
 

 

 

 

 

 

 

 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC 

HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
 

Rohit Gaikwad 
 

 
 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 

de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 
 
 
ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 

derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 
 
 
WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 

can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 



Carbon Dioxide to Methanol: 
Stoichiometric Catalytic Hydrogenation 

under High Pressure Conditions 

ROHIT VILAS GAIKWAD

DOCTORAL THESIS

2018

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



 

 
     
    

     
 

Doctoral thesis 

 

 

Carbon Dioxide to Methanol: Stoichiometric 

Catalytic Hydrogenation under High 

Pressure Conditions 

 
 

ROHIT VILAS GAIKWAD 
 
 
 
 
 

Supervised by: 

Prof. Dr. Atsushi Urakawa 

ICIQ-URV 

 

 
 

                                                            
 

Tarragona 
2018 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



 

 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



 

Prof. Dr. Atsushi Urakawa  

Group Leader 

Institute of Chemical Research of Catalonia (ICIQ)  

Av. Països Catalans 16  

43007 Tarragona, Spain  

    

 
Tarragona, 5th February 2018  

 
 
 

CERTIFY THAT:   
 

The present work, entitled “Carbon Dioxide to Methanol: Stoichiometric 

Catalytic Hydrogenation under High Pressure Conditions” by Rohit Vilas 

Gaikwad for the award of the degree of doctor, has been carried out 

under my supervision at Institute of Chemical Research of Catalonia 

(ICIQ), and that it fulfils all the requirements to obtain the degree of 

Doctor in Chemical Science and Technology. 

 

Sincerely, 
 
 
 
 
    
             Prof. Dr.  Atsushi Urakawa 
 
 

           
                     

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



 

 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



 

 

 

Acknowledgement 

 

I owe my deepest thanks to my supervisor Prof. Dr. Atsushi Urakawa for 

allowing me to do PhD in his group. Your continuous support, exceptional 

inspiration, and constructive criticism enabled me to improve my scientific and 

personal skills giving me feeling of a second adolescence. Thank you for being 

a sounding board for my crazy ideas and all kind of problems. Discussion with 

you always resulted in great solutions, new perspectives in retrieved data. 

Your inspiring word “100 percent” extend not only my capabilities but reactor 

system too, to deliver maximum from both of us. The opportunity you gave me 

to work with you is a milestone in my life that changed everything. Just thanks 

word will not be enough to express my sincere gratitude, a special word 

“Arigatou Gozaimasu Atsushi Sensei”. 

I would like to thanks to all scientific and non-scientific staff at ICIQ and 

URV. A special thanks to Dr. Jordi Benet, Marta, and Eduardo from X-ray 

diffraction unit and Dr. Miguel Gonzalez, Dr. Georgiana Stoica and Dr. Dolores 

Gonzalez Candela from Heterogeneous Catalysis Unit for all their valuable 

time and patience while training on instruments. Their freedom in the unit and 

trust allowed me to handle all instruments independently. The help and 

guidance from Dr. Marta Gimenez Pedros and Cristina Rivero from Chemical 

Reaction Technology unit for using different reactors and facility is highly 

appreciated. I would like to give special thanks to Jose Luis Leon from the 

Mechanical Workshop and Xavier Asensio from Glass Blowing Workshop for 

their remarkable and quick fabrication of any reactor design with high 

precision. Thanks to Marc, Jesus and Alex for delivering parcel with happiness 

every day in the morning. Many thanks to Aurora and Noelia for the easy and 

uncomplicated handling of administrative and bureaucratic processes 

especially arranging trips and visas. 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



This Journey started 4 years back, when I entered in lab P2.11 and get 

introduced to Atul, Jordi, Antonio and Dina. Thank you very much guys for 

your helping hand with effective knowledge and experience transfer. Thanks 

Antonio (Chutanio) for initial outdoor insane activities, and Jordi (Purdilla) for 

weekend parties and long lasting drinks. Thanks to Dina (Pirri) for inspiration 

and very effective discussion on how to enjoy life with work. A special thanks 

to Atul for your endless support, trust, critical inputs, directing the research and 

improving personal and professional skills.  

I would like to express my gratitude to former members, Luis Bobadilla, Ta 

Corrales, Yi Zhang, Sergio Roso, Muralidhar Chourashiya, Damien Cornu, 

Reza Taheraslani and Joan Giner for their help, support and providing 

pleasant and friendly atmosphere over the years. I want to thank Sergio Lima 

and Andrea Alvarez for sharing their experience on methanol synthesis, 

especially those critical comments and discussions were really admirable. I 

would like to express my sincere appreciation to Dragos Stoian, Marta Borges 

and Dana Crivoi for patience, motivation and attitude to always help and care 

for each other, helped me to survive all those years. The fun, jokes, mocking 

and romantic moments (Titanic) were truly unforgettable memories. I would 

like to thank to Juan Jose Corral, Lungjun Hu, Rui Huang, Silvia Caminero, 

Nat Phongprueksathat, Sorin Bunea for keeping lab atmosphere fresh and 

energetic. A list cannot complete without mentioning Japanese community. A 

special thanks to Tsuyoshi Hyakutake, Takuya Suganuma, Prof. Tetsuya Kida 

and Satoshi Hinokuma for those keep smiling attitude, and Shunsaku 

Yasumura, and Shintaro Hara for the never ending house parties with Keisho 

Okura. I thank all my friends and country-mates in Tarragona for their love, 

support and encouragement. 

Furthermore, I would like to thanks to Prof. Dorota Koziej and Prof. 

Markus Niederberger from ETH for making my research stay possible and 

enjoyable. I am much obliged to the members of multimat for all the help, 

support during my stay. Unfortunately, my thesis would burst to acknowledge 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



all friends I made during that short stay. Thank you for great help and all 

possible support from Nikalaus, Rupali, Alessandro, Mario, Elena, Ofer, Dipan. 

A special thanks to Philipp, Christoph, and Murielle for outdoor activities, 

especially skiing weekend. I furthermore thank to Prof. Philipp Rudolf von Rohr 

and Helena Raymond for collaboration and constructive scientific discussion 

during Raman experiments.  

I also would like to thank to my previous mentor Dr. Sunil Joshi and all my 

colleagues and friends from NCL. I am also grateful to my manager and 

colleagues from Shell, for supporting and encouraging me to do PhD. Thanks 

to Mary, Makarand, Asif, and Abhilash for introducing me to industrial 

research. A special thanks to my old friends and colleagues Mahesh, Amit, 

Ajay, Praveen, Yogesh, Deepak, Sagar, Vinayak for being true friends, from 

whom I have received invaluable help, encouragement and moral support at 

all time. 

Finally, I wish to thank my family, without my parents support and 

blessings this thesis could not have been completed. A constant love and care 

from Manisha, Rupali, Sujay gave me a solid and stable backbone which 

enabled me to do the things that I liked. 

I also want to acknowledge, “Rovira i Virgili” University, ICIQ foundation, 

Ministry of Economy and Competitiveness (MINECO), Spain for financial 

support (FPI predoctoral fellowship) and mobility grant. 

 

                

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



XIV 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Table of contents 

xi 
 

Table of contents 
 

Chapter 1: Introduction and overview ................................................ 1 

1.1    Carbon Dioxide: Current scenario ........................................................... 2 

     1.1.1     CO2 emission and the impact on lifestyle ....................................... 2 

     1.1.2     CO2 mitigation strategies ............................................................... 5 

        1.1.2.1 CO2 capture and storage (CCS) ................................................ 6 

        1.1.2.2 CO2 capture and utilization (CCU) ............................................ 7 

1.2    Methanol: History and current status..................................................... 12 

     1.2.1     Methanol synthesis history ........................................................... 13 

     1.2.2     Catalyst development .................................................................. 15 

     1.2.3     Active sites and reaction pathways .............................................. 17 

     1.2.4     Methanol synthesis: Technology and aspects .............................. 19 

1.3    Aim and outline of the thesis ................................................................. 26 

Bibliography……. ........................................................................................... 28 

 

Chapter 2: Methods and materials ................................................... 33 

2.1    Catalyst synthesis ................................................................................. 34 

     2.1.1     Chemicals and catalyst synthesis ................................................ 36 

2.2    Experimental setup and catalytic tests .................................................. 43 

     2.2.1     Working principle of flow reactor .................................................. 44 

     2.2.2     Analytical system ......................................................................... 48 

     2.2.3     Reactor automation ...................................................................... 49 

     2.2.4     Safety .......................................................................................... 51 

2.3    Working with the reactor ....................................................................... 53 

     2.3.1     Catalyst loading ........................................................................... 53 

     2.3.2     Reactor operation ........................................................................ 54 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Table of contents 

xii 
 

2.4    Conclusions .......................................................................................... 56 

Bibliography………. ....................................................................................... 57 

 

Chapter 3: High pressure advantages in stoichiometric CO2 
hydrogenation to methanol ............................................ 59 

3.1    Introduction  ........................................................................................... 60 

3.2    Experimental ......................................................................................... 61 

3.3    Thermodynamic calculations ................................................................ 63 

3.4    Results and discussion ......................................................................... 63 

     3.4.1     Effect of temperature under high pressure conditions .................. 63 

     3.4.2     Effect of GHSV under high pressure conditions ........................... 67 

     3.4.3     Evaluation of internal mass transfer limitations ............................ 75 

3.5    Conclusions .......................................................................................... 80 

Bibliography……. ........................................................................................... 82 

 

Chapter 4: Space-resolved gas analysis of high pressure CO2 
hydrogenation to methanol ............................................ 83 

4.1    Introduction  ........................................................................................... 84 

4.2    Experimental ......................................................................................... 85 

     4.2.1     High pressure reactor for operando Raman spectroscopy ........... 85 

     4.2.2     Space-resolved gas analysis using SS reactor ............................ 87 

4.3    Results and discussion ......................................................................... 89 

     4.3.1     Equilibrium conversion and selectivity .......................................... 89 

     4.3.2     Space-resolved gas analysis by GC ............................................ 90 

     4.3.3     Space-resolved gas analysis by Raman spectroscopy ................. 94 

4.4    Conclusions .......................................................................................... 98 

Bibliography……. ........................................................................................... 99 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Table of contents 

xiii 
 

Chapter 5: Cu-ZnO core-shell catalysts preparedd by non-  
aqueous sol-gel method ............................................... 101 

5.1    Introduction  ......................................................................................... 102 

5.2    Experimental ....................................................................................... 103 

     5.2.1     Chemicals .................................................................................. 103 

     5.2.2     Catalyst synthesis ...................................................................... 103  

     5.2.3     Catalyst characterization ............................................................ 103  

     5.2.4     Catalytic test .............................................................................. 106 

5.3    Results and discussion ....................................................................... 107 

     5.3.1     Material structure ....................................................................... 107 

     5.3.2     Ex situ XRD ............................................................................... 110  

     5.3.3     In situ XRD during thermal pretreatment in H2............................ 111  

     5.3.4     H2-TPR ...................................................................................... 112 

     5.3.5     Catalyst evaluation: Effects of Cu-Zn ratio ................................. 114 

     5.3.6     Catalyst evaluation: Effects of Cu-Zn proximity .......................... 119  

     5.3.7     Catalyst evaluation: Effects of pre-reduction temperature  ......... 120  

     5.3.8     Operando XRD .......................................................................... 123 

     5.3.9     Relation between ZnCO3 formation and catalytic activity ........... 124  

5.4    Conclusions ........................................................................................ 128 

Bibliography……. ......................................................................................... 130 

 

Chapter 6: Conclusions and Outlook ............................................. 131 

6.1    General conclusions ........................................................................... 132 

6.2    Outlook…… ........................................................................................ 135 

Bibliography……. ......................................................................................... 137 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Table of contents 

xiv 
 

Appendix A: Supplementary information of Chapter 3 ....................... 139 

Appendix B: Supplementary information of Chapter 5 ....................... 145 

Shorthand glossary ............................................................................ 151 

List of publications ............................................................................. 155 

Curriculum vitae ................................................................................. 157 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



XIV 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



XIV 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



 

 

 

  

 

 

 

 

 

 

    1. 

             Introduction 

        and overview 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Chapter 1 

2 
 

1.1 Carbon dioxide: Current scenario 

Global energy consumption is constantly increasing as a result of 

population and economic growth. Presently, the primary and major energy 

source are the fossil fuels (coal, gas, petroleum). The energy production from 

fossil fuels accounts for two-thirds of world’s greenhouse gas emissions which 

mainly consist of carbon dioxide. A major consensus in efforts to combat 

climate change was the Paris agreement, on 12th December 2015, with an aim 

to keep the rise in global average temperatures below 2 °C compared to pre-

industrial level, by the end of the century. Several countries have taken 

initiative steps to achieve the agreement goals [1].  

1.1.1 CO2 emission and the impact on lifestyle 

Carbon dioxide emission has been constantly increasing worldwide after 

the pre-industrial era and reached 35.9 Gt in 2014 [2]. The global total primary 

energy supply has been increased by 150% from 1971 to 2013 due to 

increasing worldwide energy demand for economic growth and development 

[3]. Greenhouse gas emissions from the energy sector represent roughly two-

thirds of all anthropogenic greenhouse gas emissions. Despite huge 

developments in renewable and nuclear energy sources over the last decades 

(which are considered as less, or zero, carbon-emitting sources of energy), 

 
Figure 1.1: The greenhouse gas emissions and CO2 emissions a) Global greenhouse gas 
emissions b) Global CO2 emissions by sectors in 2016 c) Global major CO2 emissions by 
countries [4, 5]. 
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fossil fuels still remain the world’s primary energy supply, thereby continuously 

contributing to CO2 emissions. In 2016, CO2 contributed 76% to global 

greenhouse gas emissionss, followed by methane (16%) (Figure 1.1a data). 

The major CO2 emissions sources are power plants, petroleum, chemical and 

cement industries. Electricity and heat generation contributes up to 42% of 

global CO2 emissions while transportation (23%) is the second major CO2 

emissions source (Figure 1.1b data from year 2016) [4, 5]. The CO2 emissions 

from power plants are associated with high consumption of coal, which has 

highest carbon content per unit of energy released compared to other fossil 

fuels. This trend is expected to persist in the coming years, as many countries 

such as Australia, China, India, Poland and South Africa are producing over 

two-thirds of their total electricity and heat from the fossil fuels combustion [4]. 

The global CO2 emissions depend on the geopolitical location of the 

region or country, as well as its economy, and also on the type of fuel used for 

energy production. The top 10 CO2 emitting countries are China, USA, India, 

Russia, Japan, Germany, Iran, South Korea, Canada and Saudi Arabia, with 

an overall  share of 78% in the global CO2 emissions (Figure 1.1c) [4]. 

Until late 17th century, the CO2 concentration in the atmosphere was 

stable, maintaining the natural carbon cycle. After the Industrial Revolution, 

the anthropogenic CO2 emission rate gradually increased and reached 403 

ppm to date [4, 6]. It took around 200 years for first 50 ppm increase from 

stable CO2 concentration, 33 years for the next 50 ppm (1973 to 2006) [7], 

while the further 20 ppm was increased in the last 11 years. Table 1.1 

summarizes the change in CO2 concentration over the last 1000 years. At first 

glance, it is strange to call CO2 a threat for plants and animals, however, a 

“sudden” (in terms of the Earth’s long climate history) increase in CO2 

concentration can adversely affect the climate, and consequently the 

ecosystem. Annually, the natural carbon cycle emits ca. 120 Gt of CO2 into the 

atmosphere from the respiration of living beings and from the decomposition of 

the soil organic matter. It is supposed that the natural photosynthesis process 
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utilizes a similar amount of CO2, which helps to maintain a comparatively 

stable CO2 concentration of approximately 280±10 ppm. However, this is the 

ideal scenario where the population growth would be limited and deforestation 

would not occur. 

Table 1.1: Variation of CO2 concentration of over the last 1000 years [6, 7]. 

Year 
Period 
(years) 

Concentration 
(ppm) 

Increase 
(ppm) 

Increase rate 
(ppm yr-1) 

1000-1800 800 270-280 10 0.01 

1800-1950 150 280-310 30 0.2 

1958-1973 15 315-330 15 1 

1973-2006 33 330-380 50 1.5 

2006-2017 11 380-402 21 1.9 

The effect of atmospheric CO2 on the average global temperature was 

first outlined by Svante Arrhenius in 1896. He was the first scientist who 

proposed the idea of the contribution of CO2 to the greenhouse gas effect.  

The heat trapped by greenhouse gases (CO2, CH4, N2O, SF6) from solar 

radiation helped to maintain the earth’s temperature. However, an increase in 

heat trapping gases (especially CO2) in the atmosphere has increased the 

average global temperature and is causing global warming. The present 

concentration of atmospheric CO2 accounts for 9-26% of the natural 

greenhouse gas effect. Thus, CO2 is the most important climate regulator 

besides water vapor which mainly comes from the energy sector [8]. Hence, 

as estimated from Arrhenius´s model [5] and recent modern studies, there will 

be a significant temperature rise over the next 100 years if the concentration of 

CO2 increases at the current rate. The International Panel of Climate Change 

(IPCC), which monitors the global climate change, predicted that a doubling of 

CO2 concentration will most likely result in a rise of the global average 

temperature between 2 and 4.5 °C. Although long-term climate changes 
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cannot be accurately predicted, most scientists agree that observations such 

as the melting of Arctic Ocean ice and glacier retreats, and the rise in sea level 

have been triggered by this phenomenon [9]. An increase in the average 

global temperature by 2 °C is expected to cause life-threatening effects such 

as droughts and other extreme weather phenomena worldwide. Coping with 

the anthropogenic CO2 emissions and the utilization of CO2 are the major 

challenges for mankind. 

1.1.2 CO2 mitigation strategies 

The social, scientific and industrial opinion about carbon dioxide has 

drastically changed in the last few decades and is no longer considering it as 

waste. Many research activities are focusing on the development of new 

technologies for CO2 abatement, specifically in the energy and transportation 

sectors. There are four main possible pathways:  

i) increasing efficiency by technological improvement in the power and 

industrial sectors; 

ii) substitution of fossil fuel resources by renewable energy resources; 

iii) chemical or physical capture and storage of CO2 (CCS); 

iv) utilization of CO2 for synthesis of chemicals and fuels (CCU); 

There is a significant scope for the technical improvement of reducing CO2 

emissions in the energy and chemical sectors that can help to increase the 

energy efficiency of the overall industrial process (for instance, the use of 

nuclear energy for producing electricity). The second option, the one of 

renewable energy resources, is still in primitive stage. Although ongoing 

research shows that it has potential to substitute fossil fuel resources, it is far 

away from industrial applications. Although i) and ii) can represent future 

scenarios in the process and energy sectors, still, they do not offer short or 

mid-term sustainable solutions. Hence, an effective and robust pathway to 

control overall global CO2 emissions is needed. The last two aforementioned 
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options (CCS and CCU) certainly do have potential for controling and reducing 

the overall CO2 concentration to a satisfactory level. 

1.1.2.1 CO2 capture and storage (CCS) 

There has been continuous advancement in CO2 capture technology over 

the last decades. It will be soon applied on large-scale at stationary sources of 

emissions [10]. The main targets for implementation of CO2 capture 

technologies are power plants, fuel processing plants and several large scale 

industrial process facilities, such as iron, steel and cement production plants. 

The CO2 capture and separation processes are broadly divided into physical 

and chemical processes, such as absorption, membrane adsorption, cryogenic 

separation and chemical looping. The well-developed CO2 capture process 

helps to dispose off CO2 in different forms or places. 

Enhanced oil recovery (EOR) by injection of CO2 into depleted oil wells to 

force the leftovers of oil out of the wells is one of the most popular methods to 

make use of CO2, as more oil can be recovered in this way. Although the 

process is widely applicable at industrial scale, it is still limited by geographical 

conditions. An alternative storage technology is the storage of the captured 

CO2 in empty oil fields (e. g., 2 million tons of CO2 was stored by Quest by July 

2017 in Canada). Similarly, Illinois Basin Decatur Project in US has a CO2 

storage capacity of 1 Mtpa. Moreover, the  CO2 capture and injection from 

biofuel plants has already began since April 2017 [10]. However, the CO2 

captured from big plants has to be close to storage wells, to avoid energy-

intensive transportation to the storage location. After CO2 storage, special care 

needs to be taken to maintain and isolate the reservoirs from any accidental 

leak and addition of stored CO2 to the atmosphere. Beside these technical 

challenges, significant financial investment is required, along with public 

awareness [11]. Besides storage in wells, mineralization, or reactions of 

minerals with CO2 to form carbonates is another potential large scale CO2 

storage strategy.  
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1.1.2.2 CO2 Capture and utilization (CCU) 

In case of CCU, the CO2 is used as a chemical precursor to make 

valuable products instead of storing it. This process can be considered as a 

complementary technology to CCS, serving similar goals, while additionally 

providing economic benefits. CCU is a broad field which can be mainly 

classified into two categories: 

(A) direct CO2 utilization based on physical properties; 

(B) chemical uses, comprising conversion of CO2 into various valuable 

chemicals and fuel; 

Carbon dioxide utilization mainly depends on the purity of available CO2. CO2 

streams from production of some fertilizers, natural gas processing and 

cement production are considered pure and clean sources [12]. The CO2 

produced from power plants requires an extra purification step, since it 

frequently contains additional impurities.  

Table 1.2: Industrial processes which produce CO2 [13]. 

  
No. Industry CO2 produced (Mt yr-1) 

1 Oil Refining 850-900 

2 Cement Production 1000 

3 Iron+Steel Production 870 

4 Fermentation 200 

5 Ammonia Synthesis 160 

6 Ethene Synthesis 155 

7 LNG Sweetening 20-25 

8 Ethylene Oxide Synthesis 10 
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On the contrary, CO2 emitted from smaller sources (shown in Table 1.2) is 

cleaner and produced in manageable quantities. The global warming impact of 

many of these high economic value processes will be minimized, if CO2 

captured from these pure and clean CO2 producing sources is utilized in an 

energy efficient manner. 

A) Direct use of CO2 

CO2 alone without any conversion or chemical transformation has certain 

uses such as food processing, preservation, beverage carbonation, coffee 

decaffeination, fire suppression, production of pharmaceuticals and enhanced 

oil recovery. Carbonation of CO2 in beverage industry comprises CO2 injection 

to water, cold drinks, beer and dairy products, provides their sparkling 

appearance, astringency and refreshing feel after consumption. In food 

industry, the Modified Atmosphere Packaging technique is used to increase 

shelf life of fresh and chilled products, such as meat, fish, fruits and 

vegetables. The pressurized supercritical CO2 is used for the decaffeination of 

coffee beans and for the extraction of bitter flavours. The use of CO2 as a fire 

suppressor decreases oxygen concentration near the fire area and also lowers 

the flame temperature and flame speed. 

Although the direct use of CO2 has wide applications, many of them are 

used in small-scale processes or less demanding products. Therefore, the 

overall CO2 utilization is less, compared to the amount of CO2 released into 

the atmosphere. The transformation of CO2 into chemicals and fuel-

alternatives or fuel additives would be an excellent option to achieve large 

scale CO2 reduction. 

B) Conversion of CO2 

As mentioned in the above subsection, CO2 has already found number of 

direct applications, however, the potential of CO2 in the direct use is very low 

compared to another approach, where CO2 is converted to chemicals and 

fuels via carboxylation or reduction for synthesis of polycarbonate, synthesis 
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gas, methanol, salicylic acid and urea [14]. The CO2 utilization towards these 

products has advantages such as production of value added chemicals, 

environment friendly processesing and non-hazardous chemical process.  

Until today, CO2 was never used at its fullest potential even for chemicals 

or fuel synthesis because of its high thermodynamic and kinetic stability. The 

use of efficient catalysts and selective reaction pathways are needed to 

promote the reaction rate. According to current estimates, the chemical 

industry can only make minor direct contribution towards reducing the overall 

amounts of CO2 emissions and could contribute to convert around 1% of 

global CO2 emissions into chemical products and 10% into synthetic fuels [15]. 

Table 1.3 shows the major routes of CO2 utilization in various chemical 

conversion processes.  

Table 1.3: Commercial processes producing chemicals from CO2. 

No. Chemical process Company 

1  Production of ethylene oxide (C3-PEO) RTI International, USA 

2  CO2 to chemicals and fuels Liquid Light, USA 

3  Dimethyl carbonate from CO2 and CH3OH E3Tec Service, LLC, USA 

4  Acetic acid synthesis from CO2 and CH4 Gas Technology Institute, USA 

5  CO2 to polyol for polyurethane Bayer with CAT, Germany 

The fixation of CO2 into organic compounds refers to reactions that use 

the entire molecule. In case of catalytic CO2 reduction reactions, the CO2 is 

reduced to other C1 chemicals (CO, methanol). The CO2 conversion to fuels, 

rather than organic chemicals, will play a major role in CO2 emissions 

management strategies. Firstly, because fuel market demand is higher than 

for organic chemicals. Secondly, CO2 emissions are primarily associated with 

consumption of fossil fuels, thus fuels synthesized from CO2 can substitute the 

fossil fuels and contribute towards the closing of the open carbon cycle. 
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It should be noted that the chemical industry uses only around 10% of the 

global crude oil consumption, while the rest of it is used as liquid fuels such as 

gasoline, diesel and heavy oil. Hence, an effective use of  CO2 with regard to a 

noticeable reduction of the global net emissions of CO2 can only be reached if 

the CO2 is utilized for fuels, e. g., by reverse water gas shift reaction and 

subsequent Fischer-Tropsch synthesis for alcohol synthesis. CO2 conversion 

to methanol is a promising way that might offer a comprehensive solution to 

the issues of greenhouse gas control and depletion of fossil fuels. Methanol is 

a starting material for a number of valuable chemicals, as well, it can act as a 

fuel. Additionally, some reports already suggested that CO2 can be converted 

into C1 to C10 hydrocarbon fuels via methanol, hence it has a great potential 

for industrial applications [16, 17]. The hydrogen used for methanol synthesis 

is mainly produced from hydrocarbon reforming, which is an energy-intensive 

process. Therefore, the methanol synthesis process would not contribute to 

the overall CO2 concentration reduction, unless the H2 is produced from 

renewable resources or processes that use waste or nuclear (carbon-free) 

energy. 

C) H2 sources and concern 

Hydrogen is an energy carrier, not an energy source. It acts as a medium 

to store and deliver energy in a usable form [18]. It is also considered a clean, 

carbon-free, future energy vector [19]. Hydrogenation of CO2 allows for the 

synthesis of various products such as CO, methane, formic acid, methanol or 

formaldehyde. As mentioned in Table 1.3, currently, several products are 

synthesized at industrial scale by CO2 hydrogenation and there will be more 

products in demand in the coming decades [20]. It is also important to 

evaluate the sources of H2 for CO2 hydrogenation. The conventional hydrogen 

production by steam reforming reaction has high energy requirements and is 

associated with increased CO2 emissions, therefore, it is not desirable to be 

used. The hydrogen production technology varies with the amount of H2 
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produced and depends on the cost of available feedstock and final product 

market value.  

Although there are various hydrogen resources available, fossil fuels still 

act as the main feedstock (96%) for H2 production. Currently, H2 is mainly 

produced from methane steam reforming, partial oxidation and autothermal 

reforming reactions. Along with these, water electrolysis and renewable liquid 

reforming (ethanol with high-temperature steam) are also used to produce H2. 

However, these are small-scale H2 production processes, and are usually 

located near the feedstock site. Nevertheless, there are other emerging 

technologies which are considered to be carbon (CO2) free, for example water 

splitting using solar light, photoelectrochemical water splitting and 

photobiological water splitting. However, these technologies are still in the 

developing stage.  

Currently, hydrogen is mainly used for chemical synthesis. Ammonia and 

 

Figure 1.3: Possible H2 sources and feedstock. 
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methanol synthesis together consume approximately 63% of the total 

produced H2. Following chemical synthesis, approximately 33% of pure H2 is 

used in the refineries. Along with this, pure H2 is also used for a number of 

hydrogenation reactions (4% of total consumption), such as hydrogenation of 

unsaturated hydrocarbons and aromatics. Very little (1%) pure H2 is used in 

metallurgy, semiconductor and food industry [21]. Figure 1.3 shows an 

overview of different resources and feedstocks, along with current process 

technologies used for H2 production. The availability of local feedstock, market 

demand and technologic maturity have influence on the H2 production 

process.  

In case of high pressure CO2 hydrogenation to methanol process, the 

energy efficiency is almost independent of pressure and relies mostly on 

hydrogen cost [22]. Therefore, the cost of pressurized pure H2 can be a critical 

point for large-scale methanol synthesis, considering that high H2 partial 

pressure boosts the catalytic activity [23]. 

1.2 Methanol: History and current status  

Methanol is a very important bulk commodity chemical. In 1985 the 

methanol production was 12.4 million Mt and reached 85 million Mt in 2016 

[24]. The major part of produced methanol is used for formaldehyde 

production. Next to that is the production of tert-butyl methyl ether (MTBE), 

which is widely used as a fuel or blended with gasoline, as mentioned in 

Figure 1.4 [25]. In addition, methanol is also used for plastics, paints and 

polymers synthesis. Methanol applications in fuel cells and as a direct fuel 

(M100) or blended with petrol (M85) are gaining importance. The high energy 

density and hydrogen storage capacity of methanol make it a suitable 

candidate for convenient energy storage. Being liquid, methanol is easier to 

transport and store compared to hydrogen. 
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1.2.1 Methanol synthesis history 

Methanol was discovered by the ancient Egyptians, by wood pyrolysis. 

But it was not known until 1661 when pure methanol was isolated by the Irish 

chemist Robert Boyle. Until 19th century, methanol did not have any special 

use. In 1835 J. B. Dumas and E. M. Peligot gave it a chemical and molecular 

identity and introduced the terms “methyl” and “methyl alcohol”. In 1892, the 

name was shortened to methanol, in accordance with IUPAC nomenclature. 

Since then, various efforts have been made to synthesize methanol [26]. 

In early 1913, the German chemist A. Mittasch and M. Pier at BASF 

successfully produced methanol from CO and H2 using an iron-based catalyst. 

In 1920s, M. Pier and coworkers started working on the development of large 

scale methanol production using a sulfur resistant ZnO on Cr2O3-based 

catalyst [24]. Later, in 1923, the process was successfully converted from 

development stage to production stage at the BASF Leuna Work. This 

synthesis process was based on high pressure (250-350 bar) and high 

 

Figure 1.4: Methanol production and applications chart [25]. 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Chapter 1 

14 
 

temperature (320-450 °C). For the next 40 years, this process was used to 

produce methanol at industrial scale.  

In early 1960s, ICI introduced a highly selective copper-zinc oxide based 

catalyst for methanol synthesis. This technology was owned and licensed by 

Johnson Matthey. The process was operated at moderate reaction conditions 

of 50-100 bar pressure and 200-300 °C temperature [27]. This catalytic 

process was possible due to the use of higher purity synthesis gas, which was 

free from sulphur and carbonyl contaminants, primarily responsible for catalyst 

deactivation. Currently, 90% of world methanol is produced by this technology. 

Natural gas is the main feedstock for this process, as methane is the major 

ingredient of natural gas [28].  

CH4 + H2O      CO + 3H2       ΔH298K,5MPa  = +206.3 kJ mol-1  (Eq. 1.1) 

As shown in Eq. 1.1, methane decomposes and produces CO and H2, a 

mixture called syngas, which is further used for methanol synthesis. It was 

found that the addition of small amounts of CO2 in the syngas mixture 

enhances the catalytic activity and methanol yield. Nowadays, up to 30% CO2 

is added to the syngas mixture for commercial methanol synthesis processes 

[29]. The production of syngas from methane is a highly endothermic reaction 

and an energy demanding step in the overall process. The Nobel Prize winner 

G. A. Olah and coworkers explored direct methane to methanol synthesis 

routes, but it was found that the process gives very low yield due to the 

decomposition of produced methanol to CO2 and water at the high reaction 

temperature (300 °C) [30].  

The production of methanol via CO2 hydrogenation represents an 

interesting approach for CO2 mitigation, as well as for switching dependency 

from fossil fuels to renewable energy sources. In this aspect, the overall 

closed carbon cycle can be envisioned as “Methanol Economy”, as proposed 

by G. A. Olah. In methanol economy, CO2 can be captured from any natural, 

industrial or other human activities and directly be converted into methanol, 
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which is an efficient fuel substitute, with a high capacity for hydrogen storage 

and ease in safe transportation. For this to be a sustainable process, the H2 

has to be produced from renewable resources, e. g., water electrolysis or 

photocatalytic water splitting. 

1.2.2 Catalyst development 

As mentioned in the previous section, the first industrial methanol 

synthesis process used a ZnO on Cr2O3-based catalyst. Later, in 1966, 

copper-based catalysts were introduced for methanol synthesis [31]. Although 

elemental copper is not very promising for direct use as a catalyst due to its 

low thermal stability, studies on single crystal and polycrystalline copper still 

demonstrate its high activity towards methanol synthesis [32]. The high copper 

surface area was also found to be an important factor that enhances the 

catalytic activity [33-35]. The specific copper surface area and copper particle 

size are important factors which affect the catalytic performance. The smaller 

the particles, the higher the dispersion and lower the agglomeration, which 

helps to enhance catalytic activity. Thus, in order to maintain high activity and 

stability at the same time, the catalyst was supported on a metal oxide. Hence, 

copper stabilization and higher dispersion were reported by addition of Zr [36, 

37], Ga [38-43], Si, B [44], Cr [45], Ti [46], Ce [36, 47], and ZnO [33]. The 

ZnO-supported catalyst showed high activity, as it improved the copper 

dispersion and product selectivity. Furthermore, ICI developed a highly active 

and thermally stable copper-based catalyst using copper and zinc oxide 

supported on aluminum oxide [48]. Since then, Cu, ZnO and Al2O3 are still the 

integral components of most methanol synthesis catalysts. The purpose and 

exact role of each component in methanol synthesis reaction is still one of the 

widely debated topic in the scientific community [49-51]. As an example, 

neither ZnO itself, nor mixtures of ZnO with Al2O3 show any activity, however, 

its presence in copper-based catalysts boosts the catalytic activity and 

enhances the methanol yield. It was reported that high catalytic activity and 

selectivity in the Cu/ZnO catalyst resulted from high copper dispersion. To 
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further improve the high dispersion of copper on zinc oxide, modifications have 

been investigated on conventional Cu/ZnO/Al2O3 catalysts using Pd, Rh, Pt, 

Co, Mn, Ti, Zr, Y [33, 52-58]. It was reported that apart from the metallic active 

sites, the support also plays a crucial role in modulating and enhancing 

catalytic performance [59]. Al2O3, SiO2, ZrO2, and Ga2O3 are also well known 

as supports in catalysis. Cu/SiO2 was less active for methanol synthesis [60]. 

Doping with Ca, La and Zn oxide slightly improved the activity. Maniecki and 

his group compared CrAl3O6, FeAlO3, and ZnAl2O4, however, apart from zinc 

oxide, none of the other materials showed any catalytic activity [61]. In 

adddition to copper oxide, Ga, In2O3 [62, 63] and Pd oxides [64] were also 

found as active metal oxides to improve catalytic activity towards methanol 

synthesis.  

Along with proper combination of metal and support material, the catalyst 

preparation method plays an important role. Many different routes have been 

investigated for the synthesis of copper-based catalyst systems. The 

commercially available Cu/ZnO/Al2O3 catalyst, which shows high activity and 

selectivity, is prepared by a co-precipitation method with an approximate ratio 

of Cu:ZnO:Al2O3 60:30:10 [65]. Metal nitrate salts are preffered as precursors 

over more common sulfate and chloride salts, as the lattest could diminish the 

catalytic activity by poisoning the catalyst. It is not only the ratio of different 

components that plays a crucial role in forming the selective precursor, leading 

to a highly selective, stable and active catalyst, but also the intimate mixing 

and uniform distribution of individual component phases are highly desirable. 

The careful control of variables such as pH, ionic strength, mixing and aging 

procedure during the precipitation step is of utmost importance. These 

parameters need to be optimized carefully when preparing a co-precipitated 

catalyst. 

Apart from the co-precipitation catalyst synthesis method, other methods 

like impregnation, sol-gel matrix and combustion were also investigated, 
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however coprecipitation remains the most preferred method for methanol 

synthesis catalysts.  

1.2.3 Active sites and reaction pathways 

As mentioned earlier, despite research efforts on finding other active 

metals and supports for methanol synthesis catalysts, Cu/Zn/Al2O3 still 

remains the most popular and efficient choice at industrial scale.  

Knowing how the catalyst functions and where the reaction exactly occurs 

(active site) and the possible reaction mechanism is of utmost importance for 

rational design of catalysts. In case of Cu/Zn/Al2O3, Klier suggested that Cu is 

incorporated in the ZnO phase on interstitial sites, assuming three possible 

valence states Cu, Cu+ and Cu2+ and stated that the bulk of the catalysts 

determine the catalytic activity. The formation of Cu+ has also been reported 

by several authors [66-68]. In particular, the study reported by Fujitani et al. on 

the interaction between the support and metal in the catalyst suggested that 

the active component is not only Cu+ but also Cu⁰ [68]. Later, Burch and 

Bartley found that the support effect pronounces the catalytic activity when 

they tested different copper catalysts for methanol synthesis from both CO/H2 

and CO2/H2 mixture. In particular, Burch et al. and Spencer have proposed 

that the ZnO acts as a reservoir for hydrogen and promotes the hydrogen spill-

over [69-71]. Chinchen et al. used a Cu/ZnO system and reported that the 

methanol synthesis reaction happens exclusively on the Cu surface, and ZnO 

acts as a spacer and keeps the copper particles away from each other to 

avoid agglomeration [48, 72]. 

Another perspective was proposed by other researchers, in which the 

morphology of Cu and ZnO particles was found to be responsible for higher 

catalytic activity [32, 73-75]. In methanol synthesis and methanol steam 

reforming, the activity of binary Cu/ZnO catalysts can be related to the 

microstrain in the copper particles [76, 77]. Cu/ZnO stabilized by a series of 

bulkhead defects, surface species [49] and incomplete copper reduction 
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and/or ZnO orientation can cause strain, which modifies the copper active 

surface area, thereby influencing the catalytic activity [76]. Along with the 

strain, the formation of Cu/ZnO alloy also helped to increase the catalytic 

activity [78, 79]. 

In 1970s, Russian scientists showed that methanol was formed from CO2 

rather than CO using kinetic and experimental evidence supported by labeled 

carbon oxide isotope experiments using Cu/ZnO based catalysts [80]. In early 

1980s Klier et al. studied the methanol synthesis mechanism using syngas 

with CO2 and concluded that CO was the primary source and the active site 

was Cu+ dissolved in ZnO [81]. Later, Chinchen et al. performed the reaction 

using an isotope-labelled feed (14CO or 14CO2) with a commercial catalyst and 

claimed that CO2 was the primary source of methanol [82]. Similar results 

were also reported for methanol synthesis using Cu/ZrO2 by investigating the 

reaction intermediates formed from CO and CO2 species adsorbed on the 

catalyst surface [83, 84]. Extensive research has been carried out to obtain an 

understanding of the the intermediates and adsorbed species on the surface 

by various techniques, as IR, DRIFTS, TDS, TPD and chemical trapping, 

investigating all possible species that may adsorb on the surface of the 

catalyst such as CO, CO2, H2, H2O, CH3OH, formaldehyde and methyl formate 

on Cu/ZnO or Cu/ZrO2 catalysts [85-89]. The experimental evidence 

demonstrated the existence of three surface species: formyl, formate and 

methoxy. The IR spectroscopy studies have shown the formation of formyl 

species on the surface of ZnO, Cu/ZnO and Cu/ZnO/Al2O3 from CO and H2 

[71, 81, 90, 91]. The formyl species are unstable and readily undergo 

hydrogenation to form methoxy species, which were also observed on the 

catalyst surface [92]. These methoxy species were found to be more stable 

than formyl but less stable than formates. Hence, many reports have shown 

the existence of formate species on Cu (100) [93, 94], ZnO doped Cu (111) 

[95]. Millar et al. reported that bidentate formates were the intermediate 

species in methanol synthesis and the hydrogenation of these species was the 
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rate determining step in the CO2 hydrogenation reaction [96]. Formate species 

are subsequently hydrogenated via methoxy to methanol, and Cu gets partially 

oxidized. Similar formate species are also observed on Cu-ZnO interface 

during CO hydrogenation to methanol reaction [97]. 

1.2.4 Methanol synthesis: Technology and aspects 

The first commercialised (1920s) syngas to methanol production process 

was operating at pressures of 250-350 bar and 320-450 °C temperature and 

using Cr2O3-ZnO based catalysts [83, 98]. In 1960s, feedstock switchover from 

coal to natural gas allowed the development of the low-pressure methanol 

synthesis process. Overall, the industrial methanol synthesis process is 

divided into three stages: first, the synthesis gas production, then the 

conversion of synthesis gas into methanol and finally crude distillation to 

obtain the desired product [98]. Natural gas is the primary source of syngas 

via the steam reforming process. Additionally, methane can be obtained from 

biomass and coal gasification. The obtained cooled synthesis gas has to pass 

through the gas purification stage, in order to remove the sulfur-containing, 

catalyst-poisoning components. The purified gas is mixed with recycled gas 

and then fed to the reactor, by maintaining a specific H2/CO feed ratio of 3:1 to 

5:1. 

 Figure 1.5 illustrates the typical methanol production flow diagram. As 

stated earlier, methanol synthesis is favored by high pressure, however, most 

of the industrial processes use low pressure, due to which a large fraction of 

unreacted syngas has to pass through the recycling loop, because of the low 

conversion at low pressures [98]. A compressor (f) is used to pressurize the 

feed depending on the desired pressure (50 to 100 bar). Unreacted gas from 

the recycling loop and fresh gas are mixed together and transferred to the 

reactor (a). A purge gas is generally used to keep a certain feed composition 

ratio and to remove the impurities from the synthesis gas. After the reaction, 

the produced methanol and water are separated using a separator (d), and the 
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remaining synthesis gas is recycled and compressed in the compressor (e). 

The methanol synthesis reaction is exothermic, and is typically carried out at 

200-300 °C. The gas passing through the reactor (a) carries heat released 

during the reaction and transferrs it to the feed gas mixture via the heat 

exchanger (b) before the reactor inlet. The outlet product mixture is cooled 

further by a cooler (c) [99]. 

Currently, the commercial methanol production process uses 

Cu/ZnO/Al2O3-based catalysts, which have high catalytic activity, product 

selectivity and thermal stability. The catalysts are synthesized by co-

precipitation and and are available from various suppliers, as KATALCOJM 51-

8 (Johnson Matthey Catalysts), MegaMax 700® (Süd-Chemie) and S3-86 

(BASF). Although the ratio of main components changes from manufacturing 

company to company, the main ingredients, Cu, ZnO and Al2O3 remain the 

same. Furthermore, dopants like rare earth metals and/or stabilizers are also 

added, varying from manufacturer to manufacturer. Although these catalysts 

 

Figure 1.5: Simplified methanol synthesis process diagram: (a) reactor, (b) heat 
exchanger, (c) cooler, (d) separator, (e) recycle gas compressor, (f) fresh gas compressor 
[98].    
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have a lifetime of 2-5 years, sulfur and chlorine-containing impure gas feeds 

and the sintering of copper due to prolonged exposure to hifg temperature 

certainly contribute to a reduction of the catalytic activity over the period. 

A) High pressure approach 

Pressure can have a dramatic impact on chemical reactions. By altering it, 

the reaction rate can be increased, and therefore the product yield. An 

increase in the pressure changes the physical properties of compounds, for 

example, carbon dioxide is a gas at normal temperature and pressure and 

liquefies easily at elevated pressures. During the liquefaction process it is 

removing produced heat at temperatures between triple point and critical point, 

where it reaches its supercritical state, as shown in Figure 1.6 [100]. The 

supercritical state is reached at reasonably mild conditions, at temperatures 

higher than 31.1 °C and pressures above 73.9 bar. The main advantage of the 

supercritical condition is that the substance exhibits liquid phase-like density 

and gas-like transport properties at the same time. Therefore, high pressure 

CO2 has great industrial applications in solvent extraction, food processing, 

 
Figure 1.6: Phase diagram of CO2 [99]. 
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and most importantly, as solvent or reactant in chemical reactions. 

CO and/or CO2 hydrogenation are exothermic reactions and proceed with 

a reduction in the total number of molecules. Hence, low temperatures and 

high pressures are favored for achieving the highest catalytic activity. Besides 

that, high pressure has several other advanatges such as allowing to cross the 

thermodynamic barrier and to achieve very high CO2 conversion, thereby 

avoiding the need for recycling. Beside thermodynamic benefits, due to high 

pressure, the reactants and/or products are compressed and the total reaction 

area plant is reduced, and consequently the capital cost. Additionally, small 

reactor volumes also helps to handle dangerous chemicals like hydrogen more 

safely. As stated earlier, the methanol synthesis reaction is exothermic, thus, 

use of small reactor sizes is also beneficial for efficient mass and heat 

management. The high surface to volume ratio allows for better heat 

management and restricts the formation of hot spots across the catalyst bed. 

The CO2 at high pressure is in supercitical state and together with methanol 

and hydrogen forms multiphase reaction mixtures, which can result in mass 

transfer limitations that can be avoided or minimized by using small reactor 

sizes. The advantages of the high pressure process may results in shifting the 

equilibrium conversion towards products side and therefore enhance the 

catalytic yield [101]. 

B) Thermodynamic aspects 

Carbon dioxide is a linear molecule with a double bond between the 

carbon and each oxygen atom. Due to the high stability of CO2 molecule 

(ΔG°= -394.38 kJ.mol-1),  its activation requires substantial energy input, highly 

active and stable catalysts and optimized reaction conditions. 

   CO2 + 3H2 ⇋ CH3OH + H2O      ΔH298K,5MPa = -40.9 kJ mol-1       (Eq. 1.2) 

    CO2 + H2 ⇋ CO + H2O            ΔH298K,5MPa = +49.8 kJ mol-1       (Eq. 1.3)  

    CO + 2H2 ⇋ CH3OH                ΔH298K,5MPa = -90.7 kJ mol-1        (Eq. 1.4)   
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As shown in Eq. 1.2, CO2 and H2 can react together to form methanol and 

water. The formed water consumes one third of the hydrogen, which is more 

than in the reaction of methanol formation from syngas (Eq. 1.4). The 

reactions shown by Eq. 1.2 and 1.4 are exothermic and take place with loss of 

reactant volume. It is also possible that the reverse water gas shift reaction to 

take place on the catalyst surface using CO2 as feed (Eq. 1.3). In this  case, 

the produced CO undergoes hydrogenation to yield methanol as per Eq. 1.4. 

The reaction of CO2 hydrogenation to methanol (Eq. 1.2) is exothermic and 

proceeds with loss of volume, hence, high pressure and low temperature 

should help to achieve the higher conversion as per Le Chàtelier’s principle. 

Thermodynamic aspects of a chemical reaction are important for 

understanding and predicting the stability of the desired chemical species, the 

yield, conversion and selectivity of the targeted products. Thermodynamics 

also provides information about reaction mixture phases, impact of 

temperature, pressure and feed ratio. Graaf et al. performed the 

thermodynamic study on methanol synthesis using CO, CO2 and H2. They also 

calculated chemical equilibria for methanol synthesis using equilibrium 

constants. The non-ideality of the gas mixture was taken into account by 

including the fugacity coefficients in the equilibrium constants, which were 

calculated using Soave-Redlich-Kwong (SRK) equation of state (EOS) [102]. 

Furthermore, Graaf et al. refined the equation by using experimental data 

[103]. The deviation at equilibrium was fitted using Gibbs energy; they 

established a highly reliable expression for the equilibrium constant. The 

thermodynamic and kinetic aspects of methanol synthesis using CO2 and H2 

were not studied much, compared to the conventional feed of CO, CO2 and 

H2. The model developed by Graaf et al. and Van den Bussche and Froment 

are often applied to model the reaction of methanol synthesis using 

Cu/ZnO/Al2O3 catalysts. These widely applied kinetic expressions were 

primarily based on different assumptions. Graaf et al. stated that CO and CO2 

were the main sources of methanol synthesis. On the other hand, Bussche 
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and Froment assumed that CO2, obtained from CO by WGS, is the main 

source of carbon for methanol synthesis and that the dissociative adsorption of 

H2 and CO2 was the rate-determining step. 

At high pressure, CO2 conversion is induced by the phase transition and 

separation (formation of liquid), associated with condensation of the products 

when the reaction temperature is lower than the transition point, as precisely 

described and demonstrated by van Bennekom et al. [104]. The reported 

model is based on a modified Soave−Redlich−Kwong equation of state, which 
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Figure 1.8: Equilibrium CO2 conversion (XCO2
) and methanol selectivity (SMeOH) 

at different temperatures and at (a) 30 bar, (b) 50 bar, (c) 100 bar, (d) 200 bar, 
(e) 300 bar, (f) 400 bar, and (g) 500 bar, using CO2:H2 (1:3) ratio. 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Introduction and overview 

25 
 

enabled the simultaneous calculation of phase and chemical equilibria that 

occur during high-pressure methanol synthesis (200 bar, 190 to 280 °C). The 

calculated equilibrium CO2 conversion and methanol selectivity as a function 

of pressure and temperature is shown in Figure 1.8. (The other product is CO 

and only Eq. 1.2 to 1.4 were assumed. The calculations were performed with 

the same method described in ref [105]). The CO2 conversion equilibrium 

profile shows a sudden decrease in the CO2 conversion in the case of 100 to 

300 bar pressure, due to phase separation and liquid phase formation. A 

similar phase change was also reported by van Bennekom et al. at 200 bar, 

where it was observed at 240 °C. At pressures of 400 and 500 bar, the CO2 

conversion decreases, which indicates the existence of a single phase at high 

pressure [106]. 

C) The need for stoichiometric ratio 

Carbon dioxide hydrogenation to methanol requires one mole of CO2 and 

three moles of H2. This stoichiometric (1:3) ratio avoids the excess use of 

reactants and recycling of unreacted feed. It is reported that under high 

pressure conditions, an excess of hydrogen partial pressure is required to 

achieve almost full single pass conversion of CO2 and high methanol yield [22, 

23]. Additionally, energy efficiency towards methanol formation is increased, 

because of the suppressed competitive RWGS reaction. 

However, the excess of unreacted pressurized hydrogen needs to be 

separated from the product stream and reused for the reaction. In commercial 

methanol synthesis plants, the accumulation of inert gases during recycling is 

avoided by a purge system, but the purge gases change the feed composition 

for recycling, which causes loss of chemicals and operational costs. The H2 

separation is commercially done by membrane separation, cryogenic 

distillation or pressure swing adsorption, which brings additional costs to the 

process [107]. Furthermore, as stated before, hydrogen production is the 

energy-intensive process in high pressure methanol synthesis, compared to 
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the operational cost of a high pressure system. Hence, achieving full CO2 

conversion at stoichiometric ratio is beneficial from an economic point of view. 

This could be achieved by designing highly active catalysts, as well as 

optimizing the process parameters carefully at CO2:H2 (1:3) ratio.  

1.3 Aim and outline of the thesis 

Recently, our research group showed the advantages of using high 

pressure in the CO2 hydrogenation reaction, where almost full one pass CO2 

conversion and extraordinary methanol yield under high H2 partial pressure 

was obtained. However, full CO2 and H2 conversion at stoichiometric CO2:H2 

ratio (1:3) was not achieved. The aim of this doctoral thesis was to achieve 

complete conversion of reactants and high methanol yield at stoichiometric 

ratio (1:3) of CO2:H2. Controversies still exist on the mechanistic approach of 

CO2 hydrogenation to methanol, hence realistic features of gas phase reaction 

intermediates were also studied at high pressure by space resolved gas 

analysis. To design the model catalyst, comprehensive microstructural 

knowledge is required. Core-shell catalysts were developed to elucidate the 

structure-activity relationship of Cu-ZnO catalyst. 

Chapter 2 describes the setup of high pressure (500 bar) tubular 

continuous flow lab scale reactor used for the high-pressure methanol 

synthesis process. The overview of a Labview-programmed system, which 

controls the complete reactor system with all safety measures is explained in 

detail along with the analytical system. 

Chapter 3 shows the experimental results of the high-pressure CO2 

hydrogenation reaction where all process parameters were carefully optimized 

to achieve extraordinary methanol yield. Thermodynamic calculations were 

performed to estimate the theoretical conversion. The effect of mass transfer 

limitation is shown by varying catalyst particle size. The quantitative analysis 

of the degree of internal mass transfer is explained in detail. 
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Chapter 4 deals with space resolved gas analysis was studies to 

investigate the high pressure CO2 hydrogenation to methanol reaction 

pathway. The space resolved study was performed using a stainless steel and 

sapphire reactor tube with gas analysis at different space intervals. The details 

of the reactor setup and experimental results are explained in this chapter.  

Chapter 5 includes the Cu2O-ZnO core-shell nanomaterial development 

and its activity for methanol synthesis. The synthesis methods were varied to 

obtain different Cu2O and ZnO morphology and to understand the structure-

activity relationship. Detailed investigation of ZnCO3 phase formation at high 

pressure and its effect on catalytic activity was studied by high-pressure 

operando experiments. 

Chapter 6 summarizes the key conclusions of the thesis and highlights its 

relevance and is complemented by an outlook for future research directions. 

 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Chapter 1 

28 
 

Bibliography 

[1] UNFCCC. Decision 1/CP.21: Adoption of the Paris Agreement. Paris Climate Change 
Conference; Paris, France, (2015) Nov 30–Dec 11. 

[2] R. B. Jackson, J.G. Canadell, C. Le Quere, R.M. Andrew, J.I. Korsbakken, G.P. Peters, N. 
Nakicenovic, Nat. Clim. Change , 6 (2015), pp. 7-10. 

[3] D. A. N. Ussiri, R. Lal, Carbon Capture and Storage in Geologic Formations, Carbon 
Sequestration for Climate Change Mitigation and Adaptation, Springer International 
Publishing, Cham, (2017), pp. 497-545. 

[4]  I.E. Agency, CO2 emission from fuel combution, IECD/IEA, France, (2016), pp. 166. 

[5]  S. Arrhenius, Philosophical Magazine Series 5, 41 (1896) pp. 237-276. 

[6] E. Dlugokencky, P. Tans, in, Global Monitoring Division, The National Oceanic and 
Atmospheric Administration, USA, 2017. 

[7]  L. Lemay, in, National ready mixed concrete association, 2010. 

[8] J.T. Kiehl, K.E. Trenberth, Bull. Am. Meteorol. Soc, 78 (1997) pp. 197-208. 

[9] C. Brahic, The impacts of rising global temperatures, New Scientist, US, 2007. 

[10] Large-scale CCS facilities. Retrieved February 1, (2018), from http://www.globalccsinstitute. 
com/projects/large-scale-ccs-projects. 

[11] M.L. Szulczewski, C.W. MacMinn, H.J. Herzog, R. Juanes, Proceedings of the National 
Academy of Sciences, 109 (2012), pp. 5185-5189. 

[12] G. V. Last, M.T. Schmick, in: Richland (Ed.), University of North Texas Libraries, Digital 
Library, Washington, 2011. 

[13]  D. Minett, Department of Chemical Engineering, University of Bath, 2013. 

[14]  E. Alper, O. Yuksel Orhan, Petroleum, 3 (2017), pp. 109-126. 

[15] VCI and DECHEMA, 2009, Position Paper: Utilisation and Storage of CO2, Version 12: 
January 2009. 

[16] S. S. Nam, H. Kim, G. Kishan, M.J. Choi, K. W. Lee, Appl. Catal., A, 179 (1999), pp. 155-
163. 

[17] T. Inui, K. Kitagawa, T. Takeguchi, T. Hagiwara, Y. Makino, Appl. Catal., A, 94 (1993) 31-
44. 

[18] V. A. Goltsov, T.N. Veziroglu, L.F. Goltsova, Int. J. Hydrog. Energy, 31 (2006), pp. 153-159. 

[19] J. R. Rostrup-Nielsen, T. Rostrup-Nielsen, CATTECH, 6 (2002), pp. 150-159. 

[20] A.U., J. Sa, CO2 to Fuels, in: J. Sa (Ed.) Fuel Production with Heterogeneous Catalysis, 
Taylor and Francis Group, Boca Raton, (2014), pp. 318. 

[21] D. Fraile, J. C. Lanoix, P. Maio, A. Rangel, A. Torres, in, Belgium, (2015). 

[22] B. Tidona, C. Koppold, A. Bansode, A. Urakawa, P. Rudolf von Rohr, J Supercrit Fluids, 78 
(2013) pp. 70-77. 

[23] A. Bansode, A. Urakawa, J. Catal., 309 (2014), pp. 66-70. 

[24] D. Sheldon, Johnson Matthey Technology Review, 61 (2017), pp. 172-182. 

[25] The Methanol Institute, http://www.methanol.org/wp-content/uploads/2016/07/6-Combined-
Side-Deck-GFBC-1.pdf (accessed on 28/12/2017). 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Introduction and overview 

29 
 

[26] A. Basile, F. Dalena, Methanol: Science and Engineering, Elsevier Science & Technology 
Books, 2017. 

[27] L. Lloyd, Ammonia and Methanol Synthesis, in:  Handbook of Industrial Catalysts, Springer 
US, Boston, MA, (2011), pp. 397-437. 

[28] W. Balthasar, D.J. Hambleton, Int. J. Hydrog. Energy, 5 (1980) pp. 21-33. 

[29] K.A. Ali, A.Z. Abdullah, A.R. Mohamed, Renew. Sust. Energ. Rev., 44 (2015) pp. 508-518. 

[30] C. Shekhar, in:  MIT Technology Review, Technology Review, 2006. 

[31] F.F.S. P. Davies, Patent no. 3326956,  US (Ed.), UK, 1967. 

[32] J. Yoshihara, C.T. Campbell, J. Catal., 161 (1996) pp. 776-782. 

[33] J.S. Lee, K.I. Moon, S.H. Lee, S.Y. Lee, Y.G. Kim, Catal. Lett., 34 (1995) pp. 93-99. 

[34] E.I. Solomon, P.M. Jones, J.A. May, Chem. Rev., 93 (1993) pp. 2623-2644. 

[35] C. Baltes, S. Vukojevic, F. Schüth, J. Catal, 258 (2008) pp. 334-344. 

[36] F. Arena, G. Mezzatesta, G. Zafarana, G. Trunfio, F. Frusteri, L. Spadaro, J. Catal, 300 
(2013) pp. 141-151. 

[37] P. Gao, H. Yang, L. Zhang, C. Zhang, L. Zhong, H. Wang, W. Wei, Y. Sun, J. CO2 Util, 16 
(2016) pp. 32-41. 

[38] T. Inui, H. Hara, T. Takeguchi, J.B. Kim, Catalysis Today, 36 (1997) pp. 25-32. 

[39] A. Garcia-Trenco, E.R. White, A. Regoutz, D.J. Payne, M.S.P. Shaffer, C.K. Williams, ACS 
Catal., 7 (2017) pp. 1186-1196. 

[40] M. M. J. Li, Z. Zeng, F. Liao, X. Hong, S.C.E. Tsang, J. Catal., 343 (2016) pp. 157-167. 

[41] J. Toyir, P.R. de la Piscina, J. Llorca, J.L.G. Fierro, N. Homs, Phys. Chem. Chem. Phys., 3 
(2001) pp. 4837-4842. 

[42] J. Toyir, P.R.r. de la Piscina, J.L.G. Fierro, N.s. Homs, Appl. Catal., B., 29 (2001) pp. 207-
215. 

[43] J. Toyir, P. Ramıŕez de la Piscina, J.L.G. Fierro, N.S. Homs, Appl. Catal. B., 34 (2001) pp. 
255-266. 

[44] J. Wu, M. Saito, H. Mabuse, Catal. Lett., 68 (2000) pp. 55-58. 

[45] L. Ma, T. Tran, M.S. Wainwright, Topics in Catalysis, 22 (2003) pp. 295-304. 

[46] G.X. Qi, X.M. Zheng, J.H. Fei, Z.Y. Hou, Catal. Lett., 72 (2001) pp. 191-196. 

[47] J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D. J. 
Stacchiola, P. Liu, J. Hrbek, J. F. Sanz, J. A. Rodriguez, Science, 345 (2014) pp. 546-550. 

[48] G.C. Chinchen, P.J. Denny, J.R. Jennings, M.S. Spencer, K.C. Waugh, Appl. Catal., 36 
(1988) pp. 1-65. 

[49] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. 
Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R.W. Fischer, J.K. Norskov, R. Schlogl, Science, 
18, (2012), pp. 893-897. 

[50] T. Lunkenbein, F. Girgsdies, T. Kandemir, N. Thomas, M. Behrens, R. Schlogl, E. Frei, 
Angew. Chem. Int. Ed., 55 (2016) pp. 12708-12712. 

[51] A. Karelovic, P. Ruiz, Catal. Sci. Technol., 5 (2015) pp. 869-881. 

[52] X. An, J. Li, Y. Zuo, Q. Zhang, D. Wang, J. Wang, Catal. Lett., 118 (2007) pp. 264-269. 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Chapter 1 

30 
 

[53] I. Meliancabrera, J. Catal., 210 (2002) pp. 273-284. 

[54] I. Melian-Cabrera, M. Lopez Granados, J.L.G. Fierro, J. Catal., 210 (2002) pp. 273-284. 

[55] I. Melian-Cabrera, M.L. Granados, J.L.G. Fierro, J. Catal., 210 (2002) pp. 285-294. 

[56] I. Melian-Cabrera, M. Lopez Granados, J.L.G. Fierro, Catal. Lett., 79 (2002) pp. 165-170. 

[57] I. Melian-Cabrera, M. Lopez Granados, P. Terreros, J.L.G. Fierro, Catal. Today., 45 (1998) 
pp. 251-256. 

[58] M. Saito, K. Murata, Catal. Surv. Asia., 8 (2004) pp. 285-294. 

[59] M.D. Rhodes, A.T. Bell, J. Catal., 233 (2005) pp. 198-209. 

[60] A. Gotti, R. Prins, J. Catal., 178 (1998) pp. 511-519. 

[61] T.P. Maniecki, P. Mierczynski, W.K. Jozwiak, Kinet. Catal., 51 (2010) pp. 843-848. 

[62] J. Ye, C. Liu, D. Mei, Q. Ge, ACS Catal., 3 (2013) pp. 1296-1306. 

[63] O. Martin, A.J. Martín, C. Mondelli, S. Mitchell, T.F. Segawa, R. Hauert, C. Drouilly, D. 
Curulla-Ferre, J. Perez-Ramirez, Angew. Chem. Int. Ed., 55 (2016) pp. 6261-6265. 

[64] J. Ye, C. J. Liu, D. Mei, Q. Ge, J. Catal., 317 (2014) pp. 44-53. 

[65] M. Behrens, D. Brennecke, F. Girgsdies, S. Kißner, A. Trunschke, N. Nasrudin, S. Zakaria, 
N.F. Idris, S.B.A. Hamid, B. Kniep, R. Fischer, W. Busser, M. Muhler, R. Schlögl, Appl. 
Catal., A, 392 (2011) pp. 93-102. 

[66] G.R. Sheffer, T.S. King, J. Catal., 115 (1989) pp. 376-387. 

[67] G.R. Sheffer, T.S. King, J. Catal., 116 (1989) pp. 488-497. 

[68] T. Fujitani, M. Saito, Y. Kanai, T. Kakumoto, T. Watanabe, J. Nakamura, T. Uchijima, Catal. 
Lett., 25 (1994) pp. 271-276. 

[69] G.J.J. Bartley, R. Burch, Appl. Catal., 43 (1988) pp. 141-153. 

[70] M.S. Spencer, Catal. Lett., 50 (1998) pp. 37-40. 

[71] R. Burch, S.E. Golunski, M.S. Spencer, J. Chem. Soc. Faraday Trans., 86 (1990) pp. 2683-
2691. 

[72] G.C. Chinchen, K.C. Waugh, D.A. Whan, Appl. Catal., 25 (1986) pp. 101-107. 

[73] C.V. Ovesen, B.S. Clausen, J. Schiotz, P. Stoltze, H. Topsoe, J.K. Norskov, J. Catal., 168 
(1997) pp. 133-142. 

[74] R.A. Hadden, B. Sakakini, J. Tabatabaei, K.C. Waugh, Catal. Lett., 44 (1997) pp. 145-151. 

[75] N.Y. Topsoe, H. Topsoe, J. Mol. Catal. A: Chem., 141 (1999) pp. 95-105. 

[76] M.M. Gunter, T. Ressler, B. Bems, C. Büscher, T. Genger, O. Hinrichsen, M. Muhler, R. 
Schlogl, Catal Lett, 71 (2001) pp. 37-44. 

[77 B.L. Kniep, T. Ressler, A. Rabis, F. Girgsdies, M. Baenitz, F. Steglich, R. Schlögl, Angew. 
Chem. Int. Ed., 43 (2004) pp. 112-115. 

[78] T.L. Barr, J.J. Hackenberg, Appl. Surf. Sci., 10 (1982) pp. 523-545. 

[79] Y. Kanai, T. Watanabe, T. Fujitani, M. Saito, J. Nakamura, T. Uchijima, Cat Lett, 27 (1994) 
pp. 67-78. 

[80] Y.B. Kagan, A.Y. Rozovskij, L.G. Liberov, E.V. Slivinskij, G.I. Lin, S.M. Loktev, A.N. 
Bashkirov, Doklady Akademii Nauk SSSR, 224 (1975) pp. 1081-1084. 

[81] K. Klier, V. Chatikavanij, R.G. Herman, G.W. Simmons, J. Catal., 74 (1982) pp. 343-360. 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Introduction and overview 

31 
 

[82] G.C. Chinchen, P.J. Denny, D.G. Parker, M.S. Spencer, D.A. Whan, Appl Catal., 30 (1987) 
pp. 333-338. 

[83] J. Weigel, R.A. Koeppel, A. Baiker, A. Wokaun, Langmuir, 12 (1996) pp. 5319-5329. 

[84] I.A. Fisher, A.T. Bell, J. Catal., 172 (1997) pp. 222-237. 

[85] Y. Yang, C.A. Mims, D.H. Mei, C.H.F. Peden, C.T. Campbell, J. Catal, 298 (2013) pp. 10-
17. 

[86] Y. Wang, C. Woll, Chem. Soc. Rev., 46 (2017) pp. 1875-1932. 

[87] Y. Zhang, R. Yang, N. Tsubaki, Catal. Today, 132 (2008) pp. 93-100. 

[88] R. Yang, Y. Zhang, N. Tsubaki, Catal. Commun., 6 (2005) pp. 275-279. 

[89] J. Schumann, J. Krohnert, E. Frei, R. Schlogl, A. Trunschke, Top. Catal., (2017). 

[90] J. Saussey, J.C. Lavalley, J. Lamotte, T. Rais,  J. Chem. Soc., Chem. Comm., (1982) pp. 
278-279. 

[91] R.M. Agny, C.G. Takoudis, Ind. Eng. Chem. Prod. Res. Dev., 24 (1985) pp. 50-55. 

[92] J. Saussey, J.C. Lavalley, J Mol Catal., 50 (1989) pp. 343-353. 

[93] P.B. Rasmussen, P.M. Holmblad, T. Askgaard, C.V. Ovesen, P. Stoltze, J.K. Norskov, I. 
Chorkendorff, Catal. Lett., 26 (1994) pp. 373-381. 

[94] P.A. Taylor, P.B. Rasmussen, C.V. Ovesen, P. Stoltze, I. Chorkendorff, Surf. Sci, 261 
(1992) pp. 191-206. 

[95] T. Fujitani, I. Nakamura, T. Uchijima, J. Nakamura, Surf. Sci, 383 (1997) pp. 285-298. 

[96] G. J. Millar, C.H. Rochester, K.C. Waugh, Catal. Lett., 14 (1992) pp. 289-295. 

[97] J. E. Bailie, C.H. Rochester, G.J. Millar, Catal. Lett., 31 (1995) pp. 333-340. 

[98] P. J.A. Tijm, F.J. Waller, D.M. Brown, Appl. Catal., A,: General, 221 (2001) pp. 275-282. 

[99] E. Fiedler, G. Grossmann, D.B. Kersebohm, G. Weiss, C. Witte, Methanol, Ullmann's 
Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000. 

[100] Lower, General chemistry text book maps, 2018. 

[101] J.G. van Bennekom, J.G.M. Winkelman, R.H. Venderbosch, S.D.G.B. Nieland, H.J. 
Heeres, Ind. Eng. Chem. Res, 51 (2012) pp. 12233-12243. 

[102] G.H. Graaf, P.J.J.M. Sijtsema, E.J. Stamhuis, G.E.H. Joosten, Chem. Eng. Sci., 41 (1986) 
pp. 2883-2890. 

[103] G.H. Graaf, J.G.M. Winkelman, Ind. Eng. Chem. Res., 55 (2016) pp. 5854-5864. 

[104] J.G. van Bennekom, R.H. Venderbosch, J.G.M. Winkelman, E. Wilbers, D. Assink, K.P.J. 
Lemmens, H.J. Heeres, Chem. Eng. Sci., 87 (2013) pp. 204-208. 

[105] R. Gaikwad, A. Bansode, A. Urakawa, J. Catal., 343 (2016) pp. 127-132. 

[106] A. Alvarez, A. Bansode, A. Urakawa, A.V. Bavykina, T.A. Wezendonk, M. Makkee, J. 
Gascon, F. Kapteijn, Chem. Rev., 117 (2017) pp. 9804-9838. 

[107] W.L. Luyben, Ind. Eng. Chem. Res., 39 (2000) pp. 1529-1538. 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Chapter 1 

32 
 

 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



 

 

 

 

 

 

 

 

 

 

 

    2. 

                 Materials and  

     methods 
 

 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Chapter 2 

34 
 

Scope  

This chapter covers two topics, first, the synthesis procedures of Cu-ZnO 

nanomaterials by different synthesis approaches, and second the description 

of the high-pressure reactor set up for methanol synthesis as well as different 

reactor configurations for operando experimental studies (Chapter 4 and 5). 

2.1 Catalysts synthesis 

The main goal of the catalyst synthesis is to obtain an ideal catalyst which 

shows the high reactants conversion and an excellent desired product 

selectivity under the optimized reaction conditions over a long period of time. 

Many different types of copper-based catalysts and its preparation routes have 

been reported in the literature. The ideal catalyst should have a smaller copper 

particle size, high copper surface area and minimum copper agglomeration at 

high temperature. Although the role of ZnO in methanol synthesis catalyst is 

highly debated, it has been widely accepted that there exists Cu-ZnO synergy, 

in which ZnO acts as a spacer between the copper particles to avoid 

agglomeration [1, 2]. Addition of a high surface area aluminium oxide (γ-Al2O3) 

to Cu-ZnO not only provides the support, but also enhances the thermal 

stability at high temperature during the reaction. Various supports have been 

tested including ZrO2, SiO2, GaO2, TiO2, however, the direct role in the 

reaction apart from acting as a support has not been observed [4]. The 

catalyst synthesis method highly depends on its application and reaction 

process requirement. Coprecipitation, impregnation, sol-gel, hydrothermal, and 

nanomaterial synthesis are few among others which are widely used in 

laboratory scale synthesis, and even at industrial scale synthesis. The 

catalysts synthesized by coprecipitation are considered robust and contains 

homogeneous mixture of metal oxides. The ease of synthesis and high 

reproducibility even at a bigger scale made it widely applicable for the large-

scale synthesis and employable for industrial chemical processes. 
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At present, most of the commercial methanol synthesis processes use the 

Cu/ZnO/Al2O3 based ternary catalyst which is generally synthesized by 

coprecipitation method. Johnson Matthey, Sudchemie, Haldor Topsoe, BASF 

are the major catalyst producer companies. The molar concentration of each 

component in Cu/ZnO/Al2O3 is in the range of CuO = 50-70%, ZnO = 20-50%, 

Al2O3 = 5-20% [5]. Various factors affect the catalytic properties during the 

synthesis process. For instance, the precursor mixing, precipitation and 

subsequent treatments like aging, washing, drying, calcination, and reduction 

can have an influence on the ultimate microstructure of Cu/ZnO/Al2O3 

catalysts. Figure 2.1 shows the commercial methanol synthesis catalysts 

pellets and particles. The catalyst was purchased from Alfa Aesar (Product ID: 

45776). This catalyst was used for high-pressure methanol synthesis and 

mechanistic studies, explained in Chapter 3 and 4, respectively. 

A) Nanomaterial synthesis 

The other class of catalyst synthesis is nanomaterial synthesis approach, 

in which controlled synthesis of metal oxide with specific size helps to obtain a 

uniform, size, and shape-controlled metal oxide in different morphology [6]. 

The particular reaction demand of small copper size to avail high surface area 

can be fulfilled by nanomaterials. With this nanomaterial synthesis approach, it 

is expected to achieve smaller particle size, more uniform morphology and 

higher surface area of metal oxide nanoparticles. In this study, Cu and ZnO or 

 

Figure 2.1: Commercial Cu/ZnO/Al2O3 catalyst from Alfa Aesar a) Catalyst pallets of 

5.4*3.6 mm size b) Crushed and sieved 100-300 µm particle size. 
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Al2O3 were synthesized using different synthesis approach to get smaller 

copper particles which are either coated or separated by ZnO or Al2O3 to avoid 

agglomeration of copper particles at a higher temperature. 

2.1.1 Chemicals and catalyst synthesis 

All the chemical reagents were used as purchased from Sigma-Aldrich, 

Fluka, Alfa Aesar and Acros without further purification. Copper (II) 

acetylacetonate (Cu(acac)2, Acros, ˃98%), Copper methoxide (Cu(OMe)2, 

Sigma-Aldrich, 97%), Copper (I) acetate (Sigma-Aldrich, 97%), Aluminium 

oxide as catalyst support (Alfa Aesar, 1/8" pellet), Zinc acetate (Sigma-Aldrich, 

99.99%), Benzyl alcohol (BnOH, Sigma-Aldrich, puriss), Acetophenone (AcPh, 

Sigma-Aldrich, puriss), Benzylamine (BnNH2, Fluka, ≥99.0%). 

Based on the literature and material synthesis understanding, we chose 

following synthesis pathways to prepare copper with zinc or aluminium oxide 

nanomaterials. 

A) Scheme 1: Synthesis of Cu (I) on γ-Al2O3 

Copper methoxide (0.2 g) was mixed with 15 mL acetophenone in 30 mL 

glass vial under argon and then heated in an oil bath at 120 °C for 12-24 h, 

with constant stirring. The final reaction solution of yellow precipitate was 

cooled, washed with ethanol, and centrifuged at 4000 rpm for 10 min. to 

remove the organic residue. The precipitate was dried in an oven at 60 °C 

overnight. The XRD pattern of the dried precipitate shows the formation of 

pure Cu2O phase with the crystalline size of 21 nm determined by Scherrer 

equation. Similarly, another reaction was also carried out with an addition of γ-

Al2O3 support into the reaction mixture. As shown in Figure 2.2b, the SEM 

image shows that the Cu2O particles were completely dispersed into the γ-

Al2O3 matrix. The synthesis process was optimized further to obtain the 

smaller and more uniform Cu2O particles, as shown in Scheme 2. 
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B) Scheme 2: Synthesis of Cu⁰ on α- and γ-Al2O3 

In order to achieve smaller and well dispersed copper particles, the 

synthesis method reported by Kränzlin et al. was adopted for metallic copper 

synthesis [7]. The synthesis method was modified by addition of α-Al2O3 into 

the reaction mixture of copper acetylacetonate (7.6g) dissolved in 300 mL of 

benzyl alcohol in a 500 mL glass bottle. The bottle was heated up to 183 °C 

under constant stirring by using an overhead stirrer and was kept at that 

temperature for 3 to 15 h. Finally, the reaction mixture was cooled down, 

centrifuged at 4000 rpm for 10 min, and washed with ethanol and acetone. 

Then the obtained catalyst powder was dried overnight in an oven at 60 °C. 

The PXRD pattern confirmed the formation of pure Cu (0) phase. The SEM 

image (Figure 2.3a) also shows that the Cu (0) particles covered the α-Al2O3 

platelets completely. A very dense thick layer of Cu (0) particles were 

 

Figure 2.3: The figure shows the a) SEM of Cu (0) on α- Al2O3 platelets and b) TEM 
of Cu (0) on γ- Al2O3 powder. 

 

 

Figure 2.2: SEM images of a) Cu (I) and b) Cu (I) on γ- Al2O3 powder. 
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observed, which probably possessed a low copper surface area. This catalyst 

might not represent the ideal catalyst for methanol synthesis. Therefore, the 

higher surface area γ-Al2O3 support was added in the reaction mixture instead 

of intrinsically low surface area α-Al2O3 support. The TEM image (Figure 2.3b) 

shows that the smaller particle size of Cu (0) dispersed γ- Al2O3 support can 

be achieved. 

C) Scheme 3: Synthesis of Cu3N on γ-Al2O3 

It was reported that an ultra-small copper particle size can be synthesized 

by the copper nitride (Cu3N) method developed by Deshmukh et al. This 

method yields Cu3N particles with the size of 3-4 nm (Figure 2.4a), which can 

further decomposes to copper (II) oxide in air. In typical synthesis, 0.05 g of 

copper ethoxide was mixed with 5 mL of benzylamine in a 10 mL glass tube 

under argon atmosphere. The reaction mixture was then heated in an oil bath 

at 160 °C for 30 min. to produce Cu3N precipitate. The precipitate was washed 

with pentane twice, and finally dried in an oven at  60 °C [3]. Using similar 

synthesis approach, the Cu3N/γ-Al2O3 catalyst was prepared by adding γ-Al2O3 

support into the reaction mixture. As a result, the well-dispersed Cu3N 

particles on γ- Al2O3 were achieved, as shown in the Figure 2.4b.  

 

Figure 2.4: TEM images of a) Cu3N [3] and b) Cu3N on γ- Al2O3 powder. The image a) 

is reprinted with permission from ref. [3]. Copyright (2015) American Chemical Society. 
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The Cu3N supported on γ-Al2O3 was further decomposed to metallic 

copper Cu (0) at 250 °C in 5% H2 in N2 atmosphere. As a result, the copper 

particles agglomerated and increased the particle size to 42 nm. 

D) Scheme 4: Cu2O-ZnO core-shell morphology 

The sol-gel method allows tailoring of size and shape of the resulting 

compounds by proper choice of metal precursor and reaction conditions [8]. 

Idalia et al. reported synthesis of metal oxide from metal acetate precursor 

using benzyl alcohol as an oxygen-containing mild surfactant to control the 

size and morphology of the metal oxide [9-11]. The catalyst was synthesized 

by mixing copper acetate (0.05g) with 5 mL of benzyl alcohol in a 10 mL glass 

tube under argon gas. The reaction mixture was then placed in a microwave 

oven with 300 W heating power and 2.45 GHz frequency operating at 160 °C 

for 3 min. under constant stirring. After microwave irradiation, the flask was 

removed from microwave oven and allowed to cool at room temperature. A 

reddish-brown product was obtained. The product was washed three times 

using ethanol and diethyl ether, centrifuged at 4000 rpm for 20 min. and dried 

in an oven at 60 °C.  

Figure 2.5a shows the SEM image of the cuprous oxide sphere, probably 

formed by interlocking oxide cubes, which can be confirmed from the sharp 

edges of the sphere and also some isolated cubical structure of the oxide. 

 

Figure 2.5: SEM images of a) Cu2O and b) Cu2O-ZnO. 
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XRD confirmed the formation of pure cuprous oxide phase. In the similar 

way, another synthesis was performed by mixing both copper acetate and zinc 

acetate with benzyl alcohol. Figure 2.5b shows the SEM image of the 

synthesized material, in which cuprous oxide formed a spherical core covered 

by small zinc oxide nanoparticles. The synthesis process was optimized for 

Cu2O-ZnO core-shell nanomaterial by preparing material at different time 

intervals. The color of the solution was changed with time intervals from blue 

to reddish orange confirming the reaction completion and product formation, 

as shown in Figure 2.6. The time -30 and -60 seconds (sec) shows the 

dissolution of metal precursor with increasing temperature. In order to reach 

the reaction temperature of 160 °C, approx. 60-80 sec of irradiation time were 

required at 300 W power. The zero second (0 sec) indicates that the 

temperature has reached the set point. The color of the solution was changed 

from blue to reddish orange as the reaction started from 0 to 180 seconds of 

continuous heating. The reaction was further performed at different 

temperature, 140, 150, 160, and 170 °C for 180 seconds. It was found that the 

 

Figure 2.6: Synthesis of Cu-ZnO nanomaterial at different time interval (in seconds) 

using microwave at 160 °C, 300 W power with constant stirring. 
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product formed at 160 °C shows a complete conversion and uniform material 

morphology. 

The material synthesized using microwave as a heating source yielded 

very low quantity of the final product due to small volume. Hence, the 

synthesis method was changed from microwave heating to oil bath heating 

which facilitate higher quantity of final product due to larger synthesis volume. 

At the beginning, Cu2O and ZnO were separately synthesized to optimize the 

synthesis time at 160 °C. Figure 2.7 shows the different synthesis stages of 

Cu2O and ZnO. After 25 min. of reaction, the solution changed to reddish 

orange for Cu2O (Figure 2.7a,b,c) and white for ZnO (Figure 2.7d,e), which 

confirmed the completion of reaction. The phase purity and morphology of 

Cu2O and ZnO was also confirmed by XRD and SEM analysis, respectively. 

By using the optimized synthesis conditions, the Cu2O and ZnO were 

prepared concurrently to obtain desired core-shell morphology. The copper 

and zinc acetate precursor were mixed together with benzyl alcohol and 

heated up to 160 °C using oil bath. Figure 2.8 shows the color change during 

the synthesis of Cu2O-ZnO nanomaterial in an oil bath. 

 

a) b) c)

e)d)

 

Figure 2.7: Synthesis steps of Cu2O a) Initial b) Intermediate c) final, and for ZnO d) 
initial and e) final. 
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All the synthesized catalysts were characterized and tested for thermal 

stability by heating under nitrogen flow. The core-shell Cu2O-ZnO synthesized 

by non-aqueous sol-gel method showed good stability with minimum 

agglomeration. Hence, the catalyst synthesized by Scheme 4 using oil bath 

was used for experimental studies. The details of optimal synthesis conditions 

and experimental results are explained in Chapter 4. 

 

 

Figure 2.8: Synthesis steps of Cu2O-ZnO a) Initial b) and c) Intermediate d) final. 
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2.2 Experimental setup and catalytic tests 

Continuous flow tubular reactor is a popular and widely accepted choice in 

heterogeneous catalysis. It enhances heat and mass transfer, provides 
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precise residence time control, shortens overall process time, and improves 

safety, reproducibility, product quality and scalability [12, 13]. Such 

advantages are the main reasons for implementing flow reactors not only in 

academia, but also at an industrial scale. Lab-scale small catalytic tubular 

reactors vary in the range of micron to few millimeters, which provides the 

safety, due to low reaction volume. This safety is not only in the context of 

solvent or hazardous chemical synthesis but instead, small reactor volume 

provides minimum severity in case of accidents. The controlled feeding rate of 

reactants for exothermic reaction with fast kinetics suits as a perfect example 

for flow reactors due to high mass and heat transfer rate. Such advantages of 

tubular flow reactor make it the best candidate for high-pressure reactions 

over conventional reactors batch reactors [14]. Figure 2.9 shows the 

schematic representation of high-pressure tubular reactor system used in this 

research work for CO2 hydrogenation reaction. 

2.2.1 Working principle of flow reactor 

A tubular homemade fixed bed high-pressure reactor was designed and 

developed during the research work. It consists of a stainless steel (SS) 

reactor tube (Swagelok, Europe) with an inner diameter of 1.7 mm or 3.05 mm 

and length approx. 21 cm was placed in the temperature controlled oven along 

with a thermometer. The heating plates were made up of two stainless steel 

blocks, with a length approximately 15 cm. The lower SS heating block was 

heated by means of resistive heating cartridge with a capacity of 750 W (200 * 

20 mm, Watlow), placed below the SS body as shown in Figure 2.10. The 

complete assembly of SS heating body with heating cartridge was placed in a 

heat insulating ceramic block, to avoid heat loss. The thermocouple (K type, 

Watlow, 1.6* 150 mm) was placed along with axial direction of reactor tube 

with end in L shaped mortise, to make direct contact with the reactor and get 

more accurate temperature near catalyst bed. The reactor temperature was 

controlled using PID controller from Watlow (EZ-zone). The top SS plate 

covered with a ceramic block was placed from the top, to cover the reactor 
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tube. Both ceramic blocks were wrapped entirely in aluminium foil for better 

insulation and handling. 

For the high-pressure system, two components play crucial role: first, a 

back pressure regulator (BPR) that regulates the overall system pressure and 

second, a syringe pump that delivers the stable and continuous feed. 

Identification of the BPR which can control low a flow rate (in few mL) at high 

pressure (up to 510) bar was significantly challenging. The Jasco BPR (BP-

2080 Plus) provided an effective solution. The high-pressure syringe pump 

that delivers the premixed gas feed to the reactor is also an important part of 

pressure controlling system. Traditionally, the gas flow has been controlled 

using a mass flow controller (MFC) where gas cylinder pressure drives the 

flow through the MFC. It was challenging to avail a MFC which can dispense 

gas at pressures higher than 400 bar, hence, the high pressure syringe pump 

was the best solution. The Teledyne ISCO syringe pump was identified as the 

best possible choice to work with low flow rates and high pressures. These 

pumps are unique as they can work at constant pressure as well as constant 

flow mode. 

 
Figure 2.10: Reactor heating system with insulating material. 
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The feed gas was passed using high-pressure syringe pump (Teledyne 

ISCO, 260 D) to achieve the stable feed flow. The desired CO2 and H2 gas 

ratio was obtained by using premixed gas composition cylinder with fixed 

concentration with an internal standard for GC analysis. The premixed feed 

gas of CO2:H2 (1:3) with feed composition of 23% CO2, 69% H2 and 8% Ar 

was supplied by Abelló Linde (Spain). Since the density plays an important 

role at high pressure, and a change in the ambient temperature, changes the 

density of the composition, hence constant temperature was provided by 

jacket covering the syringe pump cylinder. The temperature of the pump 

cylinder was kept constant at 20 °C by water circulation. The outlet of the 

syringe pump was connected to a ball valve and further to the reactor. As 

depicted in Figure 2.11 low-pressure H2 mass flow controller (Bronkhorst, Hi-

Tec) was used to pass hydrogen for catalyst reduction prior to the reaction. 

The outlet of H2-MFC was connected to a needle valve before a tee-fitting that 

was connected with the syringe pump outlet. Furthermore, the tee outlet was 

connected to a rupture disc RD-1 (HiP) before the reactor inlet to avoid the 

excess pressure condition. The pressure drop across the catalyst bed was 

measured with two pressure transmitters PI-1 and PI-2 (STW, Germany) 

placed at inlet and outlet of the reactor. These pressure transmitters were 

connected to a digital pressure readout system (HaoYing, China). The total 

reaction pressure in the reactor system was controlled by a back pressure 

regulator (model BP-2080 Plus, Jasco, Japan), specially designed for 

supercritical fluids with minimum dead volume. The main components of BPR 

such as valve rod, needle, seal, and seat were kept at higher temperature (80 

°C) to avoid condensation of liquefied products. At the outlet of the reactor, 

inline filter frit (10 µ) was placed inside the 1/16" union to avoid any trans-pass 

of catalyst particles to the BPR. The outlet of the BPR carrying product stream 

was fed directly to the gas chromatography through the transfer line heated at 

150 °C to keep the products in the vapor phase. A flow meter was used 

(MesaLabs DryCal Definer 220) to measure the flow rate at the outlet of the 

GC. 
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2.2.2 Analytical system 

The concentration of reactant and products were analyzed by the gas 

chromatography (Bruker, GC 450) equipped with manual as well as online 

injection functionality. The GC method was developed to detect all possible 

products from CO2 hydrogenation as well as Fischer-Tropsch reaction. The 

GC has been equipped with three 6-port valves. Figure 2.12 is showing a 

schematic representation of the configuration of 6-port valves. The products 

were detected by TCD (Thermal Conductivity Detector) and FID (Flame 

Ionization Detector) operating in parallel mode. The valve compartment was 

heated at 150 °C to avoid condensation of any liquid products. Helium was 

used as a carrier gas on both the channels. The TCD channel was equipped 

with HayeSep-Q (0.5 m * 1/8" * 2 mm) and CP-Molsieve-13X (1.5 m * 1/8" * 2 

mm) packed column connected in series. Two independent 6-port valves were 

used for the injection of the sample from a 10 µl and 250 µl sample loop on 

TCD and FID channels respectively. The HayeSep-Q column on TCD channel 

pre-splits the product mixture into permanent gases (O2, H2, N2, CO, CH4) and 

other components like CO2, methanol, dimethyl ether, and hydrocarbons. 

Then the permanent gases were passed to the CP-Molsieve column using a 6-

port valve. To the FID channel, a CP-WAX 52CB (25 m x 0.53 mm, df= 2µm) 

 

Figure 2.12: Schematic representation of GC configuration with sampling valves. 
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capillary column was connected to separate compounds such as alcohols, 

aldehydes, acetates. The injector of FID channel was operated in a split mode 

with spilt ratio of 1:10. The column oven was kept at a constant temperature at 

45 °C for 3.50 min. to allow better separation of permanent gases. Followed by 

increasing the oven temperature to 150 °C at the rate of 15 °C min-1. The total 

analysis time was 12 min. including the 0.50 min. for the stabilization of oven. 

A 4-port valve (not shown) was used as stream shut off valve during the online 

injection of sample.  

The data acquisition and analysis were performed by Varian Galaxie 

software. The calibration of the detected components was carried out using 

the external standard method. The known gas composition mixture was 

injected to obtain calibration curve in the acquisition software. In case of liquid 

phase products like methanol, methyl formate, a 1.5 L tedler bag was used to 

make liquid components mixture in a certain ratio. Typically, the known volume 

of the N2 gas used to fill in the bag using MFC to keep the calibration liquid in 

vapor form. Highly pure known amount of liquid used to inject in the tedler bag 

through the septa using an appropriate syringe. The tedler bag with injected 

liquid mixture was kept for some time to make sure that the liquid vaporized 

and equilibrated. After confirmation that no liquid droplets observed inside the 

bag, the outlet of the tedler bag was connected to the inlet of the GC and 

followed the usual procedure for the injection and analysis. 

2.2.3 Reactor automation 

LabVIEW software (National Instruments) was used to control the reaction 

parameters. Figure 2.13 shows the screenshot of the LabVIEW program which 

was used to control and monitor the high-pressure reactor remotely. The 

programme was able to communicate with a syringe pump, temperature 

controllers, pressure indicators and a back pressure regulator. The 

communication between various components and computer was achieved 

using serial port communication. An 16-port RS232 communication hub 

(MOXA Uport 1610-16) was connected to the computer using USB 2.0 
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connection. To this hub, all the instruments were connected using the DB9 

RS-232 connector. To carry out reactions in highly safe manner, the 

programme was equipped with an alarm system which keeps a record of all 

the process values within the configured limits. Deviation of any process 

parameter from the desired value activates an emergency shutdown 

procedure. The shutdown procedure sets all the flow controllers to zero and 

turns off the heating system while displaying blinking alarms on the LabView 

control panel. The inlet and outlet pressure of the reactor were monitored 

continuously, and the corresponding pressure drop across the catalyst bed is 

displayed on the screen. If the value of pressure drop across the catalyst bed 

increases above the desired set value, the emergency shutdown procedure 

gets activated. Any overshoot of temperature and/or flow also activates the 

emergency shutdown procedure. Together with LabVIEW based safety 

system, all the devices have its own internal alarm facility which was 

configured carefully to ensure the safe operation of the reactor system. To test 

the catalyst at different temperatures and flow conditions, the respective 

program recipe was developed. The pump flow and temperature controllers 

can be operated in auto or manual mode. In auto mode, the values from the 

temperature program recipe were sent to the instrument while in manual mode 

it was possible to enter the set points directly. The temperature control section 

also shows the heater power applied to the heating system together with the 

PID parameters. All the process parameters values which are displayed and 

can be controlled from the software were logged in a file along with the real 

time. 
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2.2.4 Safety 

The hydrogenation reaction was performed at elevated temperature and 

pressure, which could pose a risk that must be eliminated to work in a safe 
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environment. The reaction using fixed bed reactor in SS tube helps to perform 

the reaction even at high pressure up to 1034 bar due to an enhanced 

thickness of the tube, but increasing temperature lowers the maximum working 

pressure. Besides building a complete robust system for harsh reaction 

conditions, special care has been taken for safety, by implementing several 

safety features. 

A) A rupture disc was placed after the feed pump, inline with room 

temperature gas feed before the hot reactor zone, which is standard 

protocol in high-pressure setup. It consists of a thin rupture disc which 

is always in contact with pressurized fluid on one side and ambient air 

on other side. It constitutes purposely created weakest point of the 

reactor system with maximum pressure limit (bursting limit) 515-535 

bar, and in case of overpressure emergency, the disc breaks and 

directs the contents of reactor to a safe vent. 

B) The syringe pump automaticaly stops in case of overpressure which 

exceeds limits defined by the user gets detected. This system is also 

connected to LabVIEW programme which triggers the alarm condition 

and shuts down the overall operation of reactor. 

C) The overall system pressure is controlled by BPR, thanks to Jasco 

BPR which has its own internal safety features. A user can define the 

maximum pressure limits for BPR and in case of over pressure the 

BPR releases the pressure from the outlet. 

Prior to commissioning a shake-down was performed to verify the system 

integrity. The pressure was increased by steps of 50 bar up to 510 bar and 

leak test was performed using soap solution. The inlet and outlet of the system 

were closed at 510 bar and left overnight to observe any small pressure drop 

due to a minor leak in the system. After confirmation of leak-proof system, the 

reactor was heated with ramp rate of 2 °C min-1 at 510 bar and at each 50 °C 

the system was checked for the, no leaks were observed and confirmed 
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successful shake-down process. Similar protocol was followed in case of any 

major changes or spare parts replacement in the reactor system. 

2.3 Working with the reactor 

A standard operating procedure was developed for catalysts loading in the 

reactor and pressurizing the system, as these are the important steps during 

routine operation. Improper loading of catalyst in the reactor tube could sweep 

away the catalysts particles and/or create higher pressure drop across the 

catalyst bed making operation impossible. 

2.3.1 Catalyst loading 

The loading of the catalyst particles in the reactor is the crucial part of the 

reactor system. Initially, the catalyst powder was finely grounded and then 

pressed in the pellet die with 5 ton of pressure to form a pellet. Later the pellet 

was crushed using mortar and pestle and sieved using 100-300 µm and 10-20 

 

 

Figure 2.14: Reactor tube with catalyst loading. 
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µm mesh. Before loading the catalyst into the 1/8" or 1/4" tube reactor, a small 

piece of a zig-zag tube was placed from the bottom of the reactor around 3-4 

cm length as shown in Figure 2.14. This tube acts as a support for the catalyst 

and prevents the catalyst bed movement due to pressure or the gas flow. A 

small portion of this tube was left outside of the reactor to allow its easy 

withdrawal from reactor tube after the reaction. Quartz wool was placed above 

this tube into the reactor from the top; care needs to be taken while inserting 

quartz wool to avoid it forming small fine particles that can block the reactor 

and increase the pressure drop. The total length of the inserted tube and 

quartz wool was around 4-6 cm. The sieved catalyst particles were carefully 

added into the reactor from the top. 

The reactor is tilted and tapped gently to allow the catalyst particles to 

flow through the reactor and settle on the quartz wool. The procedure followed 

2-3 times to make sure that the catalyst bed is uniformly packed. The total 

catalyst bed length was varied from 2-10 cm depending on the density of the 

catalysts, reactor tube size and desired space velocity. The top portion of the 

catalyst bed left open inside the reactor for easy and complete catalyst 

recovery.  

2.3.2 Reactor operation 

A reactor tube prepared as mentioned in section 2.3.1 was then placed 

into the furnace and was connected to the system using 1/8" or 1/4" 

compression fittings. The furnace was kept horizontally on the moving stage 

which allows the up and down movement of the furnace. The reactor was 

pressurized to a desired reaction pressure to find any leaks into the reactor 

compression fittings prior to any catalyst treatment. The reactor was 

depressurized and made ready for the catalyst reduction before the reaction. 

The 10% H2 in Ar was used to reduce the catalyst at 330 °C for 2 h at 

atmospheric pressure. The heating ramp was kept 2 or 10 °C min-1. After 

reduction, the heating was turned off to cool down the reactor. In order to cool 

down faster, the heating furnace was lowered, so the reactor tube was directly 
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exposed to the atmospheric temperature under steady state flow of H2/Ar. 

Then the gas flow turned off and hydrogen was flushed out using CO2/H2 

composition mixture from the syringe pump at 20 bar several times, to make 

sure that no excess of H2/Ar left in the reactor or in the system. The BPR was 

set to the desired pressure and the reactor was pressurized using CO2:H2 

(1:3) premixed gas composition using syringe pump operating in a constant 

pressure mode. After attending the desired pressure, the syringe pump´s 

constant pressure mode was switched to the constant flow rate mode to 

establish steady flow through the reactor. The flow rate at the outlet of the 

BPR was measured with a volumetric flow meter to estimate the 

corresponding GHSV. The outlet of the BPR was connected to a water 

condenser which prevents water from entering into GC column. After water 

removal, the feed goes to the GC for identification and quantification of the 

reactant and products from the reactor outlet. The reactor was kept at the 

ambient temperature to get steady state desired feed gas composition. 

Once the steady state feed composition was ensured by the GC, the 

heating furnace was then raised up, to place the reactor into the furnace and 

covered with insulating material. The reaction was carried out at different 

temperatures ranging from 160 to 340 °C. The LabVIEW temperature 

programme was used to scan the various temperatures at desired time span. 

The CO2 conversion was determined directly from the CO2 molar 

concentration measured by the TCD detector. The detection limits for 

methanol and CO were 10 and 200 ppm, respectively, based on the signal to 

noise (S/N) of the chromatograms. This ensures the accuracy of CO2 

conversion, better than 0.1 %. The conversion and selectivity values were 

calculated by averaging over several injections after stabilization of product 

concentrations. In an experiment, during reaction, each temperature and 

pressure were kept for 3 h and analyzed the outlet gases after each 12 min. 

using GC. The tendency and accuracy of the catalytic performance were 
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ensured by minimum two runs carried out on different days. The standard 

deviations for CO2 conversion and product selectivities were < 2.2 %. 

2.4 Conclusions 

A high-pressure lab scale micro-reactor setup for the continuous catalytic 

hydrogenation of CO2 at pressures up to 510 bar was successfully 

constructed. The stable feed gas flow was achieved by using syringe pump 

whereas a high pressure BPR was used to control overall reaction pressure. 

The product analysis was carried out by using online GC system equipped 

with two parallel detection channels. The GC method for product separation 

was successfully developed. Premixed feed gas composition brings the 

advantage of less feed stabilization time at high reaction pressure and low flow 

rate. It also ensures the constant feed composition gas flow through the 

syringe pump. The LabVIEW program facilitated the automation of the reactor 

to monitor and control the critical parameters of the system remotely. The 

temperature and flow program feature in LabVIEW program allowed to scan 

various temperatures and flows automatically for the given catalyst. 

Furthermore, the emergency shutdown function enabled unmanned and safe 

operation of the reactor during the nights and over the weekend. 
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3.1 Introduction 

The high-pressure conditions in the synthesis of methanol from syngas (CO 

and H2 mixture typically containing some fraction of CO2) have been known over 

the last 90 years [1]. Since 1966, the trend has shifted to lower pressure 

methanol synthesis (<100 bar) using highly active Cu-ZnO based catalysts [3]. 

Using these Cu-ZnO based catalysts which are most common for methanol 

synthesis nowadays, high-pressure advantages in methanol synthesis by the 

hydrogenation of CO and particularly CO2 had not been explored and 

documented for a long time, except the excellent work reported by Ipatieff and 

Monroe in 1945 for Cu-based catalysts [4]. Recently, we reported a range of 

high-pressure reaction conditions, yielding remarkable almost-full one-pass 

conversion of CO2 to methanol with high selectivity using Cu/ZnO/Al2O3 

catalysts and also to methanol-derived products such as dimethyl ether (DME) 

by co-presence of an acidic zeolite [5]. The elevated H2 partial pressure (molar 

ratio, CO2:H2=1:>10), higher than the stoichiometric one (CO2:H2=1:3), was 

found kinetically as well as thermodynamically beneficial for methanol synthesis 

as described in Chapter 1. Employing the reaction pressure of 360 bar 

(reactants pressure of 331 bar due to the presence of Ar for GC analysis), 

outstanding CO2 conversion (>95%) and methanol selectivity (>98%) were 

achieved at 260 °C at relatively high GHSV of ca. 10000 h-1 using commercial 

Cu-ZnO based methanol synthesis catalyst. In addition, exceptionally high 

methanol yield of 7.7 gMeOH gcat
-1 h-1 was attained at the expense of lower CO2 

conversion (65.8%) and methanol selectivity (77.3%). 

Despite the exceptionally high CO2 conversion and methanol selectivity 

under high-pressure conditions and high process viability concerning costs and 

methanol productivity, the reported reaction condition requires recycling or 

further conversion of unreacted H2 feed in excess. In addition, CO produced by 

RWGS should be recycled if methanol selectivity is not sufficiently high. 

Recycling of H2 can only be avoided by achieving its full conversion. In other 

words, the challenge in this respect is to achieve complete conversion of both 
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CO2 and H2 with high methanol productivity. This goal naturally requires the 

operation of the reaction at the stoichiometric CO2 to H2 ratio (1:3).  

This chapter presents a thorough examination of high-pressure reaction 

conditions (100-480 bar; in reactants pressure of 92-442 bar considering 8% Ar 

in the feed as an internal standard) at 220-300 °C for stoichiometric CO2 

hydrogenation. The main aim is to identify reaction conditions to maximize CO2 

and H2 conversions with high methanol selectivity and/or productivity. A 

commercial Cu/ZnO/Al2O3 catalyst, optimized for the conversion of syngas to 

methanol, was employed as catalyst due to its high activity in CO2 

hydrogenation to methanol [5]. Tendency and effects of kinetic and 

thermodynamic controls over the reaction performance are discussed along 

with the trends in theoretical thermodynamic equilibria to critically evaluate what 

is achievable with the optimized Cu/ZnO/Al2O3 catalyst are discussed. The 

possibility of mass transfer limitation of the catalysts due to dense feed 

composition at higher pressure was investigated by changing catalyst particle 

size and quantitatively evaluated by means of Thiele modulus, effectiveness 

factor, and Weisz-Prater criterion. 

3.2 Experimental 

The details of high-pressure fixed-bed reactor setup and the gas 

chromatography used to conduct the CO2 hydrogenation reaction to methanol 

at wide pressure range is already explained in Chapter 2. Specifically, in this 

work, tubular reactor made up of stainless steel was used with an outer diameter 

of 1/8" or 1/4" with the inner diameter of 0.07" or 0.12", respectively. A 

commercial methanol synthesis catalysts Cu/ZnO/Al2O3 was purchased from 

Alfa Aesar. The catalysts pellet of 5.4 mm * 3.6 mm size was crushed, sieved 

to a particle size of 100-300 µm, and charged to the reactor with approximate 

catalyst bed length of 100-20 mm depending on the amount of catalysts defined 

by the desired reaction conditions. Prior to the reaction, the catalyst was 

reduced in hydrogen stream (H2:Ar=90:10) at 20 ml min-1 for 2 h at 330 °C and 

atmospheric pressure. The CO2:H2 (1:3) reactant gas premixed composition 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Chapter 3 

62 
 

was precisely dispensed through a syringe pump. For GHSV of 650 h-1, the 1/4" 

reactor tube with 1.0 g of the catalyst was used, while for higher GHSV 

conditions (2000-8000 h-1 and 10000-100000 h-1) the 1/8" reactor tube with 400 

and 50 mg of the catalyst was used. The catalyst for methanol synthesis was 

tested at five different pressure conditions of 50, 100, 200, 360, 480 bar (actual 

total pressure of CO2 and H2 was 46, 92, 184, 331, and 442 bar, respectively). 

In this work, GHSV is defined by the volumetric flow rate of inlet stream at 

normal pressure divided by the reactor volume where the catalyst is packed 

(including the catalyst volume). A wide range of GHSV conditions (650-100000 

h-1) were examined. GHSV is also shown in catalyst-mass-normalized unit, in 

which the value ranges 0.37-49.85 NL gcat
-1 h-1. For the GHSV calculations in 

both units, the total flow rate at normal pressure including Ar was used. The 

vaporized outlet stream was injected to GC every ca. 12 min for 3 h at each 

reaction condition of temperature, pressure and GHSV and averaged values 

was taken.  

3.3 Thermodynamic calculations 

Methanol synthesis is an exothermic reaction and proceeds with volume 

contraction thus as stated in Chapter 1 high pressure and low temperature are 

favorable for high methanol yield. At these high pressure conditions, the product 

can condense to form a liquid phase in the reactor [6-10]. Prior to high pressure 

reactions, the equilibrium data have been calculated using commercial 

simulation tool Aspen HYSYS V8.6. The SRK EOS has been extensively used 

for calculations of phase and equilibria. The modified SRK-EOS binary 

interaction parameters for CO, CO2, H2, methanol and water were taken from 

the optimized values reported by Heeres and co-workers for methanol synthesis 

[11] (Appendix A, Table A3.7). The equilibrium CO2 conversion and methanol 

selectivity at 46, 92, 184, 331, 442 bar and temperature range of 150 to 340 °C 

is shown in Appendix A, Figure A3.1 and A3.2 respectively. 
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3.4 Results and discussion 

3.4.1 Effect of temperature under high pressure conditions 

The Figure 3.1 shows effects of temperature on CO2 conversion and 

methanol selectivity were examined at the reactants pressure of 92, 184, 331, 

and 442 bar. The catalytic tests were performed at a constant GHSV of 10000 

h-1, although, as discussed in Section 3.4.2, this reaction parameter can directly 

influence the residence time of the reactants in the reactor and thus catalytic 

performance. CO2 conversion and methanol selectivity are presented in 

comparison with the thermodynamic equilibrium values. Advantages of high-

pressure conditions are obvious according to the thermodynamic calculations 

(Figure 3.1, dotted lines). At 92 bar, CO2 conversion varies from roughly 50% 

(220 °C) to 30% (300 °C) with very good to moderate methanol selectivity 

(96.5% at 220 °C and 53.4% at 300 °C), whereas at the highest examined 

pressure of 442 bar, theoretically CO2 can be effectively converted to methanol 

(98.7% at 220 °C and 86.1%  at 300 °C) with very high selectivity for the entire 

temperature range (>99.9% at 220 °C and 99.0% at 300 °C). At the intermediate 

pressures examined (184 and 331 bar), there was a sudden change in CO2 

equilibrium conversion at ca. 230 and 280 °C, respectively (this change also 

takes place at 92 bar but at a much lower temperature (ca. 160 °C), shown in 

Appendix A Figure A3.1). This is due to enhanced CO2 conversion induced by 

the phase transition and separation (formation of liquid phase) associated with 

the condensation of the products when the reaction temperature is lower than 

the transition point. Such phase separation allows CO2 conversion to methanol 

beyond one-phase equilibrium, as precisely described and demonstrated by 

Heeres and coworkers [8]. The positive impact of such phase separation on CO2 

conversion becomes less prominent at higher pressures as noticeable from the 

equilibrium CO2 conversion curves of 184 and 331 bar. At 442 bar the impact 

becomes even unnoticeable. This tendency is attributed to the highly dense 

reactant/product mixture whose density only slightly differs from that of the liquid 

products and/or it indicates that they are simply miscible at the high pressure 
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conditions. Experimentally, the general advantages of high-pressure conditions 

in CO2 conversion, methanol selectivity, and thus methanol yield were 

confirmed with a better catalytic performance at higher pressures (Figure 3.1). 

Besides methanol, CO was found as the only major product arising from RWGS 

 
 

 

Figure 3.1: Effects of reaction temperature and pressure on a) CO2 conversion 
(XCO2

), and b) methanol selectivity (SMeOH) using commercial Cu/ZnO/Al2O3 

catalyst at constant GHSV of 10000 h-1 (5.87 NL gcat
-1 h-1). Dotted lines show the 

theoretical equilibrium CO2 conversion and selectivity. 
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reaction. Another product observed was methane with a minor quantity (<0.8%). 

In comparison to the theoretical equilibrium, larger deviations were observed at 

lower temperatures for both CO2 conversion and methanol selectivity. These 

two key indicators of reaction performance showed the maxima at 260-280 °C, 

except methanol selectivity at 331 bar, and then decreased at higher 

temperatures.  

The performance deterioration above the optimum temperature of 260-280 

°C is in accordance with the trend expected by the theoretical equilibrium. In the 

range of 220-300 °C, there were smaller deviations between experimental and 

theoretical CO2 conversion and methanol selectivity above the optimum 

temperature, whereas larger deviations were found below the optimum 

temperature. This implies that thermodynamic equilibrium has been reached or, 

at least, has significant effects at the temperatures higher than the optimum 

temperature at each pressure condition. In other words, at the temperatures 

below the maxima in catalytic performance, the reaction is kinetically controlled 

due to poor reaction rates determined by the catalyst at the low temperatures. 

Theoretically, CO2 conversion can be drastically boosted below 230 °C at 184 

bar. However, such performance enhancement was not observed, and a very 

poor value was obtained at 220 °C. This is a clear indication that the reaction is 

kinetically controlled at the temperature. To fully benefit from the phase 

separation, the reaction has to be performed at lower GHSV to achieve high 

reaction rates at low temperatures. Also, it is important to remark that the 

advantageous phase separation is expected to take place theoretically at higher 

temperatures under higher pressure conditions. Therefore, high-pressure 

conditions can be greatly beneficial in this respect to achieve phase separation 

under kinetically favorable high-temperature conditions.  

The best catalytic performance in terms of CO2 conversion and methanol 

selectivity was obtained at 260 °C at 331 bar and at 280 °C at 92, 184, and 442 

bar. Maximally performing reaction temperatures were examined at higher and 

lower GHSV conditions at 331 bar. Interestingly, it was found that the optimum 
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temperature remained the same irrespective of different GHSV conditions 

shown in Figure 3.2.  

Therefore, we have taken the optimum temperatures at the respective 

pressures for the following study where the influence of GHSV on catalytic 

performance is investigated. 

 

      

        

Figure 3.2: Effects of reaction temperature and GHSV on a) CO2 conversion (XCO2
), 

and b) methanol selectivity (SMeOH) using commercial Cu/ZnO/Al2O3 catalyst at 360 bar.  
 

b) 

a) 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



High pressure advantages in stoichiometric hydrogenation of CO2 to methanol 

67 
 

3.4.2 Effects of GHSV under high pressure conditions 

The reaction performance under the high-pressure conditions at the 

optimum temperature was further evaluated in a wide range of GHSV (650-

100000 h-1, equivalent to 0.37-49.85 NL gcat
-1 h-1) Figure 3.3 and 3.4a presents 

CO2 conversion and methanol selectivity as a function of GHSV at 46, 92, 184, 

331, and 442 bar, and Figure 3.4b shows corresponding methanol productivity 

in terms of weight time yield (WTY) expressed in the unit of gMeOH gcat
-1 h-1. In 

the Figure 3.3 and 3.4a, equilibrium CO2 conversion and methanol selectivity 

values are indicated by the arrows on the right side of the graph. 

  

   

 

Figure 3.3: CO2 conversion (XCO2
) for methanol synthesis at 650-100000 h-1 GHSV, and 

temperature at 280 °C (92, 184, and 442 bar) and at 260 °C (331 bar) using commercial 
Cu/ZnO/Al2O3 catalyst. The arrows on the right indicate the thermodynamic equilibrium 
values at the respective temperature and pressure. 
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Figure 3.4: a) Methanol selectivity (SMeOH), and b) methanol yield (WTYMeOH) at 650-100000 
h-1 GHSV and at 280 °C (92, 184, and 442 bar) and at 260 °C (331 bar) using commercial 
Cu/ZnO/Al2O3 catalyst. The arrows on the right indicate the thermodynamic equilibrium 
values at the respective temperature and pressure. 
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Clearly, the catalytic performance approaches the thermodynamic limit at 

the low range of GHSV (i.e. longer residence time). It is, however, not beneficial 

to over-reducing GHSV as the catalytic performance, especially methanol 

selectivity, becomes worse. This is mainly due to the formation of side products 

like methane and ethanol (Appendix. 3A, Tables A3.1-3.5). Also, under the very 

low GHSV conditions, methanol yield is consequently very low. Thus, such 

reaction conditions are not practically relevant for large-scale industrial 

operations. The decreased CO2 conversion towards the lowest examined GHSV 

at 184 bar may be due to the additional chemical equilibria involving methane 

and ethanol, but no clear understanding is available. 

What is striking from the dependence of methanol WTY on GHSV (Figure 

3.4b) is that there are reaction conditions giving high CO2 conversion and 

methanol selectivity with methanol WTY close to 1.0 gMeOH gcat
-1 h-1, which is 

generally considered as an excellent one. At 442 bar, the WTY reached the 

value of 0.92 gMeOH gcat
-1 h-1 at 4000 h-1 with 88.5% CO2 conversion and 97.2% 

methanol selectivity (Appendix 3A, Table A3.1). 0.89 gMeOH gcat
-1 h-1 was 

obtained at 331 bar also at 4000 h-1 with 83.3% CO2 conversion and 96.8% 

methanol selectivity (Appendix 3A, Table A3.2). 

Similar methanol WTY can be attained at lower pressure, but this requires 

increasing GHSV due to lower CO2 conversion and methanol selectivity. For 

example, at 184 bar 0.88 gMeOH gcat
-1 h-1 was obtained at 8000 h-1 with 47.0% 

CO2 conversion and 84.8% methanol selectivity (Appendix 3A, Table A3.3). At 

92 and 46 bar (Appendix A, Tables A3.4 and A3.5 respectively), high GHSVs 

(30000 or 100000 h-1) was necessary to achieve >1.0 gMeOH gcat
-1 h-1 with poor 

CO2 conversion (28.6 or 20.2%, respectively) and moderate-poor methanol 

selectivity (53.6 or 19.7%, respectively). 

In practice, high CO2 conversion and high methanol selectivity may not be 

the most critical performance indicator when unreacted CO2, CO, and H2 can 

be efficiently recycled. Although larger molar and thus volumetric flow (i.e. high 

GHSV) demands higher energetic requirement for the recycling process due to 
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low CO2 conversion, such conditions can greatly improve methanol WTY as 

discussed above. This was clearly demonstrated under the high GHSV 

conditions of this work (Figure 3.4b). At 100000 h-1 even at the moderate 

pressure of 92 bar, a very high WTY of ca. 3 gMeOH gcat
-1 h-1 was achieved and 

overall excellent WTYs above 4.5 gMeOH gcat
-1 h-1 could be attained above 184 

bar. Interestingly, the high-pressure benefit in CO2 conversion was less 

pronounced at high GHSV, and the conversion values converged to roughly 20-

30% at 100000 h-1 for all examined pressure conditions. In contrast, high-

pressure advantage in methanol selectivity remained (70.0% at 331 bar, 47.7% 

at 92 bar, 19.7% at 46 bar) although methanol selectivity decreased remarkably 

at higher GHSV at 442.     

Furthermore, there were clear differences of the GHSV dependency of CO2 

conversion at the different pressures. The drop in CO2 conversion was more 

prominent at higher pressure conditions (331 and 442 bar) upon increasing 

GHSV, whereas methanol selectivity was not affected by the GHSV variation as 

much except methanol selectivity at 442 bar. According to the thermodynamic 

calculation (Figure 3.1, dotted lines and Appendix A Figure A3.1 and 3.2), only 

under the two high-pressure conditions (331 and 442 bar) product condensation 

and phase separation (or formation of highly dense phase of the reactants and 

products at 442 bar due to the rather smooth and continuously changing CO2 

conversion profile with increasing temperature) are expected to occur at the 

reaction temperatures examined. The more significant drop in CO2 conversion 

at higher GHSVs may be related to the phase behavior. For example, a more 

severe mass transfer limitation may be induced at higher GHSV conditions, 

resulting in /liquid hindered diffusion of the reactants and products through the 

catalyst body by the dense phase formation. 
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Figure 3.5: a) CO2 conversion (XCO2
), and b) methanol selectivity (SMeOH) at 650–

100,000 h−1 GHSV, and at 280 °C (46, 92, 184, and 442 bar) and at 260 °C (331 bar) 

using commercial Cu/ZnO/Al2O3 catalyst. The filled symbols correspond to the catalytic 

results obtained with the catalyst of 100–300 μm size fraction, while the empty symbols 

correspond to those obtained with the catalyst of 10–20 μm size fraction. The arrows on 

the right indicate the thermodynamic equilibrium values at the respective temperature and 

pressure. 

 

a) 

b) 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Chapter 3 

72 
 

At high pressure the formation of dense/liquid phase can significantly limit 

the reaction rate and productivity of the process. Due to high pressure the 

external mass transfer limitation or the transfer of reactant gas phase to catalyst 

surface hindrance is negligible (Figure 3.6). While internal mass transfer or intra 

particle dense phase gas transfer limitation within the catalyst pores, can reduce 

the reaction rate. Since overall reaction rate of methanol synthesis could 

strongly affect by the mass transfer limitations, hence their verification and 

minimization are utmost important for process optimization.  

In order to verify if there is internal mass transfer limitation or not, we have 

performed the reaction using the catalyst with the particle size one order of 

magnitude smaller (10-20 µm) than those screened and reported above (100-

300 µm) at representative pressure (92, 331, and 442 bar) and GHSV (10000-

100000 h-1) conditions. External mass transfer limitation was neglected because 

the drop in catalytic performance occurs at high GHSV conditions which are 

favorable for external mass transfer. Figure 3.5 and 3.7 present the effects of 

catalyst particle size on the catalytic performance and WTY obtained at different 

GHSVs with smaller catalyst particles (empty symbols and dotted lines) and by 

larger catalyst particles (filled symbols and solid lines). The reaction 

performance using the smaller catalyst particles was almost identical to that of 

the larger ones at 92 and 331 bar, but there was a remarkable enhancement of 

CO2 conversion and methanol selectivity observed at 442 bar. Even at the 

highest examined GHSV (100000 h-1) high CO2 conversion (65.3%) and 

methanol selectivity (91.9%) were achieved, giving outstanding WTY of 15.2 

gMeOH gcat
-1 h-1. 
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At lower GHSV of 30000 h-1, CO2 conversion was 80.0% with 96.7% 

methanol selectivity, giving WTY of 6.7 gMeOH gcat
-1 h-1. Compared to the 

theoretical WTY limit (7.7 gMeOH gcat
-1 h-1) defined by the equilibrium conversion 

and selectivity, the value is very high. At 10000 h-1, WTY of 2.4 gMeOH gcat
-1 h-1 

was almost the same as the theoretical value 2.6 gMeOH gcat
-1 h-1.  

These large effects of particle size on the catalytic performance clearly 

prove that there was a severe internal mass transfer limitation, especially at 442 

bar as hinted by the great decrease in CO2 conversion at higher GHSVs using 

the larger catalyst particles. The degree of internal mass transfer was 

quantitatively evaluated by means of Thiele modulus, effectiveness factor, and 

Weisz-Prater criterion (Tables 3.1, 3.2 and Figure 3.8).  

 

Figure 3.6: Mass transfer limitation schematic diagram. Adapted from ref [2]; copyright (2011) 
originally published under CC BY 3.0 license. Available from 10.5772/22962. 
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Figure 3.7: (Top) Methanol weight time yield (WTYMeOH) at conditions 650–100,000 h−1 
GHSV and at 280 °C (46 bar, 92 bar, 184 bar, and 442 bar) and at 260 °C (331 bar) using 
commercial Cu/ZnO/Al2O3 catalyst. The filled symbols correspond to the catalytic results 
obtained with the catalyst of 100–300 μm size fraction, while the empty symbols 
correspond to those obtained with the catalyst of 10–20 μm size fraction. (Bottom) 
WTYMeOH at equilibrium conversion and selectivity at the different GHSVs. 
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3.4.3 Evaluation of internal mass transfer limitation 

The results to evaluate the particle size effects on catalytic activity shown 

in Figure 3.5 and 3.7 were used to calculate Thiele modulus and the 

effectiveness factor at different GHSV and pressure conditions according to the 

method shown in the literature based on two experimental results obtained 

using two different particle sizes [12].  

The relationship between Weisz-Prater criterion (CWP), Thiele modulus (𝜙1) and 

effectiveness factor (η), and their relation to the observed reaction rate 𝑟𝐴 (A is 

CO2 here) can be expressed by, 

                 𝐶𝑊𝑃 =  𝜂𝜙1
2  =  

𝑟𝐴 𝜌 𝑅2 

𝐷𝑒𝑓𝑓  𝐶𝑠𝑢𝑟𝑓
 = 3(𝜙1coth𝜙1 − 1)                       (Eq. 3.1) 

where ρ is the catalyst density, R is the catalyst particle size, Deff is the effective 

diffusion coefficient and Csurf the concentration of A at the outer surface of the 

catalyst. Now, if two catalytic runs (with the subscript 1 and 2) are performed 

using two different catalyst particle sizes, in which only the particle size of the 

catalyst is varied, the ratio of the two equations yields the following equation.                

                              
𝑟𝐴2𝑅2

2

𝑟𝐴1𝑅1
2  =  

𝜙12 coth 𝜙12−1

𝜙11 coth 𝜙11−1
                                          (Eq. 3.2) 

In this case, the terms Csurf, ρ, and Deff cancel out because they can be assumed 

to be identical since all the reaction conditions are the same except particle size.  

Also, let us assume that Thiele modulus can be expressed in the following form, 

                                𝜙1 =  𝑅√
−𝑟𝐴𝑆

’  𝜌

𝐷𝑒𝑓𝑓 𝐶𝑠𝑢𝑟𝑓
                                                   (Eq. 3.3) 

where 𝑟𝐴𝑆
’  is the intrinsic rate of the surface reaction of A. 

Thus, by taking the ratio of the Thiele moduli for the two experiments, we obtain 

the following relation. 
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                                 𝜙11 =  
𝑅1  

𝑅2
 𝜙12                                                       (Eq. 3.4) 

Substituting Eq. 3.4 into Eq. 3.2 results in Eq. 3.5. 

                     
𝑟𝐴2𝑅2

2

𝑟𝐴1𝑅1
2 =  

𝜙12 coth 𝜙12−1
𝑅1 

𝑅2
 𝜙12 coth

𝑅1 

𝑅2
 𝜙12−1

                                           (Eq. 3.5) 

For 𝑅1 and 𝑅2, representative values of 200 and 20 µm, respectively, were 

taken. By substituting these values in Eq. 3.5, we obtain 

                   
𝑟𝐴2∗ 202

𝑟𝐴1∗ 2002
 =  

𝜙12 coth 𝜙12−1

10 𝜙12 coth(10 𝜙12−1)
                                   (Eq. 3.6) 

The Eq. 3.6 can be numerically solved to obtain the Thiele moduli 𝜙11 and 𝜙12. 

The effectiveness factor η and CWP can be conveniently calculated using Eq. 1. 

Table 3.1: Effect of particle size effects at 442 bar at 280 °C. Run no.1 corresponds to the 

experiments with 200 µm catalyst (actual size 100-300 µm) and Run no. 2 corresponds to the 

experiments with 20 µm catalyst (actual size 10-20 µm). 

GHSV 
(h-1) 

Run 
no. 

CO2 
conversion 

(%) 

Methanol 
Selectivity 

(%) 

WTY of 
MeOH 
(gMeOH 

gcat
-1 h-1) 

Rate of 
reaction  

(molMeOH gcat
-1 

s-1) *105 

Thiele 
modulus 

( ) 

Effectiveness 
factor (ɳ) 

CWP 

10000 1 84.7 93.1 2.9 1.89 1.15 0.92 1.22 

2 87.7 97.6 2.4 2.01 0.12 0.99 0.01 

30000 1 61.3 81.7 3.9 3.42 3.78 0.58 8.37 

2 80.0 96.7 6.7 5.82 0.38 0.99 0.14 

60000 
1 45.1 60.3 4.5 3.88 6.01 0.41 15.3 

2 67.9 93.9 10.6 9.19 0.61 0.98 0.36 

100000 
1 31.8 57.2 5.0 4.3 9.05 0.3 24.17 

2 64.5 89.9 15.9 13.8 0.91 0.95 0.78 

The Weisz-Prater criterion clearly shows the values much larger than 1 at 

higher GHSVs at 442 bar with the larger catalyst particles (Table 3.1). This 

indicates severe internal mass transfer limitation at 442 bar. The effectiveness 

factor was 0.3 at 100000 h-1 at 442 bar, showing the poor utilization of catalyst 

surfaces within the particle. 

The effectiveness of catalyst utilization improves at the lowest space 

velocity (10000 h-1) of the study, and the value of 0.92 was obtained with the 
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catalyst of the larger size. When the smaller size catalyst was used, much 

smaller values of the Weisz-Prater criterion and high value (above 0.95) of the 

effectiveness factor were obtained, evidencing the effective use of the whole 

catalyst body for the reaction when the size is reduced by one order of 

magnitude. 

At 331 bar, the availability of the catalytic sites is improved as shown by 

lower values of the Weisz-Prater criterion and by the high values of 

effectiveness factor (Table 3.2). These results strongly suggest that 

condensation of reactants/products takes place within the catalyst body at the 

very high-pressure conditions examined, inducing the mass transfer limitation. 

As demonstrated by the extraordinary WTY above 15 gMeOH gcat
-1 h-1, this product 

condensation can be extremely beneficial when mass transfer limitation is can 

be overcome and/or absent. 

Table 3.2: Effect of particle size effects at 331 bar at 260 °C. Run no. 1 corresponds to the 

experiments with 200 µm catalyst (actual size 100-300 µm) and Run no. 2 corresponds to the 

experiments with 20 µm catalyst (actual size 10-20 µm). 

 

GHSV 
(h-1) 

Run 
no. 

CO2 
conversion 

(%) 

Methanol 
Selectivity 

(%) 

WTY of 
MeOH 

(gMeOH gcat-1 
h-1) 

Rate of 
reaction  

(molMeOH gcat
-1 

s-1) *105 

Thiele 
modulus 

( ) 

Effectiven
ess factor 

(ɳ) 
CWP 

10000 
1 61.0 93.7 1.7 1.47 - - - 

2 63.7 93.5 1.6 1.42 - - - 

30000 
1 40.2 86.2 2.8 2.45 2.08 0.80 3.43 

2 46.4 88.1 3.6 3.08 0.21 0.99 0.04 

60000 
1 33.2 76.1 4.1 3.54 1.36 0.90 1.65 

2 33.8 81.3 4.6 3.94 0.13 0.99 0.02 

100000 
1 25.3 70.0 4.9 4.22 1.46 0.88 1.88 

2 27.2 75.0 5.5 4.78 0.15 0.99 0.02 
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The reaction mechanisms of methanol synthesis via CO2 hydrogenation, 

namely via CO2 or CO, are widely debated [13], although a recent study as 

represented by Studt and coworkers concluded that the major carbon source of 

methanol is CO2, promoted by the synergetic functions of Cu and ZnO [14]. In 

this study, CO selectivity increased consistently at higher GHSV (Figure 3.5b 

and Appendix 3A, Tables A3.1-3.5). A detailed mechanistic discussion is out of 

the scope of this work, but the results indicate that longer residence time 

enhances methanol selectivity, and that methanol synthesis proceeds via CO 

produced by RWGS. The same conclusion had been drawn in over-

stoichiometric CO2 hydrogenation where excess hydrogen was used 

(CO2:H2=1:10) [5]. Still, there is one point which has not been discussed widely, 

which is the exothermicity of methanol synthesis which can create local hot 

spots and temperature gradients along the axial and radial directions of the 

catalyst bed. The reactor we have used has a high surface to volume ratio as a 

kind of microreactor, and in principle, the geometry is well suited for heat 

management. However, the generated heat may not be sufficiently removed 

when WTY of methanol is very high, and thus a large heat is generated within 

the reactor and large temperature increase may be created close to the inlet of 

the reactor. The enhanced reaction under such conditions would be 

endothermic RWGS, thus CO formation could be pronounced in such cases. 

The trend is indeed what we observed; the higher the GHSV, i.e. higher the 

WTY consequently in most cases, the higher the CO selectivity. These aspects 

will be investigated further, but this may be a possible explanation of apparent 

reaction path of methanol synthesis via CO produced by RWGS under high-

pressure conditions because of the existence of local hot spots, besides the 

scenario that CO2 hydrogenation indeed proceeds via CO at high-pressures. 

3.5 Conclusions 

Relationship among reaction temperature, pressure, and GHSV in 

stoichiometric CO2 hydrogenation to methanol over a well-established 

commercial Cu/ZnO/Al2O3 catalyst were systematically investigated in the aim 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Chapter 3 

80 
 

to understand the advantages given by high-pressure reaction conditions (46-

442 bar) and to achieve as high CO2 conversion and methanol selectivity with 

high methanol productivity towards full conversion to methanol. A strong 

interplay between kinetics and thermodynamics in the reaction performance 

was evidenced. At kinetically favorable high temperature (>260 °C) especially 

at lower GHSV, it was possible to enter the regime where thermodynamic 

equilibrium plays dominant roles in determining the catalytic activity. In this 

regime, high-pressure advantages can be conveniently predicted based on the 

equilibrium conversion and selectivity. A good WTY of 0.92 gMeOH gcat
-1 h-1 could 

be achieved at 442 bar with 88.5% CO2 conversion and 97.2% methanol 

selectivity using our standard, larger size of catalyst particles (100-300 µm). At 

high pressure conditions above 331 bar, the dense phase formation by product 

condensation limits the overall reaction rate by internal mass transfer. When 

smaller catalyst particles (10-20 µm) are used instead, the limitation can be 

effectively removed. Thus-obtained catalytic performance fully benefits from the 

high-pressure advantages of high reaction rate (kinetics), high equilibrium 

conversion (thermodynamics) and enhanced conversion (phase separation). 

Under these conditions of negligible mass transfer limitations, at 442 bar a very 

good WTY of 2.4 gMeOH gcat
-1 h-1 could be observed with 87.7% CO2 conversion 

and 97.6% methanol selectivity. At a very high GHSV (100000 h -1), an 

extraordinary WTY of 15.2 gMeOH gcat
-1 h-1 could be achieved. 

This work clearly shows favorable reaction conditions towards full one-pass 

conversion in stoichiometric CO2 hydrogenation to methanol. Development of 

highly active, new generation catalysts is mandatory to reach this goal by 

entering to the thermodynamically controlled regime at lower temperature. 

Another practically important operation condition identified was high GHSV. 

Even at lowered pressure of 184 bar, a remarkable WTY of 4.5 gMeOH gcat
-1 h-1 

could be obtained. Hence, high GHSV conditions at relatively high-pressure 

were found also beneficial in practice for high-yield methanol synthesis when 

unreacted CO2, H2 and formed CO are recycled. In summary, this work has 
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demonstrated that both kinetic and thermodynamic factors play decisive roles 

in methanol synthesis and also that thermodynamically favorable high-pressure 

conditions allow reaching the reactivity in the thermodynamically controlled 

regime and/or with outstanding methanol productivity. 
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4.1 Introduction 

In CO2 hydrogenation to methanol, one of the most lively debates 

concerns the path to methanol, namely via direct hydrogenation of CO2 or via 

CO first formed by RWGS [1-4]. This information can be in principle obtained 

by detailed studies of the reaction at different space velocities. However, for 

this reaction it is particularly challenging to gain conclusive insights because 

the final catalytic results are largely influenced by not only the reaction kinetics 

but also the thermodynamics accompanying phase condensation (Chapters 3 

and 5). In this respect, it is highly valuable to directly obtain information about 

the gas concentration gradients along the catalyst bed under realistic 

conditions to understand the active reaction paths. Such gas phase profiling 

along the axial direction of the catalyst bed is of general challenge in 

heterogeneous catalysis and the challenge is even greater for reactions 

operated at high pressure and temperature as targeted in this thesis.  

In this work, spatially resolved gas sampling/analysis techniques, using 

GC/MS and Raman spectroscopy, were developed and employed to gain 

information about the gradient of gaseous chemical species to gain insights 

into the reaction pathways of high-pressure methanol synthesis by 

stoichiometric CO2 hydrogenation. The developed analytical techniques were 

used to understand the effects of reaction temperature and pressure on the 

reaction pathways using the commercial Cu/ZnO/Al2O3 catalyst. The results 

are discussed in the light of thermodynamic equilibrium conversion and 

selectivity. 
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4.2 Experimental 

4.2.1 High pressure reactor for operando Raman spectroscopy 

The detailed high-pressure reactor setup is explained elsewhere [5]. 

Briefly, Teledyne ISCO syringe pump was used to dispense high-pressure 

CO2, while H2 was pressurized using a gas booster and its flow rate was 

controlled by a high-pressure MFC. The two gases were mixed and passed to 

the reactor as shown in Figure 4.1. Reaction pressure was controlled by back 

pressure regulator placed after the outlet of the reactor. Two pressure 

indicators placed before and after the reactor were used to measure pressure 

drop over the catalyst bed, which was negligible (<2 bar) in all cases. 

To hold the very high pressure, the reactor tube (OD = 1.5 mm, ID = 1 

mm, L = 100 mm) made of sapphire was used and it was filled with the 

Cu/ZnO/Al2O3 commercial methanol synthesis catalyst (Chapter 3). Leak-tight 

 
Figure 4.1: High pressure reactor setup for operando Raman spectroscopy with a sapphire 
capillary filled with catalyst and glass wool. 
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sealing between the sapphire tube with the stainless steel fittings were 

achieved by coating the ends of the tube with a thin layer of polyimide and 

using graphite reinforced polyimide ferrule so that the adhesion to the sapphire 

surface was enhanced. The catalyst pellets were crushed and sieved to 63-80 

µm particle size. 15 mg of catalyst was loaded in the sapphire tube arranged 

in three separate packed beds (each ca. 5 mg and 5 mm) segregated by void 

sections (10-12 mm) as depicted in Figure 4.2. The alternating sections of void 

and catalyst were segregated by means of dense plugs made of quartz wool. 

To prevent the quartz wool plugs from sliding and combining under pressure, a 

stainless steel rod (0.6 mm OD) was inserted in each void section to support 

the plugs at its extremities. 

The composition of the reactor outlet stream was analyzed online by GC, 

while the four void sections enabled the analysis of the intermediate/product 

stream at discrete positions by Raman microscopy (Renishaw, InVia, λ=532 

nm, details in [6]). Mounted on a motorized linear actuator, a fiber-coupled 

Raman probe was positioned along the axial reactor axis to focus on one of 

   

Figure 4.2: (a) Sapphire reactor tube with the catalyst and glass wool, (b) Schematic of the 
reactor with multiple packed-beds and alternating void sections. P1-4 denote the focusing 
positions for Raman spectroscopic gas phase analysis. 

 

a) 

b) 
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the positions marked as P1-4 in Figure 4.2. Position 1 (P1) allowed the gas 

analysis of the unreacted feed, while the Raman study at P2, P3 and P4 

(outlet) yielded the gas composition at the respective positions. In addition, a 

white-light camera implemented in the remote probe enabled the observation 

of phases present in each void partition.  

The catalyst was reduced at 330 °C for 30 min in a flow of 90% H2 in He 

prior to each reaction. The reactor was subsequently cooled down to room 

temperature and pressurized to reaction pressure by feed gas. Reactions were 

carried out at 184 bar and at 180 and 260 °C. The total flow rate of 16 

NmL/min corresponded to GHSV of 80,000 h-1. A feed composition of H2:CO2 

= 2.5:1 was used in order to increase the density of the reacting stream and 

improve the quality of the Raman spectra. Indeed, the higher density improved 

the signal-to-baseline ratio in comparison to a stoichiometric feed ratio of 3:1. 

Complicated light-matter interaction arose from intense refraction and 

reflection caused by the circular cross-section of the cylindrical sapphire tube, 

decreasing the signal intensity collected by the remote probe in backscattering 

mode. However, the light-collection efficiency loss, caused by light 

transmittance through the transparent reactor, was lessened by the higher 

stream density. 

4.2.2 Space-resolved gas analysis using SS reactor 

The space-resolved gas analysis was performed using the high-pressure 

reaction system explained in Chapter 2. The commercial Cu/ZnO/Al2O3 

catalyst was packed in a 1/8" SS tube reactor. The catalyst was packed in a 

similar way as explained earlier for sapphire tube. 180 mg of 100-300 µm 

particle size catalyst was packed in three separate catalyst beds (60 mg 

each). The catalyst was supported on 10 µm frit to avoid catalyst sliding under 

high-pressure gas flow. The equidistant void was maintained between the 

catalyst beds for gas sampling analysis. Continuous gas sampling from the 

high-pressure reactor was achieved by means of needle valve connected to 

the reactor. The sampling gas flow rate was adjusted by the needle valve to be 
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ca. 2 mL min-1. The composition of feed and products was analyzed online by 

GC and MS. The four void sections connected to the needle valve enabled 

analysis of the reactant and product mixture before/between the catalyst 

packed beds. The gas analysis was performed in such a way that overall 

pressure and flow pattern change within the reactor by the gas sampling does 

not affect the catalytic performance significantly. Figure 4.3 shows the image 

of the SS reactor system with gas sampling needle valve. 

The catalyst was packed in the reactor with three beds (B1, B2 and B3), 

and gas samples were analyzed at 4 different places, viz. P1, P2, P3 and P4. 

The P1 position is before the catalyst bed 1 (B1), thus the gas composition is 

the same as feed gas composition. The following positions P2, P3 and P4 

represent the gas composition after passing over catalyst bed B1, B2 and B3 

respectively. 

 
Figure 4.3: High pressure stainless steel reactor setup with P1-4 gas analysis positions 
selected by 4 needle valves 
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4.3 Results and discussion 

4.3.1 Equilibrium conversion and selectivity 

To facilitate interpretation and discussion of the results, thermodynamic 

equilibrium CO2 conversion and product selectivity of stoichiometric methanol 

synthesis from CO2 and H2 (Chapter 1 - Eq. 1.2, Figure 4.4) and also RWGS 

(Chapter 1 – Eq. 1.3 but at CO2:H2=1:3, Figure 4.5) were calculated for two 

pressure conditions (184 and 331 bar) in the temperature range of 150-400 °C 

using Aspen HYSYS following the same procedure as explained in Chapter 3. 

The thermodynamic behavior of the former reaction has been discussed in 

Chapter 3. It is interesting to confirm that the latter equilibrium is almost 

 

150 200 250 300 350 400

0

20

40

60

80

100

331 bar

X
C

O
2
 (
%

)

 

 

Temperature (C) 

184 bar

    

150 200 250 300 350 400

0

20

40

60

80

100

 

 

S
M

e
O

H
(%

)

Temperature (C) 

331 bar

184 bar

 

Figure 4.4: Thermodynamic equilibrium CO2 conversion and methanol selectivity (the rest is 
CO) at CO2:H2 = 1:3 at 184 and 331 bar 
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Figure 4.5: Equilibrium CO2 conversion for RWGS reaction at CO2:H2 =1:3, 184 and 331 bar. 
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pressure-independent while it is highly temperature-dependent as expected by 

Le Châtelier's principle (Chapter 1).  

4.3.2 Space-resolved gas analysis by GC 

The reaction products formed in the gas phase over the Cu/ZnO/Al2O3 

commercial methanol synthesis catalyst were first investigated by GC 

sampling at different positions of the reactor (Figure 4.3). CO2 conversion and 

carbon-based mole fractions, which are defined as CO2 conversion scaled by 

respective product selectivity (i.e. FMeOH+FCO = XCO2), were used to understand 

in a facile fashion how much CO2 is converted and to which product. 

Figure 4.6a shows the catalytic performance at 180 °C at 184 bar, while 

that at 331 bar is shown in Figure 4.6b. Generally, at this low reaction 

temperature we observe low CO2 conversion but high methanol selectivity, 

thus high fraction of methanol. What is striking is the profile of CO2 conversion 

and also consequent product fractions. At this low conversion, virtually the 

partial pressure of the reactants (CO2 and H2) is unaltered throughout the 

catalyst bed and generally one expects little change in the reaction rate and 

product selectivity at different positions of the catalyst bed. However, Figure 

4.6 shows that this is not the case and the deviation is more prominent at the 

lower pressure investigated (184 bar, Figure 4.6a) where CO2 conversion 

a) b) 
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Figure 4.6: CO2 conversion (XCO2
), fraction of methanol (FMeOH) and fraction of CO (FCO) 

observed in CO2 hydrogenation over the commercial Cu/ZnO/Al2O3 catalyst at (a) 184 bar 
and (b) 331 bar at CO2:H2 = 1:3 at P1-P4 at 180 °C, 10,000 h-1. 
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does not linearly increase and it even drops between P3-P4. Also, when the 

rate of CO2 conversion is decreased, fraction of CO increases. Assuming that 

the intrinsic reaction selectivity at this temperature is almost 100% towards 

methanol (judging from the values at P2) and that CO2 conversion rate does 

not change along the catalyst bed, only explanation for these CO2 conversion 

drop and CO formation is methanol decomposition, forming CO as well as 

CO2. Base on the profiles of CO2 conversion and product fractions at 331 bar 

(Figure 4.6b), this methanol decomposition to CO/CO2 also takes place but 

significantly lesser extent. This is likely due to the pressure effects affecting to 

shift the equilibrium towards the product (methanol) side, showing a unique 

advantage of high-pressure reaction conditions [7]. 

The same experiment was performed at two higher temperatures (260 

and 340 °C) and the results obtained at 260 °C are summarized in Figure 4.7. 

First, the CO2 conversion values are about one order of magnitude higher than 

those of 180 °C. Also, at both examined pressures, relatively high CO 

selectivity was observed. At 184 bar (Figure 4.7a), CO was the major product, 

but then the fraction of CO decreased towards the outlet position. This is 

indicative of CO conversion to methanol, although there is a possibility of 

water-gas shift reaction forming CO2 and H2 from CO and H2O. However, 

methanol fraction drastically increased as CO fraction dropped towards the 
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Figure 4.7: CO2 conversion (XCO2
), fraction of methanol (FMeOH) and fraction of CO (FCO) 

observed in CO2 hydrogenation over the commercial Cu/ZnO/Al2O3 catalyst at (a) 184 bar 
and (b) 331 bar at CO2:H2 = 1:3 at P1-P4 at 260 °C, 10,000 h-1. 
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outlet direction, and thus the former reaction (i.e. CO hydrogenation to 

methanol, Eq. 1.4) is likely the active path under the reaction condition, 

although there may be some portion of methanol produced from the direct 

conversion of CO2 (Eq. 1.2). At 331 bar (Figure. 4.7b) CO fraction remained 

relatively constant, whereas methanol fraction increased drastically along with 

CO2 conversion between P2 and P3. At 184 bar (Figure. 4.7a) CO2 conversion 

linearly increased and did not drop as observed at 180 °C. These results 

indicate three important insights: (i) methanol formation is faster than 

decomposition, (ii) CO2 is constantly converted to methanol or CO as the 

intermediate at 184 bar and (iii) there is another factor boosting CO2 

conversion at 331 bar. Regarding the point (ii), at 184 bar at P2, very high CO 

selectivity was observed and its continuous decrease and drastic increase in 

methanol production implies that CO2 is converted to CO at almost constant 

rate and then CO is further converted to methanol. In this case, the latter 

reaction rate would mainly determine the fraction of methanol and CO in the 

reactor. The point (iii) indicates interesting and important effects of reaction 

pressure. According to Figure 4.4a, at 260 °C, we expect phase condensation 

at 331 bar but not at 184 bar. This can explain the sudden boost in CO2 

conversion between P2-P3; the CO2 conversion was sufficiently high to reach 

the dew point of the condensable products (methanol and water) at this 

position in the reactor, positively impacting on the reaction rate or shifting the 

equilibrium towards methanol.  

Furthermore, the results obtained at the highest examined temperature 

(340 °C) are presented in Figure 4.8. As in the case of 260 °C, a large amount 

of CO was observed with decrease in its fraction with respect to methanol 

towards the reactor outlet. On the other hand, CO2 conversion increased 

almost linearly. These two observations indicate that RWGS is the first step of 

CO2 hydrogenation at an almost constant reaction rate and thus-produced CO 

reacts with H2 to produce methanol.  
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It is also interesting to note the boosted methanol formation between P3-

P4. The similar observation at 260 °C was interpreted to be caused by phase 

condensation. At this temperature, however, we do not expect such phase 

condensation to take place (Figure 4.4a). One possibility may be a dense 

phase formation, like surface wetting, in the pore of catalyst which is virtually 

identical to phase condensation. Despite the high temperature, such dense 

liquid-like layer over catalyst surface may be present. Besides, it is worth 

highlighting the maximum CO fraction observed in the reactor at 260 and 340 

°C. According to the thermodynamic calculation (Figure 4.4a), the equilibrium 

CO2 conversions for RWGS at CO2:H2=1:3 are about 14% and 21% at 260 

and 340 °C, respectively. A careful look in Figure 4.8 shows that the CO 

fraction is close to the equilibrium CO2 conversion in the middle of the reactor 

(since the fraction is the percentage of CO2 converted to methanol; therefore 

these numbers can be directly compared). Still the CO fraction decreases 

accompanying the increase of methanol fraction close to the outlet of the 

reactor, and this implies that methanol synthesis rate gets boosted at the 

position. It is speculated that the dense phase formation over the catalyst 

accelerate CO hydrogenation to methanol. Besides, methanol decomposition 

may take place, but it is not possible to gain information about this point from 

the data obtained at this high temperature. Nevertheless, it is certain that the 
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Figure 4.8: CO2 conversion (XCO2
), fraction of methanol (FMeOH) and fraction of CO (FCO) 

observed in CO2 hydrogenation over the commercial Cu/ZnO/Al2O3 catalyst at (a) 184 bar 
and (b) 331 bar at CO2:H2 = 1:3 at P1-P4 at 340 °C, 10,000 h-1. 
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consumption rate of CO and CO2 to form methanol is much greater than 

methanol decomposition rate under these conditions. 

Based on the above studies, we can conclude that the pressure effects on 

the reaction paths are relatively minor than the temperature effects, although 

higher pressure is advantageous in enhancing CO2 conversion likely due to 

the kinetic advantages (i.e. more dense medium thus more collisions 

necessary for reaction) and favored thermodynamics. Interestingly, at 260 °C 

often we find optimum catalytic performance and at this temperature, phase 

condensation seems indeed boosting the reactivity of CO2 to methanol by the 

concerted kinetic and thermodynamic advantages.  

4.3.3 Space-resolved gas analysis by Raman spectroscopy 

Similar space-resolved gas sampling experiments were performed using 

Raman spectroscopy instead of using GC and MS (MS data are not presented 

here due to large data fluctuation and accurate data quantification). The major 

advantage of this spectroscopic approach is that the reaction and flow-

patterns are not disturbed in contrast to the case of GC/MS analyses where a 

part of the flow of the reaction mixture has to be sampled.  

Figure 4.9 shows a typical Raman spectrum of the reaction stream 

obtained at 260 °C at the outlet (P4). The rotational transitions of H2 (355, 587, 

812, 1033, 1246, 1447 cm-1) as well as the Fermi dyad of CO2 and satellite 

bands (1265, 1286, 1387, 1408 cm-1) were clearly identified. Because of the 

small Raman scattering cross section of CO, its characteristic feature at 2140 

cm-1 was not sufficient for quantitative analysis and only its formation could be 

confirmed at high CO concentration. The features at 2840 and 2945 cm-1 are 

attributed to methanol, showing too weak signal for quantitative analysis. For 

these reasons, the most intense bands of H2 and CO2, 587 and 1387 cm-1, 

respectively, were considered for quantitative composition analysis to gain 

mechanistic insights. The band areas were calculated and the changes in the 

band area ratio H2/CO2 along the reactor was used to understand the reaction 
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path based on the stoichiometry of the two major reactions, viz. CO2:H2=1:3 

for methanol synthesis and CO2:H2=1:1 for RWGS. 

Figure 4.10 shows the H2/CO2 ratio of the band areas at different void 

positions at 180 °C and 260 °C at 184 bar. The initial area ratio at P1 was 

scaled to 2.5 to represent the molar ratio of unreacted feed confirmed by GC 

measurements. The reaction at 180 °C showed a slight decrease in the ratio 

from P1 to P2, before increasing towards P3, and no major change was 

observed moving from P3 to P4.  

In the case of direct methanol synthesis from CO2 as in Eq. 1.2, 3 moles 

of H2 would be consumed per mole of CO2 for the production of methanol, 

making H2 the limiting reactant in our experimental condition (feed H2/CO2 = 

2.5). On the other hand, if CO2 is consumed to form CO via RWGS (Eq. 1.3), 

CO2 would become limiting reactant. Therefore, a decrease in H2/CO2 ratio 

would signify an excessive H2 consumption as in the former case of direct 
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Figure 4.9: Representative Raman spectrum at 260 ºC, 184 bar at P4. 
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methanol synthesis, whereas an increase in the ratio would be a sign of a 

gradual CO2 shortage by RWGS. In case methanol is a secondary product 

obtained from the subsequent hydrogenation of CO, as a net, the ratio is 

expected to decrease as an equivalent amount of H2 is required whichever the 

COX (x=1 or 2) is the source of methanol. The initial slight decrease of the ratio 

at P1-P2 at 180 °C implies direct methanol synthesis reaction. Then at P2-P3, 

the ratio increases, which is indicative of RWGS. However, as discussed 

above, this is most likely due to the decomposition of methanol since such 

drastic selectivity change is unlikely at the low CO2 conversion level. The 

increase in the ratio is therefore attributed to methanol decomposition, which 

can have the same net stoichiometry as RWGS (i.e. CO2 + 3H2 → MeOH + 

H2O; MeOH → CO + H2; as the net CO2 + H2 → CO + H2O). In other words, 

methanol decomposition would increase the ratio, which is fully consistent with 

the observation and the previous results (Figure 4.6). In this Raman study, 

however, the ratio did not increase further as expected from the results in 

Figure 4.6. This may be due to the higher space velocity of this Raman study 

compared to the study by GC and consequent less pronounced change in the 

ratio.  
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Figure 4.10: H2/CO2 area ratio during CO2 hydrogenation to methanol reaction at P1 to 
P4 positions at 184 bar, 80000 h-1 using Cu/ZnO/Al2O3 catalyst at 180 °C and 260 °C. 
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At 260 °C there was a clear initial increase of the ratio and then decrease 

towards the outlet (Figure 4.10). The increasing ratio indicates clearly the 

increase in the amount of CO in the reactor and then subsequent decrease 

indicates the increase in the amount of methanol, no matter which reaction 

paths are taken. This profile is in full accordance with the results presented in 

Figure 4.7a obtained in a comparable reaction condition where initially CO was 

produced and then CO was hydrogenated to methanol. 

Furthermore, the sharp drop in the ratio at 260 °C coincided with the 

observation of condensation as liquid droplets at the rear end of the packed-

bed at P4 (Figure 4.11). As discussed above, the condensation is believed to 

have enhanced methanol synthesis via CO or CO2, by in situ separation of the 

less volatile components, namely water and methanol. Indeed, when focusing 

the Raman laser spot on the dense phase, more intense methanol peak was 

observed and the H2/CO2 ratio dropped to even lower values, suggesting the 

higher miscibility of CO2 than H2 in the condensed phase. According to the 

thermodynamic expectations at CO2:H2=1:3 (Figure 4.4a), liquid phase 

condensation is not expected at 184 bar, 260 °C, but it is likely facilitated by 

the excess of dense CO2 used in this study in comparison to the stoichiometric 

ratio.  

 

Figure 4.11: Product condensation at P4 during CO2 hydrogenation to methanol 

reaction using Cu/ZnO/Al2O3 catalysts, at 184 bar, 260 °C and 80,000 h-1. 
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4.4 Conclusions 

The present study employed two different approaches, one by GC/MS 

and the other by Raman spectroscopy, to gain compositional information of 

the gas phase at different axial positions of the catalytic reactor operated 

under high-pressure conditions of methanol synthesis from CO2 and H2. The 

first approach needs to sample gas from the reactor and thus the reaction may 

be disturbed to a small extent; however, the space-resolved gas sampling was 

successfully performed with the advantage of accurate quantification of all 

evolved gases by GC. The other approach using Raman spectroscopy with 

the pressure-resistant sapphire tube as the catalytic reactor could gain 

compositional information of the dense gas phase or even liquid phase without 

disturbing the reaction. Although the detection sensitivity did not allow 

quantification of all products, the important ones to extract information about 

the reaction paths, CO2 and H2, could be measured with high accuracy.  

These studies showed that at 180 °C methanol is directly produced from 

the hydrogenation of CO2 and the temperature seems too low for RWGS 

reaction. However, some of the formed methanol can decompose, producing 

CO and also CO2. This decomposition was effectively suppressed at higher 

pressure, evidencing another advantage of high-pressure reaction condition. 

In contrast, at higher temperature (260 and 340 °C) endothermic RWGS 

reaction rate surpasses that of the exothermic direct methanol synthesis 

reaction, followed by CO hydrogenation to methanol. These results clearly 

pointed out that CO hydrogenation is the main source of methanol under the 

high-pressure conditions. Furthermore, at 260 °C at 331 bar, phase 

condensation was indicated to take place boosting further CO2 conversion and 

methanol selectivity, showing kinetic and thermodynamic advantages of the 

specific reaction condition.  
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5.1 Introduction 

As reported and discussed in the previous chapters, Cu-based catalysts, 

especially promoted with ZnO, are the most common ones to exhibit high 

catalytic activity in the conversion of carbon oxides to methanol via 

hydrogenation [1, 2]. These catalysts are generally prepared by co-precipitation 

or impregnation methods and contains multiple components including structural 

promoters. These material synthesis methods are advantageous for their 

simplicity and scale-up; however, it is neither straightforward nor facile to control 

the morphology of the resulting materials and they often suffer from thermal 

instability, leading to sintering and thus catalyst deactivation. ZnO is known to 

act as spacer preventing Cu sintering and to function as hydrogen reservoir of 

atomic hydrogen promoting H spill-over to Cu [3]. The synergetic functions of 

Cu and ZnO, especially at the Cu-ZnO interfaces possibly by forming an alloy 

phase, are also widely reported to provide unique reactivity in methanol 

synthesis [4-13]. In this respect, the Cu-ZnO core-shell morphology could 

provide well-controlled metal-oxide interface and interaction by protecting the 

Cu core against  sintering [14]. 

In this chapter, a novel, simple, facile synthesis route for Cu-ZnO core-shell 

nano-structured materials using so-called non-aqueous sol-gel synthesis 

method was developed and the resulting materials were tested for methanol 

synthesis reaction by CO2 hydrogenation. The major advantages of the non-

aqueous sol-gel synthesis method are high purity, high tunability of 

nanostructures, homogenous product quality and synthesis at relatively low 

temperature [15, 16]. In this work, benzyl alcohol was chosen as reducing agent 

[17-21] and strategies to form Cu-ZnO core-shell particles were developed. The 

obtained core-shell materials were evaluated for CO2 hydrogenation to 

methanol under high pressure conditions. Unique phase changes on the shell 

(Zn component) was clarified and their role in the reaction was investigated by 

high-pressure operando XRD. 
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5.2 Experimental section 

5.2.1 Chemicals 

Copper (I) acetate (Sigma-Aldrich, 97%), zinc acetate (Sigma-Aldrich, 

99.99%), benzyl alcohol (Sigma-Aldrich, puriss) were used as received. The 

reactant gas mixture (CO2:H2:Ar=23:69:8) was purchased from Abelló Linde 

(Spain).  

5.2.2 Catalyst synthesis 

Zinc acetate and copper acetate were dissolved in benzyl alcohol in an inert 

atmosphere using standard Schenk line and flask. In a typical synthesis, 5.7 

mmol of zinc acetate was first dissolved in 30 mL benzyl alcohol and afterward 

2.5 mmol of copper acetate was added into the solution under constant stirring 

under N2 flow. The reaction vessel was purged with N2, sealed, and the solution 

was further stirred for 5 min. Later, the vessel was dipped into an oil bath 

preheated at 160 °C under stirring for 30 min. Precipitates were separated from 

the liquid phase by centrifugation and washed three times with ethanol. Pure 

Cu2O and ZnO were also synthesized separately using the identical procedure 

but using only one of the precursors. The final dried powders of Cu2O and ZnO 

were mixed and this is called “physical mixture”. Also, in order to evaluate the 

effects of stirring on the resulting material, Cu-ZnO material was prepared by 

the same protocol but without stirring. Finally, these materials were dried in an 

oven at 80 °C, pressed, crushed and sieved to particle size fraction (100-300 

µm) for catalytic activity tests. 

5.2.3 Catalyst characterization 

A) Ex situ X-ray diffraction (XRD) 

XRD patterns were recorded on Bruker AXS D8 advance diffractometer 

equipped with a Cu tube, a Ge (111) incident beam monochromator (1.54184 

Å), and Vantec-1 PSD operated in transmission mode. Signal was recorded in 

20-80° 2θ with a step size of 0.02° and counting time of 4 seconds per step. 
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Crystal phases were confirmed using Bruker X’Pert Pro software and JCPDS 

database. The phase quantification was done using Maud software and X’Pert 

High-score Plus software. 

B) In situ XRD 

In situ XRD measurements were performed to follow the crystallographic 

phases of selected materials under a H2 reduction condition using a Bruker-AXS 

D8-Discover diffractometer equipped with parallel incident beam (Göbel mirror), 

vertical θ-θ goniometer, XYZ motorized stage and with a GADDS (General Area 

Detector Diffraction System). The X-ray diffractometer was operated at 40 kV 

and 40 mA to generate Cu Kα radiation (1.54184 Å). 2D XRD patterns were 

collected covering 25-59° 2θ at a detector-sample distance of 15 cm. The 

sample temperature was controlled with a MRI BTS-Basic high temperature 

sample stage. A sample was placed in a capillary made of fused silica with 

diameter 0.5 mm. The capillary was mounted in a “U” shaped stainless steel 

frame that provided a firm support to the capillary. The frame was fixed in the 

MRI chamber of the Bruker D8 Advance diffractometer. The two ends of the 

capillary are connected to SS 316, 1/16" tubes for gas inlet and outlet 

connections as shown in Appendix Figure B5.1. 5% H2 in N2 gas was passed 

through the capillary at 1 bar. XRD patterns were collected from 150 °C up to 

450 °C at ΔT=20 °C at a heating rate of 5 °C min-1. 

C) Operando XRD  

Powder X-ray diffraction patterns were acquired using a Bruker Apex DUO 

equipped with an APEX 2 4K CCD area detector and Mo Kα radiation (1.71073 

Å, 50 kV and 0.60 mA). The diffraction rings were collected, acquiring for 120 s. 

The obtained two dimensional powder diffraction images were integrated over 

the 4-40° 2θ range and converted to standard XRD patterns. Programs used: 

Data collection with APEX II version v2009.1-02, Bruker (2007) Bruker AXS Inc., 

Madison, Wisconsin, USA and data processing with Pilot XRD2 Eval 

implemented in APEX II. The final evaluation and processing of the XRD 
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patterns at different temperatures was performed with EVA V.14.0.0.0 (Bruker-

AXS 1996-2007). 

A capillary was used as the reactor and it was a polyimide coated fused 

silica tube (Molex) with 662 µm outer diameter (OD), 150 µm inner diameter (ID) 

and 3 cm length. Polyimide coating gives inherent strength, thermal stability and 

flexibility to the capillary. A catalyst material was pressed into the pellet and 

crushed and sieved to 40-60 µm particle size, and typically 1.5 mg of the 

material was charged into the capillary held in the custom-made sample holder. 

The end connections of the capillary reactor were connected to the inlet and 

outlet of the reactor. The sample was heated using a hot air blower having a 

nozzle of 10 mm OD. The nozzle of the hot air blower was kept as close as 

possible to the sample, taking special attention to avoid disturbance of the 

nozzle tip with the X-ray beam path as shown in Appendix Figure B5.2. The 

temperature of the capillary near the sample was measured during heating 

using a portable temperature sensor to ensure the sample temperature. The two 

ends of the reactor were connected to the syringe pump and BPR respectively. 

Prior to operando XRD, the catalyst was reduced in 5% H2 in N2 at 330 °C. Due 

to the small inner diameter of the capillary and the catalyst packed inside, the 

reactor developed a pressure drop of ca. 150 bar. After the reduction for 20 min, 

the temperature was lowered to 30 °C and a compressed CO2:H2 (1:3) gas was 

passed through the capillary reactor and the effluent stream was continuously 

analyzed by mass spectrometer (MS). Once a desired catalyst temperature was 

reached, XRD patterns were taken every 3 min. with 120 seconds scan time. 

D) N2 physisorption 

N2 isotherms at 77 K were measured on a Quantachrome Autosorb 1-MP 

analyzer to obtain BET surface area. Prior to analysis, sample was degassed in 

vacuum at 250 °C for 12h. 
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E) Temperature programmed reduction (TPR) 

H2-TPR of as-prepared catalyst was carried out on a Thermo TPDRO 1100 

equipment with a TCD detector. The samples were heated from 25 to 400 °C at 

the rate of 2 °C min-1 under a stream of 5% H2 in N2 at 20 mL min-1. A soda lime 

(CaO+Na2O) trap was used to adsorb mainly H2O and CO2. 

F) N2O chemisorption 

Pulse chemisorption was used to measure the copper surface area and 

dispersion using nitrous oxide reported by Evans et al. [45]. The samples were 

reduced before analysis in the stream of 5% H2 in He at 330 ºC for 3 h after the 

ramp at 2 °C min-1. The samples were cooled down to 90 ºC under He flow. 

Then, a known volume of N2O was injected as pulse using a six port valve. The 

N2O was converted to N2 when it oxidizes Cu surface. The unconverted N2O 

was trapped in a container kept at liquid Ar temperature, whereas N2 directly 

passed to a TCD detector for quantification. Copper surface areas were 

calculated assuming 1.46 x 1019 copper atoms per m2 [45]. 

G) Electron microscopy 

High resolution transmission electron microscopy (HR-TEM) images were 

recorded on a JEOL JEM-2200FS microscope operated at 200 kV. EDX 

analyses were carried out on a FEI Talos F200X microscope operated at 200kV 

in STEM mode. The samples for TEM analyses were dispersed in ethanol and 

drop-casted onto nickel coated copper and nickel grid and measured by JEOL 

1011. In case of SEM analysis, the samples were ultrasonicated in ethanol for 

10 min prior to measurement using JEOL 6400. 

5.2.4 Catalytic test 

Carbon dioxide hydrogenation to methanol was studied in a high-pressure 

continuous flow fixed-bed stainless steel reactor (1.8 mm ID). Detailed high-

pressure fixed-bed reactor and analytical system are described in Chapter 2. 

Briefly, 50 mg of the sieved catalyst pallets of 100-300 µm particle size were 

charged into the reactor. Then the catalyst was reduced before the reaction in 
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the hydrogen stream at 20 mL min-1 for 2 h at 330 °C, at atmospheric pressure. 

Later, the catalyst bed was pressurized using the pre-mixed reactant gas 

mixture (CO2:H2:Ar = 23:69:8) to a desired reaction pressure. The effluent 

stream was analyzed by on-line GC. 

5.3 Results and discussion 

5.3.1 Material structure   

Figure 5.1 shows the SEM images of the materials synthesized by the 

different protocols of the non-aqueous sol-gel method. Figure 5.1a presents the 

material synthesized with of the Cu precursor only. The spherical cuprous oxide 

(identified by XRD) was formed by the cubes which was indicated by the sharp 

right angle edges of Cu2O. Figures 5.1b and 5.1c show the material synthesized 

with both Cu and Zn precursors under stirring and without stirring, respectively, 

at a nominal targeted weight ratio of 3:7 (Cu2O:ZnO). The influence of the 

solution stirring during the synthesis on the resulting material structure is clear. 

The stirring condition yields a material where ZnO nanoparticles cover the Cu2O 

spherical core homogenously, whereas Cu2O and ZnO particles are formed 

separately without stirring.  

Figure 5.2 shows the TEM images of the nanomaterials synthesized by 

varying the relative Cu amount at 15 wt% (Figure 5.2a), 30 wt% (Figure 5.2b), 

50 wt% (Figure 5.2c) and 70 wt% (Figure 5.2d) under the stirring condition. In 

all cases, Cu2O core was covered by ZnO nanoparticles to different extent 

 

Figure 5.1: SEM images of a. Cu2O sphere and 30 wt% Cu2O-ZnO prepared b. with stirring 

and c. without stirring during the synthesis. 

 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Chapter 5 

108 
 

depending on the weight ratio of Cu2O and ZnO. The spherical shaped 

nanomaterials have a diameter in the range of 500-800 nm.  

As the Cu2O-ZnO weight ratio decreased, these small ZnO nanoparticles 

aggregated and formed thicker layers of ZnO on Cu2O core (Figure 5.2). On the 

contrary, at lower relative Zn amount, thin and uneven coating of ZnO on the 

Cu2O surface was observed (Figure 5.2d). In order to elucidate the Cu2O-ZnO 

core-shell interface, 30 and 70 wt% Cu2O-ZnO core-shell materials were studied 

by HR-TEM and EDX analyses (Figures 5.3 and 5.5), revealing that the core 

and shell mainly contain Cu and Zn, respectively. 

Figure 5.3 indicates a hollow sphere structure and EDX line scan of 30 wt% 

Cu2O-ZnO was performed to gain more precise elemental distribution (Figure 

5.4). Cu2O core is incompletely or partially filled, while Zn is homogeneously 

distributed over the core as evident form the Zn mapping (Figure 5.3). In 

contrast, when the Cu precursor content is higher in the synthesis (70 wt% 

Cu2O-ZnO), the Cu2O core of the material is completely filled (Figure 5.5). 

 

Figure 5.2: TEM images of a. 15 wt%, b. 30 wt%, c. 50 wt% and d. 70 wt% (Cu2O-basis) 

Cu2O-ZnO core-shell materials. 
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Figure 5.4: STEM and EDX line scan analysis 30 wt% Cu2O-ZnO before the reaction. 

 

Figure 5.3 HR-TEM images and EDX analysis of 30 wt% Cu2O-ZnO. 
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5.3.2 Ex situ XRD 

Figure 5.6 shows the XRD patterns of the materials synthesized by the non-

aqueous sol-gel method. There were two crystallite phases identified: Cu2O 

(29.6, 36.5, 42.4, 61.5, 73.6°, JCPDS: 01-078-2076) and ZnO (31.8, 34.4, 36.2, 

47.5, 56.6°, JCPDS: 00-036-1451). Noticeably, the diffraction peaks of Cu2O 

became stronger and sharper at higher Cu2O/ZnO ratio and opposite trend was 

observed for ZnO. The Cu2O crystallite sizes of these materials were 21 nm 

(Cu2O), 12 nm (15 wt%), 11 nm (30 wt%), 19 nm (50 wt%), 23 nm (70 wt% 

Cu2O-ZnO), while those of ZnO were 14 nm (ZnO), 15 nm (15 wt%), 16 nm (30 

wt%), 19 nm (50 wt%), 13 nm (70 wt% Cu2O-ZnO), showing generally higher 

crystallinity of Cu2O ZnO when the Cu content is higher, while ZnO crystallinity 

does not affect much with change in Zn content. The XRD results confirm the 

phase purity of Cu2O and ZnO in these materials. 

 

 

Figure 5.5: HR-TEM images and EDX analysis of 70 wt% Cu2O-ZnO. 
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5.3.3 In situ XRD during thermal pretreatment in H2 

Copper is structurally one of the most temperature-sensitive metals among 

widely used catalytically active elements, and thus Cu particles tend to 

agglomerate at high temperature, reducing active copper surface area. Hence 

it is important to investigate at which temperature the core-shell materials are 

reduced from Cu2O to Cu (0) and their thermal stability. Figure 5.7 shows XRD 

patterns of 30 wt% Cu2O-ZnO as a function of temperature (30-450 °C) under 

the flow of 5% H2 in N2 at atmospheric pressure. Only this material is shown due 

to its high catalytic activity as discussed later. The reduction of the material was 

initiated at ca. 260 °C, and the catalyst was completely reduced Cu (0) at ca. 

300 °C. According to the Scherrer equation, the crystallite size of the Cu 

component increased from 12 nm (as-synthesized, Cu2O) to 21 nm (Cu (0), after 

reduction at 330 °C). Further temperature increase led to increase of the 

 

Figure 5.6: XRD patterns of the Cu2O, ZnO and Cu2O-ZnO materials at varying Cu-Zn 

ratio, as-synthesized by the non-aqueous sol-gel method. 

20 30 40 50 60 70 80

= Cu
2
O

 = ZnO

 
70 wt% Cu

2
O-ZnO

50 wt% Cu
2
O-ZnO

30 wt% Cu
2
O-ZnO

15 wt% Cu
2
O-ZnO

ZnO

Cu
2
O

In
te

n
s
it
y
 (

a
.u

.)

2(degree)



UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Chapter 5 

112 
 

crystallite size up to 23 nm, showing high thermal stability of the material against 

common sintering [22] due to the presence of the ZnO shell. 

5.3.4 H2-TPR 

H2-TPR was performed for all Cu2O-ZnO core-shell materials including the 

pure Cu2O sphere as reference. Their reduction profiles are shown in Figure 

5.8. The TPR profile of pure Cu2O shows a broad peak with a maximum at a 

relatively high temperature (320 °C). When ZnO was added and covers the 

Cu2O core, the reduction profile drastically changed. When a small amount of 

Zn was added (30 wt% Cu2O-ZnO), the reduction temperature was identical but 

the profile became much more defined. At further increased loading of ZnO, the 

 

Figure 5.7: In situ XRD of 30 wt% Cu2O-ZnO during reduction treatment with 5% H2 in N2 

atmospheric pressure at 30-450 °C. The three temperatures in red boxes indicate three 
representative temperatures (before Cu2O reduction (250 °C), when the reduction was just 
completed (330 °C) and after thorough reduction (450 °C). 
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reduction temperature maxima dropped by 30-50 °C, showing two 

distinguishable peaks for Cu2O reduction, which could be assigned to surface 

and bulk Cu2O reduction. XRD showed that ZnO was not reduced and remained 

as ZnO thus the peaks originate only from Cu2O reduction. It is important to 

highlight that the presence of ZnO, more precisely Cu2O-ZnO interaction, 

strongly enhanced the reducibility of Cu2O, which could be beneficial for CO2 

hydrogenation to methanol.  

 

 

Figure 5.8: H2-TPR of Cu2O, 15, 30, 50 and 70 wt% Cu2O-ZnO. 
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5.3.5 Catalyst evaluation: Effects of Cu-Zn ratio 

The catalytic activity of the Cu-ZnO core-shell materials (since the material 

is pre-reduced; the materials are simply denoted as Cu-ZnO instead of Cu2O-

ZnO hereafter) was evaluated under high-pressure conditions in a wide 

temperature range of 220-340 °C (Figure 5.9). Obviously, the catalytic activity 

of the four core-shell materials were very different in terms of CO2 conversion 

and methanol selectivity. Generally, CO2 conversion monotonously increased 

with temperature, and in contrast, the trends of methanol selectivity against 

reaction temperature was very different depending on the materials; 50 wt% Cu-

ZnO showing steady increase, 70 wt% Cu-ZnO showing steady decrease and 

15 and 30 wt% Cu-ZnO showing remarkable alternation from drop to increase 

in methanol selectivity with temperature. The material with the highest Cu 

content, 70 wt% Cu-ZnO, showed the lowest CO2 conversion, although at low 

temperatures the catalyst exhibited the highest methanol selectivity, similar to 

the behavior of the commercial methanol synthesis catalyst (Chapter 4). Upon 

increasing the Zn content, with 50 wt% Cu-ZnO, the catalytic activity was 

boosted significantly, and strikingly the methanol selectivity trend was reversed, 

with an initial drop followed by a monotonous increase with temperature. Further 

increase in the Zn content, with 30 wt% Cu-ZnO, the highest CO2 conversion 

below 320 °C was observed. In this case, the initial drop in selectivity was 

obvious and then upon increase in the reaction temperature the reaction 

 

Figure 5.9: Effect of reaction temperature and composition of Cu-ZnO on catalytic 

performance at CO2:H2 = 1:3, 4000 h-1, 331 bar (reactant pressure; 360 bar including Ar). 
Prior to the reaction, the materials were reduced at 330 °C H2. 
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selectivity was suddenly reversed from CO to methanol between 260-280 °C. 

The highest Zn content material, 15 wt% Cu-ZnO, showed reasonably high 

catalytic activity and again the same trends in methanol selectivity, but more 

prominently with a large gradual drop and then gradual increase at higher 

temperature. The Cu surface area for these materials were 7.7, 10.6, 5.2, and 

1.2 m2 g-1 for 15, 30, 50 and 70 wt% Cu-ZnO materials, respectively. This 

explains the low catalytic activity of 70 wt% Cu-ZnO, but it does not account for 

the unique selectivity changes. Thus, the Cu-ZnO interfaces are speculated to 

play important roles in directing the selectivity to methanol or CO. Interestingly, 

at the highest temperature examined, 340 °C, CO2 conversion (ca. 50%) as well 

as methanol selectivity (ca. 80%) converges for 15, 30 and 50 wt% Cu-ZnO. 

These values are in accordance with the thermodynamic expectation (Figure 

4.4) and thus we can conclude that the reaction reached thermodynamic 

equilibrium over the three catalysts at 340 °C temperature From the catalytic 

performance point of view, 30 wt% Cu-ZnO is the most interesting material since 

it shows relatively high CO2 conversion (ca. 50%) with high methanol selectivity 

(ca. 85%) at 280 °C. 

      

Figure 5.10: XRD of the catalysts after the reaction shown in Figure 5.9. 
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In order to understand the distinct catalytic performance of the Cu-ZnO 

materials, the materials were studied by XRD after the catalytic reaction and the 

results are compared in Figure 5.10. 70 wt% Cu-ZnO presented mainly the 

reflections due to Cu (0). In contrast, at the highest amount of Zn content (15 

wt% Cu-ZnO), mainly ZnO phase was observed in addition to comparably small 

amount of Cu (0). Intriguingly, there was a clear formation of ZnCO3, which is 

not well reported for methanol synthesis catalysts, for 30 and 50 wt% Cu-ZnO 

besides the observation of the ZnO and Cu (0) phases. Table 5.1 presents 

quantitative analysis of crystal phases observed for the two samples.  This 

shows that most Cu2O was transformed to Cu (0) as expected and, to our 

surprise, ZnO was transformed to ZnCO3. Assuming that all Zn components are 

crystalline and observable by XRD, notably 98% and 99 % of Zn are found in 

the form of ZnCO3 for 30 and 50 wt% Cu-ZnO, respectively. These results show 

that the presence of ZnO and its interaction with Cu may not be the requisite for 

high catalytic activity and a unique form of Cu may be more decisive in 

determining the catalytic activity.  

 

 

 

 

 

Figure 5.11: STEM and EDX line scan analysis of 30 wt % Cu-ZnO after the reaction. 
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Table 5.1: Quantitative phase analysis of 30 and 50 wt% Cu-ZnO before and after the reaction. 

 

     

To gain further structural and morphological insights, the best performing 

material, 30 wt% Cu-ZnO, after the reaction was studied by TEM and EDX line 

scan (Figure 5.11, 5.12a). First, the Cu core which was partially filled sphere, 

upon synthesis was fully filled with metallic Cu. The deformation of shell layer 

was not observed, although the consisting ZnO particles became sintered and 

more crystalline. Importantly, no agglomeration of copper particles was 

observed even after 100 h of reaction at 331 bar under varying the temperature 

from 220 to 340 °C, showing outstanding thermal stability of the Cu-ZnO core-

shell structure.   

In addition, STEM (Figure 5.12b) and EDX (Figure 5.12c-h) studies of the 

shell layer around the Cu core were performed to identify its structure after the 

reaction. The co-presence of Zn, O, and C with similar distribution (Figure 5.12e, 

g, h) confirms that the Zn-shell is transformed to ZnCO3, taking also the XRD 

results (Figure 5.10) into account. Interestingly, some amount of Cu was also 

found in this shell region (Figure 5.12c) and its spatial distribution was 

remarkably different from that of Zn. The overlay of the Cu element distribution 

with the STEM image (Figure 5.12d) and with the Zn distribution (Figure 5.12f) 

clearly shows that Cu is supported over Zn component (i.e. ZnCO3), 

preferentially extended over the surface and entering the cavities created by the 

ZnCO3 particles. Such spread distribution of Cu is reasonable since both Cu 

and Zn precursors are present in the solution during the synthesis and some Cu 

species may have actually be located in the shell. Furthermore, the high Cu 

surface area of this material after activation (10.6 m2 g-1) indicates the presence 

Components 
Before reaction After reaction 

30 wt% 50 wt% 30 wt% 50 wt% 

Cu2O 30.8 44.1 1.8 1.4 

ZnO 69.2 55.9 0.4 1.3 

Cu (0) - - 29.2 42.0 

ZnCO3 - - 68.4 55.4 
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of small Cu particles. Assumption of smooth spherical Cu particles with the 

diameter of 200, 500 and 1000 nm would give 3.3, 1.3 and 0.7 m2 g-1, 

respectively, confirming that highly dispersed Cu particles are present in the 

material and most likely contribute to its high catalytic performance of 30 wt% 

Cu-ZnO. On the other hand, the Cu surface area of the low catalytic activity 

material, 70 wt% Cu-ZnO, was 1.2 m2 g-1 and this is close to the surface area 

of smooth sphere of ca. 500 nm. This implies that in this case, catalytic activity 

originates from the surface of the Cu core and high methanol selectivity was 

observed at lower temperatures. This may be the characteristics of large 

crystallites, i.e. extended Cu surface [23]. 

In literature, ZnCO3 (smithsonite) phase has rarely been reported to be 

formed or present in methanol synthesis reaction from CO/CO2, although 

recently Ash-Kurlander et al. identified such phase in CO2-based methanol 

synthesis and reported that the acidic pH during the reaction was responsible 

for dissolution of ZnO in aqueous carbonic acid solution and its transformation 

from ZnO to ZnCO3 [24]. However, effects of the ZnCO3 phase on the catalytic 

activity are not known to date. To understand the relations between the ZnCO3 

formation and catalytic activity, 30 wt% Cu-ZnO was evaluated for its catalytic 

 

Figure 5.12: (a) TEM of 30 wt% Cu-ZnO after 100 h of reaction at 331 bar, 220-340 °C, 4000 

h-1 and catalyst reduction at 330 °C and EDX analysis of the encircled region of the Zn-shell: 
(b) STEM image, (c) Cu, (d) overlay of STEM image with Cu (e) Zn, (f) overlay of Cu and Zn 
(g) O and (h) C elemental color mapping. 
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performance under different pressure and temperature conditions (Appendix 

Figure B5.3) and by XRD after the reaction (Appendix Figure B5.4). The great 

effects of reaction pressure on the catalytic performance were evident as 

described in Chapter 3. The selectivity changes from CO to methanol under the 

high pressure condition (331 bar) as discussed previously seems related to the 

reaction pressure and/or resulting catalytic activity (Appendix Figure B5.3). The 

XRD results (Appendix Figure B5.4) clearly show that the material structure is 

markedly different with a clear appearance of ZnCO3 after the catalytic test at 

331 bar in comparison to those after the tests at 27 and 184 bar. The origin of 

ZnCO3 formation and also its impacts on the catalytic performance are further 

discussed in section 5.3.9.  

5.3.6 Catalyst evaluation: Effects of Cu-Zn proximity  

The above study where Cu and Zn contents in the core-shell structure are 

varied indicated that the interaction between Cu and Zn is indeed important for 

the catalytic activity, even suggesting a formation of highly dispersed Cu 

particle/layer over the Zn-containing phase. To further verify this synergetic 

function of Cu-ZnO, two materials, the catalytic performance of (i) physical 

mixture of Cu2O and ZnO and (ii) Cu-ZnO synthesized without stirring (Figure 

5.1c) was evaluated and the results are shown in Figure 5.13. 

     

Figure 5.13: Comparison of catalytic performance of (i) physical mixture of Cu2O and ZnO, 

(ii) 30 wt% Cu-ZnO material synthesized with stirring and (iii) without stirring under the 
standard reaction condition (331 bar, 4000 h-1). 
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Considerably lower catalytic activity was observed for the physical mixture 

of Cu2O and ZnO as well as Cu-ZnO synthesized without stirring compared to 

Cu-ZnO synthesized with stirring, although the first two materials showed higher 

methanol selectivity at low CO2 conversion (low temperature), indicating direct 

methanol synthesis as the main path at this temperature (Chapter 4), which was 

not the case for the core-shell material. These results show that the morphology 

and/or the close contact between Cu and Zn components are highly beneficial 

and important for high-performance methanol synthesis, providing Cu-Zn 

interface sites considered as the very active phase [10]. Also, the findings are 

in line with the high methanol selectivity at low temperature of extended Cu 

surface suggested previously for 70 wt% Cu-ZnO. 

5.3.7 Catalyst evaluation: Effects of pre-reduction temperature  

An experimental factor known to influence the catalytic perfomance in 

methanol synthesis using Cu-based catalyts is the reduction pretreatment 

condition under hydrogen atmosphere. Therefore, the effects were examined 

for the best performing material in methanol synthesis, 30 wt% Cu2O-ZnO, 

reduced at three temperatures (250, 330 and 450 °C). These temperatures were 

chosen because three representative catalyst states can be covered: prior to 

the reduction of Cu2O phase (250 °C), right after the major completion of the 

Cu2O phase (330 °C) and then thorough reduction of Cu2O (450 °C) as indicated 

by in situ XRD (red boxes in Figure 5.7). The catalytic performance of the Cu2O-

     

Figure 5.14: Effects of catalyst prereduction condition of 30 wt% Cu2O-ZnO on the catalytic 

performance under the standard reaction condition (331 bar, 4000 h-1).  
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ZnO material reduced at the three temperatures is shown in Figure 5.14, 

evidencing great impacts of the pretreatment on the catalytic performance. The 

catalyst reduced at 250 and 330 °C exhibited similar catalytic performance with 

three differences: (i) generally higher CO2 conversion when reduced at 330 °C, 

(ii) higher methanol selectivity at lower temperature (<270 °C) for the material 

reduced at 250 °C and (iii) higher methanol selectivity at higher temperature 

(>270 °C) for the material reduced at 330 °C. Although the material reduced at 

250 °C was not fully reduced to Cu (0) from the bulk point of view, the surface 

of the material was likely reduced and thus it showed the high activity. In 

contrast, when the material was reduced at 450 °C the catalytic performance 

dropped significantly, although the highest methanol selectivity was observed 

below 270 °C. This may be again the effect of Cu sintering and formation of 

extended Cu surface promoting direct methanol synthesis despite the low CO2 

conversion. The materials reduced at the three temperatures were studied by 

XRD after the reaction and the results are shown in Figure 5.15. What is striking 

is that the same material reduced at three different temperatures shows largely 

      

Figure 5.15: XRD of 30 wt% Cu2O-ZnO reduced at 250, 330 and 450 °C and after the 

reaction under the standard condition (331 bar, 220-340 °C, 4000 h-1).  As reference, the 
XRD patterns of the as-synthesized material, Cu2O and ZnO prepared by the non-aqueous 
sol-gel method are also shown. 
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different XRD patterns after the reaction. As discussed above, for the material 

reduced at 330 °C, there was a dominant formation of ZnCO3.  

To our surprise, this phase was not observed for the other two materials. 

When the material was reduced at 250 °C, there was a formation of Zn2SiO4 

(JCPDS: 00-008-0492), although Si source was not fed into the reactor. On the 

contrary, there was no new phase formed upon reduction at 450 °C and Zn 

component was present as ZnO. The reduction treatment at this high 

temperature has led to the formation of stable ZnO as discussed above, likely 

with a loss of highly dispersed Cu under the reaction condition. All these 

observations strongly suggest that ZnO present in the 30 wt% Cu2O-ZnO 

material is highly reactive, especially when reduced at lower temperature, and 

dynamically readjust its state according to its environment. 

The formation of Zn2SiO4 has never been reported and the fact is intriguing. 

As explained in Chapter 2 (Catalyst packing) quartz wool used to fix the catalyst 

bed in the reactor is the only source of silicon in the reactor system. Thus it is 

speculated that the ZnO after the low temperature reduction is so active that it 

reacts with the quartz which is in contact with the material. To examine the 

effects of this Zn2SiO4 phase formation on catalytic activity (or vice versa), the 

reaction was performed without the use of quartz wool by holding the catalyst 

with 10 µm stainless steel frit. Figure 5.16 compares the catalytic performance 

with and without quartz wool to fix the catalyst bed.  

 

Figure 5.16: Catalytic performance of 30 wt% Cu2O-ZnO reduced at 250 °C tested under the 

standard condition with and without quartz wool to hold the catalyst in the reactor. 
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Evidently, the results are different and higher catalytic performance was 

observed with quartz wool to hold the catalyst bed. No Zn2SiO4 phase was 

observed after the reaction without quartz wool and, instead, only ZnO was 

detected (Appendix B, Figure B5.5). The exact role of Zn2SiO4 is out of the 

scope of this work, but the rather similar catalytic performance of the materials 

reduced at 250 and 330 °C points out that actually the state of Zn component 

may not be of the critical importance for catalytic performance and rather the 

influence of their state and morphology on that of Cu is more critical. The 

structural effects of Zn2SiO4 and ZnCO3 are likely similar, assisting higher 

dispersion of Cu sites over these Zn materials (crystallite size of ZnCO3 and 

Zn2SiO4 was 72 nm and 60 nm respectively) (Figure 5.12). On the contrary, 

although Cu core does not sinter after the reduction at 450 °C, the reactivity 

drops markedly. Most probably, this is due to the higher crystallinity of the ZnO 

in the shell, as ZnO agglomerates and crystallite size of ZnO increases from 20 

nm to 229 nm and thus lowering its surface area and consequently lowering the 

dispersion of active Cu species.   

5.3.8 Operando XRD  

To understand further the criteria for the ZnCO3 phase formation observed 

only under highly performing high-pressure conditions, operando high-pressure 

XRD measurements were performed (Appendix Figure B5.6). The study was 

first attempted with 30 wt% Cu-ZnO, but due to the small particle nature (<10 

µm particle size and filled in 150 µm ID capillary reactor), the pressure drop was 

too high and the catalytic performance was very low; thus no phase change of 

ZnO was observed. For this reason, the structural change of the commercial 

methanol catalyst before and after the reaction was investigated to verify 

whether the formation of ZnCO3 is generic for Cu- and Zn-containing catalyst or 
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not. Figure 5.17 shows the catalyst before and after the reaction performed at 

different pressure conditions (92, 331 and 442 bar).  

The results confirm that the formation of ZnCO3 is indeed generic to the Cu-

Zn catalytic systems and the formation is more prominent at high pressure 

conditions. A closer look at the XRD patterns indicates that the initial ZnO phase 

is replaced to a greater extent by ZnCO3 at higher reaction pressure, 

accompanying higher crystallinity of both Cu and Zn phases.  

Figure 5.18 shows operando XRD patterns of the commercial 

Cu/ZnO/Al2O3 catalyst during the stoichiometric CO2 hydrogenation to methanol 

at 182 bar at the reaction temperature of 300 °C after the reduction treatment at 

330 °C. This study clearly confirms the rapid and gradual formation of ZnCO3 

and that the phase is formed during the reaction under the high-pressure 

condition and not after the reaction and exposing the catalyst to the air. 

 

 

 

Figure 5.17: XRD patterns of the commercial Cu/ZnO/Al2O3 catalyst after reaction at 

different reaction pressure at 220-300 °C, 10,000 h-1 after catalyst reduction at 330 °C. 
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5.3.9 Relation between ZnCO3 formation and catalytic activity 

Figure B5.6 (Appendix B) and Figure 5.17 clearly showed ZnCO3 formation 

under high-pressure conditions, but at the same time the formation was 

observed at lower pressure for the commercial catalyst (e.g. 92 bar). This 

implies that the formation may not be induced by the high pressure conditions, 

but rather induced by the high reactivity, more precisely by the formation of the 

dense product phase (liquid/supercritical) which is expected under high- 

pressure conditions.  

There was a drastic selectivity change in a narrow temperature range of 

260-280 °C from CO to methanol when the reaction temperature was raised 

using 30 wt% Cu-ZnO reduced at 330 °C (e.g. Figure 5.9). To elucidate the 

material factors directing the product selectivity, the representative materials, 

namely after the reaction at 260 and 280 °C, were studied by XRD. Figure 5.19 

shows the results, highlighting the striking differences in the two XRD patterns 

with a clear formation of ZnCO3 at 280 °C. The portion of Zn-containing phases 

(ZnCO3/ZnO) was 0.0/69.2 wt% at 260 °C vs. 66.4/2.4 wt% at 280 °C according 

 

Figure 5.18: Operando XRD of the commercial Cu/ZnO/Al2O3 catalysts at CO2:H2 = 1:3, 

182 bar, 300 °C after reduction at 330 °C. 
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to the quantitative phase analysis. This is indicative of the product induced 

phase transformation rather than the effect of reaction pressure.  

Above 280 °C, the methanol selectivity was remarkably enhanced for 30 

wt% Cu-ZnO (Figure 5.9). Still one question remains: Is this state of Cu highly 

dispersed over ZnCO3 (Figure 5.12) responsible for boosted methanol 

selectivity? To answer this question, the reaction was performed in a ramp-up 

and ramp-down cycle and repeated for 2 cycles. The catalytic results of this 

cycling study are presented in Figure 5.20. Based on the CO2 conversion, some 

catalyst deactivation was observed after the first ramp-up, but then the catalytic 

activity remained relatively stable, although slight continuous decrease in CO2 

conversion could be noticed. This may be due to an irreversible structural 

change owing to the catalytic tests at up to relatively high temperature (340 °C). 

In contrast, the selectivity to methanol changed more drastically at each ramp-

up and ramp-down step. During the first ramp-down, the drop in methanol 

selectivity in the middle temperature range was also observed, although the 

 

Figure 5.19: XRD patterns of 30 wt% Cu-ZnO catalyst reduced 330 °C after the reaction at 

260 or 280 °C, 331 bar and 4000 h-1. 
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temperature at the minimum selectivity is shifted to a higher value. Further 

ramp-up (the second cycle) showed again the profile similar to the first cycle 

with somewhat higher selectivity to methanol. Interestingly, during the ramp-

down of the second cycle, the drop in methanol selectivity was less pronounced 

and methanol selectivity became more constant.  

The drop in methanol selectivity in the middle temperature range during the 

first ramp-down and the second ramp-up cycles as observed during the first 

ramp-up cycle indicates that the sudden selectivity change does not originate 

from the unique role of ZnCO3 interacting with Cu and rather it originates most 

likely from the activity of the catalyst of that moment and phase behavior 

(product condensation) determined by the amount of products. Especially, 

during the first ramp-up step, due to the product water formation and high CO2 

pressure, highly acidic liquid/dense phase containing carbonic acid is likely 

formed, transforming most of ZnO into ZnCO3. This is in accordance with the 

pressure-dependent formation of ZnCO3 observed for the commercial catalyst 

(Figure 5.20). However, as the cycle number increases, the catalyst loses its 

activity to some extent probably by further crystallization of ZnCO3 and also 

consequent sintering of Cu. Notably, this stabilized state is beneficial to enhance 

methanol selectivity at low temperature range with a minor drop in CO2 

conversion. This is in agreement with the discussion above and the reported 

high selectivity to methanol over extended Cu surfaces in CO2 hydrogenation. 

 

Figure 5.20: Effects of temperature ramp-up and –down on the catalytic performance of 30 

wt% Cu-ZnO at 331 bar, 220-340 °C, 4000 h-1, and reduced at 330 °C. 
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This porous but rigid structure of ZnCO3 can be highly beneficial for the catalyst 

stability and methanol selectivity.  

5.4 Conclusions 

A surfactant-free, non-aqueous sol-gel method was developed to 

synthesize Cu-ZnO core-shell materials to investigate the unique Cu-Zn 

interface for methanol synthesis and to enhance thermal stability of active Cu 

sites. Through variation of the amount of Cu and Zn precursors, Cu2O-ZnO 

core-shell structures were obtained. Materials with Cu2O core and with highly 

dispersed ZnO nanoparticles layer were successfully synthesized.  

30 wt% Cu2O-ZnO showed the best catalytic performance with 52% CO2 

conversion and 84% methanol selectivity in the stoichiometric CO2 

hydrogenation to methanol at 331 bar. The high catalytic performance was 

attributed to the unique state of Cu in the shell of the catalyst rather than the 

core-shell structure. During the reaction, the core-shell structure was retained, 

but ZnO-shell structure underwent major phase transformation to ZnCO3. 

Electron microscopic studies showed that Cu, present in the shell layer, became 

well dispersed over the likely-rigid porous matrix consisting of ZnCO3 

nanomaterials. The formation of ZnCO3 coincided with the selectivity boost 

towards methanol and also it was pressure-dependent; thus, this Zn phase 

transition was attributed to the highly acidic medium generated by CO2 and H2O 

contained in the feed/product under high-pressure conditions and therefore it 

was only observable above certain reaction pressure and CO2 conversion. High-

pressure operando XRD study using the commercial Cu/ZnO/Al2O3 catalyst 

showed that ZnCO3 is also observed for this case, showing the generality of this 

phase formation under high-pressure conditions.  

The effects of Cu-ZnO proximity and pre-reduction temperature were 

examined. In both studies, Cu-ZnO proximity on nano-scale was found critical 

for the catalytic activity, although high methanol selectivity at low temperature 

was consistently observed for the materials where Cu is agglomerated (e.g. less 
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Cu-ZnO contact or high reduction temperature) despite low CO2 conversion. 

The reduction temperature had striking effects on the reactivity of the ZnO shell 

itself. After the reaction at 331 bar, the formation of ZnCO3 and Zn2SiO4 phases 

was identified for the materials (30 wt% Cu2O-ZnO) reduced at 330 and 250 °C, 

respectively. Only ZnO was observed when reduced at 450 °C. The differences 

are significant, but the type of Zn phase seems unimportant for the catalytic 

activity and rather how Cu is dispersed, thus the sintering of Zn component, 

seems more decisive for the catalytic performance.  

This study showed that Cu core and ZnO shell structures are beneficial to 

keep the dispersion of Cu at the size of Cu core. However, at the same time it 

also showed that the main catalytic activity arises from the Cu 

nanoparticles/layer closely interacting with the Zn-component matrix in the shell 

layer. Non-aqueous sol-gel method was found to be very effective and tunable 

in designing Cu-Zn containing nanomaterials. Further future research directions 

using the synthesis method are expected to maximize the Cu dispersion in the 

form of simple Cu-Zn nanocomposites or to reduce the size of Cu core 

maximally to enhance the activity and stability of Cu-ZnO catalysts.  
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6.1 General conclusions 

CO2 utilization for the synthesis of chemicals or fuels is expected to 

significantly contribute to reduce anthropogenic CO2 emission and thus limit its 

substantial impact on global warming. Methanol, among other chemicals, is 

one of the most promising future chemical energy carriers as well as C1 

feedstock, thus drawing global attention as the target molecule produced from 

CO2. High-pressure advantages under over-stoichiometric CO2:H2 ratio (1:>3) 

have been reported previously by drastically increasing the reaction kinetics 

and even reaching the thermodynamic conversion. However, the major 

drawback of such processes is the treatment of unreacted hydrogen. In 

addition, there are obvious necessities to improve the catalyst and also to 

understand reaction mechanisms towards rational catalyst and process 

development. Reflecting this background, this thesis aims to (i) critically 

evaluate the advantages of the high pressure approach in stoichiometric 

CO2:H2 (1:3) ratio by examining different reaction and process parameters, (ii) 

investigate the reaction mechanism characteristic to high-pressure conditions, 

and (iii) develop thermally stable and highly active catalysts comprising of Cu-

ZnO core-shell nanomaterials. 

First, a high-pressure lab scale reactor setup for the continuous catalytic 

hydrogenation of CO2 to methanol at pressures up to 510 bar was successfully 

constructed. The operation of the reactor system was controlled by software 

implementing safety measures, thus allowing unattended catalytic tests for a 

long period of time. Using this reactor system, advantages of high-pressure 

conditions under the stoichiometric reaction condition were evaluated in-depth 

using a commercial Cu/ZnO/Al2O3 catalyst. A strong interplay between kinetics 

and thermodynamics in the reaction performance were evidenced. At 

kinetically favorable high temperature (>260 °C) especially at lower GHSV, it 

was possible to enter the regime where thermodynamic equilibrium plays 

dominant roles in determining the catalytic activity. A good weight time yield 

(WTY) of 0.92 gMeOH gcat
-1 h-1 was achieved at 442 bar with 88.5% CO2 
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conversion and 97.2% methanol selectivity using our standard size of catalyst 

particles (100-300 µm). However, above 331 bar there was a formation of 

dense reaction mixture due to product condensation and thus the overall 

reaction rate was limited by internal mass transfer. When smaller catalyst 

particles (10-20 µm) were used instead, the limitation could be effectively 

removed. Thus obtained catalytic performance fully benefited from the high-

pressure advantages of high reaction rate (kinetics), high equilibrium 

conversion (thermodynamics) and enhanced conversion (phase separation). 

Under these conditions of negligible mass transfer limitations at 442 bar, a 

very good WTY of 2.4 gMeOH gcat
-1 h-1 could be observed with 87.7% CO2 

conversion and 97.6% methanol selectivity. At a very high GHSV (100000 h-1), 

an extraordinary WTY of 15.2 gMeOH gcat
-1 h-1 could be achieved. 

To gain insights into the reaction mechanisms under high pressure, a 

mechanistic study using the commercial Cu/ZnO/Al2O3 catalyst was performed 

by space-resolved sampling of the reaction mixture from three different 

locations along the axial direction of the catalytic reactor. The results showed 

that CO2 was directly converted to methanol at low temperature (180 °C) and 

a small amount of detected CO resulted from methanol decomposition. A 

contrasting mechanism was observed at 340 °C, where the endothermic 

reverse water-gas shift (RWGS) reaction dominated, producing CO as the 

major product. Importantly, this CO could then be hydrogenated to produce 

methanol. At 260 °C catalytic activity was high, the results showed RWGS and 

CO to methanol reactions are in equilibrium and resulted into high methanol 

concentration. These mechanistic insights were further verified by operando 

Raman concentration profiling using a sapphire capillary reactor and looking 

into the void space between the catalyst beds at 184 bar. A similar trend as 

the case sampled by GC was confirmed; at 180 °C preferential direct methanol 

formation and later methanol decomposition took place as confirmed by the 

change in H2/CO2 ratio. At higher temperature (260 °C) initially H2/CO2 ratio 

was increased due to CO formation by RWGS and later lowering ratio 
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indicates CO transformation to methanol. A liquid product condensation was 

observed at this condition at the end of the reactor, which was beneficial and 

responsible for high catalytic activity. 

Cu-based catalysts are widely known for their excellent activity in the 

methanol synthesis reaction; however, copper agglomeration at higher 

temperature can lead to catalyst deactivation. With the aim to enhance the 

stability of Cu-based catalysts, Cu-ZnO core-shell catalyst, where Cu2O 

spherical core is coated with ZnO nanoparticles, was synthesized by a newly 

designed protocol based on the non-aqueous sol-gel method. This 

morphology separates the Cu particles by thermally stable Zn component and 

also provides high Cu-ZnO interfacial area, which is considered to be an 

important factor for methanol synthesis. A series of 15, 30, 50 and 70 wt% 

Cu2O-ZnO catalysts were synthesized and tested under various methanol 

synthesis conditions. 30 wt% Cu-ZnO showed the highest CO2 conversion 

(52%) and methanol selectivity (84%) at 300 °C, 331 bar. The high catalytic 

performance was attributed to the unique state of Cu in the shell of the catalyst 

rather than the core-shell structure. The catalysts before and after the reaction 

was characterized by XRD, STEM-EDX. Interestingly, 30 wt% and 50 wt% Cu-

ZnO catalyst showed emergence of ZnCO3 phase after the reaction. Electron 

microscopic studies showed that Cu, present in the shell layer, became well 

dispersed over the likely-rigid porous matrix consisting of ZnCO3 

nanomaterials. The Zn phase transition was attributed to the highly acidic 

medium generated by CO2 and H2O contained in the feed/product under high-

pressure conditions and therefore it was only observable above certain 

reaction pressure and CO2 conversion. High-pressure operando XRD study 

using the commercial Cu/ZnO/Al2O3 catalyst showed that ZnCO3 is also 

observed for this case, showing the generality of this phase formation under 

high-pressure conditions.   
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6.2 Outlook 

During this study, many interesting questions arose which might 

encourage further research in this direction. As aforementioned, methanol 

synthesis was investigated at stoichiometric CO2:H2 ratio (1:3) under a wide 

range of process. The most striking results were obtained at the highest 

examined pressure (442 bar) due to the product condensation, i.e. phase 

separation [1]. However, mass transfer limitations were also observed under 

such conditions, restricting the efficiency of the catalyst. The limitations were 

minimized by reducing catalyst particle size, but the reduction in particle size 

increases the pressure drop and thus become irrelevant in practice. Lowering 

space velocity significantly improves the internal mass transfer, but methanol 

WTY is consequently lowered. Considering the unique advantages of high 

pressure conditions, it would be very interesting to develop a catalyst or a 

catalytic system which will intrinsically minimize mass transfer limitations as 

well as pressure drop. One of the promising approaches is to use structured 

catalysts like honeycomb-shape monolith, which can offer minimum pressure 

drop, high geometric surface, high surface to volume ratio and importantly 

good heat distribution [2, 3]. Hence the use of thermally conductive Cu, Al-

based monolith catalysts are likely advantageous over powder packed-bed 

catalyst to manage precisely the mass transfer properties. 

In addition to mass transfer limitations, agglomeration of copper particles 

during the reaction is observed due to the low thermal stability of Cu. Although 

the developed core-shell Cu-ZnO shows excellent catalytic activity with high 

Cu-ZnO interfacial area and high thermal stability at elevated temperatures, 

the large particle size of the materials reduces active copper surface area for 

methanol synthesis. At the end, to achieve better catalytic activity, especially 

to reach equilibrium conversion at low reaction temperature, one needs a 

catalyst with a very high active Cu surface area which is protected against 

sintering. Interestingly, during catalytic testing using Cu-ZnO core-shell 

nanomaterials, we observed formation of ZnCO3 phase from ZnO. Detailed 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON DIOXIDE TO METHANOL: STOICHIOMETRIC CATALYTIC HYDROGENATION UNDER HIGH PRESSURE CONDITIONS 
Rohit Gaikwad 
 



Chapter 6 

136 
 

investigation of ZnCO3 phase formation by high pressure operando XRD 

revealed that the phase transformation took place due to dissolution of ZnO in 

dense high pressure aqueous phase of reaction mixture. This phase helps to 

isolate the copper particles and avoid agglomeration by forming solid ZnCO3 

coating. Hence, when a nano-sized Cu is well protected by e.g. nano-ZnO 

layer, great enhancement of catalytic activity is expected. If the 

aforementioned mass transfer limitation is also minimized, the catalyst would 

be ideal for CO2 to methanol conversion. 

Thus, a promising catalyst would be a structured one with high Cu surface 

area and at the same time maximally avoiding sintering of active Cu metal. I 

envision that a nano-foam catalyst coated over a monolith structure can offer 

great potential to boost the methanol yield under high-pressure conditions. In 

this regard, use of self-assembled multilayered colloidal arrays by the vertical 

deposition technique is a promising option. By the self-assembly of polymer 

opals, e.g. made of polystyrene and PMMA monodisperse nano-/micro-

spheres, the synthesis method can provide a long-range 3-D arrangement of 

nanomaterials deposited on a desired substrate.  

 

Figure 6.1: Illustrate the self-assembly process on support. Adapted 

with permission from Sensors, published by MDPI (2017). 
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Figure 6.1 illustrates the synthesis method; first a self-assembly process 

of polymer opals on a support and solvent drying, followed by precursor 

addition and calcination treatment, resulting in a foam material with 3D-

structured hollows with the size of the nano-/micro-spheres [4]. The high 

tenability of porosity of such materials is obvious and it is possible to 

incorporate materials of different sizes into the interstices of the structure. In 

case of methanol synthesis the hollow 3D structure can be made of either Cu 

or ZnO and then the surface of the hollow structure can be coated with ZnO or 

Cu nanoparticles, respectively thus, maximizing the contact between Cu and 

ZnO while attaining the path for fluid transport thus preventing mass transfer 

limitations.  

The mechanistic study of high-pressure CO2 hydrogenation to methanol 

presented in the thesis shows that methanol decomposition becomes more 

prominent at higher temperature, although high-pressure conditions can 

suppress the unfavored methanol decomposition to a good extent. Thus 

performing the reaction at lower temperature is advantageous but in this case 

highly active catalyst is demanded to be kinetically enabled to reach the 

beneficial equilibrium conversion. If the above structured catalyst with an 

extraordinarily high Cu-ZnO active surface area could be synthesized, it is 

expected that the catalytic performance will be boosted significantly because 

of the excellent low-temperature activity as well as facilitated phase 

condensation at low temperature (hence the enhanced equilibrium shift toward 

methanol takes place), thus leading to boosted methanol yield.  
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Table A3.1:  Effect of GHSV on CO2 and H2 conversions, product selectivity 

and WTY of methanol using Cu/ZnO/Al2O3 catalyst at 442 bar, 280 °C, and 

CO2:H2 = 1:3.  

GHSV 
 (h-1) 

Conv. (%) Sel. (%) WTY (mgMeOH gcat
-1 h-1) 

CO2 H2 CO CH4 MeOH CO CH4 MeOH 

650 89.9 87.8 6.2 6.2 87.6 8.3 4.6 133.7 

2000 90.7 86.5 3.9 1.4 94.8 17.4 3.3 487.6 

4000 88.5 86.8 1.9 0.9 97.2 37.5 5.2 920.4 

6000 88.0 84.3 3.0 0.5 96.5 61.0 3.4 1402.6 

8000 86.1 84.2 5.5 0.4 94.1 88.9 3.6 1776.4 

10000 84.7 81.9 6.6 0.4 93.1 135.1 4.1 2177.8 

30000 61.3 59.0 18.3 0.0 81.7 708.3 0.0 3948.1 

60000 45.1 41.1 39.7 0.0 60.3 2664.7 0.0 4465.9 

100000 31.8 27.2 42.8 0.0 57.2 3427.5 0.0 4964.2 
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Table A3.2: Effect of GHSV on CO2 and H2 conversions, product selectivity 

and WTY of methanol using Cu/ZnO/Al2O3 catalyst at 331 bar, 260 °C, and 

CO2:H2 = 1:3.  

GHSV 
 (h-1) 

Conv. (%) Sel. (%) WTY (mgMeOH gcat
-1 h-1) 

CO2 H2 CO CH4 MeOH CO CH4 MeOH 

650 89.0 85.0 1.4 0.7 97.8 1.9 0.6 154.5 

2000 86.5 85.1 2.2 0.4 97.4 9.4 1.1 477.8 

4000 83.3 83.2 3.0 0.2 96.8 12.2 0.5 885.4 

6000 74.8 72.3 3.9 0.1 96.0 14.5 0.2 1187.2 

8000 69.5 66.8 4.3 0.1 95.5 14.8 0.3 1590.9 

10000 61.0 58.8 6.1 0.1 93.7 97.0 1.3 1692.8 

30000 40.2 37.6 13.9 0.0 86.2 397.8 0.0 2826.6 

60000 33.2 27.9 23.8 0.1 76.1 564.0 0.7 4082.6 

100000 25.3 20.4 30.0 0.0 70.0 541.5 0.2 4867.8 

 

Table A3.3: Effect of GHSV on CO2 and H2 conversions, product selectivity 

and WTY of methanol using Cu/ZnO/Al2O3 catalyst at 184 bar, 280 °C, and 

CO2:H2 = 1:3.  

GHSV 
 (h-1) 

Conv. (%) Sel. (%) WTY (mgMeOH gcat
-1 h-1) 

CO2 H2 CO CH4 MeOH CO CH4 MeOH 

650 37.3 33.3 7.0 1.7 91.0 4.1 0.5 60.2 

2000 44.1 41.7 8.5 0.6 90.9 18.9 0.7 228.3 

4000 47.1 43.5 11.9 0.3 87.8 55.3 0.8 460.4 

6000 46.4 43.6 13.5 0.4 86.1 91.8 1.0 662.4 

8000 47.0 44.4 15.1 0.1 84.8 142.4 0.0 876.9 

10000 45.5 40.4 13.9 0.3 85.8 147.3 2.2 1031.6 

30000 37.1 28.8 22.7 0.1 77.3 599.3 0.0 2352.5 

60000 32.8 22.8 33.7 0.0 66.3 1610.6 0.0 3559.6 

100000 26.6 15.2 36.3 0.0 63.7 2342.5 0.0 4592.6 
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Table A3.4: Effect of GHSV on CO2 and H2 conversions, product selectivity 

and WTY of methanol using Cu/ZnO/Al2O3 catalyst at 92 bar, 280 °C, and 

CO2:H2 = 1:3.  

GHSV 
 (h-1) 

Conv. (%) Sel. (%) WTY (mgMeOH gcat-1 h-1) 

CO2 H2 CO CH4 MeOH CO CH4 MeOH 

650 32.3 23.6 78.1 8.6 13.0 39.4 2.5 7.4 

2000 33.2 25.8 27.4 0.8 71.8 43.1 0.5 128.9 

4000 32.9 26.7 26.3 0.4 73.3 82.5 0.8 261.7 

6000 32.6 25.8 36.1 0.4 69.7 167.5 1.2 337.3 

8000 30.9 27.6 26.4 0.4 64.9 169.9 1.6 537.5 

10000 30.0 21.3 45.4 0.2 54.9 326.6 0.9 450.1 

30000 28.6 22.8 49.8 0.4 53.6 1124.7 3.8 1293.7 

60000 25.9 18.3 44.6 0.8 51.2 1635.9 17.6 2312.6 

100000 22.4 13.7 52.3 0.6 47.7 2795.6 22.1 2892.6 

 

Table A3.5: Effect of GHSV on CO2 and H2 conversions, product selectivity 

and WTY of methanol using Cu/ZnO/Al2O3 catalyst at 46 bar, 280 °C, and 

CO2:H2 = 1:3.  

GHSV 
 (h-1) 

Conv. (%) Sel. (%) WTY (mgMeOH gcat
-1 h-1) 

CO2 H2 CO EtOH MeOH CO EtOH MeOH 

650 21.4 12.7 93.6 0.0 6.4 30.66 0.0 2.4 

2000 25.4 14.7 92.6 0.1 8.4 111.3 0.2 11.5 

4000 24.3 14.3 73.6 0.2 26.3 169.8 0.9 69.4 

6000 24.0 14.4 73.9 0.2 26.0 252.3 1.1 101.5 

8000 23.8 14.1 75.4 0.2 24.5 340.0 1.4 126.5 

10000 23.8 14.3 77.2 0.2 22.8 444.3 2.5 150.0 

30000 25.1 11.2 76.8 0.2 22.3 2116.6 6.5 651.6 

60000 24.0 11.0 70.1 0.2 23.3 2542.1 12.2 908.4 

100000 20.2 10.0 80.3 0.2 19.7 4255.5 17.4 1191.1 
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Table A3.6: Effect of GHSV on CO2 and H2 conversions, product selectivity 

and WTY of methanol using Cu/ZnO/Al2O3 catalyst, 280 °C, and CO2:H2 = 1:3 

using 10-20 µm catalyst particles at three pressure conditiosn (92, 331, and 

442 bar).  

92 bar 

GHSV 
 (h-1) 

Conv. (%) Sel. (%) WTY (mgMeOH gcat
-1 h-1) 

CO2 H2 CO MeOH CO MeOH 

10000 34.1 27.4 46.5 53.5 382.6 503.7 

30000 29.3 21.0 45.1 52.5 958.4 1331.1 

60000 25.1 16.5 51.9 48.1 1887.6 2003.2 

100000 25.9 17.2 36.8 63.2 2262.4 4449.5 

 331 bar 

GHSV 
 (h-1) 

Conv. (%) Sel. (%) WTY (mgMeOH gcat
-1 h-1) 

CO2 H2 CO MeOH CO MeOH 

10000 63.7 57.2 6.5 93.5 100.1 1644.8 

30000 46.4 38.2 11.9 88.1 418.4 3545.3 

60000 33.8 25.8 18.7 81.3 912.6 4545.1 

100000 27.2 22.4 25.0 75.0 1606.1 5513.5 

 

442 bar 

GHSV 
 (h-1) 

Conv. (%) Sel. (%) WTY (mgMeOH gcat
-1 h-1) 

CO2 H2 CO CH4 MeOH CO CH4 MeOH 

10000 87.7 83.8 2.2 0.2 97.6 47.3 2.1 2364.8 

30000 80.0 73.9 3.2 0.1 96.7 196.8 1.6 6714.8 

60000 67.9 61.5 10.0 0.0 93.9 601.2 0.8 10554.7 

100000 65.3 58.7 7.9 0.1 91.9 
1242.

8 
12.5 15253.7 
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Table A3.7: Binary interaction parameters (kij) for the modified SRK EOS [1] 

 CO CO2 Methanol H2 Water CH4 

CO - 0.1164 -0.370 -0.0007 -0.474 0.0204 

CO2 0.1164 - 0.100 0.1164 0.300 0.0956 

Methanol -0.3700 0.1000 - -0.1250 -0.075 0.046 

H2 -0.0007 0.1164 -0.125 - -0.745 0.001 

Water -0.4740 0.3000 -0.075 -0.7450 - 0.014 

CH4 0.0204 0.0956 0.046 0.0010 0.014 - 
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Figure A3.1: Equilibrium conversion of CO2 (XCO2
) under different pressure conditions 

as a function of temperature at CO2:H2 = 1:3. 
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Figure A3.2: Selectivity to methanol (SMeOH) at equilibrium under different pressure 
conditions as a function of temperature using CO2:H2 ratio = 1:3. 
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Capillary with catalyst

 

Figure B5.1: In situ XRD reactor setup with catalyst. 
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Physicochemical properties  

Table B5.1 Copper surface area and crystallite size of catalyst using different wt% 

loading of Cu2O-ZnO 

Catalyst Cu (wt %) Zn (wt %) SCu  (m2 g-1) DCu 
 (nm) 

15 wt% Cu2O-ZnO 15 85 7.7 62 

30 wt% Cu2O-ZnO 30 70 10.6 67 

50 wt% Cu2O-ZnO 50 50 5.2 71 

70 wt% Cu2O-ZnO 70 30 1.2 81 

 

 

 

Figure B5.2: Operando XRD reactor setup with catalyst. 
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Figure B5.3: Effect of temperature on CO2 conversion (XCO2
) and methanol 

selectivity (SMeOH) at 27, 184 and 331 bar, 220-340 °C, 4000 h-1, catalyst 
reduction at 330 °C using 30 wt% Cu2O-ZnO. 
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Figure B5.4: XRD of 30 wt% Cu2O-ZnO catalyst after reaction at 27, 184 and 
331 bar pressure, 220-300 °C, 4000 h-1 and catalyst reduction at 330 °C. 
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Figure B5.5: XRD of 30 wt% Cu2O-ZnO catalyst after reduction at 250 °C and reaction 
using quartz wool and without quartz wool, and reaction at 220-300 °C, 4000 h-1. 
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Figure B5.6: Operando XRD of the Cu/ZnO/Al2O3 catalysts at CO2:H2 = 1:3, 331 bar, 200 
°C used catalyst after reaction at 184 bar at 300 °C ("- time in minutes). 
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Figure B5.7: Operando XRD of the Cu/ZnO/Al2O3 catalysts at CO2:H2 = 1:3, 331 bar, 300 
°C used catalyst after reaction at 331 bar at 220 °C ("- time in minutes). 
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Shorthand glossary 

Abbreviations 
Acac Acetyl Acetonates 

AU Arbitrary Unit 

BE Binding Energy 

BET Brunauer–Emmett–Teller theory for measurement of surface area 
of material (m2 g-1) 

BJH Barrett-Joyner-Halenda method used for pore size and volume 
measurement (cm3 g-1) 

BnOH Benzyl Alcohol 

BPR Back Pressure Regulator 

BV Ball Valve 

CCS Carbon Capture and Storage 

CCU Carbon Capture and Utilization 

CV Check Valve 

DFT Density Functional Theory 

EDX Energy Dispersive X-ray Spectroscopy 

EtOH Ethanol 

EXAFS   Extended X-ray Absorption Fine Structure 

FID Flame Ionization Detector 

FTIR Fourier Transform Infrared Spectroscopy 

FWHM Full Width at Half Maximum 

GC Gas Chromatography 

GC-MS   Gas Chromatography with Mass Spectroscopy 

GHSV Gas Hourly Space Velocity 
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HAADF    High-Angle Annular Dark Field 

HRTEM   High Resolution Transmission Electron Microscopy 

ICI Imperial Chemical Industries 

ID Inner Diameter 

IEA International Energy Agency 

IPCC Intergovernmental Panel on Climate Change 

IR Infrared Spectroscopy 

JCPDS   Joint Committee on Powder Diffraction Standards 

MeOH Methanol 

MFC Mass Flow Meter 

MS Mass Spectroscopy 

NL Normal Liter 

OAc Acetate 

OD Outer Diameter 

P Pressure 

PI Pressure Indicator 

PID A Proportional Integral Derivative 

PPM Parts Per Million 

Raman  Raman Spectroscopy technique named after Sir C. V. Raman 

RD Ruptured Disc 

RPM Rotations Per Minute 

RT Retention Time (min) 

RWGS  Reverse Water Gas Shift 

S Selectivity 

SA Surface Area 

SMSI Strong Metal Support Interaction 

SS Stainless Steel 
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STEM Scanning Transmission Electron Microscopy 

T Temperature 

TCD Thermal Conductivity Detector 

TEM Transmission Electron Microscopy 

TGA Thermogravimetric Analysis 

TPD Temperature Programmed Desorption 

W Watt (Power) 

WTY Weight Time Yield 

X Conversion 

XRD X-ray Diffraction 

Y Yield 

 

Latin Letters 

𝑟𝐴𝑆
’  Intrinsic Reaction Rate of the Surface Reaction of A 

𝑟𝐴 Reaction Rate (A is CO2 in this case) 

𝜙1 Thiele Modulus 

Csurf Concentration of A at the Outer Surface 

CWP Weisz-Prater Criterion 

Deff Effective Diffusion 

R Catalyst Particle Size 

η Effectiveness Factor 

ρ Catalyst Density 
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