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Abstract 
 

One of the main and most recent challenges of modern biology is to keep-up with growing amount 

of biological data coming from next generation sequencing technologies. Keeping up with the 

growing volumes of experiments will be the only way to make sense of the data and extract 

actionable biological insights. Large-scale comparative bioinformatics analyses are an integral part 

of this procedure. When doing comparative bioinformatics, multiple sequence alignments (MSAs) 

are by far the most widely used models as they provide a unique insight into the accurate measure 

of sequence similarities and are therefore instrumental to revealing genetic and/or functional 

relationships among evolutionarily related species. Unfortunately, the well-established limitation of 

MSA methods when dealing with very large datasets potentially compromises all downstream 

analyses. In this thesis I expose the current relevance of multiple sequence aligners, I show how 

their current scaling up is leading to serious numerical stability issues and how they impact 

phylogenetic tree reconstruction. For this purpose, I have developed two new methods, MEGA-

Coffee, a large scale aligner and Shootstrap a novel bootstrapping measure incorporating MSA 

instability with branch support estimates when computing trees. The large amount of computation 

required by these two projects was carried using Nextflow, a new computational framework that I 

have developed to improve computational efficiency and reproducibility of large-scale analyses like 

the ones carried out in the context of these studies.  
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Resumen 
 
Uno de los principales y más recientes retos de la biología moderna es poder hacer frente a la 
creciente cantidad de datos biológicos procedentes de las tecnologías de secuenciación de alto 
rendimiento. Mantenerse al día con los crecientes volúmenes de datos experimentales es el único 
modo de poder interpretar estos datos y extraer conclusiones biológicos relevantes. Los análisis 
bioinformáticos comparativos a gran escala son una parte integral de este procedimiento. Al hacer 
bioinformática comparativa, los alineamientos múltiple de secuencias (MSA) son con mucho los 
modelos más utilizados, ya que proporcionan una visión única de la medida exacta de similitudes 
de secuencia y son, por tanto, fundamentales para inferir las relaciones genéticas y / o 
funcionales entre las especies evolutivamente relacionadas. Desafortunadamente, la conocida 
limitación de los métodos MSA para analizar grandes bases de datos, puede potencialmente 
comprometer todos los análisis realizados a continuación. En esta tesis expongo la relevancia 
actual de los métodos de alineamientos multiples de secuencia, muestro cómo su uso en datos 
masivos está dando lugar a serios problemas de estabilidad numérica y su impacto en la 
reconstrucción del árbol filogenético. Para este propósito, he desarrollado dos nuevos métodos, 
MEGA-café, un alineador de gran escala y Shootstrap una nueva medida de bootstrapping que 
incorpora la inestabilidad del MSA con las estimaciones de apoyo de rama en el cálculo de 
árboles filogéneticos. La gran cantidad de cálculo requerido por estos dos proyectos se realizó 
utilizando Nextflow, un nuevo marco computacional que se ha desarrollado para mejorar la 
eficiencia computacional y la reproducibilidad del análisis a gran escala como la que se lleva a 
cabo en el contexto de estos estudios.  
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Preface 
 
The fast evolution of sequencing technologies combined with the exponential decrease in the cost 

of sequencing has resulted in an unprecedented growth of biological data. Such a volume of data 

is challenging traditional analysis procedures, which were typically based on the add-hoc 

combination of simple scripts running on a personal computer (PC). Bioinformaticians are now 

increasingly required to use high performance computing (HPC) and big data technologies to do 

even the simplest analysis. These new approaches bear increasing resemblance with the 

techniques developed by Google, Amazon, Facebook and other big-data companies. There is no 

sign that this trend may fade anytime soon, and the personalized medicine objectives, such as 

those laid out in the Obama Precision Medicine Initiative (PMI) suggest that large-scale analyses 

currently carried out in research environment will soon need to be deployed in production mode by 

hospital and health workers. This scaling up raises many important issues, the most pressing ones 

being reliability and reproducibility. The purpose of this thesis has been to explore the impact of 

large-scale data analysis on multiple sequence alignment and phylogenetic reconstruction, two of 

the most popular modeling methods in biology. The instability we have found may have important 

consequences for personalized medicine, owing to the growing importance of these methods in 

treatments relying on personalized genomics analyses. In this thesis I develop these issues and 

their consequences, I introduce the solutions I have developed, in the form of a new generation of 

computational tools allowing efficient and reproducible computation of complex pipeline based 

analyses. 
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Objectives 
 

The objectives of this PhD thesis are: 1) To critically assess Multiple Sequence Alignment (MSA) 

methods and the algorithmic frameworks they are based upon. 2) To quantify the effect that large-

scale aligners instability has on downstream analyses. We have focused this quantification on 

structural and evolutionary analysis. 3) To design a new large-scale aligner able to efficiently 

deliver high quality alignments of datasets containing hundred and thousand of sequences. 4) To 

effectively address the two major computational issues related the large-scale analyses: 

computational irreproducibility and the need for high performance computing (HPC). 

 

Chapter 1 is an introductory chapter that provides an exhaustive review of the development of 

multiple sequence alignment methods and their main applications. It is focused on the progress 

made over the past decade. It concludes that the main challenge for multiple sequence aligners 

will be to keep up with growing data set sizes. 

 

This raises concerns on the ability of existing large-scale aligners to deliver high quality alignments 

of datasets containing thousands of sequences. These concerns led to the work described in 

Chapter 2, where we show that the methods used to compute large-scale models incorporating 

over 100 sequences are numerically unstable and very sensitive to alignment uncertainty. We 

demonstrate that this instability results in equally unstable phylogenetic trees. We, then, quantify 

this effect and propose a novel bootstrap method, shootstrap, which estimates the combined effect 

of alignment uncertainty and evolutionary sampling on phylogenetic tree branch supports. 

 

Chapter 3 addresses the problem of improving multiple sequence aligner accuracy when dealing 

with large datasets. It introduces MEGA-Coffee a new alignment method able to simultaneously 

align any number of protein sequences in a quick and accurate manner, while minimizing 

alignment uncertainty and thus delivering much more stable alignments. 

 

Chapter 4 is dedicated to computational reproducibility. To perform most of the analyses described 

in these chapters complex pipelines, with many dependencies on external scripts, binaries and 

libraries, had to be constructed. Furthermore, the computational demands were so high that HPC 

technologies had to be used (i.e. cluster, Amazon cloud, Barcelona Super Computer). At the same 

time computational reproducibility of the analyses was critical. We therefore developed a pipeline 

orchestration tool, Nextflow, specifically designed to address the reproducibility problem in 

computational pipelines while allowing researchers to easily write parallel and distributed data 

analysis applications in clusters and clouds.  
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1. Introduction - Multiple Sequence Alignment Modeling:

Methods and Applications

Chatzou M, Magis C, Chang J-M, Kemena C, Bussotti G, Erb I, et al. Multiple sequence 

alignment modeling: methods and applications. Brief Bioinform. 2016 Nov;17(6):1009–23. 

DOI: 10.1093/bib/bbv099

1.1 Abstract 

This review provides an overview on the development of Multiple Sequence Alignment 

(MSA) methods and their main applications. It is focused on progress made over the last 

decade. The three first sections review recent algorithmic developments for protein, RNA/DNA 

and genomic alignments. The fourth section deals with benchmarks and explores the 

relationship between empirical and simulated data, along with the impact on method 

developments. The last part of the review gives an overview on available MSA local reliability 

estimators and their dependence on various algorithmic properties of available methods.  
15 

https://academic.oup.com/bib/article/17/6/1009/2606431
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2. Generalized bootstrap supports for protein sequences
phylogenetic analyses incorporating alignment
uncertainty

2.1 Abstract 

Phylogenetic reconstructions are essential in genomics data analyses and depend on accurate 

multiple sequence alignment (MSA) models. We show that all currently available large-scale 

progressive multiple alignment methods are numerically unstable and produce significantly 

different output when changing sequence input order. We used the HOMFAM protein sequences 

dataset to show that on datasets larger than 100 sequences, this instability affects on average 

21% of the residues when considering the most stable aligners. The resulting Maximum Likelihood 

trees estimated from these multiple sequence alignments are equally unstable with over 38% of 

the branches being sensitive to the sequence input order. We established that about two-thirds of 

this uncertainty stems from unordered nature of children nodes within the guide trees used to 

estimate MSAs. To quantify this uncertainty we developed shootstrap, a novel approach that 

estimates the combined effect of alignment uncertainty and evolutionary sampling on phylogenetic 

tree branch supports. Compared to the regular bootstrap procedure, shootstrap provides a more 

informative support estimate.  

Chatzou M, Floden EW, Di Tommaso P, Gascuel O, Notredame C, Halanych K. Generalized 
Bootstrap Supports for Phylogenetic Analyses of Protein Sequences Incorporating Alignment 
Uncertainty. Halanych K, editor. Syst Biol. 2018 Mar 29; DOI: 10.1093/sysbio/syx096

https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syx096/4948750?redirectedFrom=fulltext
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3. MEGA-Coffee: Fast, accurate and stable large-scale

alignments

Chatzou M, Kemena C, Steinegger M, Sodding J, Notredame C (2016). MEGA-Coffee: Fast,

accurate and stable large-scale alignments. In preparation   

3.1 Abstract 

Multiple sequence alignment (MSA) is a critical step towards comparing sequence similarities and 

revealing genetic and/or functional relationships among evolutionarily related species. MEGA-

Coffee is a novel and highly accurate method for producing stable and biological meaningful 

alignments of any number of sequences. MEGA-Coffee accuracy and scaling to large number of 

sequences are essential for coping with the ever-increasing information of biological databases 

and for better problem-driven data analyses, ultimately leading to higher-quality biological insights. 

MEGA-Coffee, outperforms existing alignment methods on large and/or difficult-to-align data sets 

in both terms of alignment quality and speed. At the same time MEGA-Coffee is less affected by 

alignment uncertainty compared to these methods. This opens up a new set of possibilities for 

users to utilize the information contained in large datasets, while re-enforcing reproducibility of data 

and biological interpretations. 
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3.2 Introduction 
 

Multiple Sequence Alignment (MSA) is one of the most widely used bioinformatics methods in 

biology for the simultaneous comparison of functionally and/or evolutionarily related sequences 

[153] [1]. Usually they are an intermediate step towards more sophisticated applications such as 

phylogenetic reconstruction, profile estimation (often referred to as Hidden Markov Models, HMM), 

structural predictions, promoter analysis, active site identification, RNA secondary structure 

prediction, which are only some examples that depend on MSA. Building accurate MSAs is thus 

essential for these downstream analysis and biological applications to be correct.  

 

For small data sets most recent alignment programs are able to compute accurate alignments in 

reasonable time. However the number of sequences to align is increasing rapidly and posing 

problems for current alignment algorithms. One well know issue is accuracy, and it has been 

extensively documented that the growing number of sequences has a negative impact on the 

accuracy of all the available heuristics [112] [14]. All these heuristics rely on the progressive 

algorithm and in this framework errors made early in the alignment process propagate and cause 

secondary alignment mistakes. More sequences means a higher number of initial errors and since 

each error has the potential to ruin the alignment, the probability of this happening becomes 

higher. This problem is further aggravated by the fact that methods like consistency [9], that have 

been shown to increase the accuracy of the resulting alignments scale poorly with the number of 

sequences. Other methods that make use of structural information suffer from similar problems. 

This is becoming more and more concerning as protein families with thousands of sequences are 

becoming more common as a result of various wide scale genome-sequencing projects. 

 

Currently, the only methods that can routinely make alignments of more than about 10,000 

sequences are Clustal-Omega [14], Mafft/PartTree [13] and the most recent ones Pasta [27] and 

Upp [154]. These methods are fast but efficiency comes at the cost of a sacrificed accuracy. 

Furthermore they are very sensitive to alignment uncertainty. In this paper, we introduce a new 

method, MEGA-Coffee, which allows alignments of very large sizes to be produced in an accurate 

and fast manner, while minimizing the effects of alignment uncertainty. The main ingredient of this 

accurate scaling up strategy is the guide tree. The most standard procedures for estimating a 

guide tree involve comparing all N sequences to each other, assigning time and memory 
requirements of O(N2). With MEGA-Coffee, we use a novel Agglomerative Hierarchical Greedy 

Clustering approach, StarClust, that has a complexity of O(Nlog(N)).  

 

In a nutshell the MEGA-Coffee algorithm consists of three major steps: (I) filtering out the 

sequences that have up to 95% sequence identity, (II) clustering the remaining sequences utilizing 
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“StarClust”, an agglomerative hierarchical greedy clustering algorithm and (III) aligning the 

clustered sequences. After the final alignment has been generated MEGA-Coffee offers the option 

to trim the aligned sequences in order to remove noise and increase alignment quality. We have 

used this new implementation to generate alignments of about 100,000 sequences in a 

manageable amount of time. In benchmark tests, our new algorithm can has shown to deliver 

MSAs of comparable accuracy to existing methods for small datasets (<100 seqs) and significantly 

more accurate than the most widely used methods for large datasets (>100 seqs). 

 

3.3 Results 
 
 
Table 1. HOMFAM benchmark results for different large-scale aligners. Accuracy achieved and its 
STDEV in Total Column scores (TC) are shown for different family size ranges. The average run time in 
minutes is also shown for every range. 
 
 OVERALL 

93 < N < 93,681 
(94 families) 

SMALL 
93< N < 2,957 
(41 families) 

MEDIUM 
3,127 < N < 9,105 

(33 families) 

BIG 
10,099 < N < 93,681 

(20 families) 

Aligner TC 
(%) 

STDEV 
(%) 

Time 
(m) 

TC 
(%) 

STDEV 
(%) 

Time 
(m) 

TC 
(%) 

STDEV 
(%) 

Time 
(m) 

TC 
(%) 

STDEV 
(%) 

Time 
(m) 

MEGA-Coffee 
default 66.98 0 4 72.16 0 0.5 70.06 0 4 51.29 0 12 

MEGA-Coffee 
noSync 

66.92 2.74 4 71.73 2.28 0.5 70.72 2.88 4 50.80 3.48 12 

Clustal-Omega 61.93 5.94 39 69.32 5.12 16 64.41 6.46 40 42.69 6.77 86 

Upp 57.66 7.38 20 60.83 7.67 5 60.43 7.66 22 46.60 6.32 44 

Pasta 56.78 7.03 41 60.70 7.41 7 58.19 6.74 38 46.44 6.74 113 

Mafft 41.78 7.18 1 51.58 7.31 0.5 40.17 7.83 1 24.37 5.85 4 

 

 

 

The standard method for measuring the accuracy of multiple alignment algorithms is to use a 

benchmark. A benchmark usually consists of test sequences with known structure and the 

corresponding reference alignments, generated using three-dimensional structural information. 

Owing to the lack of structures, large scale aligners are benchmarked using a small collection of 

structures with an available reference alignment. These sequences are then embedded within a 

larger set of sequences.  Here we used Prefab [12]  and BaliBase [110]  benchmarks to quantify 

the quality of small MSAs (<100 sequences) generated by MEGA-Coffee and HOMFAM [15, 116] 

for larger MSAs (>100 sequences). 
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Figure 1. Benchmarking MEGA-Coffee on HOMFAM benchmark dataset using TC score. (A) MEGA-
Coffee outperforms existing large-scale aligners in terms of accuracy. Moreover MEGA-Coffee default has a 
zero stdev of accuracy, suggesting it will always deliver the same alignment regardless of the sequence 
input-order. This is not the case for the other aligners, for which the delivered alignment accuracy depends 
on sequence-input order. (B) When relative accuracies are compared we see that MEGA-Coffee accuracy 
degrades less with the numbers of sequences, compared to the other methods. This is especially true for 
large datasets (>10000 seqs). Accuracy and Stdev of accuracy for MEGA-Coffee, Clustal-Omega, Mafft, 
Pasta and Upp with respect to the number of sequences. Points represent cumulative moving averages of 
TC scores; x-axis, logarithmic and y-axis, linear scale and correspond to a family in HOMFAM Benchmark 
dataset. The error-area represents the stdev of accuracy.  
 
 
Figure 1 and Sup. Fig 1 shows the accuracy results of MEGA-Coffee, Clustal-Omega, Mafft, Pasta 

and Upp on every test case in HOMFAM. The graph is plotted as moving average TC score for all 

test cases with N or fewer numbers of sequences. N is plotted on the horizontal axis using log 

scale. From figure 1A two basic conclusions can be drawn: first that MEGA-Coffee outperforms in 

terms of MSA accuracy the existing large-scale aligners; second that MEGA-Coffee is less affected 

by alignment uncertainty compared to the other methods. This makes MEGA-Coffee a more stable 

aligner (with the default version of MEGA-Coffee delivering always the same MSA (ACC STEDV = 

0)). These conclusions prove especially true when the aligners are asked to align medium 

(3000<sequences<10000) and large datasets (>10000 sequences). While on small datasets 

(<3000 sequences) MEGA-Coffee achieves slightly better results than the second best performing 

on average aligner Clustal-Omega, 72.16% and 69.32% respectively (Table 1), on medium and 

large size datasets it reaches 70.06% and 51.29% respectively, meaning almost 6 and 9 points of 

accuracy higher than Clustal-Omega (64.41% and 42.69% respectively) (Table 1). Here we have 

to note that on large-size datasets Upp and Pasta deliver MSAs of higher quality compared to 

Clustal-Omega (46.60%, 46.44% and 42.69% respectively) but not MEGA-Coffee (51.29%).  When 
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it comes to the effect of alignment uncertainty, that may cause aligners to deliver MSAs of different 

quality whenever the same sequences are provided in different input-orders, MEGA-Coffee 

(noSync behavior) is less affected (average STDEV of accuracy 2.74%) than Clustal-Omega – 

5.94%, Pasta – 7.03%, Upp – 7.38% and Mafft – 7.18% (Table 1). MEGA-Coffee default behavior 

is to always deliver the same high quality MSA regardless of sequence input-order. It achieves this 

by performing initially an alphanumeric ordering of the sequences and then putting in the left node 

of the guide-tree the longest sequence or profile MSA. When MEGA-Coffee is run with the  “--no-

sync” flag both this actions are turned off. 

 

 
Table 2. HOMFAM benchmark results for Clustal-Omega when provided a MEGA-Coffee 
tree. Accuracy achieved in Total Column scores (TC) and Sum of Pairs (SoP) is shown for 
different family size ranges. The average run time in minutes is also shown for every range. 
 

 OVERALL 
93 < N < 93,681 

(94 families) 
 

SMALL 
93< N < 2,957 
(41 families) 

MEDIUM 
3,127 < N < 9,105  

(33 families) 

BIG 
10,099 < N < 93,681  

(20 families) 

Aligner TC 
(%) 

SoP 
(%) 

Time 
(m) 

TC 
(%) 

SoP 
(%) 

Time 
(m) 

TC 
(%) 

SoP 
(%) 

Time 
(m) 

TC 
(%) 

SoP 
(%) 

Time 
(m) 

MEGA-Coffee 66.98 84.21 4 72.16 87.19 0.5 70.06 86.50 4 51.29 74.35 12 

Clustal-Omega 61.93 80.64 39 69.32 85.73 16 64.41 82.67 40 42.69 66.87 86 

Clustal-Omega  
with  

MEGA-Coffee tree  
 

67.63 84.53 29 71.13 86.80 10 72.34 87.82 34 52.65 74.47 65 

Clustal-Omega iter 2 64.77 81.61 166 71.94 86.89 81 68.35 84.62 188 44.15 65.80 304 

Clustal-Omega iter 2  
with  

MEGA-Coffee tree 
66.28 82.73   160 73.77 87.81 87 69.16 85.31 162 46.17 68.04 304 

 
 

 

Another trend that the figure reveals is that alignment accuracy seems to be degrading with larger 

numbers of sequences. To investigate this further we asked whether the difficulty in aligning the 

families in HOMFAM is due to the big number of sequences or if it reflects the “seed” sequences 

(reference sequences with known structure) for these families being harder to align. To answer this 

question we calculated (Fig. 1B, Sup. Fig. 1B) the ratio between the accuracy of reference 

sequences when aligned with the rest of the sequences and the accuracy one would obtain if 

aligning the reference sequences alone (relative accuracy). If this perspective ratio equals 1, it 

means that the reference sequences are aligned in the same way when aligned alone or when 

aligned along with the rest sequence members of the family. Otherwise a ratio lower than 1 



 72 

indicates that the MSA method produces MSAs of lower quality than one would obtain if aligning 

the seed sequences alone a ratio is higher than 1 it indicates the opposite. As demonstrated in Fig. 

1B MEGA-Coffee, Clustal-Omega, Pasta and Upp seem to be improving the alignment of the 

reference sequences (ratio>1) when adding up to 1000 sequences, passed that point the 

improvement over the direct seed alignments becomes limited (ratio=1) and starts degrading 

above 5000 sequences. MEGA-Coffee appears to be less affected than the other methods. When 

considering the very datasets (>10000 seqs) the relative improvement of MEGA-Coffee over the 

other methods is especially significant. Figures 1B and Sup fig. 1B illustrate how sensitive the 

algorithmic framework behind every method is, when it comes to the number of sequences they 

are asked to align. In an ideal world alignment methods should not care about the number of 

sequences to align (given that the extra sequences bring more information than noise). This is not 

the case though for existing methods. Although MEGA-Coffee, also sees its accuracy degrading 

with higher number of sequences, it is less affected by it compared to other methods, resulting in 

higher performance with bigger numbers of sequences and making MEGA-Coffee algorithmic 

framework a more prominent framework to tackle this problem. This is thus a future direction we 

are working on. 
 

MEGA-Coffee owes it’s performance to the StarClust algorithm, (Supplementary Material). We 

show here that this improved clustering is the driving force behind the improved performances of 

MEGA-Coffee. We did show this by measuring the effect of feeding ClustalOmega with the 

StarClust guide trees (Figure 2). The results are very clear and indicate that when Clustal-Omega 

is fed with the MEGA-Coffee guide-trees, it generates alignments of accuracy comparable to 

MEGA-Coffee and significantly better than its own default behavior. Because StarClust runs much 

faster than mBed, this improvement comnes along with faster computation by ClustalO. When 

compared against Clustal-Omega run with 2 iterations (Table 2), Clustal-Omega with MEGA-

Coffee tree is still much more accurate. It is worth mentioning that when Clustal-Omega is asked to 

iterate over the MSA generated from the MEGA-Coffee tree, Clustal-Omega degrades the 

accuracy of the MSA. This experiment highlights that MEGA-Coffee guide-trees, generated using 

StarCust, are superior to Clustal-Omega guide-trees, generated using mBed (Table 2). 

 

Another angle to address the problem of alignment uncertainty is to identify and remove the 

sequences that will tend to be noisier and force the rest of the sequences to align in peculiar ways. 

This approach was used to generate very large high quality alignments used for evolutionary 

analysis purposes [26]. MEGA-Coffee offers this possibility though its trimming algorithm. Table 3 

and Sup. Table 3 show that on average when sequences in HOMFAM are trimmed, MEGA-Coffee 

is able to deliver MSAs of significantly increased accuracy and stability, when compared to random 

removal of sequences. Trimming, though, does not have the same effect on small and large 
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datasets. When applied to small datasets (<3000 sequences) it has little to no effect in both terms 

of accuracy and stability, but when applied to large datasets (>10000 sequences) MEGA-Coffee’s 

performance increases from 51.30% to 57.23% at 25% trimming, 57.85% at 50% trimming and 

62.36% at 75% trimming. At the same time instability decreases with the STDEV of accuracy 

dropping from 3.48% to 2.86% at 25% trimming, 3.02% at 50% trimming and 1.70% at 75% 

trimming. Although an increase in both accuracy and stability can be observed when we just 

randomly remove the same amount of sequences, due decrease in sequence number, it is not as 

significant as when sequences are removed using MEGA-Coffee’s trimming algorithm.  

 

 

 
 
Figure 2. Clustal-Omega performance when given a MEGA-Coffee guide-tree in comparison 
with MEGA-Coffee and Clustal-Omega default performance. Clustalo-Omega achieves 
superior performance when using the MEGA-Coffee guide-tree to construct an MSA. This 
highlights the critical role guide-tree plays and indicates that MEGA-Coffee delivers better guide-
trees, resulting thus in high quality MSAs. Accuracy for MEGA-Coffee, Clustal-Omega with MEGA-
Coffee tree and Clustal-Omega default, with respect to the number of sequences. Points represent 
cumulative moving averages of TC scores; x-axis, logarithmic and y-axis, linear scale and 
correspond to a family in HOMFAM Benchmark dataset.  
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When it comes to very small datasets (<100 sequences) (Sup. Table 1 and 2) MEGA-Coffee 

achieves comparable performance to the best methods, because of the use of consistency. When 

looking at run times Mafft default is exceptionally fast in the smaller test cases (Sup. Table 1 and 

2) and Mafft parttree is very fast on the bigger families (Table 1 and Sup. 3). In the case of the 

bigger families in HOMFAM benchmark MEGA-Coffee is 4x slower overall than Mafft, but 10x 

faster than Clustal-Omega and Pasta, and 5x times faster than Upp.  

 
 

Table 3. MEGA-Coffee HOMFAM benchmark results on datasets after normal trimming and random 
sequence removal (trim rand). Accuracy achieved and its STDEV in Total Column scores (TC) are shown 
for different family size ranges. The average run time in minutes is also shown for every range. 
 
 OVERALL 

93 < N < 93,681 
(94 families) 

SMALL 
93< N < 2,957 
(41 families) 

MEDIUM 
3,127 < N < 9,105 

(33 families) 

BIG 
10,099 < N < 93,681 

(20 families) 

Trimming  TC 
(%) 

STDEV 
(%) 

Time 
(m) 

TC 
(%) 

STDEV 
(%) 

Time 
(m) 

TC 
(%) 

STDEV 
(%) 

Time 
(m) 

TC 
(%) 

STDEV 
(%) 

Time 
(m) 

trim 75 71.78 1.47 5 72.66 1.75 0.5 76.38 0.97 4 62.36 1.70 14 

trim 50 71.65 1.85 5 74.50 1.73 0.5 76.49 1.30 4 57.85 3.02 16 

trim 25 70.95 1.97 6 74.18 1.90 0.5 75.27 1.53 4 57.23 2.86 19 

trim rand 75 70.18 1.96 5 73.75 1.62 0.5 74.12 2.05 4 56.34 2.52 14 

trim rand 50 68.70 2.48 5 72.83 2.00 0.5 72.83 2.69 4 53.43 3.11 16 

trim rand 25 67.44 2.85 6 71.79 2.58 0.5 71.44 2.68 4 51.95 3.68 19 

 
 

3.4 Discusion  
 
Since the mid 1980s the main breakthroughs in MSA methods have been progressive alignment 

and the use of consistency. Most recent work has concerned the development of “fast” guide tree 

construction algorithms (mBed used by Clustal-Omega, Mafft PartTree) so as to speed up 

alignment estimation. Both PartTree and mBed are fast but at the expense of accuracy, as judged 

by the benchmarks. Thus this new generation of aligners has been focusing mainly in making 

alignment methods able to scale with big number of sequences while trying to maximize MSA 

accuracy. Few attempts however were done to propose solutions to the problem of alignment 

uncertainty, which results in highly unstable MSAs the larger the evolutionary distance and the 

number of sequences to be aligned is. This instability can so easily occur by just changing the 

sequence-input order, which in turn raises many concerns about the confidence of the MSA 
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models and even the reproducibility of the MSA itself and every downstream procedure based on 

it.  
 

We demonstrated that the major cause of MSA instability is the unordered nature of child nodes in 

the binary guide tree. Indeed, while the dynamic programming (DP) algorithm used to do pairwise 

alignments at every node is guaranteed to return the best possible scoring alignment of the two 

considered child nodes, this algorithm may deliver different – but equally optimal – pairwise 

alignments when inverting the input order of the sequences. This effect - sometimes referred to as 

high-road/low-road resolution - results from the handling of tiebreaks in the DP implementation and 

is an issue when progressively assembling MSAs. Therefore, it should come as no surprise that 

the larger a dataset and the lower its sequence identity level, the harder and the less stable its 

alignment becomes. This explains why very large datasets are so sensitive to the re-ordering 

effect. 
 

MEGA-Coffee is a novel and highly accurate method for producing stable and biological 

meaningful alignments of any number of sequences. We argue that the MEGA-Coffee, accuracy 

and scaling to higher number of sequences are essential for coping with the ever-increasing 

information of biological databases and for better problem-driven data analyses, ultimately leading 

to higher-quality biological insights. Aside from its improved computational efficiency, MEGA-

Coffee, offers dramatic improvements over the standard T-Coffee and the majority of existing 

alignment methods on large and/or difficult-to-align data sets in both terms of speed and accuracy. 

At the same time MEGA-Coffee is less affected by alignment uncertainty compared to existing 

methods. This makes it a more stable aligner that guarantees delivery of the same high quality 

alignments, regardless of sequence input-order, ensuring thus the reproducibility of data and 

biological interpretations. 

 

The key to increasing and/or retaining high accuracy with a higher number of sequences, while 

minimizing the effects of alignment uncertainty, is the use of our novel clustering method, 

StarClust. The notion behind this algorithm design is that even the best alignment methods have 

difficulty aligning sequence data sets when they are large and/or have evolved with many 

substitutions and indels. The MEGA-Coffee decomposition technique seeks to break the large data 

set into smaller subsets, so that each of the smaller subsets has higher sequence identity and thus 

smaller evolutionary distance, making their alignment much easier and less erroneous. Moreover, 

the merger technique does not undo the alignments of the subsets but seeks to merge the 

improved subset alignments into a larger MSA, which maintains the improved accuracy. In general, 

this means that very large data sets that cannot be analyzed by standard alignment methods in the 
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same timeframes (eg. Standard T-Coffee, Probcons, MSAprobs etc.), can be analyzed using 

MEGA-Coffee. 

 

Another way of dealing with the problem of alignment uncertainty is by trying to identify and 

remove the sequences that will tend to be noisier and force the rest of the sequences to align in 

peculiar ways. MEGA-Coffee offers this possibility thanks to its trimming algorithm. We 

demonstrate here that the MEGA-Coffee trimming approach is able to deliver MSAs of significantly 

increased accuracy and stability. Trimming can be a beneficial approach, when it comes 

to improving the alignment quality for large datasets, for which we can afford to remove a 

significant number of sequences without affecting much the information the MSA carries. Though, 

we do not expect trimming to benefit the same large and small datasets. In the case of small 

datasets (<1000), removing sequences can prove more crucial and lead to removal of more 

information than noise. 
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3.5 Supplementary Material 
 

3.5.1 Supplementary Tables 
 
 
Supplementary table 1. Balibase results. Total column scores (TC) are shown for different families in 
Balibase that correspond to different identity ranges; the second column is the average score over all test 
cases. The average run time in seconds is shown in the last column along with whether the method is 
consistency based or not. 
 

 
 

Aligner 

Overall 
TC (%) 

(218 families) 

BB11 
TC (%) 

 (38 families) 

BB12 
TC (%) 

 (44 families) 

BB2 
TC (%) 

 (41 families) 

BB3 
TC (%) 

 (30 families) 

BB4 
TC (%) 

 (49 families) 

BB5 
TC (%) 

(16 families) 

Overall AVG 
Time (sec) 

/ Consistency 

MSAprobs 60.7 44.1 86.5 46.4 60.7 62.2 60.8 57 / Yes 

Probalign 58.9 45.3 86.2 43.9 56.6 60.3 54.9 46 / Yes 

Mafft 
(auto) 

58.8 43.9 83.1 45.0 58.1 60.5 59.1 7  / Mostly 
(203/218) 

Probcons 55.8 41.7 85.5 40.6 54.4 532 57.3 60 / Yes 

MEGA-
Coffee 

55.5 40.4 85.7 43.8 56.4 50 56.3 50 / Yes 

ClustalO 55.4 35.8 78.9 45.0 57.5 57.9 53.3 3 / No 
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Supplementary table 2. Prefab results. Total column scores (TC) are shown for different percent identity 
ranges; the second column is the average score over all test cases. The average run time in seconds is 
shown in the last column along with whether the method is consistency based or not. 
 

 
 

Aligner 

Overall 
TC (%) 

(1682 families) 

0<ID<20 
TC (%) 

(912 families) 

20<ID<40 
TC (%) 

 (563 families) 

40<ID<70 
TC (%) 

 (117 families) 

70<ID<100 
TC (%) 

 (90 families) 

Overall AVG 
Time (sec) 

/ Consistency 

MSAprobs 73.7 59.1 88.9 96.5 97.1 30 / Yes 

Mafft 
(auto) 

72.1 56.9 87.6 96.1 97.9 3 / Yes 

MEGA-
Coffee 

71.9 56.8 87.3 96.3 97.7 29 / Yes 

Probalign 71.9 56.3 88.1 96.1 97.7 21 / Yes 

Probcons 71.7 56.2 87.6 95.5 97.2 28 / Yes 

ClustalO 70 53.5 86.6 96.7 98 1 / No 

 



 
Supplementary table 3. HOMFAM results. HOMFAM benchmark results for different large-scale aligners and the MEGA-Coffee benchmark results on these 
datasets after normal trimming and random sequence removal (trim rand) Accuracy achieved and its STDEV in Total Column scores (TC) and Sum of Pairs scores 
(SoP), as well as their STDEV are shown for different family size ranges. The average run time in minutes is also shown for every range. 
 
 

 OVERALL 
93 < N < 93681 

(94 families) 

SMALL 
93< N < 2957 
(41 families) 

MEDIUM 
3127 < N < 9105 

(33 families) 

BIG 
10 099 < N < 93 681 

(20 families) 
 

Aligner 
TC 
(%) 

TC  
STDEV 

(%) 

SoP 
(%) 

SoP 
STDEV 

(%) 

Time 
(m) 

TC 
(%) 

TC 
STDEV 

(%) 

SoP 
(%) 

SoP 
STDEV 

(%) 

Time 
(m) 

TC 
(%) 

TC 
STDEV 

(%) 

SoP 
 (%) 

SoP 
STDEV 

(%) 

Time 
(m) 

TC 
(%) 

TC  
STDEV 

(%) 

SoP 
 (%) 

SoP 
STDEV 

(%) 

Time 
(m) 

M
EG

A
-C

of
fe

e 
 

 

trim  
75 

71.78 1.47 87.37 0.83 5 72.66 1.75 87.18 0.92 0.5 76.38 0.97 90.70 0.53 4 62.36 1.70 82.26 1.16 14 

trim  
50 

71.65 1.85 87.42 1.02 5 74.50 1.73 88.47 0.97 0.5 76.49 1.30 90.71 0.71 4 57.85 3.02 79.85 1.63 16 

trim  
25 

70.95 1.97 86.88 1.08 6 74.18 1.90 88.38 1.03 0.5 75.27 1.53 89.95 0.84 4 57.23 2.86 78.74 1.59 19 

trim  
rand 

75 

70.18 1.96 86.22 1.07 5 73.75 1.62 88.19 0.88 0.5 74.12 2.05 88.91 0.94 4 56.34 2.52 77.74 1.68 14 

trim  
rand 

50 

68.70 2.48 85.18 1.33 5 72.83 2.00 87.53 1.07 0.5 72.83 2.69 88.27 1.27 4 53.43 3.11 75.27 1.95 16 

trim  
rand 

25 

67.44 2.85 84.42 1.48 6 71.79 2.58 86.85 1.22 0.5 71.44 2.68 87.44 1.31 4 51.95 3.68 74.47 2.31 19 

MEGA-C 
default 

66.98 0 84.21 0 4 72.16 0 87.19 0 0.5 70.06 0 86.50 0 4 51.29 0 74.35 0 12 

MEGA-C 
noSync 

66.92 2.74 83.93 1.45 4 71.73 2.28 86.75 1.09 0.5 70.72 2.88 86.67 1.42 4 50.80 3.48 73.64 2.22 12 

ClustalO 61.93 5.94 80.64 3.65   39 69.32 5.12 85.73 2.99 16 64.41 6.46 82.67 3.97 40 42.69 6.77 66.87 4.46 86 

ClustalO 
iter 2 

64.77 - 81.61 - 166 71.94 - 86.89 - 81 68.35 - 84.62 - 188 44.15 - 65.80 - 304 

Upp 57.66 7.38 77.63 5.17 20 60.83 7.67 79.05 5.02 5 60.43 7.66 80.18 5.77 22 46.60 6.32 70.50 4.51 44 

Pasta 56.78 7.03 75.10 4.89 41 60.70 7.41 78.57 4.81 7 58.19 6.74 75.50 4.97 38 46.44 6.74 67.30 4.91 113 

Mafft 41.78 7.18 64.59 5.68 1 51.58 7.31 73.43 4.93 0.5 40.17 7.83 65.25 6.61 1 24.37 5.85 45.38 5.70 4 
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Supplementary table 4. MSA programs used to benchmark MEGA-Coffee against. The programs 
can be obtained from the URLs given below. 
 

Tool Url 

T-Coffee Version 11 http://www.tcoffee.org/ 

Clustal-Omega, v1.2 http://www.clustal.org/omega/ 

Mafft 6.857 http://mafft.cbrc.jp/alignment/software/source.html 

MSAProbs 0.9.4   http://sourceforge.net/projects/msaprobs/files/ 

Probalign v1.4   http://cs.njit.edu/usman/probalign/ 

Probcons version 1.12 http://probcons.stanford.edu/download.html 
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3.5.2 Supplementary Figures 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary figure 1. Benchmarking MEGA-Coffee on HOMFAM benchmark dataset using SoP score. (A) MEGA-Coffee outperforms existing large-scale 
aligners in terms of accuracy. Moreover MEGA-Coffee default has a zero stdev of accuracy, suggesting it will always deliver the same alignment regardless of the 
sequence input-order. This is not the case for the other aligners, for which the delivered alignment accuracy is highly linked to sequence-input order. (B) When 
relative accuracies are compared we see that MEGA-Coffee accuracy degrades less with the numbers of sequences, compared to the other methods. This is 
especially true for large datasets (>10000 seqs). Accuracy and Stdev of accuracy for MEGA-Coffee, Clustal-Omega, Mafft, Pasta and Upp with respect to the 
number of sequences. Points represent cumulative moving averages of SoP scores; x-axis, logarithmic and y-axis, linear scale and correspond to a family in 
HOMFAM Benchmark dataset. The error-area represents the stdev of accuracy. 
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Supplementary figure 2. Clustal-Omega performance when given a MEGA-Coffee guide-tree in 
comparison with MEGA-Coffee and Clustal-Omega default performance. Clustalo-Omega achieves 
superior performance when using the MEGA-Coffee guide-tree to construct an MSA. This highlights the 
critical role a good guide-tree plays and indicates that  MEGA-Coffee delivers better guide-trees, resulting 
thus in high quality MSAs. Accuracy for MEGA-Coffee, Clustal-Omega with MEGA-Coffee tree and Clustal-
Omega default, with respect to the number of sequences. Points represent cumulative moving averages of 
SoP scores; x-axis, logarithmic and y-axis, linear scale and correspond to a family in HOMFAM Benchmark 
dataset.  
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3.5.3 Materials and Methods 
 

3.5.3.1 MEGA-Coffee Algorithm 
 
The MEGA-Coffee algorithm consists of three major steps: (I) filtering out the sequences that have 

up to 95% sequence identity, (II) clustering the remaining sequences utilizing a hierarchical greedy 

clustering algorithm, which we call “StarClust”, (III) aligning the clustered sequences. After the final 

alignment has been generated, thanks to its trimming algorithm, MEGA-Coffee can detect and 

remove noisy and/or problematic sequences and realign only the remaining ones.  

 

3.5.3.1.1 Filtering  

 

The filtering algorithm starts by first translating each sequence into a corresponding one that 

consists of a 6 amino acid alphabet instead of 20 ( the following reduced alphabet was used for 
this ("AST =>A, CP =>C, DEHKNQR =>D, FWY=>F, G, ILMV=>I") ). This transformation allows 

one to quickly group not only identical, but also very similar sequences, by means of efficient 

hashing. Then the remaining sequences are compared to each other by estimating the hamming 

distance, which has a complexity of O(n). If two given sequences have a hamming distance higher 

than 90% then they are grouped together. Sequences that are grouped by this method have a 

sequence identity that ranges from 100 to 90%. Finally the grouped sequences are removed from 

the dataset to be aligned, allowing in it only one representative sequence for each group, and are 

introduced into the final alignment based on their representatives. 

 

 

3.5.3.1.2 Clustering  
 

The StarClust algorithm is a hierarchical bottom-up greedy approach that divides the sequences to 

be aligned into a hierarchy of clusters. A cluster is defined by one sequence, known as the 

centroid-representative sequence. Every sequence in the cluster (member sequence) must have 

similarity above a given identity and coverage threshold T with the centroid, so that two criteria are 

fulfilled: (I) all centroids have similarity < T to each other, and (II) all member sequences have 

similarity >= T to a given centroid sequence.  
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StarClust will perform a maximum of 8 rounds of clustering. In the first round each sequence is 

assigned to a cluster if the identity and coverage from the centroid-representative sequence is 

>=80%. In the following sub-clustering rounds the identity and coverage threshold (T) is lowered by 

10%, each time, until it reaches T=10%, which is the lowest identity and coverage threshold mega 

can handle. Sub-clustering of the sequences can stop if after a clustering round a specific number 

of clusters is reached (the default threshold is 5000 clusters for a good speed to sensitivity tradeoff 

and can be changed with the parameter --cluster_number). Once a round of clustering is 

completed the sequences within the clusters are progressively aligned following the order of an all-

against-all Smith-Waterman distance-based guide-tree. Next each centroid-representative 

sequence is scanned to check if gaps have been induced to it due to aligning, if yes then the gaps 

are filled with parts of other sequences and the representative is transformed to a hybrid 

sequence, the “star-sequence”. The name originates from the concept of center star alignment, 

since these special sequences are the center stars. Finally these star-sequences are passed to the 

next round of clustering.  

 

StarClust clusters the sequences by using the same greedy incremental algorithm as implemented 

by Holm and Sander [155]. It starts by sorting the sequences in order of decreasing length, so that 

the longest sequence appears first. This sequence becomes the centroid-representative sequence 

of the first cluster. Then each remaining sequence is compared to the existing centroid-

representative sequences and if identity and coverage are above a given threshold (T) it is 

assigned to that cluster; otherwise it becomes the centroid of a new cluster.  

 

Identity and coverage are determined by computing Smith-Waterman alignments between the 

actual sequences and the centroid-representative ones. To speedup the SW alignment 

computation, which has a complexity of O(n*m), we use a really fast vectorized implementation of 

it [156] [157].  

 

3.5.3.1.3 Aligning  

 

After clustering is completed, the alignment of the sequences left follows. Initially all-against-all 

Smith-Waterman distances are calculated. Then these distances are turned into a guide-tree using 

UPGMA. Next the alignment starts; following the tree topology from leafs to root. For the 

estimation of profile-profile alignments HHalign [158] is used. Once this core alignment is 

estimated, the clustered aligned sequences are introduced to it using the star-sequence as an 

anchor point and the transitivity rule. Finally the filtered out sequences are also put back into it and 

the final alignment is outputted.  
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3.5.3.1.4 Trimming  

 

In an effort to increase MSA accuracy and stability of large datasets we used a trimming procedure 

to identify and remove noisy sequences that when present lead to decrease of the MSA quality. 

Our trimming procedure is a MSA post-processing methodology that reads and renders protein or 

nucleotide alignments. It starts by reading all rows in an alignment and computes a score (Sr) for 

each gap in them. This score is computed by assigning a penalty of 1 for every first gap that 

follows after a letter, dividing it by the number of consecutive gaps that follows this gap (if any gaps 

follow). Then the score for each column is computed (Sc) and it  corresponds to the fraction of 

sequences without a gap in the particular column (number of gaps expressed in (Sr), divided by 

number of letters in the particular column). A final “gap responsibility” score (Sg) is then calculated 

for each sequence by adding up the (Sc) score of every non-gap column of that sequence. The 

sequences with the highest “gap responsibility” are chosen and then trimmed, in order to remove 

sequences introducing the most fuzzy gaps, according to the trimming threshold set by the user. 

The remaining sequences are then re-aligned. 

 

To evaluate the performance of the trimming procedure we compared it against randomly 
removing sequences (Table 1, Sup. Table 3). In this paper we call “trimming” the trimming 

performed by our trimming procedure, as described above, and  “random trimming” the random 

sequence removal. 

 

3.5.3.1.5 Implementation and Availability 

 

This new algorithm has been implemented from scratch using C++. Different parts have been 

parallelized using OpenMP. MEGA-Coffee is licensed under the GNU Lesser General Public 

License.  Source code is available at https://bitbucket.org/mariach/mega-coffee. MEGA-Coffee is 

available as a command line program, which uses GNU-style command line options, making it 

easy to integrate into existing pipelines. 

 

This new implementation is part of the T-Coffee package. The initial T-Coffee consistency code, 

which was written in C, was translated into C++ and became part of MEGA-Coffee. We use the 

OpenMP library to enable multithreaded computation of pairwise distances and alignment match 

states. 
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3.5.3.2 Benchmark procedure 
 

In this paper, we present results from a range of packages tested on three common benchmarks: 

BAliBASE 3 [159], Prefab 4.0 [108] and of HOMFAM [14]. For these tests, we report results using 

the default settings for all programs, with one exception; needed to allow Mafft [13] to align the 

biggest test cases in HOMFAM. Mafft consists of a series of programs that can be run separately 

or called automatically from a script with the “-auto” flag set. This flag chooses to run a slow, 

consistency-based program (L-INS-i) when the number and length of sequences is small. When 

the number exceeds inbuilt thresholds, a conventional progressive aligner is used (FFT-NS-2). The 

latter is also the program that is run by default if Mafft is called with no flags set. For very large 

data sets, the “-parttree” flag must be set on the command line and a fast guide tree calculation is 

then used. 

 

The results for the BAliBASE benchmark tests are shown in Sup. Table 1. BAliBASE is divided into 

six reference sets with different properties. Average scores are given for each reference, along 

with average run times and average total column (TC) scores, that give the proportion of the total 

alignment columns in the reference alignment that have been recovered in the test alignment. Bali-

score [159] was used to estimate the TC score. A score of 100.0 indicates perfect agreement with 

the benchmark. In 203 out of 218 BAliBASE test cases, the number of sequences is small, so the 

Mafft (auto) runs L-INS-i, which is the slower, more accurate program that uses the consistency 

heuristic [160]. This is also used by MSAprobs [23], Probalign [161] and Probcons [10]. These 

programs are all restricted to small numbers of sequences but tend to give the most accurate 

alignments. This is clearly reflected in the times and average scores in Table 1. The times range 

from 3 seconds up to 1 minute for these packages and the MSA accuracy ranges from 55% to 

61% of correct columns. Clustal-Omega, which does not utilizes consistency takes 3 sec for the 

same runs and has an accuracy level that is lower than that of MSAprobs and T-Coffee. Other 

programs that use progressive alignment were not included in our benchmark, as they have 

already been reported [14] to show a considerable drop in accuracy when compared to the 

consistency-based programs and Clustal-Omega. 

 

The Prefab benchmark [12]  test results are shown in Sup. Table 2. Total Column Scores were 

estimated using the qscore from the Prefab package. Here, the results are divided into five groups 

according to the percent identity of the sequences. The overall scores range from 53 to 73% of 

columns correct. The consistency-based programs MSAprobs, Mafft L-INS-i, T-Coffee, Probalign, 

and Probcons are again the most accurate but have long run times. Clustal-Omega is faster but 
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less accurate compared to consistency-based methods. The times range from 1 second up to 30 

seconds. 

 

All the programs that were used for benchmarking are reported in Sup. Table 4 and can be 

obtained from the URLs given in the table. 
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4. Improved numerical stability of in silico -omics analyses 

across clouds and clusters  
 

Di Tommaso P*, Chatzou M*, Floden E*, Palumbo E, Prieto-Barja P, Notredame C (2016). 

Improved numerical stability of in silico -omics analyses across clouds and clusters. Nature 

Biotechnology, Under Review  

 
*joint first authors 

 

 

4.1 Abstract   
 
Reproducing routine bioinformatics analysis is challenging owing to a combination of factors hard 

to control for. Nextflow is a flow management framework that uses container technology to insure 

efficient deployment and reproducibility of computational analysis pipelines. Third party pipelines 

can be ported into nextflow with minimum re-coding. We used RNA-Seq quantification and 

phylogeny reconstruction examples to show how two seemingly irreproducible analyzes can be 

made stable across platforms when ported into Nextflow. 
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4.2 Main Text 
 

The increasingly worrying issue of irreproducibility in experimental biology is a natural 

consequence of -omics analysis relying on readout methods of growing complexity [162][163][164]. 

While a common definition is still being intensely debated [165] [166], it is generally agreed that the 

most obvious source of computational irreproducibility results from inadequate good practices 

when deploying software and databases [167][168]. Beside poor standards [169], computational 

irreproducibility is also the consequence of less apparent factors such as numerical instability 

arising from low-level variations across computational platforms [170]. This issue is especially 

relevant when using high-performance computational (HPC) environments, the type on which -

omics analyses are routinely carried out [171]. Here we report on the significance of such 
fluctuations when repeating the same in silico procedure on different operating system 

configurations. This instability is especially relevant at a time when precision medicine is imposing 

an unprecedented burden on the replicability of data analyses. We show that novel virtualization 

methods bring about a long-awaited solution to this issue and should play an important role in the 

current shift towards reproducible biology. We describe a solution based on our new workflow 

management tool called Nextflow, which uses the Docker technology for the multi-scale handling 

of containerized computation. Thanks to the proper deployment of these techniques, our results 

establish that it is possible to guarantee numerical stability across the more common UNIX-like 

environments.  

 
In silico workflow management systems have recently become an integral part of biological 

analysis. These systems make it possible to rapidly prototype and deploy pipelines combining 

complementary software packages. In genomics, the simplest pipelines, such as Kallisto and 

Sleuth [172], involve the combination of an RNA-seq quantification method with a differential 

expression module. Complexity, however, grows rapidly when attempting to cover all aspects of a 

specific task. For instance, the Sanger Companion pipeline [173] bundles 39 independent software 

tools and libraries into a genome annotation suite. Handling such a large number of software 

packages along with their potentially incompatible dependencies is a challenge of its own. This 

issue is further worsened by the conflicting requirements to accommodate frequent software 

updates whilst maintaining the reproducibility of original results. High-throughput deployment of 

complex pipelines can also be problematic, owing to the very large number of intermediate files 

produced by the individual components. At this scale, likely hardware fluctuations combined with 

poor error handling can also lead to readout instability.  

 



 91 

 
 
 
Figure 1. Figure 1: Nextflow produces stable analysis across different platforms. (a) Leishmania 
infantum clone JPCM5 genome annotation was predicted using a native and a dockerized (Debian Linux) 
version of the Companion eukaryotic annotation pipeline. The native and dockerized versions were run on 
Mac OSX and Amazon Linux platforms. The Venn diagram shows the existence of small, but significant 
discrepancies when comparing the genomic coordinates of predicted coding genes and non-coding RNAs, 
(b) some of these disparities including entire genes.  Results were deterministic on each platform, and totally 
identical readouts were measured when deploying the dockerized version. (c) A similar comparison carried 
out on a Kallisto/Sleuth pipeline when looking for differentially expressed genes (q-value <0.01) in an RNA-
seq experiment collected from human lung fibroblasts reveals a comparable fluctuation between the Mac 
OSX and the Amazon Linux platform. Both platforms produce are deterministic identical readouts when 
deploying the dockerized version of the pipeline (10.5281/zenodo.159153) 

https://doi.org/10.5281/zenodo.159153
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Nextflow has been designed to address numerical instability, efficient parallel deployment, error 

tolerance, execution provenance, and maintenance traceability. It is a domain-specific language 

(DSL) that enables rapid pipeline prototyping as well as the adaptation of existing pipelines written 

in any scripting language. A qualitative comparison between Nextflow and several related tools 

(Supplementary Table 1) illustrates well its unique combination of features, especially with respect 

to Bpipe, whose computing paradigm is probably the most similar. The most notable shortcoming 

of Bpipe is its lacks of support for multi-scale containerization, one of the features now supported 

by the newest generation of workflow managers, including Nextflow. We found this mode of 

containerization, which makes it possible to bundle entire pipelines, subcomponents and individual 

tools into their own containers, to be essential for numerical stability. Containers can be produced 

ad hoc by the authors or by following recently proposed standards (BioBoxes [174], Bioshadock 

[175] and AlgoRun [176]). Another key specificity of Nextflow is its full integration with software 

repositories like GitHub and BitBucket, as well as with cloud native support. Some of the most 

practical implications of this integration are highly relevant to computational reproducibility and the 

specific impact of GitHub was recently highlighted as one of the driving force behind the current 

data sharing effort [177]. Given a published and properly deposited analysis, this integration allows 

users to run any current or previous version of a pipeline, with GitHub integration ensuring the 

deployment of the correct version, containerization ensuring numerical stability, and cloud 

deployment allowing for rapid computation and effective scaling. When using this procedure, any 

set of results – a table, a graph, or quantities - can be associated with a single command line and 

referenced, updated, reproduced or improved on demand. In the last section of this manuscript we 

provide three concrete examples of this procedure. 

 

Nextflow uses a functional reactive programming (FRP) model in which each operation is isolated 

in its own execution context. Its outputs are streamed to other operations through dedicated 

communication channels in a process similar to UNIX pipes. When doing so, parallelization is an 

implicit consequence of the way the input/output of each process is declared to be channelled into 

other processes. This approach spares users the need to implement an explicit parallelization 

strategy. Another advantage of Nextflow is its reliance on the dataflow programming paradigm, 

where tasks are started automatically once data is received through their input channels. The 

dataflow model is superior to alternative solutions based on a Make-like approach, such as 

Snakemake [178], in which computation involves the pre-estimation of all computational 

dependencies, starting from the expected results up until the input raw data. This procedure 

requires a directed acyclic graph (DAG), whose storage requirement is a limiting factor in very 

large computations. In contrast, as the top to bottom processing model used by Nextflow follows 

the natural flow of data analysis, it does not require a DAG. Instead, the graph it traverses is 

merely incidental and does not need to be pre-computed or even stored, thereby ensuring high 

scalability [179]. The use of communication channels between tasks also contributes to Nextf low´s 
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computational robustness, especially with respect to Snakemake, whose task executions 

sequence is defined by rules and patterns defined on the input/output file names. These 

dependencies make it difficult to deal with multiple/variable output files, and consequently often 

require the implementation of low level output management procedures to deal with a pipeline´s 

individual stages. In comparison, Nextflow can handle any data structure and output without being 

limited to files. Nextflow, along with the latest generation of workflow managers, is a relatively low 

level tool explicitly designed for bioinformaticians. This clearly sets it apart from Galaxy, one of the 

most popular workflow systems [180]. Galaxy adequately addresses the numerical stability issue 

thanks to a custom package manager called Tool Shed [181]. Yet, while its graphical user interface 
(GUI) offers very powerful support for de novo pipeline implementation by non-specialists, it also 

imposes a heavy development burden in the case of existing third party pipelines, especially when 

dealing with complex combinations of tools. This reimplementation requirement is not only unique 

to Galaxy, but also affects some of the newer tools such as Toil [182].  

 

Nextflow in Action. In order to show the concrete effect of environmental variability on numerical 

stability, we used the Sanger Companion pipeline [173] to carry out a gene annotation prediction 
on the genome of Leishmania infantum (Methods). Although this compact eukaryotic genome 

should be a relatively easy target for such analysis, our results indicated variations across different 

UNIX platforms (Fig. 1a, b and Supp Table 2). This instability contrasts with the deterministic 

behavior measured on each individual platform. As the Companion pipeline has been largely 

implemented in Nextflow, we were able to confirm readout stability when deploying a dockerized 

version of this same pipeline across the three Unix-like operating systems. Gene annotation is not 

the only type of genomic analysis affected. We identified similar issues when using the Kallisto 

expression quantification tool combined with the Sleuth differential expression package [172]. In 

this case, variations in the identification of differentially expressed genes were observed when 

running the pipeline on two different systems (Fig. 1c). However, no such differences were 

observed when running a Nextflow dockerized version of the same pipeline. Finally, a comparable 

platform-dependent effect was also observed when estimating maximum likelihood trees with 

RaxML [183] (Supp. Fig. 3). These variations were effectively controlled for when deploying the 

dockerized version of the same pipeline. It is worth mentioning that all these computational 

experiments are available on GitHub (pipelines) and Zenodo (data/results) and are therefore 

entirely reproducible in their dockerized form (Methods). 

 

Nextflow is a simple, yet powerful solution that effectively addresses the numerical instability issue 

when deploying pipelines across diverse computational platforms. Here we show that this 
instability, being very frequent, affects most types of modelling carried out in silico. Its overall 

impact on final readouts may appear modest, but the lack of effective solutions confronts users 

with a daunting challenge. Careful monitoring of database and software versions is simply not 
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enough. The lack of numerical stability can have severe consequences at all levels. When 

processing experimental data, it can compromise verifications and updates of previously 

established results. In a personalized medicine production environment it may result in treatment 

variations with potentially dramatic consequences. The rapidly growing Nextflow user community 

[184] [185] illustrates the pressing need for more robust computational frameworks. At a time when 

technology keeps evolving at a breathtaking pace, Nextflow offers a mature solution to one of the 

few technical issues that is likely to be long-lasting in both the academic and clinical setting: the 

control of numerical stability [186].  
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4.6 Supplementary Material 
 

4.6.1 Nextflow 
 

The Nextflow package, version 0.22.0 is available as a free open-source package from 

https://github.com/nextflow-io/nextflow. It comes complete with documentation and examples. 

Nextflow is a domain-specific language (DSL) modelled around a functional-reactive programming 

(FRP) style and based on the Dataflow [187] paradigm. It uses a declarative processing model 

developed for parallel tasks execution in which concurrency and synchronization are managed 

automatically. Within Nextflow, biological pipelines are considered as a succession of tasks that 

must be independently declared and can then be combined into functional operators. When 

running a pipeline, the role of Nextflow is to deploy the tasks and insure their communication 

through dataflow variables. In order to declare the tasks and their relationships, Nextflow provides 

three important abstractions: Processes, Channels and Operators. 

Processes are elements of code that define a unit of work. They are typically native commands, 

tools or scripts that implement specific stages of a pipeline (e.g. the RNA-Seq quantification 

command in Kallisto). They can be written in any scripting language supported by the target 

execution platform (BASH, Perl, Python, R, etc.). Each process is executed in a completely 

isolated manner and can only read and write data in its own uniquely assigned working directory, 

thereby preventing any interference across processes. Processes can either run natively, or within 

pre-specified Docker containers (see below). When submitted to the execution subsystem 

(workstation, cluster, cloud) these processes are enclosed in a wrapper script that manages the 

job submission and the collection of output files upon completion. Processes communicate with 

one another using channels. In a pipeline, with the exception of the main input/output, any given 

input process must be explicitly defined as the combination of one or more outputs generated by 

upstream processes. This hierarchy leads to an implicit definition of process dependencies as a 

directed acyclic graph. Channels are modelled as an asynchronous stream of data, behaving 

logically like UNIX pipes that would be able to stream any kind of arbitrarily structured data (i.e. 

https://github.com/nextflow-io/nextflow
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records, files, etc). The capacity to handle arbitrary units of information is important, as this makes 

it possible to manage the flows using operators able to perform basic operations such as merging, 

splitting and filtering. Operators may be described as a set of built-in processes, developed for the 

specific purpose of combining and manipulating channel’s content. In the same way that they 

define channel combinations, operators also define process dependencies. For instance if an 

operator requires the merging of all the output from a given process, it implicitly defines the next 

stage as dependent on full completion of the previous stage. Under this very general model [188], 

a computational pipeline can be logically represented as a network of reactive processes in which 

each node waits for its inputs and it is automatically fired when all those inputs have been 

delivered. When doing so, the node produces new outputs that are either terminal, or ready to feed 

a downstream node. 

Parallelization and queuing systems. Channel connections define process dependencies, and 

within a given flow, Nextflow processes are immune from race conditions thanks to their 

idempotency. Parallelization is implicitly defined by the way processes and operators are 

connected, thus allowing tasks to be simultaneously queued. Nextflow provides built-in support for 

the following batch schedulers: Open Grid Scheduler, Univa Grid Engine, Platform LSF, Linux 

SLURM, PBS Works, Torque and HTCondor. It also supports some emerging distributed 

computing platforms such as Apache Ignite and Kubernetes (beta). It includes built-in integration 

for  cloud infrastructures such as Amazon AWS and DNAnexus. Nextflow is able to monitor 

individual tasks in order to skip redundant computations through a caching mechanism. 

Error tolerance. Because of its computational model, Nextflow can efficiently handle errors and 

ease the computationally efficient debugging of large-scale computations. Upon unsuccessful 

termination of a process, Nextflow can re-submit the considered job a specified number of times, 

increasing the requested resources if needed, and eventually trigger a graceful exit. When this 

occurs, the maintenance of all intermediate temporary files makes it possible to track the issue and 

eventually resume computation where it stopped. 

Versioning is a key aspect of reproducibility. Nextflow has been designed to integrate natively the 

Git tool for source code management and the most popular code repository services (GitHub, 
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BitBucket and GitLab). By default, Nextflow scans GitHub for any requested pipeline not locally 

available. The -revision option makes it possible to run any version of a given pipeline by 

specifying a Git branch, tag or commit ID defined in the project repository. 

Built-in Docker support. Docker is a lightweight virtualization technology used to run applications 

in an isolated and self-contained environment. Containers only require a fraction of a second to 

start and have a negligible overhead cost on CPU and memory performance [179]. The main 

advantage of Docker is that it guarantees the full reproducibility of any piece of software by simply 

downloading a single pre-built, ready-to-run image containing all the software components and the 

required configuration. Docker images can either be stored as plain text configuration lists that 

insure full transparency, or as pre-built binaries that guarantee reproducibility even when the 

distribution package of a specific piece of software has become unavailable. In Nextflow, each 

process can be run within its own Docker container. 

Multi Scale Containerization. Containers can be deployed at various levels. In the most naive 

approach the whole pipeline is executed within a container. This does not require any special 

support by Nextflow or any other tool, but it imposes a constraint on the pipeline scalability 

because the execution is limited by the computing resources available to a single container.  It can 

also result in dead-end updates caused by incompatibility between tools. Nextflow implements a 

more granular approach, that we call multi-scale containerization, in which each pipeline stage is 

executed in a separate container instance. In this approach Nextflow orchestrates the container 

executions, which can be efficiently distributed in a cluster of computers with different stages of the 

pipeline executed simultaneously within different copies of the same container. A finer-grained 

approach is also supported by Nextflow. It involves using different container types for different 

stages. This allows the pipeline subcomponents to be packaged in separate container images thus 

isolating possible tools incompatibilities. Finally the container used by each pipeline step can be 

even defined dynamically. This allows, in a complex usage scenario, the dynamic reconfiguration 

of a task execution subcomponent with a different set of tools, depending on the task inputs 

context available at runtime. This approach can benefit a lot from the GitHub integration and 

provide a powerful framework for systematic benchmarking. 
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4.6.2 Companion analysis 
 

Versions. Companion version 1.0.2 was forked from the original GitHub repository [189] into a 

new one available at this link https://github.com/cbcrg/companion.  The Leishmania infantum 

dataset was included in the project repository along with a configuration file for each target 

execution platform. Each execution configuration was marked with a Git tag, namely nbt-docker, 

nbt-macosx and nbt-awslinux. This allowed us to run each experiment in a self-contained 

replicable manner, without requiring any undocumented steps, other than the installation of 

Companion dependencies in the target environment when the Docker engine was not used. 

Platforms. The two platforms used for both native and Docker-based executions were an early-

2014 MacBook Air running OSX Yosemite (10.10) and an Amazon cloud instance running Amazon 

Linux (AMI 2016.03). The Docker image is based on the  Debian stretch Linux distribution. 

Datasets. The Leishmania infantum genome (clone JPCM5, version 3.0a) was downloaded from 

Sanger. The default reference Leishmania major data included in the Companion repository was 

used as the reference dataset for the annotation. Other databases used included Pfam Version 

30.0 and the core Gene Ontology (GO) file (version 'releases/2016-09-07') which are included 

in the Docker image. The dataset has been archived on Zenodo  (see reproducibility 

section).  

Commands. For the native Mac OSX execution i.e. without Docker, the Companion dependencies 

were installed in the target computer and the pipeline was executed with the following command:  

$ nextflow run cbcrg/companion -revision nbt-macosx  

The above command downloads and runs from the GitHub repository the project tree labeled with 

the `nbt-macosx` tag which contains  the required data and platform specific configuration (see 

Reproducibility section).  

https://github.com/cbcrg/companion
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For native Linux executions, as before, the pipeline dependencies were installed in the target 

computer, then the execution was launched with the following command: 

$ nextflow run cbcrg/companion -revision nbt-awslinux  

The above command downloads and runs the pipeline from GitHub using the `nbt-awslinux` 

source tree that contains the Linux specific configuration.    

Finally we repeated the executions in the same environments by using the Docker engine. The 

pipeline was executed in both cases by using the following command:  

$ nextflow run cbcrg/companion -revision nbt-docker  

This command downloads and runs the pipeline. It does so by automatically pulling the Docker 

image specified in the configuration file from the public repository provided by the original authors 

(see Reproducibility section).   

Stability. In order to rule out any fluctuation that may result from some random sampling 

procedure, each analysis was repeated at least two times on each platform. In each instance the 

behavior was found to be entirely deterministic on each individual platform.  

Reproducibility. The pipeline source code along with the experiment results have been archived 

in the Zenodo storage service and they are accessible with the following DOI number: 

10.5281/zenodo.154520. The Companion pipeline is also available directly from the GitHub 

repository along with detailed instruction how to replicate this experiment: 

https://github.com/cbcrg/companion. The Docker image contains all the Companion dependencies, 

thus making it unnecessary to install them in the target environment. In this distribution, the Docker 

image used for this computation is referenced in the Nextflow configuration file using its uniquely 

generated SHA256 identifier. This guarantees that image content will never change over time. 

 
4.6.3 Kallisto and Sleuth analysis 
 

https://doi.org/10.5281/zenodo.154520
https://github.com/cbcrg/companion
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Versions. Kallisto (v0.42.4) was downloaded from https://pachterlab.github.io/kallisto and Sleuth 

(v0.28.0) from https://pachterlab.github.io/sleuth. The Nextflow version of the pipeline is named 

Kallisto-NF (Supp. Figure 2). 

Platforms. The two platforms used for both native and Docker-based executions were an early-

2014 MacBook Air running OSX Yosemite (10.10) and an Amazon cloud instance running Amazon 

Linux (AMI 2016.03). The Docker image is based on the Debian jessie Linux distribution. 

Datasets. The RNA-Seq dataset is taken from the Kallisto and Sleuth ‘Getting Started’ tutorials 

and based on the original Cuffdiff2 publication [190]. The six samples were downloaded from the 

NCBI short reads archive. These reads correspond to human lung fibroblasts transfected with 

either HOXA1 directed siRNA or non-targeting ‘scramble’ siRNA. All samples are paired-end 100 

bp reads sequenced with an Illumina HiSeq 2000. The transcriptome 

Homo_sapiens.GRCh38.rel79.cdna.all.fa.gz was downloaded from the Kallisto website with the 

human gene annotation from Ensembl (version 79). All raw data has been uploaded to Zenodo 

(see reproducibility section).  

Commands.  The native BASH version of Kallisto and Sleuth pipeline was run using the following 

command line: 

$ kallisto-std.sh data/reads/ data/transcriptome.fa data/experiment.txt 

kallisto ./results 

See Supplementary Figure 1 for the listing of the kallisto-std.sh script. The Nextflow counterpart 

was run using: 

$ nextflow run kallisto.nf --reads 'data/reads/*.fastq' --transcriptome 

data/transcriptome.fa --experiment data/experiment.txt -with-docker 

 
An outline of the source code of kallisto.nf is shown Figure 2. Note that the Nextflow version, 

although a bit longer than the BASH implementation, can handle any number of read pairs, run the 

quantification step in parallel and is portable across different clusters and clouds.  

https://pachterlab.github.io/kallisto
https://pachterlab.github.io/sleuth
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Stability. In order to rule out any fluctuation that may result from some random sampling 

procedure, each analysis was repeated at least two times on each platform. In each instance the 

behavior was found to be entirely deterministic on each individual platform.  

Reproducibility. The pipeline source code along with the experiment results have been archived 

in the Zenodo storage service and they are accessible with the following DOI number: 

10.5281/zenodo.159195. The input dataset has been stored on Zenodo as well and is accessible 

with the following DOI number: 10.5281/zenodo.159158. The Docker image specified in the 

configuration file from the public repository is available at https://hub.docker.com/r/cbcrg/kallisto-nf. 

This image contains all the Kallisto and Sleuth dependencies, thus making it unnecessary to install 

them in the target environment. In this distribution, the Docker image used for this computation is 

referenced in the Nextflow configuration file using it's uniquely generated SHA256 identifier. This 

guarantees that image content will never change over time. The complete instructions along with 

links to the input dataset needed to replicate this experiment are available in the GitHub repository 

at the following link https://github.com/cbcrg/kallisto-nf-reproduce/tree/nbt-v1.0. 

 

4.6.4 RAxML analysis 
 

Versions. RAxML (v8.0.0) was downloaded from https://github.com/stamatak/standard-

RAxML/archive/v8.0.0.zip. For each of the native executions and the Docker version, RAxML was 

compiled using the default make settings: 

$ make -f Makefile.gcc 

Platforms. The two platforms used for both native and Docker-based executions were an early-

2014 MacBook Air running OSX Yosemite (10.10) and an Amazon cloud instance running Amazon 

Linux (AMI 2016.03). The Docker image is based on the Debian wheezy Linux distribution. 

https://doi.org/10.5281/zenodo.159195
https://doi.org/10.5281/zenodo.159158
https://hub.docker.com/r/cbcrg/kallisto-nf
https://github.com/cbcrg/kallisto-nf-reproduce/tree/nbt-v1.0
https://github.com/stamatak/standard-RAxML/archive/v8.0.0.zip
https://github.com/stamatak/standard-RAxML/archive/v8.0.0.zip
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Datasets. The dataset used contains motor protein Prestin from 35 different species, as published 

by Liu et al. [191]. Motor protein Prestin is expressed in mammalian outer hair cells (OHCs) and is 

thought to confer high frequency sensitivity and selectivity in the mammalian auditory system. 

Commands.  

Tree computation. RAxML was natively run using the following command lines: 

Native (Mac OSX and Linux) 

$ nextflow run cbcrg/raxml-nf -r nbt-v1.0 

The counterpart enabling the Docker execution was run using: 

$ nextflow run cbcrg/raxml-nf -r nbt-v1.0 -with-docker 

Tree comparison. The tree comparison was performed using ETE Toolkit v3.0.0b35 [192], that can 

be downloaded from the following link: http://etetoolkit.org/download/. The command used was the 

following:   

$ ete3 compare -t input_tree_1 -r input_tree_2 --unrooted 

Stability. In order to rule out any fluctuation that may result from some random sampling 

procedure, each analysis was repeated at least two times on each platform. In each instance the 

behavior was found to be entirely deterministic on each individual platform.  

Reproducibility. The pipeline source code along with the input dataset and the experiment results 

have been archived in the Zenodo storage service and they are accessible with the following DOI 

number: 10.5281/zenodo.159181. The pipeline is also available directly from the GitHub repository 

along with detailed instructions on how to replicate this experiment: https://github.com/cbcrg/raxml-

nf/tree/nbt-v1.0. 

 
 
 

http://etetoolkit.org/download/
https://doi.org/10.5281/zenodo.159181
https://github.com/cbcrg/raxml-nf/tree/nbt-v1.0
https://github.com/cbcrg/raxml-nf/tree/nbt-v1.0
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4.6.5 Supplementary Tables 
 

Supplementary Table 1. Comparison between Nextflow and other state-of-art workflow management 

systems. 

 

Workflow Nextflow Galaxy Toil Snakemake Bpipe 

Platform Groovy/JVM Python Python Python Groovy/JVM 

Native Task Support Any No No BASH only BASH only 

Common Workflow Language No Yes Yes No No 

Streaming processing Yes No No No No 

Dynamic branch evaluation Yes ? Yes Yes undoc. 

Code Sharing Integration Yes No No No No 

Workflow modules No Yes Yes Yes Yes 

Workflow versioning Yes Yes No No No 

Automatic error failover Yes No Yes No No 

Graphical interface No Yes No No No 

DAG rendering Yes Yes Yes Yes Yes 

Container management Nextflow Galaxy Toil Snakemake Bpipe 

Docker support Yes Yes Yes No No 

Shifter support Yes No No No No 

Multi-scale containers Yes Yes Yes No No 

Built-in batch schedulers Nextflow Galaxy Toil Snakemake Bpipe 

Univa Grid Engine Yes Yes Yes Partial  Yes 

PBS/Torque Yes Yes No Partial  Yes 

LSF Yes Yes No Partial  Yes 

SLURM Yes Yes Yes Partial  No 

HTCondor Yes Yes No Partial  No 

https://figshare.com/articles/A_novel_tool_for_highly_scalable_computational_pipelines/1254958
http://nar.oxfordjournals.org/content/early/2016/05/02/nar.gkw343.full
http://biorxiv.org/content/early/2016/07/07/062497
http://bioinformatics.oxfordjournals.org/content/early/2012/08/17/bioinformatics.bts480
http://bioinformatics.oxfordjournals.org/content/28/11/1525.long
https://figshare.com/articles/A_novel_tool_for_highly_scalable_computational_pipelines/1254958
http://nar.oxfordjournals.org/content/early/2016/05/02/nar.gkw343.full
http://biorxiv.org/content/early/2016/07/07/062497
http://bioinformatics.oxfordjournals.org/content/early/2012/08/17/bioinformatics.bts480
http://bioinformatics.oxfordjournals.org/content/28/11/1525.long
https://figshare.com/articles/A_novel_tool_for_highly_scalable_computational_pipelines/1254958
http://nar.oxfordjournals.org/content/early/2016/05/02/nar.gkw343.full
http://biorxiv.org/content/early/2016/07/07/062497
http://bioinformatics.oxfordjournals.org/content/early/2012/08/17/bioinformatics.bts480
http://bioinformatics.oxfordjournals.org/content/28/11/1525.long
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Built-in distributed cluster Nextflow Galaxy Toil Snakemake Bpipe 

Apache Ignite Yes No No No No 

Apache Spark No No Yes No No 

Kubernetes Yes No No No No 

Apache Mesos No No Yes No No 

Built-in cloud Nextflow Galaxy Toil Snakemake Bpipe 

AWS Yes Yes Yes No No 

 
This table provides an overview of the relative characteristic of the most widely used workflow 

management systems currently available. Comparison items include:  

 Workflow 

o Platform: The technology and the programming language in which each framework 

is implemented.  

o Native tasks support: refers to the ability of the framework to support the execution 

of native commands and scripts without re-implementation of the original processes.  

o Common Workflow Language: Support for the CWL specification 9. 

o Streaming processing: Ability to process tasks inputs/outputs as a stream of data.   

o Code sharing integration: Support for code management and sharing platforms 

such as Github, Bitbucket and GitLab.  

o Workflow modules: Support for module, sub-workflows or workflow compositions.  

o Workflow versioning: Ability to track pipeline changes and to execute different 

version at any point in time.  

o Automatic error failover: Support for automatic error handling and resume execution 

mechanism.  

o Graphical user interface: Implementation of a graphical user interface to interact to 

with the pipeline.  

o DAG rendering: Ability to visualize the graph of the task dependencies and 

executions. 

https://figshare.com/articles/A_novel_tool_for_highly_scalable_computational_pipelines/1254958
http://nar.oxfordjournals.org/content/early/2016/05/02/nar.gkw343.full
http://biorxiv.org/content/early/2016/07/07/062497
http://bioinformatics.oxfordjournals.org/content/early/2012/08/17/bioinformatics.bts480
http://bioinformatics.oxfordjournals.org/content/28/11/1525.long
https://figshare.com/articles/A_novel_tool_for_highly_scalable_computational_pipelines/1254958
http://nar.oxfordjournals.org/content/early/2016/05/02/nar.gkw343.full
http://biorxiv.org/content/early/2016/07/07/062497
http://bioinformatics.oxfordjournals.org/content/early/2012/08/17/bioinformatics.bts480
http://bioinformatics.oxfordjournals.org/content/28/11/1525.long
https://paperpile.com/c/sSZcZT/LHYt


 105 

 Built-in support containers technology:  

o Docker support: Integrated support for Docker containers technology 10.  

o Shifter support: Integrated support for Shifter containers technology 11.  

o Multi-scale containers: Ability to manage the execution of multiple container 

instances in a distributed/HPC cluster or cloud.  

 Built-in support resource manager / batch scheduler: Ability to spawn the executions of 

pipeline tasks through a cluster batch scheduler without the need of custom scripts or 

commands. It must be noted that although this support is not built-in for Snakemake, it 

merely requires the user to provide the cluster specific job control commands. 

 Built-in support for distributed cluster: Ability to spawn the executions of pipeline tasks 

through a distributed cluster scheduler. 

 Built-in Cloud: Support for cloud deployment. 

 
 
 

Supplementary Table 2. Comparison of the Companion pipeline annotation of Leishmania infantum 
genome executed across different platforms natively (Mac OSX, Amazon Linux, Debian Linux) and with 
Docker (Mac OSX and Amazon Linux). All three native executions resulted in different annotations whilst 
Docker executions result in the same annotation across platforms. 

Platform Mac OSX Amazon Linux Debian Linux Mac OSX Amazon Linux 

Execution Native Native Native NF+Docker NF+Docker 

number of chromosomes 36 36 36 36 36 

overall length (bp) 32,032,223 32,032,223 32,032,223 32,032,223 32,032,223 

number of genes 7,771 7,781 7,783 7,783 7,783 

gene density 236.32 236.64 236.64 236.64 236.64 

number of coding genes 7570 7,580 7,580 7,580 7,580 

average coding length (bp) 1,762 1,764 1,764 1,764 1,764 

number of genes with multiple CDS 111 113 113 113 113 

number of genes with known function 4,142 4,147 4,147 4,147 4,147 

number of t-RNAs 88 88 90 90 90 

 
 
 

https://paperpile.com/c/sSZcZT/XO7p
https://paperpile.com/c/sSZcZT/a0Ki
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4.6.6 Supplementary figures 

 

 

 

 

 

Supplementary Figure 1. (10.5281/zenodo.159164) Kallisto Native Pipeline. The Kallisto native pipeline is 
written in bash and calls Kallisto to perform indexing of the transcriptome, RNA-seq pseudo-mapping and 
quantification. It then calls Sleuth to perform differential expression analysis. 

 

https://doi.org/10.5281/zenodo.159164
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Supplementary Figure 2. (10.5281/zenodo.159166) Kallisto Nextflow pipeline. The native Kallisto pipeline 
is converted to Nextflow and composed of three processes. The first two processes call Kallisto to index the 
transcriptome and then pseudo-map for RNA-seq quantification, and the third one uses Sleuth to perform 
differential expression analysis. 

 

https://doi.org/10.5281/zenodo.159166
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Supplementary Figure 3. (10.5281/zenodo.159168) Interleaved output of two RAxML Phylogenetic Trees of 
the same sequences estimated on Mac OSX (blue) and Amazon Linux (red). Differences in the branch 
lengths of resulting trees are shown in color. No such differences were observed when running a Nextflow 
dockerized version of the same command. 
 

https://doi.org/10.5281/zenodo.159168


 109 

5. Discussion 

 

One of the main and most recent challenges of modern biology is to keep-up with the growing 

amount of biological data produced by experiments using next generation sequencing 

technologies. New sources of high throughput data are also about to emerge, especially with 

respect to automated phenotypic and behavioral analysis. Making sense of this data will require a 

significant scale up of available methods.  Large-scale comparative bioinformatics analyses are an 

integral part of this procedure and their better integration with high performance technologies will 

soon be an essential part of the biological endeavor.  

  

When doing comparative bioinformatics, multiple sequence alignments (MSAs) are by far the most 

widely used modeling methods [1], with the publication describing ClustalW [2] pointing at #10 

among the most cited scientific papers of all time. Indeed, a large number of in-silico analyses 

depend on multiple sequence alignment methods. These include domain analysis, phylogenetic 

reconstruction, motif finding and a whole range of other applications, extensively described in [3 - 

4]. 
 

 

Multiple Sequence Alignment is an important modeling tool whose development has required 

addressing a very complex combination of computational and biological problems. The 

computation of an accurate MSA has long been known to be an NP-complete problem, a situation 

that explains why over 100 alternative methods have been developed these last three decades [4] 

for the alignment of evolutionarily related sequences, while taking into account evolutionary events 

such as mutations, insertions, deletions, and rearrangement under certain conditions. In this thesis 

we extensively reviewed progress made over the last decade that include the development of 

consistency based methods, the development of sequence/structure alignment methods, the 

development of structure-based RNA aligners and the development of index-based filtering 

methods. We concluded that the main challenges for multiple sequence aligners when catching up 

with growing datasets will not be limited to improving or maintaining reasonable levels of accuracy. 

It will also involve the proper quantification of readouts reliability. In fact, one may argue that this 

quantification is possibly more important than the overall accuracy, at least at the levels achieved 

by existing methods.   

 

We demonstrated in this thesis that alignment uncertainty, which results in multiple alignment 

methods generating different MSAs whenever the input-order of sequences changes, is an 
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inherent property of the progressive framework. We established that about two-thirds of this 

uncertainty stems from unordered nature of children nodes within the guide trees used to estimate 

MSAs. We showed that all currently available large-scale multiple alignment methods are 

numerically unstable and produce significantly different output when changing sequence input-

order. On datasets larger than 100 sequences, this instability affects on average 21% of the 

residues when considering the most stable aligners, and grows worse with higher number of 

sequences to align and higher evolutionary distance. 

  

Phylogenetic reconstructions are essential in genomics comparative data analyses and depend on 

accurate multiple sequence alignment (MSA) models. Thus, the resulting Maximum Likelihood 

trees estimated from these multiple sequence alignments are equally unstable with over 38% of 

the branches being sensitive to the sequence input-order. To quantify this uncertainty we 

developed shootstrap, a novel approach that estimates the combined effect of alignment 

uncertainty and evolutionary sampling on phylogenetic tree branch supports. This reliability index 

is more informative than the standard bootstrap procedure when estimating phylogenetic 

confidence intervals. So far shootstrap has only been validated on protein sequences but we 

expect the instability that it helps quantifying to be higher in RNA and DNA sequences whose 

lower complexity alphabet results in a larger number of alternative optimal alignments. We intend 

to explore shootstrap behavior on nucleic acids as an immediate follow up of the work presented 

here. Yet, even when applied onto protein alignments, shootstrap high sensitivity in detecting 

poorly supported branches gives it the potential to improve many downstream analyses, including 

attempts to predict the effect of genome variations on molecular functions [152].  

 

Shootstrap is a method geared towards solving some of the problems alignment uncertainty 

causes in phylogenetic analyses. Shootstrap, however, merely estimates reliability but does not 

help improving the phylogenetic models. To achieve this, one would need to improve the original 

MSAs accuracy. New MSA methods should not only become more stable but also more accurate.  

 

MEGA-Coffee is a novel and highly accurate method for producing stable and biological 

meaningful alignments of any number of sequences. We argue here that the MEGA-Coffee, 

accuracy and its scaling up capacities are essential to cope with the current trend of data analyses, 

ultimately leading to higher-quality biological insights. MEGA-Coffee outperforms existing 

alignment methods on large and/or difficult-to-align data sets in both terms of speed and accuracy. 

At the same time MEGA-Coffee is less affected by alignment uncertainty compared to existing 
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methods. This makes MEGA-Coffee a more stable aligner that guarantees delivery of the same 

high quality alignments, regardless of sequence input-order, ensuring thus better reproducibility of 

data and biological interpretations. 

  

To perform large-scale comparative bioinformatics analyses, complex pipelines that consist of 

multiple third-party software, which have many dependencies on external scripts, libraries, 

environmental variables etc, have to be constructed. These pipelines, due to the amount of data 

they have to deal with, require high performance computing (HPC) resources, thus they often have 

to be shipped from a laptop, to a powerful desktop computer, to a cluster or even a cloud or a 

supercomputing center. Due to these reasons and a combination of factors hard to control for, 

reproducing routine bioinformatics analysis is challenging. 

  

Nextflow, was specifically designed to address this problem. It is a flow management framework 

that uses container technology to insure efficient deployment and reproducibility of computational 

analysis pipelines. Third party pipelines can be ported into nextflow with minimum re-coding. We 

used RNA-Seq quantification and phylogeny reconstruction examples to show how two seemingly 

irreproducible analyzes can be made stable across platforms when ported into Nextflow. Its low 

level makes it compatible with higher level solutions, such as Galaxy [180] which provides a 

convenient and powerful interface to prototype pipelines, but only offers limited support for their 

parallelization [224]. Even though the current beta-version of Nextflow has been online for a short 

amount of time, several institutions have already ported their pipelines into this framework, 

including Nextflow Workbench at Cornell University [184], the Companion suite for small pathogen 

annotation at the Sanger [173], the Needlestack pipeline by the International Agency for Research 

on Cancer, and the functional annotation of the Phytozome data pipeline at Joint Genome Institute. 

This rapidly growing community of users reflects well on the pressing need addressed by Nextflow 

and on its capacity to blend very efficiently into ongoing projects. At a time when technology keeps 

evolving at a breathtaking pace, Nextflow solves one of the few technical issues bound to be long 

lasting, both in the academic and in the hospital world: the quest for computational reproducible 

large-scale analysis.  
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