
CHAPTER 2

Modeling switched power converters

using the complementarity formalism

“One geometry cannot be more true than
another; it can only be more convenient.”

J.H.Poincaré (1854-1912)

This chapter is concerned with the modeling of power converters using
the complementarity formalism. First, a concise introduction to the theory
of complementarity systems is given. Then, we model some basic dc-dc
power converters with a single diode (buck, boost, buck-boost and Čuk)
as linear cone complementarity systems. After fixing the position of the
switches, the dynamics is given by a linear complementarity system which
incorporates, in a natural way, the description of generalized discontinuous
conduction modes (GDCM), characterized by a reduction of the dimension
of the effective dynamics. Analytical state-space conditions for the presence
of a GDCM have been stated in each example and simulation results,
showing a variety of behaviours, such as persistent or re-entering GDCM,
are also presented. The modeling, analysis and simulation of a parallel
resonant converter (PRC) which has four diodes illustrate the convenience
of the complementarity formalism to simulate electrical systems with a
large number of ideal diodes. Finally, we present the simulation of a boost
converter with a sliding mode control, even though a general control theory
for complementarity systems is not still developed.
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2. Modeling switched power converters using the complementarity formalism

2.1 Introduction

Power electronics devices are widely used in different real-life applications
from industrial, commercial and aerospace environments. The needs to
convert electrical energy at high efficiency (power conversion problems) in
practical situations have been an important point in the development of
the field of power electronics. Moreover, an intensive development in many
aspects of technology, including power devices, control methods, circuit
design, passive components, etc., have been made in the last four decades
and power converters have taken advantage of all that. However, like in
many areas of engineering, power electronics is mainly motivated by prac-
tical applications, and this fact allows that a particular circuit topology or
system implementation has found widespread applications long before it
is thoroughly analyzed and most of its subtleties uncovered. For instance,
the widespread application of a simple switching converter may date back
to more than three decades ago. However, good analytical models allowing
a better understanding and systematic circuit design were only developed
in late 1970’s, and in-depth analytical and modeling work is still being
actively pursued today. Furthermore, nonlinear phenomena, despite being
commonly found in power electronic circuits, have only received formal
treatments in very recent years.

Power converters fall into a group of systems that are often referred
to as nonsmooth dynamical systems (NSDS) or piecewise smooth (PWS)
systems due to the physical behaviour of devices used as switches and
diodes. In recent years there have been a lot of analysis and research into
NSDS and there are, at least, three popular different approaches to deal
with NSDS, the complementarity system approach [24, 82], the differential
inclusion approach [9] and the hybrid system approach [90]. The different
approaches have shown to be good for different purposes, depending of
what the goal with the analysis have been. For instance, it is well known
that the complementarity formalism is a suitable framework for simulating
mechanical systems with a large number of constraints [106], but however,
the hybrid system approach has shown to be particularly successful when
trying to understand and explain qualitative dynamical changes caused
by the interaction of invariant sets, such as limit cycles, and discontinuity
surfaces [92]. In the present chapter we will use the first approach, the com-
plementarity system approach, to model and study some characteristics of
the dynamical behaviour of switched power converters.

Dynamic networks with diodes can be recast as linear complementarity
systems (LCS), [29]. LCS are obtained as follows. Take a standard linear
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2. Modeling switched power converters using the complementarity formalism

system, select a number of input/output pairs (ui, yi) and impose for each
of these pairs that at each time t both ui(t) and yi(t) must be nonnegative,
and at least one of them should be zero (nonnegativity+orthogonality):

ui(t) ≥ 0, yi(t) ≥ 0, ui(t)yi(t) = 0, ∀i, ∀t.

These are called the “complementarity conditions” (CC), and are denoted
collectively as

0 ≤ u ⊥ y ≥ 0.

The pairs (ui, yi) are called “complementary variables”. CC are well-known
in mathematical programming [19], although not usually in combination
with differential equations. In the context of electrical circuits, imposing
complementarity conditions simply means that some ports are terminated
by ideal diodes, with the current iD and (minus) the voltage −vD as com-
plementary variables.

Associated to each complementary pair (ui, yi) there are two general
situations allowed by the CC: either ui = 0 and yi ≥ 0 or yi = 0 and
ui ≥ 0. In electrical engineering terminology, diodes may be blocking or
conducting. If there are p diodes, one has 2p of these binary choices and the
system can be in any of 2p so-called “modes”. For power converters one has,
in addition to (ideal) diodes, some (ideal) switches which are arbitrarily
closed or open by a control law. Ideal switches do not dissipate or store
power, and hence the product of current and voltage for any of them is
zero, iSvS = 0. This resembles part of a CC; however one does not have,
in general, a positiveness condition in this case (although some physical
realizations of the switch may impose some kind of partial positiveness; see
[30]). To achieve this, a generalization of linear complementarity systems
known as linear cone complementarity systems (LCCS) can be considered
[29].

Since some of the complementary variables are linked to state variables
by static relations, the evolution of the later can bring some of the former
to zero; they cannot decrease any further without violating the CC and
this may force a nonsmooth change in some of the other complementary
variables so that the vector field for the state variables takes the correct
sign. Therefore, the study of existence and uniqueness of solution trajecto-
ries given an initial condition (well-posedness) of complementarity systems
is particularly relevant in order to check the validity of the mathematical
model and set up simulation algorithms for such systems.

Existence and uniqueness of solutions in linear electrical networks con-
sisting of (linear) resistors, capacitors, inductors, capacitors, gyrators, trans-
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2. Modeling switched power converters using the complementarity formalism

formers (RLCGT), ideal diodes and current and/or voltage sources have
been proved under some technical assumptions as passivity in [28]. These
assumptions are satisfied for some basic dc-dc power converters with single
diode as buck, boost, buck-boost and Čuk. Using these techniques analy-
tical results can be obtained and the state space conditions for the above
jump to take place can be given in detail. If a complementary variable
is nonzero, the complementarity condition forces its conjugate to remain
equal to zero for a while, and hence one or more state variables (or combi-
nation of them) may be kept to a constant value for a time. This situation,
in the case when the variable is a current, is known as a “discontinuous
conduction mode” (DCM) in the power converter literature [58]. Since
this can happen to a wider class of variables, other than currents, we call
this situation “generalized discontinuous conduction mode” (GDCM). The
GDCM lasts until a switch state change takes place, or until the companion
complementary variable returns to zero due to the dynamics of the other
state variables. DCMs have been extensively studied in the literature in
connection with control algorithms, i.e. switching policies, such as PWM
(see [126] and references therein), where averaged methods or small signal
frequency domain descriptions are generally used, or in connection to bi-
furcation theory and chaos [121]. However, the aim in this chapter will be
to obtain, for a given switch position, an exact state-space condition which
indicates the appearance of a GDCM.

Nevertheless, considering linear electrical systems with diodes in paral-
lel some assumptions imposed in [28] to assure existence and uniqueness of
solutions are not hold. Indeed, we will present a Parallel Resonant Conver-
ter (PRC) where solutions of the complementarity variables are not unique
but the state-space solution is unique. Therefore, results given in [28] must
be extended in order to cover a wider class of electrical systems.

Another open problem is concerned with control theory for comple-
mentarity systems. Design of robust and efficient controllers for comple-
mentarity systems is now being investigated but still there are no general
results. In this chapter we have simulated a boost converter using a sliding
mode control. Such control works pretty well but can not be extended to
other electrical systems.

Along this chapter we have used numerical algorithms for simulating
complementarity systems (see Appendix A for further details). Firstly, we
have considered a backward Euler squeme in order to discretize our dyna-
mical system and as a result we obtain a Linear Complementarity Problem
(LCP) for each time step. In order to solve such LCP we have used a Lemke
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algorithm although another algorithms can be also used as Murty’s algo-
rithm, Latin algorithm, Non Smooth Newton algorithm, etc.

This chapter is organized as follows. Section 2.2 presents the general
LCS formulation. In Section 2.3 the specific forms for the buck, boost,
buck-boost and Čuk are displayed. Section 2.4 starts with a general result
which then is applied to the converters just mentioned in order to obtain
specific conditions of GDCM for each of them. Furthermore, simulations for
the boost and Čuk converter which corroborate the theoretical predictions
and display some interesting phenomena are also shown. In Section 2.6 a
PRC is modeled and analysed. We will show that existence and uniqueness
of solutions for linear electrical systems must be extended for the cases
of systems with diodes in parallel. A boost converter with a sliding mode
control is implemented and simulated in Section 2.7. Finally, we summarize
our results in Section 2.8 and discuss some open questions.

2.2 Modeling using complementarity formalism

In what follows we will introduce some terminology and background ma-
terial related to the modeling using the complementarity formalism (for
further details, the general theory for complementarity systems is covered
in [27, 80]).

2.2.1 Complementarity systems

Inequalities have played an important role in many research fields including
mathematical programming and economics. It is surprising to see that
inequalities have received little attention in system theory except for the
matrix inequalities which appear in most of multivariable linear control
theory. One reason might be that combining inequalities and differential
equations means giving up the smoothness properties that form the basis
of much of the theory of dynamical systems. However, in many situations
it seems reasonable to study dynamics together with inequalities. Thus,
we will introduce the linear complementarity problem (LCP) that is a
very important tool in mathematical programming and in problems using
inequalities.

The name “linear complementarity problem” has underwent several
changes until 1965, and the current name was proposed by Cottle. Then,
it was later used in a paper by Cottle, Habetler and Lemke (1970). After
that paper, many results and algorithms have been obtained in this field
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2. Modeling switched power converters using the complementarity formalism

(see more details in [19, 36]). Although diverse instances of the linear com-
plementarity problem can be traced to publications as far back as 1940,
concentrated study of the LCP began in the mid 1960’s.

Basically, the LCP consists of finding a vector in a finite-dimensional
real vector space that satisfies a certain system of inequalities. Specifically,
given a vector q ∈ R

k and a matrix M ∈ R
k×k, the LCP is to find a vector

u ∈ R
k such that

u ≥ 0 (2.1)

y = q +Mu ≥ 0 (2.2)

uT y = 0 (2.3)

or to show that no such vector u exists.We denote the above LCP by the
pair (q,M).

The conditions u ≥ 0, y ≥ 0, uT y = 0 are called “complementarity
conditions” (CC) and are denoted collectively as 0 ≤ u ⊥ y ≥ 0. The pairs
(u, y) are called “complementary variables”.

Matrix classes play a strong role in the theory of the LCP. In fact,
positive definite matrices allow us to give the following existence result for
the LCP [36]:

Theorem 1. If M ∈ R
k×k is positive definite, then the LCP(q,M) has

an unique solution for all q ∈ R
k.

In general, the LCP with a positive semi-definite matrix can have mul-
tiple solutions. For instance, the LCP with:

q =

(

−1
−1

)

M =

(

1 1
1 1

)

has solutions

u(1) = (1, 0), u(2) = (0, 1), u(3) = (
1

2
,
1

2
)

In fact, there is a strong relation between the LCP and the class of ma-
trices M such that the LCP(q,M) has an unique solution for all vectors q.
For this purpose, we introduce the class of P-matrices:

Definition 1. A matrix M ∈ R
k×k is said to be a P-matrix if all its

principal minors are positive. The class of such matrices is denoted P.
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Theorem 2. A matrix M ∈ R
k×k is a P-matrix if and only if the

LCP(q,M) has a unique solution for all vectors q ∈ R
k.

Linear electronic networks, specially the power converters considered
in this chapter, can be seen as the dynamical extensions of LCPs and fall
into a class called complementarity systems. A complementarity system is
a combination of a standard dynamical system and complementarity con-
ditions. In a mechanical context such combinations of differential equations
and complementarity conditions had already been used by Lötstedt [101].
Van der Schaft and Schumacher were among the first that formulated the
equations of complementarity systems (or complementary slackness sys-
tems) in a general setting [146]. In the most general form complementarity
systems are described by the differential and algebraic equations

F (ẋ(t), x(t)) = 0 (2.4)

y(t) = g(x(t)) ∈ R
k (2.5)

u(t) = h(x(t)) ∈ R
k (2.6)

together with the complementarity conditions 0 ≤ u(t) ⊥ y(t) ≥ 0. In this
formulation t denotes the time variable, x(t) the state variable and u(t)
and y(t) the complementarity variables at time t.

A special complementarity system occurs when (2.4), (2.5) and (2.6)
are replaced by an “input/state/output system” of the form

ẋ(t) = f(x(t), u(t)) (2.7)

y(t) = g(x(t), u(t)) (2.8)

These systems are called “semi-explicit” complementarity systems. More-
over, if the input/state/output system is taken to be linear we obtain a
linear complementarity system (LCS):

ẋ(t) = Ax(t) +Bu(t) + Ew(t), (2.9)

y(t) = Cx(t) +Du(t) + Fw(t), (2.10)

where A, B, C, D, E and F are (constant) matrices and vector of suitable
dimensions.

If one allows for positiveness to be relaxed to various degrees for the
corresponding pairs, then one gets a cone complementarity system (CCS).
There are three possible cases of CCS depending on the degree of relax-
ation: u ⊥ y ≥ 0, 0 ≤ u ⊥ y and u ⊥ y. If the system is linear we have
then a linear cone complementarity system (LCCS).
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2. Modeling switched power converters using the complementarity formalism

In order to establish existence and uniqueness of solutions for com-
plementarity systems, specifically for electrical circuits, it is shown in [28]
that passivity of the dynamical system plays an important role. Indeed,
existence and uniqueness of solutions is proven for passive networks with
ideal diodes and external inputs under some assumptions. In the following
subsection we will describe the aforementioned results.

2.2.2 Passivity in Linear Systems

In this part we outline the implications of the notion of passivity in the
context of LCS. As it is well-known from circuit theory, the matrix quadru-
ple (A,B,C,D) is not arbitrary but has a certain structure. Indeed, the
circuit should satisfy a passivity property when there is no external input
present.

Definition 1 . [7]A linear system Σ(A,B,C,D) given by

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(2.11)

is called passive, or dissipative with respect to the supply rate uT y, if
there exists a nonnegative function V : R

n → R+ such that for all t0 ≤ t1
and all trajectories (x, u, y) of the system the following inequality holds:

V (x(t0)) +

∫ t1

t0

uT (t)y(t)dt ≥ V (x(t1)) (2.12)

If it exists, the function V is called a storage function.

The following proposition is one of the classical results of systems and
control theory.

Proposition 1 . [7] Consider a system Σ(A,B,C,D) in which (A,B,C)
is a minimal representation. The following statements are equivalent.

• Σ(A,B,C,D) is passive.

• The transfer matrix G(s) := D+C(sI −A)−1B is positive real, i.e.,
x∗[G(λ) + G∗(λ)]x ≥ 0 for all complex vector x and all λ ∈ C such
that Re(λ) > 0 and λ is not an eigenvalue of A.
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• The matrix inequalities

(

AT K +KA KB − CT

BT K − C −(D +DT )

)

≥ 0 (2.13)

and K = KT ≥ 0 have a solution K.

Moreover, in case Σ(A,B,C,D) is passive, all solutions K to the linear
matrix inequalities (2.13) are positive definite and K is a solution to (2.13)
if and only if V (x) = 1

2xT Kx defines a storage function of the system
Σ(A,B,C,D).

2.3 Power converters as complementarity systems

We present next the models of several dc-dc converters in this formalism.
The basic schemes for the boost, buck, buck-boost and Čuk converters
appear in Figures 2.1, 2.2, 2.3 and 2.4, respectively.

+
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Figure 2.1: The boost converter
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Figure 2.2: The buck converter
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Figure 2.3: The buck-boost converter
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Figure 2.4: The Čuk converter

To model these systems we will introduce port variables (vD, iD) and
(vS , iS) for the diode and the switch. We will consider two-quadrant switches,
such that iS ≥ 0 but vS is unrestricted. Hence the model for an arbitrary
switch configuration will be a LCSS. Once the switch configuration is spe-
cified (S open i.e. iS = 0 or S closed i.e. vS = 0), the switch variables
can be eliminated and one is left with an standard LCS with the diode
variables.

2.3.1 Boost converter

We use as state variables the current in the inductance and the voltage on
the capacitor, i.e x1 = iL and x2 = vC . The state space equations are then

ẋ1 = −
1

L
x2 −

1

L
vD +

1

L
Vin (2.14)

ẋ2 =
1

C
x1 −

1

RC
x2 −

1

C
iS (2.15)
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We can formulate this as a CCS with

u1 = −vD → y1 = iD = x1 − u2

u2 = iS → y2 = vS = x2 − u1

In matrix notation














ẋ = Ax+Bu+ EVin

y = Cx+Du+ FVin

0 ≤ y1⊥u1 ≥ 0
y2⊥u2 ≥ 0

(2.16)

where

A =

(

0 − 1
L

1
C

− 1
RC

)

B =

(

1
L

0
0 − 1

C

)

C =

(

1 0
0 1

)

D =

(

0 −1
−1 0

)

E =

(

1
L

0

)

F =

(

0
0

)

2.3.2 Buck converter

With the same variables as for the boost converter, we get

ẋ1 = −
1

L
x2 −

1

L
vD (2.17)

ẋ2 =
1

C
x1 −

1

RC
x2 (2.18)

u1 = −vD → y1 = iD = x1 − u2

u2 = iS → y2 = vS = Vin − u1

Then














ẋ = Ax+Bu+ EVin

y = Cx+Du+ FVin

0 ≤ y1⊥u1 ≥ 0
y2⊥u2 ≥ 0

(2.19)

with

A =

(

0 − 1
L

1
C

− 1
RC

)

B =

(

1
L

0
0 0

)

C =

(

1 0
0 0

)

D =

(

0 −1
−1 0

)

E =

(

0
0

)

F =

(

0
1

)
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2.3.3 Buck-boost converter

ẋ1 =
1

L
Vin −

1

L
vS (2.20)

ẋ2 = −
1

RC
x2 −

1

C
iD (2.21)

u1 = vS → y1 = iS = x1 − u2

u2 = iD → y2 = −vD = −x2 − u1 + Vin















ẋ = Ax+Bu+ EVin

y = Cx+Du+ FVin

0 ≤ y1⊥u1

0 ≤ y2⊥u2 ≥ 0

(2.22)

A =

(

0 0
0 − 1

RC

)

B =

(

− 1
L

0
0 − 1

C

)

C =

(

1 0
0 −1

)

D =

(

0 −1
−1 0

)

E =

(

1
L

0

)

F =

(

0
1

)

2.3.4 Čuk converter

We take as state variables x1 = iL1, x2 = iL2, x3 = vC1 and x4 = vC2.
Then

ẋ1 =
1

L1
Vin −

1

L1
x3 −

1

L1
vD (2.23)

ẋ2 =
1

L2
vD −

1

L2
x4 (2.24)

ẋ3 =
1

C1
x1 −

1

C1
iS (2.25)

ẋ4 =
1

C2
x2 −

1

C2R
x4 (2.26)

u1 = −vD → y1 = iD = x1 − x2 − u2

u2 = iS → y2 = vS = x3 − u1














ẋ = Ax+Bu+ EVin

y = Cx+Du+ FVin

0 ≤ y1⊥u1 ≥ 0
y2⊥u2 ≥ 0

(2.27)
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A =











0 0 − 1
L1

0

0 0 0 − 1
L2

1
C1

0 0 0

0 1
C2

0 − 1
RC2











B =









1
L1

0

− 1
L2

0

0 − 1
C1

0 0









C =

(

1 −1 0 0
0 0 1 0

)

D =

(

0 −1
−1 0

)

E =









1
L1

0
0
0









F =

(

0
0

)

2.4 Generalized discontinuous conduction modes for systems

with a single diode

Our approach to computing conditions for the presence of a GDCM fol-
lows ideas presented in [145]. It is based on assuming right-analyticity of
solutions in state-space. This means that any quantity can be computed on
(t0, t0 + ε), for some ε > 0, if the quantity and its derivatives are known in
t0. To be more precise, let us consider a couple of complementary variables,
u and y, and let U ≡ (u(0), u(1), u(2), . . .), Y = (y(0), y(1), y(2), . . .) denote
the values of u and y and their successive right-time derivatives at t = t0.
To ensure 0 ≤ u ⊥ y ≥ 0 on [t0, t0 + ε), one of the following must be true

U � 0 and Y = 0, (2.28)

or

Y � 0 and U = 0, (2.29)

where � means lexicographic nonnegativity [36], i.e. all the terms are zero
or the first nonzero term is positive. If the terms of the sequence are the
Taylor coefficients of an analytic function, lexicographic nonnegativity en-
sures nonnegativity of the function in an open interval. We will also con-
sider finite sequences Uk ≡ (u(0), u(1), . . . , u(k)), Yk = (y(0), y(1), . . . , y(k)).
A pair of sequences, finite or not, satisfying either (2.28) or (2.29), will be
called valid.

Consider a dynamical system of the form

ẋ = f(x, z) + au, (2.30)

ż = g(x, z, u), (2.31)

y = βx+ α, (2.32)
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with x ∈ R, z ∈ R
n−1, a 6= 0, β 6= 0, and where u ∈ R and y ∈ R are

complementary variables, 0 ≤ u ⊥ y ≥ 0. This is a relative degree ρ = 1
system, and from (2.30), (2.31) and (2.32) one can compute the equations
linking the values of u, y and their successive time derivatives at t = t0.
Using the notation explained above, the first of these are

y(0) = βx0 + α ≡ βγ0, (2.33)

y(1) = βf(x0, z0) + aβu(0) ≡ βγ1 + aβu(0), (2.34)

y(2) = β∂xf(x0, z0)(f(x0, z0) + au(0))

+ β∂zf(x0, z0)g(x, z, u(0)) + aβu(1)

≡ βγ2 + aβu(1), (2.35)

and, in general,
y(k) = βγk + aβu(k−1), (2.36)

where γk depends on x0, z0 and the time derivatives of u at t = t0 up to
order k − 2.

As explained in [145], a method for constructing smooth solutions start-
ing from x0, z0 can be obtained by solving a series of what are called there
dynamical complementarity problems (DCP). A DCP(k) consists in find-
ing valid sequences Uk and Yk satisfying relations (2.33), (2.34),. . . up to
(2.36). In general, DCP(k) may have many solutions (for instance, u(0) does
not appear in (2.33), and hence it is free, apart from being non-negative,
for DCP(0)); however, since the conditions of DCP(k) are a subset of those
of DCP(k + 1), the solutions of DCP(k + 1) must be chosen among those
of DCP(k). This is called the nesting property of the DCP.

We say that the system is in mode Jk if all the solutions of DCP(k)
satisfy Yk � 0, and that the system is in mode Ik if all the solutions of
DCP(k) verify Uk � 0; otherwise, the system is said to be in mode Kk

1.
Due to the nesting property, if the system is in mode Jk (Ik) it will be in
mode Jl (resp. Il) for any l > k. We will assume that

1. y(0) ≥ 0,

2. aβ > 0.

These conditions ensure in our case existence and uniqueness of smooth
solutions starting from x0, z0 (theorems 3.1 and 3.2 of [145]). Then the
DCPs are as follows.

1We use the term mode in a sense different from that of [145]; ours is adapted to the
fact that only a pair of complementary variables are present.
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DCP(0): Find a valid pair (u(0)), (y(0)) such that (2.33) holds. Two
situations are possible:

Case 1: y(0) > 0. This forces u(0) = 0. The system is in mode J0.

Case 2: y(0) = 0. In this case u(0) ≥ 0 is still free. The system is in mode
K0.

DCP(1): Find a valid pair (u(0), u(1)), (y(0), y(1)) such that (2.33) and
(2.34) hold. Since the conditions of DCP(0) are a subset of these, we start
with the solutions obtained there.

Case 1: Since y(0) > 0 we must have u(1) = 0 for the pair to be valid.
One also gets y(1) = βγ1. Notice that the sign of y(1) does not matter
since already y(0) > 0. The system is in mode J1.

Case 2: In this case (2.34) becomes a 1-dimensional LCP for y(1), u(0),
which always has solution due to aβ > 0. Three subcases are possible.

Case 2.1: βγ1 > 0. The only solution to the LCP is u(0) = 0, y(1) =
βγ1 > 0; one must choose u(1) = 0 and the system is in mode
J1.

Case 2.2: γ1 = 0. Now we have u(0) = 0, y(1) = 0; any u(1) ≥ 0 is
valid and the system is in mode K1.

Case 2.3: βγ1 < 0. The solution is u(0) = −γ1

a
= −βγ1

aβ
> 0, y(1) = 0;

any u(1) ∈ R is valid and the system is in mode I1.

DCP(2): Find a valid pair (u(0), u(1), u(2)), (y(0), y(1), y(2)) such that
(2.33), (2.34) and (2.35) hold. As is the transition to DCP(0) to DCP(1),
solutions coming from modes I1 or J1 will yield solutions in I2 and J2,
respectively, so the only case worth studying is 2.2, for which now (2.35)
is an LCP for y(2), u(1). Again this always has solution due to aβ > 0, and
three situations can be encountered:

Case 2.2.1: βγ2 > 0. The solution is u(1) = 0, y(2) = βγ2 > 0; one must
choose u(2) = 0 and the system is in mode J2.

Case 2.2.2: γ2 = 0. Now u(1) = 0, y(2) = 0; any u(2) ≥ 0 is valid and the
system is in mode K2.

Case 2.2.3: βγ2 < 0. The solution is u(1) = −γ2

a
= −βγ2

aβ
> 0, y(2) = 0;

any u(2) ∈ R is valid and the system is in mode I2.
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Successive DCPs can be solved, and we assume that after a finite num-
ber of steps the system ends up in a J or I mode. The general case can be
summarized as follows:

Proposition 1. Under the conditions of the preceding discussion,

• if the above procedure enters a J mode for the first time when solving
DCP(k), then u(l) = 0 for all l ∈ N, y(l) = 0 for l = 0, . . . , k − 1, and
y(k) = βγk > 0.

• if the above procedure enters a I mode for the first time when solving
DCP(k), then y(l) = 0 for all l ∈ N, u(l) = 0 for l = 0, . . . , k − 2, and
u(k−1) = −γk

a
> 0.

Proposition 2. Assume that y(t) > 0, and hence u(t) = 0, for t ∈
(t0 − ε̃, t0), for some ε̃ > 0. Then, if for some k ≥ 1,

γ0 = 0, and γl = 0,∀l = 1, . . . , k − 1, but βγk < 0 (2.37)

one has that

• the (k − 1)th time derivative of u has a jump at t0, going from 0 to
−γk/a > 0.

• there exists ε > 0 such that y(t) = 0, u(t) > 0 for t ∈ (t0, t0+ ε), and
hence we have a GDCM.

We call (2.37) the kth-order GDCM condition (GDCMC).
Proof. Obvious from Proposition 1 and the discussion leading to it, and

the fact that all the derivatives of u are zero for t ∈ (t0 − ε̃, t0).
As a corollary, we have
Proposition 3. Assume y(t) > 0 for t ∈ (t0 − ε̃, t0), for some ε̃ > 0,

and that y(t0) = 0 and βγ1 < 0. Then u has a discontinuity at t = t0, from
0 to −γ1/a > 0, and there exists ε > 0 such that y(t) = 0 and u(t) > 0 for
t ∈ (t0, t0 + ε).

The situation presented in Proposition 3 is the one normally encoun-
tered both in simulation and in experiment; higher order GDCM conditions
are difficult to meet, since they require several state space quantities to be
zero simultaneously.

2.5 Application to the power converters with single diode.

In this part we will obtain the first order GDCMC for the two positions of
the switch of the power converters presented in the previous Section.
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2.5.1 Boost converter

The equations are

Lẋ1 = −x2 − vD + Vin,

Cẋ2 = x1 −
1

R
x2 − iS ,

iD = x1 − iS ,

vS = vD + x2.

S closed (vS = 0)

Lẋ1 = Vin,

Cẋ2 = iD −
1

R
x2,

x2 = −vD.

We apply Proposition 3 with x = x2, z = x1, uD = iD, wD = −vD,
f(x, z) = −x2/(RC), α = 0, β = 1, a = 1. The DCMC is given by

x2(t0) = 0, γ = −
1

RC
x2(t0) < 0

which is clearly impossible.

S open (iS = 0)

Lẋ1 = −x2 − vD + Vin,

Cẋ2 = x1 −
1

R
x2,

x1 = iD.

We apply Proposition 3 with x = x1, z = x2, uD = −vD, wD = iD,
f(x, z) = 1

L
(Vin − x2), α = 0, β = 1, a = 1/L. The DCMC is given

by

x1(t0) = 0, γ =
1

L
(Vin − x2(t0)) < 0,

This implies x2(t0) > Vin, which is the normal form of operation for
the boost converter. Notice that in this case f depends on z. However,
since x1(t) = 0 for t ∈ (t0, t0 + ν), we have that x2(t) remains above
Vin, so uD(t) = x2(t) − Vin > 0 for all t ∈ (t0, t0 + ν). Hence, at
t = t0 + ν we still have x = 0, wD = 0 and uD > 0 and nothing
changes thereafter.
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2.5.2 Buck converter

We have

Lẋ1 = −x2 − vD,

Cẋ2 = x1 −
1

R
x2,

iD = x1 − iS ,

vS = Vin + vD.

S closed (vS = 0)

Lẋ1 = −x2 + Vin,

Cẋ2 = x1 −
1

R
x2,

x1 = iD + iS .

The system evolves without any jump because the vector field in
this configuration does not depend on the diode variables. No DCM
exists.

S open (iS = 0)

Lẋ1 = −x2 − vD,

Cẋ2 = x1 −
1

R
x2,

x1 = iD.

We apply Proposition 3 with x = x1, z = x2, uD = −vD, wD = iD,
f(x, z) = − 1

L
x2, α = 0, β = 1, a = 1/L. The DCMC is given by

x1(t0) = 0, γ = −
1

L
x2(t0)) < 0,

This implies x2(t0) > 0, which is the normal form of operation for
the buck converter. The same considerations exposed for the boost
converter apply here.

2.5.3 Buck-boost converter

We have

Lẋ1 = Vin − vS ,

Cẋ2 = −
1

R
x2 − iD,

iS = x1 − iD,

vD = x2 + vS − Vin.
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S closed (vS = 0)

Lẋ1 = Vin,

Cẋ2 = −
1

R
x2 − iD,

x2 = vD + Vin.

We apply Proposition 3 with x = x2, z = x1, uD = iD, wD = −vD,
f(x, z) = − 1

RC
x2, α = Vin, β = −1, a = −1/C. The DCMC is given

by

x2(t0) = Vin, γ = −
1

RC
x2(t0)) > 0,

which is impossible. No DCM exists.

S open (iS = 0)

Lẋ1 = x2 − vD,

Cẋ2 = −x1 −
1

R
x2,

x1 = iD.

We apply Proposition 3 with x = x1, z = x2, uD = −vD, wD = iD,
f(x, z) = 1

L
x2, α = 0, β = 1, a = 1/L. The DCMC is given by

x1(t0) = 0, γ =
1

L
x2(t0)) < 0,

This implies x2(t0) < 0.

2.5.4 Čuk converter

We have

L1ẋ1 = Vin − x3 − vD,

L2ẋ2 = −x4 + vD,

C1ẋ3 = x1 − iS ,

C2ẋ4 = x2 −
1

R
x4,

iD = x1 − x2 − iS ,

vS = x3 + vD.
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S closed (vS = 0)

L1ẋ1 = Vin,

L2ẋ2 = −x3 − x4,

C1ẋ3 = x2 + iD,

C2ẋ4 = x2 −
1

R
x4,

x3 = −vD.

We apply Proposition 3 with x = x3, z = (x1, x2, x4), uD = iD,
wD = −vD, f(x, z) = 1

C1
x2, α = 0, β = 1, a = 1/C1. The DCMC is

given by

x3(t0) = 0, γ =
1

C1
x2(t0) < 0.

This implies x2(t0) < 0.

S open (iS = 0)

L1ẋ1 = −x3 − vD + Vin,

L2ẋ2 = −x4 + vD,

C1ẋ3 = x1,

C2ẋ4 = x2 −
1

R
x4,

iD = x1 − x2.

Notice that, if x = x1 − x2, then

ẋ =
Vin

L1
−

1

L1
x3 +

1

L2
x4 −

(

1

L1
+

1

L2

)

vD.

Thus, we can apply Proposition 3 with x = x1 − x2, z = (x1 +
x2, x3, x4), uD = −vD, wD = iD, f(x, z) = Vin/L1 − x3/L1 + x4/L2,
α = 0, β = 1, a = 1/L1 + 1/L2.

The DCMC is given by

x1(t0) = x2(t0), γ =
Vin

L1
−

x3(t0)

L1
+

x4(t0)

L2
< 0,
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2.5.5 Simulations

As shown in [27], a backwards Euler integration method yields a stable
algorithm when complementarity conditions are present. For a LCS of the
following form

ẋ = Ax+Bu+ E,

y = Cx+Du+ F,

the backwards Euler scheme is

xk+1 = xk + h(Axk+1 +Buk+1 + E)

yk+1 = Cxk+1 +Duk+1 + F,

where h is the time step size.

At each step, one must solve the LCP

yk+1 = (hC( I − hA)−1B +D)uk+1

+ C( I − hA)−1xk

+ hC( I − hA)−1E + F (2.38)

0 ≤ yk+1 ⊥ uk+1 ≥ 0, (2.39)

for given xk, and then compute

xk+1 = ( I − hA)−1 (xk + h(Buk+1 + E))

from the obtained value of uk+1. In general, an LCP must be solved using
specialized algorithms (such as Lemke’s [19]). However, for a single pair
of complementary variables, an explicit computation can be done. First of
all, (2.38) can be written as yk+1 = Muk+1 + qk. Assume M > 0 (which is
the case for any of the switch configurations of our converters). Then the
LCP is solved as follows:

• if qk > 0, then uk+1 = 0 and yk+1 = qk,

• if qk < 0, then uk+1 = −qk/M and yk+1 = 0,

• if qk = 0, then uk+1 = 0 and yk+1 = 0.

We have implemented this algorithm in Matlab to check the GDCMC
for the boost and the Čuk converter. We have used the system parameter
values (in SI units) L = 750 ·10−6, C = 220 ·10−6 , R = 10 and Vin = 24 for
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the boost converter and L1 = 750 · 10−6, L2 = 800 · 10−6, C1 = 220 · 10−6,
C2 = 130 · 10−6, R = 10 and Vin = 24 for the Čuk converter. The initial
conditions are x(0) = (2, 1) for the boost converter and x(0) = (2, 1, 1, 1)
for both simulations of the Čuk, while the fixed integration step has been
chosen as h = 10−6.

Simulation results are displayed in figures 2.5, 2.6 and 2.7. For the boost
with open switch, a GDCM is reached and left in finite time, and then the
system decays to an equilibrium point. For the Čuk converter with switch
closed, the GDCM is entered multiple times, while for open switch the
system does not leave the GDCM, although a re-entrant behaviour can be
obtained if the other initial conditions are used. All this corroborates the
theoretical predictions.
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Figure 2.5: GDCM for the boost converter with switch open. Upper: x1 on
the horizontal axis and Γ on the vertical one. Middle: u as a function of
time. Lower: y as a function of time. The GDCM has a finite duration and
it is not re-entrant for the parameters and initial conditions chosen.

34 Iván Merillas Santos



2. Modeling switched power converters using the complementarity formalism

−0.5 0 0.5 1 1.5 2 2.5
−5000

0

5000

0 1 2 3 4 5 6

x 10
−3

−1

0

1

2

3

0 1 2 3 4 5 6

x 10
−3

−1

0

1

2

3

Figure 2.6: GDCM for the Cuk converter with switch closed. Upper: x3 on
the horizontal axis and Γ on the vertical one. Middle: u as a function of
time. Lower: y as a function of time. The GDCM has a finite duration, but
it is re-entrant for the parameters and initial conditions chosen.
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Figure 2.7: GDCM for the Cuk converter with switch open. Upper: x1−x2

on the horizontal axis and Γ on the vertical one. Middle: u as a function
of time. Lower: y as a function of time. For the parameters and initial
conditions used, the GDCM lasts indefinitely.
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Figure 2.8: A Power Resonant Convert diagram

2.6 Parallel Resonant Converter as LCS

According to the general form of an LCS given by eq. 2.9 and 2.10, we can
model the parallel resonant converter (PRC) presented in Figure 2.8 as an
LCS. The complementarity description is obtained as follows:

We take as state variables x1 = ir, x2 = vr, x3 = iL and x4 = v0, and
u1 = iD1, u2 = iD3, u3 = vD2, u4 = vD4, y1 = vD1, y2 = vD3, y3 = iD2 and
y4 = iD4 as complementarity variables. Then, in matrix notation,







ẋ(t) = Ax(t) +Bu(t) + ESign(sin(wt)),
y(t) = Cx(t) +Du(t) + FSign(sin(wt)),

0 ≤ y ⊥ u ≥ 0
(2.40)

with

A =















0 − 1
Lr

0 0

1
Cr

0 0 0

0 0 0 − 1
Lf

0 0 1
Cf

− 1
RLCf















, B =













0 0 0 0

− 1
nCr

1
nCr

0 0

0 0 1
Lf

1
Lf

0 0 0 0













,
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C =











0 − 1n 0 0

0 1
n 0 0

0 0 1 0
0 0 1 0











,D =









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0









,

E =











1
Lr

0
0
0











, F =









0
0
0
0









.

Following the definition of passivity in linear systems given in sec-
tion 2.2.2 it can be proved that the PRC that we are considering is passive.
Indeed, an example of storage function for that system is V (x) = 1

2xT Kx,
where K is given by:

K =









Lr 0 0 0
0 Cr 0 0
0 0 Lf 0
0 0 0 Cf









At this point, in order to assure the existence and uniqueness of solu-
tions the following assumption is used in [28]:

Assumption 1 . The system Σ(A,B,C,D) is passive with the storage
function x→ 1

2xT Kx where Kis definite positive and col(B,D +DT ) has
full column rank.

However, this assumption is not satisfied by our example because col(B,D+
DT ) has not full column rank. Nevertheless in the following subsections we
will prove the existence and uniqueness of solutions for this particular ex-
ample.

2.6.1 Initial and Local Well-Posedness

In this section, we are interested in existence and uniqueness of initial so-
lutions for the PRC. Before analysing our example, we recall the so-called
rational complementarity problem.

Problem RCP: Let A,B,C,D,E,F be matrices of appropriate di-
mensions. Define rational matrix functions T (s) and G(s) by T (s) =
C(sI−A)−1x0+[F +C(sI−A)−1E]w(s) and G(s) = C(sI−A)−1B+D.
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For given x0, find strictly proper rational functions y(s) and u(s) such that
the equality

y(s) = T (s)x0 +G(s)u(s) (2.41)

holds, and there exists and s0 ∈ R such that for all s ≥ s0 we have

y(s) ≥ 0, u(s) ≥ 0, u(s)T y(s) = 0. (2.42)

The solution of the RCP gives a solution for the LCS. In our example,
the matrix functions are given by:

G(s) =













Lrs
(s2CrLr+1)

− Lrs
(s2CrLr+1)

1 0

− Lrs
(s2CrLr+1)

Lrs
(s2CrLr+1) 0 1

−1 0
(sRlCf +1)

(s2Lf RlCf +sLf+Rl)
(sRlCf +1)

(s2LfRlCf +sLf+Rl)

0 −1
(sRlCf +1)

(s2Lf RlCf +sLf+Rl)

(sRlCf +1)

(s2LfRlCf +sLf+Rl)













T (s) =

























−
Lr(Vgen + sx1 + Crs

2x2)

(s2CrLr + 1)
Lr(V gen + sx1 + Crs

2x2)

(s2CrLr + 1)
Lfsx3(sRlCf + 1) +RlCfsx4

(s2LfRlCf + sLf +Rl)
Lfsx3(sRlCf + 1) +RlCfsx4

(s2LfRlCf + sLf +Rl)

























It is easy to see that the G(s) matrix is not P -matrix. Then, unique-
ness is not assured. Moreover, the RCP can be solved by considering the
following assumption:

G(s) =









a(s) −a(s) 1 0
−a(s) a(s) 0 1
−1 0 b(s) b(s)
0 −1 b(s) b(s)









, T (s) =









−c(s)
c(s)
d(s)
d(s)









with a(s), b(s) ≥ 0,∀s ≥ s0. The functions b(s), c(s) can take any value.
Then, with this assumption we have analysed case by case all the possible
solutions.

• Case 1: u = (0, 0, 0, 0). This case has solution if and only if c(s) =
0 and d(s) ≥ 0. In this case the solution is u = (0, 0, 0, 0), y =
(0, 0, d(s), d(s)).
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• Case 2: y1 = u2 = u3 = u4 = 0. This case has solution if and
only if c(s), d(s) ≥ 0 and d(s) − c(s)

a(s) ≥ 0. The solution is given by

u = ( c(s)
a(s) , 0, 0, 0),y = (0, 0, d(s) − c(s)

a(s) , d(s)).

• Case 3: u1 = y2 = u3 = u4 = 0. This case has solution if and only
if c(s) ≤ 0, d(s) ≥ 0 and d(s) + c(s)

a(s) ≥ 0. The solution is given by

u = (0, −c(s)
a(s) , 0, 0),y = (0, 0, d(s), d(s) + c(s)

a(s) ).

• Case 4. u1 = u2 = y3 = u4 = 0. This case has solution if and only
if c(s) ≥ 0, d(s) ≤ 0 and c(s) + d(s)

b(s) ≤ 0. In this case the solution is

u = (0, 0, −d(s)
b(s) , 0),y = (−(c(s) + d(s)

b(s) ),−c(s), 0, 0).

• Case 5. u1 = u2 = u3 = y4 = 0. This case has solution if and
only if c(s), d(s) ≤ 0 and c(s) − d(s)

b(s) ≥ 0. In this case the solution is

u = (0, 0, 0,− d(s)
b(s) ), y = (−c(s), c(s) − d(s)

b(s) , 0, 0).

• Case 6. y1 = y2 = u3 = u4 = 0. This case has multiple solutions.
If c(s), d(s) ≥ 0 and d(s) − c(s)

a(s) ≥ 0 then u = (l, l − c(s)
a(s) , 0, 0) and

y = (0, 0, d− l, d+ c(s)
a(s)− l) with c(s)

a(s) ≤ l ≤ d. If c(s) ≤ 0, d(s) ≥ 0 and

d(s)+ c(s)
a(s) ≥ 0 then u = (l, l− c(s)

a(s) , 0, 0) and y = (0, 0, d−l, d+ c(s)
a(s)−l)

with 0 ≤ l ≤ d+ c(s)
a(s) .

• Case 7. y1 = u2 = y3 = u4 = 0. It has solution if and only if c(s) ≥ 0
and moreover one of this conditions is hold:

1. d(s) ≥ 0 and d(s)− c(s)
a(s) ≤ 0.

2. d(s) ≤ 0 and c(s) + d(s)
b(s) ≥ 0.

Then, the solution is given by u = ( b(s)c(s)+d(s)
1+a(s)b(s) , 0, c(s)−a(s)d(s)

1+a(s)b(s) , 0), and

y = (0, c(s)−a(s)d(s)
1+a(s)b(s) , 0, b(s)c(s)+d(s)

1+a(s)b(s) ).

• Case 8. y1 = u2 = u3 = y4 = 0. This case has solution if and only if
c(s) = 0 and d(s) ≤ 0. In this case the solution is u = (0, 0, 0, −d(s)

b(s) ),

y = (0, −d(s)
b(s) , 0, 0).

• Case 9. u1 = y2 = y3 = u4 = 0. This case has solution if and only if
c(s) = 0 and d(s) ≤ 0. In this case the solution is u = (0, 0, −d(s)

b(s) , 0),

y = (−d(s)
b(s) , 0, 0, 0).
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• Case 10. u1 = y2 = u3 = y4 = 0. It has solution if and only if
c(s) ≤ 0 and moreover one of this conditions is hold:

1. d(s) ≥ 0 and d(s) + c(s)
a(s) ≤ 0.

2. d(s) ≤ 0 and c(s)− d(s)
b(s) ≤ 0.

Then, the solution is given by u = (0, d(s)−b(s)c(s)
1+a(s)b(s) , 0, −(c(s)+a(s)d(s))

1+a(s)b(s) ),

and y = (−(c(s)+a(s)d(s))
1+a(s)b(s) , 0, d(s)−b(s)c(s)

1+a(s)b(s) , 0).

• Case 11. u1 = u2 = y3 = y4 = 0. This case has multiple solutions.
If c(s) ≥ 0, d(s) ≤ 0 and c(s) + d(s)

b(s) ≤ 0 then u = (0, 0, l,−( d(s)
b(s) + l))

and y = (l − c(s), (c(s) − d(s)
b(s) ) − l), 0, 0 with c(s) ≤ l ≤ −

d(s)
b(s) . If

c(s), d(s) ≤ 0 and c(s) − d(s)
b(s) ≥ 0 then u = (0, 0, l,−( d(s)

b(s) + l)) and

y = (l − c(s), (c(s) − d(s)
b(s) )− l), 0, 0 with 0 ≤ l ≤ c(s)− d(s)

b(s) .

• Case 12. u1 = y2 = y3 = y4 = 0. This case has solution if and
only if c(s), d(s) ≤ 0 and c(s) − d(s)

b(s) ≥ 0. The solution is given by

u = (0, 0, c(s) − d(s)
b(s) ,−c(s)),y = (− d(s)

b(s) , 0, 0, 0).

• Case 13. y1 = u2 = y3 = y4 = 0. This case has solution if and only
if c(s) ≥ 0, d(s) ≤ 0 and c(s) + d(s)

b(s) ≤ 0. In this case the solution is

u = (0, 0, c(s),−(c(s) + −d(s)
b(s) )),y = (0,− d(s)

b(s) ), 0, 0).

• Case 14. y1 = y2 = u3 = y4 = 0. This case has solution if and only
if c(s) ≤ 0, d(s) ≥ 0 and d(s) + c(s)

a(s) ≥ 0. The solution is given by

u = (d(s) + c(s)
a(s) , d(s), 0, 0),y = (0, 0,− c(s)

a(s) , 0).

• Case 15. y1 = y2 = y3 = u4 = 0. This case has solution if and
only if c(s), d(s) ≥ 0 and d(s) − c(s)

a(s) ≥ 0. The solution is given by

u = (d(s), d(s) − c(s)
a(s) , 0, 0),y = (0, 0, 0, c(s)

a(s) ).

• Case 16. y1 = y2 = y3 = y4 = 0. This case has solution if and only if
c(s) = 0 and d(s) ≥ 0. In this case the solution is u = (d(s), d(s), 0, 0),
y = (0, 0, 0, 0).

In the following cases:

• If c(s), d(s) ≥ 0 and d(s)− c(s)
a(s) ≥ 0,
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• If c(s) ≤ 0, d(s) ≥ 0 and d(s) + c(s)
a(s) ≥ 0,

• If c(s) ≥ 0, d(s) ≤ 0 and c(s) + d(s)
b(s) ≤ 0,

• If c(s), d(s) ≤ 0 and c(s)− d(s)
b(s) ≥ 0.

there are multiple solutions. However, the solutions of the LCP in such
regions give the same solution for the state space. This fact is due to the
fact that the diodes are in parallel. This result shows that an extended
theory is needed in order to cover such cases.

2.7 Simulation of a boost converter as LCS with SMC

In this section we will simulate a boost converter as a linear complemen-
tarity system with a sliding mode control (SMC). Although there is no a
general control theory for complementarity systems we have achieved to
control this power converter doing some manipulations with the variables
and using a SMC (see appendix B for a detailed description of this control
technique).

Let us consider a 2-dimensional, non linear (actually bi-linear) dc-dc
converter used for stepping-up voltages. Step-up or boost converters are
used in battery powered devices, where the electronic circuit requires a
higher operating voltage than the battery can supply, e.g. mobile phones,
notebooks, camera flashes, . . . The diagram of this converter have been
shown in Figure 2.1.

Power converters are variable structure systems because of the abrupt
topological changes that the circuit, commanded by a discontinuous con-
trol action, undergoes. They constitute a natural field of application of
nonlinear control techniques. Several authors have applied sliding control
techniques to the regulation problem in basic dc-to-dc power converters.
Power converters contain switches and diodes; then, they can also be mod-
eled in the frame of complementary systems. Therefore, we will joint both
things in order to simulate a boost converter.

2.7.1 Dynamical equation

For modeling this system port variables (vD, iD) and (vS , iS) for the diode
and the switch will be considered. Constrains for the diode are as usual
0 ≤ −vD ⊥ iS ≥ 0 while for the switch iS ≥ 0 but vS is unrestricted,
which corresponds to a two-quadrant switch. Once the switch configuration
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is specified (switch open i.e. iS = 0 or closed i.e. vS = 0), the switch
variables can be eliminated and one is left with a standard LCS with the
diode variables.

By considering as state variables the current in the inductance and the
voltage on the capacitor, i.e., iL and vC , it follows that this circuit can be
modeled by the time invariant state space equations:

L
diL
dt

= Vin − vC − vD (2.43)

C
dvC

dt
= iL − iS −

vC

RL
, (2.44)

where Vin is the initial voltage that satisfies the condition: Vin > 0. In
addition we have the port equations,

iS = iL − iD (2.45)

vD = vS − vC , (2.46)

and the complementarity conditions,

0 ≤ −vD ⊥ iD ≥ 0 vS ⊥ iS ≥ 0

In order to make the control variable explicit take iS = u · îS and
(1− u) · v̂S . Then, the LCS model becomes

L
diL
dt

= Vin − vC − vD (2.47)

C
dvC

dt
= iL − uîS −

vC

RL
(2.48)

uîS = iL − iD (2.49)

vD = (1− u)v̂S − vC , (2.50)

and the only remaining complementarity condition is

0 ≤ −vD ⊥ iD ≥ 0.

Finally, diode variables can be removed from state equations, resulting in

L
diL
dt

= Vin − (1− u)v̂S (2.51)

C
dvC

dt
= iL − uîS −

vC

RL
, (2.52)
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Let us consider a generic sliding surface σ(iL, vC) := k1LiL + k2CvC +
k3. Note that the transversality condition is k1v̂S − k2 îS 6= 0 and the
equivalent control

ueq =
k1 (Vin − v̂S) + k2

(

iL −
vC

RL

)

k2 îS − k1v̂S

Parameters k1, k2 and k3 have to be chosen so that the ideal sliding dy-
namics be stable.

Then, the control action is defined as:

u =

{

0 if σ · (k1v̂S − k2 îS) > 0

1 if σ · (k1v̂S − k2 îS) < 0
(2.53)

provided that 0 < ueq < 1.

While the system is in continuous conduction mode

1. u = 0 implies iS = 0 and iD = iL 6= 0, hence vD = 0 and v̂S = vC .

2. u = 1 implies vS = 0 and −vD = vC 6= 0, hence iD = 0 and îS = iL.

Taking all of this into account the switching logic can be rewritten as

• if u = 0 and σ · (k1vC) < 0, then switch to u = 1.

• if u = 1 and σ · (k2iL) < 0, then switch to u = 0.

However if the system is in discontinuous conduction mode

1. u = 0 implies iS = 0 and iD = iL = 0, hence vD = Vin − vc and
v̂S = Vin.

2. u = 1 implies vS = 0 and −vD = vC = 0, hence iD = 0 and îS = iL.

Taking all of this into account the switching logic can be rewritten as

• if u = 0, iL = 0 and σ · k1 < 0, then switch to u = 1.

• if u = 1, vC = 0 and σ · (k2iL) < 0, then switch to u = 0.

Remark: : A natural but naive candidate for sliding surface is vC = v∗.
It is qualified as naive because it is well known that these converters are
non-minimum phase with respect to the output voltage. Thus, an indirect
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control has to be considered. For the election of the sliding surface it has to
be taken into account the ideal sliding dynamics: the transient performance
as well as the steady-state. The former will depend on the slope of the
sliding surface, for the later the sliding surface has to pass through the
desired equilibrium point. This design depends on system parameters and
results in a non robust controlled system. In order to avoid this drawback,
the voltage error integral is used as an additional variable and the sliding
surface is completed with an integral term. Since the aim of this report is
limited to an introduction to the subject, we assume the system parameters
are well known; particularly Vin and RL.

2.7.2 Simulation

As we have mentioned before, for the numerical approximation of the so-
lutions of switched electrical networks the Backward Euler time-stepping
scheme is frequently used. For LCS the method consists of discretizing the
system description by applying the well known backward Euler integra-
tion routine and imposing the complementarity conditions at every time
step. This comes down to the computation of uh

k+1, y
h
k+1, and xh

k+1 given

xh
k through the solving a linear complementarity problem. In general a
linear complementarity problem may have multiple solutions or have no
solutions at all. In that case we can assure the unique solvability of the
problem because we have a P -matrix for each LCS.

For the boost converter analysis, the state variables (the current in
the inductance and the voltage on the capacitor, i.e., iL and vC) and the
sliding surface are the basic results we want to export out.

For simulations we use these fixed parameters:

Design parameter L = 750 · 10−6 H., C = 220 · 10−6 F., RL = 10 Ω ,
Vin = 24 v., v∗ = 60 v., k1 = 1, k2 = 0, k3 = −15, ∆ = 0.35.

Initial conditions i0L = 0 A., v0
c = 24 v.

Simulation results for state variables and the sliding surface are shown.
An hysteresis of width ∆ has been added to the sliding surface equation.

2.8 Conclusions

The basic power converters can be formulated as linear cone complementar-
ity systems (LCCS). For a given switch configuration, the resulting system
can be cast strictly in the linear complementarity system (LCS) formalism.
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Figure 2.9: Voltage on the capacitor

We have presented a simple, analytical test to look for generalized dis-
continuous conduction modes in power converters with a single diode. This
test can be verified at several orders; the higher the order, the smoother
the change in u. We have applied the test to the Čuk converter, and found
the conditions under which generalized discontinuous conduction modes
can appear. We have performed simulations and checked the theoretical
prediction. In particular, we have found a variety of behaviors, such as a
re-entrant GDCM. Although we have centered our exposition on switched
power converters, the results apply as well to any other LCS with a single
complementary pair.

Using the formalism of [145] as has been applied here, systems with
several diodes can be treated. It is straightforward to extend the study to
the case of decoupled diodes, i.e. to the case when βa, now a matrix, is
diagonal; for the nondiagonal case, a case-by-case study of the LCP prob-
lems appearing in the successive DCPs will be needed to obtain analytical
results, although numerical algorithms can always be used.
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Figure 2.10: Current in the inductance
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Figure 2.11: Sliding surface
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Figure 2.12: Zoom of the voltage on the capacitor
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Figure 2.13: Zoom of the current in the inductance
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Figure 2.14: Zoom of the sliding surface
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