
Scratchpad-oriented address
generation for low-power embedded

VLIW processors

Guillermo Talavera Velilla

Ph.D. Thesis Dissertation

Universitat Autònoma de Barcelona

Department of Microelectronics and Electronic Systems

October 2009

Jordi Carrabina, lecturer in the Microelectronics and Electronic Systems Department
of the �Universitat Autònoma de Barcelona�,

CERTIFIES:

That the present thesis has been realized under his direction by Guillermo Talavera
Velilla in partial fullment of the requirements for the degree of �Doctor en Informàtica
(opció microelectrònica) per la Universitat Autònoma de Barcelona�.

Bellaterra, October 2009.

A mis padres y hermana,

por su amor incondicional.

A Ruth,

porque, en calidad de �doctoranda consorte�, ha sufrido

este doctorado más de lo que le correspondía.

Gracias por estar a mi lado todos estos años.

A Héctor, Irene... ½y los que vengan!

½Encantado de haberos conocido!

Espero que si esto no os sirve de ejemplo,

por lo menos os sirva de excusa.

Acknowledgements

�I can't remember to forget you.�

Leonard Shelby. Memento.

This thesis came about with the help of many di�erent people without whom this
book would not have been possible. I would like to thank them all for their e�orts,
discussions, patience and friendship.
I sincerely thank Prof. Jordi Carrabina for giving me the opportunity to pursue my

PhD in the Department of �Microelectrònica i Sistemes Electrònics� at the Universitat
Autònoma de Barcelona. I would also like to thank him for all the discussions we had
during these years and for giving me the freedom and support to choose my path.
There are a lot of people from the �Cephis Group� [cep] (or really close) that I must

be grateful to. First of all, I would like to thank Toni Portero for all these years working
together, helping and encouraging each other during �hard times�. I would also like
to thank Màrius Montón and Borja Martínez, it was a big pleasure to have them as
colleagues in some of the courses we taught together. Besides, I really learned a lot
from them. I also learned a lot from Enric Pons (a.k.a. Obi), and, after some time, he
convinced me that pr0n can also be an art. Xavier Fitó, I had him as student and at �rst
I was a�raid, but sometime latter I discover that he is not so dangerous and we became
a good friends. Màrius, Borja, Obi, Xavi and Elena Garcia, thank you very much for all
the time we spent and all the co�ees we had �saving the world�, we had great times. I
met you all here �at work� and now I really consider you my friends, thank you also for
your friendship, it really mean a lot to me.
There are other people from the group that I would like to thank, Quim Saiz, Marc

Moreno, Aitor Rodriguez, Roger Puig, Eduard Cespedes, Juan Carlos Chak Ma, ... and
all the rest of the group, thank you for your friend-ship, discussions, and the nice times
we had at the university. Carlos Montero, thanks for letting me win from time to time
when playing squash... it is a real boost for my moral.

i

ACKNOWLEDGEMENTS

I would also like to thank other people I meet at the university: Vicenç Soler for
taking care of me the �rst years at the university and showing me the �tricks� I needed,
Eleni Kanellou for her deep proof reading of this thesis. Elena Valderrama, it has been
a pleasure to share some lectures with you. Jorge Ramirez thanks for all these years of
help with the computers and labs, Marta Garsaball, Jordi Jovani and Antonio Guerra for
their support and help with all the administrative tasks. I also would like to thank Jordi
Tirado, because he is a good friend, and a better teacher, and he had a lot of patience
guiding me for some months; and Xavier Naveira (and Maria), because he changed from
student to friend really fast, and since then it is always nice to talk to him.
Of course, nothing would have been the same without my trips to Leuven. There

are plenty of reasons to show my permanent gratitude to a lot of people there and I
really wish I do not forget anybody. Francisco Barat (a.k.a. Pancho), Murali Jayapala,
Tom Vander Aa, thanks very very very much for all the explanations, patience, help
and friendship. I learned really a lot from you in a very nice environment, I will never
forget that. Nevertheless, next time you want to do a PhD creating a coarse-grained
recon�gurable instruction set processor (CRISP) architecture and its compiler, please sit
down, relax, take a cup of tea and wait until all this creative need disappears: without
CRISP, my life would have been much more boring, but easy too ;). Also thanks again
to Pancho and Yulia for all these evenings watching movies and playing with singstar,
there I discover that I am not such a bad singer... at least I can manage with Madonna.
Praveen Raghavan, thank you very much for your support, help and explanations, I

would have never made it without your help. Andy Lambrechts, Anthony Leroy, Karel
Van Oudheusden (a.k.a DayLight), Javed Absar, Vincent Nollet, thanks a lot, I learned
a lot from all you, and I had great fun while learning. My stays in Leuven would have
been completely di�erent without my deep friends Will Mo�at and Theodore Marescaux
(a.k.a. Theo), I really hope one day we can meet again and have our talks, beers and
fun we had these years.
In addition, I also meet some other Spaniards in Leuven: Javier (a.k.a. Javi, a.k.a.

Doctor Xano) and Martin Resano (and Yoli and Espe), Nacho Gomez (and Adri), Elena
Perez, I enjoyed meeting you in Belgium. Now I have even more excuses to go to
Madrid or Zaragoza. To you too, thanks for all the time we spent together, all the
conversations, all that I learned and your friendship. A particular recognition to Javier
because he endured all my doubts and fears and his advice is always good.
I would also like to thank all my friends, because they are always there. It won't be

easy to write all their names, but basically, thanks to all the ones from the physicist
group (Roger, Eva, Bernat, Marta, Jorge Juan, Joan, Alexis, Rául, Enric, etc). The
ones from chemistry group (Alicia, Elena, Raquel, Sara, Sonia, Marta, Miriam, Raquel,
Mireia, Jordi �Tanki�, Santi, Dani, Ferran, Jordi �Jorge�, Miki, Sito, etc.). And the ones
who have always been there (Oscar, Santi, Xavier, Rául, Pep, etc.).
A very special and deep gratitude and recognition to Francky Catthoor, I learned a lot

from his knowledge and vision of technical aspects, but what is even more important, I
would never be able to thank him enough for sharing his wisdom in all the other aspects
of life and for giving me another vision of reality.

ii

Abstract

Nowadays Embedded Systems are growing at an impressive rate and provide more and
more sophisticated applications. An increasingly important set of embedded systems are
real-time portable multimedia and digital signal processing communication systems: cel-
lular phones, PDAs, digital cameras, handheld gaming consoles, multimedia terminals,
netbooks, etc. These systems require high performance speci�c computations, usually
with real-time and Quality of Service (QoS) constraints, which should run at a low en-
ergy level to extend battery life and avoid heating. A �exible system architecture is
also required to successfully meet short time-to-market restrictions. Hence, embedded
systems need a programmable, low power and high performance solution in order to deal
with these requirements.
Very Long Instruction Word architectures seem a good solution for providing enough

computational performance at low-power with the required programmability to speed
the time-to-market. Those architectures rely on compiler e�ort to exploit the available
instruction and data parallelism to keep the data path busy all the time. With the
density of transistors doubling each 18 months, more and more complex architectures
with a high number of computational resources running in parallel are emerging. With
this increasing parallel computation, the access to data is becoming the main bottleneck
that limits the available parallelism. To alleviate this problem, in current embedded
architectures, a special unit works in parallel with the main computing elements to
ensure e�cient feed and storage of the data: the Address Generator Unit, which comes
in many �avors.
The purpose of this dissertation is to prove that optimizing the process of address

generation is an e�ective way of solving the problem of accessing data while decreasing
execution time and energy consumption.
As a �rst step, this thesis evaluates the e�ectiveness of di�erent state-of-the-art devices

commonly used in the embedded domain, argues for the use of very long instruction
word processors and presents the compiler and architecture framework used for our
experiments.
This thesis also presents a systematic classi�cation of address generators, a review of

literature according to the classi�cation of the di�erent optimizations on the address
generation process and a step-wise methodology that gradually reduces energy reusing
techniques that already have been published. The systematic architecture exploration
framework and methods used to obtain a recon�gurable address generation unit are also
introduced.
Results of the recon�gurable address generator unit are shown on several benchmarks

and applications, and the complete step-wise methodology is demonstrated on a real-life
example.

iii

iv

�You met me at a very strange time in my life�

Tyler Durden - The Narrator.

Fight Club

v

vi

Contents

Acknowledgements i

Abstract iii

Contents vii

List of Figures xi

List of Tables xiii

List of Acronyms xiv

1. Introduction 1
1.1. Embedded systems . 1
1.2. Application domain: Multimedia . 2
1.3. Address generation on embedded systems 3
1.4. Contributions . 4
1.5. Structure of the dissertation . 5

2. VLIW-DSIPs: key processors for embedded multimedia 7
2.1. Introduction . 7
2.2. Representative multimedia application: MPEG4 encoder 9
2.3. Targeted platforms . 10

2.3.1. Design metrics . 11
2.3.2. Platform Independent optimizations 12

2.4. Customized Platforms Architectures . 12
2.4.1. FPGA platform . 13
2.4.2. ASIC platform . 14

2.5. Instruction Set Processor platforms . 16
2.5.1. Digital Signal Processor - Based Platform 16
2.5.2. Application/Domain Speci�c Instruction Set Processor- ASIP/DSIP 18

2.6. Final platforms results and comparison 21
2.6.1. Results . 21
2.6.2. Energy considerations . 24
2.6.3. Time related considerations . 25
2.6.4. Area considerations . 26
2.6.5. Design time considerations . 26

vii

CONTENTS

2.7. Conclusions . 27

3. State of the art on address generation 31
3.1. AGU model and classi�cation . 31

3.1.1. Types of Address Equations . 32

3.1.2. Design Metrics . 35

3.1.3. AGU classi�cation . 37

3.2. Optimizations on Address Generators . 41

3.2.1. Architecture and micro-architecture optimizations 41

3.2.2. Compiler optimizations . 43

3.2.3. Source code transformations . 45

3.3. Conclusions . 46

4. High Level Architecture and Compiler Requirements: COFFEE framework 47
4.1. Architecture Exploration and Trends . 48

4.1.1. Interconnect scaling in future technologies 48

4.1.2. Representative architecture exploration examples: What are the
bottlenecks? . 49

4.2. Architecture optimization using cross-abstraction and cross-component
relations . 51

4.2.1. Algorithm design . 51

4.2.2. Data Memory Hierarchy . 51

4.2.3. Foreground Memory Organization 52

4.2.4. Instruction/Con�guration Memory Organization (ICMO) 55

4.2.5. Data-Path Parallelism . 56

4.2.6. Data path - Address path . 58

4.3. Putting it together: FEENECS Architecture Template 59

4.4. Energy estimation model . 61

4.5. Summary . 61

5. AGU template 63
5.1. AGU Mapping Framework . 64

5.1.1. Task Partitioning Framework for Dynamic Recon�gurable Archi-
tectures . 64

5.1.2. Recon�gurable AGU Model . 66

5.1.3. AGU Mapping Framework . 66

5.2. AGU Exploration Framework . 68

5.3. Benchmarks and Applications . 73

5.4. Experimental results and �nal template 75

5.5. Optimized �stand-alone� AGU . 80

5.6. Conclusions . 82

viii

CONTENTS

6. Complete Optimization Methodology 83
6.1. MPEG-4 . 84
6.2. Background data memory optimization 85

6.2.1. Scratchpad Memories . 85
6.2.2. Data Transfer and Storage Exploration 86
6.2.3. Control �ow optimization . 88

6.3. Address generation optimization . 89
6.4. Data-path optimization . 90
6.5. Instruction loop bu�ering optimization 91
6.6. Overall improvement and �nal energy distribution 92
6.7. Conclusions . 95

7. Summary and conclusions 97
7.1. Summary of contributions . 97
7.2. Future research . 98
7.3. General conclusions . 100

Appendices 105

A. Biography 107

B. Publications 109

Bibliography 113

ix

x

List of Figures

2.1. MPEG design �ow from concept to platform 10
2.2. Di�erent design styles target di�erent design metrics 29

3.1. A general Address Generation Unit (AGU) 32
3.2. Example of a�ne address equation: a FIR �lter Code. 33
3.3. Example of a�ne address equation: piece of code from the MPEG2 de-

coder kernel . 33
3.4. Example of piece-wise a�ne AE extracted from the MPEG-4 video de-

coder core. Conditional expressions limit the search space for address
arithmetic optimization . 34

3.5. Example of non-linear AE: fragment for the GSM codebook code. 34
3.6. Design Space of AGUs . 36
3.7. Example of an Incremental AGU . 38
3.8. Example of a Custom AGU . 39
3.9. A typical AGU for DSPs . 40

4.1. Energy Breakdown for a high performance CGRA (8x8 PEs) running a
MIMO benchmark, with a clock of 200MHz 49

4.2. Energy Breakdown for heterogeneous VLIW processor with 8 slots run-
ning an MPEG2 decoder, with a clock of 600 MHz. The numbers between
brackets indicate the percentage for the processor core only. 50

4.3. VeryWide Register: A register �le solution for streaming data with spatial
locality . 54

4.4. Distributed Loop Bu�er: An instruction memory solution for optimal
instruction issuing . 56

4.5. Converting Loop Level Parallelism (LLP) into Instruction Level Paral-
lelism (ILP) or Data Level Parallelism (DLP) 57

4.6. Complete high level e�cient architecture: FEENECS architecture template 60

5.1. Overview of PRP-model . 64
5.2. Overview of Task Partitioning Framework 65
5.3. Recon�gurable AGU Model . 66
5.4. Overview of AGU Mapping Framework 67
5.5. Initial State for Example of MOVE . 67
5.6. Example of MOVE . 67
5.7. Removing Empty Con�guration . 68
5.8. Tree for 3-Repeated Permutations of 3-Patterns: (A), (B), and (C) 71

xi

LIST OF FIGURES

5.9. Tree for 3-Repeated Combinations of 3-Patterns: (A), (B), and (C) . . . 72
5.10. Architecture Candidate Enumeration Algorithm 72
5.11. Function Call of enumerate_sub() for Tree Search 73
5.12. Aspect of the inner most loops of the di�erent benchmarks 75
5.13. Recon�gurable AGU template . 77
5.14. Base processor . 78
5.15. Processor with the recon�gurable AGU 78
5.16. a) Cycles and b) Energy comparison of the di�erent benchmarks/appli-

cations after optimizations and AGU inclusion. 78
5.17. a) Cycles and b) Energy comparison of the di�erent benchmarks/appli-

cations after AGU inclusion. 79
5.18. Hardware overhead introduced by the di�erent con�gurations of the pro-

cessor . 80
5.19. Proposed AGU . 81

6.1. Example of a three level memory hierarchy 86
6.2. Overview of the DTSE methodology . 87
6.3. Cycles a) and Energy b) improvement after address generation optimiza-

tion and custom AGU inclusion for a MPEG4 Encoder. 89
6.4. Examples of inner-most loop source code a) after DTSE and control �ow

transformations b) after transformations preparing for hardware support. 90
6.5. Cycles a) and Energy b) for di�erent cluster con�gurations (#Clusters_#FUs

per cluster) . 91
6.6. Energy impact for di�erent sizes of loop bu�ers for a �xed processor (1

cluster, 8 FU) . 92
6.7. Overview of optimizations . 92
6.8. Progressive energy reduction through optimizations for a �xed processor 94
6.9. Progressive execution-time reduction through optimizations for a �xed

processor . 94
6.10. Final energy distribution of the MPEG 4 application (GOP IPBB) on the

optimized VLIW . 95

xii

List of Tables

2.1. FSME MPEG Summarized results . 22
2.2. FAST MPEG Summarized results . 23

5.1. Example of PE Implementation Pattern 69
5.2. Architecture Candidates: All Combination of PE Implementation Pat-

terns shown in Table 5.2 in case of maxPE = 3 70
5.3. Operations needed for the di�erent benchmarks and applications 76
5.4. Operations on the PE . 76

xiii

List of Acronyms

ADOPT: ADdress OPTimisation

AE: Address Equation

AGU: Address Generation Unit

ALU: Arithmetic and Logic Unit

ASIC: Application Speci�c Integrated Circuit

ASIP: Application Speci�c Instruction Set Processor

CGRA: Coarse Grain Recon�gurable Architecture

COFFEE: COmpiler Framework For Energy-aware Exploration

CSE: Common Sub expression Elimination

DFG: Data-Flow Graph

DLP: Data Level Parallelism

DM/DMH: Data Memory/Data Memory Hierarchy

DMA: Direct Memory Access

DSIP: Domain Speci�c Instruction Set Processor

DSM: Deep SubMicron

DSP: Digital Signal Processor

DTSE: Data Transfer and Storage Exploration

FEENECS: Flexible Extremely ENergy E�cient Con�gurable System

FPGA: Field Programmable Gate Array

FSME: Full Search Motion Estimation

FU: Functional Unit

GOP: Group Of Pictures

GPP: General Purpose Processor

ICMO: Instruction/Con�guration Memory Organization

ILP: Instruction Level Parallelism

xiv

LIST OF ACRONYMS

IM/IMH: Instruction Memory/Instruction Memory Hierarchy

ISO: International Organization for Standardization

JPEG: Joint Photographic Experts Group

LB: Loop Bu�er

LCs: Local Controllers

ME: Motion Estimation

MIMO: Multiple-Input and Multiple-Output

MPEG: Motion Picture Experts Group (also a standard for video encoding and decod-
ing)

MPSoC: Multi-Processor System-on-Chip

NOP: No OPeration

PC: Program Counter

PE: Processing Element

QoS: Quality of Service

RF: Register File

RTL: Register Transfer Level

SIMD: Single Instruction Multiple Data

SoC: System-on-Chip

SPM: ScratchPad Memory

TLM: Transaction-Level Modeling

VHDL: VHSIC (Very High Speed Integrated Circuits) hardware description language

VLIW: Very Long Instruction Word (also used as a shorthand for Very Long Instruction
Word processor)

VWR: Very Wide Register

xv

xvi

CHAPTER 1

Introduction

�A child of �ve would understand this.

Send someone to fetch a child of �ve.�

Groucho Marx

Over the last decade, the demand for embedded systems has been growing at an im-
pressive rate and represents around 100% of the worldwide production of microproces-
sors [Tur99]. We can sense the presence of such systems in automobiles, house-hold
appliances, consumer electronics and several others. An increasingly important set of
the embedded devices are multimedia and communication systems like cellular phones,
PDAs, multimedia terminals, handheld gaming consoles, etc.
Multimedia handheld devices require high performant speci�c computation, usually

with real-time and Quality of Service (QoS) constraints, which should run at low energy
to have a long battery life. Having a �exible architecture is also needed to meet short
time-to-market restrictions and to easily update to new versions of the applications, or
even adding a new application with similar requirements. Hence, the ideal multimedia
device will present high quality multimedia content, and will be networked, portable, in-
expensive and easy to use. Moreover, in order to cope with the dynamism of current and
future multimedia applications, modern (and even more future) embedded systems de-
mand a programmable and high performant solution running at low energy consumption
to deal with all these requirements.

1.1. Embedded systems

Maybe the simplest de�nition of an embedded system is a system where the computing
is not intended to be general purpose: embedded systems are speci�cally designed for a

1

Chapter 1. Introduction

single application or a limited set of applications. In many cases, the principal component
of such systems is a programmable processor, and often, it is a Very Large Instruction
Word (VLIW) processor (alone or integrated with other processor cores).
Reasons for not choosing a general-purpose processor depend on several metrics: per-

formance, energy, power, size and cost. When the computation requirements are not
very high, using a general-purpose processor might be over-dimensioned, however, a
signi�cant number of embedded processors (e.g., digital signal processors [DSPs]) o�er
more performance on speci�c applications than a general-purpose processor can provide.
Handheld embedded systems provide more and more functionalities and users demand
a quality comparable to their non-mobile counterparts, but still expect a long battery
life; hence, low-energy consumption is a key issue and general-purpose-processors give
versatility in detriment of energy e�ciency and then batteries will last less. Power is
increasingly important, especially in portable applications: the cooling and package cost
required to make a general-purpose processor perform cellular phone functions would
be prohibitive. Regarding the size, many embedded devices are smaller than general-
purpose chips and modules. Finally, concerning cost, even the cheapest Pentium pro-
cessor (ATOM [INT]) costs more than many consumer electronics items.

1.2. Application domain: Multimedia

A huge segment of the embedded systems market is driven by multimedia applications,
like mobile and most hand-held devices, and this is the target domain of this disserta-
tion. Multimedia applications consist of several digital signal processing algorithms (e.g.
audio, graphics and video processing algorithms) and are characterized by the following
features:

� Compute Intensity: Media applications require a high number of arithmetic oper-
ations per memory reference [OKM+02]. An MPEG4 encoder with medium com-
plexity requires an estimated 8 GOPS of computational processing power [BGN97].

� Real-Time Response: Most applications require an immediate response to user
interactions. For instance, when an user invokes a video decoding application in
a hand-held device the response should be immediate. Also, transition from one
application to another should be seamless without any signi�cant delay.

� High Memory Bandwidth: Large amounts of data have to be processed in audio,
image and video applications. For a simple QCIF (144 lines x 176 pixels) video
encoder @25 fps the required memory bandwidth is about 2Mbps per second. For
advanced applications this �gure is much higher.

� Parallelism: Many computations on the data are independent. A high degree
of parallelism can be achieved at instruction, data and task levels [OKM+02],
nevertheless full parallelism can not be reached due to the data-dependent nature
(conditions and while loops) that most modern multimedia applications exhibit.

2

1.3. Address generation on embedded systems

� Locality: High locality in data and instruction references. Most of the compute
intensive kernels in these applications are repetitive numeric computations (mostly
via for-loops) [BGN97].

These characteristics can also be viewed as metrics that might be used for architectural
style exploration. An architecture best suited for this application domain can be chosen
based on these metrics. Other metrics should also be considered to satisfy the system
constraints.

1.3. Address generation on embedded systems

Embedded applications, such as speech and image recognition, high bandwidth wireless
communications or multimedia applications, are often characterized by having a complex
array index manipulation scheme and a large number of data accesses [Kuh04]. These
data sets are typically stored in main memory, which means that the processor needs to
generate the address of the memory location in order to retrieve and store them.
Between the main memory and the computing elements, the memory hierarchy can be

built using caches or ScratchPad Memories (SPM). On-chip SRAM caches consume 25%
to 45% of the total CPU power [PND98a] and the allocation of data on those memories is
done at run-time. Scratchpad memories are software controlled and its allocation is done
at compile time. Compile time allocation improves energy reduction and predictability
and allows an easier analysis and optimization of the application. Hence, this type
of memories reduces considerably the energy consumption (average reduction of 40%)
and the area-time product (46%) [BSL+02a] but relies on compiler/programmer e�ort.
Because of these energy and area-time savings, scratchpad memories are widely used in
the embedded systems domain.
Address calculations often involve linear and polynomial arithmetic expressions which

have to be calculated during program execution under strict timing constraints. Mem-
ory address computation can signi�cantly degrade the performance and increase power
consumption: 50% − 75% of the power consumption on embedded multimedia systems
is caused by memory accesses [WCNM96, MNCM97]. Hence, it is very important to
carry out these accesses and related addressess computations in an e�ective way.
Some current embedded architectures have addressed this problem by including a

dedicated unit that works in parallel with the main computing elements ensuring e�cient
feed and storage of the data from/to the data path. Even if di�erent types of these units
exist, they can be classi�ed as Address Generation Unit (AGU). The development of
AGUs is performance and power critical and has a big impact in VLIWs, ASIPs and
Digital Signal Processors (DSP) architectural ability to access memories.
Nowadays, more and more sophisticated architectures with a high number of compu-

tational resources running in parallel are emerging [KP03b, KP03a, KMN+04, FWW99].
This trend will continue in near future, e.g. according to the International Technology
Roadmap, at the end of the decade, semiconductor chips will grow to 4 billion transistor
running at 10GHz and chips will incorporate hundreds of processing elements [sia05].

3

Chapter 1. Introduction

Embedded computing will also be a�ected by this increasing parallel computation and
the access to data will become the main bottleneck that limits the available parallelism.
Future AGUs will have to deal with enormous memory bandwidth in distributed mem-
ories and will have to achieve global trade-o�s between the bandwidth required, the
number of cycles needed to fetch data (reaction-time), the energy or the area. Also,
coming AGUs will have to deal with a growing amount of concurrency and more data-
dependent and complex control �ows.

The main goal of this work is to obtain an optimal set of AGU structure and com-
piler parameters for any given data-�ow application (or application set) for low-power
embedded VLIW processors using scratchpad memories. Optimization will take as main
parameter energy consumption and as a result we will obtain a complete design method-
ology.

The major contributions of this dissertation are listed in section 1.4 and section 1.5
gives an outline of the text.

1.4. Contributions

In this section the major contributions of this work are summarized, in chapter 7 a more
detailed analysis is done.

VLIW platform election: when targeting the embedded domain, di�erent common
options appear and choosing the right computing element is a key factor to success in
any design. We have analyzed the di�erent platforms used in the embedded multimedia
domain and made a comparison between them on a real, representative and complete
application. To make a fair comparison, we have accomplished platform dependent and
independent optimizations on each platform. Based on this analysis, we can derive when
each platform brings the most bene�ts and we justify the election of VLIW processors
for multimedia embedded applications.

AGU review and classi�cation: we proposed a systematic classi�cation of ad-
dress generators and a literature review classi�cation to illustrate the complementarity
or overlap of di�erent optimizations on the address generation process. We focused on
AGU architectures and on compilation techniques to optimize the address generation
process for scratchpad memories due to the power restrictions of the embedded domain.
We considered the address generation process for DSPs and VLIW architectures which
have to deal with computing intensive algorithms where data access is a main issue.

AGU integration: with the increasing level of complexity of silicon devices, evaluat-
ing all the options manually becomes increasingly di�cult and tool support for evaluating
the design space is necessary. In this chapter, we describe a methodology and framework
used to create an address generation unit template that targets the embedded multime-

4

1.5. Structure of the dissertation

dia domain. To create such unit, we studied di�erent applications representative of the
domain and we identi�ed the hardware elements needed to optimize the address genera-
tion process. This template has been integrated into a complete high-level architecture
and compiler framework, where we can realistically simulate complete applications.

Energy aware design methodology: we also presented a step-wise procedure that
gradually reduces energy consumption of multimedia applications targeting the embed-
ded domain. We show how, after following the di�erent steps of the methodology, the
improvements in energy and execution time reach 90%. Even if this analysis was done
on an MPEG4 encoder application, the methodology and optimizations proposed can
be easily extended to any data-�ow oriented application.

1.5. Structure of the dissertation

The following chapters of this thesis illustrate in detail the issues and problems presented
in this introduction.

Chapter 2 �VLIW-DSIPs: key processor for embedded multimedia�: com-
pares the mapping of the same multimedia application into di�erent platforms typically
used in the embedded domain: an Application Speci�c Instruction Processor (ASIP), a
soft-core processor with speci�c functional units implemented on an FPGA, an Appli-
cation Speci�c Integrated Circuit (ASIC) and an embedded platform on a single chip
formed by a high performance DSP and a processor. The analysis is done taking into
account the whole processor platform including memories, and from this study, we can
extract when each platform is most suited.

Chapter 3 �State of the art on address generation�: analyzes the di�erent
types of address equations, the design metrics, constraints and costs used to evaluate an
address generator and gives a systematic classi�cation of address generators. Based on
this study, we propose a literature review classi�cation to illustrate the complementarity
or overlap of di�erent optimizations on the address generation process.

Chapter 4 �High Level Architecture and Compiler Requirements: COF-
FEE framework�: presents the retargetable compiler and hardware simulator frame-
work used to ful�ll this work. First, this chapter presents the context of this work and
the current trends in processor architecture space. Then it shows various architectural
proposals for di�erent processor components to reach the same energy e�ciency as that
of an ASIC. Finally, it puts these di�erent architectural parts together to present the
FEENECS architecture template.

Chapter 5 �AGU template�: introduces a methodology and framework used to
create the template of the AGU targeting the embedded multimedia domain. We stud-
ied di�erent applications representative of the domain and we identi�ed the hardware

5

Chapter 1. Introduction

elements needed to optimize the address generation process. At the end of the chapter
we present a optimized AGU taking as basis the template used.

Chapter 6 �Complete Optimization Methodology�: presents a methodology
and a �ow that combines steps in a sequential way with constraint propagation that
gradually reduces energy consumption. This �ow is shown from scratch for a complete
and real application.

Chapter 7 �Summary and conclusions�: �nally summarizes the main results and
exposes some global conclusions. Limitations and possibilities for future research are
also discussed.

6

CHAPTER 2

VLIW-DSIPs: key processors for embedded

multimedia

�Computers are useless. They can only give you answers.�

Pablo Picasso

From a designer's perspective, system level speci�cations, goals and constraints have
to be translated from higher abstraction levels to lower abstraction levels. At each
level, many decisions that will a�ect the end design must be taken [CVB98, GVNG94]
and the designer is confronted with a wide design space. Consumption, performance,
retargetability and development time are some of the elements that need to be analyzed
and well balanced to choose the right main processing elements.
In this chapter, we1 present the mapping of a representative multimedia application

(MPEG-4 Main Pro�le) into di�erent target platforms typically used in the embedded
domain. We will see when the choice of a VLIW processor is most suited and we
will identify that, after the state-of-the-art optimizations, the address generation of the
application remains the bottleneck.

2.1. Introduction

Nowadays, embedded multimedia applications are widely present in our lives. Those
applications are usually speci�ed in System-Level Design Languages (like Java, UML,
C++, MATLAB, SystemC TLM), starting from a reference or golden model, that needs,

1This thesis focuses on VLIW-ASIPs and on the address generation process of those processors. Never-
theless during the some time I collaborated with Antonio Portero [Por09] on the comparison between
di�erent processors. This chapter summarizes the work done together.

7

Chapter 2. VLIW-DSIPs: key processors for embedded multimedia

in many cases, to be executed in real-time cost/energy-sensitive devices such as mp3-mp4
players, mobile phones, personal data assistants (PDAs), etc. Due to the requirements
of the applications, those devices have to provide very high performance at low energy
consumption because of battery life

Choosing the right main processing element is a key issue for the success of those de-
vices where consumption, performance, retargetability and developing time are some of
the elements that need to be analyzed and balanced. Actual designs can include di�erent
processors: application speci�c integrated circuits or instruction set processors (ASICs
or ASIPs2), general purpose processors, various digital signal/media/image processors,
embedded FPGA, etc. with their own local memories, architecture and with a complex
interconnection scheme[LRJ+09]. Attending to the increasing computational complexity
of multimedia applications, present and future Multi-Processor System-on-Chip (MP-
SoC) platforms have to satisfy many requirements: high computation, enormous quan-
tity of memory accesses and high communication �ow between di�erent processing ele-
ments for non-deterministic applications. Moreover, embedded multimedia applications
must satisfy hard (or soft) real-time constraints while maintaining an acceptable quality
of service for the users at the lowest energy consumption.

To satisfy these computing requirements, most current SoCs will contain several het-
erogeneous types of processor cores and memory units ([Pea06, TIO]) connected through
a hierarchical shared bus, point to point, bus matrix or a NoC [BM02]. These complex
platforms can handle real-time video and audio compression and are usually based on
heterogeneous solutions containing at least one DSP for multimedia-data-�ow accelera-
tion and one processor core for control �ow and reactivity.

In this chapter, we propose a comparison of di�erent implementations coming from
an original unique reference (golden) model of the application. Current comparisons
found in literature [BRK07] are based on small kernels or not fully platform-optimized
applications. Without real aggressive optimizations, tuned for each individual style, the
comparisons of the results typically give an unfair advantage to one or another plat-
form. As far as we know, this work is the �rst to compare di�erent design options for
modern multimedia applications, coming from a unique, realistic and complete applica-
tion: namely an MPEG-4 Video Main Pro�le (MP) speci�cation. We mapped the same
application into di�erent platform styles, applying strong platform independent and de-
pendent optimizations; comparing optimized implementations from a single unique real
source gives realistic and signi�cant results since we are making an impartial comparison.

The main purpose of this chapter is to quantitatively recognize the fundamentals
that system designers require at a very early stage in the design path, which platform
method/subclass is the most convenient choice to implement the target system. The
outcomes are exposed for a video compressor application but they can be extended to
similar data-�ow dominated systems; most multimedia applications at the present time
fall into that category. In addition, in this work we are comparing values among di�erent

2ASIP stands for Application-Speci�c Instruction-set Processor; in this work we consider ASIP as
synonym of DSIP that stands for Domain-Speci�c Instruction-set Processor. See section 2.5.2 for a
extended explanation.

8

2.2. Representative multimedia application: MPEG4 encoder

platforms and the results coming from a single original description, with su�cient e�ort
spent on each of them to come to a su�ciently optimized solution. As a result, these
choices are evaluated also in an objective way.

2.2. Representative multimedia application: MPEG4

encoder

MPEG-4 is a global multimedia standard that delivers professional-quality audio and
video streams over a wide range of bandwidths, from cell phones to broadband, HDTV
and beyond. MPEG-4 was de�ned by the Moving Picture Experts Group (MPEG),
the working group within the International Organization for Standardization (ISO) that
speci�ed the widely adopted standard [ISO01].

The model implemented in the di�erent platforms is based on a video compressor with
main pro�le and permits I, P and B slice compression, with 4:2:0 chroma format, and 8
bit pixel sample depth [ISO01, Kuh04, PE02]. This model comes from an original �golden
model� code developed following the MPEG standard completely, where the main parts
were implemented from scratch and the other parts of the model were obtained from
open sources already developed. The most computationally-intensive algorithms were
produced using the Matlab framework [mat]. These modules are the motion estimation
(ME), the motion compensation (MC), discrete cosine transform (DCT), the quantiza-
tion (Q), and zig-zag. For the rest of this thesis, we will call these algorithms the kernel
part of our application. These algorithms are data-�ow oriented and hence very intense
in terms of computation. They are an excellent potential target to be accelerated. Other
algorithms involved in the MPEG compression are the entropy coder and the algorithms
that mount the MPEG video stream; these algorithms are more control-�ow oriented
and thus harder to accelerate. We used Matlab to develop the application kernel since it
provides an excellent framework for data and signal processing, mainly for synchronous
data �ow models (among others). Once this model was �nished, we used it as a refer-
ence code for coherence and subsequent veri�cation when we developed a C++ version
of the model. At this abstraction level, some platform independent optimizations where
developed and the re�ned C++ model was used as a transition step to two new versions:
a SystemC [sys] version and a C version.

These two new versions will be used to map the application on hardware platforms
using an ASIC and a FPGA (SystemC version) and on software ones by means of a
commercial DSP and an ASIP (C version) [LAJ+04]. Figure 2.1 shows a diagram of the
path followed.

As mentioned above, the model has two distinct parts: the control �ow part and the
kernel part. When the ASIC and the FPGA are targeted, the SystemC model related
to the kernel is passed through a behavioral hardware synthesis tool which creates a
low level RTL description in a hardware description language. This description can be
used later for logic and physical synthesis in the FPGA or the ASIC, and will serve for
performance estimations of the hardware parts, although it is not fully optimized. The

9

Chapter 2. VLIW-DSIPs: key processors for embedded multimedia

Figure 2.1.: MPEG design �ow from concept to platform

control part of the application does not need the power of a hardware implementation
and a RISC processor core (an ARM9 in the case of the ASIC and a NIOS II in the
case of the FPGA) can handle this part of the algorithm perfectly well; as it is more
control-�ow oriented, a software implementation is more straight-forward. Before both
models (SystemC and C) are mapped onto the targeted platforms, they are exposed to
some platform-independent and platform-dependent optimizations to obtain the maxi-
mum bene�t for each platform style.

2.3. Targeted platforms

The objective of early SoC-design analysis and hardware/software co-design is to obtain
the right allocation of functions to hardware and software and to correctly size hardware
resources to meet the design requirements. At this early stage of development, some
major con�guration decisions must be made which will a�ect the �nal implementation
of the design, and hence the platform results. When an engineering team starts a project,
there is a broad design space where to decide and the di�erent possible implementations
have distinct advantages and drawbacks that lead to huge di�erences in the quality of
the results.

In this section we describe the main distinct platforms that engineers can use and the
di�erent metrics needed to evaluate their suitability for each solution. In this work, we

10

2.3. Targeted platforms

will not consider the economic aspect of the di�erent implementations, which are well
known in industry, and we will just focus on the technological di�erences of the targeted
platforms that can handle our driven application (MPEG4) e�ciently.
For this work, we have chosen four platforms that are widely used in the embedded

domain: an Application Speci�c Instruction Processor (ASIP), a soft-core processor with
speci�c functional units implemented on an FPGA, an Application Speci�c Integrated
Circuit (ASIC) and a single chip embedded platform formed by a high performance
DSP and a RISC processor. Any of these four platforms can potentially ful�ll the
requirements of our code with the required optimizations, but all have advantages and
drawbacks. In this section, we will �rst analyze the parameters needed to evaluate the
di�erent platforms and then study each of the platforms.

2.3.1. Design metrics

In our work we focus on the technological metrics of the di�erent platforms under study.
Those metrics can be evaluated in terms of costs and constraints. We have two di�erent
types of costs: implementation costs and design costs.
In the �rst category, implementation costs, we have area, speed and energy consump-

tion. For a given technology, the area of a chip determines the cost of a VLSI process
and this was historically the most important cost of a design. Nowadays, with the in-
creasing capacity of integration, the design area is not that crucial, but still has to be
taken into account (it is directly related to the manufacturing costs). In multimedia
applications, the main contributions to this cost are due to the processing elements and
memories. In today's designs, especially in the embedded domain due to battery life,
energy consumption is the limiting factor that drives design decisions and it depends
on several parameters from physical to system level: technology, area, frequency, supply
voltage, bit activity, algorithm, leakage, etc.
Design costs are related to the system complexity development: programmable solu-

tions have the advantage of software development over the slow hardware development
of other solutions. An easy compilation and a retargetable framework is an advantage
that can help accelerate time-to-market of products or can facilitate upgrades or new
versions of the applications.
Constraints in the embedded domain are of two kinds: �exibility and performance.

The �exibility of a chip determines its capacity to deal with di�erent applications and
the performance is a real-time constraint related with the time needed to compute a
set of operations (with a given energy budget). Beside this de�nition, in data-�ow
applications latency and throughput are also used as time-related measures. The latency,
in multimedia systems, can be expressed as the delay between data fetched from a sensor
or memory and its processed output for its further exploitation (transmission, storage,
display etc). Throughput is the amount of data successfully processed per unit of time,
and is controlled by the available bandwidth, as well as the available signal-to-noise
ratio and hardware limitations. In our case, performance is related to the time needed
to encode a macro block and is linked with the latency and number of available resources
and the communication between memories (where images are located) and functional

11

Chapter 2. VLIW-DSIPs: key processors for embedded multimedia

units. Latency in our system is lower than in other Multimedia systems since data is
processed at macro-block level and not at image level (with a similar throughput). That
way, we do not have to wait to have all images in memory in order to process them.

2.3.2. Platform Independent optimizations

Memory accesses cause 50%-75% of the power consumption on embedded multime-
dia systems [WCNM96, MNCM97], hence, optimizing global memory accesses of an
application is crucial for achieving low power systems. Catthoor et al. propose in
[CBGN98, Cat99, Cat02] the so-called Data Transfer and Storage Exploration (DTSE)
methodology. The goal of DTSE is double: on the one hand DTSE reduces the storage
requirements of embedded applications and minimizes the absolute amount of memory
needed to execute the application; on the other hand, DTSE optimizes the locality of
data accesses at a very high level in order to reach a high utilization of small but e�-
cient memories which are close to the processor. A more detailed explanation on DTSE
techniques is shown in section 6.2.
In order to improve the implementation of our reference model, we carried out some

DTSE optimizations. First, the code has been rewritten without any pointers and
without using dynamic memory allocation because synthesis tools can not synthetise
dynamic memory in hardware. We have also adapted data types so that, for example, if
integers do not exceed the value 255, we can only use 8-bit registers. We have changed
global loops (image size, for example) to compute the needed calculations at macro-
block level; in this manner, the L1 cache size needed decreases for all platforms, and
that helps the possible pipeline at block level. Transformations to reduce the size of the
data structures inside L1 memories mean that memory inside di�erent platforms has to
be small enough to �t in the chip. In addition, image computation is carried out at
macro block level (not at image level). These optimizations were implemented equally
for the C and the SystemC (platform independent) versions.

2.4. Customized Platforms Architectures

In the following section, we detail the implementation done on customized platforms:
the FPGA and the ASIC. Those solutions are based on a behavioral SystemC code
synthesis. We perform an architectural exploration at functional units level during
the synthesis process. Then, we obtain di�erent compromises in terms of area versus
power consumption and execution time of the di�erent algorithms involved in the video
compression. This synthesis provides hardware code at RTL level that can be synthesized
for a FPGA or an ASIC. The tool used for hardware synthesis is Cynthesizer 5.4 from
ForteDS [For], which generates production-quality RTL using a high-level SystemC-TLM
(Transaction-level Modeling) design description as input. The technology libraries used
in our case are the Faraday UMC 90nm [Far07] ones (worst case technology).
The �rst step in the synthesis is to carry out a technology-aware architectural explo-

ration of each part of the di�erent algorithms involved in the MPEG application. As

12

2.4. Customized Platforms Architectures

multimedia applications are based on very intensive loops, unrolling the inner loops of
the algorithm makes the available parallelism visible and maximizes the usage of the
resources. When a loop is unrolled, several things occur and they a�ect the kind of
hardware produced. First, Cynthesizer replicates the operators inside the loop by the
number of iterations in the loop's upper and lower limits. Cynthesizer also creates a
controller that regulates any iteration-speci�c items in the replicated hardware. After
unrolling the inner loops, we synthesized the resulting code in the di�erent customized
platforms optimizing the results for speed.

2.4.1. FPGA platform

We decided to target the MPEG kernel on the Altera-FPGA PCI Express Development
Kit, Stratix II GX Edition [Str] as a HW-SW platform for recon�gurable systems and
ASIC prototyping. Altera's NIOSII [Nio] soft-core allows designers to integrate custom
instructions, hence, system designers can �ne-tune the hardware micro-architecture to
meet performance goals and furthermore, they can easily handle instructions as macros
in C/C++. We modeled the NIOSII with capacities similar to the ones from ARM926
[A04]. The synthesized NIOSII has a data/code cache of (8K/8K) similar to ARM and,
a hardware multiplier/divider. It also has a 6-stage pipeline with branch prediction. We
have not added a Floating Point Unit (FPU) because our computation does not need
�oating point calculations: all them were already transformed to �xed point equivalent
operations. As peripherals, we selected a SDRAM controller, a SRAM bridge, on-chip
RAM and a performance counter (only for debugging purposes). For our comparison, we
decided to target the MPEG kernel on the QuartusII-FPGA PCI Express Development
Kit, Stratix II GX Edition [Str] as a HW-SW platform for recon�gurable systems and
ASIC prototyping. FPGAs are slower than their application-speci�c integrated circuit
(ASIC) counterparts and draw more power because the number of transistors per logic
gate is higher and because interconnections use switches and this leads to the chip
consuming higher static and dynamic power. Some of their advantages are a shorter
time to market, as they save the ASIC mask-based fabrication process, the ability to
re-program in the �eld to �x bugs, and lower non-recurring engineering (NRE) costs.
Sometimes, designs are developed on regular FPGAs and then migrated into a �xed
interconnection version that resembles an ASIC, called a structured-ASIC, or directly
into an ASIC.

Metrics and Energy Estimation Model The RTL verilog code description generated
by Cynthesizer is passed through a logic synthesis tool (Synplicity) with the Altera
StratixII libraries. Then, we obtain another Verilog description with technology in-
formation about the FPGA. This description is loaded in Quartus II for the back-end
process to that platform. EDA tools provided by the FPGA vendor o�er a tool suite for
power analysis and optimization that allows estimating device power consumption and
even heat dissipation from early design concept through design implementation [Pow].
Optimizing the register transfer level code generated from the behavioral synthesis tool
can be a tedious and di�cult process since the automatically generated code is complex

13

Chapter 2. VLIW-DSIPs: key processors for embedded multimedia

and the interpretation is tricky and dull. Hence, manual optimizations at this level are
quite di�cult since they have been already made at higher level (behavioral SystemC).
The produced code is prepared automatically accordingly, and its reading is knotty. We
have generated the NIOSII architecture and programmed the C code.
Communication between the kernel part and the control part is done with FIFOs

following a previous work [MHB08]. In this work, high level FIFO channels are auto-
matically replaced by real hardware FIFOs. This approach provides a mechanism of
communication for those parts of the common description of the system that will be im-
plemented in SW by a processor, with the pieces that will be synthesized to hardware,
without any modi�cation of the system description structure and preserving blocking
synchronization. In the proposed system, there is a FIFO with a macro block size cus-
tomized to the MPEG characteristics; that connects the kernel part (Q-zigzag algorithm)
and the Hu�man algorithm that is computed on the NIOSII.
From the processor perspective, the FIFO is shown in its memory map as unique ad-

dress position, or equivalently, as a device with only one register. So, block transfers are
done simply by consecutive writes or reads to this position. The blocking mechanism
is handled by connecting the wait_request signals of the NIOSII system bus with full-
empty signals of the real FIFOs. From the kernel point of view, just after the synthesis
stage, high level FIFO channels are replaced by a RTL wrapper designed for synthesized
modules to access the FIFOs, maintaining the blocking mechanism. Hu�man is com-
puted in the processors and results are written to another memory space that is another
FIFO with similar size, where the compressed image is produced and afterward, sent
again to a L1 memory.

Platform Dependent Optimizations Manual optimizations at this level were carried
out to manage L1 memory (from image to macro block size). As a result, the amount
of memory required to implement the MPEG compressor has been signi�cantly reduced
thanks to the DTSE transformations. After di�erent optimizations, the memory needed
by the application is not too high and the design �ts in a medium size FPGA. This trans-
formation was carried out at SystemC level, taking into account the size and structure of
the di�erent MPEG memories and according to the Altera RAM block types (M-RAM,
M512, M4K and LCs). Available memory bandwidth has to be as high as possible in
order to compute the maximum number of pixels in parallel that loop unrolling permits.
Unrolling DCTs makes di�erent multiplications run in parallel. We �tted these multi-
plications in the FPGA MAC blocks (y=a*b+y'), which accelerated their computation.

2.4.2. ASIC platform

Cadence's BuildGates [Cad07] tool was used for ASIC synthesis. Using the technol-
ogy logic cell library, the synthesis tool performs the process of transforming the ASIC
register-transfer level (RTL) description into a technology-dependent netlist. The netlist
is the standard cell representation of the ASIC design at the logical level. It consists of
the standard-cell library element instances, and port-connectivity between them. Proper

14

2.4. Customized Platforms Architectures

synthesis techniques ensure mathematical equivalence between the synthesized netlist
and the original RTL description.

Since both RTL and gate netlists views are only useful for abstract (algebraic) or
approximate-time simulation, but not device fabrication, the physical representation
(layout) of the chip must be designed as well. The layout view is the lowest level of
design abstraction in common design practice. From a manufacturing perspective, the
standard cell's VLSI layout (even if cell layouts are black boxes) is the most important,
as it is closest to an actual �manufacturing blueprint� of the standard cell.

Metrics and Energy Estimation model The synthesis of the Verilog RTL code gen-
erated with Cynthesizer from the original model is used by BuildGates to generate a
Verilog structural description in which the basic elements are cells (standard cells and
macrocells) belonging to the library designed for the target technology. At this abstrac-
tion level, all modules are hardware descriptions and therefore a complete exploration of
all nodes is possible. BuildGates provides a complete power report when the synthesis
is completed (still without physical back-annotation). The tool provides information
about the internal cell, nets, and leakage power. Memory power is obtained from the
datasheet provided by the Faraday Libraries when they are created. Then, the energy
per activation and leakage power for the MPEG is obtained with a gate level simulation
with Verilog-XL.

Platform Dependent Optimizations We carried out several DTSE transformations
at MPEG design time to �t the code structures into the L1 memories. Therefore,
the percentage of on-chip memory integrated with respect to the global requirements
of the MPEG, ranges from 25% for the implementation optimized for size, to 45%
for the implementation optimized for speed. Architectural exploration analysis at this
level using simulations (for veri�cation of results) is undoable due to the extended time
necessary to carry out simulations. Simulations that take seconds at TLM level (as for
example the compression of an image) would take days at RTL level. Therefore, the
simulation must be carried out with a very small image size, for example using a single
macro block instead of the whole image, according to the code transformations done at
the beginning of our work.

In our design, we built an ASIC for the MPEG kernel part in 90nm UMC Faraday
technology (Faraday cell libraries used for the UMC technology). We ful�lled the place-
ment and routing of the chip using Cadence tools. Further veri�cation must be done
around the back-end process, such as pre- and post-layout simulations, to ensure large
enough fault coverage (around 95% of nodes veri�ed with the test vectors). In this case,
memories where restricted by the ones available in the cell library, and the control part of
the algorithm was implemented in an ARM9 processor tailored for the same technology,
following the same strategy as in the FPGA case for the NIOSII soft-core processor.

15

Chapter 2. VLIW-DSIPs: key processors for embedded multimedia

2.5. Instruction Set Processor platforms

A unique C++ model is directly translated to a C description to be mapped onto the
DSP and ASIP platform. Even if this C description has special characteristics (such as:
no pointer or no dynamic memory allocation), the code is still not fully optimized and
some optimizations are needed to extract the maximum performance of the application.
Both implementations, DSP and ASIP, have an Instruction Level Parallel compiler that
does standard compiler optimizations. Compilers targeting the embedded domain face
performance improvements on area, energy and performance. Thus, compiler optimiza-
tion has become an essential component of high-performance and embedded computer
systems. An extensive bibliography on traditional compiler optimizations can be found
in [Muc97, AK02, ALSU06].

Beside the usage of compiler optimizations, since multimedia applications are based on
intensive data computation, the reduction of transfers between di�erent memory levels
can considerably reduce energy consumption. Data Transfer and Storage Exploration
(DTSE) optimizations [CBGN98, Cat02] aim at improving spatial and temporal locality
to minimize the load of shared buses, which is the main source of power consumption
[WCNM96]. These transformations are usually achieved at a high expense on addressing
and local control. Some source code optimizations reduce control �ow. Control �ow
optimizations are based on mathematical models and modify source code, trying to
minimize the number of iterations that control-�ow statements evaluate. Loop nest
splitting minimizes the number of executed if-statements in loop-nests of embedded
multimedia applications. Advanced code hoisting moves portions of the inner loops
to outer ones. Ring bu�er replacement eliminates small arrays serving as bu�ers for
temporary data. These three techniques reduce control �ow, arithmetic calculations and
execution time and hence, they minimize energy consumption ([FM03, Fal05, FM04]).

2.5.1. Digital Signal Processor - Based Platform

There are signi�cant di�erences between the di�erent families of DSPs and a good elec-
tion is highly decisive. Due to the nature of our code, as a representative DSP-based
platform, we selected the Texas Instruments DaVinci platform [DMS]. The DaVinci
solution is a DSP-based System-on-Chip (SoC) platform optimized to ful�ll the perfor-
mance and feature requirements for a broad spectrum of digital video applications. More
speci�cally in our case we used the TMS320DM644 [TIO, Inc02a] which, in addition to
the DSP core, has an ARM926 [A04] processor. The core of the DSP is a VLIW pro-
cessor core specially designed to exploit instruction level parallelism and to maximize
channel density in I/O chip communications. It contains two identical clusters with four
FUs each and represents a typical clustered DSP.

Framework The Code Composer Studio [Inc02b] is the development framework pro-
vided by Texas Instruments for the TMS320DMxx family. The Setup CCStudio provides
an interface with the development board that contains the DSP. Independently of the

16

2.5. Instruction Set Processor platforms

board used, the framework permits the processor, the working frequency and external
memory on which the application will run to be con�gured. The Digital Video Evalu-
ation Module [TIO, Inc02a, oCS08, Bha08] enables developers to immediately evaluate
the DaVinci processors and building digital video applications, it also allows developers
to write production-ready application code for the DSP and ARM926EJ-S.

Metrics and Power Model The code memory requirements, after an accurate DTSE
exploration, ensure that the required memory structures are small enough to �t them
all in the DSP L1 internal RAM. The kernel part is loaded in the DSP while the control
part is loaded in the ARM (similarly to the hardware implementations). The bandwidth
of the coded memory structures is large enough to allow the DSP to use all its potential,
that is, the eight Functional Units (FUs) with software pipelining.

The power consumption of TMS320DM6446 [Bha08] can vary widely depending on
the use of on-chip resources. Thus, power consumption cannot be accurately estimated
without an understanding of the components of the DSP in use and the usage patterns for
these components. Texas Instruments o�ers a spreadsheet where, by providing the usage
parameters that describe what is being used in the DSP and how, we can obtain accurate
consumption numbers for the power-supply and thermal analysis. This model breaks
down power consumption into two main components: static and dynamic. Using this
model, di�erent applications that use the DSP di�erently can obtain accurate predictions
over the entire spectrum of possible power consumption in the platform. To use the
spreadsheet, simply select the case temperature for which you want to estimate power
and �ll in the appropriate module use parameters. The spreadsheet takes the provided
information and displays the power consumption details for that con�guration.

Platform Dependent Optimizations Usually, programmers write code following the
model or functionality and make the code as readable as possible. For a SW designer
using a DSP, the easiest method to optimize the application is to let the compiler handle
their di�erent optimizations. In fact, these optimizations result in a huge reduction in
the execution time, and hence consumption. Among other traditional optimizations
([Muc97, AK02, ALSU06]), the compiler is in charge of analyzing the di�erent loops
and determining if unrolling certain loops is worthwhile, in which part of the code there
are good candidates for software pipelining, etc. For each analysis, the compiler must
evaluate the factor that the code will be improve by. Nevertheless, the results achieved
with the compiler are not always the best possible results. This can occur for two reasons:
�rst, good �human-readable� code is usually not so good for the compiler because it can
hide possible optimizations; and second, the compiler does not have enough information
for carrying out more aggressive optimizations and uses more conservative solutions to
assure that the algorithm is executed correctly.

SIMD instructions: Some Texas Instruments DSPs are capable of using Single Instruc-
tion Multiple Data (SIMD) operations. SIMD operations are instructions employed to
achieve data level parallelism in a similar way as vector processors. SIMD operations
in Texas Instruments compilers are based on intrinsics. Intrinsics are functions handled

17

Chapter 2. VLIW-DSIPs: key processors for embedded multimedia

especially by the compiler and usually substitute a sequence of automatically-generated
instructions, in which the compiler has an intimate knowledge of the intrinsic function
and can, therefore, optimize it better. The inclusion of SIMD instructions can be au-
tomated by the compiler; however, in most cases hand tuning of the code is needed
since the compiler does not have enough information to detect when it is possible to use
SIMD.

In house libraries: TI, as most DSP vendors, supplies libraries specialized in several
aspects, such as the IMGLIB that provides some functions commonly used when working
with image manipulation. Among these, there are functions that implement IDCT,
FDCT, quantization, etc. Using these functions leads to a considerably faster execution.
Basically, this library (and related functions) exploits maximum SIMD instructions and
uses the maximum bandwidth of the data buses. To use these functions correctly, the
parameters for passing data have to ful�ll certain requirements: data passed to the
function must have a speci�c format and should be aligned in the memory. If data types
of the algorithm are not compatible with the required format, these functions cannot be
used.

The most computing intensive algorithm is the ME with the SAD computation. We
manually unroll the inner loops to �help� the compiler to extract parallelism. Before
using instructions that take pro�t of SIMD architecture, the bottleneck was sharing data
between on-chip memory and FUs. The use of SIMD instruction set permits to make
more than one operation simultaneously on data vectors. An example is DOTPU4src1 ,
src2 that realizes multiplication with 4 vectors operands between operands src1 and src2
and afterward realizes the scalar addition of the results. With those instructions, the
number of executed instructions is reduced while the number of read writes to memory
is kept constant. With this, the bottleneck remains exclusively in the data memory and
data cross paths, responsible of moving data from the register �le to the functional units.
This happens always with the ME computation, where execution requirements between
blocks are few operations but very intensive, causing the ME to account for 60% of the
total time of coding. More intensive use of SIMD instructions can be made in the code,
for example, using the DCT function that is part of the TI library.

2.5.2. Application/Domain Speci�c Instruction Set Processor-
ASIP/DSIP

An ASIP is a processor dedicated to one application or a small set of applications. Even
if we consider that ASIPs target a less broad set of applications than Domain Speci�c
Instruction Set Processors (DSIPs) we use both terms as synonyms since usually this
distinction is not contemplate. ASIPs (or DSIPs) have a customized instruction set or
speci�c hardware resources and require an ILP compiler. Since ASIPs are optimized to-
wards certain applications, they combine high performance and e�ciency of a dedicated
solution with the �exibility of a programmable solution, and hence, they �ll the gap
between highly optimized platforms like ASICs and the more �exible solution o�ered by
DSPs. Developing an ASIP requires a large hardware and software design e�ort, but it

18

2.5. Instruction Set Processor platforms

can be reused easily, since new versions of the product only need to compile the new
source code [FFY04].

Framework Some ASIPs have a con�gurable instruction set and these cores are usually
divided in two parts: static logic, which de�nes a minimum ISA, and con�gurable logic,
which can be used to design new instructions.

Low energy is one of the key design goals of the current embedded systems for multi-
media applications and Very Long Instruction Words (VLIW) ASIPs, in particular, are
known to be very e�ective in achieving high performance with reasonably low power,
which is the main objective in the domain of interest.

For our experiments, we used a retargetable VLIW-ASIP compiler and simulator
framework based on Trimaran [tri99] called COFFEE (explained in detail in chapter
4). This framework can map applications to a broad range of processors and memory
con�gurations with di�erent instruction set architectures and can also simulate and
report detailed performance and energy estimates.

Possible compiler research optimizations for these architectures are high-level ma-
chine independent code transformations and �back-end� machine dependent optimiza-
tions such as instruction scheduling, register allocation, etc. The architecture used for
this work is VLIW-based and, as for all VLIW processors, the processor executes in-
structions that are composed of parallel operations that are executed in the di�erent
Functional Units (FUs) (sometimes using coarse-grain recon�gurable logic). The pro-
cessor's data path is divided into clusters (or slices), which contain one or more register
�les, one or more functional units, and bypass logic. This well-known division of the data
path into clusters reduces the energy consumption and the data-path delay by reducing
the complexity of the register �les and the bypass logic. Since reducing the number
of cycles is also an e�ective way of reducing the energy consumption, all data-path
operations can be predicated to enable e�cient execution of loops with conditionals.
Furthermore, chains of data-dependent operations can be executed in a single clock cy-
cle, using software controlled functional unit chaining to decrease the e�ective latency of
a set of operations, and hence reduce the number of clock cycles. Thanks to this chain-
ing, some register �le accesses can be prevented, which reduces the energy consumption
further. The COFFEE framework allows broad compiler research and instruction set
exploration to obtain an optimal ASIP architecture for the required application. A
detailed description on the framework is explained in chapter 4.

Design Metrics and Energy Estimation Model At this abstraction level, the com-
plete hardware description is not yet needed and therefore exploration can be faster. To
obtain early estimates with su�cient accuracy, we carried out the following methodol-
ogy: di�erent instances of the components of the processor (Register File, ALU, pipeline
registers, etc.) were designed at RTL level with an optimized VHDL description. In our
case, for each instance, logic synthesis was carried out with the UMC@90nm general pur-
pose standard cell library from Faraday [Far07], also used for the ASIC power model.
The result of the process is a library of parametrized energy models. Energy per acti-

19

Chapter 2. VLIW-DSIPs: key processors for embedded multimedia

vation and power leakage for the di�erent components are estimated from the activity
information from gate level simulation and the parasitic information. Memories used
for this analysis are highly optimized custom hardware blocks and hence, the standard
cell �ow cannot be used. We created a library of memory blocks with the corresponding
energy consumptions (dynamic and leakage) using a commercial memory compiler (from
Artisan). Finally, our pre-computed library contains the energy for various components
of the processor using standard cell �ow, and for memories, using the commercial mem-
ory compiler. A detailed description of the complete energy model is also described in
chapter 4.

Platform Dependent Optimizations In addition to the platform independent op-
timizations explained in Section 2.3.2, we carried out a generic architectural research
exploration (see chapter 6 for more details).

Scratchpad memories (SPM) are high-speed memories where the compiler generates
explicit instructions to move data from and to the following levels of the memory.
SPMs have been proven to be more energy, area and performance e�cient than caches
[BSL+02a, AC06] and they are an optimal choice for embedded systems. Moreover,
in any typical multimedia application, signi�cant amount of execution time is spent in
small program segments. Energy can be reduced by storing them in a small loop bu�er
instead of the big instruction cache [LMA99, AJB+04, JBA+05, VJC+06].

Several steps of DTSE insert complex control �ow. Removing this control �ow is
crucial to get an optimal implementation of any program; the techniques explained in
[FM04, Fal05] address this problem.

The data path can be composed of one or more clusters. It contains one or more
register �les and one or more FUs. By clustering, the routing length and interconnect
complexity inside a cluster are reduced (i.e. good for both power and speed), at the
price of increased compilation complexity due to the additional cluster-to-cluster data
transfers. To get the optimal con�guration of the data path a research exploration
was done [FFY04]. The application under study has some recurrent operations that
consume excessive cycles: multiply-and-accumulate operations and divide operations,
very popular in multimedia applications, can be accelerated using speci�c hardware
support. This will improve energy reduction signi�cantly and also boost the speed up
decreasing the number of cycles needed for the application. We added hardware support
for multiply-and-accumulate and divide operations.

Once the memory and data computation have been optimized, the bottleneck resides in
generating the application code addresses [TJCC08]. Address computation is extremely
important in multimedia systems and often involves linear and polynomial arithmetic
expressions that have to be calculated during program execution under strict timing
constraints. Since multimedia applications are based on intensive deep-nested loops
in which the majority of the code is executed, a specialized address generator unit was
developed to speed up all address related computations in the inner-most loops. Address
generation in these parts of the code is easy and does not require a lot of hardware
support, hence minimum hardware and a small number of registers are su�cient to

20

2.6. Final platforms results and comparison

generate the addresses of the inner-most loops. Addresses for the rest of the application
are computed in the default (more complete) address generation unit, which is similar
to a normal functional unit (see chapters 5 and 6).

2.6. Final platforms results and comparison

In our work, we have chosen four platforms widely used in the embedded domain. Any of
those four platforms can potentially ful�ll the requirements of our code with the required
optimizations, but all of them have advantages and drawbacks. In this section, we will
�rst analyze the parameters used to evaluate the di�erent platforms and after that, we
will study each one of those platforms.

2.6.1. Results

We did a fair comparison mapping the same realistic application on di�erent platforms
with the same technology (90nm). Di�erent implementations came up from the same
original source code where we performed platform independent and platform dependent
optimizations to exploit the maximum bene�t from each targeted device, therefore, com-
paring results between optimized application-platform, making an impartial comparison.
Depending on the available design time, area, performance, energy consumption, �exi-
bility and architectural requirements, designers can choose the most suitable platform
style for their �nal implementation. The results shown in the following two tables 2.1
and 2.2 are for two di�erent MPEG implementations: the �rst implementation refers
to the FSME algorithm and the second one to faster ME, with a logarithmic search.
The former is representative of quite regular algorithms with a high access locality. The
latter is representative of algorithms with a more irregular control �ow and less local
access, leading also to a more di�cult address scheme. In both cases, for the FPGA
and the ASIC, we did an analysis for a basic version, optimized for size, and another
version optimized for speed. These two hardware implementations have been targeted
to an FPGA and to an ASIC. The ASIP also has two di�erent implementations (as seen
in section 2.5.2). The framework used is mostly based on optimized macro-blocks which
can be parametrized (a.k.a ASIP-Macro). This is the most suitable style to use because
an ASIP template (with parameters) can be heavily reused for di�erent chip instances.
So, the e�ort added to develop the macro library is well worth for the most critical blocks
in the architecture like the data and instruction memories, register-�les, and multipli-
ers. The glue logic in between those macros will of course still be implemented with a
conventional standard cell �ow.
For comparison, we also give the results of the same ASIP based on a standard cell

implementation (a.k.a ASIP-Std-Cells). Even if we recommend implementing the ASIP
based on optimized macro-blocks, the ASIP based on standard cells gives a more di-
rect comparison with the ASIC since we used the same technology running at the same
frequency. In the following tables, we show the results in terms of energy consump-
tion, execution time and area for the di�erent implementations (ASIC, ASIP, DSP and

21

Chapter 2. VLIW-DSIPs: key processors for embedded multimedia

A
SIC

O

pt size
A

SIC

O
pt.speed

A
SIP

(standard
C

ells)

A
SIP M

acro
D

SP
(D

a V
inci)

FPG
A

(opt size)

FPG
A

(opt speed)

M
em

ories
15,9

22,6
23,4

20,1
not available

not available
not available

Leakage
0,5

0,3
0,5

0,2
not available

not available
not available

"core"
0,04

0,04
2,6

1
0,95

1
not available

not available
not available

E
nergy
(m

J)

T
otal

16,5
22,9

26,4
21,3

536
2626,5

1188,3
cycles (in
m

illions) 2
88,4/60,9

(14,4)
38,6/25,3

(14,4)
84,6/55,5

 (14,0)
84,66/55,5

 (14,0)
282,36/185

88,4/60,9

38,6/25,3
T

im
e

E
xecution tim

e
(s) 2

0,20/0,14
(@

450M
H

z)
0,14/0,06

(@
450M

H
z)

0,19/0,12
(0,03)

(@
450M

H
z)

0,17/0,11
 (0,03)

(@
500M

H
z)

0,48/0,31
(@

590M
H

z)
2,0/1,4

(@
43,34M

H
z)

0,92/0,61
 related

Fram
e R

ate 4
(qC

IF)
15,3/22,2

35,0/53,3
15,9/24

17,7/27
6,3/9,6

(@
41,82M

H
z)

1,5/2,2
3,3/4,9

A
rea (m

m
2)

2,89
6,25

6,05
3

2,42
11,4

5
↑↑

↑↑

First
Im

plem
entation

H
IG

H

Synthesis front-end + back-
end

H
IG

H

(first version)
≈ A

SIC
 developm

ent
+

com
piler developm

ent

L
O

W

C
ode com

pilation
M

E
D

IU
M

Synthesis front-end

D
esign tim

e

Follow
ing

im
plem

entations
H

IG
H

Synthesis front-end + back-

end

L
O

W

(follow
ing versions)

C
ode com

pilation

L
O

W

C
ode com

pilation
L

O
W

Synthesis front-end

1:th
e
A
S
IP

core
con

tain
s
th
e
en
ergy

of
th
e
F
U
s
an
d
th
e
register

�
le.

2:th
e
�
rst

n
u
m
b
er
rep

resen
t
th
e
cy
cles

or
ex
ecu

tion
tim

e
related

to
th
e
kern

el
of
th
e
ap
p
lication

(th
e
n
u
m
b
er
b
etw

een
b
rackets

refers
to

th
e
con

trol
p
art).

3:area
for

th
e
A
S
IP

b
ased

on
std

cells
is
an

estim
ation

.
4:�

rst
valu

e
G
O
P
IP
B
secon

d
valu

e
IP
P
(IP

B
/IP

P
)

5:in
form

ation
ob
tain

ed
from

th
e
referen

ces
[B
K
M
06]

an
d
[A
K
A

+
02]

.

T
ab
le
2.1.:

F
S
M
E
M
P
E
G

S
u
m
m
arized

resu
lts

22

2.6. Final platforms results and comparison

A
SI

C

(o
pt

 si
ze

)
A

SI
C

(o

pt
 sp

ee
d)

A

SI
P

St
d.

C
el

ls
A

SI
P

M
ac

ro
D

SP

(D
a

V
in

ci
)

FP
G

A

(o
pt

 si
ze

)
FP

G
A

(o

pt
 sp

ee
d)

M

em
or

ie
s

2,
3

5,
9

9,
7

8,
9

no
t a

va
ila

bl
e

no
t a

va
ila

bl
e

no
t a

va
ila

bl
e

Le
ak

ag
e

0,
06

0,

07

0,
19

0,

09

no
t a

va
ila

bl
e

no
t a

va
ila

bl
e

no
t a

va
ila

bl
e

"c
or

e"

0,
01

0,

01

1,
78

1
0,

87
1

no
t a

va
ila

bl
e

no
t a

va
ila

bl
e

no
t a

va
ila

bl
e

E
ne

rg
y

(m
J)

T
ot

al

2,
39

5,

97

11
,6

9
9,

97

93

53
5,

4
43

4,
5

cy
cl

es
 (i

n
m

ill
io

ns
)

18
,1

/1
4,

9
(1

4,
3)

14

,5
/1

1,
3

(1
4,

3)

39
,6

/2
9,

7
(1

4,
1)

39

,6
/2

9,
7

 (1
4,

1)

49
/3

6,
8

18
,1

/1
4,

9
(1

4,
3)

14

,5
/1

1,
3

(1

4,
3)

E

xe
cu

tio
n

tim
e

(m

s)

43
/3

6
(@

45
0M

H
z)

35

/2
7

(@
45

0M
H

z)

88
/6

6(
31

)
79

/5
9(

28
)

(@
50

0M
H

z)
83

/6
2

(@
59

0M
H

z)

41
6/

34
2

(@
43

,5
4M

H
z)

33

7/
26

3
(@

45
0M

hz
)

T
im

e
re

la
te

d

Fr
am

e
ra

te
 4

(q
C

IF
)

74
,7

/9
0,

3
93

/1
19

34

,1
/4

5
37

,8
/5

0
36

,1
/4

8,
2

(@
42

,9
8M

H
z)

7,
2/

9,
6

8,
9/

11
,9

A
re

a
(m

m
2)

2,
95

6,
67

5,
13

1,
73

11

,4
5

↑↑

↑↑

Fi
rs

t
Im

pl
em

en
ta

tio
n

H
IG

H

Sy
nt

he
si

s f
ro

nt
-e

nd
 +

 b
ac

k-
en

d

H
IG

H

(f
irs

t v
er

si
on

)
≈

A
SI

C
 d

ev
el

op
m

en
t

+
co

m
pi

le
r d

ev
el

op
m

en
t

L
O

W

C
od

e

co
m

pi
la

tio
n

M
E

D
IU

M

Sy
nt

he
si

s f
ro

nt
-e

nd

D
es

ig
n

tim
e

Fo
llo

w
in

g
im

pl
em

en
ta

tio
ns

H

IG
H

Sy

nt
he

si
s f

ro
nt

-e
nd

 +
 b

ac
k-

en
d

L
O

W

(f
ol

lo
w

in
g

 v
er

si
on

s)

C
od

e
co

m
pi

la
tio

n

L
O

W

C
od

e
 c

om
pi

la
tio

n

L
O

W

Sy
nt

he
si

s f
ro

nt
-e

nd

T
ab
le
2.
2.
:
F
A
S
T
M
P
E
G

S
u
m
m
ar
iz
ed

re
su
lt
s

23

Chapter 2. VLIW-DSIPs: key processors for embedded multimedia

FPGA). First of all, we should remember that, as explained throughout this chapter,
the ASIC was implemented from a high level SystemC description of the application.
According to our experience, the behavioral synthesis tool, even if it allows for a very
fast development, leads to a �nal design larger and slower than what an average engi-
neer (or design team) could achieve by direct manual coding in a hardware description
language such as VHDL or Verilog (obviously after investing signi�cant design e�ort).
This implies that the design coming from SystemC (the ASIC and FPGA implementa-
tion) is larger, slower and has higher energy and leakage consumption than what a �good
hand-coded design� can achieve. Despite the fact that these results can be improved,
they still give a fast and representative idea of a �nal project result where design time
is limited, i.e. for most practical chip projects today. It is already a remarkable re-
sult that the domain-speci�c programmable processor (the ASIP) and the standard-cell
based ASIC platforms give, for each algorithm, results of the same order of magnitude,
with di�erences depending on con�gurations (ASIP-macro, ASIP-std-cells, ASIC-basic
or ASIC-optimized). As the application is data-�ow dominated, the energy needed to
access the memories is similar in the ASIPs and the basic implementation of the ASIC
since memories are of the same size and technology and also the global architecture can
be kept largely the same due to the ASIP style. That is one main di�erence with the
more general focus of the DSP style. The optimized (for speed) ASIC consumes much
more energy in the memories since more memories are used. This boosts the execu-
tion time at the penalty of increasing considerably the energy consumption and chip
area. The FSME algorithm is more computing intensive and the access to the mem-
ories gives the major contribution to the �nal energy consumption for the ASIC and
the ASIP versions. For this algorithm, the di�erence in cycles between the ASIC-basic
implementations and the ASIP is of the same order of magnitude. For the Logarith-
mic ME algorithm the di�erence between the results of the ASIPs and the ASICs is
higher. This is because this algorithm has much less data transfers and the contribution
of the control has larger impact on the cycles needed to complete the encoding: ASIPs
are better focused on data access and computing intensive applications and su�er from
irregular control �ow. Some techniques such as predication alleviate the performance
problem but increase the energy consumption. Other, more recent solutions have been
proposed [PAM+07] which alleviate both the speed and energy problems but that are
not yet available in the main-stream commercial solutions. As we can see in [RLJ+],
the usage of a distributed loop controller in addition with condition support improves
considerably the performance and energy consumption (around a 30%).

2.6.2. Energy considerations

The energy is lower in FAST than in FSME (table 2.1 and table 2.2) for all platforms
because less computations are needed to process the pixel data structures and the control
operations are similar. The main energetic contribution is due to the memories. In the
case of the ASIC we take into account that all memories are switching at the same time.
Therefore, this scenario is considerably worse than in ASIPs implementations where just
the simulated switching was taking into account. The leakage of energy for ASIP and

24

2.6. Final platforms results and comparison

ASICs are similar: ASIC opt. for speed has more energy consumption because it trades-
o� power and execution time. The energy consumption is higher when the execution time
is lower producing that the dynamic energy would be similar. ASIP macro architecture
is more optimized and therefore the leakage power is lower. This is mainly due to two
reasons: ASIP is running at a higher frequency (500MHz instead of 450MHz), and,
�nishing faster the computation, the time the design is leaking is considerably reduced
leading to a half of the energy consumed (for leakage only) compared to the ASIC version.
As mentioned in the previous paragraph, a hand-coded ASIC must give better results,
in terms of energy consumption and leakage, so the di�erence with the ASIP version
will be also reduced. To reduce the dynamic energy of the ASIC implementation we
could decrease the voltage supply. This will lead to a reduction in the dynamic energy
at the cost of decreasing the frequency and hence increasing the time needed to compute
the algorithm. Also, we have to take into account that by raising time with the device
working, the leakage increases. Therefore, it is not that worth to try to improve dynamic
energy in the ASIC, at least not for the type of data-intensive applications considered
here. The biggest di�erence between ASIP and ASIC implementations is in the energy
of the core: the ASIP also contains the energy due to the register �le contribution and
this implies that this energy is several times higher than the ASIC which does not have
a �power-hungry� register �le.
The FPGA is, by far, the worst in terms of energy and clock speed. This di�erence is

much higher than what has been reported in earlier comparisons based on simple kernels
[RAdSJ+00]. It is clear that even much optimized �ne-grain cell alternatives, as proposed
also earlier in literature [WZG+01], would not be able to bridge this huge gap. There is
the possibility in the FPGA to improve the energy consumption producing a structured
ASIC with the Hard-Copy utility [ALT08]. The ASIC produced can decrease in energy
consumption around a 70%. Although the produced structured-ASIC has decreased
the energy consumption, it still has really higher consumption compared with the other
implementations. The results on the DSP show that the core consumption consumes
around a factor 10 more than the ASIP implementation. This is mainly due to two
reasons. First of all, the platform dependent optimizations, basically the inclusion of
specialized hardware (for the multiply and accumulate and division operations and the
specialized address generator unit). Second, we have to emphasize that DSP memories
are �xed and built for general purposes and for the ASIP case, we tuned all the memory
hierarchy for this application (sizes, loop bu�er, number of ports, etc.).

2.6.3. Time related considerations

The execution cycles in the FSME for an ASIC optimized for size are 88,4M, very similar
to the ASIP version (84,6M). A better result is given by the ASIC optimized for speed
which gives 38,6M. That is twice faster than the best ASIP approximation. The DSP
results can be improved since we have used partially the low level assembler TI libraries
to implement the function of the video coder. The execution time is given in a worst case
where the GOP includes an I frame, another P and �nally a B frame QCIF(176x144) size
and 8 bits pixels. The values given in the table (in million cycles) are two: one for the

25

Chapter 2. VLIW-DSIPs: key processors for embedded multimedia

GOP IPB and another for the GOP without B frames just a IPP. This GOP has at least
30% lower computation and, therefore, it has a considerable million-cycles reduction.
Then, the frame rate has two possible numbers, one for the GOP IPB and another for
the IPP. In brackets (in million cycles too), there is the number of cycles needed to
compute the control part; this computation can be done in parallel with the kernel part.
We have to take into account that the kernel part is faster than the control one. We
have to improve it, decreasing the needed cycles to compose the control computation,
because we do not want them to be dominant in our application.
When the frame rate is above 24 images per second, we will establish (according to

video and TV standards) that we are working in real time. For the FSME, we get real
time just for the ASIC optimized for speed solution. But for the FAST implementation,
we get real time implementation for all the solutions except the FPGA due that its
achieved maximum working frequency is too low. Improving frame rate would be possible
by producing GOPs with just I frames. The number of frames that we can achieve
with ASIC opt. size and ASIC opt. speed for an III GOP (without prediction and
bidirectional frames) is 123 and 203 images/sec (QCIF size). The corresponding number
is 116 images/sec for the ASIPs macro solution, 113 images/sec for DSP and �nally
27 images/sec for FPGA opt. for speed. Therefore, we can get real time for mobile
CIF (352x288 pixels) in ASIC, ASIP and DSP. One must remember that this coder
computes in worst case scenario since all the macro-blocks are computed. If we change
the implementation, for example, when data or residual values are lower than a given
threshold, then we can decide not to compute them. Then, we could increase a lot the
speed of the solution but losing some quality performance.

2.6.4. Area considerations

In the ASIC, area is doubled due to FUs parallelization that makes the speed increase for
more than 3 times for FSME and 25% for the FAST implementation. This is due to the
fact that in MPEG, ME is the dominant algorithm and, Amdahl's law [Amd67] argues
for accelerating those parts of the system. In contrast, in the FAST implementation, ME
is not as dominant as the rest of algorithms and the increase on speed improving this
part is not as impressive as with FSME. The FSME ASIP solution has an area similar
to the size-optimized ASIC. The ASIP std. cells solution, the area is 5,1 to 6,05 mm2

and the speed is half compared to the corresponding ASIC solution. The DSP solution
has a higher area than ASIC and ASIP because the DSP is more �general purpose� than
just a video encoder and has more resources (that are not used by our application).
The area in the FPGA is the highest of all the solutions because of its regular and
repetitive structure (larger cost in transistors per gate) and because of the con�guration
capabilities.

2.6.5. Design time considerations

The design time for the ASIC implementations is quite long since hardware development
is slow and the veri�cation process consumes 70% of all the design time. It is clear that

26

2.7. Conclusions

this solution gives the best results in terms of energy consumption and execution time
(with the same clock frequency); but its main drawback is that new versions of the de-
sign, adding new functionalities, or changing the algorithms, need an almost completely
redesign process, with the cost on human resources, development time, etc. that this
entails. With more advanced deep submicron technology nodes, the processing costs will
become even higher, so the ASIC option is becoming very di�cult to motivate, except
for a few extremely high volume markets. Moreover, end-users that acquire a new device
are used to �bene�ting� from the upgrades on the functionality. The development of an
ASIP is even higher for the �rst design since, in addition to the design and development
of the hardware, the ASIP requires a compilation framework. The main advantage is that
this one-time e�ort is worthy since upgrades on the algorithms or new functionality just
require to recompile the extended code. This is a cunning advantage for the embedded
domain, where totally new applications are limited (inside an application domain), but
they change quite fast with upgrades, new protocols, and more functionality. End-users
can bene�t from upgrades, or even new features, just by downloading a new version of
the �rmware. Mapping applications onto commercial platforms (DSP or ASIP) bene�ts
of a really fast development since no hardware development is needed but the results are
far from the customized platforms. Nevertheless, optimizing the source code improves
this situation.
The more generic DSP processors, like DaVinci, provide a quick implementation if the

requirements of the application (in terms of real time, energy consumption) are not very
tough. If the application is more complex, the FPGA solution must be considered again
since this platform permits a HW/SW full parallel and concurrent implementation. But
it must be stressed that, in the FPGA solution, energy consumption is the highest, and
therefore, it is not a good embedded solution when battery life or power consumption
are limiting factors. As expected, if you have time and resources, ASIC or ASIP solution
can provide a more optimized solution.When the development time cannot be too high,
an o�-the-shelf solution, such as the DaVinci is the best one. FPGA solution is just for
prototyping when some parts have to be accelerated with hardware and because power
consumption is unacceptable for battery-powered embedded systems. Some results can
be obvious but numbers are extracted from the same source code and provide us with
a realistic view among implementations. This work is realized with a video encoder
but this methodology can be extended to other multimedia space solutions such as
3D video games, or other �elds that are not multimedia such as biomedicine, robotics
or arti�cial intelligence where the technology requirements could be rather dissimilar.
Other improvement would be to make this work not just for one task but for several
tasks since in this case the concurrency management would have given di�erent results.

2.7. Conclusions

As seen in this chapter, di�erent solutions are present when targeting the embedded
multimedia domain. All solutions have drawbacks and advantages and the constraints

27

Chapter 2. VLIW-DSIPs: key processors for embedded multimedia

argue as much for choosing one solution as they do for another. One major objective
of our work is to quantitatively identify all the elements needed to provide the system
designer with a very early estimation, and what platform style/subclass is the best choice
to implement the target system. In addition, we provide actual comparative values
among the di�erent platforms and the results come from a single original description,
with enough e�ort spent on each of them to come to a su�ciently optimized solution.
Therefore, these options are compared also in a fair way. The results are exposed for a
video compressor solution but they can be extended to any data-�ow dominated system.
Most multimedia applications nowadays fall into that class.
A widespread misunderstanding nowadays is to think in an embedded FPGA as a

�nal solution for small volume of production. It is necessary to keep in mind that FPGA
consumes more than other solutions even in the case of a structured ASIC solution. Even
if power consumption is not a negligible issue, the most limiting factor of the FPGA
solution compared with the ASIC one is the factor ten in terms of clock frequency. For
that reason, if real-time requirements are very tight, this FPGA solution can still not
compete with more aggressively optimized solutions such as ASIC or ASIP.
Figure 2.2 shows the remaining di�erent design styles (DSP, ASIP and ASIC) and the

key metrics on which they are e�cient. ASICs are known for their high performance
and energy e�ciency. DSPs on the other hand are �exible as well as able to deliver
the performance, but they are not energy e�cient. Application Speci�c Instruction-set
Processors (ASIPs) on the other hand try to combine all three metrics. ASIPs try to
reach the same energy e�ciency and performance of an ASIC while still being �exible.
To design such an e�cient ASIP or embedded processor, it is necessary to observe the
high level requirements and trends in the domain of processor design. However the
design e�ort for mapping code on an ASIP is higher.
An o�-the-shelf DSP gives good results and, if meets the requirements, this is the

most suitable solution since it has a �ne compromise between energy consumption, area
and design time and can handle the real-time requirements imposed. To achieve the
same performance, an FPGA will be excessively power hungry and an ASIP or ASIC
will demand too much developing time, even if the performance and consumption will
be improved. The main problem of choosing a DSP is that this solution cannot be easily
scaled if the requirements of performance increase. In this case, when a major change
of the performance will be needed (for example, for following versions of a product) the
architecture style exploration in the project needs to be done again from scratch.
The ASIC solution makes sense when the number of chips to produce is very high

and it provides the best compromise in terms of energy, speed and also area. ASIP and
ASIC must be the solutions if we desire to come up with the state-of-the-art hardware
architectures with better performance and hence to be used for top requirements as for
example: real time video compression of 1080i (1920x1080) pixels images size, 60fps, I,
P and B frames type or even in the future 2160p (3840Ö2160).
An ASIC brings (or can bring) more performance but incremental engineering is ex-

pensive, slow and �lled with delays. Moreover, an ASIC cannot keep up with changing
market conditions and can not adjust to new standards that might be needed for the
following versions of the product. The ASIP requires more developing time in the �rst

28

2.7. Conclusions

Figure 2.2.: Di�erent design styles target di�erent design metrics

version of the product, since hardware, software and compiler must be developed. Af-
ter that, any upgrade or change in the product just needs a compilation of the new
application.
The ASIP solution requires more development time in the �rst version of the product,

since hardware and a compiler framework must be developed (see chapter 4). After that,
any upgrade or change in the product just needs a compilation of the new application.
The choice of an ASIP is easily justi�ed when none of the commercial solutions provides
enough performance at the required energy-e�ciency (given the battery limitations)
to satisfy all our requirements. An ASIP solution can also make sense if commercial
devices can not satis�ed the requirements or if the image size, and hence the performance
and energy e�ciency must be boosted. It is also the desirable solution if we know in
advance that several additional follow-up products will be designed by the same team
on the same platform. Then, even if o�-the-shelf customized components are available
for assembling the platform for each of these di�erent product versions, a larger �rst
investment in a �exible domain-speci�c platform will pay-o� (see chapter 6) for the
e�ort and time saved in the following product versions. Obviously, even when the DSP
meets the performance requirements, that quantitatively evaluated energy reduction and
the corresponding chip cost can also already be an incentive to go the ASIP in systems
that are battery-constrained which is the normal case in embedded multimedia domain.

29

30

CHAPTER 3

State of the art on address generation

�Experience is simply the name we give our mistakes.�

Oscar Wilde

In this chapter we will focus on AGU architectures and on compilation techniques
to optimize the address generation process for scratchpad memories due to the power
restrictions of the embedded domain. We will especially consider address generation
for DSPs and VLIW-like architectures which have to deal with computing intensive al-
gorithms where access to data is a main issue. The main contribution of this chapter
is to provide a systematic classi�cation of address generators and a review of litera-
ture according to the classi�cation to illustrate the complementarity or overlap of the
optimizations on the address generation process.

3.1. AGU model and classi�cation

Programmable architectures oriented to exploit parallelism, Digital Signal Processors
(DSPs) and multimedia processors (a mixture of RISC and DSP processors), usually
follow the VLIW paradigm: a number of Functional Units (FUs) running in parallel,
following a schedule generated by a compiler [Leu00a]. These architectures focus on
real-time performance and often deal with in�nite, continuous streams of data.
To access the data, an address generator unit works in parallel with the main data

calculation units to ensure e�cient feed and storage of the data from/to the data path.
Besides the access time and the parallel access constraints, the main problem is the
e�cient generation of the address sequences for a given application.

31

Chapter 3. State of the art on address generation

The generation of an address sequence is done from an address equation, which is a
function extracted from the software description of the algorithm where the parameters
are indexes (In) of nested loops or range address (rm): the bounding box where to
generate addresses.

AE = f(I1, I2, ...In, r1, r2, ...rm)

In a broad sense, an address generation unit is the unit that uses the Address Equation
(AE) to generate an Address Sequence (AS). The resulting Address Sequence contains
"what" address to access and "when" to access it. Figure 3.1 shows a general address
generation unit.

Unit
Address Control Address Data Path

Unit

Address Register File

Address Sequence

Addresses Range

Indexes or

Figure 3.1.: A general Address Generation Unit (AGU)

In a system with several memories several AEs can coexist. Each one of those AEs
describes the mapping of their parameters to the respective data location. In this case,
one or multiple AGU must provide the address sequences needed.

3.1.1. Types of Address Equations

The AE is a function extracted from the software description of the algorithm. The
di�erent AEs can be categorized in terms of their regularity or their �exibility.

Regularity

The regularity of the AE is correlated with the complexity of the index expressions.

A�ne AE: An AE is a�ne when the address equation is a linear expression of the
indexes In and constants Cn as shown in the following equation:

AE = C0 + C1.I1 + C2.I2 + ... + Cn.In

This is the typical case for addresses generated by a number of manifest nested
loops. In �gure 3.2 we can recognize three AE. For arrays y and w the AEs are

32

3.1. AGU model and classi�cation

for (i=0; i<=N1 -N2; i++){

y[i] = 0.0;

for (j=0; j<N2; j++){

y[i] += w[j]*x[i+j];

}

}

Figure 3.2.: Example of a�ne address equation: a FIR �lter Code.

a direct function of the loop indexes i and j respectively and for array x, it is a
function of i and j with the coe�cients C0 = 0 and C1 = C2 = 1.

A more complex example is shown in �gure 3.3. In this case, the address equation
calculates the address indexes for the arrays c, block and res. Assuming c is a
4 bytes integer, the address equation of c can be written in the following form
AEc([k][j]) = c[k ∗ 4 + j ∗ 4 ∗ 8], and under this form we can clearly see that the
AE of c is a�ne with parameters C0 = 0, C1 = 4 and C2 = 32(8x4).

for (i=0; i<8; i++)

for (j=0; j<8; j++){

tmp 0.0;

for (k=0; k<8; k++)

tmp+=c[k][j]*block [8*i+k];

res [8*i+j]=tmp;

}

Figure 3.3.: Example of a�ne address equation: piece of code from the MPEG2 decoder
kernel

Piece-wise a�ne AE: An AE is called piece-wise a�ne AE when parts of the AE can
be written as linear expression of the indexes and constants. This is the case of
AE in a nested loop with conditional statements based on the iterators (manifest
conditions).

In �gure 3.4 a piece of code from the MPEG-4 video decoder core is shown. In
this case, the conditional expressions limit the possible optimizations in the search
space.

Non-linear AE: An AE is called non-linear when there is no linear relation between
the AE and the address indexes. This is the most general case of AE. Figure 3.5
shows an example of real code where we can see square expressions (j*j and i*i).
The non-linearity of those expressions highly constraint the search space for the
optimization of address generation and related hardware, but this type of AE does
not occur very often in real life application codes.

33

Chapter 3. State of the art on address generation

int *DCstore;

DCstore = (int*) malloc(LB *6*15* sizeof(int));

...

initialize (Xtab , Ytab , Ztab , Xpos , Ypos);

loop{

if(comp ==1|| comp ==3){

blockA=DCstore [0+15* Xtab[comp]+90*(((mbnum/MB)*MB+(mbnum%MB+Xpos[comp]))%

LB)];

}else{

blockA=mg*8;

}

if(comp ==3){

blockB=DCstore [0+15* Ztab[comp]+90*(((mbnum/MB+Ypos[comp])*MB+(mbnum%MB+

Xpos[comp]))%LB)];

} else{

blockB = mg*8;

}

if(comp ==2|| comp ==3){

blockC=DCstore [0+15* Ytab[comp]+90*(((mbnum/MB+Ypos[comp])*MB+mbnum%MB)%LB

)];

}else{

blockC = mg*8;

}

mbnum ++;

}

Figure 3.4.: Example of piece-wise a�ne AE extracted from the MPEG-4 video decoder
core. Conditional expressions limit the search space for address arithmetic
optimization

for (j=0; j<l code; j++)

for (i=0; i<l code; i++){

if(i<=c1)

if(i==c1)

rdm=h2[l code -1-i];

else rdm=rr[i*(i -1)/2];

else rdm=rr[j*(j -1)/2];

... mul(rdm , ...);

if(i<=c2)

if(i==c2)

rdm=h2[l code -1-i];

else rdm=rr[j*(j -1)/2];

else rdm=rr[i*(i -1)/2];

... mul(rdm , ...);

Figure 3.5.: Example of non-linear AE: fragment for the GSM codebook code.

Flexibility

The �exibility of the address equation gives the idea of the range of the �exibility needed
by the AGU to create the address sequence.

manifest or prede�ned with constants: This is a special case that occurs for ar-
chitectures that target a speci�c algorithm, or a small number of algorithms. In
those cases, the AE is manifest and then address sequences patterns are prede�ned

34

3.1. AGU model and classi�cation

before the hardware design and the knowledge of the program can be e�ciently
exploited by constructing optimized AGUs.

parameterizable or prede�ned with parameters: This is the case for AS controlled
by some input parameters. E.g. this is the case for domain speci�c designs where
the AGU can be parametrized to the application since it has to support a limited
number of algorithms.

dynamic address equation: This is the most general case of address sequence where
the AE depends on AGU's external events and results (e.g. data-dependent ad-
dresses). Here, the AE and thus the AS can be modi�ed during run-time execution.
This is the general case for address sequences in processors or DSPs. In the em-
bedded systems domain, based on application scenarios that are most currently
occurring, most dynamic address equations can be modeled as manifest or parame-
terizable address equations [PBV+05, PCC05, GSBC05]. For the rest of the cases,
a fully run-time backup scenario without compiler support must be used.

AE design space exploration

Figure 3.6 summarizes section 3.1.1 and shows the various possible combinations of
regularity and �exibility of the AE. The complexity of building an e�cient AGU increases
as we move away from the origin of the graph. For each point in the design space, an
optimal AGU can be found to meet the design metrics targeted by the design.

3.1.2. Design Metrics

The quality of an AGU can be evaluated in terms of �ve di�erent metrics that can be
categorized in terms of costs and constraints.

Implementation Costs

Area: the area of a chip determines the cost of a VLSI process. The contributions to
the area of an AGU are due to the architecture that implements the arithmetic op-
erations and/or the size of AGU instructions in memory, in case of programmable
solutions.

Energy consumption: energy consumption is a metric that depends on several other
parameters from physical to system level: technology, area, frequency, supply volt-
age, bit activations, algorithm, leakage, etc. Energy per task is the most important
metric in embedded systems. In this document we will not discuss all the possible
parameters, but just the ones accessible from an architectural perspective.

35

Chapter 3. State of the art on address generation

Figure 3.6.: Design Space of AGUs

Historically, the area of a design was the most important cost but nowadays, with the
increasing capacity of integration, the area of the AGUs is not crucial and will not be
a critical metric in future designs, nevertheless area is a design metric to be taken into
account. Currently, energy consumption is the limiting factor that drives design deci-
sions, speci�cally in the embedded domain due to battery life.

Design Costs

Ease of compilation: programmable solutions have the advantage of software develop-
ment over the slow hardware development of other solutions. An easy compilation
and a retargetable framework is an advantage that can help to boost time-to-
market of products or can facilitate upgrades or new versions of the applications.

Constraints

Flexibility: the �exibility of an AGU determines its capacity to deal with di�erent al-
gorithms as seen in section 3.1.1.

Performance: Performance is a real time constraint related to the reaction time (la-

36

3.1. AGU model and classi�cation

tency) to compute one memory address and the bandwidth or throughput: the
number of address equations generated per period. The bandwidth of an AGU
depends on the number of available resources. An optimal AGU should provide
su�cient address expressions to feed the data path per time unit.

Maximal power/temperature: this constraint is relatively new and of increasing
importance with actual and future silicon technologies. The maximal power and
temperature that the device can reach is directly connected with the cost of the
packaging which has to support such high temperatures.

3.1.3. AGU classi�cation

In the literature we can �nd di�erent names for Address Generator Units (AGUs), for ex-
ample, Address Calculation Unit (ACU), Address Arithmetic Unit (AAU), Data Address
Generator (DAG), Memory Management Unit (MMU), Direct Memory Access (DMA),
etc. In this document we will generally refer to all these address generators as AGUs
and in this section we will explain the di�erent possible hardware implementations. We
can distinguish two big types of AGU architectures, the ones based on tables and the
ones based on a data path.

Table based AGUs

If the AE is short, a Lookup-Table (LUT) can be used to implement this simple map of
the AE. This approach needs a controller to complete any deterministic address sequence.
In the simplest case, the controller can be a simple increment/decrement counter, but
often a Finite State Machine (FSM) is needed. When the AE is more complicated and
a LUT solution becomes too big, the logic (that can be custom, programmable or con-
�gurable) to complete the AE can be implemented using a Programmable Logic Array
(PLA) since those devices have a smaller size compared to the same implementation in
a LUT. The two following types of address generator based on table based AGUs can
be implemented for custom or �exible (programmable or con�gurable) logic.

Memory based AGU (mAGU): Short address sequences can be directly mapped in a
lookup-table (LUT), this approach is also called "counter/table based AGU" . In
the simplest case, the controller of the mAGU can be a simple increment counter,
but often more resources are needed.

Incremental AGU (iAGU): If the AE is very regular and can be expanded in se-
quences of the address values (Ai) then the AE can be implemented by modulo/bi-
nary counters with the outputs modi�ed by custom logic that can be implemented
in a Programmable Logic Array (PLA) (�gure 3.7). This approach has simple

37

Chapter 3. State of the art on address generation

control implemented in the counter and due to the implementation on a PLA the
size is smaller compared to the mAGU implemented with a LUT.

C
ou

nt
er

PLA
&A[2*i+1]

Init

Done

&A[2*i+1]=1,3,5,7,9,11,13,15

Generation Unit (iAGU)
incremental Address

Figure 3.7.: Example of an Incremental AGU

Data-path based AGUs

When the address equation is complex and regular or when it has to support some con-
trol or programmability, data-path based AGUs are the most suitable implementation
style since they can cover wider address spaces.

Custom AGU (cAGU): In applications where the AE is a direct function (AE a�ne)
of the loop iterators, pointers, �ags coming from other units (e.g the data path)
or when the AE follows a complex or long sequence, then it can be mapped onto
arithmetical operators, and thus, implemented in custom hardware.

This is an optimal architectural style for irregular memory accesses that consume
too much mapping logic if implemented in an iAGU/mAGU or for long array-based
address sequences. These cases are usually based on a set of nested loops, where
the address parameters are combined to give addresses at each iteration of the loops
(�gure 3.8). A cAGU exploits fast post-modi�cation techniques of address pointer
reference to reduce the overhead of indexed array reference generation, but this
becomes an expensive alternative when the size and number of memories increases.

Programmable AGU (pAGU): Programmable AGUs are targeted for an optimal
calculation of loop array indexes. These AGUs have dedicated registers available

38

3.1. AGU model and classi�cation

that can be programed. Hence they are the most suitable architectural style for
parameterizable or dynamic address equations (3.1.1). Indirect addressing is by
far the most used addressing mode in programs running on these systems, since
it enables the design of small and faster instructions [AOC02]. Some pAGUs also
support loop counters implemented in hardware. The �exibility of pAGUs pays
an area overhead depending on the following parameters:

x +

2 1

&A[2*i+1]

C
ou

nt
er

Init

Done

i i

Application Specific

Unit (ASU)

&A[2*i+1]=1,3,5,7,9,11,13,15

Custom Address
Generation Unit (cAGU)

Figure 3.8.: Example of a Custom AGU

� number of memories to address.

� size of the arithmetic blocks (adders, multipliers,etc.).

� address register �les.

� program memory and instruction decoders.

As an illustration example of this overhead we point that more than 25% of the area of
the Cool�ux DSP is used by the AGUs [Phi04].

AGUs on DSP: Address generator units in DSPs di�er from that of standard pro-
cessors: usually DSP AGUs are a speci�c case of programmable AGUs based on
increment/decrement counters, whereby the address for the next memory access
is updated during the current memory access (�gure 3.9). They normally include
register-indirect modes with post-increment for accessing data arrays in memory,
and circular ("modulo") addressing capability for managing circular bu�ers. These
addressing modes provide e�cient management of data arrays to which repetitive
algorithms are applied. Many architectures such as TI TMS320C64X [Inc06] pro-
vide indirect addressing modes with auto-increment/decrement arithmetic. These
features allow e�cient sequential access of memory and increase code density, since
they subsume address arithmetic instructions.

39

Chapter 3. State of the art on address generation

Figure 3.9.: A typical AGU for DSPs

O�-chip memory related address generators

Two other types of "general" address generators (with di�erent �avors) are brie�y de-
scribed in this section for completeness of the topic since they are out of the scope of
this thesis. An extensive description of them is given in [HPon].

Direct Memory Access (DMA) Unit:
Direct memory access (DMA) is a feature that allows certain hardware subsystems within
the computer to access system memory for reading and/or writing independently of the
central processing unit. It allows devices to transfer data without subjecting the CPU
to a heavy overhead: a DMA transfer essentially copies a block of memory from one
device to another. While the CPU initiates the transfer, it does not execute/generate
the address sequences needed for the transfer. Otherwise, the CPU would have to copy
each piece of data from the source to the destination. This is typically slower than
copying normal blocks of memory since access to I/O devices over a peripheral bus is
generally slower than normal system RAM.
A typical usage of DMA is copying a block of memory from system RAM to (or from)

a bu�er on the device. Such an operation does not stall the processor, which as a result
can be scheduled to perform other tasks in parallel. DMA transfers are essential to high

40

3.2. Optimizations on Address Generators

performance embedded systems.

Nowadays, DMA functionality is restricted to o�-chip transfers, but a DMA-like func-
tionality is also becoming very important for on-chip scratchpad usage, and in some
research papers they are indeed heavily exploited already [DBD+06]

Memory Management Unit:
Memory Management Unit is a term usually used to designate a hardware device or
circuit that supports virtual memory and paging by translating virtual addresses into
physical addresses. Among the functions of such devices are the translation of virtual
addresses to physical addresses (i.e., virtual memory management), memory protection,
cache control, bus arbitration, and, in simpler computer architectures (especially 8-bit
systems), bank switching. Usually MMUs are in charge of the SDRAM to on-chip data
communication. In this work we do not consider MMU since this paper focuses on
on-chip data addressing.

3.2. Optimizations on Address Generators

E�cient memory accesses are crucial for any architecture which deals with real-time-
data-dominated algorithms. Support for multiple address equations often leads to the
mapping of each address equation onto di�erent dedicated or programmable hardware,
resulting in large area and power overhead and/or timing problems. Hence, the address
equation should be optimized �rst to exploit area savings possible by sharing hardware
(while meeting timing constraints imposed), optimizing power or improving performance.
Some optimizations at di�erent levels can considerably improve address generation. In
this section, we will review the state-of-the-art optimizations for address generation
considering that other general optimizations, as for example data transfer and storage
exploration optimizations [Cat02], have already been applied.

3.2.1. Architecture and micro-architecture optimizations

AGUs can boost the transfer of data to the calculation units since they compute in
parallel the address of the next memory accesses. To provide enough data bandwidth,
usually several programmable AGUs run in parallel. If the number of AGUs increases,
the program area grows, and then ROMs and instruction decoders and the area overhead
introduced can become a dominant factor. Indirectly, this also leads to energy overhead
and usually real trade-o�s are present. Many of the state of the art optimizations aim
at reducing the hardware overhead.

Address optimizations

Until the beginning of the 90's, little research was done on address generation optimiza-
tions and �rst optimizations were oriented to reduce area on table-based AGUs. With

41

Chapter 3. State of the art on address generation

the possibility to integrate SRAM memories on chip, area savings became less important
and energy became the main problem. Even if area is not anymore a limiting factor some
of the techniques can be reused for energy reduction.

Table-based AGUs (3.1.3) implement manifest address sequences and although they
cannot deal with dynamic applications, the knowledge of the speci�c address equation
enables hardware design time optimizations. In [VBR+93, GDF89] the authors assumed
that every AE is mapped to a separate address unit. Miranda et al. in [MCM94]
presented an area optimization technique for application speci�c address generation
units for large memories in real time signal processing systems. Their techniques rely on
a system level exploration of the trade-o�s involved on algorithmic speci�cations: when
the signal processing application is being de�ned, savings are exploited by sharing index
expressions among several individual AEs.

Miranda et al. in [MCM94, MKCdM97, MCJM98, MCJdM96] present the ADress
OPTimization (ADOPT) environment. The framework gives a formalized methodology
and an automated technique to support address arithmetic optimizations in �ow-graph
expressions for distributed memory architectures. The ADOPT environment targets
architecture and system level optimizations at the same time and the methodology relies
on two stages: one independent of the target architectural style and a second one stage
speci�c to the selected AGU. ADOPT targets two di�erent architectural styles for the
generation of the AE: incremental AGUs and customized ACU (3.1.3 and 3.1.3).

In [ST98] Schmit et al. present optimization techniques for the address generation of
memories containing multiple arrays. The techniques are based on the rearrangement
of bits instead of the traditional technique of addition of a base address and a variable
to calculate the addresses of the arrays elements.

The trade o�s between area and performance for known address sequences have been
addressed in [HCC02]. Their work studies the impact on area and performance of mem-
ory access related circuitry in eliminating row and column address decoders from the
memory and incorporating the necessary hardware decoding in the address generation
circuit. They show how circuit delay can be nearly halved at the expense of increased
area.

BSG: Bit Sequence Generators

Prede�ned AEs can also be implemented using bit level sequence generators. In the
most straightforward case, this will lead to the direct mapping of each bit level AE onto
a dedicated hardware block. This strategy could lead to a large area overhead and bit
level optimizations are mainly oriented to the reuse of hardware between bit level address
generators. The work of Grant [GD91] and Lippens [LMdWV91] shows, for very regular
AE, optimizations at bit level for counter/table based architectures. In [GML94] the
same authors present the address generation techniques of the ZIPPO toolbox, which
relies on hardware multiplexing optimizing word level and bit level address among several
AEs. The authors show that address generation optimizations can result in area savings
between 10%-60%.

42

3.2. Optimizations on Address Generators

Loop Accelerators: LA

Data-dominated applications use a large amount of memory and typically those appli-
cations consist of deeply nested for-loops where the main algorithm is usually located
in the innermost loop. Complex media algorithms for e.g., usually have a large number
of two dimensional array and vector accesses. Mathew et al. in [MD04] expose in their
work how Amdahl's law argues in favor of accelerating those parts of the algorithm, and
present a low power loop accelerator based on clustered distributed address generation.
The loop accelerator is responsible for the calculation of addresses once the program
enters the part of the program with time consuming 2D loops and needs a high operand
�ow in the functional units. In the rest of the program, the addresses are calculated in
the generic address generation unit.

3.2.2. Compiler optimizations

Any processor targeting the embedded domain has strong restrictions on area, energy
and performance. Exploiting design time optimizations alleviates run time issues with
various bene�ts. First of all, it reduces chip area, and thus energy, compared to the
run-time hardware support that is needed by superscalar processors. Another bene�t
is that complexity is usually easier and faster to deal with in a software design than
in a hardware design. Hence, the chip may be cheaper, quicker to design and easier to
debug. Software also bene�ts from possible upgrades while improvements on superscalar
dispatch hardware requires to change the processor. For all these reasons, optimizing
compilers has become an essential component of embedded and high-performance com-
puter systems and extensive bibliography is available [Muc97, KA02, ALSU06]

Address calculation optimizations

Programmable AGUs (section 3.1.3) bene�t from �exibility but have an important area
penalty due to the arithmetic units, registers and counters needed to give enough ver-
satility and must mainly rely on software and compiler optimizations.

Traditional compiler approaches aim at address pre-calculation and post-calculation
[ASU86]. Address pre-calculation consists of an addition of a base address with a vari-
able. In this method, the address must be calculated before the reference. For innermost
loop kernels this approach presents a important penalty on the performance of the al-
gorithm. Address post-calculation reduces an array reference to an address pointer
reference and incrementing/decrementing the resulting address for the next reference of
the array. This method allows the calculation of the next address in parallel with a
main data operation. First optimizations on address post-calculation where studied by
Liem et al. in [LPJ96, LPJ97]. In their work, the authors show code transformations
that produce code with optimized index array references for fast post-modi�cation com-
bining address variables with the same addresses o�set among loop iterations. These
optimizations improve the e�ciency of programmable AGUs.

For data dependent address generation (3.1.1) using a programmable AGU, address

43

Chapter 3. State of the art on address generation

optimizations can be achieved via data ordering and address register allocation. Data
ordering determines the order of data stored in the memory. Address register allocation
assigns an address register to each data access for address generation. The goal of these
optimization is to maximize the usage of auto-increment/decrement and hence reduce the
number of address loading instructions. Many research papers and industrial compiler
groups work in auto-increment/decrement optimizations but they are mainly oriented
towards timing optimization, not power. In [CL98] Cheng and Lyn present an address
optimization technique for loop execution for DSPs with auto-increment/decrement ar-
chitecture. They propose a new graph model that takes care of constraints on memory
allocation and data ordering. In [Leu00b] other optimization techniques targeting DSPs
are deeply explained.
In [RKHK02] the authors present arithmetic and address computation optimization

for a set of typical very regular kernels that appear frequently on several kinds of ap-
plications. Their optimization resides in the observation that, for those kernels, the
elements accessed are usually stored close to one other in memory. Their work studies
scalar conversion and common sub-expression optimization between successive iterations
of loop bodies. Actual compilers do not realize this kind of analysis and for successive
iterations the value of common sub-expressions is computed at each iteration.

Register �le optimizations

The e�cient usage of registers in programmable AGUs (3.1.3), focusing on AGUs for
DSPs, has been studied by several authors. Leupers et at, in [LM96], show algorithm
optimizations by computing appropriate memory layouts for program variables. For
that, they proposed an improved cost function for edge selection on the address graph.
This work has been extended by Sudarsanam in [SLD97] who presented a methodology
to study the e�ect on code size and performance associated with the number of avail-
able address registers and the range of the auto-increment for simple o�set assignment
problems but for increment/decrement ranges superior to one. O�set optimization tech-
niques rely on constructing a layout of local variables in memory, such that the addresses
of variables can be accessed using auto-increment operations on address registers. Wess,
et al. in [Wes99], present a template address generation unit for DSPs and apply neigh-
borhood search techniques with simulated annealing to overcome the local minimal in
the search process, to the address assignment problem. That technique optimizes the
address layout to minimize the o�sets of consecutive memory accesses.
Later on, Leupers in [LD98] presents a genetic algorithm that optimizes arbitrary

register �le sizes and auto-increment ranges and introduces the allocation of modify
registers into o�set assignment. For �xed architectures, with a �xed set of registers,
Basu et al., in [BLM98], present an heuristic for the optimization of the number of
instructions needed for the calculation of array addressess in the program loop.
More recently, in [AOC02] the authors proposed the usage of auto-increment address-

ing modes to reduce the problem of allocation of arrays in the register �le. It extends
previous work in the area by merging life ranges of address registers in a pairwise way
beyond basic blocks. In this work also, no power optimization is targeted.

44

3.2. Optimizations on Address Generators

3.2.3. Source code transformations

Address optimizations

The problem of address generation is related to indexed signals and the main di�culty
is to �nd the most e�cient address computation. Address optimization can reduce area,
but also access time and the number of calculations needed to obtain the next memory
address.
The ADOPT framework introduced previously, targets incremental AGU (section

3.1.3) and custom AGUs (section 3.1.3) but the techniques can be reused on pro-
grammable AGU. For those architectures, it is possible to perform several optimizations
at a behavioral level of the code (at a high level language). All those transformations are
performed at source level, meaning that the result code is also C. The generated code is
near optimal in terms of minimal code execution and has reduced arithmetic expressions
which minimizes the area overhead, introduced by the usage of a large amount of address
generation units, and the time required to generate memory addresses which is a main
issue for data-intensive applications.
System level optimizations can be found in di�erent works: [MCJM98] presents ad-

dress equation/cluster splitting, merging, sharing and induction variable analysis. In
[GMCG00] the authors explain loop-invariant code motion, global algebraic transfor-
mations, Common Sub-expression Elimination (CSE) and loop invariant code hoisting.
Pointer substitution, advanced code hoisting, algebraic cost minimization and non lin-
ear operator strength reduction are introduced in [GMV+00]. All these techniques aim
at code transformations that reduce or simplify the address calculations in the address
path.

Control �ow optimizations

Data Transfer and Storage Explorations (DTSE) transformations are crucial to e�ciently
map data-intensive applications onto programmable platforms [Cat02, CDKO01, GH96].
DTSE transformations modify the initial code to minimize the load of shared memory
buses which is the main source of power consumption [WCNM96]. This transformations
are usually achieved at a high expense on addressing and local control. After removing
DTSE and address related bottlenecks, the control �ow issues represent an important
overhead on code execution. Control �ow transformations are suitable for any implemen-
tation of AGUs and focus on two issues: improving the degree of mutual exclusiveness in
nested condition trees, and in optimizing the decoding of the condition testing in deeply
nested conditional constructs.
DTSE transformations add costly integer modulo operations and divisions to the ini-

tial addressing code. A pointer substitution technique [GMV+00] for piece-wise linear
addressing solves this problem. This optimization is platform independent and trans-
forms modulo operations onto conditional code and linear induction variables. The
control overhead introduced by DTSE or by this pointer substitution technique has
been addressed in [PMCV01] . The same author in [PMD+02] and [PMC02] addresses
control �ow optimizations for performance on a MPEG-4 video decoder algorithm and

45

Chapter 3. State of the art on address generation

the trade-o�s on power and performance on address generation by selective function
inlining.
Other control �ow optimizations, fully complementary with the previous ones, have

been studied by Falk in [FM03, FV04, Fal05, FM04]. The optimizations presented are
based on mathematical models combined with genetic algorithms: loop nest splitting
minimizes the number of executed if-statements in loop-nests of embedded multimedia
applications; advanced code hoisting moves portions of the inner loops to outer ones and
ring bu�er replacement eliminates small arrays serving as bu�ers for temporary data.
The three techniques reduce control �ow, arithmetic calculations and execution time
and hence minimize energy consumption.

3.3. Conclusions

In this chapter we analyzed the di�erent types of address generators and we proposed a
classi�cation. According to this classi�cation we then summarized the state of the art
of the optimization on the address generation process at di�erent levels: source code,
compiler and architecture and micro-architecture.
In the embedded domain, devices have to deal with complex applications. So, evalu-

ating what architecture is most suited is not an easy task and tool support is needed.
In chapter 5 we will introduce a framework to analyze and create an optimized AGU-
template targeting the embedded domain. In chapter 6 we will plug this template into
the compiler and architecture framework described in chapter 4.

46

CHAPTER 4

High Level Architecture and Compiler Requirements:

COFFEE framework

�Imagination was given to man to compensate him for what he is not;

and sense of humor to console him for what he is.�

Francis Bacon

While this thesis focuses on some parts of the processor, it impacts all parts of the
platform. To ensure that this work is consistent with optimizations in other parts, it is
necessary to look at all parts of the platform. Therefore this chapter bundles the bound-
ary conditions and conclusions of a team of PhD students working on the exploration
and optimization of di�erent parts of the embedded platform. A common analysis and
trade-o� discussion of proposed architecture extensions ensures the consistency between
the di�erent parts. The di�erent PhD students focus each on di�erent parts, but take
the e�ect of local modi�cations on the rest of the platform into account.
The result of this common analysis is presented in this chapter together with all

proposed modi�cations form the FEENECS (Flexible Extremely ENergy E�cient Con-
�gurable System) architecture template (Section 4.3). By explicitly looking at the re-
quirements and restrictions of current compilers, and their link with the architecture,
high-level relations have been derived in order to improve the compilability. Based on
these relations and on the speci�c features of the FEENECS architecture template, a
matching methodology proposal is drafted and detailed in chapter 6 .
As the proposed architecture modi�cations and compiler steps are the work of a team

of PhD students that are based on observed trends in technology and state of the art,
they are not fully supported by experimental data, especially for parts that are not the

47

Chapter 4. High Level Architecture and Compiler Requirements: COFFEE framework

focus of this thesis. However, they are motivated using high level relations and, when
possible, an example or reference is used to give more detail to the discussed concepts.
The rest of this chapter is organized as follows: Section 4.1 presents the context of

this work and the current trends in processor architecture space. Section 4.2 presents
various architectural proposals for di�erent processor components to reach the same
energy e�ciency as that of an ASIC. Section 4.3 puts these di�erent architectural parts to
present the FEENECS architecture template and section 4.4 brie�y describes the energy
estimation model used. Finally, section 4.5 exposes the conclusions of this chapter.

4.1. Architecture Exploration and Trends

Architectures form the bridge between the application and the technology. Therefore, in
order to optimize an ASIP processor architecture, the designer must take into account
the application requirements. An e�ective ASIP architecture exploration has to cover a
wide range of architectures to �nd the one which is Pareto optimal for the application and
system cost trade-o�s (e.g. reduce the energy consumption while providing the required
real-time constraints and quality). From the implementation side, it is important to
take the physical design method (e.g. custom design vs. standard cell design) and
high level technology inputs (e.g. poor interconnect scaling in Deep SubMicron (DSM)
technologies, leakage) into account early in the design �ow to ensure a more optimal
outcome. If the implementation allows the designer to give guidelines on the �oorplan,
it is important to take this into account. Architecture exploration therefore forms the
corner stone of any processor design.
Note that variability and reliability are also crucial issues in DSM technologies, but the

mitigation of these e�ects can be handled in a complementary way [HMFW07, HMWF09]
that is compatible with our approach. Therefore this part will not be tackled in this
thesis.

4.1.1. Interconnect scaling in future technologies

A number of papers have appeared that compare the scaling of interconnect to the
scaling of logic (transistors) for scaled technology. According to many papers [DeM05,
JNH06, SK99] and the latest ITRS report [ITR07], a clear di�erence exists between logic
and interconnect scaling and interconnect scales much worse. This leads to potentially
reduced gains when scaling to deep submicron technologies (65, 45, 32, 22 nm). The poor
scaling of interconnect and vias is due to varying physics limiting factors, ranging from
the k-value between the wires to DSM issues like surface scattering and grain boundary
scattering. This a�ects both local and global wiring and therefore, this trend needs to
be taken into account for future architectures.
In this chapter, it is assumed that interconnect does indeed scale worse than logic

and that the impact of this interconnect scaling in terms of performance and energy
cost is increasing. Therefore, some rather disruptive modi�cations to the architecture
are proposed (e.g. replacement of traditional register �les with new foreground mem-

48

4.1. Architecture Exploration and Trends

ory structure, as discussed in Section 4.2.3). The architecture modi�cations that are
proposed in this chapter are propagating the higher cost of interconnect through to var-
ious levels of the design (from heavily communicating components, based on application
knowledge, down to layout).
However, in case the cost of interconnect (especially the local interconnect) does not

increase with respect to logic, the gains of the proposed solutions will still exist with
respect to traditional designs, but may relatively be reduced. Therefore some of the
traditional state-of-the-art solutions will still be part of the valid trade-o� solution to
choose from. It may also be the case that because a disruptive change often takes more
e�ort, the current state-of-the-art architecture may still be taken.

4.1.2. Representative architecture exploration examples: What
are the bottlenecks?

During and after architecture exploration, the designer can obtain an energy breakdown
of the di�erent components of the processor architecture. Figure 4.1 shows the energy
breakdown for a high-performance Coarse Grain Recon�gurable Architecture (CGRA)
processor implemented in 130nm running a MIMO application. Figure 4.2 shows the
energy breakdown for an embedded VLIW processor running the MPEG2 decoder.

"before PR"
4%

"after PR"
5%

Distributed RFs
3% Configuration

Memory
26%

"extra VLIW RF"
5%

Buses
15%

MUL PEs
7% ALU PEs

5%

PE Pipeline
Registers
22%

VLIW RF
8% Interconnect

29%

Figure 4.1.: Energy Breakdown for a high performance CGRA (8x8 PEs) running a
MIMO benchmark, with a clock of 200MHz

While both breakdowns are from di�erent application and processors, similar conclu-
sions can be drawn. From both �gures, it can be seen that the energy consumption is

49

Chapter 4. High Level Architecture and Compiler Requirements: COFFEE framework

B k d M

Communication
Architecture

Register File
(36.2%)

Background Memory
(UL2)
0.7%

1.6%

Pipeline Registers
(30.7%)

22.2%

Data Memory
(DL1)

Processor Core

Datapath Logic
(2.0%)

18.8%
(DL1)
30.5%

61.3%

1.2%
Loop Buffer

(31.2)
19.1%Instruction Memory

(IL1)()
5.9%

Figure 4.2.: Energy Breakdown for heterogeneous VLIW processor with 8 slots run-
ning an MPEG2 decoder, with a clock of 600 MHz. The numbers between
brackets indicate the percentage for the processor core only.

not really dominated by a single architectural component.

In the CGRA, a large part of the energy consumption is spent on the interconnect
(the architecture instance shown is a high-performance instance with a rich interconnect
topology). This is because a signi�cant part of the communication between di�erent
slots in the VLIW has been pushed from the VLIW register �le to the interconnect and
the PE Pipeline Registers. This leads to a relatively smaller part of the CGRA energy
that is directly consumed by shared register �les. In fact, in a CGRA the foreground
memory organization consists of the register �les, pipeline registers and the interconnect
and therefore still remains a critical issue.

It is assumed here that in order to reach the required high performance, the 8 slot
VLIW has to be clocked at a signi�cantly larger clock speed (here 600 MHz compared
to 200 MHz for the CGRA).

The CGRA is more parallel than conventional VLIWs and a larger part of the energy
consumption is directly spent on the data-path logic (in this case 12% for both ALU
and MUL PEs, compared to only 2% for the VLIW), which indicates a more e�cient
energy usage. Note none of the pie-charts gives direct information about the di�erence
in absolute energy consumption between the VLIW and the CGRA.

In conclusion, both pie-charts show that the con�guration memory or loop bu�er,
register �les, data-path logic, data-path pipeline registers and interconnect consume
almost equally important parts of the global energy. Therefore, all parts need to be

50

4.2. Architecture optimization using cross-abstraction and cross-component relations

considered together while optimizing.

4.2. Architecture optimization using

cross-abstraction and cross-component relations

A clear need exists to think globally and across di�erent abstraction layers while design-
ing an architecture. The properties required at each of the architecture components and
the reasons for these properties can be motivated across the di�erent abstractions lay-
ers. This cross-abstraction knowledge can lead to di�erent optimizations than would be
selected if every part of the system were optimized in isolation, which we call entangle-
ment. The following subsections present a possible solution for individual architectural
components and its reasoning across di�erent abstraction layers.

4.2.1. Algorithm design

Even though this section targets architecture optimizations, the cross-abstraction infor-
mation can be propagated down from the algorithm design. Following the increase in
processor parallelism and the inability to exploit irregularity in algorithms (with many
conditions), algorithmic designers have been pushed to design more regular algorithms.
In case of power-e�cient ASIC design, once again designers are forced to use regular al-
gorithms, as adding �exibility is expensive in ASIC design. However, when these trends
leads to a drastic increase in the number of operations that need to be executed, the
energy penalty is signi�cant (e.g. compute motion estimation in MPEG as a full search
or hierarchical search). Even though the parallel architecture can be better �lled and
performance can improve, the resulting e�ciency in terms of energy per task is still (sig-
ni�cantly) lower. Therefore, some of the modi�cations that are proposed in this section
explicitly address the need to better support irregularity in an e�cient way, directly
on the parallel architecture. These modi�cations include a split in address and data
computations onto separate slots (Section 4.2.6), distributed control loop bu�ers (Sec-
tion 4.2.4), and e�cient parallelization of irregular data [Rag09]. When the architecture
supports more irregularity, di�erent versions of an algorithm can be designed, taking
into account the context. One promising example with large gains (up to a factor 10 in
energy e�ciency and performance) can be found in [MDB+09], where the conditions of
the wireless channel are taken into account in order to select di�erent implementations
of an FFT algorithm to match the requirements instead of executing a full FFT in all
cases.
The rest of this section will focus on the di�erent architecture components and discuss

the propagation of constraints from the application down to the layout.

4.2.2. Data Memory Hierarchy

Application: As the amount of data required increases substantially from one gen-
eration of the application to the next, e.g. a higher data rate in wireless applications

51

Chapter 4. High Level Architecture and Compiler Requirements: COFFEE framework

or a higher resolution in image/video applications, it is important to e�ciently handle
the transfers of this large amount of data. Typical embedded applications exhibit both
spatial and temporal data locality, which can be exploited (using source code transfor-
mations as discussed in [ECWF00]) to reduce the cost of the data memory hierarchy by
optimizing the reuse.

Architecture: When the application can be analyzed at compile time, the data trans-
fers can be managed by the programmer or compiler and a scratchpad can be used
instead of a cache [SWLM02, BSL+02b, PND98b, Mar03]. In the case of a scratch-
pad, the data transfers from the higher level memories to the scratchpad memory are
programmed explicitly and handled by a DMA engine. This programming overhead is
acceptable as it can be done at design-time. In rare cases where embedded applications
exhibit truly random accesses and their access pattern can not be analyzed at compile
time, they can still use (hardware controlled) caches [Abs07].

Implementation: From the perspective of circuit (and layout) design it is not always
possible to design one large memory. Because of the increasing cost of long interconnect
[JNH06, SK99, ITR07], very large monolithic memories are increasingly di�cult be to
built in scaled technologies. Therefore the memory can be partitioned into banks and
internally into sub-banks. Furthermore the use of multiple levels of hierarchy and the
DMAs should also be taken into account while �oor planning.

4.2.3. Foreground Memory Organization

In case of VLIWs, register �les form the core part of the data communication across the
di�erent slots and clusters as a storage element. Alternatively, as in CGRAs, part of that
communication can be pushed to the interconnect between di�erent PEs. Therefore, in
both, centralized and distributed register �les, the PE pipeline registers and the inter-
slot or inter-PE interconnect are all considered to be part of one architectural component
and they need to be optimized together. From here on register �les and the connections
between the slots are together called the foreground memory organization in the rest of
the thesis.
As foreground memory forms one of the core parts of the processor architecture and

given that it is one of the biggest bottleneck, new ways to optimize it need to be con-
sidered.

Application: Di�erent types of data: Current embedded applications contain various
types of data, from array data that have high spatial locality to scalar data that store
e.g. a single coe�cient or a temporary value. Unlike the data layout of the data memory
hierarchy, that explicitly allocates (parts of) arrays to scratchpads and optimizes the
transfers with local copies, at the register �le all data is treated the same. Array data
is stored together with temporary variables, without any concept of data layout. By
introducing the data layout concept at the level of the traditional register �le, the speci�c

52

4.2. Architecture optimization using cross-abstraction and cross-component relations

properties of di�erent data elements in terms of spatial locality, temporal locality, size,
life time etc. can be exploited. In conventional architectures and compilers this is not
yet done.

Architecture:

� Heterogeneous register �le: To be able to split the di�erent types of data and treat
them accordingly, a heterogeneous foreground memory architecture is needed. A
separate register �le for scalar variables will enable to perform a more optimized
data layout for the streaming data (e.g. a wider register �le for SIMD data and a
narrower scalar register �le). Splitting o� the address computations into separate
slots (see below) enables the use of an optimized register �le for the address path.

� Energy cost per access: From the architectural perspective, about 50% of the
power consumption of a typical L1 data memory (around 64K) is spent in the
decoding logic. The other 50% is spent in the actual data storage, in the memory
cells [AH00, Eva95]. The spatial locality that is available in array data of the
streaming type can be exploited by loading them together into the register �le by
a wide load/store from the memory. The overhead of the address decoding in the
memory will thereby be distributed over a number of words.

Additionally, the energy cost per access scales with the number of ports [RDK+00], as
an increase in the number of ports leads to an increased load for every register �le cell.
Therefore, multi-ported register �les can be replaced by a clustered register �le archi-
tecture, with multiple register �les that have less ports each. From the cost per access
point of view, a form using only single-ported register �le cells is therefore advisable.
In today's architectures this is not achievable due to restrictions in both architecture
and compiler, that would lead to poor performance and utilization. Therefore a more
disruptive foreground memory change is needed to reach this goal, where architecture
and compiler modi�cations are coupled/entangled.

Implementation: Finally, from the layout perspective, it is important that the wire
lengths of the interconnect inside the register �le and of the complete foreground memory
organization (including the connections to the other slots) should be optimized. Accesses
to the foreground memory are very frequent and heavily communicating components
are close together. This activity-aware �oor planning is compatible with the approach
presented by [J.G08], but here the concept is applied at a �ner granularity.

Proposed solution: Some intermediate values in parallel architectures often have a
single cycle life-time, so, it does not make sense to store the variable into the register
�le organization. In this case it is more e�cient to use the forwarding network that
writes the result of one Functional Unit after the execute pipeline stage directly into
the pipeline register before the execute stage of the next FU. This type of forwarding is
commonly found in DSPs and forms an integral part of the proposed foreground memory
organization.

53

Chapter 4. High Level Architecture and Compiler Requirements: COFFEE framework

M bits

Bank 1 Bank 2 Bank N−1

M bits

X VWRs

N * M bitsData Bus

L1 Data memory

(b) VWR Based Register File(a) Clustered Register File

L1 Data memory

M bits

M bits

Register FileRegister File

M bits

Bank 0

Figure 4.3.: Very Wide Register: A register �le solution for streaming data with spatial
locality

For variables with a longer lifetime, a novel architecture solution is proposed. Figure
4.3(a) shows a typical clustered register �le where the interfaces between the memory
and the register �le on one hand and between the data path and the register �le on the
other hand are of equal width. Data can be copied word by word into the register �le,
with no restrictions on the data layout in the L1 data memory. Figure 4.3(b) shows the
proposal of a Very Wide Register (VWR), a foreground memory organization optimized
for streaming applications that exhibit a large amount of spatial locality. The VWR
has a wide interface (width of a complete SPM row) towards the memory and a narrow
interface (width of a data-path word) towards the data path. From the data-path side,
through an interconnection network, SIMD FUs can read out data words that internally
contain many sub-words. The wide interface towards the memory allows a large amount
of data to be transferred to/from the VWR with a single memory decode. Wiring
capabilities are not a limiting factor due to the high number of metal layers available in
current DSM technologies. This implies a reduced decode overhead for the L1 memory,
but requires a careful data layout and increased compiler complexity to maximize the
number of useful data words to be present in this transfer. One multi-ported register �le
can be replaced by a set of VWRs. While there are e�ectively two ports, one towards
the memory and one towards the data path, the VWR storage cells remain single-ported
as both the ports are not simultaneously accessed. This single-ported cell nature of the
VWR internally reduces the energy cost per access compared to a multi-ported register
�le, at the cost of an increased complexity for the compiler. The physical layout of the
VWR and SPM can be matched (pitch alignment) to reduce the interconnect length
between both. Therefore the layout of the physical implementation should be such that
the VWR and SPM are placed next to each other.

The gains that can be expected when moving from a traditional register �le architec-
ture to a VWR-based foreground memory organization depend on the assumption that

54

4.2. Architecture optimization using cross-abstraction and cross-component relations

the cost of interconnect increases when scaling to DSM technologies and the improve-
ments will be less if the cost of interconnect can be reduced by technology modi�cations.

4.2.4. Instruction/Con�guration Memory Organization (ICMO)

A traditional instruction memory organization consists of an L1 instruction memory
which is controlled by a program counter (PC). As increasingly parallel architectures
require more instructions to be fetched every cycle, the instruction memory needs to be
wider and therefore consumes a lot of energy.

Application: Applications typically consist of di�erent control �ows merged into a sin-
gle combined control �ow, e.g. the address-generation part of the program is mixed with
di�erent data producer-consumer chains into one sequence of operations. Mixing the
di�erent �ows seemingly simpli�es the programming, but the e�ciency of the instruc-
tion memory can be improved if the di�erent �ows can be handled separately. To enable
this in current architectures is however not possible.
Additionally, most applications contain both control intensive parts and regular ker-

nels that perform the most computationally intensive parts. The kernels are structured
as nested loops and form the core of most embedded applications. By matching the
instruction memory organization to the kernel structure, the overall e�ciency can be
improved.

Architecture: Traditional instruction memory organizations consists of a monolithic
L1 instruction memory, controlled by a single program counter (PC). Recently, academic
and some industrial architectures have introduced a small instruction memory closer
to the processor, called loop bu�er or L0 memory [SHmWH01, IBM05, UWW+99].
This small L0 memory contains the instructions for a kernel, together with a small
zero-overhead loop (ZOL) control or a loop controller (LC). During loop execution,
instructions are fetched from the loop bu�er and the L1 instruction memory can be put
to sleep (by either Vdd throttling or clock gating). Due to the extra copy that is needed
to move the kernel instructions from the L1 to the loop bu�ers, there is a trade-o�
involved. For some instructions in control-intensive parts of the code it will be di�cult
to gain back the cost of this extra copy. Therefore, these control-intensive parts are still
directly fetched from the L1. This approach is compatible with the use of non-volatile
memories for the L1 instruction memory in order to reduce leakage energy consumption
in the L1 memory.
The concept of a loop bu�er can not only be used for di�erent slots of the data path,

but is also useful for other platform components that need to be programmed, e.g. the
DMA, interconnect networks, etc. However, the activity of e.g. the DMA and the data
path can be very di�erent. Therefore sharing a single loop bu�er and keeping the control
centralized will normally lead to ine�ciency.
To obtain a more optimal solution, the control of loop bu�ers for di�erent parts of

the architecture can be split in order to match the application constraints, resulting in

55

Chapter 4. High Level Architecture and Compiler Requirements: COFFEE framework

and distributed loop controllers

LC LC LC

S
lo

t

S
lo

t

S
lo

t

S
lo

t

S
lo

t

S
lo

t

S
lo

t

S
lo

t

S
lo

t

S
lo

t

S
lo

t

S
lo

t

Instruction Level 1 Memory Instruction Level 1 Memory

P
h
y
si

ca
l

L
0

In
st

ru
ct

io
n
 C

lu
st

er

P
h
y
si

ca
l

L
0

In
st

ru
ct

io
n
 C

lu
st

er

Loop Buffer Loop Buffer Loop Buffer Loop Buffer

PC PC

L0 Control Cluster 1 L0 Control Cluster 2

with a centralized single loop controller
(a) VLIW processor physically distributed loop buffers (b) VLIW processor withphysically distributed loop buffers

Figure 4.4.: Distributed Loop Bu�er: An instruction memory solution for optimal in-
struction issuing

distributed control loop bu�ers. By splitting the control, components that are not active
for a certain number of cycles can be kept under low-leakage/sleep mode.

Implementation: Physically distributed loop bu�ers are placed (during layout) close
to the parts of the processor they control. This can be achieved using activity aware
�oor-planning techniques like [J.G08] and distributing the loop bu�ers as explained in
[Jay05a].
Figure 4.4(a) shows a state-of-the-art physically distributed loop bu�er as explained

in [Jay05a]. Figure 4.4(b) shows the proposed physically distributed loop bu�er with
distributed control which would enable di�erent parts of the program to be controlled
in an e�cient way, based on its corresponding activity.
The Very Wide Register and the distributed loop bu�er are the main contribution of

Raghavan PhD Thesis [Rag09].

4.2.5. Data-Path Parallelism

Although the data path operations are not the most important contribution to the
energy consumption in Figures 4.1 and 4.2, the data-path style has a large e�ect on how
the register �les and instruction/con�guration memory organization will be used. The
organization of the data path determines the complexity and, consequently, the cost of
the interconnect. Current embedded processors exploit parallelism in order to provide
a su�cient amount of performance, while still keeping the energy consumption under
control. They can however di�er in the way they do this. As not all approaches are as
energy e�cient, this section discusses the trade-o�s involved.

Application: The computationally intensive kernels of most embedded applications
contain parallelism at di�erent levels: e.g. across di�erent pixels, blocks of pixels or
frames of a video sequence. Di�erent types of parallelism follow from the way it is
extracted from the application. When di�erent iterations of a loop are being executed
in parallel, this is called Loop Level Parallelism (LLP). The parallel execution of di�erent

56

4.2. Architecture optimization using cross-abstraction and cross-component relations

instructions, either from outside or inside a loop, is called Instruction Level Parallelism
(ILP). Finally, the execution of multiple instructions of the same type on di�erent data
is called SIMD or Data Level Parallelism (DLP). The amount of parallelism of di�erent
types that can be extracted depends on the application dependencies. Ideally, processors
should contain a mixture of slots of di�erent widths: very wide SIMD units for regular
kernels that contain a large amount of DLP, together with medium wide units for kernels
with more control and scalar units for non-DLP code.

Architecture: Embedded processors can be designed to exploit one or a combination
of these types of parallelism. Both embedded VLIW processors and CGRAs provide
parallel slots or PEs and use software pipelining to convert the LLP into ILP (See Fig-
ure 4.5). Separate instructions (although combined into a single very large instruction
in VLIW terminology) control the parallel slots or PEs, which gives a lot of freedom
to the compiler with respect to how to overlap the di�erent iterations (still respect-
ing the dependencies) and how to place the di�erent instructions on the slots. As a
downside, exploiting ILP requires managing a large number of separate units and the
communication between them for every instruction of the overlapped loops, which leads
to a signi�cant amount of energy that is spent in the ICMO (Instruction/Con�guration
Memory Organization).

ti
m

e

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

lo
o

p

sl
ot

sl
ot

sl
ot

sl
ot

sequential ILP

(SIMD)sl
ot

DLP

Figure 4.5.: Converting Loop Level Parallelism (LLP) into Instruction Level Parallelism
(ILP) or Data Level Parallelism (DLP)

When subsequent iterations can be overlapped completely, the parallelized operations
are of the same type and subword parallelism or SIMD can be used. This means that
they can be executed on the same FU (wider and slightly modi�ed to separate the
data). The advantage of exploiting DLP is that the resulting SIMD instruction executes
multiple (e.g. 4 as shown in Figures 4.5) operations in parallel, but is still steered by
a single instruction, hence Single Instruction Multiple Data or SIMD. This leads to a
more energy e�cient parallelization than exploiting ILP.

57

Chapter 4. High Level Architecture and Compiler Requirements: COFFEE framework

A common approach to extract DLP from a loop is to overlap multiple iterations of
a loop. The amount of DLP that can be extracted this way corresponds to the number
of iterations that can be fully parallelized without breaking dependencies between the
iterations. This freedom is usually limited.
Architectures can exploit both ILP and DLP. State-of-the-art embedded VLIW pro-

cessors support SIMD [Tex00, vdWVD+05], while subword parallelism in CGRAs is far
less common.
In conclusion, the total number of separate slots can be reduced for the same per-

formance by using DLP. Therefore the relative contribution of the cost of the instruc-
tion/con�guration memory to the total energy consumption can be reduced. Secondly,
the reduction in the number of slots leads to a reduction in the complexity of the inter-
connect. Because of this motivation, the processor architecture should �rst exploit all
available DLP and only then, if required, a limited amount of ILP can be used to reach
the required real-time performance. The ICMO should also be organized in a distributed
fashion and customized to the di�erent slots in order to be e�cient.

Implementation: As with the register �le architecture and physically distributed loop
bu�ers, it is important to place the data-path slots as close as possible to where they are
needed. E.g. the units that will compute the addresses (address generation units can be
placed closer to the interface to the memory and do not need to be grouped with the data
computation units). Additionally, the most heavily communicating slots can be placed
next to each other in the �oor plan. In order to optimize the implementation of the data-
path units, without going to a full custom design, so-called Data-path Generators (DPG)
can be used. Given that it is more favorable to exploit SIMD, each of the sub-word data
paths can be optimized using semi-custom logic instead of random standard-cell based
place and route. Such a semi-custom/custom based data path will consume signi�cantly
less area and energy, as demonstrated in [WGN01].

4.2.6. Data path - Address path

Application: Operations that contribute to the execution of the target application are
di�erent from the ones that compute the memory addresses for loads and stores. Both
types of operations have di�erent characteristics, like e.g. dynamic range and di�erent
dependence chains. By separating them, their execution can be made more e�cient.
As various data optimizations like DTSE [PCD+01a, FSG+98] substantially increase

the addressing complexity, the address calculations can consume a signi�cant amount of
resources and should be looked at in detail. Hence, platform-independent source code
transformations have been proposed to reduce this overhead (as shown in chapter 3).
On top of that, a separate platform-dependent compiler phase will be added in chapters
5 and 6 to further mitigate this problem.

Architecture: Most processors perform data and address computation operations on
the same slots. As the operations that compute the addresses and the data computations

58

4.3. Putting it together: FEENECS Architecture Template

of the application algorithm follow separate dependence chains, they can be separated
onto di�erent sets of slots. Only the load/store operation forms a synchronization point
between the two paths.
Address calculations have di�erent characteristics than operations on data. The dy-

namic range of calculations on addresses (�xed range of e.g. 16 bits depending on
memory size) and iterator values is not necessarily the same as the dynamic range of the
data (e.g. 8 bit data for pixels). Separating the data path and address path enables the
FUs to be of di�erent widths. Additionally the instruction set of address and data path
can be customized, in order to optimally support the required operations. This will lead
to larger performance and energy gains.

Implementation: Using the same high level layout directives that have been mentioned
above, the data path and address path FUs can be grouped with their respective register
�les (or VWRs), memory interfaces and loop bu�ers.
A more detailed description of the split between address path and data path can be

found in [Tanon].

4.3. Putting it together: FEENECS Architecture

Template

Figure 4.6 combines the optimizations for di�erent components that have been presented
in the previous Sections. The presented processor design is still a template and archi-
tecture exploration within this template is required to �nd the optimal architecture for
one application or a set of applications. Based on the performance requirements and on
initial feedback from synthesis for a certain technology node, the pipeline depth of this
in-order processor has to be �xed.
The most notable components of Figure 4.6 are the data memory hierarchy, that

consists of an L2 background data memory that is accessed over a generic global com-
munication architecture (NoC, Bus or other). Data is transferred from this L2 memory
into the L1 Data memory, a scratchpad memory, by the DMA. From there on, complete
lines of the SPM are moved to the VWRs for data parallel computations and single
values can be copied to a scalar RF. The AGU units are also placed close to the back-
ground or foreground memory units between which organize the transfers. Preferably
they are even split over read and write ports so that they can be fully local to the port
they are providing addresses to. The data-path FUs also come in two types: (1) a set
of Complex FUs that balance DLP and ILP (a set of SIMD FUs) and use extensive
forwarding to reduce VWR accesses, and (2) a set of control FUs that are of scalar
type and access the scalar RF. On the instruction side, the L1 Instruction memory can
be accessed directly by control code, but for the kernels, a set of physically distributed
loop bu�ers are used (placed next to the components they control). To improve the
e�ciency of the instruction memory, these loop bu�ers also have distributed control and
can synchronize at certain points using local controllers (LCs). As they do not follow

59

Chapter 4. High Level Architecture and Compiler Requirements: COFFEE framework

Control PEs

Complex

PE

Complex

PE

Complex

PE

Complex

PE

Complex

PE

Complex

PE

Distributed and Sub−banked

L1 Data SRAM LC

RF

PE

Scalar
Scalar

RF

Scalar

RFPE

Scalar

DMA

LB

LC

LC

DMA

RF

LC AGU

LB

AGU

PEs

In
terco

n
n
ect

(N
o
C

/B
u
s/O

th
er In

terco
n
n
ect)

L
2
 D

ata M
em

o
ry

o
r L

2
 D

ata v
ia N

o
C

o
r S

D
R

A
M

 etc.

Generic Interconnect (Bus/P2P/Seg Bus etc.)

Generic Forwarding Interconnect

Very Wide Registers

(Sub−banked)

Memory

Instruction

L1

DP

LB

VWR

LB

Management

Instruction Traffic

Figure 4.6.: Complete high level e�cient architecture: FEENECS architecture template

a single program counter (PC), the number of NOP (no operation) entries is heavily
reduced in applications that exhibit very di�erent activation frequencies for the di�erent
components.

The communications between di�erent processors of this type (inter processor commu-
nication) is compatible with other related work like [ADD+08], while the intra processor
connections can be optimized using techniques like segmented buses etc. [Pap06].

In this architecture template, the implementation and layout guidelines that have
been discussed in the previous sections have been used to group the di�erent architec-
tural components based on their communication requirements in order to reduce the
interconnect cost. Hierarchically structured hardware design using Data-path Genera-
tion [RWT05] and Energy-aware �oor-planning [J.G08] can be used to propagate these
constraints down to the physical implementation.

The set of architecture modi�cations that is presented above has led to the �ling of a
patent, as described in [RC06].

In order to make use of any e�cient architecture, a scalable and retargetable compiler
that can compile to it is required. The next section explains a high level compiler �ow
to perform a phase decoupled compilation for such a processor template.

60

4.4. Energy estimation model

4.4. Energy estimation model

The COFFEE framework enables early estimates with enough accuracy since at this ab-
straction level, the full hardware description is not yet needed and therefore exploration
can be faster. After architectural exploration and optimizations, when the hardware is
�xed, a complete and more accurate gate level simulation and estimation is then possible.
In the COFFEE framework, di�erent instances of the components of the processor

(Register File, ALU, pipeline registers, etc.) were designed at RTL level with an opti-
mized VHDL description. For each instance, logic synthesis is done with the UMC90nm
general purpose standard cell library from Faraday [Far07] also used for the ASIC power
model (in chapter 2). The result of the whole process is a library of parametrized energy
models. The energy per activation and leakage power for the di�erent components are
estimated from the activity information from gate level simulation and the parasitic in-
formation. Since memories are highly optimized custom hardware blocks, the standard
cell hardware design �ow cannot be used. Instead, di�erent memories were modeled
using a commercial memory compiler from Artisan [ARM].
Finally, the precomputed library contains the energy annotations (dynamic and leak-

age) for various components of the processor using standard cell �ow, and for memories,
using the commercial memory compiler. A detailed description of the complete energy
model is fully described in [RLA+08].

4.5. Summary

In this chapter we have seen the main features and possibilities of the COFFEE compiler
and architecture framework. This framework will be used in chapter 5 and 6 to obtain
the simulation results of the di�erent benchmarks and applications used.

61

62

CHAPTER 5

AGU template

�That's thirty minutes away. I'll be there in ten.�

The Wolf. Pulp Fiction

Di�erent optimizations can boost performance and reduce energy consumption. Data
Transfer and Storage Exploration (DTSE) optimizations [Cat02, CBGN98, CD00, Cat99,
GH96] are crucial to e�ciently map data intensive applications onto programmable
platforms. DTSE transformations modify the initial code to minimize the load of shared
memory buses, which is the main source of power consumption [WCNM96]. The data
memory access related impact on energy and cycle count is usually dominant in such data
intensive applications. Hence, it is motivated that applying these DTSE transformations
to the source code is initially performed without worrying yet about the impact on other
components in the platform. Hence, after the DTSE stage a direct implementation of
the resulting code would lead to a high expense on addressing and local control. That
is not desirable, so, in the overall methodology of [Cat02, CBGN98], it is proposed
to complement the DTSE methodology with a postprocessing ADress OPTimisation
(ADOPT) stage where this overhead is largely removed again. In [FM04, Fal05], the
author gives a detailed explanation on how to reduce control �ow at source code level.
With those techniques, the control �ow overhead introduced by DTSE is signi�cantly
reduced (even with respect to the original code). Also related to the address generation
itself, several techniques have been proposed to alleviate the cost, as shown in our review
of chapter 3. Combining all these postprocessing steps should give us already a signi�cant
reduction of the overhead. But at the level of the address generation itself, we believe
that we can go further in the improvement to provide even more optimal results.
In this chapter, we introduce the methodology and framework used to create a more

energy-optimized address generation unit template that targets the embedded multime-
dia domain. That template can then be tuned to the speci�c application by hand to

63

Chapter 5. AGU template

produce very energy-e�cient AGU instances. To create such a unit, we have studied
di�erent representative applications of the domain and we have identi�ed the hardware
elements needed to optimize the address generation process. At the end of the chapter
we present an optimized AGU instance taking as basis the template used.

5.1. AGU Mapping Framework

For the AGU template, we have used a mapping framework based on the task parti-
tioning framework described in [TSU+] by Taniguchi et al. In this section, �rst of all,
we will summarize the task partitioning framework used for dynamic recon�gurable ar-
chitectures, its main features and limitations. After that, we will analyze the proposed
recon�gurable AGU model used and �nally, we will show the AGU mapping framework
which is an extension of the global task partitioning framework.

5.1.1. Task Partitioning Framework for Dynamic Recon�gurable
Architectures

To evaluate various dynamic recon�gurable architectures, Taniguchi, et al. [TSU+]
proposed a Parameterized Recon�gurable Processor model (PRP-model) and a task
partitioning optimization algorithm based on Simulated Annealing (SA) for architecture
exploration, corresponding to their proposed PRP-model.
The PRP-model consists of an homogeneous array of Processing Elements (PEs), inter-

nal memories with di�erent capacities, and con�guration memory to store con�guration
data (instructions). Every speci�cation of the PRP-model is de�ned by parameters and
an overview of the PRP-model is shown in Figure 5.1.

External Memory

Internal
Memory #1

#2

#n
in_mem

Parameterized Reconfigurable Processor Model

p
in_r

p
in_w

p
ex_r

p
ex_w

PE array

C
o

n
fig

u
ra

tio
n

 M
e

m
o

ry

Figure 5.1.: Overview of PRP-model

The task partitioning optimization algorithm, based on Simulated Annealing, divides
tasks into subtasks to minimize execution cycles considering recon�guration overhead

64

5.1. AGU Mapping Framework

for the PRP-model. Figure 5.2 shows an overview of published task partitioning frame-
work. This generic framework can be used to instantiate and map onto a recon�gurable
architecture. This allows evaluation of various architectures for speci�c applications by
changing PRP-model parameters. For given DFG and PRP-model parameters, the task
partitioning framework divides DFG into sub-DFGs (SUB0, SUB1, and SUB2 shown
in Figure 5.2) to minimize execution cycles. By setting several PRP-model parame-
ters and applying the task partitioning algorithm, designers can easily evaluate various
recon�gurable architectures.

0 1 2

3 4

5 6

7

8

0 1 2

3 4

5 6

7

8

SUB0

SUB1

SUB2

Task Partitioning FrameworkPRP-model Parameters
 - #PE
 - #Reg., Latency of R/W
 - Reconf. Overhead
 - etc.

0 1 3

2 4

5 6 7 8

SUB0

SUB1

SUB2P
ar

tit
io

ni
ng

 R
es

ul
ts

DFG

Figure 5.2.: Overview of Task Partitioning Framework

However, this task partitioning framework has some limitations in solving the AGU
mapping and exploration problem. One main limitation is its highly abstracted model
which assumes that all the PEs in the array are homogeneous. To calculate complex
addressing with a strict energy constraint, architecture optimization considering hetero-
geneous PE array is necessary because modulo and multiplier are more energy consuming
than addition, subtraction, and shift, and it is di�cult to implement them for each PE.
Therefore, in order to reuse the task partitioning framework for AGUmapping and explo-
ration, we have signi�cantly extended the initially proposed PRP-model, which assumes
only a homogeneous PE array. In order to arrive at truly energy-optimized AGUs, we
need to include a more heterogeneous model, and we have modi�ed the task partition-
ing algorithm to map applications e�ectively on this hybrid array. To further retarget
the task partitioning framework, we have also added di�erent types of functional units
which are mostly found in DMAs and other state-of-the-art AGUs. All these innovative
extensions will now be described in more detail.

65

Chapter 5. AGU template

5.1.2. Recon�gurable AGU Model

The recon�gurable AGU model, which corresponds to a heterogeneous PRP-model, has
nPE PEs and their corresponding pipeline registers. Each PE has a heterogeneous func-
tion with its speci�c latency and is fully connected to any other PE output (except its
own output). Because of this full connection, placement and routing don't have to be
considered .
Figure 5.3 shows one example of the proposed recon�gurable AGU model which has

four PEs. PE0 and PE1 have a latency of 1 cycle and implement add and sub instructions
indicated by '+' and '-'; and PE2 has 4-cycle-latency multiply instruction indicated by
'*'; and �nally, PE3 has 30-cycles-latency modulo instruction indicated by '%'. Because
of the full connection, the order in which the PEs are organized is not important. For
example, the array would have the same functionality if PE0 was swapped with PE3.
Thus, we can consider the AGU model in which any PE can be swapped with any other,
as shown for example in Figure 5.3.

PE0
(’+’,1), (’-’,1)

Reg.

MUX MUX

PE1
(’+’,1), (’-’,1)

Reg.

MUX MUX

PE2
(’*’,4)

Reg.

MUX MUX

PE3
(’%’,30)

Reg.

MUX MUX

Figure 5.3.: Recon�gurable AGU Model

5.1.3. AGU Mapping Framework

Figure 5.4 shows an overview of the AGU mapping framework. For a given DFG of
address calculation and recon�gurable AGU speci�cation, the AGU mapping framework
does the scheduling and the mapping of the DFG onto a certain architecture using the SA
algorithm to minimize cycle count. By AGU mapping framework, the DFG of address
calculation is partitioned into sub DFGs (AC0, AC1, AC2, and AC3 shown in Figure
5.4) and each node is assigned to one PE in the con�guration. For more information on
the algorithm used for scheduling and allocation the reader can refer [TSU+07].
When the algorithm is performing scheduling and allocation, for each iteration in the

simulated annealing, the algorithm moves an assigned instruction to another PE by four
types of MOVE operations. Assume that the add instruction indicated with '+' and
assigned at PE1 in ACn (shown in Figure 5.5), is selected in SA iteration. We have four
MOVE possibilities for this operation (shown in Figure 5.6):

� move to free PE in ACn-1 in Figure 5.6 (a),

66

5.1. AGU Mapping Framework

- + +

* %

% *

+

+

- + +

* %

% *

+

+

AC0

AC1

AC2

AGU Mapping FrameworkReconfigurable AGU Spec.
 - #PE = 4
 - PE0={(’+’,1cycle), (’-’,1cycle)}
 - PE1={(’+’,1cycle), (’-’,1cycle)}
 - PE2={(’*’,4cycle)}
 - PE3={(’%’,30cycle)}

- + *AC0

A
dd

re
ss

 C
al

cu
la

tio
n

M
ap

pi
ng

 R
es

ul
ts

DFG of
Address Calculation

AC3

PE0 PE1 PE2 PE3

+AC1
PE0 PE1 PE2 PE3

%

*AC2
PE0 PE1 PE2 PE3

%

+ +AC3
PE0 PE1 PE2 PE3

Figure 5.4.: Overview of AGU Mapping Framework

+ACn-1
PE0 PE1 PE2 PE3

%

*

ACn
PE0 PE1 PE2 PE3

%

+

+

ACn+1
PE0 PE1 PE2 PE3

Figure 5.5.: Initial State for Example of MOVE

+ACn-1
PE0 PE1 PE2 PE3

%

*

ACn
PE0 PE1 PE2 PE3

%

+

+

ACn+1
PE0 PE1 PE2 PE3

ACn’
PE0 PE1 PE2 PE3

ACn
PE0 PE1 PE2 PE3

%+

ACn’’
PE0 PE1 PE2 PE3

+ACn-1
PE0 PE1 PE2 PE3

%

*+ACn+1
PE0 PE1 PE2 PE3

(a) move to next / previous configuration (b) insert new configuration and move to it

Figure 5.6.: Example of MOVE

67

Chapter 5. AGU template

� move to free PE in ACn+1 in Figure 5.6 (a),

� insert new con�guration ACn' between previous con�guration and move to there
in Figure 5.6 (b),

� insert new con�guration ACn� between next con�guration and move to there in
Figure 5.6 (b).

When the last instruction in the ACn (shown in Figure 5.7 (a)) is moved to a PE in
another con�guration, an empty con�guration where no instructions are assigned may
occur. Then, the AGU mapping framework removes the empty con�guration (like Figure
5.7 (b)).
SA normally iterates by modifying the solution and accepting better solutions until

the at-end condition is satis�ed. To explore the given solution space e�ectively, invertible
MOVEs should be prepared. The proposed AGU mapping framework includes removing
empty con�gurations (shown in Figure 5.7). Therefore, we added insertion of a new
con�guration, which is the inverse of removing empty con�gurations (shown in Figure
5.6 (b)). Insertion of new con�gurations does not bring any e�ect for cycle counts
immediately, but this will usually bring new opportunities to get better solutions for
further iterations.

+ACn-1
PE0 PE1 PE2 PE3

%

*

ACn
PE0 PE1 PE2 PE3

%+

+

ACn+1
PE0 PE1 PE2 PE3

+ACn-1
PE0 PE1 PE2 PE3

%

* %+

+

ACn+1
PE0 PE1 PE2 PE3

(a) move to previous configuration (b) remove empty configuration

Figure 5.7.: Removing Empty Con�guration

5.2. AGU Exploration Framework

In this section we explain the proposed AGU exploration technique. The AGU explo-
ration framework iterates over the AGU mapping (as explained in the previous section)
using the AGU mapping framework over di�erent architecture candidates in the solution
space. To prune the search space of AGU architecture candidates, we assume that each
PE is capable of implementing a set of small DFGs. The PE implementation pattern
set includes all possible combinations of PE implementation patterns. Note that the
exploration of the pattern itself is outside the scope of this paper. Various works, like
[BCA+04, YM04] and others, tackle this problem. The AGU exploration framework
iterates over all possible combinations of the PE implementation patterns corresponding
to one architecture con�guration. The AGU mapping framework is in turn called to
perform scheduling and allocation on this architecture in order to evaluate its costs.

68

5.2. AGU Exploration Framework

Table 5.2 shows an example of a PE implementation pattern set. PE implementation
patterns (+) and (−) indicate a PE which executes add instructions and sub instructions,
respectively. PE implementation pattern (+,−) designates a PE which executes add or
sub instructions.

Let nptn and m be the number of PE implementation patterns and assumed PEs,
respectively. The number of architecture candidates in the solution space equals (nptn)m

because each PE has nptn implementation patterns. However, because of full connection
of recon�gurable AGU model, the AGU can implement the same functionality as the
AGU whose PEs are swapped. Therefore, the number of architecture candidates with m
PEs can shrink to nptnHm, which means repeated m-combinations from nptn elements.
Finally, the number of architecture candidates Ncand is described as follows:

Ncand =

maxPE∑
m=1

nptnHm

=

maxPE∑
m=1

(nptn + m− 1)!

m!(nptn − 1)!
, (5.1)

where maxPE is the maximum number of PEs. Usually, the number of functional units
in embedded processors is limited, and the maximum number of PEs maxPE may re-
alistically not increase so much. The number of PE implementation patterns (nptn) is
expected to increase when we consider special instructions for more e�ective address
calculation. Then, Ncand may explode because Ncand increases in factorial order of nptn.

Table 5.2 shows all architecture candidates for a given PE implementation pattern
(shown in Table 5.2) for the case of maxPE = 3. Notice that each architecture candidate
has a di�erent functionality, that is, it contains di�erent number of add and sub. When
we assume an input DFG which consists in only add, architecture candidates No. 1, 6,
and 15 cannot execute given DFG because they do not contain any add. In the same
way, by focusing on the number of instructions like add, sub, etc. in each candidate,
architectures can be explored e�ectively.

Pattern Speci�cation
(+) add
(−) sub

(+,−) add, sub

Table 5.1.: Example of PE Implementation Pattern

69

Chapter 5. AGU template

No. #PE Architecture Candidate #add #sub
0 1 (+) 1 0
1 1 (−) 0 1
2 1 (+,−) 1 1
3 2 (+), (+) 2 0
4 2 (+), (−) 1 1
5 2 (+), (+,−) 2 1
6 2 (−), (−) 0 2
7 2 (−), (+,−) 1 2
8 2 (+,−), (+,−) 2 2
9 3 (+), (+), (+) 3 0
10 3 (+), (+), (−) 2 1
11 3 (+), (+), (+,−) 3 1
12 3 (+), (−), (−) 1 2
13 3 (+), (−), (+,−) 2 2
14 3 (+), (+,−), (+,−) 3 2
15 3 (−), (−), (−) 0 3
16 3 (−), (−), (+,−) 1 3
17 3 (−), (+,−), (+,−) 2 3
18 3 (+,−), (+,−), (+,−) 3 3

Table 5.2.: Architecture Candidates: All Combination of PE Implementation Patterns
shown in Table 5.2 in case of maxPE = 3

Let mini and maxi be the minimum and maximum number of instructions of type i
that can be instantiated, respectively. Let narch

i be the number of instructions of type
i in an architecture candidate arch. AGU exploration framework tries to perform a
mapping only for architecture candidates which satisfy following equation.

∀i(narch
i ≥ mini) ∧ (narch

i ≤ maxi) = 1 (5.2)

When nDFG
i means the number of instructions of type i contained in given DFG, we

decide mini and maxi as follows.

mini =

{
0 if nDFG

i = 0
1 otherwise

(5.3)

maxi =

{
1 if nDFG

i = 0
nDFG

i otherwise
(5.4)

Based on the Equation 5.2, the AGU exploration framework can e�ectively eliminate
architecture candidates that do not fall into the relevant design space, as speci�ed by
the above constraints. This will reduce the worst-case exploration e�ort signi�cantly.
To enumerate architecture candidates and to apply the task partitioning algorithm

70

5.2. AGU Exploration Framework

for each one, an e�ective enumeration algorithm for all of them is needed. The proposed
architecture candidates enumeration algorithm tries to enumerate all repeated combi-
nation of given PE implementation patterns. Our basic idea for obtaining all repeated
combinations e�ectively is the pruning of the repeated permutation tree. Figure 5.8
shows the tree structure of the 3-repeated permutation of 3-patterns: (A), (B), and (C).
In all repeated permutations, for example in Figure 5.8, following repeated permuta-
tions can be regarded as the same repeated combination: {(A), (A), (B)}, {(A), (B),
(A)}, and {(B), (A), (A)}. To avoid duplicate representations, we represent all repeated
combinations in alphabetical order by elements. In previous example, supposed per-
mutations are regarded as one repeated combination: {(A), (A), (B)}. Then, we can
obtain all repeated combinations without any duplication by tracing all permutations
which only satisfy alphabetical order by element. Figure 5.9 shows a tree of all repeated
combinations, all repeated permutations which satisfy alphabetical order. Then, the
problem is how to trace the pruned tree e�ectively.

(A)
(B)
(C)

(A)(A)

(A)
(B)
(C)

(B)

(A)
(B)
(C)

(C)

(A)
(B)
(C)

(A)(B)

(A)
(B)
(C)

(B)

(A)
(B)
(C)

(C)

(A)
(B)
(C)

(A)(C)

(A)
(B)
(C)

(B)

(A)
(B)
(C)

(C)

{(A), (A), (A)}
{(A), (A), (B)}
{(A), (A), (C)}
{(A), (B), (A)}
{(A), (B), (B)}
{(A), (B), (C)}
{(A), (C), (A)}
{(A), (C), (B)}
{(A), (C), (C)}
{(B), (A), (A)}
{(B), (A), (B)}
{(B), (A), (C)}
{(B), (B), (A)}
{(B), (B), (B)}
{(B), (B), (C)}
{(B), (C), (A)}
{(B), (C), (B)}
{(B), (C), (C)}
{(C), (A), (A)}
{(C), (A), (B)}
{(C), (A), (C)}
{(C), (B), (A)}
{(C), (B), (B)}
{(C), (B), (C)}
{(C), (C), (A)}
{(C), (C), (B)}
{(C), (C), (C)}

Repeated Permutation

Figure 5.8.: Tree for 3-Repeated Permutations of 3-Patterns: (A), (B), and (C)

71

Chapter 5. AGU template

(A)
(B)
(C)

(A)

(B)
(C)

(B)

(C)(C)

(A)

(B)
(C)

(B)

(C)(C)

(B)

(C)(C)(C)

{(A), (A), (A)}
{(A), (A), (B)}
{(A), (A), (C)}
{(A), (B), (B)}
{(A), (B), (C)}
{(A), (C), (C)}
{(B), (B), (B)}
{(B), (B), (C)}
{(B), (C), (C)}
{(C), (C), (C)}

Repeated Combination

Figure 5.9.: Tree for 3-Repeated Combinations of 3-Patterns: (A), (B), and (C)

To trace the tree shown in Figure 5.9, we have constructed the architecture enumera-
tion algorithm in such a way that it includes the architecture enumeration and mapping
for each architecture shown in Figure 5.10. Let max_PE, PE_Impl, and Cand be
the number of limited PEs, a set of PE implementation pattern, and an architecture
candidate which is a set of PE implementation pattern, respectively. The proposed
algorithm is constructed by two functions: enumerate() and enumerate_sub(). The
enumerate_sub() deals with pruned search recursively, and enumerate() applies tree
search such that the number of combinations ranges from 1 tomax_PE. enumerate_sub()
includes two special variables to trace the tree e�ectively: level and start. The level con-
trols a depth of recursive call corresponding to the number of elements in a combination.
The start is to keep alphabetical order by propagating the previous element.

enumerate(max_PE ,PE_Impl){

for(i=1;i<= max_PE;i++){

Cand ={}

enumerate_sub(i,0,Cand ,PE_Impl);

}

}

enumerate_sub(level ,start ,Cand ,PE_Impl){

if(level >0){

for(i=start;i<# PE_Impl;i++){

Push i-th PE_Impl to Cand;

enumerate_sub(level -1,i,Cand ,PE_impl);

Pop from Cand;

}

}

else{

if(Cand satisfies Eq. (5.2))

Do AGU mapping to Cand;

}

}

Figure 5.10.: Architecture Candidate Enumeration Algorithm

Figure 5.11 shows a part of relation of enumerate_sub() function calls for the follow-
ing assumption: the number of patterns in a combination is 3, and 3 PE implementa-
tion patterns, (A), (B), and (C) are prepared. Each rectangle including �(A),� �(B),�

72

5.3. Benchmarks and Applications

and �(C),� connected arrow with dash line, or �Map� represents each function call of
enumerate_sub(). Arrows with solid line between each rectangle means functions call
and return.
For each enumerate_sub() call, a pattern which is the same as start or successor

of start is pushed to Cand. Then, the level is decremented and enumerate_sub() is
recursively called again. Once called enumerate_sub() has returned, the pushed pattern
is popped from Cand, and the next pattern is pushed to Cand. Then, enumerate_sub()
is called recursively once more. Finally, when the level reaches 0, mapping is applied to
Cand. Applying this procedure recursively, we can trace a pruned tree like Figure 5.9 and
e�ectively explore the entire solution space. In this way, for all repeated combinations,
all repeated permutations which keep alphabetical order, are e�ectively enumerated.

(A)(A)

(B)

(C)(C)

(A)

level=1
start=(A)
Cand={(A), (A)}

level=2
start=(A)
Cand={(A)}

level=3
start=(A)
Cand={ }

level=1
start=(B)
Cand={(A), (B)}

Map

level=0
start=(A)
Cand={(A), (A), (A)}

level=0
start=(B)
Cand={(A), (A), (B)}

(B)

(C)

level=0
start=(C)
Cand={(A), (A), (C)}

level=0
start=(B)
Cand={(A), (B), (B)}

(B)

(C)

level=0
start=(C)
Cand={(A), (B), (C)}

level=0
start=(C)
Cand={(A), (C), (C)}

level=1
start=(C)
Cand={(A), (C)}

(B)

(C)

level=2
start=(B)
Cand={(B)}

level=2
start=(C)
Cand={(C)}

Map

Map

Map

Map

Map

Figure 5.11.: Function Call of enumerate_sub() for Tree Search

5.3. Benchmarks and Applications

A benchmark is a standard program or set of programs which can run on a computer
in order to assess the relative performance. It must be representative of the application
domain to stress the key processor and compiler features necessary to run e�ciently.
In this work, we used several benchmarks and some complete applications to test the
e�ectiveness of the proposed AGU.

Benchmarks:

The MediaBench [LPMS97] benchmark suite includes representative applications from
the multimedia domain that are expected to be part of representative future multimedia
applications. This includes video, image and audio coding and decoding, encryption
algorithms, and 3D rendering.

73

Chapter 5. AGU template

JPEG: JPEG is a standardized compression method for full-color and gray-scale images.
JPEG is lossy, meaning that the output image is not exactly identical to the input
image. Two applications are derived from the JPEG source code; cjpeg does image
compression and djpeg does decompression.

ME: The ME (Motion Estimation) is a key part of video compression used by MPEG 1,
2 and 4 as well as many other video codecs. The ME is the process of determining
motion vectors that describe the transformation from one 2D image to another;
usually from adjacent frames in a video sequence. The motion vectors may relate
to the whole image (global motion estimation) or speci�c parts, such as rectangular
blocks, arbitrary shaped patches or even per pixel. The motion vectors may be
represented by a translational model or many other models that can approximate
the motion of a real video camera, such as rotation and translation in all three
dimensions and zoom.

MPEG2: MPEG-2 is the current dominant standard for high-quality digital video trans-
mission. The important computing kernel is a discrete cosine transform for coding
and the inverse transform for decoding. The two applications used are mpeg2enc
and mpeg2dec for encoding and decoding respectively.

GSM: European GSM 06.10 provisional standard for full-rate speech trans-coding, prI-
ETS 300 036, which uses residual pulse excitation/long term prediction coding at
13 kbit/s. GSM 06.10 compresses frames of 160 13-bit samples (8 kHz sampling
rate, i.e. a frame rate of 50 Hz) into 260 bits.

ADCPM: Adaptive di�erential pulse code modulation is one of the simplest and oldest
forms of audio coding. adpcm decode is the decoder and adpcm encode is the
encoder.

Real-life applications:

In addition to the benchmarks we also want to evaluate the proposed techniques with a
consistent set of real-life applications.

Cavity_detector: The cavity detection benchmark [BTC89] is part of a medical imag-
ing application to detect cavities on tomography scans. The part of the application
that is used as a benchmark is a chain of custom imaging �lters.

QSDPCM: Quad-tree Structured Di�erence Pulse Code Modulation algorithm is an
inter-frame compression technique for video images. It involves a hierarchical
motion estimation step, and a quad-tree based encoding of the motion compensated
frame-to-frame di�erence signal.

MPEG4: The MPEG4 is the complete application that drove chapter 2 and the opti-
mizations and results explained will be analyzed in detail in chapter 6.

74

5.4. Experimental results and �nal template

5.4. Experimental results and �nal template

Data-�ow dominated applications are based on intense computations in the inner most
loops of the codes, and Amdahl's law [Amd67] argues in favor of speeding up these
parts of the algorithms. Moreover, accessing memories to bring data to the data path is
costly in terms of energy. As we saw in chapter 3, many optimizations are possible, both
architecture-dependent and independent. Those optimizations are crucial to improve
speed and the energy e�ciency but introduce a high expense on addressing and local
control, for example by adding complex modulo operations, especially in the addressing
part of the codes.

To obtain a good general address generation unit capable of dealing with many mul-
timedia applications in an e�cient way, we have used the applications and benchmarks
mentioned in the previous section in the AGU mapping framework with di�erent ar-
chitectures. The three real-life applications (cavity detector, QSDPCM and MPEG4)
and the ME benchmark have been optimized with some DTSE and some control �ow
techniques explained in [FM03, FV04, Fal05, FM04] before the AGU exploration.

In this work, we have considered the three inner most loops being k, j and i the
iterators of the loops from the outer to the inner iterator as we can see in �gure 5.12.

for (k=init_val_k; k<lim_val_k; k++){

for (j=init_val_j; j<lim_val_j; j++){

for (i=init_val_i; i<lim_val_i; i++){

code_to_be_executed;

}

}

}

Figure 5.12.: Aspect of the inner most loops of the di�erent benchmarks

Table 5.3 shows the needed operations used in the inner loops of the di�erent bench-
marks or applications and these operations are the ones needed to be mapped to the
PEs of the AGU.

We can then construct the template AGU which will be capable of dealing with these
operations speeding up the process of address generation. Table 5.4 shows the proposed
PEs for the AGU template targeting the applications and benchmarks used, and �gure
5.13 shows the template in a similar fashion to �gure 5.3.

75

Chapter 5. AGU template

* The MPEG4 application was manually optimized by applying the techniques explained in

chapter 6.

Table 5.3.: Operations needed for the di�erent benchmarks and applications

Table 5.4.: Operations on the PE

Once the topology of the PEs of the AGU has been determined, we can then integrate
this AGU in the machine description used in the COFFEE framework (chapter 4) to
simulate the behavior of the processor. For those experiments, we used two di�erent
processors. The �rst processor (a.k.a base processor) was build in a similar fashion to
the TI TMS c67 DSP family [TI-]. This DSP has two clusters with four functional units

76

5.4. Experimental results and �nal template

each, as we can see in �gure 5.14. Each cluster has one functional unit with a multiplier,
and the remaining functional units have a general ALU and a shifter; besides hardware
support for cluster copy and branch operations. The second version of the processor
(processor with AGUs) substitutes, in each cluster, two simple functional units for the
recon�gurable AGU (5.15).

Figure 5.13.: Recon�gurable AGU template

Not all the hardware resources are used in all cases. For example, QSDPCM and ME
need the complete set of PEs on table 5.4 but MPEG2, MPEG4 and cavity detector do
not need the PE4 and PE5 [(a+b)%c and (a+b)/c] since they are are not used in these
algorithms. For our experiments we used the complete template (�gure 5.13) for the
QSDPCM and ME applications and a reduced version of the template without the PE4
and PE5 for the rest of the applications. If we know in advance that just a small set of
applications will be executed, tuning the template for the speci�c applications will give
us better results, in terms of area, because of the reduction of unnecessary hardware
and in terms of energy, because with less hardware resources accessing the foreground
memories, less ports are needed and the energy per access of the memory is smaller1.

1In register �les, bit cells are grouped to form individual registers, and the registers grouped to form
the overall register �le. Register �les are usually organized as two-dimensional grids of wires, one
dimension for the control paths and the other for the data paths. In register �les with multiple
ports, there are correspondingly many additional control and data lines, since the control lines must
be asserted separately and the data lines must be implemented separately for independent access to
the bit cells (and by extension, the registers) to take place. Each intersection between a control line
and its corresponding data line contains gates that connect the date line to the value of the bit cell
when the control line is asserted, reading from or writing to the bit cell as appropriate.
The linear size of the bit cell scales directly with the number of ports, because that many lines

(either control or data) must be able to connect the value stored in the bit cell. Thus, the area of a
register �le grows with the square of the number of ports (each port requires new routing for control
and data). Register �les are limited by routing and not by transistor density. In addition, the read
access time of a register �le grows approximately linearly with the number of ports. As the number
of ports increases, the internal bit cell loading becomes larger, the larger the area of a register �le

77

Chapter 5. AGU template

Figure 5.14.: Base processor

Figure 5.15.: Processor with the recon�gurable AGU

Figures 5.16 and 5.17 show the di�erent implementations of the benchmarks and ap-
plications (except for the MPEG4 application that will be explained in detail in chapter
6). The �original� and �optimized� results were run with the base processor (�gure 5.14)
and the AGU with the �processor with the recon�gurable AGU� (�gure 5.15).

Figure 5.16.: a) Cycles and b) Energy comparison of the di�erent benchmarks/applica-
tions after optimizations and AGU inclusion.

causes longer wire delays, and longer wires and larger cells yield to more power-hungry circuitry.

78

5.4. Experimental results and �nal template

Figure 5.17.: a) Cycles and b) Energy comparison of the di�erent benchmarks/applica-
tions after AGU inclusion.

As we can see, the usage of a speci�c AGU improves both cycles and energy consump-
tion. In the case of the optimized codes (�gure 5.16), we can see gains in the execution
cycles of 30% compared to the optimized versions and between 50 and 60% compared
to the original versions. Regarding the energy, the improvements over the optimized
code are around 20% and compared to the original implementations around 50%. These
results show the e�ectiveness of adding specialized AGUs dedicated speci�cally for the
costly operations needed, results of the DTSE optimizations.

In �gure 5.17, we notice that even in the case of a benchmark without that complex
addressing operations (no DTSE optimizations accomplished), which could be easily
managed without an AGU, we can notice a considerable improvement: between 10%
and 30% in execution cycles and between 15% and 33% in terms of energy. Adding
the AGUs o�ers more explicit parallelism to the compiler which can then execute more
instructions at same time, and hence, �nish earlier the needed calculations.

The hardware overhead introduced by the AGUs is shown in �gure 5.18 The �rst
con�guration corresponds to the base processor (�gure 5.14) which is used as reference.
For the comparisons we just considered the functional units and processing elements
(not foreground memory). For the experiments we used the processor presented in
�gure 5.15 but with di�erent con�gurations of the AGUs. For the QSDPCM and ME
we used the complete template and the overhead introduced is considerable: around
200%. This is basically because with this con�guration we removed four basic functional
units (with a general ALU and a shifter) and we replace them with two AGUs with a
modulo and a divider processing element each; and the hardware needed to implement
these operations is large. This important overhead could have been partially reduced
using the next con�guration (�processor with 2 AGUs with shared modulo and divider
operations�), since modulo operations are based on divider operations and, hence, related
hardware is similar. In this case, the hardware overhead would have been smaller, but
the execution time and the energy needed would have been higher. As seen in chapter 3,
area for AGUs is not anymore a crucial metric and will not be a critical metric in future
designs, nevertheless it has to be taken into account. Even with the con�guration of the
2 complete AGUs, the processor core accounts for less than 10% of the total processor

79

Chapter 5. AGU template

taking into account data and instruction memories, register �les, pipeline registers and
functional units.

The rest of the applications and benchmarks used the �processor with 2 AGUs without
modulo or divider operations�. In this case, the hardware overhead just accounts for 15%
of the processor core.

Figure 5.18.: Hardware overhead introduced by the di�erent con�gurations of the
processor

5.5. Optimized �stand-alone� AGU

The recon�gurable AGU template used in the previous section was used as a basis to
construct another further optimized AGU. The previous template uses hardware support
to compute the addresses needed by the applications. Nevertheless, more e�cient loop
control can still improve the results. Taking as a basis the template and the correspond-
ing PE operations, and with a careful study of the inner most loops of the applications,
we designed the AGU shown in �gure 5.19.

This AGU is capable of dealing with the same operations as the recon�gurable AGU of
the previous sections. It works with two modes of operation. If in the addressing codes,
dividers, non-linear modulo operations or control conditions are present, then the AGU
works as a normal functional unit and, when running deep-nested loops, instructions are
issued from the loop bu�ers. In this case, the behavior -and results- will not di�er much
from the recon�gurable original version.

When there are no control operations, no divisions and no modulo operations (or the
ones present can be simpli�ed using the techniques explained in section 6.2.2), in this
case, the AGU needs special instructions to load the context (information about the
iterators, MUX con�gurations, etc) and then it behaves as a stand-alone AGU, capable
of generating the addresses required without fetching the instructions from the loop
bu�er in a similar way to the work presented in [MD04].

80

5.5. Optimized �stand-alone� AGU

Figure 5.19.: Proposed AGU

81

Chapter 5. AGU template

At the moment, it is not easy to add this behavior of the AGU to the framework, and
each benchmark or application that is going to be simulated requires a considerable man-
ual e�ort. Experiments with the cavity detector benchmarks show an improvement of
around 50% (both in terms of energy and cycles) compared to the recon�gurable version
of the AGU (with the same processors, just changing the AGU behavior). Compared
to the the processor with the template AGU, this new template version is 2% bigger
for each con�guration (with modulo and divider operations, with shared modulo and
divider or without modulo and divider operations respectively). Again, if the modulo
and divider operations are not needed, the overall hardware overhead (compared to the
base processor) is minimal.
This is basically due to the following: the registers and con�guration memory of the

AGU are loaded with few instructions, and, after that, one AGU is capable of feeding
the data path with one address per cycle until the end of the execution and does not
need to fetch the instructions from the loop bu�er.

5.6. Conclusions

In this chapter, we have detailed the AGU mapping and exploration technique based
on a recon�gurable AGU model. We have shown that the proposed AGU mapping
framework maps a given application DFG on a speci�ed recon�gurable AGU model. We
have also presented our AGU exploration framework which is capable to explore many
architecture candidates which satisfy constraints within the AGU mapping framework.
With this framework we have identi�ed the main computing elements required to

perform an e�ective address generation and we have used the architecture and compiler
simulator framework, explained in chapter 4, to validate our AGU template. Finally, tak-
ing as a basis the template found, we have constructed an AGU template that improves
considerably the results obtained when dealing with sequential address expressions.

82

CHAPTER 6

Complete Optimization Methodology

�Darling, the legs aren't so beautiful,

I just know what to do with them.�

Marlene Dietrich

As mentioned in chapters 1 (section 1.3) and 2, di�erent optimizations can boost the
performance and reduce the energy consumption of our applications. High performance
at low energy usage is crucial for the multimedia handheld domain where applications
should run at an acceptable quality and users expect to have a long battery life.

In this chapter, after a small introduction about the application under study, we
analyze the required optimizations to obtain near-optimal results of a real multime-
dia application running on a VLIW processor. We especially emphasize on reducing
the data memory access and related addressing overhead, including also the instruction
memory overhead, at di�erent abstraction levels. Even though optimizations can be
achieved in three di�erent contexts (source code [FM04], compiler [ASU86] and archi-
tecture [FFY04]), in this chapter we present a step-wise script (or methodology) that
gradually reduces energy reusing techniques that already have been published. This �ow
combines steps in a sequential and unidirectional way (no feedback loops or backward
iterations are required, once a step is applied) with constraint propagation between the
steps. From a �rst �straightforward implementation� the overall improvement of the
�ow boosts execution time and decreases energy consumption up to 90% for a standard
application.

83

Chapter 6. Complete Optimization Methodology

6.1. MPEG-4

Media processing refers to the computation required for the creation, encoding, decoding,
processing, display and communication of digital multimedia information such as images,
audio, video and graphics. As a representative application of the multimedia domain,
we selected an MPEG-4 encoder which will be the driving example of all our work.

MPEG-4 is a standard used primarily to compress audio and visual (AV) digital
data. Introduced in late 1998, is the designation for a group of audio and video coding
standards and related technology agreed upon by the ISO/IEC Moving Picture Experts
Group (MPEG) under the formal standard ISO/IEC 14496. MPEG-4 is being used in
web (streaming media) and CD distribution, conversation (videophone), and broadcast
television, all of which bene�t from compressing the AV stream.

MPEG-4 absorbs many of the features of MPEG-1 and MPEG-2 and other related
standards, adding new features such as (extended) VRML support for 3D rendering,
object-oriented composite �les (including audio, video and VRML objects), support for
externally-speci�ed Digital Rights Management and various types of interactivity. AAC
(Advanced Audio Codec) was standardized as an adjunct to MPEG-2 (as Part 7) before
MPEG-4 was issued. MPEG-4 is still a developing standard and is divided into a number
of parts. Unfortunately, the companies promoting MPEG-4 compatibility do not always
clearly state which part of the standard they o�er compatibility for.

The key parts to be aware of are: MPEG-4 part 2 (MPEG-4 SP/ASP, used by codecs
such as DivX, XviD and 3ivx and by Quicktime 6) and MPEG-4 part 10 (MPEG-4
AVC/H.264, used by the x264 codec, by Quicktime 7, and by new DVD formats like
the already deprecated HD DVD and Blu-ray Disc). Most of the features included in
MPEG-4 are left to individual developers to decide whether to implement them. This
means that probably no complete implementations are available of the entire MPEG-4
set of standards. To deal with this, the standard includes the concept of "pro�les" and
"levels", allowing a speci�c set of capabilities to be de�ned in a manner appropriate for a
subset of applications. More information can be obtained in [Koe99, PE02]. The model
used to be implemented in the di�erent platforms is based on a video compressor with
main pro�le and permits I, P and B slice compression, with 4:2:0 chroma format, and 8
bit pixel sample depth [ISO01, Kuh04].

In our work, we compressed 4 images in QCIF size (176x144) compression simula-
tions using an IPBB Group of Pictures (GOP). The algorithms related to the temporal
compression (changes between one frame and the next frame(s)) are the motion estima-
tion and motion compensation. The motion estimation used is the Full Search Motion
Estimation (FSME) where all the motion vectors candidates are computed to get the
minimum Sum of Absolute Values. A detailed explanation of the MPEG4 and related
algorithms can be found in [Kuh04]. Even if the choice of FSME can be discussed,
those results can be extrapolated to the fast implementation of the motion estimation
in chapter 2 and gains in the same order of magnitude can be expected in the case of a
hierarchical motion estimation.

84

6.2. Background data memory optimization

6.2. Background data memory optimization

The VLIW-DSIP framework used in our work (chapter 4) allow us to explore and op-
timize the code of our application (or set of applications), compilation options and
architecture for a speci�c purpose. In our case, since low energy is one of the key design
goals of the current embedded systems, the optimizations will aim to decrease energy
consumption of the MPEG4 encoder.

Memory address calculations often involve linear and polynomial arithmetic expres-
sions which have to be calculated during program execution under strict timing con-
straints and can signi�cantly degrade the performance and increase power consumption:
50%-75% of the power consumption on embedded multimedia systems is caused by
memory accesses [MNCM97, WCNM96]. Hence, it is very important to carry out these
accesses and related addresses computations in an e�ective way.

A memory cluster is de�ned as a number of memory blocks with common input and
output ports. The memory blocks themselves could have a complex internal memory or-
ganization (e.g. interleaved memory banks) and local memory control (like loop control,
cache replacement policy or FIFO control). Each cluster has a set of ports connecting
to other memory clusters. It also has an optional decoder which could be used to re-
duce the instruction tra�c on the memory bus (which is also power consuming) and
to reduce the size of the required program memories (which are expensive in terms of
energy and area). The COFFEE framework allows us to change and modify di�erent
parameters and con�gurations of the memory hierarchy, from di�erent con�gurations
(cache, a scratchpad or a multi-level memory hierarchy) sizes of the di�erent caches,
register �le, number of read/write ports, etc.

6.2.1. Scratchpad Memories

In a typical processor platform, memories are organized in levels in order to reduce
energy consumption [BB95, OK06, HPon]. The memory hierarchy distinguishes each
level in the �hierarchy� by response time since response time, complexity, and capacity are
related. Lower levels are designed with faster smaller memories like caches, scratchpads
or SRAMs, and higher levels are designed with slower, denser and larger memories like
SDRAMs. For instance, a memory access to level-1 memory is in the order of 1-5 cycles,
while an access to a level-2 SDRAM takes around an order of magnitude more. So,
small memories have faster access times and consumes less energy compared to larger
memories. Figure 6.1shows an example of a three level memory hierarchy.

Between the main memory and the computing elements, the memory hierarchy can
be built using caches or scratchpad memories. On-chip SRAM caches consume 25% to
45% of the total CPU power [PND98a] and the allocation of data on those memories
is done at run-time. Scratchpad memories are high-speed memories where the compiler
generates explicit instructions to move data from and to the following levels of the
memory hierarchy, often using DMA-based data transfer [BSL+02a, AC06].

Since scratchpad memories are software controlled and allocation is done at compile

85

Chapter 6. Complete Optimization Methodology

Figure 6.1.: Example of a three level memory hierarchy

time, this alleviates run time issues and provides various bene�ts. First of all, chip
area is reduced, and thus energy, compared to the run-time hardware support that
is needed by cache based schemes (e.g. superscalar processors). Another bene�t is
that complexity is usually easier and faster to deal with in a software design than in a
hardware design. This type of memories reduces considerably the energy consumption
(average reduction of 40%) and the area-time product (46%) [BSL+02a, AC06] but relies
on compiler/programmer e�ort. Since SPMs have been proven to be more energy, area
and performance e�cient than caches [KKC+04] and compile time allocation improves
energy reduction and predictability and allows an easier analysis and optimization of
the application codes, scratchpad memories are widely used in the embedded domain.

6.2.2. Data Transfer and Storage Exploration

Besides the use of scratchpad memories, optimizations targeting the reduction the trans-
fers between the di�erent levels of the memory hierarchy and exploiting the locality of the
data can considerably enhance energy savings. Data Transfer and Storage Exploration
(DTSE) optimizations [Cat02, CBGN98, CD00, Cat99, GH96] are crucial to e�ciently
map data intensive applications onto programmable platforms. The goal of DTSE is
double: on one hand DTSE reduces the storage requirements of embedded applications
and minimizes the absolute amount of memory needed to execute the application; on the
other hand, DTSE optimizes the locality of data accesses at a very high level in order to
reach a high utilization of small but e�cient memories which are close to the processor.
The DTSE methodology consists of several steps depicted in �gure 6.2. The �rst step

in the methodology is a memory oriented data �ow analysis followed by global data
�ow and loop transformations in order to reduce the required amount of background
memories. After that, follows data reuse transformations exploit a distributed mem-
ory hierarchy. Storage cycle budget distribution is performed, in order to determine

86

6.2. Background data memory optimization

Figure 6.2.: Overview of the DTSE methodology

the bandwidth requirements and the balancing of the available cycle budget over the
di�erent memory accesses in the algorithmic speci�cation. The goal of the memory
hierarchy layer assignment phase is to produce a netlist of memory units from a mem-
ory library as well as an assignment of signals to the available memory units [BMCC03].
For multi-processors systems, a task/data-parallelism exploitation step [CDWD01] takes
place minimizing the communication and storage overhead induced by the parallel execu-
tion of subsystems of an application. Finally, data layout transformations (e.g. in-place
mapping) help to increase the cache hit rate (when caches are used) and to reduce the
memory size by storing signals with non-overlapping lifetimes in the same physical mem-
ory location.

In this work, we have implemented several DTSE transformations:

� code rewriting without pointers and dynamic memory allocation

� This transformation does not belong actually to the DTSE steps but to the
Data Type Re�nement (DTR) stage which precedes all the DTSE stages
[Cat00].

� change of data types to maximize the usage of 8-bit registers

� image computation transformations (loop transformations) to compute calcula-
tions at macro-block level instead of image level

� Arithmetic Cost Minimization (ACM): [PMD+02] aims to exploit algebraic and
modulo transformations for minimal number of calculation instances without chang-
ing control �ow

� Non-linear Operator Strength Reduction (NOSR): [GMV+00] focuses on substi-
tuting the non-linear expressions, e.g. modulo operation with a combination of
conditionals and induction variables

87

Chapter 6. Complete Optimization Methodology

All these DTSE optimizations belong to the Processor-level DTSE (P-DTSE) stage
which deals with a single-threaded application task running on one or more functional
units or processors without exploiting data-parallelism. When the target application
and platform does not meet these assumptions, then also other �avors of the DTSE
approach should be applied. So, to ensure a more complete covering of the topic, also
2 other stages will be brie�y introduced here: Thread-frame-level DTSE (T-DTSE) and
Data-level DTSE (D-DTSE):

� T-DTSE: this extension of DTSE focuses on optimizing the transfer and storage
of data when multiple concurrent (non-deterministically triggered) threads are
executed on one or more processors [ZPD+07, MWP+01].

� D-DTSE: this branch of DTSE exploits data parallelism in the mapping to proces-
sors with SIMD, vector or subword parallel support [SMC00, SMC02a, SMC02b,
SMC03, OdBGB+03].

In the global system design �ow, the P-DTSE stage is preceded �rst by the T-DTSE
and then by the D-DTSE stages.

6.2.3. Control �ow optimization

DTSE transformations modify the initial code to minimize the load of shared memory
buses which is the main source of power consumption [WCNM96]. These transformations
are usually achieved at a high expense on addressing and local control. In [FM04, Fal05],
the author gives a detailed explanation on how to reduce control �ow at source code
level using the following techniques:

� Loop nest splitting: the goal of this transformation is to generate regular control
�ow in the innermost loops of data �ow dominated applications by minimizing the
executions of if -statements.

� Advanced Code Hoisting: this technique aims at moving portions of code
from inner loops to outer ones. In contrast to existing code motion techniques,
this is performed under consideration of control �ow aspects. Depending on the
conditions of if -statements, moving an expression can lead to an increased number
of executions of this expression.

� Ring bu�er replacement: DTSE generates small arrays serving as temporary
bu�er for data. Ring bu�er replacement focus on the elimination of those arrays.

With those techniques, the control �ow overhead introduced by DTSE is reduced (even
in regard to the original code) and optimizing address generation will give us optimal
results.

88

6.3. Address generation optimization

6.3. Address generation optimization

Multimedia applications are based on intensive deep-nested loops where the main algo-
rithm is usually located in the inner-most loop. Chapter 5 has shown a specialized AGU
developed to speed up all address related computations in the inner-most loops.
Once memory and data computation have been optimized, in the multimedia domain,

the bottleneck resides in the address generation of the application [TJCC08]. Address
computation often involves linear and polynomial arithmetic expressions which have to
be calculated during program execution under strict timing constraints and complex
media algorithms typically have a large number of two-dimensional array and vector
accesses. To provide enough data bandwidth, usually several programmable address
generator units run in parallel. If the number of AGUs increase, the program area
grows, and then the instruction memory and instruction decoders, and the area over-
head introduced can become a dominant factor. As an example of this overhead, we
point out that more than 25% of the area of the Cool�ux DSP is used by the AGUs
[Phi04]. Indirectly, this increase in the area of the AGUs also leads to an energy over-
head and usually real area versus energy trade-o�s are present. Many optimizations aim
at reducing this hardware overhead [MKCdM97, MCM94, MCJM98, MCJdM96] .

Figure 6.3.: Cycles a) and Energy b) improvement after address generation optimization
and custom AGU inclusion for a MPEG4 Encoder.

After some manual and compiler Data Transfer and Storage Exploration optimizations
have been applied, �gure 6.3 shows the improvement on the overall code of addresses
generation and related hardware optimization. The �rst optimization (address genera-
tion optimization) is basically due to loop transformations at source code level. Those
transformations aim at exploiting the maximum parallelization of the computation of
loops and to reduce, or simplify, the number of iterations. These transformations include
global subexpression elimination, advanced code hoisting or loop nest splitting. These
transformations reduce and simplify the computation needed by removing or reducing
control �ow, from inner loops to higher levels where the conditional branches are exe-
cuted less often. A detailed explanation on these techniques can be found in [FM04] and
similar work can also be found in [LZSS04, XSLS05].
Figure 6.4a) shows a very simple example of what code would look like after DTSE

and control �ow optimizations. The indexes of the arrays are usually calculated with

89

Chapter 6. Complete Optimization Methodology

for (i=0; i < L'1; i++){

for (j=0; j < L'2; j++){

A[i*C'1 + j%C'2 + C'3]

}

}

tmpi=-C1+C3;

for (i=0; i < L1; i++){

tmpi+=C1;

tmpj=-1;

for (j=0; j < L2; j++){

tmpj ++;

if (tmpj >= C2) tmpj -=C2;

A[tmpi + tmpj]

}

}

Figure 6.4.: Examples of inner-most loop source code a) after DTSE and control �ow
transformations b) after transformations preparing for hardware support.

modulo and multiplication operations. The example can be easily extended to multiple
2D arrays. With this kind of source code, the last transformation seen in 6.4b) alleviates
the hardware needed for the calculation of the indexes. This gives a double bene�t, �rst
of all, it gives to the compiler freedom to exploit parallelism, and second, preparing the
code in such a way gives impressive bene�ts adding some �simple� hardware support.

The second optimization in �gure 6.3 (hardware AGU inclusion) shows the bene�t of
the inclusion of custom hardware after all the previous optimizations and code trans-
formations have been applied on the MPEG4 encoder application. In a similar fashion
to [MD04], we can accelerate those parts of the algorithm with a low-power loop ac-
celerator based on clustered distributed address generation unit. The computation of
the address generation in those parts of the code is easy and does not require a lot of
hardware support; hence, minimum hardware and a small number of registers is enough
for the generation of the addresses of the inner-most loops to boost the transfer of data
to the functional units. The addresses of the rest of the application are computed in the
default more complete address generation unit, similar (or equal) to a normal functional
unit that requires more energy per operation but occur rarely during the execution of
the application.

6.4. Data-path optimization

The data path con�guration has a high impact on the performance of the processor. It
might be composed of one or more data path clusters and might contain one or more
register �les and one or more functional units. By clustering, the routing length and
interconnect complexity inside a cluster are reduced (i.e. good for both power and speed),
at the price of increased compilation complexity due to the additional cluster-to-cluster
data transfers. Between clusters, communication is still possible by means of inter-
cluster interconnect. To get an optimal con�guration of the data path, an architecture
exploration must be performed for the application domain [Bar05].

90

6.5. Instruction loop bu�ering optimization

Figure 6.5.: Cycles a) and Energy b) for di�erent cluster con�gurations (#Clus-
ters_#FUs per cluster)

To illustrate the importance of the exploration, in �gure 6.5 we can see the in�uence
of the number of clusters and functional units on the energy and cycles. It is di�cult to
know a priori what that relation is and what will be the best con�guration: having more
functional units reduces execution time but increases energy, basically due to the rise of
multi-ported register �les; splitting up the register �les (called clustering) reduces the
energy consumption but can add a penalty in cycles due to intercluster communication
[GBK07].
In addition to the general architecture exploration, some application-speci�c optimiza-

tion have been studied. First of all, since multimedia applications have a lot of multiply-
and-accumulate and divide operations, speci�c hardware support has been developed.
The hardware and compiler support needed for that primarily improves performance
decreasing the number of cycles needed for the application, and hence, indirectly, also
energy.

6.5. Instruction loop bu�ering optimization

Loop bu�ering is an e�ective scheme to reduce energy consumption in the instruction
memory hierarchy. In any typical multimedia application, signi�cant amount of execu-
tion time is spent in small program segments. Energy can be reduced by storing them in
a small loop bu�er instead of in the big instruction cache [BHK+97, AJB+04, JBA+05].
But, as more instruction level parallelism is extracted from the application, wider data
paths and wider loop bu�ers are needed. In the following �gure, we can see the e�ect
on the energy for di�erent con�gurations of the loop bu�er with the same processor.
Figure 6.6 shows the impact of di�erent loop bu�ers sizes (size x bitwidth) on the

overall energy consumption. As we can see, a good choice on the loop bu�er size can
signi�cantly reduce the energy of the whole application, up to a factor 3 for the same
processor architecture. A good loop-bu�er architecture needs to be big enough to handle
all the instructions in a loop or in some nested loops. An over-dimensioned size will
result in costs of energy wasted, since the access to a bigger memory implies a bigger
cost for each access. A smaller-than-needed size will have to be �lled several times for
the execution of the loop (or nested loops) resulting in unnecessary accesses to the next

91

Chapter 6. Complete Optimization Methodology

Figure 6.6.: Energy impact for di�erent sizes of loop bu�ers for a �xed processor (1
cluster, 8 FU)

Figure 6.7.: Overview of optimizations

level of the cache.
A detailed explanation of the loop-bu�er organization, techniques and heuristics can

be found in [Jay05b, VA05].

6.6. Overall improvement and �nal energy

distribution

In �gure 6.7, we can see a picture of the optimizations accomplished. Those optimiza-
tions basically target (in this order) data memory, address generation, data path and
instruction memory at three di�erent levels: code, compiler and architecture. In this
subsection, the di�erent improvements of all the optimizations are shown.
Figures 6.8 and 6.9 show the energy and cycles improvement after the di�erent op-

timizations applied progressively where each optimization is implemented having as an

92

6.6. Overall improvement and �nal energy distribution

starting point in the previous fully-optimized case.
Figure 6.8 shows the global energy improvement and the di�erent contributions of the

Instruction Memory (IM), Data Memory (DM), Register File (RF), Pipeline Registers
(PR) and Functional Units (FU) for a baseline processor with 8 FU which gives a good
trade-o� between speed and energy consumption. For clarity of the graphic, the RF, PR
and FU were grouped together since their contribution is rather small compared to DM
and IM. Later, in �gure 6.10, we will see and analyze the detailed energy distribution of
the �nal implementation.
As we can see in �gures 6.8 and 6.9, both the energy distribution and the number

of cycles are considerably improved after the di�erent optimization steps. We must say
that both DM and IM in the baseline processor were quite overdimensioned to ensure
that they do not unnecessarily constraint the results and give enough freedom to the
optimizations regarding data layout and instruction scheduling, among others. As we
can see in the original code, instruction memory is the dominating energy-consuming
factor, beside the overdimensioning of the IM; at this point we did not use loop bu�ers
and this has a extreme high penalty on the energy on algorithms with intense loop
calculation.
Source code DTSE and control �ow optimization improves the global energy consump-

tion around 45% and the cycles needed around 65%. The DTSE optimizations basically
are responsible for the DM improvement (from 0.37 to 0.14) and control �ow has more
e�ect on the IM since control �ow optimizations rearranges loops maximizing the exe-
cution without conditions and the contribution of the IM goes form 0.58 to 0.39. Both,
DTSE and control �ow have a high impact on the speed of the algorithm since optimiz-
ing data transfer reduces the cycles used to fetch the data and control �ow optimization
reduces the number of branches that the code executes.
Data memory optimizations that were accomplished include other �non source-code�

DTSE optimizations and improve the usage and e�ectiveness of the memories (size,
numbers of ports, etc) and other compiler optimizations as the ones explained in the
bibliography (on section 6.2). Basically, the usage of an optimized memory hierarchy
to exploit temporal locality in the memory accesses on array signals has a very large
impact on the power consumption of data dominated applications. Moreover, this is
especially important in multimedia algorithms which have to deal with huge amounts
of data and where the energy related with the transfers and storage becomes critical.
DTSE optimizations minimize the transfer and storage of data, and, as expected, this
has a big impact on the energy but a small e�ect on the speed since data computation
remains the same.
Data path optimization introduces some custom instructions (together with their cor-

responding hardware and compiler resources, like MAC and divider operations) and
reduces the number of cycles needed to compute the same code, but does not improve
the energy since adding more hardware resources improves the performance but has a
penalty on the energy consumption. After the data path has been optimized, mem-
ory accesses dominate the power consumption on embedded multimedia applications
[WCNM96, MNCM97] and hence, it is very important to carry out these accesses and
related address computations in an e�ective way. Since our application is data driven

93

Chapter 6. Complete Optimization Methodology

and the kernel of the application is based on intensive deep-nested loops, adding an
special dedicated address generation unit for these parts of the algorithm brings addi-
tional improvements in terms of energy and speed. The rest of the memory addresses
computation occur rarely and are computed in the general, more con�gurable, but also
more energy hungry, AGU. As we can see in the �gures 6.8 and 6.9, after data path and
AGU optimization, the energy used is halved and speed is improved around four times
compared to the previous version.
Finally, as explained in section 6.5 and the related bibliography, we can see how the

inclusion and optimization of the Loop Bu�ers (LB) also improves considerably the
speed and energy consumption of the algorithm. The inclusion, or optimization, of loop
bu�ers basically a�ects the IM since the instructions for the execution of the loop are
stored in the small LB instead of a bigger instruction cache or scratchpad memory.

Figure 6.8.: Progressive energy reduction through optimizations for a �xed processor

Figure 6.9.: Progressive execution-time reduction through optimizations for a �xed
processor

After all the optimizations, �gure 6.10 shows the �nal energy distribution of the MPEG
4 application for a GOP IPBB which corresponds to the last bar in �gure 6.8. As seen

94

6.7. Conclusions

in the �gure, around 70% of the energy of the application is due to the data memory.
This is basically due to the fact that multimedia applications are based in continuous
streams of data. The register �le also accounts for a signi�cant part of the energy of the
application for the aforementioned reason. The instruction memory accounts for a small
part of the energy distribution since the inclusion of loop bu�ers drastically reduces the
consumption of energy of small but computationally-intensive loops. This �nal energy
pie-chart shows that DM is the dominant factor.

Figure 6.10.: Final energy distribution of the MPEG 4 application (GOP IPBB) on the
optimized VLIW

6.7. Conclusions

In this chapter we presented a step-wise script that gradually reduces energy consump-
tion of multimedia applications targeting the embedded domain. We show how, after
the di�erent steps, the improvement in energy and execution time reaches 90% and data
memory dominates the new energy distribution. Even if this analysis was done on an
MPEG4 encoder application, the methodology and optimizations done can be extended
to any data-�ow oriented application.

95

96

CHAPTER 7

Summary and conclusions

�May I never be complete. May I never be content.

May I never be perfect. Deliver me, Tyler,

from being perfect and complete.�

Fight Club

This chapter summarizes the main results found in this dissertation and provides ideas
for further improvements.

7.1. Summary of contributions

The main goal of this thesis was to obtain a complete methodology to optimize the energy
consumption on data-�ow applications for low-power embedded VLIW processors. The
�rst part of the work intended to justify the usage of scratchpad memory based VLIW
processors in the low-power embedded domain. For this comparison we mapped the same
application into four widely used platforms: a VLIW-DSIP, an ASIC, an o�-the-shelf
DSP and a FPGA. The application used was a complete MPEG4 application which is well
known in scienti�c literature and commonly used as reference example. Moreover, this
application presents the typical characteristics of data-�ow applications and, hence, the
extracted results can be extended to other data-�ow applications. Even if the application
was mapped to four di�erent platforms, each solution was optimized enough to allow for
quantitative comparison in a fair way over four main metrics: execution time, energy
consumption, area and design time.

97

Chapter 7. Summary and conclusions

The results show that the VLIW alternative has an energy consumption that can
rival with the ASIC solution but pays an extra penalty in the design time. The VLIW
solution makes sense if commercial devices can not satisfy the requirements or if the
image size, and hence the performance and energy e�ciency must be boosted. In any of
these cases, the VLIW solution is the recommended solution if we know in advance that
several additional follow-up products will be designed by the same team on the same
platform. In this situation, even if o�-the-shelf customized components are available, a
larger �rst investment in a �exible domain-speci�c platform will pay o� for the e�ort and
time saved in the following product versions. This is the normal situation for embedded
devices running multimedia applications, which need some �exibility to execute di�erent
applications -or upgrades of the applications- and usually evolve over time with new
versions of the devices.
Another contribution of the thesis is to provide a systematic classi�cation of address

generators and a review of literature according to the classi�cation to illustrate the
complementarity or overlap of the optimizations on the address generation process. We
focused on AGU architectures and on compilation techniques to optimize address gen-
eration process for scratchpad memories due to the power restrictions of the embedded
domain. We considered the address generation process for DSPs and VLIW-like archi-
tectures, which have to deal with computing intensive algorithms where access to data
is a main issue.
One of the main contributions of this thesis is to introduce into the COFFEE frame-

work the results of the exhaustive architecture exploration method for recon�gurable
architectures. With those results we proposed to �nd a template for an address gener-
ation unit for VLIW-like processors. Moreover, using this template we can construct a
new AGU structure which is more e�cient but needs more manual e�ort (that cannot
yet be automated by the framework).
We also presented a step-wise script that gradually reduces energy consumption of

multimedia applications targeting the embedded domain. We show how, after the di�er-
ent steps, the improvement in energy and execution time reaches 90% and data memory
dominates this consumption. Even if this analysis was done on a MPEG4 encoder ap-
plication, the methodology and optimizations done can be extended to any data-�ow
oriented application.
We have seen how ongoing research focuses on the optimization of the data memory, in-

struction memory, and novel register �le organization. Firsts results on a data-dominated
imaging application show that, once this three components have been optimized, they
will consume less than 20% of the overall energy and data path and address generation
units will then be (again) the future power hungry elements of the processors.

7.2. Future research

Research has the interesting property of generating more research opportunities, and
is, therefore, by its own nature a never ending process. This is also the case for this
dissertation. The following research ideas where spawned during the research process

98

7.2. Future research

but could not be elaborated.

� Complete DTSE optimization: In our work, we did not do the complete
DTSE optimizations since some of the steps need extra analysis with automated
tool support, and manual optimization may not be complete; e.g. global data �ow
and loop transformations were done in a trial and error procedure. Nevertheless,
with more emphasis on these optimizations, DM and RF will be further reduced.
Moreover, energy of the DM highly depends on the context, for example, if our
encoded frames are send over a wireless network from our embedded device, the
knowledge of the multimedia application and the transmission module together
will bring us the opportunity to optimize even more since DTSE can be applied
between di�erent modules [Cat02]. The energy used by the register �le can also
be further improved using the techniques explained in [PAM+07] where a novel
single-ported register �le architecture is presented.

� Extension to other benchmarks and applications: The benchmarks used
were considered representative of the multimedia domain. Nevertheless, other
applications will also be evaluated. From the multimedia domain we could use
other encoders or decoders of image and audio, encryption algorithms and 3D
gaming applications. Moreover, since the research is valid for applications with the
same requirements, we could extend the experiments to communication algorithms
(that also have to deal with continuous streams of data) as for example, wireless
algorithms.

� Heterogeneous distributed AGUs: In this work, we used distributed -but
identical- AGUs. In near future, we plan to work on heterogeneous distributed
AGUs.

� Distributed loop bu�ers with di�erent speeds: Using a uni�ed loop bu�er
structure improves the energy since, once arriving in the deepest loops, the in-
structions can be loaded from the LB instead of the next level of the foreground
memory. Making a distributed loop bu�er structure will even improve this results
considerably. Moreover, the usage of di�erent clock speeds for the di�erent loop
bu�ers will also be evaluated.

� Deeper loops and loop control: Nowadays, the proposed AGUs rely on the
loop bu�er instructions to deal with �if� conditions. This can be improved by
extending the work to a more complex loop control scheme with several nested
loops and loop control.

� Multiprocessor AGUs optimization: Future platforms will have several pro-
cessors computing data. This will bring us the opportunities to exploit address
generation optimizations in multi-processor systems. Before this, we plan adding
the task level parallelism DTSE steps to optimize this parallel computation.

� Address generation code compression instructions: The idea of using com-
pressed instructions, as in the ARM Thumb processor, will be evaluated.

99

Chapter 7. Summary and conclusions

� Calculation of bits: The techniques used during this thesis always work with
complete words. The calculation of fewer bits instead of the complete word will
be exploited in next future.

� Merge of index expressions: When merging di�erent index expressions among
several individual address equations, further optimizations can be performed and
this possibility will be studied in the future.

� Real implementation in hardware: The know-how acquired in the work ex-
plained in chapter 2 will permit us to make a real implementation in hardware of
a processor with optimized AGUs to obtain real comparisons on a working device.
Certainly, the implemented AGUs will slightly di�er from the ones presented in
this work because they will be adapted to the target processor.

� Physical location: At a physical level, the framework does not consider the
wiring contribution to the energy, and hence, the AGUs used in this work were
always simulated as being located �near� the FUs of the data path with no energy
to reach the memory decoders. Due to the size of the memories used in multimedia
embedded domain, the address signal has to travel around the memory to reach
the memory decoders. In future work, after a real implementation in hardware, we
plan to study the impact of this travel and to put the AGUs near the instruction
decoders.

7.3. General conclusions

Energy consumption is nowadays a main concern for embedded devices were users de-
mand more and more sophisticated applications while maintaining battery life. To
perform the required computation, sophisticated architectures with a high number of
computational resources running in parallel are emerging [KP03b, KP03a, KMN+04]
and this trend will continue in next future. Future applications will have to deal with
enormous memory bandwidth in distributed memories and will have to achieve global
trade-o�s between the bandwidth required, the number of cycles needed to fetch data
(reaction-time), the energy or the area.

Coming embedded systems will have to face di�erent challenges. First of all, em-
bedded systems will have to cope with the increasing requirements of next generation
applications: high performance to meet requirements, programmability, since it is faster
and easier to implement functionality in software, and power e�ciency to extend battery
life. Second, future systems will have to deal with deep submicron issues, due to tech-
nology scaling, that are becoming visible at higher abstraction levels [FHR99, DeM05].

VLIW architectures seem a good candidate [JdV00, FWW99] to deal with the increas-
ing computation requirements at reasonable energy consumption and in the future, we
expect enhancement on those architectures at all abstractions levels, even as a part of

100

7.3. General conclusions

heterogeneous MPSOC platforms.

In this dissertation we have seen how optimizing a VLIW processor-based platform at
di�erent levels can bring considerable savings. Nevertheless, further platform-dependent
optimizations are possible on the register �le and data memory parts. In [PAM+07],
Raghavan et al. present a novel register �le architecture: the Very Wide Register
(VWR), which has single-ported cells and asymmetric interfaces to the memory and
to the data path. The novel architecture presented is shown to obtain energy gains of
up to a factor 10 with respect to conventional multi-ported register �le over the di�er-
ent benchmarks. In [Kri09], the authors show how, after further optimizations on the
data memory, very wide register and instruction memory have been completed, these
three components will consume less than 20% of the overall energy for a data-dominated
imaging application. The remaining components of the processor, the data path and the
address generation units, will account for the rest of the energy and, therefore, it is very
important to further optimize the energy consumption of the data path and the address
generation units.

In this context, the presented work is of increasing importance, since reducing the
overall energy consumption and accelerating execution time will become essential to
meet the future requirements of multimedia (and in general, data-�ow) applications.

In near future, we will see emerging distributed address generation units capable of
dealing with these complex applications with extended support for complex condition
control. At the architectural level, we expect more e�cient and distributed address gen-
eration units for VLIW architectures. Good examples are the work on loop accelerators
for VLIW architectures [MD04] or the MACGIC processor [MAC06, AMM+06], which
is a low power, customizable, recon�gurable, and synthetizable DSP-IP core. We also
expect more compiler optimization on address generation techniques, trying to minimize
activity and improve spatial and temporal locality. Traditionally, code optimization was
performed at a compiler level, and even if at this domain more optimizations are ex-
pected, source code optimizations are becoming of increasing importance. These new
code optimizations are targeting non-conventional design goals like low power or control
�ow optimization [PMC02, FV04, PCD+01b].

Even if physical design is out of the scope of this survey, because power consumption
concerns not just battery life but also packaging [HGS+06, LHS+07, HSS+08] and cooling
costs and reliability, we also expect more improvements at this level. As an example, the
work in [MAKB03] shows a new AGU which targets not just speed and energy reduction,
but also the relaxation on thermal density. Variability, reliability and interconnect are
also cause of major concern and we expect run-time managed techniques to deal with
variability issues and the usage of segmented bus interconnect technologies to decrease
the power consumption of intra-chip communication.

With the growing importance of compiler and source code optimization research for

101

Chapter 7. Summary and conclusions

embedded processors, research results will turn into commercial products. In the fu-
ture we also expect a higher importance of VLIW, DSP and ASIP processors, with
non-traditional compiler design goals trying to optimize low power and improve retar-
getability and with optimized address generation units trying to boost address generation
at low power.

102

103

104

Appendices

105

106

APPENDIX A

Biography

Guillermo Talavera was born on 25th of January, 1976 in Barcelona, Spain. He pursued
his undergraduate studies in the French School in Barcelona. He received a Bache-
lor degree in physics in 1999 and a Master of Engineering (ME) degree in Electronic
Engineering in 2001 from the Universitat de Barcelona, Spain. In 2001 he joined the
Universitat Autònoma de Barcelona (Barcelona, Spain) as an assistant teacher and in
2003 he received a ME degree in microelectronics (inside the Computer Science Pro-
gram). From 2003 to 2009 he was continuing as assistant teacher in the university and a
PhD candidate of Computer Science, in the Department of Microelectrònica i Sistemes
Electrònics in the same university. As PhD candidate he has been in collaboration with
the Inter-university Micro-Electronics Center (IMEC vzw), Heverlee, Belgium. He is
a member of the IEEE, IEEE Computer Society and ACM. His research interests are
in the �eld of low power embedded systems focusing on microprocessor architectures,
compilers and system design automation. He can be contacted at gtalavera@ieee.org.

107

108

APPENDIX B

Publications

During this years of PhD, I have been involved in several research projects that lead
to publications, moreover, due to my teaching duties I have been implicated in several
publications regarding this activity.

Research publications

Journal papers

� G. Talavera, M. Jayapala, J. Carrabina, and F. Catthoor, �Address generation
optimization for embedded high-performance processors: A survey�, Journal of
Signal Processing Systems for Signal Image and Video Technology (formerly the
Journal of VLSI Signal Processing Systems for Signal Image and Video Technol-
ogy), May 2008 (online) Decembre 2008 (printed version) 2008.

� G. Talavera, A. Portero, P. Raghavan, M. Jayapala, J. Carrabina, and F. Catthoor,
�Power exploration and address generation optimization of multimedia applications
on VLIW processors�, Planned for re-submission to the IEEE Transactions on Im-
age Processing.

� A. Portero, G. Talavera, J. Carrabina, and F. Catthoor, �Methodology for mul-
timedia applications in multiplatform implementation for energy-�exibility space
exploration�, Planned for re-submission to the IEEE Transactions on Computers .

� A. Portero, G. Talavera, J. Carrabina, and F. Catthoor, �Data-dominant appli-
cation implementation in multi-platform for energy-�exibility space exploration�,

109

Appendix B. Publications

Planned for re-submission to the IEEE Transactions on Image Processing.

Conference papers

� A. Lambrecths, T. V. Aa, M. Jayapala, A. Leroy, G. Talavera, A. Shickova, F.
Barat, F. Catthoor, D. Verkest, G. Deconinck, H. Corporaal, F. Robert, and J.
C. Bordoll, �Design style case study for compute nodes of a heterogeneous NoC
platform�, in 25th IEEE Real-Time Systems Symposium (RTSS), December 2004.

� G. Talavera, V. Nollet, J.-Y. Mignolet, D. Verkest, S. Vernalde, R. Lauwereins,
and J. Carrabina, �Hardware-Software debugging techniques for recon�gurable
Systems-on-Chip, International Conference on Industrial Technology, 2004. IEEE
ICIT '04. vol. 3, Dec. 2004, pp. 1402- 1407 Vol. 3.

� G. Talavera, V. Nollet, J.-Y. Mignolet, D. Verkest, S. Vernalde, R. Lauwereins,
and J. Carrabina, �Métodos de depuración HW-SW para sistemas on chip re-
congurables, in Jornadas Sobre Computación Recongurable y Aplicaciones (JCRA),
Barcelona, Spain, Septembre 2004, pp. 251-258.

� A. Lambrechts, P. Raghavan, A. Leroy, G. Talavera, T. Vander Aa, M. Jayapala,
F. Catthoor, D. Verkest, G. Deconinck, H. Corporaal, F. Robert, and J. Carra-
bina, �Power breakdown analysis for a heterogeneous NoC platform running a video
application�, in IEEE International Conference on Application-Speci�c Systems,
Architecture Processors (ASAP)), 2005. 16th , July 2005, pp. 179-184.

� A. Portero, G. Talavera, M. Monton, B. Martinez, and J. Carrabina, �NoC system
for MPEG-4 SP using heterogeneous tiles� , in Design of Circuits and Integrated
Systems (DCIS), San Diego, California, USA. December 2006.

� A. Portero, G. Talavera, M. Monton, B. Martinez, M. Moreno, F. Cathoor, and
J. Carrabina, �Energy-aware mpeg-4 single pro�le in HW-SW multiplatform im-
plementation�, in IEEE International SOC Conference, Austin, Texas, USA. Sept.
2006, pp. 13-16.

� A. Portero, G. Talavera, M. Monton, B. Martinez, F. Cathoor, and J. Carabina,
�Dynamic voltage scaling for power e�cient MPEG4-SP implementation�, in Pro-
ceedings of the IEEE 17th International Conference on Application-speci�c Sys-
tems, Architectures and Processors (ASAP). Washington, DC, USA: IEEE Com-

110

Appendix B. Publications

puter Society, 2006, pp. 257-260.

� A. Portero, G. Talavera, F. Catthoor, and J. Carrabina, �A study of a MPEG-4
codec in a multiprocessor platform�, in IEEE International Symposium on Indus-
trial Electronics (ISIE), 2006, vol. 1, July 2006, pp. 661-666.

Teaching publications

� G. Talavera, J. Saiz, and J. Carrabina., �Dispositivos y plataformas para docen-
cia de informática y electrónica�, in Jornadas Sobre Computación Recongurable y
Aplicaciones (JCRA), Barcelona, Spain, Septembre 2004, pp. 711-717.

� G. Talavera, B. Lorente, M. Monton, B. Martinez, J. Oliver, C. Ferrer, L. Ribas, J.
Aguilo, and E. Valderrama, �Nuevas metodologías docentes y autoaprendizaje en
la enseñanza técnica universitaria�, in Congreso Internacional de Docencia Uni-
versitaria e Innovación (CIDUI), Barcelona, Spain, 2006

� B. Lorente, G. Talavera, L. Ribas, and E. Valderrama, �Implantació d'una nova
metodologia docent a les pràctiques de fonaments de computadors d'enginyeria
informàtica�, in Congreso Internacional de Docencia Universitaria e Innovación
(CIDUI), Barcelona, Spain, 2006.

� G. Talavera, X. Fitó, B. Lorente, A. Portero, M. Montón, B. Martínez, J. Oliver,
C. Ferrer, L. Ribas, J. Aguiló, and E. Valderrama, �Adaptación metodológica a las
nuevas directrices del EEES en la enseñanza técnica universitaria�, in Tecnologías
Aplicadas a la Enseñanza de la Electrónica (TAEE), Madrid, Spain. 2006.

� A. Portero, J. Saiz, G. Talavera, R. Aragonés, M. Rullán, J. Aguiló, and E. Valder-
rama, �Aplicación del plan piloto en sistemas digitales en ingenier ía informática
siguiendo las directivas del EEES�, in Tecnologías Aplicadas a la Enseñanza de la
Electrónica. (TAEE), Madrid, Spain. 2006.

� G. Talavera, F. X. Fitó, B. Lorente, M. Montón, B. Martínez, C. Ferrer, and E.
Valderrama, �Cas pràctic d'adaptació metodològica a les directrius EEES d'una
assignatura d'enginyeria informàtica�, in III Jornada de Campus d'Innovació Do-
cent. UAB, Barcelona. Spain. 20 Setembre de 2006. .

111

Appendix B. Publications

� E. Valderrama, G. Talavera, M. Montón, B. Martínez, J. M. Fernández, and J.
Muñoz, �Comparación de dos metodologías docentes utilizadas en los seminarios
de fundamentos de computadores�, in XIV Jornadas de Enseñanza Universitaria
de la Informática (JENUI), 2008.

112

Bibliography

[A04] A. Arm926ej-s technical reference manual, release d, 26 january 2004. B,
D, E 2004. F.

[Abs07] Javed Absar. Locality Optimization in a Compiler for Embedded Systems.
PhD thesis, IMEC vzw, ESAT, KULeuven, July 2007.

[AC06] Javed Absar and Francky Catthoor. Analysis of scratch pad and cache
performance using statistical analysis. Jan 2006.

[ADD+08] A.Leroy, D.Milojevic, D.Verkest, F.Robert, and F.Catthoor. Con-
cepts and implementation of spatial division multiplexing forguaran-
teed throughput in networks-on-chip. IEE Transactions on Computers,
57(9):1182�1195, September 2008.

[AH00] B. Amrutur and M. Horowitz. Speed and power scaling of SRAM's. In
IEEE Journal of Solid-State Circuits, volume 35, February 2000.

[AJB+04] Tom Vander Aa, Murali Jayapala, Francisco Barat, Geert Deconinck,
Rudy Lauwereins, Henk Corporaal, and Francky Catthoor. Instruction
bu�ering exploration for low energy embedded processors. Journal of
Embedded Computing, 1(3), 2004.

[AK02] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Archi-
tectures. Morgan Kaufmann, 2002.

[AKA+02] S. Agarwala, P. Koeppen, T. Anderson, A. Hill, M. Ales, R. Damodaran,
L. Nardini, P. Wiley, S. Mullinnix, J. Leach, A. Lell, M. Gill, J. Golston,
D. Hoyle, A. Rajagopal, A. Chachad, Agarwala, R. Castille, N. Com-
mon, J. Apostol, H. Mahmood, M. Krishnan, Duc Bui, Quang-Dieu An,
P. Groves, L. Nguyen, N.S. Nagaraj, and R. Simar. A 600 mhz vliw dsp.
In Solid-State Circuits Conference, 2002.

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je�rey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). Addison Wesley,
Boston, MA, USA, 2006.

113

BIBLIOGRAPHY

[ALT08] ALTERA. Hardcopy series handbook, 2008.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In AFIPS '67 (Spring): Proceedings of
the April 18-20, 1967, spring joint computer conference, pages 483�485,
New York, NY, USA, 1967. ACM.

[AMM+06] C. Arm, J.-M. Masgonty, M. Morgan, C. Piguet, P.-D. P�ster, F. Ram-
pogna, and P. Volet. Low-power quad-mac 170 uw/mhz 1.0 v macgic
dsp core. In ESSCIRC'06:Proceedings of the 32st European Solid-State
Circuits Conference, 2006.

[AOC02] Guido Araujo, Guilherme Ottoni, and Marcelo Cintra. Global array refer-
ence allocation. ACM Trans. Des. Autom. Electron. Syst., 7(2):336�357,
2002.

[ARM] ARM. Artisan Memory Generator:
http://www.arm.com/products/physicalip/memory.html.

[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: principles,
techniques, and tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[Bar05] Francisco Barat. Crisp: A Scalable VLIW Processor for Low Power Mul-
timedia Systems. PhD thesis, 2005.

[BB95] T. D. Burd and R. W. Brodersen. Energy e�cient cmos microprocessor
design. In HICSS '95: Proceedings of the 28th Hawaii International Con-
ference on System Sciences, page 288, Washington, DC, USA, 1995. IEEE
Computer Society.

[BCA+04] Partha Biswas, Vinay Choudhary, Kubilay Atasu, Laura Pozzi, Paolo
Ienne, and Nikil Dutt. Introduction of local memory elements in instruc-
tion set extensions. In DAC '04: Proceedings of the 41st annual conference
on Design automation, pages 729�734, New York, NY, USA, 2004. ACM
Press.

[BGN97] J. Bormans, T. Gijbels, and L. Nachtergaele. Initial ass-
esment of video vm 5.0 memory requirements. In ISO/IEC
JTC1/SC29/WG11/MPEG97/M1914, Bristol, April 1997.

[Bha08] Mukul Bhatnagar. Tms320dm6441 power consumption summary -
spraau3. Technical report, Application Report, Texas Instruments� April
2008.

[BHK+97] R. S. Bajwa, M. Hiraki, H. Kojima, D. J. Gorny, K. Nitta, A. Shridhar,
K. Seki, and K. Sasaki. Instruction bu�ering to reduce power in processors

114

BIBLIOGRAPHY

for signal processing. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 5(4):417�424, December 1997.

[BKM06] Mladen Berekovic, Andreas Kanstein, and Bingfeng Mei. Mapping mpeg
video decoders on the adres recon�gurable array processor for next gen-
eration multi-mode mobile terminals. In GSPX, 2006.

[BLM98] A. Basu, R. Leupers, and P. Marwedel. Register-constrained address com-
putation in dsp programs. In DATE '98: Proceedings of the conference
on Design, automation and test in Europe, pages 929�930, Washington,
DC, USA, 1998. IEEE Computer Society.

[BM02] L. Benini and G. De Micheli. Networks on chip: a new soc paradigm.
IEEE Computer,, vol. 35, no. 1, Jan. 2002.

[BMCC03] E. Brockmeyer, M. Miranda, H. Corporaal, and F. Catthoor. Layer as-
signment echniques for low energy in multi-layered memory organisations.
In DATE '03: Proceedings of the conference on Design, Automation and
Test in Europe, page 11070, Washington, DC, USA, 2003. IEEE Computer
Society.

[BRK07] D. Baumgartner, P. Rossler, and W. Kubinger. Performance benchmark
of dsp and fpga implementations of low-level vision algorithms. Computer
Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on,,
June 2007.

[BSL+02a] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and
Peter Marwedel. Scratchpad memory: design alternative for cache on-
chip memory in embedded systems. In CODES '02: Proceedings of the
tenth international symposium on Hardware/software codesign, pages 73�
78, New York, NY, USA, 2002. ACM Press.

[BSL+02b] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and
Peter Marwedel. Scratchpad memory: design alternative for cache on-
chip memory in embedded systems. In CODES '02: Proceedings of the
tenth international symposium on Hardware/software codesign, pages 73�
78, New York, NY, USA, 2002. ACM Press.

[BTC89] M. Bister, Y. Taeymans, and J. Cornelis. Automated segmentation of
cardiac mr images. In Computers in Cardiology 1989, Proceedings., pages
215�218, Sep 1989.

[Cad07] Command reference for buildgates synthesis and cadence pks timing anal-
ysis product version 5.15 january 2005. Technical report, Cadence, Jan-
uary 2007.

115

BIBLIOGRAPHY

[Cat99] Francky Catthoor. Energy-delay e�cient data storage and transfer archi-
tectures and methodologies: Current solutions and remaining problems.
Journal of VLSI Signal Processing, 21:219�231, 1999.

[Cat00] Francky Catthoor. Uni�ed low-power design �ow for data-dominated
multi-media and telecom applications. Springer-Verlag New York. ISBN
0-7923-7947-0, July 2000.

[Cat02] Francky Catthoor. Data Access and Storage Management for Embedded
Programable Processors. Kluwer Academic Publishers, 2002.

[CBGN98] F. Catthoor, F. Balasa, E. D. Greef, and L. Nachtergaele. Custom Mem-
ory Management Methodology: Exploration of Memory Organization for
Embedded Multimedia System Design. Kluwer Academic Publisher, 1998.

[CD00] Francky Catthoor and Nikil Dutt. Hot topic session: How to solve the
current memory access and data transfer bottlenecks: at the processor
architecture or at the compiler level? In Proc of Design Automation and
Test in Europe (DATE), March 2000.

[CDKO01] F. Catthoor, K. Danckaert, C. Kulkarni, and T. Omnes. Programmable
Digital Signal Processors: Architecture, Programming, and Applications.
Marcel Dekker, Inc., New York, USA, 2001.

[CDWD01] Francky Catthoor, Koen Danckaert, Sven Wuytack, and Nikil D. Dutt.
Code transformations for data transfer and storage exploration prepro-
cessing in multimedia processors. IEEE Des. Test, 18(3):70�82, 2001.

[cep] Cephis web: http://cephis.uab.cat.

[CL98] Wei-Kai Cheng and Youn-Long Lin. Addressing optimization for loop
execution targeting dsp with auto-increment/decrement architecture. In
ISSS '98: Proceedings of the 11th international symposium on System
synthesis, pages 15�20, Washington, DC, USA, 1998. IEEE Computer
Society.

[CVB98] F. Catthoor, D. Verkest, and E. Brockmeyer. Proposal for uni�ed sys-
tem design meta �ow in task-level and instruction-level design technology
research for multi-media applications. In Proc of 11th International Sym-
posium on System Synthesis (ISSS), pages 89�95, 1998.

[DBD+06] Minas Dasygenis, Erik Brockmeyer, Bart Durinck, Francky Catthoor,
Dimitrios Soudris, and Antonios Thanailakis. A combined dma and
application-speci�c prefetching approach for tackling the memory latency
bottleneck. IEEE Trans. Very Large Scale Integr. Syst., 14(3):279�291,
2006.

116

BIBLIOGRAPHY

[DeM05] Hugo DeMan. Ambient intelligence: Giga-scale dreams and nano-scale
realities. In Proc of ISSCC, Keynote Speech, February 2005.

[DMS] White paper digital media system-on-chip (dmsoc) tms320dm6441
sprs359d 2005-revised march 2008.

[ECWF00] E.Brockmeyer, C.Ghez, W.Baetens, and F.Catthoor. Uni�ed low-power
design �ow for data-dominated multi-media and telecom applications.
Kluwer Acad Publ. Boston, 2000.

[Eva95] P.D. Evans, R.J.; Franzon. Energy consumption modeling and optimiza-
tion for SRAM's. In IEEE Journal of Solid-State Circuits, volume 30,
pages 571 � 579, May 1995.

[Fal05] Heiko Falk. Control �ow driven code hoisting at the source code level. In
ODES'05: Proceedings of The 3rd Workshop on Optimizations for DSP
and Embedded Systems, March 2005.

[Far07] Faraday Technology Corporation. Faraday UMC 90nm RVT Standard
Cell Library, 2007.

[FFY04] Joseph A. Fisher, Paolo Faraboschi, and Cli� Young. Embedded Comput-
ing: A VLIW Approach to Architecture, Compilers and Tools. Morgan
Kaufmann, 2004.

[FHR99] Michael J. Flynn, Patrick Hung, and Kevin W. Rudd. Deep-submicron
microprocessor design issues. IEEE MICRO, 19(4), July-August 1999.

[FM03] Heiko Falk and Peter Marwedel. Control �ow driven splitting of loop nests
at the source code level. In DATE '03: Proceedings of the conference on
Design, Automation and Test in Europe, pages 410�415, Washington, DC,
USA, 2003. IEEE Computer Society.

[FM04] Heiko Falk and Peter Marwedel. Source Code Optimization Techniques
for Data Flow Dominated Embedded Software. Springer, 2004.

[For] Document, cynthesizer users guide for cynthesizer version 5.4 from forteds
www.forteds.com.

[FSG+98] F.Catthoor, S.Wuytack, E.De Greef, F.Balasa, L.Nachtergaele, and
A.Vandecappelle. Custom Memory Management Methodology � Explo-
ration of Memory Organization for Embedded Multimedia System Design.
Kluwer Acad Publ. Boston, 1998.

[FV04] Heiko Falk and Manish Verma. Combined data partitioning and loop
nest splitting for energy consumption minimization. In SCOPES'04: Pro-
ceedings of The 8th Workshop on Software and Compilers for Embedded
Systems, Septembre 2004.

117

BIBLIOGRAPHY

[FWW99] Jason Fritts, Zhao Wu, and Wayne Wolf. Parallel media processors for the
billion transistor era. In In Proceedings of the International Conference
on Parallel Processing, 1999.

[GBK07] Anup Gangwar, M. Balakrishnan, and Anshul Kumar. Impact of inter-
cluster communication mechanisms on ilp in clustered vliw architectures.
ACM Trans. Des. Autom. Electron. Syst., 12(1):1, 2007.

[GD91] D .M. Grant and P. B. Denyer. Address generation for array access
based on modulus m couters. In EDAC '91: In Proceedings of the 2nd
ACM/IEEE European Conference on Design Automation (EDAC), pages
118�123, 1991.

[GDF89] D. Grant, P.B. Denyer, and I. Finlay. Synthesis of address generators. In
ICCAD-98: IEEE International Conference on Computer-Aided Design,
pages 116�119, 1989.

[GH96] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose
microprocessors. IEEE Journal of Solid-State Circuits, pages 1277�1284,
1996.

[GMCG00] Sumit Gupta, Miguel Miranda, Francky Catthoor, and Rajesh Gupta.
Analysis of high-level address code transformations for programmable pro-
cessors. In DATE '00: Proceedings of the conference on Design, automa-
tion and test in Europe, pages 9�13, New York, NY, USA, 2000. ACM
Press.

[GML94] D. M. Grant, J. V. Meerbergen, and P. Lippens. Optimization of address
generator hardware. In DATE '94: In Proceedings of the 5th ACM/IEEE
European Design and Test Conference, pages 325�329, 1994.

[GMV+00] C. Ghez, M. Miranda, A. Vandecappelle, F. Catthoor, and D. Verkest.
Systematic high-level address code transformations for piece-wise linear
indexing: illustration on a medical imaging algorithm. In Proceedings of
the IEEE Workshop on Signal Processing Systems, pages 623�632. IEEE
Press, 2000.

[GSBC05] Stefan Valentin Gheorghita, Sander Stuijk, Twan Basten, and Henk Cor-
poraal. Automatic scenario detection for improved wcet estimation. In
DAC '05: Proceedings of the 42nd annual conference on Design automa-
tion, pages 101�104, New York, NY, USA, 2005. ACM Press.

[GVNG94] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, and Jie Gong. Speci�ca-
tion and Design of Embedded Systems. Prentice Hall, January 1994.

[HCC02] S. Hettiaratchi, P. Cheung, and T. Clarke. Performance-area trade-o� of
address generators for address decoder-decoupled memory. In DATE '02:

118

BIBLIOGRAPHY

Proceedings of the conference on Design, automation and test in Europe,
page 902, Washington, DC, USA, 2002. IEEE Computer Society.

[HGS+06] W. Huang, S. Ghosh, K. Sankaranarayanan, K. Skadron, and M. R. Stan.
Hotspot: Thermal modeling for cmos vlsi systems. IEEE Transactions on
Very Large-Scale Integrated Circuits (TVLSI), May 2006.

[HMFW07] H.Wang, M.Miranda, F.Catthoor, and W.Dehaene. Synthesis of run-
time switchable pareto bu�ers o�ering full range �ne grained energy/delay
trade-o�s. In J. of Signal Processing Systems, Nov 2007.

[HMWF09] H.Wang, M.Miranda, W.Dehaene, and F.Catthoor. Design and synthesis
of pareto bu�ers o�ering large range run-time energy/delay trade-o� via
combined bu�er size and supply voltage tuning. In IEEE Trans. on VLSI
Systems, volume 17, pages 117 � 127, Jan 2009.

[HPon] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kau�man, 2006 (Fourth Edition).

[HSS+08] W. Huang, K. Sankaranarayanan, K. Skadron, R. J. Ribando, and M. R.
Stan. Accurate, pre-rtl temperature-aware processor design using a pa-
rameterized, geometric thermal model. IEEE Transactions on Comput-
ers(TCOMP), September 2008.

[IBM05] IBM, http://www.research.ibm.com/cell/. The Cell Microprocessor, 2005.

[Inc02a] TI Inc. TMS320C6000 Programmer's Guide, 2002. http://www.ti.com/.

[Inc02b] TI Inc. TMS320C64x DSP Two-Level INternal Memory Reference Guide,
2002. http://www.ti.com/.

[Inc06] TI Inc. TMS320C64x/C64x+ DSP CPU and Instruction Set Reference
Guide (Rev. C), 2006. http://www.ti.com/.

[INT] INTEL. Atom processor.

[ISO01] ISO. International standard iso/iec 14496-2 2nd edition 2001-12-01 it (
coding of audio-visual objects) part 2. Technical report, ISO, 2001.

[ITR07] ITRS. International techology roadmap for semiconduc-
tors 2007 edition: Interconnect. Technical report, ITRS,
http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Interconnect.pdf,
2007.

[Jay05a] Murali Jayapala. Low Energy Instruction Memory Organization. PhD
thesis, KULeuven, ESAT/ELECTA, 2005. To Appear.

[Jay05b] Murali Jayapala. Low Energy Instruction Memory Organization for Em-
bedded Processors. PhD thesis, KULeuven, ESAT/ELECTA, 2005.

119

BIBLIOGRAPHY

[JBA+05] Murali Jayapala, Francisco Barat, Tom Vander Aa, Francky Catthoor,
Henk Corporaal, and Geert Deconinck. Clustered loop bu�er organiza-
tion for low energy VLIW embedded processors. IEEE Transactions on
Computers, 54(6):672�683, June 2005.

[JdV00] Margarida F. Jacome and Gustavo de Veciana. Design challenges for new
application-speci�c processors. IEEE Des. Test, 17(2):40�50, 2000.

[J.G08] J.Guo. Analysis and Optimization of intra-tile Communication Network.
PhD thesis, ESAT/EE Dept., K.U.Leuven, August 2008.

[JNH06] M. Joshi, NS. Nagaraj, and A. Hill. Impact of interconnect scaling and
process variations on performance. In Proceedings of CMOS Emerging
Technologies, 2006.

[KA02] Ken Kennedy and John R. Allen. Optimizing compilers for modern ar-
chitectures: a dependence-based approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2002.

[KKC+04] M. Kandemir, I. Kadayif, A. Choudhary, J. Ramanujam, and I. Kolcu.
Compiler-directed scratch pad memory optimization for embedded multi-
processors. In IEEE Trans on VLSI, pages 281�287, March 2004.

[KMN+04] F. Karim, A. Mellan, A. Nguyen, U. Aydonat, and T. Abdelrahman. A
multi-level computing architecture for embedded multimedia applications.
In Proceedings of the IEEE Micro, pages 55�66, 2004.

[Koe99] Rob Koenen. Mpeg-4 - multimedia for our time. IEEE Spectrum, Vol. 36,
No. 2:26�33, February 1999.

[KP03a] Christoforos E. Kozyrakis and David A. Patterson. Scalable vector pro-
cessors for embedded systems. IEEE Micro, 23(6):36�45, 2003.

[KP03b] Christos Kozyrakis and David Patterson. Overcoming the limitations of
conventional vector processors. In ISCA '03: Proceedings of the 30th
annual international symposium on Computer architecture, pages 399�
409, New York, NY, USA, 2003. ACM Press.

[Kri09] A. Kritikakou. Low-cost low-energy embedded processors for on-line
biotechnology monitoring applications. Master's thesis, University of Pa-
tras (Greece) - IMEC (Belgium), 2009.

[Kuh04] Peter Kuhn. Algorithms, Complexity Analysis and VLSI Architectures for
MPEG-4 Estimation. Kluwer Academic Publishers, 2004.

[LAJ+04] Andy Lambrechts, Tom Vander Aa, Murali Jayapala, Antony Leroy,
Guillermo Talavera, Adriana Shickova, Francisco Barat, Francky
Catthoor, Diederik Verkest, Geert Deconinck, Henk Coporaal, F. Robert,

120

BIBLIOGRAPHY

and J. C. Bordoll. Design style case study for compute nodes of a het-
erogenenous noc platform. In 25th IEEE Real-Time Systems Symposium
(RTSS), December 2004.

[LD98] Rainer Leupers and Fabian David. A uniform optimization technique
for o�set assignment problems. In ISSS '98: Proceedings of the 11th
international symposium on System synthesis, pages 3�8, Washington,
DC, USA, 1998. IEEE Computer Society.

[Leu00a] Rainer Leupers. Code generation for embedded processors. In ISSS '00:
Proceedings of the 13th international symposium on System synthesis,
pages 173�178, Washington, DC, USA, 2000. IEEE Computer Society.

[Leu00b] Rainer Leupers. Code Optimization Techniques for Embedded Processors
Methods, Algorithms, and Tools. Kluwer, 2000.

[LHS+07] Z. Lu, W. Huang, K. Skadron, J. Lach, and M. R. Stan. Intercon-
nect lifetime prediction with temporal and spatial temperature gradients
for reliability-aware design and runtime management: Modeling and ap-
plications. IEEE Transactions on Very Large-Scale Integrated Circuits
(TVLSI), February 2007.

[LM96] Rainer Leupers and Peter Marwedel. Algorithms for address assignment
in DSP code generation. In ICCAD, pages 109�112, 1996.

[LMA99] Lea Hwang Lee, William Moyer, and John Arends. Instruction fetch
energy reduction using loop caches for embedded applications with small
tight loops. In Proc of International Symposium on Low Power Electronic
Design (ISLPED), August 1999.

[LMdWV91] P. Lippens, J. V. Meerbergan, A. V. der Werf, and W. Verhaegh. Phideo:
a silicon compiler for high speed algorithms. In In Proceedings of the
European Conference on Design Automation, pages 436�441, 1991.

[LPJ96] Cli�ord Liem, Pierre Paulin, and Ahmed Jerraya. Address calculation
for retargetable compilation and exploration of instruction-set architec-
tures. In DAC '96: Proceedings of the 33rd annual conference on Design
automation, pages 597�600, New York, NY, USA, 1996. ACM Press.

[LPJ97] C. Liem, P. Paulin, and A. Jerraya. Compilation methods for the address
calculation units of embedded processor systems. In In Proceedings of
the Design Automation for Embedded Systems, pages 61�77, Netherlands,
1997. Springer.

[LPMS97] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Me-
diabench: a tool for evaluating and synthesizing multimedia and com-
municatons systems. In MICRO 30: Proceedings of the 30th annual

121

BIBLIOGRAPHY

ACM/IEEE international symposium on Microarchitecture, pages 330�
335. IEEE Computer Society, 1997.

[LRJ+09] A. Lambrechts, P. Raghavan, M. Jayapala, Bingfeng Mei, F. Catthoor,
and D. Verkest. Interconnect exploration for energy versus performance
tradeo�s for coarse grained recon�gurable architectures. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 17(1):151�155, Jan.
2009.

[LZSS04] Meilin Liu, Qingfeng Zhuge, Zili Shao, and Edwin H.-M. Sha. General
loop fusion technique for nested loops considering timing and code size.
In CASES '04: Proceedings of the 2004 international conference on Com-
pilers, architecture, and synthesis for embedded systems, pages 190�201,
New York, NY, USA, 2004. ACM Press.

[MAC06] Low-power digital signal processing (macgic dsp)
http://www.macgic.com, 2006.

[MAKB03] Sanu Mathew, Mark Anders, Ram K. Krishnamurthy, and Shekhar
Borkar. A 4-ghz 130-nm address generation unit with 32-bit sparse-tree
adder core. IEEE Journal of Solid-State Circuits, 38(5), may 2003.

[Mar03] Peter Marwedel. Embedded System Design. Kluwer Academic Publishers
(Springer), Norwell, MA, USA, 2003.

[mat] Matlabworks website: http://www.matlabworks.com.

[MCJdM96] Miguel Miranda, Francky Catthoor, Martin Janssen, and Hugo de Man.
Adopt: E�cient hardware address generation in distributed memory ar-
chitectures. isss, 00:20, 1996.

[MCJM98] Miguel A. Miranda, Francky Catthoor, Martin Janssen, and Hugo J. De
Man. High-level address optimization and synthesis techniques for data-
transfer-intensive applications. IEEE Trans. Very Large Scale Integr.
Syst., 6(4):677�686, 1998.

[MCM94] M. Miranda, F. Catthoor, and H. De Man. Address equation multiplexing
for realtime signal processing applications. In VLSI Signal Processing VII,
pages 188�197, La Jolla California, New York, 1994.

[MD04] Binu Mathew and Al Davis. A loop accelerator for low power embed-
ded vliw processors. In Proc of CODES and ISSS, Stockholm, Sweden,
September 2004.

[MDB+09] M.Li, D.Novo, B.Bougard, T.Carlson, L.Van der Perre, and F.Catthoor.
Generic multi-phase software pipelined partial �t on instruction level par-
allel architectures. In (accepted for) IEEE Trans. on Signal Processing,
2009.

122

BIBLIOGRAPHY

[MHB08] Marius Monton Macian, Borja Martinez Huerta, and Jordi Carrabina Bor-
doll. Síntesis de canales tlm para procesador nios-ii. In VIII Jornadas de
Computación Recon�gurable y Aplicaciones (JCRA), Madrid, Spain, Sep-
tiembre 2008.

[MKCdM97] M. Miranda, M. Kaspar, F. Catthoor, and H. de Man. Architectural explo-
ration and optimization for counter based hardware address generation.
In EDTC '97: Proceedings of the 1997 European conference on Design and
Test, page 293, Washington, DC, USA, 1997. IEEE Computer Society.

[MNCM97] D. Moolenaar, L. Nachtergaele, F. Catthoor, and H. De Man. System-level
power exploration for MPEG-2 decoder on embedded cores : a systematic
approach. Journal of VLSI Signal Processing Systems, pages 395�404,
1997.

[Muc97] Steven S. Muchnick. Advanced compiler design and implementation. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[MWP+01] Pol Marchal, Chun Wong, Aggeliki Prayati, Nathalie Cossement, Francky
Catthoor, Rudy Lauwereins, Diederik Verkest, and Hugo De Man. Dy-
namic memory oriented transformations in the mpeg4 im1-player on a
low power platform. In PACS '00: Proceedings of the First International
Workshop on Power-Aware Computer Systems-Revised Papers, pages 40�
50, London, UK, 2001. Springer-Verlag.

[Nio] Niosii processor reference handbook, altera corp. v.7.2 october 2007.

[oCS08] TMS320DM6446 Digital Media System on Chip SPRS283F. Technical
report, Texas Instruments www.ti.com, December 2005 revised March
2008.

[OdBGB+03] P. Op de Beeck, C. Ghez, E. Brockmeyer, M. Miranda, F. Catthoor, and
G. Deconinck. Background data organisation for the low-power imple-
mentation in real-time of a digital audio broadcast receiver on a simd
processor. In DATE '03: Proceedings of the conference on Design, Au-
tomation and Test in Europe, page 11144, Washington, DC, USA, 2003.
IEEE Computer Society.

[OK06] Vojin G. Oklobdzija and Ram K. Krishnamurthy. High-Performance
Energy-E�cient Microprocessor Design (Series on Integrated Circuits and
Systems). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[OKM+02] John D. Owens, Ujval J. Kapasi, Peter Mattson, Brian Towles, Ben Sere-
brin, Scott Rixner, and William J. Dally. Media processing applications
on the Imagine stream processor. In Proc. of the IEEE International
Conference on Computer Design (ICCD), 2002.

123

BIBLIOGRAPHY

[PAM+07] P.Raghavan, A.Lambrechts, M.Jayapala, F.Catthoor, D.Verkest, and
H. Corporaal. Very wide register: An asymmetric register �le organi-
zation for low power embedded processors. In "DATE '07: Proceedings of
the conference on Design, 2007.

[Pap06] Antonis Papanikolaou. Application-driven software con�guration of com-
munication networks and memory organizations. PhD thesis, CS Dept.,
U.Gent, Belgium, December 2006.

[PBV+05] Martin Palkovic, Erik Brockmeyer, Peter Vanbroekhoven, Henk Corpo-
raal, and Francky Catthoor. Systematic preprocessing of data dependent
constructs for embedded systems. In Proceedings of PATMOS, pages 89�
98, 2005.

[PCC05] Martin Palkovic, Henk Corporaal, and Francky Catthoor. Global mem-
ory optimisation for embedded systems allowed by code duplication. In
SCOPES '05: Proceedings of the 2005 workshop on Software and compil-
ers for embedded systems, pages 72�79, New York, NY, USA, 2005. ACM
Press.

[PCD+01a] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer,
C. Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg. Data and memory
optimization techniques for embedded systems. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 6(2):149�206, April
2001.

[PCD+01b] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer,
C. Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg. Data and memory
optimization techniques for embedded systems. ACM Trans. Des. Autom.
Electron. Syst., 6(2):149�206, 2001.

[PE02] Fernando C. Pereira and Touradj Ebrahimi. The MPEG-4 Book. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2002.

[Pea06] Dac C. Pham and et al. Overview of the architecture, circuit design, and
physical implementation of �rst-generation cell processor. IEEE Journal
of SSC, Jan2006.

[Phi04] Philips PDSL, http://www.cool�uxdsp.com. CF6 CoolFlux DSP, 2004.

[PMC02] M. Palkovic, M. Miranda, and F. Catthoor. Systematic power-
performance trade-o� in mpeg-4 by means of selective function inlining
steered by address optimization opportunities. In DATE '02: Proceedings
of the conference on Design, automation and test in Europe, page 1072,
Washington, DC, USA, 2002. IEEE Computer Society.

124

BIBLIOGRAPHY

[PMCV01] Martin Palkovic, Miguel Miranda, Francky Catthoor, and Diederik Verk-
est. System Design Automation -Fundamentals, Principles, Methods, Ex-
amples, chapter high level condition expression transformations for desing
exploration, pages 56�64. Kluwer Academic Publishers, Boston, USA,
March 2001.

[PMD+02] M. Palkovic, M. Miranda, K. Denolf, P. Vos, and F. Catthoor. Systematic
address and control code transformations for performance optimisation
of a mpeg-4 video decoder. In ASP-DAC '02: Proceedings of the 2002
conference on Asia South Paci�c design automation/VLSI Design, page
547, Washington, DC, USA, 2002. IEEE Computer Society.

[PND98a] Preeti Ranjan Panda, Alexandru Nicolau, and Nikil Dutt. Memory Issues
in Embedded Systems-on-Chip: Optimizations and Exploration. Kluwer
Academic Publishers, Norwell, MA, USA, 1998.

[PND98b] Preeti Ranjan Panda, Alexandru Nicolau, and Nikil Dutt. Memory Issues
in Embedded Systems-on-Chip: Optimizations and Exploration. Kluwer
Academic Publishers, Norwell, MA, USA, 1998.

[Por09] Antonio Portero. Design Space Exploration of heterogeneous SoC Plat-
forms for a Data-Dominant Application. PhD thesis, E.T.S.E. - Univer-
sitat Autònoma de Barcelona, 2009.

[Pow] Powerplay early power estimator user guide for stratix ii, stratix ii gx, &
hardcopy ii document version: 1.2.

[RAdSJ+00] Jan M. Rabaey, M. Josie Ammer, Julio L. da Silva Jr., Danny Patel,
and Shad Roundy. Hoc ultra-low power wireless networking. Computer,
33,Issue 7,:42 � 48, July 2000.

[Rag09] Praveen Raghavan. Low Energy Architecture Extensions for Embedded
Processors. PhD thesis, IMEC vzw, ESAT, KULeuven, June 2009.

[RC06] Praveen Raghavan and Francky Catthoor. Ultra low power asip
(application-domain speci�c instruction-set processor) micro-computer.
EU Patent Filed EP 1 701 250 A1, September 2006.

[RDK+00] Scott Rixner, William J. Dally, Brucek Khailany, Peter R. Mattson, Uj-
val J. Kapasi, and John D. Owens. Register organization for media pro-
cessing. In HPCA, pages 375�386, January 2000.

[RKHK02] J. Ramanujam, Satish Krishnamurthy, Jinpyo Hong, and Mahmut Kan-
demir. Address code and arithmetic optimizations for embedded systems.
In ASP-DAC '02: Proceedings of the 2002 conference on Asia South Pa-
ci�c design automation/VLSI Design, page 619, Washington, DC, USA,
2002. IEEE Computer Society.

125

BIBLIOGRAPHY

[RLA+08] P Raghavan, A Lambrechts, J Absar, , M Jayapala, and F Catthoor.
COFFEE: COmpiler Framework For Energy-aware Expoloration. In Proc
of HiPEAC, Jan 2008.

[RLJ+] P. Raghavan, A. Lambrechts, M. Jayapala, F. Catthoor, and D. Verk-
est. Distributed loop controller for multi-threading in uni-threaded ilp
architectures. IEEE Transactions on Computers.

[RWT05] RWTH Aachen � University of Technology, http://www.eecs.rwth-
aachen.de/dpg/info.html. DPG User Manual Version 2.8, October 2005.

[SHmWH01] John W. Sias, Hillery C. Hunter, and Wen mei W. Hwu. Enhancing
loop bu�ering of media and telecommunications applications using low-
overhead predication. In Proc of 34th Annual International Symposium
on Microarchitecture (MICRO), December 2001.

[sia05] Semiconductor industry association, international
technology roadmap for semiconductors: Design
http://www.itrs.net/links/2005itrs/home2005.htm, 2005.

[SK99] Dennis Sylvester and Kurt Keutzer. Getting to the bottom of deep sub-
micron ii: a global wiring paradigm. In ISPD '99: Proceedings of the 1999
international symposium on Physical design, pages 193�200, New York,
NY, USA, 1999. ACM.

[SLD97] Ashok Sudarsanam, Stan Liao, and Srinivas Devadas. Analysis and eval-
uation of address arithmetic capabilities in custom dsp architectures. In
DAC '97: Proceedings of the 34th annual conference on Design automa-
tion, pages 287�292, New York, NY, USA, 1997. ACM Press.

[SMC00] Rainer Scha�er, Renate Merker, and Francky Catthoor. Combining back-
ground memory management and regular array co-partitioning, illustrated
on a full motion estimation kernel. In VLSID '00: Proceedings of the 13th
International Conference on VLSI Design, page 104, Washington, DC,
USA, 2000. IEEE Computer Society.

[SMC02a] Rainer Scha�er, Renate Merker, and Francky Catthoor. Exploitation of
subword parallelism on the example of the staf algorithm. In 5th Workshop
on System Design Automation, pages 111�118, Pirna, Germany, April
2002.

[SMC02b] Rainer Scha�er, Renate Merker, and Francky Catthoor. Systematic design
of programs with subword parallelism'. In Parallel Computing in Electri-
cal Engineering, International Conference on, pages 393�398, Warsaw,
Poland, September 2002.

126

BIBLIOGRAPHY

[SMC03] Rainer Scha�er, Renate Merker, and Francky Catthoor. Causality con-
straints for processor architectures with subword parallelism. In Digital
Systems Design, Euromicro Symposium on, pages 82�89, Antalya, Turkey,
September 2003.

[ST98] Herman Schmit and Donald E. Thomas. Address generation for memo-
ries containing multiple arrays. In IEEETCAD: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, volume 17,
1998.

[Str] Stratix ii dsp development board reference manual altera corporation,
august 2006.

[SWLM02] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program
and data objects to scratchpad for energy reduction. Design Automation
and Test in Europe (DATE), pages 409�414, March 2002.

[sys] Open systemc iniciative website : http://www.systemc.org.

[Tanon] Ittetsu Taniguchi. Systematic Architecture Exploration Method for Low
Energy and High Performance Recon�gurable Processors. PhD thesis,
Osaka University, Osaka, Japan, January 2009 (in preparation).

[Tex00] Texas Instruments, Inc, http://www.ti.com. TMS320C6000 CPU and
Instruction Set Reference Guide, October 2000.

[TI-] Ti tms320c67 dsps.

[TIO] Texas instruments, "tms320c6000 cpu and instruction set reference
guide", spru189f, october 2000.

[TJCC08] Guillermo Talavera, Murali Jayapala, Jordi Carrabina, and Francky
Catthoor. Address generation optimization for embedded high-
performance processors: A survey. Journal of Signal Processing Systems
for Signal Image and Video Technology (formerly the Journal of VLSI
Signal Processing Systems for Signal Image and Video Technology), May
2008 (online) Decembre 2008 (printed version) 2008.

[tri99] Trimaran: An Infrastructure for Research in Instruction-Level Paral-
lelism. http://www.trimaran.org, 1999.

[TSU+] Ittetsu Taniguchi, Keishi Sakanushi, Kyoko Ueda, Yoshinori Takeuchi,
and Masaharu Imai. Dynamic recon�gurable architecture exploration
based on parameterized recon�gurable processor model. In Giovanni De
Micheli, Salvador Mir, and Ricardo Reis, editors, VLSI-SoC: Research
Trends in VLSI and Systems on Chip. Springer Boston, 2007., 249:357�
376.

127

BIBLIOGRAPHY

[TSU+07] Ittetsu Taniguchi, Keishi Sakanushi, Kyoko Ueda, Yoshinori Takeuchi,
and Masaharu Imai. Dynamic recon�gurable architecture exploration
based on parameterized recon�gurable processor model. In Giovanni De
Micheli, Salvador Mir, and Ricardo Reis, editors, VLSI-SoC: Research
Trends in VLSI and Systems on Chip, volume 249, pages 357�376.
Springer Boston, 2007.

[Tur99] Jim Turley. Embedded processors by the numbers. Embedded Systems
Programming, 12(5), 1999.

[UWW+99] Gang-Ryung Uh, Yuhong Wang, David Whalley, Sanjay Jinturkar, Chris
Burns, and Vincent Cao. E�ective exploitation of a zero overhead loop
bu�er. In LCTES '99: Proceedings of the ACM SIGPLAN 1999 workshop
on Languages, compilers, and tools for embedded systems, pages 10�19,
New York, NY, USA, 1999. ACM Press.

[VA05] Tom Vander Aa. Low Energy Instruction Memory Exploration. PhD
thesis, KULeuven, ESAT/ELECTA, 2005. To Appear.

[VBR+93] Jan Vanhoof, Ivo Bolsens, Karl Van Rompaey, Gert Goossens, and
Hugo De Man. High-Level Synthesis for Real-Time Digital Signal Pro-
cessing. Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[vdWVD+05] Jan-Willem van de Waerdt, Stamatis Vassiliadis, Sanjeev Das, Sebas-
tian Mirolo, Chris Yen, Bill Zhong, Carlos Basto, Jean-Paul van Itegem,
Dinesh Amirtharaj, Kulbhushan Kalra, Pedro Rodriguez, and Hans van
Antwerpen. The tm3270 media-processor. In MICRO '05: Proceedings
of the 38th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO'05), pages 331�342, Washington, DC, USA, 2005. IEEE
Computer Society.

[VJC+06] T. VanderAa, M. Jayapala, H. Corporaal, F. Catthoor, and G.Deconinck.
Instruction transfer and storage exploration for low energy vliws. pages
292�297, Oct.2006.

[WCNM96] Sven Wuytack, Francky Catthoor, Lode Nachtergaele, and Hugo De Man.
Power exploration for data dominated video applications. In ISLPED '96:
Proceedings of the 1996 international symposium on Low power electronics
and design, pages 359�364, Piscataway, NJ, USA, 1996. IEEE Press.

[Wes99] B. Wess. Minimization of data access computation overhead in dsp pro-
grams. In In Proceedings of Design Automation for Embedded Systems,
pages 167�185, 1999.

[WGN01] O. Wiess, M. Gansen, and T.G. Noll. A �exible datapath generator for
physical oriented design. In Proc of ESSCIRC, pages 408�411, Sep 2001.

128

BIBLIOGRAPHY

[WZG+01] Marlene Wan, Hui Zhang, Varghese George, Martin Benes, Arthur Ab-
nous, Vandana Prabhu, and Jan M. Rabaey. Design methodology for a
low-energy recon�gurable single-chip dsp system. Journal of VLSI Signal
Processing, 28(1), Jan. 2001.

[XSLS05] Chun Xue, Zili Shao, Meilin Liu, and Edwin H.-M. Sha. Iterational
retiming: maximize iteration-level parallelism for nested loops. In
CODES+ISSS '05: Proceedings of the 3rd IEEE/ACM/IFIP interna-
tional conference on Hardware/software codesign and system synthesis,
pages 309�314, New York, NY, USA, 2005. ACM Press.

[YM04] P. Yu and T. Mitra. Scalable instructions identi�cation for instruction-set
extensible processors. In Proc of CASES, September 2004.

[ZPD+07] Z.Ma, P.Marchal, D.Scarpazza, P.Yang, C.Wong, I.Gomez, S.Himpe,
C.Ykman, and F.Catthoor. Systematic methodology for real-time cost-
e�ective mapping of dynamic concurrent task-based systems on heteroge-
neous platforms. Spring 2007.

129

�Si non e vero e ben trovato�

�Carmiña... oye, dejo esto, ¾eh?

Es muy estresante.

Interesante no, mujer, ½estresante!�

Pazos. Airbag.

