
HIGH-THROUGHPUT SEQUENCING

DATA COMPRESSION

Łukasz Roguski

TESI DOCTORAL UPF / 2017

DIRECTORS DE LA TESI

Dr. Paolo Ribeca
Dr. Sebastian Deorowicz

DEPARTAMENT DE CIÈNCIES EXPERIMENTALS I DE LA SALUT

The power for creating a better future is

contained in the present moment:

You create a good future

by creating a good present.

— Eckhart Tolle

ACKNOWLEDGEMENTS

First and foremost, I offer sincerely my gratitude to my supervisors Dr.

Sebastian Deorowicz, from the Silesian University of Technology, and

Dr. Paolo Ribeca, from the Pirbright Institute. Sebastian Deorowicz is an

excellent researcher and professor who I met during undergraduate studies

– his expertise has been a guidance during my adventure with developing

methods for processing large volumes of data. His vast knowledge in the

area, advice and encouragement have been essential during completing

my master thesis and we have continued our fruitful collaboration on this

work. I greatly appreciate his support and patience, always being able to

count on him.

Paolo Ribeca is a talented researcher and a brilliant mind who I have been

fortunate to work with, starting our collaboration as an intern and extend-

ing it to a long research stay at Centro Nacional de Análisis Genómico

(CNAG) in Barcelona. His vast expertise in the area, advice, support, and

thinking “outside the box”, helped me to tackle the problems in bioinfor-

matics field from different perspectives and helped me to understand the

challenges of working with genomic data. I also enjoyed a lot crunching

challenging problems together on the blackboard with discussions full of

surreal sense of humor.

Furthermore, I am grateful to my tutor Roderic Guigó from Universitat

Pompeu Fabra (UPF) and Centre for Genomic Regulation (CRG), who is

an excellent researcher and professor. He has been always welcoming,

helpful, motivating to look for answers for the large number of questions

in the field of biology (and challenges in the field of bioinformatics), and

encouraging me to pursue my goals in scientific career.

i

Acknowledgements ii

I also would like to acknowledge all the organizations, teams and people

I have collaborated with. First of all, my research stay at CNAG has been

of a great value. It allowed me to get insight into a vast number of bio-

logical concepts and processes, which we try to understand empowered

with sequencing technologies and using computational methods from the

bioinformatics field. This would not be possible without Ivo Gut, the di-

rector of CNAG, to who I am grateful for supporting my research, projects

and for valuable advices during all these years.

Furthermore, I would like to thank Andrzej Polański and Joanna Polańska

from the Silesian University of Technology, who encouraged and supported

my initial short-term stay at CNAG under the project INTERKADRA. Col-

laboration with Mikel Hernaez and Idoia Ochoa from the University of

Illinois has been also a very valuable experience within our new project. I

have learned a lot working together and I greatly appreciate our collabo-

ration. I would also like to thank David Man for his comments and help

on correcting English grammar and style of this thesis (excluding this part,

which was added at the same end).

While doing my research at CNAG, I have met and worked with fantastic

people – I am grateful to all my close colleagues for these positive expe-

riences. First of all, I would like to thank Leonor, one of the most skilled

algorithmicians, a scientist, a dancer, and a volleyball player, who has

been always supportive, encouraging and helpful; she is an exceptional

person. I thank David, who has been a greats companion from the begin-

ning, showing that bioinformatics and karate actually have a lot of things

in common – together with Anna P., who I am also happy to have met, we

spent great time working together and exploring Barcelona after work.

Moreover, I would like to thank Marcos for fruitful discussions, for his help

and support both in solving various bioinformatic-related problems and

in winning volleyball matches. My thanks also go to Enric, a passionate

bioinformatician, with who we shared a lot of outstanding moments, not

only crunching problems in the world of bioinformatics. I would also

like to thank Emilio who I shared with a significant numbers of coffees –

with his wife Giulia (a big ‘thank you’ to you too), they have been always

supportive and helpful. I thank François, a true hacker in bioinformatics,

for his support and fruitful, inspiring discussions. My thanks goes also

to my PhD colleague Santiago, a very skilled scientist, from who I have

iii Acknowledgements

learned a lot. Thank you Miranda for always sharing a lot of positive energy,

not allowing to stay down or bored (especially during Spanish classes).

Furthermore, I would like to thank my colleagues Fran, Marysia, Elisabetta,

Thasso, Tyler, Jéssica, Jordi, Anna E., Nando, Sophia, Raúl, Pablo, Miguel,

Justin, Davide, Irene, with who we shared a lot of worthwhile conversations,

coffees, breakfasts, lunches, and/or drinks.

On a personal level, I would like to express my sincere gratitude to my close

friends from my hometown, Gliwice, who have supported me during this

PhD journey in Barcelona. They have been always present, despite the dis-

tance, both in the easy and difficult times, awaiting for the moment I finally

close the thesis; they were also checking my progress in person, from time

to time, while in Barcelona. Especially, I would like to thank Marcin, who

has always been to me like “a brother, but from another mother and father”.

I thank Dominika, with who we could always understand each other with-

out words. I thank Tomek for his enthusiasm and creativity, never being

able to get bored together. Furthermore, I thank Ania & Wojtek, Tobek,

and Marta, as I could always count on you, sharing valuable moments

together independently on the place and the distance. I would also like to

thank Agnieszka, Hiszpan, Monika, and Hania, for always remembering

and being around.

Moreover, I am grateful to all my flatmates (and friends) who we shared

together with unforgettable moments (apart from the flat), as they were

also indirectly involved in this PhD journey almost every day. Firstly, I

thank Peter for sharing good vibes while sharing the flat in Barceloneta.

This journey, however, would not be so unique without Doron & Kamila,

who gave me a sense of being my first family abroad – this was an amazing

time in Gracia, thank you so much. I am also very grateful to Yannick

for sharing a great time and part of life in Sants, both in our cozy self-

assembled flat and in the bodega. Together with Yannick & Francesca, Leo

& Marión, Ania & Stefan, Jeroen, Anna L., Fede, Davide, we have collected

a lot of unforgettable memories, while living in Sants – thanks for being

great people and thank you for making me feel in Barcelona “at home”.

Furthermore, my sincere gratitude to my other close friends in Barcelona,

sharing a lot both of positive and difficult moments together, who were

always supporting me, despite me being (definitely too often) busy, work-

Acknowledgements iv

ing or “finishing” the thesis. First of all, I would like to especially thank

Ewelina, who I met almost at the beginning of the journey and who has

been was always close to me – our trips with Xavi, Pedro or Paola visiting

Costa Brava will remain as great memories, among many others. Moreover,

I would like to thank Damian for staying always creative, spontaneous,

and not politically correct, guaranteeing having a lot of fun together. My

big thanks goes to Doris & Remek, Olek & Mireia, for being always warm,

welcoming people, and sharing a lot of positive energy (and some drinks).

Many thanks to Oriol, for long and inspiring discussions; thanks a lot also

for multiple hikes in the mountains and skiing together in the Pyrenees.

Thank you Laia & Gerard for incredible hikes in the mountains together

and sharing great moments outside Barcelona (and, of course, also in the

city). Loli & Joan, thank you for always encouraging to staying creative and

for experiencing together the Sónar. Thank you Sandie for your constant

encouragements too, apart from the fantastic French crêpes you make.

Many thanks go also to Ignasi, Solmaz, Edu and Pere, for sharing a lot of

good moments and interesting discussions.

Finally, I am very grateful for my little family, for their indefinite support,

presence, patience, and understanding – you have been always with me

during this journey, despite me often being absent and fully focused on

the thesis. I truly cannot express how grateful I am for my beloved Marina,

who has always found positive energy to share, to smile, and to cheer up.

We’ve been both going through the tough experiences together, but always

finding the way to stay happy, and to enjoy even the little positive moments

and successes on our way – and with more positive and great moments

very soon to come! I am also very grateful to my parents, who supported

me as much as they could both on the distance and while visiting me

many times in Barcelona. My brother has been always an inspiration for

me, his creativity, strength and stubbornness have been reminding me to

keep going, despite the difficulties; thanks a lot “byczku”. Moreover, my

sincere gratitude to Montserrat & Francesc for their positive energy and

always cheering up. Finally, I would like to thank my uncle Kazik, Sumsi &

Francesc for their kind support. Without all of you, I would not have been

able to arrive up to here. Thank you.

ABSTRACT

Thanks to advances in sequencing technologies, biomedical research has

experienced a revolution over recent years, resulting in an explosion in the

amount of genomic data being generated worldwide. The typical space

requirement for storing sequencing data produced by a medium-scale

experiment lies in the range of tens to hundreds of gigabytes, with multiple

files in different formats being produced by each experiment. The current

de facto standard file formats used to represent genomic data are text-

based. For practical reasons, these are stored in compressed form. In most

cases, such storage methods rely on general-purpose text compressors,

such as gzip. Unfortunately, however, these methods are unable to exploit

the information models specific to sequencing data, and as a result they

usually provide limited functionality and insufficient savings in storage

space. This explains why relatively basic operations such as processing,

storage, and transfer of genomic data have become a typical bottleneck of

current analysis setups.

Therefore, this thesis focuses on methods to efficiently store and com-

press the data generated from sequencing experiments. First, we propose

a novel general purpose FASTQ files compressor. Compared to gzip, it

achieves a significant reduction in the size of the resulting archive, while

also offering high data processing speed. Next, we present compression

methods that exploit the high sequence redundancy present in sequencing

data. These methods achieve the best compression ratio among current

state-of-the-art FASTQ compressors, without using any external reference

sequence. We also demonstrate different lossy compression approaches to

store auxiliary sequencing data, which allow for further reductions in size.

Finally, we propose a flexible framework and data format, which allows one

to semi-automatically generate compression solutions which are not tied

v

Abstract vi

to any specific genomic file format. To facilitate data management needed

by complex pipelines, multiple genomic datasets having heterogeneous

formats can be stored together in configurable containers, with an option

to perform custom queries over the stored data. Moreover, we show that

simple solutions based on our framework can achieve results comparable

to those of state-of-the-art format-specific compressors.

Overall, the solutions developed and described in this thesis can easily

be incorporated into current pipelines for the analysis of genomic data.

Taken together, they provide grounds for the development of integrated

approaches towards efficient storage and management of such data.

RESUM

Gràcies als avenços en el camp de les tecnologies de seqüenciació, en els

darrers anys la recerca biomèdica ha viscut una revolució, que ha tingut

com un dels resultats l’explosió del volum de dades genòmiques generades

arreu del món. La mida típica de les dades de seqüenciació generades

en experiments d’escala mitjana acostuma a situar-se en un rang entre

deu i cent gigabytes, que s’emmagatzemen en diversos arxius en diferents

formats produïts en cada experiment. Els formats estàndards actuals de

facto de representació de dades genòmiques són en format textual. Per

raons pràctiques, les dades necessiten ser emmagatzemades en format

comprimit. En la majoria dels casos, aquests mètodes de compressió es

basen en compressors de text de caràcter general, com ara gzip. Amb tot,

no permeten explotar els models d’informació especifícs de dades de se-

qüenciació. És per això que proporcionen funcionalitats limitades i estalvi

insuficient d’espai d’emmagatzematge. Això explica per què operacions

relativament bàsiques, com ara el processament, l’emmagatzematge i la

transferència de dades genòmiques, s’han convertit en un dels principals

obstacles de processos actuals d’anàlisi.

Per tot això, aquesta tesi se centra en mètodes d’emmagatzematge i com-

pressió eficients de dades generades en experiments de sequenciació. En

primer lloc, proposem un compressor innovador d’arxius FASTQ de pro-

pòsit general. A diferència de gzip, aquest compressor permet reduir de

manera significativa la mida de l’arxiu resultant del procés de compressió.

A més a més, aquesta eina permet processar les dades a una velocitat

alta. A continuació, presentem mètodes de compressió que fan ús de l’alta

redundància de seqüències present en les dades de seqüenciació. Aquests

mètodes obtenen la millor ratio de compressió d’entre els compressors

FASTQ del marc teòric actual, sense fer ús de cap referència externa. També

vii

Abstract viii

mostrem aproximacions de compressió amb pèrdua per emmagatzemar

dades de seqüenciació auxiliars, que permeten reduir encara més la mida

de les dades. En últim lloc, aportem un sistema flexible de compressió i

un format de dades. Aquest sistema fa possible generar de manera semi-

automàtica solucions de compressió que no estan lligades a cap mena de

format específic d’arxius de dades genòmiques. Per tal de facilitar la gestió

complexa de dades, diversos conjunts de dades amb formats heterogenis

poden ser emmagatzemats en contenidors configurables amb l’opció de

dur a terme consultes personalitzades sobre les dades emmagatzemades.

A més a més, exposem que les solucions simples basades en el nostre

sistema poden obtenir resultats comparables als compressors de format

específic de l’estat de l’art.

En resum, les solucions desenvolupades i descrites en aquesta tesi poden

ser incorporades amb facilitat en processos d’anàlisi de dades genòmi-

ques. Si prenem aquestes solucions conjuntament, aporten una base

sòlida per al desenvolupament d’aproximacions completes encaminades

a l’emmagatzematge i gestió eficient de dades genòmiques.

PREFACE

Sequencing has become an essential technique extensively used in biologi-

cal research. Access to the genetic code of different organisms has allowed

us to improve our understanding of the organic world surrounding us. We

can thus start deciphering the underlying biological processes, trying to

better grasp the history of life on Earth. More recently, sequencing has

also become used in the context of precision medicine, complementing

clinical decision-making and improving a number of treatments for com-

mon and rare human disorders. However, with continuous advances in

high-throughput sequencing technologies, we also observe an explosion

in the amount of genomic data being generated. The data produced by a

single state-of-the-art experiment can hardly be processed on a single PC

workstation anymore. Handling such vast amounts of genomic data poses

a lot of algorithmic challenges, which are progressively being addressed

by the extensive research currently going on in the field of bioinformat-

ics. The most obvious practical problems are related to data storage and

transfer. They effectively hamper efficient processing, analysis and sharing

of the data, and generate significant costs for an adequate IT infrastruc-

ture. Therefore, this work focuses on improving current approaches to

processing, compressing and storing high-throughput sequencing data.

Sequencing a DNA molecule that represents a target genomic region typi-

cally yields a collection of reads, i.e., a set of substrings originating from

the sequence of the region. Hence, one needs either to reconstruct the se-

quence of the DNA target molecule from these reads by performing de novo

assembly, or to understand their original placement by mapping/aligning

the reads to a known reference sequence. After that, depending on the

goals of the study, the relevant sequence analysis is performed. For in-

stance, this might involve assessing the potential differences between the

ix

Preface x

DNA molecule being studied and the corresponding molecule in the ref-

erence sequence. In practice, however, given the typical length produced

by current short-read technologies and complex biological composition

of some parts of the genomes, the input DNA molecule needs to be se-

quenced multiple times. This results in each experiment producing an

output of millions of relatively short sequences each accompanied by aux-

iliary information. All this is usually stored in a text-based data format,

and typically takes up from tens to hundreds of gigabytes of storage space.

Efficient processing and analysis of such large amounts of data clearly

remains a challenging task. For practical reasons the data is usually stored

in compressed form, most commonly using methods relying on general

text-based compression algorithms such as gzip. Although they can reduce

the data by up to 20–30% of its original size, these methods are unable

to exploit the information models inherent in genomic and sequencing

data, and hence the compression ratio they provide is insufficient. Aside

from storage considerations, genomic data analysis workflows are also

hampered by the current (and de facto standard) text-based file formats

(such as FASTQ or SAM) in which information is stored. Such formats

are cumbersome and do not allow for a rich representation of the data

generated by either the ever improving sequencing technologies or novel

bioinformatics tools. In fact, the magnitude of such problems tends to in-

crease with the size and complexity of the experiment performed, placing

the bottleneck of data analysis pipelines on data management, storage,

and transfer.

This dissertation is composed of 4 chapters and is structured as follows.

In Chapter 1 we provide a brief biological and technical background

for this work. Firstly, we outline basic concepts in genomics and high-

throughput sequencing technologies. Due to the fact that, at the moment,

they are still used to generate the vast majority of genomic data, we pri-

marily focus on second-generation short-read sequencing technologies.

We then show the challenges facing the processing and storing of genomic

data in a broader context. We describe a typical workflow for performing

DNA re-sequencing data analysis, alongside the most commonly used

data formats employed in the process. We put a particular emphasis on

FASTQ and SAM formats, which are used to represent raw sequencing

reads and reads aligned to a reference genome sequence, respectively. The

xi Preface

data stored in these formats usually take up most of the storage.

Going on, we outline a general data compression workflow and the steps

it consists of. We briefly show the concepts used to compress text data,

alongside the methods to model, encode and transform it.

In Chapter 2 we describe the state-of-the-art methods, and the major

challenges in compressing high-throughput sequencing data. As the data

represented in FASTQ and SAM formats is composed of different kinds of

information (such as DNA sequences, read identifiers, and base calling

quality scores) we analyze different compression methods for each type of

data. We first show approaches to compress data in FASTQ format followed

by SAM format. Although the use-cases for these formats are different, the

latter can be seen as a superset of the former, and the typical approaches

to compressing data share a number of similarities and difficulties.

Then, we move on to outline alternative approaches to representing and

storing genomic data. We show the limitations of the current formats and

compression methods, and briefly show the challenges posed by the data

generated by third-generation sequencing technologies.

Chapter 3 contains a compilation of the results of our research. As a

starting point, we present DSRC2, a general purpose high-performance

FASTQ files compressor. Compared to the most commonly used gzip, it

achieves a significant reduction in the size of compressed data and offers

high data processing speeds, which makes it a tool well suited for typical

every-day usage.

Next, we focus on methods to compress short reads, exploiting the high

sequence redundancy which is especially present in data coming from

deep sequencing experiments. We illustrate our findings with ORCOM, a

specialized DNA-only compressor.

Subsequently, we present FaStore, a complete compressor for the FASTQ

format based on the methods of ORCOM and DSRC2. Compared to state-

of-the-art methods it achieves the highest compression ratio so far. We

also explore several lossy compression approaches to store base quality

scores and read identifiers.

After that, and moving away from specialized format-specific compres-

Preface xii

sors, we present CARGO. CARGO is a general framework and data format

which allows its users to semi-automatically generate compressors for

any desired file format. All the user has to do is specify a record-based

definition for the format, together with methods to parse records and to

optionally perform data transformations on them. CARGO allows users

to store multiple genomic datasets having heterogeneous formats in the

same configurable container. As a proof-of-concept, we present a number

of CARGO-based compression solutions. These allow the genomic data

originally represented in FASTQ and SAM format to be stored in both a

lossless and lossy way in CARGO containers. The results achieved are

comparable to those obtained by the best methods so far available.

As a last step, we show a brief summary of lossless compression results,

comparing our compression methods for FASTQ and SAM with the current

state of the art.

Finally, in Chapter 4 we provide a discussion of and outlook for the meth-

ods we have developed. First, we comment on the results of compressing

high-throughput sequencing data both in a lossless and lossy way. We then

elaborate on a strategy to integrate all our ideas into a single framework,

showing other possible applications of our methods and future research

directions they would open up.

The dissertation ends with an Appendix, which contains supplementary

materials for Chapter 3.

CONTENTS

Acknowledgements i

Abstract v

Preface ix

1 Introduction 1

1.1 High-throughput sequencing 1

1.2 Text data compression . 35

1.3 Motivation . 53

2 Storage of high-throughput sequencing data 55

2.1 Compression of raw reads in FASTQ format 56

2.2 Compression of mapped reads in SAM format 68

2.3 Alternative HTS data storage solutions 78

2.4 Storage and compression of long-reads data 87

Objectives 91

3 Results 93

3.1 DSRC2 – Industry-oriented compression of FASTQ files . . . 95

3.2 ORCOM – Disk-based compression of data from genome

sequencing . 99

3.3 FaStore – A space-saving solution for long-term storing of

raw sequencing data . 107

3.4 CARGO: effective format-free compressed storage of genomic

information . 126

3.5 Brief summary . 136

4 Discussion and outlook 153

4.1 HTS data compression workflow 153

4.2 Lossless compression of HTS data 154

xiii

Contents xiv

4.3 Exploring lossy compression methods for HTS data 159

4.4 Integration of the developed methods 163

4.5 Future directions . 168

Conclusions 171

Bibliography 197

A Supplementary materials 199

CHAPTER 1

INTRODUCTION

In this chapter we will show the main difficulties with representing, storing

and managing the data generated using high-throughput sequencing tech-

nologies. Firstly, we will briefly explain the aim of DNA sequencing and

give a short introduction to sequencing technologies from an historical

point of view. We will explain important biological and technological con-

cepts with their limitations. Then, we will show what the typical human

re-sequencing data analysis workflow looks like. We will do this by briefly

explaining the data processing steps, used data formats and the challenges

facing the typical workflow from the data storage and management point

of view. Then, we will give a brief introduction to data compression. We

will explain the typical data compression workflow using concepts and

methods commonly used in data compression. The information presented

in this chapter will be used in Chapter 2 when describing the available

approaches for storing and compressing high-throughput sequencing

data.

1.1 High-throughput sequencing

1.1.1 The aim of DNA sequencing

DNA sequencing is the process of determining the sequence of the nu-

cleotides that compose a DNA molecule. It is primarily used to discover

the sequences of individual genes, larger genomic regions, full chromo-

somes or even entire genomes. Having access to the genetic code of a given

organism allows us the possibility of better understanding the organism in

question along with the underlying biological processes. Additionally, by

using RNA sequencing, one can gain an insight into the gene expression

1

Chapter 1. Introduction 2

taking place inside the cell at any specific moment in time. The experi-

ment can also be designed to focus on different scales – from sequencing

an individual DNA molecule to a set of genes from one organism or even

sequencing genomes of a whole population.

The whole genome sequencing of James Watson [207] and Craig Venter

[107] assessed that humans share ~99.5% of the same genetic code. The

differences present are known as genetic variations or just variants. The

primary set of variants comes as a result of the recombination of genes dur-

ing sexual reproduction involving germ cells. Another source of differences

is genetic mutations. Mutations that occur during the sexual reproduction

stage or during the normal replication of germ cells are transmitted to

the offspring and are called germline mutations. On the other hand, the

mutations that occur during a lifetime and which are not inheritable are

called somatic mutations. Genetic variants which occur at frequency > 1%

in the population are known as common variants. Yet, more than 95% of

the rare ones are predicted to have a medical or biological consequence

[197].

Thanks to sequencing, it is possible to discover a number of genetic vari-

ants in the human genome and to better understand their consequences.

The presence of selected genetic variants can already be linked with pheno-

types, e.g., how they influence the blood type [138], height [211], or scalp

hair features [6]. In normal conditions, the presence of some of these may

have no particular effect on the organism or even help when fighting dis-

eases (e.g., a mutation present in one pair of genes can provide resistance

to HIV virus [133]). However, some variants have already been associated

with blood hypertension [106], type 2 diabetes [193], or Alzheimer disease

[38]. For some some of them also a direct linkage has been found with

different types of cancer [148, 203, 86].

Apart from providing essential contributions to medicine, sequencing

has been applied to better understand not only humans but also their

evolution and the history of different populations and migrations. [154,

200, 163, 140]. Sequencing has also been applied to improve genome en-

gineering techniques in agriculture [202]. Moreover, discovering novel

micro-organisms present in the environment through sequencing has also

become possible, leading to the development of a new research field study-

ing microbial communities – metagenomics [198]. Finally, sequencing

3 1.1. High-throughput sequencing

can offer more reliable individual identification methods to be applied in

forensics sciences [214], as a result of the fact that no two humans have

exactly the same genome, and some parts of it can be used as an efficient

fingerprint.

1.1.2 DNA sequencing technology

Sanger sequencing

Since the discovery of the basic mechanisms of heredity and DNA structure,

sequencing methods have always been of great interest. In the ’70s, in

parallel, Maxam with Gilbert [137] and Sanger [180], developed the first

sequencing methods. However, as the former technique involved using

hazardous chemicals it finally gave a win to the Sanger method, being the

better and also a less complex process.

The Sanger sequencing method is based on the DNA polymerase, the en-

zyme used to synthesize DNA molecule from deoxynucleotides. At the

beginning, the double-stranded DNA fragments need to be denaturated,

i.e., heated up to split them into template and complementary strands. The

obtained template strands are then divided into four separate reactions,

each corresponding to the detection of a different nucleotide – either A, C,

G or T. Next, DNA polymerase, primers, deoxynucleotides and dideoxynu-

cleotides (performing as chain-terminating inhibitors of DNA polymerase)

are added to each reaction in the following way. If the given reaction is

to detect A nucleotides, it will contain ddATP dideoxynucleotides and

the other remaining deoxunucleotites (i.e., dCTP, dGTP and dTTP). The

primers or chain-terminating nucleotides are also previously radioactively

tagged. In this way, the complementary strand will be synthesized by

DNA polymerase by incorporating the present nucleotides to the tem-

plate strand (stopping the reaction on encountering chain-terminating

inhibitors). As a result, multiple complementary strands with different

lengths will be synthesized per each reaction. Finally, the gel electrophore-

sis is applied to isolate and to analyze the synthesized DNA fragments by

their length. The output is the X-ray of the gel (one example is presented

in Fig. 1.1), which allows one to decode the DNA sequence. The initial

Sanger sequencing method allowed for the first time for sequencing of a

full genome, namely that of phi X 174 bacteriophage [179].

Chapter 1. Introduction 4

Figure 1.1: Decoding DNA sequence using as output: (A) autoradiograph
from Sanger method (source: https://en.wikipedia.org/wiki/Sanger_
sequencing), (B) chromatogram from dye-based automated Sanger
method (source: https://seqcore.brcf.med.umich.edu/sites/default/files/
html/interpret.html).

The initial Sanger method turned out to be very successful and made it

possible to explore the genomes of microorganisms for the first time. It

also went through a number of subsequent optimizations. The input DNA

fragment could now be automatically cloned using bacteria to generate

multiple copies of the same fragment. The average number of clones of

each fragment is related to the sequencing depth or the coverage. Gener-

ally speaking, coverage refers to the number of times a single nucleobase

at a specific position in the sample has been sequenced (or how many

sequenced fragments it is covered by). However, one of the most im-

portant modifications to the original protocol was the introduction of

nucleotide-specific dyes [188]. This allowed for the carrying out of a single

reaction to detect DNA sequence instead of four, one per nucleotide. Such

a modification also allowed for the detection of the nucleotides by using a

fluorescent sensor (using a different wavelength per each nucleotide dye

color) thereby replacing the X-ray step. The result of sequencing by this

enhanced protocol is presented as a chromatogram, where each color peak

represents a detected nucleotide – the process of assigning peaks to nu-

cleotides is called base calling. Fig. 1.1 presents a comparison of the output

image (X-ray autoradiograph) obtained by the classical Sanger method and

the output (chromatogram) obtained by using the dye-based automated

method. The first commercially available automated DNA sequencer was

ABI 370A DNA Sequencing System introduced by Applied Biosystems (ABI)

in 1986. The automation of the sequencing process allowed to carry out

sequencing projects on a larger scale and lead to revolutionizing gene

https://en.wikipedia.org/wiki/Sanger_sequencing
https://en.wikipedia.org/wiki/Sanger_sequencing
https://seqcore.brcf.med.umich.edu/sites/default/files/html/interpret.html
https://seqcore.brcf.med.umich.edu/sites/default/files/html/interpret.html

5 1.1. High-throughput sequencing

discovery. The automated Sanger method is considered as the first genera-

tion sequencing technology and has been successfully applied in a variety

of sequencing projects, most notably by providing a high quality human

genome assembly [81, 201, 107].

The automated Sanger method, however, holds a number of limitations.

First of all, it has a relatively low sequencing throughput due to a slow

template preparation process and carrying on of the enzymatic reactions

[144]. The chain-termination method also can be used only to sequence

short DNA sequences, up to 1000 base pairs (bp). Longer sequences, e.g.,

chromosomes or genomes, need to be chopped into smaller fragments and

sequenced independently. Such a sequencing process is called shotgun

sequencing and the nucleotide sequences obtained from reading these

small fragments are called reads (or short reads). Moreover, the resulting

sequence reads have their average lengths rlen significantly shorter than

the chopped input DNA molecule fragments of flen length. Therefore, the

initial molecule sequence needs to be reconstructed from these small reads

using complex, computationally intensive methods in order to perform

any meaningful analysis (as explained in more detail in Section 1.1.3). With

these limitations in mind, the selection of a proper sequencing depth is

one of the key considerations in biological analyses.

There exists a direct correlation between the required sequencing depth,

the DNA molecule length, and the average read length offered by the se-

quencing instruments. As proposed by Eric Lander and Michael Waterman

[98], the problem of the initial sequence reconstruction problem can be

based on the mathematical covering problem, where the target is con-

sidered “sequenced” when an adequate coverage is achieved or when no

gaps remain. Given randomly distributed (sequenced) reads of length

rlen across a haploid genome of length Glen and the number N of reads

generated (e.g., during a single sequencing run), the expected coverage C

can be calculated as:

C = rlenN

Glen
. (1.1)

Moreover, the authors also state that a number of times n a nucleobase

Chapter 1. Introduction 6

has been sequenced follows a Poisson distribution and is defined as [79]:

P (x = n) = C x e−C

x!
. (1.2)

This sequencing model was used when designing The Human Genome

Project [97], a large-scale international project to initially discover the

DNA sequence of the human genome. Nonetheless, the model is quite

simplified as it does not address some real problems, such as biases related

to the composition of the genomes, its different ploidy levels, potential

biases introduced in used chemistry, sequencing errors, or difficulties in

computational sequence reconstruction from short reads in highly repeti-

tive genomic regions (see Section 1.1.3). Therefore, the model underwent

a number of improvements, which won’t be covered here. A good overview

of sequencing depth criteria in the context of different biological analyses

can be found in [187].

Next-generation sequencing technologies

Since the introduction of the first commercially available DNA sequencer,

a race began to increase sequencing throughput and decrease the se-

quencing time, while also reducing costs. Therefore, the initial automated

Sanger sequencing method went through a number of changes and im-

provements.

The sample preparation steps have been simplified and further automated.

The bacterial cloning step has been replaced with the generation of a se-

quencing library, a large collection of short genomic fragments from the

input DNA molecule. Most importantly, during this step, platform-specific

synthetic sequences (i.e., adaptors) are attached to the DNA fragments,

which are later amplified by a polymerase chain reaction (PCR) creating

many copies of them. The instruments perform a fully automated sequenc-

ing of multiple fragments in parallel in a repeatable manner, producing

up to hundreds of millions of reads as a result. Hence, the techniques are

called high-throughput sequencing (HTS), second-generation sequencing

or massively parallel sequencing methods and were still formally seen a

few years ago as the (future) next-generation sequencing (NGS) methods.

Due to the changes in the sequencing protocols and instruments them-

selves, the sequencing process as a whole (from an input DNA molecule

7 1.1. High-throughput sequencing

to a collection of sequenced reads in a digital form) is nowadays char-

acterized by a set of different error probabilities, which have an impact

on the final reported nucleobases. These include, for example, a proba-

bility of an error occurring during sample preparation or amplification

steps (e.g., alteration of a nucleobases during PCR), the probability of a

machine-specific error occurring during the sequencing a nucleobase (or

set of), or the probability that during base-calling a nucleobase was called

incorrectly. As a general feature, while sequencing throughput has been

greatly improved, reads obtained with second-generation sequencing are

much shorter than those produced by the Sanger method (see Table 1.1 for

summary). As shown by Eqn. 1.1, when reducing the available read length

more reads need now be generated if one wants to provide a coverage of the

sequenced genomic region comparable to that offered by the automated

Sanger method. Therefore, the great increase in sequencing throughput

and the reduction in read size have shifted costs to the bioinformatics side,

making analysis computationally more complex – as explained in detail in

Section 1.1.3. Notably the automated Sanger sequencing method is still

being used today, but primarily as a confirmatory protocol – typically to as-

sess the results from shotgun-sequencing-based methods, but on selected

relatively small DNA fragments up to a few kilobases (kb) in length.

To partially mitigate the problem of reads being shorter than those ones of-

fered by Sanger sequencing methods, selected NGS platforms introduced

the ability to read the DNA sequence from both ends of the library frag-

ments. For a specially prepared library, the fragments can be sequenced

either in paired-end or mate-pair mode (in addition to the standard single-

end sequencing mode). The main difference between the modes (apart

from the costs related to the sequencing protocol) is the expected length

of the fragments, which is set up during the library preparation step. The

length of the fragment, determines the distance between the sequenced

reads from the fragment’s at both ends, which is called insert size. With

this in mind, paired-end libraries can typically sample a DNA region of

~300−500 bp. The mate-pair can sample a larger region of ~1.5−20 kilo-

bases (kb) [129], which can give a better insight into possible complex

structural information of the genome. The details of the chemistry used,

the underlying reactions and the engineering methods of the DNA se-

quencing processes used by the instruments are specific to the platform. A

summary of the main features of some selected past and current platforms

Chapter 1. Introduction 8

Ta
b

le
1.

1:
O

ve
rv

ie
w

o
fs

el
ec

te
d

se
q

u
en

ci
n

g
p

la
tf

o
rm

s.

Se
q

u
en

ci
n

g
p

la
tf

o
rm

R
ea

d
le

n
gt

h
(b

p
)

Se
q

u
en

ci
n

g
th

ro
u

gh
p

u
t

R
u

n
ti

m
e

Se
q

u
en

ci
n

g
er

ro
r

ra
te

Fi
rs

t-
ge

n
er

a
ti

on
se

q
u

en
ci

n
g

–
Sa

n
ge

r
se

q
u

en
ci

n
g

T
h

er
m

oF
is

h
er

A
B

I3
73

0x
lD

N
A

A
n

al
yz

er
40

0
−9

00
,u

p
to

2k
1.

9
−8

4
kb

0.
3
−3

h
0.

00
1%

Se
co

n
d

-g
en

er
a

ti
on

se
q

u
en

ci
n

g
–

m
a

ss
iv

el
y

p
a

ra
ll

el
sh

or
tr

ea
d

s
se

q
u

en
ci

n
g

T
h

er
m

o
F

is
h

er
A

B
I

SO
Li

D
55

00
xl

50
−7

5
(S

E
)

o
r

50
(P

E
)

16
0

G
b

(S
E

)
o

r
32

0
G

b
(P

E
)

10
d

≤
0.

1%

B
G

IS
E

Q
-5

00
F

C
L

50
−1

00
(S

E
/P

E
)

40
−2

00
G

b
24

h
≤

0.
1%

R
o

ch
e/

45
4

G
S

F
LX

T
it

an
iu

m
X

L+
70

0
−1

00
0

(S
E

/P
E

)
70

0
M

b
23

h
1%

T
h

er
m

o
F

is
h

er
Io

n
To

rr
en

tS
5

53
0

20
0
−4

00
(S

E
)

3
−8

G
b

2.
5
−4

h
1%

Il
lu

m
in

a
M

iS
eq

v3
75

−3
00

(P
E

)
3.

3
−1

5
G

b
21

−5
6

h
0.

1%

Il
lu

m
in

a
H

iS
eq

25
00

v4
36

(S
E

)
o

r
50

−1
25

(P
E

)
64

−7
2

G
b

(S
E

)
o

r
18

0
−5

50
G

b
(P

E
)

29
h

(S
E

)
o

r
2.

5
−6

d
(P

E
)

0.
1%

Il
lu

m
in

a
H

iS
eq

X
15

0
(P

E
)

80
0
−9

00
G

b
p

er
fl

ow
ce

ll
<

3
d

0.
1%

Se
co

n
d

-g
en

er
a

ti
on

se
q

u
en

ci
n

g
–

m
a

ss
iv

el
y

p
a

ra
ll

el
sy

n
th

et
ic

lo
n

g
re

a
d

s
se

q
u

en
ci

n
g

Il
lu

m
in

a
Sy

n
th

et
ic

Lo
n

g-
R

ea
d

~1
00

k
Sa

m
e

as
H

iS
eq

25
00

10
X

G
en

o
m

ic
s

U
p

to
10

0
k

Sa
m

e
as

H
iS

eq
25

00

T
h

ir
d

-g
en

er
a

ti
on

se
q

u
en

ci
n

g
–

si
n

gl
e

m
ol

ec
u

le
re

a
l-

ti
m

e
lo

n
g

re
a

d
s

se
q

u
en

ci
n

g

Pa
ci

fi
c

B
io

Sc
ie

n
ce

s
Se

q
u

el
~1

0
−1

5
k

5
−1

0
G

b
4

h
13

%
o

r
≤

1%
*

O
xf

o
rd

N
an

o
P

o
re

M
K

1
M

in
IO

N
U

p
to

20
0

k
U

p
to

1.
5

G
b

U
p

to
48

h
2
−1

3%
¶

D
at

a
b

as
ed

o
n

ow
n

re
se

ar
ch

,p
ro

d
u

ct
s’

b
ro

ch
u

re
s

an
d

p
u

b
li

ca
ti

o
n

s
[6

2,
65

].
T

h
e

co
m

p
ar

is
o

n
ex

cl
u

d
es

th
e

p
ri

ce
s

o
fi

n
st

ru
m

en
ts

an
d

co
st

s
p

er
se

q
u

en
ce

d
G

b,
as

th
es

e
ar

e
n

o
rm

al
ly

h
ig

h
ly

d
ep

en
d

en
to

n
va

ri
o

u
s

fa
ct

o
rs

in
cl

u
d

in
g

in
d

iv
id

u
al

sp
ec

ia
ld

is
co

u
n

ts
o

n
m

ac
h

in
es

,c
h

em
is

tr
y,

b
io

in
fo

rm
at

ic
s

in
fr

as
tr

u
ct

u
re

co
st

s
an

d
st

af
fi

n
g.

*D
ep

en
d

in
g

o
n

th
e

se
q

u
en

ci
n

g
m

o
d

e:
si

n
gl

e
p

as
s

o
r

ci
rc

u
la

r
co

n
se

n
su

s
re

ad
.¶

U
si

n
g

th
e

n
ew

es
tR

9
ch

em
is

tr
y

an
d

d
ep

en
d

in
g

o
n

th
e

se
q

u
en

ci
n

g
m

o
d

e:
1D

o
r

2D
.

9 1.1. High-throughput sequencing

is presented in Table 1.1. As the sequencing technology has been under

intensive development in the last 25 years, here the focus is on the most

important or influential ones available on the market – a more compre-

hensive technological review with some historic perspective and methods

descriptions can be found in [128, 141, 62, 144, 130, 65].

Sequencing platforms can be divided into two main categories depending

on the underlying sequencing method used, which is either sequencing

by ligation or sequencing by synthesis – a detailed description of the dif-

ferences between these sequencing methods and platforms can be found

in [65, 141]. Applied Biosystems SOLiD (Sequencing by Oligonucleotide

Ligation and Detection) or Complete Genomics (now BGISEQ) are the

platforms based on the former method. These platforms provide very high

sequencing throughput, however obtained reads are relatively very short,

thus limiting their usefulness in further data analysis steps.

The Roche/454 FLX Pyrosequencer [131] introduced in 2004 was the first

commercially available NGS platform based on a sequencing by synthesis

method. Together with ThermoFischer IonTorrent platform they offer

relatively longer reads, yet with also relatively small sequencing output.

Solexa was another company to develop a technology based on sequenc-

ing by synthesis method, which was later bought by Illumina. Nowadays,

Illumina offers a variety of different sequencing platforms depending on

the resources and the needs. Their platforms account for generating the

majority of the overall sequencing data today. Notably, in 2014 Illumina

introduced the HiSeq X sequencing system1, a set of either 10 (HiSeq X Ten)

or 5 (HiSeq X Five) connected sequencers. It is based on previously suc-

cessful HiSeq technology and is aimed at large-scale human whole genome

sequencing experiments. HiSeq X Ten is able to provide > 1800 genomes

per year when running full-time. The platform is also the first to break the

milestone of 1000$ in amortized2 cost per whole genome re-sequencing

(i.e., sequencing an individual when the reference genome of th specie is

available). Although Illumina platforms also produce reads of relatively

short length, the robustness of the platform, low sequencing error rate

and resulting wide adaptation made it somehow to be seen as a “standard”

1https://www.illumina.com/systems/hiseq-x-sequencing-system.html
2Amortized costs include: work and management costs, utilities and reagents, cost of

sequencing instruments (amortized over three years), IT protocols cost and some indirect
costs.

https://www.illumina.com/systems/hiseq-x-sequencing-system.html

Chapter 1. Introduction 10

in terms of NGS technology. It is important to note, however, that the

reported sequencing error rate is related to the sequencing platform, the

chemistry used, and may vary depending on different experiment setup.

Long-reads sequencing technologies

While in many aspects second-generation technologies have already been

broadly applied, other technologies, labeled as third generation sequencing

(TGS) methods are rising and gaining a lot of positive attention. Most

of these methods offer real-time sequencing, a feature not available in

second-generation platforms. Their main advantage, however, lies in the

ability to sequence a single DNA molecule at a time and without the need

for the prior DNA fragmentation and clonal amplification. As previously

noted, the most limiting factor of second-generation technologies is that

they offer very short read lengths compared to the size of the whole input

DNA molecule. Being able to produce very long reads, TGS technologies

give rise to the possibility of performing an analysis of very complex and

highly repetitive genomic regions, which are common and whose roles

are important from a biological perspective. For example, in the human

genome repeated DNA fragments make up to ~50% of the total genome

[96]. Moreover, depending on the experiment, in order to achieve a reliable

genomic coverage of the sequenced region, NGS technologies need to

generate a large number of short reads (as denoted by Eqn. 1.1). On the

other hand, the longer the reads, the possibly a smaller number of them

needs to be generated in order to provide reliable results.

Pacific Biosciences was the first one to commercialize this new type of

sequencing by introducing single-molecule real time (SMRT) sequencing

technology [50]. SMRT was initially implemented in PacBio RS platform

which was released in 2010. The technique uses a specialized flow cell

with transparent bottom and which contains thousands of individual wells

(called zero-mode waveguides (ZMWs)) with DNA polymerase attached

to them [105]. Before sequencing, the DNA molecule needs to be spe-

cially prepared, by ligating hairpin adaptors to both ends of the input

DNA molecule, creating as a result a circular template sequence. When

sequencing, the DNA molecule passes through the stationary polymerase,

emitting fluorescent light when nucleotides are incorporated into the sec-

ond strand. In this way, the light sensor can focus on decoding the single

11 1.1. High-throughput sequencing

passing molecule. As the SMRT method uses a special circular template

that allows each sequence to be read multiple times, the sequencing er-

ror rate is greatly reduced. By further reducing the error rate, operating

costs and while simultaneously improving the sequencing throughput,

PacBio technology is becoming a strong competitor in the current mar-

ket dominated by the previous generation methods. De novo sequence

reconstruction (sequence assembly, see Section 1.1.3 for description of

the assembly process) is one of the most successful applications of PacBio

sequencing. It has already been applied to a variety of projects, thereby im-

proving existing genomes [17] obtained previously by NGS or Sanger tech-

nologies. A notable contribution is a significant update of human genome

assembly [17, 26], closing more than 50 existing gaps and discovering new

variants, especially the long structural ones. A more comprehensive review

of successful PacBio application can be found in [169].

Another TGS technology is nanopore sequencing [31], developed and com-

mercialized by Oxford Nanopore Technologies (ONT) with its first plat-

form – MinION. Unlike the SMRT technique, when reading the input DNA

molecule the device can directly detect the DNA nucleotide sequence from

a native molecule without needing any special chemistry, light-detection

methods or secondary signals. While performing sequencing, the tem-

plate sequence passes through a very small protein pore, which results

in detectable voltage changes. Those continuously sampled differences

in voltage are then interpreted as possibly different short nucleotide sub-

sequences. As the detection process can be quite error-prone (especially

when reading long homopolymers [65], i.e., sequences of identical nu-

cleobases) before sequencing a hairpin is ligated into both ends of input

DNA molecule allowing it to be read from both strands (similarly to what

happens in SMRT). In this way, a sequence can be read both from the

forward and reverse strand. If the sequence has been read only from one

strand it is called a 1D sequence. If the sequence has been read from the

second strand too, it can be later aligned to the one read from the first

one, creating a more precise 2D sequence. Similar to PacBio, ONT technol-

ogy can be especially useful in de novo assembly [120] or metagenomics

[67] experiments. Notably, thanks to the high portability of the MinION

sequencer (being of a the size of a USB pendrive) and non-complicated

sequencing process, it has been successfully tested live in analyzing the

recent Ebola outbreak in Africa [165]. The results of the analysis were

Chapter 1. Introduction 12

available in less than 24h after receiving the Ebola-positive sample and

with sequencing process taking from 15 min to 1h. ONT technology is still

very young, yet it seems very promising.

There also exists another approach for generating long reads while is not

formally considered as part of third-generation sequencing. This is a hy-

brid approach, based on NGS technology and categorized as synthetic long

reads technology. It gives a possibility to create relatively long reads by us-

ing additional steps during library preparation, namely barcoding. While

creating a library, the input DNA molecule is partitioned into relatively

long chunks (~10 kb). Next, these fragments are put into separate wells,

each corresponding to a different barcode. The fragments are then further

fragmented into shorter ones, as when using standard NGS protocols. Fi-

nally, the well’s barcode is added to the fragmented short sequences. Such

obtained reads can be later sequenced using the existing NGS platforms.

The barcoding information is then used during local assembly steps to link

the reads coming from the same, larger fragment. The synthetic long reads

technology have been already implemented in Illumina TruSeq library

preparation kits3 and in 10X Genomics solutions4. Although being a rela-

tively young technology, already some sample metagenomics experiments

discovering human microbiome diversity [94] have proven the usefulness

of this approach. There are some downsides, however, as such techniques

can have troubles when sequencing highly-repetitive genomic regions.

Therefore, they can be considered as an intermediate technology between

the second- and the third-generation sequencing technologies.

The perespective

The Human Genome Project [97] was a large-scale project that initially

discovered the DNA sequence of the human genome. The project started

in 1990, took 13 years, and consumed around 2.7 billion USD, being also

the world’s largest collaborative biological project. With the introduc-

tion of second-generation sequencing platforms in 2004, the cost of re-

sequencing of human genome was reduced to an estimated 20 million

$ USD. Since then, it began to fall dramatically. Today, we have practi-

cally reached the symbolic barrier of 1000$ USD in amortized costs for

3http://www.illumina.com/products/truseq-synthetic-long-read-kit.html
4http://www.10xgenomics.com/technology/

13 1.1. High-throughput sequencing

Figure 1.2: Costs reduction in time of human genome sequencing.
Source: https://www.genome.gov/27565109/the-cost-of-sequencing-a-
human-genome/

re-sequencing the genome of an individual. The reduction of sequencing

cost is visualized in Fig. 1.2.

Thanks to advancements in sequencing technology, a variety of impor-

tant large-scale studies, comprising thousands of individuals, have been

accomplished. Of the highest importance are human population studies

trying to discover genetic diversity and links to possible genetic disorders.

The most famous one – the 1000 Genome Project [1, 2] was a multi-phase

project, launched in 2008 with the aim of discovering the most common

human genetic variants (with frequency > 1%). In its final phase [3, 192],

the project covered sequencing of 2504 individuals from 26 populations

identifying 88 million variants. The project provides a solid database for

verification of variants obtained in DNA sequencing analysis projects, cov-

ering > 99% of single-nucleotide polymorphisms variants with frequency

> 1%. Another notable large-scale sequencing project was led by the Ex-

ome Aggregation Consortium (ExAC) [104] performing exome analysis of

60,706 human individuals of diverse ancestries. The compiled catalogue

of genetic diversity contains an average of one variant every eight bases of

https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome/
https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome/

Chapter 1. Introduction 14

exome, forming a comprehensive database for mutation verifications. On

the other hand, the Pan-Cancer Analysis [205] project, a large-scale inter-

national project being led by The Cancer Genome Atlas (TCGA) Research

Network and International Cancer Genome Consortium (ICGC), focuses

on the extensive sequencing and analysis of human tumors with the aim

of understanding the underlying genetics of cancer.

Apart from international and world-scale projects some nation-wide projects

also turned out to be important. For example, whole-exome sequencing

of 2000 Danish individuals has helped to better understand the role of

rare coding variants in type 2 diabetes [119]. Similarly, whole-genome se-

quencing of 250 trios from a Dutch population performed by the Genome

of the Netherlands (GoNL) Project [61] gave better insights into Dutch

population genetic diversity, population structure and provided a look

into the history of migration. On the other hand, the recent UK10k Project

[199] performed whole-exome and genome sequencing and analysis of

10,000 UK individuals with a focus on rare and low-frequency variants

linked with diseases.

Such large-scale studies are critical for our understanding of the genetic

diversity of human populations and to our understanding of various dis-

eases. Since DNA sequencing is one of the fundamental bases of precision

medicine [10], re-sequencing experiments will, hopefully, become a com-

modity one day. Moreover, some scientists predict that by 2019 the genetic

mapping of babies at birth will become a common approach [73]. Still,

however, there are multiple challenges to solve, especially in the efficient

analysis and storage of large amounts of sequencing data from various

experiments.

1.1.3 DNA re-sequencing data processing

Goals and difficulties

Since two individuals of the same species share nearly identical genome

sequence (in the case of human ~99.5% identity [107]), performing a com-

parison of one’s DNA sequence (or its fragments) with an established and

known universal sequence template for the species can give a better insight

into one’s underlying biological characteristics and functions. Hence, the

goal of human DNA re-sequencing experiments is to explore the genetic

15 1.1. High-throughput sequencing

differences found in individuals, families or populations, particularly with

respect to human genetic diseases [187]. This is usually done by compar-

ing an individual’s DNA sequence (or parts of it) with a reference sequence

to find the possible differences. This follows further comprehensive vali-

dation steps and, in case of a study comprising multiple individuals, com-

bined analyses. The procedure should ideally reveal single-nucleotide

variants (SNVs or SNPs5), small insertions or deletions (INDELs), larger

structural variants (SVs) and copy-number variants (CNVs), finally leading

to meaningful clinical results. In the context of precision medicine, under-

standing the patient’s underlying genetic variants is crucial to providing

optimal treatment for many complex diseases [10].

As the design of a study depends on the biological hypothesis in question,

different sequencing strategies and protocols can be used. There are three

most common scenarios for human genetic analyses [155] – identification

of inheritable, Mendelian disorders (germline mutations), identification

of genetic mutations appearing in cancer cells (somatic mutations), and

identification of candidate genes in complex diseases for further studies.

Other, less frequent studies involving re-sequencing may include genome-

wide association studies aiming to explore genome-wide sets of variants

across different individuals and recreational or genealogical studies of

families. On the other hand, two of the most popular sequencing strategies

are whole exome sequencing (WEX) and whole genome sequencing (WGS).

The difference between these two is that the former concentrates only on

capturing and sequencing the genomic coding regions, being only a small

fraction (~1% [155]) of the whole genome. Therefore, depending on the

study, WEX experiments obtain a higher sequencing depth, while being

up to an order of magnitude less expensive than WGS. The recommended

sequencing coverage depends on the study, with the 30−40× coverage for

WGS being considered as a “standard”, whereas for WEX it is 100−200×,

with 200× being the recommended one for clinical applications [187, 35].

Moreover, for studies analyzing somatic mutations the required coverage

for both WGS and WEX needs to be even higher in order to be able to assess

the low-frequency tumor-only variants [68].

Having multiple sequencing platforms available on the market with differ-

5Technically, SNP is a SNV, when it is considered as a common variant present inside a
population. SNV is used as a general term to denote a single-nucleotide variant.

Chapter 1. Introduction 16

ent characteristics, selecting one that is suitable for the needs of the exper-

iment is already a difficult task. Despite the choice, modern sequencers

generally output massive amounts of short DNA sequences, coming from

the fragmented input DNA molecule. This molecule, in the end, needs to

be reconstructed in order to perform a meaningful analysis. The length

of the generated reads is relatively small (tens to thousands of base pairs)

in comparison to the genomic features being studied (which can span

tens of thousands to billions of base pairs [145]). This is one of the biggest

technological limitations, which greatly complicates the variant discovery

process. With the variety of sequencing platforms, each having different

sequencing process characteristics, different sequencing strategies and

sequencing protocols, a variety of bioinformatic data processing tools have

been developed to aid genomic analysis. Therefore, the current bottleneck

of sequencing experiments lies in the sophisticated computational data

analysis and data management [182].

From raw sequenced reads to genomic variants

In order to obtain meaningful clinical information from the sequenced

biological sample, a series of data cleanup, processing and evaluation

stages are necessary, forming together a pipeline. Figure 1.3 presents a

generalized DNA re-sequencing data processing and analysis pipeline with

each stage shown with corresponding utilized data formats. The most chal-

lenging part of the pipeline, both from the perspective of computational

complexity and data management, is the data processing stage. Our focus,

hence, is on the data processing stage and the utilized data formats (the

formats are described in detail at the end of this section).

After completing the sample preparation stage and sequencing in the lab-

oratory, massive amounts of digitalized raw biological data are produced

in the process (which, due to current technological limitations, is not a

completely lossless one). Large collections of short DNA reads are finally

stored in FASTQ [34] file format. Single or multiple FASTQ files can be

generated per one experiment. For a sample human re-sequencing experi-

ment the size of generated FASTQ files can be about 20 GB (WEX, ~100×
coverage) or around 200 GB (WGS, ~30× coverage). As the initial raw reads

generated by the instrument can contain errors, quality assessment of the

produced data needs to be performed.

17 1.1. High-throughput sequencing

Figure 1.3: General concept of DNA re-sequencing pipeline.

At the next stage, the input DNA molecule sequence is reconstructed from

the short reads. This reconstruction, so far, is the most computation-

ally expensive data processing step. In the re-sequencing pipelines, the

most common way to achieve this is to map the short reads to the stud-

ied organisms universal reference sequence, which is used as a template

for reconstruction. The result of the mapping process – a collection of

alignments typically stored in human-readable text Sequence Alignment /

Map (SAM) [111] format. The generated files occupy more space than the

initial or pre-processed FASTQ files. The example SAM files can occupy

~30 GB (WEX) or ~300 GB (WGS), and their size can still grow during the

alignments post-processing stage.

The initial alignments may still require optional quality assessment, clean-

ing up and post-processing. After that, one can proceed to the variant

discovery and evaluation stage. Depending on the biological hypothesis in

question and experiment design, a different variant discovery strategy may

be used. The summary of variant discovery results is stored in Variant Call

Chapter 1. Introduction 18

Format [39] (VCF) files. In this final stage, the resulting files can occupy

~30 MB (WEX) or ~6.5 GB (WGS), being only a small fraction of the size of

the input raw FASTQ reads files or (temporary) SAM alignments files.

Since the introduction of the first massively parallel sequencing platforms

it took a significant amount of research effort until the first reliable ge-

nomic data processing pipelines could be established, and became able

to provide high-quality and reproducible results. However, the exact de-

sign of processing stages in the pipeline depends highly on the variant

caller and the study. Currently, the most commonly used pipelines are the

ones based on application suites like The Genome Analysis Toolkit (GATK

[44, 139]) and SAMtools [111]. The recommended pipelines guidelines to

follow are described in GATK best practices6 [11] and Samtools workflows7.

SAMtools (with SAM and VCF formats) and GATK have been successfully

applied to the analysis of the 1000 Genomes Project [1, 2] and since then

the tools have been seen as a de facto standard, which is being constantly

improved. Notable to mention, a lot of research has been recently put

into the development of fully integrated pipelines, which are trying to

overcome the problems and limitations of the existing ones, and provide

high-performance data processing protocols and scalability [166, 122, 40].

Quality assessment

Quality assessment is the first and crucial stage, as raw data generated by

sequencing platforms can contain different artifacts, which are difficult to

trace or can cause problems at further pipeline stages [155]. These could

have been introduced before or during library preparation and amplifica-

tion step (e.g., adapter contaminant sequences) or during the sequencing

run itself. Moreover, some nucleic acid sequences are known to raise error

rates for most of the sequencing platforms (which otherwise are character-

ized by additional specific sequencing error profiles). These include, e.g.,

regions with very high GC-content (an overall fraction of ’G’ and ’C’ nucle-

obases present in a given context) or long homopolymer sequences. One

also usually observes the decay of base signal along the read [95]. It has

a direct impact on base calling performed by the machine, where values

specifying a low certainty of the called base are more probable to appear

6http://www.broadinstitute.org/gatk/guide/best-practices
7http://www.htslib.org/workflow/

http://www.broadinstitute.org/gatk/guide/best-practices
http://www.htslib.org/workflow/

19 1.1. High-throughput sequencing

Table 1.2: Sample values of Phred quality scores and their corresponding
error probabilities.

Phred Q-score Probability of incorrect base call Base call accuracy

10 1 in 10 90%
20 1 in 100 99%
30 1 in 1000 99.9%
40 1 in 10000 99.99%
50 1 in 100000 99.999%

at the ends of the sequenced reads. These reported values are known as

quality scores.

Given the probability P that the base was called incorrectly, the quality

score Q of a called base is logarithmically related to the P reported in Phred

scale [54]:

Q = −10log10 P . (1.3)

Table 1.2 presents sample quality scores on Phred scale with their corre-

sponding base calling probability error rate.

The common strategy applied during the quality assessment stage is filter-

ing and trimming of the raw reads. The quality score of each nucleobase

present in reads is evaluated and either the reads not meeting required

standards are removed, or the sequence (with its base quality scores) is

trimmed accordingly at its end. To automate the quality assessment pro-

cess, a variety of standalone tools have been developed for different se-

quencing platforms. Some, in addition to implementing the basic reads

preprocessing just mentioned, add experiment report generation with

rich statistics visualization features. This step can also give a preliminary

insight into the quality of the sequencing experiment and can reveal more

information about the potential problems that occurred during the se-

quencing itself (e.g., sample contamination or sequencing errors deduced

from meta-data). Moreover, the information obtained can be useful to

better adjust further analysis stages in the data processing pipeline. The

most commonly used tools for raw sequencing reads quality assessment

are FastQC8, FASTX Toolkit9, PRINSEQ [183], and NGS QC Toolkit [157]. A

8http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
9http://hannonlab.cshl.edu/fastx_toolkit/

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/

Chapter 1. Introduction 20

more comprehensive overview of the quality assessment stage with the

solutions used can be found in [155].

Apart from the standard reads filtering and trimming strategies, there also

exist more complex approaches. These focus on correcting possible se-

quencing errors found in the reads in order to improve accuracy of the

further sequence reconstruction and/or variant discovery stage. The se-

lection of an error correction method is highly linked with the sequencing

platform, the error profile and the laboratory protocols used, hence a large

variety of tools have been developed. A good overview of algorithms and

tools used for error correction within the context of supported sequenc-

ing platforms can be found in [95] with their comparisons available in

[213]. However, in a DNA re-sequencing pipeline they are not commonly

used, due to lack of systematic and comprehensive benchmarks, and for

practical performance reasons. In the case of de novo assembly most

users also rely on built-in error handling / correction approaches already

implemented in the assemblers [95].

Sequence reconstruction

Since most platforms are unable to provide the full sequences of the sup-

plied input molecules, a computational reconstruction is required. In

general, two main classes of sequence reconstruction methods are avail-

able – de novo assembly and sequence mapping. The former is used to

assembly the reads into (possibly) full-length sequence(s) from scratch.

The latter is used to link the reads by aligning them to an existing reference

template sequence. Therefore, broadly speaking, de novo assembly can

be used to discover the unknown genome sequence of a given organism.

Then, this sequence can be used as a reference when performing sequence

mapping in further re-sequencing experiments.

The goal of de novo assembly is to build the longest sequence(s) from the

supplied short reads, which will hopefully represent the analyzed genomic

fragment. In general, assembly approaches rely on a simple assumption

that DNA fragments sharing high similarity originate from the same ge-

nomic region [145]. By this principle, similar short reads are grouped

together creating larger contiguous sequences – contigs. During this step,

to achieve a sufficient overlap between the reads, a significant depth of

sequencing is desirable – it also depends on the available reads length.

21 1.1. High-throughput sequencing

The longer the reads, the possibly better overlappings can be found be-

tween the fragments, thus lowering the required sequencing coverage.

After the initial assembly step and using some auxiliary information (e.g.,

paired-end, mate-pair reads, or very long reads from the third genera-

tion sequencing technologies), contigs are joined together to create even

longer sequences – scaffolds. Due to problems with assembling difficult ge-

nomic regions (especially the highly repetitive ones), not enough coverage

or sequencing errors, there may appear gaps inside such created scaf-

folds. Finally, the scaffolds are put together into linkage groups or – when

assembling whole chromosomes or genomes – they are placed on the chro-

mosomes. The process of assembling the genomes can be further aided

with providing auxiliary information for improving the linkage between

contigs. This information may include, e.g., DNA sequences from already

pre-assembled genomes of related species [51] or genome-wide maps of

DNA sequence fingerprints (known also as optical mapping [194]). The

final result of the assembly process is stored in (or converted to) multiple

FASTA files, representing scaffolds or chromosomes. As a side note, the of-

ficial currently available human genome reference sequence10, version 38,

contains multiple sequences, not only limited to chromosome sequences

or mitochondrial DNA. It also contains a number of auxiliary unplaced

contig sequences, since the human genome contains a lot of repetitive and

difficult to assess regions, especially around centromeres. A comprehen-

sive review of de novo sequence assembly challenges, main algorithmic

approaches and tools can be found in [51, 145] with comparisons and

benchmarks in [178, 21, 146].

In NGS re-sequencing experiments, however, the other type of initial

sequence reconstruction is preferred, namely sequence mapping. As

two individuals of the same specie share a nearly identical genome se-

quence, a previously assembled genome sequence can be used to aid

this re-assembly process instead of reconstructing the input molecule se-

quence directly from scratch. Hence, in the read mapping procedure, the

short reads are aligned to the provided reference sequence, with the goal

to track their locations. Since generated reads contain sequencing errors

and differences with respect to the reference (the part we want to assess),

the mapping task boils down to solving an approximate string matching

problem. This process is computationally far less expensive than de novo

10https://www.ncbi.nlm.nih.gov/grc/human

https://www.ncbi.nlm.nih.gov/grc/human

Chapter 1. Introduction 22

assembly. Hence, our focus is on re-sequencing experiments, as these are

the most common.

To efficiently deal with the processing of the massive amounts of inaccu-

rate input data, two main algorithmic ideas are used in modern mappers –

indexing and filtering [168]. Indexing is primarily used to build a binary

representation of the reference sequence in order to perform fast string

matching, searching for the given string’s origin(s). Optionally, an index

can be built on the read itself to allow for faster access to its substrings.

There are basically two categories of indexing methods [112] – hash-table-

based and suffix-tree-based. The idea behind hash-table based methods

is to keep the position(s) of each k-mer (i.e., any possible subsequence

of length k) of the reference in a hash table with the k-mer being the

key. Although naive implementations of hash tables only allowed for ex-

act matches, for more sophisticated ones it is also possible to find inexact

matches. Some modern mappers from this category are MAQ [113], mrFast

[9] / mrsFast [69], and Novoalign11.

Another class of indexing methods is based on a suffix tree, a data structure

which is used to store all suffixes of a given string with their corresponding

locations. Once constructed, the suffix tree allows for fast searches for exact

matches of substrings, these being starting points for finding inexact ones.

However, constructing and storing it in memory requires a significant

amount of resources, hence optimized derivatives were developed, namely

enhanced suffix array [5] and FM-index [55]. Indexing methods based on

a FM-index gained the greatest popularity, mainly due to small memory

footprint they have, while still providing satisfactory search capabilities

(compared to methods based on suffix arrays, which are typically faster).

In the end, inexact matching algorithms based on FM-index provide a

good tradeoff between search time and memory usage and have been

implemented by modern, commonly used mappers, namely: BWA-MEM

[110, 108] (recommended by GATK Best Practices), Bowtie2 [101, 100],

SOAP2 [115, 116], or GEM [127].

As for filtering approaches, they can quickly exclude large regions of the

reference sequence where no satisfying matches can be encountered. The

filters are typically based on one of two lemmas [168] – q-gram (or k-mer)

lemma and pigeonhole lemma. Both lemmas define necessary conditions

11http://www.novocraft.com/

http://www.novocraft.com/

23 1.1. High-throughput sequencing

to find a candidate match for any given genomic position within a specified

error level. In general, when using the k-mer lemma, for a given length of

k, all (or some selected) overlapping k-mers of the read are extracted. Next,

the positions in the reference matching these k-mers are located by using

the preferred indexing method. The locations which contain the biggest

number of shared k-mers matching the reference and which are within

the specified maximum error level are considered as candidate matches.

The pigeonhole lemma describes a simpler approach. Given a possible

maximum number of e mismatches, the lemma states that if the read is

divided into e + 1 disjoint substrings (seeds), then at least one substring

will match without errors [12]. The read is hence divided into (possibly)

equal-sized non-overlapping seeds and for each the matches are searched

in the reference sequence. Modern mappers, however, use the mixture

of both lemmas, which further increases speed and/or precision of the

matching [108, 127, 100, 9].

Having obtained the initial set of candidate matches, it is next validated

using dynamic programming approaches. Validation is done by using an

edit-weighted distance algorithm [212] such as Smith-Waterman [189] or

Needleman-Wunsh [147] to assess the similarity between the read and

the reference at each potential mapping position. The locations that pass

the verification step (e.g., those having less than the specified maximum

number of possible substitutions, insertions or deletions) indicate the

possible set of final mapping locations. In many mappers, this verification

step is the main bottleneck [168] hence further optimizations are greatly

desirable. Due to the highly repetitive nature of DNA fragments in the

genome, auxiliary data from paired-end or mate-pair (if available) is used

to help with the validation procedure. In this way, the read composed of

repetitive sequence(s) can be placed more precisely if its mate read was

placed unambiguously. However, it may often happen that when mapping

reads into complex genomic regions, multiple possible alignments will be

reported.

Finally, reads with their mapping information (usually called alignments)

are stored record-wise in (or converted to) SAM format [111]. At this pro-

cessing stage, there are no requirements for the alignments to be sorted

by position inside the output SAM file. As the sequence re-assembly stage

is highly parallelizable, multiple FASTQ files coming from a single experi-

Chapter 1. Introduction 24

ment (e.g., produced by different sequencing lanes or an initial large file

split into a number of smaller chunks) can be processed simultaneously,

producing as an output the corresponding number of SAM files.

Alignment post-processing

The first step in the alignment post-processing stage is to merge all the

mapping results into one (in the case of alignments spread into multiple

SAM files) and to sort the alignments according to their calculated genomic

position. In this way, the alignments can be accessed by their mapping

position, which is essential for further data processing and analysis. For

example, with the alignments sorted by their genomic position, alignment

quality assessment can be performed and the obtained depth of coverage

can be calculated from the data in order to compare the results with the

experiment setup. The resulting file can be optionally split by chromo-

some, and post-processing with further variant discovery can be done

independently in parallel [164]. Finally, the SAM files can be compressed

into BAM format (which is a compressed SAM representation, explained

in Section 2.2.2) and indexed, as the further post-processing and variant

discovery tools usually support working with alignments stored in such

form. As a side note, although the mapping process is highly parallelizable

and the alignments can be processed independently chromosome-wise

(split into a number of separate SAM files), merging and sorting all the

initially generated alignment files is a global operation on all the data, and

remains one of the data-intensive bottlenecks in the pipeline.

If PCR amplification was used during the library preparation process, a

fraction of DNA molecules could have been duplicated and sequenced

more times than expected, introducing some information bias into further

analyses. There are also other possible cases in which reads could have

been read and sequenced multiple times (e.g., optical duplicates coming

from the same cluster location in the same flowcell) due to technical

problems with the instrument. As these reads usually share the same

genomic location and (possibly) the sequence, the goal is to find and

mark (or remove) them. Hence, this step is called marking duplicates [11].

A number of auxiliary information, such as paired-end data, alignment

direction, or sequencing depth, are used to determine potential duplicates.

Quite often, during the sequence mapping stage, ambiguous alignments

25 1.1. High-throughput sequencing

can be reported (e.g., reads mapping “well” to multiple locations – the

so-called problem of multiple alignments), especially when reads map

to complex genomic regions with a high degree of sequence repetitions.

In such cases, reads with identical sequences mapped to the same ge-

nomic region may have different alignments reported with respect to the

reference sequence, especially around potential INDELs. Hence, the indel

realignment [11] procedure identifies the most suitable placement of the

reads, analyzing all the reads within the same genomic region context and

normalizing their alignments. In the case of standard workflows studying

germline mutations, this step may have only a little effect when using

high-coverage data [109]. Therefore, sometimes it is omitted, especially as

it is computationally expensive. As a side note, when somatic mutation are

studied this step usually entails a more expensive analysis, as both tumor

and normal sample data must be jointly analyzed and realigned [181].

As mentioned for the quality assessment step, the quality scores reported

by sequencing machines (during the base calling process) are prone to

contain systematic (non-random) technical errors. Therefore, they may

introduce some bias during the variant discovery stage, in which they are

used as one of the sources of information. To enable integration of the

data generated from different platforms, the quality scores need to be fine-

tuned [44]. Hence, base quality score recalibration (BQSR) [11] is a process

adjusting the quality scores using machine learning to model the errors

empirically. As the performed method is computationally expensive and

may have little impact on high quality high-coverage data [109], this step

is not always applied. An interesting benchmark comparing the results of

germline variant discovery using selected tools with and without applied

prior indel realignment with BQSR step is presented in [161].

It is important to mention that in standard alignment post-processing

workflows, some additional data may be attached to each original record

after each step is performed. This data, including for instance, the original

base quality score values before recalibration step is usually stored in SAM

format optional fields12 including. Therefore, the size of the final file is usu-

ally lager than the initial one generated directly from the alignment stage.

In basic implementations of post-processing routines (e.g., following the

GATK Best Practices), after each step a new, modified SAM (or BAM) file is

12http://samtools.github.io/hts-specs/

http://samtools.github.io/hts-specs/

Chapter 1. Introduction 26

generated. Hence, alignment post-processing entails intensive data I/O

usage and creates a significant number of temporary files.

Variant discovery and evaluation

Having had alignments cleaned-up and prepared as an analysis ready SAM

(or BAM) file, the crucial task left is to identify the sites where the data

displays variation relative to the reference genome [11]. That is also known

as variant calling. The choice of applied strategies for genotype calling,

somatic mutation identification or structural variants exploration is, how-

ever, highly related to the study design and there exists plenty of tools

available to choose from. Tools for variant identification can be basically

grouped into four categories [155] : germline callers, somatic callers, CNV

callers, and SV callers. Nevertheless, as CNVs refers to intermediate-scale

SVs [220] and SVs detection strategies can also be applied to detect CNVs,

for simplicity we will consider them together.

The detection of germline mutations is central to finding the causes of

common and rare diseases [155] and it is also the most frequently per-

formed study. Variant discovery procedure focuses on assessing single

nucleotide variants and very short insertions/deletions with respect to the

reference sequence. The underlying variant detection methods are usually

based on Bayesian inference, whereas to aid in the detection of INDELs lo-

cal read re-assembly methods can be used [44, 170]. The most commonly

used variant callers are GATK [44, 139] HaplotypeCaller (recommended by

GATK Best Practices), FreeBayes [60], SAMtools [111] mpileup (alongside

with BCFtools13), and Platypus [170], to name a few. A good overview of

variant callers with their benchmarks can be found in [77, 109].

Cancer studies focus on somatic mutations calling by performing variants

analysis of tumor/normal samples pairs from one subject [155]. In contrast

to the germline mutations discovery, somatic mutations are much more

difficult to detect. Depending on the type of tumor and its stage, it may not

have uniform genome as a whole – the tumor may be composed of multiple

different small tumors, with each clone containing different mutations.

Therefore, the frequency of the variants present in the tumor will be low

in the total population. Moreover, the alterations may also be present

13https://samtools.github.io/bcftools/

https://samtools.github.io/bcftools/

27 1.1. High-throughput sequencing

only in a small fraction of the DNA material originating from the specific

genomic region [29]. Therefore, it is necessary to perform an analysis of

germline variants in order to discover somatic ones. Hence, additional read

analysis, filtering and processing approaches may be required during the

pipeline post-processing stage. Some of the notable somatic variant callers

are MuTect [29] (recommended by GATK Best Practices), Strelka [181],

FreeBayes [60], VarScan 2 [90, 91], and Platypus [170]. A good overview of

somatic variant callers with benchmarks is available in [53, 7].

The last types of study focuses on discovering large structural alterations

inside the genome, as they impact phenotypic diversity and may play

an important role in diseases [195]. These alterations, including large

deletions, translocations, invertions, tandem duplications, copy-number

variants, or novel insertions, can range in length from kilobases to large

chromosomal-level alterations [8]. Due to limitations of NGS technolo-

gies (they can only produce reads which are short when compared to the

genomic features being studied) these variants are the most difficult to

detect. Reliable detection hence poses big algorithmic and computational

challenges. In addition to the general alignment post processing stage,

some variant callers may implement their own more sophisticated data

processing steps or even perform alternative processing – e.g., full de novo

assembly from short reads [117]. Notable tools for detecting SVs include:

Pindel [215], Delly [167], BreakDancer [27], Lumpy [102], or Manta [28].

A good overview of SV detection challenges can be found in [8] and a

comparison of tools with benchmarks can be found in [160, 220].

The raw results of variant calling are typically stored in VCF format. Since

the obtained raw results will most probably contain some bias, they may

need to be post-processed. This may include refinement of variants proba-

bility to fine-tune the balance between specificity and sensitivity [11]. This

is proposed in the GATK Best Practices for germline variants discovery as

a variant quality score recalibration (VQSR) stage. Furthermore, variants

may now need to be filtered to narrow the range of interest or in order to

eliminate false positives (by assessing the results using external resources,

e.g., databases). In general, the final variant annotation and verification

strategies are dependent on the experiment and study design.

Chapter 1. Introduction 28

>hg19_dna range=chr 1:3548729 -3548935
ACAGGACACAGTAAAGGGTGAGACAGCACCTGCGTCAGCACAACTGACCG
TTCCTTGTCGCCAGGAAGTAGCTGTCAGGACTAAATGCCAGCATTCCTAT
GCCGATTTTCGGGTTTGCTCTGTCGGTAACAGGTTTCAGTGTCTGTAAGG
AGACTGGGACAGAGGCGATCTCATCTAGAACACCAACAGGAAGAACACGC
CATTGTC

Figure 1.4: A sample FASTA format record. The sequence represents
a genomic region on chromosome 1 starting from position 3548729 to
3548935 of the human genome reference sequence version hg19. The
specially marked nucleobase G in line 4 resides on position chr 1 : 3548832

Common data formats

The most common genomic data representation file formats used in DNA

re-sequencing pipelines are FASTA, FASTQ, SAM, and VCF. All of them are

represented in ASCII text-based, human-readable format. For practical

reasons, the data physically are usually stored in their compressed form

(explained in detail in Section 2.2.2). Generally speaking, the formats

are defined by an optional header section (containing meta-information)

followed by a records section. The biological information is represented

in a record-wise manner, where single or multiple records can be stored

in one file. The formats description, the relation between them, and their

applications are as follows.

FASTA format FASTA format is used to store biological sequences. Fig.

1.4 shows a sample FASTA record. The record begins with an optional

single-line sequence description (starting with ‘>’ symbol; the content after

the first space character is considered as an optional comment), followed

by line(s) of sequence data – nucleotides or amino acids. The sequence

is encoded in characters following the standardized IUPAC notation [36],

including single letter codes with possible lowercase letters. Since the

length of the sequence can vary from single bases to kilo- or mega-bases it

can be broken up to span multiple lines. Usually, in DNA re-sequencing

pipeline, the reference sequences of the analyzed organisms are stored

in FASTA format. For example, when working with human data each

reference chromosome can be stored in a separate FASTA file.

FASTQ format FASTQ format [34] is used to store biological sequences

with their corresponding (base-calling) quality scores. Each record in

FASTQ format is usually simply called as read. Fig. 1.5 shows a sample

record.

29 1.1. High-throughput sequencing

@HWI -D00119:97514
AATGCCAGCATTCCTATGCCCATTTTCGGGTTTGCT
+
FFFFFFEEDEEDDEDDDDDDDDDDEEEDDDDDDDDD

Figure 1.5: A sample FASTQ format record. The specially marked
nucleobase C in the line 2 resides on the 21-st position from the beginning
of the read – has offset of 20 nucleobases. Snipper based on the
exome sequencing data published by Genome in a Bottle (GIAB) [222]
(source: ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_
NA12878_HG001_HiSeq_Exome/)

The format can be seen as an extension of FASTA, but with some minor

modifications. A FASTQ record is represented in file as 4 consecutive lines

containing in the following order: read identifier, sequence, control line,

and quality scores. Read identifier (also known as title; starting with ‘@’

symbol) contains meta-information about the read, sequencing platform

and/or other related to the used protocol. Since it is a free format field

with no length limit, it allows arbitrary information or comments to be

included [34]. Next is the sequence line, which is encoded as in FASTA

format, but, in special contexts, can also include special gap characters [34].

The control line (starting with ‘+’ symbol) can be left only as one character,

reducing the file size, since historically it could contain repetition of the

read identifier line. Finally – the quality line, contains sequence base-

called quality scores in Phred scale (see Eqn. 1.3). The numeric values

are mapped onto human-readable ASCII characters by adding a constant

offset of 3314. In this way, a sample Phred value of 40 (see Table 1.2) can be

represented as ASCII character of value 40+33, which is ‘I’. FASTQ format

allows to represent up to 93 distinct values of quality scores. Finally, the

sequence and quality strings are of the same length and, in contrast to

FASTA, are represented in single lines15.

Important to mention, if the FASTQ reads originate from a library se-

quenced in paired-end (or mate-pair) configuration, then the paired reads

originating from the same DNA fragment are usually stored in a set of 2

files. The pairing information between the reads is normally preserved

in their read identifiers, i.e., the two reads share a significant common

content of the identifier, differing only with some pair indicator (usually,

a number ‘1’ or ‘2’ denoting the read number in the pair). Moreover, the

14Historically, old Solexa/Illumina sequencers were using 64 as an offset.
15Historically they could span multiple lines.

ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome/
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome/

Chapter 1. Introduction 30

pairing between reads is also expressed in the way the file(s) are structured

– the reads originating from the same DNA fragment reside in the same

lines in two separate FASTQ files or – when the reads are stored in one

file – they are stored one after another. Sometimes, however, some reads

may have been sequenced unpaired (or filtered, removing one of the reads

from the pair), and these are typically stored in an additional, separate file.

SAM format Sequence Alignment / Map (SAM) format [111] is used to

store the results from the sequence reconstruction stage, particularly – se-

quence mapping. It is a tab-delimited text format consisting of an optional

header section and records section. Fig. 1.6 presents a sample part of SAM

file, which consists of 3 lines of header and 4 SAM records.

The header section (with each line starting with ‘@’ symbol) contains meta-

information about the alignments, including, e.g., information about the

used references sequences, experiment read-groups, used mapper, or post-

processing tools. In contrast to FASTA and FASTQ formats each record is

stored in a single line for a better consistency in data representation.

Table. 1.3 presents an overview of the SAM record fields. Each record

consists of 11 mandatory fields containing essential alignment informa-

tion and variable number of optional fields for flexible or aligner-specific

information. SAM format can represent both mapped (which are usually

referred to as alignments) and unmapped reads, where the latter will have

the mapping information missing and assigned a special indicator. In a

very simplified way, a SAM record can be seen as an extension of FASTQ

record with the mapping information, where fields QNAME, SEQ, and

QUAL specify accordingly the FASTQ read identifier, the sequence and the

base quality scores. Such a description is true for unmapped reads, but is

more complicated for the aligned reads.

In SAM naming terms, the short DNA fragment (originating from the

fragmented input DNA molecule), which is sequenced and later mapped

to the reference sequence is called a template. If the library has been

created in paired-end mode, two paired DNA sequences can originate

from one DNA fragment and stored initially as two separate FASTQ records

(one per each fragment’s end). Each DNA sequence originating from one

template is referred to as a segment.

31 1.1. High-throughput sequencing

@
H
D

VN
:
1
.
4

SO
:
c
o
o
r
d
i
n
a
t
e

@
S
Q

SN
:
c
h
r
1

LN
:
2
4
9
2
5
0
6
2
1

@
R
G

ID
:1

PL
:
I
l
l
u
m
i
n
a

HW
I
-
D
0
0
1
1
9
:
9
7
5
1
4

99
c
h
r
1

3
5
4
8
8
1
2

60
36

M
=

3
5
4
8
7
5
5

1
0
4

A
A
T
G
C
C
A
G
C
A
T
T
C
C
T
A
T
G
C
C

C
A
T
T
T
T
C
G
G
G
T
T
T
G
C
T

F
F
F
F
F
F
E
E
D
E
E
D
D
E
D
D
D
D
D
D
D
D
D
D
E
E
E
D
D
D
D
D
D
D
D
D

MD
:
Z
:
2
0
G
15

RG
:
Z
:1

XG
:
i
:0

HW
I
-
D
0
0
1
1
9
:
8
8
6
2
0

99
c
h
r
1

3
5
4
8
8
1
2

60
36

M
=

3
5
4
8
7
7
9

1
2
9

A
A
T
G
C
C
A
G
C
A
T
T
C
C
T
A
T
G
C
C

C
A
T
T
T
T
C
G
G
G
T
T
T
G
C
T

F
E
F
D
E
D
C
E
C
C
E
C
D
D
C
C
C
D
C
D
A
A
C
D
E
D
D
B
D
B
A
@
?
B
@
C

MD
:
Z
:
2
0
G
15

RG
:
Z
:1

XG
:
i
:0

HW
I
-
D
0
0
1
1
9
:
1
6
6
4
8

99
c
h
r
1

3
5
4
8
8
1
2

60
36

M
=

3
5
4
8
7
5
8

1
0
9

A
A
T
G
C
C
A
G
C
A
T
T
C
C
T
A
T
G
C
C

G
A
T
T
T
T
C
G
G
G
T
T
T
G
C
T

C
F
E
F
F
F
E
E
D
D
E
D
D
D
D
D
D
C
C
C
B
B
D
B
D
D
E
D
D
D
D
D
B
B
D
C

MD
:
Z
:
3
6

RG
:
Z
:1

XG
:
i
:0

HW
I
-
D
0
0
1
1
9
:
2
3
3
5
8

1
6
3

c
h
r
1

3
5
4
8
8
1
4

60
34

M
=

3
5
4
8
8
0
9

1
5
8

T
G
C
C
A
G
C
A
T
T
C
C
T
A
T
G
C
C

C
A
T
T
T
T
C
G
G
G
T
T
T
G
C
T

H
H
H
F
F
F
F
F
D
E
E
E
E
E
E
D
D
D
D
D
D
D
D
D
E
E
E
D
D
D
D
D
D
D

MD
:
Z
:
1
8
G
15

RG
:
Z
:1

XG
:
i
:0

Fi
gu

re
1.

6:
A

sa
m

p
le

SA
M

fi
le

w
it

h
se

le
ct

ed
h

ea
d

er
fr

ag
m

en
ta

n
d

4
re

co
rd

s.
T

h
e

al
ig

n
m

en
ts

ar
e

m
ap

p
ed

to
re

fe
re

n
ce

ch
ro

m
os

om
e

1
(R

N
A

M
E

=
ch

r1
).

So
m

e
of

th
e

al
ig

n
m

en
ts

h
av

e
b

ee
n

m
ap

p
ed

w
it

h
m

is
m

at
ch

es
w

it
h

re
sp

ec
tt

o
th

e
re

fe
re

n
ce

se
q

u
en

ce
.T

h
e

fi
rs

t

o
ft

h
e

al
ig

n
m

en
ts

(l
in

e
4)

re
p

re
se

n
ts

th
e

re
su

lt
o

fm
ap

p
in

g
th

e
FA

ST
Q

re
co

rd
p

re
vi

o
u

sl
y

sh
ow

n
in

F
ig

.1
.5

w
it

h
o

n
e

m
is

m
at

ch
.

T
h

e
p

o
si

ti
o

n
o

n
w

h
ic

h
th

e
m

is
m

at
ch

h
as

b
ee

n
fo

u
n

d
in

th
is

re
ad

h
as

an
o

ff
se

t
o

f2
0

b
as

es
fr

o
m

th
e

b
eg

in
n

in
g

o
ft

h
e

m
ap

p
in

g

p
o

si
ti

o
n

ch
r1

:3
54

88
12

,i
t

is
ch

r1
:3

54
88

32
.T

h
e

u
se

d
re

fe
re

n
ce

se
q

u
en

ce
is

re
fe

re
n

ce
d

in
th

e
fi

le
h

ea
d

er
(l

in
e

2)
.B

as
ed

o
n

th
e

ex
o

m
e

se
q

u
en

ci
n

g
d

at
a

p
u

b
li

sh
ed

b
y

G
IA

B
[2

22
].

Chapter 1. Introduction 32

Table 1.3: A brief description of SAM record fields. Source: the official
SAM format specification from: https://samtools.github.io/hts-specs/.

Col Field Type Brief description

1 QNAME String Query template name
2 FLAG Int Bitwise flag
3 RNAME String Reference sequence name
4 POS Int 1-based leftmost mapping position
5 MAPQ Int Mapping quality
6 CIGAR String CIGAR string
7 RNEXT String Ref. name of the mate/next read
8 PNEXT Int Position of the mate/next read
9 TLEN Int Observed template length

10 SEQ String Segment sequence
11 QUAL String ASCII of Phred-scaled base quality+33

12 OPT String A collection of tab-separated optional fields

What is important to note is the fact, that during the mapping process, in

some special cases, the segments can be broken into multiple smaller ones

each mapping to a different loci (e.g., chimeric reads). Therefore, one frag-

ment can be composed of multiple smaller segments. Moreover, for some

reads, which map to complex and difficult genomic regions, the mapper

can report multiple possible mapping positions – these reads will be repre-

sented as alternative alignments. In such cases, the content of the input

FASTQ record is duplicated and stored in multiple SAM records. A read,

which is reported to fully map to only one position in the reference (with

possible mismatches, trimming, etc.) is called a linear alignment. There-

fore, the number of SAM records (including alignments and unmapped

reads) after the mapping step can be larger than the number of the input

FASTQ records.

Alignment information in SAM format is represented and stored in mul-

tiple fields. The FLAG field always contains information related to read

properties and the mapping results, represented as a bitwise sum of differ-

ent flags. If the read has been successfully mapped, RNAME specifies the

reference sequence name, POS is the position, and MAPQ is the quality

of the mapping. The CIGAR (Compact Idiosyncratic Gapped Alignment

Report) field defines a relation between the resulting alignment sequence

and the reference, by specifying a sequence of operations that transforms

the former to the latter, but only with respect to the inserted, deleted or

https://samtools.github.io/hts-specs/

33 1.1. High-throughput sequencing

clipped sequences. The fields RNEXT and PNEXT are related to the name

and position of paired sequences (paired-end or mate-pair if present) and

TLEN field corresponds to the observed fragment length. Some reads can

also be unmapped (or having the paired read unmapped) and the corre-

sponding fields are left empty (having value either * or 0). The optional

fields follow the TAG:TYPE:VALUE format where TAG is a two-character

string naming the field and TYPE is a predefined enumerator defining the

format of the underlying VALUE data. There exists a number of custom

tags used by a variety of data alignment and post-processing tools de-

scribed in the Sequence Alignment / Map Optional Fields Specification16.

Nonetheless, some fields can be also defined by the user and those are

usually the most commonly used ones.

As mentioned previously, SAM is usually stored in a compressed form in

Binary Alignment / Map format (BAM) format and, once sorted by position,

it can be indexed for fast retrieval of alignments from a range of positions

on the reference genome and which is an important feature used when

performing variant calling. A more detailed description of the SAM format

can be found in the initial publication [111] or in the official specification.

VCF format Variant Call Format (VCF) [39] is a format for storing DNA

alteration information such as SNPs, INDELs, and SVs, together with their

rich annotations. It is used to store genotyping information from prelim-

inary variant calling results or summary results of variant analysis from

a single re-sequencing experiment analysis or multiple joint results from

population studies. Fig. 1.7 presents a sample part of VCF file, which

consists of 5 lines of header and 4 SAM records.

A VCF file consists of header section and data (variants) section. The

header contains an arbitrary number of meta-information lines (specific to

the given dataset), each starting with characters “##”, and a tab-delimited

data field definition line, starting with a single ‘#’ character. Each VCF

record consists of a set of 8 mandatory fields containing information about

the observed variant (or invariant) site in the analyzed population. If

the variant information is unavailable, the field is left with ‘.’ symbol.

Optionally, a VCF file can contain information from multiple samples

describing their genotypes.

16https://samtools.github.io/hts-specs/

https://samtools.github.io/hts-specs/

Chapter 1. Introduction 34

##
f
i
l
e
f
o
r
m
a
t
=
V
C
F
v
4
.
1

##
I
N
F
O
=
<
ID

=
AC

,
N
u
m
b
e
r
=
A
,
T
y
p
e
=
I
n
t
e
g
e
r
,
D
e
s
c
r
i
p
t
i
o
n
="

A
l
l
e
l
e

c
o
u
n
t

in
g
e
n
o
t
y
p
e
s
"
>

##
I
N
F
O
=
<
ID

=
AF

,
N
u
m
b
e
r
=
A
,
T
y
p
e
=
F
l
o
a
t
,
D
e
s
c
r
i
p
t
i
o
n
="

A
l
l
e
l
e

F
r
e
q
u
e
n
c
y
"
>

##
c
o
n
t
i
g
=
<
ID

=
c
h
r
1
,
l
e
n
g
t
h
=
2
4
9
2
5
0
6
2
1
,
a
s
s
e
m
b
l
y
=
hg

19
>

#
C
H
R
O
M

P
O
S

ID
R
E
F

A
L
T

Q
U
A
L

F
I
L
T
E
R

I
N
F
O

F
O
R
M
A
T

N
I
S
T
7
0
3
5

N
I
S
T
7
0
8
6

c
h
r
1

3
5
4
6
9
3
5

rs
2
8
2
1
0
0
7

G
A

4
3
.
1
7

.
AC

=
2
;
AF

=
1
.
0
0

GT
:
GQ

1
/
1
:
6

.
/
.

c
h
r
1

3
5
4
8
1
3
6

rs
2
7
6
0
3
2
1

T
C

5
1
3
6
.
2
0

.
AC

=
4
;
AF

=
1
.
0
0

GT
:
GQ

1
/
1
:
9
9

1
/
1
:
9
9

c
h
r
1

3
5
4
8
8
3
2

rs
2
7
6
0
3
2
0

G
C

3
8
2
0
.
4
4

.
AC

=
2
;
AF

=
0
.
5
0

GT
:
GQ

0
/
1
:
9
9

0
/
1
:
9
9

c
h
r
1

3
5
5
2
7
8
0

rs
2
8
2
1
0
6
1

A
G

9
4
6
.
4
4

.
AC

=
2
;
AF

=
0
.
5
0

GT
:
GQ

0
/
1
:
9
9

0
/
1
:
9
9

F
ig

u
re

1.
7:

A
sa

m
p

le
V

C
F

fi
le

w
it

h
se

le
ct

ed
h

ea
d

er
fr

ag
m

en
t

an
d

4
re

co
rd

s.
T

h
e

d
is

co
ve

re
d

va
ri

an
ts

o
n

th
e

ch
ro

m
o

so
m

e
1

ar
e

sh
ow

n
,s

ta
rt

in
g

fr
o

m
lin

e
6.

T
h

e
ge

n
o

ty
p

in
g

in
fo

rm
at

io
n

(c
o

lu
m

n
s

9–
11

)
is

p
ro

vi
d

ed
fo

r
tw

o
sa

m
p

le
s:

N
IS

T
70

35
N

IS
T

70
86

.F
o

r

u
s,

th
e

m
o

st
in

te
re

st
in

g
va

ri
an

tw
as

d
is

co
ve

re
d

o
n

ch
r1

:3
54

88
32

si
te

(l
in

e
8)

w
h

ic
h

is
a

si
n

gl
e

n
u

cl
eo

ti
d

e
va

ri
an

tG
/C

.A
s

se
en

in

Fi
g.

1.
6

th
is

va
ri

an
tc

ou
ld

h
av

e
b

ee
n

su
gg

es
te

d
by

th
e

al
ig

n
m

en
ts

,y
et

at
th

is
le

ve
lt

h
e

in
fo

rm
at

io
n

w
as

in
co

m
p

le
te

.B
as

ed
on

th
e

ex
o

m
e

se
q

u
en

ci
n

g
d

at
a

p
u

b
li

sh
ed

b
y

G
IA

B
[2

22
].

35 1.2. Text data compression

Table 1.4: A brief description of VCF mandatory record fields. Based on
Variant Call Format Specification.

Col Field Type Brief description

1 CHROM String
An identifier from a reference genome or
pointer to contig

2 POS Int The reference position
3 ID String Variant identifier
4 REF String Reference base(s)
5 ALT String Alternate base(s)
6 QUAL Float Phred-scaled quality score for the call
7 FILTER String Indicator about filtering status and result
8 INFO String Additional information, variant annotations

9 GFORMAT String
Genotype information format, order and
data description

10+ GINFO String Genotype information per sample

In Table 1.4 the record fields description is presented. Since our focus is

primarily on files stored in FASTQ and SAM formats (due to their large stor-

age requirements as compared to files stored in VCF format), the detailed

format description is not covered – a complete description can be found

in the official Variant Call Format Specification17.

Similar to SAM, VCF files are usually stored in a compressed way as Binary

VCF (BCF). The files are sorted by position and indexed for fast retrieval

of variant information. A detailed description of the VCF format can be

found in the initial publication [39] or in the most recent official Variant

Call Format Specification.

1.2 Text data compression

1.2.1 The aim of data compression

One of the most natural ways of representing information for humans

is human-readable text – a sequence of characters. Computers, on the

other hand, store and process the information in binary representation.

Therefore, any type of information needs to be encoded, where a code can

be perceived of as a set of rules to convert a given type of information to

its digital form and back and forth.

17https://samtools.github.io/hts-specs/

https://samtools.github.io/hts-specs/

Chapter 1. Introduction 36

When encoding text, characters can be either encoded using ASCII, Uni-

code or other encoding standard and stored digitally using one or more

bytes per character, depending on the selected standard. As has been

shown in the previous section, the most commonly used data formats in

genomics still use ASCII characters to represent the information, e.g., DNA

sequences, sequence alignments or meta-information. The size of gener-

ated sequencing data is in orders of gigabytes and a possible reduction of

its size is highly desirable.

Data compression is a set of techniques allowing one to reduce the data

size, specifically – the number of bits required to store and/or transmit it.

Some of the key benefits of compression include significant reduction of

storage costs and more feasible sharing between individuals or research

institutes. Compression can be lossless and lossy. In the former case, the

decompressed data matches the original one. In the latter, the controlled

loss of information can be applied, e.g., by lowering the data resolution

(like downsampling the quality scores in genomic datasets) or discarding

some auxiliary data, unnecessary from the point of view of further data

analysis (like removing selected unnecessary optional fields from gener-

ated SAM alignments). When storing sequencing data we would be mainly

interested in performing the lossless compression to be able to precisely

assess important clinical information. In some cases, however, we might

allow for a controlled degree of auxiliary data loss to further improve the

compression factor.

As will be shown in the following subsections, there exists no “best” method

to compress the data, neither using lossless nor lossy methods. Moreover,

a method, which may perfectly fit to compress one type of data (e.g.,

sequencing-platform-specific raw image or signal data used in basecall-

ing) may not provide satisfactory results when applied to an other type

(e.g., sequencing data generated by basecaller). The selection of the com-

pression method may also depend on the requirements of data processing

and analysis pipeline – whether the priority should be on fast random

access (with possible larger data size) or on maximum space savings (with

possible slow access). The data compression can hence be perceived of as

both an art and an optimization problem.

37 1.2. Text data compression

Figure 1.8: General concept of data compression workflow. T 1...T n de-
notes optional data transformation steps, M denotes modeling stage and
C – coding stage.

1.2.2 General data compression workflow

Any data compressor consists of at least a model and a coder. In order to

efficiently encode the input message (a sequence of symbols) we need

to build an appropriate statistical model of the source of information,

which generates the messages. However, quite often the characteristics

of the source are unknown and, therefore, the model is an approximate

representation of the source. Such a model is later used by the encoder to

determine the number of bits each symbol contributes to the compressed

representation of the message. The more adequately the model describes

the source, the better, as the encoder can encode the message more effi-

ciently, i.e., using possibly the least number of bits. For example, the most

frequent symbols in the message can be represented in some binary code

using smaller number of bits than the less frequent symbols.

Moreover, optional data transformation(s) can be performed on the input

message as a data preprocessing stage. The goal of data transformation (or

multiple transformations chained together) is to cast the message into an

alternative form, which can be encoded more efficiently using a different

model. For example, if there are multiple repetitions of some sequence in

the message, such a sequence can be encoded only once and its repetition

can be specially encoded by pointing to its previous or initial occurrence.

The general concept of compression workflow is illustrated in Fig. 1.8. The

decompression can be perceived of as the reverse of the process.

As a side note – although, in a broader context, the data preprocessing

stage can be perceived of as part of a modeling the source (we try to model

some unknown characteristics of the information source casting the in-

put message into a different form), we decided to explicitly distinguish

between these two stages. After applying transformation(s) on the input

message, the resulting message will have different characteristics, which

Chapter 1. Introduction 38

will be equivalent to being generated by a different source of informa-

tion. Nonetheless, the boundaries between these two stages are not well

defined.

1.2.3 Modeling

Source of information

A message (or multiple of), which we try to compress, was generated by

some source of information, whose characteristics are usually unknown.

The source can be seen as a stochastic process, characterized by a set of

random variables. A stochastic process can be stationary or non-stationary.

In the former case, its joint probability distribution does not change in

time, in the latter – its current characteristics change in time. Typically,

when compressing the data we assume that the message was generated

by a stationary source and, if possible, we model a non-stationary source

using a special case of a stationary one.

In order to encode the message efficiently, firstly we need to build a statis-

tical model of the unknown source. Therefore, a model is an approximate

representation of the source that generates the data. Its main purpose is

to approximate a probability distribution of the (successive) symbol(s),

which will be used by the coder, while encoding (or decoding). Multiple

classes of sources of information exist, however, in this dissertation we will

briefly focus on the most commonly used ones.

Memoryless source

The simplest class of source is the memoryless source. LetΣ = {a1, a2, ..., aσ}

be the set of distinct symbols, called alphabet with σ specifying its size.

LetΘ= {θ1,θ2, ...,θσ} be a set of associated probabilities of occurrence of

the symbols. A memoryless source generates as an output a sequence of

randomly chosen symbols according to their probabilities. There are no

dependencies between symbols and their probabilities, the only regularity

in the generated message is that the frequency of occurrence of each

symbol is close toΘwhich defines the source characteristics [41].

Another one is the piecewise stationary memoryless source18 (PSMS). When

18Formally, this type of source is a non-stationary source, as when generating messages

39 1.2. Text data compression

generating the i -th symbol of the message of length l (1 ≤ i ≤ l), the actual

set of probabilities of occurrence of symbols depends on the position i in

the generated message (the number of symbols generated so far). Given

the sequence of probabilities of occurrence of symbols 〈Θ1,Θ2, ...,Θl 〉 and

related sequence of positions 〈t1, t2, ..., tl 〉 in the message, the current state

of the source is characterized by the setΘi .

For example, as mentioned in Section 1.1.3, the base quality scores re-

ported by, e.g., Illumina basecaller may degrade with the length of the read

being currently sequenced. The more DNA nucleobases that have been

generated closer to the end of the read, the more probable low quality

values will occur. Therefore, although simplified, in such cases a PSMS

can be used to model the probability distribution of the quality scores

depending on their position in the reads.

Finite-state machine source

Another very common class of sources is finite-state machine sources

(FSM), with a Markov source being a generalized FSM. A Markov source

is characterized by a set of states S = {s1, s2, ..., sm} and a number of con-

ditional transitions between them with probabilities {p(si → s j)}. There

can be at most σ transitions from one state to another. Each transition has

some probability of being selected and it corresponds to generating a dif-

ferent symbol by the source. The next state is determined by the previous

state and the current symbol.

Finite-order FSM sources are a subset of Markov sources in which every

state is associated with a set of sequences of length no greater than k.

Therefore, the current state is specified by the last k symbols, whereas the

next state is specified by the current state and the current symbol. k is

called the order of the source. The maximum number of possible states is

σk .

As a side note, the previously mentioned memoryless source can be per-

ceived of as a 0-order FSM model having a single state with corresponding

σ transitions and their probabilitiesΘ.

the current source characteristics vary in time.

Chapter 1. Introduction 40

Context modeling

As already mentioned, usually, when compressing, the source characteris-

tics are not known in advance and its model is being built while processing

the generated message(s). The probabilities of occurrence of symbols are

being estimated by analyzing the context in which they occur. The context

of the analyzed symbol is usually the preceding k symbols, where k is

the order of the model (and the length of the context). For a finite-order

FSM source, a straightforward way to estimate some symbol s occurrence

probability is to assign a number of times f to the symbol which occurred

in the context c and to calculate its conditional relative frequency [74]. For

a memoryless source (basically, order-0 FSM), there is no need to analyze

the context in which the symbols occur.

There are two different approaches used to estimate the probabilities of

occurrence of symbols while building the model. In the first one, the input

message (or a part of it) is analyzed and, depending on the used model, the

occurrences of symbols (in a context) are calculated. Based on them, an

approximate representation of the probability distribution of the source’s

symbols is calculated, which will be used by the encoder. Such model is

called static. Although simple, static models have some drawbacks. First

of all, the message needs to processed twice – to gather the statistics for

building the model and to encode the message (the model needs to be

available before starting the encoding). Therefore, the model needs to be

stored alongside the encoded message, where the amount of information

representing the estimates of model’s symbols’ probabilities grows with

the order of the model.

Alternatively, a model can “train” itself while processing the successive

symbols of the message and can update the statistics. Such a model is

called adaptive (or dynamic). The message can be encoded (or decoded)

directly when data is being read and there is no need to store the model

with the encoded message. However, the message may not be encoded

as efficiently as when using a static model – when starting encoding, the

model’s probability estimates are empty or set to some initial arbitrary

value. Therefore, some initial part of the message will possibly be encoded

with overhead, before the dynamic model converges to the underlying

characteristics of the source. However, by not requiring to store the model

alongside the encoded message, overall the adaptive model will usually

41 1.2. Text data compression

perform better than the static one [132]. Hence, the most popular com-

pressors use adaptive modeling.

A model representing FSM source can be either a fixed-order or variable-

order model, with the former being the simplest one. When encoding a

message using an adaptive fixed-order model, exactly k previous symbols

are used as a context to predict the current symbol. However, the encoding

efficiency degrades with the length of the used context, as many longer

contexts appear for the first time and no prediction can be made [124]. One

of the solutions is to collect statistics for different orders simultaneously

and use the longest matching context to make a prediction of the symbol. A

model performing symbols predictions using contexts of different lengths

is called a blended model and is usually composed of multiple sub-models

[74], for example, consisting up to k sub-models each with a different

order ≤ k. However, the challenge remains in encoding the symbols (and

contexts) that occur in the input for the first time and how to indicate

switching between the contexts.

The most popular family of compression methods using finite-order variable-

length context modeling are prediction by partial matching (PPM) [32, 143]

methods. When encoding the input message symbol by symbol, PPM

firstly tries to find the longest match of k symbols. If no prediction can be

performed, it continuously switches to a shorter context using k − i previ-

ous symbols until a prediction can be made or until no matching symbols

remain in context. Seeing the symbol (and the context) for the first time,

PPM methods encode a special escape symbol, normally not present in

the message’s alphabet. This indicates the switching of the context to a

shorter one. Next, it updates the models with the newly seen context. The

way PPM methods handle the escape symbol leads to the development of

a variety of PPM variants, where one of the most popular variants – PPMd

[186] is currently widely used in several commonly used data archiving

tools.

1.2.4 Entropy coding

Shannon entropy

Information entropy, a concept introduced by Shannon [185], provides a

measure of the average amount of information generated by some source

Chapter 1. Introduction 42

of information, a stochastic process. It allows us to estimate the lower

bound of the lossless compressibility of message(s), which are emitted

by the source. Let X be a random symbol coming from alphabet χ =
{X1, X2, ..., Xn}, representing a message. The entropy H(X) of the message

can be estimated as:

H(X) = −
n∑

i=1
p(Xi) logb p(Xi) , (1.4)

where p(Xi) is the probability of Xi symbol occurrence and b is the log-

arithm unit (usually, a binary logarithm base b = 2 is used). If the sym-

bol is emitted by a stationary memoryless source, characterized by gen-

erating symbols from alphabet Σ = {a1, a2, ..., aσ} with probabilities Θ =
{θ1,θ2, ...,θσ}, then the entropy of the message corresponds also the en-

tropy of the source. Analogously, χ≡Σ and p(Xi) ≡ p(ai) ≡ θi .

Let us assume a message X = 〈x1, x2, ..., xl 〉 representing a random se-

quence of characters and which is of length l . The x j symbols are drawn

from alphabet Σ. The probability of the ai symbol occurrence at position j

is p(ai , j). If the message is generated by a stationary memoryless source

then p(ai , j) = θi . Therefore, the per-letter average entropy of such a mes-

sage (and entropy of the source) can be calculated using Eqn. 1.4. Now, in

order to estimate the minimum lossless representation of the message, the

calculated entropy needs to be multiplied by its length.

As an example, let us consider a random sequence of characters (a string)

X = GCACTTTG generated by stationary memoryless source. Its length is

l = 8 and its symbols are from alphabet Σ = {A,C ,G ,T } of size σ = 4.

The calculated relative frequencies of the symbols are: p(A) = 0.125,

p(C) = 0.25, p(G) = 0.25, and p(T) = 0.375. The information entropy ex-

pressed in bits per symbol is H (X) =−(0.125log2 0.125+0.125log2 0.125+
0.25log2 0.25+0.375log2 0.375) ≈ 1.781. Hence, l H ≈ 14.248 is the mini-

mum number of bits in which the sequence can be represented (or l H ≈ 15,

rounded up to the nearest integer).

However, if the message is generated by a piecewise stationary memo-

ryless source, the probabilities of occurrence of symbols depend on the

position j in the message p(ai , j) = θi , j . Moreover, in case of stationary

Markov sources, one needs to take into account conditional probabilities

of occurrence of symbols, which depend on the occurrence of previous

43 1.2. Text data compression

symbols. For such sources, estimating the entropy is a bit more complex

and it will not be covered here – a detailed description can be found in

[41, 184, 84].

Basic prefix codes

A prefix code is a variable-size code which satisfies the prefix property,

i.e., that there exist no sequence being a prefix of any other sequence (of

bits or bytes) in the given code system. The sequences used in a code

system are called code words. This property allows us to unambiguously

store and retrieve code words from a binary information stream. One of

the most simple and commonly used methods of assigning prefix codes

are: the family of Elias codes (like Elias gamma code [52]), unary19, and

Golomb-Rice [64] codes.

In an unary coding scheme a positive integer x is represented as a series of

x −1 values of one followed by a single zero value. Alternatively and less

commonly used, the integer can be represented by a series of 0’s followed

by a single 1. The length of such a constructed code word for a given

integer x is x bits.

An Elias gamma coding scheme represents the positive integer value x

(2N ≤ x < 2N+1) as a concatenation of two binary sequences. The value

of N power is encoded using unary encoding. Next, the remaining x −2N

difference is represented in binary encoding.

In contrast to the previous schemes, Golomb-Rice coding provides a flexi-

ble encoding method, which allows for creating parametrized prefix codes

according to the source characteristics. For a given nonnegative integer

x and a tunable parameter M , the encoding parameters are: q =
⌊ x

M

⌋
, r = x − qM and c = ⌈

log2 M
⌉

, where q and r are the quotient and the

remainder parts respectively. Having calculated the parameters, the code

is constructed in two parts. The quotient value is represented using unary

code. The remainder is encoded using truncated binary encoding, i.e., if

r < 2c −M then binary encode value r using c −1 bits, otherwise binary

encode value 2c−M+r using c bits. In Table 1.5 sample Golomb-Rice code

words are shown alongside binary, unary, and Elias gamma code words.

19Formally, unary codes are also known as Elias alpha codes, whereas binary codes of
fixed length as Elias beta codes

Chapter 1. Introduction 44

Table 1.5: Sample of 10 code words for binary, unary, Elias gamma and
Golomb-Rice coding. In Golomb-Rice coding M = 10 parameter was used
for code word generation. The spaces between bits were added only to
improve readability.

Number Binary Unary Elias gamma Golomb-Rice

1 1 0 1 0 001
2 10 1 0 0 1 0 0 010
3 11 11 0 0 1 1 0 011
4 100 111 0 00 1 00 0 100
5 101 1111 0 00 1 01 0 101
6 110 11111 0 00 1 10 0 1100
7 111 111111 0 00 1 11 0 1101
8 1000 1111111 0 000 1 000 0 1110
9 1001 11111111 0 000 1 001 0 1111

10 1011 111111111 0 000 1 010 10 000

As an example, to encode the message X = GCACTTTG using unary en-

coding we could map its alphabet Σ= {A,C ,G ,T } onto integer numbers

with their corresponding code words as follows: A → 1 (0), C → 2 (10),

G → 3 (110) and T → 4 (1110). As a result, the encoded message will be

110 10 0 10 1110 1110 1110 110 and of 23 bits in length. Compared to the

theoretically possible information representation of the message, which

is approximately 15 bits, such an encoded message contains a significant

information overhead of ≈ 8 bits. To reduce the overhead, one of the so-

lutions may be to perform a different mapping of symbols to code words.

Knowing the relative frequency distributions of symbols inside the mes-

sage we can assign the shorter codes to the symbols with the higher relative

frequencies first, i.e., T → 1 (0), G → 1 (10), C → 2 (110), A → 3 (1110). As a

result, the message will be encoded now as 10 110 1110 110 0 0 0 10 with

length of 17 bits (≈ 2 bits of overhead compared with the theoretical limit).

Huffman coding

Huffman coding [76] is one of the most popular and widely used methods

for data compression. For a given alphabet Σwith relative frequencies F

of occurrence of symbols the algorithm can generate optimal prefix codes

used to encode the symbols – the code is optimal if no other code with a

lower mean codeword length exists.

45 1.2. Text data compression

T 0.375

G 0.25

C 0.25

A 0.125
0.375

0.625

1.0

1

0

1

0

0

1

0

10

110

111

Figure 1.9: Illustration of generating Huffman code words for symbols to
encode the sequence GCACTTTG.

It starts by creating a list of symbols sorted in descending order of their

relative frequencies. Next, it constructs a binary tree with leaves represent-

ing each symbol going from traversing from the bottom to the top. Each

time, while traversing the tree to the top, the two leaves (or nodes) with the

lowest relative frequencies are merged together into a new parent node.

Its relative frequency equals the sum of its children. This process contin-

ues until the last parent node is created – the root node, with the relative

frequency of 1.0. The final code words are then assigned by traversing the

tree from the root node to the leaves, appending 0 whenever a left child is

selected and 1 – when right.

Fig. 1.9 illustrates how a Huffman tree is constructed for a sample message

GCACTTTG to assign its code words. Each leaf represents the symbol, its

relative frequency and the final deduced code word. The assigned code

words for each symbol are: A → 111, C → 110, G → 10 and T → 0. As a

result, the Huffman encoded message is 10 110 111 110 0 0 0 10 and is of

16 bits in length. In this case, Huffman encoding is more efficient than

unary encoding (i.e., it uses less bits to represent the given message), yet,

the encoded message still has an overhead of ≈ 1.75 bits compared to its

theoretical entropy.

The presented algorithm describes the static Huffman coding algorithm,

which uses precalculated relative frequencies of occurrence of symbols

prior to encoding. However, to encode any message “on-the-fly” using

adaptive modeling, there exists an adaptive version of Huffman coding

algorithm [89]. The advantages and disadvantages between static and dy-

namic models have been previously discussed in Section 1.2.3. Although

Huffman encoding is computationally a relatively non-complex and ef-

ficient algorithm, it has a strong limitation. As with other prefix-codes

Chapter 1. Introduction 46

generation methods, it generates a code with an integral number of bits

assigned to each symbol in the given alphabet. For example, a symbol

with probability 0.99 carries only H(X) =− log2 0.99 ≈ 0.0145 bits of in-

formation, but using Huffman code it cannot be encoded in less than 1

bit. Therefore, the only case where it produces ideal variable-size codes

(with average code size being close to the entropy) is for alphabets with

probabilities of occurrence of symbols having a natural power of 1
2 . The

maximum difference between the expected code length and the theoreti-

cal entropy denoted by Eqn. 1.4 is bounded by pm + log 2loge
e ≈ pm +0.086

bits, where pm is the probability of the occurrence of the most frequent

symbol [59].

Arithmetic coding

Arithmetic coding [171, 99, 210], as with Huffman coding, encodes the

message according to the relative frequencies of occurrence of symbols.

However, in contrast to Huffman coding, it encodes the entire message as

a single floating point number x, where 0.0 ≤ x < 1.0. In this way, the

output symbols can have non-integral length codes possibly leading to a

higher compression.

To encode a message, the method starts with setting an initial interval

[0.0,1.0) (also called as range). Next, it divides the interval according to the

relative frequency distribution of the symbols. Hence, each subinterval

resembles the appearance of each symbol. After encoding the first symbol,

the selected subinterval is then further divided according to the relative

frequency distribution. In this way, the input message is encoded symbol

by symbol, by narrowing the obtained subintervals. As a result, an interval

encoding the whole message is obtained – any value within the final inter-

val thus represents the input message in compressed form. The encoding

is best shown visually – encoding of GCACTTTG sequence is presented in

Fig. 1.10.

Unfortunately, available arithmetic systems in computers offer limited

precision in representing numerical values. Encoding a floating point

value representing the final interval with possibly unlimited precision is

practically impossible. Therefore, while encoding the message, frequent

renormalizations (expansions) and proportional reductions of the inter-

vals are required to properly encode the numerical values [177]. A more

47 1.2. Text data compression

Figure 1.10: Illustration of arithmetic coding of GCACTTTG sequence. The
result is an interval [0.409115314484,0.40914106369).

comprehensive algorithm description with supporting examples showing

both the encoding steps in detail and showing the problem of limited

arithmetic precision can be found in [177].

The presented algorithm describes the arithmetic coding using a static

model. Similarly, as in case of Huffman coding, an algorithm using an

adaptive model is available. The strong point of arithmetic coding is that

it can achieve optimal encoding performance. That is, with the length of

the encoded message increasing to infinity, the number of bits required

to represent the message converges to its theoretical entropy limit. This

is why, the most successful compression methods are based on adaptive

modeling with arithmetic coding. Some examples include family of PPM

algorithms and PAQ20 compressor series, where the former scores top

positions in benchmarks and has won multiple awards, including the

Hutter Prize21 by achieving a maximum compression ratio among other

available solutions.

Although arithmetic coding can achieve a higher compression ratio than

Huffman coding, it unfortunately stems from higher computational com-

plexity. The initial algorithm was computationally very expensive and

20http://mattmahoney.net/dc/zpaq.html
21http://prize.hutter1.net/

Chapter 1. Introduction 48

the algorithm was heavily patent-encumbered, so an alternative version

was designed to partially overcome these issues. A range encoder [134]

(although also formally an arithmetic encoder) reduces the number of

necessary range renormalizations to encode the message, which signifi-

cantly decreases the computational complexity. Implementations of range

encoding algorithm can achieve speedup factor up to 2 compared to the

implementations of standard arithmetic coding algorithm [177] (still with

the compression performance speed inferior compared to Huffman en-

coding). Recently, however, a new family of entropy coders has been

developed, namely asymmetric numerical systems (ANS) [47]. They pro-

vide encoding efficiency close to the one offered by arithmetic encoding,

yet, with a compression performance speed comparable to (or better than

[48]) Huffman encoding.

1.2.5 Data transformations

Basic data transformations

The goal behind the data transformation step is to cast the data into an

alternative form, which can be encoded more efficiently, by using a better,

but different model. Moreover, if applicable, some transformations can be

chained together in order to improve the compression ratio even further. A

proper choice of what data transformations are to be performed depends

on the input data characteristics. However, it my not be a trivial task,

especially if the characteristics of the source of information are unknown.

One of the simplest transformations is differential encoding (or delta en-

coding). Let S = 〈x1, x2, ..., xn〉 be a message of length n, which consists of

numerical values. When delta encoding S the algorithm emits only numer-

ical differences between consecutive number ∆i = xi −xi−1. Only the first

value needs to be encoded as original. Therefore, as a result it gives a tu-

ple (x1,〈∆2,∆3, ...,∆n〉). This method noticeably reduces the entropy of the

whole message, especially when the differences between consecutive num-

bers are small or when the numbers are represented in non-decreasing

order.

As an example, let us encode a sequence of integers 〈11,12,13,14,15,16,17,

18,19,20〉 which, e.g., could be the read identifier number fields extracted

from consecutive read identifiers in FASTQ file. Since in this example the

49 1.2. Text data compression

numbers are unique, each having the same probability of occurrence, the

theoretical entropy (Eqn. 1.4) in bits per symbol is high and equal to 3.322.

The theoretical minimum number of bits to represent the sequence is

3.322×10 = 33.22 ≈ 34 bits. However, applying delta transformation would

yield as an output a tuple (11,〈1,1,1,1,1,1,1,1,1〉). Encoding all the values

altogether, the theoretical entropy in average bits per symbol of the whole

sequence is 0.469. Therefore, the sequence could be encoded in no less

than 0.469×10 = 4.69 ≈ 5 bits.

Another method, run-length encoding (RLE) [63] method encodes the

consecutive symbol repetitions. While processing the input message, the

number n of consecutive symbol s occurrences is encoded as a tuple

(s,n). This method is useful especially in image compression (e.g., in JPEG

format), where long runs of the exact pixel values can be represented in

a more compact way. On the other hand, move-to-front (MTF; or symbol

ranking) [16] method uses a control stack of recently used symbols when

transforming the input message. In this way, each symbol is replaced by its

index in the control stack. The main rationale behind applying the method

is that the most recently seen symbol has the highest probability to occur.

Both methods are best shown applied to an example, as discussed below.

Let us encode a DNA sequence S = ACTACTACTACTACTACTTT (a short

tandem repeat) of length 20 using alphabet to set of integers mapping

{A,C ,G ,T } → {0,1,2,3}. The theoretical information entropy of S in bits

per symbol is 1.571 and the minimum number of bits to represent the

sequence is 1.571×20 = 31.419 ≈ 32 bits. By applying MTF with initial

control stack 〈A,C ,G ,T 〉, the sequence would be transformed to Sbwt =
〈0,1,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,0〉. The encoding process, step by

step shows Figure 1.11. The entropy of the transformed sequence in bits

per symbol is now 1.154 and the minimum number of bits to represent it

is 1.154×20 = 23.080 ≈ 24. Since the sequence contains runs of repeated

symbols 2 and 0 it can be further transformed using RLE. The result will be

a collection of tuples 〈(0,1), (1,1), (3,1), (2,15), (0,2)〉. If we split the result

into two separate arrays containing indices Ridx and repetitions Rnum, i.e.,

Ridx = 〈0,1,3,2,0〉 and Rnum = 〈1,1,1,15,2〉, we now need to encode two

short sequences of length 5. The Ridx sequence has an entropy of 1.922 in

bits per symbol and can be represented using minimum 1.922×5 = 9.61 ≈
10 bits. Analogously, the Rnum has an entropy of 1.371 bits per symbol and

can be represented using minimum 1.371×5 = 6.855 ≈ 7 bits. Combined,

Chapter 1. Introduction 50

A ACGT 0
C ACGT 1
T CAGT 3
A TCAG 2
C ATCG 2
T CATG 2
A TCAG 2

...
C ATCG 2
T CATG 2
T TCAG 0
T TCAG 0

Figure 1.11: Encoding a sequence ACTACTACTACTACTACTTT using MTF.
Columns denote respectively the current symbol to be encoded, the con-
trol stack buffer and the index of the current symbol in the stack.

the output sequence could be encoded using minimum 17 bits.

Lempel-Ziv coding

In the ’70s Abraham Lempel and Jacob Ziv designed two variants of the

most-widely used dictionary-based compression algorithms, namely LZ77

[221] and LZ78 [221]. When encoding, the algorithms try to find repeated

subsequences in the input message and encode the repetitions with re-

spect to the previously seen one, residing in the dictionary. The main

difference between the methods, however, relies in defining the dictionary

and the representation of the matches found.

The main idea behind LZ77-family methods is the use of a sliding win-

dow technique, which can be seen as “sliding” a buffer through the input

message from its beginning to its end and encoding the repetitions of sub-

sequences inside this buffer. This buffer keeps track of the previously-seen

symbols (and sequences) and serves as a dictionary. Practically, this buffer

is divided into two parts: search buffer (i.e., the dictionary) of size b1 and

look-ahead buffer of size b2, containing the future part of the message

to be encoded. The size of the buffer (and the length of the window) is

b = b1 +b2. The encoding algorithm works as follows.

At the beginning, when the search buffer is empty, it is initialized with b1

51 1.2. Text data compression

Figure 1.12: Illustration of encoding of a sequence
ACTACTACTACTACTACTTT using LZ77 sliding window. Values on
the right represent emitted triplets on each encoding step.

repetitions of the first symbol of the alphabet and b2 repetitions of first

symbol of the input message. Then, when processing the input message, it

tries firstly to encode the longest prefix shared between the next part of the

message in the look-ahead buffer (starting at b1 +1 position in the buffer)

and the sequence present in the search buffer (starting to search from its

end, i.e., b1 position). Then, if a match is found, the subsequence can be

encoded with respect to some previously-seen shared prefix. The match is

encoded as a triplet (p,m,c), where p is the match starting position inside

search buffer, m is the length of the substring match and c is the following

character (possibly mismatch). The buffer is shifted m +1 position to the

left, filling with proceeding successive characters (the window is “slided”).

Therefore, the encoding result is represented as a collection of triplets.

As an example, Fig. 1.12 illustrates a simplified encoding (using a sliding

window technique) of a sequence ACTACTACTACTACTACTTT . As a side

note, for simplicity, in step 3 the match has been encoded as (4,3, A).

However, some alternative algorithms may allow for a more efficient match

representation, e.g., (4,6, A) (or even (4,15,T) if it is allowed to search

beyond the look-ahead buffer if a match was already found). In such case,

the length m of the found match is greater than the actual length of the

matching substring ACT . Such an operation can be interpreted so as to

generate m symbols using the matching substring, repeatedly starting

from its beginning, when its length is exceeded.

The LZ78-family of compression algorithms, on the other hand, uses as a

dictionary a list of previously encountered prefixes. The algorithm starts

with the empty dictionary and fills it up while processing the input mes-

sage. To encode a sequence at some position, it searches for the longest

Chapter 1. Introduction 52

prefix in the dictionary (of sequences). The sequence match is encoded

as a tuple (i ,c), where i is the index of the longest prefix match from the

dictionary (an index of the match entry in the dictionary) and c is the

following character (mismatch) after the prefix. The concatenation of the

prefix and the character c is added as a new entry to the dictionary. The

encoding goes on until the end of the input sequence. Therefore, the result

is a collection of tuples.

The output of LZ-family encoded sequence can be compressed using Huff-

man encoding or arithmetic coding. A variety of different modifications

have been applied to the LZ-family of methods, greatly improving their

encoding efficiency – LZSS [191], LZW [206], LZRW [209], or LZAP [190],

to name a few. A comprehensive descriptions of algorithms with exam-

ples can be found in [177]. As LZ-family methods are pretty general in

algorithm design and do not pose strict limitations on the size of the used

dictionary buffers (e.g., the capacity of LZ77 sliding window or the size of

LZ78 list), the compression performance both in terms of compression

ratio and speed can be tuned to specific data processing requirements.

Therefore, LZ-family methods are one of the most widely used algorithms

in data compression. They are an essential part of DEFLATE or LZMA

algorithms, which are implemented in the most popular data compression

applications, such as in gzip22, 7zip 23, Snappy24 or image formats such as

GIF or PNG.

Burrows-Wheeler transform

Burrows-Wheeler transform [23] (BWT), also known as block-sorting loss-

less data compression algorithm, is a sequence permutation algorithm

developed by Michael Burrows and David Wheeler in 1994. It defines

a reversible permutation of the original sequence, where subsequences

sharing the same prefix, tend to appear close to each other. Therefore,

the obtained runs of characters can be encoded more efficiently by using

locally-adaptive models.

To obtain a BWT transform of a given sequence S of length n the algo-

rithm proceeds as follows. Firstly, all cyclic rotations of the input sequence

22http://www.gzip.org
23http://www.7-zip.org
24https://google.github.io/snappy/

http://www.gzip.org
http://www.7-zip.org
https://google.github.io/snappy/

53 1.3. Motivation

GCACTTTG
CACTTTGG
ACTTTGGC
CTTTGGCA
TTTGGCAC
TTGGCACT
TGGCACTT
GGCACTTT

ACTTTGGC
CACTTTGG
CTTTGGCA
GCACTTTG
GGCACTTT
TGGCACTT
TTGGCACT
TTTGGCAC

Figure 1.13: Illustration of BWT transformation of GCACTTTG sequence.
Last column on the left indicates the result – CGAGTTTC.

are generated, forming an n ×n matrix. The rotations are then sorted

lexicographically. The last column of such a sorted matrix is the BTW

transform of S. The backward transformation operation is straightfor-

ward and requires only knowing the index I , which denotes a row in the

matrix containing the original sequence. The BWT algorithm, however,

is best visualized by using a picture – Fig. 1.13 presents a BWT forward

transformation of a sequence GCACTTTG, giving CCGAGTTA as a result.

The output of the BWT transform encoded using MTF, followed by RLE

and Huffman coding is the basis of bzip225, one of the most commonly

used textual data compression tools. Apart from being applied to data

compression, the BTW transform has another very useful property. In

2000 Paolo Ferragina and Giovanni Manzini [55] designed FM-index data

structure – a compressed full-text substring index based on the output

of BWT transform. They showed that BWT transform of a given string

S together with some auxiliary data structures can be used as a space-

efficient index of S itself. Hence, this data structure is nowadays extensively

used in bioinformatics, especially in sequence mapping algorithms to

perform approximate string matching, as mentioned in Section 1.1.3.

1.3 Motivation

Data volumes generated by sequencing technologies, especially by 2nd

generation sequencing technologies became a major issue for efficient

storage and sharing. We have practically reached the symbolic barrier

of 1000$ USD in amortized costs per whole genome re-sequencing of an

25http://www.bzip.org/

Chapter 1. Introduction 54

individual. However, there is growing concern about the explosion in

growth of sequencing data, which emphasizes the importance on develop-

ing efficient high-throughput sequencing data storage, management and

compression methods [33, 92, 72, 43, 19]. In 2012 the National Institutes

of Health (NIH) organization in the United States launched a Big Data to

Knowledge (BD2K) initiative to advance research in biomedical Big Data to-

wards precision medicine; significant resources were allocated to advance

research in genomic data compression methods26. With further advance

in sequencing technologies, which will increase their accuracy, reliability,

and throughput, it is very likely that soon the re-sequencing of individuals

will become a commodity. Therefore, in order to prevent the potential

explosion of sequencing data and to enable its efficient sharing and pro-

cessing (for instance, in the cloud, which has become very popular), the

development of new compression methods is of great importance.

26https://datascience.nih.gov/bd2k/funded-programs/software

https://datascience.nih.gov/bd2k/funded-programs/software

CHAPTER 2

STORAGE OF

HIGH-THROUGHPUT

SEQUENCING DATA

In this chapter we will present the state-of-the-art in the area of high-

throughput sequencing data compression and storage. We will show how

the different data compression methods and genomic data processing

algorithms presented in Chapter 1 are applied to reduce the size of HTS

data. Since we are mostly interested in reducing the large storage space

requirements of HTS data in DNA re-sequencing pipelines, we primarily

focus on compressing the data stored in FASTQ and SAM formats. We will

show the challenges and techniques to compress data in these formats

by analyzing methods used to compress different parts of the files that

they contain. Although the use-cases of FASTQ and SAM formats are

different, the HTS data representation in SAM format can be seen as a

superset of FASTQ format. Therefore, we will firstly analyze the techniques

to compress the reads in FASTQ format and, then, the corresponding ones

to compress alignments in SAM format. We will show that the techniques

used to compress the data in both formats share a number of similar

difficulties and follow analogous principles. Next, we will show alternative

approaches to storing HTS data that are not strictly limited to compressed

representations of data in FASTQ and SAM formats. Finally, we will briefly

present the challenges and current solutions to storing the long-reads data

from emerging third-generation sequencing platforms, which significantly

differ from the most commonly used short-reads data. The results of

compressing the HTS data represented either in FASTQ or SAM format and

using different compression methods will be presented in Chapter 3.

55

Chapter 2. Storage of high-throughput sequencing data 56

2.1 Compression of raw reads in FASTQ format

2.1.1 Context

Raw sequencing reads generated by NGS machines are primarily stored in

FASTQ format1. As mentioned in Section 1.1.3, each FASTQ record con-

sists of three fields: read identifier, DNA nucleotide sequence and their

corresponding base calling quality scores. Depending on the sequencing

machine used and the sequencing experiment design, multiple FASTQ files

can be generated in a single experiment and they can be either merged to-

gether or stored independently. The raw FASTQ files are often compressed

using gzip and this already allows us to obtain around 3-fold reduction in

size [43]. However, such a compression result is definitely not satisfactory,

since gzip is a general purpose text compressor and as such is unable to

exploit properties of genomic data represented in FASTQ format – fields

containing data of different kinds are simply encoded together. There-

fore, a variety of FASTQ format-specific compression methods have been

developed, which share a number of common ideas.

A FASTQ file can be seen as a collections of records, each consisting of three

different fields. The majority of modern2 FASTQ compressors split each

records’ content into three separate streams of data, where each stream

contains data of homogeneous type. The decomposition of the content

of the records into different streams, each of which can be compressed

by using different method, is a fundamental approach in order to achieve

a reasonable compression of HTS data. For example, it has been demon-

strated in [151] that instead of compressing a whole FASTQ file, as it is, one

can achieve > 10% improvement in the compression ratio just by splitting

the FASTQ files into three streams and compressing each separately using

the same compressor (in this case: gzip).

Methods for compression of DNA sequences can be divided into four

categories: general, mapping-based, assembly-based and read-reordering-

based methods. Compressors using methods from the first category en-

code the reads as they are and without any prior knowledge about the data

1Formally, sequencers usually output reads in their own custom format, from which are
then converted to FASTQ.

2Historically, some solutions like G-SQZ [196] or SeqDB [75] used to store sequence and
quality symbols together into one byte prior to compression – such an approach, however,
did not result in significant savings in the data storage

57 2.1. Compression of raw reads in FASTQ format

– they apply simple transformations and statistical methods to exploit the

local similarities between the consecutive reads in the file. Mapping-based

compressors use information about the reference genome, possibly map-

ping the reads to it and encoding only the minimal information about

the mapping necessary to reconstruct the original reads. Assembly-based

compressors assemble the reads in order to find possible overlappings

among them. Compressors using methods from the last category reorder

the reads inside FASTQ file according to a specified criterion in order to

exploit the similarity between the DNA sequences on the whole file scope,

which allows to improve the compression ratio.

In practice, however, advanced compressors use a combination of methods

from different categories, performing the compression of DNA sequences

as a multi-step process. For example, in the first step they can assem-

ble contigs from the input reads, which can be later used as reference

sequences when performing mapping and encoding of the reads. Hence,

the compressors can be categorized by the core method (or approach)

they use to compress (or process) the DNA sequences. From a high-level

point of view, advanced DNA compression methods can be perceived of

as dictionary methods, where either the externally provided reference se-

quences, self-assembled contigs or previously processed reads can be used

as referential sequence matches. As a side note, it is important to empha-

size that while developing any DNA sequence compression technique it is

essential to encode the DNA sequences losslessly.

Read-identifiers-encoding methods fall into two categories: encoding by

tokenization or differential encoding. In the first case, the read identifier

string is split into tokens and then each token is encoded separately. In the

second case, the read identifier is encoded differentially with respect to

some identifier, which appeared previously in the stream. Usually, read

identifiers are compressed losslessly, however, some compressors may

prefer to skip storing the comment (the content after the first occurrence

of a white space character in the identifier line).

Quality-scores-compression methods can be either lossless or lossy. Since

quality scores stream characterizes high entropy with a high level of noise

[19], it is challenging to compress it efficiently in a lossless manner. Qual-

ity stream usually occupies the majority of the space in the compressed

archive, hence, a number of lossless and lossy quality-scores-compression

Chapter 2. Storage of high-throughput sequencing data 58

strategies have been developed, with the research focus put on the latter

in recent years.

The main differences between FASTQ format compressors, therefore, lie in

the methods used to compress different kinds of data encoded into (pos-

sibly, separate) streams. Hence, in this section, we provide a breakdown

analysis of the FASTQ compressors focusing on compression methods

applied per each kind of data.

2.1.2 Compression of read identifiers

Fields tokenization

FASTQ read identifiers can contain information such as unique instrument

name, read number, flowcell lane, read length, etc. The format of the field

is unfortunately arbitrary and sequencing-machine specific [19]. Never-

theless, read identifiers can be perceived of as a collection of different

fields (tokens) separated by delimiters – as presented in Fig. 1.5. These

tokens can be either of numeric, character or string type, having either

a constant (fixed) or variable value among all the reads identifies in the

whole FASTQ data set – these characteristics define the token class, which

later determines the compression method. Having this in mind, some

compressors perform tokenization of the read identifiers and compress

each token using a dedicated encoding tailored to its characteristics. When

encoding, usually, the previous read identifier is used as a context. Since

read identifiers can share a significant amount of information among them

in the dataset (e.g., reads coming from the one experiment may share the

same experiment identifier), the idea is to store the fixed fields only once

and to encode efficiently the variable ones.

A good example of a tool utilizing tokenization approach is a block-based

(i.e., reading and compressing the file on a block-by-block manner) DSRC

[42] compressor. DSRC inspects each field separately gathering all the

fields statistics at the end of processing each block. Then, knowing the data

characteristics, numeric fields can be either differentially encoded, binary

encoded using a possibly minimal bit representation or encoded using

order-0 Huffman coding. Non-numeric fields are encoded columnar-wise,

i.e., per each field a vector is constructed storing characters occurrences

at the field’s positions observed in all the reads within the block. Lastly,

59 2.1. Compression of raw reads in FASTQ format

non-fixed fields are encoded using order-0 Huffman coder.

Similarily, Quip [85], Fqzcomp [19] and LEON [15] tokenize the read iden-

tifiers into n separate fields. They use different statistical models per each

field. Depending on its value type(s) they may use multiple models per

one field in order to achieve the best compression ratio. In this way, only

a minimal representation of the identifier is stored, encoding only the

differences in values (if those occur) with respect to the previous read iden-

tifier. Therefore, a numerical difference (delta) or a length of the longest

common prefix with the mismatching characters is encoded. The final

entropy coding is performed using arithmetic coders.

Differential encoding

In contrast to the tokenization, some compressors operate directly on

whole read identifiers, storing the differences between the consecutive

ones. For example, Fastqz [19] encodes read identifier lines differentially

and column-wise. It stores the differences between the consecutive iden-

tifier lines and encodes them as a collection of triplets: a numeric field

increment in the range 0−255 selecting the starting column (position),

length of the string match and the trailing differences (on a similar basis

as Lempel-Ziv coding, but using only the last read as LZ buffer). In the

next step, such encoded differences are passed through a mix of different

context models and compressed using ZPAQ3 [125].

Similarily, LW-FQzip [219] encodes read identifiers differentially, but with

respect to the number of previous ones. When compressing read identi-

fiers, it applies incremental encoding, storing as a result only common

prefixes or suffixes and their lengths. FQC [49], on the other hand, per-

forms a one-time indexing of the invariant parts found across a number of

read identifiers – such information about the variability in the identifiers

is further stored in a delta-encoded format. The encoded output in both

LW-FQzip and FQZ is compressed using a LZMA-based compressor.

3http://mattmahoney.net/dc/zpaq.html

http://mattmahoney.net/dc/zpaq.html

Chapter 2. Storage of high-throughput sequencing data 60

2.1.3 Compression of DNA sequences

General methods

Compression methods falling into this category are used to compress the

DNA sequence data as it is, i.e., they only use data transformations and

statistical methods to compress the reads in the local context. Usually,

also the read order is kept intact. DSRC is a good example of a compres-

sor implementing this category of methods and which introduces some

interesting concepts. In order to lower the entropy of the DNA stream

(limiting the alphabet possibly to only 4 DNA symbols), the rare N symbol

occurrences and other IUPAC symbols are encoded in the quality stream.

Since the numerical range for the quality values is at most 0−94 [34], 161

additional values can be stored in a single byte by mixing together the

base symbol and quality score. When the DNA alphabet consists of only

a maximum of 4 values, DSRC encodes the sequence using two bits per

symbol. Otherwise, it encodes the sequence data using order-0 Huffman

coder. Additionally, to improve the compression ratio even further, DSRC

provides an optionally LZ77-based dictionary compression method. When

compressing, it looks for sequence matches in a buffer (of configurable

capacity) consisting of previously encoded sequences. A similar approach

of reducing DNA stream alphabet size has been applied in the recently

published FQC [49] compressor where the final compression stage is per-

formed by using LZMA-based compressor.

On the other hand, Fqzcomp [19] uses a configurable order-k Markov

model when encoding sequences, using k previous bases as a context.

This model is considered the main one with the possible maximum or-

der of 14. Moreover, Fqzcomp provides an additional fixed size order-7

model to improve the accuracy of the predictions of the main model. Try-

ing to improve the compression efficiency even further, the main model

can be updated using the reverse compliment of the encoded sequence.

The entropy encoding is performed using an arithmetic coder. As an im-

portant constraint, Fqzcomp limits the available DNA alphabet to only

Σ = {A,C ,G ,T } – the information about occurrence of N symbol is stored

in the quality stream (similarly to DSRC), encoding the value of the corre-

sponding base quality score as 0.

Quip [85] and Fastqz [19] also implement general methods for DNA se-

61 2.1. Compression of raw reads in FASTQ format

quence compression in one of their modes. Quip, in its default mode, uses

a 12-th order Markov model with an arithmetic coder to compress the

sequence data. Fastqz, by contrast, packs the bases symbols together into

triplets or quartets by assigning A = 1, T = 2, C = 3 and G = 4 (the N base

symbol is assumed to be uniquely identified by its corresponding quality

score value of 0) and compresses them using ZPAQ. The focus of these

solutions is put, however, on a mapping-based compression of the reads,

which will be explained in the following subsection.

Mapping-based methods

The underlying idea of compression methods falling into this category is

to map FASTQ reads to the provided reference sequence and to encode the

reads within the mapping context. Such an approach gives us the possi-

bility of eliminating high sequence data redundancy by efficiently storing

only the sequence match position, size of the match and the potential dif-

ferences from the reference. The non-mapped sequences, however, can be

stored using the general methods, as presented in the previous subsection.

The drawback of such an approach is that the same reference sequence

needs to be available both during compression and decompression.

Fastqz [19] (in the reference-based mode) and recently published LW-

FQZip [219] follows this approach. Both implement their own lightweight

mapping algorithms with indexing based on hash tables to perform effi-

cient substring searches. While processing reads, Fastqz will try to match

the sequences to the reference and encode the best match as a 32-bit

pointer, a direction bit and a list of up to four mismatches. The result is

finally encoded using different context mixing strategies implemented in

ZPAQ. By contrast, LW-FQZip after finding the best match, tries to perform

a local realignment of the read around the mapping position. For each

read, the position and edit operations (match, insertion, deletion, substitu-

tion) with their lengths are reported. The final output is compressed using

LZMA-based compressor.

Assembly-based methods

Compression methods falling into this category apply sequence assembly

methods to compress the reads in an efficient way. For example, Quip

Chapter 2. Storage of high-throughput sequencing data 62

[85] uses the first 2.5 million (by default; a configurable parameter) reads

in a file to perform de-novo assembly of reads creating possibly large

contigs. The assembly method is based on probabilistic de Brujin graphs,

which utilize a Bloom Filter [20] data structure for efficient k-mer counting

and filtering. The constructed contigs are in the encoding stage used

as reference sequences, to perform reference-based compression of the

remaining reads. The resulting alignments are encoded using different

models with an arithmetic coder.

A similar approach was demonstrated in the recently published LEON

[15] compressor. Prior to compression, LEON performs de novo assembly

of the sequences constructing a probabilistic de Brujin graph based on

Bloom filters, which are used for efficient k-mer filtering. Nevertheless,

in contrast to Quip, LEON constructs the graph using all the reads inside

the FASTQ file. After building the graph (which will be stored in the output

archive at the end of the compression procedure) it proceeds to encode

the reads within the graph context. Each read is encoded as its anchor

k-mer (k-mer serves as an anchor node in the graph) with the branching

information and the sequence length. The output is encoded using 0-order

arithmetic coder.

Reads reordering methods

During the library preparation process, DNA molecules are cut randomly

into many small fragments. These fragments are later sequenced by an in-

strument, which outputs the resulting short reads into a number of FASTQ

files. It is a known property that the order of the DNA sequences in the

resulting FASTQ file is completely arbitrary [56]. Hence, the read order

can be altered, but remembering to preserve the information about the

reads pairing if the library was sequenced in a paired-end configuration.

Therefore, compression methods falling into this category reorder the

reads according to some criterion in order to improve the compression

ratio. Since the generated sequencing data is characterized by a high re-

dundancy (especially present in the data generated from deep-sequencing

experiments), by reordering the reads compressors try to exploit large

sequence similarities between groups of reads.

The first compressor following this approach was SCALCE [70]. Its reads

reordering technique is based on a Locally Consistent Parsing (LCP [13])

63 2.1. Compression of raw reads in FASTQ format

algorithm, which is used to search for sufficiently long patterns shared

between the reads (called core substrings). For each read, LCP looks for the

longest core substring and places the read in the corresponding bucket.

As a result, all the reads inside one bucket share the same, possibly long

core substring. Then, in each bucket the reads are ordered lexicographi-

cally with respect to the position of the core string. Finally, the reads are

compressed using gzip.

Another interesting method was proposed by BEETL [14, 37, 83]. Its pri-

mary use is efficient k-mer retrieval from large collections of sequencing

reads. However, as a proof-of-concept, it has been also applied for com-

pression of raw DNA sequences and FASTQ reads, achieving very good

compression results. The core approach is based on applying the Burrows-

Wheeler transformation over the collection of input DNA sequences, which

allows to exploit high redundancy present in sequencing data. Moreover,

BWT transformation is also used to build an FM-index (see Section 1.2.5)

for the data, which allows for fast substring lookups. The generated BWT

output is run-length encoded and indexed. By compressing the output

with PPM-based or LZMA-based compressor a high compression ratio can

be achieved.

kPath [87] is a recent DNA sequence-only compressor, which achieves a

high compression ratio. Its compression algorithm is as follows. Given the

reference sequence and k-mer length, it builds a de Brujin graph based

on k-mers from the provided sequence. Then, it trains the probability

distribution model based on the calculated k-mer frequencies. When pro-

cessing the reads, they are firstly reverse-complemented, where heuristics

are used to determine which orientation matches better the provided ref-

erence sequence. In the next step, the reads are sorted lexicographically

according to their initial k symbols – the goal is to place the reads with the

same possibly longest substrings close to each other. The remainder of

each read is encoded as a path within the built graph. The final output is

encoded using arithmetic coding with the probability distribution model

trained using the supplied reference sequence.

Mince [158] is another recently published DNA-only compressor. It clus-

ters the reads into different bins which correspond to different minimzers,

i.e., lexicographically smallest k-mers [172]. For each read, Mince searches

for its k-mers and assigns a bin if the bin’s minimizer is present in the read

Chapter 2. Storage of high-throughput sequencing data 64

and if the read is sharing possibly the maximum number of k-mers with

the reads already stored in the bin. After clustering, reads inside the bins

are sorted lexicographically starting from the position of the minimizer.

Finally, the reads are compressed using a LZMA-based compressor Lzip4.

2.1.4 Compression of quality scores

Lossless methods

It has been widely noted that in the data produced by most sequencing

technologies there is a direct correlation between position and quality

score values and that the read quality typically degrades along the length

of the sequence [95, 93, 19]. In addition, a significant number of quality

sequences generated by Illumina machines end in a run of score 2 (ASCII

symbol ’#’), which may be related either with a low quality of the sequence

or with a common issue of Illumina base calling process [142]. Therefore,

a majority of FASTQ compressors use the above observations trying to

compress quality scores efficiently. They try to model the stream of quality

scores either as a piecewise stationary memoryless source or as a Markov

model (see Section 1.2.3). Hence, they implement different context-based

models, where a context can be built of the preceding quality values and

the base position inside the read.

For example, the authors of DSRC [42] noticed three types of quality

streams characterized by different statistics and proposed different com-

pression methods accordingly. The first type consists of quasi-random

values with a mild dependency of its position onto the value’s symbol

distribution. DSRC handles this type of quality stream by gathering statis-

tics and encoding the values columnar-wise, i.e., the statistics of quality

scores occurrences per each position are gathered and are later encoded

using Huffman coding. The second type is a special case of the first one,

where quality sequences end in runs of low score 2 – this information is

encoded simply as a bit flag. Lastly, in some cases, the authors observed a

strong local correlation of quality scores values clustered within individual

records. This type of quality data is compressed using RLE followed by an

order-1 Huffman entropy coder. By contrast, authors of FQC [49] simplify

the above approach and just use RLE following LZMA-based compressor

4http://www.nongnu.org/lzip/

http://www.nongnu.org/lzip/

65 2.1. Compression of raw reads in FASTQ format

to store the quality scores.

Moreover, Fqzcomp [19] authors observed that sequences tend to be over-

all either good or bad. This observation has a direct application for encod-

ing the quality scores. When processing reads, if a read already contains a

significant number of low quality values it is more likely that even more low

quality values will appear later when encoding its quality scores. Therefore,

to support multiple quality data models (including also the general ones

mentioned at the beginning of this subsection), Fqzcomp utilizes a context

mixing technique, using 5 different contexts to predict the quality values

and to compress them using arithmetic coders – the exact definition of

how the contexts are built can be found in the Fqzcomp publication [19].

Fastqz [19] encodes quality scores using special byte codes, which are as

follows. Quality scores of 38 (the highest observed value) are encoded as

runs up to the length of 55 using RLE. Quality scores in range 35−38 are

packed as triplets or, if not possible, are either packed into pairs (applies to

scores in range 31−38) or stored as single bytes (applies to all other quality

scores). If a read ends with run of low quality value of 2 – it is indicated

by just a single symbol. The resulting byte code is compressed by passing

through a mix of context models provided in ZPAQ.

Another approach was proposed by Quip [85], which uses an order-3

arithmetic coder. As a context, three preceding quality scores are used (but

binning coarsely the last two). In addition, Quip conditions the context

on 2 variables: the encoding base quality position within the read and a

number of “large” differences between the previous quality scores between

adjacent positions. Other compressors, like the LEON [15] or the SCALCE

[70], just use order-3 arithmetic coder to store the quality data in lossless

mode – their primary focus is on the lossy compression.

Lossy methods

Quality scores are the most difficult type of data to compress – they occupy

more than a half of the gzip-compressed file and contain a high degree

of noise [19]. Moreover, NGS data analysis applications rely on quality

scores in a heuristic manner [153], which puts in doubt the usefulness

of the currently used high resolution of values. Therefore, Illumina has

recently proposed a reduced quality scores resolution [80], by lowering the

Chapter 2. Storage of high-throughput sequencing data 66

Table 2.1: Illumina 8-level quality values bining scheme. The quality values
are in Phred scale. Source: [80]

Quality values range Mapped bin value

’N’ (no call) ’N’ (no call)
2−9 6

10−19 15
20−24 22
25−29 27
30−34 33
35−39 37
≥ 40 40

available quality scores range to only 8 values (or bins5). Such a quantiza-

tion already allows us to reduce the size of the gzip-compressed FASTQ file

by about 30% compared to one without quality bining. Moreover, Illumina

showed that such a quantization does not degrade the results variant call-

ing and can be considered as an upcoming standard. The new Illumina

instruments, such as Illumina HiSeq X sequencers, already output scores

in the binned form. Therefore, in order to store the FASTQ files in an effi-

cient way, the lossy compression of quality scores is becoming a must and

a number lossy compression methods have been investigated.

In [204] the authors state that quality scores are a result of an irreversible

quantization of some original (floating point) sequencing error probabili-

ties with |Σ| = 94 distinct values. Therefore, the quantization can be viewed

as the process of partitioning the probability [0,1] into Σ sub-intervals or

bins. Quality scores falling into the same bin share the same quantized

quality score. Therefore, under the above assumptions, the authors pro-

pose a number of different bining strategies and show how they affect the

sequence mapping accuracy. The most important scheme is the 8-level

bining, which is presented in Table 2.1. The above mentioned Illumina’s

reduced quality scores resolution is based on this scheme.

In SCALCE [70] the authors observed that when compressing quality scores,

for any basepair the quality values of its surrounding basepairs would be

either the same or within a small range of the current value. Therefore,

given an error threshold, they apply a lossy transformation of the values

5The scheme is sometimes also called as Illumina bining

67 2.1. Compression of raw reads in FASTQ format

and reduce the quality scores alphabet size. The goal is to reduce variabil-

ity among the quality scores in the proximity of local maxima up to the

threshold value, which helps to reduce the size of the output stream.

Fqzcomp [19] authors observed that quality scores of similar values tend

to be clustered in consecutive blocks. Therefore, as a lossy transforma-

tion, they propose to smooth the qualities within blocks to ensure that,

for each value, the difference from the original one is no more than the

given threshold. On the other hand, FQC [49] proposes 3 levels of lossy

transformations, with a predefined quality cutoff threshold and group size.

Each quality score below the cutoff is replaced by 0 value, whereas quality

scores above it are smoothed in groups.

To lossy compress quality scores, LEON [15] uses k-mer statistics com-

ing from the input dataset calculated during data preprocessing step. It

assumes that if the nucleotide bases are covered by a sufficient number

of solid k-mers (i.e., k-mers that occur more than a minimal number of

times in the dataset), they can be safely considered error-free and they

are assigned an arbitrary high quality value. A similar approach was also

explored by Janin et al. [82] where authors performed smoothing the val-

ues of the scores by computing the longest common prefix for the reads

using Burrows-Wheeler transformation. The authors of both projects also

show that performing a conservative lossy transformation of quality scores

has a minimal impact on the results of downstream analyses and it greatly

reduces the compressed file size.

QualComp [152] is a quality-only compressor. It utilizes techniques from

rate distortion theory and assumes that quality scores are generated by

multivariate Gaussian source. Given the user-provided maximum distor-

tion rate, QualComp tries to use an optimal number of bits to represent

scores. To do so, it tries to minimize the distortion of the values by minimiz-

ing the mean square error rate between original and transformed values. It

uses k-means algorithm [123] to cluster the qualities into groups for which

the mean square error is minimal. Finally, it applies a lossy transformation

to the quality values inside the clusters and encodes the values using an

arithmetic coder.

QVZ [126] is another quality-only compressor based on rate-distortion

theory. It assumes a positional correlation between the neighboring values

Chapter 2. Storage of high-throughput sequencing data 68

and models a sequence of consecutive quality scores as a Markov chain

of order 1. Firstly, for all the quality sequences in the input file (or inside

a block of a given size), it calculates the Markov model state transition

probabilities between the adjacent values. These transitions are in the

following step used to compute a list of quantizers (called a codebook) ,

indexed by the base position in the read. With the codebook ready, the

scores are transformed using a different quantizer per position. Finally,

the transformed scores are encoded using an arithmetic coder.

Quartz [217] is a recent quality-only compressor, which, similar to LEON,

utilizes pre-calculated k-mer statistics to correct the quality scores. How-

ever, in contrast to LEON, Quartz utilizes an external resource of k-mers

statistics. It counts k-mers (k = 32bp by default) in a given external set

of files, which will be later used as a dictionary while compressing a new

file. Such a dictionary can be generated once and used multiple times.

When compressing quality scores, Quartz firstly tries to identify all k-mers

present in the reads and within a small Hamming distance from the k-mers

present in the provided dictionary. Any quality value at a given position

that is consistent with at least one of the supporting k-mers is set as the

default (maximum) value, whereas the quality score that is divergent from

all supporting k-mers at a given position is kept intact. The authors show

that their approach only slightly affects the accuracy of downstream anal-

ysis and, in some cases, it may even improve the genotyping accuracy of

some selected pipelines.

2.2 Compression of mapped reads in SAM format

2.2.1 Context

Following its successful application in the 1000 Genomes Project [1], SAM

format became a de facto standard for the representation of information

about the sequence alignment (the data is stored usually in a compressed

BAM format as explained below). In general terms, information stored in

SAM format can be seen as a superset of the equivalent stored in FASTQ

format, where FASTQ reads are extended by information of their alignment

and with some optional information. Although the use-cases of FASTQ

and SAM formats are different, they share a number of similar methods to

compress the HTS data they represent.

69 2.2. Compression of mapped reads in SAM format

Analogously, as in the case of compressing raw FASTQ reads, to efficiently

compress SAM alignments, the content of the records fields can be split

into a number of separate streams. The streams can be then compressed

using possibly different compression methods. However, when compress-

ing SAM alignments, it is more practical to analyze the available compres-

sion solutions in terms of proposed methods covering different categories

of data. In general, four different categories of data can be distinguished:

query template names, sequence alignment data, quality scores and op-

tional fields. Therefore, different SAM format compressors use a set of

possibly different methods to compress these kinds of data.

However, in contrast to FASTQ files, the read order of the reads (align-

ments) stored in SAM files is important for practical reasons. The align-

ments are typically sorted according to their mapping position (and are

indexed), which allows for fast random access to alignments by specifying

the chromosome and the position within the query range. Hence, such

reordering of the reads may influence the efficiency of the methods used to

compress different categories of data, as compared to ones used in FASTQ

files compression.

Methods used to compress the alignment data can be divided into two

main categories, namely: non-reference-based and reference-based meth-

ods. The difference between them is whether or not the reference sequence

is used during compression and/or decompression stages. Similarly, as in

the case of analyzing compressors of FASTQ format, some advanced SAM

compressors can also utilize a mix of different compression techniques to

compress the sequence alignment data. Since the data represented in SAM

format can be seen as a superset of data represented in FASTQ format, SAM

compressors can also utilize previously described methods to compress

DNA sequences (as presented in Section 2.1.3). For example, a compressor

can assemble the sequences into contigs and then encode the alignments

with respect either to the provided reference sequences or self-built con-

tigs, depending on which option can provide a better compression result.

Nonetheless, SAM format compressors are usually analyzed in context

whether they use the reference sequence or not.

Considering methods to compress the query template names, the clas-

sification of the methods with the techniques used to compress them in

FASTQ format also apply here, hence, we won’t cover them in detail. The

Chapter 2. Storage of high-throughput sequencing data 70

description of the methods with their potential difficulties can be found in

Section 2.1.2. However, what is important, some of the methods used to

compress the read identifiers can be also applied to compress the optional

fields and we will cover these techniques in brief.

Similarly, as in the case of FASTQ files, in SAM files the quality scores tend

to be the most challenging kind of data to compress, occupying in the

lossless form the majority of space in the compressed archive [25, 71].

Most of the methods used to compress quality scores in FASTQ format can

be also used to compress them in SAM format, both in lossless and lossy

modes. The solutions have been described in detail in Section 2.1.4, hence,

we will only focus on the methods, which are specific to SAM format, i.e.,

the ones utilizing the alignment information to aid the compression.

As a side note, when compressing FASTQ files it is critical to preserve all

the DNA sequence data, agreeing only to apply a controlled degree of

information loss to either quality or read identifiers streams. However,

some SAM format compressors may not fully preserve all the data, not

only by lossily compressing quality scores or removing query template

names, but also, e.g., by discarding the optional fields of the alignments or

by completely discarding the unaligned reads.

2.2.2 BAM and CRAM formats

SAM content is normally represented in raw text format and, for practical

reasons, the data is typically stored in its compressed form – in Binary

Alignment/Map format (BAM). Storing alignment data in BAM format is

also currently considered as a de facto standard. The alignments inside

BAM file are packed into independent blocks which are compressed us-

ing Blocked GNU Zip Format (BGZF), a gzip-based compression method.

Some strong advantages of BGZF are random access and indexing, which

allow for selective decompression of blocks. Unfortunately, the alignment

data is stored in blocks as it is, i.e., the data from the fields is lumped alto-

gether and not decoupled. As a consequence, the compressed files exhibit

similar problems as gzip-compressed FASTQ files, where the compression

ratio is not impressive.

71 2.2. Compression of mapped reads in SAM format

Recently, however, CRAM6 format has started being adapted as a promi-

nent replacement of BAM format. A notable improvement is that the

alignment data can be stored using a reference-based encoding scheme,

greatly reducing the sequence data redundancy. Moreover, in CRAM for-

mat, in contrast to BAM, each field can be encoded separately as a data

stream. It is also possible to select a different codec per each data stream,

either from the built-in codecs or some external ones. The built-in codecs

include: binary encoding, Golomb encoding, Gamma coding, Huffman

coding. The external codecs may include: rANS [47], gzip or bzip2 and

possibly more. Therefore, a wide number of features supported by CRAM

format allows compressors using it to achieve a very good compression

ratio.

Support for CRAM format has been implemented as a part of HTSlib and

HTSjdk7 libraries, which are used for reading and writing high-throughput

sequencing data formats. These libraries are also used by most popular

tools in genomic data analysis such as SAMtools, GATK or Picard and com-

pression tools such as SCRAMBLE [18] and CRAMTools8. Therefore, apart

from significant improvements in compression ratio and with offering

data processing speed comparable to BAM, it provides a smooth transition

from the BAM format in the current genomic data analysis ecosystem. As

a side note, the initial implementation of CRAM format in CRAMTools was

not fully supporting lossless compression, i.e., the compressor was not

storing query template names and was dowsampling the quality scores.

Hence, its potential adoption in genomic data processing pipelines as a

replacement for BAM format has been very slow and cautious.

2.2.3 Compression of query template names

A query template name of SAM alignment is similar to the read identifier

field in FASTQ read9. Hence, the methods used to compress query tem-

plate names (with the present difficulties) are similar to the ones used to

compress FASTQ read identifiers. Analogously, they fall into two categories

– based on tokenization and differential encoding. However, the main dif-

6https://samtools.github.io/hts-specs/
7http://www.htslib.org
8http://www.ebi.ac.uk/ena/software/cram-toolkit
9The query template name field does not contain the initial ’@’ symbol present at the

beginning of the FASTQ read identifier field nor it can contain any comments.

https://samtools.github.io/hts-specs/
http://www.htslib.org
http://www.ebi.ac.uk/ena/software/cram-toolkit

Chapter 2. Storage of high-throughput sequencing data 72

ference between compressing this kind of data in FASTQ and SAM formats

lies in the fact that the reads are reordered according to their mapping

position, which differs from the one in original FASTQ file and which may

influence the compression. This is due to fact, that in original FASTQ

files, some fields present in the identifiers of the consecutive reads tend

to exhibit some sort of order (leading to a better compression), which is

not kept, when the reads are stored sorted by their sequence mapping

position.

Nonetheless, Quip [85], which is both FASTQ and SAM compressor, uti-

lizes the same tokenization method to compress this kind of data in

both formats. Similarly, Samcomp [19] utilizes read identifiers compres-

sion routines from Fqzcomp [19] to compress query template names.

Other tokenization-based compressors include SCRAMBLE [18], DeeZ

[71], whereas compressors utilizing differential encoding are SAMZIP [176],

NGC [162] and HUGO [114]. The principles behind tokenization-based

and differential-encoding-based methods have been described in Section

2.1.2.

2.2.4 Compression of alignment data

Non-reference-based approach

Methods falling into this category, do not use externally provided reference

sequences in order to compress the alignment data. Some solutions, how-

ever, may apply specific data remodeling techniques by transforming the

initial data representation into a different form prior to compression in or-

der to improve the compression ratio. Some may also skip encoding parts

of alignment data and to re-generate it while decompressing by analyzing

and combining data present in other fields.

SAMZIP [176] was one of the early solutions to compressing segment and

alignment data. It performs decoupling of the data from SAM fields and

encodes each field separately. To encode SEQ field, SAMZIP considers

only 4 DNA symbols and encodes them using 2 bits per base. For any

rare occurrences of the N symbols it stores their positions separately. The

alignment fields are encoded as follows. The FLAG, RNAME, MAPQ, PNEXT

and CIGAR fields are encoded using run-length encoding. As POS values

can span into large values and appear in an increasing order (in sorted SAM

73 2.2. Compression of mapped reads in SAM format

file) the values are delta encoded, and followed by run-length encoding.

To encode RNEXT it uses a mix of two methods – binary encoding (to

encode the frequent values of ’*’ and ’=’ symbols) and run-length encoding.

SAMZIP does not encode value of TLEN10. The produced output files

with possible unaligned reads (stored as they are) are compressed using

WinRAR. Such an approach already shows up as a significant improvement

in reducing the storage footprint – alignments compressed by SAMZIP can

occupy up to 40% less space than stored in BAM format.

To encode sequence data, Samcomp [19] utilizes FLAG, POS and CIGAR

fields to anchor each base to a virtual reference coordinate and then en-

codes the bases according to a calculated per-coordinate model. Then, as

more and more segments align to the virtual reference coordinates, the sta-

tistical model improves its accuracy and the data can be compressed more

efficiently. Optionally, Samcomp can use an external reference sequence to

seed the model’s initial probabilities. However, given the usually deep cov-

erage of the generated sequencing data, the model adapts itself well to the

DNA stream characteristics. This, on the other hand, manages to achieve

the encoding efficiency as close as when supplying an external reference

sequence. The remaining alignment fields are encoded using arithmetic

coders and using a different model per each field’s type. A similar ap-

proach is used by Quip [85], which is, however, strictly a reference-based

compressor, requiring the reference sequence to be present both when

compressing and decompressing the SAM files.

CSAM [25] proposes a method to store sequence data based on sequence

assembly principles. For a group of reads, it assembles from segments

a consensus sequence called a Presumed Reference Sequence (PRS). To

reduce the DNA alphabet size, it uses only standard 4 base symbols. Then,

while encoding the segments, the sequence is stored as differences relative

to PRS (as an alternative to the reference sequence, which is not present)

– either as a set of copy (match) or replace (followed by the replacement

symbol(s)) operations. The position is encoded differentially with respect

to the previous alignment’s position. Such transformed data with the

remaining fields and unmapped segments are stored in separate streams,

which are finally compressed using gzip.

NGC [162] introduces a more advanced alignments encoding. To store

10In the initial version of SAM format, this field was not yet present.

Chapter 2. Storage of high-throughput sequencing data 74

SEQ data it applies vertical differential run length encoding (VDRLE). The

process can be sketched as follows. Firstly, on a similar basis as CSAM,

NGC analyzes all the bases covering each genomic position and builds

the common consensus sequence. In the next step, it processes reads in

groups, but instead of encoding each segment separately (known also as a

horizontal approach), NGC encodes bases per each genomic position (a

vertical approach) as differences with respect to the built consensus se-

quence. As in the smajority of cases, there will be a high degree of matches,

the differences can be efficiently encoded using RLE. The remaining FLAG,

RNAME and MAPQ fields are encoded using RLE. POS and PNEXT values

are delta encoded with the resulting POS values further encoded by Golom-

b/Rice coder. CIGAR values are not directly stored and are re-generated

while decompressing the data (based on the VDRLE-encoded segment

data with the consensus metadata). Such transformed data with possi-

ble unaligned reads is compressed using a general purpose compressor,

namely, either gzip, bzip2 or LZMA-based one.

Reference-based approach

Having reads already mapped to the reference sequence, it can be more

practical to encode the alignments with respect to the reference in order to

further reduce the sequence data redundancy. Moreover, mappers usually

store the information about sequence matching results in the mandatory

SAM CIGAR and optional MD field, which allows downstream applications

to perform the variant analysis without looking at the reference sequence.

Having access to the reference, storing the variation information from

these fields can be either re-modeled into a more compact form or, possi-

bly, omitted and re-generated during decompression.

MZip [58] was the first11 proof-of-concept solution exploring reference-

based compression of SAM files. It encodes alignment data as follows.

It encodes alignment position with respect to the reference and relative

to the previous alignment using Golomb coding. Any information about

sequence differences with respect to the reference is stored as an offset

relative to the read’s anchor position along with the corresponding variants.

11Around the same time as MZip, SlimGene [93] was published, however, compressing
reads in (today deprecated) Illumina Export Format, which substantially differs from the
SAM format.

75 2.2. Compression of mapped reads in SAM format

These include: the variant type, the altered bases (in case of substitution or

insertion) or the length (deletion). Variants information is encoded using

special binary codes and Gamma code (for lengths). MZip also encodes in

a compact way read’s mate-pair information (if present), reducing further

data redundancy. In case there are unmapped segments in the SAM file,

MZip performs a de novo assembly on them. It tries to build possibly large

contigs, which will be later used as an alternative reference to encode the

unmapped segments. The compression of the remaining fields was not

supported by authors, since MZip was more a proof-of-concept solution

designed to showing potential storage savings by applying reference-based

compression. The ideas behind MZip were successfully implemented and

improved in CRAMTools, which also provided the initial implementation

of CRAM format. The format and the compression methods has gone

through a number of improvements since its initial release. For example,

SCRAMBLE [18], which implements CRAM format, makes it possible to

embed the reference sequence in the compressed archive, eliminating the

need to be explicitly provided during the decompression.

HUGO [114] is another reference-based solution, but offering remapping

of the reads and using multiple reference sequences. It introduces three

classes of mapped reads: the unmapped reads (UMR), the inexact mapped

with more than 4 mismatches (IMR) and the exact matched (EMR). For

the IMRs and UMRs, it splits the reads into two shorter ones, each time

splitting them in half of their length. Next, it tries to remap the reads to

different reference sequences using SOAP 3 [118] mapper. The resulting

EMRs are output for compression, whereas the remaining IMRs and UMRs

are further remapped. The remapping is performed iteratively until a

specified number of iterations has been reached or until the fraction of

the unmapped reads is below a given threshold. The resulting record

alignment fields are compressed using a mix of different codecs. FLAG,

MAPQ, TLEN are compressed using Huffman coding. POS and PNEXT

are differentially encoded with respect to the previous alignment followed

by Huffman coder. RNAME and RNEXT are compressed using RLE, and

CIGAR is compressed using LZW [206].

DeeZ [71] is a recently published SAM compressor achieving very high

compression ratios. Similarly, as the non-referential based solution CSAM,

it compresses alignments in blocks and constructs from the segments an

updated consensus sequence. In this way, variants present in alignments

Chapter 2. Storage of high-throughput sequencing data 76

are encoded only once in the consensus. Such an approach reduces the re-

quired amount of space to store variant data in a significant way. Moreover,

it simplifies the representation of CIGAR and MD fields or even eliminates

the need for storing them, as with respect to the updated consensus refer-

ence there may be no variant present in the alignments. The differences

between the built consensus sequence and the provided reference are

stored only once – it will be used to decompress the records. Such a trans-

formed alignment information with the other remaining fields is stored

in separate data streams, where each is compressed using gzip. Only the

alignment position is differentially encoded (with respect to the previous

alignment’s position) followed by an arithmetic coder.

2.2.5 Compression of quality scores

As mentioned previously, the majority of the methods used to compress

quality scores in FASTQ files, both in lossless and lossy modes, can be

also applied in case of SAM files. For example, considering the lossless

methods, Quip [85] compresses quality scores using the same method

both for SAM of FASTQ files. Other tools, such as Samcomp [19], DeeZ [71],

and SCRAMBLE [18] utilize quality compression methods derived from

Fqzcomp [19]. Considering lossy compression of quality scores, DeeZ [71],

for example, utilizes the lossy scheme derived from SCALCE [70], whereas

CSAM [25] proposes a strategy similar to the one offered by Fqzcomp [19].

Moreover, RQS [216], although being a quality-only compressor, is based

on the same method as proposed by Quartz [217]. Finally, some solutions,

such as QualComp [152] and QVZ [126] are format-independent and can

be applied both to compress quality scores present in FASTQ and SAM files.

The principles behind the above mentioned methods have been described

in detail in Section 2.1.4.

Regarding the compression methods specific to SAM format, an interesting

approach to compressing quality scores was presented in MZip [58], where

the authors proposed to support only partial storage of the quality values.

Instead of storing quality scores individually per each read (known also

as a horizontal mode), they encode sequences of quality scores per each

genomic position, encoding them in a vertical mode. Primarily, quality

scores are stored at the positions where the corresponding bases show

difference with respect to the reference sequence. When the bases match

77 2.2. Compression of mapped reads in SAM format

the reference sequence, only a user-defined small percentage of quality

scores per matching position is kept. Such transformed qualities are en-

coded using Huffman coding, encoding them in runs column by column

(as per position in the genome). This technique was later implemented

in CRAMTools and extended to allow selective compression of quality

scores, e.g., by applying different compression schemes depending on the

variation type or the calculated base coverage. Moreover, in the current

version of CRAMTools (and SCRAMBLE [18]) the 8-level quality scores

bining scheme proposed by Illumina [80] has been added as one of the

lossy transformation methods.

NGC [162] proposes a similar approach as MZip and introduces four cat-

egories for compressing quality scores. The category selection depends

on whether at a given position (in genomic coordinates) all the bases (or

only a part of them) in segments match the reference sequence and if

not – whether the variant at that position suggests a multiallelic region.

NGC then applies different quantization of the quality value depending

on the selected category. After quantization, the values are encoded either

independently per alignment (the horizontal mode) or per-position (the

vertical mode). In the second case, NGC uses vertical run-length encoding

(VRLE), which provides a significantly better compression ratio than when

encoding quality values per alignment. The final output is compressed

using one of the general purpose compressors, such as gzip, bzip2 or a

LZMA-based one.

Compression of optional fields

Regarding the compression of the optional fields, as mentioned in Section

1.1.3, in SAM format they are represented as a tab-separated collection

of fields, where each is represented as a triplet in form TAG:TYPE:VALUE.

Therefore, the methods to compress the query template names can be also

applied to compress the optional fields.

A good example here is Quip, which utilizes the same compression meth-

ods both to compress query template names and optional fields. It applies

tokenization on optional fields and encodes the values using a different

statistical model per each type of field. Then, it encodes the values using an

arithmetic coder with the field tag identifier serving as an additional con-

text. In a similar way, Samcomp [19] utilizes read identifiers compression

Chapter 2. Storage of high-throughput sequencing data 78

routines from Fqzcomp [19] to compress the optional fields.

SAMZIP [176] performs tokenization of the fields and encodes only the

field’s tag and type information using Huffman coding, storing its value

as it is. Then, it compresses the encoded fields using a general purpose

compressor WinRAR. On the other hand, NGC [162] performs run-length

encoding over a number of optional fields, compressing the encoded data

using gzip, bzip2 or a LZMA-based compressor.

DeeZ [71] proposes a more sophisticated way to compress the optional

fields. It tokenizes the fields and stores together the values denoted by

the same tag identifier and the same type in different streams. In this

way, each stream stores the values of homogeneous type with the values

sharing possibly the same characteristics. All the resulting streams are

then compressed using gzip or bzip2. On a similar basis, SCRAMBLE [18],

tokenizes all the fields and stores the values in separate streams, but offers

more advanced encoding methods. For example, while encoding fields

containing read group names or fields containing auxiliary quality scores

(denoted by different tags), SCRAMBLE can apply a different encoding

scheme best suited for the field’s data characteristics. The final streams

compression stage is performed either by applying a general purpose

compressor like gzip or bzip2 or by using an rANS entropy coder with

some custom model.

2.3 Alternative HTS data storage solutions

2.3.1 MonetDB – a column-oriented database

A database is an organized collection of data, which allows for easy access

to, management of, updates of and queries on the data. In computing,

a database is a collection of schemas, tables, queries, reports, views and

other objects. The schema defines the structure of the database in a formal

language. The schema is supported by a database management system

(DBMS), which includes definition of tables, fields, types, relationships

between the objects, etc. The table is a collection of related data and is

represented in a structured format consisting of columns and rows. The

row is the single information item in the database. The information stored

in the database is usually organized in a way to model aspects of reality or

79 2.3. Alternative HTS data storage solutions

a specific use-case.

Databases can have a row-oriented (horizontal) or column-oriented (verti-

cal) architecture. The most general difference between these two (from the

data storage point of view) is as follows. The column-oriented database

vertically partitions the database into a collection of individual columns

which are stored separately. The row-oriented database stores the data

compacted as tables. This internal architectural property has a direct im-

pact on performance. The column-based systems enable queries to read

just the attributes they need rather than having to read the entire rows

from the disk and discard unneeded data once they have been loaded into

memory [4]. Analogously, column-oriented databases have many opportu-

nities to reduce storage space by applying compression on the data stored

in columns, since the data type of the values in the same column is usually

uniform.

Compared to the genomic data representation and storage – popular flat

file formats keep the data stored record-wise, where each record consists

of a number of separated fields. Therefore, the data can be easily decom-

posed into a number of separate streams or columns, which store the

data of homogeneous types. This property of genomic data is frequently

exploited by format-specific compressors and can be a great fit for column-

oriented databases. Moreover, since the data stored inside a database

could be modeled in a more intuitive and descriptive way, storing the

genomic data in a column-oriented database may allow us to perform

advanced queries on the data, which is impossible to achieve by using

format-specific tools.

As an example, in [30] the authors used column-oriented DBMS MonetDB

[78] as a proof of-concept to store and analyze the sequenced genome of

the Ebola virus. By using MonetDB to store alignment data, the authors

were able to perform advanced queries on the data mimicking a selected

set of functionalities provided in SAMTools. Moreover, they could import

into a single database multiple SAM/BAM files, each represented as a

separate set of tables. Such a method allowed them to perform a joint

analysis of the datasets.

Since the data stored inside a database could be modeled in a more de-

scriptive way, the authors proposed two different schemas to store and

Chapter 2. Storage of high-throughput sequencing data 80

represent SAM record. The first schema, called Sequential storage schema,

is a straightforward mapping of the alignments fields in SAM format to

their respective columns in the database table. The alignments are stored

in two tables. The first one stores the content from alignment mandatory

fields, whereas the second one – the optional fields. Such representation is,

however, cumbersome for sequence analysis using paired-end sequencing

data (which is the most common case), as the alignment pairs reconstruc-

tion needs to be performed per each analysis, which is a computationally

expensive task. Therefore, the authors also introduced the second schema

– Pairwise storage schema. With this schema, primary and secondary align-

ment pairs are explicitly stored in separate tables, which allows for a more

efficient query execution. In addition, unpaired alignments are stored in a

separate table. The optional fields are stored as in the case of sequential

storage schema.

Since MonetDB focuses on providing a fast performance speed for data

analysis, it physically stores the data in the same way both in-memory and

on disk. Therefore, it implements only minimal compression on the data.

It optimizes the columnar representation of the data and tries to represent

it as a dense array. It also encoding the string data using a dictionary

encoding. This approach has significant advantages versus row-oriented

databases, in which empty attributes usually need to be explicitly stored.

However, in the case of storing large volumes of genomic data, such an

approach may not be efficient. Storing BAM files in a MonetDB database

has unfortunately a significant overhead [46] versus storing it in BAM

format – it requires at least 3-4 times the storage space of the BAM file

itself.

2.3.2 cSRA format

Sequence Read Archive (SRA) is a large bioinformatics database, which

provides an open public repository for DNA sequencing data. It is a part of

the International Nucleotide Sequence Database Collaboration (INSDC),

and is run as a collaboration between the NCBI, the European Bioinfor-

matics Institute (EBI), and the DNA Data Bank of Japan (DDBJ). Its focus

is on efficient archival and distribution of sequencing data, especially on

short reads data generated by high-throughput sequencing platforms. The

majority of the data stored in the repository comes from human or human-

81 2.3. Alternative HTS data storage solutions

related sequencing projects, such as the 1000 Genomes Project [1] and

the Human Microbiome Project [159]. In order to support submission of

data in multiple formats (some of which can be machine-specific) and

efficient distribution of the archived data a special internal data format

was developed.

The SRA format [103] (further replaced by cSRA) is a special column-

oriented data format designed with column-oriented databases in mind.

It allows for efficient storage of genomic data (as submitted in FASTQ or

SAM format) by decoupling the content in the record fields and encoding

the data column-wise. Therefore, it allows for accessing a reduced set of

columns and removal of individual columns in the file. Additionally, in

cSRA the genomic data format is defined by a special and flexible schema.

SRA Toolkit12 is a set of utilities supporting cSRA format and providing

API to store and access genomic data of different types. The primary use

of a SRA Toolkit is submission of the data to an SRA archive. However,

local storage of the data is also possible. Storing genomic file of a speci-

fied format into a cSRA archive involves a number of data preprocessing

steps 13. Firstly, the input file is parsed by a format-specific parser and the

records’ content is split into a number of separate (input) columns. Next,

the values in the input columns follow a number of data transformations

to possibly simplify the initial representation and/or to reduce the number

of output columns required to represent and store the transformed data.

The columnar data are encoded and serialized to a disk. The content is

distributed into a number of different directories (representing the hierar-

chical data structure) and files (representing the columns) with additional

meta-information and indexing files. Such data structure can be further

compressed into a single cSRA archive file to enable efficient sharing of

the content. To decompress the content, selected columns in the archive

are deserialized, followed by decoding and data transformation steps. The

decoded output will match the format of the input data as specified in the

schema. In addition, while creating the archive, SRA Toolkit allows one

to include a set of useful meta-information to accompany the data. For

example, tracking information about the used reference sequences, which

can be downloaded during the decompression or which can be accessed

12https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc
13Described in https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=doc

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=doc

Chapter 2. Storage of high-throughput sequencing data 82

directly while residing in the local filesystem.

When storing DNA sequencing data, it is recommended to store them in

the aligned form. An SRA Toolkit provides an efficient way to store SAM

files, by exploiting reference-based compression. Moreover, it can store

only the sequence variants with respect to the used references, greatly

reducing the sequence data redundancy. SRA Toolkit also provides an

option to compress the input data with a controlled degree of informa-

tion loss. Some lossy approaches include removing the data from read

identifiers, performing lossy compression of quality scores or eliminating

the unaligned reads. As a good use-case example, SRA archives hold the

compressed data from the 1000 Genomes Project. The initial size of the

aligned files in BAM format required 250 TB of disk space to store. However,

by applying semi-lossless compression the required storage size was re-

duced to 85 TB. The operations included stripping off selected information

from query template names (and saving them as unique integers) and per-

forming 40-level read qualities binning using recalibrated quality scores.

Furthermore, by applying a 8-level binning (as proposed by Illumina) and

uniform binning of recalibrated quality scores, the overall size has been

reduced to 30 TB, being 12% of the original BAM. By contrast, the variant

calling analysis results stored in compressed VCF format occupy 0.1 TB.

2.3.3 HDF5 format

HDF514 [57] is a technology framework consisting of a data model, a li-

brary and a file format for storing and managing data. It supports a variety

of different data formats and data types and is designed for efficient I/O

operations for high-volume and complex data. The (possibly complex)

data format can be defined by a user by using a set of provided basic HDF5

data types. Moreover, HDF5 allows one to define additional operations

(called filters) to be performed on the data during I/O operations. For ex-

ample, such as applying compression filters, which include ZLIB15 (upon

which gzip is based) or SZIP16. Finally, HDF5 is a mature technology with

multiple wrappers and bindings available in different programming lan-

guages (such as C, C++, Java, Python, R) and is supported by large scientific

14http://www.hdfgroup.org/HDF5
15http://www.zlib.net/
16http://www.compressconsult.com/szip/

http://www.hdfgroup.org/HDF5
http://www.zlib.net/
http://www.compressconsult.com/szip/

83 2.3. Alternative HTS data storage solutions

applications (such as MATLAB).

Data stored in HDF5 format is treated as HDF5 information set and is rep-

resented as a single HDF5 file. Each information set is a container holding

annotated associations of array variables, groups and types and with a

designated root inside. Each item contained in HDF5 format is an HDF5

information item. Inside the information set, the annotated associations

define HDF5 datasets, HDF5 groups, HDF5 links and custom HDF5 data

objects with optional annotations – HDF5 attributes. HDF5 datasets are

array variables of homogeneous data type. They are logically shaped in a

multidimensional array, which is defined by its rank (number of dimen-

sions), along with the current and maximum extent of their respective

dimensions. The array elements can be either of HDF5 predefined data

type or custom HDF5 object type. HDF5 object type is a user-defined

complex data type, composed from HDF5 data types. The available types

include: integer, floating-point, string, bit-field, opaque (data type whose

concrete data structure is not defined), compound, reference, enumera-

tion, variable-length sequence and array. HDF5 groups represent a similar

concept as directories present in file systems and define an association

between zero or more HDF5 information items. Analogously, HDF5 links

allow destination referencing between HDF5 information items residing

inside HDF5 file. Finally, HDF5 attributes allow annotation of individual

HDF5 datasets, groups and datatype objects with extra meta-data.

Typical applications of HDF format are found in research areas generating

and operating on large volumes of multi-dimensional data. As an example,

NASA adopted HDF5 format to support the NASA Earth Observing System

(EOS) 17 [88] science data. Similarly, in bioinformatics, to efficiently deal

with large volumes of genomic data a BioHDF5 [135] format was developed

as an alternative to SAM/BAM format. It proposes storing multiple files

inside one container, such as SAM/BAM files, optionally with their corre-

sponding reference sequence files. The data inside a container are divided

into three groups. All the DNA sequence data are stored in sequences group

as a table with bases represented as columns and reads represented as

rows. Reference sequences – stored in references group – are represented as

very large concatenated character strings with an index to access individ-

ual sequences. Alignment descriptions – stored in alignments group – are

17https://earthdata.nasa.gov/standards/hdf-eos5

https://earthdata.nasa.gov/standards/hdf-eos5

Chapter 2. Storage of high-throughput sequencing data 84

stored decomposed into a number of separate subgroups, corresponding

to the fields names. Such decomposition allows for selective access to

the contained data. The representation of the data is further compressed

using standard HDF5 library lightweight compression filters such as ZLIB

or SZIP.

Unfortunately, BioHDF5, although providing a very flexible approach for

storing and representing the data of any format, introduces a significant

overhead for representing the alignment data. The compressed size and

compression performance is inferior compared to BAM format. The stored

alignments occupy more space than compressed BAM files with longer

compression (import to HDF5 container) and decompression (export from

HDF5 to SAM file) times.

Another solution based on HDF5 format is SeqDB [75] – it uses HDF5 to

store and compress FASTQ files. SeqDB packs both sequence and quality

data together into one byte and compresses them using an external filter

BloscLZ18. Read identifiers are compressed also using BlockLZ. In this way,

SeqDB provides very high compression and decompression throughput,

but at the cost of low compression ratio compared to the commonly used

gzip.

2.3.4 GOBY – a data management framework and data format

Goby [24] is a genomic data management framework designed to facili-

tate the implementations of efficient genomic data analysis pipelines. It

provides an efficient storage of FASTQ and SAM files (with the focus on

the latter) using its own format, where the input genomic file format is

defined in special schema. Such an approach already allowed for the inte-

gration of the Goby framework with such third-party tools as the sequence

aligner BWA [110], the interactive data visualization tool IGV [173], the

data analysis and management platform GobyWeb[45] and more.

Genomic data formats (FASTQ and SAM) in Goby are represented using

Protocol Buffers19. Protocol Buffers is a data interchange format devel-

oped at Google, which is a language-neutral, platform-neutral, flexible

mechanism for serializing structured data (stored as messages) and which

18http://www.blosc.org/
19https://developers.google.com/protocol-buffers/

http://www.blosc.org/
https://developers.google.com/protocol-buffers/

85 2.3. Alternative HTS data storage solutions

automatizes reading and writing of the data. The record type (called as

message) is defined using a domain-specific Protocol Buffers Interface De-

scription Language. By using Protocol Buffers and by providing an explicit

definition of the message type, Goby eliminates the need for implement-

ing manual parsing and serialization mechanisms of the message data

type. Moreover, in order to support storing large datasets (as present in

genomics), the authors extended the Protocol Buffers message storage

back-end by introducing Goby Large Collection Storage Protocol (GLCSP).

GLCSP allows one to store collections of serialized messages by Protocol

Buffers compacted in blocks of specified size. Additionally, GLCSP pro-

vides functionality for random access, which is performed on a per-block

basis.

Goby provides a set of 4 different compression techniques to compress

the data packed inside blocks. In the separate field encoding technique

the message’s content is decoupled and the fields of the same type are

compressed together. The field modeling technique allows for expression

of the value of one field as a function of other fields and constants, re-

ducing the data overhead. The template compression technique detects

whether a subset of the message (the template) repeats in the currently

processed block. Then, it stores the template with the number of its repe-

tition – a similar technique to run-length-encoding. Finally, the domain

modeling technique allows for advanced representation of the message in

compressed blocks by, e.g., replacing the message’s selected content with

links pointing to a different message sharing the same content. In this way,

when decoding a message, previously decoded messages can be used to

re-generate “on-the-fly” some of the current message’s content.

Apart from compression techniques, a set of compression codecs have

been implemented to compress the data. A general purpose gzip or bzip2

codec can be used to compress the data serialized directly by Protocol

Buffers in blocks. The authors also implemented a specialized Hybrid

Codec designed for compressing alignments, where each field is encoded

separately which works as follows. Firstly, string values and floating point

values are converted into lists of integer values. Then, the values are ana-

lyzed to create statistics per each field. Depending on the results, optional

data transformations are applied on the fields, e.g., run-length encoding.

The output is encoded using one of the implemented codecs, such as an

arithmetic coder or minimal binary encoder (i.e., using minimum num-

Chapter 2. Storage of high-throughput sequencing data 86

ber of bits per symbol). Compressed streams are stored in a set of files,

which are classified in Tiers. Following, files storing information from raw

reads (FASTQ) can be classified as Tier I. Sorted and indexed alignment

files (SAM) can be stored in another set of files classified as Tier II. More-

over, data stored in Tier II can be directly linked with the data stored in

Tier I, which allows for the possible reduction of data redundancy when

storing both SAM (aligned) and FASTQ (unaligned) files in a traditional

file-oriented way. Unfortunately, due to complex architecture and differ-

ent internal record representation of SAM alignment (and FASTQ read),

the offered data processing speed is relatively slow (e.g., the resources are

spent on format transcoding), hence, limiting its practical usage or as a

possible replacement of BAM format.

2.3.5 ADAM – a cloud-oriented genomic data processing ecosys-
tem

ADAM [136, 150] defines an alternative approach with respect to classical

pipelines. It usually consists of a set of applications run sequentially and

which uses different intermediate file formats for storing and exchang-

ing the data. ADAM is an open-source programming framework, a set

of application programming interfaces (APIs), and a set of data formats

for genomic data processing in the cloud primarily focused on efficient

data processing and scalability. It has been built on top of open-source

Apache Spark [218] and Apache Hadoop [208] big data processing frame-

works, which allow one to perform distributed computations on the data.

Additionally, it provides a custom data format with the focus on data in-

teroperability between different genomic data processing applications.

Sample applications which have been developed on top of ADAM are

variant caller Avocado [149] and Mango20 – a scalable genome browser.

To achieve interopability between different applications ADAM utilizes a

set of open-source solutions such as Apache Avro21 and Apache Parquet22.

Apache Avro is a data serialization system which is also used to define

genomic data formats (similar to Google Protocol Buffers, used by Goby).

Apache Parquet is a columnar data storage format, which shares underly-

20https://github.com/bigdatagenomics/mango
21https://avro.apache.org/
22https://parquet.apache.org/

https://github.com/bigdatagenomics/mango
https://avro.apache.org/
https://parquet.apache.org/

87 2.4. Storage and compression of long-reads data

ing ideas with column-oriented databases. It allows the data to be stored

as a single file or as a distributed one, i.e., one large file partitioned into

multiple smaller chunks, each stored on different nodes in the network

distributed filesystem (such as Hadoop Distributed File System (HDFS)).

Since the Apache Parquet format is mostly focused on providing rapid

data access for performing efficient analyses over the data, it implements

only some lightweight encoding schemes, such as run-length encoding

or differential encoding. It also provides some lightweight compression

codecs, such as gzip and Snappy23. Thanks to such decisions, different

genomic record types can be easily defined in ADAM and stored in the

filesystem without the need for developing specialized tools to handle

different file formats.

As proof-of-concept, an implementation of SAM format in ADAM allowed

to achieve resulting output files up to 25% smaller than their correspond-

ing representation in BAM format. The reduction in data storage size

seems promising, however, the main obstacle of ADAM is that it is heavily

dependent on Hadoop ecosystem and its computational and data stor-

age architecture. Therefore, its integration with current genomic data

processing workflows can be very difficult.

2.4 Storage and compression of long-reads data

2.4.1 Context

The third generation single-molecule sequencing platforms can output

reads in length of tens of kilobases (and more). The technology, potentially,

allows for a lot of opportunities for discovering large structural variations

present in genomes, which are very difficult or impossible to assess when

using short reads. However, single-molecule sequencing technologies

are still in development and the accuracy of generated long sequencing

reads data is still inferior compared with the ones generated by second-

generation short reads platforms (see Table 1.1 for the comparison be-

tween different platforms). With the continuous improvements of sequenc-

ing technology, base calling algorithms and chemistry, the format and the

content of generated sequencing data is also susceptible to changes.

23http://google.github.io/snappy/

http://google.github.io/snappy/

Chapter 2. Storage of high-throughput sequencing data 88

Currently, TGS reads are accompanied by auxiliary data (such as raw sig-

nal data) and meta-information (such as information related to a used

instrument), which can be helpful to analyze and possibly correct the

sequencing errors and to improve the accuracy of the analyses. It is clear

that FASTQ format capabilities with respect to storing auxiliary data and

meta-information are very limited. Therefore, a constantly improving tech-

nology requires a special, resilient format for storing the raw data coming

from sequencers. In the case of Pacific Biosciences and Oxford Nanopore

Technologies, which are the leading third generation sequencing platforms,

the sequencing data are stored in HDF5 format. HDF5 format provides

a high degree of flexibility and allows for easy incorporation of heteroge-

neous data with the DNA reads. Such a decision also requires adopting

existing applications and data processing pipelines to be able to work with

the new format or it requires developing converters to existing formats

(such as FASTQ or SAM) which will always have a controlled degree of

information loss.

Moreover, data compression techniques, which have been successfully

applied to short-reads data, may not provide satisfactory compression

results when applied to long-reads data generated by third generation

sequencing platforms. First of all, the primary application of TGS data

is in de novo sequence assembly experiments rather than re-sequencing.

The data generated by TGS platforms is also characterized by a consid-

erably lower coverage than the short-reads data, as the reads can span

over longer genomic regions and fewer are required to be sequenced (see

Eqn. 1.1 and 1.2 for the relation between the genome length, the length

of the reads and required number of reads to be sequenced to adequately

cover the genome). Hence, for example, the read-reordering techniques,

used when compressing raw FASTQ files aiming to exploit the high redun-

dancy present in short DNA sequences, may not be a good choice here.

In addition, compared to the data generated by NGS platforms, the TGS

data is characterized by a significantly higher degree of noise, primarily

due to sequencing errors. As a consequence, the majority of the space is

occupied by the auxiliary data, which can be used to possibly improve the

quality of the obtained DNA sequences. Therefore, the commonly used

short-reads sequence matching, mapping, assembly and compression

methods would require significant modifications in order to be efficiently

applied to long-reads data.

89 2.4. Storage and compression of long-reads data

2.4.2 Pacific Biosciences platform

Data generated by Pacific Biosciences sequencers are stored in a set of

HDF5 files – one main bas.h5 and three bax.h5 files [156]. Inside each of

them, the data layout is structured in a hierarchical way, which allows for a

comprehensive and consistent representation of the data produced by a

sequencer. The main file is primarily used as an index file and contains

mapping information necessary to access the data generated by each

ZMW well (see Section 1.1.2), which are stored in bax.h5 files. These

contain raw sequencing data such as signal pulses classified by a base

caller with their timestamps (called events), probabilities of base calling

errors, probabilities of INDELs occurrences, or whether the read passed

filtering, etc. In addition to the events data, these files contain technical

information about the sequencer such as ZMW wells parameters, change

of their state in time, their associated metrics and others. As the format is

constantly evolving, no specific compression methods have been defined

– the data inside HDF5 containers are stored using default HDF5 format

settings.

Since the initial release of the first PacBio RS I sequencer in 2010, the

platform, available chemistry and protocols have undergone a significant

number of improvements, reaching as of 2017 a high level of maturity.

A large number of bioinformatics tools to perform data processing and

analysis have been developed by Pacific Biosciences24 and published as

open-source. This step helped a wider adoption of the platform and al-

lowed for development of novel methods for working with long reads

data. Moreover, specific extensions for PacBio-generated data have been

added to SAM/BAM format specification. As a result, long reads data (both

mapped and unmapped) can be converted to SAM alignments represen-

tation, but at the cost of stripping a large amount of auxiliary data. Such

a move allows long reads to be potentially used with pipelines and tools,

which primarily work only with SAM format as an input.

2.4.3 Oxford Nanopore Technology platform

Similarly, as in the approach taken by Pacific Biosciences, data generated

by Oxford Nanopore Technology sequencers are stored as a set of files

24http://pacbiodevnet.com/

http://pacbiodevnet.com/

Chapter 2. Storage of high-throughput sequencing data 90

in HDF5 format, namely – FAST5 format and with corresponding .fast5

file extension. However, the main difference is that one FAST5 file stores

the data from only one sequenced DNA molecule. Therefore, a huge

number of files will be produced by each sequencing run, where the total

amount of files can vary from thousands to millions of files and depends

on the number of sequenced DNA molecules. Such an approach allows

for instant and continuous analysis of the data while sequencing, and

continuously updating the analysis results once the new molecules have

been sequenced. This also has a direct impact on how the sequencing data

is represented internally.

In case of FAST5 format, the raw sequencing data stored inside the files are

also structured in a hierarchical way, following the same schema, which

allows for a comprehensive representation of the data coming from se-

quencing experiments. The raw sequencing data primarily consists of a

time-series of nanopore translocations (events) with its corresponding

detected signal strength and nucleotide probabilities. Depending on the

experiment setup, the FAST5 files may also include the results from the

base caller both for 1D and 2D configurations (see Section 1.1.2) with ad-

ditional post-processing information and summary. Moreover, since the

generated data can be directly processed in the cloud, in order to help with

identification of the reads and coordination of the analysis, each FAST5 file

contains unique tracking information of the read, the originating pore, the

instrument and information about the used pipeline (with tools). There-

fore, a large degree of meta-information is shared between reads coming

from the same experiment.

The Oxford Nanopore Technology platform and available chemistry are

still in their infancy, but are constantly being improved. This directly

affects the data storage format, which is subject to change with the possi-

bility of introducing improved chemistry or pore technology. Despite the

difficulties around format, a number of bioinformatics tools have been

developed to support the analysis of the produced data. Moreover, in

order to overcome challenges with constantly evolving formats, a number

of “wrapper” tools have been developed, which allow conversion from

reads stored in FAST5 to FASTA or FASTQ, such as poretools [121]. This

allows for further adoption of the long reads produced by Oxford Nanopore

Technologies by a broader range of bioinformatic tools and pipelines.

OBJECTIVES

Sequencing technologies are continuously improving. Year after year the

offered throughput greatly increases, while operational costs become pro-

gressively smaller. As has been shown in Chapter 1, efficient storage and

processing of genomic information poses a lot of challenges. Data can

be generated by multiple technologies, and its typical size ranges from

tens to hundreds of gigabytes per single sequencing experiment. More-

over, downstream analysis generates multiple, large intermediate files that

have different data formats. Therefore pipelines processing genomic data

are very I/O intensive, which is currently one of the major computational

bottlenecks of analyses. Apart from difficulties in processing such large vol-

umes of data, efficiently sharing and querying data sets that are hundreds

of gigabytes in size, or several terabytes, is even more challenging.

As a result, as described in Chapter 2, a number of compression meth-

ods to store data in both FASTQ and SAM format have been developed.

Unfortunately the majority of compressors developed so far focus on max-

imizing the compression ratio and do not pay attention to the speed of

data processing or reliability, which limits their practical usability within

pipelines for genomic applications. In addition, the majority of raw or

aligned data is still stored in gzip-compressed form (for files in FASTQ

files) or using the gzip-based BZGF compression method (for files in BAM

format), which do not provide satisfactory compression results.

Therefore, the research presented in this thesis focuses on methods for

efficiently compressing and storing the data generated by high-throughput

sequencing technologies. Not only would such methods be easier to in-

corporate into current genomic data analysis pipelines; they would also

potentially eliminate the efficiency bottlenecks present in such pipelines,

and enable a more effective sharing of HTS data.

91

Objectives 92

In particular, our main objectives have been:

1. As a starting point, explore genomic data compression methods and

develop a general, high-performance compressor for FASTQ files,

which can serve as a good alternative to the most commonly used

gzip.

2. Explore and develop methods allowing researchers to efficiently

compress short-read data generated by sequencing experiments,

especially those having high coverage. Such methods should exploit

the significant sequence redundancy present in the data, provid-

ing a high compression ratio without using any external reference

sequences.

3. Design and develop a flexible, configurable and format-independent

solution which enables efficient storage and retrieval of genomic

data no matter how the latter has been originally stored. It should

be possible to use the solution as a replacement for any specific ge-

nomic file format and to perform simple queries on the compressed

data, allowing the user to easily prototype new compression meth-

ods suitable for HTS information. As a proof of concept, the solution

should be able to generate a range of different compressors for short-

read data, be it originally represented either as raw reads in FASTQ

format or alignments in SAM format.

4. Finally, briefly explore approaches allowing one to perform lossy

compression of HTS data, in order to achieve additional savings in

the amount of storage required. Information loss should happen in

a controlled way, preserving the quality of the biological results that

can be obtained from the data.

CHAPTER 3

RESULTS

In this chapter we will present results of the solutions for compressing and

storing HTS data, which we developed during our research. They cover a

broad range of use-cases for genomic data storage and were extensively

tested, by comparing them with the state-of-the-art techniques, which

were presented in Chapter 2.

Firstly, we will present DSRC2 [174], a general, high-performance FASTQ

format compressor. It is based on the ideas of the previously published

DSRC [42] compressor, implementing a number of improvements and

novel compression methods.

Because of the limitations of the general methods used to compress the

short-read datasets at high coverage; we will then shift our attention to

a different approach. We will present ORCOM [66], a proof-of-concept

DNA-only compressor for short-read data, which focuses on providing

a maximum compression ratio of short DNA reads. It uses a novel read

reordering method, which aims to exploit high DNA sequence redundancy

present in the datasets coming from deep sequencing experiments.

In the next step, we will present FaStore, a full FASTQ format compres-

sor based on the ideas presented in ORCOM and DSRC2. It extends the

DNA compression method of ORCOM, by introducing additional reads

reordering steps and by applying a sequence-assembly step in order to

further improve the DNA compression ratio. Moreover, it also provides

a set of different compression methods for storing read identifiers and

quality scores in a lossy way.

Then, in contrast to specialized format-specific solutions, we will present

CARGO [175], a framework and data format that allows one to semi-auto-

93

Chapter 3. Results 94

matically generate compressors that are not tied to any specific HTS data

format. This allows for fast prototyping of HTS data storage solutions,

where the record data type along with possible additional data parsing,

transformation and querying operations are defined by the user. Moreover,

all the datasets of heterogeneous types are stored in a compressed form in

configurable CARGO containers.

Thorough our research we have been comparing our methods with those

others of constantly improving state-of-the-art and using different input

datasets. Therefore, in the next step, we will briefly compare compres-

sion results obtained by all our specialized (DSRC2, FASTORE) and semi-

automatically generated (CARGO-based) compressors, while at the same

time comparing them to the current state-of-the-art and using a concise

input dataset.

Finally, all the developed solutions along with their compression results

will be discussed in Chapter 4, which also provides a look at some novel

approaches and future directions.

95 3.1. DSRC2 – Industry-oriented compression of FASTQ files

3.1 DSRC2 – Industry-oriented compression of FASTQ

files

Roguski L, Deorowicz S. DSRC 2--Industry-oriented
compression of FASTQ files. Bioinformatics. 2014 Aug
1;30(15):2213–5. DOI: 10.1093/bioinformatics/btu208

https://academic.oup.com/bioinformatics/article/30/15/2213/2391485?searchresult=1

99
3.2. ORCOM – Disk-based compression of data from genome

sequencing

3.2 ORCOM – Disk-based compression of data from

genome sequencing

Grabowski S, Deorowicz S, Roguski Ł. Disk-based compression
of data from genome sequencing. Bioinformatics. 2015 May
1;31(9):1389–95. DOI: 10.1093/bioinformatics/btu844

https://academic.oup.com/bioinformatics/article/31/9/1389/200464?searchresult=1

107
3.3. FaStore – A space-saving solution for long-term storing of raw

sequencing data

3.3 FaStore – A space-saving solution for long-term stor-

ing of raw sequencing data

Roguski Ł, Ochoa I, Hernaez M, Deorowicz S. FaStore – A space-saving

solution for long-term storing of raw sequencing data.

(Manuscript in preparation)

FaStore – A space-saving solution for long-term storing of raw

sequencing data

Łukasz Roguski1,2 Idoia Ochoa3 Mikel Hernaez4 Sebastian Deorowicz5

Abstract

The affordability of DNA sequencing has led to producing unprecedented volumes of raw sequenc-

ing data. These data must be stored, processed, and transmitted, which poses significant challenges.

To facilitate this effort, we introduce FaStore, a specialized compressor for FASTQ files. The proposed

algorithm does not use any reference sequences for compression, and permits the user to choose from

several lossy modes to improve the overall compression ratio, depending on the needs. We demonstrate

through extensive simulations that FaStore achieves a significant improvement in compression ratio

than that of previously proposed algorithms for this task. In addition, we perform an analysis of the

effect that the different lossy modes have on variant calling, the most widely used application for clin-

ical decision making, especially important in precision medicine. We show that lossy compression can

offer significant compression gains, while preserving the essential genomic information and without

affecting the performance of variant calling.

[Supplementary material is available for this article.]

1CNAG-CRG, Centro Nacional de Análisis Genómico (CNAG) - Centre for Genomic Regulation (CRG), Barcelona Institute of

Science and Technology (BIST), Barcelona, Spain
2Universitat Pompeu Fabra (UPF), Barcelona, Spain
3Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA.
4Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL, USA.
5Institute of Informatics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology,

Gliwice, Poland.

Correspondence should be addressed to sebastian.deorowicz@polsl.pl

1

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 2

Introduction

The growing interest in applications of genome sequencing, together with their dropping costs and con-

tinuous improvements in sequencing technologies, has led to the generation of unprecedented volumes of

increasingly large and ubiquitous raw genomic data sets (Stephens et al. 2015). These data are character-

ized by highly-distributed acquisition, massive storage requirements, and large distribution bandwidth.

For example, the 1000 Genomes Project (Clark et al. 2012) requires 260 Terabytes in storage size (both for

raw sequences, alignments, and variant calls). Moreover, the 100,000 Genomes Project (2017) has already

exceeded 21 Petabytes in size. Such flood of data hampers the efficiency of data analysis protocols, limits

efficient data sharing, and generates vast costs for data storage and IT infrastructure (Schadt et al. 2010).

This situation calls for state-of-the-art, efficient compressed representations of the raw genomic data, that

can not only alleviate the storage requirements, but also facilitate the exchange and dissemination of these

data.

The raw high-throughput sequencing data are primarily stored in FASTQ files (Cock et al. 2010), which

are usually considered as the input for the genomic data processing and analysis pipelines. A FASTQ file

can be perceived as a collection of “reads”, each containing a sequence of nucleotides (generally referred

to as the read), the quality score sequence that indicates the reliability of each base in a read, and the iden-

tifier, which usually contains the information about the sequencing instrument, flow cell coordinates, etc.

Millions of such reads are produced in a single sequencing run. As a result, storing raw reads coming from

a whole-genome sequencing of a single human individual can easily exceed 200 GB in an uncompressed

form.

One of the most common protocols using DNA sequencing is the analysis of data from re-sequencing

experiments, assessing the variants against a known reference genome. In order to assess these variants, the

raw reads present in the FASTQ file are firstly mapped to a reference sequence of the analyzed specie. This

process results in the generation of aligned reads in SAM format (Li et al. 2009), which contains the same

information as the FASTQ file, together with the alignment information for each read, and with possible

additional information provided by the mapper. Hence, the size of the intermediate data stored in SAM

files is even larger than the input FASTQ files. Following a number of post-processing steps, the aligned

reads are finally used to perform variant calling against the reference genome. The results of variant calling,

following a number of additional data cleaning and validation steps, can be used as an entry point for

further clinical analyses. However, one needs to be note that, the size of the resulting file is orders of

magnitude smaller than the input raw reads stored in FASTQ format or the intermediate alignment data

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 3

Table 1: Datasets used in the experiments. WGS is for Whole Genome Sequencing. WES is for Whole Exome Se-

quencing.

Data set Species Experiment type Sequencer FASTQ size [GB] Read len. [bp] No. reads [M] Coverage

HS2 H.sapiens WGS Illumina GA II 336.9 100 1339.7 43

GG G.gallus WGS Illumina GA II 115.9 100 347.3 32

HSX H.sapiens WGS Illumina HiSeq X 292.1 151 819.1 39

WGS-14 H.sapiens WGS Illumina HiSeq 2000 115.6 101 447.1 14

WGS-42 H.sapiens WGS Illumina HiSeq 2000 337.3 101 1304.5 42

CE C.elegans WGS Illumina GA II 17.6 100 67.6 66

WEX H.sapiens WES Illumina HiSeq 2500 44.7 126 150.4 ∼220

WGS-235 H.sapiens WGS Illumina HiSeq 2000 1888.4 101 7363.7 235

stored in SAM format.

Although the data contained in the FASTQ file could potentially be recovered from the correspond-

ing SAM file (or its compressed version), there may be cases in which this is impossible, depending on

the used protocols for data analysis. For example, when performing post-processing of the alignments,

some of the information can be discarded, such as the reads that failed to align to the reference genome

or which were considered as duplicates. Moreover, the reference genome used for storing alignments in

a compressed form may no longer be accessible during decompression. In case of performing other types

of experiments, such as metagenomics, there may even not be a reference genome at all align the reads, as

different organisms present in the sequenced sample are generally unknown prior to the analysis.

Therefore, we focus on the compression of the information stored in FASTQ format, i.e., the raw data

containing only the DNA (nucleotide) sequences, read identifiers, and quality scores, since they represent

a minimal subset of the data required for future reproduction of the analyses performed on the sequenced

data. The existing specialized solutions for FASTQ files compression, extensively examined in (Numanagić

et al. 2016), obtain significant compression gains over general compression tools such as gzip. However, in

practice, gzip is still the de facto choice, mainly due to its popularity and stability. It seems that the commu-

nity has not decided yet that the assets of specialized FASTQ compressors are worth some complications

that may appear when moving to a different format of storage. Also, the fact that currently a number of

good dedicated compressors are available does not make the right choice simple.

In this paper we propose FaStore, a new compressor for FASTQ files that, among others, can be used

for long-term archival of raw genomic information and efficient sharing, especially with limited internet

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 4

bandwidth. FaStore inherits the assets of our previous attempts in the field, especially DSRC (Deorowicz

& Grabowski 2011; Roguski & Deorowicz 2014), ORCOM (Grabowski et al. 2015), and QVZ (Malysa et al.

2015; Hernaez et al. 2016). The proposed compressor offers both lossless and lossy compression modes (the

latter only for the quality scores and the identifiers), and does not use any external reference sequences.

We show that FaStore significantly outperforms the existing compressors in the lossless mode. We,

however, advocate for the lossy option when suitable, which, as presented, gives much better shrinkage of

the input files with negligible differences in variant calling. Although we emphasized the variant calling as

the most common use-case for precision medicine, the analyses performed using FASTQ files are not only

limited to variant calling, but also used for, e.g., gene expression analysis, assembly or metagenomics.

Results

Lossless and lossy compression of sequencing data

FaStore is a compressor for FASTQ files produced by next-generation sequencing platforms, which are

characterized by generating massive amounts of short reads data and with a relatively low sequencing error

rate. Moreover, the generated sequence data contains a high degree of sequence redundancy, especially

coming from deep sequencing experiments. Hence, FaStore includes several compression modes to account

for the different needs that the users may have.

In particular, parts of the data can be optionally discarded or quantized for additional file size reduc-

tion. The only strict requirement is that the DNA sequences are stored lossless. Due to the different nature

of components of reads (DNA sequences, quality scores, identifiers) FaStore uses different specialized com-

pression techniques for each of them (see Supplementary Methods for details). Moreover, as the sequenc-

ing data can be generated from a library in a single- or paired-end configuration, FaStore provides different

techniques to handle both cases, guaranteeing that the pairing information between the reads is preserved

(when available). In the following, when clear from the context, DNA sequences may be also referred to as

reads.

Compression of the DNA sequences is done without the use of any external reference sequences. Re-

lying on a reference sequence for compression requires the availability of the same reference at the time of

decompression, which may be no longer accessible, thus making the compressed DNA sequences unrecov-

erable. Therefore, this design choice guarantees a perfect reconstruction of the sequences.

Due to the nature of the sequencing process as a whole, the reads are generated in a random or-

der (Kavak et al. 2015) and thus the initial ordering of the DNA sequences in the output file carries no

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 5

significant information. With this in mind, FaStore exploits the existing high sequence similarity on the

global scope, by reordering the reads. In particular, the reads are clustered in a manner such that reads

coming from neighboring positions in the sequenced genome are likely to belong to the same cluster. When

possible, within these clusters the reads are assembled into contigs, so that they can be stored relatively to

the consensus sequences. Alternatively, a read can be also stored relatively to other reads belonging to the

same cluster, or “as it is”, depending on the degree of similarity with the other reads in the cluster.

As a trade-off between the computation time to cluster the reads and the attained compression ratio, Fa-

Store offers two modes of operation, denoted by C0 (fast) and C1 (default). When compressing in C1 mode,

more clustering steps between the reads are performed to obtain a higher compression ratio. However, the

decompression speed is similar for both modes.

While the sequence redundancy present in the data can be efficiently reduced, the quality scores have

proven more difficult to compress (Bonfield & Mahoney 2013). They are characterized by a high entropy

with a significant level of noise. In addition, preserving precise quality scores is often unnecessary (i.e.,

some distortion is generally acceptable), in that no cost is incurred on the subsequent analyses performed

on the data (Ochoa et al. 2016; Yu et al. 2015).Therefore, FaStore offers various types of lossy quality scores

compression modes alongside the lossless. In particular, FaStore includes Illumina 8-level binning (Illu-

mina 2014), a custom binary thresholding, and an adaptive scheme based on QVZ (Malysa et al. 2015;

Hernaez et al. 2016).

Illumina binning maps the resolution of quality scores just to 8 distinct bins. The binary thresholding

quantizes the quality scores according to the user-provided threshold, i.e. it sets the quality values below

the threshold to qmin, and those above to qmax. QVZ quantizes the quality scores so as to minimize the

rate allocation (number of bits per quality score) while satisfying a distortion constraint. To design the

appropriate quantizers, QVZ relies on computing the statistics of the quality scores prior to compression.

FaStore gathers these statistics while clustering the reads, and thus there is almost no added computational

cost. The quantizers are generated at the end of reads clustering and one global codebook per dataset is

used. For lossless compression, FaStore uses QVZ in lossless mode.

The read identifiers are initially tokenized to make use of the fact that some appearing tokens are con-

stant, some are from a small dictionary, etc. Moreover, since the complete identifier string is usually un-

necessary in practice, FaStore also offers a lossy mode for storing them , either by removing the comments

(as do mappers by default) or by completely skipping them. One needs to note that in FASTQ format the

representation of pairing information between the reads is not clearly defined, i.e., it can be carried by the

read identifiers (i.e. a pair of reads share the same identifier) or at the file-level (i.e. the reads reside on the

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 6

same lines in two FASTQ files or are stored interleaved in a single file). Therefore, FaStore preserves this

information with the sequences, allowing the identifiers to be removed and generating unique ones per

pair of reads when decompressing.

Compression factors

For evaluation of the proposed compressor FaStore, we primarily used a subset of data sets benchmarked

already in (Numanagić et al. 2016; Grabowski et al. 2015; Benoit et al. 2015) alongside new ones character-

ized by a high-sequence coverage. The details of the employed datasets are summarized in Table 1 (see

Supplementary Methods for the download links). The collection consists of 7 large sets of FASTQ files

(top 7 rows) and one vast dataset (bottom row), and it includes sequencing data from the H. sapiens, G.

gallus and C. elegans species, generated in a paired-end configuration. We compared the performance of

FaStore with that of gzip (the de facto current standard in storage of sequencing data) and the top FASTQ

compressors according to (Numanagić et al. 2016), which are: DSRC 2 (Roguski & Deorowicz 2014), Fqz-

comp (Bonfield & Mahoney 2013), Leon (Benoit et al. 2015), Quip (Jones et al. 2012), and Scalce (Hach et

al. 2012). We also tested the top DNA-only compressors according to (Numanagić et al. 2016), which are:

ORCOM (Grabowski et al. 2015), Mince (Patro & Kingsford 2015), and BEETL (Cox et al. 2012) Unfortu-

nately, for several data sets, Mince run out of available memory (128 GB) and BEETL failed to process some

in 48 hours time, so both of them are not included in our analysis.

Figures 1a–d show the average compression factor and compression/decompression speeds for the

complete collection. The applications were run using 8 processing threads, when applicable. Due to

space constraints and ease of exposition, we present results running applications in maximum compres-

sion mode. Moreover, we provide results for the main lossy settings (denoted by reduced, lossy and max),

and refer the reader to the Supplementary Worksheet W1 for an extensive evaluation of the whole range

of lossy modes provided by FaStore alongside other tested applications and in different modes.

As one can notice, FaStore in the lossless mode (preserving all the input data) achieves significantly

better compression factors than the competitors executed in maximal compression modes. In particular, the

compression gains with respect to the results achieved by the best competitor (i.e., Fqzcomp for all datasets

except for dataset HSX where Leon outperforms Fqzcomp), range from 7.6% to 20.3%. For example, for H.

sapiens datasets HS2 and WGS-42, this corresponds to more than 10 GB of savings in both cases.

Although the lossless mode is used by default, we strongly recommend considering some of the pro-

vided lossy modes. By discarding parts of the read identifiers and reducing resolution of the quality scores

one can achieve significant savings in storage space. For example, in the reduced mode, the compressed

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 7

a

0 5 10 15 20 25 30

FaStore-lossless
Fastore-reduced

FaStore-lossy
FaStore-max

Leon
Fqzcomp

DSRC
Quip

Scalce
pigz

Average compression factor [%]

All data sets
b

0 5 10 15 20

FaStore-lossless
Fastore-reduced

FaStore-lossy

FaStore-max

Leon

Fqzcomp
DSRC

Quip
Scalce

Average fraction of input file [%]

All data sets

DNA Quality ID

c

0 20 40 60 80 100 120 140

Average compression speed [MB/s]

All data sets d

0 50 100 150 200 250 300

Average decompression speed [MB/s]

All data sets

Figure 1: Compression results. (a) Average compression factors in % (compressed size divided by original size) for all examined

datasets. (b) Average compression factors in % (compressed size divided by original size) for all examined datasets, divided by

the different components: DNA bases, quality values, and IDs. (c) Average compression speeds for all examined datasets. (d)

Average decompression speeds for all examined datasets. The sub-figures a–c share the same legend. pigz is multithreaded

variant of gzip (same compression ratios, but faster processing).

size is about 60% of that of the lossless mode. The improvement is possible thanks to applying Illumina

8-level binning (Illumina 2014) and removing the comments from the identifiers (which, in some cases,

leads to storing only a library name and a read number). As the identifiers are usually truncated in this

way by mappers when producing SAM files and the 8-level binning becomes a default option in modern

sequencers (although the actual mapping of the values can depend on the internal configuration of the

instrument), this setting seems to be a reasonable choice.

Even better results (approx. half the size of the lossless mode) is possible when QVZ with distortion

level 2 is applied (lossy mode). Nevertheless, the best compression factor (about a quarter of what was

obtained in the lossless mode) is achievable when the identifiers are removed (only the pairing information

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 8

between the reads is preserved) and the binary thresholding for the quality values is applied (max mode).

Figure 1b shows fractions of archives consumed by various components: DNA bases, quality values,

and identifiers. There is no result for gzip as, due to the design of this compressor, it is impossible to

measure the exact fraction of each component (it compresses all the data “as it is”). The results show

that FaStore uses much less space to store the DNA symbols than the competitors. Since there is no loss

of the bases in the lossy modes, the amounts of space necessary for DNA symbols are almost identical.

However, one needs to note, that in the lossless mode FaStore needs more space for storing identifiers than

the other competitors (except for Scalce). The reason is that after reordering the reads it is much harder to

compress their identifiers, as the neighboring ones differ more than in the original ordering. Nevertheless,

the compression gains in of DNA stream overshadows the loss in the identifiers stream.

The most challenging to compress are, however, the quality scores. For most compressors, when the

quality scores are stored in the lossless way they require more space than the DNA sequences and identi-

fiers considered together. Thus, applying the lossy schemes for the quality values has a remarkable impact

on the total compression factor. For example, to losslessly compress H. sapiens dataset HS2, FaStore re-

quires 46.3 GB of space. From those, 32.7 GB correspond to the quality scores, which can be further reduced

to 9.3 GB (Illumina binning, reduced mode), 8.4 GB (QVZ with distortion level 2, lossy mode) or even 1.1 GB

(binary thresholding, max mode). In all the cases the total size is reduced by more than 50%, to as little as

14.7 GB (with binary thresholding). Moreover, one needs to note, that this reduction in total size is com-

puted without considering lossy compression of the identifiers, which would provide even more storage

savings. Next we demonstrate that such reductions in size are possible with little effect on variant calling.

Finally, the compression speed is some drawback of our solution, as it is somewhat smaller than 10 MB/s

in the default C1 mode, as it applies multiple steps of reads preprocessing in order to achieve maximum

compression of DNA sequences. Nevertheless, the decompression speed is comparable to the fastest al-

gorithms, i.e., DSRC 2 and gzip. Figure 1c–d show the compression and decompression speeds for the

different methods analyzed in this paper. However, for use cases where compression speed is of uttermost

importance, FaStore provides a fast mode, namely, the C0 mode. This mode trades DNA compression ratio

for compression speed, while still achieving better compression ratios than the competitors (see Supple-

mentary Worksheet W1). As reported, mode C0 can, on average, reduce the compression time employed

by mode C1 by a factor of 5 at a cost of increasing the size needed to store the DNA bases by a factor of

1.09. Note that switching between C0 and C1 has no significant effect on compression of quality scores and

read identifiers.

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 9

Impact of lossy compression of quality scores on variant calling

Next, we assess the effects of using the different lossy quality compression modes provided by FaStore

(i.e., Illumina binning, binary thresholding, and QVZ) have on variant calling. Since QVZ optimizes the

quantization for an average distortion level that is specified as an input parameter, for the analysis, we

considered distortion levels 1, 2, 4, 8, and 16.

For the evaluation, we selected the two datasets coming from whole-genome sequencing of H.sapiens in-

dividual, sequenced at coverage of 14x (WGS-14) and 42x (WGS-42) (see Table 1). These datasets pertain to

the same individual, namely NA12878 and were sequenced as a part of Illumina Platinum Genomes (Eberle

et al. 2017) . The reason for this choice is that the National Institute for Standards and Technology (NIST)

has released a high-confidence set of variants for that individual as a Genome In a Bottle (GIAB) (Zook et

al. 2014) initiative. This allows us to consider this set as a “ground truth” and use it to benchmark the dif-

ferent lossy modes supported by FaStore. We refer the reader to the Supplementary Methods for a detailed

description of the pipeline used for the analysis.

In what follows we will report the results on Single Nucleotide Polymorphisms (SNPs), since SNPs

are easier to detect and more curated in the high-confidence reference set. Nevertheless, for completeness,

results for short insertions and deletions (INDELs) are provided in the Supplementary Worksheet W2. The

GATK Best Practices proposes to apply VQSR for semi-automatic filtering of variants, however, the use of

this machine-learning-based filter is still not widely adopted and should be used with caution for single-

sample analyses. Hence, here we focus on the results obtained by applying hard filtering on the called set

of SNPs, and refer the reader to the Supplementary Worksheet W2 for the results achieved by applying

both modes of filtering.

The results of the analysis are presented in Figures 2a–c. For completeness, Figure 2d shows the com-

pression factors for the WGS-42x dataset. We focus on the recall vs precision results obtained using consid-

ered lossy modes for the WGS-14 and WGS-42 datasets respectively. Firstly, it needs to be noticed that the

precision is similar for both datasets, whereas the recall is much higher for WGS-42. This already suggest

that the higher (∼ 3×) sequence coverage plays a key role and encouraging considering lossy compression

scheme according to the available coverage.

The more interesting aspects are, however, the results achieved using various lossy modes. As expected,

increasing the distortion level of QVZ, being an adaptive method, reduces both the recall and the precision.

However, what is interesting is that the variant calling performance applying QVZ with distortion level 1 is

comparable to that of Illumina binning, with slightly better results (in recall and in precision for WGS-42x)

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 10

a

0.974 0.976 0.978 0.980 0.982
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Recall

P
re
ci
si
o
n

SNPs WGS-14

Lossless [12 GB]

Illumina8 (reduced) [5.4 GB]

QVZ-D1 [5.3 GB]

QVZ-D2 (lossy) [3.8 GB]

QVZ-D4 [2.5 GB]

QVZ-D8 [1.5 GB]

QVZ-D16 [0.7 GB]

Thr20 (max) [0.6 GB]

Discarded [0 GB]

b

0.9975 0.9976 0.9977 0.9978 0.9979 0.9980
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Recall

P
re
ci
si
o
n

SNPs WGS-42

[34 GB] [15 GB]

[15 GB] [10 GB]

[6.9 GB] [3.9 GB]

[1.7 GB] [1.5 GB]

[0 GB]

c

0.98140 0.98142 0.98144 0.98146 0.98148 0.98150
0.99430

0.99435

0.99440

0.99445

0.99450

Recall

P
re
ci
si
o
n

SNPs WGS-14, lossless

original ordering

random permutation

FaStore permutation

d

0 5 10 15 20 25 30 35

Compression factor [%]

WGS-42

Figure 2: Compression results and variant calling analyses. (a) Results of variant calling for WGS-14 dataset. (b) Results of

variant calling for WGS-42 dataset. (c) Influence of permutation of reads in the input collection for WGS-14 for variant calling. (d)

Compression factors in % (compressed size divided by original size) for WGS-42 dataset.

in favor of Illumina binning. Moreover, both modes offer a similar compression factor, reducing the size of

the quality scores by more than 44% compared to lossless (with slightly better result achievable by QVZ).

Hence, the WGS-42 dataset could be compressed up to 7.8% of its original size (and almost a half of the

space required to store it losslessy), by reducing the footprint of quality scores, removing the comments

from the read identifiers, while preserving the variant calling accuracy. As a side note, in our test case,

applying the lossy compression of read identifiers (as in reduced and lossy schemes), has no effect on variant

calling, as the mappers usually do strip the present comments.

Nonetheless, in order to save more space, while also preserving variant calling accuracy, stronger lossy

compression modes need to be considered. For that reason, QVZ applied with distortion level 2 seems

to be a good trade-off between variant calling performance and compression factor. It offers comparable

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 11

performance to that obtained with the original data while reducing the size of the quality scores by more

than 66%. Distortion levels above 2, although offer significant gains in compression, show a degradation

on variant calling.

Quite surprisingly, for WGS-45x the results for the max mode are almost as good as for the lossless mode,

with vast difference of the size of the compressed quality data (1.5 GB vs. 34 GB). For comparison, we also

experimented with completely removing the quality data, but the results (series denoted as discarded) show

that some information about the base quality is necessary for reliable variant calling results (at least in the

examined range of coverages). Therefore, the obtained results suggest that for storing the datasets with

a high coverage, keeping only the information on whether the called base is “good” or “bad” should be

sufficient for achieving reliable results from variant calling.

Impact of read reordering on variant calling

As mentioned above, next-generation sequencing machines generate the DNA sequences in no particular

order and the original order of the DNA sequences carries no significant information. Due to the large

size nature of the produced data, several commonly used computational methods that operate on these

files rely on heuristics to be able to run in a reasonable time in multi-threaded execution mode. For this

reason, the reordering of reads, even if theoretically not relevant, may have some effect on variant calling.

For example, authors in (Firtina et al. 2016) showed that, for some mappers, randomly shuffling the input

FASTQ reads can lead to different alignment results, especially for reads originating from highly repetitive

genomic regions.

Since FaStore permutes the input collection of reads, in this section we briefly examine the impact that

various re-orderings have on variant calling (Fig. 2c). The goal is to analyze how FaStore shuffling may

affect the performance of the variant calling, examining precision and recall for the obtained SNPs. In

order to assess it we compare the variant calling results obtained using original files, randomly shuffled

and reordered by FaStore. We shuffled the reads of the file four times creating four different pair-end

FASTQ files. We also compressed losslessly the files using the C0 mode of FaStore, shuffling the reads as

a result. Finally, we run the same experiments in two different machines using in each of them a different

number of cores. As one can notice on Fig. 2c, the differences in precision and recall are negligible. Similar

results can be observed for INDELs – for completeness, the results are provided in the Supplementary

Worksheet W2.

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 12

Influence of coverage

Finally, we analyzed the compression ratio just for the DNA symbols (Fig. 3) using whole-genome se-

quencing data of H.sapiens (WGS-235 dataset) sampled at various coverages. As can be noted, for some

algorithms (Scalce, Leon, Fqzcomp, FaStore) the increasing coverage leads to significant improvement in

compression ratio. In case of FaStore, the advantage is more than 2-fold over the competitors. When testing

read-reordering algorithms (FaStore and Scalce), we also added a series of values in which the reads were

compressed as single-end (i.e., the pairing information was lost). For FaStore this leaded to further savings

in storage space, giving about 2.6 times better compression ratios.

0 50 100 150 200 250
0

1

2

3

Coverage

R
a
ti
o
[b
it
s
p
er

b
a
se
]

WGS-235 subsets

FaStore FaStoreSE Scalce

ScalceSE Leon Fqzcomp

Quip DSRC 2 gzip

Figure 3: Compression ratio for storing only DNA symbols (bits used to encode a single base) for H.sapiens sampled

at various coverages (WGS-235 subsets). Superscript SE stands for Single-End.

Discussion

The storage and transfer of huge files containing raw sequencing data has become a real challenge. Years

ago the popular general-purpose compressor gzip was applied to reduce file sizes by about 3 times, with

significant gains in cost of storage and speed of transfer. Unfortunately, in modern times much more is

necessary. Our proposed compressor, FaStore, is designed to achieve excellent compression factors, i.e.,

about 3 times better than gzip and significantly better than the existing specialized FASTQ compressors. In

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 13

addition, FaStore offers several compression modes for the quality scores and the read identifiers, which

result in significant compression gains.

We strongly suggest the community to consider resignation from storage of all the raw sequenced data.

As we presented, together with the increasing sequencing throughput and the dropping costs of sequenc-

ing reflected in higher coverages for the smaller prices, the high resolution of quality values seems to be

unnecessary. An important stage in this direction was made by Illumina, which has already reduced the

resolution of the available quality scores to only 8 values in some of their newest sequencers. We show that

similar variant calling results could be obtained when even more reduction of the quality stream is applied.

For sufficiently large coverage it seems to be enough to provide just a binary information about each base

telling whether it is “good” or “bad”.

To imagine the possible gains in reduction of cost thanks to the lossy approaches let us say that the

FASTQ files for H. sapiens sequenced at 42-fold coverage in the paired-end mode could consume as little as

10 Gigabytes (in max mode), which can be compared to 110 Gigabyte of gzipped FASTQ files. Finally, for

both datasets the quality of variant calling is almost the same.

Methods

Compression workflow

In FaStore, the compression workflow has been designed as a multi-step process, trying to exploit the high

sequence redundancy present in the sequencing data. It consists of: (1) reads clustering, (2) optional reads

re-clustering and (3) reads compression stages, where each stage is divided into multiple smaller steps.

In this section only a general overview of the compression workflow is provided – a detailed description

of the methods used to compress DNA sequences, quality scores and read identifiers can be found in the

Supplementary Methods. The workflow is depicted on Fig. 4 and can be briefly described as follows.

Reads clustering

Reads clustering stage is a 2-step process, consisting of reads binning (Fig. 4B) and reads matching (Fig. 4C).

During binning, for each read from the input FASTQ file(s) (Fig. 4A), its sequence signature (i.e., the lex-

icographically smallest k-mer, known also as minimizer, but with some restrictions) is being sought. The

signature is being used as an identifier of the bin which the read is placed into. During this step, some

statistics are gathered related to the observed DNA bases, base quality scores and read identifiers. At the

end of the binning, these statistics are used to compute the quality scores quantizers, which are stored

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 14

Figure 4: A general compression workflow of FaStore. (A) Raw FASTQ reads are (B) distributed into bins. (C) The

reads are matched, giving as a result a reads similarity graph. Optionally, the reads follow further re-distribution and

matching. (D) With the final similarity graph, the reads are assembled into contigs. (E) The reads data are encoded

either in contigs or differentially, depending on the matching result.

in a global codebook (when using QVZ mode). Analogously, based on the observed tokens in the read

identifiers, a token dictionary is build. These data will be used during compression stage.

After the binning all the reads, we perform matching of them, independently per each bin. The goal

is to find for each read, a referential one, which has possibly the lowest “encoding cost”, i.e. a number of

operations required to transform one sequence to another and under some user-specified constrains. In

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 15

order to do so, we firstly reorder the reads, so that the reads with sequences possibly originating from the

same genomic region, will be placed close to each other. Then, we iterate over the reordered reads and,

for each sequence, we search in a window of m previous ones for the best match. A read can be matched

as a normal match, an exact match (an identical sequence was found) or as a hard read (when no satisfactory

reference was found). The result of reads matching is represented as a similarity graph, where each node

represents a read (DNA sequence) and the edge represents the type of match. More specifically, the result

is a collection of trees, where each hard read represents a tree root (a tree can also consist of only a root

node). With such graph we can already proceed to the compression stage (as in C0 mode).

Reads re-clustering

However, in order to improve the clustering between the sequences, a number of optional reads re-clustering

steps can be performed. The goal is to create larger clusters of highly similar (groups of) reads to possibly

bring the reads from the same genomic regions close to each other, by re-distributing the reads. To do so,

we firstly define a new subset of signatures, which will be used as a filter, to select the bins into which the

reads can be moved. Then, for each tree, we select a new root node, which has a new signature residing at

the beginning or at the end of its sequence. The trees are re-balanced and moved into bins (similarly as in

Fig. 4B) denoted by their root signatures, where each tree is represented in the new bin as a single read (its

root). This allows to improve the clustering between the reads, by performing an additional matching of

them (as in Fig. 4C) and, as a result, building larger trees of similar reads. If needed, another re-distribution

step(s) can be performed (in C1 mode we perform 3), otherwise we proceed to the compression stage.

The compression stage is a two-step process, consisting of assembling the reads sequences (Fig. 4D)

into contigs and encoding the reads (Fig. 4E), using the previously built reads similarity graph. Firstly,

we traverse each tree and try to assemble the reads into possibly large contigs. The goal is to encode the

reads with respect to the built consensus sequences, encoding only the variants (if present) in the contigs.

While assembling a contig, for each read, we try to anchor it into the consensus sequence using the position

of its signature (which resides at the “center” of the consensus). To add the read to the contig, we assess

whether it does not introduce too many variants into the current consensus sequences, as they will need

to be encoded by the other reads already present in the contig. When no more reads can be added to the

contig, its final consensus sequence is determined by majority voting. As a result, in the graph some of the

nodes are replaced with the contig nodes, updating the connections between nodes accordingly.

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 16

Reads compression

Finally, we proceed to encode the reads data (Fig. 4E), storing the result in a number of streams, separately

for DNA sequences, quality scores, and read identifiers. The read sequences are encoded either in contigs

(encoding differentially versus consensus sequences) or differentially versus each other, depending on the

matching result. To encode the quality scores using QVZ we use the quantizers from the previously created

codebook. Alternatively, when using Illumina 8-level binning or binary thresholding, we encode the trans-

formed quality values. In parallel, we encode the read identifiers using the previously built dictionary. The

streams are compressed using custom arithmetic coder or a general-purpose compressor PPMd.

Variant calling

To investigate side effects of applying a lossy compression for base quality scores, we firstly prepared a set

of test WGS-14x and WGS-42x FASTQ files, which come from deep sequencing of NA12878 H.sapiens indi-

vidual. These files included: (a) original input files (lossless), (b) original input files with lossy compressed

(or discarded) quality scores, (c) FaStore-shuffled reads with lossy compressed quality scores. Moreover,

using WGS-14x dataset we tested the effect of reordering the reads using an additional set of test FASTQ

files (but without applying any compression). These included: (d) original input files with randomly shuf-

fled reads, (e) FaStore-shuffled reads. A detailed description of the FASTQ files preparation steps can be

found in Supplementary Methods.

With such prepared input FASTQ files, we followed the GATK (McKenna et al. 2010) Best Practices

(Auwera et al. 2013) pipeline to assess the variants. We used BWA-MEM (Li & Durbin 2009; Li 2013) to

map the reads to the human genome assembly GRCh37. Following a number of alignments post-processing

steps, we called the variants using GATK HaplotypeCaller (GATK-HC). For assessing the variant calling

performance, we used as a “gold standard” the variants from GIAB (Zook et al. 2014) and benchmarked

our results using Illumina Haplotype comparison tools pipeline (https://github.com/Illumina/hap.py). This

pipeline is also recommended by Global Alliance for Genomics and Health (GA4GH) as one of benchmark-

ing standard protocols. We reported precision and recall results for the obtained SNPs. For completeness,

we also filtered the variants using GATK Variant Quality Scores Recalibration (VQSR). Both the SNPs and

INDELs calling results, with and without VQSR filtering, are available in Supplementary Worksheet W2.

Software availability

FaStore can be downloaded from https://github.com/refresh-bio/FaStore.

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 17

Acknowledgments

We would like to thank Ivo Gut for supporting the project and Marcos Fernández for helpful discussions

and technical insights.

This work was supported by: National Science Centre, Poland [under project DEC-2015/17/B/ST6/01890

to S.D.]; European Union’s Seventh Framework Programme (FP7/2007-2013) [under grant agreement No.

305444 (RD-Connect) to Ł.R.];

Competing financial interests

The authors declare no competing financial interests.

References

Auwera, G. et al. 2013. From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline

Current protocols in bioinformatics

Benoit, G. et al. 2015. Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph BMC

Bioinformatics 16, 288.

Bonfield, J.K., Mahoney, M.V. 2013. Compression of FASTQ and SAM format sequencing data PLOS ONE 8, e59190.

Clarke, L. et al. 2012. The 1000 Genomes Project: data management and community access Nat. Methods 9, 459–462.

Cock, P.J., Fields C.J., Goto, N., Heuer, M.L. & Rice, P.M. 2010. The Sanger FASTQ file format for sequences with quality scores,

and the Solexa/Illumina FASTQ variants Nucleic acids research 38, 1767–1771.

Cox, A.J. et al. 2012 Large-scale compression of genomic sequence databases with the Burrows–Wheeler transform Bioinformatics

28: 1415–1419.

Deorowicz, S., Grabowski, Sz. 2011. Compression of DNA sequence reads in FASTQ format Bioinformatics 27, 860–862

Eberle M. et al. 2013. A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing

a three-generation 17-member pedigree Genome Research 27: 157–164.

Firtina, C., Alkan, C. 2016. On genomic repeats and reproducibility Bioinformatics

Grabowski, S., Deorowicz, S., Roguski, Ł. 2015. Disk-based compression of data from genome sequencing Bioinformatics 31, 1389–

1395.

Hach, F., Numanagić, I., Alkan, C. & Sahinalp, S.C. 2012. SCALCE: boosting sequence compression algorithms using locally

consistent encoding Bioinformatics 28, 3051–3057.

Hernaez, M., Ochoa, I., Weissman, T. 2016. A cluster-based approach to compression of quality scores In Proc. of Data Compression

Conference, pp. 261–270.

Jones, D.C., Ruzzo, W.L., Peng, X. & Katze, M.G. 2012. Compression of next-generation sequencing reads aided by highly efficient

de novo assembly Nucleic Acids Res. 40, e171.

Kavak, P. et al. 2015. Robustness of massively parallel sequencing platforms PLOS ONE 10, e0138259.

Ł. ROGUSKI, I. OCHOA, M. HERNAEZ, S. DEOROWICZ — FASTORE 18

Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM arXiv preprint arXiv:1303.3997

Li, H. and Durbin, R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform Bioinformatics 25: 1754–1760.

Li, H. et al. 2009. The sequence alignment/map format and SAMtools Bioinformatics 25, 2078–2079.

Malysa, G. et al. 2015. QVZ: lossy compression of quality scores Bioinformatics 31: 3122–3129.

McKenna, A. et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing

data Genome research 20: 1297–1303.

Numanagić, I. et al. 2016. Comparison of high-throughput sequencing data compression tools Nat. Methods 13, 1005–1008.

Ochoa, I. et al. 2016. Effect of lossy compression of quality scores on variant calling Brief. Bioinform. 18, 183–194.

Patro, R. & Kingsford, C. 2015. Data-dependent bucketing improves reference-free compression of sequencing reads Bioinformatics

31, 2770–2777.

Roguski, Ł. & Deorowicz, S. 2014. DSRC 2 – Industry-oriented compression of FASTQ files Bioinformatics 30, 2213–2215.

Schadt, E.E. et al. 2010. Computational solutions to large-scale data management and analysis Nature Reviews Genetics 11: 647–657.

Stephens, Z.D. et al. 2015. Big Data: Astronomical or Genomical. PLOS Biol. 13, e1002195.

The 100,000 Genomes Project 2017. https://www.genomicsengland.co.uk/the-100000-genomes-project-by-numbers/.

Illumina 2014 Reducing Whole-Genome Data Storage Footprint https://www.illumina.com/documents/products/whitepapers/

whitepaper datacompression.pdf.

Yu, Y.W., Yorukoglu, D., Peng, J., Berger, B. 2015. Quality score compression improves genotyping accuracy Nature Methods 33:

240–243.

Zook, J.M. et al. 2014 Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls Nature

biotechnology 32: 246–251.

Chapter 3. Results 126

3.4 CARGO: effective format-free compressed storage

of genomic information

Roguski Ł, Ribeca P. CARGO: effective format-free
compressed storage of genomic information. Nucleic Acids
Res. 2016 Jul 8;44(12):e114. DOI: 10.1093/nar/gkw318

https://academic.oup.com/nar/article/44/12/e114/2457533?searchresult=1

Chapter 3. Results 136

3.5 Brief summary

3.5.1 Context

High-throughput sequencing data is usually represented either as raw

reads in FASTQ format and stored in compressed form using gzip or repre-

sented as aligned reads in SAM format and stored in compressed form in

BAM format. The HTS data represented in SAM format can be considered

as a superset of the data stored in FASTQ format, where the SAM align-

ments contain a significant amount of intermediate data generated during

the sequence mapping and the data post-processing stages. Information,

such as the possible mapping location of the read in the reference genome

and the indicator of the confidence of the mapping, is used in further ge-

nomic data analysis steps, allowing it to efficiently access the alignments

by their mapping position. Usually, the backward conversion from the

aligned reads in SAM format to the raw reads in FASTQ format is possible

(given that the information carried with raw reads was not discarded dur-

ing the mapping and post-processing steps), by using different tools, such

as Picard or SAMTools. Therefore, different solutions to storing HTS data

are available, the application of which depends on the used genomic data

processing pipelines.

During our research we have designed, developed, and tested a set of novel

methods and approaches for storing and compressing HTS data. As pre-

sented in the publications included in this chapter, we performed a num-

ber of analyses compressing both FASTQ and SAM files originating from a

variety of different sequencing experiments, using different sequencing

platforms and coming from different organisms. At the same time, one

can also observe other novel methods being developed. Therefore, the aim

of this brief summary is to compare methods that we have developed with

the current state-of-the-art using a concise and small dataset.

Data categories

As mentioned in Section 2.1, when compressing raw reads in FASTQ for-

mat we can distinguish three main categories of data: read identifiers

(denoted as ID), DNA base sequences (SEQ) and base quality scores (QUA).

When compressing alignments in SAM format, we will consider four main

categories of compressed data: query template names (ID), sequence

137 3.5. Brief summary

alignment data (ALN), quality scores (QUA), and optional information

(OPT). The SAM fields which compose the ALN data category include:

the alignment flags (FLAG field), the segment sequence (SEQ field), the

pairing information between the reads (RNEXT, PNEXT, and TLEN fields),

and the CIGAR field. Here, we also consider the values of the mapping

quality (MAPQ field) assigned by the mapper as optional information (stor-

ing them in OPT category alongside the content of the optional fields),

because they are not required to losslessly compress or decompress the

sequence data. One needs to note, however, that the above-mentioned

classification is arbitrary, but it allows for a non-ambiguous and practi-

cal separation of the data categories – other classification may be also

possible.

Regarding the possible pairing information between the reads, we decided

not to introduce any additional category for representing it, since, in the

current SAM format data representation, it is not possible to fully decouple

the pairing data from the data stored in the other categories. For example,

in addition to the pairing information stored in RNEXT, PNEXT, and TLEN

fields, the FLAG field also stores bit-wise the information about pairing,

such as, which read is considered as the first one from the pair or whether

both reads are aligned. Moreover, in case of unaligned reads, some of

the fields storing the pairing data may be left with an empty/dummy

value. Hence, the pairing between the unaligned reads is preserved by

the (unique) query template names. Similarly, in the case of FASTQ files,

the representation of pairing information between the reads is not clearly

defined, as it can be preserved either by the read identifiers or on the file

level (see the formats description in Section 1.1.3).

Datasets

To briefly compare our solutions with the current state-of-the-art, we

selected as input data two datasets, namely WEX and WGS, which have

been also used in the tests performed in Section 3.3. We compare the

results of compressing these datasets both in their raw (FASTQ) and aligned

(SAM) representations. These datasets were obtained from a whole-exome

sequencing (WEX; ~240× coverage) and from a whole-genome sequencing

(WGS; ~42× coverage) experiment of H. Sapiens individuals. Both were

sequenced in a paired-end library setup and using the Illumina HiSeq

Chapter 3. Results 138

platform. These represent a common use-case for using sequencing in

clinical diagnostics.

The WEX dataset comes from GIAB [222] and is originally available in

BAM format (aligned to the reference human genome assembly version

37 (GRCh37) and sorted by position). Hence, it requires conversion to

FASTQ format in order to test compression methods of raw reads. The

conversion from BAM to SAM format is straightforward. Both operations

can be accomplished by using SAMTools or Picard tools. The WGS dataset

comes from Illumina Platinum Genomes1 and is available in FASTQ format

through the SRA platform. Therefore, in order to provide its representation

in SAM format, we need to map the raw reads to the reference genome

(using the same human genome assembly as in the WEX dataset) using

BWA-MEM [108] following the GATK Best Practices [11] (as explained in

Section 1.1.3) – the used command lines with the used versions of the tools

can be found in the Appendix A. Important to note, since the mappers

usually remove the comments present in the FASTQ read identifiers line,

we also removed them before testing the compression of the FASTQ files

(in the case of WEX dataset, they have already been removed).

The selected information about the datasets, including the sizes of differ-

ent kinds of data (in GB) both in FASTQ and SAM formats are presented

in Table 3.1. What is interesting, for both datasets the number of records

(alignments) in SAM format is greater than the number of records (raw

reads) in FASTQ format (WEX: ~0.1 M, WGS: ~3.3 M). The greater number

of SAM records may signify the existence of chimeric reads or multiple

possible alignments of reads (or pairs). As mentioned in Section 1.1.3,

in case of reporting multiple alignments, some of the content present in

the main alignment will be duplicated (such as query template names,

DNA sequences, or quality scores) represented in SAM format. Moreover,

although the number of reported SAM alignments is greater than the num-

ber of FASTQ reads, the reported size of the data of ID category in SAM

format is smaller than its equivalent in FASTQ. This is due to the fact that

the read identifiers in FASTQ format start with ‘@’ symbol, which is re-

moved in SAM query template names. The links to obtain the datasets with

the explanation of the protocol used to perform the conversion between

the formats can be found in Appendix A.

1https://www.illumina.com/platinumgenomes.html

https://www.illumina.com/platinumgenomes.html

139 3.5. Brief summary

Table 3.1: Summary of the WEX and WGS datasets with a comparison
between the sizes of each class of data in FASTQ and SAM formats.

Dataset FASTQ format SAM format

Name
Read len. Recs. Size Data class Recs. Size Data class

(bp) (M) (GB) SEQ ID QUA (M) (GB) ALN ID QUA OPT

WEX 126 150.4 44.7 18.9 6.1 18.9 150.5 55.5 23.3 5.9 19.0 5.0
WGS 101 1304.5 295.5 131.8 25.4 131.8 1307.8 391.0 169.8 24.2 131.9 45.4

Methods overview

In our brief analysis, we have used the solutions, which have been pre-

viously analyzed and tested in the publications included in this chapter,

but, possibly, in the newest and officially supported versions. Moreover,

we only consider solutions that fully support lossless compression of the

up-to-date SAM and FASTQ formats – they have been described in more

detail in Chapter 2. Following the classification introduced in Section

2.1 (FASTQ format) and Section 2.2 (SAM format), we can distinguish the

following categories of compression methods.

When compressing raw reads in FASTQ format, we consider the general

(DSRC2 in FAST and MAX compression modes, Fqzcomp [19] in STD and

MAX modes, Quip [85] in STD mode, and CARGO-based family of com-

pressors), the assembly-based (Quip in MAX mode, LEON [15]) and the

reads-reordering-based (SCALCE [70], FaStore in C0 and C1 modes). Unfor-

tunately, as with the authors of [151], when benchmarking different FASTQ

compression solutions, we encountered difficulties in successfully running

reference-based compression methods and, as a result, they have been

excluded from our brief analysis. As a side note, for the current general

and assembly-based compression methods, it does not matter, whether

the input data have been generated in the single-end or paired-end mode

– they process the data as they are, not altering the reads order. By contrast,

the reads-reordering solutions SCALCE and FaStore provide explicitly the

paired-end processing mode, to possibly preserve the pairing between

the reads on the file-level. As our input data has been generated from a

paired-end library, we will primarily focus on the paired-end compression

mode provided by these tools (suffix -PE). However, for comparison pur-

poses only, we will also include the results obtained when compressing the

dataset in the single-end mode (suffix -SE; losing the pairing information

on the file-level after the decompression).

Chapter 3. Results 140

When compressing alignments in SAM format, we can distinguish two

main categories of compression methods, namely: the non-reference-

based ones (Quip, SCRAMBLE [18], and DeeZ [71] methods run in NOREF

mode; CARGO SAM format compressors in STD and EXT variants) and the

reference-based ones (Quip, SCRAMBLE, DeeZ run in REF modes; CARGO-

SAM-REF). Moreover, when performing reference-based compression,

SCRAMBLE, implementing the CRAM format (both in the version 2.0 the

newest one – 3.0; the version 2.0 was tested in Section 3.4), also offers

an option to embed the provided reference sequence in the compressed

archive when run in EMBREF mode, hence not requiring the reference to

be provided externally during the decompression. As a side note, we also

included in our tests the non-reference-based SCRAMBLE compressor

implementing CRAM format in version 2.0, but only as a reference point,

since it does not preserve all the SAM optional fields.

Finally, in our tests, we also included the gzip-based compression solu-

tions, which being the most commonly used solutions are considered

as the de facto standard. These are: pigz2 (a parallel version of the gzip

compressor) and the SCRAMBLE-based implementation of BAM format.

All the applications were run in multithreading mode using 8 threads, if

supported. Only Quip and Fqzcomp do not support compression with an

externally provided number of processing threads – when run in multi-

threading mode (set by default) they compress each kind of the data in

a separate thread. Moreover, some methods, such as the CARGO-based

family of FASTQ format compressors or a simple CARGO-SAM-STD have

been provided as a proof-of-concept, being semi-automatically gener-

ated. Hence, a direct and complete comparison with format-specific and

optimized state-of-the-art compressors is not an easy task.

3.5.2 Results

Overview

The tests were performed on the cluster in Centro Nacional de Análisis

Genómico3 (CNAG), which consists of more than 100 compute nodes

each one having two Intel Xeon Quad Core 2.93 GHz processors with 48

2http://zlib.net/pigz/
3http://www.cnag.cat

http://zlib.net/pigz/
http://www.cnag.cat

141 3.5. Brief summary

GB of RAM. It has about 3 PB of network-distributed hard-drive storage

mounted as a Lustre parallel file system4. Inter-node communication and

data transfer is performed via a dedicated Infiniband network.

In Table 3.2 we show the results of compressing raw reads in FASTQ format

for both WEX and WGS datasets. Analogously, in Table 3.3 we show the

results of compressing alignments in SAM format. Some of these results

are best visualized as a picture – Fig. 3.1 shows the comparison between

different compressed sizes of the WEX dataset that each of the methods

achieves, both for the data represented in FASTQ and SAM formats. Analo-

gously, Fig. 3.1 shows these results for the WGS dataset.

The tested compression solutions, which are currently considered as the

de facto standard are PIGZ (FASTQ) and SCRAMBLE-BAM (SAM). PIGZ

managed to compress the input WEX dataset in FASTQ format initially of

44.8 GB in size to 11.7 GB (28% of its original size) and the WGS dataset

of 295.5 GB in size to 98.2 GB (33%). In comparison, SCRAMBLE-BAM

compressed the WEX dataset in SAM format of 55.5 GB in size to 9.8 GB

(18%) and the WGS dataset of 391 GB in size to 92.5 GB (24%). Interestingly,

the aligned reads stored in SAM format occupy significantly more space

than their equivalent raw representation in FASTQ format, but compressed

as a BAM file they occupy less space than stored in FASTQ file and com-

pressed using gzip. This is primarily due to the fact that the highly similar

DNA sequences (mapping to the same or neighboring positions in the

reference genome) reside much closer to each other in the file. Hence, the

possible overlappings between sequences can be more easily encoded by

the dictionary-based compression method used in BAM format. Moreover,

when compressing FASTQ files using the CARGO-FQ-GZIP method, which

decouples records data into three separate streams and compresses them

using the same compression algorithm as PIGZ, a significant improvement

in compression ratio can be achieved compared to PIGZ. CARGO-FQ-GZIP

managed to compress the FASTQ datasets WEX to 10.1 GB (23%) and WGS

to 86.2 GB (29%), which, in the case of the WGS dataset, this also gives a

higher compression result than when compressing it in SAM format using

SCRAMBLE-BAM. This simple experiment clearly shows the importance of

decoupling the records data prior to the actual compression.

Nonetheless, the highest overall compression ratio for the FASTQ format

4http://lustre.org/

http://lustre.org/

Chapter 3. Results 142

Ta
b

le
3.

2:
Su

m
m

ar
y

o
ft

h
e

re
su

lt
s

o
fc

o
m

p
re

ss
in

g
W

E
X

an
d

W
G

S
d

at
as

et
s

in
FA

ST
Q

fo
rm

at
.

M
et

h
o

d
To

ta
l

Sp
ee

d
D

N
A

ID
Q

U
A

Si
ze

R
at

io
In

v.
C

o
m

p
.

D
ec

.
Si

ze
R

at
io

In
v.

Fr
ac

.
Si

ze
R

at
io

In
v.

Fr
ac

.
Si

ze
R

at
io

In
v.

Fr
ac

.

W
E

X
F A

ST
O

R
E

-S
E

-C
1

43
83

10
.2

1
10

%
5.

2
83

.6
62

4
30

.3
7

3%
14

%
72

9
8.

35
12

%
17

%
30

30
6.

25
16

%
69

%
FA

ST
O

R
E

-S
E

-C
0

44
62

10
.0

3
10

%
38

.1
10

2.
8

69
7

27
.1

9
4%

16
%

73
4

8.
30

12
%

16
%

30
31

6.
25

16
%

68
%

FA
ST

O
R

E
-P

E
-C

1
44

43
10

.0
7

10
%

5.
2

10
0.

3
10

20
18

.5
8

5%
23

%
38

0
16

.0
2

6%
9%

30
43

6.
23

16
%

68
%

FA
ST

O
R

E
-P

E
-C

0
44

62
10

.0
3

10
%

35
.1

10
4.

5
10

61
17

.8
6

6%
24

%
37

1
16

.4
1

6%
8%

30
30

6.
25

16
%

68
%

SC
A

LC
E

-S
E

57
46

7.
79

13
%

42
.8

80
.0

12
91

14
.6

8
7%

22
%

12
61

4.
83

21
%

22
%

31
94

5.
93

17
%

56
%

SC
A

LC
E

-P
E

63
36

7.
06

14
%

51
.6

92
.2

18
83

10
.0

6
10

%
30

%
12

60
4.

83
21

%
20

%
31

93
5.

93
17

%
50

%

LE
O

N
61

27
7.

30
14

%
16

.3
49

.2
17

13
11

.0
6

9%
28

%
25

1
24

.2
6

4%
4%

41
63

4.
55

22
%

68
%

Q
U

IP
-F

Q
-M

A
X

74
65

5.
99

17
%

50
.6

23
.6

41
95

4.
52

22
%

56
%

31
6

19
.2

7
5%

4%
29

54
6.

41
16

%
40

%

F
Q

Z
C

O
M

P-
M

A
X

52
91

8.
46

12
%

18
.0

16
.0

20
87

9.
08

11
%

39
%

31
4

19
.3

9
5%

6%
28

90
6.

56
15

%
55

%
F

Q
Z

C
O

M
P-

ST
D

77
00

5.
81

17
%

74
.3

56
.6

44
40

4.
27

23
%

58
%

31
4

19
.3

9
5%

4%
29

46
6.

43
16

%
38

%
D

SR
C

-M
A

X
79

24
5.

65
18

%
15

9.
2

13
5.

2
45

34
4.

18
24

%
57

%
33

2
18

.3
4

5%
4%

30
58

6.
20

16
%

39
%

D
SR

C
-F

A
ST

85
99

5.
20

19
%

30
6.

4
58

8.
7

47
31

4.
01

25
%

55
%

32
8

18
.5

6
5%

4%
35

40
5.

35
19

%
41

%
C

A
R

G
O

-F
Q

-P
P

M
D

84
04

5.
32

19
%

13
3.

5
11

8.
0

46
63

4.
06

25
%

55
%

43
2

14
.0

9
7%

5%
33

08
5.

73
17

%
39

%
C

A
R

G
O

-F
Q

-L
Z

M
A

88
47

5.
06

20
%

8.
0

26
1.

6
49

21
3.

85
26

%
56

%
35

1
17

.3
5

6%
4%

35
74

5.
30

19
%

40
%

C
A

R
G

O
-F

Q
-B

Z
IP

2
92

66
4.

83
21

%
81

.5
15

4.
3

51
05

3.
71

27
%

55
%

59
3

10
.2

7
10

%
6%

35
67

5.
31

19
%

38
%

C
A

R
G

O
-F

Q
-G

Z
IP

10
08

0
4.

44
23

%
16

.7
51

4.
2

52
96

3.
58

28
%

53
%

65
4

9.
31

11
%

6%
41

29
4.

59
22

%
41

%
P

IG
Z

11
69

4
3.

83
26

%
12

.6
16

5.
7

—
—

—
—

—
—

—
—

—
—

—
—

W
G

S
FA

ST
O

R
E

-S
E

-C
1

42
14

2
7.

01
14

%
6.

1
78

.6
34

39
38

.3
1

3%
8%

48
59

5.
23

19
%

12
%

33
84

4
3.

89
26

%
80

%
FA

ST
O

R
E

-S
E

-C
0

42
78

8
6.

91
14

%
25

.9
79

.0
41

19
31

.9
9

3%
10

%
48

58
5.

23
19

%
11

%
33

81
1

3.
90

26
%

79
%

FA
ST

O
R

E
-P

E
-C

1
44

93
6

6.
58

15
%

8.
5

82
.0

85
24

15
.4

6
6%

19
%

24
66

10
.3

1
10

%
5%

33
94

6
3.

88
26

%
76

%
FA

ST
O

R
E

-P
E

-C
0

45
72

0
6.

46
15

%
29

.7
81

.9
94

02
14

.0
1

7%
21

%
24

33
10

.4
5

10
%

5%
33

88
5

3.
89

26
%

74
%

SC
A

LC
E

-S
E

56
21

4
5.

26
19

%
10

.4
69

.6
12

34
5

10
.6

7
9%

22
%

70
15

3.
62

28
%

12
%

36
85

4
3.

58
28

%
66

%
SC

A
LC

E
-P

E
63

71
0

4.
64

22
%

36
.1

79
.9

19
89

7
6.

62
15

%
31

%
69

84
3.

64
27

%
11

%
36

82
9

3.
58

28
%

58
%

LE
O

N
60

29
3

4.
90

20
%

13
.3

38
.1

13
20

6
9.

98
10

%
22

%
16

>1
00

0
0%

0%
47

07
1

2.
80

36
%

78
%

Q
U

IP
-F

Q
-M

A
X

63
00

8
4.

69
21

%
34

.3
21

.2
28

49
7

4.
62

22
%

45
%

2
>1

00
0

0%
0%

34
50

9
3.

82
26

%
55

%

F
Q

Z
C

O
M

P-
M

A
X

56
89

3
5.

19
19

%
7.

7
7.

0
24

03
5

5.
48

18
%

42
%

2
>1

00
0

0%
0%

32
85

6
4.

01
25

%
58

%
F

Q
Z

C
O

M
P-

ST
D

63
15

4
4.

68
21

%
53

.9
43

.1
29

04
1

4.
54

22
%

46
%

2
>1

00
0

0%
0%

34
11

1
3.

86
26

%
54

%
D

SR
C

-M
A

X
63

68
4

4.
64

22
%

12
1.

3
10

6.
0

29
96

0
4.

40
23

%
47

%
21

>1
00

0
0%

0%
33

70
3

3.
91

26
%

53
%

D
SR

C
-F

A
ST

73
76

9
4.

01
25

%
30

4.
7

43
2.

4
32

93
1

4.
00

25
%

45
%

2
>1

00
0

0%
0%

40
83

6
3.

23
31

%
55

%
C

A
R

G
O

-F
Q

-P
P

M
D

69
58

1
4.

25
24

%
93

.0
84

.6
31

77
6

4.
15

24
%

46
%

13
71

18
.5

4
5%

2%
36

43
3

3.
62

28
%

52
%

C
A

R
G

O
-F

Q
-L

Z
M

A
74

39
1

3.
97

25
%

8.
7

23
0.

8
32

36
9

4.
07

25
%

44
%

45
6

55
.7

5
2%

1%
41

56
5

3.
17

32
%

56
%

C
A

R
G

O
-F

Q
-B

Z
IP

2
76

31
6

3.
87

26
%

73
.5

12
4.

9
34

45
7

3.
82

26
%

45
%

14
75

17
.2

4
6%

2%
40

38
3

3.
26

31
%

53
%

C
A

R
G

O
-F

Q
-G

Z
IP

86
16

4
3.

43
29

%
15

.5
43

3.
2

36
12

0
3.

65
27

%
42

%
32

97
7.

71
13

%
4%

46
74

5
2.

82
35

%
54

%
P

IG
Z

98
18

2
3.

01
33

%
18

.3
13

6.
2

—
—

—
—

—
—

—
—

—
—

—
—

N
ot

es
:

T
h

e
si

ze
s

ar
e

re
p

o
rt

ed
in

gi
ga

b
yt

es
.T

h
e

co
m

p
re

ss
io

n
an

d
d

ec
o

m
p

re
ss

io
n

p
er

fo
rm

an
ce

sp
ee

d
s

ar
e

in
M

B
/s

.R
at

io
is

th
e

ra
ti

o
b

et
w

ee
n

th
e

si
ze

o
fo

ri
gi

n
al

fi
le

o
r

d
at

a
cl

as
s

an
d

it
s

co
m

p
re

ss
ed

si
ze

,w
h

er
ea

s
In

v.
is

th
e

in
ve

rs
e

re
la

ti
o

n
.F

ra
c.

d
en

o
te

s
th

e
fr

ac
ti

o
n

o
ft

h
e

to
ta

lc
o

m
p

re
ss

ed
si

ze
th

e
d

at
a

cl
as

s
o

cc
u

p
ie

s.

143 3.5. Brief summary

Ta
b

le
3.

3:
Su

m
m

ar
y

o
ft

h
e

re
su

lt
s

o
fc

o
m

p
re

ss
in

g
W

E
X

an
d

W
G

S
d

at
as

et
s

in
SA

M
fo

rm
at

.

M
et

h
o

d
To

ta
l

Sp
ee

d
A

L
N

ID
Q

U
A

O
P

T
Si

ze
R

at
io

In
v.

C
o

m
p

.
D

ec
.

Si
ze

R
at

io
In

v.
Fr

ac
.

Si
ze

R
at

io
In

v.
Fr

ac
.

Si
ze

R
at

io
In

v.
Fr

ac
.

Si
ze

R
at

io
In

v.
Fr

ac
.

W
E

X
SC

R
A

M
B

LE
-C

R
A

M
3-

R
E

F
47

00
11

.8
0

8%
18

3.
0

27
3.

2
41

6
56

.1
1

2%
9%

80
4

7.
39

14
%

17
%

33
53

5.
65

18
%

71
%

12
4

39
.9

4
3%

3%
SC

R
A

M
B

LE
-C

R
A

M
2-

R
E

F
53

50
10

.3
7

10
%

18
1.

8
27

0.
5

46
0

50
.7

5
2%

9%
80

4
7.

39
14

%
15

%
39

45
4.

81
21

%
74

%
13

6
36

.4
1

3%
3%

C
A

R
G

O
-S

A
M

-R
E

F
47

65
11

.6
4

9%
12

0.
8

20
9.

3
60

2
38

.7
8

3%
13

%
66

8
8.

90
11

%
14

%
33

44
5.

67
18

%
70

%
14

8
33

.4
6

3%
3%

D
E

E
Z

-R
E

F
50

26
11

.0
3

9%
16

.3
21

.2
86

6
26

.9
5

4%
17

%
62

1
9.

57
10

%
12

%
31

78
5.

96
17

%
63

%
35

9
13

.7
9

7%
7%

Q
U

IP
-S

A
M

-R
E

F
48

54
11

.4
3

9%
38

.5
30

.2
88

2
26

.4
7

4%
18

%
68

9
8.

63
12

%
14

%
29

54
6.

42
16

%
61

%
32

7
15

.1
4

7%
7%

SC
R

A
M

B
LE

-C
R

A
M

3-
E

M
B

R
E

F
54

17
10

.2
4

10
%

18
1.

8
29

6.
6

11
24

20
.7

7
5%

21
%

80
4

7.
39

14
%

15
%

33
53

5.
65

18
%

62
%

12
4

39
.9

4
3%

2%
SC

R
A

M
B

LE
-C

R
A

M
2-

E
M

B
R

E
F

61
33

9.
04

11
%

14
0.

0
28

0.
1

12
44

18
.7

6
5%

20
%

80
4

7.
39

14
%

13
%

39
45

4.
81

21
%

64
%

13
6

36
.4

1
3%

2%

SC
R

A
M

B
LE

-C
R

A
M

3-
N

O
R

E
F

55
62

9.
97

10
%

19
8.

8
30

1.
4

11
21

20
.8

2
5%

20
%

80
4

7.
39

14
%

14
%

33
53

5.
65

18
%

60
%

28
0

17
.6

9
6%

5%
SC

R
A

M
B

LE
-C

R
A

M
2-

N
O

R
E

F
66

48
8.

34
12

%
11

9.
3

28
3.

2
17

59
13

.2
7

8%
26

%
80

4
7.

39
14

%
12

%
39

45
4.

81
21

%
59

%
13

6
36

.4
1

3%
2%

C
A

R
G

O
-S

A
M

-S
T

D
54

96
10

.0
9

10
%

67
.9

19
1.

2
11

97
19

.5
0

5%
22

%
66

8
8.

90
11

%
12

%
33

48
5.

66
18

%
61

%
28

0
17

.6
9

6%
5%

C
A

R
G

O
-S

A
M

-E
X

T
56

02
9.

90
10

%
84

.7
17

9.
5

12
76

18
.2

9
5%

23
%

66
8

8.
90

11
%

12
%

33
44

5.
67

18
%

60
%

31
1

15
.9

2
6%

6%
D

E
E

Z
-N

O
R

E
F

54
01

10
.2

7
10

%
17

.6
23

.0
12

41
18

.8
1

5%
23

%
62

1
9.

57
10

%
11

%
31

78
5.

96
17

%
59

%
35

9
13

.7
9

7%
7%

Q
U

IP
-S

A
M

-N
O

R
E

F
90

63
6.

12
16

%
37

.1
29

.8
50

91
4.

59
22

%
56

%
68

9
8.

63
12

%
8%

29
54

6.
42

16
%

33
%

32
7

15
.1

4
7%

4%
SC

R
A

M
B

LE
-B

A
M

97
65

5.
68

18
%

19
4.

6
26

9.
2

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

W
G

S
SC

R
A

M
B

LE
-C

R
A

M
3-

R
E

F
50

34
7

7.
77

13
%

17
0.

7
26

3.
4

36
48

46
.5

6
2%

7%
52

45
4.

61
22

%
10

%
39

79
6

3.
31

30
%

79
%

16
56

27
.4

4
4%

3%
SC

R
A

M
B

LE
-C

R
A

M
2-

R
E

F
59

65
6

6.
55

15
%

17
2.

3
23

8.
1

39
09

43
.4

5
2%

7%
52

45
4.

61
22

%
9%

48
77

3
2.

70
37

%
82

%
17

26
26

.3
3

4%
3%

C
A

R
G

O
-S

A
M

-R
E

F
51

06
5

7.
66

13
%

13
1.

6
18

4.
4

56
34

30
.1

5
3%

11
%

46
15

5.
24

19
%

9%
39

02
4

3.
38

30
%

76
%

17
89

25
.4

2
4%

4%
D

E
E

Z
-R

E
F

53
58

9
7.

30
14

%
16

.3
21

.5
79

36
21

.4
0

5%
15

%
47

34
5.

11
20

%
9%

36
98

7
3.

57
28

%
69

%
39

30
11

.5
7

9%
7%

Q
U

IP
-S

A
M

-R
E

F
51

02
7

7.
66

13
%

34
.5

27
.2

74
52

22
.7

9
4%

15
%

48
28

5.
01

20
%

9%
34

57
1

3.
82

26
%

68
%

41
75

10
.8

9
9%

8%
SC

R
A

M
B

LE
-C

R
A

M
3-

E
M

B
R

E
F

52
48

4
7.

45
13

%
16

9.
1

27
7.

9
43

62
38

.9
4

3%
8%

52
45

4.
61

22
%

10
%

39
79

6
3.

31
30

%
76

%
30

79
14

.7
6

7%
6%

SC
R

A
M

B
LE

-C
R

A
M

2-
E

M
B

R
E

F
60

43
6

6.
47

15
%

16
9.

6
23

8.
4

46
88

36
.2

3
3%

8%
52

45
4.

61
22

%
9%

48
77

3
2.

70
37

%
81

%
17

26
26

.3
3

4%
3%

SC
R

A
M

B
LE

-C
R

A
M

3-
N

O
R

E
F

55
42

7
7.

05
14

%
16

7.
4

26
4.

8
72

83
23

.3
2

4%
13

%
52

45
4.

61
22

%
9%

39
81

7
3.

31
30

%
72

%
30

79
14

.7
6

7%
6%

SC
R

A
M

B
LE

-C
R

A
M

2-
N

O
R

E
F

68
71

1
5.

69
18

%
98

.8
24

8.
9

12
96

4
13

.1
0

8%
19

%
52

45
4.

61
22

%
8%

48
77

3
2.

70
37

%
71

%
17

26
26

.3
3

4%
3%

C
A

R
G

O
-S

A
M

-S
T

D
55

48
6

7.
05

14
%

60
.8

16
9.

6
87

72
19

.3
6

5%
16

%
46

13
5.

24
19

%
8%

39
08

5
3.

38
30

%
70

%
30

12
15

.0
9

7%
5%

C
A

R
G

O
-S

A
M

-E
X

T
56

31
5

6.
94

14
%

74
.5

16
3.

8
93

46
18

.1
8

6%
17

%
46

13
5.

24
19

%
8%

39
02

7
3.

38
30

%
69

%
33

27
13

.6
7

7%
6%

D
E

E
Z

-N
O

R
E

F
54

38
7

7.
19

14
%

16
.4

21
.6

87
33

19
.4

5
5%

16
%

47
34

5.
11

20
%

9%
36

98
7

3.
57

28
%

68
%

39
30

11
.5

7
9%

7%
Q

U
IP

-S
A

M
-N

O
R

E
F

78
20

3
5.

00
20

%
33

.3
26

.3
34

62
8

4.
91

20
%

44
%

48
28

5.
01

20
%

6%
34

57
1

3.
82

26
%

44
%

41
75

10
.8

9
9%

5%
SC

R
A

M
B

LE
-B

A
M

92
46

6
4.

23
24

%
13

7.
6

27
1.

2
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—

N
ot

es
:

T
h

e
si

ze
s

ar
e

re
p

o
rt

ed
in

gi
ga

b
yt

es
.T

h
e

co
m

p
re

ss
io

n
an

d
d

ec
o

m
p

re
ss

io
n

p
er

fo
rm

an
ce

sp
ee

d
s

ar
e

in
M

B
/s

.R
at

io
is

th
e

ra
ti

o
b

et
w

ee
n

th
e

si
ze

o
fo

ri
gi

n
al

fi
le

o
r

d
at

a
cl

as
s

an
d

it
s

co
m

p
re

ss
ed

si
ze

,w
h

er
ea

s
In

v.
is

th
e

in
ve

rs
e

re
la

ti
o

n
.F

ra
c.

d
en

o
te

s
th

e
fr

ac
ti

o
n

o
ft

h
e

to
ta

lc
o

m
p

re
ss

ed
si

ze
th

e
d

at
a

cl
as

s
o

cc
u

p
ie

s.

Chapter 3. Results 144

F
A

S
T

Q
-A

F
A

S
T

Q
-B

F
A

S
T

Q
-C

S
A

M
-A

S
A

M
-B

WEX

PIG
Z

CARGO-FQ-G
ZIP

CARGO-FQ-BZIP2

CARGO-FQ-LZMA

CARGO-FQ-PPMD DSRC-FAST DSRC-M
AX

FQZCOMP-STD QUIP-FQ-STD
FQZCOMP-M

AX
QUIP-FQ-M

AX

LEON

SCALCE-PE SCALCE-SE
FASTORE-PE-C

0
FASTORE-SE-C

0
FASTORE-PE-C

1
FASTORE-SE-C

1 SCRAMBLE-B
AM

QUIP-SAM-N
OREF

SCRAMBLE-C
RAM2-N

OREF

CARGO-SAM-EXT

SCRAMBLE-C
RAM3-N

OREF

CARGO-S
AM-STD DEEZ-N

OREF

SCRAMBLE-C
RAM2-E

MBREF

SCRAMBLE-C
RAM3-E

MBREF
QUIP-S

AM-R
EF DEEZ-R
EF

CARGO-S
AM-R

EF

SCRAMBLE-C
RAM2-R

EF

SCRAMBLE-C
RAM3-R

EF

0

3
0

0
0

6
0

0
0

9
0

0
0

1
2

0
0

0

C
o

m
p

re
s
s
io

n
 m

e
th

o
d

Size (MB)
D

a
ta

 c
la

s
s
:

S
E

Q
/A

L
N

ID
Q

U
A

O
P

T
N

A

Fi
gu

re
3.

1:
C

o
m

p
ar

is
o

n
o

fc
o

m
p

re
ss

ed
fi

le
si

ze
s

an
d

d
at

a
st

re
am

s
b

et
w

ee
n

d
if

fe
re

n
tc

o
m

p
re

ss
io

n
m

et
h

o
d

s
fo

r
th

e
W

E
X

d
at

as
et

re
p

re
se

n
te

d
in

FA
ST

Q
an

d
SA

M
fo

rm
at

s.
P

IG
Z

an
d

SC
R

A
M

B
L

E
-B

A
M

so
lu

ti
o

n
s

d
o

n
o

t
d

ec
o

u
p

le
th

e
re

co
rd

s
co

n
te

n
t

w
h

en
co

m
p

re
ss

in
g

th
e

d
at

a,
h

en
ce

w
e

on
ly

re
p

or
tt

h
e

si
ze

of
th

e
w

h
ol

e
co

m
p

re
ss

ed
fi

le
d

en
ot

ed
as

N
A

.T
h

e
ca

te
go

ri
es

of
co

m
p

re
ss

io
n

m
et

h
od

s
ar

e
re

sp
ec

ti
ve

ly
:g

en
er

al
on

es
(F

A
ST

Q
-A

,S
A

M
-A

),
as

se
m

b
ly

-b
as

ed
(F

A
ST

Q
-B

),
re

ad
s-

re
or

d
er

in
g-

b
as

ed
(F

A
ST

Q
-C

),
an

d
re

fe
re

n
ce

-b
as

ed
(S

A
M

-B
).

145 3.5. Brief summary

F
A

S
T

Q
-A

F
A

S
T

Q
-B

F
A

S
T

Q
-C

S
A

M
-A

S
A

M
-B

WGS

PIG
Z

CARGO-FQ-G
ZIP

CARGO-FQ-BZIP2

CARGO-FQ-PPMD DSRC-FAST

CARGO-FQ-LZMA DSRC-M
AX

FQZCOMP-STD QUIP-FQ-STD
FQZCOMP-M

AX
QUIP-FQ-M

AX

LEON

SCALCE-PE SCALCE-SE
FASTORE-PE-C

0
FASTORE-PE-C

1
FASTORE-SE-C

0
FASTORE-SE-C

1 SCRAMBLE-BAM

QUIP-SAM-N
OREF

SCRAMBLE-C
RAM2-N

OREF

CARGO-SAM-EXT DEEZ-N
OREF

CARGO-S
AM-STD

SCRAMBLE-C
RAM3-N

OREF

DEEZ-R
EF

QUIP-S
AM-R

EF

CARGO-S
AM-R

EF

SCRAMBLE-C
RAM2-E

MBREF

SCRAMBLE-C
RAM3-E

MBREF

SCRAMBLE-C
RAM2-R

EF

SCRAMBLE-C
RAM3-R

EF

0

2
5

0
0

0

5
0

0
0

0

7
5

0
0

0

1
0

0
0

0
0

C
o

m
p

re
s
s
io

n
 m

e
th

o
d

Size (MB)
D

a
ta

 c
la

s
s
:

S
E

Q
/A

L
N

ID
Q

U
A

O
P

T
N

A

Fi
gu

re
3.

2:
C

o
m

p
ar

is
o

n
o

fc
o

m
p

re
ss

ed
fi

le
si

ze
s

an
d

d
at

a
st

re
am

s
b

et
w

ee
n

d
if

fe
re

n
tc

o
m

p
re

ss
io

n
m

et
h

o
d

s
fo

r
th

e
W

G
S

d
at

as
et

re
p

re
se

n
te

d
in

FA
ST

Q
an

d
SA

M
fo

rm
at

s.
P

IG
Z

an
d

SC
R

A
M

B
L

E
-B

A
M

so
lu

ti
o

n
s

d
o

n
o

t
d

ec
o

u
p

le
th

e
re

co
rd

s
co

n
te

n
t

w
h

en
co

m
p

re
ss

in
g

th
e

d
at

a,
h

en
ce

w
e

on
ly

re
p

or
tt

h
e

si
ze

of
th

e
w

h
ol

e
co

m
p

re
ss

ed
fi

le
d

en
ot

ed
as

N
A

.T
h

e
ca

te
go

ri
es

of
co

m
p

re
ss

io
n

m
et

h
od

s
ar

e
re

sp
ec

ti
ve

ly
:g

en
er

al
on

es
(F

A
ST

Q
-A

,S
A

M
-A

),
as

se
m

b
ly

-b
as

ed
(F

A
ST

Q
-B

),
re

ad
s-

re
or

d
er

in
g-

b
as

ed
(F

A
ST

Q
-C

),
an

d
re

fe
re

n
ce

-b
as

ed
(S

A
M

-B
).

Chapter 3. Results 146

was achieved by the reads-reordering method FaStore. In C1 mode it

managed to compress the WEX dataset to 4.4 GB (10% of its original size)

and the WGS dataset to 44.9 GB (15%). In comparison to SAM format, the

highest overall compression ratio was achieved by the reference-based

compression methods. SCRAMBLE-CRAM3-REF managed to compress

the SAM WEX dataset to 4.7 GB (8%) and the WGS dataset to 50.3 GB (13%).

Similar results have been been achieved by the reference-based version

of the CARGO-based compressor, followed by Quip and DeeZ. What is

interesting are the high compression results achievable by simple proof-

of-concept SAM format CARGO-based compressors which show that there

is still a significant room for improvement in the current state-of-the-art.

Compression of quality scores

As can be clearly seen from Fig. 3.1 and 3.2, for the majority of the solutions,

the largest amounts of space occupy the quality scores – up to 70−74%

(WEX) or 80−82% (WGS) of the resulting compressed file. These are the

most difficult kind of data to compress, primarily due to their high entropy

and containing a significant degree of noise. Nonetheless, in the case of

compressing quality scores in the FASTQ files, the best result was achieved

by Fqzcomp, which managed to store them in 2.9 GB (15% of their original

size) for the WEX dataset and in 32.9 GB (25%) for the WGS. Similarly, in

the case of compressing SAM files, Quip provided the best compression

results, storing the quality scores in the case of the WEX dataset in 2.9 GB

(16%) and for the WGS dataset in 34.6 GB (26%).

Compression of the sequence and alignment data

After the quality scores, the next type of data occupying most of the space is

the sequence (FASTQ) and alignment (SAM) data. When compressing the

sequence data in FASTQ format, the best compression ratio was achieved

by FaStore, which managed to compress the input datasets by up to 6%

of their original size. For comparison, LEON, which does not reorder the

reads (but performs a reads preprocessing step before their assembly),

managed to reduce the size of the sequence data by up to 9−10% of their

original size. Similarly, FQZCOMP-MAX, a general method, managed to

reduce the sequence size by up to 11% and 18% for the WEX and WGS

datasets respectively. The compressed sequence data can occupy by up

147 3.5. Brief summary

to 23−58% (WEX) or 19−47% (WGS) of the resulting file. As a side note,

when running FaStore in the single-end mode (i.e., discarding the pairing

information between the reads on the file level), the sequence data can be

further reduced up to half of the one achieved in the paired-end mode –

by up to 3% of their original size for both datasets.

When compressing alignments in SAM format and sorted by their mapping

position (the operation can be also treated as a form of reads reordering

transformation), the best compression was achieved by the non-reference-

based methods. SCRAMBLE-CRAM3-REF achieved the best result, for

both datasets it managed to reduce the alignment data by up to 2% of their

original size. Similar results were achieved by the reference-based CARGO

solution. Considering now non-reference based methods, the best com-

pression result was also achieved by SCRAMBLE-CRAM3-NOREF, which

managed to reduce the alignment size by up to 5% (WEX) and 4% (WGS)

of its size. Here, analogously, comparable results were achieved by CARGO

and DeeZ. Interestingly, the solutions which implement both reference

and non-reference compression modes, when run in non-reference mode,

report the size of the compressed data of ALN kind as almost twice the

size as the one obtained in reference-based mode. Important to mention,

when the solutions are not run in reference-based mode, some optional

fields need to be stored explicitly in the resulting file and cannot be regener-

ated automatically without access to the reference. This brings additional,

significant savings. For example, when run with access to the reference

sequence both SCRAMBLE and the CARGO solutions can reduce the size of

the optional fields content by up to 3−4% of their original size compared

to 6−7% when not using the reference. Finally, what is interesting, when

running SCRAMBLE in the mode of embedding the reference sequence in

the resulting compressed archive (the EMBREF suffix), the size overhead

of storing the reference sequence (included in the ALN class) compared to

when run in non-reference-based compression is negligible. In the case

of WGS dataset, the compression results are even better than when run

without the reference sequence. The possible improvement (or decrease)

in compression ratio, in fact, strictly depends on the depth and the unifor-

mity of the sequence coverage of the compressed dataset. As a side note,

running SCRAMBLE with embedding the reference sequence also allows it

to re-generate some of the optional fields during decompression, hence,

not requiring them to be stored.

Chapter 3. Results 148

Compression of the read identifiers

The significant reduction achieved above in the compressed size of data in

SEQ and ALN categories is primarily thanks to reordering the reads. The

reads can be either compressed in groups sharing a large degree of se-

quence similarity between the consecutive reads (FASTQ) or compressed

as mapped to a reference genome and sorted (reordered) by the mapping

position (SAM). However, the significant gains in sequence and alignment

data compression achievable by these methods come at the cost of de-

creasing the compression efficiency of the read identifiers. This is due

to the fact that in the initial FASTQ files, the consecutive read identifiers

are more likely to exhibit some sort of order, e.g., the numerical values

associated with some tokens (such as arbitrary read numbers or flowcell

coordinates) tend to appear in an increasing order. Therefore, the read

identifiers in the reordered FASTQ files are more difficult to compress –

this can be more clearly seen on the Figures 3.1 and 3.2.

This problem is especially visible for the WGS dataset, where the identifiers

can be compressed up to less than 1% of the original size by a number of

different methods, whereas FaStore compresses them up to 10%. Simi-

larly, all the SAM solutions compress them up to 19−22% of their original

size with the best result achievable by CARGO-based methods on this

dataset. One needs to note, however, that the WGS dataset contains the

identifies following the SRA format (i.e., @<library_name>.<read_number>

<more_data_stored_as_comment>), which, in addition, were trimmed be-

fore compression (as explained in the previous subsection). Therefore,

when considering the WEX dataset, possibly containing the original iden-

tifiers generated by the sequencing machine, these differences in com-

pressed size are less significant. FaStore, in paired-end mode can compress

the identifiers by up to 6% of their original size. For comparison, LEON

achieves the best compression results for this category of data and com-

presses them up to 4%. All the SAM solutions compress the identifiers by

up to 10−14%, with the best result achievable by DeeZ. However, when con-

sidering sizes of compressed data from SEQ and ID (FASTQ) or ALN and ID

(SAM) categories together, it can be seen that the best compression ratio is

achievable either by reads-reordering-based methods (FASTORE-C1) or

reference-based methods (SCRAMBLE-CRAM3-REF, CARGO-SAM-REF).

149 3.5. Brief summary

Compression speed comparison

Regarding the compression and decompression speeds offered by different

solutions – the best way to visualize them is as a picture. Fig. 3.3 and 3.4

show the compression speeds of different solutions in a 2D space for

FASTQ and SAM format respectively.

When compressing FASTQ files, DSRC2-FAST achieves the best perfor-

mance speed results – more than 300 MB/s when compressing and more

than 400 MB/s when decompressing. Comparable decompression speeds

(over 400 MB/s) were also achieved by CARGO-FQ-GZIP. However, what

is interesting, although CARGO-FQ-GZIP and PIGZ achieve comparable

compression speeds (~15 MB/s), the decompression speeds offered by

CARGO-FQ-GZIP are at least twice that offered by PIGZ, while using the

same compression settings and the number of processing threads. More-

over, it can be noted that some solutions offer a higher compression ratio

at the cost of spending more computational resources during the data

compression stage. They perform different reads preprocessing opera-

tions, such as: reordering the reads (FaStore, SCALCE), performing the

assembly of the reads (LEON) or performing an exhaustive search for

sequence matches of different streams (CARGO-FQ-GZIP, CARGO-FQ-

LZMA). Nonetheless, with the resulting reduced output file size and a

reasonably lightweight decompression algorithm they can also achieve

relatively high decompression speeds.

In the case of SAM format, the newest SCRAMBLE-based implemen-

tation of CRAM format provides for both datasets the highest perfor-

mance speeds, offering compression speeds ~170 MB/s and decompres-

sion speeds ~270 MB/s. Similarly, when transcoding SAM files into BAM

format, it achieves ~130 MB/s (WGS) or ~190 MB/s (WEX) with a decom-

pression speed of ~270 MB/s for both datasets. By comparison, CARGO-

SAM-REF method is left just behind offering compression speeds ~120−
130 MB/s and decompression speed ~190−210 MB/s. The non-reference

based compression versions of the above mentioned methods achieve

lower compression speeds, yet, they still achieve relatively high perfor-

mance speeds alongside all the tools tested. As a side note, regarding

a potential comparison of the compression and decompression speeds

offered by different methods for both FASTQ and SAM formats, they can-

not be directly compared – to measure the compression speed of SAM

Chapter 3. Results 150

Compression speed Decompression speed

W
E

X
W

G
S

0.10 0.15 0.20 0.25 0.30 0.35 0.10 0.15 0.20 0.25 0.30 0.35

5

10

25

50

100

250

500

5

10

25

50

100

250

500

Compression (fraction)

S
p

e
e

d
 (

M
B

/s
)

Method
CARGO

DSRC

FASTORE

FQZCOMP

LEON

PIGZ

QUIP

SCALCE

Kind Assembly General Reordering

Figure 3.3: Comparison of performance speed between different FASTQ
compression methods. Fraction denotes the ratio between the compressed
and original file.

compression methods in a fair way, we would need to include the time

spent on aligning the reads to the reference sequence and time spend on

sorting the alignments by position taken by external tools. Moreover, in

the case of FASTQ files, although different compression methods have

been compared, the ones which apply specialized reads preprocessing

operations will usually achieve a superior compression ratio compared

to general-purpose methods. These improvements in compression ratio

come, however, at a cost of spending additional resources for the reads

preprocessing step.

151 3.5. Brief summary

Compression speed Decompression speed

W
E

X
W

G
S

0.08 0.12 0.16 0.20 0.240.08 0.12 0.16 0.20 0.24

25

50

100

200

400

25

50

100

200

400

Compression (fraction)

S
p

e
e

d
 (

M
B

/s
)

Kind General Ref-based Method BAM CARGO CRAM DEEZ QUIP

Figure 3.4: Comparison of performance speed between different SAM
compression methods. Fraction denotes the ratio between the compressed
and original file.

CHAPTER 4

DISCUSSION AND OUTLOOK

4.1 HTS data compression workflow

The approaches to storing and compressing HTS data, as described in

Chapter 2, share a substantial number of underlying ideas. In general, all

the methods can be divided in two main categories: general ones and ones

based on reads preprocessing. The main difference between these two ap-

proaches is that in the former, the reads (primarily stored in FASTQ format)

can be compressed “on-the-fly”, generating a compressed archive almost

immediately. In the latter, the reads follow a number of preprocessing

steps in order to reduce the entropy of the input data, possibly casting the

data into a different and more easily compressible form. During this pro-

cess, they also possibly produce a number of temporary files and require

a number of intermediate synchronization points between the separable

data processing stages before the actual compression can be started. The

HTS data compression process can as a whole be compared to the general

data compression workflow as presented in Fig. 1.8, where each of the

different read preprocessing steps can be perceived of as a form of the data

transformation step.

Moreover, aligning raw reads to a reference genome, producing alignments

in SAM format and sorting the resulting alignments by their mapping po-

sition (and generating a new file as a result) can also be seen as two com-

bined complex data transformation steps. Although the primary purpose

behind generating the intermediate mapping results in SAM format is

usually to perform an analysis of possible genomic variants (as explained

in Section 1.1.3), the SAM compression methods can also be used as an

efficient way to store the HTS data. Therefore, different approaches to

compress HTS data can be applied depending on the data formats used in

153

Chapter 4. Discussion and outlook 154

the genomic data analysis pipelines, storage capabilities and data process-

ing requirements. Finally, storing the information from a re-sequencing

experiment as a set of variants in VCF format, following the re-sequencing

data analysis workflow as depicted in Fig. 1.3, can also be perceived of as a

form of HTS data compression, albeit lossy, as recovering the raw reads is

not possible.

4.2 Lossless compression of HTS data

4.2.1 Compression of sequence and alignment data

When compressing the raw reads in FASTQ format, the most commonly

used methods are still the general ones. Some of their main advantages

include usually implementing computationally lightweight algorithms,

while providing a satisfactory compression ratio and achievable compres-

sion speeds. These allow to compress the HTS data as they are while being

generated “on-the-fly”. These methods usually also provide a relatively

high decompression speed, allowing for an efficient ingestion of the data

in the following data processing steps, such as mapping. Moreover, no

additional information is required in order to compress or to decompress

the data, which can sometimes be a big asset. Unfortunately, the reads

represented in FASTQ format are still in the majority of cases compressed

using general purpose text compression methods, such as gzip. These

methods, although being easily paralellizable, provide a non-satisfactory

compression ratio as has been shown in a number of experiments in the

previous chapter. Perhaps, the most striking drawback of compressing

FASTQ files by using gzip is that all the reads data are lumped together and

compressed in chunks. As shown in the previous chapter, just splitting the

reads content into different data streams and compressing them separately

can already provide a significant reduction in the storage space, even when

using the same compression algorithm. Hence, the general solutions we

developed, such as DSRC2 or CARGO-based ones, can achieve a signifi-

cantly better compression ratio than the commonly used gzip. Moreover,

they are also easily parallelizable and do not sacrifice performance speed

at the cost of providing high compression ratio as do the other state-of-

the-art solutions. Therefore, these solutions can be easily exchanged with

the existing gzip-based compression tools and adopted to genomic data

155 4.2. Lossless compression of HTS data

processing pipelines.

Moreover, compressing FASTQ files using read-reordering-based (e.g., FaS-

tore, SCALCE [70]) or assembly-based methods (e.g., LEON [15]), usually

allows to achieve a superior compression ratio compared to the general

ones. These methods can exploit the high sequence redundancy present

in the HTS data, which increases together with the sequencing depth of

the sample. The possible improvements in the space savings come at the

cost of performing an additional pass or passes over the input data prior to

performing the actual compression. Because these methods spent more

resources during compression stage, they allow for reducing significantly

size of the data. Moreover, they usually do not apply any additional data

transformations on the decompressed reads (e.g., reordering of the reads),

providing relatively high decompression speeds. Therefore, such methods

can be especially useful for data-sharing scenarios, when the raw reads

can be compressed once into the smallest size possible with the goal of

being shared efficiently. Alternatively, they can be also a good solution

for a long-term storage. However, it is important to mention, that these

solutions perform read preprocessing operations on a “global” scope and,

hence, their scalability may depend on the sequencing depth of the input

dataset.

Considering the reads mapped to the reference sequence and stored as

alignments in SAM format. The produced SAM files occupy a significant

amount of space, more than the input raw FASTQ file (as shown in Tab.

3.1), where the reads are annotated with the alignment information and

some content originating from the raw reads may also appear duplicated

(as in the case of reporting alternative alignments). Therefore, the data

stored in the resulting SAM files can be considered as a superset of the

data contained in the input FASTQ file(s). However, what is interesting,

compressing such annotated reads sorted by their mapping position, using

gzip-based BGZF algorithm and storing them in BAM format, gives better

compression results than compressing the input FASTQ just by using gzip

(both methods are considered as the de facto standard). These gains in

space savings are primarily due to the locality of the sequence data, where

the sequences sharing a high degree of similarity reside close to each other

in the file, ordered by their mapping position in the reference genome.

Nonetheless, one needs to remember that storing the alignments in BAM

format is, still, a highly inefficient approach, as the alignment data is not

Chapter 4. Discussion and outlook 156

being decoupled, and, similarly as when compressing FASTQ files using

gzip, all the data is lumped together and compressed. Storing the content

of each of the SAM fields in a separate stream and compressing each stream

independently using a more appropriate compressor already provides a

significant reduction in the size of the resulting file.

The above-mentioned SAM format compression methods, although com-

pressing reads mapped to a reference genome, do not require the reference

sequence to be present neither during compression nor decompression.

They are considered as general methods, compressing the alignment data

as it is. However, when the reference sequence (which was used during

the sequence mapping process) is available, using the reference-based

compression methods can further reduce the file size, especially reducing

the sequence and alignment data overhead. With the sequence mapping

information, the sequence with possible mismatches can be encoded dif-

ferentially with respect to the reference sequence and so is not required

to be stored verbatim. The newest SCRAMBLE-based implementation of

CRAM format [18] and the CARGO-based solution show the gains that can

be achieved. Another advantage of using a reference-based compression

method is that some of the optional fields which were generated during

the mapping stage, such as MD (string denoting observed mismatching

positions) or NM (string denoting edit distance with respect to the refer-

ence sequence), can be automatically re-generated while decompressing,

allowing for additional reductions in storage costs. Therefore, these meth-

ods can be used as an efficient way to store the HTS data in compressed

SAM format.

However, the significant improvement in compression of alignment data

achievable by reference-based methods comes at a cost. Mainly, the de-

compression process requires the exact reference sequence used while

compressing (and mapping) to be present, otherwise it is not possible to

recover the compressed data. Therefore, explicit mechanisms or protocols

to identify, manage and access the reference sequence in a non-ambiguous

way are required, especially if the data is to be distributed. Nonetheless, as

a partial solution for this problem, CRAM format supports embedding the

reference sequence in the compressed archive, which does not degrade

the compression ratio for the datasets with high coverage. Otherwise,

non-reference based solutions should be considered. As a side note, in

CARGO-based solutions, embedding a reference sequence could also be

157 4.2. Lossless compression of HTS data

possible, since datasets of different type and format can be stored inside

a single CARGO container. Therefore, storing a compressed reference se-

quence as one, e.g., FASTA dataset and referencing it by another single or

multiple SAM datasets would be an option definitely worth considering.

4.2.2 Compression of read identifiers

Apart from possibly improving the compression ratio of the sequence

(and alignment) data, changing the initial order of the reads also has a

significant impact on the compression ratio of the reads identifiers. DNA

sequences present in the reads in the initial FASTQ files as generated by

the sequencer are assumed to be stored in random order (but preserving

the information about pairing between the sequences originating from

the same fragment). Only the content present in the consecutive read

identifiers in the same FASTQ file exhibits some sort of order, where, e.g.,

the numerical values associated with some tokens (such as arbitrary read

number or flowcell coordinates) tend to appear in an increasing order.

Therefore, as has been shown in the previous chapter, methods compress-

ing the read identifiers of the raw reads stored in the non-altered order

allow to achieve the best compression results compared to the ones that

reorder the reads. The same applies in the case of compressing SAM files,

where the reads are reordered according to their mapping position in the

reference genome. However, there is a trade off to consider, in that, al-

though reordering the reads can achieve superior compression results

of sequence and alignment data, it does so at the cost of hampering the

compression of the reads identifiers.

Therefore, in FaStore to mitigate the problem of compressing reordered

read identifiers, when compressing FASTQ files generated from a paired-

end library, we keep one read identifier per pair of reads, only encoding the

possible differences between them (which usually would be token values of

1 or 2 at some position in the identifier identifying the read from the pair).

Possibly, a similar way of handling paired reads could be implemented

both in DSRC2 or in CARGO-based FASTQ compression solutions.

Chapter 4. Discussion and outlook 158

4.2.3 Potential challenges when compressing reordered reads

As has been previously noted, read preprocessing methods can provide

the best compression gains for the sequence and alignment data, but at

the cost of degrading compression ratio for the reads identifiers. Moreover,

altering the order of the reads should not influence the compression of

quality scores in general. Nonetheless, there is another issue which should

be addressed when reordering the reads. As previously mentioned, the

initial order of the DNA sequences generated by the sequencing machine

(and stored in FASTQ files) is random. This is an important assumption,

which helps to ensure the correctness of the reads mapping process. More

specifically, some mappers, such as BWA-MEM [108] or GEM [127], when

processing the FASTQ reads chunk-by-chunk in multi-threaded mode, try

to estimate the paired-end library insert size (see Section 1.1.2) by analyz-

ing the reads locally inside the chunks of data. In order to possibly achieve

the same mapping results, the reads after decompression should be also

possibly generated in a random order (assessing the randomness of the

reads order per se already can be a challenging problem). As been pointed

in [56], for some mappers randomly re-shuffling the reads in the input

FASTQ files can already lead to reporting different alignments (and variant

calling results). These differences, however, are mostly due to the reads

which map to difficult genomic regions and which contain a high degree of

sequence repetitions. Therefore, if after decompression the reads in FASTQ

files are clustered in groups in an invalid way (e.g., the reads originating

from a complex genomic region are stored sorted by mapping position)

then some mappers may estimate the insert size incorrectly. Hence, as a

hint, a theoretical fragment size (if available) set during the library prepa-

ration step could possibly be used by such mappers to help assess of the

correctness of the mapping process. Otherwise, performing an additional

step of read reordering after the decompression can be considered, such

as random reordering or sorting the reads by read identifier (if available) to

recover their order as in the initial FASTQ files generated by the sequencer.

As a side note, in order to retrieve properly paired raw FASTQ reads from

the alignments in SAM format, when using SAMTools [111] one needs to

first sort the SAM alignments by their read identifiers.

159 4.3. Exploring lossy compression methods for HTS data

4.3 Exploring lossy compression methods for HTS data

4.3.1 Compression of read identifiers

There are multiple possibilities that one can consider when storing HTS

data with a controlled degree of information loss, where the selection of

kinds of data to preserve depends on the use-cases, the data processing

pipelines and storage requirements. The only kind of data which is re-

quired to be stored in a lossless manner is the DNA sequence. However,

losing the initial order of the reads as produced by a sequencer should

not be considered as information loss, as long as the pairing information

between the reads is preserved. Unfortunately, both in FASTQ and SAM

formats, the representation of reads pairing is not clearly defined. As men-

tioned in Section 1.1.3, in FASTQ files, the pairing is primarily carried by

the reads identifiers, where, in addition, the reads reside in the same lines

in two separate files or are stored interleaved in one file. In the case of SAM

format, the pairing information is represented in a number of fields, but

only for aligned reads – for unaligned reads it is kept on the read identifiers.

Therefore, when considering lossy compression of the read identifiers,

preserving pairing information between the reads must be ensured. In

principle, preserving the pairing information between the reads in the

identifier field would require the pair of reads to have a unique identifier

shared between them.

Nonetheless, some data present in initial FASTQ read identifiers can be

discarded during the data processing stages in genomic pipelines. For

example, when performing reads mapping, mappers by default trim the

read identifiers by removing the comments, i.e., the content after the

first whitespace symbol. Such a decision is required to produce non-

ambiguous query template names when generating SAM alignments – a

whitespace symbol present in a query template name could break the SAM

format parsing algorithms, which split the SAM record line into a num-

ber of fields using whitespace characters as separators. However, some

sequencing protocols which use barcoding, can provide the barcode se-

quence stored in the read comment field. In such cases, mappers, such as

BWA-MEM [108], provide an option to store the present barcode sequence

as one of the optional fields (using BC tag). Moreover, after the mapping,

some genomic data analysis protocols may use some data from the read

Chapter 4. Discussion and outlook 160

identifier during the alignments post-processing stage. For example, in the

case of the HTS data produced by Illumina platforms, sometimes, when

looking for sequence optical duplicates (see Section 1.1.3 for more details),

the machine-specific flowcell coordinates can be stored in the main part

of the read identifier. Nonetheless, after performing the reads mapping

and further alignment post-processing steps (and possibly removing the

read duplicates), the most important feature to assess is to keep a unique

identifier per read or a pair of reads (which is also the requirement for

preserving the pairing information between the reads using the current

formats).

With the above in mind, in FaStore we primarily focused on the lossy com-

pression of read identifiers implementing two methods (apart from the

lossless one). In the first one, we remove the comments in the identifiers,

in a way that is similar to that performed by mappers by default, which al-

ready gives significant savings in the storage space. In the second case, we

do not store the identifiers, generating only a unique string per read (and a

unique string per pair of reads in the paired-end mode) while decompress-

ing the data – the generated identifiers will be different from the initial

ones. Therefore, skipping storing identifiers allows for great savings in

storage space. Alternatively, in DSRC2 we provide an option to select only

a subset of fields (or tokens) from the identifiers, which will be preserved.

In this way, for example, preserving only the unique read number and

flowcell coordinates to be stored can be easily set by the user. Although

in CARGO we did not explore lossy compression methods for the reads

identifiers, adding a possible filtering of the read identifiers fields (both

for SAM and FASTQ formats) should be a straightforward task, involving

minimal modifications in the records parsing code.

4.3.2 Compression of quality scores

As has been shown in a number of experiments in Chapter 3 and pointed

out by numerous researches [19, 126], quality scores are the most chal-

lenging type of data to compress, being characterized by a high entropy

and containing a non-negligible amount of signal noise. They occupy

the majority of the compressed space, both in FASTQ and SAM formats,

greatly hampering the efficient sharing of the meaningful information

carried with the sequencing reads.

161 4.3. Exploring lossy compression methods for HTS data

As mentioned in Section 1.1.3, FASTQ format allows for representing up

to 93 distinct quality score values (encoded as human-readable ASCII

symbols). However, in practice usually no more than 60 values are used.

Moreover, when performing analysis of HTS re-sequencing data which

has been sequenced with high coverage, having such a vast resolution of

values for representing quality scores becomes unnecessary. The infor-

mation about DNA sequence alignments plays the most important role,

as a significant number of reads should be available to support the evi-

dence of possible occurrences of variants. As has been shown shown in

Chapter 3, the efficiency of compressing DNA sequences increases with

the sequencing coverage of the datasets. By contrast, the efficiency of

compressing quality scores basically remains unchanged. Considering the

fact that, per-base quality scores serve only as an auxiliary information in

variant calling and are not frequently used by the mappers1, expressing the

probability of the erroneous base call (and not covering any other possible

errors, which could occur during the sequencing process) sacrificing such

a vast amount of space to store them is unnecessary.

Moreover, Illumina, starting with their sequencing platform HiSeq 2500,

introduced an option to generate quality scores in a reduced resolution.

This scheme, known also as “Illumina bining” [80], reduces the available

range of quality values to only 8 values, significantly improving the com-

pression ratio. In addition, it was also shown in [80] that producing quality

scores in this reduced resolution does not degrade the efficiency of variant

calling. Therefore, this strategy has been applied by default in the newer

sequencers, such as HiSeq 3000, NextSeq, or HiSeq X family. As a proof-

of-concept, in DSRC2, we implemented this bining strategy showing how

much space can be saved by compressing FASTQ files with the reduced

resolution of quality scores. Similarly, in CARGO, we applied the same

strategy when compressing SAM files. In FaStore we went a bit further and

explored a number of different quality compression schemes. In addition

to the lossless and bining schemes, we integrated a method proposed by

[126], which aims to reduce the mean square error of the quality values,

significantly improving the compression ratio. Moreover, we implemented

a more restrictive scheme, namely, binary thresholding, in which quality

scores are represented as either “good” or “bad” (depending on the speci-

fied threshold) and which allows for the size of the compressed data to be

1Apart from being used as one of the factors to calculate the overall quality of mapping.

Chapter 4. Discussion and outlook 162

greatly reduced. The schemes implemented in FaStore could also be easily

implemented in the CARGO framework either as separate codecs or data

transformation steps – the possible integration of the novel compression

methods into the CARGO framework will be discussed below.

Therefore, having the lossy compression methods in mind, to reduce the

storage requirements for the HTS data, one would need to select an appro-

priate lossy quality scores compression scheme depending on the exper-

iment set up or which genomic data analysis pipeline is used. However,

this can be a very challenging task due to the absence of “ground truth”

data sets which the results of the analyses using lossily-processed files can

be compared with. Nonetheless, some recent initiatives, such as GIAB

[222], provide a limited set of high-confidence SNP and INDEL variant

calls, which can already be used as a starting point.

4.3.3 Compression of SAM optional fields

During the reads mapping stage and during the post-processing stage of

alignments, some auxiliary alignment data can be generated. This extra

data is primarily stored in the SAM optional fields. Some examples in-

clude: read group names (RG tag), edit distance to the reference sequence

(NM tag), observed mismatching positions (MD tag) and a set of fields

related to different quality scores. During the base quality scores recali-

bration step, as performed using GATK [44, 139], the alignments can be

annotated with recalibrated quality values corresponding to the insertion

(optional field with BI tag) or deletion (BD tag) type of variant (if any of

them appear). Moreover, when modifications of the original quality scores

(represented in SAM field QUAL) have been applied during any alignment

post-processing step, the original quality values may be stored in the op-

tional field denoted with the tag OQ. Therefore, at the end of alignment

post-processing, different quality values can be stored in multiple fields,

greatly increasing the size of the file. As a side note, in our comparison tests

performed in Section 3.5, the SAM alignments contain only the original

quality scores as the input raw reads, as they have been generated directly

by the mapper and only sorted by the mapping position.

As previously mentioned, most of the intermediate data generated dur-

ing the mapping and alignment post-processing stages is stored in the

163 4.4. Integration of the developed methods

optional fields and is primarily used as supporting data for variant calling.

The raw FASTQ reads, mapped to a reference sequence and later anno-

tated with intermediate data in SAM format can occupy up to twice the

initial space (or even more when storing different data related to quality

scores), both represented in raw text format or compressed in BAM format.

Therefore, the decision to preserve the optional fields should primarily

depend on the data storage and data processing use-cases. For exam-

ple, when considering the archival or long-term storage of the data with

the possibility of performing alignments post-processing in the future, a

significant amount of the optional data can be easily discarded. More-

over, some of the optional fields such as MD and NM can be re-generated

during the decompression stage by some reference-based SAM format

compressors. Therefore, to possibly reduce the storage requirements of

the alignments data to the minimum, the alignments could be stored in the

form as initially generated by the mapper and by using efficient reference-

based SAM format compressors such as ones based on CARGO or by tools

implementing the newest version of CRAM format.

4.4 Integration of the developed methods

4.4.1 Integration between the methods

During our research we have designed and developed a number of HTS

data compression methods both lossless and lossy with results comparable

to or even better than the state-of-the-art. Some of these methods have

been implemented as standalone compressors, such as DSRC2, ORCOM

(compression of DNA sequences only), or FaStore and they are used to

compress raw reads in FASTQ format. Moreover, by designing the CARGO

framework to enable efficient representation, storage and processing of

HTS data, many arbitrary format-free compression solutions can be easily

and automatically generated. As a proof-of-concept, CARGO-based FASTQ

and SAM format compression tools have been developed. Therefore, as a

natural consequence, a possible integration between the designed meth-

ods should be considered.

In general, there are two possible ways to perform the integration among

the developed solutions. In the first one, the compression methods im-

plemented in DSRC2, ORCOM, and FaStore could be integrated into the

Chapter 4. Discussion and outlook 164

CARGO framework. More specifically, the sequence, quality, and read

identifiers compression algorithms could be implemented as standalone

codecs in CARGO. When generating CARGO-based compression solutions,

these codecs (available alongside the current ones: gzip, bzip2, LZMA,

and PPMd) could be selected explicitly by the user during the record data

type definition step. This way, when processing the data, the new codecs

could be applied to compressing the specified data streams. Having a rich

set of different codecs would also allow for a rapid prototyping and fast

exploration of novel compression solutions aimed at storing HTS data in

an efficient way. For example, one could easily generate a CARGO-based

SAM format compressor, utilizing the read identifiers or quality scores

compression algorithms from DSRC2 or FaStore.

However, in case of integrating ORCOM or FaStore DNA sequence com-

pression methods into CARGO, providing a special read reordering stage

would be required, since FaStore uses a minimizer-based read reordering

technique prior to the actual data compression. Fortunately, the CARGO

framework provides the functionality of a custom user-defined transfor-

mation of the records applied prior to compression (or, also, directly after

decompression). In this way, a read-reordering-based transformation

as defined in ORCOM (and implemented as the bining stage) or FaStore

(the binning and, possibly, re-binning stages) can be implemented in the

generated records transformation module. In the next step, the actual

DNA sequence compression codec based on FaStore or ORCOM could be

selected to compress the preprocessed reads. Moreover, FaStore-based

read reordering and compression methods could also be applied to com-

pressing the unaligned reads when using a reference-based SAM format

compression solution generated by CARGO, further improving the com-

pression ratio.

A second idea for the integration of the methods developed could be to use

the CARGO framework as a data storage back-end for DSRC2, ORCOM or

FaStore. More specifically, all the (possibly compressed) data streams can

be stored inside CARGO containers. Multiple datasets of different formats

can be stored in one container. Each dataset is treated as a collection

of records of a predefined uniform type (by the user), where the content

present in the records is decoupled into separate data streams (following

the classical approach as described in Chapter 2). Each of the streams

can be compressed independently and stored as a collection of (possibly

165 4.4. Integration of the developed methods

compressed) blocks inside the container. All these data separation and

compression steps are performed automatically by CARGO. In this way, for

example, when compressing FASTQ files using DSRC2, the read identifiers,

DNA sequences and quality scores data could be stored in separate CARGO

streams. Moreover, storing the encoded reads data in streams as in ORCOM

or FaStore would be equivalent to storing the data in CARGO streams.

Therefore, the functionality of CARGO streams and containers could be

used by other external solutions to store HTS data, not requiring them to

define their own archive format.

4.4.2 Integration through a common API

To facilitate the storage of data inside containers, CARGO defines a sim-

plified API layer, namely TypeAPI (implemented in the C++ programming

language). It exposes the functionality of CARGO streams and allows for

a transparent decomposition of the records’ content, storing the data in

streams. This way, given a high-level record type definition in CARGO

meta-language provided by the user, a corresponding low-level defini-

tion of the record in C++ and in TypeAPI can be automatically generated.

This definition is then used to automatically generate a CARGO-based

application template code in C++, which could be customized by the user.

Although the current API definition and offered functionality is still in its

infancy and shows several limitations (primarily, as it used when gener-

ating standalone applications linked with the CARGO framework), the

generated C++ record definition with the framework could be possibly

used in developing external applications to store the data inside CARGO

containers.

In DSRC2 we also introduced a simple, high-level Application Program-

ming Interface (API) implemented both in C++ and Python programming

languages. Some of the main features include compressing/decompress-

ing single FASTQ records or whole FASTQ files/DSRC archives with manu-

ally (or automatically) specified compression setting by the user. It allows

for an easy integration of DSRC2 compressor functionality with other ex-

ternal applications written in these languages. However, what is more

important, when using this API to compress or decompress the data, the

applications can operate directly on the buffered data when it is resid-

ing in memory, reducing the amount of resources needed to be spent on

Chapter 4. Discussion and outlook 166

streaming the data or handling temporary files.

As a good reference, a more complete API has been proposed in HTSlib and

HTSjdk2 libraries, which provide support for working with HTS data stored

in SAM, BAM, CRAM, VCF, and BCF formats. For example, they provide

functionality for reading, writing, and searching (by genomic position) per-

formed both on the (compressed) files and on single (or multiple) records.

These libraries are also used by the most popular genomic data processing

and analysis tools such as SAMTools, Picard, or GATK. Clearly, reducing

the amount of CPU time spent on reading/writing operations from/to disk

and for performing data transcodding/parsing when accessing the HTS

data is highly desirable, since the data already occupies a large amount of

space. Therefore, refining the API in CARGO and integrating it as a simple

proof-of-concept with other developed solutions would be a good exercise

to encourage integration of other external applications, not only oriented

to data compression. As a side note, some solutions, such as ADAM [136]

or Goby [24] provide their own data processing ecosystem (ADAM) or

data management framework (Goby) to store and access the HTS data.

However, the problematic aspect of these solutions is that the external

applications need to be built around the specific ecosystem or framework.

This, combined with their own internal HTS data representations, can

limit their practical usability in current genomic data processing pipelines,

as additional CPU time will also be spent on inter-format conversions.

4.4.3 Integration of the methods with the genomic pipelines

Most commonly, HTS data are stored in compressed form in a number of

files, e.g., multiple FASTQ files coming from one experiment. To work with

the data, the files can be either fully decompressed or their contents can

be decompressed “on-the-fly” and directly streamed out to other appli-

cations requesting it. Streaming, by default, is supported by the majority

of the commonly used HTS data processing applications. Therefore, the

possible integration of the developed solutions with current genomic data

pipelines can be easily accomplished by exchanging the used compression

applications with the developed ones. This is the most flexible approach,

since the developed solutions can be integrated into current genomics

pipelines in a transparent way – it does not require any inference into the

2http://www.htslib.org

http://www.htslib.org

167 4.4. Integration of the developed methods

external application source code, e.g., to handle working with the data

through some API.

For example, DSRC2 can be used as a perfect replacement for gzip, allow-

ing it to compress and decompress raw FASTQ reads “on-the-fly” or as files.

When processing the data in the “fast” mode it offers high compression

and decompression speeds, while providing a significant reduction in the

compressed data compared to gzip. Alternatively, for a closer integration

with external applications it also offers an API to work directly with DSRC2

archives and FASTQ files. For long-term storage of raw FASTQ reads, FaS-

tore is the perfect option. It offers a superior compression ratio compared

to the other available FASTQ state-of-the-art solutions, while providing

relatively high decompression speeds (at the expense of slower compres-

sion speeds). Moreover, with a broad range of extra options to perform

controlled lossy compression of the non-sequence data, additional savings

in storage space can be substantial.

When considering storage and compression of aligned reads in SAM for-

mat, CARGO-based solutions also provide one of the highest achievable

compression results. The solutions can be easily applied to compress-

ing the alignments either when the reference sequence (used during the

mapping stage) is available or not, being a suitable replacement for BAM

and CRAM format-based compression solutions. Similarly, CARGO-based

FASTQ format compressors can also be integrated into current genomic

data processing pipelines in a transparent way. Moreover, one of the most

important features of the CARGO framework is the independence from the

HTS data format, offering a high degree of flexibility when working with

HTS data. Possibly, any data format can be modeled and an efficient com-

pressor can be semi-automatically generated (as has been done for FASTQ

and SAM formats). Therefore, if any external application such as a mapper

or assembler would need to output some intermediate results in a form not

fitting into any of the currently available formats, CARGO could easily pro-

vide a way to represent and store the data in a compressed form. It can be

especially useful when designing and developing pipelines, not being tied

to any specific genomic data representation or file format. Moreover, mul-

tiple datasets of different format can be stored in one container, allowing

for an easy encapsulation of data originating from a project or experiment.

With a possible integration of all the developed methods and refinement of

the current API, such a framework could provide an even more complete

Chapter 4. Discussion and outlook 168

solution to supporting the majority of genomic data-intensive workflows

in an efficient way.

4.5 Future directions

As has already briefly mentioned in the previous section, one of the most

important next steps would be the integration of the developed solutions.

During the integration, providing a new and refined API would also be

a very important feature for allowing easier integration of external tools.

Moreover, it would be also worthwhile to design the API to be compatible

with the one being currently developed by the Global Alliance for Ge-

nomics and Health (GA4GH3) [22] organization. The main goal of GA4GH

is to define and develop a set of unified methods and protocols to enable

responsible, privacy-preserving and effective sharing of genomic and clini-

cal data among institutions and organizations around the world. These

methods and protocols are independent of the underlying data format.

Therefore, for our integrated solutions, designing a robust API compatible

with the one provided by GA4GH API would be a solid step forward into

the future of efficient genomic data sharing.

Another idea worth exploring could be an alternative (and better struc-

tured) representation of raw and aligned reads, where FASTQ and SAM

formats are currently used as a de facto standard. Unfortunately, these

formats, as has been shown in Sections 1.1.3 and 3.5, are greatly limited

and cumbersome, hampering the efficiency of compression, as some in-

formation can not be properly decoupled. For example, in FASTQ format,

a possible additional meta-data information or read annotation can be

stored only in the read identifiers’ line, which itself is a free format field

and does not follow any standard. Moreover, in both formats, the pairing

information between the reads is preserved in an ill-defined way. In ad-

dition, in SAM format, multiple different alignment information is stored

together in one field, in non-meaningful binary flags, which could be easily

decoupled into a number of different fields (e.g., of boolean type). This is

also one of the primary motivations behind the ongoing work of Motion

Pictures Experts Group (MPEG) from the International Standardization

Organization (ISO) who in the past developed a number of popular video

3https://www.genomicsandhealth.org/

https://www.genomicsandhealth.org/

169 4.5. Future directions

and audio formats used worldwide. Today, the MPEG group is exploring

a new data representation and format for storing raw and aligned reads

which can also possibly provide a higher compression than the current

state-of-the-art.

Moreover, as has been shown in Section 2.4, neither FASTQ nor SAM for-

mats are suitable for representing the data produced by the emerging

Third Generation Sequencing platforms. The generated long reads data

are accompanied by a significant amount of meta-data with additional

sequencing-process-specific information, which cannot be feasibly repre-

sented either in FASTQ or SAM formats in a lossless manner. For example,

in order to store the sequencing data generated by the PacBio platform

and aligned to a reference genome, a number of extensions to the exist-

ing SAM format specification has been added. However, the conversion

to SAM format is still a lossy process, discarding a significant amount of

data. A similar problem applies to data generated by the Oxford Nanopore

platform. Therefore, it would be worthwhile to explore alternative data

representations in the CARGO framework, which could enable efficient

storage (in a compressed form) and processing of the data generated by

third-generation sequencing platforms. Moreover, a CARGO-based solu-

tion could also provide equivalent converters to FASTQ and SAM formats

or an API to access only a specific subset of stored data.

CONCLUSIONS

With the rapid development of sequencing technologies, the inception of

a number of nation-wide and international-scale sequencing projects, and

the advent of personal genome re-sequencing, we are experiencing a flood

of genomic data. This is why the main interest of the research described in

this work was to explore and develop efficient techniques to compress and

store the data generated by high-throughput sequencing platforms.

To summarize, the main contributions of this research are as follows.

• We developed DSRC2, a general, high-performance compressor for

files in FASTQ format, based on the methods proposed in [42] with

major improvements. DSRC2 can be used either as a standalone

compressor or as a library enabling integration with third party ap-

plications and pipelines, allowing such applications to store FASTQ

data in compressed form. On average, this allows us to reduce the

size of FASTQ files by up to 20% of their initial size, and provides

compression and decompression speeds reaching 500 MB/s when

using 8 threads.

• We developed ORCOM, a proof-of-concept compressor for storing

short-read sequence data which focuses on providing maximum

compression ratio. ORCOM only supports compression of DNA

sequences, and aims to exploit the significant sequence redundancy

present in the data generated from deep sequencing experiments.

ORCOM allowed us to compress the short-read data in a H. sapiens

sample dataset of 134 GB (coverage ~42×) to only 4.3 GB (3.2%).

This provided the best compression ratio achieved so far, which is

significantly better than the results obtained by the existing state-of-

the-art solutions.

171

Conclusions 172

• We developed FaStore, a complete solution for compressing FASTQ

files and which supports short-read data sequenced both in single-

end and paired-end configuration. FaStore extends the DNA com-

pression methods introduced in ORCOM and adds a sequence as-

sembly step, further improving the compression ratio. The DNA

reads from the same H. sapiens dataset mentioned above can be

compressed from 134 to only 3.4 GB (2.6%), or to 8.5 GB (6.5%) when

preserving the pairing information between the reads. On average,

it can compress FASTQ files by up to 12.5% in lossless mode. When

compared to state-of-the-art methods FaStore achieves the best

compression ratio, both for storing DNA sequences and full FASTQ

reads. With FaStore, we also explored different lossy compression

methods to encode read identifiers and base quality scores, show-

ing how much space one can save by selecting an appropriate lossy

scheme.

• We developed CARGO, a framework and a general binary format for

compressed data, which allows one to semi-automatically create

compression systems to store HTS data in configurable contain-

ers. One can generate CARGO-based solutions for any genomic file

format: the user defines the record data type by using an abstract

domain-specific language, alongside custom data transformations

and querying and compression methods. As a proof of concept, we

generated a family of compressors for the FASTQ format. Some of

them achieve compression ratio and/or speed comparable to those

provided by the specialized FASTQ compressors. Then, we created

a second family of CARGO-based compressors, this time for the

SAM format. They achieve compression results comparable to or

better than those obtained by current state-of-the-art SAM compres-

sors. Using our reference-based SAM format compressor with lossy

base quality scores we managed to compress a 17-TB subset of SAM

alignments from the 1000 Genomes Project [1] to 1.44 TB (8.4%),

while still retaining the possibility to range-query the stored data by

chromosome and position.

• The research-and-development stages for the projects above hap-

pened at different times. As a result, each method was typically

tested in a different computational environment, and using differ-

ent input datasets. Across the years we also experienced constant

173 Conclusions

improvements in the state of the art provided by our competitors.

This is why, in one of the previous chapters, we performed an ad-

ditional brief comparison of all our solutions within the context of

the current literature, using a concise dataset and the same com-

putational environment. We focused on our lossless compression

methods for short-read data, represented as both raw FASTQ reads

and aligned SAM records. We showed that such methods achieve

the best results, or results comparable to those obtained by other

state-of-the-art methods, in terms of both compression ratio and

processing speed.

In short, we developed a variety of compression methods covering a set of

different use-cases that can be found whenever genomic data is processed

by bioinformatics pipelines or stored for later use. However, some of the

methods we proposed are format-independent, and can be possibly re-

used for applications not considered here – for instance, to store data

produced by emerging third-generation sequencing platforms. In general,

all the solutions developed here allow for straightforward integration with

existing genomic data processing pipelines, and can serve as a practical

replacement for file-based data compression. We believe these solutions

represent significant and reasonable steps toward a more accomplished

approach to properly incorporating data compression into bioinformatics

pipelines.

BIBLIOGRAPHY

[1] 1000 Genomes Project Consortium et al. A map of human

genome variation from population-scale sequencing. Nature,

467(7319):1061–1073, 2010. [cited at p. 13, 18, 68, 81, and 172]

[2] 1000 Genomes Project Consortium et al. An integrated map of

genetic variation from 1,092 human genomes. Nature, 491(7422):56–

65, 2012. [cited at p. 13 and 18]

[3] 1000 Genomes Project Consortium et al. A global reference for

human genetic variation. Nature, 526(7571):68–74, 2015. [cited at

p. 13]

[4] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, S. Madden, et al. The

design and implementation of modern column-oriented database

systems, volume 5. Now Publishers, Inc., 2013. [cited at p. 79]

[5] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees

with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–

86, 2004. [cited at p. 22]

[6] K. Adhikari, T. Fontanil, S. Cal, J. Mendoza-Revilla, M. Fuentes-

Guajardo, J.-C. Chacón-Duque, F. Al-Saadi, J. A. Johansson,

M. Quinto-Sanchez, V. Acuña-Alonzo, et al. A genome-wide associ-

ation scan in admixed Latin Americans identifies loci influencing

facial and scalp hair features. Nature communications, 7:10815, 2016.

[cited at p. 2]

[7] T. S. Alioto, I. Buchhalter, S. Derdak, B. Hutter, M. D. Eldridge,

E. Hovig, L. E. Heisler, T. A. Beck, J. T. Simpson, L. Tonon, et al. A

comprehensive assessment of somatic mutation detection in cancer

using whole-genome sequencing. Nature communications, 6, 2015.

[cited at p. 27]

175

Bibliography 176

[8] C. Alkan, B. P. Coe, and E. E. Eichler. Genome structural variation

discovery and genotyping. Nature Reviews Genetics, 12(5):363–376,

2011. [cited at p. 27]

[9] C. Alkan, J. M. Kidd, T. Marques-Bonet, G. Aksay, F. Antonacci, F. Hor-

mozdiari, J. O. Kitzman, C. Baker, M. Malig, O. Mutlu, et al. Person-

alized copy number and segmental duplication maps using next-

generation sequencing. Nature genetics, 41(10):1061–1067, 2009.

[cited at p. 22 and 23]

[10] S. J. Aronson and H. L. Rehm. Building the foundation for genomics

in precision medicine. Nature, 526(7573):336–342, 2015. [cited at p.

14 and 15]

[11] G. A. Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. del Angel, A. Levy-

Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault, et al. From

FastQ data to high-confidence variant calls: the genome analysis

toolkit best practices pipeline. Current protocols in bioinformatics,

pages 11–10, 2013. [cited at p. 18, 24, 25, 26, 27, and 138]

[12] R. Baeza-Yates and G. Navarro. Faster approximate string matching.

Algorithmica, 23(2):127–158, 1999. [cited at p. 23]

[13] T. Batu and S. C. Sahinalp. Locally consistent parsing and applica-

tions to approximate string comparisons. In International Confer-

ence on Developments in Language Theory, pages 22–35. Springer,

2005. [cited at p. 62]

[14] M. J. Bauer, A. J. Cox, and G. Rosone. Lightweight BWT construction

for very large string collections. In Annual Symposium on Combi-

natorial Pattern Matching, pages 219–231. Springer, 2011. [cited at

p. 63]

[15] G. Benoit, C. Lemaitre, D. Lavenier, E. Drezen, T. Dayris, R. Uri-

caru, and G. Rizk. Reference-free compression of high throughput

sequencing data with a probabilistic de Bruijn graph. BMC bioinfor-

matics, 16(1), 2015. [cited at p. 59, 62, 65, 67, 139, 155, and 203]

[16] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally

adaptive data compression scheme. Communications of the ACM,

29(4):320–330, 1986. [cited at p. 49]

[17] K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin, and A. M.

Phillippy. Assembling large genomes with single-molecule sequenc-

177 Bibliography

ing and locality-sensitive hashing. Nature biotechnology, 33(6):623–

630, 2015. [cited at p. 11]

[18] J. K. Bonfield. The Scramble conversion tool. Bioinformatics,

30(19):2818–2819, 2014. [cited at p. 71, 72, 75, 76, 77, 78, 140, 156,

and 206]

[19] J. K. Bonfield and M. V. Mahoney. Compression of FASTQ and SAM

format sequencing data. PloS one, 8(3), 2013. [cited at p. 54, 57, 58, 59,

60, 61, 64, 65, 67, 72, 73, 76, 77, 78, 139, and 160]

[20] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese.

An improved construction for counting bloom filters. In European

Symposium on Algorithms, pages 684–695. Springer, 2006. [cited at

p. 62]

[21] K. R. Bradnam, J. N. Fass, A. Alexandrov, P. Baranay, M. Bechner,

I. Birol, S. Boisvert, J. A. Chapman, G. Chapuis, R. Chikhi, et al.

Assemblathon 2: evaluating de novo methods of genome assembly

in three vertebrate species. GigaScience, 2(1), 2013. [cited at p. 21]

[22] J. Burn. A federated ecosystem for sharing genomic, clinical data.

Science, 352(6291):1278–1280, 2016. [cited at p. 168]

[23] M. Burrows and D. J. Wheeler. A block-sorting lossless data com-

pression algorithm. Technical report, 1994. [cited at p. 52]

[24] F. Campagne, K. C. Dorff, N. Chambwe, J. T. Robinson, and J. P.

Mesirov. Compression of structured high-throughput sequencing

data. PLoS One, 8(11), 2013. [cited at p. 84 and 166]

[25] R. Cánovas and A. Moffat. Practical compression for multi-

alignment genomic files. In Proceedings of the Thirty-Sixth Aus-

tralasian Computer Science Conference-Volume 135, pages 51–60.

Australian Computer Society, Inc., 2013. [cited at p. 70, 73, and 76]

[26] M. J. Chaisson, J. Huddleston, M. Y. Dennis, P. H. Sudmant, M. Malig,

F. Hormozdiari, F. Antonacci, U. Surti, R. Sandstrom, M. Boitano,

et al. Resolving the complexity of the human genome using single-

molecule sequencing. Nature, 517(7536):608–611, 2015. [cited at

p. 11]

[27] K. Chen, J. W. Wallis, M. D. McLellan, D. E. Larson, J. M. Kalicki,

C. S. Pohl, S. D. McGrath, M. C. Wendl, Q. Zhang, D. P. Locke, et al.

Bibliography 178

BreakDancer: an algorithm for high-resolution mapping of genomic

structural variation. Nature methods, 6(9):677–681, 2009. [cited at

p. 27]

[28] X. Chen, O. Schulz-Trieglaff, R. Shaw, B. Barnes, F. Schlesinger,

M. Källberg, A. J. Cox, S. Kruglyak, and C. T. Saunders. Manta: rapid

detection of structural variants and indels for germline and cancer

sequencing applications. Bioinformatics, 32(8):1220–1222, 2016.

[cited at p. 27]

[29] K. Cibulskis, M. S. Lawrence, S. L. Carter, A. Sivachenko, D. Jaffe,

C. Sougnez, S. Gabriel, M. Meyerson, E. S. Lander, and G. Getz.

Sensitive detection of somatic point mutations in impure and het-

erogeneous cancer samples. Nature biotechnology, 31(3):213–219,

2013. [cited at p. 27]

[30] R. Cijvat, S. Manegold, M. Kersten, G. W. Klau, A. Schönhuth,

T. Marschall, and Y. Zhang. Genome sequence analysis with Mon-

etDB. Datenbank-Spektrum, 15(3):185–191, 2015. [cited at p. 79]

[31] J. Clarke, H.-C. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley.

Continuous base identification for single-molecule nanopore DNA

sequencing. Nature nanotechnology, 4(4):265–270, 2009. [cited at

p. 11]

[32] J. Cleary and I. Witten. Data compression using adaptive coding

and partial string matching. IEEE transactions on Communications,

32(4):396–402, 1984. [cited at p. 41]

[33] G. Cochrane, C. E. Cook, and E. Birney. The future of DNA sequence

archiving. GigaScience, 1(1), 2012. [cited at p. 54]

[34] P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice. The

Sanger FASTQ file format for sequences with quality scores, and the

Solexa/Illumina FASTQ variants. Nucleic acids research, 38(6):1767–

1771, 2010. [cited at p. 16, 28, 29, and 60]

[35] E. M. Coonrod, J. D. Durtschi, R. L. Margraf, and K. V. Voelkerding.

Developing genome and exome sequencing for candidate gene iden-

tification in inherited disorders: an integrated technical and bioin-

formatics approach. Archives of pathology & laboratory medicine,

137(3):415–433, 2013. [cited at p. 15]

179 Bibliography

[36] A. Cornish-Bowden. IUPAC-IUB symbols for nucleotide nomencla-

ture. Nucleic Acids Res, 13(3021):30, 1985. [cited at p. 28]

[37] A. J. Cox, M. J. Bauer, T. Jakobi, and G. Rosone. Large-scale com-

pression of genomic sequence databases with the Burrows–Wheeler

transform. Bioinformatics, 28(11):1415–1419, 2012. [cited at p. 63]

[38] C. Cruchaga, C. M. Karch, S. C. Jin, B. A. Benitez, Y. Cai, R. Guerreiro,

O. Harari, J. Norton, J. Budde, S. Bertelsen, et al. Rare coding variants

in the phospholipase D3 gene confer risk for Alzheimer/’s disease.

Nature, 505(7484):550–554, 2014. [cited at p. 2]

[39] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. De-

Pristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, et al. The

variant call format and VCFtools. Bioinformatics, 27(15):2156–2158,

2011. [cited at p. 18, 33, and 35]

[40] D. Decap, J. Reumers, C. Herzeel, P. Costanza, and J. Fostier. Hal-

vade: scalable sequence analysis with MapReduce. Bioinformatics,

31(15):2482–2488, 2015. [cited at p. 18]

[41] S. Deorowicz. Universal lossless data compression algorithms. Phi-

losophy Dissertation Thesis, Gliwice, 2003. [cited at p. 38 and 43]

[42] S. Deorowicz and S. Grabowski. Compression of DNA sequence

reads in FASTQ format. Bioinformatics, 27(6):860–862, 2011. [cited

at p. 58, 64, 93, and 171]

[43] S. Deorowicz and S. Grabowski. Data compression for sequencing

data. Algorithms for Molecular Biology, 8(1), 2013. [cited at p. 54

and 56]

[44] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire,

C. Hartl, A. A. Philippakis, G. Del Angel, M. A. Rivas, M. Hanna, et al.

A framework for variation discovery and genotyping using next-

generation DNA sequencing data. Nature genetics, 43(5):491–498,

2011. [cited at p. 18, 25, 26, and 162]

[45] K. C. Dorff, N. Chambwe, Z. Zeno, M. Simi, R. Shaknovich, and

F. Campagne. GobyWeb: simplified management and analysis of

gene expression and DNA methylation sequencing data. PLoS One,

8(7), 2013. [cited at p. 84]

Bibliography 180

[46] S. Dorok. The relational way to dam the flood of genome data. In

Proceedings of the 2015 ACM SIGMOD on PhD Symposium, pages

9–13. ACM, 2015. [cited at p. 80]

[47] J. Duda. Asymmetric numeral systems. arXiv preprint

arXiv:0902.0271, 2009. [cited at p. 48 and 71]

[48] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp. The use of asymmet-

ric numeral systems as an accurate replacement for huffman coding.

In Picture Coding Symposium (PCS), 2015, pages 65–69. IEEE, 2015.

[cited at p. 48]

[49] A. Dutta, M. M. Haque, T. Bose, C. Reddy, and S. S. Mande. FQC: A

novel approach for efficient compression, archival, and dissemina-

tion of fastq datasets. Journal of bioinformatics and computational

biology, 13(03), 2015. [cited at p. 59, 60, 64, and 67]

[50] J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank,

P. Baybayan, B. Bettman, et al. Real-time DNA sequencing from

single polymerase molecules. Science, 323(5910):133–138, 2009.

[cited at p. 10]

[51] R. Ekblom and J. B. Wolf. A field guide to whole-genome sequencing,

assembly and annotation. Evolutionary applications, 7(9):1026–

1042, 2014. [cited at p. 21]

[52] P. Elias. Universal codeword sets and representations of the integers.

IEEE Transactions on Information Theory, 21(2):194–203, 1975. [cited

at p. 43]

[53] A. D. Ewing, K. E. Houlahan, Y. Hu, K. Ellrott, C. Caloian, T. N. Ya-

maguchi, J. C. Bare, C. P’ng, D. Waggott, V. Y. Sabelnykova, et al.

Combining tumor genome simulation with crowdsourcing to bench-

mark somatic single-nucleotide-variant detection. Nature methods,

12(7):623–630, 2015. [cited at p. 27]

[54] B. Ewing and P. Green. Base-calling of automated sequencer traces

using phred. II. Error probabilities. Genome research, 8(3):186–194,

1998. [cited at p. 19]

[55] P. Ferragina and G. Manzini. Opportunistic data structures with

applications. In Foundations of Computer Science, 2000. Proceedings.

41st Annual Symposium on, pages 390–398. IEEE, 2000. [cited at p. 22

and 53]

181 Bibliography

[56] C. Firtina and C. Alkan. On genomic repeats and reproducibility.

Bioinformatics, 32(15):2243–2247, 2016. [cited at p. 62 and 158]

[57] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson. An

overview of the HDF5 technology suite and its applications. In

Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases,

pages 36–47. ACM, 2011. [cited at p. 82]

[58] M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney. Efficient

storage of high throughput DNA sequencing data using reference-

based compression. Genome research, 21(5):734–740, 2011. [cited at

p. 74 and 76]

[59] R. Gallager. Variations on a theme by Huffman. IEEE Transactions

on Information Theory, 24(6):668–674, 1978. [cited at p. 46]

[60] E. Garrison and G. Marth. Haplotype-based variant detection from

short-read sequencing. arXiv preprint arXiv:1207.3907, 2012. [cited

at p. 26 and 27]

[61] Genome of the Netherlands Consortium et al. Whole-genome se-

quence variation, population structure and demographic history of

the Dutch population. Nature Genetics, 46(8):818–825, 2014. [cited

at p. 14]

[62] T. C. Glenn. Field guide to next-generation DNA sequencers. Molec-

ular ecology resources, 11(5):759–769, 2011. [cited at p. 8 and 9]

[63] S. Golomb. Run-length Encodings (Corresp.). IEEE Trans. Inf. Theor.,

12(3):399–401, 2006. [cited at p. 49]

[64] S. W. Golomb. Run-Length Encodings. IEEE Transactions on Infor-

mation Theory, 12:399–401, 1966. [cited at p. 43]

[65] S. Goodwin, J. D. McPherson, and W. R. McCombie. Coming of

age: ten years of next-generation sequencing technologies. Nature

Reviews Genetics, 17(6):333–351, 2016. [cited at p. 8, 9, and 11]

[66] S. Grabowski, S. Deorowicz, and Ł. Roguski. Disk-based compression

of data from genome sequencing. Bioinformatics, 31(9):1389–1395,

2015. [cited at p. 93]

[67] A. L. Greninger, S. N. Naccache, S. Federman, G. Yu, P. Mbala, V. Bres,

D. Stryke, J. Bouquet, S. Somasekar, J. M. Linnen, et al. Rapid metage-

nomic identification of viral pathogens in clinical samples by real-

Bibliography 182

time nanopore sequencing analysis. Genome medicine, 7(1), 2015.

[cited at p. 11]

[68] M. Griffith, C. A. Miller, O. L. Griffith, K. Krysiak, Z. L. Skidmore,

A. Ramu, J. R. Walker, H. X. Dang, L. Trani, D. E. Larson, et al. Op-

timizing cancer genome sequencing and analysis. Cell systems,

1(3):210–223, 2015. [cited at p. 15]

[69] F. Hach, F. Hormozdiari, C. Alkan, F. Hormozdiari, I. Birol, E. E. Eich-

ler, and S. C. Sahinalp. mrsFAST: a cache-oblivious algorithm for

short-read mapping. Nature methods, 7(8):576–577, 2010. [cited at

p. 22]

[70] F. Hach, I. Numanagić, C. Alkan, and S. C. Sahinalp. SCALCE: boost-

ing sequence compression algorithms using locally consistent en-

coding. Bioinformatics, 28(23):3051–3057, 2012. [cited at p. 62, 65, 66,

76, 139, 155, and 203]

[71] F. Hach, I. Numanagic, and S. C. Sahinalp. DeeZ: reference-based

compression by local assembly. Nature methods, 11(11):1082–1084,

2014. [cited at p. 70, 72, 75, 76, 78, 140, and 207]

[72] D. Haussler, D. A. Patterson, M. Diekhans, A. Fox, M. Jordan, A. D.

Joseph, S. Ma, B. Paten, S. Shenker, T. Sittler, et al. A million cancer

genome warehouse. Technical report, DTIC Document, 2012. [cited

at p. 54]

[73] M. Henderson. Genetic mapping of babies by 2019 will transform

preventive medicine. The Times. 9th February, 2009. [cited at p. 14]

[74] D. S. Hirschberg and D. A. Lelewer. Context modeling for text com-

pression. In Image and Text Compression, pages 113–144. Springer,

1992. [cited at p. 40 and 41]

[75] M. Howison. High-throughput compression of FASTQ data with Se-

qDB. IEEE/ACM Transactions on Computational Biology and Bioin-

formatics (TCBB), 10(1):213–218, 2013. [cited at p. 56 and 84]

[76] D. A. Huffman et al. A method for the construction of minimum-

redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[cited at p. 44]

[77] S. Hwang, E. Kim, I. Lee, and E. M. Marcotte. Systematic comparison

of variant calling pipelines using gold standard personal exome

183 Bibliography

variants. Scientific reports, 5, 2015. [cited at p. 26]

[78] S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, M. Ker-

sten, et al. MonetDB: Two decades of research in column-oriented

database architectures. Bulletin of the IEEE Computer Society Tech-

nical Committee on Data Engineering, 35(1):40–45, 2012. [cited at

p. 79]

[79] Illumina. Estimating Sequencing Coverage. Technical report, 2014.

[cited at p. 6]

[80] Illumina. Reducing Whole-Genome Data Storage Footprint. Techni-

cal report, 2014. [cited at p. 65, 66, 77, and 161]

[81] International Human Genome Sequencing Consortium et al. Fin-

ishing the euchromatic sequence of the human genome. Nature,

431(7011):931–945, 2004. [cited at p. 5]

[82] L. Janin, G. Rosone, and A. J. Cox. Adaptive reference-free compres-

sion of sequence quality scores. Bioinformatics, 30(1):24–30, 2013.

[cited at p. 67]

[83] L. Janin, O. Schulz-Trieglaff, and A. J. Cox. BEETL-fastq: a searchable

compressed archive for DNA reads. Bioinformatics, 30(19):2796–

2801, 2014. [cited at p. 63]

[84] P. D. Johnson Jr, G. A. Harris, and D. Hankerson. Introduction to

information theory and data compression. CRC press, 2003. [cited at

p. 43]

[85] D. C. Jones, W. L. Ruzzo, X. Peng, and M. G. Katze. Compression of

next-generation sequencing reads aided by highly efficient de novo

assembly. Nucleic acids research, 40(22), 2012. [cited at p. 59, 60, 62,

65, 72, 73, 76, 139, and 202]

[86] C. Kandoth, M. D. McLellan, F. Vandin, K. Ye, B. Niu, C. Lu, M. Xie,

Q. Zhang, J. F. McMichael, M. A. Wyczalkowski, et al. Mutational

landscape and significance across 12 major cancer types. Nature,

502(7471):333–339, 2013. [cited at p. 2]

[87] C. Kingsford and R. Patro. Reference-based compression of short-

read sequences using path encoding. Bioinformatics, 31(12):1920–

1928, 2015. [cited at p. 63]

Bibliography 184

[88] L. Klein and A. Taaheri. HDF-EOS5 Data Model, File Format and

Library. Technical Report July 2006, 2007. [cited at p. 83]

[89] D. E. Knuth. Dynamic huffman coding. Journal of algorithms,

6(2):163–180, 1985. [cited at p. 45]

[90] D. C. Koboldt, K. Chen, T. Wylie, D. E. Larson, M. D. McLellan, E. R.

Mardis, G. M. Weinstock, R. K. Wilson, and L. Ding. VarScan: variant

detection in massively parallel sequencing of individual and pooled

samples. Bioinformatics, 25(17):2283–2285, 2009. [cited at p. 27]

[91] D. C. Koboldt, Q. Zhang, D. E. Larson, D. Shen, M. D. McLellan,

L. Lin, C. A. Miller, E. R. Mardis, L. Ding, and R. K. Wilson. VarScan 2:

somatic mutation and copy number alteration discovery in cancer

by exome sequencing. Genome research, 22(3):568–576, 2012. [cited

at p. 27]

[92] Y. Kodama, M. Shumway, and R. Leinonen. The Sequence Read

Archive: explosive growth of sequencing data. Nucleic acids research,

40(D1):D54–D56, 2012. [cited at p. 54]

[93] C. Kozanitis, C. Saunders, S. Kruglyak, V. Bafna, and G. Varghese.

Compressing genomic sequence fragments using SlimGene. Journal

of Computational Biology, 18(3):401–413, 2011. [cited at p. 64 and 74]

[94] V. Kuleshov, C. Jiang, W. Zhou, F. Jahanbani, S. Batzoglou, and M. Sny-

der. Synthetic long-read sequencing reveals intraspecies diversity in

the human microbiome. Nature biotechnology, 34(1):64–69, 2016.

[cited at p. 12]

[95] D. Laehnemann, A. Borkhardt, and A. C. McHardy. Denoising DNA

deep sequencing data—high-throughput sequencing errors and

their correction. Briefings in bioinformatics, 17(1):154–179, 2016.

[cited at p. 18, 20, and 64]

[96] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Bald-

win, K. Devon, K. Dewar, M. Doyle, W. FitzHugh, et al. Initial sequenc-

ing and analysis of the human genome. Nature, 409(6822):860–921,

2001. [cited at p. 10]

[97] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Bald-

win, K. Devon, K. Dewar, M. Doyle, and W. e. a. FitzHugh. Initial se-

quencing and analysis of the human genome. Nature, 409(6822):860–

921, 2001. [cited at p. 6 and 12]

185 Bibliography

[98] E. S. Lander and M. S. Waterman. Genomic mapping by fingerprint-

ing random clones: a mathematical analysis. Genomics, 2(3):231–

239, 1988. [cited at p. 5]

[99] G. G. Langdon. An introduction to arithmetic coding. IBM Journal

of Research and Development, 28(2):135–149, 1984. [cited at p. 46]

[100] B. Langmead and S. L. Salzberg. Fast gapped-read alignment with

Bowtie 2. Nature methods, 9(4):357–359, 2012. [cited at p. 22 and 23]

[101] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and

memory-efficient alignment of short DNA sequences to the human

genome. Genome biology, 10(3), 2009. [cited at p. 22]

[102] R. M. Layer, C. Chiang, A. R. Quinlan, and I. M. Hall. LUMPY: a

probabilistic framework for structural variant discovery. Genome

biology, 15(6), 2014. [cited at p. 27]

[103] R. Leinonen, H. Sugawara, and M. Shumway. The sequence read

archive. Nucleic acids research, 39:D19–D21, 2010. [cited at p. 81]

[104] M. Lek, K. J. Karczewski, E. V. Minikel, K. E. Samocha, E. Banks,

T. Fennell, A. H. O’Donnell-Luria, J. S. Ware, A. J. Hill, B. B. Cum-

mings, et al. Analysis of protein-coding genetic variation in 60,706

humans. Nature, 536(7616):285–291, 2016. [cited at p. 13]

[105] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and

W. W. Webb. Zero-mode waveguides for single-molecule analysis

at high concentrations. Science, 299(5607):682–686, 2003. [cited at

p. 10]

[106] D. Levy, G. B. Ehret, K. Rice, G. C. Verwoert, L. J. Launer, A. De-

hghan, N. L. Glazer, A. C. Morrison, A. D. Johnson, T. Aspelund, et al.

Genome-wide association study of blood pressure and hypertension.

Nature genetics, 41(6):677–687, 2009. [cited at p. 2]

[107] S. Levy, G. Sutton, P. C. Ng, L. Feuk, A. L. Halpern, B. P. Walenz,

N. Axelrod, J. Huang, E. F. Kirkness, G. Denisov, et al. The diploid

genome sequence of an individual human. PLoS Biol, 5(10), 2007.

[cited at p. 2, 5, and 14]

[108] H. Li. Aligning sequence reads, clone sequences and assembly con-

tigs with BWA-MEM. arXiv preprint arXiv:1303.3997, 2013. [cited at

p. 22, 23, 138, 158, 159, and 201]

Bibliography 186

[109] H. Li. Towards better understanding of artifacts in variant call-

ing from high-coverage samples. Bioinformatics, 30(20):2843–2851,

2014. [cited at p. 25 and 26]

[110] H. Li and R. Durbin. Fast and accurate long-read alignment with

Burrows–Wheeler transform. Bioinformatics, 26(5):589–595, 2010.

[cited at p. 22 and 84]

[111] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,

G. Marth, G. Abecasis, R. Durbin, et al. The sequence alignmen-

t/map format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[cited at p. 17, 18, 23, 26, 30, 33, 158, and 200]

[112] H. Li and N. Homer. A survey of sequence alignment algorithms for

next-generation sequencing. Briefings in bioinformatics, 11(5):473–

483, 2010. [cited at p. 22]

[113] H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads

and calling variants using mapping quality scores. Genome research,

18(11):1851–1858, 2008. [cited at p. 22]

[114] P. Li, X. Jiang, S. Wang, J. Kim, H. Xiong, and L. Ohno-Machado.

HUGO: Hierarchical mUlti-reference Genome cOmpression for

aligned reads. Journal of the American Medical Informatics Associa-

tion, 21(2):363–373, 2014. [cited at p. 72 and 75]

[115] R. Li, Y. Li, K. Kristiansen, and J. Wang. SOAP: short oligonucleotide

alignment program. Bioinformatics, 24(5):713–714, 2008. [cited at

p. 22]

[116] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang.

SOAP2: an improved ultrafast tool for short read alignment. Bioin-

formatics, 25(15):1966–1967, 2009. [cited at p. 22]

[117] Y. Li, H. Zheng, R. Luo, H. Wu, H. Zhu, R. Li, H. Cao, B. Wu, S. Huang,

H. Shao, et al. Structural variation in two human genomes mapped

at single-nucleotide resolution by whole genome de novo assembly.

Nature biotechnology, 29(8):723–730, 2011. [cited at p. 27]

[118] C.-M. Liu, T. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu,

X. Chu, K. Zhao, et al. SOAP3: ultra-fast GPU-based parallel align-

ment tool for short reads. Bioinformatics, 28(6):878–879, 2012. [cited

at p. 75]

187 Bibliography

[119] K. E. Lohmueller, T. Sparsø, Q. Li, E. Andersson, T. Korneliussen,

A. Albrechtsen, K. Banasik, N. Grarup, I. Hallgrimsdottir, K. Kiil, et al.

Whole-exome sequencing of 2,000 Danish individuals and the role

of rare coding variants in type 2 diabetes. The American Journal of

Human Genetics, 93(6):1072–1086, 2013. [cited at p. 14]

[120] N. J. Loman, J. Quick, and J. T. Simpson. A complete bacterial

genome assembled de novo using only nanopore sequencing data.

Nature methods, 12(8):733–735, 2015. [cited at p. 11]

[121] N. J. Loman and A. R. Quinlan. Poretools: a toolkit for analyzing

nanopore sequence data. Bioinformatics, 30(23):3399–3401, 2014.

[cited at p. 90]

[122] R. Luo, Y.-L. Wong, W.-C. Law, L.-K. Lee, J. Cheung, C.-M. Liu, and

T.-W. Lam. BALSA: integrated secondary analysis for whole-genome

and whole-exome sequencing, accelerated by GPU. PeerJ, 2, 2014.

[cited at p. 18]

[123] J. MacQueen et al. Some methods for classification and analysis

of multivariate observations. In Proceedings of the fifth Berkeley

symposium on mathematical statistics and probability, volume 1,

pages 281–297. Oakland, CA, USA., 1967. [cited at p. 67]

[124] M. Mahoney. Data compression explained. mattmahoney. net, up-

dated May, 7, 2012. [cited at p. 41]

[125] M. V. Mahoney. Adaptive weighing of context models for lossless

data compression. Technical report, 2005. [cited at p. 59]

[126] G. Malysa, M. Hernaez, I. Ochoa, M. Rao, K. Ganesan, and T. Weiss-

man. QVZ: lossy compression of quality values. Bioinformatics,

31(19):3122–3129, 2015. [cited at p. 67, 76, 160, and 161]

[127] S. Marco-Sola, M. Sammeth, R. Guigó, and P. Ribeca. The GEM

mapper: fast, accurate and versatile alignment by filtration. Nature

methods, 9(12):1185–1188, 2012. [cited at p. 22, 23, and 158]

[128] E. R. Mardis. Next-generation DNA sequencing methods. Annu. Rev.

Genomics Hum. Genet., 9:387–402, 2008. [cited at p. 9]

[129] E. R. Mardis. A decade/’s perspective on DNA sequencing technology.

Nature, 470(7333):198–203, 2011. [cited at p. 7]

Bibliography 188

[130] E. R. Mardis. Next-generation sequencing platforms. Annual review

of analytical chemistry, 6:287–303, 2013. [cited at p. 9]

[131] M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Be-

mben, J. Berka, M. S. Braverman, Y.-J. Chen, Z. Chen, et al. Genome

sequencing in microfabricated high-density picolitre reactors. Na-

ture, 437(7057):376–380, 2005. [cited at p. 9]

[132] N. Mark. Arithmetic Coding+ Statistical Modeling= Data Compres-

sion. Dr. Dobb’s Journal, 1991. [cited at p. 41]

[133] M. Marmor, K. Hertzmark, S. M. Thomas, P. N. Halkitis, and M. Vogler.

Resistance to HIV infection. Journal of urban health, 83(1):5–17,

2006. [cited at p. 2]

[134] G. N. N. Martin. Range encoding: an algorithm for removing redun-

dancy from a digitised message. In Proc. Institution of Electronic

and Radio Engineers International Conference on Video and Data

Recording, 1979. [cited at p. 48]

[135] C. E. Mason, P. Zumbo, S. Sanders, M. Folk, D. Robinson, R. Aydt,

M. Gollery, M. Welsh, N. E. Olson, and T. M. Smith. Standardizing

the next generation of bioinformatics software development with

BioHDF (HDF5). In Advances in Computational Biology, pages 693–

700. Springer, 2010. [cited at p. 83]

[136] M. Massie, F. Nothaft, C. Hartl, C. Kozanitis, A. Schumacher, A. D.

Joseph, and D. A. Patterson. Adam: Genomics formats and process-

ing patterns for cloud scale computing. University of California,

Berkeley Technical Report, No. UCB/EECS-2013, 207, 2013. [cited at p.

86 and 166]

[137] A. M. Maxam and W. Gilbert. A new method for sequencing DNA.

Proceedings of the National Academy of Sciences, 74(2):560–564, 1977.

[cited at p. 3]

[138] R. S. McBean, C. A. Hyland, and R. L. Flower. Approaches to determi-

nation of a full profile of blood group genotypes: single nucleotide

variant mapping and massively parallel sequencing. Computational

and structural biotechnology journal, 11(19):147–151, 2014. [cited at

p. 2]

[139] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,

A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, et al.

189 Bibliography

The Genome Analysis Toolkit: a MapReduce framework for ana-

lyzing next-generation DNA sequencing data. Genome research,

20(9):1297–1303, 2010. [cited at p. 18, 26, and 162]

[140] I. Mendizabal, O. Lao, U. M. Marigorta, A. Wollstein, L. Gusmão,

V. Ferak, M. Ioana, A. Jordanova, R. Kaneva, A. Kouvatsi, et al. Recon-

structing the population history of European Romani from genome-

wide data. Current Biology, 22(24):2342–2349, 2012. [cited at p. 2]

[141] M. L. Metzker. Sequencing technologies—the next generation. Na-

ture reviews genetics, 11(1):31–46, 2010. [cited at p. 9]

[142] A. E. Minoche, J. C. Dohm, and H. Himmelbauer. Evaluation of

genomic high-throughput sequencing data generated on Illumina

HiSeq and genome analyzer systems. Genome biology, 12(11), 2011.

[cited at p. 64]

[143] A. Moffat. Implementing the PPM data compression scheme. IEEE

Transactions on communications, 38(11):1917–1921, 1990. [cited at

p. 41]

[144] M. Morey, A. Fernández-Marmiesse, D. Castiñeiras, J. M. Fraga, M. L.

Couce, and J. A. Cocho. A glimpse into past, present, and future DNA

sequencing. Molecular genetics and metabolism, 110(1):3–24, 2013.

[cited at p. 5 and 9]

[145] N. Nagarajan and M. Pop. Sequence assembly demystified. Nature

Reviews Genetics, 14(3):157–167, 2013. [cited at p. 16, 20, and 21]

[146] G. Narzisi and B. Mishra. Comparing de novo genome assembly: the

long and short of it. PloS one, 6(4), 2011. [cited at p. 21]

[147] S. B. Needleman and C. D. Wunsch. A general method applicable

to the search for similarities in the amino acid sequence of two

proteins. Journal of molecular biology, 48(3):443–453, 1970. [cited at

p. 23]

[148] S. Nik-Zainal, H. Davies, J. Staaf, M. Ramakrishna, D. Glodzik, X. Zou,

I. Martincorena, L. B. Alexandrov, S. Martin, D. C. Wedge, et al. Land-

scape of somatic mutations in 560 breast cancer whole-genome

sequences. Nature, 534(7605):47–54, 2016. [cited at p. 2]

[149] F. Nothaft. Scalable Genome Resequencing with ADAM and avocado.

Technical report, Tech. Report No.: UCB/EECS-20IS-6S, UC Berkeley,

Bibliography 190

2015. [cited at p. 86]

[150] F. A. Nothaft, M. Massie, T. Danford, Z. Zhang, U. Laserson, C. Yeksi-

gian, J. Kottalam, A. Ahuja, J. Hammerbacher, M. Linderman, et al.

Rethinking data-intensive science using scalable analytics systems.

In Proceedings of the 2015 ACM SIGMOD International Conference

on Management of Data, pages 631–646. ACM, 2015. [cited at p. 86]

[151] I. Numanagić, J. K. Bonfield, F. Hach, J. Voges, J. Ostermann, C. Al-

berti, M. Mattavelli, and S. C. Sahinalp. Comparison of high-

throughput sequencing data compression tools. Nature Methods,

2016. [cited at p. 56 and 139]

[152] I. Ochoa, H. Asnani, D. Bharadia, M. Chowdhury, T. Weissman, and

G. Yona. QualComp: a new lossy compressor for quality scores based

on rate distortion theory. BMC bioinformatics, 14(1), 2013. [cited at

p. 67 and 76]

[153] I. Ochoa, M. Hernaez, R. Goldfeder, T. Weissman, and E. Ashley.

Effect of lossy compression of quality scores on variant calling. Brief-

ings in bioinformatics, 18(2):183–194, 2016. [cited at p. 65]

[154] M. V. Olson and A. Varki. Sequencing the chimpanzee genome:

insights into human evolution and disease. Nature Reviews Genetics,

4(1):20–28, 2003. [cited at p. 2]

[155] S. Pabinger, A. Dander, M. Fischer, R. Snajder, M. Sperk, M. Efremova,

B. Krabichler, M. R. Speicher, J. Zschocke, and Z. Trajanoski. A survey

of tools for variant analysis of next-generation genome sequencing

data. Briefings in bioinformatics, 15(2):256–278, 2014. [cited at p. 15,

18, 20, and 26]

[156] Pacific Biosciences. bas.h5 Reference Guide. Technical report, 2013.

[cited at p. 89]

[157] R. K. Patel and M. Jain. NGS QC Toolkit: a toolkit for quality control

of next generation sequencing data. PloS one, 7(2), 2012. [cited at

p. 19]

[158] R. Patro and C. Kingsford. Data-dependent bucketing improves

reference-free compression of sequencing reads. Bioinformatics,

31(17):2770–2777, 2015. [cited at p. 63]

191 Bibliography

[159] J. Peterson, S. Garges, M. Giovanni, P. McInnes, L. Wang, J. A. Schloss,

V. Bonazzi, J. E. McEwen, K. A. Wetterstrand, C. Deal, et al. The NIH

human microbiome project. Genome research, 19(12):2317–2323,

2009. [cited at p. 81]

[160] M. Pirooznia, F. S. Goes, and P. P. Zandi. Whole-genome CNV analysis:

advances in computational approaches. Frontiers in genetics, 6, 2015.

[cited at p. 27]

[161] M. Pirooznia, M. Kramer, J. Parla, F. S. Goes, J. B. Potash, W. R. Mc-

Combie, and P. P. Zandi. Validation and assessment of variant calling

pipelines for next-generation sequencing. Human genomics, 8(1),

2014. [cited at p. 25]

[162] N. Popitsch and A. von Haeseler. NGC: lossless and lossy compres-

sion of aligned high-throughput sequencing data. Nucleic acids

research, 41(1), 2013. [cited at p. 72, 73, 77, and 78]

[163] K. Prüfer, F. Racimo, N. Patterson, F. Jay, S. Sankararaman, S. Sawyer,

A. Heinze, G. Renaud, P. H. Sudmant, C. De Filippo, et al. The com-

plete genome sequence of a Neanderthal from the Altai Mountains.

Nature, 505(7481):43–49, 2014. [cited at p. 2]

[164] M. J. Puckelwartz, L. L. Pesce, V. Nelakuditi, L. Dellefave-Castillo, J. R.

Golbus, S. M. Day, T. P. Cappola, G. W. Dorn, I. T. Foster, and E. M.

McNally. Supercomputing for the parallelization of whole genome

analysis. Bioinformatics, 30(11):1508–1513, 2014. [cited at p. 24]

[165] J. Quick, N. J. Loman, S. Duraffour, J. T. Simpson, E. Severi, L. Cow-

ley, J. A. Bore, R. Koundouno, G. Dudas, A. Mikhail, et al. Real-

time, portable genome sequencing for Ebola surveillance. Nature,

530(7589):228–232, 2016. [cited at p. 11]

[166] C. Raczy, R. Petrovski, C. T. Saunders, I. Chorny, S. Kruglyak, E. H.

Margulies, H.-Y. Chuang, M. Källberg, S. A. Kumar, A. Liao, et al.

Isaac: ultra-fast whole-genome secondary analysis on Illumina se-

quencing platforms. Bioinformatics, 29(16):2041–2043, 2013. [cited

at p. 18]

[167] T. Rausch, T. Zichner, A. Schlattl, A. M. Stütz, V. Benes, and J. O.

Korbel. DELLY: structural variant discovery by integrated paired-

end and split-read analysis. Bioinformatics, 28(18):i333–i339, 2012.

[cited at p. 27]

Bibliography 192

[168] K. Reinert, B. Langmead, D. Weese, and D. J. Evers. Alignment of

Next-Generation Sequencing Reads. Annual review of genomics and

human genetics, 16:133–151, 2015. [cited at p. 22 and 23]

[169] A. Rhoads and K. F. Au. PacBio sequencing and its applications.

Genomics, proteomics & bioinformatics, 13(5):278–289, 2015. [cited

at p. 11]

[170] A. Rimmer, H. Phan, I. Mathieson, Z. Iqbal, S. R. Twigg, A. O.

Wilkie, G. McVean, G. Lunter, WGS500 Consortium, et al. Integrat-

ing mapping-, assembly-and haplotype-based approaches for call-

ing variants in clinical sequencing applications. Nature genetics,

46(8):912–918, 2014. [cited at p. 26 and 27]

[171] J. Rissanen. Generalized Kraft inequality and arithmetic coding. IBM

Journal of research and development, 20(3):198–203, 1976. [cited at

p. 46]

[172] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke. Re-

ducing storage requirements for biological sequence comparison.

Bioinformatics, 20(18):3363–3369, 2004. [cited at p. 63]

[173] J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S.

Lander, G. Getz, and J. P. Mesirov. Integrative genomics viewer.

Nature biotechnology, 29(1):24–26, 2011. [cited at p. 84]

[174] Ł. Roguski and S. Deorowicz. DSRC 2—Industry-oriented compres-

sion of FASTQ files. Bioinformatics, 30(15):2213–2215, 2014. [cited at

p. 93 and 203]

[175] Ł. Roguski and P. Ribeca. CARGO: effective format-free compressed

storage of genomic information. Nucleic acids research, 44(12), 2016.

[cited at p. 93 and 204]

[176] M. N. Sakib, J. Tang, W. J. Zheng, and C.-T. Huang. Improving trans-

mission efficiency of large sequence alignment/map (SAM) files.

PloS one, 6(12), 2011. [cited at p. 72 and 78]

[177] D. Salomon. Data compression: the complete reference. Springer

Science & Business Media, 2004. [cited at p. 46, 47, 48, and 52]

[178] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren,

T. J. Treangen, M. C. Schatz, A. L. Delcher, M. Roberts, et al. GAGE: A

193 Bibliography

critical evaluation of genome assemblies and assembly algorithms.

Genome research, 22(3):557–567, 2012. [cited at p. 21]

[179] F. Sanger, A. Coulson, T. Friedman, G. Air, B. Barell, N. Brown, J. Fid-

des, C. Hitchinson III, P. Slocombe, and M. Smith. Nucleotide se-

quence of bacteriophage φD X174 DNA. Journal of molecular biol-

ogy, 2(125), 1978. [cited at p. 3]

[180] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with

chain-terminating inhibitors. Proceedings of the National Academy

of Sciences, 74(12):5463–5467, 1977. [cited at p. 3]

[181] C. T. Saunders, W. S. Wong, S. Swamy, J. Becq, L. J. Murray, and R. K.

Cheetham. Strelka: accurate somatic small-variant calling from se-

quenced tumor–normal sample pairs. Bioinformatics, 28(14):1811–

1817, 2012. [cited at p. 25 and 27]

[182] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan.

Computational solutions to large-scale data management and anal-

ysis. Nature Reviews Genetics, 11(9):647–657, 2010. [cited at p. 16]

[183] R. Schmieder and R. Edwards. Quality control and preprocessing of

metagenomic datasets. Bioinformatics, 27(6):863–864, 2011. [cited

at p. 19]

[184] G. I. Shamir and N. Merhav. Low-complexity sequential lossless cod-

ing for piecewise-stationary memoryless sources. IEEE transactions

on information theory, 45(5):1498–1519, 1999. [cited at p. 43]

[185] C. E. Shannon. A mathematical theory of communication. ACM

SIGMOBILE Mobile Computing and Communications Review, 5(1):3–

55, 2001. [cited at p. 41]

[186] D. Shkarin. PPM: One step to practicality. In Data Compression

Conference, 2002. Proceedings. DCC 2002, pages 202–211. IEEE, 2002.

[cited at p. 41]

[187] D. Sims, I. Sudbery, N. E. Ilott, A. Heger, and C. P. Ponting. Sequenc-

ing depth and coverage: key considerations in genomic analyses.

Nature Reviews Genetics, 15(2):121–132, 2014. [cited at p. 6 and 15]

[188] L. M. Smith, J. Z. Sanders, R. J. Kaiser, P. Hughes, C. Dodd, C. R.

Connell, C. Heiner, S. Kent, and L. E. Hood. Fluorescence detection

Bibliography 194

in automated DNA sequence analysis. Nature, 321(6071):674–679,

1985. [cited at p. 4]

[189] T. F. Smith and M. S. Waterman. Identification of common molecular

subsequences. Journal of molecular biology, 147(1):195–197, 1981.

[cited at p. 23]

[190] J. A. Storer. Data compression: methods and theory. Computer

Science Press, Inc., 1988. [cited at p. 52]

[191] J. A. Storer and T. G. Szymanski. Data compression via textual sub-

stitution. Journal of the ACM (JACM), 29(4):928–951, 1982. [cited at

p. 52]

[192] P. H. Sudmant, T. Rausch, E. J. Gardner, R. E. Handsaker, A. Abyzov,

J. Huddleston, Y. Zhang, K. Ye, G. Jun, M. H.-Y. Fritz, et al. An inte-

grated map of structural variation in 2,504 human genomes. Nature,

526(7571):75–81, 2015. [cited at p. 13]

[193] P. J. Talmud, J. A. Cooper, R. W. Morris, F. Dudbridge, T. Shah, J. Eng-

mann, C. Dale, J. White, S. McLachlan, D. Zabaneh, et al. Sixty-five

common genetic variants and prediction of type 2 diabetes. Diabetes,

page DB_141504, 2014. [cited at p. 2]

[194] H. Tang, E. Lyons, and C. D. Town. Optical mapping in plant com-

parative genomics. GigaScience, 4(1), 2015. [cited at p. 21]

[195] L. Tattini, R. D’Aurizio, and A. Magi. Detection of genomic struc-

tural variants from next-generation sequencing data. Frontiers in

bioengineering and biotechnology, 3, 2015. [cited at p. 27]

[196] W. Tembe, J. Lowey, and E. Suh. G-SQZ: compact encoding of ge-

nomic sequence and quality data. Bioinformatics, 26(17):2192–2194,

2010. [cited at p. 56]

[197] J. A. Tennessen, A. W. Bigham, T. D. O’Connor, W. Fu, E. E. Kenny,

S. Gravel, S. McGee, R. Do, X. Liu, G. Jun, et al. Evolution and func-

tional impact of rare coding variation from deep sequencing of hu-

man exomes. science, 337(6090):64–69, 2012. [cited at p. 2]

[198] S. G. Tringe and E. M. Rubin. Metagenomics: DNA sequencing

of environmental samples. Nature reviews genetics, 6(11):805–814,

2005. [cited at p. 2]

195 Bibliography

[199] UK10K Consortium et al. The UK10K project identifies rare variants

in health and disease. Nature, 526(7571):82–90, 2015. [cited at p. 14]

[200] K. R. Veeramah and M. F. Hammer. The impact of whole-genome

sequencing on the reconstruction of human population history.

Nature Reviews Genetics, 15(3):149–162, 2014. [cited at p. 2]

[201] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G.

Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, et al. The

sequence of the human genome. science, 291(5507):1304–1351, 2001.

[cited at p. 5]

[202] D. F. Voytas and C. Gao. Precision genome engineering and agricul-

ture: opportunities and regulatory challenges. PLoS Biol, 12(6), 2014.

[cited at p. 2]

[203] N. Waddell, M. Pajic, A.-M. Patch, D. K. Chang, K. S. Kassahn, P. Bai-

ley, A. L. Johns, D. Miller, K. Nones, K. Quek, et al. Whole genomes

redefine the mutational landscape of pancreatic cancer. Nature,

518(7540):495–501, 2015. [cited at p. 2]

[204] R. Wan, V. N. Anh, and K. Asai. Transformations for the compres-

sion of FASTQ quality scores of next-generation sequencing data.

Bioinformatics, 28(5):628–635, 2012. [cited at p. 66]

[205] J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. M. Shaw, B. A. Ozen-

berger, K. Ellrott, I. Shmulevich, C. Sander, J. M. Stuart, C. G. A. R.

Network, et al. The cancer genome atlas pan-cancer analysis project.

Nature genetics, 45(10):1113–1120, 2013. [cited at p. 14]

[206] T. A. Welch. A technique for high-performance data compression.

Computer, 6(17):8–19, 1984. [cited at p. 52 and 75]

[207] D. A. Wheeler, M. Srinivasan, M. Egholm, Y. Shen, L. Chen,

A. McGuire, W. He, Y.-J. Chen, V. Makhijani, G. T. Roth, et al. The com-

plete genome of an individual by massively parallel DNA sequencing.

nature, 452(7189):872–876, 2008. [cited at p. 2]

[208] T. White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

[cited at p. 86]

[209] R. N. Williams. An extremely fast Ziv-Lempel data compression

algorithm. In Data Compression Conference, 1991. DCC’91., pages

362–371. IEEE, 1991. [cited at p. 52]

Bibliography 196

[210] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data

compression. Communications of the ACM, 30(6):520–540, 1987.

[cited at p. 46]

[211] A. R. Wood, T. Esko, J. Yang, S. Vedantam, T. H. Pers, S. Gustafsson,

A. Y. Chu, K. Estrada, J. Luan, Z. Kutalik, et al. Defining the role of

common variation in the genomic and biological architecture of

adult human height. Nature genetics, 46(11):1173–1186, 2014. [cited

at p. 2]

[212] H. Xin, S. Nahar, R. Zhu, J. Emmons, G. Pekhimenko, C. Kingsford,

C. Alkan, and O. Mutlu. Optimal seed solver: optimizing seed selec-

tion in read mapping. Bioinformatics, 32(11):1632–1642, 2016. [cited

at p. 23]

[213] X. Yang, S. P. Chockalingam, and S. Aluru. A survey of error-

correction methods for next-generation sequencing. Briefings in

bioinformatics, 14(1):56–66, 2013. [cited at p. 20]

[214] Y. Yang, B. Xie, and J. Yan. Application of next-generation sequencing

technology in forensic science. Genomics, proteomics & bioinfor-

matics, 12(5):190–197, 2014. [cited at p. 3]

[215] K. Ye, M. H. Schulz, Q. Long, R. Apweiler, and Z. Ning. Pindel: a

pattern growth approach to detect break points of large deletions

and medium sized insertions from paired-end short reads. Bioinfor-

matics, 25(21):2865–2871, 2009. [cited at p. 27]

[216] Y. W. Yu, D. Yorukoglu, and B. Berger. Traversing the k-mer landscape

of NGS read datasets for quality score sparsification. In International

Conference on Research in Computational Molecular Biology, pages

385–399. Springer, 2014. [cited at p. 76]

[217] Y. W. Yu, D. Yorukoglu, J. Peng, and B. Berger. Quality score com-

pression improves genotyping accuracy. Nature biotechnology,

33(3):240–243, 2015. [cited at p. 68 and 76]

[218] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,

X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al. Apache

Spark: a unified engine for big data processing. Communications of

the ACM, 59(11):56–65, 2016. [cited at p. 86]

197 Bibliography

[219] Y. Zhang, L. Li, Y. Yang, X. Yang, S. He, and Z. Zhu. Light-weight

reference-based compression of FASTQ data. BMC bioinformatics,

16(1), 2015. [cited at p. 59 and 61]

[220] M. Zhao, Q. Wang, Q. Wang, P. Jia, and Z. Zhao. Computational tools

for copy number variation (CNV) detection using next-generation

sequencing data: features and perspectives. BMC bioinformatics,

14(11), 2013. [cited at p. 26 and 27]

[221] J. Ziv and A. Lempel. A universal algorithm for sequential data

compression. IEEE Transactions on information theory, 23(3):337–

343, 1977. [cited at p. 50]

[222] J. M. Zook, B. Chapman, J. Wang, D. Mittelman, O. Hofmann, W. Hide,

and M. Salit. Integrating human sequence data sets provides a re-

source of benchmark SNP and indel genotype calls. Nature biotech-

nology, 32(3):246–251, 2014. [cited at p. 29, 31, 34, 138, 162, and 199]

APPENDIX A

SUPPLEMENTARY MATERIALS

In this Appendix we provide supplementary materials used when per-

forming the brief analysis in Chapter 3. The majority of the presented

information can be found in the supplementary materials for the publica-

tions presented in Chapter 3, hence we do not include them here.

A.1 Datasets

A.1.1 WEX dataset

WEX dataset consists of a whole-exome sequencing of a H. Sapiens indi-

vidual – a son from the Ashkenazim trio experiment, which was performed

by GIAB [222]. It was sequenced using Illumina HiSeq platform from a

paired-end library with coverage ~240. The dataset is available as aligned

reads in SAM (BAM) format and can be downloaded from:

ftp ://ftp -trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG
002_NA 24385_ son/OsloUniversityHospital_Exome
/151002_7001448_0359_ AC7F6GANXX_Sample_HG002- EEogPU_v02-KIT -Av
5_ AGATGTAC_L008. posiSrt.markDup.bam

After downloading the file it was renamed to WEX.bam.

A.1.2 WGS dataset

WGS dataset consists of a whole-genome sequencing of a H. Sapiens indi-

vidual from CEPH 1463 family, which was provided by Illumina Platinum

Genomes1. It was sequenced using Illumina HiSeq platform from a paired-

end library with coverage ~235. The dataset is available as 36 FASTQ files

1https://www.illumina.com/platinumgenomes.html

199

https://www.illumina.com/platinumgenomes.html

Appendix A. Supplementary materials 200

(stored in 18 pairs). However, for our test, we only used 3 pairs of files,

giving an approximate coverage of 42. The files are available to download

from:

ftp :// ftp.sra.ebi.ac.uk/vol1/fastq/ERR 174/ ERR 174310/ ERR 174310_1.
fastq.gz

ftp :// ftp.sra.ebi.ac.uk/vol1/fastq/ERR 174/ ERR 174310/ ERR 174310_2.
fastq.gz

ftp :// ftp.sra.ebi.ac.uk/vol1/fastq/ERR 174/ ERR 174311/ ERR 174311_1.
fastq.gz

ftp :// ftp.sra.ebi.ac.uk/vol1/fastq/ERR 174/ ERR 174311/ ERR 174311_2.
fastq.gz

ftp :// ftp.sra.ebi.ac.uk/vol1/fastq/ERR 174/ ERR 174312/ ERR 174312_1.
fastq.gz

ftp :// ftp.sra.ebi.ac.uk/vol1/fastq/ERR 174/ ERR 174312/ ERR 174312_2.
fastq.gz

A.2 Data preparation

A.2.1 FASTQ files

WEX dataset

We use SAMTools [111] (in version 1.3) to transcode WEX dataset from

BAM format to FASTQ:

sort the file by read names before transcoding
samtools sort -n WEX.bam > WEX -sorted.bam

transcode to FASTQ
samtools fastq -1 WEX _1. fastq -2 WEX _2. fastq -0 WEX.fastq WEX.

bam

The results of conversion is stored as 2 FASTQ files – WEX_1.fastq and

WEX_2.fastq. There are no unpaired reads – in that case, they would be

stored in WEX.fastq file. As a side note, the resulting FASTQ files have no

comment content in the read identifier, as it was most probably removed

during the mapping process.

WGS dataset

We decompress all the downloaded files and concatenate them pairwise.

During decompression, we also remove the comment content from the

read identifiers, which can be done as follows:

gunzip -c ERR 17431*_1. fastq.gz | awk ’{print $1}’ >> WGS_1. fastq

201 A.2. Data preparation

gunzip -c ERR 17431*_2. fastq.gz | awk ’{print $1}’ >> WGS_2. fastq

The result is stored as two FASTQ files: WGS_1.fastq and WGS_2.fastq.

A.2.2 SAM files

WEX dataset

The WEX dataset is originally available in form of reads mapped to the

reference sequence (human genome assembly version 37 (GRCh37)) and

sorted by position. As it is stored in compressed BAM format, it only

requires conversion to SAM format:

samtools view -H WEX.bam > WEX.sam

The result is the SAM file WEX.sam.

WGS dataset

The WGS dataset is available only as unaligned raw reads in FASTQ format,

hence, it requires mapping to the reference sequence and sorting by map-

ping position. To perform mapping, we use BWA-MEM [108] (in version

0.7.10) and use the same version of reference sequence as in case of WEX.

It can be downloaded from:

ftp :// ftp.ncbi.nlm.nih.gov /1000 genomes/ftp/technical/reference/
human_g1k_v37. fasta.gz

We decompress the reference sequence using gzip and name the resulting

file as REF.fasta.

The mapping of raw reads and sorting by position is as follows:

index the reference sequence and to it
bwa index REF.fasta
bwa mem -M REF.fasta WGS_1. fastq WGS_2. fastq > WGS -raw.sam

convert to BAM format in order to perform sorting
samtools view -b -h WGS -raw.sam > WGS -raw.bam
samtools sort -O sam WGS -raw.bam > WGS.sam

The resulting SAM file will be stored as WGS.sam.

Appendix A. Supplementary materials 202

A.3 Running tests

Whenever a compressor supports multi-threading, it is run using 8 process-

ing threads. Program execution time was measured using Linux command

‘time’, running the programs as:
/usr/bin/time <program >

A.3.1 FASTQ format

Standalone tools

When running tools, we use placeholders: IN.fastq to specify the input

FASTQ file name, COMP.* to specify the compressed file name and OUT.fastq

to specify the output (decompressed) FASTQ file.

PIGZ We tested PIGZ in version 2.3.3, using the following commands:

• To compress:
pigz -9 -p 8 -c IN.fastq > COMP.gz

• To decompress:
pigz -d -p 8 -c COMP.gz > OUT.fastq

FQZCOMP We tested FQZCOMP [85] in version 4.6, which was down-

loaded from https://sourceforge.net/projects/fqzcomp/. We used the

following commands:

• To compress using FQZCOMP-STD:
fqz_comp c IN.fastq COMP.fqz

• To compress using FQZCOMP-MAX :
fqz_comp -n2 -q3 -s8+ -b IN.fastq COMP.fqz

• To decompress:
fqz_comp -d COMP.fqz OUT.fastq

QUIP We tested QUIP [85] in version 1.1.8, which was downloaded from

https://github.com/dcjones/quip. We used the following commands:

• To compress using QUIP-FQ-STD:
quip -v -c IN.fastq > COMP.qp

• To compress using QUIP-FQ-MAX :
quip -a -v -c IN.fastq > COMP.qp

• To decompress:
quip -d -c COMP.qp OUT.fastq

https://sourceforge.net/projects/fqzcomp/
https://github.com/dcjones/quip

203 A.3. Running tests

SCALCE We tested SCALCE [70] in version 2.8, which was downloaded

from http://sfu-compbio.github.io/scalce/. We used the following com-

mands:

• To compress using SCALCE-SE:
scalce -T 8 -o COMP.sc IN.fastq

• To decompress using SCALCE-SE:
scalce -d -T 8 -o OUT.fastq COMP.sc_1. scalcen

• To compress using SCALCE-PE:
scalce -T 8 -r -o COMP.sc IN.fastq

• To decompress using SCALCE-PE:
scalce -d -r -T 8 -o OUT.fastq COMP.sc_1. scalcen

LEON We tested LEON [15] in version 1.0.0, which was downloaded from

http://gatb.inria.fr/software/leon/. We used the following commands:

• To compress:
leon -c -file IN.fastq -nb-cores 8 -lossless

• To decompress:
leon -d -file IN.leon -nb -cores 8

DSRC2 We tested DSRC2 [174] in version 2.1.0, which was downloaded

from https://github.com/lrog/dsrc. We used the following commands:

• To compress using DSRC-FAST :
dsrc c -m0 -t 8 -v IN.fastq COMP.dsrc

• To compress using DSRC-MAX :
dsrc c -m2 -t 8 -v IN.fastq COMP.dsrc

• To decompress:
dsrc d -t 8 COMP.dsrc OUT.fastq

FASTORE We tested FASTORE in the development version 0.8. The com-

pression process consists of: (a) binning reads, (b) optional re-binning

(only in C1 mode) and (c) compression. Therefore, a compression using

any of the FASTORE-* solutions is a multi-step process, running a set of

sub-applications: fastore_bin, fastore_rebin in C1 mode and fastore_pack.

• To bin the reads in single-end mode:
fastore_bin e -i"IN.fastq" -o"__tmp.bin"

-p8 -s10 -H -q0 -t8

• To bin the reads in paired-end mode:
fastore_bin e -i"IN_1. fastq IN_2. fastq" -o"__tmp.bin"

-p8 -s10 -H -q0 -t8 -z

• To compress in C0 mode:

http://sfu-compbio.github.io/scalce/
http://gatb.inria.fr/software/leon/
https://github.com/lrog/dsrc

Appendix A. Supplementary materials 204

fastore_pack e -i"__tmp.bin" -o"COMP.pack"
-f256 -c10 -d8 -w256 -t8 [PE]

where PE specifies a paired-end mode (‘-z’ switch) – in single-end

mode it is left empty.

• To re-bin the reads in C1 mode:
fastore_rebin e -i"__tmp.bin" -o"__tmp_2.bin"

-p2 -w1024 -t8 [W] [PE]
fastore_rebin e -i"__tmp_2. bin" -o"__tmp_4. bin"

-p4 -w1024 -t8 [W] [PE]
fastore_rebin e -i"__tmp_4. bin" -o"__tmp_8. bin"

-p8 -w1024 -t8 [W] [PE]

where W specifies the size of the matching window for paired-end

mode (‘-W1024’ switch) – in single-end mode it is left empty.

• To compress in C1 mode:
fastore_pack e -i"__tmp _8.bin" -o"COMP.pack"

-f256 -c10 -d8 -w256 -t8 [W] [PE]

• To decompress in single-end mode:
fastore_pack d -i"COMP.pack" -o"OUT.fastq" -t8

• To decompress in paired-end mode:
fastore_pack d -i"COMP.pack" -o"OUT _1. fastq OUT _2. fastq"

-t8 -z

CARGO-based solutions

We tested CARGO-based FASTQ compressor solutions [175] using CARGO

framework in version 0.7.1, which was downloaded from https://bio-

cargo.sourceforge.net. Apart from the placeholders IN.fastq and OUT.fastq

introduced in the previous section, when working with CARGO-based so-

lutions, we additionally use: CONTAINER to which specify the name of the

CARGO container, and DATASET to specify the name of the dataset under

which the data is stored in the container.

Container creation Before running tests, we created temporary CARGO

containers to store the compressed data, separately for WEX and WGS

datasets. For WEX dataset we created a container able to hold compressed

data up to 11.3 GB in size, by running command:

cargo_tool --create -container --container -file=CONTAINER
--large -block -size=8 --large -block -count =20
--small -block -size =256 --small -block -count =32

Such created container consists of 20×64 large blocks, each of 8 MiB in

size, and 32×64 small blocks, each 256 KiB in size. The total available size

https://bio-cargo.sourceforge.net
https://bio-cargo.sourceforge.net

205 A.3. Running tests

will equal to ~10.75GiB (11 274 289 152 B).

Similarly, we created a large container for storing WGS dataset, able to

compressed hold data up to 86.4 GB in size, by running command:

cargo_tool --create -container --container -file=CONTAINER
--large -block -size=8 --large -block -count =160
--small -block -size =256 --small -block -count =32

As a side note, after compressing the files the container can be option-

ally shrinked to adapt its size to the size of the compressed content, by

removing unused blocks:

cargo_tool --shrink -container --container -file=CONTAINER

Moreover, after performing a single test (compression and decompression),

the container can be cleared, removing all the stored datasets:

cargo_tool --clear -container --container -file=CONTAINER

Running CARGO All the generated CARGO-FQ-* solutions are invoked

in a similar way, that is:

• To compress:
cargo_fastqrecord_toolkit -* c -v -c CONTAINER -n DATASET

-t 8 -b 8 -i IN.fastq

• To decompress:
cargo_fastqrecord_toolkit -* d -v -c CONTAINER -n DATASET

-t 8 -o OUT.fastq

A.3.2 SAM format

Reference sequence

In some scenarios, a sequence reference file REF.fasta is used – it is the

same file as the one used during the FASTQ reads mapping stage, as pre-

sented in the previous section.

Moreover, when running SCRAMBLE in reference-based compression

mode (SCRAMBLE-REF-* solutions), the reference sequence needs needs

to be indexed prior to compression, by using e.g. SAMTools. It needs to be

done only once, by running:

samtools faidx REF.fasta

Analogously, when compressing SAM files using CARGO-SAM-REF solu-

tion, a reference sequence needs to be previously indexed, by running

Appendix A. Supplementary materials 206

(only once):

cargo_samrecord_toolkit -ref r -i REF.fasta -o REF.fasta.bff

Running standalone tools

When running tools, we use placeholders: IN.sam to specify the input SAM

file name, COMP.* to specify the compressed file name and OUT.sam to

specify the output (decompressed) SAM file.

SCRAMBLE We tested SCRAMBLE [18] in versions 1.13.10 and 1.14.9,

implementing CRAM format in versions 2 (SCRAMBLE-CRAM2-*) and 3

(SCRAMBLE-CRAM3-*) respectively. The solution was downloaded from

https://sourceforge.net/projects/staden/. The compressed sizes were

reported using program cram_dump. We run SCRAMBLE-CRAM2-* using

binary scramble-v2 and SCRAMBLE-CRAM3-* using binary scramble-v2,

with following command lines:

• To compress using SCRAMBLE-BAM :
scramble -v2 -I sam -O bam -m -t 8 IN.sam > COMP.bam

• To decompress using SCRAMBLE-BAM :
scramble -v2 -I bam -O sam -m -t 8 COMP.bam > OUT.sam

• To compress using SCRAMBLE-CRAM2-REF :
scramble -v2 -I sam -O cram -m -r REF.fasta -t 8 IN.sam >

COMP.cram

• To decompress using SCRAMBLE-CRAM2-REF :
scramble -v2 -I cram -O sam -m -r REF.fasta -t 8 COMP.cram >

OUT.sam

• To compress using SCRAMBLE-CRAM3-REF :
scramble -v3 -I sam -O cram -p -P -m -r REF.fasta -t 8 IN.

sam > COMP.cram

• To decompress using SCRAMBLE-CRAM3-REF :
scramble -v3 -I cram -O sam -p -P -m -r REF.fasta -t 8 COMP.

cram > OUT.sam

• To compress using SCRAMBLE-CRAM3-NOREF :
scramble -v3 -I sam -O cram -x -p -P -t 8 IN.sam > COMP.cram

• To decompress using SCRAMBLE-CRAM3-NOREF :
scramble -v3 -I cram -O sam -x -p -P -t 8 COMP.cram > OUT.

sam

• To compress using SCRAMBLE-CRAM3-EMBREF :
scramble -v3 -I sam -O cram -e -p -P -m -r REF.fasta -t 8 IN

.sam > COMP.cram

https://sourceforge.net/projects/staden/

207 A.3. Running tests

• To decompress using SCRAMBLE-CRAM3-EMBREF :
scramble -v3 -I cram -O sam -e -p -P -m -t 8 COMP.cram > OUT

.sam

DEEZ We tested DEEZ [71] in version 1.1, which was downloaded from

http://sfu-compbio.github.io/deez/. We run following commands:

• To compress using DEEZ-REF :
deez -t 8 -r REF.fasta IN.sam -o COMP.dz -v

• To decompress using DEEZ-REF :
deez -t 8 -r REF.fasta COMP.dz -o OUT.sam

• To compress using DEEZ-NOREF :
deez -t 8 IN.sam -o COMP.dz -v

• To decompress using DEEZ-NOREF :
deez -t 8 COMP.dz -o OUT.sam

QUIP-SAM-REF We used the same QUIP binary as when compressing

FASTQ files. We run the following commands:

• To compress:
quip -r REF.fa -c IN.sam > COMP.qp

• To decompress:
quip -d -r REF.fasta -c COMP.qp >OUT.sam

• To print the sizes of compressed streams:
quip -l -v COMP.qp

CARGO-based solutions

We used the same CARGO framework as when compressing FASTQ files.

Container creation Before running tests, we create temporary CARGO

containers to store the compressed data, separately for the WEX and WGS

datasets. For WEX we create a container able to store compressed data up

to 5.9 GB in size, by running command:
cargo_tool --create -container --container -file=CONTAINER --large

-block -size=8 --large -block -count =10 --small -block -size =256 --
small -block -count =32

Similarly, we create a large container for the WGS dataset, able to store

compressed data up to 59.6 GB in size, by running command:
cargo_tool --create -container --container -file=CONTAINER --large

-block -size=8 --large -block -count =110 --small -block -size =256
--small -block -count =32

http://sfu-compbio.github.io/deez/

Appendix A. Supplementary materials 208

Analogously, as in the case of compressing FASTQ files, after compressing

the files the container can be shrinked to adapt its size to the size of the

content or cleared.

Running CARGO The CARGO-based CARGO-SAM-* solutions were run

as follows:

• To compress using CARGO-SAM-STD and CARGO-SAM-EXT :
cargo_samrecord_toolkit -* c -v -c CONTAINER -n DATASET -t 8

-b 8 -i IN.sam

• To decompress using CARGO-SAM-STD and CARGO-SAM-EXT :
cargo_samrecord_toolkit -* d -v -c CONTAINER -n DATASET -t 8

-o OUT.sam

• To compress using CARGO-SAM-REF :
cargo_fastqrecord_toolkit -* c -v -c CONTAINER -n DATASET -t

8 -b 8 -a -i IN.fastq

• To decompress using CARGO-SAM-REF :
cargo_fastqrecord_toolkit -* d -v -c CONTAINER -n DATASET -t

8 -a -f REF.fasta.bff -o OUT.fastq

	Acknowledgements
	Abstract
	Preface
	Introduction
	Storage of high-throughput sequencing data
	Objectives
	Results
	Discussion and outlook
	Conclusions
	Bibliography
	Supplementary materials

