
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Action Recognition in Videos:

Data-e�cient approaches for
supervised learning of human action

classi�cation models for video

A dissertation submitted by César Roberto de Souza
at the Departament de Ciències de la Computació,
Universitat Autònoma de Barcelona to fulfil the de-
gree of Doctor of Philosophy within the Computer
Science Doctorate Program.

Bellaterra, March 23, 2018

Co-Director Dr. Antonio Manuel López Peña
& Tutor Dept. de Ciències de la Computació & Centre de Visió per Computador

Universitat Autònoma de Barcelona

Co-Director Dr. Naila Murray
Computer Vision Group
NAVER LABS Europe

A meus pais Caio e Clotilde

Acknowledgements

FIRST and foremost, I thank all my family for the support, effort, and dedication
provided to me over all these years, especially to my parents Caio and Clotilde, who
have always supported me so much, even in the face of so many difficulties. I am
immensely grateful to my brothers Caio, Cristiano, Cassius, and my sister Claudia,
whom so often offered me their understanding no matter how far we were.

I have been extremely lucky to have had so many excellent advisors during my
PhD course: Eleonora Vig, Adrien Gaidon, Naila Murray, and Antonio López, which
without whom this PhD would never had been possible. While some people spend
so much time looking for a single good advisor to guide their path, I am thankful I
had encountered not one, but four of the very best researchers that could ever have
guided me during those three years. I am deeply grateful for their help, insights,
understanding, and support during and beyond the context of this PhD.

I offer my thanks to everyone whom were once in Xerox Research Centre Europe,
and whom were or still are in NAVER LABS Europe, as the excellence of all colleagues,
friends, and professionals I’ve met there certainly transcends any particular name
such company could have.

I also thank my professor and friend Dr. Ednaldo Brigante Pizzolato for giving
me the very first opportunity to conduct research while still in Brazil, and helping
me walk the first steps that would eventually bring me here. I thank Victor Ciriza for
then giving me the opportunity that would change my life forever.

I thank everyone from the best engineering team and the very first friends I
met when I arrived in Grenoble: Luis Ulloa, Arturo Mondragon, Christelle Loïodice,
Michael and Christine Niemaz, Frederic Roulland, and Victor Ciriza. Working with
these fantastic people made me strive to continue giving my best during the years
I worked as a Research Engineer, both professionally and personally, eventually
leading me to start this PhD.

I am also grateful for having the opportunity to meet so many outstanding
people in the Centre de Visió per Computador in the multiple times I’ve stayed in
Barcelona. I thank everyone from the astounding staff, who would help and offer
their support every time I needed; and the amazing friends, who were always there
to both talk and listen, about everything and anything.

I thank God for placing all these people in my life.

i

Abstract

In this dissertation, we explore different ways to perform human action recognition
in video clips. We focus on data efficiency, proposing new approaches that alleviate
the need for laborious and time-consuming manual data annotation. In the first
part of this dissertation, we start by analyzing previous state-of-the-art models,
comparing their differences and similarities in order to pinpoint where their real
strengths comes from. Leveraging this information, we then proceed to boost the
classification accuracy of shallow models to levels that rival deep neural networks.
We introduce hybrid video classification architectures based on carefully designed
unsupervised representations of handcrafted spatiotemporal features classified
by supervised deep networks. We show in our experiments that our hybrid model
combine the best of both worlds: it is data efficient (trained on 150 to 10,000 short
clips) and yet improved significantly on the state of the art, including deep models
trained on millions of manually labeled images and videos. In the second part of this
research, we investigate the generation of synthetic training data for action recog-
nition, as it has recently shown promising results for a variety of other computer
vision tasks. We propose an interpretable parametric generative model of human
action videos that relies on procedural generation and other computer graphics
techniques of modern game engines. We generate a diverse, realistic, and physically
plausible dataset of human action videos, called PHAV for “Procedural Human Ac-
tion Videos”. It contains a total of 39,982 videos, with more than 1,000 examples for
each action of 35 categories. Our approach is not limited to existing motion capture
sequences, and we procedurally define 14 synthetic actions. We then introduce
deep multi-task representation learning architectures to mix synthetic and real
videos, even if the action categories differ. Our experiments on the UCF-101 and
HMDB-51 benchmarks suggest that combining our large set of synthetic videos
with small real-world datasets can boost recognition performance, outperforming
fine-tuning state-of-the-art unsupervised generative models of videos.

Keywords: computer vision, action recognition, machine learning, applied math-
ematics

iii

Resumen

En esta disertación, exploramos diferentes formas de realizar reconocimiento de
acciones humanas en vídeos. Nos enfocamos en la eficiencia de los datos, propo-
niendo nuevos enfoques que alivian la necesidad de anotarlos manualmente, tarea
muy laboriosa y subjetiva, sujeta a errores. En la primera parte de esta disertación,
comenzamos analizando modelos anteriores de vanguardia, comparando sus di-
ferencias y similitudes con el fin de identificar de dónde vienen sus verdaderas
fortalezas. Aprovechando esta información, procedemos a aumentar la precisión de
la clasificación basada en modelos diseñados por un experto a niveles que rivalizan
con las redes neuronales profundas. Presentamos arquitecturas híbridas de clasi-
ficación de vídeo basadas en representaciones espaciotemporales generales y no
supervisadas, cuidadosamente diseñadas como características de entrada a redes
neuronales profundas supervisadas. Los experimentos que presentamos muestran
que nuestro modelo híbrido combina lo mejor de ambos mundos: es eficiente en
datos (entrenado en 150 a 10,000 vídeos cortos) y mejora significativamente en el es-
tado del arte, incluyendo modelos profundos entrenados en millones de imágenes
etiquetadas manualmente y videos. En la segunda parte de esta tesis, investigamos
la generación de datos sintéticos de entrenamiento para el reconocimiento de accio-
nes, ya que recientemente este paradigma ha mostrado resultados prometedores en
muchas otras tareas de visión por computador. Basándonos en técnicas de gráficos
por computador, proponemos un modelo paramétrico e interpretable para generar
vídeos de acciones humanas. Los vídeos que generamos son diversos, realistas y
físicamente plausibles; llamamos PHAV (de “Procedural Human Action Videos”)
al conjunto de vídeos. PHAV contiene un total de 39,982 videos, con más de 1,000
ejemplos para cada acción, contemplando 35 acciones diferentes. Nuestro enfoque
no se limita a las secuencias de captura de movimiento existentes, ya que también
definimos procedimentalmente 14 acciones sintéticas. Luego presentamos arqui-
tecturas profundas para el aprendizaje de representaciones de tareas múltiples que
mezclan vídeos sintéticos y reales, incluso si las categorías de acción son diferentes.
Nuestros experimentos en los conjuntos de datos UCF-101 y HMDB-51 sugieren
que la combinación de PHAV con pequeños conjuntos de datos del mundo real
puede aumentar la precisión del reconocimiento, superando el estado del arte de
los modelos no supervisados de generación de vídeos.

Palabras clave: visión artificial, reconocimiento de acciones, aprendizaje auto-
mático, matemáticas aplicadas.

v

Resum

En aquesta dissertació, explorem diferents maneres de reconèixer accions humanes
en vídeo. Ens centrem sobretot en l’eficiència amb les dades, investigant i propo-
sant nous mètodes que permetin evitar la laboriosa i lenta anotació de dades de
forma manual. A la primera part d’aquesta dissertació, comencem analitzem els
millors models preexistents, comparant les seves diferències i similituds amb la
finalitat d’identificar d’on provenen els seus punts forts. Aprofitant aquesta infor-
mació, procedim a millorar el rendiment en classificació d’aquests models senzills
a nivells que podrien competir amb xarxes neuronals profundes mitjançant la in-
troducció d’arquitectures híbrides de classificació de vídeo. Aquestes arquitectures
estan basades en representacions no supervisades dissenyades amb característi-
ques espai-temporals degudament escollides a mà i després classificades per xarxes
neuronals profundes supervisades. En els nostres experiments mostrem que el
model híbrid que proposem combina el millor d’ambdós mons: per una banda és
més eficient amb les dades (entrenat entre 150–10,000 fragments de vídeos curts);
i per l’altra, millora significativament els resultats dels models existents, incloent
models profunds entrenats en milions d’imatges i vídeos etiquetats manualment.
A la segona part de la dissertació, investiguem la generació de dades d’entrena-
ment sintètiques per al reconeixement d’accions, ja que recentment s’han mostrat
resultats prometedors en una varietat d’altres tasques en visió per computador. Pro-
posem un model generatiu paramètric interpretable de vídeos d’acció humana que
es basa en la generació procedimental i altres tècniques de gràfics per computador
existents en els motors dels videojocs moderns. Generem un conjunt sintètic de
vídeos d’accions humanes diverses, realistes i físicament plausibles, anomenats
PHAV (“Procedural Human Action Videos”). Aquest conjunt de dades conté un total
de 39,982 vídeos, amb més de 1,000 exemples per cadascuna de les 35 categories
d’acció. La nostra proposta no es limita a les seqüències de captura de moviment
existents, i definim procedimental 14 accions sintètiques. Després, presentem ar-
quitectures profundes d’aprenentatge de representacions multi-tasca per fusionar
vídeos sintètics i reals, fins i tot quan les categories d’acció difereixen. Els nostres
experiments en comparats amb els altres mitjançant els punts de referència UCF-
101 i HMDB-51 suggereixen que la combinació del gran conjunt de vídeos sintètics
que proposem amb petits conjunts de dades del món real pot millorar el rendiment,
superant els models generatius de vídeo no supervisats recentment desenvolupats.

Paraules clau: visió artificial, reconeixement d’accions, aprenentatge automàtic,
matemàtiques aplicades.

vii

Contents

Abstract iii

Resumen v

Resum vii

List of figures xv

List of tables xxiii

List of acronyms xxiv

1 Introduction 1

1.1 Context . 2

1.2 Objectives and scope . 3

1.3 Contributions . 4

1.4 Outline . 5

2 Human action recognition in videos 7

2.1 Introduction . 7

2.1.1 Datasets for action and related tasks 8

2.1.2 Overview of related works in the literature 15

ix

Contents

2.2 Local feature encoding approaches . 17

2.2.1 Dense trajectories and the local feature encoding pipeline . . 18

2.2.2 State-of-the-art pipelines . 25

2.3 Deep learning approaches . 34

2.3.1 3D convolutional networks . 34

2.3.2 Two-Stream Networks . 35

2.3.3 Temporal Segment Networks . 37

2.4 The case for synthetic data and virtual worlds 38

2.5 Summary of the chapter . 45

3 Hybrid models for action recognition 47

3.1 Introduction . 47

3.2 Fisher Vectors: From baseline to state of the art 50

3.2.1 Improved Dense Trajectories . 50

3.2.2 Bag of tricks for Bag-of-Words 51

3.2.3 Data Augmentation by Feature Stacking (DAFS) 52

3.3 Hybrid architectures for action recognition 53

3.3.1 System architecture . 53

3.3.2 Learning . 53

3.4 Experiments . 56

3.4.1 Datasets . 56

3.4.2 Study of trajectory baselines for action recognition 56

3.4.3 Analysis of hybrid models . 58

3.4.4 Transferability of hybrid models 62

x

Contents

3.4.5 Comparison to the state of the art 65

3.4.6 Detailed failure and success cases per dataset 68

3.5 Summary of the chapter . 73

4 Procedural Human Action Videos Dataset 75

4.1 Introduction . 75

4.2 Virtual scene and action elements . 79

4.2.1 Action scene composition . 79

4.2.2 Camera . 81

4.2.3 Actions . 82

4.2.4 Physically plausible motion variations 83

4.3 Interpretable parametric generative model 86

4.3.1 Overview . 86

4.3.2 Variables . 88

4.3.3 Model . 89

4.3.4 Distributions . 89

4.4 Generating a synthetic action dataset 96

4.4.1 Statistics . 97

4.4.2 Data modalities . 97

4.4.3 Example frames . 105

4.5 Summary of the chapter . 111

5 Learning more about the real world with synthetic action videos 113

5.1 Introduction . 113

xi

Contents

5.2 Cool Temporal Segment Networks . 116

5.2.1 Temporal Segment Networks . 117

5.2.2 Multi-task learning in a Cool World 117

5.3 Cool Human Parsing Temporal Segment Networks 118

5.3.1 Human Parsing Temporal Segment Networks 119

5.3.2 Multi-modality learning in a Cool World 123

5.4 Experiments . 125

5.4.1 Temporal Segment Networks . 126

5.4.2 Cool Temporal Segment Networks 126

5.4.3 Human Parsing Temporal Segment Networks 130

5.4.4 Cool Human Parsing Temporal Segment Networks 132

5.4.5 Comparison to the state of the art 134

5.5 Summary of the chapter . 137

6 Conclusions and future work 139

6.1 Conclusions . 139

6.2 Comparison to the state of the art . 141

6.3 Future work . 143

6.4 Patents . 144

6.5 Scientific articles . 144

6.5.1 International conferences . 144

6.5.2 Workshops and events . 144

6.6 Contributed datasets . 144

6.7 Challenges . 145

xii

Contents

6.8 Scientific dissemination . 145

6.8.1 Demonstrations . 145

6.8.2 Talks . 145

A ActivityNet Challenge 2016 147

A.1 Challenge . 148

A.2 Submission . 148

A.3 Results . 149

A.4 Pipeline . 149

Bibliography 176

xiii

List of Figures

2.1 Histograms showing the frame count distribution for common action
recognition datasets. ActivityNet contains videos with the largest
number of frames, but also the largest variance (cf. Table 2.3 for the
actual numbers). 11

2.2 Example frames from multiple action recognition datasets. The ac-
tions for each dataset from top to bottom are: Bench press, Fencing,
Run, Platform diving, High-five, Playing violin. As Hollywood2 and
ActivityNet contain the longest videos (cf. Table 2.3), they also con-
tain the most complex action clips involving multiple actions per clip,
multiple camera angles, and multiple camera shots. 12

2.3 Example images from the PASCAL VOC 2010 dataset and their pixel-
level annotations. Left: original image. Middle: class-level pixel-wise
annotations. Right: instance-level pixel-wise annotations. 14

2.4 Example images from the PASCAL VOC 2010 dataset with part anno-
tations from PASCAL-Part. 15

2.5 Comparison between different methods to extract pixel trajectories
from video, showing the dense trajectories approach of Wang et al. at
the bottom. Image adapted from [204]. 18

2.6 Schematic representation of a local features pipeline for action recog-
nition. Different stages of the pipeline are separated by the tallest
vertical lines, with stage titles shown at the top. Different choices
within each stage are represented by numbered blocks, and oppor-
tunity windows for channel division (D), feature stacking (S), and
channel fusion (F, E, R, K, C) are shown in the bottom. The notation
and numbering system are explained in Section 2.2.1. 19

xv

List of Figures

2.7 The dense trajectories approach consists in registering pixel trajecto-
ries in optical flow fields, then extracting descriptors from the volume
that forms around those trajectories. First, points are uniformly se-
lected in dense grids from multiple spatial scales (left). Then, points
are tracked in each spatial scale separately, reconstructing their trajec-
tory (middle). Finally, local descriptors are extracted from regions of
the video around each of these trajectories. Image adapted from [202]. 20

2.8 An illustration for the burstiness effect, the increased likelihood that
similar features occur more frequently within a same image. These
visual features may dominate the final representation generated for
the image, reducing the visibility of less common, but still present,
visual features. Image reproduced from [82]. 23

2.9 Illustration of the information captured by the HOG, HOF, and MBH
descriptors, as reproduced from [202]. As can be seen, the MBH
descriptor is composed of two main components, horizontal and ver-
tical, which are computed separately. While those descriptors have
been merged together in the first publication about dense trajecto-
ries [201], it was later discovered that splitting those components
in their own descriptor channels [202] could give a slight edge on
performance (cf. differences between Equation 2.4 and 2.5 in Table 2.5). 27

2.10 Multiple versions of the same video considering different frame-skips. 31

2.11 The TDD pipeline. Image reproduced from [207]. 32

2.12 The 3D CNN architecture for action recognition, reproduced from
[85]. The first layer in this architecture is hardwired to produce feature
maps that correspond to a grayscale transformation of the frames,
their horizontal and vertical image gradients, and horizontal and
vertical components of their optical flow fields. 34

2.13 Two stream Network architecture for action recognition, reproduced
from [170]. This architecture is composed of two networks: one that
process individual RGB frames and therefore operates in the spatial
domain (Spatial stream ConvNet, top); and one that process a fixed-
size stack of sequential optical flow frames (Temporal stream, bottom).
These two networks are learned separately during the learning phase,
and their classification scores are averaged during the evaluation phase. 36

xvi

List of Figures

2.14 Temporal Segment Networks architecture for action recognition, re-
produced from [208]. Just as Simonyan et al. ’s Two Stream Networks,
this architecture employs two separate networks that operate in paral-
lel for RGB and optical flow streams. However, those networks learn
from multiple video segments at the same time. The figure exemplifies
their working for the case of k = 3 video segments. 37

2.15 Synthetic images from the SINTEL dataset and their respective pixel-
perfect, ground-truth optical flow. Images adapted from [20]. 38

2.16 A synthetic image frame from the Monkaa short video clip (top left)
and its respective ground-truth in multiple modalities: optical flow
(top right), disparity map (bottom left), and disparity change (bottom
right). Images adapted from [117]. 39

2.17 The virtual world of SYNTHIA. Images adapted from [158]. 39

2.18 Synthetic images from the SYNTHIA dataset, adapted from [158]. . . 40

2.19 Synthetic images from the Virtual KITTI dataset, adapted from [57]. . 41

2.20 Example frames from Matikainen et al. ’s synthetic data, adapted from
[116]. While the armature is abstract in appearance, its movement is
derived from MOCAP data. 42

2.21 A depiction of the VGAN architecture for unsupervised video genera-
tion, adapted from [198]. The architecture is divided in two streams:
one focused on generating static background scenes, and another
which focus on moving foreground elements. The input of both
streams is a 100-dimensional vector comprised of Gaussian noise. . . 43

2.22 Examples of synthetic video frames generated by VGAN, adapted from
[198]. The red arrows highlight examples of generated motions. . . . 44

3.1 Our hybrid unsupervised and supervised deep multi-layer architecture. 49

xvii

List of Figures

3.2 Parallel Coordinates plots showing the impact of multiple parame-
ters on our hybrid architectures with unsupervised dimensionality
reduction for each dataset. Each line represents one combination
of parameters and colour indicates performance. Depth 2 correlates
with high-performing architectures, whereas a small width and a large
depth is suboptimal. The combined plot (f) has been generated by
normalizing the performance in each dataset to the [0-100] interval
and stacking the architectures tuples together (cf. explanatory text in
Section 3.4.3). 59

3.3 Average Precision-Recall curves. Dashed line presents curves for our
best FV-SVM baseline, and full lines presents curves for our best hy-
brid model. 66

3.4 Top-25 most confused classes for UCF-101. 68

3.5 Top-25 most confused classes for HMDB-51. 69

3.6 Quantized precision and recall segmented per class for the Holly-
wood2 dataset, comparing class-specific precision between our base-
line model (S) and the best hybrid model (H) at different recall rates. 70

3.7 Confusion matrices for Olympic Sports. 71

3.8 Quantized precision-recall segmented per class for Olympics. 71

3.9 Confusion matrices for the first cross-validation split of High-Five. . . 72

3.10 Quantized precision-recall segmented per class for High-Five split 1. 73

4.1 Procedurally generated human action videos. Depicted actions, from
the top left: push, kick ball, car hit, walking hug. Top are based on vari-
ations of existent MOCAP sequences for these actions. Bottom have
been programatically defined, with the final movement sequences
being created on-the-fly through ragdoll physics and simulating the
effect of physical interactions. 77

4.2 Orthographic view of different world regions during day and night.
Time of the day affects lighting and shadows of the world, with urban
lights activating at dusk and deactivating at dawn. 78

xviii

List of Figures

4.3 World location shared between PHAV and Virtual KITTI [57], as seen
from within the Unity® Pro editor. Image courtesy of Yohann Cabon. 79

4.4 Schematic representation of our Kite camera. 80

4.5 In-editor representation of the Kite camera. The camera is a physical
object capable of interacting with other objects in the world, which
avoids trespassing walls or filming from unfeasible locations. The
camera focuses on a point (contact point between orange and blue
cords) which is simultaneously attached to the protagonist and to the
camera. 81

4.6 One of our approaches for creating new animation sequences from a
motion data source. We decompose existing action sequences (left)
into atomic motions (middle) and then recombine them into new
animation sequences using procedural animation techniques, like
blending and ragdoll physics. This technique can be used to both
generate new motion variations for an existing action category, and
to synthesize new motion sequences for entirely synthetic categories
which do not exist in the data source using simple programmable
rules e.g., by tying the ragdoll hands together (right). The physics
engine enforces that the performed ragdoll manipulations result in
physically plausible animations. 82

4.7 Ragdoll configuration with 15 muscles. 84

4.8 A simplified view of the graphical model for our generator (cf. Section
4.3.2 for the meaning of each variable). A complete and more detailed
version is shown in Figure 4.9. 87

4.9 Our complete probabilistic graphical model, divided in three parts. . 90

4.10 Example of indoor (top) and outdoor (bottom) locations. 94

4.11 Example generation failure cases. First row: too strong perturbations
(tiny model, brushing hair looks like dancing). Second row: limitation
in the physics engine together with ragdoll system and MOCAP action
can lead to physics violations (passing through a wall). Third row:
problems in the automatic configuration of the ragdoll model can
result in overconstrained joints and unintended variations. 95

4.12 Comparison between raw (left) vs. post-processed (right) RGB frames. 96

xix

List of Figures

4.13 Plot of the number of videos generated for each category in PHAV. . . 98

4.14 Plot of the number of videos per parameter value in PHAV. 99

4.15 Example frames and data modalities for a synthetic action (car hit, left)
and MOCAP-based action (sit, right). From top to bottom: Rendered
RGB Frames, Semantic Segmentation, Instance Segmentation. 101

4.16 Example frames and data modalities for a synthetic action (car hit,
left) and MOCAP-based action (sit, right). From top to bottom: Depth
Map, Horizontal Optical Flow, and Vertical Optical Flow. Depth image
brightness has been adjusted in this figure to ensure visibility on paper.102

4.17 Semantic segmentation ground-truth for human bodies in PHAV. In
order to make our approach scalable, body segments are determined
automatically for every model through a series of line and distance
tests with models in a standardized key position. The spatial resolu-
tion of the segments are determined by the resolution of their meshes. 103

4.18 Legend for synthetic action video variations to be used in the frames
contained in this section (cf. Figures 4.19, 4.20, 4.21, 4.22, and 4.22). . 105

4.19 Changing environments. Top: kick ball, bottom: synthetic car hit. . . 106

4.20 Changing phases of the day. Top: run, bottom: golf. 107

4.21 Changing weather. Top: walk, bottom: kick ball. 108

4.22 Changing motion variations. Top: kick ball, bottom: synthetic car hit. 109

4.23 Changing human models. Top: walk, bottom: golf. 110

5.1 Our "Cool-TSN" deep multi-task learning architecture for end-to-end
action recognition in videos. 116

5.2 Our full architecture for human action recognition in videos. The
third stream can be trained end-to-end from multiple datasets, even
when semantic segmentation ground-truth is available for only some
of them. 119

xx

List of Figures

5.3 Example images from PASCAL-VOC and their associated body ground-
truth using the pixel class labels in Table 5.1. For example images from
PHAV, cf. Figure 4.15. 122

5.4 Impact of using subsets of the real world training videos (split 1),
with PHAV (Cool-TSN) or without (TSN). Mean Accuracy (mAcc) for
RGB+Flow models. 128

5.5 TSN and Cool-TSN results for different amounts of real-world training
data, for each separate stream, and for each dataset. 129

xxi

List of Tables

2.1 Statistics for action recognition datasets according to their organization. 10

2.2 Statistics for action recognition datasets according to their contents. 10

2.3 Number of frames for popular action recognition and image datasets. 10

2.4 Categorization of related recent action recognition methods. 15

2.5 Performance of action recognition pipelines analyzed in Section 2.2.2. 26

3.1 Analysis of iDT baselines and several improvements. 58

3.2 Top-5 best performing hybrid architectures with consistent improve-
ments across multiple datasets. 60

3.3 Supervised dimensionality reduction hybrid architecture evaluation. 62

3.4 Transferability experiments from a dataset of short action clips (UCF-
101) involving unsupervised dimensionality reduction 63

3.5 Transferability experiments from a dataset of long untrimmed videos
(ActivityNet) involving unsupervised dimensionality reduction 63

3.6 Transferability experiments from a dataset of short action clips (UCF-
101) involving supervised dimensionality reduction. 64

3.7 Transferability experiments from a dataset of long untrimmed videos
(ActivityNet) involving supervised dimensionality reduction. 64

3.8 Comparison against the state of the art* in action recognition. 65

3.9 Top-5 most confused classes for our best FV-SVM and Hybrid models 67

xxiii

List of Tables

4.1 Actions categories included in our PHAV dataset. 83

4.2 Overview of key random variables of our parametric generative model
of human action videos (cf. Section 4.3.2 for a more detailed list). . . 86

4.3 Statistics of the generated dataset instance. 97

4.4 Pixel-wise object-level classes in PHAV. 104

5.1 Human body part classes used in our experiments. 121

5.2 Performance comparison for three target datasets. We show results
for the original TSN, our reproduced results, and our two proposed
methods for leveraging the extra training data from PHAV. 127

5.3 TSN and Cool-TSN with different fractions of real-world training data. 127

5.4 Color encoding strategies for initializing the human parsing stream. . 130

5.5 Classification accuracy for different color encodings. 131

5.6 Cool-HPTSN results for HMDB-51 and UCF-101. 133

5.7 Cool-HPTSN results when merging with RGB and Flow streams. . . . 134

5.8 Comparison against the state of the art* in action recognition. 135

5.9 Example frames from HMDB-51 with puppet annotations from J-
HMDB. 136

6.1 Comparison against the state of the art in action recognition. 142

A.1 Performance of different iDT pipelines for ActivityNet’s validation set. 150

xxiv

Acronyms

2SN Two-Stream Networks

BN Batch Normalization

BoW Bag-of-Words

C3D Convolutional 3D Network

CIFAR Canadian Institute for Advanced Research

CNN Convolutional Neural Network

DAFS Data Augmentation by Feature Stacking

DN Double Normalization

DNN Deep Neural Network

DO Drop-Out

DT Dense Trajectories

EM Expectation Maximization

FPS Frames Per Second

FV Fisher Vector

GMM Gaussian Mixture Model

GRU Gated Recurrent Unit

HMDB Human Motion Data Base

HOF Histogram of Optical Flow

HOG Histogram of Oriented Gradients

xxv

List of Tables

HPTSN Human Parsing Temporal Segment Network

iDT Improved Dense Trajectories

I3D Inflated 3D Convolutional Networks

i.i.d Independent and Identically Distributed

ILSVRC ImageNet Large-Scale Visual Recognition Challenge

ISCC-NBS Inter-Society Color Council – National Bureau of Standards

JHMDB Join-annotated Human Motion Data Base

KLT Kanade–Lucas–Tomasi

LSTM Long Short Term Memory

LRCN Long-term Recurrent Convolutional Network

mAcc mean Accuracy

mAP mean Average Precision

MAP Maximum A Posteriori

MBH Motion Boundary Histograms

MBHx Motion Boundary Histogram (along the x-axis)

MBHy Motion Boundary Histogram (along the y-axis)

MIFS Multi-skIp Feature Stacking

ML Maximum Likelihood

OF Optical Flow

PC Parallel Coordinates

PCA Principal Component Analysis

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SA Soft-Assignment

xxvi

List of Tables

SFV Spatial Fisher Vector

SIFT Scale-Invariant Feature Transform

STP Spatio-Temporal Pyramids

SURF Speeded-Up Robust Features

TDD Trajectory-pooled Deep-convolutional Descriptors

TREC Text REtrieval Conference

TRECVID TREC Video Retrieval Evaluation

TSN Temporal Segment Networks

TVHI TV Human Interactions

TV-L1 Total Variation-L1

SVM Support Vector Machine

UCF University of Central Florida

VGAN Video Generative Adversarial Networks

VLAD Vector of Linearly Agregated Descriptors

VOC Visual Object Classes

VQ Vector Quantization

xxvii

1 Introduction

In order to carry a positive action we
must develop here a positive vision.

Dalai Lama

UNDERSTANDING HUMAN BEHAVIOR IN VIDEOS remains a key problem in computer
vision. Not only solving, but also moving towards solving this problem brings ad-
vances in diverse fields, from human computer interaction to security surveillance,
passing through home care, autonomous driving, robotics, and even shopping.
In a time where ubiquitous computing is becoming the norm, lowering the inter-
action barrier between humans and computers by having machines understand
and possibly respond to our actions has not only the potential to revolutionize the
way humans interact with technology, but to also change our expectations towards
what computers should provide us – in the same way touch interfaces may one day
become more natural than flipping pages of a book [79].

For a practical definition, human action recognition in videos can be described
as a sub-task of video classification. Whereas in video classification the objective
may be to classify a single video into one or more possible class labels, in human
action recognition the goal is simpler: each video to be classified should contain
at least one person, and this person should be performing at least one action
(e.g., riding a bycicle). There are, however, no limitations on the level of granularity
expected from the action to be recognized. Actions are hierarchical in nature, and
can often be described as combinations of simpler, atomic motions of specific body
parts (e.g., raising the left leg, then moving the leg forward) [53, 55, 56, 154].

Methods for video classification therefore need to capture information about
both appearance and motion. Achieving accurate representations for both require
either carefully handcrafting features with prior knowledge (e.g., the dense trajecto-
ries approach of [202]) or end-to-end deep learning of high capacity models from a
large amount of labeled data (e.g., the two-stream architectures of [22, 170, 208]).

1

Chapter 1. Introduction

1.1 Context

Even though at the current date of writing the state of the art in action recognition
has now shifted towards deep learning, for a long period of time while deep neural
networks had already conquered the landscape in image recognition, the most
succesfull approaches in action recognition and video classification in general
were still based on handcrafted features using relatively simple shallow classifiers
[43, 51, 101, 140, 201, 202, 203, 204, 205].

At the time, there was no clear indication on why deep neural networks for
video were not performing as well as their counterparts for image classification.
The dominance of methods based on handcrafted features and the constant confir-
mation that features learned by neural networks were in fact orthogonal to them
[49, 91, 187, 207] did not help clarify whether a radically new approach was needed,
or whether the problem could have been tackled with existing deep architectures
by just gathering enough additional training data. It was evident, however, that the
video datasets at the time contained much less samples than their image counter-
parts, and would need to be expanded before better conclusions could be drawn.

Still, the first remarkable effort in gathering a seemingly large enough dataset
from which weights could be learned from scratch by deep learning (e.g., [91]) re-
vealed a complete new set of problems associated with gathering, maintaining and
distributing such large amounts of videos. It was soon discovered that distributing
videos through a video sharing platform (e.g., YouTube) [73, 91, 92] would eventually
lead to the loss of many of those videos due to copyright violations, privacy requests,
censorship, regional filters, and simply from users pulling out videos from the plat-
form. Besides, the problem of having to download, store and process terabytes of
data – not to mention also be able to learn deep neural networks from them – also
meant that many researchers would have been excluded from the field in case they
did not have the right hardware and infra-structure at their disposal.

The aforementioned issues notwithstanding, the classification accuracy for
the first networks trained on those large datasets could hardly surpass existing
handcrafted methods of the time (in fact, it had been shown later, including by
works that originated from the research in this thesis [43], that methods based on
handcrafted features could perform significantly better than deep methods that
had been pre-trained on millions of samples [91, 176, 187, 221]). This was a strong
indication that there was something to be learned from handcrafted features even
though deep learning approaches were more promising given their success in so
many other areas. And at the same time, it also served as a reminder that having
datasets with millions of samples could also not be enough for learning deep neural
networks from scratch successfully – it might have been necessary to move further.

2

1.2. Objectives and scope

1.2 Objectives and scope

Given the issues raised in the previous section, the objective of this research is
to explore and develop new approaches for creating state-of-the-art computer
vision models for action recognition that can learn from a limited number of real
training samples. The aim is to reduce the dependency on large manually annotated
collections of data, helping the research in action recognition become more feasible
for those with limited computing resources, or for those with limited personnel for
collecting and annotating data for new action recognition tasks.

Given the success of handcrafted models and the observable complementar-
ity between their features and deep-learned features, one of our objectives is to
investigate whether it would be possible to keep the best of both worlds and still
design an architecture that can be deep, data-efficient and state of-the-art at the
same time. Yet, foreseeing that deep learning methods would eventually overtake
the field, another objective was to determine whether it should have been possible
to move further from the traditional workflow of having to download, store and
handle large collections of data when training models for video – and to determine
which novel architectures would have been necessary to make this move possible.
Thus said, the main research questions pursued in this thesis therefore are:

• Would a hybrid architecture, unifying handcrafted features and deep neural
networks perform better against pure deep learning when there is less data,
even when those pure deep learning methods had been pre-trained on large
collections of images or videos beforehand?

• Would it be possible to avoid having to collect and annotate – or even down-
load and store – large collections of videos in order to train deep learning
systems by instead crafting a system that could generate fully annotated
synthetic human action videos on-the-fly?

• Would those synthetically generated videos be effective in helping learn deep
neural networks since these models need much more data to be trained?

The above questions aside, at the same time we will be limiting the scope of this
thesis to keep the research feasible. In particular, in this work we will be focusing
exclusively on visual features, meaning audio features will not be addressed in the
main course of the dissertation. However, the use of audio clues has been shown to
be beneficial in multiple works [131, 132, 151, 213] and one should therefore expect
that the results presented in this thesis could be enhanced when incorporating
audio features (an example on how audio features could be combined with models
presented in this thesis can be seen in appendix A).

3

Chapter 1. Introduction

1.3 Contributions

The main contribution of this thesis shall be the investigation of the different ways
to achieve data-efficient models for human action recognition. Most specifically, in
this work we contribute with:

• Methods for significantly boosting the accuracy performance of previous
state-of-the-art models based on handcrafted features, which even with a
simple SVM classifier are already on par with the state of the art. We provide
experimental evidence that showing sympathy for the details (e.g., spatiotem-
poral structure, normalization) and doing data augmentation by feature stack-
ing (instead of duplicating training samples) are effective techniques for
enhancing the performance of those methods. We demonstrate that the opti-
mal design decisions we present are general, measuring their impact across
multiple datasets with unique characteristics (Section 3.2).

• A data efficient hybrid architecture that combines unsupervised representa-
tion layers with a deep network of multiple fully connected layers. We show
that supervised mid-to-end learning of a dimensionality reduction layer to-
gether with non-linear classification layers yields an excellent compromise
between recognition accuracy, model complexity, and transferability of model
parameters across datasets thanks to a reduced risk of training data overfitting
and to modern optimization techniques (Section 3.3).

• A parametric generative model of human action videos relying on physics sim-
ulations, scene composition rules, and procedural animation techniques like
ragdoll physics that provide a much stronger prior than just viewing videos
as tensors or sequences of frames (e.g., as in [198]). We show how to proce-
durally generate physically plausible variations of different types of action
categories originally based on MOCAP datasets through animation blending,
physics-based navigation, or entirely from scratch using programmatically
defined behaviors. We demonstrate an approach to obtain naturalistic actor-
centric randomized camera paths to film the generated actions, with care for
physical interactions of the camera. Furthermore, our manually designed
generative model has interpretable parameters that allow to either randomly
sample or precisely control discrete and continuous scene (weather, lighting,
environment, time of day, etc), actor, and action variations to generate large
amounts of diverse, physically plausible human action videos (Section 4.3).

4

1.4. Outline

• A quantitative experimental validation for our generative model using a mod-
ern and accessible game engine (Unity®Pro), demonstrating it can be used to
synthesize a labeled dataset of 39,982 videos, with more than 1,000 examples
for each of 35 action categories: 21 grounded in MOCAP data, and 14 entirely
synthetic ones defined procedurally (Sections 4.4), which we then proceed to
use to improve the state of the art in action recognition (Chapter 5).

• A new dataset for human action recognition originating from our quantitative
experimental validation, called PHAV for “Procedural Human Action Videos”.
Our dataset is publicly available for download, and provides five ground-truth
modalities which can be explored to train and improve models not only for
action recognition but also semantic segmentation, optical flow, and depth
estimation (Section 4.4).

• Two new deep learning architectures that are able to learn from both synthetic
and real-world training samples at the same time, even if their action cate-
gories differ (Section 5.2), and even if certain ground-truth modalities are
available only for the synthetic domain (Section 5.3).

1.4 Outline

This PhD thesis is organized in 6 chapters and one appendix. After this introduction,
in Chapter 2 we present works in human action recognition as well as other literature
related to the topics addressed in this thesis. In Chapter 3, we analyze the different
models presented in the related works to build a strong baseline model. While this
model could already rival other state-of-the-art models due to a careful application
of good practices and engineering during its design, we go further and present a
novel model for action recognition based on a hybrid shallow-deep architecture
which could attain state-of-the-art performance in multiple datasets using less data
than pure deep-learning approaches. In Chapter 4 we begin to explore a different
way to achieve data-efficiency, now based on data generation. We demonstrate
how it is possible to leverage a game engine and computer graphics to create a
human action video generator that can be used to create a virtually infinite amount
of strongly supervised data for training deep neural networks for action recognition
and other tasks. In Chapter 5 we then explore different approaches for using this
synthetic data to finally train those networks, presenting novel deep architectures
that can learn from synthetic and real-world data at the same time while leveraging
the different modalities offered by our virtual dataset. Finally, in Chapter 6 we
present our conclusions along with a summary of scientific contributions, articles
and discussion for future works that can originate from this thesis.

5

2 Human action recognition in videos

The improvement of understanding
is for two ends: first, our own increase
of knowledge; secondly, to enable us
to deliver that knowledge to others.

John Locke

In this chapter we present relevant works in the literature that are related to this
thesis. After a brief introduction, we present an overview of related datasets for
action recognition. Afterwards, we present an aggregated overview of various meth-
ods according to whether they are based on handcrafted features, deep features,
shallow classifiers, and deep classifiers. We then identify the most prominent works
in the handcrafted and deep-learning camps, performing a detailed analysis and
comparison of their characteristics and design choices. This analysis will later be
used to motivate and derive our strong baseline for action recognition in Section
3.2, our new hybrid architecture in Section 3.3 and in the design of our multi-task
architectures in Sections 5.2 and 5.3.

2.1 Introduction

ONE OF THE EARLIEST WORKS in action recognition is [188], in which the authors
devised a dynamic scene model aiming to understand a line-drawn, simple cartoon
movie1. While being severely limited by the technology existent at their time, their
system could correctly identify the main humanoid actor in the movie, find elements
of the surrounding environment, identify motions, and infer the actions being
performed. Part of their approach was based on the extraction of image feature

1Interestingly enough, this work was also one of the firsts showing the use of synthetic data for
exploring action recognition. We will be revisiting the topic of synthetic data later in this chapter in
Section 2.4 and also in Chapters 4 and 5.

7

Chapter 2. Human action recognition in videos

points from consecutive video frames, an approach that would continue being
prevalent for a long time in the literature. However, their recognition system was
based on fixed ad-hoc rules, with no machine or statistical learning involved.

Current methods for action recognition are largely based on the automatic
learning of parametrized models from collections of videos using machine learning
techniques (cf. [199] for a recent survey). These collections, or datasets for action
recognition, can be represented as a set of n tuples X = {(

xi , yi
)}n

i=1, where xi

usually denotes a video volume in R3, and yi ∈Ω its associated action label, where
Ω denotes the space of all possible labels a single video can have. The goal of an
action recognition system is then to estimate a classification function on the form
F (x) :R3 →Ω using the dataset X.

In the next sections we will see datasets that can be used for this purpose and
explore different action recognition systems that can be trained in this way.

2.1.1 Datasets for action and related tasks

The number of action recognition datasets has been growing steadily in recent years,
with at least one new dataset being introduced every year since 2005 (cf. recent
surveys in [5, 26, 71]).

These datasets can vary widely in a number of characteristics. Not only do they
differ in the number of action categories and videos they contain (cf. Table 2.1), but
also in the average length of their clips and their resolution (cf. Table 2.2), whether
videos are trimmed (i.e. they are short clips containing only the action of interest)
or untrimmed (i.e. actions can happen anywhere in a long video not necessarily
focused in the action), whether they are multi-class (i.e. a video can belong only
to a single class) or multi-label (i.e. a clip can belong to multiple classes at the
same time), and in the different data modalities and ground-truth annotations
they provide. Each dataset is normally also associated with a particular evaluation
protocol that needs to be followed when reporting results in the literature to ensure
performance numbers are always comparable across different works.

Below we show a list of the datasets used throughout this dissertation, along
with their main characteristics and their associated evaluation protocols:

• The UCF-101 [173] dataset contains 13,320 video clips distributed over 101
distinct classes. This is the same dataset used in the THUMOS’13 challenge
[88]. The performance in this dataset is measured as the average accuracy
(mAcc) over three fixed train/test splits.

• The HMDB-51 [99] dataset contains 6,766 videos distributed over 51 distinct
action categories. Each class in this dataset contains at least 100 videos, with
high intra-class variability. As is the case for UCF-101, the evaluation protocol

8

2.1. Introduction

to be followed is again the mAcc over three fixed train/test splits [99] provided
by the dataset authors.

• The JHMDB [84] dataset is a subset of the HMDB-51 dataset in which human
joints have been manually annotated using a puppet model. This dataset con-
tains 928 video clips from HMDB-51 divided into 21 classes. The evaluation
protocol is the same as HMDB-51, using the same data splits.

• The Hollywood2 [114] dataset contains 1,707 videos extracted from 69 Holly-
wood movies, distributed over 12 overlapping action classes. This is a multi-
label dataset where one video can have multiple class labels (e.g., HandShake
and HugPerson). Results are reported using the mean average precision (mAP)
using a fixed train-test split also provided by the dataset authors.

• The Olympic Sports [129] dataset contains 783 videos of athletes performing
16 different sport actions, with 50 sequences per class. Some actions include
interactions with objects, such as Throwing, Bowling, and Weightlifting. The
most common evaluation metric for this dataset is the mAP over the train/test
splits released together with this dataset. However, some works have also
reported the mAcc instead of the mAP in the literature (e.g., [18, 186]) and
it may be necessary to report both metrics in order to keep results always
comparable (e.g., [56, 110]).

• The High-Five (a.k.a. TV Human Interactions, or TVHI) [138] dataset con-
tains 300 videos from 23 different TV shows distributed over four different
human interactions and a negative (no-interaction) class. The most common
evaluation metric for this dataset [56, 137, 138, 203] is the mAP for the posi-
tive classes (mAP+) through 2-fold cross-validation using the train/test splits
provided by the dataset authors.

• The ActivityNet [73] dataset (release 1.3) contains 19,994 untrimmed videos
distributed over 200 activity classes. It contains at least 100 videos per ac-
tion category, with an average of 1.54 activity instances per video. Since the
testing classes are withheld for the challenge purposes, the common evalu-
ation protocol to compare against other works in the literature is the mAP
for the validation set of this dataset. The videos contained in this dataset
are untrimmed, presenting the longest clip durations among all datasets
considered in this thesis.

A summary of the main characteristics of the above datasets is shown in Tables
2.1, 2.2, and 2.2. A comparison of the average length of the video clips contained in
each dataset is shown in Figure 2.1, and example frames are shown in Figure 2.2.

9

Chapter 2. Human action recognition in videos

Table 2.1 – Statistics for action recognition datasets according to their organization.

Number of videos (with aggregate statistics for a single split)

Training set Validation set Test set

Dataset Classes Total Total Per class (s.d.) Range Total Per class (s.d.) Range Total

UCF-101 101 13,320 9,537 94.42 (13.38) 72-121 3,783 37.45 (5.71) 28-49 -
HMDB-51 51 6,766 3,570 70.00 (0.00) 70-70 1,530 30.00 (0.00) 30-30 -
JHMDB 21 929 660 31.42 (4.71) 25-39 268 12.76 (1.74) 11-16 -
Hollywood2 12 1,707 901 75.08 (36.74) 24-135 972 81.00 (36.77) 33-146 -
High-Five 5 (4+1)* 300 150 30.00 (10.00) 25-50 150 30.00 (10.00) 25-50 -
Olympic Sports 16 783 649 40.56 (11.02) 17-56 134 8.37 (2.12) 4-11 -
ActivityNet (1.3) 200 19,746† 9,902 49.51 (10.16) 28-87 4,856 24.28 (5.75) 9-42 4,988

Averages are per class considering only the first split of each dataset (when applicable). *High-Five contains four
action classes and one non-action class. †Videos that could be downloaded from southeastern France in April
2016.

Table 2.2 – Statistics for action recognition datasets according to their contents.

Width Height Frames per second

Dataset Mean (s.d.) Range Mean (s.d.) Range Mean (s.d.) Range

UCF-101 240.99 (0.24) 320-400 320.02 (1.38) 226-240 25.90 (1.94) 25.00-29.97
HMDB-51 366.81 (77.61) 176-592 240.00 (0.00) 240-240 30.00 (0.00) 30.00-30.00
JHMDB 320.00 (0.00) 320-320 240.00 (0.00) 240-240 30.00 (0.00) 30.00-30.00
Hollywood2 609.24 (65.30) 480-720 338.31 (77.89) 224-576 24.75 (1.10) 23.98-29.97
High-Five 607.36 (47.75) 400-720 356.37 (29.72) 288-576 24.10 (0.33) 23.98-25.00
Olympic Sports 509.38 (177.07) 192-1280 361.70 (99.35) 144-720 - -
ActivityNet (1.3) 845.28 (405.76) 128-1,280 516.44 (197.66) 96-720 27.68 (4.04) 6.00-30.00

Averages are among all videos in the dataset (and not per-class as in Table 2.1).

Table 2.3 – Number of frames for popular action recognition and image datasets.

Number of frames

Dataset Total Mean (s.d.) Range Year

UCF-101 2,484,199 186.50 (97.76) 29-1,776 2012 [173]
HMDB-51 639,307 94.488 (68.10) 19-1,063 2011 [99]
JHMDB 38,152 41.112 (8.84) 18-48 2013 [84]
Hollywood2 487,556 285.62 (273.53) 59-3,116 2009 [114]
High-Five 28,283 94.276 (64.04) 23-650 2010 [138]
Olympic Sports 163,902 180.18 (152.94) 24-1,184 2010 [129]
ActivityNet (1.3) 63,840,021 3,236.17 (1,940.30) 28-29,222 2015 [73]

ImageNet 14,197,122 - - 2009 [87]
PASCAL-VOC 10,103 - - 2010 [48]
PASCAL-VOC (humans) 3,589 - - 2010 [48]

Averages are among all videos in each dataset. Datasets for image-related tasks (image classification and semantic
segmentation) are shown in the bottom for comparison purposes.

10

2.1. Introduction

Figure 2.1 – Histograms showing the frame count distribution for common action
recognition datasets. ActivityNet contains videos with the largest number of frames,
but also the largest variance (cf. Table 2.3 for the actual numbers).

11

Chapter 2. Human action recognition in videos

H
M
D
B
-5
1

U
C
F-
1
0
1

H
O
LL
YW

O
O
D
2

O
LY
M
P
IC
S

H
IG
H
-F
IV
E

A
C
TI
V
IT
YN

ET

Figure 2.2 – Example frames from multiple action recognition datasets. The actions
for each dataset from top to bottom are: Bench press, Fencing, Run, Platform diving,
High-five, Playing violin. As Hollywood2 and ActivityNet contain the longest videos
(cf. Table 2.3), they also contain the most complex action clips involving multiple
actions per clip, multiple camera angles, and multiple camera shots.

Other noteworthy datasets include:

• The Sports-1M [91] dataset is a large-scale, multi-label dataset containing
1.13 million videos divided among 487 sport categories. It contains from 1000
to 3000 videos per class where approximately 5% of the videos contain more
than one action class. This dataset was among the first large datasets to be
exclusively distributed using YouTube links, and therefore one of the first
to suffer from the problem of missing videos – where links would become
unavailable over time due to region restrictions, copyright violations, user
deletions, among other reasons. The dataset would take over 1.7TB on disk.

12

2.1. Introduction

• The YouTube-8M [1] dataset contains about 7 million video URLs and 450,000
hours of video, divided among 4716 classes with an average of 3.4 labels per
video. However, the classes in this dataset are not restricted to action classes,
being therefore a general dataset for video classification. This dataset also
comes with 3.2 billion pre-computed audio-visual features that have been
extracted using deep neural networks, using Inception-v3 [184] for the image
features, and VGG-acoustic [74] for the audio features.

• The Kinetics [92] dataset is the most recent dataset introduced at the time of
writing of this thesis. This dataset contains more than 240k training videos
divided among 400 action classes, resulting in a dataset with at least 400 clips
for each class. As the two other datasets above, this dataset is also available to
download through a collection of YouTube links.

In this thesis we will refer to three additional datasets which are not particular
to action recognition, but which will be used later to provide external training data
for the models we describe in section 5. These are:

• The ImageNet [87] dataset has been the de-facto dataset for training mod-
els for image classification in the past decade. This dataset is comprised of
456,567 training images, with at least 20,121 validation images and 40,152
test images (depending on the year of the challenge) divided among at least
1,000 object categories. This dataset has been used to train image classifi-
cation models whose weights have been used to bootstrap multiple action
classification models such as [170, 207, 208].

• The Pascal-VOC [48] dataset was part of the PASCAL Visual Object Classes
(VOC) Challenge 2010. This dataset contains 10,103 images divided among
20 object classes, containing 23,374 ROI annotated objects and 4,203 segmen-
tations. This dataset can be used to train models for semantic segmentation
as it contains the pixel boundaries surrounding each object within its images
(cf. Figure 2.3).

• The PASCAL-Part [32] dataset is a set of additional part annotations for the
PASCAL VOC 2010 challenge [48]. This dataset contains 19,740 images with
193 extra part annotations divided among the 20 object classes of the original
challenge, including human body parts (cf. Figure 2.4).

A comparison between these datasets and the aforementioned action recogni-
tion datasets is shown in Table 2.3.

13

Chapter 2. Human action recognition in videos

Figure 2.3 – Example images from the PASCAL VOC 2010 dataset and their pixel-
level annotations. Left: original image. Middle: class-level pixel-wise annotations.
Right: instance-level pixel-wise annotations.

14

2.1. Introduction

Figure 2.4 – Example images from the PASCAL VOC 2010 dataset with part annota-
tions from PASCAL-Part.

2.1.2 Overview of related works in the literature

In this section we will present an overview of related works that adopt a machine
learning-based approach for action recognition, using the datasets mentioned in
the previous section for model training and evaluation. We organize these works
into four broad categories based on whether they involve handcrafted vs. deep-
based video features, and a shallow vs. deep classifier. An overview of related works
according to this organization is shown in Table 2.4.

Table 2.4 – Categorization of related recent action recognition methods.

Classifier

Features Shallow Deep

Handcrafted
[51, 56, 75, 101, 140, 201,

202, 203, 204]
[10], Chapter 3

Deep-based [187, 207, 214, 221]
[11, 22, 45, 49, 59, 85, 91,
127, 170, 176, 182, 208,

211, 213], Chapter 5

Handcrafted features, shallow classifier. A significant part of the progress on ac-
tion recognition has been driven by the development of local handcrafted spatiotem-
poral features encoded as bag-of-words representations classified by “shallow”
classifiers such as SVMs [51, 56, 75, 101, 140, 201, 202, 203, 204]. Most successful ap-
proaches use improved Dense Trajectories (iDT) [204] to aggregate local appearance
and motion descriptors into a video-level representation through the Fisher Vector
(FV) encoding [147, 150]. To create an iDT representation, local descriptors such as

15

Chapter 2. Human action recognition in videos

Histogram of Oriented Gradients (HOG) [38], Histograms of Optical Flow (HOF) [39],
and Motion Boundary Histograms (MBH) [201] are extracted along dense point tra-
jectories obtained from optical flow fields. There are several recent improvements
to iDT, for instance, using motion compensation [54, 56, 80, 203] and stacking of
FVs to obtain a multi-layer encoding similar to mid-level representations [141]. To
include global spatiotemporal location information, Wang et al. [203] compute FVs
on a Spatio-Temporal Pyramid (STP) [104] and use Spatial Fisher Vectors (SFV) [96].
Fernando et al. [51] model the global temporal evolution over the entire video
using ranking machines learned on time-varying average FVs. Another recent im-
provement is the Multi-skIp Feature Stacking (MIFS) technique [101], which stacks
features extracted at multiple frame-skips for better invariance to speed variations.
An extensive study of the different steps of this general iDT pipeline and various
feature fusion methods is provided in [140].

End-to-end learning: deep-based features, deep classifier. The seminal super-
vised deep learning approach of Krizhevsky et al. [98] has enabled impressive
performance improvements on large scale image classification benchmarks, such
as ImageNet [160], using Convolutional Neural Networks (CNN) [107]. Conse-
quently, several approaches explored deep architectures for action recognition.
While earlier works in this direction resorted to unsupervised learning of 3D spa-
tiotemporal features [106], supervised end-to-end learning has recently gained pop-
ularity [11, 22, 45, 49, 59, 85, 91, 127, 170, 176, 182, 208, 211, 213]. Karpathy et al. [91]
studied several architectures and fusion schemes to extend 2D CNNs to the time
domain. Although trained on the very large Sports-1M dataset, their 3D networks
performed only marginally better than single-frame models. To overcome the dif-
ficulty of learning spatiotemporal features jointly, Simonyan et al. ’s Two-Stream
Networks (2SN) architecture [170] is composed of two CNNs trained independently,
one for appearance modeling on RGB input, and another for temporal modeling
on stacked optical flow. This architecture was later used in Wang et al. ’s Temporal
Segment Networks (TSN) [208], and then merged with 3D convolutional networks in
Carreira et al. ’s Inflated 3D (I3D) Networks [22]. Sun et al. [182] factorize 3D CNNs
into learning 2D spatial kernels, followed by 1D temporal ones. Alternatively, other
recent works use recurrent neural networks (RNN) in conjunction with CNNs to
encode the temporal evolution of actions [11, 45, 127]. Donahue et al. ’s LRCN [45]
processes video frames through the 2SN whose outputs are fed into a stack of LSTMs.
Ng et al. [127] proposes different temporal feature-pooling architectures to com-
bine information over longer time periods. Most recently, Ballas et al. [11] makes
use of convolutional features from different layers of a pre-trained net as input to
a GRU-RNN. In a different line of work, [176] also investigated the unsupervised

16

2.2. Local feature encoding approaches

learning of video representations using LSTMs. Overall, due to the difficulty of train-
ing 3D-CNNs and the need for vast amounts of training videos (e.g., Sports-1M [91]),
end-to-end methods used to report only marginal improvements over traditional
baselines. Our experiments show that the iDT-FV often outperformed these ap-
proaches. It was only very recently that end-to-end methods had been shown to
offer better performance than other methods, thanks to the availability of even
larger amounts of training videos (e.g., Kinetics [92]). Carreira et al. have shown that
pre-training the I3D [22] architecture on the very large-scale Kinetics dataset (and
therefore on hundred thousands of extra real manually annotated training videos)
could bring large improvements over the state of the art. However, this architecture
presented either comparable (e.g., UCF-101) or worse (e.g., HMDB-51) performance
to the iDT-FV when trained directly on target datasets.

Deep-based features, shallow classifier. Several works [187, 207, 214, 221] ex-
plore the encoding of general-purpose deep-learned features in combination with
“shallow” classifiers, transferring ideas from the iDT-FV algorithm. Zha et al. [221]
combine CNN features trained on ImageNet [160] with iDT features through a
Kernel SVM. The TDD approach [207] extracts per-frame convolutional feature
maps from two-stream CNN [170] and pools these over spatiotemporal cubes along
extracted trajectories. Similar to [91], C3D [187] learns general-purpose features
using a 3D-CNN, but the final action classifier is a linear SVM. Like end-to-end deep
models, these methods rely on large datasets to learn generic useful features, which
in practice perform on par with or worse than iDT.

Hybrid architectures: handcrafted features, deep classifier. There is little work
on using unsupervised encodings of handcrafted local features in combination with
a deep classifier. In early work, Baccouche et al. [10] learn temporal dynamics of
traditional per-frame SIFT-BOW features using a RNN. The method, coupled with
camera motion features, improves on BoW-SVM for a small set of soccer videos.
In this thesis, we propose a new hybrid method and discuss its advantages and
disadvantages in Chapter 3.

2.2 Local feature encoding approaches

Methods based on the encoding and subsequent pooling of local features were
among the best performing methods for action recognition for several years [140,
141, 201, 202, 203, 204, 207], in part thanks to the steady proposal of techniques
that could be used to improve it [27, 28, 101, 140, 207]. The Dense Trajectories
(DT) approach of Wang et al. (cf. Figure 2.5) has been the most prominent example

17

Chapter 2. Human action recognition in videos

(a) Sparse trajectories using the KLT tracker

(b) Sparse trajectories using SIFT point matching

(c) Dense trajectories from optical flow

Figure 2.5 – Comparison between different methods to extract pixel trajectories
from video, showing the dense trajectories approach of Wang et al. at the bottom.
Image adapted from [204].

of these methods, figuring multiple times among the state of the art, either as a
standalone approach [101, 140, 141, 201, 202, 203, 204, 207], or in combination with
other methods [49, 91, 187], often as a requirement for claiming state-of-the-art
performance.

Given the sheer amount of related works specific to the dense trajectories and
local feature encoding approaches, in the next sections we will create a common
notation framework to refer to the most prominent works in this field and then use
it to analyze these works in detail.

2.2.1 Dense trajectories and the local feature encoding pipeline

Most works based on dense trajectories follow a common pipeline that can be
followed to map a source input video to its most likely class probabilities. The
general pipeline for action recognition based on local features could be composed
of the following stages: video preprocessing, local feature extraction, local feature
encoding, representation extraction, and classification. In turn, each of these stages
is composed of multiple steps which can be chosen and repeated at will before
arriving at the next stage.

18

2.2. Local feature encoding approaches

MBHx

HOF

HOG

MBHy

Trajectory

Kernel
mapping

Classifier Score

VLAD

ℓ2

SA-k

SA

VQ

VLAD-s

VLAD-k

FV

TDD

𝑚𝑎𝑥

𝜒2

Deep
NNs

ℓ1

ℓ2

y

ℓ1

ClassificationFeature encoding

Pooling
Encoding

preprocessing
Encoding Normalization

Intra-
Norm.

Feature
extraction

𝑎𝑣𝑔

30
𝑇 ×

96
𝑇 ×

108
𝑇 ×

96
𝑇 ×

96
𝑇 ×

ℓ1

213𝑇

𝑠𝑢𝑚 ±

ℓ2

PCA
SVM

⋅

Representation–level fusion (R)

Video preprocessing

1

2

3

0

Stab.

Frame-
skip

Video

Stab.
HD

xyt

213𝑇𝑘

426𝑘

𝑇

Input

Descriptor–level fusion (F) Score–level
fusion (C)

Kernel–level
fusion (K)

0

1

2

3

5

6

7

8
9

10

18

19

20

21

22
23

25

24 26

27

29

28

31

Feature stacking (S)

Random
Forests

30

11

12

13

14

15

16

17

Local feature extraction

Channel splitting (D)

HF

Horizontal
Flipping

Stabi-
lization

Encoding–level
fusion (E)

4

Representation extraction

Figure 2.6 – Schematic representation of a local features pipeline for action recogni-
tion. Different stages of the pipeline are separated by the tallest vertical lines, with
stage titles shown at the top. Different choices within each stage are represented
by numbered blocks, and opportunity windows for channel division (D), feature
stacking (S), and channel fusion (F, E, R, K, C) are shown in the bottom. The notation
and numbering system are explained in Section 2.2.1.

We show a schematic representation of how a local feature encoding pipeline
for dense trajectories can be organized in Figure 2.6. Possible steps within each
stage are represented by the numbered blocks. In the next paragraphs we present
an explanation for each of these blocks along with a discussion of their importance.
We refer to each specific block in the pipeline using its number or name within
parentheses.

Video preprocessing. The first stage of the pipeline receives the raw input video
and prepares it for the next stages. The end result of this stage should still be a
sequence of frames. Several video processing techniques can be applied at this stage,
including frame-skipping [101], video mirroring [51, 75], and motion stabilization
[51, 75, 101, 203, 204]. Depending on the skipping level, either all frames are kept
(0), one frame is kept every two frames (1), one frame is kept three frames (2) or one
frame is kept every four frames (3). After frame skipping, other potential operations
includes horizontal mirroring (4), motion stabilization using a human detector to
isolate the background from the human actor (5), or simpler motion stabilization
using the entire scene (6).

Local feature extraction. The goal for the second stage of the pipeline is to take
the preprocessed video from the previous stage and apply a local feature extractor
to extract a variable number of local features from it. While it is possible to extract
either dense or sparse features at this stage, dense sampling has been shown to

19

Chapter 2. Human action recognition in videos

Figure 2.7 – The dense trajectories approach consists in registering pixel trajectories
in optical flow fields, then extracting descriptors from the volume that forms around
those trajectories. First, points are uniformly selected in dense grids from multiple
spatial scales (left). Then, points are tracked in each spatial scale separately, re-
constructing their trajectory (middle). Finally, local descriptors are extracted from
regions of the video around each of these trajectories. Image adapted from [202].

be a superior alternative to sparse key-point tracking [103] in many benchmarks
[140, 201, 202, 203, 204, 206]. For this reason, we maintain our focus in the dense
features that can be extracted within the dense trajectories approach.

The dense trajectories approach consist in registering the trajectories of indi-
vidual pixels inside optical flow fields from each video, and then extracting local
descriptors from the volume that forms around these trajectories (cf. Figure 2.7). Ex-
amples of these descriptors include the sequence of pixel displacements within the
pixel trajectory (Traj), Histograms of Gradients (HOG), Histograms of Optical Flow
(HOF), Motion Boundary Histograms (MBH), the horizontal and vertical compo-
nents of MBH (MBHx and MBHy), Trajectory-pooled Dense Descriptors (TDD) and
the spatiotemporal location of the pixel that originated the trajectory (xyt). Works in
the literature differ on which local descriptors should be included or excluded from
the pipeline. For instance, [140, 203] have dropped the trajectory shape descriptors
from their pipelines, unlike [101, 201, 202, 204] who maintain it.

Apart from being included, these descriptors can also be normalized using mul-
tiple techniques. One of the most well-known is RootSIFT [3], which is comprised
by `1 normalization (8) followed by square-rooting (9). Although this technique
had been initially proposed to postprocess SIFT histograms, it has been shown to
be beneficial for other types of vector-based histogram descriptors. However, there
is again no consensus on whether this technique should always be applied. For
instance, in [140] RootSIFT is not applied at all, while in [101] it is applied even to
the Traj descriptor, even though this descriptor is not a histogram.

Besides being normalized, descriptors can also be arbitrarily transformed. One
example is Principal Component Analysis (PCA, 10), which can be used to reduce

20

2.2. Local feature encoding approaches

the number of dimensions in the descriptors [140, 150, 201, 202, 203, 204, 206] and
decorrelate their dimensions. Ensuring that encodings have covariance matrices
which are close to diagonal or unitary (e.g., through whitening [150]) can help those
vectors satisfy certain assumptions used during vocabulary creation in the next
pipeline stage.

Local feature encoding. The third stage of the pipeline takes the local features
extracted and post-processed in the previous stage and encodes then into interme-
diary feature-level representations. Local features can be encoded using a number
of techniques. Examples include Vector Quantization (VQ, 11); Soft Assignment (SA,
12), Local Soft Assignment (SA-k, 13); Fisher Vector (FV, 14); Spatial Fisher Vector
(SFV, 14); VLAD with hard-assignments (VLAD, 15); VLAD with soft assignments
(VLAD-s, 16) and VLAD with local soft assignments (VLAD-k, 17). For an in-depth
review of those techniques, see [140].

All aforementioned encoding techniques are based on the same common prin-
ciple: The creation of a common vocabulary of local features, that represents the
most common features typically present in the input videos; followed by the subse-
quent encoding of all local features based on how far the extracted local features
are from elements of this vocabulary. It is easier to understand this mechanism by
considering the simplest of these approaches: VQ.

The simplest approach for VQ consists in using the k-Means [70] algorithm2 to
cluster a subset of all local features (e.g., all HOG descriptors) that can be extracted
from all videos in a dataset. Taking only HOG descriptors as an example, this
clustering will serve as the HOG vocabulary since each of its k centroids serves as a
prototype for the most common HOG descriptors captured in the subsample (and
which may therefore reflect the most common descriptors in the entire dataset).
After vocabulary creation, it then becomes possible to encode each HOG descriptor
h ∈ H where H is the set of all HOG descriptors extracted from video V by replacing
it with a one-hot vectorφ(h) = δ{i = argmax j∈{1...k}‖h−cj‖2} where cj is the centroid
vector for the j -th cluster found in k-means.

Even though VQ may be the simplest approach for feature encoding, best re-
sults are almost always achieved using FV-based encodings [125, 140, 141, 203, 207],
obtained from Gaussian Mixture Model (GMM) clusterings, especially when incor-
porating spatiotemporal information [96, 101, 162]. There are three main ways of
exploiting location information: Spatio-Temporal Augmentation (STA) as used in
[101] (referred therein as Space-time Extended Descriptor, STED), Spatio-Temporal

2In practice, applying the plain k-Means algorithm to even a subsample of the trajectories extracted
from all videos (256,000 being a common number) can be quite computational intensive. The reader
may refer to [165] for a more efficient version of the k-means algorithm which may be more adequate to
process the large amount of features generated by iDT.

21

Chapter 2. Human action recognition in videos

Pyramids (STP) [105], and Spatial Fisher Vector (SFV) [96] (14). In the case of GMMs
constrained to have diagonal variances, it is possible to see that the Spatial-GMM
models needed for SFVs have exactly the same form as GMMs computed on STA
descriptors. Since forcing diagonal variances implies an independence assumption
between all dimensions, a global GMM using concatenated normalized coordi-
nates can be seen as the Gaussian spatial model with MoG for appearance in [96].
However, one key difference between SFV and STA is vocabulary reuse. In the SFV
approach, vocabularies do not have to be to be recomputed from scratch to include
spatiotemporal information. The authors discovered that its possible to use a fixed
spatial vocabulary shared across all visual words, such as centered at the center
coordinates of the video [96], without loss of performance. We explore the effects of
different approaches for incorporating spatiotemporal information in Section 3.2.

Representation extraction. The forth stage in the pipeline takes the variable num-
ber of local encodings produced in the previous stage and combine them into a
single, fixed-length vector that represents the entire video. One way to combine
these local encodings is by pooling. Techniques for pooling include max-pooling
(20), sum-pooling (21), and average pooling (22). After the pooling, it is still possible
to apply further normalizations such as power normalization (a.k.a signed square
root, 23), `2-normalization (24) and `1-normalization (25).

Pooling can also be done across some common characteristics between the
pooled features, e.g., the spatiotemporal region (as in STP), or the image scale (as
done in [207]). A series of normalizations can also be applied before pooling, such
as intra-normalization using `2 (18) or `1 norms (19).

Normalizations performed during this stage can be used to address the bursti-
ness effect [82]: the increased likelihood that similar features will occur more fre-
quently within a same image or image patch. Many representations assume features
within an image or video are independent and identically distributed (i.i.d). How-
ever, this is a rather unrealistic assumption [36, 82], since certain features are more
likely to be present within an image given others also are (e.g., window features
given that door features are also present). The burstiness effect further exacerbates
the violation of this assumption, as similar features often repeat within images
(cf. Figure 2.8). The presence of many repeated but similar features within a re-
gion may cause less prominent but still existent features to be eclipsed in the final
representation.

The power normalization followed by `2 normalization has been shown to be an
efficient way to dwindle this effect [82, 149]. On the other hand, intra-normalization
[4] has been claimed to be able to completely suppress it. There are advantages and
disadvantages in both normalizations: While the power normalization might not

22

2.2. Local feature encoding approaches

Figure 2.8 – An illustration for the burstiness effect, the increased likelihood that sim-
ilar features occur more frequently within a same image. These visual features may
dominate the final representation generated for the image, reducing the visibility of
less common, but still present, visual features. Image reproduced from [82].

be able to suppress the burstiness effect completely, it offers a parameter (α) that
can be used to fine-tune a model in search for better results (cf. [44] for an example
where fine-tuning α= 0.2 gives better results in image classification using VLAD).
In contrast, the intra-normalization does not have any extra parameter, which may
simplify model selection during hyper-parameter search.

Classification. After each video has been encoded as a single, fixed-size vector
representing its contents, the task of the fifth and last stage in the pipeline is to take
this vector and assign it to one or more action classes using a classifier. There are
no fundamental constraints limiting which classifier could be used at this stage. Ex-
amples for possible classifiers include Neural Networks (28), SVMs (29) or Random
Forests (31). However, due the possible high-dimensionality of the video represen-
tations originated in the previous stage, some classifiers may be more efficient than
others.

Most works in the literature have successfully used the SVM (29) for this purpose
[101, 140, 203, 204, 205, 207], with its linear kernel version being shown to be highly
appropriate for large scale multi-class and multi-label learning [146]. However, the

23

Chapter 2. Human action recognition in videos

choice of a proper kernel function may still be highly dependent on the encoding
used. For vector quantization encodings such as BoW a Chi-Square (27) type of
kernel may be more appropriate (e.g., [201, 203]), whereas for encodings that are
natural expansions of existing kernels (e.g., the FV) a linear kernel (26) may be more
appropriate [140, 203, 204]. As a sidenote, when comparing works in the literature
that do employ SVMs, it might be important to note that some works employ grid-
search to find the best hyperparameter C [203], while others use a fixed value of
C = 100 [101, 205], making their results not directly comparable.

Channel operations. Certain operations can occur during multiple stages of the
pipeline. Those operations can divide or merge descriptor channels, and can be
used to implement video-level pooling strategies commonly used in the literature.
Those include:

• Channel splitting (D): Creating separate feature channels according to some
common characteristic of the features, such as according to the x, y , and z
coordinates of the trajectory path that originated them (e.g., STP, [203]);

• Feature stacking (S): Stacking together all features extracted from variations
of the same video (e.g., [101]).

• Descriptor-level fusion (F): Concatenating together descriptor channels, such
as by concatenating PCA-transformed HOG descriptors with the x y t coordi-
nates of the trajectory path that originated them (e.g., STA, as done in [101]);

• Encoding-level fusion (E): Concatenating descriptor channels before pooling.
This is the case when using SFV: a separate encoding is generated for the
feature channel and its spatiotemporal coordinates, both of which are then
concatenated together to form a SFV encoding of the feature;

• Representation-level fusion (R): Concatenating descriptor channels to create
a single representation for the entire video. Examples include the common
feature channel concatenation happening before a linear SVM in [101, 140,
203, 204, 205, 207], and the final STP representation in [203];

• Kernel-level fusion (K): Merging together kernel matrices computed from the
feature channels (e.g., using the multi-channel approach of [222] as in [201]);

• Score-level fusion (C): Merging together scores from multiple classifiers to
boost classification results, e.g., by averaging classification scores, or by stack-
ing [212] (cf. example in Appendix A). This type of fusion is not exclusive
of local feature pipelines and can be used to merge results from different
approaches (e.g., combination of C3D and iDT probability scores in [187]).

24

2.2. Local feature encoding approaches

2.2.2 State-of-the-art pipelines

We now use the numbered blocks in Figure 2.6 to denote the processing path
followed by multiple works in the literature using a sequence of connected numbers.
For example, in order to denote a pipeline that stabilizes a video, extracts HOG
descriptors, encodes those descriptors using FV, aggregates those encodings using
average pooling, and then classifies these pooled FVs using a linear SVM we write it
as:

0−5−HOG −14−22−26−29. (2.1)

To indicate parallelism between different data paths we separate their sub-paths
by listing them within brackets. With this notation, the pipeline of [202] shown in
Figure 2.6 can be written as:

0−5−


Tr a j −9

HOG
HOF

MB H x
MB H y

−8−9−10

−14−21−23−24−R−26−29−31. (2.2)

Now that we have a new tool at our disposal to characterize and describe BoW-
based action recognition pipelines, in this section we use the notation shown in
Figure 2.6 to dissect and analyze the conclusions and conflicts between several of
the works reported in section 2. The published performance for these methods is
shown in Table 2.5.

Action recognition by dense trajectories, CVPR 2011 [201]. In the first publica-
tion on dense trajectories [201], Wang et al. applied VQ-based BoW to the Traj, HOG,
HOF, and MBH descriptors obtained from DT. These descriptors are normalized
using the `2-norm and then quantized using vocabularies of 4000 words, giving
origin to 4 descriptor channels. These channels are later fused at the kernel-level by
taking a weighted average of their χ2 Gram (distance) matrices, and then feeding
this final distance matrix into a generalized Gaussian kernel [222], as:

K (xi , x j) = exp

{
−

d∑
k=1

1

A(k)
D

(
x (k)

i , x (k)
j

)}
(2.3)

where D(x (k)
i , x (k)

j) is the χ2 distance between the descriptors at the k-th descriptor

channel of video xi and x j , A(k) is the mean value of the χ2 distances between

25

Chapter 2. Human action recognition in videos

Table 2.5 – Performance of action recognition pipelines analyzed in Section 2.2.2.

UCF-101 HMDB-51 Hollywood2 High-Five Olympics
Publication Method %mAcc (s.d.) %mAcc (s.d.) %mAP %mAP+ (s.d.) %mAP Equation

[201] DT+BoW - - 58.3 - - 2.4

[202]
DT+BoW - 46.6 58.2 - 74.1 2.5
DT+BoW+STP - 48.3 59.8 - 77.2 2.6

[204]

DT+BoW - 47.2 58.5 - 75.4 2.7
DT+FV - 52.2 60.1 - 84.7 2.8
iDT+BoW - 52.1 62.2 - 83.3 2.9
iDT+FV - 55.9 63.0 - 90.2 2.10
iDT+FV (HD) - 57.2 64.3 - 91.1 2.11

[205]
iDT+FV 84.8 - - - - 2.12
iDT+FV+STP 85.9 - - - - 2.13

[203]
DT+SFV+STP 83.5 55.9 63.6 62.5 85.8 2.14
iDT+SFV+STP 85.7 59.3 66.1 68.1 89.6 2.15
iDT+SFV+STP (HD) 86.0 60.1 66.8 69.4 90.4 2.16

[101] iDT+MIFS 89.1 65.1 68.0 - 91.4 2.17

[207]
TDD 90.3 63.2 - - - 2.18
TDD+iDT 91.5 65.9 - - - 2.19

Whenever applicable, results represent the average over all splits in each dataset.

the descriptors at the k-th descriptor channel for the training videos, and d is the
number of different descriptor channels in the pipeline. This final kernel matrix is
then used to create c binary SVMs within a one-vs-rest approach for multiple class
classification, where c is the number of classes in each target dataset. The steps to
reproduce the main pipeline from this work using the notation from Figure 2.6 are:

0−


Tr a j

HOG
HOF{

MB H x
MB H y

}
−7

−11−21−27−K−29−31. (2.4)

Dense trajectories and motion boundary descriptors for action recognition, IJCV
2013 [202]. In a subsequent publication [202], Wang et al. would expand their
initial investigation, consolidating the efficacy of their methods in action recogni-
tion. The authors have extended their experiments considering more datasets and
investigating the use of Spatio-Temporal Pyramids (STP) to increase their method’s
performance. The STP is performed by accumulating separate histograms per re-
gion of the video. All descriptor channels from all spatiotemporal regions are fused
at the kernel-level using the multi-channel approach of [222] as in their previous

26

2.2. Local feature encoding approaches

Figure 2.9 – Illustration of the information captured by the HOG, HOF, and MBH
descriptors, as reproduced from [202]. As can be seen, the MBH descriptor is
composed of two main components, horizontal and vertical, which are computed
separately. While those descriptors have been merged together in the first publi-
cation about dense trajectories [201], it was later discovered that splitting those
components in their own descriptor channels [202] could give a slight edge on
performance (cf. differences between Equation 2.4 and 2.5 in Table 2.5).

work (cf. [201] above). In this work, the authors also explicitly mention that using
separate descriptor channels for the horizontal and vertical components of the
MBH descriptor (cf. [39]) may result in a slight performance increase (cf. Figure 2.9).
The steps to reproduce the final pipeline from this work are:

0−


Tr a j

HOG
HOF

MB H x
MB H y

−7

−11−21−27−K−29−31, (2.5)

and

0−


Tr a j

HOG
HOF

MB H x
MB H y

−7

−D−11−21−27−K−29−31 (2.6)

for the version with STP.

27

Chapter 2. Human action recognition in videos

Action Recognition with Improved Trajectories, ICCV 2013 [204]. The success-
ful Dense Trajectories approach would be soon be followed by its improved version
in [204]. In this work, the authors discovered that by correcting for camera motion
it was possible to significantly enhance the recognition results of their method in
many datasets. They also show how it was possible to improve results even further
by filtering out human actors during the motion stabilization, therefore forcing
the stabilization to be based almost exclusively on the background motion. This
work is also the first to explore the use of Fisher Vectors as an alternative for the
Bag-of-Words encoding used in [201, 204] and the use of RootSIFT to preprocess
histogram-based local descriptors before vocabulary creation and encoding. They
test their approach using both the RBF-χ2 kernel for VQ encodings (as in [201]) and
the linear kernel for the FV encoding. For BoW they learn k-Means from 100,000
randomly sampled features with k = 4000. For the FV, they learn a GMM with
256 components from a random sample of 256,000 features. All experiments use
C = 100 when learning SVMs. The concatenation of FVs is done after power and `2

normalizations. The steps to reproduce the main pipelines from this work are:

0−


Tr a j

HOG
HOF

MB H x
MB H y

−8−9

−11−21−27−K−29−31 (2.7)

for the baseline BoW version with the split MBH descriptor and now using RootSIFT,

0−


Tr a j

HOG
HOF

MB H x
MB H y

−8−9

−10−14−21−23−24−R−26−29−31 (2.8)

for the baseline with FV encoding,

0−6−


Tr a j

HOG
HOF

MB H x
MB H y

−8−9

−11−21−27−K−29−31 (2.9)

for the improved trajectories version with BoW encoding,

28

2.2. Local feature encoding approaches

0−6−


Tr a j

HOG
HOF

MB H x
MB H y

−8−9

−10−14−21−23−24−R−26−29−31 (2.10)

for the improved trajectories version with FV encoding, and

0−5−


Tr a j

HOG
HOF

MB H x
MB H y

−8−9

−10−14−21−23−24−R−26−29−31 (2.11)

for the improved version with FV encoding and using a human detector to improve
motion stabilization. The authors have also used a variation of this method to
participate in the THUMOS Challenge 2013 [88]. In their submission [205], the
authors considered a pipeline that did not include the trajectory descriptor, did
not use human detection to improve camera stabilization, but included STP. The
authors also do not mention the use of RootSIFT. Those pipelines could therefore
be described as:

0−6−


HOG
HOF

MB H x
MB H y

−10−14−21−23−24−R−26−29−31, (2.12)

for the version without STP, and

0−6−


HOG
HOF

MB H x
MB H y

−10−D−14−21−23−24−R−26−29−31. (2.13)

for the version with STP.

29

Chapter 2. Human action recognition in videos

A robust and efficient video representation for action recognition, IJCV 2015
[203]. In the extended publication about iDT [203], Wang et al. apply STPs and use
SFV to further boost the results of FV encodings of iDT local features. The authors
also perform a grid-search for the SVM parameter C in all their experiments instead
of using a fixed C = 100 as in [201, 204]. As in [205], the authors do not include the
trajectory descriptor, but do include RootSIFT. The steps to reproduce the main
pipeline from this work are:

0−



{
HOG −8−9−10−14

x y t −14

}
−E{

HOF −8−9−10−14
x y t −14

}
−E{

MB H x −8−9−10−14
x y t −14

}
−E{

MB H y −8−9−10−14
x y t −14

}
−E


−21−23−24−R−26−29−31 (2.14)

for the baseline version,

0−6−



{
HOG −8−9−10−14

x y t −14

}
−E{

HOF −8−9−10−14
x y t −14

}
−E{

MB H x −8−9−10−14
x y t −14

}
−E{

MB H y −8−9−10−14
x y t −14

}
−E


−21−23−24−R−26−29−31 (2.15)

for the camera-stabilized version, and

0−5−



{
HOG −8−9−10−14

x y t −14

}
−E{

HOF −8−9−10−14
x y t −14

}
−E{

MB H x −8−9−10−14
x y t −14

}
−E{

MB H y −8−9−10−14
x y t −14

}
−E


−21−23−24−R−26−29−31 (2.16)

for the camera-stabilized version using a human detector to improve motion stabi-
lization.

30

2.2. Local feature encoding approaches

𝑡

𝑡

𝑡

Skip every 1 frame

Skip every 2 frames

Figure 2.10 – Multiple versions of the same video considering different frame-skips.

Beyond Gaussian Pyramid: Multi-skip Feature Stacking for Action Recognition,
CVPR 2015 [101]. Lan et al. [101] studied the effects of including frame-skipped
versions of the input video in the trajectories pipeline. They have shown that
augmenting data by considering different frame-skipped variations of the input
video (cf. Figure 2.10) improves the learnability of feature matrices generated by
feature extractors based on differential filters, such as MBH and STIP. In their
pipeline, the authors apply RootSIFT normalization to all descriptors, including the
pixel trajectories (Traj). They also use STA (referred therein as STED) to incorporate
spatiotemporal information in the descriptors, and re-normalize FV after descriptor-
channel fusion. The steps to reproduce the main pipeline from this work are:


0
1
2
3

−6−



{
Tr a j −S−8−9−10

x y t −S

}
−F{

HOG −S−8−9−10
x y t −S

}
−F{

HOF −S−8−9−10
x y t −S

}
−F{

MB H x −S−8−9−10
x y t −S

}
−F{

MB H y −S−8−9−10
x y t −S

}
−F



−14−21−23−24−R−23−24−29−31.

(2.17)

As can be seen, this pipeline incorporates multiple differences from the previous
pipelines shown in [201, 202, 203, 204], such as STA and double normalization
besides MIFS. An analysis of each of those differences in isolation will be presented
in Section 3.2 of this thesis.

31

Chapter 2. Human action recognition in videos

Figure 2.11 – The TDD pipeline. Image reproduced from [207].

Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors,
CVPR 2015 [207]. In [207], the authors propose a method to extract local features
from action recognition videos using deep convolutional networks and show how
those features can be incorporated in a dense trajectories pipeline (cf. Figure 2.11).
In order to do so, the authors apply the Two-Stream Network approach of [170] to
obtain multiple feature maps for each frame in a video. The Two Stream Network
approach (cf. Section 2.3.2 for a more in-depth description) involves learning two
deep convolutional neural networks for video classification. One network processes
individual RGB frames and is therefore referred as the spatial stream processing
network (T s), and the processes a stack of optical flow frames and is therefore
referred as the temporal stream processing network (T t). Since both networks are
based on a the VGG-16 architecture [171] which is itself close to AlexNet [98], it
becomes possible to extract meaningful features from individual convolutional
layers such as conv4 and conv5 as done in image classification tasks [9, 62, 126, 217].

After extracting feature maps, the authors extract regions from those maps
across the same optical flow trajectories that are used in iDT (with a modification
to track at a single scale instead of at multiple scales), aggregating and normaliz-
ing those features in different ways. They also consider multiple normalization
strategies and multiple convolutional layers from both spatial and temporal net-
works to create a set of Trajectory-pooled Deep-convolutional Descriptors (TDD)
descriptors which are then FV-encoded and processed in the same way as other iDT
descriptors. Furthermore, the authors find that it is still possible to retrieve better
results by combining these descriptors with iDT, indicating that there is still some
orthogonality between the deeply-learned descriptors and handcrafted features.
On the other hand, the authors do not mention which normalizations are applied

32

2.2. Local feature encoding approaches

after the FV-encoding and before classification.
The final pipelines shown in this work includes 8 different variations of the TDD

descriptors. These are the result of considering the two networks (T s and (T t)),
feature maps from two convolutional layers from each network (conv3 and conv4 for
spatial networks, conv4 and conv5 for temporal networks), and two normalization
strategies when aggregating feature maps across the trajectory paths to form the
TDD descriptor: Spatiotemporal Normalization (TDDst) and Channel Normaliza-
tion (TDDc). The steps to reproduce the main pipelines as described in [207] would
be:

0−6−



T DDst(T s
conv4)

T DDst(T s
conv5)

T DDst(T t
conv4)

T DDst(T t
conv3)

T DDc(T s
conv4)

T DDc(T s
conv5)

T DDc(T t
conv4)

T DDc(T t
conv3)


−10−14−21−R−26−29−30, (2.18)

and

0−6−





T DDst(T s
conv4)

T DDst(T s
conv5)

T DDst(T t
conv4)

T DDst(T t
conv3)

T DDc(T s
conv4)

T DDc(T s
conv5)

T DDc(T t
conv4)

T DDc(T t
conv3)


Tr a j

HOG
HOF

MB H x
MB H y

−8−9





−10−14−21−R−26−29−30 (2.19)

for the combined version with iDT (using representation-level fusion and assuming
exactly the same parameters as in [202]). While this work has used convolutional
neural networks solely for the purposes of feature extraction, in the next sections
we will see multiple approaches demonstrating how those networks can be used for
end-to-end video classification.

33

Chapter 2. Human action recognition in videos

Figure 2.12 – The 3D CNN architecture for action recognition, reproduced from
[85]. The first layer in this architecture is hardwired to produce feature maps that
correspond to a grayscale transformation of the frames, their horizontal and vertical
image gradients, and horizontal and vertical components of their optical flow fields.

2.3 Deep learning approaches

Deep learning models, such as deep neural networks (DNN), are a class of methods
and models that are able to learn hierarchical features and prediction models
directly from raw data. Since the beginning of this decade, these models have
found remarkable success in addressing both small- and large-scale problems
in image recognition, such as CIFAR-10, CIFAR-100 [97], PASCAL Visual Object
Classes (VOC) [48], and the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) [87, 160].

2.3.1 3D convolutional networks

Most successful deep neural networks for image classification are based on the
application of 2D convolutional filters. Those filters can be used to process each
frame individually, therefore operating in a R2, spatial domain. On the other hand, a
single video can be described as a sequence of static frames, and therefore as a vol-
ume in a R3 spatiotemporal domain. As such, it would seem natural to expect that,
by proposing a deep neural network architecture that could use 3D convolutional
filters instead of 2D ones, one could obtain equally successful models for video clas-
sification. However, while multiple works explored this direction [85, 182, 187], it
would take several years until 3D convolutional networks (3D CNNs) would perform

34

2.3. Deep learning approaches

better methods based on handcrafted features or variations of 2D convolutional
networks that had been adapted for video [170] (e.g., [22]).

One of the earliest works in this direction was [85], where the authors devised
a 3D CNN architecture specifically for the purpose of action recognition. While
this method achieved the best performance in the TRECVID 2009 Surveillance
Event Detection [135] challenge and competitive results in the small scale KTH
dataset [164], it would soon be surpassed by approaches based on handcrafted
features in both KTH [203, 204] and in related later editions of the challenge [2].
Moreover, the 3D architectures used in this work were highly hand-tuned. The
architecture included a hardwired first layer with fixed weights (cf. Figure 2.12) used
to encode prior knowledge in the features, as well as very specific organizations
of layers which had to be combined together in five different model variations to
achieve their best results. Training those architectures also required employing a
complex mechanism for model regularization in order to keep the learned features
consistent across different points in time through a set of auxiliary feature extractors
and auxiliary outputs.

In [187], the authors have proposed a similar 3D convolutional architecture that
learns from fixed temporal windows of 16 consecutive frames. However, unlike [85],
all 3D convolution filters in their architecture shared the same 3×3×3 size with a
stride of 1×1×1. While their method achieved better performance on Sports-1M
than the 2D architectures studied in [91], their method still performed significantly
worse than multiple approaches based on handcrafted features when measured
on UCF-101 [43, 101, 203] – even though their network had been pre-trained on
millions of extra videos and on an undisclosed amount of images from an internal
large-scale image dataset (referred to therein as I380k). Moreover, their best results
could only be achieved when combined with the same handcrafted approaches they
compare against, giving an indication that their method could produce features
that are complementary, but still not better, than the state of the art.

2.3.2 Two-Stream Networks

The Two-stream Network (2SN) approach of Simonyan et al. [170] would become a
milestone in the field of action recognition. While [170] could present results that
were competitive to handcrafted features but still could not surpass their state of
the art, this architecture would become the basis of increasingly more successful
methods [41, 207, 208], until they would finally prevail as the de-facto state-of-the-
art architecture for human action recognition in videos [22].

The main idea in the two-stream architecture was to employ two parallel net-
works (cf. Figure 2.13) that could be learned separately from two different data
streams: one spatial, comprised of sequences of RGB frames; and one temporal,

35

Chapter 2. Human action recognition in videos

Figure 2.13 – Two stream Network architecture for action recognition, reproduced
from [170]. This architecture is composed of two networks: one that process in-
dividual RGB frames and therefore operates in the spatial domain (Spatial stream
ConvNet, top); and one that process a fixed-size stack of sequential optical flow
frames (Temporal stream, bottom). These two networks are learned separately
during the learning phase, and their classification scores are averaged during the
evaluation phase.

comprised of sequences of optical flow frames. These two networks would share an
almost identical architecture except for the first layers. The first layers of the spatial
network would expect individual RGB frames as input in a similar way to a standard
image classification network [28], whereas the first layers of the temporal network
would expect stacked (e.g., concatenated along the temporal dimension) optical
flow displacement fields between consecutive frames.

Since the spatial network is based on a common architecture for image classifi-
cation, this network can be pre-trained on a large scale image dataset (ImageNet
ILSVRC-2012) before being fine-tuned on the target video dataset. Pre-training had
been show to be an effective strategy for initializing the weights of deep convo-
lutional neural networks [119, 134, 220], even when those networks are used for
different tasks. It also provides prior knowledge about features and classes which
may not be present in the training set of the target dataset but present in its testing
set or when evaluating such models in the field. In [170], Simonyan et al. used
pre-training to initialize the spatial networks, while training the temporal ones from
scratch. Later works would then propose methods to apply this same initialization
to both networks, as done for Wang et al. ’s Temporal Segment Networks [208].

36

2.3. Deep learning approaches

Figure 2.14 – Temporal Segment Networks architecture for action recognition, repro-
duced from [208]. Just as Simonyan et al. ’s Two Stream Networks, this architecture
employs two separate networks that operate in parallel for RGB and optical flow
streams. However, those networks learn from multiple video segments at the same
time. The figure exemplifies their working for the case of k = 3 video segments.

2.3.3 Temporal Segment Networks

The recent Temporal Segment Networks (TSN) architecture of [208] improves sig-
nificantly on the original two-stream architecture of [170]. It processes both RGB
frames and stacked optical flow frames using a deeper Inception architecture [183]
with Batch Normalization [78] and DropOut [175]. Although it still requires mas-
sive labeled training sets, this architecture is more data efficient than the 2SN and
3D CNNs architectures discussed previously in this chapter, and therefore more
suitable for action recognition in videos. In particular, [208] shows that both the
appearance and motion streams of the TSNs can benefit from a strong initialization
on ImageNet’s image classification task, which is one of the main factors responsible
for their high recognition accuracy.

Another improvement of the TSN with respect to Simonyan et al. ’s 2SN is the
explicit use of long-range temporal structure by jointly processing random short
snippets from a uniform temporal subdivision of a video. The TSN computes
separate predictions for k different temporal segments of a video, which are then
condensed into a video-level decision using a segmental consensus function e.g., the
average of their scores (cf. Figure 2.14).

37

Chapter 2. Human action recognition in videos

Figure 2.15 – Synthetic images from the SINTEL dataset and their respective pixel-
perfect, ground-truth optical flow. Images adapted from [20].

2.4 The case for synthetic data and virtual worlds

During the investigation of this PhD thesis, virtual worlds gained momentum as
a reliable technique for generating synthetic training data for many visual tasks
[20, 57, 117, 156, 158]. This technique had been shown to be particularly suitable
in the case of videos, where manually labeling every pixel in a sequence of frames
is extremely difficult or even impossible (e.g., optical flow). Due this difficulty
in collecting and annotating video modalities, training data for video has been
scarce. This scarcity of adequate labeled training data is widely accepted as a major
bottleneck of deep learning algorithms for important video understanding tasks
like action recognition.

Several works used synthetic scenarios to evaluate the performance of different
feature descriptors [8, 89, 195, 196, 197] and to train and test optical and/or scene
flow estimation methods [20, 117, 118, 133], stereo algorithms [66], or trackers [57,
185]. Among those, the SINTEL dataset [20] was one of the first popular datasets for
evaluating optical flow (cf. Figure 2.15). This dataset would later be used to measure
important advances in many tasks, from optical flow estimation [46, 77] to action
recognition [90]. This work would later be followed by the FlyingThings3D, Monkaa,
and Driving datasets proposed in [117], which would provide dense ground-truth
for optical flow, disparity map, and disparity change estimation (cf. Figure 2.16) to
further help advancing these fields.

38

2.4. The case for synthetic data and virtual worlds

Figure 2.16 – A synthetic image frame from the Monkaa short video clip (top left) and
its respective ground-truth in multiple modalities: optical flow (top right), disparity
map (bottom left), and disparity change (bottom right). Images adapted from [117].

Figure 2.17 – The virtual world of SYNTHIA. Images adapted from [158].

39

Chapter 2. Human action recognition in videos

Figure 2.18 – Synthetic images from the SYNTHIA dataset, adapted from [158].

Synthetic data has also been used to train visual models for object detection
and recognition, pose estimation, and indoor scene understanding [7, 30, 68, 69,
72, 113, 115, 136, 142, 143, 152, 163, 169, 178, 179, 192, 215, 216]. Haltakov et al. [67]
used a virtual racing circuit to generate different types of pixel-wise ground truth
(depth, optical flow and class labels). Ros et al. [156, 158] relied on game technology
to create a virtual world (Figure 2.17) to train deep semantic segmentation networks
using synthetically-generated ground-truth from this world (cf. Figure 2.18). Gaidon
et al. [57] used a similar technique for multi-object tracking (cf. Figure 2.19), [168]
for depth estimation from RGB, and [172] for place recognition.

40

2.4. The case for synthetic data and virtual worlds

Figure 2.19 – Synthetic images from the Virtual KITTI dataset, adapted from [57].

Synthetic data and virtual worlds have also been used for learning artificial
behaviors such as playing Atari games [122], imitating players in shooter games [6],
end-to-end driving and navigation [29, 228], learning common sense [194, 229], and
learning physical intuitions [108]. They have also been explored from an animator’s
perspective: Works in computer graphics have investigated producing animations
from sketches [65], using physical-based models to add motion to sketch-based
animations [64], and creating constrained camera-paths [58]. However, due to
the formidable complexity of realistic animation, video generation, and scene
understanding, these approaches focus on simple controlled game environments,
motions, and action spaces.

In this regard, and to the best of our knowledge, the work we present in Chapter
4 was the first to investigate virtual worlds and game engines to generate synthetic
training videos for action recognition. Although some of the aforementioned related
works rely on virtual characters, these works do not focus on their actions, and
neither are their actions procedurally generated, meaning their actions are often
reduced to simply walking.

41

Chapter 2. Human action recognition in videos

Figure 2.20 – Example frames from Matikainen et al. ’s synthetic data, adapted from
[116]. While the armature is abstract in appearance, its movement is derived from
MOCAP data.

42

2.4. The case for synthetic data and virtual worlds

Perhaps one of the closest – but still highly distinct – related work in this di-
rection is [116]. In this work Matikainen et al. use MOCAP data to induce realistic
motions in an “abstract armature” placed in an empty synthetic environment, gen-
erating 2,000 short 3-second clips at 320×240 and 30FPS. From these non-photo-
realistic clips, handcrafted motion features are selected as relevant and later used to
learn action recognition models for 11 actions in real-world videos (cf. Figure 2.20).
In contrast, the approach we describe in Chapter 4 does not just replay MOCAP,
but procedurally generates new action categories – including interactions between
persons, objects and the environment – as well as random physically plausible
variations of these new actions.

A recent alternative to virtual worlds that also does not require manual video
labeling is the unsupervised Video Generative Adversarial Network (VGAN) of [198]
(cf. Figure 2.21). Instead of leveraging prior structural knowledge about physics
and human actions, Vondrick et al. view videos as tensors of pixel values and learn
a two-stream GAN on 5,000 hours of unlabeled Flickr videos. Their method fo-
cuses on tiny and short videos, generating video cuboids composed of 32 frames
with a spatial resolution of 64×64 and 25 FPS (cf. Figure 2.22 for example frames).
Their generator network is composed of two streams, one comprised of spatial
convolutions for generating static backgrounds, and another of spatiotemporal con-

Figure 2.21 – A depiction of the VGAN architecture for unsupervised video genera-
tion, adapted from [198]. The architecture is divided in two streams: one focused
on generating static background scenes, and another which focus on moving fore-
ground elements. The input of both streams is a 100-dimensional vector comprised
of Gaussian noise.

43

Chapter 2. Human action recognition in videos

Figure 2.22 – Examples of synthetic video frames generated by VGAN, adapted from
[198]. The red arrows highlight examples of generated motions.

44

2.5. Summary of the chapter

volutions for generating moving elements in the foreground. Their discriminator
network is modeled as the reverse of the foreground stream, and therefore consists
in a 5-layer 3D CNN whose last layer performs binary classification with the goal of
discriminating between realistic and non-realistic videos. This architecture can be
used for action recognition in videos by replacing the last binary classification layer
from the discriminator network with a prediction layer and then fine-tuning this
model on a set of labeled videos. In comparison, the approach we propose in Chap-
ters 4 and 5 allows one to work with any state-of-the-art discriminative architecture,
as video generation and action recognition are completely decoupled steps. We
can, therefore, benefit from a strong ImageNet initialization for both appearance
and motion streams as in Wang et al. ’s TSN [208] – while at the same time, we can
decide what specific actions, scenarios, and camera-motions to generate, enforcing
diversity thanks to our interpretable parametrization.

2.5 Summary of the chapter

In this chapter we presented several of the most relevant works to the literature that
are mostly correlated with the work presented in this thesis. In particular, we have
explored the transition from handcrafted to deep learning models in the field of
action recognition that occurred during the execution of this work. We have also
identified sevevral key challenges related to both handcrafted and deep methods, as
well as methods to possibly overcome them (e.g., training using virtual data). In the
next chapters, we will be re-using all this acquired knowledge to improve the state
of the art in both classes of methods, proposing a new hybrid architecture for action
recognition that unites the best of both worlds, as well as methods to generate better
deep learning networks through the automatic, procedural generation of synthetic
human action videos that can be used as a complement to real world data when
such data is insufficient or otherwise hard to acquire.

45

3 Hybrid models for action recognition

It might be said now that I have the
best of both worlds.

John F. Kennedy

In the previous chapter we presented an overview and analysis of various methods
for video action recognition according to whether they were based on handcrafted
features vs. deep features, and shallow classifiers vs. deep classifiers, exploring their
advantages and disadvantages. In this chapter, we use this analysis to derive a
strong handcrafted baseline for action recognition, and then show how to push
the state of the art even further, proposing a new hybrid architecture combining
the strengths of the dense trajectories pipeline and supervised deep multi-layer
non-linear classifiers.

3.1 Introduction

CURRENT STATE-OF-THE-ART ALGORITHMS for action recognition belong to two
main categories: models relying on features handcrafted for action recognition
(e.g., [51, 56, 75, 101, 140, 201, 202, 203, 204]), or more recent end-to-end deep
architectures (e.g., [11, 22, 45, 49, 59, 85, 91, 127, 170, 176, 182, 208, 211, 213]).
These approaches have complementary strengths and weaknesses. Models based
on handcrafted features are data efficient, as they can easily incorporate struc-
tured prior knowledge (e.g., the importance of motion boundaries along dense
trajectories [201]), but their lack of flexibility may impede their robustness or mod-
eling capacity. On the other hand, deep models make fewer assumptions and
are learned end-to-end from data (e.g., using 3D-ConvNets [187]), but they rely
on handcrafted architectures and the acquisition of large manually labeled video
datasets (e.g., Sports-1M [91]), a costly and error-prone process that poses optimiza-
tion, engineering, and infrastructure challenges.

47

Chapter 3. Hybrid models for action recognition

Although deep learning for videos has recently made significant improvements
(e.g., [170, 182, 187]), models using handcrafted features prevailed as the the state
of the art on many standard action recognition benchmarks at the beginning of this
investigation (e.g., [51, 75, 101]). These models are generally based on improved
Dense Trajectories (iDT) [202, 204] with Fisher Vector (FV) encoding [147, 150] of
local spatiotemporal descriptors (trajectory coordinates, HOG, HOF, MBH) com-
puted from RGB and optical flow inputs. Recent deep models for action recognition
therefore combine their predictions with complementary ones from iDT-FV for
better performance [187, 207].

In this chapter, we study an alternative strategy to combine the best of both worlds
via a single hybrid classification architecture consisting in chaining sequentially
the iDT handcrafted features, the unsupervised FV representation, unsupervised
or supervised dimensionality reduction, and a supervised deep network (cf. Fig-
ure 3.1). This family of models was shown in [148] to perform on par with the deep
convolutional network of Krizhevsky et al. [98] for large scale image classification.
We adapt this type of architecture differently for action recognition in videos with
particular care for data efficiency.

In Section 2.1.2 we have organized existent works into handcrafted features,
shallow classifiers; deep-based features, shallow classifiers; deep-based features, deep
classifiers; and handcrafted features, deep classifiers (Table 2.4). The work we present
in this chapter lies in this last category: it combines the strengths of iDT-FV encod-
ings and supervised deep multi-layer non-linear classifiers. Our method is inspired
by the work of Perronnin and Larlus [148], who stack several unsupervised FV-based
and supervised layers. Their hybrid architecture shows significant improvements
over the standard FV pipeline, closing the gap on [98], which suggests there is still
much to learn about FV-based methods. This chapter investigates this type of hy-
brid architectures, however with several noticeable differences from [148]: (i) unlike
in the field of image classsificiation, the FV is on par with the current state of the
art for action recognition; (ii) iDT features contain many different appearance and
motion descriptors, which also results in more diverse and higher-dimensional FV;
and (iii) most action recognition training sets are small due to the cost of labeling
and processing videos, so overfitting and data efficiency are major concerns. In
this context, we adopt different techniques from modern handcrafted and deep
models, and perform a wide architecture and parameter study showing conclusions
regarding many design choices specific to action recognition.

The first contribution presented in this chapter consists in a careful design of
the first unsupervised part of our hybrid architecture, which even with a simple
SVM classifier is already on par with the state of the art. We experimentally observe
that by giving attention to details (e.g., spatiotemporal structure, normalization)
and doing data augmentation by feature stacking (instead of duplicating training

48

3.1. Introduction

Handcrafted features are extracted along optical flow trajectories from original and generated
videos. Those features are then normalized using RootSIFT [3], PCA-transformed, and aug-
mented with their (x, y, t) coordinates, forming our low-level descriptors. The descriptors for
each feature channel are then encoded (φ) as Fisher Vectors, separately aggregated (Σ) into
a video-level representation, square-rooted, and `2-normalized. These representations are
then concatenated (∪) and renormalized. A dimensionality reduction layer is learned super-
visedly or unsupervisedly. Supervised layers are followed by Batch-Normalization (BN) [78],
ReLU (RL) non-linearities [124], and Dropout (DO) [175] during training. The last layer uses
sigmoids (multi-label datasets) or softmax (multi-class datasets) non-linearities to produce
action-label estimates.

Figure 3.1 – Our hybrid unsupervised and supervised deep multi-layer architecture.

samples in more common data-augmentation approaches) are critical for achieving
good performance, and we show that the optimal design decisions we take in our
study do generalize across many datasets.

The second contribution we present in this chapter is our data efficient hybrid
architecture combining unsupervised representation layers with a deep network of
multiple fully connected layers. We show that supervised mid-to-end learning of a
dimensionality reduction layer together with non-linear classification layers yields
an excellent compromise between recognition accuracy, model complexity, and
transferability of the model across datasets thanks to reduced risks of overfitting
and modern optimization techniques.

This chapter is organized as follows. Section 3.2 presents the details of the first
unsupervised part (based on iDT-FV) of our hybrid model, while Section 3.3 does
so for the rest of the architecture and our learning algorithm. In Section 3.4 we
report experimental conclusions from parametric studies and comparisons to the
state of the art on five widely used action recognition datasets of different sizes. In
particular, we show that our hybrid architecture improves significantly upon the
state of the art, including recent combinations of iDT-FV predictions with deep
models trained on millions of images and videos.

49

Chapter 3. Hybrid models for action recognition

3.2 Fisher Vectors: From baseline to state of the art

We first recall the iDT approach of Wang & Schmid [204], then describe the im-
provements that can be stacked together to transform this strong baseline into a
state-of-the-art method for action recognition. In particular, we propose a data
augmentation by feature stacking method motivated by MIFS [101] and data aug-
mentation for deep models.

3.2.1 Improved Dense Trajectories

Local spatiotemporal features. The iDT approach used in many state-of-the-art
action recognition algorithms (e.g., [51, 101, 140, 141, 202, 203, 204]) consists in first
extracting dense trajectory video features [201] that efficiently capture appearance,
motion, and spatiotemporal statistics. Those features include Trajectory shape
(Traj) [201], HOG [38], HOF [39], and MBH [201] descriptors, which are extracted
along trajectories obtained by median filtering dense optical flow. In this work,
we extract dense trajectories from videos in the same way as in [204], applying
RootSIFT normalization [3] (`1 normalization followed by square-rooting) to all
descriptors. The dimensions of the Traj, HOG, HOF, MBHx, and MBHy descriptors
are respectively 30, 96, 108, 96, and 96.

Unsupervised representation learning. Before classification, we combine the
multiple trajectory descriptors in a single video-level representation by accumulat-
ing their Fisher Vector encodings (FV) [147, 150], which was shown to be particularly
effective for action recognition [27, 203]. This high-dimensional representation is
based on the gradient of a generative model, a Gaussian Mixture Model (GMM),
learned in an unsupervised manner on a large set of trajectory descriptors in our
case. Given a GMM with k Gaussians, each parameterized by its mixture weight wi ,
mean vectorµi , and standard deviation vectorσi (assuming a diagonal covariance),
the FV encoding of a trajectory descriptor x ∈Rd is Φ(x) = [φ1(x), . . . ,φk (x)] ∈R2kd ,
where:

φi (x) =
[
γ(i)p

wi

(
x −µi

σi

)
,
γ(i)p
2wi

(
(x −µi)2

σ2
i

−1

)]
(3.1)

andγ(i) denotes the soft assignment of descriptor x to the i -th component Gaussian
distribution. We use k = 256 Gaussians as a good compromise between accuracy

50

3.2. Fisher Vectors: From baseline to state of the art

and efficiency [202, 203, 204]. We randomly sample 256,000 trajectories from the
pool of training videos, irrespectively of their labels, to learn one GMM per descrip-
tor channel using 10 iterations of Expectation-Maximization (EM). Before learning
the GMMs, we apply PCA to the descriptors, reducing their dimensionality by a
factor of two. The reduced dimensions for the Traj, HOG, HOF, MBHx, and MBHy de-
scriptors therefore are, respectively, 15, 48, 54, 48, and 48. After learning the GMMs,
we extract FV encodings for all descriptors in each descriptor channel and combine
these encodings into a per-channel, video-level representation using sum-pooling,
i.e. by adding FVs together before normalization. In addition, we apply further
post-processing and normalization steps, as discussed in the next subsection.

Supervised classification. When using a linear classification model, we use a
linear SVM. As it is standard practice and in order to ensure comparability with
previous works [101, 204, 205, 207], we fix C = 100 unless stated otherwise and use
one-vs-rest for multi-class and multi-label classification. This forms a strong base-
line for action recognition, as shown by previous works [203, 207] and confirmed
in our experiments. We will now show how to make this baseline competitive with
recent state-of-the-art methods.

3.2.2 Bag of tricks for Bag-of-Words

One of the reasons for the resilience of BoW-based methods was the steady in-
crease in the number of improvements to the BoW pipeline proposed since its
conception [27, 28, 101, 140, 150, 207].

Incorporating global spatiotemporal structure. Incorporating the spatiotem-
poral position of local features can improve the FV representation. We do not
use Spatio-Temporal Pyramids (STP) [104], as they significantly increase both the
dimensionality of the representation and its variance [162]. Instead, we simply
concatenate the PCA-transformed descriptors with their respective (x, y, t) ∈ R3

coordinates, as in [101, 162]. We referred to this method in Section 2.2.1 as Spatio-
Temporal Augmentation (STA). This approach is linked to the Spatial Fisher Vector
(SFV) [96], a compact model related to soft-assign pyramids, in which the descriptor
generative model is extended to explicitly accommodate the (x, y, t) coordinates
of the local descriptors. When the SFV is created using Gaussian spatial models
(cf. Equation 18 in [96]), the model becomes equivalent to a GMM created from
augmented descriptors (assuming diagonal covariance matrices). Using STA, the
dimensions for the descriptors before GMM estimation become 18, 51, 57, 51, 51.
With 256 Gaussians, the dimension of the FVs generated for each descriptor channel
are, accordingly, 9,216, 26,112, 29,184, 26,112, and 26,112.

51

Chapter 3. Hybrid models for action recognition

Normalization. Another important detail to obtain maximum performance with
bag-of-words models is their normalization. We apply signed-square-rooting fol-
lowed by `2 normalization, then concatenate all descriptor-specific FVs and reapply
this same normalization, following [101]. The double normalization re-applies
square rooting, and is thus similar to using a smaller power normalization [150],
which improves action recognition performance [125].

Multi-Skip Feature Stacking (MIFS). MIFS [101] improves the robustness of FV
to videos of different lengths by increasing the pool of features with frame-skipped
versions of the same video. Standard iDT features are extracted from those frame-
skipped versions and stacked together before descriptor encoding, decreasing the
expectation and variance of the condition number [17, 101, 153] of the extracted
feature matrices. We will now see that the mechanics of this technique can be
expanded to other transformations.

3.2.3 Data Augmentation by Feature Stacking (DAFS)

Data augmentation is an important part of deep learning [28, 95, 207], but it is
rarely used with handcrafted features and shallow classifiers, particularly for action
recognition where duplicating training examples can vastly increase the computa-
tional cost. Common data augmentation techniques for images include the use of
random horizontal flipping [28, 207], random cropping [28], and even automatically
determined transformations [139]. For video classification, [51, 75] duplicate the
training set by mirroring.

Instead, we propose to generalize MIFS to arbitrary transformations, an ap-
proach we call Data Augmentation by Feature Stacking (DAFS). First, we extract
features from multiple transformations of an input video (frame-skipping, mirror-
ing, etc.) that do not change its semantic category. Second, we obtain a large feature
matrix by stacking the obtained spatiotemporal features prior to encoding. Third,
we encode the feature matrix, pool the resulted encodings, and apply the afore-
mentioned normalization steps along this pipeline to obtain a single augmented
video-level representation. This approach yields a representation that simplifies
the learning problem, as it can improve the condition number of the feature ma-
trix further than just MIFS thanks to leveraging data augmentation techniques
traditionally used for deep learning. In contrast to data augmentation for deep
approaches, however, we build a single more robust and useful representation in-
stead of duplicating training examples. Note also that DAFS is particularly suited to
FV-based representation of videos as pooling FV from a much larger set of features
decreases one of the sources of variance for FV [16]. After concatenation, the final
representation for each video has exactly 116,736 dimensions.

52

3.3. Hybrid architectures for action recognition

3.3 Hybrid architectures for action recognition

In this section we describe our hybrid architectures and how they can be learned.

3.3.1 System architecture

Our hybrid action recognition model combining FV with neural networks (cf. Fig-
ure 3.1) starts with the previously described steps of our iDT-DAFS-FV pipeline,
which can be seen as a set of unsupervised layers. The next part of our architec-
ture consists of a set of l fully connected supervised layers, each comprising a
dot-product followed by a non-linearity.

Let h0 denote the FV output from the last unsupervised layer in our hybrid
architecture, h j−1 the input of layer j ∈ {1, ..., l }, h j = g (W j h j−1) its output, with W j

the corresponding parameter matrix to be learned. We omit the biases from our
equations for better clarity. For intermediate hidden layers we use the Rectified Lin-
ear Unit (ReLU) non-linearity [124] for g . For the final output layer we use different
non-linearity functions depending on the task. For multi-class classification over c
classes, we use the softmax function g (zi) = exp(zi)/

∑c
j=1 exp(z j). For multi-label

tasks we consider the sigmoid function g (zi) = 1/(1+exp(−zi)).
Connecting the last unsupervised layer to the first supervised layer can result

in a much higher number of weights in this section than in all other layers of the
architecture. Since this might be an issue for small datasets due to the higher risk
of overfitting, we study the impact of different ways to learn the weights of this
dimensionality reduction layer: either with unsupervised learning (e.g., using PCA
as in [148]), or by learning a low-dimensional projection end-to-end with the next
layers of the architecture.

3.3.2 Learning

The learning of our model is done in two stages. In the first stage, we learn the unsu-
pervised layers (cf. Figure 3.1, left) to obtain strong representations of handcrafted
features. In the second stage, we learn the supervised classification layers (cf. Figure
3.1, right) using modern optimization algorithms. Our middle layers can be learned
either with or without supervision, and we provide experiments to evaluate the best
strategy in multiple datasets.

Unsupervised layers. Our unsupervised layers are learned as described in Sec-
tion 3.2.1. Namely, we learn one GMM of k = 256 Gaussians per descriptor channel
using EM on a set of 256,000 trajectories randomly sampled from the pool of training
videos.

53

Chapter 3. Hybrid models for action recognition

Supervised layers. We use the standard cross-entropy between the network out-
put ŷ and the ground-truth label vectors y as loss function. For multi-class classifi-
cation problems, we minimize the categorical cross-entropy cost function over all n
samples:

Ccat (y , ŷ) =−
n∑

i=1

c∑
j=1

yi j log (ŷi j), (3.2)

whereas for multi-label problems we minimize the binary cross-entropy:

Cbi n(y , ŷ) =−
n∑

i=1

c∑
j=1

yi j l og (ŷi j) − (1− yi j) l og (1− ŷi j). (3.3)

Optimization. For parameter optimization we use the recently introduced Adam
algorithm [94]. Since Adam automatically computes individual adaptive learning
rates for the different parameters of our model, this alleviates the need for fine-
tuning of the learning rate with a costly grid-search or similar methods.

Adam uses estimates of the first and second-order moments of the gradients in
the update rule:

θt ← θt−1 −α · mt

(1−βt
1)

√
vt

1−βt
2
+ε

(3.4)

where

g t ← ∇θ f (θt−1)
mt ← β1 ·mt−1 + (1−β1) ·g t

vt ← β2 ·vt−1 + (1−β2) ·g t
2

(3.5)

and where f (θ) is the function with parameters θ to be optimized, t is the index of
the current iteration, m0 = 0, v0 = 0, and βt

1 and βt
2 denotes β1 and β2 to the power

of t , respectively. We use the default values for its parameters α= 0.001, β1 = 0.9,
β2 = 0.999, and ε= 10−8 proposed in [94] and implemented in Keras [33].

Batch normalization and regularization. During learning, we use batch normal-
ization (BN) [78] and dropout (DO) [175]. Each BN layer is placed immediately
before the ReLU non-linearity and parametrized by two vectors γ and β learned
alongside each fully-connected layer. Given a training set X = {x1, x2, ..., xn } of n

54

3.3. Hybrid architectures for action recognition

training samples, the transformation learned by BN for each input vector x ∈ X is
given by:

B N (x ;γ,β) = γ x −µB√
σ2

B +ε
+β (3.6)

where

µB ← 1
n

n∑
i=1

xi , and σ2
B ← 1

n

n∑
i=1

(xi −µB)2. (3.7)

Together with DO, the operation performed by hidden layer j can now be expressed
as h j = r ¯ g (B N (W j h j−1;γ j ,β j)), where r is a vector of Bernoulli-distributed
variables with probability p and ¯ denotes the element-wise product. The last
output layer is not affected by this modification. Finally, we always consider the
same DO rate p for all layers; the same number of neurons in each supervised layer;
and we always use Glorot [61] uniform initialization when initializing the network’s
weights.

Dimensionality reduction layer. When unsupervised, we fix the weights of the
dimensionality reduction layer from the projection matrices learned by PCA dimen-
sionality reduction followed by whitening and `2 normalization [148]. When it is
supervised, it is treated as the first fully-connected layer, to which we apply BN and
DO as with the rest of the supervised layers. To explain our initialization strategy
for the unsupervised case, let us denote the set of n mean-centered d-dimensional
FVs for each sample in our dataset as a matrix X ∈ Rd×n . Recall that the goal of
PCA projection is to find a r ×d transformation matrix P , where r 6 d on the form
Z = P X such that the rows of Z are uncorrelated, and therefore its d ×d scatter
matrix S = Z Z t is diagonal. In its primal form, this can be accomplished by the
diagonalization of the d ×d covariance matrix X X t . However, when n ¿ d it can
become computationally inefficient to compute X X t explicitly. For this reason,
we diagonalize the n ×n Gram matrix X t X instead. By Eigendecomposition of
X t X =VΛV t we can take P =V t X tΛ−1/2, which also diagonalizes the scatter ma-
trix S but is more efficient to compute [14, 83]. To accommodate whitening, we set
the weights of our first reduction layer to W1 =V t X tΛ−1pn and keep them fixed
during training.

Bagging. Since our first unsupervised layers can be fixed, we can train ensemble
models and average their predictions very efficiently for bagging purposes [112,
148, 226] by caching the output of the unsupervised layers and reusing it in the
subsequent models.

55

Chapter 3. Hybrid models for action recognition

3.4 Experiments

We first list the datasets used in our experiments, then provide a detailed analysis of
the iDT-FV pipeline and our proposed improvements. Based on our observations,
we then perform an ablative analysis of our proposed hybrid architecture. Finally,
we study the transferability of our hybrid models, and compare to the state of the
art.

3.4.1 Datasets

We use five publicly available and commonly used datasets for action recognition
(described in detail in Section 2.1.1). We briefly recall their main characteristics and
their evaluation protocols.

• The Hollywood2 [114] dataset contains 1,707, distributed over 12 overlapping
action classes. Results are reported using the mAP in a single train/test split.

• The HMDB-51 [99] dataset contains 6,766 videos distributed over 51 distinct
action categories. Results are reported using mAcc over three fixed splits [99].

• The UCF-101 [173] dataset contains 13,320 video clips distributed over 101
distinct classes. Performance is measured as the mAcc on three fixed splits.

• The Olympics [129] dataset contains 783 videos of athletes performing 16
different sport actions. We report mAP over the provided train/test split.

• The High-Five [138] dataset contains 300 videos distributed over four differ-
ent human interactions and a negative (no-interaction) class. We report mAP
for the positive classes (mAP+) over two provided train/test splits.

• The ActivityNet [73] dataset (release 1.3) contains 19,994 untrimmed videos
distributed over 200 activity classes. We report mAP for the validation set of
this dataset. As this is a dataset contains very long, untrimmed action videos
(cf. Section 2.1.1 and Figure 2.1) which result in an extremely large number
of pixel trajectories per video, we subsample those trajectories, considering
only 20% of the extracted features per video when using iDT.

3.4.2 Study of trajectory baselines for action recognition

Table 3.1 reports our results comparing the iDT baseline (Section 3.2.1), its improve-
ments discussed in Section 3.2.2, and our proposed data augmentation strategy
(Section 3.2.3).

56

3.4. Experiments

Reproducibility. We first note that there are multiple differences between the iDT
pipelines used across the literature (cf. Section 2.2.1 for a detailed analysis). While
[204] applies RootSIFT only on HOG, HOF, and MBH, in [101] this normalization is
also applied to the Traj descriptor. While [204] includes Traj in their pipeline, [203]
omits it. Additionally, person bounding boxes are used to ignore human motions
when doing camera motion compensation in [203], but are not publicly available
for all datasets. Therefore, we reimplemented the main baselines and compare
our results to the officially published ones. As shown in Table 3.1, we successfully
reproduce the original iDT results from [204] and [205], as well as the MIFS results
of [101].

Improvements of iDT. Table 3.1 shows that double-normalization (DN) alone
improves performance over iDT on most datasets without the help of STA. We show
that STA gives comparable results to SFV+STP, as hypothesized in section 3.2.2.
Given that STA and DN are both beneficial for performance, we combine them with
our own method.

Data Augmentation by Feature Stacking (DAFS). Although more sophisticated
transformations can be used, we found that combining a limited number of simple
transformations already allows to significantly improve the iDT-based methods in
conjunction with the aforementioned improvements, as shown in the “iDT + STA +
DAFS + DN” line of Table 3.1. In practice, we generate on-the-fly 7 different versions
for each video, considering the possible combinations of frame-skipping up to level
3 and horizontal flipping. As an implementation detail, we use FFmpeg to generate
those versions on-the-fly before extracting their feature matrices using iDT. After
extraction, we vertically stack those matrices together, e.g., forming a new matrix
which has the same number of columns (descriptor dimensions) as the originals,
but the total of their numbers of rows (number of trajectories). Our results are
shown in the last row of Table 3.1.

Fine tuned and non-linear SVMs. Attempting to improve our best results, we
also performed experiments both fine-tuning C and also using a Gaussian kernel
while fine-tuning γ. However, we found that those two sets of experiments did
not lead to significant improvements. As DAFS already brings results competitive
with the current state of the art, we set those results with fixed C as our current
shallow baseline (FV-SVM). We will now incorporate those techniques in the first
unsupervised layers of our hybrid models.

57

Chapter 3. Hybrid models for action recognition

Table 3.1 – Analysis of iDT baselines and several improvements.

UCF-101 HMDB-51 Hollywood2 High-Five Olympics ActivityNet
%mAcc (s.d.) %mAcc (s.d.) %mAP %mAP+ (s.d.) %mAP %mAP

iDT [204] 84.8 [205]*† 57.2 64.3 - 91.1 -
Our reproduction 85.0 (1.32)*† 57.0 (0.78) 64.2 67.7 (1.90) 88.6 60.90

iDT+SFV+STP [203] 85.7*† 60.1* 66.8* 68.1*† 90.4* -
Our reproduction 85.4 (1.27)*† 59.3 (0.80)* 67.1* 67.8 (3.78)*† 88.3* 57.56

iDT+STA+DN [101] 87.3 62.1 67.0 - 89.8 -
Our reproduction 87.3 (0.96)† 61.7 (0.90) 66.8 70.4 (1.63) 90.7 62.36

iDT+STA+MIFS+DN [101] 89.1 65.1 68.0 - 91.4 -
Our reproduction 89.2 (1.03)† 65.4 (0.46) 67.1 70.3 (1.84) 91.1 64.12

iDT+DN 86.3 (0.95)† 59.1 (0.45) 65.7 67.5 (2.27) 89.5 62.27
iDT+STA 86.0 (1.14)† 60.3 (1.32) 66.8 70.4 (1.96) 88.2 60.94
iDT+HFDA [51] 86.4 (1.39)† 59.9 (0.96) 65.7 69.6 (1.58) 93.4 62.99
iDT+HFFS 86.7 (1.19)† 60.3 (0.46) 66.5 69.4 (1.90) 93.8 63.26
iDT+DAFS 88.6 (1.06)† 65.2 (0.99) 67.1 70.3 (1.93) 92.3 64.96
iDT+HFFS+DN 88.3 (1.23)† 62.9 (0.47) 67.5 69.2 (2.49) 93.2 64.83
iDT+STA+DAFS+DN 90.6 (0.91)† 67.8 (0.22) 69.1 71.0 (2.46) 92.8 66.49

iDT: Improved Dense Trajectories; SFV: Spatial Fisher Vector; STP: Spatio-Temporal Pyramids; STA: Spatio-Temporal
Augmentation; MIFS: Multi-skIp Feature Stacking; DN: Double-Normalization; DAFS: Data Augmentation Feature
Stacking; *without Trajectory descriptor; †without Human Detector.

3.4.3 Analysis of hybrid models

In this section, we start from hybrid architectures with unsupervised dimensionality
reduction learned by PCA. For UCF-101 and ActivityNet (the largest datasets) we
initialize W1 with r = 4096 dimensions, whereas for all other datasets we use the
number of dimensions responsible for 99% of the variance (yielding less dimensions
than training samples).

Brief explanation of Parallel Coordinate (PC) plots. PC plots are a visualization
technique for displaying high-dimensional data in 2D. They can highlight mean-
ingful multivariate patterns, especially when used interactively [52]. In a PC plot,
each data dimension is associated with a vertical line crossing the x-axis. Plot-
ting a single multi-dimensional data sample involves two steps: (i) placing each
dimension on its related vertical line, then (ii) connecting these points with a line
of the same color, thus creating a path that crosses all the y-axes. Each dimension
is normalized to the unit interval before plotting. In our case, each data point is a
quadruplet (batch,width,depth,dropout) coupled with a recognition performance
number. Each hyper-parameter value has a position along the y-axis corresponding
to it. We slightly shift that position randomly for better readability. The recognition
performance of the path corresponding to a set of hyper-parameters is encoded in
the color of the line (brighter is better) and its transparency (more solid is better).

58

3.4. Experiments

(a) UCF-101 (b) High-Five

(c) HMDB-51 (d) Olympic Sports

(e) Hollywood2 (f) Combined (normalized)

Figure 3.2 – Parallel Coordinates plots showing the impact of multiple parameters
on our hybrid architectures with unsupervised dimensionality reduction for each
dataset. Each line represents one combination of parameters and colour indicates
performance. Depth 2 correlates with high-performing architectures, whereas a
small width and a large depth is suboptimal. The combined plot (f) has been
generated by normalizing the performance in each dataset to the [0-100] interval
and stacking the architectures tuples together (cf. explanatory text in Section 3.4.3). 59

Chapter 3. Hybrid models for action recognition

Table 3.2 – Top-5 best performing hybrid architectures with consistent improve-
ments across multiple datasets.

UCF-101 HMDB-51 Hollywood2 High-Five Olympics ActivityNet Relative
Depth Width Batch %mAcc %mAcc %mAP %mAP+ %mAP % mAP Improv.

2 4096 128 91.6 68.1 72.6 73.1 95.3 68.3 2.46%
2 4096 256 91.6 67.8 72.5 72.9 95.3 68.6 2.27%
2 2048 128 91.5 68.0 72.7 72.7 94.8 68.3 2.21%
2 2048 256 91.4 67.9 72.7 72.5 95.0 68.5 2.18%
2 512 128 91.0 67.4 73.0 72.4 95.3 68.3 2.05%

1 - - 91.9 68.5 70.4 71.9 93.5 65.6 1.28%

Best FV-SVM (cf. Tab. 3.1) 90.6 67.8 69.1 71.0 92.8 66.5 0.00%

Ablative analysis. We study the interactions between four parameters that can
influence the performance of our hybrid models: the output dimension of the inter-
mediate fully connected layers (width), the number of layers (depth), the dropout
rate, and the mini-batch size of Adam (batch). This gives us a total of 480 architec-
tures for each dataset, corresponding to three batch sizes (128,256,512), four widths
(512,1024,2048,4096), four depths (1,2,3,4) and ten dropout rates (0.0,0.1, ...,0.9).
We systematically evaluate all possible combinations and rank the architectures
by the average relative improvement w.r.t. the best FV-SVM model. Training all
480 combinations for one split of UCF-101 can be accomplished in less than two
days with a single Tesla K80 GPU. We report the top results in Table 3.2 and present
per-dataset parallel coordinates plots showing all the explored hybrid architectures
with unsupervised dimensionality reduction in Figure 3.2. Our observations are as
follows.

Unsupervised dimensionality reduction. Performing dimensionality reduction
using the weight matrix from PCA is beneficial for all datasets, and using this layer
alone, achieves 1.28% average improvement (Table 3.2, depth 1) upon our best SVM
baseline.

Width. We consider networks with fully connected layers of size 512, 1024, 2048,
and 4096. We find that a large width (4096) gives the best results in 5 of 6 datasets.

Depth. We consider hybrid architectures with depth between 1 and 4. Most well-
performing models have depth 2 as shown in Figure 3.2, but one layer is enough for
big datasets of short video clips.

60

3.4. Experiments

Dropout rate. We consider dropout rates from 0 to 0.9. We find dropout to be
dependent of both architecture and dataset. A high dropout rate significantly
impairs classification results when combined with a small width and a large depth.

Mini-batch size. We consider mini-batch sizes of 128, 256, and 512. We find lower
batch sizes to bring best results, with 128 being the more consistent across all
datasets. We observed that large batch sizes were detrimental to networks with a
small width.

Visual analysis. All PC plots share a strong visible pattern associating an ele-
vated level of brightness with networks of depth 2, indicating a strong relationship
between this choice of depth and the best results. Another visible pattern is the
relationship between lower widths and higher depths, which is always marked by
the presence of suboptimal architectures (dark lines from width 512 and 1024 to
depth 4). Other patterns associated with suboptimal architectures appear between
large batch sizes and a small width (dark lines from batch 512 to width 512). On
the other hand, connections between large widths and depth 2 are always clear in
the plots for all datasets. This pattern supports the best architecture found by our
systematic ranking of the architectures discussed above: batch size of 128, width of
4096, and depth 2. Regarding the dropout rate, the PC plots in Figure 3.2 suggest
that too high rates might be detrimental to the model, and the rate should be tuned
depending on the rest of the architecture and on the dataset.

Best configuration with unsupervised dimensionality reduction. We find the
following parameters to work the best: small batch sizes, a large width, moderate
depth, and dataset-dependent dropout rates. The most consistent improvements
across datasets are with a network with batch-size 128, width 4096, and depth 2.

Supervised dimensionality reduction. Our previous findings indicate that the di-
mensionality reduction layer can have a large influence on the overall classification
results. Therefore, we investigate whether a supervised dimensionality reduction
layer trained mid-to-end with the rest of the architecture could improve results
further. Due to memory limitations imposed by the higher number of weights to
be learned between our 116K-dimensional input FV representation and the inter-
mediate fully-connected layers, we decrease the maximum network width to 1024.
In spite of this limitation, our results in Table 3.3 show that much smaller hybrid
architectures with supervised dimensionality reduction improve (on the larger UCF-
101, HMDB-51 and ActivityNet datasets) or maintain (on the other smaller datasets)
recognition performance.

61

Chapter 3. Hybrid models for action recognition

Table 3.3 – Supervised dimensionality reduction hybrid architecture evaluation.

UCF-101 HMDB-51 Hollywood2 High-Five Olympics ActivityNet
Depth Width Batch %mAcc (s.d.) %mAcc (s.d.) %mAP %mAP+ (s.d.) %mAP %mAP

1 1024 128 92.3 (0.77) 69.4 (0.16) 72.5 71.8 (1.37) 95.2 69.5
1 512 128 92.3 (0.70) 69.2 (0.09) 72.2 72.2 (1.14) 95.2 70.2
2 1024 128 91.9 (0.78) 68.8 (0.46) 71.8 72.0 (1.03) 94.8 68.1
2 512 128 92.1 (0.68) 69.1 (0.36) 70.8 71.9 (2.22) 94.2 67.3

Best unsup. (cf. Tab. 3.2) 91.9 68.5 73.0 73.1 95.3 68.6

Comparison to hybrid models for image recognition. Our experimental conclu-
sions and optimal model differ from [148], both on unsupervised and supervised
learning details (e.g., dropout rate, batch size, learning algorithm), and in the use-
fulness of a supervised dimensionality reduction layer trained mid-to-end (not
explored in [148]).

3.4.4 Transferability of hybrid models

In this section, we study whether the first layers of our architecture can be trans-
ferred across datasets. As reference points, we use the first split of UCF-101 and the
training set of ActivityNet to create base hybrid models. We then transfer elements
from those models to models created for other datasets. We chose UCF-101 and
ActivityNet for the following reasons: Both UCF-101 and ActivityNet are the largest
datasets we consider with a similar number of action videos, have the largest di-
versity in number of actions, and contain multiple categories of actions, including
human-object interaction, human-human interaction, body-motion interaction,
and practicing sports. However, a crucial difference between those is that UCF-101
contains short trimmed action videos, whereas ActivityNet videos are untrimmed
and extremely long in comparison with the other datasets. We use this opportunity
to study how this difference impacts the transferability of our learned features.

Unsupervised representation layers. We start by replacing the dataset-specific
GMMs with the GMMs from the base models. Our results in the second row of
Table 3.4 show that the GMMs transferred from UCF-101 give similar performance
to the ones using dataset-specific GMMs. This, therefore, greatly simplifies the task
of learning a new model for a new dataset. We keep the transferred GMMs fixed in
the next experiments. When transferring GMMs from ActivityNet (second row of
Table 3.5) we see that those features do not transfer as well as when transferring
from a short-clip dataset, except for the smallest dataset considered (High-Five).

62

3.4. Experiments

Table 3.4 – Transferability experiments from a dataset of short action clips (UCF-101)
involving unsupervised dimensionality reduction

Representation Reduction Supervised HMDB-51 Hollywood2 High-Five Olympics
Layers Layer Layers %mAcc (s.d.) %mAP %mAP+ (s.d.) %mAP

own own own 68.0 (0.65) 72.6 73.1 (1.01) 95.3

UCF own own 68.0 (0.40) 72.4 73.7 (1.76) 94.2
UCF UCF own 66.5 (0.88) 70.0 76.3 (0.96) 94.0
UCF UCF UCF 66.8 (0.36) 69.7 71.8 (0.12) 96.0

Table 3.5 – Transferability experiments from a dataset of long untrimmed videos
(ActivityNet) involving unsupervised dimensionality reduction

Representation Reduction Supervised UCF101 HMDB-51 Hollywood2 High-Five Olympics
Layers Layer Layers %mAcc (s.d.) %mAcc (s.d.) %mAP %mAP+ (s.d.) %mAP

own own own 91.6 (0.68) 68.0 (0.65) 72.6 73.1 (1.01) 95.3

ActivityNet own own 90.5 (1.03) 67.7 (0.26) 70.8 74.3 (0.18) 94.3
ActivityNet ActivityNet own 90.4 (1.15) 66.2 (0.20) 71.7 70.6 (1.90) 94.6
ActivityNet ActivityNet ActivityNet 87.3 (0.91) 66.3 (0.24) 63.5 71.4 (5.67) 94.1

Unsupervised dimensionality reduction layer. Instead of configuring the unsu-
pervised dimensionality reduction layer with weights from the PCA learned on its
own dataset, we configure it with the weights learned in UCF-101 and ActivityNet.
Our results are in the third row of Tables 3.4 and 3.5. This time we observe a dif-
ferent behavior when transferring for UCF-101: for Hollywood2 and HMDB-51,
the best models were found without transfer, whereas for Olympics it did not have
any measurable impact. However, transferring PCA weights brings significant im-
provement in High-Five. One of the reasons for this improvement is the evidently
smaller training set size of High-Five (150 samples) in contrast to other datasets.
The fact that the improvement becomes less visible as the number of samples in
each dataset increases (before eventually degrading performance) indicates there is
a threshold below which transferring starts to be beneficial (around a few hundred
training videos). On the other hand, when transferring from ActivityNet we found
a similar behavior as before: Transferring the dimensionality reduction weights
learned from a dataset of long, untrimmed videos did not bring any performance
improvements for short-clip datasets.

Supervised layers after unsupervised reduction. We also study the transferabil-
ity of further layers in our architecture, after the unsupervised dimensionality
reduction transfer. We take our base models learned in the first split of UCF-101

63

Chapter 3. Hybrid models for action recognition

Table 3.6 – Transferability experiments from a dataset of short action clips (UCF-101)
involving supervised dimensionality reduction.

Representation Supervised HMDB-51 Hollywood2 High-Five Olympics
Layers Layers %mAcc (s.d.) %mAP %mAP+ (s.d.) %mAP

own own 69.2 (0.09) 72.2 72.2 (1.14) 95.2

UCF own 69.4 (0.16) 72.5 71.8 (1.37) 95.2
UCF UCF 69.6 (0.36) 72.2 73.2 (1.89) 96.3

Table 3.7 – Transferability experiments from a dataset of long untrimmed videos
(ActivityNet) involving supervised dimensionality reduction.

Representation Supervised UCF-101 HMDB-51 Hollywood2 High-Five Olympics
Layers Layers %mAcc (s.d.) %mAcc (s.d.) %mAP %mAP+ (s.d.) %mAP

own own 92.3 (0.70) 69.2 (0.09) 72.2 72.2 (1.14) 95.2

ActivityNet own 90.4 (1.02) 67.3 (0.64) 71.4 70.9 (2.03) 94.2
ActivityNet ActivityNet 90.9 (1.00) 66.8 (0.79) 70.4 69.9 (1.26) 94.8

and ActivityNet, remove its last classification layer, re-insert a classification layer
with the same number of classes as the target dataset, and fine-tune this new model
in the target dataset, using an order of magnitude lower learning rate. The results
can be seen in the last row of Tables 3.4 and 3.5. When transferring from UCF-101,
we observe the same behavior for HMDB-51 and Hollywood2. However, we notice
a decrease in performance for High-Five and a performance increase for Olympics.
We attribute this to the presence of many sports-related classes in UCF-101. We
again do not observe any gain in performance when transferring from ActivityNet.

Mid-to-end reduction and supervised layers. Finally, we study whether the ar-
chitecture with supervised dimensionality reduction layer transfers across datasets,
as we did for the unsupervised layers. We again replace the last classification layer
from the corresponding model learned on the first split of UCF-101, and fine-tune
the whole architecture on the target dataset. Our results in the second and third
rows of Table 3.6 show that transferring this architecture from UCF-101 brings
improvements for Olympics and HMDB-51, but performs worse than transferring
unsupervised layers only on High-Five. Transferring from ActivityNet is again detri-
mental to performance (Table 3.7). This gives further indication that the length
and specificity of the action videos contained in the source dataset is of major
importance when attempting feature transfer.

64

3.4. Experiments

Table 3.8 – Comparison against the state of the art* in action recognition.

UCF-101 HMDB-51 Hollywood2 High-Five Olympics ActivityNet
Method %mAcc (s.d.) %mAcc (s.d.) %mAP %mAP+ (s.d.) %mAP % mAP

H
A

N
D

C
R

A
F

T
E

D

iDT+FV [204] 84.8 [205] 57.2 64.3 - 91.1
SDT-ATEP [56] - 41.3 54.4 62.4 85.5
iDT+FM [140] 87.9 61.1 - - -
RCS [75] - - 73.6 71.1 -
iDT+SFV+STP [203] 86.0 60.1 66.8 69.4 90.4
iDT+MIFS [101] 89.1 65.1 68.0 - 91.4
VideoDarwin [51] - 61.6 69.6 - -
VideoDarwin+HF+iDT [51] - 63.7 73.7 - -

D
E

E
P

-B
A

S
E

D

2S-CNN [170]IN 88.0 59.4 - - -
2S-CNN+Pool [127]IN 88.2 - - - -
2S-CNN+LSTM [127]IN 88.6 - - - -
Objects+Motion(R*) [81]IN 88.5 61.4 66.4 - -
Comp-LSTM [176]ID 84.3 44.0 - - -
C3D+SVM [187]S1M,ID 85.2 - - - -
FSTCN [182]IN 88.1 59.1 - - -

H
Y

B
R

ID

iDT+StackFV [141] - 66.8 - - -
TDD [207]IN 90.3 63.2 - - -
TDD+iDT [207]IN 91.5 65.9 - - -
CNN-hid6 [221]S1M 79.3 - - - -
CNN-hid6+iDT [221]S1M 89.6 - - - -
C3D+iDT+SVM [187]S1M,ID 90.4 - - - -

Best from state of the art 91.5 [207] 66.8 [141] 73.7 [51] 71.1 [75] 91.4 [101] -

Our best FV+SVM 90.6 (0.91) 67.8 (0.22) 69.1 71.0 (2.46) 92.8 66.5
Our best hybrid 92.5 (0.73) 70.4 (0.97) 72.6 76.7 (0.39) 96.7 72.5

*State of the art at the time the work in this chapter was published in ECCV’16. Methods are organized by category
(cf. Table 2.4) and sorted in chronological order in each block. Our hybrid models improve upon the state of the
art, and our handcrafted-shallow FV-SVM improves upon competing end-to-end architectures relying on external
data sources (IN: uses ImageNet. S1M: uses Sports-1M. ID: uses private internal data – [187] pre-trains models on
an internal dataset referred to as I380K, whereas [176] uses additional 300h of unrelated Youtube videos).

3.4.5 Comparison to the state of the art

In this section, we compare our best models found previously to the state of the art.

Best models. For UCF-101, the most effective model leverages its large train-
ing set using supervised dimensionality reduction (cf. Table 3.3). For HMDB-51
and Olympics, the best models result from transferring the supervised dimension-
ality reduction models from the related UCF-101 dataset (cf. Table 3.6). Due to
its specificity, the best architecture for Hollywood2 is based on unsupervised di-
mensionality reduction learned on its own data (cf. Table 3.2), although there are
similarly-performing end-to-end transferred models (cf. Table 3.6). For High-Five,
the best model is obtained by transferring the unsupervised dimensionality reduc-
tion models from UCF-101 (cf. Table 3.4).

65

Chapter 3. Hybrid models for action recognition

Bagging. As it is standard practice [148], we take the best models and perform
bagging with 8 models initialized with distinct random initializations. This improves
results by around one point on average. We show our final results in the last row of
Table 3.8.

Discussion. In contrast to [148], our models outperform the state of the art at the
time of publication of this work, including methods trained on massive labeled
datasets like ImageNet or Sports-1M, confirming both the excellent performance
and the data efficiency of our approach. As shown in Figure 3.3, our method leads
to substantial improvements for all datasets considered. Table 3.9 illustrates some
failure cases of our methods. We provide confusion matrices and precision-recall
curves for the all short-clip datasets evaluated in this work in the next section, for
fine-grained analysis.

Figure 3.3 – Average Precision-Recall curves. Dashed line presents curves for our
best FV-SVM baseline, and full lines presents curves for our best hybrid model.

66

3.4. Experiments

Table 3.9 – Top-5 most confused classes for our best FV-SVM and Hybrid models

Top-5
Confusions

#1 #2 #3 #4 #5

U
C

F
-1

01

H
yb

ri
d

P: ShavingBeard P: FrisbeeCatch P: ApplyLipstick P: Nunchucks P: Rafting
GT: BrushingTeeth GT: LongJump GT: ShavingBeard GT: PizzaTossing GT: Kayaking

F
V

-S
V

M

P: BreastStroke P: ShavingBeard P: Rafting P: FrisbeeCatch P: ApplyLipstick
GT: FrontCrawl GT: BrushingTeeth GT: Kayaking GT: LongJump GT: ShavingBeard

H
M

D
B

-5
1

H
yb

ri
d

P: sword P: flic_flac P: draw_sword P: sword_exercise P: drink
GT: punch GT: cartwheel GT: sword_exercise GT: draw_sword GT: eat

F
V

-S
V

M

P: sword P: sword_exercise P: chew P: throw P: fencing
GT: punch GT: draw_sword GT: smile GT: swing_baseball GT: sword

H
ig

h
-F

iv
e

H
yb

ri
d

P: negative P: negative P: hug P: hug P: handShake
GT: highFive GT: handShake GT: handShake GT: kiss GT: highFive

F
V

-S
V

M

P: negative P: negative P: hug P: hug P: negative
GT: highFive GT: handShake GT: kiss GT: handShake GT: kiss

O
ly

m
p

ic
s

H
yb

ri
d

P: long_jump P: clean_and_jerk P: high_jump P: discus_throw P: vault
GT: triple_jump GT: snatch GT: vault GT: hammer_throw GT: high_jump

F
V

-S
V

M

P: vault P: long_jump P: discus_throw P: pole_vault P: bowling
GT: high_jump GT: triple_jump GT: hammer_throw GT: high_jump GT: shot_put

67

Chapter 3. Hybrid models for action recognition

3.4.6 Detailed failure and success cases per dataset

In this section we provide a detailed analysis for failure and success cases for four
of our considered datasets, contrasting our best hybrid models against our strong
FV-SVM baseline.

The datasets used in our experiments can be divided according to two criteria:
the presence of overlapping classes (multi-label or multi-class) and performance
metric (mean Average Precision, mAP; or mean accuracy, mAcc). We therefore
present precision-recall curves for datasets whose performance is computed using
mAP (Hollywood2, High-Five, Olympics) and confusion matrices for datasets which
are multi-class (UCF-101, HMDB-51, Olympics, High-Five). We cluster the rows
and columns of the confusion matrices by level of confusion, which we obtain by
ordering the rows via a 1D Locally Linear Embedding (LLE) [159]. For the largest
datasets, we show only the top-25 confusion classes as determined by this embed-
ding. For the precision-recall curves, we show at every recall decile the quantized
cumulated precision segmented per class.

UCF-101. We first determine the top 25 classes that are responsible for most of
the confusion of our baseline model (FV-SVM) using the first split of this dataset.
Then, we show the evolution of those same classes in the confusion matrix of our
best hybrid model (Hybrid) in Figure 3.4. Note that the differences are small overall,
as both the FV-SVM and Hybrid models have excellent recognition performance
(90.6% and 92.5% respectively, cf. Table 3.9).

Figure 3.4 – Top-25 most confused classes for UCF-101.

68

3.4. Experiments

The most confused classes are BreastStroke, FrontCrawl, Rafting, Kayaking,
ShavingBeard and Brushing Teeth. Inspecting both confusion matrices, we can
see how the Hybrid model solves most of the confusion between the BreastStroke
and FrontCrawl swimming actions. It also solves a visible confusion between
FrontCrawl and Rowing. Furthermore, it also improves many other classes, such as
ApplyLipstick, ApplyEyeMakeUp, and HeadMassage, but seems to reinforce certain
mistakes such as the confusion between Nunchucks and SalsaSpin. Our results
therefore suggest that our higher-capacity hybrid models can improve on some fine-
grained recognition tasks, but not all (i.e. Rafting and Kayaking), which confirms
the previously known good performance of FV and linear classifiers for fine-grained
tasks [63].

HMDB-51. Using split 1, we generate the confusion matrices using the same
method as before and show the evolution of the top 25 classes in Figure 3.5. Most
of the confusion in this dataset originates from the classes punch, draw_sword,
fencing, shoot_bow, sword_exercise and sword. While our Hybrid model significantly
improves the mean accuracy for this dataset (+2.6%, cf. Table 8 in the main text),
the improvements are well distributed across all classes and are less visible when
inspecting individual class pairs. Some improvements are between the classes
sword_exercise and shoot_bow, kick_ball and catch, wave and sword_exercise.

Figure 3.5 – Top-25 most confused classes for HMDB-51.

69

Chapter 3. Hybrid models for action recognition

Figure 3.6 – Quantized precision and recall segmented per class for the Hollywood2
dataset, comparing class-specific precision between our baseline model (S) and the
best hybrid model (H) at different recall rates.

Hollywood2. As this is a multi-label dataset, we present a cumulative quantized
precision-recall bar chart segmented per-class in Figure 3.6. This visualization can
be understood as a quantized version of the precision-recall curve, but allows us
to identify the separate influence of each class in the performance result. We can
see from the figure how the stacked bars corresponding to the Hybrid model (H)
associated with higher recall rates present higher precision than the baseline (S).
The difference in performance comes mostly from the GetOutCar and HandShake
classes, whose precision improves at higher recall rates for the Hybrid model.

Olympics. Olympics is multi-class and evaluated with mAP, so we present both
confusion matrices (Figure 3.7) and per-class quantized precision-recall bar charts
(Figure 3.8). Most of the confusion originates from the long_jump, triple_jump,
vault, and high_jump classes. Our hybrid classifier is able to solve the strong confu-
sion between high_jump, vault, and pole_vault, as well as vault and platform_10m.
However, the Hybrid model has trouble distinguishing between long_jump and
triple_jump, the smallest class in the dataset (17 videos for training, only 4 for test-
ing). It has therefore low impact on mean accuracy: the overall performance in this
dataset is indeed significantly improved (+3.9% w.r.t. FV-SVM and +5.3% w.r.t. the
state of the art, cf. Table 3.8 in the main text).

Figure 3.8 shows that both methods have excellent precision at low recall, with

70

3.4. Experiments

Figure 3.7 – Confusion matrices for Olympic Sports.

Figure 3.8 – Quantized precision-recall segmented per class for Olympics.

71

Chapter 3. Hybrid models for action recognition

the performance between the two methods starting to differ after a recall of 40%.
For higher recall rates, we can see how most of the differences stem indeed from the
triple_jump class. The decrease in area for segments of this class are compensated
by steady improvements in all other classes, as can be seen by comparing the class-
specific segments between the baseline (S) and Hybrid (H) results for the 0.9 and
1.0 recall rates. This suggest that the majority of the improvements remaining are
for this single class.

High-Five High-Five is the smallest dataset (and among the most fine-grained) we
experiment on. As it is multi-class and evaluated using mAP, we present confusion
matrices (Figure 3.9) and per-class quantized precision-recall curves (Figure 3.10)
on its first cross-validation split. Most of the confusion is between kiss vs. hug, and
handShake vs. hug. The Hybrid model improves the disambiguation between kiss
and hug, and kiss and highFive, but introduces some confusion between highFive
and handShake, and kiss and handShake. Figure 3.10 shows that our Hybrid model
is more precise at high recall rates, especially for kiss and handShake. Moderate
improvements can be observed for all classes.

Figure 3.9 – Confusion matrices for the first cross-validation split of High-Five.

72

3.5. Summary of the chapter

Figure 3.10 – Quantized precision-recall segmented per class for High-Five split 1.

3.5 Summary of the chapter

In this chapter, we investigated hybrid architectures for action recognition, effec-
tively combining handcrafted spatiotemporal features, unsupervised representation
learning based on the FV encoding, and deep neural networks. In addition to paying
attention to important details like normalization and spatiotemporal structure, we
integrate data augmentation at the feature level, end-to-end supervised dimen-
sionality reduction, and modern optimization and regularization techniques. We
performed an extensive experimental analysis on a variety of datasets, showing
that our hybrid architecture yields data efficient, transferable models of small size
that yet outperform much more complex deep architectures trained end-to-end on
millions of images and videos.

Our detailed per-dataset analysis suggests that the improvements brought by
our hybrid models are generally distributed across the classes of most datasets,
without a single class being responsible for most of the performance increase. We
also show that our hybrid models can differentiate between some fine-grained
action groups, confirming that the unsupervised video-level FV representation
contains fine-grained information about the original video, an information that
may be more successfully exploited by our more complex (deeper) hybrid models.

73

4 Procedural Human Action Videos Dataset

Obviously, with a CGI character,
you’re building a character in much
the same way as a real creature is
built. You build the bones, the
skeletons, the muscles. You put layers
of fat on. You put a layer of skin on
which has to have a translucency,
depending on what the character is.

Peter Jackson

In the previous chapter, we have seen how to design data-efficient models by leverag-
ing existing prior knowledge on action recognition in the form of carefully designed
handcrafted features. In this chapter, we will study an alternative method for feed-
ing prior knowledge to machine learning models by embedding this knowledge in
the training data itself. And for this, we will show how to create an interpretable
parametric generative model of human action videos to generate a diverse, realistic,
and physically plausible dataset of human action videos using the strong a priori
knowledge about the real world stored in the physic engines of modern video-game
development systems.

4.1 Introduction

ACCURATE REPRESENTATIONS of both appearance and motion require either care-
fully handcrafting features with prior knowledge (e.g., the dense trajectories of [202])
or end-to-end deep learning of high capacity models with a large amount of labeled
data (e.g., the two-stream network of [170]). In the past chapters, we have seen that
these two families of methods have complementary strengths and weaknesses, and
how they can be combined to achieve state-of-the-art action recognition perfor-
mance [43, 207].

75

Chapter 4. Procedural Human Action Videos Dataset

Nevertheless, deep neural networks have a much higher potential to significantly
improve their accuracy based on training data. Hence they are becoming the de-
facto standard for recognition problems where it is possible to collect large labeled
training sets, often by crowd-sourcing manual annotations (e.g., ImageNet [87], MS-
COCO [109], CityScapes [37]). However, manual labeling is costly, time-consuming,
error-prone, raises privacy concerns, and requires massive human intervention for
every new task. This is often impractical, especially for videos, or even unfeasible
for ground truth modalities like optical flow or depth.

Using synthetic data generated from virtual worlds alleviates these issues. Thanks
to modern modeling, rendering, and simulation software, virtual worlds allow for
the efficient generation of vast amounts of controlled and algorithmically labeled
data, including for modalities that cannot be labeled by a human. This approach
has recently shown great promise for deep learning across a breadth of computer
vision problems, including optical flow [117], depth estimation [109], object de-
tection [113, 142, 180, 192, 216], pose and viewpoint estimation [136, 169, 178],
tracking [57], and semantic segmentation [69, 156, 158].

In this chapter, we investigate procedural generation of synthetic human action
videos from virtual worlds in order to generate training data for action recognition
models. This is an open problem with formidable technical challenges, as it requires
a full generative model of videos with realistic appearance and motion statistics
conditioned on specific action categories.

The first contribution of this chapter is a parametric generative model of hu-
man action videos relying on physics, scene composition rules, and procedural
animation techniques like “ragdoll physics” that provide a much stronger prior than
just considering videos as tensors or sequences of frames. We show how to procedu-
rally generate physically plausible variations of different types of action categories
obtained by MOCAP datasets, animation blending, physics-based navigation, or
entirely from scratch using programmatically defined behaviors. We use naturalistic
actor-centric randomized camera paths to film the generated actions with care for
physical interactions of the camera. Furthermore, our manually designed gener-
ative model has interpretable parameters that allow to either randomly sample or
precisely control discrete and continuous scene (weather, lighting, environment,
time of day, etc), actor, and action variations to generate large amounts of diverse,
physically plausible, and realistic human action videos.

The second contribution is an experimental validation of our parametric model,
using a modern and accessible game engine (Unity®Pro) to synthesize a labeled
dataset of 39,982 videos, corresponding to approximately 6M frames, with more
than 1,000 example videos for each of 35 action categories: 21 grounded in MOCAP
data, and 14 entirely synthetic ones defined procedurally. The dataset we propose
in this chapter, called PHAV for “Procedural Human Action Videos” (cf. Figure 4.1

76

4.1. Introduction

Figure 4.1 – Procedurally generated human action videos. Depicted actions, from
the top left: push, kick ball, car hit, walking hug. Top are based on variations of
existent MOCAP sequences for these actions. Bottom have been programatically
defined, with the final movement sequences being created on-the-fly through
ragdoll physics and simulating the effect of physical interactions.

for example frames), is publicly available for download1. Our procedural generative
model took approximately 2 months of work by 2 engineers to be programmed and
our PHAV dataset took 3 days to be generated using 4 gaming GPUs.

The rest of the chapter is organized as follows. In Section 4.2, we present the
scene and action elements contained in our virtual world and the technologies we
use to manipulate them. In section 4.3, we present our interpretable parametric
generative model that establishes the relationship between all variables in our
virtual world. In Section 4.4, we use our model to procedurally generate our PHAV
dataset, listing its main characteristic, and detailing the provided data modalities.

1Dataset and tools available in http://adas.cvc.uab.es/phav/

77

http://adas.cvc.uab.es/phav/

Chapter 4. Procedural Human Action Videos Dataset

Figure 4.2 – Orthographic view of different world regions during day and night. Time
of the day affects lighting and shadows of the world, with urban lights activating at
dusk and deactivating at dawn.

78

4.2. Virtual scene and action elements

Figure 4.3 – World location shared between PHAV and Virtual KITTI [57], as seen
from within the Unity® Pro editor. Image courtesy of Yohann Cabon.

4.2 Virtual scene and action elements

In this section we describe the procedural generation techniques we leverage to
randomly sample diverse yet physically plausible appearance and motion variations,
both for MOCAP-grounded actions and programmatically defined categories.

4.2.1 Action scene composition

In order to generate a human action video, we place a protagonist performing an
action in an environment, under particular weather conditions at a specific period
of the day. There can be one or more background actors in the scene, as well as one
or more supporting characters. We film the virtual scene using a parametric camera
behavior.

The protagonist is the main human model performing the action. For actions
involving two or more people, one is chosen to be the protagonist. Background ac-
tors can freely walk in the current virtual environment, while supporting characters
are actors with a secondary role necessary to complete an action, e.g., hold hands.

The action is a human motion belonging to a predefined semantic category
originated from one or more motion data sources (described in section 4.2.3),
including predetermined motions from a MOCAP dataset, or programmatic actions
defined using procedural animation techniques [47, 190], in particular ragdoll
physics. In addition, we use these techniques to sample physically-plausible motion
variations (described in section 4.2.4) to increase diversity.

The environment refers to a region in the virtual world (cf. Figure 4.2), which

79

Chapter 4. Procedural Human Action Videos Dataset

Figure 4.4 – Schematic representation of our Kite camera.

consists of large urban areas, natural environments (e.g., forests, lakes, and parks),
indoor scenes, and sports grounds (e.g., a stadium). Each of these environments
may contain moving or static background pedestrians or objects – e.g., cars, chairs –
with which humans can physically interact, voluntarily or not. The outdoor weather
in the virtual world can be rainy, overcast, clear, or foggy. The period of the day can
be dawn, day, dusk, or night.

Similar to [57, 158], we use a library of pre-made 3D models obtained from
the Unity Asset Store, which includes artist-designed human, object, and texture
models, as well as semi-automatically created realistic environments (e.g., selected
scenes from the VKITTI dataset [57], cf. Figure 4.3).

80

4.2. Virtual scene and action elements

Figure 4.5 – In-editor representation of the Kite camera. The camera is a physical
object capable of interacting with other objects in the world, which avoids tres-
passing walls or filming from unfeasible locations. The camera focuses on a point
(contact point between orange and blue cords) which is simultaneously attached to
the protagonist and to the camera.

4.2.2 Camera

We use a physics-based camera which we call the Kite camera (cf. Figure 4.4) to
track the protagonist in a scene. This physics-aware camera is governed by a rigid
body attached by a spring to a target position that is, in turn, attached to the
protagonist by another spring. By randomly sampling different parameters for the
drag and weight of the rigid bodies, as well as elasticity and length of the springs,
we can achieve cameras with a wide range of shot types, 3D transformations, and
tracking behaviors, such as following the actor, following the actor with a delay,
or stationary. Another parameter controls the direction and strength of an initial
impulse that starts moving the camera in a random direction. With different rigid
body parameters, this impulse can cause our camera to simulate a handheld camera,
move in a circular trajectory, or freely bounce around in the scene while filming
the attached protagonist. A representation of the camera attachment in the virtual
world is shown in Figure 4.5.

81

Chapter 4. Procedural Human Action Videos Dataset

Base motion Decompose Synthesize

Figure 4.6 – One of our approaches for creating new animation sequences from a
motion data source. We decompose existing action sequences (left) into atomic
motions (middle) and then recombine them into new animation sequences using
procedural animation techniques, like blending and ragdoll physics. This technique
can be used to both generate new motion variations for an existing action category,
and to synthesize new motion sequences for entirely synthetic categories which
do not exist in the data source using simple programmable rules e.g., by tying the
ragdoll hands together (right). The physics engine enforces that the performed
ragdoll manipulations result in physically plausible animations.

4.2.3 Actions

Our approach relies on two main existing data sources for basic human animations.
First, we use the CMU MOCAP database [21], which contains 2605 sequences of 144
subjects divided in 6 broad categories, 23 subcategories and further described with
a short text. We leverage relevant motions from this dataset to be used as a motion
source for our procedural generation based on a simple filtering of their textual
motion descriptions. Second, we use a large amount of hand-designed realistic
motions made by animation artists and available on the Unity Asset Store.

The key insight of our approach is that these sources need not necessarily contain
motions from predetermined action categories of interest, neither synthetic nor target
real-world actions (unknown a priori). Instead, we propose to use these sources
to form a library of atomic motions to procedurally generate realistic action cate-
gories. We consider atomic motions as individual movements of a limb in a larger
animation sequence. For example, atomic motions in a "walk" animation include
movements such as rising a left leg, rising a right leg, and pendular arm movements.
Creating a library of atomic motions enables us to later recombine those atomic
actions into new higher-level animation sequences, e.g., "hop" or "stagger".

82

4.2. Virtual scene and action elements

Table 4.1 – Actions categories included in our PHAV dataset.

Type Count Actions

sub-HMDB 21

brush hair, catch, clap, climb stairs,
golf, jump, kick ball, push, pick,

pour, pull up, run, shoot ball, shoot
bow, shoot gun, sit, stand, swing

baseball, throw, walk, wave

One-person synthetic 10
car hit, crawl, dive floor, flee, hop,
leg split, limp, moonwalk, stagger,

surrender

Two-people synthetic 4 walking hug, walk hold hands, walk
the line, bump into each other

Our PHAV dataset contains 35 different action classes (cf. Table 4.1), including
21 simple categories present in HMDB-51 and composed directly of some of the
aforementioned atomic motions. In addition to these actions, we programmati-
cally define 10 action classes involving a single actor and 4 action classes involving
two person interactions. We create these new synthetic actions by taking atomic
motions as a base and using procedural animation techniques like blending and
ragdoll physics (cf. Section 4.2.4) to compose them in a physically plausible man-
ner according to simple rules defining each action, such as tying hands together
(e.g., "walk hold hands", cf. Figure 4.6), disabling one or more muscles (e.g., "crawl",
"limp"), or colliding the protagonist against obstacles (e.g., "car hit", "bump into
each other").

4.2.4 Physically plausible motion variations

We now describe procedural animation techniques [47, 190] to randomly generate
large amounts of physically plausible and diverse action videos, far beyond what
can be achieved by simply replaying source atomic motions.

Ragdoll physics. A key component of our work is the use of ragdoll physics. Rag-
doll physics are limited real-time physical simulations that can be used to animate
a model (such as a human model) while respecting basic physics properties such as

83

Chapter 4. Procedural Human Action Videos Dataset

Figure 4.7 – Ragdoll configuration with 15 muscles.

84

4.2. Virtual scene and action elements

connected joint limits, angular limits, weight and strength. We consider ragdolls
with 15 movable body parts (referenced herein as muscles), as illustrated in Fig-
ure 4.7. For each action, we separate those 15 muscles into two disjoint groups:
those that are strictly necessary for performing the action, and those that are com-
plementary (altering their movement should not interfere with the semantics of
the currently considered action). The presence of the ragdoll allows us to introduce
variations of different nature in the generated samples. The other modes of variabil-
ity generation described in this section will assume that the physical plausibility
of the models is being kept by the use of ragdoll physics. We use RootMotion’s
PuppetMaster2 for implementing and controlling human ragdolls in Unity® Pro.

Random perturbations. Inspired by [144], we create variations of a given motion
by adding random perturbations to muscles that should not alter the semantic
category of the action being performed. Those perturbations are implemented
by adding a rigid body to a random subset of the complementary muscles. Those
bodies are set to orbit around the muscle’s position in the original animation skele-
ton, drifting the movement of the puppet’s muscle to its own position in a periodic
oscillating movement. More detailed references on how to implement variations of
this type can be found in [47, 144, 145, 190] and references therein.

Muscle weakening. We vary the strength of the avatar performing the action. By
reducing its strength, the actor performs an action with seemingly more difficulty.

Action blending. Similarly to modern video games, we use a blended ragdoll
technique to constrain the output of a pre-made animation to physically plausible
motions. In action blending, we randomly sample a different motion sequence
(coming either from the same or from a different action class, which we refer to as
the base motion) and replace the movements of current complementary muscles
with those from this new sequence. We limit the number of blended sequences in
PHAV to be at most two.

Objects. The last physics-based source of variation is the use of objects. First, we
manually annotated a subset of the MOCAP actions marking the instants in time
where the actor started or ended the manipulation of an object. Second, we use
inverse kinematics to generate plausible programmatic interactions.

2http://root-motion.com

85

http://root-motion.com

Chapter 4. Procedural Human Action Videos Dataset

Table 4.2 – Overview of key random variables of our parametric generative model of
human action videos (cf. Section 4.3.2 for a more detailed list).

Parameter Variable Count Possible values

Human Model H 20 models designed by artists

Environment E 7 simple, urban, green, middle, lake,
stadium, house interior

Weather W 4 clear, overcast, rain, fog

Period of day D 4 night, dawn, day, dusk

Variation V 5 none, muscle perturbation, muscle
weakening, action blending, objects

4.3 Interpretable parametric generative model

In this section we introduce our interpretable parametric generative model of
videos depicting particular human actions, and show how we use it to generate our
PHAV dataset. We start by providing a simplified version of our model (cf. Figure
4.8), listing the main variables in our approach and giving an overview of how
our model is organized. After this brief overview, we show our complete model
(cf. Figure 4.9) and describe its multiple components in detail.

4.3.1 Overview

We define a human action video as a random variable

X = 〈H , A,L,B ,V ,C ,E ,D,W 〉 , (4.1)

where H is a human model, A an action category, L a video length, B a set of
basic motions (from MOCAP, manual design, or programmed), V a set of motion
variations, C a camera, E an environment, D a period of the day, W a weather
condition, and possible values for those parameters are shown in Table 4.2. Given
this definition, a simplified version for our generative model (cf. Figure 4.8) for an
action video X can then be given by:

86

4.3. Interpretable parametric generative model

P (X) =P (H) P (A) P (L | B) P (B | A)

P (Θv |V) P (V | A) P (Θe | E) P (E | A)

P (Θc |C) P (C | A,E)

P (Θd | D) P (D) P (Θw |W) P (W)

(4.2)

where Θw is a random variable on weather-specific parameters (e.g., intensity of
rain, clouds, fog),Θc is a random variable on camera-specific parameters (e.g., weights
and stiffness for Kite camera springs), Θe is a random variable on environment-
specific parameters (e.g., current waypoint, waypoint locations, background pedes-
trian starting points and destinations),Θd is a random variable on period-specific
parameters (e.g., amount of sunlight, sun orientation), and Θv is a random vari-
able on variation-specific parameters (e.g., strength of each muscle, strength of
perturbations, blending muscles). The probability functions associated with cat-
egorical variables (e.g., A) can be either uniform, or configured manually to use
pre-determined weights. Similarly, probability distributions associated with contin-
uous values (e.g.,Θc) are either set using a uniform distribution with finite support,
or using triangular distributions with pre-determined support and most likely value.

We now proceed to give additional details about our graphical model, as well as
the values used to configure the parameter distributions in the next sections.

Figure 4.8 – A simplified view of the graphical model for our generator (cf. Section
4.3.2 for the meaning of each variable). A complete and more detailed version is
shown in Figure 4.9.

87

Chapter 4. Procedural Human Action Videos Dataset

4.3.2 Variables

After the past overview, we now proceed to define the complete version of our
generative model. We start by giving a more precise definition for its main ran-
dom variables. Here we focus only on critical variables that are fundamental in
understanding the orchestration of the different parts of our generation, whereas
all part-specific variables are shown in Section 4.3.3. The categorical variables that
drive most of the procedural generation are:

H : h ∈ {model 1,model 2, . . . ,model 20}

A : a ∈ {“cl ap", . . . ,“bump i nto each other "}

B : b ∈ {moti on1,moti on2, . . . ,moti on953}

V : v ∈ {“none",“r andom per tur bati on",

“weakeni ng ",“ob j ect s",“blendi ng "}

C : c ∈ {“ki te",“i ndoor s",“closeup",“st ati c"}

E : e ∈ {“ur ban",“st adi um",“mi ddl e",

“g r een",“house",“l ake"}

D : d ∈ {“d awn",“d ay",“dusk",“ni g ht"}

W : w ∈ {“clear ",“over cast",“r ai n,“ f og "}

(4.3)

where H is the human model to be used by the protagonist, A is the action category
for which the video should be generated, B is the motion sequence (e.g., from
MOCAP, created by artists, or programmed) to be used as a base upon which
motion variations can be applied (e.g., blending it with secondary motions), V is
the motion variation to be applied to the base motion, C is the camera behavior, E
is the environment of the virtual world where the action will take place, D is the day
phase, and W is the weather condition.

These categorical variables are in turn controlled by a group of parameters
that can be adjusted in order to drive the sample generation. These parameters
include the θA parameters of a categorical distribution on action categories A, the
θW for weather conditions W , θD for day phases D , θH for model models H , θV for
variation types V , and θC for camera behaviors C .

Additional parameters include the conditional probability tables of the depen-
dent variables: a matrix of parameters θAE where each row contains the parameters
for categorical distributions on environments E for each action category A, the
matrix of parameters θAC on camera behaviors C for each action A, the matrix of
parameters θEC on camera behaviors C for each environment E , and the matrix of
parameters θAB on motions B for each action A.

88

4.3. Interpretable parametric generative model

Finally, other relevant parameters include Tmi n , Tmax , and Tmod , the minimum,
maximum and most likely durations for the generated video. We denote the set of
all parameters in our model by θ.

4.3.3 Model

The complete interpretable parametric probabilistic model used by our generation
process, given our generation parameters θ, can be written as:

P (H ,A,L,B ,V ,C ,E ,D,W | θ) =
P1(D,W | θ) P2(H | θ) P3(A,L,B ,V ,C ,E ,W | θ)

(4.4)

where P1, P2 and P3 are defined by the probabilistic graphical models represented
on Figure 4.9a, 4.9b and 4.9c, respectively. We use extended plate notation [14]
to indicate repeating variables, marking parameters (non-variables) using filled
rectangles.

4.3.4 Distributions

The generation process makes use of four main families of distributions: categor-
ical, uniform, Bernoulli and triangular. We adopt the following three-parameter
formulation for the triangular distribution:

Tr (x | a,b,c) =



0 for x < a,
2(x−a)

(b−a)(c−a) for a ≤ x < c,

2
b−a for x = c,

2(b−x)
(b−a)(b−c) for c < x ≤ b,

0 for b < x.

(4.5)

All distributions are implemented using the open-source Accord.NET Framework3

[40]. While we have used mostly uniform distributions to create the dataset used in
our experiments, we have the possibility to bias the generation towards values that
are closer to real-world dataset statistics.

3http://accord-framework.net

89

http://accord-framework.net

Chapter 4. Procedural Human Action Videos Dataset

(a) Probabilistic graphical model for P1(D,W | θ), the
first part of our parametric generator (world time and
weather).

(b) Probabilistic graphical model for P2(H | θ), the sec-
ond part of our parametric generator (human models).

(c) Probabilistic graphical model for P3(A,L,B ,V ,C ,E ,W | θ), the third part of our parametric generator (scene and
action preparation).

Figure 4.9 – Our complete probabilistic graphical model, divided in three parts.

90

4.3. Interpretable parametric generative model

Day phase. As real-world action recognition datasets are more likely to contain
video recordings captured during daylight, we fixed the parameter θD such that

P (D = d awn | θD) = 1/3

P (D = d ay | θD) = 1/3

P (D = dusk | θD) = 1/3

P (D = ni g ht | θD) = 0.

(4.6)

We note that although our system can also generate night samples, we do not
include them in PHAV at this moment.

Weather. In order to support a wide range of applications of our dataset, we fixed
the parameter θW such that

P (W = clear | θW) = 1/4

P (W = over cast | θW) = 1/4

P (W = r ai n | θW) = 1/4

P (W = f og | θW) = 1/4,

(4.7)

ensuring all weather conditions are present.

Camera. In addition to the Kite camera, we also included specialized cameras
that can be enabled only for certain environments (Indoors), and certain actions
(Close-Up). We fixed the parameter θC such that

P (C = ki te | θC) = 1/3

P (C = closeup | θC) = 1/3

P (C = i ndoor s | θC) = 1/3.

(4.8)

However, we have also fixed θC E and θAC such that the Indoors camera is only
available for the house environment, and that the Close-Up camera can also be
used for the BrushHair action in addition to Kite.

91

Chapter 4. Procedural Human Action Videos Dataset

Environment, human model and variations. We fixed the parameters θE , θH ,
and θV using equal weights, such that the variables E , H , and V can have uniform
distributions.

Base motions. We select a main motion sequence which will be used as a base
upon which a variation V is applied cf. Section 4.3.2). Base motions are weighted
according to the minimum video length parameter Tmi n , where motions whose
duration is less than Tmi n are assigned weight zero, and others are set to uniform,
such that

P (B = b|Tmi n) ∝
{

1 if leng th(b) ≥ Tmi n

0 otherwise
. (4.9)

This weighting is used to ensure that the motion that will be used as a base is
long enough to fill the minimum desired duration for a video. We then perform the
selection of a motion B given a category A by introducing a list of regular expressions
associated with each of the action categories. We then compute matches between
the textual description of the motion in its source (e.g., short text descriptions in
[21]) and these expressions, such that

(θAB)ab =
{

1 if match(regexa ,descb)

0 otherwise
∀a ∈ A,∀b ∈ B. (4.10)

We then use θAB such that

P (B = b | A = a,θAB) ∝ (θAB)a,b . (4.11)

Weather elements. The selected weather W affects world parameters such as the
sun brightness, ambient luminosity, and multiple boolean variables that control
different aspects of the world (cf. Figure 4.9a). The activation of one of these boolean
variables (e.g., fog visibility) can influence the activation of others (e.g., clouds)
according to Bernoulli distributions (p = 0.5).

World clock time. The world time is controlled depending on D . In order to avoid
generating a large number of samples in the borders between two periods of the
day, where the distinction between both phases is blurry, we use different triangular
distributions associated with each phase, giving a larger probability to hours of

92

4.3. Interpretable parametric generative model

interest (sunset, dawn, noon) and smaller probabilities to hours at the transitions.
We therefore define the distribution of the world clock times P (T) as:

P (T = t | D) ∝ ∑
d∈D

P (T = t | D = d) (4.12)

where

P (T = t | D =d awn) = Tr (t | 7h, 10h, 9h)

P (T = t | D =d ay) = Tr (t | 10h, 16h, 13h)

P (T = t | D =dusk) = Tr (t | 17h, 20h, 18h)

P (T = t | D =ni g ht) = Tr (t | 20h, 7h, 0h).

(4.13)

Generated video duration. The selection of the clip duration L given the selected
motion b is performed considering the motion length Lb , the maximum video
length Tmi n and the desired mode Tmod :

P (L = l | B = b) = Tr (a = Tmi n ,

b = mi n(Lb ,Tmax),

c = mi n(Tmod ,Lb)).

(4.14)

Actors placement and environment. Each environment E has at most two asso-
ciated waypoint graphs. One graph refers to possible positions for the protagonist,
while an additional second graph gives possible positions BW G for spawning back-
ground actors. Indoor scenes (cf. Figure 4.10) do not include background actor
graphs. After an environment has been selected, a waypoint PW is randomly se-
lected from the graph using an uniform distribution. The protagonist position Px y z

is then set according to the position of PW . The Sx y z position of each supporting
character, if any, is set depending on Px y z . The position and destinations for the
background actors are set depending on BW G .

Camera placement and parameters. After a camera has been selected, its posi-
tion Cx y z and the position Tx y z of the target are set depending on the position Px y z

of the protagonist. The camera parameters are randomly sampled using uniform
distributions on sensible ranges according to the observed behavior in Unity. The
most relevant secondary variables for the camera are shown in Figure 4.9c. They

93

Chapter 4. Procedural Human Action Videos Dataset

Figure 4.10 – Example of indoor (top) and outdoor (bottom) locations.

include Unity-specific parameters for the camera-target (C Ts , C Tm) and target-
protagonist springs (T Ps , C Tm) that can be used to control their strength and a
minimum distance tolerance zone in which the spring has no effect (remains at
rest). In our generator, the minimum distance is set to either 0, 1 or 2 meters with
uniform probabilities. This setting is responsible for a "delay" effect that allows
the protagonist to not be always in the center of camera focus (and thus avoiding
creating such bias in the data).

Action variations. After a variation mode has been selected, the generator needs
to select a subset of the ragdoll muscles (cf. Figure 4.7) to be perturbed (random
perturbations) or to be replaced with movement from a different motion (action
blending). These muscles are selected using a uniform distribution on muscles
that have been marked as non-critical depending on the previously selected action
category A. When using weakening, a subset of muscles will be chosen to be
weakened with varying parameters independent of the action category. When using
objects, the choice of objects to be used and how they have to be used is also
dependent on the action category.

94

4.3. Interpretable parametric generative model

Figure 4.11 – Example generation failure cases. First row: too strong perturbations
(tiny model, brushing hair looks like dancing). Second row: limitation in the physics
engine together with ragdoll system and MOCAP action can lead to physics viola-
tions (passing through a wall). Third row: problems in the automatic configuration
of the ragdoll model can result in overconstrained joints and unintended variations.

Failure cases. Although our approach uses physics-based procedural animation
techniques, unsupervised generation of large amounts of random variations with
a focus on diversity inevitably causes edge cases where physical models fail. This
results in glitches reminiscent of typical video game bugs (cf. Figure 4.11). Using a
random 1% sample of our dataset, we manually estimated that this corresponds
to less than 10% of the videos generated. Although this could be improved, our
experiments in Chapter 5 show that this noise does not prevent us from improving
the training of deep action recognition networks using this data.

Extension to complex activities. Using ragdoll physics and a large enough library
of atomic actions, it is possible to create complex actions by hierarchical compo-
sition. For instance, our "Car Hit" action is procedurally defined by composing
atomic actions of a person (walking and/or doing other activities) with those of
a car (entering in a collision with the person), followed by the person falling in a
physically plausible fashion. However, while atomic actions have been validated as
an effective decomposition for the recognition of potentially complex actions [55],
we have not studied how this approach would scale with the complexity of the
actions, notably due to the combinatorial nature of complex events. We leave this
as future work.

95

Chapter 4. Procedural Human Action Videos Dataset

4.4 Generating a synthetic action dataset

We validate our approach for synthetic video generation by generating a new dataset
for action recognition, such that the data from this dataset could be used to comple-
ment the training set of existing target real-world datasets in order to obtain action
classification models which perform better in their respective real-world tasks. In
this section we give details about how we have used the aforedescribed model to
generate our PHAV dataset.

In order to create PHAV, we generate videos with lengths between 1 and 10
seconds, at 30 FPS, and resolution of 340×256 pixels, as this is the same resolution
expected by state-of-the-art action recognition models such as [208]. We use anti-
aliasing, motion blur, and standard photo-realistic cinematic effects (cf. Figure 4.12).
We have generated 55 hours of videos, with approximately 6M frames and at least
1,000 videos per action category.

Figure 4.12 – Comparison between raw (left) vs. post-processed (right) RGB frames.

96

4.4. Generating a synthetic action dataset

Table 4.3 – Statistics of the generated dataset instance.

Statistic Value

Total dataset clips 39,982
Total dataset frames 5,996,286
Total dataset duration 2d07h31m
Average video duration 4.99s
Average number of frames 149.97
Frames per second 30
Video width 340
Video height 256
Average clips per category 1,142.3
Image modalities (streams) 6

Our parametric model can generate fully-annotated action videos (including
depth, flow, semantic segmentation, and human pose ground-truths) at 3.6 FPS us-
ing one consumer-grade gaming GPU (NVIDIA GTX 1070). In contrast, the average
annotation time for data-annotation methods such as [19, 37, 156] are significantly
below 0.5 FPS. While those works deal with semantic segmentation (where the cost
of annotation is higher than for action classification), we can generate all modalities
for roughly the same cost as RGB.

4.4.1 Statistics

A summary of the key statistics for the generated dataset can be seen in Table
4.3. Figure 4.13 shows the number of videos generated for each action category in
PHAV. As it can be seen, the number is higher than 1,000 samples for all categories.
Figure 4.14 shows the number of videos generated by value of each main random
generation variable. The histograms reflect the probability values presented in
Section 4.3.4. While our parametric model is flexible enough to generate a wide
range of world variations, we have focused on generating videos that would be more
similar to those in the target datasets.

4.4.2 Data modalities

Our generator outputs multiple data modalities for a single video, which we include
in our public release of PHAV (cf. Figures 4.15 and 4.16). Those data modalities are
rendered roughly at the same time using Multiple Render Targets (MRT), resulting
in a superlinear speedup as the number of simultaneous output data modalities
grow. The modalities in our public release include:

97

Chapter 4. Procedural Human Action Videos Dataset

Figure 4.13 – Plot of the number of videos generated for each category in PHAV.

98

4.4. Generating a synthetic action dataset

Figure 4.14 – Plot of the number of videos per parameter value in PHAV. 99

Chapter 4. Procedural Human Action Videos Dataset

Rendered RGB Frames. These are the RGB frames that constitute the action video.
They are rendered at 340×256 resolution and 30 FPS such that they can be directly
feed to Two-Stream style networks. Those frames have been post-processed with
2x Supersampling Anti-Aliasing (SSAA) [23, 123], motion blur [177], bloom [177],
ambient occlusion [102, 120, 157], screen space reflection [174], color grading [166],
and vignette [223].

Semantic Segmentation. These are the per-pixel semantic segmentation ground-
truths containing the object class label annotations for every pixel in the RGB frame.
They are encoded as sequences of 24-bpp PNG files with the same resolution as
the RGB frames. We provide 63 pixel classes (cf. Table 4.4), which include the same
14 classes used in Virtual KITTI [57], classes specific for indoor scenarios, classes
for dynamic objects used in every action, and 27 classes depicting body joints and
limbs (cf. Figure 4.17).

Instance Segmentation. These are the per-pixel instance segmentation ground-
truths containing the person identifier encoded as different colors in a sequence of
frames. They are encoded in exactly the same way as the semantic segmentation
ground-truth explained above.

Depth Map. These are depth map ground-truths for each frame. They are repre-
sented as a sequence of 16-bit grayscale PNG images with a fixed far plane of 655.35
meters. This encoding ensures that a pixel intensity of 1 can correspond to a 1cm
distance from the camera plane.

Optical Flow. These are the ground-truth (forward) optical flow fields computed
from the current frame to the next frame. We provide separate sequences of frames
for the horizontal and vertical directions of optical flow represented as sequences
of 16-bpp JPEG images with the same resolution as the RGB frames.

Raw RGB Frames. These are the raw RGB frames before any of the post-processing
effects mentioned above are applied. This modality is mostly included for com-
pleteness, and has not been used in experiments shown in this thesis.

Pose, location and additional information. Although not an image modality,
our generator also produces extended metadata for every frame. This metadata
includes camera parameters, 3D and 2D bounding boxes, joint locations in screen
coordinates (pose), and muscle information (including muscular strength, body
limits and other physical-based annotations) for every person in a frame.

100

4.4. Generating a synthetic action dataset

Figure 4.15 – Example frames and data modalities for a synthetic action (car hit, left)
and MOCAP-based action (sit, right). From top to bottom: Rendered RGB Frames,
Semantic Segmentation, Instance Segmentation.

101

Chapter 4. Procedural Human Action Videos Dataset

Figure 4.16 – Example frames and data modalities for a synthetic action (car hit, left)
and MOCAP-based action (sit, right). From top to bottom: Depth Map, Horizontal
Optical Flow, and Vertical Optical Flow. Depth image brightness has been adjusted
in this figure to ensure visibility on paper.

102

4.4. Generating a synthetic action dataset

Figure 4.17 – Semantic segmentation ground-truth for human bodies in PHAV. In
order to make our approach scalable, body segments are determined automatically
for every model through a series of line and distance tests with models in a stan-
dardized key position. The spatial resolution of the segments are determined by the
resolution of their meshes.

103

Chapter 4. Procedural Human Action Videos Dataset

Table 4.4 – Pixel-wise object-level classes in PHAV.

Group Pixel class R G B

V
ir

tu
al

K
IT

T
I

[5
7]

C
it

yS
ca

p
es

[3
7]

Road 100 60 100
Building 140 140 140
Pole 255 130 0
TrafficLight 200 200 0
TrafficSign 255 255 0
Vegetation 90 240 0
Terrain 210 0 200
Sky 90 200 255
Car 255 127 80
Truck 160 60 60
Bus 0 139 139
Misc 80 80 80

Tree 0 199 0

A
D

E
20

k
[2

24
]

In
d

o
o

rs

Ceiling 240 230 140
Floor 0 191 255
Chair 72 61 139
Table 255 250 205
Bed 205 92 92
Lamp 160 82 45
Sofa 128 0 128
Window 0 128 0
Door 127 255 212
Stairs 219 112 147
Curtain 230 230 250
Fireplace 233 150 122
Shelf 153 50 204
Bench 245 222 179
Screen 218 165 32
Fridge 255 255 240

In
te

ra
ct

io
n

o
b

je
ct

s

Ball 178 34 34
Baseball Bat 210 105 30
Gun 255 248 220
Golf Club 173 255 47
Hair Brush 224 255 255

P
H

AV
-o

n
ly Bow 95 158 160

Group Pixel class R G B

H
u

m
an

Pa
rt

s

Head 220 20 60
RightUpperArm 255 255 26
RightLowerArm 255 215 0
RightHand 255 140 0
LeftUpperArm 60 179 113
LeftLowerArm 135 206 235
LeftHand 100 149 237
Chest 248 248 255
RightUpperLeg 102 51 153
RightLowerLeg 164 89 58
RightFoot 220 173 116
LeftUpperLeg 0 0 139
LeftLowerLeg 255 182 193
LeftFoot 255 239 213

Jo
in

ts

Neck 152 251 152
LeftShoulder 47 79 79
RightShoulder 85 107 47
LeftElbow 25 25 112
RightElbow 128 0 0
LeftWrist 0 255 255
RightWrist 238 130 238
LeftHip 147 112 219
RightHip 143 188 139
LeftKnee 102 0 102
RightKnee 69 33 84
LeftAnkle 50 205 50
RightAnkle 255 105 180

Pixel-wise object-level classes in PHAV. Some of the classes have been derived from semantic
segmentation labels present in other datasets. These include: CityScapes [37] (mostly for
outdoor object classes), Virtual KITTI [57] (which contains a subset of the class labels in
CityScapes), and ADE20k [224] (mostly for indoor object classes). The human body has
been segmented in 14 parts and 13 joints, for a total of 27 segments. We note that our
chosen separation can be combined to recover part separations used in PASCAL-Part [31]
and J-HMDB [84] datasets.

104

4.4. Generating a synthetic action dataset

Procedural Video Parameters. We also include the internal state of our generator
and virtual world at the beginning of the data generation process of each video. This
data can be seen as large, sparse vectors that determine the content of a procedurally
generated video. These vectors contain the values of all possible parameters in our
video generation model, including detailed information about roughly every rigid
body, human characters, the world, and otherwise every controllable variable in our
virtual scene, including the random seed which will then influence how those values
will evolve during the video execution. As such, these vectors include variables that
are discrete (e.g., visibility of the clouds), continuous (e.g., x-axis position of the
protagonist), piecewise continuous (e.g., time of the day), and angular (e.g., rotation
of the Earth). These vectors can therefore be seen as procedural recipes for each of
our generated videos.

4.4.3 Example frames

In this section, we include random frames for a subset of the action categories in
PHAV. These frames show the effect of different variables and motion variations
being used (cf. Table 4.2). Each frame below is marked with a label indicating the
value for different variables during the execution of the video, using the legend
shown in Figure 4.18.

Figure 4.18 – Legend for synthetic action video variations to be used in the frames
contained in this section (cf. Figures 4.19, 4.20, 4.21, 4.22, and 4.22).

105

Chapter 4. Procedural Human Action Videos Dataset

Figure 4.19 – Changing environments. Top: kick ball, bottom: synthetic car hit.106

4.4. Generating a synthetic action dataset

Figure 4.20 – Changing phases of the day. Top: run, bottom: golf. 107

Chapter 4. Procedural Human Action Videos Dataset

Figure 4.21 – Changing weather. Top: walk, bottom: kick ball.108

4.4. Generating a synthetic action dataset

Figure 4.22 – Changing motion variations. Top: kick ball, bottom: synthetic car hit. 109

Chapter 4. Procedural Human Action Videos Dataset

Figure 4.23 – Changing human models. Top: walk, bottom: golf.110

4.5. Summary of the chapter

4.5 Summary of the chapter

In the work presented in this chapter, we have introduced PHAV, a large synthetic
dataset for action recognition based on a procedural generative model of videos.

Our approach uses techniques from computer graphics (procedural generation)
to generate data collections that can be used to train state-of-the-art deep learning
models for action recognition. This opens interesting new perspectives for video
modeling and understanding, including action recognition models that can leverage
algorithmic ground truth generation for optical flow, depth, semantic segmentation,
or pose, or the combination with unsupervised generative models like VGAN for
dynamic background generation, domain adaptation, or real-to-virtual world style
transfer [60, 227].

Although our model does not learn video representations like VGAN [198]
(cf. Section 2.4), it can generate many diverse training videos thanks to its grounding
in strong prior physical knowledge about scenes, objects, lighting, motions, and
humans. Our detailed graphical model shows how a complex video generation can
be driven through a few simple parameters. We have also shown that generating
action videos while still taking the effect of physics into account is a challenging
task.

In the next chapter, we will provide quantitative evidence that our procedurally
generated videos can be used as a complement to small training sets of manually
labeled real-world videos, as well as propose new deep learning models that leverage
the extra data modalities present in PHAV.

111

5 Learning more about the real world with
synthetic action videos

Art begins in imitation and ends in
innovation.

Mason Cooley

In the previous chapter, we investigated the generation of synthetic training data
for action recognition, as it has recently shown promising results for a variety of
other computer vision tasks. In this chapter, we introduce two deep multi-task
representation learning architectures that are able to leverage synthetic data to
learn more about the real world by mixing synthetic and real videos, even if the
action categories differ. We also show how to integrate different data modalities
and ground-truths during learning, when those sources are available only for the
virtual task. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest
that combining our large set of synthetic videos with small real-world datasets
can boost recognition performance, significantly outperforming state-of-the-art
unsupervised generative models of videos which have been fine-tuned for action
classification.

5.1 Introduction

DEEP LEARNING for human action recognition in videos is making significant
progress, but is slowed down by its dependency on expensive manual labeling of
large video collections. Due the lack of large quantities of labeled video data, recent
deep learning architectures for action are often pre-trained on large-scale image
datasets (e.g., ImageNet, [170]), even for modalities that are exclusive for video
(e.g., optical flow, [208]).

Addressing this issue, in Chapter 4 we have proposed an interpretable paramet-
ric generative model of human action videos that relies on procedural generation
and other computer graphics techniques of modern game engines. We then used

113

Chapter 5. Learning more about the real world with synthetic action videos

it to generate a diverse and physically plausible dataset of human action videos,
called PHAV for “Procedural Human Action Videos”, containing a total of 39,982
videos, with more than 1,000 examples for each action of 35 categories.

In this chapter, we now investigate approaches to leverage these synthetic hu-
man action videos to train deep action recognition models. Our experiments suggest
that our procedurally generated action videos can complement scarce real-world
data. Furthermore, we also look into ways to leverage the multiple data modalities
that are available in PHAV (cf. Section 4.4.2). Exploring multiple data modalities
has been shown to be an effective approach to achieve better and more efficient
models in both image-based [25, 76, 86, 128, 210, 214, 218], and video-based action
recognition [81, 181, 208, 213, 230], e.g., by taking optical flow as an input for one of
the streams in Simonyan et al. ’s Two Stream architecture [170]. In particular, [84]
has shown that having access to ground-truth data for human body parts can lead
to significant improvements in the performance of handcrafted action recognition
models, while the recent work of [230] has shown that incorporating localized infor-
mation about human actors, such as joint localization, pose estimation, or parsing
of human body parts through an extra modality could also prove beneficial for
deep models. This motivates us to explore ways to incorporate such data our deep
models for action recognition even though it may be only available in PHAV. We
focus in particular on human parsing, i.e. segmenting human body parts, because
this information is highly relevant for human action recognition.

The first contribution of this chapter is a deep multi-task learning architecture
that can learn from real-world and synthetic data sources at the same time. To allow
for generic use, and as predefined procedural action categories may differ from
real-world target ones, we propose multi-task learning architectures based on the
recent Temporal Segment Network [208] (TSN). We call our first model Cool-TSN
(cf. Figure 5.1) in reference to the “cool world” of [193], as we mix both synthetic and
real samples at the mini-batch level during training. Our experiments show that
our synthetic human action videos can significantly improve action recognition
accuracy, especially with small real-world training sets, in spite of differences in
appearance, motion, and action categories.

The second contribution of this chapter is a deep multi-task learning architec-
ture that can learn from multiple data modalities even though some are not available
for real-world samples. To demonstrate the usefulness of the extra modalities in our
dataset, which may not be available for target datasets and certainly not at testing
time while operating in the real world, we propose an end-to-end Human Parsing
TSN (HPTSN). We then proceed to give it the same “cool world” treatment as in
our Cool-TSN, i.e. mixing synthetic and real samples in the same mini-batch. This
network uses the semantic segmentation ground-truth from PHAV to induce known
useful internal representations [84, 230] inside a deep network to obtain better

114

5.1. Introduction

classification performance. We call our second model Cool-HPTSN (cf. Figure 5.2),
creating a model which is inspired by both the recent DeepLab [31] architecture
for semantic segmentation as well as the TSN. We show that these networks can be
used to replace the flow stream in Two-Stream Network architectures, which may be
advantageous in case flow algorithms are too costly to compute or if the sequence
of frames have been taken too far apart and optical flow cannot be computed.

The third contribution of this chapter is an experimental quantitative valida-
tion of our dataset described in Chapter 4. We learn end-to-end action recognition
models for real-world target categories by combining a few examples of labeled real-
world videos with a large number of procedurally generated videos. We show that,
although the synthetic examples differ in statistics and categories, their realism,
quantity, and diversity can act as a strong prior and regularizer against overfitting,
and enable representation learning with few manually labeled real videos.

A recent alternative to our procedural generative model that also does not
require manual video labeling is the unsupervised Video Generative Adversarial
Network (VGAN) of [198], which we recall from Section 2.4. Instead of leveraging
prior structural knowledge about physics and human actions, the authors view
videos as tensors of pixel values and learn a two-stream GAN on 5,000 hours of
unlabeled Flickr videos. This method focuses on tiny and short videos, and on
capturing scene motion assuming a stationary camera. This architecture can be
used for action recognition in videos when complemented with prediction layers
fine-tuned on labeled videos. Compared to this approach, our proposal allows to
work with any state-of-the-art discriminative architecture, as video generation and
action recognition are completely decoupled steps. Moreover, we can decide what
specific actions/scenarios/camera-motions to generate, enforcing diversity thanks
to our interpretable parametrization. For these reasons, we show in Section 5.4 that,
given the same amount of labeled videos, our model achieves nearly two times the
performance of the unsupervised features shown in [198].

Regarding our approach for leveraging extra modalities, the closest work to ours
is that of [230], who also used a third stream based on semantic segmentation. The
authors used a Fast-Net architecture [130] to obtain human body parts from RGB
frames, encoded these body parts into RGB images using a mapping of pre-defined
RGB values, and then classified these sequences of re-encoded RGB frames using
C3D [187] (cf. Section 2.3.1). The authors fuse representations from all streams via a
Markov chain, obtaining a sequential refinement of the action labels. Our model
differs significantly from this work in several aspects: (i) while [230] constructs
ground-truth for the segmentation network by approximating part shapes with
polygons and ellipses, we leverage a synthetic data source in order to output a more
precise pixel-level segmentation of human body parts; (ii) we incorporate uncer-
tainty into the parsing result, and do so in an efficient manner using color blending;

115

Chapter 5. Learning more about the real world with synthetic action videos

Figure 5.1 – Our "Cool-TSN" deep multi-task learning architecture for end-to-end
action recognition in videos.

(iii) we train our models end-to-end. Moreover, we note that the advancements
reported in both [230] and in this chapter are not mutually exclusive but in fact,
orthogonal: As our experiments show that complementing real with synthetic data
leads to observable performance improvements in multiple tasks, this suggests that
our approach for multi-task and multi-modality learning for leveraging synthetic
data could be used to obtain improved versions of the models presented in [230].
In the same way, the approach for multi-stream chaining described in [230] could
also be used to modify our TSN-based architectures to obtain the same sequential
refinement of action labels.

The remainder of this chapter is organized as follows: In Section 5.2 and 5.3
we present, respectively, our Cool-TSN and Cool-HPTSN deep learning algorithms
for action recognition. We then report our quantitative experiments in Section 5.4,
measuring the usefulness of PHAV and the effectiveness of our proposed models.
Finally, we draw our conclusions in Section 5.5.

5.2 Cool Temporal Segment Networks

We propose to demonstrate the usefulness of our PHAV dataset via deep multi-task
representation learning. Our main goal is to learn end-to-end action recognition
models for real-world target categories by combining a few examples of labeled
real-world videos with a large number of procedurally generated videos for different
surrogate categories in PHAV.

116

5.2. Cool Temporal Segment Networks

5.2.1 Temporal Segment Networks

Wang et al. ’s TSN architecture [208] can be seen as an improvement over the original
Two-Stream Network (2SN) architecture of [170] (cf. Section 2.3.3). Both networks
are based on two independent networks, each of which specialized in different
modalities from the action videos (spatial and temporal). The TSN incorporates
important additions that bring performance improvements over Simonyan et al. ’s
original work: (i) a deeper Inception architecture using modern deep learning
improvements such as Batch-Normalization and DropOut, (ii) a better initialization
procedure for the temporal stream, and (iii) an explicit approach for capturing
long-range temporal structures in a video. This approach, which inspires the name
“Temporal Segment Networks”, consists in taking a fixed number of k ordered video
segments, learning predictions from those segments jointly, and then combining
these predictions using a segmental consensus function G. For all models described
in this chapter, we use the same parameters as [208]: a number of segments k = 3,
and the consensus function:

G = 1

k

k∑
t=1

F (Tt ;W), (5.1)

where F (Tt ;W) is a function representing a CNN architecture with weight parame-
ters W operating on short snippet Tt from video segment t . We use this architecture
as a base for all of our models proposed in this chapter.

5.2.2 Multi-task learning in a Cool World

Figure 5.1 depicts our learning algorithm inspired by the Two Streams approach
of [170], but adapted with the recent state-of-the-art TSN method of [208], and
coupled with the “cool worlds” technique of [193], i.e. mixing real and virtual data
during training. As illustrated in Figure 5.1, the main differences between TSN and
our proposed "Cool-TSN" architecture are at both ends of the training procedure:
(i) the mini-batch generation, and (ii) the multi-task prediction and loss layers.

Cool mixed-source mini-batches. Inspired by [158, 193], we build mini-batches
containing a mix of real-world videos and synthetic ones. Following [208], we build
mini-batches of 256 videos divided in blocks of 32 dispatched across 8 GPUs for
efficient parallel training using MPI1. Each block contains 10 random synthetic
videos and 22 real videos in all our experiments with our Cool-TSN, as we observed

1https://github.com/yjxiong/temporal-segment-networks

117

https://github.com/yjxiong/temporal-segment-networks

Chapter 5. Learning more about the real world with synthetic action videos

it roughly balances the contribution of the different losses during backpropagation.
Note that although we could use our ground-truth synthetic flow for the PHAV sam-
ples in the motion stream, we use the same fast optical flow estimation algorithm
as [208] (TV-L1 [219]) for all samples in order to fairly estimate the usefulness of our
generated videos.

Multi-task prediction and loss layers. We use a multi-task approach to ensure
our architecture can be trained on multiple datasets whose action categories are
not required to intersect. Starting from the last feature layer of each stream, our
architecture splits into two parallel branches: one of which is used to categorize
videos from PHAV and the other which categorizes videos from the real-world
dataset. Each branch consists of its own fully-connected prediction, segmental
consensus, and softmax loss layers. We obtain the following multi-task loss:

L (y ,G) = ∑
z∈{r eal ,vi r tual }

δ{y∈Cz }wzLz (y ,G) (5.2)

with

Lz (y ,G) =− ∑
i∈Cz

yi

(
Gi − log

∑
j∈Cz

expG j

)
(5.3)

where z indexes the source dataset (real or virtual) of the video, wz is a loss weight
(we use the relative proportion of z in the mini-batch, i.e. wr eal = 22/32 and wvi r tual =
10/32), Cz denotes the set of action categories for dataset z, and δ{y∈Cz } is the indi-
cator function that returns 1 when label y belongs to Cz and 0 otherwise. We
use standard SGD with backpropagation to minimize our objective, and as every
mini-batch contains both real and virtual samples, every iteration is guaranteed
to update both the shared feature layers and the separate prediction layers for the
real and virtual videos in a common descent direction. We discuss the setting of the
hyper-parameters in Section 5.4.

5.3 Cool Human Parsing Temporal Segment Networks

In this section we now show our approach for multi-modality learning with PHAV.
Our goal is to obtain end-to-end trainable action recognition models for real-world
target categories that leverage multiple data modalities during training, even if
some of those modalities are not available in the real-world datasets.

118

5.3. Cool Human Parsing Temporal Segment Networks

Real-world video

Data collection

Human-based
data annotation

(e.g., crowdsourcing)

Real manually-labelled
videos for target tasks

M
an

u
al

 d
at

a
co

lle
ct

io
n

P
ro

ce
d

u
ra

l d
at

a
ge

n
er

at
io

n

Snippets

}
}
}

𝑡1

𝑡2

𝑡3

}

}
}

𝑡1

𝑡2

𝑡3

Parametric generative
model for action videos

Synthetic videos
for related tasks

Game engine

Synthetic pixel-wise
perfect ground-truth

mixed source mini-batches

Input images Pixel-wise labels
x

Synthetic video
+ pixel-wise ground-truth

ො𝑦𝑟𝑒𝑎𝑙
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

real loss

Three-stream Temporal Segment Networks

Pixel-wise
part labels

𝑡1

𝑡2

𝑡3

Segmental
consensus

Segmental
consensus

Segmentation loss

Pixel-wise semantic label reconstruction

(for synthetic samples only)

Flow

RGB

real loss

ො𝑦𝑟𝑒𝑎𝑙
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙

virtual loss

Class.
loss

+

𝑤𝑟

𝑤𝑣

+

Segmental
consensus

Segmental
consensus

real loss

ො𝑦𝑟𝑒𝑎𝑙
𝑝𝑎𝑟𝑡𝑠

ො𝑦𝑣𝑖𝑟𝑡𝑢𝑎𝑙
𝑝𝑎𝑟𝑡𝑠

total loss

𝑤𝑐𝑤𝑠

Cool Human Parsing Temporal Segment Network

Figure 5.2 – Our full architecture for human action recognition in videos. The third
stream can be trained end-to-end from multiple datasets, even when semantic
segmentation ground-truth is available for only some of them.

5.3.1 Human Parsing Temporal Segment Networks

Inspired by [84, 230], we extend the TSN with fully-convolutional layers in order
to incorporate body part localization as an internal representation within a third
stream. Our “HPTSN” (Figure 5.2, highlighted in blue) can be divided in three
parts: (i) the human semantic parsing layers; (ii) the pixel-wise semantic color
transformation layer; and (iii) the action classification layers.

Human parsing layers. Since we deal with what is essentially a semantic segmen-
tation problem, we base the first part of our architecture on the DeepLab network of
[31] with few modifications. Instead of using Atrous Spatial Pyramid Pooling (ASPP),
we use a single model with a dilation of 6, which was shown in our experiments to
perform well for parsing the PASCAL-Part dataset [32] (cf. Section 2.1.1). We also
modify it to have the same output resolution of 340× 256 as expected by Wang
et al. ’s TSN, and to classify each pixel from the input RGB frames into 11 body part
categories (cf. Table 5.1).

The output of the human parsing layers is a per-pixel probability map X of size
(c,h, w), where c is the number of semantic classes, h is the input image height,
and w is the input image width. In this work, we take c = 11, w = 340, and h = 256.
Each value Xi j k ≥ 0 represents the probability that the pixel at row i , and column j ,
belongs to class k, with

∑C
k=1 Xi j k = 1 for any 1 ≤ i ≤ w , 1 ≤ j ≤ h.

119

Chapter 5. Learning more about the real world with synthetic action videos

Pixel-wise semantic color transformation layer. After the human parsing layers
have produced class assignment scores for each pixel in a frame, we map the
prediction vector for each pixel into an RGB value using a color transformation
layer. This layer produces a soft-assignment of colors through color blending.
This soft-assignment enables our model to remain fully differentiable and thus
amenable to end-to-end training using backpropagation. We also show in the
experimental section that using this soft segmentation can have a positive effect in
action classification performance.

Our color transform is implemented as a standard cross-correlation layer using
1×1 cross-correlations where the filter weight matrix corresponds to a matrix of
RGB colors. The output value of a cross-correlation layer with 1×1 filters, input size
(c,h, w) and output (d ,h, w) can be described as:

Y j = b j +
c∑

k=1
W j k ?Xk (5.4)

where ? is the valid 2D cross-correlation operator, b is the bias vector, d is the
number of output channels, 1 ≤ j ≤ d is the output channel index. Since we use this
convolution to transform c channels to RGB colors, we always consider d = 3. The
RGB image generated by the color transformation layer can therefore be expressed
as:

Y (r) = b(r) +
11∑

k=1
W (r)

k ?Xk

Y (g) = b(g) +
11∑

k=1
W (g)

k ?Xk

Y (b) = b(b) +
11∑

k=1
W (b)

k ?Xk

(5.5)

where W (r)
k , W (g)

k , and W (b)
k correspond to the amount of red, green, and blue values

in the color representation for class k considering a RGB coloring system (cf. Tables
4.4 and 5.1 for example representations). Since the RGB image output by the color
encoding layer will be used to feed a subsequent classification network, we set the
bias vectors b to the negative of the average pixel values in the target dataset. With
this, we implement the mean vector subtraction which is expected for the inputs of
the pre-trained layers of the TSN.

120

5.3. Cool Human Parsing Temporal Segment Networks

Table 5.1 – Human body part classes used in our experiments.

Semantic class Classes in PHAV Classes in PASCAL-Part

1 (background) (background)

2

Neck Neck
Head Head

Left Ear
Left Eye

Left Eyebrow
Right Ear
Right Eye

Right Eyebrow
Mouth

Hair
Nose

3

Chest Torso
LeftShoulder

RightShoulder
LeftHip

RightHip

4 RightUpperArm Right Upper Arm

5

RightLowerArm Right Lower Arm
RightElbow Right Hand
RightWrist
RightHand

6 LeftUpperArm Left Upper Arm

7

LeftElbow Left Lower Arm
LeftLowerArm Left Hand

LeftWrist
LeftHand

8 RightUpperLeg Right Upper Leg

9

RightLowerLeg Right Lower Leg
RightKnee Right Foot
RightAnkle
RightFoot

10 LeftUpperLeg Left Upper Leg

11

LeftKnee Left Lower Leg
LeftLowerLeg Left Foot

LeftAnkle
LeftFoot

Human body part classes used in our experiments. The first column corresponds
to the human parts which are identified (parsed) by our human semantic parsing
layers. These parts correspond to different groupings of annotations depending on
the dataset from which frames come from (PHAV in the middle, and PASCAL-Part
on the right). The last column shows the color coding used in Figure 5.3.

121

Chapter 5. Learning more about the real world with synthetic action videos

Figure 5.3 – Example images from PASCAL-VOC and their associated body ground-
truth using the pixel class labels in Table 5.1. For example images from PHAV,
cf. Figure 4.15.

122

5.3. Cool Human Parsing Temporal Segment Networks

Action classification layers. The action classification layers use the same BN-
Inception architecture used in [208] to obtain action class labels for each frame.
Similar to [208] we also apply random multi-scale cropping, horizontal flipping,
multi-scale and aspect-ratio jittering, obtaining frames of dimensions 224×224.
We note that unlike other models in the literature, these operations are not pre-
processing steps but rather are integrated in our architecture: The semantic seg-
mentation network is sensitive to spatial context, and therefore cropping video
regions too early would result in a smaller spatial resolution in the middle of our
architecture that is difficult to upscale effectively without generating visual artifacts.
Therefore, these operations need to be performed inside our network, after the
semantic segmentation step but before actual classification.

5.3.2 Multi-modality learning in a Cool World

We now describe our approach for training our Cool-HPTSN model with both
real and synthetic data. The main points of our approach are: (i) the mini-batch
generation, (ii) the extended multi-modality multi-task prediction and loss layers,
and (iii) the initialization of the color transformation layer.

Cool mixed-source and mixed-modality mini-batches. To learn our human pars-
ing network, we again build mini-batches with a mix of real-world and synthetic
videos. Based on early experiments, we build mini-batches of 64 videos. Each
mini-batch contains 20 synthetic videos and 44 real-world videos.

However, unlike in the case for Cool-TSN, our synthetic and real-world videos
now have different associated ground-truths: while the real-world videos have only
action class ground-truth labels, the synthetic videos have both action class and
human parsing ground-truth labels. This means that processing synthetic videos
require loading at least two times more images (as human parsing ground-truth
is a pixel-wise ground-truth and therefore represented as images, cf. Figure 5.3 for
example representations) than when processing real-world videos.

Thanks to a flexible base implementation2, we employ an assymetric division
over multiple GPUs to balance memory usage since it is possible to process more
real-world videos at the same time than synthetic ones due their different memory
requirements. We therefore distribute the 44 real-world videos among other 2 GPUs,
and the remaining 20 synthetic videos among 2 other GPUs. Processing synthetic
videos also require more memory due an additional computational branch that we
introduce in our architecture to incorporate the human parsing objective in our
loss function, as we describe below.

2https://github.com/yjxiong/tsn-pytorch

123

Chapter 5. Learning more about the real world with synthetic action videos

Multi-task and multi-modality loss layers. In addition to the two separate bran-
ches for target action classes from real and synthetic datasets (cf. Equation 5.2),
we now introduce a third computational path that branches from the last human
parsing layer. First, let us denote the scores as:

Ht i j k =H (Tt ;W)i j k (5.6)

where H is a function representing our human parsing layers with weight parame-
ters W , giving the probability score of class k for each pixel (i , j), in the input frame
Tt from video segment t . Using this notation, we can write our extended multi-task
loss as:

L ′(y,G,P) =L (y,G)+δ{y∈Cvi r tual }w ′L ′(P) (5.7)

with

L ′(P) =−
k∑

t=1

w∑
i=1

h∑
j=1

c∑
k=1

Pt i j k

(
Ht i j k − log

c∑
k ′=1

exp Ht i j k ′

)
(5.8)

where Pt i j k is the ground-truth class for pixel (i , j) for the frame from video seg-
ment t , w ′ is a loss weight for the segmentation task, Cvi r tual denotes the set of
action categories for the synthetic videos, and all other variables are defined as in
Equations 5.2 and 5.3.

Semantic color encoding. The choice for the colors used in the semantic color
transformation layer can have a significant impact on performance. We investigate
five different choices for determining those colors.

• Using a fixed set of 11 randomly-chosen colors from the RGB space;

• Partitioning the RGB color space and obtaining 11 color centroids using
clustering via EM. We use EM to search for optimal partitionings of the 3-
dimensional RGB space, i.e. divisions containing partitions that are maximally
dissimilar to each other but maximally similar internally [155]. We initialize
the algorithm using a uniform division of the RGB space, i.e. by partitioning it
into 2×2×2 cells;

124

5.4. Experiments

• Using a fixed set of colors established by the ISCC-NDB color designation
system [93]. This system was created as an effort to standardize color names
and includes 10 chromatic and 3 non-chromatic categories (white, black, and
grey). We use the values for the 10 chromatic categories and the grey category
as reported in [24];

• Using the set of 11 colors from the ISCC-NDB system as the initialization
point for the clustering approach described above;

In each case we randomly assign categories to colors (cf. Table 5.4 for examples of
these encodings). We discuss the performance of each of these approaches in the
following experimental section. We then consider the best of these approaches and
use it as an initialization point for the color transformation layer in our end-to-end
network, therefore fine-tuning those colors to the action classification datasets
using backpropagation.

Three-stream architecture. Following [170, 208], we combine the outputs of the
RGB, optical flow and human parsing networks using score-level fusion at testing
time. To compute the final class prediction for a video, we start by taking 25 equally-
spaced segments from it as in [170]. For the RGB and human parsing streams, this
corresponds to 25 individual frames, while for the flow stream this corresponds to
25 stacks of 5 horizontal inverleaved with 5 vertical optical flow frames. For RGB
and flow, we then extract 10 crops of size 224×224 from each frame, corresponding
to their 4 corners, their center, and the mirrored version of these. For the human
parsing stream, HPTSN performs these crops internally before its action classifi-
cation layers (cf. Section 5.3.1). We compute the action classification scores for
each of these crops, averaging per segment. Following [208] we use the average
as the consensus function and therefore average the prediction scores across all
segments. We then compute the softmax of those averages, obtaining one vector of
probabilities for each of the three streams. Finally, we take a weighted average of
these probability vectors as the final scores vector for the video.

5.4 Experiments

In this section, we detail our action recognition experiments on widely used real-
world video benchmarks. We quantify the impact of multi-task representation
learning with our procedurally generated PHAV videos on real-world accuracy,
in particular in the small labeled data regime. We then present our experiments
with extra modalities only available in PHAV, measuring the impact of supervised
training for different parts of our human parsing architecture. We also compare our

125

Chapter 5. Learning more about the real world with synthetic action videos

method with the state of the art on both fully supervised methods and methods
based on the fine-tuning of unsupervised generative models of video.

5.4.1 Temporal Segment Networks

In our first experiments (cf. Table 5.2), we reproduce the performance of the original
TSN on UCF-101 and HMDB-51 using the same learning parameters as in [208].
For simplicity, we use neither cross-modality pre-training nor a third warped op-
tical flow stream like [208], as their impact on TSN is limited with respect to the
substantial increase in training time and computational complexity, degrading only
by −1.9% on HMDB-51, and −0.4% on UCF-101.

We also estimate performance on PHAV separately, and fine-tune PHAV net-
works on target datasets. Training and testing on PHAV yields an average accuracy of
82.3%, which is between that of HMDB-51 and UCF-101. This sanity check confirms
that, just like real-world videos, our synthetic videos contain both appearance and
motion patterns that can be captured by TSN to discriminate between our different
procedural categories. We use this network to perform fine-tuning experiments
(TSN-FT), using its weights as a starting point for training TSN on UCF101 and
HMDB51 instead of initializing directly from ImageNet as in [208]. We discuss
learning parameters and results below.

5.4.2 Cool Temporal Segment Networks

In Table 5.2 we also report results of our Cool-TSN multi-task representation learn-
ing, (Section 5.2.2) which learns the additional task of classifying videos from PHAV.
We stop training after 3,000 iterations for RGB streams and 20,000 for flow streams,
all other parameters as in [208]. Our results suggest that leveraging PHAV through
either Cool-TSN or TSN-FT yields recognition improvements for both modalities in
all datasets, with advantages in using Cool-TSN especially for the smaller HMDB-
51. This provides quantitative experimental evidence supporting our claim that
procedural generation of synthetic human action videos can indeed act as a strong
prior (TSN-FT) and regularizer (Cool-TSN) when learning deep action recognition
networks.

We further validate our hypothesis by investigating the impact of reducing
the number of real world training videos, with or without the use of PHAV. Our
results reported in Figure 5.4 and Table 5.3 confirm that reducing training data
from the target dataset impacts more severely TSN than Cool-TSN. HMDB displays
the largest gaps. We partially attribute this to the smaller size of HMDB and also
because some categories of PHAV overlap with some categories of HMDB. Our
results show that it is possible to replace half of HMDB with procedural videos and

126

5.4. Experiments

Table 5.2 – Performance comparison for three target datasets. We show results
for the original TSN, our reproduced results, and our two proposed methods for
leveraging the extra training data from PHAV.

Target Model Spatial (RGB) Temporal (Flow) Full (RGB+Flow)

PHAV TSN 65.9 81.5 82.3

UCF-101 [208] 85.1 89.7 94.0
UCF-101 TSN 84.2 89.3 93.6
UCF-101 TSN-FT 86.1 89.7 94.1
UCF-101 Cool-TSN 86.3 89.9 94.2

HMDB-51 [208] 51.0 64.2 68.5
HMDB-51 TSN 50.4 61.2 66.6
HMDB-51 TSN-FT 51.0 63.0 68.9
HMDB-51 Cool-TSN 53.0 63.9 69.5

Average mean accuracy (mAcc) across all dataset splits. Note: Wang et al. [208] uses
TSN with cross-modality training.

Table 5.3 – TSN and Cool-TSN with different fractions of real-world training data.

Fraction of real UCF101 UCF101+PHAV HMDB51 HMDB51+PHAV
-world samples (TSN) (Cool-TSN) (TSN) (Cool-TSN)

1% 25.9 27.7 8.1 12.7
5% 68.5 71.5 30.7 37.3

10% 80.9 84.4 44.2 49.7
25% 89.0 90.4 54.8 60.7
50% 92.5 92.7 62.9 65.8

100% 92.8 93.3 67.8 70.1

Mean Accuracy (mAcc) in split 1 of each respective real-world dataset.

127

Chapter 5. Learning more about the real world with synthetic action videos

Figure 5.4 – Impact of using subsets of the real world training videos (split 1), with
PHAV (Cool-TSN) or without (TSN). Mean Accuracy (mAcc) for RGB+Flow models.

still obtain comparable performance to using the full dataset (65.8 vs. 67.8). In a
similar way, and although actions differ more, we show that reducing UCF-101 to a
quarter of its original training set still yields a Cool-TSN model that rivals the state
of the art [170, 207, 211]. This shows that our procedural generative model of videos
can indeed be used to augment different small real-world training sets and obtain
better recognition accuracy at a lower cost in terms of manual labor.

Figure 5.5 shows the performance of each network stream separately. The first
and second plot in the figure show the RGB and optical flow streams respectively.
One can see that the optical flow stream has a higher contribution than the RGB
stream to the performance of our Cool-TSN, including when using very low fractions
of the real data. This confirms that our generator is indeed producing plausible
motions that help learn both the virtual and real-world data sources.

128

5.4. Experiments

F r
ac

ti
o

n
o

ft
h

e
re

al
-w

o
rl

d
tr

ai
n

in
g

se
t

Sp
at

ia
l(

R
G

B
)

T e
m

p
o

ra
l(

Fl
ow

)

Accuracy (split 1)

Figure 5.5 – TSN and Cool-TSN results for different amounts of real-world training
data, for each separate stream, and for each dataset.

129

Chapter 5. Learning more about the real world with synthetic action videos

Table 5.4 – Color encoding strategies for initializing the human parsing stream.

Input image Random EM (random) ISCC EM (ISCC)

G
ro

u
n

d
-tru

th
P

red
ictio

n

Example frame from HMDB-51 with ground-truth puppet annotations from J-HMDB and human body parts as
predicted by our human parsing layers. We recall that J-HMDB is a subset of the HMDB-51 dataset with additional
annotations, including human body parts which have been annotated with the help of a puppet model manually
positioned on top of the human performing the action (cf. Section 2.1.1).

5.4.3 Human Parsing Temporal Segment Networks

Wang et al. [208] has shown how using better initialization procedures for additional
streams can have a significant impact in performance. We start our experiments
with the human parsing stream by pre-training our fully convolutional layers in the
PASCAL-Part [32] and PHAV datasets. We then evaluate the different techniques
for initializing our pixel-wise semantic color transformation layer as discussed in
Section 5.3.2 (cf. Table 5.4) on the first split of HMDB-51. We do not use soft-max
probabilities to achieve color blending in those experiments, to focus instead on
the performance impact of the different encodings. We also do not use end-to-end
training, but learn our architecture in stages: first we learn the fully convolutional
layers, we run the color transform, then learn the classification layers. In those set-
tings, the configuration of our architecture used in those experiments corresponds
to a plain application of a fully convolutional network, a colorization of the input
frames according to the semantic labels predicted for their pixels using a particular
encoding, followed by a spatial-stream (RGB) TSN. We do not include PHAV when
training the action classification layers.

When training our human parsing layers, we use mostly the same parameters
as the improved model in [32]: We use an initial learning rate of 10−3 (10−2 for
the last pixel classification layer), a "poly" learning rate policy (the learning rate is
multiplied by (1− i ter

maxi ter)power at every iteration, where we use power = 0.9), a
batch size of 10, random scaling, and initialize our weights from models pre-trained
on MS-COCO [109]. We also train our models for a total of 40,000 iterations, and
perform random horizontal flipping. When training our action classification layers,
we use the same settings as in Section 5.4.1, but with a batch size of 64 videos.

130

5.4. Experiments

Table 5.5 – Classification accuracy for different color encodings.

Color Training dataset for Training dataset for HMDB-51
encoding human parsing layers action classif. layers %mAcc

Random
PASCAL-Part HMDB-51 39.7

PHAV HMDB-51 40.8
PASCAL-Part + PHAV HMDB-51 45.2

EM (random)
PASCAL-Part HMDB-51 40.2

PHAV HMDB-51 40.5
PASCAL-Part + PHAV HMDB-51 45.5

ISCC
PASCAL-Part HMDB-51 40.3

PHAV HMDB-51 41.6
PASCAL-Part + PHAV HMDB-51 44.9

EM (ISCC)
PASCAL-Part HMDB-51 41.4

PHAV HMDB-51 40.9
PASCAL-Part + PHAV HMDB-51 46.3

Mean Accuracy (mAcc) on the first split of HMDB-51 after colorization using the
respective encoding. Models which have been trained on a combination of PASCAL-
Parts and PHAV, while using an unsupervised refinement of the ISCC–NBS color
designation system, give the best results.

We show our results in Table 5.5. As can be seen, training our human parsing
layers exclusively on either PHAV or PASCAL-Parts results in comparable perfor-
mance, and training on the combination of those two datasets gives consistently
better results for all color encodings we consider. This gives us further evidence for
the usefulness of our dataset: just as was the case for the Cool-TSN, our procedural
videos can be used to replace real-world samples and still be used to obtain models
of comparable performance, as well as augment real-world training sets to obtain
better recognition accuracy with less manual effort.

Additionally, these experiments show that the synthetic semantic segmentation
ground-truth contained in our PHAV dataset (and easily collected as part of the syn-
thetic data generation process) can be used to improve action classification models
based on semantic body part labels. Moreover, the colorization scheme based on
optimizing the color centroids from the ISCC standard using EM outperforms the
alternatives we considered. We therefore use this color encoding in all our further
experiments.

131

Chapter 5. Learning more about the real world with synthetic action videos

5.4.4 Cool Human Parsing Temporal Segment Networks

We train our Cool-HPTSN models using different learning rates for each layer,
basing our choices on the existing literature. Following [31], we use a learning rate
of l r f = 10−3 for the first human parsing layers, l r p = 10−2 for the last (prediction)
human parsing layer. Following [208] we use l r a = 10−3 for the action classification
layers. We then use w ′ = 0.1 (cf. Equation 5.7) to give more emphasis to the action
classification task, i.e. weighting the action classification task 10 times higher than
the human parsing task.

We start our experiments by comparing our architecture to existing models in
the literature, using the single-stream pose model of [230] as a baseline (cf. Table
5.6, first row). We reproduce the best results from Table 5.5 (cf. Table 5.6, second
row), which corresponds to a hard segmentation version (i.e. without soft-labels) of
our full architecture. Our results are already higher than [230], which we attribute
to the better segmentation and classification models upon which our architecture
is based.

Next, we enable the soft-labels, but freeze the fully convolutional and color
transformation layers. This corresponds to a soft segmentation version of our full
architecture. Using soft-labels, our model presents a small decrease in performance
in HMDB-51 but significantly better performance in UCF-101 (cf. Table 5.6, third
row). This demonstrates that, besides serving to keep our model fully differentiable,
the use of a soft-label decision layer can have a positive impact in the performance
of classification models built on top of segmentation-inspired representations.

Then, we unfreeze all layers in our architecture, and train our model end-to-end
(cf. Table 5.6, fourth row). This approach results in superior performance for both
HMDB-51 and UCF-101, surpassing all previous results and baselines. This demon-
strates that our proposed architecture can effectively learn common representations
for synthetic and real-world samples even though semantic segmentation ground-
truth is only available for the synthetic tasks.

However, we note that our choices for model hyper-parameters had been mostly
based on existing models in the literature, which may not have been optimal given
our architecture. On the other hand, conducting a full hyper-parameter search,
including the exploration of different learning rates for our multiple layers results in
a combinatorial explosion in terms of possibilities to be explored. For this reason,
instead of attempting a full hyper-parameter search, we conduct a small cæteris
paribus analysis to measure the importance of fine-tuning middle layers in our
network. We conduct this analysis by holding the weights of certain layers in our
architecture fixed, while at the same time still letting gradients propagate across all
layers. We report our results in the two last lines of Table 5.6.

Our results show that fixing the color transformation or mean subtraction layers

132

5.4. Experiments

Table 5.6 – Cool-HPTSN results for HMDB-51 and UCF-101.

Dataset (%mAcc)

Method HMDB-51 UCF-101

Pose [230] 36.0 56.9

Hard segmentation 46.3 59.1
Soft segmentation 45.3 64.0
End-to-end 48.0 67.5

Fixed mean subtraction 51.0 70.9
Fixed color transform 51.2 72.5

Mean Accuracy (mAcc) for split 1 of each dataset.

can have a large impact in performance, where fixing the color transformation
to the matrix of weights learned through EM (ISCC) leads to the best results. We
hypothesize the that learning of this layer could be improved by adding a color
clustering objective into our objective function (cf. Equations 5.7 and 5.8), i.e. by
maximizing inter-class variance while decreasing intra-class variance between
semantic segmentation pixel classes directly within our model, which we leave
as future work. Nonetheless, we show that propagating gradients between clas-
sification and segmentation layers results in better classification accuracy than
independently-trained models (as in [230]) in all cases.

Next, we measure the impact of combining our Cool-HPTSN with TSNs for RGB
and optical flow, and evaluate the performance of our full three-stream architecture.
We display our results in Table 5.7. Our results show that our model can bring
improvements when combined with either stream, with again HMDB-51 displaying
the largest gaps. In the case of UCF-101, our model brings noticeable improvements
when combined with the RGB stream, but only comparable effects when combined
with the flow or both RGB+Flow.

Moreover, we observe that the SP stream is more complementary to RGB than
optical flow. The gap in performance between RGB and SP+RGB is of 5.9 for HMDB-
51 and 2.2 for UCF-101, whereas the gap between Flow and SP+Flow is of 5.6 and
0.1 for the same datasets, in respective order. We believe that the redundancy of
the flow and parsing streams is at least partially due to the fact that they are both
invariant to appearance, which has been shown to be one of the most important
features captured by optical flow in action recognition algorithms [167]. We show
examples comparing semantic segmentation and optical flow frames in Table 5.9. In

133

Chapter 5. Learning more about the real world with synthetic action videos

Table 5.7 – Cool-HPTSN results when merging with RGB and Flow streams.

Dataset (%mAcc)

Architecture Stream HMDB-51 UCF-101

TSN RGB 53.3 84.5
TSN Flow 61.2 87.5

Cool-HPTSN SP 51.6 72.5

Cool-HPTSN SP+RGB 59.2 86.7
Cool-HPTSN SP+Flow 66.8 87.4

TSN RGB+Flow 67.8 92.8
Cool-HPTSN RGB+Flow+SP 70.1 92.1

Mean Accuracy (mAcc) for split 1 of each dataset.

addition to contrasting these different modalities, the examples shown in Table 5.9
also depict certain success and failure cases for our segmentation network, demon-
strating it works even with grayscale images (8th row), but fails when subjects are at
a distance and unconventional poses (9th row).

5.4.5 Comparison to the state of the art

In this section, we compare our model with the state of the art in action recognition
(Table 5.8). We separate the current state of the art into works that use one or
multiple sources of training data (such as by pre-training, multi-task learning or
model transfer). We note that all works that use multiple sources can potentially
benefit from PHAV without any modifications. Our results indicate that our methods
are competitive with the state of the art, including methods [91, 187] that use much
more manually labeled training data like the Sports-1M dataset [91]. Our Cool-TSN
approach also leads to better performance than the current best generative video
model VGAN [198] on UCF101, for the same amount of manually labeled target real-
world videos. We note that while VGAN’s more general task is quite challenging and
different from ours, [198] has also explored VGAN as a way to learn unsupervised
representations useful for action recognition, thus validating our comparison.

134

5.4. Experiments

Table 5.8 – Comparison against the state of the art* in action recognition.

UCF-101 HMDB-51
Method %mAcc %mAcc

O
N

E
S

O
U

R
C

E iDT+FV [204] 84.8 57.2
iDT+StackFV [141] - 66.8
iDT+SFV+STP [203] 86.0 60.1
iDT+MIFS [101] 89.1 65.1
VideoDarwin [51] - 63.7

M
U

LT
IP

L
E

S
O

U
R

C
E

S

2S-CNN [170] 88.0 59.4
TDD [207] 90.3 63.2
TDD+iDT [207] 91.5 65.9
C3D+iDT [187] 90.4 -
Actions∼Trans [211] 92.0 62.0
2S-Fusion [49] 93.5 69.2
Hybrid-iDT [43] 92.5 70.4
TSN-3M [208] 94.2 69.4
VGAN [198] 52.1 -

Cool-TSN 94.2 69.5
Cool-HPTSN 92.4 68.8

*State of the art at the time of publication of work contained in this
chapter. Average Mean Accuracy (mAcc) across all dataset splits.

135

Chapter 5. Learning more about the real world with synthetic action videos

Table 5.9 – Example frames from HMDB-51 with puppet annotations from J-HMDB.

RGB Hor. Flow Ver. Flow Puppet GT Prediction

We recall that J-HMDB is a subset of the HMDB-51 dataset with additional annotations, including human body
parts which have been annotated with the help of a puppet model manually positioned on top of the human
performing the action (cf. Section 2.1.1).

136

5.5. Summary of the chapter

5.5 Summary of the chapter

In this chapter, we have proposed two deep learning architectures for action recog-
nition and used them to validate the usefulness of our PHAV dataset proposed in
Chapter 4. Our models can leverage multiple data sources during learning, mixing
real-world and synthetic videos, while at the same time being able to leverage data
modalities that are exclusive to the virtual domain. We provide quantitative evi-
dence that the procedurally generated videos in PHAV can be used as a complement
to small training sets of manually labeled real-world videos, and that our ground-
truth annotations are accurate enough to be used as different modalities when
learning complementary tasks for action recognition. Importantly, we have shown
that we do not need to generate training videos for particular target categories fixed
a priori. Instead, we show that data containing surrogate categories that have been
defined procedurally improve representation learning for potentially unrelated
target actions that might have only few real-world training examples.

137

6 Conclusions and future work

The only time you don’t fail is the last
time you try anything – and it works.

William Strong

In the past chapters we have presented our investigations and experiments on
methods based on handcrafted features, and methods based on the end-to-end
learning of deep hierarchical models directly from raw data. In this chapter we
summarize the work conducted in this thesis and present our conclusions, giving
directions for future work and listing the main outcomes of this research.

6.1 Conclusions

IN THIS DISSERTATION, we have explored the problem of human action recogni-
tion in videos with a specific focus on data-efficient models. We initially focused
on approaches using handcrafted features, given their persistent success in ac-
tion recognition at the commencement of this investigation. At that time, deep
learning had already become the state-of-the-start approach for image recognition,
methods that used handcrafted features still outperformed deep methods for video
understanding.

In Chapter 3, we identified that both handcrafted and deep learning approaches
had complementary strengths and weaknesses, and proposed to combine the best

139

Chapter 6. Conclusions and future work

of both worlds via a single hybrid classification architecture consisting in applying
sequentially the iDT handcrafted features, the unsupervised FV representation,
unsupervised or supervised dimensionality reduction, and supervised deep layers.
We performed an extensive experimental analysis on a variety of datasets, showing
that our hybrid architecture yields data efficient, transferable models of small
size that still outperform much more complex deep architectures trained end-
to-end on millions of images and videos. We have also shown that our hybrid
models can differentiate between some fine-grained action groups, confirming that
the unsupervised video-level FV representation contains fine-grained information
about the input video, information that may be more successfully exploited by our
more complex (deeper) hybrid models. Most results presented in this chapter have
been published in [43].

The success of handcrafted approaches in contrast to deep learning may be
attributed in part to the increased amount of prior knowledge incorporated in
the former. By definition, handcrafted features are created based on human ex-
pertise and therefore aggregate a number of previous human-drawn conclusions
and interpretations about the data being handled [12]. The feature engineering
process that gives origin to those features can therefore be seen as a technique for
embedding prior knowledge on machine learning models directly. Nonetheless,
supervised training data for video has typically been scarce, including at the outset
of this research. For this reason, we decided to explore an alternative approach for
achieving more data-efficient models: data synthesis. Instead of incorporating prior
knowledge within a machine learning model, we investigated how to incorporate
human knowledge in the training data used to feed those models.

In Chapter 4, we have shown that it is possible to create an interpretable para-
metric generative model of human action videos leveraging the strong a priori
knowledge about the real world that is stored in the physic engines of modern
video-game development systems [121]. Using this model, we generated a diverse,
realistic, and physically plausible dataset of human action videos called PHAV, for
“Procedural Human Action Videos”. It contained a total of 39,982 videos, with more
than 1,000 examples for each action of 35 categories and 8 data modalities. Even
though this dataset used MOCAP sequences as a base, we have shown that our
approach was not limited to a pre-defined set of animations: we presented tech-
niques to select, divide and combine MOCAP sequences, as well as modify them
at generation time through limited-time physics simulations. Going further, we
have shown that it was possible to programatically define 14 new synthetic action
categories with the aid of ragdoll physics and puppet manipulation. This dataset
has been made publicly available for download in [42].

In Chapter 5, we provided quantitative evidence that our procedurally generated
videos can be used to create better and more data-efficient models for action recog-

140

6.2. Comparison to the state of the art

nition. To this end, we had introduced two novel deep multi-task representation
learning architectures that are able to leverage synthetic data to learn more about
the real world, mixing synthetic and real videos, even if the action categories do
not entirely align. We had also shown how to integrate different data modalities
and ground-truths during learning, even when they are only available for one of the
tasks. We have used our models to provide quantitative evidence that the proce-
durally generated videos in PHAV can be used as a complement to small training
sets of manually labeled real-world videos, and that our ground-truth annotations
are accurate enough to improve the learning of different data modalities for action
recognition. Importantly, we proved that it was not necessary to generate training
videos for particular target categories fixed a priori in order to achieve better models
for action recognition. Instead, we have shown that through a multi-task framework
it is possible to learn better representations for target action classes that might
have only few real-world training examples, even when there only partial overlap
between synthetic and real-world classes, including when some of these classes
have been completely procedurally defined.

Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that com-
bining our large set of synthetic videos with small real-world datasets can boost
recognition performance. We show that our parametric generative model for action
videos can generate videos that when combined with real-world datasets result in
significantly better performance than alternative approaches based on unsuper-
vised generative models such as VGAN [198]. Although our model does not learn
video representations like VGAN, we have shown how it can generate many diverse
training videos thanks to its grounding in strong prior physical knowledge about
scenes, objects, lighting, motions, and humans. Most results from this chapter have
been published in [43].

6.2 Comparison to the state of the art

In the various chapters of this dissertation, we have compared the performance
of our proposed models against the state-of-the-art performance at the time the
contents of each of those chapters had been published. In this section, we present
a comparison of these models against the state of the art at the time this disserta-
tion has been completed. Table 6.1 presents the main works we compare against
organized by category (cf. Table 2.4) and in chronological order within each block.
The models we have proposed in this dissertation are shown at the bottom.

141

Chapter 6. Conclusions and future work

Table 6.1 – Comparison against the state of the art in action recognition.

UCF-101 HMDB-51 Hollywood2 High-Five Olympics ActivityNet
Method %mAcc %mAcc %mAP %mAP+ %mAP %mAP

H
A

N
D

C
R

A
F

T
E

D

iDT+FV [204] 84.8 [205] 57.2 64.3 - 91.1 -
SDT-ATEP [56] - 41.3 54.4 62.4 85.5 -
iDT+FM [140] 87.9 61.1 - - - -
RCS [75] - - 73.6 71.1 - -
iDT+SFV+STP [203] 86.0 60.1 66.8 69.4 90.4 -
iDT+MIFS [101] 89.1 65.1 68.0 - 91.4 -
VideoDarwin [51] - 61.6 69.6 - - -
VideoDarwin+HF+iDT [51] - 63.7 73.7 - - -
iDT+TBC [200] - - 63.8 78.1 - -

D
E

E
P

-B
A

S
E

D

2S-CNN [170]IN 88.0 59.4 - - - -
2S-CNN+Pool [127]IN 88.2 - - - - -
2S-CNN+LSTM [127]IN 88.6 - - - - -
Objects+Motion(R*) [81]IN 88.5 61.4 66.4 - - -
Comp-LSTM [176]ID 84.3 44.0 - - - -
C3D+SVM [187]S1M,ID 85.2 - - - - -
FSTCN [182]IN 88.1 59.1 - - - -
Actions∼Trans [211] 92.0 62.0 - - - -
2S-Fusion [49] 93.5 69.2 - - - -
3-TSN [208]IN 94.0 68.5 - - - 86.9
9-TSN [209]IN 94.9 71.0 - - - 87.9
DHRP [50] 91.4 66.9 76.7 - - -
I3D [22]K 97.9 80.2 - - - -
CMSN (C3D) [230] 91.1 69.7 - - - -
CMSN (TSN) [230] 94.1 - - - - -

H
Y

B
R

ID

iDT+StackFV [141] - 66.8 - - - -
TDD [207]IN 90.3 63.2 - - - -
TDD+iDT [207]IN 91.5 65.9 - - - -
CNN-hid6 [221]S1M 79.3 - - - - -
CNN-hid6+iDT [221]S1M 89.6 - - - - -
C3D+iDT+SVM [187]S1M,ID 90.4 - - - - -

Best from state of the art 97.9 [22] 80.2 [22] 76.7 [50] 78.1 [200] 91.4 [101] 87.9 [208]

Our best FV+SVM 90.6 67.8 69.1 71.0 92.8 66.5
Our best hybrid 92.5 70.4 72.6 76.7 96.7 72.5
Our best Cool-TSN 94.2 69.5 - - - -
Our best Cool-HPTSN 92.4 68.8 - - - -

Methods are organized by category (cf. Table 2.4) and sorted in chronological order
in each block. IN: uses ImageNet. S1M: uses Sports-1M. K: uses Kinetics. ID: uses
private internal data ([187] pre-trains models on an internal dataset referred to as I380K,
whereas [176] uses additional 300h of unrelated YouTube videos).

142

6.3. Future work

6.3 Future work

We believe our results open interesting new perspectives to design even more data-
efficient models, both hybrid and with deep learning approaches. A line of further
research with hybrid methods would be to incorporate explicit temporal dynamics
in these models using Long Short Term Memory recurrent networks (LSTMs) [176]
and related methods [34, 35]. We also believe there is still much that could be gained
by cross-dataset training i.e. pre-training on more datasets, or using a multi-task
loss as we have explored in Chapter 5.

However, we also believe that more promising lines of research may reside
within deep learning approaches. For instance, there is still much to be explored in
terms of hyper-parameter values in our proposed architectures. Furthermore, our
approaches could also benefit from incorporating ideas from more recent models
such as Carreira et al. ’s Inflated 3D Convolutional Networks[22], or the Markov-
chain approach for modality fusion in [230].

Regarding our approach for procedural action video generation, one interest-
ing direction for further research would be to explore the other data modalities
we generate (cf. Section 4.4.2). For instance, we hypothesize it should be possible
to leverage multiple data modalities from different data sources under the recent
Learning Using Privileged Information (LUPI) paradigm of [191], as well as the
Generalized Distillation (GD) of [111]. Another interesting direction would be the
combination with unsupervised generative models like VGAN [198] for dynamic
background generation, domain adaptation, or real-to-virtual world style trans-
fer [60, 227].

The generation of synthetic data also gives access to a extra information about
the generated samples and the generation process itself. Our PHAV dataset includes
sparse vectors (cf. end of Section 4.4.2) capturing detailed information about the
status of our procedural generator at the start of each video, which can be regarded
as their procedural recipes. One promising line of work would be the exploitation
of the multiple parametric variations in our synthetic data, possibly by proposing
methods to drive data generation, e.g., by adapting the Image Transformation
Pursuit (ITP) method of [139], the Adaptive Weighted (AW-)SGD of [15], or methods
from curriculum learning [13] for this purpose.

Another line of work in this same direction would be to explore methods from
deep reinforcement learning [161, 189], and active learning [225] to drive the gener-
ation. We hypothesize that it should be possible to devise an active learning method
where an agent could sample the entire space of possible synthetic videos that our
generator can produce, with each observation corresponding to a video procedural
parameter that could be lazily-evaluated to generate a training video on-the-fly.

143

Chapter 6. Conclusions and future work

6.4 Patents

The execution of this work originated the following patents:

• César Roberto de Souza, Adrien Gaidon, Eleonora Vig, and Antonio Manuel
López Peña. System and method for video classification using a hybrid
unsupervised and supervised multi-layer architecture. U.S. Patent Appli-
cation 15/240,561, filed February 22, 2018.

6.5 Scientific articles

The work presented in this dissertation has been published in the following venues:

6.5.1 International conferences

• César Roberto de Souza, Adrien Gaidon, Eleonora Vig, and Antonio Manuel
López Peña. Sympathy for the Details: Dense Trajectories and Hybrid Clas-
sification Architectures for Action Recognition. The 14th European Confer-
ence on Computer Vision (ECCV), Amsterdam, Netherlands, 2016.

• César Roberto de Souza, Adrien Gaidon, Yohann Cabon, and Antonio Manuel
López Peña. Procedural Generation of Videos to Train Deep Action Recog-
nition Networks. IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), Honolulu, USA, 2017.

6.5.2 Workshops and events

• César Roberto de Souza, Adrien Gaidon, Yohann Cabon, and Antonio Manuel
López Peña. Procedural Generation of Videos to Train Deep Action Recog-
nition Networks. CVPR Vision Meets Cognition Workshop, 2017.

6.6 Contributed datasets

The work described in this thesis has lead to the contribution of the following
dataset to the public:

• Procedural Human Action Videos (PHAV) dataset: A dataset of synthetic
procedurally generated human action recognition videos. http://adas.cvc.
uab.es/phav/

144

http://adas.cvc.uab.es/phav/
http://adas.cvc.uab.es/phav/

6.7. Challenges

6.7 Challenges

The techniques described in this dissertation have been used in the following
challenges:

• César Roberto de Souza, Adrien Gaidon, Eleonora Vig, and Antonio Manuel
López Peña. The Xerox Research Centre Europe submission to the Activi-
tyNet Large Scale Activity Recognition Challenge 2016. CVPR ActivityNet
Large Scale Activity Recognition Challenge Workshop, 2016. Ranked 8th ac-
cording to Top-1 and 9th according to mAP for the untrimmed video classifi-
cation task in the challenge. We give more details about our submission and
extended results for our approach in Appendix A.

6.8 Scientific dissemination

We have disseminated this scientific knowledge acquired during the execution of
this work in the form of demonstrations and talks in multiple events and venues:

6.8.1 Demonstrations

• César Roberto de Souza, Adrien Gaidon, and Antonio Manuel López Peña. Re-
alistic Virtual Worlds and Human Actions for Video Understanding, Neural
Information Processing Systems (NIPS), Barcelona, Spain, 2016.

• César Roberto de Souza, Adrien Gaidon, and Antonio Manuel López Peña.
Procedural Human Action Videos (PHAV). IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017

6.8.2 Talks

• César Roberto de Souza. State-of-the-art action recognition with dense tra-
jectories and modern bag of words. Xerox Research Centre Europe (XRCE)
Computer Vision Seminars, Meylan, France, 2016.

145

A ActivityNet Challenge 2016

In this appendix, we describe our method for untrimmed action recognition
whose results have been submitted to the ActivityNet Challenge 2016. Our method
is based on data-augmentation and feature fusion techniques for video-level Dense
Trajectories and C3D features, audio-level MFCC features, and frame-level Ima-
geNet features.

147

Appendix A. ActivityNet Challenge 2016

A.1 Challenge

The ActivityNet Large Scale Activity Recognition Challenge was first organized
as a half-day workshop held during CVPR 2016, with the goal of advancing and
simulating research in computer vision and, more specifically, human action un-
derstanding. This challenge was focused in the recently published at the time
ActivityNet benchmark.

The ActivityNet [73] dataset (release 1.3) contains 19,994 untrimmed videos dis-
tributed over 200 activity classes. The dataset has been divided into three sets, two
with publicly available ground-truth labels (training and validation) and one where
the ground-truth labels have been withheld for the purpose of the challenge and are
not publicly available (testing). Since this dataset is distributed using Youtube, not
all videos originally included in the dataset remain available to download. At the
time we downloaded the dataset, it contained 9902 training videos, 4856 validation
videos, and 4988 test videos (cf. Section 2.1.1 and Tables 2.1 and 2.2 in the main
chapters of this dissertation for more details).

A.2 Submission

Our method is based on the improved Dense Trajectories (iDT) pipeline of Wang
& Schmid [204]. However, we employ modifications to both the beginning (data
preprocessing) and end (feature fusion) of this pipeline. First, we preprocess the
videos from the 1.3 version of the ActivityNet to reduce their size, downscaling
them to a height of 244 pixels while keeping the aspect ratio. Then, we augment
the training data using DAFS, i.e. using frame-skipping and horizontal mirroring.
Afterwards, we proceed to extract information from both their audio and video
streams.

From the audio stream, we extract a set of 40-dimensional MFCC audio features
for each video. From the video stream, we extract Trajectory shape (Traj) [201],
HOG [38], HOF [39], horizontal and vertical MBH components [201] descriptors
along trajectories obtained by median filtering dense optical flow, using the same
parameters given in [204]. We subsample the trajectories from each video, keeping
only 10% of the originally extracted trajectory descriptors. We apply the RootSIFT
normalization [3] (`1 normalization followed by square-rooting) to all video de-
scriptors.

Next, we randomly sample 256,000 trajectories and MFCC vectors from the pool
of training videos to learn the vocabularies needed for feature encoding. Before
learning the GMMs, we apply PCA to the descriptors, reducing their dimensionality
by a factor of 2. Afterwards, we concatenate the PCA-transformed video descriptors

148

A.3. Results

with their respective (x, y, t) ∈R3 coordinates.
We learn one separate GMM per descriptor channel. After the vocabularies have

been created, we use them to create Fisher Vector (FV) [147, 150] encodings for
each local descriptor in each descriptor channel, combining these encodings into a
per-channel, video-level representation using sum-pooling. We then apply power
normalization [150] (signed-square-rooting followed by `2 normalization) to those
per-channel FVs. Next, we concatenate all channels together and reapply this same
normalization [101].

Finally, we learn separate probability-calibrated SVMs for a) iDT+MFCC Fisher
Vectors b) video-level C3D features [187], and c) image-level Shuffle ImageNet
(SIM) features [119], the last two of which were provided by the challenge1. We
concatenate the probability outputs of each of those SVMs, use the concatenated
vector as a global feature vector, learn a fourth SVM on top of this global feature
vector, and use this final SVM to predict the final scores for each video (this approach
is sometimes referred to as Stacked Generalization [212]).

A.3 Results

Using the method described above, we achieved the 8th position in the challenge
according to top-1 classification (78.5%), and the 9th position according to mAP
(82.6%) for the classification task as calculated by the computer servers of the
challenge organizers. Ground-truth class labels are not publicly available for this
set. In our experience, validation set accuracy was a strong predictor of testing set
accuracy, with a typical gap of 3-4 percent points (p.p.) between a result obtained in
the validation set and its subsequent measurement in the testing set.

A.4 Pipeline

Equation A.1 defines the pipeline for our submission to the 2016 ActivityNet Chal-
lenge using the notation introduced in Section 2.2.1. As can be seen, the pipeline
is divided into four main paths: The path for dense trajectories features, the path
for MFCC features, the path for C3D features, and the path for ImageNet Shuffle
features. The first paths to be merged are the ones for dense trajectories and MFCC,
with their merging happening at the representation-level. Then, this combined
path merges with the C3D and SIM paths at the score-level using a third SVM which
is learned on the fusion of scores from each path.

1http://activity-net.org/challenges/2016/

149

http://activity-net.org/challenges/2016/

Appendix A. ActivityNet Challenge 2016

Table A.1 – Performance of different iDT pipelines for ActivityNet’s validation set.

Pipeline
ActivityNet

(validation set)
%mAP

iDT+SFV+STP 57.56
iDT 60.89
iDT+STA 60.94
iDT+DN 62.27
iDT+STA+DN 62.36
iDT+MIFS 62.77
iDT+HF 63.26
iDT+STA+MIFS+DN 64.12
iDT+HF+DN 64.83
iDT+DAFS 64.96
iDT+STA+MIFS+DN 65.12
iDT+DAFS+DN 66.49
iDT+DAFS+DN+PCA 66.49
iDT+DAFS+DN+PCA+L2 66.92
iDT+DAFS+DN+PCA+L2+MFCC+C3D 72.76
iDT+DAFS+DN+PCA+L2+MFCC+C3D+SIM+W 79.09

Results are ordered by mAP as measured in ActivityNet’s validation set. iDT:
Improved Dense Trajectories; SFV: Spatial Fisher Vector; STP: Spatio-Temporal
Pyramids; STA: Spatio-Temporal Augmentation; MIFS: Multi-skIp Feature
Stacking; HF: Horizontal Flipping; DN: Double-Normalization; DAFS: Data
Augmentation Feature Stacking; *without Trajectory descriptor; PCA: Princi-
pal Component Analysis after FV encoding; L2: `2 normalization after PCA;
MFCC: Mel Frequency Cepstral Coefficients; C3D: Frame-based featurs from
C3D model; SIM: ImageNetShuffle ConvNet features; W: Score-level fusion
with SVM.

150

A.4. Pipeline

    

S
IM

−2
6
−2

9
C

3D
−1

0
−1

4
−2

0
−2

6
−2

9
                                      

M
F

C
C

                  0 1 2     0 1 2  
−4

                −6
−                                { T

ra
j
−S

−8
−9

−1
0

x
y

t

} −F
{ H

O
G
−S

−8
−9

−1
0

x
y

t

} −F
{ H

O
F
−S

−8
−9

−1
0

x
y

t

} −F
{ M

B
H

x
−S

−8
−9

−1
0

x
y

t

} −F
{ M

B
H

y
−S

−8
−9

−1
0

x
y

t

} −F

                                                                      −1
4
−2

1
−2

3
−2

4
−R

−2
3
−2

4
−2

6
−2

9
−1

0    −C
−2

6
−2

9
−3

1

(A.1) 151

Bibliography

[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George
Toderici, Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan.
YouTube-8M: a large-scale video classification benchmark. Computing Re-
search Repository (CoRR), arXiv:abs/1609.08675, September 2016.

[2] Robin Aly, Relja Arandjelovic, Ken Chatfield, Matthijs Douze, Basura Fer-
nando, Zaid Harchaoui, Kevin Mcguiness, Noël O’Connor, Dan Oneata,
Omkar Parkhi, Danila Potapov, Jerome Revaud, Cordelia Schmid, Jochen
Schwenninger, David Scott, Tinne Tuytelaars, Jakob Verbeek, Heng Wang,
and Andrew Zisserman. The AXES submissions at TrecVid 2013. TREC Video
Retrieval Evaluation Workshop, November 2013.

[3] Relja Arandjelovic and Andrew Zisserman. Three things everyone should
know to improve object retrieval. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2911–
2918. IEEE, June 2012.

[4] Relja Arandjelovic and Andrew Zisserman. All about VLAD. Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1578–1585, June 2013.

[5] Maryam Asadi-Aghbolaghi, Albert Clapes, Marco Bellantonio, Hugo Jair Es-
calante, Víctor Ponce-López, Xavier Baró, Isabelle Guyon, Shohreh Kasaei,
and Sergio Escalera. A survey on deep learning based approaches for action
and gesture recognition in image sequences. In Proceedings of the IEEE Inter-
national Conference on Automatic Face and Gesture Recognition (FG), pages
476–483. IEEE, May 2017.

[6] Joan Marc Llargues Asensio, Juan Peralta, Raul Arrabales, Manuel González
Bedia, Paulo Cortez, and Antonio López. Artificial intelligence approaches for
the generation and assessment of believable human-like behaviour in virtual
characters. Expert Systems With Applications, 41(16):7281–7290, 2014.

[7] Mathieu Aubry, Daniel Maturana, Alexei Efros, Bryan Russell, and Josef Sivic.
Seeing 3D chairs: exemplar part-based 2d-3d alignment using a large dataset

153

Bibliography

of CAD models. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3762–3769. IEEE,
June 2014.

[8] Mathieu Aubry and Bryan C. Russell. Understanding deep features with
computer-generated imagery. In Proceedings of the International Conference
on Computer Vision (ICCV), pages 2875–2883. IEEE, December 2015.

[9] Artem Babenko and Victor Lempitsky. Aggregating local deep features for
image retrieval. In Proceedings of the International Conference on Computer
Vision (ICCV), volume 2015, pages 1269–1277. IEEE, December 2015.

[10] Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia, and
Atilla Baskurt. Action classification in soccer videos with long short-term
memory recurrent neural networks. In Proceedings of the International Con-
ference on Artificial Neural Networks, pages 154–159. Springer Berlin Heidel-
berg, 2010.

[11] Nicolas Ballas, Li Yao, Chris Pal, and Aaron C. Courville. Delving deeper into
convolutional networks for learning video representations. In Proceedings of
the International Conference on Learning Representations, March 2016.

[12] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:
A review and new perspectives. IEEE Transactions on Pattern Analysis and
Machine Intelligence (T-PAMI), 35(8):1798–1828, 2013.

[13] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-
riculum learning. In Proceedings of the International Conference on Machine
Learning, pages 1–8, 2009.

[14] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-
Verlag New York, Inc., 2006.

[15] Guillaume Bouchard, Théo Trouillon, Julien Perez, and Adrien Gaidon.
Online learning to sample. Computing Research Repository (CoRR),
arXiv:abs/1506.09016, 2015.

[16] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature
pooling in visual recognition. In Proceedings of the International Conference
on Machine Learning, pages 111–118. Omnipress, 2010.

[17] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal on
Machine Learning Research, 2:499–526, March 2002.

154

Bibliography

[18] William Brendel and Sinisa Todorovic. Learning spatiotemporal graphs of
human activities. In Proceedings of the International Conference on Computer
Vision (ICCV), pages 778–785. IEEE, November 2011.

[19] Gabriel J. Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object
classes in video: A high-definition ground truth database. Pattern Recognition
Letters, 30(20):88–97, 2009.

[20] Daniel J. Butler, Jonas Wulff, Garrett B. Stanley, and Michael J. Black. A natu-
ralistic open source movie for optical flow evaluation. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 611–625. Springer-
Verlag, 2012.

[21] Carnegie Mellon Graphics Lab. Carnegie Mellon University motion capture
database, 2016.

[22] João Carreira and Andrew Zisserman. Quo vadis, action recognition? a new
model and the Kinetics dataset. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 4724–
4733. IEEE, July 2017.

[23] Matthew P. Carter. Computer Graphics: Principles and practice, volume 22.
Wiley Subscription Services, Inc., A Wiley Company, February 1997.

[24] Paul Centore. sRGB centroids for the ISCC-NBS colour system. Munsell
Colour Science for Painters, May 2016.

[25] Alexandros Andre Chaaraoui, José Ramón Padilla-López, Pau Climent-Pérez,
and Francisco Flórez-Revuelta. Evolutionary joint selection to improve hu-
man action recognition with rgb-d devices. Expert Systems With Applications,
41(3):786–794, 2014.

[26] Jose M. Chaquet, Enrique J. Carmona, and Antonio Fernández-Caballero. A
survey of video datasets for human action and activity recognition. Computer
Vision and Image Understanding, 117(6):633–659, 2013.

[27] Ken Chatfield, Victor Lempitsky, Andrea Vedaldi, and Andrew Zisserman.
The devil is in the details: an evaluation of recent feature encoding methods.
In Proceedings of the British Machine Vision Conference (BMVC), volume 2,
pages 76.1–76.12, November 2011.

[28] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Return of the devil in the details: Delving deep into convolutional nets. In
Proceedings of the British Machine Vision Conference (BMVC), 2014.

155

Bibliography

[29] Chenyi Chen, Ari Seff, Alain L. Kornhauser, and Jianxiong Xiao. DeepDriving:
Learning affordance for direct perception in autonomous driving. In Pro-
ceedings of the International Conference on Computer Vision (ICCV), pages
2722–2730, December 2015.

[30] Liang-Chieh Chen, Sanja Fidler, and Raquel Urtasun. Beat the MTurkers: Au-
tomatic image labeling from weak 3D supervision. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3198–3205. IEEE, June 2014.

[31] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L Yuille. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected CRFs. IEEE Transactions
on Pattern Analysis and Machine Intelligence (T-PAMI), 40(4):834–848, April
2018.

[32] Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun,
and Alan Yuille. Detect what you can: Detecting and representing objects
using holistic models and body parts. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
1979–1986. IEEE, June 2014.

[33] François Chollet. Keras: Deep learning library for Theano and TensorFlow.
https://keras.io, 2015.

[34] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Em-
pirical evaluation of gated recurrent neural networks on sequence modeling.
Computing Research Repository (CoRR), arXiv:abs/1412.3555v1, December
2014.

[35] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio.
Gated feedback recurrent neural networks. In Proceedings of the Interna-
tional Conference on Machine Learning, 2015.

[36] Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid. Approximate
Fisher Kernels of non-iid image models for image categorization. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (T-PAMI), 38(6):1084–
1098, June 2016.

[37] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.

156

Bibliography

The Cityscapes dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3213–3223. IEEE, 2016.

[38] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human de-
tection. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), pages 886–893. IEEE, June 2005.

[39] Navneet Dalal, Bill Triggs, and Cordelia Schmid. Human detection using
oriented histograms of flow and appearance. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 428–441. Springer-Verlag, 2006.

[40] César Roberto De Souza. The Accord.NET Framework. A framework for
scientific computing. Available in: http://accord-framework.net, 2014.

[41] César Roberto De Souza, Adrien Gaidon, Yohann Cabon, and Antonio Manuel
López. Procedural generation of videos to train deep action recognition net-
works. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2594–2604. IEEE, July 2017.

[42] César Roberto De Souza, Adrien Gaidon, Yohann Cabon, and Antonio
Manuel Lopez Pena. Procedural human action videos - post-processed
rgb frames. Torrent files for post-processed RGB frames. Links available
at: http://adas.cvc.uab.es/phav/, 2017.

[43] César Roberto De Souza, Adrien Gaidon, Eleonora Vig, and Antonio Manuel
López. Sympathy for the details: Dense trajectories and hybrid classification
architectures for action recognition. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 697–716. Springer International
Publishing, 2016.

[44] Jonathan Delhumeau, Philippe–Henri Gosselin, Hervé Jégou, and Patrick
Pérez. Revisiting the VLAD image representation. In Proceedings of the
ACM International Conference on Multimedia (ACM-MM), pages 653–656,
Barcelona, Spain, 2013. ACM.

[45] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term re-
current convolutional networks for visual recognition and description. In
IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),
volume 39, pages 677–691. IEEE, April 2017.

157

Bibliography

[46] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Häusser, Caner Hazırba,
Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox.
FlowNet: Learning optical flow with convolutional networks, December 2015.

[47] Arjan Egges, Arno Kamphuis, and Mark Overmars, editors. Motion in Games,
volume 5277 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[48] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn,
and Andrew Zisserman. The Pascal Visual Object Classes (VOC) Challenge.
International Journal of Computer Vision (IJCV), 88(2):303–338, June 2010.

[49] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional
two-stream network fusion for video action recognition. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1933–1941. IEEE, June 2016.

[50] Basura Fernando, Peter Anderson, Marcus Hutter, and Stephen Gould. Dis-
criminative hierarchical rank pooling for activity recognition. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1924–1932. IEEE, June 2016.

[51] Basura Fernando, Efstratios Gavves, M. José Oramas, Amir Ghodrati, and
Tinne Tuytelaars. Modeling video evolution for action recognition. In Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5378–5387. IEEE, June 2015.

[52] Stephen Few. Multivariate analysis using parallel coordinates. Perceptual
Edge, pages 1–9, September 2006.

[53] Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. Actom sequence
models for efficient action detection. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
3201–3208. IEEE, June 2011.

[54] Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. Recognizing activities
with cluster-trees of tracklets. In Proceedings of the British Machine Vision
Conference (BMVC), pages 30–1, 2012.

[55] Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. Temporal localization
of actions with actoms. IEEE Transactions on Pattern Analysis and Machine
Intelligence (T-PAMI), 35(11):2782–2795, November 2013.

158

Bibliography

[56] Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. Activity representation
with motion hierarchies. International Journal of Computer Vision (IJCV),
107(3):219–238, May 2014.

[57] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds
as proxy for multi-object tracking analysis. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
4340–4349, 2016.

[58] Quentin Galvane, Marc Christie, Christophe Lino, and Rémi Ronfard. Camera-
on-rails: Automated computation of constrained camera paths. Proceedings
of the Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH), pages 151–157, 2015.

[59] Chuang Gan, Naiyan Wang, Yi Yang, Dit Yan Yeung, and Alexander G. Haupt-
mann. DevNet: A deep event network for multimedia event detection and
evidence recounting. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2568–2577. IEEE,
June 2015.

[60] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer
using convolutional neural networks. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
2414–2423, June 2016.

[61] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks, May 2010.

[62] Yunchao Gong, Liwei Wang, Ruiqi Guo, and Svetlana Lazebnik. Multi-scale
orderless pooling of deep convolutional activation features. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 392–407. Springer
International Publishing, 2014.

[63] Philippe-Henri Gosselin, Naila Murray, Hervé Jégou, and Florent Perronnin.
Revisiting the Fisher Vector for fine-grained classification. Pattern Recognition
Letters, 49:92–98, 2014.

[64] Martin Guay, Rémi Ronfard, Michael Gleicher, and Marie-Paule Cani. Adding
dynamics to sketch-based character animations. Sketch-Based Interfaces and
Modeling, pages 27–34, 2015.

[65] Martin Guay, Rémi Ronfard, Michael Gleicher, and Marie-Paule Cani. Space-
time sketching of character animation. ACM Transactions on Graphics,
34(4):118:1–118:10, July 2015.

159

Bibliography

[66] Ralf Haeusler and Daniel Kondermann. Synthesizing real world stereo chal-
lenges. In Proceedings of the German Conference on Pattern Recognition,
pages 164–173. Springer Berlin Heidelberg, 2013.

[67] Vladimir Haltakov, Christian Unger, and Slobodan Ilic. Framework for gen-
eration of synthetic ground truth data for driver assistance applications. In
Proceedings of the German Conference on Pattern Recognition, pages 323–332.
Springer Berlin Heidelberg, 2013.

[68] Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Simon Stent, and
Roberto Cipolla. SynthCam3D: Semantic understanding with synthetic in-
door scenes. Computing Research Repository (CoRR), arXiv:abs/1505.00171,
2015.

[69] Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Simon Stent, and
Roberto Cipolla. Understanding real world indoor scenes with synthetic data.
In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4077–4085. IEEE, June 2016.

[70] John A Hartigan and Manchek A Wong. Algorithm AS 136: A k-means clus-
tering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):100–108, 1979.

[71] Tal Hassner. A critical review of action recognition benchmarks. In Proceed-
ings of the Conference on Computer Vision and Pattern Recognition Workshops,
pages 245–250, June 2013.

[72] Hironori Hattori, Vishnu Naresh Boddeti, Kris M. Kitani, and Takeo Kanade.
Learning scene-specific pedestrian detectors without real data. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3819–3827. IEEE, June 2015.

[73] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos
Niebles. ActivityNet: A large-scale video benchmark for human activity un-
derstanding. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pages 961–970. IEEE, June
2015.

[74] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren
Jansen, R. Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan
Seybold, Malcolm Slaney, Ron J. Weiss, and Kevin Wilson. CNN architec-
tures for large-scale audio classification. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 131–135, March 2017.

160

Bibliography

[75] Minh Hoai and Andrew Zisserman. Improving human action recognition
using score distribution and ranking. In Proceedings of the Asian Conference
on Computer Vision (ACCV), pages 3–20. Springer International Publishing,
2015.

[76] Jian-Fang Hu, Wei-Shi Zheng, Jianhuang Lai, and Jianguo Zhang. Jointly learn-
ing heterogeneous features for RGB-D activity recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence (T-PAMI), 39(11):2186–2200,
November 2017.

[77] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,
and Thomas Brox. FlowNet 2.0: Evolution of optical flow estimation with deep
networks. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1647–1655, July 2017.

[78] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings of the
International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 448–456. JMLR.org, July 2015.

[79] Ferris Jabr. The reading brain in the digital age: The science of paper versus
screens. Scientific American, 11:1–19, April 2013.

[80] Mihir Jain, Herve Jegou, and Patrick Bouthemy. Better exploiting motion
for better action recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2555–
2562. IEEE, June 2013.

[81] Mihir Jain, Jan Van Gemert, and Cees G. M. Snoek. What do 15,000 object
categories tell us about classifying and localizing actions? In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pages 46–55. IEEE, June 2015.

[82] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. On the burstiness of
visual elements. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1169–1176, June
2009.

[83] Hervé Jégou, Florent Perronnin, Matthijs Douze, Jorge Sánchez, Patrick Pérez,
and Cordelia Schmid. Aggregating local image descriptors into compact
codes. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-
PAMI), 34(9):1704–1716, September 2012.

161

Bibliography

[84] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid, and Michael J.
Black. Towards understanding action recognition. Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), pages 3192–3199, December
2013.

[85] Shuiwang Ji, Ming Yang, Kai Yu, and Wei Xu. 3D convolutional neural net-
works for human action recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence (T-PAMI), 35(1):221–231, Jan 2013.

[86] Chengcheng Jia and Yun Fu. Low-rank tensor subspace learning for rgb-d
action recognition. IEEE Transactions on Image Processing, 25(10):4641–4652,
October 2016.

[87] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR),
pages 248–255. IEEE, June 2009.

[88] Y.-G. Jiang, J Liu, a Roshan Zamir, I Laptev, M Piccardi, M Shah, and R Suk-
thankar. THUMOS Challenge: Action recognition with a large number of
classes, 2013.

[89] Biliana Kaneva, Antonio Torralba, and William T. Freeman. Evaluation of
image features using a photorealistic virtual world. In Proceedings of the Inter-
national Conference on Computer Vision (ICCV), pages 2282–2289, November
2011.

[90] Vadim Kantorov and Ivan Laptev. Efficient feature extraction, encoding and
classification for action recognition. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
2593–2600, June 2014.

[91] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul
Sukthankar, and Li Fei-Fei. Large-scale video classification with convolutional
neural networks. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1725–1732. IEEE,
June 2014.

[92] Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sud-
heendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev,
Mustafa Suleyman, and Andrew Zisserman. The Kinetics human action video
dataset. Computing Research Repository (CoRR), arXiv:abs/1705.06950, May
2017.

162

Bibliography

[93] Kenneth L. Kelly. The ISCC-NBS method of designating colors and a dictio-
nary of color names. National Bureau of Standards circular 533, 1955.

[94] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
Proceedings of the International Conference on Learning Representations, May
2015.

[95] Kishore Konda, Xavier Bouthillier, Roland Memisevic, and Pascal Vincent.
Dropout as data augmentation. In Proceedings of the International Conference
on Learning Representations, June 2015.

[96] Josip Krapac, Jakob Verbeek, and Frédéric Jurie. Modeling spatial layout with
Fisher vectors for image categorization. In Proceedings of the International
Conference on Computer Vision (ICCV), pages 1487–1494, November 2011.

[97] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Technical report, University of Toronto, 2009.

[98] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classifi-
cation with deep convolutional neural networks. In Proceedings of Neural
Information Processing Systems (NIPS), pages 1097–1105, 2012.

[99] Hilde Kuehne, Huei-Han Jhuang, Estibaliz Garrote-Contreras, Tomaso Poggio,
and Thomas Serre. HMDB: a large video database for human motion recog-
nition. In Proceedings of the International Conference on Computer Vision
(ICCV), pages 2556–2563, November 2011.

[100] Tian Lan, Yuke Zhu, Amir Roshan Zamir, and Silvio Savarese. Action recog-
nition by hierarchical mid-level action elements. Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), pages 4552–4560, December
2015.

[101] Zhenzhong Lan, Ming Lin, Xuanchong Li, Alexander G. Hauptmann, and
Bhiksha Raj. Beyond gaussian pyramid: Multi-skip feature stacking for action
recognition. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pages 204–212. IEEE, June
2015.

[102] Michael S Langer and Heinrich H Bülthoff. Depth discrimination from shad-
ing under diffuse lighting. Perception, 29(6):649–660, June 2000.

[103] Ivan Laptev. On space-time interest points. International Journal of Computer
Vision (IJCV), 64(2–3):107–123, September 2005.

163

Bibliography

[104] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozenfeld.
Learning realistic human actions from movies. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1–8. IEEE, June 2008.

[105] Svetlana Lazebnik, Cordelia Schmid, Jean Ponce, Svetlana Lazebnik, Cordelia
Schmid, and Jean Ponce. Beyond bags of features: spatial pyramid matching
for recognizing natural scene categories. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
2169–2178. IEEE Computer Society, 2010.

[106] Quoc V. Le, Will Y. Zou, Serena Y. Yeung, and Andrew Y. Ng. Learning hi-
erarchical invariant spatio-temporal features for action recognition with
independent subspace analysis. In Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR), pages
3361–3368. IEEE, June 2011.

[107] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, R. E.
Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Handwritten digit
recognition with a back-propagation network. In Proceedings of Neural In-
formation Processing Systems (NIPS), volume 2, pages 396–404. MIT Press,
1989.

[108] Adam Lerer, Sam Gross, and Rob Fergus. Learning physical intuition of block
towers by example. In Proceedings of Machine Learning Research, volume 48,
pages 430–438, June 2016.

[109] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C.Lawrence Zitnick. Microsoft COCO: Common
objects in context. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 740–755. Springer International Publishing, 2014.

[110] Jingen Liu, Benjamin Kuipers, and Silvio Savarese. Recognizing human ac-
tions by attributes. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), pages 3337–3344. IEEE,
June 2011.

[111] David Lopez-Paz, Léon Bottou, Bernhard Schölkopf, and Vladimir Vapnik.
Unifying distillation and privileged information. Computing Research Reposi-
tory (CoRR), arXiv:abs/1511.03643:1–10, 2015.

[112] Richard Maclin and David Opitz. An empirical evaluation of bagging and
boosting. In AAAI, pages 546–551, 1997.

164

Bibliography

[113] Javier Marín, David Vázquez, David Gerónimo, and Antonio M. López. Learn-
ing appearance in virtual scenarios for pedestrian detection. Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pages 137–144, June 2010.

[114] Marcin Marszalek, Ivan Laptev, and Cordelia Schmid. Actions in context. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2929–2936. IEEE, June 2009.

[115] Francisco Massa, Bryan C. Russell, and Mathieu Aubry. Deep exemplar 2D-3D
detection by adapting from real to rendered views. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6024–6033. IEEE, June 2016.

[116] Pyry Matikainen, Rahul Sukthankar, and Martial Hebert. Feature seeding
for action recognition. In Proceedings of the International Conference on
Computer Vision (ICCV), pages 1716–1723, November 2011.

[117] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers,
Alexey Dosovitskiy, and Thomas Brox. A large dataset to train convolutional
networks for disparity, optical flow, and scene flow estimation. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2016.

[118] Stephan Meister and Daniel Kondermann. Real versus realistically rendered
scenes for optical flow evaluation. In CEMT, pages 1–6, March 2011.

[119] Pascal Mettes, Dennis C Koelma, and Cees G M Snoek. The ImageNet shuffle:
Reorganized pre-training for video event detection. In Proceedings of the 2016
ACM on International Conference on Multimedia Retrieval, pages 175–182.
ACM, 2016.

[120] Gavin Miller. Efficient algorithms for local and global accessibility shading.
In Proceedings of the Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH), pages 319–326, New York, New York, USA, 1994. ACM
Press.

[121] Ian Millington. Game Physics Engine Development, Second Edition: How to
Build a Robust Commercial-Grade Physics Engine for Your Game. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition, 2010.

[122] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with deep

165

Bibliography

reinforcement learning. In Proceedings of Neural Information Processing
Systems Workshops, 2013.

[123] Steven Molnar. Efficient supersampling antialiasing for high-performance ar-
chitectures. Technical Report TR91-023, North Carolina University at Chapel
Hill, The address of the publisher, 1991.

[124] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the International Conference on
Machine Learning, pages 807–814. Omnipress, 2010.

[125] Sanath Narayan and Kalpathi R. Ramakrishnan. Hyper-fisher vec-
tors for action recognition. Computing Research Repository (CoRR),
arXiv:abs/1509.08439, 2015.

[126] Joe Yue–Hei Ng, Fan Yang, and Larry S. Davis. Exploiting local features from
deep networks for image retrieval. In Proceedings of the Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 53–61. IEEE, June
2015.

[127] Joe Yue-Hei Ng, Matthew J. Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep
networks for video classification. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 4694–
4702. IEEE, June 2015.

[128] Siqi Nie, Ziheng Wang, and Qiang Ji. A generative restricted boltzmann ma-
chine based method for high-dimensional motion data modeling. Computer
Vision and Image Understanding, 136:14–22, 2015.

[129] Juan Carlos Niebles, Chih Wei Chen, and Li Fei-Fei. Modeling temporal
structure of decomposable motion segments for activity classification. In
Proceedings of the European Conference on Computer Vision (ECCV), pages
392–405. Springer Berlin Heidelberg, 2010.

[130] Gabriel L. Oliveira, Wolfram Burgard, and Thomas Brox. Efficient deep models
for monocular road segmentation. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 4885–4891, October
2016.

[131] Dan Oneata, Jakob Verbeek, and Cordelia Schmid. Action and event recogni-
tion with fisher vectors on a compact feature set. Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), pages 1817–1824, December
2013.

166

Bibliography

[132] Dan Oneata, Jakob Verbeek, and Cordelia Schmid. The LEAR submission at
THUMOS 2014. Technical report, INRIA Grenoble - Rhône-Alpes Research
Centre, 2014.

[133] Naveen Onkarappa and Angel D. Sappa. Synthetic sequences and ground-
truth flow field generation for algorithm validation. Multimedia Tools and
Applications, 74(9):3121–3135, May 2015.

[134] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and trans-
ferring mid-level image representations using convolutional neural networks.
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1717–1724, 2014.

[135] Paul Over, George Awad, Travis Rose, and Jon Fiscus. TRECVID 2008 – goals,
tasks, data, evaluation mechanisms and metrics. Evaluation, pages 1–32,
2009.

[136] Jeremie Papon and Markus Schoeler. Semantic pose using deep networks
trained on synthetic RGB-D. In Proceedings of the International Conference
on Computer Vision (ICCV), pages 774–782, December 2015.

[137] Alonso Patron-Perez, Marcin Marszalek, Ian Reid, and Andrew Zissermann.
Structured learning of human interaction in TV shows. IEEE Transactions
on Pattern Analysis and Machine Intelligence (T-PAMI), 34(12):2441–2453,
December 2012.

[138] Alonso Patron-Perez, Marcin Marszalek, Andrew Zisserman, and Ian Reid.
High Five: Recognising human interactions in TV shows. In Proceedings
of the British Machine Vision Conference (BMVC), pages 50.1–50.11, 2010.
doi:10.5244/C.24.50.

[139] Mattis Paulin, Jérôme Revaud, Zaid Harchaoui, Florent Perronnin, and
Cordelia Schmid. Transformation pursuit for image classification. In Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3646–3653. IEEE, September 2014.

[140] Xiaojiang Peng, Limin Wang, Xingxing Wang, and Yu Qiao. Bag of visual words
and fusion methods for action recognition: Comprehensive study and good
practice. Computer Vision and Image Understanding, 150:109–125, 2016.

[141] Xiaojiang Peng, Changqing Zou, Yu Qiao, and Qiang Peng. Action recognition
with stacked fisher vectors. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 581–595. Springer International Publishing,
2014.

167

Bibliography

[142] Xingchao Peng, Baochen Sun, Karim Ali, and Kate Saenko. Learning deep ob-
ject detectors from 3D models. In Proceedings of the International Conference
on Computer Vision (ICCV), pages 1278–1286, December 2015.

[143] Bojan Pepik, Michael Stark, Peter Gehler, and Bernt Schiele. Teaching 3D
geometry to deformable part models. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
3362–3369. IEEE, June 2012.

[144] Ken Perlin. Real time responsive animation with personality. IEEE Transac-
tions on Visualization and Computer Graphics, 1(1):5–15, March 1995.

[145] Ken Perlin and Gerry Seidman. Autonomous digital actors. In Motion in
Games, pages 246–255. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[146] Florent Perronnin, Zeynep Akata, Zaid Harchaoui, and Cordelia Schmid.
Towards good practice in large-scale learning for image classification. Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3482–3489, June 2012.

[147] Florent Perronnin and Christopher Dance. Fisher kernels on visual vocabu-
laries for image categorization. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8.
IEEE, June 2007.

[148] Florent Perronnin and Diane Larlus. Fisher vectors meet neural networks: A
hybrid classification architecture. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 3743–
3752. IEEE, June 2015.

[149] Florent Perronnin, Yan Liu, Jorge Sanchez, and Herve Poirier. Large-scale
image retrieval with compressed fisher vectors. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3384–3391. IEEE, June 2010.

[150] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the
Fisher kernel for large-scale image classification. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 143–156. Springer Berlin
Heidelberg, 2010.

[151] Alessandro Pieropan, Giampiero Salvi, Karl Pauwels, and Hedvig Kjellstrom.
Audio-visual classification and detection of human manipulation actions. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3045–3052. IEEE, September 2014.

168

Bibliography

[152] Leonid Pishchulin, Arjun Jain, Christian Wojek, Mykhaylo Andriluka,
Thorsten Thormählen, and Bernt Schiele. Learning people detection models
from few training samples. In Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 1473–1480.
IEEE, June 2011.

[153] Tomaso Poggio and Simon Smale. The mathematics of learning: dealing with
data. Notices of the American Mathematical Society, 50(May):537–544, 2003.

[154] Ronald Poppe. A survey on vision-based human action recognition. Image
and Vision Computing, 28(6):976–990, June 2010.

[155] Terry Regier, Paul Kay, and Naveen Khetarpal. Color naming reflects optimal
partitions of color space. Proceedings of the National Academy of Sciences,
104(4):1436–1441, 2007.

[156] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Koltun Vladlen. Playing
for data: Ground truth from computer games. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 102–118. Springer International
Publishing, 2016.

[157] Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. Approximating dy-
namic global illumination in image space. Proceedings of the 2009 symposium
on Interactive 3D graphics and games - I3D ’09, page 75, 2009.

[158] German Ros, Laura Sellart, Joanna Materzyska, David Vázquez, and Antonio
M. López. The SYNTHIA dataset: a large collection of synthetic images for
semantic segmentation of urban scenes. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
3234–3243. IEEE, June 2016.

[159] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290(5500):2323–2326, December 2000.

[160] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,
December 2015.

[161] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume
Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray
Kavukcuoglu, and Raia Hadsell. Policy distillation. Computing Research
Repository (CoRR), arvix:abs/1511.06295, 2015.

169

Bibliography

[162] Jorge Sánchez, Florent Perronnin, and Teófilo de Campos. Modeling the
spatial layout of images beyond spatial pyramids. Pattern Recognition Letters,
33(16):2216–2223, 2012.

[163] Scott Satkin, Jason Lin, and Martial Hebert. Data-driven scene understanding
from 3D models. In Proceedings of the British Machine Vision Conference
(BMVC), 2012.

[164] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human
actions: a local svm approach. In Proceedings of the International Conference
in Pattern Recognition, volume 3, pages 32–36. IEEE, 2004.

[165] David Sculley. Web-scale k-means clustering. In Proceedings of the 19th
International Conference on World Wide Web, pages 1177–1178. ACM, 2010.

[166] Jeremy Selan. Cinematic color. Proceedings of the Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH), pages 1–54, 2012.

[167] Laura Sevilla-Lara, Yiyi Liao, Fatma Guney, Varun Jampani, Andreas Geiger,
and Michael J Black. On the integration of optical flow and action recognition.
Computing Research Repository (CoRR), arXiv:abs/1712.08416, 2017.

[168] Alireza Shafaei, James J. Little, and Mark Schmidt. Play and learn: Using video
games to train computer vision models. In Proceedings of the British Machine
Vision Conference (BMVC), pages 26–1, September 2016.

[169] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio,
Richard Moore, Alex Kipmanand, and Andrew Blake. Real-time human pose
recognition in parts from a single depth image. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1297–1304. IEEE, June 2011.

[170] Karen Simonyan and Andrew Zisserman. Two-stream convolutional net-
works for action recognition in videos. In Proceedings of Neural Information
Processing Systems (NIPS), pages 568–576. Curran Associates, Inc., 2014.

[171] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. Computing Research Repository (CoRR),
arXiv:abs/1409.1556, September 2014.

[172] Elena Sizikova1, Vivek K. Singh, Bogdan Georgescu, Maciej Halber, Kai Ma,
and Terrence Chen. Enhancing place recognition using joint intensity - depth
analysis and synthetic data. In Proceedings of the European Conference on

170

Bibliography

Computer Vision Workshops, pages 901–908. Springer International Publish-
ing, 2016.

[173] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset
of 101 human actions classes from videos in the wild. Computing Research
Repository (CoRR), arXiv:1212.0402, November 2012.

[174] Tiago Sousa, Nick Kasyan, and Nicolas Schulz. Secrets of cryengine 3 graphics
technology. In Proceedings of the Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH), 2011.

[175] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal on Machine Learning Research, 15:1929–1958, 2014.

[176] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised
learning of video representations using LSTMs. Proceedings of Machine
Learning Research, 37:843–852, July 2015.

[177] Bernhard Steiner. Post processing effects. Institute of Graphics and Algo-
rithms, Vienna University of Technology. Bachelour’s thesis, August 2011.

[178] Hao Su, Charles R. Qi, Yangyan Yi, and Leonidas Guibas. Render for CNN:
viewpoint estimation in images using CNNs trained with rendered 3D model
views. In Proceedings of the International Conference on Computer Vision
(ICCV), 2015.

[179] Hao Su, Fan Wang, Yangyan Yi, and Leonidas Guibas. 3D-assisted feature
synthesis for novel views of an object. In Proceedings of the International
Conference on Computer Vision (ICCV), pages 2677–2685, December 2015.

[180] Baochen Sun and Kate Saenko. From virtual to reality: Fast adaptation of
virtual object detectors to real domains. In Proceedings of the British Machine
Vision Conference (BMVC), 2014.

[181] Lin Sun, Kui Jia, Kevin Chen, Dit Yan Yeung, Bertram E Shi, and Silvio Savarese.
Lattice long short-term memory for human action recognition. Proceedings
of the International Conference on Computer Vision (ICCV), pages 2147–2156,
October 2017.

[182] Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E. Shi. Human action recognition
using factorized spatio-temporal convolutional networks. In Proceedings of
the International Conference on Computer Vision (ICCV), pages 4597–4605,
December 2015.

171

Bibliography

[183] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
1–9. IEEE, June 2015.

[184] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer vision.
In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2818–2826. IEEE, June 2016.

[185] Geoffrey R. Taylor, Andrew J. Chosak, and Paul C. Brewer. OVVV: Using virtual
worlds to design and evaluate surveillance systems. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1–8. IEEE, June 2007.

[186] Sinisa Todorovic. Human activities as stochastic kronecker graphs. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), volume
7573 LNCS, pages 130–143. Springer, Berlin, Heidelberg, 2012.

[187] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. Learning spatiotemporal features with 3D convolutional networks. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4489–4497. IEEE, December 2015.

[188] Saburo Tsuji, Akira Morizono, and Shinichi Kuroda. Understanding a simple
cartoon film by a computer vision system. In Proceedings of the International
Joint Conference on Artificial Intelligence, volume 2 of IJCAI, pages 609–610.
Morgan Kaufmann Publishers Inc., 1977.

[189] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. Computing Research Repository (CoRR),
arXiv:abs/1509.06461(2):1–5, 2015.

[190] Herwin Van Welbergen, Ben JH Van Basten, Arjan Egges, Zs M Ruttkay, and
Mark H Overmars. Real time character animation: A trade-off between
naturalness and control. Proceedings of the Eurographics, pages 45–72, 2009.

[191] Vladimir Vapnik. Learning using privileged information: Similarity control
and knowledge transfer. Journal on Machine Learning Research, 16:2023–2049,
2015.

172

Bibliography

[192] David Vazquez, Antonio M. López, Javier Marín, Daniel Ponsa, and David
Gerónimo. Virtual and real world adaptation for pedestrian detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),
36(4):797–809, April 2014.

[193] David Vázquez, Antonio M. López, Daniel Ponsa, and Javier Marín. Cool
world: domain adaptation of virtual and real worlds for human detection
using active learning. In Proceedings of Neural Information Processing Systems
Workshops, 2011.

[194] Ramakrishna Vedantam, Xiao Lin, Tanmay Batra, C. Lawrence Zitnick, and
Devi Parikh. Learning common sense through visual abstraction. In Pro-
ceedings of the International Conference on Computer Vision (ICCV), pages
2542–2550, December 2015.

[195] V.S.R. Veeravasarapu, Rudra Narayan Hota, Constantin Rothkopf, and Ramesh
Visvanathan. Model validation for vision systems via graphics simulation.
Computing Research Repository (CoRR), arXiv:1512.01401, 2015.

[196] V.S.R. Veeravasarapu, Rudra Narayan Hota, Constantin Rothkopf, and Ramesh
Visvanathan. Simulations for validation of vision systems. Computing Re-
search Repository (CoRR), arXiv:1512.01030, 2015.

[197] V.S.R. Veeravasarapu, Constantin Rothkopf, and Ramesh Visvanathan. Model-
driven simulations for deep convolutional neural networks. Computing
Research Repository (CoRR), arXiv:1605.09582, 2016.

[198] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos
with scene dynamics. In Proceedings of Neural Information Processing Systems
(NIPS), 2016.

[199] Michalis Vrigkas, Christophoros Nikou, and Ioannis A. Kakadiaris. A review
of human activity recognition methods. Frontiers in Robotics and AI, 2:1–28,
2015.

[200] Hanli Wang, Yun Yi, and Jun Wu. Human action recognition with trajectory
based covariance descriptor in unconstrained videos. In Proceedings of the
ACM International Conference on Multimedia (ACM-MM), MM, pages 1175–
1178, New York, NY, USA, 2015. ACM.

[201] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng Lin Liu. Action
recognition by dense trajectories. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 3169–
3176. IEEE, June 2011.

173

Bibliography

[202] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Dense
trajectories and motion boundary descriptors for action recognition. Inter-
national Journal of Computer Vision (IJCV), 103:60–79, May 2013.

[203] Heng Wang, Dan Oneata, Jakob Verbeek, and Cordelia Schmid. A robust and
efficient video representation for action recognition. International Journal of
Computer Vision (IJCV), 119(3):219—-238, September 2016.

[204] Heng Wang and Cordelia Schmid. Action recognition with improved trajec-
tories. In Proceedings of the International Conference on Computer Vision
(ICCV), pages 3551–3558, December 2013.

[205] Heng Wang and Cordelia Schmid. LEAR-INRIA submission for the THUMOS
workshop. In ICCV workshop on action recognition with a large number of
classes, volume 2, pages 8–11, Jan 2013.

[206] Heng Wang, Muhammad Muneeb Ullah, Alexander Klaser, Ivan Laptev, and
Cordelia Schmid. Evaluation of local spatio-temporal features for action
recognition. Proceedings of the British Machine Vision Conference (BMVC),
pages 124.1–124.11, September 2009.

[207] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with trajectory-
pooled deep-convolutional descriptors. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), pages
4305–4314. IEEE, June 2015.

[208] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and
Luc Van Gool. Temporal segment networks: Towards good practices for deep
action recognition. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 20–36. Springer International Publishing, 2016.

[209] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang,
and Luc Van Gool. Temporal segment networks for action recognition in
videos. Computing Research Repository (CoRR), arXiv:abs/1705.02953, 2017.

[210] Pichao Wang, Wanqing Li, Zhimin Gao, Yuyao Zhang, Chang Tang, and Philip
Ogunbona. Scene flow to action map: A new representation for RGB-D
based action recognition with convolutional neural networks. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pages 416–425. IEEE, July 2017.

[211] Xiaolong Wang, Ali Farhadi, and Abhinav Gupta. Actions ∼ Transformations.
In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2016.

174

Bibliography

[212] David H Wolpert. Stacked generalization. Neural Networks, 5(2):241–259,
1992.

[213] Zuxuan Wu, Yu gang Jiang, Xi Wang, Hao Ye, and Xiangyang Xue. Multi-stream
multi-class fusion of deep networks for video classification. In Proceedings
of the ACM International Conference on Multimedia (ACM-MM), MM, pages
791–800. ACM, 2016.

[214] Zuxuan Wu, Xi Wang, Yu-Gang Jiang, Hao Ye, and Xiangyang Xue. Modeling
spatial-temporal clues in a hybrid deep learning framework for video classifi-
cation. In Proceedings of the ACM International Conference on Multimedia
(ACM-MM), MM, pages 461–470, 2015.

[215] Jiaolong Xu, Sebastian Ramos, David Vázquez, and Antonio M. López. Do-
main adaptation of deformable part-based models. IEEE Transactions on
Pattern Analysis and Machine Intelligence (T-PAMI), 36(12):2367–2380, De-
cember 2014.

[216] Jiaolong Xu, David Vázquez, Antonio M. López, Javier Marín, and Daniel
Ponsa. Learning a part-based pedestrian detector in a virtual world. T-ITS,
15(5):2121–2131, October 2014.

[217] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable
are features in deep neural networks? Proceedings of Neural Information
Processing Systems (NIPS), 27:3320–3328, November 2014.

[218] Mengyang Yu, Li Liu, and Ling Shao. Structure-preserving binary representa-
tions for RGB-D action recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence (T-PAMI), 38(8):1651–1664, August 2016.

[219] Christopher Zach, Thomas Pock, and Horst Bischof. A duality based approach
for realtime tv-l1 optical flow. In Proceedings of the 29th DAGM Conference on
Pattern Recognition, pages 214–223. Springer-Verlag, 2007.

[220] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. Computing Research Repository (CoRR), arXiv:abs/1311.2901,
2013.

[221] Shengxin Zha, Florian Luisier, Walter Andrews, Nitish Srivastava, and Rus-
lan Salakhutdinov. Exploiting image-trained CNN architectures for uncon-
strained video classification. In Proceedings of the British Machine Vision
Conference (BMVC), pages 60.1–60.13, 2015.

175

Bibliography

[222] Jianguo Zhang, Marcin Marszalek, Svetlana Lazebnik, and Cordelia Schmid.
Local features and kernels for classification of texture and object categories:
A comprehensive study. International Journal of Computer Vision (IJCV),
73(2):213–238, June 2007.

[223] Yuanjie Zheng, Stephen Lin, Chandra Kambhamettu, Jingyi Yu, and Sing Bing
Kang. Single-image vignetting correction. In IEEE Transactions on Pattern
Analysis and Machine Intelligence (T-PAMI), volume 31, pages 2243–2256,
December 2009.

[224] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. Scene parsing through ade20k dataset. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5122–5130. IEEE, July 2017.

[225] Shusen Zhou, Qingcai Chen, and Xiaolong Wang. Active deep networks for
semi-supervised sentiment classification. In Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics: Posters, pages 1515–1523.
Association for Computational Linguistics, 2010.

[226] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: Many
could be better than all. Artificial Intelligence, 137:239–263, May 2002.

[227] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Pro-
ceedings of the International Conference on Computer Vision (ICCV). IEEE,
2017.

[228] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-
Fei, and Ali Farhadi. Target-driven visual navigation in indoor scenes using
deep reinforcement learning. Proceedings of the IEEE International Confer-
ence on Robotics and Automation, pages 3357–3364, May 2017.

[229] C. Lawrence Zitnick, Ramakrishna Vedantam, and Devi Parikh. Adopting
abstract images for semantic scene understanding. IEEE Transactions on
Pattern Analysis and Machine Intelligence (T-PAMI), 38(4):627–638, April 2016.

[230] Mohammadreza Zolfaghari, Gabriel L. Oliveira, Nima Sedaghat, and Thomas
Brox. Chained multi-stream networks exploiting pose, motion, and appear-
ance for action classification and detection. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), 2017.

176

	Abstract
	Resumen
	Resum
	List of figures
	List of tables
	List of acronyms
	Introduction
	Context
	Objectives and scope
	Contributions
	Outline

	Human action recognition in videos
	Introduction
	Datasets for action and related tasks
	Overview of related works in the literature

	Local feature encoding approaches
	Dense trajectories and the local feature encoding pipeline
	State-of-the-art pipelines

	Deep learning approaches
	3D convolutional networks
	Two-Stream Networks
	Temporal Segment Networks

	The case for synthetic data and virtual worlds
	Summary of the chapter

	Hybrid models for action recognition
	Introduction
	Fisher Vectors: From baseline to state of the art
	Improved Dense Trajectories
	Bag of tricks for Bag-of-Words
	Data Augmentation by Feature Stacking (DAFS)

	Hybrid architectures for action recognition
	System architecture
	Learning

	Experiments
	Datasets
	Study of trajectory baselines for action recognition
	Analysis of hybrid models
	Transferability of hybrid models
	Comparison to the state of the art
	Detailed failure and success cases per dataset

	Summary of the chapter

	Procedural Human Action Videos Dataset
	Introduction
	Virtual scene and action elements
	Action scene composition
	Camera
	Actions
	Physically plausible motion variations

	Interpretable parametric generative model
	Overview
	Variables
	Model
	Distributions

	Generating a synthetic action dataset
	Statistics
	Data modalities
	Example frames

	Summary of the chapter

	Learning more about the real world with synthetic action videos
	Introduction
	Cool Temporal Segment Networks
	Temporal Segment Networks
	Multi-task learning in a Cool World

	Cool Human Parsing Temporal Segment Networks
	Human Parsing Temporal Segment Networks
	Multi-modality learning in a Cool World

	Experiments
	Temporal Segment Networks
	Cool Temporal Segment Networks
	Human Parsing Temporal Segment Networks
	Cool Human Parsing Temporal Segment Networks
	Comparison to the state of the art

	Summary of the chapter

	Conclusions and future work
	Conclusions
	Comparison to the state of the art
	Future work
	Patents
	Scientific articles
	International conferences
	Workshops and events

	Contributed datasets
	Challenges
	Scientific dissemination
	Demonstrations
	Talks

	ActivityNet Challenge 2016
	Challenge
	Submission
	Results
	Pipeline

	Bibliography

	Títol de la tesi: Action Recognition in Videos: Data-efficient approaches for supervised
learning of human action classification models for video
	Nom autor/a: César Roberto de Souza

