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Abstract 

 

RNA processing and their alterations are determinant to understand normal 

and disease cell phenotypes. In particular, specific alterations in the RNA 

processing of genes has been linked to widely accepted cancer hallmarks. 

With the availability of large-scale genomic and transcriptomic data for 

multiple cancer types, it is now possible to address ambitious questions 

such as obtaining a global view of alterations in RNA processing specific to 

each cancer type as well as in common across all types. The first objective 

of this thesis is to obtain a global view of RNA processing alterations across 

different tumor types along with alterations with respect to RNA binding 

proteins (trans-component), their tumor-type specificity, differential 

expression, mutations, copy number variation and whether these alterations 

result in differential splicing. Using data for more than 4000 patients from 11 

tumor types, we provide the link between alterations of RNA binding 

proteins and splicing changes across multiple tumor types. Second 

objective moves one step further and explores in detail the RNA-processing 

alterations with respect to mutations on RNA regulatory sequences (cis-

components). Using whole genome sequencing data for more than 1000 

cancer patients, we thoroughly study the sequence of entire genes and 

report significantly mutated short regions in coding and non-coding parts of 

genes that are moreover enriched in RNA putative RNA regulatory sites, 

including regions deep into the introns. The recurrence of some of the 

mutations in non-coding regions is comparable to some of already known 

driver genes in coding regions. We further analyze the impact of these 

mutations at the RNA level by using RNA sequencing from the same 

samples. This work proposes a novel and powerful strategy to study 

mutations in cancer to identify novel oncogenic mechanisms. In addition, we 

share the immense amount of data generated in these analyses so that 

other researchers can study them in detail and validate them 

experimentally. 
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Resumen 

El procesamiento del ARN y sus alteraciones son determinantes para 

entender el fenotipo de las células en condiciones normales y de enfermedad. 

En particular, alteraciones en el procesamiento de ARN de determinados 

genes se han vinculado a características distintivas del cáncer ampliamente 

aceptadas. Con la disponibilidad de datos genómicos y transcriptómicos a 

gran escala paramúltiples tipos de cáncer, es posible abordar cuestiones 

ambiciosas como la obtención de una visión global de las alteraciones en el 

procesamiento de ARN que son específicas para cada tipo de cáncer, así 

como de aquellas las comunes a varios tipos. El primer objetivo de esta tesis 

es obtener una visión global de las alteraciones del procesamiento de ARN 

en diferentes tipos de tumores, así como de las alteraciones en las proteínas 

de unión a ARN (componente trans), y si dichas alteraciones resultan en un 

procesamiento diferencial del RNA. Utilizando datos de más de 4000 

pacientes para 11 tipos de tumores, establecemos la relación entre las 

alteraciones de las proteínas de unión a ARN y cambios de splicing en 

múltiples tipos de tumores. El segundo objetivo va un paso más allá y explora 

en detalle las alteraciones del procesamiento de ARN con respecto a 

mutaciones en las secuencias reguladoras del ARN (componente cis). 

Utilizando datos de genomas completos para más de 1000 pacientes, 

estudiamos a fondo la secuencia de genes para identificar regiones cortas 

significativamente mutadas en partes codificantes y no codificantes por 

proteína, y que además están enriquecidas en posibles sitios reguladores del 

ARN, incluyendo regiones intrónicas profundas. La recurrencia de las 

mutaciones en algunas regiones no codificantes es comparable a la de 

algunos genes drivers de cáncer conocidos. Además, analizamos el impacto 

de estas mutaciones a nivel del ARN mediante el uso de datos de 

secuenciación de ARN de las mismas muestras. Este trabajo propone una 

estrategia novedosa y potente para estudiar las mutaciones en cáncer con el 

fin de identificar nuevos mecanismos oncogénicos. Además, compartimos la 

inmensa cantidad de datos generados en estos análisis para que otros 

investigadores los puedan estudiar en detalle y validarlos experimentalmente. 
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Preface 

 

Before introducing the work in this thesis, perhaps I should talk a bit about 

my own journey in science so far. Sixteen years ago, in August 2000, I 

happen to pick up a science magazine at a city bus station in Gorakhpur, 

India. An initial draft of human genome was just released in June 2000 and 

this magazine covered the news with an attractive allegory and catchy 

headline about genes and their 'secrets'. The article started with ‗what is a 

gene?‘ I must say the definition was pretty simple back then. As I turned 

pages after pages, I read in amusement about the Human Genome Project 

(HGP) and the amount of data this project was generating. Like a dramatic 

science fiction storyline, it also mentioned the race between the private (led 

by J. Craig Venter) and public (led by Francis Collins) endeavors and how 

all diseases will now be curable. I was enchanted. Two years later, in 2003, 

when the full human genome got published, I was graduating from school. I 

submitted my final grade biology report on the Human Genome Project 

using the same allegory I found on that magazine‘s cover page (a bit like 

the cover page of this thesis). Unfortunately, my biology teacher had no 

idea about the HGP and during a viva voce, I was asked questions from my 

text book and not from my project. I wasn‘t thrilled. He later advised me to 

pick some ‗soft‘ fields for further studies. ―Science is a long way till PhD and 

for girls it is better to choose fields like commerce or arts‘, he added.  

 

Mathematics was never my strong subject, so I was already indecisive, but 

now I wanted to study science. I pursued bachelors in life sciences for three 

years but didn‘t quite enjoy it. The course was on zoology and botany and I 

wanted to study modern science like genes and DNA. Luckily, when I 

finished my bachelor‘s degree, I found an advertisement about a diploma 

course in bioinformatics. It was the year 2006, and bioinformatics was still 

less known in India, compared to thousands of engineering institutions and 

courses. There were no usual study materials or designed curriculum but I 
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connected with this field more. Soon, I started learning about NCBI and 

EMBL, about genomic sequences, gene predictions, sequence alignments, 

3D visualizations and programming languages. I felt so powerful that I could 

ask questions and write a code to get results, everything on my fingertips! 

This was so rewarding for my instant-gratification seeking curious mind. 

However, after I finished the course, I learnt that to apply for a PhD, I 

needed a Master‘s degree and not diploma, even though I spent the same 

two years as I would have studied in Masters. At this point, I gave up and 

joined a research group as a project assistant instead. It was a wet-lab 

group researching on cancer, but my bioinformatics skills were limited to 

excel sheet calculations. Anyone who has ever worked in bioinformatics 

would cringe inside, reading that sentence. After spending a year in that lab, 

finally I enrolled for a Master‘s Degree in Bioinformatics in 2009. Three 

years later, at the time when ENCODE (a massive extension of HGP) got 

published in September, 2012, I was in talks with my supervisor Eduardo 

about this PhD position and I felt so delighted to join the place I had just 

read about in the newspaper! Since then, the four years that I have spent in 

this PhD I have learnt so much, both at professional and personal level. In 

this group, I got the opportunity to learn extensively about various aspects 

of genome informatics, analyze genome sequencing data of thousands of 

patients. I've worked and collaborated with such smart brains that I often 

questioned, where do I stand? I got opportunities to meet and learn from 

pioneering scientists in this field, attend conferences and visit genomics 

hubs in Europe that I had read about in my text books. Several such 

moments made me feel both humble and proud.  

 

Finally, sixteen years later, the moment when I felt this journey has come to 

full circle now, was during the last year of my PhD retreat in 2016, when I 

attended an hour long debate session held between two renowned experts 

in the field of genomics, Dr. Mar Alba and Dr. Roderic Guigo, debating 

about the same question it all started with, ‗What is a gene?‘ 

--------------- 
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DNA is considered as the key component of life. In order to study genes, we 

study DNA sequences, though DNA is not the one directly responsible for 

diseases. There are alterations in DNA which then lead to altered RNA and 

proteins responsible for diseases. Thus, RNA is often called the first 

phenotype of a cell. It is still unclear at which point of time in the 4 billion 

years old Earth‘s history, DNA emerged as genetic material and a key 

component of life. Many independent evidences have established that an 

RNA world existed prior to a DNA world. This indicates that the biochemical 

material available was self-sufficient for life processes until some stability 

factor came along. The fact that many crucial components of cells are 

composed of RNA or processed through an RNA-based machinery, 

including the splicing process, establishes the importance of RNA: RNA 

molecules provide for many genes an intermediate stage between DNA and 

protein molecules (Cech 2012), there are currently many more genes 

predicted to be non-coding RNAs than protein-coding, and the 

transcriptome, the set of all RNAs in the cell, is often considered to be the 

first phenotype in eukaryotic cells. The various regulatory steps from DNA 

transcription, through RNA processing, and up until mRNA translation in 

some cases, decide the fate of cell function. Therefore research in RNA 

biology has become a cornerstone for modern day research of diseases 

and therapeutics. This development came along with new technologies to 

detect and measure RNA molecules, such as RNA sequencing (RNA-seq). 

In order to understand how things work inside cells and what goes wrong in 

diseases, much of current research relies on the measurement of RNA 

using high-throughput methods.  

 

It is perhaps remarkable, that a single experimental approach, like RNA-

seq, across multiple samples and conditions, provides enough information 

to infer multiple mechanisms of disease at molecular level. This thesis 

describes the development and implementation of tools to study RNA 

alterations in cancer, hence pushing the limits of knowledge extraction from 

high-throughput sequencing methods such as data generated by The 

Cancer Genome Atlas (TCGA). TCGA is a large consortium that started in 

2005 and so far has created 2.5 petabytes worth of tumor data from almost 
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11,000 patients. As this thesis describes later, cancer is a complex multi-

genic disease with diverse set of genetic and epigenetic alterations. The 

different types of cancers sing the same tune but with different lyrics. We 

can recognize the common tunes now but even a tiny variation in lyrics 

might change the whole meaning of the song, such as in rare cancer types 

(occurring < 6 cases in 100,000 patients). As we are aiming towards more 

inclusive cures such as gene therapies and precision medicines, we need 

much broader perspective to understand these variations. This means that 

more genomics data is required and so are the researchers that can study 

these data. Perhaps a future next step would be the creation of a world 

databank with the sole purpose of providing multi-level cancer data to 

researches. Researchers from all over the world could then write grant 

proposals to work with these data.  

 

Another bottleneck that I often wonder about is whether there will be 

enough researchers in the field to take on this massive task of data 

generation and analysis. With funding size getting relatively smaller and 

limited new job creations, would enough researchers still be interested in 

pursuing or staying in the field? On the other hand, why data analysis 

should be limited to researchers only? While tech giants like Bill Gates and 

Mark Zuckerberg are urging young people to learn programming, influential 

scientists might urge the same: for people to understand basic genome 

architecture and the basic analysis pipelines of genomics data. Now with 

genome sequencing technologies like Nanopore MinIONs that can be 

plugged into a laptop, with starting kits from $1000, genome data analysis 

can be the next programming language for people around the world. Would 

there be ethical concerns involved? This is a matter of perspective. If proper 

education and considerable background is provided, it is less likely that one 

will still believe in the era of Jurassic park science fiction. And if they do, 

then it might be suggesting that we as a scientific community are failing to 

bridge the gap between the real world and us by creating a niche for 

ourselves. As Carl Sagan once said, ―We live in a society absolutely 

dependent on science and technology and yet have cleverly arranged 

things so that almost no one understands science and technology.‖ 
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1. Gene, Gene Expression and Splicing 

 

What is a gene? A gene can be defined as the unit of heredity that is 

transferred from parents to offsprings and which determines certain 

traits in the individuals. Genes are encoded in the DNA of each cell, 

and each gene is currently considered to be defined as a stretch of 

nucleotide sequences in the double-stranded chromosomes. During 

the process called transcription, a precursor RNA, often called pre-

messenger RNA or pre-mRNA, is created by copying the nucleotides 

from one of the two DNA strands. A gene is made up of introns and 

exons. Introns are removed, or spliced out, mostly during 

transcription, and exons are joined together to form mature RNA 

molecules. The transcription and post-transcriptional maturation of 

the pre-mRNA gives rise to mature RNA transcripts that are either 

translated into. However, many RNAs are not translated and exert 

their function as non-coding RNAs. Each of the steps during the 

transcription and maturation of the RNA molecules is complex and 

highly regulated process, involving multiple molecular complexes that 

work in precise coordination. Explaining all of these steps would be 

out of the scope of thesis and therefore I will focus only on a small 

part called ‗alternative splicing‘.  

 

1.1 Splicing 

In eukaryotes genes are composed of exons and introns, where 

exons are considered to carry the functional information of the 

mature RNA molecule: protein-coding regions in the case of protein-
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coding genes, structured regions in the case of structural RNAs (e.g. 

snoRNAs and tRNAs), or some other possible functional regions yet 

to be characterized for many of the so far measured long non-coding 

RNAs. These exons are intervened by long sequences of introns, 

which need to be removed through highly dynamic ribonucleoprotein 

complex known as spliceosome (Lee and Rio 2015). Splicing is the 

process whereby introns are removed from the precursor RNA to 

create mature RNA sequences. This process can occur in different 

ways for the same gene, giving rise to alternative splicing (AS). 

Among all the processing steps during gene expression, AS provides 

perhaps the largest potential for molecular diversity and controlled 

regulation in the cell. Almost 95% of human genes undergoes 

alternative splicing (Wang et al. 2008).  

 

 

  Figure 1. Different types of alternative splicing (Keren et al. 2010). 
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Alternative splicing is usually described in terms of local variations of 

the exon-intron structures, or events. There are seven main types of 

alternative splicing events (Figure 1). a) Exon skipping (SE), also 

known as cassette exon, is the most common type of splicing event. 

In SE, exons are included or spliced out from the transcripts. b) In 

Mutually Exclusive exons (MX) either of the two exons is selected. 

This type of event is usually related to exons that rarely or never co-

exist in a transcript. Another type is alternative 5‘ splice-site (A5), 

where two different 5‘ splice sites (donor sites) may be selected. 

Likewise, in the alternative 3‘ splice-site (A3) different 3‘ splice sites 

(acceptor sites) may be included in the transcripts. In Intron retention 

(RI) a complete intron is included in the transcript instead of being 

spliced out during the splicing process. Another type is Alternative 

First (AF) exons, where alternate starting exons are selected, and is 

often coupled with transcriptional regulation. Finally, there is the 

Alternative Last (AL) exons, which describe two possible 3‘ terminal 

exons in the transcripts. These are the simplest and most common 

local transcript variations, although more complex events can take 

place. 

1.2 Splicing Regulation 

1.2.1 CORE SPLICING MACHINERY 

The process of splicing is catalyzed by a multi-megadalton 

ribonucleoprotein (RNP) complex, which is dynamically assembled 

together to create a highly accurate RNA processing machinery, the 

spliceosome. The spliceosome works as a film editor, cutting out the 

irrelevant material (introns) from the show reel, to keep the important 

information (exons) for the main movie. Introns are generally defined 

by specific sequence signals (Figure 2).  
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Splicing signals - core components: 

 

 

 

 

Figure 2. A typical conserved nucleotides for splicing in introns and exons 

Pu = A/G, Py=C/U 

 

The core components of these signals include the motifs at the 5‘ 

and 3‘ splice-sites, which correspond to multiple positions around the 

exon-intron boundaries. There is also the polypyrimidine tract (PPT), 

which is a pyrimidine-rich stretch of nucleotides located 5-50 bases 

upstream from the 3‘ splice site, and which recruits the U2 small 

nuclear RNA auxiliary factors 2 (U2AF2), also called U2AF65. This 

factor generally binds together with the U2AF1 (U2AF35), which 

interacts with the 3‘ splice site. The branch-point site is made of a 

conserved adenosine and corresponds frequently with the motif 

CURAY (Corvelo et al. 2010). The BP is initially recognized by the 

splicing factor 1 (SF1) and also reflects, except for the BP A, it 

reflects the base-pairing with the U2 snRNA in U2 introns (Figure 2).  

 

In eukaryotes, there are two types of spliceosome machineries: the 

U2 and the U12. The U2 spliceosome catalyzes U2-type introns, 

which are the majority of introns in eukaryotes, whereas the U12 

spliceosome catalyzes U12-type introns, which are a small subset of 

the introns and typically occur at the frequency of 1 in every 5,000 to 

10,000 introns (Sharp and Burge 1997). The U2 spliceosome 

 
 

 GU Pu A G U C U Pu A Py Py rich AG G 

Intron 
 5 – 50 bases 

Branch point site 
Splice donor site 

5’SS 
Splice acceptor site 

3’SS 

AC/AG 
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machinery is composed of five small nuclear ribonucleoproteins 

(snRNPs) named U1, U2, U3, U4, U5 and U6. In addition to the 

snRNPs, few other proteins are required for the spliceosome 

assembly, including the U2 small nuclear RNA auxiliary factors 1 

(U2AF1) and 2 (U2AF2) and SF1. U12-dependent introns are 

spliced-out by their specific snRNPs, the U11 and U12 snRNPs, 

which generally act together as a single complex (Will and Lührmann 

2011). U2 and U12 dependent introns have distinct sequence 

features (Figure 2). Most of the U2 introns have the consensus GT-

AG at the splice-site positions. On the other hand, although many 

U12 introns also have this consensus, a considerable proportion 

have AT-AC (Turunen et al. 2013).  

 

U2 and U12 splicing signals 

 

 

Figure 3. Sequence features of U2 and U12 introns 

 

In U2 introns, the 5‘ signal corresponds to the complementarity to the 

U1 snRNA, whereas in U12 introns, the 5‘ss consensus is rather 

CCUURAY, and corresponds to the base pairing with the U11 

snRNA. U12 introns generally show a stronger branch-point 

consensus and a shorter and almost non-existent PPT as well as a 

shorter distance between the BP and the 3'ss. In contrast, U2 BPs 

have a weaker consensus and, although the distance to the 3'ss can 

be longer, most of the U2 BPs lie between 5nt and 50nt upstream of 

the 3'ss.  
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Steps in canonical splicing  

 

Figure 4. Step wise processes in canonical splicing as explained by 

(Matera and Wang 2014). 

 

Over several steps of splicing process, spliceosomal proteins form 

different complexes to perform canonical splicing. Step 1: Small 

nuclear ribonucleoproteins (snRNPs) U1 and U2 recognizes the 5‘ 

and 3‘ splice sites of exon-intron boundaries, mediated by the 

carboxy-terminal domain of RNAPIIpol-II (Complex E). Step 2: 

Interaction of snRNPs U1 and U2 with each other results into the 

formation of pre-spliceosome complex (Complex A) in the presence 

of helicase pre-mRNA-processing 5 (Prp5) helicase. Step3: Next 

three other pre-assembled snRNPs U4-U6-U5 are recruited at the 

site to form complex B. This is catalyzed by helicase pre-mRNA-

processing 28 (Prp28). Step4: Complex B then forms catalytic active 

complex B (complex B*) by undergoing series of rearrangements 
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which results into the release of snRNPs U4 and U1. This process is 

mediated by RNA helicases Prp2, Brr2 and snu114. Step5:  Complex 

B generates a catalytic spliceosome complex C that contains free 

exon and corresponding exon-intron lariat, this is the intermediate 

state. Step6: Complex C again goes for rearrangements to create 

post-spliceosomal complex. This complex performs a second 

catalytic process that contains the lariat intron and spliced exons. 

Additional helicases are utilized at this step. Step7: At this step, the 

three snRNPs U2, U5 and U6 are released, mediated by helicase 

Prp22, and recycled again to be reused for splicing. Finally, the 

intron lariat undergoes degradation (Figure 4). Most of the 

mechanisms related to gene expression take place in a coordinated 

way that couples transcription with pre-mRNA processing. Co-

transcriptional splicing seems to be quite prevalent and 

advantageous for the efficiency of splicing (Naftelberg et al. 2015). 

There is also plenty of evidence showing that splicing regulation 

depends on the coupling with the dynamics of RNA polymerase II 

(RNAPII). During transcription, the spliceosome machinery 

assembles to perform the process of splicing.  

 

  1.2.2 ADDITIONAL COMPONENTS, (SILENCERS AND ENHANCERS) 

In contrast to constitutive splicing, which refers to exons and splice-

sites that are always processed in the same way, alternative splicing 

is related to a competitive regulation between exons or splice-sites, 

resulting in multiple RNA molecules from the same gene locus. 

Several components participate to decide the fate for skipping or 

inclusion of exons in alternative splicing, and these will work 

differently depending on multiple factors, like tissue type, cell-type 

and disease state. Although alternative splicing often occurs in exons 

with weaker splice sites the strength of the splice site cannot explain 
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completely the inclusion level of exons in different conditions (Barash 

et al. 2010). Indeed, splice sites are not the only signals governing 

the recognition of exons and the complexity of alternative splicing 

regulatory process goes much deeper than the core spliceosomal 

machinery.  Alternative splicing is generally controlled or triggered by 

multiple RNA binding proteins (RBPs), known as splicing regulators. 

 

Splicing Silencers and Enhancers 

 

 

Figure 5. Cis regulatory sites controlling alternative splicing. 

(Srebrow and Kornblihtt 2006) 
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The interactions of splicing regulators with their cognate RNA sites 

generally control and regulate the splicing decision (Witten and Ule 

2011). These cis-regulatory sites are found on exons, as well as 

typically 200-300 nucleotides up or downstream of exons. These 

regulatory elements are denominated splicing enhancers or 

silencers, as they can function as activators and repressors of the 

splicing mechanism, respectively (Fairbrother et al. 2002; Wang et al. 

2004). These can occur in exons as Exonic Splicing Enhancers 

(ESEs) or Silencers (ESSs), and in introns as Intronic Splicing 

Enhancers (ISEs) or Silencers (ISSs) (Figure 5) (Wang et al. 2012). 

A large amount of these regulators have been identified using 

experimental and computational methods (Yeo et al. 2004; Stadler et 

al. 2006), and they can have a changing role depending on their 

position along the exon or the intron (Goren et al. 2006). These 

results highlight the variety of sequences that can function as splicing 

cis-regulatory elements, and their position-specific effects. The 

determination of the binding affinities of multiple RBPs have helped 

in the recognition of many of these splicing enhancers and silencers 

as specific binding sites of RBPs that work as splicing regulators 

(Ray et al. 2013; Lambert et al. 2014; Ule et al. 2003). 

 

Figure 6 describes various modes of mechanisms in the regulation of 

alternative splicing through splicing silencers and enhancers. 
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Mechanism of regulation 

 

Figure 6. Rules for context-dependent and position-sensitive regulation of 

alternative splicing.(Fu and Ares 2014) 

 

1.3 Computational Methods to study RNAseq data 
and splicing 

1.3.1 RNA SEQUENCING 

Thanks to the developments in the technologies for the sequencing 

of ribonucleotides, starting with Sanger‘s chain termination technique 

in 1977 (Sanger et al. 1977) and later with the start of the 
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sequencing of the human genome, genomics has come a long way. 

Importantly, advancement in computational biology has taken place 

in parallel.  If human landing on the moon was done using computers 

less powerful than our smartphones today, one could argue the 

same when comparing current computational genomics research 

with the methods and technologies available 13 years ago. The 

human genome project took a total budget of $3 billion and 13 years 

to accomplish, including the time of genome mapping (Archive), 

which means $1 per base sequenced every 0.14 second. Some 

argue that this could now be achieved with $1000 within a 3-day run 

with 30X coverage (Illumina HiSeq X Ten) i.e. $0.00000033 dollar 

per base for every 0.000086 sec. Even though we have not included 

here the cost of analyzing the data, one may argue that this can be 

done much faster and cheaper nowadays. The technological 

revolution in sequencing combined with the advancements in 

computational biology has led to the appearance of a myriad of 

methods and algorithm to analyze data. In particular, there are many 

methods to study splicing from RNA sequencing data (Alamancos et 

al. 2014). 

 

1.3.2 COMPUTATIONAL METHODS TO STUDY SPLICING 

High-throughput RNA sequencing (RNA-seq) allows the 

measurement of the set of RNA molecules, the transcriptome, in a 

sample. RNA-seq data is mostly used to study differential expression 

analysis of genes, but it allows measuring other patterns in the 

transcriptome, like differential splicing. Differential splicing is related 

to a change in the relative abundances of the gene-isoforms 

(transcripts), which may occur without an observable expression 

change for the given gene, and hence it provides orthogonal 

regulatory evidence. If the genome of an organism is available, a 
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typical method to study alternative splicing starts with mapping RNA-

seq reads on the genome to identify the locus of the transcripts they 

originate from. Otherwise, de novo reads may be assembled into 

contigs to build a candidate transcriptome. The different 

methodologies used for splicing analysis from RNA-seq are reviewed 

in detail in (Alamancos et al. 2014) and briefly described here: 

 

Spliced mapping of reads: First step in the analysis pipeline is to 

use splice-aware tools to map sequencing reads back to their gene 

locus of origin. Splice aware mapping tools usually follow two 

methods; exon-first methods use first an unspliced approach to map 

the reads to genome and create read clusters. Unmapped reads are 

then used to connect these read-clusters. These methods tend to be 

faster but usually require high coverage on exons.  TopHat (Kim et 

al. 2013), and STAR (Dobin et al. 2013) are tools that use this 

approach. Seed-and-extend is another method of reads mapping that 

maps reads as k-mers or substrings and locate the splice-sites by 

extending matched reads at both directions. This method is 

comparatively slower although recovers more novel splice-sites and 

some aligners use both approaches together (see (Alamancos et al. 

2014) for a complete set of references). 

 

Quantification of the splicing variants: After mapping reads on 

their respective transcript coordinates the next step is to estimate the 

expression levels of transcripts and exon inclusion or exclusions. 

There are two ways to study splicing quantification 1) events based: 

Here the splicing events are created by using the annotation of exon-

intron junctions or directly from the mapped reads, and then 

subsequently the inclusion levels of each event is estimated. Tools 
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like SUPPA (Alamancos et al. 2015), MISO (Katz et al. 2010), 

rMATS (Shen et al. 2014) or  MAJIQ (Vaquero-Garcia et al. 2016) 

provide event quantification.  PSI of an event is generally calculated 

by estimating the ratio between expression of the transcript(s) with a 

particular event compared to expressions of all transcripts that 

include or exclude the event (Klinck et al. 2008), which the various 

methods estimate in different ways from sequencing reads.  2) 

isoform based : Another method of quantification is to assign reads 

on different isoforms of the gene and estimate the expression for 

each isoform using, for instance, Cufflinks, Salmon, Kallisto or 

Sailfish (Trapnell et al. 2010; Patro et al. 2015; Bray et al. 2016; 

Patro et al. 2014).  The isoform expression values are reported in 

RPKM (Reads per Kilobase per million of mapped reads) or TPM 

(Transcripts per million) or using relative expression values such as 

PSI (percent/proportion spliced index), which is calculated as the 

relative abundance of the transcripts over the total gene abundance.  

 

Alignment free quantification: A new generation of tools appeared 

recently that can provide transcript quantification without relying on 

genome alignments. Tools like Sailfish, Salmon and Kallisto (Patro et 

al. 2014, 2015; Bray et al. 2016) are alignment independent 

quantification tools that take the sequences of all the transcripts one 

wants to quantify and outputs the estimated read counts and TPM 

values for each transcript. This method of transcript quantification is 

very fast but is limited to annotated transcripts.  

 

Differential splicing:  For events based methods, the change in 

splicing is calculated by estimating the changes in the relative 

abundance of events or exons between two conditions. Methods like 
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MISO, rMATS, MAJIQ, and SUPPA calculate the difference in PSI 

(delta-PSI) between conditions. For example SUPPA (Alamancos et 

al. 2015) provides the delta-PSI (between -1 to +1) for all type of 

splicing events (SE,A3,A5,RI,MX,AF,AL) and creates a unique 

identifier for each event 

(<gene_id>;<event_type>:<seqname>:<coordinates_of_the_event>:

strand) as shown in Figure 7 (Entizne et al. 2016). Another way to 

calculate differential splicing is through isoform based methods. 

Tools like Iso-kTSP (Sebestyén et al. 2015), SwitchSeq (Gonzàlez-

Porta et al. 2013), DrimSeq (Nowicka and Robinson 2016)  and 

SUPPA also identify transcripts that significantly change in relative 

abundance between conditions.  

 

Figure 7. SUPPA event ids to create unique identifiers for alternative 

splicing events (Alamancos et al. 2015).  
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1.3.3 METHODS TO STUDY SPLICING REGULATION  

 

Two main features are generally studied in the context of the regulation of 

splicing and disease: the differences in splicing between normal and 

disease conditions, and the changes in expression of regulatory RNA 

binding proteins and splicing factors (Trans component) that might be 

responsible for the splicing changes through their binding to RNA. 

 

a. Trans-component: Multiple approaches are available to determine 

the expression change between different conditions computationally.  Read 

counts per gene are normalized using tools like TMM (Robinson and 

Oshlack 2010), DESeq (Anders and Huber 2010), PoissonSeq (Li et al. 

2012), which take into account read depth and transcript length and ignore 

highly variable transcripts that might skew the results. Tools like DESeq2 

(Love et al. 2014) and edgeR (Robinson et al. 2010) requires already 

normalized data to perform differential expression analysis. Cuffdiff 

(Trapnell et al. 2012) is another method to study expression change at the 

gene and transcript level. The genes thus found changing expression 

between conditions can further be confirmed using qPCR and Western-

blot experiments. Further, the association between the differential splicing 

observed and the possible regulators can be validated using knockdown or 

overexpression experiments.  For example if a gene shows a positive 

correlation between its expression change and a change in splicing patterns 

between conditions, a knockdown of this gene should reverse the splicing 

patterns (see e.g. (Sebestyén et al. 2016)). This way one could map the 

impact of RNA binding proteins on splicing.  

  

b. Cis-component: To establish whether the changes in splicing 

patterns between conditions could be due to the direct interaction of RBPs, 

one needs to identify the actual binding sites in the sequence of a gene. 

RNA binding proteins recognize one or more small stretches of nucleotides 

(4-7nt) on the pre-mRNA (Daubner et al. 2013; Ray et al. 2013). If RNAseq 
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is the method to study expression and splicing in genes, crosslinking and 

immunoprecipitation (CLIP) followed by deep-sequencing (CLIP-Seq) has 

become the standard protocol to identify binding sites for RNA binding 

proteins (Ule et al. 2003; Macias et al. 2012). This method captures cross-

linked RNA-protein complexes, i.e. RNA sequences bound to a specific 

protein. The fragments of RNA are then sequenced and statistical analysis 

is then performed to identify the likely binding regions. Methods like CIMS, 

Piranha or Pyicoclip (Uren et al. 2012; Althammer et al. 2011) are some of 

the methods developed for this task. See (Bottini et al. 2017) for a recent 

benchmarking analysis. Using the significant CLIP regions, a sequence 

enrichment analysis can be performed, by comparing with control regions, 

to identify a consensus binding motif. The simplest description of a motif 

consists in a position weight matrix (PWM), which represents the frequency 

of the four nucleotides A,T,G,C, at each position of the motif.  Once a motif 

is identified, tools such as MEME-suite (Bailey et al. 2009) could be used to 

scan sequences to locate the positions of the motif in introns or exons of a 

gene. Tools and methods to study motifs are described in detailed further in 

the thesis. Alternatively, one can perform motif enrichment analyses in the 

differentially spliced events, compared to controls, and identify the possible 

regulators from a set of previously identified binding affinities (Ray et al. 

2013; Lambert et al. 2014). 

 

  



18 
 

2. Cancer 

 

2.1 Cancer brief description 

First known records of cancer date back to 1600 BC in Egyptian literature, 

and included the description as well as the removal procedure of breast 

tumors. It was then concluded that this was a disease with no cure (2014). 

Unlike many other diseases that since their discovery have been 

successfully treated or eradicated, cancer has become a large jigsaw 

puzzle. Scientists and doctors are trying to fit in pieces together, but the 

puzzle remains incomplete. Since 1971 over 200 billion dollars have been 

invested on basic and clinical research in cancer in the US alone (Begley 

2008). This has made possible to reduce the cancer death rate by a total of 

25% since its peak in 1991 (Siegel et al. 2017). Cancer research and 

treatment has come a long way from the initial interventions, including 

surgically removing the tumors in live patients body (without anesthesia) 

during the 1800s. Many scientific and surgical landmarks have determined 

the approach to cancer. For instance, radiation as treatment started to be 

used in 1903, five years after Curie‘s discovery of radium. More than 

hundred years later, it is still an essential component in cancer treatment. 

The development and implantation of Pap-test screenings (1950s), as well 

as the programs to increase colorectal and mammography screenings (late 

1970s) have contributed to the decrease of deaths related to cancer. The 

development of chemotherapy, combination of chemotherapy (1950s), 

vaccines against hepatitis B (1981), as well as the identification of 

carcinogens such as smoking (1960s), asbestos (1970s), benzene (1980s), 

radium, etc, have also contributed to the advancement in the prevention and 

treatment of the disease. However, cancer research has been largely 

dominated by the strategies of trial and error. It is only recently that specific 

molecular mechanisms have been identified and specific drugs to target 

these mechanisms have been developed (early 1990 onwards). For 

instance, the first ever drug for targeted therapy was Rituximab, developed 
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against B-cell non-Hodgkin lymphoma (1997); followed by Herceptin for 

women with early-stage HER2-positive breast cancers (1998). Gleevec was 

developed for rare Leukemia and imatinib for rare abdominal tumor called 

gastrointestinal stromal tumor (2001). We could conclude that within a 

hundred years cancer became a partially curable, preventable disease to 

some extent. Remarkably, all these achievements took place before the 

human genome was known.  

 

The developments in genome sequencing have shifted the focus of cancer 

towards the genetic characterization of the tumors and the development of 

targeted therapies directed to specific genetic alterations. This has also 

highlighted the fact that cancer is not a single disease, but many diseases, 

almost as many as patients. According to recently released annual statistics 

report from the American Cancer Society, more than 200,000 new cases of 

rare cancers are expected to be reported in 2017 in the US alone (Siegel et 

al. 2017). Rare cancer cases are those with 6 or fewer cases per 100,000 

people per year. In other words, 1 in 5 people diagnosed with cancer in 

Europe have a rare cancer type. Sometimes this could go as low as 1 case 

in 100,000 people. If in the pre-genomic era the efforts were focused on 

identifying and curing common cancer types, in the post-genomic era the 

attention has shifted towards the search of cures for each individual cancer, 

exploiting the information of genomics data and working towards patients-

specific therapeutic strategies. 

 

2.2 Genomics and cancer 

 

The study of genomics in cancer started with the observation in 1981 by 

Shih et al. that DNA sequences obtained from carcinoma cell lines were 

able to transform phenotypically healthy NIH3T3 cells into cancer cells (Shih 

and Weinberg 1982). A follow up for the exact causes for this observation 

started revealing several point-mutations such as a single G > T substitution 
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mutation in HRAS (Reddy et al. 1982). Such observations motivated the 

search for more such genes and established the importance of genomic 

sequences in cancer research. Today, only fifteen years after the first draft 

of the human genome sequence was published, an exhaustive genomic 

catalogue of mutations linked to multiple cancer types have been put in 

place by researchers (Lander 2011). We now have vast information on 

genome sequences, transcription data, methylation patterns, chromatin 

structures, etc, related to many types of cancer. 

 

Most of the recent research in cancer genomics has been devoted in the 

identification of the DNA alterations associated to the tumors from multiple 

individuals. Patients that have already been diagnosed with a given tumor 

type according to the multiple clinical tests have their tumors resected and 

the DNA and/or RNA is extracted and sequenced. Compared to normal 

cells, tumor cells shows differences in growth, morphology, structure, 

cellular interactions and gene expression. Somatic alterations such as 

mutations, copy number variations, translocations, insertions and inversions 

can cause changes in gene expression, which directly affects protein 

expression Somatic alterations appear spontaneously and could occur 

anywhere within the 3 billion bases of the human genome. However, not all 

are linked to a phenotypic change in the cell. . In cancer, proteins that are 

crucial for normal cell growth and survival are altered. This is why usually 

the research is focused on alterations falling on coding regions, which only 

comprise ~2-3% of entire genome. As described earlier and further in the 

thesis, studying only coding regions does not provide a comprehensive view 

of the alterations in tumors. Non-coding regions (regions that do not code 

for protein) contain many regulatory elements that are essential for the 

control of gene expression and in particular, RNA processing, hence 

mutations in them can also have a functional impact in the cell. 
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2.2.1 HALLMARKS OF CANCER 

 

 

Figure 8. Hallmarks in cancer as proposed by Hanahan and Weinberg, 

2011 

Tumors are usually divided into benign and malignant. A benign 

tumor is a mass of cells considered harmless and curable, as they do 

not spread to other parts of the body. Malignant tumors are the 

cancerous cells that found a way to multiply uncontrollably and 

metastasize. Malignant tumors share a minimum set of properties. 

Hanahan and Weinberg published in the year 2000 the first set of 

features encompassing the general properties of cancers (Hanahan 

and Weinberg 2000). They proposed that all cancers 1) sustain 

proliferative signalling, 2) evade growth suppressors, 3) show 

resistance to cell death, 4) enable replicative immortality, 5) induce 
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angiogenesis and 6) activate invasion and metastasis. This provided 

a common definition for cancer (Hanahan and Weinberg 2000) 

(Figure 8). However, as research on cancer progressed, along with 

the availability of more genomics data, it was observed that cancer 

cells share other consistent properties apart from these six. 

Following the new developments, Hanahan & Weinberg revisited the 

cancer hallmarks in another review in 2011 (Hanahan and Weinberg 

2011) to include four new hallmarks: 7) avoidance of immune 

destruction, 8) tumor promoted inflammation, 9) deregulation in 

cellular metabolism, and 10) genome instability. These ten hallmarks, 

or a combination of them, are observed in all cancers, and yet the list 

is not believed to be comprehensive. Several additional hallmarks 

have been proposed by researchers (Ladomery and Ladomery 2013) 

in order to address cancer heterogeneity and complexity shared 

through similar properties. 

 

2.2.2 ALTERATIONS IN CANCER GENOME 

 

It has been shown through different experiments that cancer follows 

an evolutionary process at cellular level (Jones et al. 2008). When 

cells grow abnormally and form a mass outside of the tissue 

structure, this is known as neoplasm. Neoplasms are classified into 

four main categories: benign, in-situ, malignant and neoplasms of 

uncertain behavior. Cancer cells are part of the malignant 

neoplasms. They are mutant cells competing for space and 

resources inside a microenvironment. They struggle against 

elimination by the immune system and disperse throughout the body 

often to colonize new organs, improving their chances of survival and 

giving rise to metastasis (Merlo et al. 2006). These neoplasms are 
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genetically and epigenetically a diverse population of cells altered 

through somatic mutations and then selected through Darwinian 

evolution. Somatic mutations providing selective advantage are 

expected to be maintained in the population and increase their 

frequency with time, whereas those detrimental to tumor cells are 

expected to occur at low frequency or disappear from the 

population.  This has motivated the use of recurrence of mutations 

across different patient samples to identify mutations that may be 

essential for the survival and growth of the tumor.  

 

Genes that provide advantages to tumor growth are frequently 

altered to either silence or enhance their function. These genes are 

divided into two main categories: oncogenes and tumor-suppressors. 

Genes that participate in cellular-growth pathways, such as RAS, are 

oncogenes and are often associated with gain of function mutations. 

On the other hand, genes such as P16, which function to regulate 

cell proliferation, act as cell cycle checkpoints against DNA damage, 

promote apoptosis and DNA repair, etc., are usually tumor 

suppressor genes. Such genes show loss of function in tumors 

through point mutations or deletions. Alterations in these genes 

through mutations, chromosomal rearrangements or gene duplication 

provides excessive growth promoting signals and uncontrolled 

division of the cells, hence they are defined as drivers of cancer 

(Vogelstein et al. 2013).  
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2.2.3 DRIVERS AND PASSENGER MUTATIONS 

 

 

Figure 9. Timing of the somatic mutations acquired by cancer cell as the 

growth progresses (Stratton et al. 2009). 

 

Cancer is a continuous evolutionary process where cells are 

‗selected‘ based on Darwinian evolution. Mutations occur at random 

on genes and get accumulated, until a specific mutation that gives 

selective advantage to tumor cells for uncontrolled growth occurs. 

When this mutation happens it leads to multiple clonal copies in the 

cell population, often becoming a dominating clone. These mutations 

will be observed at higher frequency in the DNA sequencing from the 

bulk tumor sample from the patient. Moreover, if this specific 

mutation is frequently observed in other patients, it is usually 

described as a driver mutation. However, as tumors are 

characterized by increased overall mutation patterns due to genome 

instabilities and the deregulation of DNA repair (Alexandrov et al. 

2013), recurrence is not enough to identify drivers. Besides 

correction for the mutational background, the functional impact of the 

mutation is usually evaluated, and hence the analysis has been 

mostly focused on the protein coding regions of genes (Watson et al. 
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2013; Martincorena and Campbell 2015). Driver mutations are often 

observed in oncogenes and tumor suppressors in locations related to 

their over-activation or inactivation, respectively. Lately, driver 

mutations were also reported on transcription start sites and other 

non-coding regions (Huang et al. 2013; Weinhold et al. 2014a). The 

cells with driver mutations are able to produce more clonal copies 

and therefore same mutation at same position can be consistently 

observed across patients. In contrast to driver mutations, passenger 

mutations are due to the random background pattern of mutations. 

They are often considered neutral for tumor growth providing no 

selective advantage, perhaps because they are inconsistent across 

patients, and therefore difficult to detect (Vogelstein et al. 2013). 

However, new studies are proposing that passenger mutations 

hitchhike along with driver mutations and assist driver mutations for 

specific tumor phenotypes (McFarland et al. 2014).  

 

2.3 Computational method to study cancer mutations 

 

2.3.1 LARGE SCALE GENOME SEQUENCING STUDIES 

 

Sequencing data to study cancer is generated using either whole 

exome sequencing (WES) or whole genome sequencing (WGS). In 

WES, exonic regions, mostly those coding for protein are previously 

enriched from DNA samples and sequenced. WES is cost effective 

to get good read depth for ~2% of the genome, and therefore 

appropriate to study alterations such as protein-coding driver 

mutations. However, current analyses indicate that we are plateauing 

in the number of patients that can be explained by protein-affecting 



26 
 

mutations (PAMs) (Garraway and Lander 2013). Despite current 

efforts, not all regulatory processes have been explored. The 

reduction of sequencing costs has facilitated the systematic study of 

other genomic regions in cancer using WGS data (Meienberg et al. 

2016). WGS produces full genome sequence, which allows detailed 

studies for all type of DNA alterations genome wide, including the 

98% that corresponds to non-coding regions. The analyses of whole 

genome sequencing (WGS) from multiple tumors have highlighted 

the relevance of mutations in regulatory regions, like the TERT 

promoter or the binding sites for CTCF (Horn et al. 2013; Huang et 

al. 2013; Katainen et al. 2015) to explain part of the observed tumor 

phenotypes. WGS data analyses have also highlighted specific 

mutational signatures linked to tumors and oncogenic mechanisms 

(Alexandrov et al. 2016; Alexandrov and Stratton 2014; Alexandrov 

et al. 2013), which may eventually help improving the clinical 

prognosis and therapy selection for individual tumors. WGS has thus 

become an essential method nowadays to study cancer data.  

 

The large heterogeneity observed in tumors has continuously raised 

demands to produce genome-wide sequencing data with high quality 

cancer cohorts. In fact, sequencing throughput is no longer a 

problem, but the assembly of well-phenotyped samples is, and this 

has become the new currency in cancer genomics. Larger cohorts of 

patients with well-curated clinical data help researchers for in-depth 

analysis of cancer alterations in relation to prognosis. This has 

motivated the formation of large international consortia, like ICGC 

(http://icgc.org/) or TCGA (https://gdc.cancer.gov/) to carry out 

collaborative efforts to study in depth multiple cancer types using 

sequencing data from patient samples. TCGA started as a pilot 

project in the year 2005 in coordination with multiple centers to 

http://icgc.org/
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provide high quality genomic data for three cancer cohorts: 

glioblastoma, lung and ovarian cancer. In the second phase, which 

started in 2009 and ended in 2016, TCGA has provided multi-layer 

data for 33 different cancer types including whole genome 

sequencing data for more than 500 patients. The data includes RNA 

sequencing, CNV profiling, SNP genotyping, DNA methylation 

profiling, microRNA profiling and whole genome and exome 

sequencing. For a number of patients, paired normal samples were 

extracted from the tumor resections and RNA was sequenced as 

well. TCGA data for 16 different cancer types were used for the work 

presented in this thesis (Figure 10). 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 10. TCGA cancer types used in this thesis. Cancer types in red color 

were later added to the analysis for the work described in the second 

chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

Glioblastoma multiforme (GBM) 
Brain lower grade glioma (LGG) 
Head & Neck squamous cell carcinoma 
(HNSC) 
Thyroid carcinoma (THCA) 
Breast invasive carcinoma (BRCA) 
Lung squamous cell carcinoma (LUSC) 
Lung adenocarcinoma (LUAD) 
Liver hepatocellular carcinoma (LIHC) 
Kidney Chromophobe (KICH) 
Kidney renal clear cell carcinoma (KIRP) 
Kidney renal papillary cell carcinoma 
(KIRC) 
Colon adenocarcinoma (COAD) 
Colorectal cancer (CRC) 
Prostrate adenocarcinoma (PRAD) 
Bladder urothelial carcinoma (BLCA) 
Skin cutaneous melanoma (SKCM) 
Uterine corpus endometrial carcinoma 
(UCEC) 

Cancer Types (TCGA) 
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2.3.2 SOMATIC MUTATION ANALYSIS 

After sequence alignment of DNA reads from tumor and paired 

normal samples, typical pipelines for somatic mutation analysis 

identify single nucleotide variants (SNVs), copy number variants 

(CNVs), gene fusions and structural variants. SNVs, including 

substitutions and indels, are generally detected using tools such as 

VarScan (Koboldt et al. 2012) and GATK (McKenna et al. 2010). 

Once identified, these variations are annotated and then studied for 

either genetic alterations at individual level or at population level 

(Ding et al. 2014). Significant mutations and driver genes are 

identified by comparing mutation frequencies against background 

mutation rates. Besides this, mutation analysis must be corrected for 

gene length, expression level and replication timing (Lawrence et al. 

2013). Gene expression levels correlate with mutation rate, while 

replication timing shows anti-correlation. Late replicating genes are 

also found to be prone to more mutations due to unavailability of 

nucleotides (Lawrence et al. 2013). Tools such as MuSiC (Dees et 

al. 2012) are utilized to identify significantly mutated genes 

considering these factors as background. One of the main objectives 

of mutation analysis is to separate between driver and passenger 

mutations.  

 

Additional analyses involved the discrimination between oncogenes 

and tumor suppressors (Schroeder et al. 2014). Oncogenes usually 

have a clustered pattern of mutations and these are related to 

activation, whereas tumor suppressors usually have a widespread 

pattern of mutations along the coding region and these are generally 

related to protein truncations and/or loss of function. Although 
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activation of protooncogenes and inactivation of tumor suppressors 

are associated with mutations, there are also genes with alterations 

linked to the activation of oncogenic properties or inactivation of 

tumor-suppressing properties despite not being mutated. These 

alterations are often related to amplification and overexpression for 

oncogenes or deletions or downregulation for tumor suppressors 

(Vogelstein et al. 2013).  
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3.  Splicing and Cancer 

 

3.1.1 Splicing as a hallmark of Cancer 

 

Figure 11. Hallmarks of cancer modified to show splicing association at 

each step. 

Sometimes changes other than mutations or expression alterations 

of genes can be linked to specific tumorigenic properties. Genes may 

undergo differential splicing, often producing a switch between a 

normal protein and a disease specific variant. Differential splicing is 

relevant for tissue differentiation (Han et al. 2013) and is often 
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reverted in disease conditions (Irimia et al. 2014; Sebestyén et al. 

2016). Differential splicing of genes can disrupt the gene function or 

protein-protein interactions and ultimately affect downstream 

pathways. A switch in one or more splicing events has been 

observed in relation to almost all hallmarks of cancer. For example 

the protooncogene HRAS, important for cellular proliferation, shows 

mutations on exon 2 that leads to an oncogenic splicing variant 

(Hartung et al. 2016). Similarly, the alternative splicing of FAS 

produces a soluble form that permits tumor cells to evade the 

immune system and apoptosis (Cascino et al. 1995; David and 

Manley 2010). Another proto-oncogene, MST1R, may undergo exon 

11 skipping, producing a protein variant that provides increased cell 

motility and migration to tumor cells for invasion and metastasis 

(Ghigna et al. 2005). Similarly, alternative splicing of VEGFA is 

commonly observed in tumors and it promotes the formation of new 

blood vessels (David and Manley 2010). Likewise, deregulation of 

telomerase splicing (hTERT) provides an advantage to tumor cells 

for limitless replicative potential (Wong et al. 2014). Other examples 

include an isoform switch in CTNND1 in relation to cell invasion 

(Yanagisawa et al. 2008) and the alternative splicing of BIN1 in 

relation to apoptosis (Anczuków et al. 2012). In summary, multiple 

AS changes have been described that essentially recapitulate 

cancer-associated phenotypes (Figure 11).  
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3.1.2 ORIGIN OF THE SPLICING ALTERATIONS IN CANCER 

 

Cis and Trans alterations 

A large body of work has been devoted to determine the different 

alterations that lead to these AS splicing changes observed in 

cancer. Trans-acting splicing factors bind to small sequence motifs to 

promote or repress splicing. Many other RBPs such as CELF 

proteins, MBNL proteins, QKI, TIA1 and NOVA proteins are also 

known to regulate splicing in cancer. These proteins show differential 

expression, somatic mutations and copy number variation in different 

tumor types, which can have an impact in the RNA processing, and 

in particular splicing, of multiple genes (Alsafadi et al. 2016; Brooks 

et al. 2014; Darman et al. 2015; Sebestyén et al. 2016). On the other 

hand, the cis-component of splicing, i.e. the sequences where these 

proteins and splicing factors bind are also important to study. 

Mutations in splicing regulatory sequences are often associated with 

cryptic splice-site formation and frameshifts, which in turn leads to 

premature termination of transcripts (Srebrow and Kornblihtt 

2006).Somatic mutations have been associated with aberrant 

splicing of genes in cancer (Jung et al. 2015; Supek et al. 2014). 

However, these studies focused on splice sites and exonic regions, 

and show limited evidence on RNA sequencing from the same 

samples and other more sophisticated analyses are necessary to 

show the functional impact of splicing in cancer. We describe below 

the possible alterations in tumors that can lead to alternative splicing 

changes.  
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Figure 12. RNA splicing factors as oncogene and tumor suppressors. 

(Dvinge et al. 2016) 

 

Expression change of splicing factors 

Multiple splicing regulatory factors have been observed to trigger 

tumorigenic properties in cells when overexpressed or downregulated, 

and have been characterized as oncogenes or tumor-suppressors, 

respectively, through the changes they induce in alternative splicing 

(Grosso et al. 2008; Anczuków and Krainer 2016; Dvinge et al. 2016) 

(Figure 12). Some factors recapitulate this role across multiple tumor 

types, whereas others show a context dependent expression pattern 

that may reflect the tissue of origin (Sebestyén et al. 2016). The 

expression alteration of splicing regulators may have different origins, 

like copy number alterations (Sebestyén et al. 2016) or through 

changes in post-transcriptional modifications that are under the control 

of cell signaling pathways, which are frequently deregulated in tumors. 

Additionally, splicing factors are transcriptionally controlled by the 
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oncogene MYC, which is frequently overexpressed in tumors and 

leads to multiple oncogenic splicing changes through the upregulation 

of splicing factors (Das et al. 2012; Anczuków and Krainer 2016). The 

expression changes in splicing factors is also linked to the metabolic 

transformations associated to tumors, often triggered by specific 

cellular microenvironments, which leads to alternative splicing chances 

in genes involved in metabolic processes (David et al. 2010). The link 

between MYC, splicing and cancer has been further emphasized 

recently. Components of the spliceosome appear to be essential for 

the activity of MYC as oncogene, which underscores the central role of 

splicing in cancer (Hsu et al. 2015; Koh et al. 2015). 

 

It has been further observed that gene expression alterations in cancer 

appear to recapitulate partially or extensively physiological pathways. 

For instance, breast tumors show a pattern in the expression splicing 

factors and splicing events that resemble that of undifferentiated cells, 

including the down regulation of MBNL1 and a splicing change in 

NUMB (Sebestyén et al. 2016). Similarly, alternative splicing analysis 

during metastatic colonization (Lu et al. 2015) show extensive overlap 

with the changes that occur during epithelial-to-mesenchymal 

transition (EMT) (Shapiro et al. 2011). However, it is not yet clear 

whether such cellular programs are fully recapitulated or whether they 

coexist with other alterations that appear in tumors, thereby providing 

tumor cells with a variety of molecular repertoires. 

 

Mutations 

Access to the genome sequence from multiple tumors has uncovered 

recurrent mutations in core and auxiliary components of the 

spliceosome in various tumor types. They occur predominantly in 

hematological malignancies and often involve the factors SF3B1, 
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U2AF1, SRSF2 and ZRSR2 (reviewed in (Dvinge et al. 2016)). 

Although generally at lower rate, splicing factors also appear mutated 

in solid tumors, including SF3B1 in breast cancer and melanoma 

(Darman et al. 2015; Furney et al. 2013), U2AF1 and RBM10 in non-

small cell lung tumors (Brooks et al. 2014), and HNRNPL in colon 

tumors (Sebestyén et al. 2016) An analysis of genes coding for known 

and putative RNA binding proteins has shown that mutations in known 

and putative regulators of splicing is mostly limited to these cases in 

solid tumors (Sebestyén et al. 2016). Additionally, expression changes 

in splicing factors appears to produce more splicing changes in the 

events, compared to those related with mutations in splicing factors 

(Sebestyén et al. 2016) or regulatory regions ( et al. 2015; Jung et al. 

2015), and both types of alterations do not seem to produce the same 

splicing changes. For instance, modulating the expression of SF3B1 in 

cells does not recapitulate the changes observed when SF3B1 is 

mutated (Alsafadi et al. 2016). The identification of the splicing 

changes related to mutations in splicing factors is instrumental to 

understand their relevance for cancer development and therapy and is 

currently an active area of research (Kim et al. 2015; Lee and Abdel-

Wahab 2016; Darman et al. 2015; Alsafadi et al. 2016).  

 

Mutations on splicing regulatory sequences 

Somatic mutations that disrupt splicing regulatory motifs can also be a 

source of splicing changes in cancer. For instance, mutations at the 

exon-intron boundaries have been associated with intron retention in 

tumor suppressors such as TP53, ARID1A, PTEN, CHD1, MLL2 and 

PTCH1 (Jung et al. 2015). Similarly, mutations on synonymous sites 

on coding exons appear enriched in oncogenes and have been 

proposed to disrupt the splicing of cancer drivers such as ITK, ALK, 

IDH1 and BCL6 (Supek et al. 2014). Since splicing regulatory 
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sequences on exons span 4 to 6 nucleotides, hence possibly covering 

multiple codons, it is likely that mutations on non-synonymous sites 

also lead to splicing changes in cancer drivers (Sterne-Weiler and 

Sanford 2014). Intronic mutations also appear to play a crucial role in 

cancer such as therapy resistance. For instance, a point mutation 51nt 

upstream of the 3‘ splice-site of intron 8 of BRAF promotes a splice 

variant that confers resistance to Vemurafenib treatment (Salton et al. 

2015). However, in contrast to exonic mutations, not many recurrent 

intronic mutations have been described so far beyond the exon-intron 

boundaries, despite the fact that a significant fraction of the splicing 

regulation is controlled by intronic regulatory sequences, either through 

the branch-point and poly-pyrymidine tract sequences, or through 

intronic splicing enhancers and silencers (Diederichs et al. 2016). This 

could be due to the fact that intronic regulatory motifs often present 

positional variability with respect to the exon-intron boundaries and are 

therefore less straightforward to identify. Although deep intronic 

mutations may be harder to characterize, they could also affect 

splicing. For instance, a considerable number of introns harbor distant 

branch-points located further than 50nt upstream of the 3‘ splice-site 

(Corvelo et al. 2010), and the structure of the RNA plays a role in its 

processing and may bring together distant regions (Lovci et al. 2013). 

By harnessing the power of characterizing the relevant intronic 

regulatory regions, we will be able to gain further insights into the 

disruption of splicing in cancer. 
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Figure 13. Multiple facets of alternative splicing, providing portal to next 

generation cancer genomics study and therapeutic targets.  

 

 

3.2 Functional Impact of Splicing 

The analyses of transcriptomes from multiple patient tumor samples 

have highlighted frequent splicing changes during tumor progression 

and metastasis transformation (Trincado et al. 2016; Lu et al. 2015) as 

well as in association to somatic alterations (Darman et al. 2015; Kim 

et al. 2015; Alsafadi et al. 2016). However, the functional impact of 

these alternative splicing changes and their significance in cancer is 

only starting to be elucidated (Figure 13). 
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3.2.1 ALTERNATIVE SPLICING RECAPITULATES HALLMARKS OF CANCER 

Several alternative splicing events have been shown to recapitulate 

cancer-associated phenotypes. For instance, an exon inclusion 

change in NUMB has been shown to promote cell proliferation 

(Bechara et al. 2013). Similarly, an exon skipping event in MST1R has 

been related to the acquisition of cell motility during cancer cell 

invasion (Ghigna et al. 2005). Moreover, the modulation of these 

events can recapitulate the tumor phenotype or revert to a normal 

phenotype (Bechara et al. 2013; Ghigna et al. 2005). Therefore, 

understanding the general functional effects of alternative splicing 

potentially leads to the discovery of novel oncogenic mechanisms and 

therapeutic targets. 

Alternative splicing changes have been proposed to remodel the 

network of protein–protein interactions in a tissue-specific manner 

(Buljan et al. 2012; Ellis et al. 2012). It is therefore possible that 

splicing changes in cancer also impact the network of protein-protein 

interactions, but in a disruptive, non-regulated way. In this direction, a 

recent study shows that an alternative splicing change in NFE2L2 that 

occurs in various tumor types leads to the loss of a protein interaction 

with its negative regulator KEAP1, thereby providing an alternative way 

to activate the Nrf2 pathway (Goldstein et al. 2016). This may in fact 

be a general mechanism whereby splicing alterations disrupt protein-

protein interactions of cancer drivers and related pathways, providing 

other means to impact cell function that are equivalent to classical 

somatic mutations in drivers. Additionally, alternative splicing may also 

induce degradation of the transcripts through non-sense mediated 

decay (Green et al. 2003), a mechanism that was associated to 

somatic mutations on the splice-sites that induce intron-retention in 

tumor suppressors(Jung et al. 2015). 
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3.2.2 BIOMARKERS 

 

Despite the abundance of splicing changes observed in tumors, only 

few cases have been characterized for their functional impact. It is 

possible that the majority of the splicing changes in tumors are 

passengers, merely reflecting upstream genetic mechanisms and the 

deregulation of splicing fidelity mechanisms. Yet, they may provide 

tale-tell signs of specific tumor characteristics. In this context, splicing 

changes have been shown to separate tumor types and subtypes 

(Sebestyén et al. 2015) and have been related to tumor stage and 

patient survival (Shen et al. 2016; Trincado et al. 2016), so they have 

the potential to be used as biomarkers for specific clinical conditions. 

This could be relevant for cases for which a known prognostic marker 

is either not present in the sample or does not exist, as for pediatric 

tumors (Parsons et al. 2011). 

 

3.2.3 THERAPY RESISTANCE 

 

Alterations in alternative splicing also appear essential for 

understanding drug resistance(Lee and Abdel-Wahab 2016). For 

instance, a considerable proportion of patients that do not respond to 

targeted treatment against BRAF mutations express a BRAF isoform 

lacking exons 4–8, which encompass the RAS binding domain 

(Poulikakos et al. 2011). Interestingly, small-molecule modulators of 

pre-mRNA splicing are capable of restoring the original BRAF splicing 

and reduce growth of therapy-resistant cells(Salton et al. 2015). 

Similarly, alternative splicing also impacts immunotherapy in leukemia 

due to the disrupted activity of the splicing factor SRSF3 (Sotillo et al. 

2015). These results highlight the importance of characterizing the 
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transcriptome for therapy and suggest that specific splicing alterations 

may provide a selective advantage to tumors. 

3.2.4 TARGETED THERAPY 

There is a growing interest to search for splicing-related alterations for 

which specific therapies could be developed. One of the strategies 

being tested at the moment consists in the synthetic design of 

antisense oligonucleotides (AONs) that target specific splicing events. 

AONs are able to revert alternative splicing events to restore normal 

cellular phenotypes (Bechara et al. 2013; Ghigna et al. 2005), and 

have reached already clinical trial stage for some splicing-related 

disorders(Havens and Hastings 2016). Another promising strategy for 

cancer therapeutics is the use of small molecule compounds that 

modulate the activity of splicing factors (Salton and Misteli 2016; Lee 

and Abdel-Wahab 2016). These therapies have a wide range of effects 

depending on the tumor type or the mutational status of the targeted 

splicing factor. Thus, it becomes essential to know which patients may 

benefit from splicing-related therapies. One such possible class 

includes patients with overexpressed MYC in tumors, which are more 

dependent on the activity of the spliceosome (Koh et al. 2015; Hsu et 

al. 2015).  

Alternative splicing events are also emerging as direct actionable 

alterations for targeted therapies. This is the case of the skipping of 

MET exon 14 observed in some lung cancer patients, resulting in a 

deletion of the protein region that inhibits its kinase catalytic activity 

(Kong-Beltran et al. 2006). Importantly, the skipping of this exon is 

sufficient for MET activation and tumors that harbor the event respond 

to MET-targeted therapies (Frampton et al. 2015; Paik et al. 2015). 

Although this splicing change in MET has been explained so far as a 
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result of somatic mutations on exon 14 or on its splice-sites, it is 

conceivable that the same splicing change could occur due to other 

mechanisms yet to be discovered. These results raise the interesting 

possibility that an alternative splicing event could be used as direct 

target of therapy. Thus, either as direct targets or as a means to 

characterize the tumor, the splicing properties may become 

fundamental to identify therapeutic vulnerabilities and potential 

resistance. This may be particularly relevant for tumors lacking somatic 

mutations in genes with known targeted therapy, as these patients 

cannot benefit from currently available therapies.   

 

3.2.5 FUTURE TOWARDS PERSONALIZED MEDICINE & ROLE OF 

SPLICING 

 

Alternative splicing changes that characterize and contribute to the 

pathophysiology of cancer are triggered by alterations in a complex 

network of different mechanisms. These combinatorial effects have 

some interesting implications. Different alterations in tumors may in 

turn impact RNA processing and splicing in similar ways. For instance, 

mutations in RBM10 or downregulation of QKI lead to the same 

splicing change in NUMB that promotes cell proliferation (Zong et al. 

2014; Bechara et al. 2013). This suggests that the splicing alterations 

observed in tumors may be indicative of a phenotypic advantage, and 

some may even phenocopy somatic mutations in cancer drivers to 

induce similar functional impacts. Accordingly, a subset of the splicing 

changes in cancer may play an important role in the neoplastic 

process independently of or in conjunction with the already 

characterized genetic alterations. 

 

It is not clear yet whether a single splicing change may be sufficient to 

induce an oncogenic transformation in a normal tissue context, or even 
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whether splicing events can be considered cancer drivers. It is 

possible that the splicing-related effects are additive, contributing to 

and maintaining specific properties or favoring certain cellular 

environments that modulate the oncogenic impact of somatic 

mutations. Consistent with this, there is a relation between specific 

tumor microenvironments and alternative splicing (Brosseau et al. 

2014). Additionally, somatic mutations in splicing factors are generally 

heterozygous, and appear to require a normal functional splicing 

machinery to exert their oncogenic function (Fei et al. 2016; Lee and 

Abdel-Wahab 2016). For example, the ratio of both mutant and wild-

type U2AF1 splicing factor influences the splice-site selection in lung 

adenocarcinomas, questioning the functional significance of the mutant 

U2AF1 cells(Fei et al. 2016). This suggests a context-dependent 

effect, by which somatic alterations may become relevant in the 

presence of certain splicing-related signatures. This is further 

supported by recent findings showing that tumors with overexpressed 

MYC are highly dependent on the splicing machinery for survival and 

may be more sensitive to splicing-related therapies (Hsu et al. 2015; 

Koh et al. 2015). 

In conclusion, as selection on the tumor clones is exerted on the 

phenotype rather than on the genotype, we propose that the splicing 

patterns may define relevant molecular phenotypes in tumors, despite 

their genetic heterogeneity. The characterization of tumor 

transcriptomes - with respect to splicing - thus becomes essential to 

understand their clinical properties and to select appropriate 

therapeutic strategies. 
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II. Objectives 

 

This thesis is mainly divided into two parts to fulfill following 

objectives: 

 

1 Regulation of splicing through Trans Components 

The analysis of splicing changes associated to the mutation and 

expression alterations in the RBP genes in 11 different cancer types. 

 

2. Regulation of splicing through cis Components 

An exhaustive search for mutations on RBP motifs inside genes 

using whole genome sequencing data to study the impact of these 

mutations on mRNA expression and splicing.  
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Abstract 

A major challenge in cancer research is to determine the significance 

of nucleotide variants in regions that do not code for protein. To 

address this question, we have performed a comprehensive study of 

mutations along genes from whole genome sequencing data for more 

than 1000 tumor samples to identify significantly mutated regions 

(SMRs). Systematic sequence analysis reveals recurrent patterns of 

mutations in motifs associated to specific RNA binding proteins in 

introns as well as 5‘ and 3‘ untraslated regions (UTRs) in protein 

coding genes, and in exons and introns of non-coding RNAs. Analysis 

of RNA sequencing from the same samples identifies alterations in 
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RNA-processing and expression associated to these mutations, 

revealing novel oncogenic mechanisms. One of these alterations is a 

recurrent mutation in a in CT-rich motif in the 5‘UTR for multiple genes, 

including the cancer gene driver SPOP, which shows a significant 

alteration in RNA processing. Our study describes the first genome-

wide map of somatic mutations that potentially impact protein-RNA 

interactions in cancer and their impact on RNA processing. 

Furthermore, our integrative analysis of analogous regions enriched 

with mutations allows the interpretation of non-coding variants in 

tumors. 

Introduction 

Cancer arises from genetic and epigenetic alterations that interfere 

with essential mechanisms of the normal life cycle of cells such as 

DNA repair, replication control and cell death (Hanahan and Weinberg 

2011). The search for cancer driver mutations, which confer a selective 

advantage to cancer cells, has been traditionally studied in terms of 

how they directly affect protein sequences (Vogelstein et al. 2013). 

However, systematic studies of cancer genomes have highlighted a 

large number of mutations and mutational processes across the tumor 

genomes (Alexandrov et al. 2013; Weinhold et al. 2014). Moreover, 

specific non-coding mutations have been identified as tumorigenic, like 

those found in the TERT promoter (Horn et al. 2013; Huang et al. 

2013) or at CTCF binding sites (Katainen et al. 2015). Currently, a 

major challenge in cancer genomics research is to determine the 

significance and potential pathogenic involvement of somatic variants 

in regions that do not code for proteins (Piraino and Furney 2016).  

Current methods to detect potential driver mutations in non-coding 

regions have been mostly based in the recurrence of mutations in 
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specific regulatory regions in combination with the measurement of the 

potential functional impacts (Melton et al. 2015; Fredriksson et al. 

2014; Mularoni et al. 2016; Weinhold et al. 2014), recurrence 

combined with sequence conservation or polymorphism data (Khurana 

et al. 2013; Piraino and Furney 2017) or using the enrichment with 

respect to specific mutational backgrounds (Lochovsky et al. 2015; 

Lanzós et al. 2017). Most of the methods have been restricted to 

specific genomic regions, like potential regulatory regions, and only 

few of them have measured the impact of mutations on the RNA and 

this has been mainly focused on overall gene expression. On the other 

hand, deep-intronic mutations or mutations that affect RNA processing 

have not been thoroughly studied.  

 

Transcribing and mature RNA molecules are bound by multiple RNA 

binding proteins (RBPs), which have specific roles at different steps 

during RNA processing, including RNA translation, RNA stability and 

RNA localization, and are critical for the proper control of gene 

expression (Fu and Ares 2014; Rissland 2017). RBPs can act as 

auxiliary and sometimes necessary factors to regulate splicing and 

RNA processing and often antagonize each other in normal cellular 

programs and disease states (Eperon et al. 2000; Zhu et al. 2001; 

David et al. 2010; Bonomi et al. 2013). Importantly, the same RBP may 

participate in a wide-rage of RNA processing activities besides splicing 

regulation. For instance, SR proteins can control splicing, mRNA 

nuclear export, nonsense-mediated mRNA decay and mRNA 

translation (Long and Caceres 2009; Maslon et al. 2014). Recent high 

throughput studies have uncovered many new proteins with potential 

RNA binding capabilities (Baltz et al. 2012; Castello et al. 2012; 

Conrad et al. 2016), highlighting the relevance of RBPs in gene 

expression and providing perhaps the largest potential for dynamic 

gene regulation. Specific RBPs and RBP families are linked to specific 
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functions and cellular pathways. They control the processing of the 

RNA from multiple gene loci, and therefore can have major influence in 

specific cellular mechanisms. For instance, SRSF10 controls the 

alternative splicing of multiple genes involved in DNA damage repair 

(Shkreta et al. 2016), and proteins from the RBFOX family are involved 

in neuronal differentiation program (Kim et al. 2013), neuronal function 

(Gehman et al. 2011) and the maintenance of a mesenchymal splicing 

program in normal and tumor cells (Venables et al. 2013a). Similarly, 

the ESRP proteins maintain an epithelial phenotype and their 

downregulation induce alternative splicing changes that trigger cell 

motility (Warzecha et al. 2010), and MBNL proteins maintain a 

differentiated cellular state that is reversed in some tumor tissues (Han 

et al. 2013; Sebestyén et al. 2016).  

 

Multiple experimental approaches have established that RBPs 

generally interact with RNAs through short motifs of 4-7 nucleotides 

(Ule et al. 2003; Lambert et al. 2014; Ray et al. 2013; Oberstrass et al. 

2005). These motifs may occur anywhere along the pre-mRNA, 

including introns and exons coding regions (CDS) and untraslated 5‘ 

and 3‘ regions (5UTR/3UTR), as well as in short and long non-coding 

RNAs (Sterne-Weiler and Sanford 2014; Haerty and Ponting 2015; 

Michlewski et al. 2008). Mutations in RNA regulatory motifs, including 

binding motifs for RBPs, have been linked before to RNA processing 

alterations in disease (Cartegni et al. 2002; Anczuków et al. 2015). The 

phenotypes triggered by the alterations in RNA-processing regulators 

involve changes in multiple genes, but these do not occur in the same 

way in all cancer patients (Brooks et al. 2014; Sebestyén et al. 2016; 

Alsafadi et al. 2016; Darman et al. 2015). Since RBP binding motifs 

are wide-spread along gene loci, and somatic mutations may occur 

anywhere along the genome, it is possible that somatic mutations in 

non-coding, as well as coding regions, will impact the processing of 
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RNA to produce a phenotypic impact in tumor cells similar to that 

produced by other alterations.  

 

Studies carried out so far on mutations affecting RNA processing and 

alternative splicing have mainly focused on a fraction of the motifs 

associated with the core splicing machinery (Jung et al. 2015) or in 

protein coding regions only (Supek et al. 2014). For instance, 

mutations on the exon-intron boundaries have been associated with 

intron retention in tumor suppressors such as TP53, ARID1A, PTEN, 

CHD1, MLL2 and PTCH1 (Jung et al. 2015). Similarly, mutations on 

synonymous sites on coding exons appear enriched in oncogenes and 

have been proposed to disrupt the splicing of cancer drivers such as 

ITK, ALK, IDH1 and BCL6 (Supek et al. 2014). Exonic splicing 

regulatory sequences span multiple nucleotides and cover multiple 

codons, hence it is likely that mutations that change the amino-acid 

can also affect some regulatory sequences and induce splicing 

changes in cancer (Sterne-Weiler and Sanford 2014). In this direction, 

the systematic analysis of sequence variants on an exon has revealed 

that more than  50% of nucleotide substitutions can induce splicing 

changes (Ke et al. 2011; Julien et al. 2016), with similar effects on 

synonymous and non-synonymous sites (Julien et al. 2016). 

Accordingly, a large proportion of the somatic mutations on gene loci 

can be expected to impair RNA processing, which in turn will have a 

functional impact. In that respect, characterizing tumor transcriptomes 

is extremely relevant to identify and characterize the functional impact 

of somatic alterations (Singh and Eyras 2016). Tumor alterations that 

impact RNA processing and, in particular, alternative splicing, have 

raised much recent interest since they uncover novel oncogenic 

mechanisms and open up new therapeutic opportunities (Lee and 

Abdel-Wahab 2016). However, genome-wide studies on mutations 
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affecting all possible sequence elements bound by RBPs, including 

intronic ones, and measuring the impact on RNA, are lacking. 

 

To understand the alterations of RNA processing in cancer at a global 

level, we have carried out a comprehensive study of the mutation 

patterns in exons and introns from coding and non-coding genes using 

mutation data from whole-genome sequencing for more than 1000 

samples from multiple tumor tissues. In our approach, we detect 

significantly mutated regions (SRMs) along genes taking into account 

regional variability and nucleotide biases. To increase the power to 

describe novel oncogenic mechanisms involving non-coding regions, 

we studied the enrichment of known and putative motifs for RNA 

binding proteins with respect to control regions. This novel approach 

allows us to related SMRs with each other by the presence of recurrent 

sequence motifs, inferring potentially common regulatory roles. 

Additionally, unlike previous methods, we do measure the impact on 

RNA processing using RNA sequencing from the same samples 

testing changes in transcript expression, alternative splicing and 

aberrant splicing. This unprecedented study reveals a new layer of 

somatic alterations in cancer that may be relevant to explain 

transcriptome alterations in cancer. Our approach provides a way to 

evaluate the relevance of many non-coding variants of unknown 

function and gives a new interpretation to some of the variants in 

coding regions.  
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Results 

  

Figure 1. (A) Illustration of the calculation of significantly mutated regions 

(SMRs). Short k-mer windows (k=7 in our study) along genes are tested for 

the enrichment in mutations with respect to the gene mutation rate and with 

respect to the local nucleotide biases (Methods). Significant windows are 

clustered by region type, producing the SMRs.  
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Unbiased search of significantly mutated regions (SMRs) along 

gene loci 

 

RNA binding proteins (RBPs) generally interact with pre-mRNAs 

through short motifs of 4-7 nucleotides, which may occur anywhere 

along the pre-mRNA. We thus performed an exhaustive search for 

mutation enrichment using overlapping genomic windows of length 7 

along each gene locus to determine the patterns of somatic mutations 

in potential RBP motifs, (Fig. 1) (Methods). We considered two 

datasets of somatic mutations from whole-genome sequencing (WGS) 

in multiple tumor types: 505 samples from 14 tumor types (Fredriksson 

et al. 2014) (PAN505) (Supp. Table S1) and 507 samples from 10 

tumor types (Alexandrov et al. 2013) (PAN507) (Supp. Table S2), 

which were analyzed independently. We used a double test to account 

for the local variations and nucleotide biases in mutation rates to 

assess the possible enrichment of mutations at every 7-mer window 

along each gene locus. To account for the local variations in 

mutational processes, each 7-mer window was tested for enrichment 

by comparing with the mutation rate in the same gene locus 

(Methods). The majority of 7-mer windows follow an expected uniform 

distribution (Supp. Fig 1A) and we selected those windows with p-

value < 0.05 after correcting for multiple testing.  

 

To account for the nucleotide biases we performed an additional test 

by comparing the mutation count in the 7-mer windows with the 

expected mutation count calculated from the window nucleotide 

sequence and the mutation rate per nucleotide of the gene locus. This 

provided a nucleotide bias (NB) score per window defined as the log2-

likelihood of the observed versus the expected counts (Methods). To 

determine the cut-off for the NB score, we further compared the 

distribution of scores in windows with 3 or more mutations with the 



97 
 

distribution for windows with 1 mutation, which were considered to be 

more likely to reflect the background mutations. This comparison 

shows that NB-score = 6 provides a good separation between windows 

with 3 or more mutations and windows with 1 mutation (Supp. Fig. 1B). 

After these filters (corrected p-value < 0.05 and NB score > 6), our 

exhaustive analysis produced a total of 74771 and 8893 significant 7-

mer window falling in 8159 and 1247 genes for the PAN505 and 

PAN507 datasets, respectively, indicating possible mutational 

hotspots. 

 

The functional impact of somatic mutations as well as the selection 

processes they are subjected to may vary depending which genic 

region they fall in. We thus classified 7-mer windows according to 

whether they fall in a 5‘ or 3‘ untranslated region (5UTR/3UTR), a 

coding sequence (CDS), an exon in a long non-coding RNA (EXON), 

or in an intron (INTRON) (Fig. 1) (Methods). These windows were then 

clustered into significantly mutated regions (SMRs), producing a total 

of 18458 SMRs for PAN505, containing a total of 73728 substitutions; 

and 1609 SMRs for PAN507 containing 5247 substitutions (Supp. 

Figs. 1C and 1D). The discrepancy between the two sets is due to the 

different starting number of mutations (Supp. Tables S1 and S2). The 

majority of SMRs are in introns (Table 1). We also see a large 

representation on the exons in non-coding RNAs (EXON) (Table 1).  

Most of the predicted SMRs are between 7 and 15 nucleotide long 

(Supp. Fig. 2).  
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Table1. Number of significantly mutated regions (SMRs) per cohort 

and per region type. 

SMR PAN505 PAN507 

CDS 225 21 

5UTR 120 9 

3UTR 298 8 

INTRON 17474 1544 

EXON 341 24 

There is a known correlation between observed somatic mutations in 

cancers and DNA replication timing that can be a source of artifacts in 

mutational driver predictions (Lawrence et al. 2013; Liu et al. 2013). To 

validate our SMRs, we thus calculated the replication timing in the 

regions where SMRs fall and observed no association with mutation 

count (Supp. Fig. 3). Another potential source of artifacts is the known 

correlation between gene expression and the rate of somatic mutations 

in cancer (Lawrence et al. 2013). Using RNA-seq from the same 

samples in the PAN505 cohort and measuring the expression of 

transcripts containing the SMRs (Methods), we observed no 

association of the mutation count in SMRs with expression (Supp. Fig. 

4). 

To further validate our SMRs we used the tool LARVA (Lochovsky et 

al. 2015) to assess their significance using a model that accounts for 

the over dispersion of the mutation rate and the replication timing 

(Methods). We observed overall a good correspondence between the 
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significance provided by our method and the significance given by 

LARVA (Supp. Fig. 5). In particular, we found a good agreement for 

intronic SMRs, providing support for our intronic SMRs.  

 

Prediction of novel and known significant SMRs in coding and 

non-coding regions  

 

For the PAN505 dataset, our method found SMRs in 415 cancer 

drivers from a set of 889 collected from the literature (Sebestyén et al. 

2016). We found 38 in CDS SMRs, including the drivers BRAF, KRAS, 

NRAS, HRAS, TP53, CTNNB1, PIK3CA, PIK3R1, IDH1 and SF3B1 

(Fig. 2) (Supp. Table S3). A recent approach based on the measure of 

the functional impact also recovered significantly mutated CDS regions 

in BRAF, IDH1, KRAS, PIK3CA and PIK3R1 using the same data 

(Mularoni et al. 2016). Significantly mutated coding regions in SF3B1, 

CTNNB1, TP53 and KRAS were also recovered before using a 

genome-wide search based on mutation enrichment and evolutionary 

conservation (Piraino and Furney 2017). In total, we found CDS SMRs 

in 13 of the 41 genes identified before with the PAN505 data (Mularoni 

et al. 2016). The discrepancy could stem from the fact that we 

predicted SMRs only using all samples from PAN505. Our method also 

found CDS SMRs in drivers that were not found by previous methods, 

including NRAS, EP300 and ATM.  

 

Additionally, we recovered 5UTR SMRs in 17 of the 44 different genes 

identified previously (Mularoni et al. 2016), including C16orf59, TAF11 

and TBC1D12. Similarly, we recover 3UTR SMRs in 3 of the 12 

different genes identified before (Mularoni et al. 2016), including one 

3UTR SMR in CYP4F31P (Fig. 2) (Supp. Table S3). We also found 

novel cases, like a 5UTR SMR in the DEAH-box helicase DHX16 and 

a 3UTR SMR in the TP53 inducible gene 3 TP53TG3D (Supp. Fig. 6). 
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In total, we found 8 5UTR SMRs and 40 3UTR SMRs in cancer drivers. 

Among those, we found a novel 5UTR SMR in the cancer driver 

SPOP. 

 

We also found many SMRs in the exons of non-coding transcripts 

(EXON SMRs). For instance, we found an SMR in an exon of an 

annotated non-coding transcript in the DEAD-Box Helicase 17 gene 

DDX17 with 10 substitutions, and an SMR in an exon at the 3‘ end of 

the long non-coding RNA CTD-3148I10.15 (Supp. Fig. 6), both of 

which have not been described before by any other method. 

Comparing with a list of 46 lncRNAs related to cancer (Lanzós et al. 

2017), we found EXON SMRs only in one of them, TCL6. On the other 

hand, for 11 of these 46 lncRNAs we found INTRON SMRs.  

 

 

All genic regions that could not be matched to an exon (CDS, UTR or 

EXON) were classified as intronic (Fig. 2). We found INTRON SMRs in 

7 of the 13 genes reported in (Mularoni et al. 2016), including the 

cancer gene drivers TP53, NF1. As our analysis is exhaustive along 

gene loci and all positions along entire introns were tested, we 

recovered many more intronic SMRs than in previous reports. In 

particular, we found INTRON SMRs in 381 different cancer driver 

genes, including the Tyrosine-Protein Kinase Receptor EPHB1, with 

14 substitutions (Supp. Fig. 6)  

 

From the PAN507 dataset we found SMRs in 91 cancer drivers, 9 in 

CDS, including FGFR1, TP53 and KRAS, 2 in 5UTR, in BCL2 and 

TBC1D12, one 3UTR SMR in the cancer driver NBPF1. Finally, we 

found 82 INTRON SMRs in cancer drivers, including one in EPHB1. 

We found only 26 overlapping SMRs between PAN505 and PAN507. 

One of them is the 5UTR SMR in TBC1D12, already described before 
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(Mularoni et al. 2016). Moreover, there were in common 5 CDS SMRs, 

including TP53 and KRAS. Finally, there were 15 intronic SMRs 

overlapping between the two sets PAN505 and PAN507. One of them 

corresponds to 3 mutations deep in the intron of the RAD51 Paralog B 

gene. RAD51B is involved in DNA repair, which have not been 

described before. The low overlap suggests very different mutational 

processes and functional alterations between the two tested cohorts. 
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A B 

C D 

E 

Figure 2. Significantly mutated regions (SMRs). We show the SMRs 

directed in 5‘ UTRs (A), 3‘UTRs (B), introns (C), exons of non-coding RNAs 

(EXON) (D) and coding sequences (CDS) (E). We show the gene name for 

the SMRs with NB-score 8 or greater and with 5 or more mutations, except for 

the INTRON SMRs, where we highlight the cases with 14 or more mutations. 
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SMRs are enriched for putative RBP binding motifs  

 

Mutations and expression alterations in RBPs have an impact in 

specific cellular programs in cancer (Brooks et al. 2014; Sebestyén et 

al. 2016; Alsafadi et al. 2016; Darman et al. 2015). However, little is 

known about whether mutations in the binding sites for RBPs are 

frequent in cancer and could be related to specific oncogenic 

mechanisms. To determine whether the identified SMRs are related to 

a general disruption of specific RNA processing mechanisms, we 

studied the sequence motifs and biochemical signals related to RBP 

binding present in the SMRs. First, using sequence motifs for 331 

different RBPs (Methods), we tested RBP-motif enrichment in the 

SMRs compared with control sets of the same region type, adjusting 

for length and G+C content (Methods). To obtain enriched motifs that 

are likely associated to RNA rather than DNA, we reverse-

complemented all SMRs and controls and repeated the enrichment 

analysis (Methods). All those motifs that appeared enriched in both 

calculations for the same region-type were then eliminated. This 

yielded a total of 10, 9, 5, 4 and 10 enriched RBP-motifs (z-score > 

1.96, motif count > 5) in CDS, 5UTR, 3UTR, INTRON and EXON 

SMRs, respectively for the PAN505 cohort (Supp. Table S4).  A total of 

3299 SMRs (81 CDS, 85 5UTR, 45 3UTR, 2956 INTRON and 132 

EXON) harbor at least one of the enriched motifs.  

 

Among the enriched motifs, we found QKI, RBMS1 and PCBP2 motifs 

in CDS SMRs (Fig. 3). QKI motif mutations only appear in 2 CDS 

SMRs in the genes APC and ATM with mutations from colorectal 

cancer (CRC). In 5UTRs we found motifs for PTBP1, SRSF11 and 

RBM5 (Fig. 3). PTBP1 motif mutations in 5UTR SMRs are 
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predominant in melanoma (SKCM). Interestingly, many mRNAs 

contain the so-called 5‘ terminal oligo-pyrimidine tract (5‘TOP) motif 

that is relevant for translational regulation (Meyuhas 2000; Pichon et 

al. 2012) and PTBP1 may bind these TOP motifs to regulate 

translation (Sawicka et al. 2008; Pichon et al. 2012). We found PTBP1 

motifs mutated in 59 5UTR SMRs, including one in the cancer gene 

driver SPOP, which was found to be frequently mutated in prostate 

tumors (Cancer Genome Atlas Research Network 2015). Here we 

found a 5UTR SMR in SPOP with 3 mutations in uterine carcinoma 

(UCEC), suggesting new SPOP alterations with relevance in other 

tumors (Supp. Fig. 6). 

 

In INTRON SMRs, we found a large overrepresentation of binding 

motifs of the PABPC5, ESRP2 and the ring finger protein ZFP36 (Fig. 

3). PABPC5 binds to the poly-A stretches in mRNAs in the cytoplasm. 

The enrichment found could indicate an alternative function related to 

the processing of pre-mRNAs. Mutations in ZFP36 motifs are the most 

abundant in introns and appear widespread across all tumor types. 

ZFP36 binds to AU-rich motifs in mRNAs to promote their degradation 

(Lai et al. 2002) and plays a key role in the post-transcriptional 

regulation of the tumor necrosis factor TNF (Resch et al. 2014). Here 

we found a mutated ZFP36 motif enriched in mutations in the intron of 

a member of the TNF Receptor Superfamily TNFRSF11A.  It is 

possible that intronic ZFP36 motifs enhance the degradation of intronic 

RNAs, and the frequent mutation on these sites leads to the aberrant 

expression of intronic sequences and unprocessed transcripts as 

observed before in multiple tumors (Dvinge et al. 2015). SMRs in 

exons of non-coding RNAs are enriched in TIA1, RC3H1, and CELF2 

motifs, among others. Mutations in RC3H1, which appear in EXON, 

INTRON and 3UTR SMRs, are quite abundant and present in multiple 
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tumor types. TIA1 and CELF2 motifs in EXON SMRs are also frequent 

across all tumor types. 

 

For all the SMRs harboring any of the enriched motifs, we calculated 

averaged phastCons scores from multiple alignments of primates and 

mammals (Methods). For each of the enriched motifs, we observed 

some of the motif-containing SMRs that are highly conserved (Supp. 

Fig. 7A). In the CDS SMRs we observe a subset highly conserved. A 

fraction of the PTBP1 motifs in 5UTR SMRs show high conservation 

indicating that these sites are functional. Some of the intronic SMRs 

with ESRP2 and ZFP36 motifs also show high conservation. In 

general, EXON and INTRON SMRs show lower conservation. 

Interestingly, a number of EXON SMRs with TIA1 motifs show high 

conservation, indicating a potential relevant role of TIA1-like motifs on 

non-coding RNAs. We further performed an unbiased k-mer 

enrichment analysis, using k=7, in the SMRs. As before, we tested the 

enrichment of k-mers compared to controls of the same type and 

discarded those cases that appeared also enriched after reverse 

complementing SMRs and controls (Supp. Table S5) (Methods). This 

k-mer enrichment analysis recovered motifs previously found and 

uncovered new ones (Supp. Fig. 7B). For instance, in 5UTR regions 

we found multiple CT-rich k-mers, highlighting other possible mutated 

TOP-sites. In EXON SMRs we found T-rich motifs, further supporting 

the enrichment of motifs for TIA1, and suggesting other T-rich motifs. 

Interestingly, in CDS SMRs we found GA-rich motifs (Supp. Fig. 7B). 

Furthermore, a subset of found enriched k-mers show high 

conservation across species (Supp. Fig. 7C). 

 

To gain further evidence of frequent mutations in specific RBP binding 

sites we performed an enrichment analysis of binding sites from 91 
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cross-linking immunoprecipitation (CLIP) experiments for 68 different 

RBPs (Supp. Table S6) (Methods). As before, we repeated the 

enrichment analysis after reversing the strand of all SMRs and controls 

to ensure that the significant associations are related to RNA. Most of 

the enrichments found were due to a small number of overlaps 

between SMRs and CLIP regions (between 2 and 5) (Supp. Table S7), 

except for IGF2BP1 and TARDBP CLIP and intronic SMRs, which had 

8 and 42 overlaps, respectively. Although we had motifs for both 

proteins in our analysis above, these did not appear enriched, 

indicating a discrepancy between the motifs used and the CLIP 

signals. The CLIP enrichment in INTRON SMRs suggests a possible 

nuclear regulatory role of IGF2BP1 and TARDBP that is potentially 

impaired in cancer.  
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Figure 3. Enriched RBP motifs in SMRs. For each of the region types (CDS, 5UTR, 

3UTR, INTRON, EXON), and for each RBP motif (x axes) found enriched in that 

region, we give the proportion of patients that have at least one SMR containing the 

motif (A), as well as the proportion of SMRs that contain the RBP motif (B). These 

proportions are divided by tumor type, which are indicated by color.  

 

A B 
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Somatic mutations show positional biases on consensus RBP 

motifs 

 

We next decided to determine whether there are particular positions in 

the found enriched motifs that could be more frequently mutated than 

others. To this end, for each of the enriched motifs we grouped the 

conserved SMRs containing this motif and extracted the piece of 

sequence corresponding to the instance of the motif. These instances 

were then used to form a multiple sequence alignment (MSA) to 

determine equivalent positions of the binding motifs across motif 

instances in the different SMRs. Additionally, over the consensus motif 

built from the MSA, we calculated the density of somatic mutations and 

germline mutations per position (Methods). This analysis showed that 

PTBP1 motifs in 5UTR SMRs are frequently mutated in two positions 

that show mostly C in the consensus (Fig. 4A). However, these two 

positions show T>C and C>T mutations, which in theory would leave 

the motif CT-rich (Fig. 4A). These mutations occur in a large number of 

genes, including the cancer driver SPOP, and they seem predominant 

in melanoma (SKCM) (Supp. Fig. 8). We also found frequent mutations 

of a motif for ESRP2 binding in introns, with a strong enrichment for 

G>A mutations at position 4 that would disrupt the motif (Fig. 4B). 

Interestingly, this position does not show any overlap with germline 

mutations. Mutations in intronic ESRP2 motifs occur in multiple genes, 

including the Estrogen receptor ESR1, which contains an SMR with 

mutations in ESRP2 in BRCA (breast cancer) and UCEC (uterine 

cancer) samples (Supp. Fig. 8). Among the enriched motifs in CDS 

SMRs we had found one putative for QKI (Fig. 4C). Although not many 

mutations fall in this motif, all of them fall in the same position and 

would potentially disrupt the motif. All these mutations occur in 

colorectal tumors (CRC) and fall in the cancer drivers APC and ATM 
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(Fig. 4C). Interestingly, in EXON SMRs we find a number of mutations on the 

motif for PUM1, which shows high conservation (Fig. 4D). The majority of 

those mutations are G>A in a position that would disrupt the motif. Here we 

see it is mutated in transcripts of the non-coding RNA genes RP11-136K7.3 

and LINC00473 and a non-coding transcript in the protein-coding gene 

SEC61G (Fig. 4D). Although PUM1 has been observed to bind to 3‘UTR 

regions (Li et al. 2010), our results suggest also a role in non-coding RNAs.  
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Figure 4. Positional biases of cancer mutations in RBP motifs. Mutation 

distribution of somatic mutations in PTBP1 motifs in 5UTR SMRs (A), in 

ESRP2 motifs in INTRON SMRs (B), in QKI motifs in CDS SMRs (C), and in 

PUM1 motifs in EXON SMRs (D). In each plot, the upper panel shows the 

multiple sequence alignment (MSA) built with the SMRs containing the motif. 

Light red lines indicate that this position is covered by the SMR. A dark red 

line indicates that this position is mutated. White spaces indicate positions not 

covered by any SMR. If the mutation falls outside the motif, the SMR is still 

aligned and shown. In the second panel we show the logo built from the MSA. 

In the third panel we show the density distribution of mutations per position, 

calculated as the fraction of all mutations considered in the MSA that fall in 

each position. In orange we indicate the proportion of those mutations that 

coincide with a germline SNP in the same position of the SMR. The lower 

panel shows the number of substitutions observed at each position color-

coded by type of substitution. Substitutions are indicated according to the 

strand of the gene hosting the SMR. In (C) and (D) we indicate in a matrix plot 

below the genes (y axis) with SMRs containing the QKI and PUM1 motifs. The 

tumor types are color-coded and patients are given in the x-axis. A white dot 

inside the color square indicates that the mutation falls inside the motif for that 

patient. 

 

 

Somatic mutations in SMRs show an impact in RNA processing 

and expression 

 

To determine the impact on RNA of the somatic mutations observed 

on enriched RBP binding motifs, we analyzed RNA-seq data from the 

same samples of the PAN505 dataset. We first estimated the impact of 

the mutations on the expression of transcripts. Transcript abundances 

in TPM units were estimated per sample (Methods). For each patient 

with a mutation in an SMR, we considered each transcript overlapping 

the SMR and compared its abundance with the distribution of 



112 
 

abundances of the same transcript in patients from the same tumor 

type that did not harbor any mutation in the same SMR (|z-score|>1.96 

and |log10 fold change|>0.5) (Methods). Most of the significant changes 

detected correspond to mutations in 5UTR, INTRON and EXON 

SMRs. The motif in 5UTR SMRs that most frequently associates to 

transcript expression changes is PTBP1 (Fig. 5A). Interestingly, 

mutations in the DDX58 motif in the CDS are associated to expression 

changes in KRAS, and mutations in QKI in the CDS are associated to 

expression changes in the cancer driver ATM (Fig. 5B) (Supp. Table 

S8). In INTRON SMRs, the majority of significant changes in 

expression occur in for ZFP36 (Fig. 5C), whereas in EXON SMRs the 

most common motif with effects on transcript expression was TIA1 

(Figs. 5D). Both motifs harbor frequent T>C and C>T mutations (Figs. 

5E and 5F).  

 

To determine the impact on RNA-processing, we analyzed all possible 

exon-exon junctions defined from spliced reads mapped to the 

genome. All junctions appearing in any given patient were clustered to 

define homogeneous clusters across patients but were quantified per 

patient (Methods). For each patient with an observed mutation in an 

SMR, we considered each junction overlapping that SMR and 

compared the junction inclusion level with the distribution of inclusion 

levels of the same junction in patients from the same tumor type that 

did not have any mutation in the same SMR (Methods). Using a 

minimum |delta-PSI| = 0.1, the majority of changes are observed in 

mutations in intronic SMRs (Fig. 6) (Supp. Table S9). Interestingly, the 

5UTR SMR SPOP is associated with the significant inclusion of a new 

junction (Fig. 6) (Supp. Table S9), which indicates that the novel SMR 

found in SPOP could impact its processing.  
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Figure 5. Transcript expression changes associated to mutations in RBP 

motifs. For each RBP motif enriched in 5UTR SMRs (A), CDS SMRs (B), 

INTRON SRMs (C), or EXON SMRs (D) we show the number of patients (y 

axis) for which a mutation in the motif is associated with a significant change 

in transcript expression. (E) and (F): distribution of somatic mutations in the 

ZFP36 motif in INTRON SMRs, and in the TIA1 motif in EXON SMRs, 

respectively. The upper panel shows the multiple sequence alignment (MSA) 

built with the SMRs containing the motif. Light red lines indicate that this 

position is covered by the SMR. A dark red line indicates that this position is 

mutated. White spaces indicate positions not covered by the SMR. If the 

mutation falls outside the motif, the SMR is still aligned and shown. In the 

second panel we show the logo built from the MSA. In the third panel we 

show the density distribution of mutations per position, calculated as the 

fraction of all mutations in considered in the MSA that fall in a given position. 

In orange we indicate the proportion of those mutations that coincide with a 

germline SNP in the same position of the SMR. The lower panel shows the 

number of substitutions observed at each position color-coded by type of 

substitutions. Substitutions are indicated according to the strand of the gene 

hosting the SMR. 
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Figure 6. Changes in junction usage associated to mutations in RBP 

motifs. We show the genes (x-axis) and the RBP motifs and tumor types (y-

axis) in which a mutation on the RBP motif in 5UTR (A), EXON (B) and 

INTRON (C) SMRs has been found to be associated with a significant change 

in the usage of a splicing junction (|z-score|>1.96, |delta-PSI|>0.1). (D) We 

show the junction in the cancer driver SPOP that increases PSI in association 

with a mutation in a TC-rich motif in a 5‘UTR exon. This exon is present in the 

Ensembl annotation but not in the UCSC/RefSeq annotation.  

 

 

 

Discussion 

 

We have described a novel method to identify and characterize 

relevant cancer mutations in coding and non-coding regions exploiting 

their potential to be involved in protein-RNA binding. We performed an 

unbiased identification of significantly mutated regions (SMRs) based 

on their enrichment of mutations according to local mutation rates and 

nucleotide mutation biases. Although nucleotide mutation signatures 

have been established at genome-scale using tri-nucleotides 

(Alexandrov et al. 2013), at the scale of a gene-locus at which our 

method operates there are not enough mutation counts to establish 

similar frequency models. In fact, the single-nucleotide signature used 

by our method will generally penalize observed mutations more often 

than higher order models, hence making our approach conservative. 

Additionally, global mutational biases (Mularoni et al. 2016) might not 

accurately represent the local mutational biases at gene scale. We 

showed that our local approach did not present biases in relation to 

replication timing and gene expression values, and had a good 

correspondence with other previous methods that take these features 

into account to assess mutational enrichment (Lochovsky et al. 2015). 
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Our approach recovers known SMRs in coding regions and UTRs, and 

predicts new cases, some also in non-coding RNAs and introns. Our 

method present several advantages with respect to previous methods. 

Since we test all positions along genes, we can detect potentially 

relevant deep intronic mutations. This is an advantage over previous 

methods that have only tested positions on exons or in adjacent 

intronic regions (Lanzós et al. 2017; Mularoni et al. 2016). Additionally, 

unlike previous methods (Lanzós et al. 2017; Mularoni et al. 2016; 

Piraino and Furney 2017), we provide precise location of the mutations 

on the candidate regulatory region and describe the commonalities 

between them. This is crucial to enable the interpretation of the non-

coding mutations to identify regulatory mechanisms that may be 

altered in cancer. At the initial stage of analysis we do not assume any 

specific functional impact, like secondary structure or conservation. 

Other features may determine the processing, stability and function of 

a pre-mRNA or mature RNA molecules, and here we assumed that 

these are mediated through their ability to interact with proteins. 

Accordingly, we uncovered many new significantly mutated non-coding 

regions. Also, these interactions are not necessarily conserved across 

species or may have some sequence redundancy; hence some of the 

regions we described will be missed by methods based on species or 

population conservation. Additionally, unlike previous approaches, we 

have tested the impact on RNA of the found significant mutations. We 

directly measured the relevance to RNA processing by measuring the 

stranded enrichment of binding motifs for RNA binding proteins 

(RBPs). Previous methods that tested the impact on RNA did not 

perform an analysis in relation to mutations on specific RBP binding 

motifs or using RNA sequencing from the same samples (Supek et al. 

2014). Recently, a method was developed that restricted the search to 

conserved positions (Piraino and Furney 2017). Although conservation 
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can be used as a proxy for functional relevance, we observed that not 

all instances of the regulatory motifs corresponding to a common 

regulatory factor are equally conserved. In our approach, we tested 

their functional relevance by relating the sequence to other sites in the 

genome to identify recurrent motifs and by directly measuring the 

impact on RNA from the same samples. 

 

We found a large number of intronic SMRs with an impact in the 

expression and splicing of genes, including non-coding RNAs. Other 

methods assumed that the function of lncRNAs or of non-coding 

regions in the RNA is determined through its structure or that only 

mutations on exons can affect their function. However, lncRNAs are 

not as much structured as initially thought (Rivas et al. 2017). Also, 

exonic as well as intronic regions are relevant for RNA processing; 

hence mutations in any of those regions could impact the integrity of 

the lncRNA and therefore its function. Accordingly, one could argue 

that it is not correct to use intronic regions as mutational background. 

Although we found multiple SMRs in introns and exons of non-coding 

RNAs that are conserved and share a regulatory motif, we did not find 

any in the cancer related lncRNA gene MALAT1. MALAT1 has multiple 

somatic mutations in the studied cohorts but these are quite scattered 

through the gene locus. As our method was based on an unbiased 

search of short windows enriched for mutations, these did not pass the 

filters in MALAT1. Previous methods (Mularoni et al. 2016, Lanzos et 

al. 2017) found MALAT1 among their predictions. In one case, this was 

based on the test of the impact of individual mutations on the 

secondary structure (Mularoni et al. 2016). MALAT1 is known to be 

processed into smaller RNA fragments, which are likely processed 

from secondary structures (Wilusz et al. 2008). However, MALAT1 

function seems to be exerted as a long RNA rather than a processed 

one (Gutschner et al. 2013). Thus it is not clear yet whether and how 
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the mutations disrupt MALAT1 function. In another method, MALAT1 

was also identified using a method that compares with the mutation 

count on exons with a background composed of introns and flanking 

regions (Lanzos et al.2017). However, MALAT1 has only two introns 

that are extremely short, which may introduce some biases in the 

analysis. MALAT1 involvement in cancer has been related to its 

expression (Gutschner et al. 2013), so it remains to be elucidated 

whether the mutations in MALAT1 have any relevance or are an 

artifact of its extremely high expression (Lawrence et al. 2013).  

 

Our approach presents various limitations. The analysis of non-coding 

mutations may be still underpowered due to the small number of 

patients analyzed in each cohort. In fact, the PAN507 presented very 

few SMRs and no significantly enriched RBP motifs. We also observed 

a low overlap between the SMRs calculated from each cohort, so we 

are still far from saturation. Another limitation is that to be able to relate 

functionally analogous regions we had to work with specific 

representations of RNA binding motifs. The analysis is thus limited by 

how accurate this representation is. Short fixed nucleotide strings hold 

sufficient information to understand protein-RNA interactions (Daubner 

et al. 2013) but do not generalize well to genome-wide searches. 

Moreover, despite the development of new methodologies to describe 

the sequence specificities of RBPs (Alipanahi et al. 2015), their 

precision at genome scale (the fraction of real sites from all predictions 

genome-wide) remain uncertain. Additionally, different RBPs bind very 

similar or even the same sequences; hence the identification of 

protein-RNA interactions remain challenging. The availability of high-

throughput methods to identify regions of protein-RNA interactions at 

genome scale, like CLIP-seq, has the potential to help in this direction 

(Sundararaman et al. 2016), but we detected very little overlap with the 
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sequence motif approach. We conclude that there is still a limitation in 

the capacity to accurately identify the regions for protein-RNA binding. 

 

We found frequent mutations associated to CT-rich and T-rich motifs in 

introns, UTRs and exons from non-coding RNAs. Although we linked 

those to specific factors, including ZFP36, PTBP1, PTBP2 and TIA1, 

they could be binding sites for other RBPs with similar affinities. This 

mutational pattern in these motifs frequently observed melanoma 

(SKCM). It is possible that this mutation is partly associated to the 

enriched mutational processes in tumors caused by specific mutagens, 

like ultraviolet light (Viros et al. 2014; Pleasance et al. 2010a) or 

tobacco smoke (Govindan et al. 2012; Pleasance et al. 2010b). In fact, 

it is likely that the vast majority of non-coding mutations identified are 

passengers and merely reflect the mutational processes of the tumor 

(Pleasance et al. 2010b; Alexandrov et al. 2016). It is possible that 

except for a handful of cases, most of the non-coding mutations with a 

functional impact tend to occur in few patients. This motivates the 

extension of the assumption of recurrence to analogous sites at 

different genomic positions, which allows describing similar 

phenotypes arising from different alterations.  

  

 

Methods 

 

Detection of significantly mutated regions (SMRs) 

 

We aimed to identify significantly mutated regions (SMRs) in both 

coding and non-coding regions of genes taking into account regional 

and sequence mutational biases. We used data for somatic mutations 

from whole genome sequencing for 505 tumor samples from 14 tumor 

types (Fredriksson et al. 2014) (cohort PAN505), as well as data for 
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507 tumor samples from (Alexandrov et al. 2013) (cohort PAN507). For 

the PAN505 cohort we used all substitutions except those with precise 

allelic match to a known germline variant in dbSNP138. For the 

PAN507 we considered all substitutions provided in (Alexandrov et al. 

2013). Our method to identify significantly mutated regions (SMRs) 

works as follows. We only considered substitutions falling in the 

genomic extensions spanned by genes (Gencode annotation version 

19). We used genes annotated as protein-coding as well as non-

coding. For each gene, the method works by first finding short 

windows that show an enrichment of mutations according to the 

mutation rate in the same gene locus and according to the mutation 

nucleotide biases. As RNA binding proteins (RBPs) interact with pre-

mRNAs through short nucleotide stretches, we considered windows of 

size 7 (Fig. 1). We used a sliding window approach, whereby along a 

gene locus all overlapping windows of length 7 and harboring at least 

one mutation were tested. Using shorter windows increases the 

number of computations but the results are similar. Using larger 

windows we would lose positional resolution. 

 

For each 7-mer window we performed a double test to determine the 

enrichment to account for the local variations and nucleotide biases in 

mutation rates. Given a window with n mutations in a gene of length L 

and N mutations, we performed a binomial test using an expected local 

mutation rate of N/L. All tested windows in a gene were corrected for 

multiple testing using the Benjamini-Hochberg method. Additionally, to 

account for the nucleotide biases we compared the mutation count in a 

window with the expected count according to the distribution of 

mutations at each nucleotide in the same gene locus. For each base a 

we calculated the rate of mutations falling in that base along a gene  

R(a) = m(a)/n(a), where n(a) is the number of a bases in the gene and 

m(a) is the number of those bases that are mutated. The expected 
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mutation count is then calculated using the nucleotide counts in the 

window and the mutation rate per nucleotide. For instance, for the 7-

mer window AACTGCAG, the expected count was calculated as: E = 

3R(A) + 2R(C) + 2R(G) + R(T). This was compared to the number of 

mutations in the window n to define a nucleotide bias (NB) score: NB-

score = log2( n/E ) for each 7-mer window. We filtered out 7-mer 

windows corresponding to single-nucleotide repeats (e.g. AAAAAAA). 

Further, we compared the NB-scores of windows with only 1 or 2 

mutations with windows with >= 3 mutations and set the NB-score to 

be > 6. Further, we kept only 7-mer windows with adjusted p-value < 

0.05. Although our p-values are various orders of magnitude lower 

than the expected values, the cases that we do not consider significant 

show a trend similar to the expected values. Also, the extra constraint 

on the NB-score will reduce the number of possible false cases.  

 

Significant 7-mer windows were classified according to the genic 

region in the same strand in which they fall: 5‘ or 3‘ untranslated 

regions (5UTR/3UTR), coding sequence (CDS), exon in non-coding 

RNA (EXON), or intron (INTRON). To unambiguously identify each 

window to a region type using the precedence CDS > 5UTR/3UTR > 

EXON > INTRON. That is, if a window overlapped a CDS, it was 

classified as CDS; else, if it overlapped an UTR, it was labeled as 

UTR; else, if it mapped an exon in a non-coding RNA, it was labeled 

as EXON. Remaining windows were labeled as intronic. Windows that 

lie across region boundaries were split into two subwindows, each 

entirely within a region type. Windows and sub-windows were then 

clustered according to genomic overlap into significantly mutated 

regions (SMRs) of a single type, keeping only those of length 7 or 

longer, which ensures that each SMR contains at least one full 

significant 7-mer window. To each SMR, we assigned the highest 
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score and the lowest p-value of the windows comprising the cluster. 

Code for this analysis is available at  https://github.com/comprna/mira 

 

Comparison to expression, replication timing analyses and 

LARVA 

 

Data for replication time was obtained from (Locovsky et al. 2015). As 

this data does not cover the entire genome, only SMRs for which 

replication time was available were analyzed. Expression data was 

calculated for the same samples from the PAN505 cohort. For each 

SMR from the PAN505 cohort, we considered those annotated 

transcripts overlapping with the SMR. Using RNA-seq from the patients 

in whom the SMR appeared mutated, we calculated the total TPM for 

the overlapping transcripts per patient and averaged these values 

across patients. For each SMR we compared the average expression 

of the SMR-containing transcripts in the mutated samples with the 

number of mutations. Although some SMRs appeared associated with 

low or no expression, as we cannot assess this for all of the cohorts 

analyzed, hence we did not remove these from further analysis. For 

comparison, all SMRs obtained in each cohort were analyzed with 

LARVA (Lochovsky et al. 2015) with the same mutation data. 

Specifically, we compared the significance of our SMRs with the 

significance from LARVA with the model with a beta-binomial 

distribution with the replication timing correction (p-bbd-cor), which 

accounts for the over dispersion of the mutation rates and regional 

biases.  

 

Control regions for SMR comparison 

 

For each region type (CDS, 5UTR, 3UTR, INTRON, EXON) we 

generated control regions by sampling non-overlapping regions of the 
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same type from the entire Gencode annotation controlling for G+C 

content and length. For each SMR, we sampled randomly 100 control 

regions of the same length and the same type from the annotation 

allowing for a maximum variation of G+C content of 5%. Each of these 

100 control regions was collated into a different control set to create 

100 control sets each with one region matching each of the SMRs.  

 

Motif and CLIP enrichment analysis 

 

We studied the enrichment of potential RNA-binding protein (RBP) 

motifs on the SMRs with potential relevance in the studied tumors. We 

considered k-mer motifs (k variable length) for 330 RBPs present in 

ATtRACT DB (Giudice et al. 2016) and for SRMM4 (Raj et al. 2014). 

We located these k-mers in the identified SMRs. For each RBP name 

we calculated the number of SMRs in which any of its associated k-

mers appears. Similarly, we calculated these counts for the 100 control 

sets; and calculated a mean-based z-score comparing the observed 

counts in the SMRs to the distribution in control regions separately for 

each region type. The unbiased analysis for k-mers (k=7) was done in 

a similar way, but considering each k-mer separately. For each k-mer 

we counted the number of times it appeared and a z-score was 

computed for each individual k-mer comparing the distribution of 

counts in the control regions. The motif enrichment analysis was 

repeated reversing the strand of all observed SMRs and the control 

regions. RBP names or k-mers, that appeared significantly enriched in 

the direct and reversed analyses for the same region type were 

discarded. We considered significantly enriched the RBP names and 

k-mers with z-score > 1.96 and with > 5 counts. We further only kept k-

mers that appeared in > 2 SMRs. 
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We gathered binding sites from 91 CLIP experiments for 68 different 

RBPs from multiple sources (Sundararaman et al. 2016; Shao et al. 

2014; Rodor et al. 2016; Yang et al. 2015; Raj et al. 2014; Bechara et 

al. 2013; Best et al. 2014) and selected the available significant CLIP 

clusters from each experiment. For datasets with two replicates we 

selected the intersecting regions of the significant CLIP clusters: the 

genomic ranges covered by both replicates. For each CLIP dataset, 

we then performed a Fisher‘s exact test with the number of SMRs and 

control regions that show overlap or not with the CLIP regions. The 

association test was repeated by reversing the strand of all SMRs and 

control regions and CLIP experiments that appeared significantly 

enriched in both analyses were discarded.  

 

Conservation analysis 

 

PhastCons scores were obtained for the 7-way and 20-way alignments 

for hg38 from UCSC and transformed to hg19 coordinates using the 

liftOver tool (Tyner et al. 2017). The conservation score was calculated 

per SMR by averaging the PhastCons scores across the positions of 

the SMR. 

 

Significant mutations per position of a motif 

 

Given an enriched motif RBP name, we considered all the SMRs 

where the k-mers associated to that RBP appeared. We performed a 

multiple sequence alignment (MSA) of those k-mers using MUSCLE 

(Edgar 2004), including the possible multiple instances of a k-mer. The 

sequences of the SMRs were then aligned according to the relative 

position of the k-mers in the MSA. Sequence logos were built from this 

alignment of SMR sequences. Somatic mutations were counted per 

position relative to the MSA to obtain the fraction of mutated SMRs per 
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position in the built motif. As a control, we shuffled the same mutations 

on the positions aligned in each SMR to produce an average expected 

number of mutations per position associated to that motif. Germline 

mutations from the 1000 genomes project (1000 Genomes Project 

Consortium et al. 2010) were also counted per position in the SMR 

MSA to estimate the number of mutated motifs per position in the 

germline. 

 

RNA-seq data analysis 

 

RNA-seq was obtained for the same samples from PAN505 from 

TCGA (https://gdc-portal.nci.nih.gov/). RefSeq transcript abundances 

in TPM units were estimated using Salmon (Patro et al. 2015) and 

inclusion levels (PSI values) for alternative splicing events were 

estimated using SUPPA (Alamancos et al. 2015). RNA-seq reads were 

also mapped to the human genome (hg19) with STAR (Dobin et al. 

2013). From the BAM files we obtained all possible exon-exon 

junctions defined by spliced reads that appear in any of the samples. 

All defined junctions were then grouped into junction-clusters. Two 

junctions were clustered together if they shared at least one splice-site. 

Clusters were built considering all junctions present in all patients, but 

junction read-counts were assigned per patient. Then, for each 

sample, the read-count per junction was normalized by the total read 

count of all junctions in that cluster to define a junction inclusion level. 

If a junction was not expressed in a given sample, it was given zero 

inclusion level. The software for the junction analysis can be found 

here https://github.com/comprna/Junckey. 

 

For the positions in the motif that were significantly more mutated 

compared to the randomized control, we calculated whether mutations 

were associated to a change in RNA splicing and expression. For the 

https://gdc-portal.nci.nih.gov/
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splicing analysis we calculated the inclusion levels (PSI) of events and 

junctions per sample. For each selected motif, and for each SMR 

containing the motif, we tested the association of the mutation with a 

change in RNA-splicing using outlier statistics. We compared each 

patient with a mutation in the selected position of the SMR with all the 

patients for the same tumor type that did not have any mutations in the 

same SMR. The significance of splicing change was measured in 

terms of a z-score derived from the junction PSI of the mutated patient 

and the distribution of junction PSIs in the other non-mutated patients. 

This was performed in the same way for alternative splicing events. To 

test the association with expression changes we performed a similar 

analysis but using the transcript abundances in TPM units for the 

transcripts including the SMR. For each SMR and each transcript 

containing the SMR, we compare the transcript log10(TPM) for the 

patient having a mutation in the SMR with the distribution of log10(TPM) 

values for the same transcript in the patients with no mutation in that 

SMR. We considered a change significant for |z-score|>1.96 and the 

difference between the observed log10(TPM) and the mean of 

log10(TPM) in patients without mutations in the SMR greater than 0.5 or 

lower than -0.5. 

 

Supplementary Data and Software 

 

Supplementary Data for this manuscript is available at: 

http://comprna.upf.edu/Data/MutationsRBPMotifs/ 

Code use in this manuscript is available at:  

https://github.com/comprna/MIRA 

All plots in high resolution for the cases shown in the manuscript and 

for other examples are available at 

http://comprna.upf.edu/Data/MutationsRBPMotifs/ 

 

http://comprna.upf.edu/Data/MutationsRBPMotifs/
https://github.com/comprna
http://comprna.upf.edu/Data/MutationsRBPMotifs/
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Supplementary Figure 1. Identification of significantly mutated regions 

(SMRs) (A) QQ-plot comparing the distribution of p-values in our calculated 7-

mer windows, using all windows with 1 or more mutations, with the uniform 

distribution. In red we indicate those that we are taking as significant: 3 or 

mutations and corrected p-value < 0.05. (B) Comparison of the distributions of 

nucleotide bias (NB) scores in 7-mer windows with 1 mutation (blue) and in 7-

mer windows with 3 or more mutations. We selected 7-mer windows with 3 or 

more mutations and with NB-score >= 6. (C) Distribution of the NB-scores and 

p-values (in –log10 scale) of the identified SMRs from the PAN505 dataset 

separated by region type. (D) Distribution of the NB-scores and p-values (in –

log10 scale) of the identified SMRs from the PAN507 dataset separated by 

region type. 

  

A 

Supplementary Figure 2. Length distribution of SMRs. (A) Length 

distribution of the identified significantly mutated regions (SMRs) for the 

PAN505 dataset separately for each region type: protein-coding sequences 

(CDS), 5‘ and 3‘ untraslated regions (5UTR/3UTR), introns (INTRON) and 

exons of non-coding genes (EXON). 
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A 

C 

E 

B 

D 

F 

Supplementary Figure 3. (A-E) Relation between replication timing (x-axis) and 

number of mutations (y-axis) in the SMRs from the PAN505 cohort falling in 

regions with replication timing data from (Lochovsky et al. 2015). (F) For the 

PAN507 cohort only intronic SMRs fell in genomic regions with replication timing 

information.  
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  A 
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E 

B 

D 
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Supplementary Figure 4 (A-E) Comparison between expression and mutation 

count. For every SMR in the PAN505 cohort, we compared the mutation count (y 

axis) with the average expression of the transcripts, in log10(TPM) units (x axis), in 

the same patients harboring the mutations in the SMR. For each transcript including 

an SMR, we considered the expression of the transcript in the same patients that 

harbor the mutation. These expression values were averaged over all patients.  
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  E 

A B 

C D 

Supplementary Figure 5. Comparison between our SMRs and LARVA (Lochovsky 

et al. 2015) for the CDS (A), 5UTR (B), 3UTR (C), INTRON (D) and EXON (E) 

SMRs. For each SMR, we plot the p-value provided by our method in –log10 scale 

(x axis) and the p-value given by LARVA in –log10 (y axis). LARVA was used with 

the beta-binomial distribution (bbd) and the correction for replication timing (cor). 



134 
 

  
A 

C 

Scale
chr6:

Common SNPs(147)

200 bases hg19
30,640,500 30,640,600 30,640,700 30,640,800 30,640,900

PAN505 mutations

PAN505 SMRs

Basic Gene Annotation Set from GENCODE Version 19

COSMIC: Catalogue Of Somatic Mutations In Cancer

Simple Nucleotide Polymorphisms (dbSNP 147) Found in >= 1% of Samples

SKCM:TCGA-DA-A3F5-06A
SKCM:TCGA-EE-A3JI-06A

SKCM:TCGA-FS-A1ZK-06A
SKCM:TCGA-DA-A1HY-06A
SKCM:TCGA-EE-A2M5-06A
SKCM:TCGA-EE-A3J5-06A
SKCM:TCGA-GN-A266-06A

DHX16:ACAGCCCCTTCCGGG

DHX16

B 

F 

Scale
chr22:

<---

Common SNPs(147)

20 bases hg19
38,885,610 38,885,620 38,885,630 38,885,640 38,885,650

A A A G T T C C C T C T T T C C C C T C T A A T T T T T T T T T T T T A A T C G A C A A C A A T G T C
PAN505 mutations

PAN505 SMRs

UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparative Genomics)

Basic Gene Annotation Set from GENCODE Version 19

Ensembl Gene Predictions - archive 75 - feb2014

COSMIC: Catalogue Of Somatic Mutations In Cancer
Simple Nucleotide Polymorphisms (dbSNP 147) Found in >= 1% of Samples

CRC:TCGA-A6-6781-01A
CRC:TCGA-AA-3516-01A
CRC:TCGA-AA-3518-01A
CRC:TCGA-AD-6964-01A

HNSC:TCGA-BA-5153-01A
UCEC:TCGA-AP-A051-01A
UCEC:TCGA-AP-A054-01A
UCEC:TCGA-AP-A0LD-01A
UCEC:TCGA-AX-A05S-01A
UCEC:TCGA-B5-A11H-01A

DDX17:TTTTTTAATCTCC

DDX17/uc003avy.4
DDX17/uc003avx.4

DDX17
DDX17

ENST00000396821
ENST00000381633
ENST00000216019
ENST00000403230
ENST00000475004

D 

Scale
chr16:

Common SNPs(147)

500 bases hg19
32,266,000 32,266,500 32,267,000

PAN505 mutations

PAN505 SMRs

Basic Gene Annotation Set from GENCODE Version 19

COSMIC: Catalogue Of Somatic Mutations In Cancer
Simple Nucleotide Polymorphisms (dbSNP 147) Found in >= 1% of Samples

CRC:TCGA-AA-3516-01A
UCEC:TCGA-AP-A054-01A
UCEC:TCGA-AX-A05S-01A

CRC:TCGA-AA-3516-01A
UCEC:TCGA-AP-A054-01A
UCEC:TCGA-AX-A05S-01A

CRC:TCGA-A6-6781-01A
CRC:TCGA-AA-3516-01A

CRC:TCGA-AA-A01R-01A
CRC:TCGA-AD-6964-01A

UCEC:TCGA-AP-A054-01A
UCEC:TCGA-AX-A05S-01A
UCEC:TCGA-B5-A11H-01A

TP53TG3D:CTAAATCACAATA
TP53TG3D:TATTTTTGCAACC

RP11-56L13.7
TP53TG3D
TP53TG3D
TP53TG3D

Scale

chr3:

Common SNPs(147)

2 kb hg19

134,500,000 134,501,000 134,502,000 134,503,000 134,504,000 134,505,000

PAN505 mutations

PAN505 SMRs

Basic Gene Annotation Set from GENCODE Version 19

Ensembl Gene Predictions - archive 75 - feb2014

COSMIC: Catalogue Of Somatic Mutations In Cancer

Simple Nucleotide Polymorphisms (dbSNP 147) Found in >= 1% of Samples

CRC:TCGA-A6-2681-01A

CRC:TCGA-AA-3514-01A

CRC:TCGA-AA-3956-01A

CRC:TCGA-AG-4008-01A

CRC:TCGA-AZ-6601-01A

CRC:TCGA-CA-6718-01A

HNSC:TCGA-CV-7090-01A

KICH:TCGA-KL-8325-01A

KICH:TCGA-KL-8341-01A

KICH:TCGA-KN-8434-01A

KICH:TCGA-KO-8417-01A

KIRC:TCGA-B0-5693-01A

KIRC:TCGA-CW-6087-01A

KIRC:TCGA-CZ-4856-01A

EPHB1:TTCTTTTTT

RNU6-1174P

RNA5SP141

ENST00000467708

ENST00000460895

ENST00000517278

ENST00000364543

Scale

chr18:

--->

PAN507 SMRs

PAN505 SMRs

RNA-seq junctions

10 bases hg19

60,048,030 60,048,040 60,048,050
T T C C A A A A A T A A T A T T C T T T T T T T T T T T T T T T G A G A

PAN505 mutations

PAN507 SMRs

PAN505 SMRs

RNA-seq junctions

RefSeq Genes

COSMIC: Catalogue Of Somatic Mutations In Cancer

KIRC:TCGA-A3-3308-01A

KIRC:TCGA-B0-5693-01A

UCEC:TCGA-AX-A0J1-01A

TNFRSF11A/NM_001278268

TNFRSF11A/NM_001270949

TNFRSF11A/NM_001270950

TNFRSF11A/NM_001270951

TNFRSF11A/NM_003839

E Scale

chr17:

<---

PAN507 SMRs

PAN505 SMRs

RNA-seq junctions

10 bases hg19

47,723,890 47,723,900 47,723,910
A G T T T T T T T T T T T T T T T C T C T C T C T C T C T C T C T T C

PAN505 mutations

PAN507 SMRs

PAN505 SMRs

RNA-seq junctions

RefSeq Genes

COSMIC: Catalogue Of Somatic Mutations In Cancer

Ensembl Gene Predictions - archive 75 - feb2014

UCEC:TCGA-AP-A054-01A

UCEC:TCGA-AX-A05S-01A

UCEC:TCGA-B5-A11H-01A

SPOP/NM_003563

SPOP/NM_001007230

SPOP/NM_001007229

SPOP/NM_001007228

SPOP/NM_001007227

SPOP/NM_001007226

ENST00000393328

ENST00000347630

ENST00000393331

ENST00000504102

ENST00000503676

ENST00000509079

ENST00000505581

ENST00000506399

ENST00000507970

ENST00000514121

ENST00000515508

ENST00000513080

ENST00000504212

ENST00000510476

ENST00000508805

ENST00000451526

ENST00000502385

ENST00000509765 



135 
 

Supplementary Figure 6 Novel significantly mutated regions. (A) Novel 

5UTR SMR identified in DHX16. (B) Example of the novel 3UTR SMR found 

in TP53TG3D.  (C) Novel EXON SMR found in a non-coding transcript of the 

gene DDX17. (D) Novel INTRON SMR found in EPHB1 from the PAN505 

dataset. (E) Novel 5UTR mutations in SPOP falling on a putative PTP1 

binding site. The SMR is in a 5‘ untraslated region that is annotated only in 

Gencode/Ensembl. (F) Novel INTRON SMR in the gene TNFRSF11A, with 

mutations falling in a putative ZFP36 motif. 
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Supplementary Figure 7. (A) Phastcons conservation score distributions (y 

axis) for the SMRs harboring enriched motifs RBP motifs (x axis). SMRs and 

motifs are separated by region type. The conservation is calculated from the 

20-way multiple species alignment from UCSC. (B) Top 20 (or all if they are 

less than 20) enriched k-mers (z>1.96 and k-mer count > 2). For each region 

type, we give the proportion of patients (y-axis) that show SMRs enriched in 

each k-mer (x-axis). (C) Phastcons conservation score distributions (y axis) 

for the SMRs harboring enriched k-mer motifs (x axis). SMRs and k-mers are 

separated by region type. The conservation is calculated from the 20-way 

multiple species alignment from UCSC. 
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Supplementary Figure 8. (A)  
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     Supplementary Figure 8. Genes and patients with SMRs that 

contain enriched motifs. We show matrix plots with the genes (y axis) 

with SMRs containing the PTBP1 (A) and ESRP2 (B) motifs. The tumor 

types are color-coded and patients are given in the x-axis. A white dot 

inside the color square indicates that the mutation falls inside the motif 

for that patient. 
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IV. Discussion 
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With the opportunity provided by large-scale genomics data for 

multiple cancer types that became available to the research 

community, this study started with the ambitious motivation to find 

patterns of common and specific RNA processing alterations going on 

in different cancer types. Indeed we observed multi-layer RNA 

processing alterations pervasive in cancer that could categorize 

specific tumor types as well as define a common set of alterations such 

as in the hallmarks of cancer. The RNA binding proteins that are 

involved in RNA processing were frequently deregulated in all of the 11 

tumors studied, more often due to copy number variations and 

expression changes than mutations. We further studied association 

between RBPs deregulation with respect to splicing change. Many 

such splicing changes were observed in cancer driver genes and were 

also related to various cancer hallmarks. Conversely, many other 

splicing changes were observed specific to each tumor type and 

subtype, such as breast tumor of subtype Luminal A and B. This 

finding suggests that alternative splicing patterns is an important factor 

to consider for diagnosis as well as for therapeutic purposes along with 

somatic mutations and epigenetic alterations.  We also reported 

several RBPs that were deregulated specific to each tumor type with 

an enriched motif binding sites on differential spliced events. It shows 

their possible specificity for splicing alterations in those tissue types, 

such as TRA2B, which appears amplified and overexpressed in lung 

squamous carcinoma. Interestingly, we observed splicing alterations in 

targets of TRA2B, like the gene CHEK1. One of the key results that 

arose from this study was the source of origin for the deregulation of 

RBPs as not all of them could be described through DNA alterations in 

the gene locus. Further to expand our study and validate this claim we 

studied one particular RBP, MBNL1, which was frequently deregulated 

in tumors with an enrichment of its binding sites on differentially 

alternative spliced events including the mitotic gene NUMA1. We 
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observed splicing changes related to MBNL1 recapitulated splicing 

patterns of undifferentiated cells such as in the gene NUMA1. We 

showed NUMA1 alternative splicing leads to higher proliferation and 

increased centrosome amplification in normal cells. This study 

provides multiple distinct as well as common splicing regulatory 

networks that could be explored further to work out the detail of tumor-

specific key modulators for differential splicing.  

 

Our next objective was to explore the open-ended questions raised by 

the previous work such as the origin of deregulation of RNA binding 

proteins and previously unexplored components such as whether 

mutations on the binding sites for these RBPs might be leading to 

differential splicing or RNA processing alterations. As the binding 

motifs were found to be enriched both in intron and exons of 

differentially alternative spliced events, to study the cis-components, 

we decided to study mutations for 13 different cancer patients obtained 

from whole genome sequencing data. We designed a novel method to 

categorized relevant cancer mutations in both coding as well non-

coding regions. Our goal was to create an unbiased search in entire 

gene regions as the regulatory sites known for RNA processing binds 

both in coding as well as non-coding regions. We recovered several 

known and novel mutation hotspots (SMRs) across genes such as 

3UTRs, 5UTRs and introns, which are not often studied. Our method 

provides advantage in studying potentially relevant deep intronic 

mutations that were not described previously.  We further observed 

these SMRs show enrichment in RNA binding motifs mostly in intronic 

and UTR regions and often certain positions of these motifs are more 

mutated than others. Further, many of the transcripts with these SMRs 

were found to be changing significantly in expression in the patients 

where the mutations on the motifs were observed. This suggests there 
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is still an unexplored territory with respect to somatic mutations and 

RNA processing alterations in cancer. This could be due to scarcity of 

whole genome sequencing data that provides limitations to extract 

statistically relevant cases. It is still unclear whether these mutations, 

especially in non-coding regions provide selective growth advantage to 

cells, such as in cancer driver genes. Most likely they are passenger 

mutations providing sustainability to tumor cells. However, this study 

shows the importance of expanding the search for mutations to non-

coding regions for their potential to explain relevant phenotypes in 

multiple cancers. 
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V. Conclusions 

 

 

The main contributions from the work presented in this thesis could 

be summarized as follows: 

RNA processing alterations through trans components 

o RNA binding proteins (RBPs) are frequently deregulated in 

different cancers and often their expression patterns categorize 

tumor types. 

o Much of the deregulation of RBPs is due to copy number 

alterations and expression changes.  

o Deregulation in RBPs due to mutations or differential 

expression are associated with abnormal splicing patterns in 

cancer. 

o Differential splicing shows common and specific patterns in 

different cancer types. 

o Differential splicing events have enrichment of deregulated 

RBP motifs in multiple cancers. 

o There are specific splicing regulatory modules (networks) 

altered in different cancers.  

o We validated that MBNL1 protein contributes to cell 

proliferation and genome instability through the splicing 

regulation of NUMA1. 
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RNA processing alterations through cis components 

o There are significantly mutated regions (SMRs) at gene loci 

consistent across several cancer types. 

o These SMRs are highly prevalent in non-coding regions such 

as introns and non-coding exons. 

o These SMRs are enriched for multiple putative binding sites for 

RNA binding proteins (RBPs), hence they probably affect RNA 

processing. 

o Some positions of the RBP motifs are mutated in cancer more 

frequently than expected.. 

o Significantly enriched RBPs motifs on SMRs show impact on 

RNA processing and expression using RNA sequencing data 

from the same patients. 
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VI. Other scientific work 

 
1) I performed the analyses of RNA-seq data in two cell lines to 

study the relation between AGO1-related chromatin states and 

alternative splicing: 

Alló M, Agirre E, Bessonov S, Bertucci P, Gómez Acuña L, 

Buggiano V, Bellora N, Singh B, Petrillo E, Blaustein M, Miñana B, 

Dujardin G, Pozzi B, Pelisch F, Bechara E, Agafonov DE, Srebrow 

A, Lührmann R, Valcárcel J, Eyras E, Kornblihtt AR. (2014)  

Argonaute-1 binds transcriptional enhancers and controls 

constitutive and alternative splicing in human cells. PNAS 

4;111(44):15622-9. PMID: 25313066 

 

2) I performed the analyses of RNA-seq data in two cell lines to 

study the relation between of different chromatin states and 

alternative splicing: 

 
González-Vallinas J, Pagès A, Singh B, Eyras E. (2015) A semi-

supervised approach uncovers thousands of intragenic enhancers 

differentially activated in human cells. BMC Genomics. 16:523. doi: 

10.1186/s12864-015-1704-0. PMID: 26169177  

 
3) In a collaboration with W. Ritchie‘s group in the development of a 

method to detect intron retention (IRFinder), I used motif enrichment 

tool MoSEA (https://github.com/comprna/MoSEA) to identify the 

possible RBP factors that control intron retention: 

 

Middleton R, Gao D, Thomas A, Singh A, Au A, Wong JJL, Bomane 

A, Cosson B, Eyras E, Rasko JEJ, Ritchie R. IRFinder: Assessing 

the impact of intron retention on mammalian gene expression. 

Genome Biology, in press.  

 
4) I used MoSEA (https://github.com/comprna/MoSEA) to identify 

the possible RBP factors that control the differential splicing of 

events during differentiation of iPS cells into bipolar neurons. This 

analysis confirmed that CELF, RBFOX and SRRM proteins are 
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important for neuronal differentiation. Additionally,  ESRP proteins 

also may play a role in the maintainance of the splicing pattern in 

the differentiated state: 

 

Juan C Entizne, JL Trincado, G Hysenaj, B Singh, M Skalic, DJ 

Elliott, E Eyras Fast and accurate differential splicing analysis 

across multiple conditions with replicates (2016). Biorxiv doi: 

https://doi.org/10.1101/086876 

 

5) I wrote a review about the role of alternative splicing in cancer 

together with my supervisor Eduardo Eyras: 

 

Singh B, Eyras E. (2016) The role of alternative splicing in cancer. 

Transcription. 22:e1268245. doi: 10.1080/21541264.2016.1268245. 
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