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Abstract

This thesis adresses the description of the bifurcational and chaotic be-
havior when the input voltage is varied in a model of a PWM controlled
buck converter. It also deals with the stabilization of unstable peri-
odic orbits which are embedded in the resulting chaotic attractor. Since
the model is represented by a low dimensional system of differential
equations which are piecewise-linear, analytical closed-form solutions are
available. From the computational point of view, this means that the
usual algorithms to compute trajectories, and consequently bifurcations
and basins of attraction, can be considerably improved. Thus a thor-
ough analysis can be made by means of numerical data, although some
results can be analytically deduced.
Although the mathematics are quite simple, abundant results are
obtained when dealing with non-smooth bifurcations. Non-smooth
piecewise-linear systems have not been extensively studied in the lit-
erature, since the lack of smoothness does not allow the classical pertur-
bation methods and series expansions.
Some questions are solved which are of interest to the practicing engi-
neer. The bifurcation diagram is computed to show all the expected
stationary behaviors. This includes several secondary evolutions which
coexist with the main branch attractor yielding multistability. In this
case, the basins of attraction are computed to predict the response of the
system depending on the initial conditions. Furthermore, the boundary
between desired operation and multiple pulsing is obtained in analytical
closed-form, depending on the parameters of the circuit.
Although still in its infancy with respect to applications, the subject of
control chaos is also studied in the buck converter. Several methods are
proposed to stabilize unstable orbits which can improve the performance
of the converter in terms of smaller output ripple and extension of the
operational range. Some of these methods are checked against noise in
the states or perturbations in the parameters. Numerical simulations
indicate the feasibility of the design.

Thesis Supervisor: Enric Fossas, Associate Professor of Mathematical Sciences.
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R−
0 ; region with lines: P (R−

0 ). . . . . . . . . . . . . . . . . . . . 105

4.36 Image of the region R−
1 . . . . . . . . . . . . . . . . . . . . . . . 106

4.37 Qualitative picture of regions R−
0 , R−

1 , R+
0 , R+

1 , P (R−
0 ), P (R−

1 ),
P (R+

0 ) and P (R+
1 ). The zones with lines correspond to

⋃

i≥2 Ri

and P (
⋃

i≥2 Ri). . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.38 (a) Scheme of the trajectories with initial conditions on ru; (b)
A piece of P (ru). . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.39 (a) Scheme of the rectangular region R with edges labeled 11-
12-23-24; (b) P (R). The dotted region is mapped to the dotted
region, while the rectangular region is mapped to the spiraling
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.40 Some regions in the phase space and their respective images. The
expanding-stretching in opposite directions and the folding mech-
anism is clearly seen. (a) Initial regions; (b) Respective images. 110

4.41 Image of a region in the phase space. (a) R−
k ∪R−

k+1; (b) P (R−
k ∪

R−
k+1). Heavy lines are mapped to heavy lines, and dashed lines

to dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.42 Image by P 5 of a region in the phase space. Heavy lines are
mapped to heavy lines, and dashed lines to dashed lines. . . . . 112

4.43 Points (vl, lk),(vl, l
∗
k),(vu, uk) and (vu, u∗

k). . . . . . . . . . . . . 113

4.44 R+
13 ∪R+

14 and P (R+
13 ∪R+

14), showing an intersection which leads
to an invariant set with horseshoe dynamics. . . . . . . . . . . . 114

5.1 Possible behaviors: (a) multiple impacts and grazing, (b) P(2,2)
orbit, (c) skipping phenomenon, (d) grazing and sliding. . . . . 117

5.2 The six different possibilities for the stroboscopic map, depending
on the parity (n even or n odd) of the number of crossings in the
ramp and the initial voltage (v0 < vl or v0 > vl). . . . . . . . . . 118

5.3 Different typical behaviors of the control voltage between two
impacts: (a) OFF-OFF, (b) ON-OFF, (c) ON-ON. . . . . . . . . 120

5.4 Buck bifurcation diagram in the range (23, 33)V . Several sec-
ondary bifurcations and attractors are outlined. . . . . . . . . . 121

5.5 Non-standard bifurcation for Vin = 11.752381V . . . . . . . . . . . 122

5.6 Successive enlargements of the main branch of the buck bifurca-
tion diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.7 Three-piece chaotic attractor in the (v, i) phase space for Vin =
24.160V . v range is (11.41, 12.70) and i range is (0.42, 0.75). . . 127

5.8 Duty cycles α1, α2, α3 for the main (3,3) branch of (111)m type. 128

5.9 Scheme of the bifurcations of the types for the 3T-periodic unsta-
ble orbits. Dots stand for grazing bifurcations: the numbers are
given accordingly to Fig.5.10. Every point in the branch stands
for one of the three stroboscopic points of the orbit. . . . . . . . 130

5.10 Patterns for the 3T-periodic unstable orbits. Dots stand for graz-
ing points. Under each of the 36 patterns, the type of the orbit
or the value of the input voltage is specified. . . . . . . . . . . . 131



LIST OF FIGURES xvii

5.11 (a) Bifurcation of the 3T-attractor starting near Vin = 13.376V .
After the non-smooth bifurcation creating the 3T-periodic orbit,
a period-doubling bifurcation occurs. Next, instant chaos into a
six-piece chaotic attractor is observed. An interior crisis of first
kind producing merging bands turns the six-piece chaotic attrac-
tor into a three-piece chaotic attractor, and finally a boundary
crisis destroys it. (b) Detail of the instant chaos bifurcation. . . 135

5.12 Evolution of the 3T-periodic orbit at Vin = 13.376V in the phase-
space (a) Vin = 13.500V (6T-periodic attractor); (b) Vin =
13.600V (six-piece chaotic attractor); (c) Vin = 13.700V (six-
piece chaotic attractor); (d) Vin = 13.800V (three-piece chaotic
attractor). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.13 Invariant manifolds for the 3T-saddles in the 3T-branches. In
the first 3T-branch, the interior part of the unstable manifold
leads to the 1T-periodic attractor and the exterior part intersects
the the stable manifold; in the second 3T-branch, the interior
and exterior parts of the unstable manifold intersect the stable
manifold. (a) Vin = 11.800V , first 3T-branch; (b) Vin = 11.800V ,
second 3T-branch; (c) Vin = 14.000V , first 3T-branch; (d) Vin =
14.000V , second 3T-branch. . . . . . . . . . . . . . . . . . . . . 137

5.14 Invariant manifolds for the 3T-saddles of the 3T-branches and
for the 2T-periodic inverse saddle created at the second period-
doubling of the main branch attractor. (a) Vin = 22.000V , first
3T-branch; (b) Vin = 22.000V , second 3T-branch; (c) Vin =
26.000V , first 3T-branch; (d) Vin = 32.200V . . . . . . . . . . . . 138

5.15 (a) Basins of attraction for Vin = 13.800V . Black corresponds to
the 3T-attractor and white to the main 1T-attractor; (b) Basins
of attraction for Vin = 24.160V . Black stands for the 1T-periodic
basin, white for the three-piece chaotic attractor basin. . . . . . 139

5.16 (a) Bifurcation diagram for the 6T attractor; (b) One of the 6
subbranches of the 6T attractor. . . . . . . . . . . . . . . . . . . 141

5.17 Six-piece chaotic attractor in the (v, i) phase space for Vin =
30.170V . v range is (11.95,12.17) and i range is (0.497,0.684). . 141

5.18 (a) Basins of attraction for Vin = 30.100V . Black corresponds to
the 6T basin, white to the 2T basin. v range is (11.74,12.28); i
range is (0.40,0.80); (b) Invariant manifolds for the 6T-direct sad-
dle. The stable manifold coincides with the basin boundary for
the 2T-solution. Vin = 30.000V . v range is (11.69,12.57); i range
is (0.39,0.71); (c) Invariant manifolds for the main inverse saddle
just before the homoclinic tangency. Vin = 29.000V . v range is
(11.70,13.13); i range is (0.38,0.70); (d) Invariant manifolds for
the main inverse saddle just after the homoclinic tangency. Frac-
tal boundary basins are expected. Vin = 30.000V . v range is
(11.67,13.08); i range is (0.34,0.72). . . . . . . . . . . . . . . . . 143



xviii LIST OF FIGURES

5.19 (a) Basins of attraction for Vin = 29.990V . The 6T attractor lies
inside the basin. Black corresponds to the 6T basin, white to
the 2T basin. Part of the attractors are marked with rectangles.
v range is (11.97,12.12); i range is (0.66,0.69); (b) Detail of the
basins for Vin = 29.990V . v range is (11.95,11.99); i range is
(0.65,0.68); (c) Basins of attraction for Vin = 30.175V , near the
boundary crises. The 2T basin enters into the 6T basin. Black
corresponds to the 6T basin, white to the 2T basin. v range is
(11.9600,12.0600); i range is (0.6600,0.6795); (d) Basins of at-
traction for Vin = 30.160V , in the 6T-chaotic zone. The 6T
basin shows some type of erosion. Black corresponds to the 6T
basin, white to the 2T basin. v range is (11.74,12.28); i range is
(0.40,0.80). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.20 (a) Bifurcation diagram for the 12T; (b) Three subdomains of
the 12T-attractor observing full chaos, crises and 3T windows in
each of the three subbranches. . . . . . . . . . . . . . . . . . . . 145

5.21 (a) Organization of the period-doubled 12T-periodic orbits. Crosses
stand for the 12T, and circles for the coexisting 2T-stable peri-
odic orbit; (b) Organization of the 12T-periodic orbits born at the
saddle-node bifurcation. Crosses stand for the 12T, and circles
for the coexisting 8T-stable periodic orbit. . . . . . . . . . . . . 146

5.22 Basins of attraction for Vin = 32.150V . White stands for the
8T-periodic basin, while black stands for the 12T basin. . . . . . 146

5.23 (a) Phase plane portrait just after the enlargement has occurred.
The small scale chaotic attractor can be still clearly observed; (b)
Large scale five-zones chaotic attractor. . . . . . . . . . . . . . . 147

5.24 5T-periodic organising orbit. . . . . . . . . . . . . . . . . . . . . 148

5.25 (a) Average number of impacs per period as Vin is increased;
(b) Total number of skippings over 2000 periods for different Vin

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1 (a) Stabilized orbit for Vin = 35V . Initial conditions are taken
at (0, 0); no noise (R = 0) is added at the end of each cycle. (b)
Stabilized orbit for Vin = 35V . Initial conditions are taken at
the unstable 1T-periodic orbit. Random noise R of amplitude
σ = 10mV is added at every end of cycle, which is represented
at the top of (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2 The two feedback schemes for time-delay autosyncronization of
the buck converter. . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.3 Domains of control for the two feedback schemes and several val-
ues of r. Vertical axis: η from −10 to 10 . Horizontal axis: Vin

from 20 V to 35 V. Black = 0 (stable), Grey = 1 (unstable),
White = 2 (unstable). . . . . . . . . . . . . . . . . . . . . . . . . 166



LIST OF FIGURES xix

6.4 Domains of control for the first feedback scheme and 2T-periodic
orbits and several values of r. Vertical axis: η from −10 to 10.
Horizontal axis: Vin from 25 V to 35 V. Black = 0 (stable),
Dark gray = 1 (unstable), Light gray = 2 (unstable), White = 3
(unstable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.5 Load voltage chaotic waveform for Vin = 35V (solid line) and
time-delay feedback controlled orbit in the second scheme with
r = 0 and η = 4.0 (dashed line). 50 cycles of the auxiliary ramp
are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.6 ETDAS simulations for the buck converter. . . . . . . . . . . . . 170

6.7 Simulation checks of the analytically computed limits of the con-
trol domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.8 Vertical axis: M1 ∈ (−1, 1) Horizontal axis: M2 ∈ (−10, 2)Ω.
Black = 0 (stable), Grey = 1 (unstable), White = 2 (unstable). 173

6.9 Horizontal axis: η ∈ (−1, 1) Vertical axis: Vin from 20V to 35V .
Black = 0 (stable), Grey = 1 (unstable), White = 2 (unstable). 173

6.10 Time-delay feedback simulations. . . . . . . . . . . . . . . . . . 174

6.11 An unstable 3T-periodic orbit with 2+1+1 switching times for
the buck converter. The periodic ramp is also plotted. . . . . . 176

6.12 Ramp-controlled chaotic waveform for the buck converter (Vin =
35V ). Voltage range is 0V to 20V . . . . . . . . . . . . . . . . . 178

6.13 Open loop controlled orbit for the buck converter (Vin = 35V ).
Voltage range is 0V to 20V . . . . . . . . . . . . . . . . . . . . . 179

6.14 Unstable 3T-periodic orbit with 2+1+1 switching times, in the
state space. Voltage range is 11.6V to 12.5V ; current range is
0.4A to 0.7A. Non-differentiable points correspond to the changes
in the topology of the circuit. . . . . . . . . . . . . . . . . . . . 180

6.15 Stable 5T-periodic orbit obtained when trying to stabilize an un-
stable 1T-periodic orbit of the original system for Vin = 27V ; a
sinusoidal perturbation of amplitude 1V and frequency 100w is
continuosly added to the input voltage. . . . . . . . . . . . . . . 180

7.1 Bidimensional bifurcation diagram for the buck converter. Verti-
cal axe: parameter α; Range: (0,80). Horizontal axe: parameter
β; Range: (0,100). Parameters k1 and k2 are fixed to 0.386847195
and 0.44 respectively. Colour codes: black, chaotic; dark grey,
1T-periodic; light gray, 2T-periodic; white, 4T-periodic. Some
islands of periodicity are shown inside the chaotic region. Also,
a zone of complicated behavior is distinguished, which is recom-
puted and shown in the next figure. . . . . . . . . . . . . . . . . 185



xx LIST OF FIGURES

7.2 Bidimensional bifurcation diagram for the buck converter. Ver-
tical axe: parameter α; Range: (3,15). Horizontal axe: pa-
rameter β; Range: (18,35). Parameters k1 and k2 are fixed to
0.386847195 and 0.44 respectively. Colour codes: black, chaotic
and 3T-periodic; dark grey, 1T-periodic; light gray, 2T-periodic;
white, 4T-periodic, 6T-periodic and 8T-periodic. Chaotic zones
are found for low α to the right of the figure and also fractally
intermingled in the 1T-periodic region. The rest of the black
colour corresponds to 3T-periodic orbits, which are mixed with
6T-periodic behavior. 2T-periodic, 4T-periodic and 8T-periodic
orbits are also found. Sudden changes probably occur because
more than one attractor is present for the same bifurcation pa-
rameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.3 Fourier series approximating the ramp voltage Frac(t). (a) n =
2; (b) n = 4; (c) n = 8; (d) n = 64. . . . . . . . . . . . . . . . . 188

7.4 Attractors for different smoothing-constant c. (a) c = 100; (b)
c = 50; (c) c = 26; (d) original system without smoothing. Notice
in (a) and (b) the effect of smoothing, which produces a smoothed
attractor. For c = 26, a different attractor is observed. . . . . . 191

7.5 Bifurcation diagrams taking β as a bifurcation parameter. Dif-
ferent values for c are considered. (a) c = 50; (b) c = 100; (c)
c = 1000; (b) c = 500000. . . . . . . . . . . . . . . . . . . . . . . 192

7.6 Branches of 1T-periodic and 2T-periodic orbits, computed with
AUTO. Dashed trace corresponds to unstable orbits, continuous
trace corresponds to stable orbits. Vertical axes correspond to the
maximum value of the component in a cycle. (a) Branch of 1T-
periodic orbits for c = 50. Some period-doubling bifurcations can
be observed. (b) Detail of a period-doubling followed by a reverse
period-doubling for c = 50. (c) A period-doubling bifurcation
occurs at the point labeled 8. Then a new bifurcation in the
2T-periodic branch is found at the point labeled 15 (c = 50).
(d) Some period-doubling bifurcations and possible folds in the
2T-periodic branch (c = 100). . . . . . . . . . . . . . . . . . . . 193



LIST OF FIGURES xxi

7.7 (a), (b) and (c): 1T-periodic orbits for c = 50. (d), (e) and (f):
comparison of the branches for different values of the smoothing
parameter c. Notice in (e) a different vertical scale. (a) Solutions
in the phase space. Label 12 corresponds to β = 36.81; label 15
corresponds to β = 40.75; label 19 corresponds to β = 46.74. (b)
First-component waveforms of the periodic orbits that appear
in (a); this component is related to the voltage in the original
system. (c) Second-component waveforms of the periodic orbits
that appear in (a); this component is related to the current in the
original system. Peaks are associated to changes in the topology
of the original system. (d) c = 20; (e) c = 50; (f) c = 100.
Apart from the small 2T-branches, probably corresponding to the
smoothing effect, a large 2T-branch is observed near β = 43.5; it
could be related to the first period-doubling of the main attractor
observed in the original system. . . . . . . . . . . . . . . . . . . 194

7.8 (a) and (b): Bifurcation diagrams for the second-order approx-
imated map. (c) Bifurcation diagram for the original system.
Notice that the range for the bifurcation parameter in (b) and
(c) is (0,1000)V. While in the range (15,35)V the approximation
is good (see (a)), in the range (35,1000)V, the approximation is
bad. (d) Shape of the approximated attractor for Vin = 35V . . . 197

7.9 Trajectory in the state space x − y corresponding to Vin = 35V
in the original system. The trajectory is discontinuous in both
components. The ramp voltage has been reduced to the point
(0, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.10 (a) Strange attractor for the approximated map of the buck con-
verter. λ = 0.85, R = 0.5 and α = 3.0. (b) Bifurcation diagram
for Re(z). R = 0.5 and α = 3. (c) Bifurcation diagram for
Re(z). R = 0.5 and λ = 0.85. (d) Bifurcation diagram for Re(z).
λ = 0.85 and α = 3. . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.11 Scheme of the two-topologies system. . . . . . . . . . . . . . . . 203
7.12 Experimental buck converter. (a) Measure instruments. (b) Buck

prototype. (c) Experimental measures of the capacitor voltage
and the inductor current. The input voltage corresponds to the
periodicity range. (d) Experimental measure of the capacitor
voltage. The input voltage corresponds to the chaotic range. (e)
Experimental measures of the capacitor voltage and the inductor
current in the phase space. The input voltage corresponds to the
periodicity range. . . . . . . . . . . . . . . . . . . . . . . . . . . 205
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Chapter 1

Introductory Chapter

Abstract

This review part starts by setting out the aims and applications of

power electronics for motivation. A very concise introduction to this

field of research is outlined. In the last section, the structure of this

thesis and a summary of the contents and contributions of this thesis

is specified.

1.1 Motivation

Most branches of electronics are concerned with processing information or sig-
nals; in contrast power electronics deals with the processing of electrical energy.
Power converters do not have an end of their own, but are always an interme-
diary between an energy producer and an energy consumer. Switching power
converters are finding wide applications in the area of electrical energy condi-
tioning, and are therefore of increasing importance: it is estimated that by 2000,
over half the electrical energy generated will be processed by power electronics
before its final consumption, a proportion that is likely to reach 90% during the
next century [Hamill, 1995].

Power electronics is a green technology, with three main aims:

• To convert electrical energy from one form to another, facilitating its reg-
ulation and control.

• To achieve high conversion efficiency and therefore low waste heat.

• To minimise the mass of power converters and the equipment (such as
motors) that they drive.

Intelligent use of power electronics will allow consumption of electricity to
be reduced. Hence the rate of fossil fuel depletion may be slowed, and the
associated problem of global warming eased. Minimisation of mass means a

1
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reduction in the material and energy resources required for manufacture and use.
Mass reduction is especially important for aerospace and vehicular applications,
where it translates into lower fuel consumption.

Power electronics technology is increasingly to be found in the home and
workplace [Bose, 1992; Tarter, 1993; Mohan, Undeland and Robbins, 1995]:
familiar examples are the domestic light dimmer, and the switched mode power
supplies of personal computers. Fields in which power electronics has been
applied include:

• Heating and Lighting control

• Drives for industrial motion control

• Battery chargers

• Solid state relays and circuit breakers

• Fluorescent lamp ballasts

• Induction heating

• Traction applications such as locomotives

• Off-line dc power supplies

• Spacecraft power systems

• Switched mode audio amplifiers

• Electric power transmission

• Uninterruptible power supplies (UPS)

• Conditioning for alternative energy sources

• Automobile electronics and electric vehicles

There would seem to be two reasons for studying nonlinear dynamics in the
context of power electronics:

• To understand better the nonlinear phenomena that occur in power con-
verters, and thereby avoid undesirable effects.

• To allow converters to be engineered that deliberately make use of effects
such as chaos.

Though the first objective has been achieved to some extent, there are as
yet few practical power electronics applications in which subharmonics or chaos
bring a distinct advantage. Nevertheless, with increasing awareness among
power electronics practitioners of nonlinear dynamics, perhaps engineering uses
will soon be found for nonlinear effects. It may be helpful to list the character-
istics of chaos, and indicate some possible application areas.
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Bounded erratic oscillation:
The apparently random but bounded character of chaos suggests that it

might be used in place of a pseudo-random generator. A possible application
is on-line parameter identification. For example, vector control of induction
motors requires a knowledge of the rotor time constant, but this varies because
the resistance of the copper rotor winding changes with temperature. Pseudo-
random sequences have been applied to identify the time constant while the
motor is running; perhaps chaos could be used instead.

Broadband spectrum:
Power converters produce interference concentrated at a harmonically re-

lated frequencies, and this may be undesirable. In drives that operate with
switching frequencies in the audible range, acoustic noise may be produced and
mechanical resonances excited. Pseudo-random generators have been employed
to modulate the switching, spreading the acoustic energy over a wider spectrum
and making it sound more acceptable (a hiss rather than a whine). Chaos may
have a role to play here. Similarly, switching converters generate conducted and
radiated electromagnetic interference at radio frequencies. Though matters can
be improved with good design practice, filtering and shielding, it is diffiicult
to meet international standards. Again, techniques such as pseudo-random se-
quences and frequency modulation have been applied to spread the interference
spectrum, and chaos is another possible contender. Peaks might be reduced by
10-15dB, less expensively than by other methods.

Sensitivity to perturbations, and control:
The inherent sensitivity of chaotic systems to small perturbations may be

exploited for synchronisation, targeting specific goals, and stabilising limit sets
such as unstable equilibria or periodic orbits [Ott, Grebogi and Yorke, 1990].
However, applications in power electronics are less obvious, because it is already
possible to force large changes in behaviour by means of the active switching
devices. Recent work demonstrates that chaotic power converters may also be
stabilised by appropriate feedback [Chakrabarty and Banerjee, 1995; Batlle,
Fossas and Olivar, 1996b]. This begs the question: is there any point in making
a power converter chaotic, in order to stabilise it? The answer is at present
unknown, but such an approach may improve dynamic response. Fighter aircraft
are designed to be open loop unstable but are then stabilised by feedback,
making them more agile than conventional designs. Similarly, stabilised chaotic
power converters may react more quickly, for instance in moving rapidly from
one commanded output voltage to another. At present this suggestion is no
more than speculation.

Validating nonlinear models:
It has been noted that the bifurcation sequence of a nonlinear system is pe-

culiar to that system, whereas two quite dissimilar systems may display super-
ficially similar attractors [Aguirre and Billings, 1994]. Thus it is a requirement
that a model of a nonlinear system should display the same bifurcation pat-
tern as the original system. Such ”fingerprinting” could prove a very powerful
method of validating models of power converters and other nonlinear systems.
It is noteworthy that excellent bifurcation fingerprint agreement has been ob-
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tained for the buck converter [Hamill, Deane and Jefferies, 1992], suggesting
that the modelling approaches adopted have good validity over a wide domain.

1.2 Introduction

Since electrical power supplies can be either dc or ac, there are four basic types
of power converter: ac-dc converters (rectifiers), dc-ac converters (inverters),
dc-dc converters, and ac-ac converters.

A switching power converter is composed essentially of switches and energy
storage elements, since it is designed to achieve high efficiency energy conver-
sion. The nominal steady state operation of a dc-dc converter involves a cyclic
operation of the switches to produce a commanded average output voltage or
current from a specified dc input source. By modulating the nominal cyclic
switching operation, dc-ac operation (inversion) can be obtained. In the case
of an ac input source, ac-dc conversion (rectification) and ac-ac conversion (cy-
cloconversion) can also be obtained by appropriately modulating the switching
operation.

The control of switching power converters is an interesting and challenging
research topic for many reasons. The control schemes investigated in the recent
past were based on small signal models obtained by linearizing about a given
steady state operating point or trajectory. Large signal transients such as those
that occur at power-up or on overload recovery were handled in an ad hoc
manner. Thus, the linearization step hides a phenomenon that may not be
perceived in the converter but cannot be predicted by the model.

The state space averaging process has some evident flaws. First, all informa-
tion about operation within a cycle is lost. Furthermore, the switching frequency
fs does not appear in the Continous Conduction Mode (CCM) model, though
it must certainly have some effect. A subtler point is that the duty factor d is
purportedly a continuous-time variable; yet the duty factor is defined in terms
of discrete time. Each switching cycle has an associated duty factor: it is mean-
ingless to talk about changes in the duty factor within a cycle. If it is assumed
that each of the phase variables are composed of a constant (dc) component
and a small perturbation component, the paradox becomes important with fast
perturbations; it can be shown that the averaging process is exact when the
perturbation frequency is zero, but is further in error the higher the perturba-
tion frequency. In fact the natural sampling PWM imposes a Nyquist limit off
fs/2, beyond which the model is meaningless. Another minor problem is that
the true duty factor is constrained to [0, 1], but the averaged variable d is not
bounded (at least, not explicitly). In both the CCM example and the Discontin-
uous Conduction Mode (DCM) case studied by Tse, the conventional analysis
using averaging is qualitatively wrong: it predicts stability for all input voltages,
whereas in reality subharmonics and chaos are possible. Such a conclusion has
worrying consequences where the reliability and safety of a system containing a
buck converter is concerned. Considerable effort has been expended to validate
and improve upon the basic averaging process [Sanders et al, 1991; Krein et al,
1990; Tymerski, 1991; Tymerski, 1994; Sira-Ramirez and Rios-Bolivar, 1994;
Bass, Heck and Khan, 1994]. These investigations build on sound theoretical
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bases, and usually d iscover state space averaging as the zero-order approxima-
tion, with higher terms giving more accurate results. Nonetheless, the simplistic
averaging technique remains the most popular with practising power electron-
ics engineers: it is easy to understand (if one does not probe too deeply), and
straightforward to apply.

Modern control theory explores nonlinear design strategies. The possibly
chaotic operation of power converters under various parameter assumptions and
control designs has been receiving some attention but has not been fully inves-
tigated. The challenge here is, on the one hand to explore how chaos can be
predicted and to avoid it through correct design or, on the other, to make the
most of this situation and exploit it.

1.3 Contents and Contributions

This thesis studies the chaos phenomenon in the equations which model a buck
converter with PWM control. From a mathematical point of view, it contributes
to the study of piecewise-linear systems in a three-dimensional space, with em-
phasis on the geometrical point of view and on the numerical computing. Ana-
lytical expressions are available but, finally, one must resort to numerical meth-
ods to compute periodic orbits, bifurcations, invariant manifolds and basins
of attraction. From an engineering point of view, this thesis both contributes
to answering some questions about the behaviour observed in the experimental
circuit, and to generating new questions to be answered by the engineering com-
munity. Among these, the experimental search for some secondary phenomena
detected in the equations and the possibility of implementing some methods to
control chaos in a experimental prototype.

Chapter 2 gives some background information on dc-dc switching convert-
ers, and on what type of behaviour can be expected in a nonlinear dynamical
system. A discussion of the relevant literature on nonlinear circuits, specializing
in chaotic power electronic circuits, is also given in this chapter, although the
details are included throughout the thesis.

The piecewise-linear systems with two switching topologies are introduced
in Chapter 3. Then, as a particular case, the equations for the buck converter
with PWM control are given, and some basic properties of the solutions are
stated. The basic technique to obtain periodic orbits is shown for 1T and 2T
periodicity, and is also deduced for some special types of orbits in the general
case of nT periodicity. A numerical scheme to find the stability is also given.
An important part of this chapter and some sections of the next have already
been published in the IEEE Transactions on Circuits and Systems [Fossas and
Olivar, 1996].

An important approach to the analysis of the associated stroboscopic map
is studied in Chapter 4. This chapter is geometrically oriented, although some
computing is also needed to obtain the final results. The existence of a trapping
region for the system is deduced, and horseshoe dynamics embedded in the
stroboscopic map is found. The main tool in this chapter is the continuity of the
map, which allows us to analytically deduce how different regions of the phase
space are mapped. Analytical expressions for the boundary of 1T-operation
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and nT-operation (n > 1) are computed. This is important since it enables
the engineer to know when the phenomenon called multiple pulsing can occur.
Basic description of this behaviour has been published in [Olivar and Fossas,
1996].

Chapter 5 is concerned with the secondary bifurcations which were found in
addition to the main branch attractor. In this chapter, numerics are essential
to compute bifurcation diagrams, invariant manifolds and basins of attraction.
Much advantage is taken of the algorithms since the solutions are piecewise
available in closed form, and only the switching time is approximated. Smooth
and non-smooth bifurcations are found. An analytical expression for the char-
acteristic multipliers can thus also be given; thus, computing bifurcations is
straightforward. A large part of this chapter will be published in The Interna-
tional Journal of Bifurcation and Chaos.

Chapter 6 is somewhat removed from the general spirit of this thesis. Instead
of the description of the observed dynamics, some methods to control chaos are
suggested and simulations are produced to check the control action. Experimen-
tal realization is still to be done. Three known methods are proposed: first, the
OGY method is specialized to the equations of the buck converter, giving good
results when the level of noise is low. The main part of the chapter is concerned
with time-delay feedback control. Three different schemes are tried with this
method, leading to several domains of control in the parameter space. Finally,
a third method based on open-loop control is given, and it is checked against
some type of perturbations in the bifurcation parameter. Control of chaos in
this system can be useful for reducing the chaotic output ripple and, thus, to
extend the performance of the converter. A part of this chapter has already
been published [Batlle, Fossas and Olivar, 1996c], and the time-delay feedback
schemes will shortly be presented at international workshops and congresses.

Suggestions for future research are given in Chapter 7. Some simulations
have been done with a smooth version of the equations and the package AUTO.
Approximated mappings for the buck, including a second order approximation of
the solutions and a qualitative approach by means of a rotation plus translation
mapping are proposed. They permit faster simulations, but the approximation
step must be deeply studied since some features of non-smooth systems are lost.



Chapter 2

Background and Literature

Review

Abstract

This part starts by setting out a basis for chaotic behaviour in DC-DC

switching converters. A very concise discussion of the development of

nonlinear dynamics in electronic circuits and dc-dc power converters is

stated in the literature review. Finally, a preview of the main results

obtained in this thesis is outlined.

2.1 Part One: DC-DC Switching Converters

Dc-dc converters are widely used in regulated switch-mode dc power supplies
and in dc-motor drive applications. The input to these converters is frequently
an unregulated dc-voltage, which is obtained by rectifying the line voltage.
Therefore it will fluctuate due to changes in the line-voltage magnitude. Switch-
mode dc-to-dc converters are used to convert the unregulated dc input into a
controlled dc-output at the desired level.

Since the object is to convert electrical energy at high efficiency, the ideal
power converter would contain only lossless components. Two basic groups that
can be approximated by real components are available:

Switching components, such as transistors and diodes. An ideal switch is
either ON (v = 0) or OFF (i = 0), so its vi product is always zero and it never
dissipates energy. Active switches such as transistors turn ON and OFF in
response to an applied signal; passive switches (diodes) have a highly nonlinear
v − i characteristic.

Reactive (energy storing) components, such as inductors and capacitors.
They are characterised by differential equations, v = Ldi/dt for an inductor,
i = Cdv/dt for a capacitor. It can be shown that they absorb energy from a
circuit, store it and return it.

7
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Figure 2.1: Scheme of a regulated line.

Power converters employ components from both groups. Energy is pumped
around the circuit by the switching components, while the reactive components
act as intermediate energy stores and input-output reservoirs. The presence of
both types of components implies that the circuits are nonlinear, time-varying
dynamical systems. Anyone familiar with nonlinear dynamics will appreciate
that power converters are difficult to analyse, and are likely to show a wealth
of curious behaviour. There are also several unavoidable sources of unwanted
nonlinearity in practical power converters:

• The semiconductor switching devices have intrinsically nonlinear dc char-
acteristics.

• They also have nonlinear capacitances, and most suffer from minority
carrier charge storage.

• Nonlinear inductances abound: transformers, chokes, magnetic amplifiers,
and saturable inductors used in snubbers.

• The control circuits usually involve nonlinear components: comparators,
PWMs, multipliers, phase-locked loops, monostables and digital controllers.

The driven R-L-D circuit [Linsay, 1981] has a close relative in power convert-
ers: when a transformer feeds a rectifier diode, the leakage inductance resonates
with the diode’s nonlinear capacitance to give a chaotic transient when excited
by the switches. A similar effect is ferroresonance: a tuned circuit involving a
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saturating inductor [Chua, Hasler, Neirynck and Verburgh, 1982]. This, too,
has practical relevance: it is exploited to regulate voltages, but unintended fer-
roresonance in power systems can cause excessive voltages and currents.

2.1.1 State Space Models

Roughly speaking, an state space modelling of a dynamical system, such as a
converter, will be a system of ordinary differential equations describing the evo-
lution over time of the state of a physical system. It musy specify the functional
dependence of the state variables on their initial values and system inputs.

Regarding their internal structure, the mathematical models can be discrete
or continuous, time-varying or time-invariant, linear or non-linear. They may
be summarized in Table 2.1

Table 2.1: Mathematical models.

MODEL CONTINOUS DISCRETE

Time-varying
Non-linear ẋ(t) = f(t, x(t), w(t)) xk+1 = Φ(k, xk, wk)

Linear ẋ(t) = F (t)x(t) + C(t)w(t) xk+1 = Φ(k)xk + P (k)wk

Time-invariant
Non-linear ẋ(t) = f(x(t), w(t)) xk+1 = Φ(xk, wk)

Linear ẋ(t) = F · x(t) + C · w(t) xk+1 = Φ · xk + P · wk

where x is the vector of state variables and w is the vector of the inputs. With
this classification, switched-mode converters can be thought as time-invariant or
time-varying non-linear continuous systems. They are non-linear due to changes
in the topology of the circuit due to the switching instants. In spite of this non-
linearity, they are linear between two consecutive switching times. For example,
suppose that a converter can switch between two linear topologies depending
on turning a transistor (ON: u = 1; OFF: u = 0). Under u = 1, suppose that
the model is given by Ẋ = A1X + B1w, and, under u = 0, the model is given
by Ẋ = A0X + B0w, where X is the state vector of the capacitors voltages and
inductors currents, and w is the vector of voltages and current sources values.
An ensemble non-linear model can then be obtained thus

Ẋ = [A0 + u(A1 − A0)]X + [B0 + u(B1 − B0)]w.

This is termed a bilinear state-space model because the control u enters mul-
tiplicatively with the state, as well as linearly. In the more general case, where
nonlinear circuit elements are present in a switching converter, the ensemble
model would take the more general form

ẋ = f0(x) + u(f1(x) − f0(x))
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When the switched-circuit admits a finite number of distinct configurations,
say m + 1, the state-space model takes the form

ẋ = (1 − u1 − u2 − · · · − um)f0(x) + u1f1(x) + u2f2(x) + · · · + umfm(x)

Each of the inputs uk can take only the discrete values 0 and 1, with at most
one input equals to 1 at a given time instant. So, the correspondence to the
m + 1 switch configurations to the inputs uk are in the following way:

f0(x) ↔ u1 = · · · = um = 0, f1(x) ↔ u1 = 1, . . . , fm(x) ↔ um = 1

2.1.2 Basic Converter Topologies

In this chapter, the following dc-dc converters are introduced:

• Step-down (buck) converter

• Step-up (boost) converter

• Step-down/up (buck-boost) converter

• Čuk converter

Only the step-down and the step-up are the basic converter topologies. Both
the buck-boost and the Čuk converters are combinations of the two basic topolo-
gies. Resonant converters are introduced later as a way to avoid some of the
disadvantages of pulse-width modulation when it is applied as a control method.

The buck converter

Figure 2.2 shows the step-down dc-dc converter. During the interval when
the switch is ON, the diode becomes reverse biased and the input provides
energy to the load as well as to the inductor. During the interval when the
switch is OFF, the inductor current flows through the diode, transferring some
of its stored energy to the load.

During standard operation, the switch S opens and closes periodically at the
switching frequency fs, with a duty factor d. The cut-off frequency of the LC
filter is much lower than fs, removing most of the switching ripple and delivering
a relative smooth output voltage v to the load resistance R. The output can be
varied by changing the duty factor d, i.e. by pulsewidth modulation (PWM).
The operation described is known as continous conduction mode (CCM), since
the inductor passes current without a break. However, if the output is only
lightly loaded, the inductor current can become zero for part of the cycle as
the diode comes out of conduction: this is known as discontinuous conduction
mode (DCM). In practice, it is necessary to regulate v against changes in the
input voltage and the load current, by adding a feedback control loop. If a
simple proportional controller is chosen, a constant reference voltage Vref is
substracted from the output voltage and the error ve, is amplified with gain A
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Figure 2.2: Scheme of a buck converter (in continous-
conduction mode). a) The switch is ON. b) The switch
is OFF.

to form a control signal. The intended mode of operation is a steady state in
which the output voltage stays close to Vref .

The boost converter

In the boost converter, when the switch is ON, the diode is reverse biased,
thus isolating the output stage. The input supplies energy to the inductor.
When the switch is OFF, the output stage receives energy from the inductor as
well as from the input.

The buck-boost converter

A buck-boost converter can be obtained by the cascade connection of the
two basic converters: the step-down converter and the step-up converter. This
cascade connection can be combined into a single buck-boost converter shown in
figure 2.4. When the switch is closed, the input provides energy to the inductor
and the diode is reverse biased. When the switch is open, the energy stored in
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Figure 2.3: Scheme of a boost converter (in continous-
conduction mode). a) The switch is ON. b) The switch
is OFF.

the inductor is transferred to the output. No energy is supplied by the input
during this interval.

The Čuk converter

Similar to the buck-boost converter, the Čuk converter provides a negative
polarity regulated output voltage with respect to the common terminal of the
input voltage. Here, the capacitor C1 acts as the primary means of string and
transferring energy from the input to the output.

When the switch is OFF, the inductor currents flow through the diode. C1 is
charged through the diode by energy from both the input and L1; iL1

decreases,
because VC1

is larger than Vd. Energy stored in L2 feeds the output. Therefore,
iL2

also decreases. When the switch is ON, VC1
reverse biases the diode. The

inductor currents iL1
and iL2

flow through the switch. C1 discharges through
the switch, transferring energy to the output and L2. Therefore, iL2

increases.
The input feeds energy to L1 causing iL1

to increase.
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Figure 2.4: Scheme of a buck-boost converter (in
continous-conduction mode). a) The switch is ON.
b) The switch is OFF.

2.1.3 Pulsewidth Modulation

One of the methods for controlling the output voltage employs switching at a
constant frequency (hence, a constant switching time period T = ton+toff ), and
adjusting the ON-duration of the switch to control the average output voltage.
In this method, called pulsewidth modulation (PWM) switching, the switch
duty ratio D, which is defined as the ratio of the ON-duration to the switching
time period, is varied.

In the PWM switching at a constant switching frequency, the switch con-
trol signal, which controls the state (ON or OFF) of the switch, is generated
by comparing a signal level control voltage Vcontrol with a periodic waveform.
The control voltage signal generally is obtained by amplifying the error, or the
difference between the actual output voltage and its desired value. When the
amplified error signal is greater than the repetitive waveform, the switch control
signal becomes high, causing the switch to turn ON. Otherwise, the switch is
OFF.
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Resonant converters

In all pulsewidth modulated converter topologies, the controllable switches
are operated in a switch mode where they are required to turn ON and turn
OFF the entire load current during each switching. So the switches are sub-
jected to high switching stress and high switching power loss that increases
linearly with the switching frequency of the pulsewidth modulation. Another
significant drawback of the switch-mode operation is the electromagnetic inter-
ference (EMI) produced due to large di/dt and dv/dt caused by a switch-mode
operation. These shortcomings of switch-mode converters are exacerbated if the
switching frequency is increased in order to reduce the converter size and weight,
and hence to increase the power density. Therefore, to realize high switching fre-
quencies in converters, the aforementioned shortcomings are minimized if each
switching in a converter changes its status when the voltage accross it and/or
the current through it is zero at the switching instant. These topologies, which
result in zero-voltage and/or zero-current switchings, are broadly classified as
resonant converters since most of them require some form of LC resonance.

The switch stresses can be reduced by connecting simple dissipative snubber
circuits in series and parallel with the switches. However, these dissipative
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snubbers shift the switching power loss from the switch to the snubber circuit,
and therefore do not provide a reduction in the overall switching power loss.

In contrast to dissipative snubbers in switch-mode converters, the combina-
tion of proper converter topologies and switching strategies can overcome the
problems of switching stresses, switching power losses and the EMI by turning
ON and turning OFF each of the converter switches when either the switch
voltage or the switch current is zero.

2.2 Part Two: Chaotic Behavior

One of the basic tenets of science is that deterministic systems are completely
predictable; given the initial conditions and the equations describing a system,
the behaviour of the system can be predicted for all time. The discovery of
chaotic systems has eliminated this viewpoint. Simply put, a chaotic system is
a deterministic system that exhibits random behaviour.

Though identified as a robust phenomenon only twenty years ago, chaos has
almost certainly been encountered by scientists and engineering many times
during the last century, only to be dismissed as physical noise. Chaos is such
a wide-spread phenomenon that it has now been reported in virtually every
scientific discipline: astronomy, biology, biophysics, chemistry, engineering, ge-
ology, mathematics, medicine, metereology, plasmas, physics and even the social
sciences.

It is no coincidence that during the same two decades, during which chaos
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has grown into an independent field of research, computers have permeated
society. It is, in fact, the wide availability of inexpensive computing power that
has spanned much of the research in chaotic dynamics. The reason is simple:
the computer can calculate a solution of a nonlinear system.

This is no small feat. Unlike linear systems, where closed-form solutions can
be written in terms of the system’s eigenvalues and eigenvectors, few nonlinear
systems and virtually no chaotic systems possesses closed-form solutions.

The computer allows nonlinear systems to be studied in a way that was
undreamt by the pioneers of nonlinear dynamics. One can perform numerical
experiments quickly and easily. Parameters can be changed, system equations
modified, and solutions displayed, all at a touch of a key. Before the advent
of low-cost computing, the ability to perform such simulations was restricted
to researchers with acces to a large computing facility. Today, anyone with a
personal computer can simulate a nonlinear system.

Simulations are a powerful tool for gaining intuition about nonlinear systems
and for exploring the exciting terrain of chaotic dynamics, but they do have their
limitations. Computers have finite precision and inevitably generate errors when
evaluating floating-point expressions. Furthermore, computers are discrete-time
in nature and there are unavoidable errors when they are used to simulate
continous-time systems. Finally, a simulation is of little or no help in providing
theoretical results; even if the result of a simulation were completely accurate,
it is just one solution of one system from one initial condition using one set of
parameter values.

The moral is that even though simulations are a useful tool, simulation data
must be interpreted carefully, checked against intuition and theory, and used
only for purposes for which it is suited [Parker and Chua, 1989].

2.2.1 A Word on History

Modern dynamical systems theory has a relatively short history. Analysis re-
mained the favoured tool for the study of dynamical problems until Poincaré’s
work in the late nineteenth century showed that perturbation methods might
not yield correct results in all cases, because the series used in such calculations
diverged. Poincaré (1880, 1890, 1899) then went on to do extensive analysis
and geometry in his development of a qualitative approach to the study of dif-
ferential equations. To Poincaré, a global understanding of the gross behaviour
of all solutions of the systems was more important than the local behaviour of
particular, analytically-precise solutions.

Poicaré’s point of view was enthusiastically adopted and furthered by Birkhoff
(1927) in the first part of the twentieth century. Birkhoff realized the impor-
tance of the study of mappings and emphasized discrete dynamics as a means of
understanding the more difficult dynamics arising from differential equations.

The infusion of geometric and topological techniques during this period
gradually led mathematicians away from the study of the dynamical systems
themselves to the study of the underlying geometric structures. Manifolds, the
natural state-spaces of dynamical systems, became objects of study in their own
right. Fields such as differential topology and algebraic topology were born and
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eventually flourished. Rapid advances in these fields gave mathematicians new
and varied techniques for attacking geometric problems. Meanwhile, the study
of the dynamical systems themselves languished in relative disfavor, except in
the Soviet Union, where mathematicians such as Lyapounov (1949), Pontrya-
gin, Andronov and others (1937, 1966, 1971, 1973), continued to study dynamics
from various points of view.

All this changed around 1960, due mainly to the influence of Moser and
Smale (1967) in the United States, Peixoto in Brazil, and Kolmogorov, Arnold
and Sinai in the Soviet Union (1973, 1978, 1982). Differential topology tech-
niques enabled Smale, Peixoto and their followers to understand the chaotic
behaviour of a large class of dynamical systems known as hyperbolic or Axiom
A systems. Geometry combined with hard analysis allowed Kolmogorov, Arnold
and Moser to push through their celebrated KAM theory. Smooth ergodic the-
ory, topological dynamics, Hamiltonian mechanics, and the qualitative theory
of ordinary differential equations all developed as disciplines in their own right.

However, until the mid-1970’s the new tools were largely in the hand of pure
mathematicians, although a number of potential applications had been sketched,
notably by Ruelle and Takens (1971), who suggested the importance of strange
attractors in the study of turbulence.

More recently, dynamical systems have benefited from an infusion of in-
terest and techniques from a variety of fields. Physicists such as Feigenbaum
have rekindled interest in low dimensional discrete dynamical systems. Break-
throughs in mathematical biology and economics have attracted a diverse group
of scientists to the field. The discovery of stable chaotic systems such as the
Lorenz system from meteorology have convinced scientists that there are many
more stable types of dynamical behaviour than just stable equilibrium points
and limit cycles. Last, but by no means least, computer graphics has shown
that the dynamics of simple systems can be at once beautiful and complex.

Over the past few years, applications in solid and structural mechanics, as
well as fluid mechanics, have appeared. There is now widespread interest in the
engineering and applied science communities in strange attractors, chaos and
dynamical systems theory.

2.2.2 Bifurcations, Transitions to Chaos and Crises

Bifurcations

Systems of physical interest typically have parameters which appear in the
defining systems of equations. As these parameters are varied, changes may
occur in the qualitative structure of the solution for certain parameter values.
These changes are called bifurcations and the parameter values are called bifur-
cation values. There are evident limitations as to how far one can proceed with
a systematic bifurcation theory. In parameter regions consisting of structurally
unstable systems, such as those encountered in the Lorenz system, the detailed
changes in the topological equivalence class of a flow can be exceedingly compli-



18 Background and Literature Review

cated. Many important aspects of this situation are poorly understood and lack
the satisfying completeness of the structural stability theory for second-order
systems [Wiggins, 1990].

Global bifurcations will be defined as bifurcations which are not local, i.e., a
qualitative change in the orbit structure of an extended region of phase space.
Typical examples are homoclinic and heteroclinic bifurcations. In both of these
examples the complete story is far from known, mainly because techniques for
the global analysis of the orbit structure of dynamical systems are just now
beginning to be developed [Wiggins, 1988].

Routes to chaos

There are three most important routes or transitions to chaos, in which
nonlinear systems can become chaotic if an external control parameter is varied.
Interestingly enough, all these routes can be realized experimentally, and they
show a fascinating universal behaviour which is reminiscent of the universality
found in second-order equilibrium phase transitions. In this context, universality
means that there are basic properties of the system (such as critical exponents
near the transition to chaos) that depend only on some global features of the
system.

The most recent route to chaos has been found by Grossmann and Thomase
(1977), Feigenbaum (1978) and Coullet and Tresser (1978). They considered a
simple difference equation which, for example, has been used to describe the time
dependence of populations in biology, and found that the population oscillated
in time between stable values (fixed points) whose number doubles at distinct
values of an external parameter. This continues until the number of fixed points
becomes infinite at a finite parameter value, where the variation in time of the
population becomes irregular.

Feigenbaum has shown, and this was a major achievement, that these results
are not restricted to this special model but are in fact universal and hold for a
large variety of physical, chemical and biological systems. This discovery has
triggered an explosion of theoretical and experimental activity in this field.

A second approach to chaos, the so-called intermittency route, has been dis-
covered by Manneville and Pomeau (1979). Intermittency means that a signal
which becomes regularly (or laminarly) in time becomes interrupted by statis-
cally distributed periods of irregular motion (intermittent bursts). The average
number of these bursts increases with the variation of an external control param-
eter until the motion becomes completely chaotic. This route also has universal
features and provides a universal mechanism for 1/f noise in nonlinear systems.

Yet a third possibility was found by Ruelle and Takens (1971) and Newhouse
(1978). In the seventies, they suggested a transition to turbulent motion which
was different from that proposed much earlier by Landau (1944),(1959). Landau
considered turbulence in time as the limit of an infinite sequence of instabilities
(Hopf bifurcations), each of which creates a new basic frequency. However,
Ruelle, Takens and Newhouse showed that after only two instabilities, in the
third step, the trajectory becomes attracted to a bounded region of the phase
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space in which initially close trajectories separate exponentially, such that the
motion becomes chaotic. These particular regions of phase space are called
strange attractors.

Crises

Crises are collisions between a chaotic attractor and a coexisting unstable
fixed point or periodic orbit. Grebogi, Ott and Yorke (1983) were the first to
observe that such collisions lead to sudden changes in the chaotic attractor. A
simple example occurs in the period-three window of the logistic map, where
three stable and three unstable fixed points are generated by tangent bifurca-
tions. The unstable fixed points, having entered the chaotic regions, immedi-
ately repell the trajectory out of the sub-band in such a way that the regions
between the bands are also filled chaotically. Similar crises also occur in two
and three-dimensional maps and in three-dimensional flows.

As the discontinuity is approached, one often finds transient chaos, i.e. seem-
ingly chaotic orbits which decay exponentially towards periodic orbits with a
decay rate that follows a power law of the distance (in parameter space) from the
discontinuity. It has been conjectured by Grebogi, Ott and Yorke that almost
all sudden changes in chaotic attractors are due to crises [Schuster, 1988].

2.3 Part Three: Literature Review

The literature on analizing chaos in electronics is extensive. In the following,
a very concise summary is given for certain topics developed in the last two
decades.

2.3.1 Previous Work on Analyzing Chaos in Nonlinear

Circuits

The most complete results on chaos have been obtained in nonlinear circuits,
because the experimental conditions can be more precisely controlled and the
circuits can be well represented by ordinary differential equations or maps with
only a few variables [Carroll and Pecora, 1995].

Most of the multiple experimental systems capable of displaying chaotic
behaviour are nonlinear circuits. They have taken advantage of the progress
made by physicists in nonlinear science, mainly in an effort to explain turbulence
in hydrodynamics. The work of Takens, Eckmann and Ruelle deals in this line.
[Eckmann, 1981] describes the three well known routes to chaos (or scenarios):
the Ruelle-Takens-Newhouse (or quasiperiodic), The Feigenbaum (or period-
doubling) and the Pomeau-Manneville (or intermittent) routes to chaos. The
influence of noise is also studied in this paper. Later, [Eckmann and Ruelle,
1985] present the theory of chaos and strange attractors from an ergodic point
of view, which contains a remarkable part of measure theory and dimensions.
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Bibliography on chaotic circuits has rapidly grown since 1980, and any at-
tempt to summarize it completely is a difficult task. Although the papers on
chaotic circuits are scattered among many different journals which have been
briefly reviewed, as indicated in the references, most of the following has been
taken from the publications of the IEEE - mainly in the Transactions On

Circuits and Systems, the Transactions On Power Electronics, and
the international symposiums of their respective organizations. In addition,
books on this subject and monographs of concrete topics have been written
since the eighties. The former contain basic ideas of bifurcations, the latter
include more precise and quantitative results. To name but a few, the books
[Guckenheimer and Holmes, 1983; Schuster, 1988; Devaney, 1989; Arrowsmith
and Place, 1990; Drazin, 1992; Ott, 1993; Hoppenstadt, 1993] and the basic
but modern book [Strogatz, 1994] (the last two books contain some ideas on
controlling chaos) are examples of excellent written results on basic topics; a
good text for applied numerical bifurcations is that of [Seydel, 1994]; most of the
interesting references to the researcher in bifurcations and chaos can be found
in the more theoretical and detailed books of Wiggins [Wiggins, 1988; Wiggins,
1990] and [Kuznetsov, 1995]: Finally, there should be mention of the Kapita-
niak and Wojewoda monograph on nonchaotic strange attractors [Kapitaniak
and Wojewoda, 1993], and the compilation of very interesting articles on chaos
[Bai-Lin, 1984; Bai-Lin, 1990].

The earlier work

Chaotic effects in electronic circuits were first noted by Van der Pol in 1927
[Van der Pol and Van der Mark, 1927; Kennedy and Chua, 1986]. A relaxation
oscillator comprising a battery, a neon bulb, a capacitor and a resistor, was
driven by a 1 kHz sinusoidal signal and tuned to obtain subharmonics, but an
irregular noise was often heard. There was little interest in explaining such
spurious oscillations for about 50 years.

Earlier work on nonlinear circuits was carried out on systems of many cou-
pled nonlinear oscillators in 1977 and 1978 [Rössler, 1977; Gollub, Brunner and
Danly, 1978]. Complicated combinations of periods and chaos were indeed ob-
served, but could not be fitted into simple systematics as has now been done.
Rössler, in one of his papers, studies a hysteresis oscillator whose motion takes
place in a two-dimensional manifold. He also studies the associated Poincaré
map in a similar way to Lorenz in 1963. The perfect delay convention that
Rössler assumes in his paper is later reviewed and brought up to date [Diener,
1981] and a thorough study of constrained equations can be found later, for
example in the paper [Veitch, 1993].

Most of the subsequent experiments dealt with a single nonlinear oscillator
driven by a periodic signal ([Linsay, 1981; Buskirk and Jeffries, 1985]). In 1981,
Linsay published the first modern experimental report of electronic chaos [Lin-
say, 1981]: a driven resonant circuit, employing a varactor diode as a nonlinear
capacitor. Chaos in nonlinear feedback systems is firstly studied in [Baillieul,
Brockett and Washburn, 1980] from simulation work on a PWM control scheme
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used in connection with a dc-to-dc voltage converter, making the first step to-
wards research into chaos in power electronics, where some criteria for chaos is
stated. The relation of chaos with a lack of synchronization is studied by [Tang,
Mees and Chua, 1983] in an astable multivibrator. This original paper was re-
viewed recently in 1993 by Sharkowsky and Chua, and led to the introduction
of a certain type of one-dimensional discontinuous maps, piecewise monotonic
and locally expansive whose most interesting feature is the analytically proven
existence of an invariant measure, absolutely continuous with respect to the
Lebesgue measure and with nonzero topological entropy [Sharkovsky and Chua,
1993].

The work [Freire, Franquelo and Aracil, 1984] on chaos in electronic circuits
was one of the first that dealt with unforced circuits. The system considered
is autonomous and three dimensional, and thus belongs to the simplest type
of dynamical systems in which chaotic motions may occur. It consists of a
resonant circuit and two nonlinear conductances, one negative and the other
positive. Their current-voltage characteristics are approximated by cubic equa-
tions, which allow a more analytical study of the stability and bifurcations. The
circuit shows a great variety of dynamical behaviours (equilibrium points, pe-
riodic oscillations, chaotic motions, . . . ) and the analysis proceeds to catalog
them all through a bifurcation study (pitchfork, Hopf and flip bifurcations). The
paper includes theoretical study, numerical simulations and circuit experimen-
tation. Spectral analysis and Poincaré maps, guided by the bifurcation analysis,
allows the classification of the regions of different qualitative behaviour. Many
results come from direct experimentation with the circuit or from the numerical
simulation using the state equations.

Kennedy and Chua, in 1986, study a driven relaxation oscillator circuit,
first presented by Van der Pol, which gives an experimental confirmation of
the period-adding route to chaos that was introduced by Feigenbaum in 1975
[Kennedy and Chua, 1986].

The work on Chua’s circuit

Many of the phenomena expected when chaos is present have been visualized
in Chua’s circuit (1984). The roads to chaos that were pointed out in physical
papers [Eckmann, 1981; Kadanoff, 1983] have been obtained experimentally in
Chua’s circuit.

This simple autonomous circuit with a piecewise-linear resistor (Chua’s diode)
develops a Shilnikov-type chaotic attractor (the double scroll). This model has
been studied in great detail since then, both experimentally and theoretically.
Matsumoto, Chua and Komuro, in 1985, give a complete analysis of the ge-
ometric structure [Matsumoto, Chua and Komuro, 1985], calculating also the
dimensions and the Lyapunov exponents; the result is an excellent agreement
between experiments and simulations. The double scroll is also obtained when
the operational amplifiers used in the original paper are replaced by two tran-
sistors [Matsumoto, Chua and Tokumasu, 1986]. A geometric structure analysis
along the same line was also given in [Tokunaga, Komuro, Matsumoto and Chua,
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Figure 2.7: Chua’s circuit.

1989] with reference to the Lorenz attractor, simulated via an electrical circuit
with uncoupled continuous piecewise-linear resistors.

Chua’s circuit family was also reported by Wu in a special issue on chaotic
systems by the IEEE in 1987, responding to the exponential growth of atten-
tion given to chaos in the engineering community. This issue gave a theoretic
overview on this subject (Parker, Chua, Mees, Sparrow and Holmes), and some
important examples, including neon bulbs and the R-L-Diode circuit, were given
by Hasler. Discrete maps associated with switched capacitor circuits and their
practical realization were developed by Rodŕıguez and coworkers, and Mat-
sumoto clearly stated how chaos in electronic circuits should be studied, giving
the first word of caution on proving chaos. Matsumoto’s strategy to prove chaos
in a given circuit deals with the following: First, from an experimental point of
view; then, numerically simulating the differential equations or discrete maps
that describe the evolution of the circuit and, finally, rigorously (i.e. mathemat-
ically) proving that chaos is present, carefully assuring that the hypothesis of
the mathematical theorems invoked are satisfied. Chua’s circuit is, in fact, one
of the few physical systems for which the presence of chaos (in the sense that
the motion on the double scroll is technically equivalent to the full Bernoulli
shift on two symbols) has been proven mathematically.

More recently, by adding a linear resistor in series with the inductor, Chua’s
circuit has been generalized to the canonical Chua’s oscillator. This circuit
is canonical in the sense that it contains every continuous three-dimensional
odd-symmetric three-region piecewise-linear vector field. With the appropriate
choice of the parameters, this circuit can be made to follow the classic period-
doubling, intermittency, and torus-breakdown routes to chaos. The equations



2.3 Part Three: Literature Review 23

C 2
V2

+

-
V

1

+

-

R=1/G
i
R

C 1

+

-

V
R N

R

L

3i

R
0

Figure 2.8: Chua’s oscillator.

of Chua’s oscillator are

dv1

dt
= 1

C1
[G(v2 − v1) − f(v1)]

dv2

dt
= 1

C2
[G(v1 − v2) + i3]

di3
dt

= − 1
L (v2 + R0i3)

where G = 1
R and f(v1) = Gbv1 + 1

2 (Ga − Gb){|v1 + E| − |v1 − E|}, which, by
a change of variables, can be transformed into dimensionless form:

dx

dτ
= kα(y − x − f(x))

dy

dτ
= k(x − y + z)

dz

dτ
= k(−βy − γz)

where f(x) = bx + 1
2 (a − b){|x + 1| − |x − 1|}, and k = RC2

|RC2|
.

Because of the generality of these equations, other chaotic systems can be
modeled using Chua’s oscillator. Examples include some of the systems studied
by Sparrow (1981), Brockett (1982), Ogorzalek (1989) and Nishio (1990).

A sequence of visual snapshots showing the detailed dynamical evolution
that leads to the birth of distinct strange attractors corresponding to several
studied routes to chaos has been provided by [Kevorkian, 1993]. Among others,
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• time evolution of the double scroll Chua’s attractor,

• period-doubling route to chaos,

• intermittency route to chaos,

• torus-breakdown route to chaos,

• homoclinic orbit,

• heteroclinic orbit, and

• collision between two spiral Chua’s attractors

are precisely represented in this paper, which belongs to the 1993 special issues
of October and November of the Transactions on Circuits and Systems.
In these issues, [Anischenko, Safonova and Chua, 1993] show that all three
scenarios of transition to chaos due to torus breakdown

1) period-doubling bifurcation of the phase-locked limit cycles,

2) saddle-node bifurcation in presence of a homoclinic structure, and

3) soft transition due to the loss of torus smoothness

take place in Chua’s circuit, in complete agreement with the Afraimovich-
Shilnikov theorem.
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A feedback control chaos approach was recently proposed by Chen and Dong,
and also by Ogorzalek in 1993, where a chaotic trajectory can be guided towards
one of the various unstable limit cycles of the dynamic system.

The last word on Chua’s circuit seems far from being said. Shilnikov, in 1993,
establishes in his paper [Shilnikov, 1993] that some of the attractors that occur
in Chua’s circuit are new and essentially more complicated objects than they
seemed before. This conclusion is based on subtle results of systems with homo-
clinic tangencies and homoclinic loops of a saddle focus. Thus, such an attrac-
tor differs essentially from the hyperbolic and the Lorenz attractors. Shilnikov
states that a complete description of the dynamics and bifurcations in Chua’s
equations is impossible, as it is for many other models. This result has to be in-
terpreted as an important second advisory caution note when analyzing possible
chaotic systems.

Other recent works

More recently, research into bifurcations and chaos by physicists in other
subjects, such as lasers and thermal instabilities, has its counterpart in the
research into chaotic circuits. Among others, symbolic dynamics of piecewise
linear maps have been reported [Wu and Chua, 1994]. The persistence of saddle-
node bifurcations in circuits and power systems when slow and fast variables
are distinguished has also been presented recently [Chiang and Fekih-Ahmed,
1993]. Bifurcations and routes to chaos in resonant circuits and dc-motors have
recently been examined.

Most of the state-of-the-art on nonlinear and chaotic circuits was reported
in the cited IEEE special issues ending 1993, and a second general tutorial of
theoretic material on this subject was given by Kennedy and Hasler in the in-
ternational symposium ISCAS’94. At this congress, an important and recent
overview on control chaos was reported by Ogorzalek, giving some of the fun-
damental ideas that have appeared regarding this topic research in this decade.

Synchronization of chaotic circuits has been pioneered in the articles of Pec-
ora and Carroll [Pecora and Carroll, 1990; Carroll and Pecora, 1991; Pecora and
Carroll, 1991a; Pecora and Carroll, 1991b], receiving nowadays much of the re-
cent investigation in chaotic circuits. Apart from the work of Ott, Grebogi and
York, yielding the OGY-control method, multiple papers have been elaborated
giving applications mainly to secure communications [Cuomo, Oppenheim and
Strogatz, 1993; Abarbanel and Linsay, 1993]. In [Saito and Mitsubori, 1994]
control of piecewise-linear chaos is studied, and in [Dedieu and Ogorzalek, 1994]
robust methods for controlling Chua’s circuit are given. A long list of references
has recently been compiled by [Chen, 1994].

2.3.2 Previous Work on Chaotic Power Electronic Cir-

cuits

In this work, research into chaotic power electronic circuits is reported, giv-
ing some of the ideas that were advanced in the eighties and which have been



26 Background and Literature Review

considerably extended in the present decade.
One of the first studies on chaotic behaviour regarding power electronic

circuits can be found in the [Baillieul, Brockett and Washburn, 1980]. Difference
equations modeling power converters,

xk+1 = f(xk), (2.1)

where

f(x) =

{

m1x + b1, x ≤ δ
m2x + b2, x > δ

(2.2)

are studied. The vector difference equation

xk+1 = A · xk + b · f(c · xk) (2.3)

is also analyzed, where f is a piecewise-linear function satisfying some Lipschitz-
like condition. Some criteria for chaotic operation is given. This paper was
reviewed later in detail by Veitch in 1992, with important observations about the
sense in which the term chaos was defined in [Baillieul, Brockett and Washburn,
1980], using some important features of bimodal maps.

Later, chaos in power electronics has been studied almost at the same time
by Wood (1989) on the one hand, and basically by Hamill and Deane (1988)
on the other. In his paper [Wood, 1989], deals with a particular form of buck
regulator circuit without PWM drive, and without inductor-current sensing,
i.e. a form of ripple regulator, in an experimental and simulated manner. Wood
shows a transition via period doubling from periodic to chaotic operation. A
PWM buck regulator with a method of current limiting is also studied in this
paper. In an overcurrent condition, this circuit behaves chaotically; so this is an
example of a very practical circuit which operates quite satisfactorily in chaotic
mode. A buck regulator which employs direct state-feedback with a digital delay
to limit switching frequency is also analyzed in this reference. It is concluded
that stabilization of the limit cycle of the ripple regulator is inherently difficult
since it has a natural capacity for displaying chaotic behaviour. Phase-plane
trajectories are drawn in the simulations that show chaotic behaviour and limit
cycles for certain values of the parameters. In this paper, distinction is made
among laboratory chaos, numerical simulation chaos and strictly mathematical
chaos. Only the latter is not discussed with examples.

In the paper [Krein and Bass, 1990], chaos and instabilities in simple power
circuits are also studied. For discussion, a power converter is assumed to corre-
spond to the differential equation

ẋ = F (x, t, h)

where the switching function h = h(x, t) and F are discontinuous in either time
or the states. The dc-dc boost converter under current-mode control is simulated
and experimented. Bifurcation diagrams are shown with simulated data and are
also visualized in the oscilloscope. Unbounded trajectories, chattering behaviour
and chaotic waveforms are introduced as three different types of instability in a
power converter. Also, the problem of multistability is introduced (perhaps for
the first time) in power converters.
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Figure 2.10: Ripple-regulator circuit.

The work of Hamill and coworkers

A buck converter is also studied in [Hamill and Jeffries, 1988], and [Jefferies,
Deane and Johnstone, 1989], where chaos in electronic circuits as the R-L-Diode
is reviewed and the chaotic buck converter is introduced. A difference equation
is derived for the closed-loop case including a saturation function

xn+1 = xn + b · sat(a · (1 − xn)) − c (2.4)

where

sat(en) =







0, en ≤ 0
en, 0 < en < 1
1, en ≥ 1

(2.5)

This difference equation may be represented graphically by a one-dimensional
piecewise-linear folded return map. Numerical iteration was performed with a
variety of parameter values, resulting in a bifurcation diagram and obtaining a
classical Feigenbaum route to chaos, followed by the period-adding phenomenon.
Stable and unstable regions are expressed in terms of the parameters, and the
sat function is replaced by a cubic spline, comparing the results from the smooth
and non-smooth case.

In 1990, at the PESC’90 Conference, a seminal paper [Deane and Hamill,
1990a] which seems to be the first detailed study of the chaotic operation of the
buck converter controlled by PWM in continuous conduction mode, is discussed
by Deane and Hamill.
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Figure 2.11: Switching regulator dc-dc converter with
wideband feedback control.

Two versions are treated, a first order and a second order circuit. Their
behaviour is modeled analytically, numerically and also experimentally. The
first order circuit admits an entirely analytical treatment, and so, conditions
are given that lead to multiple pulsing, although chaotic behaviour is disre-
garded. The second order circuit is close to that of many real buck converters.
Although it cannot be analytically investigated because a trascendental equa-
tion is involved, subtle and careful numerical integration of the trajectories
allows one to obtain striking agreement between simulations and experimental
behaviour (although parasitic effects are not taken into account). The method
for computing trajectories will then be followed by other researchers. Every
cycle of the ramp is divided in N intervals (with N between 100 and 1000) of
the same length and a check is carried out at every point to see if the trajec-
tory crosses the ramp voltage. Once a crossing is detected in the interior of an
interval, the Newton-Raphson method is applied to find with high precision the
crossing value. Then, the topology is changed at this point until another change
of topology is detected. This is called by the authors exact numerical analysis,
meaning that no additional approximations are made, other than the inevitable
(though small) errors entailed in solving numerically the trascendental equation.
Periodic state trajectories of periods 2i, i = 0, . . . , 3 and chaotic waveforms are
also obtained.

Keeping all the parameters constant but changing the input dc-dc voltage
from 15 to 40 volts, a bifurcation diagram is plotted, clearly showing a period-
doubling route to chaos. The ratio of the differences between the values of
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Figure 2.12: Voltage-mode controlled Dc-dc buck con-
verter.

the dc-dc input parameter required to obtain successive period-doublings is
found to be around 6.5, compared to the assymptotic value of around 4.7 to be
expected for universal chaotic behaviour. This remains an open question about
the circuit. A strange attractor is also obtained both in the oscilloscope and in
a numerically computed plot.

An approximate one-dimensional closed-form mapping is also derived by
the authors in [Deane and Hamill, 1991] for a current-mode controlled buck
converter in continuous conduction mode, leading to a stability criterion. The
mapping is of the form

in+1 = 1 − [β + α(in)] mod.1

which has been rigorously proved to produce a chaotic sequence if the function
α is non-negative and Lipschitz, with Lipschitz constant strictly greater than
the unity.

In a later article [Deane and Hamill, 1990b], the difficulties in the averaging
and small signal model are set out. When the state-space averaging technique
is applied to the analysis of a switched-mode converter, the resulting nonlinear
equations are usually linearized to obtain a small signal model. While such
an approach is often useful in determining the stability of a switched-mode
converter, it does not predict the possibility of subharmonic oscillation, which
is an eventually nonlinear phenomenon and may occur in practice. Moreover,
if large-signal effects are to be taken into account, analytical difficulties like
those stated before usually force one to resort to numerical simulation. In this
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verter.

paper, a very interesting review of nonlinearity in power electronics is exposed,
including BJT’s, MOSFET’s, IGBT’s, SIT’s, thyristors and diodes.

The R-L-Diode circuit was analyzed by Deane and Hamill, since it is repre-
sentative of a number of situations found in practical converters, as, for instance,
in a series-resonant converter. This simple R-L-D circuit is an example of a sit-
uation common in power electronics (a diode associated with inductance and
resistance). If the diode has substantial charge storage, instability is likely to
occur even though no active components are involved. Charge storage is not
important below 100 KHz, but above 1 MHz, diode recovery times become sig-
nificant. With converter frequencies being pushed even higher, diode-induced
instabilities will arise. In this paper, chaotic ferroresonant circuits and thyristor
rectifier circuits are also described, observing chaotic waveforms and strange
attractors. Finally, a buck converter is also investigated. An experimental bi-
furcation diagram shows chaotic bands interspread with periodic cycles. The
period adding route in the R-L-Diode circuit, which is a common scheme in
power electronics, is experimentally simulated, and also numerically simulated
with SPICE.

The SPICE codes for these simulations and the convenient comments are put
all together in a later article by Hamill in 1993, where chaos in simple passive
and active circuits, and also in power conversion circuits, is studied by means
of SPICE simulations, including waveforms, state-space trajectories, spectrum
and bifurcation diagrams [Hamill, 1993]

The paper [Hamill, Deane and Jefferies, 1992], also signals the difficulties
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in averaged models to predict subharmonic instability. As was discussed at the
PESC in 1990, from a basic theoretic study, a combined experimental-SPICE-
numerical method is employed, giving a very good degree of resemblance with
the laboratory experiments in the range of parameters utilized.

In 1992, in a IEE Colloquium on Static Power Conversion [Hamill, 1992], in
London, Hamill stated that the feedback switching frequency ripple interferes
with the intended PWM operation, producing chaos. When feedback is applied
to a dc-dc converter with switching frequenct fs, the practical gain-bandwidth
product is conventionally restricted to about fs/4, to allow modelling techniques
such as state-space averaging to be employed. The approximation becomes
worse if the signal frequency approaches fs/2 owing to the inherent sampling
properties of PWM. If the feedback loop has significant gain at fs/2 and above,
the converter becomes unstable. In this conference the current-mode controlled
buck converter and boost converter are analysed, and some possible benefits of
chaotic operation, mainly, high sensitivity and bounded oscillation are discussed.

More recently, another mapping was derived in closed form for an idealized
current-mode controlled boost converter operating in continuous conduction
mode by [Deane, 1992]. This map is two-dimensional and describes exactly
the motion in the discrete state-space. In dimensionless variables, this two-
dimensional mapping is described by

xn+1 = α − e−kt′n{(αkT + 1 − yne−2kTxn)
sin(ωt′n)

ωT + αcos(ωt′n)}

yn+1 = 1 − ekt′n{( k
ω (yne−2kTxn − 1) − αT

ωLC sin(ωt′n)−

−(yne−2kTxn − 1)cos(ωt′n)}
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Figure 2.17: Current-mode controlled boost converter.

where

t′n = T (1 − xn mod.1)

A current bifurcation is plotted by numerical simulation of the mapping. The
presence of bifurcations, subharmonics and chaotic behaviour is in a standard
period-doubling route to chaos. The fact that the map is available in closed form
makes numerical calculation of the Lyapunov exponents straightforward. The
possible presence of a strange attractor is yet to be investigated. Non-smooth
bifurcations are outlined, which could not be detected with standard smooth
bifurcations packages like AUTO.

Other recent works

From the very important seminal work of Hamill, Deane and Jefferies, other
researchers have dealt with nonlinear dynamics regarding the basic converter
cells. Some of these works belong to Tse [Tse, 1994a; Tse, 1994b; Tse and Chan
1994]. In [Tse, 1994a], a boost operating in discontinuous conduction mode is
analyzed quite analytically by means of truncating the series of the exponen-
tial matrix involved in the solutions. Thus, an approximate one-dimensional
Poincaré map can be derived and analytically investigated. This truncation in-
cludes some differences between the analytical considerations and the numerical
simulations which are performed with the non-truncated (numerical) exponen-
tial. Characteristic multipliers, subharmonics, flip bifurcations and a period-
doubling route to chaos are obtained in the simulations. The same techniques
are applied in [Tse, 1994b] for a buck converter acting in discontinuous conduc-
tion mode. Also, by means of the truncated series, a Poincaré approximated
map is derived, yielding characteristic multipliers, flip bifurcations and subhar-
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monics. Finally, in [Tse and Chan, 1994], a fourth order Čuk converter under
current control is studied by means of the same techniques.

In the paper [Zafrany and Ben-Yaakov, 1995], a deeper study of the current
mode boost converter which was initially studied by Deane is derived, with a
variety of different models which include a slope compensation. Also in 1995, in
a communication [Toribio and Toribio, 1995], some software for simulating the
buck converter operating in continuos conduction mode is exposed, and a state
densities approach to analyzing chaos in a boost converter [Font, Rodŕıguez-
Manero and Verghese, 1995] is presented.

Chakrabarty, Banerjee and coworkers have also written some papers regard-
ing the chaotic behaviour of the buck converter. Concretely, in [Chakrabarty
and Banerjee, 1995] and [Poddar, Chakrabarty and Banerjee, 1995], a control
scheme is derived to stabilize some unstable orbits for a buck converter. This
appears to be the first paper which deals with control chaos in power convert-
ers. In this scheme, benefit is derived from the linear character in each of the
topologies.

In their more recent paper [Chakrabarty, Poddar and Banerjee, 1996], the
bifurcation behaviour is studied with detail in a version of a buck converter
which is slightly different from the one studied by Hamill. Concretely, one-
dimensional bifurcation diagrams are drawn for L as the bifurcation parameter
and also for T and C. In all the cases, a period-doubling route to chaos is
found. Two-dimensional bifurcation diagrams are also plotted taking Vin as a
first parameter and R,L, T as second parameter. This work is largely numerical
and describes the bifurcation diagrams for engineering use.

Not only the period-doubling route to chaos has been reported regarding
converters. Recently, in a communication, quasi-periodic behaviour has been
stated regarding the boost converter, in open-loop and closed-loop when it is
disturbed with a sinusoidal function in the forcing term [di Bernardo, Garofalo,
Glielmo and Vasca, 1996]. A Neimarck-Sacker bifurcation and torus breakdown
are also reported.

More recent research in this field includes submitted papers such as [di
Bernardo, Garofalo, Glielmo and Vasca, 1997], which includes an analytical
treatment for the flip bifurcation in the buck converter reported [Deane and
Hamill, 1990; Fossas and Olivar, 1996], via an impact map inspired in impact
oscillators appearing in mechanics. Also, a local infinity stretching condition
equivalent to that in [Fossas and Olivar, 1996] is given.

Also, in two recent submitted papers [Banerjee, 1997] and [di Bernardo,
Fossas, Olivar and Vasca, 1997], secondary bifurcations, fractal basin boundaries
and crises are discussed.

2.4 Part Four: Discussion

2.4.1 Modeling

High efficiency solid state power conversion has become possible through the
continuing development of high power semiconductor devices. The operation of
these devices as switches, which is necessary for high efficiency, means that power
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electronic circuits are essentially nonlinear, time-varying dynamical systems.
Though this makes them difficult to study, the effort is well worthwhile because
they have many practical applications and are becoming increasingly important
in the delivery and utilisation of electrical energy. The conventional modelling
approach effectively ignores nonlinear phenomena, and can sometimes mislead
the designer into thinking a circuit will perform acceptably when in practice it
will not. Thus the traditional approach does not always produce reliable models.

Electrical and electronic circuits can be modeled in continuous time form
by a system of possible non-autonomous ordinary differential equations, or in
discrete time form by a generally nonlinear mapping. The latter version is
usually preferred in some specific situations; for instance, when the system is
driven by a T -periodically action, the T -time map being the most preferable
choice. This is specially satisfactory in power electronic circuits. In this case,
a nonlinear mapping can be derived from its intracycle operation of the circuit.
The long term, cycle-to-cycle behaviour is determined by iterating the map. In
many cases of practical interest, the map is too complicated to be expressed
analytically and calls for numerical computation.

Another important question in favour of the discrete time approach is the
type of vector field that appears in power converters when they are modeled
by differential equations. Owing to the switching function that is inherent to
power converters, the vector field can be discontinuous, usually being piecewise
continuous and piecewise linear. Thus, lack of smoothness implies that almost
none of the known mathematical theorems can be directly applied, and that
different results from the continuous case can also be expected. In spite of
this, the case of discontinuous piecewise linear vector fields allows some easy
analytical treatment inside the regions of linearity, and thus some results can
be stated.

Discrete nonlinear modelling offers another way of looking at the circuits,
one that is more accurate and able to reproduce nonlinear effects such as sub-
harmonics and chaos. Unfortunately, it demands a mental shift on the part of
power electronics engineers, away from linear systems thinking and towards the
unfamiliar realm of nonlinear dynamics [Lonngren, 1991; Hamill, 1993; Lobry
and Trecat, 1995]. These techniques have not yet been widely adopted by power
electronics practitioners, and there is much work still to be done.

2.4.2 Rigorous Mathematical Chaos

Almost all chaotic and bifurcation phenomena have been experimentally and
numerically simulated in electronic circuits. Piecewise linear maps, quadratic
maps including bifurcations, universality, Lyapunov exponents and period dou-
bling route to chaos have been experienced from the discrete time approach.
In addition, local bifurcations confirming the theory concerning normal forms
and center manifolds, and maps on the circle, have been computed numeri-
cally. Experimentally, the oscilloscope allows visualizing fractal attractors and
bifurcation diagrams. From the continuous time approach, all three routes to
chaos have been experimentally obtained in some circuits; Chua’s oscillator is
the main one that has been studied in detail. Moreover, crises and local and
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global bifurcations have also been visualized and numerically computed.
Strange attractors in dissipative systems, fractal basin boundaries, invariant

manifolds, bifurcation diagrams and dimension computing have also been per-
formed in continuous-time systems that describe nonlinear electronic circuits.
As in almost all applied science, mutual benefit has been accomplished between
theoretical and applied subjects, though in this case, engineering is indebted to
physics and mathematics. Practical control chaos has prompted some mathe-
matical research, but this is an exception. Usually, mathematics have provided
the basis of simulations and experimental chaos. In spite of this, very few cir-
cuits have been rigorously proven to be chaotic. Although practical evidence
is strong, and analytical theorems can be stated, for example some special cri-
teria for chaos (hyperbolic and non-hyperbolic case leading to invariant sets,
and Shilnikov-like homoclinic and heteroclinic motions) [Wiggins, 1988; Wig-
gins 1990], analytical methodology concluding chaos is difficult to apply in a
concrete nonlinear circuit. Some exceptions are invariant sets and homoclinic
orbits in Chua’s circuit, Melnikov’s method applied recently to conclude trans-
verse homoclinic orbits in a phase-locked loop demodulator, and some criteria to
distinguish between strange nonchaotic attractors and strange nonchaotic tran-
sients. Power converters are no exception to this rule. Rigorous mathematical
justification of chaos in power dc-to-dc converters remains to be given.

As pointed out in a recent paper by Shilnikov, some caution has to be ex-
ercised when chaotic behaviour is simulated. Some nonlinear circuts displaying
bifurcations and stange attractors may be more complicated than expected.
In this sense, rigorously-proven mathematical results are very revealing when
explaining observed chaotic phenomena [Shilnikov, 1993].

2.4.3 Preview of the Results in This Thesis

The work of Hamill and Deane in the buck converter, controlled by a PWM
scheme, describes an experimental and numerical point of view of the system.
This is one of the most practical schemes that can be encountered in appli-
cations. The work is certainly complete in the first order circuit, but some
phenomena remain to be explained and clarified in the second order circuit. In
particular, a deeper study should include the details in the transition to chaotic
behaviour and in the possible strange attractor that was found. Thus, work in
this type of buck converter has been studied along the following lines:

i) Analytical results concerning the existence of periodic orbits and its sta-
bility (preparatory work must be done in computing the periodic orbits
and its characteristic multipliers) have been given.

ii) A careful study of the discrete nonlinear Poincaré map (or T -time map)
associated with the system has been carried out, to conclude results on
the phenomenon of multiple pulsing that has been treated analytically in
the first order system by Deane and Hamill.

iii) Numerical evidence of the different possible routes to chaos in the circuit,
as some control parameters are varied (for example, the dc-input voltage
and the dc-reference voltage), has been obtained.
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iv) Secondary bifurcations, basins of attraction metamorphosis and crises
have been described with detail, including certain non-smooth bifurca-
tions of new type.

v) Some methods for controlling chaos have been deduced and applied to this
system and related ones, taking advantage of the linear topologies.

The main objective of this work is to give an exhaustive explanation of
the phenomena observed experimentally in some dc-to-dc controlled converters,
giving detailed results concerning the chaotic behaviour and control of chaos of
these systems.
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Chapter 3

Basic Geometrical and

Topological Features

Abstract

In this chapter, basic geometrical and topological aspects are first ex-

posed for the class of systems to be studied. Then, a DC-DC buck con-

verter controlled by a PWM in continous conduction mode, which is the

main object under study in this thesis, is introduced. This converter

gives rise to a great variety of behaviours depending on the values of the

parameters of the circuit. We show different graphical representations

for the solutions of the system of differential equations. The Poincaré

map that is considered naturally arises from the sampling process in

the oscillatory forced system. The 1T-periodic and 2T-periodic orbits

which cross the voltage ramp once per cycle are analysed, and their

stability is studied numerically computing the characteristic multipli-

ers associated with each one.

3.1 General Considerations

Consider dynamical systems of the following type:

Ẋ(t) = f(X, t) ≡

{

A1X + b1 if u = 0
A2X + b2 if u = 1

(3.1)

where Ai ∈ M(2 × 2, R), bi ∈ M(2 × 1, R), X = (x1, x2)
t ∈ R

2 and u is a
two-valued function.

These types of systems are called switching systems or variable structure
systems, due to the function u, which changes the topology depending on u = 0
and u = 1. Of course, this can be generalized to n topologies but, in the fol-
lowing, only two topologies will be considered. It is worth noting that in each
topology the system is linear, so analytical solutions can easily be computed.

39
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Then, solutions for system (3.1) can be obtained by joining the solutions com-
puted for both topologies. As it will be apparent, the complexity and possible
chaotic behavior strongly depend on the considered function u. One of the
choices for u is taking

u =

{

0 if mX < a
1 if mX > a

(3.2)

where m = (m1,m2) ∈ R
2 and a ∈ R.

In this case, there exists a curve of discontinuity in the phase space which is
given by the equation

mX = a (3.3)

called the switching equation.
Then, this system is two-dimensional and chaos can be discarded, although

interesting dynamics can be obtained. Let us look more closely at each system.
Supposing that A1 and A2 both have full rank, we can obtain two equilibrium
points for the systems. Namely,

X1 = −A−1
1 b1

in the first topology, and

X2 = −A−1
2 b2

in the second one. Let us also assume that these points do not belong to the
switching curve. Depending on the matrices A1, A2, different types of dynamics
can be obtained. For example, X1 can be a stable focus and X2 a saddle, as in
Fig. 3.1. So, for different choices of the matrices A1, A2, the different modelling
equations for the basic cells of dc-dc converters are obtained. Equation (3.1) is
the general form for a dc-dc converter, while if the particular case of A1 = A2

and b1 = 0 is chosen, then, the cell of a buck converter is obtained. We will
choose this particular cell for further study; more precisely, the stable focus
version, which is represented in Fig. 3.2.

Note also that, as A1 = A2, the two equilibrium points are of the same type,
including the same eigenvalues and eigenvectors. Other configurations have been
considered in the literature for the buck converter. While Fig. 3.2 corresponds
to the one chosen by Hamill and coworkers [Deane and Hamill, 1990], a stable
node version was chosen for study by Chakrabarty and coworkers [Chakrabarty,
Poddar and Banerjee, 1996].

Some of the multiple schemes are easy to analyze. For example, if in the
node version (see Fig. 3.3), we choose the control function u to be defined as
in (3.4), then, depending on the initial condition X0, the asymptotic behavior
is obvious. But, if u is defined such that

u =

{

0 if mX > a
1 if mX < a

(3.4)

the behavior is not so obvious because the system does not have X1 and X2 as
equilibrium points. In this case, if there exists an equilibrium point, it must be
located in the switching curve, and the existence of periodic orbits cannot be
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X1

X2

Switching Line

Figure 3.1: Two-topologies system of stable fo-
cus/saddle type.

X1

Switching Line

X2

Figure 3.2: Two-topologies sytem of stable fo-
cus/stable focus type, corresponding to the model of
a buck converter.
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Figure 3.3: Two-topologies system of stable
node/stable node type, corresponding to the model
of a buck converter.
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Figure 3.4: Different relative positions for the equilib-
rium points and the switching curve.
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discarded. Note also that the relative position of the switching curve can be
decisive (see Fig. 3.4).

Although these systems can display intrincate behavior, they cannot display
chaos due to the fact that they are two-dimensional flows. Instead, if the func-
tion u is allowed to depend on t, this can lead to chaotic behaviour. For the
usual scheme which models many commercial converters, the function u is of
the following type:

u =

{

0 if mX > γ(t)
1 if mX < γ(t)

(3.5)

being γ(t) a T -periodic function.

3.2 DC-DC Buck Converter Controlled by PWM

The experimental basis of the present study is a DC-DC buck converter whose
output voltage is controlled by a PWM with natural sampling and constant
frequency, working in continous conduction mode. The circuit we study is of
second order and its block diagram is shown in Fig. 3.5. A detailed description
of this converter can be found in [Deane and Hamill, 1990; Hamill, Deane and
Jefferies, 1992] which are the main references for our work. This circuit is
one of the simplest but most useful power converters, a chopper circuit that
converts a dc input to a dc output at a lower voltage (many switched mode
power supplies employ circuits closely related to it). An application of current
importance is conversion of the standard 5V dc supply used in computers to the
3.3V needed by a Pentium CPU chip. A buck converter for this purpose can
achieve a practical efficiency of 92%, whereas a linear regulator would be only
66% efficient, producing six times as much waste heat. Although this example
is at a low power level, buck converters are also used at several kilowatts.

Next we review the notation and main concepts in [Hamill, Deane and Jef-
feries, 1992].

A dynamical system may be described by a system of differential equations

dx

dt
= f(x, t)

where f(x, t) is a n-dimensional vector field and x = x(t) represents the state
of the system. We have x = (v, i), where v is the voltage through the capacitor
and i is the intensity of the current at the inductor. In our case the function
f is a discontinous one, for the circuit has a switch commuting between two
topologies, depending on the state x of the system.

Keeping the notation of [Deane and Hamill, 1990; Hamill, Deane and Jef-
feries, 1992], the parameters of the circuit are: R, C, and L, the resistance, the
capacitance and the inductance of the circuit; VL and VU , the lower and upper
voltages of the ramp and T , its period; a, the gain of the amplifier; Vref , the
reference voltage, and Vin, the input voltage (see Fig. 3.5). It is assumed to
have ideal switches. The converter we are going to study works as follows: the
voltage v of the capacitor is applied to the positive pole of the amplifier with
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Figure 3.5: Block diagram of the buck converter.

gain a, and the reference voltage Vref , to the negative pole. The output voltage,
which we will call the control voltage vco(t), is thus

vco(t) = a(v(t) − Vref )

Then, both vco and Vr, the voltage of the ramp, are applied to the compara-
tor, and every time the output difference changes its sign, the position of the
switch S is commuted in such a way that it is open when the control voltage
exceeds the ramp voltage and it is closed otherwise. Thus the circuit shows two
topologies which simulate the effect of the diode. The operation described is
known as continuous conduction mode (CCM), since the inductor passes cur-
rent without a break. However, if the output is only lightly loaded, the inductor
current can become zero for part of the cycle as the diode comes out of con-
duction: this is discontinuous conduction mode (DCM). (The terms continuous
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and discontinuous are used in a non-mathematical sense here.)
When vco(t) < Vr(t), the voltage at the diode, vd, is the input voltage Vin,

and when vco(t) > Vr(t), then vd = 0. These two topologies are described by
two systems of differential equations:

System 1: vco(t) > Vr(t)

d

dt

(

v(t)
i(t)

)

=

(

−1/(RC) 1/C
−1/L 0

)(

v(t)
i(t)

)

(3.6)

System 2: vco(t) < Vr(t)

d

dt

(

v(t)
i(t)

)

=

(

−1/(RC) 1/C
−1/L 0

)(

v(t)
i(t)

)

+

(

0
Vin/L

)

For any S ⊆ R we introduce the characteristic function

u(t) =

{

0 if t 6∈ S
1 if t ∈ S

Using the notation x = (v(t), i(t))t, (we denote yt the transpose of y), both
systems can be written in the same form

dx

dt
= f(x, t)

where

f(x, t) =

(

−1/(RC) 1/C
−1/L 0

)

x(t) +

(

0
Vin/L

)

u(t)

with
S = {t ≥ 0 : vco < Vr(t)} (3.7)

The voltage of the ramp is given by

Vr(t) = VL + (VU − VL)t/T

periodically extended with period T . This can also be written as

Vr(t) = VL + (VU − VL)Frac(t/T )

denoting by Frac(y) the fractionary part of y. Observe that the time, t, ex-
plicitely appears in the expression of f , concretely in the term u(t), that some-
how represents the control ramp. Due to the explicit appearance of t, the system
is non-autonomous.

If we fix a set of initial conditions v0 = v(t0) and i0 = i(t0), as the sytems of
differential equations are linear, we will be able to compute exactly the solution
of each one.

Let us write

k =
1

2RC
w = +

√

1

LC
− k2, (3.8)
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and supposing that
1

LC
− k2 > 0 (3.9)

we can define the real matrix

A =

(

−k/w 1/(Cw)
−1/(Lw) k/w

)

and we have the following solutions for the systems:

System 1: vco(t) > Vr(t)

(

v(t)
i(t)

)

= e−k(t−t0)[I cos w(t − t0) + A sin w(t − t0)]

(

v0

i0

)

System 2: vco(t) < Vr(t)

(

v(t)
i(t)

)

=

(

Vin

Vin/R

)

+

+e−k(t−t0)[I cos w(t − t0) + A sin w(t − t0)]

(

v0 − Vin

i0 − Vin/R

)

where I is the identity matrix. These expressions of the solutions are equivalent
to those obtained in [Deane and Hamill, 1990] and [Hamill, Deane and Jefferies,
1992]. It follows that, between two commutation consecutive times, we know
exactly the state variables of the system. Essentially, they are a combination of
exponential and sinusoidal functions.

For the system 1 (vco(t) > Vr(t)), we have as equilibrium point x̄ = (v̄, ī),
verifying

(

−1/(RC) 1/C
−1/L 0

)(

v̄
ī

)

=

(

0
0

)

⇔ v̄ = ī = 0 ⇔ x̄ = 0

Then,

Df(x̄) =

(

−1/(RC) 1/C
−1/L 0

)

and the eigenvalues are obtained as the roots of the characteristic polynomial

∣

∣

∣

∣

−1/(RC) − x 1/C
−1/L −x

∣

∣

∣

∣

which are
λ1 = −k + iw λ2 = −k − iw

Being −k < 0, we obtain that x̄ is an asymptotically stable equilibrium point
and the orbits around it will be as in Fig. 3.6.

If we make similar computations for system 2, the equilibrium point we have
now is (Vin, Vin/R), with the same eigenvalues. So, the phase diagram around
it will be very similar to the one computed for system 1, as is shown in Fig. 3.7.
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Figure 3.6: Orbit of the system 1 around its equilib-
rium point in the state space.

Thus, the evolution of each sysyem, considered separately, is trivial, and
corresponds to damped oscillations around the equilibrium point. But when
the systems are taken together as a global system, as in the buck converter, the
behaviour is radically different. When a trajectory is near the equilibrium point
of system 1, one has vco < Vr, the circuit switches its topology and the orbit
is attracted to the equilibrium point of system 2, because this is the system
that is working. When the trajectory, attracted to the equilibrium point of
system 2, moves near it, system 1 begins to work, attracting the trajectory to
the equilibrium point of system 1 (see Fig. 3.8). This wandering between the
two equilibrium points of the separate systems produces a highly non-trivial
evolution, without any equilibrium point in the global system. In the range of
values of the parameters suggested in [Deane and Hamill, 1990] and [Hamill,
Deane and Jefferies, 1992], a typical trajectory of the control voltage is shown
in Fig. 3.9. In the phase space (v, i), the same trajectory is drawn in Fig. 3.10.

We will now try to show a schematic representation of the global vector field
of the system. Let us write

vl = Vref +
VL

a
vu = Vref +

VU

a
vr(t) = vl +

vu − vl

T
Frac(t/T )

and assume

Vin > vu > vl > 0 (3.10)

as in [Deane and Hamill, 1990; Hamill, Deane and Jefferies, 1992] (this is the
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Figure 3.7: Orbit of the system 2 around its equilib-
rium point in the state space.

case that gives rise to non-trivial behaviours in the system). We may divide the
state space into three regions:

i) region 1: S1 = {(v, i) : v < vl} (half-plane)

ii) region 2: S2 = {(v, i) : vl < v < vu} (strip)

iii) region 3: S3 = {(v, i) : v > vu} (half-plane)

In all the points of S1, due to the fact that v < vl, we have

vco = a(v − Vref ) < a(vl − Vref ) = VL

and the phase diagram corresponding to this region is that of Fig. 3.7, because
the dynamics is given by system 2.

On the points of S3, as v > vu, we have

vco = a(v − Vref ) > a(vu − Vref ) = VU

and the corresponding phase diagram is shown in Fig. 3.6, because it is system
1 that is now working.

For the points in the strip S2 the behaviour is not so clear because, depending
on the state of the global system when the ramp is crossed, it is system 1 or
system 2 that is in command (see Fig. 3.11). Notice that, as shown in Fig. 3.9,
multiple pulsing can occur, where the switches change the topology of the circuit
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Figure 3.8: Orbit of systems 1 and 2 around its equilib-
rium point in the state space (Vin = 20V ). The solid
orbit corresponds to system 1 and the dashed one to
system 2.

many times per ramp cycle. This is very undesirable in practice as it greatly
increases the switching losses. One way to avoid it is to use a latch. With a
latched PWM, multiple pulsing is eliminated but subharmonics and chaos is
still possible [Deane and Hamill, 1991].

We have represented the solutions of the global system both in the phase
plane (v, i) (see Fig. 3.10), and in the control plane (t, vco(t)) together with
the ramp (see Fig. 3.9). If we wish to see how the voltage and current are
changing with time, we need a tridimensional representation (t, v(t), i(t)). When
increasing t ≥ 0, the curve described in the space gives the solution of the system
starting at v0 = v(0) and i0 = i(0) as initial conditions. More visual information
is obtained if we choose the control voltage vco instead of v (remember the affine
relation between vco and v, vco = a(v−Vref )), and we plot the ramp as well. In
the tridimensional case, the ramp is represented by the planes (see Fig. 3.12)

ramp = {(t, i, Vr(t)) : t ≥ 0}

As already mentioned, the system of differential equations we are study-
ing is non-autonomous due to the presence of u(t) in the expression of f(x, t).
The function u introduces T -periodicity in the dynamical system, plus the cor-
respondent additional variable. This new dynamical system then enlarges its
dimension by one and so chaotic behavior cannot now be discarded. As the sys-
tem is now periodic, it is more convenient to consider it in the cylindrical space
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Figure 3.9: Typical trajectory of the control voltage.
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Figure 3.10: Typical trajectory in the phase space.
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Figure 3.12: Sawtooth (or ramp) surface in the tridi-
mensional space (t, i, vco) ∈ R3.

R
2 × S

1, identifying the points (t = 0, v, i) and (t = T, v, i), ∀(v, i) ∈ R × R.
This new space can be represented geometrically by a cylinder, as shown in Fig.
3.14. In this space, a trajectory of the circuit is a curve in the cylinder and
the ramp surface is transformed in a helicoidal surface around the axis of the
infinite cylinder due to the identification of t = 0 and t = T . There, the surface
H together with the piece of vertical plane {t = 0, vl < v < vu} is the boundary
for the two connected regions which display the two different topologies. In
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Vco

i

Figure 3.13: The space R2 × S1 with the helicoidal
surface determined by the ramp.

Fig. 3.13, a trajectory in this cylindrical space has been simulated (notice that
the angular coordinate around the axe of the cylinders always increases). It is
also worth noting the effect that the T -periodicity of the function u introduces
in the phase space of the variables (v, i). Now, instead of a curve separating
the two topologies, there is a moving (t-dependent) curve which moves between
v = vl and v = vu monotonically in each cycle of the ramp (see Fig. 3.15). This
moving line is responsible for the observed chaotic behavior in this dynamical
system.

The advantage of using this cylindrical space to represent the solutions of
the system is that we can observe the evolution of the state of the system,
x(t), as a function of time t ∈ [0, T ], and easily visualize the possible periodic
orbits. With this representation, periodic orbits are indeed closed curves while
with the euclidian tridimensional representation, we also observe the temporal
dependence of the state variables (v, i), but periodic orbits are no longer closed.
Finally, the phase space representation shows periodic orbits as closed curves,
but the temporal dependence cannot be distinguished.
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H

Figure 3.14: Cylindrical natural space R2×S1. Surface
H represents the helicoidal sawtooth in this space. H∪
{t = 0, vl < v < vu} is the boundary between the two
topologies of the system.

3.3 Periodic Orbits

In the last section, some basic algebra showed that the equilibrium points X1

and X2 for each of the linear sytems are stable focus if separated topologies are
considered. When the two topologies are considered together, the equilibrium
points disappear, and the trajectories evolve very near the band [vl, vu] × R,
despite the far X1 and X2.

In this section, we will look for periodic orbits of our global system. Having
fixed the parameters, L = 20mH, C = 47µF , R = 22Ω, a = 8.4, Vref = 11.3V ,
VL = 3.8V , VU = 8.2V and T = 400µs, as in [Deane and Hamill, 1990; Hamill,
Deane and Jefferies, 1992], we will study for which values of the input voltage
Vin we may have periodic orbits, and whether they are stable or not.

Definition:

For n ≥ 1, we will say that O is a nT -periodic orbit iff n is the smallest
positive integer for which

{

v(nT ) = v(0)
i(nT ) = i(0)

that is, an orbit of the phase space (v, i) which closes itself after n cycles of the
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Figure 3.15: The moving line is the boundary of the
two linear topologies, which have X1 and X2 as equi-
librium points when separated topologies are consid-
ered.

ramp. Because of vco = a(v − Vref ), the above conditions are equivalent to

{

vco(nT ) = vco(0)
i(nT ) = i(0)

Observation:

In fact, the description (3.6,3.7) of the dynamical system is not complete, due
to the fact that trajectories cross the ramp surface. At one of these switching
instants ts, we have

v(ts) = vr(ts) (3.11)

and consequently the vector field is not defined at this point. To overcome this
difficulty, and to be consequent with the analysis of Hamill and the physical
device modelling, we must add the following conditions:

Assume that v(ts) = vr(ts) and ts 6= mT , m ∈ Z, and h > 0 exists such
that for all t ∈ (ts − h, ts), it is satisfied that v(t) < vr(t). Then, we define
u(ts, v(ts)) = 1. However, if v(t) > vr(t) is satisfied, then u(ts, v(ts)) = 0.

Assume now that v(mT ) = vr(mT ) for any m ∈ Z. If

lim
t→mT−

v′(t) <
vu − vl

T
(= lim

t→mT+
v′

r(t))
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then we define u(mT, v(mT )) = 1. On the other hand, if

lim
t→mT−

v′(t) >
vu − vl

T
(= lim

t→mT+
v′

r(t))

then u(mT, v(mT )) = 0.
For other cases with tangencies within the cycle of the ramp (v(ts) = vr(ts)

with v′(ts) = v′
r(ts)), which can occur for Vin < vu + L

RT
VU−VL

a ≈ 13.467V ,
it is considered that the signal v(t) does not cross the ramp and thus u(t+s ) =
u(t−s ). Finally, for a tangency at the beginning of a cycle t = mT , the function
u(mT, v(mT )) will be defined later in order to obtain continuity in the associated
Poincaré map. These additional conditions stated above were not specified in
the papers by Hamill and coworkers, but they were implicitely applied when
computing numerical solutions for the system.

The fidelity of these equations to the experimental model was shown in
[Deane and Hamill, 1990]. In their paper, experimental data at the oscilloscope
was shown to agree exceptionally well with the computer simulated data from
the equations. So, at least in the range of parameter values considered, the
physical device is modelled quite well by the equations.

Since the trajectories may cross the ramp several times in a cycle, we may
define different problems for periodic orbits. Thus, if m ≥ 0 and n ≥ 0, we
define

P (m,n) = {nT-periodic orbits switching exactly m times per nT-period}.
(3.12)

It can be proved that, in the range of values of the parameters of [Deane and
Hamill, 1990] and [Hamill, Deane and Jefferies, 1992], (essentially (3.10)), the
problem of computing P (0, n) is trivial:

P (0, n) = ∅ ∀n ≥ 1

Indeed, if v(nT ) = v(0), i(nT ) = i(0), and the ramp cannot be crossed, one of
the following alternatives must be true:

i) v(0) = v(nT ) < vl

ii) v(0) = v(nT ) > vu

for if v(0) ∈ [vl, vu], the ramp would necessarily be crossed.
In case i), system 2 gives the dynamics all the time, which have no periodic

orbits other than its equilibrium point (Vin, Vin/R) (see Fig. 3.7). But, as
we are supposing (3.10), this equilibrium point cannot be considered in case
i). Along the same lines, one can prove that in case ii), when the dynamics is
given all the time by the system 1, that we also arrive at a contradiction with
v(0) = v(nT ), i(0) = i(nT ), and so the statement is proved. Naturally, the
more interesting cases m ≥ 1 are more difficult to study. Let us consider the
following partition of the range of the values of vco:

M1 = (−∞, VL) M2 = [VL, VU ] M3 = (VU ,+∞)

Once the values of the parameters are fixed, we observe that if we are looking
for an orbit in P (m, 1) verifying vco(0) ∈ M2, then m must be odd, while if
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Figure 3.16: All the possible situations for m even or
odd (exemplified by m = 0 and m = 1).

vco(0) ∈ M c
2 , then m must be even. Fig. 3.16 shows all the possibilities, and

justifies the above statement, which in a more compact form reads as follows

Proposition:

Let O be a 1T-periodic orbit. Then

∃m ≥ 1 O ∈ P (2m, 1) ⇔ vco(0) ∈ M c
2

We will study P (1, 1) in more detail. According to the previous note, an
orbit O in P (1, 1) must start with vco(0) ∈ M2. Thus, it is system 1 that
initially draws the orbit; at some time t1 < T , vco crosses the ramp and system
2 enters into action till t = T , when one must have

{

vco(T ) = vco(0)
i(T ) = i(0)

This is graphically represented in Fig. 3.17.
In terms of v(0), we have

vco(0) ∈ [VL, VU ] ⇔ v(0) ∈ [vl, vu]
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Figure 3.17: Scheme of the case P (1, 1).
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The time t1 ∈ [0, T ] must verify

(

v(t1)
i(t1)

)

= e−kt1 [I cos wt1 + A sin wt1]

(

v(0)
i(0)

)

(3.13)

and

a(v(t1) − Vref ) = VL +
VU − VL

T
t1

From t1 to T , system 2 gives the dynamics and so we must have

(

v(0)
i(0)

)

=

(

v(T )
i(T )

)

=

(

Vin

Vin/R

)

+

+e−k(T−t1)[I cos w(T − t1) + A sin w(T − t1)]

(

v(t1) − Vin

i(t1) − Vin/R

)

Lemma:

The map

N : R → M2×2(R)

defined by

N(α) = e−kTα[I cos wTα + A sin wTα]

has the following properties:

a) N(0) = I

b) N(α + β) = N(α)N(β)

c) det(N(α)) = e−2kTα

Proof:
a) is trivial;
b) With the help of trigonometric identities,

N(α + β) = e−kT (α+β)[I cos wT (α + β) + A sin wT (α + β)] =

= e−kTαe−kTβ [I(cos wTα cos wTβ − sin wTα sin wTβ)+

+A(cos wTα sin wTβ + sin wTα cos wTβ)]

On the other hand,

N(α)N(β) = e−kTα[I cos wTα + A sin wTα]e−kTβ [I cos wTβ + A sin wTβ].

Multiplying these matrices, and using A2 = −I, b) is proved.
c) Only det(I cos wTα+A sin wTα) = 1 has to be proved. This is true since

I cos wTα + A sin wTα =

(

cos wTα − k
w sinwTα 1

Cw sinwTα
− 1

Lw sinwTα cos wTα + k
w sinwTα

)
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and thus, the determinant is

(cos wTα−
k

w
sin wTα)(cos wTα+

k

w
sinwTα)+(

1

Cw
sin wTα)(

1

Lw
sin wTα) =

= cos2 wTα − (
k

w
)2 sin2 wTα +

1

LCw2
sin2 wTα =

= cos2 wTα + (
1

LCw2
− (

k

w
)2) sin2 wTα

Now, since

w2 =
1

LC
− k2,

the lemma is proven.

In terms of N , if we write t1 = α1T, α1 ∈ (0, 1), (so α1 is the duty cycle),
the condition (3.13) we have imposed is equivalent to

f1(Vin, α1) = 0

where

f1(Vin, α1) ≡ Vref +
VL

a
+

VU − VL

a
α1 − (1, 0) · N(α1)

(

v0(Vin, α1)
i0(Vin, α1)

)

with
(

v0(Vin, α1)
i0(Vin, α1)

)

= Vin[N(0) − N(1)]−1[N(0) − N(1 − α1)]

(

1
1/R

)

Let us observe first that N(0) − N(1) has an inverse, for

N(0) − N(1) = I − e−kT [I cos wT + A sin wT ]

and,

det(I − e−kT [I cos wT + A sin wT ]) = (e−kT − eiwT )(e−kT − e−iwT ) 6= 0

After substitution of v0(Vin, α1) and i0(Vin, α1) in f1(Vin, α1), we have to solve

f1(Vin, α1) = 0

numerically for Vin and α1. Table 3.1 and Fig. 3.18 show the numerical values
obtained for α1 (duty cycle) and the initial conditions v0, i0, when Vin varies
in the range studied in [Deane and Hamill, 1990; Hamill, Deane and Jefferies,
1992].

Notice that the conditions we imposed to obtain periodic orbits are necessary,
but they are not sufficient, for t1 may not be the first time the control voltage
crosses the ramp. Or if it is the first, it may not be the last. Thus, after
computing numerically the values of v0, i0, we must check that the obtained
trajectory is really of the desired kind. The condition v0 ∈ [vl, vu] is guaranteed
by a previous note.
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Table 3.1: 1T-Periodic orbits of P(1,1).

Vin α1 (duty cycle) v0 i0
12 0.0200 11.7628990 0.5368860
13 0.0932 11.8016963 0.5468476
14 0.1560 11.8354047 0.5555837
15 0.2104 11.8649043 0.5633096
16 0.2582 11.8908888 0.5701924
17 0.3005 11.9139243 0.5763639
18 0.3381 11.9344727 0.5819300
19 0.3719 11.9528954 0.5869757
20 0.4023 11.9695182 0.5915722
21 0.4250 11.9845501 0.5957756
22 0.4551 11.9982391 0.5996361
23 0.4781 12.0107287 0.6031931
24 0.4993 12.0221661 0.6064811
25 0.5187 12.0326767 0.6095296
26 0.5367 12.0423969 0.6123654
27 0.5534 12.0513809 0.6150086
28 0.5690 12.0597006 0.6174780
29 0.5835 12.0674514 0.6197913
30 0.5970 12.0746723 0.6219622
31 0.6097 12.0814180 0.6240036
32 0.6216 12.0877326 0.6259268
33 0.6328 12.0936731 0.6277426
34 0.6434 12.0992565 0.6294590
35 0.6533 12.1044963 0.6310831
36 0.6627 12.1094372 0.6326229
37 0.6717 12.1141164 0.6340855
38 0.6801 12.1185505 0.6354764
39 0.6881 12.1227560 0.6368005
40 0.6958 12.1268896 0.6380695
41 0.7031 12.1305014 0.6392647
42 0.7100 12.1340774 0.6404133
43 0.7166 12.1375290 0.6415138
44 0.7230 12.1407958 0.6425658
45 0.7290 12.1439058 0.6435733
46 0.7347 12.1468568 0.6445382
47 0.7403 12.1497160 0.6454661
48 0.7456 12.1524421 0.6463568
49 0.7507 12.1550773 0.6472141
50 0.7556 12.1575615 0.6480367
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Figure 3.18: Evolution of the duty cycle for the 1T-
periodic orbits.

As will be seen later, the P (1, 1) periodic orbits which were obtained before
bifurcate into 2T-periodic orbits with one switch in each of the two cycles.
Therefore, it would be interesting to find these 2T-periodic orbits and related
ones. So now a study is made for the 2T-periodic orbits that cross the ramp
at most once per cycle, which is a subset B of P (2, 2). We have seven different
situations, which are represented in Fig. 3.19.

However, we observe that, given an orbit O ∈ B, if we interchange the two
cycles that form O, we get another orbit O′ ∈ B. Hence, if we interchange the
two cycles of an orbit of type (3), (6) or (7), we get an orbit of type (1), (4)
or (2) respectively. We may say that there exists a duality between the types
(1) and (3), (2) and (7), and (4) and (6), while (5) is selfdual. We will restrict
ourselves to the study of types (1), (2), (4) and (5), which have in common the
fact that vco(0) ∈ M1 ∪ M2 and that the first time the orbits cross the ramp
they do so during the first cycle.

We will study first the type (5) which, in a sense, is the most general. If we
denote by t1 = α1T the first time the control voltage crosses the ramp, we will
have, with the notation previously introduced

(

v(t1)
i(t1)

)

= N(α1)

(

v0

i0

)

and

a(v(t1) − Vref ) = VL +
VU − VL

T
t1

After t1, system 2 acts until the end of the cycle and we will have

(

v(T )
i(T )

)

= N(1 − α1)

(

v(t1) − Vin

i(t1) − Vin/R

)

+

(

Vin

Vin/R

)
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Figure 3.19: Schemes of the case B.

During the second cycle, the ramp is crossed at t = t2 = α2T , and we will have
(

v(t2)
i(t2)

)

= N(α2)

(

v(T )
i(T )

)

and

a(v(t2) − Vref ) = VL +
VU − VL

T
t2

During the second part of the second cycle the dynamics is given again by system
2 and

(

v(2T )
i(2T )

)

= N(1 − α2)

(

v(t2) − Vin

i(t2) − Vin/R

)

+

(

Vin

Vin/R

)

Finally, to get a 2T-periodic orbit, we must impose
(

v(2T )
i(2T )

)

=

(

v0

i0

)

In a similar way as in the case of P (1, 1), we obtain
(

v0

i0

)

= Vin[N(0) − N(2)]−1[N(0) − N(1 − α2) + N(1) − N(2 − α1)]

(

1
1/R

)
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with the additional conditions
{

a(v(t1) − Vref ) = VL + VU−VL

T t1
a(v(t2) − Vref ) = VL + VU−VL

T t2

If we substitute the values of v(t1) and v(t2) in terms of v0 and i0, the previous
conditions are equivalent to

{

f1(Vin, α1, α2) = 0
f2(Vin, α1, α2) = 0

where

f1(Vin, α1, α2) = Vref +
VL

a
+

VU − VL

a
α1 − (1, 0) · N(α1)

(

v0(Vin, α1, α2)
i0(Vin, α1, α2)

)

and

f2(Vin, α1, α2) = Vref +
VL

a
+

VU − VL

a
α2 − (1, 0)·

·[N(1 + α2)

(

v0(Vin, α1, α2)
i0(Vin, α1, α2)

)

+ Vin(N(α2) − N(1 − α1 + α2))

(

1
1/R

)

]

Before going on, let us notice that in cases (1), (2) and (4) we obtain similar
expressions. For instance, in case (1), the expression for (v0, i0) is the same as
in case (5) with α2 = 1 (see Fig. 3.19). Now, the condition f2(Vin, α1, α2) = 0
must not be imposed and we obtain

(

v0

i0

)

= Vin[N(0) − N(2)]−1[N(1) − N(2 − α1)]

(

1
1/R

)

with
f1(Vin, α1) = 0

Case (4) can also be studied in a similar way, but from Fig. 3.19 we see that it
is the same as case (5) with α2 = 0. Since there is no second crossing with the
ramp we do not have to impose f2(Vin, α1, α2) = 0, and we obtain

(

v0

i0

)

= Vin[N(0) − N(2)]−1[N(0) − N(2 − α1)]

(

1
1/R

)

with
f1(Vin, α1) = 0

Case (2) is different from the previous ones because the second cycle starts
with system 2 and ends with system 1. Similarly to what we did in case (5), we
get

(

v0

i0

)

= Vin[N(0) − N(2)]−1[N(1 − α2) − N(2 − α1)]

(

1
1/R

)

with the additional conditions
{

a(v(t1) − Vref ) = VL + VU−VL

T t1
a(v(t2) − Vref ) = VL + VU−VL

T t2
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Table 3.2: 2T-Periodic orbits of P(2,1)

Vin α1 α2 v0 i0
24.516 0.5100 0.5091 12.02770291 0.608082543

25 0.4454 0.5920 12.02908570 0.589501296
26 0.4089 0.6644 12.04264887 0.574309887
27 0.3891 0.7175 12.05963717 0.562583104
28 0.3757 0.7620 12.07860282 0.551941125
29 0.3658 0.8009 12.09901661 0.541756863
30 0.3582 0.8357 12.12059136 0.531772010
31 0.3521 0.8674 12.14314265 0.521859291
32 0.3471 0.8963 12.16653982 0.511949901
33 0.3430 0.9231 12.19068428 0.502004804
34 0.3395 0.9479 12.21549835 0.492001437
35 0.3366 0.9710 12.24091859 0.481926928
36 0.3340 0.9927 12.26689209 0.471774304

and vco(0) ∈ M3. In all the cases, three comments should be made before
starting the numerical computations. First, when computing the duty cycles
for a given value Vin, if a pair (α1, α2) is obtained, then (α2, α1) must also
be a solution (interchanging the two cycles of the orbit), provided that (v0, i0)
and (v(T ), i(T )) are also interchanged. Second, solutions of the form α1 = α2

must exist which correspond to orbits O ∈ P (1, 1). Third, we recall that the
conditions imposed are necessary and not sufficient, for the same reason as in
case P (1, 1). So, once (v0, i0) have been obtained, we must draw the full orbit
over the two cycles to see that the number of crossings in the ramp is correct.
Numerical computations in case (5) are shown in Table 3.2 and Fig. 3.20.

From Vin near 24.516V onwards we start getting duty cycles (α1, α2) ∈
[0, 1] × [0, 1], till we arrive near to Vin = 36V , when α2 = 1 and α1 = 0.3340.
The initial conditions (v0, i0) are also tabulated. Fig. 3.21 shows the 2T-periodic
orbit corresponding to Vin = 25V in the phase space (v, i) and Fig. 3.22 shows
the same orbit in time, with the control voltage vco(t) and the ramp.

Numerical computations are not as easy as in the case of P (1, 1).

For fixed Vin, we should find (α1, α2) ∈ [0, 1] × [0, 1] such that

{

f1(Vin, α1, α2) = 0
f2(Vin, α1, α2) = 0

Graphically, one can represent the surfaces (with Vin fixed)

z = f1(Vin, α1, α2)
z = f2(Vin, α1, α2)

together with the plane z = 0 for (α1, α2) ∈ [0, 1] × [0, 1]. It turns out that
f1 and f2 are too close to see how many times they intersect. It is better to
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Figure 3.20: Evolution of the duty cycles for the 2T-
periodic orbits.
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Figure 3.21: 2T-periodic orbit in the phase space (v, i)
corresponding to Vin = 25V .

represent instead

z = f1(Vin, α1, α2) − f2(Vin, α1, α2)
z = f1(Vin, α1, α2)

and z = 0, which have the same intersection set as the previous equations. For
values above Vin = 24.516V one observes three points of intersection. One of
them is of the form (α, α), corresponding to an orbit of P (1, 1) and the other
two are of the form (α1, α2) and (α2, α1), as we anticipated.

In the general case of nT-periodic orbits, a general expression can be deduced
when exactly one crossing per cycle occurs and vco(0) ∈ M2. In this case we get

(

v0(Vin, α1, . . . , αn)
i0(Vin, α1, . . . , αn)

)

=

Vin[N(0) − N(n)]−1[

n−1
∑

j=0

(N(j) − N(j + 1 − αn−j))]

(

1
1/R

)

with the additional conditions







f1(Vin, α1, . . . , αn) = 0
. . .

fn(Vin, α1, . . . , αn) = 0
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Figure 3.22: vco(t) for the 2T-periodic orbit corre-
sponding to Vin = 25V .

where

fj(Vin, α1, . . . , αn) = Vref +
VL

a
+

VU − VL

a
αj − (1, 0) · N(αj)

(

vj−1

ij−1

)

with

(

vj

ij

)

= N(1)

(

vj−1

ij−1

)

+ Vin[N(0) − N(1 − αj)]

(

1
1/R

)

Thus, the problem of finding the periodic orbits, in this case, is reduced to
numerically solving the equations







f1(Vin, α1, . . . , αn) = 0
. . .

fn(Vin, α1, . . . , αn) = 0

in the region (α1, . . . , αn) ∈ [0, 1]n and then check that vco(0) ∈ M2.

To conclude this section we propose to study the stability of previously
computed 1T-periodic and 2T-periodic orbits.

Given a periodic orbit, we will say that it is asymptotically stable if, given
initial conditions (v0, i0) sufficiently close to the periodic orbit, then the tra-
jectory in the phase space from (v0, i0) asymptotically approaches that of the
periodic orbit. The test to decide whether a periodic orbit is stable or not is
that of the characteristic multipliers. It is known [Parker and Chua, 1989; Chua,
1987] that if the norms of all the characteristic multipliers of a periodic orbit
are less than 1, then the orbit is stable, while it one characteristic multiplier
with norm greater than 1 suffices to render the periodic orbit unstable.
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The characteristic multipliers are computed as follows: we construct the
Poincaré maps, which are given by

P 1 : R
2 −→ R

2

(v0, i0) −→ P 1(v0, i0) = (P 1
1 (v0, i0), P

1
2 (v0, i0)) = (v(T ), i(T ))

for a 1T-periodic orbit and

P 2 : R
2 −→ R

2

(v0, i0) −→ P 2(v0, i0) = (P 2
1 (v0, i0), P

2
2 (v0, i0)) = (v(2T ), i(2T ))

for a 2T-periodic orbit.
These maps give us the state of the system after 1 or 2 cycles respectively,

starting from the initial conditions (v0, i0). The characteristic multipliers are
then the eigenvalues of DP k(v̄0, ī0), k = 1, 2, where (v̄0, ī0) are the initial con-
ditions corresponding to a given periodic orbit ([Parker and Chua, 1989; Chua,
1987]). We have computed numerically DP k(v0, i0) using an approximation
with central differences and Richardson extrapolation [Dahlquist and Bjorck,
1974] and the results are shown in Tables 3.3 and 3.4 and Fig. 3.23.

Namely, to find the eigenvalues of DP k(v̄0, ī0), k = 1, 2, we first compute

approximations for
∂P k

i (v̄0 ,̄i0)
∂v and

∂P k
i (v̄0 ,̄i0)

∂i for i = 1, 2. These approximations
are central differences

∂P k
i (v̄0, ī0)

∂v
≈

P k
i (v0 + h, i0) − P k

i (v0 − h, i0)

2h

∂P k
i (v̄0, ī0)

∂i
≈

P k
i (v0, i0 + h) − P k

i (v0, i0 − h)

2h

with order h2. Once these approximations are computed for h, h/2, h/4 and
h/8, a Richardson extrapolation numerical scheme is applied to obtain an ap-
proximation of order h8. In practice, h was taken to be 0.01, yielding quite good
approximations for all the partial derivatives. With the derivatives, DP k(v̄0, ī0)
is obtained, and the computations for the multipliers are straightforward.

In Fig. 3.23(a) we draw in the complex plane the evolution of the charac-
teristic multipliers of the 1T-periodic orbits when Vin sweeps the range from
12V to 25V. We observe first that the characteristic multipliers are complex
conjugates that move on a circle of radius r ≈ 0.82, and so the orbit is asymp-
totically stable. Near Vin = 24V , both characteristic multipliers become real,
and when Vin reaches a certain value between Vin = 24V and Vin = 25V one of
the characteristic multipliers has norm greater than 1, and so the periodic orbit
becomes unstable. After Vin = 25V , it remains unstable.

Fig. 3.23(b) shows the same kind of diagram in the case of 2T-periodic orbits.
Near Vin = 25V both multipliers enter the circle of radius r = 1, yielding stable
orbits. Next, they move on the circle of radius r = 0.679 till Vin = 31V is
reached. After Vin = 31V , one of the multipliers goes out of the unit circle and
the stability is lost and not recovered.
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Table 3.3: Characteristic Multipliers of the 1T-
Periodic Orbits

Vin α (duty cycle) v0 i0 mi (multipliers) max|mi|

12 0.0200 11.7628990 0.5368860 -0.7401±0.3625 i 0.824
13 0.0932 11.8016963 0.5468476 -0.6633±0.4891 i 0.824
14 0.1560 11.8354047 0.5555837 -0.6278±0.5341 i 0.824
15 0.2104 11.8649043 0.5633096 -0.6134±0.5504 i 0.824
16 0.2582 11.8908888 0.5701924 -0.6145±0.5489 i 0.824
17 0.3005 11.9139243 0.5763639 -0.6239±0.5377 i 0.824
18 0.3381 11.9344727 0.5819300 -0.6422±0.5162 i 0.824
19 0.3719 11.9528954 0.5869757 -0.6651±0.4861 i 0.824
20 0.4023 11.9695182 0.5915722 -0.6915±0.4480 i 0.824
21 0.4250 11.9845501 0.5957756 -0.7218±0.3984 i 0.824
22 0.4551 11.9982391 0.5996361 -0.7533±0.3343 i 0.824
23 0.4781 12.0107287 0.6031931 -0.7860±0.2472 i 0.824
24 0.4993 12.0221661 0.6064811 -0.8205±0.0703 i 0.824
25 0.5187 12.0326767 0.6095296 -0.6201,-1.0931 1.093
30 0.5970 12.0746723 0.6219622 -0.4002,-1.7014 1.701
35 0.6533 12.1044963 0.6310831 -0.3090,-2.2035 2.203
40 0.6958 12.1268896 0.6380695 -0.2532,-2.6804 2.680
45 0.7290 12.1439058 0.6435733 -0.2144,-3.1513 3.151
50 0.7556 12.1575615 0.6480367 -0.1874,-3.6153 3.615

Table 3.4: Characteristic Multipliers of the 2T-
Periodic Orbits

Vin α1 α2 v0 i0 mi (multipliers) max|mi|

24.516 0.5100 0.5091 12.02770291 0.6080825432 0.4613,1.0002 1.0002
25 0.4454 0.5920 12.02908570 0.5895012958 0.6139±0.2906 i 0.6792
26 0.4089 0.6644 12.04264887 0.5743098865 0.3766±0.5652 i 0.6792
27 0.3891 0.7175 12.05963717 0.5625831038 0.1460±0.6632 i 0.6792
28 0.3757 0.7620 12.07860282 0.5519411251 -0.0780±0.6747 i 0.6792
29 0.3658 0.8009 12.09901661 0.5417568634 -0.2945±0.6120 i 0.6792
30 0.3582 0.8357 12.12059136 0.5317720101 -0.5041±0.4552 i 0.6792
31 0.3521 0.8674 12.14314265 0.5218592911 -0.5104,-0.9039 0.9039
32 0.3471 0.8963 12.16653982 0.5119499008 -0.3073,-1.5010 1.5010
33 0.3430 0.9231 12.19068428 0.5020048037 -0.2359,-1.9557 1.9557
34 0.3395 0.9479 12.21549835 0.4920014373 -0.1946,-2.3705 2.3705
35 0.3366 0.9710 12.24091859 0.4819269277 -0.1669,-2.7633 2.7633
36 0.3340 0.9927 12.26689209 0.4717743041 -0.1521,-3.0337 3.0337
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Figure 3.23: In the picture at the top the evolution of
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bits as a function of Vin is shown; at the bottom, the
evolution of the characteristic multipliers for the 2T-
periodic orbits is shown (the numbers are the values
of Vin).



Chapter 4

Study of the Stroboscopic

Map

Abstract

This chapter is mainly geometric-oriented. Subharmonics, bifurcations,

and the presence of a strange attractor are first observed with numeri-

cal simulations. A plot of the number of crossings in the ramp is drawn.

This becomes a helpful tool to investigate the evolution of the trajec-

tories when they are close to the attractor. Then the existence of the

attractor is analytically justified by means of the special properties of

the Poincaré map. In addition, the existence of a horseshoe mechanism

embedded in the Poincaré map is analyzed. When analytic computa-

tions are not possible, numerical algorithms are used to simulate the

orbits.

4.1 The Bifurcation Diagram for the Main At-

tractor

From the equations (3.6), it can be observed that the vector field of the system
being studied belongs to the class of discontinuous and piecewise linear vector
fields. Then we wish to deduce which class the associated stroboscopic map
belongs to. In accordance, we define globally, a Poincaré map (a stroboscopic
map), sampling the flow at t = T . Namely, we consider

P : R
2 7−→ R

2

X0 7−→ P (X0) = φT (X0)
(4.1)

where φt is the flow generated by the solutions of the system.
To deduce some of the properties of P , it is interesting to look at the solutions

which in this case are available in a piecewise expression. As has been mentioned,

71
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in each of the two topologies the system of differential equations is linear and
thus can be solved analytically. With the notation introduced in the previous
chapter, the solutions can be written in compact form as

X(α) = Vin[I − N(α − α0)]bu + N(α − α0)X(α0) (4.2)

As the vector field is piecewise linear, the solutions of the system, which
are obtained by joining pieces of solutions in each topology, are continuous
but only piecewise differentiable, being non-smooth (i.e. non-differentiable) at
the switching instants. This means that the flow φt(x) is continuous but only
piecewise smooth. This property is then inherited by the Poincaré map P .
Thus, P belongs to the class of continuous but only piecewise smooth maps. In
fact, P was defined everywhere except at xl = (vl, il), the point in the phase
space such that the trajectory φ(t) = (v(t), i(t)) with initial conditions at xl

satisfies

v(0) = vr(0) and v′(0) = v′
r(0)

At this point, the vector field itself was not defined. Since P is a homeomor-
phism which maps the punctured space R

2−{xl} to R
2−{xu}, to get continuity

of P over all R
2, it must be defined as

P (xl) = xu (4.3)

with xu = (vu, iu), the point in the phase space such that the trajectory φ(t) =
(v(t), i(t)) with initial conditions at xu satisfies

v(0) = vr(T ) and v′(0) = v′
r(T ).

Taking this definition for P is equivalent to imposing the condition that the
trajectory starting at xl must verify

(v(t), v′(t)) = (vr(t), v
′
r(t)) for all t ∈ [0, T ] (4.4)

and so it sticks to the ramp for one cycle (in this case, the trajectory is also
contained in the surface H defined in Chapter 3).

One of the fundamental means by which a dynamical system can be stud-
ied is the bifurcation diagram. With this aim, taking Vin as the bifurcation
parameter [Deane and Hamill, 1990a; Hamill, Deane and Jefferies, 1992] a bi-
furcation diagram for P is plotted in the region of interest. Having fixed an
initial condition (v0, i0), successive 5000 iterates of P are taken, and to avoid
the transient dynamics only the last 100 first components of P (the voltages)
are plotted. This process is repeated for every discrete value of the bifurca-
tion parameter in the interval [12,40]V. As was computed in the last chapter, a
stable 1T-periodic orbit is initially found and continued until some value near
24.5V . Then, a first period-doubling bifurcation occurs, and the stability of
the 1T-periodic orbit is lost in favour of the 2T-periodic orbit which appears
at this value. This 2T-periodic orbit also loses stability in a period-doubling
bifurcation near 31.5V . The unstable orbits cannot appear in a bifurcation di-
agram, and this is why those computed in the previous chapter cannot be seen
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Figure 4.1: Bifurcation diagram of vco taking Vin as a
bifurcation parameter.

in the diagram. Near the last period-doubling bifurcation, suddenly and at ap-
proximately 32.5V , there is a large chaotic behaviour, as can be seen in Fig.
4.1.

When the interval [32.0,32.5]V is enlarged, further period-doubling bifur-
cations are observed which accumulate near 32.3V , where a four-piece chaotic
behaviour is observed. At 32.34V , the sudden expansion is localized, and is
caused by a crisis, as it will be shown later .

Then, for higher values of Vin it follows a cascade of period-doublings, till
an apparently chaotic zone is reached. This zone is shown in detail in Fig. 4.2.

Let us consider the Poincaré map (4.1) for one cycle again, and iterate P
4000 times from an initial condition (v0, i0).

When after a cascade of period-doublings one reaches the chaotic zone, for
instance Vin = 35V , we obtain a picture like that in Fig. 4.3.

Both in [Deane and Hamill, 1990a; Hamill, Deane and Jefferies, 1992] this
possibly strange attractor was experimentally obtained, and in [Hamill, Deane
and Jefferies, 1992] it was also numerically computed, obtaining only part of the
experimental simulation. This was due to to the experimental process, in which
the signal was sampled two times per cycle, at the middle and at the end.

Dimension measures have been computed to obtain more knowledge of the
structure of this attractor. Concretely, for Vin = 35V , Lyapounov, capacity, in-
formation and correlation dimensions are computed by following the definitions
almost directly. Computing with the direct definitions is quite efficient in this
case because the map is only two-dimensional.

Definitions:

Let A be a set in R
n, covered by N(ε) elemental volums of diameter ε. Let Pi
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Figure 4.2: Bifurcation diagram of vco taking Vin as a
bifurcation parameter. First apparently chaotic zone.
At a value near Vin = 32.34V , a sudden enlargement
of the attractor occurs.
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Figure 4.3: Strange attractor for Vin = 35V (numeri-
cal simulation of 4000 iterations of the Poincaré map).
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be the frequency at which the trajectory visits the ith elemental volum. Define

H(ε) = −

N(ε)
∑

i=1

Pilog(Pi)

Then, the capacity dimension Dcap, the information dimension DI and the
correlation dimension Dc of A are defined as

Dcap = lim
ε→0

log(N(ε))

log(1/ε)
DI = lim

ε→0

H(ε)

log(1/ε)
Dc = lim

ε→0

1

log(ε)
log

N(ε)
∑

i=1

P 2
i

Definition:

Let λ1 ≥ · · · ≥ λn be the Lyapounov exponents of an attractor of a map,
and let j be the largest index such that λ1 + · · ·+ λj ≥ 0. Then the Lyapounov
dimension is defined as

DL = j +
λ1 + · · · + λj

|λj+1|

To find Dcap the points (log(N(ε)), log(1/ε)) are plotted in a bivariant di-
agram for different values of ε. These points are then adjusted by a minimum
squares procedure to a straight line, and the slope of this line is taken as an
approximate value for the dimension. For the information dimension a similar
method is employed, with the plot of H(ε) against log(1/ε), and in the case of

Dc, the axes are log
∑N(ε)

i=1 P 2
i and log(ε).

It is worth noting that the values for ε can only be taken in a reasonable
range due to the limitations in the machine precision and in the number of points
which can be processed, i.e., the minimum ε that can be taken is bounded by ε0.
To make the computations efficient, the points in the attractor are rounded and
mapped to the square [0, 216)× [0, 216), and they are then put into binary form.
With this method, the maximum εmax that can be taken is εmax = 216ε0. This
scheme for computing the dimensions is efficient in lower dimensions and does
not require a special amount of memory in the machine [Carbonell and Olivar,
1994].

Taking into account that for very small and very large ε, the results can be
distorted, they are rejected when adjusting to a line. The computed dimensions
for the attractor when Vin = 35V are

Dcap = 1.519860 DI = 1.479653 Dc = 1.473991 DL = 1.449

This confirms that a certain fine structure is present in the attractor. Further-
more, due to the fact that the value of the dimension is quite far from 1, the
reduction of the map to a one-dimensional approximated map, as in the case
of the Lorenz system, is not possible. Thus, the dynamics must be studied in
the two-dimensional phase space, and the simplification of the one-dimensional
dynamics cannot be carried over.

Once it is found numerically that a chaotic strange attractor can be present in
this system, and in order to prove mathematically that it is a strange attractor,
the first step is to show the existence of a trapping region [Wiggins, 1990].
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4.2 Existence of a Trapping Region

In the three-dimensional cylindrical space which was introduced in Chapter 3
we will find U such that

φ(t, U) ⊆ U ∀t ∈ U

Then, for the two-dimensional phase space, the projection of U will be a
trapping region for P . Figure 4.4 shows the joined phase space corresponding
to the two topologies of the system. The precise point of switching is not
plotted in this picture, but it is known to occur somewhere between the two
lines {(v, i) : v = vl} and {(v, i) : v = vu}.

Let us assume that Vin > vu and ϕ1(t) and ϕ2(t) are two pieces of orbits
in the phase space with the configuration in Fig. 4.5; that is, there exist times
t1, t2, t3, t4 with t1 < t2 and t3 < t4 such that π1(ϕk(tj)) = h for k = 1, 2,
j = 1, 2, 3, 4 and some h ∈ (vl, vu) and π2(ϕ2(t1)) < π2(ϕ1(t4)) < vl

R < vu

R <
π2(ϕ2(t2)) < π2(ϕ1(t3)), (with π1 and π2 the projection maps of the first and
second coordinates respectively), ϕ1 being a piece of orbit of the first linear
topology (the one which has (0, 0) as fixed point), and ϕ2 a piece of orbit of the
second linear topology (the one which has (Vin, Vin/R) as fixed point). With this
situation, Fig. 4.6 shows a trapping region for one cycle of operation. However,
obtain a trapping region for one cycle is not required. Instead, a trapping region
for all time must be found. As the three-dimensional space is cylindrical, this
can easily be accomplished by making a slight modification of the trapping
region in Fig. 4.6. Figure 4.7 shows this desired trapping region and Fig. 4.8
shows its projection in the phase space.

So in order to state the existence of this trapping region, such pieces of
trajectories ϕ1, ϕ2 must be found.

Note:

Every solution of one of the systems can be obtained as a translation of a
solution of the other system by a translation vector (Vin, Vin/R).

Finally, Fig. 4.9 shows how the configuration of the scheme presented in
Fig. 4.5 can be obtained. Fix h between vl and vu, and consider the only
two lines which are ortogonal to the family of spiral solutions of the first linear
system (the system which has (0, 0) as equilibrium point). Then consider the
intersection point x0

1 of one of these lines with the line {v = h}. A similar point
x0

2 can be found for the other linear topology. Now, consider the only solution ϕ0
1

of system 1 (the system which has (0, 0) as equilibrium point) passing through
x0

1, and the only solution ϕ0
2 of system 2 (the system which has (Vin, Vin/R) as

equilibrium point) passing through x0
2.

Then, configuration (0) is preserved. By moving x0
1 on the vertical line {v =

h} and x0
2 on the vertical line in opposite directions by a small amount ε, and

taking the only two solutions passing through these two points, configuration
(1) is obtained.

Continously increasing ε > 0, and by the theorem of continuity of the so-
lutions of systems of differential equations, it is found a δ > ε > 0 so that
configuration (2) is obtained, where the two solutions meet at the point x∗.
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Figure 4.8: Projection of the three-dimensional trap-
ping region in the phase-space.

Finally, increasing δ a little more, the final configuration is obtained. We may
then conclude that there exist ϕ1, ϕ2 solutions of the respective systems with the
desired configuration. If a strict trapping region is required, i.e. with the vector
field pointing inwards strictly, a modified trapping region can be constructed
following Fig. 4.10, where two auxiliar solutions ϕext and ϕint are taken such
that the distance between ϕext and ϕint is small.

Once a trapping region is found, we conclude that

⋂

t>0

φ(t, U) = A

is an attracting set; or, in the discrete version, the attracting set is

⋂

n>0

Pn(U) = A

The next step is to show that A contains a chaotic invariant set Γ. This was
numerically observed in Fig. 4.3, where a fine structure was detected. The fact
that A contains a chaotic invariant set Γ can be directly proved showing that
inside U there is a homoclinic orbit which has an invariant Cantor set associ-
ated with it on which the dynamics are topologically conjugate to a full shift
on N symbols. So, A would contain a mechanism that gives rise to sensitive
dependence on initial conditions. It is difficult to prove that A contains a ho-
moclinic orbit. However, the existence of a region in the phase space in which
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the dynamics are topologically conjugate to a full shift on 2 symbols will be
proved directly in Section 4.5 in a geometrical way. Proving this includes both
geometrical reasoning and careful numerical computing.

4.3 A First Numerical View of the Attractor

If we observe the behaviour of the sequence {P (xn)}n∈N in detail when the
strange attractor has been reached, we may point out several characteristics
of the orbits in the plane (vco, i). First of all, the orbit visits five zones on a
regular basis. The last one corresponds to multiple crossings in the ramp per
cycle, while for the other four two crossings at most appear. We have (see also
Fig. 4.11)

zone 1: 1 crossing.
zone 2: 1 or 2 crossings.
zone 3: 0 or 1 crossing.
zone 4: 1 crossing.
zone 5: multiple crossings (0 to ∞).

Fig. 4.12 shows 40 iterations of the Poincaré map, starting with initial
conditions near the strange attractor. The accumulation of points in the five
zones is apparent. Fig. 4.13 plots the same trajectory in the phase space (v, i)
and Fig. 4.14 displays the 40 cycles in the temporal representation of vco.
These 40 cycles are plotted in more detail in Fig. 4.15, where a certain degree
of periodicity (every 5 cycles) can be observed, together with the five zones
previously described.

Multiple crossings per cycle with the ramp pose serious difficulties to the
detailed study of the dynamics of the system. What it is done in the following
is to try to delimitate the zone of multiple crossings depending on the initial
conditions. In general, one observes that the number of crossings increases with
Vin.

Taking Vin = 35V , inside the proposed chaotic zone where the strange at-
tractor appears, Fig. 4.16 shows, for each (v0, i0), the number of crossings in
the ramp in the first cycle when the system evolves from the initial conditions
(v0, i0). The black zone corresponds to zero crossings, the gray zone to one
crossing, the light gray zone to two crossings, and finally, the white zone to
three or more crossings. Thus, the zone that corresponds to multiple crossings
is bounded in the phase space. Fig. 4.17 shows the white zone and its neigh-
bourhood in more detail, where the concatenation of the regions of multiple
crossings is seen. The central point is

vl = Vref + VL

a ≈ 11.75238095

il = vl

R + C(VU−VL)
aT ≈ 0.595746753

which corresponds to the initial conditions necessary to get theoretically ∞
crossings of the ramp (see Fig. 4.18). Notice that this central point is indepen-
dent of the input voltage Vin.
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Figure 4.11: Scheme of the attractor for Vin = 35V .

11.6 11.8 12 12.2 12.4 12.6 12.8
v

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
i

Figure 4.12: 40 iterations of the Poincaré map (Vin =
35V ).



4.3 A First Numerical View of the Attractor 83

11.8 12.2 12.4 12.6
v

0.5

0.6

0.7

i

Figure 4.13: The orbit in figure 4.12 in the phase plane
(v, i).

Looking at Fig. 4.16 and Fig. 4.17, a partition of the phase space (v, i) into
regions R0, R1, R2, . . . , can be defined,

Definition:

It is defined for all n ≥ 0, Rn = { initial conditions x0 = (v0, i0) ∈ R
2 which

give n crossings in the ramp in the first cycle }. For convenience, we also define

R−
n = Rn ∩ {x0 ∈ R

2 : v0 < vl} and R+
n = Rn ∩ {x0 ∈ R

2 : v0 > vl} (4.5)

such that
R

2 = (
⋃

n≥0

R−
n ) ∪ (

⋃

n≥0

R+
n ) ∪ γ (4.6)

γ being the boundary of these regions.
With these definitions, the points in Rn are the interior points in the phase

space at which the trajectory starting on them crosses the ramp voltage exactly
n times in the first cycle. From Figs. 4.16 and 4.17, it can be deduced that the
boundary of these regions is γ = γ1 ∪γ2, γ1 and γ2 being respectively a straight
line and a piecewise smooth double spiral curve which focuses at the point xl.
Then, γ1 ∪ γ2 divides the phase space R

2 into a countable set of regions which
can be naturally indexed by the number of crossings in the ramp. All the regions
have two bounded and connected components, except for R0 and R1 which are
unbounded. Moreover, R0 has boundary only with R1, and, for j ≥ 1, Rj has
boundary only with Rj−1 and Rj+1.
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Figure 4.14: The orbit in figure 4.12 in the temporal
representation of the control voltage vco and the ramp.

Definitions:

A piecewise smooth curve γ ∈ R
2 will be called a spiral focused at x ∈ R

2

if and only if x 6∈ γ is the only point such that every line through x cuts γ in a
bi-infinite number of different points.

A set γ will be called a double spiral focused at x ∈ R
2 if and only if

γ = γ1 ∪ γ2 such that γ1 ∩ γ2 = ∅ and γ1, γ2 are both spirals focused at x.

We have computed the images of the regions Rj when we apply the Poincaré
map to them; that is, the Poincaré map restricted to Rj

P : Rj −→ R
2

(v0, i0) −→ (v(T ), i(T ))

Figure 4.19 shows part of the images of R0 and R1 (they are not bounded)
and the whole images of R2 and ∪j≥3Rj . The images correspond to the dotted
zones. The regions corresponding to zero crossings, one crossing and two or
more crossings have also been displayed schematically.

The first plot of Fig. 4.19 tells us that the image of R0 is divided into the
zones of zero crossings, R0, and one crossing, R1. That is, the cycle following
a cycle with zero crossings can have either zero or one crossing. The second
plot indicates that the cycle following a cycle with one crossing can have any
number of crossings, since the image of R1 has no empty intersection with
the zone of multiple crossings, and it includes the central point xl. The third
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Figure 4.15: The 40 cycles of the orbit in figure 4.12
displayed in groups of 5.
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Figure 4.16: Number of crossings in the ramp (Vin =
35V ). Black stands for no crossings, gray for one cross-
ing, light gray for two crossings and white for more
than two crossings.

plot shows that after a cycle with two crossings, only a cycle with one or zero
crossings may follow, and finally, one crossing is expected after a cycle with
three or more crossings, as shown by the fourth plot. This is in agreement
with the movement between the zones of the attractor that was previously
mentioned. If we distinguish between the ”+” and ”-” zones of Rn, then Fig
4.21 schematically represents the possible trajectories. Dashed lines correspond
to very improbable routes that briefly leave the zone of the attractor, and heavy
lines to the most visited trajectories when the attractor is reached. Simulations
show that the typical excursions are R+

0 R+
1 R>2R

+
1 R+

1 and R+
0 R+

1 R>2R
+
1 R+

2

(R>2 = ∪n>2Rn), and both of them contain multiple pulsing [Olivar and Fossas,
1995]. Finally, it is important to point out that a detailed study of the images
by the Poincaré map of R4, R5 and R6, which are all within the region in the
phase space [11.70, 11.86]V × [0.52, 0.68]A, shows a very pronounced winding
(see Fig. 4.20). This motivates the search for a Smale horseshoe embedded in
the Poincaré map, whose existence would confirm the chaotic behaviour that
we are looking for, in the range of values of Vin near 35V .

4.4 A Partition of the Phase Space

The numerics shown in the last section suggest that
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Figure 4.17: Number of crossings in the ramp. Detail
of the central zone (Vin = 35V ). Lighter gray corre-
sponds to increasing number of crossings.

i) The dynamics evolve with a certain type of 5T -periodicity (therefore, there
may be a 5T -periodic orbit nearby, inside the trapping region which, in a sense,
governs the dynamics).

ii) The number of crossings in the ramp for one cycle plays an important
role in the dynamics.

Thus we attempt to find numerically a 5T -periodic orbit near Vin = 35V with
an approximate shape of Fig. 4.15, and also to define precisely and investigate
the partition in the phase space.

4.4.1 Existence of a 5T -Periodic Orbit

The first of the two points can be achieved with a scheme close to that of the 1T-
periodic and 2T-periodic orbits of Chapter 3, and with the help of an equation
solver like MAPLE. The two schemes close to the numerical simulations of the
last section are those in Fig. 4.22, which include infinite crossings in the ramp
in one of the cycles; thus, the corresponding trajectories in the phase space pass
through xl and xu.

The equations for case 1 are the following:
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Figure 4.18: The control voltage when we take the
central point xl = (vl, il) as initial conditions, giving
∞ crossings in the ramp in the first cycle.

X(α1) = N(α1)xu

X(1) = Vin[N(0) − N(1 − α1)]b + N(1 − α1)X(α1)

X(α2) = N(α2)X(1)

X(2) = Vin[N(0) − N(1 − α2)]b + N(1 − α2)X(α2)

X(3) = N(1)X(2)

X(α3) = N(α3)X(3)

xl = Vin[N(0) − N(1 − α3)]b + N(1 − α3)X(α3) (4.7)

with the additional conditions

a(v(t1) − Vref ) = VL + (VU − VL)α1

a(v(t2) − Vref ) = VL + (VU − VL)α2

a(v(t3) − Vref ) = VL + (VU − VL)α3 (4.8)

Equations (4.7) yield the expression

Vin[N(0)−N(1−α3) + N(2)−N(3−α2) + N(3)−N(4−α1)]b = xl −N(4)xu

to be satisfied, together with conditions (4.8). MAPLE could not find any
solution for this case. For case 2, the equations are
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Figure 4.19: Images of the regions when the Poincaré
map is applied to them (Vin = 35V ). (a) Partial im-
age of R0; (b) Partial image of R1; (c) P (R2); (d)
P (∪n>2Rn).
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Figure 4.20: Images of the regions R4, R5 and R6 by
the Poincaré map (Vin = 35V ). (a) P (R4); (b) P (R5);
(c) P (R6).
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Figure 4.21: Scheme of the possible routes for Vin =
35V . Dashed lines correspond to very improbable
routes and heavy lines to most visited trajectories.

X(α1) = N(α1)xu

X(1) = Vin[N(0) − N(1 − α1)]b + N(1 − α1)X(α1)

X(α2) = N(α2)X(1)

X(α3) = Vin[N(0) − N(α3 − α2)]b + N(α3 − α2)X(α2)

X(2) = N(1 − α3)X(α3)

X(3) = N(1)X(2)

X(α4) = N(α4)X(3)

xl = Vin[N(0) − N(1 − α4)]b + N(1 − α4)X(α4) (4.9)

with the additional conditions

a(v(t1) − Vref ) = VL + (VU − VL)α1

a(v(t2) − Vref ) = VL + (VU − VL)α2

a(v(t3) − Vref ) = VL + (VU − VL)α3

a(v(t4) − Vref ) = VL + (VU − VL)α4 (4.10)

Equations (4.9) yield the expression

Vin[N(0)−N(1−α4)+N(3−α3)−N(3−α2)+N(3)−N(4−α1)]b = xl−N(4)xu
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Figure 4.22: The two schemes for a 5T-periodic orbit
close to that numerically observed in Fig. 4.15.

to be satisfied, together with conditions (4.10).
In this case, MAPLE solves the system with the following solution:

Vin = 34.33998523V

α1 = 0.7059566600α2 = 0.4092714402α3 = 0.9860506834α4 = 0.4809075344

The existence of this orbit suggests the existence of a 5T -periodic orbit in a
certain range of the bifurcation parameter Vin, with a high number of crossings
in one of its five cycles. Although it is an unstable 5T -periodic orbit and an
equilibrium point cannot exist nearby, it is observed that the dynamics in a
neighbourhood of the orbit is quite similar to the dynamics near an homoclinic
orbit in a homoclinic tangle; and so a horseshoe mechanism can be present in
that range of values of the bifurcation parameter.

The second item which was pointed out for study at the beginning of this
section was the number of crossings in the ramp. This is studied in detail in the
rest of this chapter.

4.4.2 Mechanism for the Creation of the Regions

Since the cause of non-smoothness in the system is the switching instants, it
must be clear that the number of switchings in the ramp surface during a cycle
introduces the lack of smoothness in the Poincaré map P . This can be expressed
in the following proposition,
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Proposition:

Let x ∈ R
2 and define Γx = {(t, φ1

t (x)) : t ∈ [0, T ]}. (φt = (φ1
t , φ

2
t )) Let

also Γr = {(t, vr(t)) : t ∈ [0, T ]}. Assume that Card(Γx0
∩ Γr) = m. (so, the

trajectory starting at x0, hits the ramp m times in the first cycle)
Then
P is smooth (differentiable) at x0 ⇔ Card(Γx ∩ Γr) = m for all x ∈ N(x0)

where N(x0) is some neighbourhood of x0.

Proof:
⇐) Assume that Card(Γx ∩ Γr) = m for all x ∈ N(x0), where N(x0) is a

neighbourhood of x0.
Let {yn}n∈N be a sequence of points in R

2 such that limn→∞ yn = x0 and
yn ∈ N(x0) for all n. Let xi = αi(x0), i = 1, . . . ,m be the switching states in the
first cycle when initial conditions are taken at x0 and let αi(yn), i = 1, . . . ,mn

be the switching states in the first cycle when initial conditions are taken at yn.
As yn ∈ N(x0) we have mn = m, and by the continuity of P , also

lim
n→∞

αi(yn) = αi(x0) for i = 1, . . . ,m.

Now, DP can be easily evaluated at the points {yn}n∈N, since P is a composition
of m + 1 C∞ mappings, and its expression DP (yn) finally depends only on yn

and the switching states αi(yn), i = 1, . . . ,mn.
Then, limn→∞ DP (αi(yn)) = DP (αi(x0)) for all i = 1, . . . ,m, and thus,

limn→∞ DP (yn) = DP (x0) for all i = 1, . . . ,m. This implies that P is smooth
at x0.

⇒) Assume now that for all N(x0) neighbourhood of x0, there exists y ∈
N(x0) such that Card(Γyn

∩ Γr) 6= m.
Then, two sequences {yn}n∈N and {Nn(x0)}n∈N can be found such that

yn ∈ Nn(x0) and Card(Γyn
∩ Γr) 6= m with limn→∞ yn = x0.

As limn→∞ yn = x0, there will exist two subsets {i1, . . . , ir} ⊆ {1, 2, . . . ,m}
and {j1, . . . , jr} ⊆ {1, 2, . . . ,m} such that

lim
n→∞

αi1(yn) = αj1(x0), . . . , lim
n→∞

αir
(yn) = αjr

(x0),

but since Card(Γyn
∩Γr) 6= m for all yn, then, m 6= mn and taking into account

the contributions of αk(yn) to DP (yn) when k ∈ {i1, . . . , ir}
c then

DP (yn) = DP (α1(yn), . . . , αmn
(yn))

will be different from

DP (x0) = DP (α1(x0), . . . , αm(x0))

since each contribution of αi(yn) to DP (yn) is given by

VinN ′(1 − αi(yn))b
dαi(yn)

dyn
6= 0

Thus, we have found a sequence {yn}n∈N such that limn→∞ yn = x0 but
limn→∞ DP (yn) 6= DP (x0) and then, P is non-smooth at x0.
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So, the points in the state space which are not differentiable for P are those
where a change in the number of crossings in the ramp is detected, i.e. those in
the boundary of the regions Rn.

Analytical Expressions for the Boundaries of the Regions

In the last subsection, it was shown numerically that the regions Rn are bounded
by piecewise smooth curves γ1 and γ2. Now, analytical expressions for some of
these boundaries will be given. The expressions for the boundaries dividing
the zones of zero and one crossing are relatively simple, but a considerable
algebraic effort must be made to give the expressions of the boundaries dividing
the zones of one and two crossings. Analytical expressions for the rest of the
boundaries cannot be given because they depend on the roots of more than one
trascendental equation. As was mentioned before, the boundaries of the regions
Rn are of two different types: vertical boundaries, corresponding to the line γ1

and horizontal boundaries, corresponding to the double spiral γ2. Thus, there
are essentially two types of mechanisms for changing the number of crossings
in the ramp from Rj to Rj+1, associated to each type of boundary which is

crossed. There is a special case when a boundary is crossed through a point pj
l .

In this case the number of crossings in the ramp is changed by two.

Crossing a boundary

Let us fix a point x0 = (v0, i0) such that x0 ∈ (R̄1∩γ2)−γ1 and assume that
the tangent to the boundary at the point x0 is not vertical. Then, near to i0,
i1 and i2 can be found such that i1 < i0 < i2 and (v0, i1) ∈ R1 − (γ1 ∪ γ2) and
(v0, i2) ∈ R2 − (γ1 ∪ γ2). So, a boundary between R1 and R2 is crossed when
the current is increased from i1 to i2. The crossing is produced at i = i0, i.e.
when i0 is such that P (x0) = (vu, ·). A horizontal boundary has been crossed
(see Fig. 4.23), concretely, when x0 ∈ P−1(ru), where

ru = {x = (v, i) ∈ R
2 : v = vu} (4.11)

A similar argument can be employed to justify that all the crossings of
horizontal boundaries take place when the final voltage in a cycle is vu. So, we
can state that P (γ2) = ru.

Let us fix now a point x0 = (vl, i0) such that x0 ∈ (R̄0∩γ1)−γ2. Then, near
to vl, v1 and v2 can be found such that v1 < vl < v2 and (v1, i0) ∈ R0−(γ1∪γ2)
and (v2, i0) ∈ R1−(γ1∪γ2). So, a boundary between R0 and R1 is crossed when
the voltage is increased from v1 to v2 through vl. The crossing is produced at
v = vl (see Fig. 4.24), concretely, when x0 ∈ γ1,

A similar argument can be employed to justify that all the crossings of
vertical boundaries take place when the initial voltage in a cycle is vl.

Double crossings of boundaries can occur when this takes place through a
point p ∈ γ1 ∩ γ2. This means a change by two in the number of crossings. A
point p ∈ γ1 ∩ γ2 means that p = (vl, ·) such that P (p) = (vu, ·) (see Fig. 4.25).

Consequently, the points in the state space where a change in the number
of crossings in the ramp is detected are those in the following sets:

γ1 = {x ∈ R
2 : v = vl} γ2 = P−1{x ∈ R

2 : v = vu}
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Figure 4.23: Crossing a horizontal boundary.
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Figure 4.25: Crossing a double boundary.

and the following consequence can be stated

Consequence:

Let γ1 = {x ∈ R
2 : v = vl}, and γ2 = P−1{x ∈ R

2 : v = vu}

(P is a Poincaré map of a flow; then it is invertible and P−1 can be consid-
ered)
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Figure 4.26: The phase space R2 is partitioned into
infinitely many regions. The boundary of these regions
is the union of two sets γ1 and γ2. γ1 is a vertical
line and γ2 is a piecewise smooth double spiral which
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Figure 4.27: Trajectory with initial condition at a
point x = (vl, i1) such that P (x) = (vu, i2). Then
x must belong to γ1 ∩ γ2.

Then
P is smooth in R

2 − {γ1 ∪ γ2}
Proof:
γ1 ∪ γ2 is the set for the change in the number of crossings, and the last

proposition can be applied.
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Figure 4.28: Scheme for the boundary between the 0
and 1 zones.

Observation:

The intersection set γ1 ∩ γ2 = {pr
l }r=−∞,...,+∞ consists in a bi-infinite se-

quence of points in the line γ1, which can be ordered by the current component,
with p0

l = (vl, il) = xl.

Borders of the regions with zero and one crossings

As has been proved, one of the boundaries, γ1 has an explicit expression

γ1 = {x = (v, i) ∈ R
2 : v = vl}

which is a vertical line. Consequently, the expressions to be computed are
those for γ2. This part of the boundary corresponding to the 0/1 zones can be
divided into two cases (see Fig. 4.28): one, which corresponds to x0 = (v0, i0)
with v0 < vl and the other with v0 > vl. In the phase space, Fig. 4.29 shows
where this boundary is crossed.

Thus, we simply have to find (v0, i0) such that v(v0, i0, t = T ) = vu (with
v0 < vl for one of the cases and v0 > vl for the other). In both cases, only one
of the topologies is active and there are no crossings in the ramp. This is the
cause of a simple expression for this part of the spiral boundary. The equations
for them are thus

xT = N(1)x0 + Vin[I − N(1)]b xT = N(1)x0

respectively for case (a) and (b), where xT = (vu, iT ) with iT free.
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Figure 4.29: Crossing the 0 and 1 zones. (a) v < vl;
(b) v > vl.

From case (a), it is obtained

vu = Vin + e−kT {(cos(wT )−
k

w
sin(wT ))(v0 − Vin) + (i0 − Vin/R)

1

Cw
sin(wT )}

From this latter expression, i0 = i0(v0) for v0 < vl can be obtained

i0 =
Vin

R
+

Cw

sin(wT )
[(vu−Vin)ekT −(v0−Vin)(cos(wT )−

k

w
sin(wT ))] (v0 < vl)

which corresponds to a half-line.
From case (b),

vu = e−kT {v0(cos(wT ) −
k

w
sin(wT )) + i0

1

Cw
sin(wT )}

and then

i0 =
Cw

sin(wT )
[vuekT − v0(cos(wT ) −

k

w
sin(wT ))] (v0 > vl)

which corresponds to another half-line.

Observation:

The half-line in case (a) depends on Vin, while in case (b) it does not.
Therefore, this latter boundary stands for all the values of the parameter Vin.

Borders of the regions with one and two crossings

In this case, since one trascendental equation is involved in the computations,
an explicit expression for the boundary is not possible, although a parametric
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expression can be obtained

{(v0(α), i0(α)) : α ∈ I = [0, αmax]}

where the parameter α is the duty cycle, and I stands for a certain interval
whose limits must be found numerically. In Fig. 4.30 the relation between the
phase space and the representation in time are shown.

Passing through situation (a) to (e) is produced when the duty cycle α in-
creases from α = 0 to α = αmax. The limiting value αmax can be obtained with
the intersection of the line γ1 and the curve for the 1/2+ boundary, which is only
valid for v0 > vl. This intersection is solved numerically, since a trascendental
equation is involved.

Figure 4.31 shows both cases.

Case (a)

The equations for this case are

xT = N(1 − α)x1 + Vin[I − N(1 − α)]b

where xT = (vu, iT ) with iT free is the value of the state at the end of the cycle,
and x1 = (v1, i1) is the phase point when the ramp is crossed for t = αT . Now,
using the expressions obtained in the 0/1 regions and the condition for crossing
the ramp

v1 = vl + α(vu − vl)

the expression for i1 = i1(v1) is obtained

i1(v1) =
Vin

R
+

Cw

sin(wT (1 − α))
[(vu − Vin)ekT (1−α) − (vl + (vu − vl)α − Vin)·

(cos(wT (1 − α)) −
k

w
sin(wT (1 − α)))] (v0 < vl)

and so the expression for (v1(α), i1(α)) is obtained. The next step is to find
(v0, i0) such that the values for (v, i) corresponding to t = αT are the computed
(v1, i1). Using again the expression which was computed for the 0/1 regions,

i0(v0) =
Cw

sin(wTα)
[(vl + α(vu − vl))e

kTα − v0(cos(wTα) −
k

w
sin(wTα))]

The final step is to impose that i1 = i(v0, i0(v0), t = αT ); to do this, we use
x1 = N(α)x0. This results in

e−kTα{−
v0

Lw
sin(wTα) + i0(cos(wTα) −

k

w
sin(wTα))} =

Vin

R
+

Cw

sin(wT (1 − α))
[(vu − Vin)ekT (1−α)

−(vl + (vu − vl)α − Vin)(cos(wT (1 − α)) −
k

w
sin(wT (1 − α)))]
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In this equality, one can substitute i0 for i0(v0) and obtain v0 = v0(α), which
after collecting terms, gives the desired parametric expressions for v0 = v0(α)
and i0 = i0(α)

v0(α) = (cos(wTα) +
k

w
sin(wTα))(vl + α(vu − vl))e

kTα+

(cos(wT (1−α))−
k

w
sin(wT (1−α)))(vl−Vin+α(vu−vl))

sin(wTα)

sin(wT (1 − α))
ekTα−

(vu − Vin)ekT sin(wTα)

sin(wT (1 − α))
−

Vin

RCw
ekTαsin(wTα)

i0(α) =
1

Lw
sin(wTα)(vl + α(vu − vl))e

kTα +
Vin

R
(cos(wTα) −

k

w
sin(wTα))

ekTα+Cw(vu−Vin)ekT cos(wTα) − k
wsin(wTα)

sin(wT (1 − α))
−Cw(vl−Vin+α(vu−vl))e

kTα

(cos(wTα) − k
wsin(wTα))(cos(wT (1 − α)) − k

wsin(wT (1 − α)))

sin(wT (1 − α))

Case (b)

In this case, similar considerations yield the following expressions

v0(α) = (cos(wTα) +
k

w
sin(wTα))(vl − Vin + α(vu − vl))e

kTα+

(cos(wT (1 − α)) −
k

w
sin(wT (1 − α)))(vl + α(vu − vl))

sin(wTα)

sin(wT (1 − α))
ekTα−
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vuekT sin(wTα)

sin(wT (1 − α))
+ Vin(1 +

1

RCw
ekTαsin(wTα))

i0(α) =
1

Lw
sin(wTα)(vl − Vin + α(vu − vl))e

kTα +
Vin

R
(1 − ekTα(cos(wTα)−

k

w
sin(wTα))) + CwvuekT cos(wTα) − k

wsin(wTα)

sin(wT (1 − α))
− Cw(vl + α(vu − vl))

ekTα (cos(wTα) − k
wsin(wTα))(cos(wT (1 − α)) − k

wsin(wT (1 − α)))

sin(wT (1 − α))

For an input voltage Vin = 35V , MAPLE gives the following values for αmax:
for case (a), αmax = 0.63621676 and for case (b), αmax = 0.39277083.

In the general case, the boundaries between the regions of n/n + 1 crossings
cannot be computed analytically because more than one trascendental equation
is involved, and this means that no closed form expression exists for the bound-
aries without including the roots of trascendental equations, i.e. in explicit or
parametric form. In summary, for every chosen value for Vin, analytical exact
expressions have been found for the boundaries dividing the zero crossings re-
gion, the one crossing region and the multiple crossings (two or more) regions.
This is important since the multiple crossings region has much to do with the
chaotic behaviour which is observed for some values of the bifurcation parameter
Vin.

4.5 Images of the Regions by the Poincaré Map

4.5.1 Images of the Regions of Zero and One Crossing

Based on the numerical results obtained in the last section, some images of
the regions Rn are analytically deduced to obtain a scheme for a horseshoe
mechanism embedded in the Poincaré map, giving rise to an invariant set with
sensitive dependence on initial conditions included in the trapping region. First
of all, an easy proposition is proved which reflects the general nonlinear character
of the Poincaré map in a significant region of the phase space.

Proposition:

P is affine on R−
0 , linear on R+

0 and nonlinear on all the other regions.
Proof:
On R−

0 , we have the scheme in Fig.4.32a. Then,

P (x0) = Vin[I − N(1)]b + N(1)x0

which is affine with x0.
On R+

0 , we have the scheme in Fig.4.32b. Then,

P (x0) = N(1)x0
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0

,

initial condition for b) belongs to R+

0
and initial con-

dition for c) belongs to R+

1
.

which is linear with x0.
On other regions Rn, with n > 0, we have n crossings in the ramp. These

crossings introduce n instants α1(x0), α2(x0), . . . , αn(x0) which depend on x0

in the expression for P (x0). This makes P nonlinear in Rn for n > 0. As an
example, for x0 ∈ R+

1 (see Fig. 4.32c), we have for the switching time αs

x(αs) = N(αs)x0

and

P (x0) = Vin[I −N(1−αs)]b+N(1−αs)x(αs) = Vin[I −N(1−αs)]b+N(1)x0,

which nonlinearly depends on αs = αs(x0).

As mentioned before, the curves γ1 and γ2 play an important role in the
Poincaré map P . The following notation will be used to distinguish between
the spirals and the lines

rl ≡ γ1 = {x = (v, i) ∈ R
2 : v = vl}

r+
l = {x = (v, i) ∈ R

2 : v = vl, i > il}

r−l = {x = (v, i) ∈ R
2 : v = vl, i < il} (4.12)

such that rl = r+
l ∪ r−l ∪ xl

ru ≡ P (γ2) = {x = (v, i) ∈ R
2 : v = vu}

r+
u = {x = (v, i) ∈ R

2 : v = vu, i > iu}

r−u = {x = (v, i) ∈ R
2 : v = vu, i < iu} (4.13)
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such that ru = r+
u ∪ r−u ∪ xu

sl ≡ γ2 = P−1({x = (v, i) ∈ R
2 : v = vu})

s+
l = sl ∩ {x = (v, i) ∈ R

2 : v > vl}

s−l = sl ∩ {x = (v, i) ∈ R
2 : v < vl} (4.14)

such that sl = s+
l ∪ s−l ∪ xl

By a continuity argument, P (r−l ) and P (r+
l ) are spirals focused at xu. Thus,

we can define

su = P (rl)

s+
u = su ∩ {x = (v, i) ∈ R

2 : v > vu}

s−u = su ∩ {x = (v, i) ∈ R
2 : v < vu} (4.15)

such that su = s+
u ∪ s−u ∪ xu.

With these definitions, the next step is to compute the images of some regions
Rn by the Poincaré map P . Some of the first intersections rl ∩sl which delimits
the regions are numbered, and their images computed. In particular, the images
of the points in the phase space labeled 1,2,3,4,5 and 6 according to Fig. 4.33
are computed. As they all belong to sl, their image must be in ru. Point labeled
1 corresponds to (v1, i1) with v1 = vl and i1 < il, in the boundary of the regions
of 0/1/2 crossings. This means that the trajectory with initial conditions at
(v1, i1), in the first cycle, only crosses the ramp voltage at the end of the ramp
for t = T , and consequently, as i1 < il, then the current at the end of the ramp
i′1 will verify i′1 > iu. So P maps the point labeled 1 at some point in r+

u . With
a similar argument, a point labeled α in s−l , which belongs to the boundary
of the regions of 0/1 crossings, will be mapped to a point P (α) in ru with a
current larger than i′1. Then, as P is one to one and continuous, the piece of
the boundary between the points labeled α and 1 will be mapped to the piece
of line between P (α) and P (1), as shown in Fig. 4.33. Similar arguments stand
for the points labeled 6 and w and the corresponding images P (6) and P (w), as
well as for the rest of the points, which are mapped as in Fig. 4.33 and Fig. 4.34.

Now take a point labeled X in rl, with a very small current component.
Then, as X is a point with voltage vl, in the boundary between regions of 0/1
crossings, but with a current lower than i1, the trajectory with initial conditions
at X will end at the end of the ramp with a voltage lower than vu and a current
lower than i′1 (the final voltage and current will be much lower than vu and i′1
as the initial current is taken lower and lower). So P (X) will be applied at some
point in the phase space with very low voltage and current. Then the region
delimited by α-1-X (which is part of R−

0 ) is mapped by P to the region delimited
by P (α)-P (1)-P (X). As xl is not included in R−

0 , then P (R−
0 ) does not include

xu, and so P (R−
0 ) is the zone indicated in Fig. 4.35. In a similar way, taking a

point Y in the phase space on r+
l with a large current, its image P (Y ) can be

sketched, and so P (R+
0 ). Now, the region R−

1 is delimited by the points labeled
α-1-5-6-Y. So its image by P will be delimited by P (α)-P (1)-P (5)-P (6)-P (Y ).
The piece from P (1) to P (5) is for the moment unknown, but it must be a
certain curve between these points. As P (R−

1 ) cannot contain xu and the curve
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cannot intersect ru (otherwise there would be another piece of spiral in R−
1 ),

the region P (R−
1 ) must be like that in Fig. 4.36. With similar arguments, it can

be deduced that the qualitative picture for the regions of zero and one crossing,
and their respective images is that in Fig. 4.37.

Note:

P (ru) is not spiraling (at least, between rl and ru)
Proof:
Observe first that the line ru is entirely contained inside the region R+

0 ∪R+
1 .

Then P (ru) ⊆ P (R+
0 )∪P (R+

1 ), and thus the images of the points of ru can only
have zero or one crossing in the ramp. Taking initial conditions on the line ru

means fixing v = vu and varying the current i from −∞ to ∞. Then there exist
i1, i2, i3, i4, such that

P (vu, i1) = (vu, i3) and P (vu, i2) = (vl, i4) with i1 > i2, i4 > i3

(see Fig. 4.38)
The values for these currents can be easily obtained because the number of

crossings in the ramp of their respective trajectories is zero or one. For example,
if Vin = 34.33998523V , the equations are put into the MAPLE solver and the
results are

i1 = 0.69059201A i2 = 0.40050334A i3 = 0.44153429A i4 = 0.67723511A.
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4.5.2 A Horseshoe Mechanism

In the previous subsection it was proved that P (rl) = su and P (sl) = ru, so that
the Poincaré map P transforms a certain line into a double spiral focused at one
point in the phase space, and also transforms a certain double spiral focused at
a certain point into a line. This is symptomatic of a folding action in the phase
space, as was also numerically observed in Section 4.3 of this chapter. This can
result in a horseshoe mechanism embedded in the Poincaré map.

This folding mechanism can be analytically deduced with the continuity
arguments that were employed in the last subsection. Specifically, if a rectan-
gular region R containing the point xl is chosen in the phase space like that
in Fig. 4.39, following the same arguments that were applied before (basically
P (rl) = su and P (sl) = ru), it can be deduced that the image P (R) is folded
many times around the point xu. The number of foldings around xu depends
very clearly on the number of pieces of regions that R contains, which is directly
related to the thickness of R.

P contains a expanding-stretching-folding action, clearly seen in Fig. 4.40,
which is drawn analytically, following the same arguments as before. From this
figure, it can be deduced that the image of a region M totally included in only
one region R±

n will be deformed, but it will not spiral around xu. However,
when P is applied to a region M which has no empty intersection with at least
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four consecutive regions, then at least one turn around xu exists.

It has been proved that near the region of multiple crossings, i.e. near
xl, P has embedded a stretching-folding mechanism, which maps a region R
near xl to a region P (R) near xu. Moreover, for a certain value V 0

in, a 5T -
periodic orbit with P 4(xu) = xl has been found. So for this value, a rectangular
region R near xl like that in Fig. 4.39 is first transformed by P in a spiral-
like region P (R) near xu which includes the point xu. Then the successive
mappings P 2(R), P 3(R), P 4(R) do not change qualitatively the shape of the
region, because as was pointed out in a previous section, no more than two
crossings in the ramp are met in each cycle. So, P 4(R) has the same spiral-like
shape as P (R). Finally, when P is applied once more on P 4(R), as P 4(xu) = xl,
this region turns back near xl. Summarizing, a rectangular region near xl is
mapped by P 5 to a spiral-like region centered also at xl. Then a horseshoe
mechanism must be found near xl for the map P 5 when the parameter Vin is in
a certain range including V 0

in.

4.5.3 A Numerically Found Horseshoe

Although rectangular regions can be found near xl which are mapped by P 5 into
spiral-like regions centered at xl, this is not enough to conclude the existence
of an invariant set with horseshoe dynamics. The regions R and P 5(R) must
intersect in a certain way for the existence of an invariant set to be proved. In
order to see this, two consecutive regions R−

k , R−
k+1, k > 1 are first chosen. Then

by the same continuity arguments that were applied throughout this chapter,
the image P (R−

k ∪R−
k+1) turns one time around xu in the way shown in Fig. 4.41

(this is also valid for R+
k and R+

k+1).

Then, after 5 iterations of P , and for some values of k which will be nu-
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with edges labeled 11-12-23-24; (b) P (R). The dot-
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merically computed, the intersection shown in Fig. 4.42 is obtained, and the
existence of an invariant set with horseshoe dynamics is concluded. It is worth
noting that due to the very high stretching in the phase space when P 5 is ap-
plied, the intersections of the numerically computed regions are hard to see, and
thus only some schemes have been presented in the figures.

In order to numerically obtain the regions R±
k and their images, the following

steps are carried out:

1) Compute the points on rl which divide the regions. This has been done
with precision parametrising the line rl, computing P (rl) and saving the number
of crossings in the ramp. These points are denoted (vl, lk) when the current
component of P (vl, lk) is smaller than iu, and they are denoted (vl, l

∗
k) when

the current component is larger than iu. This is equivalent to the ordering
imposed by the successive intersections of the line rl with the double spiral sl,
when the latter is monotonically followed (see Fig. 4.43). xl is also denoted
(vl, l∞) = (vl, l

∗
∞).

2) Compute the points on ru which divide the regions. They are obtained
simply as (vu, uk) = P (vl, lk) and (vu, u∗

k) = P (vl, l
∗
k). Once these points are

obtained, the boundaries of the regions Rn can be easily obtained computing
P−1 applied to the piece of ru which is limited by the points with currents
uk,uk+1 or u∗

k,u∗
k+1. It is worth noting that P−1 is also available in closed form,

except for the times where the ramp is crossed, as happens with P .
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The values for lk,l∗k,uk and u∗
k for Vin = 34.33998523V (value for which there

exists a 5T -periodic orbit passing through xl) were computed with MATHE-
MATICA for k = 0 to k = 14 and are shown in Table 4.1.

Graphically inspecting the regions and their images, it turns out that R+
13 ∪

R+
14 intersects P 5(R+

13 ∪ R+
14) in the way qualitatively shown in Fig. 4.42. To

find this intersection, P 5 is applied to the piece of rl with currents in the in-
tervals I1 = [0.607092, 0.608797]A and I2 = [0.581308, 0.583372]A, which are
the vertical boundaries of R+

13 ∪ R+
14. The horizontal boundaries of R+

13 ∪ R+
14

are computed as the inverse image of the pieces of ru with currents in the
intervals I3 = [0.6068, 0.6081]A and I4 = [0.6086, 0.6095]A. Finally, to find
the last two boundaries of P 5(R+

13 ∪ R+
14), P 4 is applied to the points in ru,

{(vu, i) : i ∈ I3 ∪ I4}. Then, the intersections obtained are as in Fig. 4.44.

4.6 Summary

In this chapter, the Poincaré map P induced by the flow has been studied and
a horseshoe mechanism has been found in the phase space near the point xl.
This means that an invariant set with sensitive dependence to initial conditions
exists in a certain range of the bifurcation parameter. In this case, P is an
invertible two-dimensional map, which is continuous but only piecewise smooth
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Table 4.1: Values of the currents dividing the regions
and their images.

k lk l∗k uk u∗
k

0 0.737173 0.367108 0.4937 0.8190
1 0.508041 0.681535 0.5421 0.6954
2 0.649282 0.533084 0.5721 0.6747
3 0.552242 0.638785 0.5812 0.6576
4 0.628766 0.559454 0.5904 0.6516
5 0.566844 0.624449 0.5941 0.6450
6 0.619638 0.570191 0.5984 0.6421
7 0.574059 0.617322 0.6004 0.6386
8 0.614445 0.575999 0.6031 0.6369
9 0.578429 0.613007 0.6043 0.6348
10 0.611148 0.579699 0.6059 0.6337
11 0.581308 0.610130 0.6068 0.6323
12 0.608797 0.582195 0.6081 0.6315
13 0.583372 0.608067 0.6086 0.6305
14 0.607092 0.584028 0.6095 0.6299
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and nonlinear, with a singular point xl (it is the focus of a double spiral curve,
which is a curve of non-smooth points dividing regions of smooth points for P ).

Once the Poincaré stroboscopic map has been precisely defined, the dynam-
ics of the system can be simplified to the dynamics of this stroboscopic global
Poincaré map. It can be said beforehand that this class of maps have not been
studied deeply in the scientific community. The literature mainly concerns dif-
feomorphisms. Related works, including border-collision bifurcations arising in
non-smooth systems with a low number of regions of smoothness, can be found in
[Nusse and Yorke, 1992; Nusse, Ott and Yorke, 1994]. There, a border-collision
bifurcation, i.e. when a periodic point crosses the curve of non-smoothness, is
introduced, and examples are shown where period-p to period-q, p-piece attrac-
tor to q-piece attractor and chaotic saddle to chaotic saddle bifurcations are
found. Also, the Jacobian matrix is shown to change discontinuously at border-
crossing fixed points. The case of piecewise-linearity and the case of square-root
singularity in the derivative with an infinite cascade of reverse period-adding bi-
furcations are also studied.

Published works dealing with non-smooth maps are mainly reduced to spe-
cial cases such as one-dimensional piecewise smooth maps, two-dimensional
piecewise linear maps and two-dimensional non-invertible maps [Mira, 1980;
Mira, 1987; Mira and Narayaminsamy, 1993; Mira, Fournier-Prunaret, Gardini,
Kawakami and Cathala, 1993; Mira and Rauzy, 1995; Barugola, Cathala and
Mira, 1995; Maistrenko, Maistrenko and Chua, 1993; Maistrenko, Maistrenko
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and Sushko, 1994; Maistrenko, Maistrenko, Vikul and Chua, 1995].
The considered Poincaré map with a double spiral curve of non-smoothness

and an accumulation point is not classified in any of the above classes, so dif-
ferent types of behavior and bifurcations can be expected. We anticipate that,
in the map which is studied, non-standard types of bifurcations and border-
collision bifurcations will be obtained when P is considered as a one-parameter
family of maps, taking Vin as the bifurcation parameter. Some of the bifurca-
tions that will be shown in the next chapter are

i) Singularity bifurcation:
A stable fixed point turns into a stable fixed point, plus two 3T-subharmonic

unstable orbits and a non-attracting invariant set.

ii) Instant chaos bifurcation:
Sudden existence of an attracting chaotic invariant set which is initially

reduced to a stable orbit.

iii) Saddle-saddle bifurcation:
Sudden existence of two 3T-subharmonic unstable orbits.
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Chapter 5

Secondary Bifurcations and

Chaotic Attractors

Abstract

In the first section of the previous chapter, period-doubling route to

chaos in the DC/DC buck converter was shown to occur. Also, in the

work of Deane and Hamill, it was checked experimentally. A chaotic

attractor is then found at the end of the sequence, suddenly followed

by an increase of its size. In this chapter, new secondary bifurcations

and high periodic phenomena coexisting with the main sequence are

detected and analysed over the same range of parameters. Local and

global analyses are made by means of different computational tools to

obtain impact and stroboscopic maps, unstable orbits, bifurcation dia-

grams, invariant manifolds of direct and inverse saddles and basins of

attraction. These tools are put together to reveal the dynamical rich-

ness of this non-smooth system. The topological mechanisms which

entail onset and disappearance of various attractors, and the main and

secondary evolutions to chaos are identified. Special attention is de-

voted to the analysis of non-smooth bifurcations and sudden bifurca-

tional events characterizing the global dynamics, associated with the

topological behaviour of the invariant manifolds of several direct, in-

verse and grazing saddles.

5.1 Introduction

Basic features of nonlinear dynamics in dc-dc converters have been reported in
[Deane and Hamill, 1990a; Deane, 1992; Tse, 1994a; Zafrany and Ben-Yacov,
1995; Chakrabarty, Poddar and Banerjee, 1996; Fossas and Olivar, 1996; di
Bernardo, Garofalo, Glielmo and Vasca, 1997]. In the previous chapter, a
period-doubling route to chaos was discovered, followed by a sudden increase in

115
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the size of the attractor. This was also checked experimentally in the pioneer-
ing work [Deane and Hamill, 1990a], showing an extraordinary agreement with
numerical simulations. Some of these phenomena were justified analytically in
[di Bernardo, Garofalo, Glielmo and Vasca, 1997], where a new kind of mapping
for this closed loop converter, the impact map, was introduced. Recently, some
other attractors coexisting with the main bifurcation branch have also been
outlined [Banerjee, 1997; di Bernardo, Fossas, Olivar and Vasca, 1997].

In this chapter, secondary bifurcations of the main branch attractor are
studied and some branches of unstable orbits are continued. Namely, sec-
ondary saddle-node bifurcations are investigated, at which branches of sta-
ble 6T-periodic and 12T-periodic orbits are created; their independent period-
doubling bifurcations and sudden changes in the size of the resulting chaotic
attractors are discussed. Moreover, three-piece chaotic attractors and a large
five-zones chaotic attractor are studied, and their structure justified as organised
by corresponding unstable orbits. Features of smooth systems such as period-
doubling, merging bands of chaos, and interior crises are reported for the main
attractor; boundary crises, periodic windows and metamorphoses of the basins
of attraction are also shown for secondary evolutions. A continuation of 3T-
periodic unstable branches reports an adding-orbit process, probably ending
in a chaotic saddle. On the way, grazing (or border-collision) bifurcations are
found [Nusse and Yorke, 1992; Nusse, Ott and Yorke, 1994].

The numerical computations are performed with a variety of available tools,
and, when necessary, specific C code has been prepared. Specific code in C has
been developed to careful computing orbits, stroboscopic maps, invariant mani-
folds and basins of attraction. Although the data finally supports on numerical
methods, very much advantage is taken of the algorithms since the solutions are
piecewise analytically known. Only the bifurcation diagrams which were drawn
with INSITE to check some results use a standard numerical integrator which
does not take advantage of the analytical solutions. In this case, numerical
precision is improved to obtain high quality data.

A method is deduced to compute the characteristic multipliers of periodic
orbits. Analytical expressions for the multipliers are obtained, where only a
final easy numerical step is needed. This method can be applied to find period-
doubling and saddle-node smooth bifurcations as well as the jump discontinuity
in border-collision non-smooth bifurcations.

A new kind of discrete-time mapping, the impact map, is introduced. Then,
the bifurcation diagram of the system is reported as the input voltage varies.
The remaining sections present the analysis of the nonlinear phenomena ap-
pearing in the bifurcation diagram as the input voltage is increased, by means
of the invariant manifolds and basins of attraction.

Definitions:

In what follows, we give some definitions, which are used in the rest of the
chapter. Looking at the converter scheme, we say that the system is in the OFF
(ON) phase when the capacitor voltage is larger (smaller) than the ramp signal.
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Figure 5.1: Possible behaviors: (a) multiple im-
pacts and grazing, (b) P(2,2) orbit, (c) skipping phe-
nomenon, (d) grazing and sliding.

Consequently, a switching occurs whenever the following condition is satisfied:

v(t) = γ + η(t mod T ). (5.1)

Among the switchings, we will define impact as a switching taking place
within a cycle of the ramp, and T–switching the one occuring at multiples nT of
the ramp period T . During standard operating conditions, the system evolves
along a 1T-periodic one-impact per cycle orbit, i.e. one impact and one T–
switching occurring during each cycle of the ramp. In addition to this, we
recall that the following situations found in previous chapters are possible (see
Fig. 5.1):

• more than one impact occurs during the same cycle of the modulating
ramp (multiple impacts);

• the system evolves along a generic nT -periodic orbit, characterized by m
impacts per nT -period (P(m,n) orbit) ;

• the voltage misses one or more T–switchings (skipping phenomenon);

• an infinite number of impacts occur within the same cycle of the ramp
(sliding);

• the voltage touches the bottom or the top of the ramp at time instants
multiples of T (grazing).
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Figure 5.2: The six different possibilities for the stro-
boscopic map, depending on the parity (n even or n

odd) of the number of crossings in the ramp and the
initial voltage (v0 < vl or v0 > vl).

Notice that, as reported in the previous chapter, a sliding occurs when the
voltage derivative is equal to that of the ramp signal at a T -switching (infinite
local stretching condition).

5.1.1 The Stroboscopic Map

The stroboscopic map P , closely studied in the previous chapter, was obtained
by considering the current and voltage at every T -switching [Kassakian, Schlecht
and Verghese, 1991]. To compare it with the impact map now, we recall its
definition

(vn, in) 7→ (vn+1, in+1). (5.2)

where vn = v(nT ) and in = i(nT ).

It is relevant to point out that the structure of the stroboscopic map changes
according to the number of impacts between one switching and the next. Thus,
the analytical form of the mapping can be derived once the system evolution
between the two T -switchings has been specified. The expressions for the six
possibilities, depending on the parity of the number of crossings in the ramp
and the initial value for the voltage, are the following (see also Fig. 5.2):
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n = 0, v0 > vl : P (X0) = N(1)X0

n = 0, v0 < vl : P (X0) = N(1)X0 + Vin[I − N(1)]b

n even, v0 > vl : P (X0) = N(1)X0 + Vin[
n
∑

j=1

(−1)jN(1 − αj)]b

n even, v0 < vl : P (X0) = N(1)X0 + Vin[I −
n
∑

j=1

(−1)jN(1 − αj) − N(1)]b

n odd, v0 > vl : P (X0) = N(1)X0 + Vin[I +
n
∑

j=1

(−1)jN(1 − αj)]b

n odd, v0 < vl : P (X0) = N(1)X0 + Vin[−
n
∑

j=1

(−1)jN(1 − αj) − N(1)]b

where {αj}j=1,...,n are the normalized switching instants.

Then, construction of the map requires the solution of the following condi-
tions with respect to the normalized impact instants {αj}j=1,...,n :

v(αj) = γ + ηTαj j = 1, . . . , n (5.3)

Therefore, though possible, it is hard to derive a closed form for the strobo-
scopic map to obtain analytically the jacobian, and perform the investigation of
the stability of the system orbits via its eigenvalues. An alternative mapping,
the impact map, can be used [di Bernardo, Garofalo, Glielmo and Vasca, 1997].

5.1.2 The Impact Map

The impact map is defined as the mapping from a normalized impact instant
αm = (tm mod T )/T and the corresponding current im to the next pair:

(αm, im) 7→ (αm+1, im+1). (5.4)

As for the stroboscopic map, the structure of the impact map changes ac-
cording to the specific system evolution. In this case, however, only three differ-
ent impact to impact elementary behaviours can be outlined, as represented in
Fig. 5.3. Then, the analytical form of the impact map can be obtained for any
orbit of the converter by appropriately combining the three elementary sub-
mappings. Moreover, the availability of the analytical expression of the map
allows one to compute the jacobian and then the stability of any orbit, as in the
stroboscopic map.
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Figure 5.3: Different typical behaviors of the control
voltage between two impacts: (a) OFF-OFF, (b) ON-
OFF, (c) ON-ON.

5.2 The Buck Converter Bifurcation Diagram

As presented in previous chapters, the voltage controlled DC/DC buck converter
exhibits several bifurcations and chaos when the input voltage is varied. Bifur-
cations apply usually to fixed or mT-periodic points x0 (which is then a fixed
point of the mth iteration of the map), but they also attain to more complex
sets like chaotic attractors and saddles. The type of fixed point x0 is determined
through calculation of the eigenvalues of the jacobian DP (x0). It can be either
stable (sink, S), or unstable (saddle) depending on whether both eigenvalues, or
only one of them, stay inside the unit circle in the complex plane. By varying
the bifurcation parameter Vin, directly (D-saddle cycle) or inversely (I-saddle
cycle) unstable periodic solutions are established through saddle-node (SN) or
period-doubling (PD) smooth bifurcations, respectively, when an eigenvalue of
DP becomes larger than 1 or smaller than -1. Also, non-smooth bifurcations
of grazing (or border-collision) type (GR) can be obtained which correspond
to a jump in the eigenvalues. The notations Sm

j , Dm
j and Im

j will be used to
denote mT-periodic sinks, direct saddles and inverse saddles, respectively, the
subscript j = 1, 2, . . . ,m referring to different image points of the periodic solu-
tion. Chaotic attractors made of a finite number m of disconnected pieces are
obtained in several situations. They are denoted as Cm

j attractors, the subscript
j = 1, 2, . . . ,m referring to the different pieces contained in subdomains of the
whole basin.

Figure 5.4 represents the bifurcation diagram for the following converter pa-
rameters: R = 22.00Ω, L = 20.00mH,C = 47.00µF, γ = 11.75, η = 1309.52, T =
400.0µs, as in the previous chapter.

The main P (1, 1) branch bifurcates into a P (2, 2) orbit at Vin = 24.516V
as experimentally and numerically observed in [Deane and Hamill, 1990a]. Suc-
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Figure 5.4: Buck bifurcation diagram in the range
(23, 33)V . Several secondary bifurcations and attrac-
tors are outlined.

cessive period-doublings can be found at Vin = 31.121V , Vin = 32.095V ,
Vin = 32.239V , Vin = 32.270V , Vin = 32.277V and Vin = 32.278V . Once chaos
is established in the system, merging bands begin to occur at Vin = 32.279V
approximately. Then, while a four-bands chaos is present, there is a sudden
enlargement of the attractor at Vin = 32.336V .

It is also worth noticing what happens at

Vin = Vref +
VL

a
= 11.75238095V.

which corresponds to the lower voltage of the ramp. As the bifurcation param-
eter passes through this value, a stable equilibrium point in the phase space
turns into a stable 1T-periodic orbit. If the trajectories are inspected in the
three-dimensional cylindrical space R

2 × S
1, the 1T-periodic orbit exists even

before the bifurcation value, but its projection in the phase space is seen as an
equilibrium point because the trajectory in R

2 × S
1 is simply a circumference

contained in a horizontal surface below the ramp surface. At the bifurcation,
the 1T-periodic orbit begins to torsion due to the impact with the ramp surface,
and then its projection in the phase space is seen as a 1T-periodic orbit instead
of an equilibrium point (see Fig. 5.5).

Apart from the initial period-doubling route to chaos, other secondary phe-
nomena are also present in the bifurcation diagram. Three-piece chaos in the
interval [24.16, 25.01], period-doubling route to chaos starting on 6T-periodic
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Figure 5.5: Non-standard bifurcation for Vin =
11.752381V .

and 12T-periodic orbits and a 5T-periodic window are clearly seen in Fig. 5.4.
Moreover, other secondary phenomena not appearing in the bifurcation diagram
were detected, such as a non-smooth route to chaos starting on a 3T-periodic
orbit.

5.2.1 Analytically Computing the First Period-doubling

Flip and saddle-node bifurcations can be analytically predicted via the impact
map [di Bernardo, Garofalo, Glielmo and Vasca, 1997] or using the stroboscopic
map. For example, the first period-doubling bifurcation can be found as follows:

Let x0 = (v0, i0) be the initial conditions for a fixed point by the stroboscopic
map P . The eigenvalues of DP (x0), or characteristic multipliers, λ1, λ2 must



5.2 The Buck Converter Bifurcation Diagram 123

be the roots of the equation

x2 − tr(DP (x0))x + det(DP (x0)) = 0 (5.5)

where tr and det stands for the trace and the determinant respectively. In a
period-doubling bifurcation, one of the characteristic multipliers passes through
−1, and thus, DP (x0) must satisfy

1 + tr(DP (x0)) + det(DP (x0)) = 0. (5.6)

The equations for an orbit with a switching at a normalised time α1 in the
first cycle are

x1 = N(α1)x0 (5.7)

xT = Vin[I − N(1 − α1)]b + N(1)x0

with x1 = (v1, i1) is the point in the phase space which corresponds to the
switching. To get a P (1, 1) periodic orbit, xT = x0 must be imposed, and so
the following expression for x0 is obtained

x0 = Vin[I − N(1)]−1[I − N(1 − α1)]b (5.8)

together with the switching condition

a(v1 − Vref ) = VL + α1(VU − VL). (5.9)

Now, differentiation respect to x0 of equation

P (x0) = N(1)x0 + Vin[I − N(1 − α1)]b (5.10)

which gives the image of x0 by the stroboscopic map yields

DP (x0) = N(1) + Vin[N ′(1 − α1)]b
dα1

dx0
. (5.11)

Also, differentiation of equation (5.7) respect to x0 yields

dx1

dx0
= N(α1) + N ′(α1)x0

dα1

dx0
. (5.12)

Finally, differentation of equation (5.9) yields

a
dv1

dx0
= (VU − VL)

dα1

dx0
⇒

dα1

dx0
=

a

VU − VL

dv1

dx0
. (5.13)

Thus,
dx1

dx0
= N(α1) + N ′(α1)x0

a

VU − VL

dv1

dx0
. (5.14)

and this equation gives
dv1

dv0
and

dv1

di0
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Figure 5.6: Successive enlargements of the main
branch of the buck bifurcation diagram.

as functions of α1, v0, i0. Using also (5.13), this can be put into equation (5.11),
and an expression for DP (x0) is obtained, which depends on Vin, α1, v0, i0.
Then, imposing the condition for period-doubling (5.6), the condition for the
switching (5.9) and the condition for periodicity (5.8), one obtains a system of
four nonlinear equations in the unknowns Vin, α, v0, i0, which can be solved with
MAPLE. The result is

Vin = 24.516573V α1 = 0.50950957 v0 = 12.027709V i0 = 0.60808429A

which is in perfect accordance with the numerical simulations in the previous
chapter.
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After this first period-doubling, a period-doubling cascade then follows, end-
ing in a narrow four-piece chaotic attractor. Such evolution occurs via successive
interior crises of merging type; in the sequel, they will be referred to as interior
crises of first kind (IC1). At each of them, due to the collision with an inverse
saddle In

j , the 2n pieces of a chaotic attractor merge two by two giving rise to
a n-piece chaotic attractor. The mergings corresponding to successive halvings
can be detected in Fig. 5.6. It is worth commenting briefly on the geometrical
mechanism which produces this interior crisis (IC1) by examining the evolution
of the invariant manifolds of the In

j saddle. The 2n-piece chaotic attractor con-

tains all the inverse saddles of higher order I2n
j , I4n

j , I8n
j , . . . , corresponding to

periodic solutions becoming progressively unstable in the period-doubling cas-
cade. It is also contained within the closure of the unstable manifold of the
saddle In

j belonging to the period-doubling cascade. At the bifurcation param-
eter values for which the stable and unstable manifolds of In

j do not touch, the
attractor is made of 2n disconnected pieces belonging to the subdomains sepa-
rated by the n stable manifolds of In

j . Just after their first homoclinic tangency,
a tangle developes, and an infinite number of progressively longer and thinner
fingers accumulate onto the stable manifold of In

j in each subdomain from the
companion one, giving rise to strong fractal basin boundary between couples
of subdomains. Correspondingly, the 2n pieces of the attractor merge with a
denser filling of the previously void portion of the unstable manifold of In

j as
denser is the accumulation of the relevant fingers around In

j [Grebogi, Ott and
Yorke, 1982; Grebogi, Ott and Yorke, 1983b; Lai, Grebogi and Yorke, 1992;
Rega and Salvatori, 1996].

After the period-doubling cascade, near Vin = 32.279V , merging bands and
periodic windows can be seen in the diagrams (Fig. 5.6(d)), these latter cor-
responding to saddle-node bifurcations followed by interior crises (IC2), when
the merging attractor touches the saddle born at the saddle-node bifurcation.
Between Vin = 32.280V and Vin = 32.281V a 5T-periodic window is also de-
tected. Similar phenomena is apparent on a larger scale in (Fig. 5.6(c)), where
a 3T-window due to a tangent bifurcation and interior crisis is also seen. Close
inspection of the larger scale figure 5.6(b)) shows that an interior crisis of second
kind (IC2) occurs at approximately Vin = 32.295V , when a saddle touches the
attractor and forces it to widen. Another more important interior crisis of second
kind is responsible for the larger jump observed at the end, at Vin = 32.336V ,
when the chaotic attractor is organized in a five-zones basis. This is analysed in
a later section of this chapter. In addition to this, Fig. 5.4 shows the existence
of many other dynamical behaviors coexisting with those belonging to the main
bifurcation diagram described above. Namely:

• a three-piece stable chaotic attractor is found for Vin ∈ (24.160, 25.010)V ;

• a parallel branch of P (6, 6) orbits is detected in a neighbourhood of Vin =
30.000V . This undergoes its own period-doubling cascade which leads to
a six-piece stable chaotic attractor;

• a further branch of P (12, 12) orbits is found in a neighbourhood of Vin =
32.150V , which gives rise to a twelve-piece chaotic attractor via a period-
doubling cascade;
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• a window of P (7, 5) stable orbits is found around Vin = 32.550V .

Moreover, a non-smooth route to chaos is detected starting on a 3T-periodic
orbit around Vin = 13.380V . The richness of this dynamical scenario motivates
the search for possible links between the new dynamical evolutions outlined
above, and some well known dynamics of the converter. For instance, the anal-
ysis of P (7, 5) orbits can provide an explanation for the five-zones chaotic at-
tractor exhibited by the system after the jump to larger chaos. It is important
to point out that due to the competition between different dynamical evolu-
tions the numerical computation of the bifurcation diagram, Fig. 5.4, has been
carried out by considering a cluster of initial conditions for each value of the
input voltage. Namely, the cluster was chosen as the main diagonal of the phase
plane v ∈ (11.75, 12.70), i ∈ (0.43, 0.75). Assuming a time interval of 5000T ,
for each pair of initial conditions the system evolution is simulated and the last
100 stroboscopic points are stored so that transient has settled down.

5.3 P (·, 3) Orbits and the Three-piece Chaotic

Attractor

As was mentioned in the previous section, stable chaotic regime exists for Vin ∈
(24.160, 25.010)V , and also for Vin ∈ (13.542, 13.880)V . The existence of these
three-piece chaotic attractors, (one of them is depicted in Fig. 5.7), suggests
that they might originate from a branch of unstable P (·, 3) orbits. Although
they are unstable, they can provide a deeper insight into the dynamics of a
chaotic system, as outlined in [Ogorzalek and Chua, 1993].

5.3.1 Two Branches of 3T-Periodic Orbits

Due to the analytical closed form of the system solutions, which are combi-
nations of exponential and trigonometric functions, it is possible to solve nu-
merically the necessary conditions for their existence. These conditions can be
obtained by constructing the stroboscopic map corresponding to the desired
orbit and imposing the periodicity constraint as was done in Chapter 3 with
1T-periodic and 2T-periodic orbits. To show how this is done in the case of
3T-periodicity, let us consider the case of a P (3, 3) orbit characterized by one
impact per cycle. Assuming the continuity of the solutions, the state variables
at the switching instants can be written as

x(α1) = N(α1)x(0)

x(1) = Vin[I − N(1 − α1)]b + N(1 − α1)x(α1)

x(α2) = N(α2)x(1)

x(2) = Vin[I − N(1 − α2)]b + N(1 − α2)x(α2)

x(α3) = N(α3)x(2)

x(3) = Vin[I − N(1 − α3)]b + N(1 − α3)x(α3) (5.15)

where we recall that αj = (tj mod T )/T with j = 1, 2, 3. Each of the equations
can now be substituted into the next and, noting that N(α + β) = N(α)N(β)



5.3 P (·, 3) Orbits and the Three-piece Chaotic Attractor 127

C
u
r
r
e
n
t

(i)

Voltage (v)

Figure 5.7: Three-piece chaotic attractor in the
(v, i) phase space for Vin = 24.160V . v range is
(11.41, 12.70) and i range is (0.42, 0.75).

and N(0) = I [Fossas and Olivar, 1996], we get the following expression for
x(3):

x(3) = N(3)x(0)+

Vin[I − N(1 − α3) + N(1) − N(2 − α2) + N(2) − N(3 − α1)]b (5.16)
where α1, α2 and α3 are the unknown normalized impact instants. Now, by
imposing the periodicity constraint x(3) = x(0) = x̄, from (5.16)

x̄ = Vin[I−N(3)]−1[I−N(1−α3)+N(1)−N(2−α2)+N(2)−N(3−α1)]b, (5.17)

is obtained, where the existence of the inverse matrix of I − N(3) was proved
in [Fossas and Olivar, 1996].

Then, x̄ can be substitued into the three impact conditions

v(α1, x̄) = γ + ηα1,

v(α2, x̄) = γ + ηα2,

v(α3, x̄) = γ + ηα3, (5.18)

giving a system of three nonlinear trascendental equations, which can be solved
numerically with respect to αj , j = 1, 2, 3.

Note that once a solution has been obtained, it must be checked to be sure
it is of the specified type, since the conditions considered are only necessary.
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Figure 5.8: Duty cycles α1, α2, α3 for the main (3,3)
branch of (111)m type.

The solutions αj , j = 1, 2, 3 for different values of the input voltage Vin are
represented in Fig. 5.8.

In a similar way, other topologies of P (·, 3) orbits can be analyzed. To
distinguish among these topologies, one can label with (m1m2m3)c a P (·, 3)
orbit which has m1 impacts in the first cycle, m2 in the second cycle, m3 in the
third, and

c =







l if v(0) ∈ (−∞, γ),
m if v(0) ∈ (γ, γ + ηT ),
u if v(0) ∈ (γ + ηT,∞).

For example, the P (3, 3) orbit considered above can be classified as (111)m
orbit, while we say that an orbit is of type (011)u if it is a P (2, 3) orbit with no
impact in the first cycle, one impact in the second, and one impact in the third
cycle, with initial condition v(0) > γ + ηT . It is worth noting that the same
orbit can be labelled in different ways depending on which of the three cycles is
taken as the first one.

In order to continue different P (·, 3) orbits, the same procedure outlined for
the (111)m must be followed. The solutions of the resulting nonlinear system
will be acceptable if αj ∈ (0, 1), with j depending on the specific orbit, and
x̄ leads to the specified type of trajectory. This allows us to identify ranges
of Vin in which each kind of orbit exists. It must be remembered that this
system is non-smooth due to the switching, and thus the usual continuation
packages for periodic orbits, such as AUTO, are not suitable. A summary of



5.3 P (·, 3) Orbits and the Three-piece Chaotic Attractor 129

the computed orbits can be found in Fig. 5.9 and Fig. 5.10, where only one of
the three stroboscopic points is plotted for each branch. It is worth pointing
out that each type of P (·, 3) solution is no longer acceptable when the voltage
touches the bottom or the top of the ramp at a multiple of the ramp period,
nT , i.e. when a grazing phenomenon occurs.

We will now describe the most important features of the P (·, 3) orbits rep-
resented in Fig. 5.9. First, we observe a similar shape in the branches; we
therefore call them parallel branches. The branch including the P (3, 3) orbits
of type (111)m will be called the first 3T-branch and its parallel branch will be
called the second 3T-branch (see Fig. 5.9).

Beyond Vin = 21.289V a pre-existing (110)m solution in the second 3T-
branch turns into a P (1, 3) orbit of type (010)m, which ends at Vin = 25.010V
with a reverse saddle-saddle grazing point [Grebogi, Ott and Yorke, 1983a],
namely (Fig. 5.10(20)-(23)). We observe that once the (010)m orbit has ceased
to exist, it is possible to follow another parallel branch of P (2, 3) orbits of type
(011)u, by varying the input voltage backwards. This solution turns into a
branch of orbits of type (111)u at Vin = 24.797V , again through a grazing
phenomenon. When this is no longer acceptable, by reversing the direction of
the input voltage variation, a branch of (112)m can be followed, and so on along
a zig-zag structure of (11m3)-(11,m3 + 1) orbits which seems to accumulate on
a (11∞). Furthermore, something similar happens in the first 3T-branch.

Further computations, however, indicate that this expected sliding orbit of
(11∞) type does not exists (Fig. 5.9(36)). An attempt was made to find it by
imposing v(0) = γ +ηT and v̇(0) = η, one impact per cycle in the following two
cycles, and the local infinite stretching condition at the second T -switching, but
MAPLE could not find a solution.

As the number of impacts grows to infinity, the 3T-periodic orbits approach
the infinite stretching-grazing phase point at xl, which corresponds to the ini-
tial conditions giving theoretically infinite impacts in the ramp. Thus, chaotic
dynamics are expected in this narrow region of the phase space and parameter
values. As will be shown later, a chaotic attractor is not observed in this region.
Therefore the expected chaotic dynamics must be non-attracting. As a (11∞)
type orbit does not exist, it is conjectured that the accumulation points for Vin

which are saddle-saddle bifurcations probably accumulate in two different values

V
(1)
in < V

(2)
in , respectively near the points labelled (35) and (1) in Fig. 5.9, and

thus an infinite number of unstable orbits can be found in this range, provid-
ing a chaotic saddle for the system. Consequently, a new adding-unstable orbit
process is described for the creation of a chaotic saddle. The chaotic saddle is
later destroyed due to the reverse saddle-saddle bifurcations in the zig-zag series.
The stability of all the computed orbits has been checked by three independent
methods: the first one is direct time simulation of the system. This method
of computation follows the algorithm described in [Deane and Hamill, 1990a],
using the closed form expressions for the solutions and solving the trascendental
equation for the impacts with a combined Newton and bisection method, with
a relative precision of 10−16. The second method consists in obtaining the an-
alytical expression for the periodic orbits, and then using a numerical method
like that in [Fossas and Olivar, 1996] to compute the characteristic multipliers.
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Figure 5.9: Scheme of the bifurcations of the types for
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ing bifurcations: the numbers are given accordingly to
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Figure 5.10: Patterns for the 3T-periodic unstable or-
bits. Dots stand for grazing points. Under each of the
36 patterns, the type of the orbit or the value of the
input voltage is specified.
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Finally, a third and more precise method is used to compute the characteristic
multipliers as the eigenvalues of DP , which has been computed analytically (as
in the method for obtaining the first period-doubling bifurcation). This last
method is now explained in greater detail.

In general, the expression of the map for a kT -periodic orbit with r switch-
ings (a P (r, k) orbit), has the form

P k(x0) = N(k)x0 + Vinγ(α1, . . . , αr)b. (5.19)

The conditions for the switchings are

a(vi − Vref ) = VL + (VU − VL)αi i = 1, · · · , r (5.20)

and the expressions for the switching states xi as functions of x0, α1, . . . , αr, are

xi = Vinγi(α1, . . . , αr)b + δi(α1, . . . , αr)x0 i = 1, · · · , r (5.21)

Differentiation of (5.19) with respect to x0 yields

DP k = N(k) + Vinγ′(α1, . . . , αr)b
dα

dx0
(5.22)

and differentiation of (5.21) also with respect to x0 yields for i = 1, · · · , r

dxi

dx0
= Vinγ′

i(α1, . . . , αr)b
dα

dx0
+ δ′i(α1, . . . , αr)x0

dα

dx0
+ δi(α1, . . . , αr) (5.23)

Finally, (5.20) can also be differentiated with respect to x0 to obtain

a(
dvi

dx0
) = (VU − VL)

dαi

dx0
i = 1, · · · , r. (5.24)

Then equation (5.24) can be substituted into (5.23) to yield

dxi

dx0
= Vinγ′

i(α1, . . . , αr)b
a

VU − VL

dv

dx0
(5.25)

+δ′i(α1, . . . , αr)x0
a

VU − VL

dv

dx0
+ δi(α1, . . . , αr) i = 1, · · · , r. (5.26)

which yields
dxi

dx0
i = 1, · · · , r

as a function of x0, α1, . . . , αr, and so also

dαi

dx0
i = 1, · · · , r

as a function of x0, α1, . . . , αr. This can be substituted into (5.22) to obtain
DP k, and then we obtain the characteristic multipliers as the eigenvalues of
this matrix. This method can be applied to compute period-doubling, saddle-
node and border-collision bifurcations.
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Almost all the P (·, 3) computed orbits turned out to be unstable, with the
exception of the (011)m at Vin = 25.010V , and some part of the branch of
(110)m near the bifurcation point labeled (19). It is worth noting that in all the
grazing bifurcation points a discontinuos change in the characteristic multipliers
occurs (although the product of them must be constant to e−3T/(RC)) [Parker
and Chua, 1989]. For example, at the bifurcation point (19), which corresponds
to

Vin = 13.375741V,

the characteristic multipliers are

m1 = −0.115834 m2 = −2.705132

while next to the right, at Vin = 13.380V , in the (110)m branch, the multipliers
are

m1 = −0.319736 m2 = −0.979923

with a discontinuous change (without passing through -11). These characteristic
multipliers correspond to an attracting 3T-periodic orbit. This 3T-periodic orbit
can be followed forwards, experiencing a period-doubling at Vin = 13.413V , then
instant chaos at Vin = 13.542V [Nusse and Yorke, 1992; Ohnishi and Inaba,
1994] producing a six-piece chaotic attractor which monotonically enlarges until
approximately Vin = 13.715V , when an interior crisis of first kind occurs, and
thus the attractor merges from six to three pieces. Finally, at Vin = 13.880V
the attractor dissapears due to a boundary crisis (see Fig. 5.11 and Fig. 5.12
[Pujol and Olivar, 1995]).

From Vin = 13.375V backwards, continuing the (100)m branch, one arrives
at the limiting periodic orbit for Vin = 11.752V . For Vin = 11.753V , also in the
(100)m branch, the eigenvalues have smoothly varied from Vin = 13.375V , and
yield

m1 = −0.067733 m2 = −4.625855

while for Vin = 11.753V in the parallel branch of (011)l orbits, the characteristic
multipliers are

m1 = +0.067857 m2 = +4.617356

almost the same as in its parallel branch, but with the sign changed. From this
point forwards the multipliers vary slowly, and for

Vin = 13.496550V,

in the grazing bifurcation point labelled (15), the multipliers are

m1 = +0.071955 m2 = +4.354642.

Next to the right, for Vin = 13.500V , the characteristic multipliers are

m1 = +0.085548 m2 = +3.662467.

1Note that since the product of the characteristic multipliers m1m2 must be constant to
e−3T/RC < 1, the only way they can pass through S1 is by crossing at 1 or at -1.
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and thus, another discontinuous change ocurred at the point labelled (15). It
is worth noting that apart from these non-smooth grazing bifurcations corre-
sponding to a jump in the characteristic multipliers, and the saddle-saddle bi-
furcations mentioned before, some other non-smooth bifurcations are detected
for Vin = 11.752381V , where the stable equilibrium point which existed before
the bifurcation disappears and a 1T-periodic stable orbit plus two 3T-periodic
unstable orbits appear. Furthermore, at the grazing bifurcation point labelled
(23), the two unstable 3T-periodic orbits and a small three-piece chaotic at-
tractor detected in the range Vin ∈ (24.160, 25.010)V coalesce into a stable 3T-
periodic orbit at (23), and then disappear. The size of this three-piece chaotic
attractor decreases monotonically as the input voltage increases, and is left as a
3T-periodic orbit at (23) before disappearing. As the bifurcation parameter is
decreased, the three-piece chaotic attractor increases its size until it disappears
possibly due to a boundary crisis near Vin = 24.160V .

5.3.2 The Invariant Manifolds and Basins of Attraction

The study of the stability of periodic orbits gives a local description of the dy-
namics. Although the distribution of these periodic orbits in the phase space
shows a global overview, it is far from complete. To get a deeper insight into
the global dynamics, invariant manifolds and basins of attraction must be com-
puted and analysed, and the geometrical shape when a bifurcation parameter is
varied must also be investigated. Stable and unstable manifolds of the saddles
play a fundamental role in basin organization, and when obtained systemati-
cally with a varying bifurcation parameter, they permit a thorough geometrical
understanding of the numerically observed attractor and basin metamorphoses.
Indeed, the main global bifurcations are associated with homoclinic and hete-
roclinic tangencies between the stable and unstable manifolds of a given direct
(Dm) or inverse (Im) saddle, and two different direct or inverse saddles, respec-
tively. The closure of the stable manifold of a direct saddle and an inverse saddle
coincides respectively with the border between two basins of attraction of differ-
ent solutions and between the two distinct subdomains identifiable in the basin
of a given solution under a mapping f2m. When varying the bifurcation param-
eter, occurrence of manifold tangling is a sufficient condition for fractal basin
boundary (and thus for unpredictability of response) and a necessary condition
for the onset of a chaotic attractor in one basin. If it exists, this attractor is
contained within the closure of Wu

k (Dm
j ), the kth branch of the unstable man-

ifold of the direct saddle located on the relevant basin boundary, and within
the closures of Wu

k (Im
j ), with several m, which are the unstable manifolds of

the inverse saddles from where it probably originated through period-doubling
bifurcations. The sequence of homoclinic and heteroclinic tangencies, and in-
tersections of saddle manifolds corresponding to coexisting unstable periodic
solutions, govern the sequence of attractor-basin bifurcations and determine the
possible occurrences of sudden change bifurcations and crises [Grebogi, Ott and
Yorke, 1986; Grebogi, Ott and Yorke, 1987].

One of the points at which invariant manifolds are worth computing is Vin =
11.752381V . A stable equilibrium point which exists before this value turns
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(a) (b)

Figure 5.11: (a) Bifurcation of the 3T-attractor start-
ing near Vin = 13.376V . After the non-smooth bi-
furcation creating the 3T-periodic orbit, a period-
doubling bifurcation occurs. Next, instant chaos into
a six-piece chaotic attractor is observed. An interior
crisis of first kind producing merging bands turns the
six-piece chaotic attractor into a three-piece chaotic
attractor, and finally a boundary crisis destroys it. (b)
Detail of the instant chaos bifurcation.

into a stable 1T-periodic orbit plus two saddle 3T-periodic orbits. Invariant
manifolds can be computed for these two saddles. Figure 5.13(a,b) shows the
stable and unstable manifolds for the saddles when Vin = 11.800V .

Apart from the many fingered shape of the manifolds, transversal homoclinic
orbits also exist. Thus an invariant set with horseshoe dynamics can be found
at an early value in this small region of the phase space. This concludes the
investigation of the new type of non-smooth bifurcation at this point involving
instant transversal homoclinic orbits: a stable equilibrium point before Vin =
11.752381V turns into a stable 1T-periodic orbit and a chaotic saddle, which
probably includes the two unstable 3T-periodic orbits after the bifurcation.

As the parameter is increased, this many-fingered tangle, which is small near
Vin = 11.800V , widens and changes its shape for Vin = 13.500V approximately,
when a first grazing bifurcation takes place. At this point, trajectories are able to
follow the ramp signal upwards since the fixed point of one of the two topologies
(Vin, Vin/R) is high enough up the upper voltage of the ramp, and so different
behavior can be expected. Some snapshots of the invariant manifolds are taken
for the 3T-periodic saddle of type (111)m in the first 3T-branch. While the
main stable 1T-periodic orbit exists, the interior unstable half-manifold spirals
towards it, and each of the exterior half-manifold intersects transversely the
stable manifold (see Fig. 5.13 and Fig. 5.14). On the other hand, something
different occurs with the invariant manifolds of the second 3T-branch. None of
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(a) (b)

(c) (d)

Figure 5.12: Evolution of the 3T-periodic orbit at
Vin = 13.376V in the phase-space (a) Vin = 13.500V

(6T-periodic attractor); (b) Vin = 13.600V (six-
piece chaotic attractor); (c) Vin = 13.700V (six-piece
chaotic attractor); (d) Vin = 13.800V (three-piece
chaotic attractor).

the unstable half-manifolds spiral to the main stable 1T-periodic orbit. They
intersect the corresponding stable manifolds instead, providing a homoclinic
tangle, and since this is non-attracting, they also provide a chaotic saddle for
the system.

If Vin is increased before the first period-doubling of the main 1T-periodic
attractor, the manifolds of the 3T-saddles also change their shape (see Fig. 5.13
and Fig. 5.14). While the interior unstable half-manifold is spiraling to the main
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(a) (b)

(c) (d)

Figure 5.13: Invariant manifolds for the 3T-saddles
in the 3T-branches. In the first 3T-branch, the in-
terior part of the unstable manifold leads to the 1T-
periodic attractor and the exterior part intersects the
the stable manifold; in the second 3T-branch, the in-
terior and exterior parts of the unstable manifold in-
tersect the stable manifold. (a) Vin = 11.800V , first
3T-branch; (b) Vin = 11.800V , second 3T-branch; (c)
Vin = 14.000V , first 3T-branch; (d) Vin = 14.000V ,
second 3T-branch.

stable 1T-periodic orbit, the exterior unstable half-manifold also spirals and
despirals around three zones in the phase space, which coincide with the three
zones where the 3T saddle orbits accumulate. Thus, the manifolds approximate
to the infinite-stretching point. As the manifolds pass near this zone of high
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(a) (b)

(c) (d)

Figure 5.14: Invariant manifolds for the 3T-saddles
of the 3T-branches and for the 2T-periodic inverse
saddle created at the second period-doubling of the
main branch attractor. (a) Vin = 22.000V , first 3T-
branch; (b) Vin = 22.000V , second 3T-branch; (c)
Vin = 26.000V , first 3T-branch; (d) Vin = 32.200V .

number of crossings, they are highly twisted and folded, and as the manifolds
are invariant sets, this twist and fold propagates all along the manifolds. That
is why their shape is like dense spiraling islands; they seem to open and widen
their fingers, also spiraling to three zones in the phase space.

Around Vin = 13.376V , a three-piece chaotic attractor was found following a
path of 3T-periodic stable orbits, which is later destroyed at a boundary crisis.
Consequently, a coexisting attractor with the main 1T-periodic branch exists.
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(a) (b)

Figure 5.15: (a) Basins of attraction for Vin =
13.800V . Black corresponds to the 3T-attractor and
white to the main 1T-attractor; (b) Basins of attrac-
tion for Vin = 24.160V . Black stands for the 1T-
periodic basin, white for the three-piece chaotic at-
tractor basin.

Furthermore, a three-piece chaotic attractor is also present near Vin = 24.160V ,
and until Vin = 25.010V . Their basins of attraction can be computed following
a cell-to-cell mapping algorithm [Seydel, 1988; Hsu, 1992]. The stable manifold
of the 3T-saddle corresponds to the basin boundary of the attractors, while the
unstable manifold is the closure of the chaotic attractor. This can be seen in
Fig. 5.15.

As the shapes of the manifolds change with increasing Vin, the future large
chaotic attractor at Vin near 32.340V is also apparent. Thus it is conjectured
that the five-zones chaotic attractor, which exists for large values of Vin, is in
fact an evolution from the three-zones chaotic saddle from the intersection of the
manifolds and the period-doubling evolution of the main branch attractor itself.
For example, when the first period-doubling has taken place at Vin = 26.000V ,
the central part of the invariant manifold has widened and begins to connect
the other three branches (see Fig. 5.14).

Invariant manifolds for the 1T-periodic inverse saddle can also be com-
puted. It can be shown that additional transverse homoclinic orbits exist for
Vin = 30.000V after an homoclinic bifurcation. For Vin = 29.000V , the stable
manifold is the boundary of the two subdomains of the stable 2T-periodic or-
bit. The corresponding unstable manifold leads to this orbit, but in a way that
is reminiscent of the next 6T saddle-node bifurcation to appear. Homoclinic
tangles also take place for the invariant manifolds of the 2T-periodic inverse
saddle created at the second period-doubling of the main attractor. The unsta-
ble manifold begins to fold around Vin = 32.000V . This is more clearly seen
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at Vin = 32.200V (Fig. 5.14), and the homoclinic tangency occurs at a value
between 32.200V and 32.400V , probably at the same time as the small attrac-
tor becomes larger for Vin near 32.336V . Thus this homoclinic tangle could be
responsible for the sudden expansion of the attractor.

5.4 Bifurcations of the P (6, 6) and P (12, 12) Or-

bits

5.4.1 P (6, 6) Orbits

In addition to the main attractor branch and the P (·, 3) orbits discussed in the
previous section, there also exists a secondary attractor in a neighborhood of
Vin = 30.000V , as shown in Fig. 5.4. This is a P (6, 6) sink, together with its
6T-periodic direct saddle, which is generated after a saddle-node bifurcation
at Vin = 29.906V . This is located by computing the characteristic multipliers
of the P (6, 6), one impact per cycle, stable orbit and its corresponding direct
saddle, which is computed with the same method as the P (·, 3) unstable orbits.
Taking initial conditions on the direct saddle, and letting the system evolve, one
recovers the stable 6T-sink, and so the 6T-direct saddle belongs to the boundary
of the basin of attraction of the 6T-sink all over the range of existence of the sink.
As shown in Tab. 5.1, one of the multipliers clearly assumes unitary modulus
at Vin = 29.906V . This is also confirmed by the solution of the necessary
conditions of existence of the P (6, 6).

Figure 5.16 shows that the P (6, 6) bifurcates into chaos through a standard
period-doubling cascade, which ends in a six-piece chaotic attractor coexisting
with the main 2T-periodic stable orbit. The structure of the chaotic attractor
is shown in Fig. 5.17. Table I shows very clearly the passing of one of the
multipliers through −1, which corresponds to the first period-doubling. Note
that when the multipliers are not real numbers, they follow the circle of radius
r = 0.313. The resulting period-doubled P (12, 12) stable orbit also follows the
same route with a circle of radius r = (0.313)2.

Successive period-doublings can be found at Vin = 30.076V , Vin = 30.125V
and Vin = 30.137V . Chaos is found approximately at Vin = 30.140V . Then,
merging bands from 48 to 24, 24 to 12, and 12 to 6 pieces are detected. At
Vin = 30.175V , the six-piece chaotic attractor suddenly vanishes after a bound-
ary crisis, when the chaotic attractor and the corresponding 6T-periodic direct
saddle, generated in the saddle-node bifurcation, collide. This phenomenon has
also been reported in other oscillators [Kleczca, Kreuzer and Wilmers, 1989;
Rega and Salvatori, 1996].

To discuss the metamorphoses of the basins of attraction, several were com-
puted which show the competition between the two attractors: the main P (2, 2)
stable orbit and the attractors generated by the P (6, 6) period-doubling cascade.
Fig. 5.18 shows a clear geometric structure for the basins of attraction. This was
explained by computing the stable and unstable manifolds of the direct saddle
originated at the saddle-node bifurcation. The closure of the stable manifold
of this direct saddle turns out to be the boundary of the basins of the compet-
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Figure 5.16: (a) Bifurcation diagram for the 6T attrac-
tor; (b) One of the 6 subbranches of the 6T attractor.
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Figure 5.17: Six-piece chaotic attractor in the (v, i)
phase space for Vin = 30.170V . v range is
(11.95,12.17) and i range is (0.497,0.684).

ing attractors (see Fig. 5.18). Invariant manifolds are also computed near the
saddle-node bifurcation value, namely, at Vin = 29.000V and Vin = 30.000V
for the inverse saddle originated at the first period-doubling of the P (1, 1) or-
bit at Vin = 24.516V . Figure 5.18 show these manifolds just before and just
after the homoclinic tangency. After the homoclinic tangency, fractal basin
boundaries are expected. When the saddle-node bifurcation occurs, very thin
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Table 5.1: Characteristic multipliers for the 6T-
periodic orbits.

Vin multipliers m1,m2 max{|m1|, |m2|}

29.905725 0.099, 0.998 0.998
29.906 0.105, 0.933 0.933
29.907 0.115, 0.854 0.854
29.908 0.122, 0.802 0.802
29.909 0.130, 0.755 0.755
29.910 0.136, 0.720 0.720
29.920 0.296, 0.333 0.333
29.930 0.233± 0.209 j 0.313
29.940 0.162± 0.268 j 0.313
29.950 0.098± 0.297 j 0.313
29.960 0.038± 0.311 j 0.313
29.970 -0.019± 0.313 j 0.314
29.980 -0.074± 0.305 j 0.314
29.990 -0.126± 0.287 j 0.313
30.000 -0.177± 0.258 j 0.313
30.010 -0.228± 0.215 j 0.313
30.020 -0.277± 0.146 j 0.313
30.030 -0.418, -0.235 0.418
30.040 -0.578, -0.170 0.578
30.050 -0.704, -0.140 0.704
30.060 -0.818, -0.120 0.818
30.070 -0.924, -0.106 0.924

30.07633 -0.992, -0.099 0.992

basins are born for the 6T-periodic orbit, which lies almost within the bound-
ary. Then the basin for the 6T grows as the bifurcation parameter is increased.
At Vin = 29.990V , (Fig. 5.19) the 6T-periodic orbit lies well inside its basin,
which has experienced a considerable expansion. Figure 5.19 also shows part
of the basins. In this figure one may observe that these basins are mixed in a
fractal way, but the boundary of the 6T seems to be smooth. Thus, regions of
the basin boundary with different dimension are interwowen on arbitrarily fine
scale, as happens for example with the double rotor system [Ott, 1993].

At Vin = 30.175V , it can be seen that the basin of the 2T enters into the 6T
basin and this latter is eroded, and consequently decreases in extension. Figure
5.19 shows the strong mixing in the basins at an input voltage value in the range
of existence of the six-piece chaotic attractor zone. Invariant manifolds are also
computed for the 6T-direct saddle. At Vin = 30.050V , the exterior part of the
unstable manifold begins to fold and grow. This manifold is folded more and
more as the parameter increases until homoclinic tangency occur for Vin near
30.175V , which coincides with the boundary crisis. This mechanism has also
been reported in [Rega and Salvatori, 1996].
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Figure 5.18: (a) Basins of attraction for Vin =
30.100V . Black corresponds to the 6T basin, white
to the 2T basin. v range is (11.74,12.28); i range is
(0.40,0.80); (b) Invariant manifolds for the 6T-direct
saddle. The stable manifold coincides with the basin
boundary for the 2T-solution. Vin = 30.000V . v

range is (11.69,12.57); i range is (0.39,0.71); (c) In-
variant manifolds for the main inverse saddle just be-
fore the homoclinic tangency. Vin = 29.000V . v range
is (11.70,13.13); i range is (0.38,0.70); (d) Invariant
manifolds for the main inverse saddle just after the
homoclinic tangency. Fractal boundary basins are ex-
pected. Vin = 30.000V . v range is (11.67,13.08); i

range is (0.34,0.72).
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Figure 5.19: (a) Basins of attraction for Vin =
29.990V . The 6T attractor lies inside the basin. Black
corresponds to the 6T basin, white to the 2T basin.
Part of the attractors are marked with rectangles. v

range is (11.97,12.12); i range is (0.66,0.69); (b) De-
tail of the basins for Vin = 29.990V . v range is
(11.95,11.99); i range is (0.65,0.68); (c) Basins of at-
traction for Vin = 30.175V , near the boundary crises.
The 2T basin enters into the 6T basin. Black cor-
responds to the 6T basin, white to the 2T basin. v

range is (11.9600,12.0600); i range is (0.6600,0.6795);
(d) Basins of attraction for Vin = 30.160V , in the
6T-chaotic zone. The 6T basin shows some type of
erosion. Black corresponds to the 6T basin, white
to the 2T basin. v range is (11.74,12.28); i range is
(0.40,0.80).
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Figure 5.20: (a) Bifurcation diagram for the 12T; (b)
Three subdomains of the 12T-attractor observing full
chaos, crises and 3T windows in each of the three sub-
branches.

5.4.2 P (12, 12) Orbits

Coexisting with the P (8, 8) stable orbit generated at the third period-doubling of
the P (1, 1), in the neighborhood of Vin = 32.136V , a P (12, 12) stable orbit also
appears. This is independent from the P (12, 12) bifurcating from the P (6, 6)
and is born after a saddle-node bifurcation, occuring when the input voltage gets
near 32.1365V (Fig 5.20). It is worth pointing out that this 12T-periodic orbit
is organized in a different way from the preceding 12T-periodic orbit generated
at the period-doubling of the 6T. The 12T period-doubled orbit is organized
in six pairs around the previous existing 6T-periodic sink, while the 12T orbit
born at the saddle-node bifurcation is arranged in four trios around the main
8T-periodic stable orbit (see Fig. 5.21).

This orbit was continued with the help of INSITE and it experiences a
period-doubling cascade, which leads to a twelve-piece chaotic attractor coex-
isting with the stable 8T-periodic orbit. Successive period-doublings are found
at Vin = 32.151V , Vin = 32.157V and Vin = 32.158V . Afterwards, chaos is
present. Successive merging bands from 48 to 24 and 24 to 12 pieces can be
observed, leading to a twelve-piece chaotic attractor. Partial crisis in each of the
twelve bands can also be distinguished for Vin = 32.163V . Again, the chaotic
attractor disappears through a boundary crisis near this value, where the di-
rect saddle originated in the saddle-node bifurcation collides with the attractor.
In each of the twelve subbranches, full chaos, crisis and 3T-periodic and 5T-
periodic windows (and thus, 36T-periodic and 60T-periodic windows in the full
domain) exist (see Fig. 5.20). For Vin = 32.150V , the basins of attraction are
mixed in a fractal way, as can be clearly observed in Fig. 5.22. Finally, the
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Figure 5.21: (a) Organization of the period-doubled
12T-periodic orbits. Crosses stand for the 12T, and
circles for the coexisting 2T-stable periodic orbit; (b)
Organization of the 12T-periodic orbits born at the
saddle-node bifurcation. Crosses stand for the 12T,
and circles for the coexisting 8T-stable periodic orbit.

Figure 5.22: Basins of attraction for Vin = 32.150V .
White stands for the 8T-periodic basin, while black
stands for the 12T basin.
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Figure 5.23: (a) Phase plane portrait just after the
enlargement has occurred. The small scale chaotic at-
tractor can be still clearly observed; (b) Large scale
five-zones chaotic attractor.

characteristic multipliers of the P (12, 12) periodic sink are computed, clearly
showing the period-doubling and a walk along the circle of radius r = 0.07.

5.5 P (·, 5) Orbits and the Jump to Larger Chaos

As pointed out above and shown in Fig. 5.4, the main branch of the bifurcation
diagram of the buck converter undergoes a period-doubling cascade which is
suddenly interrupted when bands of chaos are merging around Vin = 32.336V .
At this value of the input voltage, the amplitude of the voltage oscillations is
abruptly enlarged. This phenomenon, which was observed experimentally for
the buck in [Deane and Hamill, 1990a], has been detected in other systems
[Ott, 1993]. A detailed simulation of the bifurcation diagram, shown in Fig. 5.6,
indicates that when the jump occurs, the system is already evolving along a
small scale chaotic attractor originated from the period-doubling cascade of the
main branch (see Fig. 5.23). Then, as the voltage is increased, the system starts
to evolve along the five-zones attractor depicted in Fig. 5.23.

An analytical investigation of this phenomenon is particularly difficult since
the system is already chaotic when the sudden enlargement occurs. Neverthe-
less, it will be analysed in the following using the analytical and simulation tools
presented before.

The fact that the large scale chaos is organised around five zones suggests a
connection between the attractor itself and some P (·, 5) periodic solutions, as
in the case of the three-piece chaos analysed before.

P (7, 5) orbits are indeed detected as a window of periodicity embedded in the
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Figure 5.24: 5T-periodic organising orbit.

large scale chaotic attractor around Vin = 32.550V , as shown in Fig. 5.4. These
orbits were continued backwards by imposing the necessary conditions for their
existence. In so doing, an entire branch of unstable P (7, 5) and P (6, 5) orbits
was detected in the intervals (32.53, 32.59) and (34.76, 34.78) approximately.
These orbits are characterized by one impact in the first cycle, one or two
impacts in the second cycle, a skipping in the third, one impact in the fourth,
and three impacts in the last cycle (Fig. 5.24). It is important to point out
that each stroboscopic point corresponds to the barycentre of each zone of the
attractor, confirming the hypothesis that chaotic evolutions of the buck are
organised around this type of P (·, 5) orbits when Vin grows beyond 32.336V
(see Fig. 5.23). This is also confirmed by the changing in the average number of
impacts per cycle as the input voltage is varied, which is reported in Fig. 5.25.

Up to the range of input voltages where the attractor enlargement takes
place, all system dynamics are characterized by one impact per cycle. Then,
when the jump occurs, the average number of impacts per cycle suddenly be-
comes different from one and starts to grow. This is predictable since the P (6, 5)
and P (7, 5) solutions are characterized by multiple impacts in the last cycle.
Moreover, the stroboscopic point preceding the multiple impacting cycle is near
to the condition of infinite local stretching presented in [Fossas and Olivar, 1996;
di Bernardo, Garofalo, Glielmo and Vasca, 1997]. Hence, the number of im-
pacts in the last cycle is highly influenced by the initial condition at this point
(theoretically infinite when the infinite local stretching condition is perfectly
satisfied).
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Figure 5.25: (a) Average number of impacs per period
as Vin is increased; (b) Total number of skippings over
2000 periods for different Vin values.

Therefore, as Vin increases, the system states at the fourth stroboscopic
point match the infinite stretching condition better and better, and more and
more impacts occur in the last cycle of the P (·, 5). This yields a corresponding
peak in the diagram reported in Fig. 5.25. In fact, a 5T-unstable periodic orbit
fulfilling the infinite stretching condition was found for

Vin = 34.33998523V,

giving infinite impacts in the last cycle.
Finally, the jump from the small scale chaotic evolution, characterized by

one impact per cycle, to the five-zones attractor is expected to take place when
the first skipping occurs. This is confirmed by Fig. 5.25, where the number of
skippings over 2000 cycles is plotted against the input voltage. We notice that
the number of skippings becomes different from zero exactly when the large
scale chaos appears, quickly settling down around 400 when the input voltage is
increased. It is relevant to point out that the P (7, 5) orbit, described above, is
characterized by one skipping every five cycles [Olivar and Fossas, 1995], i.e. 400
skippings over 2000 periods. This confirms again that the large scale attractor
is organised around this type of unstable periodic solution.

5.6 Tables of Local and Global Bifurcations

In this section, a summary of the bifurcations found in this chapter is pre-
sented in table-form. Some notation is introduced to distinguish the different
signatures.
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Table 5.2: Bifurcations in the main attractor: ITB
stands for instant torsion bifurcation, PD for period-
doubling bifurcation, IC1 for interior crisis of first
kind, IC2 for interior crisis of second kind, BC for
boundary crisis, Sj for a jT-periodic sink, Ij for a
jT-periodic inverse saddle and Cj for a j-piece chaotic
attractor.

Vin Bifurcation Signature

11.75238095 ITB Stable Equilibrium→ S1

24.516 PD S1 → I1 + S2

31.121 PD S2 → I2 + S4

32.095 PD S4 → I4 + S8

32.239 PD S8 → I8 + S16

32.270 PD S16 → I16 + S32

32.277 PD S32 → I32 + S64

32.2779 PD S64 → I64 + S128

32.2782 PD S128 → I128 + S256

32.2784 IC1 C128 → C64

32.2787 IC1 C64 → C32

32.2798 IC1 C32 → C16

32.286 IC1 C16 → C8

32.294 IC2 C8 → C8

32.304 IC1 C8 → C4

32.336 IC2 C4 → C1

32.529 BC C1 → S5

32.587 IC2 S5 → C1

34.76 BC C1 → S5

34.78 IC2 S5 → C1
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Table 5.3: Bifurcations in the secondary 3T-branches:
ITB stands for instant torsion bifurcation, SGR for
stability change grazing bifurcation, PD for period-
doubling bifurcation, ICB for instant chaos bifurca-
tion, IC1 for interior crisis of first kind, BC for bound-
ary crisis, GR for standard grazing bifurcation, SS for
saddle-saddle grazing bifurcation, R- for a reverse bi-
furcation, CS for a chaotic saddle, GUj for a grazing
jT-periodic saddle, GSj for a grazing jT-periodic sink,
Sj for a jT-periodic sink, Ij for a jT-periodic inverse
saddle and Cj for a j-piece chaotic attractor.

Vin Bifurcation Signature Localization

11.75238095 ITB Stable Equilibrium→ 2GU3 + 2CS both 3T-branches
13.37574119 SGR GU3 → GS3 2nd 3T-branch
13.413 PD GS3 → I3 + S6 2nd 3T-branch
13.49654974 GR GU3 → GU3 1st 3T-branch
13.542 ICB S6 → C6 2nd 3T-branch
13.715 IC1 C6 → C3 2nd 3T-branch
13.880 BC C3 → ∅ 2nd 3T-branch
16.827327 SS ∅ → 2GU3 2nd 3T-branch
17.70852037 SS ∅ → 2GU3 1st 3T-branch
18.154710 SS ∅ → 2GU3 2nd 3T-branch
18.4188819 SS ∅ → 2GU3 1st 3T-branch
18.66444 SS ∅ → 2GU3 2nd 3T-branch
(18.66,21.45) SS and unstable orbit 1st and 2nd

R-SS adding process 3T-branches
21.28976130 SGR GU3 → GU3 2nd 3T-branch
21.45 R-SS 2GU3 → ∅ 1st 3T-branch
21.5207439 R-SS 2GU3 → ∅ 2nd 3T-branch
23.08802931 R-SS 2GU3 → ∅ 1st 3T-branch
23.937480 R-SS 2GU3 → ∅ 2nd 3T-branch
24.160 R-BC C3 → ∅ 2nd 3T-branch
24.79785521 GR GU3 → GU3 2nd 3T-branch
25.01012624 R-ICB C3 → ∅ 2nd 3T-branch
32.59802 GR GU3 → GU3 1st 3T-branch
32.71246615 GR GU3 → GU3 1st 3T-branch
34.59011172 R-SS 2GU3 → ∅ 1st 3T-branch
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Table 5.4: Bifurcations in the 6T-secondary attrac-
tor: SN stands for saddle-node bifurcation, PD for
period-doubling bifurcation, IC1 for interior crisis of
first kind, BC for boundary crisis, Sj for a jT-periodic
sink, Ij for a jT-periodic inverse saddle, Dj for a jT-
periodic direct saddle and Cj for a j-piece chaotic at-
tractor.

Vin Bifurcation Signature

29.905725 SN ∅ → S6 + D6

30.07633 PD S6 → I6 + S12

30.125 PD S12 → I12 + S24

32.1365 PD S24 → I24 + S48

30.1389 PD S48 → I48 + S96

30.1395 PD S96 → I96 + S192

30.14175 IC1 C24 → C12

30.1485 IC1 C12 → C6

30.175 BC C6 → ∅

Table 5.5: Bifurcations in the 12T-secondary attrac-
tor: SN stands for saddle-node bifurcation, PD for
period-doubling bifurcation, IC1 for interior crisis of
first kind, BC for boundary crisis, Sj for a jT-periodic
sink, Ij for a jT-periodic inverse saddle, Dj for a jT-
periodic direct saddle and Cj for a j-piece chaotic at-
tractor.

Vin Bifurcation Signature

32.13630 SN ∅ → S12 + D12

32.15119 PD S12 → I12 + S24

32.15710 PD S24 → I24 + S48

32.15845 PD S48 → I48 + S96

32.15885 PD S96 → I96 + S192

32.15925 IC1 C48 → C24

32.16040 IC1 C24 → C12

32.16588 BC C12 → ∅



Chapter 6

Control of Chaos in the

Buck Converter

Abstract

In this chapter, three different methods are deduced for controlling

chaos in the PWM controlled buck converter, involving supression of

the chaotic regime by stabilizing an unstable periodic orbit. In the

first section, the OGY method is applied to stabilize the unstable 1T-

periodic branch of the main attractor. Stabilization in the presence

of noise is studied, and the mean time of stabilization is also checked.

With the second method, some schemes of control via time-delay are

tried with this converter. In the case of the buck, the domain of con-

trol can be efficiently computed since analytical computations can be

carried over. Finally, the idea of the third method consists essentially

in bypassing the switching logic imposed by the PWM, and like the

previous methods is also valid for stabilizing kT-periodic orbits with

K > 1. To guess the robustness of the control, some simulations are

performed with sinusoidal perturbations.

6.1 Introduction

Control of chaos, meaning supression of the chaotic regime in a system by means
of a small, time-dependent perturbation, has been a subject of interest in recent
years [Shinbrot, Grebogi, Ott and Yorke, 1993]. In [Ott, Grebogi and Yorke,
1990], it was pointed out that the many unstable periodic orbits (UPOs) em-
bedded in a strange attractor could be used to produce regular behaviour. This
is to the advantage of engineers trying to control nonlinear systems in which
chaotic fluctuations are present but undesirable.

Two main groups of methods of control of chaos, such that the feedback
perturbation vanishes on the target orbit, have been considered in the literature:

153
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The first method was proposed by Ott, Grebogi and Yorke [Ott, Grebogi
and Yorke, 1990], where small perturbations to an accessible parameter are
introduced. The method exploits the fact that during its wandering over the
strange attractor, the system will eventually come near the target UPO on a
given Poincaré section. When this happens, and only then, a small perturbation
is applied to the parameter so as to make the orbit land on the stable manifold
of the target orbit the next time it crosses the Poincaré section. One drawback is
that the method is not suitable for complex systems, since a nontrivial computer
analysis must be performed at each crossing of the Poincaré section. Moreover,
small noise can drive the orbit away from the target orbit, and the control
method must then wait for a while until the system comes near to the target
orbit again.

The method proposed by Pyragas [Pyragas, 1992], called time-delayed au-
tosynchronization (TDAS), involves a control signal formed with the difference
between the current state of the system and the state of the system delayed by
one period of the UPO. One variant, ETDAS [Socolar, Sukow and Gauthier,
1994], uses a particular linear combination of signals from the system delayed
by integer multiples of the UPO’s period. Still another variant [de Sousa, Licht-
enberg and Lieberman, 1996] uses a nonlinear function of the difference between
the present state and the delayed state. TDAS and its variants have the ad-
vantage that the only information needed about the target orbit is its period,
and that no computer processing must be done to generate the control signal.
The method has even been applied to systems described by partial differential
equations [Bleich and Socolar, 1996b]. In general, the feedback gain which suc-
cesfully stabilizes the orbit lies in a finite, and often narrow, orbit-dependent
range. In the space of the feedback gain and the bifurcation parameter(s) of
the system, the region where the TDAS can be applied with success is called
the domain of control. In [Bleich and Socolar, 1996a] a method was proposed
to compute the domain of control of a given system without having to explicitly
integrate the resulting time-delay equations, which is a nontrivial matter due to
the choice of initial conditions [Hale and Verduyn Lunel, 1993]. Essentially, the
method reduces to the computation of the index around the origin of a curve in
the complex plane.

Finally, a proposed third method of stabilization consists essentially in by-
passing the switching logic and working in open loop, using the switching times
of the target unstable periodic orbit. Although the method is quite simple and
easily implemented, it is also quite general, and can be considered as an alterna-
tive to the OGY methods [Hunt, 1991; Ogorzalek, 1993; Romeiras, Grebogi, Ott
and Dayawansa, 1992], which can be used when the system is in chaotic regime.
Although the proposed method works in open loop, it stabilizes to an orbit of
the closed-loop ramp-controlled system, and thus, as in the case of the OGY
methods, it is specially interesting if the target orbit has some useful dynami-
cal properties that should be preserved. In fact, since in chaotic regime there
are many (possibly infinite) unstable periodic orbits embedded in the attractor,
some of these may maximize some measure of the performance of the system in
a way not possible for stable orbits.



6.2 Control of Chaos: The OGY Method 155

6.2 Control of Chaos: The OGY Method

The OGY method [Ott, Grebogi and Yorke, 1990], which will be decribed and
used in this section to stabilize unstable periodic orbits embedded in the chaotic
attractor, has been thoroughly studied in the scientific community. For example,
in a recent article [Aston and Bird, 1995] an enhanced OGY method is proposed,
and velocity of the convergence is studied. Moreover, the robustness of the
control against small perturbations in the parameters is also deduced. It has
been applied with success to a great variety of systems in almost all areas and it
is continuously revised in the literature. From 1990, other alternative methods
have been deduced with the same aim, i.e. to stabilize unstable periodic orbits.
The OGY method can be applied when the equations of the dynamics of the
system are known as in the case of the converter, and from a sampled sequence
of values of the chaotic signal when the equations are not known. Some type of
OGY method has already been applied to a version of a buck converter [Poddar,
Chakrabarty and Banerjee, 1995; Chakrabarty and Banerjee, 1995] stabilizing
1T-periodic and 2T-periodic unstable orbits, taking advantage of the piecewise-
linear character of the system.

6.2.1 The Control Algorithm

The main idea of Ott, Grebogi and Yorke was to consider that there can be
a great number of unstable periodic orbits embedded in the chaotic attractor.
Thus, varying an available parameter p ∈ [p∗ − ∆pmax, p∗ + ∆pmax] slightly in
the system, the orbit can be stabilized, ∆pmax being the maximum perturbation
allowed in the available parameter, and p∗ the value of the parameter for which
the unstable periodic orbit is localized.

Let the system be described by

Xn+1 = P (Xn, pn)

where X is the state of the system, pn is the available parameter and P is a
map which describes the dynamics, which in our case will be some iteration of
the Poincaré map. Let x∗ = P (x∗, p∗) be the unstable orbit to be stabilized. A
first order approximation of P near (x∗, p∗) is

Xn+1 ≈ x∗ + L(Xn − x∗) + w(pn − p∗)

or equivalently
∆Xn+1 ≈ L∆Xn + w∆pn

where ∆Xn = Xn−x∗, ∆pn = pn−p∗, L = DXP (x∗, p∗) and w = DpP (x∗, p∗).
We also assume that x∗ is a saddle periodic orbit with a one-dimensional sta-
ble manifold and a one-dimensional unstable manifold with stable direction es

and unstable direction eu (with respective stable eigenvalue λs and unstable
eigenvalue λu). Thus L can be expressed

L = λueufu + λsesfs

being fs and fu the contravariant vectors of es, eu (and thus fses = fueu = 1
and fues = fseu = 0).
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The idea of the method is to let the system act until the orbit is near the
unstable orbit. At that moment the value for p is modified from p∗ to p∗ + ∆p.
With this small perturbation, the localization of the unstable orbit and its stable
manifold is also varied in order to force the orbit to stay in the stable manifold
of x∗ in the next iteration. Thus, pn = p∗ + ∆pn must be chosen to satisfy (in
a first order approximation)

fu∆Xn+1 = 0

and then,

∆pn = −λu
fu∆Xn

fuw
if fuw 6= 0

This perturbation is applied only if it does not exceed ∆pmax. If this is
not the case, ∆pn = 0 and p = p∗ is mantained. Theoretically, once the value
xn+1 is on the stable manifold of x∗, the perturbation can be reset to zero. In
practice, since the value for ∆pn was computed to first order approximation,
the following iterations will not be exactly on the stable manifold and the orbit
will be unstabilized. Thus, the perturbation must be applied at each iteration.

6.2.2 Simulations

The first step to implement the algorithm numerically is to compute the unstable
orbits desired for stabilization. They were computed as in Chapter 3, by writing
down the necessary equations for 1T-periodicity with one single switching in
each cycle, and following the main branch attractor beyond the first period-
doubling bifurcation at Vin = 24.516V . The derivatives of P with respect to
the state and the parameter (which will be Vin in all the cases) are computed
with a second order approximation. The maximum allowed perturbation is set
to 2V .

One hundred initial conditions were taken for each value of the parameter,
and the mean time for stabilization was computed. Results are shown in Table
7.1 [Roncero and Olivar, 1996].

In general, the time for stabilization is lower for lower input voltage. How-
ever, for some initial conditions with low input voltage the system stabilizes in
the stable 2T-periodic orbit of the system, and in this case the OGY method
does not work properly.

Stabilization was also studied when a random noise of certain amplitude is
injected at the end of every cycle. Several simulations are shown in Fig. 6.1.
First, a stabilization is tried without noise, and later a noise with amplitude
σ = 10mV is injected to the state at every end of the cycle, and the system
is considered under control if the signal is mantained inside a band of 2σ am-
plitude. The mean time of control when some noise of certain amplitude is
applied is shown in Table 7.2. There, initial conditions are given in the unstable
periodic orbit, and noise is applied in successive iterations. The percentage of
the iterations inside the control band is computed. The results show that the
percentage of control is higher with lower noise, and stabilizes approximately to
45% when the level of noise is raised.
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Table 6.1: Mean number of cycles (M.N.C.) of sta-
bilization and mean time (M.T.) of stabilization for
different values of the input voltage.

Vin (in V) M.N.C. M.T. (in ms) Vin (in V) M.N.C. M.T. (in ms)

26.00 28 11.20 39.00 161 64.40
27.00 32 12.80 40.00 225 90.00
28.00 32 12.80 41.00 172 68.80
29.00 25 10.00 42.00 252 100.80
30.00 39 15.60 43.00 236 94.40
31.00 31 12.40 44.25 201 80.40
31.75 89 35.60 45.00 230 92.00
33.50 155 62.00 46.00 238 95.20
34.00 146 58.40 47.50 185 74.00
35.00 114 45.60 47.50 185 74.00
36.25 194 77.60 48.75 233 93.20
37.25 116 46.40 50.00 212 84.40
38.50 224 89.60

Table 6.2: Mean percentage of the orbit under control
(M.P.C.), depending on the noise amplitude σ. Vin =
35V . Initial conditions are taken in the unstable 1T-
periodic orbit.

σ (in V) M.P.C. σ (in V) M.P.C. σ (in V) M.P.C.

0.005 97 0.013 39 0.017 42
0.010 82 0.014 43 0.018 46
0.011 59 0.015 43 0.019 43
0.012 57 0.016 39 0.020 44

6.3 Time-delay Autosynchronization

This technique involves continuous feedback of signals delayed by the orbit’s
period. One variant, ETDAS, uses information from further back in the past.
In both cases, the feedback signal vanishes on the target periodic orbit and
hence the stabilized periodic orbit belongs to the original dynamical system.
Furthermore, this control method only requires the knowledge of the period of
the unstable orbit.

In general, the amount of feedback gain needed to achieve stabilization varies
with the bifurcation parameter of the system, resulting in a domain of control
which can be computed without having to deal with the explicit integration of
time-delay equations.

The main result is that the function g from the unit circle to the complex
plane whose index determines the success of ETDAS can be analytically com-
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(a)

(b)

Figure 6.1: (a) Stabilized orbit for Vin = 35V . Ini-
tial conditions are taken at (0, 0); no noise (R = 0) is
added at the end of each cycle. (b) Stabilized orbit for
Vin = 35V . Initial conditions are taken at the unsta-
ble 1T-periodic orbit. Random noise R of amplitude
σ = 10mV is added at every end of cycle, which is
represented at the top of (b).

puted for the buck converter. The index can then be numerically evaluated and
the domain of control can easily be constructed.
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6.3.1 ETDAS for Variable Structure Systems

The PWM controlled buck converter, as well as other PWM controlled DC-DC
converters, can be considered as particular cases of dynamical systems with
equations of the form

ẋ(t) = A(t, [x])x(t) + b(t, [x]), (6.1)

where x, b ∈ R
n, A ∈ M(Rn). We use the notations A(t, [x]) and b(t, [x]) to

indicate that both A and b are local functionals of x. For the PWM controlled
converters, A and b are piecewise constant, typically changing their values when
a linear function of x crosses a given periodic function of t.

Consider now a 1T-periodic orbit x∗(t) of this system and a nearby orbit
x(t). We wish to study the evolution of y(t) = x(t) − x∗(t). We are principally
concerned with unstable orbits x∗(t), and our goal will be to modify the right-
hand side of (6.1) so as to render x∗(t) stable; that is, limt→+∞ y(t) = 0 for
x(t) initially close enough to x∗(t). We do this by means of extended time-delay
autosynchronization. Consider the following equation:

ẋ(t) = A(t, [x])x(t)+b(t, [x])+ηM(t, [x])(x(t)−(1−r)

+∞
∑

k=1

rk−1x(t−kτ)), (6.2)

where M ∈ M(Rn) is a matrix indicating how the delayed signal is fed back to
the system, and η is the strength of the feedback gain.

We will study the evolution of y(t) to first order in y under (6.2). One has

ẏ(t) ≈ A(t, [x])x(t) − A(t, [x∗])x∗(t) + b(t, [x]) − b(t, [x∗])

+ ηM(t, [x∗])(y(t) − (1 − r)

+∞
∑

k=1

rk−1y(t − kτ))

where the τ−periodicity of x∗ has been used, terms of higher order in y have
been discarded. Expanding the functionals around x∗ gives

ẏ(t) ≈ A(t, [x∗])y(t)

+

[

∫ ∞

−∞

∑

k

δA(t, [x])

δxk(t′)

∣

∣

∣

∣

∣

x=x∗

yk(t′) dt′

]

x∗(t) +

∫ ∞

−∞

∑

k

δb(t, [x])

δxk(t′)

∣

∣

∣

∣

∣

x=x∗

yk(t′) dt′

+ηM(t, [x∗])(y(t) − (1 − r)

+∞
∑

k=1

rk−1y(t − kτ)) (6.3)

Since the functionals are local, the functional derivatives will yield delta func-
tions, and ignoring the higher order terms we get a variable coefficient, linear
time-delayed differential equation for y which, with suitable definitions, can be
written in the form

ẏ(t) = A0(t)y(t) +

+∞
∑

k=1

Ak(t)y(t − kτ), (6.4)
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where the time dependence of the coefficients is known since x∗(t) is known.
Notice also that these coefficients are periodic functions of time, since their
explicit dependence of time is periodic and x∗ is also periodic. From (6.3) and
(6.4) one can easily read

Ak(t) = −(1 − r)ηM(t, [x∗])rk−1, k = 1, 2, . . . . (6.5)

We are not interested in the general solution of the time-delayed equation
(6.4), but rather we would like to know if its zero solution is asymptotically
stable. To this end, we look for solutions of the form

y(t) = pλ(t)eλt/τ ,

with λ ∈ C and pλ(t + τ) = pλ(t). This yields for pλ an ordinary differential
equation

ṗλ(t) = (A0(t) −
λ

τ
I)pλ(t) +

+∞
∑

k=1

e−kλAk(t)pλ(t),

whose solution for a given initial condition can be expressed in terms of an
evolution operator Uλ(t) defined by

pλ(t) = e−λt/τUλ(t)pλ(0)

and satisfying the equation

U̇λ(t) =

(

A0(t) +

+∞
∑

k=1

e−kλAk(t)

)

Uλ(t) (6.6)

with initial condition Uλ(0) = I. The general solution to (6.6) can be formally
expressed as

Uλ(t) = T exp

(

∫ t

0

(A0(t
′) +

+∞
∑

k=1

e−kλAk(t′)) dt′

)

, (6.7)

where T stands for time ordered product (this formal solution is also known as
Peano-Baker series in the mathematical literature [Rugh, 1996]; it boils down
to the standard exponential matrix if the coefficients of the differential equation
are constant). In any case, Uλ(t) retains the fundamental properties

Uλ(t1 + t2) = Uλ(t1)Uλ(t2), Uλ(−t) = U−1
λ (t). (6.8)

Using (6.8) the condition pλ(t + τ) = pλ(t) is easily seen to be equivalent to

(

e−λUλ(τ) − I
)

pλ(0) = 0

which implies

det
(

e−λUλ(τ) − I
)

= 0 (6.9)
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This equation determines the values of λ such that pλ(t) is a solution of our
equation. As we want y(t) = eλt/τpλ(t) go asymptotically to zero, we must de-
mand that <λ < 0 for all the solutions of (6.9). Defining the Floquet multiplier
µ = eλ and U(τ ;µ−1) = Uλ(τ), equation (6.9) becomes

g(µ−1) ≡ det(µ−1U(τ ;µ−1) − I) = 0 (6.10)

with

U(τ ;µ−1) = T exp

(

∫ τ

0

(A0(t) +

+∞
∑

k=1

µ−kAk(t)) dt

)

. (6.11)

Summing up, stability of x∗ is equivalent to the requirement that all the zeros
of g(µ−1) lie outside the unit circle (||µ−1|| > 1 ⇔ <λ < 0). Using (6.5), the
series in (6.11) can be summed to yield

U(τ ;µ−1) = T exp

(
∫ τ

0

(A0(t) − (1 − r)ηM(t, [x∗])
µ−1

1 − rµ−1
) dt

)

. (6.12)

For r < 1, U(τ ;µ−1), as a function of µ−1, and hence g(µ−1), has no poles
inside the unit circle. Now, the number of zeros of g(µ−1) inside the unit circle
equals the index with respect to the origin of the curve traced by g(µ−1) when
µ−1 runs over the unit circle. Therefore, the solution will be stable if and only
if this index is zero. This way of computing the number of zeros inside the unit
circle is numerically preferred to the obvious option of actually computing the
zeros, which in fact are infinite (due to the time-delay character of the original
equation).

The equations derived so far are completely general. In practice, however,
analytical computation of U(τ ;µ−1) using (6.12) is not possible except for very
special cases, so one must fall back on the defining differential equation (6.6) and
numerically integrate it between 0 and τ . For the buck converter, the functional
derivatives appearing in (6.3) are specially simple (in fact, A is constant), and
the differential equation (6.6) can be analytically integrated. This is done for
several choices of M in the next subsection.

6.3.2 Time-delayed Feedback for the Buck Converter

Figure 6.2 shows the basic scheme of the PWM controlled buck converter, to-
gether with the two different schemes we have studied to implement ETDAS.
The control u can be written in terms of the step function

u(t) = 1 − θ(v(t) − vr(t))

The control signal ∆v(t) is given by

∆v(t) = η

(

v(t) − (1 − r)

+∞
∑

k=1

rk−1v(t − kτ)

)

,

where η is a dimensionless feedback gain and r ∈ [0, 1) determines the relative
weight of the increasingly delayed contributions. The case r = 0 corresponds to
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Figure 6.2: The two feedback schemes for time-delay
autosyncronization of the buck converter.

TDAS. τ > 0 is the period of the target UPO which, in our case, is always a
multiple of the ramp period T . Notice that ∆v(t) ≡ 0 if v(t) is periodic with
period τ .

We are primarily concerned with the stabilization of UPOs which cross the
ramp exactly once every cycle, and such that at the beginning of every cycle
one has v(t) > vr(t). More general situations can easily be treated as well, as
will become clear in this section.

For the buck converter, one has

A(t, [x]) =

(

− 1
RC

1
C

− 1
L 0

)

≡ A and b(t, [x]) =

(

0
Vin

L

)

(1 − θ(v(t) − vr(t)))

so that all the functional derivatives of A(t, [x]) are zero, and the only nonzero
functional derivative of b(t, [x]) is

δb2(t, [x])

δv(τ)
= −

Vin

L
δ(v(t) − vr(t))δ(t − τ).

Then, equation (6.3) becomes, with τ = T ,

ẏ(t) = Ay(t) −
Vin

L

(

0 0
1 0

)

y(t)δ(v∗(t) − vr(t))

+ηM(t, [x∗])

(

y(t) − (1 − r)

+∞
∑

k=1

rk−1y(t − kT )

)

(6.13)

It is easy to see that the two feedback schemes described previously corre-
spond to the following choices for the matrix M :
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1.

M(t, [x]) =

(

1
RC 0
0 0

)

≡ M1

2.

M(t, [x]) =

(

− 1
RC 0

− 1
L 0

)

≡ M2

Integration of the resulting differential equation is very similar for the two cases.
We will present the explicit computation of g(µ−1).

In the first feedback scheme one has

A0(t) = A + ηM1 −
Vin

L

(

0 0
1 0

)

δ(v∗(t) − vr(t))

Ak(t) = −η(1 − r)rk−1M1, k = 1, 2, . . .

and the differential equation for U(t) is, adding up the geometrical series,

U̇(t) =

(

− 1
RC (1 − η + ηµ−1 1−r

1−rµ−1 ) 1
C

− 1
L − Vin

L δ(v∗(t) − vr(t)) 0

)

U(t) (6.14)

If we write

U(t) =

(

u1(t) u2(t)
u3(t) u4(t)

)

we get two uncoupled systems of dimension two

u̇1(t) = −a1u1(t) +
1

C
u3(t)

u̇2(t) = −a1u2(t) +
1

C
u4(t)

u̇3(t) = −
1

L
u1(t) −

Vin

L
δ(v∗(t) − vr(t))u1(t)

u̇4(t) = −
1

L
u2(t) −

Vin

L
δ(v∗(t) − vr(t))u2(t)

where

a1 =
1

RC

(

1 − η + ηµ−1 1 − r

1 − rµ−1

)

,

with the initial conditions u1(0) = 1, u2(0) = 0, u3(0) = 0, u4(0) = 1. Therefore,
we only need to solve twice the single system

ẋ(t) = −a1x(t) +
1

C
y(t)

ẏ(t) = −
1

L
x(t) −

Vin

L
δ(v∗(t) − vr(t))x(t) (6.15)

for t ∈ [0, T ] with the two sets of initial conditions (1, 0) and (0, 1). If we
assume that for each cycle of the auxiliary signal vr(t) there is one and only one
t = tc ∈ (0, T ) such that the system switches topology, then the delta function
appearing in the above equation is

δ(v∗(t) − vr(t)) = βδ(t − tc), (6.16)
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where

β =
1

|v̇∗(tc) − v̇r(tc)|
(6.17)

is the inverse of the absolute value of the slope with which v∗(t) crosses the
ramp. This is well defined because v(t) is everywhere differentiable, in contrast
to i(t), which is not differentiable at t = tc. We get thus the time-varying linear
system

ẋ(t) = −a1x(t) +
1

C
y(t) (6.18)

ẏ(t) = −
1

L
x(t) −

βVin

L
δ(t − tc)x(t) (6.19)

Although this is a variable coefficient system, it can be solved by Laplace trans-
form since the delta function makes computing the transform of the last term
of (6.19) trivial. We skip the details and write down the general solution for
t ∈ [0, T ]:

x(t) =

(

−x(0)
a1 − γ1

2γ1
+ y(0)

1

γ1C

)

e−
1
2 (a1−γ1)t

+

(

x(0)
a1 + γ1

2γ1
− y(0)

1

γ1C

)

e−
1
2 (a1+γ1)t

−
Vinβ

LCγ1
x(tc)θ(t − tc)

(

e−
1
2 (a1−γ1)(t−tc) − e−

1
2 (a1+γ1)(t−tc)

)

y(t) =

(

−x(0)
1

Lγ1
+ y(0)

a1 + γ1

2γ1

)

e−
1
2 (a1−γ1)t

+

(

x(0)
1

Lγ1
− y(0)

a1 − γ1

2γ1

)

e−
1
2 (a1+γ1)t

−
Vinβ

2Lγ1
x(tc)θ(t − tc)

(

(a1 + γ1)e
− 1

2 (a1−γ1)(t−tc) − (a1 − γ1)e
− 1

2 (a1+γ1)(t−tc)
)

where

γ1 =

√

a2
1 −

4

LC

and x(tc) is defined evaluating the expression for x(t) at t = tc. Notice that
x(t) is continuous at t = tc, while y(t) has a jump of value −βVin/Lx(tc), as
follows from (6.19).

Now putting x(0) = 1, y(0) = 0 we obtain, at t = T , u1(T ) and u3(T ), while
x(0) = 0 and y(0) = 1 yield us u2(T ) and u4(T ). Then we can compute

g(µ−1) = det

∣

∣

∣

∣

µ−1u1(T ) − 1 µ−1u2(T )
µ−1u3(T ) µ−1u4(T ) − 1

∣

∣

∣

∣

(6.20)

= µ−2 (u1(T )u4(T ) − u2(T )u3(T )) − µ−1 (u1(T ) + u4(T )) + 1

which, after a little algebra, yields

g1(µ
−1) = µ−2e−a1T − 2µ−1e−

1
2 a1T

(

cosh(
1

2
γ1T ) −

Vinβ

γ1LC
sinh(

1

2
γ1T )

)

+ 1

(6.21)
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Notice that, although γ1 introduces a line cut where its argument vanishes,
if we analytically extend the above expression by its series expansion, only even
powers of γ1 appear, and thus g1(µ

−1) has only pole-type singularities (outside
the unit circle for r < 1).

In case 2, the equation obeyed by U(t) is

U̇(t) =

(

− 1
RC (1 + η − ηµ−1 1−r

1−rµ−1 ) 1
C

− 1
L (1 + η − ηµ−1 1−r

1−rµ−1 ) − Vin

L δ(v∗(t) − vr(t)) 0

)

U(t)

Comparing with case 1, the differences amount to changing the sign of η and then
replacing 1/L by 1/L(1 + η − ηµ−1 1−r

1−rµ−1 ) without changing the combination

Vin/L. Thus, the index function in this case is

g2(µ
−1) = µ−2e−a2T − 2µ−1e−

1
2 a2T

(

cosh(
1

2
γ2T ) −

Vinβ

γ2LC
sinh(

1

2
γ2T )

)

+ 1

(6.22)
with

a2 =
1

RC

(

1 + η − ηµ−1 1 − r

1 − rµ−1

)

and

γ2 =

√

a2
2 −

4

LC

(

1 + η − ηµ−1
1 − r

1 − rµ−1

)

.

6.3.3 Numerical Analysis of g(µ−1)

The index functions g(µ−1) of the previous subsection have been evaluated.
Figure 6.3 shows the domains of control for the two feedback schemes with
r = 0.0, r = 0.6 and r = 0.9. The black regions are those yielding index 0, when
the time-delayed feedback succesfully stabilizes the 1T-periodic orbit. Several
features must be highlighted:

1. There are no big differences between the two schemes, apart from the
sign of the feedback. The domain of control of the first scheme is slightly
broader.

2. Use of extended time-delay feedback does not improve the domain of con-
trol for the two schemes. The index 1 zone expands with r at the expense
of both the index 0 and index 2 zones, so in fact the stable region dimin-
ishes.

6.3.4 Stabilization of Higher Order Orbits

In this subsection we will show how to generalize the analytical results to situ-
ations more general than 1T-periodic UPOs with a single crossing per cycle. It
will only be shown with the first feedback scheme.

Consider for instance a nT-periodic orbit with a single crossing per cycle at
times t1 ∈ (0, T ), t2 ∈ (0, 2T ),. . ., tn ∈ ((n − 1)T, nT ) and forced switchings
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(a) First scheme, r = 0.0 (b) First scheme, r = 0.6 (c) First scheme, r = 0.9

(d) Second scheme, r = 0.0 (e) Second scheme, r = 0.6 (f) Second scheme, r = 0.9

Figure 6.3: Domains of control for the two feedback
schemes and several values of r. Vertical axis: η from
−10 to 10 . Horizontal axis: Vin from 20 V to 35 V.
Black = 0 (stable), Grey = 1 (unstable), White = 2
(unstable).

at the end of cycles T, 2T, . . . , (n − 1)T . Now we have to integrate U(t) over
[0, nT ] and the system changes its topology at T, 2T, . . . , (n−1)T in addition to
t1, t2, . . . , tn. However, both x∗(t) and x∗(t) + y(t) change the topology of the
system at exactly T, 2T, . . . , (n−1)T , so we may ignore these changes since they
do not take the orbits apart. Mathematically, this is reflected by the fact that
only δb(t, [x])/δv(t′) enters the computations, and that this functional derivative
is zero for all the variations of b(t, [x]) which do not depend on v, such as those
occurrying at the end of cycle.

In the first feedback scheme, we may now proceed to equations (6.15), which
we will have to integrate between 0 and nT for the two sets of initial conditions
(1, 0) and (0, 1). For each cycle of the auxiliar ramp vr(t), we have a zero of the
delta function and hence

δ(v∗(t) − vr(t)) =

n
∑

k=1

βkδ(t − tk),

where

βk =
1

|v̇∗(tk) − v̇r(tk)|
.
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Integration is now easily performed by means of a Laplace transform, and we
obtain the result

x(t) =

(

−x(0)
a1 − γ1

2γ1
+ y(0)

1

γ1C

)

e−
1
2 (a1−γ1)t

+

(

x(0)
a1 + γ1

2γ1
− y(0)

1

γ1C

)

e−
1
2 (a1+γ1)t

−
Vin

LCγ1

n
∑

k=1

(

βkx(tk)θ(t − tk)
(

e−
1
2 (a1−γ1)(t−tk) − e−

1
2 (a1+γ1)(t−tk)

))

y(t) =

(

−x(0)
1

γ1L
+ y(0)

a1 + γ1

2γ1

)

e−
1
2 (a1−γ1)t

+

(

x(0)
1

γ1L
− y(0)

a1 − γ1

2γ1

)

e−
1
2 (a1+γ1)t

−
Vin

2Lγ1

n
∑

k=1

(βkx(tk)θ(t − tk)

(

(a1 + γ1)e
− 1

2 (a1−γ1)(t−tk) − (a1 − γ1)e
− 1

2 (a1+γ1)(t−tk)
))

with the x(tk) computed recursively from the expression for x(t).
We will present explicit expressions for g(µ−1) only for the case n = 2. One

gets

g(µ−1) = µ−2e−2a1T − 2µ−1e−a1T

(

cosh(γ1T ) −
Vin

γ1LC
(β1 + β2) sinh(γ1T )

+
V 2

inβ1β2

γ2
1L2C2

(cosh(γ1T ) − cosh(γ1(t1 − t2 + T )))

)

+ 1. (6.23)

Domains of control for this case with r = 0.0, r = 0.6 and r = 0.9 are presented
in Figure 6.4, and the same remarks made for the 1T-periodic orbits also apply
here. Other situations, such as 1T-periodic orbits with several crossings per
period, can be treated along the same lines.

6.3.5 ETDAS Simulations

In this subsection we report the results of several simulations of the time-delay
controlled system.

Figure 6.5 shows a typical numerical simulation of the time-delay feedback
control method. A chaotic orbit of the system (η = 0) is also shown for reference.
The feedback starts to act after the first cycle and stabilizes the orbit in less
than 10 cycles, i.e., 4 ms for the system considered.

Figure 6.6 shows a simulation of an ETDAS with r = 0.6, η = −5.0 and
Vin = 33V using the first scheme. The series in (6.2) has been truncated to the
first 80 terms. The figure shows the first 100 cycles, and the feedback starts to
act after t = 80T . Notice that the collapse of the chaotic regime to the stabilized
1T-periodic orbit is nearly instantaneous.
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(a) r = 0.0 (b) r = 0.6 (c) r = 0.9

Figure 6.4: Domains of control for the first feedback
scheme and 2T-periodic orbits and several values of
r. Vertical axis: η from −10 to 10. Horizontal axis:
Vin from 25 V to 35 V. Black = 0 (stable), Dark gray
= 1 (unstable), Light gray = 2 (unstable), White = 3
(unstable).

In order to check the boundary between the zones of the domain of control,
we have numerically integrated the time-delay feedback equations for several
values of the bifurcation parameter Vin and the feedback gain η on both sides of
the analytically computed boundary, although occasionally numerical integra-
tion errors may produce a wrong result if η is too close to the boundary.

One of those checks is presented in Figure 6.7(a), which corresponds to
input voltage Vin = 30V with the first feedback scheme and r = 0. The solid
line corresponds to η = −1.3 and the dashed one to η = −1.2. The expression
(6.21) for g1(µ

−1) predicts index 0 for the former and index 1 for the later. The
time span in the figure corresponds to four cycles of the auxiliary ramp and
the vertical axis represents the capacitor voltage. We see indeed that η = −1.3
stabilizes the system to the 1T-periodic orbit, while η = −1.2 does not. In fact,
η = −1.2 produces a 2T-periodic orbit which, however, is not the stable 2T-
periodic orbit of the uncontrolled system which exists for this value of Vin and
is also represented in the figure: there is some kind of competition between the
stable 2T-periodic orbit and the time-delay feedback (which is not zero on this
2T-periodic orbit), which finally neither stabilizes to the unstable 1T-periodic
orbit nor falls on the system’s stable 2T-periodic orbit.

Another check, this time for 2T-periodic orbits, is illustrated by Figure
6.7(b), corresponding to Vin = 32.5V and r = 0.0. Eight cycles of the aux-
iliar ramp, between t = 0.06s and t = 0.0632s, are represented. Equation (6.23)
predicts index 0 for η = −1.1 and index 1 for η = −1.0. A chaotic orbit of
the system is also represented, and the same remarks for Figure 6.7 also apply.
Notice that for this value of Vin there is also a 1T-periodic UPO, which, how-
ever, is not stabilized by the above values of η. Nevertheless, for η . −1.6, the
system could choose to stabilize on either the 1T-periodic or 2T-periodic UPOs,
since both are zero on the feedback control in this case. At present we do not
have a way to predict which orbit would the system choose in a given case, or
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Figure 6.5: Load voltage chaotic waveform for Vin =
35V (solid line) and time-delay feedback controlled or-
bit in the second scheme with r = 0 and η = 4.0
(dashed line). 50 cycles of the auxiliary ramp are
shown.

whether there are well defined basins of attraction.

6.3.6 Another TDAS Scheme of Control

In the previous section, the time-delayed signal was fed directly into the con-
verter in several ways. Although the gain feedback necessary to stabilize the
unstable orbits was relatively small, it nevertheless implied that, in the initial
phase of the stabilization, a certain amount of power was injected into the sys-
tem. A TDAS scheme is now introduced in which the time-delayed signal is
fed into the function which is compared to the ramp to effect the change of
topologies.

In the TDAS scheme that we propose, instead of just v(t) we use, as a
function to compare with the ramp,

v(t) − η (M1 (v(t) − v(t − τ)) + M2 (i(t) − i(t − τ))) ,

where η is a (dimensionless) feedback gain , and M1 (also dimensionless) and
M2 (measured in ohms) are adjustable parameters describing how v and i enter
the feedback signal. Since a TDAS scheme is considered, we have now

ẏ(t) = A0(t)y(t) + A1(t)y(t − τ) (6.24)
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Figure 6.6: ETDAS simulations for the buck converter.

and
U̇(t) =

(

A0(t) + µ−1A1(t)
)

U(t) (6.25)

Thus, in this case,

ẋ(t) = Ax(t) +

(

0
Vin/L

)

·

· (1 − θ(v(t) − vr(t) − ηM1(v(t) − v(t − τ)) − ηM2(i(t) − i(t − τ)))) (6.26)

One can then easily evaluate the functional derivatives to obtain

A0(t) = A −
Vin

L
δ(v∗(t) − vr(t))

(

0 0
1 − ηM1 −ηM2

)

A1(t) = −
Vin

L
δ(v∗(t) − vr(t))

(

0 0
ηM1 ηM2

)

This yields for U the equation

U̇ =

(

− 1
RC

1
C

a3(t) a4(t)

)

U

where

a3(t) = −
1

L
−

Vin

L
(1 − ηM1(1 − µ−1))δ(v∗(t) − vr(t))

and

a4(t) =
Vin

L
ηM2(1 − µ−1)δ(v∗(t) − vr(t))
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Figure 6.7: Simulation checks of the analytically com-
puted limits of the control domains.

We see that, in terms of the matrix elements of U , we get two uncoupled copies
of the two-dimensional system

ẋ = −
1

RC
x +

1

C
y

ẏ =

{

−
1

L
−

Vin

L
(1 − ηM1(1 − µ−1))δ(v∗(t) − vr(t))

}

x

+
Vin

L
ηM2(1 − µ−1)δ(v∗(t) − vr(t))y (6.27)

which we have to solve twice for t ∈ [0, T ] with the two sets of initial conditions
(1, 0) and (0, 1). If we assume that for each cycle of the ramp vr(t) there is one
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and only one tc ∈ (0, T ) such that v(tc) = vr(tc), as is the case for the unstable
periodic orbits that concerns us, then Equations (6.16) and (6.17) apply (we are
assuming also that v∗(t) does not have a grazing contact with vr(t)). We thus
obtain the time-varying linear system

ẋ = −
1

RC
x +

1

C
y

ẏ = −
1

L
x + pδ(t − tc)x + qδ(t − tc)y (6.28)

where p = −βVin

L (1 − ηM1(1 − µ−1)) and q = βVin

L ηM2(1 − µ−1).
This system can be analytically integrated between t = 0 and t = T . Notice

that y is not continuous at t = tc because its derivative contains delta functions
at tc. Indeed, one can show that

y+
c = y−

c +
p

q
(eq − 1)x−

c + (eq − 1)y−
c

with x+
c = x−

c . By using this, one can compute

g(µ−1) =

∣

∣

∣

∣

µ−1u1(T ) − 1 µ−1u2(T )
µ−1u3(T ) µ−1u4(T ) − 1

∣

∣

∣

∣

=

µ−2(u1(T )u4(T ) − u2(T )u3(T )) − µ−1(u1(T ) + u4(T )) + 1 (6.29)

which after a little algebra yields, with k = 1
2RC , ω = +

√

1
LC − k2,

g(µ−1) = µ−2e−2kT+q − µ−1 e−kT

ω2LC
(K1 cos ωT + K2 sin ωT ) + 1 (6.30)

where K1 = (1 − k2LC)(1 + eq) and K2 = (p
q Lω + LωCk)(eq − 1). Notice that

information about the particular 1T-periodic orbit we are trying to stabilize
only enters through β.

Numerical Analysis and Simulations

The index can be now numerically computed by varying µ−1 over the unit circle.
Figure 6.8 shows the results with η = 1, M1 ∈ (−1, 1) and M2 ∈ (−10, 2)Ω for
Vin = 23V , Vin = 28V and Vin = 34V .

Vin = 23V corresponds to a regime where the 1T-periodic orbit is already
stable, and hence M1 = M2 = 0 belongs to the domain of control. For Vin = 28V
the 1T-periodic orbit is unstable, and the natural stable motion of the system
is a 2T-periodic orbit. Finally, Vin = 34V yields a fully chaotic regime. We
see that, in all cases, we can stabilize the 1T-periodic orbit using M1 ∼ 0 and
M2 . 0. Figure 6.9 corresponds to the domain of control for several values of
M1 and M2 and η varying between −1 and 1. Notice that the domain of control
varies dramatically with the weights which v and i are given in the time-delay
feedback signal.

Some simulations have been performed for the time-delay controlled system.
Figure 6.10 shows simulations with η = 0.5, M1 = 0.1 and M2 = −4.0Ω for
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Figure 6.8: Vertical axis: M1 ∈ (−1, 1) Horizontal
axis: M2 ∈ (−10, 2)Ω. Black = 0 (stable), Grey = 1
(unstable), White = 2 (unstable).
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Figure 6.9: Horizontal axis: η ∈ (−1, 1) Vertical axis:
Vin from 20V to 35V . Black = 0 (stable), Grey = 1
(unstable), White = 2 (unstable).

both Vin = 28V and Vin = 34V . In both cases, the control starts to act after
80 cycles of the ramp, so in the initial part the system exhibits the natural 2T-
periodic and chaotic waveforms, respectively. One may observe that the control
needs a transient of only a few cycles to stabilize the 1T-periodic orbit.

6.4 Stabilization by Control of the Switching

Time

In this section, a new method to control chaos is introduced. Basically, it consists
in the following: first, to find out the times where the orbit to be stabilized
changes the topology, and second, to impose an open loop switching scheme
based on the previous computed switching times, bypassing the PWM control.
In what follows, a general situation is considered, and after the analytical results
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Figure 6.10: Time-delay feedback simulations.

are specified for the buck converter.

6.4.1 Two-topologies Systems

Consider a general dynamical system with two topologies

ẋ =

{

f(x) if h(x(t), t) > 0
g(x) if h(x(t), t) < 0

(6.31)

where x ∈ R
n, h(x(t), t+T ) = h(x(t), T ) and T > 0 is the period of an auxiliary

signal used to switch between the two topologies. The vector fields in (6.31) are
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supposed to depend on a certain parameter that we have not written explicitly,
but which can act as a bifurcation parameter. We will call h(x(t), t) = 0 the
switching condition and a time t0 such that h(x(t0), t0) = 0 will be referred to
as a switching time. It is assumed that the system is always in the first topology
when a cycle of the auxiliary signal starts, although this is not essential.

Consider now a given periodic orbit x∗(t) of (6.31), and assume it is unstable.
For simplicity, we suppose it has period T and has a single switching time t∗0 in
a cycle (measured from the start of the cycle):

ẋ∗ =

{

f(x∗) if t < t∗0
g(x∗) if t > t∗0

so the system changes the topology both at the start of a cycle and at t∗0. The
method of stabilization that we propose applies equally well to more complicated
periodic orbits, as will be apparent in what follows.

Let now x(t) be another orbit close to x∗(t) at a given time and with switch-
ing time t0 in the present cycle (it will vary from cycle to cycle). We want to
study the evolution of the difference y(t) = x(t) − x∗(t):

ẏ(t) = ẋ(t) − ẋ∗(t) =















f(x(t)) − f(x∗(t)) if 0 < t < t0, t
∗
0 < T

f(x(t)) − g(x∗(t)) if 0 < t∗0 < t < t0 < T
g(x(t)) − f(x∗(t)) if 0 < t0 < t < t∗0 < T
g(x(t)) − g(x∗(t)) if 0 < t0, t

∗
0 < t < T

(6.32)

where we have two possibilities for the intermediate evolution depending on
whether t∗0 < t0 or t0 < t∗0. In a linear approximation we have

ẏ(t) =



































∂f
∂x

∣

∣

∣

x=x∗(t)
y(t) if 0 < t < t0, t

∗
0 < T

f(x∗(t)) − g(x∗(t)) + ∂f
∂x

∣

∣

∣

x=x∗(t)
y(t) if 0 < t∗0 < t < t0 < T

g(x∗(t)) − f(x∗(t)) + ∂g
∂x

∣

∣

∣

x=x∗(t)
y(t) if 0 < t0 < t < t∗0 < T

∂g
∂x

∣

∣

∣

x=x∗(t)
y(t) if 0 < t0, t

∗
0 < t < T

(6.33)
Assume now that, for any given time in the corresponding topology, both ma-
trices

∂f

∂x

∣

∣

∣

∣

x=x∗(t)

and
∂g

∂x

∣

∣

∣

∣

x=x∗(t)

have eigenvalues with negative real part. It is then obvious that the origin
of the unstability of x∗(t), and eventually of the chaotic regime, is the term
±(f(x∗(t))−g(x∗(t))) present in the intermediate time when the reference orbit
evolves with a different dynamics to that of the actual signal. In this case,
an obvious control scheme follows: force the orbit x(t) to switch topologies at
t = t∗0, bypassing the switching condition. This ensures the stability of the
trivial solution y(t) = 0 of (6.33) and thus limt→+∞ ||x(t) − x∗(t)|| = 0. The
method applies to higher period, multiple switching times per cycle orbits as
well, and all that is needed is the collection of switching times of the reference
unstable periodic orbit.
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Figure 6.11: An unstable 3T-periodic orbit with
2+1+1 switching times for the buck converter. The
periodic ramp is also plotted.

A particular case of (6.31) is provided by the so-called bilinear systems,
which encompass the basic DC-DC power converters:

f(x) = Ax + a

g(x) = Bx + b

h(x, t) = < h, x > −vr(t),

where h = (h1, . . . , hn), vr(t + T ) = vr(t) and <,> is the standard interior
product in R

n. Equations (6.33) are now exact and become

ẏ(t) =















Ay(t) if 0 < t < t0, t
∗
0 < T

(A − B)x∗(t) + a − b + Ay(t) if 0 < t∗0 < t < t0 < T
(B − A)x∗(t) + b − a + By(t) if 0 < t0 < t < t∗0 < T

By(t) if 0 < t0, t
∗
0 < t < T

(6.34)

The proposed method of stabilization will thus be effective if the eigenvalues
of the constant matrices A and B have negative real parts (in fact, some zero
real parts may be present and the stabilization might still work). Notice also
that, since (6.34) is exact, the convergence to the target orbit will be global.
Furthermore, even if t∗0 does not correspond to an orbit of the original, closed
loop system, the trajectory will stabilize to a certain orbit.
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6.4.2 Simulations for the Buck Converter

In this case,

vr(t) = Vref +
VL

a
+

VU − VL

aT
t, h =

(

1
0

)

and notice also that the eigenvalues of A are −k ± iω, and so the stabilization
procedure will work.

For the simulations, we have considered the same values of the parameters
as in the previous chapters, that is, R = 22Ω, C = 47µF, L = 20mH, a = 8.4,
T = 400µs, VL = 3.8V, VU = 8.2V, Vref = 11.3V and Vin varying in the range
[15, 40]V.

A 1T-periodic orbit is considered with Vin = 35V, which corresponds to
a chaotic regime of the system, and thus it is an unstable orbit which can
be checked also using the formulae for the stability given in Chapter 5. The
numerical computations, performed with MAPLE, give a switching time t∗0 =
261.32µs, and thus the control function in open loop

u(t) =

{

0 if t < t∗0
1 if t > t∗0

extended T -periodically, is completely defined. Figure 6.12 corresponds to a
ramp-controlled chaotic waveform. With the same initial conditions, Figure
6.13, which corresponds to numerical simulations performed with DSTOOL of
the above open loop control function, shows the fast convergence to the target
orbit, which has a smaller ripple.

We have also computed a 2 + 1 + 1 periodic orbit for Vin = 25V (see Figure
6.11 and Figure 6.14), which is unstable. Numerical solution of the equations
for the switching times yields t∗01 = 142.199µs, t∗02 = 354.874µs, t∗03 = 336.583µs
and t∗04 = 97.733µs, and hence the open loop control function

u(t) =

{

0 if t < t∗01 or t∗02 < t < T + t∗03 or 2T < t < 2T + t∗04
1 if t∗01 < t < t02∗ or T + t∗03 < t < 2T or t > 2T + t∗04

extended periodically with period 3T . Numerical simulation also shows the
convergence of the state variables towards the computed unstable orbit.

This method was also succesfully applied to other dc-dc converters such as
the Čuk converter [Batlle, Fossas and Olivar, 1996]. When sinusoidal perturba-
tions of a certain amplitude are added to the input voltage, the original unstable
orbit is not stabilized, but a new orbit with the similar characteristics is (see
Fig. 6.15).
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Figure 6.12: Ramp-controlled chaotic waveform for
the buck converter (Vin = 35V ). Voltage range is
0V to 20V .



6.4 Stabilization by Control of the Switching Time 179

Time   (over 75 cycles)

V
o
l
t
a
g
e

Figure 6.13: Open loop controlled orbit for the buck
converter (Vin = 35V ). Voltage range is 0V to 20V .
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Figure 6.14: Unstable 3T-periodic orbit with 2+1+1
switching times, in the state space. Voltage range is
11.6V to 12.5V ; current range is 0.4A to 0.7A. Non-
differentiable points correspond to the changes in the
topology of the circuit.
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Figure 6.15: Stable 5T-periodic orbit obtained when
trying to stabilize an unstable 1T-periodic orbit of the
original system for Vin = 27V ; a sinusoidal perturba-
tion of amplitude 1V and frequency 100w is continu-
osly added to the input voltage.



Chapter 7

Initial Explorations for

Further Research

Abstract

In this chapter, initial computations are made with a variety of systems

related to the buck converter which was described in the previous chap-

ters, with the purpose of describing some future work that might be

done beyond this thesis. Initially, a reduction of the number of param-

eters is obtained via linear transformations in the variables. The new

ones are adimensional, and thus they can be useful for comparing the

behaviour of the buck converter with other dynamical systems which

are described by piecewise-linear vector fields. Some bidimensional bi-

furcation diagrams are outlined. Furthermore, a smooth version of the

buck is given and some bifurcational events are traced with AUTO. Ap-

proximated mappings for the buck converter are deduced; they are use-

ful for achieving faster simulations, although some differences from the

original system are observed. Finally, it is shown how a general classi-

fication of two-topologies piecewise-linear systems in three-dimensional

phase space with a planar switching surface can be carried over, the

buck converter under PWM being a small step towards this classifica-

tion.

7.1 Introduction

One of the basic approaches by which the detection and description of chaos in
this thesis can be extended is by considering bifurcation parameters other than
the input voltage [Chakrabarty, Poddar and Banerjee, 1996]. In this way one
may see that when a system of differential equations is put into some type of
normal form, then beyond the simplification of the equations, it may be com-
pared with other dynamical systems which can be physically far apart from it,
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but which retain the same structure. For example, this can be applied for exam-
ple to Chua’s oscillator [Shilnikov, 1993], DC motors [Hemati, 1994], electronic
systems [Deane, 1992; Chakravarthy and Nayar, 1995], cable oscillators [Rega
and Salvatori, 1996], and so on. In the case of the buck converter with PWM
control, the system is described by two differential equations which include two
state variables and nine parameters related to the circuit components. With
some linear transformations in the state variables and time, this system can
be brought to two differential equations with adimensional time, adimensional
state variables and only four adimensional parameters. It is then ready for
comparison with other similar systems.

With a first change in the temporal variable, s = t/T , the original system

dv

dt
=

−1

RC
v +

1

C
i

di

dt
=

−1

L
v +

Vin

L
u

with

u =

{

0 if a(v − Vref ) > VL + (VU − VL)Frac(t/T )
1 if a(v − Vref ) < VL + (VU − VL)Frac(t/T )

(7.1)

is transformed into

dv

ds
=

−T

RC
v +

T

C
i

di

ds
=

−T

L
v +

TVin

L
u

with

u =

{

0 if a(v − Vref ) > VL + (VU − VL)Frac(s)
1 if a(v − Vref ) < VL + (VU − VL)Frac(s)

(7.2)

Now, an adimensional new variable x is introduced, defined as

x =
vco − VL

VU − VL
⇐⇒ v = Vref +

VL

a
+ x

VU − VL

a

Then,
dv

ds
=

VU − VL

a

dx

ds

and one gets the following system

dx

ds
=

−T

RC
x +

aT

C(VU − VL)
i −

T (VL + aVref )

RC(VU − VL)

di

ds
=

−T (VU − VL)

aL
v −

T (VL + aVref )

aL
+

TVin

L
u

with

u =

{

0 if x > Frac(s)
1 if x < Frac(s)

(7.3)
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and thus the expression for the ramp is totally simplified. Finally, a third
change can be done in the i variable to simplify the system and leave all the
state variables adimensional. A linear change for suitable µ and ν,

i = µy + ν

transforms the equations into one of the following three possibilities:
Possibility a)

dx

ds
= −x + y

dy

ds
= K(u − x)

with

u =

{

0 if x > α + βFrac(s/T ′)
1 if x < α + βFrac(s/T ′)

(7.4)

Possibility b)

dx

ds
= −k1(x − y)

dy

ds
= −k2(x + α − βu)

with

u =

{

0 if x > Frac(s)
1 if x < Frac(s)

(7.5)

Possibility c)

dx

ds
= −k2x + k1y

dy

ds
= −k2(x + α − βu)

with

u =

{

0 if x > Frac(s)
1 if x < Frac(s)

(7.6)

In the following, possibility b) is chosen, which allows an easy expression for
the ramp (it linearly varies from 0 to 1 with periodicity 1), and the parameter
in the first equation is common for the two adimensional variables. The relation
of the new parameters and variables to the former ones are:

k1 =
T

RC
k2 =

TR

L
α =

VL + aVref

VU − VL
β =

aVin

VU − VL

s = t/T x =
vco − VL

VU − VL
y =

aRi − (VL + aVref )

VU − VL

The new parameters k1, k2, α, β are all positive and the original condition to
obtain complex eigenvalues

1

LC
− k2 > 0
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is equivalent to
k1 < 4k2

Notice that once the component parameters of the ramp are fixed (VL, VU , T ),
the first two adimensional parameters k1, k2 are related to time constants of the
RCL-circuit, while the other two parameters α, β are related to the control loop:
α is related to Vref while β is related to the input voltage Vin. Thus, varying Vin

in the original system is equivalent to varying β in the new system of equations.

7.2 Bidimensional Bifurcation Diagrams

In this subsection, two bidimensional bifurcation diagrams are presented. They
are computed with C code, taking advantage of the piecewise-linear form of
the analytical solutions. Parameters k1 and k2 are fixed according to those in
[Deane and Hamill, 1990], which have been employed throughout this thesis.
These values give

k1 = 0.386847195 k2 = 0.44 (7.7)

The other two parameters, α and β, are varied in a region containing those of
interest in [Deane and Hamill, 1990]. Specifically,

α ∈ [0, 80] β ∈ [0, 100]

which corresponds to

Vref ∈ [−0.452380952, 41.45238095]V Vin ∈ [0, 52.38095238]V

in the original system.
For each pair of values (α, β) in the ranges above, the same initial condition

(x0, y0) has been chosen. Then, the system is simulated for 2000 cycles and
the final state is classified into periodic or chaotic [Perelló and Olivar, 1995].
Notice that, as happened in Chapter 5, multiple attractors (and therefore, mul-
tiple basins of attraction) can be met at the same pair (α, β) of bifurcation
parameters. The picture can only show one of these coexisting attractors, its
periodicity being coded by some colour.

As shown in Fig. 7.1, there is 1T-periodic behaviour in a wide zone of the
bifurcation space, which is delimited by a line of tangent approximately equal
to 1, which in the original parameters space Vin − Vref would be {Vref = Vin}.
Moreover, for low α and β there also exists a region of 1T-periodicity delimited
by a certain parabolic-like curve. Parabolic curves also delimit zones of 2T-
periodicity and 4T-periodicity. A period-doubling route to chaos is then clearly
seen when the parameter β varies from left to right. Some islands of periodicity
exist inside the chaotic zone.

A region with complicated dynamics is also distinguished, and is recomputed
in Fig. 7.2. In this diagram, the phenomenon of multiple basins of attraction
could be the responsible for the sudden changes in the periodicity of the attrac-
tor. We observe periodic attractors of period 1T, 2T, 3T, 4T, 5T, 6T, 8T and
16T, intermingled in this region of the parameter space, which could provide an
interesting subject for future work.
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Figure 7.1: Bidimensional bifurcation diagram for the
buck converter. Vertical axe: parameter α; Range:
(0,80). Horizontal axe: parameter β; Range: (0,100).
Parameters k1 and k2 are fixed to 0.386847195 and
0.44 respectively. Colour codes: black, chaotic; dark
grey, 1T-periodic; light gray, 2T-periodic; white, 4T-
periodic. Some islands of periodicity are shown inside
the chaotic region. Also, a zone of complicated behav-
ior is distinguished, which is recomputed and shown
in the next figure.

7.3 A Smooth Version of the Buck Converter

Some standard packages, such as AUTO [Doedel and Wang, 1995], enable us to
compute bifurcations of fixed points and periodic orbits, and continuation with
regard to one or more parameters. One of the drawbacks to the modelling of
the buck converter by a piecewise-linear vector field is the lack of smoothness
at the switching instants. To compute periodic orbits and to do continuation,
AUTO assumes that the vector field is everywhere smooth; this condition is
clearly not verified in the modelisation of the buck. In spite of this, some
smoothing techniques will be pointed out for converting the buck system into a
smooth one, ready for AUTO to be applied. In addition, one of the requirements
for computing with this package is to have an autonomous system. From the
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Figure 7.2: Bidimensional bifurcation diagram for the
buck converter. Vertical axe: parameter α; Range:
(3,15). Horizontal axe: parameter β; Range: (18,35).
Parameters k1 and k2 are fixed to 0.386847195 and
0.44 respectively. Colour codes: black, chaotic and
3T-periodic; dark grey, 1T-periodic; light gray, 2T-
periodic; white, 4T-periodic, 6T-periodic and 8T-
periodic. Chaotic zones are found for low α to the
right of the figure and also fractally intermingled in the
1T-periodic region. The rest of the black colour cor-
responds to 3T-periodic orbits, which are mixed with
6T-periodic behavior. 2T-periodic, 4T-periodic and
8T-periodic orbits are also found. Sudden changes
probably occur because more than one attractor is
present for the same bifurcation parameters.

theoretical point of view this is not a problem, because one more equation can
be added to the system ṫ = 1 to make it autonomous. This procedure is not
convenient for AUTO. Instead, an additional oscillator must be added to the
equations in order to compute efficiently. How these steps are taken in the buck
converter will be explained in more detail in the following.
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7.3.1 An Autonomous System

The standard procedure for converting a non-autonomous system with a periodic
forcing term of frequency ω into an autonomous system is to change the time
variable and add an additional equation to the system, namely

z = ωt/(2π) ż = ω/(2π).

This works in theory, but it is not the best way to do it with AUTO. Instead,
it is better to add an oscillator which quickly converges to a stable solution

z = sin(ωt) w = cos(ωt)

For example, for ω = 2π, the usual way is to add the equations

dz

dt
= z + 2πw − z(z2 + w2)

dw

dt
= −2πz + w − w(z2 + w2) (7.8)

which has (0, 0) as an unstable equilibrium point and the 2π circle as a stable
limit set; that is,

z = sin(2πt) w = cos(2πt)

is a stable solution of the system, provided the initial condition

z(0) = 0 w(0) = 1

is given.
However, in the equations of the buck converter the forcing term is not

only a trigonometric function, but a more complicated waveform Frac(t). This
problem is solved in the next section, since every periodic function (with some
regularity conditions) can be developed in Fourier series, involving trigonometric
functions.

7.3.2 A Smooth Version of the Ramp Voltage

One of the expressions in the system which must be smoothed is the ramp
voltage. The equation for the ramp voltage is

ramp(t) = Frac(t)

and this function is discontinuous at the integer numbers Z. One method for
smoothing this function is via Fourier approximation. Then, instead of the
ramp, its truncated Fourier can be considered

1

2
−

n
∑

k=1

1

πk
sin(2πkt) (7.9)

Some values for n up to 256 have been investigated. As n increases, the ramp
is better approximated, but the number of operations also rises dangerously, and
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Figure 7.3: Fourier series approximating the ramp
voltage Frac(t). (a) n = 2; (b) n = 4; (c) n = 8;
(d) n = 64.

this can be a source of error. To decide a particular value for n, a compromise
was taken between the round error produced by the terms in the series and the
shape of the approximated ramp, and n = 8 was chosen (see Fig. 7.3).

Notice that this smoothing will not allow us to find grazing bifurcations,
since on the one hand the system will now be smooth and grazing bifurcations
are only present in non-smooth systems; on the other hand, the approximated
ramp has several oscillations near the edges of the ramp, and some different
behavior other than the original ramp voltage must be expected in this zone.

To introduce this ramp into the system, and to be efficient in the computa-
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tional work with AUTO, the functions

sin(2πkt) cos(2πkt)

which appear in the series (7.9) must be expressed in terms of the solutions of
the added oscillator,

z = sin(2πt) w = cos(2πt).

Thus, the approximated ramp voltage with n = 8 can be expressed

v8 =
1

2
−

1

π
[z(1+w+w2+w3+w4+w5+w6+w7)−

1

3
z3(1+3w+6w2+10w3+15w4

+21w5) +
1

5
z5(1 + 5w + 15w2 + 35w3) −

1

7
z7(1 + 7w)]

7.3.3 A Smooth Version of the Switching Action

The last thing to settle before introducing the equations into AUTO is the
highly nonlinear switching action produced by the control u. This problem can
be solved by the method proposed in [Kleczka and Kreuzer, 1994]. This consists
in approximating a discontinuity

d(x) =

{

h(x) if s(x) > 0
−h(x) if s(x) < 0

(7.10)

by the function k(x) defined as

k(x) = h(x)
2

π
lim

c→∞
arctan(cs(x))

where c is a smoothing constant which must be sufficiently high.
In the case of the buck converter,

s(x) = −(x − v8)

must be considered, and thus the approximated discontinuity is given by

k(x) =
2

π
arctan(−c(x − v8))

In this case, k(x) approximates -1 and 1. As the values which must be ap-
proximated are 0 and 1, 1

2 (k(x) + 1) must be taken as an approximated control
function ũ

ũ =
1

2
+

1

π
arctan(−c(x − v8))

Then, the system which is finally introduced into AUTO is

dx

dt
= −k1(x − y)

dy

dt
= −k2(x + α − β[

1

2
+

1

π
arctan(−c(x − v8))])

dz

dt
= z + 2πw − z(z2 + w2)

dw

dt
= −2πz + w − w(z2 + w2)
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where

v8 =
1

2
−

1

π
[z(1+w+w2+w3+w4+w5+w6+w7)−

1

3
z3(1+3w+6w2+10w3+15w4

+21w5) +
1

5
z5(1 + 5w + 15w2 + 35w3) −

1

7
z7(1 + 7w)] (7.11)

7.3.4 Choosing a Value for c

Initially, to see how the approximated buck works with the AUTO software, bi-
furcations are traced taking β as the bifurcation parameter, which is equivalent
to taking Vin in the original system. Thus, the results will be compared with
those in the preceeding chapters. In so doing, the values for the adimensional
parameters must be as in (7.7), with α = 22.43636363. Then, the smoothing free
parameter c must be chosen, although later c can act as the bifurcation param-
eter in order to check the dependence of the results against the approximating
scheme.

To decide a value for c, β = 66.81818181 was fixed (which corresponds to
Vin = 35V ). This is a value where there exists a chaotic attractor with a
well-known shape. Then, c was increased until a chaotic attractor like that in
the original system was obtained. Numerical computing was performed with
DSTOOL, a software package using a standard fourth-order Runge-Kutta inte-
grator. The pictures obtained are those of Fig. 7.4, and the value c = 50 was
chosen to do the main computations.

7.3.5 Simulations and Conclusions

To get a first view of what to expect from AUTO, the system was also introduced
to INSITE, and some bifurcation diagrams for β were traced (see Fig. 7.5)

With regard to the original system, some similarities can be detected. A
first bifurcation occurs when y is near 0; then, coexisting 1T-periodic and 3T-
periodic attractors are shown in a certain range of the bifurcation parameter.
The latter disappears through a boundary crises. Near β = 44 a period-doubling
sequence follows, which ends in a sudden enlargement of the attractor. Some
periodic windows are also distinguished. There are also important differences;
the clearest is the existence of some additional period-doublings followed by
reverse period-doublings in the range β ∈ [25, 40]. This can be produced by the
smoothing effect in the ramp voltage and in the switching.

Some orbits can be now continued with AUTO [Angosto and Olivar, 1996].
The first corresponds to having z = w = 0 in the oscillator. As z = w = 0 all
the time, the approximated ramp voltage is then identically equal to 1/2 (see
Eq. (7.11)), and this corresponds to a horizontal ramp voltage, which produces
a very different behavior in the converter. Thus, the continuation of this orbit
has no interest in this case. Apart from this orbit, a 1T-periodic orbit O1 and a
3T-periodic orbit O3 were found with DSTOOL, which correspond to those seen
in Fig. 7.5. In what follows, only the continuation of the 1T-periodic orbit was
tried, since it is the one which admits a comparison with the main attracting or-
bit in the original system throughout almost the whole range of the bifurcation
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Figure 7.4: Attractors for different smoothing-
constant c. (a) c = 100; (b) c = 50; (c) c = 26;
(d) original system without smoothing. Notice in (a)
and (b) the effect of smoothing, which produces a
smoothed attractor. For c = 26, a different attrac-
tor is observed.

parameter. Once this orbit was introduced into AUTO, subsequently yielded
regions of stability and regions of instability, separated by period-doubling bi-
furcations. From each of the period-doubling values, branches of 2T-periodic
orbits were also continued. Finally, at the point labeled 15 in Fig. 7.6 c), some
different type of bifurcation was detected, at the same time as a period-doubling
occurs at the point labeled 9. Some similar results are obtained when c = 100
is chosen. In this case, a more complicated sequence of bifurcations is obtained
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Figure 7.5: Bifurcation diagrams taking β as a bifurca-
tion parameter. Different values for c are considered.
(a) c = 50; (b) c = 100; (c) c = 1000; (b) c = 500000.

when following the 2T-periodic branch (Fig. 7.6 d). Figure 7.7 shows computed
1T-periodic orbits in the phase space, and the temporal waveforms of the x
and y variables, which are associated to the voltage and current of the original
system, respectively.

Figure 7.7 shows the two branches for different values of c. It can be ob-
served that an important 2T-branch appears at approximately β = 43.5. This
is equivalent to Vin = 22.8V in the original system. Thus, this period-doubling
bifurcation in the approximated system could be the equivalent period-doubling
bifurcation of the main attractor branch in the original system, and corresponds
to the main period-doubling bifurcation detected with INSITE (see Fig. 7.5).
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Figure 7.6: Branches of 1T-periodic and 2T-periodic
orbits, computed with AUTO. Dashed trace corre-
sponds to unstable orbits, continuous trace corre-
sponds to stable orbits. Vertical axes correspond to
the maximum value of the component in a cycle. (a)
Branch of 1T-periodic orbits for c = 50. Some period-
doubling bifurcations can be observed. (b) Detail of a
period-doubling followed by a reverse period-doubling
for c = 50. (c) A period-doubling bifurcation occurs
at the point labeled 8. Then a new bifurcation in the
2T-periodic branch is found at the point labeled 15
(c = 50). (d) Some period-doubling bifurcations and
possible folds in the 2T-periodic branch (c = 100).

Although research into this approximated system is only sketchy, it has
been shown that the aproximation step can retain some of the features of the
original system. 1T-Periodic and 3T-periodic orbits which were computed with
DSTOOL allow AUTO continuation. A deeper insight into this method includes
continuation with regard to the smoothing parameter c, and continuation with
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Figure 7.7: (a), (b) and (c): 1T-periodic orbits for
c = 50. (d), (e) and (f): comparison of the branches
for different values of the smoothing parameter c. No-
tice in (e) a different vertical scale. (a) Solutions in the
phase space. Label 12 corresponds to β = 36.81; label
15 corresponds to β = 40.75; label 19 corresponds to
β = 46.74. (b) First-component waveforms of the pe-
riodic orbits that appear in (a); this component is re-
lated to the voltage in the original system. (c) Second-
component waveforms of the periodic orbits that ap-
pear in (a); this component is related to the current in
the original system. Peaks are associated to changes
in the topology of the original system. (d) c = 20;
(e) c = 50; (f) c = 100. Apart from the small 2T-
branches, probably corresponding to the smoothing
effect, a large 2T-branch is observed near β = 43.5;
it could be related to the first period-doubling of the
main attractor observed in the original system.

regard to two different parameters. Furthermore, comparison with the original
system must be done. All this is left for future work.
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7.4 Approximated Mappings for the Buck

In this section, two approximated mappings for the buck converter are deduced.
The first one fits the exponential and trigonometric functions by their second-
order approximations, and thus the switching instant can be analytically com-
puted, following a similar argument to that in [Tse, 1994a]. The second one
concerns a qualitative approximation which yields some complex maps which
have already been partially studied in the literature.

7.4.1 A Second-order Approximation

As we have seen, the exponential and trigonometric functions can be expanded
in Taylor series to second order

e−kTα ≈ 1 − kTα +
(kTα)2

2
sin(wTα) ≈ wTα

cos(wTα) ≈ 1 −
(wTα)2

2
(7.12)

Substituting Eq. (7.12) into the expressions of the analytical solution in the
original system yields

v(α) ≈ Vin + (1 − kTα +
k2T 2α2

2
){(v0 − Vin)(1 −

w2T 2α2

2
) + [(i0 −

Vin

R
)

1

Cw

−
k

w
(v0 − Vin)]wTα}

Up to second order in α, this yields the following expression for v(α)

v(α) ≈ [
(3k2 − w2)T 2

2
(v0 − Vin) −

kT 2

C
(i0 −

Vin

R
)]α2+

+[
T

C
(i0 −

Vin

R
) − 2kT (v0 − Vin)]α + v0 (7.13)

and for i(α)

i(α) ≈ [(v0 − Vin)
kT 2

L
− (i0 −

Vin

R
)

T 2

2LC
]α2 −

T

L
(v0 − Vin)α + i0 (7.14)

If the condition for a switching is imposed

v(α) = Vref +
VL

a
+

VU − VL

a
α

then the following equation is obtained:

[
(3k2 − w2)T 2

2
(v0 − Vin) −

kT 2

C
(i0 −

Vin

R
)]α2 + [

T

C
(i0 −

Vin

R
) − 2kT (v0 − Vin)

−
VU − VL

a
]α + (v0 − Vref −

VL

a
) = 0 (7.15)
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which can be easily solved for α.
Then, computing trajectories cycle to cycle is as follows: from an initial

condition (v0, i0), the first switching time α is computed. If α > 1, then v(1)
and i(1) are computed and they are taken as the initial conditions for the next
cycle. If α < 1, then the state variables are computed at the switching instant,
and the value for α is saved as α1. Next, switching α2 is computed and it is
checked if α1 + α2 < 1 or α1 + α2 > 1, and so on.

Notice that the equation to be solved from switching to switching is highly
simplified, since it must be imposed that

[
(3k2 − w2)T 2

2
(v0 − Vin)−

kT 2

C
(i0 −

Vin

R
)]α2 + [

T

C
(i0 −

Vin

R
)− 2kT (v0 − Vin)]α

+v0 = v0 +
(VU − VL)

a
α (7.16)

Thus, v0 can be simplified and this yields the solutions α = 0 and

α =
2C(VU − VL) + 4akTC(vo − Vin) − 2aT (i0 −

Vin

R )

(3k2 − w2)aCT 2(v0 − Vin) − 2akT 2(i0 −
Vin
R )

This map from cycle to cycle can be introduced into INSITE and the bifur-
cation diagrams checked when Vin is varied (see Fig. 7.8)

Although there is a good agreement in the first part of the diagram (before
Vin = 35V ), the approximation is bad for Vin > 35V . In the well-approximated
zone, future work could be done on predicting bifurcation values, since a com-
plete analytical expression for the map is available. Also, higher order approxi-
mations were not tried. They would probably extend the parameter range where
the approximation is valid.

7.4.2 A Rotation Plus Translation Mapping

Consider once more Eq. (7.5), which corresponds to the adimensional version of
the buck converter. The ramp equation in a cycle is given by

xr(t) = t

and thus,
dxr(t)

dt
= 1

If it is imposed that xr(t) must obey the first equation in Eq. (7.5), then we
have

yr(t) =
1

k1
+ xr(t) =

1

k1
+ t

Then, (xr(t), yr(t)), t ∈ [0, 1) gives the curve in the phase space x− y which
a trajectory will follow when initial conditions are fixed at the beginning of
the ramp, yielding infinite number of crossings, as happened with the original
system. A transformation of the system of differential equations in order to
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Figure 7.8: (a) and (b): Bifurcation diagrams for the
second-order approximated map. (c) Bifurcation dia-
gram for the original system. Notice that the range for
the bifurcation parameter in (b) and (c) is (0,1000)V.
While in the range (15,35)V the approximation is good
(see (a)), in the range (35,1000)V, the approximation
is bad. (d) Shape of the approximated attractor for
Vin = 35V .

convert this curve (a line) into a point is proposed; i.e., we consider the change
of variables depending on time

z = x − xr(t)

w = y − yr(t) (7.17)

It must be taken into account that xr(t) and yr(t) are discontinuous at
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the integers Z. Then, at the end of each cycle, a translation of vector (1, 1
k1

)

(since xr(1) = 1 and yr(1) = 1
k1

) must be applied to the state variables, which
correspond to translating the ramp again to the point (0, 0).

With these considerations, the following system is obtained:
for t < 1,

dx

dt
= −k1(x − y)

dy

dt
= −k2(x + α′ − βu + t)

with

u =

{

0 if x > 0
1 if x < 0

(7.18)

and for t = 1 we apply the translation

x′ = x + 1

y′ = y +
1

k1
(7.19)

Figure 7.9 shows a typical trajectory in the state space, which is discontin-
uous in the two components.

In what follows, a qualitative approximation is made for this system. Simu-
lations show that within each cycle, the origin acts as a stable spiraling focus.
The trajectories are smooth except when crossing the line {x = 0} (see Fig. 7.9).
Moreover, the laps around the origin increase as the initial conditions are taken
closer to it. Thus, a qualitative approximation within a cycle can be given by
the following system with polar coordinates x = rcosϕ y = rsinϕ,

dr

dt
= −Kr

dϕ

dt
=

w

r
(7.20)

where K > 0, w are parameters of the system and a translation of vector (a1, a2)
must be applied at the end of the cycle.

System (7.20) retains the qualitative behaviour cited before, and can easily
be solved yielding

r(t) = r0e
−Kt

ϕ(t) = ϕ0 +
w

Kr0
eKt (7.21)

These solutions are a particular case (R = 1/2) of a more general case with
one more parameter

dr

dt
= −Kr

dϕ

dt
=

w

r2R
(7.22)
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1.5-1

6

-10

X

Y

Figure 7.9: Trajectory in the state space x − y corre-
sponding to Vin = 35V in the original system. The
trajectory is discontinuous in both components. The
ramp voltage has been reduced to the point (0, 0).

which has solutions

r(t) = r0e
−Kt

ϕ(t) = ϕ0 +
w

2RKr2R
0

e2RKt (7.23)

Now, if the solutions are considered in the cartesian plane, we obtain

x(t) = rcos(ϕ) = r0e
−Ktcos(ϕ0 +

w

2RKr2R
0

e2RKt) =

= r0e
−Kt[cos(ϕ0)cos(

we2RKt

2RKr2R
0

) − sin(ϕ0)sin(
we2RKt

2RKr2R
0

)]

and
y(t) = rsin(ϕ) = r0e

−Ktsin(ϕ0 +
w

2RKr2R
0

e2RKt) =

= r0e
−Kt[cos(ϕ0)sin(

we2RKt

2RKr2R
0

) + sin(ϕ0)cos(
we2RKt

2RKr2R
0

)]

and thus

x(t) = r0cos(ϕ0)e
−Ktcos(

we2RKt

2RKr2R
0

) − r0sin(ϕ0)e
−Ktsin(

we2RKt

2RKr2R
0

)
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y(t) = r0cos(ϕ0)e
−Ktsin(

we2RKt

2RKr2R
0

) + r0sin(ϕ0)e
−Ktcos(

we2RKt

2RKr2R
0

)

Now, x0 = r0cos(ϕ0), y0 = r0sin(ϕ0) and also r0 =
√

x2
0 + y2

0 , and thus

x(t) = x0e
−Ktcos(

we2RKt

2RK(x2
0 + y2

0)R
) − y0e

−Ktsin(
we2RKt

2RK(x2
0 + y2

0)R
)

y(t) = x0e
−Ktsin(

we2RKt

2RK(x2
0 + y2

0)R
) + y0e

−Ktcos(
we2RKt

2RK(x2
0 + y2

0)R
)

If we take the state values at the end of a cycle, i.e., when t = 1, we obtain

x∗
1 = x0e

−Kcos(
we2RK

2RK(x2
0 + y2

0)R
) − y0e

−Ksin(
we2RK

2RK(x2
0 + y2

0)R
)

y∗
1 = x0e

−Ksin(
we2RK

2RK(x2
0 + y2

0)R
) + y0e

−Kcos(
we2RK

2RK(x2
0 + y2

0)R
)

and finally, applying a translation of vector (a1, a2) yields

x1 = a1 + e−K [x0cos(
we2RK

2RK(x2
0 + y2

0)R
) − y0sin(

we2RK

2RK(x2
0 + y2

0)R
)]

y1 = a2 + e−K [x0sin(
we2RK

2RK(x2
0 + y2

0)R
) + y0cos(

we2RK

2RK(x2
0 + y2

0)R
)]

with a1 and a2 being the translation parameters at the end of the cycle, K the
contraction parameter towards the origin, and w,R rotation parameters around
the origin. With complex variable Z = x + iy, the expression for this map can
be considerably simplified. After some algebraic manipulation it yields

Z1 = a + λZ0e
iα|Z0|

−2R

(7.24)

with a ∈ C − {0}, λ = e−K > 0, R > 0 and α ∈ R.
Thus, in what follows, Eq. (7.24) will be considered as a complex iterative

map

Zn+1 = a + λZneiα|Zn|−2R

(7.25)

modelling the dynamics of the converter. Further simplifications of Eq. (7.25)
can be achieved, which provides a reduction in the number of parameters.
Namely, considering A ∈ C such that Aa = 1 and with a change of variables
z = AZ, we obtain

zn+1 = 1 + λzneiα|zn|−2R

(7.26)

Taking into account the relation of the new parameters λ, α,R to the ones
in the original system, it can be deduced that the region of interest can be

α ∈ (0, 5) λ ∈ (0, 1) R ∈ (0, 1)

Analytical expressions for the inverse map and the jacobian of (7.26) are
straightforward. This allows fast and precise computation with software pack-
ages like AUTO, DSTOOL and INSITE to obtain bifurcational behavior (see
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Fig. 7.10). The hamiltonian case λ = 1 has already been studied in [Stolovitzky,
Kaper and Sirovich, 1995] yielding a deep analysis of the homoclinic tangle of
the system. The dissipative case λ < 1, which models the buck converter, can
show very different dynamics, and it is left as future work to be done.

If dϕ
dt = w

r is replaced by dϕ
dt = α − w r2

(1+r2)2 in the initial considerations

of this section, imposing a limiting behaviour in the number of rounds around
the origin, and the same analytical study is done with this system, then the
following complex map is obtained

zn+1 = a + λzne
i(α− p

1+|zn|2
)

(7.27)

This map is known as the Ikeda map, and it has been extensively studied
in the literature [Hammel, Jones and Moloney, 1985; Lai, Grebogi and Yorke,
1992]. Although for some parameter values it does not fit the dynamics of the
converter quite well, it can model a buck with a restricted number of crossings
in the ramp. A deeper analysis of this question is also left for the future.

7.5 Towards a General Classification

Finally, this section is concerned with how a general classification of a subset
of two-topologies piecewise-linear vector fields on R

2 × S
1 can be carried over.

The family of systems
Ẋ = AX + B + Cu (7.28)

with A ∈ M2×2(R), B ∈ M2×1(R), C ∈ M2×1(R), and

u : R
2 × R → {0, 1}

models, among others, the buck converters with two topologies. Without further
restrictions on the control u, this family can be very complicated to analyze with
respect to bifurcations. Thus if it is imposed that u must be in the form

u =

{

1 if m1x1 + m2x2 < α + βt̃
0 if m1x1 + m2x2 > α + βt̃

(t̃ = t modT ) (7.29)

then this family of systems will be easier to analyze.
Essentially, controls of this type include PWM with ramp control in voltage

and current mode, and also the converters controlled by current mode, always
considering the case of continuous conduction mode. The case of discontinuous
conduction mode can be also treated in this way if more than two topologies
are considered.

System (7.28) has a fixed point in each topology. When u = 0, the fixed
point is X0 = −A−1B while for u = 1, the fixed point is X1 = −A−1(B + C).
With a linear change Y = X + A−1B it can be assumed that one of the fixed
points is the origin, and thus we can restrict the family to the systems

Ẋ = AX + Bu (7.30)

Next, one can consider the normal form for A which will be in the form of the
following types
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Figure 7.10: (a) Strange attractor for the approxi-
mated map of the buck converter. λ = 0.85, R = 0.5
and α = 3.0. (b) Bifurcation diagram for Re(z).
R = 0.5 and α = 3. (c) Bifurcation diagram for Re(z).
R = 0.5 and λ = 0.85. (d) Bifurcation diagram for
Re(z). λ = 0.85 and α = 3.

Type I:

(

λ1 0
0 λ2

)

Type II:

(

λ 1
0 λ

)

Type III:

(

k w
−w k

)

It can be proved that, in each case, the vector B in (7.30) can be replaced
without loss of generality by (1, 1)t. Thus, the systems considered depend on
five (Type II) or six (Type I and III) parameters. Notice that the parameters
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Figure 7.11: Scheme of the two-topologies system.

• m1,m2, α, β fix geometrically a certain plane in R
3.

• λ1, λ2 (or λ or k,w) fix the eigenvalues of the fixed points.

Notice that planes ortogonal to the time axe correspond to open-loop sys-
tems, since the switching instants only depend on a fixed time and not on the
state variables; this case will not be considered. Moreover, planes parallel to
time axe imply a reduction in the order of the system (from three-dimensional to
two-dimensional), and consequently this case is of no interest either. With this
reduction, the equation of the plane m1x1 + m2x2 = α + βt can be changed to
m1x+m2y = m1m2 +βt, and one more parameter is avoided (Fig. 7.11). From
this point of view, the general situation (7.30) can be analysed into different
cases and a general classification can be started.

In the case of the buck converter which has been studied throughout this
thesis, the resulting normal form is

dx

dt
= kx − wy − (k + w)u

dy

dt
= −wy + kx − (k − w)u

with

u =

{

1 if (−k + w)x + (k + w)y < α(1 + λFrac(t))
0 if (−k + w)x + (k + w)y > α(1 + λFrac(t))

(7.31)
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which corresponds to a particular case of Type III.
The relation of the new parameters with the older ones are

k = −
T

2RC
w =

√

T 2

LC
− k2

α =
2w

a

VL + aVref

Vin
λ =

VU − VL

VL + aVref

Some simulations have been done with INSITE, showing an important de-
pendence on the parameters.

Control schemes other than voltage-controlled PWM have been proved to
yield chaotic behaviour in the buck converter. Among others, a sliding-mode
control has been shown to exhibit a standard period-doubling route to chaos
[Guinjoan, private communication], and PWM with flip-flop also displays chaos
when the input voltage Vin is varied [Iglesias and Fossas, 1992], or different
parameters like Vref or T are also changed [Toribio, private communication]
(see Fig. 7.12). It goes without saying that the work in this thesis dealing with
detection and explanation of the chaotic behaviour in the buck converter is only
a small brick in the wall.
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(a) (b)

(c) (d)

(e)

Figure 7.12: Experimental buck converter. (a) Mea-
sure instruments. (b) Buck prototype. (c) Experimen-
tal measures of the capacitor voltage and the inductor
current. The input voltage corresponds to the peri-
odicity range. (d) Experimental measure of the ca-
pacitor voltage. The input voltage corresponds to the
chaotic range. (e) Experimental measures of the ca-
pacitor voltage and the inductor current in the phase
space. The input voltage corresponds to the periodic-
ity range.
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Appendix A

Control of Switching

Converters

Abstract

In this appendix, different methods for controlling DC-DC switching

converters are reviewed. A very concise discussion of the development

of these methods in dc-dc power converters is outlined.

Averaging

Research into many important branches of switching converter control has
been based on averaged circuits. The earliest work on averaged circuit models
for switching converters was that of [Wester and Middlebrook, 1972]. In this
communication, the technique used to obtain an averaged circuit realization
for a given switching converter was that of performing directly in the circuit.
In particular, the authors suggested the construction of an averaged circuit
model whose branch variables are one-cycle averages of the corresponding branch
variables of the underlying switched circuit. This very physical approach results
in an averaged circuit that closely resembles the underlying circuit.

The later synthesis method of [Middlebrook and Čuk, 1976; Čuk and Mid-
dlebrook, 1976], termed hybrid modeling, is based on the state-space averaged
model. This technique results in circuit synthesis that do indeed implement the
state-space averaged models for their underlying models. The development in
[Čuk and Middlebrook, 1977] illustrated an analogous approach to synthetiz-
ing averaged circuits for switching converters operating in the discontinuous
conduction mode. Averaged circuit models have also been developed for the
analysis of switched capacitor filters. In particular, the paper [Tsividis, 1979]
illustrates the replacement of a capacitor and switch pair by a simple resistor.

207
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Averaging techniques [Middlebrook and Čuk, 1976] have become a useful tool
for small-signal modeling of switching converters. The relationship between the
averaged models and the original systems has been studied in [Lau and Mid-
dlebrook, 1986; Verghese and Mukherji, 1981]. The results of any approxima-
tion process, including averaging, might differ depending on the assumptions
involved. This is particularly evident in power electronics, where numerous
small-signal models have been proposed. In the work [Krein, Bentsman, Bass
and Lesieutre, 1990] some fundamental questions are answered and applied to
the open-loop PWM boost and buck converters and the feedback PWM buck
converter. A generalization of averaging, known as the KBM (Krylov-Boguliov-
Mitropolsky) method, considers a change of variables

x(t) = y(t) + εφ1(t, y) + ε2φ2(t, y) + . . .

where φi are zero-average functions of time, which transform the original system

ẋ = εF (t, x) (ε � 1, x(t0) = x0)

into the time-invariant system

ẏ = εG1(y) + ε2G2(y) + . . . .

In [Krein, Bentsman, Bass and Lesieutre, 1990], the authors state the valid-
ity of these averaging techniques when applied to small-signal and large-signal
models, and ripple corrections are found and estimated from the behavior of the
averaged model.

Also, state-space averaging has been applied to resonant switching converters
and other alternative switching schemes [Witulski and Erickson, 1990; Maksi-
movic and Čuk, 1989]. The extended state-space averaging results indicate that
the modeling techniques used so successfully in modeling PWM converters, such
as the canonical equivalent circuit model [Middlebrook and Čuk, 1976], can also
be applied to resonant switch and current-mode control converters [Witulski and
Erickson, 1990; Maksimovic and Čuk, 1989]. In the work of Witulski, PWM
analysis techniques are applied to the full and half-wave versions of the zero
currents switch (ZCS), the zero voltage switch (ZVS) and the nonlinear reso-
nant zero current switch (NRS) in a buck converter. In addition, Czarkovski
and Kazimierczuk have presented a systematic method for including parasitic
resistances and offset voltage sources of power switches in averaged dynamic
large-signal and small-signal circuit models of PWM converters operating in
continuous conduction mode. This method is based on the principle of energy
conservation and leads to the same characteristics obtained from state-space
averaging method.

Switching law control

A switching law control determines the discrete-valued input to the model
at each instant, using partial or full state information. This method of control is
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presently in use in various power electronic circuits. A simple application area is
in the inductor current control loops of some dc-dc converters that use current
mode programming [Deisch, 1978; Capel, Ferrante, O’Sullivan and Weinberg,
1978; Kailath, 1980]. The position of a switch is set by comparing the current
level in the inductor with a commanded current level.

Sliding mode control

The theory of variable structure systems and the use of their associated slid-
ing regimes for control design purposes has been extensively developed during
the last 25 years [Emelyanov, 1967; Itkis, 1976; Utkin, 1977; Utkin, 1978; Utkin,
1981; Utkin, 1983;] with a growing number of applications in power systems
control. A rigorous mathematical definition of the sliding motion was given by
[Filippov, 1984]. In his doctoral thesis, Wood developed a sliding mode control
algorithm for buck converters with second and fourth order output filters [Wood,
1973]. He demonstrated the global stability of these power circuits under his
sliding mode control algorithm, and proposed the extension to converters with
higher order output filter stages. A sliding mode controller for a buck converter
was also proposed in the work [Venkataramanan, Sabonovic and Čuk, 1985].
One interesting feature of the sliding curve proposed in this paper is that the
switch (transistor, diode) current can be limited to a design value during tran-
sients if sliding operation is maintained. The authors are also concerned with
the more complex problem of designing sliding surfaces for converters beyond
the buck converter. In particular, a sliding mode control law is derived for a
boost converter. The development of sliding mode control laws for switching
power electronic circuits is also treated in the papers of Sira-Ramı́rez and Ilic
[Sira-Ramı́rez, 1987, Sira-Ramı́rez and Ilic, 1988]. Sira-Ramı́rez applies sliding-
mode control to buck, buck-boost and Čuk-type converters [Sira-Ramı́rez, 1987].
Although the presentations in [Sira-Ramirez and Ilic, 1988] are made in a more
general setting, all of the sliding surfaces considered in [Sira-Ramı́rez and Ilic,
1988] for dc-dc converters are of the form xj = K for some state variable xj

that is desired to be regulated at the level K. Sira-Ramı́rez proposes the use
of slow manifolds as sliding surfaces for the variable structure feedback control
[Sira-Ramı́rez and Ilic, 1988; Sira-Ramı́rez, 1989a]. The sliding mode control
scheme of [Sira-Ramı́rez and Ilic, 1988] uses the slow manifold of the open-loop
state-space averaged model as the sliding surface. This control method requires
that the open-loop switching converter circuit has a dominant real eigenmode.
With such a scheme, the dynamical behavior in the sliding mode is governed by
the same dynamics that assymptotically governs the open-loop behavior. It has
also been applied to the buck converter with input filter in [Domı́nguez, Fossas
and Mart́ınez, 1994; Fossas, Mart́ınez and Ordinas, 1992].

Results on non-sliding switching law controls for converters with intrinse-
cally nonlinear state-space models (i.e. buck-boost and boost converters) have
been obtained using state-space methods [Burns and Wilson, 1977; Huffman,
Burns, Wilson and Owens, 1977]. In particular, in [Burns and Wilson, 1977]
the authors completed detailed studies of state-plane control laws for the ba-
sic converters. A serious problem lies in the necessity of accurate parameter
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and state information. In that paper the relative insensitivity of the converter
behavior under this control algorithm to variations in load conditions is demon-
strated with simulations, and the same insensitivity was experimentally verified
in [Huffman, Burns, Wilson and Owens, 1977]. However, if some circuit param-
eters are not known precisely, behavior that appears to be chaotic can result.

Recently, a current-programmed control technique was presented to control
the average value of the Čuk converter output current [Poveda, Mart́ınez, Per-
pinyà, Font and Manuel, 1993]. The method distinguishes between the slow
variation components and the fast variation ones; applied to the Čuk converter,
it results in a transfer function of the open voltage regulating loop that exhibits
better single-pole approximation behavior than the classical current mode con-
trols. Introducing some small modifications in the control circuit, the same
paper [Poveda, Mart́ınez, Perpinyà, Font and Manuel, 1993] presents a good
fixed-frequencies realization of a high-efficiency time-variable gyrator for power
applications, as was presented in [Singer, 1988]. More recently, double bridge
converters have also been modeled by the gyrator theory to analyze their av-
erage dynamics [Ehsani, Husain and Bilgiç, 1993]. Discrete models have also
been used in small-signal model switching dc-dc converters in simulations, par-
titioning the state vector into slow and fast variables and obtaining a nonlinear
discrete recurrence.

Time-optimal control

The transient optimization problem of a bidirectional buck converter has
also been studied by [Jammes, Bidan and Marpinard, 1991]. In this paper, a
piecewise-linear output voltage control with a maximum inductor current modu-
lator is proposed, ensuring both transient optimization and steady state control
system, resulting in time-optimal control.

Large-signal state-space averaged models

Some pitfalls of control designs based on small signal models obtained by
linearizing large signal averaged models are outlined in the paper [Erickson,
Čuk and Middlebrook, 1982]. After discussing the development of large signal
averaged models for switching converters, which have the form

x′ = Ax + (Bx + b)u (A.1)

the effects of the quadratic nonlinearity introduced into the bilinear state-space
model (A.1) by linear state feedback are considered. It is noted that the tran-
sient response to a strong perturbation can be substantially different from the
transient expected from the small signal design. One noted feature of the feed-
back system with quadratic nonlinearity is the possible presence of multiple
equilibria, which prohibit global stability . The effect of saturation due to the
constraints on the duty ratio is also noted.

Control design for the large-signal state-space averaged model using the so-
called quantitative feedback synthesis was explored in the paper [Horowitz, Sidi
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and Erickson, 1984]. Their method characterizes a class of plant inputs (duty
ratio waveforms) for each member of a set of possible plant models. The plant in-
puts are selected to produce a given desired output behavior (such as a start-up
transient). The obtained input waveforms associated with the selected output
waveforms are then used to determine approximate input-output transfer func-
tions. Simulations results in [Horowitz, Sidi and Erickson, 1984] indicate the
feasibility of this approach.

In order to avoid the discontinuous conduction mode and, at the same time,
to allow the existence of light load levels, the bidirectional switch was introduced,
which led to a bilinear description of the switching converters [Salut, Marpinard
and Valentin, 1985; Valentin, 1984]. The transformation of the canonical buck,
boost or buck-boost structures into bidirectional cells has extended the dynamic
performances of the power converters. Large-signal control becomes mandatory
in such converters.

Dissipative systems

One important approach to control of dynamical systems is via the theory
of dissipative systems [Willems, 1972a; Willems, 1972b]. An n-input, n-output
system modeled by

x′ = f(x, u) y = h(x, u)

is said to be dissipative with respect to the supply rate w(u, y) if there is a
non-negative definite internal storage function V (x) such that

d

dt
V − w(u, y) ≤ 0.

The supply function that is of interest here is given by

w(u, y) = uT y.

Some of the important features of dissipative systems are:

i) a point in the state space where the storage function attains a local max-
imum defines a stable equilibrium and the storage function is a Lyapunov
function for this equilibrium.

ii) feedback interconnections of dissipative systems are dissipative [Willems,
1972a; Willems, 1972b].

The theory of dissipative systems was applied by Wood to obtain feedback
control schemes for switching converters. The approach used in [Wood, 1973]
was to view a closed-loop system (switching converter and controller) as the
feedback interconnection of two dissipative systems. Wood began with an input-
output model for a given switching converter from duty ratio to a selected av-
eraged output variable. Such a model is not necessarily nor usually dissipative.
The controller was selected to be linear, time-invariant, and such that its trans-
fer function could be factored into two factors: one which combined with the
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plant input-output model to form a dissipative operator (a passive system),
and a second which combined with the saturation constraint to also result in
a passive input-output model. The stability of the resulting closed-loop sys-
tem was derived by using the Lyapunov function corresponding to the sum of
the storage functions of the two interconnected dissipative systems. The set of
passive, linear, time-invariant transfer functions which result in passive opera-
tors when cascaded with a monotone nonlinearity were termed O’Shea functions
in [Wood, 1973] (they were characterized in the paper [O’Shea, 1966]). Wood
worked mainly with buck converters for which input-output models are essen-
tially linear. In the work of [Brockett and Wood, 1974], a control scheme is
outlined. It is closely related to the dissipative system approach, and applied
to the type of bilinear system that arises in switching power circuits.

Controllable linear equivalent systems

There has also been significant work done on the problem of characterizing
systems that are controllable linear equivalents, i.e. those that can be brought
to the phase canonical form

x′
1 = x2, x′

2 = x3, . . . , x′
n = f(x1, x2, . . . , xn, u) (A.2)

via some nonlinear change of coordinates [Brockett, 1978; Su, 1982; Hunt, Su
and Meyer, 1983; Isidori, 1985]. In [Sira-Ramı́rez and Ilic, 1990] the problem of
feedback linearization for various dc-dc converters is investigated. With a system
in the form (A.2), one can consider choosing the feedback control u(x1, . . . , xn)
so that the system behaves as a prescribed linear time-invariant model.

An approach to the feedback control problem for power electronic circuits
along the lines of this so-called feedback linearization was taken in [Salut,
Marpinard and Valentin, 1985]. There, a simple feedback law is selected so
that the capacitor voltage obeys a stable first order linear, time-invariant differ-
ential equation. It is then demonstrated that the other state variables exhibit
stable behavior.

Pseudolinearization

It turns out that many state-space systems modeling switching converters
cannot be brought to the form (A.2) by some state-space transformation. A
similar approach termed pseudolinearization that may have wider application
has been developed in [Reboulet and Champetier, 1984]. This approach in-
volves determining nonlinear transformations of the state and control inputs so
that the tangent model (small signal linearization) of the transformed system
is in phase canonical form (A.2). This approach to control has been applied
by [Sira-Ramı́rez, 1989b] for the feedback control of bilinear switched networks
such as the boost and the buck-boost power converters. A physically mean-
ingful local diffeomorphic state coordinate transformation, expressible in terms
of stored energy and consumed power, is found, which turns the average per-
turbed model into a Brunovsky canonical form independent of the operating
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point. The linearized model is then used for the specification of a stabilizing
feedback loop whose control action regulates the duty ratio around its nominal
operating value. A similar but conceptually different approach was taken in
[Sanders, Verghese and Cameron, 1986] for the variable structure control of the
boost converter using feedback linearization [Hunt, Su and Meyer, 1983].

The work reported in [Majó, Mart́ınez, Fossas, Poveda, Garćıa de Vicuña,
Guinjoan and Sánchez, 1990], exhibits control via pseudolinearization applied
to a Čuk-type converter. This technique was also applied to the elementary
boost converter in [Fossas, Mart́ınez and Biel, 1991].
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Appendix B

Basic Tools for Analyzing

Chaos

Abstract

In this appendix, some basic mathematical tools are introduced, which

will be of extreme interest when decribing chaos in the basic cell con-

verters. Some final remarks are also made regarding the particular

systems under consideration.

Poincaré Maps

The idea of reducing the study of continuos time systems (flows) to the study
of an associated discrete time system (map) is due to Poincaré (1899), who
first utilized it in his studies of the three body problem in celestial mechanics.
Nowadays, virtually any discrete time system which is associated to an ordinary
differential equation is referred to as a Poincaré map. This technique offers
several advantages in the study of ordinary differential equations, three of which
are the following:

1) Dimensional reduction

2) Global dynamics

3) Conceptual clarity

In the following cases, the construction of a specific type of Poincaré map
can in some sense be said to be canonical.

1) In the study of the orbit structure near a periodic orbit of an ordinary
differential equation.
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2) In the case where the phase space of an ordinary differential equation is
periodic.

3) In the study of the orbit structure near a homoclinic or heteroclinic orbit.

The relationship between periodic ordinary differential equations and Poincaré
maps is straightforward. Consider the following ordinary differential equation

ẋ = f(x, t), x ∈ R
n (B.1)

where f : U −→ R
n

Suppose that the time dependance of f is periodic with fixed period T =
2π/w > 0 (i.e. f(x, t) = f(x, t + T )). We can rewrite (B.1) in the form of an
autonomous equation in n + 1 dimensions by defining the function

θ : R
1 −→ S1

t 7→ θ(t) = ωt mod(2π) (B.2)

Using (B.2), equation (B.1) becomes

ẋ = f(x, θ)

θ̇ = ω (x, θ) ∈ R
n × S1 (B.3)

Denote by

φ(t) = (x(t), θ(t)) ≡ ωt + θ0 mod(2π)

the flow generated by (B.3).

We define a global cross-section Σθ̄0 to the vector field (B.3) by

Σθ̄0 = {(x, θ) ∈ R
n × S1 such that θ = θ̄0 ∈ (0, 2π]}

We define the Poincaré map of Σθ̄0 into itself as follows:

Pθ̄0
: Σθ̄0 −→ Σθ̄0

(x(
θ̄0 − θ0

ω
), θ̄0) 7→ (x(

θ̄0 − θ0 + 2π

ω
), θ̄0 + 2π ≡ θ̄0)

or simply

x(
θ̄0 − θ0

ω
) 7→ x(

θ̄0 − θ0 + 2π

ω
)

Definition:

x∗ is a fixed point of the map P if x∗ = P (x∗).
The set {x∗

1, . . . , x
∗
m} is a period-m closed orbit of P if

x∗
k+1 = P (x∗

k) for k = 1, . . . ,m − 1 and x∗
1 = P (x∗

m)
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Figure B.1: Poincaré map P : Σθ̄0 → Σθ̄0 .

Thus, the Poincaré map merely tracks initial conditions in x at a fixed phase
after successive periods of the vector field. Fixed points of Pθ̄0

correspond to

2π/ω-periodic orbits of (B.1), which pierce Σθ̄0 k times before closing.

Characteristic (Floquet) multipliers

The stability of a periodic solution is determined by its characteristic mul-
tipliers, also called Floquet multipliers. Characteristic multipliers are a gener-
alization of the eigenvalues at an equilibrium point.

Consider a fixed point x∗ of a map P . The local behavior of the map near
x∗ is determined by linearizing the map at x∗. In particular, the linear map

δxk+1 = DP (x∗)δxk

governs the evolution of a perturbation δx0 in a neighbourhood of the fixed
point x∗.

Let p be the dimension of the Poincaré map P .

Let the eigenvalues of DP (x∗) be mi ∈ C, with corresponding eigenvectors
ηi ∈ C

n for i = 1, . . . , p. Assuming that the eigenvectors are distinct, the orbit
of P with initial condition x∗ + δx0 is, to first order,

xk = x∗ + δxk = x∗ + DP (x∗)kδx0 = x∗ + c1m
k
1η1 + · · · + cpm

k
pηp
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where ci ∈ C are constants chosen to achieve the correct initial conditions.
The eigenvalues mi are called the characteristic multipliers of the periodic

solution. Like eigenvalues at an equilibrium point, the characteristic multipliers
position in the complex plane determines the stability of the fixed point. If mi is
real, then ηi and ci are also real, and it is clear that the characteristic multiplier
is the amount of contraction (if mi < 0) or expansion (if mi > 0) near x∗ in the
direction of ηi for one iteration of the map.

In the case of complex eigenvalues, the magnitude of mi gives the amount
of expansion (if |mi| > 1) or contraction (if |mi| < 1) for one iteration of the
map; the angle of the characteristic multiplier is the frequency of rotation.

Invariant manifolds

Roughly speaking, an invariant manifold is a surface contained in the phase
space of a dynamical system whose property is that orbits starting on the surface
remain on the surface throughout the course of their dynamical evolution.

Let S ⊆ R
n be a set.

Then,

a) Continuous time: S is said to be invariant under the vector field ẋ = f(x)
if for any x0 ∈ S we have x(t, 0, x0) ∈ S for all t ∈ R.

b) Discrete time: S is said to be invariant under the map x 7→ g(x) if for
any x0 ∈ S, we have gn(x0) ∈ S for all n.

An invariant set S ⊆ R
n is said to be a Cr, (r ≥ 1) invariant manifold if S

has the structure of a Cr differentiable manifold.
Additionally, the set of orbits which approach or recede from an invariant

manifold M asymptotically in time under certain conditions are also invariant
manifolds which are called the stable and unstable manifolds, respectively, of
M.

Knowledge of the invariant manifolds of a dynamical system, as well as
the intersection of their respective stable and unstable manifolds, is absolutely
crucial in order to obtain a complete understanding of the global dynamics.

Suppose we have

ẋ = f(x) x(0) = 0 x ∈ R
n, (B.4)

where f : R
n −→ R

n. We make the following assumptions:

I) f(0) = 0
II) Df(0) has n− k eigenvalues having positive real parts and k eigenvalues

having negative real parts.

Definition:

x = 0 is called a hyperbolic fixed point for ẋ = f(x) if f(0) = 0 and Df(0)
has no eigenvalues with zero real part.

Linearizing the system, we can denote by

v1, . . . , vn−k
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the generalized eigenvectors corresponding to the eigenvalues having positive
real parts, and

vn−k+1, . . . , vn

the generalized eigenvectors corresponding to the eigenvalues having negative
real parts. Then, the linear subspaces of R

n defined as

Eu = span{v1, . . . , vn−k} Es = span{vn−k+1, . . . , vn}

are invariant manifolds for the linear system which are known as the unstable
and stable subspaces, respectively.

The stable manifold theorem for hyperbolic fixed points tell us that in a
neighbourhod U of the fixed point x = 0, there exist a (n − k)-dimensional
surface Wu

loc(0) tangent to Eu at x = 0 and a k-dimensional surface W s
loc(0)

tangent to Es at x = 0, with the properties that orbits of points on Wu
loc(0)

approach x = 0 asymptotically in negative time (i.e. as t → −∞) and orbits
of points on W s

loc(0) approach x = 0 asymptotically in positive time (i.e. as
t → ∞). Wu

loc(0) and W s
loc(0) are known as the local unstable and local stable

manifolds, respectively, of x = 0.
Let us denote the flow generated by (B.4) as φt(x); then, we can define global

stable and unstable manifolds of x = 0 by using points on the local manifolds
as initial conditions.

Wu(0) =
⋃

t≥0

φt(W
u
loc(0)) W s(0) =

⋃

t≤0

φt(W
s
loc(0))

Wu(0) and W s(0) are called the unstable and stable manifolds, respectively,
of x = 0.

All of this can be defined when a map P : R
n −→ R

n is considered. Intu-
itively, the stable manifold of a fixed point x0 of P will be the set of all points
x such that P k(x) approaches x0 as k → ∞, and the unstable manifold will be
defined as the set of all points x such that P k(x) approaches x0 as k → −∞.

Chaos and strange attractors

Assume that Λ ⊆ R
n is a compact set, invariant under the flow φt(x) of

a vector field ẋ = f(x). This flow is said to have sensitive dependence on
initial conditions on Λ if there exists ε > 0 such that for all x ∈ Λ and any
neighbourhood U of x, there exists y ∈ U and t > 0 such that |φt(x)−φt(y)| > ε.
An analogous definition can be stated for a map.

Roughly speaking, this definition says that for any point x ∈ Λ there is
at least one point arbitrarily close to Λ that diverges from x. Some authors
require the rate of divergence to be exponential. This is not very convenient,
because there are examples where the strange attractors observed in numerical
experiments of typical dynamical systems arising in applications will not, in
general, be hyperbolic. Hence, one should expect parts of the attractor to
exhibit nonexponential contraction or expansion rate.



220 Basic Tools for Analyzing Chaos

Definition:

A closed connected set D ⊆ R
n is called a trapping region if φt(D) ⊆ D for

all t > 0.

Definition:

A closed invariant set A ⊆ R
n is called an attracting set if there is some

neighbourhood U of A such that

∀x ∈ U,∀t ≥ 0, φt(x) ∈ U and φt(x) → A as t → ∞

Definition:

A flow φt(x) is said to be topologically transitive on a closed invariant set Λ
if, for any two open sets U, V ⊆ Λ, there exists t ∈ R such that φt(U) ∩ V 6= ∅.

A topologically transitive attracting set is called an attractor.

Definition:

Λ is said to be chaotic if
1.- φt(x) has sensitive dependence on initial conditions on Λ
2.- φt(x) is topologically transitive on Λ

Definition:

Suppose A ⊆ R
n is an attractor. Then A is called a strange attractor if it

is chaotic.

Hence, if we want to prove that a dynamical system has a strange attractor
we might proceed as follows:

Step 1: Find a trapping region M in the phase space.

Step 2: Show that M contains a chaotic invariant set Λ. In practice, this means
showing that inside M there is a homoclinic orbit (or heteroclinic cycle)
[Guckenheimer and Holmes, 1983] which has associated with it an invari-
ant Cantor set on which the dynamics are topologically conjugate to a full
shift on N symbols.

Then

A ≡
⋂

t>0

φt(M)

is an attracting set and Λ ⊆ A, so that A contains a mechanism that gives rise
to sensitive dependence on initial conditions; in order to conclude that A is a
strange attractor we need only to demonstrate the following:

a) The sensitive dependence on initial conditions on Λ extends to A
b) A is topologically transitive



221

Showing that A is topologically transitive is the most difficult step. This is
because a single stable orbit in A will destroy topological transitivity, and some
known results state that periodic sinks are always associated with quadratic
homoclinic tangencies. Moreover, as a result of Newhouse’s work, at least for
two-dimensional dissipative maps, these homoclinic tangencies are persistent
in the sense that if we destroy a particular tangency, we will create another
elsewhere in the homoclinic tangle. This is largely the reason why there is still
no analytical proof of the existence of a strange attractor for the periodically
forced, damped Duffing oscillator, despite an enormous amount of numerical
evidence.

At present, there exist rigorous results concerning strange attractors in the
areas of one-dimensional non-invertible unimodal maps, hyperbolic attractors of
two-dimensional maps and Lorenz-like systems, where the topology avoids many
of the problems associated with Newhouse sinks. Also, the Henon map has been
proven to posses a strange attractor for certain values of the parameters.

Final remarks:

1) The dynamics of the full shift on N symbols best describes what is meant
by the term chaos as applied to deterministic dynamical systems. The system
is purely deterministic; however, the dynamics are such that our inability to
precisely specify the initial conditions results in a behavior that appears random
or unpredictable.

2) Unlike some authors, we have not included the requirement of density
of periodic orbits in the definition of the chaotic invariant set. If the chaotic
invariant set is hyperbolic, then, by the shadowing lemma [Guckenheimer and
Holmes, 1983], it follows immediately that the periodic orbits are dense.

3) One of the fundamental hypothesis in the statements and theorems on
bifurcations and chaotic dynamics is the Cr-condition (r ≥ 1) on the vector field
f that defines the system. This is largely due to the capability of linearizing
f at periodic or fixed points. When dealing with switching converters, f has
inherent discontinuities that make all the results regarding smooth vector fields
invalid. In spite of this, numerical evidence is found to suggest that very sim-
ilar situations and results can be stated for discontinuous vector fields f that
behave like a continuous one in a neighbourhood of a fixed or periodic isolated
discontinuous point of f .



222 Basic Tools for Analyzing Chaos



Appendix C

Bibliography

Abarbanel H.D.I. and Linsay P.S. [1993].

“Secure communications and unstable periodic orbits of strange attrac-
tors.” IEEE Transactions on Circuits and Systems-II, VOL. 40, NO. 10.
pp. 643-645. October 1993.

Aguirre L.A. and Billings S.A. [1994].

“Validating Identified Nonlinear Models with Chaotic Dynamics”. Inter-
national Journal of Bifurcation and Chaos, Vol. 4, No. 1, pp. 109-125,
February 1994.

Angosto J. and Olivar G. [1996].

“Calcul de bifurcacions amb AUTO”. Final Project, EUPVG, July 1996.

Anishchenko V.S., Safonova M.A. and Chua L.O. [1993].

“Confirmation of the Afraimovich-Shilnikov torus-breakdown theorem
via a torus circuit.” IEEE Transactions on Circuits and Systems-I, VOL.
40, N0. 11. pp. 792-800. November 1993.

Arrowsmith D.K. and Place C.M. [1990].

“An introduction to dynamical systems”. Cambridge University Press,
Cambridge, 1990.

Aston P.J. and Bird C.M. [1995].

“Analysis of the control of chaos-rate of convergence”. International
Journal of Bifurcation and Chaos, VOL. 5, No. 4, 1995. pp. 1157-1165,
1995.

Baillieul J., Brockett R.W. and Washburn R.B. [1980].

“Chaotic motion in nonlinear feedback systems”. IEEE Transactions on
Circuits and Systems, VOL. 27, NO. 11. pp. 990-997. November 1980.

Bai-Lin H. [1984].

“Chaos”. World Scientific, Singapore, 1984.

223



224 Bibliography

Bai-Lin H. [1990].

“Chaos II”. World Scientific, Singapore, 1990.

Banerjee S. [1997].

“Coexisting Attractors, Chaotic Saddles and Fractal Basins in a Power
Electronic Circuit”. (submitted to the IEEE Transactions on Circuits
and Systems, Part I).

Barugola A., Cathala J.C. and Mira C. [1995].

“Extension of the notion of chaotic area in second-order endomor-
phisms”. International Journal of Bifurcation and Chaos, Vol. 5, No. 3,
pp. 751-777, 1995.

Bass R.M., Heck B.S. and Khan R.A. [1994].

“Average Modelling of Current-Controlled Converters: Instability Pre-
dictions”. International Journal of Electronics, Vol. 77, No. 5, pp.
613-628, November 1994.

Batlle C., Fossas E. and Olivar G. [1996a].

“Stabilization of periodic orbits in Variable Structure Systems”. Pro-
ceedings of NDES’96, pp. 339-344, Seville, June, 1996.

Batlle C., Fossas E. and Olivar G. [1996b].

“Time-delay stabilization of periodic orbits of the Buck converter”.
Preprint chao-dyn/9609009 available at xyz.lanl.gov, Setember, 1996.

Batlle C., Fossas E. and Olivar G. [1996c].

“Stabilization of periodic orbits in Variable Structure Systems. Applica-
tion to DC-DC Power Converters”. International Journal of Bifurcation
and Chaos, Vol. 6, No. 12B, pp. 2635-2643, December, 1996.

Bleich M.E. and Socolar J.E.S. [1996a].

“Stability of periodic orbits controlled by time-delay feedback”. Preprint
chao-dyn/9510019, available at xyz.lanl.gov, October, 1995.

Bleich M.E. and Socolar J.E.S. [1996b].

“Controlling spatiotemporal dynamics with time-delay feedback”.
Preprint chao-dyn/9601006, available at xyz.lanl.gov, January, 1996.

Bose B.K. [1992].

“Modern Power Electronics: Evolution, Technology and Applications”.
IEEE Press, New York 1992.

Brockett R.W. [1978].

“Feedback invariants for nonlinear systems”. IFAC Congress, Helsinki,
1978.

Brockett R.W. and Wood J.R. [1974].

“Electrical networks containing controlled switches”. Addendum to
IEEE Symposium on Circuit Theory. April 1974.

Burns W.and Wilson T. [1977].

“Analytic derivation and evaluation of a state-trajectory control law for
dc-dc converters”. IEEE PESC Record, pp. 70-85, 1977.



225

Buskirk R.V. and Jeffries C. [1995].

“Observation of chaotic dynamics of coupled nonlinear oscillators”.
Physical Review A, VOL. 31, NO. 5. pp. 3332-3357. May 1995.

Capel A., Ferrante G., O’Sullivan D. and Weinberg A. [1978].

“Application of the injected current model for the dynamical analysis of
switching regulators with the new concept of LC3 modulator”. IEEE
PESC Record, pp. 135-147, 1978.

Carbonell J.M. and Olivar G. [1994].
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Čuk S. and Middlebrook R.D. [1976].

“Modeling, analysis and design of switching converters”. NASA Report
CR-135174.
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Font J.M., Rodŕıguez-Manero J.L. and Verghese G.C. [1995].

“Chaos in dc-dc Converters under Current-Mode Control” (In Spanish).
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“Introducció al caos en sistemes no lineals i en l’electrònica de potència”.
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“A general approach to synthesis and analysis of quasi-resonant con-
verters”. Proceedings of the 1989 IEEE PESC, VOL. 2, pp. 713-727,
1989.

Matsumoto T., Chua L.O. and Komuro M. [1985].

“The double scroll”. IEEE Transactions on Circuits and Systems, VOL.
32, NO. 8. pp. 798-818. August 1985.

Matsumoto T., Chua L.O. and Tokumasu K. [1986].

“Double scroll via a two-transistor circuit”. IEEE Transactions on Cir-
cuits and Systems, VOL. 33, NO. 8. pp. 828-835. August 1986.

Middlebrook R.D. and Čuk S. [1976].
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“Sliding mode control of dc-to-dc converters”. Proceedings of the 1985
International Conference on Industrial Electronics Control and Instru-
mentation. (IECON’85), pp. 251-258, 1985.

Verghese G. and Mukherji U. [1981].

“Extended averaging and control procedures”. IEEE PESC Record, pp.
329-336, 1981.

Wester G.W. and Middlebrook R.D. [1972].

“Low frequency characterization of switched dc-dc converters”. IEEE
PESC Record, 1972.

Wiggins S. [1988].

“Global bifurcations and chaos”. Springer-Verlag, New York, 1988.

Wiggins S. [1990].

“Introduction to applied nonlinear dynamical systems and chaos”.
Springer-Verlag, New York, 1990.



239

Willems J.C. [1972a].

“Dissipative dynamical systems. Part I: General theory”. Arch. Ratio-
nal Mech. Anal., VOL. 45, NO. 5, pp. 321-351, 1972.

Willems J.C. [1972b].

“Dissipative dynamical systems. Part II: Linear systems with quadratic
supply rates”. Arch. Rational Mech. Anal., VOL. 45, NO. 5, pp. 352-
393, 1972.

Witulski A.F. and Erickson R.W. [1990].

“Extension of state space averaging to resonant switches and beyond”.
IEEE Transactions on Power Electronics, VOL. 5, NO. 1 pp. 98-109,
January 1990.

Wood J.R. [1973].

“Power conversion in electrical networks”. Ph. D. Thesis, EECS Dept.,
MIT, 1973.

Wood J.R. [1989].

“Chaos: a real phenomenon in power electronics”. IEEE Applied Power
Electronics Conference Record. pp. 115-124, Baltimore MD, March
1989.

Wu C.W. and Chua L.O. [1994].

“Symbolic dynamics of piecewise-linear maps”. IEEE Transactions on
Circuits and Systems-II, VOL. 41, NO. 6. pp. 420-423. June 1994.

Zafrany I. and Ben-Yaacov S. [1995].

“A Chaos Model of Subharmonic Oscillations in Current-Mode PWM
Boost Converters”. PESC’95, pp. 1111-1117, Atlanta Georgia, 1995.


