
CHAPTER 3

Cam-follower system

“Every scientific truth goes through three stages.
First, people say it conflicts with the Bible.
Next they say it had been discovered before.
Lastly, they say they always believed it.”

Louis Agassiz (1807-1873)

In the present chapter the complex behaviour occurring in a class of
impacting mechanical systems is investigated. Specifically, we have studied
a simplified model of an automotive camshaft system. This system can be
modeled as a forced impact oscillator and gives rise to a variety of dynamics
that makes worth its study. In particular, several nonsmooth phenomena
as first detachment, transition from complete to uncomplete chattering,
discontinuity-induced bifurcations of periodic orbits can be exhibited. We
will analyse these complex behaviours under variations of the rotational
speed of the cam. Once we have observed the different behaviours occurring
in our system, we will state analytical explanations of all the nonsmooth
phenomena mentioned before.

3.1 Introduction

The modeling and analysis of multi-body mechanical systems is one of the
corners stones in modern mechanical engineering [22, 135]. In particular,
systems that involves impacts (and friction) have been of special interest,
since most systems are affected by their presence (see [20, 23, 100]). To
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3. Cam-follower system

model a mechanical system it is important to have a clear idea of what
material properties the different components that make up the mechanism
have. This is particularly important when modeling impacts, since different
impact models resembles different material properties (see e.g. [21]). In this
chapter we will assume that all components are rigid and that impacts
occur instantaneously, i.e. in zero time.

Mechanical systems with rigid bodies are often modeled as systems of
second order ordinary differential equations (ODEs). The dynamical beha-
viour of the model can then found by solving the ODEs. Only very simple
systems of ODEs can be solved explicitly [6], but more commonly the
ODEs have to be solved using some numerical method [8, 7]. Furthermore,
systems with impacts fall into a wider group of systems that are often
referred to as nonsmooth (NS) or piecewise smooth (PWS) systems. In re-
cent years there have been a lot of analysis and research into NS systems.
The research has spanned from proving uniqueness and existence of certain
trajectories [86] to the effects of low-velocity impacts (so-called grazing im-
pacts) [109]. To further complicate things there are, at least, three different
popular approaches to deal with NS systems, the complementarity system
approach [24, 82], the differential inclusion approach [9] and the hybrid
system approach [90]. The different approaches have shown to be good for
different purposes and depending of what the goal with the analysis have
been. In the present chapter we will use the third approach, the hybrid
system approach, where a system of second order ODEs is rewritten as a
system of first order ODEs and where smooth dynamics is accompanied
with discrete maps at discontinuity surfaces. A discontinuity surface could
for instance be a rigid wall against which another rigid object is impacting.
The hybrid system approach has shown to be particularly successful when
trying to understand and explain qualitative dynamical changes caused by
the interaction of invariant sets, such as limit cycles, and discontinuity sur-
faces [92]. Such dynamical changes is referred to as discontinuity induced
bifurcations (DIBs) and differs from the bifurcations that can be found
in standard smooth dynamical systems [96]. See [55] for a more thorough
discussion about DIBs.

In addition, the hybrid system approach has also been useful when it
comes to stability and bifurcation analysis of limit cycles and continuation
of limit cycles and DIBs of limit cycles. Especially, the introduction of dis-
continuity mappings [108] has made it possible to analyse local behaviour
of DIBs.

In this chapter we will analyse a system that resembles that of a real
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3. Cam-follower system

Figure 3.1: Cam-Follower schematics. (a) t=0 (b) t=τ .

cam-follower system and show some of the characteristic dynamical fea-
tures that the real systems sometimes show. Cam-follower systems can
be found in most modern engines and there is a plethora of different ap-
proaches in which these systems are modeled [112]. In Fig. 3.1 we show a
schematic of the cam-follower system that will be analysed in this chapter.
During normal working conditions the tip of the follower is always in con-
tact with the cam and thus the piston is moving regularly up and down.
However, sometimes when the cam is rotating with a high frequency the
follower can release from the cam and then bounce against the cam until
it comes to rest through an accumulation of impacts. Such accumulation
of impacts is sometimes referred to Zeno behaviour [151] or chattering [25]
and can make the engine less effective and cause wear problems. A possi-
ble reason for follower release is the shape of cam. It is not uncommon to
produce cam profiles such that the corresponding acceleration felt by the
follower is nonsmooth [112]. See further sec. 3.2 for a discussion about cam
profiles. Therefore, technical solutions in order to ensure permanently the
contact between the elements are needed. Basically, the contact can be en-
sured in two ways: by shape or by force [105]. In the first case, solutions as
cams with channel (groove) or cams with slot/notch are used. Even though
these cams ensure the contact between cam and follower, they also lead
to increase the manufacturing cost due to the high execution precision im-
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3. Cam-follower system

plied. The other way to ensure the contact is to introduce forces or exterior
moments generated with help of spiral or helical springs connected to the
follower that always pushes the follower against the cam. But depending
on the size of the spring force and how big the discontinuous acceleration
change is the follower can leave the cam for some time anyway.

Since we will assume all components to be rigid we will use a stan-
dard Newton restitution law at impacts. The effect of this is that we will
have the possibility of chattering every time the follower releases from the
cam. Therefore the main attention in this chapter will be on DIBs the are
connected with chattering and the discontinuous acceleration mentioned
above. However, we will also analyse other DIBs that can occur in our
cam-follower system and explore the mechanisms behind them.

The reminder of this chapter is organised as follows. In Section 3.2
a general introduction to cam-follower systems is done and the specific
model that will be analysed in this chapter is defined. In Section 3.4 we
introduce the numerical methods that have been used for the numerical
analysis. Then in Section 3.5 we will introduce and explore some operating
dynamics, causes of follower detachment, chattering, accumulation points,
limit cycles, some bifurcation scenarios, and coexistence of attractors. Some
of these behaviours are analysed mathematically in Section 3.6. Finally in
Section 3.7 we summarise our findings, draw some conclusions and take a
look into possible future research.

3.2 Cam Follower Systems: Mechanical modeling.

The formulation of an appropriate mechanical model can be a challeng-
ing task for most applications. For cam-follower systems, various models
with different complexity have been extensively studied, ranging from mo-
dels with 1 [89] to 21 Degrees Of Freedom (DOF) [128](by using the addi-
tional DOF to include the effects of camshaft torsion and bending, back-
lash, squeeze of lubricant in bearings etc.). Despite the different possibili-
ties, there is general agreement confirmed by experiments, that a lumped
parameter single DOF model is adequate to represent most of the aspects
of the dynamic behaviour [18, 89, 3, 56].

Following this approach, we will consider a single DOF model in order
to study the dynamical behaviour of cam-follower systems. A schematic
diagram is shown in Fig. 3.1. Then, let us consider the model given by the
following second order equation to model the free-body dynamics of the
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follower

mq̈(t) + bq̇(t) + kq(t) = −mg, if q(t) > c(t). (3.1)

where m, b, k and g are constant parameters for the follower mass, friction
viscous damping, spring stiffness and the gravitational constant, respec-
tively. The state of the follower is given by the position q(t) and velocity
q̇(t). The follower motion is constrained to a space region c(t) (see Fig. 3.1
). The dynamic behaviour when impacts occurs (i.e. q(t) = c(t) ) is mod-
eled via Newton’s impact law as

q̇+(t) = (1 + r)ċ(t)− rq̇−(t), if q(t) = c(t). (3.2)

where q̇+(t) and q̇−(t) are the post- and pre-impact velocities, respectively,
ċ(t) is the projection of the cam velocity vector at the contact point on the
direction of free movement for the follower, and r ∈ [0, 1] is the restitution
coefficient to model from plastic to elastic impacts. The Newton’s restitu-
tion law for modeling of impacts is widely used in engineering given that
is sufficient to describe the essential features of the solutions.

Considering the free-body dynamics of the follower governed by eq. (3.1),
it is possible to find explicit expression for the solutions of this equation
with q0 = q(0) and q̇0 = q̇(0) being the initial position and velocity of
the follower, respectively. The free-body dynamics is fully described by the
following expressions

x(t) = e−ζt (I cos(ωst) +A sin(ωst))x0 (3.3)

where,

x(t) =

[

q(t)
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]
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[
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√
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0
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In what follows, we will consider the following parameter values 1: g = 0
ms−2, m = 1.221 Kg., k = 146 · 9.8 Kg./s2, b = 0 Kg./s, and r = 0.8.

The design process for a cam-follower system is a trade off between
several optimality criteria usually determined by the application and the
restrictions imposed by the physical implementation. The choice of a cam
geometry with a discontinuous derivative in its lift profile is frequently
found on engineering application [112].

1We have considered a gravity equal to zero in order to simplify the calculations but

there is no qualitative changes for doing this assumption.
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The camshafts on some car engines are cut with a three-dimensional
profile that varies along the length of the cam lobe. At one end of the
cam lobe is the least aggressive cam profile, and at the other end is the
most aggressive. The shape of the cam smoothly blends these two profiles
together. A mechanism can slide the whole camshaft laterally so that the
valve engages different parts of the cam. The shaft still spins just like a
regular camshaft – but by gradually sliding the camshaft laterally as the
engine speed and load increase, the valve timing can be optimized.

Figure 3.2: Three different cam profiles. From left to right: Cam profiles,
Constraint positions, Velocities and Accelerations.

In this work we will use the lift profile with a discontinuous second
derivative (case (c) shown before) given the characteristics of a geometric
based design process. Fig. 3.3 shows the shape of the cam and the corre-
spondent descriptive function for the position, velocity and acceleration. In
what follows we will denote by a, b, c, d, e and f the six points in the cam
position where the second derivative is discontinuous (see Fig. 3.3 (b)).
Then, we will consider the regions A1, A2, A3, A4, A5 and A6 as the regions
between the points (a, b), (b, c), (c, d), (d, e), (e, f) and (f, a) respectively.

The analytical function for the position, velocity and acceleration of
the cam profile can be deduced from figure 3.3. Considering the angles θ1,
θ2 and θ3 as

θ1 = ∠SOA θ2 = ∠SOB θ3 = ∠SOC
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3. Cam-follower system

Figure 3.3: (a) Cam profile definition. (b) Constraint position c(t), velocity
ċ(t) and acceleration c̈(t).

the shape of the cam is described by

c(θ) =















c0(θ) If 0 < θ ≤ π
2
− θ1

c1(θ) If π
2
− θ1 < θ ≤ π

2
− θ2

c2(θ) If π
2
− θ2 < θ ≤ π

2
− θ3

c3(θ) If π
2
− θ3 < θ ≤ π

(3.4)

where θ = ωt + θ0 mod 2π, (where θ0 is the initial phase of the cam).
Then, the relation between c(t) and c(θ) is given by

c(t) = c(θ), ċ(t) = ω · ċ(θ), c̈(t) = ω2 · c̈(θ). (3.5)

In what follows, the cam shape is described by the following functions

c0(θ) = ρ0 (3.6)

c1(θ) = −κ1 sin(θ + θ1) + (ρ2
1 − κ2

1cos(θ + θ1)
2)

1

2 (3.7)

c2(θ) = κ2 sin(θ + θ3) + (ρ2
2 − κ2

2cos(θ + θ3)
2)

1

2 (3.8)

c3(θ) = ρ3 (3.9)

where κi and ρi are constant parameter given by our particular geometrical
construction of the cam as (see Fig. 3.4)

κ1 = ‖OO1‖ ρ0 = ‖OA‖ ρ2 = ‖O2B‖
κ2 = ‖OO2‖ ρ1 = ‖O1A‖ ρ3 = ‖OC‖ (3.10)
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Figure 3.4: Cam profile definition (a) θ = 0 (b) θ = π.

The numerical simulations and analytical calculations are performed with
the following parameter values: κ1 = 0.45 m., κ2 = 0.40393320723821
m., ρ0 = 0.1 m., ρ1 = 0.85 m., ρ2 = 0.55393320723821 m. and ρ3 =
0.2539332072 m..

3.3 Notation for periodic orbits

In this chapter, the following notational convention for periodic orbits
will be in force. We define globally a Poincaré map (or stroboscopic map),
sampling the flow at t = T = 2π/ω. Namely, we consider

P : R
2 ×R → R

2,

P : (X0, t0) → P (X0, t0) = φT (X0, t0).

where φt is the flow generated by the solutions of the system. Let Γ =
{P k(X0, t0) ∀k ∈ Z,∃(X0, t0)}. For m ≥ 1, we will say that Γ is a mT -
periodic orbit iffm is the smallest positive integer for which (X0,mT+t0) =
Pm(X0, t0) = φmT (X0, t0).

It is relevant to point out that the structure of the stroboscopic map
changes according to the number of impacts and we may define different
problems for periodic orbits. Thus, if m ≥ 0 and si ≥ 0, i = 1, . . . ,m, we
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define

P (m; s1 : s2 : . . . : sm) = { mT-periodic orbits with si impacts in the period i}

We define si =∞ if the trajectory has a chatter motion in the period
i, and si = 0 if there are no impacts or the orbit is sticking during the
period.

3.4 Numerical methods.

As mentioned in sec. 3.1 under some circumstances (e.g. if small linear
systems are considered) it is possible to find explicit expressions for the
solutions of the ODE that describe the free-body dynamics. However, here
we use a hybrid system approach, where integrations of smooth ODEs are
mixed with discrete maps and vector field switches. In practice, it means
that an initial value problem is solved for until the trajectory reaches one
of the predefined discontinuity surfaces, where an event occurs. At such
a point the vector field is switched and/or the state vector is changed
through an impact map and a new initial value problem is solved.

Compared with many other articles on impacting system that uses the
hybrid systems approach we do not avoid the numerical problems that
chattering (or Zeno behaviour) possesses, but instead we are using a re-
cently developed method (see [111]) to deal with this very specific situation.
The main idea with this method is to introduce a chatter map that maps
the state forward in time when the impacts are accumulating. This means
that every time there is an impact and the relative acceleration between
two bodies are negative the method checks whether the chatter map can
be applied. The method also makes sure that the map does not introduce
a bigger error than some tolerance given by the user. After the chatter
map has been applied the two object that were impacting each other will
now be in contact until the relative acceleration between the two objects
becomes positive.

Furthermore, if the hybrid system approach is used it is straightforward
to calculate the different types of bifurcation diagrams presented in sec. 3.5.

Finally, in this chapter we have chosen Matlab’s ODE solvers (and
mainly RK45, which is a fourth order Runge-Kutta method) with the built-
in event location routines to detect the crossings of the discontinuity sur-
faces. Such event location routines find the zero of the specified functions
called event functions and the direction of the zero crossing. The values of
the relative and absolute tolerance that we have considered to implement
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Figure 3.5: Time response for 190 rpm. (a) Follower position vs. Cam
position. (b) Relative position. (c) Phase space, relative position vs. relative
velocity.

the integration method are both 10−12. We have also used a maximum
integration step whose value have been 10−3.

3.5 Complex dynamics on cam follower systems

Assuming the cam shape presented in sec. 3.2, the behaviour of our cam-
follower system has been computed using the numerical methods described
in sec. 3.4. This system define special types of motion. In particular we have
that if the cam and the follower come into contact with zero relative veloc-
ity and negative relative acceleration, then the follower cannot leave the
cam, so it is assumed that sticking (or sliding) motion takes place until the
relative acceleration becomes positive. We also have if the follower is near
to the cam and the relative velocity is low, the motion will lead to a rapid
series of impacts accumulating in finite time (like a bouncing ball coming
to rest) which is termed as chattering. After the chattering has completed,
sticking motion will follow until the acceleration become positive. Fig. 3.5
shows a typical time response of the follower for 190 revolutions per minute
(rpm). Fig. 3.5 (a) represents the follower position versus the cam posi-
tion. The cam position is displayed using different colors depending on the
position and velocity. The green line means a sticking motion. The black
line is displayed when the relative acceleration is positive. If the relative
acceleration is negative and the relative velocity is positive we represent it
with a blue line the points with an increasing relative velocity and with a
red one a decreasing relative velocity. As we can see, the response is char-
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acterised in this case by a sticking motion and multi-impacting behaviour
between the cam and the follower which is well illustrated both in time
evolution and phase space diagram reported in Fig. 3.5 (a)-(c).

Cam-follower systems can exhibit different scenarios as periodic orbits
with a finite number of impacts in each period, periodic chattering se-
quences or chaotic attractors. Moreover complex dynamics can be observed
under parameters variations as sudden transitions of periodic solutions to
chaos, transitions from complete to uncomplete chattering or coexistence
of attractors. In the next subsection we will present all these complex be-
haviours and then, we will try to explain them analytically in Section 3.6.

3.5.1 Observed dynamics

In order to have a better understanding of the dynamical behaviour un-
der parameter variation, we have constructed bifurcation diagrams. Fig. 3.6
(a)-(f) show several brute-force bifurcation diagrams of the cam-follower
system under variation of the cam rotational speed. Fig. 3.6 (a),(b),(c),(e)
are impact bifurcation diagrams. These diagrams have been obtained by
sampling the system states at every impact, and plotting the impact po-
sition against each value of the cam velocity. For each value of the cam
rotational speed in rpm, a fixed initial condition is simulated for a long
time in order to be sure that transients have died out and we have plotted
for the last 400 periods of the forcing input. In some of the pictures we
have represented on the left side the position, velocity and acceleration of
the cam.

Fig. 3.6 (d),(f) show stroboscopic bifurcation diagrams. We introduce
the stroboscopic map given in Section 3.3. As in the impact bifurcation
diagrams we simulate a fixed initial condition for a while, but in this case
we plot the last 400 stroboscopic points (the follower position) against the
rpm parameter. Notice that using brute-force method only can find stable
solutions, i.e. unstable solutions are not directly observable.

In Fig. 3.6 (a)-(f) we clearly see the onset of complicated dynamics lead-
ing to the sudden formations of seemingly aperiodic solutions and chaos.
In particular we are interested in nonsmooth phenomena as first detach-
ment, and nonsmooth bifurcations of periodic orbits. Fig. 3.6(a) shows a
nonsmooth phenomena related to the cam speed at which the first detach-
ment occurs near to 114 rpm. Before 114 rpm the asymptotic dynamic
does not include impact because the cam and the follower are always in
contact thanks to the restitution force provided by the preloaded spring.
After 114 rpm a set of period one chattering sequences are generated.
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For higher values of cam velocity in region [114,200] rpm we can observe
that the location of the accumulation point of the chattering sequences
varies as function of the cam speed as well as the derivatives of several
order. These solutions characterized by the presence of periodic chattering
sequences undergo transitions whenever their accumulation point hits the
boundary where the cam velocity is non differentiable. This causes transi-
tions to periodic solutions characterized by different impact sequences.

In Fig. 3.6 (a),(b) we observe the destruction of the period one orbit
around 198 rpm. The structural change in the solution involves the crossing
of the accumulation point to the next forcing period. For our parameter
values, this implies the generation of a set of period two orbits as a route
to chaos.

Fig. 3.6 (c),(d) show the sudden transition from a chaotic attractor to a
3T-periodic solution with eight impacts for the range [357.5,361.5] rpm(see
the periodicity in figure 3.6(d) and the number of impact in figure 3.6(c)).
As we will see below a stable 1T-periodic orbit with two impacts in each
period exists in the same region. Then, coexistence of different attractors
is given for that region. Moreover, near to 361.2 rpm, a nonsmooth tran-
sition occurs due to a border-collision of a section of one chaotic attractor
with the boundary where the cam profile loses its differentiability. This
nonsmooth transition implies the jump of a chaotic attractor to a larger
one.

Fig. 3.6 (e),(f) show the complex behaviour for higher values of the cam
rotation speed [660,760] rpm. In that region it is possible to isolate a stable
1T-periodic orbit with one impact per period that disappears in a process
that we call Corner Impact Bifurcation CIB. Increasing the cam rotation
speed a smooth period-doubling bifurcation takes place. Then, the same
CIB phenomena occurs for the period two orbit near to 739 rpm, where
one of the impacts belonging to the orbit crosses a discontinuity boundary
provoking the destruction of the orbit.

3.5.2 Coexistence of Attractors

In order to understand the global behaviour for the region rpm ∈
[358, 359] a domain of attraction diagram have been simulated using a
cell mapping method. The method of cell mapping was developed by Hsu
who also provided a detailed mathematical foundation for the technique.
This technique reduces the amount of computational work needed to get
a reasonably accurate picture of basins of attraction (see [84] for further
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given. We have continued two P(1;1) orbits varying the rotational speed.
Then, calculating their Jacobian for each value of ω we have explained the
corner impact bifurcation presented before. Moreover, we have used the
same procedure in order to detect the period-doubling bifurcation. Then,
another corner impact bifurcation is explained for the P(2;1:1) orbit.

Finally, we have calculated a domain of attraction diagram in order to
show coexisting solutions.

3.6.1 First detachment

As it has been explained before the nominal operating regime of cam
follower systems is given by having permanently the contact between the
cam and the follower. Therefore an important problem of relevance in ap-
plication is to assess the onset of complex dynamics due to the detachment
between the cam and the follower. It is known that this is an undesirable
behaviour and therefore needs to be compensated. In so doing, it is essen-
tial to understand the nature of this phenomenon in order to be eliminated
or to expand the region of operation of the cam-follower system of inter-
est. In particular, it is important to assess how the system behaves as the
rotational speed of the cam is varied.

Considering this, we are interested in the point where the detachment
occurs. Let us consider the impact surface, the surface containing all points
for which the vector field is tangential to the impact surface, and the
intersection between these two surfaces as

Σ1 = {x : H(x) = q(t)− c(t) = 0},

Σ2 = {x : v(x) = q̇(t)− ċ(t) = 0},

and

Σ3 = Σ1 ∩ Σ2

Notice that if the follower device is in contact with the cam they will
continue in sticking motion if the relative velocity v(x) (relative to Σ1) and
relative acceleration a(x) (relative to Σ1) are zero and negative respectively.
Therefore the set of detachment points are given by:

D = {x ∈ Σ3 : a(x) ≥ 0} = {x ∈ Σ3 :
d2

dt2
c(t) ≤ −w2

s · c(t)}
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As we can observe c(t) > 0,∀t ∈ R, then the only possibility to have

detachment is when d2

dt2
c(t) < 0. As it can be seen in the Fig. 3.4, there

are two parts, A2 and A4, where the cam acceleration holds the condi-
tion. For the first part,A2 it is possible to prove that a(x),∀x ∈ Σ3 is a
monotonic decreasing function. Then, the detachment occurs first in the
point where the cam has the first discontinuity in the acceleration (point
b) and therefore we just need to solve the equation a(x) = 0 for that point.

Taking the expression of the cam c(t) and its acceleration d2

dt2
c(t) given in

(3.5) and (3.7) we obtain that the solution is ω = 12.041, (rpm = 114.979)
and therefore such value is the rotation speed to obtain the first detach-
ment point in this part. For larger values than ω = 12.041, the set D of
detachment points contains more points until to be equal to the region A2.

For the second part,A4, it can be proven that a(x) is a monotonic
increasing function ∀x ∈ Σ3. Then, the first detachment point should be in
the point e, and the rotation speed ω is the same that the calculated value
for the first detachment in region A2, i.e., ω = 12.041. After that, we will
have detachment points in an earlier position of the cam for this region
when we increase the rotation speed until complete the region A4. The
value of ω in which the set D is equal to the region A4 is 14.124, (rpm =
134.873).

Notice that, in fact for this region, there is no realising in point e for
physical reasons because if the system had detachment at that point, the
follower must introduce into the cam.

3.6.2 Chattering

Accumulation of impacts is one of many interesting properties of impact-
ing systems. It is possible to distinguish between two different types of
impact accumulation, incomplete chattering and complete chattering. In
complete chattering an infinite number of impacts occur in a finite time
before the impacting object comes to rest, e.g. a tennis ball that bounces
on a table until it comes to stand still. In incomplete chattering, on the
other hand, the impacting system almost comes to rest, but after a big
number of impacts the relative acceleration between the two impacting
objects becomes positive and the relative velocity between the two objects
increases during free flight.

In this section we will take a closer look at the transition from complete
to incomplete chattering and vice versa.
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3.6.2.1 Study of the accumulation points

As can seen in figure 3.8, once the detachment between the cam and the
follower occurs we obtain a sequence of chattering in the system. First, the
chattering is only in both parts where the cam has a negative acceleration
(regions A2, A4). But there exists a frequency ω at which the chattering
reach the region A3. We can do some approximations in order to find when
exactly the chattering finishes in the upper point (point c). In paper [111]
is shown an approximation of first order to simulate chattering in impact
systems. If H(x) = 0, v(x) < 0 and small enough, and a(x) < 0, the time
it takes for chatter completely is given by

∆t∗ =
1

1− r

( 2

a(x)
r
)

v(x) (3.11)

Therefore, we can calculate the rotation speed where the chattering
orbit exactly reaches the region A3. To do that we will take six impacts
of the orbit and then we will use the approximation given by (3.11). Each
impact gives us a nonlinear equation and the time approximation gives us
one more. Therefore, we have a nonlinear system with seven equations and
seven parameters. Solving such system in MAPLE we find that the rotation
speed ω where the chattering orbit reach the region A3 is (rpm = 119.72).

In figure 3.8 (b) we present the accumulation points of the chattering
orbit (green line). In order to calculate such accumulation points we have
taken a fixed value of ω, and we have calculated the point before six im-
pacts. And finally, we have used the approximation given by (3.11). As can
be seen in figure 3.8 (a), (b), once the orbit has reached the region A3 we
can observe a region of ”bubbles” in the bifurcation diagram. Such ”bub-
bles” begin when one of point of the chattering orbit hits the point with the
discontinuity in the acceleration of the cam. Then the ”bubble” increases
at a maximum value and after that it finishes when another point of the
chattering orbit hits the point with the discontinuity in the acceleration of
the cam.

We have calculated the rotation speed for what one of the impact of the
chattering orbit hits the point with the discontinuity in the acceleration. In
figure 3.8 we have represented some of this points, the collision of impact
points (blue lines) with the discontinuity point. As can be seen some impact
of the chattering orbit occurs in the part A2 and the rest in the other part.
For some rotation speed values one of the impacts hits the discontinuity
point. An example is considering a rotation speed of rpm = 120.481, where
five impacts are in the region A2 and the following hits the discontinuity.
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Figure 3.8: Zoom of the first chattering part. (a) Numerical simulation. (b)
Analytical calculations

For rpm = 120.7356, 121.107, 121.686 and 122.699 we have the collision
with the discontinuity and from four to one impacts in the region A2 re-
spectively. The last collision with the discontinuity for this part is having
a direct flight to the discontinuity point. It occurs when rpm = 124.998.

Then, increasing ω more than 124.998 the first impact occurs in region
A3 and we have a sequence of complete chattering until the accumulation
point arrives at the discontinuity point d (rpm = 136.38).

3.6.2.2 Transition from complete to uncomplete chattering

As we can see in figures 3.9(a),(b) around rpm = 198 we observe the
destruction of the period one chattering sequence around 198 rpm. The
structural change in the solution is due to a transition from complete chat-
tering to uncomplete chattering. This transition involves the crossing of the
accumulation point to the next forcing period.

In figures 3.9 (a),(b) is shown a time evolution of the cam-follower mo-
tion before and after the crossing of the accumulation point. A period one
orbit is shown in figure 3.9(a) at rpm = 198.4. As we can observe the
chattering sequence finishes in a sliding motion (green line) occurs before
crossing the next forcing period, and therefore, a complete chattering se-
quence occurs. When we increase the cam rotation speed, the accumulation
point of the chattering sequence reaches is found at the same time that
the next forcing period. Then, after that cam rotation speed the chattering

66 Iván Merillas Santos



3. Cam-follower system

0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0 0.5 1 1.5

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

198 198.2 198.4 198.6 198.8 199 199.2 199.4 199.6 199.8 200
0.1

0.105

0.11

0.115

0.12

0.125

198.4 198.45 198.5 198.55 198.6 198.65
0.104

0.106

0.108

0.11

0.112

0.114

0.116

0.118

Figure 3.9: Transition from complete to uncomplete chattering. (a) Time
evolution for rpm = 198.4, (b) Time evolution for rpm = 198.56, (c)
Stroboscopic bifurcation diagram in range rpm [198,200] (d) Zoom of the
stroboscopic bifurcation diagram.

sequence is uncomplete because the accumulation point is in the next forc-
ing period (see figure 3.9(b)). For our parameter values, this implies the
generation of a set of period two orbits as a route to chaos. In figures 3.9
(c)-(d) a stroboscopic bifurcation diagram is presented.

3.6.3 Periodic Orbits

In this section we will present a global analysis of the observed perio-
dic orbits, concentrating on the existence of different types of orbits and
establishing conditions for the occurrence of one periodic orbits with one
impact.

3.6.3.1 Single impact periodic orbits

In this part we will present necessary conditions for the existence of mT -
periodic orbits with a single impact. These conditions can be obtained
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by constructing the stroboscopic map corresponding to the desired orbit
and imposing the periodicity constraint. Let us consider the stroboscopic
map at the impact time in order to do easier the calculations. Let Y (t) =
(p(t), q(t)) be the position and velocity vector of the follower and Ycam(t) =
(c(t), ċ(t)) for the cam. Considering the impact law given by eq. 3.2, a
P (m; 1 : 0 : . . . : 0) is described by

Y (0+) = (Id+R)Y (0−)−RYcam(0) (3.12)

Y (mT ) = φ(mT )Y (0+) (3.13)

where

R =

(

0 0
0 −(1 + r)

)

, φ(t) =

(

cos(wst)
sin(wst)

ws

−wssin(wst) cos(wst)

)

and T = 2π/ω. Equation 3.12 can now be substituted into the next and
taking this into account we obtain:

Y (mT ) = φ(mT )SY (0−)− φ(mT )RYcam(0) (3.14)

where S = (Id+R). Now, by imposing the periodicity constraint Y (mT ) =
Y (0−) = Ȳ we obtain

Ȳ = Y (0−) = −[Id− φ(mT )S]−1φ(mT )RYcam(0) (3.15)

where the existence of the inverse matrix of [Id − φ(mT )S] holds for the
cases where ws

ω 6= n
m , for n = 0, 1, 2, . . ..

For the cases in which the inverse matrix exists the initial condition is
given by the following expression

Ȳ =

(

a · dc
dt (0)

−1 + r
1− r

dc
dt
(0)

)

, (3.16)

where a =
(1 + r)sin(mTws)

ws(1− r)(1− cos(mTws))
. Moreover, taking into account the

impact condition the following equation is hold

p(0−)− c(0) = 0 (3.17)

Then, using eq. (3.16) into eq. (3.17) we obtain

c(0) = a · dc

dt
(0) (3.18)
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As the condition c(t) > 0,∀t ∈ R is hold, then the impact must be only

in regions where dc
dt
(t) 6= 0. Moreover, due to physical reasons the velocity

of the follower just before the impact time q(0−) = −1 + r
1− r

dc
dt
(0) must be

negative. As r ∈ [0, 1), the impact must occurs in a region where dc
dt
(0) > 0.

Thus, the two possible regions where it is possible to have single impact
periodic orbit are A1, A2.

Taking all this information into account, the constant a must be pos-
itive, and therefore, sin(mTws) = sin(2mws/ω) > 0. Thus, the region of
existence of the single impact mT-periodic orbit (P (m; 1 : 0 : . . . : 0)) is
given by

ω > 2mws (3.19)

and the impact can only occurs in region A1 or A2.

3.6.3.2 Continuation of a P(1;1) Orbit

According to the necessary conditions of periodic orbits with single im-
pact, a P (1; 1) may exist with ω > 2ws. Figures 3.6 (e),(f) represent bi-
furcation diagrams using a brute force method for the cam-follower pa-
rameters considered in the previous sections and rpm ∈ [660, 760] , and a
stable P(1;1) impacting in region A2 is observed in this parameter region.
This orbit bifurcates into a P(2;1:1) orbit in a period doubling bifurcation
when the parameter rpm is increased. It is also observed that the P(1;1)
orbit vanishes as rpm is decreased. This phenomena is due to a corner
impact bifurcation as we will show later. The same phenomena occurs to
the P(2;1:1) orbit for a rpm ≈ 739.378. Then, there is a bifurcation from
the P (2; 1 : 1) to a chaotic attractor. Moreover, the chaotic attractor has a
sudden jump to “larger” chaos when rpm ≈ 740.2. The impact bifurcation
diagram presented in figure 3.12 can provide an explanation about what
exactly happen at this point. As shown in a previous section, the chaotic
attractor collide with one of the discontinuities in the acceleration and a
sudden jump to “larger” chaos is exhibited.

In order to perform a complete scenario we introduce a bifurcation
diagram using continuation method in figure 3.10 with the same parameter
range. Eq. (3.18) gives us a nonlinear transcendental equation which can be
solved numerically in both regions A1 and A2 for ω > 2ws. This equation
have been first solved with the package MAPLE, and once a solution has
been obtained, it was checked to be of the specified type, since the condition
considered is only necessary.
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Figure 3.10: Stable P(1,1) bifurcation diagram using a continuation
method.

After solving the equation and checking the solution for each region
we observe the coexistence of two P(1;1) orbits, one impacting in region
A1 and the other in A2. Moreover, it can be observed that both P(1;1)
orbits exist for every ω > 2ws and collide at ω = 2ws in a corner impact
bifurcation.

For studying the stability of the previously computed P (1; 1) we calcu-
late the characteristic multipliers. The characteristic multipliers are com-
puted as follows: we construct the stroboscopic map for the P (1; 1) orbit,
which is given by:

P (Y0) = φ(T − t1)Sφ(t1)Y0 − φ(T − t1)RYcam(t1) (3.20)

where Y0 is the initial condition and t1 is the impact time. Once we have
the stroboscopic map we need to differentiate respect to Y0 which yields

DP (Y0) = φ(T − t1)Sφ(t1) +
∂P

∂t1

∂t1
∂Y0

(3.21)

Then, the characteristic multipliers are eigenvalues of DP (Ȳ ) where Ȳ is
the initial condition corresponding to the calculated P(1;1) orbit.

In order to calculate ∂t1
∂Y0

we will use the impact condition given by

p(t1)− c(t1) = 0 (3.22)
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Figure 3.11: Eigenvalues of the stable P(1;1).

Differentiating the left-hand side of this equation with respect to Y0 and
using the implicit function theorem yields

∂t1
∂Y0

= − φ(t1)

dφ

dt
(t1)Y0 −

dYcam

dt
(t1)

(3.23)

and we can compute DP (Ȳ ).

In Fig. 3.11 we show the evolution of the characteristic multipliers of
the P (1; 1) orbits when rpm sweep the range from 672 to 756. For the
P (1; 1) impacting in region A1 we observe first that the characteristic mul-
tipliers are complex conjugates that move on a circle of radius r ≈ 0.8,
and so the orbit is asymptotically stable. Near rpm ≈ 736, both char-
acteristic multipliers become real, and when rpm reaches a certain value
between rpm = 736 and rpm = 740 one of the characteristic multipliers
has norm greater than 1, and so the periodic orbit becomes unstable. After
this point it remains unstable. However, the P (1; 1) impacting in region
A2 remains always unstable because one of the characteristic multipliers
has norm grater than 1.

3.6.3.3 Analytically Computing the First Period-doubling of a
P (1; 1) Orbit

Flip and saddle-node bifurcations can be analytically predicted using the
stroboscopic map. For example, the first period-doubling bifurcation can be
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Figure 3.12: Unstable P(1;1) bifurcation diagram using a continuation
method.

found as follows: Let Y0 = (p0, q0) be the initial condition for a fixed point
by the stroboscopic map P . The eigenvalues of DP (Y0), or characteristic
multipliers, λ1, λ2 must be roots of the equation:

x2 − tr(DP (x0))x+ det(DP (x0)) = 0 (3.24)

where tr and det stands for the trace and the determinant respectively. In
a period-doubling bifurcation, one of the characteristic multipliers passes
through -1, and thus, DP (x0) must satisfy

1 + tr(DP (x0))x+ det(DP (x0)) = 0 (3.25)

Then, imposing the condition for period-doubling 3.25, the condition
for the impact 3.13 and the condition for periodicity 3.16, one obtains a
system of four nonlinear equations in the unknowns ω, t1, p0, q0, which can
be solved with MAPLE. The result in our case:

ω = 739.3197803

which is in perfect accordance with the numerical simulations shown in
figure 3.12.

3.6.3.4 Analytically computing and classification of corner im-
pact bifurcations

The stability analysis of a periodic orbit in the special case where there is a
discontinuity on the second derivative of the lift profile, perfectly fits in the
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Figure 3.13: Eigenvalues of the unstable P(1,1).

frame of border collision bifurcations of fixed points for two-dimensional
piecewise smooth maps [16]. Therefore, we can explain the destruction of
the periodic orbit P(1;1) varying the cam rotational speed in what we have
called corner impact bifurcation (see [53] for further details).

Considering the impact in point b we can solve equation (3.19) for ω.
The point where the corner impact is found at: ω ≈ 70.50095 (rpm =
673.234445).

To study the structure stability of this periodic orbit we obtain the
local map at the bifurcation point, or in other words when the only impact
belonging to the orbit hits the discontinuity boundary. Then, calculating
the eigenvalues of the Jacobian on the left and right side of the discontinuity
we have:

λ−
1
= 1.0052, λ−

2
= 0.6367,

λ+

1
= 0.68571 + 0.412i, λ+

2
= 0.68571 − 0.412i

. At this point we can classify the border collision bifurcation using the
methodology presented by Banerjee [16] in which it is used the trace (τ±)
and determinant (δ±) of the Jacobian matrix at each side of the disconti-
nuity boundary. In our case we have

τ− = 1.6419, δ− = 0.64001084, τ+ = 1.37142, δ+ = 0.8

For this particular case we have verified that

τ− > (1 + δ−), τ+ < (1 + δ+)
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Figure 3.14: Corner impact of the bifurcation of a P(2;1:1) orbit.

Then, the bifurcation scenario we have in Fig. 3.14 is called a border col-
lision pair bifurcation, i.e., there is no fixed points on the left side and
there are two fixed points on the right side. The two fixed points are born
on the border collision bifurcation. More specifically because we also have
that

(1 + δ+) > τ+ > −(1 + δ+)

then one of the fixed points is stable. Therefore, it is a saddle-node like
bifurcation, where a periodic attractor appears at the discontinuity.

Doing the same procedure we can explain the bifurcation occurring at
rpm = 739.37793 for the P(2;1:1). Calculating the trace and the determi-
nant on the left and right side of the discontinuity we have

τ− = 1.381624791, δ− = 0.4096, τ+ = −3.80875, δ+ = 0.4096

Therefore, it is verified that

2
√

δ− < τ− < (1 + δ−), τ+ < −(1 + δ+)

In this case the corner impact bifurcation is due to a border crossing bifur-
cation. Then, the scenario we have is a bifurcation from a regular attractor
to flip saddle, i.e., a bifurcation from the P(2;1:1) attractor to a chaotic
attractor, which is robust.
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3.7 Conclusions

In this Chapter the analysis of a cam-follower system have been presented.
Specifically, we have studied a simplified model of an automotive camshaft
system. This kind of system can be considered as a forced impact oscil-
lator. Therefore, several nonsmooth phenomena as first detachment, tran-
sition from complete to uncomplete chattering, discontinuity-induced bi-
furcations of periodic orbits can be exhibited. We have analysed these
complex behaviours under variations of the rotational speed of the cam.
Then, in order to have a better understanding of the dynamical beha-
viour we have constructed bifurcation diagrams. Once we have observed
the different behaviours occurring in our system, we have stated analyti-
cal explanations of some phenomena. We have calculated the regions with
possible detachment points and, particularly, the rotational speed for the
first detachment. After the first detachment occurs, we have a sequence of
chattering in the system. Then, we have studied analytically the accumu-
lation points of such impacts explaining some phenomena that happen in
our system. Another phenomena is the nonsmooth transition from com-
plete to uncomplete chattering. We have observed the destruction of the
period one chattering sequence for a certain value of the rotational speed
parameter due to the crossing of the accumulation point to the next forc-
ing period. A detailed study of this discontinuity-induced bifurcation is a
subject of further research. We have also given necessary conditions for
periodic orbits with a single impact. Using these necessary conditions we
have continued a periodic orbit of period one and one impact. Such perio-
dic orbit has a suddenly jump to chaos due to a corner-impact bifurcation,
and we have been able to explain this bifurcation in an analytical way.
Another corner-impact bifurcation of a period 2 orbit is also explained.
Finally, coexistence of attractors is shown using domains of attraction cal-
culated with a standard cell-to-cell mapping method.
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