List of Figures

11
1.2

1.3
1.4

2.1

2.2

2.3

2.4

2.5
2.6
2.7
2.8
2.9
2.10
211
2.12
2.13
2.14
2.15

2.16

Example stages of instruction execution.
Decoupled view of the processor: a fetch engine produces instructions, and an
execution engine consumesthem. L o
Fetch performance factors: memory latency, fetch width, and instruction quality. .
Thesis overview: from the problems observed to the proposed solutions.

Example of a basic block chaining algorithm. Basic blocks are mapped so that the
execution trace is consecutive inmemory.
Examples of the procedure splitting algorithm. Infrequently used basic blocks are
mapped to a different procedure, and moved away of the execution path.
Routine mapping algorithm by Pettis & Hansen. Two routines which call each
other will be mapped close in memory to avoid conflicts among them.
Code mapping algorithm by Torrellas et a. The most heavily executed basic
blocks are mapped to a reserved area of the instruction cache, eliminating con-
flicts in important parts of thecode.
Pipelined execution of a branch instruction. The branch is not resolved until the
ALU stage, which introduces two delay slots.
Comparison of the branch execution cost for different branch architectures using
both software and hardware techniques.
gshare (global history)
PAp (private history)
Dealiased branch predictors. L
A fetch mechanism capable of reading one basic block percycle.
Performance metrics for the fetch engine proposed by Yeh & Patt.
Decoupling the fetch stage: an independent branch prediction mechanism pro-
vides fetch blocks to a Fetch Target Queue, and the pipelined instruction cache
reads the blocks frommemory. L
Extension of the superscalar fetch engine with a multiple branch predictor to read
multiple consecutive basic blocks percycle.,
Fetch width provided by the branch address cache (IPF), and fetch engine perfor-
mance measured in instructions per fetch cycle (IPFC).
Processor performance using different sequential fetch policies and using the Col-
lapsing Buffer.
Extension of the wide superscalar fetch engine with a trace cache to allow fetching
of non-consecutive basic blocks inasinglecycle.

135

22

24

27

38

39

41

150

2.17

2.18

2.19

2.20

3.1
3.2

4.1

4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14
4.15

4.16

4.17
4.18

4.19

4.20

LISt Or FIgures

Comparison of the processor performance using different fetch engines, including

the Trace Cache. e 42
The trace cache is storing redundant information, because a basic block may be
present in more than one trace cache line. 43

The block based trace cache stores basic blocks in a special purpose block cache,
and stores block pointers in the trace table, eliminating the basic block redundancy. 43
The contributions of this thesis in their historical context. 45

Major components of the Oracle 7.3.2server. 50
Profiling of the baseline application and generation of the optimized code layouts. 52

Example of the Software Trace Cache basic block chaining algorithm. Basic

blocks are mapped so that the execution trace is consecutive in memory. 61
Trace mapping for a direct mapped instructioncache. 62
Determining the size of the CFA from the execution frequency and size of the
most populartraces. 63
Instruction cache miss rate for various cache sizes when using different hardware
configurations and code layout optimizations. 64
Instruction cache misses for various cache and line sizes for acommercial database
management system running an OLTP workload. 65
Relative number of misses in the optimized DBMS binary compared to the base-
line application for various cache and linesizes. 66

Code layout optimizations increase the number of sequentially executed instructions. 67
Layout optimized codes use all the instructions in a cache line before it is replaced. 68

Instruction cache lines have an increased lifetime in layout optimized codes. . . . 69
Almost all instructions loaded in the cache are used at least once, and instruction
reuse increases in optimizedcodes. L L 70
Code layout optimization increase the fetch width by aligning branches towards
nottaken. 70
Code layout optimizations effectively increase the fetch width of baseline and
trace cache fetch architectures. L 71
Static branch prediction accuracy for the original and optimized code layouts (self
andcrosstrained). 72
The use of optimized code layouts reverses branch direction, so that they tend to
beusuallynottaken. 74
Dynamic prediction accuracy for both the base and the STC optimized code lay-
outs using two-level adaptive prediction schemes. 75
Percent of dynamic branches which cause interference in the gshare prediction
tables for the baseline and optimized code layouts. 75
Effect of the optimized code layout on dealiased branch predictors. 77
Percent of dynamic branches which cause interference in the gshare prediction
tables optimized code layout and the agree predictor using both code layouts. . . 78
Prediction accuracy of the GAg branch predictor compared to that of the gshare
predictor using the baseline and the optimized code layouts. 78

Branch history register value distribution for the baseline code layout (a), and the
STCoptimized layout (b). 80

LISt or Figures 1o/

4.21 Code layout optimizations impact not only the L1 instruction cache, but the whole

memory hierarchy. 81
4.22 Overall processor performance increases beyond the perfect instruction cache us-

ing code layout optimizations. 81
4.23 Impact of several code layout optimizations on the overall system performance. . 82

5.1 Redundancy of traces between the instruction cache and the trace cache. Traces
consisting entirely of consecutive instructions (blue traces) can be fetched from
the instruction cache in a single cycle without a trace cache. 86

5.2 Distribution of traces classified by the number of sequence breaks they contain.
Numbers shown for both the original code layout and the STC reordered code.
Traces with O breaks are considered bluetraces. 87

5.3 FIPA performance for trace cache sizes from 32 to 2048 entries (2KB to 128KB)

using realistic branch prediction. The STS enhanced models are tagged with (+).

Setups labeled STC use the optimized code layout. 89
5.4 FIPC performance for trace cache sizes from 32 to 2048 entries (2KB to 128KB)

and instruction cache sizes of 32 and 64KB using realistic branch prediction. The

STS enhanced models are tagged with (+). Setups labeled STC use the optimized

codelayout. 91
5.5 FIPA performance for trace cache sizes from 32 to 2048 entries (2KB to 128KB)

using perfect branch prediction. The STS enhanced models are tagged with (+).

Setups tagged STC use the optimized code layout. 93
5.6 FIPC performance for trace cache sizes from 32 to 2048 entries (2KB to 128KB)

and instruction cache sizes of 32 and 64KB using perfect branch prediction. The

STS enhanced models are tagged with (+). Setups tagged STC use the optimized

codelayout. 95
6.1 Prediction accuracy of the base gshare predictor and a gshare predictor using an

optimizedcode layout. 99
6.2 Prediction accuracy of the basic agree predictor, the profile-assisted agree and the

compiler optimized gshare predictors 100
6.3 Prediction accuracy of the bimode predictor, the compiler-enhanced bimode, and

the compiler optimized gshare predictors. 101
6.4 Prediction accuracy of the gskew predictor, and the gshare and gskew predictors

on the compiler optimized code layout. 101

6.5 (a) Combination of any dynamic prediction scheme with a profile-based static
predictor. (b) Prediction accuracy of the static-dynamic combination using a

compiler-assisted agree for the dynamic component. 103
6.6 (a) The agbias branch prediction scheme. (b) Prediction accuracy of the agbias
predictor compared to other compiler-enhanced predictors. 105

6.7 Percent of executed branches which cause conflicts in the dynamic prediction ta-
bles. Conflicts classified (top to bottom) in positive, neutral and negative, the
aggregate corresponds to the total interference rate. There is a separate column
foreach predictor. 106

loo

6.8

7.1
7.2

7.3

7.4
7.5

7.6

7.7

7.8

7.9

LISt Or FIgures

Prediction accuracy of the agbias predictor, an unbounded predictor with the same
history length, and an unbounded predictor with a filtered history. The agree[p]

and gshare predictors shown for reference. 107
Example instruction streams. A stream is a sequential run of instructions. 110
Average length of a basic block, an instruction trace, and an instruction stream.
Streams are longer than traces in optimizedcodes. 112
The proposed stream fetch engine. The instruction stream becomes the basic fetch
eNtity. . . . e 112
Path correlated implementation of the next stream predictor. 113
Fetch target queue update mechanism. A fetch request contains a whole stream
and may take several cyclesto be fetched., 114

The instruction misalignment problem. A 3 instruction stream may take more
than one cycle to fetch on a 4-wide engine if the instructions cross the cache line

boundary. 115
Cache line reuse buffer mechanism. The line buffer reduces instruction cache
activity and exploits longer cache lines. 116
IPC speedup of the stream fetch engine compared to a BTB fetch engine and IPC
slowdown compared to the trace cache. 117

Activity of the instruction cache and branch predictor for the BTB, stream, and
trace cache architectures. 121

List of Tables

3.1
3.2

3.3
3.4
3.5
3.6
3.7

5.1

7.1
7.2

7.3

Description of the SPEC’95 integer benchmarks.
TPC-D queries used to obtain the profile information (training) and to obtain per-
formance results (test).
Default simulator setup for the isolated fetch engine simulator.
Default setup for our SimpleScalar simulator.
Default simulator setup for the branch predictor simulator.
Default SImOS simulationssetup.
Detailed simulator setup for the complete processor simulator.

Average dynamic trace length. Separate results for blue trace length and red trace
length are provided for the original code layout and the STC optimized one. . . .

Fetch performance metrics: actual fetch width and branch prediction accuracy. . .
IPC degradation (%) of the BTB and stream fetch architectures when the latency
of the branch predictor increasesto2cycles.
IPC degradation (%) of the BTB and stream fetch architectures as the number of
ports to the branch predictor is limited to justone.

139

