
Chapter 2

Basic Motion Planning

This Chapter makes the analysis of the geometric constraints of planar assembly tasks (two
degrees of freedom of translation and one of rotation) for polygonal objects. This analysis
is done in the con�guration space and in the parametrized translational con�guration
space, which is an embedding of the rotational degree of freedom into the translational
con�guration space. As a result, an algorithm to compute the parametrized translational
con�guration space is presented. Then, the Chapter presents an exact cell decomposition
method to plan the motions to move the manipulated object from an initial to a goal
con�guration. The Chapter is completed with an the study of the possible resulting
reaction forces that appear when the contact situations take place.

2.1 Preliminaries

Let A and B be two polygons describing a manipulated object and an static object,
respectively. Let fWg and fTg be the reference frames attached to the workspace and
to the manipulated object A, respectively. fTg has the origin at the manipulated object
reference point fOAg, and an orientation � with respect to fWg. The vertices of A will

be described with respect to fTg by a vector ~h, with module h and orientation 
. The
vertices of B will be described with respect to fWg by their x and y coordinates.

Two types of basic contacts can take place [62]:

Type-A: an edge of A against a vertex of B.

Type-B: a vertex of A against an edge of B.

The contact vertices will have a subindex indicating the basic contact to which they
belong, i.e. (xi; yi) if the basic contact i is a type-A basic contact, and (hi cos 
i; hi sin 
i)
if it is a type-B basic contact.

15
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De�nition 1: A contact situation between two rigid polygonal objects is the occurrence
of a single basic contact or the simultaneous occurrence of a given set of basic contacts.

De�nition 2: The set of contact orientations RS
� of a contact situation involving a set S

of basic contacts is the set of orientations for which the contact situation is possible,
only considering the constraints imposed by the edges and vertices involved in any of the
contacts of S.

De�nition 3: The con�guration space (C-space) of a manipulated object is the space of
all the possible con�gurations of the object, a con�guration being the speci�cation of the
position and orientation of fTg with respect to fWg [69].
The C-space is a smooth manifold of dimensionm = 1

2
N(N+1), N being the dimension of

the workspace [62]. For movements in the plane with two degrees of freedom of translation
and one of rotation, the C-space is R2 � S1

� , where S
1
� is the circle of radius �, the

gyration radius of the manipulated object. Then, any con�guration is described by three
generalized coordinates (x; y; q), with q = ��, all having units of length1. The x and
y coordinates of the C-space represent the translation of fOAg with respect to fWg;
therefore, the C-space reference frame has the x-axis and the y-axis coincident with those
of fWg.
If the orientation of the manipulated object remains �xed at a given orientation �0, the
con�guration space of the object is two-dimensional since only the two degrees of freedom
of translation are to be considered. This translational con�guration space is the section
of the three-dimensional C-space for the orientation �0.
De�nition 4: The parametrized translational con�guration space (C 0-space) is the space
union of the translational con�guration spaces for each possible orientation of the
manipulated object.

The C 0-space can be obtained by projecting the C-space on the xy-plane (q = 0), and
associating to the projection of each section the value of its orientation, i.e. parametrizing
the projection with the orientation [83]. Therefore the C 0-space reference frame coincides
with fWg. By using this coincidence, the physical space will usually be drawn together
with the C 0-space, which will help the understanding of the C 0-space.

2.2 One basic contact situations

2.2.1 Representation in con�guration space

De�nition 5: The C-face Fi corresponding to a basic contact i is the set of con�gurations
in the C-space for which the basic contact takes place, only considering the constraints
imposed by the edges and vertices involved in the basic contact, i.e. the contact edge and
the adjacent edges to the contact vertex.

1Vector orthogonality in C-space makes physical sense if � is the gyration radius of the manipulated
object [38].
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De�nition 6: The supporting cylinder Ca
m associated to vertex A of A de�ned by ~ha,

and to vertex M of B de�ned by (xm; ym) is a cylinder in the C-space of radius ha and
axis parallel to the q-axis passing through the point (xm; ym; 0).

Proposition 1: The C-face corresponding to a given basic contact is a ruled surface whose
ruling segments are parallel to the xy-plane, have the same length that the contact edge
and have their extremes on two helices over the two supporting cylinders associated to the
involved vertices.

Corollary 1.1: For a type-A basic contact between the vertex M of the �xed object
and the edge of the manipulated object limited by the vertices A and B, the supporting
cylinders are Ca

m and Cb
m, and the ruling segments are tangent to a cylinder concentrical

with the supporting ones, and with radius equal to the distance in physical space from
fOAg to the line containing the contact edge. Figure 2.1b shows the C-face corresponding
to the type-A basic contact shown in Figure 2.1a.

Corollary 1.2: For a type-B basic contact between the vertex A of the manipulated
object and the edge of the �xed object limited by the vertices M and N , the supporting
cylinders are Ca

m and Ca
n, and the ruling segments are parallel. Figure 2.2b shows the

C-face corresponding to the type-B basic contact shown in Figure 2.2a.

Proof: If the manipulated object is translated keeping �xed its orientation and
maintaining a given basic contact, the reference point describes a straight segment parallel
to the contact edge and of its same length, i.e. in the C-space it is a segment parallel to
the xy-plane, being each of its extremes the con�guration corresponding to the contact
between the contact vertex and a vertex of the contact edge. When the manipulated
object is in one of these con�gurations, i.e. a vertex (xm; ym) of the static object is in
contact with a vertex (ha cos 
a; ha sin 
a) of the manipulated object, and it is rotated
around the contact point, the reference point describes the following curve in the C-space:

x = xm + ha cos(� + �+ 
a)

y = ym + ha sin(� + �+ 
a)

q = �� (2.1)

This curve is an helix supported by a cylinder Ca
m of radius ha and axis parallel to the

q-axis and passing through the point (xm; ym; 0). �
Let us de�ne:

 T : the orientation with respect to fTg of the normal to the contact edge.

 W : the orientation with respect to fWg of the normal to the contact edge.

dW , dT : the signed distances in physical space from the straight line that contains the
contact edge to the origins of fWg and fTg, respectively. If (xe; ye) is a point of the
contact edge, then:

dW = xe cos W + ye sin W (2.2)

dT = xe cos T + ye sin T (2.3)
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Figure 2.1: Representation of a type-A basic contact in physical space (a) and in
con�guration space (b).

D: the distance from the origin of fWg to the projection on the xy-plane of the line that
supports the ruling segment corresponding to a given orientation � of the manipulated
object. If a basic contact i is a type-A basic contact, then D is given by (Figure 2.3):

D = xi cos W + yi sin W + dT (2.4)

where (xi; yi) are the coordinates of the contact vertex of the �xed object
measured in fWg and  W depends on the orientation � of the manipulated object
( W =  T + �+ �). Otherwise, D is given by (Figure 2.4):

D = hi cos( W + � � 
i � �) + dW (2.5)

where hi and 
i are, respectively, the module and orientation of the vector de�ning the
contact vertex of the manipulated object with respect to fTg, and  W is independent
of �.
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Figure 2.2: Representation of a type-B basic contact in physical space (a) and in
con�guration space (b).

Therefore, for a basic contact i the straight line that contains the ruling segment of the
C-face for a given orientation � is:

x cos Wi + y sin Wi = Di (2.6)

q = ��

Di being de�ned by equation (2.4) or (2.5), depending on the type of basic contact.

The contact con�gurations can also be represented in the translational con�guration space,
as shown below.

De�nition 7: The supporting circumference cam is the projection on the xy-plane of the
supporting cylinder Ca

m, i.e. it is the circumference of radius ha and center (xm; ym).

Proposition 2: The C 0-space contains the same information as the C-space.
Proof: The projection of each helix representing the extremes of the ruling segments of
a C-face is an arc over a supporting circumference. This projection can be parametrized
taking the projection of the point corresponding to q = 0 as the reference of orientation
on the supporting circumference. The angle between the radius to any point of the arc
and this reference, expresses the orientation � of the corresponding point in the C-space.
Therefore, the projection of any ruling segment contains the information of its orientation
in any of its extremes, which are points of an arc over the supporting circumference. �
De�nition 8: The C 0-face F 0

i corresponding to a given basic contact i is the parameterized
projection of Fi into the xy-plane.
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Figure 2.3: Distance D to the origin of fWgof the projection on the xy-plane of the line
that supports the ruling segment for a given orientation corresponding to a type-A basic
contact.

De�nition 9: The C 0-segment f 0i(�o) is the projection into the xy-plane of the ruling
segment of Fi corresponding to the orientation �o. f 0i(�o) has its extremes on the two
supporting circumferences associated to the basic contact.

Proposition 3: F 0
i is the region swept by f 0i(�) when its extremes move along the

two arcs over the supporting circumferences, when � varies within the set of contact
orientations Ri

�:

F 0
i =

[
�2Ri

�

f 0i(�) (2.7)

Corollary 3.1: For a type-A basic contact between the vertex M of the �xed object
and the edge of the manipulated object limited by the vertices A and B, the supporting
circumferences are cam and cbm, and the ruling segments are tangent to a circumference
concentrical with the supporting ones, and with radius equal to the distance from fOAg
to the line containing the contact edge. For type-A basic contacts the orientations will be
measured in this latter circumference, where the reference orientation will be attached.
Figure 2.5a shows the C-face and the C 0-face corresponding to the type-A basic contact
shown in Figure 2.1a.

Corollary 3.2: For a type-B basic contact between the vertex A of the manipulated
object and the edge of the �xed object limited by the vertices M and N , the supporting
circumferences are cam and can, and the segments are parallel. Figure 2.5b shows the C-face
and the C 0-face corresponding to the type-B basic contact shown in Figure 2.2a.

As an example Figures 2.6a and 2.6b show the C 0-faces corresponding to a type-B and a
type-A basic contacts, respectively, of the peg-into-hole assembly task.
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Figure 2.4: Distance D to the origin of fWg of the projection on the xy-plane of the line
that supports the ruling segment for a given orientation corresponding to a type-B basic
contact.

2.2.2 Set of contact orientations

For a contact situation involving one basic contact i, the set of contact orientations Ri
�

is computed as follows. Let  staW and  mobT be the orientations of the external normals to
an edge of the static object measured in fWg, and to an edge of the manipulated object
measured in fTg, respectively. The condition

 staW = �+  mobT + � (2.8)

imposes the parallelism between both edges. The orientations �im and �iM for which the
adjacent edges of the contact vertex are parallel to the contact edge are evaluated using
equation (2.8). These orientations are the limits of Ri

�:

Ri
� = f� j � 2 [�im; �

i
M ]g (2.9)

2.3 Two basic contacts situations

2.3.1 Representation in con�guration space

De�nition 10: The C-edge Eij corresponding to a contact situation involving two basic
contacts i and j is the set of con�gurations in the C-space for which the contact situation
takes place, only considering the constraints imposed by the edges and vertices involved
in any of the contacts.
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Figure 2.5: Representation of a type-A and a type-B basic contacts in C-space and in
C 0-space.

De�nition 11: The C 0-edge E 0ij corresponding to a given contact situation involving two
basic contacts i and j is the parameterized projection of Eij into the xy-plane:

E 0ij =
[

�2Rij
�

f 0i(�) \ f 0j(�) (2.10)

Proposition 4: E 0ij is the arc of a curve L0ij(�) for � 2 Rij
� . If sin( Wj �  Wi) 6= 0 then

L0ij(�) is:

x =
Di sin( Wj)�Dj sin( Wi)

sin( Wj �  Wi)

y = �Di cos( Wj)�Dj cos( Wi)

sin( Wj �  Wi)

q = �� (2.11)
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Figure 2.6: Examples of C 0-faces for a type-B (a) and type-A (b) basic contacts of the
peg-into-hole assembly task.

Otherwise L0ij(�) is the straight line:

x cos( Wi) + y sin( Wi) = Di

q = �� (2.12)

de�ned for the orientation that satis�es Di = Dj.

Corollary 4: For two type-1 basic contacts, equation (2.11) describes an ellipse whose
axes are over the bisecting lines of the angles de�ned by the directions of the contact edges,
being their length dependent on the values of h and 
 describing the contact vertices of
the manipulated object.

Proof: Each point of L0ij(�) lies at the intersection of the lines containing the C 0-segments
corresponding to a di�erent value of the orientation, which is described by the following
system of equations:

x cos Wi + y sin Wi = Di

x cos Wj + y sin Wj = Dj (2.13)

If sin( Wj �  Wi) 6= 0, solving for x and y it leads to equation (2.11). Otherwise the
solution is the straight line described by equation (2.12). �

2.3.2 Set of contact orientations

De�nition 12: The domain Dij
� of contact orientations for a contact situation involving

two basic contacts i and j is the following set of orientations:

Dij
� = Ri

� \Rj
� = f� j � 2 [�im; �

i
M ] \ [�jm; �

j
M ]g (2.14)

i.e. the contact situation can only occur for orientations for which each of the involved
basic contacts can simultaneously occur.
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The set of contact orientations Rij
� is a unique orientation when sin( Wj� Wi) = 0. This

orientation satis�es the following condition:

jDij = jDj j (2.15)

Which can be rewritten as
a cos �+ b sin� = c (2.16)

The value of Rij
� is the solution of (2.16) that satis�es � 2 Dij

� :

� = 2arctan(
�b�p

b2 + a2 � c2

�a� c
) (2.17)

The values of a,b and c depend on the type of the involved basic contacts:

� For two type-A basic contacts:

a = �xi cos T i � yi sin T i + s xj cos Tj + s yj sin Tj

b = xi sin T i � yi cos T i � s xj sin Tj + s yj cos Tj

c = s dTj � dT i (2.18)

where s = 1 if  T i =  Tj and s = �1 if  T i =  Tj + �.

� For two type-B basic contacts:

a = hi cos(
i �  Wi)� s hj cos(
j �  Wj)

b = hj sin(
j �  Wj)� s hi sin(
i �  Wi)

c = s dWj � dWi (2.19)

where s = 1 if  Wi =  Wj and s = �1 if  Wi =  Wj + �.

� For one of each type:

a = �hi cos(
i �  Wi) + s xj cos Tj + s yj sin Tj

b = hi sin(
i �  Wi)� s xj sin Tj + s yj cos Tj

c = s dTj � dWi (2.20)

where a set of solutions is found for s = 1 and another one for s = �1.

When sin( Wj �  Wi) 6= 0, Rij
� is constrained by the orientation of the edges involved

in the contact and/or by their �nite length. When the orientation constrains the limit
of Rij

� , this limit is determined by the corresponding limit of Dij
� . When the constraint is

the �nite length of an edge the limit is determined by the orientation where an extreme
of the corresponding C 0-segment f 0i belongs to the other C 0-segment f 0j, since E 0ij is the
intersection of f 0i and f

0
j . This orientation is computed as follows.

Let us de�ne:

� (vxj; vyj): an extreme of f 0j , i.e. it is a point of one of the supporting circumferences c
of contact j:

vxj = xj + hj cos(� + �+ 
j)

vyj = yj + hj sin(� + �+ 
j)
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� Vj : the distance to the origin of fWg of a line parallel to the edge of contact i, and
passing through the point (vxj; vyj).

Vj = vxj cos Wi + vyj sin Wi (2.21)

where  W depends on � for type-A basic contacts.

The orientation satisfying:

Vj = Di (2.22)

is the orientation for which the line containing f 0i also contains an extreme of f 0j . If this

extreme belongs to f 0i then the orientation is a limit of Rij
� . Condition (2.22) can be

rewritten as:

a cos�+ b sin� = c (2.23)

The values of a,b and c depend on the type of the involved basic contacts:

� If i is a type-A basic contact:

a = (xj � xi) cos T i + (yj � yi) sin T i

b = �(xj � xi) sin T i + (yj � yi) cos T i

c = hj cos( T i � 
j)� dT i (2.24)

� If i is a type-B basic contact:

a = hj cos(
j �  Wi)� hi cos(
i �  Wi)

b = hi sin(
i �  Wi)� hj sin(
j �  Wi)

c = xj cos Wi + yj sin Wi � dWi (2.25)

The solution of (2.23) is (2.17).

As an example, Figures 2.7a and 2.7b show two type-B basic contacts and
Figures 2.7c and 2.7d the curve L0ij , which is an ellipse, and the C 0-edge E 0ij corresponding
to the contact situation involving both contacts. The inferior limit of Rij

� is constrained
by the �nite length ot the contact edge of the basic contact of Figure 2.7a, and is shown
in Figure 2.7c. The superior limit of Rij

� is constrained by the orientation of the edges
involved in the contact and is shown in Figure 2.7d.

Figure 2.8 and 2.9 show the same as Figure 2.7 but for two type-A basic contacts and for
one of each type, respectively.
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Figure 2.7: C 0-faces of two type-B basic contacts (a and b) and the corresponding C 0-edge
E 0ij (c and d). E 0ij is a segment of the curve L0ij for the set of contact orientations

Rij
� = f� j � 2 [�a; �b]g. The orientation �a is determined by the �nite length of a

contact edge (c). The orientation �b is determined by an orientation constraint (d).
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2.4 Three and more basic contacts situations

2.4.1 Representation in con�guration space

Since planar movements have three degrees of freedom, the contact situations involving
three non-redundant basic contacts take place only at a given con�guration. If there are
n > 3 basic contacts, n� 3 will be redundant.

De�nition 13: The C-vertex Vijk corresponding to a contact situation involving three
basic contacts i, j and k is the con�guration in the C-space for which the contact situation
takes place.

If one of the contacts is redundant, e.g. when the three corresponding C-edges are parallel
segments that take place at a unique orientation, then the three basic contact can take
place at all the con�gurations of a segment where the three C-edges intersect. In this case
the two extremes of this segment are considered as C-vertices.
De�nition 14: The C 0-vertex V 0

ijk is the representation of Vijk in the C 0-space.

2.4.2 Set of contact orientations

Proposition 5: The orientation where a contact situation involving three basic contacts
i, j and k can occur satis�es the following condition:

Di sin( Wj �  Wk) +Dj sin( Wk �  Wi) +Dk sin( Wi �  Wj) = 0 (2.26)

if sin( Wj �  Wk) 6= 0, sin( Wk �  Wi) 6= 0 and sin( Wi �  Wj) 6= 0. Otherwise it is the
unique orientation where one of the contact situation involving two basic contacts occurs.

Proof: Let (2.27) express the coordinates of a point (x; y) of the C 0-edge E 0ij for a given
orientation, and let (2.28) be the equation of a line lk containing the ruling segment of
contact k for that orientation. Then, if (x; y) 2 lk, this point can be the C 0-vertex:

x =
Di sin( Wj)�Dj sin( Wi)

sin( Wj �  Wi)

y = �Di cos( Wj)�Dj cos( Wi)

sin( Wj �  Wi)
(2.27)

x cos( Wk) + y sin( Wk) = Dk (2.28)

Substituting (2.27) in (2.28), it leads to (2.26). �
Corollary 5.1: When the three basic contacts are of the same type, equation (2.26)
becomes:

a cos�+ b sin� = c (2.29)



30 CHAPTER 2. BASIC MOTION PLANNING

The values of a,b and c depend on the type of the involved basic contacts:

� For three type-A basic contacts:

a = (xi cos T i + yi sin T i) sin( Wj �  Wk) +

(xj cos Tj + yj sin Tj)) sin( Wk �  Wi) +

(xk cos Tk + yk sin Tk) sin( Wi �  Wj)

b = (�xi sin T i + yi cos T i) sin( Wj �  Wk) +

(�xj sin Tj + yj cos Tj)) sin( Wk �  Wi) +

(�xk sin Tk + yk cos Tk) sin( Wi �  Wj)

c = dT i sin( Tj �  Tk) + dTj sin( Tk �  T i) + dTk sin( T i �  Tj) (2.30)

� For three type-B basic contacts:

a = hi cos(
i �  Wi) sin( Wj �  Wk) +

hj cos(
j �  Wj) sin( Wk �  Wi) +

hk cos(
k �  Wk) sin( Wi �  Wj)

b = �hi sin(
i �  Wi) sin( Wj �  Wk) +

�hj sin(
j �  Wj) sin( Wk �  Wi) +

�hk sin(
k �  Wk) sin( Wi �  Wj)

c = dWi sin( Wj �  Wk) + dWj sin( Wk �  Wi) + dWk sin( Wi �  Wj)(2.31)

The solution of (2.29) is (2.17).

Corollary 5.2: When the contacts are of di�erent type, equation (2.26) becomes:

a sin2 �+ b cos2 �+ c sin � cos� + d sin �+ e cos� + f = 0 (2.32)

The values of a,b,c,d and e depend on the type of the involved basic contacts:

� When i and j are type-B and k is type-A:

a = hi cos(
i �  Wi) sin( Tk �  Wj)� hj cos(
j �  Wj) sin( Tk �  Wi)

b = �hi cos(
i �  Wi) sin( Tk �  Wj)� hj cos(
j �  Wj) sin( Tk �  Wi)

c = �hi cos(
i +  k �  j �  i) + hj cos(
j +  k �  j �  i)

d = dWi cos( Tk �  Wj)� dWj cos( Tk �  Wi) + (xk sin Tk � yk cos Tk) sin( T i �  Wj)

e = dWi sin( Tk �  Wj)� dWj sin( Tk �  Wi) + (�xk cos Tk � yk sin Tk) sin( T i �  Wj)

f = dTk sin( Wj �  Wi) (2.33)

� When i is type-B and j and k are type-A:

a = �(xj sin Tj � yj cos Tj) cos( Tk �  Wi) + (xk sin Tk � yk cos Tk) cos( Tj �  Wi)

b = (xj cos Tj + yj sin Tj) sin( Tk �  Wi) + �(xk cos Tk + yk sin Tk) sin( Tj �  Wi)

c = xj cos( Tj +  Tk �  Wi) + yj sin( Tj +  Tk �  Wi)

�xk cos( Tj +  Tk �  Wi)� yk sin( Tj +  Tk �  Wi)



2.5. CONSIDERING ALL THE GEOMETRIC CONSTRAINTS 31

Contact
j

Dk

Lij

a)

f 0k

Contact
Contact k

i

(type-A)

b)

Eij

Eik

Contact k

Contact i

Contact j

(type-B)

(type-B)

Figure 2.10: Two C 0-vertices corresponding to the contact situation involving a) three
type-B basic contacts b) one type-A and two type-B basic contacts.

d = �dTj cos( Tk �  Wi) + dTk cos( Tj �  Wi) + hi sin(
i �  T i) sin( Tj �  Tk)

e = �dTj sin( Tk �  Wi) + dTk sin( Tj �  Wi)� hi cos(
i �  T i) sin( Tj �  Tk)

f = dTk sin( Tj �  Tk) (2.34)

Equation (2.32) is numerically solved.

Corollary 5.3: The obtained point, which is the intersection of the lines containing the
C 0-segments of the three contacts, will be the C 0-vertex if it belongs to the C 0-segments.

Figure 2.10a shows a contact situations involving three type-B basic contacts. Figure 2.10b
shows a contact situations involving two type-B basic contacts (i and j) and one type-A
basic contact (k). In this case, the C-vertex takes place at the unique orientation where
the contact situation involving contacts i and k occurs.

2.5 Considering all the geometric constraints

In a given contact situation there can be more constraints than those imposed by the edges
and vertices involved in the basic contacts of this situation, either due to concave objects
or due to the existence of several static objects. The C-space considering these additional
constraints can be built by �rst generating the C-faces, the C-edges and the C-vertices in
this order as described in the previous sections, and then by pruning these sets considering
all the constraints. Let Fi be the subset of Fi that satis�es all the constraints. If none
of the con�gurations of Fi satis�es all the constraints, then Fi does not exist. Let Eij

be de�ned in a similar way with respect to Eij , and let Vijk be the C-vertex Vijk if Vijk
satis�es all the constraints.
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2.5.1 Con�guration space construction algorithm

In order to �nd the contact con�gurations satisfying all the constraints, �rst the set of
C-vertices is prunned by eliminating those C-vertices that correspond to con�gurations
that produce an overlapping of the objects, and then by merging those C-vertices
that correspond to the same contact con�guration, which corresponds to a contact
con�guration involving more than three basic contacts.

C-vertex-Pruning()
FOR ALL C-vertices Vijk

IF the edges of the objects do not intersect when the manipulated object is at
con�guration Vijk THEN Vijk = Vijk

Merge the C-vertices that correspond to the same con�guration

END

Then, the contact con�gurations that satisfy all the constraints and belong to a C-edge are
identi�ed by the algorithm shown below (Figure 2.11). Let �m and �M be two consecutive
orientations of C-vertices that involve a given C-edge Eij. Let Vijkm be the C-vertex that
takes place at orientation �m, and Fkm be the C-face of the contact not involved in Eij.
Let VijkM and FkM be de�ned in a similar way. Then, the algorithm is a s follows.

C-edge-Pruning()
FOR ALL C-edges Eij :

Find W , the set of C-vertices Vijk where the C-edge is involved

IF W contains less than two C-certices THEN Eij does not exist

ELSE

Compute ~nkm and ~nkM as the normals to Fkm and FkM at con�gurations
Vijkm and VijkM , respectively.

Compute ~tm and ~tM as the tangent vector to Eij at orientation �m and �M ,
respectively, such that ~tm � ~q > 0 and ~tM � ~q > 0.

Eij is composed of the segments of Eij that satisfy:
� Condition 1: either �m is a limit of orientation of Eij, or ~tm � ~nkm > 0.

� Condition 2: either �M is a limit of orientation of Eij , or ~tM � ~nkM < 0.

END

De�nition 15: A C-item is the set of connected con�gurations of a C-face between two
consecutive orientations of the C-vertices of the C-face.
De�nition 16: A C-patch is the set of C-items that have the same range of orientations.

Let Fi be the C-face involving a basic contact i. Fi can be divided in C-patches depending
on the orientations of the C-vertices where Fi is involved. Each C-patch is divided in
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a) b)

c) d)

L0ij

E 0ij

L0ij
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ij

Figure 2.11: C 0-edge: the limits of E 0ij due to the constraints imposed by the edges involved
in the basic contacts i and j are �m (a) and �M (b). At orientation �v (c) a C 0-vertex
occurs involving contacts i, j and k. The orientation �v divides E 0ij in two segments (d),
being E0

ij the prunned C 0-edge.
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Figure 2.12: Four C-patches of a C-face. The range of orientations of each C-patch is
determined by the orientations �i of the C-vertices where the C-face is involved. The
C-patch P1 has two C-items.



2.5. CONSIDERING ALL THE GEOMETRIC CONSTRAINTS 35

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCCa)

C-item

CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC

b)

C-item

Figure 2.13: C-item of a type-A (a) and a type-B (b) C-face.

several C-items depending on the number of C-edges where Fi is involved in the range
of orientations of the C-patch, e.g. if there are only two C-edges, then there is only
one C-item. Figure 2.12 shows the four C-patches of a C-face, having one of them two
C-items. Figure 2.13 shows two C-items, one corresponding to a type-A basic contact
and the other corresponding to a type-B basic contact. The algorithm used to prune the
C-faces is shown below. Let �m and �M be the minimum and maximum orientations of
a C-item of a given C-face Fi. Let Eij and Eik be the C-edges that limit the C-item,
corresponding to the intersection with the C-faces Fj and Fk, respectively. Let ~v be
de�ned as ~v = Eij(�p)� Eik(�p), with �p 2 [�m; �M ]. Then, the algoritm is as follows:

C-face-Pruning()
FOR ALL C-faces Fi:

Find the C-vertices Vijk where Fi is involved
Divide the C-face into C-patches using the orientations of the C-vertices found
FOR ALL the C-patches

Find the C-edges Eij where the C-face is involved

IF only less than two are found, elimiate the C-patch
ELSE Divide the C-patch into C-items using the C-edges Eij found

Fi is composed of the C-items that satisfy:

� Condition 1: the component of ~v along the direction normal to Fk is positive.
� Condition 2: the component of ~v along the direction normal to Fj is negative.

END
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Finally, the algorithm to construct the C-space is as follows:

C-space-Algorithm()
Compute F , E and V for all the contact situations

C-vertex-Pruning()
C-edge-Pruning()
C-face-Pruning()

END

2.5.2 An example

The algorithm to built the C-space has been implemented in C++, using an object oriented
methodology, with a Silicon Graphics workstation. Figure 2.14 shows the C 0-edges of the
C 0-space between a convex manipulated object and a concave static object. Figure 2.15
shows the snapshots of the sections for di�erent values of the orientation of the C-space.

2.6 Partition of the con�guration space

The basic motion planning problem, i.e. the problem of �nding a free path for a robot
from an initial con�guration to a goal con�guration, considering the robot as the only
moving object and ignoring its dynamic properties, is a geometric path planning problem.
This geometric path planning problem can be solved by the cell decomposition approach.
Let the free-space Cfree be the subset of the C-space corresponding to non-contact
con�gurations that satisfy all the geometric constraints of the task, and let the contact-
space Ccontact be the subset of the C-space corresponding to the contact con�gurations.
The cell decomposition approach:

� Decomposes Cfree into cells.
� Constructs a graph representing the adjacency between cells.

Then the problem of �nding a path between an initial con�guration and a goal
con�guration is done by:

� Searching the graph for a sequence of cells connecting the initial cell (i.e. the cell
where the initial con�guration belongs to) with the goal cell.

� Searching a path between two con�gurations of each cell in order to connect the
adjacent cells of the sequence (cells are built in such a way that the path between
any two con�gurations of a cell is easily obtained).

Di�erent methods follow the cell decomposition approach, each of them decomposing Cfree
into di�erent kinds of cells. Nevertheless, they can be classi�ed in two groups:
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Figure 2.14: C 0-edges of the C 0-space between a convex manipulated object and a concave
static object.
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Figure 2.15: Sections of the C-space for di�erent values of the orientation � of the
manipulated object.
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� Exact cell decomposition methods.

� Approximate cell decomposition methods.

The exact cell decomposition methods decompose Cfree in cells whose union is Cfree. The
approximate cell decomposition methods decompose Cfree in cells of simple prede�ned
shape whose union is strictly included into Cfree.
Although the approximate cell decomposition methods are simpler and easier to
implement, they are not suitable when a characterization of the discontinuities of the
motion constraints is required. This is the case for assembly tasks, since during their
execution contacts may arise due to uncertainties and small celarances. Therefore, since
this work deals with the automation of assembly tasks with robots, we use an exact cell
decomposition method.

There are several exact decomposition methods which are reviewed in [62]. The following
characteristics are desirable for any exact decomposition method:

� The cells must be simple enough in order to easily compute a path between any two
con�gurations of a cell.

� The adjacency between cells must be easily tested and the path between two adjacent
cells be easily found.

The method we are following is based in the work of Avanim et al. [4]. This method
decomposes Cfree and Ccontact, allowing the planning of motions in Cfree and motions in
Ccontact in the same way.

2.6.1 Partition of the free-space

This Section describes the cell decomposition method used to partition Cfree. The
de�nition of the cells used and the procedure to obtain the partition are as follows.

De�nition 17: A C-prism is the set of connected con�gurations of Cfree that satisfy:

c = �e1(�) + �e2(�) + 
e3(�) (2.35)

with

�; �; 
 2 [0; 1]

�+ � + 
 = 1

� 2 [�bottom; �top] (2.36)

e1, e2 and e3 being three C-edges of the C-space, and [�bottom; �top] the range of orientations
were the three C-edges simultaneously exist.

The C-prisms allow the partition of the free-space since they are disjoint regions whose
union is the free-space. They are simple enough in order to easily compute a path
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between any two of their con�gurations, and the adjacency between C-prisms can be
easily determined. Therefore the C-prisms are suitable for the construction of a path
in Cfree.
De�nition 18: A C-slice is the set con�gurations of Cfree with orientations � 2 [�b; �t],
where �b and �t are two consecutive orientations of C-vertices.
The top and the bottom orientations of a C-prism correspond to the top or the bottom of
a C-slice since the C-vertices are the extremes of the C-edges. The algorithm to partition
Cfree in a set of C-prisms is the following:

Cfree-Partition()
For the middle orientation of each C-slice do:

Generate a triangular mesh of the corresponding section of Cfree
Associate to each triangle the three C-edges that contain its vertices.

Go through all the C-slices increasing the value of the orientation For each C-slice si
(with orientation range [�ib; �

i
t]) do:

Find the triangles that do not have an equivalent triangle in the previous slice si�1
(being two triangle equivalent if they have the same set of associated C-edges)
For each of these triangles tk create a C-prism:

�bottom = �ib

Associate to the C-prism the C-edges associated to the triangle

Find the top orientation:

Go through all the C-slices sj with �jb � �it. If the triangle tk does not
have an equivalent triangle in sj then �top = �jb

END

Figures 2.16a and 2.16b show the triangular mesh of two consecutive C-slices si and sj
for an orientation � = �it = �jb. Since one of the triangles of sj do not exist in si,
this orientation is the bottom orientation of a C-prism, i.e. �bottom = �jb. Figures 2.16c
and 2.16d show the triangular mesh of two consecutive C-slices sk and sl for an orientation
� = �kt = �lb, being the triangle shown in Figure 2.16c the same as the one of Figure 2.16b
(i.e. they have the same associated C-edges). The top orientation of the C-prism occurs
for this orientation, i.e. �top = �lb, since the triangle of sk do not exist in sl. Figure 2.17
shows the obtained C-prism together with its associated C-edges represented in C 0-space.
In order to plan a path in Cfree, let introduce the following concepts:
De�nition 19: A Cf -border is the set of con�gurations that belong to two C-prisms.

De�nition 20: A Cf -node is the middle con�guration of a Cf -border.
De�nition 21: A Cf -arc is the path inside a C-prism that connects two of its Cf -nodes.
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De�nition 22: A Cf -graph is a graph whose nodes represent Cf -nodes and whose arcs
represent Cf -arcs. Each arc of Cf -graph have an associated initial cost equal to the length
of the Cf -arc. This cost can be modi�ed following some policies of the motion planning
algorithm introduced in Section 2.7.

De�nition 23: A Cf -path is a sequence of Cf -nodes connected by Cf -arcs that link an
initial Cf -node with a goal Cf -node.
The Cf -graph associated to the C-space of an assembly task is build from the set of
C-prisms that compose it in the following way:

� Determination of the Cf -nodes:
(1) Find the adjacency between C-prisms. There is lateral adjacency between two

C-prisms if for a given C-slice the associated triangles are adjacent, which is
obtained from the algorithm used to generate the triangular mesh [88]. There is
top/bottom adjacency if the top triangle of a C-prism and the bottom triangle of
another take place at the same orientation, and their intersection is not empty.

(2) Compute the Cf -node depending on the type of adjacency:

(2.1) Top/bottom adjacency:
The Cf -border between two C-prisms with top/bottom adjacency is de�ned
by the set of con�gurations satisfying:

c =
X
i

�ipi (2.37)

with

�i 2 [0; 1]X
i

�i = 1 (2.38)

pi being the intersection points of the two triangles corresponding to the
top and the bottom of the C-prisms that coincide in orientation. Then the
Cf -node is the barycenter of the polygon with vertices pi (Figure 2.18a).

(2.2) Lateral adjacency:
The Cf -border between two C-prisms with lateral adjacency is de�ned by
the set of con�gurations satisfying:

c = �e1(�) + �e2(�) (2.39)

with

�; � 2 [0; 1]

�+ � = 1

� 2 [�pm; �pM ] (2.40)

e1 and e2 being the two common C-edges, and [�pm; �pM ] the range
of orientations were the two C-prisms simultaneously exist. Then, if
�n = (�pm + �pM)=2, the Cf -node is the middle point of the segment with
extremes e2(�n) and e1(�n) (Figure 2.18b).
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� = �bottom

� = �top

� = �bottom

� = �top

a) b)

c) d)

C-slice si C-slice sj

C-slice sk C-slice sl

Figure 2.16: Triangular mesh of two consecutive C-slices de�ning the bottom orientation
of a C-prism (Figures a and b). Triangular mesh of two consecutive C-slices de�ning the
top orientation of the same C-prism (Figures c and d). The bottom and top triangles of
the C-prism are shown in Figures b and c, respectively.

� Determination of the Cf -arcs:
The Cf -arc between two Cf -nodes ni = (xi; yi; �i) and ng = (xg; yg; �g) is
computed as follows. Let e1(�) = (x1(�); y1(�); �), e2(�) = (x2(�); y2(�); �) and
e3(�) = (x3(�); y3(�); �) be the three con�gurations of the C-edges associated to the
C-prism for orientation �. The con�gurations ni and ng satisfy:

�!
e1ni = �i

�!
e2e1 +�i

�!
e3e1

�!
e1ng = �g

�!
e2e1 +�g

�!
e3e1 (2.41)

Then, any con�guration c of the arc satis�es:
�!
e1c = �(�)

�!
e2e1 +�(�)

�!
e3e1 (2.42)

with

�(�) = �i + (�g � �i)
�� �i
�g � �i
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a) b)

c) d)

Figure 2.17: Representation in C 0-space of a C-prism (d) and its associate C-edges (a, b
and c).

�(�) = �i + (�g � �i)
�� �i
�g � �i

(2.43)

where �i, �g, �i and �g are determined by equation (2.41). The arc can also be
expressed as:

x(�) = x1(�) + �(�)[x2(�)� x1(�)] + �(�)[x3(�)� x1(�)]

y(�) = y1(�) + �(�)[y2(�)� y1(�)] + �(�)[y3(�)� y1(�)]

q(�) = �� (2.44)

2.6.2 Partition of the contact-space

Contact motions reduce the degrees of freedom and thus reduce the uncertainties, being
desirable in assembly tasks. If two objects are in contact at a given con�guration, it is
possible to move them to another contact con�guration through contact motions [54].



44 CHAPTER 2. BASIC MOTION PLANNING

33333
33333
33333
33333
33333
33333
33333

33
33

a)

p1

p2

p3

Cf -border
Cf -node

33333
33333
33333
33333
33333

3333
3333
3333

3
3

33333
33333
33333
33333
33333
33
33

33

333
333

b)

e1

e2

Cf -border
Cf -node

c)

Figure 2.18: a) Cf -node of a C-prism corresponding to a top/bottom adjacency b) Cf -node
of a C-prism corresponding to a lateral adjacency) Cf -arc connecting the previous Cf -nodes.
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Figure 2.19: C-items of a C-face.

In the C-space construction algorithm presented in section 2.5.1, the C-faces were divided
into a set of C-items, being the C-items non-overlapping regions whose union is the C-face
(Figure 2.19). Therefore, the C-space construction algorithm presented in section 2.5.1 is
an exact cell decomposition method for Ccontact.
The C-items introduced in De�nition 15, are de�ned again for convenience.

De�nition 24: A C-item is the set of connected con�gurations of Ccontact that satisfy:

c = �e1(�) + �e2(�) (2.45)

with

�; � 2 [0; 1]

�+ � = 1

� 2 [�bottom; �top] (2.46)

e1 and e2 being two C-edges of the C-space, and [�bottom; �top] the range of orientations
were the two C-edges simultaneously exist.

Then, the C-items are simple enough in order to easily compute a path between
any two of their con�gurations, and the adjacency between C-items is easily
determined (section 2.5.1). Therefore the C-items are suitable for the construction of
a path in Ccontact.
Let introduce the following concepts for motion planning in Ccontact in a similar way as
the ones de�ned for Cfree:
De�nition 25: A Cc-border is the set of con�gurations that belong to two C-items.

De�nition 26: A Cc-node is the middle con�guration of a Cc-border (Figure 2.20a).
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Figure 2.20: a) Cc-nodes of a C-item b) Cc-arcs of a C-item.

De�nition 27: A Cc-arc is the path over a C-item that connects two of its Cc-nodes
(Figure 2.20b).

De�nition 28: A Cc-graph is a graph whose node represent Cc-nodes and whose arcs
represent Cc-arcs. Each arc of Cc-graph have an associated initial cost equal to the length
of the Cc-arc. This cost can be modi�ed following some policies of the motion planning
algorithm introduced in Section 2.7.

De�nition 29: A Cc-path is a sequence of Cc-nodes connected by Cc-arcs that link an
initial Cc-node with a goal Cc-node.
The Cc-graph associated to the C-space of an assembly task is build from the set of C-items
that compose it in the following way:

� Determination of the Cc-nodes:
First the Cc-borders between the adjacent C-items are determined. The Cc-borders
are arcs of curves in C-space with extremes at some given orientations �m
and �M .

� If �m 6= �M : the Cc-border is a C-edge and the Cc-node is the point of the C-edge
for the orientation (�m + �M )=2 (e.g. the nodes n2 and n5 in Figure 2.20a).

� If �m = �M : the Cc-border is a segment of a straigth line (which may be a C-edge
or not), and the Cc-node associated to it is the middle point of the segment (e.g.
the nodes n1, n6, n2 and n4 in Figure 2.20a).

� Determination of the Cc-arcs:
The Cc-arc between two Cc-nodes ni = (xi; yi; �i) and ng = (xg; yg; �g) is computed
as follows. Let e1(�) = (x1(�); y1(�); �) and e2(�) = (x2(�); y2(�); �) be the
two con�gurations of the C-edges associated to the C-item for orientation �. The
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con�gurations ni and ng satisfy:

�!
e1ni = �i

�!
e2e1 (2.47)

�!
e1ng = �g

�!
e2e1 (2.48)

Then, any con�guration c of the Cc-arc satis�es:
�!
e1c = �(�)

�!
e2e1 (2.49)

with

�(�) = �i + (�g � �i)
�� �i
�g � �i

(2.50)

where �i and �g are determined by equation (2.47) and (2.48), respectively. The
Cc-arc can also be expressed as:

x(�) = x1(�) + �(�)(x2(�)� x1(�))

y(�) = y1(�) + �(�)(y2(�)� y1(�))

q(�) = �� (2.51)

The Cc-arcs are completely inside the C-item and have an associated value which is
the distance between the connected Cc-nodes, computed as the length of the arc of
curve represented by the Cc-arc.

2.7 Motion planning algorithm

Given a goal node and an initial node of a graph, either Cf -graph or Cc-graph, the Dijkstra
algorithm (Appendix A) is applied in order to compute the path of minimum cost. The
Dijkstra algorithm is applied to any two pairs of nodes of the Cc-graph and to any two
pairs of the nodes of the Cf -graph. As a result, all the possible Cc-paths and all the
possible Cf -paths are obtained.

2.7.1 Search policies

Some policies can be de�ned in order to determine the type of C-paths obtained, by
increasing or decreasing the value of the cost associated to some given C-arcs. Some
possible policies are enumerated:

1. Avoid the C-arcs that are over a C-edge corresponding to a vertex-vertex contact by
setting to in�nity the cost of the arc in the C-graph.

2. Penalize the C-arcs with a C-node that is over a C-edge corresponding to a vertex-
vertex contact by setting to a great value the cost of the arc in the C-graph.
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3. Favour/Penalize the C-arcs corresponding to pure translations/rotations, by
multiplying by a factor less/greater than 1 the cost of the arc in the C-graph.

4. Favour/Penalize the C-arcs corresponding to motions that maintain one/two basic
contacts, by multiplying by a factor less/greater than 1 the cost of the arc in the
C-graph.

5. Avoid a given C-arc by setting to in�nity the cost of the arc in the C-graph.

2.7.2 Performance

The �ne motion planning algorithm has been implemented in C++ on a Silicon Graphics
workstation (175 MHz R10000 Indigo 2). The assembly task used as example is that of
the �gures shown, being composed of 341 Cc-nodes and 746 Cf -nodes. The CPU time to
compute the Cc-paths from any Cc-node to any Cc-node of Cc-graph is 3.68 seconds, and
the CPU time to compute the Cf -paths from any Cf -node to any Cf -node of Cf -graph is
34.43 seconds.

2.8 Analysis of reaction forces

In this Section reaction forces will be analyzed, since they may arise during the motions
in Ccontact. A reaction force ~f = [fx fy]T resulting from a contact situation during a
planar assembly task and producing a torque � with respect to the manipulated object
reference point, can be represented in a tridimensional force space F3 by a generalized
reaction force ~g = [fx fy fq]T , with fq =

�
�
, being � the radius of gyration (Section 2.1).

2.8.1 Force decomposition

In the absence of friction, the reaction force arising at a contact situation involving one
basic contact is in the direction normal to the C-face at the contact point. This Section
analyzes the e�ect of friction and of an applied generalized force, in order to �nd the
reaction force that arises at the basic contact.

De�nition 30: The tangent plane �t associated to a given contact con�guration co of a
basic contact i, is the plane tangent to Fi at co.
�t is de�ned by the direction ~n normal to the C-face at the contact con�guration. If
(nx; ny) = (cos W ; sin W ) is the normal to the contact edge, and (rx; ry) is the vector
from the contact point to the manipulated object reference point, then ~n has the following
expression:

~n = (nx; ny; nq=�) (2.52)
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Figure 2.21: Contact reference frames in a type-A and in a type-B basic contacts.

where:
nq = nxry � nyrx (2.53)

At any contact con�guration, the directions of motion that instantaneously maintain the
contact are those that belong to the tangent plane. The following directions belonging to
the tangent plane �t will be of interest (Figure 2.21):

a) Direction ~tr: Direction of pure rotation about the contact point:

~tr = (�ry; rx; �) (2.54)

A positive motion along ~tr corresponds to a rotation that increases the orientation �
of the manipulated object.

b) Direction ~tp: Direction perpendicular to ~tr and ~n, The sense of ~tp is such that [~tr;~tp; ~n]
is a right-handed frame.

c) Direction ~ts: Direction of pure sliding:

~ts = �(ny;�nx; 0) (2.55)

d) Direction ~tq: Direction perpendicular to ~ts. A positive motion along ~tq corresponds
to a rotation that increases the orientation � of the manipulated object.

The sense of ~ts is such that the frame [~tq;~ts; ~n] is a right-handed frame

De�nition 31: The contact reference frame is the orthogonal reference frame [~tr;~tp; ~n]
with its origin at the contact con�guration.
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The contact reference frame allows the vectorial decomposition of an applied force in order
to analyze its e�ect on the movement of the manipulated object [38]. Figures 2.21a and
2.21b show the contact reference frame for type-A and type-B basic contacts, respectively,
corresponding to di�erent contact con�gurations. In each contact con�guration, the
tangent plane �t is drawn together with the directions ~tr, ~tp, ~ts and ~tq.

The e�ect of friction for planar assembly tasks in the tridimensional C-space has been
studied in depth by Erdamnn [38], who introduces the generalized friction cone.

De�nition 32: The generalized friction cone is the range of possible generalized reaction
force directions arising from a basic contact in a given contact con�guration.

The generalized friction cone is a bidimensional cone in C-space, determined by ~n � �~vf ,
~n being the direction normal to the C-face de�ned in equation (2.52), ~vf the generalized
friction vector, and � the friction coe�cient:

~vf = (ny;�nx; vq=�) (2.56)

with vq = nxrx + nyry. The unitary vectors in the directions of the generalized friction
cone edges de�ned by (~n+ �~vf) and (~n� �~vf), will be noted by ~e + and ~e �, respectively:

~e � = (nx � �ny; ny + �nx; [ry(nx � �ny)� rx(ny + �nx)]=�)

~e + = (nx + �ny; ny � �nx; [ry(nx + �ny)� rx(ny � �nx)]=�) (2.57)

De�nition 33: The friction plane �f is the plane that contains the generalized friction
cone. The direction normal to �f is the direction of pure rotation ~tr.

De�nition 34: The rotation plane �r is the plane that contains the directions ~tr and ~n.
The direction normal to �r is the direction ~tp.

The e�ect of an applied force when the manipulated object is in a one-point contact with
the environment can be analyzed by decomposing that force, making use of the contact
reference frame. As a result, a net force in the direction of motion and a reaction force
are obtained.

Let ~gA be the applied generalized force that points into the C-face associated to the basic
contact. ~gA can be decomposed in the following way

~gA = ~gf + ~gtr (2.58)

~gf being the component on the plane �f and ~gtr the component along the direction ~tr,
perpendicular to �f .

Proposition 6: The reaction force ~gR produced in a basic contact is ~gR = �~gf if ~gf is
inside the generalized friction cone, or the negated projection of ~gf along ~tp onto the edge
of the friction cone, otherwise.
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Figure 2.22: Force decomposition.

Proof: The generalized friction cone, which represent the possible reaction forces arising
from a contact, lies in the plane �f . Then ~gf , the projection of ~gA into �f , is the
component of ~gA that can be cancelled by a reaction force. If ~gf lies inside the generalized
friction cone, a reaction force arises cancelling it, i.e. ~gR = �~gf . Otherwise only the
projection of ~gf onto the edge of the friction cone can be cancelled by a reaction force in
the direction of this edge. �
Proposition 7: The net force ~gN that de�nes the direction of motion is the projection of
~gA along the direction determined by ~gR into the plane �t.

Proof: The net force ~gN de�nes the direction of motion over the plane �t since it is
the component of the applied force which is not cancelled by the reaction force, then
~gN = ~gA + ~gR, i.e. it is the projection of ~gA into the plane �t along the direction
determined by ~gR. �
Figure 2.22 shows the force decomposition of an applied force ~gA.

For contact situations involving more than one basic contact, the range of possible
generalized reaction force directions, i.e. the composite friction cone, is the vector sum of
the range of possible generalized reaction force directions arising at each basic contact in
the given contact con�guration, i.e. the vector sum of each friction cone.
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2.8.2 Force decomposition in the dual plane

Generalized forces will be represented using the dual representation of forces [14]
(Appendix B). The dual representation of forces is a graphical method that can be
used for the analysis of planar contact problems, since it transforms planar motions and
forces to the corresponding acceleration centers. This representation maps a line of force
into a point of a plane that expresses the line direction, and a sign that expresses its sense.

De�nition 35: The dual plane is the plane composed of dual points of forces.

Let de�ne:

�0t : the line composed of the dual points of the forces that belong to the tangent
plane �t.

�0f : the line composed of the dual points of the forces that belong to the friction
plane �f .

�0r : the line composed of the dual points of the forces that belong to the rotation
plane �r.

T 0
p : the dual representation of the direction ~tp.

N 0 : the dual representation of the direction ~n.

T 0
r : the dual representation of the direction ~tr.

Figure 2.23 shows the generalized force space where the plane fq =
1
�
has been drawn in

order to illustrate its intersection with the contact reference frame and the planes de�ned
by it. The points A, B and C correspond to the intersection of the plane fq =

1
�
with the

axis of the contact reference frame de�ned by the vectors ~tp, ~n and ~tr, respectively. The
lines a, b, and c correspond to the intersection of the plane fq =

1
�
with the planes �f , �t

and �r, respectively.
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Figure 2.24: Force decomposition in the dual plane.

A �=2 counterclockwise rotation of the plane fq = 1
�
in Figure 2.23 around axis fq

coincides with the dual representation of the contact situation. Figure 2.24 shows this
dual representation where it can be seen that the points A, B and C give rise to the dual
points T 0

p, N
0 and T 0

r, respectively, and the lines a, b and c give rise to the lines �0f , �
0
t and

�0r, respectively. The generalized friction cone is represented by a segment of �0r called the
dual friction cone.

Some properties of the dual representation are illustrated in Appendix B. Other properties
that will be used for the decomposition of an applied force are the following:

Property 8: The dual representation T 0
r of the direction of pure rotation ~tr coincides

with the contact point, since it represents the acceleration center.

Property 9: A plane � and its normal direction ~n in F3 are mapped in the dual
plane into a line �0 and a point N 0 that maintain between them a relation of duality,
i.e. N 0 can be obtained by computing the dual expression of �0.

Property 10: Let ~gp be the projection of a vector ~g into a plane �p along a given
direction ~t, and ~gt the component along ~t, i.e. ~g = ~gp+~gt; and let F 0, F 0

p, F
0
t , T

0 and
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looses contact while the other applied forces maintain it. b) FA0

2
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produce a
negative one. c) F 0

A4
and F 0
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produce positive sliding while F 0

A2
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sliding.

�0p be the dual representations of ~g, ~gp, ~gt, ~t and �p, respectively. Then, F 0
p is the

intersection of �0p and the line that contains F 0 and T 0, and F 0 satis�es F 0 2 F 0
pF

0
t
2.

From Proposition 7 and Property 10, the dual representation F 0
N of ~gN is computed in

the dual plane as the intersection of �0t and the line that contains F 0
A and F 0

R. Figure 2.24
shows the dual representation of the force decomposition of Figure 2.22, where the dual
lines �0t, �

0
f and �0r represent the planes de�ned by the contact reference frame (�t, �f

and �r, respectively).

2If sign(F 0

p) 6= sign(F 0

t ) then the segment is not �nite [14].
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2.8.3 Partition of the dual plane

The dual lines �0t, �
0
f and �

0
r representing the planes de�ned by the contact reference frame

(�t, �f and �r, respectively), partition the dual plane into regions. These regions bound
the directions of applied forces that produce similar movements of the manipulated object
(i.e. produce the same sense of sliding and rotation about the contact point, or produce
sticking at it). Let a manipulated object be located at a one-basic contact con�guration
and be subject to an applied force ~gA.

Contact maintenance condition:

The manipulated object either moves along a direction contained in the tangent plane or
sticks at the contact con�guration if ~gA satis�es ~gA � ~n < 0.

Let �+t and ��t be the half-planes de�ned by �0t such that �+t � N 0 if sign(N 0) > 0 and
��t � N 0 if sign(N 0) < 0. Then, the contact maintenance condition is veri�ed in the dual
plane by testing F 0

A 2 �+t if sign(F 0
A) < 0 or F 0

A 2 ��t if sign(F 0
A) > 0.

Rotation Condition:

If ~gA satis�es the contact maintenance condition, the manipulated object rotates clockwise
around the contact vertex if ~gA � ~tr > 0, and counter-clockwise otherwise.

Let �+f and ��f be the half-planes de�ned by �0f such that �+f � T 0
r
3. Then, the rotation

condition is veri�ed in the dual plane as follows:

� The manipulated object rotates clockwise around the contact vertex if F 0
A 2 �+f when

sign(F 0
A) > 0 or F 0

A 2 ��f when sign(F 0
A) < 0.

� The manipulated object rotates counter-clockwise around the contact vertex if
F 0
A 2 ��f when sign(F 0

A) > 0 or F 0
A 2 �+f when sign(F 0

A) < 0.

Sliding Condition:

If ~gA satis�es the contact maintenance condition, the manipulated object sticks at the
contact vertex if the projection of ~gA into the friction plane lies inside the friction cone.
Otherwise, the motion has a component:

� in the direction ~tp and produces a reaction force in the direction e� if ~gA � ~tp > 0,

� in the direction opposite ~tp and produces a reaction force in the direction e+ if
~gA � ~tp < 0.

Let �0r be the region of dual points whose projection onto the line �0r lie inside the dual
friction cone. Region �0r , called the sticking region, is the cone built with the two lines
that contain T 0

r and one of the extremes of the dual friction cone. Let �+r and ��r be the
half-planes de�ned by �0r such that �+r � T 0

p if sign(T
0
p) > 0 and ��r � T 0

p if sign(T
0
p) < 0.

Then, the sliding condition is veri�ed in the dual plane by �rst testing if F 0
A 2 �0r . If this

3By construction sign(T 0

r) is always positive.
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is not satis�ed:

� The motion has a component in the direction ~tp if F 0
A 2 �+r when sign(F 0

A) > 0 or if
F 0
A 2 ��r when sign(F 0

A) < 0.

� The motion has a component in the direction opposite ~tp if F 0
A 2 ��r when

sign(F 0
A) > 0 or if F 0

A 2 �+r when sign(F 0
A) < 0.

Motion ambiguities may arise when the sticking region �0r contains the line �0t. Then,
there are some directions that can cause a break of contact because they do not satisfy
the maintenance condition, but at the same time they can produce a sticking at the
contact point because they belong to the sticking region. This occurs under some special
conditions [38] (e.g. when the reference point of the manipulated object is far away from
the contact point and almost above it, being the friction coe�cient big enough).

As an example, Figure 2.25 shows several applied forces that produce:

F 0
A1

: loose of contact.

F 0
A2

: contact maintenance, positive rotation about the contact point, sliding in the

direction �~tp.
F 0
A3

: contact maintenance, negative rotation about the contact point, sliding in the

direction �~tp.
F 0
A4

: contact maintenance, positive rotation about the contact point, sliding in the

direction ~tp.

F 0
A5

: contact maintenance, negative rotation about the contact point, sliding in the

direction ~tp.

Therefore, the dual plane can be partitioned in �ve regions depending on the motion it
produces to the manipulated object (Figure 2.26):

Region I: negative rotation about the contact point (R�), positive sliding (S+)

Region II: positive rotation about the contact point (R�), positive sliding (S+)

Region III: positive rotation about the contact point (R�), negative sliding (S+)

Region IV: negative rotation about the contact point (R�), negative sliding (S+)

Region V: sticking region.

This partition can be obtained by the following algorithm:
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Figure 2.26: Dual Space Partition

Dual-plane-partition()

(1) Compute T 0
r as the contact point (property 8)

(2) Compute �0f as the dual line of T 0
r (property 9)

(3) Compute �0t as the line that contains the point T 0
r and its direction is ~n0

(4) Compute N 0 as the dual point of �0t

(5) Compute the dual friction cone as the dual segment of the cone with vertex at T 0
r and

directions included in the physical friction cone.

(6) Compute T 0
p as the intersection point of lines �0f and �0t.

(7) Compute �0r as the dual line of T 0
p

(8) Compute the sticking region as the cone determined by the lines that contain T 0
r and

one of the extremes of the dual friction cone.

END

In step (4), the point N 0 can also be computed as the intersection point of �0f and the
line that expresses the direction ~n0 normal to the contact edge (the line perpendicular
to ~n0 through the origin). In step (7), the line �0r can also be computed as the line that
contains the points N 0 and T 0

r.
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