,828,077 (71%) 1.08 4,494 64 L1 M 31 2 18 _dist1_mot.37 6,807,065 (57%) 37,524,960 (73%) 5.51 163,152 16 L2 M 15 3 09 _quant_non.3 6,402,057 (58%) 7,773,563 (74%) 1.21 4,494 64 L1 M 31 3 110 _quant_int.6 5,807,013 (59%) 6,359,104 (74%) 1.10 3,954 63 L1 M 29 3 111 _iquant_in.5 5,269,067 (60%) 5,758,632 (75%) 1.09 3,954 63 L1 M 25 2 112 _id
t.3 4,506,548 (60%) 8,464,749 (75%) 1.88 8,448 3 L1 D 332 66 6313 _bdist1_mo.4 3,376,753 (61%) 13,111,296 (76%) 3.88 22,528 16 L2 M 37 9 014 _add_pred_.4 2,539,391 (61%) 4,325,376 (76%) 1.70 43,112 8 L2 M 14 4 115 _
al
SNR1_.4 2,509,345 (62%) 6,088,320 (76%) 2.43 1,920 264 L3 M 12 2 016 _d
t_type_12 2,110,992 (62%) 3,435,520 (77%) 1.63 11,264 16 L4 M 19 5 217 _sub_pred_.4 1,311,950 (62%) 2,804,736 (77%) 2.14 43,112 8 L2 M 9 2 118 _varian
e_.4 1,210,878 (63%) 2,635,776 (77%) 2.18 22,528 16 L2 M 7 1 019 _pred_
omp.49 1,098,653 (63%) 1,359,824 (77%) 1.24 11,376 11 L2 M 10 2 120 _bdist2_mo.4 867,816 (63%) 3,316,512 (77%) 3.82 5,776 16 L2 M 36 9 021 _var_sblk_.4 856,510 (63%) 3,289,088 (77%) 3.84 57,483 8 L2 M 7 1 022 _d
t_type_.15 729,545 (63%) 3,066,624 (78%) 4.20 1,408 128 L3 M 17 2 023 _pred_
omp.44 642,629 (63%) 789,712 (78%) 1.23 4,880 11 L1 M 14 3 124 _pred_
omp.15 429,506 (63%) 478,704 (78%) 1.11 8,320 11 L2 M 5 1 125 _pred_
omp.61 363,223 (64%) 633,712 (78%) 1.74 2,968 13 L1 M 16 4 126 _dist2_mot.34 307,986 (64%) 1,369,520 (78%) 4.45 4,240 16 L2 M 20 5 027 _pred_
omp.10 273,000 (64%) 362,272 (78%) 1.33 3,464 11 L2 M 9 2 128 _pred_
omp.56 260,018 (64%) 443,704 (78%) 1.71 1,536 13 L1 M 21 5 129 _dist2_mot.9 242,505 (64%) 789,096 (78%) 3.25 5,368 16 L2 M 9 2 030 _dist2_mot.19 236,476 (64%) 883,024 (78%) 3.73 3,840 16 L2 M 14 3 031 _
learblo
.7 181,458 (64%) 687,440 (78%) 3.79 10,544 16 L2 M 4 0 132 _fullsear
.69 154,566 (64%) 128,805 (78%) 0.83 25,761 1 L2 W 8 0 033 _pred_
omp.32 129,126 (64%) 186,288 (78%) 1.44 1,304 13 L2 M 10 2 134 _border_ex.8 105,097 (64%) 169,088 (78%) 1.61 128 264 L2 M 5 1 135 _pred_
omp.48 68,064 (64%) 68,064 (78%) 1.00 11,376 1 L2 W 13 0 036 _putDC_put.17 50,932 (64%) 59,240 (78%) 1.16 3,528 3 L1 W 5 0 037 _dist2_mot.29 48,886 (64%) 239,992 (78%) 4.91 1,032 16 L2 M 14 3 038 _
learblo
.25 47,835 (64%) 174,504 (78%) 3.65 5,272 8 L2 M 4 0 139 _
learblo
.18 47,592 (64%) 174,504 (78%) 3.67 5,272 8 L2 M 4 0 140 _pred_
omp.27 38,296 (64%) 50,456 (78%) 1.32 296 12 L2 M 14 3 141 _
learblo
.17 31,728 (64%) 15,864 (78%) 0.50 5,272 1 L2 W 7 0 042 _
learblo
.24 31,728 (64%) 15,864 (78%) 0.50 5,272 1 L2 W 7 0 043 _pred_
omp.45 31,219 (64%) 52,145 (78%) 1.67 4,880 1 L1 W 11 0 044 _pred_
omp.62 19,299 (64%) 34,737 (78%) 1.80 2,968 1 L1 W 12 0 045 _stats.12 12,672 (64%) 58,353 (78%) 4.60 1,408 6 L2 M 6 0 046 _putseq.84 12,076 (64%) 20,448 (78%) 1.69 1,408 1 L2 W 15 1 047 _pred_
omp.57 10,060 (64%) 19,652 (78%) 1.95 1,536 1 L1 W 13 0 048 _putpi
t.190 5,939 (64%) 9,633 (78%) 1.62 657 1 L3 W 13 1 049 _init_id
t.3 3,075 (64%) 10,755 (78%) 3.50 1 1,024 L1 M 12 1 150 _init_mpeg.26 3,075 (64%) 10,115 (78%) 3.29 1 1,024 L1 M 11 1 151 _putpi
t.193 2,984 (64%) 9,698 (78%) 3.25 748 3 L3 M 4 0 152 _readparmf.17 1,096 (64%) 67 (78%) 0.06 1 3 L1 M 22 5 553 _border_ex.7 768 (64%) 384 (78%) 0.50 128 1 L2 W 7 0 0Table A.3. Mpeg2_en
 innermost loops list



A.3. Mpeg2_en
 121# Loop name Dyn Cy
 (%a

) Dyn Ops (%a

) OPC Inv Iter Nest Cat Ops LDs STs54 _predi
t.3 384 (64%) 320 (78%) 0.83 64 1 L2 W 8 0 055 _
al
_a
tj.43 384 (64%) 192 (78%) 0.50 64 1 L2 W 6 0 056 _d
t_type_.3 384 (64%) 192 (78%) 0.50 64 1 L2 W 6 0 057 _putpi
t.18 336 (64%) 980 (78%) 2.92 64 3 L3 M 4 0 158 _readquant.4 136 (64%) 321 (78%) 2.36 1 64 L1 M 5 1 159 _readquant.20 65 (64%) 257 (78%) 3.95 1 64 L1 M 4 0 1Table A.3. Mpeg2_en
 innermost loops (
ont.)Des
ription of the most representative loopsLOOP_0 _dist1_motion_i_1920_.9Program: mpeg2_en
File: motion.
Fun
tion: dist1_motion_i_1920_Header blo
k: HB_9Loop blo
ks: HB_9Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 6232293Iterations: 99716688Iter/Invo
: 16Operations: 968846938 (57.76%)Cy
les: 237589058 (41.41%)Ops/Cy
: 4.08Stall 
y
les: 13226582 (5.57%)S
heduling Re
MII ResMII II ESCHB_9 1 2 2 2S
hed length: 36Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 199433312 (21%) 2 (20%)Store: 0 (0%) 0 (0%)iAlu: 545051150 (56%) 6 (60%)fAlu: 0 (0%) 0 (0%)Cmpp: 112181238 (12%) 1 (10%)Pbr: 0 (0%) 0 (0%)Bran
h: 112181238 (12%) 1 (10%)Total: 968846938 10Memory operations Size Stride Group nOps gSize gStrL_36 1 1L_38 1 1LOOP_1 _dist1_motion_i_1920_.45Program: mpeg2_en
File: motion.
Fun
tion: dist1_motion_i_1920_Header blo
k: HB_45Loop blo
ks: HB_45Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 318544Iterations: 5096704



122 Appendix A. Loop Statisti
sIter/Invo
: 16Operations: 103208256 (6.15%)Cy
les: 22955002 (4.00%)Ops/Cy
: 4.50Stall 
y
les: 5753626 (25.06%)S
heduling Re
MII ResMII II ESCHB_45 1 3 3 2S
hed length: 54Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 25483520 (25%) 5 (24%)Store: 0 (0%) 0 (0%)iAlu: 66257152 (64%) 14 (67%)fAlu: 0 (0%) 0 (0%)Cmpp: 5733792 (6%) 1 (5%)Pbr: 0 (0%) 0 (0%)Bran
h: 5733792 (6%) 1 (5%)Total: 103208256 21Memory operations Size Stride Group nOps gSize gStrL_155 1 1 G_155 2 2 1L_158 1 1 "L_161 1 1 G_161 2 2 1L_165 1 1 "L_170 1 1LOOP_2 _fd
t.5Program: mpeg2_en
File: fd
tref.
Fun
tion: fd
tHeader blo
k: BB_5Loop blo
ks: BB_5Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 344899Iterations: 2759196Iter/Invo
: 8Operations: 27844608 (1.66%)Cy
les: 14601432 (2.54%)Ops/Cy
: 1.91Stall 
y
les: 543960 (3.73%)S
heduling Re
MII ResMII II ESCBB_5 4 2 4 2S
hed length: 40Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 4866048 (17%) 2 (18%)Store: 0 (0%) 0 (0%)iAlu: 14598144 (52%) 6 (55%)fAlu: 4866048 (17%) 2 (18%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 3514368 (13%) 1 (9%)Total: 27844608 11Memory operations Size Stride Group nOps gSize gStrL_18 8 1L_22 2 1LOOP_3 _fd
t.11



A.3. Mpeg2_en
 123Program: mpeg2_en
File: fd
tref.
Fun
tion: fd
tHeader blo
k: BB_11Loop blo
ks: BB_11Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 384516Iterations: 3076128Iter/Invo
: 8Operations: 26695680 (1.59%)Cy
les: 14159915 (2.47%)Ops/Cy
: 1.89Stall 
y
les: 372779 (2.63%)S
heduling Re
MII ResMII II ESCBB_11 4 2 4 1S
hed length: 36Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 5812224 (22%) 2 (22%)Store: 0 (0%) 0 (0%)iAlu: 14530560 (54%) 5 (56%)fAlu: 2906112 (11%) 1 (11%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 3446784 (13%) 1 (11%)Total: 26695680 9Memory operations Size Stride Group nOps gSize gStrL_51 8 1L_56 8 8LOOP_4 _id
t.8Program: mpeg2_en
File: id
t.
Fun
tion: id
tHeader blo
k: HB_8Loop blo
ks: HB_8Nesting level: 1Innermost: yesCategory: DO_LOOPInvo
ations: 8448Iterations: 39163Iter/Invo
: 5Operations: 21116739 (1.26%)Cy
les: 12000482 (2.09%)Ops/Cy
: 1.76Stall 
y
les: 250379 (2.09%)S
heduling wsl pesl per wgtHB_8 300.10 315 0.78 39163S
hed length: 1391Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 4911481 (23%) 133 (23%)Store: 3906285 (18%) 105 (19%)iAlu: 12107748 (57%) 324 (57%)fAlu: 0 (0%) 0 (0%)Cmpp: 39157 (0%) 1 (0%)Pbr: 78314 (0%) 2 (0%)Bran
h: 73754 (0%) 2 (0%)Total: 21116739 567



124 Appendix A. Loop Statisti
sMemory operations Size Stride Group nOps gSize gStrL_166 2 1 G_232 8 114 8L_170 2 1 "L_173 2 1 "L_176 2 1 "L_179 2 1 "L_182 2 1 "L_185 2 1 "L_232 2 1 "L_302 4 0L_306 2 -L_308 4 0L_312 2 -L_314 4 0L_318 2 -L_320 4 0L_324 2 -L_326 4 0L_330 2 -L_332 4 0L_336 2 -L_338 4 0L_342 2 -L_344 4 0L_348 2 -S_307 2 1 G_307 8 114 8S_313 2 1 "S_319 2 1 "S_325 2 1 "S_331 2 1 "S_337 2 1 "S_343 2 1 "S_349 2 1 "Dynami
 
ount Stati
 
ountSpill: 7671902 (36%) 206 (36%)LOOP_5 _dist1_motion_i_1920_.24Program: mpeg2_en
File: motion.
Fun
tion: dist1_motion_i_1920_Header blo
k: HB_24Loop blo
ks: HB_24Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 164904Iterations: 2638464Iter/Invo
: 16Operations: 37927920 (2.26%)Cy
les: 9118042 (1.59%)Ops/Cy
: 4.16Stall 
y
les: 2851690 (31.28%)S
heduling Re
MII ResMII II ESCHB_24 1 2 2 3S
hed length: 38Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 7915392 (21%) 3 (20%)Store: 0 (0%) 0 (0%)iAlu: 23746176 (63%) 10 (67%)fAlu: 0 (0%) 0 (0%)Cmpp: 3133176 (8%) 1 (7%)



A.3. Mpeg2_en
 125Pbr: 0 (0%) 0 (0%)Bran
h: 3133176 (8%) 1 (7%)Total: 37927920 15Memory operations Size Stride Group nOps gSize gStrL_73 1 1 G_73 2 2 1L_76 1 1 "L_81 1 1LOOP_6 _iquant_non_intra.5Program: mpeg2_en
File: quantize.
Fun
tion: iquant_non_intraHeader blo
k: HB_5Loop blo
ks: HB_5Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 4494Iterations: 287616Iter/Invo
: 64Operations: 7828077 (0.47%)Cy
les: 7236353 (1.26%)Ops/Cy
: 1.08Stall 
y
les: 244433 (3.38%)S
heduling Re
MII ResMII II ESCHB_5 24 4 24 1S
hed length: 1560Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 573696 (7%) 2 (6%)Store: 286848 (4%) 1 (3%)iAlu: 5510883 (70%) 23 (74%)fAlu: 0 (0%) 0 (0%)Cmpp: 1165320 (15%) 4 (13%)Pbr: 0 (0%) 0 (0%)Bran
h: 291330 (4%) 1 (3%)Total: 7828077 31Memory operations Size Stride Group nOps gSize gStrL_24 2 1L_34 1 1S_48 2 1LOOP_7 _dist1_motion_i_1920_.37Program: mpeg2_en
File: motion.
Fun
tion: dist1_motion_i_1920_Header blo
k: HB_37Loop blo
ks: HB_37Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 163152Iterations: 2610432Iter/Invo
: 16Operations: 37524960 (2.24%)Cy
les: 6807065 (1.19%)Ops/Cy
: 5.51Stall 
y
les: 607289 (8.92%)S
heduling



126 Appendix A. Loop Statisti
sRe
MII ResMII II ESCHB_37 1 2 2 3S
hed length: 38Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 7831296 (21%) 3 (20%)Store: 0 (0%) 0 (0%)iAlu: 23493888 (63%) 10 (67%)fAlu: 0 (0%) 0 (0%)Cmpp: 3099888 (8%) 1 (7%)Pbr: 0 (0%) 0 (0%)Bran
h: 3099888 (8%) 1 (7%)Total: 37524960 15Memory operations Size Stride Group nOps gSize gStrL_117 1 1L_119 1 1L_124 1 1LOOP_8 _quant_non_intra.3Program: mpeg2_en
File: quantize.
Fun
tion: quant_non_intraHeader blo
k: HB_3Loop blo
ks: HB_3Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 4494Iterations: 287616Iter/Invo
: 64Operations: 7773563 (0.46%)Cy
les: 6402057 (1.12%)Ops/Cy
: 1.21Stall 
y
les: 284127 (4.44%)S
heduling Re
MII ResMII II ESCHB_3 21 4 21 1S
hed length: 1365Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 860544 (11%) 3 (10%)Store: 286848 (4%) 1 (3%)iAlu: 4586861 (59%) 20 (65%)fAlu: 0 (0%) 0 (0%)Cmpp: 1747980 (22%) 6 (19%)Pbr: 0 (0%) 0 (0%)Bran
h: 291330 (4%) 1 (3%)Total: 7773563 31Memory operations Size Stride Group nOps gSize gStrL_17 2 1L_20 1 1L_36 4 0S_48 2 1LOOP_9 _quant_intra.6Program: mpeg2_en
File: quantize.
Fun
tion: quant_intraHeader blo
k: HB_6Loop blo
ks: HB_6



A.3. Mpeg2_en
 127Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 3954Iterations: 249102Iter/Invo
: 63Operations: 6359104 (0.38%)Cy
les: 5807013 (1.01%)Ops/Cy
: 1.10Stall 
y
les: 222885 (3.84%)S
heduling Re
MII ResMII II ESCHB_6 22 4 22 1S
hed length: 1408Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 749574 (12%) 3 (10%)Store: 249858 (4%) 1 (3%)iAlu: 3836728 (60%) 19 (66%)fAlu: 0 (0%) 0 (0%)Cmpp: 1269120 (20%) 5 (17%)Pbr: 0 (0%) 0 (0%)Bran
h: 253824 (4%) 1 (3%)Total: 6359104 29Memory operations Size Stride Group nOps gSize gStrL_35 2 1L_38 1 1L_59 4 0S_71 2 1



128 Appendix A. Loop Statisti
sA.4 Mpeg2_de
Innermost loops list# Loop name Dyn Cy
 (%a

) Dyn Ops (%a

) OPC Inv Iter Nest Cat Ops LDs STs1 _Fast_IDCT.8 7,054,772 (15%) 12,637,191 (15%) 1.79 7,920 3 L1 D 567 133 1052 _Fast_IDCT.3 2,759,648 (22%) 5,319,957 (21%) 1.93 7,920 2 L1 D 332 66 633 _Add_Blo
k.31 1,600,930 (25%) 2,539,680 (24%) 1.59 29,456 8 L2 M 12 4 14 _form_
omp.58 995,785 (27%) 1,470,272 (25%) 1.48 12,352 11 L2 M 10 2 15 _form_
omp.50 889,066 (29%) 1,133,312 (27%) 1.27 5,152 11 L1 W 29 3 26 _form_
omp.10 785,524 (31%) 987,392 (28%) 1.26 5,872 12 L1 W 24 2 27 _Add_Blo
k.36 715,310 (32%) 945,120 (29%) 1.32 10,961 7 L2 M 12 3 18 _Clear_Blo.3 514,800 (34%) 2,035,440 (31%) 3.95 7,920 64 L1 M 4 0 19 _form_
omp.18 388,284 (34%) 761,536 (32%) 1.96 12,736 11 L1 M 5 1 110 _form_
omp.73 254,821 (35%) 522,736 (33%) 2.05 2,544 12 L2 M 16 4 111 _form_
omp.38 235,644 (35%) 416,592 (33%) 1.77 3,152 13 L1 M 10 2 112 _form_
omp.65 218,971 (36%) 368,640 (34%) 1.68 928 13 L2 W 38 7 213 _form_
omp.30 214,640 (36%) 291,840 (34%) 1.36 1,200 12 L2 W 27 3 214 _form_
omp.19 85,963 (37%) 124,924 (34%) 1.45 12,736 1 L1 W 10 0 015 _form_
omp.9 37,804 (37%) 57,620 (34%) 1.52 5,872 1 L1 W 10 0 016 _form_
omp.49 33,064 (37%) 55,672 (34%) 1.68 5,152 1 L1 W 11 0 017 _Flush_Buf.15 27,613 (37%) 24,588 (34%) 0.89 1,311 1 L1 M 17 5 218 _form_
omp.37 20,456 (37%) 34,136 (34%) 1.67 3,152 1 L1 W 11 0 019 _Fill_Bu�.10 9,310 (37%) 10,270 (34%) 1.10 1 489 L1 M 21 4 420 _Initializ.3 3,609 (37%) 10,755 (34%) 2.98 1 1,024 L1 M 12 1 121 _Initializ.5 3,105 (37%) 10,115 (34%) 3.26 1 1,024 L1 M 11 1 122 _Update_Pi.3 710 (37%) 248 (34%) 0.35 4 3 L1 M 23 5 523 _sequen
e_.17 650 (37%) 1,089 (34%) 1.68 1 64 L1 M 17 4 224 _sequen
e_.7 260 (37%) 577 (34%) 2.22 1 64 L1 M 9 2 125 _sequen
e_.14 260 (37%) 449 (34%) 1.73 1 64 L1 M 7 1 126 _Fill_Bu�.8 15 (37%) 18 (34%) 1.20 1 2 L1 W 9 1 1Table A.4. Mpeg2_de
 innermost loops listDes
ription of the most representative loopsLOOP_0 _Add_Blo
k_getpi
_i_1.31Program: mpeg2_de
File: getpi
.
Fun
tion: Add_Blo
k_getpi
_i_1Header blo
k: BB_31Loop blo
ks: BB_31Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 29456Iterations: 235648Iter/Invo
: 8Operations: 2539680 (2.93%)Cy
les: 1600930 (3.51%)Ops/Cy
: 1.59Stall 
y
les: 77122 (4.82%)S
heduling Re
MII ResMII II ESCBB_31 6 2 6 1S
hed length: 54Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 831168 (33%) 4 (33%)Store: 207792 (8%) 1 (8%)



A.4. Mpeg2_de
 129iAlu: 1246752 (49%) 6 (50%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 253968 (10%) 1 (8%)Total: 2539680 12Memory operations Size Stride Group nOps gSize gStrL_175 4 0L_176 2 1L_177 1 1L_180 1 -S_181 1 1LOOP_1 _form_
omponent_predi.58Program: mpeg2_de
File: re
on.
Fun
tion: form_
omponent_prediHeader blo
k: BB_58Loop blo
ks: BB_58Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 12352Iterations: 145792Iter/Invo
: 12Operations: 1470272 (1.70%)Cy
les: 995785 (2.18%)Ops/Cy
: 1.48Stall 
y
les: 205065 (20.59%)S
heduling Re
MII ResMII II ESCBB_58 5 2 5 1S
hed length: 64Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 291584 (20%) 2 (20%)Store: 145792 (10%) 1 (10%)iAlu: 874752 (60%) 6 (60%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 158144 (11%) 1 (10%)Total: 1470272 10Memory operations Size Stride Group nOps gSize gStrL_231 1 1L_234 1 1S_239 1 1LOOP_2 _form_
omponent_predi.50Program: mpeg2_de
File: re
on.
Fun
tion: form_
omponent_prediHeader blo
k: HB_50Loop blo
ks: HB_50 BB_52 HB_116Nesting level: 1Innermost: yesCategory: WHILE_LOOPInvo
ations: 5152Iterations: 59648Iter/Invo
: 12



130 Appendix A. Loop Statisti
sOperations: 1133312 (1.31%)Cy
les: 889066 (1.95%)Ops/Cy
: 1.27Stall 
y
les: 108490 (12.20%)S
heduling wsl pesl per wgtHB_50 13.09 13 0.91 59648BB_52 1.00 1 1.00 0HB_116 9.00 9 1.00 0S
hed length: 152Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 178944 (16%) 3 (10%)Store: 59648 (5%) 2 (7%)iAlu: 536832 (47%) 13 (45%)fAlu: 0 (0%) 0 (0%)Cmpp: 119296 (11%) 3 (10%)Pbr: 119296 (11%) 4 (14%)Bran
h: 119296 (11%) 4 (14%)Total: 1133312 29Memory operations Size Stride Group nOps gSize gStrL_194 1 1L_196 1 1L_199 1 1S_212 1 1S_590 1 1LOOP_3 _form_
omponent_predi.10Program: mpeg2_de
File: re
on.
Fun
tion: form_
omponent_prediHeader blo
k: HB_10Loop blo
ks: HB_10 BB_12 HB_114Nesting level: 1Innermost: yesCategory: WHILE_LOOPInvo
ations: 5872Iterations: 70528Iter/Invo
: 12Operations: 987392 (1.14%)Cy
les: 785524 (1.72%)Ops/Cy
: 1.26Stall 
y
les: 74372 (9.47%)S
heduling wsl pesl per wgtHB_10 10.08 10 0.92 70528BB_12 1.00 1 1.00 0HB_114 9.00 9 1.00 0S
hed length: 121Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 141056 (14%) 2 (8%)Store: 70528 (7%) 2 (8%)iAlu: 352640 (36%) 9 (38%)fAlu: 0 (0%) 0 (0%)Cmpp: 141056 (14%) 3 (12%)Pbr: 141056 (14%) 4 (17%)Bran
h: 141056 (14%) 4 (17%)Total: 987392 24Memory operations Size Stride Group nOps gSize gStrL_64 1 1



A.4. Mpeg2_de
 131L_66 1 1S_76 1 1S_583 1 1LOOP_4 _Add_Blo
k_getpi
_i_1.36Program: mpeg2_de
File: getpi
.
Fun
tion: Add_Blo
k_getpi
_i_1Header blo
k: BB_36Loop blo
ks: BB_36Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 10961Iterations: 87694Iter/Invo
: 8Operations: 945120 (1.09%)Cy
les: 715310 (1.57%)Ops/Cy
: 1.32Stall 
y
les: 53726 (7.51%)S
heduling Re
MII ResMII II ESCBB_36 7 2 7 1S
hed length: 63Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 231984 (25%) 3 (25%)Store: 77328 (8%) 1 (8%)iAlu: 541296 (57%) 7 (58%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 94512 (10%) 1 (8%)Total: 945120 12Memory operations Size Stride Group nOps gSize gStrL_201 4 0L_202 2 1L_205 1 -S_211 1 1LOOP_5 _Clear_Blo
k_getpi
_i.3Program: mpeg2_de
File: getpi
.
Fun
tion: Clear_Blo
k_getpi
_iHeader blo
k: BB_3Loop blo
ks: BB_3Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 7920Iterations: 506880Iter/Invo
: 64Operations: 2035440 (2.35%)Cy
les: 514800 (1.13%)Ops/Cy
: 3.95Stall 
y
les: 0 (0.00%)S
heduling Re
MII ResMII II ESCBB_3 1 1 1 1S
hed length: 65Operation breakdown



132 Appendix A. Loop Statisti
sDynami
 
ounts Stati
 
ountsLoad: 0 (0%) 0 (0%)Store: 506880 (25%) 1 (25%)iAlu: 1013760 (50%) 2 (50%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 514800 (25%) 1 (25%)Total: 2035440 4Memory operations Size Stride Group nOps gSize gStrS_16 2 1



A.5. Gsm_en
 133A.5 Gsm_en
Innermost loops list# Loop name Dyn Cy
 (%a

) Dyn Ops (%a

) OPC Inv Iter Nest Cat Ops LDs STs1 _Short_ter.5 18,440,000 (20%) 51,484,480 (22%) 2.79 147,520 8 L2 MS 47 2 12 _Cal
ulati.27 11,152,512 (32%) 88,104,845 (59%) 7.90 3,688 81 L1 MS 310 52 13 _Auto
orre.42 10,438,884 (43%) 11,632,874 (64%) 1.11 922 152 L1 MS 83 18 94 _Weighting.3 4,259,728 (48%) 8,124,664 (68%) 1.91 3,688 40 L1 MS 57 9 15 _Long_term.8 2,721,744 (51%) 2,961,464 (69%) 1.09 3,688 40 L1 MS 22 2 26 _Gsm_Coder.5 1,360,872 (52%) 2,371,384 (70%) 1.74 3,688 40 L2 MS 18 2 17 _Re�e
tio.52 1,097,180 (54%) 1,219,806 (70%) 1.11 6,454 4 L2 MS 50 6 28 _gsm_div .11 868,952 (55%) 1,528,864 (71%) 1.76 7,364 15 L1 W 15 0 09 _Cal
ulati.3 634,336 (55%) 2,638,037 (72%) 4.16 3,688 40 L1 MS 20 1 010 _Cal
ulati.25 604,832 (56%) 1,478,888 (73%) 2.45 3,688 40 L1 MS 10 2 111 _Auto
orre.3 598,495 (57%) 2,301,585 (74%) 3.85 922 160 L1 MS 18 1 012 _LARp_to_r.4 390,385 (57%) 634,917 (74%) 1.63 3,688 8 L1 D 66 1 413 _RPE_grid_.12 376,710 (57%) 800,296 (74%) 2.12 3,688 13 L1 W 17 1 314 _Cal
ulati.42 324,544 (58%) 1,342,432 (75%) 4.14 3,688 40 L1 MS 9 1 015 _Auto
orre.51 276,146 (58%) 434,473 (75%) 1.57 247 160 L1 W 11 1 116 _APCM_quan.3 236,032 (58%) 894,977 (75%) 3.79 3,688 13 L1 MS 20 1 017 _Auto
orre.24 189,336 (59%) 282,436 (76%) 1.49 196 160 L1 MS 9 1 118 _Coe�
ie.4 168,338 (59%) 211,138 (76%) 1.25 922 8 L1 MS 32 3 219 _Coe�
ie.4 167,804 (59%) 211,138 (76%) 1.26 922 8 L1 MS 32 3 220 _RPE_grid_.9 154,896 (59%) 435,184 (76%) 2.81 3,688 13 L1 MS 9 1 121 _Coe�
ie.4 84,824 (59%) 135,534 (76%) 1.60 922 8 L1 MS 20 2 122 _Auto
orre.45 56,242 (59%) 98,654 (76%) 1.75 922 9 L1 W 12 1 123 _Auto
orre.27 49,266 (59%) 73,491 (76%) 1.49 51 160 L1 MS 9 1 124 _Auto
orre.38 39,646 (59%) 65,462 (76%) 1.65 922 9 L1 W 8 0 125 _Re�e
tio.18 36,880 (59%) 75,604 (76%) 2.05 922 9 L1 MS 9 1 126 _RPE_grid_.30 28,233 (59%) 34,255 (76%) 1.21 1,404 1 L1 W 13 0 127 _Re�e
tio.22 27,660 (59%) 67,306 (76%) 2.43 922 9 L1 MS 8 1 128 _Coe�
ie.4 24,894 (59%) 52,554 (76%) 2.11 922 8 L1 MS 7 1 129 _APCM_quan.7 22,801 (60%) 30,745 (76%) 1.35 1,516 1 L1 W 13 0 030 _Re�e
tio.20 22,128 (60%) 52,554 (76%) 2.38 922 7 L1 MS 8 1 1Table A.5. Gsm_en
 innermost loops listDes
ription of the most representative loopsLOOP_0 _Short_term_analysis_.5Program: gsm_en
File: short_term.
Fun
tion: Short_term_analysis_Header blo
k: HB_5Loop blo
ks: HB_5Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 147520Iterations: 1180160Iter/Invo
: 8Operations: 51484480 (21.82%)Cy
les: 18440000 (20.01%)Ops/Cy
: 2.79Stall 
y
les: 1180160 (6.40%)S
heduling Re
MII ResMII II ESCHB_5 13 6 13 1S
hed length: 117



134 Appendix A. Loop Statisti
sOperation breakdownDynami
 
ounts Stati
 
ountsLoad: 2360320 (5%) 2 (4%)Store: 1180160 (2%) 1 (2%)iAlu: 41305600 (80%) 39 (83%)fAlu: 0 (0%) 0 (0%)Cmpp: 5310720 (10%) 4 (9%)Pbr: 0 (0%) 0 (0%)Bran
h: 1327680 (3%) 1 (2%)Total: 51484480 47Memory operations Size Stride Group nOps gSize gStrL_27 2 1L_30 2 1S_35 2 1LOOP_1 _Cal
ulation_of_the_L.27Program: gsm_en
File: long_term.
Fun
tion: Cal
ulation_of_the_LHeader blo
k: HB_27Loop blo
ks: HB_27Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 3688Iterations: 298728Iter/Invo
: 81Operations: 88104845 (37.34%)Cy
les: 11152512 (12.10%)Ops/Cy
: 7.90Stall 
y
les: 0 (0.00%)S
heduling Re
MII ResMII II ESCHB_27 2 36 36 3S
hed length: 3024Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 15533856 (17%) 52 (17%)Store: 15388 (0%) 1 (0%)iAlu: 75325620 (82%) 255 (82%)fAlu: 0 (0%) 0 (0%)Cmpp: 309792 (0%) 1 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 309792 (0%) 1 (0%)Total: 88104845 310Memory operations Size Stride Group nOps gSize gStrL_111 2 -1 G_111 40 80 1L_118 2 -1 "L_126 2 -1 "L_134 2 -1 "L_142 2 -1 "L_150 2 -1 "L_158 2 -1 "L_166 2 -1 "L_174 2 -1 "L_182 2 -1 "L_190 2 -1 "L_198 2 -1 "L_206 2 -1 "L_214 2 -1 "L_222 2 -1 "L_230 2 -1 "



A.5. Gsm_en
 135L_238 2 -1 "L_246 2 -1 "L_254 2 -1 "L_262 2 -1 "L_270 2 -1 "L_278 2 -1 "L_286 2 -1 "L_294 2 -1 "L_302 2 -1 "L_310 2 -1 "L_318 2 -1 "L_326 2 -1 "L_334 2 -1 "L_342 2 -1 "L_350 2 -1 "L_358 2 -1 "L_366 2 -1 "L_374 2 -1 "L_382 2 -1 "L_390 2 -1 "L_398 2 -1 "L_406 2 -1 "L_414 2 -1 "L_422 2 -1 "Dynami
 
ount Stati
 
ountSpill: 3600124 (4%) 13 (4%)LOOP_2 _Auto
orrelation_lp
_.42Program: gsm_en
File: lp
.
Fun
tion: Auto
orrelation_lp
_Header blo
k: BB_42Loop blo
ks: BB_42Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 922Iterations: 140144Iter/Invo
: 152Operations: 11632874 (4.93%)Cy
les: 10438884 (11.33%)Ops/Cy
: 1.11Stall 
y
les: 0 (0.00%)S
heduling Re
MII ResMII II ESCBB_42 74 11 74 1S
hed length: 11322Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 2522592 (22%) 18 (22%)Store: 1261296 (11%) 9 (11%)iAlu: 7707920 (66%) 55 (66%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 141066 (1%) 1 (1%)Total: 11632874 83Memory operations Size Stride Group nOps gSize gStrL_442 4 0 G_442 9 36 1L_449 4 0 "L_456 4 0 "L_463 4 0 "L_470 4 0 "



136 Appendix A. Loop Statisti
sL_477 4 0 "L_484 4 0 "L_491 4 0 "L_498 4 0 "L_440 2 1 G_501 9 18 1L_452 2 1 "L_459 2 1 "L_466 2 1 "L_473 2 1 "L_480 2 1 "L_487 2 1 "L_494 2 1 "L_501 2 1 "S_448 4 0 G_448 9 36 1S_455 4 0 "S_462 4 0 "S_469 4 0 "S_476 4 0 "S_483 4 0 "S_490 4 0 "S_497 4 0 "S_504 4 0 "LOOP_3 _Weighting_�lter_rpe.3Program: gsm_en
File: rpe.
Fun
tion: Weighting_�lter_rpeHeader blo
k: HB_3Loop blo
ks: HB_3Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 3688Iterations: 147520Iter/Invo
: 40Operations: 8124664 (3.44%)Cy
les: 4259728 (4.62%)Ops/Cy
: 1.91Stall 
y
les: 781944 (18.36%)S
heduling Re
MII ResMII II ESCHB_3 22 8 23 1S
hed length: 943Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 1327680 (16%) 9 (16%)Store: 147520 (2%) 1 (2%)iAlu: 6195840 (76%) 44 (77%)fAlu: 0 (0%) 0 (0%)Cmpp: 302416 (4%) 2 (4%)Pbr: 0 (0%) 0 (0%)Bran
h: 151208 (2%) 1 (2%)Total: 8124664 57Memory operations Size Stride Group nOps gSize gStrL_14 2 1L_20 2 1L_26 2 1L_32 2 1L_38 2 1L_44 2 1L_50 2 1L_56 2 1L_62 2 1



A.5. Gsm_en
 137S_77 2 1LOOP_4 _Long_term_analysis_f.8Program: gsm_en
File: long_term.
Fun
tion: Long_term_analysis_fHeader blo
k: HB_8Loop blo
ks: HB_8Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 3688Iterations: 147520Iter/Invo
: 40Operations: 2961464 (1.26%)Cy
les: 2721744 (2.95%)Ops/Cy
: 1.09Stall 
y
les: 0 (0.00%)S
heduling Re
MII ResMII II ESCHB_8 18 3 18 1S
hed length: 738Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 295040 (10%) 2 (9%)Store: 295040 (10%) 2 (9%)iAlu: 1917760 (65%) 15 (68%)fAlu: 0 (0%) 0 (0%)Cmpp: 302416 (10%) 2 (9%)Pbr: 0 (0%) 0 (0%)Bran
h: 151208 (5%) 1 (5%)Total: 2961464 22Memory operations Size Stride Group nOps gSize gStrL_36 2 1L_43 2 1S_41 2 1S_58 2 1LOOP_5 _Gsm_Coder.5Program: gsm_en
File: 
ode.
Fun
tion: Gsm_CoderHeader blo
k: HB_5Loop blo
ks: HB_5Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 3688Iterations: 147520Iter/Invo
: 40Operations: 2371384 (1.01%)Cy
les: 1360872 (1.48%)Ops/Cy
: 1.74Stall 
y
les: 0 (0.00%)S
heduling Re
MII ResMII II ESCHB_5 9 3 9 1S
hed length: 369Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 295040 (12%) 2 (11%)



138 Appendix A. Loop Statisti
sStore: 147520 (6%) 1 (6%)iAlu: 1475200 (62%) 12 (67%)fAlu: 0 (0%) 0 (0%)Cmpp: 302416 (13%) 2 (11%)Pbr: 0 (0%) 0 (0%)Bran
h: 151208 (6%) 1 (6%)Total: 2371384 18Memory operations Size Stride Group nOps gSize gStrL_80 2 1L_82 2 1S_96 2 1LOOP_6 _Re�e
tion_
oe�
ie.52Program: gsm_en
File: lp
.
Fun
tion: Re�e
tion_
oe�
ieHeader blo
k: HB_52Loop blo
ks: HB_52Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 6454Iterations: 25816Iter/Invo
: 4Operations: 1219806 (0.52%)Cy
les: 1097180 (1.19%)Ops/Cy
: 1.11Stall 
y
les: 0 (0.00%)S
heduling Re
MII ResMII II ESCHB_52 34 7 34 1S
hed length: 170Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 154896 (13%) 6 (12%)Store: 51632 (4%) 2 (4%)iAlu: 851928 (70%) 37 (74%)fAlu: 0 (0%) 0 (0%)Cmpp: 129080 (11%) 4 (8%)Pbr: 0 (0%) 0 (0%)Bran
h: 32270 (3%) 1 (2%)Total: 1219806 50Memory operations Size Stride Group nOps gSize gStrL_194 2 1L_195 2 0L_203 2 1L_224 2 1L_225 2 0L_232 2 1S_220 2 1S_249 2 1



A.6. Gsm_de
 139A.6 Gsm_de
Innermost loops list# Loop name Dyn Cy
 (%a

) Dyn Ops (%a

) OPC Inv Iter Nest Cat Ops LDs STs1 _Short_ter.6 70,375,431 (82%) 102,670,232 (82%) 1.46 3,688 320 L1 W 131 19 132 _Postpro
e.4 4,276,812 (87%) 4,867,238 (85%) 1.14 922 160 L1 W 37 1 13 _Gsm_Long_.16 2,602,389 (90%) 3,108,984 (88%) 1.19 3,688 40 L1 M 23 2 14 _Gsm_Long_.24 1,339,309 (91%) 3,101,608 (90%) 2.32 3,688 120 L1 M 7 1 15 _Gsm_De
od.5 453,705 (92%) 1,036,328 (91%) 2.28 3,688 40 L2 M 7 1 16 _LARp_to_r.4 390,385 (92%) 634,917 (92%) 1.63 3,688 8 L1 D 66 1 47 _RPE_grid_.12 376,710 (93%) 800,296 (92%) 2.12 3,688 13 L1 W 17 1 38 _Coe�
ie.4 168,338 (93%) 211,138 (92%) 1.25 922 8 L1 M 32 3 29 _Coe�
ie.4 167,804 (93%) 211,138 (93%) 1.26 922 8 L1 M 32 3 210 _Coe�
ie.4 84,824 (93%) 135,534 (93%) 1.60 922 8 L1 M 20 2 111 _RPE_grid_.30 28,233 (93%) 34,255 (93%) 1.21 1,404 1 L1 W 13 0 112 _Coe�
ie.4 24,894 (93%) 52,554 (93%) 2.11 922 8 L1 M 7 1 113 _APCM_quan.7 22,801 (93%) 30,745 (93%) 1.35 1,516 1 L1 W 13 0 0Table A.6. Gsm_de
 innermost loops listDes
ription of the most representative loopsLOOP_0 _Short_term_synthesis.6Program: gsm_de
File: short_term.
Fun
tion: Short_term_synthesisHeader blo
k: HB_6Loop blo
ks: HB_6 HB_31Nesting level: 1Innermost: yesCategory: WHILE_LOOPInvo
ations: 3688Iterations: 1180160Iter/Invo
: 320Operations: 102670232 (81.53%)Cy
les: 70375431 (81.84%)Ops/Cy
: 1.46Stall 
y
les: 753367 (1.07%)S
heduling wsl pesl per wgtHB_6 56.75 57 0.88 1180160HB_31 17.95 18 0.97 147520S
hed length: 18878Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 13129280 (13%) 19 (14%)Store: 10178880 (10%) 13 (10%)iAlu: 64613760 (63%) 82 (63%)fAlu: 0 (0%) 0 (0%)Cmpp: 9588800 (9%) 9 (7%)Pbr: 2655360 (3%) 4 (3%)Bran
h: 2504152 (2%) 4 (3%)Total: 102670232 131Memory operations Size Stride Group nOps gSize gStrL_31 2 -L_34 2 -L_190 2 1S_114 2 -



140 Appendix A. Loop Statisti
sS_122 2 0S_129 2 1Dynami
 
ount Stati
 
ountSpill: 19325120 (19%) 26 (20%)LOOP_1 _Postpro
essing_de
od.4Program: gsm_de
File: de
ode.
Fun
tion: Postpro
essing_de
odHeader blo
k: HB_4Loop blo
ks: HB_4Nesting level: 1Innermost: yesCategory: WHILE_LOOPInvo
ations: 922Iterations: 147520Iter/Invo
: 160Operations: 4867238 (3.86%)Cy
les: 4276812 (4.97%)Ops/Cy
: 1.14Stall 
y
les: 576 (0.01%)S
heduling wsl pesl per wgtHB_4 28.99 29 0.99 147520S
hed length: 4638Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 147520 (3%) 1 (3%)Store: 147520 (3%) 1 (3%)iAlu: 3245440 (67%) 26 (70%)fAlu: 0 (0%) 0 (0%)Cmpp: 737600 (15%) 5 (14%)Pbr: 295040 (6%) 2 (5%)Bran
h: 294118 (6%) 2 (5%)Total: 4867238 37Memory operations Size Stride Group nOps gSize gStrL_21 2 1S_54 2 1LOOP_2 _Gsm_Long_Term_Synthe.16Program: gsm_de
File: long_term.
Fun
tion: Gsm_Long_Term_SyntheHeader blo
k: HB_16Loop blo
ks: HB_16Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 3688Iterations: 147520Iter/Invo
: 40Operations: 3108984 (2.47%)Cy
les: 2602389 (3.03%)Ops/Cy
: 1.19Stall 
y
les: 31853 (1.22%)S
heduling Re
MII ResMII II ESCHB_16 17 3 17 1S
hed length: 697Operation breakdownDynami
 
ounts Stati
 
ounts



A.6. Gsm_de
 141Load: 295040 (9%) 2 (9%)Store: 147520 (5%) 1 (4%)iAlu: 2212800 (71%) 17 (74%)fAlu: 0 (0%) 0 (0%)Cmpp: 302416 (10%) 2 (9%)Pbr: 0 (0%) 0 (0%)Bran
h: 151208 (5%) 1 (4%)Total: 3108984 23Memory operations Size Stride Group nOps gSize gStrL_73 2 1L_79 2 1S_95 2 1LOOP_3 _Gsm_Long_Term_Synthe.24Program: gsm_de
File: long_term.
Fun
tion: Gsm_Long_Term_SyntheHeader blo
k: BB_24Loop blo
ks: BB_24Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 3688Iterations: 442560Iter/Invo
: 120Operations: 3101608 (2.46%)Cy
les: 1339309 (1.56%)Ops/Cy
: 2.32Stall 
y
les: 565 (0.04%)S
heduling Re
MII ResMII II ESCBB_24 3 1 3 1S
hed length: 363Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 442560 (14%) 1 (14%)Store: 442560 (14%) 1 (14%)iAlu: 1770240 (57%) 4 (57%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 446248 (14%) 1 (14%)Total: 3101608 7Memory operations Size Stride Group nOps gSize gStrL_103 2 1S_106 2 1



142 Appendix A. Loop Statisti
sA.7 Epi
_en
Innermost loops list# Loop name Dyn Cy
 (%a

) Dyn Ops (%a

) OPC Inv Iter Nest Cat Ops LDs STs1 _internal_.75 24,301,056 (33%) 29,508,864 (39%) 1.21 1,243,968 1 L4 M 11 2 02 _internal_.73 7,463,808 (43%) 3,731,904 (44%) 0.50 1,243,968 1 L4 W 7 0 03 _quantize_.11 1,617,596 (45%) 1,145,883 (46%) 0.71 13 5,041 L1 M 19 3 14 _main.5 1,048,577 (46%) 1,245,184 (47%) 1.19 1 65,536 L1 W 19 5 15 _internal_.71 937,344 (48%) 1,093,568 (49%) 1.17 156,224 1 L3 W 15 0 16 _internal_.127 920,832 (49%) 849,408 (50%) 0.92 56,096 1 L4 M 11 2 07 _internal_.26 920,832 (50%) 849,408 (51%) 0.92 56,096 1 L3 M 11 2 08 _en
ode_st.7 547,930 (51%) 951,819 (52%) 1.74 13,998 3 L2 W 22 3 29 _internal_.58 471,552 (51%) 809,088 (53%) 1.72 16,256 4 L4 M 11 2 010 _internal_.93 471,552 (52%) 809,088 (54%) 1.72 16,256 4 L4 M 11 2 011 _run_lengt.5 438,094 (53%) 398,944 (55%) 0.91 3,072 18 L2 W 7 1 012 _quantize_.3 408,868 (53%) 557,019 (56%) 1.36 13 5,041 L1 M 10 1 013 _internal_.16 342,722 (54%) 412,808 (56%) 1.20 7,201 3 L2 W 21 2 214 _internal_.125 336,576 (54%) 168,288 (57%) 0.50 56,096 1 L4 W 7 0 015 _internal_.24 336,576 (55%) 168,288 (57%) 0.50 56,096 1 L3 W 7 0 016 _re�e
t1.108 181,602 (55%) 514,656 (57%) 2.83 6,696 1 L2 M 41 2 117 _hu�man_e.3 129,321 (55%) 262,145 (58%) 2.03 1 65,536 L1 M 4 0 118 _internal_.4 129,168 (55%) 53,820 (58%) 0.42 7,201 1 L2 W 5 0 019 _internal_.56 97,536 (55%) 48,768 (58%) 0.50 16,256 1 L4 W 7 0 020 _internal_.91 97,536 (55%) 48,768 (58%) 0.50 16,256 1 L4 W 7 0 021 _re�e
t1.36 40,176 (56%) 26,784 (58%) 0.67 6,696 1 L2 W 7 0 022 _internal_.54 27,648 (56%) 32,256 (58%) 1.17 4,608 1 L3 W 15 0 123 _internal_.89 27,648 (56%) 18,432 (58%) 0.67 4,608 1 L3 W 12 0 124 _internal_.123 24,768 (56%) 16,512 (58%) 0.67 4,128 1 L3 W 12 0 125 _internal_.22 24,768 (56%) 16,512 (58%) 0.67 4,128 1 L2 W 14 1 126 _internal_.11 17,664 (56%) 18,816 (58%) 1.07 992 1 L3 M 11 2 027 _internal_.112 17,664 (56%) 18,816 (58%) 1.07 992 1 L3 M 11 2 028 _internal_.142 17,664 (56%) 18,816 (58%) 1.07 992 1 L3 M 11 2 029 _internal_.41 17,664 (56%) 18,816 (58%) 1.07 992 1 L2 M 11 2 030 _internal_.69 15,984 (56%) 17,760 (58%) 1.11 1,776 1 L2 W 20 4 031 _insert_in.13 15,605 (56%) 16,320 (58%) 1.05 106 14 L1 W 11 3 032 _re�e
t1.21 10,368 (56%) 49,248 (58%) 4.75 648 15 L1 M 5 0 133 _internal_.110 5,952 (56%) 2,976 (58%) 0.50 992 1 L3 W 7 0 034 _internal_.140 5,952 (56%) 2,976 (58%) 0.50 992 1 L3 W 7 0 035 _internal_.39 5,952 (56%) 2,976 (58%) 0.50 992 1 L2 W 7 0 036 _internal_.9 5,952 (56%) 2,976 (58%) 0.50 992 1 L3 W 7 0 037 _pa
k_tree.4 1,035 (56%) 1,449 (58%) 1.40 69 2 L1 M 10 2 238 _parse_epi.90 117 (56%) 85 (58%) 0.73 1 4 L1 W 22 3 1Table A.7. Epi
_en
 innermost loops listDes
ription of the most representative loopsLOOP_0 _internal_�lter.75Program: epi
_en
File: 
onvolve.
Fun
tion: internal_�lterHeader blo
k: HB_75Loop blo
ks: HB_75Nesting level: 4Innermost: yesCategory: MOD_SCHEDInvo
ations: 1243968Iterations: 2343360



A.7. Epi
_en
 143Iter/Invo
: 2Operations: 29508864 (39.22%)Cy
les: 24301056 (32.72%)Ops/Cy
: 1.21Stall 
y
les: 0 (0.00%)S
heduling Re
MII ResMII II ESCHB_75 4 2 4 3S
hed length: 20Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 4686720 (16%) 2 (18%)Store: 0 (0%) 0 (0%)iAlu: 11716800 (40%) 5 (45%)fAlu: 7030080 (24%) 3 (27%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 6075264 (21%) 1 (9%)Total: 29508864 11Memory operations Size Stride Group nOps gSize gStrL_322 4 1L_324 4 1LOOP_1 _internal_�lter.73Program: epi
_en
File: 
onvolve.
Fun
tion: internal_�lterHeader blo
k: HB_73Loop blo
ks: HB_73Nesting level: 4Innermost: yesCategory: WHILE_LOOPInvo
ations: 1243968Iterations: 1243968Iter/Invo
: 1Operations: 3731904 (4.96%)Cy
les: 7463808 (10.05%)Ops/Cy
: 0.50Stall 
y
les: 0 (0.00%)S
heduling wsl pesl per wgtHB_73 6.00 6 1.00 1243968S
hed length: 6Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 0 (0%) 0 (0%)Store: 0 (0%) 0 (0%)iAlu: 1243968 (33%) 3 (43%)fAlu: 0 (0%) 0 (0%)Cmpp: 2487936 (67%) 2 (29%)Pbr: 0 (0%) 1 (14%)Bran
h: 0 (0%) 1 (14%)Total: 3731904 7Memory operations Size Stride Group nOps gSize gStrLOOP_2 _quantize_image.11Program: epi
_en
File: quantize.
Fun
tion: quantize_imageHeader blo
k: HB_11



144 Appendix A. Loop Statisti
sLoop blo
ks: HB_11Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 13Iterations: 65536Iter/Invo
: 5041Operations: 1145883 (1.52%)Cy
les: 1617596 (2.18%)Ops/Cy
: 0.71Stall 
y
les: 44420 (2.75%)S
heduling Re
MII ResMII II ESCHB_11 24 3 24 1S
hed length: 121014Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 163499 (14%) 3 (16%)Store: 65536 (6%) 1 (5%)iAlu: 491179 (43%) 8 (42%)fAlu: 294571 (26%) 5 (26%)Cmpp: 65549 (6%) 1 (5%)Pbr: 0 (0%) 0 (0%)Bran
h: 65549 (6%) 1 (5%)Total: 1145883 19Memory operations Size Stride Group nOps gSize gStrL_56 4 1L_133 8 0L_135 8 0S_71 2 1LOOP_3 _main.5Program: epi
_en
File: epi
.
Fun
tion: mainHeader blo
k: HB_5Loop blo
ks: HB_5Nesting level: 1Innermost: yesCategory: WHILE_LOOPInvo
ations: 1Iterations: 65536Iter/Invo
: 65536Operations: 1245184 (1.66%)Cy
les: 1048577 (1.41%)Ops/Cy
: 1.19Stall 
y
les: 0 (0.00%)S
heduling wsl pesl per wgtHB_5 16.00 16 1.00 65536S
hed length:1048577Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 327680 (26%) 5 (26%)Store: 65536 (5%) 1 (5%)iAlu: 589824 (47%) 9 (47%)fAlu: 65536 (5%) 1 (5%)Cmpp: 65536 (5%) 1 (5%)Pbr: 65536 (5%) 1 (5%)Bran
h: 65536 (5%) 1 (5%)Total: 1245184 19Memory operations



A.7. Epi
_en
 145Size Stride Group nOps gSize gStrL_88 4 0L_90 4 -L_99 4 0L_100 4 0L_686 4 0S_96 4 -LOOP_4 _internal_�lter.71Program: epi
_en
File: 
onvolve.
Fun
tion: internal_�lterHeader blo
k: HB_71Loop blo
ks: HB_71Nesting level: 3Innermost: yesCategory: WHILE_LOOPInvo
ations: 156224Iterations: 156224Iter/Invo
: 1Operations: 1093568 (1.45%)Cy
les: 937344 (1.26%)Ops/Cy
: 1.17Stall 
y
les: 0 (0.00%)S
heduling wsl pesl per wgtHB_71 6.00 6 1.00 156224S
hed length: 6Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 0 (0%) 0 (0%)Store: 0 (0%) 1 (7%)iAlu: 624896 (57%) 9 (60%)fAlu: 156224 (14%) 1 (7%)Cmpp: 312448 (29%) 2 (13%)Pbr: 0 (0%) 1 (7%)Bran
h: 0 (0%) 1 (7%)Total: 1093568 15Memory operations Size Stride Group nOps gSize gStrS_343 4 1LOOP_5 _internal_�lter.127Program: epi
_en
File: 
onvolve.
Fun
tion: internal_�lterHeader blo
k: HB_127Loop blo
ks: HB_127Nesting level: 4Innermost: yesCategory: MOD_SCHEDInvo
ations: 56096Iterations: 61920Iter/Invo
: 1Operations: 849408 (1.13%)Cy
les: 920832 (1.24%)Ops/Cy
: 0.92Stall 
y
les: 0 (0.00%)S
heduling Re
MII ResMII II ESCHB_127 4 2 4 3S
hed length: 16



146 Appendix A. Loop Statisti
sOperation breakdownDynami
 
ounts Stati
 
ountsLoad: 123840 (15%) 2 (18%)Store: 0 (0%) 0 (0%)iAlu: 309600 (36%) 5 (45%)fAlu: 185760 (22%) 3 (27%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 230208 (27%) 1 (9%)Total: 849408 11Memory operations Size Stride Group nOps gSize gStrL_495 4 1L_497 4 1LOOP_6 _internal_�lter.26Program: epi
_en
File: 
onvolve.
Fun
tion: internal_�lterHeader blo
k: HB_26Loop blo
ks: HB_26Nesting level: 3Innermost: yesCategory: MOD_SCHEDInvo
ations: 56096Iterations: 61920Iter/Invo
: 1Operations: 849408 (1.13%)Cy
les: 920832 (1.24%)Ops/Cy
: 0.92Stall 
y
les: 0 (0.00%)S
heduling Re
MII ResMII II ESCHB_26 4 2 4 3S
hed length: 16Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 123840 (15%) 2 (18%)Store: 0 (0%) 0 (0%)iAlu: 309600 (36%) 5 (45%)fAlu: 185760 (22%) 3 (27%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 230208 (27%) 1 (9%)Total: 849408 11Memory operations Size Stride Group nOps gSize gStrL_151 4 1L_153 4 1



A.8. Epi
_de
 147A.8 Epi
_de
Innermost loops list# Loop name Dyn Cy
 (%a

) Dyn Ops (%a

) OPC Inv Iter Nest Cat Ops LDs STs1 _unquantiz.3 1,289,469 (18%) 1,114,151 (13%) 0.86 13 5,041 L1 M 21 1 32 _main.18 1,179,666 (34%) 1,114,015 (25%) 0.94 1 65,536 L1 M 19 4 33 _
ollapse_.9 626,525 (43%) 1,149,793 (38%) 1.84 236 90 L3 M 54 10 94 _
ollapse_.56 412,965 (49%) 855,097 (47%) 2.07 3,254 1 L6 W 214 50 405 _
ollapse_.147 364,726 (54%) 577,318 (54%) 1.58 235 90 L3 W 212 48 386 _internal_.16 345,804 (59%) 412,808 (59%) 1.19 7,201 3 L2 W 21 2 27 _
ollapse_.102 224,085 (62%) 463,910 (64%) 2.07 1,949 1 L4 W 214 50 408 _internal_.4 191,592 (65%) 53,820 (64%) 0.28 7,201 1 L2 W 5 0 09 _write_pgm.3 131,074 (67%) 458,753 (70%) 3.50 1 65,536 L1 M 7 1 110 _
ollapse_.4 87,628 (68%) 348,164 (73%) 3.97 4 21,760 L2 M 4 0 111 _run_lengt.6 62,704 (69%) 290,676 (77%) 4.64 5,711 9 L2 M 5 0 112 _
ollapse_.191 43,014 (69%) 129,027 (78%) 3.00 3 7,168 L2 M 6 1 113 _
ollapse_.263 17,001 (69%) 35,872 (79%) 2.11 236 1 L3 W 165 29 2614 _
ollapse_.268 14,632 (70%) 32,096 (79%) 2.19 236 1 L3 W 151 22 2615 _
ollapse_.273 14,632 (70%) 32,096 (79%) 2.19 236 1 L3 W 151 22 2616 _
ollapse_.278 14,632 (70%) 32,096 (80%) 2.19 236 1 L3 W 151 22 2617 _
ollapse_.19 4,849 (70%) 8,976 (80%) 1.85 4 59 L2 M 38 7 618 _
ollapse_.72 4,800 (70%) 7,374 (80%) 1.54 4 59 L2 M 38 7 619 _
ollapse_.125 4,800 (70%) 7,246 (80%) 1.51 4 59 L2 M 38 7 620 _
ollapse_.178 4,800 (70%) 7,230 (80%) 1.51 4 59 L2 M 38 7 621 _
ollapse_.171 4,800 (70%) 7,146 (80%) 1.49 4 59 L2 M 38 7 622 _
ollapse_.65 4,800 (70%) 6,876 (80%) 1.43 4 59 L2 M 38 7 623 _
ollapse_.118 3,840 (71%) 6,913 (80%) 1.80 4 59 L2 M 37 7 624 _
ollapse_.26 3,153 (71%) 8,032 (80%) 2.55 4 59 L2 M 34 7 625 _
ollapse_.33 2,645 (71%) 5,436 (80%) 2.06 4 59 L2 M 23 4 326 _
ollapse_.79 2,640 (71%) 4,611 (80%) 1.75 4 59 L2 M 23 4 327 _
ollapse_.86 2,640 (71%) 4,403 (80%) 1.67 4 59 L2 M 21 4 328 _
ollapse_.40 2,400 (71%) 5,200 (81%) 2.17 4 59 L2 M 22 4 329 _
ollapse_.132 2,400 (71%) 4,618 (81%) 1.92 4 59 L2 M 22 4 330 _
ollapse_.164 2,400 (71%) 4,546 (81%) 1.89 4 59 L2 M 22 4 331 _
ollapse_.111 1,440 (71%) 4,341 (81%) 3.01 4 59 L2 M 23 4 332 _
ollapse_.157 1,200 (71%) 4,105 (81%) 3.42 4 59 L2 M 22 4 3Table A.8. Epi
_de
 innermost loops listDes
ription of the most representative loopsLOOP_0 _unquantize_image.3Program: epi
_de
File: quantize.
Fun
tion: unquantize_imageHeader blo
k: HB_3Loop blo
ks: HB_3Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 13Iterations: 65536Iter/Invo
: 5041Operations: 1114151 (12.50%)Cy
les: 1289469 (18.00%)Ops/Cy
: 0.86Stall 
y
les: 44038 (3.42%)S
heduling Re
MII ResMII II ESC



148 Appendix A. Loop Statisti
sHB_3 19 3 19 1S
hed length: 95802Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 65536 (6%) 1 (5%)Store: 65536 (6%) 3 (14%)iAlu: 458752 (41%) 9 (43%)fAlu: 327680 (29%) 5 (24%)Cmpp: 131098 (12%) 2 (10%)Pbr: 0 (0%) 0 (0%)Bran
h: 65549 (6%) 1 (5%)Total: 1114151 21Memory operations Size Stride Group nOps gSize gStrL_22 2 1S_32 4 1S_45 4 1S_48 4 1LOOP_1 _main.18Program: epi
_de
File: unepi
.
Fun
tion: mainHeader blo
k: HB_18Loop blo
ks: HB_18Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 1Iterations: 65536Iter/Invo
: 65536Operations: 1114015 (12.50%)Cy
les: 1179666 (16.46%)Ops/Cy
: 0.94Stall 
y
les: 0 (0.00%)S
heduling Re
MII ResMII II ESCHB_18 18 3 18 1S
hed length:1179666Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 262094 (24%) 4 (21%)Store: 65536 (6%) 3 (16%)iAlu: 327630 (29%) 5 (26%)fAlu: 262144 (24%) 4 (21%)Cmpp: 131074 (12%) 2 (11%)Pbr: 0 (0%) 0 (0%)Bran
h: 65537 (6%) 1 (5%)Total: 1114015 19Memory operations Size Stride Group nOps gSize gStrL_390 4 1L_392 8 0L_652 8 0L_654 8 0S_398 4 1S_403 4 1S_408 4 1LOOP_2 _
ollapse_pyr.9Program: epi
_de
File: 
ollapse_pyr.




A.8. Epi
_de
 149Fun
tion: 
ollapse_pyrHeader blo
k: HB_9Loop blo
ks: HB_9Nesting level: 3Innermost: yesCategory: MOD_SCHEDInvo
ations: 236Iterations: 21284Iter/Invo
: 90Operations: 1149793 (12.90%)Cy
les: 626525 (8.74%)Ops/Cy
: 1.84Stall 
y
les: 2445 (0.39%)S
heduling Re
MII ResMII II ESCHB_9 28 7 29 1S
hed length: 2644Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 212840 (19%) 10 (19%)Store: 191547 (17%) 9 (17%)iAlu: 702366 (61%) 33 (61%)fAlu: 0 (0%) 0 (0%)Cmpp: 21520 (2%) 1 (2%)Pbr: 0 (0%) 0 (0%)Bran
h: 21520 (2%) 1 (2%)Total: 1149793 54Memory operations Size Stride Group nOps gSize gStrL_47 4 1L_51 4 2L_60 4 2L_67 4 2L_77 4 2L_86 4 2L_93 4 2L_104 4 2L_110 4 2L_117 4 2S_54 4 2 G_64 3 12 1S_64 4 2 "S_71 4 2 "S_80 4 2 G_90 3 12 1S_90 4 2 "S_97 4 2 "S_107 4 2 G_114 3 12 1S_114 4 2 "S_121 4 2 "LOOP_3 _
ollapse_pyr.56Program: epi
_de
File: 
ollapse_pyr.
Fun
tion: 
ollapse_pyrHeader blo
k: HB_56Loop blo
ks: HB_56Nesting level: 6Innermost: yesCategory: WHILE_LOOPInvo
ations: 3254Iterations: 3996Iter/Invo
: 1Operations: 855097 (9.59%)Cy
les: 412965 (5.76%)Ops/Cy
: 2.07



150 Appendix A. Loop Statisti
sStall 
y
les: 0 (0.00%)S
heduling wsl pesl per wgtHB_56 103.78 104 0.80 3996S
hed length: 127Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 199800 (23%) 50 (23%)Store: 159840 (19%) 40 (19%)iAlu: 471528 (55%) 118 (55%)fAlu: 0 (0%) 0 (0%)Cmpp: 7992 (1%) 2 (1%)Pbr: 7992 (1%) 2 (1%)Bran
h: 7945 (1%) 2 (1%)Total: 855097 214Memory operations Size Stride Group nOps gSize gStrL_466 4 -L_475 4 -L_482 4 -L_492 4 -L_501 4 -L_508 4 -L_519 4 -L_525 4 -L_532 4 -L_3497 4 1S_469 4 - G_479 3 12 1S_479 4 - "S_486 4 - "S_495 4 - G_505 3 12 1S_505 4 - "S_512 4 - "S_522 4 - G_529 3 12 1S_529 4 - "S_536 4 - "Dynami
 
ount Stati
 
ountSpill: 283716 (33%) 71 (33%)LOOP_4 _
ollapse_pyr.147Program: epi
_de
File: 
ollapse_pyr.
Fun
tion: 
ollapse_pyrHeader blo
k: HB_147Loop blo
ks: HB_147 HB_148Nesting level: 3Innermost: yesCategory: WHILE_LOOPInvo
ations: 235Iterations: 21284Iter/Invo
: 90Operations: 577318 (6.48%)Cy
les: 364726 (5.09%)Ops/Cy
: 1.58Stall 
y
les: 0 (0.00%)S
heduling wsl pesl per wgtHB_147 8.66 9 0.90 21284HB_148 97.98 98 0.99 1841S
hed length: 1546Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 107811 (19%) 48 (23%)Store: 69958 (12%) 38 (18%)



A.8. Epi
_de
 151iAlu: 266362 (46%) 115 (54%)fAlu: 0 (0%) 0 (0%)Cmpp: 42568 (7%) 3 (1%)Pbr: 46250 (8%) 4 (2%)Bran
h: 44369 (8%) 4 (2%)Total: 577318 212Memory operations Size Stride Group nOps gSize gStrL_1296 4 1L_1300 4 -L_1309 4 -L_1316 4 -L_1326 4 -L_1335 4 -L_1342 4 -L_1353 4 -L_1359 4 -L_1366 4 -S_1303 4 - G_1313 3 12 1S_1313 4 - "S_1320 4 - "S_1329 4 - G_1339 3 12 1S_1339 4 - "S_1346 4 - "S_1356 4 - G_1363 3 12 1S_1363 4 - "S_1370 4 - "Dynami
 
ount Stati
 
ountSpill: 123347 (21%) 67 (32%)LOOP_5 _internal_int_transpo.16Program: epi
_de
File: 
ollapse_pyr.
Fun
tion: internal_int_transpoHeader blo
k: HB_16Loop blo
ks: HB_16Nesting level: 2Innermost: yesCategory: WHILE_LOOPInvo
ations: 7201Iterations: 21752Iter/Invo
: 3Operations: 412808 (4.63%)Cy
les: 345804 (4.83%)Ops/Cy
: 1.19Stall 
y
les: 74048 (21.41%)S
heduling wsl pesl per wgtHB_16 12.33 12 0.67 21748S
hed length: 37Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 43504 (11%) 2 (10%)Store: 21520 (5%) 2 (10%)iAlu: 195528 (47%) 10 (48%)fAlu: 0 (0%) 0 (0%)Cmpp: 65252 (16%) 3 (14%)Pbr: 43504 (11%) 2 (10%)Bran
h: 43500 (11%) 2 (10%)Total: 412808 21Memory operations Size Stride Group nOps gSize gStrL_23 4 -L_26 4 1



152 Appendix A. Loop Statisti
sS_28 4 -S_30 4 1LOOP_6 _
ollapse_pyr.102Program: epi
_de
File: 
ollapse_pyr.
Fun
tion: 
ollapse_pyrHeader blo
k: HB_102Loop blo
ks: HB_102Nesting level: 4Innermost: yesCategory: WHILE_LOOPInvo
ations: 1949Iterations: 2168Iter/Invo
: 1Operations: 463910 (5.21%)Cy
les: 224085 (3.13%)Ops/Cy
: 2.07Stall 
y
les: 0 (0.00%)S
heduling wsl pesl per wgtHB_102 103.87 104 0.89 2168S
hed length: 116Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 108400 (23%) 50 (23%)Store: 86720 (19%) 40 (19%)iAlu: 255824 (55%) 118 (55%)fAlu: 0 (0%) 0 (0%)Cmpp: 4336 (1%) 2 (1%)Pbr: 4336 (1%) 2 (1%)Bran
h: 4294 (1%) 2 (1%)Total: 463910 214Memory operations Size Stride Group nOps gSize gStrL_878 4 -L_887 4 -L_894 4 -L_904 4 -L_913 4 -L_920 4 -L_931 4 -L_937 4 -L_944 4 -L_3503 4 1S_881 4 - G_891 3 12 1S_891 4 - "S_898 4 - "S_907 4 - G_917 3 12 1S_917 4 - "S_924 4 - "S_934 4 - G_941 3 12 1S_941 4 - "S_948 4 - "Dynami
 
ount Stati
 
ountSpill: 153928 (33%) 71 (33%)LOOP_7 _internal_int_transpo.4Program: epi
_de
File: 
ollapse_pyr.
Fun
tion: internal_int_transpoHeader blo
k: HB_4



A.8. Epi
_de
 153Loop blo
ks: HB_4Nesting level: 2Innermost: yesCategory: WHILE_LOOPInvo
ations: 7201Iterations: 10764Iter/Invo
: 1Operations: 53820 (0.60%)Cy
les: 191592 (2.67%)Ops/Cy
: 0.28Stall 
y
les: 62424 (32.58%)S
heduling wsl pesl per wgtHB_4 11.67 12 0.67 10764S
hed length: 17Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 0 (0%) 0 (0%)Store: 0 (0%) 0 (0%)iAlu: 21528 (40%) 2 (40%)fAlu: 0 (0%) 0 (0%)Cmpp: 10764 (20%) 1 (20%)Pbr: 10764 (20%) 1 (20%)Bran
h: 10764 (20%) 1 (20%)Total: 53820 5Memory operations Size Stride Group nOps gSize gStrLOOP_8 _write_pgm_image.3Program: epi
_de
File: �leio.
Fun
tion: write_pgm_imageHeader blo
k: BB_3Loop blo
ks: BB_3Nesting level: 1Innermost: yesCategory: MOD_SCHEDInvo
ations: 1Iterations: 65536Iter/Invo
: 65536Operations: 458753 (5.15%)Cy
les: 131074 (1.83%)Ops/Cy
: 3.50Stall 
y
les: 0 (0.00%)S
heduling Re
MII ResMII II ESCBB_3 2 1 2 1S
hed length: 131074Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 65536 (14%) 1 (14%)Store: 65536 (14%) 1 (14%)iAlu: 262144 (57%) 4 (57%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 65537 (14%) 1 (14%)Total: 458753 7Memory operations Size Stride Group nOps gSize gStrL_23 4 1S_25 1 1



154 Appendix A. Loop Statisti
sLOOP_9 _
ollapse_pyr.4Program: epi
_de
File: 
ollapse_pyr.
Fun
tion: 
ollapse_pyrHeader blo
k: BB_4Loop blo
ks: BB_4Nesting level: 2Innermost: yesCategory: MOD_SCHEDInvo
ations: 4Iterations: 87040Iter/Invo
: 21760Operations: 348164 (3.91%)Cy
les: 87628 (1.22%)Ops/Cy
: 3.97Stall 
y
les: 584 (0.67%)S
heduling Re
MII ResMII II ESCBB_4 1 1 1 1S
hed length: 21761Operation breakdownDynami
 
ounts Stati
 
ountsLoad: 0 (0%) 0 (0%)Store: 87040 (25%) 1 (25%)iAlu: 174080 (50%) 2 (50%)fAlu: 0 (0%) 0 (0%)Cmpp: 0 (0%) 0 (0%)Pbr: 0 (0%) 0 (0%)Bran
h: 87044 (25%) 1 (25%)Total: 348164 4Memory operations Size Stride Group nOps gSize gStrS_32 4 1



Bibliography
[ABI+95℄ K. Asanovi
, J. Be
k, B. Irissou, B. Kingsbury, N. Morgan, andJ. Wawrzynek. The T0 ve
tor mi
ropro
essor. In Hot Chips VII,pages 187�196, August 1995.[AKR98℄ S. Aditya, V. Kathail, and B. R. Rau. El
or's ma
hine des
riptionsystem: Version 3.0. Te
hni
al Report HPL-98-128, Information Te
h-nology Center, 1998.[AMD00℄ AMD. 3DNow! te
hnology manual. Te
hni
al Report 21928G/0,Advan
ed Mi
ro Devi
es, In
, 2000.[AMD06℄ AMD. AMD Opteron pro
essor produ
t data sheet, 2006.http://www.amd.
om/us-en/Pro
essors/Te
hni
alResour
es.[And94℄ L. O. Andersen. Program Analysis and Spe
ialization for the C Pro-gramming Language. PhD thesis, DIKU, University of Copenhagen,1994.[AS90℄ E. H. Adelson and E. P. Simon
elli. Subband image 
oding with three-tap pyramids. In Pro
eedings of the Pi
ture Coding Symposium, pages3.9.1�3.9.3, 1990.[BBH+04℄ D. Boggs, A. Baktha, J. Hawkins, D. Marr, J. Miller, P. Roussel,R. Singhal, B. Toll, and K. S. Venkatraman. The mi
roar
hite
ture ofthe Intel Pentium 4 pro
essor on 90nm te
honology. Intel Te
hnologyJournal, 08(01):7�23, February 2004.[BCM94℄ D. Bernstein, D. Cohen, and D. E. Maydan. Dynami
 memory disam-biguation for array referen
es. In Pro
eedings of the 27th Annual Inter-national Symposium on Mi
roar
hite
ture, pages 105�111, November1994.[BE94℄ W. Blume and R. Eigenmann. The range test: a dependen
e test forsymboli
, non-linear expressions. In Pro
eedings of the 1994 
onferen
eon Super
omputing, pages 528�537, 1994.[BLO02℄ C. Basoglu, W. Lee, and J. O'Donnell. The Equator MAP-CA DSP:an end-to-end broadband signal pro
essor VLIW. IEEE Transa
tionson Cir
uits and Systems for Video Te
hnology, 12(8):646�659, 2002.



156 BIBLIOGRAPHY[BS00℄ V. Bongiorno and G. Shorrel. Cray SV1, SV1e, SV1ex � Overview,2000. http://www.
ray.
om/produ
ts/systems/sv1.[CBC93℄ J. Choi, M. Burke, and P. Carini. E�
ient �ow-sensitive interpro
edu-ral 
omputation of pointer-indu
ed aliases and side e�e
ts. In Pro
eed-ings of the 20th ACM SIGPLAN-SIGACT Symposium on Prin
iplesof Programming Languages, pages 232�245, 1993.[CDJ+97℄ T. M. Conte, P. K. Dubey, M. D. Jennings, R. B. Lee, A. Peleg,S. Rathnam, M. S
hlansker, P. Song, and A. Wolfe. Challenges to
ombining general-purpose and multimedia pro
essors. IEEE Com-puter, 30(12):33�37, De
ember 1997.[CEL+03℄ S. Ciri
es
u, R. Essi
k, B. Lu
as, P. May, K. Moat, J. Norris,M. S
huette, and A. Saidi. The re
on�gurable streaming ve
tor pro-
essor (RSVP). In Pro
eedings of the 36th annual IEEE/ACM Interna-tional Symposium on Mi
roar
hite
ture, pages 141�150, Washington,DC, USA, 2003. IEEE Computer So
iety.[CEV99℄ J. Corbal, R. Espasa, and M. Valero. Exploiting a new level of DLPin multimedia appli
ations. In Pro
eedings of the 32nd internationalsymposium on Mi
roar
hite
ture, pages 72�79, 1999.[CGH+04℄ L. N. Chakrapani, J. C. Gyllenhaal, W. W. Hwu, S. A. Mahlke,K. V. Palem, and R. M. Rabbah. Trimaran: An infrastru
ture forresear
h in instru
tion-level parallelism. 17th International Workshopon Languages and Compilers for High Performan
e Computing. Le
-ture Notes in Computer S
ien
e, 3602:32�41, 2004.[CMT94℄ S. Carr, K. S. M
Kinley, and C. Tseng. Compiler optimizations forimproving data lo
ality. In Pro
eedings of the 6th international 
on-feren
e on Ar
hite
tural Support for Programming Languages and Op-erating Systems, pages 252�262, 1994.[CNO+88℄ R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth, and P. K.Rodman. A VLIW ar
hite
ture for a tra
e s
heduling 
ompiler. IEEETransa
tions on Computers, C-37(8):967�979, August 1988.[Cor02℄ J. Corbal. N-Dimensional Ve
tor Instru
tion Set Ar
hite
turesfor Multimedia Appli
ations. PhD thesis, UPC, Departamentd'Arquite
tura de Computadors, 2002.[DD97℄ K. Diefendor� and P. Dubey. How multimedia workloads will 
hangepro
essor design. IEEE Computer, 30(9):43�45, Sept 1997.[Dev99℄ Analog Devi
es. Introdu
ing TigerSHARC, 1999.http://www.analog.
om/new/ads/html/SHARC2.[DP02℄ A. Dasu and S. Pan
hanathan. A survey of media pro
essing ap-proa
hes. IEEE Transa
tions on Cir
uits and Systems for Video Te
h-nology, 12(8):633�645, August 2002.



BIBLIOGRAPHY 157[EAE+02℄ R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Her-nandez, T. Juan, G. Lowney, M. Mattina, and A. Sezne
. Taran-tula: a ve
tor extension to the Alpha ar
hite
ture. In Pro
eedings ofthe 29th annual International Symposium on Computer Ar
hite
ture,pages 281�292, Washington, DC, USA, 2002. IEEE Computer So
iety.[EFK+98℄ K. Eb
ioglu, J. Fritts, S. Kosono
ky, M. Gs
hwind, E. Altman,K. Kailas, and T. Bright. An eight-issue tree-VLIW pro
essor for dy-nami
 binary translation. In International Conferen
e on ComputerDesign: VLSI in Computers and Pro
essors, pages 488�495, 1998.[EGH94℄ M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive inter-pro
edural points-to analysis in the presen
e of fun
tion pointers. InPro
eedings of the ACM SIGPLAN'94 Conferen
e on ProgrammingLanguage Design and Implementation, pages 242�256, 1994.[EM01℄ A. H. M. R. El-Mahdy. A Ve
tor Ar
hite
ture for Multimedia JavaAppli
ations. PhD thesis, Dept. of Computer S
ien
e, University ofMan
hester, 2001.[Eme99℄ J. S. Emer. Simultaneous multithreading: Multiplying Alpha perfor-man
e, 1999. Mi
ropro
essor Forum.[FBF+00℄ P. Farabos
hi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood.Lx: a te
hnology platform for 
ustomizable VLIW embedded pro
ess-ing. In Pro
eedings of the 27th Annual International Symposium onComputer Ar
hite
ture 2000, pages 203�213, June 2000.[Fea91℄ P. Feautrier. Data�ow analysis of array and s
alar referen
es. Inter-national Journal of Parallel Programming, 20(1):23�53, 1991.[FG00℄ J. Fridman and Z. Green�eld. The TigerSHARC DSP ar
hite
ture.IEEE Mi
ro, 20(1):66�76, 2000.[Fis81℄ J. A. Fisher. Tra
e s
heduling: A te
hnique for global mi
ro
ode
ompa
tion. IEEE Transa
tions on Computers, C-30:478�490, July1981.[Fly72℄ M. Flynn. Some 
omputer organizations and their e�e
tiveness. IEEETransa
tions on Computers, C�21(9):948�960, 1972.[Fri00℄ J. Fritts. Ar
hite
ture and 
ompiler design issues in programmable me-dia pro
essors. PhD thesis, Dept. of Ele
tri
al Engineering, Prin
etonUniversity, 2000.[FST05℄ J. E. Fritts, F. W. Steiling, and J. A. Tu
ek. Mediaben
h II video:Expediting the next generation of video systems resear
h. EmbeddedPro
essors for Multimedia and Communi
ations II. Pro
eedings of theSPIE, 5683:79�93, Mar
h 2005.



158 BIBLIOGRAPHY[Gal95℄ D. M. Gallagher. Memory Disambiguation to Fa
ilitate Instru
tion-Level Parallelism Compilation. PhD thesis, Dept. of Ele
tri
al andComputer Engineering, University of Illinois, 1995.[GCM+94℄ D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, andW. W. Hwu. Dynami
 memory disambiguation using the memory
on�i
t bu�er. ACM SIGPLAN Noti
es, 29(11):183�193, 1994.[GHF+06℄ M. Gs
hwind, H. P. Hofstee, B. Fla
hs, M. H., Y. Watanabe, andT. Yamazaki. Synergisti
 pro
essing in Cell's multi
ore ar
hite
ture.IEEE Mi
ro, 26(2):10�24, 2006.[GHR96℄ J. C. Gyllenhaal, W. W. Hwu, and B. R. Rau. HMDES version2.0 spe
i�
ation. Te
hni
al Report IMPACT-96-03, University of Illi-nois,Urbana, IL, 1996.[GKT91℄ G. Go�, K. Kennedy, and C. Tseng. Pra
ti
al dependen
e testing. InPro
eedings of the ACM SIGPLAN`91 Conferen
e on ProgrammingLanguage Design and Implementation, pages 15�29, June 1991.[GMNR06℄ S. Go
hman, A. Mendelson, A. Naveh, and E. Rotem. Introdu
tionto Intel Core Duo pro
essor ar
hite
ture. Intel Te
hnology Journal,10(2):89�98, May 2006.[Gwe99℄ L. Gwennap. MAJC gives VLIW a new twist. Mi
ropro
essor Report,13(12):12�15, September 1999.[HH02℄ H. C. Hunter and W. W. Hwu. Code 
overage and input variability:e�e
ts on ar
hite
ture and 
ompiler resear
h. In Pro
eedings of the2002 International Conferen
e on Compilers, Ar
hite
ture, and Syn-thesis for Embedded Systems, pages 79�87. ACM Press, 2002.[HMC+93℄ W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E.Haab, J. G. Holm, and D. M. Lavery. The Superblo
k: An e�e
tivete
hnique for VLIW and supers
alar 
ompilation. The Journal ofSuper
omputing, 7:229�248, January 1993.[Hor82℄ R. M. Hord. The Illia
 IV, the �rst super
omputer. Computer S
ien
ePress, 1982.[HP00℄ M. Hind and A. Pioli. Whi
h pointer analysis should I use? InPro
eedings of the 2000 ACM SIGSOFT International Symposium onSoftware Testing and Analysis, pages 113�123, 2000.[HSS94℄ A. Huang, G. Slavenburg, and J. Shen. Spe
ulative disambiguation: A
ompilation te
hnique for dynami
 memory disambiguation. In Pro-
eedings of the 21st International Symposium on Computer Ar
hite
-ture, pages 200�210, April 1994.



BIBLIOGRAPHY 159[IBM06a℄ IBM. IBM BladeCenter QS20 datasheet, 2006.http://www.ibm.
om/te
hnology/splash/qs20/pdf/qs20_datasheet.pdf.[IBM06b℄ IBM. Press room - 2006-09-06. IBM to build world's�rst Cell Broadband Engine based super
omputer, 2006.http://www.ibm.
om/press/us/en/pressrelease/20210.wss.[Imp01℄ Improvsys. Jazz DSP pro
essor datasheet. Te
hni
al report, Im-provsys, 2001.[Int99℄ Intel. Pentium III pro
essor: Developer's manual. Te
hni
al report,INTEL, 1999.[Int04℄ Intel. Intel Itanium2 pro
essor referen
e manual for software devel-opment and optimization, 2004. http://developer.intel.
om/design/-itanium2/manuals/251110.htm.[Int06℄ Intel. Dual-Core Intel Itanium 2 pro
essor 9000 series. Produ
tbrief, 2006. http://www.intel.
om/produ
ts/pro
essor/itanium2/-d
_prod_brief.htm.[Joh91℄ M. Johnson. Supers
alar Mi
ropro
essor Design. Prenti
e-Hall, En-glewood Cli�s, New Jersey, 1991.[Joh05℄ D. J. C. Johnson. Overview of the HP 9000 rp3410-2, rp3440-4, rp4410-4, and rp4440-8 servers, 2005.http://www.hp.
om/produ
ts1/servers/HP9000_family_overview.html.[JVTW01℄ B. Juurlink, S. Vassiliadis, D. T
heressiz, and H. A.G. Wijsho�. Imple-mentation and evaluation of the 
omplex streamed instru
tion set. InPro
eedings of the International Conferen
e on Parallel Ar
hite
turesand Compilation Te
hniques, pages 73�82, September 2001.[KAO05℄ P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-waymultithreaded Spar
 pro
essor. IEEE Mi
ro, 25(2):21�29, 2005.[KDH+05℄ J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,and D. Shippy. Introdu
tion to the Cell multipro
essor. IBM Journalof Resear
h and Development, 49(4/5):589�604, 2005.[KIea00℄ A. Kunimatsu, N. Ide, and T. Sato et. al. Ve
tor unit ar
hite
ture forEmotion synthesis. IEEE Mi
ro, 20(2):85�95, Mar
h-April 2000.[Koe99℄ R. Koenen. Mpeg-4, multimedia for our time. IEEE Spe
trum,30(9):26�34, February 1999.[Kon98℄ K. Konstantinides. VLIW ar
hite
ture for media pro
essing. IEEESignal Pro
essing Magazine, 15(2):16�19, 1998.[Koz99℄ C. Kozyrakis. A media-enhan
ed ve
tor ar
hite
ture for embeddedmemory systems. Te
hni
al Report UCB/CSD-99-1059, EECS De-partment, University of California, Berkeley, 1999.



160 BIBLIOGRAPHY[KP98℄ C. Kozyrakis and D. Patterson. A new dire
tion for 
omputer ar
hi-te
ture resear
h. IEEE Computer, 31(11):24�32, November 1998.[KSR00℄ V. Kathail, M. S
hlansker, and B. R. Rau. HPL-PD ar
hite
ture spe
-i�
ation: Version 1.1. Te
hni
al Report HPL-93-80(R.1), Hewlett�Pa
kard Lab., 2000.[Lan92℄ W. Landi. Unde
idability of stati
 analysis. ACM Letters on Pro-gramming Languages and Systems, 1(4):323�337, De
 1992.[Lee84℄ B. G. Lee. A new algorithm to 
ompute the Dis
rete Cosine Trans-form. IEEE Transa
tions on A
ousti
s, Spee
h, and Signal Pro
essing,vol. ASSP-32, 6:1243�1245, De
ember 1984.[Lee95℄ R. B. Lee. A

elerating multimedia with enhan
ed mi
ropro
essors.IEEE Mi
ro, 15(2):22�32, 1995.[Lee99℄ R. Lee. E�
ien
y of mi
roSIMD ar
hite
tures and index-mapped datafor media pro
essors. In Pro
eedings of IS&T/SPIE Symposium onEle
tri
 Imaging: Media Pro
essors 99, pages 34�46, January 1999.[LPMS97℄ C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediaben
h: Atool for evaluating and synthesizing multimedia and 
ommuni
atonssystems. In Pro
eedings of the 30th International Symposium on Mi-
roar
hite
ture, pages 330�335, 1997.[LR92℄ W. Landi and B. G. Ryder. A safe approximate algorithm for inter-pro
edural pointer aliasing. SIGPLAN Noti
es, 27(7):235�248, June1992.[LS96℄ R. B. Lee and M. D. Smith. Media pro
essing: A new design target.IEEE Mi
ro, 16(4):6�9, August 1996.[LW97℄ H. Liao and A. Wolfe. Available paralellism in video appli
ations. InPro
eedings of the 30th International Symposium on Mi
roar
hite
ture,pages 321�329, 1997.[MB04℄ C. M
Nairy and R. Bhatia. Monte
ito: The next produ
t in theItanium Pro
essor Family. In Conferen
e Re
ord of 16th Hot ChipsSymposium, 2004.[MH99℄ S. Moon and M. W. Hall. Evaluation of predi
ated array data-�owanalysis for automati
 parallelization. In Pro
eedings of the ACMSymposium on Prin
iples Pra
ti
e of Parallel Programming, pages 84�95, 1999.[MHL91℄ D. Maydan, J. Hennessy, and M. Lam. E�
ient and exa
t data depen-den
e analysis. In Pro
eedings of the ACM SIGPLAN'91 Conferen
eon Programming Language Design and Implementation, pages 1�14,June 1991.



BIBLIOGRAPHY 161[MLC+92℄ S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-mann. E�e
tive 
ompiler support for predi
ated exe
ution using theHyperblo
k. In Pro
eedings of the 25th International Symposium onMi
roar
hite
ture, pages 45�54, De
. 1992.[MNW+02℄ R. Mahajan, R. Nair, V. Wakharkar, J. Swan, J. Tang, and G. Vanden-top. Emerging dire
tions for pa
kaging te
hnologies. Intel Te
hnologyJournal, 6(2):61�76, May 2002.[Moo65℄ G. E. Moore. Cramming more 
omponents onto integrated 
ir
uits.Ele
troni
s Magazine, 38(8):114�117, 1965.[Ni
89℄ A. Ni
olau. Run-time disambiguation: Coping with stati
ally unpre-di
table dependen
ies. IEEE Transa
tions on Computers, 38(5):663�678, May 1989.[NJ99℄ H. Nguyen and L. K. John. Exploiting SIMD parallelism in DSP andmultimedia algorithms using the AltiVe
 te
hnology. In InternationalConferen
e on Super
omputing, pages 11�20, 1999.[PHP98℄ Y. Paek, J. Hoe�inger, and D. Padua. Simpli�
ation of array a
-
ess patterns for 
ompiler optimizations. In Pro
eedings of the ACMSIGPLAN'98 Conferen
e on Programming Language Design and Im-plementation, pages 60�71, 1998.[PP99℄ N. Pitsianis and G. Pe
hanek. High-performan
e FFT implementationon the BOPS ManArray parallel DSP. In Pro
eedings of the Interna-tional Symposium on Opti
al S
ien
e, Engineering, and Instrumenta-tion, 1999.[PS91℄ J. C. Park and M. S. S
hlansker. On predi
ated exe
ution. Te
hni
alReport HPL-91-58, Hewlett�Pa
kard Lab., May 1991.[Pur98℄ S. Pur
ell. The impa
t of Mpa
t 2. IEEE Signal Pro
essing Magazine,15(2):102�107, 1998.[PW96℄ A. Peleg and U. Weiser. MMX te
hnology extension to the intel ar-
hite
ture. IEEE Mi
ro, 16(4):42�50, August 1996.[PW98℄ W. Pugh and D. Wonna
ott. Constraint-based array dependen
e anal-ysis. ACM Transa
tions on Programming Languages and Systems,20(3):635�678, May 1998.[QCEV99℄ F. Quintana, J. Corbal, R. Espasa, and M. Valero. Adding a ve
torunit on a supers
alar pro
essor. In Pro
eedings of the InternationalConferen
e on Super
omputing, pages 1�10, June 1999.[QEV98℄ F. Quintana, R. Espasa, and M. Valero. An ISA 
omparison betweensupers
alar and ve
tor pro
essors. Sele
ted Papers and Invited Talksfrom the Third International Conferen
e on Ve
tor and Parallel Pro-
essing. Le
ture Notes In Computer S
ien
e, 1573:548�560, 1998.



162 BIBLIOGRAPHY[RAJ99℄ P. Ranganathan, S. V. Adve, and N. P. Jouppi. Performan
e of im-age and video pro
essing with general-purpose pro
essors and mediaISA extensions. In Pro
eedings of the International Symposium onComputer Ar
hite
ture, pages 124�135, 1999.[Ram94℄ G. Ramalingam. The unde
idability of aliasing. ACM Transa
tionson Programming Languages and Systems, 16(5):1467�1471, Sept 1994.[Rau95℄ B. R. Rau. Iterative modulo s
heduling. Te
hni
al Report HPL-94-115, Hewlett�Pa
kard Lab., 1995.[RDK+98℄ S. Rixner, W. J. Dally, U. J. Kapasi, B. K., A. Lopez-Lagunas, P. R.Mattson, and J. D. Owens. A bandwidth-e�
ient ar
hite
ture formedia pro
essing. In Pro
eedings of the 31th Annual InternationalSymposium on Mi
roar
hite
ture, pages 3�13, November 1998.[RDK+00℄ S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, andJ. D. Owens. Register organization for media pro
essing. In Pro-
eedings of the 10th International Symposium on High Performan
eComputer Ar
hite
ture, January 2000.[Red73℄ S. F. Reddaway. DAP-a distributed array pro
essor. In Pro
eedingsof the 1st annual symposium on Computer ar
hite
ture, pages 61�65.ACM Press, 1973.[RF93℄ B. R. Rau and J. A. Fisher. Instru
tion-level parallel pro
essing: his-tory, overview, and perspe
tive. The Journal of Super
omputing, 7(1-2):9�50, 1993.[RP94℄ L. Rau
hwerger and D. Padua. The PRIVATIZING DOALL test:A run-time te
hnique for DOALL loop identi�
ation and array pri-vatization. In Pro
eedings of the ACM International Conferen
e onSuper
omputing, 1994.[RS96℄ S. Rathnam and G. Slavenburg. An ar
hite
tural overview of the pro-grammable multimedia pro
essor, TM-1. In Pro
eedings of the 41stIEEE International Computer Conferen
e, pages 319�326, Washing-ton, DC, USA, 1996. IEEE Computer So
iety.[Rus78℄ R. Russel. The Cray-1 
omputer system. Comuni
ations of the ACM,21(1):63�72, January 1978.[RYYT89℄ B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle. The Cydra 5departmental super
omputer. IEEE Computer, 22(1):12�35, January1989.[SA00℄ H. Sharangpani and K. Aurora. Itanium pro
essor mi
roar
hite
ture.IEEE Mi
ro, 20(5):24�43, September 2000.



BIBLIOGRAPHY 163[SAS+05℄ F. Sán
hez, M. Alvarez, E. Salamí, A. Ramírez, and M. Valero. Onthe s
alability of 1 and 2-dimensional SIMD extensions for multime-dia appli
ations. In IEEE International Symposium on Performan
eAnalysis of Systems and Software, pages 167�176, Mar
h 2005.[SC97℄ K. Skadron and D. W. Clark. Design issues and tradeo�s for writebu�ers. High Performan
e Computer Ar
hite
ture, 00:144�155, 1997.[SCAV02℄ E. Salamí, J. Corbal, C. Alvarez, and M. Valero. Cost e�e
tive mem-ory disambiguation for multimedia 
odes. In Pro
eedings of the In-ternational Conferen
e on Compilers, Ar
hite
ture, and Synthesis forEmbedded Systems, pages 117�126, O
tober 2002.[SCEV99℄ E. Salamí, J. Corbal, R. Espasa, and M. Valero. An evaluation ofdi�erent DLP alternatives for the embedded media domain. In Pro-
eedings of the 1st Workshop on Media Pro
essors and DSPs, pages100�109, November 1999.[Sem99℄ Philips Semi
ondu
tors. TriMedia TM-1300, 1999. http://www-us3.semi
ondu
tors.
om/trimedia.[Ses98℄ N. Seshan. High Velo
iTI pro
essing. IEEE Signal Pro
essing Maga-zine, 15(2):86�101, 1998.[SH97℄ M. Shapiro and S. Horwitz. Fast and a

urate �ow-insensitive points-to analysis. In Pro
eedings of the ACM Symposium on Prin
iples ofProgramming Languages, pages 1�14, 1997.[SIG97℄ SIG. Mips extension for digital media with 3d. Te
hni
al report, MIPSTe
hnologies, In
, 1997.[Sik95℄ T. Sikora. MPEG Digital Video Coding Standards. M
Graw W-HillBook Company, Berlin, 1995.[SJ01℄ P. Shivakumar and N. P. Jouppi. CACTI 3.0: An integrated 
a
hetiming, power, and area model. Te
hni
al Report WRL-2001-2, HPWestern Resear
h Labs, 2001.[SKT+05℄ B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Ei
kemeyer, and J. B.Joyner. POWER5 system mi
roar
hite
ture. IBM Journal of Resear
hand Development, 49(4/5):505�521, 2005.[Smo02℄ M. Smotherman. Understanding EPIC ar
hite
tures and implementa-tions. In 40th Annual ACM Southeast Conferen
e, pages 71�78, April2002.[SR00℄ M. S. S
hlansker and B. Raw. EPIC: Expli
itly parallel instru
tion
omputing. In IEEE Computer, pages 37�45, February 2000.[SS01℄ N. T. Slingerland and A. J. Smith. Ca
he performan
e for multimediaappli
ations. In Pro
eedings of the 15th International Conferen
e onSuper
omputing, pages 204�217, 2001.



164 BIBLIOGRAPHY[SS02℄ N. T. Slingerland and A. J. Smith. Design and 
hara
terization of theBerkeley multimedia workload. Multimedia Systems, 8(4):315�327,2002.[Ste96℄ B. Steensgaard. Points-to analysis in almost linear time. In Pro
eed-ings of the 23rd ACM SIGPLAN-SIGACT symposium on Prin
iplesof Programming Languages, pages 32�41, 1996.[Sud00℄ S. Sudharsanan. MAJC-5200: A high performan
e mi
ropro
essor formultimedia 
omputing. In Pro
eedings of the 15 IPDPS 2000 Work-shops on Parallel and Distributed Pro
essing, pages 163�170, London,UK, 2000. Springer-Verlag.[SV05a℄ E. Salamí and M. Valero. Dynami
 Memory Interval Test vs. Inter-pro
edural Pointer Analysis in multimedia appli
ations. ACM Trans-a
tions on Ar
hite
ture and Code Optimization, 2(2):199�219, June2005.[SV05b℄ E. Salamí and M. Valero. A Ve
tor-uSIMD-VLIW ar
hite
ture formultimedia appli
ations. In Pro
eedings of the 2005 InternationalConferen
e on Parallel Pro
essing, pages 69�77. IEEE Computer So-
iety, June 2005.[Tal01℄ D. Talla. Ar
hite
tural Te
hniques to A

elerate Multimedia Appli
a-tions on General-Purpose Pro
essors. Ph.D. thesis, The University ofTexas at Austin, 2001.[TCC+00℄ M. Tremblay, J. Chan, S. Chaudhry, A. W. Conigliaro, and S. S. Tse.The MAJC ar
hite
ture: A synthesis of parallelism and s
alability.IEEE Mi
ro, 20(6):12�25, 2000.[TDJ+02℄ J. M. Tendler, J. S. Dodson, J. S. Fields Jr., H. Le, and B. Sinharoy.POWER4 System Mi
roar
hite
ture. IBM Journal of Resear
h andDevelopment, 46(1):5�26, 2002.[TEL95℄ D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multi-threading: maximizing on-
hip parallelism. In Pro
eedings of the 22ndannual International Symposium on Computer Ar
hite
ture, pages392�403, New York, NY, USA, 1995. ACM Press.[TI99℄ TI. TMS320C62XX family, 1999. http://www.ti.
om/s
/do
s/-produ
ts/dsp/tms320
6201.html.[TJ01℄ D. Talla and L. K. John. Cost-e�e
tive hardware a

eleration of mul-timedia appli
ations. In Pro
eedings of the International Conferen
eon Computer Design, page 415, Washington, DC, USA, 2001. IEEEComputer So
iety.[TONL96℄ M. Tremblay, J. M. O'Connor, V. Narayanan, and H. Liang. VISspeeds new media pro
essing. IEEE Mi
ro, 16(4):51�59, August 1996.



BIBLIOGRAPHY 165[Tri01℄ A. Triggs. Le
ture 11: Global system for mobile 
ommuni
ations(GSM). Wireless Cellular & Personal Communi
ations Eri
sson In
.,Southern Methodist University, 2001.[vdSD01℄ A. van der Steen and J. Dongarra. The NEC SX-5, 2001.http://www.top500.org/ORSC/2001.[vdWVD+05℄ J.-W. van de Waerdt, S. Vassiliadis, S. Das, S. Mirolo, C. Yen,B. Zhong, C. Basto, J.-P. van Itegem, D. Amirtharaj, K. Kalra, P. Ro-driguez, and H. van Antwerpen. The TM3270 media-pro
essor. InPro
eedings of the 38th annual IEEE/ACM International Symposiumon Mi
roar
hite
ture, pages 331�342, Washington, DC, USA, 2005.IEEE Computer So
iety.[vESV+99℄ J. T. J. van Eijndhoven, F. W. Sijstermans, K. A. Vissers, E.-J. D.Pol, M. J. A. Tromp, P. Struik, R. H. J. Bloks, P. van der Wolf, A. D.Pimentel, , and H. P. E. Vranken. TriMedia CPU64 ar
hite
ture. InPro
eedings of the 1999 IEEE International Conferen
e on ComputerDesign, pages 586�592, Los Alamitos, CA, USA, 1999. IEEE Com-puter So
iety.[VLPA95℄ M. Valero, T. Lang, M. Peiron, and E. Ayguade. Con�i
t-free a

essfor streams in multimodule memories. IEEE Transa
tions on Com-puters, 44(5):634�646, 1995.[WAK+96℄ J. Wawrzynek, K. Asanovi
, B. Kingsbury, J. Be
k, D. Johnson, andN. Morgan. Spert-ii: A ve
tor mi
ropro
essor system. IEEE Com-puter, 29(3):79�86, Mar
h 1996.[Wal91a℄ D. W. Wall. Limits of instru
tion-level parallelism. SIGPLAN Noti
es,26(4):176�188, 1991.[Wal91b℄ G. K. Walla
e. The JPEG still pi
ture 
ompression standard. Com-muni
ations of the ACM, April 1991.[WL91℄ M. E. Wolf and M. S. Lam. A data lo
ality optimizing algorithm.In Pro
eedings of the ACM SIGPLAN'91 
onferen
e on ProgrammingLanguage Design and Implementation, pages 30�44, 1991.[WL95℄ R. P. Wilson and M. S. Lam. E�
ient 
ontext-sensitive pointer anal-ysis for C programs. In Pro
eedings of the ACM SIGPLAN'95 Con-feren
e on Programming Language Design and Implementation, pages1�12, 1995.[WM95℄ W. A. Wulf and S. A. M
Kee. Hitting the memory wall: impli
ationsof the obvious. SIGARCH Computer Ar
hite
ture News, 23(1):20�24,1995.[Yu96℄ A. Yu. The future of mi
ropro
essors. IEEE Mi
ro, 16(6):46�53, 1996.


