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Resum 

L'espectroscòpia de ressonància magnètica nuclear (RMN) és capaç de generar mitjançant 

una mesura simple i directa una gran quantitat d'informació química. Tanmateix, aquesta 

informació no sempre és fàcil d'interpretar. De fet, la complexitat de l'anàlisi espectral és 

proporcional al nombre de compostos presents en la mostra analitzada, ja que les 

ressonàncies dels diferents compostos es troben superposades. Una de les situacions més 

extremes la podem trobar en el cas dels espectres de RMN de mostres obtingudes en estudis 

de metabolòmica, en les que es poden arribar a detectar al voltant d’una cinquantena de 

compostos en una sola mesura. 

En l'estudi dels processos químics relacionats amb els metabòlits (metabolòmica), els 

espectres de RMN més utilitzats són els espectres monodimensionals de protó (1D 1H), ja 

que són relativament ràpids d'adquirir i la sensibilitat del protó és la més alta. És també 

corrent utilitzar en estudis de metabolòmica els espectres de RMN bidimensionals 1H-13C 

heteronuclears de coherència quàntica única (2D 1H-13C HSQC), els quals permeten obtenir 

una millor caracterització estructural dels metabòlits detectats. 

En aquesta Tesi, s’han desenvolupat diferents estratègies d'anàlisi d’espectres de RMN de 1H 

i de 1H-13C HSQC de mostres de metabolòmica. Els espectres de RMN van ser adquirits 

d’extractes de llevat Saccharomyces cerevisiae que prèviament havia estat exposat a diferents 

pertorbacions mediambientals. L’objectiu d’aquests estudis ha estat millorar la comprensió 

dels diferents processos metabòlics que regulen l'aclimatació de les cèl·lules de llevat a 

diferents condicions de creixement. 

A partir d’aquests estudis de metabolòmica realitzats, es van dissenyar noves estratègies i 

protocols d'anàlisi de dades de RMN que inclouen la seva importació, el seu 

preprocessament, l'assignació de les ressonàncies i la seva integració. A més, es van aplicar 

diferents mètodes quimiomètrics que van permetre identificar els biomarcadors de l’estat 

metabòlic de les cèl·lules del llevat i  extreure els principals perfils metabòlics que descriuen 

els canvis en el seu metabolisme. Es van proposar a més, dues estratègies quimiomètriques 

per a l’anàlisi no dirigida d’espectres de RMN de 1H i de 1H-13C HSQC, respectivament. 

En el cas dels estudis d’espectres de RMN de 1H, l'aplicació del mètode de resolució 

multivariant de corbes per mínims quadrats alternats (MCR-ALS) va permetre resoldre 

satisfactòriament les concentracions i els espectres individuals dels diferents metabòlits.  

D’altra banda, la investigació de l’estructura de les dades dels espectres de RMN de 1H-13C 

HSQC va revelar que la majoria dels valors espectrals són descriptius del soroll, cosa que 

dificulta la seva anàlisi. En aquest context, s’ha desenvolupat una nova estratègia per filtrar 
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les variables descriptives del soroll, anomenada selecció de les variables d'interès (Variables 

of Interest, VOI). Després d’aplicar aquest procediment, es va observar que l'anàlisi dels 

espectres 1H-13C HSQC filtrats produeix resultats similars als obtinguts amb els espectres 

corresponents de 1H. Degut a l’existència de la segona dimensió en els espectres de 1H-13C 

HSQC, les ressonàncies estan menys solapades i es poden integrar sense fer servir estratègies 

basades en la seva deconvolució. Degut a tot això i al fet que els espectres de 1H-13C HSQC 

contenen més informació química que els de 1H, l’anàlisi dels espectres de 1H-13C HSQC 

filtrats amb aquest procediment permet una caracterització del sistema metabolòmic més 

acurada i amb temps d’anàlisis més curts, en comparació a l’anàlisi dels espectres de 1H 

corresponents.  
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Abstract 

Nuclear Magnetic Resonance (NMR) spectroscopy is able to produce by a single direct 

measurement a very high amount of chemical information. However, this information is not 

always easy to interpret. In fact, the complexity of the NMR spectral data analysis is 

proportional to the number of compounds present simultaneously in the analyzed sample, 

as resonances from different compounds overlap. One of the most extreme situations can be 

found for NMR spectra of samples from metabolomics studies, from which approximately 

fifty compounds can be detected in a single measurement. 

In the study of the chemical processes involving metabolites (metabolomics), the most 

commonly used NMR spectra are the one-dimensional proton (1D 1H) NMR spectra, since 

they are relatively fast to acquire and proton sensitivity is the highest. The 1H-13C 

Heteronuclear Single Quantum Coherence (HSQC) NMR spectra are also frequently used 

in metabolomics for an improved structural characterization of the detected metabolites. 

In this Thesis, we have developed different data analysis strategies of 1H NMR and 1H-13C 

HSQC NMR metabolomics datasets. The investigated NMR spectra were acquired from 

extracts of Saccharomyces cerevisiae cells previously exposed to different environmental 

perturbations. The aim of these studies was to better understand the different metabolic 

processes that regulate the yeast metabolism acclimation to different growing conditions. 

From the study of these NMR metabolomics experiments, we designed new strategies and 

protocols for the analysis of these datasets that include the steps of data import, data pre-

treatment, resonance assignment and metabolite quantification. Moreover, different 

chemometric methods were applied for the identification of the possible biomarkers that 

define the metabolic states of yeast cells and to extract the main metabolic profiles that 

describe the observed changes in the metabolome. Furthermore, two chemometric strategies 

were proposed for the untargeted analysis of 1H NMR and 1H-13C HSQC NMR, respectively. 

For the study of 1H NMR spectra of metabolomics samples, the application of the 

Multivariate Curve Resolution–Alternating Least Squares (MCR-ALS) chemometric 

method allowed the satisfactory resolution of the individual 1H NMR spectra and 

concentrations of the different metabolites. 

On the other hand, the investigation of metabolomics datasets by 1H-13C HSQC NMR 

revealed that most of the data values in these NMR spectra are only descriptive of noise, 

hampering their chemometric data analysis. In this context, a new strategy to filter the 

variables relative to noise, named ‘Variables of Interest’ (or VOI) is proposed. After the 

application of this procedure, we observed that the analysis of the noise-filtered 1H-13C HSQC 
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NMR spectra produced similar results to the corresponding analysis of 1H NMR spectra. 

Due to the existence of the second dimension in the 1H-13C HSQC NMR spectra, resonances 

are less overlapped and they could be integrated without using deconvolution approaches. 

For all these reasons, and linked to the fact that more chemical information is contained in 

the 1H-13C HSQC NMR spectra than in the 1H NMR spectra, the analysis of noise-filtered 
1H-13C HSQC NMR spectra allow a more accurate characterization of the metabolomic 

system, in a reduced amount of time in comparison to the analysis of the corresponding 1H 

NMR spectra. 
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Notation 

In this section the mathematical and gene notations used in this thesis are presented. These 

conventions are the ones commonly accepted by the scientific community. 

Regarding the mathematical notation, italic lowercase letters (e.g., x) indicate scalars, bold 

lowercase letters (e.g., x) indicate vectors, and bold uppercase letters (e.g., X) indicate 

matrices. The mean of a variable is indicated with an overline (e.g., ). The transposition of 

a vector or matrix is symbolized by a superscripted “T” (e.g., XT). The inverse of a matrix is 

symbolized by a superscript “-1” (e.g., X-1). A matrix enclosed by two verticals bars on each 

side (e.g., X ) represents the square root of the sum of squares of the given matrix. 

Regarding the gene notation, genes are indicated with italic uppercase letters (e.g., URA3). 

The loss-of-function of the gene is indicated in italic lowercase letters, followed by the “Δ” 

symbol (e.g., ura3Δ). The protein resulting the transcription and translation of the gene is 

indicated in roman letters with an initial capital letter, followed by the suffix “p” (e.g., Ura3p). 
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Objectives and Thesis structure 

3 

1 SCOPE AND OBJECTIVES 

Nowadays, Nuclear Magnetic Resonance (NMR) spectroscopy has become one of the most 

preferred instrumental techniques in different scientific fields, since it allows obtaining 

qualitative and quantitative chemical information directly from measurements. For this 

reason, NMR spectroscopy (and more specifically, 1D 1H NMR) is a commonly chosen 

technique for the analysis of complex samples, such as metabolomics samples. 

Despite being so informative, NMR spectra are sometimes difficult to interpret because 

resonances from several dozens of compounds are overlapped, hampering the identification 

process of the sample constituents. With two-dimensional NMR, the spectral overlapping 

can be reduced, but metabolomics studies usually do not take advantage of these NMR data 

because they present a lower sensitivity, they need longer acquisition times, and their 

processing is more demanding than for 1D 1H NMR data. 

Moreover, with (NMR) metabolomics, information from several metabolites are obtained 

simultaneously for each sample, and understanding this information from a biological point 

of view can be challenging, not only because of the large amount of data information 

available, but also because the measured metabolite perturbations are the direct consequence 

of different biological processes going on simultaneously in the studied organism. 

Considering these situations, the two general goals of this Thesis are: 

To develop new data analysis strategies based on chemometric methods to 

investigate NMR metabolomics datasets and extract biochemical knowledge from 

them. 

To study the effects of environmental perturbations on the metabolome of yeast as a 

representative biological organism by using the proposed chemometrics strategies.  

 

These two general goals can be divided into specific (analytical and biological) goals, 

presented below: 

Analytical goals 

To design metabolomics experiments that provide relevant information from the 

metabolic state of the investigated representative organisms. 

To develop a protocol to prepare NMR metabolomics samples from representative 

organisms. 

To define a data analysis workflow to study these NMR samples. This workflow will 

include the data import of NMR spectra acquired in Bruker or Varian NMR 
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instruments to MATLAB®, the alignment and normalization of the NMR data, the 

resonance assignment and integration, the investigation of the dataset with 

chemometric methods, such as Principal Component Analysis (PCA) and Partial 

Least Squares – Discriminant Analysis (PLS-DA), and the export of the processed 

data to the NMR suites TopSpin® (for Bruker NMR data) or MestReNova (for 

Bruker and Varian NMR data). 

To investigate the differences in the data analysis of 1D (specifically, 1H) NMR and 

2D (specifically, 1H-13C HSQC) NMR metabolomics datasets. 

To propose new chemometric-based methods to improve the analysis of 1D and 2D 

NMR metabolomics datasets. 

To establish a data-analysis strategy to fuse data from NMR spectroscopy with data 

obtained from other analytical platforms with the aim of generating a more 

comprehensive characterization of the metabolic perturbations in the studied 

organisms.  

Biological objectives 

To evaluate and interpret the metabolic response of Saccharomyces cerevisiae cells 

(strain BY4741) to temperature acclimation. 

To evaluate and interpret the metabolic response of Saccharomyces cerevisiae cells 

(strain BY4741) cultured in four different drop-out media (lacking L-leucine, L-

methionine, L-histidine or uracil in the used media) over time.  

To evaluate and interpret the metabolic response of Saccharomyces cerevisiae cells 

(strain S288C) cultured in two different growth conditions (minimal and rich media) 

over time.  
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2 THESIS STRUCTURE 

This Thesis is structured in six chapters that are described below: 

In the first chapter, the aim of this Thesis, its structure and the list of scientific publications 

derived from this work are presented. 

In the second chapter, a background introduction of NMR spectroscopy, metabolomics, and 

NMR metabolomics is given, and the workflow of a typical NMR metabolomics study is 

detailed. The chemometric methods used in NMR metabolomics are reviewed. A focus in 

environmental metabolomics is given, and the usefulness of Saccharomyces cerevisiae as a 

representative model organism in environmental metabolomics studies is explained. 

In the third chapter of the Thesis, the metabolic response of yeast when exposed to two 

different environmental stresses, temperature acclimation and nutrient starvation, is 

investigated. At the beginning of this chapter, the concepts concerning cell cycle regulation 

are introduced, and precedent published work regarding these two stresses is presented. In 

addition, different strategies used to assign resonances from the NMR metabolomics datasets 

are shown and discussed. Multivariate Curve Resolution – Alternating Least Squares (MCR-

ALS) is presented as a compelling method for untangling the set of underlying biological 

processes that occur simultaneously in the metabolism of the studied organisms. This 

strategy was applied to two datasets. The first dataset consists in a time-series experiment of 

yeast cells cultured in five different media (one standard and four starvation conditions). The 

second dataset contains the relative concentrations of the metabolites (including lipids) from 

yeast cells at four different temperatures. Results from these two MCR-ALS analyses are 

presented and compared with the results from the precedent literature. Finally, the specific 

conclusions that can be drawn from the results discussed in this chapter are given. 

In the fourth chapter of the Thesis, concepts regarding NMR relaxation are introduced. The 

quality of the NMR spectra is investigated from a data analysis point of view, covering 

aspects of spectral resolution, resonance width, signal-to-noise ratio and data 

multidimensionality. Precedent work regarding the resolution of complex NMR spectra by 

chemometric methods is presented. The particularities of NMR metabolomics data, 

specifically related to signal overlapping and to inter-sample metabolic variance, are 

explained. The application of the MCR-ALS method using spectral window constraints is 

proposed as a feasible approach to resolve 1H NMR metabolomics datasets into the set of 

pure concentrations and 1H NMR spectra of the pure metabolites. The suitability of this 

method is investigated with two simulated and one real 1H NMR datasets of yeast metabolic 

extracts. In addition, it is demonstrated that the vast amount of noise in 2D NMR spectra 

hinders their data analysis. In this respect, a noise-filtering approach for 2D (and 3D) NMR 
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spectra is proposed. The differences between 1D NMR and 2D NMR metabolomics are 

mentioned and compared. Finally, specific conclusions drawn from the set of results 

discussed in this chapter are given. 

In the fifth chapter of this Thesis, the main conclusions resulting from the present work are 

presented. 

Finally, in the sixth and final chapter of this Thesis, the references of the publications 

mentioned in the previous chapters are given.    
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Authors: Puig-Castellví F., Alfonso I., Piña B., Tauler R. 

Citation reference:  Metabolomics (2015). 11:1612–1625. 
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Authors:  Puig-Castellví F., Alfonso I., Piña B., Tauler R.  

Citation reference: Scientific Reports (2016), 6:30982. 
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1 HISTORY OF NUCLEAR MAGNETIC RESONANCE 

Nuclear Magnetic Resonance (NMR) is nowadays a powerful analytical tool for organic 

synthesis [1], monitoring kinetics [2], structural biology [3], diagnostics [4] and, of course, 

metabolomics [5], among others. However, NMR origins emerged from the physics realm, 

grounded in electricity, magnetism, classical mechanics and quantum mechanics. 

NMR was discovered prior confirmation of the nuclear spin existence, made by Stern and 

Gerlach in 1933 [6]. Six years later, Rabi demonstrated the principle of NMR: the nuclear 

moment can be measured if the particles are subjected to a homogeneous magnetic field and 

irradiated by a radiofrequency electromagnetic energy [7]. These two important discoveries 

were recognized in 1943 and in 1944, respectively, with the Nobel Prize in Physics [8]. 

Despite the outstanding revelation made by Rabi, his approach had a limited application, 

since only nuclei from small molecules could be analyzed. In the following decade, Purcell 

and Block groups took a different approach. 

In this approach, they applied a radiofrequency magnetization energy to bulk materials, and 

the nuclear magnetization could be rotated away from its equilibrium parallel to the applied 

magnetic field, and then precess about the magnetic field at a well-defined frequency (ω). 

This experiment was tested by Bloch with water [9], while Purcell did the same with paraffin 

[10]. The importance of this discovery was recognized again in 1952 with the Nobel Prize in 

Physics [11]. 

It was first assumed that the relationship between the resonance frequency, ω, and the 

magnetic field applied to the nucleus, Bnucleus, was constant. This constant was named the 

gyromagnetic ratio, γ (eq. 2.1). ω = γBnucleus eq. 2.1 

However, important deviations of the predicted values in further experiments measuring 19F 

and 31P led to postulate that the magnetic properties of the electrons surrounding the nucleus 

provide a shielding, σ, of the applied magnetic field, and that this shielding depends on the 

density and electron configuration (eq. 2.2) [11]. ω = γB0(1 - σ) eq. 2.2 

This shift in the resonance frequency was called chemical shift, δ, and was expressed in parts 

per million (ppm) relative to the fundamental resonance frequency, ν (eq. 2.3). ω = ν(1 + δ ×10-6) eq. 2.3 

The first NMR instruments operate in a continuous-wave (CW) mode, in which the spectrum 

is recorded by slowly changing the irradiation frequency. Then, when the frequency passed 
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through a resonant frequency for a particular nucleus in the sample, the oscillometer recorded 

a peak in the spectrum. After improvements in the homogeneity and stability of magnetic 

fields, the chemical shifts for 1H was demonstrated in 1951, with the acquisition of the 1H 

NMR spectra of ethanol [12]. Further improvements in resolution revealed that the detected 

resonances are, in some cases, formed by sets of resonance lines, which derived from the 

foundations of the concept of indirect spin-spin coupling. 

In 1957, Lowe and Norberg postulated that the nuclei precession after a 90º pulse, measured 

as a Free Induction Decay (FID) spectrum, can be transformed into a spectrum of resonances 

line-shapes after application of the Fourier Transform (FT) [13] and, in 1966, Richard Ernst 

finally made it into practice [14]. The advantages of this method to CW NMR were 

important: the entire spectrum could be recorded in a single scan in 2-3 s rather than the circa 

5 min for the frequency sweep in the CW mode. Richard Ernst was awarded with the Nobel 

Prize in Chemistry in 1991 for developing FT-NMR spectroscopy [15]. 

In the mid-1960s, the superconducting magnets appeared, pushing forward the NMR field. 

The first 500 MHz NMR spectrometer was introduced around 1978, whereas the first 

commercial 600 MHz instrument appeared in 1987. The introduction of superconducting 

magnets allowed to distinguish between resonances that would be coincident at the lower 

magnetic field, enabling the analysis of complex chemical compounds, such as proteins and 

oligonucleotides. In the next decade, two-dimensional (2D) NMR spectroscopy appeared 

[16], which allowed an even better characterization of the measured compounds. Pushed by 

these latest advances, many research groups jumped on the analysis of biological samples 

[17,18], which could be considered as the first steps of NMR metabolomics. 

NMR is still in ongoing development, reflected by the fact that two more Nobel Prizes were 

conceded in the XXIst century because of advances in the NMR field: a Nobel Prize in 

Chemistry was awarded in 2002 to Kurt Wüthrich for his NMR methods to study biological 

macromolecules [19], and another in Physiology or Medicine in 2003 to Lauterbur and 

Mansfield for developing Magnetic Resonance Imaging (MRI) [20]. 
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2 NMR METABOLOMICS 

In 1999, Jeremy Nicholson defined Metabolomics as [21]: 

“The quantitative measurement of the dynamic multiparametric metabolic response of living systems 

to pathophysiological stimuli or genetic modification”. 

In this word, the use of the suffix ‘-omics’ served to give a complementary insight to the other 

‘Omics’ sciences, such as Genomics (the study of genomes) and Proteomics (the study of 

proteomes). Metabolomics, in contrast to the other ‘Omics’ sciences, provides a closer 

understanding of the cellular functions of the living systems since it does not ignore the 

dynamics of the metabolism. 

High-resolution 1H NMR spectroscopy is particularly appropriate for the investigation of the 

metabolic states of an organism since a wide range of metabolites can be quantified 

simultaneously with minimal or no sample preparation. Other techniques such as Mass 

Spectrometry (MS) may also be useful, but differential ionization efficiencies may affect 

detectability and quantitation in some circumstances. 

NMR metabolomics has proven to be a powerful tool to study the developmental stages of 

organisms [22,23], to reveal the metabolomic characteristics associated to a specific genotype 

[24,25], and to evaluate metabolic changes due to environmental or external factors [26,27]. 

Due to its versality, NMR metabolomics has become a rapidly growing area of research, 

playing an important role in the studies of complex mixtures of small biological molecules, 

their metabolic networks, and their interactions with biomacromolecules [28]. Furthermore, 

in the field of environmental sciences, NMR metabolomics has resulted in a notable 

breakthrough for the assessment of environmental stressors to a variety of organisms, since 

it enabled the identification of perturbations in the metabolic networks of these organisms,  

transforming our fundamental understanding of the impacts of these environmental stressors 

[29].  
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3 WORKFLOW OF NMR METABOLOMICS STUDIES 

The generation of biological information from the NMR spectra is not immediate. The 

biological results will depend first on the data analyses (chemometrics), which can be 

performed directly from the raw NMR spectral data or from the already ‘curated’ 

concentrations dataset of the detected metabolites. Nevertheless, in any of these two 

situations, the generation of any of these two datasets is neither easy nor straightforward. 

Extracting conclusions from spectral data implies a shorter and faster workflow than the 

equivalent for concentrations datasets, since only the detected biomarkers will be assigned 

and the resonances integration step is then avoided. Having said this, it has been proven that 

the analysis of ‘curated’ concentrations data can provide more information than the analysis 

of the spectral data [30]. 

 

Figure 2.1. Workflow of an NMR metabolomics experiment. 

In an NMR metabolomics study, metabolites are first extracted and dissolved in a deuterated 

solvent (or in a solvent containing a fraction of deuterated solvent), and then an FID is 

acquired from these prepared samples in the NMR spectrometer. 

In order to obtain a proper spectral dataset, first the set of acquired FID NMR signals need 

to be Fourier transformed to generate the corresponding set of NMR spectra. Then, a set of 

NMR-specific preprocessing methods are used on these spectra to obtain better interpretable 

spectra. The NMR-specific preprocessing methods commonly applied are the reference to an 

NMR standard, apodization, phasing, and baseline correction, among others. Other more 

general preprocessing methods can also be applied on these spectral datasets, such as binning, 

peak alignment, normalization, and scaling. 

The most important step in an NMR metabolomics study is the resonance assignment. This 

step may require the acquisition of complementary experiments (2D NMR homonuclear or 

heteronuclear) to provide a robust assignment. The resonance assignment can be extensively 

executed for all resonances in the (preprocessed or not) NMR spectra, or only focus on the 

resonances that were highlighted in the chemometric analysis of the spectral data.  
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These assigned resonances can be integrated, and these integrals can be directly interpreted 

as relative metabolite concentrations. There exist several programs that perform resonances 

integration (see Figure 2.2), and not all of them require an exact spectral alignment. Finally, 

the table with the curated resonance integrals can be investigated with univariate or 

multivariate data analysis methods, and conclusions from the metabolic fingerprint of every 

group of samples can be deduced. 

NMR metabolomics is a multidisciplinary research field where NMR spectroscopy, 

biochemistry, and multivariate data analysis fields have converged. Nowadays, there is no 

single software that allows for the complete workflow analysis of the NMR spectra (see 

Figure 2.2). 

 

Figure 2.2. Computational tools used in NMR metabolomics. For specific details of the depicted 

software tools, see [31-48].  

The most complete programs for the analysis of NMR spectra at present are MestreNova 

(MestreLab, Spain) and AMIX (Bruker Inc., US), both capable to preprocess spectra and 

integrate resonances, although their data analysis modules include only simple statistical 

data analysis methods. 

In this Thesis, the NMR spectra have been preprocessed using both MestreNova software 

and scripts written in MATLAB® (Mathworks Inc., US) computer environment. Proton 

resonances have been integrated with the Bayesian AuTomated Metabolite Analyser for 

NMR spectra (BATMAN) [35,39] R-Package or using the Multivariate Curve Resolution-

Alternating Least Squares (MCR-ALS) [49] chemometrics toolbox under the MATLAB® 

environment. Cross-peak resonances from 1H-13C HSQC NMR spectra have been integrated 

with in-house scripts written in MATLAB®. Finally, most of the data analysis and processing 
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steps have been performed using different MATLAB® toolboxes (PLS Toolbox™ and 

Bioinformatics Toolbox™) and R-packages (cluster [50], gplots [51], igraph [52]). 

In the following sections, a more detailed explanation of the different steps of this workflow 

is provided. 

 

3.1 SAMPLE PREPARATION 

In metabolomics studies, biological changes are detected after characterization of a 

representative fraction of the metabolome.  

To obtain an accurate measurement of this metabolome, it is important to use a robust 

sample preparation method. Different extraction methods have been proposed depending on 

the type of sample or metabolite class, and even several articles on the literature have been 

focused on designing an optimal sample preparation method. Examples of these 

optimization studies can be found for full organisms (bacteria [53,54], yeasts [55,56], 

nematodes [57], plants [58], plant seeds [59], worms [60]), tissues (brain [61,62], vein [63], 

muscle [61]), fluids (urine [64,65], serum [66]), and feces [67]. 

The sample preparation method can be divided into three different steps: the collection step, 

the extraction step, and the NMR sample preparation step. 

Each organism or tissue has its own particularities and, thus, sample preparation protocol is 

organism-specific. For instance, in the collection step for microbial cell cultures, cells are 

collected by filtering or by centrifugation, washed with phosphate buffer saline to remove 

traces of medium, flash frozen in liquid N2 and kept at -80ºC [55]; while for solid samples 

such as tissues, they can be directly flash frozen in liquid N2 and stored at -80ºC [61]. 

It is important to design the protocol of the collection step in such a way that it does not 

introduce more variance on the studied system. For instance, in plants, all samples are 

usually collected at the same harvesting time (the same growth stage, and at the same period 

of the day) to reduce biological variability [58]. Moreover, in order to collect consistent 

samples, the enzymatic activity of the samples must be arrested. This can be performed with 

flash freezing, although freezing destroys the cells, and some biochemical conversions may 

occur after thawing. A more suitable technique is freeze-drying, which prevents sample 

degradation because the absence of water reduces enzymatic activity [68]. Freeze-dried 

samples yield flatter baselines because some unwanted macromolecules do not re-disolve 

efficiently [61]. However, this step may lead to the irreversible adsorption of metabolites on 

cell walls and membranes [69]. To avoid these ex vivo degradations, denaturing solvents (e.g., 
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organic solvents or solvents at 70-80ºC [55]), microwaves [70], cold or acid treatments [71] 

can be used during the extraction. 

To extract metabolites, cells need to be disrupted. For hard tissues, like plant stems and 

leaves, they are ground in a liquid N2-cooled mortar and pestle, or homogenized with an 

electric tissue homogenizer [59]. For yeast cells, cell wall disruption can be achieved using a 

freeze and thaw strategy [55], glass beads [72], or sonication [56]. 

Due to the different physicochemical properties of the metabolites, there is no ideal method 

to simultaneously extract all classes of metabolites with high efficiency: polar organic 

solvents are typically mixed with water to extract hydrophilic metabolites, while chloroform 

can be used to extract hydrophobic metabolites [61]. An aqueous buffer extraction is 

sufficient to obtain a polar metabolite profile, but a more rigorous extraction involving a 

mixture of polar and nonpolar solvents is required to extract both polar and non-polar 

metabolites [73]. Evaluation of different extraction solvents with different biological samples 

has been performed in [74]. 

To increase sample stability, the obtained extracts are usually dried and stored at -80ºC until 

the NMR analysis.  

In the last step, the preparation of the NMR sample, extracts are dissolved in a deuterated 

solvent (deuterated phosphate buffer [30], deuterated methanol in deuterated phosphate 

buffer [27], deuterated chloroform [75]) that contains a NMR standard, such as DSS (4,4-

Dimethyl-4-silapentane-1-sulfonic acid) or TSP (trimethylsilylpropanoic acid). Deuterated 

solvents are used to avoid the dominance of the solvent resonance over the spectrum and, in 

addition, the deuterium signal is employed to ‘lock’ the magnetic field strength and keep it 

from changing over time. 

With the aim of reducing sample handling and increasing repeatability, single-step extraction 

methods have been proposed [76,77]. In single-step sample preparation for NMR 

metabolomics studies, the extraction solvents are deuterated, avoiding the need of freeze-

drying the extract to remove the presence of non-deuterated solvents [76]. Then, the NMR 

standard used must be added after removal of proteins, because they tend to bind to proteins, 

leading to large variations in the quantification of metabolite concentrations [78]. 

 

3.2 SPECTRA ACQUISITION 

After the sample is placed into the NMR spectrometer, previously to the spectra acquisition, 

the ‘lock’ and the ‘shimming’ are performed in order to generate good quality spectra. With 

the ‘lock’, the deuterium frequency is ‘locked’ and the magnetic field cannot drift even for 
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long-term acquisitions. On the other hand, with ‘shimming’, the best possible magnetic field 

homogeneity is achieved on all the sample. 

Typically, in metabolomics studies, the conventional pulse sequence is used to acquire one-

dimensional (1D) 1H NMR spectra. This simple pulse sequence consists of a relaxation delay 

(RD), followed by a radiofrequency 90º pulse, and the acquisition time. With this 

experiment, the radio frequency (RF) pulse emitted by the coil of the probe surrounding the 

NMR spectrometer excites the proton nuclei, and after the RF pulse, the relaxation from this 

excited state is measured as a decaying sine wave during the acquisition delay time that 

represents this free induction decay. This pulse sequence is repeated a number of times (or 

scans) and added together in order to magnify the intensity of the measurements and to 

improve the signal-to-noise ratio. 

 

Figure 2.3. 1D 1H NMR pulse sequence. 

Other 1D 1H NMR pulse sequences have been used in NMR metabolomics studies. For 

example, for plasma samples, the current standard procedure is to use the 1D Carr-Purcell-

Meiboom-Gill (CPMG) pulse sequence, which allows the removal of broad protein signals. 

For urine samples, which contain vast amounts of non-deuterated water, pulse sequences 

that include solvent signal suppression schemes are preferred (e.g., 1D-1H NOESY, WET, 

PRESAT) [79]. With this approach, dynamic range problems and baseline distortions in the 

spectrum region close to the water peak are minimized. 

Two-dimensional (2D) NMR experiments have been also carried out to improve the 

characterization of the detected metabolites [80,81], and only a few number of articles in the 

literature evaluate the metabolic changes in the investigated biological organisms from these 

data [82-88]. A table summarizing the most used 2D NMR experiments in metabolomics, 

their purpose, and some references of interest is presented below. 
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 Most common 2D NMR experiments in metabolomics. 

 x-axis y-axis Correlations or interactions established References 

1H-1H COSY δ(1H) δ(1H) Two non-equivalent 1H nuclei coupled over two or 

three bonds. 
[82,83] 

1H-1H 

TOCSY 
δ(1H) δ(1H) 

Two non-equivalent 1H nuclei connected within the 

same spin coupling system. 
[89,90] 

2D J-resolved δ(1H) JHH Coupling constant (JHH) and chemical shift (δ) 

information in two different axes. 
[84,85,91] 

1H-13C HSQC δ(1H) δ(13C) 
A 1H and a 13C nuclei connected through a C-H 

bond. 
[86-88] 

1H-13C 

HMBC 
δ(1H) δ(13C) 

A 1H and a 13C  nuclei connected through two, three 

or four bonds. 
[92,93] 

 

2D NMR experiments can be classified as correlation experiments or resolved experiments. 

In correlation experiments, detected signals reflect the magnetization transfer between two 

nuclei. Correlation experiments are divided in homonuclear experiments (the two nuclei 

involved are of the same type), or heteronuclear (different type). On the other hand, in 

resolved experiments, the second dimension is used to plot a second variable relative to the 

same nuclei measured in the first dimension. Therefore, 1H-1H COSY, 1H-1H TOCSY are 

homonuclear correlation 2D NMR experiments; 2D J-resolved is a 2D NMR resolved 

experiment, and 1H-13C HSQC and 1H-13C HMBC are heteronuclear correlation 2D NMR 

experiments. 

Regardless of the pulse sequence used, the detected data is always an FID function, which 

depends on time. By application of the FT, the time domain function is converted into a 

frequency domain function. In this new domain, every decay for every measured 

magnetically inequivalent nucleus can be spotted as a resonance. 

 

Figure 2.4. Fourier Transform (FT). 

Time domain Frequency domain

Fourier
Transform
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One of the greatest challenges in NMR metabolomics lies in consistency and reproducibility 

on the acquired spectral data. To obtain consistent and reliable results, identical NMR tubes 

must be used as well as identical instrumental parameters and identical data processing steps 

for all the samples [64]. 

 

3.3 PREPROCESSING 

The major goal of NMR metabolomics is to evaluate the abundance of metabolites from 

NMR data and to interpret variations in these abundances as alterations in metabolism of 

the investigated organisms. In order to achieve this goal, the acquired data need to be 

accurate. The quality of the data does not only depend on the experimental design, on the 

instrumentation and on the pulse sequences used, as stated in the previous section, but it can 

also be modified and improved by the applied data pretreatments. 

There are several different NMR data preprocessing methods used to improve sensitivity, 

spectral resolution and peak shapes, to remove artifacts, and to align shifted resonances. 

These preprocessing tools can be either applied in the time-domain (in the FID spectrum) or 

in the frequency-domain (in the NMR spectrum). In addition, data can be also normalized 

or scaled with more general preprocessing methods. The aim of these second preprocessing 

methods is to obtain even more significant and representative results from the applied 

chemometric analyses or resonances integration strategies. 

3.3.1 NMR Preprocessing methods applied before Fourier Transform 

1) Zero-filling:  the size of the FID can be artificially increased by adding zeros at the end 

of the measured data-points. However, since all nuclei complete their decay before 

finishing the acquisition of the FID, the added zero values would correspond to the 

expected measured values if the acquisition time would have been longer, and therefore, 

the added points have no effect on the peak positions, intensities, or linewidths of the 

spectrum. On the other hand, the increase of the number of data-points in the FID results 

in an increase of the digital resolution (fewer hertz per data point) in the spectrum after 

application of FT (Fig. 2.5). Normally, the number of added zeros is the same as the 

number of real points in the original FID and, as a result of this zero-filling operation, 

the spectral resolution is doubled. 



Introduction 
 

21 

 

Figure 2.5. Zero-filling. 

2) Apodization: the FID is multiplied by a weighting function, allowing to emphasize some 

parts of the spectrum at the expense of the others. After a certain acquired time, all nuclei 

have been completely decayed and all measured data points are representative of noise. 

The presence of noise in these last data-points in the FID only contributes to noise in the 

spectrum, therefore reducing the signal-to-noise ratio of the measured resonances. 

Exchanging these noise values by zero would introduce a sharp discontinuity in the FID, 

which could introduce artifacts into the spectrum. Instead, the FID can be multiplied by 

a negative exponential function that emphasizes the early data in the FID and 

deemphasizes the latter. This is a much smoother strategy than the exchange with zeros 

that increases the SNR, although the final resonances are broader and smaller in their 

absolute peak height (Fig. 2.6). It is also possible to use a weighting to produce the 

opposite effect: deemphasize the beginning of the FID and amplify the later part. After 

FT, resonances are sharper, resulting on an improvement of the resonance resolution. 

 

Figure 2.6. Apodization with an exponential negative weighting function. 
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3.3.2 NMR Preprocessing methods applied after Fourier Transform 

1) Phasing: after FT, some peaks may not have the expected peak-shape (e.g., some may be 

half up-half down or in dispersive mode) due to problems in phase. These phase problems 

usually come from a misadjustment of the phase detector, from delays between the initial 

RF pulse and the start of data acquisition, and from the electronic filtering of the NMR 

signal [94]. With spectral phasing, the shape of the resonances can be corrected to be in 

the absorptive mode. 

This difference between absorptive and dispersive peaks is caused because for each data 

point in the raw FID contains one real value and one imaginary value, and therefore for 

each frequency point after FT. In the ideal situation, the absorptive spectrum would be 

obtained by representing the real values. However, due to these phase problems, in the 

real practice, a linear combination between the real and the imaginary spectra needs to 

be calculated to recover the absorptive spectrum. This linear combination can be 

expressed as in equation 2.4. 

Absorptive spectrum = real spectrum × cos(Θ) + imaginary spectrum × sin(Θ) 

 eq. 2.4 

In this equation, the angle Θ represents the rotation angle between the two mutually 

perpendicular vectors of the real and imaginary spectra, and it is usually referred as the 

phase rotation angle Θ. In addition, this phase rotation angle Θ required to obtain the 

absorptive mode linearly depends on the chemical shift, as defined in equation 2.5. Θ(δ) = Φ1δ + Φ0 eq. 2.5 

where the intercept Φ0 is called the zero-order phase correction, and the slope Φ1 is called 

the first-order phase correction. In consequence, a dispersive spectrum can be phase-

corrected after establishing the Φ0 and Φ1 parameters. In the real practice, these two 

parameters can be estimated by slightly changing their values progressively and observing 

how the shapes of the resonances improve or not [95].  
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Figure 2.7. Phasing. 

2) Reference to an NMR standard: if the sample contains an NMR standard (e.g., DSS, 

TMS, or TSP), the methyl groups of these standards can be set to 0.00 ppm in the proton 

and carbon ppm scale. With this referencing, the chemical shift of different compounds 

in different spectra can be compared. 

Alternatively, the solvent peak can be used as a chemical-shift reference. However, this 

can only be used in dilute solutions, where there is only one solvent, and with solvents 

with known resonance chemical shifts [96]. Another existing option, for Bruker NMR 

spectrometers, is to use as a reference the signal of electronic origin known as ERETIC 

[97]. 

3) Baseline correction: baseline distortions are mainly due to the corruption of the first few 

data points in the FID [98], but it can also be caused by instabilities, or by the presence 

of macromolecules that decay much faster than the other low molecular weight 

metabolites. To correct this, a smooth function (red line in Figure 2.8) that represents 

the offset between the original spectrum and the ideal spectrum is built, and this function 

is subsequently subtracted from the original spectrum. If the baseline correction is 

properly performed, the resulting corrected spectrum will have their noise values 

centered to zero (left figure in Figure 2.8). 

Θ
δ

δ

δ



Chapter 2 
 

24 

 

Figure 2.8. Baseline correction. 

Different methods for baseline correction exist, that differ in the smoothing function used 

for subtracting. Examples of these methods are Bernstein polynomial [99], Whittaker 

smoother [100] and the splines method [101], among others. 

4) Resonance alignment: even though standardized protocols are used in NMR 

metabolomics studies, spectral misalignments can still occur due to little pH changes and 

intermolecular interactions among the metabolites from these biologically complex 

samples. Most robust NMR integration tools can deal with these chemical shiftings, but 

chemometric analyses cannot be applied on the raw spectral data without leading to 

aberrant results because changes in peak position disrupt the usally assumed bilinear type 

of model (see the bilinear model in section 4.3 of this chapter). Several algorithms have 

been proposed to correct these misalignments, such as icoshift [102], FOCUS [103], 

HATS [90] and COW [104], among others [105]. 

From all resonance alignment algorithms, icoshift is one of the most preferred options 

used in 1H NMR metabolomics data. One of the advantages of icoshift in comparison to 

others is that NMR regions where the algorithm will be applied can be well defined (blue 

dashed boxes in Figure 2.9), and peaks cannot shift out of their corresponding NMR 

regions. With this strategy, the undesired convergence of resonances from different 

compounds to the same chemical shift is avoided. 

δH δH
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Figure 2.9. icoshift algorithm. 

5) Bucketing (also known as binning): NMR spectra are segmented into a desired number 

of buckets (bins) and all intensity values inside each bucket are summed. For historical 

reasons, 1H NMR spectra are usually bucketed with equidistant buckets of 0.04 ppm 

[106]. 

Application of bucketing produces a much smaller dataset, but since the resolution is 

simultaneously reduced, it leads to a loss of information and it may generate undesired 

artifacts. For instance, different resonances can be included into the same buckets, in 

which the smaller resonances will be obscured by the bigger ones; or a single resonance 

may be split into two or more consecutive buckets [107]. 

In order to avoid that bucketing becomes a source of errors, intelligent or adaptive 

bucketing algorithms have been proposed [106,107]. These bucketing methods capture 

single metabolite resonances into single buckets, adapting the width to each bucketed 

resonance. Bucket widths are calculated after searching for local minima between 

resonances [107]. Because of its apparent simplicity and rapidness, several NMR 

metabolomics studies [108,109] obtain biological interpretations from analyzing these 

buckets, without going further into proper resonances integration tools. Even though this 

approach results faster, it should not be assumed that each bucket is a totally correct 

resonance integral since spectral noise is captured into the bucket along with the 

considered peak. 
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Figure 2.10. Regular bucketing (left) and adaptive bucketing (right). 

6) Removal of undesired regions: before chemometric analysis, NMR spectral data are 

usually refined by removing all those NMR regions that do not contain resonances from 

metabolites [110,111]. Therefore, the outer regions, which only contain noise, are 

discarded, as well as the regions with the solvent resonances or any other interfering 

metabolite (Fig. 2.11). 

 

Figure 2.11. Removal of undesired regions. 
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3.3.3 Normalization methods for NMR spectral datasets 

The aim of normalization is to remove variations attributed to global differences in sample 

concentrations due to dilution of size effects. Thus, after normalization, the relative intensity 

of the overall spectrum becomes similar for all samples. 

Normalization methods are crucial in the analysis of samples in which the metabolite 

amount cannot be easily controlled. These situations are typical for NMR metabolomics 

experiments involving urine samples (there is an uncontrollable dilution variation) and in 

time-course experiments of growing organisms, where the biomass increases over time. The 

most used normalization methods are the following: 

1) Integral or Total Sum normalization (IN or TSN, respectively): each NMR spectrum is 

divided by the total sum of intensities of the spectrum.  

2) Constant integral normalization: each NMR spectrum is divided by the concentration of 

a metabolite that is intrinsically related to the sample dilution factor. For instance, 1H 

NMR spectra of urine samples are usually normalized by the concentration of creatinine 

[112]. 

3) Standard Normal Variate (SNV): each NMR spectrum is corrected by its mean and 

divided by its standard deviation as depicted in equation 2.6. 

 eq. 2.6 

In equation 2.6, NMRold is the vectorized form of the NMR to be normalized, NMRnew 

is the normalized spectrum, and σ is the standard deviation of the intensity variables of 

NMRold. This normalization is suitable for sets of samples in which the relative 

concentration of the distinct metabolites is expected to be similar [113]. 

4) Probabilistic quotient normalization (PQN): in PQN [114], a target NMR spectrum 

(green spectrum in Figure 2.12) is compared to a reference NMR spectrum (blue 

spectrum in Figure 2.12). In this comparison, the quotient between the target spectrum 

and the reference spectrum is calculated for every spectral data point, and the median 

quotient is established thereafter. This median quotient points out the median difference 

in intensity between this target spectrum and the reference spectrum. Finally, the target 

spectrum is divided by the median quotient in order to compensate for this median 

difference. This process is repeated for all the NMR spectra of the dataset (Fig. 2.12). 
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Figure 2.12. Probabilistic Quotient Normalization. 

The reasoning behind PQN is that biologically relevant concentration changes influence 

only few parts of the spectrum (or intensity data-points), while global intensity changes 

in the spectrum are mostly caused by dilution effects. Thus, since all intensity data points 

are used in the calculation of the median quotient, this median quotient can be 

considered the most probable dilution factor between the two compared samples. 

This method is more efficient than IN (or TSN) [114]. IN produces unreliable results 

when unexpected resonances (e.g., secondary solvents, chemical interferences) appear 

since the area of the normalized spectra become then underestimated and the relation 

among different common resonances of different samples is artificially changed. On the 

other hand, the influence of these unexpected resonances is minimized with PQN 

normalization because these peaks are usually sharp and therefore they do not have an 

important weight in the calculation of the median quotient. 

The calculation of the median quotient can be distorted if a significant amount of 

intensity signals only relative to noise is considered in its calculation. For this reason, for 

the calculation of this quotient, the selection of a portion of the spectrum containing 

minimal noise contribution is preferred [115]. This concept is illustrated in Figure 2.12 

with the blue box in the upper spectrum. 
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In addition, when applying PQN normalization, an adequate reference spectrum is 

required. Commonly, this reference spectrum is the median spectrum of the analyzed 

dataset [116] or the median spectrum of the control group dataset [117]. 

For time-course experiments, reference spectrum can be built from the samples collected 

at the initial time-point. However, since observed metabolic changes are progressive over 

time, in this Thesis we have applied a progressive PQN normalization in the analysis of 

datasets containing time-course data [118,119]. In this strategy, we have normalized 

every spectrum with the median spectrum obtained from the group of samples collected 

in the previous time-point exposed to the same treatment. For samples collected at the 

initial time point (Time0 in Figure 2.13), the reference spectrum was calculated using all 

the samples collected this time-point (Fig. 2.13). 

 

Figure 2.13. Progressive PQN normalization strategy for time-course experiments. Subscripts denote 

the order of application of the PQN normalization, and the dashed rectangles group the 

spectra used to calculate a reference spectrum for every PQN step. Blue, green and 

orange color-schemes denote that the observed response is exposition-dependent and 

that it is magnified over time. 

3.3.4 Mean-centering 

This pretreatment centers the raw measurements to zero. Therefore, with this pretreatment, 

the offset difference between high and low abundant metabolites is removed, and the relevant 

variation between the samples for analysis is the only information left for the analysis. In the 

literature, mean-centering is widely used for the pretreatment of NMR spectral data 

[120,121]. 
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The formula used to mean-center the data is the following: 

 eq. 2.7 

where xij_old represents every element of the X(i, j) matrix before mean-centering, xij_new is the 

corresponding mean-centered xij element, and xj is the jth column vector of the X matrix.  

3.3.5 Scaling methods 

Scaling methods are data pretreatments used to standardize all measured variables contained 

in a dataset. To compensate for the differences in magnitude among the different variables, 

the scaling methods correct the data based on their variation. In most of the scaling methods, 

the measurements are divided by a factor (the scaling factor), which is different for each 

variable [122]. As a result of this division, the untreated measurements are converted to 

relative measurements of the used scaling factor. The most used scaling methods in NMR 

metabolomics are auto-scaling and Pareto scaling, among others.  

1) Scaling: the data are divided by the standard deviation of the xj column vector. After 

this pretreatment is applied, variables will have a standard deviation of one. 

  eq. 2.8 

2) Auto-scaling: with this pretreatment, the data are mean-centered and divided by the 

standard deviation of the xj column vector. Therefore, after auto-scaling, all variables 

have a standard deviation of one and they are centered to zero. 

  eq. 2.9 

Auto-scaling and scaling are not recommended for raw NMR spectral data, in which 

some of the variables are only representative of noise, and these noisy variables will 

become as important in the dataset as the variables representative of meaningful 

signals after application of any of these two scaling methods. By contrast, auto-

scaling or scaling are widely used in the pretreatment of ‘curated’ resonance integrals 

data, such as in concentrations datasets. After application of this pretreatment, 

significant relative variations of the relative measurements will be more easily 

detected, since all variables will be found at the same scale. 

3) Pareto scaling: in Pareto scaling, every measurement is converted into a relative 

dimensionless measurement as in auto-scaling. The formula used in this pretreatment 

is similar to the one in auto-scaling, but the square root of the standard deviation is 

used as the scaling factor instead (eq. 2.10). 

 eq. 2.10 
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Due to the square root in the formula, the variance for all the variables will not be 

the same. Because of this, variables associated with a higher variance (such as noise) 

will be down-weighted, whereas those associated with a lower variance will be 

inflated. 

This pretreatment is commonly used for NMR spectral data [123,124]. 

4) Min-max scaling: this pretreatment sets the minimal and maximal values for each 

variable at 0 and 1, respectively. The transformation formula used is presented in 

equation 2.11. 

 eq. 2.11 

In this Thesis, this transformation method was used for scaling metabolite 

concentrations because the non-negativity of the data is maintained after the 

application of this scaling method [125]. 

 

3.4 NMR RESONANCES ASSIGNMENT 

The NMR spectrum of any compound is unique, and therefore, distinguishable from other 

NMR signatures from other compounds in an NMR spectrum of a complex mixture. 

Even though its uniqueness, the assignment of a set of resonances to a given compound is 

not trivial. A surprising amount of information can be extracted from the NMR spectrum, 

which needs to be examined altogether. 

The set of spectroscopic parameters that unequivocally identify a compound are the 

measured chemical shifts, the spin-spin splitting pattern or multiplicity, the coupling 

constants, and the resonance integrals. 

3.4.1 Chemical shift  

When the sample is placed under the influence of a magnetic field, B0, the electronic cloud 

surrounding a nucleus begin to circulate, creating an induced current that generates a 

magnetic field opposed to the B0 field, Bi, reducing the effective magnetic field felt by the 

nucleus. This reduction (or deshielding) is measured in the order of parts per million (ppm), 

and it varies from nuclei to nuclei, depending on the electron density in the neighboring 

environment. If two or more chemically equivalent atoms have exactly the same electronic 

neighboring environment, they are magnetically equivalent and they are represented by the 

same resonance in the NMR spectrum. 
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Figure 2.14. Deshielding. Black arrows represent the applied magnetic field (B0), purple arrows 

represent the electronic cloud around the nucleus, and orange arrows represent the 

magnetic field (Bi) induced by the electronic current. 

Neighboring electronegative groups weakens the electronic shield of the measured nuclei, 

which in addition reduces the induced magnetic field, and therefore increasing the exposition 

to the B0 field. This is translated on a higher resonance frequency for the measured nucleus. 

Since all atoms of the studied molecule contribute to the electronic cloud, and the electronic 

cloud is molecule-specific, the chemical shifts are also molecule-specific. Having said this, it 

is possible to predict chemical shifts, with acceptable results, by considering the structure and 

the different functional groups of the molecule [126,127]. In fact, the major differences in 

measured frequencies account for the different functional groups, meaning that protons and 

carbons from certain functional groups appear always in the same frequency range [128]. For 

instance, proton resonances from methyl (CH3) groups appear always around δH = 0.8-1.5 

ppm, whereas proton resonances from methyl ether (OCH3) groups appear around δH = 3-

4.5 ppm. 

The chemical shift can also be explained and predicted using a Quantum model. For 

simplicity, we will only consider the Quantum model for nuclear spins of S=±½, since it is 

the common spin of nuclei measured in metabolomics (e.g., 1H, 13C). In the absence of an 

external magnetic field (B0), nuclei spin in a random orientation. However, when an external 

magnetic field is applied, they spin at only two different orientations (α and β). Nuclei with α orientation spin parallel to B0, whereas nuclei with β orientation spin antiparallel to B0. 

Because of this alignment to B0, α protons have a lower energy than β protons. 

 

Figure 2.15. Quantum model of the B0 effect on nuclear spins. 
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The energy separation between α and β spin states or transitions is proportional to the 

strength of B0, and, in the absence of B0, all protons have the same energy. However, in the 

influence of B0 and in the equilibrium, slightly more than half of the population will be in the α transition, while slightly less than half population will be in the higher energy state. In this 

situation, a nucleus in the lower state can absorb a photon of electromagnetic energy and be 

promoted to the higher energy state, and this energy corresponds to the resonance frequency. 

Since the effective magnetic field felt by each (non-equivalent) nucleus is different due to the 

different chemical environments, the energy separation between the α and β spin states of 

each nucleus will be also different, resulting in resonances detected at different chemical 

shifts. 

3.4.2 Coupling constant 

Indirect spin-spin coupling (indirect dipole-dipole interaction or just J-coupling) refers to the 

magnetic interaction between individual nuclear spins transmitted by the bonding electrons 

through which the nuclear spins are indirectly connected. 

This coupling depends on the hybridization of the atoms involved in the coupling, the bond 

angles, the dihedral angles, the C-C bond length and the effect derived from substituent 

atoms, such as electronegativity and neighboring π-bonds. Lists with detailed examples of J-

couplings can be found elsewhere [129,130]. 

In the NMR spectrum, this coupling is observed as a splitting of the resonance in a structured 

pattern with a defined spacing between splits that coincides with the J-coupling measured in 

Hertz units. Because of the latter, the splitting pattern in lower magnetic fields is broader 

than in higher magnetic fields, where each of the split resonances are thinner and sharper. 

3.4.3 Spin-spin splitting pattern 

If the resonances from all the nuclei that are coupled to a given resonance are distant in the 

spectrum from this resonance, the coupling is weak (first order spin-spin splitting pattern) and 

the splitting pattern relatively simple. On the contrary, if resonances are coupled to nearby 

peaks, more complex patterns are observed. Since the order of the splitting pattern depends 

on the proton distance measured in hertz, a signal observed of non-first-order splitting 

patterns may become of first-order in a higher magnetic field. 

Splitting patterns depends on the chemical structure. This is here illustrated with the example 

of L-lactic acid ((2S)-2-hydroxypropanoic acid in IUPAC nomenclature). 

For this compound, two proton resonances are expected (one for the CH3 group and another 

for the CH group). Since the three protons in the CH3 group are magnetically equivalent, 

they will resonate at the same frequency. On the other hand, the proton resonance from the 



Chapter 2 
 

34 

hydroxyl group may not be detected if the equilibrium rate of the proton with an 

exchangeable deuterium from the medium (e.g., CD3OD) is fast [131]. 

Then, for this compound, the two detected resonances are coupled, since the nuclear spins 

of the protons from the two groups interact (they belong to the same spin system). Since the 

two resonances are very distant to each other, the splitting patterns that define these 

couplings are of first-order. In these couplings, each of the protons from the CH3 group 

(which can be at either α or β) interact with the proton in the CH group (also at α or β), and 

vice versa. 

 

Figure 2.16. Proton nuclear spin states combinations for the inequivalent protons in L-lactic acid. 

Accounting for all the possible spin combinations, the proton from the CH group, which can 

be found at two different spin states, couples to the 8 spin states combinations possible in the 

CH3 group. Since these 8 spin states combinations are found in four energetic states because 

of the spin degeneration, the resonance from the CH is detected as a quadruplet (four peaks) 

resonance with an intensity ratio that coincides with the degeneration pattern (1:3:3:1). Using 

the same reasoning, the protons from the CH3 group are detected as a doublet (two peaks) 

resonance with the same intensity. 

The splitting pattern for L-lactic acid is one of the simplest because only two sets of equivalent 

nuclei are coupled. When the spin system is composed of more than two different equivalent 

nuclei, each set will pair to the rest of nuclei and will show a coupling in the spectrum if this 
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interaction is sufficiently strong. Thus, the resonance will be divided into smaller peaks 

according to the possible couplings. 

For instance, if a proton Ha is coupled to a proton Hb and to a proton Hc at the same time, 

and all of them are chemically inequivalent, then the resonance from Ha is doubled twice, 

once due to the Ha Hb coupling and another one due to the Ha Hc coupling, resulting in four 

observed signals. The described spin system is also known as a double-doublet (Fig. 2.17). 

 

Figure 2.17. Double-doublet splitting pattern. 

Lastly, a spin-spin splitting pattern can be much complex (non-first-order splitting pattern) if 

the difference in hertz between the frequency energy of the involved nuclei is smaller than 

the J-coupling in hertz. Precisely, it has been stablished that, for two nuclei A and B, the 

frequency energy must be five times or less than the J-coupling (eq. 2.12) [132]. νA- νB ≤ 5 JAB eq. 2.12 

Hence, since the spin-spin splitting pattern type depend on the chemical difference expressed 

in hertz, it means that the type of the splitting pattern depends on the strength of the magnetic 

field. 

In a non-first order splitting pattern, all transitions are not equally favored, and therefore all 

peaks inside a multiplet are not equally intense. This difference in intensity depends on the 

proximity to the other resonances from the same spin system, being the most intense peaks 

those located closer to the resonance they couple with. 

αα βααβ ββ
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Figure 2.18. Non-first-order spin-spin splitting pattern for a Ha-Hb-Hc system. 

3.4.4 Resonances integral 

Measured nuclei can achieve full relaxation after each successive scan if enough relaxation 

delay time is left. In this situation, resonance integrals are quantitative, meaning that the 

areas of the different resonances are comparable. For example, the integral relative to the 

resonance associated to three magnetically equivalent protons (CH3) will be three times larger 

than the area of a resonance relative to one proton (CH).  

The concept of quantitative NMR (qNMR) is more profoundly covered in section 3.5 of this 

chapter. 

3.4.5 NMR databases 

NMR assignment is a laborious task, but for metabolomics analysis, this step is even more 

challenging [133,134] because metabolomics samples are complex. Typically, in an NMR 

spectrum of a metabolomics origin, hundreds of resonances can be detected from tens to 

hundreds of compounds [135-137], but only a fraction of these resonances are finally 

assigned. 

To cope with this severe problematic, various NMR databases have been created in the latest 

years with the aim of facilitating this analysis. These proposed databases store NMR spectra 

of common metabolites, and they all include a tool to search for candidate metabolites based 

on an input list of spectroscopic parameters. 

In order to be this tool reliable, both data in these repositories and in our analyzed 1H NMR 

experiments should be from samples prepared similarly. Commonly, reference NMR spectra 

stored in these NMR databases are acquired from metabolites resuspended in phosphate 

buffered deuterated water at neutral or physiological pH and at 298 K. For organic 

compounds, deuterated chloroform is usually used as the solvent. 
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The most used public NMR Metabolomics databases are the following, including among all 

thousands of NMR spectra: 

Metabolomics databases from the Wishart Lab at the University of Alberta. The 

group created 18 metabolomics databases, such as the Human Metabolome 

Database (HMDB) [138,139], the DrugBank database [140], the E. coli Metabolome 

Database (ECMDB) [141], the Yeast Metabolome Database (YMDB) [142] and the 

Urine Metabolome Database [143]. 

The Madison-Qingdao Metabolomics Consortium Database (MQMCD) [144]. 

The Platform for RIKEN Metabolomics (PRIMe) [145]. 

The Birmingham Metabolite Library (BML-NMR) [146]. 

The Biological Magnetic Resonance Data Bank (BMRB) [147]. 

On the other hand, commercial software such as Chenomx (Chenomx Inc., Canada) and 

AMIX (Bruker Inc., US) also include NMR spectral libraries. 

The most complete NMR spectral database at the moment is the Nuclear Magnetic 

Resonance Shift Data Base (NMRShiftDB) [148] that covers a wide range of chemical 

compounds (>40,000) [149], although the sample preparation is not always as consistent as 

for the NMR metabolomics databases, since it was created as a repository of NMR data of 

natural products. 

Despite all these available databases, sometimes it is still not easy to confirm the NMR 

assignment of a resonance or set of resonances in a metabolomics sample. In these particular 

cases, acquiring complementary 2D NMR experiments on the same sample or spiking the 

sample with the candidate compound are recommended.  

 

3.5 INTEGRATION 

In NMR metabolomics, the ultimate purpose of acquiring and processing the NMR spectra 

is to establish relationships of biological interest between the studied samples and their 

corresponding metabolic profiles. This goal can be achieved by applying data analysis 

strategies on the set of NMR spectra. However, due to the fact that most of the detected 

resonances are overlapped, the obtained results may be misleading. For this reason, it is 

preferable to apply the data analysis strategies on the set of resonance integrals (obtained by 

separation, deconvolution or resolution approaches) of the detected metabolites relative to 

the same set of samples rather than directly in the set of raw NMR spectra. 

The existing integration approaches are discussed below. 
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3.5.1 Resonances integration of non-overlapped signals 

Traditionally, resonance integrals have been calculated by summing the intensity values 

comprised within the range of each resonance. Graphically, it is usually represented as 

integral lines (red lines in Figure 2.19) of the cumulative sum of intensities, and these integral 

values are proportional to their height. 

 

Figure 2.19. 1H NMR spectrum of adenosine 5’-monophosphate (AMP). 

For a simple 1H NMR spectrum, the calculated integrals are proportional to the proton 

concentration of the measured compounds. Thus, for an individual compound, all 

resonances should be of the same height, except for magnetically equivalent protons, in 

which the area will be proportional to the number of magnetically equivalent protons. 

In reality, NMR analyses are not that simple, as there are several situations to consider. 

First, when metabolites are dissolved in totally deuterated solvents containing exchangeable 

protons, resonances from exchangeable protons (e.g., protons from hydroxyl and amine 

groups) may not be detected. In Figure 2.19, AMP has 14 protons, but 6 are not detected in 

the 1H NMR spectrum because they were exchanged with deuterium. Moreover, a non-

exchangeable proton from AMP (δ = 4.77 ppm) is also not detected in the spectrum because 

it is masked by the HDO signal. 

Second, in 1H NMR spectra from metabolomics samples, where proton resonances are in the 

order of the hundreds, most of the proton resonances appear overlapped. Because of this, to 

calculate the integrals for each of the resonances in the overlapped region, they need first to 

be separated using computer-derived approaches (either using spectral deconvolution 

methods or spectral resolution methods).  

 

δH
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3.5.2 Spectral deconvolution 

A 1H NMR spectrum can be considered as a linear combination of proton resonances from 

a defined group of metabolites in presence of some residual noise. When the spectroscopic 

parameters (δ, multiplicity, J) that define the resonances from these metabolites are known, 

either because they have been determined using a set of complementary pulse sequences or 

because they can be consulted in spectroscopic databases, it is possible to decompose (or 

deconvolute) the real NMR spectrum into a set of line functions. Then, the corresponding 

integrals can be calculated by estimating the area under the curve of these line functions. 

In NMR spectroscopy, a resonance is the product of applying the FT on the decaying sine 

wave function of the magnetization, and the resulting transformed function follows the 

Lorentzian model of equation 2.13 [150]. 

 eq. 2.13 

where the l(δmu) function is centered at δmu with a full width at half height ν1/2(mu). 
Any existent resonance splitting pattern can be described as the sum of line-shape functions 

that represent each of the spin-spin splitting transitions (e.g., a doublet can be defined as the 

sum of two line-shape functions of equal intensity) [151]. 

In reality, each spin-spin splitting transition is detected at a distribution of frequencies that 

can be approximated by a Gaussian function, so each line shape is, in reality, a convolution 

of Lorentzian peaks with a Gaussian distribution that jointly follows the Lorentzian-

Gaussian (or Voigt) line-shape [152]. Having said that, differences in deconvolution between 

the Lorentzian and Voigt model are not very significant, and most existing deconvolution 

tools have assumed the Lorentzian model since it is simpler. Also for simplicity, only the 

peak fitting assuming the Lorentzian model is shortly described below. 

Basically, a 1H NMR of a metabolites mixture, with m metabolites at cm concentration, where 

each individual spectrum contains u resonances with tmu spin-spin splitting transitions, can be 

decomposed into two parts. These two parts are (i) the parametrized part, that includes the 

Lorentzian functions; and (ii) the non-parametrized part, e, or the observed differences in the 

spectra not seen in the predicted theoretical model such as noise [35]. The non-parametrized 

part is assumed to follow a σ Normal distribution with the intensity values centered to zero. 

This model is depicted in equation 2.14. 

 eq. 2.14 

Since the chemical shifts of the resonances, δmu, as well as their tmu spin-spin splitting 

transitions are known, the only parameters left to deduce are the ν1/2(mu). The values for these 
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half heights ν1/2(mu) can be determined by either manually fitting all the 1H NMR templates 

of the individual metabolites to the experimental spectrum, or it can be automatically 

performed by computational means. For the latter, the process is driven iteratively 

accounting for all the resonances at the same time by reducing the ε contribution after every 

iteration, and by restraining the set of Lorentzian functions to functions with the positive 

domain. If a proper set of 1H NMR spectral templates is used, upon reaching the optimal 

solution, the sum of fitted Lorentzian functions must resemble the original 1H NMR 

spectrum (Fig. 2.20).  

 

Figure 2.20. Deconvolution of a spectral region of a 1H NMR spectrum. 

Several tools exist for deconvolution of 1H NMR spectra, such as BATMAN R-package, 

Bayesil, Chenomx, AMIX (Bruker Inc., US), and MestreNova (MestreLab, Spain), and 

opting for one or another method depends on several criteria. For instance: 

- BATMAN and Bayesil are free, whereas the other ones are commercially available. 

- In Chenomx, deconvolution can be done either manually or computationally, in the 

other methods, deconvolution is only performed computationally. 

- MestreNova is yet not optimized for deconvoluting 1H NMR spectra in a high-

throughput mode, but the model used can be either the Lorentzian or the Voigt 

model. 

- Bayesil is restricted to the analysis of cererbrospinal fluid since the query dataset only 

contains 1H NMR spectra from metabolites found in this fluid. 

- AMIX works only with Bruker data. 

In this Thesis, we have decided to perform 1H NMR integration with the BATMAN R-

package for the following reasons: 

- It is flexible: it does not rely on a fixed spectral database, and adding new query 

resonances is simple. 

- It is free. 
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A wide variety of output objects (apart from the concentration estimates), such as 

the individual fitted 1H NMR spectra or the remaining residuals can be consulted by 

the user. 

There is no need to export the outputs to a statistical software since it is executed in 

R environment, a free software environment widely used for statistical computing 

since it already includes many statistical tools. 

3.5.3 Spectral resolution by chemometric methods 

In the previous section, it is stated that spectral deconvolution can be used only if an NMR 

spectral model of target metabolites are available. However, sometimes overlapping (or even 

just the spin systems of isolated resonances) are too complex, causing that determining the 

spectroscopic parameters that define the analyzed resonances becomes challenging. In these 

particular cases, it may still be possible by resolving the pure resonances independently and 

calculating their integral by chemometric means, by employing the Multivariate Curve 

Resolution – Alternating Least Squares (MCR-ALS) chemometric method. This approach 

has been further explained in section 4.4 of this chapter. 

3.5.4 Resonances integration in 2D NMR datasets 

In NMR metabolomics studies, quantitative analysis of 2D NMR data is not frequent, since 

most of these studies rely solely on 1H NMR spectra for obtaining quantitation estimates, 

while 2D NMR data is only used to improve NMR resonances assignment. This prevalence 

is not trivial: 1H NMR spectra are acquired faster, with higher sensitivity, they have a direct 

correspondence to concentration estimates and they are easier to analyze due to the absence 

of the second dimension. Despite this, some metabolomics studies use 2D NMR spectra 

because the signal resolution is greater than in the equivalent 1H NMR dataset counterpart. 

The few published 2D NMR metabolomics studies used two main analytical strategies to 

investigate the 2D NMR datasets. In most of them, the resonances integration step is 

avoided, and the data is analyzed by exploratory chemometric methods prior bucketing the 

2D NMR spectra [85,153]. The second used strategy is based on a first careful resonance 

assignment, followed by a Regions of Interest (or ROI) analysis [34,88]. In the ROI analysis, 

assigned resonances are individually enclosed in ROI segments. Then, the integral can be 

obtained by summing all the intensity values contained in each ROI segment [87,88,154-

157], or by deconvoluting every resonance using a Voigt function (parametrized for the two-

dimensional space) with advanced deconvolution approaches [158]. 

In 1H-13C HSQC NMR spectra, signals are very sparse and spectral overlapping is not as 

problematic as in 1H NMR datasets. For this reason, in this Thesis, we have employed the 
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ROI strategy without peak deconvolution for the analysis of 1H-13C HSQC NMR spectra. 

Nevertheless, in order to produce more reliable integral estimates, the surrounding noise of 

these resonances was previously filtered by using the Variables of Interest (or VOI) strategy 

designed and proposed in this Thesis [159]. 

 

Figure 2.21. Noise filtering with VOI strategy. A-C) ROI segments relative to A) L-valine, B) L-

threonine and C) glycerol for 16 1H-13C HSQC NMR spectra before (left) and after (right) 

noise filtering with VOI strategy. 

A detailed explanation of the VOI strategy fundamentals is described in Puig-Castellví et al. 

(2018) [159] and in Chapter 4. 

On the other hand, soft-modeling (chemometric) approaches can be also used for obtaining 

the resonance integrals from 2D NMR spectra, although very few number of studies can be 

found in the literature [160-162]. Moreover, these results cannot be directly extrapolated to 

the metabolomics field, since the analyzed samples were rather simple (less than 7 

metabolites per sample). In this Thesis, the applicability of chemometrics for integration 

purposes has been discussed more in detail in Chapter 4. 

3.5.5 Generating absolute concentrations from resonance integrals 

Since 1H NMR is inherently quantitative, absolute concentrations can be directly retrieved 

for all the metabolites contained in the measured samples. In other words, there is no need 

of using calibration standards for every metabolite. To achieve this, a metabolite of known 

concentration (e.g., an NMR standard) has to be measured simultaneously with the sample. 

This metabolite can be introduced into the sample, or into a coaxial NMR tube that will be 

inserted into the NMR sample. With this second approach, the interaction of the standard 

with the metabolic mixture is avoided. 

Thus, after establishing the link between the measured intensity (i.e., the proton integral) and 

the concentration for the NMR standard, the absolute concentration for the rest of the 

metabolites present in the sample can be calculated as depicted below (eq. 2.15). 
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 eq. 2.15 

It is important to state, however, that this method is only directly applicable to 1D 1H NMR 

spectra, and only if certain requirements are met. For 1D 13C NMR spectra, a typical 

approach is to use the inverse-gated proton decoupling and account for the natural 

abundance of the carbon-13 (1.1%). For 2D NMR spectra, 2D cross-peaks intensities depend 

on metabolite relaxation times and acquisition relaxation parameters, since RD relaxation 

delay is minimized in 2D experiments to reduce acquisition time for each t1 increment. 

Moreover, pulses excitation profiles and diversity in the actual values of J-couplings also 

produce differences in the intensity of the observed signals. For example, for 1H-13C 

heteronuclear experiments, the evolution time used for the experiments is normally 

optimized for an average 1JCH of 145 Hz, which is a compromise between the real values that 

can be observed for the different C-H groupings within molecule and between different 

molecules. For all these reasons, ratios between the metabolite concentrations and the 

detected intensities are usually not conserved for all the 2D cross-peak resonances, and 

calibration curves for every metabolite are needed in these cases [163]. Examples of 

quantitative 2D NMR spectra are the J-resolved experiments [164], and the zero-quantum 

experiments [165,166], among others.  

Integrals obtained from 1H NMR spectra are only reliable in quantitative terms when 

adequate acquisition parameters and processing methods are used. The exhaustive list of 

recommendations to obtain quantitatively accurate integral measurements can be found 

elsewhere [167]. Some examples of these mentioned recommendations are the following: 

The relaxation delay must be at least 5 times longer than the T1 of the most slowly 

relaxing nuclei to ensure that at least 99 % of the nuclei have reached the equilibrium 

magnetization. For 1H NMR, it implies that the relaxation delay should be equal or 

longer than 5 seconds [64]. 

The recommended pulse angle to use is 90º. If a different angle is used, the ratio 

among resonances will still be maintained, but since measured intensities will be 

smaller, the accuracy of the integral for the less intense signals will be compromised. 

Inverse-gated decoupling should be applied to eliminate 13C satellite on 1H NMR 

spectra. In complex metabolomics mixtures, 13C satellites of highly concentrated 

metabolites may be found in the same intensity range than the proton resonances of 

the lowest concentrated metabolites. So, if both these proton resonances and 13C 

satellite resonances appear in the same spectral region, resonances assignment can 

be troublesome and the estimation of the resonances integrals may result even more 

challenging due to the additional presence of these 13C satellite resonances. 
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A number of 64k spectral data-points is recommended. With a bigger number of data-

points defining a resonance, the resonance will be better resolved, increasing the 

accuracy of the resulting integral. 

In addition, in samples containing a high concentration of non-deuterated water, the intense 

water signal dominates the spectrum, causing that the receiver gain needs to be decreased to 

not overflow the digitizer, which worsens the spectral sensitivity. To avoid this, solvent pre-

saturation pulse sequences that suppress the water signal are recommended. For instance, 

for the acquisition of 1D 1H NMR spectra, the 1D 1H NOESY [168] pulse sequence 

(noesygppr1d in Bruker NMR spectrometers) has become the preferred option nowadays. 

With the solvent pre-saturation, the water signal will be suppressed and the spectral 

sensitivity will not be affected by water, but as a side effect, resonances from exchangeable 

protons will be also affected by the pre-saturation. Therefore, in these cases, quantitative 

measurements should not be performed from these integrals. 

Finally, absolute quantitation can only be pursued from NMR spectra normalized to a 

resonance of a reference compound with known concentration. For NMR data normalized 

with methods based on other criteria (e.g., accounting for sample dilution effects, such as 

TSN and PQN normalization methods), the normalized data are not absolute quantitative. 

In the latter situation, the concentration of all the metabolites present in the sample will be 

modified, including the standard, and equation 2.15 cannot be applied. 

Moreover, scaled NMR spectra are not absolute quantitative either. By application of scaling 

methods, the factor or ratio that links the measured integral with the real concentration will 

be different for every resonance. Hence, for every resonance, real concentrations can only be 

estimated by using their specific factor, and therefore, the factor found for the NMR standard 

cannot be extrapolated to the other metabolites.  

However, in NMR metabolomics, (PQN-)normalized and scaled spectral data can be very 

useful despite this loss of absolute quantitative information because relative changes in the 

concentrations (fold-changes) can still be estimated, and because pretreated data reveal better 

the hidden factors present in the raw data. For this reason, in this Thesis, for metabolomics 

purposes, we have decided to use relative concentrations instead of absolute concentrations. 
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3.6 IMPORTING AND EXPORTING NMR DATA 

Most of the statistical analyses used in this Thesis has been carried out under MATLAB® 

environment. In order to be able to work with experimental data in this programming 

environment, we stablished a workflow protocol to import the NMR data, summarized in 

Figure 2.22A. 

In this Thesis, NMR spectra were acquired using NMR instruments from the two principal 

NMR companies, Varian (acquired by Agilent in 2010, discontinued since 2014) and Bruker. 

Since the data acquisition for the two instruments is different, two different workflows were 

used. 

In Varian, the acquired intensities of the FID are stored with the corresponding measured 

acquisition time values in the same file, and all the acquisition settings are stored altogether 

in another file. On the other hand, in Bruker, a larger number of files are generated, and the 

file with the FID intensities does not contain the measured times. 

In addition, in this Thesis, we also stablished two workflows to export the data from 

MATLAB® to two of the most used programs for the analysis of NMR spectra: MestReNova 

(Mestrelab Research, S.L.) and TopSpin® (Bruker, Inc.). While TopSpin® is restricted to 

Bruker NMR data, MestReNova can read both Varian and Bruker NMR data. These 

workflows for exporting NMR data are summarized in Figure 2.22B. 

 

Figure 2.22. Exporting and importing NMR data. 
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3.6.1 Importing NMR data from Varian 

For Varian NMR instruments, the FID files (named fid) acquired using the VNMRJ 

software (Varian, Inc.) are opened in MestReNova and the NMR preprocessing methods 

(FT, apodization, baseline correction) are applied afterwards. Then, the preprocessed NMR 

spectra are saved as a comma-separated value file (extension .csv), which are opened in 

MATLAB® using the importdata() function. For a 1D NMR spectrum (Fig. 2.23A), the 

imported data is a matrix of two columns, where the first column contains the chemical shift 

values, and the second column contains the intensities. For a 2D NMR spectrum (Fig. 

2.23B), the imported data is a matrix. In the first row and column of this matrix the chemical 

shifts values for f1 and f2 dimensions are represented, while the rest of variables of the matrix 

contain the intensities associated to chemical shifts in f1 and f2. 

 

Figure 2.23. Representation of a A) 1D NMR spectrum or a B) 2D NMR spectrum saved as a .csv 

file. 

For NMR data with higher dimensionality, this workflow cannot be used because these 

spectra are not readable with MestReNova software. 

3.6.2 Importing NMR data from Bruker 

In Bruker NMR instruments, FID data are stored in a 32-bit integer binary file named ser. 

After application of Fourier Transform, another binary file containing the real intensities of 

the FT-NMR processed spectra is automatically created (named as 1r for 1D NMR data, 

2rr for the 2D NMR data, and 3rrr for the 3D NMR data). However, unlike in Varian 

NMR instruments, the intensity data-points are generated as a vector, regardless of the 

dimensionality of the acquired NMR spectrum. Moreover, the chemical shifts positions 

associated to these intensity data-points are stored separately in a different data file. 
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Data from this file can be apodized and baseline corrected, and imported to MATLAB® 

afterwards using the fread() command. The resulting MATLAB® variable contains the 

real intensities, but not the chemical shifts. To import the two data at the same time, we used 

MATLAB® functions from the BBIO toolbox provided by Bruker. This function reads the 

real intensities (using the fread() command) as well as a large list of other values, such as 

the chemical shifts, the acquisition parameters, and some information regarding the pre-

processing methods used in TopSpin®. Moreover, for 2D NMR data, the vectors of intensities 

are folded into a matrix format, whereas for 3D NMR data, the vectors are folded into a 

cube. After application of any of these functions, a structure array containing the spectral 

data is generated. 

 

Figure 2.24. Data acquisition of Bruker NMR data. A) 2D NMR data. B) 3D NMR data. C) 3D 

NMR data acquired using submatrices (SMs). 
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are sorted by f3 (indirect dimension), f1 (indirect dimension) and f2 (direct dimension), also in 

decreasing order (Fig. 2.24B). 

Moreover, for large NMR spectra, spectral data are commonly acquired in smaller pieces, 

referred as submatrices (SMs). In this situation, the vector of intensities contains the 

vectorized data from all the SMs. SMs relative to the most shielded resonances are acquired 

and given first, whereas the SM relative to the most unshielded resonances are acquired last 

(Fig. 2.24C).  

3.6.3 Exporting NMR data 

Sometimes it may be convenient to export MATLAB®-processed NMR data to a particular 

NMR suite. For instance, this could be the case for determining spin-spin coupling patterns 

from this processed data, to perform peak picking, or to compare how the different 

preprocessing methods not included in the traditionally used NMR suites (e.g., icoshift) have 

modified the raw data. 

In order to export a MATLAB® variable containing the NMR data to a NMR suite, 

MATLAB® data must be converted to the same format as the originally imported NMR data 

file. In other words, MATLAB® data generated from Varian NMR files must be transformed 

into a tab-delimited .csv file, while MATLAB® data generated from Bruker NMR files must 

be transformed into a 32-bit integer binary file. 

Having said this, despite it is possible to transform the 1D and 2D FT-NMR spectra into tab-

delimited .csv files with MestReNova software, this program can only read the 1D FT-

NMR spectra saved in this format, but not the 2D ones. Therefore, with this workflow, 

MATLAB® files generated from 2D NMR spectra acquired in Varian cannot be exported 

(Fig. 2.22B). 

On the other hand, for exporting MATLAB® data to TopSpin®, the original Bruker files 

containing the real intensities (1r, 2rr, or the 3rrr binary files) need to be replaced with 

the new binary file containing the MATLAB®-processed data. Since these files are equivalent 

to the ones generated by Bruker’s TopSpin® software, not only TopSpin®, but all NMR suites 

compatible with Bruker data are capable to import these files.  

This binary file can be generated by executing the MATLAB® fwrite() function. 

However, for 2D and 3D NMR data, the 2D- or 3D-MATLAB® matrices must be reshaped 

into a vector before application of the MATLAB® fwrite() function. In order to export 

the data correctly, this reshaping operation must exactly correspond to the inverse of the 

refolding process applied during the import of the original binary file (Fig. 2.24). 
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Thus, with this workflow, all MATLAB® files generated from Bruker NMR data can be 

imported to TopSpin® regardless of their dimensionality. 
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4 CHEMOMETRICS 

The data generated in NMR Metabolomics studies are very complex, since each NMR 

spectrum contains from thousands to millions of frequency data-points, from hundreds of 

resonances, and the number of analyzed samples is usually comprised between the several 

tens up to the hundreds. 

In order to extract the biological information contained in these complex datasets, 

chemomerics methods can be used. Chemometrics is a science field focused on the extraction 

of knowledge from chemical systems by data-driven means [169], to address problems in 

chemistry [170], medicine [171], biology [172], chemical engineering [173], and more 

recently, in the ‘Omics’ sciences [174,175], among other fields. 

In the first part of this section, a more comprehensive definition of Chemometrics is 

provided. In the second part of this section, the different data structures arrangements 

analyzed in this Thesis are introduced and the concept of bilinearility is given. Finally, the 

chemometric methods used in this Thesis to investigate the metabolomics datasets are 

described. 

 

4.1 THE DEFINITION OF CHEMOMETRICS 

The International Chemometrics Society define Chemometrics as [176]: 

“The science of relating measurements made on a chemical system or process to the state of the system 

via application of mathematical or statistical methods”. 

The scope of the Chemometrics research field covers a wide range of methods that can be 

applied in chemistry areas, from the generation of good quality data (optimization of 

experimental parameters, design of experiments, calibration and signal processing) to the 

extraction of meaningful information from these data (statistics, pattern recognition, 

modeling and structure-property-relationship estimations). Thus, Chemometrics intends to 

generate knowledge by building a bridge between these mathematical and statistical methods 

and their application in chemistry. 

A more comprehensive and timely definition of Chemometrics, that refers the mentioned 

applications, can be found in the Handbook of Qualimetrics and Chemometrics [177] (Fig. 2.25): 

“The chemical discipline that uses mathematical, logical and statistical methods: (a) to design or select 

optimal measurement procedures and experiments, (b) to provide maximum chemical information by 

analyzing chemical data, and (c) to provide knowledge from chemical processes”. 
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Figure 2.25. Chemometric circle of knowledge (adapted from [178]). 

 

4.2 DATA STRUCTURES 

With Chemometrics, chemical data are analyzed by multivariate methods. Within the field 

of Chemistry, several instrumental techniques can generate multivariate data, specially the 

spectroscopic and spectrometric (e.g., NMR, UV, NIR, RAMAN, fluorescence, MS…) and 

chromatographic (e.g., GC, LC, CE…) techniques, and also more recent approaches based 

in any of the formers, such as the ones in the transcriptomics field (e.g., DNA microarray, 

RNA-seq). In contrast, examples of instrumental techniques that produce univariate 

measurements are conductimetries, calorimetries, and pH measurements. 

Results for each analytical technique are expressed in many formats: intensities, 

concentrations, peak heights, integrals, absorbances, counts, etc., where each one of these 

measurements represents a variable. Moreover, multivariate datasets can be constructed by 

combining data from more than one instrumental technique (e.g., LC-DAD or GC-MS), 

either univariate or multivariate. We refer to a homogeneous dataset when all measurements 

have been acquired using the same instrumental approach, whereas a dataset is considered 

to be heterogeneous if the data come from different instruments. 

In an Analytical Chemistry problem, it is important to consider what needs to be measured 

(variables), and also what is the analyzed entity that we are interested in (e.g., a patient, a 

beverage, a plant, a manufactured product). We commonly refer to this entity as the samples 

of study. Thus, when data are generated by measuring k variables on n samples, this dataset 

can be arranged in a matrix format of size n×k, as shown in Figure 2.26. 
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Figure 2.26. Data matrix. 

In NMR metabolomics, for instance, a typical n×k data matrix is a 1H NMR spectral datasets, 

having n 1H NMR spectra in the rows, and each spectrum being composed by k chemical 

shift data-points. The same data structure can be found in a matrix of metabolite 

concentrations, with as many rows as analyzed samples, and with the same number of 

columns as detected metabolites. In Puig-Castellví et al. (2015) [30], these two dataset types 

were analyzed by chemometric means. 

In addition, depending on the complexity of the metabolomics studies and on the nature of 

the data, other data structures arrangements may be recommended instead. The different 

data structure arrangements used in this Thesis are presented below. 

For instance, a different data structure arrangement is used for 2D NMR spectral data. In 

this case, one sample is represented by one n×k matrix instead of a vector [119], and the 

dataset containing more than one sample gives a data cube (or a three-way data array, Fig. 

2.27A). This type of structures is obtained with any analytical techniques in which the 

measurements are performed over two types of variables (ways, orders, directions) at the 

same time. In heteronuclear 2D NMR spectroscopy, for example, the two types of variables 

correspond to the two measured nuclei. This situation is also observed for HPLC-MS spectra, 

in which every measured intensity value is associated to a specific m/z and to a specific 

elution time. 

 

Figure 2.27. A) Three-way array. B) Unfolding of the three-way array into a two-way matrix. 
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In many circumstances it is convenient to convert an n by k by t three-way array into a two-

way data matrix. In this Thesis, we have used two distinct approaches.  

A first approach to do this dataset conversion consists in the unfolding of each sample matrix 

into a row vector, followed by the alignment of all the row vectors column-wisely. The result 

of applying this approach gives a data matrix of t rows and n×k columns, as presented in 

Figure 2.27B. This approach has been used in this Thesis for the analysis of a dataset 

containing several 1H-13C HSQC NMR spectra (Puig-Castellví et al., 2018 [119]). 

A second approach is based on the direct column-wise data augmentation of the two-way 

data matrices relative to every sample. The resulting augmented data matrix has n×t rows 

and k columns. An illustrative example of this second augmentation is given in Figure 2.28. 

This arrangement also allows for augmenting data matrices of different number of rows. This 

approach has been used in this Thesis for the analysis of datasets of several samples measured 

with UHPLC-MS spectrometry (Puig-Castellví et al., 2018 [125]). 

 

Figure 2.28. Column-wise augmentation. 

A special mention needs to be done for multivariate data acquired over time, as in industrial 

process monitoring [179], or in time-course metabolomics experiments, the latter of special 

interest in our case (Puig-Castellví et al., 2015 [118]; Puig-Castellví et al., 2018 [119]). In these 

cases, the resulting data can be also considered a three-way data array, with as many data 

slices as screened time-points, as many rows as sampling points, and as many columns as 

measured variables (detected metabolites, or spectral intensity data-points). In the analysis 

of these datasets, a common procedure is the simulatenous analysis of the different data slices 

column-wisely augmented (Fig. 2.29). With this method, samples collected in the same 
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sampling point at different times are considered to give independent information, which is 

an assumption commonly done in the metabolomics field [118,119,180,181]. 

 

Figure 2.29. Three-way data matrix of a time-course monitoring experiment and its column-wise 

augmentation. 

Finally, data matrices can also be augmented row-wisely. Row-wise augmented data 

matrices can be built when the set of samples were investigated using two (or more) different 

analytical platforms. Therefore, in this case, the resulting data matrix has the same number 

of rows as the original matrices, n, but the number of variables or columns becomes the sum 

of the number of variables for each one of the two datasets (Fig. 2.30). 

 

Figure 2.30. Row-wise matrix augmentation. 

An example of this particular augmentation can be found in the fusion of the data from two 

parallel studies (a 1H NMR metabolomics study and a UHPLC-MS lipidomic study) on the 

same set of samples [125], which is discussed in Chapter 3. 

 

4.3 BILINEARITY 

Most chemometrics methods are based on the assumption that analytical measurements 

contained in the analyzed X datasets can be explained by a bilinear type of model similarly 
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to the one described by the Lambert-Beer law (eq. 2.16), in which the individual measured 

dnk responses are the sum of the product of the sak instrumental responses of the a components, 

weighted by their cna concentrations in the n samples, plus the corresponding enk residual part 

for every individual sample and response. 

 eq. 2.16 

Or in matrix notation: 

 eq. 2.17 

1H NMR spectroscopy, as all the other spectroscopies, follows also in principle this bilinear 

measurement model. Thus, a D matrix of a set of 1H NMR spectra can be generated by the 

product between the concentration matrix of the sample constituents, C, and the matrix of 
1H NMR spectra of these individual chemical constituents, ST, plus the matrix that contains 

the residual information not explained by the model, E (Fig. 31). 

 

Figure 2.31. Matrix bilineal decomposition. 

In agreement with this model, a 1H NMR spectrum acquired on a mixture sample can be 

regarded as the sum of the set of 1H NMR spectra acquired on each of the sample 

constituents, weighted by the relative concentrations of each of these constituents (Fig. 2.32). 
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Figure 2.32. 1H NMR spectrum of a mixture simple as the sum of 1H NMR of single compounds. 

For 1H NMR data, this model also includes the residual term, which contains all disturbances 

not present in the ideal 1H NMR spectra (e.g., noise, instrumental artifacts, solvent 

impurities…). 

For the analysis of datasets obtained in metabolomics studies, several chemometric methods 

are used for exploration, regression and classification purposes. Most of these chemometric 

methods (e.g., PCA, PLS, MCR-ALS) perform the matrix decomposition of D in agreement 

with the bilinear method of equation 2.16 and some specific constraints (e.g., orthogonality, 

no-negativity) of each particular chemometric method. 

 

Figure 2.33. Chemometric methods based on the bilinear model, grouped by the purpose of their 

application (exploration, regression, and classification/discrimination). 

The chemometric methods used in this Thesis are described in the next section. 
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4.4 CHEMOMETRIC DATA ANALYSIS METHODS 

In this Thesis, the Chemometric data analysis methods used are PCA, PLS-R, PLS-DA, 

ASCA, and MCR-ALS. 

4.4.1 Principal Component Analysis (PCA) 

PCA is the most common multivariate data analysis method used to obtain a first overview 

of the structure of a data matrix X [24,182,183]. 

The use of PCA is based on the idea that most of the variance observed within a dataset is 

caused by a few number of variance sources that affect a specific set of variables. Since these 

sources of variation are considered to be independent, the total observed variance can be 

expressed as the set of latent variances: 

Variance(X) = Variance(source1) + Variance(source2) + …. + Variance(sourcea) eq. 2.18  

In addition, for each set of original variables affected by the same source of variation 

(correlated variables), they can be linearly combined into the same principal component or 

PC, and each PC represents one latent variable. With this process, the resulting PCs are 

uncorrelated (orthogonal), and the total number of variables is substantially reduced, making 

the data analysis much simpler and representative of the actual variation sources. 

Each PC extracted from data matrix X allows the data projection onto two subspaces, coined 

as the ‘score space’ and the ‘loading space’. Data projected in these two subspaces give the 

scores, T, and the loadings, PT, which are obtained by the bilinear decomposition of the data 

matrix X according the following equation: 

 eq. 2.19 

where ta and pa represents the different scores vectors and loading vectors of the principal 

component a obtained in the decomposition. 
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Figure 2.34. Score projection of the original samples. Adapted from [184]. 

From the analysis of the scores, it is possible to identify how different are the samples. On 

the other hand, from the analysis of the loadings, it is possible to determine which are the 

original variables that have stressed most the difference among these samples. 

Because of all the constraints used during PCA decomposition (orthogonality, normalization 

and maximum variance obtained by matrix deflation) [185,186], the solution from applying 

PCA on a dataset is unique. There are several algorithms that can decompose the data with 

the given properties, such as the Singular Value Decomposition (SVD) [187] and the 

Nonlinear Iterative Partial Least Squares (NIPALS) algorithm [188]. The main difference 

between these two methods is that SVD computes all PCs at one, while NIPALS compute 

each component one by one. 

Even though an X matrix can be always fully decomposed in the scores and loading matrices 

if enough components are used (E is then equal to a matrix of zeros), one important aspect 

of the data analysis with PCA is to identify the number of PCs that describe the significant 

dataset variance not attributed to noise. To decide the proper number of PCs, several 

strategies can be used, such as the Scree test [189], the eigenvalue below one [190] method 

for auto-scaled data, and the Broken stick rule [191], among others. 

Interpreting PCA data 

It is possible to achieve an understanding of the analyzed dataset by exploring the 

geometrical projection of the scores and loadings on the scores plot and on the loading plot, 

respectively. 

The projection of the scores in the space defined by the principal components allows 

obtaining of an overview of the similarity of the studied samples. The closer the samples are 

in the scores plot, the more similar they are in the considered PC plane, and vice versa. This 
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strategy of projecting the samples onto the scores plane, among other strategies, has been 

also used with the aim of detecting outliers [185]. 

An example of a typical PCA scores plot is presented in Figure 2.35A. In this example, 30 
1H NMR spectra representative of yeast cultured at 2 different temperatures are plotted on 

the PCA scores plot. As observed, samples from two different classes (yeast cultures grown 

at two different temperatures) are separated in PC1 (54.28% of the explained variance), 

whereas PC2 (20.81% of the explained variance) describes the variance among samples 

within the same class. 

 

Figure 2.35. PCA analysis of a 1H NMR dataset. A) PCA scores plot. B) PCA loadings plot. 

On the other hand, the representation of the original variables in the axis defined by the 

loadings allows the detection of the most important variables in the given principal 

component, as well as to identify correlation between variables. In the example of Figure 

2.35B, to gain a better insight, the loadings of PC1 are represented against the ppm scale. 

Since PCA centers the data, the resulting loading ‘1H NMR spectrum’ contains information 

from proton resonances with positive and negative loading values. Those with the same sign 

correlate in the same direction among them, and those with the opposite sign correlate 

inversely. Moreover, resonances associated to positive loadings in PC1 (Fig. 2.35B) are more 

important in samples associated to positive scores in the same component (Fig. 2.35A), 

whereas compounds represented with negative resonances in the loading plot are more 

important to describe the samples associated with negative scores in PC1. For instance, in 

the given example, glycerophosphorylcholine (3.21 ppm) and L-alanine (1.47 ppm) are more 

abundant in samples cultured at 37ºC, whereas acetic acid (1.90 ppm) and 1.32 ppm (L-

threonine).  
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Examples of PCA applications 

PCA is vastly used in the metabolomics field. Recent examples of PCA applications in this 

field include: 

Regional discrimination of food, such as Mexican peppers [182] or Chinese rice 

[192]. 

Evaluation of the effects of petrochemical contamination in mussels [193]. 

Discrimination of bacteria strains in juice [183] and yeast strains in wine [194] based 

on the expressed metabolic response. 

Exploration of the different metabolic processes involved in breast cancer [195] and 

in plant growth development [196]. 

Evaluation of extraction protocols of metabolites from Curcuma species [197]. 

Evaluation of the metabolic effects of chemotherapeutic drugs in rats [198,199]. 

Food quality control in ginseng samples [200]. 

In this Thesis, PCA has been primarily used as an exploratory tool to investigate the yeast 

metabolome when it was exposed to different environmental conditions, such as different 

temperature acclimation [30,125] (see Chapter 3), and when yeast was cultured under 

different media compositions [118,119,159] (consult Chapter 3 and Chapter 4). 

Furthermore, PCA was also applied to data generated from UHPLC-MS metabolomics 

analyses. Specifically, the datasets consisted of Total Ion Current (TIC) chromatograms 

obtained in either ESI(-) and ESI(+) modes representative of the yeast lipidome expressed 

under different growth temperatures [125]. 

Lastly, PCA was carried out on datasets of 2D NMR spectra. Since these datasets are, 

structurally speaking, a three-way data array, they were unfolded using the strategy of Figure 

2.27 prior PCA analysis. These datasets were an array of 1H-13C HSQC NMR spectra of 

metabolomics extracts from yeast cultured using different media [159], and also to the same 

dataset after removal of the noise variables by the VOI-filtering strategy (see section 3.5 in 

Chapter 2) [119,159]. 

4.4.2 Partial Least Squares (PLS) 

In simple (univariate) linear regression, the y-intercept (β0) and slope (β1) coefficients of the 

model of equation 2.20 are estimated by minimizing the sums of squared residuals (the 

difference between the measured response, y, and the corresponding predicted response, ) 

term by means of a least squares algorithm. 

y = β0 + β1x + e eq. 2.20 
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In the multivariate dimension, where X corresponds to a data matrix of n samples and k 

variables (or regressors), equation 2.20 is extended by adding one coefficient per variable, as 

shown in equation 2.21 below: 

y = β0 + β1x1 + β2x2 + … + βkxk + e eq. 2.21 

In matrix notation, for a set of samples, this equation is written as: 

 eq. 2.22 

In PLS regression (or PLS-R) [188,201], on opposite to multivariate linear regression, the 

regressors used are a set of independent latent variables built by bilinear decomposition in 

such a way that the covariance of these latent variables to the y-variables is maximized. In 

PLS-R, each latent variable explains part of the X and y data, and therefore, the percentages 

of the explained X-variance and of the explained y-variance can be estimated for every latent 

variable. 

One of the most used algorithms to perform PLS analyses is NIPALS [188]. In PLS, similarly 

to PCA, a set of scores and loadings for every latent variable are obtained. However, in 

addition, a weight vector (w) for every latent variable is used to optimally correlate the 

variance in X and y subspaces and maintain the orthogonality of X [202], which can be then 

used to identify the original variables more linked to the X variables. 

PLS can also be used as a discriminant method [203]. In this case, the PLS method is referred 

to as PLS Discriminant Analysis or PLS-DA. This chemometric method has been commonly 

used in the metabolomics field. For instance, a typical metabolomics problem solved by PLS-

DA is the classification of two groups of samples (e.g., control and exposed samples) from 

their associated metabolic profiles. In this example, y will define the class membership of 

samples, whereas the measured metabolomes for the existing samples are in the X dataset. 

The discriminant power of the PLS-DA method is achieved by transforming the class vector, 

y, which has the classes or categories defining the membership of every sample, into a binary 

vector with as many n elements as samples. With this vector, it is denoted whether each 

sample belongs to a specific class (with ones) or not (with zeros), as represented in Figure 

2.36. 
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Figure 2.36. Building of the y binary vector from a conceived experimental design, consisting of 3 

cultures of yeast cultured at 30ºC and 3 cultured at 37ºC. 

With PLS-DA, it is also possible to determine the variables that maximize most the 

discrimination between the two groups. For a metabolomics experimental design, in which 

the variables would be the measured concentrations for a concrete set of metabolites, these 

metabolites can be considered as the potential biomarkers of the studied problem. 

In this Thesis, we have used the VIP (Variable Important in Projection) strategy, postulated 

by Wold et al. in 1993 [204], for selecting potential biomarkers [30,119].  In the VIP strategy, 

for every k variable, a VIP value is calculated by the following formula: 

 eq. 2.23 

where wkj is the weight value of the k variable and f latent variable, SSYf  is the squared sum 

of the explained variance in the f latent variable, K is the total number of measured variables, 

SSYtotal is the squared sum of Y, and F is the total number of latent variables used in the PLS 

model.  

For the set of calculated VIP values, a high VIP value would indicate that the corresponding 

variable is relevant for the discrimination, and vice versa. Thus, the VIP value allows ranking 

the quality of each variable to discriminate the studied classes. 

Since the mean of the squared values of the VIPs is 1, this value has been established as the 

threshold level to consider that a variable has discriminant power or not [205]. Despite this, 

the threshold level of 1 can be risen in order to only select the variables with the most 

discriminant power, and therefore, the best biomarker metabolites [206]. 

Assessment of the PLS model 

A practical approach to define the optimal number of latent variables in PLS is by calculating 

the PRESS (Predicted REsidual Sum of Squares) value for different PLS models with 

y= y=

Class vector Binary vectorExperimental samples
Control samples

(30 C Optimal growth)

Exposed samples
(37 C Mild-heat stress)

1 2 3

1 2 3



Introduction 
 

63 

increasing number of latent variables until the PRESS does not show any improvement, 

indicating the possibility of overfitting (fitting the noise in the PLS model) if more 

components are added. The same inspection can be performed from the RMSEC (Root 

Mean Square Error of Calibration) values. 

 eq. 2.24 

 eq. 2.25 

The best approach to validate PLS-DA models is by using an external set of validation 

samples, different from the training set, not used to build the model, and evaluated from their 

prediction results about the class membership of every new tested validation sample. 

If external validation test samples are not available, the quality of the performance of a 

method can be evaluated using Cross Validation (CV) strategies. In CV, the samples of the 

original dataset are divided into two or more different datasets, the calibration and the 

validation datasets. Then, the calibration set or model is used to build the PLS model, and 

the membership class of the samples from the validation test set are predicted. There are 

different ways to apply CV, based on different strategies for splitting the dataset. Examples 

of these methods are Venetian blinds, Leave-One-Out and random subsets, among others 

[203]. In this Thesis, we have used Venetian blinds CV and Leave-One-Out CV (LOOCV). 

In Venetian blinds CV, the dataset is split in s subsets, where each subset is determined by 

selecting every sth sample in the dataset, starting at samples numbered 1 through s, being s the 

number of splits. On the other hand, in LOOCV, all samples but one are used as a calibration 

dataset, and the membership class of the sample left out is predicted using the PLS model 

based on this calibration dataset. This process is repeated n times, being n the number of 

samples in the dataset, and one (different) sample is excluded every time (Fig 2.37). 
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Figure 2.37. Cross-validation. A) Venetian blinds CV. B) Leave-One-Out CV. 

Regardless the tested samples are from an external dataset or CV is used, it is possible to 

estimate the discriminant power of PLS-DA based on the number of misclassification (NMC, 

or the number of samples which class was correctly predicted). 

Although an NMC of 0 would indicate a good PLS-DA model, it is possible that the result 

has been attained just by lucky random choice of the samples in the CV test, meaning that 

the NMC may not reflect the real discrimination power of the model. To overcome this 

limitation, a permutation test during PLS-DA analysis can be also applied [207]. For 

instance, in Puig-Castellví et al. (2015) [30], samples were permutated 1,000 times and PLS-

DA with  LOOCV was applied every time. After 1,000 permutations, it was observed that 

the NMC number was the lowest for the original experimental situation (p < 0.001), 

demonstrating that the sample discrimination was not just an outcome derived from pure 

chance. 

Similar to the RMSEC mentioned before, in PLS-DA methods with CV, the RMSECV term 

(Root Mean Square Error of Cross Validation) can be calculated in order to help for the 

estimation of the optimal number of latent variables in PLS-DA modelling. 

Orthogonal Signal Correction-PLS-DA (OSC-PLS-DA) 

In metabolomics, it is becoming more frequent the application of PLS-DA on data previously 

filtered with OSC, which removes the variance (information) contained in the X matrix that 

is uncorrelated (orthogonal) to Y [208]. Examples of 1H NMR metabolomics studies that 

take advantage of OSC-PLS-DA can be found elsewhere [30,209-211]. 
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4.4.3 ANOVA-Simultaneous Component Analysis (ASCA) 

Most metabolomics studies have an experimental design of several factors. For instance, a 

typical experimental design may include the cultivation of different microbial strains (factor 

1: ‘strain’) under different conditions (factor 2: ‘treatment’) [24,183,212-214] (Fig. 2.38). 

 

Figure 2.38. Experimental design with two factors, treatment and strain, and triplicates. 

ANOVA [215] is a univariate statistical method widely used to evaluate and quantify the 

effect of different experimental factors on the observed outcomes of different experiments. 

For instance, for the example represented in Figure 2.38, the influence of the two factors can 

be evaluated with a two-way ANOVA model (eq. 2.26). 

 eq. 2.26 

In this equation, μ is the offset term, αi is the additive main effect of the factor α (treatment) 

on level i, βj is the additive main effect of the factor β (strain) on level j, αβij is the interaction 

term between the two factors α and β on levels i and j, respectively, and e is the error. 

Having said that, ANOVA is a univariate statistical method, meaning that only one variable 

(e.g., metabolite concentration, peak area) at a time can be evaluated. Moreover, in 

metabolomics studies, it is also important to identify the metabolomic response (i.e., the set 

of altered pools of metabolites) associated to the studied factors, but ANOVA, as a univariate 

method, does not take into account the covariance between variables, hampering the correct 

interpretation of the data from these metabolomic datasets.  

For multivariate datasets, Multivariate ANOVA (MANOVA) can be used, which is the 

extension of ANOVA for the simultaneous evaluation of multiple variables. However, 

MANOVA (in his classical implementation) can only be applied when the number of 

samples is larger than the number of variables [216]. To cope with this limitation, ANOVA 

– Simultaneous Analysis component (ASCA) method has been proposed as an alternative 

method to deal with this type of multivariate datasets, typical in the metabolomics field 

[181,217]. In ASCA, the contributions of the different factors are disentangled into different 

Strain A

ExposedControl

Strain B
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matrices using linear models based on ANOVA, which are then analyzed by Simultaneous 

Component Analysis (SCA). 

Thus, for every scalar element from the two-way ANOVA model introduced above (eq. 

2.26), in ASCA they are matrices instead (Fig. 2.39). 

 

Figure 2.39. Matrix decomposition in an ASCA model of two factors and their interaction, analogous 

to the experimental design of Figure 2.38.  

In the equation of this ASCA model (Fig. 2.39), m is a row vector containing all  estimates 

for every considered variable; Xα, Xβ and Xαβ are the matrices that contain the measured 

response relative to the α and β effects and to the interaction between the two (αβ), and Xind 

is the matrix that contain the residual variations caused by differences between samples with 

the same treatment. For Xα, Xβ and Xαβ, all rows relative to the same factor and level are 

identical. In the process of this matrix decomposition, it is considered that all factor and 

interaction matrices (Xα, Xβ, Xαβ, and Xind) are mutually orthogonal. 

In the next step of the SCA decomposition, multiple data matrices that contain the same 

number of columns (variables) are concatenated column-wisely into an augmented data 

matrix, and this augmented dataset is subsequently decomposed into a matrix of scores and 

a matrix of loadings, analogously to PCA (Eq. 2.27). These loadings and scores can be 

investigated to identify the source of variances of the augmented dataset [218]. 

Hence, the resulting ASCA model is given by the following equation: 

 eq. 2.27 

Where E contains all variations not contained in any factor or interaction matrix: 

 eq. 2.28 

In these two equations, α, β and αβ subindices refer to the two studied factors and the 

interaction between these two, respectively; m is a row vector containing all  estimates for 

every considered variable (m = μ1, …, μk); the SCA component scores of each submodel are 

given by the matrices indicated by Tα, Tβ, and Tαβ; and the associated submodel loadings are 

given by matrices Pα, Pβ, and Pαβ [181]. 
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Because of the SCA application, each loading is orthogonal to the rest of loadings within a 

given submodel, and the components are ordered in decreasing order of explained variance. 

In this Thesis, we have used ASCA to evaluate the response on yeast metabolism over time 

[118,119]. Thus, the first investigated ASCA models were based on the ANOVA equation of 

Fig. 2.39, and the studied factors are ‘treatment’ and ‘time’. ASCA analyses were performed 

on unscaled data [118] and on data scaled by the standard deviation of the reference group 

(samples collected at the initial time-point) [119], as recommended by Timmerman et al. 

[219]. 

Permutation tests in ASCA 

To assess the statistical significance of every factor and of their interactions in the ASCA 

models, permutation tests are used [220]. In these tests, the null hypothesis (H0) states that 

an experimental factor has no influence on the outcome of the experiment. 

To check H0, the rows from the original X dataset are permutated a certain number of times, 

and for each permutated dataset, ASCA is applied and the sum of squares for the obtained 

Xα, Xβ, and Xαβ ( Xα
2, Xβ

2 and Xαβ
2) are calculated. Next, the sum of squares 

obtained from each permutated datasets is compared to the sum of squares obtained from 

the original X dataset. The sum of squares is connected to the magnitude of the considered 

effect. This means that for a significant f factor, Xf
2 will be also large, and vice versa. 

Thus, to establish whether a factor is significant or not, the sum of squares should be larger 

in the original (non-permuted) situation. In a permuted dataset, samples should be more 

homogeneously distributed than in the original dataset, and therefore, groups of samples 

should be more similar among them, resulting in a lower sum of squares. 

The level of significance is provided as a p-value for each evaluated factor or interaction, and 

it represents the fraction of the permutations where: 

 eq. 2.29 

If the associated p-value for a considered factor is larger than a prefixed significant level, then 

the H0 is accepted, and therefore the effect is not significant. 

4.4.4 Multivariate Curve Resolution –Alternating Least Squares (MCR-ALS) 

Multivariate Curve Resolution (MCR) is based on the same standard bilinear model (D = 

CST) introduced in eq. 16 and depicted in Figure 2.30. MCR problem was first formulated 

by Lawton and Sylvestre in 1971 [221] and later implemented in an Alternating Least 

Squares (ALS) algorithm [36,222,223]. MCR-ALS has become one of the most popular 

MCR methods because of its simplicity and robustness. 
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The goal of MCR-ALS is to estimate meaningful matrices of concentration and spectra, C 

and S, from the analysis of the data matrix D using chemical knowledge in the form of 

constraints that give information about the type of the measurements and the chemical 

system under study. The analysis of the C and S resolved matrices allow for the investigation 

of the underlying changes in the composition of the different samples represented in the D 

data matrix.  

Other chemometric methods based on Factor Analysis can be used to obtain concentration 

and spectral estimates from multivariate datasets (e.g., CLS, PCR, and PLS-R) [224,225], but 

two main differences distinguish MCR-ALS from these other multivariate regression 

methods. First, in MCR-ALS, the main goal is the resolution of the pure response profiles of 

the components of a mixture. Therefore, for instance, the NMR resolved spectra can be 

directly interpreted from the chemical point of view, whereas the loadings in CLS, PCR, and 

PLS-R are mathematical solutions without a direct physical interpretation (for instance they 

are orthogonal and they can have negative values. Secondly, these regression methods are 

commonly used for quantitative purposes and require building a calibration curve (thus, 

known concentration measurements), while MCR-ALS does not (although if this 

information is available, it can be also used for improving resolution and perform 

quantitative determinations, see [226,227]). 

The algorithm of MCR-ALS includes 3 main steps: 

In the first step, the number of components is estimated by calculating the singular values of 

D with the SVD method [187]. It is assumed that the larger of singular values defines the 

chemical rank (mathematical rank in absence of experimental noise) of D, and that this 

coincides with the number of chemical sources of the data variance or components of the 

investigated system. Then, similarly to the scree test used to decide the number of 

components in the PLS (see PLS-DA section 4.4), the singular values can be plotted as a 

function of the number of components, and the chemical rank of D would be defined by the 

maximal number of components that are not representative of noise (components of noise 

are associated with small singular values and decrease regularly). This step needs to be 

performed carefully because it defines the number of chemical patterns (e.g., chemical 

species) to be resolved. 

In the second step, an initial estimate of either C or ST matrix should be defined (  or , 

respectively). These estimates represent a starting point of the solutions that will be obtained 

with the ALS iterative optimization. The selection of proper initial estimates saves 

computation time and minimizes convergence problems. For this reason, random estimation 

of C or ST should be avoided. In this Thesis, we have used a method based on the selection 
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of the purest (the most dissimilar) samples or variables [228] from the raw D dataset, but 

other methods exist, such as the Evolving Factor Analysis (EFA) [229] or the use of 

previously known spectra of pure chemical compounds. 

In the third step, the iterative ALS optimization is performed. The first iteration of the ALS 

algorithm works in the following manner: 

First,  or  are calculated depending of the nature of the chosen initial estimate 

matrix obtained in the previous step (  from , or  from ). 

Then, if applicable, the appropriate constraints are applied, and the obtained 

constrained matrix is used after to calculate the complementary matrix (  from the 

constrained  or  from the constrained ). Some of the constraints can be 

embedded in the local least squares solution, like non-negativity using non-negative 

least squares approaches ([230,231]). 

Then, the original D matrix is compared to the reconstructed  matrix obtained from 

the reconstructed  and . If  is similar enough to D, then the iterative process is 

stopped and the current  and  matrices are defined as the solutions of the problem 

D. Otherwise, another ALS iteration is started, using the current values of  or  as 

new initial estimates. 

It is important to note that, due to the nature of the ALS method, the profiles from C and ST 

matrices fulfill the natural constraints applied during the ALS optimization, like for instance 

non-negativity. However, in contrast to other Factor Analysis methods like PCA or PLS, 

these profiles are not mutually orthogonal.  

Optimization through ALS is repeated until convergence, or until the maximum number of 

iterations predefined by the user is reached. The convergence criterion is based on the 

comparison of the fit obtained in two consecutive iterations. When the relative difference in 

fit is below a threshold value, the optimization is finished. A workflow summarizing the 

MCR-ALS algorithm is presented in Figure 2.40. 
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Figure 2.40. MCR-ALS algorithm. C and S matrices denote for concentration and spectra matrices. 

, initial estimates of S; , initial estimates of C; , estimates of S using ALS; , 

estimates of C using ALS; , constrained , constrained ; , D estimated 

from  and . 

The quality of the MCR-ALS solution is evaluated from the explained variance (R2, eq. 2.30) 

and the lack-of-fit (lof, eq. 2.31) parameters. 

  eq. 2.30 

  eq. 2.31 

where dij are the individual data values for sample i and variable j, and  are the 

corresponding MCR-ALS calculated data values from the same sample and variable. 

Hence, a good MCR-ALS solution is associated with a high R2 value and with a low lof value. 

Ambiguities and constraints 

If no constraints are applied, there exists an infinite number of possible solutions of equation 

2.17 for C and ST, which multiplied with each other, give the same . This is exemplified in 

equation 2.32, in which an infinite number of C and ST solutions can be made using any 

nonsingular invertible matrix T. 

  eq. 2.32 
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To break this ambiguity and constraint the solutions to those with chemical meaning, a set 

of constraints can be applied. 

There are three types of ambiguities: permutation, intensity and rotation ambiguities. 

Permutation ambiguities refer to the order of the components in C and ST matrices. There is 

no prevalence and they may be ordered randomly, although the component correspondence 

in the two modes should be kept (e.g., each column of C matrix with each row of ST matrix). 

Intensity ambiguities only alter the magnitude of the C and ST profiles, and can be avoided 

by closure constraints on C or by normalization of the spectra in ST. Rotation ambiguities 

are caused by the fact that linear combination of the resolved profiles fulfilling the constraints 

and fitting the same data may exist. They cause a change in the profile shapes. Depending 

on the data nature and the applied constraints rotation ambiguities can be more or less 

important for the particular problem of study. 

On the other hand, several types of constraints can be applied during MCR-ALS analyses. 

In this Thesis, we have used non-negativity, unimodality, closure, and selectivity constraints. 

 

Figure 2.41. MCR-ALS constraints. 

Non-negativity constraints (Fig. 2.41A and Fig. 2.41B) impose that resolved values can only 

be positive or zero. This constraint is very general and it can be applied on physical 

concentrations (C ≥ 0) and also on spectra (ST ≥ 0) since spectral measurements are, by 

nature, usually (e.g., 1H NMR [232] or UV [233]).  

Unimodality constraints restrict that pure components to have responses with only one 

maximum. This constraint has been used for chromatographic (Fig. 2.41D) [234], and for 

reaction based systems (Fig. 2.41C) [235], among others. 
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With closure constraints (Fig. 2.41E), the sum of the elements of each row or vector are fixed 

to a known constant value. This constraint results useful in closed reaction systems in which 

the mass balance is conserved, since it reduces the possible intensity ambiguities. 

 

Figure 2.42. Selectivity constraints. 

Selectivity and local rank constraints are very important to avoid the presence of rotation 

ambiguities. Then can be applied for instance when some chemical components (species) are 

known to exist only in certain samples or data regions (Fig. 2.42A), or when they give 

spectral signals only in a particular spectral range (Fig. 2.42B). In these cases, it is possible 

to use a constraint that defines the spectral or concentration windows where the different 

components contribute or not to the measured signal in the two data modes (concentration 

and spectra). 

There are other means that contribute to the reduction of the possible rotation ambiguities. 

One mechanism is to perform the simultaneous analysis of complementary data [125]. For 

instance, the simultaneous analysis of samples containing spectra of pure samples (or just 

samples of reduced complexity) will reduce significantly the ambiguity problems. Also, the 

simultaneous analysis of the same system under different experimental conditions or 

different analytical methods may also result in an improvement in the resolution of the 

responses of the pure components in the two data modes (concentration and spectra profiles) 

[236]. 

MCR-ALS on augmented two-way datasets 

MCR-ALS can be applied on matrices built from sets of samples of first-order data (analysis 

of one sample gives a data vector; e.g., UV, 1H NMR), and also on matrices having single 

samples of second-order data (analysis of one sample gives a data matrix; e.g., HPLC-DAD, 

HPLC-MS).  
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For a set of K second-order data matrices, the bilinear model simultaneously applied to all 

of them can be described as following: 

 eq. 2.33 

Or summarized to: 

 eq. 2.34 

In this equation, the column-wise augmented data matrix Daug is formed by the concatenation 

of the different experimental DK matrices, Caug matrix is formed after the concatenated CK 

elution profiles for all the K samples, ST matrix has the resolved mass spectra profiles of the 

common species in all D matrices, and Eaug matrix describes the variance not explained by 

the MCR-ALS model on all data sets. 

The resolution of an augmented second-order data matrix (Eq. 2.33) only requires that the 

analyzed samples have common profiles on ST, but not in C, as depicted in equation 2.34, 

and therefore, MCR-ALS can resolve chemical compounds that elute at different elution 

times for different samples and that also have different shape profiles. This results very 

convenient on HPLC-MS metabolomics analyses, and it makes a difference against other 

approaches that need a prior alignment and shape modelization of the peaks [237]. 

In this Thesis, this strategy has been used successfully to identify the lipid compounds 

characteristic of yeast samples cultured at 15ºC, 30ºC, 37ºC and 40ºC [125]. In this study, 

lipidomics results (obtained from UHPLC-MS measurements) were combined with 

metabolomics results (obtained from NMR measurements) of the same samples to achieve a 

better interpretation of yeast response under different acclimation temperatures. This study 

is discussed in detail in Chapter 3.  

MCR-ALS on 1H NMR datasets of metabolomics data 

In most 1H NMR metabolomics studies, resonances are first assigned after a careful NMR 

spectroscopy analysis, and then, these assigned resonances are subsequently integrated using 

strategies based on deconvolution [182,193,238]. Alternatively, the application of bilinear 

decomposition chemometric methods like MCR-ALS allow extracting directly the 

concentration and spectral profiles of the constituents in mixture samples of unknown 

composition. Nevertheless, this second procedure has been done rarely in the case of 1H 

NMR studies [239-241]. 
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This statement can be argued because there are already several user-friendly NMR platforms 

that allow the metabolomics characterization of the samples (see Figure 2.2), but they do not 

include approaches like MCR-ALS or Independent Component Analysis [242]. 

The problem of the resolution of 1H NMR metabolomics datasets with chemometric methods 

is that the reliability of the resolution depends on the complexity of the data. The main 

difficulties are associated to rotation ambiguities, to rank deficiency problems (metabolites 

from the same biological pathway may be co-regulated), and to noise propagation effects 

(smaller resonances use to be more poorly resolved than more intense resonances). 

However, in 1H NMR data, proton resonances are narrow, sparse and broadly dispersed 

along the entire spectral domain, all these particularities facilitate their proper chemometric 

resolution. In this Thesis, these advantages are considered, and the efficiency of the MCR-

ALS spectral selectivity constraint to minimize the impact of the possible rotation 

ambiguities and specially, of the rank deficiency limitations mentioned in the previous 

paragraph. In order to obtain reliable results, a new methodology to properly design spectral 

selectivity constraints and initial spectral estimates for 1H NMR metabolomics datasets is 

proposed. This methodology, which we refer to as Decision Tree of Correlations – MCR-

ALS (or DTC-MCR-ALS), can be summarized in the following steps: 

1. The spectral dataset is divided into several spectral sub-regions. 

2. The local rank for every sub-region is estimated. 

3. MCR-ALS is applied on every sub-region using the local rank estimated as the 

number of components to be resolved. 

4. The set of concentration vectors resolved for every MCR-ALS are combined into a 

column-wise augmented dataset, with n rows (samples) and m columns 

(concentration vectors). 

5. Pair-wise correlations between all concentration vectors are calculated. 

6. Resolved spectral features in step 3 are grouped if their associated concentration 

vectors are highly correlated. 

7. Each group of spectral features is combined into a single 1H NMR spectrum that 

covers all the analyzed spectral range. This 1H NMR spectrum is representative of a 

compound that can be resolved from the original 1H NMR dataset, and it will be used 

as a spectral initial estimate. 

8. A spectral selectivity constraint complementary to the matrix of spectral initial 

estimates is implemented. With this constraint, it will be imposed that spectral 

resonances from a compound can only appear in those spectral sub-regions where a 

spectral feature from the same compound had been found. 
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9. MCR-ALS is applied to the whole spectral dataset, using as the number of 

components the number of groups of spectral features estimated in step 6, the spectral 

initial estimate obtained in step 7, and the spectral selectivity constraint implemented 

in step 8. 

 A more exhaustive explanation and implementation of this method is presented in Chapter 

4 and in [243]. 

MCR-ALS of metabolomics data 

MCR-ALS, as to PCA, can also be applied on different metabolomics-originated data 

matrices to investigate the underlying common profiles that describe the considered dataset. 

However, the benefit of applying MCR-ALS (in combination with non-negativity constraints 

on C and ST matrices) rather than PCA is that it produces more directly interpretable 

biological results. 

In biological samples, where the analyzed variables are relative to biological responses (e.g., 
1H NMR [180], RAMAN [244], DNA microarrays [245], metabolite concentrations [246]), 

the biological interdependencies that exist in the biological organism can be extracted as 

resolved components when they are analyzed by chemometric methods. These biological 

interdependencies are usually related to metabolic responses from the same pathway that are 

triggered by the same common stimulus. 

When a metabolomics data matrix is decomposed by MCR-ALS, the two resolved factor 

matrices represent the relative contribution of every resolved component (sample 

contribution profile) for every analyzed sample (C), and the set of metabolic profiles (ST). In 

ST, every metabolic profile is defined by the relative intensity of every measured biological 

signature. For example, for a metabolites concentration data matrix, MCR-ALS will resolve 

in ST the sets of relative metabolites concentrations that explain the underlying metabolic 

alterations that occurred in the studied samples.  
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Figure 2.43. Bilinear decomposition on a concentration dataset from a metabolomics experiment. As 

a result of the analysis, the sample contribution (C) and the metabolite profiles of the 

different type of metabolic responses (ST) are resolved. 

MCR-ALS, with the aim of detecting metabolite interdependencies, has been applied in 

biology, food, and medicine, among others, in the last years. In fact, for example, the data 

analysis of imaging data (e.g., hyperspectral, RAMAN, MS imaging) with MCR-ALS has 

become a state-of-the-art protocol, and the metabolite interdependencies detected usually 

describe the different biological compartments enclosed in the studied image [244,247-250]. 

Montoliu et al. in 2009 [251] also applied MCR-ALS to investigate the metabolic relationship 

between different biological compartments (liver, pancreas, kidney cortex, plasma, and 

adrenal gland samples), but using 1H NMR data. 

The biological information that can be retrieved from the MCR-ALS analysis depends on 

the implemented experimental design. For instance, it has been used to evaluate the 1H NMR 

spectral profiles associated to nephrotoxicity from urine samples collected from rats during 

9 days, and the metabolic changes in Japanese rice fish at 9 different embryogenic stages 

[180]. 

In order to obtain a better biological interpretation, MCR-ALS can be also applied to the 

table with already curated metabolite concentrations. With this approach, overlapping 
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among the directly measured variables is avoided (e.g., resonance overlapping in 1H NMR 

spectra), reducing, therefore, the existence of the possible rotational ambiguities, and all 

metabolites are then equally represented in the dataset since every metabolite is defined by 

only one variable. This approach has been used to evaluate the metabolic circadian variations 

in rice plants [246], and in this Thesis, to evaluate the metabolic response of yeast cultured 

under different nutrient-limiting conditions [118] and at different temperatures [125]. 

Finally, metabolic signatures are encoded in the ST matrix which can be further analyzed 

with other chemometric methods, such as PLS-DA [247] or clustering approaches [125]. 
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5 ENVIRONMENTAL METABOLOMICS 

The potential for metabolomics to detect biomarkers of environmental stress and to delineate 

the modes of action of xenobiotics in other fields of science has contributed to the application 

of metabolomics techniques in the environmental sciences [252]. This sub-discipline of 

metabolomics is referred to as environmental metabolomics and consists in the application of 

metabolomics techniques to analyze the interactions of organisms with their environment 

[29].  

A broad range of organisms are used to evaluate environmental stressors, such as 

microorganisms, plants, and terrestrial or aquatic organisms. In this Thesis, we have chosen 

the yeast Saccharomyces cerevisiae as the model organism for our metabolomics analyses. 

 

5.1 Saccharomyces cerevisiae (YEAST) 

Yeasts are unicellular fungi that have been widely used throughout human history in the 

fermentation industry to produce alcoholic beverages, and in the baking industry to expand 

dough [253]. In the research field, despite its apparent evolutionary simplicity, it has become 

a well-established model organism for molecular genetic research because the basic cellular 

mechanics are generally conserved between yeast and larger eukaryotes, including humans. 

Furthermore, yeast can be easily manipulated at the genetic level [254], converting it to an 

excellent host for conveniently analyzing and functionally dissecting gene products from 

other eukaryotes. The importance of yeast in research led to become the first eukaryote 

organism with its DNA completely sequenced (the strain S288C in 1996) [255]. 

Many current genetic studies are carried out with the haploid strain S288C or one of their 

derivative strains, although other strains with different genetic pedigrees are equally used. 

These strains have different properties that can influence experimental outcomes. For 

instance, the S288C strain contains a defective HAP1 gene, making it incompatible with 

studies of mitochondrial and related systems [256]. 

In this Thesis, the yeast strains S288C and the S288C-derivated BY4741 have been used. The 

BY4741 strain differs from the S288C strain because it lacks 4 genes involved in amino acid 

and nucleotide biosynthesis (URA3, MET15, HIS3 and LEU2 genes). Due to the absence of 

these four genes, the BY4741 strain is unable to biosynthesize (auxotroph) uracil, L-

methionine, L-histidine, and L-leucine, respectively. 
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Figure 2.44. Yeast colonies on a YPD agar plate. 

Yeast can be grown in a solid culture medium (as in a Petri Plate) or in a liquid culture 

medium[257]. Different culture media with different composition are used depending on the 

distinct desired growth conditions. Two of the most used culture media are YPD (Yeast 

Peptone Dextrose) and YNB (Yeast Nitrogen Base) media. 

YPD is a nutritious medium preferred for the growth and propagation of yeast cultures, 

which contains bacteriological peptone, yeast extract, and glucose. 

On the other hand, YNB is a medium used for the cultivation of yeast. YNB contains 

ammonium sulfate (as the nitrogen and sulfate sources), phosphate, vitamins and trace 

elements. If this medium is only complemented with a carbon source, such as glucose, it can 

be used as a selective media for culturing amino acid-auxotrophic yeast strains. On the other 

hand, if YNB medium is supplemented with amino acids, we can refer to this culture medium 

as Yeast Synthetic Complete (YSC) medium. Finally, in case not all the amino acids are 

added into the YNB medium, this medium can be referred as a Yeast Synthetic Drop-out 

Medium or just Drop-out Medium (DM). 

Yeast growth can be described as a function of cell number increase and nutrient availability, 

and it consists of five different phases: lag phase, exponential phase, diauxic shift, post-

diauxic shift and stationary phase. After inoculation, yeast is in the lag phase, adapting to 

the growth conditions of the fresh media. During exponential phase, yeast cells growth 

primarily by fermentation metabolism at full growth rate, as there is no nutrient constraint. 

The diauxic shift occurs when glucose becomes exhausted from the medium and cells adapt 

to respiratory metabolism. During the post-diauxic phase, growth resumes at a much lower 

rate, utilizing energy provided by respiration. Finally, the stationary phase is a result of 

carbon starvation, and there is no further net increase in cell number [258]. Since yeast 

growth depends directly on nutrient availability, different metabolic profiles are observed at 

different yeast growth phases and at different yeast growth culture media. 
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5.1.1 Environmental metabolomics studies in yeast 

Yeast is not only a suitable model organism for genetic experiments, but also for addressing 

questions related to the metabolism. In fact, dozens of scientific articles investigating yeast 

metabolome have been published in the recent years [30,88,118,119,125,159,243,259-276]. 

In a more biological framework, yeast metabolome has been investigated to understand cell 

cycle regulation [262,263], aging [264], and gene regulation [265]. 

In the framework of environmental metabolomics, the metabolism of yeast has been deeply 

studied for cells cultured in sub-optimal or even adverse conditions, such as for dehydration 

[266], nutrient limitation [267-269], ethanol tolerance [88,270], pH [88,273], heat stress 

[88,272], salt stress [88,273,274], oxidative stress [88,276] and metal stress [275]. 

Between these two mentioned frameworks, there exists an extra in-between framework that 

has been overlooked and understudied in the scientific literature. This third framework 

consists of the study of yeast metabolism under controlled standard lab conditions. 

Microbiology is a rather old research field [277], and the established culturing methods 

employed nowadays were optimized based on phenotypic responses (e.g., cell density, 

growth rate) [257] since methods to study cellular metabolism did not exist at that moment 

[278].  

Therefore, although yeast has been extensively investigated from the genomic point of view, 

it is sometimes ignored the fact that every genetic response is a dynamic event that can be 

altered due to the used growing conditions. 

In addition, apart from the culturing conditions (e.g., medium composition, temperature), 

the genetic background, specific of each yeast strain, may determine the metabolic responses 

observed. 

Most of the gene editing protocols in microbiology require the use of auxotroph strains, 

leading to the fact that most published yeast genetics experiments are performed using strains 

with at least one biosynthetic pathway disrupted. However, in 2012, Mülleder et al. affirmed 

that it is preferable to work with prototroph strains instead since the encoding gene deletions 

of the auxotroph strains can influence several physiological parameters and produce a bias 

in physiological and metabolic studies [279]. 

Therefore, despite all the efforts put into yeast metabolomics experiments that evaluate the 

effect of environmental conditions, basic research to improve the knowledge related to yeast 

metabolism and to yeast gene regulation when it is cultured under standard laboratory 

conditions is still necessary. For this reason, in one of the metabolomics studies covered in 
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this Thesis (Chapter 4), we have evaluated the impact on yeast metabolism of two different 

yeast growth media, YSC and YPD, over time.  
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Yeast cells are a versatile tool for investigating the metabolic effects of environmental 

stressors. In order to evaluate these effects, yeast cells are very convenient because they are 

easy to manipulate and to maintain, and because the metabolic pathways related to growth 

and metabolism found in yeast are also found in larger eukaryotes, such as in humans.  

In this Chapter, we have studied the yeast metabolic response to two main stresses: 

temperature acclimation and nutrient starvation. In the first part of the introduction section, 

background information regarding these two stresses is presented. In the second part of the 

introduction section, the analytical tools used to investigate these two stresses are presented. 

In the scientific research section, the effects of the mild-heat acclimation stress on the 

metabolome of yeast cells is studied (Scientific article I). Moreover, the changes in the yeast 

metabolome and lipidome as a result of their cultivation at four different temperatures are 

investigated (Scientific article II). In addition, the metabolic response of yeast at four different 

nutrient starvation conditions are studied (Scientific article III). In the last discussion section, 

the results obtained in this research section are presented and commented. Finally, the 

specific conclusions drawn from these studies are listed. 
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1 INTRODUCTION 

1.1 YEAST STRESS (TEMPERATURE AND STARVATION) 

1.1.1 Temperature stress in yeast 

Microorganisms, including yeast, have colonized all kind of environments, from 

Mediterranean countries [280] to hot springs [281], or even in the Arctic [282]. To confront 

these diverse conditions, microorganisms have adapted their metabolism and physiology to 

survive. 

For instance, to cope with low temperatures, psychrophilic1 yeasts present a cell membrane 

rich in short and unsaturated fatty acids, resulting in an improvement of the membrane 

fluidity, required to maintain the appropriate physical state of the lipid bilayer and the good 

functionality of membranes at such low temperatures [283]. 

 

Figure 3.1. Scheme of a plasma membrane and its adaptation to changes in temperature. Colors 

represent different lipid families. 

In addition, other metabolic adaptations observed in psychrophilic yeasts are the increase of 

polyols (e.g., glycerol, mannitol) that sustain the function and integrity of cell membranes to 

dehydration and osmotic level derived from the increased membrane permeability [284]; and 

                                                      

1 Psychrophile: organism capable of growth and reproduction in low temperatures. 
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the increase of trehalose, a metabolite that enhances fungi resistance to different 

environmental stresses [285]. 

Moreover, growing on a low temperature-environment produces an important impact at the 

transcriptional and translational levels, the so-called Cold Shock Response (CSR) [286]. 

Transcription levels of genes involved in the regulation of transporters of growth-limiting 

nutrients, glycogen metabolism and ribosome biogenesis are altered [287], and translation of 

antifreeze proteins is substantially enhanced in psychrophilic yeast [288].  

On the other hand, yeast metabolome and transcriptome are also affected by exposition at 

high temperatures. Specifically, heat dynamically induces a protective transcriptional 

response known as the heat shock response (HSR), that alters yeast physiology, membrane 

composition, and overall metabolism. Mediated by HSR, genes related to energy reserves 

are over-expressed [289], as well as genes related to glucose transporters, gluconeogenesis 

and to ethanol fermentation [272,289]. As in the cold temperature stress, the trehalose 

production is activated [290]. 

Aberrant protein folding is more likely to occur at higher temperatures because they present 

an elevated conformational freedom. To minimize protein misfolding, HSR induces 

transcription of protein folding genes [291], and heat shock proteins (HSPs) represses 

translation of non-heat shock transcripts by modifying mRNA transport into subcellular 

complexes away from ribosomes [292] and by chromatin modulation [293]. 

Moreover, to maintain cell membrane stability at higher temperatures, cell membrane 

fluidity is reduced by changing its lipid composition [283]. These alterations in the cell wall 

activate transduction pathways such as the Cell Wall Integrity signaling pathway, a MAP2 

kinase pathway [294] that regulates cell wall biosynthetic enzymes and the polarization of 

the actin cytoskeleton [295]. 

Finally, under aerobic conditions, exposition to high temperatures results also on an increase 

of the potential oxidative stress, and the antioxidant defenses, such as catalases, peroxidases, 

and thioredoxins are over-expressed [293]. At the metabolome level, an increase of 

glutathione consumption is observed [296]. 

1.1.2 Starvation stress in yeast 

In response to perturbations in the availability of nutrients in the environment, yeast cells 

modulate their gene expression levels after activation of a transcriptional reprogramming 

machinery specific for the exposed stress [297]. The result of this transcriptional 

                                                      

2 MAP kinase: Mitogen-Activated Protein kinase. 
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reprogramming is a change in the metabolism and on the yeast physiology that minimizes 

the impact of this environmental stress, allowing yeast to grow and survive. However, 

depending on the magnitude of the stress, yeast cells might enter into a latent cell state and 

remain arrested until the environmental conditions become favorable [298]. Thus, nutrient 

limitation might modify the dynamics of yeast cell cycle. 

Yeast cell cycle [299] consists of a series of events that lead to the DNA duplication and the 

formation of two daughter cells. This cell cycle can be divided into different phases: the first 

growth phase (G1), the synthesis phase (S), the second growth phase (G2) and the mitotic 

phase (M). 

 

Figure 3.2. The cell cycle in yeast haploid cells and starvation. 

In the G1 phase, cells increase the number of proteins, organelles, and also their size. In the 

S phase, the chromosomes are replicated. In the G2 phase, cells prepare for mitosis and grow 

rapidly. Then, in the M phase, the nucleus is divided by mitosis. Finally, starting during late 

mitosis, the cytokinesis occurs, in which the two nuclei, cytoplasm, organelles and cell 

membrane are divided into two functional daughter cells. These two cells will be in the G1 

phase, and each one will start a new cell cycle. 

If a cell perturbation exists, such as from an environmental stress, cells will try to adapt to 

these adverse environmental conditions. In case this stress is prolonged over time and cells 

are reaching a biological point of no return due to the exhaustion of vital resources, cells 

found in G1 can enter into the latent state of the G0 phase or quiescent state [300]. 

In this state, cells can remain for long periods of time without proliferating. G0 yeast cells 

present enhanced resistance to heat and high osmolarity, increased levels of carbohydrate 

storage, and a thickened cell wall [301,302]. In addition, they show a reduced metabolic 

activity and protein synthesis and growth is halted. Instead, resources are used for cell 

maintenance, survival, and repair pathways [303]. When the extracellular perturbation 
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disappears, cells activate their metabolism and can enter again into the cell division cycle in 

the G1 phase [304]. 

Under starving conditions, several signaling pathways are activated. These pathways are the 

RAS/cAMP-dependent Protein Kinase A (PKA), AMP-dependent protein kinase (Snf2), 

Sch9, and Target Of Rapamycin Complex 1 (TORC1) signaling pathway [305]. The outcome 

resulting from the activation of these pathways is a metabolic response that alleviates the 

cellular stress. For instance, under glucose deprivation, genes involved in fatty acid beta-

oxidation are expressed, as well as gluconeogenesis genes, and inhibits the expression of 

hexokinase and hexose transporters [306]. Thus, altogether, glucose catabolism is repressed, 

fatty acids are used instead to produce energy, and glucose anabolism is activated to improve 

the carbohydrate reserves. 

Similarly, starvation for amino acids, purines, and glucose limitation induces the synthesis 

of Gcn4 protein (Gcn4p), a transcriptional activator of amino acid biosynthetic genes in 

multiple pathways. In amino acid-starved cells, Gcn4p represses ribosomal proteins, 

inhibiting protein synthesis, and activates the transcription of amino acid biosynthetic genes 

[307]. 

Another characteristic metabolic response derived from starvation is autophagy [308]. In 

autophagy, cytoplasmic components are delivered into vacuoles for degradation to generate 

an internal pool of molecules ready to be recycled. In yeast, autophagy can be activated 

through PKA and TORC1 signaling pathways under nitrogen starvation, carbon starvation, 

auxotrophic amino acids starvation and nucleic acids starvation [309]. 

Due to a limitation of the internal resources, autophagy, and therefore quiescence, cannot be 

maintained forever. Requirements for surviving starvation varies on the starvation 

conditions, and so the maximum lifespan at G0 state. In general, starvation for natural 

nutrients such as carbon, phosphate, nitrogen or sulfate results in low death rates (half-life of 

> 10 days), whereas starvation for amino acids in auxotrophic mutants presents a rapid loss 

of viability (half-life of < 4 days) [267,269]. 

Unlike wild-type strains, auxotrophic mutants have not been subjected to evolutionary 

selection and the compensatory mechanisms activated under starvation conditions are not 

correctly regulated. That results in an incomplete cell cycle arrest and higher rates of glucose 

consumptions. On the contrary, sulfate and phosphate starvations produce a rapid and 

uniform cell cycle arrest and a slow glucose consumption [267]. 

Not all amino acid starvations show the same transcriptional and metabolic response, likely 

because some amino acids have additional roles in the cell apart from being used as building 

blocks for proteins. For instance, L-leucine, L-arginine, and L-glutamine interact with 
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TORC1 signaling pathway[310], while L-methionine regulates both autophagy[311] and 

growth [312]. Related to the latter, L-methionine starvation is the only amino acid starvation 

condition whose cells can enter into a quiescence state similarly as under a natural starvation 

condition, and yeast lifespan is also similar. It has been observed that L-methionine 

biosynthetic genes exhibit periodic expression, which suggests that these differences are 

caused because L-methionine plays an important role in the control of cell cycle regulation 

[313]. 

 

1.2 ANALYTICAL STRATEGIES USED 

The most reported response to temperature acclimation in yeast is the variation of the lipid 

composition [314-322], whereas nutrient starvation in yeast has been commonly examined 

with transcriptomics approaches [269,304,307,323-328]. However, with only lipidomics and 

transcriptomics, respectively, it is not possible to completely understand yeast adaptation to 

these two stresses. For this reason, we have performed metabolomics experiments to try to 

fill the existing knowledge gap in this area. 

Metabolomics analyses regarding temperature [88,272,329,330] and starvation 

[269,304,331] stresses, albeit less common, exist. In these studies, it is observed that these 

two biological processes affect drastically on the whole cell, and the two produce an impact 

directly on the primary metabolism.  

For these metabolomics studies, researchers have used Mass Spectrometry (MS). However, 

for the analysis of the primary metabolism, Nuclear Magnetic Resonance (NMR) 

spectroscopy is a strong competitor to MS, since NMR is more robust, it has better 

reproducibility, metabolite identification results less ambiguous, and because (1H) NMR is 

inherently quantitative. Because of all this, we have decided in this Thesis to use mainly the 

NMR methodology to characterize the yeast metabolome instead. 

In this chapter, we present several NMR-derived strategies to assign resonances from raw 1H 

NMR spectra to a set of meaningful metabolites. These approaches consisted of: 

1) Performing spiking experiments with candidate compounds (Scientific Article I) 

2) Analysis of the 1H NMR dataset with Statistical TOCSY or STOCSY [332] 

(Scientific Article I). 

3) Analysis of 1H-1H COSY, 1H-1H TOCSY, 1H-13C HSQC and 1H-13C HMBC NMR 

spectra from representative samples (Scientific Article I & III). 

4) Acquiring selective experiments, such as the selective 1D TOCSY NMR experiment 

[333] (Scientific Article III). 
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However, to obtain relevant results, not only the studied system and the analytical 

methodology used are important, but also the data analyses strategies used. 

Most metabolomics analyses covering the two topics are based on Principal Component 

Analysis [88,329,330], Partial Least Squares – Discriminant Analysis [272] or on a heat-map 

representation of the hierarchically clustered auto-scaled areas [269,304,330,331]. Despite 

these data analyses strategies result very appropriate if combined to obtain an overview of 

the metabolomics data, they are not powerful enough if used separately to reveal all the 

information hidden beneath the original data. 

Moreover, in this Chapter, the chemometrics method Partial Least Squares – Discriminant 

Analysis (PLS-DA) has been used to identify metabolite biomarkers of temperature 

acclimation (Scientific Article I); and the Analysis of variance – Simultaneous Component 

Analysis (ASCA) was employed to assess whether the yeast metabolic response to nutrient 

starvation over time is statistically different to the one observed during growth at normal 

conditions (Scientific article III). 

Finally, in this Chapter, we have proposed the use of the chemometric method Multivariate 

Curve Resolution-Alternating Least Squares (MCR-ALS) to resolve the metabolic profiles 

and their relative contributions that explain, at a biological level, the observed variations in 

the yeast metabolome under stress conditions (Scientific article II & III). In order to extract 

those metabolic profiles more descriptive of the temperature acclimation effect, the analyzed 

metabolomic dataset consisted of two row-wise fused datasets: one representative of the 

primary metabolism, generated by NMR analysis; and another one representative of the 

lipidome, generated by UHPLC-MS analysis from the same yeast samples (Scientific article 

II).  

  



Chapter 3 
 

92 

2 SCIENTIFIC RESEARCH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 SCIENTIFIC ARTICLE I  

A quantitative 1H NMR approach for evaluating the metabolic response of Saccharomyces 

cerevisiae to mild heat stress. 

Authors: Puig-Castellví F., Alfonso I., Piña B., Tauler R. 

Citation reference:  Metabolomics (2015), 11:1612–1625. 

DOI: 10.1007/s11306-015-0812-9 

 

 



 
 

93 

 

 

  



 
 

94 

 

  



 
 

95 

 

  



 
 

96 

 

  



 
 

97 

 

  



 
 

98 

 

  



 
 

99 

 

  



 
 

100 

 

  



 
 

101 

 

  



 
 

102 

 

  



 
 

103 

 

  



 
 

104 

 

  



 
 

105 

 

  



 
 

106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Current data analysis strategies for the investigation of 1H NMR metabolomics datasets 
 

107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUPPLEMENTARY MATERIAL FOR SCIENTIFIC ARTICLE I  

A quantitative 1H NMR approach for evaluating the metabolic response of Saccharomyces 

cerevisiae to mild heat stress. 

Authors: Puig-Castellví F., Alfonso I., Piña B., Tauler R. 

Citation reference:  Metabolomics (2015), 11:1612–1625. 

DOI: 10.1007/s11306-015-0812-9 

 

 

 

 

 



Chapter 3 
 

108 

Online Resource 1. Methods used for peak assignment. 

# Metabolite 
YMDB or 
HMBD ID 

KEGG 
C-Number 

400 MHz 

1H 
NMR 

Spectral info. from 
extracts 

Spiking 

1 L-threonine YMDB00214 C00188 NO 1D, 2D-TOCSY, J YES 

2 Ethanol YMDB00883 C00469 NO 1D, 2D-TOCSY, J NO 

3 Fatty acids  -   -  NO 1D NO 

4 L-glutamate YMDB00271 C00025 NO 1D, 2D-TOCSY, J YES 

5 Glutathione YMDB00160 C00051 YES 1D, 2D-TOCSY, J YES 

6 L-histidine YMDB00369 C00135 YES 1D, 2D-TOCSY, J NO 

7 Formic acid YMDB00385 C00058 NO 1D, 2D-TOCSY NO 

8 NAD+ YMDB00110 C00003  NO 1D, 2D-TOCSY, J YES 

9 L-valine YMDB00152 C00183 NO 1D, 2D-TOCSY, J NO 

10 AMP YMDB00097 C00020  YES 1D, 2D-TOCSY YES 

11 L-lysine YMDB00330 C00047 NO 1D, 2D-TOCSY, J YES 

12 L-arginine YMDB00592 C00062 NO 1D, 2D-TOCSY, J YES 

13 L-isoleucine YMDB00038 C00407 NO 1D, 2D-TOCSY, J YES 

14 Acetic acid YMDB00056 C00033 NO 1D, 2D-TOCSY NO 

15 L-leucine YMDB00387 C00123 NO 1D, 2D-TOCSY, J YES 

16 L-phenylalanine YMDB00304 C00079 YES 1D, 2D-TOCSY NO 

17 Cytosine YMDB00651 C00380 NO 1D, 2D-TOCSY NO 

18 L-glutamine YMDB00002 C00064 NO 1D, 2D-TOCSY, J YES 

19 Orotidine HMDB00788  -  NO 1D, 2D-TOCSY NO 

20 L-alanine YMDB00154 C00041 NO 1D, 2D-TOCSY, J NO 

21 Orotic acid YMDB00405 C00295 NO 1D, 2D-TOCSY, J YES 

22 L-lactic acid YMDB00247 C00186  NO 1D, 2D-TOCSY, J YES 

23 Glycine YMDB00016 C00037  NO 1D, 2D-TOCSY YES 

24 L-aspartic acid YMDB00896 C00049 NO 1D, 2D-TOCSY, J NO 

25 Uracil YMDB00098 C00106 NO 1D, 2D-TOCSY YES 

26 L-tyrosine YMDB00364 C00082 NO 1D, 2D-TOCSY, J NO 

27 Glycerol YMDB00283 C00116 YES 1D, 2D-TOCSY, J YES 

28 Glycerophosphocholine YMDB00309 C00670  YES 1D, 2D-TOCSY, J YES 

29 ADP YMDB00914 C00008 YES 1D, 2D-TOCSY YES 

30 L-proline YMDB00378 C00148  NO 1D, 2D-TOCSY, J YES 

31 D-glucose YMDB00286 C00031 NO 1D, 2D-TOCSY, J YES 

32 Citric acid YMDB00086 C00158 NO 1D, 2D-TOCSY, J YES 

33 L-asparagine YMDB00226 C00152 NO 1D, 2D-TOCSY, J YES 

34 Succinic acid YMDB00338 C00042  NO 1D, 2D-TOCSY, J NO 

35 ATP YMDB00109 C00002 YES 1D, 2D-TOCSY YES 

36 Adenine YMDB00887 C00147 NO 1D, 2D-TOCSY YES 

37 Hypoxanthine YMDB00555 C00262  NO 1D, 2D-TOCSY YES 

38 Trehalose YMDB00008 C01083  NO 1D, 2D-TOCSY YES 

 

 



Current data analysis strategies for the investigation of 1H NMR metabolomics datasets 
 

109 

Online Resource 2. Spectroscopic parameters for each assigned resonance. 

# Name ppm J H M Raster 

1 L-Ile 0.928 7.44 3 t  

2 L-Leu 0.946 6.10 3 d  

3 L-Leu 0.954 6.10 3 d  

4 L-Val 0.978 7.01 3 d  

5 L-Ile 1.000 7.06 3 d  

6 L-Val 1.029 7.05 3 d  

7 EtOH 1.170 7.08 3 t  

8 FA 1.237 - 41 s  

9 L-Ile 1.240 - 1 m YES 

10 L-Lac 1.313 7.00 3 d  

11 L-Thr 1.316 6.60 3 d  

12 L-Ile 1.406 - 2 m YES 

13 L-Lys 1.465 - 2 m YES 

14 L-Ala 1.468 7.14 3 d  

15 L-Arg 1.690 - 2 m YES 

16 L-Lys 1.720 - 2 m YES 

17 L-Leu 1.700 - 3 m YES 

18 DSS 1.748 - 2 m YES 

19 L-Lys 1.880 - 2 m YES 

20 HAc 1.904 - 3 s  

21 L-Arg 1.907 - 2 m YES 

22 L-Ile 1.968 - 1 m YES 

23 L-Glu 1.99- - 2 Σ s  

24 L-Pro 2.030 - 3 m YES 

25 GSH 2.118 7.67,6.30 2 td  

26 L-Gln 2.124 - 2 m YES 

27 L-Val 2.260 - 1 m YES 

28 L-Glu 2.340 - 2 m YES 

29 L-Pro 2.341 - 1 m YES 

30 Succ. 2.390 - 4 s  

31 L-Gln 2.441 - 2 m YES 

32 Citr. 2.507 - 0.78 s  

33 Citr. 2.545 - 1.29 s  

34 GSH 2.547 7.40,3.04 2 td  

35 Citr. 2.631 - 1.22 s  

36 L-Asp 2.641 8.85 0.33 d  

37 Citr. 2.669 - 0.70 s  

38 L-Asp 2.685 8.85 0.67 d  

39 L-Asp 2.780 3.72 0.67 d  

40 L-Asp 2.825 3.72 0.33 d  

41 L-Asn 2.830 7.58 0.29 d  

42 L-Asn 2.870 7.57 0.71 d  

43 DSS 2.910 - 2 m YES 

44 L-Asn 2.922 4.34 0.71 d  

45 L-Tyr 2.933 7.75 0.67 d  

46 GSH 2.938 - 2 m YES 
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# Name ppm J H M Raster 

47 L-Tyr 2.958 7.78 0.33 d  

48 L-Asn 2.965 4.37 0.29 d  

49 L-Lys 3.000 - 2 m YES 

50 L-Tyr 3.077 5.18 0.67 d  

51 L-Tyr 3.101 5.17 0.33 d  

52 L-His 3.160 1.93 0.31 d  

53 L-His 3.190 3.09 0.69 d  

54 GPC 3.217 - 9 s  

55 Glucose 3.221 7.96 0.29 d  

56 L-His 3.230 3.09 0.69 d  

57 L-Arg 3.232 6.93 2 t  

58 Glucose 3.243 7.82 0.35 d  

59 L-His 3.250 1.93 0.31 d  

60 Trehalose 3.438 9.34 2.06 t  

61 Glucose 3.460 - 2.63 m YES 

62 GlyOH 3.546 - 2.07 m YES 

63 Gly 3.547 - 2 s  

64 L-Thr 3.575 4.76 1 d  

65 Trehalose 3.624 3.90 0.9 d  

66 GPC 3.635  4 m YES 

67 EtOH 3.643 7.07 2 q  

68 GlyOH 3.645 - 2.12 m YES 

69 Trehalose 3.648 - 1.14 m YES 

70 L-Ile 3.662 3.97 1 d  

71 L-Leu 3.723 - 1 m YES 

72 L-Glu 3.746 7.19,4.72 2 dd  

73 L-Lys 3.747 6.11 1 t  

74 GSH 3.750 - 3 m YES 

75 L-Arg 3.762 6.11 1 t  

76 GlyOH 3.770 6.50, 4.37 0.79 tt  

77 L-Ala 3.787 7.20 1 q  

78 Glucose 3.790 - 2.75 m YES 

79 Trehalose 3.81 - 7.74 m YES 

80 GPC 3.895 - 3 m YES 

81 L-His 3.975 7.75, 4.92 1 dd  

82 L-Asp 4.000 7.60, 4.35 1 dd  

83 L-Lac 4.097 6.92 1 q  

84 L-Pro 4.120 8.80, 6.17 1 dd  

85 L-Thr 4.237 - 1 m YES 

86 GPC 4.315 - 2 m YES 

87 GSH 4.562 7.01,5.22 1 dd  

88 Glucose 4.634 7.97 0.61 d  

89 Trehalose 5.184 3.84 2 d  

90 Glucose 5.220 3.79 0.36 d  

91 Orotidine 5.540 3.30 1 d  

92 Orotidine 5.760 - 1 s  

93 Uracil 5.790 7.75 1 d  

94 Cyt. 5.973 8.17 1 d  
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# Name ppm J H M Raster 

95 NAD+ 6.025 5.86 1 d  

96 NAD+ 6.075 5.27 1 d  

97 AMP 6.130 5.96 1 d  

98 Orotate 6.177 - 1 s  

99 L-Tyr 6.888 8.68 2 d  

100 L-Hys 7.097 0.58 1 d  

101 L-Tyr 7.182 8.68 2 d  

102 L-Phe 7.370 - 5 m YES 

103 Uracil 7.525 7.65 1 d  

104 L-Hys 7.907 1.13 1 d  

105 NAD+ 8.160 - 1 s  

106 NAD+ 8.171 6.09 0.5 d  

107 Adenine 8.184 - 1 s  

108 Hyp. 8.191 7.94 2 d  

109 NAD+ 8.191 6.29 0.5 d  

110 Adenine 8.232 - 1 s  

111 AMP 8.256 - 1 s  

112 ADP 8.257 - 1 s  

113 ATP 8.259 - 1 s  

114 NAD+ 8.416 - 1 s  

115 Formate 8.442 - 1 s  

116 ADP 8.526 - 1 s  

117 ATP 8.534 - 1 s  

118 AMP 8.591 - 1 s  

119 NAD+ 8.822 8.22 1 d  

120 NAD+ 9.132 6.14 1 d  

121 NAD+ 9.323 - 1 s  

1Fatty acids number of protons is defined arbitrarily to 4 in order to obtain a concentration value comprised within 

the concentration range for the other estimated metabolites. H: Number of protons, M: Multiplet. Raster: The 

signal is modelled as a raster multiplet or not. 
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Online Resource 3. Input parameters modified from the default batmanoptions.txt template. 

Parameter Value 

Intensity scale factor 800000 

Number of burn-in iterations 2000 

Number of post-burn-in iterations 1000 

Number of parallel processes 3 

Number of spectra to be modelled 30 

Spectrometer frequency (MHz) 400 
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Online Resource 4. a. PCA projection of the 1H NMR mean-centered spectra on the two 
first principal components subspace. b. Hotelling T2 against the Q Residuals scatterplot of 
each NMR spectrum. c. LV1 OSC-PLS-DA Scores plot. d. VIP scores plot represented 
against the chemical shift, in logarithmic y-scale. VIPscore threshold of 1 and of 100 is 
represented by dashed and dotted lines, respectively. e. Histogram of the VIP score plot, in 
a logarithmic x-scale. 
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Online Resource 5. RMSEC and RMSECV values obtained for the different chemometric 
models used. 

 

1H NMR data 
Concentration 

estimates  

PCA 
RMSEC 0.09 0.655 
RMSECV 8.058 0.96 

PLS-DA 
RMSEC 0.005 0.0139 
RMSECV 0.103 6.036 
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Online Resource 6. Fold changes concentration for metabolites identified in yeast extracts. 

 
Metabolite 

[]37/[]30 p-value1 
30°C 37°C 

Mean2 SD3 Mean2 SD3 

L-threonine 0.63 *** 2.62 x 10-1 1.65 x 10-2 1.66 x 10-1 1.07 x 10-2 

Ethanol 1.48  1.25 x 10-1 1.19 x 10-1 1.84 x 10-1 1.55 x 10-1 

Fatty acids 0.39 *** 1.58 x 10-1 8.33 x 10-2 6.12 x 10-2 2.74 x 10-2 

L-glutamic acid 0.94 * 1.33 x 10-1 8.94 x 10-3 1.25 x 10-1 8.45 x 10-3 

Glutathione 0.47 *** 1.16 x 10-1 1.77 x 10-2 5.45 x 10-2 1.20 x 10-2 

L-histidine 1.22 *** 9.30 x 10-2 1.10 x 10-2 1.13 x 10-1 1.18 x 10-2 

Formic acid 0.52 *** 8.07 x 10-2 1.90 x 10-2 4.22 x 10-2 7.23 x 10-3 

NAD+ 0.69 *** 6.52 x 10-2 7.22 x 10-3 4.48 x 10-2 4.09 x 10-3 

L-valine 0.66 *** 6.43 x 10-2 7.09 x 10-3 4.25 x 10-2 4.80 x 10-3 

AMP 0.72 *** 6.12 x 10-2 6.42 x 10-3 4.42 x 10-2 4.59 x 10-3 

L-lysine 1.18 *** 5.07 x 10-2 3.34 x 10-3 5.96 x 10-2 4.21 x 10-3 

L-arginine 0.87 ** 4.99 x 10-2 5.14 x 10-3 4.36 x 10-2 5.19 x 10-3 

L-isoleucine 0.59 *** 4.91 x 10-2 7.85 x 10-3 2.91 x 10-2 5.66 x 10-3 

Acetic acid 0.55 *** 3.18 x 10-2 8.78 x 10-3 1.74 x 10-2 5.33 x 10-3 

L-leucine 0.58 *** 3.15 x 10-2 5.34 x 10-3 1.83 x 10-2 2.44 x 10-3 

L-phenylalanine 0.68 *** 3.08 x 10-2 5.24 x 10-3 2.09 x 10-2 2.12 x 10-3 

Cytosine 0.44 *** 2.96 x 10-2 8.82 x 10-3 1.31 x 10-2 4.89 x 10-3 

L-glutamine 0.69 *** 2.94 x 10-2 6.26 x 10-3 2.02 x 10-2 9.88 x 10-4 

Orotidine 0.96  2.76 x 10-2 4.21 x 10-3 2.64 x 10-2 2.03 x 10-3 

L-alanine 1.25 *** 2.09 x 10-2 1.24 x 10-3 2.61 x 10-2 2.02 x 10-3 

Orotic acid 0.66 *** 2.52 x 10-2 7.11 x 10-3 1.67 x 10-2 4.02 x 10-3 

L-lactic acid 0.7 ** 2.43 x 10-2 6.05 x 10-3 1.69 x 10-2 6.10 x 10-3 

Glycine 0.88 ** 2.42 x 10-2 2.30 x 10-3 2.12 x 10-2 2.11 x 10-3 

L-aspartic acid 0.85 *** 2.38 x 10-2 1.91 x 10-3 2.02 x 10-2 1.16 x 10-3 

Uracil 0.62 *** 2.26 x 10-2 8.45 x 10-3 1.41 x 10-2 4.34 x 10-3 

L-tyrosine 0.97  1.53 x 10-2 2.25 x 10-3 1.48 x 10-2 1.40 x 10-3 

Glycerol 1.32  1.02 x 10-2 4.23 x 10-3 1.34 x 10-2 4.81 x 10-3 

Glycerophosphorylcholine 5.57 *** 2.39 x 10-3 2.36 x 10-3 1.33 x 10-2 1.18 x 10-3 

ADP 0.63 * 1.05 x 10-2 6.78 x 10-3 6.63 x 10-3 4.30 x 10-3 

L-proline 1.04  7.37 x 10-3 1.54 x 10-3 7.63 x 10-3 9.25 x 10-4 

D-glucose 0.91  5.23 x 10-3 8.40 x 10-4 4.78 x 10-3 1.10 x 10-3 

Citric acid 1.51 *** 3.32 x 10-3 8.66 x 10-4 5.03 x 10-3 1.30 x 10-3 
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Metabolite 

[]37/[]30 p-value1 
30°C 37°C 

Mean2 SD3 Mean2 SD3 

L-asparagine 1.07  3.67 x 10-3 5.92 x 10-4 3.93 x 10-3 6.25 x 10-4 

Succinic acid 0.91 * 3.75 x 10-3 9.31 x 10-4 3.41 x 10-3 5.33 x 10-4 

ATP 0.51  3.20 x 10-3 2.93 x 10-3 1.64 x 10-3 1.06 x 10-3 

Adenine 0.71  2.74 x 10-3 4.79 x 10-3 1.94 x 10-3 1.31 x 10-3 

Hypoxanthine 0.71  1.22 x 10-3 5.50 x 10-4 8.70 x 10-4 6.48 x 10-4 

Trehalose 1.89 *** 3.30 x 10-4 1.69 x 10-4 6.25 x 10-4 2.00 x 10-4 
1p-value: *p < 0.05, **p < 0.01, ***p < 0.001. Metabolites associated to p < 0.001 are highlighted in 
bold. 2Mean was calculated from the set of concentration estimates after applying function 
to the corresponding SNV preprocessed spectra. 3SD: standard deviation.  
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Online Resource 7. S. cerevisiae metabolic atlas indicating metabolites that showed higher 
(red dots) or lower (blue dots) concentrations at 37°C than at 30°C, and enzymatic reactions 
corresponding to the genetic products of genes over-(black lines) or underrepresented (green 
lines) in yeast cells grown at 36°C. 
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Deciphering the underlying metabolomic and lipidomic patterns linked to thermal 

acclimation in Saccharomyces cerevisiae. 

Authors: Puig-Castellví F., Bedia, C., Alfonso I., Piña B., Tauler R. 

Citation reference: Journal of Proteome Research (2018). 
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Yeast Growth

Metabolite and lipid extraction and sample preparation
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NMR measurements

UHPLC-MS measurements
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NMR Data preprocessing

UHPLC-MS data preprocessing

™
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NMR data analysis

UHPLC-MS data analysis
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Chemometric data analysis
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Figure S4. Growth pattern of yeast metabolism cultured in YSC using 2 components. 

(a) Temporal growth pattern (in %). (b) Hierarchical clustering of the relative contribution of every 

metabolite in the MCR-ALS resolved components from XYSC data matrix. 
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3 DISCUSSION OF THE RESULTS 

In this section, the suitability of NMR to identify biomarkers is discussed. In addition, MCR-

ALS is presented as a powerful choice to unravel the yeast metabolic responses derived from 

environmental stress conditions. Finally, the new findings obtained from yeast metabolomics 

analyses are exposed and compared to those existing in the literature. 

 

3.1 NMR IS A POWERFUL ANALYTICAL TECHNIQUE TO IDENTIFY 

BIOMARKERS 

In 1H NMR, every proton3 produces a resonance signal in the spectrum, and therefore, most 

likely several proton resonances per metabolite can be detected. 

Although this signal redundancy causes that the resulting 1H NMR metabolomics spectrum 

becomes overcrowded and very complex due to signal overlapping, if this overlapping is 

meticulously disentangled, the complete NMR assignment for the detected compounds will 

provide non-refutable proofs of their presence in the sample. This identification power is only 

comparable to the one obtained for MS-fragmentation (or MSn) techniques. However, while, 

two NMR instruments with the same external magnetic field will acquire identical spectra 

for the same molecules, this is unlikely to happen with two different MSn instruments. MSn 

fragments depend on several parameters (e.g., ionization source, ionization mode, cone 

voltage, m/z detector), implying that the obtained MS spectra cannot easily be extrapolated 

to other MSn instruments. For this reason, when NMR sensitivity is not a limitation, NMR 

spectroscopy is the best choice to confirm biomarkers, as the spectroscopic signatures that 

define these biomarkers can be straight away transferred and used by the scientific 

community. 

To disentangle the resonance constituents of an overlapping region, the most unveiling 

option is by adding or spiking an NMR sample with a tentative constituent. If the added 

metabolite was already in the sample but in a lower concentration, the total number of 

resonances will be the same, and the resonances from this metabolite will be now more 

intense (Fig. 3.3B). On the opposed situation, the NMR spectrum after the addition will 

contain more resonances than before (Fig. 3.3A). 

                                                      

3 Except exchangeable protons in a deuterated solvent. 
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Figure 3.3. Spiking with (A) L-carnitine and (B) glycerophosphorylcholine (GPC). The singlet 

resonance from L-carnitine at 3.21 ppm is not exactly at the same position as the singlet 

in the yeast extract sample. This chemical shift position of the singlet coincides in the 

case for GPC. 

The trickiest part of the spiking approach is to decide which metabolites need to be checked. 

Since Saccharomyces cerevisiae has a database (YMDB) [142] containing its metabolites 

constituents and the NMR spectrum of these metabolites can be consulted, we used this 

resource as a starting point. However, at the beginning of this Thesis, YMDB contained 

2,007 metabolites and, from those, 930 metabolites entries included NMR data. Since, at 

most, only 50 metabolites are usually detected by NMR of a yeast sample, the first attempt 

of consulting this database produced too many hits per queried resonance. After refining this 

search using NMR data from 1H-1H COSY and 1H-1H TOCSY NMR experiments, we 

reduced the list of detectable metabolites to around 70. Then, we performed spiking 

experiments using all the metabolites from that list that were available. A total of 53 

metabolites were tested and, from those, the actual presence of 23 was confirmed. This 

became the beginning of our home-made NMR dataset [30]. 

Other metabolites that were overlooked in the first NMR analysis but were highlighted in the 

posterior chemometric analysis were also tested by spiking. For instance, this was the case 

for the singlet resonance at δH = 3.21 ppm, associated to a very high discriminant power by 
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PLS-DA (VIP > 1,000) [30]. With the spiking strategy, the resonance was satisfactorily 

assigned to glycerophosphorylcholine or GPC (Fig. 3.3).  

In the long run, spiking is very demanding and expensive because all the tentative 

compounds need to be bought and experimentally checked. 

A second strategy used in this Thesis was to acquire 1H-13C NMR spectra from our target 

samples or, in case the sensitivity was not enough, to prepare NMR samples of concentrated 

extracts. For instance, in 2016 [118], the acquisition of 1H-13C HSQC (data not shown) and 
1H-13C HMBC NMR (Figure 3.4) from an NMR sample containing yeast extracts from 1-

liter cultures was performed. These NMR spectra, for instance, confirmed the presence of 

the erythro-imidazole-glycerol-phosphate (EIGP) compound, an L-histidine precursor (Fig. 

3.4). 

 

Figure 3.4. 1H-13C HMBC of a yeast extract. Correlations from erythro-imidazole-glycerol-

phosphate are shown with dashed lines and indicated in the drawn molecule. 

It is also possible to assign some of the unknown resonances guided by the interpretation of 

the observed changes in the known metabolome. For instance, also in 2016 [118], two 

doublets resonances (at δH = 0.84 and δH = 0.89 ppm) from an unknown compound were 

attributed to a metabolite related to L-leucine biosynthesis pathway in yeast. This deduction 

was made because the evolution of the intensity of these two resonances within the sample 

δ

δ
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set was inversely proportional to the intensity of L-leucine resonances, and because their 

resonance pattern reminds to an isopropyl group, which is also present in L-leucine carbon 

backbone. 

Seven compounds from L-Leucine biosynthesis pathway contain an isopropyl group (Fig. 

3.5) and one of them may actually be the compound associated to these two resonances. 

From these seven compounds, L-leucine and 3-methyl-2-oxobutanoate compounds were 

directly discarded because their isopropyl groups are associated with resonances with 

different chemical shifts. The other five compounds cannot be discarded with this criteria, 

because they have similar resonances, or their 1H NMR spectra could not be consulted in 

any NMR metabolomics databases. 

 

Figure 3.5. L-leucine biosynthesis in yeast. 

For compounds without experimental 1H NMR spectra available in the databases, it is 

possible to generate a theoretical 1H NMR spectrum. In this case, the 1H NMR spectra of the 

5 remaining metabolites were calculated using the 1H NMR prediction tool from 

MestReNova (Fig. 3.6). From these 5 predictions, 2 metabolites were discarded because 

their 1H NMR spectra only contain one doublet (blue and red spectra in Figure 3.6) and not 

two because the two methyl groups are magnetically equivalents.  
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Figure 3.6. Simulated spectra of five compounds from the L-leucine biosynthetic pathway in yeast. 

In MestReNova, spectra are simulated without taking into account the sample 

conditions, the external magnetic field nor any other acquisition parameter. For all these 

reasons, predicted chemical shifts and coupling constants may diverge from the real 

ones. 

Finally, by acquiring two selective 1D TOCSY NMR spectra [333], using as the irradiating 

frequency the ones from the two doublets (Fig. 3.7), it was observed that the protons from 

the isopropyl group formed an isolated spin system of three resonances. This implies that the 

carbon next to the isopropyl group does not have any proton bound and, therefore, the only 

possible option left is (2S)-2-isopropylmalate. 

 

Figure 3.7. Selective 1D TOCSY at 0.84 and at 0.89 ppm in a yeast extract sample. 

11.522.53
δ

δ
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The last strategy used to assign NMR resonances is the application of STOCSY [332]. This 

approach consists in calculating, from a 1D NMR dataset, the statistical pair-wise 

correlations between the intensities measured in a given chemical shift for all the samples 

and all the other measured intensities in different chemical shifts. Then, a reference NMR 

spectrum is colored using a color scheme that represents the calculated correlation (red 

denotes high correlations). In Figure 3.8, the STOCSY showing the correlations to a signal 

at δH = 2.615 is given. 

 

Figure 3.8. 1D STOCSY. The red arrow points out the target chemical shift (δH = 2.615 ppm), while 

the three black arrows point the chemical shifts which intensities best correlate to 

intensities at 2.615 ppm. 

From this statistical analysis, it is revealed that the resonance at δH = 2.615 ppm (red arrow 

in Figure 3.8) was one of the three constituents of the triplet at δH = 2.63 ppm (indicated by 

the same red arrow and two more black arrows in Figure 3.8). Moreover, this triplet 

resonance is found to be highly correlated to a singlet at 2.10 ppm. After consulting YMDB 

database [142], these two resonances were satisfactorily assigned to L-methionine. It is worth 

to mention that the knowledge information generated with STOCSY cannot be obtained 

with 1H-1H TOCSY since these two resonances belong to different spin systems (their protons 

are not coupled). 

Therefore, different strategies based on NMR spectroscopy can be used to characterize and 

assign the unknown compounds within a metabolomics sample. 

 

3.2 MCR-ALS HIGHLIGHTS THE AFFECTED METABOLIC PATHWAYS 

UNDER DIFFERENT STRESSES 

For any living organism, metabolism can be regarded as the summation of all the metabolic 

processes occurring at the same time to sustain life and to promote growth. Since sets of these 

δ
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metabolic reactions are synchronically orchestrated as a result of the needs of this organism 

at every moment (all reactions from glucose catabolism reactions are activated under glucose 

availability, or all processes needed to replicate DNA are activated during the S phase of the 

cell cycle), the metabolome can be mathematically expressed as the combination of the 

metabolic profiles characteristic of each one of these metabolic pathways, mi, weighted by 

their relative contribution, ti (Eq. 3.1). 

,  eq. 3.1 

Since metabolism can be explained using an equation analogous to the bilinear model of 

equation 2.17 (page 55), chemometric approaches based on this model can be used to 

untangle the metabolic pathways and their relative contribution for every measured sample. 

In this Thesis, we used MCR-ALS to extract the metabolic pathways (or metabolic profiles) 

that describe the yeast metabolic state at the two explored conditions, temperature [125] and 

starvation [118] stresses. The application of this chemometric method to extract these profiles 

has been detailed in Section 5.4 of Chapter 2 and in the methods section in the Scientific 

articles II and III. 

From all possible chemometric methods based on the bilinear model, MCR-ALS is the most 

suitable approach because it allows the use of non-negativity constraints. With this 

constraints, we ensure that the metabolic profiles will have real meaning: metabolic 

concentrations will be positive, on the relative contribution of each pathway will be either 0 

(metabolic pathway not activated) or positive (metabolic pathway activated). 

In order to maximize the metabolic changes, even for the smallest concentrated metabolites, 

data was scaled prior MCR-ALS analysis. Without scaling, the smaller metabolic changes 

may be captured on the residual matrix and the MCR-ALS components will only be 

descriptive of the more abundant metabolites. 

The used data-scaling methods transformed the original concentration estimates for every 

metabolite to relative concentrations within the range of 0 and 1. These scaling transforms 

were performed by dividing every metabolite concentration by the maximum concentration 

value [118] or by using min-max scaling [125]. 

Results described in these works have shown that the proposed application of MCR-ALS to 

investigate metabolomics datasets results in a convenient approach for untangling the 

underlying metabolic responses in the different studied biological systems. 
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3.3 BIOLOGICAL INTERPRETATION OF THE TEMPERATURE 

ADAPTATION 

In the MCR-ALS analysis of the metabolomics dataset descriptive of the thermal stress 

(Scientific article II, [125]), three metabolic profiles were obtained, representative of the 

metabolism at low, optimal and high temperatures. 

 

Figure 3.9. MCR-ALS resolution lipidic-and-metabolic dataset. A) MCR-ALS resolved thermal (C 

in Eq. 2.17) profiles of yeast cells cultured at the four different temperatures. Explained 

variance (R2) is also given in the plot. Sextuplicates are represented by A-F letters of the 

axis levels. B-D) Resolved lipidomic-and-metabolic (ST in Eq. 2.17) profiles for 

component 1 (B), component 2 (C) and component 3 (D). Lipid families: Cer, ceramides; 

DG, diacylglycerides; TG, triacylglycerides; Lyso, lyso-phospholipids; PA, phosphatidic 

acid; PC, phosphatidylcholines; PE, phosphatidylethanolamines; PG, 

A B C D E F A B C D E F A B C D E F A B C D E F
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phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserines; CE, cholesterol 

esthers. Polar metabolite families: amino acids; sugars; NB, nitrogen bases; Nucleo, 

nucleosides and nucleotides; Lipid m, lipid metabolites (glycerophopshorylcholine, 

choline, and glycerol); Ferm, fermentation metabolites (ethanol, lactic acid); OA, organic 

acids.    

We observed that the contribution of these profiles change gradually when the growth 

temperature is increased or decreased (Figure 3 in Scientific Article II), pointing out that the 

degree of the metabolic adaptation response is proportional to the intensity of the stress 

temperature (i.e., the metabolic profile of growth at low temperatures is more prevalent at 

low temperatures than at high temperatures). 

This gradual response suggests that, rather than a binary metabolic switch regulated by the 

activation or inactivation of stress response-related genes, the thermal stress response can be 

regarded as a fluid event, where the activation of these genes is also fluid. 

The analyzed dataset in Scientific Article II contains two different types of metabolomics 

data: data relative to the lipidic fraction, characterized by UHPLC-MS analysis; and data 

relative to the primary metabolism (e.g., mostly sugars, amino acids and nucleotides), 

characterized by 1H NMR analysis. After MCR-ALS analysis, it was revealed that combining 

more than one data type in the same analysis is more insightful than the two separated 

analyses because the MCR-ALS resolved components will be descriptive of the coordinated 

response of both lipids and primary metabolites. In addition, the combined analysis is 

preferable because yeast adaptation to low or hot temperatures uses different metabolic 

strategies, and therefore the two types of metabolites have different importance in the three 

resolved components. For instance, in the temperature experiment we observed that the 

predominant component at low temperatures is mainly described by triglycerides (Fig. 

3.9B), obtained by the UHPLC-MS analysis, while the metabolism at optimal conditions 

was described by amino acids and other primary metabolites (Fig. 3.9C), obtained by the 

NMR analysis. 

The different evaluated thermal stresses cause changes or adaptation responses in the lipid 

fraction and in the primary metabolism. 

Low temperatures alter the lipid membranes by promoting the accumulation of short 

triglycerides (TGs) and diglycerides (DGs) species with a low number of unsaturations, as 

well as accumulating more phosphatidylinositol (PIs) lipid species (Fig. 3.9B). The observed 

stress response agrees with the response observed in previous studies of yeast cultured at low 

temperatures [314], and with the phenotype observed in psychrophilic yeasts [282,284]. 
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On the other hand, at optimal growth, DGs and TGs are less abundant and phospholipid 

species, such as PE and PS, are more prominent (Fig 3.9C). 

Finally, at higher temperatures, DG, phosphatidylcholines (PCs) and long, poly-unsaturated 

TG, plays an important role in the cell membrane modification (Fig 3.9D). 

Therefore, from the MCR-ALS analysis and from the fatty acid composition analysis, we 

conclude that lipid membrane adapts mostly by changing the relative fraction of the different 

lipid families (i.e., more PC lipids at high temperatures, more PI and TG at low 

temperatures), and by altering the unsaturation number and carbon length of the fatty acids 

from TG species. 

The primary metabolism is also affected by changes in the growth temperature. 

At low temperatures (Fig 3.9B), organic acids are accumulated, reflecting that yeast cells are 

focused on survival because resources are invested to maintain vital pathways such as the 

Krebs cycle. Glycerol is also found abundant at low temperatures, acting as osmoprotectant 

to palliate the osmotic stress derived from the increased membrane permeability [334,335].  

At optimal growth, pathways used to build cell structures and to promote growth are 

activated. Because of this, metabolites characteristic of these conditions are amino acids and 

nucleotides (Fig 3.9C). 

At higher than optimal temperatures, derived from the accumulation of PCs lipid species, 

glycerophosphorylcholine (a PCs precursor) is also accumulated under this growing 

conditions (Fig 3.9D). In addition, trehalose, a stress biomarker metabolite, and L-lactic acid 

were found significant. The accumulation of L-lactic acid pointed out an increase of the 

fermentative metabolism. This agrees with the fact that, at higher temperatures, genes 

involved in alternative carbon utilization are expressed [323]. Finally, another typical gene 

response is the expression of genes from protein folding chaperones [323], which can be 

connected with the observed accumulation of uracil and some amino acids. 

In Scientific Article I, we studied the metabolic response of yeast at a mild-heat temperature 

(37ºC). Despite using a different chemometric method in this study (OSC-PLS-DA instead 

of MCR-ALS), obtained results are in agreement with the metabolic profile observed for 

yeast cells cultured at high temperatures in Scientific Article II. Specifically, all metabolites 

detected up-regulated at a mild-heat temperature in the OSC-PLS-DA in Scientific Article I 

(trehalose, L-lysine, L-histidine, L-alanine, and glycerophosphocholine) were also 

characteristic for the metabolic response at high temperatures described in Scientific Article 

II. 
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In addition, in this first study, some metabolic pools, such as the pools of NAD+ and 

glutathione, were reduced. This can be connected to the increased consumption of 

glutathione [296] to attenuate the effect of the increased oxidative stress at higher 

temperatures [293]. 

 

3.4 BIOLOGICAL INTERPRETATION OF THE STARVATION STRESS 

The metabolomics dataset from Scientific article III[118], descriptive of four different 

starvation stresses (L-methionine, L-histidine, L-leucine and uracil deprivation), was first 

investigated with ASCA. This analysis revealed that, at a metabolic level, yeast responded 

differently at every studied medium. In order to identify the underlying metabolic pathways 

that drove to this observed response, MCR-ALS was used on the same dataset. 

In the MCR-ALS analysis, four components were resolved. For every component, a 

temporal profile, t, and a metabolic profile, m, were obtained. 

Two of the four MCR-ALS components resolved in this analysis were descriptive of the basal 

metabolism (t1 and m1, and t2 and m2 in Figure 5 in Scientific article III), while the two other 

resolved components were descriptive of de-regulated metabolic processes (t3 and m3, and t4 

and m4 in Figure 5 in Scientific article III). 

The first MCR-ALS component (t1 in Figure 3.10) represents the metabolic response 

associated to the exponential growth phase in yeast, while second MCR-ALS component (t2 

in Figure 3.10) represents the metabolic response associated to the lag and stationary growth 

phases. On the other hand, the third MCR-ALS component (t3 in Figure 3.10) corresponds 

to the metabolic response derived from the de-regulation of uracil biosynthetic pathway, and 

the fourth MCR-ALS component (t4 in Figure 3.10) is the equivalent metabolic response 

derived from the de-regulation of L-histidine biosynthetic pathway. 

Since yeast metabolism was explored at 6 different time-points, the rate of the basal 

metabolism under starvation conditions can be evaluated when compared with the control 

conditions. 

Under normal conditions (Fig. 3.10A), t1 peaked at maximal growth, while t2 was the 

predominant component when yeast growth rate was at a much lower rate. 

For uracil and L-histidine starvation cultures (Fig. 3.10B and Fig. 3.10D), due to the de-

regulation of the biosynthetic pathways of uracil and L-histidine, respectively, the stationary 

growth phase was never reached and all resources were employed towards these two de-

regulated biosynthetic pathways. Because of this, t2 disappeared, while t3 (for uracil 
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starvation) and t4 (for L-histidine starvations) became the predominant component at late 

time-points. 

 

Figure 3.10. Summary of the observed metabolic responses under the different studied growh 

conditions. A) Normal growth. B) Absence of uracil. C) Absence of L-methionine. D) 

Absence of L-histidine. E) Absence of L-leucine. DM: Dropout-medium. 

For L-methionine starvation, the exponential phase was substantially delayed. This is 

observed in Figure 3.10C as a larger span of t1 when compared to the growth at normal 

conditions (Fig. 3.10A). 

Finally, for L-leucine starvation conditions, L-leucine deprivation produced an arrest of the 

basal metabolism at the beginning of the experiment. This response is observed as the 

metabolic contributions from the four metabolic profiles in Figure 3.10E did not change over 

the 24 hours of study. 
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Characteristic metabolites for the metabolic profile of the first component (m1 in Figure 5 in 

Scientific Article III) are L-leucine, L-methionine, fatty acids, AMP and uracil precursors. It 

is known that L-methionine regulates growth [311,312] and it may play a role in the control 

of cell cycle regulation [313]. This agrees with the fact that, without L-methionine, yeast 

growth was delayed. On the other hand, L-leucine controls growth through activation of 

TORC1 signaling pathway [310]. Thus, in L-leucine starvation conditions, without TORC1 

activation, yeast cells cannot produce any metabolic response to alleviate the cellular state 

derived from the starvation condition. The absence of any appreciable metabolic response 

and the lack of growth (Figure 3a in Scientific Article III) suggests that L-leucine starvation 

caused an entry into a quiescence state on yeast cells. 

The metabolic profile for the second component (m2 in Figure 5 in Scientific Article III), 

relative to the lag and stationary growth phases, shows strong contributions of amino acids, 

amino acid precursors, citric acid, and trehalose, among others. This result reflects the 

restoration of amino acid pools after the intense metabolic activity during the exponential 

phase [336]. On the other hand, since most glucose from the liquid medium has already been 

consumed, the remaining glucose was stored as trehalose to confront the anticipated adverse 

carbon-limiting conditions [337]. 

The two observed de-regulated pathways were described with the two remaining 

components, m3 and m4 (in Figure 5 in Scientific Article III). m3 metabolic profile, relative 

to the metabolic response associated to uracil starvation, is mostly defined by uracil 

precursors (ureidosuccinic acid, dihydroorotic acid, orotic acid, orotidine-5-phosphate), 

while m4 metabolic profile, relative to the metabolic response associated to L-histidine 

deprivation, includes the histidine precursor EIGP. 

As stated in [267], auxotrophic mutants may present incomplete cell cycle arrest under 

starvation conditions. This was observed for uracil-starved cells, since they did not show a 

substantial growth (Figure 3a in Scientific Article III) because, at the metabolic level, they 

were metabolically active trying to produce uracil without success. This uncontrolled 

metabolic activity may explain the short half-life observed for these auxotrophic strains [267] 

when subjected to starvation for the metabolite they cannot produce. 

Finally, as for uracil-starved cells, a similar uncontrolled metabolic activity was detected for 

L-histidine-starved cells. However, due to the different nature of the starvation, yeast growth 

was slightly better in the latter growth conditions (Figure 3a in Scientific Article III).  
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4 CONCLUSIONS 

From the scientific research included in this Chapter, the following specific conclusions can 

be extracted: 

NMR spectroscopy is a very versatile tool to identify the constituents of complex 

mixtures, such as metabolomics samples. Stress biomarkers in yeast relative to 

temperature and starvation could be confirmed using a battery of NMR-based strategies 

that includes the resonance assignment from investigating conventional 1D and 2D 

NMR spectra, the acquisition of selective TOCSY NMR experiments to highlight 

proton resonances from the same spin system, the consultation of NMR databases to 

retrieve a list of potential compound candidates, the prediction of 1H NMR spectra of 

metabolites not listed in the NMR databases, the use of STOCSY to identify statistically 

correlated resonances, and the spiking of NMR samples with candidate metabolites as 

the ultimate approach to confirm the presence of these compounds in the mixture. 

The chemometric method MCR-ALS is an effective tool to reveal metabolite 

relationships derived from an environmental stress or any other biological perturbation. 

Since these perturbations produce an orchestrated metabolic response in the organism, 

metabolites affected by the same stimuli are represented within the same component in 

the MCR-ALS analysis.  

Combining ‘-omics’ data from two high-throughput analytical platforms, such as data 

from the yeast metabolome (obtained with 1H NMR) and data from the yeast lipidome 

(obtained with UHPLC-MS), improves the characterization of the cellular response to 

the exposed stress. 

Saccharomyces cerevisiae (strain BY4741) adapts to perturbations in the growth 

temperature by changing the composition of the lipidome and of the metabolome level. 

Regarding the lipidome, biomarkers of yeast growth at low temperatures are short 

DGs and TGs with a low number of unsaturations, as well as PIs. For optimal 

growth conditions, several phospholipid species including PEs and PSs are more 

abundant than in the other conditions. At higher temperatures, the lipidome 

accumulates some DGs, PCs, and long poly-unsaturated TGs in a larger amount 

than in the other screened conditions. 

Regarding the primary metabolism, organic acids from the Krebs cycle are 

accumulated at lower temperatures, suggesting that resources are mainly invested 

pathways required for maintaining life (such as the Krebs cycle) working, which is 

the main priority of the yeast cells in these undermined conditions. At optimal 

growth conditions, amino acids and nucleotides are abundant because they are used 
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to build cell structures and to promote growth. Finally, at higher temperatures, 

metabolites detected to be descriptive of this condition suggest an increase of the 

fermentative metabolism, as well as the activation of adaptation mechanisms 

related to heat stress (trehalose accumulation). 

In Saccharomyces cerevisiae (strain BY4741), the ASCA analyses confirmed that the 

removal of essential nutrients from the media causes a complete metabolic, nutrient-

specific, de-regulation. 

Monitoring of cell growth by means of measurements of OD600 pointed out that the 

growths of L-methionine- and L-histidine-starved cells were softly repressed, while 

the growths of L-leucine- and uracil-starved cells were more severely repressed. This 

apparent growth inhibition for L-leucine- and uracil-starved cells suggested that these 

cells may have entered into a quiescence state. 

The chemometric method MCR-ALS exposed that normal growth can be explained 

by the linear combination of two components, one descriptive of the exponential 

growth phase, and another descriptive of the lag and late growth phases. In addition, 

uracil- and L-histidine- starved cells showed an increase of a third MCR-ALS 

component descriptive of the biosynthesis of uracil and L-histidine precursors, 

respectively. 

Despite being the cell growth of uracil-starved cells very limited, their metabolic 

activity was considerable and mainly focused on the biosynthesis of these uracil 

precursors. Thus, the apparent quiescence state detected for these starved cells was 

not a true quiescence state. Since uracil precursors could not be converted to uracil 

because the yeast strain lacks the required URA3 gene, this enhanced metabolic 

activity could not be used to stimulate cell growth and development, and for this 

reason, it was not detected from the OD600 measurements. 

The metabolism of L-methionine- and L-leucine- starved cells were explained by the 

same MCR-ALS components as the metabolism of yeast cells cultured under normal 

conditions. Nevertheless, the metabolic growth response over time of the starved cells 

was different to the one observed for the same cells cultured under normal conditions. 

For L-methionine-starved cells, the exponential growth was delayed, implying that 

the absence of L-methionine de-regulates the yeast growth cycle. On the other hand, 

for L-leucine-starved cells, metabolism was completely arrested, indicating an entry 

into a quiescence state. 
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Different types of data can be acquired using NMR spectroscopy. These data types differ in 

their dimensionality (e.g., 1D NMR, 2D NMR), the measured nuclei (e.g., 1H, 13C), 

connectivity (short-range and long-range), relaxation (T1 and T2), phase-sensitivity, and 

others. 

In this Chapter, we have evaluated the intrinsic differences between 1D NMR data and 2D 

NMR metabolomics data, with a special focus on 1H NMR and 1H-13C HSQC NMR 

metabolomics data. Apart from the different number of dimensions, major differences were 

found in resonance overlapping, spectral resolution, sensitivity, and noise intensity. Due to 

these differences, different analysis strategies should be considered. This is not only true for 

manually-driven analyses, but also for chemometric analyses. 

In the scientific research section of this Chapter, two different analytical tools to investigate 

1D NMR and 2D NMR metabolomics datasets, respectively, are proposed. First, in the 

Scientific Article IV, the MCR-ALS chemometrics method is proposed to resolve 1H NMR 

metabolomics datasets. A new noise filtering strategy with applicability for 2D NMR datasets 

is presented in Scientific Article V. In Scientific Article VI, a metabolomics experiment is 

performed in parallel with both 1D NMR and 2D NMR spectroscopies. Both datasets have 

been analyzed with chemometric methods, and the outcomes from these two experiments 

are presented and compared, providing an insight of the strengths and weaknesses of each 

type of NMR data used. Finally, in the last section, the results obtained in the research 

section are discussed. 
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1 INTRODUCTION 

1.1 NUCLEAR RELAXATION AND RESONANCE WIDTH 

In NMR, nuclear relaxation describes how the magnetic spin of the measured nuclei evolve 

over time. 

Nuclear relaxation includes two different phenomena, spin-lattice relaxation (T1, also known 

as longitudinal relaxation, or relaxation in the z-direction) and spin-spin relaxation (T2, also 

known as transverse relaxation, or relaxation in the x-y plane). 

On one hand, T1 relaxation corresponds to the time needed for re-establishing the normal 

Gaussian population distribution of α and β spin states in the magnetic field. In order to 

obtain the highest possible sensitivity in the acquisition, it is important to know the T1 

relaxation of the measured compounds. For quantitative purposes, the relaxation delay used 

should be set long enough to allow the full T1 relaxation of the measured nuclei. 

On the other hand, T2 relaxation corresponds to the loss of phase coherence among the 

differently measured nuclei, meaning that the distribution of the magnetic spin vectors 

disperses over the ideal situation during the decay. This led to a more extended distribution 

of the resonances frequencies representing all equivalent nuclei. After application of FT, this 

results in broader resonances. 

T1 and T2 relaxation depend on molecular size and motion (Fig. 4.1). Small and rapidly 

rotating molecules (such as water) have long T1 (1-2 s) and long T2 relaxation times (30-90 

ms). For large molecules (such as proteins), molecular motion slows, T2 shortens and T1 

increases. For small metabolites commonly detected in NMR metabolomics, T1 and T2 

relaxation times are similar to T1 and T2 relaxation times in water, although T2 can be larger 

due to chemical processes that affect molecular motion (e.g., interconversion of 

conformations, chemical exchange) [338]. 
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Figure 4.1. Behavior of T1 and T2 as a function of correlation time from spin ½ nuclei relaxing by 

the Dipole-Dipole mechanism. τ = Molecular correlation time: the time it takes the 

average molecule to rotate one radian (adapted from [339]). 

Resonance width can be precisely calculated by means of the effective T2 relaxation (T2*) and 

the strength of the external magnetic field as follows: 

 eq. 4.1 

where  is the resonance width at half height (in Hz units), γ is the gyromagnetic ratio of 

the measured nuclei, and  represents the residual macroscopic magnetic field 

inhomogenities [338]. 

T2
* for proton nuclei is found between 1 and 10 seconds, giving a width at half height of 0.3 

or 0.03 Hz, respectively. For other nuclei of spin=½, such as 13C, T2* is around 0.2 and 50 

seconds, giving a resonance width at half height of 1.6 Hz and 0.006 Hz, respectively. 

In the FT-NMR spectra, resonance width is also dependent on the external magnetic field. 

When the external magnetic field is increased, the signal resolution is improved, since 

resonances cover a smaller range of the total measured frequency domain, resulting in 

sharper peaks when converted to ppm units. For instance, a resonance width of 0.3 Hz 

corresponds in a 300 MHz magnetic field to 0.001 ppm (0.3/300) width, while the same 

resonance covers a width of 0.0005 ppm (0.3/600) in a 600 MHz magnetic field. 

Apart from field inhomogeneities, long T2, and the use of lower external magnetic fields, 

resonances are also broadened due to the inherent resonance patterns derived from the spin-

spin coupling (resonance multiplicity), and to chemical exchange dynamics [131]. Then, if 

low intense resonances are broadened due to any (or combination) of these five factors, their 

signal-to-noise ratio will worsen, to the extent that the resonances may not be even detected. 

 

τ
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1.2 NMR DATA 

A single 1D NMR spectrum can be regarded, in the mathematical sense, as a vector of 

intensities. A single 2D NMR spectrum can be stored as a two-dimensional data matrix (f1 

measurements in rows and f2 measurements in columns). A single 3D NMR spectrum can 

be stored in the three dimensions of a data cube, and so on. 

Typically, one 1D NMR spectrum consists of thousands of data points. For instance, 1H 

NMR spectra have normally 16k, 32k, or 64k acquired data points. Multi-dimensional NMR 

spectra, because of the vast amount of data measured, are usually acquired with a lower 

digital resolution (number of data-points in the frequency domain) per screened dimension. 

For example, a typical data matrix from a 2D NMR spectrum has 2,048 columns and 1,024 

rows (~2 million data values in total), while the corresponding data cube from a 3D NMR 

spectrum have around 256 columns, 256 rows and 128 slices (2D planes), giving a total of 

circa 8 million of intensity data points [340]. 

Even though the digital resolution per screened dimension is lower in multi-dimensional 

NMR spectra, the acquisition time used is drastically increased when compared to 1D NMR 

spectroscopy because the total number of data points is considerably larger. 

Having said this, in NMR metabolomics, either for high-resolution 1H NMR spectra or for 

low-resolution multi-dimensional NMR spectra, some signals will still appear overlapped. 

Resonances are found at a fixed chemical shift predetermined by the chemical environment 

of each measured nuclei. This means that resonances from nuclei of similar structures will 

have similar chemical shifts, and therefore, these regions will be crowded with multiple 

resonances (Fig. 4.2B), while other regions will be mostly empty (Fig. 4.2A). Moreover, 

within these crowded regions, it is likely that more resonances will be found near the center 

and fewer will be near the edges [340]. 

Technically, in a 1H NMR spectrum, within one ppm unit width, 33 resonances of width 

0.03 ppm (average width for a singlet signal at 500 MHz) could be found without overlap. 

However, due to the fact that spin-spin coupling constants are larger than resonance widths, 

resonances become commonly wider, and the possibility of finding two overlapped 

resonances becomes very high. 
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Figure 4.2. Zoomed regions of a 1H NMR spectrum acquired in a 500 MHz NMR spectrometer. A) 

Isolated peaks. B) Overlapped peaks. Note that in A and B figures, the two zoomed 

regions have the same spectral width. 

In 2D NMR, the second dimension favors the separation of some overlapping peaks, while 

some others remain together. The quality of the separation depends on the used NMR pulse 

sequence. For 2D NMR pulse sequences that measure resonances from only short-range 

correlations, where only one (1H-13C HSQC NMR) or a few (1H-1H COSY NMR) signals are 

expected per measured nuclei, overlapping will be really low. On the other hand, for 2D 

NMR measuring resonances from long-range correlations (e.g., 1H-13C HMBC NMR, 1H-13C 

HMQC NMR, 1H-1H TOCSY NMR), several cross-peak correlations per measured nuclei 

are expected, and signal overlapping will be more common. In addition, as in 1H NMR 

spectra, resonances from 2D NMR spectra appear at a predetermined spectral region that 

depends on the molecular structure. This causes, for instance, that 1H-13C HSQC NMR cross-

peaks arise over the diagonal of the spectrum (Fig. 4.3), or that 1H-1H TOCSY cross-peaks 

appear concentrated in the aliphatic (δH1 = 0.8-2.5 ppm, δH2 = 0.8-2.5 ppm), sugar (δH1 = 3.0-

4.5 ppm, δH2 = 3.0-4.5 ppm), and aromatic (δH1 = 7.0-9.0 ppm, δH2 = 7.0-9.0 ppm) regions 

(Fig. 4.4). 

δ δ
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Figure 4.3. 1H-13C HSQC NMR spectrum of a metabolomics sample (yeast extract). 

 

Figure 4.4. 1H-1H TOCSY NMR spectrum of a metabolomics sample (yeast extract). 

Thus, in NMR, signal overlapping is not caused by a low digital resolution, but due to a low 

signal resolution. In a 500 MHz NMR spectrometer, the width of an isolated resonance in a 
1H NMR is between 0.03 (singlet resonance) and 0.1 (multiplet resonance) ppm. That means 

that for a 64k data points spectrum covering a spectral width of 12 ppm, the resonance is 

defined by between 164 and 546 data points.  

δ

δ

δ

δ
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On the other hand, in a 1H-13C HSQC NMR, the width of a cross-peak resonance presents 

the same width in the proton dimension than in the 1H NMR, and between 0.5 and 1.0 ppm 

in the carbon dimension. Thus, in the same NMR instrument, for a 1H-13C HSQC NMR 

spectrum with 2,048 δH (spectral width of 12 ppm) and 1,024 δC (spectral width of 180 ppm), 

the digital size of the cross-peak is between 5 and 17 data points in the proton dimension and 

between 3 and 6 data points in the carbon dimension (between 15 and 102 data points if the 

two dimensions are considered). 

To improve signal resolution by instrumental means and minimize overlapping, the only 

feasible way is by using a stronger external magnetic field. However, the most powerful 

NMR instruments (>1 GHz) cost over a 1M $ nowadays and are not affordable for most 

research institutions. 

In this Thesis, we have presented a strategy to resolve resonance overlapping by means of 

the chemometric method MCR-ALS instead. 

In the early days of Chemometrics, several chemometric methods were used to solve signal 

overlapping problems in spectrophotometric analysis [179,341,342] and, in the last decades, 

these methods have expanded into other analytical areas, such as in NMR. In these 

chemometric-based NMR analyses, NMR spectra of pure compounds were resolved  from 

their mixtures  (for example, [160,343-345]). These studies can be considered to be the 

previous background works to the methodology presented in this Thesis and for this reason, 

they are briefly introduced in the following section. 

 

1.3 RESOLUTION OF NMR DATA BY CHEMOMETRICS: PREVIOUS 

WORK  

The decomposition by chemometric means of an NMR spectrum from a mixture of 

compounds into the set of NMR spectra of their pure constituents has been always 

considered a compelling challenge.  

The first study pursuing this goal appeared in 1994 [343], and it has been recurrently 

investigated by chemometricians (e.g., Willem Windig [344,346] and Rasmus Bro [347]) and 

by NMR spectroscopists (e.g., Gareth A. Morris [348-351] and Rafael Brüschweiler [162]). 

In this first reported example, cross-peak resonances from a 2D NMR spectrum were 

decomposed as a set of 1D NMR spectra [343]. However, these 1D NMR spectra were not 

representative of pure compounds, but of pure resonances, since each spectrum contained 

only one resonance, and therefore a chemical compound was represented by as many 

components as detected resonances. 
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In order to improve the relevance of the resolution, most of the following studies analyzed 

diffusion NMR spectra (e.g., PGSE NMR [344,346,352,353], DOSY NMR [347]). Diffusion 

is a physical property specific for each compound, since it depends on the molecular size and 

shape. Thus, with diffusion NMR spectroscopy, resonances from the same compound 

present the same diffusion profile and can be therefore resolved in the same component. 

 

Figure 4.5. Diffusion NMR spectra A) PGSE B) DOSY. Data provided by [354]. 

Despite this approach produces satisfactory results, it is limited to mixtures of compounds 

with different self-diffusion rates, such as mixtures of surfactants [344], polymers [346,353] 

and lipoproteins [347]. For crowded spectra of chemical compounds of low molecular 

weight, such as in NMR metabolomics experiments, this approach is not practical because 

the diffusion dimension is not sufficient to separate the different resonances. Having said 

this, simple mixtures of 2-3 small metabolites have been satisfactorily analyzed with High-

Resolution DOSY [348-351]. 

Thus, for the analysis of many complex mixtures, spectra different from diffusion NMR 

needed to be used. 

Promising results were obtained in the decomposition of 2D 1H-1H TOCSY NMR spectra, 

used in metabolomics for structural elucidation. With the chemometric decomposition of a 

single 2D TOCSY NMR spectrum, one 1H NMR spectrum for each proton spin system was 

obtained [161,162], and therefore, the resolved 1H NMR spectra only coincided with the real 
1H NMR spectra in those cases where all intramolecular protons belong to the same proton 
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spin system. Although the resolved 1H NMR spectra were not complete in some cases, they 

were sufficient enough to identify metabolites. 

A substantial improvement in the resolution can be obtained by performing a simultaneous 

resolution analysis of several NMR spectra. For instance, 23 2D 1H-15N HSQC NMR spectra 

of 5 chemical species were resolved from the corresponding mixture dataset [160]. To resolve 

all resonances from the same species in the same component, the 23 spectra were vectorized 

and appended column-wisely before chemometric analysis as shown in Figure 2.27 (see page 

52) [160]. 

Since a vectorized 2D NMR spectrum can be regarded as a 1D NMR spectrum containing 

resonances with a low degree of overlapping, the study in [160] can be considered as one of 

the first studies of resolution of 1D NMR datasets. 

Results from this work [160] and other subsequent works [239,241,355] demonstrated that 

the best resolutions of 1D NMR datasets were obtained when the differences in metabolite 

concentrations among samples were large. Yet, this resolution is hindered if the dataset 

contains strongly overlapped signals. 

For moderately overlapped 1H NMR data, such as LC-1H NMR data, the impact of 

resonance overlapping can be diminished by using spectral constraints (limiting the NMR 

regions where the resonance from a given metabolite may be found) [356,357]. 

In 1H NMR metabolomics datasets, the differences in metabolite concentrations among 

samples is limited because, in a living organism, metabolites are co-regulated. This causes 

that components resolved by chemometric methods contain resonances from co-regulated 

metabolites, where every set of co-regulated metabolites is descriptive of a metabolic event 

in the analyzed samples [180,251]. In order to separate the different co-regulated metabolites 

into different components, as suggested by the previous work with LC-1H NMR data 

[356,357], spectral constraints must be used during chemometric multivariate resolution 

methods. Within the framework of this Thesis, we have explored this strategy, as it has not 

been investigated in detail before. The strengths and weaknesses of this chemometrics 

strategy are presented in the second part of this chapter. 

 

1.4 PROPOSED CHEMOMETRIC STRATEGIES  

For 1D NMR (specifically, 1H NMR) metabolomics datasets, we propose the multivariate 

resolution method based on the MCR-ALS method combined with selective constraints that 

allow the separation of the 1H NMR spectra of the pure metabolites (Scientific article IV). 
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For 2D NMR (specifically, 1H-13C HSQC NMR) metabolomics datasets, we propose a noise-

filtering approach which keeps only those variables containing information from meaningful 

resonances. After filtering noise, samples become much easier to analyze and resonances can 

be much accurately integrated (Scientific article V). 
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C_X1 = rand(60,10);  

C_X2_15 = zeros(15,10); 
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C_X2_30 = zeros(15,10); 

C_X2_37 = zeros(15,10); 

C_X2_40 = zeros(15,10); 

for i = 1:10 

C_X2_15(:,i) = (2*SD15(i)) .* rand(15,1) + (mean15(i)-SD15(i)); 

C_X2_30(:,i) = (2*SD30(i)) .* rand(15,1) + (mean30(i)-SD30(i)); 

C_X2_37(:,i) = (2*SD37(i)) .* rand(15,1) + (mean37(i)-SD37(i)); 

C_X2_40(:,i) = (2*SD40(i)) .* rand(15,1) + (mean40(i)-SD40(i)); 

end 

C_X2 = [C_X2_15;C_X2_30;C_X2_37;C_X2_40]; 

mean15  mean30  mean37  mean40 

SD15 SD30 SD37 SD40 

X1 = C_X1 * SJ_O; 

X2 = C_X2 * SJ_O; 

sigma = max(max(X1))/SNR; 

X1_WITH_NOISE = X1 + normrnd(0,sigma,60,10801); 

sigma = max(max(X2))/SNR; 

X2_WITH_NOISE = X2 + normrnd(0,sigma,60,10801); 
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Appendix 2. Comparison of MCR-ALS results depending on initial estimates and on spectrum 

equality constraints in X2,SNR=125 dataset.

FigS1. Comparison of MCR-ALS results depending on initial estimates and on spectrum equality 

constraints in X2,SNR=125 dataset. (A). Similarity angle between the original concentrations, , and the 

MCR-ALS resolved ones, . (B). Similarity angle between the metabolic 1H NMR known spectra ( )

and the MCR-ALS resolved ones ( ). Method used: 1, MCR-ALS with purest C [6]; 2, MCR-ALS with 

purest ST [6]; 3, DTC-MCR-ALS; 4, DTC-MCR-ALS, but only variables of correlated 1H NMR regions 

were used to calculate similarity angles. Numerical values shown in boxplots are given in more detail in 

Appendix 3 of Supplementary material. 
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DTC-MCR-ALS   3

 DTC-MCR-ALS   3

Metabolites 
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Metabolites 
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Component 1: -Glucose 

 

Component 2: Glycerol 

 

Component 3: Water shoulder 

 

Component 4: Trehalose 
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Component 5: DSS 

 

Component 6: L-Methionine 

 

Component 7: 8.37 ppm (s) 

 

Component 8: N6-methyladenosine 
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Component 9: Ureidosuccinic acid 

 

Component 10: Acetic acid 

 

Component 11: L-Tyrosine 

 

Component 12: 2-Isopropylmalic acid 
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Component 13: S-3-Hydroxyisobutyric acid 

 

Component 14: Residual contribution of water 

 

Component 15: NAD+ 

 

Component 16: L-Valine 

 

Component 17: 7.39 ppm (s) 
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Component 18: Right shoulder of 7.66 ppm (s) 

 

Component 19:  L-Ornithine 

 

Component 20: L-Aspartic acid 

 

Component 21: AMP 
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Component 22: Orotic acid 

 

Component 23: 6.09 ppm (m) 

 

Component 24: Citric acid 

 

Component 25: L-Glutamine 

 

Component 26: Glutathione 
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Component 27:  5.44 (s) 

 

Component 28:  Noise 

 

Component 29: L-Arginine 

 

Component 30: L-Histidine 
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Component 31: 7.91 ppm (s) 

 

Component 32:  8.10 ppm (m) 

 

Component 33:  8.08 ppm (s) 

 

Component 34: 7.90 ppm (s) 

 

Component 35:  Noise 
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Component 36: Noise 

 

Component 37: EIGP 

 

Component 38: 6.03 ppm (d, J=6.1 Hz), 6.08 ppm (d, J=4.1 Hz), 5.96 ppm (m) 

 

Component 39: GPC 

 

Component 40: 8.03 ppm (s) 
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Component 41: 2.10 ppm (s) 

 

Component 42:  2.26 ppm (m) 

 

Component 43:  2.06 ppm (m) 

 

Component 44: Noise 
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Component 45: Fatty acid singlet 

 

Component 46: 2.22 ppm (s) 

 

Component 47: 7.93 ppm (s) 

 

Component 48: Left shoulder of 7.66 ppm (s) 

 

 



Chapter 4  
 

240 

Component 49: 3.77 ppm (t, J=5.4 Hz) 

 

Component 50:  Noise 

 

Component 51: 6.25 ppm (s) 

 

Component 52: 1.21 ppm (s) 
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Component 53: 8.18 ppm (m) 

 

Component 54: 8.11 ppm (d, J=8.1 Hz) 

 

Component 55: 3-Methyl-2-oxovaleric acid 

 

Component 56: L-Threonine 
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Component 57: L-Phenylalanine 

 

Component 58: Uridine 

 

Component 59: 1.72 ppm (m) 

 

Component 60: L-Leucine 
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Component 61: Formic acid 

 

Component 62: Uracil 

 

Component 63:  Noise 

 

Component 64: 3.75 ppm (t, J=5.7 Hz) 
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Component 65: L-Asparagine 

 

Component 66:  8.53 ppm (s) 

 

Component 67: 8.26 ppm (s) 

 

Component 68: Noise 
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Component 69: 8.33 ppm (s) 

 

Component 70: L-Glutamic acid 

 

Component 71: 7.89 ppm (s) 

 

Component 72: L-Alanine 
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Component 73: 7.84 ppm (s) 

 

Component 74: 2.28 ppm (t, J=7.3 Hz) 

 

Component 75: 7.83 ppm (s) 
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Appendix 5. Linear regressions between metabolite concentrations obtained with BATMAN 

methodology and with DTC-MCR-ALS methodology.
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Figure S1. 2D NMR spectra plotted using only ppm1 ( H) dimension. A) Representative spectrum from 

dataset 1 (synthetic mixture). B) Representative spectrum from dataset 2 (yeast extract). C) Noise intensity 

values in dataset 2. Red horizontal line shows the applied threshold. 

 

For phase-sensitive spectra, two thresholds were used: one for peaks in phase (positive peaks) 

and another one for peaks in antiphase (negative peaks). Since noise values did not depend of 

the phase (noise is always centered to zero, see Fig S1C), the threshold level for both phases, 

in absolute values, was the same. Therefore, the threshold level was estimated in the positive 

phase and changed the sign for the negative antiphase. To estimate the threshold level in the 

positive phase, the same procedure as for a phase-insensitive NMR spectrum described above 

was used. 

To define the minimum number of adjacent points that define a NMR peak (minvoi), 2D NMR 

spectra were investigated using the typical NMR MestreNova (Mestrelab Research S.L.) or 

Topspin (Bruker BioSpin GmbH) platforms. First, the smallest true peak was selected. In these 

two popular NMR platforms, such operation is rather fast, efficient and easy to use. Afterwards, 

under the MATLAB environment, the selected smallest peak was visualized, and the number of 

variables (or pixels) that define this peak are counted. The obtained value is the maximum 

recommended value for the minvoi parameter, which gives a satisfactory NMR signal filtering by 

adjusting this minvoi parameter by a a factor between 0.7 and 1. 

 

8. NMR preprocessing 
NMR spectra have been automatically referenced, phased and baseline corrected using TopSpin 

(Bruker, Germany) routines. 

NMR preprocessing of 1H NMR datasets.1H NMR Bruker files were imported to MestreNova 

v.11.0 (MestreLab Research), and an exponential apodization of 0.2 Hz was applied on each one 

of them. In MestreNova v.11.0 environment, spectra were converted into ASCII format and 

imported to Matlab R2016a (The Mathworks Inc. Natick, MA, USA). In Matlab, data was first 

normalized using Probabilistic Quotient Normalization (PQN) [1] using an in-house function, 

followed by a mean-centering using the PLS toolbox 8.2.0 (Eigenvecctor Research Inc., 

Wenatchee, WA, USA). Regions of water (4.41 - 5.16 ppm), methanol (3.30 - 3.37 ppm), 
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Figure S3. Plot of singular values associated to the original and VOI-processed 1H-13C spectra. Blue lines 

and arrows give the singular values of the original 2D NMR spectra, while the red lines and arrows give the 

singular values of the VOI-processed data. 
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13. Effect on threshold and minvoi parameters

 

Figure S4. Selected VOIs (in red) for different applied threshold and minvoi levels.

When the threshold value was increased, a lower amount of random noise was included in the 

data. This is easily seen when figures A, B and D and compared.

On the other hand, not using the criterion of the minimum number of adjacent points that define 

a peak (minvoi) but maintaining the same threshold level (Figure S4C) results in a lower selective 

power. This is also explained because variables are selected when in at least one 2D NMR 

spectrum are higher than the threshold. Thus, due to the random distribution of noise, if threshold 

is at the same level as noise (as it is in many practical situations), the larger number of spectra 

analyzed, the larger number of noisy variables will be included in the data set. The only way to 

minimize this problem without using the minvoi criterion is by increasing the signal threshold 

value, although then this may result in the loss of some variables which are smaller than the fixed 

threshold level. Therefore, the simultaneous optimization of these two parameters should be 

better performed simultaneously.
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14. VOI processing applied on 2D 1H-1H TOCSY experiments

Example 1: Cyclosporine sample (threshold = 100,000, minvoi = 10)

Figure S5. A) Contour plot of the reconstructed 2D 1H-1H TOCSY of cyclosporine sample. B) Selected VOIs 

(in black). C) NMR spectrum in Fig S5B overlapped with the original NMR spectrum (contour plot obtained 

in MestreNova NMR suite).

After application of the VOI algorithm, only 22,998 variables were selected (Fig S5B), which are 

the 2.2% of the total set of variables.

In Fig S5A, the contour plot of the selected variables is shown. More intense peaks are colored 

with deep blue, whereas less intense peaks are colored with light blue. From comparing FigS5A
and FigS5B, it is observed that the use of contour plots can be misleading for peak identification, 

as the smallest peaks may not even be plotted if not enough contour curves are used. In FigS5C,

NMR peaks found in the reconstructed VOI-processed NMR spectrum coincide with the ones 

detected in the original NMR spectrum.

Example 2: AcCNPNFDLEC sample (threshold = 14,000, minvoi = 40)

Figure S6. A) Contour plot of the reconstructed 2D 1H-1H TOCSY of AcCNPNFDLEC sample. B) Selected 

VOIs (in black). C) NMR spectrum in Fig S6B overlapped with the original NMR spectrum (contour plot 

obtained in MestreNova NMR suite).

After application of VOI algorithm, only 29,833 variables were selected (Fig S6B), which 

corresponds to 2.8% of the total set of variables.
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15. VOI processing applied on 2D 1H-15N HSQC experiments

Example 3: Ubiquitin sample (threshold = 3,000, minvoi = 40)

Figure S7. A) Contour plot of the reconstructed 2D 1H-15N HSQC of ubiquitin sample. B) Selected VOIs (in 

black). C) Overlapped NMR spectrum of Fig S7B with the original NMR spectra (contour plot obtained in 

MestreNova NMR suite).

After application of VOI algorithm, only 18,660 variables were selected (Fig S7B), which 

corresponds to 14.6 % of the total set of variables. In this example, the number of selected 

variables was higher than in the previous examples because most peaks present tales along f1 

that were also selected. With this example, it is proven that even for not very well resolved NMR 

spectra in both dimensions (the HSQC used here has 213 data points in f1 and 602 data points 

in f2) the analysis can be performed properly by the proposed VOI approach.

16. VOI processing applied on 2D 1H-1H ROESY experiments

Example 4: AcCNPNFDLEC sample

Figure S8. A) Contour plot of the original 2D 1H-1H ROESY of AcCNPNFDLEC sample (in MestreNova NMR 

suite). B) Contour plot of the selected VOIs in the analysis of the 2D 1H-1H ROESY of AcCNPNFDLEC 

sample (in MATLAB with a threshold_positive = 1,400; threshold_negative = -1,400; minvoi = 25). C) Contour 

plot of the selected VOIs in the analysis of the 2D 1H-1H ROESY of AcCNPNFDLEC sample (in MATLAB 

threshold_positive = 1,400; threshold_negative = -4,000; minvoi = 25). Blue color is associated to negative 

intensity values, and red color is associated to positive intensity values.

The VOI-processing strategy can be also applied to the phase-sensitive 2D NMR spectra such 

as in 2D 1H-1H ROESY experiments. As stated before in section 7, to deal with positive and 

negative peaks, two threshold levels were used.



Chapter 4  
 

272 

In the example 4 (Figure S8), a 2D 1H-1H ROESY experiment was processed using the strategy 

based on VOIs. When the two threshold levels were 1,400 and -1,400, corresponding 

approximately to the 50% of the maximum and minimum noise levels, respectively, 161,396

variables were selected (15.4% of the total set of variables). In FigS8B, it is observed that most 

of the selected variables did not correspond to noise, but to structured negative bands found 

mostly along f1. These structures were consequence of the NMR pulse sequence used. In order 

to remove most of these meaningless data values with systematic (not random) information, 

negative threshold can be set up a bit lower. When this parameter was fixed at -4,000, the number 

of selected variables decreased down to 72,790, which corresponds to the 7.9% of the total set 

of original variables. 

17. VOI processing applied on a 3D HNCO experiment

Example 5: Protein sample (threshold = 150,000, minvoi = 40)

Figure S9. 3D plot of a highlighted region of the filtered HNCO NMR spectrum, where intensity is 

represented by a color scale.

The VOI-processing strategy can be also applied to 3D NMR spectra such as in 3D HNCO NMR 

experiments.

In the example 5 (Figure S9), a 3D HNCO NMR experiment was processed using the strategy 

based on VOIs. The input 3D NMR spectra consisted on a cubic dataset with dimensions of 1,024 

x 256 x 256 (after Topspin processing of 2048/72/128 acquired TD points, applying zero-filling 

and strip transform with STSI=1024), giving a total of 67,108,864 variables that occupy 256 MB 

(file 3rrr). These dimensions correspond to 1,024 H values (from 4.77 to 12.89 ppm), 256 N

values (from 100.09 to 136.09 ppm) and 256 C values (from 165 to 181 ppm), respectively.

In the 2D VOI-processing strategy, variables are searched on the 8 different positions contained 

in the X-Y plane (upper-left, up, upper-right, left, right, lower-left, low, lower-right). For the VOI-

processing strategy extended to 3D NMR data, 26 positions are considered instead (8 positions 

H

C

N
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for the same X-Y plane than the investigated variable (with z=0), and 9 positions for the X-Y

planes with z=+1 and z=-1).

When the threshold level was set to 150,000 and the minvoi was set to 40, 125,678 variables 

were selected (0.19% of the total set of variables). These variables were grouped in 61 clusters 

(individual or overlapped 3D resonances). In Figure S9, a highlighted region of the reconstructed 

3D NMR spectrum, with 89 H values, 61 N values and 101 C values, is shown.

In Figure S10, five 1H-13C slices at different 15N chemical shift from Figure S9 are given. 

Figure S10. Selected 1H-13C slices at different 15N chemical shifts (A-E) from the 3D region highlighted in 

Figure S9. The left spectra were the reconstructed spectra after VOI filtering, while the right ones are the 

original raw data viewed in CcpNmr software.
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# 
Metabolite Group δ H (ppm) δ C (ppm) 

Proton 
multiplicity 

JHH 
(Hz) 

1 Acetic acid (HMDB00042) CH3 1.903 26.00 s   

2 Adenosine (HMDB00050) 1 - CH 6.058 91.02 d 6.0 

2 - CH 4.73 76.67 na. in 1H NMR   

3 - CH 4.42 73.47 na. in 1H NMR   

4 - CH 4.28 88.59 na. in 1H NMR   

5 - CH2 
3.91 64.38 na. in 1H NMR   

3.85 64.38 na. in 1H NMR   

6 - CH 8.328 143.39 s   

7 - CH 8.160 155.55 s   

3 AMP (HMDB00045) 1 - CH 6.094 89.18 d 6.1 

2 - CH 4.77 77.27 na. in 1H NMR   

3 - CH 4.51 73.28 na. in 1H NMR   

4 - CH 4.37 87.14 na. in 1H NMR   

5 - CH2 4.03 66.20 na. in 1H NMR   

6 - CH 8.564 142.8 s   

7 - CH 8.160 155.55 s   

4 ATP (HMDB00538) 1 - CH 6.153 89.25 na. in 1H NMR   

2 - CH 4.42 86.6 na. in 1H NMR   

3 - CH 4.82 76.96 na. in 1H NMR   

4 - CH 4.65 72.96 na. in 1H NMR   

5 - CH2 
4.31 67.78 na. in 1H NMR   

4.25 67.71 na. in 1H NMR   

6 - CH 8.535 142.63 s   

7 - CH 8.240 155.00 s   

5 Betaine 
(HMDB00043) 

CH2 3.887 68.98 s   

3 x CH3 3.253 56.09 s   

6 Choline (HMDB00097) 
1- CH2 4.049 58.26 na. in 1H NMR   

2- CH2 3.507 70.14 na. in 1H NMR   

3 - CH3, 
4 - CH3, 
5 - CH3 

3.190 56.61 s   

7 
Citraconic acid 

(HMDB0000634) 
CH3 1.910 23.22 na. in 1H NMR   

CH 5.503 123.00 d 1.7 

8 Citric acid 
(HMDB00094) 

CHA 
2.520 48.03 

d 15.4 
2.551 48.00 
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# 
Metabolite Group δ H (ppm) δ C (ppm) 

Proton 
multiplicity 

JHH 
(Hz) 

CHB 
2.642 47.98 

d 15.4 
2.674 48.04 

9 CMP (HMDB00095) 1 - CH 5.980 91.02 m   

2 - CH 4.33 72.38 na. in 1H NMR   

3 - CH 4.33 77.14 na. in 1H NMR   

4 - CH 4.23 86.05 na. in 1H NMR   

5 - CH2 
4.05 65.63 na. in 1H NMR   

3.97 65.59 na. in 1H NMR   

6 - CH 8.080 144.71 d 8.1 

7 - CH 6.110 99.31 d 8.00 

10 DSS αCH2 2.908 56.97 m   βCH2 1.754 21.72 m   γ CH2 0.625 17.59 m   

δ CH3, δ 'CH3, δ ''CH3 
0.000 0.00 s   

11 Ethanol 
(HMDB00108) 

CH3 1.170 19.5 t 7.1 

CH2 3.640 60.13 q 7.1 

12 GABA 
(HMDB00112) 

αCH2 2.284 37.11 t 7.4 βCH2 1.892 26.34 m 7.4 γ CH2 3.002 41.98 t 7.6 

13 Glycerol (HMDB00131) 1 - CHB, 
3 - CHB 

3.549 65.32 dd 
11.7, 
6.5 

1 - CHA, 
3 - CHA 

3.635 65.18 dd 
11.7, 
4.4 

2 - CH 3.767 74.85 tt 6.5, 4.4 

14 Glycerophosphocholine 
(HMDB00086) 

1 - CH 3.902 73.35 na. in 1H NMR   

2 - CH 
3.863 69.23 na. in 1H NMR   

3.939 69.23 na. in 1H NMR   

3 - CH 3.662 64.74 na. in 1H NMR   

4 - CH2 4.312 62.19 na. in 1H NMR   

5 - CH2 3.666 68.73 na. in 1H NMR   

6 - CH3, 
7 - CH3, 
8 - CH3 

3.214 56.69 s   

15 Glycine (HMDB00123) αCH2 3.547 44.15 s   
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# 
Metabolite Group δ H (ppm) δ C (ppm) 

Proton 
multiplicity 

JHH 
(Hz) 

16 GMP (HMDB01397) 1 - CH 5.914 89.27 d 6.4 

2 - CH 4.74 76.79 na. in 1H NMR   

3 - CH 4.48 73.42 na. in 1H NMR   

4 - CH 4.329 86.16 na. in 1H NMR   

5 - CH2 3.98 66.13 na. in 1H NMR   

6 - CH 8.192 140.59 s   

17 GSSG 
(bmse000170) 

1 - CH, 1' - 
CH 

3.77 56.83 na. in 1H NMR   

2 - CH2, 2' - 
CH2 

2.147 28.93 m   

3 - CH2, 3' - 
CH2 

2.519 34.11 m   

4 - CH, 4' - 
CH 

4.563 58.34 dd 7.0, 5.2 

5 - CHA, 5' - 
CHA 

2.970 41.76 m   

5 - CHB, 5' - 
CHB 

3.28 41.40 na. in 1H NMR   

3.31 41.41 na. in 1H NMR   

6 - CH2, 6' - 
CH2 

3.76 46.15 na. in 1H NMR   

18 L-alanine 
(HMDB00161) 

αCH 3.766 53.21 q 7.2 βCH3 1.470 18.85 d 7.1 

19 L-arginine 
(HMDB00517) 

αCH 3.747 57.26 t 6.1 βCH2 3.229 43.19 t 6.9 

γ CH2 
1.653 26.57 m   

1.709 26.62 m   δ CH2 1.900 30.95 m   

20  L-asparagine (HMDB00168) αCH 3.994 53.99 dd 7.7, 4.3 

CHA 
2.833 37.11 

dd 
16.9, 
7.7 2.873 37.14 

CHB 
2.927 37.15 

dd 
16.9, 
4.3 2.961 37.15 

21  L-aspartic acid 
(HMDB00191) 

αCH 3.884 54.94 dd 8.8, 3.8 

βCHA 
2.822 39.25 

dd 
17.4, 
3.8 2.785 39.22 

βCHB 

2.684 39.21 

dd 
17.4, 
8.8 

2.667 39.24 

2.654 39.27 

2.630 39.30 

22 L-glutamic acid 
(HMDB00148) 

αCH 3.75 57.24 dd 7.2, 4.7 βCH2 2.084 29.68 m   γ CH2 2.340 36.19 m   
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# 
Metabolite Group δ H (ppm) δ C (ppm) 

Proton 
multiplicity 

JHH 
(Hz) 

23 L-glutamine 
(HMDB00641) 

αCH 3.75 57.36 m   βCH2 2.122 28.95 m   γ CH2 2.439 33.56 td 7.5, 3.7 

24 L-histidine (HMDB00177)  
 

 

αCH 3.994 57.11 na. in 1H NMR   

CHA 3.205 30.03 na. in 1H NMR   

CHB 
3.261 30.01 na. in 1H NMR   

3.292 30.01 na. in 1H NMR   

1 - CH 7.068-7.151 119.83 s   

2 - CH 7.829-8.060 138.20 s   

25 L-isoleucine 
(HMDB00172) 

αCH 3.661 62.27 d 4.0 βCH 1.966 38.60 m   γ CH3 0.999 17.39 d 7.4 δ CH2 1.461 27.18 m   ε CH3 0.927 13.70 t 7.4 

26 L-lactic acid 
(HMDB00190) 

CH3 1.313 23.05 d 7.0 

CH 4.103 71.33 q 6.9 

27 L-leucine 
(HMDB00687) 

αCH 3.720 56.15 m   βCH2 1.698 42.50 m   γ CH 1.706 26.64 m   δ CH3 0.943 23.62 d 6.1 δ 'CH3 0.953 24.73 d 6.1 

28 L-lysine 
(HMDB00182) 

αCH 3.747 57.27 t 6.1 βCH2 1.894 32.59 m   γ CH2 1.460 24.14 m   δ CH2 1.716 29.10 m   ε CH2 3.014 41.82 m   

29 L-methionine (HMDB00696) αCH 3.851 56.48 m   βCH2 2.17 nd. na. in 1H NMR   δ CH3 2.120 16.62 s   γ CH2 2.633 31.50 t 7.5 

30 L-ornithine 
(HMDB00214) 

αCH 3.769 56.83 m   δ CH2 3.043 41.57 t 7.6 βCH2 1.913 30.24 m   γ CH2 1.787 25.48 m   
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# 
Metabolite Group δ H (ppm) δ C (ppm) 

Proton 
multiplicity 

JHH 
(Hz) 

31  L-phenylalanine 
(HMDB00159) 

αCH 3.985 58.72 na. in 1H NMR   

CHA 
3.098 39.12 

na. in 1H NMR 
  

3.139 39.09   

CHB 
3.26 39.05 

na. in 1H NMR 
  

3.288 39.05   

2 x oCH 7.318 132.04 m   

2 x mCH 7.413 131.83 m   

pCH 7.361 130.38 m   

32 L-proline 
(HMDB00162) 

αCH 4.119 63.93 dd 8.6, 6.4 

βCH2 
2.066 31.69 na. in 1H NMR   

2.333 31.69 na. in 1H NMR   γ CH2 1.990 26.47 na. in 1H NMR   

δ CH2 
3.335 48.78 na. in 1H NMR   

3.400 48.78 na. in 1H NMR   

33 L-serine 
(HMDB00167) 

αCH 3.833 59.09 dd 5.6, 3.8 βCH2 3.963 62.88 m   

34 L-threonine 
(HMDB00167) 

αCH 3.575 63.15 d 4.9 βCH 4.243 68.62 m   γ CH3 1.319 22.16 d 6.6 

35  L-tryptophan 
(HMDB00929) 

αCH 4.048 58.26 na. in 1H NMR   

CHA 3.46 nd. na. in 1H NMR   

CHB 3.29 nd. na. in 1H NMR   

1 - CH 7.307 127.76 s   

2 - CH 7.513 114.63 d 8.2 

3 - CH 7.711 121.12 d 8.0 

4 - CH 7.182 122.09 m   

5 - CH 7.265 124.78 m   

36  L-tyrosine 
(HMDB00158) 

αCH 3.925 58.76 na. in 1H NMR   

CHA 3.057 38.13 na. in 1H NMR   

CHB 
3.202 38.16 na. in 1H NMR   

3.172 38.19 na. in 1H NMR   

2 x mCH 6.884 118.54 d 8.4 

2 x oCH 7.179 133.46 d 8.4 

37 L-valine 
(HMDB00883) 

αCH 3.599 63.08 d 4.3 βCH 2.258 31.78 m   γ CH3 0.981 19.36 d 7.1 γ 'CH3 1.037 20.66 d 7.1 

38 NAD+ (HMDB00092)  
 

1 - CH 6.026 89.36 d 5.9 

2 - CH 4.37 86.46 na. in 1H NMR   
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# 
Metabolite Group δ H (ppm) δ C (ppm) 

Proton 
multiplicity 

JHH 
(Hz) 

 

3 - CH 4.51 73.03 na. in 1H NMR   

4 - CH 4.76 76.69 na. in 1H NMR   

5 - CH2 
4.24 68.05 na. in 1H NMR   

4.21 68.05 na. in 1H NMR   

6 - CH 8.134 155.44 s   

7 - CH 8.411 142.50 s   

1' - CH 6.075 102.75 d 5.3 

2' - CH 4.49 80.34 na. in 1H NMR   

3' - CH 4.43 73.36 na. in 1H NMR   

4' - CH 4.55 89.63 na. in 1H NMR   

5' - CH2 
4.36 67.55 na. in 1H NMR   

4.24 67.55 na. in 1H NMR   

6' - CH 9.322 142.64 s   

7' - CH 8.816 148.44 d 8.1 

8' - CH 8.183 131.33 d 6.1 

9' - CH 9.14 145.00 d 5.3 

39 NADP (HMDB00237) 1 - CH 6.093 89.19 d 5.9 

2 - CH 4.37 85.82 na. in 1H NMR   

3 - CH 4.61 72.71 na. in 1H NMR   

4 - CH 4.97 78.83 na. in 1H NMR   

5 - CH2 
4.28 68.05 na. in 1H NMR   

4.19 68.05 na. in 1H NMR   

6 - CH 8.090 155.20 s   

7 - CH 8.390 142.87 s   

1' - CH 6.030 102.68 m   

2' - CH 4.45 80.33 na. in 1H NMR   

 3' - CH 4.41 73.47 na. in 1H NMR   

4' - CH 4.49 89.69 na. in 1H NMR   

5' -CH2 
4.32 67.65 na. in 1H NMR   

4.21 67.54 na. in 1H NMR   

6' - CH 9.286 142.64 s   

7' - CH 8.800 148.34 m   

8' - CH 8.170 131.30 m   

9' - CH 9.100 145.04 d 5.3 
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# 
Metabolite Group δ H (ppm) δ C (ppm) 

Proton 
multiplicity 

JHH 
(Hz) 

40 NMN (HMDB00229) 1 - CH 6.191 103.01 d 5.8 
 

2 - CH 4.64 80.44 na. in 1H NMR   

3 - CH 4.61 90.93 na. in 1H NMR   

4 - CH 4.47 74.03 na. in 1H NMR   

5 - CH2 
4.2 65.74 na. in 1H NMR   

4.03 65.74 na. in 1H NMR   

6 - CH 9.566 142.46 s   

7 - CH 8.994 149.01 d 8.1 

 8 - CH 8.309 131.22 m   

  9 - CH 9.326 145.81 d 5.9 

41 Succinic acid (HMDB00254) 2 x CH2 2.395 36.81 s   

42 Taurine 
(HMDB00251) 

αCH 3.233 50.06 t 6.1 βCH 3.429 38.96 t 6.1 

43 Thiamine (HMDB00235) 

 

1 - CH 9.443 nd. s   

2 - CH3 2.545 13.77 na. in 1H NMR   

3 - CH2 3.164 31.99 na. in 1H NMR   

4 - CH2 3.88 63.45 na. in 1H NMR   

5 - CH2 5.433 53.69 s   

6 - CH3 2.474 26.72 na. in 1H NMR   

7 - CH 8.029 159.82 s   

44 Thiamine-PP 
(HMDB01372) 

1 - CH 9.429 nd. s   

2 - CH3 2.575 13.89 na. in 1H NMR   

3 - CH2 3.164 31.99 na. in 1H NMR   

4 - CH2 3.341 51.64 na. in 1H NMR   

5 - CH2 5.413 53.81 s   

6 - CH3 2.480 26.67 na. in 1H NMR   

7 - CH 8.029 159.82 s   

45 Trehalose 
(HMDB00975) 

1 - CH, 1' - 
CH 

5.184 95.94 d 3.8 

2 - CH, 2' - 
CH 

3.635 73.76 m   

3 - CH, 3' - 
CH 

3.835 75.03 m   

4 - CH, 4' - 
CH 

3.439 72.41 t 9.3 

5 - CH, 5' - 
CH 

3.768 74.78 m   

6 - CHA, 6' - 
CHA 

3.839 63.11 m   

6 - CHB, 6' - 
CHB 

3.762 63.16 m   
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# 
Metabolite Group δ H (ppm) δ C (ppm) 

Proton 
multiplicity 

JHH 
(Hz) 

46 UDP-Glc (HMDB00286) 1 - CH 5.590 98.32 dd 7.2, 3.5 
 

2 - CH 3.53 74.3 na. in 1H NMR   

 3 - CH 3.76 75.6 na. in 1H NMR   

 4 - CH 3.46 71.92 na. in 1H NMR   

 5 - CH 3.88 75.4 na. in 1H NMR   

 
6 - CH2 

3.78 63.13 na. in 1H NMR   

 3.86 63.13 na. in 1H NMR   

 
7 - CH2 

4.19 67.6 na. in 1H NMR   

 4.23 67.6 na. in 1H NMR   

 8 - CH 4.27 85.9 na. in 1H NMR   

 9 - CH 4.36 72.4 na. in 1H NMR   

 10 - CH 4.36 76.6 na. in 1H NMR   

 11 - CH 5.976 91.19 m   

 12 - CH 5.975 105.4 m   

  13 - CH 7.940 144.27 d 8.1 

47 UDP-Nac-glc-NH2 (HMDB00290) 1 - CH 5.504 97.18 dd 7.2, 3.1 
 

2 - CH 3.53 74.3 na. in 1H NMR   

3 - CH 3.76 75.6 na. in 1H NMR   

4 - CH 3.46 71.92 na. in 1H NMR   

5 - CH 3.88 75.4 na. in 1H NMR   

6 - CH2 3.86 63.13 na. in 1H NMR   

7 - CH3 2.102 23.03 na. in 1H NMR   

8 - CH2 
4.19 67.6 na. in 1H NMR   

4.23 67.6 na. in 1H NMR   

9 - CH 4.27 85.9 na. in 1H NMR   

10 - CH 4.36 72.4 na. in 1H NMR   

11 - CH 4.36 76.6 na. in 1H NMR   

12 - CH 5.976 91.19 m   

13 - CH 5.975 105.4 m   

  14 - CH 7.94 144.27 d 8.1 

48 Uracil (HMDB00300) 
1 -CH 5.788 103.76 d 7.8 

2 - CH 7.52 146.15 d 7.7 

49 Uridine (HMDB00296) 1 - CH 5.904 92.08 d 4.6 

2 - CH 4.343 76.31 na. in 1H NMR   

3 - CH 4.221 72.19 na. in 1H NMR   

4 - CH nd. nd. na. in 1H NMR   

5- CH 3.893 63.61 na. in 1H NMR   

6 -CH 5.896 105.02 d 8.2 



Chapter 4  
 

296 

# 
Metabolite Group δ H (ppm) δ C (ppm) 

Proton 
multiplicity 

JHH 
(Hz) 

7 - CH2 7.870 144.57 d 8.5 

50 α -Glucose (HMDB00122) 1 - CH 5.219 94.82 d 3.8 

2 - CH 3.531 74.33 m   

3 - CH 3.701 75.51 m   

4 - CH 3.389 72.33 m   

5 - CH 3.825 74.14 m   

6 -CH2 3.815 63.22 m   

51 β -Glucose (HMDB00122) 1 - CH 4.636 98.63 d 8.0 

2 - CH 3.230 76.85 dd 7.8, 9.2 

3 - CH, 5 - 
CH 

3.455 78.59 m   

4 - CH 3.389 72.33 m   

6 -CH2 
3.725 63.48 m   

3.894 63.33 m   

52 2-Isopropylmalate 
(HMDB00402) 

CH3 0.843 nd. d 6.9 

CH3 0.896 nd. d 6.9 

53 Fumaric acid (HMDB00134) 2 x CH 6.500 nd. s   

54 Oxalacetic acid (HMDB00223) CH2 2.375 nd. s   

55 Choline-derivate 3 x CH3 3.208 nd. s   

56 Citramalic acid 
(HMDB00426) CHA 

2.736 48.79 
na. in 1H NMR 

  

2.703 48.89   

CHB 
2.467 48.68 

na. in 1H NMR 
  

2.439 48.77   

CH3 1.317 27.95 na. in 1H NMR   

57 CYSSG 
(HMDB00656) 

1 - CH, 1' - 
CH 

3.77 56.83 na. in 1H NMR   

2 - CH2, 2' - 
CH2 

2.147 28.93 m   

3 - CH2, 3' - 
CH2 

2.519 34.11 m   

4 - CH, 4' - 
CH 

4.754 55.33 na. in 1H NMR   

5 - CHA, 5' - 
CHA 

2.97 41.76 m   

5 - CHB, 5' - 
CHB 

3.28 41.40 na. in 1H NMR   

3.31 41.41 na. in 1H NMR   

6 - CH2, 6' - 
CH2 

3.761 46.15 na. in 1H NMR   

58 L-malic acid (HMDB00156) αCH 4.275 73.11 na. in 1H NMR   

βCHA 
2.643 45.28 na. in 1H NMR   

2.675 45.30 na. in 1H NMR   

βCHB 
2.326 45.41 na. in 1H NMR   

2.38 45.32 na. in 1H NMR   
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# 
Metabolite Group δ H (ppm) δ C (ppm) 

Proton 
multiplicity 

JHH 
(Hz) 

59 Pyroglutamic acid 
(HMDB00267) 

αCH 4.164 60.96 na. in 1H NMR   

βCH2 
2.491 27.99 na. in 1H NMR   

2.041 27.99 na. in 1H NMR   γ CH2 2.387 32.32 na. in 1H NMR   

60 β-alanine 
(HMDB00056) 

αCH2 2.541 36.24 na. in 1H NMR   βCH2 3.165 39.32 na. in 1H NMR   

 nd.: Not detected  

na. in 1H NMR: not assigned in 1H NMR  
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3 DISCUSSION OF THE RESULTS 

3.1 MCR-ALS AND NMR DATA 

MCR-ALS has been shown to be a powerful chemometric approach to resolve the NMR 

spectral profiles (fingerprints) of the chemical compounds from their mixtures. However, the 

quality of this performance depends on (i) the type of analyzed NMR data, and (ii) how the 

concentrations of the metabolites change in the analyzed dataset. 

As commented in the introduction section of this Chapter, with chemometrics, 1D NMR 

spectra of the constituent compounds can be resolved from the 2D NMR spectra of their 

mixtures. However, this is only true for a few types of 2D NMR spectra. In particular, the 

analyzed 2D NMR spectra must show, for the measured compounds, cross-peak correlations 

among all intramolecular resonances in at least one of the two dimensions. Examples of 2D 

NMR spectra that fulfill this condition are 1H-1H TOCSY NMR (Fig. 4.4) and DOSY NMR 

(Fig. 4.5B) spectra. Conversely, when MCR-ALS is applied to some other type of 2D NMR 

spectra, it will resolve every resonance in a separate component. 

MCR-ALS can also be applied to different type of data arrays of 1H NMR spectra, such as 

PGSE NMR (Fig. 4.5A) or 1H NMR spectra of mixture samples. However, these two type 

of NMR spectra are not directly comparable. 

PGSE NMR spectra give a data matrix for every single sample, and every row from each of 

these data matrices corresponds to a 1D NMR spectrum from the sample using a different 

magnetic field gradient strength during the spectra acquisition. In the PGSE NMR spectra, 

the detected resonances decay with increasing magnetic field gradient strengths at different 

rates that depend on the diffusion properties of the corresponding compounds (Fig. 4.5A). 

On the other hand, 1H NMR spectra give a data vector for every sample and, to arrange a 

data matrix of 1H NMR spectra, two or more samples are appended column-wisely (Fig 2.27, 

see page 52). Thus, in this data matrix, the differences among rows came from the differences 

in sample composition among samples. 

To resolve by MCR-ALS a chemical mixture measured using any of these two NMR pulse 

sequences, each one of the chemical compounds must give an independent evolution along 

the acquired 1H NMR spectra. This means that, in the MCR-ALS analysis of PGSE NMR 

datasets, the 1H NMR of the different chemical species will only be satisfactorily resolved if 

they have different diffusion properties. On the other hand, for the direct MCR-ALS analysis 

of arrays of 1H NMR spectra, a good resolution can only be achieved if the concentrations 

of the observed metabolites are changing independently. 
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The analysis of PGSE NMR spectral data arrays results much easier than the equivalent 

analysis of the 1H NMR spectra of mixtures arranged in a data matrix. This occurs because, 

in the PGSE NMR arrays, resonances do not present variations in chemical shifts among the 

acquired spectra, since all 1D NMR spectra are obtained from the same sample. 

On the other hand, the analysis of data arrays of 1H NMR spectra can be more problematic.  

In order to resolve the pure 1H NMR spectra of the metabolites from their mixture, the 

experimental workflow analysis has to be applied consistently for all the samples. Moreover, 

if samples are not prepared using similar protocols, a resonance may appear at different 

chemical shifts in the different samples and this makes more difficult their analysis. Subtle 

variations of environmental variables (e.g., ionic strength, pH) may also produce a change in 

the structure of the metabolites and, as a result, their resonances appear shifted. Having said 

this, in metabolomics studies, NMR samples are prepared following robust protocols in order 

to minimize the effect of these environmental variables in the chemical shifts. 

In situations where shifted resonances are present, extra MCR-ALS (bilinear) components 

will be needed to represent all the shifting variants of the same 1H NMR spectra of a pure 

metabolite [358]. Most of the times, this drawback can be circumvented by applying  peak 

alignment algorithms [102], although the performance of these algorithms is dependent on 

how misaligned are the resonances and on the degree of overlapping of these resonances. 

It is also necessary to use the same NMR pulse sequence with the same acquisition and 

processing parameters for all the samples. Otherwise, for the same metabolic abundances, 

different intensity values will be obtained in the different recorded spectra. 

For instance, for the acquisition of a typical 1H NMR spectrum, the same relaxation delay 

(RD, which corresponds to the time left for all nuclei to align with the magnetic field) should 

be used. Moreover, for this acquisition parameter, it is important to use an RD that allows 

the full relaxation of all nuclei. Otherwise, each nucleus will show a different correspondence 

between the real concentration and the measured intensity, and the analysis could not be 

considered as inherently quantitative anymore. As stated in section 3.5.5 of Chapter 2, for 
1H NMR metabolomics experiments, an RD of at least 5 seconds is recommended. This 

difference in intensity response associated with different RD values is highlighted in Figure 

4.6. 
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Figure 4.6. A 1H NMR spectra of a yeast extract acquired using different relaxation delays (RD). A 

RD of 2 seconds does not allow the full relaxation of all proton nuclei. 

 

3.2 MCR-ALS AS A BIOMARKER DETECTION TOOL 

MCR-ALS has been successfully used to extract the concentrations and spectra of pure 

compounds from UV [359], NIR [360], and HPLC-MS [206], among other analytical 

techniques.  

For (1H) NMR data, MCR-ALS has shown promising results in the study of acid-base 

equilibria [358]. This good performance is achieved when the concentration of the different 

chemical species varies significantly along all the screened samples and special measures are 

taken for the lability of the proton resonances [131] when pH is changed. 

For other datasets with low variance of metabolite concentrations, the best results were 

obtained after application of appropriate spectral window constraints [356,357] (Fig. 2.42, 

page 72)..With this type of constraints, MCR rotation ambiguities are reduced and the 

resolution is improved since the number of possible metabolites per spectral window is 

limited. 

In Scientific Article IV, we have investigated the resolution of a complex NMR 

metabolomics system using MCR-ALS combined with spectral window constraints. In order 

to define these constraints, a set of predefined windows is first selected, and MCR-ALS is 

then applied to every one of these windows. The resolved ST profiles (eq. 2.15) in these MCR-

ALS analyses should be assignable to pure metabolite resonances. Nevertheless, in some 

cases, the resolved ST profiles contained mixed contributions from different metabolites, 

because resonances from different metabolites could not be properly resolved into separate 

components. To circumvent this situation, the considered spectral window should be divided 

into two or more smaller spectral windows. This process is represented in Figure 4.7. 

δ
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Figure 4.7. MCR-ALS of one spectral window (δH= 2.21-1.80 ppm). A) 1H NMR window from a 

metabolomics dataset consisting of 90 samples [243].  B) Resolved sk do not correspond 

to the expected resonances. The increase of the number of components does not improve 

MCR-ALS resolution. C-D) Splitting the window into two smaller windows (δH= 2.21-

2.00 ppm, and δH= 2.00-1.80 ppm) allows a more comprehensive MCR-ALS resolution. 

Resolved sk were then tentatively assigned to metabolites. 

This process is very time-demanding since, for the analysis of all the 1H NMR spectral 

domain, dozens of windows may be needed. In addition, for each window, MCR-ALS must 

be tested with a different number of components in order to identify the optimal number. 

For the studied metabolomics dataset in [243], 56 spectral windows were needed to separate 

all the resonances. Moreover, in case the metabolic variance is lower, even more spectral 

windows could be needed. For example, in another metabolomics study (analyzing zebrafish 

extracts, not published yet) presenting a similar amount of detected resonances, the number 

of windows needed was 98 because the changes of the concentration of the metabolites 

among samples were lower. 

δ

δ

δ

δ δ
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Since the application of MCR-ALS to different NMR spectral windows can provide good 

estimates of the pure resonances (ST matrix in eq. 2.15) and of the pure concentrations (C 

matrix in eq. 2.15), this chemometric method has been applied as a resonances integration 

tool [361]. However, in [362], it was already stated that resonances non-perfectly aligned (for 

instance, using icoshift correction [102]) could not be integrated via this method. For shifted 

resonances that present no or low overlapping, resonance integral estimates can be also 

obtained through the calculation of the second derivative [362]. For highly overlapped and 

shifted resonances, resonance integral estimates can be estimated using deconvolution 

approaches or using NMR pulse sequences that separate resonances from the cofounding 

metabolites. 

In the metabolomics dataset examined in Scientific Article IV, the spectral data were 

correctly aligned, and therefore, this dataset could be properly decomposed as a set of spectral 

features (sk in Scientific Article IV) and their corresponding set of concentrations for each 

sample (ck).  

From the set of ck vectors (concentration profiles), it is possible to construct a row-wise 

augmented data matrix, with as many rows as analyzed samples and as many columns as 

resolved k features. Since the ck vectors relative to resonances from the same metabolite will 

be highly correlated, it is possible to investigate this correspondence by the application of a 

correlation-based approach. For instance, if the augmented matrix of ck vectors is analyzed 

with hierarchical clustering, the ck vectors clustered together are likely to be from the same 

metabolite. Figure 4.8 shows that 6 features (k= 57, 61, 63, 70, 73, and 90) have their ck 

vectors clustered in Figure 4.8A and 4.8B. When the sk profiles from these 6 k features are 

combined in the same spectral profile, the reconstructed 1H NMR spectrum is confirmed to 

correspond to glucose (Fig. 4.8C).  
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Figure 4.8. A) Heat-map representation with hierarchical clustering of the augmented matrix of ck 

vectors. Clustering of 6 ck vectors is highlighted with a dashed blue line. B) Zoom-in of 

the region highlighted in A. Clustered ck vectors are 57, 61, 63, 70, 73, and 90. C) The 

combination of sk vectors with k= 57, 61, 63, 70, 73, and 90 allow the reconstruction of 

the 1H NMR spectrum of glucose.  

Whether two or more features are from the same metabolite can be sometimes difficult to 

determine from the hierarchical clustering. In order to assist in this decision process, we have 

proposed the method called Decision Tree of Correlations (or DTC). This method consists 

in the calculation of the pair-wise correlation among all ck vectors, and the sequential 

clustering of these ck vectors from the more correlated ones to the least correlated ones. This 

operation is performed repeatedly until the next ck vector to be chosen is not linked to the 

same metabolite as the already clustered ck vectors. This can be assessed by comparison of 

the corresponding sk spectral features. For example, if the next ck vector to be chosen is 

associated to a sk descriptive of noise, or descriptive of a resonance with intensities in a 

different order or magnitude than the resonances of the previously grouped sk spectral 

features, then this considered feature is not included in the list of the previously clustered 

features. At this point, a new DTC cluster analysis is initiated with the remaining features, 

and this process is repeated until all features are grouped. A more profound explanation of 

this method is given in section 2.3.2 and in Figure 3 from Scientific Article IV. 

This approach is different than the standard workflow used in NMR metabolomics. 

Typically, in NMR metabolomics, the resonance assignment is first carried out, and only the 

assigned resonances are integrated. This is commonly referred as targeted analysis. However, 

δ
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when the MCR-ALS method is used, it is possible to first detect which resonances are 

important for describing the biological system (which resonances show variations in intensity 

among the screened conditions), and it is then possible to perform their assignment. Thus, 

this approach should be considered a non-targeted approach. 

Other non-targeted analyses for NMR data can be proposed, such as the application of 

bilinear decomposition methods (e.g., PCA, PLS) to 1H NMR datasets, but they do not result 

as effective as the MCR-ALS approach. In the analysis by PCA or PLS of a 1H NMR dataset, 

data is usually mean-centered or Pareto scaled with the aim of reducing noise contribution, 

but these two data pretreatments cause that not only noise but also that smaller resonances 

are underrepresented in the chemometric analysis. 

On the other hand, in the MCR-ALS preprocessing analysis proposed in this Thesis, the 

relevance of every sk spectral feature or resonance is studied using their associated ck vectors 

resolved, which already contain the resonance integral values. Since these data have the noise 

filtered, they can be properly auto-scaled, and small resonances will become as important as 

large resonances in the PCA or PLS model. Therefore, this approach allows for a more 

comprehensive characterization of the studied biological system than the other direct non-

targeted approaches in NMR metabolomics.  

This proposed MCR-ALS approach shows the best performance when the metabolic 

variance is high. Therefore, it results a very powerful chemometric tool for the identification 

of possible metabolite biomarkers. Furthermore, despite being time-demanding, it is much 

faster than integrating one by one each of the detected resonances (for a 1H NMR spectrum, 

which can be in the order of hundreds to thousands) for each sample since, in the MCR-ALS 

approach, the integral values for all samples and metabolites can be obtained in one single 

step. 

 

3.3 MCR-ALS AS A RESONANCES INTEGRATION TOOL 

As introduced in the previous section, MCR-ALS can be used to resolve resonance integrals 

since, for every feature, a vector of concentrations will be obtained. For instance, in Figure 

4.8, 6 different (although very similar) concentration profiles were obtained for glucose 

metabolite. 

In order to unify these concentration values, we performed a simultaneous MCR-ALS 

analysis of the whole 1H NMR dataset (Fig. 4.9). To bypass the problem of the spectral 

ambiguities, spectral window constraints were imposed. These spectral window constraints 
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were designed using the knowledge gained during the preliminary screening of the 1H NMR 

data. 

In the previous analysis, resonances from each metabolite were resolved in different spectral 

windows. Thus, for every spectral window, every component (one metabolite) should be 

resolved only in this spectral window.  

 

Figure 4.9. Simultaneous MCR-ALS analysis of the whole 1H NMR dataset using spectral windows. 

After the MCR-ALS analysis, not only one concentration value is obtained per sample and 

metabolite, but also all the sk features from the same component will be joined together. 

In Scientific Article IV, we tested this approach using 75 components. From the resolved ST, 

we were able to assign 39 metabolites. However, it is worth mentioning that not all the 

spectral ambiguities were completely removed, and that the 1H NMR spectra for some of the 

metabolites were better resolved than for others. 

On the other hand, the relative concentrations of these components, from the concentration 

profiles C matrix, were better recovered than the corresponding 1H NMR spectra, in the ST 

matrix. This is because, as in more traditional NMR integration methods, the concentration 

of a given metabolite can be obtained from the analysis of just one resonance. Thus, even if 

the 1H NMR spectrum of a metabolite is only partially resolved, if some of the resolved 

resonances coincide with the real ones in the true 1H NMR spectrum of this metabolite, the 

corresponding concentrations associated to this metabolite will be close to the real ones. This 

can be easily seen in Table 1 from the Scientific Article IV [243]. For example, in this table, 

one of the three resonances from glycerol could not be properly resolved by the MCR-ALS 

analysis of the whole 1H NMR dataset. Nevertheless, since the other two resonances were 

perfectly resolved, the concentrations obtained with this approach coincided well with the 

correct ones (r2=0.994). 

 

δ

δ
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3.4 NOISE INFLUENCES THE RANK OF 2D NMR DATA 

Theoretically, any 2D NMR dataset could also be analyzed using the previously proposed 

DTC-MCR-ALS methodology. As a preliminary step, the set of 2D spectral windows should 

be first defined. Then, for every sample, the data from every window should be vectorized, 

and a column-wise augmented matrix (Fig. 2.27, see page 52) is built combining all the 

vectors from the same windows. Finally, these augmented matrices are analyzed by MCR-

ALS. 

As said above, one of the main reasons for using the DTC-MCR-ALS method is to overcome 

the problem of resonance overlapping observed in 1H NMR data, very frequently 

encountered for instance in metabolomics studies. However, in 2D NMR data, resonance 

overlapping is not so strong as in 1H NMR data. 

During the analyses of 2D and 3D NMR datasets (Scientific Article V), we observed that, 

although some resonances can partly overlap, these overlapped resonances are clearly 

distinguishable from the rest. Moreover, in the 1H-13C HSQC NMR spectra of metabolic 

extracts from yeast (Scientific Article VI), for all assigned metabolites, relative integrals could 

be straightforwardly obtained from isolated resonances. Thus, since resonance assignment 

and integration from 2D NMR data is much easier, we decided not to use the previously 

described DTC-MCR-ALS strategy for the analysis of this type of data. 

Nevertheless, despite individual resonances are better separated in 2D NMR data, we 

observed that the structure of the 2D NMR data is by far more complex than for 1D NMR 

data. This observation was already considered in Jaumot et al. [160], where it was confirmed 

that resolution of 2D NMR data requires a higher number of components than the number 

of chemical species present in the system, indicating that 2D NMR data do not follow well 

the postulated bilinear model where every component refers to a single chemical species.  

In the precedent work, it was defended that the number of components needed to reconstruct 

a single 2D NMR spectrum coincides with the number of cross-peaks resonances [343]. To 

corroborate this statement, we estimated the number of components for two distinct 2D 

NMR spectra (Fig. 4.10A and Fig. 4.10B) by means of SVD [363]. In these analyses, the 

estimated number of components was only close to the number of cross-peak resonances for 

the second case (circa 50 components, Fig. 4.10F). On the other hand, for the 2D NMR 

spectrum of Fig. 4.10A, the number of components deviated largely from the expected 

(estimated number of components ≈ 500, Fig. 4.10B). These results suggest that the number 

of components is greatly conditioned by the non-bilinear data structure and the lower SNR 

in this case (compare Figure 4.10A with Figure 4.10B). 
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The importance of noise in 2D NMR spectra was confirmed in a posterior analysis included 

in Scientific Article V (Supplementary Material S11) [159]. In this article, we determined 

that the removal of noise produces that the estimated number of components becomes closer 

to the number of detected resonances. 

 

Figure 4.10. SVD analysis of two 2D NMR datasets. A) 1H-13C HSQC NMR of a mixture of 3 

compounds. B) 1H-15N HSQC NMR of ubiquitin protein. C) and D) 1D projection of 

the 1H-13C HSQC NMR from A and B in the 1H-dimension, respectively. Different colors 

denote different intensities in f1 (δC). E) and F) Plot of the singular values associated to 

the 1H-13C HSQC NMR from A and B. 

Moreover, in the same article, we observed that removing the noisy variables from a 2D 

NMR metabolomics dataset had an important effect on the PCA analysis. This was observed 

δδ

δδ

δ δ
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in the scores distribution from the denoised 2D NMR dataset (Fig2C in Scientific Article V 

[159]), which were very similar to the scores distribution obtained from applying PCA 

analysis on a 1D NMR dataset of the same samples (Fig2A in Scientific Article V [159]). On 

the contrary, results from the PCA analysis on the raw 2D NMR dataset gave a different 

scores distribution (Fig2B in Scientific Article V [159]). In agreement with this observation, 

in [364,365], variables descriptive of noise from 2D NMR datasets were removed prior the 

chemometrics data analysis to improve results interpretation. 

In previous works [364,365], variables with intensities below a given threshold were 

considered to be noise and excluded. For 2D NMR spectra containing resonances close to 

the detection limit, as in 2D NMR spectra from metabolomics studies, to stablish the 

appropriate intensity threshold results very challenging. 

After manual evaluation of different 2D NMR spectra, we estimated that every resonance is 

commonly defined by at least 10 data values. Having this into account, we decided to 

implement a variable filtering algorithm that uses two parameters, the threshold level and a 

minimal number of contiguous values that constitute a resonance. This second parameter 

was implemented as the minimal number of adjacent variables with intensities higher than 

the threshold level. 

This approach has been called as the VOI (Variables of Interest) strategy. When the threshold 

level is lowered, the most intense noise values will surpass this threshold, but since they will 

not be find clustered but randomly distributed over all the spectra, they will be still filtered. 

This strategy has been described in more detail in Scientific Article V [159]. 

3.4.1 Signal sparseness in 2D NMR spectra 

Application of VOI on 2D NMR datasets revealed that 2D NMR spectra are sparse and only 

a few number of variables are representative of meaningful resonances. For example, for the 

investigated 1H-13C HSQC NMR metabolomics dataset in the Scientific Article V and VI, 

with more than 60 detected metabolites (one sample is shown in Figure 4.3), only 2% of the 

spectral data was really related with their resonances. Moreover, this sparsity is even more 

accentuated for 2D NMR data of simpler mixtures, and even more for spectral data of higher 

dimensionality. For instance, for the 3D HNCO spectrum of an unfolded protein, only 0.19% 

of the variables were representative of meaningful resonances (Scientific Article V, 

Supplementary Material S17). 

Therefore, biased results obtained in the PCA analysis of raw 2D NMR datasets (when 

compared to the 1D NMR data, mentioned in the previous section) were caused mostly 

because ~98% of the variables from the dataset were only descriptive of noise. 
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3.5 VOI APPROACH IS A ROBUST 2D INTEGRATION METHOD 

In section 3.5.1 of Chapter 2, it was mentioned that non-overlapped 1D NMR resonances 

can be integrated by summing the intensities of all the data-points that define these 

resonances. 

For 2D NMR spectral data, most NMR integration tools use a similar approach. In this 

approach, each resonance is encapsulated by a user-defined region, and the intensities for all 

the variables enclosed in this region are summed. 

In rNMR [34], the user-defined region is rectangular-shaped, while in MestReNova 

(MestreLab, Inc.), the shape of the selected region is an ellipse. However, resonances are not 

rectangular nor perfect ellipses. This means that the measured resonance integrals will be 

always higher than the real ones because some variables representative of noise will be 

included inside these user-defined regions and summed together with the relevant ones.  

In Figure 4.11, after noise removal using the VOI approach, the limits and shapes of the 

resonances are much better appreciated. In Figure 4.11B, VOI-filtered resonances are not 

perfect ellipses, as in the original 2D NMR spectrum (Figure 4.11A). 

 

Figure 4.11. Filtering of noise in 2D 1H-13C HSQC NMR data. A) Original data. B) VOI-filtered data 

from A. 

When resonances are integrated using VOI approach, only the variables inside each peak are 

summed. Because of this, resonances can be integrated regardless of their shape. In Figure 

4.12, variables from the same cluster are colored with the same color, showing that the 

clustered variables have different sizes and shapes. 
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Figure 4.12. 1H-13C HSQC NMR of a yeast extract. Each set of clustered variables has been colored 

with one color, denoting that clusters of variables are detected regardless of their peak 

shape. 

Differences in the shape of each colored cluster in Figure 4.12 are due to different spin-spin 

coupling constants and also because some of the clusters include two or more overlapped 

resonances. In other systems, additional differences in shape could be caused by other 

reasons, such as incomplete phasing. 

Thus, with VOI strategy, only the cluster of variables representative of an isolated resonance 

is required to obtain a reliable resonance integral value. 

These integrals can be calculated inside the MATLAB® computer and visualization 

environment or, if preferred, using other NMR suites capable of importing the VOI-processed 

data. For instance, in Figure 4.13, the integration of VOI-processed 2D NMR spectra by 

MestReNova software is shown. 

In this figure, when original data are directly analyzed using ellipses with different sizes 

(green ellipses in Figure 4.13A and 4.13B), different resonance integral values are obtained. 

On the contrary, when original 2D NMR spectral data are VOI-filtered, the use of ellipses 

with different sizes (green ellipses in Fig. 4.14C and 4.14D) did not affect the estimation of 

the resonance integrals, since variables descriptive of noise were replaced by zero values after 

application of VOI.  

δ

δ
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Figure 4.13. Integration of a 2D NMR spectrum in MestReNova. A-B) Experimental data. C-D) The 

same data after application of VOI. The resonance circled by a green ellipse in A and C 

was integrated again with a much broader ellipse in B and D, respectively. The resonance 

circled in blue acts as the reference integral. 

 

3.6 1H NMR AND 1H-13C HSQC NMR METABOLOMICS: DOES THE 

DIMENSIONALITY MATTER? 

Regardless 1H NMR or 1H-13C HSQC NMR spectral data were used, similar results were 

obtained when they were investigated by chemometric methods such as PCA. Thus, not only 

similar scores distribution were obtained (as mentioned in Section 3.4), but the 

corresponding loadings highlighted the same metabolites (Fig3 in Scientific Article VI), 

leading to the same biological interpretations. Nonetheless, since 2D NMR spectral data 

provides more information relative to compounds structure and it presents less signal 

overlapping, the highlighted resonances were much more straightforwardly assigned. 

Other aspects that differ between acquiring 1H NMR spectral data and 2D NMR data are the 

sensitivity, acquisition time and quantitative power. 

Sensitivity depends on several factors, such as the gyromagnetic ratios (γ), the relative 

abundance of the measured nuclei, and the number of scans, among others. For naturally 

enriched samples, measuring carbon nuclei is less sensitive than proton nuclei (1.1% 

δ

δ δ
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abundance of 13C, γC is approximately one-fourth of the γH). Besides, for 2D NMR data, a 

less number of scans is used than in 1D NMR to avoid acquiring the signals during very long 

time periods. As a consequence, 2D 1H-13C HSQC NMR is substantially more insensitive 

than 1H NMR. Thus, it was observed that one of the main things that have hindered the 

development of 2D 1H-13C HSQC NMR metabolomics (if compared to 1H NMR 

metabolomics) is the considerable long acquisition times needed, which produces a 

substantial increase of expenses. In Scientific Article V and VI, more than 7 hours were used 

to acquire each 2D 1H-13C HSQC NMR spectrum of a metabolites yeast extract, while 30 

minutes were spent to acquire each 1H NMR spectrum.  

However, these acquisition times can be drastically reduced if only data-points representative 

of the relevant resonances were acquired, which can be obtained for instance using the 

Absolute Minimal Sampling (AMS) [366] approach. In AMS, only data relative to a reduced 

list of frequencies is acquired. Thus, to reduce significantly acquisition timed, the frequencies 

to be measured would be those previously detected with VOI approach in a representative 

sample [89].  

Moreover, since more than a 10-fold time reductions can be achieved by AMS [89,366], a 

larger number of scans can be considered, improving the quality of the acquired 2D NMR 

spectrum. 

Not all 2D NMR pulse sequences produce inherently quantitative results [163], although 

quantitative information can be reached if calibration curves are used [367]. Nevertheless, in 

metabolomics, most of the data interpretation is based on semi-quantitative data and 

metabolite fold-changes and, therefore, inherently quantitative data is not commonly 

required. In Scientific Article VI, we demonstrated that the investigation of an integral 

dataset from either 1D NMR or from 2D NMR metabolomics data by ASCA and PLS led 

to similar interpretation of the results.   

In this article, we compared the two sets of integrals, and we determined that discrepancies 

between them were caused by two reasons. First, because the lowest concentrated 

metabolites were hardly detected in the 2D NMR data. And second, because deconvolution, 

used for the 1D NMR dataset (because resonances were extremely overlapped) but not used 

for the 2D NMR dataset, might capture unwillingly intensities from other peaks or from 

noise. 

With the recent and upcoming advances [5,368] in NMR sensitivity, high-throughput 2D 

NMR metabolomics can be regarded as a promising tool because the time spent in the data 

analysis is considerably reduced when compared to 1D NMR metabolomics. Resonances 
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from 2D NMR data are more easily assigned and the integration step is faster because 

deconvolution is not usually required in this case. 
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4 CONCLUSIONS 

The scientific research included in this Chapter can be summarized in the following specific 

conclusions: 

1H NMR spectral data from metabolomic samples are intrinsically complex, because 

they are crowded with hundreds of resonances from several dozens of metabolites. 

Moreover, for some of these metabolites, their concentrations are varying similarly 

within defined ranges because they are co-regulated in order to maintain the organism 

alive. For these two reasons, the direct analysis of these datasets can produce unreliable 

results.  

MCR-ALS resolution of these datasets can be performed by the application of a 

windowing approach. That is, by resolving the whole 1H NMR spectral dataset in 

small windows. With this approach, resonances from co-regulated metabolites found 

in different windows will be resolved separately because they are analyzed in 

different MCR-ALS analysis. 

A simultaneous MCR-ALS analysis of all the 1H NMR spectral windows can be 

performed afterwards by using properly designed spectral window constraints. With 

these constraints, it is imposed that resonances can only be resolved in the spectral 

windows pre-defined by the analyst user. 

The proposed Decision Tree of Correlations (DTC) approach is confirmed to be a 

satisfactory strategy to build these spectral window constraints without requiring 

previous knowledge of samples composition. 

The MCR-ALS analysis of 1H NMR metabolomics datasets assessed by window 

spectral constraints allow the resolution of the concentration and 1H NMR spectra 

profiles of the pure chemical species. This resolution may not be achieved for all 

metabolites in the samples, depending on their concentration variance and on the 

degree of spectral overlapping. Concentration profiles were normally better resolved 

than spectra profiles and their integration usually produce good results. 

2D NMR spectra of metabolomics samples are also intrinsically complex. However, 

their spectra overlapping is less prominent due to the existence of the second dimension. 

However, SNR for 2D NMR spectra are commonly worse than for 1H NMR spectra. 

2D NMR spectra are sparse and more than 98 % of the variables (in the 1H-13C HSQC 

NMR) are usually only descriptive of noise. The presence of this very large amount 

of noise hampers any chemometric analysis performed on the data. 

The Variables of Interest (VOI) approach has been proposed as a method to filter 

noisy 2D (and 3D) NMR datasets. With this approach, only those variables 
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representative of meaningful resonances are kept, while variables relative to noise are 

discarded. Only variables that surpass a user-defined threshold and found 

contiguously clustered forming a resonance are selected.  

The intensities of the isolated resonances within these specific clusters can be directly 

summed separately.  

Regardless of the type of data used, 1H NMR and 1H-13C HSQC NMR gave similar 

results when they were analyzed with chemometric methods. 

Since resonance assignment and resonance integration are more easily performed for 

2D NMR data than for 1D NMR data, the total time spent for the analysis of 2D NMR 

metabolomics datasets is significantly shorter. 
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In this Thesis, the application of different chemometric methods to investigate the effect of 

environmental perturbations on the metabolism of yeast using NMR spectroscopic data is 

demonstrated. 

The analytical and biological conclusions resulting from the work performed in this Thesis 

are presented below: 

Analytical conclusions 

1. An analytical workflow for metabolomics studies in yeast is proposed, including the 

sample preparation, the acquisition of the NMR spectra, the import of data, the pre-

processing of data, the application of chemometric methods, the interpretation of 

the chemometric results, and the export of results. 

2. NMR metabolomics datasets are very complex to analyze because every NMR 

spectrum contains hundreds of resonances from dozens of metabolites. In 1H NMR 

metabolomics datasets, resonances are strongly overlapped. On the other hand, in 
1H-13C HSQC NMR datasets, data overlapping is less important, but 2D FT-NMR 

spectra are predominantly constituted by variables representative of noise, and the 

SNR is worse than for 1H NMR spectra. 

3. Metabolic variance in NMR metabolomics datasets is usually very restricted since 

metabolic processes are highly regulated in living systems. Because of this, the direct 

application of resolution methods cannot in general extract satisfactorily the NMR 

spectra and concentrations of the different metabolite constituents of the analysed 

samples. In this Thesis, we have proven that this type of datasets can be reliably 

resolved through the application of the MCR-ALS method on small size NMR 

spectral windows, and also through the application of the DTC-MCR-ALS 

approach developed in this Thesis, which uses spectral windows constraints. The 

advantage of using these two approaches lies in the fact that, even though these 

datasets usually contain a large number of resonances from several dozens of 

metabolites whose concentrations change very little, the number of detected 

metabolites in every window is small, which makes their analysis feasible. 

4. The influence of noise in 2D NMR spectra can be removed after application of the 

proposed VOI approach. After noise removal, chemometric analysis of 2D NMR 

spectral datasets led to the same results as the analysis of the corresponding dataset 

of 1D NMR spectra. Moreover, removal of noise from 2D NMR spectra allows for 

a faster and more accurate resonances integration. This is due to: (i) noise-filtered 

2D NMR spectra provide better structural information than the one-dimensional 

ones; (ii) resonances from 2D NMR spectra are less overlapped; and (iii) resonances 

integration from these NMR data are faster. These particularities cause that, in 
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overall, the data analysis of 2D NMR metabolomics datasets is faster than the data 

analysis of 1D NMR metabolomics datasets. 

Biological conclusions 

5. Application of the MCR-ALS method is shown to be an effective method for 

elucidating the metabolic processes occurring in biological organisms under 

environmental stress or any other biological perturbation. In order to extract the 

maximal possible biological information, it is important to use datasets as much 

comprehensive as possible. This includes time-course experiments and 

metabolomics experiments where two or more analytical platforms (e.g., NMR and 

UHPLC-MS) are used. 

6. Saccharomyces cerevisiae (strain BY4741) has shown to suffer an adaptation to changes 

in the growth temperature at a metabolic level. At low temperatures, metabolic 

pathways showing more activity are those required to maintain cells alive. For this 

reason, compounds characteristic from this biological state are metabolites from the 

Krebs cycle. In the lipidome, at low temperatures, phosphatidylinositols, short 

diacylglycerides and triacylglycerides with a low number of unsaturations are also 

accumulated. At optimal temperatures, amino acids and nucleotides are abundant 

because they are used to build cell structures and to promote growth. Regarding the 

lipid fraction, several phospholipid species including phosphatidylethanolamines 

and phosphatidylserines are found abundant. Finally, at higher temperatures, 

metabolites from fermentation pathways, and metabolites characteristic from stress 

are found at elevated concentrations. On the other hand, at higher temperatures, the 

lipidome accumulates some diacylglycerides, phosphatidylcholines, and long poly-

unsaturated triacylglycerides. 

7. In Saccharomyces cerevisiae (strain BY4741), the growth in drop-out media causes the 

complete metabolic, nutrient-specific, de-regulation. When these yeast cells grow 

under normal conditions, they follow the typical cell growth explained by the lag, 

the exponential, the diauxic shift and the stationary growth phases. On the other 

hand, starved cells follow different cell growth patterns. L-leucine-starved cells 

entered into a state of quiescence. The cell growth of uracil-starved cells was 

arrested, although the metabolic activity of the biosynthesis of uracil precursors was 

uncontrollably elevated. L-methionine-starved cells show a delay of the exponential 

growth phase. Finally, L-histidine-starved cells show a softly repressed yeast growth, 

attributed to the fact that a large number of resources were invested inefficiently to 

the biosynthesis of L-histidine precursors. 
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8. In Saccharomyces cerevisiae (strain S288C), using culture media containing different 

medium composition produces changes on yeast growth. Despite YPD (rich) and 

YSC (minimal) medium contain all nutrients required for the cells to grow, due to 

the limited variety of nutrients of YSC medium, yeast cells in YSC medium present 

a high metabolic activity, as most metabolites are de novo synthesized from glucose, 

ammonia, sulfate, and phosphate. On the contrary, YPD-cultured cells can directly 

uptake nutrients from the medium, resulting in a slightly faster cell growth. As a 

consequence of the major biosynthetic activity of YSC-cultured cells, a much diverse 

metabolome was observed under this condition than in YPD-cultured cells. At the 

stationary phase, cell growth is arrested due to the absence of nutrients in the 

medium. At this point, the two cultures confronted this situation differently. On one 

hand, cells grown in YPD medium enter into a hypo-metabolism state that can be 

prolonged for several weeks. On the other hand, cells grown in YSC medium 

maintain a high metabolism rate during this growth phase, resulting in a rapid loss 

of viability. 
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