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Abstract 

Numerous studies have shown that a wide range of behaviors from 

sensory processing to motor control involve near-optimal 

probabilistic inference. Most of these studies have focused on 

vertebrates, suggesting that the ability to perform probabilistic 

inference requires large nervous systems. Yet, neural theories of 

probabilistic inference can be implemented with the most basic 

neural networks. To explore the possibility that organisms with 

small nervous systems perform near-optimal probabilistic inference, 

I tested the ability of Drosophila larvae to integrate information from 

unisensory and multisensory cues. 

Larvae were placed in a circular behavioral arena, where their 

positions were monitored during exposure to single or combined 

sensory gradients. Combined gradients consisted either of two odor 

gradients or a thermosensory and an odor gradient, to test within 

and cross-modal integration respectively. In collaboration with 

theorists, I predicted the optimal behavior for the combined 

gradients given the behavior in the single sensory conditions, with a 

Bayesian model. The behavior of the larvae matched the predictions 

of the Bayesian model closely for both, the within and cross-modal, 

scenarios of integration. Another suboptimal model with fixed 

weights failed to predict the combined behavior. This work sets the 

stage for a systematic analysis of the neural computations underlying 

probabilistic inference in an insect brain amenable to genetic 

manipulations and physiological inspections. 
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Resumen 

Numerosos estudios han demostrado que una amplia gama de 

comportamientos, desde el procesamiento sensorial al control 

motor, intervienen en la inferencia probabilística casi-óptima. La 

mayoría de estos estudios se centran en vertebrados, surigiéndo que 

se requiere de un sistema nervioso complejo para desarrollar dicha 

inferencia probabilística. Sin embargo, las teorías neutrales de 

inferencia probabilística pueden ser implementadas con redes 

neuronales mas básicas.  Para investigar si organismos que poseen 

un reducido sistema nervioso son capaces de desarrollar inferencia 

probabilística casi-óptima, he examinado la habilidad que posee la 

larva de Drosophila para integrar información proveniente de señales 

uni y multisensoriales. 

Las larvas se colocaron en una area circular, donde se examinaron 

sus posiciones en función del gradiente único o combinado al que 

fueron expuestas. Los gradientes combinados consisten en dos 

gradientes de olor o bien en uno de olor y el otro termo sensorial, 

para así examinar la integración intramodal o intermodal 

respectivamente. En colaboración con teóricos y aplicando el 

modelo Bayesian, predije el comportamiento óptimo para gradientes 

combinados partiendo del comportamiento observado en 

condiciones de gradiente único. El comportamiento de la larva se 

ajustó a las predicciones del modelo Bayesian para ambos escenarios 

de integración, el intra e intermodal. Sin embargo, el modelo sub-

óptimo con pesos fijos falló en la predicción del comportamiento 

combinado. Este trabajo sienta las bases para un análisis sistemático 

de los cómputos neuronales corroborando la inferencia 
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probabilística en cerebros de insectos susceptibles a manipulaciones 

genéticas e inspecciones fisiológicas. 
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Preface 

Karl Popper compared science to a building on piles, erected over a 

swamp. In his analogy the piles have to be driven only as deep as to 

support the weight of the building and not until they reach firm 

ground (Popper 1963). In a similar fashion, our thinking about 

decision-making was guided by the notion of unbounded rationality1 

for a long time. We were supposed to be consistently rational 

decision-makers (Smith 1776), driven to maximize our utility 2 

(Bentham 1780). In short, humans have been regarded as homo 

economicus3. Even Adam Smith, the originator of this view, conceded 

that economic principles were not the only guides of our behavior 

(The Theory of Moral Sentiments, (Smith 2010)). However, for a 

long time most experts disregarded this view. 

In recent decades the efforts of a few researchers drove Popper’s 

piles deeper into the mud. Unbounded rationality was replaced by 

bounded rationality, thus acknowledging constraints in time and 

information (Gigerenzer and Todd 1999). By now it is clear that we 

deviate from rational decision-making in many high-level cognitive 

and economic tasks (Kahneman and Tversky 1979) (Ariely and 

Jones 2008) (Thaler 2015). However, for low-level tasks, such as 

perception, it has been shown that we rely on probabilistic reasoning 

to make the best possible use of sensory information (Ernst and 
                                                
1 Unbounded rationality assumes unlimited information and time during the 
process of decision-making (Gigerenzer, G. and P. M. Todd (1999)). 
  
2 An economic term, used to measure payoffs, satisfaction or preferences 
https://en.wikipedia.org/wiki/Utility 
 
3 https://en.wikipedia.org/wiki/Homo_economicus 
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Banks 2002). Moreover, it seems that we take sensory uncertainty 

and costs into account when we execute movements (Kording and 

Wolpert 2004). This allows us to achieve close-to maximum utility in 

complex motor tasks (Maloney, Trommershäuser et al. 2007) 

(Trommershäuser, Maloney et al. 2008). 

In this thesis I apply a basic version of probabilistic reasoning to 

sensorimotor decision-making of larva. Far from a final conclusion, 

I see it as a small contribution to an ongoing and exciting dialog. 

Thus, I consider it as one among many piles in the mud; to be 

driven deeper and maybe even built upon in the future.  
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Introduction 1 

Chapter 1: Introduction 

Drosophila melanogaster is one of the most studied model organisms in 

biology (Stephenson and Metcalfe 2012) (Bellen, Tong et al. 2010). 

The fly is a small, fast-growing and short-lived animal that can be 

maintained in big populations in the laboratory. For this reasons it 

became the workhorse of genetic research in the beginning of the 

20th century (Morgan 1911). Later, Drosophila played a mayor role 

when the field of behavioral neurogenetics was established (Benzer 

1967). In the attempt to shed light on the link between neurons and 

behavior, the number of neurons in the brain is an obvious criterion 

for choice of a model organism. The average human brain consists 

of a staggering 86 billions neurons and a mouse brain still contains 

around 70 million neurons (Herculano-Houzel 2009). However, the 

brain of an adult fly only contains about 100 000 neurons (Masse, 

Turner et al. 2009) and the number of neurons in the brain of a 

larva is even an order of magnitude lower. The reduced number of 

neurons in the brain implies that neural circuits have not evolved 

many of the redundancies, probably important to improve the 

signal-to-noise ratio, typical for the organization of mammalian 

brains. In this view neural circuits in insects represent a simplified, 

or stripped down version of a brain close to the minimum necessary 

for function4.  

The early development of Drosophila melanogaster larvae progresses 

through three different larval stages (Tyler 2000). First instar larvae 
                                                
4 In another view nervous systems of insects have evolved to be small by 
multiplexing functions. Thus, the lower number of neurons does not necessarily 
correlate with lower complexity.   
https://www.ted.com/talks/michael_dickinson_how_a_fly_flies 
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(L1) emerge from a fertilized embryo after one day. While feeding 

continuously, larvae grow and molt into second instar larvae (L2) on 

day two and third instar larvae (L3) on day three. With just 10 000 

neurons (Nassif, Noveen et al. 2002), the central nervous system of 

larvae produces a range of complex and well defined behaviors 

(Louis, Phillips et al. 2012) and has to solve many of the basic 

perceptual problems that we face as well. Larvae respond to the 

same sensory modalities as humans and are able to form and 

retrieve simple memories (Gerber and Stocker 2006). The 

combination of a numerically simple brain, a wealth of genetic tools 

to manipulate larval behavior (Luo, Callaway et al. 2008), and a 

quickly growing body of information about neuroanatomy, is about 

to establish the larvae as a model organisms par-excellence to 

elucidate underlying mechanisms of fundamental questions of 

sensory perception, processing, and behavior.  
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Perception	  and	  Beyond	  

The olfactory system 

Olfactory systems of vertebrates and invertebrates have evolved 

independently but they are organized according to structural 

common principles (Wilson and Mainen 2006). It is likely that 

commonalities have arisen from shared evolutionary constraints 

(Eisthen 2002). First-order olfactory sensory neurons (OSNs) 

project to a primary processing region, dedicated to olfactory signals 

(Fig. 1). These brain areas are called olfactory bulbs and antennal 

lobes (AL) in mammals and insects respectively. From there second-

order neurons carry the information to higher brain centers (Masse, 

Turner et al. 2009).  

The dorsal organ, the larval equivalent of the nose, is a bilateral, 

perforated dome-like structure at the tip of the larval head (Chu and 

Axtell 1971, Singh and Singh 1984). It houses the dendrites of 21 

OSNs expressing a ‘private’ olfactory receptor (OR) as well as an 

odorant receptor co-receptor (Orco) (Python and Stocker 2002, Larsson, 

Domingos et al. 2004, Benton, Sachse et al. 2006). The cell bodies of 

OSNs are contained within the dorsal organ ganglion (DOG), 

located close to the dorsal organ (Python and Stocker 2002). Each 

OSN expresses just one out of 23 different types of private OR 

(Vosshall and Stocker 2007). The exceptions are the pairs 

Or33b/Or47a and Or94a/Or94b, which are co-expressed in the 

same OSNs (Fishilevich, Domingos et al. 2005). Drosophila ORs are 

seven-transmembrane proteins with an inverted topology when 
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compared to mammalian ORs (Benton, Sachse et al. 2006). Thus, 

the N-terminus resides within the cytoplasm and associates with 

Orco, which is necessary for signal transduction. Together, Orco and 

the OR, are thought to form a ligand-gated cation channel (Sato, 

Pellegrino et al. 2008).   

Odorant molecules enter the dorsal organ by diffusion. There is 

evidence that olfactory binding proteins (OBPs) mediate the 

receptor-ligand interaction. In adult flies absence of the OBP lush 

abolishes responses to alcohol and the pheromone 11-cis vaccenyl 

acetate (cVA) (Kim, Repp et al. 1998, Xu, Atkinson et al. 2005, Ha 

2006). Every odorant molecule activates a different subset of OSNs 

according to the binding affinity of the expressed OR. The structure 

of an OR is tuned to interact with a number of distinct odorant 

molecules over a range of concentrations. A tuning curve relates the 

average OSN firing rate of a specific OSN to a stimulus (Butts and 

Goldman 2006). Tuning curves of adult and larval ORs have been 

systematically probed by extracellular electrophysiological recordings 

(Hallem, Ho et al. 2004, Hallem and Carlson 2006) (Kreher, Kwon 

et al. 2005, Kreher, Mathew et al. 2008). Typically, tuning curves 

depend on both odor identity and intensity. At low concentrations, 

odorants only bind to ORs with which they share a high affinity. 

Increasing the concentration recruits additional OSNs. Some 

receptors are narrowly tuned and only respond to a few structurally 

similar molecules while others interact with a broad set of ligands. 

Overall, the observed responses were mostly excitatory. However, in 

a few cases firing was even reduced after exposure to a chemical 

stimulus (Hallem and Carlson 2006) (Kreher, Mathew et al. 2008).  
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The antennal lobe (AL) is the primary processing center for 

olfaction and consists of 19 glomeruli (Masuda-Nakagawa, Gendre 

et al. 2009). The axon of each OSN targets a different glomerulus 

and connects to projection neurons (PNs) arborizing within the 

same glomerulus (Masuda-Nakagawa, Gendre et al. 2009). OSNs 

and PNs are both excitatory neurons and use acetylcholine as a 

neurotransmitter (Liu and Wilson 2013). A network of local 

interneurons (LNs) couples the glomeruli with each other (Das, Sen 

et al. 2008). LNs are either excitatory (Shang, Claridge-Chang et al. 

2007, Yaksi and Wilson 2010) or inhibitory (Olsen and Wilson 

2008). Inhibitory LNs are mostly GABAergic and mediate mainly 

intraglomerular connectivity (Asahina, Louis et al. 2009). 

Glutamateric inhibitory LNs are mostly interglomerular and inhibit 

GABAergic LNs as well as PNs (Liu and Wilson 2013). The 

concerted action of the complex LN network is important for gain 

control and divisive normalization (Olsen, Bhandawat et al. 2010). 

Figure 1: The olfactory system. Olfactory sensory neurons (OSNs) project to 
glomeruli in the antennal lobe. There, they make contact with projection neurons 
(PNs), which transmit the olfactory information to the Kenyon Cells (KCs) of the 
mushroom body (MB) and the lateral horn (LH). Figure taken from (Cachero and 
Jefferis 2008). 
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In the traditional view one OSN connects to one PN. However, 

recent evidence (Das, Gupta et al. 2013) as well as ongoing 

reconstruction of the antennal lobe reveals a more complicated 

picture (personal communication I. Tastekin). PNs project to higher 

brain centers, like the mushroom body (MB) and the lateral horn 

(LH).  

The thermosensory system 

Ectoderms, like Drosophila melanogaster are not able to regulate their 

body temperature (Stevenson 1985). Furthermore, with their low 

weight and small heat capacities the internal temperature matches 

the external temperature within seconds. Therefore, it is essential for 

larvae to respond to deleterious thermal stimuli as fast as possible 

(Garrity, Goodman et al. 2010). 

Like mammals, Drosophila uses a number of different sensory 

pathways to sample the temperature in their surroundings. The 

terminal organ is a bilateral structure at the head of larvae and is 

located right next to the dorsal organ. Neurons in the terminal organ 

ganglion (TOG) are sensitive to stimulation by temperature (Liu, 

Yermolaieva et al. 2003). Depending on the neuron, a cold stimulus 

either inhibits firing, triggers oscillations, or increases firing in third 

instar larvae (Liu, Yermolaieva et al. 2003). Three neurons in the 

DOG also respond to cooling (Klein, Afonso et al. 2015). 

Interestingly these neurons differ in their reaction to temperatures 

changes. One of these thermosensing neurons has a higher baseline-

calcium level and is more sensitive to the onset of warming than the 

other two neurons. Body wall neurons are also implicated in 
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thermosensation (Liu, Yermolaieva et al. 2003). Multidendritic 

neurons5 express the trp6 channels pyrexia (Lee, Lee et al. 2005) and 

painless (Tracey, Wilson et al. 2003, Xu, Cang et al. 2006, Sokabe, 

Tsujiuchi et al. 2008).  Both, pyrexia and painless are implicated in 

noxious heat avoidance and are activated around 40 and 44˚C 

respectively (Garrity, Goodman et al. 2010). Chordotonal neurons 

also express painless (Tracey, Wilson et al. 2003), as well as the ion 

channel inactive. Inactive is a member of the TRPV subfamily and 

implicated in choosing the preferred temperature (17.5˚C) over 

slightly colder temperature (14-16˚C) in third instar larvae (Kwon, 

Shen et al. 2010). Other members of the same family, TRP and 

TRPL, are also associated with cold sensing (Rosenzweig, Kang et 

al. 2008). TRPA1 and related signaling cascades (Kwon, Shim et al. 

2008, Shen, Kwon et al. 2011) have been implicated in avoidance of 

slightly elevated temperatures in adults and larvae (Rosenzweig, 

Brennan et al. 2005, Hamada, Rosenzweig et al. 2008). It is 

noteworthy, that TRPA1 functions as an internal temperature sensor 

in the brain. This is made possible as a consequence of the rapid 

equilibration of internal and external temperatures in small animals. 

                                                
5 Multidendritic neurons and chordotonal neurons (later in the text) are sensory 
neurons of the peripheral nervous system. Both types are located in the body wall 
of Drosophila melanogaster, and have been often implicated in mechanosensory 
sensation (stretch sensors). They are distinguished by their morphology: 
chordotonal neurons have one dendrite while the other sets of neurons are 
characterized by multiple dendrites.  
http://cuttlefish.bio.indiana.edu:7082/allied-data/lk/interactive-fly/aimorph/pns.htm  
6 Transient receptor potential (TRP) channels is a family about 30 related ion 
channels (Zheng, J. (2013)) , typically found in the walls of animal cells. They are 
subdivided in a number of subfamilies e.g. TRPA, TRPC, TRPV and TRPP. 
These channels are relatively non-selective and have been found to confer 
sensitivity to light, mechanosensation, temperature as well as chemicals.  
https://en.wikipedia.org/wiki/Transient_receptor_potential_channel 
 



Introduction 8 

In adult Drosophila the cells expressing internal TRPA1 heat sensors 

are called anterior cell (AC) neurons (Hamada, Rosenzweig et al. 

2008). AC neurons have a sensory function and at the same time 

represent a first level of convergence of thermosensory information. 

They integrate their thermosensory information with signals from 

pyrexia expressed in the second antennal segment (Tang, Platt et al. 

2013). While TRPA1 sensors detect shallow temperature gradients, 

GR28D-expressing heat sensing cells in the antenna mediate rapid 

warmth avoidance  (Gallio, Ofstad et al. 2011, Mani, Mullainathan et 

al. 2013). 

In larvae the circuits downstream from the sensors are mostly 

unknown at present, except for the thermosensors in the DOG that 

innervate a region posterior of the AL7 (Klein, Afonso et al. 2015). 

In adults, a similar region in the brain8 is innervated by heat and cold 

sensing cell from the third antennal segment innervate (Gallio, 

Ofstad et al. 2011). From there, projections are innervating the little 

studied lateral protocerebrum, the MB and the LH where further 

thermosensory processing takes place (Frank, Jouandet et al. 2015) 

(Liu, Mazor et al. 2015).  

Higher brain centers 

At present, studies on the mushroom body (MB) and the lateral 

horn (LH) have mainly focused on adult flies (Fig. 1). In addition 

most of these studies have investigated the role of higher brain 

                                                
7 The authors have not specified the exact region. 
8 Neurons from the third antennal segment innervate the proximal antennal 
protocerebrum. 
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centers in connection with olfaction, since the connectivity to 

temperature sensing system has only been described recently (Frank, 

Jouandet et al. 2015) (Liu, Mazor et al. 2015). The MB is associated 

with learned behavior (Keene and Waddell 2007) and representation 

of valence (Aso, Hattori et al. 2014, Aso, Sitaraman et al. 2014), 

while the LH is responsible for innate responses (Heimbeck, 

Bugnon et al. 2001, Masse, Turner et al. 2009, Ruta, Datta et al. 

2010). On a computational level this is achieved by sparse 

connections between PNs and Kenyon cells (KCs) of the MB and 

selective connection between PNs and LH (Luo, Axel et al. 2010).  

In addition to a selective connectivity, wiring of the LH is highly 

stereotyped (Marin, Jefferis et al. 2002, Jefferis, Potter et al. 2007). 

Neurons that run from the AL to the LH cluster into broadly and 

narrowly tuned groups (Fişek and Wilson 2013). The broadly tuned 

neurons receive input from multiple glomeruli, have a broad 

dynamic range, and are thought to be involved in stimulus 

generalization. Narrowly tuned lateral horn neurons might be 

necessary for discrimination and link specific cues directly to certain 

behavioral programs. The LH alone is sufficient for the generation 

of basic olfactory behaviors (de Belle and Heisenberg 1994).  

By contrast connectivity of PNs to the KCs of the MB seems to be 

random and sparse (Caron, Ruta et al. 2013). In adult flies every 

single KC out of about 2000 cells, connects to only 10% of the 

glomeruli. KCs make up the main body of the three lobes (α/β, 

α’/β’, and γ) of the MB (Fig. 2).  The remainder consists of 

mushroom body output neurons (MBONs) and dopaminergic 

neurons (DANs). Each lobe of the MB is compartmentalized into 
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five subsections, with every MBON and DAN type innervating only 

certain compartments (Fig. 2). DAN axons converge onto the 

shared KC-MBON synapses, where they modulate neural 

processing (Fig. 2). The MBON axons terminate in the LH and four 

additional zones in the brains of adult Drosophila, (Aso, Sitaraman et 

al. 2014). Aso et al. showed that activation and inhibition of certain 

MBONs with genetic methods modulates attraction and avoidance 

or blocks memory retrieval for the behavior specific to this MBON. 

Thus, the authors concluded that the MB encodes valence and thus 

biases decision-making (Aso, Sitaraman et al. 2014). Furthermore, 

they showed that activation of multiple MBONs mediating the same 

behavior has an additive effect i.e. results in an improved behavioral 

performance in a certain task. 

Figure 2: Schematic representation of the mushroom body circuitry. Each 
of the three mushroom body lobes (pink, blue and green) contains five 
compartments.  In every compartment Kenyon cells (KCs) form synapses with 
mushroom body output neurons (MBONs). Dopaminergic neurons (DANs) 
modulate signal processing and thus influence the valence of a cue. Figure taken 
from (Griffith 2014).  
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Perception	  to	  Action	  

An animal has to process sensory information so it can be used to 

guide behavior. The process of converting sensory input into motor 

output is called sensorimotor integration. This process has to be 

flexible enough to incorporate a wide variety of internal and external 

(posture, timing, etc.) states (Huston and Jayaraman 2011). To 

navigate sensory gradients it is essential to disentangle the 

perception arising from self-generated movement, from the spatial 

quality of the gradient. Therefore, it is likely that sensorimotor 

integration is not only a feed-forward process but contains feedback 

loops at multiple stages (Huston and Jayaraman 2011). 

Strategies to navigate chemical gradients 

The term kinesis (Greek for movement or motion) describes the 

simplest forms of gradient navigation. Escherichia coli navigate 

chemical gradients by a biased random walk (Berg and Brown 1972). 

These bacteria are able to modulate the length of straight swimming 

bouts, called runs, depending on whether it is moving up or down 

the gradient. In addition to runs its trajectory also consists of 

tumbles in which the direction of a new run is chosen at random. 

Similar to bacteria, C. elegans is able to bias the length of its runs, 

whereas reorientation events, termed pirouettes, are random (Pierce-

Shimomura, Morse et al. 1999). However, runs in C. elegans 

navigation are not completely straight. Instead, they are mostly bent 

towards the source of the chemical gradient. Therefore, C. elegans is 

able to continuously refine the direction of its runs in a process 
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called weathervaning (Iino and Yoshida 2009) (Izquierdo and 

Lockery 2010).   

More sophisticated strategies to navigate sensory gradients are 

collectively termed taxis-behaviors (Greek for arrangement). The 

nature of the gradient is usually specified by a prefix e.g. chemotaxis 

for navigation of chemical gradients. Drosophila larvae are able to 

bias both run length and turn orientation towards the side of the 

stimulus location during chemotaxis (Gomez-Marin, Stephens et al. 

2011, Gershow, Berck et al. 2012) (Gepner, Mihovilovic Skanata et 

al. 2015, Hernandez-Nunez, Belina et al. 2015, Schulze, Gomez-

Marin et al. 2015). Therefore, larvae have to make two different 

types of decisions: when to turn (type 1) and where to turn to (type 

2). While running, wild-type larvae monitor the perceived change of 

odor concentration over time. Turns are triggered by a prolonged 

experience of a negative slope of perceived odor concentration 

(Gomez-Marin, Stephens et al. 2011). In short, larvae are able to 

modulate their run length depending on their bearing with respect to 

the gradient (type 1 decision) (Gomez-Marin, Stephens et al. 2011) 

(Gershow, Berck et al. 2012). Larvae are able to chemotax even if 

the number of functional OSNs has been reduced with genetic 

methods (Fishilevich, Domingos et al. 2005) (Louis, Huber et al. 

2008) (Asahina, Louis et al. 2009). Experiments with larvae with 

only one functional set of OSNs, showed that they relied on the 

same strategy as wild-type larvae in odor gradients (Gomez-Marin, 

Stephens et al. 2011) (Gershow, Berck et al. 2012) and virtual odor 

gradients (Gepner, Mihovilovic Skanata et al. 2015, Hernandez-

Nunez, Belina et al. 2015, Schulze, Gomez-Marin et al. 2015). 
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Therefore, larvae need just one type of OSN to perform the 

necessary computations required for chemotaxis. This finding also 

extends to sensory neurons mediating aversion to odors such as 

Or45a (Hernandez-Nunez, Belina et al. 2015) or CO2 (Gepner, 

Mihovilovic Skanata et al. 2015). In this scenario, however, runs are 

biased towards gradient descent. Consequently, turns are triggered 

by exposure of larvae to positive slopes of perceived stimulus over 

time.  

Electrophysiological investigation of OSN firing showed that the 

activity of OSNs depends on stimulus intensity and its first 

derivative (Schulze, Gomez-Marin et al. 2015). An OSN is excited 

by an increase in odor concentration. A rise in OSN activity results 

in prolonged up gradient movement. A negative derivative of 

stimulus intensity, resulting from a decrease in odor concentration, 

inhibits OSN firing and increases the probability of turning. 

Consequently runs are shortened. Therefore the OSN activity 

correlates directly with the observed behavior. The type 1 decision 

has been modeled based on the behavior after reverse correlation 

with a linear-nonlinear model (Gepner, Mihovilovic Skanata et al. 

2015, Hernandez-Nunez, Belina et al. 2015) or based on the OSN 

firing rates (Schulze, Gomez-Marin et al. 2015). The latter approach 

suggests a testable biophysical model employing incoherent feed-

forward and feedback loop motifs (Alon 2006).  

At the end of a run larvae stop and sample the odor environment by 

lateral head casts. The last head cast determines the direction of a 

turn (type 2 decision), which mostly points in the favorable direction 

(Gomez-Marin, Stephens et al. 2011, Gershow, Berck et al. 2012). 
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Typically, larvae are able to select the favorable direction over 70% 

of times after just two head casts (Gomez-Marin, Stephens et al. 

2011). As in C. elegans, larvae are also able to weathervane and thus 

bias their runs towards the odor source (Gomez-Marin and Louis 

2014, Ohashi, Morimoto et al. 2014).  

Thermotaxis 

Since larvae are not able to regulate their body temperature they 

have to rely on behavioral strategies to find suitable environmental 

conditions (Stevenson 1985, Heinrich 1993). Movement towards 

warm temperatures (up gradient) is called positive thermotaxis. 

Movement down gradient due to the avoidance of heat is referred to 

as negative thermotaxis. Thermal preferences change profoundly 

during development. First instar larvae are attracted to temperatures 

between 23-29˚C (Luo, Gershow et al. 2010), third instar prefer 

around 18 ˚C (Kwon, Shen et al. 2010) and adult 24-26˚C (Sayeed 

and Benzer 1996).  

Positive and negative thermotaxis relies on the same behavioral 

strategy (Luo, Gershow et al. 2010). Similar as in chemotaxis, 

thermotactic behavior can be divided into a sequence of runs and 

turns. Run length is elongated if larvae move in the direction of 

preferred temperature and shortened if moving in the opposite 

direction (type 1 decision) (Luo, Gershow et al. 2010) (Klein, 

Afonso et al. 2015). After a run larvae stop and perform lateral head 

casts to choose the direction of the next run (type 2 decision). 

Larvae are able to modulate the amplitude of their casting 

movements. If larvae are heading towards the undesirable 
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temperature the amplitude of their head casts is bigger than when 

they are heading towards the direction of the preferred temperature 

(Klein, Afonso et al. 2015). Similar as in chemotaxis the outcomes 

of turns are biased towards the location of the preferred 

temperature. First instar larvae navigate gradients as shallow as 0.05 

˚C/mm (Luo, Gershow et al. 2010). Combining the speed of first 

instar larvae of approximately 0.1mm/s with the minimal slope leads 

to an estimation of a sensory sensitivity as low as 0.005˚C/s (Luo, 

Gershow et al. 2010, Klein, Afonso et al. 2015). Klein et al. show 

that inactivation of the three cells in the DOG that respond to 

temperature changes, abolishes both positive and negative 

thermotaxis in their assay 9  (Klein, Afonso et al. 2015). This is 

possible because the thermosensory cells in the DOG respond to 

cooling by depolarization and warming by hyperpolarization (Klein, 

Afonso et al. 2015). In summary larvae are able to navigate 

temporally and spatially changing gradients by the implementation 

of two types of decisions. Thus, orientation behaviors can be seen as 

a sequence of low-level decisions. 

Social Interactions 

Drosophila larvae form modest aggregations during foraging (Wu, 

Wen et al. 2003, Durisko, Kemp et al. 2014). Aggregation behavior 

is slightly increasing during early development and peaks in second 

instar larvae (Durisko, Kemp et al. 2014). In addition, an aggregation 

                                                
9 However it is not clear how this would impact most of the other assays and 
thermosensors discussed in the section ‘The thermosensory system’. 
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of larvae facilitates the onset of burrowing behavior (Rohlfs and 

Hoffmeister 2004, Durisko, Kemp et al. 2014). 

These social interactions seem to be mediated by olfactory and 

visual cues. Justice et al. claim that larvae are attracted to the 

writhing movement of other larvae (Justice, Macedonia et al. 2012). 

The authors exclude the possibility that attraction is mediates by the 

olfactory system by presenting the larvae on top of a plastic lid, on 

the outside of the behavioral chamber. Furthermore, the attraction 

to the target is abolished in the absence of light or if the target lacks 

movement. In a follow-up paper the same group postulate that this 

form of visual attraction develops in a critical period and is defined 

by the density of larvae during rearing (Slepian, Sundby et al. 2015). 

Based on the observation that larvae tended to follow the tracks of 

other larvae, two novel larval pheromones that mediate attraction 

have recently been described (Mast, De Moraes et al. 2014). These 

pheromones are both long-chain fatty acids and bind to channel 

subunit genes of the pickpocket family. This family of receptors is 

also involved in detecting the male pheromone cVA.  

Aggregation behavior and group burrowing might protect larvae 

from predators (Lefèvre, de Roode et al. 2011) or help break down 

and soften food (Durisko, Kemp et al. 2014). However, social 

burrowing is also observed on soft food, thus social behavior might 

be part of a general strategy to make use of social information 

(Durisko and Dukas 2013).  

Nevertheless, experimental evidence suggests that group effects 

have only a minor impact on chemotaxis strategy, because larvae 
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have been reported to navigate chemical gradients as individuals 

(Monte, Woodard et al. 1989) (Kaiser and Cobb 2008). This 

conclusion is based on low resolution tracking of two groups of 

larvae. While one group is attracted to the odorant the other group 

is indifferent to the same cue. Mass assays with separate and mixed 

group populations do not influence behavioral performance 

(attraction vs. indifference) for both groups. However, comparison 

of mass assays with single larvae experiments reveals a slightly worse 

performance in the group condition. Although larvae cover similar 

distances in both conditions, performance declines in proportion to 

the number of larvae bumping into each other (Kaiser and Cobb 

2008). 

Decision-making 

Decision-making is the process of selecting an action from several 

alternatives10. All animals constantly determine a course of action 

even though they do not have access to extensive cognitive 

resources (Kristan 2008, Webb 2012). Psychological research 

typically focuses on human-like decisions while the 

neuroethological/behavioral research is geared to reveal the neural 

mechanisms underlying decisions (Kristan 2008). This difference is 

revealed in the choice of model organisms. Organisms with 

numerically simple brains such as insects are used to elucidate the 

function of neural networks, while human or primate brains are 

chosen for cognitive studies. Clearly, complex brains are more 

suitable for research of cognitive tasks. However, I want to argue 

                                                
10 https://en.wikipedia.org/wiki/Decision-making 
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that the choice of model organisms was also influenced by the 

available technology. Recent progress in technology, such as the 

availability of cameras and improvements in machine vision and 

equipment makes it relatively easy to set up an assay to track 

behaviors of vertebrates and invertebrates alike. This facilitated the 

adaptation of concepts from psychological models and application 

to other organisms. Until recently it was assumed that many 

properties of decision-making are hallmarks of humans or primate 

brains. However, research into sensory perception has challenged 

this assumption. Rats are able to base their decisions on uncertainty 

present in the stimulus (Kepecs, Uchida et al. 2008) and accumulate 

evidence optimally when making decisions (Brunton, Botvinick et al. 

2013). Moreover, rats use a similar strategy as humans when 

combining information from different sensory systems (Raposo, 

Sheppard et al. 2012) (Sheppard, Raposo et al. 2013). Could the 

brains of rodents and smaller animals follow the same principles of 

perception than our brains? For these reasons I want to argue here 

that at least in the field of perception, psychological and 

neuroethological approaches are beginning to converge. In this 

thesis I refer to decision-making at the level of sensorimotor 

integration as low-level decision-making11. Further, I allude to tasks 

involving advanced cognitive abilities as high-level decision-making. 

  

 	  
                                                
11 At this level of decision-making, information might be processed by elementary 
cognition, e.g. simulation of the surrounding environment (Webb, B. (2012)), or 
by neural circuits, shaped and specialized to perform these computations by 
evolution.  
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Multisensory	  Integration	  in	  Mammals	  and	  Insects	  

We can only navigate the world by using signals from multiple 

senses. Multisensory integration ensures that separate streams of 

information, originating from the same cause are combined to an 

unified perception. Interestingly, this does not only relate to objects 

in the external world but extends to everything we perceive. The 

different variations of the rubber hand illusion (Botvinick and 

Cohen 1998) and of laboratory induced out-of-body experiences 

(Ehrsson 2007, Petkova and Ehrsson 2008, Guterstam, Petkova et 

al. 2011) trick our body into believing that a foreign object, e.g. a 

rubber hand, is part of ourselves. To induce these illusions, typically, 

a haptic stimulation (touch) is applied synchronously to our real 

body and to a foreign body, while our gaze is manipulated in a way 

that we only perceive the foreign body (including the stimulation). 

In many cases this is enough to transfer our perception towards the 

foreign object. These experiments suggest, that a big part of what 

we label as the sense of self, namely our location in space and 

ownership of our bodies and limbs, result from an underlying 

process of multisensory integration.  

Traditionally, sensory systems have been studied in isolation. It was 

assumed that incoming sensory information is first processed 

separately before being combined in dedicated multisensory brain 

areas (Penfield and Rasmussen 1950). The superior colliculus (SC) is 

one of the most studied multisensory areas in mammalian brains 

(Newell, Mamassian et al. 2010). This brain region is involved in 

orientation behaviors and receives visual, auditory, and 

somatosensory input. Receptive fields of multisensory neurons 
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overlap so that they respond to stimuli from different modalities at 

the same spatial location (Meredith and Stein 1990). This 

organization entails that sensory stimuli are more likely to be 

integrated into a common perception if they are co-localized in 

space or time (Meredith and Stein 1986, Meredith, Nemitz et al. 

1987). In addition, it has been shown that the multisensory 

enhancement effect is greater for weak unimodal stimuli (Stein and 

Meredith 1993). 

Recent evidence suggests that multisensory processes may activate 

brain regions formerly thought to be unisensory. Cross-modal 

interaction refers to the finding that signals from one modality may 

affect the detection of other modalities. In blind people the visual 

cortex (V1) is stimulated by Braille reading (Sadato, Pascual-Leone 

et al. 1996) and sounds (Röder, Stock et al. 2002). Therefore, it is 

not surprising that other cross-modal interactions have been 

observed too. It has been shown that the sensitivity to luminance 

detection is enhanced if a visual stimulus coincides spatially and 

temporally with an auditory stimulus (Frassinetti, Bolognini et al. 

2002). However, in violation of the spatial principle, visual intensity 

is also enhanced by an accompanying sound regardless of the 

location of that sound (Stein, London et al. 1996). The improvement 

to detect visual stimuli with unrelated auditory cues has been 

confirmed by other groups (Spence and Driver 1997) (McDonald, 

Teder-Sälejärvi et al. 2000) and is believed to pertain to some type of 

cross-modal attention effect (McDonald and Ward 2000). Reversal 

of the experimental strategy also facilitates stimulus perception. This 
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way, the detection of auditory signals is improved if accompanied by 

a task-irrelevant light flash (Lovelace, Stein et al. 2003). 

Multisensory cues also have an impact on the behavior of insects 

such as Drosophila melanogaster. Male courtship behavior in the fly is 

one of the most-studied multisensory processes (Krstic, Boll et al. 

2009). Males initiate the behavior after favorable gustatory sampling 

of cuticular hydrocarbons on the bodies of females with their 

forelegs (Spieth 1974) (Ferveur 2005). Courtship is further mediated 

by olfactory cues, such as pheromones indicating the state of sexual 

availability (Brieger and Butterworth 1970) (Kurtovic, Widmer et al. 

2007) and food derived odors (Grosjean, Rytz et al. 2011). Both 

gustatory and olfactory stimuli converge on P1 neurons (Kohatsu, 

Koganezawa et al. 2011) (Clowney, Iguchi et al. 2015). Activation of 

these neurons triggers courtship behavior even if there are no other 

flies present. Visual (Kohatsu and Yamamoto 2015) and auditory 

cues (Spieth 1974) (Coen, Clemens et al. 2014) are also important 

for courtship behaviors.  

The host-seeking behavior of female mosquitos relies on gradients 

of CO2, human scent, and heat (McMeniman, Corfas et al. 2014). 

CO2 detection enhances attraction to human scent and is crucial for 

attraction to heat in the range of human body temperature. A 

mutation of the CO2 receptor diminishes the host-seeking behavior 

but does not abolish it completely. Interestingly, the presence of 

wild-type mosquitos in a swarm of mosquitos that are unable to 

detect CO2, does not rescue the host seeking behavior of all 

mosquitos. This finding is effectively ruling out the influence of 

group effects. The combination of CO2 and odor gradients is 
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sufficient to trigger feeding from unheated blood. (Woke 1937) 

(McMeniman, Corfas et al. 2014). One study investigated the nature 

of cross-modal interactions in adult Drosophila melanogaster 

(Wasserman, Aptekar et al. 2015). It has been shown previously that 

pairing odors with visual stimuli increases the optomotor response, 

resulting in improved plume-tracking capability (Chow, Theobald et 

al. 2011). Wasserman et al. identified a cell in the visual system that 

responds stronger when visual and olfactory stimuli are presented at 

the same time. This modulation is mediated by octopaminergic 

neurons and is induced upon flight initiation (Suver, Mamiya et al. 

2012). Even though the stimuli do not share the same spatial 

location, temporal synchrony alone can be sufficient to increase the 

robustness of perception.  

In Drosophila melanogaster the mushroom body (MB) and 

subesophageal ganglion (SOG) are potential sites of information 

integration.  Lewis et al. proposed that conflicting information is 

integrated in the MB (Lewis, Siju et al. 2015). During the 

fermentation of fruits, CO2 is often released together with odors. 

The sensory information about ambient CO2 levels is represented in 

Kenyon cells (KCs) in the MB and induces an innate behavioral 

avoidance response in flies (Bräcker, Siju et al. 2013). In the 

presence of food odors, however, a group of dopaminergic neurons 

modulates the neural response. This results in a reduction of innate 

aversion. Tastekin and Riedl et al. have shown that the SOG acts as 

a multisensory center for sensorimotor integration in Drosophila 

larvae (Tastekin, Riedl et al. 2015). In an attempt to dissect the 

circuits underlying chemotaxis, the authors have identified a number 
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of neurons in the SOG causing a defect in the transition from runs 

to turns during chemotaxis. The defect generalizes to thermotaxis 

and photophopic orientation behavior. Together with the evidence 

that the SOG is involved in gustation (Kwon, Dahanukar et al. 

2011) they conclude that this area of the larval brain is a multimodal 

hub for action selection.  

Ohyama et al. describe the circuitry of integration of 

mechanosensory and nociceptive stimuli in Drosophila larvae 

(Ohyama, Schneider-Mizell et al. 2015). Both sensory pathways 

originate in the body wall and are stimulated by an attack of a 

parasitic wasp (Hwang, Zhong et al. 2007), triggering a rolling 

escape response in Drosophila larvae. Mechanosensory chordotonal 

neurons are activated by the vibration of the wing beat and 

nociceptive multidendritic class IV neurons by stinging. The authors 

have identified four sites of first-level convergence in the ventral 

nerve cord (VNC).  Half of these are unimodal and react to 

mechanosensory stimuli only, while the other two sites respond to 

both types of stimulation. A combined presentation of both stimuli 

at bimodal sites results in a super-additive enhancement of rolling 

behavior. Stimulation of bimodal and unimodal sites together 

further increases the probability of rolling. This is plausible because 

at a second level of convergence both unimodal and bimodal sites 

ultimately connect to a command-like neuron in the VNC, called 

‘Goro’. Activation of this neuron reliably triggers rolling behavior 

upon stimulation. From there, information ascends to the brain in a 

multi-step pathway and converges back onto the Goro neuron in a 

descending pathway. Finally the authors model the multi-level 
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architecture of convergence and conclude that this architecture 

improves action selection and therefore leads to a faster escape 

(Ohyama, Schneider-Mizell et al. 2015).  

Ohyama et al. describe the circuitry for cue combination, where 

both causes point towards the same goal. However, cue conflict has 

also been studied. Gepner et al. induce photophobic behavior with 

blue light flashes and attraction behavior with red light flashes in 

larvae expressing a red light-activated ion channel in their OSNs 

(Gepner, Skanata et al. 2015). Following a Linear-Nonlinear-Poisson 

(LNP) approach the authors calculate the average sensory 

experience before a turn (turn triggered average) for each stimuli 

(blue and red light) separately. This reveals that larvae turn in 

response to increases of blue light (avoidance) and decreases of red 

light intensity (attraction). Next, the authors examined the larval 

behavior to fluctuating red and blue light at the same time. Turn 

frequency is highest if the red light intensity decreases and blue light 

intensity increases. This favored an LNP model assuming early 

linear integration over a model assuming independence. A recent 

paper illustrates that in ants the behavior of cue integration is close 

to optimal (Wystrach, Mangan et al. 2015). Foraging ants rely on a 

visual compass and path integration. Path integration maintains a 

home vector pointing towards the starting point of a foraging bout. 

Furthermore, the authors show that directional uncertainty in the 

path integrator is proportional to the distance travelled. Ants 

experience a conflict between path integration and the visual 

compass after capture on their way to the feeder and release at 

another location. In choosing their path, ants behave as if the 
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conflicting cues are weighted by their uncertainty in accordance with 

Bayesian cue integration (this is the topic of the next section). 

However, an additional experiment suggests that ants only 

approximate the Bayesian solution by using the length of the home 

vector as proxy for uncertainty (Wystrach, Mangan et al. 2015).  
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The	  Brain	  and	  the	  Environment	  

Probabilistic inference: The brain as a statistical machine 

Brains are evolutionary products of our interaction with the 

environment 12 . External stimuli are intrinsically noisy and our 

sensors are imperfect as well (Faisal, Selen et al. 2008). It has been 

argued that the variability in the brain is a proxy of the uncertainty 

in our surroundings (Ma, Beck et al. 2006). How the brain deals with 

uncertainty lies at the heart of many problems in perception, 

decision-making and action (Körding 2007). We would perform best 

if our brains captured and exploited the uncertainty present in the 

sensory stimuli from our surroundings. In this view the brain is akin 

to a statistical machine13. This refers to the idea that the brain 

handles information in accordance with statistical principles. Thus, 

every stimulus should be encoded as a probability distribution and 

defined by a mean and variance. By contrast, the standard or non-

probabilistic approach assumes that the brain encodes just one value 

- the mean - of the stimulus.  

Probabilistic inference is the process of formulating a hypothesis 

about the surroundings based on incomplete or uncertain evidence 

(i.e. sensory input) of a hidden cause (hidden variable). To achieve 

this, the brain should represent every parameter as a probability 

distribution. This way every possible value is associated with a 

                                                
12 Daniel Wolpert: The real reasons for brains 
https://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains  
13 Adam Kepecs: The brain is a statistical engine 
http://bigthink.com/videos/the-brain-is-a-statistical-engine 
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corresponding probability at every time point (Knill and Pouget 

2004).  

Bayes’ rule (Bayes 1763) is a mathematical rule to relate two 

conditional probabilities with each other. However, it can also be 

seen as “a law of logical rational inference in the face of uncertainty” 

(Gallistel and King 2011). It describes how uncertain information 

can be combined to a probability distribution:  

𝑝 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑠𝑒𝑛𝑠𝑜𝑟𝑦  𝑖𝑛𝑝𝑢𝑡 =
𝑝 𝑠𝑒𝑛𝑠𝑜𝑟𝑦  𝑖𝑛𝑝𝑢𝑡 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 ∗ 𝑝 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠

𝑝 𝑠𝑒𝑛𝑠𝑜𝑟𝑦  𝑖𝑛𝑝𝑢𝑡   (1)

The numerator consists of the likelihood, p(sensory 

input|hypothesis) and the prior, p(hypothesis). Together, the 

likelihood and the prior form a generative model, thereby 

determining the statistical structure of the task (Pouget, Beck et al. 

2013). Further, it establishes how the probabilities of observable 

variables depend on hidden variables. The likelihood expresses the 

probability of the observed sensory input with respect to the 

hypothesis about the state of the world. The prior, or prior 

experience represents the information already known before the 

combination with the likelihood. There are a number of examples 

for very strong priors in humans, causing persistent illusions 

(Shams, Kamitani et al. 2000) (Vilares and Kording 2011). One of 

them is a strong assumption, that light comes from above. At times 

this can impact our spatial perception, such as in figure 3. Due to 

the orientation of the gradients, we perceive the left circle as a 

groove and the right circle as a bump. The denominator of Bayes’ 

rule, p(sensory input), is called the marginal likelihood and acts as a 

scaling factor. The result of Bayes’ rule is the posterior distribution, 
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p(hypothesis|sensory input). This distribution has some special 

properties. Its mean is shifted towards the narrower probability 

distribution and its variance is smaller than the variance of the prior 

and the variance of the likelihood distribution.  

 

 
Figure 3: An example of a visual illusion caused by a prior.  The assumption 
that light comes from above results in perception of a groove on the left circle 
and a bump on the right circle. The gradient in the left circle is interpreted as a 
groove because a light source from the top generates a shadow in the upper half 
and only illuminates the bottom half. Reversing the gradient leads to a bump, 
where the upper half is illuminated and the bottom half is in the shadow. 

 

Bayes’ rule formulates how the prior information of a hypothesis 

should be updated with new information. The posterior of the 

previous step is the prior of the next step of iteration. These 

concepts have been expanded to a number of applications, e.g. to 

allow inference over space (Ma, Navalpakkam et al. 2011) and 

time14. Causal inference is another application of Bayes’ rule to infer 

the structure of the world. A typical example is a perception that 

arises from multiple separate and independent causes or relates to a 

common cause. Therefore, the Bayes’ approach compares the 

probability of different and ultimately exclusive scenarios, by 

                                                
14 Hidden Markov models (HMM) describe the change of latent variables over 
time. The Markov property states that the conditional probability of the future is 
only dependent on the present state and independent from the past. HMMs with 
continuous variables and Gaussian distributions are called Kalman filter Kalman, 
R. E. (1960)).     
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combining the prior probability with likelihood for each scenario 

(Knill 2003, Tenenbaum, Griffiths et al. 2006, Körding, Beierholm 

et al. 2007). 

In many interesting scenarios the shape of the prior can be 

neglected. This is either because the effect of a prior is eliminated by 

the design of the experiment15 or the prior is very broad and hence it 

is not informative. For instance, if the prior covers several orders of 

magnitude of a physical variable, then the likelihood given an 

observation can be considered as very narrow compared to the 

prior. Therefore, in these cases the prior can be safely assumed to be 

flat16 over the entire range of possible stimulus values. 

Cue integration: a way to test probabilistic inference 

Instead of combination of a prior and likelihood, cue integration 

usually combines the information of two distributions of sensory 

cues. A graphical model (Pearl 2000) represents this scenario (Fig. 

4). The graphical model shows no direct connection between two 

cues in the model because the sensory inputs are assumed to be 

independent.  

                                                
15 If the experiment is designed as a two-alternative forced choice (2AFC) task the 
effect of the prior is eliminated. 
16 Flat priors have a uniform probability across the entire range of values. For this 
reason every possibility is equally likely. 
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Figure 4: Cue integration. The graphical model depicts the integration of two 
independent cues to a combined estimate according to Bayes’ rule.   

The idea that sensory perception implements some form of 

probabilistic inference can be dated back to Ernst Mach (Mach 

1886) and Hermann von Helmholtz (Helmholtz 1891). However, 

solid evidence in favor of the probabilistic nature of sensory 

integration was only added during the last two decades.  

A typical cue combination experiment starts with a separate 

assessment for each cue17. Next, the combined experiments are 

performed with different levels of uncertainty for one cue18. If the 

brain represents probabilities and combines them according to 

Bayes’ rule, the brain should weight each cue according to its 

reliability (Knill and Pouget 2004). The theoretical weight of each 

cue can be calculated and these predictions are compared with the 

experimental results. If the fit of the prediction is good it is 

concluded that the behavior follows Bayes’ rule, i.e. that it is Bayes 

optimal. This is only possible if the brain has access to the 

reliabilities of the cues (Ma and Pouget 2008). 
                                                
17 This is usually assessed with a psychometric curve.  
18 The manipulation of stimulus uncertainty depends on the nature of the cue. It 
is easiest to corrupt visual stimuli e.g. by adding noise to a cue shown on a screen. 



Introduction 

 
31 

In a study testing cross-modal integration between the visual and 

haptic (touch) system, subjects estimate the width of a bar. Humans 

have been found to integrate cues in a statistical optimal fashion. 

(Ernst and Banks 2002). Optimality can be described with respect to 

the mean (µ) and the variance (σ2) of the posterior distribution. To 

be optimal the cues have to be weighted (wv weight for the visual 

cue, wt weight for the touch cue) so that each cue contributes to the 

mean of the combined estimate (µvt) according to its reliability 

(eq. 2, Fig. 5).  

𝜇!" =
1
𝜎!!

1
𝜎!!
1
𝜎!!
𝑤! +   

1
𝜎!!

1
𝜎!!

+ 1 𝜎!!
𝑤!      (2) 

In addition, the variance (σvt
2) of the combined distribution has to 

be smaller than the variance of each of the unimodal distributions 

(eq. 3, Fig. 5). 

𝜎!"! =
𝜎!!𝜎!!

𝜎!! + 𝜎!!
      (3) 

 This property of the posterior distribution is connected to the 

increase of information (Pouget, Beck et al. 2013). The peak of the 

posterior distribution reflects the most likely value of the stimulus, 

while the width takes the uncertainty into account (Fig. 5). 
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Figure 5: Bayesian cue integration between the visual and haptic system. 
Subjects estimate the width of bar by vision and touch. Every sensory cue is 
represented as a probability distribution: touch (red) p(wt|w); vision (blue) 
p(wv|w); posterior (green) p(w|wt,wv). The peak of a distribution represents its 
mean, the width its reliability. The mean of the posterior is computed by weighing 
each cue according to its reliability (eq. 2). Therefore, the distribution is shifted 
towards the narrower (visual) probability distribution. The variance of the 
posterior distribution is smaller than the variance of the haptic and the variance of 
the visual probability distribution (eq. 3). Figure taken from (Pouget, Beck et al. 
2013)     

 

 Ernst et al. show that integration of information only takes place 

under certain conditions. Normally (e.g. daylight), the detection 

threshold of the visual system is markedly lower than the threshold 

for the haptic system. In this case, the haptic information is ignored 

and the perception is captured by the visual system. The addition of 

noise to the visual scene elevates the visual detection threshold.  If 

the visual detection threshold is above the haptic threshold, 

perception is captured by the haptic system instead. Thus, 

integration of information only takes place when both cues have 

similar detection thresholds 19 . The predictions of the model 

matched the captured conditions as well as the case of cross-modal 

integration.  

Ventriloquism is a prime example for a visual-capture effect (Alais 

and Burr 2004). Typically we perceive voices as emanating from 
                                                
19  In psychophysics detection thresholds are defined as the difference of a 
property when it is judged 84% of the time higher than the same property at the 
point of subjective equality. 
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moving lips. Astonishingly, this is also the case when the only 

moving lips in sight are from a puppet20 or pictured on a screen. 

Similarly, subjects estimating the azimuthal location of simultaneous 

short light flashes and brief sounds perceive this visual capture 

effect. Crucially, subjects have been primed to perceive both signals 

as a combined event, such as a ball hitting the screen. High 

uncertainty in the visual signal leads to an “inverse ventriloquist 

effect” where sound captures vision. Although we rarely experience 

this effect, it means that the position of a blurred dot is perceived 

close to the position of the sound. For noise levels in-between these 

extremes, the bimodal data follows the rules of Bayesian sensory 

integration.  

Bayesian cue combination also happens within the same modality 

(Knill 2003) (Jacobs 1999). When subjects infer the depth of a 

cylinder from visual motion and texture cues, their behavior can be 

described with a Bayesian model. In the latter study (Jacobs 1999) 

the author tested two Bayesian models with different assumptions. 

The first model assumed uniform prior distributions and let to a 

good fit. In nature however, cylinders e.g. trees, tend to have a 

circular base. Thus, the second model incorporated the prior, that all 

participants assumed that the cylinders were circular. This model 

resulted in an even better fit to the data. This illustrated that 

differences in initial assumptions can bias the modeling approach. 

                                                
20 It could be argued that the knowledge that a puppet cannot speak can also be 
considered a prior knowledge. Indeed, this illusion is so common that no adult 
believes that the puppet is speaking. However, it seems that this additional prior at 
the cognitive level does not change the illusion itself or at least does not interfere 
with the perception when we know that the setting is artificial. We are happy to 
exploit this illusion when we are watching television.    
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The next section describes the potential impact of incorrect 

assumptions on the inference process. 

The limits of probabilistic inference 

Optimal inference is only possible if the structure of the generative 

model21, that is the distribution of the likelihood and the prior, are 

fully known. Any deviations from the natural distributions of the 

prior or the likelihood, either introduced through assumptions or 

due to the experimental setup, result in suboptimal inference (Ma 

2012).  Especially scenarios of cue conflict are often artificial. For 

example, the McGurk effect (McGurk and MacDonald 1976) 

introduces a subtle dissonance into the visual and auditory stream of 

information and thus violates the underlying prior of synchrony (Ma 

2012). For this reason it may not be possible to observe optimal cue 

combination under these conditions.  

The level of suboptimality in the inference process depends on the 

extent the generative model deviates from what is encountered in 

the world (Ma 2012).  For severe deviations from reality, 

suboptimality impacts behavior more than the effects of internal and 

external noise (Beck, Ma et al. 2012). Due to the complexity of the 

generative model of some real world tasks, suboptimal behavior 

might be inevitable in the long run. Especially high-level decision-

                                                
21 The generative model defines the assumed underlying statistical structure of a 
task. It describes a probabilistic model based on hidden variables that creates data 
for a specific set of the parameters. In our case the generative model is made up 
of the likelihood and the prior 
https://en.wikipedia.org/wiki/Generative_model  
 



Introduction 

 
35 

making is influenced by psychological biases (Kahneman and 

Tversky 2000) and might follow other decision strategies such as 

heuristics (Hutchinson and Gigerenzer 2005).  

However, the distinction between optimal and suboptimal behavior 

is not connected with assumptions about the probabilistic nature of 

a computation. Even if an inference process is suboptimal it can still 

be probabilistic (Ma 2012). This is important because the essence of 

the probabilistic approach is not that behavior should be Bayes 

optimal: it is about the representation of information in the form of 

probability distributions and how the brain uses this information 

(Griffiths, Chater et al. 2012) (Pouget, Beck et al. 2013). This 

reverses the current reasoning from “optimality implies probabilistic 

representations” to “use of a probabilistic decision rule entails 

encoding of probability distributions in the brain” (Ma 2012).  

Representations and encoding of probability distributions in the brain 

There are a number of possibilities of how uncertainty and 

probability distributions can be represented in the brain. The 

probabilistic and non-probabilistic approaches agree that neurons 

represent the mean of a sensory signal. Thus, what is left for the 

probabilistic approach to show is how uncertainty is represented in 

the brain. Since this topic is not the focus of this thesis I am 

restricting myself to highlight a few key concepts. 

In principle, uncertainty can be encoded in the same neuron as the 

mean or in separate neurons. As for the latter possibility, it has been 

shown that populations of neuromodulators represent uncertainty in 
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different brain areas. For example, dopaminergic neurons represent 

the uncertainty of reward in the midbrain of primates (Fiorillo, 

Tobler et al. 2003). In all this and similar studies, however, 

representations of uncertainty relate to high-level tasks and not to 

low-level tasks such as uncertainty in sensory perception. To study 

the representation of uncertainties together with the mean in 

sensory systems, the encoding of the stimulus is an obvious starting 

point. The theory of probabilistic population codes (Ma, Beck et al. 

2006) proposes that the uncertainty in the environment is 

represented by the variability of signals in the brain (Mainen and 

Sejnowski 1995). A stimulus is captured by the activity of the subset 

of neurons tuned to respond to it. Its mean and reliability can be 

extracted from the population activity if the statistical process 

underlying the variability is known. If the underlying probability is 

Poisson-like (Tolhurst, Movshon et al. 1983, Graf, Kohn et al. 2011, 

Berens, Ecker et al. 2012), population codes can perform Bayesian 

inference by summing activity over neural populations even though 

tuning curves are completely different (Chater, Tenenbaum et al. 

2006). 

Bayesian Decision Theory 

Perception alone is enough to form a decision. To execute the 

decision, however, action is needed. Activation of muscles is one of 

the few ways we can affect the world around us. Every action has a 

cost. This consists partly of the energy spent on the movement 

itself, but also includes the potential rewards and setbacks of the 

consequences the action entails. To calculate the expected costs of 
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actions the probabilities of the world states are multiplied with a 

cost function. In the final step of Bayesian decision-making an 

optimal behavior is a behavior that minimizes the costs. As a 

consequence decision-making can only be called optimal with 

respect to the cost function (Ma 2012).  

Cue integration and motor control are both fields where Bayesian 

statistics are applied. Movement planning follows Bayesian 

principles to minimize the variance and thus expected cost (Kording 

and Wolpert 2004). In contrast to high-level economic tasks it has 

been shown that sensorimotor tasks can be optimal in a way that 

they minimize cost and maximize expected utility (Trommershäuser, 

Maloney et al. 2008).  
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About	  this	  study	  

Aims of the study 

In this study I show that (i) larvae are able to combine information 

within and across sensory modalities. In collaboration with theorists 

I work towards (ii) developing a model that predicts the increase in 

behavioral performance when larvae are exposed to multiple cues as 

compared to just one cue. By manipulating uncertainty associated 

with one cue I aim to show that (iii) the behavior of sensory 

integration follows Bayes’ rule and establish that even numerically 

simple brains are able to encode probability distributions.  

Scenarios for sensory integration and experimental strategy 

Larvae encounter an abundance of sensory information in their 

environment. In the cue combination paradigm, information can be 

combined within the same modality (olfaction) or across modalities 

(olfaction and thermosensation). I refer to these as intramodal and 

intermodal integration, respectively.  

In this study I investigate both categories of sensory integration. I 

chose to study the thermosensory and olfactory system as the 

modalities of interest, because larvae are able to navigate both 

thermosensory and odor gradients in a similar way. (Luo, Gershow 

et al. 2010) (Gomez-Marin, Stephens et al. 2011). 

Information should be combined in a way that represents the causal 

structure of the world (Tenenbaum, Griffiths et al. 2006). Therefore, 
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I defined scenarios larvae encounter in their natural habitat, where it 

is beneficial to combine sensory information within or across 

modalities. Every smell is composed of a multitude of different 

chemical compounds (Tressl and Drawert 1973) activating different 

subsets of OSNs. Thus, I assume that larvae are able to integrate 

information within the same modality. I test intramodal integration 

by presenting two congruent odor gradients to larvae (Fig. 6 A). For 

intermodal integration, I imagined a scenario where a potential food 

source (indicated by an odor gradient) is partially exposed to 

sunlight. This results in a thermal gradient across and around a 

batch of food. Ectotherms, like Drosophila larvae, have to use 

behavioral strategies to regulate their temperatures (Stevenson 

1985). Therefore, larvae have to avoid excessive heat to survive. In 

such a scenario larvae are expected to aggregate on the side of the 

food with the preferred (cooler) temperature (Fig. 6 B).  

 

Figure 6: Scenarios to study multisensory integration. (A) Odor-Odor 
Integration. A banana smell consists of multiple odorants (pictured). I picked two 
of these odorants and presented them during the unimodal and combined 
experiments. (B) Odor-Temperature Integration. A food source, like a ripe 
banana (pictured) could be partially in exposed to the sun. Larvae should 
aggregate at the side of tolerable temperature. Thus, I exposed larvae to odor 
gradients and temperature gradients at the same time. 
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Chapter 2: Materials and Methods 

Fly	  stocks	  and	  animal	  preparation	  

Fly stocks were raised in a 12h light- dark cycle and kept at 22˚C. An 

exception was made for the comparison of chemotaxis between 

different developmental stages. These flies were kept at 25˚C 

according to a protocol shared between various labs. Moreover, 

larvae containing light gated opsins, were raised in the dark. For first 

instar L1 larvae adult flies were held in fly cages and egg laying was 

allowed for 2h on molasse plates with yeast paste. L1 larvae were 

collected at 30h AEL +/- 2h hour and used for experiments. Third 

instar (L3) larvae were reared for 120 hours in tubes on 

conventional cornmeal-agar fly food.  

In this study I tested the behavior of three strains considered as 

wild-type: w1118, CantonS and CantonS-Magdeburg22 . The Gal4- 

UAS expression system (Brand and Perrimon 1993, Luo, Callaway et 

al. 2008) was used to generate larvae with a single functional OSN 

(Fishilevich, Domingos et al. 2005). This was achieved by restoring 

the co-receptor Orco in a single OSN in an Orco null mutant 

background. Thus, I generated larvae with just the Or42a-expressing 

OSN functional by crossing: w;Or42a-Gal4;UAS-Orco,Orco-/- with  

w;+;Orco-/- (both stocks were a gift from Vosshall Lab), Or42b OSN 

functional: w;Or42b-Gal4;UAS-Orco,Orco-/- (gift from Vosshall Lab) 

with w;+; Orco-/-, and Or13a OSN functional: w;Or13a-Gal4;UAS-

Orco,Orco-/- (generated by Mariana Lopez Matas) with w;+;Orco-/-. 
                                                
22 Collaborators shared this stock with us. It was used exclusively to compare  
 between different developmental stages. Unfortunately it was shown later that it 
might be contaminated.  
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For experiments involving the use of Channelrhodopsin I used flies 

with the genotype: Or42a-Gal4,GMR>hid/UAS-Orco, UAS-ChR2-

H134R;dtrpA[1],Orco-/- (Schulze, Gomez-Marin et al. 2015). The 

Chrimson stock (w;+;UAS-CsChrimson-mVenus) was a gift from 

the Jayaraman lab. I used w;+;Or67b-Gal4 and w;Or42a-Gal4;+ to 

drive the expression of Chrimson in single OSNs.  

All behavioral experiments were performed between 22-24˚C and 

50-60% humidity. Due to their small size, first instar larvae were 

selected under a dissecting microscope and transferred to a 3% 

agarose plate prior to testing. Following a protocol established 

elsewhere (Hutchinson and Gigerenzer 2005, Louis, Huber et al. 

2008), third instar larvae where separated from the food by rinsing 

with a 15% (w/V) sucrose solution. Testing occurred between 30 to 

120 minutes after the introduction of the sucrose.  
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Optogenetics,	  virtual	  odor	  realities	  and	  noise	  	  

Optogenetics is defined as the use of genetic tools to deliver light 

sensitive microbial opsins to target cells, thus making them 

amenable to optic manipulation (Deisseroth 2011). This allows for 

precise control of spiking in neurons, by millisecond control of a 

light stimulus (Boyden, Zhang et al. 2005). In neuroscience this 

approach was pioneered in the early 2000s by a small number of 

labs (Zemelman, Lee et al. 2002, Boyden, Zhang et al. 2005, Lima 

and Miesenböck 2005) and its use has been increasing ever since 

(Boyden 2015, Deisseroth 2015). 

Channelrhodopsin, a non-selective cation channel gated by blue 

light, was the first opsin adopted by a wide audience (Boyden, 

Zhang et al. 2005). However, Drosophila larvae were sensitive to blue 

light (Hassan, Iyengar et al. 2005, Sprecher and Desplan 2008) 

(Keene and Sprecher 2011). This response was mediated by the 

photoreceptors of the larval bolwig’s organ (Sprecher and Desplan 

2008) and light class IV multidendritic neurons in the body wall 

(Xiang, Yuan et al. 2010). Photoreceptors were inactivated by the 

expression of an apoptosis-inducing protein hid (Haining, Carboy-

Newcomb et al. 1999) in the Bolwig’s organ (GMR>hid). 

Furthermore, the photophobic response of body wall neurons was 

abolished after the deletion of the dtrpA1 gene, thus rendering the 

larvae insensitive to light (Schulze, Gomez-Marin et al. 2015). The 

latter mutation also abolished the ability of larvae to thermotax, 

although it was not clear if that was due to the mutation or genetic 

background effects (see section ‘Different strains show different 

ability to thermotax’ for more information). Efforts to preserve 
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thermotaxis while inactivating the photophobic response by deletion 

of the gene for gustatory receptor Gr28b as described in (Xiang, 

Yuan et al. 2010) were not successful. This strategy kept 

thermotactic behavior intact but failed to abolish the avoidance of 

blue light at high intensities (data not shown).  

These problems were solved by the introduction of Chrimson 

(Klapoetke, Murata et al. 2014), an opsin gated by light in the red 

range. Since larvae are not sensitive to red light at low intensity no 

further mutations were necessary to make larvae blind (Salcedo, 

Huber et al. 1999, Xiang, Yuan et al. 2010). 

I used optogenetics to mimic input to the olfactory system for three 

purposes: the generation of virtual odor realities guiding behavior 

(Bellmann 2010, Gepner, Mihovilovic Skanata et al. 2015, 

Hernandez-Nunez, Belina et al. 2015, Schulze, Gomez-Marin et al. 

2015), for electrophysiology (Schulze, Gomez-Marin et al. 2015) and 

for the generation of noise. 

The light gradient and noise were generated by LEDs mounted 

above the setup. The intensity of the light gradient was assessed 

with a photodiode at different voltages. I chose to perform 

experiments at 12.5% of total power. This corresponded to 0.625V 

and a light intensity of 1.37 W/m2. (see ‘An assay to test sensory 

integration’ for more details on the gradient geometry and 

placement of LEDs). To test the effect of noise I added light flashes 

on top of a light gradient (positive noise) or flashed the light 

gradient itself (negative noise). The duration of each light flash was 

fixed to 100 ms while the inter-flash interval was randomly drawn 
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from a Poisson distribution (Tolhurst, Movshon et al. 1983, Graf, 

Kohn et al. 2011, Berens, Ecker et al. 2012). However, the minimal 

interval in Labview was set to ten milliseconds.  Therefore, all the 

interspike intervals presented were the minimal- or multiples of the 

minimal interval. Importantly, I used the same temporal noise 

sequence for all experiments (frozen noise). For experiments in the 

light gradient I extrapolated the voltage input to achieve 50% of the 

peak intensity of the gradient. This corresponded to 0.294V and a 

light intensity of 0.69 W/m2. For noise in odor gradients I exposed 

larvae to 11.15 W/m2 (4V).   
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Tracking	  of	  Animal	  Posture	  and	  Movement	  

Behavioral arena 

To compare behavior between different developmental stages I used 

an established assay (Gomez-Marin, Stephens et al. 2011) (Fig 7). 

First, I reproduced the results of the previous analysis with wild-type 

w1118 larvae. Afterwards, I tested the difference between L1 and L3 

with CantonS-Magdeburg larvae.   

To create the behavioral arena, a rectangular lid (Falcon 353071 lid 

for 96 well plates, Corning Inc., USA) containing an odor droplet in 

the center was inverted and placed on top of a slab of 3% agarose 

(Falcon 353958 rectangular plate lid, Corning Inc., USA). After 

waiting approximately 15 seconds for the odor gradient to establish 

itself, the lid was slightly tilted and a single larva was introduced into 

the center of the arena. Tracking lasted for a maximum of five 

minutes for L3 larvae and six minutes for L1 larvae. Tracking 

automatically ceased whenever the larva left the field of view. The 

behavioral arena was illuminated from above by a flat light pad 

(Slimlite Lightbox, Kaiser). 

Sensory Orientation Software 

Behavior was recorded at five frames per second (fps) with a video 

camera (scA1390-17fc, scout series, Basler) placed under the setup. 

Tracking and image processing were performed with the SOS-track 

software (Gomez-Marin and Louis 2012, Gomez-Marin and Louis 

2012, Gomez-Marin, Partoune et al. 2012). This software package 
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was used to extract the positions of head, tail, centroid and midpoint 

from every frame and calculated all kinematic variables. The sensory 

gradient was mapped onto these positions to determine the sensory 

experience of the larvae.  

 

 

Figure 7: Behavioral Setup for the SOS-Tracker. At the start of every 
experiment a rectangular cover (bottom lid), which was coated with a layer of 3% 
agarose, was placed on top of a transparent plate. Next, 10 µL of an odor dilution 
was pipetted into a single well of a second lid, which was inverted onto the 
agarose surface (top lid). After the odor gradient was established, the top lid was 
tilted and a larva was introduced into the center of the behavioral arena. Larval 
movement was recorded with a camera, mounted below the setup. The behavioral 
arena was illuminated from above (not shown). 
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Definition of Turns and Weathervaning 

Larval trajectories were decomposed into runs and turns by fitting 

small linear segments (segment length: 0.2 and 0.5 mm for L1 or L3, 

respectively) to the trajectories and calculating the angle between 

these fragments (Schulze, Gomez-Marin et al. 2015). If this angle 

passed a threshold of 20 degrees the reorientation movement was 

scored as a turn. We relied on a bootstrap strategy to estimate the 

errors in the turn probabilities. The represented estimate of the 

standard error was calculated as described in (Martinez and Martinez 

2012). Weathervaning was quantified as described in (Gomez-Marin 

and Louis 2014). 
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Multisensory	  integration	  

An assay to test sensory integration 

To test the intermodal and intramodal scenarios, I built a custom-

made behavioral assay, to record the larval response to chemical and 

thermal gradients (Fig. 8 A). Two Peltier elements23 (CPP-065, TE 

Technology Inc., USA) were attached to a rectangular copper plate 

via thermo-conductive paste (Céramique, Arctic Silver, USA). 

Between the Peltier elements, two temperature sensors (Thermistor: 

MP-2444, TE Technology Inc., USA) were embedded (Thermo-

conductive glue, Arctic Aluminia, Artic Silver) into the metal plate. 

Each sensor was positioned next to a Peltier element, and just 

outside of the behavioral arena. Both sensors were connected to a 

control unit (TC-48-20, TE Technology Inc, USA; powered by: PS-

24-6.5 ,TE Technology Inc., USA),  which was regulating the output 

of the Peltier elements. The temperature at each sensor was 

recorded with a software package provided by the supplier (TC-48-

20, TE Technology Inc., USA). For an independent temperature 

assessment, I used a thermometer with a surface probe (MM2000, 

TME Electronics, UK, and TS01-S, Surface/Immersion Probe 

Backfilled, TME Electronics, UK) and an infrared thermometer 

(Fluke 561, Fluke, USA). By controlling the temperature at each 

sensor I was able to generate linear temperature gradients between 

the sensors. In the same way I created a “neutral” background, i.e. 

                                                
23 A Peltier element is a thermoelectric heating device using the Peltier effect for 
heating or cooling. A DC current passes through an alternate array of n-type and 
p-type semiconductors transports heat from one side to the other. 
https://en.wikipedia.org/wiki/Thermoelectric_cooling 
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without a temperature gradient, by setting the same temperature at 

each sensor. I visualized temperature gradients with Liquid Crystal 

Display sheets (NT61-161, Edmund Optics, USA).  

 

 

Figure 8: An assay to test sensory integration. (A) Two Peltier elements were 
attached to a metal plate. Next to each Peltier element, a temperature sensor was 
embedded into the metal plate. The temperature of every sensor was monitored 
by a separate control unit, which regulated the Peltier element (not shown). Red 
light gradients and noise were generated by LEDs (625nm) mounted above the 
assay. A camera recorded larval behavior. (B) Linear temperature gradients were 
established by setting different target temperatures at each sensor. Before the start 
of every experiment a slab of agarose was placed above the metal plate between 
both sensors. After larvae were exposed to the established gradient, they tended 
to avoid the hot side (magenta) and accumulate on the half with the preferred 
temperature. (C) An odor gradient emanated from a droplet of odor presented at 
the roof of an inverted petridish. (D) Light gradients were generated by the 
gradient LED mounted above the setup. A mask in front of the LED modulated 
the light. Larvae were attracted towards the peak of the odor and light gradient.  
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At the start of an experiment the temperatures of the sensors were 

set to the desired values and a quadratic slab of agarose (SeaKem, 

LE Agarose, Lonza, Switzerland) was placed in the middle of the 

copper plate. After the temperature gradient was established I 

placed ten third instar larvae on the agarose surface in a way that 

five larvae started at either side of the midline. Next, a Petridish was 

inverted and placed on top of the agarose between the temperature 

sensors. Thus, the behavioral arena was enclosed (Fig. 8 B). When 

odor- or light gradients were presented without a temperature 

gradient, both sensors where set to 22 ˚C (neutral background) 

instead. To create odor gradients I pipetted 5 µL of an odorant 

dilution into a transparent reinforcement ring stuck to the bottom of 

a Petridish with a diameter of 90 mm, before placing larvae on the 

agarose. (Fig. 8 C). To elicit chemotaxis in a red light gradient 

(625nm), a LED was placed above the setup (PLS-0625-030-S, 

Mightex Systems, Canada). The emitted light passed through a mask 

(exponential cone r=16.5mm diameter, Leicrom, Spain) in front of 

the LED resulting in a light gradient in the behavioral arena (Fig. 8 

A, D). The geometry of this gradient was assessed by averaging 

images and mapping them onto the petridish (Fig. 9 A, B). In noise 

experiments, light flashes illuminating the behavioral arena evenly, 

were added on top of the presented gradients. These flashes 

originated from a custom built rectangular contraption lined with 

red LEDs (Flexible LED strip red 30 x SMD-LED, 850 nm, 12 V, 

Lumitronix, Germany) facing towards the behavioral area (Noise 

LEDs, Fig. 8 A). After the start of the experiment a camera 

(Stingray F145B ASG, Allied Vision Technologies GmbH, 

Germany) recorded the behavior of the group of ten larvae for 300 
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seconds at seven frames per second. An infrared filter (Optical Cast 

Plastic IR Longpass Filter, Edmund Optics, USA) was placed in 

front of the camera to exclude any light artifacts. The assay was 

illuminated by a circle of infrared LEDs (SMD5050-IR InfraRed 

Tri-Chip Flexible LED strip, 850 nm, Ledlightworld LTD, UK), 

placed on the outside of the behavioral arena (not shown).  This 

LED ring was not in contact with the copper plate and did not 

interfere with the temperature gradient. 

 

Figure 9: Assessment of light gradient. (A) A contour plot of light intensities 
was mapped onto a representative location of the petridish. (B) A 3D 
reconstruction of the light gradient, approximately mapped onto the model of a 
petridish 

   

Quantification of behavior 

Larvae were tracked with a custom-written software in MATLAB. 

Tracking was performed offline and the analysis was usually 

restricted to the approach phase, i.e. the first 180 seconds of the 

experiment. First, I applied a black-and-white threshold to every 

acquired gray scale frame. The resulting picture was subtracted from 

a background image.  The background image was not the same over 
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the course of the whole experiment. Rather, I computed separate 

background images for time bins of thirty seconds, over all available 

frames (7 fps), to improve the quality of tracking. After subtraction I 

used a size threshold to identify big objects in the image and deleted 

them if necessary. Afterwards, all remaining blobs were labeled and 

sorted by size in descending order.  

In the first frame of an experiment, the initial positions of larvae had 

to be labeled. This task could be performed by hand or 

automatically. A requirement for automatic recognition was that all 

larvae could be identified as separate blobs (i.e. were not touching). 

In this case, the algorithm was looking for a predefined number of 

blobs in a designated starting area. After identification of larvae in 

the first picture, their change of positions was tracked over time.  

For this, all the distances between every identified larva in the 

present frame, and every blob in the next frame were computed. 

Subsequently, the blob closest to the present position was assigned 

the ‘best match’ to represent the same larva in the next frame. 

Moreover, the distance of displacement had to be below a 

predefined threshold of maximal possible displacement. If the same 

blob was identified as the best match by two or more larvae, this 

issue was resolved by ranking all the following matches in an 

ascending order. The larva with the longest distance to the second 

best match was granted its preferred match, while the others were 

assigned to their secondary choices. This algorithm was continued 

until multiple tags of the same blobs were resolved. In case this was 

not possible because the distances exceeded the threshold maximal 

possible displacement it was assumed that the larvae were touching 
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each other, and the positions of these larvae were assigned to the 

closest blob. If this happened, the surroundings of multiple tags 

were monitored for free blobs in subsequent images. An untagged 

blob below the threshold of maximal distance of displacement 

usually meant that larvae had separated and would be tagged 

accordingly. Sometimes a larva could not be assigned to candidate 

blob in the following picture. This was mostly due to tracking errors 

of larvae at the edge of the behavioral arena. Errors of the tracking 

algorithm, e.g. retagging of larva when they reappeared, were 

corrected manually. 

Unlike more sophisticated tracking solutions (Pérez-Escudero, 

Vicente-Page et al. 2014) this strategy did not conserve identity of 

the animals. Consequently, I did not have direct access to the 

complete trajectories but merely to the centroid positions over time. 

Therefore, I decided to quantify the observed behavior with a 

preference index (PI). This index was calculated as the number of 

larvae on the half circle of the preferred site of aggregation (e.g. 

odor source or preferred temperature) divided by the total number 

of larvae on the plate (Fig. 10). Thus, I deemed it sufficient to 

analyze just one frame per second. 
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Figure 10: Preference Index (PI). The preference index was calculated by 
dividing the number of larvae on the side of the cue (peak of odor- and light 
gradient, preferred temperature) by the number of larvae on the plate. In the 
beginning of an experiment larvae were uniformly distributed across the two 
halves of the behavioral arena. Later, during the experiment the PI rose due to 
attraction of larvae towards the stimulus. 

 

The preference index over the course of an experiment could be 

quite variable from one experiment to the next. Accordingly, 

multiple experiments were performed to compute a representative 

progression of the PI over time for every condition. Therefore the 

behavior of larvae in absence of a stimulus (Fig. 11) resulted in an 

average PI around 0.5.  

Figure 11: Larvae behaved randomly in absence of a directional stimulus. 
(A) Temperature control. The distribution of larvae on agarose without a 
temperature gradient was random (neutral temperature background: both sensors 
were set to 22˚C). Note: The full dataset was analyzed at 1, 40, 80, 120, 160 and 
200 seconds and plotted accordingly. Experimental conditions: Or42a-Chrimson 
n=10, Or67b-Chrimson n=10  (B) Noise Control. The addition of noise (light-
flashes) did not cause a bias in the distribution of larvae. Experimental conditions: 
Or42a-Chrimson n=20, RT23˚C. The red LEDs above the behavioral area were 
on during the whole experiment (intensity: 11.15 W/m2).  
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Experimental strategy 

To test sensory integration in larvae I followed a simple behavioral 

strategy. Every dataset consisted of three conditions: two sets of 

unimodal experiments, where just one cue was presented, and the 

combined condition, where both cues were present. During odor-

odor integration I investigated the integration effect between two 

congruent odor gradients (Fig. 12 A). In the odor-temperature 

integration scenario I presented an odor gradient and a one-

dimensional temperature gradient, in a way that the preferred sites 

of aggregation (the peak of odor intensity and the preferred 

temperature) were overlapping (Fig. 12 B).  

 

Figure 12: Experimental strategy. Every scenario consisted of two unimodal 
and the combined condition. First, larval behavior was tested with each unimodal 
cue (Unimodal 1 and 2) separately. Second, both cues were presented together. 
(A) Odor-Odor Integration. (B) Odor-Temperature Integration 

 

When the effect of noise was tested it was necessary to repeat these 

three conditions in the presence of noise. Therefore, the total 
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number of conditions was augmented to six. If larvae were able to 

combine information from different sources we expected to see 

improved behavioral performance in the combined case. Except for 

the initial experiments in wild-type, all experimental conditions were 

interleaved. 

 

  

 	  



Materials and Methods 

 
57 

A	  probabilistic	  framework	  for	  sensory	  integration	  in	  larvae	  

To test the hypothesis of optimal sensory integration, a theoretical 

framework was developed together with Ruben Moreno and 

Alexandre Pouget. This framework predicted the performance of 

larvae exposed to two sensory gradients (combined condition) as a 

function of their performance in the single-gradient conditions. A 

Bayesian model predicted the combined behavior according to the 

principles of probabilistic inference. In a second, fixed-weight model 

the information was combined in a suboptimal manner.  

Two experimental conditions were considered: the scenarios of 

intramodal and intermodal integration. The first tested integration of 

information between two odor gradients, the second between an 

odor and a temperature gradient. Mathematically these two 

conditions were described with the same formalism. Instead of 

referring to either temperature- or sensory gradients I will use ‘cue 1’ 

and ‘cue 2’ during this derivation. The two sensory gradients were 

congruent and thus always pointed in the same direction.  

The Bayesian model: defining an optimal decision rule 

The Bayesian model tested the hypothesis of optimal cue 

integration. To guide behavior, larvae had to estimate the direction 

of favorable gradient change. This direction was described by a 

hidden variable s, which was set to s=1 if larvae where heading in 

the favorable direction and s= -1 if they heading away from it. After 

larvae were introduced in the middle of the agarose surface, they 

were exposed to well controlled sensory gradients. Larvae sampled 
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their surroundings to gather information about the sensory 

gradients. ∆c1 and ∆c2 represented the accumulated evidence from 

the sensory gradients of cues 1 and 2 at time t  from all larvae. 

These mean-field values corresponded to the local gradients, ∆c1
0 

and ∆c2
0, which were corrupted by Gaussian noise. The local 

gradients were expressed as a function of the hidden variable s: 

∆c1
0=s∆C1 and ∆c2

0=s∆C2, where ∆Ci>=0 represented the absolute 

values of the true gradients ∆ci
0, i=1,2. The sampled gradients ∆c1 

and ∆c2 followed: 

Δ𝑐! = 𝑠Δ𝐶! + 𝜎!𝑛!      ;         Δ𝑐! = 𝑠Δ𝐶! + 𝜎!𝑛!   (4) 

where in (i=1,2) were independent normal random variables and iσ  

represented the inverse reliability of the i-th cue. Errors occurred 

when sampled gradients were assigned a different direction than 

their true location (e.g., when ∆c1 < 0, ∆c1 < 0 and s=1).  

In a probabilistic framework larvae should build a probability 

distribution over the hidden variable and local gradients given the 

observations of ∆c1 and ∆c2. This probability distribution was 

computed with Bayes’ rule: 

𝑝 𝑠,Δ𝐶!,Δ𝐶! Δ𝑐!,Δ𝑐! =
𝑝 Δ𝑐!,Δ𝑐! 𝑠,Δ𝐶!,Δ𝐶!   𝑝 𝑠   𝑝 Δ𝐶!   𝑝 Δ𝐶!

𝑝 Δ𝑐!   𝑝(Δ𝑐!)
      (5) 

The prior information was represented by p(s), p(∆C1) and p(∆C2).  

I assumed that a larva dropped in the behavioral arena had no prior 

expectations of the favorable direction of both gradients. Similarly, I 

did not expect any preference for a certain odor or temperature 

difference. Rather I reasoned that, in the light of the ability of larvae 
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to navigate gradients varying on the order of magnitudes, a very 

broad distribution of possible values of ∆c1 and ∆c2 made biological 

sense. For this reason, I concluded that all priors were flat and could 

be ignored. I also assumed that the fluctuations of the sensory 

gradients are independent of each other. This led to the following 

simplification of Bayes’ rule: 

𝑝 𝑠,Δ𝐶!,Δ𝐶! Δ𝑐!,Δ𝑐! ∝ 𝑝 Δ𝑐!,Δ𝑐! 𝑠,Δ𝐶!,Δ𝐶!
∝ 𝑝 Δ𝑐! 𝑠,Δ𝐶! 𝑝 Δ𝑐! 𝑠,Δ𝐶!       (6) 

Using equation (4) p(∆ci|s,∆Ci)=N(∆ci|s∆Ci,σi
2) for i=1,2 that was, 

a Gaussian probability density with mean s∆Ci and variance σi
2. 

Inserting this expression into Eq. (6), I found:  

𝑝 𝑠,Δ𝐶!,Δ𝐶! Δ𝑐!,Δ𝑐! ∝   𝑒
!(!!!!!!!!)

!

!!!!
!  (!!!!!!!!)

!

!!!!       (7) 

To guide behavior, larvae needed to determine the orientation of 

favorable gradient change regardless of the absolute values of true 

concentration gradients. Therefore, they marginalized the absolute 

values of the gradients to obtain the posterior over the hidden 

variable s,  

𝑝 𝑠 Δ𝑐!,Δ𝑐! ∝    𝑑
!

!
Δ𝐶! 𝑑

!

!
Δ𝐶!𝑝 Δ𝑐!,Δ𝑐! 𝑠,Δ𝐶!,Δ𝐶!       (8) 

Using equation (6), (7) and the definition of cumulative Gaussian, 

Φ 𝑥 = 𝑑𝑦  𝑁(𝑦|0,1)!
!! , I found 

𝑝 𝑠 Δ𝑐!,Δ𝑐! ∝   Φ
𝑠Δ𝑐!
𝜎!

Φ
𝑠Δ𝑐!
𝜎!

      (9) 

Next I approximated the cumulative Gaussians by sigmoid 

functions, known to be an excellent approximation for the best fit 
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parameters (Φ(x) was approximated by Φ-1(x):1/(1+exp(-αx)), where 

α was the best fit parameter). Therefore, within this approximation, 

I rewrote the probability over s  as 

𝑝 𝑠 Δ𝑐!,Δ𝑐! =   
1

1 + 𝑒(!!(
!!!
!!

!!!!! )!
=

1
1 + 𝑒(!!"#)

      (10) 

where I defined the decision variable ‘d ’   

𝑑 =   
Δ𝑐!
𝜎!

+
Δ𝑐!
𝜎!

      (11) 

The decision variable weighted the sampled gradients with the 

reliability of each gradient. In summary, the decision rule reads: 

“choose s= 1” if d > 0    or    “choose s= -1” if d < 0   (12) 

To behave in accordance with Bayes’ rule larvae followed the 

decision rule outlined in equation (11) and (12). However, this did 

not mean that larvae were computing equations (5)-(10) explicitly. 

These computations could be bypassed if the larval nervous system 

evolved to represent the inverse reliabilities in some other way and 

hard-wired the decision-rule in the brain. Although the decision rule 

was deterministic given the measurements in ∆c1 and ∆c2 I did not 

have access to the measurements made by the larvae. Thus the value 

of the decision variable d is unknown. However by quantifying the 

behavior of larvae it was possible to determine its statistical 

properties given the knowledge of the local gradients ∆c1
0=s∆C1 and 

∆c2
0=s∆C2. The decision variable d was the sum of two Gaussian 

variables, and therefore it was a Gaussian variable. Its mean and 

variance were respectively 
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𝑑 Δ𝐶!,Δ𝐶! =   
Δ𝐶!
𝜎!

+
Δ𝐶!
𝜎!

         ;         𝑉𝑎𝑟 𝑑 Δ𝐶!,Δ𝐶! = 2        (13) 

Next I established the link between the decision rule and the 

experimental measurement, the preference index (PI). The PI was 

defined as the fraction of larvae on the side of preferred 

aggregation24 of the behavioral arena at time t. Using equation (13), 

the PI was calculated as the fraction of times that the decision 

variable d was above zero. 

PI Δ𝐶!,Δ𝐶! =   𝑝(𝑑 > 0|Δ𝑐!!,Δ𝑐!!)        (14) 

PI Δ𝐶!,Δ𝐶! = Φ
Δ𝐶!
2𝜎!

+   
Δ𝐶!
2𝜎!

      (15) 

This equation provided a prediction of the preference index when 

the two gradients are present. I used the same expression to find 

expressions for the preference indexes for the single-gradient 

conditions as 

PI Δ𝐶! = PI Δ𝐶!,Δ𝐶! = 0 = Φ
Δ𝐶!
2𝜎!

      (16) 

PI Δ𝐶! = PI Δ𝐶! = 0,Δ𝐶! = Φ
Δ𝐶!
2𝜎!

      (17) 

Finally, I used the equations (15)-(17) to derive the ‘combination 

rule’ 

PI Δ𝐶!,Δ𝐶! = Φ Φ!! 𝑃𝐼 Δ𝐶! + Φ!! 𝑃𝐼 Δ𝐶!       (18) 

                                                
24 The side of preferred aggregation is the side a larva reaches when following the 
favorable gradient change i.e. the side with the odor source and the preferred 
temperature. 
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where Φ-1(x) is the inverse cumulative normal.  Using the same 

sigmoidal approximation of the cumulative Gaussian employed 

above, we showed that the PIs were related through the 

‘multiplicative rule’ 

PI Δ𝐶!,Δ𝐶! =
PI Δ𝐶! PI Δ𝐶!

PI Δ𝐶! PI Δ𝐶! + (1 − PI Δ𝐶! )(1 − PI Δ𝐶! )
      (19) 

It was shown that these two predictions for combined PIs were 

identical (Moreno-Bote, Knill et al. 2011). To predict the combined 

behavior I plugged the experimental results in the multiplicative rule 

(19). 

The fixed-weight model: a suboptimal decision rule 

Next I compared the predictions of the optimal behavior to 

predictions of suboptimal decision-making. Thus, I derived a general 

model for suboptimal performance in detail, and showed how these 

differ from the optimal model. In the fixed-weight model 

suboptimal behavior consisted in weighting the cues in a way that 

did not depend on the reliability of the cues, that is,  

𝑑!" =   𝑤!Δ𝑐! +   𝑤!Δ𝑐!      (20) 

where 1w and 2w are fixed weights. These weights established a fixed 

relative preference for the sensory gradients of cue 1 and cue 2. 

Therefore, this model can be considered as belonging to the family 

of “preference-based” models, or “economic-like” models, in which 

animals are assumed to make decisions based on the relative 

preference for different items or qualities of the environments. 
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More complex, non-linear, rules can be used, but here we restrict 

our analysis to these linear combination rules because our data seem 

to fitted well by linear models. 

Next I determined the statistical properties of the fixed-weight 

decision rule dfw, using the model described in equation (4),  

𝑑!" Δ𝐶!,Δ𝐶! =   𝑤!Δ𝐶! + 𝑤!Δ𝐶!        (21)   

  𝑉𝑎𝑟(𝑑!") Δ𝐶!,Δ𝐶! = 𝑤!!𝜎!! + 𝑤!!𝜎!!        (22) 

As before I predicted the preference index for the combined 

gradients and single-gradients,  

PI Δ𝐶!,Δ𝐶! = Φ
𝑤!Δ𝐶! + 𝑤!Δ𝐶!
𝑤!!𝜎!! + 𝑤!!𝜎!!

      (23) 

PI Δ𝐶! = PI Δ𝐶!,Δ𝐶! = 0 = Φ
𝑤!Δ𝐶!

𝑤!!𝜎!! + 𝑤!!𝜎!!
      (24) 

PI Δ𝐶! = PI Δ𝐶! = 0,Δ𝐶! = Φ
𝑤!Δ𝐶!

𝑤!!𝜎!! + 𝑤!!𝜎!!
      (25) 

In the fixed-weight model a change in reliabilities in one the cues 

affected the two cues simultaneously and by the same factor. This 

model also results in the the combination rule (18), and the 

multiplicative rule (19). Although these rules could used to predict 

cue integration, the predicion of the combined behavior was not 

sufficient to distinguish between optimal and suboptimal behavior.  
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Model comparison 

Since it was not possible to distinguish the optimal and the fixed-

weight model based on the combination rules, I developed a strategy 

to distinguish the two models based on their behavior in single-

gradients with and without the presence of additional noise. 

In single gradients the preference indices of cue 1 and cue 2 were 

denoted as PI(∆C1), eq. (16), and PI(∆C2), eq. (17). The presence of 

additional noise in the sensory gradient of cue 1 increased the noise 

from σ1 to σ1’ by a factor η resulting in a preference index with 

noise denoted as PI(∆C1)’. If the additional noise in cue 1 corrupted 

behavioral performance, it followed that PI(∆C1)’< PI(∆C1) and 

η>1. Thus, 

PI Δ𝐶! ′ = Φ
Δ𝐶!
2𝜎!!

=   Φ
Φ!!(PI Δ𝐶! )

𝜂
    (26) 

Next I derived the prediction for the preference index for behavior 

in a single gradient of cue 2 and pure noise in the channel of cue 1 

σ1’. In the optimal model an increase of noise of cue 1 did not 

impact the behavior because σ1
’
 was not part of the equation (17). 

Therefore, 

PI Δ𝐶! = Φ
Δ𝐶!
2𝜎!

= PI Δ𝐶! ′      (27) 

However, for the fixed-weight model an increase of the noise in cue 

1 changed the prediction of PI(∆C2)’ as seen in equation (24) 

because  𝑤!!𝜎!!" + 𝑤!!𝜎!! =   𝜂 𝑤!!𝜎!! + 𝑤!!𝜎!!  . Therefore 
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PI Δ𝐶! ! = Φ
𝑤!Δ𝐶!

𝑤!!𝜎!!" + 𝑤!!𝜎!!
= Φ

Φ!!(PI Δ𝐶! )
𝜂

    (28) 

PI Δ𝐶!Δ𝐶! ! = Φ
Φ!!(PI Δ𝐶!,Δ𝐶! )

𝜂
    (29) 

In other words, the PI(∆C2)’ was related to PI(∆C2) by the same 

factor η than PI(∆C1)’ and PI(∆C1). This prediction contrasts to the 

optimal prediction, for which PI(∆C2)’ was equal to PI(∆C2). This 

way I can distinguish the Bayesian and fixed-weight model. 

However, these predictions assumed the absence of any other cross-

modal interactions. In the presence of cross-modal interactions the 

factor eta could be different for both modalities ηi, i=1,2. In this 

scenario the preference indices predicted by the Bayesian model 

for the single gradient conditions in the presence of noise were 

PI Δ𝐶! ′ = Φ
Δ𝐶!
2𝜂!𝜎!

=   Φ
Φ!!(PI Δ𝐶! )

𝜂!
    (30) 

PI Δ𝐶! ′ = Φ
Δ𝐶!
2𝜂!𝜎!

=   Φ
Φ!!(PI Δ𝐶! )

𝜂!
    (31) 

Therefore the combined condition in the presence of noise can be 

written as 

PI Δ𝐶!,Δ𝐶! ′ = Φ
Δ𝐶!
2𝜂!𝜎!

+   
Δ𝐶!
2𝜂!𝜎!

      (32) 

This resulted in the combination rule, which was already described 

in equation (18) 
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PI Δ𝐶!,Δ𝐶! ′ = Φ
Φ!! 𝑃𝐼 Δ𝐶!

𝜂!
+
Φ!! 𝑃𝐼 Δ𝐶!

𝜂!

= Φ Φ!! 𝑃𝐼! Δ𝐶! + Φ!! 𝑃𝐼! Δ𝐶!       (33) 

The preference indices predicted by the fixed-weight model for 

the single gradient conditions in the presence of noise were 

PI Δ𝐶! ′ = Φ
𝑤!Δ𝐶!

𝑤!!𝜎!!" + 𝑤!!𝜎!!"
      (34) 

PI Δ𝐶! ′ = Φ
𝑤!Δ𝐶!

𝑤!!𝜎!!" + 𝑤!!𝜎!!"
      (35) 

The combined preference indices in the presence of noise 

PI Δ𝐶!,Δ𝐶! ′ = Φ
𝑤!Δ𝐶! + 𝑤!Δ𝐶!
𝑤!!𝜎!!" + 𝑤!!𝜎!!"

      (36) 

also resulted in the combination rule if eta is defined as   𝜂 =

𝑤1
2𝜎1

′2 + 𝑤2
2𝜎2

′2 𝑤1
2𝜎1

2 + 𝑤2
2𝜎2

2. 

𝑃𝐼! Δ𝐶!,Δ𝐶! = Φ
Φ!! 𝑃𝐼 Δ𝐶!

𝜂
+
Φ!! 𝑃𝐼 Δ𝐶!

𝜂

= Φ Φ!! 𝑃𝐼! Δ𝐶! + Φ!! 𝑃𝐼! Δ𝐶!       (37) 

Thus both the predictions for the combined preference for the 

Bayesian model and the fixed-weight model resulted in the same 

combination rule already derived in equation (18). Therefore I was 

not able to distinguish the Bayesian model from the fixed-weight 

model in the case of cross-modal interactions. In this scenario it was 

also impossible to make predictions based on the single gradient 

condition because the eta was different for both gradients. If the 
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additional noise in cue 1 led to an increased performance in cue 2 

the factor eta was η1>1 and η2<1.  

Computing the fit of a model with the likelihood 

To compare the fit of a model to the experimental data I computed 

the likelihood (L) for the last time-bin in the combined condition. 

The likelihood (L) of the data given the model is computed as  

L =
𝑁
𝑛

𝑃𝐼!"#$%! (1 − 𝑃𝐼!"#$%! )!!!    (38) 

The preference index described the fraction of larvae for which n 

out of N larvae moved to the side of preferred aggregation 

(PI=n/N). PImodel was the preference index at the last time bin 

predicted by the model, which was compared to the experimental 

data. Given that the two models had no free parameters, direct 

comparison of the LL was sufficient to decide which model fitted 

best. Thus, the model with the best fit had the highest likelihood. 

Computing the LL in this way assumed that larvae were 

independent.  

Optimality in group decision-making 

The Bayesian model was derived under the assumption that larvae 

behaved independently. Here, I applied the same formalism 

assuming interactions between animals in the group. Larvae i 

follows the Bayesian decision rule of equation (11). However, its 

behavior is influenced by the behavior of other larvae: 
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𝑑 =   
Δ𝑐!
𝜎!

+
Δ𝑐!
𝜎!

+ 𝜆 𝑑!
!!!

      (39) 

The last term of eqaution (38) describes group effects. The factor λ 

represented the strength of the interactions between animals. I 

supposed that the decision variables for all animals were distributed 

identically, and their covariance was ( , ) ( )k l iCov d d Var dρ= , where 

ρ was the correlation coefficient. I found that the mean and variance 

of di were,  

𝑑! =   
Δ𝐶!
𝜎!

+
Δ𝐶!
𝜎!

+ 𝜆 𝑛 − 1 𝑑!     (40)     

𝑉𝑎𝑟 𝑑! = 2 + 𝜆!𝑉𝑎𝑟 𝑑! (1 + (𝑛 − 2)𝜌      (41) 

where n is the number of the larvae in the group. I assumed that the 

fluctuations of the local estimates of the gradients made by one larva 

were independent from the local estimates made by other larvae. 

Therefore the decision variables on the last term were independent 

of the sampled gradients. Using the previous equations, I obtained 

that  

𝑑 Δ𝐶!,Δ𝐶! =   
Δ𝐶!

1 − 𝜆 𝜎!
+

Δ𝐶!
1 − 𝜆 𝜎!

        (42) 

𝑉𝑎𝑟 𝑑 Δ𝐶!,Δ𝐶! =
2

1 − 𝜆!(1 + 𝑛 − 2 𝜌)
        (43) 

The equations (42) and (43) had the same structure as the 

corresponding equations for the Bayesian model. Consequently 

these expressions resulted in the same combination rule (18) as the 

Bayesian model with the assumption of independent larvae. The 

inverse reliabilities and the variance of the decision variable were 

normalized by constant factors that did not depend on the tested 
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conditions. Therefore, under the assumption that interaction were 

weak (i.e., λ2(1+(n-2)ρ<1), interactions between larvae did not affect 

the predictions of the optimal model. 
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Chapter 3: Integration within the olfactory system 

Chemotaxis	  

Comparison of chemotaxis ability of different developmental stages 

Previous work showed that third instar larvae navigate chemical 

gradients using a set of stereotypical sensorimotor responses 

(Gomez-Marin, Stephens et al. 2011). Using the same methodology, 

I compared the behavior of first instar (L1) and third instar (L3) 

larvae. After starting close to an odor source, both L1 and L3 larvae 

responded in a similar manner: they remained in the vicinity of the 

odor source, resulting in ‘ball-of-wool-like’ trajectories (Fig. 13 A-

A”). I described trajectories as sequences of runs and turns, as 

shown in illustrative trajectories in (Fig. 13 B-B”). A comparison of 

these trajectories with the respective sensory experiences (Fig. 14 A-

A”) revealed that turns are mainly triggered after a preceding decline 

in sensory experience, as well as for fine adjustment of the 

trajectories close to the odor source. 

Note that the spatial scale of the trajectories is different between L1 

and L3, which is to be expected considering the differences in size 

and speed of these two developmental stages (Fig. 15 A, B). L1 

larvae were slower than L3 larvae, even after normalization by the 

relative difference in body length (Fig 15 B, C). In spite of these 

differences, the overall pattern of motor output was similar between 

L1 and L3 larvae (Fig. 16 A-A”). Before turning, larvae reduced the 

speed of their forward movement (vcentroid). This deceleration was 

mild in L1 and strong in L3. At the same time, both L1 and L3 
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initiated a head cast, which was associated with an increase of the 

head speed (vhead). The average sensory experience preceding a turn 

(turn-triggered average) illustrated that turns are elicited upon 

detection of prolonged negative changes of odor concentration (Fig. 

17 A-A”). Implementation of a turn resulted in an increase in the 

turn-triggered average of perceived odor concentration as larvae 

mostly turned towards higher odor concentrations. 

Figure 13: Trajectories of first (L1) and third (L3) instar larvae. (A-A”) 
Trajectories of the centroid positions of all L3 w1118 (A, 23 trajectories 417 turns), 
L3 CantonS (A’, 29 trajectories, 444 turns) and L1 CantonS (A”, 38 trajectories, 
647 turns) used in the study. Trajectories were superimposed onto the 
reconstructed odor gradient. Larvae aggregated close to the peak of the gradient. 
(B-B”) Illustrative trajectories for the three experimental conditions: W1118 at L3 
and CantonS at L3 as well as L1. The trajectory of the centroid position is shown 
in black and the head position in magenta. Turns were marked as green segments. 
For L1 and L3 larvae, trajectories featured an alternation of runs and oriented 
turns. However, the spatial scale of the motion differed markedly between the two 
developmental stages. Larvae were plotted on the same gradient as in (A-A”). 
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Figure 14: Sensory experience of first (L1) and third (L3) instar larvae. (A-
A”) The difference between the concentrations measured at the head (magenta), 
and at the centroid (black), was more pronounced in L3 larvae due to their larger 
size and range of their head casts. Turns were marked as green segments and 
typically occurred after prolonged exposure to negative slopes of sensory 
experience or reorientations close to the odor source. The sensory experience 
corresponded to the illustrative trajectories in Fig. 13 B-B”. 

 

The motor output (speed) of L1 larvae was more than one order of 

magnitude lower than those of L3 larvae. Similarly, the decrease in 

speed after turn initiation is much smaller in L1 than in L3. It is 

possible that the absolute decrease of centroid speed in L1 was 

masked because the centroid was dragged along during the head 

movement due to the small size of these larvae. 
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Figure 15: Comparison of first (L1) and third (L3) instar larvae sizes and 
midpoint speeds. (A) Average sizes (in mm) of L3 w1118, L3 CantonS and L1 
CantonS larvae. L1 were about four times smaller than L3 larvae. (B) Average 
speed of the midpoint for the same genotypes as in (A). L1 moved approximately 
ten times slower than L3 larvae. (C) Midpoints speeds after normalization by the 
body length. In accordance with (A) and (B) the normalized midpoint speed of L1 
was roughly half of that of L3 larvae. *: statistically significant difference (p<0.05) 

 

Figure 16: Turn-triggered averages of motor output. (A-A”) Turn-triggered 
averages of speed of the centroid (black) and head (magenta). The speed of the 
centroid declined upon turn initiation, while the speed of the head increased while 
a head cast took place.  
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Figure 17: Turn-triggered averages of sensory perception. (A-A”) Turn-
triggered averages of the odor concentration perceived by the larva at the centroid 
(black) and at the head (magenta). Turns were preceded by a prolonged exposure 
to a negative slope of sensory experience. The implementation of a turn was 
followed by a sharp rise in the concentration measured at the head position: this 
surge was due to head casts, which tended to be oriented towards the direction of 
increasing odor concentration.  

 

The small size of L1 also explained differences in the sensory input 

of L1 and L3 larvae. Head casts of L1 larvae had reduced amplitudes 

as compared to L3. Therefore, they sampled a smaller concentration 

difference. Since accurate sampling of the odor space was crucial 

during reorientation events, I speculated that L1 larvae might be 

prone to errors in gradient assessment, thereby showing a reduction 
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in chemotactic performances compared to L3 larvae. The turning 

precision of larvae towards the odor gradient depended on the 

bearing between the direction of motion (body axis) and the 

direction of the local odor gradient (Fig. 18 A-A”). Maximum 

reorientation performances were observed for larvae oriented 

perpendicular to the odor gradient (bearing of ± 90 degrees). Even 

though the modulation of the reorientation performance as a 

function of the bearing was reduced for L1 larvae, the data indicated 

that L1 larvae were able to bias the direction of their turns.  

 

Figure 18: Turn performances of first (L1) and third (L3) instar larvae. (A-
A”) The turn performance is the relationship between the probability of turning 
towards increasing odor concentration and the bearing before turn initiation. 
Positive bearing angles were defined according to anticlockwise convention; thus 
left turns reoriented the larva towards the odor source. Turning performances 
were highest for bearing angles around 90˚ (motion perpendicular to the local 
odor gradient). The bearing angle is represented in 8 bins of 45˚. Error bars 
represent an estimate of the standard error calculated based on a bootstrap 
procedure (Martinez and Martinez 2012).  

 

Larvae have been shown to reorient through abrupt turns. In 

addition, chemotaxis also results from the continuous deflection of 

runs toward the local odor gradient — a mechanism termed 

weathervaning (Gomez-Marin and Louis 2014). I found that both 
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L1 and L3 larvae were able to bias their runs with respect to the 

local odor gradient. This aspect of the orientation behavior was 

established through the correlation between the instantaneous 

reorientation rate and the bearing angle associated with the direction 

of motion (Fig. 19 A-A”). 

 

 

Figure 19: Weathervaning performance of first (L1) and third (L3) instar 
larvae.  (A-A”) Weathervaning was quantified as average instantaneous 
reorientation rate during runs as a function of the local bearing angle. The bearing 
angle is the angle between the body axis and the direction of the local odor 
gradient. The instantaneous orientation rate is quantified as the change of the 
body angle during a run. Larvae bent their runs most strongly toward the source 
when they were oriented perpendicular to the local odor gradient.  Error bars 
show SEM. 
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Chemotaxis in w1118 larvae assessed with the Preference Index 

After showing that chemotaxis ability was conserved across different 

strains and developmental stages, I proceeded to quantify this 

behavior with the preference index (PI). For this analysis I used only 

L3 larvae. To collect more data, every experiment was performed 

with a group of, usually, ten larvae.  

Figure 20 shows the progression of the PI over time, in an odor 

gradient with four different source concentrations of ethyl butyrate 

(EtB). EtB was chosen because it activated only a small subset of 

OSNs (Kreher, Mathew et al. 2008). Initially, larvae were equally 

distributed on both sides of the midline resulting in a PI of 0.5. Any 

deviations from this PI at the beginning of the experiments were 

due to incorrect placement, or larvae crossing the midline before the 

start of the recording.  If exposed to a high concentration of EtB, 

larvae quickly accumulated in the vicinity of the odor source. This 

resulted in a PI above 0.9 for a concentration of 10-2 M EtB. For the 

other gradients the process of accumulation was slower, in a manner 

consistent with the decrease of the source concentration. The 

gradient with lowest concentration of EtB, did not lead to any 

attraction towards the side of the odor droplet. This indicated that 

the odor concentration was below the detection threshold. 

Furthermore, the distribution across the arena was equal, illustrating 

that the assay was free of systematic bias. 
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Figure 20: Chemotaxis in odor gradients with different concentrations. 
Behavioral performance, as assessed with the PI, improved with increasing EtB 
concentration. To test sensory integration I chose a source concentration, 
resulting in a gradient with medium attraction (10-3 M EtB). Number of 
repetitions per condition: 10-2 M n=21, 10-3 M n=26, 10-4 M n=16, and 10-5 M 
n=20  

Group size influences chemotactic behavior 

The impact of group size on chemotactic behavior was assessed by 

chemotaxis experiments with single larva and groups of 5, 10 or 15 

larvae. This analysis revealed that group size was inversely correlated 

with behavioral performance (Fig 21 A).  

To distinguish between social interactions and detrimental 

secondary effects I compared the experimental SEM to the binomial 

error. The binomial error, or normal approximation interval, 

assumes statistical independence between all larval decisions. 

Initially the SEM and binomial errors are quite different, but the 

values converge after the first 60-80 seconds (Fig. 21 B). Therefore, 

I concluded that larvae behave virtually independent with respect to 

chemotactic behavior. 
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Figure 21: Group size influences chemotaxis. (A) The behavioral performance 
decreased with group size. Placement effects, like initial orientation with respect 
to the gradient and manipulation time, contributed to this effect. Odor dilution: 
5*10-3 M EtB; Number of repetitions: single larva n=39, 5 larvae n=18, 10 larvae 
n=19, and 15 larvae n=21; (B) Comparison of the SEM with the binomial error 
80 seconds into the experiment. Every dot represents a set of experiments with a 
different number of larvae. All conditions aligned at the 45˚ degree line. This 
illustrated that, the SEM and the binomial errors, which assumed independence, 
were equivalent. 

 

Specificity of odors and independence of channels 

To test the combination of sensory information it would be ideal to 

work with independent stimuli. The literature suggested a number of 

ways how different odorants could be combined to achieve 

independent stimulation of the olfactory system. Previously, the 

tuning curves of larval OSNs were investigated by means of 

behavior (Fishilevich, Domingos et al. 2005, Mathew, Martelli et al. 

2013) and electrophysiology (Kreher, Mathew et al. 2008). 

Therefore, it was shown that every odorant activates a number of 

specific OSNs. I refer to the subset of OSNs activated by an 

odorant as an input channel. I tried to verify the independence of 

the channels experimentally. To this end I generated larvae with a 

single functional OSN (Fishilevich, Domingos et al. 2005). In doing 
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so I tested the attraction of every odorant with two different larvae, 

each with a different single functional OSN. 

I was not able to identify a single pair of odorants, which fulfilled 

the condition of independence completely. Most of my observations 

fell into one of two categories: (i) either the odorant did not lead to 

any significant chemotaxis in larvae with single functional OSN, or 

(ii) the odorant eliciting chemotaxis in one channel could cause 

significant attraction in the other channel as well.  

Acetal is a typical example for the first category. It was shown to be 

specific to Or42b (Mathew, Martelli et al. 2013). Nevertheless, larvae 

with just the Or42b neuron active (Or42b-functional) showed no 

attraction to a gradient of acetal at a dilution of 10-2 M (data not 

shown). Increasing the odor concentration to 1 M resulted in a 

minor attraction to acetal (Fig. 22 A). However, at this 

concentration, attraction was indistinguishable from chemotactic 

behavior of Or42a-functional larvae (Fig. 22 A). 3-Octanal and 1-

octen-3-ol were further examples of category one odorants. Both 

were reported to activate Or13a (Kreher, Mathew et al. 2008). 

Testing Or13a-functional larvae in dilutions ranging up to one or 

two molar did not reveal any attraction (Fig. 22 B).  
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Figure 22: Specificity of odors. (A) Or42a- and Or42b functional larvae were 
chemotaxing in an acetal gradient. Although the dilution was high (1M), attraction 
was weak. Number of repetitions Or42a n=7, Or42b n= 8 (B) Or13a functional 
larvae were not attracted to 3-Octanol (n=6) and 1-octen-3-ol (n=5). (C) A 4-
hexen-3-one gradient (10-2 M) elicits attraction from Or42a- but also from Or42b 
functional larvae. Number of repetitions: Or42a n=9 and Or42b n=7 (D) Isoamyl 
acetate leads to attraction in Or42a (n=11) but not in Or42b functional larvae 
(n=19). 

 

4-hexen-3-one, an odorant of the second category was less specific 

than reported. Instead of binding to Or42a only (Mathew, Martelli et 

al. 2013) it also elicited chemotaxis in Or42b-functional larvae at a 

concentration of 10-2 M (Fig. 22 C). Lowering the odor 

concentration to 10-3 M abolished chemotaxis for Or42a-functional 

larvae (data not shown). 

Although my screen was not exhaustive, in practice it was very 

difficult to identify a pair of odors with complete independence 

between their channels. If a certain odor dilution resulted in 

chemotaxis in one channel, the same odor should not be allowed to 
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elicit attraction in the other channel, even though its concentration 

was much higher. Thus, I established partial independence, a 

scenario with less rigid criteria. Odor pairs were accepted if an odor 

causing chemotaxis in one channel resulted in indifference in the 

other channel at the same concentration. I identified two odorants 

complying with the criteria of partial independence. I showed that 

isoamyl acetate (IAA) caused attraction through the Or42a but not 

in the Or42b neuron (Fig. 22 D). Similarly, 1-Hexanol led to 

chemotaxis via Or42a, weak chemotaxis through Or13a, and no 

chemotaxis with Or42b neurons (data not shown). This was 

consistent with the evidence from electrophysiological recordings 

(Kreher, Mathew et al. 2008).  

Chemotaxis elicited by light gradients 

Optogenetics was another way to achieve complete independence of 

inputs. Expression of a microbial opsin in an OSN rendered this 

neuron sensitive to light (Boyden, Zhang et al. 2005). Hence, one 

neuron could be activated completely independent of other neurons. 

This technique also proved efficient to introduce sensory noise into 

the olfactory system.  

After expression of Channelrhodopsin (Pulver, Pashkovski et al. 

2009) in the Or42a neuron, larvae were able to navigate gradients of 

blue light (Schulze, Gomez-Marin et al. 2015) (Fig. 23). 

Furthermore, the addition of light flashes on top of the light 

gradient corrupted larval chemotaxis (Fig. 23).  However, the 

mutations needed to abolish the photophobic response to blue light, 

caused serious problems (see ‘Optogenetics, virtual odor gradients 
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and noise’ for more details). Therefore, I did not continue to use 

Channelrhodopsin.  

Figure 23: Chemotaxis in virtual odor gradients with Channelrhodopsin. 
Chemotaxis performance decreased when light flashes were on top of a sensory 
gradient. Experimental conditions: virtual gradient, n=17, virtual gradient+noise, 
same light gradient as before, randomized light flashes, n=16   

 

The use of Chrimson (Klapoetke, Murata et al. 2014) solved this 

problem. Chrimson turned out to be more efficient in navigating 

light gradients in my setup. This means that the macroscopic 

behavior in the light gradient was quite similar to chemotaxis in 

odor gradients. Moreover, it was easier to regulate the strength of 

accumulation by changing the amplitude of the light gradient. Thus, 

stronger gradients resulted in an increased precision of chemotaxis. 

Noise was added in the form of randomized light flashes on top of a 

sensory gradient (Fig. 24 A). Randomizing the availability of the 

directional information was another strategy to increase the 

uncertainty. (Fig. 24 B). This was achieved by flashing the light 

gradient in a randomized way. Both strategies corrupted chemotactic 

behavior. The decrease in behavioral performance correlated with 

increasing distortion of the gradient due to noise (Fig. 24 B). 

Although both types of noise had an impact on behavior, I used 

only the first strategy (randomized light flashes) when I tested 
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sensory integration. The presentation of additional light flashes had 

the advantage that it could be used to corrupt behavior of larvae 

behaving in odor gradients and light gradient alike. In addition, the 

noise was uniformly distributed over the behavioral arena and did 

not just affect larvae in the light gradient. 

 

Figure 24: Chemotaxis in virtual odor gradients with Chrimson. (A) 
Chemotaxis performance decreased when light flashes were on top of a sensory 
gradient. Experimental conditions: virtual gradient, light intensity at the peak of 
the gradient 1.39 W/m2, n=30, virtual gradient+noise, same light gradient as 
before, randomized light flashes, light intensity 0.69 W/m2, n=30 (B) Chemotaxis 
performance was correlated with the time the gradient information was available; 
Attraction behavior decreased from when the gradient information was accessible 
constantly (virtual grad, n=30), 42% of the time (negative noise 1, flashed with 
4.2Hz 100ms, n=13) or just 30% of the time (negative noise 2, flashed with 3Hz, 
flash duration 100ms, n=17). 
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Odor-‐Odor	  Integration	  

Odor-odor integration refers to the integration of information 

within the olfactory system. Therefore, I presented two different 

olfactory cues to every animal. Cues were presented separately 

(single-gradient condition) and then together at the same side of the 

behavioral arena (combined condition). To avoid capture effects I 

exposed larvae to odor concentrations leading to attraction in the 

low or medium range. If some form of multisensory integration was 

taking place I expected to observe an improvement in chemotaxis 

performance. 

Odor-odor integration in wild-type larvae 

Wild-type w1118 larvae were exposed to gradients of 1-hexanol or 

ethyl butyrate. Both odors elicited a similar level of attraction, when 

presented alone (Fig. 25 A). When odors were combined, larvae 

accumulated quicker on the side of the odor source and mostly 

stayed there until the end of the experiment (Fig. 25 A). Since 

behavioral performance improved, I concluded that larvae were able 

to integrate information from two congruent odor sources. 

Subsequently, I inserted the preference indices of the single 

conditions into the multiplicative rule (equation (19)) and predicted 

the combined behavior for every timepoint of the combined 

condition. This resulted in a good fit of the optimal prediction 

(Fig. 25 B). 

 



Results 

 
86 

Figure 25: Sensory integration in w1118 larvae. (A) Behavioral performance 
improved upon combined presentation of two odor gradients as compared to 
exposure to a single gradient. Experimental conditions: 1-hexanol, 10-2 M, n=20; 
EtB, 10-3 M, n=26; combined n=19  (B) The Bayesian prediction fitted the 
experimental data well. 

 

However, another possibility could also account for the observed 

improvement. A subset of OSNs was activated by both 1-hexanol 

and ethyl butyrate. Therefore, it was possible that the improvement 

was due to stronger activation of these OSNs by two types of 

molecules. To exclude this hypothesis, I aimed to test sensory 

integration by (i) lowering the odor concentration so it does not 

cause attraction in both channels, or (ii) with independent channels. 

Integration with partially overlapping channels 

Previously I showed that isoamyl acetate resulted in attraction 

mediated by Or42a, but not by Or42b-functional larvae (Fig. 22 D). 

However, I did not identify a suitable odor, which activated Or42b 

without activating Or42a. Therefore I presented isoamyl acetate and 

ethyl butyrate to larvae, with only to two active OSNs (Or42a and 

Or42b). Ethyl butyrate interacted with both receptors, while isoamyl 

acetate activated just Or42a. In this scenario, the channels were 

partially overlapping. Presentation of a single gradient resulted in 
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stronger attraction to ethyl butyrate than to isoamyl acetate (Fig. 26 

A). In the beginning the slope of the preference index of the 

combined condition was steeper than the slope of either single-

gradient condition, before leveling off at around 90 seconds (Fig. 26 

A). Overall, its shape was remarkably similar to the combined 

condition for wild-type larvae. However, there was a dip in the 

combined condition at around 150 seconds into the experiment. 

This dip was not captured by the prediction of the model with 

optimal behavior (Fig 26 B).  

Figure 26: Sensory integration with partially independent channels. (A) The 
experimental data showed an improvement when larvae were chemotaxing in two 
congruent odor gradients as compared to a single gradient. Experimental 
conditions: Isoamyl acetate (IAA), 1/3 M, n=19; EtB, 10-3 M, n=26; combined 
n=20 (B) The prediction fitted the data well for the first 120 seconds. Beyond this 
timepoint, the prediction deviated slightly from the experimental data. 

 

Integration with independent channels 

Optogenetics made it possible to control the activity of an OSN 

with light. This fulfilled the criteria of complete independence of 

input for one channel. Even though light stimulation guaranteed 

independent input, it was still possible to stimulate the same channel 

with an odor. To achieve complete independence the odor 
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stimulation had to be uncoupled as well. Or67b was insensitive to 

stimulation by ethyl butyrate. This was shown by electrophysiology 

(Kreher, Mathew et al. 2008) and verified by behavioral experiments 

(Fig. 27). Thus, ethyl butyrate activated a small subset of OSNs 

sensitive to this odor (Kreher, Mathew et al. 2008), while Or67b was 

stimulated exclusively by light. Since no other odor gradients were 

present during the experiments, cross-activation of Or67b could be 

excluded. 

Figure 27: Uncoupling of the peripheral perception of two olfactory stimuli. 
Larvae with just the Or67b OSN functional were not attracted to the side with the 
sensory cue. Source concentration 10-3 M EtB; n=20 

 

Figure 28 shows the results of sensory integration with independent 

channels. The preference indices of the conditions with a single 

gradient were similar. The slope of the combined condition was 

higher than the slopes of the single-gradient condition over the 

whole course of the experiment (Fig. 28 A). Therefore, I concluded 

that larvae integrated sensory integration from two independent 

inputs. Although the prediction deviated slightly between 30 and 90 

seconds, at no time did it differ significantly from the experimental 

data (Fig. 28 A). 
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Figure 28: Sensory integration with independent channels. (A) The 
combined condition outperformed both single-gradient conditions. Experimental 
conditions: EtB, 2.5*10-4 & 5*10-4 M, n=30 M; virtual gradient, light intensity at 
peak 1.39 W/m2, n=30; combined n=30 (B) There was no significant difference 
between the prediction and the data over the whole experiment. 

 

Testing the model: integration with sensory noise 

Building on the scenario of complete independence, I added noise 

on top of the sensory gradients. Noise was presented in both single-

gradient conditions as well as during combined experiments.  Larvae 

navigated single ethyl butyrate gradients better than the light 

gradient. Chemotaxis improved when larvae were exposed to both 

cues, although this increase of the PI was not significant for most of 

the time (Fig. 29 A).  However, the prediction fit the data perfectly 

(Fig. 29 B), because light gradient contributed weakly to the 

combined performance.  
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Figure 29: Odor-odor integration with additional sensory noise. (A) 
Chemotaxis in the combined condition was slightly better than the exposure of 
larvae to EtB gradients alone. This was mainly due to the weak contribution of 
the light gradients corrupted by noise. Experimental conditions: EtB, 2.5*10-4 & 
5*10-4 M, n=30 M; virtual gradient, light intensity at peak 1.39 W/m2, n=30; 
combined n=30; sensory noise was present in all conditions, intensity of a light 
flash: 0.69 W/m2 (B) The prediction for Bayesian sensory integration fitted the 
data well.  

 

A comparison between the single-gradient conditions with and 

without noise revealed the effect of sensory perturbation in the 

different channels. The additional light flashes corrupted the taxis 

behavior in the light gradient (Fig. 30 A), without affecting the 

behavior in the odor gradient (Fig. 30 B).  

Figure 30: The impact of noise on behavior. (A) Or67b mediated chemotaxis 
in a light gradient with and without noise. The addition of randomized light 
flashes (0.69 W/m2) on top of the light gradient had a negative impact on 
chemotaxis performance within the same channel. (B) Chemotaxis in an odor 
gradient with and without noise in Or67b. Noise in another channel had no impact 
on the chemotaxis performance. Single-gradient conditions for (A) and (B) are the 
same as in Fig. 28 A and Fig. 29 A.   
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As a next step, I predicted the performance of a fixed-weight model 

of sensory integration. In this model the weights were not adjusted 

according to reliability, as in the Bayesian prediction, but were 

independent of noise (Fig. 31). To compare these models the 

likelihood to fit the combined condition for every model were 

computed at 180 seconds. These were 0.0558 and 5.45*10-9 for the 

Bayesian and fixed-weight model, respectively. Thus, I concluded 

that the odor-odor integration was implemented as a Bayesian 

strategy.  

 

Figure 31: Predictions for the fixed-weight model with noise. (A) 
Comparison between the PI of the behavior in an odor gradient with noise, and 
the corresponding prediction for the fixed-weight model. The prediction deviated 
significantly from the observed behavior. (B) Prediction of the combined PI for 
the fixed-weight model under noise conditions. The prediction was significantly 
lower than the experimental results. In contrast, the prediction for the Bayesian 
model fitted well. Experimental data and predictions were taken from Fig. 29. 

  



Results 

 
92 

Chapter 4: Cross-modal integration 

Thermotaxis	  

Thermotaxis of w1118 larvae 

First, I assessed thermotactic behavior of w1118 larvae in a number of 

different, one-dimensional, gradients. The tested gradients formed 

two groups (Fig. 32). A neutral gradient, with the same temperature 

on each side (16-16˚C), resulted in an equal distribution between 

both halves of the behavioral arena. A similar distribution was 

observed for the gradient from 16-26˚C. Thus, the detection 

threshold in this assay was above 0.105˚C/mm. Increasing the 

gradient by two degrees, from 16-28˚C resulted in a movement 

towards the side of preferred temperature. A further increase from 

16-30˚C resulted in a mild improvement of thermotaxis.  

 

Figure 32: Thermotaxis of w1118 larvae in different gradients. Thermotaxis 
performance correlated with the slope of the temperature gradients. The 
temperature difference (ΔT) is the difference between the temperatures set at the 
sensors at the extremity of the behavioral arena. Experimental conditions: ΔT 16-
16˚C, n=33; ΔT 16-26˚C, n=20; ΔT 16-28˚C, n=20; ΔT 16-30˚C, n=35 
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Different strains show different abilities to thermotax 

Thermotaxis was more sensitive than chemotactic behavior. In 

contrast to w1118 larvae, many strains were not able to navigate the 

thermal gradients presented in the previous section (Fig. 32). To 

induce thermotaxis I shifted the gradients to higher temperatures 

and increased the steepness of the gradient. Thus, CantonS wild-

type larvae did not thermotax in the shallow 16-30˚C gradient, but 

were able to navigate a 20-40˚C temperature gradient (Fig. 33 B). 

Similarly, thermotaxis was induced in the Chrimson line (Fig. 33 B), 

Or42a driver lines and other genetically modified stocks.    

 

Figure 33: Thermotaxis was not conserved across different genetic 
backgrounds. (A) CantonS wild-type larvae did not thermotax properly in a 
gradient from 16-30˚C. Only an increase of the temperature gradient to 20-40˚C 
resulted in proper thermotaxis. Experimental conditions: ΔT 16-30˚C, n=21; ΔT 
20-40˚C, n=18 (B) Same observation as in (A) with the Chrimson line (w;+;UAS-
CsChrimson-mVenus). Experimental conditions: ΔT 16-30˚C, n=25; ΔT 20-40˚C, 
n=30 

  



Results 

 
94 

Odor-‐Temperature	  Integration	  

For intermodal integration, I assumed independence between 

sensory inputs.  As before, I chose unimodal conditions that led to 

medium attraction to exclude capture effects and observed a similar 

progression of the preference index over time. Since thermotaxis 

ability was not conserved across genotypes, I varied the temperature 

gradient accordingly. I also introduced slight changes to the odor 

concentration if it seemed better suited for a certain experiment.  

Odor-temperature integration in wild-type larvae 

Both groups and single w1118 larvae were able to integrate 

information across sensory modalities. Larvae improved their 

performance when they were exposed to an odor and a temperature 

gradient as compared to the presence of just one sensory gradient 

(Fig. 34). In general the Bayesian prediction fitted well. The fit was 

worse for single-larva experiments (Fig. 34 C-D). This was probably 

due to the different number of larvae in group-experiments versus 

single-larvae experiments. Although I conducted around 80 single-

larva experiments for every condition, I could not obtain smoother 

plots. This was not surprising considering that this number of larvae 

was the equivalent of eight group experiments with ten larvae in 

every experiment.  
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Figure 34: Multisensory integration in w1118 larvae. (A) Groups of wild-type 
larvae were able to combine information across different modalities. The 
preference indices of combined condition were higher than the preference indices 
of either unimodal condition. Experimental conditions: EtB, 10-3 M, n=26; ΔT 
16-30˚C, n=35; combined, n=27 (B) The Bayesian prediction matched the 
experimental data. (C) The preference indices of single w1118 larva also improved 
when exposed to the combined gradients. Experimental conditions: EtB, 10-3 M, 
n=79, ΔT 16-30˚C, n= 81, combined n=83 (D) The trend of the Bayesian 
prediction followed the experimental data. However, the prediction was more 
variable than for groups of larvae, because the total number of larvae was much 
lower.  

  

Testing the nature of odor-temperature integration with noise 

I performed a number of different experiments to test the impact of 

noise on odor-temperature integration. Chrimson was expressed 

either in the Or42a or the Or42b neuron. Since these larvae were less 

sensitive to temperature (Fig. 33 B), I shifted gradients towards 

higher temperatures.  
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In the first set of experiments larvae navigated a temperature 

gradient from 20-40˚C and an odor gradient emanating from a 

droplet of 10-3 M ethyl butyrate. The boost in behavioral 

performance in the combined condition indicated sensory 

integration. Overall, the results without the presence of noise (Fig. 

35) were similar to the behavior of wild-type larvae (Fig. 34 A, B). 

 

Figure 35: Multisensory Integration in Or42a-functional larvae. (A) Larvae 
expressing Chrimson in the Or42a OSN performed better when exposed to both 
gradients at the same time than in any of the unimodal condition. With the 
exception of the temperature gradient, the experimental conditions and results 
were quite similar to wild-type experiments. Experimental conditions: EtB, 10-3 
M, n=30; ΔT 20-40˚C, n=30; combined, n=30  (B) The experimental preference 
index over time is very similar to the prediction of the Bayesian framework. 

 

The experiments were repeated with the addition of noise on top of 

the sensory gradients. However, the noise was always injected into 

the olfactory system. To corrupt chemotaxis in an odor gradient 

higher-intensity light flashes had to be used than in the presence of 

light gradients. Most likely this was necessary because noise was 

injected via one single OSN, while the odorant activated multiple 

OSNs. As expected, noise led to a reduction of chemotaxis 
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performance (Fig 36 A, C). Surprisingly thermotaxis performance 

increased with noise in the olfactory channel (Fig 36 A, D).  

Figure 36: Multisensory integration in Or42a-functional larvae with noise. 
(A) Or42a larvae navigated EtB and temperature gradients while noise was 
injected into the olfactory system via the Or42a neuron. The combined condition 
was equal to the unimodal temperature condition. Experimental conditions: EtB, 
10-3 M, n=30; ΔT 20-40˚C, n=30; combined, n=30; sensory noise was present in 
all conditions, intensity of a light flash 11.15 W/m2 (B) The Bayesian prediction 
matched the experimental data for the 90 seconds. It deviated slightly from the 
experimental data in the second half of the experiment. (C) Comparison of the 
chemotactic behavior with and without noise. Noise corrupts the chemotaxis 
performance. Experimental conditions from Fig. 35 A and Fig 36 A (D) 
Thermotaxis performance increases with noise in the olfactory system. 
Experimental conditions from Fig. 35 A and Fig. 36 A. 

 

For the second set of experiments I used the same genotype but 

replaced the odor gradient with a virtual gradient of red light. Thus, 

the gradient information and noise were transmitted through the 

same channel (Or42a). Independent of the presence of noise, the 

behavior of the combined condition improved as compared to the 

behavior of larvae exposed to only one sensory gradient (Fig. 37 A, 
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C). Furthermore the experimental results matched the theoretical 

predictions (Fig. 37 B, D). However, as in the previous dataset the 

thermotactic behavior navigated gradients more efficient in the 

presence of noise in the olfactory system. 

 

 

Figure 37: Multisensory integration between an Or42a-mediated virtual 
odor gradient and a temperature gradient. (A) The behavioral performance of 
larvae expressing Chrimson in the Or42a OSN, improved when exposed to light 
gradients and temperature gradients at the same time. Experimental conditions: 
ΔT 20-36˚C, n=49; virtual gradient, light intensity at peak 1.39 W/m2, n=49 
combined condition, n=49, Note: The full dataset was analyzed at 1, 40, 80, 120, 
160 and 200 seconds and plotted accordingly. (B) The Bayesian prediction is not 
significantly different from the experimental results, although the PI of the 
prediction was a bit higher than the experimental PI. (C) Same experiments as in 
(A) with the presence of noise in all conditions. In the combined condition taxis 
behavior improved slightly. Experimental conditions: ΔT 20-36˚C, n=30; virtual 
gradient, light intensity at peak 1.39 W/m2, n=30; combined, n=30, sensory noise 
was added by randomized light flashes with an intensity of: 0.69 W/m2 (D) The 
Bayesian prediction fitted the experimental data well. 
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Finally, these results were verified with another genotype. 

Expression of Chrimson in the Or67b OSN resulted in the same 

observations (Fig. 38).     

 

 

Figure 38: Multisensory Integration between an Or67b-mediated virtual 
odor gradient and a temperature gradient. (A) Larvae expressing Chrimson in 
the Or67b OSN navigated red light gradients and temperature gradients. The 
behavioral performance improved when larvae were exposed to both gradients at 
the same time. Experimental conditions: ΔT 20-32˚C, n=27; virtual gradient, light 
intensity at peak 1.39 W/m2, n=28; combined condition, n=27, Note: The full 
dataset was analyzed at 1, 40, 80, 120, 160 and 200 seconds and plotted 
accordingly. (B) The Bayesian prediction is not significantly different from the 
experimental results. (C) Same experiments as in (A) although with the presence 
of noise in all conditions. In the combined condition taxis behavior improved 
slightly. Experimental conditions: ΔT 20-32˚C, n=27; virtual gradient, light 
intensity at peak 1.39 W/m2, n=27; combined, n=27, sensory noise was added by 
randomized light flashes with an intensity of: 0.69 W/m2 (D) The experimental PI 
was not significantly different from the predicted PI. 
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Chapter 5: Discussion 

Behavioral	  strategy	  and	  variability	  

All organisms have to use strategies to deal with changes in their 

environments. Chemotaxis and thermotaxis follow a similar 

navigational strategy. Both modalities rely on a process of biasing 

run time and turns towards the favorable gradient direction 

(Gomez-Marin, Stephens et al. 2011, Gershow, Berck et al. 2012, 

Gepner, Mihovilovic Skanata et al. 2015, Hernandez-Nunez, Belina 

et al. 2015). It has been speculated that this similarity in behaviors 

might reflect an underlying limitation of the nervous system of 

Drosophila larvae to modulate behavior (Frye and Dickinson 

2004)}(Gepner, Mihovilovic Skanata et al. 2015). However, I argue 

here that there is sufficient evidence to conclude that larval behavior 

is flexible enough to adapt to environmental contingencies. One 

behavior that larvae can adjust are head casts, which are an integral 

part of thermotactic and chemotactic strategies (Gomez-Marin and 

Louis 2012). Presumably, larvae use these lateral head movements to 

sample the environment such as odor and temperature gradients. 

The frequency of initial head casts decreases in the presence of food 

(fructose) (data not shown). This decrease is probably mediated by 

gustatory signals, which suppress motor programs (Schoofs, 

Hückesfeld et al. 2014) and is a good example of the adaptive nature 

of larval behavior to its environment. Ongoing efforts to screen and 

find the neurons underlying navigation behaviors of different 

sensory systems (e.g. collaborative projects like the larval Olympiad) 

yielded separate hits for different modalities (personal 

communication M. Louis). This suggests that larvae possess 
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sufficient neural capabilities to process information for every 

sensory system separately. It is not clear where the information 

arising from different modalities converges, but it has been shown 

recently that the subesophageal ganglion (SOG) acts as a premotor 

hub combining information from various modalities (Tastekin, Riedl 

et al. 2015).  

I have just argued that Drosophila larvae are flexible enough to 

modulate their behavior in different situations. Thus, larval behavior 

is can be influenced by to many internal and external factors. A lack 

of proper control of developmental, genetic and external influences 

during experiments can enhance pre-existing behavioral variability. 

During my experiments I have tried to control the behavioral 

variability of thermotaxis. It is well documented that larvae exhibit 

different temperature preferences during first (L1), second (L2) and 

third instar (L3) stages (Garrity, Goodman et al. 2010). By contrast, 

odor-search behavior is more robust during larval development. I 

showed that L1 and L3 larvae rely on very similar strategies during 

chemotaxis (Fig. 13-19). However, a few differences remained: L1 

larvae were still considerably slower when size was taken into 

account (Fig. 15 C) and turning performances were worse for L1 

larvae (Fig. 15 D). This might have also been due to the fact that the 

assay and odor gradient had been optimized for L3 larvae (Gomez-

Marin, Stephens et al. 2011). Therefore, developmental effects seem 

to have a bigger impact on behavioral variability during thermotaxis 

than chemotaxis. The genetic background also plays a role. The 

ability to chemotax does not differ strikingly between L3 larvae 

from the w1118 and CantonS strain (Fig. 13-19). By contrast 
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thermotaxis ability strongly varies between these different genotypes 

(Fig. 32 and 33). Small genetic differences such as a mutation of the 

white gene have been shown to affect behavioral variability via a 

serotonin dependent pathway (Kain, Stokes et al. 2012). w1118 larvae 

harbor this mutation while CantonS larvae do not. In theory the 

white mutation could cause the observed thermosensory differences 

because neither CantonS (Fig. 33 A) nor the Chrimson line, (Fig. 33 

B), were able to navigate the shallow thermal gradient. In addition to 

the ‘internal’ developmental and genetic factors there are also 

external factors that can influence behavior. It is likely that observed 

differences in behavioral performance are partly due to the different 

gradient geometries. Odor gradients in my experimental setup were 

2-dimensional and partly non-linear, while thermotaxis was 

restricted to 1-dimensional linear gradients. Humidity, the presence 

of food (Dillon, Wang et al. 2009), and the cultivation temperature 

(Krstevska and Hoffmann 1994) also affect the temperature 

preference of larvae and adult flies. However, in laboratory 

conditions these environmental factors are can be reasonably well 

controlled. Are there other plausible explanations for the variability 

of thermotaxis?  

It is possible that behavioral variability might not only be due to 

changes in internal and external conditions but might be inherent to 

certain behaviors. In this respect variability might be the outcome of 

an evolutionary strategy to counter unpredictable environmental 

changes. This strategy is called bet-hedging; it is thought to shape 

behavioral preferences together with plasticity and inheritance of 

behavioral traits (adaptive tracking). The finding that thermotactic 
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and phototactic behavior of recently domesticated adult flies was 

more variable than predicted by chance alone supports bet-hedging 

(Kain, Zhang et al. 2014). Bet-hedging produces a distribution of 

phenotypes with “preset” differences in preferred temperatures 

(Hopper 1999, Simons 2011). Thus, a fraction of animals are always 

suited to the actual conditions, at the expense of the remainder of 

the population (Kain, Zhang et al. 2014). Neural plasticity 

conditions the temperature preference in response to external 

temperature, in nematodes like C. elegans (Hedgecock and Russell 

1975) but has less impact in adult flies (Krstevska and Hoffmann 

1994). Adaptive-tracking proposes that temperature preferences are 

inherited and adapted slowly to the present condition (Kain, Zhang 

et al. 2014). However, it seems that individual preferences are not 

transmitted to the progeny (Kain, Zhang et al. 2014). The life cycle 

of Drosophila is too short to transmit the temperature development 

over various seasons to its offspring by adaptive-tracking. 

Therefore, flies following this strategy will always be adapted to the 

conditions of the past generation. This might be disadvantageous in 

environments with abrupt temperature changes due to seasonal 

transitions.  In these circumstances the bet-hedging strategy could 

be successful, because individual animals might not be able to 

transmit sufficient information to their offspring to adapt them for 

the next season. Thus, this mechanism provides a convincing 

explanation for why different orientation behaviors exhibit higher 

levels of variability. This strategy suggests that an experimenter can 

decrease variability by controlling experimental conditions, but it 

can never be abolished completely. I conclude that the high level of 
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variability during thermotaxis might have its origin in a strategy like 

bet-hedging while chemotaxis probably follows a different strategy.    

Group	  behavior	  

The contribution of social cues in larval navigation could confound 

the interpretation of my experiments because the theoretical 

framework assumes the absence of strong interactions between 

larvae. Therefore, I review the evidence for collective decision-

making to evaluate the of social information contributing to the 

observed behavior. Models for collective decision-making have been 

successfully applied to zebrafish and a number of other species 

(Pérez-Escudero and De Polavieja 2011, Arganda, Pérez-Escudero 

et al. 2012). In larvae, social information could presumably be 

relayed by vision, olfaction or mechanosensation. At the start of 

each behavioral experiment larvae were mostly separated from each 

other. The behavioral arena is illuminated with infrared light, which 

larvae are not able to perceive. This precludes the possibility that 

larvae “see” each other. In principle, orientation decisions could be 

biased by a pheromone gradient resulting in larval aggregation 

(Mast, De Moraes et al. 2014). I assume that larval behavior 

improves in the presence of such a gradient. This is because the 

majority of larvae are on the side of the cues and a pheromone 

gradient should reinforce this aggregation. Nevertheless, it is 

unlikely that a pheromone gradient could be established during the 

duration of the experiment25. This conclusion is supported by my 

                                                
25  Mast et al. show that a single larva chooses agarose with pheromone 
depositions over plain agarose. However, prior to this test several hundred larvae 
were crawling on the agarose for 20 minutes to deposit the pheromones. 
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results and the results of previous studies, which show that larval 

chemotaxis performance decreases with increasing group size 

(Monte, Woodard et al. 1989, Kaiser and Cobb 2008) (Fig. 21 A). 

This finding suggests that larvae do not rely on social information 

during this type of sensorimotor decision-making in laboratory 

conditions. On the contrary, the authors of previous studies 

concluded that the reduction of behavioral performance was 

associated with higher frequencies of disadvantageous interactions 

(e.g. bumping) due to increased larval density (Kaiser and Cobb 

2008). I speculate that negative interactions are not the only reason 

for decreased performance in the group assays I conducted. I base 

my speculations on the fact that errors (SEM) from my experiments 

are very similar to theoretical binomial errors, which assume that 

larvae behave independently form each other (Fig. 21 B). This 

agrees with behavioral observations from the past (Monte, Woodard 

et al. 1989, Kaiser and Cobb 2008) and suggests that other 

explanations are also responsible for the observed difference in 

performance.  

I was for example able to control the larval orientation at the start of 

single-larvae experiments, but I could not achieve a similar control 

for groups of larvae. Therefore, a single larva was placed 

perpendicular to the olfactory gradient while the orientation at the 

onset of group experiments was random, due to larval movement 

during the delay caused by the sequential placement of larvae. High-

resolution analysis of chemotaxis shows that perpendicular 

orientation to the gradient leads to the best results for decision-

making (Fig. 18) (Gomez-Marin, Stephens et al. 2011). Handling 
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time of larvae could also have a negative influence on behavior. 

Prior to an experiment, single larvae were isolated using a brush and 

transferred one by one into a Petridish coated with agarose. At the 

start of the experiment all larvae were placed together in the 

behavioral arena. Bigger groups required longer manipulation times, 

especially during the placement onto the agarose surface of the 

arena. Consequently larvae in bigger groups of experiments are 

more agitated at the start of an experiment. The state of agitation 

influences thermotactic and phototactic behaviors (Lewontin 1959, 

Rockwell and Seiger 1973, Seiger, Seiger et al. 1983). Thus, it is 

conceivable that it also has an impact on chemotactic behavior. 

Together, these two effects, initial orientation and manipulation 

time, probably account for most of the differences seen in the 

behavioral assay although negative interactions certainly affect 

overall behavior as well. Taken together, I conclude that behavioral 

performance did not rely on social information or strong social 

interactions. 
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Sensory	  integration	  and	  probabilistic	  inference	  

One of the principal conclusions from this study is that larvae are 

able to combine information from multiple cues. Combination is 

achieved within and across modalities as outlined in the scenarios of 

intramodal (odor-odor) and intermodal (odor-temperature) 

integration. Importantly, the favorable direction of both gradients 

pointed towards the same side of the assay. This way I avoid dealing 

with unknown issues of hierarchy that might arise from conflicting 

information between different sensory systems in the intramodal 

scenario. In general, information should be combined in accordance 

with the causal structure of the world (Tenenbaum, Griffiths et al. 

2006). This statement is relies on the assumption that sensory 

information is only combined if it originates from the same 

perceptual object (e.g. multiple odor gradients emanating from a ripe 

banana) However, I argue that larvae integrate sensory information 

even though it might not originate from the same perceptual object, 

providing that the scenario resembles their natural environment.  

(Gepner, Mihovilovic Skanata et al. 2015). 

Intramodal integration refers to the combination of information 

from two different odor gradients. The performance of wild-type 

w1118 larvae improved when exposed to two odor gradients (Fig. 25) 

as compared to the behavior in a single gradient. However, I was 

not able to identify a pair of odorants that activated completely 

separate subsets of OSNs. For this reason, I resorted to an 

optogenetics approach. After identifying a receptor, which is not 

activated by EtB (Fig. 27) I expressed Chrimson in this OSN and 

transformed it into an independent input channel. This way I was 
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finally able to test sensory integration without any cross-activation at 

the levels of the ORs (Fig. 28). These results confirmed my initial 

assumptions, that the larval nervous system is able to combine 

independent information from different channels within the same 

modality.  

The scenario of intermodal integration investigates the combination 

of information between the olfactory and thermosensory systems. 

Both w1118 and larvae expressing Chrimson in the Or42a-OSN, 

increased their performances when exposed to an odor and 

temperature gradient, as compared to behavior in the unimodal 

condition (Fig. 34 A, B; Fig. 35). However, odor and temperature 

gradients are not completely independent since thermal convection 

could potentially distort the odor gradient. To exclude such 

influences I used optogenetics to repeat these experiments with 

virtual odor gradients in which the odorant had been substituted by 

red light (Fig. 37, 38). These conditions offer a paradigm where 

complete independence of the inputs is assured. As observed earlier, 

the behavioral performance improved when both cues were 

presented at the same time. I concluded that larvae are integrating 

information between different modalities even though they do not 

arise from the same perceptual object. 

Improved sensorimotor decision-making in the presence of multiple 

cues has been shown before in Drosophila larvae (Gepner, 

Mihovilovic Skanata et al. 2015). My study goes one step further and 

examines whether the rules of probabilistic inference apply to larval 

decision-making. Bayesian probabilistic inference has recently been 

applied to a cue conflict situation in ants (Wystrach, Mangan et al. 



 Discussion  

 
109 

2015). Wystrach et al. show that ants behave similarly to the optimal 

solution but might only use a proxy of uncertainty instead of 

implementing the full Bayesian model. Together with collaborators I 

derived a model describing larval behavior based on a Bayesian 

framework. The model uses the preference indices of the behavior 

in two single sensory gradients as an input and predicts the 

preference index of the behavior in the combined condition. This 

prediction resulted in a good fit for all experimental conditions 

shown in this thesis. However, in a number of conditions the 

prediction did not yield a satisfactory fit. Such conditions were 

usually associated with experiments that did not result in behavioral 

improvements upon combination of two sensory gradients (data not 

shown). I speculate that the absence of behavioral improvements 

was due to a ‘capture effect’ in which the orientation response was 

purely guided by one sensory gradient, while the other was ignored. 

Capture effects are common in human psychophysics, e.g. humans 

usually experience a visual capture effect, due to the low sensory 

threshold of the visual system (Ernst and Banks 2002). Studies 

testing sensory integration in vertebrates rely on sophisticated 

psychophysical methods to avoid capture effects (Ernst and Banks 

2002, Alais and Burr 2004, Raposo, Sheppard et al. 2012). 

Unfortunately, such methods have not yet been adapted for insects.  

I tested the validity of the Bayesian model in a number of ways. The 

hallmark of Bayesian inference is that information is combined in 

proportion to its reliability. Manipulation of the uncertainty of a cue 

leads to a change in weighting of the cues but, importantly, the 

prediction of the Bayesian framework should still match the 
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observed behavior. I manipulated the reliability of olfactory cues by 

adding randomized light flashes on top of sensory gradients. Thus, I 

injected noise into the nervous system by expressing Chrimson in 

different OSNs. The temporal sequence of the light flashes was 

conserved in all experiments (frozen noise) although the amplitude 

(light intensity) varied depending on whether the odor gradient was 

odor or light (virtual odor gradient). Noise with a high amplitude 

(strong noise) was injected via the Or42a-neuron if larvae were 

chemotaxing in an EtB gradient (Fig. 36). In this condition only a 

fraction of the sensory input is corrupted by noise because EtB 

activates two to four OSNs26 while Chrimson is only expressed in 

one of them (Or42a). For chemotaxis in a virtual odor gradient noise 

was injected with a lower light intensity (weak noise) via the Or42a 

or Or67b-OSN (Fig. 29, Fig. 37 C, D; Fig. 38 C, D). In accordance 

with the assumptions of the Bayesian framework the predictions 

matched the behavior of the combined condition even though the 

olfactory behavior was significantly reduced by the noise (Fig. 29, 

Fig. 36 A, B; Fig. 37 C, D, Fig. 38 C, D). Surprisingly, the unimodal 

thermotaxis improved when pure noise was injected in the olfactory 

system (Fig. 36 A,D; Fig. 37 C; Fig. 38 C). It seems that the 

improvement correlated with the amplitude of the light flashes. The 

increase was mild for weak noise (Fig. 37 C; Fig. 38 C) and high for 

strong noise (Fig. 36 A, D). The observed improvement of 

thermotaxis with noise in the olfactory system was probably due to 

cross-modal interactions. As described in the introduction, cross-

modal interaction facilitates the detection of a cue by a task-

                                                
26 Ethylbutyrate (EtB) activates two OSNs at a concentration of 10-4 M and four 
OSNs at a concentration of 10-2 M (Kreher, S. A., et al. (2008)).   
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irrelevant signal in another modality (Stein, London et al. 1996, 

Spence and Driver 1997) (McDonald, Teder-Sälejärvi et al. 2000, 

Lovelace, Stein et al. 2003). However, a similar effect was not 

observed during intramodal integration. Addition of noise to the 

virtual odor gradient corrupted chemotaxis in this gradient without 

improving chemotaxis in an odor gradient with pure noise in the 

other channel (Fig. 30). Such differences between intermodal and 

intramodal conditions have been predicted by psychophysical 

studies (Newell, Mamassian et al. 2010). The presence of cross-

modal interactions is not expected to affect the Bayesian model in 

any way. To test whether larvae implement Bayesian inference I 

compared the predictions of the Bayesian model to predictions from 

a suboptimal fixed-weight model. In contrast with the Bayesian 

model, the fixed-weight model does not combine their cues 

according to their level of reliability. This model is in line with 

preference-based models of the economic tradition. Without the 

presence of sensory noise the prediction of both models are 

equivalent (equation (19)). The presence of external noise in the 

olfactory system allows the distinction between these models based 

on the behavior in a single sensory gradient and pure noise in the  

sensory other channel. However, this strategy to distinguish between 

the Bayesian and the fixed-weight model is only valid in the absence 

of cross modal interactions. For the intramodal condition the fixed-

weight model failed to predict the behavior of larvae in a single 

olfactory gradient with only pure noise in the other sensory channel 

and the behavior of the combined condition. Since the Bayesian 

model predicted the behavior well, I concluded that larvae follow a 
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near-optimal Bayesian strategy when integrating cues from different 

sensory gradients. 

The theoretical framework developed for this study focuses only on 

perceptual tasks. This is partly because the metabolic cost of turning 

is symmetrical i.e. independent of the direction. All other associated 

factors of the cost function are taken into account by the 

assumptions of the model. Thus, a larva is minimizing its cost if it is 

moving in the favorable direction of the combined gradients. The 

derivation of the model shows that slight interactions between 

larvae, like bumping into each other, do not affect the proposed way 

larvae combine information. This has also been verified 

experimentally. Both single and groups of larvae follow the 

predictions of the Bayesian model (Fig. 34 C, D).  

The Bayesian model does not make any assumptions about the 

neural implementation. Recent findings started to reveal an 

astonishing wealth of data about sensory integration in Drosophila 

larvae. A mechanism for integration of conflicting information in 

the mushroom body (MB) has been proposed (Lewis, Siju et al. 

2015). It has also been shown that both OSNs and thermosensory 

neurons are located in the same ganglion (Klein, Afonso et al. 2015). 

Co-localization of OSNs and thermosensory neurons allows for 

direct neuron-to-neuron communication by ephaptic coupling 27 

(Katz and Schmitt 1940). In this process the electric field generated 

by the activity of a neuron interferes with the activity of neighboring 

neurons. Ephaptic coupling is causing non-synaptic inhibition in 

                                                
27 https://en.wikipedia.org/wiki/Ephaptic_coupling 
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sensilla of the olfactory system of adult flies (Su, Menuz et al. 2012) 

and might play a similar role in the dorsal organ ganglion (DOG) of 

larvae. This might explain cross-modal interactions or even 

constitute the first level of cue combination between sensory signals. 

Based on these observations, I propose a circuit of multilevel 

convergence similarly as described recently in the larvae (Ohyama, 

Schneider-Mizell et al. 2015). The authors used an optimization 

procedure, constrained by experimental data, to show that such a 

circuit is more sensitive to weak bimodal inputs. A multilevel 

convergence approach is compatible with diverging and converging 

motifs described for olfactory processing (Jeanne and Wilson). 

Theories of neural encoding like probabilistic population codes (Ma, 

Beck et al. 2006) specify the requirements for the encoding of 

probabilities. Although these models have been developed to 

process information at the level of peripheral sensory neurons, in 

principle they could also be implemented at later stages such as in 

the MB or lateral horn (LH). The LH is another region of potential 

importance for multisensory integration. This can be deduced from 

ongoing efforts to reconstruct of the connectivity of this region, 

which reveals sensory convergence (personal communication A. 

Khandelwal).   
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Future	  directions	  

At the moment, we ignore the type of noise larvae experience in the 

their natural environments. In contrast to adult flies which track the 

olfactory signal in odor plumes one can assume that graded 

olfactory stimuli as experienced by larvae are less noisy. In 

accordance with present convention I assumed that the noise in the 

nervous system is Poisson-like (Tolhurst, Movshon et al. 1983, Graf, 

Kohn et al. 2011, Berens, Ecker et al. 2012). I conducted a number 

of electrophysiological experiments to show that noise can indeed 

interfere with spiking activity induced by deterministic stimuli28 (data 

not shown). Short flashes of light can trigger excitation followed by 

a short inhibition of OSNs. Presentation of stochastic stimuli 

corrupts neural firing markedly as compared neural activity in 

response to deterministic stimuli. However a detailed study of how 

noise impacts decision-making is still lacking.  

All forms of orientation behavior in this thesis have been quantified 

with a preference index. This discrete measurement of the position 

of each larva represents a coarse way to quantify behavior. However, 

a low-resolution assessment of the movement of groups of larvae 

also has advantages. This type of assessment is more robust to 

differences in geometric shapes (1-dimensional temperature 

gradients vs. 2-dimensional odor gradients) and slight incongruences 

in sensory gradients (odor gradient vs. light gradient) than other, 

more refined behavioral metrics (e.g. distance form the odor 

source). In addition it is relatively easy to model the evolution of the 

                                                
28 These experiments were conducted with Channelrhodopsin (blue light).  
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preference index over time, without the need of any free parameters. 

Nevertheless the model described in this thesis generalizes easily to 

single decisions (e.g. type 1 and type 2 decisions as outlined in the 

introduction). High-resolution tracking or quantification of single 

turns is undoubtedly the gold standard of behavioral quantification 

and would be the next logical step of this project. In addition it 

would make sense to embed the decision-rules in an agent-based 

model and compare the behavior for different levels of 

environmental noise. This would provide a great way to test ideas 

about the implementation of Bayesian inference in larvae in-silico. 

At present, research in sensory decision-making in insects still lacks 

a unifying theoretical framework and methodology. The ethological 

tradition has yielded powerful methods to discover the underlying 

neural substrate of behaviors, but it lacks the tools to access the 

wealth of information about decision-making that the psychological 

approach has amassed. During psychophysical experiments 

monkeys and rats perform hundreds of two-alternative forced 

choice (2AFC) decisions in a row and are rewarded with fruit juice 

or water for correct decisions. The recent development of closed-

loop trackers and “virtual sensory realities” might help to close this 

gap. However, it is still not possible to perform 2AFC in insects and 

generate psychometric curves, because it is not possible to reward 

animals after single decisions. With the rise of optogenetics it would 

be possible to stimulate reward centers in the brain directly after a 

larvae performed a decision in a closed loop tracker. If this operant 

learning based approach turns out to be effective it would finally be 

possible to apply the psychophysics toolbox to Drosophila larvae. 
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Conclusion 

In this study I aimed to show that larvae are able to combine 

sensory information from different sources according to Bayesian 

probabilistic inference. Larvae were tested in two-dimensional 

arenas comprising two odor gradients. These were either two odor 

gradients or an odor gradient and a virtual odor gradient. The virtual 

odor gradient was created by optogenetic stimulation of a single 

olfactory sensory neuron insensitive to the real odor. I manipulated 

the reliability of the virtual-odor cue by superimposing random light 

flashes to a static light gradient. I considered two models: an optimal 

Bayesian model in which cues are weighted according to their 

respective reliabilities and a suboptimal model in which cues are 

assigned fixed weights. I worked with collaborators, to derive 

behavioral predictions for the combination of both cues with and 

without noise. The fixed-weight model fails to accurately predict the 

combined behavior and the performance of a single cue when noise 

is present in the other channel. In contrast, the Bayesian model 

predicts the behavior well when both cues are combined. I found 

similar results, after I applied the same paradigm for the 

combination of a temperature and an odor (real odor or virtual 

odor) gradient. These findings demonstrate that near-optimal 

inference is not restricted to, integration within a single modality but 

also applies to multisensory integration. This study provides a basis 

for further research into Bayesian decision-making in Drosophila 

larvae. 
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Abbreviations 

AC (neuron) anterior cell neuron 

AEL  after egg laying 

AL  antennal lobe 

cVA  11-cis vaccenyl acetate 

DAN  dopaminergic neuron 

DOG  dorsal organ ganglion 

EtB  ethyl butyrate 

fps  frames per second 

IAA  isoamyl acetate 

KCs  Kenyon cells 

L1  first instar larvae 

L2  second instar larvae 

L3   third instar larvae 

LH   lateral horn 

LN  local interneuron 

MB  mushroom body 

MBON mushroom body output neurons 

OR  olfactory receptor 

OSN  olfactory sensory neuron  

PI  preference index 

PN  projection neuron 

PSTH  peristimulus time histogram 

SC  superior colliculus 

SEM  standard error of the mean 

SOG  subesophageal ganglion 

TOG  terminal organ ganglion

VNC  ventral nerve cor
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