Tablas y Figuras

Figura 43. Electroforegramas obtenidos en PAGE-urea de la hidrólisis de la caseína caprina por la acción de los enzimas del cuajo a diferentes pH y 30°C durante 1(A), 4(B), 15(C), 30(D), 48(E) y 72(F) h. 1 y 10. Caseína caprina; 2-9. Caseína hidrolizada a pH 3.8, 4.2, 4.6, 5.0, 5.4, 5.8, 6.2 y 6.6, respectivamente.

Figura 43. (Continuación).

Figura 44. Diagramas densitométricos correspondientes a los electroforegramas PAGE-urea de la caseína caprina completa (A) y tratada con cuajo a pH 5.4 en los períodos de incubación de 6 (B) y 72 (C) h.

Figura 45. Electroforegramas obtenidos en PAGE-SDS de la fracción insoluble a pH 4.6 correspondientes a los hidrolizados obtenidos a pH 5.4 durante diferentes períodos de tiempo por acción del cuajo. 1. Caseína caprina; 2-5. Caseína caprina hidrolizada durante 1, 2, 4 y 6 h; 6. Kit marcador de peso molecular; 7-10. Caseína caprina hidrolizada durante 15, 30, 48 y 72 h.

Figura 46. Electroforegramas obtenidos en PAGE-urea de la caseína bovina hidrolizada por el cuajo durante 15 h a diferentes pH. 1 y 10. Caseína bovina; 2-9. Caseína bovina hidrolizada a pH 3.8, 4.2, 4.6, 5.0, 5.4, 5.8, 6.2 y 6.6, respectivamente.

Figura 47. Electroforegramas obtenidos en PAGE-urea de la caseína caprina hidrolizada por el cuajo a pH 5.4 adicionada de diferentes cantidades de NaCl. 1 y 9. Caseína caprina; 2-8. Caseína caprina hidrolizada conteniendo 0, 1, 1.5, 2.5, 5, 10 y 15% NaCl.

Figura 48. Electroforegramas obtenidos en PAGE-urea de la caseína caprina hidrolizada por el cuajo a nivel de 2x10⁻²(A) y 1.2x10⁻³(B) UC/mL a 30°C durante 15 h. 1 y 10. Caseína caprina; 2-9. Caseína hidrolizada a pH 3.8, 4.2, 4.6, 5.0, 5.4, 5.8, 6.2 y 6.6, respectivamente.

Alelos α_{s1} -Cn	Tasa teórica de síntesis (g/L)	Frecuencia*	
Δ	3 6 Fuerte		
B	"	0.36	
C	11	-	
E	1.6 Medio	0.38	
F	0.6 Débil	0.17	
D	n	-	
0	- Nulo	0.09	

*En 1994 (efectivo de 27 individuos)

Tabla 14. Frecuencias alélicas para el locus de α_{s1} -Cn en la Granja Experimental de la Facultat de Veterinària (UAB)

Figura 49. Electroforegramas obtenidos en PAGE-urea de la caseína caprina con genotipos diferentes para la α_{s1} -Cn. 1 y 10. Caseína caprina procedente de leche de mezcla. 2-9. Caseína caprina presentando los genotipos BB, BE, BF, BO, EE, EF, EO y FF de la α_{s1} -Cn, respectivamente.

Figura 50. Electroforegramas obtenidos en PAGE-urea de la caseína caprina con genotipos diferentes para la α_{s1} -Cn hidrolizada por el cuajo a pH 6.6 y 30°C. 1 y 10. Caseína caprina procedente de leches de mezcla. 2-9. Caseína caprina hidrolizada por el cuajo presentando los genotipos BB, BE, BF, BO, EE, EF, EO y FF de la α_{s1} -Cn, respectivamente.

Figura 51. Electroforegramas obtenidos en PAGE-urea de la α_{s2} -Cn caprina hidrolizada por el cuajo a pH 6.2 y 30°C. 1 y 10. Caseína caprina; 2 y 9. α_{s2} -Cn; 3-8. α_{s2} -Cn hidrolizada durante 0, 0.5, 1, 2, 4 y 6 h, respectivamente.

Figura 52. Electroforegramas obtenidos en PAGE-urea a partir de la β -Cn caprina hidrolizada por la plasmina a pH 8.0 y 37 °C durante diferentes períodos de tiempo. 1-10. β -Cn hidrolizada durante 0, 5, 10, 15, 30, 45, 60, 90, 120 y 150 min, respectivamente.

Leu Pro Ser_p Ser_p Ser_p Ser_p H-Arg₁-Glu-Gln-Glu-Leu-Asn-Val-Val-Gly₁₀-Glu-Thr-Val-Glu-Ser-Leu-Ser-Ser-Glu₂₀-Ser_P Arg Glu-Ser-Ile-Thr-His-Ile-Asn-Lys-Lys-Ile30-Glu-Lys-Phe-Gln-Ser-Glu-Glu-Gln-Gln-Gln407 Thr Thr-Glu-Asp-Glu-Leu-Gln-Asp-Lys-Ile-His50-Pro-Phe-Ala-Gln-Ala-Gln-Ser-Leu-Val-Tyr60-Pro Pro Pro-Phe-Thr-Gly-Pro-Ile-Pro-Asn-Ser-Leu₇₀-Pro-Gln-Asn-Ile-Leu-Pro-Leu-Thr-Gln-Thr₈₀ Val Ser Pro-Val-Val-Pro-Pro-Phe-Leu-Gln-Progr Glu-Ile-Met-Gly-Val-Pro-Lys-Val-Lys-Glu₁₀₀-Ala Ala Thr-Met-Val-Pro-Lys-His-Lys-Glu-Met-Pro₁₁₀-Phe-Pro-Lys-Tyr-Pro-Val-Glu-Pro-Phe-Thr₁₂₀-Pro Leu Leu Asn Glu-Ser-Gln-Ser-Leu-Thr-Leu-Thr-Asp-Val₁₃₀-Glu-Lys-Leu-His-Leu-Pro-Leu-Val₁₄₀-His Pro Gln-Ser-Trp-Met-His-Gln-Pro-Pro-Gln-Pro₁₅₀-Leu-Ser-Pro-Thr-Val-Met-Phe-Pro-Pro-Gln₁₆₀-Pro Tyr Ser Ser-Val-Leu-Ser-Leu-Ser-Gln-Pro-Lys-Val₁₇₀-Leu-Pro-Val-Pro-Gln-Lys-Ala-Val-*-*-Pro-Gln₁₈₀ Arg-Asp-Met-Pro-Ile-Gln-Ala-Phe-Leu-Leu₁₉₀-Tyr-Gln-Glu-Pro-Val-Leu-Gly-Pro-Val-Arg₂₀₀ Ile

Gly-Pro-Phe-Pro-Ile-Leu-Val₂₀₇-COOH

Figura 53. Estructura primaria de la β -Cn caprina (Roberts y col., 1992) comparada con la β -Cn A² bovina (Ribadeau-Dumas y col., 1972; Grosclaude y col., 1973; Carles y col., 1988). En la secuencia bovina sólo los residuos que difieren de la secuencia caprina aparecen en trazo itálico. Las flechas indican los enlaces peptídicos más susceptibles a la hidrólisis de la plasmina en la β -Cn bovina (Gordon y col., 1972; Groves y col., 1972; Visser y col., 1989; Papoff y col., 1995).

Figura 54. Electroforegramas obtenidos en PAGE-urea a partir de la caseína caprina hidrolizada por la plasmina a pH 8.0 y 37 °C durante diferentes períodos de tiempo. 1-10. Caseína caprina hidrolizada durante 0, 5, 10, 15, 30, 45, 60, 90, 120 y 150 min, respectivamente.

Figura 55. Electroforegramas obtenidos en PAGE-SDS a partir de la caseína caprina hidrolizada por la plasmina a pH 8.0 y 37°C durante diferentes períodos de tiempo. 1-7. Caseína caprina hidrolizada durante 0, 5, 10, 15, 30, 45, 60 y 90 min, respectivamente; 8. Kit marcador de peso molecular; 9-10. Caseína caprina hidrolizada durante 120 y 150 min.

Figura 59. Eletroforegramas obtenidos en PAGE-urea de las β -Cn bovina y caprina hidrolizadas por la plasmina a pH 8.0 y 37°C durante diferentes períodos de tiempo. 1-5. β -Cn bovina hidrolizada durante 0, 5, 15, 30 y 60 min; 6-10. β -Cn caprina hidrolizada durante 0, 30, 60, 90 y 120 min, respectivamente.

Figura 60. Electroforesis bidimensional de la β -Cn caprina hidrolizada por la plasmina a pH 8.0 y 37°C durante 45 min.

- A. PAGE-SDS procedente del hidrolizado de la β -Cn;
- B. Electroforesis bidimensional del hidrolizado de la β -Cn (1. β -Cn residual; 2 y 3. Componentes C y D; 4. Componentes A y B; 5. Componentes E;
- C. PAGE-SDS del kit marcador de peso molecular.

Figura 61. Electroforesis bidimensional de la β -Cn bovina hidrolizada por la plasmina a pH 8.0 y 37°C durante 45 min.

- A. PAGE-SDS procedente del hidrolizado de la β -Cn;
- B. Electroforesis bidimensional del hidrolizado de la β-Cn (1. β-Cn residual; 2. γ₁; 3. γ₂ y γ₃; 4. Fragmentos N-terminales de la β-Cn; 5. γ_y; 6. γ_x;
 C. PAGE-SDS del kit marcador de peso molecular.

Figura 62. Análisis de imagen realizado por superposición de los geles bidimensionales correspondientes a los hidrolizados obtenidos a partir de las β -Cn caprina y bovina por acción de las plasmina.

Figura 63. Electroforegramas PAGE-urea obtenidos de los hidrolizados de la caseína caprina por acción de la plasmina caprina a pH 8.0 y 37°C en diferentes períodos de tiempo. 1 y 10. Caseína caprina; 2-9. Caseína caprina hidrolizada durante 1, 6, 15, 24, 30, 48, 72 y 96 h.

Figura 64. Electroforegramas obtenidos en PAGE-urea de la α_{s1} -Cn caprina hidrolizada por la plasmina a pH 8.0 y 37°C durante diferentes períodos de tiempo. 1. Caseína caprina; 2. α_{s1} -Cn; 3-10. α_{s1} -Cn hidrolizada durante 5, 15, 30, 45, 60, 90, 120 y 150 min.

Figura 65. Electroforesis bidimensional de la α_{s1} -Cn caprina hidrolizada por la plasmina a pH 8.0 y 37°C durante 150 min.

- A. PAGE-SDS procedente del hidrolizado de la α_{s1} -Cn; B. Electroforesis bidimensional del hidrolizado de la α_{s1} -Cn (1. α_{s1} -Cn residual; 2. Péptido A; 3. Péptidos B y C).
- C. PAGE-SDS del kit marcador de peso molecular.

Figura 66. Electroforegramas obtenidos en PAGE-SDS de la α_{s1} -Cn caprina hidrolizada por la plasmina a pH 8.0 y 37°C durante diferentes períodos de tiempo. 1. α_{s1} -Cn; 2-5. α_{s1} -Cn hidrolizada durante 5, 15, 30 y 45 min; 6. Kit marcador de peso molecular; 7-10. α_{s1} -Cn hidrolizada durante 60, 90, 120 y 150 min.

Figura 67. Electroforegramas obtenidos en PAGE-SDS de la fracción soluble a pH 4.6 correspondiente a la hidrólisis de la α_{s1} -Cn caprina por acción de la plasmina a pH 8.0 y 37°C durante diferentes períodos de tiempo. 1. Kit marcador de peso molecular. 2-5. α_{s1} -Cn hidrolizada durante 5, 15, 30 y 45 min.

Figura 68. Perfiles de elución obtenidos por RP-HPLC de los péptidos solubles a pH 4.6 producidos a partir de las α_{s1} -Cn A y F por la plasmina a pH 8.0 y 37°C en los períodos de incubación de 0, 0.5, 1, 2, 4 y 6 h (a, c, e, g, i, k para la variante A, y b, d, f, h, j, l para la variante F).

Figura 68. (Continuación).

Figura 69. Perfiles cromatográficos obtenidos por RP-HPLC de los péptidos solubles a pH 4.6 correspondientes a las α_{s1} -Cn A (1) y F (2) caprinas hidrolizadas por la plasmina a pH 8.0 y 37°C durante 6 h.

Figura 70. Electroforegramas obtenidos en PAAGE de las α_{s1} -Cn A y F hidrolizadas por la plasmina a pH 8.0 y 37°C durante diferentes períodos de tiempo. 1 y 9. Caseínas caprinas presentado las variantes A y F de la α_{s1} -Cn, respectivamente; 2 y 10. α_{s1} -Cn A y F; 3-8 y 11-16. α_{s1} -Cn A y α_{s1} -Cn F hidrolizadas durante 0, 0.5, 1, 2, 4 y 6 h, respectivamente.

Figura 71. Electroforegramas obtenidos en PAGE-urea de la α_{s2} -Cn hidrolizada por la plasmina (0.02 U/mL) a pH 8.0 y 37°C durante diferentes períodos de tiempo. 1 y 10. Caseína caprina; 2 y 9. α_{s2} -Cn; 3-8. α_{s2} -Cn hidrolizada durante 0, 30, 60, 90, 120 y 150 min.

Figura 72. Electroforegramas obtenidos en PAGE-urea de la caseína bovina hidrolizada por los enzimas del cuajo (0.1 UC/mL) y plasmina (0.02 U/mL) a 30°C durante 15 h a diferentes pH. 1. Caseína bovina; 2-9. Caseína hidrolizada a pH 3.8, 4.2, 4.6, 5.0, 5.4, 5.8, 6.2 y 6.6, respectivamente.

Figura 73. Electroforegramas obtenidos en PAGE-urea de la caseína caprina hidrolizada por los enzimas del cuajo y plasmina a 30°C durante 15 h a diferentes pH. 1. Caseína caprina; 2-9. Caseína hidrolizada a pH 3.8, 4.2, 4.6, 5.0, 5.4, 5.8, 6.2 y 6.6, respectivamente. E. Fragmentos N-terminales de la β -Cn caprina.

Figura 74. Electroforegramas obtenidos en PAGE-urea de la caseína bovina hidrolizada por los enzimas del cuajo y plasmina a pH 6.2 y 30°C durante diferentes períodos de tiempo. 1 y 8. Caseína bovina; 2-7. Caseína hidrolizada durante 1, 2, 4, 6, 15 y 30 h.

Figura 75. Electroforegramas obtenidos en PAGE-urea de la caseína caprina hidrolizada por los enzimas del cuajo y plasmina a pH 6.2 y 30°C durante diferentes períodos de tiempo. 1 y 8. Caseína caprina; 2-7. Caseína hidrolizada durante 1, 2, 4, 6, 15 y 30 h.

Figura 76. Electroforegramas obtenidos en PAGE-urea de la β -Cn bovina hidrolizada por la plasmina y los enzimas del cuajo de forma consecutiva según se especifica en el apartado IV.5.2 durante diferentes períodos de tiempos. 1. β -Cn hidrolizada por la plasmina; 2-5. β -Cn hidrolizada por la plasmina y posteriormente por los enzimas del cuajo durante 1, 2, 4 y 6 h.

Figura 77. Electroforegramas obtenidos en PAGE-urea de la β -Cn bovina hidrolizada por los enzimas del cuajo y plasmina de forma consecutiva según se especifica en el apartado IV.5.2. 1 y 9. Caseína bovina; 2 y 8. β -Cn; 3. β -Cn hidrolizada por los enzimas del cuajo; 4-7. β -Cn hidrolizada por los enzimas del cuajo y posteriormente por la plasmina durante 0.5, 1, 2 y 6 h.

Figura 78. Electroforegramas obtenidos en PAGE-urea de la β -Cn caprina hidrolizada por los enzimas del cuajo y plasmina de forma consecutiva según se especifica en el apartado IV.5.2. 1 y 9. Caseína caprina; 2 y 8. β -Cn; 3. β -Cn hidrolizada por los enzimas del cuajo; 4-7. β -Cn hidrolizada por los enzimas del cuajo y posteriormente por la plasmina durante 0.5, 1, 2 y 6 h.

Figura 79. Electroforegramas obtenidos en PAGE-urea de la fracción insoluble en agua de diferentes quesos de cabra y vaca comerciales. La identificación de cada variedad de queso corresponde con la lista dada en el apartado V.1.

Figura 80. Esquema general de los perfiles electroforéticos presentados en PAGE-urea de las fracciones insolubes en agua de los quesos de cabra y vaca de la figura 79.

· '.

Figura 81. Electroforegramas obtenidos en PAGE-urea de la fracción insoluble en agua de un queso de pasta prensada no cocida elaborado en el CeR (*Centre Especial de Recerca*) de Tecnología de los Alimentos (UAB). 1-5. Queso madurado durante 2, 7, 15, 21 y 30 días.

Figura 83. Diagrama que muestra los componentes principales de un equipo de alta presión.

Acidificación (15°C)	pH Final (24 h)
Fermento 2%	5.33
GDL 1%	6.07
GDL 2%	5.65
GDL 3%	5.35
GDL 4%	5.09
GDL 8%	4.42
GDL 12%	4.11

Tabla 16. Evolución del pH en cuajadas acidificadas con fermentos o con diferentes concentraciones de GDL a las 24 h y 15°C.

Figura 84. Curvas de acidificación obtenidas en cuajadas acidificadas con fermentos y con ácido láctico y GDL.

CUAJADAS						
VARIABLES	сс	CLF	CLFC	CLFP	CLFCP	
pH	5.33	5.35	5.36	5.35	5.36	
Humedad (%)	49.99	50.77	53.96	52.00	53.42	
Grasa (%)	27.5	27	26.5	26.5	26.5	
NaCl (%)	0.72	0.7	0.81	0.65	0.83	
Ca (%)	0.65	0.66	0.66	0.63	0.66	
P (%)	0.42	0.43	0.42	0.43	0.40	
NT (%)	3.31	3.10	3.06	3.18	3.01	
NNC/NT (%)	4.27	3.99	3.43	3.55	3.38	
NNP/NT (%)	2.15	1.53	1.16	1.47	1.08	
Enzimas coagulantes residuales ⁽¹⁾	12.52	15.6	ND ⁽³⁾	11.51	ND	
Plasmina ⁽²⁾	2.72	2.81	2.82	2.87	2.85	

.

:

(1) UC/kg

⁽²⁾ Unidades AMC/g

⁽³⁾ No Detectado

Tabla 17. Composición fisicoquímica de cuajadas acidificadas por fermentos o control (CC), con ácido láctico y GDL o libres de fermentos (CLF), libres de fermentos y coagulantes (CLFC) y presurizadas (CLFP y CLFCP) a las 24 h de su producción.

Figura 85. Electroforegramas obtenidos en PAGE-urea pertenecientes a la CC (1), CLF (2), CLFP (3), CLFC (4), CLFCP (5) y caseína de la leche utilizada en las producciones (6).

Leche de cabra	Actividad Plasmina (AMC/mL)		
Control Presurizada (400 MPa)	0.81 0.82		
Control Presurizada (500 MPa)	0.70 0.71		

Tabla 18. Efecto de las altas presiones hidrostáticas (2°C, 10 min) sobre la actividad enzimática de la plasmina de leche de cabra.

86

Efecto de las altas presiones hidrostáticas en coagulantes (2°C, 10 min)

Efecto de las altas presiones hidrostáticas en coagulantes (10°C, 10 min)

Figura 86. Efecto de las altas presiones hidrostáticas sobre la actividad coagulante de diferentes preparaciones enzimáticas a 2 y 10°C.

	CLF	CLFP	CLFC	CLFCP
Recuento Total (UFC/g)	1500	100	1300	100
Enterobacterias (UFC/g)	К*	K	К	· K

٠,

*K. Límite de detección.

Tabla 19. Resultados de los análisis microbiológicos obtenidos en las cuajadas libres de fermentos y libres de fermentos y coagulantes antes y después del tratamiento de presurización (400 MPa, 2°C y 10 min).