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Abstract

This thesis empirically investigates different aspects of time-varying volatility.

Chapter 1 estimates a large TVP-FAVAR and recovers a dynamic directed net-

work of connections between European stock volatilities. We propose an ad-hoc

estimation methodology that is shown to outperform both standard approaches

and competing models. Chapter 2 focuses on tracking dynamic connectedness

between US sectoral volatilities using Generalized Forecast Error Variance De-

compositions with a Bayesian model. As opposed to estimates obtained with

rolling windows, we allow parameters to vary in a more flexible way. We show that

there exists a stable relationship between the network structure and the volatility

regimes in place at a given time. Chapter 3 estimates the unexpected time-varying

volatility component of fiscal budgets in Italy. We show that periods of higher

unexpected fiscal volatility are likely to be recessionary. Expansionary policies are

effective only when not accompanied by increases in uncertainty.

Resum

Aquesta tesi investiga emṕıricament diferents aspectes de la volatilitat variable.

El Caṕıtol 1 estima un TVP-FAVAR i recupera una xarxa de connexions dinà-

miques entre les volatilitats de accions europees. Proposem una metodologia

d’estimació ad-hoc que es demostri que supera els enfocaments estàndard i els

models competidors. El Caṕıtol 2 es centra en el seguiment de la connectivitat

dinàmica entre les volatilitats sectorials dels Estats Units mitjançant descomposi-

cions generalitzadas de variància d’errors de previsió amb un model Bayesià. A

diferència de les estimacions obtingudes amb finestres enrotllables, permetem que

els paràmetres varïın de manera més flexible. Mostrem que existeix una relació

estable entre l’estructura de la xarxa i els règims de volatilitat vigents en un

moment determinat. El Caṕıtol 3 estima el component variable inesperat de la

volatilitat dels pressupostos fiscals a Itàlia. Mostrem que els peŕıodes de major

volatilitat fiscal inesperada probablement són recessius. Les poĺıtiques expansives

només són efectives quan no s’acompanyen d’increments d’incertesa.
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Preface

The common theme that links the chapters in this thesis is volatility. Interestingly,

volatility has been the main ingredient in many recent theoretical and applied pa-

pers, and it has been so in a very diverse spectrum of economic and financial topics.

Networks, granularity, connectedness, systemic risk, measures of uncertainty and

its aggregate effects are (broadly speaking) among the strands of literature that

have recently dealt with second moments as the main object of analysis. This

thesis’ chapters contribute to some of the aforementioned topics.

In Chapter 1 we estimate a time-varying directed network of volatilities using

a large panel of European companies. We use a novel TVP-FAVAR estimation

methodology that deals with the inherent complexity of the model and jointly

improves both out-of-sample performance and the estimates of network connections.

We propose a simple local validation algorithm to estimate tuning parameters in

our penalized regressions. The algorithm consistently outperforms 10-fold Cross-

Validation, and it runs up to 50 times faster. We replace uniform weighting of

sample observations with forgetting factors, which maintain local flexibility of the

parameters. Also, we show that shrinking the common factors coefficients within

the TVP-FAVAR is key to improve out-of-sample performance. As opposed to

standard TVP-FAVARs, our regressions outperform competing models and yield

very large improvements. The resulting network structure is highly predictable at

least in the very short term, and we find that the degree distributions strongly

move together with the volatility regimes in place at a given time. Moreover,

systematic volatility events activate additional connections on top of the ones that

would be justified by the systematic episode itself. Individual nodes quickly move

towards the middle of the network when hit by purely idiosyncratic events.

Chapter 2 studies sectoral volatility connectedness using US ETFs data. We

estimate volatility spillovers as in Diebold and Yılmaz (2012), i.e. we use General-

ized Forecast Error Variance Decompositions to construct the adjacency matrix of

a weighted directed graph. We improve over their methodology by estimating the

model with Koop and Korobilis (2013) TVP-VAR which also allows for Dynamic

Model Switching in order to dynamically accommodate time-varying changes

in fundamental model parameters. Our findings show that sectors are highly

inter-connected and that two regimes split our sample between an earlier one of

lower and volatile connectedness, and a latter one characterized by higher and

more stable connections. Furthermore, highly volatile periods are associated with

a change in network structure, which moves towards a star network, whereas quiet

periods are characterized by a more asymmetric shape.

ix
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Chapter 3 is a joint paper with Alessio Anzuini and Pietro Tommasino. Our

research departs from the previous chapters in my thesis and takes a structural

approach by focusing on the macroeconomic effects of fiscal uncertainty. Indeed,

economic uncertainty is an important factor behind macroeconomic fluctuations:

in an uncertain environment, firms reduce hiring and investment, financial inter-

mediaries are more reluctant to lend, and households increase their propensity

to save. In our paper, we study the effects of the uncertainty which arises from

fiscal policy decisions. To this end, we propose a new measure of fiscal policy

uncertainty (FPU). In particular, we estimate a fiscal reaction function, allowing

the volatility of the shocks to be time-varying. The time series of this volatility

is our proxy for FPU. Looking at Italian data over the period 1991-2014, we

find that an unexpected increase in our measure of FPU has a negative impact

on the economy. One implication of this result is that the same change in the

government budget can have different effects depending on whether it is associated

with a reduction or an increase in FPU. Therefore, neglecting FPU may partly

explain why the size (and sign) of fiscal multipliers differs so much across existing

empirical studies.

x
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Chapter 1

Evolving Networks and Volatility Forecast-

ing: A Unified Approach

1.1 Introduction

In the last two decades, the literature on economic and financial networks bur-

geoned. One of the reasons is the recognition that aggregate fluctuations can often

hardly be predicted by indistinctly aggregating individual ones, while they rather

mainly depend on the complex network structure underlying the system under

consideration, as well as its granularity.

In this paper, we introduce a new methodology to estimate time-varying

directed networks from financial data, and we apply this method to stock volatilities

of European companies. Crucially, our model is capable to improve at the

same time both estimates of network connections and out-of-sample forecasting

performance. We measure volatility as in Parkinson (1980), that is we exploit

intra-day information with the daily high-low range. Compared to GARCH-like

estimates, computing volatilities in this way leads to remarkably less persistent

and more noisy estimates. This feature makes the dataset an interesting and

challenging one to forecast, and a well suited field-test for our method.

We compute the dynamics of the network by estimating our model on rolling

windows. Importantly, we add forgetting factors in the form of exponential

weights to better pin down the local variation in parameters due to the most

recent observations. In particular, we apply those weights to observations within

a given window, thereby assigning increasingly higher importance to the most

recent data. Standard rolling windows equally weight all the observations, thereby

producing overly smoothed estimates, and this is especially true during periods

where the network structure changes rapidly. Using forgetting factors addresses

precisely this issue. Thanks to exponential weights and time-varying sparsity, the

1
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resulting model is elastic and flexible enough to better accommodate periods of

sudden changes.

As recalled in Barigozzi and Brownlees (2017), previous literature shows that

volatility has a factor structure, meaning that we have to control for systematic

volatility components. We choose to augment each forecasting equation with

common factors, thereby estimating a (TVP) FAVAR and correctly recovering

parameters that are free from systematic components. Furthermore, we illustrate

that shrinking the common factors coefficients together with the rest of predictors

is necessary to improve forecasting performance, and corroborates the already

established result that even though principal components maximize in-sample

variation, they might not be equally helpful in out-of-sample forecasting.

Finally, we illustrate that standard 10-fold Cross-Validation procedures1 fail

when estimating the coefficients of our penalized regressions. We thus propose a

local validation algorithm where the choice of the tuning parameter at each point

in time depends on past forecasting performance. We show that locally validating

the penalization parameter consistently outperforms 10-fold Cross Validation.

Furthermore, thanks to the fact that the model has to be estimated only once

(that is we do not need to repeatedly split the sample in multiple folds), results

are available up to 50 times faster.

All our new features generate very large out-of-sample improvements. Indeed,

estimating the TVP-FAVAR with uniform weights (i.e. the standard rolling window

approach that does not use forgetting factors), using 10-fold Cross-Validation, and

not shrinking common factors yields a particularly disappointing out-of-sample

performance. Specifically, this model cannot beat standard competitors, and it

is only applying our methodology that we are able to make our model the best

performing one.

As for the network representation, we obtain interesting results. We first

illustrate some facts about the resulting network structure, e.g. that connections

are very predictable at least in the immediate one-day horizon, and that both

the in-degree and the out-degree distributions are strongly regime-dependent.

Indeed, we find that our model is able to change rapidly after key events occur,

and that high systematic volatility episodes are often accompanied by additional

non-systematic connections that might have not been activated had that event

not occurred. More specifically, both degree distributions tend to spread out

significantly during financial turmoils, even though they do so in a very different

way. Indeed, whereas a fairly large portion of companies in our dataset are likely

1See Stone (1974).

2
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to be heavily influenced by many others during highly volatile periods, only an

extremely limited set of companies are the main responsible for the aforementioned

firms to be significantly affected during volatility storms. This means that the

network has a granular structure especially during stressed periods, and that

close attention has to be paid to the few institutions that affect the highest

amount of companies. Importantly, those very central companies are not the same

throughout the sample period, i.e. their centrality rank vary significantly over

time. For instance, we find that important episodes that are entirely idiosyncratic

to individual nodes lead the corresponding companies to quickly become very

central in the web of connections. Section 1.4.1 explains those results with more

detail.

Apart from the methodological contribution2 (which is a fundamental part of

this paper), our research is mainly related to the recent literature that aims at

empirically estimating financial networks. Diebold and Yılmaz (2009) measures

returns and volatility spillovers in global equity markets with Generalized Forecast

Error Variance Decompositions. The authors show that connectedness in returns

exhibits an increasing trend over time (market integration) whereas volatility

spillovers vary significantly more and display no trend. Later papers3 apply a

similar methodology to different economic and financial environments. Our setting

borrows the rolling windows approach to compute the evolution of regression

parameters, but we greatly improve their estimation strategy by adding forgetting

factors as we explained above. Koop and Korobilis (2013) uses them in the

Bayesian tradition, i.e. by updating forgetting factor estimates at each Kalman

filter iteration. Our framework is purely frequentist, but this does not prevent

one from using forgetting factors, which are easily implementable in the class

of penalized regression models we estimate throughout our work. Section 1.3.2

explains the differences between Koop and Korobilis (2013) forgetting factors

and ours in detail. Moreover, we also depart from Diebold and Yılmaz approach

by validating the penalization parameter with our own algorithm, which (as

highlighted above) is shown to be a superior alternative to k-fold Cross-Validation

in time-varying-parameters settings like these. Billio, Getmansky, Lo and Pelizzon

(2012) estimates Granger-causality networks on hedge funds, banks, broker/dealers,

and insurance companies and, among other results, shows that the banking

sector is crucial in transmitting shocks to other institutions. Brownlees, Nualart

2We refer to Barigozzi and Brownlees (2017) for a list of references in the research area
concerning estimation of sparse VARs.

3See Diebold and Yılmaz (2012), Diebold and Yılmaz (2013), Diebold and Yılmaz (2014),
Diebold and Yılmaz (2015), Demirer, Diebold, Liu and Yılmaz (2017).

3
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and Sun (2015) uses Lasso algorithms to regularize inverse realized covariance

estimators of log-prices, thus uncovering the partial correlation network structure

of returns. Abbassi, Brownlees, Hans and Podlich (2016) uses both a market-based

and a proprietary dataset to develop measures of connectedness, and show that

market-based ones work comparatively well as a tool to monitor banks credit

riskiness. Barigozzi and Brownlees (2017) introduces a new Lasso-based algorithm

called NETS to analyze large panels of volatility measures and estimate their

inter-connectedness, producing both a directed and an undirected static graph.

Concerning the assignment of connections between companies, we strictly follow

their approach and attach directed links whenever a certain company’s volatility

Granger-causes others. The methodology used in Barigozzi and Brownlees (2017) is

shown to outperform several forecasting models. The authors control for common

factors by first de-factorizing each series and estimating the model on the residuals

thereafter. By controlling for systematic volatility within the model we are able

to estimate it on the original non-defactorized dataset.

1.2 Data

We estimate our model on the panel of stock volatilities computed from the

constituents of the FTSE Developed Europe Index. This index blends the 525

largest companies listed in 13 European countries, and it does so using market cap-

italization weights. Interestingly, some of the most important non Eurozone/non

EU countries are also included. The complete list indeed comprises Belgium,

Denmark, Finland, France, Germany, Italy, Netherlands, Norway, Portugal, Spain,

Sweden, Switzerland, United Kingdom. Table 1.A.1 in the Appendix lists the

companies included in the index as of May 20th, 2016. As we will explain in the

next paragraphs, we will have to drop some of them, so we only report the ones

we use in our analysis.

Our method requires the panel to be balanced. However, the natural existence

of disparate first trading days among companies lead to an inevitable trade-

off between retaining more time periods but fewer companies, or the opposite.

Nevertheless, we want our dataset to include a relevant portion of the most recent

history. Finally, we want to avoid our results to be significantly influenced by

missing observations, and we find a few companies with a relatively high amount

of missing data. For reasons that will become clear shortly on, we treat any

volatility that takes a value equal to zero as if it was a missing observation.

We prefer not to arbitrarily choose the number of companies and the sample

4
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length of the dataset we will use. Therefore, we do this automatically by searching

for the panel that maximizes the number of data-points N · T subject to two

constraints whose boundaries we deliberately choose. First, the final panel must

start no later than January 1st, 2003, and must finish no earlier than November

11th, 2016. Second, every company in the panel must have no more than 5% of

missing observations, where the percentage is computed over the given sample

length (which changes throughout the panel search).

This optimization procedure produces the final dataset, which comprises

N = 322 companies and T = 3905 time periods, with the sample starting on

April 16th, 2002, and ending on April 3rd, 2017. The total number of missing

observations is low and equal to 3.1% of all data-points, meaning that parameters

estimates are not sistematically affected by our approximations which assign

previous day volatility values to missing data.

In order to show in a succinct way the spectrum of companies in our panel,

we use the Global Industry Classification Standard (GICS) to classify the sector

and industry to which every company belongs to. Table 1.1 counts companies in

every sector and industry. As we can see, three out of eleven sectors make up the

majority of the companies in the sample. Those sectors are Financials, Industrials,

and Consumer Discretionary. Table 1.2 shows that a similar reasoning applies

for three (out of thirteen) countries, namely the United Kingdom, France, and

Germany. The table also displays more detailed counts on companies belonging

to a given sector and country. In general, having such a large sample ensures

that we have a representative picture of the largest listed companies within the

European countries we consider.

5
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Table 1.1: Dataset summary: sectors and industries breakdown

Sector Industry # %

Financials
Banks 29

68 21.12%Diversified Financials 17
Insurance 22

Industrials
Capital Goods 43

65 20.19%Commercial&Professional Services 13
Transportation 9

Consumer Discret

Automobiles&Components 12

51 15.84%
Consumer Durables&Apparel 17
Consumer Services 5
Media 11
Retailing 6

Consumer Staples
Food&Staples Retailing 9

31 9.63%Food Beverage&Tobacco 16
Household&Personal Products 6

Materials Materials 25 25 7.76%

Health Care
Health Care Equipment&Services 9

22 6.83%
Pharm Biotech&Life Sciences 13

Utilities Utilities 15 15 4.66%

IT
Software&Services 6

13 4.04%Technology Hardware&Equipment 4
Semiconductors&Semic Equipment 3

Energy Energy 12 12 3.73%

Telecom Services Telecommunication Services 12 12 3.73%

Real Estate Real Estate 8 8 2.48%

Sectors are ordered by decreasing number of represented companies. Industry classification also

follows GICS standards, and we highlight it here for exposition purposes only, whereas in the

paper we will generally classify companies with the sector they belong to. The last column

shows the percentage of companies which belong to a particular sector, as percentage of the

total number of companies in the sample.

6
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Table 1.2: Dataset summary: joint countries and sectors breakdown

GBR FRA DEU SWE CHE ESP ITA NLD DNK BEL FIN NOR PRT All %S

Financials 15 10 6 7 6 6 8 2 1 4 1 1 1 68 21.12%
Industrials 17 12 8 9 6 4 0 4 4 0 1 0 0 65 20.19%
Consumer Discret. 17 16 7 3 2 1 3 0 0 0 1 1 0 51 15.84%
Consumer Staples 10 6 4 2 2 0 0 1 1 2 1 1 1 31 9.63%
Materials 5 2 6 1 2 1 0 2 1 2 2 1 0 25 7.76%
Health Care 4 4 3 1 3 0 1 0 5 1 0 0 0 22 6.83%
Utilities 4 2 2 0 0 4 1 0 0 0 1 0 1 15 4.66%
IT 1 5 3 2 0 0 0 1 0 0 1 0 0 13 4.04%
Energy 3 2 0 1 0 2 2 1 0 0 0 1 0 12 3.73%
Telecomm. Services 2 1 1 2 0 1 2 1 0 0 1 1 0 12 3.73%
Real Estate 4 2 0 0 1 0 0 1 0 0 0 0 0 8 2.48%
All 82 62 40 28 22 19 17 13 12 9 9 6 3 322 100%
%C 25.46% 19.25% 12.42% 8.70% 6.83% 5.90% 5.28% 4.04% 3.73% 2.80% 2.80% 1.87% 0.93% 100%

This table lists both sectors and countries by decreasing numbers of companies which belong to the corresponding category. Approximately one third of the

companies in the sample are British, French, and German companies in Financials, Industrials, and Consumer Discretionary sectors. The last row and the

last column show the percentage of companies which belong to a particular country and sector respectively, as percentage of the total number of companies in

the sample.
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Figure 1.1: This picture clearly shows the noisy behavior of volatilities estimated with
the high-low range. This illustrative example plots Swedish Match volatility, but it is
representative of all other companies’ series.

We forecast stock volatilities, here computed as in Parkinson (1980) exploiting

intra-day information:

σ2
it =

(hit − lit)2

4 log 2
, (1.1)

where hit (lit) is the log of the high (low) price for company i at period t. Computing

volatilities as in equation (1.1) ensures to detect high volatility episodes that resolve

within the same day. For example, stock i could close at e100 at day t−1, spike up

at e105 during day t, and close at e101 at day t. A GARCH model would simply

use information stemming from the two closing days, i.e. it would use a e1 return,

thus missing the large additional e4 spike, something that Pearson’s method easily

captures. Finally, the fact that this method is model-free makes the competition

a fairer one. Indeed, it would not be surprising to find that a GARCH model

would outperform competitors in forecasting volatilities estimated themselves

with the same GARCH model. Figure 1.1 plots Swedish Match volatility as an

example. Volatility series for the other companies in our sample are qualitatively

very similar, but the reason why we choose to plot this particular company’s

volatility is because we will refer to it again in Section 1.4.1 when describing a

peculiar idiosyncratic event that precisely occurred to this company.

Alizadeh, Brandt and Diebold (2002) shows that log-range volatility estimates

are approximately normal. Even though we do not need normality for any of our

results to hold, the dependent variable we use is log σ2
it. In this way we adapt the

data to the linear model we use in order to better pin down regression parameters

and consequently connections between companies. Using σ2
it as dependent variable

could distort our results because of its highly skewed log-normal distribution.

8
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1.3 Model

1.3.1 General Setting

We assume the non-common movements in (log) volatilities to be governed by a

sparse VAR model. Barigozzi and Brownlees (2017) cites recent research which

provides evidence for stock volatilities to have a factor structure4. However, our

ultimate goal is to estimate a directed network of volatility connections that are

free from influences of common components. If we were to estimate a simple VAR

on this dataset, we would not be able to discern whether a given estimated link

would be the result of common factors co-movements, pairwise relationships, or

both. A possible venue that could overcome this issue would be to forecast the

de-factorized series, i.e. to estimate the model on the residuals obtained from a

static factor regression.

The problem with this approach is that de-factorization leads to a loss of

information, and it implicitly assumes that factors coefficients do not suffer from

over-fitting problems. However, we will later show that controlling for common

factors with an out-of-sample perspective greatly improves forecasting performance

as compared to merely controlling for them in-sample. This implies that by simply

de-factorizing the series we are likely to overstate the importance of common

factors. Moreover, forecast errors of a de-factorized series are hardly interpretable

from an economic point of view.

We solve those issues by augmenting each forecasting equation (where the

dependent variables are the non de-factorized series) with principal components.

Doing this ensures that any estimated connection between companies would only

stem from a pairwise relationship, because co-movements induced by common

factors would be captured by their corresponding coefficients.

Our framework is related to Barigozzi and Brownlees (2017) which addresses

the factor structure issue by de-factorizing the series with observed factors, whereas

we maintain the advantages of forecasting the original dataset and obtaining a

sparse network representation that is not influenced by common factors.

Similarly from Demirer et al. (2017) we recursively estimate elastic nets over

moving windows, but we use an entirely different estimation strategy which is

shown to perform best when compared to standard approaches. Elastic nets are

a general class of penalized regression models first developed in Zou and Hastie

(2005). The peculiar feature of those models is that they embed both Ridge

and Lasso regressions. In particular, the researcher has to define an elastic net

4See references in the cited paper.
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parameter α ∈ [0, 1] (see equations (1.6)-(1.7) below) which governs the equilibrium

between `2 (Ridge) and `1 (Lasso) regularization. While Ridge regression shrinks

parameters towards zero but assigns a non-zero coefficient to all the predictors,

Lasso shrinks parameters and potentially sets some of them to be exactly equal

to zero, thus producing a more interpretable model which only retains the most

relevant regressors.

Throughout our analysis we use two different window widths. The first, which

we call W , is the one we use for estimating coefficients in our FAVAR. The second,

which we denote by S, is a smoothing window which averages the most recent

out-of-sample performances of each one of the different tuning parameters in our

elastic net models. This averaging procedure is needed only when we use our

own Local Validation (LV) scheme, which we will explain in detail in Section

1.3.4. Standard Cross-Validation (CV) procedures have been originally thought

for cross-sectional settings and do not therefore average past periods performances.

Therefore, let’s define P ≡ W + 1LV · S (where the indicator function 1LV takes

value equal to one for models estimated with our LV scheme) and consider an

N -variable TVP-FAVAR(p):

Yt = µt + ΓtFt +

p∑
m=1

ΦmtYt−m + εt, t = P, . . . , T (1.2)

where Yt is N × 1, Γt is N × r, Ft is r× 1, Φmt is N ×N , and we do not impose

any distribution on εt. Equation (1.2) represents the system of equations we want

to estimate. Static factors are retrieved at each window s from the following

standard equation:

Ȳd = ΛsFd + νd, d = s− (W − p) + 1, . . . , s,

s = W, . . . , T,
(1.3)

where Ȳd is equal to centered (but not standardized) Yd, Λs is the N × r matrix

of window-specific (i.e. time-varying) factor loadings. We forecast the common

factors with a VAR(1), using the same observation weights wd as in the elastic

net regression5. Therefore, we regress

F∗e = AsF
∗
e−1 + ηe, e = s− (W − p) + 2, . . . , s,

s = W, . . . , T,
(1.4)

where F∗e =
√
we−s+W−p Fe, and As is r × r. Now, define

5See equations (1.6)-(1.8) later on in this section.

10



“Essays*on*Volatility*Networks*and*Uncertainty” — 2018/2/7 — 8:19 — page 11 — #25

• µsi the i-th element of µs scalar

• Bs = [Γs Φ1s . . .Φps] N × (r + p ·N)

• βsi the i-th column of B′s (r + p ·N)× 1

• ysi the i-th element of Ys scalar

• Xs =
[
F′s Y′s−1 . . .Y

′
s−p
]′

(r + p ·N)× 1

For each window s = P, . . . , T we then have

Yd = µs + BsXd + εd, d = s−W + p+ 1, . . . , s, (1.5)

and we estimate each of the equations in the system (1.5) with elastic nets,

allowing shrinkage to be company-specific. The reason for this last additional

complexity is intuitive. Indeed, it is very likely that in a given time period

some company is not experiencing any particular troubles, being therefore mainly

affected by common factors and auto-regressive components. This means that

its corresponding forecasting equation would need a relatively high parameters

constraint. On the other hand, there might well exist other companies that are

facing volatility storms, and their fragility might imply that their own volatility

is not just influenced by common and own components, but also by a handful

of other companies, which means those nodes would need a lower penalization

parameter. As a consequence, a unique tuning parameter would likely lead to too

high penalization for some companies and too low for others, undermining both

forecasting ability and the actual reliability of the resulting network representation.

We define s and i to be time and company indexes respectively, whereas

l ∈ {L, . . . , 1} indexes decreasing values of the penalization parameter λ, and L is

the grid size for λ6. Therefore, for each s ∈ {W, . . . , T}, for each i ∈ {1, . . . , N},
and for each l ∈ {L, . . . , 1} we estimate

(µ̂sil, β̂sil) = argmin
(µsil,βsil)

1

2

s∑
d=s−W
+p+1

wd(ydi − µsil − β′silXd)
2 + λsilPα(βsil)

 , (1.6)

where

Pα(βsil) = (1−α)
1

2
||βsil||2`2 +α||βsil||`1 =

r+p·N∑
j=1

[
1

2
(1− α)β2

silj + α|βsilj|
]
, (1.7)

6We follow Friedman, Hastie and Tibshirani (2010) in computing the grid of values.
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wd =
γs−d+1∑W−p
g=1 γg

, (1.8)

and where βsilj is the j-th element of βsil. Importantly, γ ∈ (0, 1] is the value we

use for the forgetting factor, which results in the exponential weights computed

as in equation (1.8). The exact functioning and choice of forgetting factors is

explained in detail in the next section.

Our baseline model is a Lasso, which means that we should set α = 1. However,

Friedman et al. (2010) warns that in the presence of two highly correlated and

relevant regressors the pure Lasso case tends to choose between one of the two,

i.e. it sets (without loss of generality) a zero coefficient on the first predictor,

while leaving the non-zero estimate only on the second one. This is undesirable,

because we ultimately want to obtain reliable estimates of volatility connections

between the companies we consider, and this behavior could potentially mute

some important links. Luckily, the authors state that one can side-step this issue

by estimating an elastic net with Lasso weight α = 1 − ε, where ε is small, so

we choose ε = 0.01. We then minimize the objective function in each iteration

with the fast coordinate descent algorithm developed in Friedman et al. (2010).

Finally, the network is computed by assigning a directed edge from variable (i.e.

company) i to variable j whenever the first Granger-causes the second.

1.3.2 Forgetting Factors: an Introduction

As anticipated, we introduce a new feature, that is we weight observations with

exponential decay as in equation (1.8). The reason why we do so is that equal

weights lead to overly rigid estimates that react too slowly to news. Forgetting

factors solve this problem by giving exponentially higher weight to the most recent

observations.

For example, if window width W = 400 and γ = 0.98 (as in our baseline case),

then observations 1-100, 101-200, 201-300, 301-350, 351-400 have a cumulative

weight of 0.2%, 1.5%, 11.5%, 23.16% and 63.6% respectively. Similarly, approxi-

mately the last 100 observations receive a weight which is higher than the one

they would obtain with equal weights (which would equal 0.25% in this case).

Moreover, the most recent observation receives a weight of approximately 2%,

which shows that thanks to forgetting factors we can use those relatively long

windows (i.e. more information) without compromising the flexibility we need in

our parameter estimates. Standard rolling windows would give the same weight

to all time periods.

Weighting observations in a non-uniform way also implies that some information

12
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Figure 1.2: Different values for the forgetting factor. Note that seemingly small
variations in the forgetting factor value lead to relevant changes in the amount (and
type) of information used. In the extreme case we present, when setting the forgetting
factor to 0.96, even if we are using a window length of 400 periods it is as if we were
using only the informational content of 49 observations.

is neglected. More specifically, it is as if we were using less observations. Kish

(1995) provides a formula to compute the effective sample size:

ET =

(∑T
t=1wt

)2

∑T
t=1 w

2
t

. (1.9)

Figure 1.2 plots weights for different levels of the forgetting factor, and displays

effective sample sizes for each value of γ. We can see that even if we are using a

window width of 400 days, the effective number of observations we use is equal to

99. Note that when γ = 1 we obtain the standard uniform weights case.

The idea of using forgetting factors comes from Koop and Korobilis (2013),

even though the way we use them is slightly different from their. Koop and

Korobilis (2013) makes explicit modeling assumptions, that is they assume every

parameter in their TVP-VAR to evolve as a random walk:

βt+1 = βt + ηt, ηt
iid∼ N (0,Ωt), (1.10)

where βt is the vector containing all the coefficients in the TVP-VAR at time

t, and it has dimension N(1 + pN) × 1. In their model, the forgetting factor

equally shrinks each value in a pre-estimator of Ωt towards zero through the

coefficient
(

1
γ
− 1
)

, which is less than one for reasonable values of γ. The authors

dynamically estimate γ using the grid {0.97, 0.98, 0.99, 1}. As a consequence, a

low value of γ leads the model to forget faster, and the converse is true for high

γs. In the limit, when γ = 1 the matrix Ωt has zeros everywhere, and all the
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coefficients become fixed. Therefore, the time-varyingness of their forgetting factor

serves to increase/decrease the instantaneous flexibility of their parameters.

For practical purposes, our forgetting factor is very similar to the one used in

Koop and Korobilis (2013), because we also have that past observations receive

a non-linearly lower weight in the estimate of each parameter7. However, we

do not make any assumption about parameters evolution, and our forgetting

factor does not control the underlying covariance matrix Ωt. Its task is simply

to always weight less observations far away from current ones. Even when γ is

fixed during the whole sample period (which is our baseline choice) data can

decide to let coefficients change more during certain periods and less during others.

Importantly, when γ = 1 (uniform weights) parameters do not stay fixed, even

though data could estimate negligible changes anyway.

1.3.3 Adaptive Forgetting Factors

In principle, it is possible to estimate γ at each time period from a grid of values.

We first do this and estimate the evolution of γ with the same local validation

algorithm we describe in Section 1.3.4.

Table 1.3 displays in-sample and out-of-sample results for both the adaptive

and the fixed forgetting factors cases. The first column is an average of the

in-sample MSEs, where the average is taken over both companies and time periods.

Similar considerations (with obviously different interpretations) are true for the

remaining columns. Out-of-sample R2 is the percentage improvement over the

out-of-sample MSE of a benchmark model, which in our case is a 400-days-long

time-varying mean. For ease of exposition, from here on we will refer to out-of-

sample MSE simply as MSE, whereas the in-sample counterpart will still be fully

specified. Notably, for all the sectors and individually for 84% of the companies

in the sample, the best γ is between 0.975 and 0.985. Moreover, one can see

that performance variation changes smoothly with γ. Those results illustrate that

better out-of-sample performance of models estimated with γ = 0.975, γ = 0.98,

or γ = 0.985 is not just a random average coincidence, but it is consistently

present for the great majority of the companies. For long enough sample sizes

which include significant periods of both calm and storm, we then suggest to use

γ = 0.98 as the preferred fixed forgetting factor choice.

7Whereas in Koop and Korobilis (2013) observations j periods in the past exactly receive a
weight equal to γj , in our framework this is not necessarily true. Indeed, given that we use rolling
windows of length W − p, all the observations more than W − p periods away get truncated and
receive zero weight. Therefore, in our case we can say that observations j periods in the past
receive a weight which is proportional to γj . This is clear by looking at equation (1.8).
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Table 1.3: Adaptive versus fixed forgetting factors

In-sample Out-of-sample In-sample Out-of-sample
MSE MSE R2 R2

Mean 1.0729 1.0788 0% 0%

Lasso(F̂F) 0.5258 0.7069 50.65% 33.96%
Lasso(0.96) 0.5794 0.7519 45.28% 29.56%
Lasso(0.965) 0.5635 0.7363 46.87% 31.08%
Lasso(0.97) 0.5485 0.7256 48.36% 32.14%
Lasso(0.975) 0.5345 0.7186 49.77% 32.83%
Lasso(0.98) 0.5232 0.7153 50.90% 33.17%
Lasso(0.985) 0.5233 0.7167 50.93% 33.06%
Lasso(0.99) 0.5573 0.7283 47.77% 31.99%
Lasso(0.995) 0.6412 0.7533 39.78% 29.64%
Lasso(1) 0.7065 0.7878 33.63% 26.43%

The first two columns report unconditional results, i.e. in-sample and out-of-sample MSEs

averaged over all companies and time periods. The third and fourth column list relative results,

that is averaged percentage decrease in MSEs as compared to the benchmark model, which we

label with “Mean”.

Estimating γ (Lasso(F̂F)) increases out-of-sample performance by a statistically

significant amount. When we compare MSEs resulting from a model estimated

with the adaptive forgetting factor and from one with our preferred fixed choice

(i.e. γ = 0.98) the Fluctuation Test proposed in Giacomini and Rossi (2010)

rejects the null hypothesis of equal forecasting performance at each time period

with a 95% confidence level. However, the economic significance of the additional

forecasting power is certainly questionable, since estimating the forgetting factor

increases out-of-sample R2 by a mere 0.79%. Moreover (as is made clear in Section

1.3.6) allowing γ to vary over time requires a much higher computational cost

due to the fact that the model has to be re-estimated for each value in the grid.

Therefore, we decide to lose a little forecasting power in exchange for much lower

computational costs, and stick to a model with fixed γ, which we set at 0.98.

For completeness of exposition, Figure 1.3 plots the estimates of the average

forgetting factor. Interestingly, it generally seems that γ lowers during turbulent

periods, and this is sensible since more flexibility is required in order to quickly pin

down abrupt parameters change. Furthermore, as an illustrative example, Figure

1.4 plots the dynamic estimates of the forgetting factor for British Petroleum. The

same reasoning we did above applies, and it does so in the idiosyncratic example

we provide, that is γ drops to the minimum allowed value in the months after the

Deepwater Horizon oil spill, which can safely be considered the worse shock the
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Figure 1.3: This figure averages forgetting factors estimates for all companies. The
picture shows a general tendency to use less information during periods where systematic
volatility is high. Moreover, the average γ almost always fluctuates inside the interval
0.975-0.985, meaning that apart from isolated, idiosyncratic, and temporary cases,
this forgetting factor bandwidth contains optimal values for the great majority of the
companies.
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Figure 1.4: British Petroleum forgetting factor: the series fluctuates around 0.98, and
reaches its minimum immediately after the disastrous oil spill whose company has been
responsible for. Note that uniform weights (i.e. standard rolling windows) are optimal
only for a small portion (approximately 10 months) of the sample length.
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company had to bear. Finally, apart from a small time span, uniform weights are

never the optimal choice.

A similar result is found for all the other companies in our dataset. The fact

that using γ < 1 is always better than using γ = 1 is an important result because

it means that always using more data is never the best thing to do. In this time

series setting, this means that if we had (e.g.) 100 years of data we would not

obtain better forecasting performance, and the opposite would be true. The reason

is that parameters are changing, namely we do not want to average the values for

the coefficients over too many observations, but we rather prefer to have a local

perspective. In other words, T →∞ is not what we aim to.

1.3.4 Validation

As we said, the tuning parameter λ is chosen for each variable and at each point in

time, allowing shrinkage to change over time. The most common way to estimate

λ is through k-fold Cross-Validation. However, applying CV to time series data is

known to be problematic because of time dependency between errors. Bergmeir,

Hyndman and Koo (2015) shows that CV is still the optimal validation scheme

only in the purely auto-regressive case. In the same paper, the authors cite the

most relevant contributions where alternative CV methods have been developed

for dependent data8.

Far from being exclusively auto-regressive, our model is a good candidate for

CV not to perform well, and when applying 10-fold CV on our TVP-FAVAR we

indeed obtain unsatisfactory results: for some periods and for some companies

we frequently observe over-fitting issues, where (in the Lasso specification) CV

selects about 50 (out of 322) “relevant” regressors.

The over-fitting problem is very likely caused by time-varying data depen-

dencies. For example, there might be a large number of cases where the test set

contains observations that are best forecasted with low (high) shrinkage, whereas

the training set might need a higher (lower) shrinkage. This is unlikely to happen

systematically with independent data. Furthermore, CV almost surely selects

training and test sets that contain non-consecutive observations, further decreasing

the effectiveness of the penalization parameter choice. Those issues can contribute

to strongly impair the overall ability to select the best tuning parameter at each

window. One might then prefer to allow only the last observations to belong to

the validation set, and all the previous ones to form the training set.

8We do not report those methods here and we refer to the references in the paper for a list
of the relevant articles.
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We then propose a local validation scheme, and later in the paper we show

that it always outperforms CV. Crucially, LV is up to 50 times faster than 10-fold

CV since the model has to be estimated only once.

More specifically, our methodology imposes the validation for λ to be local on

a window of the S most recent observations. This can be achieved by the following

steps9:

1. Set the final period of the first window to be s = W 10;

2. At time t = s+ (1s>W ·S), for a given decreasing sequence {λl}l=L1 , estimate

elastic nets with a window length W − p and produce a forecast yt+1|t,l ∀l;

3. Move to t = s+ (1s>W · S) + 1 and repeat step 2 in a similar way. Compute

one-step-ahead MSEs ∀l as

MSEt,l = (yt − yt|t−1,l)
2;

4. Repeat step 3 S times, until t = s+ S is reached;

5. Compute average MSE over the past S periods and ∀l as

MSEt,l =
1

S

S∑
k=1

MSEt−k+1,l;

6. Choose the tuning parameter11 λl that minimizes average MSE:

λ̂t = λz|MSEt,z = min
l∈{1,...,L}

MSEt,l;

7. Set s = s+ 1 and repeat steps 2,3,5 and 6;

8. Repeat step 7 until the final period s = T is reached.

Intuitively, at every period the algorithm estimates L models on a wide spectrum

of penalization parameters, and forecasts the relevant variable with the model that

performed best on average in the previous S days. Each model is re-estimated

9For ease of exposition we omit the i subscript, but the following algorithm has to be thought
of as being separately applied for each company i ∈ {1, . . . , N}.

10This is the first period where coefficients estimates for each value of the tuning parameter
can be retrieved. We will later see that the actual first usable estimates of the TVP-FAVAR
parameters become available at time t = W + S.

11Note that in the formula to come the subscript in λ̂ is a time subscript, whereas the one in
λ refers to the grid position of the penalization parameter.
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at every window on the same set of tuning parameters, and the optimal tuning

parameter choice is updated accordingly.

We can then see that this algorithm turns out to be well suited for our model,

because it lets λ to adapt based on past information, something that is desirable

in a time-varying-parameters framework. Choosing a single tuning parameter for

all time periods would have likely led to worse forecasting performance, and to a

misleading dynamic representation of the network.

The reason why we use the average MSE to choose λ is because we want to

smooth forecasting performances at each period. Given that we have to choose

one parameter out of L = 100 possible ones (our baseline choice for L), we want

to reduce as much as possible the probability of selecting one whose best very

recent performance is simply the outcome of pure randomness. Therefore, we

decide to average out-of-sample performance over S = 400 days. The (additional)

reason why we can set S to be very high is because we have a lot of data, that is

we can throw away the first W + S = 800 observations (our baseline choice) and

still have a very interesting dataset to forecast. If we had had a smaller dataset

(which would have been the case with macroeconomic applications) smoothing

the estimates of the penalization parameters would have been more problematic

and it very likely would not have led to the large performance improvements we

observe in our setting.

1.3.5 Common Factors

Given that we use a fixed window width, Bai and Ng (2006) condition
(√

T
N
→ 0

)
approximately applies and factors can be treated as if they were observed. This

ensures that the common factors we use are not contaminated by estimation

error, something that would undermine our ability to correctly separate common

movements from idiosyncratic ones. The forecasting performance of our baseline

TVP-FAVAR as compared to the corresponding TVP-VAR is the same, and we

interpret this result as evidence of the fact that estimated factors are as good as

observed ones in our framework.

The first decision we have to make is how many factors to select. Andersen,

Bollerslev, Diebold and Ebens (2001) and Luciani and Veredas (2011) decisively

point towards a simple factor structure. Also, as Barigozzi, Brownlees, Gallo and

Veredas (2014) suggests, overall volatility is likely to be the result of idiosyncratic

volatility fluctuating around a systematic volatility component. The authors model

the systematic component as a smoothly evolving trend, and find that it peaks

during global turmoils such as the dot-com bubble or Lehman bankruptcy. In this
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Figure 1.5: In this particular setting, the first principal component can be safely
interpreted as the non-smoothed systematic volatility component. This figure plots the
first common factor estimated on the full sample length, whereas in our analysis we
re-estimate it on each specific window.

way, the single common factor underlying all volatility series is an approximate

average volatility level that smooths out idiosyncrasies caused by individual

companies. Therefore, it is easily understood that this trend is strongly related

to the general underlying economic and financial forces around the periods one

is analyzing. We then decide to follow this literature and we set the number of

factors to be fixed at r = 1 throughout the whole sample period. Interestingly,

we find that the standardized first principal component estimated over the whole

sample is virtually the same as the standardized simple average of all the series

(log-volatilities) we use to estimate the common factors. The correlation between

the two series is indeed equal to 1 up to numerical error. Figure 1.5 illustratively

plots the first principal component, and one can see significant peaks during (e.g.)

Lehman collapse, but also during Greek, Italian, and Spanish sovereign debt crises.

The second fundamental reason why we decide to shrink coefficients on common

factors is because computing principal components is an unsupervised procedure.

Shrinking the coefficients is a simple way to supervise the common factors and

possibly gain better out-of-sample performance, which we will show is our case.

In some way, our approach is similar to the semi-supervised strategy proposed in
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Bair, Hastie, Debashish and Tibshirani (2006), with a methodological difference.

Whereas in Bair et al. (2006) principal components are supervised before they are

computed, we first estimate them in the classic unsupervised fashion on the whole

dataset and supervise the one we use by shrinking its coefficient differently for

each company in each equation we estimate. Importantly, this supervision would

not have been possible had we just got rid of common factors before running the

forecasting regressions.

Controlling for common factors and using forgetting factors at the same time

in our TVP-FAVAR raises a further issue. Indeed, recall that the only reason

why we add principal components in our equations is because we want to get

rid of the effect of common movements at each time period, and we want to do

this in the same way for each observation in the window at hand. If we were

to apply forgetting factors also to common factors, we would not be controlling

for them in the uniform way we want. Intuitively, the most distant observations

would control for common factors with exponentially lower strength. This would

yield a non reliable network representation, because common and idiosyncratic

effects would be confounded. Therefore, we need to apply uniform weights on each

common factor observation, whereas we want to apply forgetting factors to the

rest of predictors. Note that uniformly weighting common factors and applying

exponential weights to the other regressors is equivalent to first de-factorizing

the series (as Barigozzi and Brownlees (2017) does) and then applying forgetting

factors to the residuals.

First, let’s assume we want to do this on a simple OLS regression. Let’s then

suppose we want to estimate

Y = Xβ + ε (1.11)

with weighted OLS, where12 Y is T ×1, X = [F R] is T × (r+K), F is T × r, R

is T ×K and β is (r+K)× 1. Now, define a T ×T diagonal weighting matrix W

with elements wt on the diagonal (t = 1, . . . , T ), and compute Wc = chol(W) such

that13 W′
cWc = W. Weighted OLS is then computed by regressing Y∗ = WcY

on X∗ = WcX. Therefore, we have:

β̂ = (X∗′X∗)−1X∗′Y∗

= (X′W′
cWcX)−1X′W′

cWcY

= (X′WX)−1X′WY

(1.12)

12In this particular example, notation has to be understood as being independent from the
one we use throughout the rest of the paper, and is intended for illustrative purposes only.

13In a diagonal matrix, Cholesky factorization is tantamount to taking the square root of each
diagonal element in the matrix.
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Now, suppose that we want to apply weights only to the matrix R but not to

the matrix F. The solution is as simple as regressing Y∗ on X̃ = [F R∗], where

R∗ = WcR. Therefore, we have that

β̂ =
(
X̃′X̃

)−1

X̃′Y∗

=

([
F′

R′W′
c

] [
F WcR

])−1 [
F′

R′W′
c

]
WcY

=


[

F′F F′WcR

R′W′
cF R′WR

]
︸ ︷︷ ︸

≡A


−1 [

F′WcY

R′WY

]
︸ ︷︷ ︸

≡B

(1.13)

Intuitively, weighted OLS does two things: i) It gives relatively more importance

to values of the regressors that have higher weight. This is apparent when looking

at the bottom-right block of matrix A in equation (1.13), where the covariance

matrix R′R is weighted with the matrix W. On the other hand, we can see that

W does not appear in the top-left block of matrix A, the reason being that we

do not want to apply any weight on F; ii) It gives relatively more importance to

values of the dependent variable that have higher weight. This can be seen in

both blocks of matrix B in equation (1.13), with a simple difference. Indeed, since

we only want to weight Y, the vector F′Y is only partially weighted, that is we

simply pre-multiply Y with Wc. This is not the case in the bottom block, where

the vector R′Y is weighted with the whole matrix W.

We reach a qualitatively similar result estimating the model with elastic nets,

which (theoretically speaking) are simply a generalization of OLS regression. In

particular, when the tuning parameter is equal to zero and X has full column

rank, then the coefficients computed with elastic net are the same as the ones

we find with least squares, which implies that the intuition provided by OLS is

valid for elastic nets as well. Crucially, this parallelism holds true in the elastic

net case also when the penalization parameter is positive and when X has not

full column rank, as is (e.g.) the case in the high dimensional frameworks where

elastic nets are frequently used. The only difference will lie in the actual estimates

of the regression coefficients.

1.3.6 Computational Details and Speed Improvements

The fast coordinate descent algorithm we use exploits warm starts to obtain the

optimal coefficients values much more efficiently and consequently faster than older
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methods. Nonetheless, recall that we have to run this model for each company

and for each time period. Therefore, even though a single model is solved very

quickly (hundredth of seconds) we have to solve N · (T −W ) = 1, 128, 610 models.

This is the case with our (much faster) LV scheme. If we run the model with

10-fold CV we have to multiply the previous number by 10 (the number of folds)

because the model is re-estimated at each fold, making the process even slower.

Running various specifications of the model (required whenever one is interested

in dynamically estimating the forgetting factor, or when we want to compare

out-of-sample performances, as is our case) can then quickly lead to prohibitive

computational times, and this is especially true for the specifications where we

use 10-fold CV.

The only advantage of CV over our LV scheme is that CV is parallelizable.

The way we program LV is such that we do not store coefficients at each point

in time and for each of the 100 values of the tuning parameter. This option is

feasible in theory and would allow to make LV parallelizable, but it is unfeasible

in practice due to the then unreasonable memory requirements. The only feasible

way to parallelize it would then be to use swap space, but this solution would

surely wipe out the benefits of parallelization due to virtual memory I/O activity

being extremely slow. Finally, running a single CV specification on one core takes

between two and three weeks, making this not a feasible option.

Given all these considerations we parallelize only the CV specifications, and in

order to obtain the results in reasonable times we use a large machine (128GB

RAM) and we parallelize CV loops over 14 cores. This is the only way that

allows to scale down CV estimation times to make them close to LV times, which

nonetheless require much less computational power, being able to run on a single

core with less than 8GB RAM.

In order to reduce the communication between workers and possibly gain

further speed, we perform the parallelization over blocks of time periods, where we

choose the size of each block to be equal to bT−W
15·nc c = 16 periods, where nc = 14 is

the number of cores we use. Eventually, depending on the actual model, we need

between 10 and 25 hours to have the results for only one specification.

In principle, we could use previous period parameter values as warm starts for

next period coefficients. However, we would then have to abandon the standard

warm starts computed with Friedman et al. (2010) algorithm, and it is not clear a

priori that this alternative solution would be faster, especially in a rapidly changing

environment like the one we are considering, where parameters can potentially

change significantly from one day to the other. The authors themselves state that

solving the model with their warm starts is as fast as running the single OLS
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counterpart for that model. Therefore, with a large enough grid of values for the

tuning parameter (we use 100 values) using the standard algorithm should be

enough to yield the solution in the fastest way.

1.4 Results

1.4.1 Network

Our network has N(N−1) = 103, 362 potential links at each point in time, and the

total number of estimated links ranges between 500 and 3,500, implying that the

network density fluctuates between 0.5% and 3.4% approximately. Interestingly,

the portion of links that change status (i.e. links that become active at time t when

they were inactive at time (t− 1), and viceversa) is approximately equal to 30% of

the total number of links at each point in time. This number is useful because it

shows how stable connections are, and in turn how much one can look at network

structure today to assess what are likely to be the connected links tomorrow. On

average, 70% of the connections that are active/inactive at time t turn out to be

in the same status also at time t+ 1, meaning that our network structure can be

well predicted in the short term. As we anticipated, the forecasting performance of

our TVP-FAVAR as opposed to the TVP-VAR counterpart are the same, but we

find that the network density is significantly lower in the first case. In particular,

we find almost 10% (on average) less connections than the baseline case, and

this result corroborates the usefulness and effectiveness of controlling for common

factors. Moreover, correlation between the two average degrees is equal to 0.985,

meaning that the two series have (to all practical purposes) the same time profile,

but at every period our model correctly gets rid of a roughly constant amount of

spurious connections.

Figures 1.6-1.7 show how the network structure has evolved historically over

time. Recall that our network is directed, thus we both have in-degree and out-

degree distributions at each point in time. The metrics we use to summarize

the structure are the average, standard deviation, and skewness of the degree

distributions. Importantly, the average in-degree and the average out-degree are

equivalent, so we will simply refer to them as the average (or mean) degree. As we

can see, the mean degree spikes up especially during the 2008 financial crisis and

the European sovereign debt crises. Note that those spikes did not necessarily need

to be so pronounced, because we already are taking into account the systematic

volatility by augmenting the forecasting equations with the common factor. In

other words, if systematic events would affect every company through the common
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Table 1.4: Degree distributions: correlation between main metrics

AD SDID SDOD SKID SKOD

Average degree AD 1 0.86 0.85 -0.72 -0.03
Std. dev. in-degree SDID 1 0.58 -0.49 -0.19
Std. dev. out-degree SDOD 1 -0.76 0.35
Skewness in-degree SKID 1 -0.26
Skewness out-degree SKOD 1

The table shows full-sample correlations between the first three moments of the in-degree and

out-degree distributions. The only metric that seems to fluctuate independently is the skewness

of the out-degree distribution, whereas all the other measures are strongly related between each

others.

components alone, we would obtain that the average degree time path would

entirely be independent of systematic events, exactly because we are controlling

for them. The fact that we still see a positive correlation between the average

degree and the occurrence of crises episodes is interesting because it means that

crises periods tend to awake additional non-systematic connections that would

have likely stayed dormant otherwise.

Furthermore, we find that the shape of the degree distributions tend to move

with an approximately fixed scheme. Indeed, the standard deviation of both the

in-degree and the out-degree distribution is very positively correlated with the

average degree. The same is true (with negative correlation) for the skewness

of the in-degree distribution, but not for the out-degree distribution one. Those

patterns imply that during tranquil times the network structure tends to have very

few connections in the great majority of nodes. On the other hand, turbulent times

activate and spread out connections. For what concern in-degree distribution,

those connections are scattered in a relatively regular way, meaning that we have

many nodes with both a relatively high and low number of in and out connections.

We can be sure of this because of the fact that skewness tends to approach zero

during those times, thus ensuring that standard deviation is not increasing simply

because of a few extremely highly in-connected nodes. This means that a relatively

high number of companies are fragile to turmoils, because their volatilities really

seem to be affected by a higher number of other companies’ volatilities. On the

other hand, connections in the out-degree distribution tend to be concentrated in

a small (but varying) set of companies constantly during the whole sample period.

Indeed, even though skewness is completely unrelated with the average degree, it is

constantly high and positive (much more than the in-degree counterpart) implying
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that there always are an extremely low number of nodes that are very central and

affect an extraordinarily high number of companies at each time period. Table 1.4

summarizes the existing correlations we cited between the metrics of the in and

out-degree distributions.

Our TVP-FAVAR (as opposed to the TVP-VAR) can also answer questions

regarding the nature of certain events. For instance, one could be interested in

knowing whether a given key event has been simply systematic to the companies

in the network. In our setting, a purely systematic event for company i is an event

that does not increase company i’s in-degree, the reason being that the systematic

part is captured by the common factor coefficient. Crucially, note that a given

event can happen to be systematic for company i but not for company j, and (as

we will show and explain in the next paragraphs) this is indeed what occurs in

our network during certain periods.

Table 1.5 ranks companies by their out-degree during three different days.

The first is September 15th, 2008, when Lehman Brothers went bankrupt. As we

can see from the average degree plots (e.g. Figure 1.7), tensions were steadily

mounting since at least the very beginning of 2007, although bad news from the

US housing market already became a serious issue weeks before. During this

stressed period we see a sharp increase in the average degree, which went from 1.5

to approximately 5 immediately before Lehman crash. At the onset of the financial

panic (top panel of Table 1.5) we have a starting point of no significant higher

out-degree centrality from financial sector companies. Indeed, even though we see

two big insurance companies among the top three out-degreeing ones, the network

structure was still relatively homogeneous as what regards sectoral distribution.

However, starting from the very day after we observe an incredibly pronounced

spike in overall average degree (again, see Figure 1.7), and this suggests that

to most European companies the ongoing turbulence was not just systematic.

After ten days from the announcement (middle panel in Table 1.5), when panic

was widespread, the network structure had significantly changed: as we said,

out-degree generally spiked up, and financial companies started to be more central,

until some day later (October 10th, 2008, lower panel of Table 1.5) out-degrees

reached unprecedented levels and the five most central companies all belonged to

the financial sector.

Looking at the reaction of the network structure after Lehman bankruptcy, it

really seems that there were some companies for which that event was not purely

systematic, and this can be inferred simply looking at the violent upward reaction

of average degree, which went from 4 to more than 8 connections in very few

days. If Lehman crash would have been totally systematic to the companies in
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Table 1.5: Most important nodes, before and after Lehman crash

September 15th, 2008
Out Rank Out-degree In Rank In-degree Sector

Imperial Brands 1 46 107 5 Cons Stapl
Ageas 2 42 107 5 Financials
Helvetia Holding 3 39 49 9 Financials
Endesa 4 34 148 3 Utilities
Orpea 5 32 220 0 Health Care
Saipem 6 29 107 5 Energy
DNB 7 23 148 3 Financials
Hexagon B 7 23 10 16 IT
Norsk Hydro 9 20 148 3 Materials
Repsol 9 20 86 6 Energy

September 25th, 2008
Out Rank Out-degree In Rank In-degree Sector

Imperial Brands 1 75 115 7 Cons Stapl
Helvetia Holding 2 74 96 8 Financials
Ageas 3 71 220 2 Financials
DNB 4 54 157 5 Financials
Lundin Petroleum 5 46 220 2 Energy
Saipem 6 39 157 5 Energy
Norsk Hydro 7 38 175 4 Materials
Lloyds Banking Group 8 37 40 12 Financials
Endesa 9 36 40 12 Utilities
Pearson 9 36 255 0 Cons Discr

October 10th, 2008
Out Rank Out-degree In Rank In-degree Sector

DNB 1 129 228 5 Financials
Helvetia Holding 2 123 107 10 Financials
Deutsche Bank 3 85 206 6 Financials
Baloise 4 80 206 6 Financials
Ageas 5 75 278 0 Financials
Saipem 6 63 91 11 Energy
SAP 7 59 248 4 IT
Sulzer 7 59 179 7 Industrials
Volkswagen 9 55 206 6 Cons Discr
Commerzbank 10 50 134 9 Financials

Apart from the standard network interpretation, in-degrees and out-degrees also have a statistical

meaning in our model. For every company i, its in-degree represents the number of non-

common/non-auto-regressive variables that forecast company i volatility, whereas company i

out-degree is the number of variables Granger-caused by the company.
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our network, we would have seen no increase in the average degree. Moreover, the

additional in-connections particularly stem from the kind of companies that are

most related to the systematic event we are considering, that is they mainly come

from some of the companies in the financial sector, and this can be seen from the

rapid increase in out-degree in the financial companies that appear in Table 1.5,

which means that banks and insurance companies started to effectively forecast

many other volatilities in the network. On the contrary, the very same event

happened to be entirely systematic for those very central financial companies.

Indeed, in a period where average degree more than doubled, Table 1.5 shows

that the in-degree of the most central financial companies either stayed stable or

went down in the aftermath of the financial panic, and the low in-degree rankings

confirm that those companies were among the ones that were mainly affected by

the common component. Importantly, those results are not general in the financial

sector, but we found them only in the companies that were most central during the

very turbulent period following Lehman bankruptcy. Indeed, Figure 1.10 shows

(as an example) that Spanish bank BBVA started to suddenly be affected by a

considerable amount of other companies’ volatilities in the aftermath of Lehman

crash.

As an individual and not necessarily representative example, let’s look at how

BBVA network position evolved during the sovereign debt crisis. Remember that

Spain public debt and banking sector crisis exploded at the end of 2011 and

reached its peak in July 2012, just before Draghi’s “Whatever it takes” and the

activation of 41 billion euros ESM bailout programme for Spanish banks. Again,

our TVP-FAVAR reveals that the unfolding of the debt crisis was something

more than simply systematic to BBVA, that is a few network connections played

an additional role in determining BBVA volatility, as confirmed in Figure 1.10.

Generally speaking, both the 2008 financial panic and the sovereign debt crises

really seem not to be just systematic for the majority of the companies in the

network.

We now want to provide two examples on completely idiosyncratic events

that occurred to two of the companies in our sample, that is Swedish Match and

British Petroleum (BP). Swedish Match is the only listed European manufacturer

of smokeless tobacco products. However, snus and moisting snuff are banned in

the EU since 1992, meaning that this law prevented Swedish Match to access

the potentially enormous EU market during all our sample period. On July

14th, 2011, the Swedish Government directly sent an official (public) letter to EU

Commissioners, lobbying for lifting the ban. Figure 1.8 shows that immediately

after this letter was sent Swedish Match betweenness spiked to unprecedented
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Figure 1.6: In-degree distribution. Note that not only the number of connections vary
over time, but also their composition (as measured by second and third moments) does,
and they all change together with volatility regimes.

levels and the company started to be the most central node in our network. We

can now refer to Figure 1.1 again. It is noteworthy to see that Swedish Match

volatility did not spike in the days surrounding the lobbying activity, that is

nothing can be inferred by simply looking at volatility for this company. However,

our model records Swedish Match to have the overall (i.e. considering all the

companies in our sample) largest historical individual centrality metrics in the

days following the publication of the letter. This result shows how powerful our

model is in extracting key information from the very noisy large dataset we are

considering.

A similar behavior is observed for British Petroleum (Figure 1.9) promptly

after the Deepwater Horizon oil spill on April 20th, 2010. After this catastrophic

event BP starts to effectively forecast 55 companies’ volatilities out of the average

5-6 it was forecasting beforehand. The examples reported above are meant to be

illustrative only, and we could have added many more which are equally interesting.

However, in the interest of brevity, we do not report them here but we leave them

available on request.
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Figure 1.7: Out-degree distribution. The considerably high standard deviation and con-
stantly positive skewness reveal that the out-degree distribution is mainly characterized
by a few very central companies affecting the others.
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Figure 1.8: Swedish Match Betweenness. Betweenness is a network metrics that equals
the overall number of shortest paths that pass through the company under consideration.
A shortest path between two companies is the smallest set of edges that connects the
two nodes.
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Figure 1.9: British Petroleum Out-degree. Note that after the highlighted event
out-degree greatly exceeds both the overall average and the average out-degree of the
sector to which the company belongs to, that is the Energy sector.
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Figure 1.10: BBVA In-degree. Prior to the advent of the financial crisis, BBVA were
mainly not influenced by other companies, but the situation drastically changes in
correspondence with Lehman failure and the sovereign debt crises, which expose the
bank to external idiosyncratic shocks.
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Table 1.6: In-sample and out-of-sample results, TVP-FAVAR

In-sample Out-of-sample In-sample Out-of-sample
MSE MSE R2 R2

Mean 1.0792 1.0851 0% 0%

Lasso(LV,FF,SF) 0.5591 0.7457 48.11% 31.00%
Lasso(LV,FF,CF) 0.5431 0.7589 49.59% 29.75%
Lasso(CV,FF,CF) 0.4918 0.7887 54.22% 26.89%
Lasso(CV,FF,SF) 0.4581 0.7910 57.42% 26.63%
Lasso(LV,UW,SF) 0.7276 0.8124 32.17% 24.79%
Lasso(CV,UW,SF) 0.5644 0.8855 47.83% 17.87%
Lasso(LV,UW,CF) 0.6037 0.9035 44.12% 16.28%
Lasso(CV,UW,CF) 0.5695 0.9569 47.36% 11.22%

Ridge(LV,FF,SF) 0.5077 0.7322 52.78% 32.26%
PC 0.6764 0.8056 37.82% 25.95%
AR 0.8050 0.8150 25.08% 24.56%

Lasso models are ranked by out-of-sample R2. Our baseline model is the best performing one,

and the same is true when we estimate the same system of equations with Ridge regressions.

For practical purposes, we only report Ridge results obtained when estimating the model with

our novel features, whereas we omit the other specifications.

1.4.2 Forecasting

Table 1.6 displays our (average) forecasting results. The benchmark model is a

time-varying average (denoted as Mean), which is the optimal forecast in case no

additional information helps in better predicting the dependent variables. Our

baseline model (denoted as Lasso(LV,FF,SF)) is a Lasso with window length

W = 400, smoothing window S = 400, number of lags p = 1, forgetting factor

γ = 0.98, and r = 1 principal component. The competing models are an AR(1) and

principal components (PC) with one factor estimated at each window. Importantly,

we also estimate every combination of Lasso models with our local validation

scheme or 10-fold Cross-Validation, forgetting factors (FF) or uniform weights

(UW), non-shrinked common factors (CF) or shrinked common factors (SF), with

the purpose of better appreciating which feature improves the most out-of-sample

performance in each situation. We rank the eight possible specifications with

decreasing values of out-of-sample R2.

Before commenting the main results we find, note that we also report results for

Ridge regression estimated with the same specifications as our baseline Lasso model.

One can see that out-of-sample performance is slightly better in Ridge as compared
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to Lasso. Nonetheless, we are confident that Lasso is a superior alternative to

Ridge in computing the connections we are interested in. Indeed, the problem with

Ridge is that it shrinks coefficients roughly by the same proportion. Therefore,

explanatory power is distributed among all the coefficients in similar ways, and no

coefficient will be exactly set to zero. On the other hand, Lasso shrinks coefficients

approximately by the same amount κ, where the exact value of κ depends on

the actual data and on the penalization parameter. All the coefficients that are

less than κ in absolute value are set to zero (soft thresholding). This means that

variables that are not helpful enough in predicting the outcome of interest are

simply discarded. This is very useful in our setting, because it might well be

that company i and company j are very weakly connected after controlling for all

the other predictors, but this connection could well be economically insignificant.

Lasso helps exactly in this respect, i.e. it gets rid of connections that are indeed

insignificant, something that Ridge regression is not able to achieve by construction.

Again, we therefore exchange very little forecasting power with a considerably

more interpretable and insightful model.

Let’s now go back to the general results we list in Table 1.6. In general,

both baseline and competing models are able to explain and predict a significant

additional portion of the data as compared to a simple time-varying mean.

Remarkably, and except for Ridge regression which performs very slightly

better, our baseline (Lasso(LV,FF,SF)) is the best forecasting model, with an

out-of-sample R2 equal to 31.00%. Importantly, the model where we do not

use any of our contributions (i.e. Lasso(CV,UW,CF)) is the worst performing

one, with an out-of-sample R2 equal to 11.22%. We want to stress how large

this difference is, especially taking into account the fact that those numbers are

averaged over a very large number of companies (322) and time periods (3105).

This means that this result is systematically present and is not simply a one-time

unlikely coincidence. The enormous difference in performances seems to be mainly

due to the use of FF, although also LV and the fact that we are supervising

the factors play a significant role in improving results. On average, applying

forgetting factors increases forecasting performance by 11.03%, whereas validating

the tuning parameter locally and shrinking common factors contribute 4.80% and

4.04% respectively (on average). Therefore, we can see that without LV, FF, and

non-weighted factors supervision, Lasso would not be competitive as compared to

AR and PC, and with a great gap in performance. It is only applying our features

that we can significantly beat competing models.

Again, Table 1.6 demonstrates that our model not only forecasts better,

but it also explains a significantly higher portion of the variation as compared
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Table 1.7: In-sample and out-of-sample results, baseline model, sectoral disaggregation

In-sample Out-of-sample In-sample Out-of-sample
MSE MSE R2 R2

Financials 0.5498 0.7549 54.35% 37.40%
Real Estate 0.5505 0.7172 48.67% 33.50%
Materials 0.5369 0.7194 49.42% 32.46%
Energy 0.5314 0.7170 49.55% 32.25%
Consumer Discret. 0.5544 0.7351 47.89% 31.03%
All sectors 0.5591 0.7457 48.11% 31.00%
Utilities 0.5364 0.7012 46.24% 30.39%
Industrials 0.5566 0.7484 47.40% 29.44%
Telecom Services 0.5252 0.7034 46.85% 29.13%
IT 0.5425 0.7303 47.08% 29.08%
Consumer Staples 0.5716 0.7407 42.31% 25.28%
Health Care 0.6762 0.8598 39.74% 23.17%

The above results are disaggregated by sector, where each of them has different benchmark

results. This explains why ranking sectors by out-of-sample R2 (a relative measure) leads to a

different ordering than the one obtained by ranking sectors by out-of-sample MSE (an absolute

measure).

to competing PC and AR models. Moreover, the problems of estimating the

model with CV are evident, because while in-sample performance is on average

significantly higher as compared to the one of models estimated with LV, the

reverse is true regarding out-of-sample results. This clearly suggests that the

worries we raised in Section 1.3.4 are confirmed, and that CV suffers from an

over-fitting problem in our framework.

Table 1.7 displays baseline results by sector, ranked by out-of-sample R2.

Financials and Real Estate are the sectors that perform significantly better than

average, whereas Consumer Staples and Health Care are the ones where relative

performance is worse. However, remember that our definition of out-of-sample R2

is the percentage decrease in out-of-sample MSE as compared to a time-varying

mean, and this mean is of course specific to each company. Therefore, in this case

the ranking orders the sectors starting from the ones whose baseline improves the

most over their respective benchmark models to the ones that improve the least. In

absolute terms, the most predictable sectors are Utilities and Telecommunication

Services, and this can be seen by looking at the out MSE column.

The results reported in Tables 1.6-1.7 are averaged over the whole sample

length. However, our interest also focuses on possible time-variation in the relative

forecasting performances of different models. Therefore, we apply the Fluctuation
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Test as developed in Giacomini and Rossi (2010) to check whether there are clear

occurrences that some model forecasts better than others during certain periods.

In each of Figures 1.11-1.15, the top panel plots the (300-days) average rolling

difference between model 1 and model 2 (in this order) MSEs averaged over all

the N companies in our sample. The bottom panel is the same as the top one,

but the MSEs differences are now standardized as in Giacomini and Rossi (2010),

meaning that the resulting series is the day-by-day test statistic that we compare

against the constant 95% two-sided critical values (the two black dashed lines).

The actual figures for the critical values are not only determined by the confidence

level, but also (using the authors’ notation) by m, the number of time periods we

use to smooth the loss differences, and by P , that is the number of periods where

MSEs are available. Specifically, the critical values are an implicit function of

µ = m
P

= 300
3105

= 0.0967 ≈ 0.1 in our case. At any given period, if the test statistic

is higher than the top critical value it means that out-of-sample performance of

model 1 has been significantly worse than that of model 2 during the last 300

days. The converse is true when the test statistic is lower than the bottom critical

value. Whenever the test statistic lies in the middle, it means that (on average)

no statistically significant difference has been detected in that time span.

Figure 1.11 shows that Lasso is always performing better than AR (red bands

are 95% confidence intervals), and this is true in particular during the financial

panic and the European sovereign debt crisis. The reason for this might be that

our multivariate models absorb spillovers faster than AR models which needs

more time to adapt to quick and sudden breaks. Figure 1.12 highlights a similar

result for PC regression. However, note that we do not see a spike in the relative

performance during the crisis, and this could be a corroboration of our previous

statement, i.e. that multivariate models capture spillovers in a more timely manner

than AR models. Figures 1.13-1.15 demonstrate that each of the features we add

individually improve out-of-sample performance consistently over time.

1.5 Concluding Remarks

In this paper we forecast the volatility panel of the FTSE Developed Europe Index

constituents and we exploit the resulting forecasting relationships to compute a

time-varying directed volatility network. We estimate volatilities in a model-free

way, something that makes the forecast competition challenging, and we organize

data as in a TVP-FAVAR, estimating it equation by equation for each time period

with elastic nets. Controlling for common factors is crucial to be able to separate
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Figure 1.11: AR versus Lasso(LV,FF,SF): our baseline model always outperforms an
AR(1), and reaches its best relative performance in the aftermath of the September
2008 financial panic.
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Figure 1.12: PC versus Lasso(LV,FF,SF): the difference in performances with respect
to models estimated with principal components is less pronounced than the AR case,
and the time profile seems to be independent of financial events.
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Figure 1.13: Lasso(CV,FF,SF) versus Lasso(LV,FF,SF): Our local validation algorithm
improves over 10-fold Cross-Validation especially starting from the Sovereign debt crises.
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Figure 1.14: Lasso(LV,UW,SF) versus Lasso(LV,FF,SF): Again, our baseline performs
better than a model estimated with standard rolling windows particularly during crises,
where flexibility is crucial to locally identify quick and frequent changes in parameters.
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Figure 1.15: Lasso(LV,FF,CF) versus Lasso(LV,FF,SF): Shrinking common factors
virtually always leads to better forecasts as compared to purely controlling for them
in-sample, although improvements are not always statistically significant.
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systematic effects from idiosyncratic ones. Moreover, doing it within the model

(as opposed to de-factorizing the series) allows to forecast the original dataset.

We estimate the model with novel methods which are especially and exclusively

suited for our time-varying-parameters setting. First, we propose a simple local

validation algorithm to estimate tuning parameters in the elastic net. We show

that our methodology always outperforms 10-fold Cross Validation, and it runs

up to 50 times faster. Second, we maintain local flexibility of selected coefficients

by applying exponentially decaying observation weights at each window, and we

do so on all the predictors but the single (first) principal component, whose only

function is to control for systematic volatility. Third, instead of simply controlling

for common factors in-sample, we adopt a semi-supervised approach and shrink

their coefficients whenever including them does not lower out-of-sample MSE. We

show that the joint combination of the features we introduce yields very large

out-of-sample gains. In general, our multivariate models outperform AR processes

especially during periods of financial stress. This might be due to the fact that

our model can accommodate spillovers earlier, whereas the same spillovers might

need more time to update AR parameters properly.

We find that our network structure is on average very predictable in the

very short term, and that the first three (two) moments of the in-degree (out-

degree) distribution closely move together over the whole sample, thus revealing

an interesting fact about volatility network structure, meaning that edges tend to

be homogeneously distributed during quiet times, but they quickly concentrate in

a few central nodes whenever very systematic events occur. Moreover, we find

that those systematic events tend to trigger additional idiosyncratic connections

on top of the ones that would be justified by common components, which we

control for by augmenting the VAR with one common factor in each equation,

as extensively explained throughout the paper. Finally, we provide completely

idiosyncratic examples to show that whenever a node is individually affected by a

particularly important event it promptly moves towards the middle of the network,

thus suddenly becoming significantly more central.

Extensions of our model could head towards allowing for a time-varying set

of nodes. This could be very useful in practice because it would allow the

researcher to use companies that started or stopped trading in the middle of

the sample, and it would mean to have both a larger and a more representative

set of companies at each point in time. Moreover, the implementation would be

relatively straightforward. On the other hand, one would have to find a way to

represent the evolution of network metrics in a meaningful way, because we would

need to take into account that some periods would have a more populated network
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than others. For instance, centrality measures such as in-degree and out-degrees

could be computed in relative terms, e.g. as fractions of the time-varying number

of nodes.

Finally, an obvious modification could be to estimate the model with adaptive

elastic nets as in Zou and Zhang (2009) which enjoy the oracle property. As

a consequence of the coefficient-specific shrinkage induced by those models and

because of the particular set of predictors we use, we would surely obtain that the

coefficient on the common factor would be the least shrunk regressor, and this

would likely lead to an even sparser network representation.

1.A List of Companies

Table 1.A.1 lists all the companies we use in our analysis. Together with the name

of the company, we add the corresponding GICS sector and industry, as well as

the country where the company is listed.

Table 1.A.1: FTSE Developed Europe Constituents List

# Company Name Sector Industry Country

1 A.P. Moller-Maersk A Industrials Transportation DNK

2 A.P. Moller-Maersk B Industrials Transportation DNK

3 ABB Industrials Capital Goods CHE

4 Aberdeen Asset Management Financials Diversified Financials GBR

5 Abertis Infraestructuras Industrials Transportation ESP

6 Acciona Utilities Utilities ESP

7 Accor Cons Discr Consumer Services FRA

8 Acerinox Materials Materials ESP

9 Ackermans and Van Haaren Financials Diversified Financials BEL

10 ACS Industrials Capital Goods ESP

11 Adecco Group Industrials Comm&Prof Services CHE

12 Adidas Cons Discr Cons Drbls&Apparel DEU

13 Aegon Financials Insurance NLD

14 Ageas Financials Insurance BEL

15 Aggreko Industrials Comm&Prof Services GBR

16 Air Liquide Materials Materials FRA

17 Airbus Industrials Capital Goods FRA

18 Akzo Nobel Materials Materials NLD

19 Alba Financials Diversified Financials ESP

20 Alfa Laval Industrials Capital Goods SWE

21 Allianz Financials Insurance DEU

22 Anheuser-Busch InBev Cons Stapl Food Bev&Tobacco BEL

Continue in the next page
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Continue from previous page

# Company Name Sector Industry Country

23 Ashtead Group Industrials Capital Goods GBR

24 ASML Holding IT Semicond&SC Equip NLD

25 Associated British Foods Cons Stapl Food Bev&Tobacco GBR

26 AstraZeneca Health Care Pharm Biotech&Lf Sc GBR

27 Atlas Copco A Industrials Capital Goods SWE

28 Atlas Copco B Industrials Capital Goods SWE

29 Atos IT Software&Services FRA

30 Aviva Financials Insurance GBR

31 AXA Financials Insurance FRA

32 Babcock International Group Industrials Comm&Prof Services GBR

33 BAE Systems Industrials Capital Goods GBR

34 Baloise Financials Insurance CHE

35 Banca Mediolanum Financials Diversified Financials ITA

36 BBVA Financials Banks ESP

37 Banco Comercial Portugues Financials Banks PRT

38 Banco De Sabadell Financials Banks ESP

39 Banco Popular Financials Banks ESP

40 Banco Santander Financials Banks ESP

41 Bankinter Financials Banks ESP

42 Barclays Financials Banks GBR

43 Barratt Developments Cons Discr Cons Drbls&Apparel GBR

44 Barry Callebaut Cons Stapl Food Bev&Tobacco CHE

45 BASF Materials Materials DEU

46 Bayer Health Care Pharm Biotech&Lf Sc DEU

47 Beiersdorf Cons Stapl Hhold&Pers Products DEU

48 Bellway Cons Discr Cons Drbls&Apparel GBR

49 BHP Billiton Materials Materials GBR

50 BIC Industrials Comm&Prof Services FRA

51 BMW Cons Discr Auto&Components DEU

52 BNP Paribas Financials Banks FRA

53 Boliden Materials Materials SWE

54 Bollore Industrials Transportation FRA

55 Boskalis Westminster Industrials Capital Goods NLD

56 Bouygues Industrials Capital Goods FRA

57 BP Energy Energy GBR

58 British American Tobacco Cons Stapl Food Bev&Tobacco GBR

59 British Group Telecom Telecom Services GBR

60 Bunzl Industrials Capital Goods GBR

61 Burberry Group Cons Discr Cons Drbls&Apparel GBR

62 Cap Gemini IT Software&Services FRA

63 Capita Industrials Comm&Prof Services GBR

64 Carlsberg B Cons Stapl Food Bev&Tobacco DNK

Continue in the next page
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Continue from previous page

# Company Name Sector Industry Country

65 Carnival Cons Discr Consumer Services GBR

66 Carrefour Cons Stapl Food&Staples Retail FRA

67 Casino Guichard Perrachon Cons Stapl Food&Staples Retail FRA

68 Centrica Utilities Utilities GBR

69 Christian Dior Cons Discr Cons Drbls&Apparel FRA

70 CNP Assurance Financials Insurance FRA

71 Coloplast B Health Care Health Equip&Serv DNK

72 Colruyt Cons Stapl Food&Staples Retail BEL

73 Commerzbank Financials Banks DEU

74 Compass Group Cons Discr Consumer Services GBR

75 Continental Cons Discr Auto&Components DEU

76 Credit Agricole Financials Banks FRA

77 Credit Suisse Financials Diversified Financials CHE

78 CRH Materials Materials GBR

79 Croda International Materials Materials GBR

80 Daimler Cons Discr Auto&Components DEU

81 Danone Cons Stapl Food Bev&Tobacco FRA

82 Danske Bank Financials Banks DNK

83 Dassault Systemes IT Software&Services FRA

84 Derwent Real Estate Real Estate GBR

85 Deutsche Bank Financials Diversified Financials DEU

86 Deutsche Boerse Financials Diversified Financials DEU

87 Deutsche Lufthansa Industrials Transportation DEU

88 Deutsche Post Industrials Transportation DEU

89 Deutsche Telekom Telecom Telecom Services DEU

90 Diageo Cons Stapl Food Bev&Tobacco GBR

91 DNB Financials Banks NOR

92 DSV B Industrials Transportation DNK

93 Eon Utilities Utilities DEU

94 Easyjet Industrials Transportation GBR

95 EDP Utilities Utilities PRT

96 Eiffage Industrials Capital Goods FRA

97 Electrolux Ser B Cons Discr Cons Drbls&Apparel SWE

98 Elisa Telecom Telecom Services FIN

99 Enagas Energy Energy ESP

100 Endesa Utilities Utilities ESP

101 Enel Utilities Utilities ITA

102 Engie Utilities Utilities FRA

103 Eni Energy Energy ITA

104 Ericsson B IT Tech Hardwr&Equip SWE

105 Essilor International Health Care Health Equip&Serv FRA

106 Euler Hermes Group Financials Insurance FRA

Continue in the next page
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Continue from previous page

# Company Name Sector Industry Country

107 Eurazeo Financials Diversified Financials FRA

108 Eurofins Scientific Health Care Pharm Biotech&Lf Sc FRA

109 Exor Financials Diversified Financials ITA

110 Faurecia Cons Discr Auto&Components FRA

111 FIAT Chrysler Automobiles Cons Discr Auto&Components ITA

112 Fielmann Cons Discr Retailing DEU

113 Fortum Utilities Utilities FIN

114 Fraport AG Frankfurt Industrials Transportation DEU

115 Fresenius Medical Care Health Care Health Equip&Serv DEU

116 Gamesa Industrials Capital Goods ESP

117 GEA Group Industrials Capital Goods DEU

118 Gecina Real Estate Real Estate FRA

119 Generali Financials Insurance ITA

120 Genmab Health Care Pharm Biotech&Lf Sc DNK

121 Getinge B Health Care Health Equip&Serv SWE

122 GKN Cons Discr Auto&Components GBR

123 GlaxoSmithKline Health Care Pharm Biotech&Lf Sc GBR

124 Groupe Bruxelles Lambert Financials Diversified Financials BEL

125 H Lundbeck Health Care Pharm Biotech&Lf Sc DNK

126 Hammerson Real Estate Real Estate GBR

127 Hannover Rueck Financials Insurance DEU

128 HeidelbergCement Materials Materials DEU

129 Heineken Cons Stapl Food Bev&Tobacco NLD

130 Helvetia Holding Financials Insurance CHE

131 Henkel Kgaa Ord Cons Stapl Hhold&Pers Products DEU

132 Hennels and Mauritz B Cons Discr Retailing SWE

133 Hermes International Cons Discr Cons Drbls&Apparel FRA

134 Hexagon B IT Tech Hardwr&Equip SWE

135 Hochtief Industrials Capital Goods DEU

136 Howden Joinery Group Industrials Capital Goods GBR

137 HSBC Holdings Financials Banks GBR

138 Hugo Boss Cons Discr Cons Drbls&Apparel DEU

139 Husqvarna AB B Cons Discr Cons Drbls&Apparel SWE

140 Iberdrola Utilities Utilities ESP

141 Imerys Materials Materials FRA

142 IMI Industrials Capital Goods GBR

143 Imperial Brands Cons Stapl Food Bev&Tobacco GBR

144 Inditex Cons Discr Retailing ESP

145 Industrivarden AB C Free Financials Diversified Financials SWE

146 Infineon Technology IT Semicond&SC Equip DEU

147 Informa Cons Discr Media GBR

148 ING Group Financials Banks NLD

Continue in the next page
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149 Ingenico Group IT Tech Hardwr&Equip FRA

150 Intertek Group Industrials Comm&Prof Services GBR

151 Intesa Sanpaolo Financials Banks ITA

152 Intesa Sanpaolo Rsp Financials Banks ITA

153 Intu Properties Real Estate Real Estate GBR

154 Investor B Free Financials Diversified Financials SWE

155 ITV Cons Discr Media GBR

156 JC Decaux Cons Discr Media FRA

157 Jeronimo Martins Cons Stapl Food&Staples Retail PRT

158 Johnson Matthey Materials Materials GBR

159 K+S Materials Materials DEU

160 KBC Group Financials Banks BEL

161 Kering Cons Discr Cons Drbls&Apparel FRA

162 Kesko B Cons Stapl Food&Staples Retail FIN

163 Kingfisher Cons Discr Retailing GBR

164 Klepierre Real Estate Real Estate FRA

165 Koninklijke Philips Industrials Capital Goods NLD

166 LafargeHolcim Materials Materials CHE

167 Lagardere Groupe Cons Discr Media FRA

168 Lanxess Materials Materials DEU

169 Legal and General Group Financials Insurance GBR

170 Linde Materials Materials DEU

171 Lindt and Spruengli PC Cons Stapl Food Bev&Tobacco CHE

172 Loyds Banking Group Financials Banks GBR

173 London Stock Exchange Group Financials Diversified Financials GBR

174 Lonza Grp Ag Health Care Pharm Biotech&Lf Sc CHE

175 L’Oreal Cons Stapl Hhold&Pers Products FRA

176 Lundin Petroleum Energy Energy SWE

177 Luxottica Cons Discr Cons Drbls&Apparel ITA

178 Louis Vuitton Cons Discr Cons Drbls&Apparel FRA

179 MAN Industrials Capital Goods DEU

180 Marks and Spencer Group Cons Discr Retailing GBR

181 Mediaset Cons Discr Media ITA

182 Mediobanca Financials Banks ITA

183 Merck Kgaa Health Care Pharm Biotech&Lf Sc DEU

184 Metro Cons Stapl Food&Staples Retail DEU

185 Metso Corporation Industrials Capital Goods FIN

186 Michelin B Cons Discr Auto&Components FRA

187 Morrison (WM) Supermarkets Cons Stapl Food&Staples Retail GBR

188 Muenchener Rueckversicherungs Financials Insurance DEU

189 National Grid Utilities Utilities GBR

190 Natixis Financials Banks FRA

Continue in the next page

48



“Essays*on*Volatility*Networks*and*Uncertainty” — 2018/2/7 — 8:19 — page 49 — #63

Continue from previous page

# Company Name Sector Industry Country

191 Next Cons Discr Retailing GBR

192 Nokia IT Tech Hardwr&Equip FIN

193 Nokian Renkaat Cons Discr Auto&Components FIN

194 Nordea Bank AB Financials Banks SWE

195 Norsk Hydro Materials Materials NOR

196 Novartis (REGD) Health Care Pharm Biotech&Lf Sc CHE

197 Novo-Nordisk B Health Care Pharm Biotech&Lf Sc DNK

198 Novozymes AS Materials Materials DNK

199 Old Mutual Financials Insurance GBR

200 Orange Telecom Telecom Services FRA

201 Orkla A Cons Stapl Food Bev&Tobacco NOR

202 Orpea Health Care Health Equip&Serv FRA

203 Pargesa Holding Financials Diversified Financials CHE

204 Pearson Cons Discr Media GBR

205 Pernod Ricard Cons Stapl Food Bev&Tobacco FRA

206 Persimmon Cons Discr Cons Drbls&Apparel GBR

207 Peugeot Cons Discr Auto&Components FRA

208 Provident Financial Financials Diversified Financials GBR

209 Prudential Financials Insurance GBR

210 PSP Swiss Property Real Estate Real Estate CHE

211 Publicis Groupe Cons Discr Media FRA

212 Randstad Holdings Industrials Comm&Prof Services NLD

213 Rational Industrials Capital Goods DEU

214 Reckitt Benckiser Group Cons Stapl Hhold&Pers Products GBR

215 Recordati Health Care Pharm Biotech&Lf Sc ITA

216 Red Electrica Corp Utilities Utilities ESP

217 RELX Industrials Comm&Prof Services GBR

218 Relx NV Industrials Comm&Prof Services NLD

219 Remy Cointreau Cons Stapl Food Bev&Tobacco FRA

220 Renault Cons Discr Auto&Components FRA

221 Rentokil Initial Industrials Comm&Prof Services GBR

222 Repsol Energy Energy ESP

223 Richemont A (BR) Cons Discr Cons Drbls&Apparel CHE

224 Rolls-Royce Holdings Industrials Capital Goods GBR

225 Royal Bank of Scotland Group Financials Banks GBR

226 Royal DSM Materials Materials NLD

227 Royal Dutch Shell B Energy Energy GBR

228 Royal KPN Telecom Telecom Services NLD

229 RSA Insurance Group Financials Insurance GBR

230 RWE Utilities Utilities DEU

231 Safran Industrials Capital Goods FRA

232 Sage Group IT Software&Services GBR

Continue in the next page
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233 Sainsbury (J) Cons Stapl Food&Staples Retail GBR

234 Saipem Energy Energy ITA

235 Sampo Oyi Financials Insurance FIN

236 Sandvik AB Industrials Capital Goods SWE

237 SAP IT Software&Services DEU

238 Sartorius Stedim Biotech Health Care Health Equip&Serv FRA

239 SCA B Cons Stapl Hhold&Pers Products SWE

240 Schibsted A Cons Discr Media NOR

241 Schindler Holding (Cert) Industrials Capital Goods CHE

242 Schindler Holding (Reg) Industrials Capital Goods CHE

243 Schneider Electric Industrials Capital Goods FRA

244 Schroders Financials Diversified Financials GBR

245 Scor Financials Insurance FRA

246 SEB Cons Discr Cons Drbls&Apparel FRA

247 Securitas AB B Industrials Comm&Prof Services SWE

248 Segro Real Estate Real Estate GBR

249 SGS Industrials Comm&Prof Services CHE

250 Shire Health Care Pharm Biotech&Lf Sc GBR

251 Siemens Industrials Capital Goods DEU

252 Skandinaviska Enskilda Banken A Financials Banks SWE

253 Skanska B Industrials Capital Goods SWE

254 SKF B Industrials Capital Goods SWE

255 Sky Cons Discr Media GBR

256 Smith and Nephew Health Care Health Equip&Serv GBR

257 Smith (DS) Materials Materials GBR

258 Smiths Group Industrials Capital Goods GBR

259 SociÃ c©tÃ c© GÃ c©nÃ c©rale Financials Banks FRA

260 Sodexo Cons Discr Consumer Services FRA

261 Solvay A Materials Materials BEL

262 SSE Utilities Utilities GBR

263 St Gobain (Cie de) Industrials Capital Goods FRA

264 St James Place Financials Insurance GBR

265 Standard Chartered Financials Banks GBR

266 Statoil ASA Energy Energy NOR

267 STMicroelectronics IT Semicond&SC Equip FRA

268 Stora Enso R Materials Materials FIN

269 Straumann Hldg N Health Care Health Equip&Serv CHE

270 Suedzucker Cons Stapl Food Bev&Tobacco DEU

271 Sulzer Industrials Capital Goods CHE

272 Svenska Handelsbnk B Financials Banks SWE

273 Svenska Handelsbnk A Financials Banks SWE

274 Swatch Group AG Reg Cons Discr Cons Drbls&Apparel CHE

Continue in the next page
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275 Swedbank AB Series A Financials Banks SWE

276 Swedish Match Cons Stapl Food Bev&Tobacco SWE

277 Swiss Re Financials Insurance CHE

278 Syngenta Materials Materials CHE

279 Tate and Lile Cons Stapl Food Bev&Tobacco GBR

280 Taylor Wimpey Cons Discr Cons Drbls&Apparel GBR

281 Technip Energy Energy FRA

282 Tele2 AB Telecom Telecom Services SWE

283 Telecom Italia Telecom Telecom Services ITA

284 Telecom Italia Rsp Telecom Telecom Services ITA

285 Telefonica Telecom Telecom Services ESP

286 Telenor Telecom Telecom Services NOR

287 Teleperformance Industrials Comm&Prof Services FRA

288 TeliaSonera Telecom Telecom Services SWE

289 Tesco Cons Stapl Food&Staples Retail GBR

290 Thales Industrials Capital Goods FRA

291 Thyssen Krupp Materials Materials DEU

292 Total Energy Energy FRA

293 Travis Perkins Industrials Capital Goods GBR

294 Trelleborg Ab Ser B Industrials Capital Goods SWE

295 UCB Cap Health Care Pharm Biotech&Lf Sc BEL

296 Umicore Materials Materials BEL

297 Unibail-Rodamco Real Estate Real Estate NLD

298 Unicredit Financials Banks ITA

299 Unilever Cons Stapl Hhold&Pers Products GBR

300 UnipolSai Financials Insurance ITA

301 United Inter Na IT Software&Services DEU

302 United Utilities Group Utilities Utilities GBR

303 UPM-Kymmene Materials Materials FIN

304 Valeo Cons Discr Auto&Components FRA

305 Veolia Environnement Utilities Utilities FRA

306 Vestas Wind Systems Industrials Capital Goods DNK

307 Vinci Industrials Capital Goods FRA

308 Vivendi Cons Discr Media FRA

309 Vodafone Telecom Telecom Services GBR

310 Volkswagen Cons Discr Auto&Components DEU

311 Volvo B Industrials Capital Goods SWE

312 Vopak Energy Energy NLD

313 Weir Group Industrials Capital Goods GBR

314 Wendel Financials Diversified Financials FRA

315 Williamd Demant Holding Health Care Health Equip&Serv DNK

316 William Hill Cons Discr Consumer Services GBR

Continue in the next page
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317 Wolseley Industrials Capital Goods GBR

318 Wood Group (John) Energy Energy GBR

319 WPP Cons Discr Media GBR

320 Zardoya Otis Industrials Capital Goods ESP

321 Zodiac Aerospace Industrials Capital Goods FRA

322 Zurich Insurance Group Financials Insurance CHE

Concludes from previous page
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Chapter 2

A Sectoral Analysis of Volatility Connected-

ness

2.1 Introduction

The 2008 financial breakdown demonstrated that seemingly isolated failures can

soon lead to domino effects and generalized panic whenever the affected company

is linked in critical ways to other companies in the network. Especially because of

poor risk management (where too optimistic expectations and moral hazard likely

induced excessive leverage) banks and insurance companies have been recognized

as the main culprits. However, the intermediary function of financial companies

and their subsequent key network position might have played an important role

as well. In this work, we study the evolution of the US sectoral network structure,

and particularly see whether it contributed to worsen the already dire situation

during the financial crisis.

We estimate a network of sectoral volatilities using SPDR Exchange Traded

Funds indexes which track 9 US broadly defined sectors. In order to estimate

the network, we use Generalized Forecast Error Variance Decompositions in the

spirit of Diebold and Yılmaz (2009) and their later contributions. However, our

estimation strategy is completely different from their, because we directly model

the evolution of VAR parameters and estimate the model in a single Kalman filter

sweep. The standard rolling windows approach typically used in Diebold and

Yılmaz articles attaches the same weight to all the observations in a given window,

and we show that this leads to overly rigid estimates that do not promptly react to

quick parameters change. We apply Koop and Korobilis (2013) model to address

this issue. The authors introduce forgetting factors and built-in model switching

features, which result in a flexible model that can better accommodate periods of

sudden changes. Furthermore, we improve their methodology to estimate (instead
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of simply fixing) a key parameter of their model, and we show that this allows to

appropriately pin down wide connectedness movements during the first part of

our sample.

Our results show that this approach yields indeed superior estimates of con-

nectedness, which presents two distinct regimes. Between 1999 and the 2007

financial crisis connectedness is on average lower but more volatile, whereas after

the crisis it settles on permanently higher and less volatile levels. Also, sectoral

spillovers are tightly concentrated around the mean, and this is especially true

during highly stressed periods such as September 2008. This key result suggests

that this particular network structure might have contributed to spill volatility

between sectors at a faster rate, and this raises interesting questions regarding the

underlying causal links between variations in network structure and fluctuations

in volatility.

The literature on financial networks is relatively recent. One of the first

theoretical contributions in economic and financial networks theory traces back to

Allen and Gale (2000), where the authors build a simple model and show that a

star (i.e. a fully connected) network in the banking system is less prone to create

contagion episodes than a ring-like network where each company is connected to

only two other companies. Gabaix (2011) provides evidence that when firms’ size

distribution is fat-tailed, idiosyncratic shocks are a source of aggregate fluctuations,

thus highlighting the importance of large firms in the macroeconomic structure of

a country. Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2012) studies the

relationships between the network structure of the economy and aggregate volatility,

and show that in the presence of certain input-output linkages microeconomic

idiosyncratic shocks can lead to aggregate fluctuations. Elliott, Golub and Jackson

(2014) studies the effect of integration (greater dependence on counterparties) and

diversification (more counterparties per organization) on the possibility of cascades.

Increasing diversification allows to be better insured against another agent’s failure.

On the other hand, a low integration allows the financial organization to depend

less on others, whereas a high one reduces the sensitivity to own investment

outcomes. Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) finds that the size of

shocks matters: a densely inter-connected financial network promotes stability only

when shocks are moderately small, whereas it spreads cascade failures whenever

very large shocks occur.

Our results regarding the particular evolution of the network structure highlight

the fact that the desirability of a given structure depends on the type of connections

one is analyzing. Indeed, whereas a star network could be more robust when

considering purely contractual relationships, it might well be a curse in settings
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like ours where high inter-connectedness likely leads to faster volatility spillovers,

and the opposite is true for a ring network.

On the empirical side, Forbes and Rigobon (2002) proposes a measure of

contagion that is free from the biases coming from time-varying volatility, and

distinguishes contagion from inter-dependence. Lopes and Migon (2002) uses a

factor stochastic volatility approach to study the transmission of financial crises

across countries. Diebold and Yılmaz (2009) measures returns and volatility

spillovers in global equity markets and show that connectedness in returns exhibits

an increasing trend over time (market integration) whereas volatility spillovers

display no trend but are more volatile. Later papers1 apply the same methodology

to different economic and financial environments. Billio, Getmansky, Lo and

Pelizzon (2012) estimates Granger-causality networks on hedge funds, banks,

broker/dealers, and insurance companies and, among other results, shows that the

banking sector is crucial in transmitting shocks to other institutions. Brownlees,

Nualart and Sun (2015) uses Lasso algorithms to regularize inverse realized

covariance estimators of log-prices, thus uncovering the partial correlation network

structure of returns. Abbassi, Brownlees, Hans and Podlich (2016) uses both a

market-based and a proprietary dataset to develop measures of connectedness, and

show that market-based ones work comparatively well as a tool to monitor banks

credit riskiness. Barigozzi and Brownlees (2017) introduces a new Lasso-based

algorithm called NETS to analyze large panels of volatility measures and estimate

their inter-connectedness, producing both a directed and an undirected graph.

Their methodology is shown to outperform several forecasting models.

Finally (on the pure networks literature) Newman (2003) is an introductory

paper which describes the functioning of complex networks and provides details on

some of the most important networks-related metrics. Newman (2001) generalizes

the concepts of degree centrality, closeness centrality, and betweenness centrality

to weighted networks. Jackson (2008) and Newman (2010) are introductory

textbooks on the subject.

2.2 Data and Methodology

As we anticipated, we use data on the 9 sectoral Standard & Poor’s Depositary

Receipts (SPDR) Exchange Traded Funds for the US, which are available at a

daily frequency starting from December 22nd, 1998. The sectors are Consumer

Discretionary, Consumer Staples, Energy, Financials, Health Care, Industrials, IT,

1See Diebold and Yılmaz (2012), Diebold and Yılmaz (2013), Diebold and Yılmaz (2014),
Diebold and Yılmaz (2015), Demirer, Diebold, Liu and Yılmaz (2017).
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Materials and Utilities. Figure 2.1 plots their respective indexes over time.

We compute volatility with the high-low range developed in Parkinson (1980),

which (as opposed to standard GARCH-like measures) exploits intra-day infor-

mation (high and low prices) and reveals volatility episodes that would otherwise

not be visible if we would only use close prices as is done in GARCH models.

Figure 2.2 plots our volatility measures together with a GARCH(1,1) estimate.

As one can see, the two series largely co-move, although the one retrieved with

the GARCH model is particularly more persistent.

As anticipated, we use the methodology developed in Diebold and Yılmaz

(2009)2. Consider a covariance-stationary N -variable reduced-form TVP-VAR(p),

Yt =

p∑
i=1

ΦitYt−i + εt, (2.1)

where εt ∼ N (0,Σt). The MA(∞) representation is

Yt =
∞∑
i=0

Aitεt−i. (2.2)

The estimation of the network exploits the so-called Generalized Forecast Error

Variance Decompositions (GFEVD from now on) developed in Koop, Pesaran and

Potter (1996) for non-linear models, and applied to the linear case in Pesaran and

Shin (1998). In a nutshell, the amount of fluctuations of variable i (j) explained

by variable j (i) is used as a measure of the degree of (directional) connectivity

from (to) variable j to (from) variable i. Diebold and Yılmaz (2014) shows that

estimating the spillover effects with GFEVD is equivalent to estimating a weighted

directed graph. Denoting the H-step-ahead GFEVD by θij,t(H), for H = 1, 2, . . . ,

we have (dropping the subscript t for ease of notation)

θij =

1
σjj

∑H−1
h=0 (e′iAhΣej)

2∑H−1
h=0 (e′iAhΣA′hei)

, (2.3)

where ei is a selection vector that equals 1 at the i-th element and 0 otherwise.

Diebold and Yılmaz papers estimate both the static network (assuming fixed

parameters throughout) and a dynamic one, where the VAR is recursively estimated

using rolling windows. This approach has the advantage of being easy to estimate

and model-free on both the parameters and residual covariance matrix evolution.

2Note that the original methodology relies on short term structural identification (Cholesky
decompositions), whereas here we strictly follow Diebold and Yılmaz (2012) and do not impose
any restriction on contemporaneous relationships.
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Figure 2.1: This figure plots the Standard & Poor’s Depositary Receipts (SPDR)
Exchange Traded Funds, which track 9 broadly defined US sectors. The series are highly
correlated and most of them present a remarkably quick post-crisis re-bound, which
lead the indexes to reach historically high values in the last part of the sample.
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Figure 2.2: The figure compares range-based (black) and GARCH (blue) volatilities.
Apparently, high-low range volatilities are considerably more noisy due to the fact that
they incorporate intra-day information, and that they do not rely on any parametric
assumption.
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This comes at a cost however, namely that estimates obtained at time t are not

a time-weighted moving average of the past w observations (where w is window

width). This implies that time t innovation’s weight is as low as 1
w

, and the same

is true for time t− w + 1 observation’s weight. Since we are dealing with highly-

parametrized objects, window width must be set to around 150− 200 observations

in order not to incur in the curse of dimensionality problem. Therefore, the

individual weight is approximately equal to 0.005-0.0067, whereas we would like

to have a significantly higher one on current time t observation.

We address this issue by estimating a model that imposes some structure on

the evolution of parameters and residual covariance matrix. The literature on

time-varying-parameters VARs is now relatively large, and two choices would

be Primiceri (2005) and Koop and Korobilis (2013). The first assumes both

parameters and volatility to evolve as a random walk and estimate the model via

MCMC methods. Because of the computational burden involved, this implies that

the dimension of the VAR cannot be large. Instead, Koop and Korobilis (2013)

proposes an estimation strategy that does not need to simulate the posterior

distribution, thus generating results with incomparably lower estimation times.

In particular, the authors estimate the time-varying covariance matrix with an

Exponentially-Weighted Moving Average (EWMA) model, and the evolution of the

parameters with the Kalman filter. Even more interestingly, they allow for model

switching, which means that parameters are allowed to be relatively constant

during normal periods, whereas they can change in a more abrupt manner during

volatility storms. This is an important feature of the model that addresses the

issue of estimating time-varying parameters when in fact they could be fixed over

some period of time. From a practical standpoint, Koop and Korobilis (2013)

VAR seems more appealing both methodologically and computationally, hence we

opt for it.

Koop and Korobilis (2013) uses four high-level model parameters to be either

chosen or estimated from the data. The first is (using the authors’ notation)

the parameters forgetting factor λ, which governs the instantaneous flexibility

of the regression parameters. In other words, when λ is set to be equal to one

parameters are fixed, whereas progressively lower values increase the probability

for the regression parameters to vary by higher amounts from one period to the

other. Instead of choosing a grid of values for λ, Koop and Korobilis (2013)

estimates it following Park, Jun and Kim (1991):

λt = λmin + (1− λmin)L−NINT(ε̃′tε̃t), (2.4)
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where ε̃t is the one-step ahead prediction error produced by the Kalman filter,

and NINT(·) rounds to the nearest integer. Also, λmin = 0.96, and L = 1.1, which

ensure λ to lie between λmin and 1.

As we said, the covariance matrix is assumed to evolve with an EWMA law of

motion:

Σ̂t = κΣ̂t−1 + (1− κ)ε̂tε̂
′
t, (2.5)

where κ is the covariance matrix forgetting factor κ, which is the second model

parameter we have to select. Koop and Korobilis (2013) follows RiskMetrics (1996)

which suggests values for κ in the interval [0.94, 0.98]. Since Σt is the covariance

matrix of volatility, we expect it to present less pronounced swings as compared

to the covariance matrix of returns. Therefore, we choose κ = 0.98 which yields

reasonably time-varying estimates for Σt. We then use the first 60 observations

to compute the initial covariance matrix Σ̂0.

Third, we use Koop and Korobilis (2013) Minnesota prior choice for our

regression parameters. Therefore, we set E(β0) = 0, thus shrinking parameters

towards zero. Also, V(β0) = V, and we define Vi to be the diagonal elements of

V. Then, we set

Vi =


γ

r2
for coefficients on lag r, where r = 1, . . . , p,

a for the intercepts,
(2.6)

where p is lag length. In this way, parameters that associate observations that are

relatively more distant between each other are shrinked more. The key parameter

to be chosen is γ, which governs the general degree of parameters shrinkage. We

estimate γ from a wide grid, that is γ ∈ {10−5, 0.001, 0.005, 0.01, 0.05, 0.1}. On

the other hand, we do not want to impose any informative prior to the intercepts,

so we set a = 102.

Finally, we have to choose the model switching forgetting factor α, which

governs how past forecasting performances are weighted during the whole sample

period. As an example, when α = 0.99 forecast performance 20 periods in the past

receives 80% as much weight as forecast performance last period, whereas when

α = 0.95 the same percentage decreases to about 35%. We extend the baseline

setting in Koop and Korobilis (2013) to also estimate α, which we choose within

the simple grid α ∈ {0.95, 0.99}. The way we estimate α is the same as the method

proposed by Koop and Korobilis (2013) to estimate κ and γ, that is we maximize

geometrically weighted predictive densities over the entire set of different models.

Recall from the paper that a single period forecasting performance is measured
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Table 2.1: Full-sample connectedness

Ener Matrls Ind CD CS Hlth Fincls IT Utils FROM

Ener .40 .11 .07 .08 .06 .06 .09 .08 .05 .60
Matrls .09 .28 .11 .11 .07 .06 .13 .11 .04 .71
Ind .05 .10 .28 .13 .07 .08 .12 .12 .05 .72
CD .05 .09 .11 .26 .08 .09 .15 .13 .04 .74
CS .05 .07 .08 .10 .31 .09 .11 .13 .06 .70
Hlth .05 .06 .10 .11 .10 .31 .10 .12 .05 .69
Fincls .05 .10 .10 .13 .08 .08 .30 .12 .04 .70
IT .05 .08 .10 .12 .09 .08 .11 .33 .04 .67
Utils .06 .06 .08 .08 .09 .08 .08 .08 .39 .61

TO .46 .67 .75 .86 .63 .61 .90 .87 .37 .68
NET -.14 -.03 .03 .12 -.06 -.08 .20 .20 -.24

The table shows the GFEVD obtained by estimating a VAR over the whole sample. This

representation can also be interpreted as a weighted and directed network of connections between

US sectors. The weights are given by the portions of variations explained, whereas the in-degree

(out-degree) spillovers have to be read from rows (columns).

with the predictive density pj(Yt|Yt−1), where (in our case) j indexes models with

all the possible combinations of κ, γ and α. The model that yields the maximum

weighted predictive density is recursively chosen at each time period. As we will

see, estimating α proves to be beneficial in our application.

2.3 Results

Section 2.3.1 presents average results for the whole sample, whereas the ensuing sec-

tions describe the results on the dynamic evolution of sectoral inter-connectedness.

Our baseline model uses 4 lags and 10-days forecast horizon.

2.3.1 Average (Static) Volatility Connectedness

Table 2.1 is the connectedness table obtained from a fixed-parameters VAR, and

it thus represents results that are averaged over the whole sample period. Each

number in row i, column j is the portion of variation of variable i explained

by variable j. The “FROM” column is the amount of variation of variable i

explained by all the other variables, whereas the“TO” row is a sum of the portions

of variation that variable i is able to explain in all the other variables. “NET” is

the difference between “TO” and “FROM” and captures the extent to which a

sector is a net sender of connections.
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First of all, we see that overall connectedness during the whole period is

remarkably high and equal to 68%. As a comparison, the only sample among the

ones explored in Diebold and Yılmaz articles that exceeds this connectedness level

is the one that considers U.S. financial institutions connectedness (78%).

From a network perspective, the level of connectivity is tantamount to the

average degree centrality, or the mean of the degree distribution, i.e. a location

measure. Nonetheless, the degree distribution as a whole (not only its mean) can

give interesting insights, and our directed network is peculiar because it has two

degree distributions (in-degree and out-degree) that share the same mean (which

is equal to overall connectedness). A rapid inspection of the total “FROM” and

“TO” measures shows that not only (as we already have commented) the sectors

are highly inter-connected, but they are also similar in terms of spillovers received

and given. The two degree distributions are indeed heavily concentrated around

their mean, which allows to hypothesize that the network structure of the U.S.

sectors (at least from a financial perspective) is likely to resemble a fully connected

network. This first result (high connectedness and low dispersion of individual

level of connectivity) is intuitive because we are considering sectors within the

same economy, which means the input-output linkages are likely to be tight and

permanent and the market is strongly integrated. Fears about the redditivity of

one particular sector can easily transmit towards others because of the existence

of contractual relationships.

We now analyze more in detail some of the measures we have obtained. Not

surprisingly, the financial sector spills the most volatility over the other ones (90%).

Being the key transmission channel of government policies and the sector that

allows counterparties to settle their contracts, its centrality is easily understood.

Moreover, the size of this sectors’ constituents together with their high leverage

can amplify any movement in their stock value and trigger even higher volatility

phenomenons. Finally, it is important to note that the real estate market is

included in this sector, which implies that the 2007 sub-prime crisis might have

well increased the sectors’ importance in spilling over volatility. Interestingly, both

IT and Consumer Discretionary sectors also have a high out-degree centrality (87%

and 86% respectively). In particular, the relevance of the Consumer Discretionary

sector is in accordance with the fact that US GDP consumption component

fluctuated between 65% and 68% during our sample, a considerably higher share

as compared to the rest of the world. Consumer Discretionary includes items as

media, retail, hotels, restaurants and leisure, textiles, apparel and luxury goods,

household durables, automobiles, auto components, distributors, leisure equipment

and products, diversified consumer services. It then potentially serves as a good
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benchmark to gauge the extent to which US consumers are spending and thus

reviving the economy and the other sectors who depend a lot on consumer behavior.

Fears about companies that directly serve consumers can quickly run onto the

other sectors.

Energy and Utilities are the sectors whose idiosyncratic movements contribute

the most to their overall volatility fluctuations (40% and 39% respectively) and at

the same time they are the ones with the lowest out-degree spillovers. With net

spillovers of −14% and −24% respectively, they are the sectors whose volatility

fluctuations are mainly driven by the volatilities in the other sectors. Consumer

Discretionary is the sector with the highest spillovers received, which points to the

fact that there also exists a feedback effect whereby the Consumer Discretionary

sector is also heavily affected by developments in the rest of the economy.

Finally, we see that Industrials, Consumer Discretionary, Financials, and IT

form a sectoral cluster where pairwise inter-dependencies are higher as compared

to those outside it. Nevertheless, these connections are not dramatically stronger

than the ones outside the cluster, meaning that its economic significance is

questionable.

2.3.2 Dynamic Volatility Connectedness

Both the Kalman filter approach (as explained in Section 2.2) and the standard

rolling windows one used in (e.g.) Diebold and Yılmaz (2009) produce a set

of parameters estimates and covariance matrices for each time period. We are

then able to calculate daily connectedness metrics (as in Table 2.1) by computing

GFEVD for all periods, thus obtaining dynamic estimates that might give further

insights on whether and how the network structure has changed during our sample

period.

Figure 2.3 plots the overall level of connectedness for both methods, and we

find that the two series generally move together. However, a key difference exists

whereby modeling the evolution of parameters with Koop and Korobilis (2013)

method generates more volatile connectedness estimates. This result corroborates

the fact that the rolling window approach is overly simplistic, and the problem

with equally weighting all the periods within a given window is more evident during

times of more volatile connectedness. Indeed, while we observe that our model

promptly adapts, rolling windows (by assigning the same weight to the most distant

and most recent observations) inevitably provide too sticky and consequently

less precise connectedness estimates. Therefore, we strongly advocate replacing

rolling windows with Kalman filtering techniques as in Koop and Korobilis (2013)
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to estimate this class of models. Overall, US sectoral connectedness features

two distinct behaviors. On the one hand, the pre-2007 financial crisis period is

characterized by (on average) lower but more volatile connectedness, whereas the

opposite is true for the post-crisis period, where connectedness stabilizes at higher

levels. Also, the last five years of the sample display a gently decreasing trend in

connectedness.

Prior to the burst of the dot-com bubble we observe the most pronounced

spike in overall connectedness in a short period of time, i.e. the period where the

euphoria for tech companies was at its highest, and total connectedness increased

from less than 30% at the end of 1999 to 70% in March 2000. Surprisingly, from

there on every sector started to move more independently, with a consequent sharp

decrease in overall connectedness. The lowest value is reached in October 2000

(25%) when a very volatile period that started in March 2000 ended, and from there

on tech companies started their definitive collapse, with connectedness bouncing

back to higher values. Importantly, the ensuing period has been characterized by

a series of important events, with the March-November 2001 economic recession

being an underlying threat to US economic stability, which together with the

ongoing Enron scandal (culminated in December 2001 with the failure of the

company) could be the main reason why we observe a volatile but positive trend

in connectedness. The 9/11 terrorist attacks and the beginning of the war in

Afghanistan one month later surprisingly led connectedness to decrease from 60%

to 40%. On July 21th, 2002 Worldcom (the second largest long distance telephone

company in the US) files for the (at that time) largest bankruptcy in US history

after being involved in a massive accounting fraud. This event led to a jump in

connectedness up to a remarkable 75%. From there on connectedness decreased

erratically until it reached 40% in October 2006.

The period between the end of 2006 and mid-2009 marked the transition be-

tween the two connectedness regimes identified earlier. Indeed, total connectedness

increased rapidly at the end of 2006 when foreclosures rates started to apparently

get higher than during normal times. When New Century (largest lender in the

US) went under Chapter 11 (April 2007), overall connectedness trended further

upwards to unprecedented levels. On February 7th, 2008 the Senate passed the

Economic Stimulus Act, a $170 billion package of tax rebates for low and middle

income taxpayers, and corporate tax incentives. This could have contributed to

push connectedness downwards. Indeed, we observe a marked drop in connect-

edness from 80% to 55% at the end of August 2008, and Bear Stearns bail out

(March 14th, 2008) did not lead to higher sectoral connectedness. Unfortunately

however, September 2008 was one of the darkest moments in US financial and
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Figure 2.3: This figure clarifies the stark differences between the TVP-VAR estimated
with the Kalman filter against the one obtained from standard rolling windows, and
confronts the responsiveness of the two connectedess series with important episodes
occurred during the sample. Apparently, our estimation strategy is able to pin down
marked swings that rolling windows cannot detect.
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economic history, and it led to the definitive change to the new regime of high and

stable connectedness. On September 7th, 2008 Fannie Mae and Freddie Mac are

placed into conservatorship of the FHFA (Federal Housing Finance Agency). On

September 15th Lehman Brothers files for the largest bankruptcy in US history,

leading markets to panic throughout the whole world. The day after (September

16th) AIG is bailed out with an $85 billion two-year loan. On September 25th

Washington Mutual (largest savings and loan bank, with $307 billion in assets)

goes bust and its remaining assets are sold to JP Morgan Chase for $1.9 billion.

After these catastrophic events, on October 3rd President George W. Bush signs

into law the TARP (Troubled Asset Relief Program), a $700 billion program

that allowed financial institutions to sell toxic assets to the US government. This

step did not prevent connectedness to jump to its all-time high of almost 85%,

a magnitude that shows how much the stock market was out of control during

those days. This historical high level is reached in December 2008, when the Wall

Street firm Bernard L. Madoff Investment Securities LLC goes bust in the largest

accounting fraud in American history.

The beginning of 2009 is characterized by two important policy events. On

the one hand the zero lower bound on the target interest rate is reached, and on

the other Barack Obama signs the American Recovery and Reinvestment Act,

a $787 billion stimulus package mainly made of government spending measures.

These measures lowered total connectedness by a modest 10%. In June 2009 the

recession (which officially began in December 2007) ended, and the stock market

stabilized. Nonetheless, as we said, total connectedness did not go back to normal

levels and remained high throughout the rest of the sample, with a post-crisis

minimum of 64% in June 2016.

The period going from July 2010 to June 2011 is characterized by a reduction

in overall connectedness, and the most pronounced decline occurs after the Fed

announces a second round (QE2) of $600 billion bond purchases to encourage

economic growth.

On July 31th, 2011 the debt ceiling crisis is resolved with the Budget Control

Act of 2011, whereby Republicans (who controlled the House of Representatives)

agreed to raise the debt ceiling in exchange for spending cuts. The agreement

came only two days before the ceiling would have been reached, and it was

accompanied by the most volatile week after the 2008 financial crisis. During

those days connectedness skyrocketed again to 82%, and increased up to almost

84% around the days of the first ever downgrade of US government debt from

Standard & Poor’s (from AAA to AA+). This level is indeed very close to the

one reached during the days of financial failures and bail outs at the end of 2008.
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Surprisingly enough, the approach of the fiscal cliff (which would have been

reached on January 1st, 2013) and the debates that preceded the enactment of

the American Taxpayer Relief Act (ATRA) on the very same day as the one of

the deadline did not lead to sector volatilities being more connected between each

other. Similarly, no significant movement is observed after the announcement of

the third round of bond purchases (QE3) on September 13th, 2012, and after the

resolution of the second debt ceiling crisis at the end of 2013.

The most significant largest spike in the final part of our sample is in Summer

2015, when concerns over Chinese economy spilled over to U.S. companies, and

where uncertainty over U.S. monetary policy probably played a role as well. In

particular, on August 24th an enormous lack of liquidity coupled with herding

behavior led the Dow Jones to lose more than 1,000 points in the first five minutes

of trading. During this period volatility connectedness spiked up from 66% to

almost 80% in a few days. Finally, on December 15th, 2015 the Fed eventually

increased target rates by 25 basis points, and after this decision a downward trend

in connectedness started which led it to step down to around 65%.

The dynamics of overall connectedness are useful in providing a general picture

of how connections have changed throughout the sample period. However, we

also are interested in the variations of the degree distributions, and in analyzing

whether certain sectors have been more central than others during given periods.

2.3.3 Directional Dynamic Volatility Connectedness

Figure 2.4 plots (as an illustrative example) the spillovers received by the Materi-

als sector, although pictures for almost all the other sectors are fundamentally

similar. We immediately notice that, when we look at totally disaggregated data,

idiosyncratic components contribute the most to overall fluctuations. Also, we can

observe a decreasing trend in idiosyncratic movements over time, which go from a

(volatile) average of approximately 50% at the beginning of the sample to about

25% at the end of the sample. This result is entirely consistent with the one we

found for total connectedness, and it reflects the decreased independence of every

sector’s volatility fluctuations from other sectors’ movements. The only sectors

that are an exception to this pattern are Energy and Utilities, which regained

more independent fluctuations starting from 2011 approximately.

While results on total connectedness are clear, the same cannot be said for

disaggregated ones, i.e. results regarding in-degree, out-degree, and net movements.

Specifically, not only (as we saw in the previous section) connectedness is on

average higher than in many cases analyzed in Diebold and Yılmaz applications,
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Figure 2.4: Materials, spillovers from other sectors. This picture shows the evolution
over time of spillovers received by the Materials sector (which we choose for illustrative
purposes only), as measured by the portion of variation in volatility explained by
each sector. The idiosyncratic component dominates all the others, although with a
decreasing importance especially after the 2008 financial crisis.
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but it seems that sectors are so well connected between each other that any event

that in principle could affect only one of them actually affects all the others

contemporaneously (i.e. during that particular trading day), thus not leading to

visible distinct change in spillovers, but rather to strong comovements throughout

the whole sample. The result is an incredibly high correlation in spillovers. As an

example, the burst of the dot-com bubble did not lead to a marked increase in the

IT sector centrality, but it rather caused the generalized increase in connectedness

that we already highlighted previously.

On the other hand, the housing burst was more systematic than the dot-com

one since network components (as opposed to idiosyncratic ones) dominated more

in determining all sectors’ volatilities. With Lehman failure, our network showed

an “alignment effect”, whereby both in-degree and out-degree spillovers started

to converge (see Figure 2.5 for an example, although all the other sectors have

qualitatively very similar pictures, and the same is true for out-degree spillovers)

and each sector started to give and receive spillovers to/from the other sectors

in very similar magnitudes. This is the dynamic manifestation of the full inter-

connectedness result we described in the static analysis, and its existence leads to

a natural question: is the network structure causing higher volatility or is it the

opposite? Do those effects reinforce each other? Also (as Allen and Gale (2000)

first highlights) the finding that a star network is more robust than a ring one does

not apply here, and the opposite might well be true. This seeming contradiction

is due to the fact that the fundamental existence of a connection is profoundly

different in the two cases. Indeed, in Allen and Gale (2000) an edge is placed

whenever a contractual relationship exists, whereas in our case the strength of the

edge is higher in cases where volatility is spilled over with larger flows. This (in

our application) means that a star network is potentially more dangerous than

a ring one, since a fully inter-connected structure allows volatility to propagate

quickly throughout all the sectors, whereas a ring-like one could potentially slow

down volatility transmissions.

Figure 2.6 plots the time-varying dispersion in spillovers received by every

sector. Interestingly, the time-varying structure of our network is clear, and we also

observe a contemporaneous −62.8% correlation with total connectedness. This

means that not only there exists a close connection between the timing of important

events and total connectedness, but a similar (opposite) relationship exists with

the network structure. In particular, the network tends to have a relatively

asymmetric structure during normal times, but it quickly converges towards a star

network in periods when key events happen, just as total connectedness tends to

increase during those same periods.
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Figure 2.5: Energy, spillovers from other sectors during housing burst. This graph
clearly illustrates that immediately after Lehman failure the network profoundly changed
and started to have a star shape, where each sector became fully inter-connected with
all the others. Notably, the idiosyncratic component of the Energy sector went down
from 0.6 to less than 0.2 in very few days, whereas the other sectors’ components evenly
went up towards 1

9 ≈ 0.11, where 9 is the number of sectors. This value, when reached
by all the sectoral components, implies that the network is exactly fully inter-connected.
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Figure 2.6: Overall network dispersion in spillovers received. Note that during the
financial crisis and the sovereign debt crises the dispersion in spillovers reaches its
minimum and remains constantly low, thus proving that the pattern we highlighted in
Figure 2.5 is not a simple coincidence, but it is present for all sectors.
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2.3.4 Filtering Results and Robustness Check

Parameters’ forgetting factor estimates tend to have very high values, and many

times (15.2% of the times) they hit the upper bound λ = 1, which corresponds

to fixed parameters. Again, this result points to the need to have models that

timely detect and correctly estimate time variation in parameters, but that are

at the same time able to let the parameters be fixed during periods when they

should. Note that Primiceri (2005) always assumes time-variation in parameters,

and given the moderately large dimension of our TVP-VAR this would have

caused important over-fitting problems. A further corroboration of this issue

is that estimates of the shrinkage parameter γ are low during almost all the

sample period, thus suggesting that the curse of dimensionality is indeed looming

and has to be addressed. Remarkably, rolling windows would not have shrunk

parameters either, and using them would thus have caused additional problems.

Estimates of the model forgetting factor α are equal to 0.99 for the largest part of

the sample, whereas the 0.95 value is selected a few times especially during the

earlier observations where connectedness was more volatile, thus suggesting that

estimating α together with the other model parameters led to a better fit.

As a robustness check, Figure 2.7 plots estimates of overall connectedness for

different forecast horizons and number of lags in the TVP-VAR. The series are

nearly identical in both cases, with slight changes only in the level of connectivity,

but not in its timing. In the case of different horizons, connectedness is higher at

higher horizons, as expected.

2.4 Concluding Remarks

In this paper we study the extent to which sectoral volatilities are inter-connected

between them, and how they spill over other sectors. We find that there exist

two distinct connectedness regimes whose dividing line lies during the 2007-

2008 financial turmoil. The first regime presents a relatively low but volatile

connectedness between sectors, whereas after the burst of the housing bubble

connectedness stays at a seemingly permanently higher and more stable level.

Also, we highlight the existence of a close and negative relationship between the

level of total connectedness and the structure of the network as roughly measured

by the dispersion in spillovers received. Those key results imply that during high

volatility episodes spillovers become evenly distributed between all sectors, and in

turn that sectoral volatilities positively influence each others in a stronger manner

than what we would have obtained had sectoral connections resembled a ring
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Figure 2.7: Overall connectedness, robustness check. The top panel illustrates esti-
mates obtained by varying the forecast horizon and using 4 lags as in the baseline model.
The lower panel fixes the horizon at 10 days and computes connectedness with different
lags. In both cases results are virtually unchanged.
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network.

While we are agnostic as to the true underlying structural links between

volatility, connectedness, and the particular network structure, we believe that

situations where the system is fully inter-connected could well facilitate further

increase in volatilities. In future work it would be interesting to investigate this

issue and try to uncover whether the network structure is mainly causing volatility,

whether the opposite is true, or whether both cause each other.

On the technical side, estimating the TVP-VAR with Koop and Korobilis

(2013) filtering method yields superior parameters estimates, and estimating the

model switching parameter as well proved to be beneficial especially during the

first part of the sample where connectedness was more volatile. On the other hand,

the model is able to let parameters staying fixed during normal periods. This,

together with Bayesian shrinkage, addresses the over-fitting issue in a satisfactory

manner and remarkably produces more reliable connectedness estimates.
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Chapter 3

Fiscal Policy Uncertainty and the Business

Cycle: Time Series Evidence from Italy

Joint with Alessio Anzuini and Pietro Tommasino1

3.1 Introduction

After several years of recession or sub-par growth in many countries, several

economists and policy makers have become convinced that widespread uncertainty

might have concurred to the unsatisfactory pace of the recovery2.

More generally, economic theory suggests that, under certain conditions, un-

certainty shocks may be important in explaining economic fluctuations: firms may

react to an increasingly uncertain environment by reducing hiring and investment,

financial intermediaries may become more reluctant to lend, and households may

increase their propensity to save, as supported by the evidence in the empirical

literature. In this respect, Bloom (2014) is a comprehensive review of the stylized

facts about uncertainty and its relationships on key economic variables, both from

a theoretical and an applied point of view.

Economic uncertainty can take many forms, and may originate from several

sources. To date, there are various indices of Economic Policy Uncertainty, but

few indices of Fiscal Policy Uncertainty (FPU) which also mainly have focused on

FPU stemming from US policies. In the present paper we propose a new measure

of FPU, and study its effects on the macroeconomic situation in Italy. Indeed, for

most of its recent history Italy has been characterized by fragile public finances

and by a highly partisan and often fragmented political landscape. It is therefore

1The opinions expressed herein are of the authors and do not necessarily reflect those of
Banca d’Italia.

2See e.g. IMF (2012).
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an extremely appropriate laboratory to study FPU and its consequences.

Our proposed FPU index is constructed as follows: we first estimate a fiscal

reaction function in order to capture how the fiscal stance reacts to economic

developments. The key difference with respect to previous empirical exercises3

is that the fiscal rule incorporates an innovation not only to the level, but also

to the volatility of the fiscal stance (technically, we adopt a stochastic volatility

model). As a second step, we feed a VAR model with the two series of innovations

- i.e. innovations to the level and to the volatility of the fiscal variables of interest

- and analyze how they impact the macro-economy.

Our FPU index peaks in correspondence with key historical events that greatly

influenced Italian public budgets. Among the most significant spikes in FPU

we find those recorded during the 1992 Exchange Rate Mechanism crisis and

the introduction of the Euro in 1999. Moreover, our index has a positive and

significant correlation with Baker, Bloom and Davis (2016) EPU index for Italy,

while the differences have to be re-conducted to the fact that the two indexes are

measuring different types of uncertainty. Finally, fiscal policy seems to react with

fiscal consolidations both when debt figures increase and when the business cycle

improves.

Our structural analysis finds that the effects of an expansionary fiscal shock

are quite standard and in line with the previous VAR literature - i.e. we find

positive multipliers. More interestingly, we also find that an increase in FPU

has a negative impact on the economy. Additionally, when a positive fiscal

shock is coupled with an unexpected increase in uncertainty the potentially

positive effects become blurred, thus suggesting that expansionary policies can

lose their effectiveness when implemented with high degrees of uncertainty. As a

crucial policy implication, our results suggest that policy makers should be aware

that closely and credibly targeting a pre-announced balance budget level could

significantly increase the effectiveness of discretionary expansionary fiscal policies,

and reduce the recessionary effects of contractionary ones. Therefore, attention

should be paid not only to the first moment, but to the entire distribution of

(conditional) future budget outcomes.

Our paper contributes to two different streams of the macroeconomic literature.

First, the recent empirical research on the macroeconomics of uncertainty. As we

already mentioned, uncertainty stems from several sources. Some papers have

focused on stock-market-induced uncertainty, such as Bloom (2009) which uses

peaks in stock market volatility (captured by a dummy variable) as a measure

3For a review, see Golinelli and Momigliano (2009).
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of uncertainty4. Policy may be clearly another relevant source of macroeconomic

uncertainty5, and Baker, Bloom and Davis (2016) proposes a broad policy uncer-

tainty index that is an average of three components: the frequency of references to

economic policy uncertainty in the news, the amount of federal tax code provisions

set to expire in future years and the extent of professional forecasters’ disagreement

over one-year-ahead inflation and government purchases of goods and services.

Jurado, Ludvigson and Ng (2015) estimates macroeconomic uncertainty with a

stochastic volatility model, but instead of using a particle filter (as we do) the

authors adopt MCMC algorithms. More specific indicators are those related to

trade policy and monetary policy, developed respectively by Handley (2014) and

Creal and Wu (2016)6.

The only paper that we are aware of that looks at fiscal uncertainty shocks

is Fernández-Villaverde, Guerrón-Quintana, Kuester and Rubio-Ramı́rez (2015).

We follow their econometric methodology, and proxy FPU with the time-varying

volatility of the innovation of a fiscal reaction function7. However, differently from

Fernández-Villaverde et al. (2015), we look at the overall (cyclically adjusted)

primary deficit (CAPB) and not just to some of its components. This more

encompassing variable is the most used indicator of the government’s fiscal stance

(incidentally, the CAPB also plays a relevant role in the context of the fiscal

framework of the European Union).

Given our focus on the CAPB, our paper is directly relevant for a second

stream of literature, namely that concerned with the macroeconomic effects of

discretionary fiscal policy8. A review of that field is clearly outside the scope of

this introduction, but it is well known that there is no consensus about the size

- and even the sign - of fiscal multipliers. On one side, studies like Blanchard

and Perotti (2002) and Romer and Romer (2010) find standard demand-driven

4See also the early paper by Romer (1990).
5Policy uncertainty (i.e. not knowing which policy will be implemented) may be in turn due

to political uncertainty (i.e. not knowing who will be in power). The economic effects of this
latter variable have been studied, for example, by Julio and Yook (2012) and Canes-Wrone and
Park (2014).

6A related stream of literature neglects the real effects of policy uncertainty, focusing instead
on its financial consequences. See e.g. Kelly et al. (2014) and Brogaard and Detzel (2015). Other
papers, e.g. Gulen and Ion (2015), look at the microeconomic (firm-level) effects of changes in
policy uncertainty. Incidentally, both Brogaard and Detzel (2015) and Gulen and Ion (2015) use
the Baker et al. (2016) index.

7A similar methodology is adopted by Scotti (2013) and Jurado, Ludvigson and Ng (2015).
Both papers aim at modeling macroeconomic volatility at large, not FPU.

8On the contrary, it is not easy to compare the results of Fernández-Villaverde et al. (2015),
which looks at specific budgetary items, with those of papers which focus on more aggregated
fiscal variables. The authors themselves acknowledge this limitation in the Appendix A of their
paper.
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Keynesian effects; on the other side, starting from Giavazzi and Pagano (1990),

other authors have argued that the effects of a fiscal change can be non-Keynesian,

with the possibility of expansionary fiscal consolidations and contractionary fiscal

expansions, as is the case in Alesina and Ardagna (2013). Our main contribution

to this debate is to show that fiscal policy-makers can influence the economy not

only by changing the level of the budget deficit, but also by affecting its volatility.

As a consequence, the same change in the government budget (say a budgetary

expansion) can have different effects depending on whether it is associated with

a reduction or an increase in the FPU. From an econometric viewpoint, this

implies that a proper assessment of the impact of changes in the fiscal policy

stance should correctly identify both the level and the uncertainty shock. From

a policy perspective, our findings highlight the importance for policy makers of

being credible, and avoid policies that are unsustainable in the long run.

The remainder of the paper is organized as follows. In Section 2 we outline

the methodology we use to measure FPU, we describe our data, and present the

results. In Section 3 we present our VAR estimates and we show the effects of the

fiscal shocks on macroeconomic variables. Section 4 concludes.

3.2 Estimating Fiscal Policy Uncertainty

3.2.1 The Empirical Model: A Fiscal Rule with Time

Varying Volatility

We estimate the following two-equation state space model:

deft = β1deft−1 + β2debtt−1 + β3gapt−1 + ehtut, ut
iid∼ N (0, 1), (3.1)

ht = α0 + ρht−1 + γεt, εt
iid∼ N (0, 1), (3.2)

where deft is the cyclically adjusted ratio between the general government primary

borrowing requirement and GDP at time t, debtt−1 is the debt ratio, gapt−1

is the output gap, and ht is the log-volatility of the error term. Concerning

the parameters, the βs have obvious interpretations, ρ is the persistence of the

log-volatility and γ is the volatility of the shocks to log-volatility.

Equation (3.1) is a very standard fiscal reaction function, in the spirit of the

ones analyzed in (e.g.) Gaĺı and Perotti (2003) and in Golinelli and Momigliano

(2009). Equation (3.2), instead, gives the law of motion for the volatility of the

deficit, which in our model is not conditionally deterministic (as, for example, in
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a GARCH model) but includes a stochastic component9. Equation (3.2) captures

our main idea: fiscal policy can in principle be affected by two kinds of innovations:

level shocks (ut) and FPU shocks (εt). Our FPU index is eht , which (as opposed

to ht) intuitively represents the time-varying standard deviation of fiscal shocks.

The inclusion of a stochastic volatility element is important from an economic

viewpoint to fully capture the nature of fiscal policy-making, but comes with

some non-negligible computational costs. Indeed, it makes our model non-linear,

precluding the use of standard econometric techniques, such as the Kalman filter,

which requires instead linearity and Gaussianity. To estimate equations (3.1) and

(3.2) we resort to particle filter estimation. This technique is similar in spirit

to the Kalman filter: in both methods, non-data information (prior) and data

information (likelihood) are combined to obtain an estimate of the variables of

interest. Furthermore, as in the Kalman filter, the process ht is not observable

and has to be estimated together with all the relevant parameters.

However, differently from the Kalman filter, we do not have closed-form solu-

tions for the posterior distributions, and the integrals involved in the computations

of the posterior are approximated by using the discrete random samples obtained

by drawing from the posterior10.

We use the Liu and West (2001) version of the of the particle filter, which

allows joint estimation of state and parameter vectors. To ensure convergence

of the procedure, we follow Liu and West (2001) suggestion and introduce the

following re-parameterization of our model:

α0 ≡(1− ρ)ω,

ρ ≡ exp(ρ̄)

exp(ρ̄) + 1
,

γ ≡(1− ρ2)
1
2 eγ̄,

(3.3)

and we estimate ω, ρ̄, and γ̄ instead of α0, ρ, and γ. Incidentally, the re-

parameterization allows a relatively easy interpretation of the parameters we need

to estimate11. Indeed, E(ht) = ω, which means that ω is the log-modal volatility,

and V(ht) = e2γ̄, i.e. sd(ht) = eγ̄.

9The advantages of a stochastic volatility model with respect to a GARCH are highlighted in
Fernández-Villaverde and Rubio-Ramı́rez (2013).

10The algorithm for the basic version of the particle filter has been developed by Gordon,
Salmond and Smith (1993). Other important contributions are included in Doucet, De Freitas
and Gordon (2001).

11Without these transformation, suggested in Liu and West (2001), we could have had problems
with estimating variances (which must be positive) and auto-regressive parameters (which must
be inside the unit circle). Instead, ω, ρ̄, and γ̄ can assume any real value, as the logistic transform
is constrained in the [0, 1] interval, and the log transform ensures a positive parameter.
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3.2.2 Data

Monthly data for general government borrowing requirements and public debt

are taken from the official series published by the Bank of Italy (Supplement to

the Statistical Bullettin - The public finances, borrowing requirements and debt).

Even though the fiscal rule is estimated with data starting from 1981, the VAR

we later estimate uses other variables that are only available from a later period.

In particular, we estimate the VAR on the time span that goes from January 1991

to March 2014.

The borrowing requirement is computed on a cash basis, using changes in the

stock of debt instruments, on which precise and almost complete information is

available. As discussed in Levin (1993), it is controversial whether cash-basis or

accrual-basis data (as in the national accounts) are the most appropriate when

studying the impact of government operations on the economy. In our case, cash

data are more reliable and sufficiently long. Moreover, deficit and debt data are

built with the same methodology and criteria.

As it is customary in the literature12, we exclude from the borrowing re-

quirement debt settlements and privatization receipts, because the first refers to

expenditures undertaken in past periods, while the latter cannot be considered as

resources compulsorily subtracted from the private sector.

Since the GDP series has quarterly frequency, the fiscal reaction function is

estimated on a quarterly basis13. Note that we could have tried to retrieve a

monthly measure for GDP within a mixed frequency approach, therefore being

able to estimate a monthly fiscal rule. However, in order to contain estimation

errors we preferred to avoid estimating a further state variable (i.e. monthly

GDP), hence we opted for aggregating the figures for borrowing requirements and

working at a lower frequency. Indeed, note that although debt figures are available

at a monthly frequency, they do not require temporal aggregation because they

are stock variables. Nonetheless, we believe that a formal comparison of fiscal

rules estimated at different frequencies (e.g. monthly versus quarterly) would

alone deserve to be performed in future research.

12See e.g. Giordano, Momigliano, Neri and Perotti (2007).
13As public finances data are monthly, deficit figures are aggregated by sum, while for debt,

we use the start-of-quarter figure. The output gap is obtained by HP-filtering the series for the
log real GDP (λ = 1600). All the series are seasonally and calendar adjusted using X-ARIMA-12
RSA4c filtering.
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3.2.3 Choosing the Priors

Economic theory does not offer any hint about the values of the parameters for

debt and GDP in the fiscal reaction function, i.e. β2 and β3 in Equation (3.1),

so we choose zero-mean uniform priors on a very wide support in both cases.

Regarding the auto-regressive parameter β1, one can reasonably expect it to lie

between 0 and 1, since the CAPB series appears stationary and does not present

negative auto-correlation. Therefore, we use a uniform prior on this support.

We do not have prior information about ρ̄ (the logit of the persistence of

the log-volatility), therefore we set ρ̄0|0 ∼ N (0, 1.5), which implies that ρ has an

almost uniform density on the support [0, 1], i.e. we expect log-volatility to be

neither a negatively auto-correlated nor an explosive process. The parameter ω is

the modal log-volatility of the fiscal shock. We expect eω to be lower than the

unconditional (sample) volatility of deft (Figure 3.1, lower left panel), and we

consequently choose ω0|0 ∼ N (−3.94, 0.2). Choosing a prior for γ̄ is particularly

difficult so we choose it based on what are the likely effects on the standard

deviation of the level shock once a one-standard-deviation volatility shock occurs

(see Figure 3.2)14. Finally, recall that E(ht) = ω, and sd(ht) = eγ̄ . Therefore, our

prior for the log-volatility is h0|0 ∼ N (E(ω0|0), eE(γ̄0|0)).

3.2.4 Estimates of Fiscal Policy Uncertainty

Figure 3.3 plots the estimated series for the time-varying volatility eĥt recovered

with the particle filter15. Two of the three relative peaks of the index during the

eighties (the one at the beginning of 1983 and the one in 1985) correspond to two

well-known episodes of macroeconomic turbulence related to public finances. At

the end of 1982 the Bank of Italy refused to buy government securities unsold on

the primary market, creating uncertainty on sovereign bond markets and obliging

the Parliament to pass a one-off one-year advance form the Central Bank. In

1985, the repayment of a dollar-denominated loan of a large public enterprise was

associated with severe foreign exchange turbulence.

It is interesting to note that the two main peaks in the volatility series are in

the nineties and coincide with critical moments in the recent history of Italian

14In the figure we show the effects on the standard deviation of the level shock when two
distinct one-standard-deviation volatility shocks occur. The first is a negative shock (left density),
whereas the second is a positive one (right density). The red line in the middle is the median of
the prior for the standard deviation of the level shock.

15We run the particle filter using M = 100, 000 and R = 150, 000, where M is the number of
particles that jointly approximate the posterior, and R is the number of draws in the auxiliary
variable sampling step.
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Figure 3.1: Priors for transformed parameters. Black lines are normal kernel density
estimates, red lines are the median of the distribution, whereas orange bands are 95%
prior probability intervals. The top left panel is the prior distribution for the auto-
regressive stochastic log-volatility parameter, obtained as the logistic transform of the
prior for the parameter ρ̄. The bottom left panel is the prior distribution for the median
volatility, where median log-volatility has been centered at the log-standard-deviation
of residuals obtained from estimating the fiscal rule with OLS. The remaining two
panels plot the prior distribution for the expected level shock volatility, where the
upper one calibrates the parameters needed to compute it at their expected values,
whereas the lower one accounts for their prior uncertainty. All resulting priors are very
uninformative.
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Figure 3.2: The figure shows the prior evaluation of γ̄, which represents the log-
volatility of log-volatility. The red line is the prior expected volatility, dark orange
lines are prior median volatilities after one-standard-deviation positive and negative
volatility shock, whereas light orange bands are their respective 95% prior probability
intervals. The top panel calibrates the relevant parameters at their prior expected value,
whereas the bottom one accounts for their prior uncertainty. As one can see, effects are
large enough to be sure that the prior distribution we choose for γ̄ is flat enough to be
uninformative.
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public finances. The first is in the second half of 1992, when a balance of payments

crisis questioned the viability of the fixed exchange regime and the sustainability of

Italian public finances. In this circumstance, the Government tightened budgetary

policy (with emergency measures decided in July 1992), but ultimately (September

1992) the country was forced to abandon the European Exchange Rate Mechanism.

The second peak is in the first half of 1999, i.e. the first months of the European

Monetary Union. Starting from January 1st 1999, the Euro area countries were

subject to a single fiscal framework, the so called Stability and Growth Pact.

Doubts about the implementation of the new rules can easily rationalize this

spike in our measure of uncertainty. A further element of fiscal uncertainty was

determined by the promise by the Government to give partly back to taxpayers –

but only in case of EMU admission – a one-off tax which was levied in 1996. The

fraction of the restitution was not specified ex-ante (it was decided only at the

end of 1999 and turned out to be 60%). Also relevant might have been, in the

same period, the introduction of two brand new taxes (the municipal and regional

additions to the personal income tax) also meant to increase the degree of fiscal

autonomy of local governments (which might in itself be considered something

which increases fiscal uncertainty).

Finally, the local peak in 2001 can be rationalized as the effect of a significant

turning point in fiscal policy, as the Parliament approved the first expansionary

budget in years. With the benefit of the hindsight, fiscal out-turns also benefited

by the windfall gains due to buoyant financial markets (which also influence our

fiscal stance measure).

Our level shock series, although recovered in a completely different framework,

correlates significantly with those recovered by Giordano et al. (2007). In par-

ticular, and as expected, it correlates positively with their tax shock series and

negatively with their expenditure shocks series.

Figure 3.4 depicts (as a representative example) the output gap coefficient

estimates obtained with our baseline particle filter against standard OLS estimates.

First, recall that parameters are assumed to be fixed in our model, whereas the

time-varying nature of the estimates obtained with the particle filter is due to

the posterior distribution being time-varying, not the parameter itself. This

behavior is natural in a filtering context, where estimates become more precise

as observations arrive. Had we estimated parameters with OLS on an expanding

window we would have obtained a very similar pattern. Interestingly, we see

that at the beginning of the sample the posterior distribution has a very wide

support, and that the point estimate is very unstable. This is sensible since very

few observations are available in the first part of the sample. Nevertheless, as
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Figure 3.3: Fiscal Policy Uncertainty Index. This series is the average of the posterior
distribution of the residual volatility recovered with the particle filter. Note that we
could also have used the median as our centrality measure. However, the differences
between the two series are negligible, thus we select the mean as our preferred central
measure of fiscal volatility.
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Figure 3.4: Particle Filter against OLS estimates. The graph shows that the filtering
procedure produces very similar coefficients as those obtained with standard OLS. Using
the particle filter allows to further disentangle the error component non-linearly with
the underlying stochastic volatility model which we assume to govern residual volatility.

observations are added the support becomes narrower, until with the very last

observation both the point estimate and the 95% probability intervals converge to

their OLS counterparts. This is practical evidence of the fact that the prior we

choose is flat enough to be uninformative. Results for the other coefficients are

very similar. Moreover, residuals recovered with the particle filter and with OLS

are the same to all practical purposes.

Figure 3.5 plots posterior estimates of fiscal rule parameters. Recall that we set

uninformative priors, meaning that the shape of the posterior distribution is only

driven by data information. Apart from the auto-regressive parameter β1 (which

is positive and significant, as expected) we find that the reaction to an increase
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Figure 3.5: Fiscal rule coefficients: posterior estimates. Black curves are normal
kernel density estimates, red lines are median estimates, whereas yellow bands are 95%
posterior probability intervals. The empirical sample is based on M = 100, 000 draws
from the posterior distribution.

in the debt-GDP ratio is a significant fiscal consolidation (negative β2). On the

other hand, fiscal policy seems to be counter-cyclical (negative β3) although the

coefficient is marginally non-significant on a 95% probability interval.
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3.3 Fiscal Policy Uncertainty and the Macroe-

conomy: a VAR Approach

3.3.1 Baseline Results

Having recovered the two series of the fiscal level shock and fiscal volatility shock we

are now ready to analyze their impact on macroeconomic variables. In particular,

we estimate a recursive auto-regressive model with conditioning exogenous variable

corresponding to our measure of fiscal level shock and fiscal volatility shock (FPU).

In the econometric literature this model is usually referred as a VARX model or

as a rational distributed lag model16. Our system of equations is:

Yt = δ0 + δ1t + δ2t
2 + A(L)Yt−1 + B(L)χt + C(L)µt + υt, (3.4)

where the vector Yt contains the log of real private GDP, the log of the private

GDP deflator, log private employment and the 10 years Government bond yields.

The variables χt and µt are respectively the fiscal level shock and the FPU

determined outside the system of the equations. δ0, δ1 and δ2 are vectors of

coefficients, while A(L), B(L) and C(L) are finite-order polynomials in the lag

operator L.17 Finally, t is a time trend, and υt a vector of white noise and

mean-zero indipendently and identically distributed error terms.

Note that we could have included the fiscal shocks in the vector of endogenous

variables, ordered first in the spirit of Romer and Romer (2010). As we will see

later, doing this yields virtually the same results.

Our system is estimated using standard Bayesian techniques. In particular, we

use a non-informative prior (Jeffrey’s prior) distribution on parameter space and

an inverse Wishart distribution as the conjugate prior for the covariance matrix.

Antithetic acceleration is then used to improve convergence of the Monte Carlo

draws.

We feed the estimated model with a one-standard-deviation shock on the

unexpected variations in the cyclically adjusted primary balance (as a fraction of

GDP) or, alternatively, a one-standard-deviation shock in unexpected FPU (i.e.

the shocks to the log-volatility of the innovations to the balance budget). We

show that not only the effects of the two shocks are quite different but also that

not properly disentangling the two sources of the fiscal shocks and mixing them

in a single shock would blur the effects of fiscal policy.

16See Lütkepohl (2005).
17Both AIC and BIC select 1 lag as preferred specification.
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Figure 3.6 shows the conditional movements of the Italian macroeconomic

variables after an unexpected expansionary fiscal shock. Standard Keynesian

effects tend to dominate. GDP rises significantly and so does employment: the

peak18 response in GDP is reached after one quarter and, although positive, is

rather weak (0.23%); the response in employment is strong and persistent reaching

a peak (0.2%) after two quarters and remaining significantly positive for three

years. The 10-year government bond yield tend to rise although not significantly.

When we feed the model with an unexpected shock to FPU, results are reversed.

Private GDP persistently and significantly decreases reaching a negative trough

after six quarters and employment persistently decreases reaching its lowest level

after 10 quarters (results are shown in Figure 3.7). This result is consistent with

the large theoretical literature on real options, whose key finding is that increases in

the volatility of the profitability of investment opportunities induce firms to adopt

a wait-and-see strategy, which is a rational behavior even when firms are not risk

averse. The reason for this is that higher uncertainty increases the probability of

receiving very low returns from investment, and the firm can profitably hedge from

this undesirable outcome by waiting for uncertainty to resolve, and particularly by

waiting until investment returns reach a given higher threshold. In this sense, an

investment opportunity which has a considerable sunk cost that can be delayed

over time can be seen as a call option, where the firm can decide whether and

when to invest. In our framework, fiscal policy uncertainty is one of the many

sources of uncertainty that a company faces, and (as we said above) if higher

uncertainty leads firms to wait for new (capital and labor) investments, this leads

ceteris paribus to a generalized depression, which is what we find to happen in

our sample.

To sum up, the two fiscal shocks have an opposite impact on economic activity:

GDP increases after a level shock (fiscal expansion) and decreases after a volatility

shock (FPU increase). As we argued in the Introduction, ignoring the existence of

the two dimensions of fiscal shock might be the underlying reason for the different

effects recovered in the literature on fiscal multipliers.

Our results suggest that both the Keynesian and the non-Keynesian view of

the effects of fiscal policy may be reconciled: a policy which increases the budget

deficit tends to sustain growth if the way in which it is implemented decreases

- or at least does not increase - FPU, but it can be contractionary otherwise.

To illustrate this point, in Figure 3.8 we show the joint effect on the dynamic

18Importantly, recall that the figures to come are to be intended as quarterly (not annual)
responses, which means that the corresponding annual effect would roughly be equal to four
times the reported numbers.
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Figure 3.6: Impulse Response Functions - CAPB level shock. Orange bands are 68%
bootstrapped confidence intervals, and responses are quarterly effects. A fiscal expansion
drives private production and employment upwards, and puts pressure on prices and
interest rates.

system of a one-standard-deviation expansionary fiscal shock and a simultaneous

two-standard-deviations FPU shock19. In this case, the response of private GDP

and private employment becomes largely insignificant. The fiscal expansion is

in this case worthless as it induces a recessionary increase in FPU. The example

corroborates our argument that governments should take into account, when

assessing the effectiveness of a planned fiscal measure, the possible effects on

uncertainty.

19In selecting a higher volatility shock we follow Fernández-Villaverde et al. (2015).
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Figure 3.7: Impulse Response Functions - FPU shock. A one-standard-deviation shock
in fiscal volatility leads economic activity to drop, and this is most likely due to the real
options channel which leads private agents to a wait-and-see behavior which potentially
delays investment and consumption decisions. Note that the interest rate response is
still positive and significant, whereas prices increase although not significantly.

93



“Essays*on*Volatility*Networks*and*Uncertainty” — 2018/2/7 — 8:19 — page 94 — #108

0 4 8 12 16
-3

-2

-1

0

1

2

3

4 #10 -3
log Priv. GDP

0 4 8 12 16
-3

-2

-1

0

1

2

3

4 #10 -3
log Priv. GDP Deflator

0 4 8 12 16
-3

-2

-1

0

1

2

3 #10 -3
log Priv. Employment

0 4 8 12 16
-2

-1

0

1

2

3

4 #10 -3
Interest Rate

Figure 3.8: Impulse Response Functions - joint shocks to CAPB and FPU. In this
experiment we simulate the effects of an expansionary fiscal policy that has been imple-
mented with a substantial degree of uncertainty. Interestingly, the attempt to sustain
the economy is completely offset by the adverse uncertainty effects that accompany
the fiscal measure. Moreover, pressures on prices and interest rates sum up to reach
higher levels than those obtained had the expansionary measure be enacted with no
uncertainty.
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Figure 3.9: Impulse Response Functions - All variables endogenous - CAPB level shock.
In this picture we plot robustness check results obtained by inserting the volatility and
fiscal shocks series among the endogenous variables, and ordering them respectively first
ad second in the VAR. We feed the model with a positive fiscal shock. Results are the
same to all practical purposes.

3.3.2 Robustness Checks

In the current section, we report the results of several robustness checks.

Inclusion of the structural shocks among the endogenous variables

We perform these estimates as a robustness check even though we checked that,

in our VAR, the fiscal structural shocks are statistically unrelated to the other

endogenous variables, i.e. no variable Granger-causes our fiscal shocks. In par-

ticular the variables included in Yt do not Granger-cause the structural shock

εt. However, when ut is considered results are less clear-cut and it might well

be possible that there exist a particular lag structure configuration for which a

single variable in the vector Yt might Granger-cause ut. In order to show that

this possibility does not bias our results, we report also the estimates à la Romer

and Romer (2010) including εt and ut in the vector of endogenous Yt. As one

can see, results (see Figures 3.9-3.10) are strongly comparable. Incidentally, we

checked that changing the order of the variables in the VAR does not change the

results.
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Figure 3.10: Impulse Response Functions - All variables endogenous - FPU shock. This
picture shows that our baseline results concerning the effects of FPU on macroeconomic
variables are robust to the inclusion of the two shocks series as endogenous variables in
the VAR.

Different measures of fiscal balance

We estimated the fiscal rule with different measures of budget deficit. In particular,

volatility estimates are robust to using the following dependent variables instead

of the CAPB: total borrowing requirement (i.e. including interest outlays), change

in the total borrowing requirement, change in the CAPB, cyclically unadjusted

primary balance, change in the cyclically unadjusted borrowing requirement.

Indeed, running the particle filter with all the above measures yields similar

filtered estimates for volatility. This is interesting because it means that our

volatility estimates do not depend on the measures of budget balance we use in

the fiscal rule, which instead is a hotly debated issue20.

An alternative uncertainty index

Our result that an increase in uncertainty is contractionary is in line with Baker

et al. (2016). In our case, though, the shock has a much cleaner interpretation.

The uncertainty shock we identify is a pure FPU shock, while the one recovered

in Baker et al. (2016) is a generic uncertainty shock which mixes uncertainty

coming from fiscal policy with a generic economic policy uncertainty stemming

20See, e.g., Golinelli and Momigliano (2009).
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from several other sources. Indeed, their EPU index is a weighted average of

different series and does not isolate uncertainty coming from fiscal policy only,

i.e. it is not a FPU index. Nevertheless, we replicated our VAR analysis using

their index and found that the results are qualitatively the same. If one uses each

sub-component instead of the general index, it appears that results are driven by

the Google-counter news, whereas the series meant to proxy fiscal uncertainty, i.e.

the dispersion of the consensus forecast on the budget, had no significant effect

on the macroeconomic variables.

Figure 3.11 plots our volatility series together with Baker et al. (2016) index.

While the latter is meant to capture a broad concept of uncertainty for Italy,

our index is meant to isolate the fiscal policy uncertainty shock. Along this

dimension our series may be considered a sub-index of Baker et al. (2016) and

we should expect some positive correlation. Indeed, the correlation is equal to

around 22%. We observe two periods (specifically the fourth quarter of 2011

and the first quarter of 2013) where Baker et al. (2016) index detects two large

spikes in EPU, whereas our FPU series roughly stays constant. Those dates

respectively coincide with the government change in November 2011 in the context

of the Italian Sovereign debt crisis, and with the 2013 national elections which

have seen great political fragmentation, internal divisions within parties, and the

emergence of new political forces. The fact that our FPU index does not record

significant increases in uncertainty is sensible given that it was known that further

expansionary policies would not have been pursued, and that fiscal consolidation

was about to start.

3.4 Concluding Remarks

The fact that economic uncertainty plays a role in shaping the business cycle should

be by now relatively uncontroversial. As John Cochrane puts it, “the question

is: how much uncertainty is there? To what extent and by what mechanism does

uncertainty influences GDP, investment and stock prices? The answer is certainly

more than zero and less than infinity. As economists we need to look quantitatively

at different causes of stagnation”21.

In this paper we take in this direction by isolating the uncertainty stemming

from a specific source - namely governments decisions about the overall fiscal

policy stance - and measuring its effects on the macro-economy. We find that

when FPU - captured by a volatility shock in the government fiscal reaction

21Quoted in Mordfin (2014).
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Figure 3.11: This picture compares our Fiscal volatility index against Baker et al.
(2016) index. The two series co-move significantly, and the most relevant differences (at
the beginning and at the end of the sample) are likely due to fundamental differences in
the type of uncertainty measure they attempt to track.
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function - unexpectedly increases, both GDP and its components decrease. This

result highlights that fiscal policy does not simply have to care about choosing an

appropriate deficit level, but it also has to anchor fiscal expectations. The same

change in the public deficit may have very different macroeconomic consequences,

depending on whether the choice of the government increases or decreases the

uncertainty surrounding fiscal policy.

This should be taken into account by econometricians trying to measure the

impact of budgetary consolidations and expansions and by fiscal authorities,

which should rely on credible and well communicated medium term budgetary

frameworks in order to avoid large and sudden policy adjustments.
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