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Chapter 1

Introduction

Externalities play a central role in understanding economic processes. Regions that are
surrounded by high productivity regions, for example, may benefit from positive externalities
(De Long and Summers, 1991; LeSage and Fischer, 2012). Other examples of spatial
externalities include spillovers effects of taxation and expenditures on public services
(Brueckner, 2003) and the impact of pollution in environmental economics (Beron et al.,
2004). These externalities affect mainly close by neighbours and become less effective for
distant regions.

A number of studies over the last decades have benefited from the increasing availability
of data with a location component to analyse effects that spread over spatial units (zip
codes, municipalities, regions, states, jurisdictions, countries, etc.). However, this growing
literature would have probably not developed without the advances witnessed in spatial
econometrics (LeSage and Pace, 2009), particularly in relation to spatial panel data models
(Elhorst, 2012). This thesis contains three original studies in this area.

Panel data with a location component offer researchers extended modelling specifications,
including accounting for effects that cannot be addressed using cross-section data (see e.g.
Elhorst, 2014). In this respect, spatial panel data models essentially differ from the standard
non-spatial panel data model in that they not only include a “random" or ‘fixed” effect
component to control for the unobserved heterogeneity, but deal with the potential spatial
dependence. Thus, the most commonly used models in applied research include a spatially
lagged dependent variable (Spatial Lag Model), spatial effects in the error term (Spatial Error
Model), and spatial effects in both the independent and the dependent variables (Spatial
Durbin Model). To date, however, with the notable exception of Beer and Riedl (2012), the
proposed model specifications have not considered the inclusion of spatial externalities in
the individual effects. This is the main motivation for this thesis.

Distinguishing the individual effects from their spatial spillovers may provide interesting
insights into how the unobserved characteristics of the neighbouring territories affect the
output of a certain territory and, conversely, how the unobserved characteristics of a territory
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Chapter 1. Introduction

affect the output of the neighbouring territories. In growth models, for example, a measure of
the unobserved productivity of the regions under study can be obtained from the estimated
individual effects Islam (1995). But how does the spatial contagion of the unobserved
productivity of these regions affects their economic growth? This thesis considers several
model specifications to identify and estimate this kind of effects.

Beer and Riedl (2012) advocate using an extension of the Spatial Durbin Model for panel
data that includes the spatially weighted individual effects. Ultimately, however, they argue
that “it is (...) advisable to remove the spatial lag of the fixed effects from the equation
as the inclusion of both, [the individual effects] and [their spatial lags], leads to perfect
multicollinearity" (p. 302). Removing the spatial lag of the fixed effects does not generally
preclude the consistent estimation of the parameters of the model. However, this practice
rules out obtaining an estimate of the individual-specific effects (net of the spatially weighted
effects). This raises the question of whether both the individual effects and their spatial
spillovers can indeed be identified and estimated in fixed effects panel data models.

This thesis proposes using a correlated-random effects specification (Mundlak, 1978;
Chamberlain, 1982) to analyse the spatial externalities of the individual effects. In this vein,
the model specifications analysed in this thesis have a spatially weighted error component
structure that is closely related to that proposed by Kapoor et al. (2007). In particular,
the second chapter considers a correlated random effects specification in a static spatial
panel data model and the third does so in a spatial dynamic panel data model. The fourth
chapter makes use of the findings of the previous chapters in a growth model with spatial
externalities.

More precisely, the second chapter of this thesis, which has already been published in
Spatial Statistics (Miranda et al., 2017b), analyses the problem of estimating individual
effects and their spatial spillovers in linear panel data models. In particular, it considers
a spatial-X lag model for panel data (Halleck Vega and Elhorst, 2015). First, it shows
that the individual-specific effects and their spatial spillovers are not generally identified
in linear panel data models. Under certain conditions, however, it is showed that there is
no identification problem if the covariates are correlated with the individual-specific effects
(Mundlak, 1978; Chamberlain, 1982). Further, under assumptions of strict and sequential
exogeneity on the explanatory variables, this chapter derives appropriate FGLS and IV
estimators. Finally, this chapter illustrates the proposed estimators using a Cobb-Douglas
production function specification and US state-level data from Munnell (1990). As in
previous literature, this study finds no evidence of public capital spillovers. However, public
capital does play a role in the positive “outward” spatial contagion of the individual effects.
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The third chapter considers a correlated random effects specification of the spatial
Durbin dynamic panel model with an error-term containing individual effects and their
spatial spillovers. Following Yu et al. (2008) and Su and Yang (2015), this chapter derives
the likelihood function of the model and the asymptotic properties of the quasi-maximum
likelihood estimator under standard assumptions in the spatial econometrics literature. The
model specification corresponds to a restricted version of the dynamic spatial Durbin model
of Lee and Yu (2016), since it does not include the spatial lag of the lagged dependent
variable among the regressors. This means that, in terms of spatial dependence, the model
analysed lies somewhere in between that of Yu et al. (2008), who only consider the spatial
lag of the dependent and lagged dependent variables, and that of Su and Yang (2015), in
which “spatial dependence is present only in the error term”. This chapter also provides
illustrative evidence from a growth-initial level equation and data on 26 OECD countries
analysed by Lee and Yu (2016). Interestingly, the estimated coefficients and standard errors
largely replicate those reported by Lee and Yu (2016). However, results indicate the existence
of spatial contagion in the individual effects. In particular, the estimated spill-in/out effects
reveal the existence of groups of countries with common spatial patterns in their spillovers.

The fourth chapter presents a growth model with interdependencies in the heterogeneous
technological progress, physical capital and stock of knowledge. The basic framework is
similar to that of Ertur and Koch (2007), but considers additional sources of externalities
across economies. While they assume that the technological progress depends on the own
stock of physical capital and the stock of knowledge of the other economies, this study
also considers the role of both the physical capital (López-Bazo et al., 2004; Egger and
Pfaffermayr, 2006) and the (unobserved) initial level of technology (De Long and Summers,
1991; LeSage and Fischer, 2012) of the other economies. Moreover, it does not assume
a common exogenous technological progress but accounts for heterogeneity in the initial
level of technology, which here is interpreted as a proxy for total factor productivity (Islam,
1995). To illustrate this point, this chapter uses data on EU-NUTS2 regions and a correlated
random effects specification to estimate the resulting spatial Durbin dynamic panel model
with spatially weighted individual effects. QML estimates support the proposed model
against simpler alternatives that impose a homogeneous technology and limit the sources of
spatial externalities. Also, results indicate that rich regions tend to have higher “unobserved
productivity” and are likely to stay rich because of the strong time and spatial dependence
of the GDP per capita. Poor regions, on the other hand, tend to enjoy “unobserved
productivity” spillovers but are likely to stay poor unless they increase their saving rates.
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Chapter 2

Estimating individual effects and their

spatial spillovers in linear panel data

models: Public capital spillovers after

all?
1

2.1 Introduction

Does public capital have an effect on private output? And if it does, does this effect
spill over nearby geographical areas? Using US state (and/or county) panel data,
production function estimates have consistently concluded that public capital and its
spatially weighted counterpart are not statistically significant.2 In contrast, studies using
alternative methodologies (e.g., VAR models), seem to suggest otherwise (Pereira and
Andraz, 2013). In this paper we provide production function estimates supporting the
existence of public capital spillovers. To be precise, we find no evidence of a direct positive
effect of public capital on private output. However, we find evidence of a relation between
public capital and the unobserved productivity of the states (i.e., the individual specific
effect of the production function) and its spatial spillover.3

To obtain these results, this paper introduces a correlated-random effects model
(Mundlak, 1978; Chamberlain, 1982) that presents spatial correlation in the individual

1This chapter is co-authored with Oscar Marínez-Ibáñez and Miguel Manjón-Antolín. It has already been
published in Spatial Statistics, 22(Part 1): 1-17.

2See e.g. Munnell (1990); Baltagi and Pinnoi (1995); Holtz-Eakin and Schwartz (1995); Garcia-Mila et al.
(1996); and Kelejian and Robinson (1997).

3As Boarnet (1998, p. 381-382) points out, “[p]ublic capital is provided at a particular place, and if such
capital is productive, it enhances the comparative advantage of that location relative to other places”. Also,
“productive public capital might shift economic activity from one location to another”.
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Chapter 2. Estimating individual effects and their spatial spillovers in linear panel data models: Public
capital spillovers after all?

effects. To our knowledge, only the random effects model of Kapoor et al. (2007) accounts
for this spatial correlation. In the fixed effects case, Beer and Riedl (2012) advocate using
an extension of the Spatial Durbin Model for panel data that includes the spatially weighted
individual effects. Ultimately, however, they argue that “it is (...) advisable to remove the
spatial lag of the fixed effects from the equation as the inclusion of both, [the individual
effects] and [their spatial lags], leads to perfect multicollinearity” (p. 302). Removing the
spatial lag of the fixed effects does not generally preclude the consistent estimation of the
parameters of the model (see e.g. Halleck Vega and Elhorst, 2015). However, this practice
rules out obtaining an estimate of the individual-specific effects (net of the spatially weighted
effects).4

This raises the question of whether both individual effects and their spatial spillovers
can indeed be identified in linear panel data models. In this paper we provide identifying
conditions in a model specification that spatially weights both the independent variables
and the individual effects. In particular, we show that there is no identification problem
if the covariates are correlated with the individual-specific effects and the individual effects
correspond to deviations from the constant term.

Having proved that the model is identified, we then consider the estimation of its
parameters under alternative exogeneity assumptions on the explanatory variables. Under
the assumption that all the explanatory variables are strictly exogenous (with respect to
the idiosyncratic term), we derive a Feasible Generalised Least Squares (FGLS) estimator.
We also prove that, regardless of the structure of the variance-covariance matrix of the
correlation functions shocks, this estimator coincides with the within (fixed effects) estimator
when all the explanatory variables are used to construct the correlation functions. Under the
assumption that the explanatory variables are predetermined, we propose an Instrumental
Variables (IV) estimator to address the endogeneity of the means of the predetermined
explanatory variables used to approximate the correlation functions. We also advocate using
the backward means of these variables (i.e., the means taken, for each period, over only
current and past values) as instruments.

Lastly, we use these estimators and a (correlated random effects) production function
specification to address the existence of capital spillovers. Using the data and (a spatially
weighted variant of) the specification used by Munnell (1990), we find that, under strict
exogeneity, our FGLS estimates of a Cobb-Douglas production function for the US states
over the period 1970 to 1986 are largely consistent with those reported in related studies

4This is a critical issue, for example, in two-step models that use this estimate as the dependent variable
(Combes and Gobillon, 2015). Similarly, obtaining an estimate of the spatial spillovers of the individual-
specific effects may be of great interest (e.g., for assessing their geographical distribution, which is what we
do in our empirical application).
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2.2. Specification and identification of the model

(using this data set, as e.g. Baltagi and Pinnoi 1995; Kelejian and Robinson 1997; and
using analogous data sets, as e.g. Holtz-Eakin and Schwartz 1995; Garcia-Mila et al.
1996).5 However, when we explore the possibility that (some of) the explanatory variables
are not exogenous, we find evidence of predeterminedness in the public capital. We then
estimate the model by IV to find that, under a sequential exogeneity assumption, states
with a larger/smaller estimated individual effect tend to have larger/smaller negative spatial
spillovers. In particular, we consider both “spill-in" and “spill-out" effects (LeSage and Chih,
2016), although only the spill-out effects turn out to be statistically significant. Also, while
the part of the individual effects associated with the private capital produces negative spatial
contagion, the part associated with the public capital produces positive spatial contagion.
Consistent with previous literature, however, we find no significant spatial spillovers in the
public capital.

The rest of the paper is organised as follows. In Section 2.2 we discuss the identification
problem and show that, under mild rank conditions, the correlated random effects model
considered is identified. In Section 2.3 we present appropriate (FGLS and IV) estimators.
In Section 2.4 we present empirical evidence based on the work of Munnell (1990). Section
2.5 concludes.

2.2 Specification and identification of the model

2.2.1 Spatial spillovers and the identification problem

Let us consider the spatial−(X,Ψ) panel data model, that is, the spatial (lag of) X model
for panel data with spatially weighted fixed effects:

y = Xβ +WXγ + Ψµ+WΨα+ ε, (2.2.1)

where y = (y11 , . . . , y1T
, . . . , y

N1
, . . . , y

NT
)′ is the dependent variable (as usual, i = 1, . . . , N

denotes cross-sectional, geographical units and t = 1, . . . , T denotes the time dimension),
X = (x11, . . . ,x1T ,x21, . . . ,x2T , . . . ,xN1, . . . ,xNT )′ is the NT × K matrix of explanatory
variables (i.e., xit is a row vector of order K) is the NT ×K matrix of explanatory variables,
and ε is a zero-mean idiosyncratic error term with assumed variance-covariance matrix

5The data set we employ is publicly available and can be downloaded, for example, from the Ecdat
package in R (a standardised binary contiguity spatial weights matrix of the US states is also included in
the package).
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Chapter 2. Estimating individual effects and their spatial spillovers in linear panel data models: Public
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σ2
εINT , with INT being the NT ×NT identity matrix.6

We assume that neighbourhood relations do not change over time, so the spatial matrix
isW = w⊗IT , with IT denoting the T ×T identity matrix and w = [wij] being the N ×N
spatial weight matrix that describes the spatial arrangement of the units in the sample. Also,
unobservable individual-specific effects are collected in Ψµ, with Ψ = IN⊗ιT , IN being the
N × N identity matrix and ιT a vector of ones of order T . Notice that, in contrast to the
so-called SLX model (Halleck Vega and Elhorst, 2015), this model specification accounts for
the spatial weights of the individual effects through the term WΨα. Thus, the parameters
of the model are β, γ, µ, α and σ2

ε . This means that 2(K +N) + 1 parameters need to be
estimated.

The main motivation behind the use of this model specification is the estimation of
the individual effects and their spatial spillovers, since these often have a meaningful
interpretation (Combes and Gobillon, 2015). In particular, following LeSage and Pace
(2009), we define the spatial spillovers of the individual-specific effects in terms of the partial
derivative of the (conditional expectation of the) dependent variable,

∂E [y |X,Ψ]

∂Ψj

= (INµj + wαj)⊗ IT (2.2.2)

where Ψj is the j-th column of Ψ and j = 1, . . . , N .

The off-diagonal elements of this matrix of partial derivatives represent the spillovers or
indirect effects of unit j, whereas the diagonal elements of the matrix represent the direct
effects of unit j. Notice, however, that since these effects are time-invariant, we can, without
loss of generality, concentrate on the term in brackets, INµj + wαj. Thus, a generic off-
diagonal element of this matrix, wilαj with i 6= l, measures the effect of unit l having the
unobservable characteristics of unit j on the dependent variable of unit i. Similarly, a generic
element of the diagonal of this matrix, µj + wiiαj, measures the effect of unit i having the
unobservable characteristics of unit j on the dependent variable of unit i. This direct effect
reduces to µj for all i when wii = 0, the standard case.7

The vector of parameters µ has thus a neat interpretation. However, the role the spatial
weight matrix w and the vector of parameters α play in the spill-over effects deserves

6Throughout the paper, we assume that a balanced (complete) panel data is available. However, results
can easily be extended to incomplete panels.

7However, LeSage and Pace (2009) do not recommend reporting unit-level effects but scalar summary
measures. Namely, the average of the main diagonal elements (direct effects) and the cumulative sum of the
off-diagonal elements from each row, averaged over all rows (indirect effects). In particular, if the spatial
weight matrix w is row-standarised and has zeros in the diagonal, these scalar summary measures correspond
to µ and α, respectively. We discuss the use of alternative unit-level indirect effects (analogous to the ones
proposed by LeSage and Chih 2016) in section 2.4.
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2.2. Specification and identification of the model

some further attention. On the one hand, the structure of w provides the definition of
neighbourhood. That is, which units are affected (the “spill-out" effects) and which are
affecting (the “spill-in" effects) by the spillover and, in distance-based matrices, how much
will be affected/affecting each unit. Thus, different spatial weight matrices yield different
spatial spillovers. On the other hand, the parameter αj provides a measure of the spatial
contagion of the individual effect of unit j irrespective of the number of neighbours it has
and how close/distant they are. That is, αj provides a measure of the “potentiality of the
spatial contagion" associated with the individual effect of unit j. We thus refer to α as the
“potential" of the spatial spillovers of the individual effects.

We illustrate the calculation and interpretation of these direct and spillover effects in the
empirical application of section 2.4. In any case, what is clear is that the estimation of these
effects requires that of the parameter vectors µ and α (since w is assumed to be a fixed
and/or known matrix). It is therefore critical to determine whether these (and the rest of)
parameters of the model are identified. Proposition 1 shows that, in general, this is not the
case.

Proposition 2.1. The Spatial (Lag of) −(X,Ψ) model for panel data with spatially weighted
fixed effects is not identified for any spatial weight matrix w.

Proof. See appendix.

Notice that, as Beer and Riedl (2012) argue, the omission of WΨα does not preclude
the consistent estimation of the parameters of the model. Thus, if the spatial spillovers of
the individual-specific effects are of no interest for the application in hand, their suggestion
to remove one of the components – i.e., either Ψ or WΨ – is perfectly sensible. This is
because the model

y = Xβ +WXγ + Ψµ∗ + ε, (2.2.3)

with Ψµ∗ = Ψµ+WΨα, is observationally equivalent to (2.2.1).

On the other hand, if the individual-specific effects and/or their spatial spillovers are
of some interest, then the identification and estimation of the model need to be discussed.
To this end, we go on to propose using a spatial−(X,Ψ) panel data model with correlated
random effects. In particular, we show that, under mild assumptions, the model is identified.
Later we present appropriate estimators under alternative exogeneity assumptions
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capital spillovers after all?

2.2.2 The Correlated Random Effects Spatial−(XXX,ΨΨΨ) Panel Data

Model

Fixed effects models implicitly assume that the individual effects are correlated with the
covariates. But they somehow ignore this correlation in the estimation procedure. In fact,
what the within and analogous transformations do (see e.g. Beer and Riedl, 2012) is to wipe
out the individual effects so that this correlation is no longer a concern for the consistent
estimation of the model. An alternative procedure for obtaining consistent estimates,
however, is to incorporate this correlation into the model (Mundlak, 1978; Chamberlain,
1982). This is the approach followed here. In particular, we make use of the correlation
between covariates and the (spatially weighted) individual effects to identify the spatial
contagion in the individual effects.

Our modelling approach is related to that of Debarsy (2012), who uses a correlated
random effects specification to construct an LR test on “the relevance of the random effects
approach” (p. 112).8 Notice, however, that although we both deal with the correlation
between individual effects and covariates, our purposes differ markedly: while he seeks to
correctly specify this correlation, we use it as a means to identify the spatial contagion in the
individual effects. We also differ in the model specification which, although similar, treats
the spatial contagion of the individual effects differently. Debarsy (2012) assumes that the
individual effects depend on both the explanatory variables and the explanatory variables in
their neighbourhood, but there is no spatial contagion in the individual effects. In contrast,
we account for the spatial contagion in the individual effects (i.e., both the individual effects
and their spatial spillovers are included in the specification) and assume that the individual
effects and the “potential" of their spatial spillovers depend on the (mean of the) explanatory
variables, which allows us to identify both the individual effects and their spatial spillovers.
These alternative assumptions yield different error component structures: a one-way error
in his case, a two-way error in ours (the additional component being a spatially weighted
element).9

8Although this is not the aim of this paper, an analogous Wald test could be developed using our model
specification and estimation procedures.

9Another important difference with the work of Debarsy (2012) is that whereas he analyses the Spatial
Durbin Model (as Beer and Riedl 2012 do), our results are derived for the spatial −(X,Ψ) model. This
allows us to address the identification and estimation of the model in a linear setting, whereas considering
correlated random effects in a Spatial Durbin specification would result in a non-linear model in which
identification and estimation are more involved. (Debarsy (2012, p. 115), for example, “assume(s) that all
parameters are identified"; see, however, Lee and Yu 2016).
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2.2. Specification and identification of the model

Thus, we assume the following relation between µ, α and the explanatory variables:

µ =
1

T
Ψ′X∗ Πµ + υµ

α =
1

T
Ψ′XΠα + υα,

(2.2.4)

where Πµ and Πα are (K+1)×1 and K×1 parameter vectors to be estimated, respectively,
and X∗ =

(
ιNT X

)
contains the covariates and a vector of ones. Notice that a constant

term needs to be included in one of the equations in (2.2.4) to guarantee identification,
since the spatial contagion of any common factor in the individual effects µ (in particular, a
constant term) is not identified. Ultimately, this means that we are implicitly assuming that
the individual effects correspond to deviations from the constant term. Also, the error terms
υµ and υα are assumed to be random vectors of dimension N with υµ ∼ (0, σ2

µIN) and
υα ∼ (0, σ2

αIN). However, υµ and υα are not assumed to be independent, the covariance
parameter, σµα, being such that E(υµυ

′
α) = σµαIN with E denoting the mathematical

expectation.

Plugging equations in (2.2.4) into the model (2.2.1) we obtain

y = Xβ +WXγ +
1

T
ΨΨ′X∗Πµ +

1

T
WΨΨ′XΠα + η, (2.2.5)

where η = Ψυµ + WΨυα + ε. Notice that the resulting error component is similar to
the one proposed by Kapoor et al. (2007) in that both error components allow for spatial
contagion in the individual (random) effects. It is different in that while we assume that
the idiosyncratic term is not spatially correlated (and propose an identification strategy that
takes into consideration that the individual effects may have spatial effects), Kapoor et al.
(2007) assume that the idiosyncratic term is spatially autocorrelated.

It is also interesting to note that our model specification does not impose the existence
of spatial contagion in the individual effects. In fact, there is no contagion at all if both
Πα and σα are zero (while there would still be some “random contagion” if Πα is zero but
σα is not). Similarly, the model does not impose correlation between the individual effects
and the covariates. In fact, the specification becomes that of a pure random effects model
if both Πµ and Πα are zero (still with spatial contagion if σα is not zero). Thus, it is the
statistical significance of these (sets of) parameters what ultimately determines the existence
of spatial contagion in the individual effects and correlation between the individual effects
and the covariates.

Finally, in contrast to the spatial −(X,Ψ) model for panel data in (2.2.1), Proposition
2 shows that the correlated random effects spatial panel data model in (2.2.5) is generally
identified.

23

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



Chapter 2. Estimating individual effects and their spatial spillovers in linear panel data models: Public
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Proposition 2.2. The correlated random effects spatial panel data model in (2.2.5) is

identified if the matrix X̃ =

(
X WX

1

T
ΨΨ′X∗

1

T
WΨΨ′X

)
has full column rank.

Proof. See appendix.

Notice that since the number of parameters in the model is 4K + 1 (excluding the σ′s),
NT ≥ 4K + 1 is a necessary identification condition. Notice also that since ΨΨ′X∗ is a
NT ×K + 1 matrix and WΨΨ′X is an NT ×K matrix, both with row rank equal to N ,
N ≥ 2K + 1 is an additional necessary identification condition. Further, X, WX, Ψ′X∗

andWΨ′X must have full rank. Lastly, time-invariant regressors must be included in either
the vector of explanatory variables (X and/orWX) or in the vector of determinants of the
individual effects and their spatial spillovers (ΨΨ′X∗ and/or WΨΨ′X). Otherwise, there
is exact multicollinearity between the explanatory variables.

2.3 Estimation

We start by noticing that consistent estimation of the parameters of the model does not
depend on what the structure of the error term η is. In particular, assuming that the
covariates are strictly exogenous (meaning here that E(εit|xj1,xj2, . . . ,xjT ) = 0 for all i, j),
Ordinary Least Squares (OLS) estimates of (2.2.5) are consistent.10 Yet a more efficient
Generalized Least Squares (GLS) estimator can be derived by accounting for the error
components structure of the model.

To be precise, the GLS estimator does not provide efficiency gains in the β and γ
parameters of the correlated random effects model in (2.2.5). In fact, as shown below (see
also Mundlak 1978), the GLS estimator of these parameters coincides with the OLS estimator
in (2.2.5) and the within or fixed-effects estimator of the (observationally equivalent) model
in (2.2.3). This means that, if these parameters are the only ones of interest, efficiency
considerations do not justify the use of the GLS estimator. In contrast, the GLS estimator
of (2.2.5) may provide efficiency gains (with respect to OLS) in the Πµ and Πα parameters
of the correlation functions. This is why, under the above strict exogeneity assumption, we
propose using a FGLS estimator based on the estimates of the parameters of the variance-
covariance matrix of η.

10Notice that the spatial structure of our model requires an orthogonality condition involving not only all
the time periods (a standard assumption in applied work; see e.g. Wooldridge 2002) but also all the units.

Otherwise, we cannot guarantee the exogeneity of WX and
1

T
WΨΨ′X.

24

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



2.3. Estimation

On the other hand, none of these estimators are consistent if the strict exogeneity
assumption does not hold. In particular, the presence of predetermined variables among
the regressors (X and WX) makes such variables endogenous when they are included
among the variables that compose the correlation functions in (2.2.4). To obtain consistent
estimates, we propose an IV estimator and the means of the endogenous variables taken, for
each period, over only current and past values (backward means) as instruments.

Next we discuss the derivation of the proposed estimators in detail.

2.3.1 GLS estimation under strict exogeneity

Given our initial assumption of spherical disturbances and the stochastic assumptions about
the behaviour of υµ and υα, the error-component η = Ψυµ + WΨυα + ε has zero mean
and variance-covariance matrix given by

Ω = σ2
µΨΨ′ + σ2

αWΨΨ′W ′ + σµαΨΨ′W ′ + σµαWΨΨ′ + σ2
εINT

= Ψ
(
σ2
µIN + σ2

αww′ + σµαw + σµαw
′)Ψ′ + σ2

εINT (2.3.1)

Knowledge of this matrix suffices to derive the GLS estimator (see e.g. Wooldridge 2002)
of the parameters of the correlated random effects model in (2.2.5). In particular, Mundlak
(1978) proves that, when all the explanatory variables are used to construct the correlation
functions and η = Ψυµ + ε, this coincides with the within (fixed effects) estimator of β and
γ in (2.2.3). Next we generalise this result to any (non-spherical) variance-covariance matrix
of υµ.

Proposition 2.3. Consider the following correlated random effects model:

y = Xλ+
1

T
ΨΨ′X∗Π + η

with X∗ being the matrix X plus a column of ones, λ and Π vectors of parameters with the
appropriate dimension, and E (ηη′) = Ω = ΨΣυΨ

′ + σ2
εINT , where Συ is any variance-

covariance matrix. The GLS, OLS and within (fixed effects) estimators of λ are the same.

Proof. See appendix.

Notice that our model corresponds to X =
(
X WX

)
, λ = (β,γ),

1

T
ΨΨ′X =(

1

T
ΨΨ′X

1

T
WΨΨ′X

)
and Συ = σ2

µIN + σ2
αww′ + σµαw + σµαw

′. Thus, Proposition

2.3 fully applies. More generally, the previous proof shows that, regardless of the structure
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Chapter 2. Estimating individual effects and their spatial spillovers in linear panel data models: Public
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of the variance-covariance matrix of υµ and υα, the GLS (and OLS) estimator of β and γ
coincides with the within (fixed effects) estimator.

Next we consider the derivation of the feasible version of this GLS estimator. This
basically requires a consistent estimate of the vector of parameters σ = (σ2

µ, σ
2
α, σµα, σ

2
ε). To

this end, we notice that each component of Ω can be written as a linear function of σ:

E [ηitηls] = σM ilts, (2.3.2)

where i, l = 1, . . . , N and t, s = 1, . . . , T . Also, E [ηitηls] denotes the mathematical
expectation of ηitηls andM is a 4×1 vector whose rows are functions of w. More specifically,

E
[
η2
it

]
= σ2

µ + σ2
α

N∑
j=1

w2
ij + 2σµαwii + σ2

ε (2.3.3)

E [ηitηis] = σ2
µ + σ2

α

N∑
j=1

w2
ij + 2σµαwii for t 6= s (2.3.4)

E [ηitηls] = σ2
α

N∑
j=1

wijwlj + σµα(wil + wli) for i 6= l (2.3.5)

This allows us to consider the following linear regression to estimate σ:

η̂itη̂ls = σM ilts + uilts (2.3.6)

where η̂ is obtained as the residual term of a consistent estimation of the model in (2.2.5).
Given the assumption of strict exogeneity of the covariates, OLS may be used for this
purpose.

Under mild conditions, OLS estimation of (2.3.6) provides consistent estimates of σ
(denoted by σ̂) and, with these in hand, we can obtain the FGLS estimates of the model.11

In particular, σ̂ allows us to obtain Ω̂GLS using (2.3.1) and, by Cholesky Decomposition of
its inverse, Ω̂

−1

GLS = DGLSD
′
GLS, the transformation matrix D′GLS. Finally, OLS estimation

of the transformed model

D′GLSy = D′GLS

(
Xβ +WXγ +

1

T
ΨΨ′X∗Πµ +

1

T
WΨΨ′XΠα + η

)
, (2.3.7)

11Alternatively, one may impose the positiveness of the variances (σ2
µ, σ

2
α and that σ2

ε) and that the
correlation between µ and α lies in the [−1, 1] interval (−1 ≤ σµα × (σ2

µ × σ2
α)−1/2 ≤ 1), and use e.g a Non-

Linear Least Squares estimator of σ. Notice that this differs from the approach followed by e.g. Kapoor
et al. (2007) in that their estimating equations are non-linear in the parameters of interest and they therefore
have to resort to a Generalized Moment estimator (which can also be used here).
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2.3. Estimation

provides the FGLS estimates of β̂, γ̂, Π̂µ and Π̂α.

Interestingly, we can proceed in an analogous way to deal with error structures with
idiosyncratic shocks following autoregressive and moving-average processes. In particular,
the main difference with respect to the procedure proposed to deal with spherical
disturbances is that the presence of a serial correlation matrix Kronecker (post-) multiplying
the last term of equation (2.3.1) results in additional (autoregressive and moving-average)
parameters in (2.3.2). Alternatively, we can account for the serial correlation in the model
by including among the regressors lags of the dependent variable (and possibly of the
explanatory variables in X and WX). Notice, however, that the presence of the time-
invariant components υµ and υα in the error term makes the lagged dependent variable
endogenous. We thus propose instrumenting this variable using lags of the explanatory
variables X (and possibly WX) to control for the endogeneity of the lagged dependent
variable.

2.3.2 Instrumental Variables Estimation Under Sequential Exo-

geneity

The assumption of strict exogeneity of the covariates is critical to guarantee that the GLS
estimators presented in the previous section provide consistent estimates of the parameters of
interest. However, in applications the assumption that εit is uncorrelated with the covariates
in all the time periods may not hold. If for example the values of an explanatory variable in
period t are related to past values of the dependent variable (e.g., in t−1), then future values
of these explanatory variables (e.g., in t+ 1) may depend on the values of the idiosyncratic
term in t, thus breaking the strict exogeneity assumption (see e.g. Wooldridge 2002).

In such circumstances, a sequential exogeneity assumption, E(εit|xi1,xi2, . . . ,xit) = 0,
seems more appropriate, since it implies that present values of yit do not affect present and
past values of xit. However, given the spatial structure of our model and following the strict
exogeneity case, we instead propose using an “extended sequential exogeneity assumption”
involving all the units in the sample. In mathematical terms, E(εit|xjs) = 0 for all ∀i, j and
s ≤ t. Notice also that if (expected) future values of xit depend on yit (i.e., present values
of yit affect the expected value of xit+1), then the explanatory variables used to construct
the correlation functions in (2.2.4) are endogenous by construction. In other words, the

presence of predetermined variables in X andWX means that
1

T
ΨΨ′X∗ and

1

T
WΨΨ′X

are correlated with the idiosyncratic term ε. Therefore, under sequential exogeneity, the
GLS estimators presented in the previous section no longer provide consistent estimates of
the parameters of interest. Rather, an IV estimator should be considered for this purpose.
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The main challenge IV estimators face in practice is that it is often difficult to find good
instruments. In this case, however, the structure of the model provides natural candidates.
Namely, the means of the exogenous explanatory variables constructed using values up to
period t (rather than using all T values).12 Let

LT =



1 0 0 · · · 0
1

2

1

2
0 · · · 0

1

3

1

3

1

3
· · · 0

...
...

... . . . ...
1

T

1

T

1

T
· · · 1

T


be the row-standardised lower triangular matrix of ones and Γ = IN ⊗ LT be the
transformation matrix that yields the backward-up-to-t mean of the variable (i.e., ΓX,
for example, yields a matrix composed by the means of the exogenous explanatory variables
constructed using values up to period t). The matrix of instruments can be thus written as
Z1 =

(
ΓX ΓWX

)
.

Notice that these backward means are exogenous variables under the extended sequential
exogeneity assumption. But they are also relevant, since by construction they are correlated
with the endogenous explanatory variables

1

T
ΨΨ′X∗ and

1

T
WΨΨ′X. Notice also that if

we use the same explanatory variables to construct both the instruments and the correlation
functions (or different variables but the same number), then the model is exactly identified.
However, if all the explanatory variables are used to construct the instruments but not all
the explanatory variables are used to construct the correlation functions, then the model is
overidentified.

To construct the IV estimator, we follow Hausman and Taylor (1981) and Keane and
Runkle (1992). Hausman and Taylor (1981) propose a two-step procedure to estimate linear
panel data models with endogenous explanatory variables (with respect to the idiosyncratic
term, as well as with respect to the individual effect) that boils down to an initial GLS
transformation of the model (using a consistent estimate of the variance-covariance matrix
of the error term) and then an estimation of the transformed model by IV. However,
Keane and Runkle (1992) show that this procedure may not yield consistent estimates when
the instruments are predetermined. This is because the GLS-transformation proposed by
Hausman and Taylor (1981) results in individual errors that are linear combinations of the
errors of the individual in all time periods. To obtain consistent estimates, Keane and

12In fact, provided that the number of available periods is long enough, one may use up to lagged periods
to construct such means, i.e., one may use values up to period t− 1, t− 2, etc..
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Runkle (1992) instead propose using the upper-triangular Cholesky decomposition of the
serial correlation matrix (forward filtering) to GLS-transform the model. In essence, this
is the procedure we follow, except that the complex structure of our error term requires a
different GLS transformation and alternative orthogonality conditions between the errors
and the explanatory variables.

To be precise, we obtain the IV estimates of our model in the following way. First,
we transform the model using the projection matrix onto the column space of the matrix
consisting of the exogenous variables and the instruments. That is, we multiply the model by
the projection matrix PZ = Z(Z ′Z)−1Z ′, with Z =

(
X WX Z1

)
. This addresses the

endogeneity problem and makes it possible to consistently estimate the transformed model
by OLS. However, a more efficient estimation may be obtained if we transform the model
to obtain spherical disturbances. To this end, we use these OLS estimates to generate the
residuals η̂ and, after estimating (2.3.6), obtain Ω̂IV and DIV in the same way as we did
for Ω̂GLS and DGLS.

In particular, since our instruments are predetermined, we propose using the upper-
triangular Cholesky decomposition of the inverse of the variance-covariance matrix (rather
than that of the serial correlation matrix used by Keane and Runkle 1992) to obtain DIV .
However, given the spatial structure of our model, we need to sort the data first by time
and then by units within each time period before computing the upper-triangular Cholesky
decomposition of Ω̂IV .13 This guarantees that the transformed errors in period t contain
elements of ηis for s ≥ t and hence the exogeneity of our instruments in the transformed
model.14

In the second step of the procedure, we estimate the GLS-transformed model by IV.
This means that we again transform the model using the projection matrix PZ , except that
now the sorting of the data requires using the matrix Γ = LT ⊗ IN to construct Z1. The

13Notice that so far we have followed the standard practice of having the data sorted first by units
and then by time within each unit, so e.g. the dependent variable was defined in Section 2.2 as
y = (y

11
, . . . , y

1T
, . . . , y

N1
, . . . , y

NT
)
′. Here we require that y = (y

11
, . . . , y

N1
, y

12
, . . . , y

N2
, . . . , y

1T
, . . . , y

NT
)
′

and X = (x
11
, . . . ,x

N1
,x

12
, . . . ,x

N2
, . . . ,x

1T
, . . . ,x

NT
)
′. In particular, notice that this sorting requires

using W = IT ⊗w and Ψ = ιT ⊗ IN .
14Notice that, in a model without spatial dependence, Keane and Runkle (1992) assume that E(ηit|zis) = 0

for s ≤ t. However, the presence of spatially weighted covariates in the model means that, for the
proposed instruments, this only holds if the extended sequential exogeneity assumptions holds. Notice
also that the observation (i, t) of the transformed error term, D′IV η, contains the original error terms ηj,t
for j = i, i + 1, i + 2, ..., N as well as ηj,s for all j and s > t. This is why, in the presence of spatial
dependence, the orthogonality condition proposed by Keane and Runkle (1992) does not suffice. In contrast,
our extended sequential exogeneity assumption guarantees that the proposed instruments are exogenous to
the transformed errors, since E(ηjt|zis) = 0 for all j and s ≤ t.
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transformed model,

PZD
′
IV y = PZD

′
IV

(
Xβ +WXγ +

1

T
ΨΨ′X∗Πµ +

1

T
WΨΨ′XΠα + η

)
, (2.3.8)

is then estimated by OLS. The IV estimates of β̂, γ̂, Π̂µ and Π̂α we obtain are not only
consistent but also more efficient than the initial IV estimates obtained in the first step of
the procedure.

Lastly, it is interesting to note that, unlike the strict exogeneity case, the treatment of
serial correlation under sequential exogeneity does not follow immediately. In the present
case, the presence of lags of the idiosyncratic term ε makes any predetermined variable
in the model endogenous (not only those in the correlation functions). This is, however,
not a major issue if the number of lags is small (the order of the moving average is low)
and the time dimension of the panel is large. If the predetermined variable is among the
regressors (X and WX), we propose using lags of the variable as instruments; and if the
predetermined variable is in the correlation function, we similarly propose adjusting the
periods used to compute the backward means. Thus, we lose (at least) one period for each
additional lagged term in the idiosyncratic error. The problem, of course, is that if the order
of the moving average process driving the idiosyncratic term is not smaller than the number
of time periods minus one, then there is no room for using lags and backward means as
instruments. In particular, by the Wold representation theorem, this situation arises if the
idiosyncratic term follows an AR process (of any order).

Alternatively, in applications in which strict exogeneity does not hold and there is
serial correlation in the model, we may include among the regressors lags of the dependent
variable (and possibly of the explanatory variables in X andWX) and then apply the two-
step procedure previously described. Notice, however, that in this specification the lagged
dependent variable is endogenous (for the reasons pointed out in the GLS case). We thus
proposed extending our matrix of instruments to include lags of the explanatory variables
X (and possibly WX) to control for the endogeneity of the lagged dependent variable.

2.4 Public capital spillovers in a production function

specification: empirical evidence

In this section we use our correlated random effects specification and the proposed FGLS and
IV estimators to empirically address the existence of public capital spillovers. To this end,
we use a Cobb-Douglas production function specification and yearly data from (Munnell,
1990, p. 77) on 48 US contiguous states over the period 1970 to 1986. The output variable
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is the gross state product and the inputs include public capital, private capital and labour.
“The unemployment rate is also included [in the regressions] to reflect the cyclical nature
of productivity”. All the variables except unemployment are in logs. This data set has
the additional interest of having been partially (e.g. Garcia-Mila et al., 1996) or totally
(e.g. Baltagi and Pinnoi, 1995) used in a number of studies on the relation between public
capital and private output —see also Boarnet (1998) and Sloboda and Yao (2008). In
particular, some of these studies have used spatial econometrics techniques (e.g. Holtz-Eakin
and Schwartz, 1995; Kelejian and Robinson, 1997).

This accumulated evidence provides an excellent benchmark for our estimates, which
were obtained for a model specification that uses all the inputs and their spatial counterparts
to construct the correlation functions (µ and α). Before proceeding with the estimation,
however, we considered the identification of the proposed model. We thus computed
det(X̃′X̃) to find that it was indeed positive, which means that our identification condition
holds.

We report FGLS estimates of the model in Table 2.1 (coefficients and variance
components). We also report the joint significance LM-tests of each subset of coefficients
(β, γ, Πµ and Πα). The first thing to notice is that since our model specification uses all
regressors (X and WX) to construct the correlation functions (µ and α), estimates of β
and γ reported in Table 2.1 correspond to the within estimates of the model. As for the
coefficient estimates of the variables that compose the correlation functions, Πµ and Πα, all
tend to be statistically significant (both individually and jointly). Lastly, all the variance
components σ are statistically significant and have reasonable values. This supports our
correlated random effects model specification. In particular, given that we reject that Πα is
zero, there is evidence of contagion in the individual effects and, given that we reject that
Πµ is zero, there is evidence of correlation between the individual effects and the covariates
(fixed effects).

[Insert Table 2.1]

The FGLS estimates of the β-coefficients associated with the main regressors (X) are in
line with those reported in previous studies. More precisely, they are close to those reported
by Holtz-Eakin and Schwartz (1995) and Kelejian and Robinson (1997). While our estimate
of the elasticity of labour is 0.7, for example, they estimated it to be between 0.6 and 0.9;
similarly, our estimate of the elasticity of private capital is 0.2, while their estimates range
from 0.06 to 0.2.15 We further concur with the lack of statistical significance of public capital

15These estimates tend to be smaller that those reported by Baltagi and Pinnoi (1995) and Garcia-Mila
et al. (1996), which may suggest that ignoring spatial dependence results in overestimation of the coefficients.
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(see also Baltagi and Pinnoi, 1995; Garcia-Mila et al., 1996) and the statistical significance
of the spatially weighted public capital (see the second column of Table 2.1, γ). Lastly, the
statistical significance of public capital in the correlation function of the individual effects
(see the third column of Table 2.1, Πµ) is consistent with evidence reported by Baltagi and
Pinnoi (1995, p. 396) that rejects the orthogonality between regressors and individual effects
“only when the public capital stock (is) included in the production function”.

Next we explore the possibility that the explanatory variables are not exogenous but
predetermined. Previous related studies have analysed the endogeneity of (some of) the
explanatory variables, with mixed results on the endogeneity tests (Baltagi and Pinnoi,
1995; Holtz-Eakin and Schwartz, 1995; Garcia-Mila et al., 1996) and implausible results on
the coefficient estimates (Baltagi and Pinnoi, 1995; Holtz-Eakin and Schwartz, 1995). Here
we address the predeterminedness of the public capital variable (and its spatially weighted
counterpart). This would be the case, for example, if the amount states spend on public
capital is related to past values of private output (e.g., because more prosperous states are
likely to generate higher tax revenues). Under such circumstances, our previous discussion
on the FGLS estimates is flawed, since the variables that compose the correlation functions
defining µ and α become endogenous and the FGLS estimator is no longer consistent.

We thus report results from an IV estimation in Table 2.2. These were obtained using
as instruments backward-up-to-t means of all the explanatory variables and their spatially
weighted counterparts. That is, Z1 contains the Γ−transformations of public capital, private
capital, labour and unemployment as well as of their spatially weighted counterparts.16 At
first sight, the IV estimates of the β- and γ-coefficients are not substantially different from
those obtained by FGLS (perhaps with the exception of the public capital in γ). In contrast,
IV and FGLS estimates of the coefficients associated with the variables that compose the
correlation functions, Πµ and Πα, differ substantially. Indeed, a Hausman test between
these two estimators strongly rejects the null hypothesis of strict exogeneity (the statistic is
159.42). This supports our tenet that public capital is actually a predetermined variable.

[Insert Table 2.2]

We then obtained an estimate of the direct individual effects (i.e., µ) and the “potential"
of their spatial spillovers (i.e., α) using these IV estimates. However, we found that while
the estimated direct efffects were generally statistically significant (both using FGLS and
IV estimates), the “potential" of the spatial spillovers of the invididual effects were only

16We experimented with other set of instruments (e.g., without considering unemployment and its spatial
weight) and found that coefficients estimates were barely altered.
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statistically significant under the strict exogeneity assumption. Under the assumption that
capital is a predetermined variable, the estimated α’s were not statistically significant.17

Seeking for alternative, more efficient specifications that yielded statistically significant
α’s, we used a variables-selection procedure that resulted in the specification reported in
Table 2.3.18 Notice that the (common) estimated model coefficients are not that different
from those reported in Table 2.2. Also, the correlation between the estimated µ’s and
α’s (obtained from the estimates reported in Table 2.2 and Table 2.3) is 0.99 and 0.90,
respectively. However, 14 out of the 48 estimated α’s are now statistically significant at
standard confidence levels. Alternatively, we considered an ad-hoc model selection procedure
in which we explored different specifications in terms of instruments (e.g., using squared
terms) and/or variables (e.g., dropping the unemployment, as in Holtz-Eakin and Schwartz
1995). This also produced specifications in which the α’s were statistically significant and
highly correlated with those obtained using the results reported in Table 2.2, while the
coefficients of the model and their statistical significance remained generally unaltered. This
was the case, for example, when dropping public capital from WX, the unemployment
from Πµ, and the unemployment and its spatially weighted counterpart from the set of
instruments.

Given the illustrative aim of this empirical exercise, determining which is the best model
specification is clearly beyond the scope of this paper. It is important to stress, however,
that little differences were observed among the alternative specifications we considered when
we plotted on a map of the US states the estimated values of µ and α (available from the
authors upon request). Bearing this in mind, we have used the IV estimates reported in
Table 2.3 to analyse the geographical distribution of the estimated direct individual effects
and their spatial spillovers. In particular, our spillover effects are based on LeSage and Chih

17We use t-statistics to test the statistical significance of the individual effects and their spatial spillovers.

In particular, the standard errors were obtained from V̂ ar(µ̂ − µ) =
1

T 2
Ψ′X∗Σ̂ΠµX

∗′Ψ + σ̂2
µIN −

2
1

T
Ψ′X∗Mµ

̂E
[
ηυ′µ

]
, with E [·] denoting the mathematical expectation, ΣΠµ = V ar(Π̂µ) and Π̂µ −Πµ =

Mµη. The expression for V̂ ar(α̂−α) is analogous, only differing in the subindices (i.e., using Σ̂Πα instead
of Σ̂Πµ , σ̂

2
α instead of σ̂2

µ, Mα instead of Mµ, and υ′α instead of υ′µ). Under standard assumptions, these are
consistent and (approximately) normally-distributed estimators of V ar(µ̂−µ) and V ar(α̂−α), respectively.
Notice that these estimated variances allow us to also test whether the direct effects of two states are
statistically equal (rather than whether the direct effect of one state is statistically equal to zero, as we did).

18In particular, we proceeded as follows. We dropped the most non-significant variable (i.e., that with
the higher p-value) in the original specification (that reported in Table 2.2), reestimated the model and
determined which was the most non-significant variable in the new specification. We then tested whether
these two variables were jointlty statistically significant in the original specification. If the null hypothesis of
this Wald test was not rejected, we dropped the two variables and considered again the most non-significant
variable in the resulting specification. Then, we constructed a new Wald test for the null that the three
variables were not jointly statistically significant in the original specification. We went on dropping variables
and testing their joint significance untill either the jointly statistically non-significant hypothesis was rejected
or all the variables in the model were statistically significant.
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(2016), who define “spill-in" and “spill-out" effects as the cumulating off-diagonal elements
from row- and column-sums of the matrix of marginal effects in (2.2.2), respectively.

[Insert Table 2.3]

To be precise, LeSage and Chih (2016) interpret the row-sums of wαj (i.e.,
N∑
l=1

wilαj,

assuming that wii = 0) as the “spill-in effects" on the outcome of unit i. Thus, this spill-in
effect captures the impact on the outcome of unit i of all the units neighbouring i having

the unobserved characteristics of j. However, we find more interesting to report
N∑
l=1

wilαl,

which is the impact on the outcome of unit i of all the units neighbouring i having their
unobserved characteristics (i.e., the impact on the outcome of unit i of the individual effects
of the units neighbouring i). This is reported in Figure 2.1a.

Similarly, LeSage and Chih (2016) interpret the colum-sums of wαj (i.e., αj
N∑
l=1

wli,

assuming that wii = 0) as “spill-out effects" of unit i. In particular, this spill-out captures the
impact of unit i having the unobserved characteristics of j on the outcome of the neighbours

of unit i. Again, we find more interesting to report αi
N∑
l=1

wli, which is the impact on the

outcome of the units neighbouring i of the individual effect of unit i. Notice, however, that
our proposed spill-out effect is the product of αi (the “potential" of the spatial spillovers

of the individual effects) and
N∑
l=1

wli (which in essence determines the spatial contagion,

i.e., which units are affected by the spillover). Since our spill-in effect already reflects the
spatial contagion of the individual effects, it seems more interesting to report α rather than

αi

N∑
l=1

wli. This is consequently what we do in Figure 2.1b.

[Insert Figure 2.1]

Results indicate that the geographical distribution of the spatial contagion, as measured
by the spill-in (Figure 2.1a) and spill-out (Figure 2.1b) effects, follows very much the same
pattern (with some notable exceptions, such as Nebraska and Nevada). This means that
most states show spill-in and spill-out effects that are of analogous magnitude. However,
the “inwards" spatial contagion of the spill-in effects is generally not statistically significant
(Colorado, Montana, Texas and Utah being the exceptions). We thus concentrate on the
analysis of the spill-out effects which, as previously pointed out, tend to be statistically
significant.

Figure 2.1b shows that, in absolute values, West-Central (from Texas to Kansas, but
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also North-Dakota and Indiana) and West-Mountain (New Mexico and Wyoming) states
stand out as the areas with the highest “outwards" spatial contagion. These are thus
states with individual effects that strongly and negatively spill over the neighbouring states.
Interestingly, these spill out effects are generally statistically significant at conventional
confidence levels. On the other hand, there are two areas of low spill-out effects (in absolute
values): the West-Pacific (California and Washington) and the North-East (New York in the
mid-Atlantic and Connecticut, Rhode Island, Massachusetts and Vermont in New England).
These are thus states with individual effects that negatively spill over the neighbouring
states, but for which the relative magnitude of these spillovers is small (and, in fact, not
statistically significant).

Further, Figure 2.1c reveals that the states that have the highest estimated values of the
direct individual effects are mostly located in the North and West of the country (plus Texas
and Louisiana in the South): more precisely, in the East (Illinois, Michigan and Ohio) and
West (Nebraska) North Central, the mid-Atlantic (New York and Pennsylvania), the West-
Mountain (Montana and Wyoming) and West-Pacific (California and Washington) regions.
Figure 2.1c also shows that the states with the lowest estimated values of the direct individual
effects concentrate in New England (Connecticut, Maine, Massachusetts, New Hampshire,
Rhode Island and Vermont), although we also find some states in the West-Mountain (i.e.,
Idaho, Utah and Nevada) and the South-Atlantic (North and South Carolina) regions.

Lastly, it is interesting to note the overlap between Figure 2.1a, Figure 2.1b and
Figure 2.1c. In fact, since the estimated values of the individual effects and their spatial
spillovers show different sign (see the signs of the Π-coefficients in Table 2.1, Table 2.2 and
Table 2.3), Figure 2.1 points to a negative relation between µ̂ and α̂ (wα̂). Importantly,
this “proportionality" between the direct and indirect effects is not a feature of the model
specification (LeSage and Chih, 2016). Rather, it arises as a genuine characteristic of the
data.19

Therefore, states with larger/smaller estimated direct individual effects tend to have
larger/smaller negative spatial spillovers (both spill-in and spill-out). Notice, however, that
this is mostly driven by New England states (with small direct individual effects and small
negative spatial spillovers) and the central and southern states (with large direct individual
effects and large negative spatial spillovers, except for Nebraska, which shows large direct
individual effects and small negative spatial spillovers). The West and North-East states,
on the other hand, tend to have large estimated direct individual effects and small negative

19A simple regression between µ̂ and α̂, for example, indeed has a negative and statistically significant
slope (−0.34, with a p-value of 0.03), whereas a simple regression between α̂ and wα̂ has a positive and
statistically significant slope (0.86 with a p-value of 0.00).
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spatial spillovers.

To conclude, it is worth noting that negative spillovers that “might shift economic activity
from one location to another" have previously been found by, for example, Boarnet (1998,
p. 382) and Sloboda and Yao (2008) with respect to the stock of and the investment in
public infrastructure, respectively. However, the source of this “crowding out" effect in
our model are the unobservable characteristics of the states or “unobserved productivity"
(which these studies cannot identify). In fact, consistent with the work of Holtz-Eakin
and Schwartz (1995) and Kelejian and Robinson (1997), results reported in Table 2.2 show
that the spatially weighted public capital has a negative coefficient, but is not statistically
significant (while private capital is, and has a positive sign). Notice also that both private and
public capital are positively related to the states’ unobserved productivity (both variables
show positive and statistically signs in Πµ). However, the role of these variables in the
spatial spillover of the productivity, Πα, differs. While the investment in private capital
is associated with negative spillovers, the investment in public capital is associated with
positive spillovers.

2.5 Conclusions

In this paper we analyse the problem of estimating individual effects and their spatial
spillovers in linear panel data models. In particular, we consider models in which the
exogenous regressors are spatially weighted and there is no spatially lagged dependent
variable (i.e., the so-called spatial-X model). We first show that in this model specification
the individual effects and their spatial spillovers are not identified for any spatial weight
matrix. Under mild assumptions, however, we show that they are identified in a correlated
random effects specification. To be precise, we show that there is no identification problem in
a spatial−(X,Ψ) panel data model with correlated random effects if certain rank conditions
hold and the individual effects correspond to deviations with respect to the constant term.

We then consider the estimation of the parameters of the (identified) model. Under
strict exogeneity of the covariates, OLS estimates are consistent. Here, though, we provide
more efficient FGLS estimators (at least more efficient with respect to the coefficients
of the variables that compose the correlation functions) and propose an IV estimator to
tackle situations in which the strict exogeneity assumption may not hold and a sequential
exogeneity assumption is upheld. In particular, we suggest using the means of the
exogenous explanatory variables constructed using values up to period t as instruments
for the endogenous explanatory variables used to construct the correlation function (which,
ultimately, are “means-up-to-T ” of the exogenous variables). Also, dropping the most recent
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periods used to construct these instrumental variables (i.e., using “means-up-to-(t − s)”,
with s being a positive integer) may provide further instruments and/or instruments for
potentially endogenous regressors.

Lastly, we present results from an empirical application: the estimation of a Cobb-
Douglas production function using US state data. We find statistically significant differences
between the FGLS and IV estimates, which suggest that the strict exogeneity assumption
that sustains the FGLS estimates may not hold because the public capital variable is actually
predetermined. Also, IV (and FGLS) estimates show that the variables that compose
the correlation functions, as well as the variance components, all tend to be statistically
significant. This supports our correlated random effects model specification.

The geographical distribution of the IV-estimated direct individual effects and their
spatial spillovers reveals the existence of three major regions: i) Central and South states,
where both direct individual effects and negative spatial spillovers tend to be large; ii) New
England states, where both the direct individual effects and negative spatial spillovers tend
to be small; and iii) West and North-East states, where the estimated direct individual
effects tend to be large and the negative spatial spillovers tend to be small. In addition,
both the “inwards" and “outwards" spatial contagion of the individual effects (i.e., the spill-
in and spill-out effects) involve negative spillovers, although this sign is mostly associated
with the private capital (and labour) and is only statistically significant for the spill-out
effects. Public capital, on the other hand, is behind the positive spatial contagion of the
individual effects. Consistent with previous literature, however, public capital itself does not
seem to convey statistically significant spatial spillovers.

2.6 Appendix: Proofs of Propositions

Proof of Proposition 2.1. The model in (2.2.1) is not identified for any spatial weight
matrix w because Ψ and WΨ are perfectly collinear. We prove this by showing that

det

[(
Ψ WΨ

)′ (
Ψ WΨ

)]
is zero for any spatial weight matrix w. Let

A =
(

Ψ WΨ
)′ (

Ψ WΨ
)

= T

(
IN w

w′ w′w

)
(2.6.1)

Then, by Schur complement,

det(A) = T 2N det (IN) det
(
w′w −w′ (IN)−1 w

)
= T 2N det (w′w −w′w) = 0 (2.6.2)
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Proof of Proposition 2.2. Since the correlated random effects spatial−(X,µ) panel data
model is linear in parameters, it is identified iff det(X̃′X̃) 6= 0. If X̃ has full rank, it is
easy to show that det(X̃′X̃) > 0 (see e.g. Corollary 14.2.14 and Theorem 14.9.4 in Harville
2008).

Proof of Proposition 2.3. Let λ̂OLS, λ̂w and λ̂GLS be the OLS, within and GLS estimators
of λ. We prove first that λ̂OLS = λ̂w. To this end, we start by noting that, by the Frisch-
Waugh-Lovell theorem and given that ΨΨ′ΨΨ′ = TΨΨ′,

λ̂OLS = (X′M 1X)
−1

(X′M 1y)

with M 1 = INT −
1

T
ΨΨ′X∗

(
X∗′ΨΨ′X∗

)−1 X∗′ΨΨ′. Also, let Q = INT −
1

T
ΨΨ′, which

satisfies that Q′Q = Q and QΨ = 0. Lastly, since X′ =
(

0K×1 IK×K

)
X∗′, it can be

proved that X′M 1 = X′Q. Consequently,

λ̂OLS = (X′QX)
−1 X′Qy = λ̂w

This concludes the first part of the proof. Next we prove that λ̂GLS = λ̂OLS = λ̂w. To
this end, we start by noting that λ̂GLS corresponds to the OLS estimator of the considered
correlated random effects model transformed using the (upper triangular part of the)
Cholesky decomposition of the inverse of the variance covariance matrix of η, Ω−1 = DD′.
Therefore, by the Frisch-Waugh-Lovell theorem,

λ̂GLS = ((D′X)′M 2D
′X)−1((D′X)′M 2D

′y)

withM 2 = INT −D′ΨΨ′X∗(X∗′ΨΨ′Ω−1ΨΨ′X∗)−1X∗′ΨΨ′D. Also, from equation (19) in
Henderson and Searle (1981),

Ω−1 =
(
σ2
εINT + ΨΣυΨ

′)−1
=

1

σ2
ε

INT −
1

σ2
ε

ΨΣυΨ
′Ω−1

=
1

σ2
ε

INT −
1

σ2
ε

Ω−1ΨΣυΨ
′,

which implies that ΨΣυΨ
′Ω−1 = Ω−1ΨΣυΨ

′ and, using again that ΨΨ′ΨΨ′ = TΨΨ′, it
can be proved that

ΨΨ′Ω−1 = Ω−1ΨΨ′ (2.6.3a)

QΩ−1 = Ω−1Q =
1

σ2
ε

Q (2.6.3b)
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Lastly, by (2.6.3a) matrix M 2 can be rewritten as

M 2 = INT −
1

T
D′ΨΨ′X∗

(
X∗′Ω−1ΨΨ′X∗

)−1 X∗′ΨΨ′D,

and so X′DM 2 = X′QD. Consequently,

λ̂GLS =
(
X′QΩ−1X

)−1
(X′QΩ−1y) =

(
X′QX

)−1

(X′Qy) = λ̂OLS = λ̂w,

where the second equality holds by (2.6.3b).
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Table 2.1: FGLS estimates.

Coefficients β γ Πµ Πα

Private capital 0.199∗∗∗ 0.260∗∗∗ 0.197∗∗∗ −0.477∗∗∗
(0.030) (0.043) (0.052) (0.089)

Labour 0.724∗∗∗ −0.027 −0.212∗∗∗ 0.101
(0.035) (0.050) (0.066) (0.115)

Unemployment rate −0.002 −0.007∗∗∗ −0.013 0.035∗

(0.001) (0.002) (0.010) (0.018)
Public capital −0.023 −0.129∗∗ 0.186∗∗∗ 0.230

(0.030) (0.051) (0.070) (0.146)

Joint LM-test 250.07∗∗∗ 17.83∗∗∗ 13.10∗∗∗ 8.28∗∗∗

Variance Components σ2
µ σ2

α σµα σ2
ε

0.0045∗∗∗ 0.0012∗∗∗ 0.0017∗∗∗ 0.0013∗∗∗

(0.0001) (0.0003) (0.0001) (0.0002)

Note: ∗p-value<0.1; ∗∗p-value<0.05; ∗∗∗p-value<0.01. The dependent
variable is the gross state product. All the variables are in logs, except
for the unemployment. Variance components were estimated by OLS.
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Table 2.2: IV estimates.

Coefficients β γ Πµ Πα

Private capital 0.255∗∗∗ 0.259∗∗∗ 0.351∗∗∗ −0.601∗∗∗
(0.037) (0.055) (0.081) (0.135)

Labour 0.676∗∗∗ −0.045 −0.666∗∗∗ −0.100
(0.059) (0.078) (0.132) (0.217)

Unemployment rate −0.003 −0.009∗∗∗ 0.009 0.067∗∗

(0.002) (0.003) (0.015) (0.029)
Public capital −0.029 −0.100 0.541∗∗ 0.661∗

(0.125) (0.163) (0.230) (0.347)

Joint LM-test 168.57∗∗∗ 12.40∗∗∗ 12.77∗∗∗ 6.32∗∗∗

Variance Components σ2
µ σ2

α σµα σ2
ε

0.0046∗∗∗ 0.0008∗∗∗ 0.0019∗∗∗ 0.0019∗∗∗

(0.0001) (0.0003) (0.0001) (0.0002)

Note: ∗p-value<0.1; ∗∗p-value<0.05; ∗∗∗p-value<0.01. The dependent
variable is the gross state product. All the variables are in logs, except for
the unemployment. The matrix of instruments consist of backward-up-
to-t means of public capital, private capital, labour and unemployment
as well as of their spatially weighted counterparts. Variance components
were estimated by OLS.

41

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



Chapter 2. Estimating individual effects and their spatial spillovers in linear panel data models: Public
capital spillovers after all?

Table 2.3: IV estimates.

Coefficients β γ Πµ Πα

Private Capital 0.252∗∗∗ 0.419∗∗∗ 0.342∗∗∗ −0.909∗∗∗
(0.040) (0.068) (0.084) (0.180)

Labour 0.666∗∗∗ −0.279∗∗∗ −0.776∗∗∗
(0.050) (0.084) (0.118)

Unemployment rate −0.011∗∗∗ −0.008∗∗∗
(0.002) (0.003)

Public Capital 0.660∗∗∗ 0.877∗∗∗

(0.132) (0.193)

Variance Components σ2
µ σ2

α σµα σ2
ε

0.0044∗∗∗ 0.0026∗∗∗ 0.0018∗∗∗ 0.0015∗∗∗

(0.0001) (0.0003) (0.0001) (0.0002)

Note: ∗p-value<0.1; ∗∗p-value<0.05; ∗∗∗p-value<0.01. The dependent
variable is the gross state product. All the variables are in logs, except
for the unemployment. The matrix of instruments consist of backward-
up-to-t means of public capital, private capital, labour and unemployment
as well as of their spatially weighted counterparts. Variance components
were estimated by OLS.
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2.6. Appendix: Proofs of Propositions

Figure 2.1: Estimated individual effects and their spatial spillovers.

(a) Geographical distribution of wα̂

(b) Geographical distribution of α̂

(c) Geographical distribution of µ̂

Note: ∗p-value<0.1; ∗∗p-value<0.05; ∗∗∗p-value<0.01.
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Chapter 3

A correlated random effects spatial

Durbin model
1

3.1 Introduction

The spatial Durbin model is a widely used specification in cross-section studies using
georeferenced data (LeSage and Pace, 2009; LeSage, 2014). However, its use appears to
be more limited with panel data. Although it has a certain appeal as a general framework to
analyse spatial relations, concerns have been raised about its estimation and identification,
particularly in its dynamic version (Elhorst et al., 2010; Elhorst, 2012). Despite these
concerns, the spatial Durbin dynamic panel model (or, simply, dynamic spatial Durbin
model) is expected to gain popularity in applied work, since identification conditions and
Monte Carlo evidence for 2-Stage Least Squares (2SLS) and Quasi Maximum Likelihood
(QML) estimators have recently been provided by Lee and Yu (2016). It is also interesting
to note that Yu et al. (2008) and Su and Yang (2015) have analysed the asymptotic properties
of QML estimators in restricted versions of the model specification analysed by Lee and Yu
(2016).

In this paper we consider a correlated random effects specification (Mundlak, 1978;
Chamberlain, 1982) of the spatial Durbin (dynamic) panel model and, following Yu et al.
(2008) and Su and Yang (2015), derive the likelihood function of the model and proof that
the QML estimator is consistent and asymptotically normal. To be precise, our model
specification corresponds to a restricted version of the dynamic spatial Durbin model of Lee
and Yu (2016), since we do not include the spatial lag of the lagged dependent variable among
the regressors.2 This means that, in terms of spatial dependence, our model specification

1This chapter is co-authored with Oscar Martínez-Ibáñez and Miguel Manjón-Antolín.
2See e.g. Elhorst (2012) for an overview of empirical studies using this model specification. Notice that

the inclusion of the spatial lag of the lagged dependent variable would not make a substantial difference in
proving the asymptotic properties of the QML estimator (other than complicate it).

45

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



Chapter 3. A correlated random effects spatial Durbin model

lies somewhere in between that of Yu et al. (2008), who only consider the spatial lag of
the dependent and lagged-dependent variables, and that of Su and Yang (2015, p. 231), in
which “spatial dependence is present only in the error term". A major difference with respect
to these papers is that while they consider a rather general variance-covariance matrix of
the error term (which may contain individual and/or time effects), we consider an error-
components structure with individual effects and their spatial spillovers (time effects can
easily be incorporated), which results in a specific albeit involved variance-covariance matrix
(see also Kapoor et al., 2007). Our proofs, however, are derived under rather standard
assumptions in the spatial econometrics literature.3

Our model specification is inspired by the work of Beer and Riedl (2012), who advocate
using an extension of the spatial Durbin model for panel data that controls for both the
individual effects and the spatially weighted individual effects (see also Miranda et al.,
2017b). Ultimately, however, they argue that “it is (...) advisable to remove the spatial
lag of the fixed effects from the equation as the inclusion of both, [the individual effects]
and [their spatial spillovers], leads to perfect multicollinearity” (p. 302). Removing the
spatial lag of the fixed effects does not generally preclude the consistent estimation of the
parameters of the model. However, this practice rules out obtaining an estimate of the
individual-specific effects (net of the spatially weighted effects), which can be critical in
certain applications. This is the case, for example, in growth models, where a measure of
the unobserved productivity of the geographical units under study can be obtained from the
estimated individual effects (Islam, 1995). Distinguishing the individual effects from their
spatial spillovers can thus provide interesting insights into how the unobserved characteristics
of the neighbouring territories affect the output of a certain territory and, conversely, how
the unobserved characteristics of a territory affect the output of the neighbouring territories.

To illustrate this point, we estimate a growth-initial level equation using OECD data
from Lee and Yu (2016). Unlike previous studies (e.g., Yu and Lee, 2012; Ho et al.,
2013), however, our model specification not only accounts for observable “technological
interdependences" (à la Ertur and Koch 2007) but also for unobserved ones (through the
spatial spillovers of the individual effects). Interestingly, our estimated coefficients and
standard errors largely replicate those reported by Lee and Yu (2016). This means that,
since the spatial autoregressive parameter is not statistically significant, “the role played by
technological interdependence on the growth of [OECD] countries" may not be as important
as previously thought (Ertur and Koch 2007, p. 1052; see also Elhorst et al. 2010). In
contrast, our results point to the existence of “unobservable technological interdependences"
(i.e., spatial contagion in the – weakly significant – individual effects). Following Islam

3See e.g. Kelejian and Prucha (1998, 2001); Lee (2004); Yu et al. (2008) and Su and Yang (2015).
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3.2. Model specification

(1995), this may be interpreted as evidence that the growth of some countries is partially
explained by the impact that the (unobserved productivity) of the neighbouring countries
have on their economies. Lastly, computation of the “spill-in" and “spill-out" effects of the
individual effects indicate that countries that impact less/more on other countries tend to
be those that are less/more affected by the spillovers from their neighbours (Debarsy et al.,
2012; LeSage and Chih, 2016). Further, they tend to have larger/smaller individual effects.

The rest of the paper is organised as follows. In Section 3.2 we present the model. In
Section 3.3 we discuss its estimation by QML and derive the asymptotic properties of the
QML estimator. In Section 3.4 we provide illustrative evidence. Section 3.5 concludes.

3.2 Model specification

In this paper we are interested in the following dynamic spatial autoregressive model with
spatially weighted regressors and spatially weighted fixed effects:

Ynt = ρ0Yn,t−1 + λ0WnYnt +Xntβ10 +WnXntβ20 + µn +Wnαn + εnt (3.2.1)

where the subindex 0 denotes the “true” parameters of the model (e.g, ρ0, λ0, β10 and β20),
Ynt = (y1t, y2t, · · · , ynt)′ is an n−dimensional vector of dependent variables at time t, Wn is
the exogenous spatial weight matrix that describes the spatial arrangement of the units in
the sample, Xnt = (x′1t, x

′
2t, · · · , x′nt)′ is a n×K matrix of regressors (i.e., xit is a row vector

of 1×K), and εnt is the n−dimensional vector of disturbances at time t, with εnt ∼ (0, σ2
ε),

whose stochastic properties are discussed below. We assume, without loss of generality, that
data is available for i = 1, . . . , n spatial units and t = 1, . . . , T time periods.4

Notice that this model specification critically differs from alternative specifications of the
spatial Durbin dynamic panel data model (see e.g. Elhorst 2012) in that it includes both
the individual effects (µn) and their spatial counterparts (αn). Although the inclusion of
WnYnt in the right-hand side of 3.2.1 produces “global" spatial contagion (Anselin, 2003)
in the individual effects, our interest here lies in the existence of “local" spatial contagion.
In particular, the individual-specific effects and their spatially weighted counterparts need
to be estimated in order to determine which units are “locally" affecting and which units
are “locally" affected, respectively, by the spatial spillover of the individual effect, and how

4Dealing with a “complete panel" is just meant to simplify notation and the burden of some proofs. Our
results can easily be extended to incomplete panels. Notice similarly that the model does not contain time
effects but these can easily be incorporated into the model (by e.g. including time dummies among the
regressors, as we illustrate in the empirical application of Section 3.4).

47

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



Chapter 3. A correlated random effects spatial Durbin model

intense such a “local" spillover is with respect to the total effect (i.e., the partial derivative
of the conditional expectation of the dependent variable with respect to the individual
effect). We discuss this issue in detail below, but first it is important to notice that this
is generally not possible because 3.2.1 is observationally equivalent to a model that only
includes individual effects (Beer and Riedl, 2012).

In this paper we follow Miranda et al. (2017b) in using a correlated random effects
specification to identify the local spatial contagion in the individual effects. This means
making use of the following correlation functions (Mundlak, 1978):

µn = lnc0 +Xnπµ0 + υnµ

αn = Xnπα0 + υnα,
(3.2.2)

where Xn = (X
′
1·, X

′
2·, . . . , X

′
n·)
′ are composed of the period-means of the regressors,

X i· =
1

T

T∑
t=1

xit, πµ0 and πα0 are K × 1 (“true”) parameter vectors, ln is the unit vector of

dimension n× 1, and c0 is the constant term to be estimated. The error terms, υnµ and υnα,
are assumed to be random vectors of dimension n, with υnµ ∼ (0, σ2

µ0
In) and υnα ∼ (0, σ2

α0
In),

uncorrelated with εnt. Notice, however, that υnµ and υnα are not assumed to be independent,
the covariance, σµα0 , being such that E(υnµυ

′
nα) = σµα0In with E denoting the mathematical

expectation. Notice also that although we assume that the correlation functions are linear
and have the means of the regressors as their main component, this does not always need to be
the case. Non-linear functions, different moments and/or other variables may be employed to
construct the correlation functions (Chamberlain, 1984). For the sake of simplicity, however,
in this paper we restrict the analysis to the linear-means case.

Plugging equations 3.2.2 into model 3.2.1 we obtain

Ynt = lnc0 + ρ0Yn,t−1 + λ0WnYnt +Xntβ10 +WnXntβ20 +Xnπµ0 +WnXnπα0 + ηnt (3.2.3)

where ηnt = υnµ + Wnυnα + εnt = Vn + εnt (see also Kapoor et al., 2007). Notice that the
variance-covariance matrix of this error term is given by E [ηntη

′
nt] = E [VnV

′
n] +σ2

ε0
In, where

E [VnV
′
n] = σ2

µ0
In + σµα0(Wn + W ′

n) + σ2
α0
WnW

′
n is the variance-covariance matrix of the

composed error term of the individual effects and their spatial spillovers, Vn. Thus, if we
define Σ0 =

1

σ2
ε0

(
σ2
µ0
In + σµα0(Wn +W ′

n) + σ2
α0
WnW

′
n

)
, then the variance-covariance matrix

of the error term can be rewritten as E [ηntη
′
nt] = σ2

ε0
(Σ0 + In).

It is also worth noting the alternative specifications that are nested in our error term
structure. The most obvious, perhaps, is the standard “random effects" (without spatial
contagion), which is derived from our model by imposing the constraints πµ0 = πα0 = 0,
σ2
α0

= 0 and σ2
µ0 6= 0 (see e.g. Mundlak 1978 and Chamberlain 1982). Notice, however,
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3.2. Model specification

that we may alternatively consider a “random effects" specification with spatial contagion
by imposing the constraints πµ0 = πα0 = 0, σ2

α0
6= 0 and σ2

µ0
6= 0 and σµα0 6= 0 and, as

a particular case, a “random effects" specification with proportional spatial contagion by
imposing the constraints πµ0 = πα0 = 0, σ2

µ0
6= 0, σ2

α0
= a2σ2

µ0
and σµα0 = aσ2

µ0
(or simply

πµ0 = πα0 = 0 and αn = aµn), with a 6= 0 constant. These, in turn, can be seen as a
simplified version of the error structure proposed by Kapoor et al. (2007). Interestingly,
however, our model also covers “fixed effects" versions of the previously discussed structures
(“fixed" in the sense of being correlated with – some of – the regressors). That is, by imposing
alternative constraints we may derive: i) a “fixed effects" error term (πµ0 6= 0, πα0 = 0,
σ2
α0

= 0 and σ2
µ0
6= 0) analogous to that discussed by Mundlak (1978) and Chamberlain

(1982), Xnπµ0 +υnµ; ii) a “fixed effects" error term with spatial contagion (πµ0 6= 0, πα0 6= 0,
σ2
α0
6= 0 and σ2

µ0
6= 0) and, if we impose that σ2

α0
= 0, a fixed effect error term analogous to

that discussed by Debarsy (2012), Xnπµ0 +WnXnπα0+υnµ, in which we cannot guarantee the
existence of spatial contagion in the individual effects5; and iii) a “fixed effects" error term
with proportional spatial contagion (πα0 = aπµ0 6= 0, σ2

µ0 6= 0, σ2
α0

= a2σ2
µ0

and σµα0 = aσ2
µ0
,

with a 6= 0 constant; or, simply, πµ0 6= 0 and αn = aµn).

3.2.1 Marginal effects: spatial spillovers and diffusion effects

Thus, providing that an estimate of µn and αn is available, our model specification allows us
to consider the existence of both “local" and “global" (through λ0) spatial contagion in the
individual effects (Anselin, 2003). However, because of the presence of the dynamic term
Yn,t−1 in the model, we may also consider the existence of “diffusion effects" in the partial
derivative of the (conditional expectation of the) dependent variable with respect to the
individual effects (Debarsy et al., 2012). To see this, let us rewrite the model in 3.2.1 as (by
repeated substitution):

Ynt = ρt0S
−t
0 Yn,0 +

t−1∑
s=0

ρs0S
−(s+1)
0 [Xn,t−sβ10 +WnXn,t−sβ20 + µn +Wnαn + εn,t−s]

5Except if we impose, as we do, that the direct effect of the individual effects of a unit (see below) only
depends on the characteristics of that unit and not on those of the other units.

49

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



Chapter 3. A correlated random effects spatial Durbin model

where S0 = In − λ0Wn = Sn(λ0).6 In full matrix form:

Y = G0Yn,0 + C0Xβ10 + C0WXβ20 + C0(lT ⊗ In)µn + C0W(lT ⊗ In)αn + C0ε (3.2.4)

with Y = (Y ′n1, Y
′
n2, . . . , Y

′
nT )
′, X = (X ′n1, . . . , X

′
nT )
′, ε = (ε′n1, . . . , ε

′
nT )
′, W = IT ⊗ Wn,

G0 =
(
ρ0(S−1

0 )′, ρ2
0(S−2

0 )′, . . . , ρT0 (S−T0 )′
)′ and

C0 =



S−1
0 0 0 · · · 0

ρ0S
−2
0 S−1

0 0 · · · 0

ρ2
0S
−3
0 ρ0S

−2
0 S−1

0 · · · 0
...

...
... . . . ...

ρT−1
0 S−T0 ρT−2

0 S
−(T−1)
0 ρT−3

0 S
−(T−2)
0 · · · S−1

0


Lastly, let ej be the j-th column of lT ⊗ In with j = 1, . . . , n. The marginal effects of the
individual-specific effects are:

∂

∂ej
E (Y|X) = C0 [IT ⊗ (Inµj +Wnαj)] (3.2.5)

where the diagonal elements of this matrix represent the direct marginal effects of unit j and
the off-diagonal elements of this matrix represent the spillovers or indirect marginal effects
of unit j (LeSage and Pace, 2009). Notice, however, that the dynamics of the model make
direct and indirect effects stretch over time. That is, although the individual-specific effects
are time-invariant, its marginal effects vary over time (to the extent that ρ0 6= 0). Yet we
cannot interpret these variations as the result of “temporary" or “permanent" changes in
the individual effects over time (which is the standard interpretation for regressors; see e.g.
Debarsy et al. 2012). Bearing this in mind, the impact on the dependent variable in period
t = 1, ..., T is

∂

∂ej
E (Ynt|X) =

t∑
s=1

ρs−1
0 S−s0 (Inµj +Wnαj) (3.2.6)

This expression can be interpreted as the “global" marginal effect (in period t), to the
extent that it involves all the spatial units and not only at those considered to be neighbours

6We denote matrices and vectors depending on parameters of the model with the name of the matrix and
vector, respectively, followed by the parameter(s) in brackets. For example, S(λ) = Sn(λ). In particular,
in the case of the “true" parameters we simply add the subindex zero to the name of the matrix. Thus,
S0 = Sn(λ0). Notice also that we use bold letters to denote n×T matrices (and similarly for nT ×1 vectors),
i.e., matrices resulting from stacking n−dimensional matrices. For example, Y = (Y ′n1, Y

′
n2, . . . , Y

′
nT )
′ and

X = (X ′n1, . . . , X
′
nT )
′, but also S(λ) = InT − λ(IT ⊗Wn) and S0 = IT ⊗ S0.
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3.2. Model specification

by Wn (Anselin, 2003). However, if we rewrite 3.2.6 as

∂

∂ej
E (Ynt|X) =

t∑
s=1

ρs−1
0 (Inµj +Wnαj) +

∞∑
r=1

λr0W
r
n

t∑
s=1

ρs−1
0

s−1∑
m=0

S−m0 (Inµj +Wnαj),

we notice that the first term in this expression only involves the neighbouring units (as

defined by Wn). Thus, we may interpret
t∑

s=1

ρs−1
0 (Inµj +Wnαj) as the “local" marginal effect

(Anselin, 2003). In fact, this is the marginal effect when λ0 = 0, since in that case WnYnt is
missing from the model and there is no “global" spatial contagion.

In particular, the row i and column m elements of
t∑

s=1

ρs−1
0 S−s0 (Inµj + Wnαj) and

t∑
s=1

ρs−1
0 (Inµj + Wnαj) can be interpreted as the global and local impact, respectively, on

the outcome of unit i of unit m having the unobserved characteristics of unit j. Following
Miranda et al. (2017b), however, we find that is of greater interest to report the impact of
unit m having its own unobserved characteristics (i.e., the unobserved characteristics of unit
m) on the outcome of unit i. This means using the matrices

t∑
s=1

ρs−1
0 S−s0 [diag(µn) +Wndiag(αn)] (3.2.7)

t∑
s=1

ρs−1
0 [diag(µn) +Wndiag(αn)] (3.2.8)

to compute the global and local marginal effects of interest, respectively. That is, the global
and local marginal effects for each unit of all the other units having their own characteristics.

Thus, the main diagonal elements of these matrices provide, respectively, the direct global
and local marginal effects (to reiterate, the impact on each unit of its own characteristics),
whereas the off-diagonal elements of these matrices provide, respectively, the indirect global
and local marginal effects (for a given time period t). We also obtain the spill-in and spill-out
effects of the individual effects by respectively row- and column-summing the off-diagonal
elements of these matrices (LeSage and Chih, 2016). In this vein the spill-in effect provides
the global and local impact on the outcome of unit i of all the units neighbouring i having
their unobserved characteristics, whereas the spill-out effect provides the global and local
impact on the outcome of the units neighbouring i of the individual effect of unit i.
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Chapter 3. A correlated random effects spatial Durbin model

3.3 QML estimation: likelihood function and asymptotic

properties

In this section we derive the quasi likelihood function of the spatial Durbin dynamic panel
model with correlated random effects. We also study the consistency and asymptotic
normality of the associated QML estimator. All results are obtained assuming that Yn0

is exogenous. The endogenous case, which is more involved (see e.g. Su and Yang, 2015), is
left for future research.7

3.3.1 The QML estimator

Following the notation introduced in 3.2.4, let us now define Y−1 =
(
Y ′n0, Y

′
n1, . . . , Y

′
n(T−1)

)′,
X = lT ⊗ Xn, X̃ =

(
lnT Y−1 X WX X WX

)
, and η = (η′n1, . . . , η

′
nT )
′. We can

then rewrite the model in 3.2.3, evaluated at any parameter value and to include all nT
observations, as

SY = X̃θ + η (3.3.1)

with θ =
(
c, ρ, β′1, β

′
2, π

′
µ, π

′
α

)′. Further, let ψ =
(
θ′, σ2

ε , δ
′)′, δ = (σ′, λ)′, σ′ = (σ1, σ2, σ3)′,

η(λ, θ) = S(λ)Y−X̃θ and σ2
εΩ(σ) = σ2

ε (JT ⊗ Σ(σ) + IT ⊗ In), with Σ(σ) = σ1In+σ2(Wn+

W ′
n) + σ3WnW

′
n. Then, the quasi-loglikelihood function of the model in 3.3.1 can be written

as

L(ψ) = ln |S(λ)|− nT
2

ln(2π)− nT
2

ln(σ2
ε)−

1

2
ln |Ω(σ)|− 1

2σ2
ε

η′(λ, θ)Ω−1(σ)η(λ, θ). (3.3.2)

where |·| denotes the determinant of a matrix. Notice that, given δ, the values of θ and σ2
ε

that maximize 3.3.2 are given by:

θ̂(δ) =
(
X̃′Ω−1(σ)X̃

)−1

X̃′Ω−1(σ)S(λ)Y

σ̂2
ε(δ) =

1

nT
η̂′(δ)Ω−1(σ)η̂(δ),

(3.3.3)

7In any case, it is interesting to note that Monte Carlo evidence reported by Su and Yang (2015, p.
202-203) shows that, in the random effects case, estimating a model assuming that Yn0 is exogenous when
it is actually not yields “estimates [that] are in general quite close to the true estimates except [when ρ is]
large and positive" whereas, in the fixed effects model, “a wrong treatment on the initial values may lead to
misleading results though to a much lesser degree as compared with the case of random effects model".
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3.3. QML estimation: likelihood function and asymptotic properties

where η̂(δ) = S(λ)Y−X̃θ̂(δ). Thus, substituting 3.3.3 into 3.3.2 we obtain the concentrated
quasi-loglikelihood function of δ:

Lc(δ) = ln |S(λ)| − nT

2
(ln(2π) + 1)− nT

2
ln
(
σ̂2
ε(δ)

)
− 1

2
ln |Ω(σ)| (3.3.4)

Maximising 3.3.4 yields the QML estimator of δ, δ̂ = (σ̂′, λ̂)′, whereas the QMLE estimators
of θ and σ2

ε are given by θ̂ ≡ θ̂(δ̂) and σ̂2
ε(δ̂) = σ̂2

ε , respectively. Further, the QML estimator
of
(
σ2
µ, σµα, σ

2
α

)
is given by

(
σ̂2
µ, σ̂µα, σ̂

2
α

)
= σ̂2

ε (σ̂1, σ̂2, σ̂3) = σ̂2
ε σ̂. Therefore, ψ̂ =

(
θ̂′, σ̂2

ε , δ̂
′
)′
.

3.3.2 Asymptotic Properties

To derive the asymptotic properties of the QML estimator of the model, we must first ensure
that ψ =

(
θ′, σ2

ε , δ
)′ is identifiable. Notice, however, that given 3.3.3 it suffices to ensure that

δ = (σ′, λ)′ is identifiable. To this end, let us define L∗c(δ) = max
θ,σ2

ε

E [L(ψ)]. It can be proved

that the arguments that maximize E [L(ψ)] given δ are:

θ̃(δ) =
[
E(X̃′Ω−1(σ)X̃)

]−1

E
[
X̃′Ω−1(σ)S(λ)Y

]
(3.3.5)

σ̃2
ε(δ) =

1

nT
E
[
η̃′(δ)Ω−1(σ)η̃(δ)

]
(3.3.6)

with η̃(δ) ≡ η(θ̃(δ), λ). Consequently:

L∗c(δ) = ln |S(λ)| − nT

2
(ln(2π) + 1)− nT

2
ln
(
σ̃2
ε(δ)

)
− 1

2
ln |Ω(σ)| (3.3.7)

Notice also that, by using Lemma 3.3, θ̃(δ0) = θ0 and σ̃2
ε(δ0) = σ2

ε0
.

Let us now denote by ∆ = ∆σ ×∆λ the (compact) parameter space of δ, with ∆σ and
∆λ being the (compact) parameter spaces of σ and λ, respectively.8 Further, let us redefine
δ̂ = max

δ∈∆
Lc(δ). We then require the following assumptions to prove that the QML estimator

of the model, ψ̂ = (θ̂′, σ̂2
ε , δ̂
′)′, is consistent and asymptotically normally distributed:

Assumption 3.1. The available observations are (yit, xit), i = 1, ..., n and t = 1, ..., T , with
T ≥ 2 fixed and n → ∞. Also, all the elements of xit are independent across i, and have
4 + ε0 moments for some ε0 > 0.

Assumption 3.2. The elements of the disturbance vector εit are i.i.d. for all i and t, with
E (εit) = 0, V ar (εit) = σ2

ε0
and E |εit|4+ε0 < ∞ for some ε0 > 0. Similarly, (υiµ, υiα) are

8Notice that we do not require specific assumptions about the parametric space of ρ0. In particular, since
we concentrate on the case of T finite and Yn0 exogenous, we do not need to assume that |ρ0| < 1 to derive
the results obtained in the paper (see Su and Yang, 2015, p. 236).
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Chapter 3. A correlated random effects spatial Durbin model

i.i.d. with E (υiµ) = E (υiα) = 0, V ar (υiµ) = σ2
µ0
, V ar (υiα) = σ2

α0
, Cov (υiµ, υiα) = σµα0

and have 4 + ε0 finite moments for some ε0 > 0. Moreover, εit and (υjµ, νjα) are i) mutually
independent, and ii) independent of xsr for all i, j, s = 1 . . . n and r, t = 1 . . . T . Lastly,
σ0 = (σ10, σ20, σ30)′ is in the interior of ∆σ.

Assumption 3.3. The elements of Wn, Wnij, are at most of order h−1
n , uniformly in all i

and j with hn/n→ 0 as n→∞.

Assumption 3.4. Matrix S (λ) is nonsingular for all λ ∈ ∆λ, with λ0 being in the interior
of ∆λ.

Assumption 3.5. The sequence of matrices Wn and S−1 (λ) are uniformly bounded in both
row and column sums and uniformly in λ in the compact parameter space ∆λ.9

Assumption 3.6. lim
n→∞

1

nT

{
ln
∣∣σ2
ε0S
−2
0 Ω0

∣∣− ln
∣∣σ̃2
ε(δ)S(λ)−2Ω(σ)

∣∣} 6= 0 for any δ 6= δ0.

Also,
1

nT
X̃′X̃ is positive definite almost surely for n sufficiently large.

Assumption 3.7. Let Hn (ψ) =
∂2

∂ψ∂ψ′
L(ψ) be the hessian of the likelihood function

and Gn (ψ) =
∂

∂ψ
L(ψ)

∂

∂ψ′
L(ψ) be the product of the score vector. Both H =

lim
N→∞

1

nT
E [Hn (ψ0)] and G = lim

n→∞

1

nT
E [Gn (ψ0)] exist. Also, G and −H are positive definite

matrices.

Assumption 3.8. Matrix Ω−1
0 is uniformly bounded in both row and column sums.

These assumptions are commonly used in the (spatial) panel data literature. In
particular, Assumption 3.1 is standard for (dynamic) linear panel data models with large n
and small T where Yn0 is exogenous. The first part of Assumption 3.2 is also rather standard
in random-effects panel data models. What is not that common is the part that refers to
the bivariate random vector (υiµ, υiα), which is justified by the existence of spatial spillovers
in the individual effects of our model.

As for the next three assumptions, they are widely used in spatial econometrics models.
In particular, Assumption 3.3 is a necessary condition for Assumptions 3.6 and 3.7 that can
be found in e.g. Lee (2004) and Su and Yang (2015). It is always satisfied if {hn} is a bounded
sequence and essentially allows the weight matrices to be rather “general", “cover[ing] spatial
weights matrices where elements are not restricted to be nonnegative and those that might

9We say that a k×m matrix A (or a sequence of matrices An) is bounded in both row and column sums

if there exists a constant c <∞ such that max
j

k∑
i=1

Aij < c and max
i

m∑
j=1

Aij < c.
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not be row-normalized" (Lee, 2004, p. 1903). Assumptions 3.4 and 3.5 can be found
in e.g. Lee (2004) and parallel Assumptions 3 and 5 of Yu et al. (2008). In particular,
Assumption 3.5 was first employed by Kelejian and Prucha (1998, 2001). While Assumption
3.4 guarantees that Y can be expressed exclusively in terms of the exogenous variables,
Assumption 3.5 essentially limits the spatial correlation. Notice also that Assumption 3.4

holds if λ0 ∈
(

1

ωmin

,
1

ωmax

)
, where ωmin denotes the smallest and ωmax denotes the largest

characteristic root of the spatial weight matrix Wn (ωmin < 0, ωmax > 0).

The last three assumptions have also been previously used to derive the asymptotic
properties of a QML estimator in spatial econometrics models for cross-section and panel
data (Lee, 2004; Su and Yang, 2015). Firstly, Assumption 3.6 basically provides conditions
for the global identification of the estimator. More precisely, the first part is the identification
uniqueness condition (White, 1994), while the second part guarantees that the regressors are
not asymptotically multicollinear. In particular, in the second part of the assumption we
can alternatively assume that

1

nT
E(X̃′X̃) is positive definite for sufficiently large n. This

is a softer condition that only requires some additional proof to be applied. Secondly,
Assumption 3.7 guarantees the existence and positive definiteness of the Hessian and the
variance covariance matrix of the score vector. It thus plays a basic role in the asymptotic
normality results. Thirdly, Assumption 3.8 is necessary for the Central Limit Theorem we
use to derive the asymptotic normality of the estimator (Kelejian and Prucha, 2001). In
particular, it can be shown that this assumption also holds if (In + TΣ(σ0))−1 is uniformly
bounded in both row and column sums.

Theorem 3.1. Under assumptions 3.1 to 3.6, ψ0 is globally identified and ψ̂ is a consistent
estimator of ψ0 with ψ̂ p−→ψ0.

Theorem 3.2. Under assumptions 3.1 to 3.8,
√
nT
(
ψ̂ − ψ0

)
d−→N

(
0,H−1GH−1

)
.

Remark 3.1. Lee (2004), Yu et al. (2008) and Su and Yang (2015) use analog theorems to
prove the consistency and asymptotic normality of their QML estimator in cross-section (Lee,
2004) and panel data (Yu et al., 2008; Su and Yang, 2015) models. In particular, Theorems
3.1 and 3.2 are similar to Theorems 3.1 and 3.2 of Lee (2004), Theorems 4 and 5 of Yu et al.
(2008), and Theorems 4.1 and 4.2 of Su and Yang (2015), respectively. Because of the panel
structure, our results are obviously closer to those of Yu et al. (2008), who analyse a spatial
dynamic panel data model with fixed effects and no spatial contagion in the error term (and
large T and n), and those of Su and Yang (2015), who analyse a dynamic panel data with
spatially autocorrelated errors and both fixed and random effects (with small T and large n,
as we do). This means that, on the one hand, our set of regressors is similar to that of
Yu et al. (2008), except that we do not have the spatial lag of the lagged dependent variable
and they do not have the spatially weighted exogenous variables (Su and Yang (2015) do not
consider either spatially weighted regressors or the spatial lag of the – lagged – dependent
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Chapter 3. A correlated random effects spatial Durbin model

variable). But, on the other hand, our error structure does have local spatial contagion, as
Su and Yang’s does (2015), although ours is in the individual-specific effects and theirs is in
the idiosyncratic term (which in turn results in a variance-covariance matrix different from
the ones assumed by these papers). Thus, our model specification is different, and so is the
variance-covariance matrix, but the approach and the proof of our theorems largely follows
their work (see Appendices 3.6 and 3.7 for details). In particular, the fact that our model
specification includes the spatial lag of the endogenous variable makes the proof more involved
than that of Su and Yang (2015). On the other hand, the scope of our proof is limited by the
fact that we do not cover cases where Yn0 is endogenous, as they do.

3.4 Empirical application

In this section we provide empirical evidence on a growth-initial level equation (see e.g. Islam
1995 and Elhorst et al. 2010) using the correlated random effects specification of the spatial
Durbin dynamic panel model presented in this paper. The principal aim of this empirical
exercise is to show that i) we can (largely) replicate the results obtained by Lee and Yu
(2016) using a standard spatial dynamic Durbin model (our benchmark); and ii) our model
specification not only provides an estimate of the individual-specific effects but also of their
spatial spillovers.

To this end, we use the data and (basic) model specification of Lee and Yu (2016). The
dataset covers 28 OECD countries (see Ho et al. 2013 for details) over the period 1970 to
2005 (in time intervals of 5 years). The dependent variable, Ynt, is the real GDP per capita
(units of labour). As for the explanatory variables, Nnt + 0.05 is the sum of the annual
average working-age population growth over the last 5 years (Nnt) and an approximation to
the sum of the exogenous technical progress rate and the capital depreciation rate (see e.g.
Ertur and Koch 2007 for details); Snt is the average investment share in GDP; and Yn,t−1 is
the real GDP per capita lagged 5 years.

[Insert Table 3.1 about here]

The first column in Table 3.1 reports the results obtained by Lee and Yu (2016) using
a weighting matrix Wn defined by the geographical distance between the capital of the
countries. Notice thatWn is a row-normalized matrix with zeros in the diagonal. The second
column provides the estimates of our model.10 The parameter ρ measures the effect of the

10Estimates were obtained using the optimizing routines of R and the log-likelihood function in 3.3.2.
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time-lagged real GDP (Yn,t−1) on the dependent variable, whereas λ measures the intensity
of its contemporaneous spatial interactions (WnYnt). Also, the β-parameters measure the
effect of the exogenous regressors (β1 is the coefficient associated with Nnt + 0.05 and β2

is the coefficient associated with Snt), whereas the γ-parameters measure the intensity of
the spatial contagion between the OECD countries arising from these exogenous regressors
(γ1 and γ2 are the counterparts of β1 and β2). Lastly, the π-parameters are the coefficients
associated with the variables included in the correlation functions. In particular, the πµ-
parameters correspond to those employed for the individual effects (πµ1 is the coefficient of
the mean of Nnt + 0.05 and πµ2 is that of the mean of Snt) and the πα-parameters to those
employed for their spatial spillovers (πα1 is the coefficient of the spatially weighted mean of
Nnt + 0.05 and πα2 is that of the spatially weighted mean of Snt).

The first thing to notice is that our results largely concur with those of Lee and Yu
(2016). This means that in both cases the coefficients of the working-age population growth
rate (β1) are negative and statistically significant at standard confidence levels, while the
coefficients of the savings rate (β2) are positive and statistically significant. Notice also that
while the parameter associated with the time lagged real GDP is positive and statistically
significant, the intensity of the contemporaneous spatial interactions of Ynt is not statistically
significant. This stands in contrast to the findings of Ertur and Koch (2007) and Elhorst
et al. (2010).

It is also worth noting that only the coefficients associated with Nnt + 0.05 are – weakly
– statistically significant in the correlations functions (the p−value of πµ1 is 0.14, slightly
above the standard 0.10).11 This contrasts with the clear statistical significance of πα1 (and
the joint test for the πα parameters), which supports the existence of spatial spillovers in
the individual effects. However, the estimated variances indicate that the individual effects
and their spatial counterparts do not have a significant random component. All in all, these
results seem to be consistent with an error term specification analogous to the one proposed
by Debarsy (2012).

Thus, if we interpret the estimated individual effects as a proxy for the unobserved
productivity of the countries (see Islam 1995), our results suggest that the growth of some
countries may be – weakly – related not only to their unobserved productivity, but also to
the impact that the unobserved productivity of other countries have on their economies.12

11We also computed Wald tests for the joint significance of the coefficients in each correlation function.
Results show that while the variables included in πµ are not jointly significant (the p-value was 0.21), the
variables included in πα rejected the null hypothesis (the p-value was 0.01).

12Notice that, given the lack of statistical significance of σα, our results may also be consistent with the
hypothesis (see Debarsy, 2012) that the growth of one country is linked to its unobserved productivity and
this, in turn, is related to the (mean) characteristics of the other countries (but not to their unobserved
productivities).
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More generally, our results point to the importance of unobserved country-specific intrinsic
features (economic, social, historical, etc.) in growth.

In order to further explore this idea and following the discussion in Section 3.2, we
computed the direct and indirect global and local effects. However, since the λ coefficient is
not statistically significant, the global and local effects coincide: the global effects are only
of a local nature (Anselin, 2003). Thus, we interpret our results as local effects and, since
the weight matrix is defined in terms of geographical distances, closer neighbours will have
greater weight than distant neighbours in the indirect effects. In particular, we report the
local direct effects for each period in Table 3.2 and the “spill-in" and “spill-out" effects of the
estimated individual effects for each period in Tables 3.3 and 3.4, respectively.

The first column in Table 3.2 is the direct local effect in period one, which can be
interpreted as the impact on the dependent variable (the log of real GDP per capita) of
the estimated individual effects. In other words, these figures provide, for each country, an
estimate of the difference in the log of real GDP per capita of having or not the unobserved
heterogeneity term (i.e., having a zero value individual effect). As a caveat, notice that,
given the weak statistical significance of the πµ-parameters, these direct effects may not be
statistically different than zero.

With this in mind, results indicate the existence of three groups of countries in our sample:
those with a large individual effect, with values above the third quartile (Canada, Chile,
Israel, Mexico, Netherlands, New Zealand, Turkey and the US); those with a small individual
effect, with values below the first quartile (Austria, Belgium, Denmark, Finland, Greece,
Italy, Japan, Korea, Norway, Portugal and Switzerland); and those with an intermediate
individual effect (Australia, France, Iceland, Ireland, Spain, Sweden and the UK). It is also
interesting to note that, for most countries, our ranking does not substantially differ from
that of Islam (1995). However, in order to make meaningful comparisons, in the last two
columns of Table 3.2 we report his estimated individual effects (obtained from a model
without spatial interactions and for a sample of 192 countries over the period 1965 to 1985)
and our equivalent estimate, µ̂+Wnα̂. We can see then that fifteen out of the 25 countries
commonly analysed barely changed their ranking (Austria, Chile, Denmark, France, Greece,
Israel, Italy, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland and
the UK) and that, in fact, the most important differences arise from seven countries that
dramatically changed their position in the rankings (Japan and Belgium, from the top of his
ranking to the bottom of ours, and Finland, Ireland, Korea, Mexico and Turkey, the other
way round).

As for spill-in effects reported in Table 3.3, for each 5-year period the columns report
the (local) impact on the log of real GDP per capita of each country associated with the
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unobserved characteristics of the other countries. The most affected countries (above the
third quartile) are Austria, Finland, France, Ireland, Italy, Korea, Netherlands, Norway,
Sweden and Switzerland, whereas the least affected countries (below the first quartile) are
Australia, Canada, Chile, Iceland, Israel, Japan, Mexico, New Zealand, and the US. Notice
that most of the countries with a small/large individual effect are among the most/least
affected by their neighbours (in terms of geographical distance). Also, as expected figures in
the other columns of the table show that, to a large extent, these groups remain stable over
time.

Lastly, the columns in Table 3.4 contain, for each 5-year period, the estimated (local)
impact on the log of real GDP per capita of the neighbouring countries associated with
the unobserved characteristics of each country. However, rather than reporting the spill-out

effect as described in Section 3.2, we simply report the estimated
t∑

s=1

ρs−1αn, which provides

essentially the same picture.13 Results show that the countries that impact least on their
neighbours are Canada, Chile, Iceland, Israel, Korea, Mexico and New Zealand, whereas the
countries that impact most on their neighbours are Austria, Belgium, Denmark, Finland,
France, Italy, Japan, Sweden, Switzerland and the UK. Notice that countries that impact
least/most on other countries tend to be those that are less/more affected by the spillovers
from their neighbours (and generally have a larger/smaller individual effect). That is, there
is a negative correlation between the estimated individual effects and the estimated spill-in
(on average, −0.4) and spill-out (on average, −0.7) effects. Notice also that, as expected,
these results largely hold for the seven periods considered.

3.5 Conclusions

In this paper we consider a correlated random effects specification of the spatial Durbin
dynamic panel model. We derive the likelihood function of the model and prove the
consistency and asymptotic normality of the QML estimator under rather standard
assumptions in the spatial econometrics literature. A major difference with respect to
previous studies is that our model specification includes individual effects and their spatial
spillovers.

Obtaining an estimate of the individual-specific effects (net of the spatially weighted

13In particular, following Miranda et al. (2017b, p. 4) we may interpret
t∑

s=1

ρs−1αn “as the “potential"

of the spatial spillovers of the individual effects" in each period (i.e., “a measure of the “potentiality of the
spatial contagion" associated with the individual effect of [each] unit" in each period).
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effects) can be critical in certain applications, such as growth models in which a measure
of the unobserved productivity of the geographical units under study can be obtained from
the estimated individual effects and hence the existence of spatial spillovers in (unobserved)
productivity can be analysed. We illustrate this point by estimating a growth-initial level
equation using OECD data and providing evidence of spatial contagion in the individual
effects.

Our results point to the importance of unobserved country-specific characteristics and
their spatial spillovers in growth. In particular, we find that countries with a small/large
estimated individual effect tend to be among the most/least affected by the impact of the
estimated individual effects of their neighbours and among those whose individual effects
impact most/least on the other countries (in terms of geographical distance). This means
that, if we interpret the individual effect as a proxy for the unobserved productivity, more/less
productive economies are less/more interrelated with the other economies. According to our
estimates, examples of countries that fit into the first pattern include Chile, Israel, Mexico
and New Zealand, whereas examples of countries that fit into the second pattern include
Austria, Finland, Italy and Switzerland.
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Table 3.1: QML estimates

Variable Parameters Lee and Yu (2016) Our model

WYt λ −0.040 −0.011
(0.045) (0.020)

Yt−1 ρ 0.889∗∗∗ 0.919∗∗∗

(0.046) (0.049)
Nt + 0.05 β1 −0.198∗∗∗ −0.200∗∗∗

(0.04) (0.042)

St β2 0.143∗∗∗ 0.141∗∗∗

(0.047) (0.048)

W (Nt + 0.05) γ1 0.102∗∗ 0.108∗∗

(0.047) (0.048)
WSt γ2 0.003 −0.001

(0.057) (0.057)

Nt + 0.05 πµ1 0.115
(0.079)(

St
)

πµ2 −0.061
(0.057)

W
(
Nt + 0.05

)
πα1 −0.284∗∗∗

(0.091)

WSt πα2 −0.004
(0.065)

Variance Components

σ2
µ σ2

α σµα σ2
ε

0.0001 0.0000 0.0001 0.004∗∗∗

(0.0002) (0.0002) (0.0002) (0.0005)

Note: ∗p-value<0.1; ∗∗p-value<0.05; ∗∗∗p-value<0.01. We denote the
time-mean of a variable with an upper bar.
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T able
3.2:

L
ocal

D
irect

E
ff
ects

t
=

1
t

=
2

t
=

3
t

=
4

t
=

5
t

=
6

t
=

7
Islam

(1995)
µ̂

+
W
n
α̂

A
ustralia

-0.40
-0.77

-1.11
-1.42

-1.70
-1.97

-2.21
1.69

0.35
A
ustria

-0.42
-0.81

-1.16
-1.49

-1.79
-2.07

-2.32
1.72

0.38
B
elgium

-0.42
-0.82

-1.17
-1.50

-1.81
-2.09

-2.34
1.75

0.35
C
anada

-0.39
-0.74

-1.07
-1.37

-1.64
-1.90

-2.13
1.81

0.37
C
hile

-0.38
-0.73

-1.05
-1.35

-1.62
-1.87

-2.10
1.49

0.34
D
enm

ark
-0.42

-0.80
-1.15

-1.48
-1.77

-2.05
-2.30

1.74
0.38

F
inland

-0.43
-0.82

-1.19
-1.52

-1.83
-2.11

-2.37
1.66

0.39
France

-0.41
-0.79

-1.14
-1.46

-1.75
-2.02

-2.27
1.75

0.39
G
reece

-0.42
-0.80

-1.16
-1.48

-1.78
-2.06

-2.31
1.60

0.35
Iceland

-0.41
-0.78

-1.13
-1.45

-1.74
-2.01

-2.26
–

0.36
Ireland

-0.41
-0.78

-1.12
-1.44

-1.73
-1.99

-2.24
1.60

0.40
Israel

-0.39
-0.76

-1.09
-1.40

-1.68
-1.94

-2.18
1.70

0.37
Italy

-0.43
-0.82

-1.18
-1.52

-1.82
-2.10

-2.36
1.69

0.37
Japan

-0.44
-0.84

-1.22
-1.56

-1.87
-2.16

-2.43
1.75

0.29
K
orea

-0.42
-0.80

-1.16
-1.48

-1.78
-2.05

-2.31
1.60

0.39
M
exico

-0.38
-0.73

-1.05
-1.35

-1.62
-1.87

-2.10
1.65

0.38
N
etherlands

-0.39
-0.75

-1.08
-1.39

-1.67
-1.92

-2.16
1.73

0.41
N
ew

Zealand
-0.39

-0.75
-1.08

-1.38
-1.66

-1.91
-2.15

1.69
0.37

N
orw

ay
-0.42

-0.81
-1.16

-1.49
-1.79

-2.06
-2.32

1.77
0.39

P
ortugal

-0.42
-0.81

-1.17
-1.50

-1.81
-2.09

-2.34
1.58

0.35
Spain

-0.41
-0.79

-1.14
-1.46

-1.76
-2.03

-2.28
1.75

0.38
Sw

eden
-0.41

-0.79
-1.14

-1.46
-1.75

-2.02
-2.27

1.73
0.39

Sw
itzerland

-0.43
-0.82

-1.18
-1.52

-1.82
-2.10

-2.36
1.70

0.37
T
urkey

-0.38
-0.73

-1.05
-1.35

-1.62
-1.87

-2.10
1.53

0.39
U
nited

K
ingdom

-0.40
-0.77

-1.11
-1.42

-1.70
-1.96

-2.21
1.73

0.39
U
nited

States
-0.39

-0.75
-1.09

-1.39
-1.67

-1.93
-2.17

1.80
0.36

T
he

last
tw

o
colum

ns
provide

the
estim

ated
individual

effects
reported

by
Islam

(1995)
and

our
equivalent

estim
ate,

µ̂
+
W
n
α̂
.

62

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



3.5. Conclusions

Table 3.3: Spill-in Effects

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Australia 0.75 1.45 2.09 2.67 3.21 3.71 4.16
Austria 0.80 1.53 2.21 2.83 3.40 3.93 4.41
Belgium 0.78 1.50 2.15 2.76 3.32 3.83 4.30
Canada 0.76 1.46 2.10 2.69 3.24 3.74 4.19
Chile 0.72 1.38 1.99 2.55 3.06 3.54 3.97
Denmark 0.79 1.52 2.19 2.81 3.37 3.89 4.37
Finland 0.82 1.57 2.26 2.89 3.47 4.01 4.50
France 0.80 1.54 2.22 2.84 3.41 3.94 4.42
Greece 0.77 1.47 2.12 2.72 3.26 3.77 4.23
Iceland 0.76 1.47 2.11 2.71 3.26 3.76 4.22
Ireland 0.81 1.55 2.24 2.87 3.45 3.98 4.47
Israel 0.76 1.46 2.11 2.70 3.25 3.75 4.21
Italy 0.80 1.53 2.20 2.82 3.39 3.91 4.40
Japan 0.73 1.40 2.01 2.58 3.10 3.58 4.02
Korea 0.81 1.55 2.23 2.85 3.43 3.96 4.44
Mexico 0.76 1.46 2.10 2.69 3.24 3.74 4.19
Netherlands 0.80 1.54 2.22 2.85 3.43 3.95 4.44
New Zealand 0.76 1.45 2.09 2.68 3.22 3.72 4.17
Norway 0.81 1.56 2.25 2.89 3.47 4.00 4.50
Portugal 0.78 1.49 2.15 2.75 3.30 3.81 4.28
Spain 0.79 1.52 2.19 2.80 3.36 3.88 4.36
Sweden 0.80 1.54 2.22 2.84 3.41 3.94 4.42
Switzerland 0.80 1.53 2.21 2.83 3.40 3.92 4.40
Turkey 0.77 1.48 2.14 2.74 3.29 3.80 4.26
United Kingdom 0.79 1.51 2.18 2.79 3.36 3.87 4.35
United States 0.75 1.44 2.07 2.65 3.19 3.68 4.13
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Table 3.4: Spill-out Effects

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Australia 0.76 1.45 2.09 2.68 3.22 3.72 4.17
Austria 0.80 1.53 2.21 2.83 3.40 3.92 4.41
Belgium 0.80 1.54 2.22 2.85 3.42 3.95 4.44
Canada 0.75 1.44 2.07 2.65 3.19 3.68 4.13
Chile 0.73 1.41 2.02 2.59 3.12 3.60 4.04
Denmark 0.81 1.56 2.24 2.88 3.46 3.99 4.48
Finland 0.82 1.57 2.25 2.89 3.47 4.01 4.50
France 0.80 1.53 2.21 2.83 3.40 3.92 4.41
Greece 0.79 1.52 2.19 2.80 3.37 3.89 4.37
Iceland 0.75 1.43 2.07 2.65 3.18 3.67 4.12
Ireland 0.76 1.46 2.11 2.70 3.24 3.75 4.21
Israel 0.72 1.38 1.98 2.54 3.05 3.52 3.95
Italy 0.82 1.57 2.26 2.90 3.49 4.02 4.52
Japan 0.81 1.55 2.23 2.85 3.43 3.96 4.44
Korea 0.73 1.40 2.01 2.58 3.10 3.58 4.02
Mexico 0.72 1.38 1.99 2.55 3.06 3.54 3.97
Netherlands 0.76 1.47 2.11 2.70 3.25 3.75 4.21
New Zealand 0.75 1.45 2.09 2.67 3.21 3.71 4.16
Norway 0.78 1.50 2.16 2.77 3.33 3.84 4.31
Portugal 0.79 1.52 2.18 2.80 3.36 3.88 4.36
Spain 0.78 1.49 2.15 2.75 3.30 3.81 4.28
Sweden 0.82 1.57 2.26 2.89 3.48 4.01 4.51
Switzerland 0.80 1.53 2.20 2.82 3.39 3.91 4.39
Turkey 0.76 1.46 2.11 2.70 3.24 3.74 4.20
United Kingdom 0.81 1.56 2.25 2.88 3.46 3.99 4.48
United States 0.76 1.46 2.10 2.69 3.24 3.74 4.19
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3.6 Appendix A: Lemmas

In this section we make extensive use of the following notation: tr(A) denotes the trace
of matrix A, τmax(A) the largest eigenvalue of matrix A, τmin(A) the smallest eigenvalue of
matrix A, and ‖A‖m the m−norm of matrix A with m = 1, 2,∞ and F (m = F being the
Frobenius norm). Further, we use the term u.b.r.c.s. to refer to a matrix or sequence of
matrices “uniformly bounded in both row and column sums".

We also make use of the following representation of the model in 3.2.3 and 3.2.4 (obtained
by repeated substitution):

Ynt = ρt0S
−t
0 Yn,0 +

t−1∑
j=0

ρj0S
−(j+1)
0 (Xn,t−jφ0 + υnµ +Wnυnα + εn,t−j)

where φ0 = (c0, β
′
10, β

′
20, π

′
µ0, π

′
α0)′, Xnt =

(
ln Xnt WnXnt Xn WnXn

)
is an n× (4K+

1) matrix, and the other elements are defined in Section 3.2. In full matrix notation:

Y = G0Yn,0 + C0Xφ0 + L0 (υnµ +Wnυnα) + C0ε (3.6.1)

with L0 = C0(lT ⊗ In).

Lastly, some of the lemmas make use of the following property:

Property 3.1. Let D−1(σ) be an r × r symmetric matrix, with σ ∈ ∆ being a p× 1 vector
of parameters and ∆ a compact parametric space. Then, there exists a matrix Ak(σ, σ) such
that

i) D−1(σ)−D−1(σ) =

p∑
k=1

(σk − σk)Ak(σ, σ) for all σ, σ ∈ ∆

ii) sup
σ∈∆

τmax

(
D−2(σ)

)
≤ cτ <∞

iii) sup
σ,σ∈∆

τmax (Ak(σ, σ)A′k(σ, σ)) ≤ cτ <∞ for k = 1, . . . , p

Lemma 3.1. Let A be a real symmetric n×n matrix and B a random n×m matrix. Then,

τmin (E (B′AB)) ≥ τmin (A) τmin (E (B′B))

Proof. By definition, τmin (E (B′AB)) = min
z∈Rm

{z′E (B′AB) z| z′z = 1}. Let z be such that
τmin (E (B′AB)) = z′E (B′AB) z. Let DA be the diagonal matrix of eigenvalues of A. Since
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A is a real symmetric matrix, there exists Q such that A = QDQ′ and QQ′ = In. Then,

τmin (E (B′AB)) = E (z′B′QDAQ
′Bz)

≥ τmin(A)E (z′B′QQ′Bz)

≥ τmin(A) min
z∈Rm

{E (z′B′Bz)| z′z = 1}

≥ τmin(A)τmin (E (B′B))

Lemma 3.2. Let A be a real positive semidefinite n× n matrix and B a real symmetric
n× n matrix. Then,

tr (AB) ≤ τmax (B) tr (A) .

Proof. Since B is a real symmetric matrix, it can be diagonalized. Let PB be the orthogonal
matrix with the eigenvectors of B (PBP ′B = In) and let DB be the diagonal matrix of
eigenvalues of B such that B = PBDBP

′
B. Then,

tr (AB) = tr (APBDBP
′
B) = tr (P ′BAPBDB) = tr (CDB)

where C is a symmetric positive semidefinite matrix (given that A is a positive semidefinite
matrix and y′P ′BAPBy = x′Ax ≥ 0). Using that tr (C) = tr (A) and given that cii ≥ 0 for
i = 1, ..., n (because of the positive definitiveness of C),

tr (AB) = tr (CDB) =
n∑
i=1

ciiτi (B) ≤ τmax (B)
n∑
i=1

|cii| = τmax (B) tr (C) = τmax (B) tr (A)

Lemma 3.3. Under assumptions 3.1 to 3.6, E
[
X̃′Ω−1

0 η
]

= 0.

Proof. We start by noting that, given that X̃ =
[
lnT Y−1 X WX X WX

]
, we only

need to prove that E
[
Y′−1Ω

−1
0 η

]
= 0, since E

[
Z′Ω−1

0 η
]

= 0 for Z = lnT ,X,WX,X and
WX by the strict exogeneity of X. Notice also that, by using equation 3.6.1, we have that

Y−1 = G−0 Yn,0 + C−0 X−1φ0 + L−0 (υnµ +Wnυnα) + C−0 ε, (3.6.2)

with X−1 =
(
0,X′n1, · · · ,X′n,T−1

)′, G−0 =
(
In, ρ0S

−1
0
′
, . . . , ρT−2

0 S
−(T−1)
0

′)′
, L−0 = C−0 (lT ⊗ In)

and
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C−0 =



0 0 0 · · · 0

S−1
0 0 0 · · · 0

ρ0S
−2
0 S−1

0 0 · · · 0
...

...
... . . . ...

ρT−2
0 S

−(T−1)
0 ρT−3

0 S
−(T−2)
0 ρT−4

0 S
−(T−3)
0 · · · 0


Thus,

Y′−1Ω
−1
0 η = Y ′n0G

−
0 Ω−1

0 η + φ′X′−1C
−
0
′
Ω−1

0 η + ε′C−0
′
Ω−1

0 η +
(
υ′nµ + υ′nαW

′
n

)
L−0
′
Ω−1

0 η

First, it is easy to show that E
(
Y ′n0G

−
0 Ω−1

0 η
)

= 0 = E
(
φ′X′−1C

−
0
′
Ω−1

0 η
)
. Second, notice

that we can write E
(
ε′C−0

′
Ω−1

0 η
)

= σ2
εtr
(
Ω−1

0 C−0
′
)
and, given that L−0

′
= (l′T ⊗ In)C−0

′,
JT = lT l

′
T and E

[
(υµ +Wnυnα) (υµ +Wnυnα)′

]
= σ2

ε0
Σ0,

E
((
υ′nµ + υ′nαW

′
n

)
L−0
′
Ω−1

0 η
)

= σ2
ε0tr

[
Ω−1

0 (JT ⊗ Σ0) C−0
′
]

Also, following Magnus (1982), we can rewrite Ω−1
0 as Ω−1

0 = (IT ⊗ In) − 1

T
JT ⊗[

In − (In + TΣ0)−1], which means that

σ2
ε0
tr
(
Ω−1

0 C−0
′
)

+ σ2
ε0
tr
[
Ω−1

0 (JT ⊗ Σ0) C−0
′
]

= σ2
ε0
tr
[
C−0
′
]

+ σ2
ε0
tr
[
AC−0

′
]

= 0

since

A = − 1

T

(
JT ⊗

[
In − (In + TΣ0)−1])+

1

T
(JT ⊗ TΣ0)

−
(

1

T
JT ⊗

[
In − (In + TΣ0)−1]) (JT ⊗ Σ0)

=
1

T
JT ⊗

[
−In + (In + TΣ0)−1 (In + TΣ0)

]
= 0

and tr [C′0] = 0 because of the structure of C′0.

Lemma 3.4. Let A, B and C be real constant matrices of order (n× r), (r× r) and (r×n)

respectively, with A and C u.b.r.c.s. and B being a symmetric matrix with τmax(B2) < ∞.
Then, for Q = ABC:

i) tr (QQ′) = O(min(r, n))

ii) l′nQQ
′ln = O (n), where ln is a unit vector of dimension n× 1

iii)
n∑
i=1

Q2
ii = O(min(r, n)) and tr (QQ) = O(n).
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Proof. Firstly, by the Cauchy-Schwarz inequality and Lemma 3.2,

tr (QQ′) = tr (ABCC ′BA′) = tr (BCC ′BA′A)

≤ [tr (BCC ′CC ′B)]
1/2

[tr (BAA′AA′B)]
1/2

≤ τmax(B2) [tr (C ′CC ′C)]
1/2

[tr (A′AA′A)]
1/2

Then, by using the second part of Lemma B.1 in Su and Yang (2015), we can show that
τmax(B2) [tr (C ′CC ′C)]

1/2
[tr (A′AA′A)]

1/2
= O(min(r, n)).

Secondly,

l′nQQ
′ln = tr (l′nABCC

′BA′ln) = tr (BCC ′BA′lnl
′
nA)

≤ τmax (BCC ′B) tr (A′lnl
′
nA) ≤ τmax (BCC ′B) tr (l′nAA

′ln) = O (n) ,

where the last equality holds because

• given that C is u.b.r.c.s., ‖C ′‖2
2 ≤ ‖C

′‖2
1 ‖C

′‖2
∞ ≤ c2, with max

i

n∑
j=1

|cij| ≤ c,

max
j

n∑
i=1

|cij| ≤ c and c < ∞, and ‖B‖2
2 = τmax

(
B2
)
; then, since ‖.‖2 is a sub-

multiplicative norm14, τmax (BCC ′B) = ‖C ′B‖2
2 ≤ ‖C

′‖2
2 ‖B‖

2
2 ≤ c2τmax

(
B2
)
,

• given that A is u.b.r.c.s., max
i

n∑
j=1

|aij| ≤ a, max
j

n∑
i=1

|aij| ≤ a and a < ∞; then,

l′nAA
′ln ≤ a2l′nln ≤ a2n.

Thirdly,
n∑
i=1

Q2
ii ≤

n∑
i=1

n∑
j=1

|Qij|2= ‖Q‖2
F ≤ tr (Q′Q), which, because of result i),

is O(min(r, n)). Also using result i), tr(QQ) ≤ tr(QQ′)1/2tr(QQ′)1/2 = tr(QQ′) =

O(min(r, n)).

Lemma 3.5. Let a = (a1, ..., an)′ and b = (b1, ..., bn)′. Also, let {(ai, bi)}ni=1 be an
i.i.d. sequence of random vector variables with E(ai) = E(bi) = 0 and finite second
moments. Lastly, let P be an n × n constant matrix and let Ω = E(ab′) = µabIn such

that (a′Pb− tr(PΩ)) = tr (Pba′ − PΩ) =
n∑
i=1

n∑
j=1

Pij(aibj − Ωij). Then,

E
[
(a′Pb− tr(PΩ))

2
]

= (σ2
ab − σ2

aσ
2
b − µ2

ab)
n∑
i=1

P 2
ii + σ2

aσ
2
b tr (PP ′) + σ2

abtr (PP )

14This means that, for any two matrices A and B, ‖AB‖2 ≤ ‖A‖2 ‖B‖2.
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where σ2
a = E(a2

i ), σ
2
b = E(b2

i ), E(aibi) = µab and E[(aibi − µab)
2] = σ2

ab. Notice that,
if a and b are independent, E

[
(a′Pb− tr(PΩ))

2
]

= σ2
aσ

2
b tr(PP

′). Notice also that if

a = b, then E
[
(a′Pb− tr(PΩ))

2
]

= (σ(4)
a − 2σ4

a)
n∑
i=1

P 2
ii + σ4

atr (PP ′) + σ(4)
a tr (PP ) , with

σ(4)
a = E[(a2

i − σ2
a)

2].

Proof. Notice thatE
[
(a′Pb− tr(PΩ))

2
]

=
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

PijPklE [(aibj − Ωij)(akbl − Ωkl)].

Also, given the independence of (ai, bi) and (aj, bj) for i 6= j, E [(aibj − Ωij)(akbl − Ωkl)] 6= 0

only for i = j = k = l, i = k 6= j = l and i = l 6= j = k. Thus,

E
[
(a′Pb− tr(PΩ))

2
]

=
n∑
i=1

P 2
iiE
[
(aibi − µab)2

]
+

n∑
i=1

n∑
j 6=i

P 2
ijE
[
(aibj)

2
]

+
n∑
i=1

n∑
j 6=i

PijPjiE [(aibi)(ajbj)]

= (σ2
ab − σ2

aσ
2
b − µ2

ab)
n∑
i=1

P 2
ii +

(
σ2
aσ

2
b tr(PP

′) + µ2
abtr(PP )

)

Lemma 3.6. Let a = (a1, ..., an)′ and b = (b1, ..., bn)′, with {(ai, bi)}ni=1 i.i.d. sequences
of random vector variables with finite second moments. Let Pn and Qn be n × r constant
matrices u.b.r.c.s.. Lastly, let D(σ) be an r × r constant symmetric matrix that satisfies
Property 3.1, with σ ∈ ∆ being a p× 1 vector of parameters. Then,

sup
σ∈∆

∣∣E (a′PnD−1(σ)Qnb
)∣∣ = O(n)

Note that the Lemma still holds if a = b and Pn = Qn.

Proof. By the Cauchy-Schwarz inequality and Lemma 3.2,

sup
σ∈∆

∣∣E (a′PnD−1(σ)Qnb
)∣∣ ≤ sup

σ∈∆
E
(
tr
(
a′PnD

−2(σ)P ′na
)1/2

tr (b′Q′n(σ)Qnb)
1/2
)

≤
[
sup
σ∈∆

τmax

(
D−2(σ)

)]1/2 [
E
(
tr (P ′naa

′Pn)
1/2
tr (Qnbb

′Q′n)
1/2
)]

≤
[
sup
σ∈∆

τmax

(
D−2(σ)

)]1/2

τ 1/2
max (PnP

′
n) τ 1/2

max (Q′nQn) [E (tr (aa′))E (tr (bb′))]
1/2

≤ C [E (tr (aa′))E (tr (bb′))]
1/2
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with C <∞ given that D−1(σ) satisfies Property 3.1, τ 1/2
max (A′A) = ‖A‖2 ≤ (‖A‖1 ‖A‖∞)1/2,

and Pn and Qn are u.b.r.c.s.. Also, E (tr (aa′)) = E

[
n∑
i=1

a2
i

]
≤ nE(a2

i ). Thus, given that a

and b have finite second moments, the lemma is proved.

Lemma 3.7. Let a = (a1, ..., an)′ and b = (b1, ..., bn)′, with {(ai, bi)}ni=1 i.i.d. sequences
of random vector variables with finite second moments. Let Pn and Qn be n × r constant
matrices u.b.r.c.s.. Lastly, let D(σ) be an r × r constant symmetric matrix that satisfies
Property 3.1, with σ ∈ ∆ being a p× 1 vector of parameters. Then,

1

max (n, r)

{
a′PnD

−1(σ)Qnb− E
[
a′PnD

−1(σ)Qnb
]} p−→0 uniformly in σ ∈ ∆

Note that the Lemma still holds if a = b.

Proof. Let us denote E(ai) = µa, E(bj) = µb, E
[
(ai − µa)2

]
= σ2

a, E
[
(bj − µb)2

]
= σ2

b for
all i and j. We start by proving that

1

max (n, r)

[
µal
′
nPnD

−1(σ)Qn (b− µb)
] p−→0 uniformly in σ ∈ ∆

To prove the uniform convergence (see e.g. Theorem 21.9 of Davidson 1994), we prove that
l′nPnD

−1(σ)Qn (b− µb) is stochastically equicontinuous and, for a given σ, satisfies a Law of
Large Numbers (LLN hereafter). First we prove the convergence for a given σ. Given that
E
[
l′nPnD

−1(σ)Qn (b− µb)
]

= 0, to derive a LLN it is enough to prove that

1

max (n, r)2V ar
[
l′nPnD

−1(σ)Qn (b− µb)
]
−→ 0

It is straightforward to prove that V ar
[
l′nPnD

−1(σ)Qn (b− µb)
]

=

σ2
b l
′
nPnD

−1(σ)QnQ
′
nD
−1(σ)P ′nln and, by Lemma 3.4, l′nPnD

−1(σ)QnQ
′
nD
−1(σ)Pnln = O(n),

so that

1

max (n, r)2V ar
[
l′nPnD

−1(σ)Qn (b− µb)
]
≤ 1

max (n, r)2 l
′
nPnD

−1(σ)QnQ
′
nD
−1(σ)Pnln

≤ O(n)

max (n, r)2 = o(1)

which proves the LLN. To prove the stochastic equicontinuity, note that, by Property 3.1,
the Cauchy-Schwarz inequality and Lemma 3.2,

70

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



3.6. Appendix A: Lemmas

∣∣l′nPnD−1(σ)Qn (b− µb)− l′nPnD−1(σ)Qn (b− µb)
∣∣ ≤ ∣∣l′nPn (D−1(σ)−D−1(σ)

)
Qn (b− µb)

∣∣
≤

p∑
k=1

|σk − σk|tr1/2 (l′nPnAk(σ, σ)A′k(σ, σ)P ′nln) tr1/2
(
(b− µb)′Q′nQn (b− µb)

)
≤

p∑
k=1

|σk − σk|τmax (Ak(σ, σ)A′k(σ, σ)) tr1/2 (l′nPnP
′
nln) tr1/2

(
(b− µb)′Q′nQn (b− µb)

)
≤

p∑
k=1

|σk − σk|cτ tr1/2 (l′nPnP
′
nln) |tr1/2

(
(b− µb)′Q′nQn (b− µb)

)
with cτ < ∞. Also, by Lemma 3.4, tr (l′nPnP

′
nln) = O(n) and, by Lemma 3.6,

tr
(
(b− µb)′Q′nQn (b− µb)

)
= Op(n), so we can apply Theorem 21.10 of Davidson (1994)

to prove the stochastic equicontinuity and Theorem 21.9 of Davidson (1994) to prove the
uniform convergence.

Next we prove the case E(ai) = E(bi) = 0. We first prove the convergence in probability
given σ. To this end, notice that E

{
a′PnD

−1(σ)Qnb− E
[
a′PnD

−1(σ)Qnb
]}

= 0 and, from
Lemmas 3.4 and 3.5, E

{(
a′PnD

−1(σ)Qnb− E
[
a′PnD

−1(σ)Qnb
])2
}

= O(n), so that

lim
n→∞

1

max (n, r)2E
{(
a′PnD

−1(σ)Qnb− E
[
a′PnD

−1(σ)Qnb
])2
}

= 0

which proves the convergence given σ. To prove the stochastic equicontinuity, note that, by
Property 3.1, the Cauchy-Schwarz inequality and Lemma 3.2,

∣∣a′PnD−1(σ)Qnb − a′PnD
−1(σ)Qnb

∣∣ ≤ ∣∣a′Pn (D−1(σ)−D−1(σ)
)
Qnb

∣∣
≤

p∑
k=1

|σk − σk| |a′PnAk(σ, σ)Qnb|

≤
p∑

k=1

|σk − σk| tr1/2 (a′PnAk(σ, σ)A′k(σ, σ)P ′na) tr1/2 (b′Q′nQnb)

≤ cτ tr
1/2 (a′PnP

′
na) tr1/2 (b′Q′nQnb)

p∑
k=1

|σk − σk|

Also, by Lemma 3.6, E [tr (a′PnP
′
na)] = O(n) and E [tr (b′Q′nQnb)] = O(n). Then,

1

max (n, r)

∣∣a′PnD−1(σ)Qnb− a′PnD−1(σ)Qnb
∣∣ = Op(1)

1

max (n, r)

∣∣E (a′PnD−1(σ)Qnb
)
− E

(
a′PnD

−1(σ)Qnb
)∣∣ = O(1)
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and we can apply Theorems 21.9 and 21.10 of Davidson (1994) to prove uniform convergence.
Further, the most general case E(ai) 6= 0 and E(bi) 6= 0 follows straightforward by noting
that

{
a′PnD

−1(σ)Qnb− E
[
a′PnD

−1(σ)Qnb
]}

= a∗′PnD
−1(σ)Qnb

∗ − E
[
a∗′PnD

−1(σ)Qnb
∗]

+ a∗′PnD
−1(σ)QnE(b) + E(a)′PnD

−1(σ)Qnb
∗

with a∗ = a− µa and b∗ = b− µb.

Lemma 3.8. Let Gnt = ρt0S
−t
0 , Cnt = GntS

−1
0 and Lnt =

t−1∑
j=0

ρj0S
−(j+1)
0 . Under Assumption

3.5, WnLnt, WnGnt and WnCnt are all u.b.r.c.s. for t = 1, 2, ..., T and WL0,WG0 and WC0

are all u.b.r.c.s..

Proof. First note that if A and B are two matrices u.b.r.c.s., A+B and AB are also u.b.r.c.s.
(see Remark A2 in Kapoor et al. 2007). With this result, under Assumption 3.5 it is easy
to prove that Gnt, Cnt and Lnt are u.b.r.c.s.. Further, given that T <∞, it is easy to prove
that WL0, WG0 and WC0 are all u.b.r.c.s..

Lemma 3.9. Let Ω(σ) = (IT ⊗ In) + (JT ⊗ Σ(σ)) and Σ(σ) =
3∑

k=1

σkΣk = σ1In + σ2(Wn +

W ′
n) + σ3WnW

′
n, with Wn u.b.r.c.s. and (σ1, σ2, σ3) ∈ ∆, being ∆ a compact space such

that Σ(σ) is positive semidefinite for any σ ∈ ∆. Then, Ω−1(σ) satisfies Property 3.1 for
Ak(σ, σ) = Ω−1(σ)(JT ⊗ Σk)Ω

−1(σ) and any σ, σ ∈ ∆. Moreover, ∃ cτ < ∞ such that
sup
σ∈∆

τmax(Ω(σ)) < cτ .

Proof. We start by proving that ∃ cτ <∞ such that sup
σ∈∆

τmax(Ω(σ)) < cτ . To this end, note

that the eigenvalues of the matrix (In + B) are 1 + τi(B), with τi(B) being the i = 1, ..., n

eigenvalues of B. Then, by definition, sup
σ∈∆

τmax(Ω(σ)) = 1 + sup
σ∈∆

τmax((JT ⊗ Σ(σ))) =

1 + T sup
σ∈∆

τmax (Σ(σ)). Further, using that Σ(σ) is a symmetric positive semidefinite matrix,

sup
σ∈∆

τmax (Σ(σ)) = sup
σ∈∆
‖Σ(σ)‖2. Then,

sup
σ∈∆
‖Σ(σ)‖2 ≤

3∑
k=1

sup
σ∈∆
|σk|‖Σk‖2 ≤ sup

σ∈∆
|σ1|+ sup

σ∈∆
|σ2|‖Wn +W ′

n‖2 + sup
σ∈∆
|σ3|‖WnW

′
n‖2

Given thatWn is u.b.r.c.s.,Wn+W ′
n andWnW

′
n are u.b.r.c.s., too (see Remark A2 in Kapoor

et al. 2007). Further, (‖Wn +W ′
n‖1 ‖Wn +W ′

n‖∞) < ∞ and (‖WnW
′
n‖1 ‖WnW

′
n‖∞) < ∞.

Then, ‖WnW
′
n‖2 ≤ (‖WnW

′
n‖1 ‖WnW

′
n‖∞)

1/2
< ∞ and ‖Wn +W ′

n‖2 ≤ ‖Wn‖2 + ‖W ′
n‖2 ≤

2 (‖Wn‖1 ‖Wn‖∞)1/2 < ∞. Finally, given that σ ∈ ∆ and ∆ is compact, sup
k

sup
σ∈∆

σk < ∞.

Then, ∃ c <∞ such that sup
σ∈∆

τmax (Σ(σ)) < c and sup
σ∈∆

τmax(Ω(σ)) < 1 + Tc <∞.
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Next we prove that Ω−1(σ) satisfies Property 3.1 for Ak(σ, σ) = Ω−1(σ)(JT⊗Σk)Ω(σ) and

any σ, σ ∈ ∆. To this end, we need to prove that: i) Ω−1(σ)−Ω−1(σ) =
3∑

k=1

(σk−σk)Ak(σ, σ);

ii) sup
σ∈∆

τmax(Ω−2(σ)) < cτ <∞ and iii) sup
σ,σ∈∆

τmax(Ak(σ, σ)A′k(σ, σ)) < cτ <∞ for k = 1, 2, 3.

To prove i), note that

Ω−1(σ)−Ω−1(σ) = Ω−1(σ) [Ω(σ)−Ω(σ)] Ω−1(σ)

= Ω−1(σ) [JT ⊗ (Σ(σ)− Σ(σ))] Ω−1(σ)

=
3∑

k=1

(σk − σk)Ω−1(σ) [JT ⊗ Σk] Ω
−1(σ) =

3∑
k=1

(σk − σk)Ak(σ, σ).

To prove ii), note that, given that Σ(σ) is a positive semidefinite matrix for all σ ∈ ∆,
inf
σ∈∆

τmin (Σ(σ)) ≥ 0. Then, using that Ω−1(σ) is positive semidefinite for all σ ∈ ∆ (since
all the eigenvalues of JT and Σ(σ) are equal to or bigger than zero for all σ ∈ ∆, all the
eigenvalues of Ω(σ) are bigger or equal than 1), sup

σ∈∆
τmax

(
Ω−2(σ)

)
= sup

σ∈∆

[
τmax

(
Ω−1(σ)

)]2
=[

inf
σ∈∆

τmin (Ω(σ))

]−2

≤
[
1 + T inf

σ∈∆
τmin (Σ(σ))

]−2

≤ 1.

To prove iii), note that ‖.‖2 is a sub-multiplicative norm (see footnote 14). Thus,

sup
σ,σ∈∆

τmax(Ak(σ, σ)A′k(σ, σ)) = sup
σ,σ∈∆

∥∥Ω−1(σ) (JT ⊗ Σk) Ω−1(σ)
∥∥2

2

≤ sup
σ∈∆

∥∥Ω−1(σ)
∥∥4

2
‖(JT ⊗ Σk)‖2

2

≤ sup
σ∈∆

[
τmax

(
Ω−1(σ)

)]4
τmax (JT ⊗ Σk)

≤ sup
σ∈∆

[
τmax

(
Ω−1(σ)

)]4
Tτmax (Σk) < cτ <∞

using ii) and sup
k
τmax (Σk) < cτ <∞ (from the first part of the proof).

Lemma 3.10. Let B−1
n (σ) = In − (In + TΣ(σ))−1 and Σ(σ) =

3∑
k=1

σkΣk = σ1In + σ2(Wn +

W ′
n) + σ2WnW

′
n, with Wn u.b.r.c.s. and (σ1, σ2, σ3) ∈ ∆, being ∆ a compact space such

that Σ(σ) is positive semidefinite for any σ ∈ ∆. Then, B−1
n (σ) satisfies Property 3.1 for

Ak(σ, σ) = TB∗n(σ) (JT ⊗ Σk)B
∗
n(σ) and any σ, σ ∈ ∆ with B∗n(σ) = (In + TΣ(σ))−1.

Proof. To prove that B−1
n (σ) satisfies Property 3.1 for Ak(σ, σ) = TB∗n(σ) (JT ⊗ Σk)B

∗
n(σ),

we need to prove that: i) Bn(σ) − Bn(σ) =
3∑

k=1

(σk − σk)Ak(σ, σ); ii) sup
σ∈∆

τmax(B−2
n (σ)) <

cτ <∞ and iii) sup
σ,σ∈∆

τmax(Ak(σ, σ)A′k(σ, σ)) < cτ <∞ for k = 1, 2, 3.
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To prove i), note that

B−1
n (σ)−B−1

n (σ) = (In + TΣ(σ))−1 − (In + TΣ(σ))−1

= T (In + TΣ(σ))−1 (Σ(σ)− Σ(σ)) (In + TΣ(σ))−1

= T
3∑

k=1

(σk − σ) (In + TΣ(σ))−1 Σk (In + TΣ(σ))−1

= T

3∑
k=1

(σk − σ)B∗n(σ)−1ΣkB
∗
n(σ)

To prove ii), note first that B−1
n (σ) is a positive semidefinite matrix for all σ ∈ ∆,

since inf
σ∈∆

τmin (In + TΣ(σ)) ≥ 1, sup
σ∈∆

τmax (In + TΣ(σ))−1 ≤ 1, and inf
σ∈∆

τmin

(
B−1
n (σ)

)
≥ 0.

Note also that sup
σ∈∆

τmax(B−2
n (σ)) =

[
sup
σ∈∆

τmax(B−1
n (σ))

]2

, and, since (In + TΣ(σ))−1 is a

positive semidefinite matrix and inf
σ∈∆

τmin

[
(In + TΣ(σ))−1] ≥ 0, then sup

σ∈∆
τmax(B−1

n (σ)) ≤

1− inf
σ∈∆

τmin

[
(In + TΣ(σ))−1] ≤ 1.

To prove iii), note that, given that τmax (Σk) ≤ cτ < ∞ (proved in Lemma 3.9) and

sup
σ∈∆
‖B∗n(σ)‖2 = sup

σ∈∆

∥∥(In + TΣ(σ))−1
∥∥

2
≤
[

inf
σ∈∆

τmin (In + TΣ(σ))

]−1

≤ 1, then

sup
σ,σ∈∆

τmax(Ak(σ, σ)A′k(σ, σ)) = sup
σ,σ∈∆

‖A′k(σ, σ)‖2
2 ≤ sup

σ∈∆
‖B∗n(σ)‖4

2 sup
σ,σ∈∆

‖Σk‖2
2 ≤ cτ <∞

Lemma 3.11. Let Πa,b(σ) =
1

nT

{
a′Ω−1(σ)b− E

[
a′Ω−1(σ)b

]}
, with a, b = η,WY.

Under Assumptions 3.1 to 3.6,

Πa,b(σ)
p−→0 uniformly in σ

Proof. We provide the proof for the most involved case, a, b = WY. The proof of the other
cases is similar. From expression 3.6.1 we have that

Y′W′Ω−1(σ)WY = Y ′n,0G
′
0W

′Ω−1(σ)WG0Yn,0 + 2Y ′n,0G
′
0W

′ + Ω−1(σ)WC0Xφ0

+ 2Y ′n,0G
′
0W

′Ω−1(σ)WL0 (υnµ +Wnυnα) + 2Y ′n,0G
′
0W

′Ω−1(σ)WC0ε

+ φ′0X′C′0W′Ω−1(σ)WC0Xφ0 + 2φ′0X′C′0W′Ω−1(σ)WL0 (υnµ +Wnυnα)

+ 2φ′0X′C′0W′Ω−1(σ)WC0ε+
(
υ′nµ + υ′nαW

′
n

)
L′0W

′Ω−1(σ)WL0 (υµ +Wnυnα)

+ 2
(
υ′nµ + υ′nαW

′
n

)
L′0W

′Ω−1(σ)WC0ε

+ ε′C′0W
′Ω−1(σ)W′C0ε
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The proof of the Lemma follows from proving that each of the previous summands, minus
its expected value, converge in probability to 0 uniformly in σ. Following Magnus (1982),

we have that Ω−1(σ) = IT ⊗ In −
1

T
JT ⊗B−1

n (σ) with B−1
n (σ) = In − (In + TΣ(σ))−1. Also,

let Gnt = ρt0S
−t
0 , Cnt = GntS

−1
0 and Lnt =

t−1∑
j=0

ρj0S
−(j+1)
0 (see also Lemma 3.8). Thus, we

may rewrite the summands in the previous expression as follows:

Y ′n,0G
′
0W

′Ω−1(σ)WC0Xφ0 =
T∑
t=1

t∑
j=1

Y ′n,0G
′
ntW

′
nWnCnt−jXn,jφ0

− 1

T

T∑
s=1

T∑
t=1

t∑
j=1

Y ′n,0G
′
nsW

′
nB
−1
n (σ)WnCn,t−jXn,jφ0

Y ′n,0G
′
0W

′Ω−1(σ)WC0ε =
T∑
t=1

t∑
j=1

Y ′n,0G
′
ntW

′
nWnCn,t−jεn,j

− 1

T

T∑
s=1

T∑
t=1

t∑
j=1

Y ′n,0G
′
nsW

′
nB
−1
n (σ)WnCn,t−jεn,j

φ′0X′C′0W′Ω−1(σ)WC0Xφ0 =
T∑
t=1

t∑
j=1

t∑
l=1

φ′0X′njC ′n,t−jW ′
nWnCn,t−lXn,lφ0

− 1

T

T∑
t=1

T∑
s=1

t∑
j=1

s∑
l=1

φ′0X′n,jC ′n,t−jW ′
nB
−1
n (σ)WnCn,s−lXn,lφ0

φ′0X′C′0W′Ω−1(σ)WC0ε =
T∑
t=1

t∑
j=1

t∑
l=1

φ′0X′n,jC ′n,t−jW ′
nWnCn,t−lεn,l

− 1

T

T∑
t=1

T∑
s=1

t∑
j=1

s∑
l=1

φ′0X′n,jC ′n,t−jW ′
nB
−1
n (σ)WnCn,s−lεn,s−l

φ′0X′C′0W′Ω−1(σ)WL0 (υnµ +Wnυnα) =
T∑
t=1

t∑
j=1

φ′0X′n,jC ′n,t−jW ′
nWnLntυnµ

− 1

T

T∑
t=1

T∑
s=1

t∑
j=1

φ′0X′n,jC ′n,t−jW ′
nB
−1
n (σ)WnLnsυnµ

+
T∑
t=1

t∑
j=1

φ′0X′n,jC ′n,t−jW ′
nWnLntWnυnα

− 1

T

T∑
t=1

T∑
s=1

t∑
j=1

φ′0X′n,jC ′n,t−jW ′
nB
−1
n (σ)WnLnsWnυnα

And, finally,
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ε′C′0W
′Ω−1(σ)WL0 (υnµ +Wnυnα) =

T∑
t=1

t∑
j=1

ε′n,jC
′
n,t−jW

′
nWnLntυnµ

− 1

T

T∑
t=1

T∑
s=1

t∑
j=1

ε′n,jC
′
n,t−jW

′
nB
−1
n (σ)WnLnsυnµ

+
T∑
t=1

t∑
j=1

ε′n,jC
′
n,t−jW

′
nWnLntWnυnα

− 1

T

T∑
t=1

T∑
s=1

t∑
j=1

ε′n,jC
′
n,t−jW

′
nB
−1
n (σ)WnLnsWnυnα

Notice that each of the summands in the previous expressions, minus its
expected value, can be written as

1

nT

[
a′PnD

−1(σ)Qnb− E
(
a′PnD

−1(σ)Qnb
)]

with a, b = Yn,0, Xn,jβ10, Xn,jβ20, Xnπµ0, Xnπα0, εnt, υnµ, υnα; Pn, Qn =

WnLnt,WnGnt,WnCnt,WnCntWn,WL0,WG0,WC0; and D−1(σ) = InT ,Ω
−1(σ), B−1

n (σ).
This means that, if we can apply Lemma 3.7, the Lemma is proved. To apply these lemmas,
Pn and Qn must be u.b.r.c.s. which is proved for all the cases in Lemma 3.8. Also, D(σ)−1

must satisfy Property 3.1, which is proved in Lemma 3.9 for Ω−1(σ) and in Lemma 3.10 for
B−1
n (σ). Lastly, a and b must be an i.i.d. sequence with finite second moments, which is

guaranteed by Assumptions 3.1 and 3.2.

Lemma 3.12. Let

Υa,b(σ) = Q′
X̃,a

(σ)Q−1

X̃,X̃
(σ)QX̃,b(σ)− E

[
Q′

X̃,a
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,b(σ)

]
with a,b = η,WY and QA,B(δ) =

1

nT
A′Ω−1(σ)B. Under Assumptions 3.1 to 3.6,

Υa,b(σ)
p−→0 uniformly in σ

Proof. The proof of this Lemma is similar to the proof of Lemma 3.11. Thus, we only provide
the proof for the case a = b = WY (the others are similar). We start by decomposing
ΥWY,WY(σ):

ΥWY,WY(σ) =

Q′
X̃,WY

(σ)Q−1

X̃,X̃
(σ)QX̃,WY(σ)− E

[
Q′

X̃,WY
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,WY(σ)

]
=
{

Q′
X̃,WY

(σ)− E
[
Q′

X̃,WY
(σ)
]}

Q−1

X̃,X̃
(σ)QX̃,WY(σ)

+ E
[
Q′

X̃,WY
(σ)
]

Q−1

X̃,X̃
(σ)
{[
E
(
QX̃,X̃(σ)

)]
−QX̃,X̃(σ)

} [
E
(
QX̃,X̃(σ)

)]−1
QX̃,WY(σ)

+ E
[
Q′

X̃,WY
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1 {
QX̃,WY(σ)− E

[
QX̃,WY(σ)

]}
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First we need to prove that QX̃,WY(σ)− E
[
QX̃,WY(σ)

]
and QX̃,X̃(σ)−

[
E
(
QX̃,X̃(σ)

)]
converges elementwise to 0 uniformly in σ. The proof follows the same steps as
that of Lemma 3.11 (note that all the elements of X̃ are in WY, including, as
shown in 3.3.1 and 3.6.1, Y−1), so it is not reproduced here. The elementwise
convergence implies, by the Slutsky theorem, that

∥∥QX̃,X̃(σ)−
[
E
(
QX̃,X̃(σ)

)]∥∥
F

=

op(1) uniformly in σ and
∥∥QX̃,WY(σ)−

[
E
(
QX̃,WY(σ)

)]∥∥
F

= op(1) uni-
formly in σ. Then, by using the properties of the matrix norm,∥∥QX̃,X̃(σ)−

[
E
(
QX̃,X̃(σ)

)]∥∥
2
≤

∥∥QX̃,X̃(σ)−
[
E
(
QX̃,X̃(σ)

)]∥∥
F

= op(1) uniformly in
σ and

∥∥QX̃,WY(σ)−
[
E
(
QX̃,WY(σ)

)]∥∥
2
≤
∥∥QX̃,WY(σ)−

[
E
(
QX̃,WY(σ)

)]∥∥
F

= op(1)

uniformly in σ.

Next we prove that sup
σ

∥∥∥[E (QX̃,X̃(σ)
)]−1

∥∥∥
2

= O(1) and sup
σ

∥∥∥E [Q′X̃,WY
(σ)
]∥∥∥

2
= O(1).

Let us first consider

sup
σ

∥∥∥[E (QX̃,X̃(σ)
)]−1

∥∥∥
2

= sup
σ
τmax

{
E

(
1

nT
X̃′Ω−1(σ)X̃

)−1
}

=

(
inf
σ
τmin

{
1

nT
E
(
X̃′Ω−1(σ)X̃

)})−1

Note that, since Ω−1(σ) is a symmetric definite positive matrix, we can apply Lemma 3.1 to
obtain

inf
σ
τmin

{
1

nT
E
(
X̃′Ω−1(σ)X̃

)}
≥ inf

σ
τmin

{
Ω−1(σ)

}
τmin

{
1

nT
E
(
X̃′X̃

)}
≥
[
sup
σ
τmax (Ω(σ))

]−1

τmin

{
1

nT
E
(
X̃′X̃

)}
From Lemma 3.9, sup

σ
τmax (Ω(σ)) < cτ < ∞ and, from Assumption 3.6,

τmin

{
1

nT
E
(
X̃′X̃

)}
> 0 for sufficiently large n. Then, sup

σ

∥∥∥[E (QX̃,X̃(σ)
)]−1

∥∥∥
2
< C < ∞

⇒ sup
σ

∥∥∥[E (QX̃,X̃(σ)
)]−1

∥∥∥
2

= O(1).

As for sup
σ

∥∥∥E [Q′X̃,WY
(σ)
]∥∥∥

2
, notice that

∥∥∥E [Q′X̃,WY
(σ)
]∥∥∥

2
≤
∥∥∥E [Q′X̃,WY

(σ)
]∥∥∥

F
and

∥∥∥E [Q′X̃,WY
(σ)
]∥∥∥

F
= tr

[
E

(
1

nT
Y′W′Ω−1(σ)X̃

)
E

(
1

nT
X̃Ω−1(σ)WY

)]1/2

=

(
K∑
k=1

[
E

(
1

nT
X̃′kΩ

−1(σ)WY

)]2
)1/2

,

where the last expression is O(1) uniformly in σ if sup
σ

∣∣∣E (X̃′kΩ
−1(σ)WY

)∣∣∣ = O(n).

To prove that sup
σ

∣∣∣E (X̃′kΩ
−1(σ)WY

)∣∣∣ = O(n), we follow the same steps as in Lemma
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3.11. Thus, we decompose the term X̃′kΩ
−1(σ)WY in a finite sum of terms that can

be written as a′PnD−1(σ)Qnb, with a, b, Pn, Qn and D−1(σ) satisfying the conditions of
Lemma 3.6. This provides the proof that sup

σ

∣∣E (a′PnD−1(σ)Qnb
)∣∣ = O (n) and so that of

sup
σ

∣∣∣E (X̃′kΩ(σ)−1WY
)∣∣∣ = O(n).

Moreover, given that
∥∥QX̃,WY(σ)−

[
E
(
QX̃,WY(σ)

)]∥∥
2

= op(1) uniformly in σ and
sup
σ

∥∥E (QX̃,WY(σ)
)∥∥

2
= O(1), then sup

σ

∥∥QX̃,WY(σ)
∥∥

2
= Op(1).

Finally, we need to prove that sup
σ

∥∥∥Q−1

X̃,X̃
(σ)
∥∥∥

2
= Op(1). To this end, notice that

sup
σ

∥∥∥Q−1

X̃,X̃
(σ)
∥∥∥

2
= sup

σ
τmax

(
Q−1

X̃,X̃
(σ)
)

= sup
σ
τmax

([
1

nT
X̃′Ω−1(σ)X̃

]−1
)

=

[
inf
σ
τmin

(
1

nT
X̃′Ω−1(σ)X̃

)]−1

≤
[
inf
σ
τmin(Ω−1(σ))τmin

(
1

nT
X̃′X̃

)]−1

≤ sup
σ
τmax(Ω(σ))

[
τmin

(
1

nT
X̃′X̃

)]−1

,

which is Op(1) given that, by Lemma 3.9, sup
σ
τmax(Ω(σ)) < cτ < ∞, and, by Assumption

3.6, τmin
(

1

nT
X̃ ′X̃

)
> 0 almost surely for sufficiently large n.

Then,{
Q′

X̃,WY
(σ)− E

[
Q′

X̃,WY
(σ)
]}

Q−1

X̃,X̃
(σ)QX̃,WY(σ) = op(1)Op(1)Op(1)

E
[
Q′

X̃,WY
(σ)
]

Q−1

X̃,X̃
(σ)
{[
E
(
QX̃,X̃(σ)

)]
−QX̃,X̃(σ)

} [
E
(
QX̃,X̃(σ)

)]−1
QX̃,WY(σ)

= Op(1)op(1)Op(1)

and

E
[
Q′

X̃,WY
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1 {
QX̃,WY(σ)− E

[
QX̃,WY(σ)

]}
= O(1)O(1)op(1),

all the cases uniformly in σ. This proves that ΥWY,WY(σ) = op(1) uniformly in σ (and the
proof is analogous for the rest of cases).

Lemma 3.13. Under Assumptions 3.1 to 3.7,

1

nT

[
∂2L (ψ0)

∂ψ∂ψ′
− E

(
1

nT

∂2L (ψ0)

∂ψ∂ψ′

)]
= op (1)

Proof. It can be proved, following the proof of Lemmas 3.11 and 3.12, that

each element of the matrix
∂2L (ψ0)

∂ψ∂ψ′
− E

(
1

nT

∂2L (ψ0)

∂ψ∂ψ′

)
can be written as
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the finite sum of
1

nT

[
a′PnD

−1 (σ0)Qnb− E
(
a′PnD

−1 (σ0)Qnb
)]
, with a, b = Yn,0,

Xn,j, εnt, υnµ and υnα; Pn, Qn = WnLnt, WnGnt, WnCnt; and D−1 (σ0) =

Ai [BκAjB% +B%AjBκ]Ai,A1BκAjB% + B%AjBκA1 for i, j = 0, 1 and κ, % = 0, 1, 2, 3

with A0 = B0 = In, A1 = B−1
n (σ0), Bκ = Σκ for κ = 1, 2, 3 and B−1

n (σ0) and Σκ defined

in Lemmas 3.9 and 3.10 (see Appendix 3.8 for details on the elements of
∂2L (ψ0)

∂ψ∂ψ′
). This

means that if a, b, Pn, Qn and D−1 (σ0) satisfy the conditions of Lemma 3.7 in all the cases,

then
1

nT
[a′PnD (σ0)Qmb− E (a′PnD (σ0)Qmb)] = op (1) in all the cases, which proves the

Lemma. Notice also that we do not need to prove the uniform convergence because these sec-
ond derivatives and their expectations are evaluated at the true parameters of the model. It
is therefore enough to prove that D−1 (σ0) is a symmetric matrix with τmax

(
D−2 (σ0)

)
<∞.

Firstly, Lemmas 3.11 and 3.12 show that all the possible cases of a, b, Pn and Qn satisfy
the conditions of Lemma 3.7. Secondly, given that D−1 (σ0) is by definition symmetric,
‖In‖2 = 1, max

κ
‖Σκ‖2 < cτ <∞ (the bound is provided by Lemma 3.9) and

∥∥B−1
n (σ0)

∥∥
2

=

τmax

(
B−1
n (σ0)

)
< cτ <∞ (the bound is provided by Lemma 3.10),

τmax

(
D−2 (σ0)

)
=
∥∥D−1 (σ0)

∥∥2

2
≤ 2 max

i
‖Ai‖6

2 max
κ
‖Bκ‖4

2 ≤ cτ <∞.

Lemma 3.14. Let at = {ai,t}ni=1, bt = {bi,t}ni=1 be n × 1 zero-mean random vectors

independent in i. Let us also define Qn =
T∑
t=1

a′tPt,nbt with Pt,n n × n real matrices and

T <∞. Lastly, let us denote µQn = E (Qn) and s2
Qn = E[(Qn − µQn)2]. If Pt,n for t = 1, ..., T

are u.b.r.c.s. and {(at, bt)}Tt=1 has 4+ε1 finite moments for some ε1 > 0 and n−1s2
Qn ≥ c > 0,

then
Qn − µQn

sQn

d−→N(0, 1)

Proof. The proof of this Lemma follows the proof of Theorem 1 in Kelejian and Prucha
(2001, p. 243). First note that, given the independence in i of at and bt, µQn =
T∑
t=1

n∑
i=1

Pt,n[i, i]E(ai,tbi,t), where we use the somewhat abusive notation Pt,n[i, j] to refer to

the row i and column j element of the matrix Pt,n. Notice also that Qn − µQn =
T∑
t=1

n∑
i=1

Yi,t

with

Yi,t = Pt,n[i, i] (ai,tbi,t − E(ai,tbi,t)) + ai,t

i−1∑
j=1

Pt,n[j, i]bj,t + bi,t

i−1∑
j=1

Pt,n[i, j]aj,t

for i = 1, 2, ..., n.

79

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



Chapter 3. A correlated random effects spatial Durbin model

Let us now consider the σ−fields z0,n = {∅,Ω} and zi,n = σ (ai, bi, ai−1, bi−1, ..., a1, b1, ),
with ai = {ai,t}Tt=1, bi = {bi,t}Tt=1 and 1 ≤ i ≤ n. By construction, zi−1,n ⊂
zi,n and Yi,t is zi,n−measurable. It can also be shown that E (Yi,t|zi−1,n) = 0.
Therefore, {Yi,t,zi,n, 1 ≤ i ≤ n, n ≥ 1} forms a martingale difference array and so s2

Qn =
n∑
i=1

(
T∑
t=1

E
(
Y 2
i,t

)
+ 2

T∑
t=2

t−1∑
s=1

E (Yi,tYi,s)

)
. Thus, the expression for the variance ofQn follows

from

E (Yi,tYi,s) = Pt,n[i, i]Ps,n[i, i]σ
(2)
c,t,s + σ2

a,t,sσ
2
b,t,s

i−1∑
j=1

(Pt,n[i, j]Ps,n[i, j] + Pt,n[j, i]Ps,n[j, i])

+ σc,t,sσc,s,t

i−1∑
j=1

(Pt,n[i, j]Ps,n[j, i] + Ps,n[i, j]Pt,n[j, i]) (3.6.3)

with σc,t,s = E (ai,tbi,s), σ
(2)
c,t,s = E [(ai,tbi,t − σc,t,t)(ai,sbi,s − σc,s,s)], σ2

a,t,s = E [ai,tai,s] and
σ2
b,t,s = E [bi,tbi,s]. Also, if we define Xi,t = Yi,t/sQn , then {Xi,t,zi,n, 1 ≤ i ≤ n, n ≥ 1} forms

a martingale difference array.

In what follows we prove that

Qn − µQn
sQn

=
n∑
i=1

T∑
t=1

Xi,t
d−→N(0, 1)

by showing that Xi,n =
T∑
t=1

Xi,t satisfies the remaining conditions of the Central Limit

Theorem of Gänsler and Stute (1977, p. 365). In particular, we demonstrate that Xi,n

satisfies the condition:
kn∑
i=1

E
{
E
[
|Xi,n|2+δ

∣∣∣zi−1,n

]}
−→ 0 (3.6.4)

for some δ > 0, which in turn is sufficient for

kn∑
i=1

E
[
|Xi,n|2 1 (|Xi,n > ε|)

∣∣zi−1,n

] p−→0

for all ε > 0 and with 1(·) being an indicator function. Then we prove that Xi,n satisfies

kn∑
i=1

E
[
X2
i,n

∣∣zi−1,n

] p−→1 (3.6.5)

Let us take 0 < δ ≤ ε1/2. We note that, under the maintained moment assumptions
on {(at, bt)}Tt=1, there exists a finite constant, Ce ≥ 1, such that E

(∣∣ar1i,tbr2i,tar3i,sbr4i,s∣∣) ≤ Ce
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for
4∑
l=1

rl ≤ 4 + 2δ, rl ≥ 0, t = 1, 2, ..., T and i = 1, 2, ..., n. We further note that, under

the maintained assumptions on the matrices Pt,n, there exists a finite constant, Cm ≥ 1,

such that
n∑
j=1

(|Pt,n[i, j]|+ |Pt,n[j, i]|) < Cm for t = 1, 2, ..., T and i = 1, ..., n. Lastly for

t, s = 1, 2, ..., T , note that
n∑
j=1

(|Pt,n[i, j]|+ |Pt,n[j, i]|)r ≤ Cr
m for r ≥ 1 and

n∑
j=1

(|Pt,n[i, j]|+ |Pt,n[j, i]|) (|Ps,n[k, j]|+ |Ps,n[j, k]|) ≤

n∑
j=1

(|Pt,n[i, j]|+ |Pt,n[j, i]|)
n∑
j=1

(|Ps,n[k, j]|+ |Ps,n[j, k]|) ≤ C2
m

Let us now take q = 2 + δ and let 1/q+ 1/p = 1. We note that

∣∣∣∣∣
T∑
t=1

Yi,t

∣∣∣∣∣
q

≤ T q
T∑
t=1

|Yi,t|q.

Also, using the triangle and Hölder’s inequalities, we have that

|Yi,t|q =

∣∣∣∣∣Pt,n[i, i] (ai,tbi,t − σc,t,t)) + ai,t

i−1∑
j=1

Pt,n[j, i]bj,t + bi,t

i−1∑
j=1

Pt,n[i, j]aj,t

∣∣∣∣∣
q

≤ 2q

∣∣∣∣∣1/2Pt,n[i, i]1/pPt,n[i, i]1/q (ai,tbi,t − σc,t,t) + ai,t

i−1∑
j=1

Pt,n[j, i]1/pPt,n[j, i]1/qbj,t

∣∣∣∣∣
q

+ 2q

∣∣∣∣∣1/2Pt,n[i, i]1/pPt,n[i, i]1/q (ai,tbi,t − σc,t,t) + bi,t

i−1∑
j=1

Pt,n[i, j]1/pPt,n[i, j]1/qaj,t

∣∣∣∣∣
q

≤ 2q

[
i∑

j=1

|Pt,n[j, i]|

]q/p ∣∣∣∣∣2−q |Pt,n[i, i]| |ai,tbi,t − σc,t,t|q + |ai,t|q
i−1∑
j=1

|Pt,n[j, i]| |bj,t|q
∣∣∣∣∣
q/q

+ 2q

[
i∑

j=1

|Pt,n[j, i]|

]q/p ∣∣∣∣∣2−q |Pt,n[i, i]| |ai,tbi,t − σc,t,t|q + |bi,t|q
i−1∑
j=1

|Pt,n[i, j]| |aj,t|q
∣∣∣∣∣
q/q

≤ 2qCq/p
m

(
2−q |Pt,n[i, i]| |ai,tbi,t − σc,t,t|q + |ai,t|q

i−1∑
j=1

|Pt,n[j, i]| |bj,t|q
)

+ 2qCq/p
m

(
2−q |Pt,n[i, i]| |ai,tbi,t − σc,t,t|q + |bi,t|q

i−1∑
j=1

|Pt,n[i, j]| |aj,t|q
)
.

Consequently,
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n∑
i=1

E {E [ |Y 1i,t|q|zi−1,n]} ≤

n∑
i=1

2qCq/p
m

(
|Pt,n[i, i]|E [|ai,tbi,t − σc,t,t|q] + E [|ai,t|q]

i−1∑
j=1

|Pt,n[j, i]|E [|bj,t|q]

)
+

n∑
i=1

2qCq/p
m

(
|Pt,n[i, i]|E [|ai,tbi,t − σc,t,t|q] + E [|bi,t|q]

i−1∑
j=1

|Pt,n[i, j]|E [|aj,t|q]

)

≤
n∑
i=1

2qCq/p
m Ce

(
2 |Pt,n[i, i]|+

i−1∑
j=1

|Pt,n[j, i]|+
i−1∑
j=1

|Pt,n[i, j]|

)
≤ n2q+1Cq/p+1

m Ce

Thus,

n∑
i=1

E {E [ |Xi,n|q|zi−1,n]} =
1

sqQn

n∑
i=1

T∑
t=1

E {E [ |Yi,t|q|zi−1,n]}

=
1[

n−1s2
Qn

]1+δ/2

1

n1+δ/2

n∑
i=1

T∑
t=1

E {E [ |Yi,t|q|zi−1,n]} ≤ 1[
n−1s2

Qn

]1+δ/2

{
1

nδ/2
2q+1Cq/p+1

m Ce

}

Since n−1s2
Qn ≥ c > 0, the right-hand side of the last inequality goes to zero as n→∞,

which proves that condition 3.6.4 holds.

Now, using s2
Qn =

n∑
i=1

(
T∑
t=1

E
(
Y 2
i,t

)
+ 2

T∑
t=2

t−1∑
s=1

E (Yi,tYi,s)

)
and the definition of Xi,n we

obtain that

n∑
i=1

E
[
X2
i,n

∣∣zi−1,n

]
− 1 =

1

n−1s2
Qn

1

n

n∑
i=1

T∑
t=1

[
E
(
Y 2
i,t

∣∣zi−1,n

)
− E

(
Y 2
i,t

)]
+

2

n−1s2
Qn

1

n

n∑
i=1

T∑
t=2

t−1∑
s=1

[E (Yi,tYi,s|zi−1,n)− E (Yi,tYi,s)]

This means that, since n−1s2
Qn ≥ c > 0, we can prove condition 3.6.5 by proving that

1

n

n∑
i=1

[E (Yi,tYi,s|zi−1,n)− E (Yi,tYi,s)]
p−→0

for t, s = 1, 2, ..., T . We start the proof by noting that, since (ai,t, bi,t) are independent with
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zero mean, it follows that

[E (Yi,tYi,s|zi−1,n) − E (Yi,tYi,s)] =

+ σc,a,t,sPt,n[i, i]
i−1∑
j=1

Ps,n[j, i]bj,sσc,b,t,sPt,n[i, i]
i−1∑
j=1

Ps,n[i, j]aj,s

+ σc,a,s,tPs,n[i, i]
i−1∑
j=1

Pt,n[j, i]bj,tσc,b,s,tPs,n[i, i]
i−1∑
j=1

Pt,n[i, j]aj,t

+ σa,t,s

i−1∑
j=1

i−1∑
l=1

Pt,n[j, i]Ps,n[l, i] [bj,tbl,s − 1(j = l)σb,t,s]

+ σc,t,s

i−1∑
j=1

i−1∑
l=1

Pt,n[j, i]Ps,n[i, l] [bj,tal,s − 1(j = l)σc,s,t]

+ σc,s,t

i−1∑
j=1

i−1∑
l=1

Ps,n[j, i]Pt,n[i, l] [bj,sal,t − 1(j = l)σc,t,s]

+ σb,t,s

i−1∑
j=1

i−1∑
l=1

Pt,n[i, j]Ps,n[i, l] [aj,tal,s − 1(j = l)σa,t,s]

with σc,a,t,s = E(ai,tbi,tai,s) and σc,b,t,s = E(ai,tbi,tbi,s), and so

1

n

n∑
i=1

[E (Yi,tYi,s|zi−1,n)− E (Yi,tYi,s)] =
8∑

k=1

Hk,n

where the subindex 1, . . . , 8 indicates, in order of appearance, a summand in the expression

above. Thus, to prove that
1

s2
Qn

n∑
i=1

[E (Yi,tYi,s|zi−1,n)− E (Yi,tYi,s)]
p−→0, next we prove

that Hk,n
p−→0 for k = 1, ..., 8.

To prove that H1,n =
n−1∑
i=1

ϕi,nbi,s with ϕi,n = n−1σc,a,t,sPt,n[i, i]
n∑

j=i+1

Ps,n[j, i], notice

that, given that the bi,s are independent with mean zero, E |bi,s|1+δ ≤ Ce for δ > 0,

lim sup
n→∞

n−1∑
i=1

ϕi,n = lim sup
n→∞

n−1σc,a,t,sPt,n[i, i]
n∑

j=i+1

Ps,n[j, i] ≤ CeC
2
m <∞, and

lim sup
n→∞

n−1∑
i=1

ϕ2
i,n = lim sup

n→∞
n−2σ2

c,a,t,s

n−1∑
i=1

Pt,n[i, i]2

[
n∑

j=i+1

Ps,n[j, i]

]2

≤ n−1C2
eC

2
mn
−1

n−1∑
i=1

C2
m ≤ n−1C2

eC
4
m → 0

Then, H1,n
p−→0 by Davidson (1994, p. 299). Further, the cases Hk,n for k = 2, 3, 4 can be

proved in the same way.
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For H5,n, notice that

H5,n = σa,t,sn
−1

n∑
i=1

i−1∑
j=1

i−1∑
l=1

Pt,n[j, i]Ps,n[l, i] [bj,tbl,s − 1(j = l)σb,t,s]

= σa,t,sn
−1

n∑
i=1

i−1∑
j=1

Pt,n[j, i]Ps,n[j, i] [bj,tbj,s − σb,t,s] + σa,t,sn
−1

n∑
i=1

i−1∑
j=1

j−1∑
l=1

Pt,n[j, i]Ps,n[l, i]bj,tbl,s

+ σa,t,sn
−1

n∑
i=1

i−1∑
j=1

j−1∑
l=1

Pt,n[l, i]Ps,n[j, i]bl,tbj,s

= H15,n +H25,n +H35,n.

To prove that H15,n
p−→0, we follow the same steps as in H1,n. Notice that

H15,n =
n−1∑
i=1

φi,n (bi,tbi,s − σb,t,s) with φi,n = n−1σa,t,s

n∑
j=i+1

Pt,n[j, i]Ps,n[j, i]. Then, given

that (bi,tbi,s − σb,t,s) are independent with mean zero, E |bi,tbi,s − σb,t,s|1+δ ≤ Ce for

δ > 0, lim sup
n→∞

n−1∑
i=1

φi,n = lim sup
n→∞

n−1σa,t,s

n−1∑
i=1

n∑
j=i+1

Pt,n[j, i]Ps,n[j, i] ≤ σa,t,sC
2
m and

lim sup
n→∞

n−1∑
i=1

φ2
i,n = lim sup

n→∞
n−2σ2

a,t,s

n−1∑
i=1

[
n∑

j=i+1

Pt,n[j, i]Ps,n[j, i]

]2

≤ lim sup
n→∞

n−1σ2
a,t,sC

4
m = 0.

Thus, H15,n
p−→0 by Davidson (1994, p. 299).

Similarly, for H25,n, given that the bi,tbj,s are independent with zero mean, it is not
difficult to see that

E
(
H22

5,n

)
≤ n−2Ce

n∑
i=1

i−1∑
j=1

j−1∑
l=1

Pt,n[j, i]2Ps,n[l, i]2

+ 4n−2Ce

n∑
i=1

i−1∑
j=1

j−1∑
r=1

Pt,n[j, i]Pt,n[r, i]Ps,n[j, i]Ps,n[r, i]

+ 2n−2Ce

n∑
i=1

i−1∑
k=1

k−1∑
j=1

k−1∑
r=1

Pt,n[j, i]Ps,n[r, i]Pt,n[j, k]Ps,n[r, k]

≤ n−2Ce

n∑
i=1

C4
m + 4n−2Ce

n∑
i=1

C4
m

+ 2n−2Ce

n∑
i=1

k−1∑
j=1

Pt,n[j, i]
i−1∑
k=1

Pt,n[j, k]
k−1∑
r=1

Ps,n[r, i]Ps,n[r, k]

≤ 7n−1CeC
4
m −→ 0

Then, given that E (H25,n) = 0, H25,n
p−→0. Also, the proof of H35,n

p−→0 follows the same
steps. This proves that H5,n

p−→0. Lastly, the cases Hk,n for k = 6, 7, 8 can be proved in the
same way. This concludes our proof of 3.6.5, and hence that of the Lemma.
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3.6. Appendix A: Lemmas

Lemma 3.15. Under Assumptions 3.1 to 3.8,

1√
nT

∂L (ψ0)

∂ψ

d−→N
(

0, E

(
1

nT

∂L (ψ0)

∂ψ

∂L (ψ0)

∂ψ

′))

Proof. The key to the proof is to show that
1√
nT

X̃′Ω−1
0 η

d−→N (0,G11), with G11 =

lim
n→∞

1

nT
E
[
X̃′Ω−1

0 ηη
′Ω−1

0 X̃
]
. In particular, by the Cramér-Wold device, it suffices to show

that for any c = (c′1, c
′
2, c3)

′ ∈ R4K+2 × R with ‖c‖ = 1,
1√
nT

c′X̃′Ω−1
0 η

d−→N (0, c′G11c).

Let us define X1 =
[
lnT X X

]
, X2 =

[
X X

]
, φ10 = (c0, β

′
10, π

′
µ0)′ and φ20 =

(β′20, π
′
α0)′. From 3.6.2 we have that:

c′X̃′Ω−1
0 η = c′1X1′Ω−1

0 η + c′2X2′W′Ω−1
0 η + c3Y

′
−1Ω

−1
0 η

= c′1X1′Ω−1
0 η + c′2X2′W′Ω−1

0 η + c3Y
′
n0G
−
0

′
Ω−1

0 η

+ c3φ
′
10X1′C−0

′
Ω−1

0 η + c3φ
′
20X2′C−0

′
Ω−1

0 η + c3η
′C−0

′
Ω−1

0 η.

Following the steps of Lemma 3.11, we can write the summands of the previous expression
as sums of quadratic forms:

c′1X1′Ω−1
0 η =

T∑
t=1

c′1X1′ntξnt −
1

T

T∑
t=1

T∑
s=1

c′1X1′ntB
−1
n0 ξns

+
T∑
t=1

c′1X1′ntWnυnα −
T∑
t=1

c′1X1′ntB
−1
n0 Wnυnα

c′2X2′W′Ω−1
0 η =

T∑
t=1

c′2X2′ntW
′
nξnt −

1

T

T∑
t=1

T∑
s=1

c′2X2′ntW
′
nB
−1
n0 ξns

+
T∑
t=1

c′2X2′ntW
′
nWnυnα −

T∑
t=1

c′2X2′ntW
′
nB
−1
n0 Wnυnα

Y′n0G
−
0

′
Ω−1

0 η =
T∑
t=1

Y′n0G
′
nt−1ξnt −

1

T

T∑
t=1

T∑
s=1

Y′n0G
′
nt−1B

−1
n0 ξns

+
T∑
t=1

Y′n0G
′
nt−1Wnυnα −

T∑
t=1

Y′n0G
′
nt−1B

−1
n0 Wnυnα

φ′10X1′C−0
′
Ω−1

0 η =
T∑
t=1

t∑
j=1

φ′10X1′njC
′
n,t−j−1ξnt −

1

T

T∑
t=1

t∑
j=1

T∑
s=1

φ′10X1′njC
′
n,t−j−1B

−1
n0 ξns

+
T∑
t=1

t∑
j=1

φ′10X1′njC
′
n,t−j−1Wnυnα −

T∑
t=1

T∑
j=1

φ′10X1′njC
′
n,t−j−1B

−1
n0 Wnυnα
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φ′20X2′W ′
nC
−
0

′
Ω−1

0 η =

T∑
t=1

t∑
j=1

φ20X2′njW
′
nC
′
n,t−j−1ξnt −

1

T

T∑
t=1

t∑
j=1

T∑
s=1

φ′20X2′njW
′
nC
′
n,t−j−1B

−1
n0 ξns+

T∑
t=1

t∑
j=1

φ′20X2′njW
′
nC
′
n,t−j−1Wnυnα −

T∑
t=1

T∑
j=1

φ′20X2′njW
′
nC
′
n,t−j−1B

−1
n0 Wnυnα

η′C−0
′
Ω−1

0 η =
T∑
t=1

t∑
j=1

ξ′njC
′
n,t−j−1ξnt −

1

T

T∑
t=1

t∑
j=1

T∑
s=1

ξ′njC
′
n,t−j−1B

−1
n0 ξns+

T∑
t=1

t∑
j=1

υ′nαW
′
nC
′
n,t−j−1ξnt −

1

T

T∑
t=1

t∑
j=1

T∑
s=1

υ′nαW
′
nC
′
n,t−j−1B

−1
n0 ξns+

T∑
t=1

t∑
j=1

ξ′njC
′
n,t−j−1Wnυnα −

T∑
t=1

t∑
j=1

ξ′njC
′
n,t−j−1B

−1
n0 Wnυnα+

T∑
t=1

t∑
j=1

υ′nαW
′
nC
′
n,t−j−1Wnυnα −

T∑
t=1

t∑
j=1

υ′nαW
′
nC
′
n,t−j−1B

−1
n0 Wnυnα

with ξnt = (εnt +υnµ), Cn,−1 = 0n×n and B−1
n0 = Bn(σ0)−1 (see Lemma 3.10 for the definition

of Bn(σ)−1).

We can thus write c′X̃′Ω−1
0 η =

L∑
l=1

a′lPn,lbl with L < ∞. Then, it is easy to verify that

al, bl and Pn,l for l = 1, 2, ..., L satisfy the conditions of Lemma 3.14 and, by Assumption

3.7, that n−1V ar(c′X̃′Ω−1
0 η) ≥ c > 0, so that

c′X̃′Ω−1
0 η[

V ar(c′X̃′Ω−1
0 η)

]1/2

d−→N (0, 1), which in

turn implies that
1√
nT

c′X̃′Ω−1
0 η

d−→N (0, c′G11c) for any c ∈ R4K+2 ×R with ‖c‖ = 1. This

proves the convergence for the first term of the gradient.

To conclude the proof, we note that each component of
∂L (ψ0)

∂ψ
(see Appendix 3.8 for

details) can be written as a finite sum of quadratic forms, so that the proof for these cases
proceeds by closely following the previous steps. We consequently omit the details of these
proofs.

3.7 Appendix B: Proof of Theorems.

We start by proving the consistence of the QML estimator (Theorem 3.1). The proof of
normality comes next (Theorem 3.2).
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3.7.1 Consistency

Proof of Theorem 3.1. The consistency proof closely follows the proof of Theorem 4.1 of Su
and Yang (2015). In particular, by Theorem 3.4 of White (1994), it suffices to show that:

(1.)
1

nT
[L∗c(δ)− Lc(δ)]

p−→0 uniformly in δ ∈ ∆ = ∆σ ×∆λ

(2.) lim sup
n→∞

max
δ∈Nc

ε (δ0)

1

nT
[L∗c(δ)− L∗c(δ0)] < 0 for any ε > 0, where N c

ε (δ0) is the complement

of an open neighbourhood of δ0 on ∆ of radius ε.

To show that (1.) holds, it is sufficient to show that the following conditions hold: (1.a)
σ̂2
ε(δ)− σ̃2

ε(δ)
p−→0 uniformly in δ ∈ ∆ and (1.b) σ̃2

ε(δ) is uniformly bounded away from zero
on ∆. Since (1b) will be checked in the proof of (2.), next we concentrate on the proof of
(1.a).

By definition of our model, η̂(δ) = S(λ)Y−X̃θ̂(δ) = Ω1/2(σ)M(σ)Ω−1/2(σ)S(λ)Y, where
M(σ) = InT −Ω−1/2(σ)X̃

(
X̃′Ω−1(σ)X̃

)−1

X̃′Ω−1/2(σ). This means that

σ̂2
ε(δ) =

1

nT

(
Y′S′(λ)Ω−1/2(σ)M(σ)Ω1/2(σ)

)
Ω−1(σ)

(
Ω1/2(σ)M(σ)Ω−1/2(σ)S(λ)Y

)
=

1

nT
η′Ω−1(σ)η − 1

nT
Q′

X̃,η
(σ)Q−1

X̃,X̃
(σ)QX̃,η(σ)

− (λ− λ0)
1

nT
η′Ω−1(σ)WY + (λ− λ0)

1

nT
Q′

X̃,η
(σ)Q−1

X̃,X̃
(σ)QX̃,WY(σ)

− (λ− λ0)
1

nT
Y′W′Ω−1(σ)η + (λ− λ0)

1

nT
Q′

X̃,WY
(σ)Q−1

X̃,X̃
(σ)QX̃,η(σ)

+ (λ− λ0)2 1

nT
Y′W′Ω−1(σ)WY − (λ− λ0)2 1

nT
Q′

X̃,WY
(σ)Q−1

X̃,X̃
(σ)QX̃,WY(σ)

with QA,B(δ) = A′Ω−1(σ)B.

From max
θ,σ2

ε

E [L(ψ)],

θ̃(δ) =
[
E
(
X̃′Ω−1(σ)X̃

)]−1

E
[
X̃′Ω−1(σ)S(λ)Y

]
= θ0 +

[
E
(
X̃′Ω−1(σ)X̃

)]−1

E
[
X̃′Ω−1(σ)η

]
− (λ− λ0)

[
E
(
X̃′Ω−1(σ)X̃

)]−1

E
[
X̃′Ω−1(σ)WY

]
Then,

η(θ̃(δ)) ≡ η̃(δ) = S(λ)Y − X̃θ̃(δ)

= η − (λ− λ0) WY − X̃
[
E
(
X̃′Ω−1(σ)X̃

)]−1

E
[
X̃′Ω−1(σ)η

]
+ (λ− λ0) X̃

[
E
(
X̃′Ω−1(σ)X̃

)]−1

E
[
X̃′Ω−1(σ)WY

]
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Chapter 3. A correlated random effects spatial Durbin model

and, consequently,

σ̃ε(δ) =
1

nT
E
[
η′Ω−1(σ)η

]
− 1

nT
(λ− λ0)E

[
η′Ω−1(σ)WY

]
− 1

nT
E
[
Q′

X̃,η
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,η(σ)

]
+

1

nT
(λ− λ0)E

[
Q′

X̃,η
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,WY(σ)

]
− 1

nT
(λ− λ0)E

[
Y′W′Ω−1(σ)η

]
+

1

nT
(λ− λ0)2E

[
Y′W′Ω−1(σ)WY

]
+

1

nT
(λ− λ0)E

[
Q′

X̃,WY
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,η(σ)

]
− 1

nT
(λ− λ0)2E

[
Q′

X̃,WY
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,WY(σ)

]
Let us also define

Πa,b(σ) =
1

nT

{
a′Ω−1(σ)b− E

[
a′Ω−1(σ)b′

]}
Υa,b(σ) =

1

nT

{
Q′

X̃,a
(σ)Q−1

X̃,X̃
(σ)QX̃,b(σ)− E

[
Q′

X̃,a
(σ)
] [
E
(
QX̃,X̃(σ)

)]−1
E
[
QX̃,b(σ)

]}
,

where a,b = η,WY. By using these when calculating the difference between σ̃ε(δ) and
σ̂ε(δ) we obtain:

σ̂ε(δ)− σ̃ε(δ) = Πη,η(σ)− (λ− λ0)Πη,WY(σ)− (λ− λ0)Π′η,WY(σ) + (λ− λ0)2ΠWY,WY(σ)

−Υη,η(σ) + (λ− λ0)Υη,WY(σ) + (λ− λ0)Υ′η,WY(σ)− (λ− λ0)2ΥWY,WY(σ)

and, therefore, condition (1.a) follows by using Lemmas 3.11 and 3.12.

To show that condition (2.) holds, we closely follow the literature (Lee, 2004; Yu et al.,
2008; Su and Yang, 2015) and use an auxiliary process to show, using Jensen inequality and

σ̃2
ε(δ0) =

σ2
ε0

nT
tr(Ω−1

0 Ω0) = σ2
ε0 (which follows from the definition of σ̃2

ε(δ) and Lemma 3.3),
that

L∗c(δ) ≤ L∗c(δ0) (3.7.1)

Next we prove that
1

nT
L∗c(δ) is uniformly equicontinuous on δ ∈ ∆ by showing the

uniform equicontinuity of
1

nT
ln|S(λ)|, then that of

1

nT
ln|Ω(σ)| and finally that of ln(σ̃2

ε(δ))

on δ ∈ ∆.

Firstly, by the mean value theorem, ln|S(λ∗)|− ln|S(λ∗∗)|=
(
∂

∂λ
ln|S(λ)|

)
(λ∗−λ∗∗) with

λ ∈ (λ∗, λ∗∗). Also,
1

nT

∂

∂λ
ln|S(λ)|= 1

nT
tr
[
S−1(λ)W

]
= O(1),

since S−1(λ)W is u.b.r.c.s. uniformly in λ and hence tr
[
S−1(λ)W

]
= O(nT ). Thus, ln|S(λ)|
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is uniformly equicontinuous in λ on ∆λ.

Secondly, by the mean value theorem, ln|Ω(σ∗)|− ln|Ω(σ∗∗)|=
3∑

k=1

(
∂

∂σk
ln|Ω(σ)|

)
(σ∗k −

σ∗∗k ), with σ lying elementwise between σ∗ and σ∗∗. Also,

1

nT

∂

∂σ1

ln|Ω(σ)| = 1

nT
tr
[
Ω−1(σ)(JT ⊗ In)

]
1

nT

∂

∂σ2

ln|Ω(σ)| = 1

nT
tr
[
Ω−1(σ) (JT ⊗ (Wn +W ′

n))
]

1

nT

∂

∂σ3

ln|Ω(σ)| = 1

nT
tr
[
Ω−1(σ)(JT ⊗WnW

′
n)
]

Notice that, by Lemma 3.2, and, given that tr(Wn + W ′
n) = O(n) (see Remark A2 in

Kapoor et al. 2007) and sup
σ
τmax(Ω−1(σ)) < cτ < ∞ (by Lemma 3.9), we can show

that
1

nT
tr
[
Ω−1(σ) (JT ⊗ (Wn +W ′

n))
]
≤ 1

nT

[
sup
σ
τmax(Ω−1(σ))

]−1

tr (JT ⊗ (Wn +W ′
n)) ≤

1

nT
cτ tr(JT )tr(Wn+W ′

n) = O(1) uniformly on ∆, and similarly for the other two cases (since,
by Remark A2 in Kapoor et al. 2007, tr(WnW

′
n) = O(n)). Thus, ln|Ω(σ)| s uniformly

equicontinuous in σ on ∆λ.

Thirdly, to show that ln[σ̃2
ε(δ)] is uniformly equicontinuous on ∆ it suffices to show that

σ̃2
ε(δ) is uniformly equicontinuous and uniformly bounded away from zero on ∆. Thus, we

start by noting from the definition of σ̃2
ε(δ) used in the proof of (1.a) that all its elements

appear in Πa,b(σ) and Υa,b(σ), which, using the same arguments as in Lemmas 3.11 and
3.12, and the results in Lemma 3.7, proves the uniform equicontinuity of σ̃ε(δ). Next, to
show that σ̃2

ε(δ) is uniformly bounded away from zero, we follow Su and Yang (2015) and
establish the claim by a counter argument based on making its dependence on n explicit.
To this end, we include the subindex n in σ̃2

ε(δ), so that it then becomes σ̃2
ε,n(δ).

If σ̃2
ε,n(δ) is not uniformly bounded away from zero on ∆, then there exists a sequence

{δn} in ∆ such that lim
n→∞

σ̃2
ε,n(δ) = 0. Now, by 3.7.1 we have that, for all δ,

− ln
[
σ̃2
ε(δ)

]
≤ − ln

[
σ̃2
ε(δ0)

]
+

1

nT
[ln |S0| − ln |S(λ)|] +

2

nT
[ln |Ω(σ)| − ln |Ω0|]

Using the mean value theorem, as we previously did, it can be proved that
1

nT
[ln |S0| − ln |S(λ)|] = O(1) and

2

nT
[ln |Ω(σ)| − ln |Ω0|] = O(1) uniformly in ∆. This

implies that − ln
[
σ̃2
ε(δ)

]
is bounded above, which is a contradiction, so we conclude that

σ̃2
ε,n(δ) is uniformly bounded away from zero on ∆.

Finally, the identification uniqueness also follows by contradiction. Using σ̃2
ε(δ0) = σ2

ε0

(see Lemma 3.3) we have that
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1

nT
[L∗c(δ)− L∗c(δ0)] =

1

2nT
{ln |Ω0| − ln |Ω(σ)|}+

1

2

{
ln
[
σ2
ε0

]
− ln

[
σ̃2
ε(δ)

]}
+

1

nT
{ln |S(λ)| − ln |S0|}

=
1

2nT

{
ln
∣∣σ2
ε0S
−2
0 Ω0

]
− ln

∣∣σ̃2
ε(δ)S

−2(λ)Ω(σ)
∣∣}

If the identification uniqueness condition does not hold, then there exists an ε > 0 and a
sequence {δn} in N c

ε (δ0) such that

lim
n→∞

1

nT

[
L∗c,n(δ)− L∗c,n(δ0)

]
= 0,

where we have written L∗c,n(.) for L∗c(.) to stress its dependence on n. However, by the
compactness of N c

ε (δ0), there exists a convergent subsequence {δnk} of {δn} with the limit δ+

of δnk being inN
c
ε (δ0). This implies that δ+ 6= δ0. Furthermore, by the uniform equicontinuity

of
1

nT
L∗c,n(δ), lim

n→∞

1

nkT

[
L∗c,n(δ+)− L∗c,n(δ0)

]
= 0. Yet this contradicts Assumption 3.6, since

it amounts to lim
n→∞

1

nT

[
L∗c,n(δ)− L∗c,n(δ0)

]
6= 0 for any δ 6= δ0. This completes the proof of

the theorem.

3.7.2 Asymptotic normality

Proof of Theorem 3.2. By Taylor series expansion,

0 =
1√
nT

∂L (ψ)

∂ψ

∣∣∣∣
ψ̂

=
1√
nT

∂L (ψ)

∂ψ

∣∣∣∣
ψ0

+
1

nT

∂2L (ψ)

∂ψ∂ψ′

∣∣∣∣
ψ

√
nT
(
ψ̂ − ψ0

)

where the elements of ψ =
(
θ
′
, σ2

ε, λ, σ
′
)′

lie in the segment joining the corresponding

elements of ψ̂ and ψ0. Thus,

√
nT
(
ψ̂ − ψ0

)
=

[
− 1

nT

∂2L (ψ)

∂ψ∂ψ′

∣∣∣∣
ψ

]−1
1√
nT

∂L (ψ)

∂ψ

∣∣∣∣
ψ0

=

[
− 1

nT

∂2L
(
ψ
)

∂ψ∂ψ′

]−1
1√
nT

∂L (ψ0)

∂ψ

By Theorem 3.1, ψ̂ p−→ψ0, and so ψ p−→ψ0. Therefore, it suffices to show that:

i)
1

nT

∂2L
(
ψ
)

∂ψ∂ψ′
− 1

nT

∂2L (ψ0)

∂ψ∂ψ′
= op (1),

ii)
1

nT

∂2L (ψ0)

∂ψ∂ψ′
p−→E

(
1

nT

∂2L (ψ0)

∂ψ∂ψ′

)
, and

iii)
1√
nT

∂L (ψ0)

∂ψ

d−→N
(

0, E

(
1

nT

∂L (ψ0)

∂ψ

∂L (ψ0)

∂ψ

′))
.
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Since ii) and (iii) follow from Lemmas 3.13 and 3.15, respectively, only (i) is left to be

shown. In particular, given the expression of
∂2L (ψ)

∂ψ∂ψ′
provided in Appendix 3.8, it suffices to

show that
1

nT

∂2L
(
ψ
)

∂ω∂$′
− 1

nT

∂2L (ψ0)

∂ω∂$′
= op (1) for ω,$ = θ, σ2

ε , λ and σ. However, we only
show this for (ω,$) = (θ, θ) ,

(
θ, σ2

ε

)
, (λ, λ) and (σκ, σ%), with κ, % = 1, 2, 3, for the other

cases can be shown in an analogous way.

For the (θ, θ) case, notice that

1

nT

[
∂2L

(
ψ
)

∂θ∂θ′
− ∂2L (ψ0)

∂θ∂θ′

]
= − 1

nT

1

σ2
ε

X̃′Ω−1 (σ) X̃ +
1

nT

1

σ2
ε0

X̃′Ω−1
0 X̃

=

(
σ2
ε − σ2

ε0

σ2
ε0σ

2
ε

)
1

nT
X̃′Ω−1

0 X̃ +
1

σ2
ε

1

nT

[
X̃′Ω−1

0 (Ω (σ)−Ω0) Ω−1 (σ) X̃
]

(3.7.2)

Given that σ2
ε0 > 0 and σ2

ε

p−→σ2
ε0,

(
σ2
ε − σ2

ε0

σ2
ε0σ

2
ε

)
= op (1), from the proof of Lemma

3.12 we can show that
1

nT
X̃′Ω−1

0 X̃ = Op (1). As for the second term in the r.h.s. of

3.7.2, note that τ 1/2
max

(
(Ω (σ)−Ω0)2) = Op (‖σ − σ‖) = op (1). To prove this, notice that,

since τmax (A⊗B) ≤ τmax (A) τmax (B), then τ 1/2
max

(
(Ω (σ)−Ω0)2) = Tτ 1/2

max

(
(Σ (σ)−Σ0)2).

Further,

τ 1/2
max

(
(Σ (σ)−Σ0)2) = ‖(Σ (σ)−Σ0)‖2

= ‖(σ1 − σ10) In + (σ2 − σ20) (Wn +W ′
n) + (σ3 − σ30)WnW

′
n‖2

≤ |σ1 − σ10| ‖In‖2 + |σ2 − σ20) |‖(Wn +W ′
n)‖2 + |σ3 − σ30| ‖WnW

′
n‖2

Then, given that Wn is u.b.r.c.s., ‖Wn +W ′
n‖2 ≤ (‖Wn +W ′

n‖1 ‖Wn +W ′
n‖∞)

1/2
<∞ and

‖WnW
′
n‖2 ≤ (‖WnW

′
n‖1 ‖WnW

′
n‖∞)

1/2
< ∞. Thus, τ 1/2

max

(
(Ω (σ)−Ω0)2) ≤

[|σ1 − σ10|+ |σ2 − σ20|+ |σ2 − σ20|]Tcτ with cτ <∞.

Let c be an arbitrary column vector in R4K+2. Then, by the Cauchy-Schwarz inequality,
Lemmas 3.9 and 3.2, and

1

nT

∣∣∣c′X̃′X̃c∣∣∣ = Op (1) (which can be proved following the same
steps as in Lemma 3.12), we have that

1

nT

∣∣∣c′X̃′ Ω−1
0 (Ω (σ)−Ω0) Ω−1 (σ) X̃c

∣∣∣
≤ 1

nT

∣∣∣c′X̃′Ω−1
0 Ω−1

0 X̃c
∣∣∣1/2 ∣∣∣c′X̃′Ω−1 (σ) (Ω (σ)−Ω0) (Ω (σ)−Ω0) Ω−1 (σ) X̃c

∣∣∣1/2
≤ τmax

(
Ω−1

0

)
τmax

(
Ω−1 (σ)

)
τ 1/2

max

(
(Ω (σ)−Ω0)2) 1

nT

∣∣∣c′X̃′X̃c∣∣∣
≤ Op (‖σ − σ‖)Op (1) = op (1)

Since
1

σ2
ε

= Op (1), it follows that the second term in the r.h.s. of 3.7.2 is op (1).
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For the
(
θ, σ2

ε

)
case, notice that

1

nT

[
∂2L

(
ψ
)

∂θ∂σ2
ε

− ∂2L (ψ0)

∂θ∂σ2
ε

]
=

1

nT

[
1

σ4
ε

X̃′Ω−1 (σ)η
(
θ, λ
)
− 1

σ4
ε

X̃′Ω−1
0 η

]
=

(
1

σ4
ε

− 1

σ4
ε

)
1

nT
X̃′Ω−1

0 η +
1

σ4
ε

1

nT

[
X̃′
(
Ω−1 (σ)− Ω−1

0

)
η
(
θ, λ
)]

+
1

σ4
ε

1

nT

[
X̃′Ω−1

0

(
η
(
θ, λ
)
− η

)]

Following the same steps as in Lemmas 3.12 and 3.13, it can be proved that
1

nT
X̃′Ω−1

0 η =

op (1),
1

nT
X̃′Ω−1

0 Y = Op (1) and
1

nT
X̃′Ω−1

0 X̃ = Op (1). Thus, by using η
(
θ, λ
)

=(
λ0 − λ

)
Y + η + X̃

(
θ − θ0

)
, it can be proved that the three summands in the previous

expression are op (1).

For the (λ, λ) case, notice that

1

nT

[
∂2L

(
ψ
)

∂λ∂λ
− ∂2L (ψ0)

∂λ∂λ

]
=

1

nT

[
tr
((

S−1
0 W

)2
)
− tr

((
S−1

(
λ
)

W
)2
)

+ Y′W′Ω−1
0 WY −Y′W′Ω−1 (σ) WY

]
=

1

nT

[
tr
((

S−1
0 W

)2 −
(
S−1

(
λ
)
W
)2
)]

+
1

nT

[
Y′W′Ω−1

0 (Ω (σ)−Ω0) WY
]

Let us now consider the first term of the previous expression. Given that S−1 (λ) and W

are u.b.r.c.s. uniformly in λ, then

1

nT
tr
((

S−1
0 W

)2 −
(
S−1

(
λ
)
W
)2
)
≤
∣∣λ− λ0

∣∣ 1

nT
tr
(
S−1

0 WS−1
(
λ
)
WS−1

(
λ
)

W
)

+
∣∣λ− λ0

∣∣ 1

nT
tr
(
S−1

0 WS−1
0 WS−1

(
λ
)

W
)

≤ op (1)O (1) ,

where the second inequality holds because tr
(
S−1

0 WS−1
(
λ
)
WS−1

(
λ
)
W
)

=

O (nT ) and tr
(
S−1

0 WS−1
0 WS−1

(
λ
)
W
)

= O (nT ). As for the second

term,
1

nT

[
Y′W′Ω−1

0 (Ω (σ)−Ω0) WY
]

=
1

nT

[
θ′0X̃

′Ω−1
0 (Ω (σ)−Ω0) X̃θ0

]
+

1

nT

[
η′Ω−1

0 (Ω (σ)−Ω0)η
]

+ 2
1

nT

[
θ′0X̃

′Ω−1
0 (Ω (σ)−Ω0)η

]
, so that, using ar-

guments analogous to the ones used in previous cases, it can be proved that
1

nT

[
Y′W′Ω−1

0 (Ω (σ)−Ω0) WY
]

= op (1).
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For the (σκ, σκ) case, notice that

1

nT

[
∂2L

(
ψ
)

∂σκ∂σκ
− ∂2L (ψ0)

∂σκ∂σκ

]
=

1

nT

[
1

σ2
ε

X̃′Ω−1 (σ) ΣκΩ
−1 (σ)η

(
θ
)
− 1

σ2
ε

X̃′Ω−1
0 ΣκΩ

−1
0 η

]
=

(
1

σ2
ε

− 1

σ2
ε

)
1

nT

[
X̃′Ω−1

0 ΣκΩ
−1
0 η

]
+

1

σ2
ε

1

nT

[
X̃′Ω−1 (σ) ΣκΩ

−1 (σ)η
(
θ, λ
)
− X̃′Ω−1

0 ΣκΩ
−1
0 η

]
=

(
1

σ2
ε

− 1

σ2
ε

)
1

nT

[
X̃′Ω−1

0 ΣκΩ
−1
0 η

]
+

1

σ2
ε

1

nT

[
X̃′
(
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)
η
(
θ, λ
)]

+
1

σ2
ε

1

nT

[
X̃′Ω−1

0 ΣκΩ
−1
0 X̃

(
θ − θ0

)]

The first and third summands can be proved to be op (1) using arguments analogous to
the ones used in previous cases. For the second one, note that

τ 1/2
max

((
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)2
)

= T 3/2τ 1/2
max

((
Σ−1 (σ) ΣκΣ

−1 (σ)− Σ−1
0 ΣκΣ

−1
0

)2
)

Also, since
∥∥Σ−1 (σ)− Σ−1

0

∥∥
2

= op (1) and previous results show that ∃cτ < ∞ such that
τmax

(
Σ−1

0

)
≤ cτ , τmax

(
Σ−1 (σ)

)
≤ cτ and τmax (Σκ) ≤ cτ for κ = 1, 2, 3,

τ 1/2
max

((
Σ−1 (σ) ΣκΣ

−1 (σ) − Σ−1
0 ΣκΣ

−1
0

)2
)

=
∥∥(Σ−1 (σ) ΣκΣ

−1 (σ)− Σ−1
0 ΣκΣ

−1
0

)∥∥
2

≤
∥∥(Σ−1 (σ)− Σ−1

0

)
ΣκΣ

−1 (σ)
∥∥

2
+
∥∥Σ−1

0 Σκ

(
Σ−1 (σ)− Σ−1

0

)∥∥
2

≤
∥∥Σ−1 (σ)− Σ−1

0

∥∥
2
‖Σκ‖2

(∥∥Σ−1 (σ)
∥∥

2
+
∥∥Σ−1

0

∥∥
2

)
≤
∥∥Σ−1 (σ)− Σ−1

0

∥∥
2
cτ = op(1)

Thus, τ 1/2
max

((
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)2
)

= op (1).

Further, let c be an arbitrary column vector in R4K+2. Then, by the Cauchy-Schwarz
inequality, Lemma 3.2, the fact that

1

nT

∣∣∣c′X̃′X̃c∣∣∣ = Op (1) and
1

nT
η
(
θ, λ
)′
η
(
θ, λ
)

= Op (1)
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(which can be proved following the same steps as in Lemmas 3.12 and 3.13),

1

nT

[
c′X̃′

(
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)
η
(
θ, λ
)]

≤
[

1

nT
c′X̃′X̃c

]1/2 [
1

nT
η
(
θ, λ
)′ (

Ω−1 (σ) ΣκΩ
−1 (σ)−Ω−1

0 ΣκΩ
−1
0

)
(
Ω−1 (σ) ΣκΩ

−1 (σ)− Ω−1
0 ΣκΩ

−1
0

)
η
(
θ, λ
) ]1/2

≤ τ 1/2
max

((
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)2
)[ 1

nT
c′X̃′X̃c

]1/2 [
1

nT
η
(
θ, λ
)′
η
(
θ, λ
)]1/2

,

so that, given the previous result showing that τ 1/2
max

((
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)2
)

=

op (1),
1

σ2
ε

1

nT

[
1

σ2
ε

X̃′
(
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

)
η
(
θ, λ
)]

= op (1).

Finally, to prove the (σκ, σ%) case notice that
1

nT

[
∂2L

(
ψ
)

∂σκ∂σ%
− ∂2L (ψ0)

∂σκ∂σ%

]
can be expressed

as

1

2

1

nT
tr
[
Ω−1 (σ) ΣκΩ

−1 (σ) Σ% −Ω−1
0 ΣκΩ

−1
0 Σ%

]
+

1

nT

[
1

σ2
ε0

η′Ω−1
0 ΣκΩ

−1
0 Σ%Ω

−1
0 η −

1

σ2
ε

η
(
λ, θ
)′

Ω−1 (σ) ΣκΩ
−1 (σ) Σ%Ω

−1 (σ)η
(
λ, θ
)]

Note also that τ 1/2
max

(([
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

])2
)

= op (1) and, given that Σκ

is u.b.r.c.s., tr
(
Σ2
κ

)
= O (nT ). Then,

1

nT
tr
[
Ω−1 (σ) ΣκΩ

−1 (σ) Σ% −Ω−1
0 ΣκΩ

−1
0 Σ%

]
≤

1

nT
τ 1/2

max

(([
Ω−1 (σ) ΣκΩ

−1 (σ)−Ω−1
0 ΣκΩ

−1
0

])2
)

(nT )1/2tr1/2
(
Σ2
%

)
= op (1)O (1) = op (1)

and

τ 1/2
max

((
Ω−1

0 ΣκΩ
−1
0 Σ%Ω

−1
0 −Ω−1 (σ) ΣκΩ

−1 (σ) Σ%Ω
−1 (σ)

)2
)

≤
∥∥Ω−1

0 ΣκΩ
−1
0 − Ω−1 (σ) ΣκΩ

−1 (σ)
∥∥

2
τmax (Σ%) τmax

(
Ω−1 (σ)

)
+
∥∥Ω−1

0 −Ω−1 (σ)
∥∥

2
τmax

(
Ω−1

0

)2
τmax (Σκ) τmax (Σ%) = op (1)O(1).

Therefore, using arguments analogous to the ones used in previous cases,
1

nT

[
∂2L

(
ψ
)

∂σκ∂σ%
− ∂2L (ψ0)

∂σκ∂σ%

]
= op(1).

We conclude the proof by noting that the op (1) of the other components of
1

nT

[
∂2L (ψ)

∂ψ∂ψ′
− ∂2L (ψ)

∂ψ∂ψ′

]
can be proved using previous results and arguments analogous

to the ones used in the cases considered here. We consequently omit the details of these
proofs.
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3.8 Appendix C: Gradient and Hessian of the QML

function

3.8.1 Gradient

The gradient function 5L(ψ0) =
∂L(ψ0)

∂ψ
has the following elements:

∂L(ψ0)

∂θ
=

1

σ2
ε0

X̃′Ω−1
0 η

∂L(ψ0)

∂σ2
ε0

= − nT

2σ2
ε0

+
1

2σ4
ε0

η′Ω−1
0 η

∂L(ψ0)

∂σκ
= −1

2
tr
(
Ω−1

0 Σκ

)
+

1

2σ2
ε0

η′Ω−1
0 ΣκΩ

−1
0 η

∂L(ψ0)

∂λ
= −tr

(
S−1W

)
+

1

σ2
ε

Y′W′Ω−1
0 η

where κ = 1, 2, 3 and Σκ =
∂Ω(σ)

∂σκ
. Also, Σ1 = JT ⊗ Σ1 = JT ⊗ In, Σ2 = JT ⊗ Σ2 =

JT ⊗ (Wn +W ′
n) and Σ3 = JT ⊗ Σ3 = JT ⊗WnW

′
n.

3.8.2 Hessian matrix

The Hessian of the likelihood function in 3.3.2 is:

Hn(ψ0) =



∂2L(ψ0)

∂θ∂θ′
∂2L(ψ0)

∂θ∂σ2
ε

∂2L(ψ0)

∂θ∂δ′

∂2L(ψ0)

∂σ2
ε∂σ

2
ε

∂2L(ψ0)

∂σ2
ε∂δ

′

∂2L(ψ0)

∂δ∂δ′


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Next we provide detailed results for each row of the Hessian matrix. Thus, the first row of
the Hessian matrix is

∂2L(ψ0)

∂θ∂θ′
= − 1

σ2
ε

X̃′Ω−1
0 X̃

∂2L(ψ0)

∂θ∂σ2
ε

= − 1

σ4
ε

X̃′Ω−1
0 η

∂2L(ψ0)

∂θ∂σκ
= − 1

σ2
ε

X̃′Ω−1
0 ΣκΩ

−1
0 η

∂2L(ψ0)

∂θ∂λ
= − 1

σ2
ε

X̃′Ω−1
0 WY,

while the second row of the Hessian matrix is

∂2L(ψ0)

∂σ2
ε∂σ

2
ε

=
nT

2σ4
ε

− 1

σ6
ε

η′Ω−1
0 η

∂2L(ψ0)

∂σ2
ε∂λ

= − 1

σ4
ε

Y′W′Ω−1
0 η

∂2L(ψ0)

∂σ2
ε∂σκ

= − 1

2σ4
ε

η′Ω−1
0 ΣκΩ

−1
0 η

and the third row of the Hessian matrix is

∂2L(ψ0)

∂λ∂λ
= −tr

((
S−1

0 W
)2
)
−Y′W′Ω−1

0 WY

∂2L(ψ0)

∂λ∂σκ
= − 1

σ2
ε

Y′W′Ω−1
0 ΣκΩ

−1
0 η

∂2L(ψ0)

∂σκ∂σκ
=

1

2
tr
[(

Ω−1
0 Σκ

)2
]
− 1

σ2
ε

η′
(
Ω−1

0 Σκ

)2
Ω−1

0 η

∂2L(ψ0)

∂σκ∂σ%
=

1

2
tr
(
Ω−1

0 ΣκΩ
−1
0 Σ%

)
− 1

2σ2
ε

η′Ω−1
0

[
ΣκΩ

−1
0 Σ% + Σ%Ω

−1
0 Σκ

]
Ω−1

0 η,

with κ 6= % and % = 1, 2, 3.
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Chapter 4

Growth, heterogeneous technological

interdependence, and spatial

externalities: Theory and Evidence
1

4.1 Introduction

Historically, the empirical economic growth literature consisted mostly of “aspatial empirical
analyses that have ignored the influence of spatial location on the process of growth"
(De Long and Summers, 1991; Fingleton and López-Bazo, 2006, p. 178). In the last two
decades, however, a number of studies seek to incorporate “spatial effects" in the standard
(i.e., non-spatial) economic growth models. In particular, the idea that the spatial location
of an economy may drive its economic growth has been developed using models of absolute
location, which account for the location of one economy in the geographical space, and
models of relative location, which account for the location of one economy with respect to
the others. Econometrically, these two types of models are closely related to the concepts of
spatial heterogeneity and spatial dependence (Abreu et al., 2005).

Although spatial heterogeneity is usually associated with parameter heterogeneity (see
e.g. Ertur and Koch, 2007; Basile, 2008), the most common approach in the literature is to
allow for unobserved differences using panel data (Islam, 1995; Elhorst et al., 2010). Also,
knowledge spillovers are the main mechanism employed to incorporate interactions between
economies into the Solow-Swan neoclassical growth model (López-Bazo et al., 2004; Egger
and Pfaffermayr, 2006; Pfaffermayr, 2009, 2012). It is interesting to note, however, that these
two streams of the literature have developed rather separately. Notable exceptions include
Elhorst et al. (2010), who consider the extension of the model proposed by Ertur and Koch

1This chapter is co-authored with Miguel Manjón-Antolín and Oscar Martínez-Ibáñez.

99

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



Chapter 4. Growth, heterogeneous technological interdependence, and spatial externalities: Theory and
Evidence

(2007) to panel data; Ho et al. (2013), who consider an ad-hoc extension of the model
proposed by Mankiw et al. (1992) that includes a spatial autoregressive term and a spatial
time lag term; and Yu and Lee (2012), who, using a simplified version of the technology
assumed by Ertur and Koch (2007), derive a growth model with spatial externalities based
on the model of Mankiw et al. (1992). This paper aims to contribute to this limited literature
by considering a growth model with spatial heterogeneity and spatial externalities that nests
the models introduced by Islam (1995), López-Bazo et al. (2004) and Ertur and Koch (2007).

To be precise, we present a growth model with interdependencies in the (heterogeneous)
technological progress, physical capital and stock of knowledge.2 The basic framework is
similar to that of Ertur and Koch (2007), but we consider additional sources of externalities
across economies. While they assume that the technological progress depends on the own
stock of physical capital and the stock of knowledge of the other economies, we also consider
the role of both the physical capital (López-Bazo et al., 2004; Egger and Pfaffermayr, 2006)
and the (unobserved) initial level of technology (De Long and Summers, 1991; LeSage and
Fischer, 2012) of the other economies. Moreover, we do not assume a common exogenous
technological progress but account for heterogeneity in the initial level of technology, which
here is interpreted as a proxy for total factor productivity (Islam, 1995).

Having presented our model, we then derive the steady-state equation and a growth-
initial equation that can be taken to the data. This is where the generality of our model
comes at a cost, since not all the parameters of interest are identified (a limitation that
also arises in the benchmark model of Ertur and Koch 2007). To be precise, the model
contains a set of theoretical constraints that, if valid, allows us to identify most of the
implied parameters (in contrast, the constrained version of Ertur and Koch’s (2007), which
is derived from a subset of our constraints, is fully identified). This means that, provided
that the constrained model is valid, finding evidence of global technological interdependence
between the economies would lead us to reject the models of Islam (1995) and López-Bazo
et al. (2004), whereas, if no such evidence was found, we would reject the model of Ertur and
Koch (2007). In any case, finding evidence of heterogeneity in the initial level of technology
would support our model against these alternatives.

Ultimately, the identification problem arises because, even in the constrained model,
we cannot separate: i) the (direct) effect that, as an input of the production function,
the stock of physical capital has on the output from the (indirect) effect that it has as
a driver of the technology; and ii) the local) effect that the stock of physical capital of
the neighbouring economies has on the technology and, subsequently, the output from the

2It is worth noting that the model can easily be extended to incorporate the role of human capital
(López-Bazo et al., 2004; Fingleton and López-Bazo, 2006). We leave this issue for future research.
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(global) effect that, due to the presence of technological interdependencies, the stock of
physical capital of the neighbouring economies has on the output.3 Still, we argue that simple
changes in the unconstrained model specification (e.g., introducing the stock of physical
capital lagged one period in the technological progress, rather than using its current value)
and/or additional restrictions on the parameters of the constrained model (e.g., the equality
of the effects that the stock of physical capital has on the output as a production input
and as a technology input) may address this limitation. To illustrate our argument, we
consider imposing the additional constraint(s) that the remaining unidentified technological
parameters are consistent with the model of López-Bazo et al. (2004) and/or that of Ertur
and Koch (2007).

The econometric specification of the resulting growth-initial equation corresponds to the
spatial Durbin dynamic panel model (see also Elhorst et al., 2010; Yu and Lee, 2012; Ho
et al., 2013), but with spatially weighted individual-specific effects. Thus, given the obvious
interest in distinguishing the individual effects from their spatial spillovers, we resort to a
correlated random effects specification (Miranda et al., 2017a,b). In particular, we estimate
our growth-initial equation by Quasi-Maximum Likelihood (see also Lee and Yu, 2016) using
EU-NUTS2 regional data from Cambridge Econometrics. We use regional data because, as
López-Bazo et al. (2004, p. 43) argue, once it is taken on board that “[e]conomies interact
with each other (...), linkages are [likely] to be stronger [between close-by regions] than across
heterogeneous countries". We provide results for both the constrained and unconstrained
versions of our model.

We find evidence of technological interdependence in the output per capita of the EU
regions, that is, a positive and significant impact of the level of technology of the neighbouring
regions. However, there is also evidence of “unobserved" technological interdependence in the
EU regions (i.e., local spatial contagion of the “unobserved productivity"), which supports
our assumed technology. Also, the constrained model specification produces estimates of
the implied parameters that statistically reject the models of Islam (1995) and López-Bazo
et al. (2004). Lastly, results from our identification strategy do not support the role that
López-Bazo et al. (2004) and Ertur and Koch (2007) assume capital plays in shaping the
technological progress.

The rest of the paper is organised as follows. In Section 4.2 we present the model.4 In

3Anselin (2003, p. 154) is generally credited for “distinguishing between a global and a local range of
dependence and the way in which this translates into the incorporation in a regression specification of
spatially lagged dependent variables (Wy) [and] spatially lagged explanatory variables (WX)".

4To facilitate the reading, we moved the derivation of some results (the balanced growth rate, a Taylor
approximation to the marginal productivity of capital, the speed of convergence, and the solution to the
steady state differential equation) to the appendix.
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Section 4.3 we discuss the data and the estimation results. Section 4.4 concludes.

4.2 The Model

4.2.1 Technological interdependencies in growth

Our starting point is the Solow growth model originally proposed by Mankiw et al. (1992)
using cross-section data and extended later by Islam (1995) to panel data (see also Barro and
Sala-i-Martin, 2003). Let us then consider a Cobb-Douglas production function for region
i = 1, . . . , N in time t = 1, . . . , T :

Yit = AitK
α
itL

1−α
it , (4.2.1)

where Yit denotes output, Kit physical capital (α is thus the capital share or output elasticity
parameter), Lit labour, and Ait technology. All the variales are in levels and there are
constant returns to scale in production. Also, while output, capital and labour are typically
assumed to be observable, technology is assumed to be (partially) unobservable. Mankiw
et al. (1992), for example, assume that lnA = a+ ε, where a is a constant term and ε is the
standard i.i.d error.

For the purposes of this paper, a major feature of this model is that technology is
assumed to grow exogenously and at the same rate in all regions. This rules out the
existence of knowledge spillovers arising from technological interdependence between the
regional economies. However, accounting for technological interdependence and knowledge
spillovers is critical when analysing how “the relative location of an economy affects economic
growth" (Elhorst et al., 2010, p. 338). In the literature, depending on whether knowledge
spillovers turn out to be “local" or “global" (Anselin, 2003), we find two main approaches to
the introduction of spatial externalities in the Solow growth model.

On the one hand, López-Bazo et al. (2004) and Egger and Pfaffermayr (2006) consider
growth models where the knowledge spillovers are local in nature, in the sense that they
are limited to the neighbouring regions (at least initially).5 To be precise, in López-Bazo
et al. (2004) technology is assumed to depend on both the physical and human capital
of the neighbouring regions, whereas in Egger and Pfaffermayr (2006) is assumed to grow
exogenously and at the same rate in all regions (as in Mankiw et al. 1992 and Islam 1995),
so that the externalities arise from the assumption that total factor productivity depends

5See also Fingleton and López-Bazo (2006), Pfaffermayr (2009) and Pfaffermayr (2012).
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on the capital-labour ratio of the region and the spatially weighted capital-labour of the
other regions. Ertur and Koch (2007), on the other hand, assume that the technological
progress of an economy depends on the stock of physical capital per worker in that economy
as well as the stock of knowledge of the other economies. More specifically, they assume
that the technology of an economy is a geometrically weighted average of the technology of
the other economies, thus making knowledge spillovers to spread over all the regions (and
hence become “global"). However, it is still assumed that “some proportion of technological
progress is exogenous and identical in all countries" [p. 1036].

In this paper, we extend the model of Ertur and Koch (2007) by introducing spatial
dependence in the stock of capital, as well as heterogeneity and spatial dependence in
the exogenous technological progress (while holding the assumption that the technological
progress of an economy depends on the stock of knowledge of the other economies). In
this vein, our assumed technology combines the alternative sources of spatial externalities
considered in models of relative location with the unobserved heterogeneity that characterises
the models of absolute location (Abreu et al., 2005). In particular, our model shares with
that of Ertur and Koch (2007) the main source of parameter heterogeneity. Namely, the
speed of convergence to the steady state, as discussed below. Yet we eventually estimate a
constrained version in which the speed of convergence is identical for all economies (Elhorst
et al., 2010; Yu and Lee, 2012). To be precise, the estimated econometric specification
corresponds to a variant of the spatial Durbin dynamic panel model recently considered by
Lee and Yu (2016) that includes not only individual-specific effects but also their spatial
spillovers (Miranda et al., 2017a).6

Next we derive our empirical specification, which adopts the form of a growth-initial
equation. To a large extent, our approach follows the steps of Ertur and Koch (2007). Thus,
we first discuss and motivate the assumed technology, then we obtain the output per worker
equation at the steady state, and finally the growth-initial equation.

6As Basile (2008, p. 532-533) points out, “the local Spatial Durbin Model (...) proposed by Ertur and
Koch (2007) is a general and flexible specification, since it allows identification of both spatial-interaction
effects and parameter heterogeneity (...). In essence, this is the model considered here. The global Spatial
Durbin Model (...) represents a less general specification, because it imposes the restriction of parameter
homogeneity". In essence, this is the model we estimate. Lastly, “[t]he model proposed by López-Bazo
et al. (2004) (..) imposes a further restriction on the parameters since the spatial lags of the structural
characteristics of the regions are not included" (this also applies to the model proposed by Egger and
Pfaffermayr 2006). In essence, this model is nested in ours.
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4.2.2 Technology

Let us denote by Ωit the exogenous technological progress and by kit =
Kit

Lit
the level of

physical capital per worker (of region i in period t). Ertur and Koch (2007, p. 1036) assume
that the technology of region i in period t is given by

Ait = Ωitk
φ
it

N∏
j 6=i

A
γwij
jt , (4.2.2)

where “[t]he parameter φ describes the strength of home externalities generated by physical
capital accumulation" and “the degree of [regional] technological interdependence generated
by the level of spatial externalities is described by γ". Notice that the spatial relation between
region i and its neighbouring regions is represented by a set of spatial weights or “exogenous
friction terms" wij, with j = 1, . . . , N , that are assumed to satisfy the following properties:
wij = 0 if i = j, 0 ≤ wij ≤ 1, and

∑
j

wij = 1. Lastly, Ertur and Koch (2007) assume that

Ωit = Ωt = Ω0 exp(µt), where µ is the constant rate of growth of the exogenous technological

progress. Therefore, the technology eventually assumed is Ait = Ω0 exp(µt)kφit

N∏
j 6=i

A
γwij
jt .

However, as previously pointed out, there are alternative approaches to the inclusion
of knowledge spillovers in the Solow model. In a series of papers, López-Bazo et al.
(2004, p. 46), Egger and Pfaffermayr (2006), Fingleton and López-Bazo (2006) and
Pfaffermayr (2009, 2012) argue that the physical (and human) capital may be an alternative
source of externalities, “[t]he reasoning behind such spillovers [being] basically the diffusion
of technology from other regions caused by investments in physical (...) capital". In
mathematical terms, such a technology may adopt the following functional form:

Ait = Ω0 exp(µt)
N∏
j 6=i

k
γwij
jt , (4.2.3)

where, for the sake of comparability, we have used the same notation as in 4.2.2. However,
the interpretation of the parameter γ is different here, for it now “measures the [strength
of the] externality across economies" originated from variations in physical capital (López-
Bazo et al., 2004; Fingleton and López-Bazo, 2006, p. 46). It is also important to stress that
these papers maintain the assumption of an homogeneous exogenous technological progress
growing at a constant rate, i.e., Ωit = Ω0 exp(µt).

Our assumed technology features those displayed in 4.2.2 and 4.2.3. However, we depart
from these studies in the assumptions they made with respect to the exogenous technological
progress. First, they assume that it is homogeneous across regions. However, as Mankiw et al.
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(1992, p. 6) point out, the Ω0 “term reflects not just technology but resource endowments,
climate, institutions, and so on; it may therefore differ across countries". In line with
this argument, we introduce regions’ heterogeneity into the definition of the exogenous
technological progress by assuming that Ωit = Ωi0 exp(µt).7

Second, as Islam (1995, p. 1149) points out, Ωi0 “is an important source of parametric
difference in the aggregate production function across [regions]". Econometrically, it can be
interpreted as an individual-specific effect (possibly correlated with some of the covariates
in the initial-growth specification eventually derived). Economically, it is “a measure of
efficiency with which the [regions] are transforming their capital and labor resources into
output and hence is very close to the conventional concept of total factor productivity" [p.
1155-1156]. These arguments are behind the second twist we introduce with respect to the
models of López-Bazo et al. (2004), Ertur and Koch (2007) and others, since it opens the
door to considering productivity spillovers as an additional source of spatial externalities
(LeSage and Fischer, 2012; Miranda et al., 2017b). As De Long and Summers (1991, p. 487)
point out, “it is difficult to believe that Belgian and Dutch or US and Canadian economic
growth would ever significantly diverge, or that substantial productivity gaps would appear
within Scandinavia".

All in all, a production technology that may account for these alternative sources of
spatial dependence is the following:

Ait = Ωit

N∏
j 6=i

Ω
γ1wij
jt kφit

N∏
j 6=i

k
γ2wij
jt

N∏
j 6=i

A
γ3wij
jt (4.2.4)

with Ωit = Ωi0 exp(µt) and Ωi0 non-observable (which is why Ωit does not have a coefficient
in 4.2.4). Notice that γ3 and γ2 play the same role as γ in 4.2.2 and 4.2.3, respectively,
whereas γ1 can be interpreted as the degree of technological interdependence generated from
the (unobserved) productivity spillovers. In particular, γ1 = φ = γ2 = γ3 = 0 would lead us
to the model proposed by Islam (1995), γ1 = φ = γ3 = 0 (with γ2 6= 0) to the model proposed
by López-Bazo et al. (2004), and γ1 = γ2 = 0 (with φ 6= 0 and γ3 6= 0) to the model proposed
by Ertur and Koch (2007). Notice also that, in contrast to the local contagion models of
López-Bazo et al. (2004) and Egger and Pfaffermayr (2006), both ours and that of Ertur
and Koch (2007) are models of global contagion (Anselin, 2003). We differ, however, in that
whereas in their case there are no (global) spatial externalities in the stock of knowledge
unless γ3 6= 0, there still are here if either γ1 6= 0 or γ2 6= 0 (albeit of a local nature). This

7Alternative ways of modelling the exogenous technological progress are Ωit = Ω0 exp(µit) and Ωit =
Ωi0 exp(µit). However, these proposals would considerably increase the number of parameters of the model
(by more than N , since it can be shown that the balanced growth rate becomes heterogeneous too) and
make identification difficult, if not impossible (Lee and Yu, 2016).
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is because our model accounts for both global and local contagion. Lastly, it is interesting
to note that there are no capital externalities in our model if φ = γ2 = 0 (neither global
nor local). This is because our model accounts for both the role of the own physical capital
(Ertur and Koch, 2007) and that of the other economies (López-Bazo et al., 2004) in the
technological progress.

4.2.3 The production function

In order to obtain the explicit form of the Cobb-Douglas production function in 4.2.1 given
our assumed technology, let us consider 4.2.4 expressed in logs and matrix form:

A = Ω + γ1WΩ + φk + γ2Wk + γ3WA

= (I − γ3W )−1Ω + γ1(I − γ3W )−1WΩ + φ(I − γ3W )−1k + γ2(I − γ3W )−1Wk (4.2.5)

where the parameters γ1, γ2 and γ3 have been previously described (in particular, it is now
assumed that 1/γ3 is not an eigenvalue of W when γ3 6= 0), A is the N×1 vector of logarithms
of the technology, I is the N × N identity matrix, Ω = Ω0 + ιNµt is the N × 1 vector of
logarithms of the exogenous technological progress with Ω0 = (ln Ω10, . . . , ln ΩN0)′ and ιN

being a N ×1 vector of ones, k is the N ×1 vector of of logarithms of the capital per worker,
and W is the N × N spatial weight matrix that describes the spatial arrangement of the
regions.

Le us now denote by w(r)
ij the row i and column j element of matrix W r. Notice that,

since W is assumed to be row-normalized, if all the eigenvalues of W lie in the interval

(−1, 1) and |γ3|< 1, then (I − γ3W )−1 =
∞∑
r=0

γr3W
r. Thus,

lnAit =
N∑
j=1

∞∑
r=0

γr3w
(r)
ij ln Ωjt + γ1

N∑
j=1

∞∑
r=0

γr3w
(r+1)
ij ln Ωjt + φ

N∑
j=1

∞∑
r=0

γr3w
(r)
ij ln kjt

+ γ2

N∑
j=1

∞∑
r=0

γr3w
(r+1)
ij ln kjt

=
N∑
j=1

ln Ω

∞∑
r=0

γr3w
(r)
ij

jt +
N∑
j=1

ln Ω

γ1
γ3

∞∑
r=1

γr3w
(r)
ij

jt +
N∑
j=1

ln k
φ
∞∑
r=0

γr3w
(r)
ij

jt +
N∑
j=1

ln k

γ2
γ3

∞∑
r=1

γr3w
(r)
ij

jt ,
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so that we may rewrite 4.2.5 as

Ait =
N∏
j=1

Ω

∞∑
r=0

γr3w
(r)
ij

jt

N∏
j=1

Ω

γ1
γ3

∞∑
r=1

γr3w
(r)
ij

jt

N∏
j=1

k
φ
∞∑
r=0

γr3w
(r)
ij

jt

N∏
j=1

k

γ2
γ3

∞∑
r=1

γr3w
(r)
ij

jt

= Ω
1+
(
γ3+γ1
γ3

) ∞∑
r=1

γr3w
(r)
ii

it

N∏
j 6=i

Ω

(
γ3+γ1
γ3

)∑∞
r=1 γ

r
3w

(r)
ij

jt k
φ+
(
φγ3+γ2
γ3

)∑∞
r=1 γ

r
3w

(r)
ii

it

N∏
j 6=i

k

(
φγ3+γ2
γ3

)∑∞
r=1 γ

r
3w

(r)
ij

jt

by using
N∏
j=1

Ω
w

(0)
ij

jt = Ωit and
N∏
j=1

k
φw

(0)
ij

jt = kφit.

Also, let us now define uii = α + φ +

(
φγ3 + γ2

γ3

) ∞∑
r=1

γr3w
(r)
ii and uij =(

φγ3 + γ2

γ3

) ∞∑
r=1

γr3w
(r)
ij , with uii +

N∑
j 6=i

uij =
N∑
j=1

uij = α + φ +
φγ3 + γ2

1− γ3

= α +
φ+ γ2

1− γ3

.

Then, given that yit = Aitk
α
it,

yit = Ω
1+
(

(γ3+γ1)(uii−α−φ)

(φγ3+γ2)

)
it

N∏
j 6=i

Ω
(γ3+γ1)uij
φγ3+γ2

jt kuiiit

N∏
j 6=i

k
uij
jt (4.2.6)

Notice that “this model implies spatial heterogeneity in the parameters of the production
function", a feature shared with that of Ertur and Koch (2007, p. 1037). We differ, however,
in that it is no longer the case that “if there are no physical capital externalities, i.e., φ = 0,
we have uii = α and uij = 0, (...) then the production function is written in the usual form"
(as in e.g. Mankiw et al. 1992 and Islam 1995). As previously pointed out, here we further
require that γ1 = γ2 = γ3 = 0. Put it differently, there are no physical capital externalities
in the model of Ertur and Koch (2007) if φ = 0, regardless of γ3. In our model, however, we
further require that γ2 = 0. That is, there are capital externalities to the extent that γ3 6= 0

and either φ 6= 0 or γ2 6= 0. This is because, following López-Bazo et al. (2004), we account
for the local role of the capital in the technology through the parameter γ2.

4.2.4 The Steady State equation

To derive the equation describing the output per worker of region i at the steady state,
we proceed in the following way. First we rewrite the production function in matrix form,
y = A+ αk, and substitute the technology by its expression in 4.2.5. We then pre-multiply
both sides of the resulting equation by I − γ3W to obtain

y = Ω + γ1WΩ + (α + φ)k + (γ2 − αγ3)Wk + γ3Wy (4.2.7)
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Lastly, we replace in 4.2.7 the log of the capital per worker in region i by its log value at the
steady state, ln k∗it. To this end, we start by noting that the evolution of capital is governed
by the following dynamic equation:

·
kit = siyit − (ni + δ)kit (4.2.8)

where the dot over a variable denotes its derivative with respect to time, si is the fraction
of output saved, ni is the growth rate of labour, and δ is the annual rate of depreciation of
capital (common to all regions). Given that production shows decreasing returns to scale,
equation 4.2.8 implies that the capital-output ratio is constant and converges to a balanced

growth rate g defined by
·
kit
kit

=
·

ln yit =
·

ln kit = g =
µ (1 + γ1)

(1− γ3)(1− α)− φ− γ2

(see appendix

4.5). Also, it can be shown that, given a balanced growth rate g and 4.2.8 (see e.g. Barro

and Sala-i-Martin, 2003),
k∗it
y∗it

=
si

ni + δ + g
and ln k∗it = ln y∗it + ln

(
si

ni + δ + g

)
.8

What is thus left is to introduce in 4.2.7 (rewritten for economy i rather than in matrix
form) the expression obtained for the log of the capital per worker in region i at the steady
state. In doing so, we obtain the equation describing the output per worker of region i at
the steady state:

ln y∗it =
ln Ωit

1− α− φ
+

γ1

1− α− φ

N∑
j=1

wij ln Ωjt +
α + φ

1− α− φ
ln

(
si

ni + δ + g

)

+
γ2 − αγ3

1− α− φ

N∑
j=1

wij

(
sj

nj + δ + g

)
+

(1− α)γ3 + γ2

1− α− φ

N∑
j=1

wij ln y∗jt

(4.2.9)

Notice that this equation differs from that obtained by Ertur and Koch (2007) in two main
features, reflecting ultimately differences in the assumed technology. First, the heterogeneous
exogenous technological progress, since Ωit is assumed to be Ωt in Ertur and Koch (2007) and,
consequently, no exogenous technological interdependences are considered. In particular, the

term
γ1

(1− α− φ)

N∑
j=1

wij ln Ωjt is missing in their steady state equation. Second, the relation

between the output per worker of an economy at the steady state and that of its neighbours,

8It is also interesting to note that, if we compute the marginal productivity of capi-

tal,
·
kit
kit

= si
yit
kit
− (ni + δ), using the expression defining yit in 4.2.6, we obtain

·
kit
kit

=

siΩ
1+
(

(γ3+γ1)(uii−α−φ)
(φγ3+γ2)

)
it

N∏
j 6=i

Ω
(γ3+γ1)uij
φγ3+γ2

jt kuii−1
it

N∏
j 6=i

k
uij
jt − (ni + g). Therefore, provided that α +

φ+ γ2

1− γ3
< 1,

there are diminishing returns to the capital, as in the model of Ertur and Koch (2007).
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(1− α)γ3 + γ2

1− α− φ

N∑
j=1

wij ln y∗jt. Whereas in the model of Ertur and Koch (2007) there is no

global contagion in the output unless γ3 6= 0 (provided of course that α 6= 1), here we
may still have such contagion to the extent that γ2 6= 0 (as in López-Bazo et al. 2004),
even if γ3 = 0. More generally, these features of our model are also absent in the above
mentioned growth studies (López-Bazo et al., 2004; Egger and Pfaffermayr, 2006; Fingleton
and López-Bazo, 2006; Pfaffermayr, 2009, 2012).

4.2.5 The growth-initial equation

In the standard, non-spatial growth models (see e.g. Barro and Sala-i-Martin, 2003), the
analog of equation 4.2.9 gives an expression for the output per worker in the steady state
that does not depend on the output per worker in the steady state of the other economies

(i.e., the term
(1− α)γ3 + γ2

1− α− φ

N∑
j=1

wij ln y∗jt is missing). Thus, a log-linear approximation to

the dynamics around the steady state using a Taylor expansion produces a growth-initial
regression equation that can be estimated using the appropriate method. In our case,
however, this approach would produce a rather complex system of first-order differential
linear equations whose solution is not directly estimable due to the presence of variables at
the steady state (Egger and Pfaffermayr, 2006, for example, approximate them using a set
of exogenous variables). In particular, a log linearisation of the marginal productivity of

capital,
·
kit
kit

, around the steady state yields (see appendix 4.6)

·
kit
kit

= g + (uii − 1)(ni + δ + g) (ln kit − ln k∗it) +
N∑
j 6=i

uij(ni + δ + g)
(
ln kjt − ln k∗jt

)
(4.2.10)

Notice that this result coincides with the one obtained by Ertur and Koch (2007).

To tackle this issue, Ertur and Koch (2007) hypothesise that the differences between the
observed and the steady state values of the capital and output per worker across regions
correspond to the following expressions:

ln yit − ln y∗it = Θj

(
ln yjt − ln y∗jt

)
ln kit − ln k∗it = Φj

(
ln kjt − ln k∗jt

) (4.2.11)

This yields the following speed of convergence (see appendix 4.7):

d ln yit
dt

= g − λi (ln yit − ln y∗it) (4.2.12)
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with

λi =

∑N
j=1 uij

1
Φj

(nj + g + δ)∑N
j=1 uij

1
Φj

−
N∑
j=1

uij(nj + δ + g)
1

Θj

(4.2.13)

Solving the differential equation in 4.2.12 for ln yit (see appendix 4.8) and evaluating the
solution at t = t2:

ln yit2 = g
(
t2 − t1e−λiτ

)
− e−λiτ ln yit1 + (1− e−λiτ ) ln y∗i0 (4.2.14)

with τ = t2 − t1. In particular, under the assumption that the speed of convergence is
homogeneous across regions (λi = λ for i = 1, · · · , N):

ln yit2 = g
(
t2 − t1e−λτ

)
+ e−λτ ln yit1 + (1− e−λτ ) ln y∗i0 (4.2.15)

At this point it is convenient to write the previous expression in matrix form:

y(t2) = g
(
t2 − t1e−λτ

)
ιN + e−λτy(t1) +

(
1− e−λτ

)
y∗(0) (4.2.16)

where y(t2) is a N × 1 vector containing the log of the outcome per worker at t2, ιN is a
N × 1 vector of ones, y(t1) is a N × 1 vector containing the log of the outcome per worker
at t1, and y∗(0) is a N × 1 vector containing the log of the initial level of output per worker
at the steady state. The reason for this is that facilitates replacing y∗(0) by 4.2.9 at t = 0,
which, in matrix form, is:

y∗(0) = (I − ρW )−1

[
1

1− α− φ
Ω(0) +

γ1

1− α− φ
WΩ(0) +

α + φ

1− α− φ
S +

γ2 − αγ3

1− α− φ
WS

]
(4.2.17)

where ρ =
(1− α)γ3 + γ2

1− α− φ
(it is assumed that 1/ρ is not an eigenvalue of W when ρ 6= 0)

and S =

{
ln

(
si

ni + δ + g

)}
i=1,...,N

.

Thus, we introduce 4.2.17 in 4.2.16 and pre-multiply both sides of the resulting equation
by I − ρW to obtain:

y(t2) = g(1− ρ)
(
t2 − t1e−λτ

)
ιN + e−λτ (I − ρW ) y(t1) + ρWy(t2)

+
(
1− e−λτ

) [ 1

1− α− φ
Ω(0) +

γ1

1− α− φ
WΩ(0) +

α + φ

1− α− φ
S +

γ2 − αγ3

1− α− φ
WS

]
(4.2.18)
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Alternatively, we can rewrite this equation for country i as

ln yit2 = e−λτ ln yit1 − ρe−λτ
N∑
j=1

wij ln yjt1 + ρ

N∑
j=1

wij ln yjt2

+

(
1− e−λτ

)
(α + φ)

1− α− φ
ln si −

(
1− e−λτ

)
(α + φ)

1− α− φ
ln(ni + δ + g)

+

(
1− e−λτ

)
(γ2 − αγ3)

1− α− φ

N∑
j=1

wij ln sj −
(
1− e−λτ

)
(γ2 − αγ3)

1− α− φ

N∑
j=1

wij ln(nj + δ + g)

+

((
1− e−λτ

)
1− α− φ

ln Ωi0

)
+

((
1− e−λτ

)
γ1

1− α− φ

N∑
j=1

wij ln Ωj0

)
+ g(1− ρ)

(
t2 − t1e−λτ

)
(4.2.19)

4.3 Empirical results

4.3.1 Model specification and identification strategies

To derive our econometric specification, notice that equation 4.2.19 (plus an i.i.d. shock ε)
corresponds to the spatial Durbin dynamic panel model with individual-specific effects and
their spatial spillovers:

zit = γ1zi,t−1 + γ2

N∑
j=1

wijzj,t−1 + ρ
N∑
j=1

wijzjt + β1x1it + β2x2it + θ1

N∑
j=1

wijx1jt + θ2

N∑
j=1

wijx2jt

+ µi +
N∑
j=1

wijαj + ft + εit (4.3.1)

where zit = ln yit2 , zi,t−1 = ln yit1 , x1it = ln sit, x2it = ln(nit + δ + g), γ1 = e−λτ , γ2 =

−ρe−λτ , β1 =

(
1− e−λτ

)
(α + φ)

1− α− φ
, β2 = −

(
1− e−λτ

)
(α + φ)

1− α− φ
, θ1 =

(
1− e−λτ

)
(γ2 − αγ3)

1− α− φ
,

θ2 = −
(
1− e−λτ

)
(γ2 − αγ3)

1− α− φ
, µi =

(
1− e−λτ

)
1− α− φ

ln Ωi0, αi =

(
1− e−λτ

)
γ1

1− α− φ
ln Ωi0 and ft =

g(1− ρ)
(
t2 − t1e−λτ

)
.

This means that equation 4.3.1 corresponds to the model specification discussed by Lee
and Yu (2016), except that their model does not distinguishes the spatial counterparts

of the individual effects (
N∑
j=1

wijαj). In other words, their individual effects correspond

to µi +
N∑
j=1

wijαj in 4.3.1. In fact, in our model the individual effects and their spatial
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counterparts are proportional (by a rate γ1). This is therefore a particular case of the more
general specification proposed by Miranda et al. (2017a).

To distinguish the individual effects from their spatial spillovers, we assume a correlated
random effects specification for the individual effects (µi) and their spatial spillovers (αi).
This means making use of the following correlation functions (Mundlak, 1978; Chamberlain,
1982):

µi = πµ1

(
1

T

T∑
t=1

x1it

)
+ πµ2

(
1

T

T∑
t=1

x2it

)
+ υµi

αi = πα1

(
1

T

T∑
t=1

x1it

)
+ πα2

(
1

T

T∑
t=1

x2it

)
+ υαi,

(4.3.2)

where πµ1 , πµ2 , πα1 and πα2 are the parameters associated with the period-means of the
regressors, and υµi and υαi are random error terms with E(υµi) = 0 = E(υαi), V ar(υµi) = σ2

µ,
V ar(υαi) = σ2

α and Cov(υµi, υαi) = σµα.

The last thing to notice about our econometric specification is that the implied
parameters (α, φ and γ2, on the one hand; γ1, λ, γ3, and ln Ωi0, on the other) are not
identified. In particular, we cannot obtain a single estimate of γ1 (since this can be obtained
from each (αi, µi) pair, but also from either πµ1 and πα1 or πµ2 and πα2), λ (since this can be
obtained from γ1, but also from γ2 and ρ), γ3 (since this requires ρ, γ1, either β1 or β2, and
either θ1 or θ2, respectively) and ln Ωi0 (since this requires either µi, γ1 and either β1 or β2,
or αi, γ1, γ1 and either β1 or β2) because in principle these parameters are overidentified.
However, it is easy to see that equations 4.3.1 and 4.3.2 three sets of constraints on the
parameters: i) β1 = −β2 and θ1 = −θ2 (arising from the assumption that the production
function is homogeneous of degree one, thus making the output per capita to depend only on
the stock of physical capital); ii) γ2 = −ργ1 (arising from the assumed spatial-time dynamics
of the technology); and iii) αi = γ1µi (i.e., πα = γ1πµ, σ2

α = γ2
1σ

2
µ and σµ,α = γ1σ

2
µ, which

arise from the assumed spatial contagion in the heterogeneous exogenous technology and
unobserved productivity).9 By imposing these six constraints on 4.3.1 and 4.3.2 (i.e., the
“unconstrained model"), we obtain a constrained version of our model in which γ1, λ, γ3,
and ln Ωi0 are identified.

9While i) also arises in the model of Ertur and Koch (2007), ii) and iii) are specific to our model
specification. In this respect, notice that Elhorst et al. (2010, p. 343) also consider the constraint γ2 = −ργ1.
However, while in our case it arises directly from the derivation of our model specification, they argue that
this “constraint is unnecessarily restrictive because no theoretical or empirical reason exists to impose it".
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To this end, we start by replacing 4.3.2 into 4.3.1, which in matrix form yields:

Zt = γ1Zt−1 + γ2WZt−1 + ρWZt +Xtβ +WtXθ +XΠµ +WXΠα + ft + ηt (4.3.3)

where Xt =
(
x1t x2t

)
, X denote period-means of Xt, β = (β1, β2)′, θ = (θ1, θ2)′,

Πµ = (πµ1 , πµ2)′, Πα = (πα1 , πα2)′, and the error term is ηt = υµ +Wυα + εt, with variance-
covariance matrix given by JT ⊗ (σ2

µI + σµα(W +W ′) + σ2
αWW ′) + σ2

εINT , JT being a T ×T
matrix of ones and INT being the NT × NT identity matrix. This is the unconstrained
version of our econometric model.

Let us now define S1 = I − ρW , S2 = I + γ1W and X∗it = ln

(
sit

nit + δ + g

)
= ln (Sit).

Then, the constrained model is given by

S1Zt = γc1S1Zt−1 + βcX∗ + θcWX∗ + S2XΠc
µ + ft + ηct (4.3.4)

with γ2 = −ργc1, β1 = −β2 = βc, θ2 = −θ1 = θc and Πα = γ1Πc
µ and ηct = εt + S2υµ,

with variance-covariance matrix given by JT ⊗ (σ2
µS2S

′
2) +σ2

εINT . Notice that, in contrast to
4.3.3, the estimation of the constrained version of our econometric model in 4.3.4 (see e.g.
Lee and Yu, 2016; Miranda et al., 2017a) allows us to obtain an estimate of: i) the degree of
technological interdependence between the unobserved productivity, γ1 (directly from S2);
ii) the speed of convergence, λ (from γc1); iii) the degree of technological interdependence
between the economies, γ3 (from γc1, β

c and θc); and iv) the unobserved productivity, ln Ωi0

(from µi, βc and γc1). In particular, obtaining a statistically significant estimate of γ1 should
be interpreted as supportive evidence for our model. Also, obtaining a statistically significant
estimate of γ3 would lead us to reject the models of Islam (1995) and López-Bazo et al. (2004).

The problem, of course, is that we still cannot identify α, φ and γ2 (only α + φ and
γ2 − αγ3), although in this case it is because these parameters are under-identified. Since
both the own stock of physical capital and that of the neighbouring economies are arguments
of the technology, we cannot separate the effect that, as an input of the production function,
the stock of physical capital has on the output (i.e., α) from the effect that it has as a
driver of the technology (i.e., φ). Neither can we separate the local effect that the stock of
physical capital of the neighbouring economies has on the technology and, subsequently, the
output (i.e., γ2), from the global effect that the stock of physical capital of the neighbouring
economies has on the technology and, subsequently, the output (i.e., αγ3). Still, there are
ways to circumvent this identification problem.

One way is to modify the specification of the model. There are no identification
problems, for example, if we are willing to assume that the stock of physical capital enters
the technological progress lagged one period. That is, if we are willing to assume that

113

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



Chapter 4. Growth, heterogeneous technological interdependence, and spatial externalities: Theory and
Evidence

Ait = Ωit

N∏
j 6=i

Ω
γ1wij
jt kφit−1

N∏
j 6=i

k
γ2wij
jt−1

N∏
j 6=i

A
γ3wij
jt (see, in contrast, equation 4.2.4). Neither there

are if we argue that different arguments of the technology require different weight matrices.

In mathematical terms, this means assuming that Ait = Ωit

N∏
j 6=i

Ω
γ1wΩ

ij

jt kφit

N∏
j 6=i

k
γ2wkij
jt1

N∏
j 6=i

A
γ3wAij
jt ,

where, in obvious notation, wΩ
ij, w

k
ij and w

A
ij denote different weight matrices (see e.g. Lee and

Yu, 2016). These approaches, however, involve the derivation of a new model (the steady
state equation and the speed of convergence, for example, would surely be altered) and/or
require additional data to construct the weight matrices (in our empirical application, we
may for example need data on bilateral trade flows and geographical distances between the
EU regions). We thus leave these approaches for future research.

In this paper, we simply notice that some of the remaining implied parameters would be
identified if an additional appropriate constrain was available. If we were willing to assume,
for example, that the impact of the own physical stock and that of the other economies in
the level of technology is the same (i.e., φ = γ2), then we may obtain an estimate of α and
φ = γ2 from γ3, βc and θc. However, since our assumed technology encompasses that of
López-Bazo et al. (2004) and Ertur and Koch (2007), we find that it is of greater interest
to constrain the under-identified implied parameters of the technology (i.e., φ and γ2) to
be consistent with the technology these papers assume. Thus, under the assumption that
the technology of López-Bazo et al. (2004) is the appropriate (i.e., φ = 0), we can obtain
an estimate of α and γ2 from 4.3.4, whereas under the assumption that the technology of
Ertur and Koch (2007) is the appropriate (i.e., γ2 = 0), we can obtain an estimate of α and
φ from 4.3.4. Further, under the assumption that neither the own capital nor that of the
neighbouring economies have a role in shaping the technology (i.e., φ = γ2 = 0), we can
obtain an estimate of α from the following constrained model:10

S1Zt = γc1S1Zt−1 + βcS1X
∗ + S2XΠc

µ + ft + ηct (4.3.5)

However, these estimates should be interpreted with care. If γ3 = 0, then we can interpret
an statistically significant estimate of γ2 that is obtained under φ = 0 as supportive evidence
for the model of López-Bazo et al. (2004). That is, there exist local spatial externalities in
the technology associated with the stock of capital (but not global, since the data supports
that γ3 = 0). If γ3 6= 0, however, the evidence is consistent with the model of Ertur and
Koch (2007, p. 1036), and then the question that we can address by imposing the constraint

10Notice that, while imposing the assumptions that either φ = 0 or γ2 = 0 in 4.3.4 does not yield a new
model specification, imposing both assumptions simultaneously does yield a new model specification (4.3.5)
in which θc = βcγ3 = βcρ (see also Ertur and Koch 2007 and Elhorst et al. 2010).
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γ2 = 0 (but not that φ = 0) is whether there are indeed “home externalities generated by
physical capital accumulation". In particular, only if φ 6= 0 we may conclude that there
exist global spatial externalities associated with the stock of capital (although we remain
uncertain about whether there are local externalities in capital because we have imposed
that γ2 = 0). Lastly, if φ = γ2 = 0, we may conclude that, regardless of the value taken
by γ3, there is no spatial contagion of the stock of capital (neither in the technology nor in
the output). However, if the data rejects the validity of these constraints, then we remain
uncertain about what is the nature of these spatial externalities: local (i.e., φ 6= 0), global
(i.e., γ2 6= 0), or both local and global (i.e., φ 6= 0 and γ2 6= 0).

4.3.2 Estimates from EU-NUTS2 regions

We estimate the model given by 4.3.3 using the approach and model specifications of Lee
and Yu (2016) and Miranda et al. (2017a). We use the first as a benchmark for our basic
parameters (γ1, γ2, ρ, β1, β2, θ1 and θ2, which, since all the variables are in logs, can be
interpreted as elasticities) and the second to obtain the whole set of estimates (i.e., the
basic ones plus those appearing in the correlation functions: πµ1 , πµ2 , πα1 and πα2), test the
validity of the constrained version of the model (using a Likelihood Ratio test), and estimate
the implied parameters (using the constrained version of the model). We also follow this
scheme in the discussion of the results. This means that we will start with an analysis of
the estimates of the basic and correlation functions parameters in the unconstrained and
constrained models, then will go on with the estimates of the implied parameters, and we
will conclude with a description of the geographical distribution of the estimated “unobserved

productivity" of the EU regions (ln Ω̂i0) and its estimated spatial spillover (γ̂1

N∑
j=1

wij ln Ω̂j0).

First, however, a word about the data. We use EU NUTS2 regional data from Cambridge
Econometrics to estimate our model. In particular, our initial sample is analogous to the
one analysed by Elhorst et al. (2010), so that we can use their results as a benchmark
to which ours will be compared. Thus, we initially consider 189 regions across 14 EU
countries (Austria, Belgium, Germany, Denmark, Greece, Finland, France, Ireland, Italy,
the Netherlands, Portugal, Spain, Sweden and the United Kingdom) using time intervals of
five years (see also Ho et al., 2013; Lee and Yu, 2016) over the period 1982 to 2002. This
results in a balanced panel dataset with 4 time periods (1982-1987, 1987-1992, 1992-1997,
1997-2002).11

11To be precise, the (small) differences between our sample and that of Elhorst et al. (2010) are the
following. First, they have data on Luxembourg and the period 1977-1982. Second, in their sample “the
islands (such as those associated with southern European countries) are assumed to be connected to the
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It is worth noting, however, that we have explored alternative samples to check the
robustness of our results. First, we extended our initial sample to cover the years of the
recent global crisis (the time intervals 2002-2007 and 2007-2012). Second, we considered
different time intervals in a wider time period (1980 to 2015, with observations for 1980-
1985, 1985-1990, and up to 2010-2015, which was the last available period at the moment
of writing this paper). Third, we considered alternative groups of countries (e.g., including
Norway, which is a non-EU country, and/or dropping Portugal, Ireland, Italy, Spain and/or
Greece, which are countries that have faced –severe– economic growth problems over the
last decade). In all those cases, the estimates we obtained for the (un)constrained model
remained largely unaltered. We illustrate this by reporting results from these alternative
sampling schemes: the period 2002 to 2012, the period 1980 to 2015, the period 1982 to
2002 without including Portugal, Ireland, Italy, Spain and Greece (the so-called “PIIGS")
and the period 1982 to 2002 without including Greece (since in all these cases results when
including Norway were not substantially different).

All these estimates were obtained using real GDP per capita as the dependent variable
(i.e., yit is real GDP at 2005 constant prices over total population, in thousands of people).
As for the explanatory variables, sit is the ratio between investment expenditures and gross
value-added (at 2005 constant prices and as a percentage) and nit is the growth rate of the
population over time (computed as in Islam 1995). As it is common in the literature (see
e.g. Mankiw et al., 1992; Islam, 1995; Ertur and Koch, 2007), we assume that δ + g = 0.05

to compute the depreciation rate. Note also that time dummies and a constant term were
included in the set of explanatory variables to account for ft.

[Insert Table 4.1 about here]

Table 1 provides descriptive statistics for the dependent and main explanatory variables
(i.e., yit, sit and nit). In particular, we report the statistics for the five samples considered and
the periods effectively used in estimation in each case (notice that we lose one observation
due to the inclusion of the lagged dependent variable in the model). The differences in the
values of the statistics across the samples considered are of small magnitude, particularly
between the original sample and the same sample without Greece. In fact, the observed
differences arise in the GDP and the saving rate, whereas the distribution of the depreciation
rate remains almost unaltered across samples. It is also interesting to note that the recent
economic crisis seems to have increased the levels of GDP and savings, but mostly for those

mainland, so that each region has at least one neighbour" (p. 353). Here we only consider continental
regions, which means that our sample does not include the Spanish cities of Ceuta and Melilla, the French’s
“Départements d’outre mer", and the Greek, Finish, French, Italian and Spanish islands.

116

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



4.3. Empirical results

regions that were already in the top of the distribution (i.e., the centre of the distribution
of these variables has shifted to the right and the upper tail has increased, thus making
differences between the extremes larger). The effect is similar when dropping the PIIGS
from the original sample, except that now it it is the lower tail of the distribution the one
that increases (i.e., we are dropping regions with levels of GDP and savings that are lower
than those of the rest of the sample).

[Insert Table 4.2 about here]

We move now to the analysis of the estimates of the model and, as previously pointed
out, start by considering the estimates of the unconstrained version of the model. These
are reported in Table 4.2. In particular, the first reported estimates (in column two) were
obtained using the approach and model specification of Lee and Yu (2016), whereas the
rest (columns three to seven) were obtained using that of Miranda et al. (2017a). We
report results for the initial sample (period 1982 to 2002) in columns two and three and,
subsequently, for the other samples considered (periods 1982 to 2012, 1980 to 2015, 1982 to
2002 without the PIIGS, and 1982 to 2002 without Greece).

We find a remarkable regularity in both the values and the statistical significance of
the coefficients across the samples and estimation approaches considered. Perhaps the only
differences worth mentioning are: i) the slightly lower value of the coefficient associated with
the time-lagged dependent variable (γ1) when estimating the model using the approach of
Lee and Yu (2016); and ii) the lack of statistical significance of the coefficient associated
with the saving rate (β1) when considering the years of the recent crisis (i.e., the samples
covering the periods 2002 to 2012 and 1980 to 2015). This caveat aside, all sets of estimates
provide essentially the same picture.

In particular, the basic parameters are all statistically significant (except for θ2) and have
the predicted signs (see Ertur and Koch, 2007).12 Consistent with the constraint γ2 = −ργ1,
the spatial and time lagged dependent variables have a high and positive coefficient, whereas
the spatially weighted lagged dependent variable has a negative and smaller coefficient in
absolute value (see also Ho et al., 2013; Lee and Yu, 2016). Thus, the level of GDP per
capita of the European regions is largely determined by its past GDP per capita and the
current and past GDP per capita of their neighbours. Further, the saving rate of an economy

12Our estimates of the basic parameters are largely consistent with those reported by Basile (2008) using
an analogous sample of regions and the period 1988 to 2000. They also concur with those reported in panel
data studies analysing countries rather than regions (see e.g. Ho et al., 2013; Lee and Yu, 2016). In contrast,
we find some differences with those reported by Pfaffermayr (2009), who consider an analogous period of
analysis but whose sample includes Norway’s and Switzerland’s regions.
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contributes positively to its GDP per capita, but its depreciation rate and the saving rate
of the neighbouring regions both contribute negatively. All in all, these results indicate that
richest areas are likely to stay rich (more so they if are geographically close to rich areas,
like e.g. in the so-called “blue banana") while poorer areas can only (partially) catch up if
they increase their saving rates and/or are geographically close to rich areas.

As for the correlation functions parameters, there is evidence of i) correlation between
the individual effects and the covariates (since both the –mean– saving and depreciation
rates are statistically significant) and ii) spatial contagion in the individual effects (since
the spatially weighted –mean– saving rate is generally statistically significant). In addition,
two of the variance components, σ2

µ and σ2
ε , are statistically significant. This supports our

correlated random effects model specification. In particular, results are consistent with the
constraint αi = γ1µi, which implies a “fixed effects" error term model with proportional
spatial contagion (Miranda et al., 2017a).

[Insert Table 4.3 about here]

Next we consider the results for the constrained version of the model, which are reported
in Table 4.3. Before discussing the estimates, however, it is important to assess the validity
of equation 4.3.4 in the different samples considered. To this end, we used a Likelihood
Ratio test. We found that the “fully" constrained version of the model (i.e., the model
resulting from imposing the constraints β1 = −β2, θ1 = −θ2, γ2 = −ργ1 and αi = γ1µi) was
statistically supported only in the last two samples (i.e., the period 1982 to 2002 without the
PIIGS and without Greece).13 Estimates from this fully constrained version of the model
are reported in Table 4.3b. Still, after testing the validity of each constraint individually,
we found that a “partially" constrained version of the model in which only the constraint
αi = γ1µi was imposed was not rejected in the first three samples (periods 1982 to 2002,
1982 to 2012, and 1980 to 2015). Estimates from this partially constrained version of the
model are reported in Table 4.3a.14

At first sight, there is very little to comment on the results reported in Table 4.3a since, as
expected, they are very similar to the ones obtained from the unconstrained model (see Table

13In particular, the Likelihood Ratio test statistics we obtained in the first three samples were 18.42 (period
1982 to 2002), 42.06 (period 1982 to 2012) and 27.26 (period 1980 to 2015), all statistically significant at
standard levels. The Likelihood Ratio test statistics of the other samples (the period 1982 to 2002 without
the PIIGS and without Greece) are reported in the last row of Table 4.3.

14Notice that, since γ1 is an implied parameter, it is reported in Table 4.4 (along with the rest of the
implied parameters obtained from the fully constrained model). However, since γ1 is identified in both the
fully and partially constrained models, for the sake of comparability we have also included its estimates
among the results reported in Table 4.3.

118

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



4.3. Empirical results

4.2). Yet two things are worth mentioning. First, the correlation functions parameters and
the variance components parameters are all statistically significant. This again supports
our correlated random effects specification. Second, the coefficient reflecting the degree
of technological interdependence generated from the productivity spillovers, γ1, shows a
negative and (at least in two of the samples considered) statistically significant value. Also,
the estimates we obtain for γ1 are similar across the samples considered. This indicates,
given the imposed constraint αi = γ1µi, that there exists a negatively proportional relation
between the individual effects of the EU regions and their spatial spillovers. We will return

to this point when we analyse the geographical distribution of ln Ω̂i0 and γ̂1

N∑
j=1

wij ln Ω̂j0.

As for the estimates of the “fully" constrained version of the model, the first thing to
notice is that they are similar in the two samples considered (except for the lack of statistical
significance of θc in the sample without the PIIGS). In particular, the basic parameters are
all statistically significant and have the predicted signs (see Ertur and Koch, 2007). Also,
if we compare our results with those obtained by Elhorst et al. (2010), our estimates of
the difference in the logs of the saving and depreciation rates, as well as that of its spatial
counterpart, are both larger (and statistically significant, whereas only the former is in their
case). The estimated coefficient of the spatially lagged dependent variable, on the other hand,
is analogous to the one reported by Elhorst et al. (2010). Lastly, the rest of parameters have
estimated values in line with those obtained for the “partially" constrained version of the
model (including γ1, as previously pointed out).

We then use these “fully constrained" estimates to obtain the implied parameters of
the theoretical model. These are reported in Table 4.4. In particular, the first block of
Table 4.4 contains the estimates of the parameters that are directly identified (γ1, λ and
γ3), the second block the estimates of α and γ2 obtained under the assumption that the
technology considered by López-Bazo et al. (2004) is the appropriate (i.e., imposing the
additional constraint φ = 0), and the third block the estimates of α and φ obtained under
the assumption that the technology considered by Ertur and Koch (2007) is the appropriate
(i.e., imposing the additional constraint γ2 = 0).

[Insert Table 4.4 about here]

Firstly, the statistical significance of the degree of technological interdependence
generated from the (unobserved) productivity spillovers, γ1, supports our assumed
technology (against the related alternatives of Islam 1995, López-Bazo et al. 2004 and
Ertur and Koch 2007). Secondly, the estimated speed of convergence, as measured by
λ, is around 2% and statistically significant, which is a standard result in the literature
(Barro and Sala-i-Martin, 2003; López-Bazo et al., 2004; Ertur and Koch, 2007; Lee and Yu,
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2016). Thirdly, the statistical significance of the degree of technological interdependence, as
measured by γ3, supports the model of Ertur and Koch (2007) and contradicts the models
of Islam (1995) and López-Bazo et al. (2004). Moreover, its value is similar to the one found
by Ertur and Koch (2007) and Elhorst et al. (2010), somewhere in between them. Fourthly,
the estimates of the capital share, as measured by α, obtained when imposing the additional
constraint(s) that φ = 0 (López-Bazo et al., 2004) and/or γ2 = 0 (Ertur and Koch, 2007)
are in line with those obtained in the literature (Barro and Sala-i-Martin, 2003; Ertur and
Koch, 2007; Elhorst et al., 2010). Fifthly, the parameter capturing capital externalities at
the local level (γ2) and that allowing for capital externalities at the global level (φ, through
γ3), obtained when imposing the additional constraint that either φ = 0 (López-Bazo et al.,
2004) or γ2 = 0 (Ertur and Koch, 2007), respectively, are not statistically significant. In fact,
we cannot reject the null hypothesis that both parameters are zero. The LR test statistic
obtained from the models 4.3.4 and 4.3.5 is 0.53 for the sample 1982 to 2002 without the
PIIGS and 0.53 for the sample 1982 to 2002 without Greece, none of them being statistically
significant at standard levels.15

All in all, these results point to the the existence of spatial spillovers in the unobserved
productivity and the level of technology. That is, we find evidence supporting the existence
of both local and global spillovers in the stock of knowledge. In contrast, there is no sign
of the capital externalities in technology found by either López-Bazo et al. (2004) or Ertur
and Koch (2007). That is, we do not find evidence of spatial externalities in the stock of
capital. Lastly, our estimates support our model specification against that of Islam (1995),
López-Bazo et al. (2004) and Ertur and Koch (2007).

[Insert Figure 4.1 about here]

To conclude our empirical analysis, we report the geographical distribution of the
estimated “unobserved productivity" and its spatial spillover (to reiterate, obtained from
the constrained model in 4.3.4) in Figure 4.1. More precisely, Figure 4.1 presents a
map of the European regions considered and the values of these statistics grouped by
quantiles: Figure 4.1a reports ln Ω̂i0 (the “unobserved productivity") whereas Figure 4.1b

reports γ̂1

N∑
j=1

wij ln Ω̂j0 (the spatial spillover of the “unobserved productivity", that is, the

impact on the technology of unit i of all the units neighbouring i having their “unobserved
productivity"). Notice that we have opted for using the estimates from the 1982-2002 sample
without Greece to construct Figure 4.1 because this allows us to analyse a larger number

15More generally, the other four findings largely hold when imposing on the “fully constrained" model in
4.3.4 the additional constraint that φ = γ2 = 0, that is, when estimating the constrained model in 4.3.5.

120

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



4.3. Empirical results

of regions. It is important to stress, however, that results were not substantially different
when using the 1982-2002 sample without the PIIGS. Notice also that, given the negative
and statistically significant value found for γ1, there is a negatively proportional relation
between the unobserved productivity of each EU region and the spatial contagion of this
unobserved productivity on its neighbouring regions.16

With this in mind, we start by noting the considerable heterogeneity that Figure 4.1a

displays, which contradicts the standard assumption of homogeneous exogenous technological
progress. In particular, results indicate that the regions with the lowest estimated
“unobserved productivity" are mostly located in Scandinavia (Finland and Sweden), Scotland
and North of England, Northern Ireland, Central-South of France, South-Est of Germany,
Austria, Central and North-West of Spain, and North-West and South of Italy. Figure
4.1a also shows that the geographical distribution of the higher estimated “unobserved
productivity" covers the so-called “blue banana" (from the South of the UK to the South-
West of Germany, thus including the North of France, Belgium and the Netherlands), plus
Denmark and the Mediterranean regions of the South-West of France and Central Italy.

What is also interesting to note is that about half of the regions in the high productivity
group can be qualified as “rich", meaning here that their average GDP per capita over the
periods considered is in the upper quantile of the distribution. On the other hand, the same
criterion would lead us to qualify about half of the regions with low estimated productivities
as “poor". Thus, it seems that many of the richer/poorer regions tend to have higher/lower
(unobserved) productivities. In fact, the Spearman rank correlation between ln Ω̂i0 and the
average GDP per capita is 0.36 and statistically significant.

As for the spillovers associated with the “unobserved productivity", Figure 4.1b reveals
that the pattern tends to be opposite to the one found for the estimated “unobserved
productivity". In particular, the largest values are found in the Northern regions (i.e.,
Scandinavia, East of Ireland, the UK Midlands and South of Scotland), but also in the East
(i.e., Austria) and South (South-West of France, North andWest of Spain, and South of Italy)
of Europe. This means that these are (often poor) regions whose “unobserved productivity"
is more impacted by the “unobserved productivity" of its neighbours. South of England and
Ireland, Belgium, the Netherlands, and West Germany, on the other hand, stand as the areas
with the lowest spillovers. This means that these are (mostly rich) regions whose output per
capita is barely affected by the “unobserved productivity" of its neighbours.

16These spillovers correspond to the (local) spill-in effects proposed by Miranda et al. (2017b). We do not
report the spill-out effects because, given the proportional relation that imposes the constraint αi = γ1µi,
its geographical distribution is no more informative than that of ln Ω̂i0 (in fact, since both ln Ω̂i0 and γ1 take
negative values, the spill-out effects take positive values and are larger/smaller the smaller/larger ln Ω̂i0 is).
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4.4 Conclusions

We present a growth model that extends previous knowledge-spillovers models in several
directions. First, we do not assume a common exogenous technological progress but account
for heterogeneity in the initial level of technology. Second, we assume that the technological
progress depends not only on the stock of physical capital and the stock of knowledge of
the other economies, but also on the physical capital and the (unobserved) initial level of
technology of the other economies. Thus, our assumed technology combines the alternative
sources of (global and local) spatial externalities considered in previous models of relative
location with the unobserved heterogeneity that characterises previous models of absolute
location.

We use EU-NUTS2 regional information from Cambridge Econometrics to test whether
the data supports the main features of our growth model. In particular, our econometric
specification is derived from the growth-initial equation of the model and takes the form
of a spatial Durbin dynamic panel model with spatially weighted individual effects. As
a downside, some of the implied parameters of the model are not identified. We discuss
alternative ways to circumvent this limitation.

We estimate the model by QML using a correlated random effects specification for the
individual effects and their spatial spillovers. Our results support our model specification.
Also, they are largely i) consistent with other studies using analogous data; and ii) robust
to the use of alternative specifications, samples and estimation approaches. In particular, we
find evidence of the existence of (global) spatial spillovers arising from the level of technology,
but not from the investment in capital (neither global nor local). Also, our estimates indicate
that the level of GDP per capita of the European regions is largely determined by their
past GDP per capita and the current and past GDP per capita of their neighbours, their
saving rate and that of their neighbours, and their depreciation rate. However, the role of
unobservable characteristics is worth noting: richest areas (e.g., the “blue banana") are so
partially because of their higher “unobserved productivity" and a number of poor regions
benefit from “unobserved productivity" spillovers.
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Table 4.1: Descriptive statistics

(a) Sample I: 1982-2002

Variable Mean St. Dev. Min P25 Median P75 Max

GDP 23,393 9,961 6,321 18,554 22,307 26,227 133,452
s 23.39 4.50 9.98 20.65 23.08 25.77 46.08

n+ δ + g 0.05 0.00 0.04 0.05 0.05 0.06 0.07

(b) Sample II: 1982-2012

Variable Mean St. Dev. Min P25 Median P75 Max

GDP 25,355 11,536 6,321 19,698 23,997 28,934 176,529
s 23.69 4.76 9.98 20.64 23.47 26.17 48.84

n+ δ + g 0.05 0.01 0.04 0.05 0.05 0.06 0.08

(c) Sample III: 1980-2015

Variable Mean St. Dev. Min P25 Median P75 Max

GDP 25,322 11,842 5,798 19,567 24,020 28,829 191,016
s 23.51 4.81 9.39 20.50 23.26 25.83 46.31

n+ δ + g 0.05 0.01 0.04 0.05 0.05 0.06 0.07

(d) Sample IV: 1982-2002 w/o PIIGS (Portugal, Ireland, Italy, Spain and Greece)

Variable Mean St. Dev. Min P25 Median P75 Max

GDP 25,317 10,247 12,208 20,464 23,397 27,307 133,452
s 23.28 4.44 10.82 20.65 23.00 25.41 46.08

n+ δ + g 0.05 0.00 0.04 0.05 0.05 0.06 0.07

(e) Sample V: 1982-2002 w/o EL (Greece)

Variable Mean St. Dev. Min P25 Median P75 Max

GDP 23,936 9,881 6,321 19,188 22,620 26,525 133,452
s 23.34 4.41 9.98 20.65 23.08 25.70 46.08

n+ δ + g 0.05 0.00 0.04 0.05 0.05 0.06 0.07

Note: Number of observations: 189×4 = 756 (Sample I), 189×6 = 1, 134 (Sample
II), 189× 7 = 1, 323 (Sample III), 139× 4 = 556 (Sample IV), and 180× 4 = 720
(Sample V). GDP is real GDP (at 2005 constant prices, in Euros) per capita
(using total population, in thousands of people). s is the ratio between investment
expenditures and gross value-added (as a percentage and at 2005 constant prices,
in Euros). n is is the working-age population growth rate (computed as in Islam
1995) and δ + g = 0.05 (as in e.g. Mankiw et al., 1992; Islam, 1995; Ertur and
Koch, 2007).
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Table 4.2: QML estimates (unconstrained model)

Sample I Sample I Sample II Sample III Sample I Sample I
(1982-2002) (1982-2002) (1982-2012) (1980-2015) (w/o PIIGS) (w/o EL)

γ1

0.6291∗∗∗

(0.0304)

0.9049∗∗∗

(0.0145)

0.9177∗∗∗

(0.0160)

0.8520∗∗∗

(0.0294)

0.8681∗∗∗

(0.0221)

0.8980∗∗∗

(0.0157)

γ2

−0.3202∗∗∗

(0.0556)

−0.4317∗∗∗

(0.0366)

−0.4746∗∗∗

(0.0290)

−0.3934∗∗∗

(0.0338)

−0.4757∗∗∗

(0.0412)

−0.4706∗∗∗

(0.0362)

ρ
0.5281∗∗∗

(0.0432)

0.5047∗∗∗

(0.0380)

0.5603∗∗∗

(0.0277)

0.5463∗∗∗

(0.0273)

0.5587∗∗∗

(0.0513)

0.5357∗∗∗

(0.0383)

β1
0.1149∗∗∗

(0.0283)

0.0774∗∗

(0.0354)

0.0124

(0.0187)

−0.0053

(0.0149)

0.0604

(0.0405)

0.1031∗∗∗

(0.0349)

β2
−0.1624∗∗∗

(0.0434)

−0.1952∗∗∗

(0.0542)

−0.1742∗∗∗

(0.0370)

−0.1045∗∗∗

(0.0320)

−0.1564∗∗∗

(0.0506)

−0.1536∗∗∗

(0.0529)

θ1
−0.0944∗∗∗

(0.0339)

−0.0907∗∗

(0.0419)

−0.0526∗∗

(0.0259)

0.0018

(0.0187)

−0.1090∗∗∗

(0.0506)

−0.1154∗∗∗

(0.0410)

θ2
0.0553

(0.0577)

0.0528

(0.0714)

0.0337

(0.0482)

0.0317

(0.0404)

0.1085

(0.0703)

0.0446

(0.0697)

πµ1

−0.1131∗∗∗

(0.0397)

−0.0526∗∗

(0.0259)

−0.0606∗∗

(0.0306)

−0.1185∗∗

(0.0482)

−0.1432∗∗∗

(0.0403)

πµ2

0.3486∗∗∗

(0.0728)

0.3321∗∗∗

(0.0596)

0.3310∗∗∗

(0.0752)

0.3358∗∗∗

(0.0888)

0.3037∗∗∗

(0.0737)

πα1

0.0954∗

(0.0502)

0.0829∗∗

(0.0337)

0.0613

(0.0393)

0.1223∗

(0.0637)

0.1189∗

(0.0508)

πα2

−0.1637

(0.1112)

−0.1244

(0.0846)

−0.1453

(0.1011)

−0.2721

(0.1360)

−0.0975

(0.1137)

σ2
µ

0.0006∗∗∗

(0.0002)

0.0004∗∗

(0.0001)

0.0010∗∗

(0.0003)

0.0013∗∗∗

(0.0003)

0.0007∗∗∗

(0.0002)

σ2
α

1.7× 10−5

(0.0004)

0.0002

(0.0003)

0.0008

(0.0005)

0.0001

(0.0008)

1.2× 10−5

(0.0004)

σµα
0.0001

(0.0002)

−0.0002

(0.0002)

−0.0007∗

(0.0004)

−0.0003

(0.0006)

−0.0001

(0.0003)

σ2
ε

0.0035∗∗∗

(0.0002)

0.0030∗∗∗

(0.0002)

0.0028∗∗∗

(0.0002)

0.0019∗∗∗

(0.0002)

0.0028∗∗∗

(0.0002)

Note: All estimates obtained using the approach proposed by Miranda et al. (2017a), except
for those in column two, which were obtained using the approach proposed by Lee and
Yu (2016). Time dummies included but not reported. The symbol ∗ indicates statistically
significant at the 10% level, ∗∗ at the 5% level and ∗∗∗ at the 1% level.
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Table 4.3: QML estimates (constrained model)

(a) Partially constrained model

Sample I Sample II Sample III
(1982-2002) (1982-2012) (1980-2015)

γ1

0.9028∗∗∗

(0.0144)

0.9217∗∗∗

(0.0147)

0.8674∗∗∗

(0.0271)

γ2

−0.4455∗∗∗

(0.0373)

−0.4853∗∗∗

(0.0281)

−0.4099∗∗∗

(0.0319)

ρ
0.5253∗∗∗

(0.0384)

0.5608∗∗∗

(0.0271)

0.5434∗∗∗

(0.0273)

β1
0.0595

(0.0394)

0.0019

(0.0196)

−0.0086

(0.0151)

β2
−0.1891∗∗∗

(0.0562)

−0.1717∗∗∗

(0.0372)

−0.1044∗∗∗

(0.0321)

θ1
−0.0453

(0.0377)

−0.0116

(0.0174)

0.0142

(0.0153)

θ2
0.0323

(0.0790)

0.0283

(0.0487)

0.0361

(0.0391)

πµc1
−0.0903∗∗∗

(0.0446)

−0.0336

(0.0261)

−0.0467∗

(0.0270)

πµc2
0.3423∗∗∗

(0.0781)

0.3309∗∗∗

(0.0597)

0.3320∗∗∗

(0.0707)

σ2c

µ

0.0005∗∗

(0.0002)

0.0004∗∗∗

(0.0001)

0.0009∗∗∗

(0.0003)

σ2c

ε

0.0035∗∗∗

(0.0002)

0.0031∗∗∗

(0.0002)

0.0029∗∗∗

(0.0001)

γ1
−0.3803

(0.3303)

−0.3773∗

(0.2267)

−0.4644∗∗

(0.1903)

LR-test 4.82 5.35 3.02

(b) Fully constrained model

Sample I Sample I
(w/o PIIGS) (w/o EL)

γc1
0.8700∗∗∗

(0.0195)

0.9026∗∗∗

(0.0131)

ρc
0.5747∗∗∗

(0.0405)

0.5496∗∗∗

(0.0361)

βc
0.0797∗∗

(0.0323)

0.1083∗∗∗

(0.0333)

θc
−0.0575

(0.0318)

−0.0780∗∗

(0.0383)

πµc1
−0.1257∗∗∗

(0.0412)

−0.1445∗∗∗

(0.0392)

πµc2
0.2195∗∗∗

(0.07530)

0.2507∗∗∗

(0.0617)

σcµ
0.0013∗∗∗

(0.0003)

0.0006∗∗∗

(0.0002)

σ2c

ε

0.0020∗∗∗

(0.0002)

0.0031∗∗∗

(0.0002)

γ1
−0.3854∗

(0.2108)

−0.4432∗

(0.2459)

LR-test 9.88 7.65

Note: The upper letter c denotes constrained parameters (see section 3.2 for details). All estimates
obtained using the approach proposed by Miranda et al. (2017a). Time dummies included but not
reported. The symbol ∗ indicates statistically significant at the 10% level, ∗∗ at the 5% level and ∗∗∗

at the 1% level. LR-test is the Likelihood Ratio test statistic of the hypothesis that the constraint
αi = γ1µi is valid (Table 4.3a) and the constraints β1 = −β2, θ1 = −θ2, γ2 = −ργ1 and αi = γ1µi
are valid (Table 4.3b).
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Table 4.4: Implied Parameters

Sample I Sample I
(w/o PIIGS) (w/o EL)

γ1
−0.3854∗

(0.2108)

−0.4432∗

(0.2459)

λ
0.0205∗∗∗

(0.0029)

0.0279∗∗∗

(0.0045)

γ3
0.6394∗∗∗

(0.1346)

0.6305∗∗∗

(0.1162)

Assumed technology: López-Bazo et al. (2004)

α
0.5265∗∗∗

(0.0843)

0.3801∗∗∗

(0.1021)

γ2
−0.0425

(0.0561)

−0.0346

(0.0679)

Assumed technology: Ertur and Koch (2007)

α
0.5930∗∗∗

(0.1216)

0.4349∗∗∗

(0.1374)

φ
−0.0665

(0.0744)

−0.0548

(0.0983)

Note: ∗ indicates statistically significant at the
10% level, ∗∗ at the 5% level and ∗∗∗ at the
1% level. Except for γ1, standard errors were
obtained using the delta method.
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Figure 4.1: Estimated individual effects and their spatial spillovers

(a) Geographical distribution of lnΩ̂i0

(b) Geographical distribution of γ̂1

N∑
j=1

wij ln Ω̂j0
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4.5 Appendix A: The balanced growth rate

From equation 4.2.6:

ln yit =

[
1 +

(
(γ3 + γ1)(uii − α− φ)

(φγ3 + γ2)

)]
ln Ωit +

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uij ln Ωjt

+ uii ln kit +
N∑
j 6=i

uij ln kjt

Since ln Ωit = ln Ωi0 + µt, then:

d ln yit
dt

=

[
1 +

(
(γ3 + γ1)(uii − α− φ)

(φγ3 + γ2)

)]
µ+

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uijµ+ uiig +
N∑
j 6=i

uijg

Also, using uii +
N∑
j 6=i

uij =
N∑
j=1

uij = α +
φ+ γ2

1− γ3

,

d ln yit
dt

=

(
1− (γ3 + γ1)(α + φ)

(φγ3 + γ2)
+

(γ3 + γ1)

(φγ3 + γ2)

(
α(1− γ3) + φ+ γ2

1− γ3

))
µ+

N∑
j=1

uijg = g,

which after some algebra becomes:(
1 + γ1

1− γ3

)
µ+

(
α(1− γ3) + φ+ γ2

1− γ3

)
g = g

Therefore,

g =
µ (1 + γ1)

(1− γ3)(1− α)− φ− γ2
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4.6 Appendix B: Taylor approximation to the marginal

productivity of capital

The Taylor approximation of
·
kit
kit

around the steady state (k∗1t, · · · , k∗Nt) is

·
kit
kit

=

·
k∗it
k∗it

+
N∑
j=1


∂

(
·
kit/kit

)
∂ ln kjt

∣∣∣∣∣∣∣∣
k∗jt

(
ln kjt − ln k∗jt

)


= g +

∂

(
·
kit/kit

)
∂ ln kit

∣∣∣∣∣∣∣∣
k∗it

(ln kit − ln k∗it) +
N∑
j 6=i


∂

(
·
kit/kit

)
∂ ln kjt

∣∣∣∣∣∣∣∣
k∗jt

(
ln kjt − ln k∗jt

)


Next we calculate the two derivatives involved. First, let us rewrite the marginal
productivity of capital (see footnote 8) as

·
kit
kit

= siΩ
cii
it

N∏
j 6=i

Ω
cij
jt e

(uii−1) ln kit

N∏
j 6=i

euij ln kjt − (ni + δ)

with kuii−1
it = e(uii−1) ln kit , cii = 1 +

(
(γ3 + γ1)(uii − α− φ)

(φγ3 + γ2)

)
and cij =

(γ3 + γ1)uij
φγ3 + γ2

. Thus,

∂

(
·
kit/kit

)
∂ ln kit

∣∣∣∣∣∣∣∣
k∗it

= siΩ
cii
it

N∏
j 6=i

Ω
cij
jt (uii − 1)e(uii−1) ln k∗it

N∏
j 6=i

euij ln k∗jt

Also, given that si
[
y∗it
k∗it

]
− (ni + δ) − g = 0, replacing y∗it by 4.2.6 at the steady state we

obtain

siΩ
cii
it

N∏
j 6=i

Ω
cij
jt

N∏
j 6=i

k∗jt
uij = (ni + δ + g) k∗it

1−uii (4.6.1)
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Consequently,

∂

(
·
kit/kit

)
∂ ln kit

∣∣∣∣∣∣∣∣
k∗it

= (uii − 1)(ni + δ + g)

Lastly, bearing in mind that
N∏
j 6=i

euij ln k∗jt = e
∑N
j 6=i uij ln k∗jt ,

∂

(
·
kit/kit

)
∂ ln kjt

∣∣∣∣∣∣∣∣
k∗jt

= siΩ
cii
it

N∏
j 6=i

Ω
cij
jt e

uij ln k∗jtuij = uij(ni + δ + g)

Therefore:

·
kit
kit

=
d ln ki(t)

dt
= g + (uii − 1)(ni + δ + g) (ln kit − ln k∗i ) +

N∑
j 6=i

uij(ni + δ + g)
(
ln kjt − ln k∗jt

)

4.7 Appendix C: Speed of convergence

Let us take the total derivative of 4.2.6:

d ln yit
dt

=

[
1 +

(
(γ1 + γ2)(uii − α− φ)

φγ3 + γ2

)]
d ln Ωit

dt
+

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uij
d ln Ωjt

dt

+ uii
d ln kit
dt

+
N∑
j 6=i

uij
d ln kjt
dt

Given that
d ln Ωit

dt
=
d ln Ωjt

dt
= µ, we concentrate on the derivatives with respect to k. To

this end, let us consider the final result of appendix 4.6:

d ln kit
dt

= g + (uii − 1)(ni + δ + g) (ln kit − ln k∗it) +
N∑
j 6=i

uij(ni + δ + g)
(
ln kjt − ln k∗jt

)
= g − (ni + δ + g) (ln kit − ln k∗it) + uii(ni + δ + g) (ln kit − ln k∗it)

+
N∑
j 6=i

uij(ni + δ + g)
(
ln kjt − ln k∗jt

)
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Then, using equation 4.2.6

ln yit =

[
1 +

(
(γ1 + γ2)(uii − α− φ)

φγ3 + γ2

)]
ln Ωit +

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uij ln Ωjt

+ uii ln kit +
N∑
j 6=i

uij ln kjt

and its value at the steady state

ln y∗it =

[
1 +

(
(γ1 + γ2)(uii − α− φ)

φγ3 + γ2

)]
ln Ωit +

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uij ln Ωjt

+ uii ln k
∗
it +

N∑
j 6=i

uij ln k∗jt

we obtain

ln yit − ln y∗it = uii(ln kit − ln k∗it) +
N∑
j 6=i

uij(ln kjt − ln k∗jt) (4.7.1)

Therefore,

d ln kit
dt

= g − (ni + δ + g) (ln kit − ln k∗it) + (ni + δ + g)(ln yit − ln y∗it)

Plugging the previous result into the total derivative of 4.2.6:

d ln yit
dt

=

[
1 +

(
(γ1 + γ2)(uii − α− φ)

φγ3 + γ2

)]
µ+

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uijµ

+ uii (g − (ni + δ + g) (ln ki(t)− ln k∗i ) + (ni + δ + g)(ln yi − ln y∗i ))

+
N∑
j 6=i

uij
(
g − (nj + δ + g)

(
ln kj(t)− ln k∗j

)
+ (nj + δ + g)(ln yj − ln y∗j )

)
=

[
1 +

(
(γ1 + γ2)(uii − α− φ)

φγ3 + γ2

)]
µ+

(γ3 + γ1)

φγ3 + γ2

N∑
j 6=i

uijµ+ uiig +
N∑
j 6=i

uijg

−

(
uii(ni + δ + g) (ln kit − ln k∗it) +

N∑
j 6=i

uij(nj + δ + g))
(
ln kjt − ln k∗jt

))

+

(
uii(ni + δ + g) (ln yit − ln y∗it) +

N∑
j 6=i

uij(nj + δ + g))
(
ln yjt − ln y∗jt

))

The first term in the previous expression corresponds to the balanced growth rate g (see
appendix 4.5). As for the second term, let us assume that, for each economy i, there exists
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Λi such that:

N∑
j=1

uij(nj + g + δ)(ln kjt − ln k∗jt) = Λi

(
uii(ln kit − ln k∗it) +

N∑
j 6=i

uij(ln kjt − ln k∗jt)

)

Thus,

d ln yit
dt

= g − Λi

(
uii(ln kit − ln k∗it) +

N∑
j 6=i

uij(ln kjt − ln k∗jt)

)

+ uii(ni + δ + g) (ln yit − ln y∗it) +
N∑
j 6=i

uij(nj + δ + g)
(
ln yjt − ln y∗jt

)
= g − Λi(ln yit − ln y∗it) + uii(ni + δ + g) (ln yit − ln y∗it) +

N∑
j 6=i

uij(nj + δ + g)
(
ln yjt − ln y∗jt

)
where the second expression is obtained by using 4.7.1.

Finally, from the first hypothesis in 4.2.11 we have that (ln yit − ln y∗it) Θ−1
j = ln yjt−ln y∗jt.

This allows us to obtain the speed of convergence to the steady state:

d ln yit
dt

= g −

(
Λi − uii(ni + δ + g)−

N∑
j 6=i

uij(nj + δ + g)Θ−1
j

)
(ln yit − ln y∗it)

= g − λi (ln yit − ln y∗it)

What is left is to derive the expressions defining Λi and λi. First, by plugging the second
hypothesis in 4.2.11, (ln kit − ln k∗it) Φ−1

j = ln kjt−ln k∗jt, into our assumption on the existence
of Λi:

N∑
j=1

uij(nj + g + δ)(ln kjt − ln k∗jt) = Λi

(
uii(ln kit − ln k∗it) +

N∑
j 6=i

uij(ln kjt − ln k∗jt)

)
N∑
j=1

uij(nj + g + δ)(ln kj − ln k∗j ) = Λi

N∑
j=1

uij(ln kj(t)− ln k∗j )

N∑
j=1

uij(nj + g + δ) (ln ki(t)− ln k∗i ) Φ−1
j = Λi

N∑
j=1

uij (ln ki(t)− ln k∗i ) Φ−1
j

Λi =

∑N
j=1 uij

1
Φj

(nj + g + δ)∑N
j=1 uij

1
Φj

(4.7.2)

Second, plugging the previous result into λi = Λi − uii(ni + δ + g)−
N∑
j 6=i

uij(nj + δ + g)Θ−1
j

132

UNIVERSITAT ROVIRA I VIRGILI 
ESSAYS ON SPATIAL PANEL ECONOMETRICS 
Karen Alejandra Miranda Gualdron 
 



4.8. Appendix D: Differential equation solution

and assuming that Θ−1
i = 1:

λi = Λi − uii(ni + δ + g)Θ−1
i −

N∑
j 6=i

uij(nj + δ + g)Θ−1
j

λi = Λi −
N∑
j=1

uij(nj + δ + g)Θ−1
j

λi =

∑N
j=1 uij

1
Φj

(nj + g + δ)∑N
j=1 uij

1
Φj

−
N∑
j=1

uij(nj + δ + g)
1

Θj

4.8 Appendix D: Differential equation solution

We start by noticing that the steady state in 4.2.9 can be written as

ln y∗it =
1

1− α− φ

N∑
j=1

∞∑
r=0

ρrw
(r)
ij ln Ωjt +

γ1

1− α− φ

N∑
j=1

∞∑
r=0

ρrw
(r+1)
ij ln Ωjt

+

(
α + φ

1− α− φ

) N∑
j=1

∞∑
r=0

ρrw
(r)
ij ln

(
sj

nj + δ + g

)
+

γ2 − αγ3

1− α− φ

N∑
j=1

∞∑
r=0

ρrw
(r+1)
ij ln

(
sj

nj + δ + g

)

with ρ =
γ2 − αγ3

1− α− φ
. Using this, we can see that

d ln y∗it
dt

=
(1 + γ1)µ

1− α− φ

(
1

1− ρ

)
. In fact,

since
1

1− ρ
=

1− α− φ
(1− α)(1− γ3)− φ− γ2

,

d ln y∗it
dt

= g (4.8.1)

Notice that 4.8.1 can be seen as another differential equation, which have a particular
solution on ln y∗i0:

ln y∗it = gt+ ln y∗i0 (4.8.2)

Plugging equation 4.8.2 and 4.2.12 we obtain:

d ln yit
dt

= g − λi (ln yit − gt− ln y∗i0) (4.8.3)

We use the integrating factor method to solve the differential equation in 4.8.3. We first
reorder terms and then multiply the equation by the integrating factor e

∫
λidt = eλit to obtain

d

dt

(
eλit ln yit

)
= eλitg + λie

λit (gt+ ln y∗i0)
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By integrating on both sides, we obtain the general solution:

ln yit = gt+ ln y∗i0 + Ce−λit

The particular solution for t = t1 implies that C = (ln yit1 − gt1 − ln y∗i0) eλit1 . Thus, for any
t we have:

ln yit = g
(
t− t1e−λi(t−t1)

)
+ ln yit1e

−λi(t−t1) + (1− e−λi(t−t1)) ln y∗i0
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Chapter 5

Conclusions and Future Research

This thesis contributes to the spatial econometrics literature by presenting a suitable
framework for modelling the spatial spillovers of the individual effects in panel data models.
The key to this new approach is the use of a correlated random effects specification. In
essence, each chapter of this thesis considers this approach in a different model specification
and provides illustrative evidence. Next I summarise the main findings of each chapter and
discuss future research extensions.

The second chapter analyses the spatial X−lag model for panel data. It is first showed
that the individual effects and their spatial spillover are not generally identified. However,
they are identified in a correlated random effects specification provided that some mild
rank conditions on the covariates hold. Further, this chapter proposes using FGLS and IV
estimators under strict and sequential exogeneity assumptions on the covariates. Lastly,
results from an empirical application based on a Cobb-Douglas production function and
US state data are presented. While the main findings are largely consistent with previous
literature, there is also evidence of “inward” and “outward” spatial effects of the individual
effects. FGLS and IV estimates are found to differ substantially, which indicates that the
strict exogeneity assumption may not hold. The small samples properties of these estimators
may be addressed in future research. Another extension of this study is to analyse the spatial
contagion of individual effects for the case of time varying spatial weights matrices.

The third chapter considers a correlated random effects specification of a spatial Durbin
dynamic model. It presents the likelihood function of the model and prove that the
QML estimator is consistent and asymptotically normal when the initial period (t = 0)

of the dependent variable is exogenous, the number of spatial units (N) is large, and the
time periods (T ) are fixed. The case where the initial value of the dependent variable is
endogenously given will be handle it in future research. In addition, this chapter presents
an illustrative empirical application examining the existence of spillovers effects in economic
growth. Estimates from a sample of 26 OECD countries over the period 1971 to 2005 show
that countries with a small/large estimated individual effect tend to be among the most/least
affected by the impact of the estimated individual effects of their neighbours and among those
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whose individual effects impact most/least on the other countries (in terms of geographical
distance).

Finally, the fourth chapter extends previous knowledge-spillovers models of growth in
several directions. First, it does not assume a common exogenous technological progress
but accounts for heterogeneity in the initial level of technology. Second, it assumes that
the technological progress depends not only on the stock of physical capital and the stock
of knowledge of the other economies, but also on the physical capital and the (unobserved)
initial level of technology of the other economies. Using EU-NUTS2 regional data from
Cambridge Econometrics, this chapter also tests whether the data supports the main features
of the proposed growth model. In particular, the econometric specification derived from the
growth-initial equation of the model takes the form of a spatial Durbin dynamic panel
model with spatially weighted individual effects. Results support the proposed model
specification. Also, they are largely i) consistent with other studies using analogous data;
and ii) robust to the use of alternative specifications, samples and estimation approaches.
Future research should investigate the use of alternative assumptions on the technology to
achieve identification.
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