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PhD Thesis Committee:
Bart De Schutter, PhD (Delft University of Technology)
Sorin Olaru, PhD (Centrale Supélec)
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Prof. Robert Griñó from UPC and Prof. Alain Gauthier from UniAndes for joining my
thesis committee.
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Abstract

This thesis is mainly devoted to the study of the role of evolutionary-game theory in
the design of distributed optimization-based controllers. Game theoretical approaches
have been used in several engineering fields, e.g., drainage wastewater systems, band-
width allocation, wireless networks, cyber security, congestion games, wind turbines,
temperature control, among others. On the other hand, a specific class of games, known
as population games, have been mainly used in the design of controllers to manage a
limited resource. This game approach is suitable for resource allocation problems since,
under the framework of full-potential games, the population games can satisfy a unique
coupled constraint while maximizing a potential function.

First, this thesis discusses how the classical approach of the population games can
contribute and complement the design of optimization-based controllers. Therefore, this
dissertation assigns special interest on how the features of the population-game approach
can be exploited extending their capabilities in the solution of distributed optimization
problems. In addition, density games are studied in order to consider multiple coupled
constraints and preserving the non-centralized information requirements. Furthermore,
a close relationship is established between the possible interactions among agents in a
population with the constrained information sharing among different local controllers.
On the other hand, coalitional games are discussed focusing on the Shapley power index.
This power index has been used to assign an appropriate rewarding to players in function
of their contributions to all possible coalitions. Even though this power index is quite
useful in the engineering context, since it involves notions of fairness and/or relevance
(how important players are), the main difficulty of the implementation of the Shapley
value in engineering applications is related to the high computational burden. Therefore,
this dissertation studies the Shapley value in order to propose an alternative manner
to compute it reducing computational time, and a different way to find it by using
distributed communication structures is presented.

The studied game theoretical approaches are suitable for the modeling of rational
agents involved in a strategic constrained interaction, following local rules and making
local decisions in order to achieve a global objective. Making an analogy, distributed
optimization-based controllers are composed of local controllers that compute optimal
inputs based on local information (constrained interactions with other local controllers)
in order to achieve a global control objective. In addition to this analogy, the fea-
tures that relate the Nash equilibrium with the Karush-Kuhn-Tucker conditions for a
constrained optimization problem are exploited for the design of optimization-based
controllers, more specifically, for the design of model predictive controllers. Moreover,
the design of non-centralized controllers is directly related to the partitioning of a sys-
tem, i.e., it is necessary to represent the whole system as the composition of multiple
sub-systems. This task is not a trivial procedure since several considerations should
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be taken into account, e.g., availability of information, dynamical coupling in the sys-
tem, regularity in the amount of variables for each sub-system, among others. Then,
this doctoral dissertation also discusses the partitioning problem for large-scale systems
and the role that this procedure plays in the design of distributed optimization-based
controllers. Finally, dynamical partitioning strategies are presented with distributed
population-games-based controllers.

Some engineering applications are presented to illustrate and test the performance
of all the proposed control strategies based on game theoretical approaches, i.e., the
Barcelona water supply network, multiple continuous stirred tank reactors, system of
multiple unmanned aerial vehicles, and a water distribution system.

Keywords: population games, density games, Nash equilibria, cooperative games,
Shapley power index, partitioning, distributed control, model predictive control, dynam-
ical tuning, large-scale systems.
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Resumen

Esta tesis doctoral consiste principalmente en el estudio del rol que desempeña la
teoŕıa de juegos evolutiva en el diseño de controladores distribuidos basados en opti-
mización. Diversos enfoques de la teoŕıa de juegos han sido usados en múltiples campos
de la ingenieŕıa, por ejemplo, en sistemas de drenaje urbano, para la asignación de anchos
de banda, en redes inalámbricas, en ciber-seguridad, en juegos de congestión, turbinas
eólicas, control de temperatura, entre otros. Por otra parte, una clase espećıfica de jue-
gos, conocidos como juegos poblacionales, se han usado principalmente en el diseño de
controladores encargados de determinar la apropiada asignación de recursos. Esta clase
de juegos es apropiada para problemas de distribución dinámica de recursos dado que,
en el contexto de juegos poblacionales, los juegos poblacionales pueden ser usados para
maximizar una función potencial mientras se satisface una restricción acoplada.

Primero, esta tesis doctoral presenta cómo el enfoque clásico de los juegos pobla-
cionales pueden contribuir y complementar en el diseño de controladores basados en
optimización. Posteriormente, esta disertación concentra su atención en cómo las car-
acteŕısticas de los juegos poblacionales pueden ser aprovechadas y extendidas para dar
solución a problemas de optimización de forma distribuida. Adicionalmente, los juegos
con dependencia de densidad son estudiados con el fin de considerar múltiples restric-
ciones mientras se preservan las caracteŕısticas no centralizadas de los requerimientos de
información. Finalmente, se establece una estrecha relación entre las posibles interac-
ciones de los agentes en una población y las restricciones de intercambio de información
entre diversos controladores locales. También, se desarrolla una discusión sobre los juegos
cooperativos y el ı́ndice de poder conocido como el valor de Shapley. Este ı́ndice de poder
ha sido usado para la apropiada asignación de beneficios para un jugador en función de
sus contribuciones a todas las posibles coaliciones que pueden formarse. Aunque este
ı́ndice de poder es de gran utilidad en el contexto ingenieril, ya que involucra nociones
de justicia y/o relevancia, la principal dificultad para implementar el valor de Shapley
en aplicaciones de ingenieŕıa está asociado a los altos costos computacionales para en-
contrarlo. En consecuencia, esta disertación doctoral estudia el valor de Shapley con el
fin de ofrecer una alternativa para calcular este ı́ndice de poder reduciendo los costos
computacionales e incluso contemplando estructuras distribuidas de comunicación.

Los enfoques de la teoŕıa de juegos estudiados son apropiados para el modelamiento
de agentes racionales involucrados en una interacción estratégica con restricciones, sigu-
iendo reglas locales y tomando decisiones locales para alcanzar un objetivo global. Real-
izando una analoǵıa, los controladores distribuidos basados en optimización están com-
puestos por controladores locales que calculan acciones óptimas basados en información
local (considerando interacciones restringidas con otros controladores locales) con el fin
de alcanzar un objetivo global. Adicional a esta analoǵıa, las caracteŕısticas que relacio-
nan el equilibrio de Nash con las condiciones de Karush-Kuhn-Tucker en un problema de
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optimización con restricciones son aprovechadas para el diseño de controladores basados
en optimización, más espećıficamente, para el diseño de controladores predictivos.

Por otra parte, el diseño de controladores no centralizados está directamente rela-
cionado con el particionado de un sistema, es decir, es necesario representar el sistema
en su totalidad por medio del conjunto de varios sub-sistemas. Esta tarea no es un
procedimiento trivial puesto que es necesario tener en cuenta varias consideraciones, por
ejemplo, la disponibilidad de información, el acople dinámico en el sistema, la regulari-
dad en cuanto a la cantidad de variables en cada sub-sistema, entre otras. Por lo tanto,
esta disertación doctoral también desarrolla una discusión alrededor del problema de
particionado para sistemas de gran escala y respecto al rol que este procedimiento de
particionado juega en el diseño de controladores distribuidos basados en optimización.
Finalmente, se presentan estrategias de particionado dinámico junto con controladores
basados en juegos poblacionales.

Algunas aplicaciones en ingenieŕıa son usadas para ilustrar y probar los controladores
diseñados por medio de las contribuciones novedosas basadas en teoŕıa de juegos, estas
son, la red de agua potable de Barcelona, múltiples reactores, sistema compuesto por
varios veh́ıculos aéreos no tripulados y un sistema de distribución de agua.

Palabras clave: juegos poblacionales, juegos de densidad, equilibrio de Nash, jue-
gos cooperativos, ı́ndice de poder de Shapley, particionado, control distribuido, control
predictivo, sintonización dinámica, sistemas de gran escala.
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Resum

Aquesta tesi doctoral consisteix principalment en l’estudi del paper que exerceix

la teoria de jocs evolutiva en el disseny de controladors distribüıts basats en optim-

ització. Diversos enfocaments de la teoria de jocs han estat usats en múltiples camps de

l’enginyeria, per exemple, en sistemes de drenatge urbà, per a l’assignació d’amples de

banda, en xarxes sense fils, a ciber-seguretat, en jocs de congestió, turbines eòliques, con-

trol de temperatura, entre altres. D’altra banda, una classe espećıfica de jocs, coneguts

com jocs poblacionals, s’han fet servir principalment en el disseny de controladors en-

carregats de determinar l’apropiada assignació de recursos. Aquesta classe de jocs és

apropiada per a problemes de distribució dinàmica de recursos atès que, en el context

de jocs poblacionals, aquestos poden ser usats per a maximitzar una funció potencial

mentre es satisfà una restricció acoblada.

Primer, aquesta tesi doctoral presenta com l’enfocament clàssic dels jocs poblacionals

poden contribuir i complementar en el disseny de controladors basats en optimització.

Posteriorment, aquesta dissertació concentra la seva atenció en com les caracteŕıstiques

dels jocs poblacionals poden ser aprofitades i esteses per donar solució a problemes

d’optimització de forma distribüıda. Addicionalment, els jocs amb dependència de den-

sitat són estudiats amb la finalitat de considerar múltiples restriccions mentre es pre-

serven les caracteŕıstiques no centralitzades dels requeriments d’informació. Finalment,

s’estableix una estreta relació entre les possibles interaccions dels agents en una població

i les restriccions d’intercanvi d’informació entre diversos controladors locals. També, es

desenvolupa una discussió sobre els jocs cooperatius i l’́ındex de poder conegut com el

valor de Shapley. Aquest ı́ndex de poder ha estat usat per l’apropiada assignació de ben-

eficis per a un jugador en funció de les seves contribucions a totes les possibles coalicions

que poden formar-se. Encara que aquest ı́ndex de poder és de gran utilitat en el context

de l’enginyeria, ja que involucra nocions de just́ıcia i/o rellevància, la principal dificultat

per implementar el valor de Shapley en aplicacions d’enginyeria està associat als alts

costos computacionals per trobar-lo. En conseqüència, aquesta dissertació doctoral es-

tudia el valor de Shapley per tal d’oferir una alternativa per calcular aquest ı́ndex de
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poder reduint els costos computacionals i fins i tot contemplant estructures distribüıdes

de comunicació.

Els enfocaments de la teoria de jocs estudiats són apropiats per al modelatge d’agents

racionals involucrats en una interacció estratègica amb restriccions, seguint regles locals

i prenent decisions locals per assolir un objectiu global. Realitzant una analogia, els con-

troladors distribüıts basats en optimització estan compostos per controladors locals que

calculen accions òptimes basats en informació local (considerant interaccions restringides

amb altres controladors locals) per tal d’assolir un objectiu global. Addicional a aquesta

analogia, les caracteŕıstiques que relacionen l’equilibri de Nash amb les condicions de

Karush-Kuhn-Tucker en un problema d’optimització amb restriccions són aprofitades

per al disseny de controladors basats en optimització, més espećıficament, per al disseny

de controladors predictius.

D’altra banda, el disseny de controladors no centralitzats està directament relacionat

amb la partició d’un sistema, és a dir, cal representar el sistema en la seva totalitat per

mitjà del conjunt de diversos sub-sistemes. Aquesta tasca no és un procés trivial, ja que

cal tenir en compte diverses consideracions, per exemple, la disponibilitat d’informació,

l’acoblament dinàmic en el sistema, i la regularitat pel que fa a la quantitat de variables

en cada sub-sistema, entre d’altres. Per tant, aquesta dissertació doctoral també desen-

volupa una discussió al voltant del problema de partició per a sistemes de gran escala

i respecte al paper que aquest procediment de partició juga en el disseny de contro-

ladors distribüıts basats en optimització. Finalment, es presenten estratègies de partició

dinàmic juntament amb controladors basats en jocs poblacionals.

Algunes aplicacions en enginyeria són usades per illustrar i provar els controladors

dissenyats per mitjà de les contribucions noves basades en teoria de jocs, aquestes són:

la xarxa d’aigua potable de Barcelona, múltiples reactors, sistema compost per diversos

vehicles aeris no tripulats i un sistema de distribució d’aigua.

Paraules clau: jocs poblacionals, jocs de densitat, equilibri de Nash, jocs coop-

eratius, ı́ndex de poder de Shapley, particionat, control distribüıt, control predictiu,

sintonització dinàmica, sistemes de gran escala.
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NOTATION

‖ · ‖ 2-norm (Euclidian norm) of a vector, i.e., ‖x‖ ,
√∑n

i=1 x
2
i , where x ∈ Rn

In identity matrix of dimension n× n, where n ∈ Z≥1

1n vector with n ∈ Z≥1 unitary entries, i.e., 1n = [1 . . . 1]> ∈ Rn

0m×n zero matrix of dimension m× n, where m,n ∈ Z≥1

X � 0 (≺ 0) X is a positive (negative) definite matrix

X � 0 (� 0) X is a positive (negative) semi-definite matrix

A ◦B Hadamard product, i.e., if A,B ∈ Rn×m, and C = A ◦B ∈ Rn×m

then cij = aijbij , for all i = {1, . . . , n} and j = {1, . . . ,m}
∇V (·) Gradient of the function V

Df(·) Jacobian matrix of f , i.e., [Df ]ij = ∂fi
∂pj

(·)? The super index ? denotes optimality, e.g., p? denotes a Nash equilibrium

and P? denotes the optimal partition

ẋ derivative of x(t) with respect to the continuous time, i.e., ẋ = d
dtx(t).

Moreover, arguments in continuous time are expressed in parenthesis, e.g.,

x(t), A(t), and the argument corresponding to the continuous time is mostly

omitted throughout this thesis in order to simplify notation

xk the sub-index k indicates the discrete time

xk+j|k prediction of x made at time instant k for the time instant k + j, where

k, j ∈ Z≥0. In the argument k + j|k, the first element k + j indicates discrete

time prediction, whereas the second element k indicates the actual discrete

time
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DMPC Distributed Model Predictive Control
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Chapter 1

Introduction

1.1 Motivation

Large-scale systems have gotten special importance into the engineering field. Last years

have witnessed the rise of large-scale systems in parallel with the growth of industry and

cities. For instance, the continuous evolution of industrial processes and the necessity

of enhancing them have caused the appearance of quite complex systems involving a

large number of variables. Similarly, the growth of cities has caused the rise of large-

scale systems in charge of supplying the population with resources it needs and that can

normally be modeled as a network, e.g., traffic, energy, and water systems. Together

with the large-scale systems, the necessity to determine appropriate ways to control and

make them perform in a desired manner has also appeared. Finally, both physical and

operational constraints should be taken into account, which motivate the use of model

predictive control (MPC) since it has been demonstrated to be one of the most used

optimization-based control technique that can manage all the required considerations

[77], [125]. Therefore, the design of controllers for large-scale systems deals with new

challenges. First, the fact that large-scale systems are generally located throughout

large geographical areas makes the recollection of measurements and their transmission

difficult. In this regard, the communication network required for a centralized control

approach might have high associated economical costs, and a large number of links in the

communication network is associated to low reliability. Furthermore, the computation of

a large amount of data directly implies a high computational burden to manage, process

and use them in order to make decisions over the system functioning.
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A plausible solution to mitigate the aforementioned issues associated to the control

of large-scale systems consists in dividing this type of systems into smaller sub-systems

that can be controlled by independent local controllers. From this perspective, local con-

trollers can be associated to local decision makers that use only a portion of information

about the whole system, i.e., they only capture information from a sub-system. Never-

theless, the task of identifying the appropriate set of sub-systems avoiding the existence

of strong dynamical coupling is not a trivial problem and, in many cases, the control

requirements and/or the physical and operational constraints do not allow the statement

of independent problems that could be solved by smaller independent controllers. As

an alternative, distributed approaches have been used, which consist in designing local

controllers able to share information among them, i.e., local decision makers that may

interact to each other.

The latter analogy incites to look at the distributed control scheme as a scenario

where there are several decision makers using limited information and interacting with

each other, which motivates the consideration of game theory as a suitable and pow-

erful tool in the study and design of distributed controllers. In addition, one of the

most important concepts in the context of game theory is the Nash equilibrium, which

describes a situation where no decision maker has incentives to unilaterally change its

current decisions. Furthermore, it has been shown that, under certain conditions, there

is a close relationship between the Nash equilibrium and the extreme point of a function

considering constraints, in other words, there is a relationship between the Nash equilib-

rium and the solution of a constrained optimization problem. This fact also motivates

the purpose of studying the design of distributed optimization-based controllers by using

game theoretical approaches.

Instead of designing predictive and game-theory-based controllers as two different

control strategies, the motivation in this doctoral thesis is to determine the role of

some game-theoretical approaches in the design of optimization-based controllers. In

this regard, predictive controllers are designed and studied by exploring two different

perspectives. First, these optimization-based controllers are designed partially by using

game-theoretical ideas, i.e., considering game theory as a complement to enhance some

features of the optimization-based controllers. Secondly, the predictive controllers are

completely designed from a game-theoretical perspective.
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This doctoral dissertation presents some strategies to complement the design of

predictive controllers by means of game-theoretical approaches. As an example, how

learning based on population games can be used for the dynamical assignment of pri-

oritization weights for multi-objective cost functions in order to improve the predictive

control performance. On the other hand, this thesis addresses the whole design of

optimization-based controllers based on game theory. For instance, how to take advan-

tage of the population games features in order to compute control inputs in a distributed

manner for engineering problems involving resource allocation. Moreover, the proposed

methodologies are implemented in real large-scale case studies to assess the closed-loop

performance and their effectiveness by making comparisons with results obtained from

centralized control techniques.

1.2 Research Questions

This dissertation is devoted to the design of distributed optimization-based controllers

by using game theoretical approaches. The main research goal of this thesis is motivated

by the following key research questions:

(Q1) Which kind of constrained optimization-based controllers can be designed by using

the classical population dynamics and what are the information requirements?

(Q2) How to develop a dynamical tuning methodology for MPC controllers with low

computational burden?

(Q3) How to reduce the amount of required information in the evolution of population

dynamics?

(Q4) How can the population-games approach be used in the design of distributed

optimization-based controllers?

(Q5) How can more coupled constraints be considered with the population-games ap-

proach in order to make them suitable for a larger variety of problems in the design

of distributed optimization-based controllers?
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(Q6) How can the computational burden associated to the computation of the Shapley

power index be reduced and how it can be found under a distributed information

structure?

(Q7) How can the partitioning of large-scale systems be performed in a distributed man-

ner and how it helps in the design of distributed optimization-based controllers?

(Q8) How can the partitioning of a large-scale system be performed dynamically and

how can the population-games approach be used in the design of partitioned

optimization-based distributed controllers?

Each one of the aforementioned research questions are addressed throughout this

thesis. Question (Q1) consists in identifying the possible control problems that can

be solved by using the classical population dynamics considering their information re-

quirements. Therefore, the answer of question (Q1) allows to determine some research

opportunities. Moreover, answers to questions (Q2)-(Q8) are the contributions of this

doctoral thesis.

1.3 Thesis Outline

This thesis is divided into four parts, i.e.,

I) Preliminaries,

II) The role of games in the design of controllers,

III) Large-scale systems partitioning in control, and

IV) Concluding remarks.

The road map of this dissertation is presented in Figure 1.1, which illustrates the

connections among chapters suggesting the reader about their appropriate order. The

contents of Chapters 2 - 10 are summarized as follows:
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Chapter 2: Literature review and background

This chapter presents a general literature review covering all the topics discussed

in this dissertation. In addition, this chapter introduces the background, preliminary

concepts associated to population games and define all the key research questions. This

chapter answers the key research question (Q1) and it is inspired by the following pub-

lications:

• J. Barreiro-Gomez, N. Quijano and C. Ocampo-Martinez. Constrained distributed

optimization: A population dynamics approach. Automatica, 69(2016): 101-116,

2016.

• N. Quijano, C. Ocampo-Martinez, J. Barreiro-Gomez, G. Obando, A. Pantoja,

and E. Mojica-Nava. The role of population games and evolutionary dynamics in

distributed control systems. IEEE Control Systems Magazine, 37(1): 70-97, 2017.

• J. Barreiro-Gomez, N. Quijano and C. Ocampo-Martinez. Distributed control

of drinking water networks using population dynamics: Barcelona case study, In

Proceedings of the 53rd IEEE Conference on Decision and Control (CDC), 2014,

Los Angeles, USA, pp. 3216-3221.

• J. Barreiro-Gomez, N. Quijano and C. Ocampo-Martinez. Constrained distributed

optimization based on population dynamics, In Proceedings of the 53rd IEEE Con-

ference on Decision and Control (CDC), 2014, Los Angeles, USA, pp. 4260-4265.

• J. Barreiro-Gomez, G. Obando, G. Riaño-Briceño, N. Quijano and C. Ocampo-

Martinez. Decentralized control for urban drainage systems via population dy-

namics: Bogota case study, In Proceedings of the European Control Conference

(ECC), 2015, Linz, Austria, pp. 2426-2431.

Chapter 3: Dynamical Tuning for Multi-objective MPC Controllers

This chapter treats the tuning of the weighting parameters of a multi-objective MPC

controller. Normally, the weighting parameters are determined either off-line or by a

trial-and-error procedure according to the desired performance of the closed-loop sys-

tem. However, when the system is affected by disturbances, the appropriate weighting

parameters might vary along the time. In this chapter, it is proposed to use a game
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theoretical approach in order to adjust in an on-line and dynamical manner the prior-

itization weights depending on the current operational conditions of the system. This

chapter answers the key research question (Q2) and it is based on the following publi-

cations:

• J. Barreiro-Gomez, C. Ocampo-Martinez, and N. Quijano. Dynamical Tuning

for MPC Using Population Games: A Water Supply Network Application. ISA

Transactions (to appear), 2017.

• J. Barreiro-Gomez, C. Ocampo-Martinez and N. Quijano. Evolutionary-game-

based dynamical tuning for multi-objective model predictive control. In S. Olaru,

A. Grancharova, F. Lobo Pereira (editors), in Model-Based Optimization and Con-

trol, chapter 6. Springer Verlag, 2016.

Chapter 4: Distributed Predictive Control Using Population Games

This chapter studies the classical population dynamics presented in Chapter 1 in or-

der to consider strategy-constrained interactions within the population game1. As it is

presented in Chapter 1, population dynamics can solve a specific constrained optimiza-

tion problem (see Problem (2.13)). Additionally, it has been seen that the evolution

of the portion of agents depends on the fitness functions of the whole population (see

the sum in (2.14), (2.15), (2.16), and (2.17)). This chapter proposes the distributed

population dynamics showing a general methodology in order to generate multiple dis-

tributed dynamics from different revision protocols, which describe the result and timing

about how agents make decisions. Therefore, it is shown how the optimization prob-

lem in (2.13) can be solved in a distributed manner even though it contains a coupled

constraint. Finally, the novel distributed population dynamics are implemented in the

design of a DMPC controller with coupled constraint on the control inputs. This chap-

ter, which answers the key research question (Q3) and partially answers the key research

question (Q4), is based on the following publications:

1
The contributions regarding the distributed population dynamics presented in this chapter have

been made and published in [9] with Germán Obando when he was a PhD student at Universidad de los
Andes.
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• J. Barreiro-Gomez, G. Obando and N. Quijano. Distributed population dynamics:

Optimization and control applications. IEEE Transactions on Systems, Man, and

Cybernetics: Systems 47(2): 304-314, 2017.

• J. Barreiro-Gomez, G. Obando, C. Ocampo-Martinez and N. Quijano. Population-

games-based Distributed MPC for Problems Involving Resource Allocation. Sub-

mitted to IEEE Transactions on Automatic Control.

• J. Barreiro-Gomez, G. Obando, C. Ocampo-Martinez and N. Quijano. Making

non-centralized a model predictive control scheme by using distributed Smith dy-

namics, In Proceeding of the 5th IFAC Conference on Nonlinear Model Predictive

Control (NMPC), 2015, Seville, Spain, Vol 48:23 of IFAC-PapersOnLine, pp. 501-

506, 2015.

Chapter 5: Distributed Formation Control Using Population Games

This chapter shows a formation application of the distributed population dynamics

presented in Chapter 4 taking advantage of their properties. It is shown that the stability

properties of the equilibrium point of the distributed population dynamics are preserved

no matter how the strategy-constrained interactions in the population vary along the

time. This fact makes the population-dynamics approach suitable for the formation

control when communication limitations are considered. This chapter partially answers

the key research question (Q4) and it is based on the following publications:

• J. Barreiro-Gomez, I. Mas, C. Ocampo-Martinez, R. Sanchez-Peña, and N. Qui-

jano. Distributed formation control for UAVs using population games: Compara-

tive discussion with clustering approaches. Submitted, 2017.

• J. Barreiro-Gomez, I. Mas, C. Ocampo-Martinez, R. Sánchez Peña and N. Qui-

jano. Distributed formation control of multiple unmanned aerial vehicles over

time-varying graphs using population games, In Proceedings of the 55th IEEE

Conference on Decision and Control (CDC), 2016, Las Vegas, USA, pp. 5245-

5250.
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Chapter 6: Distributed Predictive Control Using Density-dependent Pop-

ulation Games

This chapter deals with the issue of considering multiple coupled constraints using

population games. To this end, this chapter introduces the density-dependent population

dynamics by considering a reproduction rate within the evolution of the portion of agents.

Moreover, it is shown how to generate the distributed density-dependent population

dynamics and how they can be used in the solution of constrained optimization problems.

Furthermore, a DMPC controller is designed based on density games. This chapter

answers the key research question (Q5) and it is based on the following publication:

• J. Barreiro-Gomez, N. Quijano and C. Ocampo-Martinez. Distributed MPC with

time-varying communication network: A density-dependent population games ap-

proach, In Proceedings of the IEEE 55th Conference on Decision and Control

(CDC), 2016, Las Vegas, USA, pp. 6068-6073.

Chapter 7: Power Index in Control

This chapter studies the computation of the Shapley power index and its role in

an engineering application regarding the assignment of economical costs for multiple

players. One of the main drawbacks associated to the Shapley value is the combinatorial

explosion related to its computation. This chapter proposes an alternative manner to

compute the Shapley value for a specific characteristic function in order to reduce the

computational burden, i.e., from hours to seconds. This reduction in the computational

task allows control designers to implement the power index in real-time applications.

This chapter answers the key research question (Q6) and it is based on the following

publications:

• J. Barreiro-Gomez, C. Ocampo-Martinez, N. Quijano and J. M. Maestre. Non-

centralized Control for Flow-based Distribution Networks: A Game-theoretical

Insight. Submitted to the Journal of the Franklin Institute, 2016.

• J. Barreiro-Gomez, C. Ocampo-Martinez, J. M. Maestre and N. Quijano. Multi-

objective model-free control based on population dynamics and cooperative games,

In Proceedings of the 54th IEEE Conference on Decision and Control (CDC), 2015,

Osaka, Japan, pp. 5296-5301.
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Chapter 8: Partitioning Algorithm for Large-scale Systems – Sequential

DMPC Design

This chapter studies the partitioning of large-scale systems as a powerful tool in

the design of distributed optimization-based controllers. This chapter proposes a dis-

tributed partitioning algorithm that considers four different objectives and that uses an

information-sharing graph. Moreover, it is shown how this partitioning methodology

helps in the design of a sequential DMPC controller and it is designed and implemented

for a large-scale case study. This chapter answers the key research question (Q7) and it

is based on the following publication:

• J. Barreiro-Gomez, C. Ocampo-Martinez, and N. Quijano. Partitioning for Large-

scale Systems: A Sequential DMPC Design. To appear in the Proceedings of the

IFAC World Congress, 2017.

Chapter 9: Dynamical Partitioning and DMPC

This chapter discusses the dynamical partitioning of a large-scale system along the

time. Therefore, it is needed to develop a practical control technique that could cope

with such partitioning nature. To this end, it is proposed to use the density-dependent

population-games approach introduced in Chapter 6 in combination with the partitioning

algorithm introduced in Chapter 8. This chapter answers the key research question (Q8)

and it is based on the following publication:

• J. Barreiro-Gomez, C. Ocampo-Martinez, and N. Quijano. Distributed Dynamical

Partitioning and Control for Large-scale Systems: Density-dependent Population

Games Approach. Automatica, 2017 (to be Submitted).

Chapter 10: Contributions and Concluding Remarks

This chapter draws the concluding remarks of this dissertation and proposes some

open research questions as future work. The key research questions presented in Section

1.2 are also addressed in this chapter.
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1.4 Other Publications

Some related publications directly associated to the research presented in this doctoral

dissertation are outlined below.

1. G. Riaño-Briceño, J. Barreiro-Gomez, A. Ramirez-Jaime, N. Quijano and C. Ocampo-

Martinez. MatSWMM - An open-source toolbox for designing real-time control of

urban drainage systems. Environmental Modelling & Software, 83: 143-154, 2016.

2. L. Garćıa, J. Barreiro-Gomez, E. Escobar, D. Téllez, N. Quijano and C. Ocampo-

Martinez. Modeling and real-time control of urban drainage systems: A review.

Advances in Water Resources, 85: 120-132, 2015.

3. G. Obando, J. Barreiro-Gomez and N. Quijano. A class of population dynam-

ics for reaching epsilon-equilibria: Engineering applications, In Proceedings of the

American Control Conference (ACC), 2016, Boston, USA, pp. 4713-4718.

4. J. Barreiro-Gomez, C. Ocampo-Martinez, F. Bianchi and N. Quijano. Model-free

control for wind farms using a gradient estimation-based algorithm, In Proceedings

of the European Control Conference (ECC), 2015, Linz, Austria, pp. 1516-1521.

5. G. Riaño-Briceño, A. Ramirez-Jaime, J. Barreiro-Gomez, N. Quijano and C. Ocampo-

Martinez. Co-simulation for the design of controllers in urban drainage systems, In

Proceedings of the 2nd IEEE Colombian Conference on Automatic Control, 2015,

Manizales, Colombia, pp. 1-6.

6. J. Barreiro-Gomez, N. Quijano and C. Ocampo-Martinez. Distributed resource

management by using population dynamics: Wastewater treatment application,

In Proceedings of the 2nd IEEE Colombian Conference on Automatic Control,

2015, Manizales, Colombia, pp. 1-6.

7. L.A. Garćıa, E. Escobar, J. Barreiro-Gomez, N. Quijano, C. Ocampo-Martinez and

D. Téllez. On the modeling and real-time control of urban drainage systems: A

survey, In Proceedings of the 11th International Conference on Hydroinformatics,

2014, New York City, USA.
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8. J. Barreiro-Gomez, C. Ocampo-Martinez, and N. Quijano. On the Communica-

tion Discussion of Two Distributed Population-game Approaches for Optimization

Purposes. To appear in the Proceedings of the IFAC World Congress, 2017.

9. J. Barreiro-Gomez, G. Riaño-Briceño, C. Ocampo-Martinez and N. Quijano. Data-

driven Evolutionary-game-based Control for Drinking Water Networks. Real-time

Monitoring and Operational Control of Drinking Water Systems. Springer, 2017.

10. W. Ananduta, J. Barreiro-Gomez, C. Ocampo-Martinez, and N. Quijano. On

the Mitigation of Communication Issues in Distributed Model Predictive Control

Strategies, Submitted to Proceedings of the 56th IEEE Conference on Decision and

Control (CDC), 2017, Melbourne, Australia.
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Chapter 2

Literature Review and
Background

This chapter presents a literature review related to the main topics treated in this doc-

toral dissertation. First, a review of model predictive control (MPC) is made focusing on

non-centralized schemes, i.e., the architectures for decentralized and distributed MPC

controllers. Therefore, some relevant works related to both decentralized and distributed

MPC controllers are discussed. Afterwards, a literature review for the tuning issue of the

parameters of the MPC controller is introduced. Secondly, the partitioning of large-scale

systems is revised, being an essential aspect in the design of non-centralized controllers

considering dynamical coupling, information requirements, among others. As a third

topic, a review of game-theoretical approaches applied to engineering problems is shown,

presenting their versatility in the design of optimization-based controllers. Finally, pre-

liminary concepts regarding population games, which are used throughout the thesis,

are presented and some of their relevant features are pointed out.

2.1 Model Predictive Control

Model predictive control (MPC) is one of the most used control strategies in industrial

applications because of its versatility to deal with multiple design requirements. The

MPC controller is an optimization-based technique that computes an optimal control se-

quence that minimizes a cost function subject to physical and/or operational constraints

at each time instant over a simulation horizon. The latter mentioned feature of the MPC
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controllers is one of its main advantages with respect to other control strategies.

2.1.1 MPC Strategy Description

Even though there exist some mathematical formulations for MPC controllers in contin-

uous time [152], it is more usual to design these kinds of predictive controllers in discrete

time [77], [80], [104], [125], and by using a state-space model of the system. Therefore,

consider a system whose discrete-time model is given by

xk+1 = v(xk,uk,dk), (2.1)

where k ∈ Z≥0 denotes the discrete time. The vectors x ∈ X ⊆ Rnx , u ∈ U ⊆ Rnx ,

and d ∈ Rnd correspond to the system states, control inputs and disturbances, respec-

tively. Moreover, the sets X , and U define the feasible sets according to physical and/or

operational constraints for the system states and control inputs. Hence, the function

v : Rnx × Rnu → Rnx is an arbitrary system state function. Let

ûk ,
(
uk|k,uk+1|k, ...,uk+Hp−1|k

)
be a feasible control input sequence over a fixed-time prediction horizon denoted by

Hp ∈ Z>0. Moreover, let

x̂k ,
(
xk+1|k,xk+2|k, ...,xk+Hp|k

)
be the system state sequence that is generated when applying the control input sequence

ûk to the system (2.1). Moreover, the predictive control approach consists in the solution

of an open-loop optimization problem of the following general form:

minimize
uk|k,...,uk+Hp−1|k

J(xk,uk) = Jf
(
xk+Hp|k

)
+

Hp−1∑
j=0

J `
(
xk+j|k,uk+j|k

)
, (2.2a)

subject to

xk+1+j|k = v(xk+j|k,uk+j|k,dk+j|k), ∀j ∈ [0, Hp] ∩ Z≥0, (2.2b)

xk+j|k ∈ X , ∀j ∈ [0, Hp] ∩ Z≥0, (2.2c)

uk+j|k ∈ U , ∀j ∈ [0, Hp − 1] ∩ Z≥0, (2.2d)
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where the function J ` : Rnx × Rnu → R allows to determine the cost throughout the

prediction horizon Hp, whereas the function Jf : Rnx → R represents the terminal cost.

These functions in (2.2a) should be appropriately selected in order to guarantee the

stability of the closed-loop system as it is discussed in [125], [32].

Assuming that the optimization problem in (2.2) is feasible, there is an optimal

control input sequence given by

û?k ,
(
u?k|k,u

?
k+1|k, ...,u

?
k+Hp−1|k

)
. (2.3)

Finally, notice that the receding horizon philosophy only allows to set the first optimal

control input from the optimal sequence (2.3) to the system (2.1), i.e., the final control

input that is applied to the system is given by

u?MPC,k = u?k|k. (2.4)

The procedure is repeated at the next iteration, computing a new optimal control

sequence and a new final control input. The Algorithm 1 presents the summary of the

procedure to compute the MPC law (2.4).

Algorithm 1 General procedure for the computation of the MPC law

1: Hs ← simulation length
2: Hp ← prediction horizon
3: k ← initial time
4: xk ← x0 ∈ Rnx initial condition for the states
5: for k = 1 : Hs do

6: û?k ,
(
u?k|k,u

?
k+1|k, ...,u

?
k+Hp−1|k

)
← solve the optimization problem in (2.2)

7: u?MPC,k = u?k|k
8: xk+1 = v(xk,u

?
MPC,k,dk)

9: k = k + 1
10: end for

2.1.2 Non-centralized MPC Schemes

Even though the MPC controller has been broadly studied by many authors, e.g., [77],

[108], [125], there is still a significant interest in studying the design of MPC controllers

using non-centralized structures. When coping with the control of a large-scale system,

there would be a large number of decision variables and constraints that makes difficult
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to guarantee the computation of a suitable control input for a given set of performance

goals within the established sampling time. Under this scenario, a possible solution is

to divide the original problem into smaller and computationally lighter sub-problems,

which could be separately solved by using local hardware.

For instance, one of the problems discussed throughout this thesis is related to the

appropriate allocation of a limited resource. This kind of problem is appealing since the

non-centralized control design should consider a coupled constraint (associated to the

resource amount) involving all the control inputs. For a large-scale system composed

of several sub-systems, it is common to have a constraint related to the total energy

resource available for the control inputs, i.e., in real applications, the total energy (re-

source) demanded by the controllers has an upper bound since the employed resources

(e.g., inflows, voltages, forces) are limited. Traditional MPC schemes are capable to over-

come this problem by adding that consideration into the set of constraints. Nonetheless,

this solution requires the availability of information about the whole system, which im-

plies a centralized control structure that commonly suffers from computational burden

issues. Therefore, non-centralized control methods are an alternative. Moreover, differ-

ent from the design of non-centralized MPC controllers considering a limited resource,

i.e., only one coupled constraint in the control inputs, another control problem treated

in this dissertation is the design of distributed MPC (DMPC) controllers involving mul-

tiple coupled constraints. In this case, the non-centralized design becomes even more

challenging since the availability of information should be guaranteed in order to satisfy

all the system constraints.

The increasing appearance of complex large-scale systems, e.g., water distribution

systems, smart grids, or traffic systems, have motivated the study of non-centralized

MPC controllers since some of these systems are not suitable to be controlled with

a centralized approach. This fact is motivated by two aforementioned aspects, i.e.,

communication issues (infrastructure) to collect and transmit data associated to the

system states, and computational issues regarding the calculation of control inputs.

The problem of obtaining non-centralized control formulations has become a relevant

research topic. The process of making controllers non-centralized is normally addressed

by dividing the whole system into m different sub-systems and the whole controller into
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Figure 2.1: Different non-centralized architectures for MPC controllers: (a) general
composition for non-centralized architectures, (b) decentralized arhitecture, (c) parallel
distributed architecture, and (d) sequential distributed architecture. Dashed arrows
connecting different sub-systems represent that the dynamical coupling might exist or
not, e.g., it is possible that two sub-systems are decoupled.

several local smaller controllers as presented in Figure 2.1(a). In [28], [32], [98], [136],

and more recently in [87], a wide discussion related to non-centralized MPC is developed.

Furthermore, there are several classifications within the non-centralized MPC con-

trollers depending on their architecture and on how different local controllers share

information with one another [136]. One of the non-centralized configurations corre-

sponds to decentralized MPC controllers, presented in Figure 2.1(b), where the arrows

connecting sub-systems represent the possible dynamical coupling among them. Dashed

lines shows that the dynamical coupled might exist or not among sub-systems, e.g., it is

possible that two sub-systems are not dynamically coupled. In the decentralized MPC

architecture [20], there is a set of local MPC controllers (each one in charge of the control
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of a sub-system), which do not exchange information to one another. Therefore, in order

to implement this control architecture, it is usually assumed that the dynamical cou-

pling among sub-systems is weak. This control configuration has been studied by many

authors, e.g., a decentralized MPC algorithm is proposed in [3] for linear large-scale sys-

tems and considering constraints over the control inputs. This work proposes to obtain

approximated models of sub-systems that represent the global behavior of the system.

Another work that considers a linear system structure is presented in [129], where a

plug-and-play decentralized MPC controller is proposed. Local controllers only use in-

formation from a sub-system and its neighbors, and prior to plug a new sub-system into

(or unplug it from) the whole system, it is verified whether or not the modification might

affect the closed-loop stability conditions. Stability in this non-centralized architecture

has been further analyzed using different methods, e.g., [81] and [122]. Regarding appli-

cations, a decentralized MPC controller is designed in [41] for an air conditioning system,

and in [143] distributed generators in islanded mode are controlled by a decentralized

MPC controller.

Limitations of the decentralized control configurations have been studied in [37].

Therefore, the performance of the closed-loop system can be enhanced by considering

that local MPC controllers can exchange information. Then, these local controllers

should be coordinated to obtain a final control input [126]. This modification adding

available information among controllers leads to the DMPC architecture as presented in

Figures 2.1(c) and 2.1(d). Moreover, DMPC architectures have different sub-categories

depending on the manner in which the local MPC controllers share information and also

depending on the control objectives they consider. Regarding communication configura-

tions, DMPC controllers are known as parallel when all local controllers communicate si-

multaneously (see Figure 2.1(c)), and they are known as sequential when local controllers

exchange information in a sequential manner (see Figure 2.1(d)). A comparison among

different DMPC schemes is developed in [99]. With respect to the control objectives,

DMPC controllers can be cooperative or non-cooperative1, i.e., in the non-cooperative

DMPC, each controller has its own control objectives, and in the cooperative DMPC,

there are common control objectives.

1
The concepts of cooperative and non-cooperative DMPC controllers are omitted due to the fact that

it can create confusion with respect to the cooperative and non-cooperative games, which are discussed
throughout this doctoral dissertation.
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Some authors propose the decomposition of the overall control problem into smaller

decoupled problems and the coordination of those individual components in a centralized

way [33]. The decomposition of a particular non-linear system for the design of an MPC

controller with coupled objectives and constraints is discussed using estimations in [40],

and the case in which there are dynamically decoupled sub-systems with coupled objec-

tives and/or constraints is studied in [32]. A methodology of decomposition for a system

is also presented in [5], where centralized and distributed approaches are compared in

coupled electricity and gas networks. The work presented in [45] considers cooperation

approach for DMPC controllers for any finite number of sub-systems. Other distributed

strategies propose to share information among different sub-systems at different stages.

For instance, in [128], a linear system composed of decoupled sub-systems is controlled

by using sequential information sharing. Furthermore, the idea to exchange information

among local controllers is also exploited in [43]. Moreover, in [68], the worst case is

used in order to ensure the appropriate performance of the closed-loop system, and an

accelerated gradient method by using dual decomposition is proposed in [53] in order

to design DMPC controllers with faster convergence rates with respect to previously

presented duality-based distributed optimization algorithms.

2.1.3 Tuning for MPC Controllers

Consider a multi-objective MPC controller in which the cost function of the optimization

problem is composed of n different control objectives, i.e., let the cost function in (2.2a)

be as follows:

minimize
uk|k,...,uk+Hp−1|k

J(xk,uk) = Jf
(
xk+Hp|k

)
+

n∑
i=1

Hp−1∑
j=0

γi J
`
i

(
xk+j|k,uk+j|k

)
, (2.5)

where the sub-index i is used to differentiate among n cost functions. Moreover, the pa-

rameter γi ∈ R≥0, for all i = 1, . . . , n, is a weight that allows to determine a prioritization

of the objectives.

Notice that the consideration of multiple control objectives in an MPC controller

implies to determine several design parameters, i.e., in (2.5), it is necessary to determine

the terminal cost Jf , and to assign values for the prediction horizon Hp, and for the

weights γi, for all i = 1, . . . , n. The task of finding the appropriate values and conditions
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for the aforementioned parameters is known as the MPC tuning problem. In many cases,

the tuning procedure is determined intuitively depending on the engineering application,

or the adequate weights are found by a trial-and-error procedure. Furthermore, applica-

tions of large-scale nature, the consideration of a large number of constraints and/or the

need of including several control objectives make even more complex to determine the

appropriate values for the MPC tuning weights. Therefore, the necessity of developing

self-tuning methodologies has arisen. Additionally, when having time-varying parame-

ters, disturbances and/or nominal conditions within the system, the appropriate tuning

may also vary along the time.

The tuning problem has been discussed by many authors and by using different

approaches. A general review about different on-line and off-line tuning approaches

for MPC controllers is presented in [50]. An alternative to determine the appropriate

tuning of MPC controllers is by matching the MPC performance with the performance

of a pre-established controller. For instance, in [27] the tuning of an MPC controller

is computed based on a matching to a desired reference controller, then weights are

adjusted in order to obtain a behavior close to the performance of the mentioned reference

controller. Afterwards, an extension of this approach has been reported in [147]. In

[139], the matching to a linear controller is also used to determine the values of the

MPC parameters for multiple-input-multiple-output (MIMO) systems. Authors in [112]

present a tuning methodology for the weights of an MPC controller in the frequency

domain using also control matching. In [156], an automatic tuning strategy is proposed

consisting of a controller and a state observer. In [2], a tuning strategy is studied with an

optimization algorithm that uses an approximation between both a closed-loop predicted

output and the parameters that can be adjusted in the MPC controller. Finally, in [137]

an optimal tuning of MPC policies using a stochastic approach is presented.

Other perspectives to solve the problem without the use of a reference model have

emerged. For instance, in [146] it is proposed to compute several points of the Pareto

front associated to the cost function in a multi-objective MPC controller. Then, a pre-

established management point allows to determine the desired value within the Pareto

front from which the appropriate tuning weights are determined. In [162], the system

output is controlled to maintain it within a region instead of achieving a reference point.

Therefore, weights are selected to penalize the output error with respect to a zone for
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a crude distillation unit. Besides, heuristic directions have also been used to determine

the appropriate tuning in an MPC controller as in [159]. Moreover, in [150] and [57]

the authors use neural networks and fuzzy-based decision making to establish a tuning

of an MPC controller, illustrating examples for a mixing tank and for water networks,

respectively. Further methods have been explored in the tuning task. In [157], a two-step

off-set free tuning procedure is proposed. At first stage, the setup of a nominal MPC

loop is made, and then the second step is in charge of adapting the external reference. In

[149], a systematic tuning procedure is presented by using multi-objective optimization

methods; in [61], a robust tuning problem for a two-degree-of-freedom MPC is presented

for single-input-single-output (SISO) system; and authors in [93] have presented a self-

tuning of the terminal cost in an economic MPC controller.

2.2 Large-scale System Partitioning

Large-scale systems are commonly associated to the control of a large number of states

by manipulating also several control inputs. In this regard, controllers must merge a lot

of data and process them in order to compute the appropriate control inputs and obtain

a desired performance for the closed-loop system. Another relevant aspect that should

be considered is that large-scale systems are usually extended geographically throughout

big areas, e.g., flow-based distribution systems, for which long communication links to

transport measurements and control signals are required, and that might cause additional

communication issues and imply economical costs.

The partitioning of large-scale systems appears as a plausible solution in order to

reduce the complexity of the control design, the costs associated to the communication

issues and also to reduce the computational complexity. However, the partitioning task

is quite challenging due to the existing dynamical coupling among elements within the

system, imposed coupled constraints, and objective-achievement warranties, among oth-

ers.
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2.2.1 Partitioning Problem

Consider a large-scale system of the form as in (2.1). Moreover, let the system be

composed of different sub-systems. Therefore, let the set S̃ = {1, . . . ,m} represent the

m sub-systems, where the model representing each sub-system i ∈ S̃ is given by

xi,k+1 = vi(xi,k,ui,k,di,k) +
∑
j∈S̃

ṽj(xj,k,uj,k,dj,k), ∀ i ∈ S̃, (2.6)

where ṽj represents the existing dynamical coupling between the ith sub-system and

sub-systems j ∈ S̃\{i}. Hence, assume that the system in (2.6) is controlled by an MPC

strategy with an associated optimization problem as presented in (2.2). The large-scale

partitioning consists in determine the appropriate sub-systems S̃ such that the MPC

controller can be performed in a distributed fashion. There are some general cases that

may occur.

• The first case corresponds to a decomposition of the system according to its dy-

namical coupling. Notice that this partitioning approach can only be applied to

specific system models, e.g., having the condition that the ith sub-system has only

interaction with other sub-systems in its neighborhood denoted by Ñi ⊂ S̃. Hence,

the dynamical model of the ith sub-system is given by

xi,k+1 = vi(xi,k,ui,k,di,k) +
∑

j∈{Ñi∪{i}}

ṽj(xj,k,uj,k,dj,k), ∀ i ∈ S̃. (2.7)

Therefore, the decomposition of the system is obtained from its model, i.e., the

model imposes conditions over the partitioning. However, the main challenge is to

determine a partitioning procedure that could be applied to any large-scale system

such that the impact of ṽj in (2.6) and (2.7) is minimized or eliminated.

• As a second case, suppose that ṽi = 0, for all i ∈ S̃. Therefore, it follows that the

dynamical model of the ith sub-system is given by

xi,k+1 = vi(xi,k,ui,k,di,k), ∀ i ∈ S̃. (2.8)

The system in (2.8) shows that all the sub-systems are dynamically decoupled.

Nevertheless, notice that it does not mean that the design of a non-centralized con-

troller is not longer challenging. The main reason is that, even though there is not
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dynamical coupling among sub-systems, it is possible to have coupled constraints

in the optimization problem (2.2). A common coupled constraint in engineering

problems, related to a resource allocation, is the one involving all the control inputs

ui,k, for all i ∈ S̃.

Finally, it is important to highlight that it is also possible to deal with systems that

have a combination of both cases, i.e., systems with dynamical decoupled and coupled

sub-systems, and control requirements involving decoupled and coupled constraints in

the respective optimization problem.

2.2.2 Some Partitioning Approaches

Most of the partition methods consider a graph representation, i.e., algorithms consider

graphs associated to the dynamics of the system (2.1). For instance, a graph-theoretical

approach for the decomposition of large-scale systems into a set of interconnected sub-

systems is proposed in [138]. However, notice that a partitioning procedure using infor-

mation about the dynamical model of the system cannot take into account other types

of coupling, e.g., constraints involving variables from different sub-systems. Therefore,

it is plausible the development of partitioning methodologies that can consider different

types of coupling, e.g., dynamical coupling, and coupled constraints among sub-systems.

The partitioning problem has gotten increasing importance in the automatic control

community as systems become challenging, and as the requirements and desired closed-

loop performance become more strict. Many partitioning proposals focus on specific

dynamical systems, or on a particular control strategy. Regarding particular types of

systems, the problem of the thermal control for buildings is studied by performing a par-

tition into clusters for decentralized control design in [29]. In [72], a partitioning method

is proposed based on capacitor reactive power domains for the control of electric power

distribution systems, and in [97], power distribution networks are split into different ar-

eas by using a systematic approach in order to control the voltage profile. On the other

hand, a method to find an optimal decomposition structure of distributed predictive

controllers is presented in [161] by using genetic algorithms. Moreover, the partitioning

approach presented in [106] is devoted for the design of decentralized predictive con-

trollers. However, the partitioning methodology is quite general, i.e., the partitioning
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can be implemented prior to defining the control strategy to apply. Other general parti-

tioning methodologies are presented in [42], where a harmony search algorithm is used,

and in [67], where the partitioning is obtained by merging different sub-systems of an

initial grouping. Finally, the work presented in [102] discusses a method to determine

how information should be shared and the appropriate manner to use it for decentral-

ized, distributed and hierarchical control schemes. There is still a significant interest in

the development of general partitioning procedures and methodologies.

As conclusion, the partitioning problem for large-scale systems constitutes a rele-

vant alternative in the design of non-centralized controllers, allowing the identification

of multiple sub-systems in an appropriate manner as it has been presented in Section 2.1

(see Figure 2.1). Furthermore, it is important to point out that the partitioning can be

addressed in two different ways. The first alternative consists in determining a partition-

ing based on the dynamical coupling of the whole system, whereas the other possible

approach take into account information coupling considering not only the dynamical

representation of the system, but also taking into account all the coupled constraints

involved in the control design.

2.3 Game Theory

Game theory, which has two different main approaches known as non-cooperative and

cooperative, has been applied to many different fields, e.g., economics [62], biology [60],

[101], linguistics [65], wireless communication [30], among others. In the last years, game

theory has gotten special importance for the design of optimization-based controllers [52],

and learning and decision-making algorithms [84]. A general view about the relationship

between game theory and distributed control is presented in [82], [121]. It is shown that

game theory is quite suitable to achieve global objectives by setting local rules, especially

when the engineering problems can be stated as multi-agent systems. Both cooperative

and non-cooperative game approaches have been widely used in the design of controllers

depending on their control objectives. In some cases, it is more suitable to work with

a cooperative perspective when agents can collaborate among them, whereas there are

other situations in which it is more appropriate to state the problem as a competition.
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2.3.1 Non-cooperative Game Approach

Within the first main branch of game theory, known as the non-cooperative approach,

there are other classifications for games depending on how players and strategies are

considered, i.e., matricial games, differential games, continuous games, and dynamic

games. For instance, in matricial games, players select strategies once and simultaneously

from a finite set of possibilities, whereas in continuous games, players can select from

an infinite number of strategies [19], [88]. In contrast, under the framework of dynamic

games, it is assumed that players that make decisions, are involved in a learning process

letting them modify actions based on previous decisions.

Game theory has been implemented for the control of different types of systems.

In [6], an overview of the utilization of game theory in signal processing applications

is presented. The use of game theory in smart grids can be found in [131] and [155].

The work in [115] shows how game theory and decision theory have been applied to

multi-agent systems. Finally, a summary of several engineering applications using game

theory is presented in [132].

Furthermore, within dynamic games, evolutionary-game theory allows to model the

evolution of agents when they interact strategically in a population [134], [158]. This

branch has been significantly enriched by the concept of evolutionary-stable strategy

(ESS) obtained from assigning stability conditions to a Nash equilibrium [86]. The Nash

equilibrium represents a situation in which no player can improve its benefits unilaterally,

i.e., there are no players with incentives to change strategy [96]. The result in [86] has

been quite used in biology since the concept describes many behaviors found in nature.

Afterwards, the evolutionary-stable strategy has been used under a dynamic behavior

together with the introduction of the replicator dynamics in [144]. The dynamic-games

approach has become a quite useful tool in the design of distributed controllers as it has

been presented in [121], and it has been implemented in several fields, e.g., the control

of drinking water networks in [15] and [17], in the control of wastewater treatment plant

in [16], drainage wastewater systems in [10], [47], and [48], dynamical on-line tuning of

predictive controllers in [13], bandwidth allocation in [119], wireless networks in [145],

combinatorial optimization in [22], resource allocation problems in [117] and [123], cyber

security in [1], congestion games in [133], hierarchical frequency control for microgrids

in [90], dispatch problem with multiple generators in [113], wind turbines control in
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[11], [74], and [83], temperature control in [103], constrained extremum seeking in [120],

formation in multi-agent systems in [7], among others.

In the evolution process of the population, each agent makes rational decisions in

order to pursue an improvement over its benefits until reaching a scenario where it is

not possible to obtain an enhancement by unilaterally making a decision (this situation

is given by a Nash equilibrium). Besides, evolutionary-game theory allows to design

systems that guarantee convergence to a Nash equilibrium. Additionally, there is a

close relationship between the Nash equilibrium with a maximum point in a concave

constrained optimization problem due to the fact that, under certain conditions, the Nash

equilibrium satisfies the Karush-Kuhn-Tucker (KKT) first-order conditions [134], making

evolutionary-game theory a powerful tool to address optimization-based control design.

The solution of games can be obtained employing local information. Therefore, if a

game framework is applied to address an engineering problem, distributed methodologies

emerge. Consequently, the game-theoretical approach becomes a suitable alternative to

design distributed controllers.

Population games describe the dynamical process that a population experiences when

there is a strategic interaction among the agents that comprise the population [63], [134],

[158]. The agents involved in this dynamical process evolve to an equilibrium according

to a revision protocol, which establishes the individual decision rules that agents apply

to choose the best strategies (i.e., those strategies earning higher payoffs). Population

dynamics properties (e.g., passivity [10], [46], [116], [123]) can be exploited to design

solutions for a variety of engineering problems. When using population dynamics for

solving learning, control, and optimization problems, some elements of the problem are

associated with strategies that agents in the population can adopt, and other elements

are associated with masses of agents playing each strategy. This analogy has a direct

implication in the information required to implement a solution based on a population

dynamics algorithm, since the existing algorithms assume that the population is well-

mixed [134], [158] (i.e., any pair of agents playing any pair of strategies can interact with

each other). A consequence of the well-mixed population assumption is that the elements

of the problem are allowed to interact each other without any constraint (i.e., following a

full–information structure). Therefore, classic population dynamics are restricted to be

implemented in problems characterized by a centralized information scheme. However,
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the number of problems that require distributed solutions has increased dramatically in

the last few years. In this regard, some approaches have been proposed to model the

interaction constraints in a population. For instance, authors in [21] and [4] deal with

normal-form games and propose a graph-based interaction model, where each node in

the graph represents an individual that repetitively plays a symmetric game with its

neighbors. However, this approach is not suitable to be applied in the population game

framework since, in this type of games, it is preferable to avoid the individuation of

players [134]. On the other hand, other approaches aim to apply learning algorithms

that are capable to deal with information constraints [24], [51]. Similarly, the authors

in [114] modify the well known replicator dynamics model to relax the full-information

dependency. They propose a distributed replicator equation in which the evolution

of each strategy is only governed by the neighboring strategies (according to a given

topology).

In addition, one of the main properties of the population games approach is that

the evolution of the variables, under population dynamics, evolve inside an invariant

set. Under most of the fundamental population dynamics, it is also guaranteed the

individual positiveness of each variable. In this regard, population dynamics are able

to satisfy a unique coupled constraint. And as it has been mentioned before, dynamics

evolve converging to a maximum point of a potential function [134]. The aforementioned

features are preserved in a distributed manner by using the distributed version of the

population dynamics, which have the same properties as their classical counterpart, i.e.,

invariance of the simplex set and asymptotic convergence to the equilibrium point [9].

Therefore, distributed population dynamics become a powerful tool to solve constrained

optimization problems in a distributed manner, i.e., considering population-interaction

constraints (non-complete graphs). Consequently, distributed population dynamics can

also be used for the design of distributed optimization-based controllers [121].

The invariance property of the simplex set that represents a coupled constraint and

positiveness of variables, and the fact that distributed population dynamics evolve in

a non-centralized manner, can be exploited to solve resource allocation problems under

non-centralized information-sharing structures. Nevertheless, the necessity to include

more constraints, different from the one associated to the simplex set, has gotten special

importance to be addressed with population games. For instance in [17], a population

29



Chapter 2. Literature Review and Background

dynamics approach, able to solve optimization problems considering multiple constraints,

is presented. The authors propose to divide the optimization problems into several

smaller sub-problems, and dynamics over each sub-problem feasible region are added

in order to achieve an agreement that solves the non-divided optimization problem,

allowing also the population size vary along the time.

From a biological perspective, allowing variations of the population size illustrates a

special situation in which death and birth, or reproduction rates, are considered as in

[36], [100]. Density games have been studied to model a population with reproductive

rates. Nevertheless, these dynamics have not been neither deduced from a version of the

general dynamics known as mean dynamics, and by imposing different rules on revision

protocols, nor proposed in a distributed information-sharing fashion. This is because

the density-dependent dynamics have been mainly studied in a different context (i.e.,

biology sciences [36], [100]) from the context where the mean dynamics have been mainly

applied (e.g., economics [134] and optimization-based control engineering [9]). Besides,

the equilibrium points in this type of dynamics have not been related to the solution

of constrained optimization problems. Regarding control design, in [123] the dynamics

with density dependence presented in [36] have been used for control purposes. Nonethe-

less, distributed density-dependent population dynamics have not been introduced as a

potential tool for centralized/distributed control design.

2.3.2 Cooperative Game Approach

The other main branch of game theory is the cooperative game approach [110], [140].

Cooperative game (or coalitional game) theory studies the conditions and payoff rules

for groups of players that form coalitions. Indices of power are alternative manners to

solve a game, which are characterized for satisfying a certain system of axioms. Some of

these power indices are, among others, the Shapley value, the Banzhaf-Coleman index,

or the dictatorial index [111].

A typical solution of a cooperative game is given by the Shapley value [140], which

is a power index that assigns a fair payoff to each player according to its contribution.

Similarly as the non-cooperative games, the cooperative approach has been implemented

in different fields, e.g., in politics [111], and economics [118]. Likewise, cooperative games

have also been implemented in the engineering context.
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Cooperative game theory has been used for example in [78], where a control scheme

considering different network topologies is presented. In this and other related works

such as [94], the links that compose the network topology are transformed into players

of a game and the payoff given by the Shapley value is used as a mean to determine the

relevance of the players. Other works that mainly use the Shapley value are [54], and

[70]. In [54] the Shapley value as a distribution rule is used to guarantee the existence of

a Nash equilibrium in any game. In [70] an evolutionary coalitional approach is proposed

so that entities can decide in an autonomous manner whether it is profitable or not to

make a coalition.

Finally, it is worth to mention that the cooperative-game approach has gotten sig-

nificant importance in the design of controllers. However, one of the main issues when

adopting the cooperative approach consists in the high computational burden to compute

a solution [38].

2.3.3 Population Games Concepts

Consider a population composed of a large and finite number of rational agents1 [134],

[135]. These agents select a strategy from the set of n available strategies given by

S = {1, . . . , n}. The scalar pi ∈ R≥0 corresponds to the amount of agents, which are

selecting the strategy i ∈ S. The population mass is given by π ∈ R>0, then the amount

of agents should satisfy that pi ≤ π, for all i ∈ S. Therefore, the vector p ∈ Rn≥0

represents the population state or the distribution of agents throughout the strategies,

i.e., p = [p1 . . . pn]>. Moreover, the set of possible population states is given by a

simplex set denoted by

∆ =

{
p ∈ Rn≥0 :

∑
i∈S

pi = π

}
, (2.9)

and the interior of the simplex set in (2.9) is defined as follows:

int∆ =

{
p ∈ Rn>0 :

∑
i∈S

pi = π

}
. (2.10)

1
It is assumed that agents are rational in the sense that they are able to make decisions in order to

improve their benefits based on current information, i.e., no agent would make a decision that implies a
decrement in its current benefits.
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Table 2.1: Some revision protocols and their corresponding switch rate.

Revision protocol Switch rate

Pairwise proportional imitation∗ %ij(f ,p) = pj [fj − fi]+
Imitation driven by dissatisfaction∗∗ %ij(f ,p) = pj(K − fi)
Pairwise comparison %ij(f ,p) = [fj − fi]+
Modified pairwise proportional imitation %ij(f ,p) =

[fj−fi]+
npi

Logit choice %ij(f ,p) = e
(η
−1

fj)∑
k∈S e

(η
−1

fk)

∗ Notation [·]+ = max(0, ·) for the Pairwise proportional imitation protocol.
∗∗K is a large constant in imitation driven by dissatisfaction to guarantee that %ij ≥ 0.

Agents make decisions to select among the different strategies pursuing to increment

their benefits. The benefits are determined by a fitness function whose mapping is fi :

∆→ R. Depending on the population state, the function fi takes a population state and

returns a real value corresponding to the benefit that the proportion of agents pi receives

for selecting the strategy i ∈ S. The vector of fitness functions for the entire population

is denoted by f(p), whose mapping is given by f : ∆→ Rn. Function f takes a population

state and returns a vector of utilities for the population, i.e., f = [f1 . . . fn]>.

In the population, it is assumed that agents are able to migrate from a strategy

i ∈ S to a strategy j ∈ S following a conditional switch rate denoted by %ij(f(p),p)

that defines the timing and result about how agents make decisions seeking to increment

their benefits. The revision protocol function, which determines the conditional switch

rates, is presented in Definition 2.1.

Definition 2.1. (Adapted from [134]) The revision protocol function is given by a map-
ping % : Rn × Rn≥0 → Rn×n≥0 that describes the timing and the results of the agents’
decisions in the strategic interaction. Function % takes values corresponding to the pop-
ulation state and its respective benefits, and returns a non-negative matrix representing
decisions of agents about switching strategies. ♦

Some of the revision protocols are presented in Table 2.1. According to [134], the

evolution process for the portion of agents within a strategic interaction in a large and

finite population, considering the way in which agents make decisions, are described by
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the general dynamics called the mean dynamics, i.e.,

ṗi =
∑
j∈S

pj%ji(f(p),p)− pi
∑
j∈S

%ij(f(p),p), ∀i ∈ S. (2.11)

The dynamics in (2.11) represent the evolution of the proportion of agents pi, for all

i ∈ S, as a function of a specific revision protocol %. Consequently, the six fundamental

population dynamics are generated from (2.11) by setting different revision protocols.

This thesis refers mainly to some specific classes of games such as stable games and

full-potential games. These two types of games are presented in Definitions 2.2 and 2.3,

respectively.

Definition 2.2. (Adapted from [134]) The population game f : ∆→ Rn is a stable game
if it satisfies the following condition:

(p− q)> (f(p)− f(q)) ≤ 0, ∀ p,q ∈ ∆. (2.12)

Alternatively, the condition in (2.12) may be expressed by using the Jacobian matrix
of f(p), i.e., Df(p). If f is continuously differentiable, then f is stable if and only

if z>Df(p)z ≤ 0, for all z ∈ T∆, and p ∈ ∆, where T∆ is the tangent space of the
simplex ∆, defined by T∆ =

{
z ∈ Rn :

∑
i∈S zi = 0

}
. Therefore Df(p) � 0 is a sufficient

condition. ♦

There is a close relationship between stable games and a class of population games

known as full-potential games defined next.

Definition 2.3. (Adapted from [134]) If there exists a continuously differentiable func-
tion V : Rn≥0 → R, known as potential function, such that f(p) = ∇V (p), for all

p ∈ Rn≥0, then f is a full-potential game. More explicitly, if ∂V
∂pi

(p) = fi(p), for all i ∈ S,

and p ∈ Rn≥0. ♦

Notice that, according to Definitions 2.2 and 2.3, if the potential function V (p)

for the full-potential game f is strictly concave, then f is a stable game. Figure 2.2

presents a convex potential function V (p) with p ∈ R3
≥0, whereas Figure 2.3 presents a

concave potential function V (p) that generates a stable game f(p). Moreover, consider

the following constrained optimization problem:

maximize
p

V (p), (2.13a)∑
i∈S

pi = π, (2.13b)

pi ≥ 0. (2.13c)
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Figure 2.2: Convex potential function and its projection over the simplex.

Figure 2.3: Concave potential function and its projection over the simplex.

The optimization problem in (2.13) can be solved by using population dynamics by

seeking the Nash equilibrium as it has been presented in [134] through the next theorem.

Theorem 2.1. If f is a full-potential game with full-potential function V , then the Nash
equilibria satisfy the Karush-Kuhn-Tucker conditions.

Proof. This proof is presented in [134].

The Nash equilibrium is a solution in population games since it implies that each

rational agent of the population is selecting the best possible strategy against a given
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population state. Formally, the set of Nash equilibria of a population game is introduced

in Definition 2.4.

Definition 2.4. A population state p? ∈ ∆ is a Nash equilibrium if each used strat-
egy entails the maximum benefit for the proportion of agents that chooses it. Given a
population game f , let

NE(f) =
{
p?i > 0⇒ fi(p

?) ≥ fj(p?), ∀i, j ∈ S
}

be the set of Nash equilibria. ♦

The six fundamental population dynamics are the replicator, Smith, projection,

Brown-Von Neumman-Nash (BNN), Logit choice and best response dynamics. Next,

the deduction of some population dynamics are obtained from the mean dynamics, con-

sidering the population mass π = 1, and using some revision protocols [134].

Classical Replicator Dynamics Consider the pairwise proportional imitation revi-

sion protocol (see Table 2.1) [134]. Therefore, replacing %ij(f(p),p) in (2.11) yields

ṗi = pi

fi(p)−
∑
j∈S

pjfj(p)

 , ∀ i ∈ S. (2.14)

The dynamics presented in (2.14) are the classical replicator dynamics, which have

been introduced in [144]. It is worthwhile to point out that the imitation driven by

dissatisfaction revision protocol also generates the classical replicator dynamics.

Classical Smith Dynamics Consider the pairwise comparison revision protocol (see

Table 2.1) [134]. Therefore, replacing %ij(f(p),p) in (2.11) immediately yields

ṗi =
∑
j∈S

pj
[
fip)− fj(p)

]
+
− pi

∑
j∈S

[
fj(p)− fi(p)

]
+
, ∀ i ∈ S. (2.15)

Dynamics in (2.15) are the Smith dynamics, which have been introduced in [141].

Classical Projection Dynamics Consider the modified pairwise proportional imita-

tion revision protocol (see Table 2.1). Therefore, replacing %ij(f(p),p) in (2.11)

yields

ṗi = fi(p)− 1

n

∑
j∈S

fj(p), ∀ i ∈ S. (2.16)

The dynamics presented in (2.16) classical projection dynamics [73].
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Classical Logit Choice Dynamics Following the same procedure, the Logit choice

dynamics are generated from the mean dynamics and by using the Logit choice

revision protocol (see Table 2.1) [134], i.e.,

ṗi =
e(η
−1
fi(p))∑n

k=1 e
(η
−1
fk(p))

− pi, ∀ i ∈ S, (2.17)

where η is a noise level [44].

2.4 Summary

This chapter has presented a general literature review regarding MPC controllers under

both decentralized and distributed schemes, and about the tuning issue associated to the

design parameters for this type of controllers. Moreover, a review of game theory applied

to engineering problems has been presented showing it is a useful tool in the design

of optimization-based controllers. Over the end of the review, the system partitioning

problem has been discussed, which is an essential aspect for the design of non-centralized

controllers. Finally, the preliminary concepts of the classical population games, which

are used throughout this thesis, have been presented. For instance, Chapter 3 uses the

classical population dynamics for the dynamical tuning of the weighting parameters in

the optimization problem behind an MPC controller.

36



Part II

The Role of Games in the Design
of Controllers
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Chapter 3

Dynamical Tuning for
Multi-objective MPC Controllers

This chapter presents a novel methodology for the on-line dynamical tuning of a multi-

objective MPC controller based on evolutionary game theory. The contributions pre-

sented in this chapter have been published in [13] and [14]. The method consists of

a normalization of the cost function associated to the optimization problem that the

MPC controller solves to determine the optimal control inputs at each time instant,

and a population game that fixes the appropriate set of prioritization weights according

to a desired region over the Pareto front known as management region. Furthermore,

the method establishes a convex sum, i.e., the sum of all weights should be equal to

one [55]. The population game is solved by using a discrete version of the projection

dynamics, which converge to a Nash equilibrium. It is shown that the projection dynam-

ics satisfies the constraint given by the weighted sum, and the stability analysis of the

Nash equilibrium under the discrete projection dynamics is formally presented. Some

of the previous works mentioned in Chapter 1 related to the tuning problem require

either a reference controller or an observer, e.g., [27],[139], and [156]. Differently, the

proposed method in this chapter, based on population games, does not require a refer-

ence controller. Moreover, other tuning strategies need to compute several points along

the Pareto front in order to select an appropriate prioritization for the local objectives,

which implies a high computational burden, e.g., [146]. As an advantage, the proposed

method does not require to generate multiple points within the Pareto front associated

to the multi-objective cost function in an MPC controller. Furthermore, most of the
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tuning techniques are static and performed off-line as part of a design procedure. Never-

theless, the proposed tuning methodology can continuously adjust the prioritization of

the control objectives to maintain the system operating within the desired management

region. In order to illustrate the enhancement over the performance of an MPC con-

troller using the dynamical population-games-based tuning, the proposed methodology

is applied to a large-scale Water Supply Network (WSN). The results are analyzed and

compared with respect to a multi-objective MPC controller with static tuning.

3.1 Multi-objective MPC

Consider a system whose dynamics are represented by the following discrete-time state-

space model:

xk+1 = Adxk + Bduk + Bldk, (3.1)

where k ∈ Z≥0 denotes the discrete time step. The vector x ∈ Rnx denotes the system

states, u ∈ Rnu denotes the vector of control inputs, and d ∈ Rnd corresponds to the

vector of disturbances affecting the system that may be obtained by using a forecasting

algorithm as in [58],[153], and [154], and which is assumed to be known throughout this

thesis. The system matrices Ad, Bd, and Bl are of suitable dimensions. System states

and control inputs are constrained because of physical and/or desired operational limits.

These constraints are established by defining the following feasible sets:

X , {x ∈ Rnx : Gx ≤ g} , (3.2a)

U , {u ∈ Rnu : Hu ≤ h} , (3.2b)

where G,g,H, and h are matrices and vectors of suitable dimensions to represent the

constraints for the system states and control inputs, respectively. Let ûk be a sequence

of feasible control inputs within a pre-establish prediction horizon denoted by Hp ∈ Z>0.

Similarly, let x̂k be the sequence of feasible system states when applying the control input

sequence ûk to the system in (3.1). Finally, let d̂k be the forecasting of the disturbances.

Hence,

ûk ,
(
uk|k,uk+1|k, ...,uk+Hp−1|k

)
, (3.3a)

x̂k ,
(
xk+1|k,xk+2|k, ...,xk+Hp|k

)
, (3.3b)

d̂k ,
(
dk|k,dk+1|k, ...,dk+Hp−1|k

)
. (3.3c)
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Consider that the system (3.1) is controlled by a multi-objective MPC controller

with n ≥ 2 control objectives. The optimization problem behind the MPC controller is

stated as follows:

minimize
ûk

J (xk,dk, ûk) =
n∑
i=1

γiJi(xk,dk, ûk), (3.4a)

subject to

xk+j+1|k = Adxk+j|k + Bduk+j|k + Bldk+j|k, j ∈ [0, Hp − 1] ∩ Z≥0, (3.4b)

uk+j|k ∈ U , j ∈ [0, Hp − 1] ∩ Z≥0, (3.4c)

xk+j|k ∈ X , j ∈ [1, Hp] ∩ Z≥0, (3.4d)

where xk|k ∈ Rnx is the current measured system state, and γi ∈ R≥0, with i = 1, . . . , n,

are the n prioritization weights in the cost function J(xk,u) satisfying that
∑n

i=1 γi = 1.

Assuming that the optimization problem (3.4) is feasible, its solution is an optimal

control input sequence denoted by û?k, i.e.,

û?k ,
(
u?k|k,u

?
k+1|k, ...,u

?
k+Hp−1|k

)
.

Therefore, it follows that the controller applies the first control input from the optimal

sequence, which is given by u?k , u?k|k. Then, after having applied the optimal control

input to the system (3.1), a new vector state is measured and the procedure is repeated

in order to determine the optimal control sequence from which the optimal control input

u?k+1 is obtained.

In order to perform the dynamical tuning of the prioritization weights for the pre-

viously introduced MPC controller, a discrete-time population-game approach is used.

Therefore, one of the classical population dynamics are presented in the following section.

3.2 Classical Projection Dynamics

The projection dynamics are one of the six fundamental population dynamics [9], [121],

[134], which have been introduced in [95]. These dynamics have been presented in Section

2.3.3, which are given by the following differential equation:

ṗi = fi(p)− 1

n

n∑
j=1

fj(p), ∀i ∈ S, (3.5)
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where S = {1, . . . , n} is the set of strategies in the population. Then, according to (3.5),

the proportion of agents pi grows as the fitness function fi(p) is greater than the mean

of fitness functions 1
n

∑n
j=1 fj(p), and decreases otherwise. Alternatively, the projection

dynamics in (3.5) can be re-written as follows:

ṗi =
1

n

n∑
j=1

fi(p)− 1

n

n∑
j=1

fj(p), ∀i ∈ S,

ṗi =
1

n

n∑
j=1

(
fi(p)− fj(p)

)
, ∀i ∈ S,

ṗ =
1

n
L f(p),

where L corresponds to the Laplacian matrix of a complete graph [89]. The equilibrium

point of the projection dynamics (3.5) is achieved when fi(p
?) = 1

n

∑n
j=1 fj(p

?), for all

i ∈ S. This fact implies that at the equilibrium of (3.5), fi(p
?) = fj(p

?), for all i, j ∈ S,

and therefore p? ∈ ∆ is a Nash equilibrium according to Definition 2.4, i.e., p? ∈ NE(f).

For the population-games-based dynamical tuning for multi-objective MPC con-

trollers, it is proposed to use the discrete version of the projection dynamics, which

is obtained by using the Euler approximation for a sampling time τ ∈ R>0, i.e.,

ṗi ≈

(
pi,k+1 − pi,k

)
τ

.

Then,

pi,k+1 = τ

fi(pk)− 1

n

n∑
j=1

fj(pk)

+ pi,k, ∀i ∈ S.

Notice that the projection dynamics can be re-written in a compacted manner as

follows:

pk+1 = τ

(
In −

1

n
1n1

>
n

)
f(pk) + pk,

=
τ

n
L f(pk) + pk. (3.6)

The equilibrium of (3.6) is the same as the equilibrium of (3.5). Then, the equilibrium

of (3.6) implies that fi(p
?) = fj(p

?), for all i, j ∈ S. Prior making the stability analysis

of the equilibrium point p? ∈ ∆, it is shown in Proposition 3.1 that the set of population

states ∆ is invariant under the discrete projection dynamics (3.6).
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Proposition 3.1. The simplex ∆ is an invariant set under the discrete projection dy-
namics (3.6), i.e., let p0 be the initial condition of the population state, if p0 ∈ ∆, then
pk ∈ ∆, for all k ∈ Z≥0.

Proof. It is desired to prove that 1>npk+1 = 1
>
npk. Then

1
>
npk+1 = τ1>n

(
In −

1

n
1n1

>
n

)
f(pk) + 1

>
npk,

= τ1>n

(
f(pk)−

1

n
1n1

>
n f(pk)

)
+ 1

>
npk,

= τ

(
1
>
n f(pk)−

1

n
1
>
n1n1

>
n f(pk)

)
+ 1

>
npk.

Since 1
n1
>
n1n = 1, it is obtained that

1
>
npk+1 = τ

(
1
>
n f(pk)− 1>n f(pk)

)
+ 1

>
npk.

Finally, 1>npk+1 = 1
>
npk, which completes the proof.

The equilibrium point p? ∈ NE(f) is asymptotically stable under the discrete projec-

tion dynamics (3.6) by selecting appropriately the sampling time τ as stated in Propo-

sition 3.2.

Proposition 3.2. Let f be a potential and stable game with potential function V (p),
then the equilibrium point p? ∈ ∆ is asymptotically stable under the discrete projection
dynamics (3.6) if the sampling time τ is selected such that the matrix Ξ(τ) = Ψ +
τ
2 Ψ>Df(p)Ψ is positive definite, where Ψ =

(
In − 1

n1n1
>
n

)
= 1

nL.

Proof. Since f(p) = ∇V (p), and f is a stable game, then V (p) is a concave function.
Consider the following Lyapunov function candidate:

Ek =
V (p?)− V (pk)

τ
,

where Ek > 0, for all p 6= p?, and Ek = 0 for p = p?. It is necessary to show that
∆E = Ek+1 − Ek ≤ 0, i.e.,

∆E =
V (p?)− V (pk+1)− V (p?) + V (pk)

τ
,

=
−V (pk+1) + V (pk)

τ
.
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As in [160], the Taylor expression of V (p) at p yields

V (pk+1) = V (pk) + [∇V (pk)]
>∆pk +

1

2
[∆p]>∇2V (zk)∆pk,

where ∆pk = pk+1 − pk, and zk is a value between pk, and pk+1. It follows that

∆E = −1

τ
[∇V (pk)]

>∆pk −
1

2τ
[∆p]>∇2V (zk)∆pk. (3.7)

Then, replacing from (3.6) the term ∆p in (3.7) yields

∆E = −[∇V (pk)]
>Ψ∇V (p)− τ

2
[∇V (p)]>Ψ>∇2V (zk)Ψ∇V (p),

= −[∇V (pk)]
>
(

Ψ +
τ

2
Ψ>Df(zk) Ψ

)
∇V (p).

In conclusion, the equilibrium point p? ∈ ∆ is asymptotically stable if Ξ(τ) =

Ψ + τ
2 Ψ>Df(zk) Ψ is positive definite. In addition, notice that there exists a τ ∈ R>0

such that Ξ � 0. To verify this fact, ∆E is expressed in terms of the Laplacian L, i.e.,

∆E = − 1

n
[∇V (pk)]

>L∇V (p)︸ ︷︷ ︸
∆E

1

− τ

2n2 [∇V (pk)]
>L>Df(zk)L∇V (p)︸ ︷︷ ︸
∆E

2

,

where the term ∆E1 ≤ 0 since it is a quadratic form and L is positive definite [89],
and ∆E2 ≥ 0 since it is a quadratic form and Df is negative semidefinite according to
Definition 2.2. Therefore, there exists a sufficiently small τ ∈ R>0 such that |∆E1| ≥
|∆E2|.

Proposition 3.2 requires that the game f was full potential. Nevertheless, the discrete

projection dynamics (3.6) can also be implemented for other types of games. Therefore,

Proposition 3.3 presents the stability proof for a game that does not require that the

game was full potential, but still stable. Afterwards, it is shown that both results are

equivalent for full-potential games.

Proposition 3.3. Let f be a stable game, then there exists a sampling time τ ∈ R>0

such that the equilibrium point p? ∈ ∆ is asymptotically stable under the discrete projec-

tion dynamics (3.6). The sampling time τ is selected such that |2
(
pk − p?

)>
f(pk)| >

|τ f(pk)
>Ψ>Ψf(pk)| is satisfied.

Proof. Consider the Lyapunov function Ek = 1
τ

∑n
i=1

(
pi,k − p?i

)2
, where Ek > 0 for all
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p 6= p?, and Ek = 0 for p = p?. It is necessary to show that ∆E = Ek+1 −Ek ≤ 0, i.e.,

∆E =
1

τ

n∑
i=1

{
p2
i,k+1 − 2pi,k+1p

?
i + p∗2i − p2

i,k + 2pi,kp
?
i − p∗2i

}
,

=
1

τ

n∑
i=1

{
−2pi,k+1p

?
i + 2pi,kp

?
i + p2

i,k+1 − p2
i,k

}
,

=
1

τ

n∑
i=1

{
−2pi,k+1p

?
i + 2pi,kp

?
i

}
+

1

τ

n∑
i=1

{
p2
i,k+1 − p2

i,k

}
,

= −1

τ

n∑
i=1

2p?i
(
pi,k+1 − pi,k

)
+

1

τ

n∑
i=1

(
pi,k+1 − pi,k

)2
+

1

τ

n∑
i=1

2pi,k
(
pi,k+1 − pi,k

)
,

=
1

τ

n∑
i=1

2
(
pi,k − p?i

) (
pi,k+1 − pi,k

)
+

1

τ

n∑
i=1

(
pi,k+1 − pi,k

)2
.

Replacing the projection dynamics, it follows that

∆E = 2(pk − p?)>Ψf(pk)︸ ︷︷ ︸
∆E

1

+ τ f(pk)
>Ψ>Ψf(pk)︸ ︷︷ ︸
∆E

2

.

The first term ∆E1 is re-written as follows:

∆E1 = 2(pk − p?)>
(
In −

1

n
1n1

>
n

)
f(pk)

= 2(pk − p?)>f(pk)−
2

n
(pk − p?)>1n1

>
n f(pk)

= 2(pk − p?)>f(pk)−
2

n

(
p>k 1n − p∗>1n

)
︸ ︷︷ ︸

0

1
>
n f(pk)

= 2(pk − p?)>f(pk),

then it is concluded that ∆E1 ≤ 0 since f is stable. On the other hand, ∆E2 =
τ

n
2 f(pk)

>L>L f(pk), and it is concluded that ∆E2 ≥ 0. Finally, there exists a sampling

time τ ∈ R>0 such that |∆E1| ≥ |∆E2|.

Finding the Sampling Time: A Potential-game Example

Consider the coordination game given by the following potential function:

V (p) = −p
2
1

2
− p2

2 −
3p2

3

2
,
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Figure 3.1: Evolution of proportion of agents for the coordination game under the dis-
crete projection dynamics for four different values of τ . Stable with: (a) τ = 0.1 < 0.776,
(b) τ = 0.5 < 0.776, (c) τ = 0.6 < 0.776, and marginally stable with (d) τ = 0.776.

then, Df(p) = diag([−1 − 2 − 3]). According to Proposition 3.2, the condition for

asymptotic stability of the equilibrium point p? ∈ ∆ is given by

Ξ(τ) =

 2
3 − τ

2
τ
6 − 1

3
τ
3 − 1

3
τ
6 − 1

3
2
3 − 2τ

3
τ
2 − 1

3
τ
3 − 1

3
τ
2 − 1

3
2
3 − 5τ

6

 .
The conditions over τ to make Ξ(τ) positive definite are:

2

3
− 1

2
τ > 0, and,

11

36
τ2 − 2

3
τ +

1

3
> 0.

It follows that Ξ(τ) is positive definite for any τ < 0.776 s, which is the condition to

have asymptotic stability of the equilibrium point p? ∈ ∆ under the discrete projection

dynamics (3.6). Figure 3.1 shows the evolution of the proportion of agents p ∈ ∆ for

the coordination game under the discrete projection dynamics using different sampling

times. It can be seen that the system is marginally stable when τ = 0.776 s, validating

the condition over τ to have asymptotic stability. Considering Proposition 3.3, it is also
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possible to find the conditions over the sampling time τ by solving the following problem:

minimize
τ∈R>0, p∈∆

τ,

subject to 0 ≤ 2(p− p?)>f(p) +
τ

n2 f(p)>L>Lf(p),

it is the minimum τ such that stability condition is not satisfied with a p ∈ ∆. When

solving this optimization problem with f(p) = diag([-1 -2 -3])p, it is found that

τc = 0.7762 is the critical sampling time with p = [0.5941 0.4058 0]>. This example

shows the equivalence between the conditions for τ in Propositions 3.2 and 3.3.

3.3 Proposed Dynamical Tuning Methodology

The proposed dynamical tuning methodology based on population games consists of two

different stages. First, it is necessary to normalize the multi-objective cost function, and

then the discrete projection dynamics assign permanently the appropriate weights pi for

each one of the control objectives Ji(xk,u), for all i ∈ S. These two main steps of the

dynamical tuning methodology are explained next.

3.3.1 Normalization

The cost function (3.4a) has several control objectives, which might depend on different

parameters, e.g., one objective depending on the system states in contrast with another

objective in function of the control inputs. Furthermore, several objectives (even if

they involve the same variables) might have different order of magnitude. Therefore, it

is necessary to perform a normalization procedure in order to make a fair comparison

among all the control objectives.

Let x?i ,u
?
i be the optimal solution of the optimization problem (3.4) considering only

the function Ji(xk,u), i.e., the solution of (3.4) with weights γi = 1, and γj = 0, for all

j ∈ S\{i}. Then, the Utopia point, denoted by Jutopia =
[
Jutopia

1 . . . Jutopia
n

]>
, is

computed as [71]

Jutopia =
[
J1(x?1,u

?
1) J2(x?2,u

?
2) · · · Jn(x?n,u

?
n)
]>
. (3.8)

On the other hand, the ith Nadir value is computed as [71]

Jnadir
i = max

(
Ji(x

?
1,u

?
1), Ji(x

?
2,u

?
2), · · · , Ji(x?n,u?n)

)
, (3.9)
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Figure 3.2: General scheme of the proposed dynamical tuning based on population
games.

where the Nadir point Jnadir is given by

Jnadir =
[
Jnadir

1 Jnadir
2 · · · Jnadir

n

]>
. (3.10)

Finally, the normalized multi-objective cost function denoted by J̃(xk,u) has the form

J̃(xk,u) =
n∑
i=1

J̃i(xk,u),

where each normalized objective is given by

J̃i(xk,u) =
Ji(xk,u)− Jutopia

i

Jnadir
i − Jutopia

i

.

Having normalized the cost function J(xk,u), then the established weights assign a

prioritization without being affected by the order of magnitude of each objective. This

procedure is illustrated in Figure 3.2, receiving information from the cost function (that

is affected by the forecast of disturbances), prediction model, and constraints.

3.3.2 Dynamical Weighting Procedure

Once the cost function has been normalized, it is considered that the prioritization

weights at each control objective Ji(xk,u) are given by a time-varying parameter pi,k,

for all i ∈ S. Hence, the normalized optimization problem behind the MPC controller
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is formulated as follows:

minimize
ûk

n∑
i=1

pi,kJ̃i(x0, ûk), (3.11a)

subject to:

xk+j+1|k = Adxk+j|k + Bduk+j|k + Bldk+j|k, j ∈ [0, Hp − 1] ∩ Z≥0, (3.11b)

uk+j|k ∈ U , j ∈ [0, Hp − 1] ∩ Z≥0, (3.11c)

xk+j|k ∈ X , j ∈ [1, Hp] ∩ Z≥0, (3.11d)

where pk =
[
p1,k · · · pn,k

]>
, satisfying the constraint

∑n
i=1 pi,k = 1. The unitary

value at the constraint of the weights sum is associated to the population mass that

defines the simplex set ∆ in the population game. Notice that weights are able to vary

dynamically since the disturbances in the system (3.1) might also vary along the time.

To overcome this issue, the discrete projection dynamics (3.6) are implemented. The

fitness functions fi(pi,k), for all i ∈ S, are chosen to be dependent of the current value

of each control objective J̃i(x̂
?
k, û

?
k) representing each strategy, i.e.,

fi(pi,k) = wiJ̃i(x̂
?
k, û

?
k), (3.12)

where wi, for all i ∈ S, assigns a prioritization that defines a management region in the

Pareto front as has been presented in [13]. Besides, these terms wi, for all i ∈ S, do

not appear in the optimization problem of the MPC, and should not be confused with

the weights of the cost function (3.11a) in the MPC controller, which are denoted by pi,

for all i ∈ S. Furthermore, notice that the potential function V (p) is unknown for this

game. The function V (p) would represent the Pareto front in function of the all possible

assigned prioritization (see Remark 3.1).

The differences between the management region and the static weights in the multi-

objective optimization problem are discussed. To do so, consider a simple and general

optimization problem given by

minimize
z

J(z) = p1J1(z) + p2J2(z), (3.13a)

subject to

Hz ≤ h + c, (3.13b)
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where z ∈ Rn is the decision variable, and H ∈ Rl×n is a constant matrix with suitable di-

mension. The values p1, p2 ∈ R≥0 establish a static prioritization for the objectives J1(z)

and J2(z), respectively. The vector h ∈ Rl is a constant component in the constraint,

whereas the vector c ∈ Rl is a time-varying component. For instance, the time-varying

value of the vector c ∈ Rl may be associated to a disturbance d ∈ Rl involved in a

constraint in the optimization problem of an MPC controller.

First, suppose that c = c1 in (3.13b), and let c1 ∈ Rl be a vector of arbitrary entries.

For this case, suppose that the obtained Pareto front is the one presented in Figure 3.3a),

and its normalized Pareto front is the one presented in Figure 3.3b). This figure shows

an example in which the management region is given by w1 = w2 = 0.5, and shows the

solution for the optimization problem when static weights in the multi-objective functions

are assigned as p1 = p2 = 0.5 to objectives J1(z), and J2(z), respectively. Notice the

difference between the selection of the management region and the assignment of the

weights in the cost function.

Now, suppose that c in (3.13b) varies, e.g., c = c2, where the entries of c1, and c2

are near values, i.e., c1 − c2 ≈ 0. In this case, the Pareto front varies. Suppose that the

new Pareto front is the one obtained in Figure 3.3c), with its corresponding normalized

front presented in Figure 3.3d). When making this modification over c, the solution

of the optimization problem for the weights p1 = p2 = 0.5 changes dramatically over

the Pareto front (this fact illustrates the effect when the disturbances, denoted by d,

vary in the optimization problem (3.11)). However, notice that the management region

is still defined as a region where the objective functions have a equitable value for the

particular case w1 = w2 = 0.5.

When the management region is defined, the dynamical tuning strategy is in charge

of finding the proper weights p̃1, and p̃2 in the normalized cost function, such that the

solution lies inside the management region. This philosophy is different from the static

tuning strategy where the weights are determined previously. The process to assign

dynamically the tuning weights is performed by using the population dynamics.
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(a) (b)

(c) (d)

Figure 3.3: Comparison between the management region and the optimization prioritiz-
ing weights.

Assumption 3.1. The fitness function fi(pi) is a strictly decreasing function with re-
spect to pi. It is expected that the value of the objective J̃i(x̂

?
k, û

?
k) decreases as bigger

weight pi,k is assigned to it when solving the corresponding optimization problem. ♦

Remark 3.1. Propositions 3.2 and 3.3 have shown that there exists a sampling time
τ ∈ R>0 such that the equilibrium point p? ∈ ∆ is asymptotically stable under the
discrete projection dynamics. Moreover, in order to find the critical τc, it is necessary
either to compute the Jacobian Df(p) or to know the equilibrium point p? ∈ ∆. For
the dynamical tuning application, none of these data are available since there is not a
function describing the Pareto front depending on the assigned prioritization in the cost
function (3.11(a)), and the equilibrium point might vary along the time because of the
time-varying disturbance affecting the system. However, there exists a sufficiently small
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τ to guarantee stability according to Proposition 3.3 since the game f is stable. For the
tuning application, a sampling time τ = 0.15 < τc has been selected. ♦

The dynamical adjustment of the weights is presented in Figure 3.2. The fitness

functions are determined by using information from the normalized cost function and the

weights that determine the management region. Thus, the discrete projection dynamics

compute the appropriate prioritization of the normalized cost function in the MPC

controller. A detailed procedure to implement the population-games-based dynamical

tuning for multi-objective MPC is presented in Algorithm 2. Notice that it is necessary

to compute the normalization at each iteration since the disturbances vary along the

time.

Algorithm 2 Dynamical tuning based on population games for multi-objective MPC.

1: Hs ← simulation length
2: Hp ← prediction horizon
3: n ← number of objectives
4: k ← initial time
5: xk ← x0 ∈ Rnx initial condition for the states
6: pk ← p ∈ Rn≥0 initial condition for the proportion
7: for k = 1 : Hs do
8: for i = 1 : n do
9: u?i ← arg min

û
Ji(x,u) with constraints

10: Jutopia
i ← Ji(x

?
i ,u

?
i )

11: end for
12: for j = 1 : n do
13: Jnadir

j ← max
(
Jj(x

?
1,u

?
1), · · · , Jj(x?n,u?n)

)
14: end for

15: x̂?k, û
?
k ← arg min

û

n∑
i=1

pi,kJ̃i(x,u) with constraints

16: u?k ← u?k|k ∈ Rnu optimal control input
17: for i = 1 : n do
18: fi(pi) , fi(pi,k) ← wiJ̃i(x̂

?
k, û

?
k)

19: end for
20: pk+1 = τ

(
In − 1

n1n1
>
n

)
f(pk) + pk

21: xk+1 = Adxk + Bdû
?
k + Bldk

22: end for

52



Chapter 3. Dynamical Tuning for Multi-objective MPC Controllers

F
ig

u
re

3.
4:

C
as

e
st

u
d

y.
T

op
ol

og
y

of
th

e
17

ta
n

k
s

of
th

e
B

ar
ce

lo
n

a
W

at
er

S
u

p
p

ly
N

et
w

or
k

(B
W

S
N

)
(t

ak
en

fr
o
m

[5
6
])

.

53



Chapter 3. Dynamical Tuning for Multi-objective MPC Controllers

3.3.3 Case Study: Barcelona Water Supply Network

This section introduces the Barcelona water supply network (BWSN) (see [107] for fur-

ther details regarding this case study) and the design of a multi-objective MPC controller.

In order to illustrate the performance of the aforementioned multi-objective MPC con-

troller with a dynamical tuning based on population games, the proposed on-line tuning

methodology is implemented in a large-scale water supply network. Furthermore, the

performance of the MPC controller with dynamical tuning is compared to the perfor-

mance obtained by using a conventional static tuning. Figure 3.4 shows a representative

portion of the BWSN that is composed of 17 tanks, 26 pumps, 35 valves, nine water

sources, 25 water demands, and 11 mass-balance nodes. The dynamical model of the

system is given by the following expressions:

xk+1 = Adxk + Bduk + Bldk, (3.14a)

0 = Euuk + Eddk, (3.14b)

where x ∈ Rnx is the vector of nx = 17 system states corresponding to the tank volumes,

u ∈ Rnu is the vector of nu = 61 control inputs, and d ∈ Rnd is the vector of nd = 25

time-varying water demands. The water demands are considered to be disturbances to

the system, which have a periodicity of 24 hours with a mean value, and a nominal

amplitude [153]. The constraints given by the 11 mass-balance nodes are described by

(3.14b), i.e., the constraint represents the static water balance for all the nodes in the

WSN. Matrices Ad, Bd, Bl, Eu, and Ed are obtained according to the control-oriented

modeling described in [105].

3.3.4 Management Criteria

The MPC controller is designed considering a cost function with multiple objectives.

These objectives for the BWSN are established by a management criteria considering

the following three aspects:

• Economic operation, i.e., J1(uk) ,
∣∣∣(α1 +α2,k

)>
uk

∣∣∣, where α1 represents the

time-invariant costs associated to the water resource, and α2,k represents the time-

varying electricity costs associated to the operation of valves and pumps.
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Figure 3.5: Behavior of the trend of the normalized functions J̃i(x̂
?
k, û

?
k), for all i = 1, 2, 3.

All these functions are decreasing, and in particular, J̃2 and J̃3 decrease with a very small
slope.

• Smoothness operation, i.e, J2(uk) , ‖∆uk‖2, where ∆uk = uk − uk−1.

• Safety operation, i.e., considering the constraint xk ≥ xs − ςk, for all k, with

xs ∈ Rnx being the vector of safety volumes for all the tanks, and ςk ∈ Rnx≥0. The

third objective is given by J3(ςk) , ‖ςk‖2.

It is important to clarify that the prioritization of objectives, which is determined by

the company in charge of the management of the network, is already known. In fact,

the prioritization of these aforementioned objectives is commonly used in the design of

controllers using a static tuning [58], [107]. In this particular case study, and according to

the company in charge of the system, the most important objective is the minimization

of the economical costs, i.e., J1(uk). The second most important objective is the one

related to the safety volumes, i.e., J3(ςk). Finally, the less important control objective is

related to the smooth operation, i.e., J2(uk). This prioritization order of the objectives

in the cost function should be satisfied in case of both static and dynamical tuning.

Figure 3.5 shows the trend of the normalized functions J̃i(x̂
?
k, û

?
k), for all i = 1, 2, 3.

It can be seen that these functions are decreasing with respect to the weight pi. This

is because it is expected to get a smaller value from the minimization problem as more

prioritization is assigned (see Assumption 3.1).

3.3.5 Scenarios

In order to illustrate the enhancement of the control performance when adopting the

population-games-based dynamical tuning methodology, the performance obtained with

the dynamical tuning is compared to the performance when static weights are established
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(a) (b)

Figure 3.6: Demand profile for: (a) Scenario 1 and (b) Scenario 2. Disturbances
d12, d18, d20 and d24 correspond to the water demands in the case study presented in
Figure 3.4.

to the objectives in the cost function. Besides, two different scenarios are proposed. In

general, the water demand profiles have a periodic behavior (daily), with a constant

mean value, and with a regular amplitude. Nevertheless, the event in which the peri-

odic demand changes unexpectedly along the time is considered, i.e., when the demand

varies its mean value and its regular amplitude. The purpose is to assess the automatic

adjustment of the weights when conditions over the system suffer a modification along

the time, improving the performance with respect to an MPC with static tuning.

The performance when the demand suffers a decrement, and when demand has a

sudden increment are analyzed. These two possible scenarios are presented in Figure

3.6 where four arbitrarily chosen demands are shown (all the 25 demand profiles for the

case study have similar behavior), i.e.,

Scenario 1: decrement of the mean value of the demand profiles (see Figure 3.6(a)).

Scenario 2: increment of the mean value of the demand profiles (see Figure 3.6(b)).

The decrement and increment of the mean value of the disturbances is made arbi-

trarily at the end of the fourth day of simulation.

Notice that when implementing an off-line static tuning strategy, the control de-

signer should assign the desired prioritization weights γ1, ..., γn to the controller. On the

other hand, when adopting the dynamical tuning strategy, the control designer assigns

the desired prioritization throughout the weights w1, ..., wn. Consequently, in order to

make a fair comparison, weights γ1, ..., γn in the cost function of problem (3.4) for the

static tuning case and the weights in the management region w1, ..., wn in (3.12) for the
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dynamical tuning case are selected to be the same, i.e., wi = γi, for all i ∈ S.

3.3.6 Results and Discussion

The performance of the controllers is evaluated by using an economical Key Performance

Index (KPI) associated to costs denoted by KPIEcost, and C considering the total number

of simulation days (in this case eight days), i.e.,

KPIEcosts(day) =

24+24(day−1)∑
k=1+24(day−1)

(
α1 +α2,k

)>
uk, (3.15)

where k ∈ Z≥0 in given in hours, and

C =

8∑
day=1

KPIEcosts(day). (3.16)

Furthermore, a sub-index is used to distinguish between the results with static tun-

ing, and with the proposed dynamical tuning, i.e., CS and CD, respectively. For each

scenario, six different cases corresponding to six management regions are tested, which

are outlined as follows:

• Tuning case 1: [w1 w2 w3]> = [0.8 0.05 0.15]>,

• Tuning case 2: [w1 w2 w3]> = [0.7 0.1 0.2]>,

• Tuning case 3: [w1 w2 w3]> = [0.6 0.15 0.25]>,

• Tuning case 4: [w1 w2 w3]> = [0.5 0.2 0.3]>,

• Tuning case 5: [w1 w2 w3]> = [0.4 0.25 0.35]>,

• Tuning case 6: [w1 w2 w3]> = [0.35 0.3 0.35]>,

where [w1 w2 w3]> = [γ1 γ2 γ3]>. Notice that all the proposed tuning cases satisfy

the prioritization order presented in Section 3.3.4, i.e., w1 > w3 > w2.

Table 3.1 presents the comparison between the economic results obtained with a

multi-objective MPC using a static and dynamical population-games-based tuning, and

for the two different scenarios. Also, Table 3.1 shows the reduction of costs when adopt-

ing the proposed dynamical tuning, i.e., CS − CD. It can be seen that, for all the
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Table 3.1: Economic results for Scenario 1 and Scenario 2 in the case study. Notice that
for the comparison of data the management region corresponds to the prioritization of
the MPC controller with static tuning, i.e., [w1 w2 w3]> = [γ1 γ2 γ3]>.

Tuning Dynamical tuning Static tuning Reduction of costs Percentage reduction
case costs CD (e.u.) costs CS (e.u.) CS − CD (e.u.) 100(CS − CD)/CS [%]

S
c
e
n

a
ri

o
1 1 281475.4393 295465.0021 13989.5627 4.73

2 282296.0113 295114.7771 12818.7657 4.34
3 283592.6568 300172.7427 16580.0858 5.52
4 289484.6672 312124.2979 22639.6307 7.25
5 291048.2900 328267.0268 37218.7368 11.33
6 291874.0282 341964.3402 50090.3120 14.64

S
c
e
n

a
ri

o
2 1 251003.7369 266079.8919 15076.1550 5.66

2 252147.3533 265056.5038 12909.1505 4.87
3 255457.0784 270722.0341 15264.9556 5.63
4 259626.8908 282454.0561 22827.1652 8.08
5 261713.5740 300459.4927 38745.9187 12.89
6 263114.2332 313364.1354 50249.9022 16.03

(a) (b)

Figure 3.7: Reduction of costs in eight days for the six different tuning cases. (a) Scenario
1, and (b) Scenario 2.

tested management regions, and for both scenarios, a reduction of costs is obtained

when implementing a dynamical tuning with respect to the costs with a standard static

tuning. Figure 3.7 presents a summary of the reduction of costs for both scenarios

and all the tested combination of weights for the control objectives. Cost reductions

from 13989.56 to 50090.31 e.u., and from 15076.15 to 50249.90 e.u., are obtained for

the first and second scenario in eight days, respectively. Figures 3.8 and 3.9 show the

evolution of system states, control inputs, and dynamic prioritization weights for the

first and second scenario with management regions given by w = [0.4 0.25 0.35]>,

w = [0.6 0.15 0.25]>, and w = [0.8 0.05 0.15]>.
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The performance exhibits an oscillatory behavior for the adjustment of weights be-

cause of the disturbances in the system. In fact, it can be seen that the periodicity

of the oscillation in the weights adjustment corresponds to the diary periodicity of the

demands (see Figure 3.6). In addition, it can be seen in Figures 3.8 and 3.9 that the

dynamical tuning suffers an abrupt change at the end of the fourth day adjusting weights

appropriately. This fact occurs since, at that point, the decrement or increment of the

mean value for the demand profiles is applied.

3.4 Summary

A novel dynamical tuning methodology for the prioritization weights in multi-objective

MPC controllers has been presented in this chapter. The dynamical tuning method-

ology requires to normalize the cost function of the optimization problem behind the

MPC controller. Therefore, a population game is solved with a discrete version of the

projection dynamics, which update the appropriate tuning by using information about

the current value of the normalized control objectives. The proposed dynamical tuning

does not require to generate multiple points of the Pareto front, which implies that it

is not computationally costly with respect to other reported on-line approaches. The

proposed tuning has been established to be a weighting sum, for which it is required that

the sum of all the weights is equal one. It has been shown that the discrete version of the

projection dynamics satisfies this constraint throughout the evolution of their variables.

Furthermore, the stability analysis of the Nash equilibrium under the discrete projection

dynamics has been made, and it is guaranteed if the control objectives decrease as more

priority is assigned to them (Assumption 3.1).

Finally, the dynamical tuning methodology is implemented to a large-scale water

supply network. Results have shown a reduction of costs when adopting the proposed

population-games-based dynamical tuning. The reduction of costs is achieved for all

the six tested tuning cases, and for two different scenarios for demand abrupt changes

(one scenario considering a decrement of demand, and another considering an increment

of demand). It is worth to point out that these achieved cost reductions have been

presented for a period of eight days, and that these reductions are maintained along

the time. Therefore, the proposed dynamical tuning strategy, according to the results

61



Chapter 3. Dynamical Tuning for Multi-objective MPC Controllers

obtained during a week, would represent a bigger reduction of costs in a larger period

of time, e.g., a month or a year.

In this chapter, a game theoretical approach has been used to complement an MPC

controller. In this regard, game theory helps to enhance the performance of the con-

troller. Similarly, next chapter discusses a different manner in which game theory can

collaborate in the design of optimization-based controllers. More specifically, it is ex-

plored how a game-theoretical approach can be used for the design of DMPC controllers.
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Chapter 4

Distributed Predictive Control
Using Population Games

In Chapter 3, the role of the population games in the dynamical tuning for MPC con-

trollers has been presented. This chapter presents a different role of population games

consisting in the design of DMPC controllers involving resource allocation problems.

The contribution of this chapter is the design of a general method that permits the

deduction of several distributed population dynamics, which has been published in [9]

and that allows the design of distributed controllers, e.g., an engineering application with

a DMPC controller using this distributed population-dynamics approach is presented in

[8]. The core of the proposed method is the use of the mean dynamics [134] by including

strategy-constrained interactions, extending the results in [114] where the distributed

version of one of the six fundamental population dynamics has been presented using a

different deduction. For the classical population dynamics approach, the evolution of the

proportion of agents depends on the whole population state, i.e., agents can interact with

the whole population; however, when adding strategy-constraint interactions, agents can

only interact with a portion of the whole population. To illustrate the proposed method-

ology, a distributed version of the fundamental population dynamics is presented (those

obtained by applying classic revision protocols), i.e., the distributed replicator dynamics,

the distributed Smith dynamics, the distributed logit dynamics, and the distributed pro-

jection dynamics. It is worth noting that the deduction presented in this chapter can be

used to generate other distributed dynamics from alternative revision protocols. Besides,

it is shown that a population without strategy-constrained interactions obeys a structure
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given by a complete graph, whereas a population considering strategy-constrained inter-

actions has many different possible structures that are generally given by non-complete

graphs. In this sense, the proposed approach is versatile to be implemented in a large

variety of problems with different information structures. Moreover, the distributed

population dynamics exhibit similar stability and invariance properties as their classic

counterpart. Finally, the application of the deduced distributed population dynamics in

optimization problems, classic games, and controllers design is highlighted.

Afterwards an application of the distributed population games to design non-centrali-

zed controllers is presented. The formalization of a distributed scheme for a tradi-

tional constrained MPC to manage medium/large-scale systems comprised by several

sub-systems is discussed. First, the design of a local MPC controller per sub-system

that is in charge of managing the desired local variables is proposed. Then, outputs

from all controllers are optimally coordinated without the need of a centralized configu-

ration. Different from classical dual decomposition and alternative direction method of

multipliers (ADMM), the proposed DMPC scheme based on population dynamics does

not require a central coordinator associated to the Lagrange multipliers when managing

a coupled constraint involving all the decision variables. Regarding the population dy-

namics stage in the proposed scheme, under some mild assumptions, it is shown that the

solution computed by using the proposed method asymptotically converges to the opti-

mal solution, while all constraints are satisfied. Besides, the stability of the closed-loop

system with the DMPC is ensured by proving that there exists an equivalence between

the proposed distributed scheme and a centralized MPC controller (CMPC).

4.1 General Dynamics on Graphs

The dynamics describing a population behavior depend on the population with strategy-

constrained interactions. In this regard, current literature assumes that the population

under consideration is well–mixed, i.e., if any portion of the entire population is taken,

this contains all the strategies with the same probability. Figure 4.1(a) illustrates this

fact by showing a population composed by a large and finite number of agents involved

in a game. Each element in the figure represents an agent, and the shape of the element

(circle, square, or triangle) denotes the strategy that the agent has adopted. In pop-
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(a) (b)

Figure 4.1: (a) Well–mixed population, i.e., population without strategy-constrained
interactions. (b) Population with strategy-constrained interactions (taken from [9]).

ulation games, all agents have the same probability to receive a revision opportunity.

The agent receiving the revision opportunity randomly chooses another agent from its

neighbors and can change its own strategy by the neighbor’s strategy depending on the

selected revision protocol. Since the population is well–mixed and there are no strategy-

constrained interactions, the probability that the selected opponent is playing any of the

available strategies is the same.

On the other hand, there could be a population considering strategy-constrained

interactions as the one shown in Figure 4.1(b). For this population, all agents have the

same probability to receive an opportunity to make a revision. However, the probability

that the opponent is playing a particular strategy is not equal (e.g., if the strategy

played by the agent receiving the revision opportunity is square, then there is the same

probability to select an opponent playing strategy triangle or square, but the probability

to select an opponent playing strategy circle is zero since the population structure does

not allow it). Interactions among agents playing different strategies can be represented

by a graph G = (S, E ,A). The set of nodes S is associated with the available strategies

and the set of links E is related to the encounter probability between strategies, i.e., there

exists a link between two strategies if their encounter probability is different from zero.

Hence, the elements of the corresponding adjacency matrix A = [aij ] are as follows: aij =

1 denotes that strategies i and j can encounter each other, while aij = 0 denotes that

the population strategy-constrained interactions make impossible a matching between

strategies i and j. According to this convention, the scenarios associated with well–mixed

populations and populations with strategy-constrained interactions can be represented

by two kinds of graphs. The well–mixed population case is always represented by a

complete graph, whereas a population considering strategy-constrained interactions is
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1

2 3
1 2 3

(a) (b)

Figure 4.2: Graph representation of: (a) population without strategy-constrained inter-
actions in Figure 4.1(a), and (b) population with strategy-constrained interactions in
Figure 4.1(b) (taken from [9]).

represented by a graph with a specific topology depending on the particular population

structure (see Figure 4.2). In this chapter, it is assumed that the encounter probability

between strategies i and j is the same as the one of strategies j and i, i.e., the graph G
is undirected.

Distributed Mean Dynamics

Taking into account the previously discussed considerations, the evolutionary process

of a population with strategy-constrained interactions involved in a strategic game is

formally described. Suppose that the population is composed by M agents, and each of

them receives a revision opportunity that is given by an exponential distribution with

rate R. Hence, during a time dt, the revision opportunity received by each agent is

given by Rdt. Since it is assumed that the mass of the population is equal to one, the

scalar pi is equal to the portion of agents playing the ith strategy, and Mpi is the total

number of agents playing strategy i ∈ S. Consequently, the expected number of revision

opportunities received by agents playing the ith strategy is approximatelyMpiRdt during

dt (notice that pi may vary during dt; however, this variation is negligible if dt is small).

Agents playing i ∈ S switch to strategy j ∈ S with a probability that depends on the

revision protocol, the probability distribution of receiving a revision opportunity, and

the encounter probability between strategies i and j (given by the population structure,

which is represented by the graph G), i.e., aij%ij(f(p),p)/R. Finally, the expected

number of agents switching from strategy i ∈ S to strategy j ∈ S during time dt is

Mpiaij%ij(f(p),p)dt.
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Now, considering all possible strategies in the population, the expected number of

agents switching to strategy i ∈ S is given by

M
∑
j∈S

pjaji%ji(f(p),p)dt,

and the expected number of agents playing strategy i ∈ S changing to other strategies

is given by

Mpi
∑
j∈S

aij%ij(f(p),p)dt.

Therefore, the variation of the proportion of agents playing the ith strategy is deduced

by a mass balance as follows:

ṗi =
∑
j∈S

pjaji%ji(f(p),p)− pi
∑
j∈S

aij%ij(f(p),p), ∀ i ∈ S.

This equation corresponds to the distributed mean dynamics, or mean dynamics

for populations with strategy-constrained interactions. Since G is undirected then the

elements in the adjacency matrix satisfy that aij = aji ∈ {0, 1} and aij = 0 if j /∈ Ni,
notice that the distributed mean dynamics can be rewritten as follows:

ṗi =
∑
j∈Ni

pj%ji(f(p),p)− pi
∑
j∈Ni

%ij(f(p),p), ∀ i ∈ S. (4.1)

For complete graphs, i.e., for well-mixed-populations or populations without strategy-

constrained interactions, it is obtained that Ni = S, getting the classic Mean Dynamics

[134].

4.2 Distributed Population Dynamics

Distributed mean dynamics allow the inference of population dynamics involving popu-

lations with strategy-constrained interactions comprised of agents that are programmed

with a specific revision protocol. This section shows the deduction of different distributed

population dynamics by using (4.1). The deduced dynamics are named after the classic

population dynamics, which are generated by using the corresponding revision protocol.
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Distributed Replicator Dynamics (DRD)

The distributed replicator dynamics are obtained from the distributed mean dynamics

using the pairwise proportional imitation protocol (Table 2.1), as follows:

ṗi =
∑
j∈Ni

pjpi
[
fi(p)− fj(p)

]
+
− pi

∑
j∈Ni

pj
[
fj(p)− fi(p)

]
+
,

=
∑
j∈Ni

pjpi(fi(p)− fj(p)), ∀ i ∈ S.

Finally, the distributed replicator dynamics are given by

ṗi = pi

fi(p)
∑
j∈Ni

pj −
∑
j∈Ni

pjfj(p)

 , ∀ i ∈ S. (4.2)

Distributed Smith Dynamics (DSD)

In this case, the pairwise comparison protocol is used (see Table 2.1). Substituting this

revision protocol in (4.1), it follows:

ṗi =
∑
j∈Ni

pj
[
fi(p)− fj(p)

]
+
− pi

∑
j∈Ni

[
fj(p)− fi(p)

]
+
, ∀ i ∈ S. (4.3)

Notice that (4.3) can be written as

ṗi =
∑
j∈Ni

1

2

(
(1− νij)pi + (1 + νij)pj

) [
fi(p)− fj(p)

]
, ∀ i ∈ S,

where νij = sgn(fi(p)− fj(p)).

Distributed Logit Dynamics (DLD)

The deduction of the distributed logit dynamics is based on the logit choice protocol

(Table 2.1). However, notice that this protocol requires full information since the sum

at the denominator is taken over all the strategies. In order to satisfy the information

constraint given by the graph G, the protocol is modified as follows:

%ij(f(p),p) = eη
−1
fj(p), η > 0.
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Distributed logit dynamics are obtained by replacing the above protocol in the dis-

tributed mean dynamics, i.e.,

ṗi =
∑
j∈Ni

pje
η
−1
fi(p) − pi

∑
j∈Ni

eη
−1
fj(p), ∀ i ∈ S. (4.4)

Distributed Projection Dynamics (DPD)

The projection dynamics use the modified pairwise comparison protocol based on the

pairwise comparison presented in Table 2.1, i.e.,

ṗi =
∑
j∈Ni

pj

[
fi(p)− fj(p)

]
+

pj
− pi

∑
j∈Ni

[
fj(p)− fi(p)

]
+

pi
, ∀ i ∈ S,

=
∑
j∈Ni

(
fi(p)− fj(p)

)
, ∀ i ∈ S.

Thus, the distributed projection dynamics are given by

ṗi = |Ni|fi(p)−
∑
j∈Ni

fj(p), ∀ i ∈ S, (4.5)

where |Ni| denotes the cardinality of the set Ni, i.e., the number of neighbors of the ith

node.

4.2.1 Invariant Set Analysis

The population mass does not vary over time. Hence, all possible states generated during

the evolution of the population should belong to the simplex ∆ given in (2.9). This

section shows that the simplex ∆ is an invariant set under the distributed population

dynamics deduced in the previous section.

Theorem 4.1. The simplex ∆ is an invariant set under: the distributed replicator
dynamics (4.2), the distributed Smith dynamics (4.3), and the distributed logit dynamics
(4.4).

Proof. According to (2.9), ∆ has two conditions, i.e.,

i)
∑

i∈S pi = 1 (mass conservation), and

ii) pi ≥ 0, for all i ∈ S (non-negativeness).
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First, the fact that DRD, DSD, and DLD satisfy condition i) is proven. Notice that
this is equivalent to show that

∑
i∈S ṗi = 0 under the distributed mean dynamics (4.1).

These dynamics can be written by using the adjacency matrix A of the graph G as
follows:

ṗi =
∑
j∈S

aij%ji(f(p),p)pj −
∑
j∈S

aij%ij(f(p),p)pi, ∀ i ∈ S.

Hence, ∑
i∈V

ṗi =
∑
i∈S

∑
j∈V

aij%ji(f(p),p)pj −
∑
i∈S

∑
j∈S

aij%ij(f(p),p)pi.

Since G is undirected (i.e., aij = aji), then∑
i∈S

ṗi =
∑
i∈S

∑
j∈S

aji%ji(f(p),p)pj −
∑
j∈S

∑
i∈S

aji%ji(f(p),p)pj

= 0.

Second, it is proven that each dynamic satisfies condition ii):

• DRD: Non-negativeness of each pi is satisfied given the fact that ṗi = 0 if pi = 0
under distributed replicator dynamics. Thus, if pi(0) ≥ 0, then pi(t) ≥ 0 for all
t ≥ 0.

• DSD: According to (4.3), notice that when pi = 0 for any i ∈ S, then ṗi ≥ 0.
Hence, the non-negativeness of pi is satisfied under distributed Smith dynamics.

• DLD: Notice that ṗi ≥ 0 when pi = 0 under distributed Logit dynamics (4.4).
Therefore, if p(0) ∈ ∆, then pi(t) ≥ 0 for all t ≥ 0.

Proposition 4.1. The set ∆′ =
{
p ∈ Rn :

∑
i∈S pi = 1

}
is invariant under the dis-

tributed projection dynamics (4.5).

Proof. The distributed projection dynamics can be written by using the adjacency ma-
trix A of the graph G as follows:

ṗi =
∑
j∈S

aijfi(p)−
∑
j∈S

aijfj(p), ∀ i ∈ S.

Therefore, ∑
i∈S

ṗi =
∑
i∈S

∑
j∈S

aijfi(p)−
∑
i∈S

∑
j∈S

aijfj(p).
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Since aij = aji because G is undirected, it follows that∑
i∈S

ṗi =
∑
j∈S

∑
i∈S

ajifi(p)−
∑
i∈S

∑
j∈S

aijfj(p)

=0,

which completes the proof.

Remark 4.1. It should be noticed that the distributed projection dynamics satisfy one
of the conditions of the original simplex ∆, i.e.,

∑
i∈S pi = 1 (mass conservation).

However, the non-negativeness of pi is not guaranteed. This fact also occurs in the
classic projection dynamics. ♦

Remark 4.2. Notice that Theorem 4.1 and Proposition 4.1 do not impose any conditions
over the interaction graph G. Thus, the studied distributed population dynamics exhibit
simplex invariance under any population structure. ♦

4.2.2 Stability Analysis

Classic population dynamics usually converge to Nash equilibria since they correspond

to the expected outcome of games played by rational individuals (i.e., individuals that

are trying to maximize their profit). According to the set of Nash equilibria presented

in Definition 2.4, in a Nash equilibrium all players perceive the same profit.

This section provides sufficient conditions to guarantee that a Nash equilibrium p? ∈
NE(f) of the population game f is asymptotically stable under the distributed population

dynamics derived in Section 4.2. These conditions, which are related to the connectivity

of the interaction graph and the characteristics of the Nash equilibrium, are summarized

in the following assumptions.

Assumption 4.1. The graph G that describes the population structure is connected.

Assumption 4.2. The Nash equilibrium p? ∈ NE(f) belongs to the interior of the
simplex ∆, i.e., p? ∈ int∆ as defined in (2.10).

The results on convergence of the distributed population dynamics to a Nash equi-

librium are provided below.

Theorem 4.2. Let f be a full-potential game with strictly-concave potential function
V (p), and let p? ∈ NE(f). If Assumptions 4.1 and 4.2 hold, then p? is asymptotically
stable under the distributed replicator dynamics (4.2) and the distributed Smith dynamics
(4.3).
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Proof. Since p? ∈ NE(f) and p? ∈ int∆, it is concluded that fi(p
?) = fj(p

?), for all
i, j ∈ S. Moreover, notice that p? = arg maxp∈∆ V (p) (applying the Karush–Kuhn–
Tucker conditions). Additionally, since V (p) is strictly concave, it is possible to take

E(p) = V (p?)− V (p) (4.6)

as a Lyapunov function candidate. The derivative of E(p) along the trajectories of DRD
(4.2) and DSD (4.3) is given by

Ė(p) = −(∇V (p))>ṗ

= −f>ṗ

= −f>L(p)f ,

where L(p) =
[
l
(p)
ij

]
is a matrix whose entries l

(p)
ij are for DRD as follows:

l
(p)
ij =


−aijpipj , if i 6= j∑
k∈S,k 6=i

aikpipk, if i = j,

and for DSD as follows:

l
(p)
ij =


−aij

2

(
(1− φij)pi + (1 + φij)pj

)
, if i 6= j,

∑
k∈S,k 6=i

aik
2

(
(1− φik)pi + (1 + φik)pk

)
, if i = j.

Notice that L(p) is the Laplacian of the undirected graph given by the tuple G(p) =

(S, E ,A(p)), where A(p) = [a
(p)
ij ] is the adjacency matrix whose entries are defined as

follows:

a
(p)
ij =


aijpipj , for DRD,

aij
2

(
(1− φij)pi + (1 + φij)pj

)
, for DSD.

These entries are nonnegative since p ∈ ∆. Thus, L(p) ≥ 0 and Ė(p) ≤ 0. Therefore,
p? is stable under DRD and DSD.

Considering that p? ∈ int∆ is stable, a set B around p? can be defined such that if
p(0) ∈ B, then p(t) ∈ int∆, for all t ≥ 0 (it is possible to show that B = int∆ for DRD).

Thus, if p(0) ∈ B, the null space of L(p) is equal to span{1n} since G(p) is connected.

It is concluded that G(p) is connected since:

• G(p) and G have the same topology in B, i.e., if p ∈ B, a
(p)
ij = 0 only if aij = 0,

• G is connected by assumption
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In this case, Ė(p) = 0 if and only if fi = fj , for all i, j ∈ S, i.e., Ė(p) = 0 only in p?.
Therefore, p? is asymptotically stable.

Remark 4.3. Theorem 4.2 requires that, in steady state, all strategies are played by the
individuals involved in the game. Indeed, when any proportion of individuals is extinct at
equilibrium (i.e., p?i = 0 for some i ∈ S), then convergence of the distributed replicator
equation and the distributed Smith dynamics to the Nash equilibrium is not guaranteed.
However, the same arguments used in [114] can be employed to relax the convergence
conditions. In fact, if subtracting from the original graph any set of nodes associated
to extinct strategies does not produce disconnected subgraphs, then convergence to Nash
equilibria is provable even if Nash equilibria do not belong to the interior of ∆. This
relaxed assumption often holds in well-connected graphs1. ♦

Remark 4.4. Notice that Theorem 4.2 is only applicable to full-potential games. How-
ever, this class of games arises in a large number of applications including resource
allocation problems and congestion games [134]. ♦

Once the stability analysis for the DRD and the DSD have been presented, the

stability of the equilibrium p? ∈ NE(f) for the DPD is presented in Theorem 4.3.

Theorem 4.3. Let f be a continuously differentiable stable game, let p? ∈ NE(f), and
let ṗ be the distributed projection dynamics (4.5). If Assumptions 4.1 and 4.2 hold, then
p? is asymptotically stable.

Proof. Consider the pairwise comparison protocol %ij = [fj(p) − fi(p)]+, and define
%ij = ϕ(fj(p)− fi(p)), where ϕ(·) = [·]+ (where max(0, ·) = [·]+ as in Table 2.1). Then,
consider the Lyapunov function candidate:

V (p) =
∑
i∈S

∑
j∈S

aij

∫ fj(p)−fi(p)

0
ϕ(s)ds.

Since ϕ : R → R≥0 is increasing on [0,+∞) and G is connected, then the function
V (p) > 0, for all p 6= p?. Additionally, V (p?) = 0 since fj(p

?) = fi(p
?), for all i, j ∈ S.

Moreover, notice that

∂V (p)

∂p`
=
∑
i∈S

∑
j∈S

aij

(
∂fj(p)

∂p`
− ∂fi(p)

∂p`

)
ϕ(fj(p)− fi(p))

=
∑
i∈S

∑
j∈S

aijϕ(fj(p)− fi(p))
∂fj(p)

∂p`
−
∑
j∈S

∑
i∈S

ajiϕ(fi(p)− fj(p))
∂fj(p)

∂p`
.

1
A graph is considered to be well connected if the connectivity of the graph does not depend on few

nodes, e.g., a path graph is not well connected since the removal of any node involving two edges would
disconnect the graph (connectivity relies on n − 2 nodes), whereas a complete graph is considered well
connected since the removal of a node does not imply the disconnection of the graph (connectivity does
not depend on any node).
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Taking into account that aij = aji, it yields

∂V (p)

∂p`
=

∑
i∈S

∑
j∈S

aji(fj(p)− fi(p))
∂fj(p)

∂p`

=
∑
j∈S

∂fj(p)

∂p`

∑
i∈Nj

(fj(p)− fi(p)).

According to (4.5), notice that
∑
i∈Nj

(fj(p)− fi(p)) = ṗj , where ṗj is the jth element of

the distributed projection dynamics ṗ. Hence,

∂V (p)

∂p`
=
∑
j∈S

ṗj
∂fj(p)

∂p`
. (4.7)

Therefore, the time derivative of the Lyapunov function is

V̇ (p) = (∇V (p))> ṗ

= ṗ>Df(p)ṗ,

where ṗ>Df(p)ṗ ≤ 0 since f is stable.

Remark 4.5. As was stated in the proof of Theorem 4.2, the fact that a Nash equi-
librium p? belongs to int∆ implies that all the fitness functions reach the same value,
i.e., fi(p

?) = fj(p
?), for all i, j ∈ S. Therefore, the results given in Theorems 4.2 and

4.3 are related to the contributions reported in the literature on consensus in multi-agent
networks (e.g., see [91], [109], [127])1. An essential difference is that Theorems 4.2 and
4.3 show a direct relationship between game-theoretic properties and Lyapunov stability
of a population game under distributed dynamics. ♦

The connectivity condition of the graph G in Theorems 4.2 and 4.3 is sufficient for

Nash equilibrium stability. Regarding this fact, it is interesting to study if this condition

is also necessary. The following proposition gives insights on this issue.

Proposition 4.2. Assume that the population game f has a unique Nash equilibrium,
which is in the interior of the simplex ∆, i.e., p? ∈ int∆. Let ṗ be the distributed mean
dynamics (4.1). If p(t) asymptotically converges to p?, for all p(0) ∈ int∆, then the
graph G is connected.

Proof. The proof is developed showing the contrapositive. Assume that G is non-
connected. The graph G can be expressed as the union of r ≥ 2 connected compo-
nents (maximal connected sub-graphs) denoted by G` = (S`, E`), where ` = 1, . . . , r,

1
In the consensus problem, it is desired to achieve the agreement among different variables, e.g.,

p
?
i = p

?
j , for all i, j ∈ {1, . . . , n}, objective that can be achieved taking advantage of the convergence

result when p
? ∈ int∆, i.e., fi(p

?
) = fj(p

?
) under the population-game framework.
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i.e., G =
⋃r
`=1 G

`. Using the arguments in the proof of Theorem 4.1, it can be con-
cluded that, under the distributed mean dynamics,

∑
i∈S` pi(t) =

∑
i∈S` pi(0), for all

` = 1, . . . , r, and for all t ≥ 0. Take two connected components G1 and G2 of the graph
G. Furthermore, take the following initial condition:

pi(0) =


p?i + ε

|S1|
if i ∈ S1,

p?i − ε

|S2|
if i ∈ S2,

p?i otherwise,

where i ∈ S, and ε > 0. Notice that, for small values of ε, p(0) ∈ int∆ since p? ∈ int∆.
Under this initial condition, it is not possible that p(t) converges to the unique Nash
equilibrium p? since

∑
i∈S1 pi(t) =

∑
i∈S1 pi(0) >

∑
i∈S1 p

?
i , for all t ≥ 0.

Therefore, connectivity of G is required to guarantee convergence to the Nash equi-

librium from any initial condition inside the simplex ∆. However, this condition might

not be necessary if the initial conditions p(0) are constrained satisfying an extra condi-

tion as it is explained next. For instance, suppose that the graph G in the population

game is non-connected. Moreover, G is composed of r connected components (maximal

connected sub-graphs) denoted by G` = (V`, E`), where ` = 1, . . . , r, i.e., G =
⋃r
`=1 G

`.

Then, it can be shown (following the same reasoning as in proof of Proposition 4.2)

that the equilibrium point p? ∈ int∆ is asymptotically stable if
∑

i∈S` p
?
i =

∑
i∈S` pi(0),

for all ` = 1, . . . , r. Consequently, in this case, the connectivity condition of G is not

necessary.

4.2.3 Solving Distributed Constrained Optimization Problems

First, the following distributed optimization problem is proposed as an illustrative ex-

ample

maximize V (p) := −p>p + b>p, (4.8a)

subject to

50∑
i=1

pi = 1, (4.8b)

pi > 0, ∀i = 1, . . . , 50, (4.8c)

where p ∈ R50
≥0 is the vector of decision variables, and b ∈ R50 is a constant vector

of constants, whose entries are given by bi = 2i
1275 , i.e., b = 1

1275 [2 4 ... 100]>.

Each decision variable is managed by a node in a network. Furthermore, information
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constraints given by the graph shown in Figure 4.3 are imposed. This graph is obtained

by following the Erdös–Rényi model (which is the simplest model of several kind of social

and biological networks [23]) with edge generation probability equal to 0.01. Besides, a

path connecting all nodes is added to guarantee that the generated graph is connected.

The information constraint implies that the ith node only has information about the

state of its neighbors.
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Figure 4.3: Non–complete graph for a distributed optimization illustrative example
(taken from [9]).

In order to solve the problem in (4.8), a full-potential game f(p) =
[
∂V
∂p1

. . . ∂V
∂p50

]>
is defined (i.e., the fitness functions correspond to the marginal utilities) and the dis-

tributed population dynamics derived in Section 4.2 are applied. Notice that all nodes

satisfy the information constraints (this fact is not possible by using the classic pop-

ulation dynamics). Results are shown in Figure 4.4 considering an initial condition

pi(0) = 1
50 , for all i = 1, . . . , 50. The first and fourth row of Figure 4.4 show that

p(t) satisfies the problem constraints for all time, i.e., pi(t) remains non-negative, for

all i = 1, . . . , 50; and
∑50

i=1 pi(t) = 1. Furthermore, the third row of Figure 4.4 shows

that all distributed dynamics increase the objective function V (p). However, only DRD,

DSD, and DPD reach the optimum value (which are depicted in dashed-red line). Ac-

cording to the second row of Figure 4.4, DRD, DSD, and DPD equalize the values of

fitness functions in steady state, i.e., these dynamics converge to a Nash equilibrium.

This behavior is consistent with the results stated in Theorems 4.2 and 4.3 since V (p)

76



Chapter 4. Distributed Predictive Control Using Population Games

p
f(

p
)

V
(p

)

time [s] time [s] time [s] time [s]
Smith Replicator Projection Logit (η = 0.005)

Figure 4.4: Evolution of states, fitness functions and full-potential function under differ-
ent distributed population dynamics (taken from [9]): states (1st row), fitness functions
(2nd row), objective function (3rd row).

corresponds to a strictly concave potential function, i.e., f is a full-potential and stable

game. Moreover, convergence time varies from one dynamic to another. DLD show the

fastest time response while the convergence of DRD is the slowest.

4.3 DMPC Design

In this section, a DMPC controller is designed by using the distributed population

dynamics presented in Section 4.2 (in this regard, the distributed population dynamics

collaborate in the design of the DMPC taking advantage of their distributed features and

stability properties). Due to the fact that there are already many existing approaches

in the design of this type of controllers, some differences are pointed out with respect to

some methods found in the literature.

DMPC has been extensively studied in recent years (see [79] for a comprehensive
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review). Two main groups of DMPC techniques are distinguished: those that require a

centralized coordinator (e.g., ADMM based techniques [25]), and those that are fully dis-

tributed. The proposed approach in this chapter falls in the second group, which is more

suitable for applying in problems involving low-bandwidth communications. Among fully

distributed methods, there are a variety of approaches. One of the most employed is the

one based on distributed ADMM (D-ADMM), which is a version of the ADMM technique

that eliminates the need of a centralized coordinator. This approach was first proposed

in [92] and it is possible to find several extensions in the literature (e.g., [34]). Although

D-ADMM-based techniques are flexible and efficient, they require more complex com-

munications for solving the problem addressed in this section than the communications

needed by the proposed approach with population games. This advantage of the method

proposed in this section comes from the fact that each node in D-ADMM handles a set

of manipulated variables while in the proposed approach introduced in this chapter, each

node handles only a single variable. Therefore, the computational operations required

by each node are also simplified. Other methods based on cooperative control have also

been proposed in the literature to address DMPC problems, e.g., [142]. Cooperative-

control-based methods deal with dynamically-coupled plants. However, they generally

do not consider coupled constraints on control inputs as is the case of the formulation

developed in this section. Some extensions of cooperative DMPC capable to deal with

coupled constraints have been reported. However, they either require that each agent

has complete information of the constraints [45] or need a centralized agent at some step

of the algorithm [148]. Regarding the plug-and-play features in non-centralized MPC

controllers, the main challenge consists in reducing the amount of required modifications

over the design when plugging in or unplugging sub-systems from the whole system. For

instance, in [129], when sub-systems are added or removed, the distributed plug-and-

play solution requires to redesign a certain number of controllers. Additionally, in this

chapter it is assumed that sub-systems get plugged in and unplugged in an off-line man-

ner. In [130], before the modification is made by plugging in or unplugging sub-systems,

the feasibility should be verified. Moreover, when a new sub-system i is connected to

a sub-system j, then the jth controller should be redesigned. Likewise, the plug-and-

play feature presented in [163] implies the modification of local control laws when it is

desired to plug in or unplug sub-systems. Also, it is assumed that the modification is

notified previously to the corresponding neighborhood by a request message. Differently,
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G

G̃

Figure 4.5: Example of three sub-systems m = 3, where u1 ∈ R3, u2 ∈ R2, and u3 ∈ R5,
i.e., nu,1 = 3, nu,2 = 2, and nu,3 = 5. Then, n =

∑m
j=1 nu,j = 10.

the advantage of the plug-and-play feature of the proposed method in this chapter is

that it does not require to modify any of the existing local controllers. In addition, the

plug-and-play can be performed in an on-line manner.

4.3.1 Control Problem Statement

Consider a large-scale system composed by m controllable sub-systems that are con-

nected by a communication network. The topology of the communication network is

given by an undirected and connected graph denoted by G̃ = (S̃, Ẽ , Ã). Let S̃ be the set

of nodes that represents the m sub-systems, Ẽ = {(i, j) : i, j ∈ S̃} the set of links rep-

resenting the available communication and/or information sharing among sub-systems,

Ã is the adjacency matrix, and Ñi = {j : (i, j) ∈ Ẽ} is the set of neighbors of the node

i ∈ S̃. Notice that in general, the graph G 6= G̃, since G̃ defines the graph representing

the system structure of m sub-systems, whereas G represents the graph topology for all

the control inputs within the system (see for example Figure 4.5).

Each controllable sub-system has a linear time-invariant discrete dynamics given by

xi,k+1 = Ad,ixi,k + Bd,iui,k, (4.9)

where k ∈ Z≥0 denotes the discrete time step, i ∈ S̃ = {1, ...,m} is the sub-system index,

xi ∈ Rnx,i denotes the system states vector, ui ∈ Rnu,i denotes the control inputs vector

of the ith sub-system, and matrices Ad,i ∈ Rnx,i×nx,i and Bd,i ∈ Rnx,i×nu,i have constant

elements. The optimization problem behind the MPC controller, denoted by PMPC, can
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be stated as follows:

minimize
ui,k|k,...,ui,k+Hp−1|k, ∀i=1,...,m

Jk =

m∑
i=1

Jfi (xi,k+Hp|k

)
+

Hp−1∑
j=0

J `i
(
xi,k+j|k,ui,k+j|k

) ,

(4.10a)

subject to

xi,k+1+j|k = Ad,ixi,k+j|k + Bd,iui,k+j|k, ∀i ∈ S̃, j ∈ [0, Hp] ∩ Z≥0, (4.10b)

xi,k+j|k ∈ Xi, ∀i ∈ S̃, j ∈ [0, Hp] ∩ Z≥0, (4.10c)

ui,k+j|k ∈ Ui, ∀i ∈ S̃, j ∈ [0, Hp − 1] ∩ Z≥0 (4.10d)
m∑
i=1

1
>
nu,i

ui,k+j|k ≤ π, ∀j ∈ [0, Hp − 1] ∩ Z≥0 (4.10e)

The sets Xi , {xi ∈ Rnx,i : xi ≤ xi ≤ x̄i}, and Ui , {ui ∈ Rnu,i : ui ≤ ui ≤ ūi}.
Moreover, vectors xi and x̄i determine the minimum and maximum state bounds of

the ith sub-system, respectively, and ui and ūi determine the minimum and maximum

control input bounds, respectively. The value of π ∈ R>0 determines the total available

resource as an energy constraint for the whole system. The cost function Jk in (4.10)

penalizes the state error and the magnitude of the control inputs for all sub-systems

over the prediction horizon Hp ∈ Z>0. The cost function at time instant k to minimize

in the optimization problem behind the MPC controller is denoted by Jk. Moreover the

cost function throughout the prediction horizon for the ith sub-system is denoted by J `i ,

whereas the terminal cost corresponding to the ith sub-system is denoted by Jfi . The

terms in the cost function Jk of the optimization problem (4.10) are of the following

form [64][76]:

J `i
(
xi,k,ui,k, ri,k

)
= ‖xi,k − ri,k‖2Qi

+ ‖ui,k‖2Ri
,

Jfi (xi) =

{
Jci (xi) , if xi ∈ X fi ,
πci , if xi /∈ X fi ,

(4.11)

where Qi ∈ Rnx,i×nx,i is a positive semi-definite weighting matrix related to the system

states, and Ri ∈ Rnu,i×nu,i is a positive definite weighting matrix related to the control

inputs. Vector ri,k is the reference for the ith sub-system. The function Jci is continuous

and Jci (xi) ≥ 0, for all xi ∈ Xi, and the set X fi = {xi ∈ Xi : Jci (xi) ≤ πci }. Moreover,

the steady state of the system is given by xsi ∈ X fi . Consequently, Jfi is also continuous.
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For instance, one selection may be Jci (xk) = ‖xi,k − ri,k‖2Vi
, where Vi ∈ Rnx,i×nx,i is

a positive semi-definite weighting matrix related to the state error at the prediction

horizon.

Notice that if constraints depending on the reference signals are added to the opti-

mization problem in (4.10), then the terminal cost in (4.11) can be changed, and some

claims about the steady state xsi can be made. There are two possible options in order

to incorporate these type of constraints:

• Consider the function Jci (xk) = ‖xi,k − ri,k‖2Vi
, and a terminal constraint given

by ‖xi,k+Hp|k − ri,k+Hp|k‖
2
Vi
≤ πci . In this case, if the problem (4.10) is feasible,

then ‖xsi−ri,k+Hp|k‖
2
Vi
≤ πci and the terminal cost is Jfi

(
xi,k+Hp|k

)
= ‖xi,k+Hp|k−

ri,k+Hp|k‖
2
Vi

, which corresponds to an MPC controller with terminal-set constraint.

• Considering the function Jci (xk) = ‖xi,k − ri,k‖2Vi
and a terminal constraint given

by ‖xi,k+Hp|k − ri,k+Hp|k‖
2
Vi

= 0, then if the problem (4.10) is feasible, it follows

that xsi = ri,k+Hp|k, which corresponds to an MPC controller with terminal-point

constraint.

The control sequence along Hp is denoted as in (3.3a)

ûk ,
(
uk|k,uk+1|k, ....,uk+Hp−1|k

)
,

and if the optimization problem is feasible, there exists an optimal control sequence

û?k ,
(
u?k|k,u

?
k+1|k, ....,u

?
k+Hp−1|k

)
that minimizes the cost Jk and that generates an optimal trajectory as in (3.3b)

x̂k ,
(
xk+1|k,xk+2|k, ....,xk+Hp|k

)
.

The optimal control input that is applied to the system is denoted by uMPC,k = u?k|k.

Prior to presenting the stability analysis of the population-games-based DMPC con-

troller, some assumptions are considered in order to define the framework of the proposed

scheme. Therefore, it is assume that there exist values for Jfi : Xi → R, and πci such

that assumptions are hold. First, consider the basic stability assumption stated in [125].
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Assumption 4.3. For each state vector xi,k ∈ X fi , there exists a control input ui ∈ Ui
such that xi,k+1 ∈ X fi under the system (4.9), i.e,

minimize
ui,k ∈Ui

{
Jfi
(
xi,k+1

)
+ J `i

(
xi,k,ui,k

)
: xi,k+1 ∈ X fi

}
≤ Jfi

(
xi,k
)
, (4.12)

where (4.12) holds for all xi,k ∈ X fi . ♦

Besides, according to [125] Assumption 4.3 implies the invariance of the set X fi in

Assumption 4.4.

Assumption 4.4. The set X fi is control invariant for the system (4.9). Consequently,

if xi,k ∈ X fi , then xi,k+1 ∈ X fi . ♦

Assumption 4.5. It is assumed that, in case there is not enough resource to achieve the
established set-points, the system in (4.9) admits a steady state with the model (4.10b)
and constraints (4.10c)-(4.10e). ♦

Notice that if Ad,i in (4.9) does not have eigenvalues at unity, then any control input

ui,k ∈ U admits a steady state. However, Assumption 4.5 is stated since if Ad,i has an

unitary eigenvalue then the system (4.9) and constraints (4.10c)-(4.10e) might not admit

a steady state [124].

Furthermore, due to the fact that the optimization problem (4.10) defines a limited

resource problem, it is possible that a sub-system reaches a steady-state value different

from the desired reference such that the constraint (4.10e) is active. It is shown that,

under this situation, X fi is an invariant set according to Remark 4.6.

Remark 4.6. For the CMPC controller with limited available resource π ∈ R>0, suppose
that a sub-system reaches a steady state at a time instant k ∈ Z≥0 denoted by xsi,k. Notice
that, if the steady state is achieved at the time instant k ∈ Z≥0, then xi,k+j = xsi using
the control law ui,k+j = u?i,k, for all j ∈ Z≥0. ♦

4.3.2 Topologies and Proposed Non-centralized MPC Control Design

The CMPC topology is composed by an MPC controller that collects the information

from all the sub-systems and then sends the corresponding control inputs according

to the solution of the optimization problem (4.10). In contrast, the topology for the
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DMPC controller with population dynamics implies a local MPC controller per sub-

system. Each local controller needs to solve a partial problem and then coordinates its

control signal by means of the DSD1 considering the constraint (4.10e).

If the constraint (4.10e) is omitted, then the optimization problem (4.10) can be

decoupled since dynamics of the sub-systems are decoupled as well as constraints (4.10b),

(4.10c), and (4.10d). Consequently, a local MPC controller for the ith sub-system is

designed by considering an optimization problem denoted by PLMPC as follows:

minimize
ui,k|k,...,ui,k+Hp−1|k

Ji,k = Jfi

(
xi,k+Hp|k

)
+

Hp−1∑
j=0

J `i
(
xi,k+j|k,ui,k+j|k

)
, (4.13)

subject to (4.10b), (4.10c), and (4.10d). At time instant k, these local MPC controllers

compute the optimal sequences û?i,k for all sub-systems i ∈ S̃, from which u?i,k is obtained.

In order to deal with the constraint (4.10e), a distributed full-potential game with DSD

is proposed taking advantage of the optimization problem form in (2.13) and Theorem

2.1. For simplicity, and without loss of generality, it is considered from now on that

each sub-system has only one control input, i.e., nu,i = 1, for all i ∈ S̃, then the optimal

control input computed by the local MPC controller of the sub-system i ∈ S̃ at time

instant k is denoted by u?i,k. The non-centralized scheme is shown in Figure 4.6. Since

(4.10e) is not an equality constraint, it is necessary to add a slack variable, denoted by

pn+1, to the game. This slack variable is treated as a new node added to the graph and

can be connected to any other arbitrary node. Additionally, its fitness function is chosen

as fn+1 = 0. The slack variable allows the controller to use less than the total available

resource when it is convenient.

Notice that the solution of the LMPC with nu,i = 1 for all i ∈ S̃, denoted as u?i,k,

is an input to the DSD, which computes in a distributed way the final optimal control

input p?i applied to the associated sub-system. Furthermore, the local MPC controller

supplies the bounds umin
i,k , u

max
i,k ∈ R for the corresponding control signal, such that the

problem (4.13) is feasible.

For an arbitrary number of control inputs, the bound umin
i,k ∈ Rnu,i is found with local

information by solving the optimization problem (4.13) with weights Qi = 0nx,i×nx,i

1
DSD have been selected to illustrate the methodology. However, any of the distributed population

dynamics can be used.
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Figure 4.6: Non-centralized MPC with distributed population dynamics scheme to solve
the problem in (4.10) (taken from [8]).

and Ri = Inu,i ; and the bound umax
i,k ∈ Rnu,i is similarly found with Qi = Inx,i and

Ri = 0nu,i×nu,i . Both problems are solved subject to (4.10b), (4.10c), and (4.10d).

Remark 4.7. Generally, the bounds ui and ūi in (4.10d) are different from umin
i,k and

umax
i,k , respectively. The values ui and ūi determine the physical constraints for the control

inputs, whereas umin
i,k and umax

i,k determine the bounds of control inputs that guarantee
feasibility of the optimization problem (4.13). ♦

A strictly-concave full-potential function is proposed for the distributed population

dynamics. This function corresponds to the objective function of Problem (2.13), which

is denoted by PDSD. For simplicity in the notation, the discrete-time sub-index for the

control input u?i , and for bounds umin
i and umax

i , is omitted. The full-potential function

is written as follows [9]:

V (p) = −
n∑
i=1

wi(u
?
i − pi)2, (4.14)

where wi assigns a weighting factor to each control input, e.g., if wi = |xi − ri|/ri, for

all i ∈ S, then more priority is assigned to those sub-systems with higher percentage

error. Notice that this selection for wi requires that ri > 0, for all i ∈ S, and alternative

potential functions V (p) can be used satisfying that their maximum are obtained when

u?i = pi. Consequently, the fitness functions for the game are given by f(p) = ∇V (p),

i.e., fi(pi) = 2wi(u
?
i − pi). Note that this methodology does not require full information

of all control inputs and/or all states of sub-systems since:

i) the graph G representing the information interaction among sub-systems and all

control inputs is a non-complete graph, and
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ii) the proposed fitness functions are decoupled, i.e., fi depends only on information

of the ith sub-system.

In order to satisfy the feasible region of the optimization problem (4.10), the DSD are

modified as follows:

ṗi =
∑
j∈Ni

(
pj − umin

j

) [
fi(p)− fj(p)

]
+
−
(
pi − umin

i

) ∑
j∈Ni

[
fj(p)− fi(p)

]
+
, ∀i ∈ S.

(4.15)

Remark 4.8. It is known that umin
i ≤ u?i ≤ umax

i . There are two possible cases:

i) when there is enough resource in the system, p?i = u?i and the final control input
belongs to the feasible region, and

ii) when there is not enough resource in the system, then p?i < u?i and the term pi−umin
i

in (4.15) guarantees that the evolution of pi will never be under the value of umin
i ,

due to the fact that
∑

j∈Ni

(
pj − umin

j

) [
fi(p)− fj(p)

]
+
≥ 0 in (4.15).

In conclusion, the final control input p?i belongs to the feasible region of the optimization
problem in (4.10). space ♦

Each sub-system has a local MPC controller in which the optimization problem (4.13)

is solved every k ∈ Z≥0, then there is a set of n controllers generating an optimal control

input u?i,k for all i ∈ S. This optimal control input (with respect to (4.13)) provides a

fitness function fi(pi) to the DSD that compute, in a distributed way, the final control

input p?i satisfying the constraint (4.10e), and the same procedure can be applied for the

whole optimal sequence of control inputs.

Remark 4.9. In order to initialize the DSD, the initial conditions at each iteration
should belong to the feasible region supplied also by the local MPC controller. To estab-
lish this initial condition, an algorithm for solving the associated constraint satisfaction
problem (CSP) should be implemented [39]. Moreover, notice that due to the fact that not
all sub-systems can communicate with each other, the CSP algorithm should be performed
in a distributed manner. ♦

Figure 4.7 shows the flow diagram of the proposed population-games-based DMPC

with DSD. The DSD require u?i , for all i ∈ S, to set the fitness functions in the game.

The DSD also require the limits [umin
i , umax

i ], for all i ∈ S, in order to guarantee that the

vector of final control inputs p? belongs to the feasible regions, i.e., umin
i ≤ p?i ≤ umax

i ,

for all i ∈ S. Moreover, the CSP must be solved in a distributed way since there is not

full information in the distributed configuration.
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LOCAL
MPC i

Distributed
CSP

Figure 4.7: Flow diagram of the proposed methodology with nu,i = 1, for all sub-systems
(taken from [8]).

4.3.3 Plug-and-play Property

One of the advantages of the distributed control design with population dynamics is the

reduction of information dependence. Furthermore, there is another relevant advantage

associated to the proposed scheme. The methodology consists in dividing the original

problem into different sub-problems whose solutions are coordinated to obtain a final

control input. In this regard, each control problem associated to each sub-system is

independent from the others.

Now, suppose that a new sub-system is added to the initial problem (4.10), i.e., that

the number of sub-systems is now n + 1, and then only sum upper limits involved in

(4.10a) and (4.10e) should be modified in the MPC optimization problem. Notice that for

this new optimization problem, the decoupled set of optimization problems is the same

as in (4.13), including the optimization problem associated to the sub-system n+ 1, and

the bounds umin
n+1 and umax

n+1 can be found without requiring information from the other

sub-systems. Finally, a new node is added to the graph G and the CSP computes a

feasible initial condition for the DSD.

Consequently, the proposed control scheme shows the plug-and-play feature since it

is not necessary to modify previously already designed parts of the MPC controller in

order to add a new sub-system to the problem.

Remark 4.10. The same analysis may be performed for the removal of sub-systems
to the problem, but it should be taken into account that the graph G cannot become
disconnected after this modification. ♦
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4.3.4 Control Convergence Cases

Once the methodology has been presented, this subsection is dedicated to analyze two

possible cases that might occur when computing the optimal control input in a dis-

tributed way with the proposed methodology. Notice that the adjacency matrix A(p)

of the graph G(p) depends on the proportion of agents in the population game. Con-

sequently, when a constraint within the population-dynamics optimization problem is

active, i.e., pi = umin
i or pi = umax

i , this might cause the disconnection of the graph

(an element within the adjacency matrix A(p) becomes null). However, this fact also

depends on the topology of the graph G.

Case 1: u?i > umin
i , for all i ∈ S. It is known that the optimal point p? ∈ int∆,

the graph G(p) is connected for all t since u? is an interior point of U , and Theorem 4.2

holds.

Case 2: u?i = umin
i , for some i ∈ S. The optimal control input u? is at the edge of

U , i.e., there is an active constraint. Consequently, the node associated to that decision

variable disappears and G(p) might get disconnected depending on its topology. Then,

each problem in each sub-complete graph G′ ⊂ G(p) converges to an optimal solution,

and the global problem is solved getting a sub-optimal solution. However, an appropriate

design of redundant links might solve this issue.

4.3.5 Constraint Satisfaction Problem

As stated in Theorem 4.1, an important feature of the DSD given in (4.15) is that

they guarantee constraint satisfaction along the time provided that the initial condition

belongs to the feasible region of the considered problem. Therefore, a feasible initial

condition should be found in order to initialize the DSD, i.e., p(0) must satisfy the

following constraints:

umin
i ≤ pi(0) ≤ umax

i , (feasibility of the local MPC controller), (4.16a)

pn+1(0) ≥ 0, (positivity of the slack variable), (4.16b)

n+1∑
i=1

pi(0) = π, (resource constraint). (4.16c)
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The above requirements are not trivial since a distributed framework in which each node

of the network only has partial information of the whole problem is considered. This

section describes a method (inspired by the algorithm proposed in [49], where the node

counting has been presented, among several other applications that do not include the

CSP) that solves the CSP characterized by the constraints (4.16) in a distributed way.

The CSP is solved before applying the DSD.

First of all, consider the information available at each node: i) the ith node knows

its local bounds, i.e., umin
i and umax

i ; ii) it is assumed that the slack node knows the

available resource π; and iii) nodes can share information by using the communication

network that is given by the connected graph G. Assuming that there exists a vector

p(0) that satisfies the constraints in (4.16), a possible choice for p(0) is given as follows:

pi(0) = umin
i , ∀i ∈ S,

pn+1(0) = π − ξ, (4.17)

where ξ =
∑

i∈S u
min
i . Notice that this solution can be computed directly by using only

local information except for ξ. Therefore, the idea is that the (n + 1)th node obtains ξ

by means of a distributed algorithm. In order to do so, ξ is rewritten as the product of

the total number of nodes by the average of the minimum boundaries of nodes, i.e.,

ξ =
∑
i∈S

umin
i , (4.18)

= (n+ 1) mean(umin
1 , . . . , umin

n , 0),

where mean(·) denotes the arithmetic mean. Now, the original problem is divided into

two sub-problems: i) find the average of the lower bounds of nodes; and ii) find the total

number of nodes. Notice that each problem needs a distributed solution.

Finding the Average of the Lower Bounds of Nodes

The main idea is that the information of nodes about lower bounds propagates through

the network. For this purpose, an auxiliary variable ξmin
i ∈ R per node is defined, where

the sub-index i denotes that the variable is associated with the ith node. These variables

are initialized with the corresponding node lower bound as follows: ξmin
i (0) = umin

i , ∀i ∈
S, and ξmin

n+1(0) = 0. Notice that the arithmetic mean of the lower bounds of nodes is
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equal to the arithmetic mean of the initial conditions of the auxiliary variables defined

above, i.e.,

mean(umin
1 , . . . , umin

n , 0) = mean(ξmin
1 (0), . . . , ξmin

n+1(0)).

In order to calculate this quantity in a distributed way, a standard average consensus

algorithm as

ξ̇min
i =

∑
j∈Ni

(
ξmin
j − ξmin

i

)
, (4.19)

can be applied [109]. According to [109], if the communication network is described by

a connected graph, then ξmin
i

?
= mean(ξmin

1 (0), . . . , ξmin
n+1(0)), for all i = 1, . . . , n + 1,

where ξmin
i

?
is the steady-state value of ξmin

i . Thus, ξmin
i

?
= mean(umin

1 , . . . , umin
n , 0).

This implies that the (n + 1)th node is capable to obtain the required value by using

only local information.

Finding the Total Number of Nodes

The second problem is to locally compute the total number of nodes. In order to do

so, a similar procedure as in the previous problem is followed. Define another auxiliary

variable per node. Let ξci be the variable associated to the ith node. These new auxiliary

variables are initialized as follows: ξci (0) = 0, for all i ∈ S, and ξcn+1(0) = 1. The

above initialization values are important since their average is related to the required

information, i.e., mean(ξc1(0), . . . , ξcn+1(0)) = (n+ 1)−1. Thus, the same algorithm as in

(4.19) can be applied to compute the needed quantity in a distributed way, i.e.,

ξ̇ci =
∑
j∈Ni

(
ξcj − ξci

)
. (4.20)

Again, ξci
?

= mean(ξc1(0), . . . , ξcn+1(0)) = (n + 1)−1, for all i = 1, . . . , n + 1, in steady-

state. Therefore, the (n+ 1)th node can get the required quantity by taking (ξc ?n+1)−1.

Summarizing, the steady-state solutions of (4.19)-(4.20) are used to compute ξ in

(4.18), i.e., ξ = ξmin
i

?
/ξci

?
, and then this result is replaced in (4.17) in order to obtain

the required initial feasible point for the DSD. Notice that this procedure is performed

using only local information.
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4.4 Stability Analysis of Population-games-based DMPC

After having presented the proposed population-games-based DMPC controller, which

is composed of three different main stages, i.e., m local MPC controllers, a distributed

CSP, and a full-potential game with DSD, it is necessary to develop the stability analysis

for the proposed approach. The stability analysis of the population-games-based DMPC

is presented in Theorem 4.4.

Theorem 4.4. The system (4.9) is stabilized by the proposed population-games-based

DMPC controller with invariant region of attraction XAi =
{

xi ∈ Xi : Jci (x?i,k+Hp
) ≤ πci

}
,

for all the sub-systems i = 1, ...,m, and considering that

1. xi,0 ∈ Xi, for all the sub-systems i = 1, ...,m, and

2. Assumptions 4.3 and 4.4 hold for all the sub-systems i = 1, ...,m.

Furthermore, given a centralized MPC with parameters Qi, Ri, Vi, and references
ri, for all i = 1, . . . ,m, there is an equivalent population-games-based DMPC with pa-
rameters Q̂i,k = ψiQi, R̂i,k = ψiRi, V̂i,k = ψiVi, where ψi > 0 and [w1 . . . wnu,i ]

>
i =

B>d,iQ̂i,kBd,i + R̂i,k, for all i = 1, . . . ,m.

Proof. This proof is divided into two parts. First, it is shown that there exists a CMPC
whose solution is equivalent to the solution obtained with the proposed DMPC. Then,
the equivalence allows to derive stability conditions of the closed-loop system controlled
using the population-games-based DMPC.

First part: It is shown that there exists a relation between the prioritization of the MPC
controller in the cost function (4.10a), i.e., values of Qi, Vi, and Ri, with i = 1, ...,m,
and the prioritization of the DSD in the potential function, i.e., wi, with i = 1, ..., n,
where n =

∑m
j=1 nu,j (one weight wi for each control input since ui ∈ Rnu,i) such that

the optimal control input u? obtained from the solution of the centralized optimization
problem PMPC is the same as the optimal control input p? obtained from the multi-stage
distributed strategy through the optimization problems PLMPC and PDSD. For simplicity
and without loss of generality, a constant reference for each sub-system is considered,
i.e., ri,k = ri, for all k.

Consider the vectors Xi,k =
[
x>i,k+1|k x>i,k+2|k . . . x>i,k+Hp|k

]>
∈ Rnx,iHp , and

Ui,k =
[
u>i,k|k u>i,k+1|k . . . u>i,k+Hp−1|k

]>
∈ Rnu,iHp . Then, the prediction model

can be written as Xi,k = Ψixi,k|k + ΘiUi,k, and constraints of the form xi ≤ xi ≤ x̄i,
and ui ≤ ui ≤ ūi, may be compacted as ΞiUi,k ≤ ξi,k. In order to determine the cost

90



Chapter 4. Distributed Predictive Control Using Population Games

function in its matricial form, consider Φi = [r>i . . . r>i ]>, i.e.,

Jk =

m∑
i=1

Ji,k,

Ji,k =
(
Xi,k −Φi

)>
Q̃i

(
Xi,k −Φi

)
+ U>i,kR̃iUi,k.

Defining Ei,k = Φi−Ψixi,k|k, Gi,k = 2Θ>i Q̃iEi,k, and Hi = Θ>i Q̃iΘi + R̃i, the cost

function is written as1

Ji,k = U>i,kHiUi,k −U>i,kGi,k + E>i,kQ̃iEi,k.

Besides, consider the expression
1
>
nu,i

0
. . .

0 1
>
nu,i


︸ ︷︷ ︸

αi

Ui,k =


1
>
nu,i

ui,k|k
...

1
>
nu,i

ui,k+Hp−1|k

 .

1) The optimization problem PMPC behind the MPC controller is stated as follows:

minimize
Ui,k

Jk =
m∑
i=1

{
U>i,kHiUi,k −U>i,kGi,k + E>i,kQ̃iEi,k

}
, (4.21a)

subject to

ΞiUi,k ≤ ξi,k, ∀ i = 1, . . . ,m, (4.21b)
m∑
j=1

αjUj,k ≤ 1[Hp]π. (4.21c)

For the optimization problem in (4.21), the following Lagrangian function is defined:

J̄k =

m∑
i=1

{
Ji,k + µ>i,k

[
ΞiUi,k − ξi,k

]}
+ ε>k

 m∑
j=1

αjUj,k − 1[Hp]π

 ,
where µi, and ε are associated to the Lagrange multipliers. Then, the corresponding
KKT conditions for each sub-system are written as follows:

2HiU
?
i,k −Gi,k + µ>i,kΞi + ε>k αi = 0, (4.22a)

1
Notice that Ei,k is a constant known value at each iteration since Φi and Ψi are constant and the

current system state xi,k|k is also known for all i = 1, . . . ,m. Therefore, Gi,k is also constant at each
iteration.

91



Chapter 4. Distributed Predictive Control Using Population Games

ΞiU
?
i,k ≤ ξi,k, (4.22b)

m∑
j=1

αjU
?
j,k ≤ 1[Hp]π, (4.22c)

µ>i,k
[
ΞiU

?
i,k − ξi,k

]
= 0, (4.22d)

ε>k

 m∑
j=1

αjU
?
j,k − 1[Hp]π

 = 0, (4.22e)

µi,k, εk ≥ 0. (4.22f)

2) When the minimization of the costs functions for the sub-systems considers the
coupled constraint, more importance is assigned to those sub-systems with higher errors
and with more prioritization weights. However, when the coupled constraint is neglected,
the prioritization in the multi-objective cost function is lost. In order to take into account
this effect, an auxiliary weight ψi

−1 with ψi > 0 is considered at each decoupled Ji,k
for maintaining the original prioritization throughout the proof. Therefore, the cost
function corresponding to the local MPC controller is given by

Ji,k =
(
Xi,k −Φi

)>
ψ−1
i Q̃i

(
Xi,k −Φi

)
+ U>i,kψ

−1
i R̃iUi,k.

Notice that the addition of ψi
−1 does not modify the optimal point of Ji,k. Then, the

optimization problem behind the local MPC controllers PLMPC are stated as follows:

minimize
Ûi,k

Ji,k = Û>i,kĤiÛi,k − Û>i,kĜi,k + E>i,kQ̃iEi,k, (4.23a)

subject to

ΞiÛi,k ≤ ξi,k, (4.23b)

where Ĝi,k = 2Θ>i ψ
−1
i Q̃iEi,k, and Ĥi = Θ>i ψ

−1
i Q̃iΘi+ψ

−1
i R̃i (matrices Q̃i, and R̃i are

selected in a way that Θ>i ψ
−1
i Q̃iΘi+ψ

−1
i R̃i > 0 to ensure that Ĥ−1

i exists [77]). In order
to avoid confusion between the control inputs from the centralized MPC controller and
those from the local MPC controllers, the optimal output of the local MPC controller is
denoted by Û?

i . The Lagrangian function is written as follows:

J̄i,k = Ji,k + λ>i,k

[
ΞiÛi,k − ξk

]
,

where λi are associated to the Lagrange multipliers. Then, the corresponding KKT
conditions are written as follows:

2ĤiÛ
?
i,k − Ĝi,k + λ>i,kΞi = 0, (4.24a)

ΞiÛ
?
i,k ≤ ξi,k, (4.24b)

λ>i,k

[
ΞiÛ

?
i,k − ξi,k

]
= 0, (4.24c)

λi(k) ≥ 0. (4.24d)
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3) The variables of the optimization problem in the population dynamics are denoted
by qk. The related problem is solved by using the DSD, i.e., q?k is the Nash equilibrium of
the full-potential population game. Consider Pi,k = [q>i,k|k q>i,k+1|k . . . q>i,k+Hp−1|k]

>.

Moreover, due to the fact that the proportion of agents is constrained by umin
i,k ≤ qi,k ≤

umax
i,k , then the optimization problem given by the population dynamics PDSD is stated

as follows:

minimize
Pi,k

fk =
m∑
i=1

(
Pi,k − Û?

i,k

)>
Wi

(
Pi,k − Û?

i,k

)
, (4.25a)

subject to

ΞiPi,k ≤ ξi,k, for all i = 1, . . . ,m, (4.25b)
m∑
j=1

αjPj,k ≤ 1[Hp]π, (4.25c)

where the matrix Wi, for all i = 1, . . . ,m, is non-singular. For the optimization problem
in (4.25), the following Lagrangian function is defined:

f̄k =
m∑
i=1

{(
Pi,k − Û?

i,k

)>
Wi

(
Pi,k − Û?

i,k

)
+

θ>i,k

[
ΞiPi,k − ξk

]}
+ β>k

 m∑
j=1

αjPj,k − 1[Hp]π

 ,
where θi, and β are associated to the Lagrange multipliers. Then, the corresponding
KKT conditions, for all sub-systems i = 1, . . . ,m, are written as follows:

2WiP
?
i − 2WiÛ

?
i,k + θ>i,kΞi + β>k αi = 0, (4.26a)

ΞiP
?
i,k ≤ ξi,k, (4.26b)

m∑
j=1

αjP
?
j,k ≤ 1[Hp]π, (4.26c)

θ>i,k
[
ΞiP

?
i,k − ξi,k

]
= 0, (4.26d)

β>k

 m∑
j=1

αjP
?
j,k − 1[Hp]π

 = 0, (4.26e)

θi,k,βk ≥ 0. (4.26f)

From (4.26a), it is obtained that

Û?
i,k = P?

i +
1

2
W−1

i θ
>
i,kΞi +

1

2
W−1

i β
>
k αi. (4.27)
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Now, replacing (4.27) in (4.24a), it is obtained

2ĤiP
?
i − Ĝi,k +

(
ĤiW

−1
i θ

>
i,k + λ>i,k

)
Ξi + ĤiW

−1
i β

>
k αi = 0.

Notice that if the weights for the local MPC controllers (denoted by Q̂i, R̂i, and V̂i) in
the optimization problem are selected to be: Q̂i = ψiQi, R̂i,k = ψiRi, and V̂i,k = ψiVi,

for all i = 1, . . . ,m, then Ĥi = Hi, and Ĝi,k = Gi,k. In addition, if Wi is selected to be

Ĥi, for all i = 1, . . . ,m, then it follows that

2HiP
?
i −Gi,k +

(
θi,k + λi,k

)>
Ξi + β>k αi = 0,

this condition is the same as (4.22a), and P?
i satisfies constraints (4.26b), and (4.26c).

Therefore, the equivalence with the solution of the centralized optimization problem
PMPC is shown. Due to the fact that only the first control input may be applied to the
system, then it yields [w1 . . . wmi ]

>
i = B>d,iQ̂i,kBd,i + R̂i,k, for all i = 1, . . . ,m.

Second part: Now, it is considered the optimal cost function of the CMPC controller
as a Lyapunov function and it is proceed as in [64]. The cost is denoted by Jk =∑m

i=1 Ji,k, and the optimal cost is denoted by J?k =
∑m

i=1 J
?
i,k. At time instant k,

û?i,k =
(
u?i,k|k, . . . ,u

?
i,k+Hp−1|k

)
is the optimal control sequence for the ith sub-system.

Similarly, the optimal control sequence at time instant k + 1 for the ith sub-system is

given by û?i,k+1 =
(
u?i,k+1|k+1, . . . ,u

?
i,k+Hp|k+1

)
. Furthermore, there are feasible control

sequences given by

ûi,k =
(
u?i,k|k,u

?
i,k+1|k+1, . . . ,u

?
i,k+Hp−1|k+1

)
, and,

ûi,k+1 =
(
u?i,k+1|k,u

?
i,k+2|k, . . . ,u

?
i,k+Hp−1|k,uiMPC,k+Hp|k

)
.

The four previously introduced control sequences generate the costs J?k , J?k+1, Jk, and
Jk+1, respectively. Then,

J?
i,k = Jf

i

(
xi,k+Hp|k

)
+

Hp−1∑
j=0

J`
i

(
xi,k+j|k,u

?
i,k+j|k

)
,

J?
i,k+1 = Jf

i

(
xi,k+Hp+1|k+1

)
+

Hp∑
j=1

J`
i

(
xi,k+j|k+1,u

?
i,k+j|k+1

)
,

Ji,k = Jf
i

(
xi,k+Hp|k+1

)
+ J`

i

(
xi,k|k,u

?
i,k|k

)
+

Hp−1∑
j=1

J`
i

(
xi,k+j|k+1,u

?
i,k+j|k+1

)
,

Ji,k+1 = Jf
i

(
xi,k+Hp+1|k

)
+

Hp−1∑
j=1

J`
i

(
xi,k+j|k,u

?
i,k+j|k

)
+ J`

i

(
xi,k+Hp|k,u

?
iMPC,k+Hp|k

)
.
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Notice that J?k ≤ Jk, and J?k+1 ≤ Jk+1. Consequently J?k+1 + J?k ≤ Jk+1 + Jk, and
J?k+1 − Jk ≤ Jk+1 − J?k . The terms in the aforementioned inequality are

J?k+1 − Jk =
m∑
i=1

{
J `i

(
xi,k+Hp|k+1,u

?
i,k+Hp|k+1

)
− J `i

(
xi,k|k,u

?
i,k|k

)
+

Jfi

(
xi,k+Hp+1|k+1

)
− Jfi

(
xi,k+Hp|k+1

)}
,

Jk+1 − J?k =
m∑
i=1

{
J `i

(
xi,k+Hp|k,u

?
iMPC,k+Hp|k

)
− J `i

(
xi,k|k,u

?
i,k|k

)
+Jfi

(
xi,k+Hp+1|k

)
− Jfi

(
xi,k+Hp|k

)}
.

Replacing in the inequality and removing the term J `i
(
xi,k|k,u

?
i,k|k

)
at both sides, it

follows that:
m∑
i=1

{
J `i

(
xi,k+Hp|k+1,u

?
i,k+Hp|k+1

)
+ Jfi

(
xi,k+Hp+1|k+1

)
− Jfi

(
xi,k+Hp|k+1

)}
(4.28)

≤
m∑
i=1

{
J `i

(
xi,k+Hp|k,u

?
iMPC,k+Hp|k

)
+ Jfi

(
xi,k+Hp+1|k

)
− Jfi

(
xi,k+Hp|k

)}
≤ 0, (according to Assumption 4.3).

The following steps of the proof are developed as the analysis presented in [64], i.e.,
suppose first that xi,k+Hp|k+1 = xsi , then the optimality implies that xi,k+Hp+1|k+1 = xsi

and it is concluded that xi,k+Hp+1|k+1 ∈ X fi . The other option occurs when xi,k+Hp|k+1 6=
xsi , in which case, using (4.28) and the fact J `i

(
xi,k+Hp|k,u

?
i,k+Hp|k

)
> 0, then

Jfi

(
xi,k+Hp+1|k+1

)
< Jfi

(
xi,k+Hp|k+1

)
, ∀ i = 1, . . . ,m.

The only possibility to satisfy the strict inequality, and according to (4.11), is that

Jfi

(
xi,k+Hp+1|k+1

)
= Jci < πci , and Jfi

(
xi,k+Hp|k+1

)
= πci , for all i = 1, . . . ,m. This fact

implies that, according to the definition of the set XAi =
{

xi,k ∈ Xi : Jci (xi,k+Hp|k) ≤ π
c
i

}
,

then xi,k+1|k+1 ∈ XAi . Hence, it is concluded that XAi is an invariant set. In or-
der to prove the stability, it is recalled the fact that J?k+1 ≤ Jk+1, which implies that
J?k+1 − J?k ≤ Jk+1 − J?k , i.e.,

J?i,k+1 − J?i,k ≤
Jfi

(
xi,k+Hp+1|k

)
− Jfi

(
xi,k+Hp|k

)
+ J `i

(
xi,k+Hp|k,u

?
iMPC,k+Hp|k

)
− J `i

(
xi,k|k,u

?
i,k|k

)
,

for all i = 1, . . . ,m. Using Assumption 4.3, it is concluded that

J?k+1 − J?k ≤−
m∑
i=1

J `i
(
xi,k|k,u

?
i,k|k

)
.
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. . .
1 2 3 10

(a) (b)

Figure 4.8: Communication topology for the CSTRs case study. (a) The smaller possible
connected graph representing a critic situation, and (b) The case when unplugging sub-
systems 1 and 2.

The cost function J?k is a decaying sequence. Hence the system (4.9) controlled by
using a CMPC controller is stable. As a conclusion, according to the first part of the
proof, there exists a CMPC controller whose solution is equal to the solution computed
by the proposed population-games-based DMPC controller. Moreover, since the system
controlled with the equivalent CMPC controller is stable according to the second part
of the proof, then the system controlled with population-games-based DMPC is also
stable.

Corollary 4.1. Given a CMPC with parameters Qi = Qj, Vi = Vj, and Ri = Rj,
for all i, j = 1, . . . ,m, the equivalent population-games-based DMPC is obtained with
the parameters Q̂i,k = ψi,kQi, R̂i,k = ψi,kRi, V̂i(k) = ψi,kVi, and [w1 . . . wmi ]

>
i =

B>d,iQ̂i,kBd,i + R̂i,k, with ψi,k = (ri − xi,k|k)
>(ri − xi,k|k), for all i = 1, . . . ,m. ♦

4.5 Case Study: Continuous Stirred Tank Reactor

The considered case study is an industrial process that comprises m = 10 continu-

ously stirred tank reactors (CSTR) with constraints over the information interactions

for the DMPC as presented in Figure 4.8(a). The vector of states for each sub-system

is xi = [Ci Ti]
>, where Ci is the concentration, and Ti is the temperature inside the

CSTR, and the control input is given by ui = qi, where qi corresponds to the inflow. This

is a proof-of-concept problem to illustrate the performance of the proposed control ap-

proach. Moreover, the methodology is scalable to any higher dimension, i.e., for systems

composed of any number of sub-systems. The control objective here is to maintain the

concentrations [1 0]x1, [1 0]x2, [1 0]x3, . . . , [1 0]x9, [1 0]x10 as close as possible to

the references r1 = 0.15, r2 = 0.16, r3 = 0.17, . . . , r9 = 0.23, r10 = 0.24 mol/l, respec-

tively. Additionally, the system has a limited total inflow resource for the control inputs

q1, q2, q3, . . . , q10 given by π = 1500 l/min. The physical constraints for the inflows are

given by the range [ui, ūi] = [0, 300] (in l/min). It is assumed that there are local con-

trollers guaranteeing that inflows achieve the values determined by the MPC controller,
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i.e., the proposed MPC controllers presented in this chapter compute the references to

local controllers. The discrete-time linear models with a sampling time τ = 0.1 min, for

the first CSTR around the operational point given by C ′1 = 0.0823 mol/l, T ′1 = 442 K,

and q′1 = 100 mol/l is written as follows:

x1,k+1 =

[
0.33 1.29× 10−5

0.61 2.45× 10−5

]
x1,k +

[
5.49× 10−4

1.95× 10−4

]
u1(k),

y1,k =

[
1 0
0 1

]
x1,k.

All the sub-systems have different model given by Ad,j = Ad,11.01j, Bd,j = Bd,11.01j,

for all j = 2, . . . , 10. On the other hand, the weights for the CMPC controller are given

by Qi = [10000 0; 0 0], and Ri = 1, for all i = 1, . . . , 10.

Five different scenarios are presented, all of them with prediction horizon Hp = 5,

i.e.,

• Scenario 1: CMPC with weights Qi and Ri, and without resource constraint,

i.e.,
∑10

i=1 ui ≤ +∞.

• Scenario 2: CMPC with weights Qi and Ri, and with resource constraint, i.e.,∑10
i=1 ui ≤ 1800.

• Scenario 3: Population-games-based DMPC with weights corresponding to The-

orem 4.4, i.e., Q̂i,k = ψiQi, R̂i,k = ψiRi, for all i = 1, . . . , 10, with the weights

in the population dynamics as in Theorem 4.4, i.e., wi = B>d,iQ̂i,kBd,i + R̂i,k, with

ψi,k = (ri − [1 0]xi,k|k)
2, for all i = 1, . . . , 10, and with resource constraint, i.e.,∑10

i=1 ui ≤ 1800.

• Scenario 4: Population-games-based DMPC with local MPC weights Q̂i and

R̂i as in Scenario 3 with ψi = 100(ri − [1 0]xi,k|k)/ri, and with weights in the

population dynamics as wi = ψi, for all i = 1, . . . , 10, and with resource constraint,

i.e.,
∑10

i=1 ui ≤ 1800.

• Scenario 5: Population-games-based DMPC with local MPC with parameters

as in Scenario 4, and with resource constraint, i.e.,
∑10

i=1 ui ≤ 1800. Moreover,

at the interval of time between 8 min and 12 min, the sub-systems 1 and 2 are

disconnected to illustrate the plug-and-play features of the proposed method (see

Figure 4.8(b)).
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Figure 4.9: Evolution of system states in [mol/l] for the case study and five different
scenarios.

Results and Discussion

Figure 4.9 shows the evolution of system states (concentrations) for the ten CSTRs,

for all i ∈ S̃, and the five scenarios. As expected, the concentration of each CSTR

reaches its corresponding set-point when the total inflow is unconstrained. If this is not

the case (i.e., when the sum of inflows is limited to a value lower than 1800 l/min),

98



Chapter 4. Distributed Predictive Control Using Population Games

Figure 4.10: Evolution of control inputs in [l/min] for the case study and five different
scenarios.

concentrations are below their corresponding set-points since there is not enough feed-

flow rate in the reactor mass balance to increase the concentration up to the desired

value. However, in the latter situation, controllers try to use all the available resource

to keep the controlled variables close to the desired value. Furthermore, for the fifth

scenario, two sub-systems are unplugged from the system and the remaining seven sub-
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Figure 4.11: Sum of control inputs for the five scenarios.

systems have more available resource achieving the required reference. However, once

the two sub-systems are plugged into the system, then the available limited resource is

newly optimally distributed. Figure 4.10 shows the evolution of the control inputs for

the different scenarios. Additionally, the equivalence between the results obtained with

Scenarios 2 and 3 as stated in Theorem 4.4 can be seen. It can be seen that once the

two sub-systems are unplugged from the system, then the resource that they were using

is distributed throughout the other seven sub-systems, and afterwards, when the two

sub-systems are plugged into the system, then the other seven sub-systems share the

resource back again. Figure 4.11 shows the evolution of the total resource, where the

satisfaction of the coupled constraint for all the scenarios is achieved.

Table 4.1 shows the steady-state error for the different scenarios considering the cou-

pled constraint. The equivalence between the CMPC and the population-games-based

DMPC can be seen. Besides, when weights wi, for all i ∈ S̃, are selected to be the

steady-state error for the population-games-based DMPC, then an evenhanded distribu-

tion of the resource is performed achieving a stationary state where all the percentages

of error are the same. Consequently, the general distributed scheme can be tuned to the

population game without modifying the local MPC controllers.

4.6 Summary

This chapter has proposed a novel methodology based on distributed population dy-

namics to make distributed an MPC scheme with a single coupled constraint associated
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Table 4.1: Steady-state error for the four scenarios.

CSTR Scenario 2 Scenario 3 Scenario 4

1 24.3 % 24.2 % 17.6 %
2 22.1 % 22.0 % 17.6 %
3 20.7 % 20.5 % 17.6 %
4 19.2 % 19.2 % 17.6 %
5 18.1 % 18.0 % 17.6 %
6 17.0 % 17.1 % 17.7 %
7 16.0 % 16.0 % 17.5 %
8 15.0 % 15.2 % 17.7 %
9 14.2 % 14.3 % 17.6 %
10 13.5 % 13.7 % 17.7 %

to a limited resource. Results have shown that the methodology satisfies the coupled

constraint in a distributed way. Also, throughout weighting parameters in the potential

function, a dynamical tunning can be performed.

Simulations have shown that choosing the error as a weighting parameter, the same

error is obtained in steady-state for all sub-systems. In order to make the problem

non-centralized, a population games approach has been used. The DSD has been se-

lected to design the DMPC controller. However, the same technique can be extended

to other distributed population dynamics (e.g., distributed projection dynamics, dis-

tributed replicator dynamics, distributed logit choice dynamics, etc). Furthermore, since

this distributed methodology is composed by different local and independent MPC con-

trollers, the addition or removal of sub-systems to/from the entire system does not affect

the local MPC controllers. The new design is obtained by modifying only the number

of strategies in the DSD and guaranteeing communication of the new sub-system with

at least another sub-system within the system.

Finally, it is pointed out that features of the distributed population games can be

used for different control purposes besides the one presented in this chapter. To illustrate

this, the next chapter presents a different control application in which the distributed

population games can be used.
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Chapter 5

Distributed Formation Control
Using Population Games

Chapter 4 has presented an application of the distributed population dynamics to the de-

sign of a DMPC, i.e., as a complement in the design of the predictive controller to make it

non-centralized. Nevertheless, these distribute dynamics have further applications. This

chapter exploits the features of distributed population dynamics presented in Chapter

4 for a multi-agent system formation problem. More specifically, this chapter addresses

the control for Unmanned Aerial Vehicles (UAVs). The contributions presented in this

chapter have been partially published in [7]. Additionally to what was discussed in [9],

it is pointed out that the stability analysis developed in [9] is extensible to time-varying

population structures. In this regard, it is suitable to implement the distributed popula-

tion dynamics over engineering problems whose communication network varies along the

time. In order to illustrate the powerful properties of distributed population dynamics,

a distributed formation problem for multi-agent systems under time-varying communi-

cation network is proposed. To this end, it is assumed that each agent has a limited

communication range, implying that each agent only has partial information about the

entire set of agents. Furthermore, it is assumed that at least one follower agent is able

to communicate to the leader agent that operates as a spatial reference for the whole

formation. Additionally, it is shown that an agent can leave or enter the formation with-

out having to modify controllers of the remaining agents. An additional relevant feature

of the proposed distributed control strategy, the formation shape can be reconfigured

dynamically along the time. Finally, simulation results present the behavior of the for-
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mation for two different scenarios. First, the case in which a new agent enters to the

formation is tested. Secondly, the performance of the proposed distributed controller

when the formation is modified along the time is shown.

5.1 UAV Model

The vehicles considered in this chapter are stabilized multicopters. It is assumed that

each multicopter has an onboard controller (autopilot) that is capable of maintaining

the vehicle in a hovering state and accepts generalized torque commands in the four

independent degrees of freedom corresponding to position and yaw. The pose of the ith

UAV is therefore described by ci = [cxi cyi czi cφi ]>. The adopted dynamic model of

the internally stabilized ith vehicle can be described as

ui = Āic̈i + B̄iċi, (5.1)

where Āi = diag(M̃, M̃ , M̃ , Iz) is the generalized inertia matrix with vehicle mass M̃

and moment of inertia around the z axis Iz. Moreover, B̄i is the friction matrix, and

ui = [uxi uyi uzi uφi ]> is the vector of generalized torques applied to the vehicle [85],

[151]. These features are typically found in commercially-available multicopters and

flight controllers [75]. Additionally, in Section 5.3.4 each UAV implements a local PID

controller that actuates on the system described by (5.1) to track a desired input set-point

as shown in Figure 5.2(a). These models are implemented in the MATLAB/Simulink

environment to generate the results of Section 5.3.6. From now on, due to the fact that

the distributed control presented in this chapter is applicable for any multi-agent system,

UAVs are going to be treated as agents in a multi-agent system.

Remark 5.1. Due to the fact that the formation control is known in the context of
multi-agent systems, then (only in this chapter) UAVs are going to be treated as agents
and individuals composing the population are going to be treated as decision makers. ♦

5.2 Problem Statement over Information Graphs

Consider a set of finite agents denoted by A = {1, . . . , n}, where n ≥ 2. One of the

agents is a leader denoted by ` ∈ A, which influences decisions of the entire set of the

remainder agents known as followers, i.e., the set of follower agents is F = A\{`}, and
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notice that F 6= ∅. Each agent i ∈ A is located in the positive orthant space, i.e.,

at non-negative measurable coordinates denoted by cxi , c
y
i , and czi ∈ R≥0; and with a

measurable yaw angle denoted by cφi ∈ R≥0 that is considered to be also non-negative.

All these measurements are collected in a vector denoted by ci = [cxi cyi czi cφi ]>, for

all i ∈ A. In addition, let D = {x, y, z, φ} be the set of all possible position parameters

for all the agents from A.

On the other hand, it is assumed that each agent can communicate to all other

agents, which are located within a communication-range radius denoted by ψi ∈ R>0,

for all i ∈ A. This situation leads to a time-varying communication network depending

on the spatial distribution of agents. This communication network is represented by

an undirected graph denoted by G(t) = (A, E(t),A(t)) (the graph is considered to be

undirected since each link is assumed to be a bidirectional channel), where A is the set

of nodes corresponding to each agent (i.e., the set of nodes in the graph is the same as

the set of agents), E(t) is the set of links describing the communication network among

agents, and A(t) = [aij(t)] is the adjacency matrix whose elements aij(t) = 1 if the ith

agent shares information with the jth agent, and aij(t) = 0, otherwise. More precisely,

the element aij(t) depends on the communication range given by ψi as follows:

ξij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2,

aij(t) = max
(
0, sgn

[
ψi − ξij

])
,

where aij(t) = aji(t). Then, the constructed adjacency matrix A(t) implies that each

agent i ∈ A has a time-varying set of neighbors with whom it can communicate. The

set of neighbors for the ith agent is given by Ni(t) = {j : (i, j) ∈ E(t)}.

Assumption 5.1. In order to achieve the leader tracking satisfying a desired formation
shape in a distributed manner, the communication should be represented by a connected
graph. ♦

The leader agent ` ∈ A goes over a pre-established trajectory, and constitutes a

spatial reference for all the follower agents i ∈ F to perform a desired formation, i.e.,

the follower agents i ∈ F track the trajectory of the leader ` ∈ A in an organized

manner maintaining a required formation. Furthermore, notice that, depending on the

engineering application, the interpretation of the leader might be changed by a target

agent that is desired to track in an organized manner given a formation structure.
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Figure 5.1: Two different and possible formations with the same yaw angle φi, and the
same zi coordinate, for all the followers, and the leader. (a) diagonal formation, and (b)
triangular formation (taken from [7]).

The objective formation is established by assigning desired Euclidean distances from

each follower i ∈ F to the leader ` ∈ A independently for each coordinate x, y, and z, and

an angle for the yaw φ. These desired distances to achieve the formation are denoted by

rdi , for all i ∈ F , and d ∈ D. Each agent has information about the formation reference

distance represented by ri = [rxi ryi rzi rφi ]>, for all i ∈ F .

For instance, Figure 5.1(a) shows a diagonal shape whose formation references are

given by

ri = [i − i 0 0]>, for all i ∈ F ,

and Figure 5.1(b) shows a triangular shape whose formation references are given by

r1 = [2 0 0 0]>, r2 = [0 2 0 0]>,

r3 = [4 0 0 0]>, r4 = [2 2 0 0]>,

r5 = [0 4 0 0]>.

These formation references play an important role in the design of the distributed

population-games-based formation controller presented in Section 5.3.

5.3 Population-games Approach

Having stated the formation control problem, a distributed strategy based on population

games is presented and its main properties and advantages are discussed. Preliminary

concepts are introduced with subtle differences with respect to Chapter 4 due to the
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context of the application. The methodology to address the problem with this approach

is presented, and detailed control schemes are explained. Also, an illustrative example

for a linear formation is shown for clearness.

5.3.1 Preliminaries

Consider four different populations. Different from Chapter 4 where populations were

composed of agents, in this chapter each population is composed of a large and finite num-

ber of rational decision makers. Each population represents a possible position parame-

ter, i.e., the set of labels for the four populations is given by D = {x, y, z, φ}. Moreover,

there is a set of n available strategies at each population denoted by A = {1, . . . , n} for

all d ∈ D (each strategy is associated to a UAV, which is an agent in this context). Then,

decision makers decide to select a strategy from the set A. Similarly as in Section 5.2,

and for notation clearness, F = A\{`} that is also a subset of strategies, where ` ∈ A is

a fictitious strategy as in [114] related to the leader agent. Strategy ` is fictitious due to

the fact that there is not a desired position and yaw rotation for the leader agent (leader

UAV) since it has a pre-established trajectory.

The scalar value pdi ∈ R≥0 is a portion of decision makers selecting the strategy

(agent/UAV) i ∈ F in the population (position parameter) d ∈ D. Moreover, the

portion of decision makers pdi is associated to the corresponding desired position of the

ith agent in the position parameter d ∈ D. In this regard, notice that the desired position

and yaw rotation for the follower agents are given by pi = [pxi pyi pxi pφi ]> ∈ R4
≥0, for

all i ∈ F . Besides, there is a portion of decision makers selecting ` as in [114] denoted

by pd` ∈ R≥0, where ` ∈ A, and ` /∈ F .

On the other hand, pd = [pd1 . . . pdn]> ∈ Rn≥0 is a vector that collects all the

portions of decision makers in the population d ∈ D. This vector is known as the

population state or the strategic distribution in the respective population. The set of

possible strategic distributions for the population d ∈ D is given by the simplex

∆d =

{
pd ∈ Rn≥0 :

∑
i∈A

pdi = πd
}
, (5.2)

where πd ∈ R>0 denotes the population size. Furthermore, πd is associated to the

constrained space for the corresponding coordinates (x, y, or z) or rotation (φ) that
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agents should respect. Additionally, the interior of ∆d is defined as follows:

int∆d =

{
pd ∈ Rn>0 :

∑
i∈A

pdi = πd
}
.

Notice that the simplex in (5.2) implies that all the decision makers, corresponding

with the follower agents, are constrained to be within a space characterized by∑
i∈F

pdi ≤ πd, (5.3)

which means that it is desired that UAVs positions satisfy a constrained space
cxi
cyi
czi
cφi

 ≤

πx

πy

πz

πφ

 , ∀ i ∈ F .
Decision makers in the population d ∈ D select among the different strategies in

order to enhance their benefits. These benefits are described by a function denoted by

fdi , and whose mapping is fdi : ∆d → R, for all i ∈ A. Besides, let fd be the vector of

fitness functions whose mapping is given by fd : ∆d → Rn.

5.3.2 Distributed Replicator Dynamics and Their Properties

The distributed replicator dynamics are one of the fundamental distributed population

dynamics presented in Section 4.2, which are given by

ṗdi = pdi

fdi (pd)
∑
j∈Ni

pdj −
∑
j∈Ni

pdjf
d
j (pd)

 , (5.4)

for all i ∈ A, and d ∈ D. Alternatively, (5.4) can be compacted as

ṗd = diag
(
pd
) [

diag
(
fd(pd)

)
Apd −Adiag

(
fd(pd)

)
pd
]
, (5.5)

for all d ∈ D. The equilibrium point pd? ∈ NE(fd) of the distributed replicator dynamics

equation (5.4) implies any of two situations, i.e., that the portion of decision makers is

pi = 0 for some i ∈ A (there is an extinction for a strategy), or that fdi (pd?) = fdj (pd?),

for all i, j ∈ A, d ∈ D. Consequently, notice that if pd? ∈ int∆d, and if there is no
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extinction for any strategy, then the equilibrium point implies that fdi (pd?) = fdj (pd?),

for all i, j ∈ A, d ∈ D.

Then, it is shown that the equilibrium point p? ∈ int∆d is asymptotically stable

under the distributed replicator dynamics.

Theorem 5.1. Let fd be a full-potential game with strictly concave potential function
fd(pd), and let pd? ∈ int∆d be a Nash equilibrium. If the graph G = (A, E ,A) is

connected and pd? ∈ ∆d, then pd? is asymptotically stable under the distributed replicator
dynamics (5.5).

Proof. See proof of Theorem 4.2.

In Corollary 5.1, it is highlighted that Theorem 5.1 also holds for time-varying com-

munication sharing, broadening the spectrum in engineering applications to implement

distributed population games as follows.

Corollary 5.1. The asymptotic stability of pd
? ∈ int∆d under the distributed repli-

cator dynamics (5.4) stated in Theorem 5.1 holds for connected time-varying graphs
G(t) = (A, E(t),A(t)), i.e., for time-varying neighborhood Ni(t) and for all i ∈ A.
This statement can be seen from Theorem 5.1 since the Lyapunov function (4.6) is a
common function for all possible connected-graph topologies. ♦

Furthermore, the simplex ∆d is an invariant set under the distributed replicator

dynamics (5.4). This can be seen from the fact that (5.4) may be re-written as a function

of the adjacency matrix, i.e.,

ṗdi =
∑
j∈A

aijp
d
i p
d
jf

d
i (pd)−

∑
j∈A

aijp
d
jp
d
i f

d
j (pd), (5.6)

for all i ∈ A, and d ∈ D. It follows that
∑

i∈A ṗ
d
i = 0, for all d ∈ D, due to the fact

that aij = aji. This makes the first and second term in (5.6) equal, showing invariance

property of the simplex ∆d, for all d ∈ D. This property also guarantees that the

constraint in (5.3) is satisfied along the time.

5.3.3 Fitness Functions Design

Once the preliminary concepts of population games have been introduced with their

modifications with respect to Chapter 4 and the distributed replicator dynamics have

been presented, the design of the fitness functions is explained and discussed.
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The distributed formation problem can be seen as a distributed control in charge

of maintaining certain desired distances among a set of agents as presented in Section

5.2 (see Figure 5.1). In this regard, if each agent is controlled in a manner that tracks

the leader, then each agent maintains a constant distance to the leader agent, and the

formation objective is achieved.

Taking advantage of the asymptotic convergence to a Nash equilibrium pd
? ∈ int∆d

under the distributed replicator dynamics, the fitness functions are designed. Let fd` =

−cd` be the fitness function assigned to the portion of decision makers selecting the

fictitious strategy associated to the leader agent ` ∈ A, ` /∈ F . Now, let fdi (pdi ) = rdi − pdi
be the fitness functions for all the follower agents i ∈ F . First, notice that these fitness

functions collected in fd(pd) satisfy the condition for a stable game (see Definition 2.2).

The matrix Dfd(pd) is a non-positive diagonal matrix, and with only one null element

over the diagonal corresponding to the leader ` ∈ A.

Assuming that there is no extinction in the portion of decision makers, it is known

that pd
? ∈ int∆d implies that fdi (pd?) = fdj (pd?), for all i, j ∈ A, and d ∈ D. Then,

fd` (pd
?
) = fdi (pd

?
),

−cd` = rdi − pdi
?
,

pdi
?

= cd` + rdi , (5.7)

for all i ∈ F , and d ∈ D. The equilibrium point condition in (5.7) shows that pdi , for

all i ∈ F , converges to values such that the formation references are met for all the

coordinate positions and yaw angles (see Figure 5.1). Besides, the portion of decision

makers pd` , for all d ∈ D, and for the fictitious strategy, adopts a value that satisfies the

simplex ∆d.

Remark 5.2. Notice that it is not necessary that all the follower agents i ∈ F have
communication to the leader agent ` ∈ A, ` /∈ F (this fact depends on the non-centralized
communication topology given by G). Nonetheless, all the follower agents –also those
without communication with the leader– converge to the appropriate position to achieve
the formation with a spatial reference given by the leader agent. ♦

5.3.4 Distributed Control Scheme

It is assumed that all the follower agents have an already designed local controller in

charge of achieving a position set-point given by pi = [pxi pyi pxi pφi ]> ∈ R4
≥0 within
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fdirdi
pdi

{fj , pj : j ∈ Ni(t)}

+−
∀i ∈ F , and ∀d ∈ D

fd` = −cd`
pd`

{fj , pj : j ∈ N`(t)}

` ∈ A, ` /∈ F , and ∀d ∈ D
(b)

(c) (d)

pxi
pyi
pzi
pφi

pi

pi
+−

PIDi
ci

∀i ∈ A

(a)

ui
ith UAV ṗd`

ṗdi

Figure 5.2: Different control stages with their information dependence. (a) local PID
position controller for each agent. (b) population-games-based formation control for the
fictitious strategy representing the leader agent. (c) population-games-based formation
control for all the follower agents. (d) collection of all the set-points for the local position
controllers (taken from [7]).

the positive orthant space. In this chapter, these local controllers are PIDs as presented

in Figure 5.2(a).

Moreover, depending on the current position of the agents, there is going to be a

connected graph G(t) representing the communication network and possible information

sharing. Then, the leader agent disposes of the information given by

{(f`, p`)} ∪ {(fj , pj) : j ∈ N`(t)},

and the follower agents i ∈ F have information given by

{(fi, pi)} ∪ {(fj , pj) : j ∈ Ni(t)}.

Figure 5.2(b) shows the replicator-dynamics-based formation control for the fictitious

strategy corresponding to the leader agent ` ∈ A, for all d ∈ D. Figure 5.2(c) presents

the replicator-dynamics-based formation control for all the follower agents i ∈ F , and for

all d ∈ D. The formation control in Figure 5.2(c) generates the appropriate position set-

points, which are collected as presented in Figure 5.2(d), i.e., pi = [pxi pyi pxi pφi ]>,

which are established to the local controllers presented in Figure 5.2(a).
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ri, ∀i ∈ F

` ∈ A, ` /∈ F

c` pi

∀i ∈ F
ciui

` ∈ A, ` /∈ F

j ∈ A

∀i ∈ F

pre-established
trajectory

p`

Leader agent

Local position
control (PID)

c`u`

Distributed formation control based
on population dynamics

Follower agents

Local position
control (PID)

Figure 5.3: Hierarchical control scheme for the distributed multi-agent formation (taken
from [7]).

Then, the general control structure composed of local-position controllers for each

agent, and the distributed formation control, constitutes a hierarchical scheme.

Figure 5.3 presents the overall hierarchical control scheme for the distributed replicator-

dynamics-based formation controller with time-varying communication network. It can

be seen that the leader agent has a local position controller whose reference describes

a pre-established trajectory. On the other hand, all the follower agents have a local

position controller whose position references denoted by pi, for all i ∈ F , come from

the upper layer, which is the distributed replicator-dynamics-based formation control.

At this upper layer, all the position references pi, for all i ∈ F , are computed in a

distributed manner by using only information about the leader position ci and the for-

mation references ri, for all i ∈ F . Notice that the replicator-dynamics-based formation

control is distributed since each position reference is computed by using both local and

partial information.

5.3.5 Communication Topology: Illustrative Example

An illustrative example to show the distributed communication dependency among n = 6

agents is presented.

Consider a control problem for the multi-agent formation presented in Figure 5.1(a).

Moreover consider that, at certain time t = t̃, the communication graph is as fol-

lows: the set of nodes is A = {1, . . . , 6}, where the leader agent is ` = 1 ∈ A,

and the follower agents are F = {2, . . . , 6}; and the set of links is given by E(t̃) =
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Figure 5.4: Illustrative example for the distributed communication network in the
replicator-dynamics-based formation control (taken from [7]).

{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}. Then, the communication network, involving also the

respective local controllers, is the one presented in Figure 5.4.

Notice that follower agents {3, . . . , 6} ∈ F can achieve a desired spatial position with

respect to the leader agent even though they do not have information about its current

position.

5.3.6 Population-games-based Control Results

In order to illustrate the performance of the population-games approach in the formation

control, two different scenarios are considered for n = 6 agents. For these scenarios, and

due to the fact that any agent from A may be the leader, it is selected arbitrarily to be

` = 6. Scenarios are defined as follows:

Scenario 1: The first scenario consists in a linear formation (see Figure 5.1(a)).

Moreover, a follower agent 5 ∈ F is initially located out of the communication range

of all other agents. The leader trajectory is established such that it passes by certain

coordinates, such that, along the time, the set of agents A can detect the isolated

member, including it automatically in the formation. This scenario allows to illustrate

the behavior of the distributed game-theoretical approach when a new agent is integrated

into the problem.

Scenario 2: The second scenario consists in a linear formation (see Figure 5.1(a))

that switches to the triangle formation (see Figure 5.1(b)) along the time. This scenario

illustrates the performance of the distributed game-theoretical approach for time-varying

formation objectives.
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Figure 5.5(a) shows the agents trajectory for the linear formation. Figures 5.5(b)-

5.5(c) show the evolution of the communication network. It can be seen that, at the

beginning, the follower agent 5 ∈ F is isolated and is not able to communicate with any

other agent. Consequently, this agent remains without moving in the positive-orthant

space until time t = 138 s, when it can communicate to agents three and four. Then,

agent 5 ∈ F is dynamically integrated to the formation problem. Furthermore, Figures

5.5(d)-5.5(f) show the evolution of the UAV positions cdi , for all i ∈ A and d ∈ D\{φ}.
It can be seen that follower agents maintain the desired distance to the leader in the

coordinates x, and y, and that all the follower agents track the same position in z as the

leader agent moves.

On the other hand, Figure 5.6(a) shows the agents trajectory for the time-varying

formation. First, a linear formation is established and, once this objective is achieved,

the objective is changed to a triangular formation at time t = 300 s. Figures 5.6(b)-

5.6(c) show the evolution of the communication network. It can be seen that, when

the formation is modified, the communication network is accommodated conveniently

according to agents communication range. Furthermore, Figures 5.6(d)-5.6(f) show the

evolution of the UAV positions cdi for all i ∈ A and d ∈ D\{φ}. It can be seen that

follower agents achieve the desired distances in all the position parameters rdi , for all

i ∈ F and d ∈ D\{φ}. Then, at time t = 300 s evolutions of the UAV positions vary

to achieve the new formation objective.

5.4 Summary

A novel distributed formation control based on population games has been presented.

It has been shown that the formation is achieved by using non-centralized communi-

cation structures among the agents. In addition, it has been shown that the proposed

distributed controller can deal with time-varying formation objectives, and that the in-

formation sharing network can be varied conveniently as a function of the communication

range for each agent. Under this time-varying graph scenario, it has been highlighted

that stability remains as connectivity of the graph is preserved. Besides, a degree of mod-

ularity has been discussed, where a new agent can be incorporated or removed to/from

the formation problem in a dynamical manner without affecting other agents controllers.
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The fact that population games satisfy a single-coupled constraint has been used

in this chapter for the design of a distributed controller. Moreover, the game theoret-

ical approach presented in Chapters 3 and 4, and in this one, cannot consider more

than one coupled constraint, becoming a limitation for further engineering applications.

Then, next chapter addresses the issue of considering multiple coupled constraints with

a population-games approach.
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Chapter 6

Distributed Predictive Control
Using Density-dependent
Population Games

Chapters 3, 4 and 5 have presented the role of population games in control applications

involving only one coupled constraint. This chapter addresses the issue of dealing with

multiple coupled constraints using a population-games approach that allows the popula-

tion mass to vary along the time, i.e., considering birth and death. To this end, density

games are studied. First, it is proposed to extend the mean dynamics with strategy-

interaction constraints to the case considering a reproduction rate parameter, i.e., the

density-dependent mean dynamics with non-complete population-interaction structures.

Then, by using different revision protocols [134], the distributed density-dependent repli-

cator, Smith, and projection dynamics are deduced. Afterwards, it is shown that these

density dynamics may be used to solve distributed constrained optimization problems

when selecting properly the fitness functions in the strategic interaction based on a

Lagrangian function. As a second part, and taking advantage of the properties that

density games have, a DMPC controller design is proposed based on the distributed

density-dependent population games (DDPG). Besides, the relationship between the

population-interaction structure and the distributed information-sharing network for

the DMPC controller is discussed. It is shown that the population-interaction structure

can be modified dynamically along the time by adding conditions over the optimiza-

tion problem constraints depending on the current system state, this fact leading to
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a time-varying information-sharing network for control purposes. Preliminary results

corresponding to the contributions presented in this chapter have been published in [18].

6.1 Density-dependent Population Games

The density-dependent mean dynamics are obtained from the mean dynamics (4.1) in-

cluding a function of reproduction rate denoted by δi, for all i ∈ S, i.e.,

ṗi =
∑
j∈Ni

pj%ji(f(p),p)− pi
∑
j∈Ni

%ij(f(p),p) + δi(f(p),p), ∀i ∈ S. (6.1)

When δi > 0, then there is birth in the strategy i ∈ S since there are positive

conditions promoting reproduction. On the other hand, if δi < 0, then there is death

(interpretation of negative reproduction rates) in the strategy i ∈ S due to the fact that

there are not ideal conditions for reproduction. In this regard, δi should be directly

proportional to the fitness function fi, i.e., successful agents (those with greater fitness

functions) have more chances to have offspring [100].

Definition 6.1. The reproduction rate, denoted by δ : Rn × Rn≥0 → Rn, is a function
satisfying that reproduction rates decline as population increases [100], i.e., δi(f(p),p)
should decrease as the portion pi increases. ♦

Remark 6.1. Notice that the population mass is not longer constant when considering
the reproduction rate. Therefore, the possible population states are given by the set
∆o = {p ∈ Rn≥0}, which is the positive orthant. ♦

6.1.1 Distributed Density-dependent Replicator Dynamics

First, the distributed density-dependent replicator dynamics (D3RD) are generated. In

order to deduce a version of the D3RD, the pairwise proportional imitation protocol is

used (see Table 2.1), i.e., %ij(f(p),p) = pj
[
fj(p)− fi(p)

]
+
.

The interpretation of the revision protocol dictates that an agent selecting a strategy

i ∈ S, comparing itself with an agent selecting strategy j ∈ S, decides to move to

j ∈ S only if the change represents an improvement over its reproductive chances, i.e.,

if fj(p) > fi(p), and the switch rate is made in relation to the number of agents pj

selecting strategy j ∈ S. Furthermore, the reproduction rate function is selected to be
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of the form δi(f(p),p) = βifi(p), where βi ≥ 0 can be either constant or time varying,

e.g., βi = 1, or βi = pi.

Under the framework of stable games, fi(pi) is decreasing with respect to the number

of agents pi. The proposed reproduction-rate function is suitable according to Definition

6.1 since fi declines as pi increases, then δi also declines as pi increases. Replacing

%ij(f(p),p), and δi(f(p),p) in (6.1) yields

ṗi =
∑
j∈Ni

pjpi
[
fi(p)− fj(p)

]
+
− pi

∑
j∈Ni

pj
[
fj(p)− fi(p)

]
+

+ βifi(p), ∀i ∈ S,

where the first term is null when fj(p) ≥ fi(p), and the second term is null when

fi(p) ≥ fj(p). Moreover, notice that the first term is the same as the second term with

opposite sign. Taking these two observations into account, it follows that

ṗi =
∑
j∈Ni

pjpi
(
fi(p)− fj(p)

)
+ βifi(p), ∀i ∈ S.

Finally, the D3RD are obtained as

ṗi = pi

fi(p)
∑
j∈Ni

pj −
∑
j∈Ni

pjfj(p)

+ βifi(p), ∀i ∈ S,

or, in its matricial form depending on the adjacency matrix A of the graph G that

describes the population-interaction structure, as

ṗ =diag(p) [diag (f(p)) Ap−Adiag (f(p)) p] + diag(β)f(p). (6.2)

The equilibrium point of (6.2) is a Nash equilibrium denoted by p? ∈ NE(f), where

fi(p
?) = fj(p

?), for all i, j ∈ S. Additionally, the equilibrium considering the reproduc-

tion rate implies that f(p?) = 0n. The interpretation of this situation from a biological

perspective is that there is no agent with incentives to move among strategies, since it

could not increase its reproduction chances. Likewise, there is an equilibrium between

birth and death (δi = 0, for all i ∈ S), such that the population size remains constant.

Furthermore, the D3RD in (6.2) can be re-written simplifying the expression as in [9],

i.e.,

ṗ = L(p)f(p) + diag(β)f(p), (6.3)
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where β ∈ Rn≥0 is the vector of all the βi for all i ∈ S, and L(p) = [l
(p)
ij ] is a matrix

depending on the population state p, whose entries are defined as follows:

l
(p)
ij =


−aijpipj , if i 6= j∑
r∈S,r 6=i

airpipr, if i = j.

6.1.2 Distributed Density-dependent Smith Dynamics

The distributed density-dependent Smith dynamics (D3SD) are generated from the

density-dependent mean dynamics in (6.1) and by using the pairwise comparison proto-

col (see Table 2.1), i.e., %ij(f(p),p) =
[
fj(p)− fi(p)

]
+
.

The interpretation of the revision protocol indicates that an agent selecting a strategy

i ∈ S switches to strategy j ∈ S if the change represents an improvement over its

reproductive chances, i.e., if fj(p) > fi(p). Furthermore, the reproduction rate function

is selected as in the case of the D3RD, i.e., δi(f(p),p) = βifi(p), where βi ≥ 0 can be

either constant or time varying, e.g., βi = 1, or βi = pi. Replacing %ij(f(p),p), and

δi(f(p),p) in (6.1) yields

ṗi =
∑
j∈Ni

pj
[
fi(p)− fj(p)

]
+
− pi

∑
j∈Ni

[
fj(p)− fi(p)

]
+

+ βifi(p), ∀i ∈ S,

which is the differential equation corresponding to the D3SD. Alternatively, the D3SD

can be written as using simplification presented in [9], i.e.,

ṗi =
∑
j∈Ni

1

2

(
(1− νij)pi + (1 + νij)pj

) [
fi(p)− fj(p)

]
+ βifi(p), ∀i ∈ S, (6.4)

where νij = sgn(fi(p)− fj(p)). It follows that (6.4) can be expressed as

ṗ = L̃(p)f(p) + diag(β)f(p), (6.5)

where L̃(p) = [l̃
(p)
ij ] is a matrix depending on the population state p, whose entries are

as follows:

l̃
(p)
ij =


−aij

2

(
(1− νij)pi + (1 + νij)pj

)
, if i 6= j

∑
r∈S,r 6=i

air
2

(
(1− νir)pi + (1 + νir)pr

)
, if i = j.
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6.1.3 Distributed Density-dependent Projection Dynamics

The distributed density-dependent Projection dynamics (D3PD) are deduced from the

density-dependent mean dynamics in (6.1) and by considering the modified pairwise

comparison protocol (see Table 2.1), i.e., %ij(f(p),p) =
[fj(p)−fi(p)]

+

pi
.

Notice that the interpretation of the revision protocol is the same as the pairwise

proportional imitation protocol with a different switching rate. In this case, the switching

rate is proportional to the inverse of the portion of agents selecting strategy i ∈ S.

Moreover, the reproduction rate is selected to be the same as in the deduction of the

D3RD. Replacing %ij(f(p),p), and δi(f(p),p) in (6.1) yields

ṗi =
∑
j∈Ni

[
fi(p)− fj(p)

]
+
−
∑
j∈Ni

[
fj(p)− fi(p)

]
+

+ βifi(p), ∀i ∈ S,

it follows that the D3PD are given by

ṗi =
∑
j∈Ni

[fi(p)− fj(p)] + βifi(p), ∀i ∈ S. (6.6)

Finally, the D3PD can be re-written as

ṗ = Lf(p) + diag(β)f(p),

where L = [lij ] is the Laplacian of the graph G, i.e.,

lij =


−aij , if i 6= j∑
r∈S,r 6=i

air, if i = j.

6.1.4 Stability Analysis

Once the density-dependent population dynamics have been formally introduced, a sta-

bility analysis of the equilibrium point is made. Then, it is shown that the mentioned

Nash equilibrium p? ∈ ∆o is asymptotically stable under the density-dependent popu-

lation dynamics with region of attraction given by the positive orthant as it is stated in

the following theorems.
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Theorem 6.1. Let f be a full-potential game with strictly concave potential function
V (p), and let p? ∈ ∆o be a Nash equilibrium for a corresponding population size π ∈ R≥0

such that f(p?) = 0n. If the population-interaction structure is given by a connected
graph G, then p? ∈ ∆o is asymptotically stable under the D3RD (6.2), and the D3SD
(6.4).

Proof. Since f is a full-potential game with potential concave function V (p), it is con-
sidered the same Lyapunov candidate function as in [9], i.e., EV (p) = V (p?) − V (p),
where EV (p?) = 0, and EV (p) > 0, for all p 6= p?. Then, it follows that ĖV (p) =

− (∇V (p))> ṗ, which is the same as ĖV (p) = −f(p)>ṗ. Now, replacing ṗ from (6.3)
for the D3RD, it is obtained that

ĖV (p) =− f(p)>
(
L(p)f(p) + diag(β)f(p)

)
,

=− f(p)>L(p)f(p)− f(p)>diag(β)f(p). (6.7)

For the first term in (6.7), notice that L(p) corresponds to the Laplacian of a graph

G(p) = (S, E ,A(p)), where A(p) = [a
(p)
ij ] is the adjacency matrix with entries given by

a
(p)
ij = aijpipj . The entries of the adjacency matrix are non-negative due to the fact that

p ∈ ∆o, which is the positive orthant. Therefore L(p) � 0 for any p ∈ ∆o. Regarding
the second term in (6.7), the diagonal matrix is diag(β) � 0 due to the fact that βi ≥ 0
for all i ∈ S. Finally, it is concluded that ĖV (p) ≤ 0.

Regarding the D3SD, it is obtained that ĖV (p) = −f(p)>L̃(p)f(p)−f(p)>diag(β)f(p).

The analysis is the same but with L̃(p) corresponding to the Laplacian matrix of the

graph G(p) = (S, E ,A(p)) with a
(p)
ij = (aij/2)((1 − νij)pi + (1 + νij)pj). Therefore,

L̃(p) � 0 for any p ∈ ∆o, and it is concluded that ĖV (p) ≤ 0. The equality ĖV (p) = 0
holds when f(p) = 0n, and hence p? is asymptotically stable under the D3SD (6.4).

Moreover, ĖV (p) = 0 in all the cases holds when f(p) = 0n, and hence p? is asymp-
totically stable under the D3RD (6.2), and the D3SD (6.4) with region of attraction in
the positive orthat ∆o.

Theorem 6.2. Let f(p) = ∇V (p), where V (p) is a strictly concave function, and let
p? ∈ Rn be an equilibrium point such that f(p?) = 0n. If the population-interaction
structure is given by a connected graph G, then p? ∈ Rn is globally asymptotically stable
under the D3PD (6.6).

Proof. Consider the same Lyapunov candidate function as in Theorem 6.1, i.e., EV (p) =
V (p?)− V (p), where EV (p?) = 0, and EV (p) > 0, for all p 6= p?. Then, it follows that

ĖV (p) = − (∇V (p))> ṗ, which is the same as ĖV (p) = −f(p)>ṗ. Now, replacing ṗ
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from (6.6) for the D3PD, it is obtained that

ĖV (p) =− f(p)> (Lf(p) + diag(β)f(p)) ,

=− f(p)>Lf(p)− f(p)>diag(β)f(p). (6.8)

The first term in (6.8) is negative since L � 0 for a connected graph G. Moreover,
the second term in (6.8) is also negative since diag(β) � 0 due to the fact that βi ≥ 0
for all i ∈ S. Then, it is concluded that ĖV (p) ≤ 0. The equality ĖV (p) = 0 holds when
f(p) = 0n, and therefore p? is globally asymptotically stable under the D3PD (6.6) with
region of attraction in the Rn since EV (p) is radially unbounded.

Corollary 6.1. The asymptotic stability of p? ∈ ∆o under the D3RD (6.2), and the
D3SD (6.4) stated in Theorem 6.1; and p? ∈ Rn under the D3PD (6.6) stated in The-
orem 6.2 hold for connected time-varying graphs G(t) = (S, E(t),A(t)), i.e., for a time-
varying neighborhood Ni(t), for all i ∈ S. This statement is concluded since the postu-
lated Lyapunov function EV (p) = V (p?) − V (p) is a common function for all possible
connected-graph topologies. ♦

6.1.5 Full-potential Game with DDPG

Consider the following constrained optimization problem as an illustrative example:

maximize
p

V (p) = −(p1 − 1)2 − (p2 − 2)2, (6.9a)

subject to

2∑
i=1

pi = π, (6.9b)

p1, p2 ≥ 0, (6.9c)

where π ∈ R>0 is constant. The optimization problem (6.9) can be solved by using

any of the six classical population dynamics, i.e., replicator, Smith, projection, Logit

choice, BNN or best response dynamics [134]. To this end, function (6.9a) is taken as

the potential function of a full-potential game (see Definition 2.3), i.e., f(p) = ∇V (p).

Moreover, the initial condition for the classical population dynamics should satisfy the

constraints (6.9b) and (6.9c), i.e., p(0) ∈ R≥0, and
∑2

i=1 pi(0) = π. Now, suppose that

the constraint (6.9b) is no longer considered in the optimization problem, but (6.9c)

is still imposed. Therefore, the new optimization problem can be solved with DDPG,

i.e., the D3RD (6.2), the D3SD (6.4), or the D3PD (6.6), and with an initial condition

belonging to the positive orthant p(0) ∈ ∆o.
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Figure 6.1: Phase plane of trajectories corresponding to the replicator, Smith and projec-
tion dynamics with the full-potential game f(p) for both classical approach and density-
dependent approach. Black dots show the equilibrium points for initial conditions in the
positive orthant.

Figure 6.1 shows the phase plane for both classical population dynamics, and density-

dependent population dynamics. It can be seen that the classical population dynamics

converge to the optimal point subject to constraint (6.9b) with π = p1(0)+p2(0). In con-

trast, the density-dependent population dynamics converge to the optimal point without

considering the constraint (6.9b), i.e., p? = [1 2]> ∈ ∆o for any initial condition in the

positive orthant p(0) ∈ ∆o. The solution coincides for both approaches as long as π = 3

for the classical population dynamics.

.
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6.1.6 Solving Constrained Optimization Problems with DDPG

Consider a quadratic programming (QP) optimization problem of the form

maximize
y

f(y), (6.10a)

subject to Ey ≤ e, (6.10b)

Gy = g, (6.10c)

y ∈ Rv≥0, (6.10d)

where f : Rv≥0 → R is concave, and continuously differentiable. Moreover, E ∈ Rq×v,
and e ∈ Rq allow to state the q inequality constraints (6.10b), and G ∈ Rr×v, and g ∈ Rr

define the r equality constraints (6.10c).

Inequality constraints can be transformed into equality constraints by adding non-

negative slack variables denoted by s ∈ Rq≥0. To this end, consider the vector variable

ξ = [y> s>]> ∈ Rp, where p = v + q, then the QP optimization problem (6.10) is

reformulated as follows:

maximize
ξ

f(ξ), (6.11a)

subject to Hξ = h, (6.11b)

ξ ∈ Rp≥0, (6.11c)

where f : Rp≥0 → R is concave, and continuously differentiable. The matrix H ∈ Rw×p,
and h ∈ Rw determine the w equality constraints (6.11b), where w = q + r.

Now, omitting the positiveness constraints (6.11c), the Lagrangian function L : Rp×
Rw → R is

L(ξ,µ) = f(ξ) + µ> (Hξ − h) , (6.12)

where µ ∈ Rw corresponds to the Lagrange multipliers associated to the w equality

constraints of (6.11). Moreover, ∇ξL(ξ,µ) = ∇f(ξ) +H>µ, and −∇µL(ξ,µ) = −Hξ+

h.

The Lagrange condition is used to find the possible extreme points ξ? ∈ Rp of the

function f(ξ) (maximum of the function f) subject to constraints (6.11b), in which[
∇ξL(ξ?,µ?)
−∇µL(ξ?,µ?)

]
= 0p+w. (6.13)
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Now, let p = [ξ> µ>]> ∈ Rn be the vector representing the number of agents in a

strategic interaction with S = {1, . . . , n}, where n = p+ w. Besides, let

f(p) = [∇ξL(ξ,µ)> −∇µL(ξ,µ)>]> (6.14)

be the fitness functions corresponding to all the strategies S. The population game

(6.14) can be seen as two different potential games fξ(ξ,µ) = ∇ξL(ξ,µ), and fµ(ξ,µ) =

−∇µL(ξ,µ), whose potential functions are L(ξ,µ), and −L(ξ,µ), respectively. There-

fore, notice that the Hessian of the potential functions is ∇2
ξL(ξ,µ) = ∇2f(ξ), and

∇2
µ(−L(ξ,µ)) = 0. Therefore, fξ(ξ,µ), and fµ(ξ,µ) are stable games [134]. Finally,

since f(p) is a full-potential and stable game, and according to Theorem 6.1 and Corol-

lary 6.1, the optimization problem (6.10) can be solved in a distributed way by using the

D3RD (6.2), the D3SD (6.4), or the D3PD (6.6), and under time-varying graphs G(t).

Remark 6.2. Even though population dynamics only admit values within the positive
orthant ∆o, an optimization problem allowing negative values can also been solved by
using the D3RD (6.2), the D3SD (6.4), or the D3PD (6.6). This is made by applying a
change of variables in the fitness functions, e.g., if it is necessary to consider a constraint
of the form y ≤ y ≤ ȳ, and let y < 0 and ȳ > 0 be a lower and upper bound, respectively,
it is possible to make a change of variables as 0 ≤ y − y ≤ ȳ − y, or equivalently,
0 ≤ ỹ ≤ ȳ − y. Obtaining an optimization problem expressed in the required form as in
(6.10). ♦

Remark 6.2 shows that the proposed method with DDPG is versatile to solve opti-

mization problems with different types of inequality constraints in a distributed manner.

As an application, the next section presents a DMPC controller design based on the

D3RD (6.2), the D3SD (6.4), or the D3PD (6.6).

Proof-of-concept Example

Let S = {1, . . . , 7} be the set of strategies in a population with restricted information

sharing information given by an undirected connected graph G, which is presented in

Figure 6.2(a). Consider the following constrained optimization problem:

maximize
p

−1

2
p>p + [25 23 20 21 24 19 26]p, (6.15a)

128



Chapter 6. Distributed Predictive Control Using Density-dependent
Population Games

1

2 3

4 5

6

7

8

9

10

11

1

2 3

4 5

6

7

8

9

10

11

(a) (b)

Figure 6.2: Communication network for a population with seven strategies. (a) graph
to compute the fitness functions, and (b) graph separating full-potential games.

subject to

pi ≥ 0, ∀i ∈ S, (6.15b)
50
16
25
18

 =


1 1 0 0 0 0 0
0 0 0 1 1 0 0
0 0 1 0 0 1 0
0 0 0 0 0 1 1

p. (6.15c)

In order to solve the problem with DDPG, it is necessary to compute the Lagrangian

function and determine the fitness functions as in (6.14). Due to the fact that the

Theorems 6.1 and 6.2 hold for full-potential games, then fp(p,µ) = ∇pL(p,µ), and

fµ(p,µ) = −∇µL(p,µ) should be solved independently, even though those games share

information in order to compute the fitness functions, i.e., fitness functions are computed

using the graph shown in Figure 6.2(a). It is desired that all games converge to an

equilibrium point such that fp(p?,µ?) = 0, and fµ(p?,µ?) = 0, i.e., the same fitness

function. Therefore, games can be solved independently. In addition, it is possible

to solve different groups of games as it is illustrated next, i.e., the game is solved by

using the information-sharing graph presented in graph 6.2(b) corresponding to three

independent full-potential games. Also, those games may be solved by using different

density-dependent population dynamics.

In order to solve the optimization problem with the Lagrangian function, there are

dynamics associated to the Lagrange multipliers. Moreover, it is possible that the La-

grange multipliers get negative values. This fact represents a problem for the D3RD
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Figure 6.3: Evolution of the population states (a)-(c), and fitness functions (d)-(f) with
DDPG for the example (6.15). Sub-figures (a) and (d) D3RD with an offset of 35, (b)
and (e) D3SD with an offset of 35, and (c) and (f) D3PD.

and for the D3SD since those dynamics can only evolve in the positive orthant ∆o (see

Theorem 6.1). Therefore, to solve the optimization problem using the D3RD and the

D3SD, a change of variable must be made to establish an offset. On the other hand, the

fact that the Lagrange multipliers can get negative values is not an inconvenient for the

D3PD since trajectories evolve in Rn (see Theorem 6.2).

Figure 6.3 shows the evolution of the proportion of agents under the D3RD with off-

set, the D3SD with offset, and the D3PD for the game corresponding to the optimization

problem (6.15). It can be seen that the fitness functions converge to zero and proportion

of agents to the solution.

6.2 DMPC Controller Based on DDPG with Time-varying
Information-sharing Network

Consider the state-space discrete-time system presented in (3.1) with a sampling time

τ , i.e.,

xk+1 = Adxk + Bduk + Bldk, (6.16)

where vectors x ∈ Rnx , u ∈ Rnu , and d ∈ Rnd denote the states, control inputs and

disturbances, respectively as it has been presented in Chapter 3, and the state-space

matrices are given by Ad ∈ Rnx×nx , Bd ∈ Rnx×nu , and Bl ∈ Rnx×nd . States and
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control inputs are subject to physical and operational constraints that define feasible sets

denoted by X , {x ∈ Rnx : x ≤ x ≤ x̄}, and U , {u ∈ Rnu : u ≤ u ≤ ū}, where vectors

x and x̄ correspond to the lower and upper limits for the system states, respectively.

Similarly, vectors u and ū denote the lower and upper limits for the control inputs,

respectively. The control sequence for a fixed-time Hp ∈ Z>0 at time instant k ∈ Z≥0

is denoted by ûk (see (3.3a)). When the control-input sequence ûk is applied to the

system (6.16) with initial state xk|k , xk, a system states sequence x̂k is generated (see

(3.3b)). Finally, the time-varying sequence of system disturbances along Hp is denoted

by d̂k (see (3.3c)).

The system in (6.16) is controlled with an MPC controller whose optimization prob-

lem can be formulated as follows:

minimize
Uk

U>k Φ Uk + φ>k Uk, (6.17a)

subject to E Uk ≤ ek, (6.17b)

G Uk = gk. (6.17c)

Moreover, for the optimization problem (6.17) vectors ek and gk, which determine

the inequality and equality constraints, vary every discrete-time instant k.

Remark 6.3. The optimization problem behind the MPC controller considers q = 2nu+
2nx inequality constraints corresponding to the physical and operational limits for the
system states and control, i.e., x ≤ x ≤ x̄ and u ≤ u ≤ ū, respectively. In this regard,
it is assumed that the constraints are organized in the QP problem (6.17) as follows: the
first nu constraints in (6.17b) are associated to the upper limits for the control inputs ū,
the next nu constraints to the lower limits for the control inputs u, the next nx constraints
to the upper limits for the states x̄, and finally, the last nx constraints to the lower limits
for the states x. ♦

Therefore, notice that the QP problem formulation in (6.17) for the MPC controller

has the same form as the optimization problem in (6.10). Furthermore, by adding non-

negative slack variables s ∈ Rq≥0, the cost function may be re-written, and the constraints

can be compacted, i.e.,

minimize
ξ

[
U>k s>

]
︸ ︷︷ ︸

ξk
>

[
Φ 0nu×q

0q×nu 0q×q

]
︸ ︷︷ ︸

Ψ

[
Uk

s

]
︸ ︷︷ ︸

ξk

+
[
φ>k 0>q

]
︸ ︷︷ ︸

ψ
>
k

[
Uk

s

]
︸ ︷︷ ︸

ξk

, (6.18a)
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subject to [
E Iq
G 0r×q

]
︸ ︷︷ ︸

H

[
Uk

s

]
︸ ︷︷ ︸

ξk

=

[
ek
gk

]
︸ ︷︷ ︸

hk

. (6.18b)

Having added the slack variables, the optimization problem behind the MPC con-

troller is formulated in the form (6.11), and it can be solved in a distributed manner by

using the D3RD (6.2), the D3SD (6.4), or the D3PD (6.6), as explained in Section 6.1.

Assumption 6.1. States are measurable and their current value are available in order
to state the QP problem in (6.17). ♦

Regarding the information dependence, it is mainly given by the fitness functions

coupling. In order to determine the information-sharing structure for the D3RD (6.2),

the D3SD (6.4), or the D3PD (6.6), the fitness functions (6.14) are expressed in the form

f(p) =

 f1(p)
...

fn(p)

 =

 f1(p)
f2(p)
f3(p)

 . (6.19)

The first block of the vector f(p) in (6.19) corresponding to the nu control input

variables is given by

f1(p) =

[
∂L(p)

∂p1
. . .

∂L(p)

∂pnu

]>
,

while its second block corresponding to the q inequality constraints is given by

f2(p) = −
[
∂L(p)

∂p(nu+1)
. . .

∂L(p)

∂p(nu+q)

]>
.

Finally, the third block corresponds to the r equality constraints satisfying the order

according to Remarks 6.3, i.e.,

f3(p) = −
[

∂L(p)

∂p(nu+q+1)
. . .

∂L(p)

∂p(nu+q+r)

]>
.

Assumption 6.2. In the population game f , convergence to the Nash equilibrium under
the D3RD (6.2), the D3SD (6.4), or the D3PD (6.6), is achieved in shorter time than
the sampling time τ for the discrete system in (6.16). ♦
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Figure 6.4: Different regions for the consideration of inequality constraints.

Notice that the satisfaction of Assumption 6.2 depends on the type of system under

control, i.e., the required time to compute the distributed population dynamics should

be evaluated in comparison to how fast the dynamical system is. For instance, the case

study proposed in this chapter has a sampling time of an hour, for which the Assumption

6.2 is satisfied.

In order to check from which strategies it is necessary to get information, the Hessian

matrix of the Lagrangian function Θ = [θij ] = ∇2L(p) is computed, i.e., θij = ∂fi(p)
∂pj

.

Then, the biggest required information-sharing matrix denoted by Θ̃ = [θ̃ij ], which

corresponds to the existing coupling among the portion of agents at each strategy, is

given by

θ̃ij =

{
1, if θij 6= 0,
0, otherwise.

(6.20)

For the scenario with constant graph G, the adjacency matrix is given by the biggest

required information-sharing matrix, i.e., A = Θ̃. Nevertheless, conditions over the

adjacency matrix A can be added in order to use less information-sharing links when

convenient. It is highlighted that conditions can be versatile and the time-varying graph

can be addressed in different ways besides the one proposed in this chapter.

It is proposed to have an information-sharing graph topology depending on the nec-

essary active constraints. This is made since, under some system state conditions, it

is not necessary to consider the whole set of constraints. In this regard, some of them

can be properly neglected reducing both the size of the information-sharing network and

the computational burden. Figure 6.4 shows different possible regions for states and

control inputs established by parameters ḡxi , g
x

i
, ḡui , and gu

i
, which are constant values

determined at a design stage.
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Regions describe non-safe sectors in the feasible set, or sectors near limits of a con-

straint. Figure 6.4 presents two examples, i.e., for a time k < k1, the constraint xi ≥ xi
is active whereas the constraints xi ≤ x̄i is neglected. Then, for the time k > k2, the

constraint xi ≥ xi is neglected whereas the constraints xi ≤ x̄i is considered. Similarly,

Figure 6.4 also shows the scenario of control input uj with the respective time instants

k3, and k4. The regions, shown in Figure 6.4, are formally defined as follows:

• Upper region for states: R̄xi = {xi : ḡxi ≤ xi ≤ x̄i},

• Lower region for states: Rxi = {xi : xi ≤ xi ≤ gxi },

• Upper region for inputs: R̄uj = {uj : ḡuj ≤ uj ≤ ūj},

• Lower region for inputs: Ruj = {uj : uj ≤ uj ≤ guj },

for all i = 1, . . . , nx , and j = 1, . . . , nu. Besides, binary variables γ̄xi,k, γ
x

i,k
, which indicate

whether or not the current state xi,k belongs to a region, are defined as follows:

γ̄xi,k =

{
1, if xi,k ∈ R̄xi
0, otherwise,

γx
i,k

=

{
1, if xi,k ∈ Rxi
0, otherwise,

where i = 1, . . . , nx. Parameters γ̄uj,k, and γu
j,k

, indicating whether or not the current

control input ui,k belongs to a given region, are stated similarly for j = 1, . . . , nu. These

binary variables lead to a vector that determines the active and non-active constraints

for states and control inputs at each time instant, i.e.,

Γuk =
[
γ̄u1,k, . . . , γ̄

u
nu,k

, γu
1,k
, . . . , γu

nu,k

]>
,

Γxk =
[
γ̄x1,k, . . . , γ̄

x
nx,k

, γx
1,k
, . . . , γu

nx,k

]>
.

Then, let Γ̃k be the diagonal matrix of the active constraints at time instant k ∈ Z≥0

in the same order as explained in Remark 6.3, i.e.,

Γ̃k = diag
([
1
>
nu

Γuk
>

Γxk
>

1
>
r

])
.
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Figure 6.5: Summary of the DMPC controller with distributed DDPG.

Finally, these conditions over the active constraints lead to a time-varying graph

with adjacency matrix A(t) that varies its topology every τ , given by A(kτ) = Γ̃kΘ̃Γ̃k,

and the topology A(kτ) is maintained during a time τ , i.e., A(t) = A(kτ), for all

kτ ≤ t < (k + 1)τ . Alternatively, time-varying adjacency matrix can be denoted that

Ak = Γ̃kΘ̃Γ̃k.

Figure 6.5 shows the scheme corresponding to the DMPC controller based on DDPG

with time-varying information-sharing network. The non-safe regions are determined

in function of the current system state. Therefore, the information-sharing graph is

established with an adjacency matrix Ak. Finally, the DMPC controller based on DDPG

computes the optimal control input at each time instant k satisfying the information-

sharing restrictions.

6.3 Case Study: Barcelona Water Supply Network

Consider the same case study presented in Section 3.3.3, which is the aggregate model

of the BWSN presented in Figure 3.4. An MPC controller is designed for the BWSN

considering the slew rate ∆uk+j = uk+j−uk+j−1, for all j ∈ [0, Hp−1]∩Z>0. Therefore,

the corresponding optimization problem behind the MPC controller is as follows:

minimize
uk|k,...,uk+Hp|k

J(x,u) =

Hp∑
j=1

(
‖xk+j|k − xr‖Q̃ + ‖∆uk+j|k‖R̃ + γ|

(
α1 +α2,k+j

)>
uk+j|k|

)
,

(6.21a)
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subject to

xk+j+1|k = Adxk+j|k + Bduk+j|k + Bldk+j|k, ∀j ∈ [0, Hp − 1] ∩ Z≥0, (6.21b)

uk+j|k ∈ U , ∀j ∈ [0, Hp − 1] ∩ Z≥0, (6.21c)

xk+j|k ∈ X , ∀j ∈ [1, Hp] ∩ Z≥0, (6.21d)

0r = Euuk+j|k + Eddk+j|k, ∀j ∈ [0, Hp − 1] ∩ Z≥0, (6.21e)

where xr ∈ Rnx is a constant desired set-point for the system states x ∈ Rnx . Moreover,

α1 ∈ Rnu represents the time-invariant costs associated to the water resource, and

α2 ∈ Rnu represents the time-varying costs associated to the operation of valves and

pumps. On the other hand, Eu ∈ Rr×nu , and Ed ∈ Rr×nd construct the r equality

constraints in (6.21e). The matrices Q̃ ∈ Rnx×nx and R̃ ∈ Rnu×nu , and the scalar

γ ∈ R≥0 are weights assigning a prioritization for the control objectives related to the

error and to energy slew rate, respectively. Assuming that the optimization problem

(6.21) is feasible, an optimal sequence is computed, and following the MPC philosophy,

a new optimization problem is formulated for the next time instant [77]. Notice that the

optimization problem in (6.21) is also suitable for the real application since it minimizes

an error with respect to a desired volume that may vary along the time, and it also

takes into account the smoothness operation in order to avoid damage in the network.

Finally, the economical aspect to minimize the costs associated to water and energy are

also included in the cost function.

Then, some re-formulations over the cost function (6.21a) and constraints (6.21b)-

(6.21e) are presented to obtain a QP problem. These modifications are necessary in

order to show the density-dependent population-games approach as an alternative tool

for DMPC controller design. The optimization problem behind the MPC controller in

(6.21) can be conveniently re-formulated with a cost function given by

J = (Xk −Xr)
>Q (Xk −Xr) + ∆U>k R∆Uk + γU>k α,

where weighting matrices are: Q = diag([Q̃ . . . Q̃]), R = diag([R̃ . . . R̃]), and

α =

[(
α1 +α2,k+1

)>
. . .

(
α1 +α2,k+Hp

)>]>
.
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The reference vector along Hp is Xr = [x>r x>r . . . x>r ]>, and vectors Xk and

Uk are composed of the same elements of sequences in (3.3a) and (3.3b), i.e.,

Xk = [x>k+1|k x>k+2|k . . . x>k+Hp|k]
>,

Uk = [u>k|k u>k+1|k . . . u>k+Hp−1|k]
>.

Moreover, applying the appropriate transformations [77], the optimization problem

can be re-written as a QP problem in (6.17). Moreover, the BWSN is controlled under

two different scenarios, i.e.,

Scenario 1: DMPC controller based on DDPG with time-varying information-

sharing network for the BWSN.

Scenario 2: CMPC controller with constant information-sharing network for the

BWSN.

In order to evaluate the performance of the control strategy, two different KPIs are

proposed. One of them associated to the economical costs for operating the actuators as

presented in (3.15), and the other one associated to the communication costs depending

on the information-sharing links that are required to perform each control scheme. These

KPIs are defined as follows:

• Economical costs: these costs correspond to the required energy, and the time-

varying water costs during a day, i.e.,

KPIEcosts(day) =

24+24(day−1)∑
k=1+24(day−1)

(
α1 +α2,k

)>
uk. (6.22)

• Communication costs: these costs correspond to the required permanent information-

sharing links to compute the control inputs during a day, i.e.,

KPICcosts(day) =

24+24(day−1)∑
k=1+24(day−1)

(1>nMk1n)

2
, (6.23)

where Mk = Ak for the control strategy proposed in this chapter. The KPI in

(6.23) is also used later in this thesis by modifying the matrix Mk
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(a) (b)

(c) (d)

Figure 6.6: Communication topologies for the DMPC controller based on DDPG. (a)
information-sharing topology for the DMPC controller based on DDPG, i.e., A = Θ̃.
The number of links in this graph for this case study is 614; and time-varying information-
sharing topology for the DMPC controller based on DDPG at time instant: (b) k = 33,
i.e., A(33τ) = Γ̃(33)Θ̃Γ̃(33), (c) k = 11, i.e., A(11τ) = Γ̃(11)Θ̃Γ̃(11), and (d) k = 77,
i.e., A(77τ) = Γ̃(77)Θ̃Γ̃(77). The number of links in the graphs for this case study are:
(b) 468, (c) 435, and (d) 392.

For the simulation results, the reference has been selected to be xr = 0.6x̄, and

the weights in the cost function are selected to be Q̃ = Inx , R̃ = 1000Inu , and γ = 1.

Furthermore, the regions to determine the activeness of constraints are computed by

using the following parameters: ḡxi = gx
i

= 0.6x̄i, for all i = 1, . . . , nx; and ḡuj = 0.65ūj ,

and gu
j

= 0.35ūj , for all j = 1, . . . , nu.

Figure 6.6(a) presents the information-sharing topology required to solve the opti-
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Figure 6.7: The evolution of four states are presented at first row, i.e., x4, x10, x11, and
x13. The evolution of four control inputs are presented at second row, i.e., u11, u29, u36,
and u44.

Figure 6.8: Number of connected information-sharing links along the time. The mini-
mum achieved number of links is 392 corresponding to Figure 6.6(d).

mization problem by using the D3RD (6.2), the D3SD (6.4), or the D3PD (6.6), when

all the inequality constraints are active, i.e., A(t) = Θ̃. This topology also corresponds

to the topology at k = 1 to initialize the control strategy when considering time-varying

graphs. Figure 6.6(b) corresponds to the graph when adopting time-varying graphs

and the proposed distributed density-dependent population-dynamics-based DMPC con-

troller. Graph in Figure 6.6(d) has a reduction of 36.15% of the information-sharing links.

This reduction in the number of links from Figure 6.6(a) to Figure 6.6(d) is produced

due to the fact that, at k = 77, inequality constraints are non-active according to the

regions presented in Figure 6.4. Furthermore, Figures 6.6(b) and 6.6(c) correspond to

time instants k = 33 and k = 11, respectively.

Figure 6.7 shows the evolution of some states achieving the imposed reference, also re-

flecting a proper performance of the proposed distributed density-dependent population-
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Figure 6.9: The evolution of four demand profiles, i.e., disturbances d4, d8, d16, and d24.

dynamics-based DMPC achieving the references and minimizing abrupt changes in the

control signals –it is quite important to highlight that the evolution of system states and

control inputs are exactly the same for both Scenario 1 and 2 –. On the other hand,

Figure 6.7 also presents the behavior of some control signals. It can be seen that these

control inputs oscillate in order to satisfy the demands. That is why these control inputs

have the same periodicity as the disturbances (period of 24 hours). Figure 6.8 shows the

evolution of the number of connected links in the information-sharing network along the

time. It can be seen that, at the beginning, it is needed to have the information-sharing

graph corresponding to the biggest required information-sharing matrix, i.e., A(t) = Θ̃.

Then, after few iterations, the system reduces the number of required links consider-

ably. Moreover, it can be seen a periodic behavior of the number of required links in

the information-sharing network, is daily (period of 24 hours) as the disturbances, i.e.,

although all the demands have different magnitudes and mean values, they have the

same daily periodicity as the disturbances d4, d8, d16, and d24 presented in Figure 6.9.

Table 6.1 presents the economical and communication KPIs corresponding to both

considered scenarios. It can be seen that the economical costs associated to the water

and the required energy to operate the valves and pumps are the same for both scenarios,

i.e., the evolution of control inputs are equivalent even though the information-sharing

networks are different. This fact regarding the difference of information-sharing networks

is evidenced in the KPI in (6.23) (compare the total cost corresponding to KPICcost for

both scenarios in Table 6.1). Moreover, it can be seen that there is a reduction in the

communication costs for the second scenario, and therefore, there is a reduction in the

overall costs without affecting the performance of the closed-loop system.
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Table 6.1: Summary of KPIs corresponding to operation of actuators and communication
links.

Scenario 1 Scenario 2
Day KPIEcosts (e.u.) KPICcost (e.u.) KPIEcosts (e.u.) KPICcost (e.u.)

1 24.2456 10724 24.2456 14736
2 21.6782 9800 21.6782 14736
3 21.4634 9828 21.4634 14736
4 21.3294 9838 21.3294 14736
5 21.2401 9840 21.2401 14736

Total 109.9567 50030 109.9567 73680

Overall∗ 50139.95 73789.65
∗
The overall cost is computed by adding the total costs for both KPIs, i.e., the total values for KPIEcosts + KPICcost.

6.4 Summary

A general methodology to generate distributed density-dependent population dynamics

has been presented by considering a reproduction rate in the distributed mean dynamics.

Furthermore, the relationship between the equilibrium point of density games with the

optimal point has been shown in a constrained optimization problem by selecting the

description of benefits throughout the strategies using the Lagrangian of a potential

function. Besides, the asymptotic stability of the equilibrium point under the D3RD has

been formally proven for constant and time-varying population structures. Then, after

introducing this class of dynamics and their properties, they have been applied to the

design of a DMPC controller under a time-varying communication network. Simulation

results have shown a reduction in the number of links in the information-sharing network

over a 36% with respect to the total number of links for the communication network

without neglecting any constraint.
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Power Index in Control

Previous chapters have studied the role of non-cooperative-game approaches in the de-

sign of controllers. In contrast, this chapter discusses in studying a cooperative-game

approach. Indices of power are alternative ways to solve a game, which are characterized

for satisfying a certain system of axioms. Some of these power indices are, among others,

the Shapley value, the Banzhaf-Coleman index, or the dictatorial index [111]. Moreover,

even though for some examples different indices are equivalent, in the general case they

adopt different values. Specifically, this chapter addresses the role of the Shapley power

index in the design of controllers. In [111], it has been shown that the computation of the

Shapley value is more complex than the computation of other power indices. The main

reason is that the computation of the Shapley value involves a combinatorial explosion

since it evaluates all the possible coalitions that can be made among players. Therefore,

this fact implies a high computational burden. In addition, the computation requires

information from all the players, i.e., it is computed under centralized communication

structures, which constitutes an additional challenge for real applications, specially in

cases with large amount of players, where big communication networks would be needed.

The issue of computing the Shapley power index under distributed structures is

discussed. This chapter proposes a different way to compute the Shapley value for a

specific characteristic function in the cooperative game in order to reduce the computa-

tional burden, which is one of the main issues when using this game-theoretical approach.

Unlike the classical cooperative-games approach, which has a limited application due to

the combinatorial explosion issues, the alternative method allows calculating the Shap-

ley value in polynomial time and hence can be applied to large-scale problems (games
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involving large amount of players).

In addition, most of game-theoretical contributions address engineering problems

from either a cooperative or non-cooperative perspective. However, this chapter shows

that there must be control problems involving both cooperation and competition. There-

fore, it is suitable to solve it by using both directions. In this chapter, the Shapley value

and also population games are used together to solve a unique multi-objective control

problem.

In order to show the performance of the proposed methodology based on both co-

operative and non-cooperative games, a resource allocation problem in a water system

treated in [123] is presented, and the stability of the closed-loop system is analyzed by us-

ing passivity theory as in [69], [35]. Moreover, analysis regarding invariant-set properties

that guarantee a limitation-resource constraint and the stability of the whole closed-loop

system are presented extending preliminary result presented in [12]. The resource allo-

cation problem has been addressed with both replicator and projection dynamics since

they share some important gradient characteristics, which have been studied in [135].

Besides, it is discussed the fact that the main result related to the cooperative-game ap-

proach allows to compute the Shapley value under a distributed structure, i.e., without

considering a complete graph connecting the whole set of players. Also, it is shown that

this result leads to an additional alternative to compute the Shapley value through a

linear set of equations and using the coalitional rationality axiom (in a centralized man-

ner, or under a distributed structure). As a consequence of the decrement of required

communication links to make the computation under distributed structures, there is an

increment in the computational cost. However, a comparison between three alternatives

to compute the Shapley value, including the computation under a distributed structure,

has been presented in function of the number of players. This comparison shows that

the computation under a distributed structure is faster with respect to the traditional

computation of the Shapley value as there is an increment in the number of players.
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7.1 Problem Statement in Distribution Flow-based Net-
works

Several engineering problems may be addressed as a flow-based distribution network just

by defining general elements such as suppliers and demands, flow capacity, and storage

capacity [56]. Consider a specific resource flow-based distribution network, which is

composed only of three types of elements:

• Storage: element that stores the resource and with both inflows and outflows.

Let V = {1, . . . , n} be the set of n ∈ Z>0 storage nodes1.

• Sink: element that receives the resource from a storage node and with only inflows.

Let B = {n+ 1, . . . , 2n} be the set n ∈ Z>0 of sink nodes.

• Source: element that provides the resource and with only outflows. Let R =

{2n+ 1} be the singleton set of a source node.

Consider a directed graph denoted by G̃ = (Ṽ, Ẽ), where Ṽ = {V ∪ B ∪R} is the set

of 2n + 1 nodes representing the storage, sink, and source elements in the flow-based

distribution network, and Ẽ ⊂ {(r, `) : r, ` ∈ Ṽ} is the set of directed links composed of

two ordered pairs of nodes, which represent the resource outflow from r, being an inflow

to node `, with r, ` ∈ Ṽ. On the other hand, consider a bidirectional communication net-

work among the sub-systems, which determines the possible information sharing in order

to compute the appropriate control inputs. The communication network is represented

by an undirected graph denoted by G = (V, E ,A), where E ⊂ {(r, `) : r, ` ∈ V} is the set

of links allowing bidirectional communication between r, ` ∈ V, i.e., (r, `) and (`, r) rep-

resent the same link, and A ∈ Rn×n is the adjacency matrix, i.e., ar` = 1 indicates that

r and ` can share information. These two graphs Ḡ and G are presented in Figure 7.1.

Notice that storage elements in the distribution flow-based network presented in Figure

7.1 may be considered as source elements supplying other lower-level storage elements

as, in turn, are presented in Figure 7.2.

1
The set V has three different interpretations depending on the context in which it is used, i.e.,

a) V is the set of n storage nodes in the distribution flow-based networks context (Section 7.1).

b) V is the set of n strategies in the population-games context (Section 7.2).

c) V is the set of n players in the cooperative-games context (Section 7.3).
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Figure 7.1: Distribution flow-based network. (a) directed graph corresponding to the ex-
isting network flows. (b) undirected-graph example corresponding to the communication
sharing among sub-systems (associated to storage nodes).
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Figure 7.2: Tree-shaped topology composed by multiple flow-based distribution net-
works.

Storage nodes have discharge coefficients given by K` > 0, for all ` ∈ V, which

determine their outflow resource. Furthermore, the inflows of the storage nodes p` ∈
R>0, for all ` ∈ V, are manipulated imposing a proportion of resource, i.e., Qp`, where

0 < p` ≤ 1, for all ` ∈ V, and let Q ∈ R>0 be the total resource in the system. Besides,

storage nodes have associated a vector of system states denoted by z ∈ Rn>0 determining

the amount of resource at each of these nodes. The storage nodes have the following

dynamics:

ż` = Qp` −K`z`, ∀` ∈ V, (7.1)

where the equilibrium duple (p?` , z
?
` ) implies that a non-null steady state has been

achieved for the stored resource, i.e., z?` > 0 since p?` > 0. In the aforementioned

flow-based network, the resource Q is distributed throughout the storage nodes, which

can be seen as sub-systems within the network. For this distribution system, there are

two objectives. First, it is desired to make an evenhanded distribution of a resource
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zjipj
i

Σj
i

Γj
i

Figure 7.3: Closed loop for the sub-system corresponding to the jth partition of the ith

topology.

throughout different sub-systems, i.e.,

minimize
p

(
z` −

1

n

n∑
`=1

z`

)
, ∀` ∈ V,

while the second objective consists in determining the appropriate distribution of costs

for the sub-systems in function of their contribution to the first control objective, which

is attained by using the available communication channels to coordinate the distribution

of the resource. The communication cost in a time interval [t0, tf ] associated to the use

of G = (V, E ,A) is given by

KPIlinks =
1

2

∫ tf

t0

1
>
nA1n dt, (7.2)

where t0 and tf denote the initial and final simulation time, respectively. In order to

achieve the second aforementioned objective, the fair cost C̃` that the `th sub-system

should pay for using the communication network must be found. It should be satisfied

that
∑

`∈V C̃` = KPIlinks.

Finally, assume that the communication graph can have T different topologies from

the set T = {1, . . . , T}. Moreover, each topology i ∈ T has Pi different partitions

from the set Pi = {1, . . . , Pi}, where each partition j ∈ Pi of the topology i ∈ T
is a complete undirected graph denoted by Gji = (Vji , E

j
i ), where Vji is the set of nji

storage nodes within the corresponding partition, and Eji = {(r, `) : r, ` ∈ Vji } is the set

of links representing the full information within each partition. Besides, each partition

j ∈ Pi of the topology i ∈ T represents a sub-system denoted by Σj
i , which has a disjoint

controller denoted by Γji as presented in Figure 7.3.

The two different control objectives are achieved by using a game-theoretical ap-

proach in a distributed manner. The first control objective associated to an evenhanded
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distribution of the resource is reached with a non-cooperative approach (using a power

index). In contrast, the determination of the fair distribution of costs for all the sub-

systems is made with a cooperative-game approach. Furthermore, suppose that the

topology of the communication graph can be reconfigured conveniently to achieve the

control objectives every time τ > 0 (this fact is discussed in Section 7.2).

A feature of the flow-based distribution network is its passivity property. Lemma 7.1

presents this property as in [10], [46].

Lemma 7.1. The storage model of the flow-based distribution network Σj
i in Figure 7.3

is passive defining its inputs as the error ez` = z` − z?` , and its outputs as the error

ep` = p` − p?` , for all ` ∈ Vji , and for all partitions j ∈ Pi of the topology i ∈ T .

Proof. The storage model dynamics in error coordinates, i.e., the error dynamics ėz` ,
are as follows:

ėz` = Q
(
ep` + p?`

)
−K`

(
ez` + z?`

)
, ∀` ∈ Vji .

Then, consider the storage function (also Lyapunov function)

E1 =
1

2Q

∑
i∈T

∑
j∈Pi

∑
`∈Vji

e2
z`
, (7.3)

whose derivative is given by

Ė1 =
1

Q

∑
i∈T

∑
j∈Pi

∑
`∈Vji

ez` ėz` ,

=
1

Q

∑
i∈T

∑
j∈Pi

∑
`∈Vji

ez`Q
(
ep` + p?`

)
− ez`K`

(
ez` + z?`

)
,

=
1

Q

∑
i∈T

∑
j∈Pi

∑
`∈Vji

ez`Qep` + ez`Qp
?
` − e2

z`
K` − ez`K`z

?
` ,

=
1

Q

∑
i∈T

∑
j∈Pi

∑
`∈Vji

ez`Qep` − e
2
z`
K` + ez`

(
Qp?` −K`z

?
`

)︸ ︷︷ ︸
ż
?
` = 0

,

≤
∑
i∈T

∑
j∈Pi

∑
`∈Vji

ez`ep` ,

=
∑
i∈T

∑
j∈Pi

∑
`∈Vji

(
z` − z?`

) (
p` − p?`

)
,

=
∑
i∈T

∑
j∈Pi

(
zji − zj?i

)> (
pji − pj?i

)
.
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Then, since
(
zji − zj?i

)
are the inputs of Σj

i and
(
pji − pj?i

)
are the outputs of Σj

i , then

Ė1 ≤
∑
i∈T

∑
j∈Pi

(
zji − zj?i

)> (
pji − pj?i

)
allows to conclude that storage-node dynamics in

the flow-based distribution network are passive.

7.2 Population Games in a New Context

Consider a population composed of a finite and large number of rational agents that

make the decisions to select among a set of possible strategies V = {1, . . . , n} (each

strategy associated to a storage node, see Section 7.1). Agents change the strategy to

improve their utilities or benefits.

Within the population there are T ∈ Z>0 possibly different topologies represented

by a graph. This graph also determines how the population structure is configured,

i.e., how the agents can interact among them. Each topology i ∈ T is given by a non–

complete graph denoted by Gi = (V, Ei,Ai), where V is the set of n nodes representing the

strategies, the set of links that represent the possible interaction among agents selecting

the corresponding strategies is denoted by Ei, and Ai is the adjacency matrix of the

corresponding ith topology.

Each topology i ∈ T has Pi ∈ Z>0 disjoint partitions. The set of partitions of the

population topology i ∈ T is given by Pi = {1, ..., Pi}. The partition j ∈ Pi of the

topology i ∈ T is denoted by a complete graph Gji = (Vji , E
j
i ), where Vji is the set

of nji < n nodes representing the set of strategies within the corresponding partition

Vji ⊂ V, and Eji is the set of nji (n
j
i − 1)/2 links representing the full-information sharing

and interaction within each partition. Furthermore, it must be satisfied that all the

partitions form the entire topology, i.e.,
⋃
j∈Pi G

j
i = Gi, for all i ∈ T .

In the population, the scalar p` ∈ R≥0 is the proportion of agents selecting the strat-

egy ` ∈ V. The vector p ∈ Rn≥0 is a population state or a strategic distribution composed

of all the proportion of agents selecting the available strategies. The set of all the pos-

sible population states is given by a simplex denoted by ∆ =
{

p ∈ Rn≥0 : p>1n = π
}

with π = 1 for the application presented in this chapter. Similarly, pji,` ∈ R≥0 is the

proportion of agents selecting the strategy ` ∈ Vji available in the partition j ∈ Pi of

the topology i ∈ T . The vector pji ∈ Rn
j
i
≥0 is the strategic distribution of agents in the

149



Chapter 7. Power Index in Control

partition j ∈ Pi of the topology i ∈ T . Finally, let πji be the total mass in the partition

j ∈ Pi of the topology i ∈ T given by πji = pji
>
1
n
j
i
. Since partitions are disjoint, then∑

j∈Pi π
j
i = π, with π = 1.

The payoff that agents receive for selecting a particular strategy is given by a fitness

function f` : ∆ → R, for the associated strategy ` ∈ V. The vector of fitness functions

in the population, denoted by f , is composed of all the fitness functions f`(p), ` ∈ V.

Similarly, the vector of fitness functions of the partition j ∈ Pi of the topology i ∈ T is

denoted by f ji , which is composed of all the fitness functions f`(p), ` ∈ Vji . The average

fitness function in the population is given by f̄ = p>f . The average fitness for each

partition of each topology is given by f̄ ji =
(
pji
>

f ji

)
/πji , for j ∈ Pi, i ∈ T , and the

average fitness vector for the partition j ∈ Pi of the topology i ∈ T is f̄ ji = 1
n
j
i
f̄ ji .

In this chapter, both replicator and projection dynamics are used [134]. These two

population dynamics are especially appealing since they have gradient properties dis-

cussed in [135].

Replicator and Projection Dynamics

For a fixed topology, there is a replicator dynamics system for each partition (see repli-

cator dynamics in (2.14)). For a topology i ∈ T and a partition j ∈ Pi, the replicator

dynamics introduced in [144] are given by

ṗji = diag
(
pji

)(
f ji − f̄ ji

)
, (7.4)

and the projection dynamics introduced in [95] (see projection dynamics in (2.16)) are

given by

ṗji = f ji −
1

nji
1
n
j
i
f ji
>
1
n
j
i
. (7.5)

Then, the system changes among topologies1 in order to use, at each iteration, a limited

number of communication links. The equilibrium of interest in (7.4) for this chapter is

the non-pure Nash equilibrium given by the condition f j?i = f̄ j?i , for all j ∈ Pi, i ∈ T .

This is equivalent to f j?i ∈ span{1
n
j
i
}, for all i ∈ T and j ∈ Pi. Notice that the

dynamics (7.4) have an equilibrium point pj?i = 0, which implies the extinction of the

1
These topologies are determined by a partitioning performed by using a cooperative game approach,

which is later discussed in this chapter.
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agents. Consequently, it is assumed that, under the replicator dynamics (7.4), there is

not extinction of proportion of agents. Regarding the equilibrium for (7.5), it is achieved

when all the fitness functions get the same value, i.e., f j?i ∈ span{1
n
j
i
}, for all i ∈ T and

j ∈ Pi. Due to the fact that each topology is a non-connected graph, this equilibrium

is achieved at each partition. Moreover, since topologies and partitions are varying over

time, it is necessary to identify the equilibrium for all topologies and for all partitions,

i.e., fk(p
?) = f`(p

?), for all k, ` ∈ V.

Remark 7.1. Suppose that f is a stable game, then (p−p?)>(f(p)−f(p?)) ≤ 0 according
to Definition 2.2. Moreover, due to the fact that f(p?) ∈ span{1n}, and that p,p? ∈ ∆,

then (p− p?)>f(p?) = 0. This leads to (p− p?)>f(p) ≤ 0. ♦

The first property of both replicator and projection dynamics is the invariance of the

simplex set ∆, which is analyzed in Proposition 7.1.

Proposition 7.1. Let p(0) be the initial condition of (7.4) or (7.5). If p(0) ∈ ∆, then
p ∈ ∆, for all t ≥ 0, i.e., the simplex ∆ is an invariant set under replicator dynamics
(7.4) or projection dynamics (7.5), for any partition topology.

Proof. The invariant-set property is analyzed for both population dynamics.

Replicator dynamics: in order to prove that the simplex ∆ is an invariant set, it is
shown that the sum of ṗji for all topologies i ∈ T and for all partitions j ∈ Pi is null,
i.e.,

∑
i∈T

∑
j∈Pi

1
>
n
j
i
ṗji =

∑
i∈T

∑
j∈Pi

pji
>
(

f ji −
1

πji
1
n
j
i
pji
>

f ji

)
,

=
∑
i∈T

∑
j∈Pi

(
pji
>

f ji −
1

πji
pji
>
1
n
j
i
pji
>

f ji

)
,

=
∑
i∈T

∑
j∈Pi

(
pji
>

f ji − pji
>

f ji

)
,

= 0.

Projection dynamics: in order to prove that the simplex ∆ is an invariant set, it is shown
that the sum of ṗji for all topologies i ∈ T and for all partitions j ∈ Pi is null, i.e.,

∑
i∈T

∑
j∈Pi

1
>
n
j
i
ṗji =

∑
i∈T

∑
j∈Pi

1
>
n
j
i

(
f ji −

1

nji
1
n
j
i
f ji
>
1
n
j
i

)
,

=
∑
i∈T

∑
j∈Pi

1
>
n
j
i
f ji −

1

nji
1
>
n
j
i
1
n
j
i
f ji
>
1
n
j
i
.
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Notice that 1

n
j
i

1
>
n
j
i
1
n
j
i

= 1, then

∑
i∈T

∑
j∈Pi

1
>
n
j
i
ṗji =

∑
i∈T

∑
j∈Pi

1
>
n
j
i
f ji − f ji

>
1
n
j
i
,

= 0.

Both results complete the proof.

Now, the passivity property of both the replicator and the projection dynamics is

analyzed in Lemma 7.2.

Lemma 7.2. Γji in Figure 7.3 can be given by either the replicator dynamics (7.4) or

the projection dynamics (7.5). For any of these dynamics, Γji is lossless defining its

inputs as f ji , and its outputs as pji − pj∗i , for all partitions j ∈ Pi of the topology i ∈ T .

Proof. The analysis is made for both replicator and projection dynamics using different
storage functions.

Replicator dynamics: consider the following entropy function as a storage function
(also Lyapunov function), i.e.,

E2(p) = −
∑
i∈T

∑
j∈Pi

∑
`∈Vji

pj?i,` ln

(
pji,`

pj?i,`

)
, (7.6)

= −
∑
i∈T

∑
`∈V

p`
? ln

(
p`
p`
?

)
,

which is a valid Lyapunov function since E2(p?) = 0 and E2(p) > 0, for all p 6= p?, fact
that is verified by using the Jensen’s inequality (i.e., G(g(x)) ≥ g(G(x)) for any convex

function as the logarithm [66]), e.g., E(p) ≥ −∑i∈T ln

(∑
`∈V

p?`
p`
p
?
`

)
, and due to the fact

that ln
(∑

`∈V p
?
`
p`
p
?
`

)
= ln (1), it follows that E(p) ≥ 0. Then E(p) > 0, for all p 6= p?.

Hence,

Ė2(p) = −
∑
i∈T

∑
j∈Pi

∑
`∈Vji

pj?i,`

pji,`
ṗji,`. (7.7)
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Replacing dynamics (7.4) in (7.7) yields

Ė2(p) = −
∑
i∈T

∑
j∈Pi

pji
?>
(

f ji −
1

πji
1
n
j
i
pji
>

f ji

)
,

= −
∑
i∈T

∑
j∈Pi

(
pji

?> − 1

πji
pji

?>
1
n
j
i
pji
>
)

f ji ,

=
∑
i∈T

∑
j∈Pi

(
pji − pji

?
)>

f ji .

Projection dynamics: consider the quadratic error as a storage function (also Lya-
punov function), i.e.,

E3(p) =
1

2

∑
i∈T

∑
j∈Pi

∑
`∈Vji

(
pji,` − p

j?
i,`

)2
, (7.8)

where E3(p) > 0 for all p 6= p?, and E3(p?) = 0. Replacing dynamics (7.5) in the
storage function derivative yields

Ė3(p) =
∑
i∈T

∑
j∈Pi

(
pji − pj?i

)>(
f ji −

1

nji
1
n
j
i
f ji
>
1
n
j
i

)
,

=
∑
i∈T

∑
j∈Pi

(
pji − pj?i

)>
f ji −

1

nji

(
pji − pj?i

)>
1
n
j
i
f ji
>
1
n
j
i
,

=
∑
i∈T

∑
j∈Pi

(
pji − pj?i

)>
f ji −

1

nji

(
pji
>
1
n
j
i
− pj?i

>
1
n
j
i

)
f ji
>
1
n
j
i
,

=
∑
i∈T

∑
j∈Pi

(
pji − pj?i

)>
f ji .

Then, since fji are the inputs and
(
pji − pj?i

)
are the outputs, both results show that

the replicator and projection dynamics are lossless.

Remark 7.2. According to Remark 7.1 and taking into account the derivative of the
storage functions (also Lyapunov functions) Ė2 ≤ 0, and Ė3 ≤ 0, there exists a time
τ > 0 such that ‖p`(t)− p?` (t)‖ ≥ ‖p`(t+ τ)− p?` (t+ τ)‖, for all ` ∈ V. ♦

Once the passivity features of the considered flow-based distribution network and

both the replicator and projection dynamics have been presented, it is shown that the

equilibrium point of the closed-loop system in Figure 7.3 is stable as stated in Proposition

7.2.
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Proposition 7.2. The equilibrium pair (zj?i ,p
j?
i ), for all partitions j ∈ Pi in the topology

i ∈ T (i.e., the equilibrium zj?i of the sub-system Σj
i , and the equilibrium pj?i of the

system Γji , for the closed loop presented in Figure 7.3) is stable under the replicator and

projection dynamics selecting f ji = zjmax,i − zji , where zjmax,i is the constant maximum

capacity of the storage nodes belonging to Vji .

Proof. Consider the Lyapunov function given by E = E1+E2 for the replicator dynamics,
and E = E1 + E3 for the projection dynamics, where E1, E2 and E3 are the functions
presented in (7.3), (7.6), and (7.8), respectively. According to Lemmas 7.1 and 7.2, for
both cases Ė satisfies

Ė ≤
∑
i∈T

∑
j∈Pi

(
zji − zj?i

)> (
pji − pj?i

)
+
∑
i∈T

∑
j∈Pi

(
pji − pj?i

)>
f ji . (7.9)

Adding and substracting
∑
i∈T

∑
j∈Pi

zjmax,i in (7.9) yields

Ė ≤
∑
i∈T

∑
j∈Pi

(
−zjmax,i + zji + zjmax,i − zj?i

)> (
pji − pj?i

)
+
∑
i∈T

∑
j∈Pi

(
pji − pj?i

)>
f ji ,

=
∑
i∈T

∑
j∈Pi

{(
−zjmax,i+zji

)>(
pji − pj?i

)
+
(
zjmax,i − zj?i

)>(
pji − pj?i

)
+ f ji

>(
pji − pj?i

)}
,

=
∑
i∈T

∑
j∈Pi

{
−f ji

> (
pji − pj?i

)
+ f j?i

> (
pji − pj?i

)
+ f ji

> (
pji − pj?i

)}
,

= 0.

Therefore, the equilibrium point (zj?i ,p
j?
i ), for all partitions j ∈ Pi in the topology i ∈ T ,

is stable.

Notice that the population-games-based controller in Figure 7.3 is a data-driven

controller since it is designed without requiring the model of the system.

7.3 Coalitional-Game Role and Partitioning Criterion

Consider a cooperative game with transferable utility defined as a pair (V, Vc), where

V = {1, .., n} is the set of players (each player associated to a storage node, see Section

7.1), and Vc is the characteristic function. From the cooperative-game viewpoint for

each topology i ∈ T , each node ` ∈ V is a player and each partition j ∈ Pi represents a

coalition of players.
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7.3.1 Computation of the Shapley Value

The characteristic function Vc assigns a real value to each of the 2V coalitions and

returns a real value. Formally, the characteristic function is a mapping Vc : 2V → R.

For each coalition, O ⊆ V, Vc(O) is the value that players can share among themselves.

Additionally, for the empty coalition, Vc(∅) , 0.

Prior to defining the characteristic function, costs associated to each coalition are

defined as

C̃(O) =
1

|O|
∑
`∈O

C̃`, (7.10)

where C̃` is the individual cost of player belonging to the coalition ` ∈ O. For the

considered flow-based distribution networks, costs are defined to be C̃` = zmax,`− z`, for

all ` ∈ V, where zmax,` is the maximum capacity of the storage node, and z` is the current

state of the corresponding storage node. This individual value represents a cost that a

player would have to assume in case that it does not cooperate with anyone. Notice

that the error C̃` is an appropriate selection for the costs since a player ` with null error

does not have incentives to cooperate with others due to the fact it has achieved the

first control objective, and cooperation would imply to increment the error. In contrast,

a player with a big error C̃` has incentives to cooperate in order to minimize its error

and should assume costs associated to that cooperation. In addition, if two players have

identical errors C̃`, then it is reasonable that both assume the same costs to cooperate

each other. In other words, it is reasonable that those players with bigger errors incur

in higher costs to achieve the first control objective.

Furthermore, the individual cost allows the player to determine its incentives to es-

tablish a coalition with another player, i.e., the player would have incentives to cooperate

with others as long as the cooperation implies a reduction of its costs. Besides, these

individual costs allow computing the contribution of a player to a coalition, i.e., how

the cost is reduced as the player collaborates with an existing coalition. Afterwards, the

specific considered characteristic function is given by the difference between the sum of

individual costs and the cost of the corresponding coalition. Then, the difference be-

tween the costs when each player operates by itself and the costs when all these players
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collaborate with each other can be used to define the cost function as

Vc(O) =
∑
`∈O

C̃` − C̃(O). (7.11)

A solution of the cooperative game is an allocation rule that provides each player with

a payoff according to its contribution. Let y ∈ Rn be the payoff vector given by y =

[y1 · · · yn]>. Some desirable properties for the distribution of the Vc(O) among the

players are:

1. Efficiency:
∑

`∈O y` ≤ Vc(V),

2. Coalitional rationality:
∑

`∈O y` = Vc(O) for all coalitions O ⊆ V,

3. Individual rationality: y` ≥ Vc({`}), for all ` ∈ V.

A payoff rule that satisfies the mentioned desired requirements is the Shapley value

(or Shapley power index) [110], [140], which is given by

Φ(`) =
∑

O⊆V\{`}

Ψ(O)
(
Vc(O ∪ {`})− Vc(O)

)
, (7.12)

where

Ψ(O) =
|O|! (n− |O| − 1)!

n!
.

Notice that the sum in (7.12) considers all the possible coalitions where player ` ∈
V can be added. Its computation requires full information from all the players and

coalitions of the cooperative game, resulting in high computational burden. In particular,

the combinatorial explosion when having a high number of players is a common issue in

this context.

Once the characteristic function has been defined as in (7.11), a mathematical re-

lationship between the Shapley values can be determined to mitigate the high compu-

tational cost enhancing the possibilities to use a distributed structure. This result is

presented in Theorem 7.1.

Theorem 7.1. Let (7.11) be the characteristic function of a cooperative game with the
set of players V = {1, ..., n}. Let C̃` be the cost associated to each player ` ∈ V, and
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(7.10) be the costs associated to each coalition O ⊆ V. The Shapley value Φ(`) for any
player ` ∈ V is computed as follows:

Φ(`) =
1

n

Vc(V)−Θ

 ∑
r∈V\{`}

C̃r − (n− 1)C̃`

 , (7.13)

where Θ > 0 is a constant for the cooperative game whose value only depends on the
number of players n, i.e.,

Θ =
n−2∑
s=1

{(
(n− 2)!

s!(n− 2− s)!

)(
s

s+ 1

)(
s! (n− s− 1)! + (s+ 1)! (n− s− 2)!

n!

)}
.

Besides, there is a relationship between Shapley values given by Φ(r) = Φ(`)+(C̃r−C̃`)Θ,
for all r, ` ∈ V.

Proof. First, it is proven the relationship between the Shapley values of different players
with the constant Θ given by Φ(r) = Φ(`) + (C̃r − C̃`)Θ, for all r, ` ∈ V. The Shapley
value Φ(`) of the player ` ∈ V in (7.12) may be re–written by expressing the set of
coalitions to which the player ` ∈ V can be added, in terms of a second player r ∈ V, as
follows:

Φ(`) =
∑

O⊆V\{`,r}

Ψ(O) (Vc(O ∪ {`})− Vc(O)) +

∑
O⊆V\{`,r}

Ψ(O ∪ {r}) (Vc(O ∪ {r} ∪ {`})− Vc(O ∪ {r})) .

Similarly, the Shapley value Φ(r) of the player r ∈ V may be written in terms of player
` ∈ V as follows:

Φ(r) =
∑

O⊆V\{`,r}

Ψ(O) (Vc(O ∪ {r})− Vc(O)) +

∑
O⊆V\{`,r}

Ψ(O ∪ {`}) (Vc(O ∪ {r} ∪ {`})− Vc(O ∪ {`})) .

Now, it is found the difference between the Shapley values Φ(r) and Φ(`), denoted by
Φ̃(r, `) = Φ(r) − Φ(`). Here, it is taken into account that Ψ(O ∪ {r}) = Ψ(O ∪ {`}).
Hence

Φ̃(r, `) =
∑

O⊆V\{`,r}

Ψ(O) {Vc(O ∪ {r})− Vc(O ∪ {`})}+

∑
O⊆V\{`,r}

Ψ(O ∪ {r}) {Vc(O ∪ {r})− Vc(O ∪ {`})} . (7.14)
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Replacing (7.11) and (7.10) in (7.14), it is obtained

Φ̃(r, `) =
∑

O⊆V\{`,r}

Ψ(O)

{(
1− 1

|O|+ 1

)
(C̃r − C̃`)

}
+

∑
O⊆V\{`,r}

Ψ(O ∪ {r})
{(

1− 1

|O|+ 1

)
(C̃r − C̃`)

}
.

Briefly, the difference between the Shapley values Φ̃(r, `) = Φ(r)− Φ(`) is given by

Φ̃(r, `) = (C̃r − C̃`)
∑

O⊆V\{`,r}

θ1︷ ︸︸ ︷
(Ψ(O) + Ψ(O ∪ {r}))

θ2︷ ︸︸ ︷( |O|
|O|+ 1

)
︸ ︷︷ ︸

Θ

.

Notice that the constant value Θ can be re-written as

Θ =
n−2∑
s=1


θ3︷ ︸︸ ︷(

(n− 2)!

s!(n− 2− s)!

) θ2︷ ︸︸ ︷(
s

s+ 1

)(
s! (n− s− 1)! + (s+ 1)! (n− s− 2)!

n!

)
︸ ︷︷ ︸

θ1

 ,

where θ3 represents the amount of coalitions that can be formed in the cooperative game
with s players, i.e., |O| = s. Finally,

Φ(r) = Φ(`) + (C̃r − C̃`)Θ, ∀ r ∈ V\{`}.

It follows that making the sum over all the elements of the set V\{`}, it is obtained the
desired relationship. i.e.,∑

r∈V\{`}

Φ(r) = (n− 1)Φ(`) + Θ
∑

r∈V\{`}

C̃r −Θ(n− 1)C̃`.

Then, if Φ(`) is added at both sides of the previous equality, it yields

∑
r∈V

Φ(r) = nΦ(`) + Θ

(∑
r∈V

C̃r − (n− 1)C̃`

)
,

and since Vc(V) =
∑

r∈V Φ(r), then

Φ(`) =
1

n

Vc(V)−Θ

 ∑
r∈V\{`}

C̃r − (n− 1)C̃`

 ,

completing the proof.

Remark 7.3. If C̃r > C̃`, then Φ(r) > Φ(`), for all r, ` ∈ V. Suppose that C̃r > C̃`,
and since Θ > 0, then Φ(r) = Φ(`) + (C̃r − C̃`)Θ > Φ(`). ♦
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7.3.2 Computation of the Shapley Value under a Distributed Structure

The reduction of the computational time according to the result obtained in Theorem

7.1 allows investing extra computational effort to gather all the needed information

to compute the Shapley value under a distributed structure. In order to make the

distributed Shapley computation, let one player be a pivot player in charge of collecting

all the required information from all the other players known as supply players.

Remark 7.4. Even though the computation of the Shapley value is performed by one
player, the required structure is a non-complete graph. In this regard, the computation
of the Shapley value is made under a distributed structure. ♦

2 3 n. . .1
pivot

Figure 7.4: Path graph for the distributed Shapley computation. Without loss of gen-
erality, the pivot player is considered to be player 1.

Consider a connected non-complete graph for the distributed computation of the

Shapley value denoted by G = (V, E), where V is the set of nodes representing the

players within the cooperative game. Moreover, let q ∈ V denote the pivot player, and

V\{q} is the set of supply players. The set of links E represents possible communication

among the players. Moreover, let N` be the set of neighbors of player ` ∈ V, i.e.,

N` = {r : (`, r) ∈ E}. Figure 7.4 shows the case for a path graph where the first player

is the pivot player, i.e., q = 1 ∈ V. Notice that the required information to compute the

Shapley value is given by all the individual costs of all the supply players according to

(7.10) (since the pivot player knows its own individual cost), and the total number of

players. This information is required by the pivot player who is in charge of the Shapley

value computation in order to perform the partitioning (which is used for establishing

the proper topologies introduced in Section 7.2) and also assign the fair distribution of

costs associated to the communication links. It is necessary that the pivot player obtains

the information in a distributed way subject to the communication topology given by

the graph G.

The distributed algorithm is inspired by the work presented in [49], and it is split

into two different tasks, i.e., the distributed computation of the number of players n,

and the distributed computation of all the individual costs for all the supply players C̃`,
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for all ` ∈ V\{q} as it has been presented in Chapter 4. Each stage of the algorithm is

presented next.

7.3.2.1 Computation of the Number of Players

Consider an auxiliary variable for the pivot player ξq, and for each supply player ξ`, where

` ∈ V\{q}. The initial conditions of these auxiliary variables are given by ξq(0) = 1,

and ξ`(0) = 0, for all ` ∈ V\{q}. The following consensus algorithm can be implemented

taking advantage of the relationship between the initial conditions and the stationary

point as [109], [26]

ξ̇` =
∑
r∈N`

(ξr − ξ`), ∀ ` ∈ V. (7.15)

Since the communication graph G among players is connected, according to [109]

the stationary value of (7.15) is ξ?` = (
∑

r∈V ξr(0))/n, for all ` ∈ V. Consequently, the

stationary value is given by ξ?` = n−1, for all ` ∈ V. This fact shows that the pivot player

can get information about the total number of players n in a distributed way.

7.3.2.2 Computation of the Individual Costs

For simplicity, it is assumed that the pivot player is the player q = 1 ∈ V (see, e.g.,

Figure 7.4). Since there are n− 1 values for individual costs that should be sent to the

pivot player, then there is a turn value denoted by κ ∈ Z>0. The token assigns a flag for

each player to distribute its individual cost. For the case with a pivot player q = 1 ∈ V,

the turn value κ should vary from 2 to n in order to cover the total number of players

in the cooperative game. After determining the possible values for the turn variable κ,

i.e., κ = 2, . . . , n, this variable is initialized for the first supply player, i.e., κ = 2. Once

the pivot player determines the individual cost corresponding to this supply player, the

turn value is increased, i.e., κ = κ+ 1 in order to allow the next supply player distribute

its individual cost. This process is repeated until the last player distributes its cost to

the pivot player, i.e., until κ = n.

Consider the auxiliary variables ψ`, for all ` ∈ V. The initial conditions of these

auxiliary variables are given by ψκ = C̃κ from (7.10), and ψ` = 0, for all ` ∈ V\{κ}.
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Then, the consensus algorithm [109] is implemented, i.e,

ψ̇` =
∑
r∈N`

(ψr − ψ`), ∀` ∈ V. (7.16)

The stationary value is given by ψ?` = 1
n

∑
r∈V ψr(0). For the selected initial condi-

tions, ψ?` = n−1C̃κ. Furthermore, since the number of players is already known from the

procedure presented in Subsection 7.3.2.1, then

ψ?` = C̃κξ
?
` , ∀κ ∈ V\{q}.

It is concluded that, finding the number of players and finding each individual cost

by assigning turns to the supply players, it is possible to compute the Shapley value in

a distributed way.

Remark 7.5. Notice that it is necessary to compute n distributed consensus algorithms,
one algorithm for the determination of the number of players, and n − 1 algorithms to
distribute the individual costs of supply players to the pivot player. This fact implies
an extra computational burden. However, it is shown that the distributed computation
of the Shapley value using distributed consensus and Theorem 7.1 is lower than the
computational burden of the classical approach (7.12) as the total number of players is
increased. ♦

In order to verify the difference between the computational burden of computing

the Shapley value with (7.12), and by using the relation proposed in Theorem 7.1 with

the constant value Θ, different Shapley values for several amount of players have been

computed.

The comparison among the computation of the Shapley value in a distributed and

centralized way using Theorem 7.1, and in a centralized way using (7.12), is presented

in Table 7.1. Moreover, Figure 7.5 shows the summary of the computational burden for

all the approaches and for different number of players n.

7.3.3 Partitioning Procedure

In order to perform the partitioning of the system, first it is established a time τ that

satisfies Remark 7.2, which defines when the proper topology is evaluated1. Every

1
The proper topology is determined by considering a fair distribution of costs given by the Shapley

value, which establishes the appropriate partitioning within the system at every time τ that satisfies
Remark 7.2.
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Table 7.1: Comparison of computational burden for computing the Shapley value for
different number of players.

Total Number Centralized approach Centralized approach Distributed approach
of players by using (7.12) by using (7.13) by using (7.13)

n time [s] time [ms] time [s]

3 0.4232 0.09 2.7899
4 0.8020 0.12 3.6002
6 1.2907 0.18 5.4838
8 2.3421 0.24 7.2707
10 5.9998 0.30 9.0004
12 25.6436 0.36 10.8073
14 110.6065 0.42 12.6004
16 1944.7919 0.48 14.4005
18 53938.9433 0.54 16.2210
100 − 3 90.0030

C
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[s

]

Number of players n

Figure 7.5: Computational burden for computing the Shapley value (semi-log plot).
Centralized computation with typical approach using (7.12), centralized computation
with the proposed approach using (7.13), and with distributed computation with the
proposed approach using (7.13).

time τ , the Shapley value Φ(`) of all the players ` ∈ V is computed by using the low-

computational-cost operation with the factor Θ. A second necessary parameter is the

size of the desired partitions, denoted by g̃ ∈ Z>0, i.e., make partitions with a number
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Algorithm 3 Partitioning algorithm based on the Shapley value

1: procedure initialization
2: g̃ ← desired number of players per partition
3: {H}` ← Φ(`) set of the Shapley values |H| = n
4: j ← 1 index for partitions
5: end procedure
6: while |H| ≥ g̃ do
7: b ← 0 flag for amount of players
8: Cj ← ∅ initialization of the jth partition
9: r ← arg max

`∈V
{H}` player with maximum value

10: H ← H\{H}r reduce the set without rth value
11: Cj ← Cj ∪ {r}
12: b ← b+ 1 number of players in Cj
13: while b ≤ g̃ do
14: r ← arg min

`∈V
{H}` player with minimum value

15: H ← H\{H}r reduce the set without rth value
16: Cj ← Cj ∪ {r}
17: b ← b+ 1 number of players in Cj
18: end while
19: j ← j + 1 number of partitions
20: end while
21: if H 6= ∅ then
22: Cj ← H leftover players forming a smaller partition
23: end if

g̃ < n of players.

In the partitioning procedure, it is desired to gather the player with the highest

Shapley value with the g̃ − 1 players with the lowest Shapley values. In this sense, it is

possible to make a cooperation in which the best players share their benefits with those

in a worst situation. Details of this partitioning process at every time τ are presented in

Algorithm 3. It is worth to highlight that this partitioning criterion might be different

depending on the control objectives and the system dynamical behavior. In this chapter,

the partitioning is performed in function of the Shapley value by grouping players with

the highest power index with those with lowest power index. This procedure allows

players to unify their power index and therefore to achieve an evenhanded distribution

of resource.
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Lemma 7.3. The stable closed-loop system presented in Figure 7.3, changing the parti-
tions every τ by using the Shapley values, converges to the common equilibrium z?` = z?r
for all r, ` ∈ V.

Proof. Consider the arbitrary initial condition for the storage nodes z(0) ∈ Rn≥0, the

maximum capacities for the storage nodes zmax ∈ Rn≥0, and the costs C̃i(0) = zmax,i −
zi(0), for all i ∈ V. Now, consider r0 = arg maxi∈V C̃i(0), and `0 = arg mini∈V C̃i(0).
Then, it is known that according to Remark 7.3, Φ(r0) > Φ(`0) and that r0, `0 ∈ V
are assigned to the same partition according to the proposed partitioning procedure
(Algorithm 3). It follows that, during the interval time τ with the closed loop presented
in Figure 7.3 and according to Remark 7.2, it is obtained C̃

`
0 ≤ z

max,r
0 − z

r
0(τ) ≤ C̃

r
0 ,

and C̃
`
0 ≤ z

max,r
0 − z

r
0(τ) ≤ C̃

r
0 . Then computing r1 = arg maxi∈V C̃i(τ), and `1 =

arg mini∈V C̃i(τ), it is obtained that C̃
`
0 ≤ C̃

`
1 , and C̃

r
1 ≤ C̃

r
0 .

Making the partitioning, it follows that C̃
`
0 ≤ C̃

`
1 ≤ z

max,`
1 − z

`
1(2τ) ≤ C̃

r
1 ≤ C̃

r
0 , and

C̃
`
0 ≤ C̃

`
1 ≤ z

max,r
1 − z

r
1(2τ) ≤ C̃

r
1 ≤ C̃

r
0 . It is concluded that

min
i∈V

C̃i(kτ) ≤ zmax,` − z`((k + 1)τ) ≤ max
i∈V

C̃i(kτ),

min
i∈V

C̃i(kτ) ≤ zmax,r − zr((k + 1)τ) ≤ max
i∈V

C̃i(kτ),

where r = arg maxi∈V C̃i(kτ), and ` = arg mini∈V C̃i(kτ). Then
[maxi∈V C̃i(kτ) − mini∈V C̃i(kτ)]→ 0 as k →∞, until maxi∈V C̃i(kτ) = mini∈V C̃i(kτ).
This situation leads to the equilibrium z?r = z?` , for all r, ` ∈ V. Consequently, it is
obtained that all fitness functions are the same, then x∗` is achieved for all ` ∈ V.

7.4 Case Study: Water Supply Network

As a case study, a multi-objective problem involving both competition and cooperation

is presented. The case study is shown in Figure 7.6, which is composed of n = 13 tanks.

There are two control objectives. The former objective is to maintain all the tanks at

the same maximum level, which is solved by finding a Nash equilibrium. The latter

objective is to determine the cost each player should pay for these communication links

according to its contribution to achieve the desired equilibrium. The fair cost that each

player should pay is given by using the Shapley value.

Let KPIlinks in (7.2) denote the communication cost associated to the undirected

graph G (see Figure 7.1(b)). Therefore, the fair cost distribution is given by the Shapley

value, i.e.,

L̃` =
Φ(`)∑n
r=1 Φ(r)

KPIlinks, ` ∈ V, (7.17)
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Figure 7.6: Case study: Resource Q allocation throughout n tanks.

where L̃` is the fair cost corresponding to the player ` ∈ V. The Shapley value is

normalized in (7.17) since it is computed in terms of the error rather than in economical

units. These communication links allow sharing, in a local way, information about the

measured levels in order to achieve the first control objective. Notice that this is a

decentralized control scheme since each control input is computed by using only partial

and local information.

In order to solve the control problem, it is proposed to make a partitioning based on

the Shapley value as presented in Section 7.3. Therefore, the individual cost associated

to each player is the error between the current level and the maximum level of each tank,

i.e.,

C̃` = hmax,` − h`, (7.18)

where hmax,` denotes the maximum and constant possible level for the `th tank, and

h` is the current measured level of the `th tank. Once the partitions are determined, a

population-dynamics approach is applied to each partition, where the fitness function for

each strategy is given by the error defined according to Proposition 7.2, which is equal

to the cost C̃`, i.e., f` = hmax,`−h`, for all ` ∈ V. It is assumed that this fitness function

is always non-negative since physically the current measured level is h` ≤ hmax,`. Notice

that, with this fitness function, more resource is assigned to those tanks with lower level.

The dynamics for the `th tank are given by

ḣ` = qin,` − qout,`,
qout,` = K`h`,

where h` is the current level, qin,` is the inflow, qout,` is the outflow, and K` is a constant

factor characterizing the outflow (discharge coefficient), for the `th tank. There is a

constant available resource given by Q = 30 m3/s. Each inflow qin,` is controlled by

a valve commanded by a control signal p`, i.e., qin,` = Qp`, with 0 ≤ p` ≤ 1. It is
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assumed that there is a local controller at each valve that guarantees the desired flow

given by p`. The limited resource establishes a constraint over all the inflows, i.e.,∑n
`=1 qin,` = Q. This equality constraint leads to the condition

∑n
`=1Qp` = Q, and

consequently,
∑n

`=1 p` = 1, then p ∈ ∆. This condition is also satisfied in the partitioned

system if the initial condition of the proportion of agents satisfies
∑

j∈Pi 1
>
n
j
i
pji (0) = 1,

for the initial topology i ∈ T , due to Proposition 7.1.

In order to analyze the performance of the closed-loop system composed of the flow-

based distribution network and the population dynamics, three KPIs are stated.

• The costs associated to the communication links ϕlinks is taken as a KPI given by

KPIlinks =
1

2

∫ tf

t0

1
>
nAi1n dt, i ∈ T , (7.19)

which is the same KPI presented in (7.2) but for the graph Gi corresponding to

the current topology i ∈ T , where t0 is an initial time and tf a final time.

• The error of each tank level with respect to the average levels of the system tanks

is also considered as a performance indicator, i.e.,

KPIerror,` =

∫ tf

t0

(
h` −

1

n
h>1n

)
dt, ` ∈ V,

where h = [h1 · · · hn]>. Then, there is a KPI for the whole system in function

of the mentioned error levels, i.e.,

KPIerror =

n∑
`=1

KPIerror,`.

• The settling time of the system states (level of tanks) with criterion of the 5%, i.e.,

KPIsettling = min
t
{t : t̃ ≥ t, h ≤ h(t̃) ≤ h̄},

where h = 0.95h?, h̄ = 1.05h?, with h? corresponds to the equilibrium point of

the system.
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Figure 7.7: Complete graph given by the grand coalition.
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Figure 7.8: Evolution of the 13 tank levels for three different cases: (a) partitions of two
players, (b) partitions of three players, and (c) partition of n players (full information).
Initial condition for each tank level has been determined by a random value within the
interval [0, 1].

7.4.1 Results

As a reference to analyze the performance of the proposed control strategy, results for

the centralized case are also presented. This is equivalent to the case with a topology

given by a complete graph (see Figure 7.7).

For this example, τ = 2.5 s, and the Shapley value is computed as a function of the

error costs in (7.18). It is important to mention that the initial condition for each tank

level has been established as a random value from the interval [0, 1]. The objectives are:

i) maintain all the tank levels at the same maximum value; and

ii) determine the fair costs for the players.

Figure 7.8 shows the evolution of the tank levels for three different cases (partitions

of 2 players, partitions of 3 players and the grand partition), where it is also shown the
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t = 2.5 s t = 40 s t = 80 s t = 120 s t = 160 s
2

P
la

ye
rs

3
P

la
ye

rs

Figure 7.9: Evolution of the graph topologies given by partitions of two and three players
(i.e., g̃ = 2, and g̃ = 3), for five different iterations.
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Figure 7.10: Sensitivity analysis made based on scenarios with random initial conditions
with n = 13 tank levels. Mean evolution of the tank levels and their corresponding
standard deviation along the time for three different cases: (a) partitions of two players,
(b) partition of three players, and (c) partition of n players (full information).

gap that determines the settling time. Every τ , the topology of the system is determined.

In Figure 7.8, it can be also seen that the first objective is met for all the cases. The

second objective is achieved by determining the Shapley value as presented in Table 7.2.

Figure 7.9 shows some different topologies obtained based on the Shapley value (see

Algorithm 3) at five different time instants. In that figure, it can be seen how topologies

vary dynamically with partitions of two and three players.

Figure 7.10 shows a sensitivity analysis for the evolution of the tank levels for ns = 10

different scenarios. The only difference among these ten scenarios is the vector of initial

conditions, which are selected randomly within the interval [0, 2]. First, it is presented
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Table 7.2: Fair economical costs for each player determined with the Shapley value.

Player Fair costs according Shapley value
` ∈ V (Φ(`)KPIlinks)/(

∑n
r=1 Φ(r))

1
2
3
4
5
6
7
8
9
10
11
12
13

Total

Partitions 2 Players Partitions 3 Players
101.9982 162.7683
103.4772 164.7666
103.0618 175.4056
67.3064 161.5046
69.9416 294.2980
69.7096 146.2820
78.9709 215.1184
123.0623 167.3544
91.6612 290.9280
76.7914 146.8018
99.1411 154.4804
75.6172 170.1767
139.2561 150.1145

1200 2400

the mean of all the tank levels for the scenarios, i.e.,

%̃(h(wδ̃)) =
1

ns n

ns∑
s=1

n∑
i=1

hsi (wδ̃),

where w = 1, . . . , 2000, are the data used to make the sensitivity analysis, δ̃ = 0.1 s in

order to cover the whole simulation time (i.e., tf = 200 s), and hsi corresponds to the tank

i ∈ V in the sth simulation. Then, the standard deviation along the time is presented

to analyze the transitory event for each one of the three cases, partitions of two players,

three players, and the grand partition. The standard deviation is computed as follows:

σ̃(wδ̃) =

√√√√ 1

ns n

ns∑
s=1

n∑
i=1

(
hsi (wδ̃)− %̃(h(wδ̃))

)2
.

It can be seen in Figure 7.10 that the standard deviation is smaller as there is an

evolution of the tank levels. Besides, the standard deviations are reduced more quickly

when there are larger partitions. This fact is because when having bigger partitions,

there are more exchange of communication among different strategies in the population
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game achieving the closed-loop system equilibrium in a faster way. The graph sequence

presented in Figure 7.9 varies as the initial conditions are modified because the Shapley

value depends on them. However, the sensitivity analysis presented in Figure 7.10 shows

that the system achieves the equilibrium point for all the different initial conditions.

Finally, the comparison of the three cases with the proposed KPI is presented in

Table 7.3. In these results, it can be seen the proper performance of the proposed

methodology with respect to the centralized case with full information (partition of n

players). Economical costs are reduced significantly, but it implies an increment of the

transitory errors and settling time of the evolution of the system states (tank levels).

Table 7.3: Closed-loop system performance for different topologies. Coalitions of two
and three players, and with full information.

Players per Communication Error Settling time
partitions g̃ KPIlinks KPIerror KPIsettling

2 players 1200 197.1742 33.23
3 players 2400 58.1723 21.80
n players 15600 20.9294 19.73

7.4.2 Discussion

In general, game theory models the interaction between rational players. The two dif-

ferent main approaches, the cooperative- and the non-cooperative-game directions, solve

quite different problems. One approach addresses problems in which there is competition

whereas the other one is more appropriate to model cooperation. As it has been discussed

here, it is possible to face engineering applications by implementing both approaches in

different but related objectives.

The combination of game theoretical approaches (cooperative and non-cooperative)

implies that the elements within the system (storage, sink and source elements) take

different roles depending on the game theoretical perspective. For instance, in the pre-

sented flow-based distribution network of Section 7.1, storage nodes represent strategies

in the non-cooperative-game approach. In contrast, storage nodes assume the role of

players that demand information by using the communication network in the coopera-

tive game. This multi-role situation is quite interesting due to the fact that each role
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is tightly related to each particular control objective, i.e., the optimal resource distri-

bution for the non-cooperative game and both the fair distribution of costs and proper

partitioning for the cooperative game.

It has been shown that the closed-loop system with the non-cooperative approach

(i.e., with both the replicator and the projection dynamics) is stable, performing the par-

titioning criteria based on cooperative games. This is achieved based on the assumption

that all the partitions, for all the topologies, form individually a complete graph. Adi-

tionally, when selecting conveniently the characteristic function of the cooperative game,

it is possible to compute the Shapley value of the whole set of players from the Shapley

value of any arbitrary player by following a polynomial-time procedure. Moreover, it has

been shown that, by taking advantage of the coalition-rationality axiom, it is possible

to compute the Shapley value by solving a set of linear equations. This result allows to

reduce considerably the computational burden from an exponential-time procedure to a

polynomial one. Besides, due to the fact that the computation can be reduced, it is also

possible to spend time to compute the Shapley value under a distributed structure. For

example, the comparison of the computational burden in Figure 7.5 shows less compu-

tation cost for the distributed structure with respect to the traditional Shapley equation

and a case involving more than ten players.

7.5 Summary

A control problem involving two objectives associated to competition and cooperation

has been presented. In particular, a flow-based distribution network composed of differ-

ent sub-systems (storage nodes) has been considered. The first objective is associated

to an optimal distribution of the available resource, i.e., it is desired to achieve a maxi-

mum and equal amount of resource throughout all the sub-systems (storage nodes). To

this end, a communication network allows the interaction among different storage nodes,

whose communication links have an economical cost. As a second objective, it is desired

to distribute the costs of the communication network throughout the sub-systems. To

this end, more influent tanks (with higher power index) must pay less than those with

lower influence (with lower power index). In this regard, costs are assigned in a fair

way for each storage node according to their contributions to the achievement of the
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first objective. A non-cooperative-game approach is used to solve the former objective,

whereas a cooperative-game approach is proposed to solve the latter objective. Further-

more, for the non-cooperative-game approach, the stability of the closed-loop system is

analyzed to guarantee that the first objective is achieved. On the other hand, regarding

the cooperative-game approach that determines the fair distribution of communication

costs, an alternative way to compute the Shapley value for the selected specific char-

acteristic function has been presented in order to mitigate the computational burden.

The proposed approach also allows the computation of the Shapley value under dis-

tributed structures within shorter computational time in comparison with the standard

computation.

Moreover, bigger partitions imply more information exchange among the storage

nodes, and therefore the resource-distribution objective is achieved faster. Simula-

tion results have shown that having more communication links imply shorter settling

time.When having large partitions, the dynamic resource allocation is made faster due to

the fact that there is more available information in the non-cooperative-game approach.

Nevertheless, when having more players making partitions, more communication links

are required and this implies higher economical costs. Furthermore, a smaller overshoot

and settling time for the system states (tank levels) are obtained when partitions are

larger. Hence, there is a need for balancing economical cost and performance in relation

to the complexity of the system and the number of players involved in the cooperative

game to perform the partitioning. Finally, the sensitivity analysis for the evolution of

the system states with arbitrary initial conditions shows that, despite of the fact that

the partitioning highly depends on the initial conditions of the system, the equilibrium

of the closed-loop system is always achieved.

This chapter has used the concept of partitioning, which is obtained as a prod-

uct of the power index value, but it is not the main purpose of the game-theoretical

approach. Moreover, it is worth to highlight that the partitioning task and/or decom-

position of systems is crucial in the design of distributed controllers, and it should be

determined considering several aspects, e.g., dynamical coupling, coupled constraints,

and/or balance size among sub-system states. Therefore, next chapter is devoted to the

development of a methodology to perform partitioning of large-scale systems.
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Chapter 8

Partitioning for Large-scale
Systems: Sequential DMPC
Design

Chapter 7, where the Shapley value has been studied, has also discussed a partitioning as

a result of the power index. On the contrary, this chapter is devoted to the development

of a partitioning strategy. More precisely, the main contribution presented in this chapter

is a novel partitioning approach of a non-directed graph representing information sharing

inspired by the Kernighan-Lin algorithm [59], considering four different objectives, i.e.,

to minimize the number of links connecting partitions, to minimize the difference of the

size of partitions, to minimize the distance among elements composing each partition,

and to minimize the amount of relevant information that connects different partitions,

i.e., it is also considered how relevant the information that a link provides is. Further-

more, prioritization weights assign importance to each objective as desired. Most of the

partitioning methods consider a graph representation, i.e., algorithms consider graphs

associated to the dynamics of the system. Differently, this chapter proposes to generate

a graph that describes the information dependence among variables considered in the

control design. As an application to illustrate the advantages of the partitioning ap-

proach addressed by using an information representation instead of a dynamical-model

representation, a large-scale water supply system is considered, and an MPC controller

is designed. To this end, the information graph is computed in order to determine an

appropriate partitioning by using the proposed algorithm.
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8.1 Large-scale System Partitioning

Consider an undirected connected graph denoted by G = (S, E) representing the topol-

ogy of an information-sharing network, which is determined depending on the informa-

tion that a control strategy requires to compute the appropriate control inputs, where

S = {1, . . . , n} is the set of n ∈ Z>0 nodes representing variables considered within the

control strategy, and E ⊂ {(i, j) : i, j ∈ S} is the set of links of the graph represent-

ing possible information sharing among nodes. The set of neighbors of a node i ∈ S
is given by Ni = {j : (i, j) ∈ E}. The graph is undirected since it is assumed that

links represent bidirectional-information channels. In the information-sharing network,

it is defined a distance function among nodes from the set S whose mapping is given

by d̃ : S × S → R≥0. Let D ∈ Rn×n≥0 be the constant matrix representing distances,

i.e., d̃ij = d̃(i, j). Additionally, consider a function whose mapping is c : S × S → R≥0,

where c(i, j) determines how relevant the information shared between node j ∈ S and

node i ∈ S is. Therefore, let C ∈ Rn×n≥0 be the constant matrix representing all the

relevance factors, i.e., cij = c(i, j). On the other hand, let K = {1, . . . ,m} be the set of

indices for the m ∈ Z>0 partitions of the graph G. The partitioning at time instant k is

represented by the set Pk = {S`k : ` ∈ K}, i.e., each partition of G at time instant k is an

undirected connected graph of the form G`k = (S`k, E`k), for all ` ∈ K, where
⋂
`∈K S

`
k = ∅,

and
⋃
`∈K S

`
k = S, for all k. Given a partition Pk, consider the function g : S → K

that receives a node i ∈ S and returns the index ` ∈ K that allows to identify to which

partition the node i ∈ S belongs to, i.e., g(i) = {` ∈ K : i ∈ S`k}. Finally, let Vk ∈ Rn×n

be the time-varying matrix whose element vij,k = |Sg(i)k | − |Sg(j)k | if g(i) 6= g(j), and

nodes i, and j are neighbors, i.e., j ∈ Ni.

Remark 8.1. Notice that if Pk is an admissible partition, i.e.,
⋂
`∈K S

`
k = ∅, and⋃

`∈K S
`
k = S, then the set {` ∈ K : i ∈ S`k} is singleton, for all ` ∈ K, and

g(i) is a function, for all i ∈ S. ♦

8.1.1 Partitioning Problem Statement

The m−partitioning problem consists in finding the optimal set of partitions denoted by

P? such that the following objectives are minimized:

176



Chapter 8. Partitioning for Large-scale Systems: Sequential DMPC Design

Links1: minimize the amount of links connecting different partitions given by σ1, i.e.,

links (i, j) ∈ E such that (i, j) /∈ E`k, for all ` ∈ K,

σ1(Pk) =
1

2

∑
`∈K

∑
i∈S`k

∑
j∈S\S`k

aij .

Nodes2: minimize the difference between the amount of nodes in the partitions
∣∣∣S`k∣∣∣, for

all ` ∈ K, and the average of total nodes of the graph G given by n
m , i.e., 1

m

∑
`∈K

∣∣∣∣∣S`k∣∣− n
m

∣∣∣.
Notice that this objective may be expressed as the minimization of a function σ2 de-

pending on the time-varying matrix Vk, i.e.,

σ2(Pk) =
∑
`∈K

∑
i∈S`k

∑
j∈S\S`k

vij,k.

Distance: minimize the distance among the nodes belonging to the same partition, i.e.,

1
2

∑
`∈K

∑
i∈S`k

∑
j∈S`k\{i}

d̃ij . This objective may be expressed conveniently considering

the inverse distance of links that are connecting different partitions, i.e.,

σ3(Pk) =
1

2

∑
`∈K

∑
i∈S`k

∑
j∈S\S`k

d̃−1
ij .

Relevance: minimize the information relevance of the links that are connecting different

partitions, i.e.,

σ4(Pk) =
∑
`∈K

∑
i∈S`k

∑
j∈S\S`k

cij .

The four aforementioned objectives are prioritized by setting the vector of weights

denoted by ϕ ∈ R4
≥0. The optimal partitioning P? is obtained by solving the following

optimization problem:

minimize
P

4∑
j=1

ϕjσj(Pk), (8.1a)

subject to
⋂
`∈K
S`k = ∅, (8.1b)⋃

`∈K
S`k = S. (8.1c)

1
Presented as external balance in [106].

2
Presented as internal balance in [106].
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8.1.2 Distributed Partitioning Algorithm

In order to solve the optimization problem (8.1), consider the weighted graph G where

Wk ∈ Rn×n is a time-varying weighting matrix, i.e., G = (S, E ,Wk). The elements of

Wk are denoted by wij,k ∈ R≥0 representing a cost associated to the link (i, j) ∈ E , where

wij,k = ϕ1aij +ϕ2vij,k +ϕ3d
−1
ij +ϕ4cij . Then, it is proposed to solve the m−partitioning

problem (8.1) as follows:

minimize
P

∑
`∈K

∑
i∈S`k

∑
j∈S\S`k

wij,k, (8.2)

and subject to constraints (8.1b) and (8.1c). The set of nodes S`k of the subgraph G`k is

composed of a set of internal nodes denoted by Š`k, and a set of external nodes denoted

by Ŝ`k, for all ` ∈ K. The internal nodes from the set Š`k only have connection to nodes

that belong to the same partition. In contrast, the external nodes from the set Ŝ`k have

connection to at least one node that belongs to a different partition. Formally,

Š`k = {i ∈ S`k : Ni ⊆ S`k}, ∀ ` ∈ K,

Ŝ`k = {i ∈ S`k : Ni 6⊆ S`k}, ∀ ` ∈ K,

S`k = Š`k ∪ Ŝ`k, ∀ ` ∈ K.

Each external node i ∈ Ŝ`k, for all ` ∈ K, represents a decision maker that is able to

select a partition from the set

Qi,k = {g(j) : j ∈ Ni}\{g(i)}.

Moreover, each decision maker i ∈ {∪`∈KŜ`k}, at time instant k, has associated an

internal cost denoted by ȟi, i.e.,

ȟi(Pk) =
∑

j∈Sg(i)k ∩Ni

wij,k, ∀ i ∈ Ŝ`k, and ` ∈ K,

and an external benefit denoted by ĥ`i , for each partition ` from the set Qi,k, i.e.,

ĥ`i(Pk) =
∑

j∈S`k∩Ni

wij,k, ∀ i ∈ Ŝ`k, and ` ∈ Qi,k.
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Then, the best external benefit for the decision maker i ∈ Ŝ`k, for all ` ∈ Qi,k, is obtained

as follows:

ĥi(Pk) = max
`∈Qi,k

ĥ`i(Pk).

Finally, as previously mentioned, the decision maker selects among the possible avail-

able partitions depending on a utility denoted by ηi, i.e., if the decision maker has

incentives to move from one partition to another one, then

ηi(Pk) = max
(

0, ĥi(Pk)− ȟi(Pk)
)
, ∀ i ∈ Ŝ`k, and ` ∈ K.

Further, consider an undirected graph G̃k = (S̃k, Ẽk) at time instant k –not necessarily

connected– composed of all the decision makers –external nodes of G–. Then, the set of

nodes of G̃k is given by S̃k =
⋃
`∈K Ŝ

`
k, and the set of links is given by Ẽk ⊂ {(i, j) : i ∈

Ŝ`k, j ∈ Ŝrk , ` 6= r}. Let Ãk ∈ {0, 1}|S̃k|×|S̃k| be the adjacency matrix of the graph. Since

G̃k is not necessarily a connected graph, it has q ∈ Z>0 components at time instant k,

where the set of components of the graph is Ck = {1, . . . , q}. Each component is a graph

denoted by G̃zk = (S̃zk , Ẽzk ), with adjacency matrix Ãz
k, is connected and not necessarily

complete, for all z ∈ Ck. Furthermore, only the decision maker with higher incentives(
winner decision maker in the component z ∈ Ck denoted by izk

? ∈ Wz
k ⊆ S̃zk

)
would

make a decision to switch from its current partition to another one among the set of

available partitions, i.e.,

izk
? ∈ arg max

i∈S̃zk
ηi(Pk) =Wz

k , ∀ z ∈ Ck. (8.3)

Remark 8.2. The decision maker izk
?
, for all z ∈ Ck, can be computed as in (8.3) in

a distributed manner satisfying the information-sharing graph G̃zk , for all z ∈ Ck. This
procedure is made by using maximum consensus as in [109]. Therefore, the proposed
partitioning algorithm can be performed in a distributed manner. ♦

Notice that (8.3) should be solved at each time instant k ∈ Z≥0. The best option for

the decision maker izk
? ∈ S̃zk , for all z ∈ Ck, to select a new partition is

`zk
? ∈ argmax

`∈Q
i
z
k
?
,k

ĥ`izk
?(Pk). (8.4)

179



Chapter 8. Partitioning for Large-scale Systems: Sequential DMPC Design

Hence, the partitioning is modified only if ηi(Pk) > κ, where κ ∈ R>0 establishes a

ending-up condition. The updating is as follows:

Sg(i
z
k
?)

k+1 = Sg(i
z
k
?)

k \{izk?}, ∀ z ∈ Ck, (8.5a)

S`
z
k
?

k+1 = S`
z
k
?

k ∪ {izk?}, ∀ z ∈ Ck. (8.5b)

Theorem 8.1. If the initial partitioning P0 = {S1
0 , . . . ,Sm0 } satisfies constraints (8.1b),

and (8.1c), then these constraints are satisfied by Pk = {S1
k , . . . ,Smk } for all k ∈ Z≥0

under the partitioning updating performed in (8.5).

Proof. It is assumed that P0 is a partition set such that
⋂
`∈K S

`
0 = ∅, and

⋃
`∈K S

`
0 = S.

Therefore, Sg(i
z
0
?)

0 ∩ S`
z
0
?

0 = ∅ since g
(
iz0
?) 6= `z0

?
according to (8.4), and given that

g
(
iz0
?)
, `z0

? ∈ K, then{⋃
`∈K\{g(iz0

?),`z0
?} S

`
0

}
∪
{
Sg(i

z
0
?)

0 ∪ S`
z
0
?

0

}
= S. From (8.5), it is obtained that

Sg(i
z
k
?)

k+1 ∪ S`
z
k
?

k+1 =

{
Sg(i

z
k
?)

k \{izk?}
}
∪
{
{izk?} ∪ S`

z
k
?

k

}
,

= Sg(i
z
k
?)

k ∪ S`
z
k
?

k ,

for all z ∈ Ck. Finally, if Sg(i
z
k
?)

k ∩ S`
z
k
?

k = ∅, for all z ∈ Ck, then

{
Sg(i

z
k
?)

k \B
}
∩{

S`
z
k
?

k ∪ B
}

= ∅, for any set B. Therefore, Sg(i
z
k
?)

k+1 ∩ S`
z
k
?

k+1 = ∅.

8.1.3 Partitioning in Flow-based Distribution Systems

According to the algorithm for the m-partitioning problem, it is necessary to provide

the number of partitions m, and the initial partition set P0, i.e., S`0, for all ` ∈ K.

This section is devoted to present the procedure to determine these two elements in the

context of flow-based distribution systems. Many engineering systems may be modeled as

a flow-based distribution system as presented in [56], e.g., water, energy or transportation

systems. Section 7.1 has presented a simplified flow-based network since it only considers

three elements. In general, flow-based distribution systems are composed of the following

elements:

1. Storage: element that stores a resource and with both inflows and outflows. The

set of storage elements is denoted by S̄st. Notice that the notation corresponding
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to storage elements in the simplified flow-based network in Section 7.1 is different

in order to distinguish the kind of network, i.e., simplified or general.

2. Actuator: element that manipulates the flow of the resource, having a unique

inflow and outflow. The set of actuator elements is denoted by S̄ac.

3. Joint: element without storage capabilities with an associated mass-balance con-

straint, and with both inflows and outflows. The set of joint elements is denoted

by S̄jo.

4. Sink: element that receives the resource from either a storage or joint element,

e.g., demands in the system. The set of sink elements is denoted by S̄si.

5. Source: element that provides the resource and with only outflows. The set of

source elements is denoted by S̄so.

6. Flow: directed link (i, j) allowing resource flow from an element i ∈ {S̄st ∪ S̄ac ∪
S̄so ∪ S̄jo} (storage, actuator, source, or joint elements) to an element j ∈ {S̄st ∪
S̄ac∪S̄si∪S̄jo} (storage, sink, or joint elements). The set of flow elements is denoted

by Ē .

Let Ḡ = (S̄, Ē) be a directed graph representing a given flow-based distribution

system describing the possible direction of the flows, where S̄ = {S̄st∪S̄ac∪S̄si∪S̄so∪S̄jo}
is the set of r ∈ Z>0 system elements, i.e., storage, actuator, sink, source, and joint

elements. On the other hand, Ē ⊂ {(i, j) : i, j ∈ S̄} is the set of flows from the element

i ∈ S̄ to element j ∈ S̄.

Remark 8.3. Each physical element in the system has an equivalent node in the graph
Ḡ. In addition, there is a direct relationship between the nodes S̄ in the flow graph Ḡ,
and the nodes S in the information-sharing graph G. ♦

The introduced elements for a flow-based distribution system, and the representa-

tion of the system by a directed graph, allow to identify some features of the system

throughout indices and elements presented next.

Definition 8.1. (Network resource-feeding index) A non-source element i ∈ S̄\S̄so in
the flow-based distribution system has a resource-feeding index denoted by τi ≤ |S̄so|,
which gives information about the amount of source elements that may provide resource
to the ith element, i.e., there are τi source elements that can feed the element i ∈ S̄\S̄so.
♦
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Definition 8.2. (Anchor elements) A non-source element i ∈ S̄\S̄so is anchor if there
is only one source able to feed it, i.e., the resource-feeding index of an anchor element
is unitary. Let Ã ⊆ S̄ be the set of anchor elements within the flow-based network, i.e.,
Ã = {i ∈ S̄\S̄so : τi = 1}. ♦
Definition 8.3. (Maximum resource-feeding index of the network) The maximum resource-
feeding index of the network is denoted by τ? and it corresponds to τ? = maxi∈S̄ τi. This
index provides information about the non-source element in the system with more avail-
able source elements given by i?τ ∈ arg maxi∈S̄ τi. ♦
Definition 8.4. (Maximum resource-feeding index per partition) Given a partition of
the flow-based distribution system into m sub-systems, the maximum resource-feeding
index per partition is denoted by τ ` = max

i∈S̄` τi, for all ` ∈ K. Notice that source
elements that do not belong to the current partition are also taken into account. Finally,
the non-source element with more available source elements is given by i`?τ ∈ max

i∈S̄` τi,
for all ` ∈ K. ♦
Definition 8.5. (Resource-feeding co-relation index) The availability of resource at each
partition ` ∈ K is assessed with respect to the maximum resource index of the network
given by the resource-feeding co-relation index denoted by ε` ∈ [0, 1]. Formally, the

resource-feeding co-relation index is ε` = τ `
(
τ?
)−1

, for all ` ∈ K. Notice that if ε` = 1
for a partition ` ∈ K, then the non-source element in the network with more available
source elements belongs to the partition `. ♦
Definition 8.6. (Available source elements for non-source elements) The available source
elements that can provide resource to a non-source element is given by the set Ri and
with |Ri| = τi for all i ∈ S̄\S̄so. ♦

The number of partitions is determined by setting a desired minimum resource-feeding

co-relation index (see Definition 8.5), i.e., partitions should satisfy that min`∈K ε
` ≥ ε?.

In addition, further criteria to define the number of partitions may be included such

that it is not desired that the elements i`?τ , for all ` ∈ K, were not neighbors. Once the

aforementioned elements i`?τ , for all ` ∈ K are identified in the graph Ḡ, then those can

be associated to the corresponding variables in the information-sharing graph G and the

initial partition P0 can be determined by adding each node from the set S\{i1?τ , . . . , im?τ }
to the partition associated to the nearest connected node from the set {i1?τ , . . . , im?τ } (see

Definition 8.3).

Figure 8.1 shows the summary of the partitioning procedure for a flow-based distri-

bution system. First, a directed graph, denoted by Ḡ, is determined based on the flows

throughout the system, which is used to determined the anchor elements, and the num-

ber of appropriate partitions that depend on the design parameter known as resource-
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Ḡ
Ã, τi, τ?

ε?
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Flow-based distribution system

Flow directed graph Control strategy

Information graph
Anchor elements

resource-feeding indices

Resource-feeding
co-relation index

Number of partitions
Initial partition

Distributed-partitioning
algorithm

Physical partitioning
Communication-graph

partitioning

Prioritization

Figure 8.1: Summary of the distributed partitioning procedure for flow-based distribu-
tion systems and for control purposes.

feeding co-relation index (see Definition 8.5). On the other hand, an information-sharing

graph, denoted by G, describing how information dependence among the elements of the

flow-based distribution system is determined according to a control strategy. An ini-

tial partition P0 is computed by using the number of partitions and the correspondence

between elements in the directed graph and the information-sharing graph, i.e., each

variable considered in the controller corresponds to a physical element in the directed

graph. Therefore, it follows to perform the distributed partitioning algorithm by setting

a prioritization for the four objectives presented in Section 8.1.1. Finally, an optimal

partitioning P? is obtained based on the information-sharing graph, and it can be in-

terpreted into the physical system since there is a correspondence between each variable

and an element in the flow-based distribution system.

8.2 Case Study: Partitioning of the BWSN

8.2.1 Management Criteria

The same management criteria considered in Section 3.3.4 are taken into account in

this chapter, i.e., the first objective is the minimization of economical costs, which are

associated to the costs of the supplied water given by α>1 uk, and the costs of the energy

required to operate the system actuators (valves and pumps) given by α>2,kuk, where

the vector α2 ∈ Rnu varies along the time. The second objective is to operate the

system smoothly to avoid possible damage, i.e., minimize ‖∆uk‖2, guaranteeing that
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the variations over the control inputs are smooth. Finally, it is desired that the volumes

for all the tanks are higher than some predetermined constant volumes denoted by

xs ∈ Rnx , i.e., constraint xk ≥ xs− ςk should be satisfied where ςk ∈ Rnx≥0 is an auxiliary

variable. The third objective is to minimize
∥∥ςk+j

∥∥2
. These three different objectives

are prioritized with weights γ1, γ2, and γ3 where γ1 > γ3 > γ2.

8.2.2 Optimization Problem for the Predictive Controller

Once the system management criteria have been established with the three objectives,

it can be set the optimization problem behind the MPC controller design as follows:

minimize
uk|k,...,uk+Hp|k

,ςk|k,...,ςk+Hp|k
J(u, ς) =

Hp−1∑
j=0

(
γ1

∣∣∣(α1 +α2,k+j

)>
uk+j

∣∣∣+ γ2

∥∥∆uk+j

∥∥2
+

+γ3

∥∥ςk+j

∥∥2
)
, (8.6a)

subject to xk+i+1|k = Adxk+i|k + Bduk+i|k + Bldk+i|k, (8.6b)

0 = Euuk+i|k + Eldk+i|k, (8.6c)

uk+i|k ∈ U , (8.6d)

xk+i|k ∈ X , (8.6e)

xk+i|k ≥ xs − ςk+i|k, (8.6f)

ςk+i|k ≥ 0, (8.6g)

where (8.6b)-(8.6d) for all i ∈ [0, Hp−1]∩Z≥0, and (8.6e)-(8.6g) for all i ∈ [0, Hp]∩Z≥0.

Feasible sets X , and U are defined as in Section 6.2, i.e., X , {x ∈ Rnx : x ≤ x ≤ x̄},
and U , {u ∈ Rnu : u ≤ u ≤ ū}.

8.2.3 Computing the Information-sharing Graph

The optimization problem in (8.6) may be written as a quadratic programing problem

of the form [77]

minimize
ξk

1

2
ξ>k Hξk + h>ξk, (8.7a)

subject to Gξk = g, (8.7b)
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where ξk = [ω>k . . . ω>k+Hp−1]>, each element of ξk is ωk = [u>k ς>k s>k ]>, and let

sk be the vector of slack variables for all the inequality constraints to make them equality

constraints. Furthermore, the Lagrangian function corresponding to (8.7) is [31]

L(ξk,λ) =
1

2
ξ>k Hξk + h>ξk + λ> (Gξk − g) .

Therefore, the KKT conditions are obtained from ∇ξkL(ξ?k,λ
?) = 0, and ∇λL(ξ?k,λ

?) =

0 giving by the following equality:[
H G>

G 0

]
︸ ︷︷ ︸

Ψ

[
ξ?k
λ?

]
=

[
−h
g

]
. (8.8)

Notice that the matrix Ψ represents the information dependence among variables ξk

and λ in order to solve in (8.8) and thus solve the optimization problem (8.6). In this

regard, if there is a node per each variable in (8.8), then the adjacency matrix A of the

graph G is given by aij = 1 if ψij 6= 0, and aij = 0, otherwise, defining the topology of

the information-sharing graph.

Remark 8.4. The information dependence among variables, which generates the infor-
mation-sharing graph G, can be computed considering any control strategy and for any
system. In this regard, the proposed partitioning method is general. ♦

8.2.4 Anchor Elements

In order to find the anchor elements in the BWSN, the directed graph Ḡ = (S̄, Ē) is

obtained by replacing each element of the network (i.e., sources, actuators, tanks, sinks,

and mass-balance joints) for nodes of the graph denoted by S̄ and replacing each flow

for a graph edge denoted by Ē . The network resource-feeding indices are shown in

Table 8.1 (see Definition 8.1). Therefore the anchor-storage elements from the i ∈ Ã
are x1, x2, x5, and x8 (see Definition 8.2). Moreover, these storage elements and their

respective source elements must belong to the same partition, e.g., the tank x1, and the

source s2 should belong to the same partition. Finally, the maximum resource-feeding

index of the network is given by τ? = 7.

The appropriate number of partitions is determined based on the resource-feeding

co-relation index, and further conditions may be added to this criterion. As an example,

suppose that it is desired to have a resource-feeding co-relation index given by ε? = 0.25
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Figure 8.2: Information-sharing graph of the BWSN. The optimal partitioning is also
presented (partitions 1−4 with colors green, blue, magenta, and red, respectively). Links
within the same partition with black color and links connecting different partitions with
red color.

(i.e., it is desired that the partition with less-available source elements has at least

25% of the maximum resource elements that can provide resource in the system τ?).

Additionally, it is desired that the storage elements corresponding to the maximum

resource-feeding index per partition i`?τ , for all ` ∈ K, do not have the same source

elements Ri. Therefore, x3, x4, x12, and x17 should belong to the same partition since

they have a common set of available sources (first partition with resource-feeding co-

relation index ε1 = 1). The same situation happens with x7, x9, x10, x11, and x13 (second

partition with relation resource-feeding index ε2 = 0.7142); x14, x15, and x16 (third

partition with resource-feeding co-relation index ε3 = 0.2857); and x6 (fourth partition

with resource-feeding co-relation index ε4 = 0.2857).
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Table 8.1: Resource-feeding network indices for the storage elements in the BDWN.

Storage element i ∈ S̄st Resource-feeding indices τi Source element Ri
x1 1 s2

x2 1 s1

x5, x8 1 s6

x6 2 s1, s6

x14, . . . , x16 2 s7, s8

x7, x9, . . . , x11, x13 5 s1, s3, s6, . . . , s8

x3, x4, x12, x17 7 s1, s3, s4, . . . , s8

2

Figure 8.3: Aggregate model of the BSWN. The optimal physical partitioning is also
presented (sub-systems 1− 4 with colors green, blue, magenta, and red, respectively).

8.3 DMPC Applying Large-scale System Partitioning

Once the appropriate number of partitions is determined by using a desired resource-

feeding co-relation index ε?, then the partitioning algorithm is run. In this chapter, it
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Figure 8.4: Hierarchical and information dependence among the m sub-systems.

is proposed to use the information-sharing graph G computed in Section 8.2.3, which

is shown in Figure 8.2. The initial partition P0 considered within the algorithm is de-

termined by using the nodes associated to the elements corresponding to the maximum

partition resource-feeding indices i`?τ , for all ` ∈ K. Therefore, the rest of nodes are

incorporated to the closest partition with which there is connection. The partitioning

algorithm is performed with weights ϕ = [0.5 0.2 0.2 1]>, and with the parameter

κ = 0 for the algorithm ending-up condition. The optimal partitioning P? is the one

presented in Figure 8.2. It is important to highlight that the total number of commu-

nication links in order to compute the optimal control input according to problem (8.8)

is (1>A1)/2 = 361. Furthermore, the optimal partition P? has 13 links among parti-

tions that is the 3.6% of the total number of communication links, representing reduced

communication dependence among different partitions, which is desired for the design

of non-centralized controllers.

With the optimal partition P? presented in Figure 8.2, the information-sharing graph

is interpreted/translated into the physical system, obtaining the physical partitioning

into m sub-systems presented in Figure 8.3 (the indices of the m sub-systems are given

by the set K). With the m-partitioning, an LMPC controller is designed for each sub-

system, identifying the information dependence among them as in [106]. This procedure

results in the sub-system dependence presented in Figure 8.4 (partitions from 1 to m

correspond to colors green, blue, magenta, and red, respectively), where the terms µr` are

the information provided by sub-system r ∈ K to sub-system ` ∈ K. It can be seen that

the optimization problem behind the LMPC controller associated to the Sub-system 1

may be solved since it does not require information from other sub-systems. After that,

Sub-system 1 provides information µ12, and µ13 to Sub-system 2 and 3, respectively.

Therefore, the optimization problem behind the LMPC associated to the Sub-system 2
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Table 8.2: Costs comparison between the CMPC and DMPC controllers.

CMPC DMPC

Day Energy Water Slew Rate Energy Water Slew Rate
KPIE(day) KPIW (day) KPI∆u(day) KPIE(day) KPIW (day) KPI∆u(day)

1 9.8133 5.8964 0.23766 10.499 2.6238 0.35532
2 8.5959 5.8829 0.018947 10.266 2.4903 0.010012
3 8.5959 5.8829 0.018947 10.267 2.489 0.010074
4 8.5959 5.8829 0.018947 10.267 2.4886 0.010066

Total 52.793 35.311 0.33239 61.833 15.069 0.4056

is solved, providing information µ23, and µ24 to Sub-systems 3 and 4, respectively. The

mentioned information shared among sub-systems is structured as follows:

µ12 = [ũ?>15,k ũ?>18,k ũ?>32,k ũ?>34,k ũ?>40,k ũ?>47,k]
>,

µ13 = [ũ?>56,k ũ?>60,k]
>,

µ23 = [ũ?>46,k ũ?>49,k]
>,

µ24 = ũ?6,k,

where ũ?i,k = [u?i,k . . . u?i,k+Hp−1]> ∈ RHp . Different from the work presented in [106],

there are not cycles in the hierarchical structure describing information dependence

among sub-systems, therefore, it is not required to solve a CSP.

In order to evaluate the performance of the DMPC controller, a comparison with

the performance of a CMPC is made. Both approaches are designed with the same

prioritization weights, i.e., γ1 = 1, γ2 = 0.001, and γ3 = 0.1, and simulations are made

for four days. Table 8.2 shows the costs for each day denoted by y. The operational

costs of energy

KPIE(day) =

24day∑
k=24day−24

α>1 uk,

the operational costs of water

KPIW (day) =

24day∑
k=24day−24

α>2,kuk,

and costs associated to the smooth operation (slew rate)

KPI∆u(day) =

24day∑
k=24day−24

‖∆uk‖2.
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Figure 8.5: Evolution of five system states, and five control inputs for both the CMPC
and DMPC controllers. (a)-(e) shows the evolution of x4, x7, x12, x14, and x17, respec-
tively. (f)-(j) shows the evolution of u11, u13, u18, u23, and u54, respectively.

It can be seen that, the system operation with the distributed control approach im-

plies higher energy costs and also more variations over the control signals in comparison

to the centralized-control scheme. In contrast, the costs associated to the water are lower

with the distributed approach.

Figure 8.5 shows the evolution of five system states and five control inputs for both

the CMPC, and DMPC controllers. It can be seen that the periodicity of the signals

for both cases is the same. In general, the performance corresponding to the DMPC

controller exhibits higher variations over the evolution of the system states. In partic-

ular, Figures 8.5(a), and 8.5(c) show higher amplitudes in the oscillation of the system

states x4, and x12, respectively. Moreover, the same occurs with the control inputs, e.g.,

Figure 8.5(i) shows a higher amplitude for the control input u23. However, the compu-

tational tasks of the CMPC controller are divided and assigned to four different LMPC

controllers, and the distributed controller continues achieving the control objectives and

satisfying all the constraints.

8.4 Summary

A multi-objective partitioning procedure considering several aspects such as amount of

links connecting different partitions, size of partitions, distance among elements, and

importance of links has been presented in order to determine the appropriate parti-
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tioning in a large-scale flow-based system. As one of the most relevant features, the

proposed partitioning is a general methodology since it can be implemented for any dy-

namical system, including flow-based network systems, and any control strategy since

an information sharing graph is considered.

Motivated by the fact that some nominal conditions might vary along the time for

a dynamical system, e.g., disturbances affecting the system under control, next chapter

in this thesis extends the partitioning procedure to the dynamical case. Thus, the

large-scale system can be divided conveniently and permanently in order to enhance the

performance of closed-loop systems operated by DMPC controllers.
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Chapter 9

Distributed System Partitioning
and DMPC

This chapter addresses the design of a DMPC based on both DDPG and a distributed

dynamical system partitioning. To this end, the contributions presented in Chapters 6

and 8 are combined to design a distributed optimization-based controller also consid-

ering a dynamical system partitioned. Depending on the current system states, some

constraints are neglected in order to reduce the number of decision variables of the opti-

mization problem behind the MPC controller design. Thus, the size of the information-

sharing network is also reduced. The partitioning algorithm is performed to determine

the appropriate set of sub-systems in function of the information-sharing network. Fi-

nally, the DDPG approach computes all the optimal control inputs at each time instant.

Notice that, due to the fact that the information-sharing network varies along the time,

then the obtained optimal system partitioning is also different.

First, the general QP problem presented in Chapter 6 is recalled, where a DMPC

without system partitioning is presented. Then, the partitioning presented in Chapter

8, where a sequential DMPC controller has been designed, is used in this chapter as an

off-line system partitioning for the design of a parallel DMPC design based on population

games. The consideration that the links connecting different partitions are not available

for all the time is taken into account. Once this static system partitioning is presented

for the control design, then the partitioning is applied in a dynamical manner preserving

the same population-games strategy.
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9.1 Control Problem Statement

Consider the same MPC controller design presented in Chapter 6, and with an optimiza-

tion problem as in (6.17), i.e.,

minimize
Uk

U>k Φ Uk + φ>k Uk, (9.1)

subject to

E Uk ≤ ek, (9.2)

G Uk = gk. (9.3)

The cost function is re-written, and the constraints can be compacted by adding

slack variables, i.e.,

minimize
ξ

[
U>k s>

]
︸ ︷︷ ︸

ξk
>

[
Φ 0nu×q

0q×nu 0q×q

]
︸ ︷︷ ︸

Ψ

[
Uk

s

]
︸ ︷︷ ︸

ξk

+
[
φ>k 0>q

]
︸ ︷︷ ︸

ψ
>
k

[
Uk

s

]
︸ ︷︷ ︸

ξk

, (9.4)

subject to [
E Iq
G 0r×q

]
︸ ︷︷ ︸

H

[
Uk

s

]
︸ ︷︷ ︸

ξk

=

[
ek
gk

]
︸ ︷︷ ︸

hk

. (9.5)

Therefore, the optimization problem behind the MPC controller is formulated in the

form (6.11), and it can be solved in a distributed manner by using the D3RD in (6.2),

the D3SD in (6.4), or the D3PD in (6.6), as explained in Section 6.1.

9.2 System Partitioning for DDPG-based DMPC Control
design

This section presents how to apply a static off-line system partitioning for the design

of a DMPC controller based on DDPG. The first step in order to apply the proposed

distributed system partitioning algorithm is to determine the information-sharing graph.

The adjacency matrix that determines the graph G is given by the required information-

sharing matrix, i.e., A = Θ̃. Recalling the optimization problem behind the MPC

controller in (9.4), the corresponding Lagrangian function is as follows:

L(ξk,λk) = ξ>k Ψξk +ψkξk + λ> (Hξk − hk) . (9.6)
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Figure 9.1: Summary of the DMPC controller with distributed DDPG and static system
partitioning.

Therefore, the Karush-Kuhn-Tucker conditions are obtained from ∇ξkL(ξ?k,λ
?
k) = 0,

and ∇λkL(ξ?k,λ
?
k) = 0. When the information-sharing graph G with adjacency matrix A

is available, i.e., when there is not partitioning of the system, then the fitness functions

are given by the following expression corresponding to (6.14):

f(p) =

[
2Ψ H>

−H 0(q+r)×(q+r)

]
︸ ︷︷ ︸

Ω

[
ξ?k
λ?k

]
︸ ︷︷ ︸

p
?

+

[
ψk
hk

]
.

Moreover, when the system is partitioned, there are two classifications for the informa-

tion-sharing links. Notice that when the partitioning is performed, then there are

information-sharing links within the same partition and links connecting different par-

titions. According to the partitioning approach presented in Section 8.1.2, an optimal

partition P? has an associated graph (not necessarily connected) denoted by G̃. The

graph G̃ represents the graph whose links Ẽ correspond to the links connecting different

partitions and with adjacency matrix Ã.

9.2.1 DMPC Controller with DDPG and Static System Partitioning

The optimization problem behind the DMPC controller is solved by capturing infor-

mation from other partitions throughout the information-sharing links Ẽ . Afterwards,

these links Ẽ are disconnected, and the DDPG evolve independently at each partition

satisfying the information-sharing graph now imposed with an adjacency matrix Â as

presented in (9.7). Therefore, the amount of required information-sharing links along
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the time is reduced since the links Ẽ are not needed for all the time. Hence, the fitness

functions are computed as follows:

f(p) =
[ (

A− Ã
)

︸ ︷︷ ︸
Â

◦Ω
] [ ξk

λk

]
︸ ︷︷ ︸

p

+
[
Ã ◦Ω

] [ ξ?k−1

λ?k−1

]
+

[
ψk
hk

]
. (9.7)

Remark 9.1. Notice that the fitness functions in (9.7) do not share information among
different partitions since the DDPG evolve satisfying an information-sharing graph whose
adjacency matrix is Â = A− Ã. ♦

Once the equilibrium point p? for the DDPG is obtained, the procedure can be

repeated in order to find a better solution for the optimization problem, i.e., the val-

ues corresponding to the information provided throughout the links Ẽ are updated. In

this regard, information from other partitions can be updated to improve the solution,

and in fact, the same solution that is gotten without performing any partitioning can

be obtained. To this end, the update of information from other partitions can be re-

peated until [ξ?>k λ?>k ]> = [ξ?>k−1 λ?>k−1]>. Moreover, in order to avoid infeasibility

in the DMPC controller based on DDPG with a system partitioning, more importance

is assigned to those links associated to the equality constraints, throughout the rele-

vance matrix C as presented in the partitioning algorithm (see Section 8.1.2). Thus, the

optimal partitioning P? integrates those links (critical for feasibility) within partitions

avoiding that they belong to Ẽ .

Figure 9.1 presents the summary scheme of the DMPC controller with DDPG and

with static system partitioning. The Lagrangian function allows to compute the informa-

tion-sharing graph G, and provides information about Ω, and [ψ>k h>k ]>. On the other

hand, an off-line partitioning procedure is performed, providing the constant adjacency

matrix of the graph G̃, i.e., Ã. With data from both the Lagrangian function and the

off-line partitioning, the fitness functions are computed as in (9.7). Thus, the DMPC

controller based on DDPG computes the optimal control input that is applied to the

system.

9.2.2 DMPC Controller with DDPG and Dynamical System Partition-
ing

The system partitioning approach presented in Section 8.1 considers several aspects. One

of the objectives dictates that all the partitions should have similar size, which results
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Figure 9.2: Summary of the DMPC controller with distributed DDPG and dynamical
system partitioning.

in having DMPC controllers with similar number of decision variables and constraints.

Therefore, this aspect implies to have similar computational burden for all the distributed

controllers. Moreover, as discussed in Section 9.2.1, the relevance matrix C can be

selected appropriately by assigning higher weights to those links involved in equality

constraints in order to avoid infisibility for the optimization problem. On the other

hand, Section 6.2 addresses the case in which the set of considered constraints varies

depending on the current state of the system, reducing conveniently the number of

required information-sharing links in order to compute the optimal control input at each

time instant.

Consider that the information-sharing graph G varies over time as it has been pre-

sented in Section 6.2, i.e., that the adjacency matrix A varies along the time. Then, due

to the fact that the information-sharing graph varies, it is necessary to determine the

appropriate partitioning of the system in a dynamical manner such that the partitioning

criteria hold. Besides, the set of links Ẽ also varies along the time, which are links that

are not required for all the time but only to update the fitness functions, i.e.,

f(p) =
[ (

Ak − Ãk

)
︸ ︷︷ ︸

Âk

◦Ω
] [ ξk

λk

]
︸ ︷︷ ︸

p

+
[
Ãk ◦Ω

] [ ξ?k−1

λ?k−1

]
+

[
ψk
hk

]
. (9.8)

Remark 9.2. Notice that the fitness functions in (9.8) do not share information among
different partitions since the DDPG evolve satisfying an information-sharing graph whose
adjacency matrix is Âk = Ak − Ãk. ♦
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The application of a dynamical system partitioning for the design of distributed

controllers has several advantages, e.g., the computational burden is distributed for

all the non-centralized controllers for all the sub-systems. When considering that the

information-sharing graph varies along the time getting rid of non-active constraints,

then the computational burden associated to the optimization problem is reduced. The

same partitioning objectives are still considered although the information-sharing graph

varies along the time, and the appropriate set of not required links Ẽ is found after

performing the system partitioning. Finally, suppose that there is any inconvenient

or fault at any partition. For the conventional CMPC approach, the whole system is

affected. In contrast, when adopting a non-centralized MPC controller approach using

applying a system partitioning, any inconvenient at a partition is decoupled from other.

Figure 9.2 shows the summary of the DMPC with DDPG and with dynamical sys-

tem partitioning. The current state of the system determines the non-safe regions for

the constraints as in Section 6.2, defining the adjacency matrix Ak associated to the

information-sharing graph. Therefore, the system partitioning is performed with the

adjacency matrix A, finding the appropriate matrix Ã describing all the links connect-

ing different partitions. It follows that the fitness functions can be defined by using the

Lagrangian function and matrices A, and Ã, and the DMPC controller with DDPG com-

putes the optimal control input u?k. Afterwards, the new system state is measured and

the aforementioned procedure is repeated, i.e., it is found the new information-sharing

graph with matrix A, the new partitioning with associated matrix Ã is computed, new

fitness functions f(p) are established, and a new optimal control input is computed at

each time instant in a distributed manner.

9.3 Case study: Barcelona Water Supply Network

Consider the same case study presented in Section 3.3.3, i.e., the BWSN presented in

Figure 3.4. It is proposed the design of three DMPC controllers based on DDPG for three

different scenarios. Then, the DMPC is compared with a CMPC that uses a constant

information-sharing graph without partitioning. The different scenarios are described as

follows:
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• Scenario 1: DMPC controller based on DDPG with constant information-sharing

network and static system partitioning for the BWSN.

• Scenario 2: DMPC controller based on DDPG with time-varying information-

sharing network and dynamical system partitioning for the BWSN.

• Scenario 3: CMPC controller based on DDPG with constant information-sharing

network for the BWSN.

In order to evaluate the performance of the three scenarios, two different KPIs are

proposed as in Chapter 6, i.e., the same economical costs KPIcosts(day) presented in

(6.22) and communication costs KPIcosts(day) presented in (6.23), where Mk = A− Ã

for Scenario 1 (constant), and Mk = Ak − Ãk for Scenario 2, and Mk = A for Scenario

3 (constant).

Regarding the Scenario 1, the same parameters for the partitioning algorithm of

the Chapter 8 are used for this scenario, i.e., the information-sharing network and the

system partitioning presented in Figure 8.2 are used for the DMPC controller based in

DDPG. Figure 9.3 shows the evolution of some states achieving the imposed reference

and control inputs for the DMPC controller with DDPG and the static system parti-

tioning presented in Figure 8.2(a). Moreover, Figure 9.4 presents the evolution of the

corresponding variables with the CMPC controller without system partitioning. It can

be seen that the behavior is the same for the evolution of states since the differences

between the control inputs is quite subtle. Finally, Figure 9.5 shows the constant number

of connected links in the information-sharing network along the time.

On the other hand, the simulation parameters are selected as in Scenario 1, i.e., the

reference has been selected to be xr = 0.6x̄, and the weights in the cost function in

(8.6a) are selected to be Q̃ = Inx , R̃ = 1000Inu , and γ = 1. The partitioning algorithm

is performed with weights ϕ = [1 0.26 0.1 0.5]>, and with the parameter κ = 0 for

the algorithm end-up condition.
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Figure 9.3: Evolution of eight system states. Figures (a)-(h) correspond to states
x2, x7, x9, x10, x14, x15, x16, and x17 for all the considered scenarios in this chapter.

Figure 9.4: Evolution of eight control inputs. Figures (a)-(h) correspond to states
u1, u16, u37, u40, u50, u56, u58, and u61 for all the considered scenarios in this chapter.

Figure 9.5: Evolution of the connected links for the three scenarios.
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(a) (b)

(c) (d)

(e) (f)

Figure 9.6: Partitions for different time instants for the BWSN. Figures (a) and (b)
correspond to optimal system partitioning for the information-sharing graph, Figures
(c) and (d) correspond to the graph of links connecting partitions, and Figures (e) and
(f) correspond to the respective physical partitioning. Moreover, Figures (a), (c) and
(e) correspond to time instant k = 15, and Figures (b), (d) and (f) correspond to time
instants k ∈ {40− 42, 44− 47, 64− 66, 68− 71, 88− 90, 92− 95, 112− 114, 116− 119}.
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(a) (b)

(c) (d)

(e) (f)

Figure 9.7: Partitions for different time instants for the BWSN. Figures (a) and (b)
correspond to optimal system partitioning for the information-sharing graph, Figures
(c) and (d) correspond to the graph of links connecting partitions, and Figures (e) and
(f) correspond to the respective physical partitioning. Moreover, Figures (a), (c) and (e)
correspond to time instants k ∈ {43, 67, 91, 115}, and Figures (b), (d) and (f) correspond
to time instants k ∈ {55− 47, 79− 81, 103− 105}.
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Figures 9.6, and 9.7 present the time-varying information-sharing graphs, the corre-

sponding optimal system partitioning highlighting the links connecting different parti-

tions, and the corresponding physical partitioning for the BWSN1. Figure 9.6(a) corre-

sponds to a unique time instant, i.e., k = 15, whereas Figure 9.6(b) corresponds to 28

time instants, being the most frequent partitioning. Moreover, Figure 9.7(a) corresponds

to four time instants, i.e., k ∈ {43, 67, 91, 115}, and Figure 9.7(b) corresponds to nine

time instants, i.e., k ∈ {55, . . . , 47, 79, . . . , 81, 103, . . . , 105}.

Looking at Figures 9.3 and 9.4 again, Figure 9.3 shows the evolution of some states

and Figure 9.4 shows the evolution of some control inputs for the DMPC controller

with DDPG and the dynamical system partitioning in comparison to the evolution of

the respective variables for the same controller without system partitioning. It can be

seen that the system states achieve the reference. Making a comparison with respect

to the performance observed for the case with static system partitioning (see Scenario

2), the dynamical system partitioning produces more variations around the reference

(even more than the ones generated by the permanent disturbances in the system).

This behavior occurs due to the fact that several links are not permanently used in the

computation of the optimal control input at each time instant, i.e., links denoted by Ẽ .

Therefore, there is a compromise between the subtle variations to achieve the reference

and the amount of permanent information-sharing links the controller uses. In this

regard, when contemplating economical costs associated to the information-sharing links,

it is convenient to implement control strategies with dynamical system partitioning.

Finally, Figure 9.5 shows the evolution of the information-sharing graph along the time,

achieving a periodic behavior from the third day. It can be seen that the periodicity in

the number of connected links is related to the periodicity of the demands (disturbances)

presented in Figure 6.9.

9.4 Discussion and Summary

Table 9.1 shows the KPIs corresponding to the costs associated to each actuator, and

to the required communication links. It can be seen that the lowest economical costs

1
The physical partitioning can be obtained since there is a relationship between each node in the

physical system and each node in the information-sharing network as it has been presented in Remark
8.3 at Section 8.1.3.
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Table 9.1: Summary of KPIs corresponding to operation of actuators and communication
links.

Scenario 1 Scenario 2 Scenario 3
Day KPIcosts (e.u.) KPIlinks (e.u.) KPIcosts (e.u.) KPIlinks (e.u.) KPIcosts (e.u.) KPIlinks (e.u.)

1 22.6773 14723 24.2953 10797 24.2456 14736
2 19.6910 14723 22.2863 9666 21.6782 14736
3 18.2795 14723 22.9248 9671 21.4634 14736
4 17.8871 14723 22.5787 9565 21.3294 14736
5 18.4463 14723 22.9660 9667 21.2401 14736

Total 96.9812 73615 115.0512 49366 109.9567 73680

Overall∗ 73711.98 49481.05 73789.65
∗
The overall cost is computed by adding the total costs for both KPIs, i.e., the total values for KPIEcosts + KPICcost.

KPIcosts = 96.9812 are obtained with the Scenario 1 corresponding to fixed constraints,

i.e., with constant information-sharing network and constant static system partitioning.

However, notice that the Scenario 1 also corresponds to the highest costs associated to

the communication links KPIlinks = 73680. In contrast, Scenario 2 is the one with lowest

communication costs, i.e., KPIlinks = 49366. Moreover, the Scenario 1 has lower econom-

ical costs KPIcosts = 109.9567 in comparison to KPIcosts = 115.0512 of the Scenario 2.

In conclusion, notice that Scenario 2 is the best control strategy considering the overall

performance shown in Table 9.1 if equal relevance is assigned to both KPIs or if more

relevance is assigned to the communication links.

A general methodology to generate distributed density-dependent population dy-

namics has been presented by considering a reproduction rate in the distributed mean

dynamics. Furthermore, it has been shown the relationship between the equilibrium

point of DDPG with the optimal point in a constrained optimization problem by se-

lecting the description of benefits throughout the strategies using the Lagrangian of a

potential function. In addition, the asymptotic stability of the equilibrium point un-

der the D3RD, the D3SD, and the D3PD, has been formally proven for constant and

time-varying population-interaction structures. Then, after introducing this class of dy-

namics and their properties, they have been applied to the design of a DMPC controller

under a time-varying information-sharing network. On the other hand, a multi-objective

partitioning procedure considering several aspects such as amount of links connecting

different partitions, size of partitions, distance among elements, and importance of links

has been presented in order to determine the appropriate partitioning in a large-scale
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system. As one of the most relevant features of the proposed partitioning is that it can be

performed in a distributed manner. Therefore, the DMPC controller based on DDPG is

combined with the distributed partitioning algorithm in two different manners, i.e., with

static and dynamical system partitioning. The results for these two DMPC controllers

based on DDPG and performing both static and dynamical system partitioning are pre-

sented, showing the effectiveness of both the DDPG approach and the partitioning for

large-scale systems. As further work, the proposed non-centralized control design with

partitioning can be tested in presence of faults at some partitions, so that the strategy

facilitates the appropriate isolation.
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Chapter 10

Contributions and Concluding
Remarks

10.1 Contributions

In this thesis, the role of some game-theoretical approaches for the design of optimization-

based controllers (mainly DMPC controllers) has been presented. It has been shown that

the classical population dynamics are appropriate to solve a resource allocation problem

under the framework of full-potential games in Chapter 2. As a first contribution of this

dissertation, and taking advantage of this, an on-line and dynamical tuning methodology

based on population dynamics has been presented in Chapter 3.

In contrast, the population-games approach is unsuitable for the design of controllers

that should consider more requirements associated to communication limitations and

constraints. The classical population dynamics that require full information and that

can deal with a unique coupled constraint and positiveness of variables have been studied.

As a second contribution of this dissertation, the classical population-games approach is

extended to the case in which strategy-constrained interactions are considered in Chapter

4 where a DMPC controller is designed, and a distributed engineering application, which

illustrates the advantages of the contributions in Chapter 4, is presented in Chapter 5.

As a third contribution of this dissertation, the classical population-games approach is

extended to the case in which more coupled constraints can be considered, incorporating

birth and death rates within the population games in Chapter 6. Therefore, these con-

tributions regarding population games and optimization have permitted to consider the
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distributed population dynamics as a powerful tool in the design of DMPC controllers.

Regarding the cooperative/coalitional games, the power index known as the Shapley

value is studied in Chapter 7. The main issue that has been addressed in this thesis is

the high computational burden caused by the combinatory explosion of the traditional

operations to find the Shapley value. To this end, the fourth contribution of this disser-

tation consists in considering a particular characteristic function, which is appropriate

and commonly used for control purposes, allowing to reduce the computational costs to

compute the power index from the order of hours to seconds. Also, it is shown that the

novel proposed approach can be performed under a distributed communication structure.

Over the last part of this thesis, it is discussed the partitioning of large-scale systems

as a useful methodology in the design of non-centralized controllers. As the fifth contri-

bution of this dissertation, it is proposed to perform the partitioning algorithm taking

into account the information-sharing network that is required to compute the control

inputs for a specific control strategy in Chapter 8. In this regard, the partitioning can

be performed over any system and for any control technique, being a general approach.

Furthermore, it is shown in Chapter 9 that it is possible to combine the contributions

presented in Chapters 6 and 8 to develop a dynamical system partitioning for the design

of DMPC based on population games.

10.2 Answering the Research Questions

The conclusions are synthesized by answering the key research questions presented in

Chapter 1 as follows:

(Q1) Which kind of constrained optimization-based controllers can be designed by using

the classical population dynamics and what are the information requirements?

It has been shown in Chapter 2 that the classical population-games approach can

be used for the design of resource-allocation controllers. This is made by exploiting

the relationship of the Nash equilibrium with the optimal point in a constrained

optimization problem (2.13) of a stable and full-potential game (see Theorem 2.1).

Regarding the information requirements, the evolution of the proportion of agents

210



Chapter 10. Contributions and Concluding Remarks

in the classical population dynamics requires information about the fitness func-

tions for the whole population (e.g., see the sum term in (2.14), (2.15), (2.16), and

(2.17)). In this regard, when solving a resource-allocation problem with this ap-

proach, it is necessary to guarantee that all the sub-systems receiving the limited

resource can share information to one another. In other words, the classical popula-

tion dynamics represent a centralized controller whereas the distributed population

dynamics presented in Chapter 4 represent a distributed controller.

(Q2) How to develop a dynamical tuning methodology for MPC controllers with low

computational burden?

One of the main inconvenients of some on-line tuning methodologies for MPC con-

trollers is that they require to find multiple points over the Pareto front implying

high computational burden. Chapter 3 has presented a population-games based dy-

namical tuning for the prioritization weight parameters of a multi-objective MPC

controller. The proposed methodology is performed with low computational bur-

den since it only requires to know one point in the Pareto front corresponding to

the current value of the control objectives in the cost function.

(Q3) How to reduce the amount of required information in the evolution of population

dynamics?

The classical population dynamics are deduced from the mean dynamics by con-

sidering that each agent that receives a revision opportunity can select another

agent who is playing any other strategy, i.e., when taking a sample of agents from

the population, then the probability that the sampled population contains each

strategy is the same. This thesis has shown that it is possible to consider strategy-

constrained interactions, i.e., when an agent receives a revision opportunity, this

agent can only select an opponent from a certain subset of agents playing specific

strategies. In this regard, it has been shown that, from the mean dynamics with

strategy-constrained interactions and by using different revision protocols, the dis-

tributed population dynamics are deduced as presented in Chapter 4. Therefore,

the information requirements are reduced and preserving the relevant population-

dynamics properties, i.e., the invariance of the simplex set and the stability of the

equilibrium point.
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(Q4) How can the population-games approach be used in the design of distributed optimiza-

tion-based controllers?

The main feature exploited in this thesis in order to design optimization-based

controllers by using a population-games approach is that, under the framework of

full-potential games, the Nash equilibrium corresponds to a extreme point of the

potential function as presented in Chapter 2. In this regard, it is possible to solve

the constrained optimization problem in (2.13) by using this game-theoretical ap-

proach. Moreover, once the information requirements have been relaxed according

to the answer to key research question (Q3), then the constrained optimization

problem can be solved in a distributed manner. Furthermore, the optimization

problem presented in (2.13) coincides to the form of a resource-allocation problem,

i.e., this tool is appropriate to control systems in which there is a limited resource

as presented in Chapter 4, where a DMPC controller is designed. On the other

hand, Chapter 5 shows a control application based on population games, i.e., a

distributed formation control under time-varying communication network is de-

signed in a leader-follower fashion and by taking advantage of the properties of the

distributed population dynamics.

(Q5) How can more coupled constraints be considered with the population-games ap-

proach in order to make them suitable for a larger variety of problems in the design

of distributed optimization-based controllers?

The classical and distributed population dynamics are deduced from the mean

dynamics and the distributed mean dynamics, respectively. One of the features of

the mean dynamics is the mass conversion, i.e., any proportion that adopts a new

strategy is leaving another strategy maintaining the population mass constant.

This fact makes population dynamics satisfy the invariance of the simplex (2.9),

and therefore satisfy the constraint (2.13b) along the time. Nevertheless, the mass

conservation does not allow to consider more coupled constraints different from

(2.13b). On the other hand, under the framework of density games, the population

mass evolves along the time. To this end, it is proposed to consider a reproduction

rate in the mean dynamics, i.e., a version of the distributed density-dependent mean

dynamics is introduced in Chapter 6 permitting the deduction of the distributed

density-dependent population dynamics.
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The density-dependent population dynamics also evolve to a Nash equilibrium;

however, this equilibrium is achieved with a population mass such that the repro-

ductions rates are null, i.e., a new condition is incorporated. Therefore, Chapter 6

has shown that these new properties can be conveniently used to solve constrained

optimization problems with multiple coupled constraints enlarging the spectrum

of types of systems that can be controlled by this game-theoretical approach, e.g.,

distributed-density games can be used in the design of DMPC controllers as pre-

sented in Chapter 6.

(Q6) How can the computational burden associated to the computation of the Shapley

power index be reduced and how it can be found under a distributed structure?

The Shapley value is one of the most used power indices in the context of co-

operative games, which is computed by defining a characteristic function and by

considering the contribution of each player to all the possible coalitions that can

be formed. This power index has been widely used in the design of controllers

since it can determine the importance and/or influence of sub-systems, commu-

nication elements, among others. However, the main issue when computing the

Shapley value is the high computational burden due to the combinatorial explosion

specially in the case of several players, e.g., for large-scale system applications. In

order to reduce the computational burden of the Shapley value computation, it has

been defined a specific characteristic function that can be associated to an error in

the control context. By restricting the characteristic function, it is possible to find

an alternative linear calculus that is equivalent to the conventional computation

of the Shapley value, which requires low computational burden as it is formally

presented in Chapter 7. Therefore, the computational time is reduced from hours

to seconds. Moreover, due to the fact that the Shapley value computation results

simpler, then it is possible to compute it under a distributed structure by using

consensus ideas to propagate information. This result permits the use of the Shap-

ley value in the control context for large-scale systems and with non-centralized

control configurations.

(Q7) How can the partitioning of large-scale systems be performed in a distributed man-

ner and how it helps in the design of decentralized optimization-based controllers?

213



Chapter 10. Contributions and Concluding Remarks

Most of the partitioning methods use a graph representation of systems, which

might make these methods quite specific for some types of systems, e.g., flow-based

systems. In contrast, it has been proposed to perform a partitioning algorithm

based on the information-sharing graph making the methodology general for any

system and control strategy. Furthermore, due to the fact that the information-

sharing graph also illustrates how the dependence among decision variables is in

order to design a non-centralized controller, it is proposed a distributed partitioning

algorithm. To this end, it has been shown in Chapter 8 that the required operations

in the algorithm can be computed in a distributed manner. In addition, since each

node in the information-sharing graph can make the decision to select a partition,

then the computational burden is reduced.

(Q8) How can the partitioning of a large-scale system be performed dynamically and how

can the population-games approach be used in the design of partitioned optimization-

based distributed controllers?

The appropriate partitioning of a large-scale system might depend on the current

system state, or it might be also affected by disturbances. Therefore, it might

be convenient to implement a dynamical partitioning strategy. According to the

answer for the key research question (Q7), the computational burden for the pro-

posed partitioning algorithm is low and the information requirements to perform

the partitioning can be executed in a distributed manner. Therefore, it is an ap-

propriate tool to make a dynamical partitioning in large-scale systems. In this

regard, it is necessary to have a control strategy that can deal with time-varying

information-sharing graphs. Then, it is plausible to combine the distributed con-

trol design presented in Chapter 6 and the partitioning algorithm introduced in

Chapter 8. Therefore, a DMPC based on population games and performing a

dynamical system partitioning is presented in Chapter 9.

10.3 Directions for Future Research

There are still many open problems regarding the role of evolutionary-game theory for en-

gineering applications. This thesis has made efforts to show game-theoretical approaches

plausible in the design of optimization-based controllers, either complementing a control
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strategy or fully designing controllers under distributed schemes. Some suggested ideas

for future directions are outlined next:

• Extend the results for the multi-population case, which might be a promising

research topic considering populations with heterogeneous agents, or with multiple

equality constraints taking advantage of the invariance of the simplex set.

• The stability results under the distributed population dynamics have been obtained

for full-potential games. It is still an open problem to proof the stability of the

Nash equilibrium under these distributed dynamics for non-full-potential-games

but stable games.

• The deduction of the distributed population games for the discrete-time case in-

cluding the formalism for the stability analysis in function of the sampling time is

proposed. This research topic would allow to test the performance of these types

of controllers in real implementations.

• The result regarding the reduction in the computational time for obtaining the

Shapley power index has been performed for a restricted characteristic function

that is suitable for control purposes. However, there is still an interest to reduce

the computational costs for a generalized characteristic function.

• The contributions regarding the design of distributed predictive controllers based

on population games have been presented for linear systems. It would be interesting

to extend the design methodologies for the non-linear case.
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moyennes. Acta Mathematica, 30(1):175–193, 1906.

223



REFERENCES

[67] S. Kamelian and K. Salahshoor. A novel graph-based partitioning algorithm

for large-scale dynamical systems. International Journal of Systems Science,

46(2):227–245, 2015.

[68] T. Keviczky, F. Borrelli, and G. Balas. A study on decentralized receding horizon

control for decoupled systems. In Proceedings of the American Control Conference

(ACC), pages 4921–4926, Boston, USA, 2004.

[69] H. K. Khalil. Nonlinear systems. Prentice Hall, 2002.

[70] M. A. Khan, H. Tembine, and A. V. Vasilakos. Evolutionary coalitional games:

design and challenges in wireless networks. IEEE Wireless Communications,

19(2):50–56, 2012.

[71] I. Y. Kim and O. L. de Weck. Adaptive weighted sum method for multiobjective

optimization: a new method for pareto front generation. Structural and Multidis-

ciplinary Optimization, 31:105–116, 2006.

[72] M. R. Kleinberg, K. Miu, N. Segal, H. Lehmann, and T. R. Figura. A partitioning

method for distributed capacitor control of electric power distribution systems.

IEEE Transactions on Power Systems, 29(2):637–644, 2014.

[73] R. Lahkar and W. H Sandholm. The projection dynamic and the geometry of

population games. Games and Economic Behavior, 64(2):565–590, 2008.

[74] N. Li and J. R. Marden. Designing games for distributed optimization. IEEE

Journal of Selected Topics in Signal Processing, 7(2):230–242, 2013. Special issue

on adaptation and learning over complex networks.

[75] H. Lim, J. Park, D. Lee, and H. J. Kim. Build your own quadrotor: Open-

source projects on unmanned aerial vehicles. IEEE Robotics Automation Magazine,

19(3):33–45, 2012.

[76] D. Limon, T. Alamo, and E. F. Camacho. Enlarging the domain of attraction of

MPC controllers. Automatica, 41(2005):629–635, 2005.

[77] J. Maciejowski. Predictive control: with constraints. Pearson education, 2002.

224



REFERENCES
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Nomenclature

A adjacency matrix of the graph G
Ã adjacency matrix of the graph G̃
A(p) adjacency matrix of the graph G(p)

Āi matrix for dynamic model of the ith UAV

Ad state matrix for a system

Ad,i state matrix for an ith sub-system

aij element in the ith row and jth column in the adjacency matrix A

ãij element in the ith row and jth column in the adjacency matrix Ã

a
(p)
ij element in the ith row and jth column in the adjacency matrix A(p)

A set of UAVs

Ã set of anchor elements

B̄i matrix for dynamic model of the ith UAV

Bd control input matrix for a system

Bd,i control input matrix for an ith sub-system

Bl disturbance input matrix for a system

B set of sink elements in a distribution flow-based network

C matrix of relevance factors

cij element in the ith row and jth column in the matrix C

ci vector of the measured position parameters of the ith UAV

C energy and water costs

C̃` individual cost of the `th player

CS energy and water costs with static tuning strategy

CD energy and water costs with dynamic tuning strategy
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NOMENCLATURE

cdi measurement of the position parameter d of the ith UAV

Ck set of components of the graph G̃k at time instant k

D matrix of distances

d index to make reference to different populations

d̃ function of distance between two nodes

d̃ij element in the ith row and jth column in the matrix D

d vector of the nd disturbances

d̂ sequences of disturbances

D set of populations

ep` error p` − p?`
ez` error z` − z?`
E Lyapunov function

EV Lyapunov function

E1 storage function (also Lyapunov function)

E2 storage function (also Lyapunov function)

E set of links/edges of the graph G
Ẽ set of links/edges of the graph G̃
Ê set of links/edges of the graph Ĝ
Ei set of links/edges of the graph corresponding to the ith topology

Eji set of links/edges of the graph corresponding to the jth partition in

the ith topology

E`k set of links/edges of the graph G`k
f population game, and vector of fitness functions

fd dth population game, and vector of fitness functions for the dth popula-

tion

f ji population game, and vector of fitness functions for the jth partition in

the ith topology

fi fitness function corresponding to the ith strategy

fdi fitness function corresponding to the ith strategy in the dth population

F set of followers

g function that determines the index of a partition for a specific node (par-

titioning context)

g̃ amount of desired players per coalition (power-index context)
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NOMENCLATURE

ḡxi upper-bound parameter determining non-safe sectors for the ith system

state

ḡui upper-bound parameter determining non-safe sectors for the ith control

input

gx
i

lower-bound parameter determining non-safe sectors for the ith system

state

gu
i

lower-bound parameter determining non-safe sectors for the ith control

input

G undirected graph defining possible strategic interactions in a population

game

G̃ undirected graph corresponding to the system structure (interaction

among sub-systems)

Ḡ directed graph representing a distribution flow-based network

G(p) graph with adjacency matrix A(p) in function of p

Gi graph corresponding to the ith topology

Gji graph corresponding to the jth partition in the ith topology

G`k the `th partition of the graph G at time instant k

Hp prediction horizon in an MPC controller

hi height of the ith tank

ĥi external benefit for the ith node

hmax,` maximum level of the `th tank

ĥ`i external benefit for the ith node to change to the `th partition

ȟi internal benefit for the ith node

J cost function in an MPC controller

Ji the ith cost function in a multi-objective MPC controller

J̃i the ith normalized cost function in a multi-objective MPC controller

J `i cost function of the ith sub-system in an MPC controller

Jfi terminal cost of the ith sub-system in an MPC controller

Jutopia
i the ith value from the vector Jutopia

Jnadir
i the ith value from the vector Jnadir

Jutopia utopia point

Jnadir nadir point

k discrete time step
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NOMENCLATURE

K` discharge coefficient of the `th tank

K set of indices for partitions

L Laplacian of the graph G
L(p) Laplacian of the graph G(p)

L̃(p) modified Laplacian in terms of p

lij element in the ith row and jth column in the Laplacian L

l
(p)
ij element in the ith row and jth column in the Laplacian L(p)

l̃
(p)
ij element in the ith row and jth column in the Laplacian L̃(p)

L Lagrangian function

L` fair costs for the `th player determined by the Shapley value

m number of partitions

M number of agents in a population

M̃ vehicle mass

Mk matrix for communication key performance index

n number of strategies in a population games

nu number of control inputs

nx number of system states

nd number of disturbances

nu,i number of control inputs for the ith sub-system

nx,i number of system states for the ith sub-system

nji number of strategies for the jth partition in the ith topology

NE(f) set of Nash equilibria for the population game f

Ni set of neighbors of the ith node for the the graph G
Ñi set of neighbors of the ith node for the the graph G̃
O coalition

p vector of portion of agents, or population state

pi reference parameters for the ith UAV local controller

pd vector of portion of agents in the dth population, or the dth population

state

pji population state for the jth partition in the ith topology

pi portion of agents selecting the ith strategy

pdi portion of agents selecting the ith strategy in the dth population

pji,` portion of agents selecting the `th strategy for the jth partition in the
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NOMENCLATURE

ith topology

Pi number of partitions for the ith topology

Pi set of partitions for the ith topology

Pk partitioning at time instant k

PLMPC optimization problem corresponding to a local MPC controller

PMPC optimization problem corresponding to a centralized MPC controller

PDSD optimization problem corresponding to distributed Smith dynamics

qin,` inflow of the `th tank

qout,` outflow of the `th tank

Qi prioritization matrix of an MPC controller for the ith sub-system

Q̃ prioritization matrix of an MPC controller

Q total flow resource in a distribution flow-based network

Qi,k set of available partitions for the ith node at time instant k

Ri prioritization matrix of an MPC controller for the ith sub-system

R̃ prioritization matrix of an MPC controller

ri vector of references for the ith sub-system

rdi reference for the ith UAV for the dth position parameter

R̄xi upper region for system-state constraints

R̄ui upper region for control-input constraints

Rxi lower region for system-state constraints

Rui lower region for control-input constraints

R set of source elements in a distribution flow-based network

Ri set of available source elements for the ith non-source element

S set of strategies

S̃ set of nodes representing sub-systems

S̄ set of elements in the distribution flow-based network

S̄st set of storage elements in the distribution flow-based network

S̄ac set of actuator elements in the distribution flow-based network

S̄jo set of joint elements in the distribution flow-based network

S̄si set of sink elements in the distribution flow-based network

S̄so set of source elements in the distribution flow-based network

S`k set of nodes in the `th partition at time instant k

Ŝ`k external nodes in the `th partition at time instant k
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NOMENCLATURE

Š`k internal nodes in the `th partition at time instant k

t continuous time instant

T number of topologies

T∆ tangent space of the simplex set

T set of topologies

U vector of control inputs within the prediction horizon

u vector of control inputs

ū maximum for the vector of control inputs

u minimum for the vector of control inputs

û sequence of control inputs

ui vector of control inputs for the ith sub-system

U feasible set of control inputs

Vk matrix defining differences among number of elements for different

partitions at time instant k

Vi prioritization matrix for the terminal cost in an MPC controller

V potential function

Vc characteristic function

v system state function

vi decoupled system state function for the ith

ṽi coupled system state function for the ith

vij,k element in the ith row and jth column in the matrix Vk at time ins-

tant k

V set of players

Vji set of players for the jth partition in the ith topology

Wk cost matrix for partitioning

wij,k element in the ith row and jth column in the matrix Wk at time ins-

tant k

Wz
k set of optimal nodes in the partitioning algorithm at time instant k

X vector of system states within the prediction horizon

Xr vector of references within the prediction horizon

x vector of system states

x̄ maximum for the vector of system states

x minimum for the vector of system states
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NOMENCLATURE

x̂ sequence of system states

xr vector of references

xi vector of system states for the ith sub-system

xs vector of the desired lower value for system states

X feasible set for the system states

z` `th state in a distribution flow-based network

zmax,` maximum value for the `th state in a distribution flow-based network

z vector of system states in a distribution flow-based network

zji vector of system states in a distribution flow-based network for the jth

partition in the ith topology

zjmax,i maximum value for the vector of system states in a distribution flow-

based network for the jth partition in the ith topology

∆U vector of control-input slew rates within the prediction horizon

∆u vector of control-input slew rates

∆ simplex set in a population games

∆d simplex set for the dth population

∆o simplex set for the density-dependent population game, positive orthant

int∆ interior of the simplex set

int∆d interior of the simplex set for the dth population

∆′ simplex set without considering positiveness of variables

δ reproduction rate function for all strategies

δi reproduction rate function for the ith strategy

ε? desired resource-feeding co-relation index

ε` resource-feeding co-relation index

γ scalar weight for an objective in the MPC controller

γi scalar weight for the ith objective in the MPC controller

ς auxiliary variable for lower limit system-state constraint

ς̂ sequence of auxiliary variable

µ Lagrange multipliers

µr` information provided from sub-system r to sub-system `

% revision protocol

%̃ mean value

%ij switch rate from strategy i to strategy j
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NOMENCLATURE

λ Lagrange multipliers

π population mass

πd dth population mass

πji population mass for the jth partition in the ith topology

Φ(`) Shapley value of the player `

Γ̃ diagonal matrix of the active constraints

Γu vector of the control-input constraints

Γx vector of the system-states constraints

Γji sub-system of the distribution flow-based network for the jth partition

in the ith topology

ϕ prioritization vector for the partitioning algorithm

ϕj prioritization for the jth objective for the partitioning algorithm

Σj
i sub-system of the population dynamics for the jth partition in the ith

topology

τ sampling time

τ? maximum resource-feeding index of the network

τc critical sampling time

τi network resource-feeding index of the ith node

τ ` maximum resource-feeding index per partition

σj jth objective in the partitioning algorithm

ηi incentives of the ith to change partition

κ parameter for stop condition in the partitioning algorithm

α vector of energy and water costs throughout the prediction horizon

α1 vector of constant energy costs

α2,k vector of time-varying water costs

ξ decision variables in a quadratic-programming problem

ξ̂ sequence of the decision variables in a quadratic-programming problem

within the prediction horizon
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