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Introduction

The subject of pattern-avoiding permutations, also called restricted permu-
tations, has blossomed in the past decade. A number of enumerative results
have been proved, new bijections found, and connections to other fields es-
tablished. A recent breakthrough [70] (see also [57, 2, 14, 3]) has been the
proof of the so-called Stanley-Wilf conjecture, which gives an exponential
upper bound on the number of permutations avoiding any given pattern.

However, the study of statistics on restricted permutations started devel-
oping very recently, and the interest in this topic is currently growing. On
the one hand, the concept of pattern avoidance concerns permutations re-
garded as words m = mwymo---m,. On the other hand, concepts such as
fixed points or excedances arise when we look at permutations as bijections
m:{1,2,...,n} — {1,2,...,n}. It was not until recently that these two
kinds of concepts were studied together.

An unexpected recent result of Robertson, Saracino and Zeilberger [78] gives
a new and exciting extension to the classical result that the number of
321-avoiding permutations equals the number of 132-avoiding permutations.
They show that one can refine this result by taking into account the number
of fixed points in a permutation. Their proof is nontrivial and technically
involved. The first part of the work in the present thesis is motivated by this
result. A natural question that arises is whether the fact that the number of
fixed points has the same distribution in both 321-avoiding and 132-avoiding
permutations can be generalized to other statistics and to other patterns.
In particular, this gives more interest to the problem of studying the dis-
tribution of statistics on pattern-avoiding permutations. Another natural
question to consider is whether a bijection between 321-avoiding permu-
tations and 132-avoiding permutations that preserves the number of fixed
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points can be described. It is somewhat surprising that, before the work on
this thesis [31, 33, 36], none of the several known bijections between these
two sets of permutations preserved the number of fixed points.

Aside from the study of statistics, there is a variation to the notion of pat-
tern avoidance that started to develop recently. The concept of generalized
pattern allows the requirement that, for a pattern to occur in a permutation,
certain elements have to be in adjacent positions. A particular case of this
are the consecutive patterns, where all the elements have to be consecutive.
The last part of this work is devoted to the study of such patterns.

This thesis is structured as follows. Chapter 1 introduces the basic defini-
tions regarding pattern avoidance, permutation statistics and Dyck paths,
as well as some tools to manipulate generating functions. In Chapter 2 we
study the distribution of the statistics ‘number of fixed points’ and ‘number
of excedances’ in permutations avoiding a pattern of length 3. The main
result is that the joint distribution of this pair of parameters is the same
in 321-avoiding as in 132-avoiding permutations. This generalizes a recent
theorem of Robertson, Saracino and Zeilberger. We prove this result by giv-
ing a bijection preserving these two statistics. A part of it is based on the
Robinson-Schensted-Knuth correspondence. We also show that our bijection
preserves additional parameters. The key idea is to introduce a new class of
statistics on Dyck paths, based on what we call a tunnel.

In Chapter 3 we consider the same pair of statistics in permutations avoiding
simultaneously two or more patterns of length 3. We solve all the cases by
giving generating functions which enumerate them. Some cases are gener-
alized to patterns of arbitrary length. We also describe the distribution of
these parameters in involutions avoiding any subset of patterns of length 3.
The main technique consists in using bijections between pattern-avoiding
permutations and certain kinds of Dyck paths, in such a way that the statis-
tics in permutations that we consider correspond to statistics on Dyck paths
which are easier to enumerate.

In Chapter 4 we present a new statistic-preserving family of bijections from
the set of Dyck paths to itself. They map statistics that appear in the study
of pattern-avoiding permutations into classical statistics on Dyck paths,
whose distribution is easy to obtain. In particular, this gives a simple bi-
jective proof of the equidistribution of fixed points in 321- and 132-avoiding
permutations. Chapter 5 gives some new interpretations of the Catalan and
Fine numbers and a few additional bijections. We consider a class of permu-
tations enumerated by the Catalan numbers, defined in terms of noncrossing
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matchings of 2n points around a circle. We study some of their properties,
and we give the distribution of several statistics on them.

In Chapter 6 we consider a different notion of pattern avoidance, with the
requirement that the elements forming the pattern have to occur in consecu-
tive positions in the permutation. More generally, we study the distribution
of the number of occurrences of consecutive patterns in permutations. We
solve the problem in several cases depending on the shape of the subword
by obtaining the corresponding bivariate exponential generating functions as
solutions of certain linear differential equations with polynomial coefficients.
Our method is based on the representation of permutations as increasing
binary trees and on symbolic methods.

Finally, Chapter 7 deals with generalized patterns, which extend the notions
of both classical and consecutive patterns. For a few patterns we obtain new
exact enumerative results. Then we study the asymptotic behavior of the
number of permutations in S,, avoiding a fixed generalized pattern as n goes
to infinity. We also give some lower and upper bounds on the number of
permutations avoiding certain patterns.






1

Definitions and preliminaries

1.1 Permutations

1.1.1 Pattern avoidance

We will denote by [n] the set {1,2,...,n}, and by S,, the symmetric group
on [n]. A permutation 7 € S, will be written in one-line notation as
T = mmy---Ty. We will write the cardinality of a set A as |A|. In this
section we define the classical notion of pattern avoidance, which will be
used throughout most of this thesis. For a definition of generalized patterns
see Section 7.1.

Let n, m be two positive integers with m < n, and let m = w17 -1, € Sy,
and o = 0109 -+ 0, € Sy, be two permutations. We say that « contains o if
there exist indices i; < i < ... < iy, such that p(m;, 7, -7, ) = o, where
p is the reduction consisting in relabelling the elements with {1,...,m} so
that they keep the same order relationships they had in 7. (Equivalently,
this means that for all indices a and b, m;, < m;, if and only if o, < 03.) In
that case, m;, m;, - - - m;,, is called an occurrence of o in . In this context, o
is also called a pattern.

If 7 does not contain o, we say that m avoids o, or that it is o-avoiding. For
example, if o = 132, then m = 24531 contains 132, because the subsequence
mim3m4 = 253 has the same relative order as 132. However, m = 42351 is 132-
avoiding. Denote by S, (o) the set of o-avoiding permutations in S,,. More
generally, for any subset A C §,, and any pattern o, define A(o) := ANS,,(0)
to be the set of g-avoiding permutations in A.

It is a natural generalization to consider permutations that avoid several
patterns at the same time. If ¥ C [ k>1 Sk 1s any finite set of patterns, denote
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by S,(X) the set of permutations in S, that avoid simultaneously all the
patterns in 3. These are also called Y-avoiding permutations. For example,
if ¥ = {123,231}, then S4(X) = {1432,2143, 3214, 4132,4213,4312,4321}.

1.1.2 Permutation statistics

Informally speaking, the notion of permutation can be viewed in two dif-
ferent ways. On one hand, a permutation can be regarded as a word m =
mmy - - - Ty, Namely, as a sequence of numbers in some given order. From this
description arises the concept of pattern avoidance discussed in the previous
subsection. On the other hand, one can regard a permutation w € S,, as a
bijection 7 : [n] — [n]. Some concepts such as fixed points or excedances
arise when we consider a permutation as a bijection. This double nature of
permutations makes it interesting to study some of the following statistics
together with the notion of pattern avoidance. There is a lot of mathematical
literature devoted to permutation statistics (see for example [30, 42, 44, 46]).

We say that i is a fized point of a permutation 7 if m; = i. We say that i is
an excedance of 7 if m; > i. Denote by fp(m) and exc(m) the number of fixed
points and the number of excedances of 7 respectively. The distribution of
the statistics fp and exc in pattern-avoiding permutations will be one of the
main topics of this thesis. An element of a permutation that is neither a
fixed point nor an excedance, namely an ¢ for which 7; < ¢, will be called a
deficiency. Permutations without fixed points are also called derangements.

We say that i < n—11is a descent of m € Sy, if m; > m;41. Similarly, i <n—1
is an ascent of m € S, if m; < mi+1. Denote by des(w) and asc(w) the
number of descents and the number of ascents of 7 respectively. A right-to-
left minimum of 7 is an element 7; such that m; < 7; for all j > 4. Similarly,
m; is a left-to-right minimum of « if m; < m; for all j < i. A right-to-left
mazimum is an element 7; such that m; > m; for all j > 4.

Let lis(m) denote the length of the longest increasing subsequence of m, i.e.,
the largest m for which there exist indices i1 < iy < --+ < 14, such that
Ty < iy < -+ <, . Equivalently, in terms of forbidden patterns, lis() is
the smallest m such that 7w avoids 12--- (m + 1). The length of the longest
decreasing subsequence is defined analogously, and it is denoted 1ds(m). De-
fine the rank of m, denoted rank(w), to be the largest k such that 7 (i) > k
for all i < k. For example, if 7 = 63528174, then fp(m) = 1, exc(o) = 4,
des(m) =4, lis(m) = 3, 1ds(7) = 4 and rank(7) = 2.

We say that a permutation © € S, is an involution if # = 7~'. Denote by
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I, the set of involutions of length n.

1.1.3 Trivial operations

Often it will be convenient to represent a permutation 7 € S,, by an n X n
array with a cross in each one of the squares (i,7;). We will denote by arr(r)
the array corresponding to 7. Figure 1.1 shows arr(63528174).

Figure 1.1 The array of m = 63528174.

The diagonal from the top-left corner to the bottom-right corner of the array
will be referred to as main diagonal, and the diagonal perpendicular to it
will be called secondary diagonal. Note that fixed points of 7 correspond to
crosses on the main diagonal of the array, and excedances of 7 are represented
by crosses to the right of this diagonal.

Given a permutation @ = mymy - - m,, define its reversal 7t = m, ... mom
and its complementation 7 = (n+1—m)(n+1—m2) -+ (n+ 1 —m,). The
array of 7 is obtained from the array of m by a flip along a vertical axis,
so fixed points (resp. excedances) of 7 correspond to crosses on (resp. to
the left of) the secondary diagonal of the array of 7. Similarly, define 7
to be the permutation whose array is the one obtained from that of m by
reflection along the secondary diagonal. Note that reflecting the array of w
along the main diagonal we get the array of its inverse 7—!. For any set of
permutations 3, let 3 be the set obtained by reversing each of the elements
of ¥. Define S and ©-! analogously. The following trivial lemma will be
used in Chapters 2 and 3.

Lemma 1.1 Let ¥ C Uk215k be a finite set of patterns, and let m € Sy,.
We have that

(1) TES(T) = FES(T) = FES,(T) < 1 les, (T,

(2) fp(7) = fp(7), exc(T) = exc(n),
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(3) fp(r~1) = fp(n), exc(n™1) = n — fp(7) — exc(m).

In this thesis we will often be interested in the distribution of the statistics
fp and exc among the permutations avoiding a certain pattern or set of
patterns. Given any such set ¥, we define the generating function Fy, as

1’ .q, 2 Z Z fp(7r oxc(7r N (11)

n>0 eS8y (%)

If ¥ = {0}, we will write F, instead of Fy,}. The following lemma restates
the previous one in terms of generating functions.

Lemma 1.2 Let X be any set of permutations. We have
(1) Fs(v,q,2) = Fs(2,q,2),
(2) Fxfl(l'a q, Z) = FE($/Q7 1/‘]5 qZ)

Proof. To prove (1), consider the bijection between Sy, () and S, (%) that
maps 7w to 7. The equation follows from parts (1) and (2) of Lemma 1.1.

Equation (2) follows similarly from parts (1) and (3) of the previous lemma,
noticing that

Z Z :L,fp(w)qexc(ﬂ n Z Z fp(7r exc(ﬂ’l)zn —

n>0reS, (X1 n>207eS,(X)
(m) exc(m)
Z Z (m) n fp(m)—exc 7r) Z Z ( > (é) (qz)n
n>071eS,(X) n>071eS, (2

|

If for two sets of patterns X7 and Xy we have that Fy, (z,q, 2) = Fx,(z,q, 2)
(i.e., the joint distribution of fixed points and excedances is the same in
Y -avoiding as in Yg-avoiding permutations), we will write 1 ~ Xo. If we
have that Fy,(x,q,2) = Fx,(v/q,1/q,qz), we will write ¥1~¢¥9. In this
notation, Lemma 1.2 says that S~ Y and Z_lwa.

1.2 Dyck paths

A Dyck path of length 2n is a lattice path in Z? between (0,0) and (2n,0)
consisting of up-steps (1,1) and down-steps (1, —1) which never goes below
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the z-axis. We shall denote by D,, the set of Dyck paths of length 2n, and
by D = {U,>0 D the class of all Dyck paths. It is well-known that |D,| =

C,= %—i—l (27:‘), the n-th Catalan number. If D € D,,, we will write |D| = n to

indicate the semilength of D. The generating function that enumerates Dyck
1—/1—1z
2z

9

paths according to their semilength is >~ p /P! = Y n>0 Cn2" =
which we denote by C(z).

Sometimes it will be convenient to encode each up-step by a letter u and
each down-step by d, obtaining an encoding of the Dyck path as a Dyck
word. We will use D to refer indistinctively to the Dyck path D or to the
Dyck word associated to it. In particular, given Dy € D,,,, Dy € D,,, we
will write D1Dy to denote the concatenation of Dy and Dy (note that, as
seen in terms of lattice paths, D5 has to be shifted 2ny units to the right). If
A is any sequence of up and down steps, length(A) will denote the number
of steps in the sequence. For example, if A € D,,, then length(A) = 2n.

1.2.1 Standard statistics

A peak of a Dyck path D € D is an up-step followed by a down-step (i.e., an
occurrence! of ud in the associated Dyck word). The coordinates of a peak
are given by the point at the top of it. A hill is a peak at height 1, where
the height is the y-coordinate of the peak. Denote by h(D) the number of
hills of D, and by pa(D) the number of peaks of D of height at least 2. A
valley of D is a down-step followed by an up-step (i.e., an occurrence of du
in the associated Dyck word). Denote by va(D) the number of valleys of D.
Clearly, both pa(D) + h(D) and va(D) + 1 equal the total number of peaks
of D. A double rise of D is an up-step followed by another up-step (i.e., an
occurrence uu in the Dyck word). Denote by dr(D) the number of double
rises of D.

An odd rise is an up-step in an odd position when the steps are numbered
from left to right starting with 1 (or, equivalently, it is an up-step at odd
level when the steps leaving the z-axis are considered to be at level 1).
Denote by or(D) the number of odd rises of D. Even rises and er(D) are
defined analogously. The z-coordinate of an odd or even rise is given by the
rightmost end of the corresponding up-step.

A return of a Dyck path is a down-step landing on the x-axis. An arch is

In the context of Dyck words, the letters have to appear in consecutive positions to
form an occurrence of a subword.
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a part of the path joining two consecutive points on the z-axis. Clearly for
any D € D, the number of returns equals the number of arches. Denote
it by ret(D). Define the xz-coordinate of an arch as the z-coordinate of its
leftmost point.

The height of D is the y-coordinate of the highest point of the path. Denote
by D=F the set of Dyck paths of height at most k. For any D € D,,, define
v(D) to be the height of the middle point of D, that is, the y-coordinate
of the intersection of the vertical line x = n with the path. For example, if
D € Dg is the path in Figure 1.2, then h(D) = 1, pa(D) = 4, va(D) = 4,
dr(D) =3, or(D) =5, er(D) = 3, ret(D) = 2, v(D) = 2, and its height is 3.

Define a pyramid to be a Dyck path that has only one peak, that is, a path
of the form u*d* with & > 1 (here the exponent indicates the number of
times the letter is repeated). For a Dyck path D € D,,, denote by D* the
path obtained by reflection of D from the vertical line z = n. We say that
D is symmetric if D = D*. Denote by Ds C D the subclass of symmetric
Dyck paths.

1.2.2 Tunnels

Here we introduce a new class of statistics on Dyck paths that will become
very useful for the study of statistics on permutations avoiding patterns of
length 3. They are based on the notion of tunnel of a Dyck path.

For any D € D, define a tunnel of D to be a horizontal segment between
two lattice points of D that intersects D only in these two points, and stays
always below D. Tunnels are in obvious one-to-one correspondence with de-
compositions of the Dyck word D = AuBdC, where B € D (no restrictions
on A and C). In the decomposition, the tunnel is the segment that goes
from the beginning of the u to the end of the d. If D € D,,, then D has
exactly n tunnels, since such a decomposition can be given for each up-step
u of D. The length of a tunnel is just its length as a segment, and the height
is its y-coordinate. It will be useful to define the depth of a tunnel T as
depth(7T') := ilength(7") — height(7') — 1.

A tunnel of D € D, is called a centered tunnel if the z-coordinate of its
midpoint (as a segment) is n, that is, the tunnel is centered with respect to
the vertical line through the middle of D. In terms of the decomposition of
the Dyck word D = AuBdC, this is equivalent to A and C' having the same
length, namely, length(A) = length(C'). Alternatively, this can be taken as
a definition of centered tunnel. Denote by ct(D) the number of centered
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tunnels of D.

A tunnel of D € D, is called a right tunnel if the z-coordinate of its midpoint
is strictly greater than n, that is, the midpoint of the tunnel is to the right
of the vertical line through the middle of D. In terms of the decomposition
D = AuBdC, this is equivalent to saying that length(A) > length(C).
Denote by rt(D) the number of right tunnels of D. In Figure 1.2, there is
one centered tunnel drawn with a solid line, and four right tunnels drawn
with dotted lines. Similarly, a tunnel is called a left tunnel if the z-coordinate
of its midpoint is strictly less than n. Denote by 1t(D) the number of left
tunnels of D. Clearly, 1t(D) + rt(D) + ct(D) = n for any D € D,,.

Figure 1.2 One centered and four right tunnels.

We will distinguish between right tunnels of D € D, that are entirely
contained in the half plane x > n and those that cross the vertical line
x = n. These will be called right-side tunnels and right-across tunnels,
respectively. In terms of Dyck words, a decomposition D = AuBdC corre-
sponds to a right-side tunnel if length(A) > n, and to a right-across tunnel if
length(C') < length(A) < n. In Figure 1.2 there are three right-side tunnels
and one right-across tunnel. Left-side tunnels and left-across tunnels are
defined analogously.

For any D € D, we define a multitunnel of D to be a horizontal segment
between two lattice points of D such that D never goes below it. In other
words, a multitunnel is just a concatenation of tunnels, so that each tunnel
starts at the point where the previous one ends. Similarly to the case of
tunnels, multitunnels are in obvious one-to-one correspondence with decom-
positions of the Dyck word D = ABC, where B € D is not empty. In the
decomposition, the multitunnel is the segment that connects the initial and
final points of B.

A multitunnel of D € D, is called a centered multitunnel if the x-coordinate
of its midpoint (as a segment) is n, that is, the tunnel is centered with respect
to the vertical line through the middle of D. In terms of the decomposition
D = ABC, this is equivalent to saying that A and C' have the same length.
Denote by cmt(D) the number of centered multitunnels of D.
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s

yavid
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Figure 1.3 Five centered multitunnels, two of which are centered
tunnels.

Additional interpretations of centered tunnels

Through the numerous known bijections between Dyck paths and other com-
binatorial objects counted by the Catalan numbers, the new statistics that
we defined on Dyck paths give rise to corresponding statistics in other ob-
jects. Here we give a couple of examples that were suggested by Emeric
Deutsch.

It is known [90, Exercise 6.19(n)] that the diagrams of n nonintersecting
chords joining 2n points on the circumference of a circle are in bijection
with D,,. We can draw these points as the vertices of a regular 2n-gon, and
the chords as straight segments, so that one of the diagrams has n horizontal
chords. The bijection to Dyck paths can be described as follows. Starting
counterclockwise from the topmost vertex on the left, for each vertex draw
an up-step in the path if the chord from that vertex is encountered for the
first time, and a down-step otherwise. By means of this bijection, horizontal
chords of the diagram correspond precisely to centered tunnels of the Dyck
path (see Figure 1.4).

More generally, if we number the vertices of the 2n-gon from 1 to 2n in the
order in which they are read by the bijection, then, for 1 < i < n, the chords
parallel to the line between vertices ¢ and ¢ + 1 correspond to tunnels of the
Dyck path with midpoint at x =4 or at x = n + 4.

Another class of objects in bijection with D,, is the set of plane trees with
n + 1 vertices. Consider the bijection described in [90, Exercise 6.19(e)].
Now, given a plane tree on n + 1 vertices, label the vertices with integers
from 0 to n in preorder (depth-first search) from left to right. Next, label
the vertices again from 0 to n, but now in preorder from right to left. Then,
the vertices other than the root for which the two labels coincide correspond



1.3. Combinatorial classes and generating functions 17

/

Figure 1.4 A bijection between nonintersecting chord diagrams and
Dyck paths.

to centered tunnels in the Dyck path. Besides, right tunnels correspond
precisely to vertices for which the second label is less than the first one.

1.3 Combinatorial classes and generating
functions

Here we direct the reader to [41] and [83] for a detailed account on combi-
natorial classes and the symbolic method.

1.3.1 Ordinary generating functions

Let A be a class of unlabelled combinatorial objects and let || be the size
of an object o € A. If A,, denotes the objects in A of size n and a,, = |Ay|,
then the ordinary generating function of the class A is

A(z) = Z ol = Z anz".

acA n>0

In our context, the size of a Dyck path is simply its semilength. From now on
we will use the acronym GF as a shorthand for the term generating function
or, more specifically, ordinary generating function.

There is a direct correspondence between set theoretic operations (or “con-
structions”) on combinatorial classes and algebraic operations on GFs. Ta-
ble 1.1 summarizes this correspondence for the operations that are used
in this work. There “union” means union of disjoint copies, “product” is
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the usual cartesian product, and “sequence” forms an ordered sequence in
the usual sense. Enumerations according to size and auxiliary parameters

Construction Operation on GFs
Union A=B+C | A(z) = B(2) 4+ C(2)
Product A=BxC | A(z) = B(2)C(z)
Sequence A=Seq(B) | A(z) = 1_%(2)

Table 1.1 The basic combinatorial constructions and their transla-
tion into ordinary generating functions.

X1s X2, - - -, Xr are described by multivariate (ordinary) GFs,

Aluy,ug, ... up,z) = Z u)fl(o‘)u?(o‘) ceeXr(@) el
acA

Throughout this thesis the variable z is reserved for marking the length of a
permutation and the semilength of a Dyck path, = is used for marking the
number of fixed points of a permutation and the number of centered tunnels
or tunnels of depth 0 of a Dyck path, and ¢ is the variable that marks the
number of excedances of a permutation and the number of right tunnels or
tunnels of negative depth of a Dyck path, unless otherwise stated.

1.3.2 Exponential generating functions

Let now A be instead a class of labelled combinatorial objects and let |a| be
the size of an object a € A as before. Let A,, denote the objects in A of
size n and let a,, = |A,| again. The exponential generating function, EGF
for short, of the class A is

| n
A(z) = Z fa—]! = Zan%.

acA n>0

In our context, the size of a permutation is simply its length.

Table 1.2 summarizes the correspondence between set-theoretic operations
on labelled combinatorial classes and algebraic operations on EGFs. There
“labelled product” is the usual cartesian product enriched with the rela-
belling operation, and “set” forms sets in the usual sense. Particularly
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important for us is the construction “boxed product” A = B % C, which
corresponds to the subset of B x C (the usual labelled product) formed by
those pairs in which the smallest label lies in the B component.

Construction Operation on GF

Union A=BUC | A(z) = B(2) + C(2)
Labelled product | A=B*C | A(z) = B(2)C(z)

Set A=TI(B) | A(z) = exp(B(z))

Boxed product A=B"%C | A(2) = [{(£B(t)) - C(t)dt

Table 1.2 The basic combinatorial constructions and their transla-
tion into exponential generating functions.

Enumerations according to size and an auxiliary parameter y are described
by bivariate (exponential) generating functions, or BGFs,
x(@) 27 B2
A(U,Z) = Z u W = Z AnJ{;'LL H,

acA n,k>0

with A, ; the number of objects of size n with y-parameter equal to k.
Exponential generating functions are used in Chapter 6. There, the variable
z is reserved for marking the length of a permutation, and the variable u is
used mostly for marking occurrences of a subword. All derivatives in that
chapter are taken with respect to z.

1.3.3 The Lagrange inversion formula

The Lagrange inversion formula (see for example [90, Theorem 5.4.2]) is a
useful tool that provides a way to compute the coefficients of a generating
function if it satisfies an equation of a certain form.

Theorem 1.3 ([90]) Let G(x) € Cl[[z]] be a formal power series such that
G(0) # 0, and let f(x) be defined by f(x) = xG(f(x)). Then, for any
k,n € Z,

nfa"]f ()" = klz"F]G ()",

where [z"|A(z) denotes the coefficient of z™ in the expansion of A(z).
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1.3.4 Chebyshev polynomials

Chebyshev polynomials of the second kind are defined by U, (cos 6) = w
for 7 > 0. It can be checked that U, (t) is a polynomial of degree r in ¢t with
integer coefficients, and that the following recurrence holds:

{ Ur(t) = 2tU,—1(t) — Up—o(t) for all r > 2, (12)

Uo(t) = 1, Uy (t) = 2t.

Chebyshev polynomials were invented for the needs of approximation theory,
but are also widely used in various other branches of mathematics, including
algebra, combinatorics, and number theory. The relation between restricted
permutations and Chebyshev polynomials was discovered for the first time
by Chow and West in [20], and later by Mansour and Vainshtein [66, 67],
and Krattenthaler [59].

1.4 Patterns of length 3

For the case of patterns of length 3, it is known [58] that regardless of the
pattern o € Ss, |S,(0)| = Cy,, the n-th Catalan number. While the equalities
152(132)] = [S,(281)] = |S4(312)] = [S(213)] and |8, (321)] = [Sa(123)] are
straightforward by reversal and complementation operations, the equality
|S,(321)| = |S,(132)] is more difficult to establish. Bijective proofs of this
fact are given in [59, 75, 84, 94]. However, none of these bijections preserves
either of the statistics fp or exc.

Patterns o and ¢’ are said to be in the same Wilf-equivalence class if |S,,(0)| =
|S,(07)| for all n. Partial results on the classification of forbidden patterns
can be found in [5, 12, 13, 86, 87, 88|.

1.4.1 Equidistribution of fixed points

It was not until recently that the concept of pattern avoidance, which regards
a permutation as a word, was studied together with a statistic arising from
viewing a permutation as a bijection. In the recent paper [78], Robertson,
Saracino and Zeilberger consider restricted permutations with respect to the
number of fixed points, obtaining the following refinement of the fact that

|8 (321)] = [Sn(132)].
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Theorem 1.4 ([78]) The number of 321-avoiding permutations = € S,
with fp(m) = i equals the number of 132-avoiding permutations ™ € S, with
fp(m) =1, for any 0 <i < n.

Their proof is nontrivial and technically involved. In the same paper, they
study the distribution of fixed points for all six patterns of length 3.

Two questions arise naturally with this result in sight. The first one is
whether there exists a simple bijection between S,(321) and S,,(132) that
preserves the number of fixed points. This would give a better understanding
of why fixed points are equidistributed in both sets of pattern-avoiding per-
mutations. There does not seem to be an intuitive reason why Theorem 1.4
holds, especially since from the definitions fixed points do not seem to be re-
lated to the notion of pattern avoidance. The second question is whether this
theorem can be generalized to other statistics or to other patterns. These
two issues are discussed in the next chapter.






2

Fixed points and excedances
in permutations avoiding one
pattern of length 3

Here we consider o-avoiding permutations for every pattern o € S3, and we
study the distribution of the statistics ‘number of fixed points’ and ‘number
of excedances’ on them. The work in this chapter is motivated in large
part by Theorem 1.4, and more precisely by a generalization of it, namely
Theorem 2.3, which is the main result of this chapter. We will show that the
joint distribution of the number of fixed points and the number of excedances
is the same in S,,(321) as in S,,(132). In other words, we have that for any
0<1,75<n,

{m € S,(321) : fp(m) =1, exc(m) = j}
= |{r € 8§,(132) : fp(mw) =1, exc(mw) = j}|.

In terms of the generating functions F,, defined in equation (1.1), this re-
sult can be expressed equivalently as F391(x,q, 2) = Fi32(x,q,2). A bijective
proof of this theorem is given in Section 2.2, where we also obtain an expres-
sion for this GF. In Sections 2.3 and 2.4 we consider permutations avoiding
each of the remaining patterns of length 3, giving the distribution of the
statistics fp and exc in all cases except for the pattern 123, for which we can
only give partial results regarding fp.

One of the main tools in the this chapter and the next one will be a bijec-
tion between 132-avoiding permutations and Dyck paths that we denote ¢.
This bijection is presented in Section 2.1, where several of its properties are
studied.

It is well known that for any o € Ss, |Sy(0)| = C,,. By Lemma 1.2, we
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have that 132 =~ 213, and that 231~ ;312. These are the only equivalences
that follow from the trivial bijections. Together with the just mentioned fact
that 321 ~ 132 (see Section 2.2), we have the following equivalence classes
of patterns of length 3 with respect to fixed points and excedances:

a) 132 ~ 213 ~ 321
b) 123
c) 231 ~; ) 312

2.1 The bijection ¢

In this section we define a bijection ¢ between S,,(132) and D,,. This bijec-
tion will be used extensively throughout this work, because of its convenient
properties.

Given any permutation m € S, consider its array arr(m) as defined in Sec-
tion 1.1.3. The diagram of m can be obtained from it as follows. For each
cross, shade the cell containing it and the squares that are due south and
due east of it. The diagram is defined as the region that is left unshaded.
It is shown in [74] that this gives a bijection between S,,(132) and Young
diagrams that fit in the shape (n —1,n —2,...,1). Consider now the path
determined by the border of the diagram of =, that is, the path with north
and east steps that goes from the lower-left corner to the upper-right corner
of the array, leaving all the crosses to the right, and staying always as close
to the diagonal connecting these two corners as possible. Define ¢(7) to be
the Dyck path obtained from this path by reading an up-step for each north
step and a down-step for each east step (that is, we rotate it 45°). Since the
path in the array does not go below the diagonal, ¢(m) does not go below
the z-axis. Figure 2.1 shows an example when m = 67435281.

Figure 2.1 The bijection ¢.
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The bijection ¢ is essentially the same bijection between S,,(132) and D,
given by Krattenthaler [59] (see also [43]), up to reflection of the path from
a vertical line.

Next we define the inverse map ¢! : D,, — S,(132). Given a Dyck path
D € D, the first step needed to reverse the above procedure is to transform
D into a path U from the lower-left corner to the upper-right corner of an
nXxn array, not going below the diagonal connecting these two corners. Then,
the squares to the left of this path form a Young diagram contained in the
shape (n—1,n—2,...,1), and we can shade all the remaining squares. From
this diagram, the permutation 7 € S, (132) can be recovered as follows: row
by row, put a cross in the leftmost shaded square such that there is exactly
one cross in each column. Start from the top and continue downward until
all crosses are placed.

The bijection ¢ is useful here because it transforms fixed points and ex-
cedances of the permutation into centered tunnels and right tunnels of the
Dyck path respectively. These two properties, along with a few more that
will be used in upcoming chapters, are shown in the next proposition. Recall
the definitions from Sections 1.1.2 and 1.2.1. Denote by nlis(7) the number
of increasing subsequences of 7 of length lis().

Proposition 2.1 The bijection ¢ : S,,(132) — D,, satisfies

(1)

(2) exc(m) = rt(p(m)),

(3) des(m) = va(p(m)),

(4) lis(m) = height of ¢(m),
(5) nlis(m) = #{peaks of ¢(7) at maximum height},
(6) 1ds(m) = #{peaks of ¢(m)},

(7) rank(m) = 3 (n = v(p(r))),

for all m € §,(132).

Proof. For the proof of the first six equalities, instead of using D = ¢(n),
it will be convenient to consider the associated path U from the lower-left
corner to the upper-right corner of arr(7) with north and east steps. We will
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talk about tunnels of U to refer to the corresponding tunnels of D under
this trivial transformation.

We now show how to associate a unique tunnel of D to each cross of the
array arr(m). Observe that given a cross in position (4,5), U has a north step
in row ¢ and an east step in column j. In D, these two steps correspond to
steps u and d respectively, so they determine a decomposition D = AuBdC
(see Figure 2.2), and therefore a tunnel of D (it is not hard to see that u
and d are at the same level). According to whether the cross was to the left
of, to the right of, or on the main diagonal or arr(r), the associated tunnel
will be respectively a left, right, or centered tunnel of D. Thus, fixed points
give centered tunnels and excedances give right tunnels.

U

—/ Y )

Figure 2.2 A cross and the corresponding tunnel.
To show (3), observe that from the description of ¢!, a sequence of consec-
utive north steps of U gives rise to an increasing run of crosses in the rows
of arr(m) where those steps lie. Descents of the permutation occur precisely
in the rows of the array where there is a north step of U that is preceded by
an east step. And these are just the valleys of ¢(m).

Property (4) is shown in [59], but here we give a more graphical proof.
Given an increasing subsequence of 7, consider the crosses of arr(w) that
form such subsequence. The tunnels of ¢(7) corresponding to these crosses
are all at different heights, and their projections on the z-axis are nested
intervals (i.e., pairwise contained in each other). Reciprocally, any tower of
tunnels of ¢(m) whose projections on the z-axis are nested corresponds to
an increasing subsequence of 7. The maximum number of tunnels in such a
tower is the height of the path, so (4) follows. Furthermore, the number of
such towers having as many tunnels as possible equals the number of peaks
of ¢(7) at maximum height (the highest tunnel of the tower determines the
peak), which proves (5).

Part (6) follows from the description of =1 and the observation that the
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crosses of the arr(m) located in the positions of the peaks (inner corners) of
U form a decreasing subsequence of 7 of maximum length.

To prove the last equality of the proposition, notice that rank(7) is the largest
m such that an m x m square fits in the upper-left corner of the diagram
of m. Therefore, the height of ¢(m) at the middle is exactly v(p(w)) =
n — 2rank(7). O

2.1.1 More properties

We have seen what fixed points and excedances in 132-avoiding permutations
are mapped to by ¢. To study these statistics in 312-avoiding permutations,
it will be convenient to first apply the complementation operation that maps
m to . Table 2.1 summarizes the correspondences of ¢ that we will use to
study fixed points and excedances. Recall from Section 1.2.2 that the depth
of a tunnel T is defined as depth(T") := flength(7T") — height(7") — 1.

In the permutation 7 In the array of w In the Dyck path ()

fixed points of 7 COsSes ol the centered tunnels
main diagonal

crosses to the right

of the main diagonal
crosses on the

secondary diagonal

crosses to the left of tunnels of

the secondary diagonal negative depth

excedances of right tunnels

fixed points of 7 tunnels of depth 0

excedances of 7

Table 2.1 Behavior of ¢ on fixed points and excedances.

The correspondences between the first two columns are clear as we saw
in Section 1.1.3. The first two rows of the table have been discussed in
Proposition 2.1. Here we repeat the same reasoning from the proof of that
proposition to show how ¢ maps crosses on the secondary diagonal to tunnels
of depth 0, and crosses to the left of the secondary diagonal to tunnels of
negative depth.

Again, instead of using D = ¢(), it will be convenient to consider the path
U from the lower-left corner to the upper-right corner of the array of «, and
to talk about tunnels of U to refer to the corresponding tunnels of D under
this trivial transformation.

Recall how in the proof of Proposition 2.1 we associated a unique tunnel 71" of
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D to each cross X of arr(m). Given a cross X = (7,7), U has a north step in
row ¢ and an east step in column j. These two steps in U correspond to steps
u and d in D, respectively, so they determine a decomposition D = AuBdC
(see Figure 2.2), and therefore a tunnel T of D.

The distance between these two steps determines the length of T, and the
distance from these steps to the secondary diagonal of the array determines
the height of T'. In order for the corresponding cross to lie on the secondary
diagonal, the relation between these two quantities must be %length(T ) =
height(T")+1, which is equivalent to depth(7") = 0, by the definition of depth.
The depth of T indicates how far from the secondary diagonal X is. The
cross lies to the left of the secondary diagonal exactly when depth(7") < 0.
This justifies the last two rows of the table.

Figure 2.3 Three tunnels of depth 0 and seven tunnels of negative
depth.

We define two new statistics on Dyck paths. For D € D, let tdo(D) be the
number of tunnels of depth 0 of D, and let td<¢(D) be the number of tunnels
of negative depth of D. In Figure 2.3, there are three tunnels of depth 0
drawn with a solid line, and seven tunnels of negative depth drawn with
dotted lines. Let us state these results as a lemma, which partially overlaps
with Proposition 2.1.

Lemma 2.2 Let 7 € S,(132), p € 8,(312). We have
(1) fp(m) = ct(ep(m)),
(2) exc(m) = rt(p(m)),
(3) fp(p) = tdo(¢(p)),

(4) exc(p) = td<o((p))-
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2.2 a) 132~ 213 ~ 321

This is the most interesting case of permutations avoiding one pattern of
length 3. By Lemma 1.2 we have that 132 ~ 213. On the other hand,
Theorem 1.4 says that 132~ 321, which is a surprising and nontrivial result.
Here we give a generalization of this fact, namely that 132 ~ 321. This
result is stated in the following theorem, for which we give a combinatorial
proof.

Theorem 2.3 The number of 321-avoiding permutations m € S, with
fp(m) = i and exc(mw) = j equals the number of 132-avoiding permutations
m € Sy, with fp(m) =1 and exc(w) = j, for any 0 < i,j < n.

We present a bijection between 321- and 132-avoiding permutations that
preserves the number of fixed points and the number of excedances. Our
bijection is a composition of two slightly modified known bijections into
Dyck paths, and the result follows from a new analysis of these bijections.
One of them is the bijection ¢ from Section 2.1. The other one is based
on the Robinson-Schensted-Knuth correspondence, and from it stems the
difficulty of the analysis.

We also show that the length of the longest increasing subsequence in 321-
avoiding permutations corresponds to a statistic in 132-avoiding permuta-
tions that we call rank, which further refines Theorem 2.3. This proof is
joint work with Igor Pak [36].

This section is structured as follows. The description of the main bijec-
tion is done in Subsection 2.2.1, where the new part is a bijection from
321-avoiding permutations to Dyck paths. In Subsection 2.2.2 we establish
properties of this bijection. Subsection 2.2.3 contains proofs of two techni-
cal lemmas. In Subsection 2.2.4 we give an expression for the generating
function Fi91(x,q, 2).

2.2.1 A bijection between §,(321) and S, (132) pre-
serving fixed points and excedances

Here we present a bijection that is a composition of two bijections into Dyck
paths. In fact, this will prove the following generalization of Theorem 2.3:

Theorem 2.4  The number of 321-avoiding permutations m € S, with
fp(m) = i, exc(m) = j and lis(m) = k equals the number of 132-avoiding
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permutations m € Sy with fp(m) = i, exc(m) = j and rank(w) = n — k, for
any 0 <1,j,k <n.

We establish a bijection O : S,,(321) — S,,(132) which respects the statis-
tics as above. While © is not hard to define, its analysis is less straightfor-
ward and will occupy much of the section. The bijection © is the composi-
tion of two bijections, one from S, (321) to D, and another one from D,, to
S,(132). The second one is just the inverse of the bijection ¢ : S,,(132) —
D,, presented in Section 2.1. The first one is described next.

We define the bijection ¥ : S,,(321) — D, in two steps. Given 7 € S,,(321),
we start by applying the Robinson-Schensted-Knuth correspondence to 7
[90, Section 7.11] (see also [58, 82]). This correspondence gives a bijection
between the symmetric group S, and pairs (P, Q) of standard Young tableaux
of the same shape A - n. For 7 € §,(321) the algorithm is particularly
easy because in this case the tableaux P and () have at most two rows.
The insertion tableau P is obtained by reading 7 from left to right and, at
each step, inserting 7; to the partial tableau obtained so far. Assume that
m,...,Ti—1 have already been inserted. If 7; is larger than all the elements
on the first row of the current tableau, place m; at the end of the first row.
Otherwise, let m be the leftmost element on the first row that is larger than
m;. Place m; in the square that m occupied, and place m at the end of the
second row (in this case we say that m; bumps m). The recording tableau Q
has the same shape as P and is obtained by placing 7 in the position of the
square that was created at step i (when m; was inserted) in the construction
of P, for all i from 1 to n. We write RSK(7) = (P, Q).

[2]3] [2]3]5] 1[3]5] 1[3]4] 1[3]4]6] 1[3]4]6]8] 1[3]4]6]7]
2] 2|5 2|5 E 2[5]8
[12] [1]2]3] 1]2]3] 1]2]3] 1[2]3]6] 1[2]3]6]7] 1[2]3]6]7]
4] 415 415 415 4]5]8
_ [1]3]4]6]7] _[1]2]3]6]7]
P= 2[5]8 Q_453

Figure 2.4 Construction of the RSK correspondence RSK(7w) =
(P, Q) for m = 23514687.

Now, the first half of the Dyck path ¥ () is obtained by adjoining, for i from
1 to n, an up-step if i is on the first row of P, and a down-step if it is on
the second row. Let A be the corresponding word of u’s and d’s. Similarly,
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let B be the word obtained from @ in the same way. We define ¥() to be
the Dyck path obtained by the concatenation of the word A and the word B
written backwards. For example, from the tableaux P and @ as in Figure 2.4
we get the Dyck path shown in Figure 1.2. The following proposition, which
is proved in Section 2.2.2, summarizes some properties of this bijection W:

Proposition 2.5 The bijection ¥ : S,,(321) — D,, satisfies
(1) fp(m) = ct(¥(m)),
(2) exc(m) = rt(¥(m)),
(3) lis(m) = & (n+ v(¥(n))),

for all m € S,(321).

Suppose RSK(7) = (P,Q) for any m € S,. A fundamental and highly
nontrivial property of the RSK correspondence is the duality: RSK(r~!) =
(Q,P) 90, Section 7.13]. The classical Schensted’s Theorem states that
lis(7) is equal to the length of the first row of the tableau P (and Q). Both
results are used in the proof of Proposition 2.5.

Now Theorem 2.4 follows easily from this proposition together with Propo-
sition 2.1.

Proof of Theorem 2.4. Propositions 2.5 and 2.1 imply that © = =1 o ¥ is
a bijection from S,,(321) to S,,(132) which satisfies

fp(O(m)) = ct(¥(m)

¥ (m)) = fp(m),
exc(O(m)) = rt(¥ (7)) = ex

exc(m),

rank(O(m)) = %(n —v(¥(r))) =n—

—

1
50 +v(¥(m))) =n —lis(r).
This implies the result. O

2.2.2 Properties of ¥
In this subsection we prove Proposition 2.5, which describes the properties
of ¥ that we need.

Let us first consider only fixed points in a permutation m € S,. Let 7w €
S5,(321) and assume that m; = i. Then mmy---m;—1 is a permutation of
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{1,2,...,i—1}, and 74 17iyo - - - T, is a permutation of {i + 1,9+ 2,...,n}.
Indeed, if 7; > ¢ for some j < 4, then necessarily 7 < 4 for some k > 7, and
m;m;m, would be an occurrence of 321.

Therefore, when we apply RSK to =, the elements 7;, w41, ..., 7, will never
bump any of the elements 71, o, ..., m;_1. In particular, the subtableaux of
P and @ determined by the entries that are smaller than ¢ will have the same
shape. Furthermore, when the elements greater than ¢ are placed in P and
Q, the rows in which they are placed do not depend on the subpermutation
mimy - - - m;—1. Note also that m; = ¢ will never be bumped, and it will occupy
the same position in the first row of P and Q.

When the Dyck path ¥(7) is built from P and @), this translates into the fact
that the steps corresponding to 7; in P and to ¢ in @ will be respectively an
up-step in the first half and a down-step in the second half, both at the same
height and at the same distance from the center of the path. Besides, the
part of the path between them will be itself the Dyck path corresponding to
(mig1—1)(mig2—1) - - - (mp—1). So, the fixed point m; = i determines a centered
tunnel in (7). It is clear that the converse is also true, that is, every
centered tunnel comes from a fixed point. This shows that fp(7) = ct(¥ (7)),
proving the first part of Proposition 2.5.

Let us now consider excedances in a permutation 7 € S,,(321). Our goal is to
show that the excedances of 7 correspond to right tunnels of ¥ (7). The first
observation is that we can assume without loss of generality that 7 has no
fixed points. Indeed, if m; = 7 is a fixed point of 7, then the above reasoning
shows that we can decompose ¥(7) = AuBdC, where AC is the Dyck path
V(i -« - m;—1) and B is a translation of the Dyck path ¥ ((m;11—14) - - (7, —
i)). But we have that exc(m) = exc(myme - - mi—1) + exc((mip1 — ) -+ (7 —
i)) and rt(AuBdC) = rt(AC) + rt(B), so in this case the result holds by
induction on the number of fixed points. Note also that the above argument
showed that fp(7) = fp(mime - mi—1) + p((mig1 — 4) -+ (7, — ) + 1 and
ct(AuBdC) = ct(AC) + ct(B) + 1.

Suppose that 7 € §,(321) has no fixed points. We will use the fact that a
permutation is 321-avoiding if and only if both the subsequence determined
by its excedances and the one determined by the remaining elements (in this
case, the deficiencies) are increasing (see e.g. [74]). Denote by X; := (i, ;)
the crosses of the array representation of w. To simplify the presentation, we
will refer indistinctively to ¢ or X;, hoping this does not lead to confusion.
For example, we will say “X; is an excedance”, etc.

Define a matching between the excedances and the deficiencies of m by the
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following algorithm. Let i1 < i5 < - -+ < i} be the positions of the excedances
of m and let j; < jo < -+ < jp_i be the deficiencies. Note that from the
previous paragraph we know that m;, < m, < --- < m;, and m;; < m;, <
v S e

Matching Algorithm
(1) Initialize a :=1, b:= 1.

(2) Repeat until @ > k or b > n — k:
(a) If ig > jp, then b:= b+ 1. (X}, is not matched.)
(b) Else if 7;, < 7j,, then a :=a+ 1. (X;, is not matched.)
(c) Else, match X;, with X;;a:=a+1,b:=b0+1.

by

(3) Output the matching sequence.

Example. Let 7 = (4,1,2,5,7,8,3,6,11,9,10) as in Figure 2.5 below. We
havei1:1,i2:4,z’3:5,i4:6,i5:9,andj1:2,]'2:3,]'3:7,
ja =8, j5 = 10, j¢ = 11. In the first execution of the loop in step (2) of the
algorithm, neither ¢; > j; nor m;; < 7, hold, so X;, = (1,4) and X;, = (2,1)
are matched. Now we repeat the loop with a = b = 2, and since iy > jo,
we are in the case given by (2a) (X, = (3,2) is not matched). In the next
iteration, a = 2 and b = 3, so we match X;, = (4,5) and X;, = (7,3). Now
we have ¢ = 3 and b = 4, so we match X;, = (5,7) and X, = (8,6). The
values of @ and b in the next iteration are 4 and 5 respectively, so we are in
the case of (2b), m;, =8 < 9 = 7j,, and X;, = (6,8) is unmatched. Now
a =b =15, and we match X;; = (9,11) and X, = (10,9). The matching
algorithm ends here because now a =6 > 5 = k.

An informal, more geometrical description of the matching algorithm is the
following. For each pair of crosses of the array (seen as embedded in the
plane), consider the line that their centers determine. If one of these lines
has positive slope and leaves all the remaining crosses to the right, match
the two crosses that determine it, and delete them from the array. If there is
no line with these properties, delete the cross that is closer to the upper-left
corner of the array (it is unmatched). Repeat the process until no crosses
are left.

Now we consider the matched excedances on one hand and the unmatched
ones on the other. We summarize rather technical results in the following



34 Chapter 2. Statistics in permutations avoiding one pattern

AT L]

§

Figure 2.5 Matching for 7 = (4,1,2,5,7,8,3,6,11,9,10), and ¥(r).

two lemmas, which are proved in Section 2.2.3. Recall the definitions of
right-side and left-side tunnels from Section 1.2.2.

Lemma 2.6 The following quantities are equal:

(1) the number of matched pairs (X;, X;), where X; is an excedance and
X, a deficiency;

the length of the second row of P (or Q);

Note that (5)=(6) implies that lis(7) = 3 (n + v(¥())), which is the third
part of Proposition 2.5.

Lemma 2.7 The number of unmatched excedances (resp. deficiencies) of ©
equals the number of right-across (resp. left-across) tunnels of W ().

Since each excedance of 7 either is part of a matched pair (X;, X;) or is
unmatched, Lemmas 2.6 and 2.7 imply that the total number exc(m) of
excedances equals the number of right-side tunnels of ¥(7) plus the number
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of right-across tunnels, which is rt(¥(7)). This implies the second part of
Proposition 2.5.

To summarize, we will have shown after proving these lemmas that the
bijection ¥ satisfies all three properties described in Proposition 2.5, which
completes the proof. O

2.2.3 Properties of the matching algorithm

In this subsection we prove the two lemmas above. We also give a more
direct description of the bijection ¥ using the matching algorithm, without
referring explicitly to RSK.

Proof of Lemma 2.6. From the descriptions of the RSK algorithm and the
matching, it follows that an excedance X; and a deficiency X; are matched
with each other precisely when 7; bumps m; when RSK is performed on ,
and that these are the only bumpings that take place. Indeed, an excedance
never bumps anything because it is larger than the elements inserted before.
On the other hand, when a deficiency X is inserted, it bumps the smallest
element larger than m; which has not been bumped yet (which corresponds
to an excedance that has not been matched yet), if such an element exists.
This proves the equality (1)=(2).

To see that (2)=(3), observe that right-side tunnels correspond to up-steps
in the right half of ¥(7), which by the construction of the bijection ¥ cor-
respond to elements on the second row of Q. The equality (3)=(5) follows
easily by counting the number of up-steps and down-steps of the right half
of the path. The equality (4)=(5) is analogous.

Finally, Schensted’s Theorem states that the size of the first row of P equals
the length of a longest increasing subsequence of 7 (see [81] or [90, Sec-
tion 7.23]). This implies that (2)=(6), which completes the proof. O

The reasoning used in the above proof gives a nice equivalent description of
the recording tableau @ in terms of arr(7) and the matching. Read the rows
of the array from top to bottom. For ¢ from 1 to n, place ¢ on the first row of
Q if X; is an excedance or it is unmatched, and place ¢ on the second row if
X; is a matched deficiency. In the construction of the right half of ¥ (), this
translates into drawing the path from right to left while reading the array
from top to bottom, adjoining an up-step for each matched deficiency and a
down-step for each other kind of cross.
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To get a similar description of the tableau P, we use duality. By construction
of the matching algorithm, the matching in the output is invariant under
transposition of the array (reflection along the main diagonal). Recall the
duality of the RSK correspondence: if RSK(7) = (P, Q), then RSK(r 1) =
(@, P) (see e.g. [90, Section 7.13]). Therefore, the tableau P can be obtained
by reading the columns of the array of 7 from left to right and placing integers
in P according to the following rule. For each column j, place j on the first
row of P if the cross in column j is a deficiency or it is unmatched. Similarly,
place j on the second row if the cross is a matched excedance. Equivalently,
the left half of W(), from left to right, is obtained by reading the array from
left to right and adjoining a down-step for each matched excedance, and an
up-step for each of the remaining crosses.

In particular, when the left half of the path is constructed in this way, every
matched pair (X;, X;) produces an up-step and a down-step, giving the latter
a left-side tunnel. Similarly, in the construction of the right half of the path,
a matched pair gives a right-side tunnel. Observe that these are again the
equalities (1)=(3)=(4) in Lemma 2.6.

Proof of Lemma 2.7. It is enough to prove it only for the case of excedances.
The case of deficiencies follows from it by considering 7! and noticing that
U(r~!) = ¥(r)*. Indeed, by duality RSK(7~!) = (@, P), so Q gives rise
to the first half of U(7~!) and P to the second, so the path that we obtain
is the reflection of ¥(m) in a vertical axis through the middle of the path.
Let Xj; be an unmatched excedance of m. We use the above description of
U(7) in terms of the array and the matching. Each cross X; produces a step
r; in the right half of the Dyck path and another step ¢; in the left half.
Crosses above X} produce steps to the right of ri, and crosses to the left
of X}, produce steps to the left of ;. In particular, there are k — 1 steps
to the right of 75, and 7, — 1 steps to the left of £,. Note that since X} is
an excedance and 7 is 321-avoiding, all the crosses above it are also to the
left of it. Consider the crosses that lie to the left of X}. They can be of the
following four kinds:

o Unmatched excedances X;. They will necessarily lie above X}, because
the subsequence of excedances of 7 is decreasing. Each one of these
crosses contributes an up-step to the left of ¢, and down-step to the
right of 7.

e Unmatched deficiencies X;. They also have to lie above X}, otherwise
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X}, would be matched with one of them. So, each such X; contributes
an up-step to the left of £, and down-step to the right of ry.

e Matched pairs (X;, X;) (i.e. X; is an excedance and X; a deficiency),
where both X; and X lie above X}. Both crosses together will con-
tribute an up-step and a down-step to the left of ¢, and an up-step
and a down-step to the right of r.

e Matched pairs (X;, X;) (i.e. X; is an excedance and X; a deficiency),
where X lies below Xj. The pair will contribute an up-step and a
down-step to the left of ¢;. However, to the right of ri, the only
contribution will be a down-step produced by X;.

Note that there cannot be a deficiency X; to the left of X; matched with
an excedance to the right of X}, because in this case X; would have been
matched with X by the algorithm. In the first three cases, the contribution
to both sides of the Dyck path is the same, so that the heights of r; and
l, are equally affected. But since 7, > k, at least one of the crosses to the
left of X must be below it, and this must be a matched deficiency as in the
fourth case. This implies that the step 7 is at a higher y-coordinate than
l. Let hy be the height of ;. We now show that U(7) has a right-across
tunnel at height hy.

Observe that h; is the number of unmatched crosses to the left of X, and
that the height of 7 is the number of unmatched crosses above X}, (which
equals hy) plus the number of excedances above X, matched with deficiencies
below Xj. The part of the path between ¢; and the middle always remains
at a height greater than hy. This is because the only possible down-steps in
this part can come from matched excedances X; to the right of X, but each
such X; is matched with a deficiency X; to the right of X} but to the left
of X;, which produces an up-step compensating the down-step associated to
X;. Similarly, the part of the path between r; and the middle remains at a
height greater than hy. This is because the hj down-steps to the right of 7
that come from unmatched crosses above X do not have a corresponding
up-step in the part of the path between 7, and the middle. Hence, ¢}, is the
left end of a right-across tunnel, since the right end of this tunnel is to the
right of 7, which in turn is closer to the right end of ¥(7) than ¢ is to its
left end (see Figure 2.6).

It can easily be checked that the converse is also true, namely that in ev-
ery right-across tunnel of W(r), the step at its left end corresponds to an
unmatched excedance of 7. O
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Figure 2.6 An unmateched excedance produces a right-across tunnel.

As a side note, let us point out that the limiting distribution of the length
of the longest increasing subsequence in S,(321) has been studied in [26].
From Theorem 2.4, the results in [26] can be translated into results on the
limiting distribution of the statistic rank in S,,(132).

2.2.4 The bijection ),

We already have proved that Fisa(z,q,2) = Fs21(2,q,2). Here we give an
expression for the generating function

F391(2,q, 2 Z Z 2P(m) exc(ﬂ)2n7

n>0 r€S, (321)

which enumerates 321-avoiding permutations with respect to fixed points
and excedances. In order to achieve this, we define a bijection 1, between
S,(321) and D,,, which appeared originally in [48, pg. 89] in a slightly dif-
ferent form, and later was used by Richard Stanley in connection to pattern
avoidance.

We will give three equivalent definitions of the bijection .. Let m =
mme My € Sp(321). For i € [n], define a; = max{j : {1,2,...,j} C
{mi,m2,...,m}} (j can be 0, in which case {1,2,...,5} = 0). Now build
the Dyck path ¢_(7) by adjoining, for each ¢ from 1 to n, one up-step fol-
lowed by max{a; — m; + 1,0} down-steps. For example, for m = 23147586
we get a1 = az =0, a3 =3, ay = a5 = 4, ag = a7y = 5, ag = 8, and the
corresponding Dyck path is given in Figure 2.7.

Here is an alternative way to define this bijection. Let m;,,m;,,...,m, be
the right-to-left minima of m, from left to right. For example, the right-
to-left minima of 23147586 are 1,4,5,6. Then, ¢ _(7) is precisely the path
that starts with 4; up-steps, then has, for each j from 2 to k, m;; — m;,_,
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Figure 2.7 The Dyck path 1 (23147586).

down-steps followed by i; — i;_1 up-steps, and finally ends with n 41 — m;,
down-steps.

The third way to define _ is the easiest one to visualize, and the one that
gives us a better intuition for how the bijection works. Consider the array
of crosses arr(m) as defined in Section 1.1.3. By definition, excedances corre-
spond to crosses strictly to the right of the main diagonal of the array. It is
known (see e.g. [74]) that a permutation is 321-avoiding if and only if both
the subsequence determined by its excedances and the one determined by
the remaining elements are increasing. Therefore, the elements that are not
excedances are precisely the right-to-left minima of w. Consider the path
with east and south steps along the edges of the squares of arr(w) that goes
from the upper-left corner to the lower-right corner of the array, leaving all
the crosses to the right and remaining always as close to the main diago-
nal as possible. Let U be such path. Then 1 _(7) can be obtained from U
just by reading an up-step for every south step of U, and a down-step for
every east step of U. Figure 2.8 shows a picture of this bijection, again for
m = 23147586.

NAAA T AN

Figure 2.8 The bijection .

Proposition 2.8 The bijection ¢ : S,(321) — D,, satisfies

(1) fp(m) = h(¢o(7)),
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(2) exc(m) = dr(y (),
for all m € §,(321).

Proof. To see this, just observe that fixed points of 7 correspond to crosses
on the main diagonal of the array, which produce hills in the path. On the
other hand, for each cross corresponding to an excedance, the south step of
U on the same row as the cross gives an up-step in ¢ (7) which is followed
by another up-step, thus forming a double rise. O

Therefore, counting 321-avoiding permutations according to the number of
fixed points and excedances is equivalent to counting Dyck paths according
to the number of hills and double rises. More precisely,

Py (z,q,2) = Y aP)gP)IP]
DeD

We can give an equation for F3s; using the symbolic method summarized
in Section 1.3. A recursive definition for the class D is given by the fact
that every non-empty Dyck path D can be decomposed in a unique way as
D = uAdB, where A, B € D. Clearly if A is empty, h(D) = h(B) + 1 and
dr(D) = dr(B), and otherwise h(D) = h(B) and dr(D) = dr(A) +dr(B)+1.
Hence, we obtain the following equation for F3o1:

Fs01(x,q,2) = 14+ 2(z + q(F321(1,q,2) — 1)) F321 (2, ¢, 2). (2.1)

Substituting first x = 1, we obtain that

1+(g—1Dz—+/1-214+¢q)z+ (1 —q)2z2
F31(1,q,2) = ( v 2q§ )2+ ) .

Now, solving (2.1) for Fs9;1(x,q, 2z) gives the following result.
Theorem 2.9

Fiza(z,q,2) = Fais(x,q,2) = Fso1(2,q,2) =
2

1+ (1 +qg—22)2+/1-20+q)z+ (1 —¢)222

To conclude this section, we want to remark that applying this bijection one
can also obtain the GF that enumerates 321-avoiding permutations with re-
spect to fixed points, excedances and descents. It follows easily from the
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description of 1 that the number des(m) of descents of a 321-avoiding per-
mutation 7 equals the number of occurrences of uud in the Dyck word of
¥ (7). Using the same decomposition as before, we obtain the following
result.

Theorem 2.10

Z Z fp(7r exc(ﬂ)pdes(ﬂ) P

n>0reS, (321)

2
14+ (1 +g—22)24+ 121+ q)z+ (1 +q)2 — 4gp)22

The analogous generalization of Theorem 2.9 which enumerates 132-avoiding
permutations with respect to these three statistics is given in Theorem 4.10.

2.3 b) 123

For this case we have not been able to find a satisfactory expression for
Fia3(x,q,2). We can nevertheless give summation formulas for the number
of permutations in S, (123) with a given number of fixed points. The first
trivial observation is that if 7 avoids 123, then it can have at most two fixed
points. If m; = 4, we say that i is a big fixed point of w if ¢ > ”+1 , and that
it is a small fized point if i < "H

We already mentioned that a permutation is 321-avoiding if and only if both
the subsequence determined by its excedances and the one determined by
the remaining elements are increasing. Using the fact that 7 avoids 123 if
and only if 7 avoids 321, we obtain a characterization of 123-avoiding per-
mutations as those with the following property: the elements 7; such that
m; <n+1—i form a decreasing subsequence, and so do the remaining ele-
ments. In particular, since no two fixed points can be in the same decreasing
subsequence, this implies that 7 can have at most one big fixed point and
one small fixed point.

Recall the bijection 9 : S,(321) — D,, that we defined in Section 2.2.4.
Composing it with the complementation operation sending = € S, (123) to
7T € §,(321), we obtain a bijection between S,,(123) and D,,, which we denote
by . Figure 2.9 shows an example when 7 = (9,6, 10,4,8,7,3,5,2,1).

Note that the peaks of the path are determined by the crosses of elements
m; such that m; > n 4+ 1 — 4, which form a decreasing subsequence. Now it
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Figure 2.9 The bijection v _.

is easy to determine how many permutations have a big (resp. small) fixed
point.

Proposition 2.11 Letn > 1. We have
(1) {m € 8,(123) : 7 has a big fized point}| = C,_1,

C,_1 ifn is even,
(2) |{m € S,(123) : 7 has a small fized point}| = { Cn-1 — C%z%
if n is odd.

Proof. (1) It is clear from the definition of ¢, that = has a big fixed point
if and only if ¢_(7) has a peak in the middle. Now, we can easily define a
bijection from the subset of elements of D,, with a peak in the middle and
D,,—1, by removing the two middle steps ud.

(2) Clearly, ™ € S,,(123) if and only if 7 € S,,(123) (recall the definition from
Section 1.1.3). This involution switches big and small fixed points, except
for the possible big fixed point in position "TH, which remains unchanged.
Applying now v, a small fixed point of 7 is transformed into a peak in the
middle of ¥ ,(7) of height at least two (indeed, a hill would correspond to
the big fixed point "TH) Knowing that the number of paths in D,, with a
peak in the middle is C,,_1, we just have to subtract those where this middle
peak has height 1. If n is even, paths in D,, cannot have a hill in the middle.
If n is odd, such paths have the form AudB, where A, B € D%, so the

formula follows. O

For k > 0, let s¥(123) := |{r € S,,(123) : fp(7r) = k}|. We have mentioned
that s¥(123) = 0 for k > 3. The following corollary reduces the problem of
studying the distribution of fixed points in S,,(123) to that of determining
52(123).
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Corollary 2.12 Let n > 1. We have

2(C,_1 — s2(123)) if n even,
(1) s,(123) = { 2(Cpy — 52(123)) — C2_, if n odd.

n
2

0 C, —2C, 1 + s2(123) if n even,
(2) 5n(123) = €, —2C,_1 +s2(123) + C2_, if n odd.
2

Proof. (1) By inclusion-exclusion,

51(123) = {7 € S,(123) : 7 has a big fixed point}|
+|{m € 8,(123) : 7 has a small fixed point}| — 252 (123).

Now we apply Proposition 2.11.
(2) Clearly, s2(123) = C,, — s (123) — s2(123). O

The next theorem, together with the previous corollary, gives a formula for
the distribution of fixed points in 123-avoiding permutations.

Theorem 2.13

50123) =ZZ (2)-0)
() -C7)

C Y > fkyrhyn = 2i4 ) f(n = 26 — ks, by — 24 5) |

h=1 k=0
n—h even

where
{+h—r l—h+r {—h—r l+h+r
A e A e AW |

k k—1 k k—1

fk,r b, 0) = ifk>1,

1 ifk=0andl=h—r,
otherwise,

with the convention (3) :=0 if a < 0.
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Proof. Recall that s2(123) counts permutations with both a big and a small
fixed point. We have seen already that v, maps a big fixed point of the
permutation into a peak in the middle of the Dyck path. Now we look at
how a small fixed point of the permutation is transformed by v ,. We claim
that 7 € §,,(123) has a small fixed point if and only if D = ¢ (7) satisfies
the following condition (which we call condition C1): there exists ¢ such that
the i-th and (i + 1)-st up-steps of D are consecutive, the i-th and (i 4 1)-st
down-steps from the end are consecutive, and there are exactly n + 1 — 2
peaks of D between them. To see this, assume that ¢ is a small fixed point
of m (see Figure 2.10). Then, the path from the upper-right to the lower-left
corner of the array of 7, used to define 1(7), has two consecutive vertical
steps in rows ¢ and 7 + 1, and two consecutive horizontal steps in columns
i and 7 + 1. Besides, there are n + 1 — 2i crosses below and to the right
of cross (i,1), each one of which produces a peak in the Dyck path ¢ ().
Reciprocally, it can be checked that if ¢ () satisfies condition C1 then 7
has a small fixed point.

Figure 2.10 A small fixed point i has n + 1 — 2i crosses below and
to the right.

All we have to do is count how many paths D € D, with a peak in the
middle satisfy condition C1. For such a Dyck path D, define the following
parameters: let ¢ be the value such that condition C1 holds, let h = v(D) be
the height of D in the middle, r the height at which the i-th up-step ends,
and s the height at which the i-th down-step from the end begins. In the
example of Figure 2.11, n =12,1 =4, h=4,r =3, and s = 1.

Fix n, 7, h, r and s. We will count the number of Dyck paths D with
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Figure 2.11 The parameters i, h, r and s in a Dyck path.

these given parameters. We can write D = AuuB;B>ddC, where the dis-
tinguished u’s are the i-th and (i 4+ 1)-st up-steps, the two d’s are the i-th
and (i + 1)-st down-steps from the end, and the middle of D is between Bj
and By. Then A is a path from (0,0) to (20 —r — 1,r — 1) not going below

y = 0. It is easy to see that there are (2Z;f1_1) - (2i_;_1) such paths A. By

symmetry, there are (2ZZ__'81_ 1) — (2i_f _1) possibilities for C.
Now we count the possibilities for By and Bs. It can be checked that
f(k,r,h,£) counts the number of paths from (0,7) to (¢, h) having exactly k
peaks, starting and ending with an up-step, and never going below y = 0.
The fragment uBy is a path from (2i —r,r) to (n, h) not going below y = 0,
and ending with an up-step (since D has a peak in the middle). If we fix k
as the number of peaks of this fragment, then there are f(k,r,h,n —2i + 1)
such paths uBj. Similarly, there are f(n—2i—k, s, h,n —2i— s) possibilities
for Bod with n — 2i — k peaks.

Summing over all possible values of k, h, r, s and ¢ we obtain the expression
in the theorem. O

Using Corollary 2.12, we can prove that among the derangements of length
n, the number of 123-avoiding ones is at least the number of 132-avoiding
ones. This inequality was conjectured by Miklés Bona and Olivier Guibert.

Theorem 2.14 ([16]) For all n > 4, s%(132) < s2(123).

Proof. For n < 12 the result can be checked by exhaustive enumeration of
all derangements by computer. Let us assume that n > 13.

From part (2) of Corollary 2.12, we have that

s9(123) > C,, — 2C,,_1.
It is known [78] that s0(132) = F,,, the n-th Fine number. Therefore, the
theorem will be proved if we show that

F,<C,—-2C,_ (2.2)
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for n > 13. Using the identity F,, = % 2?;02(—71)2'cn_i, we get the inequality
F, < %Cn — %Cn_l + %Cn_g, which reduces (2.2) to showing that C,, >
%Cn_l + %Cn_g. This inequality certainly holds asymptotically, because C,,
grows like %rn_gél" as n tends to infinity, and it is not hard to see that in
fact it holds for all n > 13. O

2.4 c,c’) 231~;312

Using the bijection

S$,(312) «— D,

™ = e(T),
Lemma 2.2 implies that

Fa(z,q,2) = Y atdo(P)gtd<o(D)ID]
DeD

To enumerate tunnels of depth 0, we will separate them according to their
height. For every h > 0, a tunnel at height A must have length 2(h + 1) in
order to have depth 0. It is important to notice that if a tunnel of depth 0
of D corresponds to a decomposition D = AuBdC, then D has no tunnels
of depth 0 in the part given by B. In other words, the projections on the
z-axis of all the tunnels of depth 0 of a given Dyck path are disjoint. This
observation allows us to give a continued fraction expression for Fi19(z, 1, 2).

Theorem 2.15 Fiia(x, 1, 2) is given by the following continued fraction.

Fzi9(z, 1, 2)

_1—(95—1)2'—

1—(z—1)22—

z

1—2(x—1)23—
1—5(z—1)24 — —

where at the n-th level, the coefficient of (x —1)2" 1 is the Catalan number
C,.

Proof. For every h > 0, let tdf(D) be the number of tunnels of D of height
h and length 2(h + 1). Note that tdo(D) = ;5 td2(D). We will show
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now that for every h > 1, the generating function for Dyck paths where x
marks the statistic tdg 4+ +tdg_1 is given by the continued fraction of the
theorem truncated at level h, with the (h 4 1)-st level replaced with C(z).

A Dyck path D can be written uniquely as a sequence of elevated Dyck
paths, that is, as D = uAd;d---uA,d, where each A; € D. In terms of the
GF C(z) = Y. pep #IP!, this translates into the equation C(z) = #C(z) A
tunnel of height 0 and length 2 (i.e., a hill) appears in D for each empty A;.
Therefore, the GF enumerating hills is

w§(D),ID| _ 1 9
2 = e (23)

since an empty A; has to be counted as x, not as 1.

Let us enumerate simultaneously hills (as above), and tunnels of height 1
and length 4. The GF (2.3) can be written as

1

1
1—=2 a:—l—i-il_zc(z)
Combinatorially, this corresponds to expressing each A; as a sequence uB;d
---uB,d, where each B; € D. Notice that since each uB;d starts at height 1,
a tunnel of height 1 and length 4 is created by each B; = ud in the decom-
position. Thus, if we want x to mark also these tunnels, such a B; has to
be counted as zz, not z. The corresponding GF is

$ SO ID] 1

1
DeD l—z|z—1+

1—2z[(z — 1)z + C(2)]

Now it is clear how iterating this process indefinitely we obtain the continued
fraction of the theorem. From the GF where x marks td) +--- +td} ™!, we
can obtain the one where z marks td) 4 --- + td} by replacing the C(z) at
the lowest level with

1
1—z[(x — 1)Cpzh + C(2)]’

to account for tunnels of height h and length 2(h + 1), which in the decom-
position correspond to elevated Dyck paths at height h. O
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The same technique can be used to enumerate excedances in 312-avoiding
permutations, which correspond to tunnels of negative depth in the Dyck
path. Recall that

i—1
C<Z’(Z) = Z Cij
j=0
denotes the series for the Catalan numbers truncated at degree .

Theorem 2.16 F3i2(x,q,2) is given by the following continued fraction.

1
F312(£7Q7Z) = >

1—2Ky+

1— 2K+

1—2K5 +
z
1—2zK3+ —

where K, = (x — 1)Cpq"2" + (¢ — 1)Cy(q2) for n > 0.

Note that the first values of K,, are
KO =T — 1,
Kiy=(z—-1)gz+q—1,
Ky =2(z —1)¢?2* + (¢ — 1)(1 + ¢2),
K3 =5(x — 1)¢°2% + (¢ — 1)(1 + gz + 2¢°2?).

Proof. We use the same decomposition as above, now keeping track of tun-
nels of negative depth as well. For every h > 0, let tdZO(D) be the num-
ber of tunnels of D of height h and length less than 2(h + 1). Note that
tdeo(D) = 350 tdo(D). To follow the same structure as in the previous
proof, counting tunnels height by height, it will be convenient that at the
h-th step of the iteration, ¢ marks not only tunnels of negative depth up to
height h but also all the tunnels at higher levels. Denote by alltun~ h(D) the
number of tunnels of D of height strictly greater than h.

We will show now that for every h > 1, the generating function for Dyck
paths where z marks the statistic tdY + --- + tdg_1 and ¢ marks td% +
S tdial + alltun™""! is given by the continued fraction of the theorem
truncated at level h, with the (h + 1)-st level replaced with C(gz).

The analogous to equation (2.3) is now

td3(D) td%(D)-+alltun>0(D) | D] _ 1 2.4

DeD



2.4. ¢, ) 231~;312 49

Indeed, decomposing D as uAid---ud,d, ¢ counts all the tunnels that
appear in any A;, and whenever an A; is empty we must mark it as x.

Let us enumerate now tunnels of depth 0 and negative depth at both height 0
and height 1. Modifying (2.4) so that ¢ no longer counts tunnels at height 1,
we get

Z xtdg(D)qtdgo(D)Jraumnﬂ(D)Z\D\ _ 1 : . (2.5)
DeD 1— e

“1F + 1 —2C(qz2)

which corresponds to writing each A; as A; = uBjd---uBsd, and having ¢
count all tunnels in each B;. Now, in order for x to mark tunnels of depth
0 at height 1, each B; = ud, that in (2.5) is counted as gz, has to be now
counted as xqz instead. Similarly, to have ¢ mark tunnels of negative depth

at height 1, we must count each empty B, as ¢, not as 1. This gives us the
following GF":

Z £ 8(D)+db(D) td% (D)L (D) +alltun>" (D) | D)

DeD
1

1
1—2z2[(z —1)gz+q—1+C(qz)

1—2[3:—14—

Iterating this process level by level indefinitely we obtain the continued frac-
tion of the theorem. At each step, from the GF where x marks td8 4+ 4
tdg_l, and g marks td0<0 4+ -+ tdZBl + alltun™"!, we can obtain the one
where z marks tdJ + - - - 4 td} and ¢ marks td%, + - -- 4+ td", + alltun>" by

replacing the C(qz) at the lowest level with
1

1—z[(z — 1)Cpq2" + (¢ — 1)Cp(q2) + C(q2)]
This change makes x account for tunnels of depth 0 at height h, which in
the decomposition correspond to the Cj possible elevated Dyck paths of
length 2(h + 1) when they occur at height h. It also makes ¢ count tunnels
of negative depth at height h, which in the decomposition correspond to
elevated Dyck paths at height h of length less than 2(h 4+ 1). The GF for
these ones becomes ¢qC_1,(qz) instead of C_p(qz), since for every j < h, an
elevated path uC'd with C' € D; contributes to one extra tunnel of negative
depth at height h, aside from the j tunnels of height more than A that it
contains. O

(2.6)

For 231-avoiding permutations we get the following GF.
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Corollary 2.17 Fys1(x,q,2) is given by the following continued fraction.

1
Fazi(z,q,2) = ;

z
1—ZK6+ 1

qz

1—-zK]+
z
1— 2K+ 1

z
1—2K§+q—

where K], = (x — q)Cpz™ + (1 — q)Cp(2).

The first values of K/, are

Ki=(@@—-qz+1-gq,
Kj =2(z —q)2* + (1 —q)(1 + 2),
K =5(x —q)2° + (1 — q)(1 + 2 + 22%).

Proof. By Lemma 1.2, we have that Fa31(x,q,2) = F312(x/q,1/q, qz), so the
expression follows from Theorem 2.16. O



3

Simultaneous avoidance

After having studied in the previous section permutations avoiding one pat-
tern of length 3, the next step is to consider permutations avoiding several
patterns at the same time. In this chapter we study the distribution of the
statistics ‘number of fixed points’ and ‘number of excedances’ on permuta-
tions avoiding simultaneously two or more patterns. A systematic enumer-
ation (with no statistics) of permutations avoiding any subset of patterns
of length 3 was done in [84]. Here we give refinements of these results, by
enumerating the same permutations with respect to the statistics fp and exc.

The main technique that we use are bijections between pattern-avoiding
permutations and certain kinds of Dyck paths with some restrictions, in
such a way that the statistics in permutations that we study correspond to
statistics on Dyck paths that are easy to enumerate.

In Section 3.1 we solve completely the case of permutations avoiding simul-
taneously any two patterns of length 3, giving generating functions counting
the number of fixed points and the number of excedances. For some par-
ticular instances we can generalize the results, allowing one pattern of the
pair to have arbitrary length. In Section 3.2 we give the analogous generat-
ing functions for permutations avoiding simultaneously any three patterns of
length 3 or more. Section 3.3 is concerned with the study of the distribution
of these statistics in involutions avoiding any subset of patterns of length 3.

The bijection ¢ defined in Section 2.1 will be one of our main tools in this
chapter, together with its properties given in Lemma 2.2. We will also
use repeatedly the array representation of a permutation 7 as described in
Section 1.1.3, as well as the operations 7, 7, and the lemmas proved in that
section.
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3.1 Double restrictions

In this section we consider simultaneous avoidance of any two patterns of
length 3. Using Lemma 1.2, the pairs of patterns fall into the following
equivalence classes.

a) {123,132} ~ {123,213}
b) {231,321} ~; b) {312,321}
c) {132,213}
d) {231,312}
e) {132,231} ~ {213,231} ~; €’) {132,312} ~ {213,312}
f) {132,321} ~ {213,321}
g) {123,231} ~; g) {123,312}
h) {123,321}

In [84] it is shown that the number of permutations in S, avoiding any of
the pairs in the classes a), b), b’), c), d), e), and e’) is 2”71, and that
for the pairs in f), g) and g’), the number of permutations avoiding any of
them is (g) + 1. The case h) is trivial because this pair is avoided only by
permutations of length at most 4.

In terms of generating functions, this means that when we substitute z =
g =11in Fx(x,q,z), where X is any of the pairs in the classes from a) to e’),

we get
1-=2

1—22°

FE(L 172) = Z2n—lzn _
n>0

If ¥ is a pair from the classes f), g), g), we get

n — aZ 22
Fy(1,1,2) = Z(<2> +1)2" = %

n>0

3.1.1 a) {123,132} ~ {123,213}

Proposition 3.1

F{123,132} (z,q,2) = F{123,213} (z,q,2)
1t az+ (2 —49)22 + (=3zq + ¢ + ¢H)2° + (wq + 2¢* — 32%q + 3¢%) 7"
B (1 —-g2%)(1 - 4¢2?) '
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Proof. Consider the bijection ¢ : S, (132) — D,, described in Section 2.1.
Part (4) of Proposition 2.1 says that the height of the Dyck path ¢(m) is
the length of the longest increasing subsequence of 7. In particular, = €
Sp(12---(k + 1),132) if and only if ¢(7) has height at most k. Thus, by
Lemma 2.2, F(123 132} (x,q,z) can be written in terms of Dyck paths as

Z xct(D)qrt(D)Z|D|' (3.1)
DeD=2

Let us first find the univariate GF for paths of height at most 2 (with no
statistics). Clearly, the GF for Dyck paths of height at most 1 is le, since
such paths are just sequences of hills. A path D of height at most 2 can be
written uniquely as D = uA;dudad---uA,d, where each A; is a path of
height at most 1. The GF for each uA;d is 2. Thus,

11—z

1 1—-=2
|D] _ — _ n—1_n
Zz _1_L_1_22_22 S
DeD=2 1-z n>0

In the rest of this proof, we assume that all Dyck paths that appear have
height at most 2 unless otherwise stated. To compute (3.1), we will separate
paths according to their height at the middle. Consider first paths whose
height at the middle is 0. Splitting such a path at its midpoint we obtain a
pair of paths of the same length. Thus, the corresponding GF is

1— 2
Z gm—1,_m 2m—1qmzm _ 3qz (3.2)

=3
0 1 —4qz

since the number of right tunnels of such a path is the semilength of its right
half.

AN A

Figure 3.1 A path of height 2 with a centered tunnel.

Now we consider paths whose height at the middle is 1. It is easy to check
that without the variables x and ¢, the GF for such paths is

z

m. (3-3)
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Let us first look at paths of this kind that have a centered tunnel. They
must be of the form D = AuBdC where A, C € D<? have the same length,
and B is a sequence of an even number of hills. Thus, their GF is

1 1—3qz°
1—q22 1—4qgz%

xz (3.4)
where x marks the centered tunnel, ﬁ corresponds to the sequence of
hills B, half of which give right tunnels, and the last fraction comes from the
pair AC, which is counted as in (3.2). From (3.3) and (3.4) it follows that
the univariate GF (with just variable z) for paths with height at the middle
1, not having a centered tunnel, is

z 2(1 — 32%) 223

1-422 (1-22)(1-422)  (1-29)(1 —422)
By symmetry, in half of these paths, the tunnel of height 0 that goes across
the middle is a right tunnel. Thus, the multivariate GF for all paths with
height 1 at the middle is

rz(1 — 3¢2?) (q+1)g2®
(1—¢2*)(1—4g2%) (1 —q2?)(1 —4gz%)

Here the right summand corresponds to paths with no centered tunnel: the
term (¢ + 1) distinguishes whether the tunnel that goes across the middle is
a right tunnel or not, and the other ¢’s mark tunnels completely contained
in the right half.

(3.5)

Paths with height 2 at the middle are easy to enumerate now. Indeed,
they must have a peak ud in the middle, whose removal induces a bijection
between these paths and paths with height 1 at the middle. This bijection
preserves the number of right tunnels, and decreases the length and the
number of centered tunnels by one. Thus, the GF for paths with height 2 at
the middle is zz times expression (3.5). Adding up this GF for paths with
height 2 at the middle, to the expressions (3.2) and (3.5) for paths whose
height at the middle is 0 and 1 respectively, we obtain the desired expression

for Fy193132) (2,4, 2). 0

Let us see how the same technique used in this proof can be generalized to
enumerate fixed points in S,,(132,12--- (k + 1)) for an arbitrary k£ > 0.

Theorem 3.2 For k >0, let

Te(x,2) = Fusg1om ey (1, 1,2) = Y > 2P
n>0 1€8, (132,12 (k+1))
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Then the Ji’s satisfy the recurrence

ZI“ Y1+ (z—1D)zdp_q(x, 2)), (3.6)

where J_i(x,z) := 0, and Iy ¢(2) is defined as

It (2 Zgw )2", where ng,g(n)z = (7)1)
2z

"0 730 22Uk (

where U, are the Chebyshev polynomials of the second kind, defined in Sec-
tion 1.3.4.

Before proving this theorem, let us show how to apply it to obtain the
GFs Jj, for the first few values of k. For k = 1, we have I1(z) = 17,
Iii(z) = ﬁ, SO

1+ 2z2

Ji(z,z) = —.
1(#,2) 1—22

2
For k = 2, we get Ig,o(z) = 1= 422, I 1( ) = ﬁ, 12,2(2) =1+ le’ thus

1+xz+ (22 —4)22 + (2 - 32)2% + (3 + 2 — 32%)24
(1—22)(1—422) ’

Jo(x, 2) =

which is the expression of Proposition 3.1 for ¢ = 1.

. 3 5 2 4
FOT ]{3 = 3 we Obtaln 137()(25) = W, 1371(2) = WM,
2(1—42242%) . 22(1—42242%)
la2(2) = gezn—razean. B2(2) = 1+ ean—razga 0
J3(x, 2) = 1+xz+(22—12) 22+ (23 —112+2) 23+ (1022 +42+45) 24+ (= 1023 +42% +
37x—10)z° +(252% =222 —52)2% + (2523 — 2222 — 412+ 16) 27+ (— 1222 +
162416)284(—1223+1622 +122—-8)2% / [(1—22)2(1—422)(1-722+2))].

Proof. As mentioned in the previous proof, ¢ induces a bijection between
Sn(132,12--- (k + 1)) and D=, the set of Dyck paths of height at most k.
Thus, by Lemma 2.2,

Ji(x, 2) = Z gD 1Dl

DeD=<k

In order to find a recursion for this GF, we are going to apply a trick that
consists in consider Dyck paths where some centered tunnels are marked.
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That is, we will count pairs (D,S) where D € D<F and S is a subset of
CT(D), the set of centered tunnels of D (S is the set of marked tunnels).
In other words, we are considering Dyck paths where some centered tunnels
(namely those in S) are marked. Each such pair is given weight (z—1)121P!,
so that for a fixed D, the sum of weights of all pairs (D, S) will be

Z (z — DIFIZIPl = (2 — 1) + 1)|CTDILIDI = get(D) D]
SCCT(D)

which is precisely the weight that D has in Jg(z, 2).

Figure 3.2 A path of height k with two marked centered tunnels.

If D € D=F has some marked centered tunnel, consider the decomposition
D = AuBdC given by the longest marked tunnel (i.e., all the other marked
tunnels are inside the part B of the path). Let ¢ be the distance between
this tunnel and the line y = k (see Figure 3.2). Equivalently, A ends at
height k — ¢, the same height where C' begins. Then, B is an arbitrary Dyck
path of height at most ¢ — 1 with possibly some marked centered tunnels,
so its corresponding GF is Jy_1(x,z) (with the convention J_1(z,z) := 0,
since for £ = 0 there is no such B). Giving weight (z — 1) to the tunnel
that determines our decomposition, we have that the part uBd of the path
contributes (x — 1)zM;_1(z, z) to the GF.

Now we look at the GF for the part A of the path. Let gj¢(n) be the
number of paths from (0,0) to (n,k — £) staying always between y = 0
and y = k. A path of this type can be decomposed uniquely as A =
EpuEp_ju---uFEy uE,, where each E; € D!, The GF of Dyck paths
of height at most i is

as shown for example in [59]. Let w = /2, which is the weight of a single step
of a path, and let Ry o(w) := >, < gk¢(n)w". From the above decomposition
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of A,

Us(2)

Ry p(w) = Jp(1,w?)wdy_1 (1, w?)w - - wp(1,w?) = T
wUp41(54)

The part C of the path D, flipped over a vertical line, can be regarded as
a path with the same endpoints as A, since it must have the same length
and end at the same height £ — ¢. Thus, the GF for pairs (A4, C) of paths of
the same length from height 0 to height k£ — ¢ and not going above y = k is

> >0 givg(n)z” = Ii0(2).

Hence, the GF for paths D € D=F having the longest marked centered tunnel
at height k — £ is Iy, o(2)(z — 1)2My—1 (, 2).

If D has no marked tunnel, decompose it as D = AC' where A and C have the
same length. Letting k — ¢ be again the height where A ends and C begins,
the situation is the same as above but without any contribution coming from
the central part of D. The parameter £ can take any value between 0 and k.
Thus, summing over all possible decompositions of D, we get

k
Te(@,2) =Y Tie(z) A+ (@ — 1)zdoy (x, 2)).
=0

O
3.1.2 b, b’) {231,321}~ {312,321}
Proposition 3.3
1—
F312,3013 (7, ¢, 2) o (3.7)

- 1—(z+q)z+ (x—1)gz?

Proof. The length of the longest decreasing subsequence of 7 equals the
height of the Dyck path (7). In particular, we have a bijection

Sn(312,321) «— D52
™ = (T

Thus, by Lemma 2.2,

Fiai,3013 (2,9, 2) = Z tdo(D) gtd<o(D) D]
DeD=2
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But the only tunnels of depth 0 that a Dyck path of height at most 2 can
have are hills, and the only tunnels of negative depth that it can have are
peaks at height 2. A path D € D=2 can be written uniquely as D =
uAdijdudsd---uAd,d, where each A; is a (possibly empty) sequence of hills.
An empty A; creates a tunnel of depth 0 in D, so it contributes as z. An A;
of length 2j > 0 contributes as ¢/z7, since it creates j peaks at height 2 in

D. Thus,
1

Fai301 (2,9, 2) = =\
1—2z (3: + 1 >

which is equivalent to (3.7). O
Corollary 3.4

_ 1—=2
Sl (x4 1)z 4+ (x —q)2%

Fia31,3013 (7, ¢, 2)

Proof. By Lemma 1.2, Fyo31 321} (7, ¢, 2) = Fyz12,.3213(¥/q,1/q, q2). o

As in the previous section, these results can be generalized to the case when
instead of the pattern 321 we have a decreasing pattern (k + 1)k---21 of
arbitrary length. For i,h > 0, let C;h be the number of Dyck paths of
length 2¢ and height at most h. As mentioned before, it is known that

1
pfeige Un(5,2)
7 - 1 ’
i>0 \/EUh-i-l(g\/Z)

where U,,, are the Chebyshev polynomials of the second kind. Let

i—1
Cgl(z) = Z nghzj.
=0

The following theorem deals with fixed points and excedances in the set
Sn(312,(k+ 1)k ---1) for any k > 0.

Theorem 3.5 Let C;h = |D;h| and CEZh(z) be defined as above. Then, for
k>0,

F{312,(k+1)k---1} (z,q,2) = Ag(l‘, q, %),
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where A¥ is recursively defined by

Af(l'a q, Z) =
1
1—2[(x = 1)C* " gizi 4 (¢ — 1)CZF T (gz) + Ab, (2,0, 2)]
ifi <k,
1 ifi=k.

For example, for k = 2 we obtain Proposition 3.3, and for k = 3 we get

1
F319 4301} (7, ¢, 2) = -
1

1—z[(m—1)qz+q—1+1_1qz]

1—2gz + (¢* — 2q)2* + (v¢* — ¢*) 23
1—(x+2¢)z+ (zq + ¢® — q)2% + (22q — £q) 2> + (—22¢? + 22¢® — ¢?)z*

l—z|x—1+

Proof. 1t is analogous to the proof of Theorem 2.16, with the only difference
that here we consider only those paths that do not go above the line y = k.
O

Making the appropriate substitutions in the statement of Theorem 3.5, we
obtain an expression for the generating function Fiasi (p41)k-13(2,¢,2) =

Fisio (ks 1)k--13 (/0 1/, 7).

3.1.3 c¢) {132,213}

Proposition 3.6

Fisz013)(2,4, 2)
1= (14 q)z —2¢2* +49(1 4 ¢)2°* — (z¢* + zq + 5¢*)2* + 22¢*2°
a (1= 2)(1 —22)(1 — g2)(1 — 4¢2?) '

Proof. We use again the bijection ¢ : S,,(132) — D,,. From its description
given in Section 2.1, it is not hard to see that a permutation 7m € S, (132)
avoids 213 if and only if all the valleys of the corresponding Dyck path ¢(7)
have their lowest point on the x-axis. A path with such property can be
described equivalently as a sequence of pyramids. Denote by Pyr, C D,, the
set of sequences of pyramids of length 2n, and let Pyr := J,,~, Pyrn. We
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have just seen that ¢ restricts to a bijection between S,,(132,213) and Pyr,.
By Lemma 2.2, we can write Fyi32913y(2, ¢, 2) as

Z (D) rt(D) D]

DePyr
Since for each n > 1 there is exactly one pyramid of length 2n, the univariate
GF of sequences of pyramids is just ) DePyr 2Pl = % = 11__;2 =1+
D> an=lzn,

Let us first consider elements of Pyr that have height 0 in the middle (equiv-
alently, the two central steps are du). Each one of their halves is a sequence
of pyramids, both of the same length. They have no centered tunnels, and
the number of right tunnels is given by the semilength of the right half.
Thus, their multivariate GF is

2

1 grtgmm = L 3.8
+m§>:1 q"z —|—1_4qz2 (3.8)

Now we count elements of Pyr whose two central steps are ud. They are
obtained uniquely by inserting a pyramid of arbitrary length in the middle
of a path with height 0 at the middle. The tunnels created by the inserted
pyramid are all centered tunnels, so the corresponding GF is

2

zz qz
1+ — . 3.9
1—:L'Z< +1—4qz2> (3:9)

Figure 3.3 A sequence of pyramids.

It remains to count the elements of Pyr that in the middle have neither a
peak nor a valley. From a non-empty sequence of pyramids with height 0 in
the middle, if we increase the size of the leftmost pyramid of the right half by
an arbitrary number of steps, we obtain a sequence of pyramids whose two
central steps are uu. Reciprocally, by this procedure every such sequence
of pyramids can be obtained in a unique way from a sequence of pyramids
with height 0 in the middle. Thus, the GF for the elements of Pyr whose
two central steps are uu is

qz qz?

1—qgz 1—4gz%

(3.10)
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By symmetry, the GF for the elements of Pyr whose two central steps are
dd is
z qz?
1—2z 1-—4q22’
where the difference with respect to 3.10 is that now the pyramid across
the middle does not create right tunnels. Adding up (3.8), (3.9), (3.10) and

(3.11) we get the desired GF. O

(3.11)

3.1.4 d) {231,312}

Proposition 3.7

2
Fo31312y (7,4, 2) = #ﬁngg
Proof. We have shown in the proof of Proposition 3.6 that ¢ induces a bi-
jection between S,,(132,213) and Pyr,,, the set of sequences of pyramids of
length 2n. Composing it with the complementation operation, we get a bijec-
tion ™ — @(7) between S,,(231,312) and Pyr,. Together with Lemma 2.2,
this allows us to express Fya3; 312} (2,9, 2) as

3 gtolD)gd<o(D) 41D
DePyr

All that remains is to observe how many tunnels of zero and negative depth
are created by a pyramid according to its size. A pyramid of odd semilength
2m + 1 creates one tunnel of depth 0 and m tunnels of negative depth. A
pyramid of even semilength 2m creates only m tunnels of negative depth.
Thus, we have that

Fo31,312y (%, ¢, 2) = v ER
1

C1—g22 1-—gz?

which equals the expression above. O

3.1.5 e, e) {132,231} ~ {213,231} ~; {132,312} ~
{213,312}

Proposition 3.8
1—2—q2% +xq23
1—22)(1—2—2¢z22)

F{132,231}(957q72) = F{213,231}(9€7q72’) = (
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Proof. As usual, we use the bijection ¢ : S,(132) — D,,. Now we are
interested in how the condition that 7 avoids 231 is reflected in the Dyck path
o(m). Tt is easy to see from the description of ¢ and p~! in Section 2.1 that 7
is 231-avoiding if and only if ¢(7) does not have any two consecutive up-steps
after the first down-step (equivalently, all the non-isolated up-steps occur at
the beginning of the path). Let &, C D, be the set of Dyck paths with
this condition, and let £ := J,;~ En- Then, ¢ induces a bijection between
S,(132,231) and &,. By Lemma 2.2, F132.2313 (7, ¢, 2) can be written as

Z et(D) grt(D) ,|D].
De€

Figure 3.4 A path in £ with a peak in the middle and two bottom
tunnels.

If D € £, centered tunnels of D can appear only in the following two places.
There can be a centered tunnel produced by a peak in the middle of D.
All the other centered tunnels of D must have their endpoints in the initial
ascending run and the final descending run of D (that is, in their corre-
sponding decomposition D = AuBdC, A is a sequence of up-steps and C
is a sequence of down-steps). For convenience we call this second kind of

tunnels bottom tunnels. All the right tunnels of D come from peaks on the
right half.

It is an exercise to check that the number of paths in &£, having a peak in the
middle and r peaks on the right half is ("_:_1) 2r=1lifr>1,and 1 if r = 0.
Similarly, the number of paths in &, with no peak in the middle and r peaks
on the right half is ("")2" "1 if r > 1, and 0 if 7 = 0. Let us ignore for the
moment the bottom tunnels. For peaks in the middle and right tunnels we
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have the following GF.

Q({E, q, Z) — Z x#{peaks in the middle of D}qrt(D)Z|D|

Deé&\&
w2, =2
= Z( )zr—lqwx S ( )ar—lqr o
r r
n>1 | r=1 r=1
_zz+(q—2)2? — xg2®

(3.12)

(1= 2)(1 =2 —2¢2%)°

Now, to take into account all centered tunnels, we use that every D € £ can
be written uniquely as D = u*D’d*, where k > 0 and D’ € £ has no bottom
tunnels. The GF for elements of £ that do have bottom tunnels, where x
marks peaks in the middle, is zz+2Q(x, ¢, z) (the term xz is the contribution
of the path ud). Hence, the sought GF where x marks all centered tunnels
is

1

F{132,231}(9€7 q,2) = 11— wz[l +Q(x,q,2) — vz — 2Q(7, q, 2)]
—z
=1
+ 1 _ :L'ZQ(:L" q7 Z)’
which together with (3.12) implies the proposition. O

Corollary 3.9

1—qz—q2® +2q92°
1—22)(1 — gz —2¢22)°

F{132,312}(95,q72) = F{213,312} (7,q,2) = (
Proof. Lemma 1.2 gives us F{i32312} (%, ¢, 2) = Fli32,2313(¥/q,1/q, q2). a

3.1.6 f) {132,321} ~ {213,321}

Proposition 3.10

1—(1+q)z+ 222
1—2)(1—22)(1—gqz)

F{132,321}(957q72) = F{213,321}(9€7q72) = (

Proof. We saw in part (6) of Proposition 2.1 that the number of peaks of the
Dyck path ¢(m) equals the length of the longest decreasing subsequence of
7. In particular, 7 is 321-avoiding if and only if ¢(7) has at most two peaks.
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By Lemma 2.2, Fii32. 301} (2,4, 2) = > 2t (D) gt (D) 2Dl where the sum is over
Dyck paths D with at most two peaks. Clearly, such a path can be uniquely
written as D = u*D’d*, where k > 0 and D’ is either empty or a pair of
adjacent pyramids (see Figure 3.5). Therefore,

1 z qz
Flisa321) (4, ¢, 2) = 1— 22 <1 + 1—2- 1 —qz) ’

since centered tunnels are produced by the steps outside D’, and right tunnels
are created by the right pyramid of D’. O

Figure 3.5 A path with two peaks.

This case can be generalized to the situation when instead of 321 we have
a decreasing pattern of arbitrary length. Observe that by Lemma 1.2,

F{132,(k+1)k---21}($,Q»Z) = F{213,(k+1)k~~21}($a q,z) for all k.
Theorem 3.11

Z F{132,(k+1)k---21} (z,q,2) pk
k>0

2(1+zz(p—1))
1-p)l+(1+q—22)z—q2(p—1)2+/fi(q.2)]

where f1(q,z) =1—=2(14+¢)z+[(1—¢)* —2¢(p—1)(p+3)]z> —2¢(1 +¢) (p —
1)22° + ¢*(p — 1)*2%.

Proof. We use again the fact from Proposition 2.1 that the number of
peaks of () equals the length of the longest decreasing subsequence of
7. Thus, ¢ induces a bijection between S,,(132, (k + 1)k ---21) and the sub-
set of D,, of paths with at most k peaks. This implies that we can express

Zkzo F{132,(k+1)k~~21}($, q,2) Pk as

1 Z th(D)qrt(D)p#{pcakS of D}Z‘D‘.
L—p
DeD
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The result now follows from Theorem 4.10 and the expression for the gener-
ating function ) xtD) grt(D) pi#{peaks of D} 41D that we will give in its proof
in the next chapter. O

3.1.7 g, g) {123,231}~ {123,312}

Proposition 3.12

Frig33121(2,9,2) =
1+az+ (22 —29)2% + (—2%q + 2¢® + 3¢%)2* + 3¢32° — ®20 — 4¢*2" — 22¢* 28
(1 —q2?)3(1 — ¢*2%) '

Proof. We saw in the proof of Proposition 3.10 that ¢ induces a bijection
between S,,(132,321) and the set of paths in D,, with at most two peaks.
Composing it with the complementation operation, we get a bijection 7w +—
() between S,,(123,312) and such set of Dyck paths. Using Lemma 2.2, we
can write Fyi3319}(%,¢,2) = S ztdo(D)gtd<o(P) 41Dl wwhere the sum is over
Dyck paths D with at most two peaks. Again, such a D can be uniquely
written as D = u*D’d*, where k > 0 and D’ is either empty or a pair of
adjacent pyramids, i.e., D’ = u’d*u/d’ with ,j > 1. The idea is to consider
cases depending on the relations among ¢, j and k.

To enumerate Dyck paths with at most two peaks with respect to tdg and
td<g, it is important to look at where the tunnels of depth 0 and depth 1
occur. For convenience in this proof, we call such tunnels frontier tunnels,
since they determine where tunnels of negative depth are: above them all
tunnels have negative depth, and below them tunnels have positive depth.
There are four possibilities according to where the frontier tunnels of D occur
in the decomposition above:

(1) outside D/,

)
(2) inside one of the pyramids of D’,
(3) inside both pyramids of D’,

)

(4) D has no frontier tunnel.

Figure 3.6 shows an example of each of the four cases. The frontier tunnels
(whose depth is 0 in this example) are drawn with a solid line, while the
dotted lines are the tunnels of negative depth.
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Figure 3.6 Four possible locations of the frontier tunnels.

Note that in case (4) the tunnels of negative depth are exactly those in
D’. We show as an example how to find the GF in case (1). In this case,
the frontier tunnel T' gives a decomposition D = AuBdC where A = u™,
C =d™, m > 0, and B is a Dyck path with at most two peaks, of semilength
|B| = m if depth(T") = 0, and |B| = m + 1 if depth(T") = 1. It follows from
Proposition 3.10 that the GF for Dyck paths with at most two peaks is
%. In the situation where depth(T") = 0, we have that |D| = 2|B| +1

and td<o(D) = |B|. Thus, the corresponding GF is
1—2¢2% 4+ 2¢°2%
(1—gz?)°

Similarly, in the situation where depth(T") = 1, we have that |D| = 2| B| and
td<o(D) = | B|, thus the corresponding GF is

Tz

1—2¢2% 4+ 2¢°2*
(1—q2?)?

The other cases are similar. Adding up the GFs obtained in each case, we
get the desired expression for Fy93 319 (7, ¢, 2). a

Corollary 3.13

F{123,231}($aq72) =
1+ z2z+ (22 —29)2%2 + (—2%q + 2q + 3¢%)2* + 3¢%2° — ¢®20 — 4¢327 — 224328
(1—-¢2%)3(1 - ¢2%) '

Proof. By Lemma 1.2, we have Fyy193 931} (7, q,2) = Fi23312) (2/q, 1/, q2).
O
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3.1.8 h) {123,321}

Proposition 3.14

Fpiosgony (€,4,2) =1+ 2z + (2 + 9)2° + 22q + ¢ + ¢)2° + 4¢°2*

Proof. By a well-known result of Erdos and Szekeres, any permutation of
length at least 5 contains an occurrence of either 123 or 321. This reduces the
problem to counting fixed points and excedances in permutations of length
at most 4, which is trivial. O

3.2 'Triple restrictions

Here we consider simultaneous avoidance of any three patterns of length 3.
Applying Lemma 1.2, the triplets of patterns fall into the following equiva-
lence classes.

a) {123,132,213}
b) {231,312, 321}

c) {123,132,231} ~ {123,213,231}~; c’) {123,132,312} ~ {123,213,312}
d) {132,231,321} ~ {213,231,321}~; d’)
{132,312, 321} ~ {213,312,321}

e) {132,213,231} ~; ') {132,213,312}
f) {132,231,312} ~ {213,231, 312}

g) {123,231,312}

h) {132,213,321}

i) {123,132,321} ~ {123,213,321}

j) {123,231,321} ~; §°) {123,312,321}

It is known [84] that the number of permutations in S,, avoiding the triplets
in the classes a) and b) is the Fibonacci number F, 1. The number of
permutations avoiding any of the triplets in the classes c), ¢’), d), d’), e),
e’), f), g) and h) is n. The cases of the triplets i), j) and j’) are trivial,
because they are avoided only by permutations of length at most 4.

In terms of generating functions, when we substitute x = ¢ = 1 in Fy(z,q, 2)
where ¥ is a triplet from one of the classes between a) and g), we get

1
5(1,1,2) =Y Fryz" = Rt
n>0
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If ¥ is any triplet from the classes between c¢) and h), we get

1— 2422
1lz an 1_2) .
n>0

The following theorem gives all the generating functions of permutations
avoiding any triplet of patterns of length 3.

Theorem 3.15 a)

L+az+ (22— )22 + (—2q+ ¢ + q)2% — 2%¢2*
(1+gz%)(1 — 3¢2* + ¢*2*)

Fr123,132,213) (z,q,2) =

b)
1

Fioz1312,3213 (7, ¢, 2) = [y——

)

F123132,231} (%, ¢, 2) = Fl123.213,231} (2, ¢, 2)
14wzt (22 —q)2% + q¢2% + (—2%q + 2q + ¢*)2*
a (1—g22)?

c’)
F123132,312) (%, ¢, 2) = Fl123.213,312) (2, ¢, 2)
l+zz+ (22 — )22 + @223 + (—2%q + 2% + ) *

(1—gz%)?
d) 2
Fl132,231,3211 (2, 0, 2) = Fi13,031,3213 (2,4, 2) = (11__Z§(1LEZ$Z)
d’)
Fli32,312,3211 (2,0, 2) = Fioiz 3123213 (2,4, 2) = (11—_xi§(J{ EZ;)
e)

F132.213,2313 (7, ¢, 2)
1= z2—q2? 4 2¢2° + (—2?q + ¢* — 2q)2* + (2Pq — 2¢%)2° + 2?20
- 0= -2 — g2
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e’)

Frisa 213,312y (7, ¢, 2)

69

1—qz—q2? +2¢°2° + (—2?q — 2¢® + )2t + (2% — 2¢°)2° + aq?2°

(1 —22)(1 —gz)(1 — ¢22)?

f)
. (x Z) _F (x Z) o 1+ qu?ﬁ
(132,231,312} (T, G, 2) = F{213 231 312} (7, ¢, 2) = (1—z2)(1 — ¢22)
g)
F, (r,q,2) = 14z + (2% — q)2° + 2¢2° + ¢%*
{123,231,312} \X, ¢, ) = (1— qzz)z
h)
1—(1+q)z+2¢2% — 2q23
F e
{132,213,321}(957 q,2) (1 —2)(1—x2)(1 — ¢2)
i)

F{123,132,321} (r,q,2) = F{123,213,321} (z,q,2)

=1+az+ (2° +q)2" + (xq+ ¢ + 9)2° + 2

J)
Fpi93931,321} (7, ¢, 2) = 1+ 22 + (2 + q)2° + (22 + q)2° + ¢*2*
i)

Fuossizgay (,¢,2) = 1+ 2z + (2° + 9)2° + (22q + ¢°)2° + ¢*2*

Proof. Throughout this proof we will use the bijection ¢ : S§,(132) — D,

described in Section 2.1.

a) As in the proof of Proposition 3.1, we have that 7 € §,,(132) avoids

123 if and only if the Dyck path o(7) has height at most 2. Similarly,
from the proof of Proposition 3.6, 7 avoids 213 if and only if ¢(7) is a
sequence of pyramids. Thus, ¢ induces a bijection between S,,(123,132,213)
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and Pyr=? := Pyr<? N D,, where Pyr<? denotes the set of sequences of
pyramids of height at most 2. By Lemma 2.2,

Fri23132,213) (2, ¢, 2) = Z 2o (P) gt (D) 4 1DI.
DePyr=2

To count centered and right tunnels, we distinguish cases according to which
steps are the middle steps of D. A path in Pyr=? of height 0 at the middle
can be split in two elements of Pyr<? of equal length, only the right one
producing right tunnels. Since the number of D € Pyr=? is Fy,,1, the GF
for paths of height 0 at the middle is

1—qz2

F2 m,2m __ .
n§>:0 e (14 ¢2%)(1 = 3¢2> + ¢°2*)

Multiplying this expression by xzz (resp. by z2z?) we obtain the GF for
paths in Pyr<? having in the middle a centered pyramid of height 1 (resp.

of height 2).
AN

Figure 3.7 A sequence of pyramids of height at most 2.

Paths D € Pyr<? whose two middle steps are dd can be written as D =
AuuddB, where A, B € Pyr<? and |B| = |A| + 1 (see Figure 3.7). Thus,
the corresponding GF is

3

F F m . 2m-+1 — qZ .
T; mEmAl 2 (14 ¢22)(1 — 3¢22 + ¢?2*)

By symmetry, multiplying this expression by ¢ we get the GF for paths
whose two middle steps are uu.

Adding up all the cases, we get the desired GF

F123132,213) (2, ¢, 2)
_ (tazt 2222)(1 — ¢q2?) (q+¢»)7°
(14+¢2%)(1 = 3g22 +¢?2%) (1 +¢22)(1 — 3gz% + ¢?2*)

b) Using the same reasoning as in a), we have that 7 +— ¢(7) induces a
bijection between S,(231,312,321) and Pyrs2. Now, Lemma 2.2 implies
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that

do(D) td<o(D) | D
Fpoz1,312,3011 (7, ¢, 2) = Z gtdo(D) gtd<o(D) ,|D]
DePyrs?

Fach pyramid of height 1 produces a tunnel of depth 0, and each pyramid
of height 2 creates a tunnel of negative depth. Therefore,

1

Fio31 312,321} (2, ¢, 2) = [y

c) We saw in the proof of Proposition 3.8 that 7 € S,(132) avoids 231
if and only if the Dyck path ¢(7) does not have any two consecutive up-
steps after the first down-step. Therefore, ¢ induces a bijection between
S5,(123,132,312), and paths in D,, with the above condition and height at
most 2. Such paths (except the empty one) can be expressed uniquely as
D = uAdB, where A and B are sequences of hills (i.e, they have the form
(ud)® for some k > 0). Lemma 2.2 reduces the problem to enumerating
centered tunnels and right tunnels on these paths.

If B is empty, D = uAd has a centered tunnel at height 0. The contribution

of paths of this kind to our GF is 2 for |A| even, and 19”_2;:2 for |A| odd.

Assume now that |A| < |B|, so that A is within the left half of D = uAdB.
If the middle of D is at height 0, then D is determined by the length of A
and the number of hills in B to the left of the middle. Thus, the contribution
of this subset to the GF is

qz*

(1-q2%)*
Multiplying this expression by xz gives the GF for paths whose midpoint is
on top of a hill of B.

u ! d B
Figure 3.8 An example with |A| =3 and |B| = 2.

It remains the case in which |A| > |B| > 0. If |A| — |B| is even, the contri-
bution of these paths to the GF is

qz2 1

Zu . s
1—qz2 1—¢g22
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where the last factor counts how larger A is than B. If |A| — |B| is odd, the

corresponding GF is

qz? Tz

Zu . N
1—qz2 1—¢g22

since in this case there is a centered tunnel of height 1 inside A (see Fig-
ure 3.8).

Summing up all the cases, we get

vz + 2222 (1+ax2)q2?  ¢23(1 + x2)
Ty ) R

Fri23,132,2313 (7,4, 2) = 1+

c’) Lemma 1.2 implies that F{123 132,312} (%, 4, 2) = Fl123,132,231} (7, 1/¢, ¢2),
so the formula follows from part c).

d) As in the proof of Proposition 3.8, we use that m € S,,(132) avoids 231 if
and only if the Dyck path ¢(7) does not have any two consecutive up-steps
after the first down-step. Besides, as in Proposition 3.10, 7 € S,,(132) avoids
321 if and only if p(7) has at most two peaks. Thus, m € S,,(132,231, 321)
if and only if ¢(7) € D,, has the form u*Bd*, where B is either empty or is
a pair of pyramids, the second of height 1. Fixed points and excedances of
7 are mapped to centered tunnels and right tunnels of ¢(7) respectively, by
Lemma 2.2. Thus, F{123,132,312} (7, ¢, 2) equals the GF enumerating centered
and right tunnels in these paths.

If B is not empty, the contribution of the first pyramid is 1%, and the second
pyramid contributes gqz. Centered tunnels come from the steps outside B.

Hence,
1
<1 + - -qz) .
— Tz 1—2z

d’) It follows from part d) and Lemma 1.2.

Fri93132,312) (7, ¢, 2) = 1

e) Let 7 € §,(132). We have seen that the condition that 7 avoids 213
translates into () being a sequence of pyramids. The additional restriction
of m avoiding 231 implies that all but the first pyramid of the sequence
¢(m) must have height 1. Thus, by Lemma 2.2, Fy32:13931}(%,q,2) can
be obtained enumerating centered and right tunnels in paths of the form
D = AB, where A is any pyramid and B is a sequence of hills.
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The contribution of such paths when B is empty is just 1_1m —. Assume now

that B is not empty. If |A| > |B|, the corresponding contribution is

qz? z

1—q22 1—2

where the second factor counts how larger A is than B. It remains the case
|A] < |B|, in which A is within the left half of D. If the middle of D is at
height 0, then D is determined by the length of A and the number of hills
in B to the left of the middle. Thus, the contribution of this subset to the
GF is ,

qz

(1—gz%)*

Multiplying this expression by xz gives the GF for paths whose midpoint is
on top of a hill of B.

Figure 3.9 A pyramid followed by a sequence of hills.

Summing all this up, we get

1 n qz3 (14 x2)q2>
S l—zz (1-2)(1—qz?2)  (1—¢22)?2"°

F{132,213,231} (z,q,2)

e’) It follows from part e) and Lemma 1.2.

f) Reasoning as in the proof of €), we see that m — ¢(7) induces a bijec-
tion between S,,(123,231,312) and the subset of paths in D,, consisting of
a pyramid followed by a sequence of hills. By Lemma 2.2, it is enough to
enumerate these paths according to the statistics tdg and td<q. If the path

is nonempty, the first pyramid contributes 7 _“"3522 if it has odd size (since then

qz?
1—qz2

it contains a tunnel of depth 0) and if it has even size. The sequence

of hills contributes ﬁ Therefore,

rz + q2? 1

(132,231,312} (%, ¢, 2) Tz 22 1—az

g) Let m € 5,,(132). We have seen that 7 avoids 213 if and only if ¢(7) is a
sequence of pyramids, and that 7w avoids 321 if and only if ¢(7) has at most
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two peaks. In other words, ¢ induces a bijection between S,,(132,213,321)
and the subset of paths in D, that are a sequence of at most two pyra-
mids. Composing with the complementation operation, we have that m €
S5,(123,231,312) if and only if ¢(7) is in that subset. Now, Lemma 2.2 im-
plies that Fy193 231,312} can be obtained enumerating sequences of at most 2
pyramids according to tdy and td<g. Each pyramid contributes %g if it
qz>
1—q22

has odd size and if it has even size. Thus,

Fri23,231,312) (7, ¢,2) = 1+

Tz + qz? zz 4 q22\ >
1—qz2 1—qz2 )~

h) We have shown in the proof of g) that m € S,,(132,213,321) if and only
if ¢(7) is a sequence of at most two pyramids. Using Lemma 2.2, it is
enough to enumerate centered tunnels and right tunnels in such paths. The
contribution of paths with exactly two pyramids is

z qz

1—2 1—qz’

since only the one on the right gives right tunnels. Centered tunnels appear
when there is only one pyramid. Thus we obtain

1 qz>

ED =)

Fi32,213,321} (7, ¢, 2) = T

i, j, j°) These cases are trivial because only permutations of length at most
4 can avoid 123 and 321 simultaneously. a

After having studied all the cases of double and triple restrictions, the next
step is to consider restrictions of higher multiplicity. However, for ¥ C S3
with |X| > 4, the sets S,,(X) are very easy to describe (see for example [84]),
and the distribution of fixed points and excedances is trivial. In particular,
in these cases we have that |S,,(2)| € {0,1,2} for all n.

3.3 Pattern-avoiding involutions

Recall that Z,, denotes the set of involutions of length n, i.e., permutations
7 € S, such that 7 = 7—!'. In terms of the array representation of 7, this
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condition is equivalent to arr(m) being symmetric with respect to the main
diagonal. In this section we consider the distribution of the statistics fp and
exc in involutions avoiding any subset of patterns of length 3.

For any 7 € S,,, it is clear that fp(m) + exc(m) + exc(r 1) = n (each cross in
the array of 7 is either on, to the right of, or to the left of the main diagonal).
Thus, if © € Z,,, then exc(m) = %(n — fp(7)), so the number of excedances
is determined by the number of fixed points. Therefore, it is enough here
to consider only the statistic ‘number of fixed points’ in pattern-avoiding

involutions.

For any set of patterns %, let Z,,(X) := Z,, N S,(X), and let i%(X) := [{7 €
Z,(%) : fp(m) = k}|. Define

Gx(z,z) = Z Z 2P n
n>0 1L, (L)
By the reasoning above, > - ZweIn(E) fP(m g™ n = Gy (wq~ 12, 2¢"?).

Clearly, 7 is an involution if and only if 7 is an involution. Therefore, from
Lemma 1.1 we get the following.

Lemma 3.16 Let X be any set of patterns. We have
(1) Gi(l’, 2) = GZ(I’, 2)7

(2) Gx-1(x,2) = Gx(x, 2).

The property stated in the following lemma is what allows us to apply our
techniques for studying statistics on pattern-avoiding permutations to the
case of involutions.

Lemma 3.17 Let m € S§,(132) and let D = p(7) € D,,. Then,
7 18 an involution <= () is symmetric.

Proof. The array of crosses representing 7! is obtained from the one of 7

by reflection over the main diagonal. Therefore, from the description of the
bijection ¢ given in Section 2.1, we have that ¢(7~1) = D*. It follows that
7 is an involution if and only if D = D*, which is equivalent to D being a
symmetric Dyck path. O
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3.3.1 Single restrictions

It is known [84] that for o € {123,132,213,321}, |Z.(0)| = (Ln72j)’ and that
for o € {231,312}, |Z,(0)| = 2"~!. From Lemma 3.16 it follows that for
all k > 0, i%(132) = i¥(213) and ¥ (231) = i%(312). In a recent paper [27],
Deutsch, Robertson and Saracino prove the following fact:

Theorem 3.18 ([27]) The number of 321-avoiding involutions m € Sy, with
fp(m) = i equals the number of 132-avoiding involutions ™ € S,, with fp(7) =
i, for any 0 <i <n.

Let us show that Theorem 3.18 follows easily from the work in Section 2.2.
Recall from Section 1.2.1 that if D € D,,, D* denotes the path obtained by
reflection of D from a vertical line x = n. Now observe that if p(7) = D, then
(1) = D* (see Lemma 3.17). Similarly, if ¥(7) = D, then ¥ (7~ !) = D*
(by the duality of RSK). Therefore, 7 € S,,(321) is an involution if and only
if so is ©(m) € S,(132), which implies the result. Furthermore, restricting
O to involutions we obtain the following extension of Theorem 3.18:

Theorem 3.19 The number of 321-avoiding involutions m € Sy, with fp(m)=
i, exc(m) = j and lis(w) = k equals the number of 132-avoiding involu-
tions m € S, with fp(r) = i, exc(m) = j and rank(w) = n — k, for any
0<i,jk<n.

By Theorem 3.18 we have that i¥(132) = ¢¥(321). Thus, for single restric-
tions there are three cases to consider.

Theorem 3.20 ([50, 27]) Letn > 1, k > 0. We have

("Zl) if n is even,

(1) i9(123) = i2(123) =

if n is odd,
i (123) = (é) if n is odd,
" 0 if n is even,
ik (123) = 0 if k > 3.
(2) i5(132) = iy (213) = if;(321) :{ 8+1(”Tk) Wn =k is even,

ifn—k is odd.

1— 22

(3) Gosi(w,2) = Gaz(2,2) = T—————-
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Proof. (1) Clearly a 123-avoiding permutation cannot have more than two
fixed points. On the other hand, if 7 € Z,,, we have fp(7) = n — 2exc(m),
which explains that i% (123) = 0 if n — k is odd. This implies that for odd n,
fp(r) = 1 for all 7 € Z,,, so i} (123) = |Z,(123)| = (é) For even n, all we

have to show is that 0 (123) = i2(123).

The bijection 9, : §,(123) — D,, described in Section 2.3 has the property
that m € Z,,(123) if and only if ¢ (7) is a symmetric Dyck path. If n is even,
involutions 7 € Z,, with fp(7) = 2 are mapped to symmetric Dyck paths with
a peak in the middle, and those with fp(m) = 0 are mapped to symmetric
Dyck paths with a valley in the middle. We can establish a bijection between
these two sets of Dyck paths just by changing the middle peak ud into a
middle valley du (this can always be done because the height at the middle
of a Dyck path of even semilength is always even, so it cannot be 1). This
proves that i) (123) = i2(123), and in particular it equals 1|Z,,(123)| = ("%71)

(2) We use the bijection ¢ : S,(132) — D,,, which by Lemma 3.17 restricts
to a bijection between Z,,(132) and Ds. Thus, by Lemma 2.2, G132(z, 2) can
be expressed as Y pep, D) 2Pl where the sum is over all symmetric Dyck
paths. But the number of centered tunnels of a symmetric Dyck path is just
its height at the middle. Therefore, taking only the first half of the path,
i (132) counts the number of paths from (0,0) to (n,k) never going below
the z-axis, which equals the ballot number given in the theorem.

(3) Consider the bijection Sn(312) D? . Then 7 € Z,,(312) if and
™ = p(T)

only if p(7) is a sequence of pyramids. Together with the proof of Proposi-

tion 3.7, this implies (see also [84]) that Z,,(312) = Z,,(231) = S,,(231, 312).

Recall that fixed points of 7w are mapped to tunnels of depth 0 of ¢(7), which

are produced by pyramids of odd size. Thus, as in Proposition 3.7,

1

w222’
1 1—22

Gsi2(x,2) =

3.3.2 Multiple restrictions

Theorem 3.21 a)

1+zz+ (22 —1)22
1—222

G{123,132} (z,2) = G{123,213} (z,2) =
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b)
1

G{231,321}(33a z) = G{312,321}(33a z) = 1— 22 — 22

1— 22
Gz (7, 2) = (1 —22)(1 — 222)

1—22
Gioz1312)(T,2) = FR— )

o)

G{132,231}($,2) = G{213,231}(3€7 z) = G{132,312} (r,2) = G{213,312} (z,2)
14223
(1—2z2)(1—22)

f) 1
Glizo,01) (€, 2) = Gz (2, 2) = (1—2z)(1 —2?)
g)
Gli23,2313 (2, 2) = Gz a1y (2, 2) = Lozt (1:(21__1;2'2)22‘1’ xz3 + 2
h)

Gpzszony (#,2) = 1+ 22 + (2 4+ 1)2° + 222° + 22

Proof. All the equalities between Gy for different 3 follow trivially from
Lemma 3.16. To find expressions for these GF's, the idea is to use again
the same bijections as in Section 3.1, between permutations avoiding two
patterns of length 3 and certain subclasses of Dyck paths. The main differ-
ence is that here we will have to deal only with symmetric Dyck paths, as a
consequence of Lemma 3.17.

a) From the proof of Proposition 3.1 and Lemma 3.17, we have that ¢
restricts to a bijection between Z,,(123,132) and symmetric Dyck paths D €
D,, of height at most 2. By Lemma 2.2, ¢ maps fixed points to centered
tunnels, so all we have to do is count elements D € Ds of height at most
2 according to the number of centered tunnels. Such a D can be uniquely
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written as D = ABC, where A = C* € D=? and B is either empty or has
the form B = uBjd, where B; is a sequence of hills. If |Bj| is even (resp.
odd), then D has one (resp. two) centered tunnels, so the contribution of B
is 1+ 342222 he contribution of A and O is 1725, The product of these

1—22 1222

two quantities gives the expression for G'(193 139} (7, 2).

b) As shown above and also in [84], we have that Z,(231) = S,(231,312).
Therefore, 7Z,,(231,321) = S,(231, 312,321). This case was treated in Theo-
rem 3.15 b).

c) From the proof of Proposition 3.6 and Lemma 3.17, we have that ¢
gives a bijection between Z,,(132,213) and symmetric sequences of pyramids
D € Pyry, and that it maps fixed points of the permutation to centered
tunnels of the Dyck path. Such a D can be written uniquely as D = ABC,
where A = C* € Pyr, and B is either empty or a pyramid. The contribution
of B is 1_—1m, whereas A and C contribute 11__22222. Multiplying these two
expressions we get a formula for G133 913} (7, 2).

d) Again, 7Z,,(231) = S,(231, 312) implies that Z,,(231,312) = §,,(231, 312),
which has been considered in Proposition 3.7.

e) We have that Z,,(132,231) = S,(132,231,312), so the formula follows
from Theorem 3.15 f).

f) From the proof of Proposition 3.10 and Lemma 3.17, we have that ¢
gives a bijection between Z,,(132,321) and symmetric paths D € D,, with at
most two peaks. Counting centered tunnels in such paths is very easy, since
they have the form D = u*Bd*, where k > 0 and B is either empty or a
pair of identical pyramids. The contribution of B is ﬁ, whereas the rest
contributes ﬁ

g) We have that Z,,(123,231) = S,(123,231,312), so the formula follows
from Theorem 3.15 g).

h) It is trivial since S,,(123,321) = ) for n > 5. O

The case of involutions avoiding simultaneously three or more patterns of
length 3 is very easy and does not involve any new idea, so we omit it here.

As a final remark, let us point out that looking at the results of this chapter,
one observes that the GFs Fx(x,q, z) that we have obtained for ¥ C S3 are
all rational functions when |X| > 2. This is in contrast with the fact that they
are not rational when |X| = 1, since in that case Fx(1,1,2) = 1_\4?

C(z). For the case of involutions, all the GFs Gx(z,2) for ¥ C S3 are
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rational except when ¥ € {{123}, {132}, {213}, {321}}.



4

A simple and unusual
bijection for Dyck paths

In this chapter we introduce a new bijection ® from the set of Dyck paths to
itself. This bijection has the property that it maps nontrivial statistics that
appear in the study of pattern-avoiding permutations into classical statistics
on Dyck paths, which have been widely studied in the literature and whose
distribution is easy to obtain.

When one tries to enumerate Dyck paths with respect to the number of cen-
tered and right tunnels directly, the standard decompositions of Dyck paths
do not work. Intuitively, the problem is that unlike hills, peaks, or double
rises, which are characteristics of a Dyck path that are defined locally, the
notion of tunnel may involve an arbitrarily large number of steps of the path.
The bijection ® has the advantage that it transforms tunnel-like statistics
into locally defined statistics that behave well under the usual decompo-
sitions of Dyck paths. As a consequence, several enumeration problems
regarding permutation statistics on restricted permutations can be solved
more easily considering their counterpart in terms of Dyck paths.

Another important application of ® is that it allows us to give a simple
bijective proof of Theorem 1.4, which is a weaker version of Theorem 2.3
considering only the number of fixed points. Some results in this chapter
are joint work with Emeric Deutsch [33].

In Section 4.1 we present the bijection ®, and in Section 4.2 we study its
properties. In Section 4.3 we give a generalization of ®, namely a family
of bijections depending on an integer parameter r, from which the main
bijection ® is the particular case r = 0. These bijections give correspon-
dences involving new statistics on Dyck paths, which generalize ct and rt.
We give multivariate generating functions for them. Section 4.4 discusses
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several applications of these bijections to enumeration of statistics on 321-
and 132-avoiding permutations. In particular, we generalize Theorem 1.4,
and we find a multivariate generating function for fixed points, excedances
and descents in 132-avoiding permutations. Finally, in Section 5.1 we discuss
new interpretations of Catalan numbers that follow from our work.

4.1 The bijection ¢

In this section we describe a bijection ® from D,, to itself. Let D € D,.
Each up-step of D has a corresponding down-step together with which it
determines a tunnel. Match each such pair of steps. Let 7 € Sy, be the
permutation defined by
1+ 1
T, — 2 i
2n+1— 3 if 4 is even.

if 4 is odd;

In two-line notation,

/1 2 3 4 5 6 - 2m—-2 2n—1 2n
{122 2 2n=1 3 20—2 -~ n+2 0  n+1 )"

Then ®(D) is created as follows. For i from 1 to 2n, consider the 7;-th step
of D (i.e., D is read in zigzag). If its corresponding matching step has not
yet been read, define the i-th step of ®(D) to be an up-step, otherwise let
it be a down-step. In the first case, we say that the 7;-th step of D opens a
tunnel, in the second we say that it closes a tunnel.

The bijection ® applied to the Dyck paths of semilength at most 3 is shown
in Figure 4.1. Figure 4.2 shows ® applied to the example of the Dyck path
D = uuduudududddud.

It is clear from the definition that ®(D) is a Dyck path. Indeed, it never goes
below the z-axis because at any point the number of down-steps drawn so
far can never exceed the number of up-steps, since each down-step is drawn
when the second step of a matching pair in D is read, and in that case the
first step of the pair has already produced an up-step in ®(D). Also, ®(D)
ends in (2n,0) because each of the matched pairs of D produces an up-step
and a down-step in ®(D).

To show that ® is indeed a bijection, we will describe the inverse map
®~1. Given D’ € D, the following procedure recovers the D € D,, such
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52 30>
3

Figure 4.1 The bijection ® for paths of length at most 3.

that ®(D) = D’. Consider the permutation 7 defined above, and let W =
wiws - - - wo, be the word obtained from D’ as follows. For i from 1 to 2n,
if the i-th step of D’ is an up-step, let w,, = o, otherwise let w,, = c. W
contains the same information as D', with the advantage that the o’s are
located in the positions of D in which a tunnel is opened when D is read
in zigzag, and the ¢’s are located in the positions where a tunnel is closed.
Equivalently, the o’s are located in the positions of the left walls of the left
and centered tunnels of D, and in the positions of the right walls of the right
tunnels. For an example see Figure 4.3.

A1 NN /| NAAA T NAN

Figure 4.2 An example of .
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D’
A N [ [ ] AN
q)—l
D
A1 AN
WZOOCOCCOOOOOOCCCOCCCOOCCCOCOCCCOOOC
1225537 810111314141311171715161615108 12129 9 7 4 6 6 4 3 1

Figure 4.3 The inverse of ®.

Now we define a matching between the o’s and the ¢’s in W, so that each
matched pair will give a tunnel in D. We will label the o’s with 1,2,....n
and similarly the ¢’s, to indicate that an o and a ¢ with the same label are
matched. By left (resp. right) half of W we mean the symbols w; with i <n
(resp. @ > n). For i from 1 to 2n, if w,, = o, place in it the smallest label
that has not been used yet. If w,, = ¢, match it with the unmatched o in the
same half of W as w,, with largest label, if such an o exists. If it does not,
match w,, with the unmatched o in the opposite half of W with smallest
label. Note that since D’ was a Dyck path, at any time the number of ¢’s
read so far does not exceed the number of 0’s, so each ¢ has some o to be
paired up with.

Once the symbols in W have been labelled, D can be recovered by reading
the labels from left to right, drawing an up-step for each label that is read
for the first time, and a down-step for each label that appears the second
time. In Figure 4.3 the labelling is shown under W.

4.2 Properties of ¢

Lemma 4.1 Let D = ABC be a decomposition of a Dyck path D, where
B is a Dyck path, and A and C have the same length. Then ®(ABC) =
O(AC)®(B). In particular, ®(uBd) = ud®(B).
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Proof. 1t follows immediately from the definition of @, since the path D is
read in zigzag while ®(D) is built from left to right. O

Theorem 4.2 Let D be any Dyck path, and let D' = ®(D). We have the
following correspondences:

(1) ct(D) = h(D'),
(2) rt(D) =er(D’),
(3) 1t(D) + ct(D) = or(D’),

(4) cmt(D) = ret(D’).

Proof. First we show (1). Consider a centered tunnel given by the decompo-
sition D = AuBdC. Applying Lemma 4.1 twice, we get D' = ®(AuBdC) =
P(AC)P(uBd) = ®(AC)ud®(B), so we have a hill ud in D’. Reciprocally,
any hill in D', say D’ = XudY, where X,Y € D, comes from a centered
tunnel D = ZluCID_l(Y)ng, where Z1 and Z, are respectively the first and
second halves of ®~1(X).

The proof of (4) is very similar. Recall that ret(D’) equals the number of
arches of D’. Given a centered multitunnel corresponding to the decompo-
sition D = ABC, we have ®(D) = ®(AC)®(B), so D’ has an arch starting
at the first step of ®(B), which is nonempty.

To show (2), consider a right tunnel given by the decomposition D =
AuBdC, where length(A) > length(C). Of the two steps u and d delimiting
the tunnel, d will be encountered before u when D is read in zigzag, since
length(A) > length(C). So d will open a tunnel, producing an up-step in
D’. Besides, this up-step will be at an even position, since d was in the right
half of D. Reciprocally, an even rise of D’ corresponds to a step in the right
half of D that opens a tunnel when D is read in zigzag, so it is necessarily
a right tunnel.

Relation (3) follows from (2) and the fact that the total number of tunnels
of D is It(D) + ct(D) + rt(D) = n, and the total number of up-steps of D’
is or(D') + er(D’) = n. 0

One interesting application of this bijection is that it can be used to enumer-
ate Dyck paths according to the number of centered, left, and right tunnels,
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and number of centered multitunnels. We are looking for a multivariate
generating function for these four statistics, namely

E(%’, w, v, w, Z) _ Z wct(D)ult(D)vrt(D)wcmt(D)Z\D )
DeD

By Theorem 4.2, this GF can be expressed as

E(m,u,v,w, z) = R(%,u,v,w,z), (4.1)

where
R(t7 u, v, W, Z) — Z th(D)uor(D),Uer(D),wret(D)Z|D|'
DeD

We can derive an equation for R using again that every nonempty Dyck
path D can be decomposed in a unique way as D = uAdB, where A, B € D.
The number of hills of uAdB is h(B)+1 if A is empty, and h(B) otherwise.
The odd rises of A become even rises of uAdB, and the even rises of A
become odd rises of uAdB. Thus, we have er(uAdB) = or(A) + er(B), and
or(uAdB) = er(A) + or(B) + 1, where the extra odd rise comes from the
first step u. We also have ret(uAdB) = ret(B) + 1. Hence, we obtain the
following equation for R:

R(t,u,v,w,z) =14+ uwz(R(1,v,u,1,z) — 1+ t)R(t,u,v,w, z). (4.2)

Denote Ry := R(1,u,v,1,z), Ry = R(1,v,u,1,z). Substituting t = w =1
in (4.2), we obtain

Ri=1+ qu\lRl, (4.3)
and interchanging v and v,
Ry =1+vzRRy. (4.4)
Solving (4.3) and (4.4) for Ry, gives
=~ 14 (u—v)z—/1-2(v+u)z+ (v —u)222

Ry =
! 2uz
Thus, from (4.2),
1
R(t,u,v,w,z) = —~
1 —wwz(Ry —1+1)
2

. (4.5
2 —w+ (v+u—2tu)wz +wy/1—2(v +u)z + (v — u)222 (45)

Now, switching to é, we obtain the following theorem.
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Theorem 4.3 The multivariate generating function for Dyck paths accord-
ing to centered, left, and right tunnels, centered multitunnels, and semilength
18

Z (D) 16(D) 1t (D), emt(D) | D]

DeD
2

B 2 —w+ (v+u—22)wz +wy/1T— 20 +u)z + (v —u)222

As pointed out by Alex Burstein, Lagrange inversion applied to equation (4.2)
gives a nice expression for the coefficients of R.

Corollary 4.4 Fiz integers c,l,r,m >0 and let n = c+ 1+ r. The number
of Dyck paths D € Dy, with ct(D) = ¢, It(D) =1, rt(D) = r and cmt(D) = m

s given by
m—c{m\[{n—m\{n—m
n—m\c l r

ifc<m<c+l<n,anditisl if c=m =n.

Proof. The case ¢ = m = n is trivial, since the only path in D,, with n
centered tunnels is D = u”d”. For the rest of the proof we assume that
0<c<m<c+lIl<n.

We start by applying Lagrange inversion formula (Theorem 1.3) to equa-
tion (4.2) for variable w, being f(w) = R(t,u,v,w,z) — 1, G(w) = uz(Ry —
1+t)(w+1),n=m and k =1 in the theorem. We get that

[W™(R(t,u,v,w,z) —1) = [w™ (uz(Ry — 1+ t)(w + 1))™

1
m
um (R —14+t)™.

Taking the coefficient of ¢¢,

[tw™|(R(t, u,v,w,2) — 1) = <m

. )umzm(fel —1)yme, (4.6)

Isolating R; in equation (4.3) and substituting it in (4.4) we get

vz R

ﬁ1:1+7/\,
1 —uzR;



88 Chapter 4. A simple and unusual bijection for Dyck paths

which is equivalent to
El —1= zﬁl(u(él — 1) + U).
We apply Lagrange inversion formula again, now for variable z, with f(z) =
Ry —1,G(2) = (¢ + 1)(uz +v) and n = s. This gives us (for s # 0),
~ k
(R = 1)F =~ [ M)z + 1) (uz + )",

SO

o ) (By — 1)F = F <S> k(s 4 1) = F <S> <r ° k) (4.7)

s\r s\r
Now, taking the appropriate coefficients of u, v and z in equation (4.6) gives

[tcun_rvamZn](R(t, u, v, W, Z) _ 1) — <’I’:,> [un—m—rvrzn—m](gl _ 1)m—c

_(m\m—c(n—m n—m
“\e)n-—m\ r r—m+c)’
where the last equality follows from (4.7) with s =n —m and k = m — c.

Thus, using that n —r =c+ 1 and n —m — (r —m+c¢) = [, we get that for
n>1,

[tucH o w™ 2" R(t, u, v, w, 2) = m-e <m> <n - m) (n - m)
n—m\c r l

But by relation (4.1), this coefficient is precisely [:Eculv’"wmz"]é(:n, U, v, W, z),

which is the number of paths D € D,, with ct(D) =¢, It(D) =1, rt(D) =r
and cmt(D) = m. O

4.3 Generalizations

Here we present a generalization ®, of the bijection ®, which depends on
a nonnegative integer parameter r. Given D € D,,, copy the first 2r steps
of D into the first 2r steps of ®,(D). Now, read the remaining steps of D
in zigzag in the following order: 2r + 1, 2n, 2r + 2, 2n — 1, 2r + 3, 2n — 2,
and so on. For each of these steps, if its corresponding matching step in D
has not yet been encountered, draw an up-step in ®,(D), otherwise draw a
down-step. Note that for » = 0 we get the same bijection ® as before.
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Note that @, can be defined exactly as ® with the difference that instead of
7, the permutation that gives the order in which the steps of D are read is
(1) € 8y, defined as

i if i < 2r;

+7r if ¢ > 2r and ¢ is odd;

2n+1—%—r if 7 > 2r and ¢ is even.

Figure 4.4 shows an example of the bijection ®, for » = 2 applied to the
path D = uduuduuduududddudd.

0,
AT N A TN NANATIN

2r
Figure 4.4 An example of ®.

It is clear from the definition that ®,.(D) is a Dyck path. A reasoning similar
to the one used for ® shows that @, is indeed a bijection.

The properties of ® given in Theorem 4.2 generalize to analogous properties
of ®,. We will prove them using the next lemma, which follows immediately
from the definition of ®,.

Lemma 4.5 Let v > 0, and let D = ABC be a decomposition of a Dyck
path D, where B is a Dyck path, and length(A) = length(C) + 2r. Then
¢, (ABC) = ¢,.(AC)®(B).

Theorem 4.6 Letr >0, let D be any Dyck path, and let D' = ®,.(D). We
have the following correspondences:

(1) #{tunnels of D with midpoint at x =n +r}
= #{hills of D" in x > 2r},

(2) #{tunnels of D with midpoint in x > n+r}
= #{even rises of D' in x > 2r},

(3) #{tunnels of D with midpoint in x < n+r}
= #{odd rises of D" in x > 2r} + #{up-steps of D’ in x < 2r},

(4) #{multitunnels of D with midpoint at x =n + r}
= #{arches of D' in x> 2r}.
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Proof. Fist we show (1). A tunnel given by the decomposition D = AuBdC
has its midpoint at * = n + r exactly when length(A) = length(C) + 2r.
Applying Lemmas 4.5 and 4.1, D' = ®,(AuBdC) = ®,.(AC)®(uBd) =
¢, (AC)P(ud)®(B) = ¢,(AC)ud®(B), and ud is a hill of D' in = > 2r,
since length(®,(AC)) > 2r. Reciprocally, any hill of D" in « > 2r, say
D' = XudY, where X, Y € D and length(X) > 2r, comes from a tunnel with
midpoint at x = n+r, namely D = Z;u® 1 (Y)dZ,, where Z; 25 = & 1(X)
and length(Z;) = length(Zs) + 2r.

The proof of (4) is very similar. A multitunnel given by D = ABC' has its
midpoint at x = n+r exactly when length(A) = length(C)+2r. In this case,
®,.(D) = ®,.(AC)®(B) by Lemma 4.5, so D has an arch starting at the first
step of ®(B). Notice that this arch is in > 2r because length(®,(AC)) >
2r.

To show (2), consider a tunnel in D with midpoint in > n + r. This is
equivalent to saying that it is given by a decomposition D = AuBdC with
length(A) > length(C) + 2r. In particular, the tunnel is contained in the
halfspace x > 27, so the two steps u and d delimiting the tunnel are in the
part of D that is read in zigzag in the process to obtain ®,.(D), and d will
be encountered before u, since length(A) — 2r > length(C). So d will open
a tunnel, producing an up-step of D’ in x > 2r. Besides, this up-step will be
at an even position, since d is in & > n + r, that is, in the right half of the
part of D that is read in zigzag. Reciprocally, an even rise of D’ in x > 2r
corresponds to a step of D in x > n + r that opens a tunnel when D is read
according to 7("), so it is necessarily a tunnel with midpoint to the right of
r=n-+r.

Relation (3) follows from (2) and the fact that the total number of tunnels
of D is #{tunnels of D with midpoint in > n+r}+#{tunnels of D with
midpoint in z < n + r} = n, and the total number of up-steps of D’ is
#{even rises of D’ in z > 2r}+#{odd rises of D’ in = > 2r} + #{up-steps
of D' inz <2r} =n. O

Similarly to how we used the properties of ® to prove Theorem 4.3, we can
use the properties of @, to prove a more general theorem. Our goal is to
enumerate Dyck paths according to the number of tunnels with midpoint
on, to the right of, and to the left of an arbitrary vertical line x = n + r,
and multitunnels with midpoint on that line. In generating function terms,
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we are looking for an expression for

E(t,u,v,w,y,z) = Z Z tuPvrwly" 2",
n>0 DeD,
0<r<n

where

a = #{tunnels of D with midpoint at x = n + r},

B = #{tunnels of D with midpoint in x < n + r},

v = #{tunnels of D with midpoint in x > n + r},

d = #{multitunnels of D with midpoint at x = n + r}.

Note that the variable y marks the position of the vertical line x = n + r
with respect to which the tunnels are classified. The following theorem gives
an expression for F.

Theorem 4.7 Let E, R and C be defined as above. Then,
C(uyz)R(t,u,v,w, 2)
1 — yu222C2(uyz)R(1,u,v,1,2)R(1,v,u, 1, 2)
2(52(2 + (’U - U)Z + (51)
2+ (u+v—2tuw)wz +wd ] [(61 + (v — u)2)d2 — duyz]’

where 61 := /1 —2(u+v)z + (u—v)222 — 1, 59 := /T — duyz — 1.

E(t7 u? U’ w’ y7 z) =

Proof. By Theorem 4.6, the generating function E can be expressed as

E(tvuvvuw7y7z) =

Z Z #hills of D in z > 2r}

n>0 DEeD,
0<r<n

u#{odd rises of D in x > 2r}+#{up-steps of D in = < 2r}
p#{even rises of Dinzx> 2r}w#{arches of D inx > 2T}y7"zn‘ (4.8)

For each path D in this summation, the y-coordinate of its intersection with
the vertical line x = 2r has to be even. Fix h > 0. We will now focus only
on the paths D € D for which this intersection has y-coordinate equal to 2h.
Let D = AB, where A and B are the parts of the path respectively to the left
and to the right of © = 2r. Then, #{hills of D in = > 2r} = #{hills of B},
#{odd rises of D in z > 2r} = #{odd rises of B}, #{up-steps of D in z <
2r} = #{up-steps of A}, and #{arches of D in x > 2r} = #{arches of B}.
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B can be any path starting at height 2h and landing on the z-axis, never
going below it. If h > 0, consider the first down-step of B that lands at
height 2h — 1. Then B can be decomposed as B = B1dB’, where Bj is
any Dyck path, and B’ is any path starting at height 2h — 1 and landing on
the z-axis, never going below it. Applying this decomposition recursively, B
can be written uniquely as B = B1dBsd - - - BopdBap 11, where the B;’s for
1 < i < 2h+1 are arbitrary Dyck paths. The number of hills and number of
arches of B are given by those of Bop11. The odd rises of B are the odd rises
of the B;’s with odd subindex plus the even rises of those with even subindex.
In a similar way one can describe the even rises of B. The semilength of
B is the sum of semilengths of the B;’s plus h, which comes from the 2h
additional down-steps. Thus, the generating function for all paths B of this
form, where ¢, u, v, and z mark respectively number of hills, number of odd
rises, number of even rises, and semilength, is

2PRM1,u,v,1, 2) R (1, 0,u, 1, 2) R(t, u, v, w, 2). (4.9)

Similarly, A can be decomposed uniquely as A = Ajudsu--- Agpudgy .
The number of up-steps of A is the sum of the number of up-steps of each
A;, plus a 2h term that comes from the additional up-steps. The generating
function for paths A of this form, where u marks the number of up-steps,
and y and z mark both the semilength, is

2Pyt Ph G (uy2). (4.10)
The product of (4.9) and (4.10) gives the generating function for paths D =
AB where the height of the intersection point of D with the vertical line
between A and B is 2h, where the variables mark the same statistics as in

(4.8). Note that the exponent of y is half the distance between the origin of
D and this vertical line. Summing over h, we obtain

E(t7 u7 /U’ w7 y7 Z)
= Z 22y 2h G (uy2) R (1,4, 0,1, 2) RM (1, 0, u, 1, 2) R(t, w, v, w, 2)
h>0
_ C(uyz)R(t, u, v, w, 2)
1 —yu222C2(uyz)R(1,u,v, 1, 2)R(1,v,u,1,2)

The second expression in the statement of the theorem follows from the
formula (4.5) that we had for R. O
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4.4 Connection to pattern-avoiding per-
mutations

The bijection ® has applications to enumeration of statistics on pattern-
avoiding permutations. The first one is that it can be used together with the
bijections defined in Chapter 2 to give another bijective proof of Theorem 1.4.
Here we show a more general result. We use the bijection ®, to give a
combinatorial proof of the following generalization of Theorem 1.4. Note
that the particular case r = 0 gives a new bijective proof of such theorem.

Theorem 4.8 Fix r,n > 0. For any w € S, define an.(w) = #{i : m; =
i+r}, Be(m) = #{i : i > r,m; = i}. Then, the number of 321-avoiding
permutations ™ € S, with B.(1) = k equals the number of 132-avoiding
permutations m € S, with o, (w) =k, for any 0 < k < n.

Proof. Recall that the bijection ¢, : §,,(321) — D,, defined in Section 2.2.4
satisfies that fp(m) = h(¢_(7)). More precisely, it can be easily checked that
i is a fixed point of 7 if and only if ¢, (7) has a hill with z-coordinate 2i — 1.
This implies that G, (7m) = #{hills of ¥ (7) in = > 2r}.

The second bijection that we use is ¢ : S,,(132) — D,,, defined in Sec-
tion 2.1. In Proposition 2.1 we showed that fp(7) = ct(¢(7)). Recall that
in the proof of this proposition, we associated a unique tunnel of D to each
cross of the array arr(m). An element ¢ with m; = i + r is represented by a
cross (i,7+ ) in the array. From the description of the association between
crosses and tunnels, it follows that such a cross (i,7 + r) corresponds to a
tunnel of p(7) with midpoint r units to the right of the center. That is, an el-
ement ¢ with m; = ¢+r gives a tunnel with midpoint at £ = n+r. Therefore,
we have that a,.(7) = #{tunnels of ¢(7) with midpoint at z = n + r}.

Now all we need to do is use @, and property (1) given in Theorem 4.6.
From this it follows that the bijection 1o ®,0¢ : S,(132) — S,,(321) has
the property that 3,(¥ ! o ®, o () = #{hills of ®, o o(r) in x > 2r} =
#{tunnels of p(m) with midpoint at x = n +r} = a, (7). O

While in Section 2.2.4 we describe a simple way to enumerate 321-avoiding
permutations with respect to the statistics fp and exc, the analogous enu-
meration for 132-avoiding permutations is harder to do directly. Here we
use the properties of ® to give a more direct derivation of the multivariate
generating function for 132-avoiding permutations according to the number
of fixed points and the number of excedances.
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Corollary 4.9 (of Theorem 4.3)

Z Z fp(7r exc( 7r)

n>07€8,(132)
2
_ (411
1+ (14v—22)2z++/1-2(1+v)z+ (1 —v)222

Proof. Proposition 2.1 shows that ¢ maps fixed points to centered tun-
nels, and excedances to right tunnels, i.e., fp(7) = ct(¢(7)) and exc(m) =
rt(¢(m)). Thus, the left hand side of (4.11) equals Y., p 2t P)rt(P) DI,
The result now is obtained applying Theorem 4.3 for u = w = 1. |

Comparing this expression (4.11) with the equation obtained in 2.2.4 for
F391(x,q, z), we obtain another proof of Theorem 2.3.

As a further application, we can use the bijection ® to give the following
refinement of Corollary 4.9, which gives an expression for the multivariate
generating function for number of fixed points, number of excedances, and
number of descents in 132-avoiding permutations. The analogous result for
321-avoiding permutations is given in Theorem 2.10.

Theorem 4.10 Let
L(x7 q,D, Z) =1+ Z Z xfp(ﬂ-)leC(ﬂ-)pdeS(ﬂ')J’_lzn'
n>17eSy(132)
Then
21+ zz(p—1))
1+ (1+q—2x)z—q22(p—1)2 ++/fi1(q, 2)

where f1(q,2) =1=2(14+¢)z+[(1—¢)* —2¢(p—1)(p+3)]2> —2q(1 +¢) (p —
1)22° + ¢*(p — 1)*2%.

L(z,q,p,2) = . (4.12)

Proof. We use again that ¢ maps fixed points to centered tunnels, and
excedances to right tunnels. It is shown in Proposition 2.1 that it also
maps descents of the permutation to valleys of the corresponding Dyck path.
Clearly, the number of valleys of any nonempty Dyck path equals the number
of peaks minus one (in the empty path both numbers are 0). Thus, L can
be expressed as

Z xct(D)qrt(D)p#{peaks of D}, |D|
DeD

L(x,q,p,z) =
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By Theorem 4.2, ® maps centered tunnels into hills and right tunnels into
even rises. Let us see what peaks are mapped to by ®. Given a peak
ud in D € D, D can be written as D = AudC, where A and C are the
parts of the path before and after the peak respectively. This decomposition
corresponds to a tunnel of D that goes from the beginning of the u to
the end of the d. Assume first that the peak occurs in the left half (i.e.,
length(A) < length(C)). When D is read in zigzag, the u opens a tunnel
that is closed by the d two steps later. This produces in ®(D) an up-step
followed by a down-step two positions ahead, that is, an occurrence of uxd
in the Dyck word of ®(D), where x stands for any symbol (either a u or
ad).

If the peak occurs in the right half of D (i.e., length(A) > length(C)), the
reasoning is analogous, with the difference that the d opens a tunnel that is
closed by the u two steps ahead. So, such a peak produces also an occurrence
of uxd in ®(D). Reciprocally, we claim that an occurrence of uxd in ®(D)
can come only from a peak of D either in the left or in the right half. Indeed,
using the notation from the procedure above describing the inverse of ®, an
occurrence of uxd in ®(D) corresponds to either an occurrence of oc in the
left half of W or an occurrence of co in the right half of W. In both cases,
the algorithm given above will match these two letters ¢ and o with each
other, so they correspond to an occurrence of ud in D.

If the peak occurs in the middle (i.e., length(A) = length(C)), then by
Lemma 4.1, ®(AudC) = ®(AC)ud, so it is mapped to an occurrence of ud
at the end of ®(D). Clearly we have such an occurrence only when D has a
peak in the middle.

Thus, we have shown that peaks in D are mapped by ® to occurrences of
uxd in ®(D) and occurrences of ud at the end of ®(D), or, equivalently,
to occurrences of u*d in ®(D)d (here ®(D)d is a Dyck path followed by
a down-step). Denote by A(D) the number of occurrences of uxd in Dd.
This implies that L can be written as

L@, q,p,2) = 3 ahD)gexDpND)I0]
DeD

We are left with a Dyck path enumeration problem, which is solved in the
following lemma. Let J be defined in Lemma 4.11. It is easy to see that we
have L(x,q,p,z) =1+ J(z,1,p,1,q,p, z). Making use of (4.13) and (4.14),
it follows at once that

1 —axz+ zpz

L(z,q,p,2) = 1— 22— 2K,
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where K is given by
2K?2 —[1 — 2z — qz+ q(1 — p)?2%| Ky + pqz = 0.
From these equations we obtain (4.12). O

Lemma 4.11 Denote by ih(D) (th(D)) the number of initial (final) hills in
D (obviously, their only possible values are 0 and 1). Denote by (D) the
number of occurrences of uxd in D. Then the generating function

where the summation is over all nonempty Dyck paths, is given by

uz[zts + (1 — zu(l —t)(1 — s)2) K]

J 7t7 ) ) 9 b = ) 4‘13
(@,t,5,0,0,9,2) 1 —zuz —uzK ( )
where K is given by

uzK? — [1 — (u+v)z +uv(l — y)?2%|K + y?vz = 0. (4.14)

Proof. Every nonempty Dyck path has one of the following four forms: ud,
udB, uAd, or uAdB, where A and B are nonempty Dyck paths. The

generating functions of these four pairwise disjoint sets of Dyck paths are
(i) atsuz,
(i) xtuzJ(z,1,s,u,v,y,2),
(il) wzJ(1,y,y,v,u,y, 2),
)

(iV UZJ(17 Y, y,0,u,Y, Z)J(IL’7 17 s, u,v,Y, Z)?

respectively. Only the third factor in (iii) and (iv) needs an explanation: the
hills of A are not hills in uAd; an initial (final) hill in A gives a uud (udd)
in uAd; an odd (even) rise in A becomes an even (odd) rise in uAd.

Consequently, the generating function J satisfies the functional equation
J(x,t,s,u,v,y, z) = wtsuz + xtuzd(x,1,s,u,v,y, 2)

+uzJ(1,y,y,v,u,y, z) + uzJ(1,y,y,v,u,y,2)J(x,1,s,u,v,y,2). (4.15)

From equation (4.15) it is clear that, whether interested or not in the statis-
tics ‘number of initial (final) hills’, we had to introduce them for the sake of
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the statistic marked by the variable y. Also, without any additional effort
we could use two separate variables to mark the number of uud’s and the
number of udd’s, and obtain a slightly more general generating function,
although we do not need it here.

Denoting H = J(x,1,s,u,v,y,2), K = J(1,y,y,v,u,y, z), equation (4.15)
becomes

J = atsuz + xtuzH +uzK +uzHK. (4.16)
Setting here ¢t = 1, we obtain
H = zsuz + zuzH + uzK + uzHK. (4.17)

Solving (4.17) for H and introducing it into (4.16), we obtain (4.13).

It remains to show that K satisfies the quadratic equation (4.14). Setting
x=1,t=y, s=yin (4.16), and interchanging u and v, we get

K = y*vz 4 yvzM + veK + szl?, (4.18)

v/v\here M=J(1,1,y,v,u,y,z) and K is K with v and v interchanged, namely
K =J(1,y,y,u,v,y,2).

Now in (4.16) we set x = 1, t = 1, s = y, and we interchange u and v, to get
M = yvz +v2M + vzK + vzMK. (4.19)

Eliminating M from (4.18) and (4.19), we obtain
022z — Yz +1 —v2)K + (vz — 1)K + vzKK + vz = 0. (4.20)

Finally, eliminating K from (4.20) and the equation obtained from (4.20) by
interchanging u and v, we obtain equation (4.14). Note that, as expected, J
is symmetric in the variables t and s and linear in each of these two variables.

O

From Theorem 4.10 one can see that the first terms of L(x,q,p, z) are
14 2pz + (qp* + 2%p) 2% + (¢*p? + qp® + zqp® + 2qp® + 3p) 22 + - |

corresponding to Dyck paths of semilength at most 3 (or equivalently, to
132-avoiding permutations of length at most 3).






5

Other bijections and
combinatorial interpretations

In this chapter we describe several combinatorial objects that are enumerated
by the Catalan, Fine and Narayana numbers. They arise naturally from the
work in the previous chapters, and some of them give new combinatorial
interpretations of these numbers. In Section 5.2 we describe three bijections
between 321-avoiding permutations and Dyck paths, which show that certain
statistics on Dyck paths and on permutations are equidistributed.

In Section 5.3 we consider a class of permutations defined in terms of non-
crossing matchings of points around a circle. We study their structure and
provide generating functions enumerating them with respect to the statistic
‘number of descents’, and also with respect to the number of fixed points
and the number excedances.

5.1 Some interpretations of the Catalan
and Fine numbers

Our first new interpretation of the Catalan numbers follows immediately
from the results in the previous chapter. Note that any nonempty Dyck
path D € D,, has a multitunnel that goes from (0,0) to (2n,0). We call this
the basic multitunnel.

Proposition 5.1 Let n > 0. The number of Dyck paths of length 2n + 2
with no centered multitunnels other than the basic one is C,,.

Proof. We could give a non-bijective argument using generating functions,
but now the bijection ® yields a simple combinatorial proof. We know from
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part (4) of Theorem 4.2 that the set of paths D € D,41 with cmt(D) = 1
is in bijection with the set of Dyck paths of length 2n + 2 with only one
return. But these are precisely elevated Dyck paths of the form uAd, where
A € D,,. The number of them is C,,. O

Proposition 5.2 The following quantities are equal to C,,:

(1) The total number of fized points in elements of Sy, (321).
(2) The total number of fixed points in elements of Sy, (132).

(3) The total number of centered tunnels in Dyck paths of length 2n.

Proof. By the first part of Theorem 4.2, (3) equals the total number of hills
in Dyck paths of length 2n. To prove that this number is C,,, we define the
following bijection between paths in D,, with a marked hill and the set D,
itself. Given a path with a distinguished hill AudB € D,,, where A, B € D,
map it to the path uAdB € D,,. This is obviously a bijection, since each
D € D, can be expressed uniquely as D = uAdB, with A, B € D.

The equality (2)=(3) is a consequence of the first part of Proposition 2.1.
Finally, by Proposition 2.8, fixed points in 321-avoiding permutations are in
one-to-one correspondence with hills of Dyck paths, which proves (1).

Another argument to compute (1) directly is the following. We are counting
the number of pairs (m,i), where 7 € §,(321) and i is a fixed point of 7.
Given 1 < i < n, the number of 7 € S,(321) having ¢ as a fixed point is
Ci_lcn_i, since m; = 4 if and only if mymg .- -m_q € Si_1(321) and (71'2'4_1 —
i)(Tigo — 1) -+ (mp, — i) € Sp—i(321). Therefore, the total number of such
pairs (m,4) is > C;-1Cp—; = C,,. O

In [78] it is proved that the number of permutations 7 € S,(132) (or 7 €
S,(321)) with no fixed points is the Fine number F,,. This sequence is most
easily defined by its relation to Catalan numbers:

C,=2F, +F,_1 forn>2, and F1 =0, Fy = 1.

Although defined some time ago, Fine numbers have received much atten-
tion in recent years (see a survey [28]). Special cases of the bijections in
Section 2.2 give simple bijections between these two combinatorial inter-
pretations of Fine numbers and a new one: the set of Dyck paths without
centered tunnels. In particular, we obtain a bijective proof of the following
result.
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Proposition 5.3 The number of Dyck paths D € D,, without centered tun-
nels is equal to F,,.

Yet another combinatorial proof of this fact follows from the bijections in
Chapter 4. The bijection ® maps Dyck paths without centered tunnels to
Dyck paths without hills, which in turn correspond through the bijection ¢_
to 321-avoiding derangements.

For the next interpretation of the Catalan and Fine numbers, consider the
directed graph G drawn in Figure 5.1. Its nodes are the infinite set {g;; :
i,j > 0,1+ j even}. The set of edges is {(qi; — Gi+1,j+1), (Gi+1,j+1 — Gij) :
i,J 2 0,i+j even} U {(qo2j—2 — 40,25), (90,25 — d0,25) : J = 2} U{(q2i—20 —
92i,0), (9260 — 2i,0) 1 © > 2} U {(g0,0 — 90,0) }-

o

Ko
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A

VNN

ii‘igure 5.1 The graph G.

(and

Proposition 5.4 Let G be the directed graph described above, and let G’ be
the graph obtained from it by removing the edge (qo,0 — qo,0). Fiz n > 0.

(1) The number of paths in G from qoo to qoo with n steps is Cy,.
(2) The number of paths in G’ from qoo to qo,0 with n steps is F,.

(3) The number of paths in G from qoo to qoo with n+1 steps not having
qo,0 as an interior point is Cy,.

Proof. We will construct a bijection between D,, and the set of paths in G
from qo,0 to qo,0 with n steps. Let D € D,,. Read the steps of D two by
two, starting with the two middle steps n and n + 1, then n — 1 and n + 2,
and progressively moving away from the middle, finishing with the pair 1
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and 2n. For k from 1 to n, let Dy be the subpath of D consisting of the
steps at distance at most k from the middle. Let aj (resp. bi) be the height
difference between the leftmost (resp. rightmost) point of Dy and its lowest
point (the height is given by the y-coordinate). Equivalently, a (resp. by)
is the number of left (resp. right) tunnels of D with exactly one of its two
delimiting steps belonging to Dj. Define the k-th node of our path in G to

be qq, b, -

Note that ¢uy.p, = 9an,b. = 90,0, and that for every k there is an edge from
Qapbe 10 Gagyy b, 0 G, by the way the numbers ay and by change every
time that a pair of steps is read from D. It is not hard to see that this
defines a bijection between D,, and paths in G with n steps starting and
ending at goo. Indeed, the numbers a; and by, encode enough information
to reconstruct the Dyck path. This proves (1).

To show parts (2) and (3), observe that the node goo is used whenever
ar = by = 0, which means that there is a centered multitunnel between
the two endpoints of Dj. Similarly, the edge (go0 — ¢o,0) is used when
ap = by = axy1 = bry1 = 0, and this condition is equivalent to D having
a centered tunnel between the endpoints of Dy11. To prove (2), we use the
fact from Corollary 5.3 that the number of Dyck paths of length 2n with no
centered tunnels is F,,. Part (3) follows now from Proposition 5.1, and in
fact is also a direct consequence of part (1). O

Combining the bijection just defined with ®, an alternative and perhaps
simpler bijection between D,, and the set of paths in G' from ggo to goo
with n steps can be defined. It will be convenient to describe the path in
G backwards. Equivalently, we will give a path P in the graph obtained
from G by reversing all the edges. Given D € D,,, read the steps from left
to right two at a time, and construct P as follows. Let ¢; ; be the current
node in P. If a uu is read, add an edge (¢;; — ¢i+1,j+1) to the path. If
a pair ud is encountered, add an edge (¢;; — Gi+1,j—1) if j > 0, or a loop
(gij — i) otherwise. For each pair du, add an edge (¢;; — ¢i—1,j+1) if
i >0, or aloop (g;; — ¢;,;) otherwise. Finally, for each pair dd, add an edge
(@i — Gi—15-1) if 4,5 >0, (qij — qi—25) if j =0, or (gij — qi,j—2) if i = 0.
It can be checked that this is a bijection as well. Note that if at a given
point of the construction the current node in P is g; ;, then the fragment of
D that has been read so far ends at height ¢ + j.

Our last interpretation of the Catalan numbers is joint work with Emeric
Deutsch and Astrid Reifegerste.
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Proposition 5.5 The following quantities are equal to C:
(1) The number of permutations m € Son4+1(321) such that _(m) = ¢_ (7).

(2) The number of symmetric parallelogram polyominoes® of perimeter
4(2n+1) having exactly one horizontal (equivalently, vertical) boundary
segment at each level.

Proof. The equivalency between (1) and (2) is clear when we draw ()
(as in Figure 2.8) and ¢_(7) (as in Figure 5.3) as lattice paths from the
top-left to the bottom-right corner of the array of m. The two paths form a
parallelogram polyomino which is symmetric (and satisfies the conditions of
(2)) exactly when ¢_(7) = ¢_(7) as Dyck paths.

Now we show that the permutations in (1) are counted by the Catalan num-
bers. Let m € S9,4+1(321), let i1 < ig < -+ < i, be the positions of the
excedances of m and let j1 < jo < -++ < jopt1—e be the remaining posi-
tions. Then, ¢ (7) = ¢_(7) if and only if e = n (7 has n excedances) and
i, = Jr + 1 for all 1 < k < n. Each permutation satisfying these conditions
is uniquely determined by its excedance set {i1,12,...,%,}. Now, these sets
are in bijection with Dyck paths of length 2n: given such a set, construct a
Dyck path having up-steps in positions {i1, i2, ..., i, } and down-steps every-
where else. Figure 5.2 shows an example for 7 = 4512736, whose excedance
set is {1,2,5}. O

A

Figure 5.2 A permutation satisfying ¢ _(7) = ¢ (), its symmetric
parallelogram polyomino, and the corresponding Dyck path.

!Parallelogram polyominoes are unordered pairs of lattice paths starting at (0,0), using
steps (1,0) and (0, —1), ending at the same point, and only intersecting at the beginning
and at the end.
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5.2 Some other bijections between S,,(321)
and D,

Considering the array of crosses associated to a permutation, as we did to
define ¢_ in Section 2.2.4, some other known bijections between S,,(321) and
D,, can easily be viewed in a systematic way, as paths with east and south
steps from the upper-left corner to the lower-right corner of the n x n array.
For each of these bijections, our canonical example will be 7 = 23147586.
One such bijection was established by Billey, Jockusch and Stanley in [7, p.
361]. Denote it by ¢_. Consider the path with east and south steps that
leaves the crosses corresponding to excedances to the right, and stays always
as far from the main diagonal as possible (Figure 5.3). Then ¢, (7) can be
obtained from it just by reading an up-step for every east step of this path
and a down-step for every south step.

Figure 5.3 The bijection ¢, .

In [59], Krattenthaler describes a bijection from S, (123) to D,,. If we omit
the last step, consisting of reflecting the path over a vertical line, and com-
pose the bijection with the reversal operation, that maps a permutation
1Ty -+« T N0 Ty« - - Toy, We get a bijection from S,,(321) to D,,. Denote
it by 1. In the array representation, ¢-(m) corresponds (by the same trivial
transformation as before) to the path with east and south steps that leaves
all the crosses to the left and remains always as close to the main diagonal
as possible (Figure 5.4).

Our first bijection is related to this last one by a(m) = ¥ (771). In a
similar way, we could still define a fourth bijection ¢- : S,(321) — D,, by

#(7) :== ¢ (n~1) (Figure 5.5).
Combining these bijections and their inverses, one can get some automor-

phisms on Dyck paths and on 321-avoiding permutations with interesting
properties. Recall from Section 1.2.1 that va(D) and ps(D) denote respec-
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[ [ DA N

Figure 5.4 The bijection .

Figure 5.5 The bijection ¢-.

tively the number of valleys and the number of peaks of height at least 2 of
D. Tt can be checked that _o ¢! is an involution on D,, with the property
that va(y_ o ¢"1(D)) = dr(D) and dr(¢p, o ¢~ (D)) = va(D). Indeed, this
follows from the fact that excedances are mapped to valleys by ¢, and to
double rises by .. This bijection gives a new proof of the symmetry of
the bivariate distribution of the pair (va,dr) of statistics on Dyck paths. A

different involution with this property was introduced in [24].

Another involution on Dy, is given by o151 This one shows the symmetry
of the distribution of the pair (dr, ps), because dr(t_o1p7 (D)) = pz(D) and
p2(tp. o p7H(D)) = dr(D). In addition, it preserves the number of hills, i.e.,
h(1p_ o 31 (D)) = h(D). To see this, just note that both - and v_ map
fixed points to hills, whereas excedances are mapped to peaks of height at
least 2 by %~ and to double rises by 1, .

It is well known that the number of permutations in S,, with k excedances
equals the number of permutations in S,, with k + 1 weak excedances (recall
that i is a weak excedance of w if m; > i). We can show combinatorially that
the analogous results for 321-avoiding and for 132-avoiding permutations
hold as well.
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Proposition 5.6 Fiz n,k > 0. The following quantities are equal to the
Narayana number %(Z) (kil)

(1) The number of 321-avoiding permutations m € Sy, with k excedances.

(2) The number of 321-avoiding permutations 7 € S, with k + 1 weak
excedances.

(3) The number of 132-avoiding permutations m € Sy, with k excedances.

(4) The number of 132-avoiding permutations 7 € S,, with k + 1 weak
excedances.

(5) The number of 132-avoiding permutations m € Sy, with k descents.

Proof. By Proposition 2.8, excedances of m € §,,(321) correspond to double
rises of ¥, (7). It is known that the number of Dyck paths in D,, with k
double rises is given by the Narayana number %(2‘) (kil)

To prove the equality (1)=(2), consider the involution on S,(321) that maps
7 to (¢ (¥ (7))L Excedances of m € S,,(321) give double rises in 1, (7).
On the other hand, the bijection ¢! maps valleys to excedances. Combining
this together, we have that exc(w) = dr(¢ (7)) = n —va(y (r)) — 1 =
n — exc(¢ (1 (m))) — 1, where the second equality follows from the fact
that each up-step of a Dyck path is either the beginning of a double rise or
the beginning of a peak, so the number of peaks plus double rises equals the
semilength of the path. Finally, we use that the number of excedances of a
permutation in §,, plus the number of weak excedances of its inverse is n.

The equalities (1)=(3) and (2)=(4) are immediate consequences of Theo-
rem 2.3. Finally, to see that (1)=(5), notice that if 7 € S,(321), then
exc(m) = va(¢ (m)). On the other hand, if 7 € S,(132), then des(m) =
va(¢(m)) by Proposition 2.1. Thus, ¢! o ¢, : S,(321) — S,,(132) maps
excedances to descents. O

5.3 Noncrossing permutations

In this section we consider a different class of permutations enumerated by
the Catalan numbers, but which is not defined in terms of pattern avoidance
(it is not equal to S, (o) for any pattern o). They were introduced in [53]
by Hernando, Hurtado and Noy. We will denote this class NV,, C S,, and
call them noncrossing permutations. They are defined as those permutations
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obtained in the following way. Consider 2n points around a circle, labelled
counterclockwise as 1,1’,2,2',...,n,n’. Now consider a noncrossing perfect
matching between the 2n points (that is, match pairs of points by drawing
a line segment, in such a way that no two segments cross). Notice that each
point with a label from the set {1,2,...,n} gets matched with a point with
a label in {1’,2/,...,n'}. Thus, to every such matching we can associate
the permutation 7 that maps ¢ to m; = j for each matched pair of the
form (i,7’). Let N, be the set of permutations obtained by this procedure.
Clearly, |V, | = C,, since the number of noncrossing perfect matchings of
2n points on a cycle is the Catalan number C,,.

The class N,, can be characterized alternatively as the set of permutations
m € S, for which there do not exist indices 7 < j such that either of the
following conditions holds:

(1) i<j§7Ti<7Tj,

We now give a recursive description of noncrossing permutations, which will
be convenient for enumeration purposes. Given w € Sy, let 7 the permuta-
tion obtained from 7 by replacing n with 1 and increasing all of the remaining
entries by one. Let N, = {7 : 7 € N,,}. Recall the definition of the reduction
p from Section 1.1.1.

Lemma 5.7 Fizn > 1, let m € S;,, let k be the index such that m, = n, and
write 1 = Tnw. Then, m € Ny, if and only if 7 € Nx_1 and p(w) € Np_k
(note that in particular T is a permutation of {1,2,...,k —1}).

Proof. Consider the matching of 2n points that corresponds to 7. Notice that
k is matched with n’. This splits the rest of the matching into two parts. On
one side of the chord connecting k and n’ we have a noncrossing matching
of {1,1/,2,2',...,k — 1,(k — 1)’}, which corresponds to the permutation
7 € Nj_1. On the other side there is a noncrossing matching of {k’, k +
L,(k+1),k+2,...,(n—1),n}, which gives rise to w. O

It is an immediate consequence of this lemma that any © € N, can be
decomposed uniquely as 7 = 7 1w where 7 is a permutation of {2,3,--+ ,k}
such that p(7) € Nj_1, and p(w) € N,_k.
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5.3.1 Distribution of descents

The decomposition above allows us to easily enumerate noncrossing permu-
tations with respect to the number of descents. Let

N(u,z) = Z Z pdes(m) m,

n>0 TEN,

Proposition 5.8 The GF for noncrossing permutations with respect to the
number of descents is

_ 1—(1—u)z—+/1-2(1+u)z+ (1 —u)2z?
2uz ’

N(u,z)

Proof. Let

N(u,z) = Z Z udes(m zn,

’fLZO WEN’)’L

The decomposition in Lemma 5.7 translates into the equation
N(u,z) =14 zN(u, 2)[u(N (u, z) — 1) + 1],

since the descents in 7nw are those in 7 plus those in w, plus an extra descent
if w is nonempty. A similar reasoning yields the equation

N(u,z) =1+ z[u(N(u, z) — 1) + 1]N(u, 2).
From these equations it follows that N(u,z) = N (u, z), and solving for N
we get the desired GF. O

The coefficient of u*2™ in N(u, z) is the Narayana number %(Z) (kil) This
implies together with Proposition 5.6 that the distribution of descents is the
same in NV, as in §,(132) (and in fact the same as in S,,(213), S,,(231) and
S5,(312) as well). A bijection proving this can be described recursively using
the fact that 231-avoiding permutations admit a decomposition which is very
similar to that of noncrossing permutations. Indeed, any 7 € §,,(231) can be
written uniquely as 7 = 7nw where 7 € Sk_1(231) and p(w) € S,—x(231),

for some k.

It follows from the symmetry of the Narayana numbers and it is also easy
to see directly that the number of ascents in A, has the same distribution
as the number of descents.
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5.3.2 Distribution of fixed points and excedances

Our goal in this subsection is to find an expression for the GF

A(l’, q, Z) — Z Z xfp(ﬂ)qexc(w)zn‘

n>0 TEN,

Let us first consider fixed points in noncrossing permutations. An impor-
tant observation is that from any m = myme--- 7, € N,, we can obtain a
permutation in N, 1 with a fixed point in position ¢ (for 1 < i < n+1)
just by inserting a new element 7 in position ¢ and shifting up all the ele-
ments greater or equal than ¢ by one. That is, we build the permutation

il wl_yiml - w), € Mg, where

P if a < 1,
T a4l ifa>i,

for all a. Besides, any permutation in N,;; with a fixed point in position
i can be obtained in this way. In terms of the noncrossing matching cor-
responding to 7, this operation consists in inserting two points connected
with an edge between the labels (i — 1)’ and i, labelling them 7 and ', and
shifting up all the labels that come after by one.

By removing all the fixed points in a noncrossing permutation and relabelling
the remaining elements accordingly, we obtain a noncrossing derangement.
The above reasoning implies that, conversely, every noncrossing permutation
can be uniquely obtained by starting from a noncrossing derangement and
inserting a certain number of fixed points before each element and at the end.
In terms of the GF A(0, 1, z) that enumerates noncrossing derangements, this
translates into the equation

1 z
A(0,1
1—2z (0

The substitution of % for the third variable in A(0, 1, z) indicates that
every element of the derangement is replaced with a sequence of fixed points
followed by the element itself. The factor ﬁ corresponds to the fixed points
inserted at the end of the permutation, and the right hand side is the GF
for noncrossing permutations, which are counted by the Catalan numbers.

The substitution z = 1L+t in (5.1) gives us
1—-3t
1 t L= 1+?;
(0,1,¢) 1+t (1+t) 2t
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Now it is clear, again by the same argument, that the GF for noncrossing
permutations where z marks the number of fixed points is

1-B+2z)z

1 5 1+ (1—x)z
A(0,1 = .
(07 b ) 2z

Az, 1,t) =

1—2zz 1—2xz

We will now look at the same problem is a different way, which will allow us
to enumerate noncrossing permutations also with respect to the number of
excedances.

Theorem 5.9 The GF for noncrossing permutations with respect to the

number of fized points and the number of excedances is

1+ (1—2)z—/1-2(1+2)z+ (22 + 22 + 1 — 4q)22
2z[1+ (¢ — x)2] '

Az, q,2) =

Proof. Recall the bijection between noncrossing matchings of points around
a circle (also called chord diagrams) and Dyck paths defined in Section 1.2.2
(see Figure 1.4). Since each noncrossing permutation corresponds to one
such matching, when we apply this bijection reading the points around the
circle in the order {1,1’,2,2",... n,n'}, we get a bijection between N,, and
D,,, which we denote 6.

A fixed point in the permutation corresponds to a chord joining points la-
belled ¢ and /. Through the bijection 6, such chords are mapped to peaks
at odd height in the Dyck path. Indeed, it is clear that chords joining two
consecutive points in the circle (other than the pair (n/,1)) are mapped to
peaks by 6. However, we only want chords joining a pair (i,’), which appear
after an even number of points has been read; hence the corresponding peak
has odd height (we call this an odd peak).

On the other hand, an excedance in the permutation corresponds to a chord
joining a pair (i,j") where ¢ < j. Such a chord produces in the Dyck path
an up-step in an odd position (i.e., an even rise) when i is read, followed by
another up-step when 4’ is read, since by the noncrossing condition i’ cannot
be matched with an element with a label less than i. Conversely, any even
rise followed by another up-step (we call this an odd double rise) comes from
a chord corresponding to an excedance.

Therefore, our problem is equivalent to the enumeration of Dyck paths with
respect to odd peaks and odd double rises. We use the standard decomposi-
tion of a nonempty Dyck path as D = uAdB, with A, B € D, and then we



5.3. Noncrossing permutations 111

write A = ud;dudsd--- as a sequence of elevated paths. The odd double
rises of D are those in B plus those in each one of the A;, plus an extra one
created by the two u’s preceding A; if A is nonempty. The odd peaks of D
are those in B plus those in each one of the A;, plus an extra one if A is
empty. In terms of the GF, we get

q
Alz,q,z2) =14z ——FF—4+2—¢q | A(x,q, 2).
(x,q,2) =1+ <1_zA(m’q’z)+ CJ> (2,4q,2)
The solution to this equation is the expression in the statement of the the-
orem. O

We have seen that fixed points and excedances are mapped respectively to
odd peaks and odd double rises by 6. This means that for any noncrossing
permutation 7, we have that fp(mr) + exc(w) = or(f(m)), since every odd rise
is the first step of either a double rise or a peak depending on whether the
next step is up or down. Therefore, deficiencies of 7 correspond to even rises
of the path 6(7). By part (2) of Theorem 4.2 and part (2) of Proposition 2.1,
even rises in Dyck paths have the same distribution as excedances in 132-
avoiding permutations. Since 7 avoids 132 if and only if so does 7~!, the
distribution of deficiencies in 132-avoiding permutations is also the same. We
conclude that the statistic ‘number of deficiencies’ has the same distribution
in noncrossing permutations as in 132-avoiding permutations. In particular,
the number of permutations in N, with k deficiencies is 2 (}) (1) (see
Proposition 5.6).

The set N, is not closed under inversion 7 — 7. However, it is closed

under other interesting operations. One of them is the transformation 7w —
7, which in terms of the permutation array consists in a reflection along
the secondary diagonal. Equivalently, we have that 7m; = j if and only if
Tn+1—j = n+l—i. Ifm € N, is represented by a matching of 2n points around
a circle, the matching corresponding to ™ € N,, is obtained from it by writing
the labels backwards, that is, n’ is now labelled 1, n becomes 1/, (n — 1)’
becomes 2 and so on. Another property of noncrossing permutations is that
7 € N, if and only if (7(1,2,...,n))~! € N, where now we are using cycle
notation, i.e, (1,2,...,n) is a cycle of length n. In terms of the matching, this
corresponds to shifting the labels one position in clockwise direction, that is,
1 becomes n/, 1’ becomes 1, 2 is now 1’, 2 becomes 2 and so on. Applying
this operation twice, we obtain the permutation (1,2,...,n)"'7(1,2,...,n).
This shows that A, is closed under conjugation by the cycle (1,2,...,n).






6

Consecutive patterns

In this chapter we consider a different notion of pattern avoidance. We
introduce the concept of consecutive patterns, which we also call subwords.
The difference with respect to the ordinary patterns studied in the previous
chapters is that now, in order to form an occurrence of a consecutive pattern,
the corresponding elements in the permutation have to be adjacent, that is,
in consecutive positions. In this chapter all the patterns that we consider
will be consecutive patterns.

We study the distribution of the number of occurrences of a permutation
o as a subword among all permutations in S,,. We solve the problem in
several cases depending on the shape of ¢ by obtaining the corresponding
bivariate exponential generating functions as solutions of certain linear dif-
ferential equations with polynomial coefficients. Our method is based on the
representation of permutations as increasing binary trees and on symbolic
methods. Most results in this chapter are joint work with Marc Noy [35].

Let m,n be two positive integers with m < n, and let 7 = mymy-- -1, € S,
and o € S, be two permutations. We say that w contains o as a subword if
there exist m consecutive elements ;11 - -+ T4y, such that p(m 1 -+ mppm) =
o, where p is the reduction that consists in relabelling the elements with
{1,...,m} so that they keep the same order relationships they had in 7.

For example, if o = 4132 € S, then m = 6725341 € S7 contains ¢ as a sub-
word, because p(7253) = 4132. However, m = 41352 € S5 does not contain
o as a subword (even though it contains it as a subsequence, that is, in non-
consecutive positions); in this case we say that m avoids 0. Occurrences of a
subword can be overlapped, for instance, 5716243 contains two occurrences
of o, namely 7162 and 6243.

Denote by A, (o) the set of permutations of S, that do not contain o as a



114 Chapter 6. Consecutive patterns

subword, and let ay,(0) = |A,(0)|. If we want to exclude several subwords
0,T,... we use the corresponding notations A, (o, 7,...) and ay(o,7,...).
Our main purpose is to compute ay, (o) for a given subword o. More gener-
ally, we are also interested in the distribution of the number of occurrences
of ¢ among all permutations in S,,.

Some well-known counting problems in permutations can be stated in terms
of forbidden subwords. For instance, occurrences of 12 correspond to ascents
and are counted by Eulerian numbers; up-and-down permutations are those
in A,(123,321); permutations whose longest increasing run is at most k£ — 1
correspond to A, (12---k); and it is not difficult to see that «,,(123,132)
is precisely the number of involutions. Related results for occurrences of
subwords of length three can be found in [18] and, more recently, in [56].

The basis of our work is the use of symbolic methods for specifying combina-
torial classes, following the approach described in the books by Flajolet and
Sedgewick [41, 83] and summarized in Section 1.3.2. The key point is the
representation of permutations as binary increasing trees. From this repre-
sentation, using symbolic methods, we derive differential equations satisfied
by the corresponding exponential generating functions. In all cases we have
encountered, the differential equations become linear after a suitable substi-
tution. The reader can compare this technique with [40], where a similar
approach is taken for analyzing certain geometric configurations, the differ-
ence being that here we deal with exponential GFs that are transcendental
instead of being algebraic.

A related approach is taken in [39] for counting occurrences of a given subtree
in binary search trees. The main difference in our case is however that
patterns corresponding to forbidden subwords may be split into two subtrees
in several different ways.

The organization of this chapter is as follows. First, we present some pre-
liminaries on the representation of permutations as increasing trees and on
asymptotic enumeration. In Section 6.2 we enumerate occurrences of a sub-
word o in two cases. Firstly, when o is totally increasing (or decreasing);
and secondly when ¢ = 12---(a — 1)a7 (a + 1), and 7 is any non empty
permutation of the elements {a + 2,a + 3,...,m + 2}. Notice that the fact
that 7 and a are arbitrary means that our result covers a very large number
of subwords o. In Section 6.3 we show how these results specialize in the
case of subwords of length three and four. We conclude with some remarks.
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6.1 Preliminaries

6.1.1 Tree representation of permutations

Following Stanley [89, Chapter 1], we represent a permutation as an increas-
ing binary tree, that is, a binary tree in which the labels along any path from
the root are increasing. This representation allows us to translate combina-
torial properties of permutations (such as avoiding a certain subword) into
combinatorial properties of trees, which can be handled more conveniently.

Let m = ajas---a, be a word on the alphabet of positive integers with
no repeated letters. Define a binary tree T'(w) as follows. If 7 = (), then
T(m) = 0. Otherwise, let i be the least element of 7, so that 7 can be
factored uniquely in the form m = oi7. Now define T'(7) by induction as
the tree with root i, and having T'(¢) and T'(7) as left and right subtrees,
respectively. This correspondence gives a bijection between S, and the set of
increasing binary trees on n vertices. In particular, we see that the number
of such trees is n!.

Generating functions for increasing trees. We apply the machinery
described in Section 1.3.2 to increasing trees. The following derivation will
be used repeatedly.

Let B° be the labelled class of (possibly empty) binary increasing trees. It
satisfies the recursive definition

BY = {e} + ({}" » B+ BY),

where € is the empty tree, {z} represents the tree with one single node, and
the box indicates that the root contains the smallest label. So, the equation
for the EGF is

z
I’z =1 +/ 1°(t)%dt,
0
which reduces to 1% (z) = I°(z)? with initial condition I°(0) = 1 (derivatives
are always with respect to z in this chapter), admitting the solution 1°(z) =
1/(1 — z). Thus, I = n! as expected.

6.1.2 Equivalent subwords

We say that two subwords o,7 € S, are equivalent if the BGF counting
occurrences of o and 7 are the same (equivalently, for all n, k, the number



116 Chapter 6. Consecutive patterns

of permutations in S, with k occurrences of o equals the number of those
with & occurrences of 7). We write o0 ~ 7 to denote equivalence.

In Section 1.1.3 we described two simple operations that give equivalent
subwords: reversal, which transforms o = oy - - - 0, into o* = o,y - - - 01, and
complementation, transforming o into 6 = (m+1—01)---(m+ 1 —0yp).
The explanation is that a permutation 7 has as many occurrences of o as
7 has of o, and as 7 has of &.

6.1.3 Asymptotic enumeration

Let F'(z) be a meromorphic function on a domain of the complex plane
including the origin, and let p be the unique pole of F(z) such that |p| is
minimum. Then the following asymptotic estimate holds:

[Z"F(2) ~y - p7",

where v is the residue of F' in p. If F(z) is defined in the whole complex
plane and has no poles, then

lim [2"]F(z) = 0.

n—~o0

See [41, Chapter 4] for a discussion.

6.2 Main results

This section contains the main results of this chapter. We obtain the count-
ing BGF of occurrences of a subword ¢ in two cases. First we treat the case
of increasing (or decreasing) subwords.

6.2.1 Increasing subwords

Theorem 6.1 Let m be a positive integer, let 0 = 12--- (m + 1)(m +2) €
Sm+2, and let P(u, z) be the BGF of permutations where u marks the number
of occurrences of the subword o. Then, P(u,z) = 1/w(u, z), where w is the
solution of

W 4 (1 - ) (™ + ™D 4w+ w) =0 (6.1)

with w(0) = 1, W'(0) = —1, and w® (0) =0 for 2 < k < m.
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Proof. We use the correspondence of permutations as binary increasing trees.
We get for P(u,z) a system of m + 1 first order differential equations, which
will be reduced to a differential equation of order m -+ 1 with the substitution
P(u,z) = 1/w(u,z). Let P be the class of all permutations, let IC; be the
class of permutations not beginning with 12---(m + 2 — ¢), and let K;(u, 2)
be the BGF of K; where u marks occurrences of 0. With some abuse of
notation, we introduce the parameter u in the equations for classes meaning
that it will be placed there when we write the corresponding differential
equations for the BGF. With this notation, we can write

P ={e) + (=}« P« [K1 + u(P — K1)

This is because occurrences of o in a permutation (seen as a binary increasing
tree) can be separated into occurrences on the left subtree and occurrences
on the right subtree, taking into account that if the permutation on the right
subtree begins with 12---(m + 1) (that is, belongs to P — K1), then there
is an additional occurrence of ¢ beginning at the root. The corresponding
equation for BGFs is, after differentiating,

P = P(K; + u(P — Ky)).

The next step is to find an equation for ;. Note that for a permutation not
to begin with a 12--- (m + 1), it is not enough that the permutation on the
left subtree does not begin with this subword. We have to exclude also the
case in which the left subtree is empty and the right subtree begins with a
12---m. This gives us

K1 = {e} + {2} % (K1 — {e}) % [K1 +u(P — K1)] + {2} * Ko,
which translates to
Ki = (K1 — 1)(K1 +u(P - K1) + K>

when we differentiate the equation for BGFs. Now it is clear how to find an
equation for Iy, in which K3 will appear, and so on, until we arrive to C,,
(permutations not beginning with 12), which satisfies

K = {e} +{2}7 % (K = {e}) * [K1 + u(P — K1) + {2}

All these equations yield a system of m + 1 differential equations involving
the corresponding BGFs. It is convenient to apply the substitution

R:UP+(1—U)K1
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Note that R’ = uP’' + (1 —uw)K| = uPR+ (1 —u)((K; — 1)R + K3) =
(uP+ (1 —uw)K1)R+ (1 —u)(—R+ K3) = R?> + (u — 1)(R — K3), and we
obtain

= PR
R =R?+ (u—1)(R - K>)
Ky = (K2 —1)R+ K3

Ky = (K3 — DR+ K, V[V;%) = fof iu B

(K1 — V)R + K,

K =
' = (K —1)R+1

Now we only have to check that setting P(u,z) = 1/w(u, z), then w satisfies

(6.1). The first equation P’ = PR gives R = —%. Substituting this into the

second one, we get Ky = % By induction on i, we see that

w® 4+ (1 —w) (Wi =2 4 o)

Ki= (u—1w

and w®¥(0) = 0 for 2 < i < m. Finally, (6.1) is obtained substituting in the
last equation of (6.2) the expressions for K,, and R in terms of w. a

For w = 0 the solution of the differential equation can be expressed as a
linear combination of exponentials

m—+1

Ajz
w = E cjei”,
=1

2mig

where the A; = exp(;75) are the non trivial (m + 2)-th roots of unity, and
the 1ndeterm1ned coefﬁments ¢; are the solution of the linear system

1 1 .- 1 cl 1
AL A2 A ca —1
¥zl e =] o
AT A Amt1 Cmt1 0

The matrix M of the previous system is easy to invert, since

MM* = (m+2)I — J,
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where A* denotes the conjugate transpose of A, and J is the all ones matrix.
From this it follows that

1
Mt=_—— _M*I+J),
m—+ 2 ( )
and we can obtain the value of the ¢;, thus an explicit expression for P(0, z),
the GF of permutations avoiding the subword o = 12--- (m + 2). For exam-
ple, for m = 4 one gets

61:(1+i)/4, 02:1/2, CgZ(l—i)/4,

which agrees with the solution w = (cos z—sin z+e~%)/2 given in Section 6.3.

6.2.2 Other subwords

The next result gives the distribution of subwords of a certain, more general
shape.

Theorem 6.2 Let m,a be positive integers with a < m, let 0 = 12---(a —
Va7 (a+1) € Spto, where T is any permutation of the elements {a +2,a+
3,....,m+2}, and let P(u, z) be the BGF of permutations where u marks the
number of occurrences of the subword o. Then, P(u,z) = 1/w(u, z), where
w 18 the solution of

m—a+1

W@ 4 (1 —w) : 'w':0

(m—a+1)
with w(0) = 1, W'(0) = =1 and w*(0) = 0 for 2 < k < a. In particular, the
distribution does not depend on T.

Proof. Again we find a system of a + 1 differential equations for P(u, z)
that, after the substitution P(u,z) = 1/w(u,z), yield a single differential
equation of order a+ 1. Let P be as before the class of all permutations. For
1 <i<m+1, we denote o; = p(0; 410542 om+2). Note that for i < a,
0; has its smallest element in the first position, while for ¢ > a, the smallest
element of o; is the last one. Now let IC; be the class of permutations not
beginning with any of the following: o0s1,09,...,0%;, and let K;(u,z) be
the BGF of K; where u marks occurrences of o. With this notation, we can
write

P={e} + {=}7 % Px [ +u(P - Ky)].
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The explanation, as in the previous proof, is that in the decomposition of
the increasing tree, new occurrences of o, apart from the ones on the left
and right subtrees, can appear beginning in the root, when the permutation
on the right subtree begins with o~ (that is, belongs to P — K1).

For K1 we derive the equation
Ki={e} + {Z}D * (K1 —{e}) * K1 +u(P — K1)+ {Z}D * [ICo +u(P — Kq)].

Note that the last summand corresponds to the case where the left subtree is
empty. Then, the permutation on the right subtree cannot begin with oo,
which would produce, together with the root, a permutation beginning with
o>1. So, after separating on the right subtree the permutations beginning
with 051 (P — K1), we are left with those beginning with neither o, nor
02, that is, KCo.

Analogous expressions can be found for C;, 1 < i < a:
i = {e} + {2} * (i — {e}) * [KC1 +u(P = Ko)] + {2} * [Ki1 +u(P — K1),
which yield the equations
K! = (K; —1)(Ki +u(P - Kj)) + (K;+1 +u(P — Ky)).
For K, we have
Ka = {e}+{2} " *(Ka—{e} ~{p(n) N*[C1+u(P—K1)]+{2} % [Ka+u(P—K1)).

The difference now is that in order to avoid a permutation beginning with
0sq = p(7 (a+1)), the left subtree cannot be p(7). (Remember that the BGF
corresponding to {p(7)} is 279! /(m — a + 1)! since it is a permutation of
size m — a + 1 and does not contain the subword o.) Another difference is
that no new variables appear, since when the left subtree is empty there is
no danger of beginning with o-,, and so there are no additional restrictions
for the right subtree.

From all these we get a system of a+ 1 differential equations. After applying
the substitutions R = uP + (1 — u)K; as before, and also S; = K;_1 — K;
for 2 <i < a, we obtain

P'=PR

R = R?+ (u—1)S,

Sy’ = SoR + S5

S3' = S3R + Sy with P(0) = R(0) =1, (6.3)

S;(0) =0 for all i.
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Finally, it only remains to set P(u,z) = 1/w(u, z) and to check that w is
the solution of (6.4). Analogously to the previous proof, it can be shown

by induction that S; = @O for 2 <i < a. Then, (6.4) follows from the

(1—u)w
substitution in the bottom equation of the system. O

Note that the fact that a < m ensures that 7 is not empty. The case in which
T is empty corresponds to the case where o is the increasing permutation,
and has already been treated in the previous theorem.

We end this section with a certain condition under which two subwords o
and 7 are equivalent, i.e., 0 ~ 7. We say that a subword ¢ € S,,, is non-
self-overlapping if there is no permutation in Ss,, o with more than one
occurrence of o. (Note that in Sy,,—1 such a permutation would always
exist.) The non-self-overlapping condition implies that for any two occur-
rences ;41 - - Miym and mj1 - Tjyy, of 0 in a permutation 7, we have that
|i —j| > m—1, that is, the two occurrences cannot overlap in more than one
element. For example, 136254 is a non-self-overlapping subword, but 1324
is not, because the permutation m = 142536 has two occurrences of 1324.

Proposition 6.3 Let m > 3 and let 0 € S, be a non-self-overlapping sub-
word such that oy = 1. Let a = oy, — 1, and let 7 = 12---a(a + 2)(a +
3)---m(a+1). Then we have that o ~ T.

Before proving this proposition, note that now Theorem 6.2 can be general-
ized as follows.

Corollary 6.4 Letm > 3 and let o € S,;, be a non-self-overlapping subword
such that oy = 1. Let a = 0y, —1, and let P(u, z) be the BGF of permutations
where u marks the number of occurrences of the subword o. Then P(u,z) =
1/w(u, z), where w is the solution of

W@ 4 (1 —w) Ww'=0 (6.4)

(m—a-—1)!

with w(0) = 1, W'(0) = —1 and w*(0) =0 for 2 <k < a.

Example. The patterns 136254 and 125364 are non-self-overlapping. Thus,
by Proposition 6.3, 136254 ~ 125364 ~ 123564, and the BGF counting
occurrences of any of them in permutations is given by P(u, z) = 1/w(u, 2),
where w is the solution of

2
2

w —i—(l—u)%w’:O,
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with w(0) = 1, w’(0) = —1 and w”(0) = w"’(0) = 0. P(u, z) can be expressed
in terms of hypergeometric series.

Proof of Proposition 6.3. Assume that 7 and o are different, otherwise
there is nothing to prove. Notice that 7 is non-self-overlapping, since it has
only one descent, in position m — 1. Besides, the only way in which an
occurrence of ¢ and an occurrence of 7 can overlap in a permutation 7 is
with the occurrence of 7 starting to the left of the occurrence of ¢. Indeed,
assume for a contradiction that 7w has an occurrence m; 11712 Titm of &
overlapping with an occurrence 7 17mj42 - Tjpm of 7 with 1 < j—i <m—2.
The fact that o is non-self-overlapping and starts with an ascent implies
that o,,—1 > oy, (otherwise there would be a permutation in Sg,,—2 with
two occurrences of o starting in positions 1 and m — 1 respectively). But
then, m;4y—1 > Titm, Which contradicts the condition 711 < mj40 < -+ <
Tj+m—1 needed for it to be an occurrence of 7.

Now we define a bijection I' : S,, — S, such that for every m € S, the
number of occurrences of o (resp. 7) in 7 equals the number of occurrences
of 7 (resp. o) in I'(m). From our previous observations, the occurrences of o
and 7 in 7 are either isolated (not overlapping with any other occurrence of
o or 7) or they appear in a pair formed by an occurrence of T overlapping
with one of o, with the occurrence of 7 starting to the left of one of o.

To construct I'(m), read the permutation 7 from left to right and do the
following:

(1) For each pair of overlapping occurrences of 7 and o, leave it unchanged.

(2) For each isolated occurrence of o, reorder the corresponding elements
in 7 so that they form an occurrence of 7 instead. There are now two
possibilities. If this modification does not create any new occurrence
of o, we can jump to the following occurrence. Assume on the contrary
that this process created a new o. Such an occurrence is necessarily
overlapping with the new occurrence of 7, starting the one of o to the
right of the one of 7. In this case, reorder the elements of 7 correspond-
ing to this new occurrence of ¢ so that they form an occurrence of 7
instead. Note that this erases the previous occurrence of 7 that we had
just created, since 7 is non-self-overlapping. Again, check if any new
occurrence of o has been created, and repeat this process until it cre-
ates no more occurrences of o. After this iteration, the initial isolated
o has been transformed into an isolated occurrence of 7. Observe also
that this procedure cannot overwrite an existing occurrence of o or 7,
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because the new occurrences of o that may be created in the process
cannot overlap with occurrences of ¢ or 7 that start more to the right.

(3) For each isolated occurrence of T, reorder the corresponding elements
in 7 so that they form an occurrence of ¢ instead. If this modification
does not create any new occurrence of 7, we can jump to the following
occurrence. On the other hand, if this created a new occurrence of 7,
which is necessarily overlapping with the new occurrence of o, starting
the one of 7 to the left of the one of o, reorder the elements of 7 corre-
sponding to this new occurrence of 7 so that they form an occurrence
of o instead. If necessary, repeat the process as before, until no more
occurrences of 7 are created. After this iteration, the initial isolated
occurrence of 7 has been transformed into an isolated occurrence of o.
By the same reasoning as above, this procedure cannot overwrite an
existing occurrence of o or .

It is easy to see that I' is in fact an involution, since steps (2) and (3) are
inverses from each other, one transforming isolated occurrences of ¢ into
isolated occurrences of 7, and the other doing the opposite. This proves
that o ~ 7. O

It seems from experimental computations that a more general version of
Proposition 6.3 holds, namely, that any two non-self-overlapping subwords
o,7 € S8, with o1 = 7 and o, = 7, satisfy ¢ ~ 7, but we have not
been able to prove this fact. However, we can make small variations of
Proposition 6.3 to obtain similar results like the following, whose proof is
now straightforward.

Proposition 6.5 Let m > 3 and let o, 7 € S,;, be non-self-overlapping sub-
words such that no permutation in Sop_o contains o and T simultaneously
(i.e., sigma and tau cannot overlap with each other). Then o ~ T.

Example. The previous proposition shows that 24153 ~ 25143 and that
351264 ~ 362154.

6.3 Subwords of length at most four

Occurrences of the two subwords 12 and 21 of length two correspond, respec-
tively, to ascents and descents in permutations, giving rise to the well-known
Eulerian numbers [23].
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6.3.1 Subwords of length three

Among the 6 permutations of three elements, there are only two different
classes regarding its distribution as subwords of permutations since, by re-
versal and complementation, we have that

123 ~ 321
132 ~ 231 ~ 312 ~ 213

By the results in the previous section we get:

Theorem 6.6 Let P(u,z) and Q(u,z) be the BGFs of permutations where
u marks, respectively, the number of occurrences of the subword 123 and 132.

Then
1

1— fOZ e(u—l)t2/2dt’

Qu,z) =

P(u,z) =
26%(1—u+\/(u—1)(u+3))z (’LL — 1)(u ¥ 3)
1tut /u—Dwr3) +eVe Dtz 1yt /u—Dut3)
\/g €Z/2

PO, =Y
2 cos(§z+ 5)

Furthermore, the numbers a,(123) and o, (132) of permutations avoiding,
respectively, the subwords 123 and 132, satisfy

an(123) ~ 71 - (p1)" - !
-n!

1
an(132) ~ 72 - (p2)"
where p1 = 3v/3/(21), 11 = e3V3T, (p2)~t is the unique positive Toot of

Iy e /2dt =1, and vy = exp((p2)~2/2), the approzimate values being

p1 = 0.8260933, 4 = 1.8305194
p2 = 0.7839769, 7o = 2.2558142

Table 6.1 indicates the number of permutations of length n with k occur-
rences of the subwords 123 (top) and 132 (bottom).

The asymptotic estimates are obtained as an application of the result quoted
in Section 6.1.3. (The computation of py has been done numerically using
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n\k 0 1 2 3| 4
1
L 1
2
2 2
5 1
3 5 1
17 6 1
Y6 8
| 70 41 8 1
63 54 3
s| 319 [ 21 |86 | 10 | 1
296 | 368 | 56

Table 6.1 Occurrences of subwords of length 3 in permutations.

the computer algebra system MAPLE.) Since p; > ps2 in the previous the-
orem, we see that a,,(123) is asymptotically larger than a,,(132). Looking
at Table 6.1 one is led to conjecture that this is always so. Indeed, we
have the following result, which is analogous to Theorem 2.14 for the case
of consecutive patterns.

Proposition 6.7 For every n > 4, we have

an(123) > a,(132).

Proof. Given o € S, let B,(0) = S, — An(0) be the permutations of S,
containing ¢. Define a map

71 By(123) — B,(132)

as follows. If 7 € B, (123) contains occurrences of both 123 and 132, then
v(m) = m. Otherwise (that is, 7 contains 123’s but not 132’s), define y(7) as
the permutation obtained by traversing m from left to right and substituting
every occurrence of 123 by 132 (transposing the elements in the positions
corresponding to 2 and 3).

It only remains to check that v is one to one, and this is because when a
123 is changed to a 132, no new occurrences of 123 appear that did not
exist before the substitution. To prove that the inequality is strict for n > 4,
observe that any permutation beginning with 1423 and having no 123 cannot
be of the form () for any . O
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6.3.2 Subwords of length four

By reversal and complementation, and by the results in the previous section,
they fall into seven classes:

I. 1234 ~ 4321

II. 2413 ~ 3142

ITI. 2143 ~ 3412

IV. 1324 ~ 4231

V. 1423 ~ 3241 ~ 4132 ~ 2314

VI. 1342 ~ 2431 ~ 4213 ~ 3124 ~ 1432 ~ 2341 ~ 4123 ~ 3214
VII. 1243 ~ 3421 ~ 4312 ~ 2134

The results in the previous section give the BGFs for the distribution of
occurrences of subwords in classes I, VI and VII.

Theorem 6.8 In cach of the following cases, let P(u,z) be the BGF of
permutations where u marks the number of occurrences of the corresponding
subword.

1
Case 1342. P(u,z) = 1

[ DF gy
Case 1234. P(u,z) = 1/w, where w is the solution of

"+ (1 -u) (Wt +w) =0
with w(0) =1, W'(0) = —1, W”’(0) = 0. For u =0, the solution is
2

cosz —sinz +e?

P(0,2) =

Case 1243. P(u,z) = 1/w, where w is the solution of
W+ (1 —u)zw’ =0

with w(0) =1, w'(0) = —1, w"(0) = 0.
Furthermore, the numbers a,(1342), a, (1234) and oy, (1243) satisfy

where (p1)~" is the smallest postitive solution of [ ew=D/6qt = 1, (py)~!
is the smallest positive solution of cosz — sinz + e~ % = 0, and ps s the
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solution of a certain equation involving Airy functions. The approximate
values are

p1 = 0.954611,  ~; = 1.8305194
po = 0.963005, 7 = 2.2558142
p3 = 0.952891, 75 = 1.6043282

n\k
I 23 1
11 23 1
II1 23 1
4 v 23 1
A% 23 1
VI 23 1
VII 23 1
I 111 8 1
11 110 10
II1 110 10
) v 110 10
A% 110 10
VI 110 10
VII 110 10
I 642 67 10 1
11 632 86 2
111 631 88 1
6 v 632 86 2
\Y 631 88 1
VI 630 90
VII 630 90
I 4326 602 99 12
II 4237 766 37
111 4223 794 23
7 v 4229 782 29
A% 4218 804 18
VI 4210 820 10
VII 4204 832 4

Table 6.2 Occurrences of subwords of length 4 in permutations.

In the last case, the equation w” 4 (1 — u)zw’ = 0, for v = 0 and v = w’,
can be solved in terms of Bessel functions (note that the equation for v
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is actually a slight variant of the Airy equation). The computations have
been performed with the help of MAPLE. Table 6.2 shows the number of
occurrences in each of the seven classes for n < 7, showing that no two of
them have the same distribution. (Entries II, III, IV, V in Table 6.2 have
been computed directly.)

As in the case of length 3, one might expect that again for any two permu-
tations 0,7 € Sy, if apy(0) > any(7), then oy (o) > ay(r) for all n > nyg.
However, inequality «,(1324) > «,(2143) holds for n < 11 but does not
hold for n = 12. Indeed,

a11(1324) = 27959880 > 27954521 = ay1(2143),

but
a12(1324) = 320706444 < 320752991 = ar12(2143).

These results have been obtained by exhaustive computation, as we do not
know the associated EGFs. There is however one relation among classes
that we have been able to establish

Proposition 6.9 For every n > 7, we have

an(1342) > o, (1243).

Proof. As in the proof of Proposition 6.7, let By, (c) = S, — A, (0) be the set
of permutations containing o. Define a map

v : Bp(1342) — B, (1243)

as follows. Let v(m) = = if 7 contains both 1342 and 1243. Otherwise,
replace, from left to right, all occurrences of 1342 by 1243. Note that when
we replace an occurrence 1342 by 1243, we never create new occurrences of
1342 or 1243. (This is not true in general for other patterns, so that the
corresponding v is not a bijection.)

It is clear that v(B,(1342) N B,(1243)) N v(B,(1342) N A,(1243)) = 0,
because in the second case there are no 1342 left. Let m # n € B,(1342) N
A, (1243). Now suppose that y(7m) = 7v(n). Let i be the smallest index so
that m; # n;. Either m; or 7; must be moved by ~.

Now observe that if, say, m; is changed, it cannot be transposed with any
of the preceding elements, so it must be the ‘3’ of a 1342 in 7, and thus is
interchanged with the ‘2’ in position ¢ + 2. But now, after replacing this
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1342 by 1243, the ‘3’ can no longer be moved, because it is neither the ‘2’
nor the ‘3’ of any other 1342. If 7; is also moved by -, this reasoning implies
that y(7m)it2 = m # 1 = v(n)i+2, which is impossible since v(7) = ~v(n).
So n; is not moved by ~, but then positions i — 1, ¢, ¢ + 1 and i + 2 of y(7)
are ;17 +2Ti+17 = Ni—17iNi+17i+2, because this positions of v(n) cannot
have been moved by . This is a 1243, which contradicts the fact that
n € An(1243). O

6.4 Multiple subwords

Instead of occurrences of a single subword one may consider several sub-
words. For the case of length three, many of the possible combinations are
treated in [56]. For example, the class A,(123,321) avoiding 123 and 321
is clearly that of up-and-down permutations. According to a classical result
(see [23]), the corresponding EGF is

1
2<tanz+ )—1—2.
CoS 2

The class A,(213,312) is that of permutations 7 having no valleys, that is,
positions i such that m;—; > m; < 111 (not to be confused with valleys of
a Dyck path). The BGF for permutations where u marks valleys is easily

shown to be
VvV1—u
V1 —u —tanh(zv/1 —u)

And the class A,,(123,132) is equinumerous with the class of involutions.
This can be easily explained using the classical correspondence of Foata [89,
Section 1.3]. Indeed, given the decomposition of a permutation into disjoint
cycles, with their smallest element first and ordering the cycles in decreasing
order of the smallest elements, all cycles of length greater or equal than three
begin with either a 123 or a 132. Conversely, if the described decomposition
in cycles contains one of these subwords, all three elements are necessarily
in the same cycle, and thus the permutation with that cyclic decomposition
cannot be an involution.

We can also find a multivariate generating function Q(u,v, z) where u marks
occurrences of 123 and v marks occurrences of 132. Using similar arguments
as before, it can be seen that Q(u,v, z) is the solution of

{R’:R2+[(u—1)+(v—1)z]R—(u—

N o
'~ OR with R(0) = Q(0) = 1. (6.5)
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One of the cases not solved in [56] is the simultaneous avoidance of the sub-
words 123 and 231. We can find a multivariate generating function P(u,v, 2)
where the coefficient of u*v!2"/n! is the number of elements of S,, with &
occurrences of 123 and [ occurrences of 231.

Let P be as before the class of all permutations, and let I, £, M be sub-
classes of P defined as follows: K are the permutations not beginning with
12, £ are those not ending with 12, and M = K N L are the ones that nei-
ther begin nor end with 12. Let P(u,v,z), K(u,v,z2), L(u,v,2), M(u,v, z)
be respectively the generating functions of these four classes, where u marks
occurrences of 123 and v marks occurrences of 231.

We get the following relations for these classes.

= {3+ {z}"*[L+o(P - L)]*[K+u(P —K)]

= {+{z} + {7 x M —{e} + (K = M) % [K +u(P — K)]
{e} +{z}7 % [L+0(P = L)] % M — {2} +u(L — M)]

= {e} +{z}

{2}, M = {e} +v(K — M)] % M — {2} +u(L — M)]

e =9
I

The idea is the same as in previous proofs. It is based on the fact that a left
subtree ending in 12 produces an occurrence of 231 along with the root, and
a right subtree beginning with 12 produces a 123 with the root. Therefore,
this situations must be marked with v and u respectively. For example, in
the third relation, in order for the permutation not to end with 12, the right
subtree must be an element of £ — {z}, and if it belongs to L — M (i.e.,
begins with 12) then it must be marked with a wu.

This gives the following system of differential equations for the generating
functions (u and v are considered as parameters).

P =[L+v(P—L)]K +u(P - K)|

K =14[M+v(K—-M)—-1][K+u(P - K)]
L'=[L+v(P—-L)][M+ulL—-M)- 2z

M =14 [M+v(K—-M)—1][M+u(L— M) — 2]
with P(0) = K(0) = L(0) = M(0) = 1.

(6.6)

In particular, if we are interested in the EGF A(z) = P(0,0, z) whose coeffi-
cients are the number of permutations avoiding 123 and 231 simultaneously,
we obtain the following result.
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Theorem 6.10 The EGF A(z) of permutations avoiding both 123 and 231
as subwords is the solution the following system of equations, where deriva-
tives are with respect to z:

A= CB
B =1+(D+2—-1B .
DL PR OB i a0) = B0) = €(0) = D(0) = 1

D' =(D+z—-1)D

An involved explicit form for A(z) can be found in terms of integrals con-
taining the error function, but it seems not suitable for obtaining asymptotic
results. One can however obtain from the above system as many terms of
A(z) as desired, and we get that the corresponding counting sequence begins
with

1,2,4,11,39, 161, 784, 4368, 27260, 189540, 1448860, 12076408,
109102564, 1061259548, . . .

6.5 Concluding remarks

Let us make a few comments concerning the distribution of the number of
occurrences of a subword. For o € S, and n > m, let X, be the random
variable defined on S,, equal to the number of occurrences of o. It is easy
to see that its expectation is E(X,,) = 222+ and that its variance is
Var(Xsn) = c,n? for some constant c,. It follows that the distribution is
asymptotically concentrated around the expected value. In fact, using the
reasoning in [29], it can be shown that X, ,, is asymptotically normal.

The asymptotic behavior of the numbers a,, (o) as n goes to infinity is con-
sidered in the next chapter.






7

Asymptotic enumeration of
permutations avoiding
generalized patterns

In this chapter we discuss a generalization of the notion of pattern avoidance.
The concept of generalized pattern includes both the classical definition from
Section 1.1.1 used in Chapters 2, 3 and 4, and the notion of consecutive
patterns described in Chapter 6. In Section 7.1 we introduce the definitions
and we give the exponential generating functions for permutations avoiding
a special kind of generalized patterns.

In Section 7.2 we study the asymptotic behavior as n goes to infinity of
the number of permutations in S, avoiding a generalized pattern. We sepa-
rate the patterns in different cases. In some of them we can describe their
asymptotic behavior, but in other cases the behavior in the limit is unknown.

7.1 Generalized patterns

In [4], Babson and Steingrimsson introduced the notion of generalized pat-
terns, which allows the requirement that two adjacent letters in a pattern
must be adjacent in the permutation. A generalized pattern is written as
a sequence where two adjacent elements may or may not be separated by
a dash. In this context, we write a classical pattern with dashes between
any two adjacent letters of the pattern (for example, 1423 as 1-4-2-3). If we
omit the dash between two letters, we mean that for it to be an occurrence
in a permutation 7, the corresponding elements of m have to be adjacent.
For example, in an occurrence of the pattern 12-3-4 in a permutation T,
the entries in 7 that correspond to 1 and 2 are adjacent. The permutation
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m = 3542617 has only one occurrence of the pattern 12-3-4, namely the sub-
sequence 3567, whereas 7 has two occurrences of the pattern 1-2-3-4, namely
the subsequences 3567 and 3467.

In Chapter 6 we studied some cases of avoidance of patterns where all letters
have to occur in consecutive positions. Claesson [21] presented a complete
solution for the number of permutations avoiding any single 3-letter general-
ized pattern with exactly one adjacent pair of letters. Claesson and Mansour
[22] (see also [64]) did the same for any pair of such patterns. On the other
hand, Kitaev [56] investigated simultaneous avoidance of two or more 3-letter
generalized patterns without internal dashes.

Throughout this chapter, all the patterns that appear will represent general-
ized patterns. Therefore, a pattern without dashes will denote a consecutive
pattern like the ones in Chapter 6. If we want to consider a classical pattern
in the sense of Section 1.1.1, we will represent it with dashes between any
two elements, namely, as 01-09- - - -0,

If o is a generalized pattern, S, (o) denotes the set of permutations in S,
that have no occurrences of ¢ in the sense described above. Note that if o
is a consecutive pattern, then S, (o) is the set that was denoted A, (o) in
Chapter 6. For a generalized pattern o, let a,(0) = |S,(0)|, and let

Ay(2) = Z an(a);—rg

n>0

be the exponential generating function counting permutations that avoid o.

7.1.1 Patterns of the form 1-o

In this section we study a very particular class of generalized patterns,
namely those that start with 1-, followed by a consecutive pattern.

Proposition 7.1 Let 0 = 01090} € S, be a consecutive pattern, and let
1-0 denote the generalized pattern 1-(oq + 1)(og + 1)+ (o + 1). Then,

Ay (2) = exp ( /0 T AL dt> .

Proof. For any permutation =, if m1 > mg > --- > m, are the values of its
left-to-right minima, we can write 7 = mjwimsws - - - m,w,, where each w;
is a (possibly empty) subword of 7, each of whose elements is greater than
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m;. We claim that 7 avoids 1-o if and only if each of the blocks w; (more
precisely, its reduction p(w;)) avoids o as a subword. Indeed, it is clear that
if one of the blocks w; contains the subword o, then m; together with the
occurrence of ¢ forms an occurrence of 1-o. Reciprocally, if m contains 1-o,
then the elements of 7 corresponding to ¢ have to be adjacent, and none of
them can be a left-to-right minimum (since the element corresponding to ‘1’
has to be to their left), therefore they must be all inside the same block w;
for some 1.

If we denote by A the class of permutations avoiding ¢ as a subword, then,
in the notation of Table 1.2, the class of permutations avoiding 1-o can be
expressed as

({2} x A),

where {z}" % A corresponds to a block m;w;, with the box indicating that
the left-to-right minimum has the smallest label. The set construction arises
from the fact given a collection of blocks m;w;, there is a unique way to
order them, namely with the left-to-right minima in decreasing order. The
expression A1-4(2) = exp( [, As(t)dt) follows now from this construction.

O

Example. The only permutation avoiding the subword o = 12 (resp. o =
21) is the decreasing (resp. increasing) one. Therefore, by Proposition 7.1,

A1-93(2) = A1-32(2) = exp (/ €tdt> =
0

the EGF for Bell numbers, which agrees with the result in [21].

Example. For the subwords 132, 231, 312 and 213, we gave in Theorem 6.6
the corresponding generating functions counting their occurrences in permu-
tations. Now, by Proposition 7.1, we get the following expression:

1
Ar-243(2) = A1-342(2) = A1-423(2) = A1-324(2) = exp (W) :

Example. The EGF for permutations avoiding the subwords 123 and 321
was also given in Theorem 6.6. Proposition 7.1 implies now that

\/g e,2/2
At-234(2) = A1-432(2) = exp - — |
2 COS(T’Z —+ %)
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Together with the results of Theorems 6.1 and 6.2, Proposition 7.1 gives
expressions for the EGFs Aj-,(z) where o has one of the following forms:
o=123-- -k,
o=k(k—1)---21,
oc=12---at(a+1),
oc=(a+1)Tala—1)---21,
o=kk—1)---(k+1—-a)7" (k—a),
c=(k-a)tT(k+1—a)k+2—a) -k,
where k,a are positive integers with a < k — 2, 7 is any permutation of
{a+2,a+3, - ,k} and 7’ is any permutation of {1,2,--- [k —a — 1}.

7.2 Asymptotic enumeration

Here we discuss the behavior of the numbers ay, (o) as n goes to infinity,
for a given generalized pattern 0. We use the symbol ~ to indicate that
two sequences of numbers have the same asymptotic behavior (i.e., we write
an ~ by if lim,,_ o ‘g—: = 1), and we use the symbol < to indicate that a
sequence is asymptotically smaller than another one (i.e., we write a,, < by,
if limy, o0 92 = 0).

Let us first consider the case of consecutive patterns.

Theorem 7.2 Let k > 3 and let o € S be a consecutive pattern.

(1) There exist constants 0 < ¢,d < 1 such that

"n! < ay(o) < d"nl

(2) There exists a constant 0 < w < 1 such that

1/n
lim <an(a)> = w.
n—oo n!

Note that ¢, d and w depend only on o.

Proof. The key observation is that, for any subword o,

min(0) < am(0)an(0) (m: ”> (7.1)
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To see this, just observe that a c-avoiding permutation of length m + n
induces two juxtaposed o-avoiding permutations of lengths m and n.

By induction on n > k one gets

m-+n

aman(o) < d™m! d"n!( > = d™"(m + n)!

n

for some positive d < 1.

For the lower bound, let 7 = p(o10203) be the reduction of the first three
elements of 0. Clearly S,,(7) C S,,(0) for all n, since an occurrence of ¢ in
a permutation produces also an occurrence of 7, hence o, (7) < o, (o). But
the fact that o € S3 implies that ., (o) equals either ,,(123) or ,(132). In
any case, by Proposition 6.7 and Theorem 6.6, we have that

an(o) > ap(132) > "n!

for some ¢ > 0.

To prove part (2), we can express (7.1) as

oniale)  ould) ol

and apply Fekete’s lemma (see [91, Lemma 11.6] or [37]) to the function
1/n
n!/ay, (o) to conclude that lim, . (a”—@) exists. Calling it w, then by

n!

n!

1/n
part (1) we have that w < 1 and w > lim, (M> = 0.7839769. O

In order to study the asymptotic behavior of a., (o) for a generalized pattern
o we separate the problem into the following cases. Assume from now on
that k > 3 and that o is a generalized pattern of length k.

Case 1 The pattern o has dashes between any two adjacent elements, i.e.,
0 = 01-09-""+ -O.

These are just the classical patterns, which have been widely studied for the
last decade. The asymptotic behavior of the number of permutations avoid-
ing them is given by the Stanley-Wilf conjecture, which has been recently
proved by Marcus and Tardos [70], after several authors had given partial
results over the last few years [2, 3, 14, 57].
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Theorem 7.3 (Stanley- Wilf conjecture, proved in [70])  For every
classical pattern o = o1-09-- - - -0y, there is a constant A (which only depends
on o) such that

an(o) < A"

foralln > 1.

On the other hand, it is clear that ay, (o) > ay,(p(o1-02-03)) = C,, ~ \/%4".
As pointed out by Arratia [3], Theorem 7.3 is equivalent to the statement
that lim, . {/an(0) exists. The value of this limit has been computed
for several classical patterns: it is clearly 4 for patterns of length 3, it is
known [72] to be (k — 1) for 0 = 1-2-- - -- k, it is shown in [11] that for o =
1-3-4-2 this limit is 8, and it has recently been proved [15] to be nonrational
for certain patterns.

Case 2 The pattern o has three consecutive elements without a dash between
them, i.e., 0 = - - 0;0; 410542 - - .

Proposition 7.4 Let o be a generalized pattern having three consecutive
elements without a dash. Then there exist constants 0 < ¢,d < 1 such that

"n! < ay(o) < d"nl

Proof. For the upper bound, notice that if a permutation contains the con-
secutive pattern 10903 - - - 03 obtained by removing all the dashes in o, then
it also contains o. Therefore, a,(0) < ap(010203 - - oy) for all n, and now
the upper bound follows from part (1) of Theorem 7.2.

For the lower bound, we use that a,(0) > ay,(p(c;0i110i4+2)) > ay,(132) >
c"nl. |
Case 3 The pattern o has pairs of adjacent elements without a dash between
them, but not three consecutive elements without dashes.

This case includes all the patterns not considered in Cases 1 and 2. The
asymptotic behavior of «, (o) for these patterns is not known in general.
For patterns of length 3 we have the following result due to Claesson [21].
Let B,, denote the n-th Bell number, which counts the number of partitions
of an n-element set.

Proposition 7.5 ([21]) Let o be a generalized pattern of length 3 with one
dash.
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(1) If o € {1-23,3-21,32-1,12-3,1-32,23-1, 3-12,21-3}, then a, (o) = B,.

(2) If o € {2-13,2-31,31-2,13-2}, then ay(c) = C,.

It is known that the asymptotic behavior of the Catalan numbers is given
by C,, ~ \/% 4™, For the Bell numbers, we have the formula

1
B, ~ — n+1/2 _A(n)—n—1
= Al

where A(n) is defined by A(n)In(A(n)) = n. Another useful description of
the asymptotic behavior of B,, is the following:

In B, =Inn—-Inlnn+0 <lnlnn> .

n Inn

This shows in particular that §" < B,, < ¢"n! for any constants d,c > 0.

For patterns o of length at least 4 that have pairs of adjacent elements
without a dash, but not adjacent triplets without dashes, not much is known
in general about the number of permutations avoiding them. The asymptotic
behavior of a,, (o) could be anywhere between 6™ for some constant § > 0
(obviously, if o contains one of the patterns in part (1) of Proposition 7.5,
then this lower bound can be improved to B,,) and d"n! for some constant
0 < d < 1. In the rest of this chapter we discuss a few partial results in this
direction.

The next statement about permutations of the form 1-0, is an easy conse-
quence of Proposition 7.1.

Corollary 7.6 Let o be a consecutive pattern, and let 1-o be defined as in
Proposition 7.1. Then,

_ 1/n 1/n
lim <a"(1 U)> = lim (an(0)> .
n—o0 n! n—oo n!

Proof. By Proposition 7.1 we know that A1-4(z) = exp (5 As(t)dt). Since
the exponential is an analytic function, we obtain that Ai-,(z) has the same
radius of convergence as A, (z), from where the result follows. O
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7.2.1 The pattern 12-34

The next proposition gives an upper and a lower bound for the numbers
a,(12-34). Given two formal power series F(z) = ) -, fn and G(z) =
>0 9n, We use the notation F(z) < G(z) to indicate that f, < g, for all
n, and F(z) < G(z) to indicate that f, < g, for all n.

Proposition 7.7 For k > 1, let

1 1
hr =14+ +4...2
k k 2 '
br(z) = <Z> [z + 2(hg—; — hy)] €%,
1=0

kD)2 KON B4 1 1 .

€ (74

(2 = 3 _Z<z>< i )[z+2(hk_i_hi)+k+1—i o
=0

S(z) = be(2) + > erl2).

k>1 k>1

Then
eS(z) <A12_34(z) <eS(z)+ez+z—1‘

If we write 9(*) = 377,27 and ¥+ 21 = Sy, 20 o denote the co-
efficients of the series giving the lower and the upper bound respectively,
then the graph in Figure 7.1 shows the values of {/a,,(12-34)/n! for n < 13,
bounded between the values {/l,/n! and {/u,/n! for n < 120. The two
horizontal dotted lines are at height 0.7839769 and 0.8269933, which are
limy, 0o ¥/ an(o)/n! for o = 132 and o = 123 respectively, given by Theo-
rem 6.6. From this figure it seems plausible that lim, oo {/a,(12-34)/n! =

0, although we have not succeeded in proving this.

Note that the lower bound, together with the fact that S(z) > e* —1 (which
follows from the definition), shows that Ajs-34(2) > ) > e ~1 which
means that a,(12-34) > B,,, that is, the number of 12-34-avoiding permu-
tations is asymptotically larger than the Bell numbers.

Proof. Let m be a permutation that avoids 12-34. This means that it has no
two ascents such that the second one starts at a higher value than where the
first one ends. We can write m = BgajBiasBoaszBs - -+, where a1 and the
element preceding it form the first ascent of 7, as and the element preceding
it form the first ascent such that ay < a1, ag and the element preceding it
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Figure 7.1 The first values of {/c,(12-34)/n! between the lower and
the upper bound given by Proposition 7.7.

form the first ascent such that ag < as, and so on. By definition, By is a
non-empty decreasing subword whose last element is less than a1, and each
B; with ¢ > 1 can be written uniquely as a sequence B; = w; ow; 1w; 2 - - - W; r;
for some r; > 1 (r; can be 0 if w; o is nonempty) with the following properties:

(1) each w; ; is a decreasing word,

(2) for j > 1, w; j is nonempty and its first element is bigger than a;,
(3) the last element of each w; ; is less than a;,
(4)

4) the last element of B; is less than a;41.

These properties ensure that 7 avoids 12-34 (since no B; has an ascent above
a;), and that the decomposition is unique.

Ideally we would like to use this decomposition to find a generating function
for the numbers a,,(12-34). Unfortunately, the structure of the decomposi-
tion is a bit too complicated to find an exact formula. Instead, we will add
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and remove restrictions to simplify this description, which allows us to give
lower and upper bounds respectively.

To find an upper bound, we will count permutations of the form 7 =
Bopai1BiasBoasBs - - -, where the B; and a; satisfy the properties above, ex-
cept for the requirement that the last element of each B; has to be less than
a;+1. Omitting this requirement we are overcounting permutations, and thus
we get an upper bound. The first step now is to find the EGF for a block K;
of the form a;B;, where B; satisfies properties (1), (2) and (3) from above.

Let us first assume that w; o is empty, that is, B; = w;jw;2 - w;,,. We
compute the EGF for K; = a;B; where r; is fixed by induction on r;. If
r; = 0, then we have that K; = a;, so the EGF is by(z) := z. If r; = 1, then
K; = a;w;1, where w; 1 is a decreasing word starting above a; and ending
below it. The EFG for w; 1 is e*. Now, to incorporate the condition that the
largest and the smallest labels of K; lie in w; 1, we use a generalization of the
boxed product construction described in Section 1.3.2. A double derivative
is now needed to mark the two special elements. We get that the EGF for
such a block is

z Yy d2 z Yy
/ / U (—c dtdy:/ / teldt dy = (z — 2)e* + 2z 4+ 2 = by (2).
0o Jo dt? 0o Jo

Let now be r; = 2. The case in which both the largest and the smallest label
of K; = a;w;1w; 2 are contained in w; 2 corresponds to the EGF

/OZ /Oy by (t) (j—;&) dt dy. (7.2)
"

If we write each w; ; as w;w; s
+ —

i and w; respectively), then the largest element of K; can be either
in w: 1 or in w: 5, and the smallest element of K; can be either in w; Or in

separating the elements above and below
a; (w

w; 5. Thus, all the possibilities are obtained from the case counted by the

EGF (7.2) by permuting the upper and lower parts of the w;; and w; o in
the 4 different ways. It follows that the EGF for K; when r; = 2 is

z 1y
4/ / bi(t)eldtdy = (2 — 3)e** + 4ze” + 2 + 3 = ba(2).
0o Jo

In general, if by_1(2) is the EGF for the case r; = k — 1, then the EGF for
the case r; = k is given by

z Yy
br(z2) = k? / / br_1(t) e'dt dy.
0 JO
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It is straightforward to check that the functions by (z) defined in the state-
ment of the proposition satisfy this recurrence.

The case where w; o is nonempty can be treated similarly. Now we have
B; = wow;1wi2 - - wiy,. If r; =0, the EGF for ajwg; is co(z) :=€* —1—2
(since the block has at least 2 elements). If r; = 1, then a block of the form
a;wo ;w;,1 can be obtained from the case where the largest and the smallest
element are in w; ;1 by permuting wp; and w; if necessary. This yields the
EGF

2/Z/yc(t) d—zet dtd —£+2(1—2)ez—z—§—c(z)
o Jo O\ Y7 g — A

In general, for nonempty w g, if cx—1(2) is the EGF for the case r; =k — 1,
then the EGF for the case r; = k is given by

ck(z) =k(k+1) /OZ /Oy cr_1(t) eldt dy.

This is the recurrence satisfied by the functions cj(z) defined in the statement
of the proposition.

The generating function for a set of blocks K; = a;B; of the form just
described is

exp Zbk(z) + ch(z) =exp(S(z)+z+€ —1—2).

k>0 k>0

From such a set there is a unique way to form a sequence a1 BjasBagBs - - -
where a; > ag > as > ---. Finally, we multiply by e* to take into account the
initial decreasing segment By of the permutation m = Bgai BiasBsagBs - - -,
again ignoring the condition that its last element should be smaller than a;.
This gives the upper bound e* exp(S(z) + e — 1) = exp(S(z) + e* + 2z — 1).

Now we use a similar reasoning to obtain a lower bound. We have seen
that by(z) counts blocks of the form a;w; 1w; 2 - - - w; 1, where each w; ; is a
decreasing word starting above a; and ending below it. If £ > 1, using the
notation w;; = w:kw;k to separate the elements that are bigger than a;
from those that are smaller, we can move the last part of the block to the
beginning and write L; = W; 1,0 W;i,1W;2 - wjk Similarly, a block of the
form a;w; gw;1w; 2 - - - w; i, like the ones counted by ci(z) with & > 1 can be
reordered as L] = w;kaiwi,owi,lwi,g . w;"k The EGF that counts sets of
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pieces of the forms given by L; and L} is

exp | Y br(2) + Y _cr(2) | =exp(S(2)).

k>1 k>1

Ordering the pieces of such a set by decreasing order of the a;, the sequence
that they form by juxtaposition is a 12-34-avoiding permutation. Besides,
no such permutation is obtained in more than one way by this construction.
However, notice that not every 12-34-avoiding permutation is produced by
this process, hence this construction gives only a lower bound. a

The decomposition of 12-34-avoiding permutations given in this proof can
be generalized to permutations avoiding a pattern of the form 12-o. If
o = 0109 0} € S is a consecutive pattern, 12-c denotes the generalized
pattern 12-(o1 + 2)(o2 + 2) -+ - (0% + 2).

Any permutation 7 that avoids 12-¢ can be uniquely decomposed as m =
Bya1BiasBoasBs - - -, where a1 and the element preceding it form the first
ascent of 7, as and the element preceding it form the first ascent such that
as < ai, az and the element preceding it form the first ascent such that
az < ag, and so on. Then, by definition, By is a non-empty decreasing
subword whose last element is less than aq, and each B; with ¢ > 1 can be
written uniquely as a sequence B; = w; oU; 1w; 1U; pw; 2 - - - Uy w5 4, for some
ri > 1 (r; can be 0 if w; ¢ is nonempty) with the following properties:

(1) each w;; is a decreasing word all of whose elements are less than a;,

(2) each U, ; is a nonempty permutation avoiding o as a subword, all of
whose elements are greater than a;,

(3) wj; is nonempty for j > 1,
(4) the last element of B; is less than a;.

From this decomposition the following result follows immediately.

Proposition 7.8 If o ~ 7 are two consecutive patterns, then 12-c ~ 12-7.

The structure of 21-o-avoiding permutations (defined analogously) can be
described using the same ideas, and it is not hard to see that the following
result holds as well.

Proposition 7.9 If o is a consecutive pattern, then 12-c ~ 21-0.
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7.2.2 The pattern 1-23-4

Similarly to what we did for the pattern 12-34, analyzing the structure of
permutations avoiding 1-23-4 we can give lower and upper bounds for the
numbers oy, (1-23-4). Let C*P := 3" _  C, Z; be the EGF for the Catalan
numbers.

Proposition 7.10 We have that

1 z
5/ X' =2 dy — % < Aj-23-4(2) < CFP(e —1).
0

Writing 1 [ e ~2dy—% =3 l,Zr and C™P(e*—1) = 3" u,, 27 to denote the
coefficients of the series giving the lower and the upper bound respectively,
then the values of {/l,/n! and {/u,/n! for n <90 are plotted in Figure 7.2,

bounding the values of {/ay,(1-23-4)/n! for n < 11.

124 *

0.8+ Ty

0.6

20 40 60 80

Figure 7.2 The first values of {/«,(1-23-4)/n! between the lower
and the upper bound given by Proposition 7.10.



146 Chapter 7. Asymptotic enumeration and generalized patterns

Note that the lower bound implies that a,(1-23-4) > B, since ¢2¢ 72 >>
e L

Proof. Let m be a permutation that avoids 1-23-4. Let a1 > as > ag > -+ >
a, be the left-to-right minima of 7, and let by > by > b3 > --- > b be its
right-to-left maxima. Then, marking the positions of the left-to-right minima
and right-to-left maxima, we can write 7 = ciwicows « +  Cpa5—1 Wyt 5—1Crts,
where ¢; € {ay,az2,...,a,,b1,ba,...,bs} for all ¢ (in fact the number of ¢;’s
could be less than r 4 s if some element is simultaneously a left-to-right
minimum and a right-to-left maximum). Note that ¢; = a1 and ¢,45 = bs.
Now, the condition that 7 avoids 1-23-4 is equivalent to the fact that each w;
is a (possibly empty) decreasing word. Indeed, if there was an ascent inside
one of the w;, then together with the closest left-to-right minimum to the
left of w; and the closest right-to-left maximum to the right of w;, it would
form an occurrence of 1-23-4. On the other hand, it is clear that if all w; are
decreasing, then no such occurrence can exist.

We use this decomposition to obtain upper and lower bounds for a, (1-23-4).
Let us first show the lower bound. For that we count only a special type
of 1-23-4-avoiding permutations, namely the ones where all the left-to-right
minima come before all the right-to-left maxima. Such a 7 can be written
as T = a1wiagWs - - - GpWyrb1Wypy160Wy 9 - - - Wypps—1bs, where for 1 < 4 < r
the elements of the decreasing words w; have values between a; and by,
and for r < ¢ < r + s — 1 the elements of w; have values between a,
and b;11. The EGF for the part ajwijasws -« - ap_1wyr—_1 is eez_l, since it
is an arbitrary 1-23-avoiding permutation (see the example following Propo-
sition 7.1). Similarly, the EGF for the part w,i1bow, 2+« wyp45-1bs is also
et 1 (it can be seen as a set of blocks of the form w,4;b;41, each one con-
tributing e — 1, arranged by decreasing order of the b;’s). The decreasing
word w, contributes e®. Now, to get the EGF for the whole permutation
a1wW1awW3 - - - ArWyb1 Wy 1bo2Wr 49 - - - Wypys—1bs We use the boxed product con-
struction to require that the biggest element of the block is b1 and the small-
est one is a,. The EGF that we obtain is

z v t_l d t d t_l 1 z 2e¥Y—-2
€ —1 —t e T hdtdy = - T —1)d
/0/06 <dt>e<dt>e ’ 2/0(e o

which gives a lower bound for the coefficients of Aj_3-4(2).

To find the upper bound, consider first permutations of the form 7© =
ClW1CQWS * * * Crys—1Wypts—1Crts Where all the w; are empty. Such permu-
tations, where every element is either a left-to-right minimum or a right-to-
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left maximum, are precisely those avoiding 1-2-3, which are counted by the
Catalan numbers. Thus, the EGF for such permutations is C*P(z).

The next step is to insert a decreasing word w; after each ¢;. If ¢; is a left-
to-right minimum, we require that the elements of w; are bigger than ¢;, so
the EGF for the block c;w; is e — 1. We omit the requirement that the
elements of w; have to be smaller than the nearest right-to-left maximum
to the right of w;; this is why we only get an upper bound. Similarly, if ¢;
is a right-to-left maximum, we require that the elements of w; are smaller
than c¢;, so the EGF for the block cjw; is also e* — 1. We also omit the
requirement that after the last right-to-left maximum there is no decreasing
word. Replacing each ¢; for a block c;w; as just described translates in terms
of generating functions into substituting e — 1 for the variable z in C*P(z).
This gives the upper bound of the statement. O

The upper bound given in the above proposition yields the following corol-
lary.

Corollary 7.11 We have that

99 1/n
lim (M) —o.

n—oo n!
Proof. The power series C**P(z) can be bounded by

" 4
CeXp(Z) < 22471m =¥
n>0

which converges for all z. Therefore, so does C*P(e* — 1), which is an
upper bound for Aj_93-4(2). The result follows now from the observations in
Section 6.1.3. O

The decomposition of 1-23-4-avoiding permutations given in the proof of the
above proposition can be generalized to permutations avoiding a pattern
of the form 1-o0-k, defined as follows. If 0 = o109 - 0r_9 € Sip_o is a
consecutive pattern, let 1-0-k denote the generalized pattern 1-(o1 +1)(o2 +
1) (o + 1)k,

Any permutation 7 that avoids 1-o-k can be uniquely decomposed as m =
ClW1CQW2 - * * Cy— 1 W —1Cm, Where the ¢; are all the left-to-right minima and
right-to-left maxima of 7w, and each w; is a permutation that avoids o as
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a subword, all of whose elements are bigger than the closest left-to-right
minimum to its left and smaller than the closest right-to-left maximum to
its right.

Using exactly the same reasoning as in the proof of Proposition 7.10, we
obtain the following lower and upper bounds for the numbers a,, (1-0-k).

Proposition 7.12 Let 0 € Si_o be a consecutive pattern, and let 1-o-k be
defined as above. Then,

/ / 25 AeWdt+y gy gy < Ay i (2) < CP ( / Ao (t) dt) .
0 0 0

Corollary 7.13 With the same definitions as in the above proposition,

L 1/n 1/n
lim (7%1(1 7 k)> = lim <—an(0)> .

Proof. The upper and lower bounds for Aj_,-;(z) given in Proposition 7.12
are analytic functions of A,(2), since essentially they only involve exponen-
tials and integrals. Therefore, A1_,-(z) and A,(z) have the same radius of
convergence, hence the limits above coincide. O

Finally, the following proposition is an immediate consequence of the struc-
ture of permutations avoiding 1-o-k discussed above. In particular, it implies
that 1-23-4 ~ 1-32-4.

Proposition 7.14 If ¢ ~ 7 are two consecutive patterns in Si_o, then
1-0-k ~ 1-7-k.

7.2.3 Other patterns

We have proved that ay,(1-23-4) > B,, and that «,(1-23-4) < ¢"n! for
any constant ¢ > 0. For the pattern 12-34 we showed that the analogue
to the first statement holds as well, and the second one seems to be true
from numerical computations. It remains as an open problem to give more
general results concerning the asymptotical behavior of the numbers a,, (o)
where o is a generalized pattern.

In Figure 7.3 we have plotted the initial values (connected by lines) of the
sequences {/ay,(0)/n! for other cases that appear to have some interest. The
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0.7

0.6

0.5

Figure 7.3 The first values of {/a,(c)/n! for several generalized
patterns o.

two dotted lines at the bottom of the graph correspond to the sequences
Y/C,/n! and /B, /n!, which are known to tend to 0 as n goes to infinity.
The two dashed lines that start at the same point (around 0.941) and tend
to a constant correspond to the sequences {/a,,(132)/n! and {/a,(123)/n!,
for which their limits are known to be 0.7839769 and 0.8269933 respectively.
Among the lines starting at 1, the two dotted ones correspond to the patterns
1-23-4 (the lower line) and 12-34 (the upper line) discussed in the previous
subsections.

Of the two solid lines, the one below corresponds to the pattern 3-14-2.
This pattern has a special interest because all of its subpatterns of length 3
are among those in part (2) of Proposition 7.5. Since it does not contain
any of the patterns in part (1), we cannot say that «,(3-14-2) > B, for
all n. In fact, comparting the slopes in Figure 7.3 it seems quite plausible
that ay,(3-14-2) is asymptotically smaller than B,,, and proving this is an
interesting open question. The other solid line in the graph corresponds to
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the pattern 13-24, for which we do not know the asymptotic behavior either.



Conclusions

This thesis is focused on the enumeration of pattern-avoiding permutations
with respect to certain statistics, and on the enumeration of permutations
avoiding generalized patterns. We now review the results we have obtained
and discuss lines of future research.

In Chapter 2 we have classified patterns of length 3 according to the distri-
bution of the statistics ‘number of fixed points’ and ‘number of excedances’
in permutations avoiding them. We have introduced bijections between
pattern-avoiding permutations and Dyck paths that have played an impor-
tant role throughout the thesis. They were presented in a graphical way
which made it easier to study their properties. The main result of the chap-
ter was that the joint distribution of this pair of statistics is the same in 321-
avoiding as in 132-avoiding permutations. This generalizes a recent theorem
of Robertson, Saracino and Zeilberger. We gave a bijection between these
two sets of permutations that preserves both the number of fixed points and
the number of excedances, thus giving a combinatorial proof of the result.
Our bijection is a composition of two bijections into Dyck paths, and the re-
sult follows from a new analysis of these bijections. The Robinson-Schensted-
Knuth correspondence is a part of one of them, and from it stemmed the
difficulty of the analysis. The key idea was to introduce a new class of statis-
tics on Dyck paths, based on the concept of tunnel, which we introduced in
Chapter 1. For the patterns 132, 213 and 321 we gave generating functions
with variables enumerating the two statistics mentioned above, and in some
cases additional statistics as well. For the patterns 231 and 312 we expressed
the corresponding generating functions as continued fractions. For the case
of the pattern 123 we could only give partial results regarding the number
of fixed points, and we used them to prove a recent conjecture of Bona and
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Guibert.

It would be interesting to try to find a generating function for fixed points
and excedances in 123-avoiding permutations, the only case of patterns of
length 3 that remains unsolved. Even for the enumeration of fixed points
in these permutations, we expect that a simpler expression than the one in
Theorem 2.13 can be given.

In Chapter 3 we have studied permutations avoiding simultaneously two or
more patterns of length 3, enumerating them with respect to the number of
fixed points and the number of excedances [32]. By means of the bijections
between restricted permutations and Dyck paths described in Chapter 2, ad-
ditional restrictions on permutations correspond to certain conditions on the
paths, and thus the problem was reduced to enumerating such paths with
respect to the statistics that fixed points and excedances are mapped to by
these bijections. We solved all the cases of avoidance of two or more patterns
by giving the corresponding multivariate generating functions, which are ra-
tional and have relatively simple expressions. In some instances we were able
to give a generalization to the case where one of the patterns had arbitrary
length. Then we enumerated involutions avoiding any subset of patterns
of length 3 with respect to the same two parameters. The main technique
consists in using bijections between pattern-avoiding permutations and cer-
tain kinds of Dyck paths, in such a way that our statistics in permutations
correspond to statistics on Dyck paths which are easier to enumerate.

An interesting extension of this work would be to study the distribution
of statistics in permutations avoiding longer patterns. The enumeration of
such permutations is itself a very difficult problem, and not even the case of
length 4 is completely solved (see [11, 45, 47] for single patterns, [13, 60, 94,
95] for pairs of patterns of length 4, and [20, 59, 66, 67, 68] for other pairs).
For the case of patterns of length 4, we have checked by computer that the
only cases in which the number of derangements in S,,(¢) is the same for
different patterns o € S, are those in which there exists a trivial bijection
(such as m + 7! or m + 7) proving this fact. Therefore, Theorems 1.4
and 2.3 do not seem to have an analogue for patterns of length 4. Still,
there would be some interest in finding generating functions to enumerate
permutations avoiding patterns of length 4 or more with respect to statistics
such as the number of fixed points and the number of excedances. For
permutations avoiding a pattern of length 4 there are 13 different equivalence
classes with respect to the distribution of the statistic fp.

It is possible that Theorem 2.3 admits generalizations to other permutation
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statistics, or some variations. We have not succeeded in finding any other
case of equidistribution of a statistic for different patterns having such an
interesting and nontrivial proof. An example of a much simpler result is
that the statistic ‘number of descents’ has the same distribution in S,,(132),
Sn(213), §,(231) and S, (312).

Another further direction of research would consist in describing the cycle
structure of pattern-avoiding permutations. Using the same bijective tech-
niques from Chapters 2 and 3, one can easily derive generating functions for
the augmented cycle index of permutations in §,(231,312), in S, (231,321)
and in S,,(132,321). However, it is not clear whether for permutations avoid-
ing other subsets of patterns of length 3, the distribution of the cycle type
has a simple description.

One might wonder if the fact that the number of fixed points has the same
distribution both in 321- and in 132-avoiding permutations admits a gener-
alization concerning the cycle structure in S,,(321) and S,,(132). We have
for example that the cycle structure of 321-avoiding involutions and 132-
avoiding involutions is the same. However, it is not true that the cycle
structure of permutations in Sg(321) is the same as that of permutations in
S6(132), as shown in [27].

In Chapter 4 we have given the simplest known bijection between 321- and
132-avoiding permutations that preserves the number of fixed points. The
main ingredient is a new unusual bijection from the set of Dyck paths to
itself. We also presented a generalization of it, which gave additional corre-
spondences of statistics, as well as applications to the enumeration of Dyck
paths and restricted permutations with respect to several statistics.

In Chapter 5 we have presented some new interpretations of the Catalan
and Fine numbers, and a few natural bijections between 321-avoiding per-
mutations and Dyck paths. Then we have considered a class of permutations
obtained from noncrossing matchings of 2n points around a circle. They are
counted by the Catalan numbers, but are not defined in terms of pattern
avoidance. We found the ordinary generating functions with variables mark-
ing the number of descents and the number of fixed points and excedances.

In Chapter 6 we have introduced a variation to the notion of pattern avoid-
ance, with the additional requirement that the elements forming the pattern
have to occur in consecutive positions in the permutation. We studied the
number ay, (o) of permutations avoiding o as a subword and, more generally,
the number of occurrences of ¢ in permutations of length n. For the case of
the increasing pattern of any length and of another pattern of a fairly general
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shape, using bijections between permutations and binary increasing trees, we
were able to solve the problem by obtaining the corresponding bivariate ex-
ponential generating functions as inverses of solutions of linear differential
equations. This provides a complete solution for all consecutive patterns of
length 3, and for three out of the seven classes of patterns of length 4. We
also considered some cases of simultaneous avoidance of subwords.

Besides extending our results to other subwords not covered by our analysis,
there remain some interesting problems. For instance, it appears from our
computations that the increasing subword 12 - --m is always dominating, in
the sense that o, (12---m) > «a, (o) for any o € S,,, and n large enough. We
conjecture that this is always the case.

Finally, in Chapter 7 we have discussed the notion of generalized patterns,
which generalizes the definitions of both classical and consecutive patterns.
For patterns of the form 1-0 with no dashes in o we have obtained the ex-
ponential generating function in terms of that for g-avoiding permutations.
Next we have studied the asymptotic behavior of the number of permuta-
tions in S, avoiding a fixed generalized pattern as n goes to infinity. For the
case of classical patterns, a description of this asymptotic behavior had been
given by the recently proven Stanley-Wilf conjecture [70]. We consider the
analogous problem for generalized patterns, solving it for consecutive pat-
terns and in some other cases. For a few additional generalized patterns such
as 12-34 and 1-23-4 we have shown lower and upper bounds on the number
of permutations avoiding them, which gives an estimate of their asymptotic
behavior.

An interesting problem would be to present a complete classification of all
generalized patterns o according to the asymptotic behavior of the numbers
ap (o) of permutations avoiding them as n goes to infinity. This would
conclude the work initiated in this last chapter.
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