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Abstract

Inspired by the way the brain processes information, artificial neural networks
(ANNs) were created with the aim of reproducing human capabilities in tasks that
are hard to solve using the classical algorithmic programming. The ANN paradigm
has been applied to numerous fields of science and engineering thanks to its abil-
ity to learn from examples, adaptation, parallelism and fault-tolerance. Reservoir
computing (RC), based on the use of a random recurrent neural network (RNN) as
processing core, is a powerful model that is highly suited to time-series processing.
Hardware realizations of ANNs are crucial to exploit the parallel properties of these
models, which favor higher speed and reliability. On the other hand, hardware neural
networks (HNNs) may offer appreciable advantages in terms of power consumption
and cost. Low-cost compact devices implementing HNNs are useful to support
or replace software in real-time applications, such as control, medical monitoring,
robotics and sensor networks. However, the hardware realization of ANNs with
large neuron counts, such as in RC, is a challenging task due to the large resource
requirement of the involved operations. Despite the potential benefits of hardware
digital circuits to perform RC-based neural processing, most implementations are
realized in software using sequential processors.
In this thesis, I propose and analyze several methodologies for the digital imple-
mentation of RC systems using limited hardware resources. The neural network
design is described in detail for both a conventional implementation and the diverse
alternative approaches. The advantages and shortcomings of the various techniques
regarding the accuracy, computation speed and required silicon area are discussed.
Finally, the proposed approaches are applied to solve different real-life engineering
problems.
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Resum

Inspirades en la forma en què el cervell processa la informació, les xarxes neu-
ronals artificials (XNA) es crearen amb l’objectiu de reproduir habilitats humanes
en tasques que són difícils de resoldre mitjançant la programació algorítmica clàssica.
El paradigma de les XNA s’ha aplicat a nombrosos camps de la ciència i enginyeria
gràcies a la seva capacitat d’aprendre dels exemples, l’adaptació, el paral·lelisme
i la tolerància a fallades. El reservoir computing (RC), basat en l’ús d’una xarxa
neuronal recurrent (XNR) aleatòria com a nucli de processament, és un model de
gran abast molt adequat per processar sèries temporals.
Les realitzacions en maquinari de les XNA són crucials per aprofitar les propietats
paral·leles d’aquests models, les quals afavoreixen una major velocitat i fiabilitat.
D’altra banda, les xarxes neuronals en maquinari (XNM) poden oferir avantatges
apreciables en termes de consum energètic i cost. Els dispositius compactes de baix
cost implementant XNM són útils per donar suport o reemplaçar el programari en
aplicacions en temps real, com ara de control, supervisió mèdica, robòtica i xarxes de
sensors. No obstant això, la realització en maquinari de XNA amb un nombre elevat
de neurones, com al cas de l’RC, és una tasca difícil a causa de la gran quantitat
de recursos exigits per les operacions involucrades. Tot i els possibles beneficis
dels circuits digitals en maquinari per realitzar un processament neuronal basat en
RC, la majoria d’implementacions es realitzen en programari usant processadors
convencionals.
En aquesta tesi, proposo i analitzo diverses metodologies per a la implementació
digital de sistemes RC fent ús d’un nombre limitat de recursos de maquinari. Els
dissenys de la xarxa neuronal es descriuen en detall tant per a una implementació
convencional com per als distints mètodes alternatius. Es discuteixen els avantatges
i inconvenients de les diferents tècniques pel que fa a l’exactitud, velocitat de càlcul
i àrea requerida. Finalment, les implementacions proposades s’apliquen a resoldre
diferents problemes pràctics d’enginyeria.
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Resumen

Inspiradas en la forma en que el cerebro procesa la información, las redes neuronales
artificiales (RNA) se crearon con el objetivo de reproducir habilidades humanas en
tareas que son difíciles de resolver utilizando la programación algorítmica clásica.
El paradigma de las RNA se ha aplicado a numerosos campos de la ciencia y la inge-
niería gracias a su capacidad de aprender de ejemplos, la adaptación, el paralelismo
y la tolerancia a fallas. El reservoir computing (RC), basado en el uso de una red
neuronal recurrente (RNR) aleatoria como núcleo de procesamiento, es un modelo
de gran alcance muy adecuado para procesar series temporales.
Las realizaciones en hardware de las RNA son cruciales para aprovechar las propiedades
paralelas de estos modelos, las cuales favorecen una mayor velocidad y fiabilidad.
Por otro lado, las redes neuronales en hardware (RNH) pueden ofrecer ventajas
apreciables en términos de consumo energético y coste. Los dispositivos compactos
de bajo coste implementando RNH son útiles para apoyar o reemplazar al software
en aplicaciones en tiempo real, como el control, monitorización médica, robótica y
redes de sensores. Sin embargo, la realización en hardware de RNA con un número
elevado de neuronas, como en el caso del RC, es una tarea difícil debido a la gran
cantidad de recursos exigidos por las operaciones involucradas. A pesar de los posi-
bles beneficios de los circuitos digitales en hardware para realizar un procesamiento
neuronal basado en RC, la mayoría de las implementaciones se realizan en software
mediante procesadores convencionales.
En esta tesis, propongo y analizo varias metodologías para la implementación digital
de sistemas RC utilizando un número limitado de recursos hardware. Los diseños de
la red neuronal se describen en detalle tanto para una implementación convencional
como para los distintos métodos alternativos. Se discuten las ventajas e inconve-
nientes de las diversas técnicas con respecto a la precisión, velocidad de cálculo y
área requerida. Finalmente, las implementaciones propuestas se aplican a resolver
diferentes problemas prácticos de ingeniería.
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1. Motivation and objectives

1.1. Motivation

Numerous real-world applications require the execution of tasks that humans can
accomplish with apparent ease, but are difficult to perform through standard pro-
grammed algorithms. Emblematic examples are speech processing and image recog-
nition. Today’s society demands the development of smart methodologies for ex-
tracting useful information from the increasingly large amounts of data it generates.
The field of “machine learning” investigates systems that are not limited to repeat-
ing an explicit set of instructions defined by a programmer, but present the ability
of learning by generalization from data. Artificial neural networks (ANNs) are one
of such machine learning techniques. They mimic some general features of the brain
on the hope to reproduce its capabilities.
ANNs make it possible to automate tasks that are complex to be programmed
with sequential computers and represent a useful engineering tool for a variety of
technical applications, such as pattern recognition and function approximation. In
particular, recurrent neural networks (RNNs), a type of ANN characterized by the
presence of closed loops, present the capacity of extracting temporal information
from sequential data, which is crucial to perform tasks such as speech recognition
or time-series forecasting.
Nevertheless, despite the potential capacities of RNNs for solving complex temporal
machine learning tasks, the application of this approach to real-world problems is
limited by its complex training procedure, which is relatively time consuming and
requires substantial skill to be successfully applied. Reservoir computing (RC) offers
a practical alternative to such hard training. With an strategic design of the network,
RC reduces the complex training of recurrent networks to a simple linear regression
problem facilitating their practical application. The plausibility of RC systems and,
in general, of ANNs for modeling biological networks and simulating computation
processes in the brain is also an important reason that motivates their development
and study. In this thesis, however, I am mainly interested in RC networks as a tool
for solving engineering problems. RC has been shown to be a successful approach to
perform time-series prediction and classification tasks in many different application
fields, such as digital signal processing, robotics, computer vision, medicine and
finances. The major advantages of RC over “traditional” RNNs are fast learning
speed, ease of implementation and minimal human intervention, which, all in all,
allow for a more widespread use of RNNs.
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Chapter 1 Motivation and objectives

Machine learning techniques such as ANNs and RC systems are usually implemented
in software by means of general-purpose sequential processors. However, this is un-
satisfactory for certain applications, which require specific hardware to realize such
algorithms. More specifically, the development of specialized hardware is crucial
to achieve fast, efficient and reliable neural networks. Contrary to software solu-
tions, hardware-based neural networks (HNNs) can exploit the inherent parallelism
of ANNs offering a significant speedup in applications that demand a high-volume
and real-time processing, such as computer vision tasks and data mining. On the
other hand, HNNs allow to reduce the power consumption, which is interesting for
applications requiring autonomy and/or mobility, such as robot control, wireless
sensor networks and wearable medical devices. In addition, specialized hardware
implementing neural networks may offer advantages in terms of cost and reliability
(fault-tolerance), which is important for massively produced electronics devices and
safety-critical applications, respectively.
RC has received a lot of attention from the research community since its appearance
in the last decade. Nevertheless, the development of methods for its hardware im-
plementation still deserves to be extensively explored. Despite the potential benefits
of hardware digital circuits to perform RC-based neural processing (e.g., speed gains
and power savings), very few implementations of this type have been proposed. It
must be noted that the efficient hardware implementation of RC networks using
compact devices, such as low-cost field-programmable gate arrays (FPGAs), is not
straightforward due to the usually large number of nodes employed in RC networks
(typically on the order of 50 to 1000) and the high chip area required by the opera-
tions involved with each processing node. Consequently, unconventional techniques
must be investigated to obtain smart implementations using reduced hardware re-
sources. The development of efficient dedicated hardware realizations of RC may
extend the utility of the approach to a wider range of applications, especially those
demanding real-time processing capabilities and/or with constraints on power sup-
ply.
The development of specific hardware realizing machine learning algorithms such as
ANN models is usually a long process that requires specialized knowledge on digital
hardware design. Unlike personal computers or low-cost microcontrollers, hardware
devices such as FPGAs cannot be configured using standard sequential programming
languages, but require the use of hardware description languages, such as VHDL,
which is normally time consuming. It must be considered that each implementation
must be tailored to the specific application in order to satisfy the particular require-
ments and optimally employ the hardware resources. As a result, building such
hardware may be expensive. The availability of a tool allowing to easily generate
the VHDL code associated with a particular network design for any desired configu-
ration parameters would facilitate the implementation of HNNs. Such a tool for the
automatic generation of RC hardware could accelerate the hardware development
cycle of these implementations, and even enable their use to non-experts in the field
of digital hardware design.
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1.2. Objectives

These are the general objectives of the present thesis:
• Develop and provide a detailed description of different methodologies for imple-

menting RC systems in digital hardware. The proposed approaches include a
binary logic conventional implementation, stochastic computing, a multiplier-
less design, and delay-based schemes.

• Implement the proposed designs using programmable hardware devices (FP-
GAs) and evaluate their performance for benchmark tasks. Analyze the ad-
vantages and shortcomings of each implementation scheme and assess their
adequacy for particular applications.

• Develop software programs capable of emulating the different hardware im-
plementations, which is useful to adequately train the systems and also to
evaluate them prior to hardware implementation.

• Provide structural hardware description (VHDL) codes of the presented real-
izations, which may help potential users to develop designs adapted to their
particular needs. Further facilitate and accelerate the implementation process
of FPGA-based RC systems by developing software programs to automatically
generate the VHDL codes of the different proposed designs.

• Demonstrate the usefulness of the developed implementations applying them
to solve several real-life engineering problems. Describe additional potential
application areas for the proposed hardware-based RC systems.

1.3. Structure

The thesis is organized as follows:
Chapter 2 presents an overview of the research field of artificial neural networks,
in particular of the reservoir computing technique. The motivation and principles
of neural network operation are introduced along with different types of network
architectures and applications. Three fundamental versions of reservoir computing
(echo state networks, liquid state machines and single dynamical node RC) are
described in detail. Special attention is given to the motivations behind the hardware
implementation of artificial “intelligent” systems such as those based on the reservoir
computing methodology, which is the subject matter of the following chapters.
Chapter 3 presents a “conventional” digital hardware design for a fully-parallel echo
state network. Such implementation serves as benchmark for the subsequent alter-
native designs and also to introduce several issues related to the implementation of
neural networks in digital circuitry.
Chapter 4 proposes the use of stochastic computing, a low-cost alternative to con-
ventional binary computing that reduces the circuitry devoted to the arithmetic
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operations in echo state networks. The principles and various applications of the
stochastic computing approach are presented and applied to build echo state net-
works. The resulting “stochastic ESN” implementation is benchmarked against the
conventional design of previous chapter evaluating the advantages and shortcom-
ings. The design and some results presented in this chapter have been published in
the Computational Intelligence and Neuroscience journal ([ACPM+16]). Preliminar
results were also presented in the conference papers [ACMMR14] and [ACMMR15].
Chapter 5 also provides an implementation scheme for reservoir networks based on
stochastic computing. However, it offers a different view on stochastic ESNs, which
are interpreted as an approximation to liquid state machines given the capabil-
ity of “stochastic neurons” (i.e., sigmoid-like neuron models implemented with the
stochastic computing approach) to simplistically emulate the spiking behavior. This
chapter is based on the article [RAM+16], published in the International Journal of
Neural Systems, and on the conference paper [ACM+16].
Chapter 6 presents a compact digital hardware design for echo state networks based
on constraining the resolution of the synaptic weight values, which allows replac-
ing multipliers by simpler operations consuming minimal resource. The proposed
implementation is termed “hardware ESN without multipliers”. This approach has
been presented in the article [ACI+17a], submitted to the Neural Computing and
Applications journal.
Chapter 7 introduces a design based on the idea of sequentializing the operation
of the echo state network so that a single neuron evaluated at different temporal
positions emulates the whole network. That is, the hardware requirements are re-
laxed at the cost of a longer computation time. The approach is referred to as a
“delay-based ESN” since the output of the single implemented neuron at a given
time is given in terms of its value at a previous time step.
Chapter 8 presents a digital realization of a single dynamical node reservoir com-
puter, which emulates the nodes of a recurrent network by sampling the solutions of a
delay differential equation. As in the delay-based ESN, a serial computation scheme
is followed so that the output of each “virtual” node of the network is computed as a
function of its delayed values. However, in this case, a differential equation is solved
to determine the output of each node instead of a simpler discrete-time recursive
formula. The information presented in this chapter is partly based on the article
[ASEM+15], published in the journal IEEE Transactions on Circuits and Systems
II.
In chapter 9, the value of the proposed reservoir computing implementations is
highlighted applying a selected design to perform different tasks of practical rel-
evance, such as handwriting recognition and the equalization of a communication
channel. Furthermore, numerous potential application areas of the systems devel-
oped throughout the thesis are described. Some of this chapter’s results have been
presented in the conference paper [ACI+17b].
Finally, chapter 10 compares the proposed designs in terms of area requirements,
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accuracy and computation speed. This allows to assess the suitability of the different
approaches for certain application fields. The conclusions of the thesis are drawn
and some lines for future research are proposed.
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2. Introduction

2.1. Overview

This chapter introduces the research field of artificial neural networks (ANNs) and,
in particular, the reservoir computing (RC) technique. Among the recent ANN
approaches, RC stands out for its capability to deal with temporal signals while
presenting a fast and easy training procedure. Different reasons motivate the study
of RC systems and, in general, of ANNs, such as their biological plausibility or
their analogy with complex dynamical systems. My main interest in RC networks,
however, is their practical utility as a tool for solving engineering problems, such as
modeling nonlinear dynamical systems, performing time-series forecasting, temporal
pattern recognition or nonlinear regression. More specifically, this thesis is aimed
at presenting methodologies for the efficient digital hardware implementation of
RC systems, which is crucial for their widespread use in real-time and real-world
applications.
Next section presents the general concept of ANNs, the different types of neuron
models, network architectures, and their main applications. Then, sec. 2.3 describes
the RC approach with its different versions and the applications it is particularly
well suited for. Finally, sec. 2.4 describes the motivations behind the realization of
ANNs in hardware and presents a brief survey of previous works on this topic.

2.2. Artificial neural networks

Artificial neural networks (ANNs) are a computational approach inspired (to a
greater or lesser extend) by the way our brain processes information. From the
engineering point of view, the reason that motivates the development of ANNs is
the necessity to create more “intelligent” systems. Even though there are many
tasks that are ideally suited to be solved by conventional sequential computers (e.g.,
to perform precise and fast arithmetic operations), there are some problems that are
unsolvable or difficult to solve in a deterministic way through the use of sequential
algorithms.
Let us consider, for example, a problem of visual pattern recognition such as the
recognition of handwritten alphanumeric characters or of a particular object in a
picture. It is difficult to program a sequential computer system to perform this
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type of inherently parallel tasks. A number of sophisticated techniques must be
used, perhaps even failing to find an acceptable solution. On the other hand, people
and animals are fast and efficient recognizing images. This is more surprising if we
take into account that modern electronic devices (with a switching frequency on the
order of a few GHz) are more than a million times faster than our neurons (with
a response time typically on the order of 1-10 ms). The reason for this is partly
answered by the fact that the brain’s architecture is significantly different from that
of a conventional computer. The massive parallelism and inter-connectivity observed
in the biological systems is the key of the many different processing tasks that can
be efficiently performed by the brain.
The socially demanded applications that we expect our computers to perform (e.g.,
speech processing or image recognition) can be easily accomplished by humans, but
are too complex to be executed using the classical deterministic algorithms. Given
the increasing amount of available information and its importance in today’s society,
it is necessary to look for alternative methods capable to automatically process such
amounts of complex information. The traditional field of computer science deals
with the automation of information processing while the areas of computational
intelligence and machine learning (ML) are focused on creating methods for solving
complex tasks that require some kind of intelligence. That is, systems that can learn
from experience instead of repeating an explicit set of instructions so that they are
able to give non-trivial responses when they are faced with stimuli they have not
seen before.
ANNs are one of the different ML techniques, which present the capability of learning
by generalization from training examples (instead of being explicitly programmed).
Among other ML algorithms, we can mention support vector machines (SVMs), de-
cision trees, hidden Markov models (HMMs), genetic algorithms, deep learning or
cluster analysis ([Mit97], [Kec01]). ANNs borrow features from the brain’s behavior
to reproduce its flexibility and power by artificial means. A number of different
names are used in the literature to refer to the ANN approach ([RM86], [FS91],
[Zur92], [Bis95], [MMR97], [Hay01], [Dre05], [Gal07], [MOM12]), such as artificial
neural systems (ANSs), neurocomputing, network computation, connectionism, par-
allel distributed processing, layered adaptive systems, or neuromorphic systems.
A neural-network structure is a collection of parallel processors connected together
in the form of a directed graph. Fig. 2.1 schematically represents a typical network
diagram, where the basic processing elements are called artificial neurons, or simply
neurons. Often we also refer to them as nodes. In some cases, they can be considered
as threshold units that fire when their input stimulus exceeds a certain value. The
connections are indicated by arcs and the information flow is indicated through the
use of arrowheads. Neurons are often organized in layers, and feedback connections
both within the layer and toward adjacent layers are, in principle, allowed. Each
connection strength is expressed by a numerical value called a weight, which is
modified during the training process.
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2.2 Artificial neural networks

Figure 2.1.: Schematic representation of an artificial neural network (ANN).

The input and output layer contain the problem’s input and desired output variables.
For example, in a handwritten character recognition task the inputs may be the pixel
intensity values of the image or the trajectories of a pen tip along different directions
while the output units represent each one of the characters to be identified (the
network must activate the output that most resembles the given input pattern).
In contrast to conventional computers, which are programmed to perform specific
tasks, ANNs must be taught, or trained. They have the capability to learn the
desired functional dependencies from example data pairs (supervised learning). In
this case, the process of training the network corresponds to changing the connection
weights systematically to reproduce the desired input-output relationships. Once the
network is trained, it is able to reproduce the desired outputs even when stimuli it
has never seen before are processed. Moreover, there are different techniques that
enable the training of the ANN in an unsupervised way so that the network is able
to differentiate stimuli without the presence of a “teacher” indicating which kind
of stimulus is sequentially charged in the inputs during the training phase. For
this kind of learning, the network is able to produce the same response every time
the stimulus is repeating a previously observed pattern. This ability to generalize
examples in an “intelligent” way to new inputs is difficult to be reproduced by
traditional algorithmic computers.
The field of neural networks is broad and interdisciplinary. The present thesis fo-
cuses on their use as learning machines to solve complex engineering problems, but
there are more reasons that motivate research in ANNs. From the perspective of
computational neuroscience, neural-network models are constructed and simulated
to understand better how the brain works and the way it performs computation
([Mac87]). Similarly, psychologists look at artificial neural networks as possible
prototype structures of human-like information processing. On the other hand,
physicists and mathematicians are interested in studying the properties of neural
networks as complex nonlinear dynamical adaptive systems ([Mac02]).
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The beginning of neurocomputing goes back to the 1940s when McCulloch and Pitts
introduced the first neural network computing model using simple binary thresh-
old functions for the neurons ([MP43]). They noted that many arithmetic and
logical operations could be implemented using such models. In 1949, Hebb wrote
The Organization of Behavior ([Heb49]), an influential book that pointed out the
fact that neural connections are strengthened each time they are used. That is, he
proposed a learning rule for synaptic modification. In the late 1950s, Rosenblatt
invented a device called the perceptron, a two-layer network (i.e., with no hidden
layers) employing the McCulloch-Pitts neuron model, which was capable of learn-
ing certain classification tasks by adjusting connection weights ([Ros58]). Slightly
later, Widrow developed a different type of neural-network processing element called
ADALINE ([Wid60]), which was trained by a gradient descent rule to minimize
the mean square error. Such powerful learning method is still nowadays widely
used. In 1969, the book Perceptrons by Minsky and Papert ([MP69]) showed the
limited capability of simple perceptrons. More especifically, it was demonstrated
that the perceptron was not computationally universal as it was unable to solve
the classic XOR (exclusive or) problem. This publication is often considered to
have caused the decline of the field of neural networks for almost two decades.
In the 1980s, the works of Hopfield ([Hop88]) and Rumelhart ([RM86], [RHW86])
with multiple-layered neural networks motivated many researchers to feel renewed
interest in neural computation, after which the field exploded again. Nowadays,
ANNs still represent an active field of research with relevant applications in various
disciplines, such as computer vision ([CMGS10], [JWW15]) and automatic speech
recognition ([VSS06], [YD15], [SSR+15]). Recent ANN approaches include long
short-term memory (LSTM, [HS97]), reservoir computing (RC, [MNM02], [LJ09])
and deep neural networks (DNNs, [Sch15]) among others. The present thesis deals
with the RC technique.
Even though neuroscience has inspired the development of ANSs, this thesis is not
directly concerned with biological networks. Rather, my primary interest in ANN
models is due to their capability of learning desired input-output relationships from
representative data, which makes them a useful engineering tool for a variety of
technical applications ([JM99], [Dre05]). ANSs allow us to automate tasks that are
complex to be programmed with sequential computers, such as complex pattern
recognition. In addition, they provide an arbitrary function approximation mech-
anism that “learns” from observed data ([Mit16]). That is, they can be used as
black-box models to estimate or approximate functions that depend on a number of
inputs without the need of deriving an explicit model equation. This is particularly
useful in applications where the complexity of the data or task make unfeasible to
obtain an analytical model. For example, such black-box models can be used to sim-
ulate, predict, filter, classify or control nonlinear dynamical systems, which abound
in science and engineering ([JH04]).
There is no doubt that the massively parallel computational networks open a range
of opportunities in the areas of artificial intelligence, computational theory, sig-
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nal processing, modeling and simulation, and others. However, the development
of hardware is crucial for the future of neurocomputing since the achievement of
fast, efficient and reliable neural networks depends on hardware being specified for
its eventual use ([MS10]). This motivates the particular interest of this thesis in
the implementation of ANNs (following the RC approach) in digital hardware for
building circuit-based intelligent machines.
Next subsections describe the most commonly employed neuron models and how
the neural units can be arranged to form different network structures. Finally, the
potential application areas of ANNs are described in more detail.

2.2.1. The spiking neuron model

Spiking neural networks represent the last generation of ANNs in an attempt to em-
phasize the neuro-biological aspects of artificial neural computation. Real biological
neurons communicate with each other by means of sequences of electrical pulses,
spikes (Fig. 2.2). This is the most characteristic feature of spiking neural mod-
els. In addition, the spiking neuron model presents the following general properties
([PK11]):

• The neuron processes the information that comes from the inputs to produce
a single spiking signal at the output.

• Its inputs can be excitatory or inhibitory depending on whether they increase
or decrease the probability of generating a spike.

• Its dynamics is characterized by at least one state variable. The model pro-
duces a spike when the internal variables reach a certain state.

Figure 2.2.: Drawing of two connected biological neurons, which communicate
through sequences of spikes. The main parts of the neuron are the dendrites,
the axon and the soma (cell body). The presynaptic neuron connects with the
postsynaptic one through the synapses. Image adapted from [web16c].

The basic mechanism describing how spiking neurons work is illustrated in Fig. 2.3:
the neuron sends out an electrical pulse when it has received a sufficient number of

25



Chapter 2 Introduction

pulses from other neurons. The membrane potential of a spiking neuron is modeled
by a dynamic variable and works as a leaky integrator of the incoming spikes so that
newer spikes contribute more to the potential than older ones. If this sum is higher
than a predefined threshold, the neuron fires a spike at its output.

Figure 2.3.: Basic operation mechanism of the spiking neuron: the incoming pulses
(spike trains, represented by vertical lines) increase the membrane potential until
it reaches a threshold value and an output spike is fired. Figure adapted from
[Boo04].

More specifically, the biological process of spike transmission can be described as
follows ([GB14]). The action potentials (spikes) travel along the axons and acti-
vate synapses (Fig. 2.2). These synapses release a neurotransmitter that quickly
diffuses to the postsynaptic neuron. There, the neurotransmitters affect the neu-
ron’s membrane potential. Excitatory Postsynaptic Potentials (EPSPs) increase the
membrane potential (depolarize), and in the absence of new stimuli, this excitation
leaks away with a typical time constant. On the other hand, Inhibitory Postsynap-
tic Potentials (IPSPs) decrease the membrane potential (hyperpolarization). When
sufficient EPSPs arrive at a neuron, the membrane potential may depolarize enough
to reach a certain threshold, and the neuron generates a spike itself while the mem-
brane potential is reset. The generated spike function is the stimulation of other
neurons. After the spike emission, the neuron enters a resting state (the refractory
period) in which it cannot send out a spike again. Fig. 2.4 illustrates the response
of the membrane potential to incoming spikes (only EPSPs are considered).
The neuron’s mathematical model is a dynamical system (describing how the input
spike train is transformed into an output spike train) that can be given on different
levels of abstraction. While some models are very detailed, usually aimed at per-
forming accurate simulations of the biological processes occurring in a single neuron,
others are more abstract and generally intended to build networks of neurons and to
make them “learn” something. The most famous example of detailed model is the
Hodgkin-Huxley model ([HH52]). Other models representing different trade-offs be-
tween neuroscientific realism and computational complexity are the Spike Response
Model ([MB99], [Boo04]), the Integrate-and-Fire (IF) model ([Ste67], [MB99]), the
Leaky-Integrate-and-Fire (LIF) model ([GK02]), the Quadratic-Integrate-and-Fire
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Figure 2.4.: Response of the membrane potential u(t) to incoming spikes (only
excitatory pulses are considered): u(t) increases when spikes arrive to the neuron
and decays without new inputs. Whenever u(t) crosses the threshold value ϑ, an
output spike is generated and u(t) is reset to a low value.

model ([BL03]), the FitzHugh-Nagumo model ([Fit61]), the Morris-Lecar model
([Che93]), the Hindmarsh-Rose model ([HR82]) and the Izhikevich model ([Izh03],
[Izh04]).
The most widely employed spiking neuron models are the IF and LIF models as they
are relatively simple to implement while capturing generic properties of neural activ-
ity ([Vre02]). These consider biological neurons as point dynamical systems, which
implies that the properties of biological neurons related to their spatial structure
are neglected.
The input and output of a spiking neuron is described by a series of firing times (a
spike train), which give the time at which the neuron produces a pulse. The shape
of the pulse is neglected since it is generally accepted that all the neural information
is carried by the timing of the spikes. Therefore, the output of a spiking neuron can
be expressed as in 2.1:

S(t) =
∑
f

δ(t− tf ) (2.1)

Where f = 1, 2, ... is the label of the spike and δ(.) is the Dirac delta function,
which satisfies δ(t) 6= 0 for t = 0 and

´∞
−∞ δ(t) = 1.

The LIF model is based on, and most easily explained by, principles of electronics.
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Figure 2.5.: Leaky-integrate-and-fire neuron model.

The schematic circuit representing the LIF unit is illustrated in Fig. 2.5. The incom-
ing spike (presynaptic action potential coming from another neuron) is transformed
by a low-pass filter (using the capacitor Csip and the resistor Rsip) into a current
pulse i(t) that flows into the postsynaptic neuron. This low-pass filter represents
the synapse, junction where the presynaptic and postsynaptic neurons communicate
with one another. The resulting current pulse charges the leaky integrate-and-fire
circuit (composed of a capacitor C in parallel with a resistor R) increasing the mem-
brane potential (voltage over the capacitor) u(t). The neuron fires a spike at time tf
whenever the membrane potential u(t) reaches a certain threshold value ϑ. Immedi-
ately after a spike the neuron state is reset to a new value ures < ϑ and maintained
at that low level for the time interval representing the absolute refractory period
∆abs. Therefore, the dynamics of the LIF neuron can be described by equations 2.2,
2.3 and 2.4:

C
du(t)
dt

= − 1
R
u(t) + (io(t) +

∑
j

wj · ij(t)) (2.2)

where C represents the membrane capacitance, R is the soma’s resistance, ij(t) is
the input current from the j-th synaptic input and wj represents the strength of the
j-th synapse. The formula 2.2 also includes an external current i0(t) that may drive
the neural state. For the particular case in which R → ∞, equation 2.2 describes
the simpler IF model.
The firing time t(f) is defined by the threshold criterion :

t(f) : u(t(f)) = ϑ (2.3)
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An additional equation is necessary to impose the reset condition immediately after
t(f):

lim
t→t(f), t>t(f)

u(t) = ures (2.4)

The combination of leaky integration (2.2) and reset (2.4) defines the basic integrate-
and-fire model ([Ste67]). In addition, to incorporate an absolute refractory period,
we proceed as follows. If u(t) reaches the threshold at time t = t(f), we interrupt
the dynamics (2.2) for an absolute refractory time ∆abs and restart the integration
at time t(f) + ∆abs with the new initial condition ures.
An exemplary simulation of a LIF neuron driven by an external input current i0(t)
is shown in Fig. 2.6.
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Figure 2.6.: Exemplary simulation of a LIF neuron driven by an external input
current i0(t). The top panel displays the input current, the middle panel depicts
the membrane potential, and the bottom panel shows the firing times of the
output spikes. The variables are represented in a dimensionless form as proposed
in [LR03]. The current i0(t) increases the membrane potential u(t) towards the
firing threshold ϑ. The neuron emits a spike when u(t) reaches the threshold
value, and then u(t) is reset to ures (here assumed to be ures = 0). After firing,
u(t) is hold at ures for a refractory period. It can be observed that higher values
of the input current generate output spikes with a higher rate.
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2.2.1.1. Spike coding

For spiking neural networks to perform computations, it is necessary to give some
meaning to neural spiking. The way how information is represented in biological
neural systems is an open question. A number of different neural codes has been
proposed based on observations of the nervous system in animals.
Rate coding has been the dominant paradigm of neural information encoding in
neuroscience for many years. It considers the rate of spikes in a certain interval
as the only measure for the information conveyed. This encoding is motivated
by the observation that physiological neurons tend to fire more often for stronger
stimuli and in an unpredictable way ([AZ26]). Rate coding is the notion behind
standard artificial sigmoidal neurons (sec. 2.2.2). However, recent findings suggest
that, at least for some neural systems, information is more likely to be encoded
in the precise timing of the spikes ([WRK15]). In particular, findings in the field
of neurology show that some neurons perform computations too quickly for the
underlying sensory process to rely on the estimation of the neural firing rate over
extended time windows (for example, human neurons in the cortex performing facial
recognition, [TDVR01]). This does not mean that rate coding is not used, but other
pulse encoding schemes are favored when speed is an issue ([Vre02]).
A different neural coding strategy is the “time-to-first-spike” coding, which enables
ultra-fast information processing ([PK11]). In this approach, information is carried
in the latency time between the beginning of the stimulus and the time of the first
spike in the neural response. Other neural coding schemes include (among others)
phase coding, population activity coding, rank order coding and neural codes based
on correlation, which encode the information by defined correlations between the
spike timing of selected neurons. The reader is referred to [PK11], [GB14] and
[WRK15] for more detailed information on the different methods to encode analog
information in spike trains.

2.2.2. The discrete-time (sigmoidal) neuron

As introduced in sec. 2.2.1.1, a spiking neuron can be modeled by means of the
standard artificial sigmoidal neuron when the firing rate is considered to carry the
neural information. The operation of the sigmoidal unit is illustrated in Fig. 2.7.
In such a discrete-time model, the output of the neuron (activation) is an analog
quantity (usually lying between 0 and 1) instead of a train of spikes. The synapse
between two neurons is modeled by a weight variable that describes the strength of
the impact on the postsynaptic neuron. The weights can be positive or negative to
model excitatory or inhibitory synapses, respectively. The sigmoidal neuron sums
up all the weighted firing-rates of its presynaptic neurons to get its potential. The
neuron’s output is calculated from this potential using the activation function, which
typically has a sigmoid shape (hence the name sigmoidal neuron). The activation
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variable in this model can be seen as the firing rate of the neuron (number of spikes
in a certain period of time).
It is worth noting that a single spiking neuron is a dynamical system (where the
incoming spikes are integrated over time to produce the output). Its output not only
depends on the current input received from other neurons, but also on an internal
state which evolves over time. On the other hand, the sigmoidal neuron is static (an
output is produced for a given input at each discrete time step).

Figure 2.7.: Basic operation of the sigmoidal neuron. The activation potential (uj)
is first calculated as the weighted sum of the neuron inputs (∑iwjiyi) , and then
passed to the non-linear activation function (f(.), typically with sigmoid shape)
to get the neuron output (yj). The weight value wji represents the strength of
the synapse between the presynaptic unit (neuron i) and the postsynaptic one
(neuron j). Figure adapted from [Boo04].

Therefore, the behavior of the standard sigmoidal neuron can be formally described
as follows:

yj = f(
∑
i

wji yi + bj) (2.5)

where wji is the connection weight between neuron i and neuron j, yi is the output
(activation level) of the i-th neuron, bj is the neuron bias and f is the transfer or
activation function.

2.2.2.1. The activation function

The transfer function f determines the behavior of the analog (discrete-time) neuron.
It usually has a sigmoid shape, that is, an “S” shaped curve. However, it may also
take the form of other nonlinear functions, such as the step function or the piece-wise
linear function. Even the identity function is sometimes used to build ANNs (in this
case, the neuron is called linear). Some typical examples of transfer functions are
depicted in Fig. 2.8.
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Figure 2.8.: Most common activation functions: threshold (a), linear (b), piece-
wise linear (c), fermi (d) and hyperbolic tangent (e).
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The most commonly used sigmoid functions are the hyperbolic tangent (being [−1, 1]
its output range) and the fermi (or logistic) function ([0, 1] range). The fermi func-
tion is defined by the formula 2.6 and is related to the hyperbolic tangent function
[tanh(.)] according to 2.7:

fermi(x) = 1
1 + exp(−x) (2.6)

tanh(x) = 2 fermi(2x)− 1 (2.7)

The Heaviside (threshold, or step) function represents the binary neuron, which
corresponds to the first generation of neurons proposed by McCulloch and Pitts
([MP43]). In this case, the neuron can only give a digital output: it sends a binary
high value (“1”) if the sum of the weighted inputs surpasses the threshold level, and
a low value (“0”) otherwise.
On the other hand, the neurons using a continuous function (instead of the thresh-
old one) belong to the second generation of neurons, which allows analog outputs.
Networks of neurons of this type are more powerful than the ones based on first-
generation units (they can perform the same functions using fewer nodes). The
neurons of the second generation are also more biologically realistic and similar to
the spiking neurons (representing the third and last generation) than the first gen-
eration ones since they can model the spiking frequency (firing rate) and not only a
high or low value.
The second-generation activation functions are often required to be continuous,
derivable and bounded. The necessity for being derivable comes from the fact that
the most common learning algorithms for training an ANN to perform a certain
function need to compute the derivative of the transfer function ([RHW86]).

2.2.3. Network architectures

Given the models of neurons we can define a network of artificial neurons. A network
is defined by a set of neurons and the connections between them, determined by a
weight matrix (W). Network topologies can be classified into two general categories:
feed-forward and recurrent.

2.2.3.1. Feed-forward neural networks

A feed-forward neural network (FFNN) has its neurons organized in layers with no
feedback or lateral connections. The inputs to the network are fed in through the
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input layer and the outputs are read out at the output layer. Intermediate neurons
are grouped in the hidden layers. The input signal propagates through the network
only in a forward direction, on a layer-by-layer basis as illustrated in Fig. 2.9. Such
type of network is often referred to as a multi-layer perceptron (MLP, [MAL88])
although the neurons do not necessarily have to use a Heaviside step function (as
in the original perceptron model proposed by Rosenblatt, [Ros58]), but can take on
any arbitrary activation function.

Figure 2.9.: Schematic representation of a feed-forward neural network (FFNN).

Adjusting the connection weights alters the information flow through the network.
That is, if the strengths of the incoming signals of a neuron are modified, the output
signal also changes in strength. The process of training the network corresponds to
changing the connection weights systematically to encode the desired input-output
relationships. Error backpropagation ([RHW86]) is the most commonly used super-
vised learning algorithm for FFNNs. Similarly to the least mean squares algorithm,
it iteratively adapts the network weights based on corrections that minimize the
mean square error between the target values and those produced by the network.
Since the change in each weight is calculated through the derivative of the error
(gradient-descent approach), a continuous activation function is required for the
neurons.
MLPs are universal function approximators ([Cyb89]), so they can be used for math-
ematical regression and as classifiers. They have been widely studied and employed
due to their learning and generalization capabilities. However, a drawback of MLPs
is their inability to process temporal information, which is crucial to perform tasks
such as speech recognition or time-series forecasting where the order of the input
sequences is relevant. A solution to this problem is to take a window of delayed val-
ues of the input stream as inputs to the network instead of only one ([WHH+89]).
Another approach is to add recurrent connections to the network, which leads to a
recurrent neural network.
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2.2.3.2. Recurrent neural networks

Recurrent neural networks (RNNs) present feedback connections between neurons
so that information can propagate forward and backwards through the layers. An
example of this topology is illustrated in Fig. 2.1. The layered structure, however,
can be substituted by an equivalent architecture with a single hidden layer containing
internal recurrent connections as depicted in Fig. 2.10.
The recurrent connections endow the network with “memory” as the activation
values of the neurons (states) do not only depend on the current value of the input
signal but also on the previous network states, and therefore (recursively) on the
entire input history. In an analogy with digital electronics, FFNNs (whose neuron
states are fully determined by the values of the inputs) form a combinational circuit
while RNNs (depending on previous network states) constitute a sequential one.
RNNs are dynamical systems whose states may evolve in time even in the absence
of external inputs whereas FFNNs provide passive and reactive functions to the
input stimuli.
The major advantage of RNNs over FFNNs is that they can implicitly learn temporal
tasks. The states of a RNN are nonlinear transformations of the input history that
can be effectively used for processing temporal context information. As a matter
of fact, RNNs are universal approximators of dynamical systems ([FN93], [SZ07]),
which makes them a promising tool for applications requiring nonlinear time-series
processing.
In recent years, RNNs have been extensively used to successfully solve computation-
ally hard problems such as speech recognition, machine control or dynamical sys-
tem modeling and prediction ([ZB01], [LZPH14], [BM15], [MYWW15], [AGAS+15],
[MM15]). RNNs based on different “Deep Learning” schemes ([YD15], [Sch15],
[LBH15]) and long short-term memory (LSTM, [HS97], [LW15]) approaches are
specially outstanding for their high accuracy.
Nevertheless, RNNs present the shortcoming of being difficult to train. The training
procedure for RNNs is complex and very time consuming. As in FFNNs, the training
of RNNs is based on gradient descent, a method of gradually adapting all the network
weights according to the output error gradients (derivatives with respect to the
weights) so that such output training error is minimized. “Backpropagation through
time” (BTT, [Wer90]) is one of the most prominent algorithms for RNN training.
A review of the numerous existing approaches can be found in [AP00] and [Jae02].
In general, these algorithms suffer from slow convergence and may eventually end
in local minima. In some cases, such methods might even not converge due to
bifurcations during the training process (i.e., infinitesimally small changes to the
network weights lead to drastic discontinuous changes in its behavior, [Doy92]). The
calculation of each iteration for updating the weight parameters is computationally
intensive and many update cycles are often required. As a result, considerable
processing resources need to be dedicated to train large recurrent networks.
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The long training time of RNNs can be compensated through parallel computing. In
particular, the use of general purpose graphical processing units (GPUs) instead of
ordinary CPUs makes possible to reduce the training times for some networks from
months to days ([Edw15]). The recent success of recurrent deep neural networks can
be partly attributed to the availability of powerful computing architectures such as
GPUs ([SSC16]). However, the complex training of RNNs needs very specialized
knowledge, substantial skill and experience to be successfully applied.
To sum up, RNNs are a very powerful tool for solving complex temporal machine
learning tasks, but its application to real-world problems involves high computa-
tional training costs and is reserved for experts in the field. Reservoir computing
offers a practical alternative to the hard traditional training of RNNs.

2.2.4. Applications of ANNs

ANNs allow to infer a function from observations. That is, they can be used to
approximate a target function in a specific task by only using measured data. Prior
knowledge about the input-output relationship is not necessary. What is more,
when the networks present recurrences (RNNs), they can be employed for building
mathematical models of any dynamical system from the experimental data, which
is usually referred to as “system identification” or “black-box” modeling. This is of
great utility when it is unfeasible to obtain an analytical model due to the complexity
of the process. Complex dynamical systems are present in a variety of fields: physics,
biology, engineering, economics, medicine, etc. Therefore, ANNs can be applied in
many different disciplines ([JM99], [Dre05], [JIM16]).
The general tasks ANNs can be applied to include function approximation, time-
series prediction, classification (both pattern and sequence recognition) and data
processing such as filtering or clustering. Application areas are (among many others)
the control of machines and industrial processes ([BL91], [CR95], [ZL08]), robotics
([Bur05b], [ASD+07]), computer vision (object recognition, face identification, event
detection in video sequences, etc., [PDS09], [CMS12], [OZW+16]), radar systems
([WGM+03]), speech and bio-metric feature recognition (e.g., gesture, gait, hand-
writing, fingerprint, etc., [ASB13], [LW15], [ERG15], [YAT16]), thermal engineering
and renewable energy systems ([MJM12], [FFD12]), fault detection ([JM15]), sensor
networks ([CSC13], [AMN14]), medical diagnosis (e.g., classification of heart beat
and brain activity signals, [AKS05], [SE05], [GTK+14]), finances (e.g., investment
support systems based on the prediction of stock markets, [MM15]) and data mining
([LSL96]).
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2.3. Reservoir computing

Reservoir computing (RC) is a relatively recent technique for implementing and
training RNNs. Contrary to conventional RNNs, where all connections need to be
adapted to minimize the training error, most connection weights in an RC system
are kept fixed and only an output layer is configurable as illustrated in Fig. 2.10.
This strategic design reduces the complex and time-consuming training procedure of
classical fully-trained RNNs to a simple linear regression problem, which enormously
facilitates the practical application of RNNs. In other words, RC takes advantage
of the memory properties of recurrent networks while avoiding the difficulties asso-
ciated with their training ([PK11]).
RC avoids the shortcomings of RNN training mentioned in sec. 2.2.3.2 by separating
the whole recurrent network in two different parts (Fig. 2.10(b)):

• The reservoir, which consists of a RNN that is randomly generated and re-
mains unchanged throughout the training process. Under the influence of in-
put signals, the neurons in the reservoir exhibit transient responses (nonlinear
transformations of the input history).

• The output layer, a linear weighted sum of the input-excited reservoir states.
The weights of this linear combination are obtained by linear regression, using
the teacher signal as target.

The strategy of treating the recurrent part of the network as a generic device and
concentrating the learning efforts on the training of linear readouts from the recur-
rent circuit was already suggested in the 1960s by Rosenblatt ([Ros62]). In addition,
some research works in the field of computational neuroscience also proposed the use
of network architectures similar to RC in the 1990s ([Dom95], [BM95]) describing
a randomly constructed recurrent network that is left unchanged and connected to
an easy-to-train output layer. However, the RC concept was more rigorously inves-
tigated and became popular over the last decade, after the publications of Jaeger
([Jae01]) and Maass ([MNM02]). The report of Jaeger ([Jae01]) suggested the con-
cept of RC in the context of non-spiking ANNs under the name of echo state net-
works (ESNs) while the work of Maass ([MNM02]) adopted RC for spiking networks
under the name of liquid state machines (LSMs). The term reservoir computing
was proposed ([VSDS07]) to jointly refer to the fundamental idea behind these two
independently developed approaches. The ease of use and good performance of
the RC methodology led to a fast growth of the field (see, for example, [VSDS07],
[JMP07], [LJ09] and [LJS12] for an overview of the related research). Nowadays,
RC is regarded as one of the basic paradigms of RNN modeling ([Jae07b]).
As a particular type of RNN, RC represents a promising tool for nonlinear time se-
ries applications, such as temporal pattern classification and time-series prediction.
For example, RC has been shown to present outstanding performance in predict-
ing chaotic dynamics ([JH04], [RT11], [NR15], [GSS15]) and in speech recognition
([VSSVC05], [JLPS07]). Beside its high modeling accuracy, RC systems present the
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(a)

(b)

Figure 2.10.: (a) General RNN architecture: all connection weights are adapted
in order to minimize the training error. (b) RC system: only the connections
coupling the RNN to the output unit (in red color) are adapted, the rest remain
unchanged allowing a simple training procedure.
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advantage that their easy training algorithm, contrary to conventional RNNs, does
not need substantial skill and experience to be successfully applied.
The biological plausibility of RC-based systems has been another reason motivat-
ing their development. The basic idea of RC to make use of the transient states
generated in an intricate network of neurons (the reservoir) when stimulated by an
external input is indeed based on the way our brain seems to process the informa-
tion arriving from sensory inputs. This was contemplated in the works [BM95] and
[MNM02]. Following studies further discussed the neurophysiological reality of the
RC scheme. For example, a LSM was proposed in [YT07] for the modeling of the
cerebellum. Other works supporting the idea of the brain behaving similarly to a
reservoir computer are [RHL08], [NUSM09] and [SvHS+13].
Another benefit of RC is that the reservoir does not need to be customized for a
specific task. That is to say, the same reservoir network can be used as a generic
computational tool to perform multiple tasks concerning the same input. Obviously,
a different readout must be applied for each task. For example, in a time-series
forecasting task, the same reservoir network can be used to predict the one-step and
several-step ahead values simultaneously by training a different output layer for each
one of the desired prediction horizons. In [Ver04], it was shown that it is possible
to do speech and speaker recognition simultaneously with the same reservoir.
RC is currently a productive research area under continuous development. Numerous
modifications extending the original approach have been proposed (see, for example,
[XYH07], [HH10], [RT11], [BR13] and [GSS15]). More specifically, it has been shown
that some adaptation within the reservoir may lead to better results than a random
and fixed structure ([HMM03]). On the other hand, new ways of reading out from the
reservoirs ([DSVC+09]), including combining them into larger structures ([DZ07],
[NR15]), have been devised and analyzed. Therefore, the initial idea of having a
fixed randomly created reservoir and training only the readout has been replaced
by a current paradigm of RC (differentiated from conventional RNN techniques)
where the reservoir (recurrent part of the network) is trained separately from the
output layer. A review of different methods (“recipes”) aimed at improving either
the reservoir part or the linear readout is presented in [LJ09].
Apart from the two pioneering methods of RC (ESNs and LSMs) and their sub-
sequent ramifications ([LJ09]), there is a more recent trend that perceives the RC
principle as an strategy to implement useful computations on generic dynamical
systems, treating them as reservoirs ([Ver09], [LJS12]). That is, the idea of RC is
brought beyond the field of ANNs so that any high-dimensional, input-driven dy-
namical system, operated in the correct dynamic regime, can be used as a reservoir
that combined with a linear processing method allows solving complex tasks. Such
dynamical systems aimed at producing a nonlinear transformation of the temporal
input signal can be implemented not only through numerical simulations but also in
a physical realization. The possibility to perform useful computations using uncon-
ventional hardware platforms (physical dynamical systems) is, perhaps, the most
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appealing aspect of this modification of the RC concept. Illustrative examples of
this idea include physical implementations of RC-based computations by means of
analog electronics ([ASVDS+11]), optoelectronic ([LSB+12], [PDS+12]) and optical
systems ([VDS+08], [DSS+12]). Even the use of a bucket of water has been reported
as a possible medium for RC-like processing of the input signals ([FS03]). In the
context of this so-called Physical RC approach ([HFN14]), it is worth mentioning the
works [SHP11], [HSBD14] and [NHLP15], which further analyze the use of physical
bodies as computational resources. Such idea is related to the field of morpholog-
ical computation ([HIF+11], [HIF+12], [HFN14]), which is particularly appealing
for robotic applications ([PVCL06], [ZNS+13], [NHK+13]). In general, the novel
Physical RC methodology can be used to complement information processing with
non-conventional devices, even if they are impractical to implement basic electronic
logic gates or memory cells. The output layer of such reservoirs, however, is typically
implemented using conventional digital electronic computers.
Within the dynamical system-based RC approach, a particular architecture stands
out for minimizing the implementation design to a simple nonlinear dynamical sys-
tem subject to a self-feedback loop with delay ([ASVDS+11], [STP13], [OSP+15],
[SBEM+15]). This method, along with the more traditional two main streams of
RC (ESNs and LSMs) are described in more detail below.

2.3.1. Echo state networks

Echo state networks (ESNs) is one of the two initial reservoir computing methods
([Jae01], [JH04]). It was developed in the frame of machine learning applications
based on the observation that often it is not necessary to adapt all the connection
weights in a RNN, but it is sufficient to train a linear readout from it to obtain
good performance results in a number of tasks. The fixed part of the RNN is
the “reservoir” network, which presents a dynamical behavior driven by an input
stream. The reservoir states, x(t), can be intuitively viewed as “echoes” of the
input signal, u(t), which motivates the term “echo state network” for the reservoir
and, in general, for the whole RC system consisting of an input layer, the recurrent
reservoir network, and the memory-less (non-recurrent) output layer. Such scheme
is illustrated in Fig. 2.11.
Before describing more formally ESNs, let me introduce the similarities of RC with
the so-called kernel methods in machine learning. The objective of RC (and of any
approach in machine learning) is to implement a specific nonlinear transformation
ytarget(t) of an input signal u(t) (where t = 1, 2, 3, . . . indicates the different data
points in the data set). In non-temporal tasks, the data points are independent of
each other while in a temporal task ytarget(t) and u(t) represent signals in a discrete
time domain and the desired output function may have memory of previous input
values. Mathematically, the goal in a non-temporal task is to learn (from data) a
function y(t) = y(u((t)) that minimizes the error (E(y,ytarget)) between y(t) and
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Figure 2.11.: General architecture of a reservoir computer. All connections in the
system are randomly chosen and kept fixed except for the ones that couple the
reservoir on the output layer (dashed arrows).

ytarget(t) whereas in a temporal task the function to be learned depends on the
input history: y(t) = y(u(t), u(t−1), u(t−2), . . .). Different functions can be used
for measuring the error, such as the mean square error (MSE, 2.8), the normalized
mean-square error (NMSE, 2.9) or the normalized root-mean-square error (NRMSE,
2.10) among others:

MSE(y,ytarget) =< ‖y(t)− ytarget(t)‖2 > (2.8)

NMSE(y,ytarget) = < ‖y(t)− ytarget(t)‖2 >

< ‖ytarget(t)−< ytarget(t) > ‖2 >
(2.9)

NRMSE(y,ytarget) =
√√√√ < ‖y(t)− ytarget(t)‖2 >

< ‖ytarget(t)−< ytarget(t) > ‖2 >
(2.10)

where < · > stands for the mean and ‖·‖ denotes the Euclidean distance (remind
that the Euclidean distance of two vectors p = (p1, p2, . . .) and q = (q1, q2, . . .) is
defined as ‖q − p‖ =

√∑
i(qi − pi)2).

To achieve the learning of the functional relation between u(t) and ytarget(t), the
reservoir structure (Fig. 2.11) performs a mapping of the (low-dimensional) input
into a high-dimensional state space (corresponding to the vector of the reservoir’s
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neuron outputs, x(t) = (x1(t), x2(t), . . . , xN(t))T , being N the number of reservoir
units). The expanded state vector x is then utilized with linear methods (linear
regression) to get an estimation (y) of the desired output function ytarget. That is
to say, the estimated output function can be expressed as follows:

y(t) = Wout x(t) (2.11)

where Wout is the matrix that contains the trained output layer weights. A constant
bias term may be added to 2.11. However, it can be considered to be implicitly
implemented in the equation assuming that x(t) contains an additional constant
element and that Wout contains a new column of weights. On the other hand, the
input u(t) can also be included as an extra feature in x(t). This corresponds to a
direct connection from the input to the output layer (not represented in Fig. 2.11
for the sake of simplicity) and can be explicitly expressed as follows:

y(t) = Wout [x(t) | u(t)] (2.12)

where the symbol | denotes the concatenation of vectors. Equation 2.11 can be
further extended to include a nonlinear function (fout) of the linear combination of
the “echo” states:

y(t) = fout(Wout [x(t) | u(t)])

However, such nonlinearity is not usually employed in RC and fout is simply chosen
as the identity (equation 2.12) .
The idea of nonlinearly expanding the input to a higher dimension space that allows
more easily extracting the desired characteristics to build an estimate of the target
output is the basis of a number of widely used approaches to nonlinear modeling.
Such “expansion” methods include support vector machines (SVMs, [Bur98]), feed-
forward neural networks (FFNNs, sec. 2.2.3.1), radial basis function approximators
(RBFs, [AZIPY93]) and extreme learning machines (ELMs, [HWL11]) among others.
The function x(u(t)) that transforms the input [u(t)] into the higher-dimensional
vector [x(t)] is usually referred to as “kernel” in this context. Therefore, RC can
be viewed as an “expansion” method that uses the nonlinear dynamic reservoir as
kernel. However, it is worth noticing that the reservoir not only allows for learning
a nonlinear relation between the input (u) and the desired output (ytarget), but also
a temporal function of the input signal. This is thanks to the feedback loops present
in the reservoir (recurrences), which endow the kernel function with memory of the
input history as the reservoir states (neuron outputs) depend on the current value
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of the input signal but also on its previous values. That is, the expansion function
can be written as

x(t) = x(u(t), u(t− 1), u(t− 2), . . .) (2.13)

or, alternatively, in a recursive form:

x(t) = x(x(t− 1), u(t)) (2.14)

More specifically, the nonlinear expansion performed by the reservoir has the form

x(t) = f(Win u(t) + W x(t− 1)) (2.15)

where x(t) represents the vector of reservoir neuron activities at the discrete time
step t, f is the neuron activation function (applied element-wise: f = (f1, f2 , . . . fN)T )
and Win and W are the matrices of input and internal network connections, respec-
tively, as indicated in Fig. 2.11. Bias terms are considered implicitly in the for-
mula. A more general model can also include the possibility of feedback connections
(Wback) from the output layer units to the reservoir:

x(t) = f(Win u(t) + W x(t− 1) + Wback y(t− 1)) (2.16)

To sum up, an ESN is a recurrent discrete-time neural network with K input
units, N reservoir neurons and L outputs (general setup depicted in Fig. 2.11),
which is governed by the state equations 2.16 and 2.11. In such equations, the
values of the input, reservoir, and output units at time step t are denoted by
u(t) = (u1(t), u2(t), . . . , uK(t))T , x(t) = (x1(t), x2(t), . . . , xN(t))T , and y(t) =
(y1(t), y2(t), . . . , yL(t))T , respectively. Accordingly, the dimensions of the weight
matrices are N ×K for Win, N ×N for W, N ×L for Wback, and L×N for Wout.
The weight matrices of equation 2.16 (Win, W and Wback) are initialized at random
while those of the output layer (equation 2.11, Wout) need to be trained.
Regarding the reservoir activation function (f), it is typically the hyperbolic tan-
gent (tanh(·)) or any other sigmoid function although a linear reservoir (using the
identity activation function) may also be considered for ESNs. The use of spiking
neuron models instead of discrete-time analog neurons leads to a different “brand”
of RC (LSMs) that is discussed in sec. 2.3.2.
In an ESN, the reservoir (x(·)) and the linear readout (y(·)) serve different pur-
poses: the reservoir expands the input history (u(t), u(t − 1), u(t − 2), . . .) into a
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high-dimensional state space (x(t)) whereas the output layer combines those result-
ing neuron signals into the desired output. As the readout performs a non-temporal
function, training it is relatively simple (linear regression). Nevertheless, the reser-
voir needs to be built so that the echo states (x(t)) represent a rich enough expansion
of the input.

2.3.1.1. General rules for building a good reservoir

The generic guidelines or “recipes” to produce a rich reservoir are presented in
[Jae01] and [Jae02]. Essentially, for the reservoir providing many different and
loosely coupled states, it must fulfill the conditions of being

1. big, with a sufficiently large number of neurons (N ranging from tens to thou-
sands);

2. sparsely connected, the weight matrix W must contain relatively few nonzero
values (the connectivity is usually set between 1 and 20 per cent);

3. randomly connected, the connection weights (those that are different from
zero) are randomly generated from a uniform distribution.

The input weights (Win) are also usually generated from a uniform distribution over
an interval [−a, a] (although the matrix, in this case, is normally dense instead of
sparse). The value of the scaling factor a is a free parameter that can be adapted to
optimize the ESN performance for a specific task. Intuitively, the choice of this value
is related to the degree of nonlinearity required by the particular task since input
signals close to 0 result in an operation of the sigmoid neurons that is approximately
linear while inputs with a higher amplitude tend to drive the neurons towards the
saturated nonlinear behavior.
On the other hand, a good reservoir must satisfy the “echo state property (ESP)”,
which states that the reservoir states must be influenced by inputs from the recent
past, but independent of the inputs from the far past. In other words, the reservoir
dynamics must present a short-term memory that gradually vanishes with time. In
practice, the echo state property is almost always ensured if the reservoir weight
matrix W satisfies ρ(W) < 1, where ρ(W) denotes the matrix’s spectral radius
(that is, the largest absolute eigenvalue ρ(W) = |λmax|). Consequently, to account
for the ESP, the reservoir connection matrix W is typically scaled as W ← α W

|λmax| ,
where α is a scaling parameter in the (0, 1) range.
The optimal value for α depends on the characteristics of the given task. More
specifically, on the required amount of memory and nonlinearity. The matrix W
sets the recurrent connections in the reservoir, and therefore it is related to the
network’s memory. As a result, α should be set to values close to 1 if the task
requires long memory, and close to 0 otherwise. However, it must also be considered
that (just as in the case of the scaling of the input weight matrix Win) larger values
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of α tend to drive the reservoir states towards the nonlinear behavior of the sigmoid
units.
To sum up, the reservoir depends on a few free parameters (connectivity, input
scaling and spectral radius) that must be adjusted for the given specific task. In
practice, the values of these parameters can be chosen by means of numerical simu-
lations that scan the system’s performance for a number of different configurations.
The determination of the “best” configuration parameters is usually done employ-
ing a set of data (the “validation” set) different from the training set (used to train
the ESN’s readout with a particular parameter configuration) and from the test set
(employed to calculate the system’s performance when the reservoir is set with the
optimal parameters). This way, the generic random reservoirs are adapted (opti-
mized) for a particular task (input and target output data) through the selection of
the free parameters.

2.3.1.2. Different reservoir topologies

Some works have explored the possibility of using even simpler topologies of the
reservoir than the classical ESN ([CM05], [FE05], [VSS07], [RT11]). In [RT11], a
systematic investigation of the reservoir construction is conducted with the purpose
of finding an ESN structure with minimum complexity. Several easily structured
topology templates are analyzed on a number of widely used time series benchmarks
of different origin and characteristics and compared with the classical ESN. The
connection weights in the classical ESN reservoir, as well as the input weights,
are randomly generated, but the proposed simplified models are deterministically
constructed.
Three alternative structures are considered in [RT11] (illustrated in Fig. 2.12): the
delay line reservoir (DLR) composed of units organized in a line with a common
weight r for the feed-forward connections; the DLR with feedback connections
(DLRB), which presents the same structure as the DLR but each reservoir unit
is also connected to the preceding neuron with a different feedback weight, b; and
the simple cycle reservoir (SCR) where units are organized in a cycle with identical
connection weight r. Regarding the input layer, it is fully connected to the reservoir
in all cases, all input connections have the same absolute weight value v > 0, and
the sign of each input weight (vi, i = 1 . . . N) is determined randomly by a random
draw from a Bernoulli distribution of mean 1/2 (unbiased coin).
The investigation results showed that the simple deterministically constructed cy-
cle reservoir (SCR) is comparable to the standard echo state network methodology
presenting practically the same performance in all tasks. Such topology will be used
throughout this thesis given its simplicity (all nodes are equal, with only two connec-
tions, one with the input unit and another one with the preceding neuron), which
is advantageous for hardware implementation over the conventional ESN random
structure.
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(a)

(b)

(c)

Figure 2.12.: Alternative ESN topologies: delay line reservoir, DLR (a); DLR with
feedback connections, DLRB (b); and simple cycle reservoir, SCR (c).
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The SCR construction leaves the user with two free parameters to be set: r and v.
The optimum values for them can be obtained scanning the system’s performance
through numerical simulations on the validation set.
Some variations of the SCR construction have been proposed and analyzed, such as
the cycle reservoir with jumps (CRJ, [RT12]) and the adjacent-feedback loop reser-
voir (ALR, [SCL+12b], [SCL+12a]). Both approaches present superior performance
to standard ESNs on a variety of temporal tasks.
On the other hand, the idea of building ESNs with multiple reservoirs has been pro-
posed in several works ([XYH07], [DZ07], [YM12], [NR15]). It was motivated by the
fact that a single reservoir is only able to support a limited number of “time scales”.
For example, it is not possible for an ESN to be trained to work as a multiple super-
imposed oscillator, even with a simple function consisting of two sine waves, such as
sin(0.2 t)+sin(0.311 t) ([XYH07]). It has been theorized that this is due to the fact
that the neurons in the same reservoir are still coupled so strongly that the ESN is
poor in dealing with different time scales simultaneously ([WGS05]), which can be
alleviated by using a structured or clustered reservoir (composed of several reser-
voirs sparsely interconnected) allowing multiple decoupled internal states. This way
the different timescales can “live” in their own sub-reservoir. The different proposed
approaches using ESNs with clustered reservoirs ([XYH07], [DZ07], [NR15]) have
been shown to outperform the conventional ESN with a single reservoir in terms of
accuracy of approximating highly complex dynamical systems (e.g., for prediction
of chaotic time-series).
Similarly, following the idea that shallow architectures (i.e., nonhierarchical struc-
tures based on a single reservoir) are incapable of learning really complex intelligent
tasks, hierarchical architectures of ESNs with an arbitrary number of layers have
been studied ([Jae07a]). The structure enables discovering features on different time
scales. Such approach making use of multiple layers of reservoirs has been termed
“deep reservoir computing network” ([JWW15]) and has been successfully applied
to various tasks, such as sequence classification ([PDW14]) and handwritten digit
recognition ([JWW15], [SSC16]) presenting competitive results compared to state-
of-the-art methods.

2.3.1.3. Training of the readout

Once the reservoir is constructed (either following the classical random approach,
sec. 2.3.1.1, or any other simplified architecture, sec. 2.3.1.2), the network can be
simulated and trained. I assume here the use of a simple linear readout (equation
2.11), as originally proposed for ESNs ([Jae01]), which has been shown sufficient
for many relevant tasks and allows an efficient training. The data set (comprising
the input u(t) and the desired output ytarget(t) sequences with t = 1, 2, . . . Tdata,
being Tdata the number of time steps in the data set) is split in a subset of training
samples (t = 1, 2, . . . Ttrain) and another one of testing points (t = Ttrain+1, . . . Tdata).
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The reservoir states x(t) corresponding to the given input sequence are obtained
recursively, for each time step, according to the state update equation 2.15 (assuming
the case of no feedback connections from the output layer to the reservoir). The
network states are usually initialized to zero values (i.e., x(0) = 0) to start the
simulation of the network.
The reservoir states x(t) produced by presenting the reservoir with u(t) are collected
over the training period (i.e., t = 1, 2, . . . Ttrain) in a large matrix (X) of dimension
N × Ttrain:

X =


x1(1) x1(2) · · · x1(Ttrain)
x2(1) x2(2) · · · x2(Ttrain)
... ... . . . ...

xN(1) xN(2) · · · xN(Ttrain)

 (2.17)

where xi(t) denotes the state of the i-th neuron at time step t. The desired outputs
(ytarget,j(t), for j = 1 . . . L) are also concatenated in a matrix (Ytarget) of dimension
L× Ttrain:

Ytarget =


ytarget,1(1) ytarget,1(2) · · · ytarget,1(Ttrain)
ytarget,2(1) ytarget,2(2) · · · ytarget,2(Ttrain)

... ... . . . ...
ytarget,L(1) ytarget,L(2) · · · ytarget,L(Ttrain)

 (2.18)

The training of the output layer consists in computing the matrix Wout that min-
imizes the error between y(t) and ytarget(t) (E(y,ytarget); e.g., given by equation
2.8), which can be expressed in terms of matrices X and Ytarget as follows ([Ver09]):

Wout = min
W′
‖W′X−Ytarget‖2 (2.19)

This problem corresponds to a least squares regression of the desired responses
Ytarget on the predictors in X, which can be formulated according to the least squares
normal equation ([Bro09]):

Wout X XT = Ytarget XT (2.20)
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In practice, this can be solved performing the next matrix algebra operations:

Wout = Ytarget XT(X XT)−1 (2.21)

An initial washout period of the training run containing transitory state values is
usually discarded from matrix X before calculating the output weights. Once the
output layer has been trained, the network can be simulated for the test set in the
same way as for the training set and the final readouts (y(t)) can be computed
according to equation 2.11. At this point, the performance of the ESN on the test
set can be evaluated by means of any desired error measure, such as the MSE, NMSE
or NRMSE (equations 2.8, 2.9 and 2.10, respectively).
Usually, a validation set is considered apart from the training and testing sets. This
is employed to select the optimal configuration for some parameters of the network
(e.g., the input scaling and the spectral radius) using data not presented in the
training process. After configuring the network with the optimal parameters, it is
finally evaluated on the test set as described above.
The method provided by equation 2.21 can be extended to introduce a regularization
term aimed at reducing the magnitudes of the weights in Wout, which mitigates
sensitivity to noise and overfitting (i.e., the model “memorizing” training data rather
than “learning” to generalize from trend). The resulting method, known as ridge
regression ([WSS08a]), reads

Wout = Ytarget XT(X XT + α2 I)−1 (2.22)

where I is the identity matrix of dimensionN×N and α is a regularization parameter
whose optimum value (the one that yields the best performance on unseen data)
needs to be determined.
An equivalent way to perform regularization is by adding noise to the training data as
noted in [WSS08a]. The use of regularization or other more sophisticated regression
methods, such as the Wiener-Hopf approach ([OXP07]), may improve the system’s
performance compared to the standard least squares solution of equation 2.21. On
the other hand, online training methods, such as least mean squares (LMS) and
recursive least squares (RLS), can be of particular interest in applications requiring
online model adaptation ([JH04], [HLM14]). For example, in [Jae03], the joined use
of ESNs and the RLS algorithm has been applied to track a non-linear system whose
parameters (and therefore the targeted input-output relation) change over time.
In this thesis, I have limited to the standard least-squares regression method (neither
regularization nor online training have been employed). More specifically, I have
used the “regress” (multiple linear regression) MATLAB function ([web17a]), which
is based on matrix commands to determine the solution to the normal equation 2.20.
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The described training procedure can also be used for pattern classification tasks
where the desired output is not a real value but a category indicator. In this case, a
real-valued readout is employed for each class and the strengths of such outputs are
interpreted as “votes” for the corresponding classes. For example, a constant value
ytarget,j(t) = 1 can be assigned to the desired output when the input signal (at time
step t) corresponds to that of the right class j and a value equal to −1 otherwise. To
perform the classification, the network readout signals (yj(t)) are cumulatively added
throughout a certain number of time steps (usually corresponding to the duration of
the temporal pattern) after which sufficient information has been reached to make
the decision. At this point, the output category matching the input signal (j = k)
is assumed to be the one that provides the greatest value of the sum ∑

t yj(t).
In the case of an ESN presenting feedback connections from the output layer to the
reservoir (Wback, equation 2.16), the training can be carried out through “teacher
forcing”, an strategy to uncouple the recurrent relationship between the reservoir
and the readout. It consists in feeding the reservoir with the desired output ytarget(t)
instead of the real output y(t) during the training process. Including the recurrence
between the reservoir and the readout is required for some tasks, such as pattern
generation ([Jae01]). Although the models with feedback weights Wback work prop-
erly if the output is learned very precisely (y(t) ' ytarget(t)), they often suffer from
instability caused by the amplification of small errors that can eventually make y(t)
deviate from the expected ytarget(t).

2.3.2. Liquid state machines

Liquid state machines (LSMs) are the other early approach of RC ([MNM02]). Es-
sentially, a LSM consists in a fixed reservoir network made up of spiking neurons
(sec. 2.2.1) along with an adaptable output layer. LSMs were developed in the con-
text of neuroscience aimed at modeling computation in biological neural systems,
which motivated the use of realistic spiking neuron models and biologically plausible
connectivity structures and weight settings ([NMM03], [MNM04], [MJS05], [HM07]).
In this approach, the reservoir network forming a dynamical system is conceived as
a “liquid” surface that exhibits perturbations caused by the external inputs (usually
presented as spike trains). The readout neurons can extract from the current state
of such recurrent neural circuit (the reservoir) information about current and past
inputs that may be needed for diverse tasks. The readout can be sigmoid or linear
as in ESNs, which requires a mechanism for averaging the spike trains of the reser-
voir neurons to obtain real-valued outputs that can be processed using, for example,
linear regression. In some cases, spiking neurons (or even feed-forward networks
of spiking neurons) are employed in the output layer and more complex training
procedures are required ([CR07], [SVVC07]).
Apart from their original interest for biological modeling, LSMs can be employed
as a powerful machine learning tool. Although ESNs are more widely used in engi-
neering applications as they are easier to implement and require less computational
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resources, LSMs may outperform ESNs in certain tasks given that spiking neurons
(present in LSMs) are able to perform more complicated information processing than
the analog neurons (employed in ESNs), which only emulate mean firing rates of
biological neurons as introduced in sec. 2.2.2. For example, LSMs have been shown
to present outstanding performance in real-world problems such as the noisy tem-
poral pattern classification of textures ([Vre04]), speech recognition ([VSSVC05],
[SDVC08]) and robotics applications ([JM05]).

2.3.3. Single dynamical node reservoir computing

A more recent trend of RC is based on exploiting the computational capacities
of certain dynamical systems, which can be used as reservoirs to solve complex
tasks combined with a simple linear processing method. This concept opens the
door to physical realizations that can be built using dedicated hardware. See,
for instance, the works [VDS+08], [ASVDS+11], [LSB+12], [PDS+12], [DSS+12],
[BSMF13], [SOK+14], [NVDVDS14], [FVVW+14] and [HSR+15]. In the context
of this specific type of RC systems, it stands out the use of a dynamical system
that comprises a single nonlinear node delay-coupled to itself, which allows the easy
realization in optical and electronic hardware. Many of the physical realizations of
the RC concept are based on this particular setup.
While classical reservoirs such as ESNs and LSMs present an explicit spatial struc-
ture of multiple connected nodes, the reservoir in delay-based systems is implicit
in the sampled solutions of a single delay differential equation (DDE). That is, the
points obtained from different time positions throughout the delay period represent
“virtual nodes” that play the same role as the nodes in a traditional reservoir. Such
reservoir based on a single dynamical node is usually called delay-coupled reservoir
(DCR, [STP13]) or time-delay reservoir (TDR, [GHLO16]). The general concept of
this approach is depicted in Fig. 2.13, which illustrates how the recurrent reservoir
network is emulated by the single nonlinear dynamical node (NL) subject to delayed
feedback. The virtual nodes in the reservoir are defined as N equidistant temporal
points throughout the delay interval τ . That is to say, they are separated in time
by a period θ = τ/N . The value of the delayed variable (x(t)) at each one of these
points is analogous to the output of the neurons in a classical reservoir. These states
characterize the transient response of the nonlinear node (NL) to a certain input at
a given time, and therefore represent a nonlinear transformation of the input signal
and of its history (taken into account through the delay term in the DDE).
More specifically, the TDR approach is formalized by the following DDE (equation
2.23, the sampled solutions of which are used as reservoir states):

dx(t)
dt

= [−x(t) + f(x(t− τ), J(t))] 1
T

(2.23)
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Figure 2.13.: Schematic view of a reservoir computer based on a single nonlinear
node (NL) with delay (τ). Virtual nodes are defined as temporal positions in the
delay line.

where x denotes the dynamical variable, τ is the delay time, J(t) is the signal driving
the system (derived from the input stream u(t) through temporal multiplexing as I
describe next), f is a nonlinear function (often referred to as kernel), and T is the
system’s time constant, which is usually omitted as it can be normalized to T = 1
using a dimensionless time in the equation.
Time-continuous delay systems are infinite dimensional and exhibit a short-term
memory. This properties motivate their use as reservoirs. In addition, the idea of
replacing the large networks employed in traditional RC by a single-node architec-
ture requiring minimal resources to be implemented seems very attractive.
The injection of the input signal into the reservoir is achieved by multiplexing it in
time as illustrated in Fig. 2.13. First, the input stream u(t) undergoes a sample and
hold operation for time periods of length τ . That is, the input u(t) is discretized
using a time step equal to τ resulting in the signal I(t) = u(b t

τ
c), where b·c denotes

the integer part (truncation) of the number. Then, I(t) is multiplied by a mask (M =
(m1, . . . , mN)T , representing a vector of weight values where N is the number of
virtual nodes) that is piece-wise constant for short periods of length θ (corresponding
to the separation between the virtual nodes). The resulting signal, J(t) = mi I(t)
(with i = 1, . . . , N), is a continuous-time scalar function constant over θ periods
that is employed to feed the dynamical node. The masking procedure prevents the
dynamics of the system from saturating.
The evolution of x(t) is found by numerically solving the DDE. For example, if we
consider the Euler time-discretization of equation 2.23 with an integration step ∆t,
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x(t) can be recursively found by the next expression:

x(t)− x(t−∆t)
∆t = −x(t) + f(x(t− τ), J(t)) (2.24)

The state variable x(t) is readout (taken as the output of a virtual node) every time
period θ (which corresponds to a certain number of integration steps). It has been
shown ([GHLO15]) that any virtual neuron value (noted as x(t+ iθ), i representing
the neuron index) can be expressed as a linear combination of the immediately
previous neuron value (x(t + (i − 1)θ)) and a nonlinear function of both the same
neuron value in the previous layer (that is, the state value a delay period before,
x(t+ iθ−τ)) and the input at the current time (J(t+ iθ)). Such resulting processing
scheme for the “delay-based” dynamical system is illustrated in Fig. 2.14.

Figure 2.14.: Computing process scheme of the delay-based dynamical node RC
system. The output of a virtual node (i) at a certain time t (xi(t) ≡ x(t + iθ))
depends on the external input u(t) (multiplied by the corresponding mask, mi),
on the previous node state (xi−1(t) ≡ x(t+(i−1)θ)), and on the state of the same
node a delay period before (xi(t − 1) ≡ x(t + iθ − τ)). The final output [y(t)] is
computed every time period τ as a linear combination of the virtual node states
obtained within that delay period [t+ θ, t+ τ ].

Usually, the notation of the classical reservoir is employed to denote the virtual
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nodes in the TDR approach so that xi(t) refers to x(t + iθ), xi(t − 1) refers to
x(t+ iθ − τ), and Ji(t) corresponds to J(t+ iθ).
The separation among virtual nodes (θ) has an important role and can be used to
optimize the reservoir performance ([ASVDS+11]). When θ < T the states of the
virtual nodes are mainly influenced by the states of the neighboring nodes, while
large values of the distance between neurons give predominance to the node states
at the previous delay period and to the input signal.
After processing the input signal, a training algorithm assigns an output weight to
each virtual node (wi), such that the weighted sum of the states (y(t) = ∑N

i=1wi xi(t))
approximates the desired target value as closely as possible. The training follows
the standard procedure for RC (linear regression) described in sec. 2.3.1.
As regards the choice of the nonlinear function in 2.23, it depends on the particular
physical implementation that is envisioned. The most explored nonlinear functions
in the literature are the Mackey-Glass ([MG77]) and the Ikeda ([Ike79]) kernels. The
Mackey-Glass oscillator, extended from the original dynamical system to include the
external input J(t), presents the following form:

f(x, J) = η (x+ γ J)
1 + (x+ γ J)p (2.25)

where η, γ and p are parameters of the kernel. Such non-linearity can be imple-
mented through an analogue electronic system ([NPT95]) serving as physical plat-
form for the TDR-based computations as shown in [ASVDS+11]. On the other hand,
the Ikeda kernel is employed in optical RC implementations ([LSB+12]). It reads

f(x, J) = η sin2(x+ γ J + φ) (2.26)

where η, γ and φ are parameters. For both models, η and γ represent the feedback
strength and the input gain, respectively. Different nonlinear functions, such as the
one proposed in [GSMOP12], may also be used.
The performance of a TDR system for a given task depends on the kernel parameters
(η, γ, ...). Therefore, apart from the output layer weights, the TDR parameters also
need to be tuned in order to find the configuration that performs better. Usually,
such optimal configuration is found through numerical scannings.
The network topology that results from the TDR approach where each neuron is
connected to the preceding one in a chain and it is time-delay connected to the
same neuron in the previous time (as observed in Fig. 2.14) resembles the SCR
structure of neurons organized in a ring (Fig. 2.12). The similarity of both schemes
have been noted in [GSMOP12]. Indeed, the TDR methodology can be viewed as
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an innovative way to serially implement a network of nonlinear nodes with cyclic
connectivity. This, however, is achieved through the solutions of a continuous-time
dynamical system (equation 2.23) instead of using a discrete-time one as in ESNs
(equation 2.16).
The reservoir map constructed by sampling the solutions of the differential equation
2.23 has been shown ([GHLO15]) to be equivalent to a description of the form

x(t) = F(x(t− 1), J(t)) (2.27)

that corresponds to a non-autonomous discrete-time dynamical system such as that
used for ESNs (equation 2.14).
A sequential implementation of the ESN with chain topology (SCR network) is
presented in chapter 7. There, I highlight the similarities between such sequential
design (Fig. 7.3) and the delay-based dynamical node RC (Fig. 2.14).
Finally, it is worth noticing that although the idea of reducing a complex network
to a single node paves the way to minimal hardware implementations, it presents
the major shortcoming of requiring a serial feeding of the nodes, which implies a
lower processing speed compared to the classical parallel designs of RC (ESNs and
LSMs).

2.3.4. Applications of RC

Reservoir computing, as a RNN approach, can be used as a tool for black-box
modeling of nonlinear dynamical systems, which embraces tasks such as simulation,
control, approximation of temporal functions, generation and detection of temporal
patterns, time-series prediction, memorization, filtering and classification. Appli-
cation fields include digital signal processing (e.g., speech recognition, [JTDM15],
and audio processing, [HH10]), robotics (e.g., robot control and localization, [SP05],
[ASD+07]), computer vision (e.g., event detection in video sequences, [JWW15]),
language processing (e.g., prediction of words in a sentence, [TBCC07]), music gen-
eration ([Eck06]), medicine (e.g., monitoring of physiological signals, [BVN+13]) and
economy (e.g., financial forecasting, [IJK+07]) among others. Below, I briefly de-
scribe temporal pattern recognition and time-series prediction, which are present in
the majority of RC applications. Note that a more detailed description of the appli-
cation areas of RC (particularly focused on the potential applications of hardware-
based RC systems) is given in chapter 9.

2.3.4.1. Temporal pattern recognition

The task of temporal pattern recognition consists in the classification of consecutive
sections of the input signal (a time-series) into one of several categories. An illus-
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trative example of time-series classification is the online handwriting recognition,
which employs the trajectories of the pen tip as input sequence. Typical handwrit-
ing temporal patterns (given by the differentiated writing trajectories, vx and vy)
corresponding to three different characters (“a”, “b” and “c”) are represented in
Fig. 2.15. Two samples (produced by the same writer) are shown for each character.
Subtle variations can be observed from one to another sample of the same class.
The solution of the classification problem of handwriting trajectories using the ESN
approach is presented in sec. 9.2.
Other emblematic examples of temporal sequence recognition, which may be dealt
with RC techniques, are speech recognition ([ZYCS15]), classification of the activi-
ties performed by persons in video sequences ([YM12]), classification of faults in in-
dustrial processes and plants ([JM15]), classification of heartbeat and brain activity
signals for medical diagnosis ([EMSFM15], [BVvM+11]), gait recognition (identify-
ing humans through the style in which they walk, [YAT16]) and voice verification
([DN16]).

2.3.4.2. Time-series prediction

In time-series prediction or forecasting, the objective is to predict future values
based on previously observed ones. Thus, the input sequences are mapped onto
a real-valued output sequence that represents one-step or several-step ahead pre-
dictions of the desired variable. A representative example is the Santa Fe laser
time-series prediction task, a widely used benchmark in the RC literature ([RT11]).
The task consists in forecasting an experimental recording of the output power of a
far-infrared laser operating in a chaotic regime. It is usually evaluated for one-step
ahead predictions. That is, the value of the series at the current time is introduced
each time step as input to the system and the time-series value corresponding to
the next time step must be predicted. Data are available at [WG15]. A fragment
of such time-series can be observed in Fig. 3.17. This task is used throughout this
thesis for the evaluation of the proposed RC hardware implementations.
Other time-series often employed to evaluate the prediction accuracy of RC systems
are the IPIX radar backscatter data from an ocean surface (analyzed in sec. 5.4.2
and available at [BC01a]) and other synthetic data sets, such as the Mackey-Glass
([JH04]), the Henon map ([Hen76]), and the NARMA (nonlinear autoregressive
moving average time-series, see, e.g., [AP00]).
Apart from these more or less academic examples, time-series forecasting can be
applied to real-world engineering problems such as predictive control of nonlinear
plants ([SP05]), motion prediction of robots ([Bur05a]), damage detection in struc-
tural health monitoring systems ([WDH15]) and financial forecasting ([MM15]).
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Figure 2.15.: Temporal patterns of the handwriting trajectories (vx and vy) for
characters “a” (a), “b” (b) and “c” (c). 57
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2.4. Hardware implementation of neural networks

Although the majority of ANNs are implemented in software using conventional
processors, some applications require the use of specific hardware. In some cases, for
example, a personal computer (PC) cannot be employed to perform the desired task,
but it must be carried out through compact and energy-efficient objects allowing for
autonomy and mobility. On the other hand, some real-time applications demand a
processing speed that is too high for conventional PCs or digital signal processors
(DSPs).
Unlike general-purpose sequential processors, hardware devices specifically tailored
to implement ANNs (often called hardware neural networks, HNNs) can benefit
from the inherent parallelism in the neural processing. In general, HNNs can offer
advantages in terms of speed, energy consumption, cost and fault-tolerance.
Specialized hardware implementing massively parallel network architectures can be
used to speed up the neural processing in applications that demand high-volume real-
time processing, such as computer vision tasks (see, for example, the implementa-
tions presented in [LGMARB+05], [AKK+16] and [UHS16] for image/video process-
ing), image search ([KSH12]) and data search and mining ([LRS+12], [MCO+17]).
Apart from a timely data processing of large data sets, HNNs make possible reduc-
ing the power consumption. This is particularly interesting for autonomous/mo-
bile applications constrained in terms of power supply. Examples of this include,
among others, the control of machines (e.g., mobile robots) and industrial pro-
cesses ([CR95], [LBH02], [LZF06], [ZL08]), distributed sensory networks ([MP08],
[CSC13]), portable medical applications ([PCFB09], [RGW+09], [SAC+10]), hand-
writing ([SJM04], [MPR09], [IBA+10]) and speech recognition ([WSLW95], [SDVC08],
[LHP+16]) systems.
Hardware implementations can also reduce the total cost, which is extremely im-
portant for ubiquitous consumer products, such as mobile electronics devices. For
example, low-cost HNNs performing real-time image and speech processing can be
interesting for smartphones and tablets ([KKJ+15], [MKM15]). Another potential
advantage of HNNs over sequential processor-based implementations is related to
the capability of distributed architectures to correctly operate (though with slightly
reduced performance) in the presence of faults in some components by virtue of
the inherently redundant network structure. Such fault-tolerance is crucial in appli-
cations that require complete availability or are safety critical (i.e., those systems
whose failure could result in loss of life, significant property damage or damage
to the environment, such as medical devices, aircraft flight control, weapons and
nuclear systems; see, e.g., [LH94] and [Kni02]).
Specialized ANN hardware can be used either to support or replace software. An
example of the first situation is the use of HNNs as accelerators for mobile appli-
cation processors ([KKJ+15]). Many applications on mobile devices (smartphones,
tablets, etc.) demand large amounts of computation that must be efficiently ex-
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ecuted to achieve an extended battery lifetime. Application-specific accelerators,
along with general-purpose CPU cores, are commonly employed on mobile appli-
cation processors to deliver both high performance and energy efficiency. Neural
network accelerators are used as function approximators and allow significant per-
formance and efficiency gain especially in applications that tolerate a certain degree
of error, such as video and audio processing ([ESCB13]).
HNN-based co-processing (supporting conventional PCs) can also be of interest in
applications such as stock market prediction, image classification and data mining
([MCO+17]) where high volumes of data must be analyzed and/or the task requires
a very high number of neurons. For example, [IJK+07] and [JWW15] report the use
of massive networks, both with approximately 50000 nodes, for financial forecasting
and image recognition tasks, respectively.
On the other hand, software is usually completely replaced by hardware realizations
in those applications involving energy consumption restrictions that necessitate em-
bedded systems or low-power devices. This is the case of wearable ([SAC+10]) and
implantable ([RWRI09]) medical devices, wireless sensor networks ([MP08]), con-
trol units ([LZF06]) or any other smart systems that need to operate autonomously
without power grid access. In any case, it must be noted that, in practice, a HNN
realizing an ANN model alone is usually not sufficient by itself and a fully opera-
tional system may demand many other components for sensor acquisition, pre and
post processing of the input and output signals, etc.
Some studies implementing neural network models in hardware have included the
training phase of the algorithm in addition to its execution. For instance, [SMA07]
and [OZJM+16] provide hardware implementations of the back-propagation learning
algorithm, which can significantly reduce the required training time compared to a
training performed externally in a PC, especially when large data sets must be
learned.
Scalable general purpose parallel computers and graphical processing units (GPUs)
have often been used to accelerate the execution and training process of neural
network models ([SS98], [LDL+16]). Similarly, microcontrollers are widely used in
applications requiring “intelligent” low-cost and low-power devices (e.g., for control,
[LSM05], and wireless sensor networks, [MP08]) as they are economical and easy
to program (standard programming languages can be used) although limited in
terms of memory size and computing speed. Nevertheless, neuromorphic engineering
proposes a different solution constructing specific chips with circuits designed to
implement neural networks from the ground.
Neuromorphic hardware can be classified in two main categories: analog ([Mea89],
[Hir93]) and digital ([Kun93], [Ien95]). On the one hand, analog circuits benefit from
consuming very little silicon area and presenting high processing speed, although this
comes at the price of a limited accuracy of the network components. In addition,
these systems are complex to reconfigure; this is the reason why analog implemen-
tations have primarily focused on trying to emulate the characteristics and behavior
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of real biological neurons ([MB99]). On the other hand, digital implementations of
ANNs offer higher flexibility and accuracy. In addition, the digital design enables
a straightforward integration of the hardware neural network module into more
complex digital designs. Their major shortcoming is the high number of required
transistors when compared with analog implementations, which implies higher cost
and more power consumption ([LB12]). Apart from the two main streams for HNN
realization (analog and digital), there are also hybrid (mixed analog/digital, [AE94])
and non-electronic implementations, such as the optical ones ([MFS96]).
There exist many HNNs for real-world applications, such as optical character recog-
nition, speech recognition, control, robotics, etc. Some examples include the “tensor
processing unit” developed by Google ([Jou16]), the “TrueNorth” chip produced by
IBM ([MAAI+14]) and the neuromorphic hardware implementations developed un-
der the “SpiNNaker” ([FLP+13]), “BrainScaleS” ([SBG+10]) and “Silicon Neurons”
([ILBH+11]) projects. The reader is referred to [MS10] for a comprehensive review
of the HNN research over the last two decades including numerous academic and
commercial examples.
The present thesis deals with the digital hardware implementation of reservoir com-
puting systems. Even though a number of physical realizations of the RC approach
have been proposed (e.g., [FS03], [VDS+08], [ASVDS+11], [LSB+12], [PDS+12],
[DSS+12], [BSMF13], [NVDVDS14] and [FVVW+14]), most of them are imple-
mented using unconventional hardware platforms, usually optical systems based
on the single dynamical node setup described in sec. 2.3.3. To the best of my knowl-
edge, only two RC digital hardware implementations can be found in the literature
([SDVC08] and [WLL16]), which are based on the liquid state machine (LSM) ap-
proach (sec. 2.3.2). I will mainly focus on echo state networks (ESNs, sec. 2.3.1)
providing different digital implementation designs seeking a reduced usage of hard-
ware resources. I will also present a digital implementation of the RC approach that
employs a single nonlinear oscillator with delayed feedback as dynamical node.
The designs proposed throughout this thesis will be implemented and evaluated
using field-programmable gate arrays (FPGAs). FPGAs are a reconfigurable alter-
native to ASICs (application-specific integrated circuits). FPGAs can be configured
to implement different combinational and sequential logic designs. Although they
were originally created with the aim of prototyping digital circuits for ASICs, recent
technological advances have made possible the construction of FPGAs with high
processing power and memory storage enabling their direct use in a wide range of
applications (e.g., robotics, industrial control, telecommunications, aerospace and
defense, and medical electronics, [MIC+11], [RAVPM15]). FPGAs are a suitable
hardware resource for neural network implementations since they are intrinsically
parallel devices (as is the processing of information in neural network models) and
can be reconfigured by the user. Despite being slower and consuming more power
than dedicated ASICs, FPGAs allow a much faster implementation cycle and if a
relatively small number of chips is required, they are cheaper than ASICs. To sum
up, FPGAs represent a compromise between the programmability of classic proces-
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sors and the parallel nature and high speed of ASICs. Some examples of FPGA
implementations of neural networks can be found in [OR06], [NDMM07], [MHS08],
[DGLZ12] and [CMA+16].
FPGA boards are programmed using hardware description languages (HDL), such
as VHDL (VHSIC hardware description language) or Verilog. Their configuration
is usually a time consuming task if compared to microprocessor programming, but
HDLs are independent of devices and manufacturers, so they are compatible with
many different platforms and can be synthesized into any FPGA without major
changes. Indeed, the developed designs can also be exported to build specific chips
if desired.
Despite recent advances on the computational power of FPGA boards, their circuit
density is still quite limited compared to ASICs. This makes challenging the task
of implementing large ANN models, as is the case of reservoir networks, often with
hundreds or thousands of neurons, especially in low-cost devices. The fundamental
problems (“bottlenecks”) limiting the size of FPGA-based ANNs are the nonlinear
activation function and the multiplication operation ([ASG91], [HAM07]), whose
implementation requires large resource. As each synaptic connection in an ANN
requires a single multiplier, the fully-parallel execution of a massive network requires
a high number of multipliers. Throughout this thesis, I propose and analyze the use
of different methods aimed at efficiently implementing reservoir networks. More
specifically, chapter 4 and 5 make use of bit-serial stochastic computing ([BH94])
to reduce the circuitry devoted to the arithmetic operations, chapter 6 proposes
to constrain the resolution of the weights, which allows replacing multipliers by
simpler shift-and-add operations; finally, chapter 7 and 8 are based on the sequential
execution of some parts of the network model.
The hardware designs proposed in this thesis have the purpose to extend the utility of
the RC approach to those applications where software solutions are not satisfactory,
such as real-time systems requiring very large computational power, energy-efficient
solutions for mobile/autonomous devices, massively produced price-sensitive con-
sumer electronic products, and fault-tolerant systems for the processing of safety-
critical tasks. Each presented design will be described in detail and provided, in most
cases, with exemplary VHDL codes. Such codes can be easily generated through an
automatic tool translating the desired network configuration onto hardware, which
facilitates and accelerates the process of neural hardware design.
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3. Conventional implementation of
echo state networks

3.1. Overview

The benefits of the hardware realization of neural network models for certain appli-
cations have been described in sec. 2.4. In this chapter, I present the conventional
parallel implementation of echo state networks (ESNs) using digital hardware, that
is to say, a direct physical realization of the ESN model introduced in the previ-
ous chapter using conventional Boolean logic. On the one hand, this description
is intended to highlight the challenges of such implementation regarding the high
number of required hardware resources. On the other hand, the proposed design
serves as a reference that will allow to examine the hardware resource saving of
alternative approaches. In addition, general issues regarding the implementation of
neural networks in digital circuitry, such as the numerical representation and the
nonlinear activation function, are described. The functionality of the present im-
plementation is demonstrated through a chaotic time-series prediction task and the
consumed hardware resources are presented.

3.2. Circuit design of the artificial neuron

As introduced in sec. 2.2, the basic neural network processing unit is the artificial
neuron. In the case of the commonly used discrete-time artificial neuron (sec. 2.2.2),
an activation potential is first calculated as the weighted sum of the neuron inputs,
and then passed to the non-linear activation function (typically with sigmoid shape)
to get the neuron output. This processing, which involves multiplications, additions
and the computation of a non-linear function, is illustrated for a two-input neuron
in Fig. 3.1.
The circuit design of such a two-input neuron is depicted in Fig. 3.2. The inputs,
here named in1(t) and in2(t), are weighted by their corresponding factors v and r.
The resulting products p1 and p2 are added to provide the activation potential. This
is finally passed to a non-linear function block that calculates the final output. The
output value is stored in a register so that it can be used by another neuron in the
next time step (in case the neurons are arranged in a recurrent network). A number
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Figure 3.1.: Schematic diagram of a two-input sigmoid neuron.

of n bits is used to represent the inputs, weights and neuron outputs. This section
describes in detail how the required operations are implemented in digital circuitry.
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Figure 3.2.: Conventional circuit design of a discrete-time two-input neuron (a)
and schematic representation (b).

3.2.1. The format of numerical representation

Throughout this thesis, only fixed-point notation is used. The area requirements
of the complex circuits needed to implement floating-point operations are extensive
whereas fixed-point arithmetic makes use of simpler integer adders and multipliers.
The fixed-point format is defined as follows:

[s]a.b (3.1)

where the s is an optional variable denoting the sign bit that is 0 for positive and 1
for negative values, a is the number of integer bits and b is the number of fractional
bits.
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If the sign bit is used, the two’s complement notation is employed, otherwise the
unsigned notation is used. Fig. 3.3 exemplifies the meaning of both numerical rep-
resentations.

Figure 3.3.: Examples of binary representation (X) of real quantities (x) according
to the unsigned (a) and signed (two’s complement) notation (b).

For the unsigned notation a.b, the minimum xmin and maximum xmax values that
can be represented are

xmin = 0
xmax = 2a − 2−b

(3.2)

while for the signed two’s complement notation s a.b the representation range is
given by

xmin = −2a

xmax = 2a − 2−b
(3.3)

The maximum truncation error, defined as the absolute difference between a real
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number and its corresponding binary representation, for both notations is

Emax = 2−(b+1) (3.4)

The conversion of a binary number X to its corresponding real value x in the case
of using the unsigned notation a.b is given by

x = X

2b (3.5)

For example, the binary magnitude X = ”1101” corresponds to the real value x =
13
23 = 1.625 when the unsigned notation 1.3 is employed.
In the two’s complement notation, the opposite of a number is obtained by negating
all the bits of that number and adding a ”1” to the result. For instance, the result
of applying this operation to the number ”0011” (representing the real value +0.75
using the two’s complement notation s1.2) is NOT (”0011”) + ”1” = ”1100” + ”1” =
”1101”, which represents the value −0.75.
To convert a binary number X to its corresponding real value x in the case of using
the signed notation sa.b, equation 3.5 can be used if that number is positive (the first
bit is a 0). For negative values, first the opposite of the number must be obtained,
and then apply the equation to the result. For example, the real value corresponding
to ”1011” is the opposite of NOT (”1011”) + ”1” = ”0101”, which corresponds to
1.25 in the s1.2 notation, so that the magnitude ”1011” corresponds to −1.25.
A practical procedure to convert any binary magnitude to its corresponding real
value for the case of the signed notation s a.b consists in flipping the first bit of the
binary number (changing it from 1 to 0 and vice versa) to obtain the number X’,
and then the real quantity can be calculated according to the next expression:

x = X ′

2b − 2a (3.6)

3.2.2. Arithmetic operations

3.2.2.1. The half adder and the full adder

The single-bit half adder and the full adder are the basic building blocks used to
implement arithmetic circuits such as multiple-bit binary adders and multipliers.
The most basic form of the half adder circuit is illustrated in Fig. 3.4. It consists
of a XOR gate producing the sum bit S of the inputs (A and B) and an AND gate
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producing the carry output bit C. The carry signal represents an overflow into the
next digit of a multiple-bit addition. The half adder is useful for adding two single-
bit numbers, but for the addition of binary numbers containing several bits it is
necessary to account for a carry in bit.

C

A
B

S A  B S  C

0  0
0  1
1  0
1  1

0  0
1  0
1  0
0  1

(a) (b)

Figure 3.4.: Half adder circuit (a) and its true table (b).

The full adder adds three single-bit numbers (A, B and Cin) producing the sum S
and carry out Cout bits. The full adder is built combining two half adders and an
OR gate. The circuit of the full adder along with its block diagram symbol and the
true table is shown in Fig. 3.5.

Cout

A
B S

A  B  Cin S  Cout

0  0  0 0  0
1  0
1  0
0  1

(a) (c)

Cin
A
B
Cin
∑ Cout

S

(b)

0  0  1
0  1  0
0  1  1
1  0  0 1  0

0  1
0  1
1  1

1  0  1
1  1  0
1  1  1

Figure 3.5.: Full adder circuit (a), block diagram symbol (b) and true table (c).

3.2.2.2. The parallel adder

Multiple full adders can be combined to form a circuit that adds multiple-bit num-
bers. Each full adder inputs a carry in bit that is the carry out bit of the previous
adder. This is called a ripple-carry adder or parallel adder. The parallel adder is
illustrated in Fig. 3.6 for the case of two 4-bit input numbers. Note that the parallel
adder shown performs the sum of two unsigned integers a[3..0] and b[3..0]. In case
of using two’s complement notation to represent negative numbers, some additional
logic is required around this basic adder.
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Figure 3.6.: 4-bit unsigned parallel adder: circuit (a) and compact symbol repre-
sentation (b).

3.2.2.3. The parallel multiplier

The technique used to implement a digital multiplier involves computing a set of
partial products, and then summing them together. Therefore, multipliers are built
using binary adders. The multiplication process is shown in Fig. 3.7 for two unsigned
4-bit integers a[3..0] anb b[3..0]. As it can be appreciated, the multiplication of two
binary numbers comes down to calculating partial products, shifting them left, and
finally adding them together. The resulting final unsigned product p[7..0] contains
a number of bits equal to the number of bits of the multiplicand plus the number
of bits of the multiplier. Fig. 3.8 shows the diagram of an unsigned 4-bit parallel
multiplier (all bits are presented simultaneously to the system). This multiplier
needs to include some modifications in order to support two’s complement notation
signed numbers. For more details, see [BW73] and [Beh00].
The hardware description of the parallel adder and the parallel multiplier using
VHDL can be expressed using a very simple piece of code by means of the predefined
“+” (addition) and “*” (multiplication) operators ([Ped04]). The VHDL code for
the addition and multiplication operations is shown in Algorithm 3.1.
Note that either unsigned or signed notation can be employed for the variables
just by declaring the proper package of the ieee library (std_logic_unsigned or
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multiplier
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Figure 3.7.: Multiplication process of two unsigned four-bit binary numbers
(a[i]·b[j] denotes the Boolean product of the two bits: a[i] AND b[j]).

Algorithm 3.1 VHDL code for the addition and multiplication of two 4-bit inputs.

LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;
USE i e e e . s td_log i c_ar i th . a l l ;
USE i e e e . s td_log ic_s igned . a l l ;

ENTITY ar i thmet i c_operat i ons IS
PORT (a , b : IN STD_LOGIC_VECTOR (3 DOWNTO 0 ) ;

sum : OUT STD_LOGIC_VECTOR (3 DOWNTO 0 ) ;
prod : OUT STD_LOGIC_VECTOR (7 DOWNTO 0 ) ) ;

END ENTITY ar i thmet i c_operat i ons ;

ARCHITECTURE behavior OF ar i thmet i c_operat i ons IS
BEGIN

sum <= a + b ;
prod <= a ∗ b ;

END behavior ;

std_logic_signed for using the unsigned and signed data type, respectively) at the
beginning of the code.

3.2.3. The activation function

The computation of the nonlinear activation function is a crucial issue for the neural
implementation. The hyperbolic tangent sigmoid function introduced in sec. 2.2.2.1
is one of the most commonly used. An exact implementation of the sigmoid func-
tion in digital hardware requires many resources due to the involved exponentiation
and division operations. Therefore, the use of approximations is necessary. A great
deal of research effort has been directed to the development of efficient designs of
the sigmoid function and a range of digital hardware approximations with different
accuracy can be found in the literature ([ASG91], [Kwa92], [ZVDF96], [BTdC02],
[Tom03], [DCFEB13]). The selection of an approximation method with high ac-
curacy increases the hardware while too low accuracy implies poor performance. I
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Figure 3.8.: 4-bit unsigned parallel multiplier: circuit (a) and block symbol repre-
sentation (b).
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present here some approaches that are used throughout this thesis.

3.2.3.1. Piece-wise linear approximations

The piece-wise linear approach consists of approximately reproducing the desired
nonlinear function by means of a number of linear segments. The most simple of
these approximations is built using only three segments as described in 3.7 and
depicted in Fig. 3.9.

f(x) =


−1, x < −1
x, −1 ≤ x < 1
1, x ≥ 1

(3.7)

The VHDL code implementing this function is shown in Algorithm 3.2. Note that
the signed notation is necessary since both the domain and range of the hyperbolic
tangent function include negative values. s1.15 notation is used for the input of the
function assumed to be in the [-2, 2] range while s0.15 is employed for the output,
which is bound in the [-1, 1] interval.

Algorithm 3.2 VHDL code for the simple 3-segment linear approximation to the
hyperbolic tangent.

LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;
USE i e e e . s td_log i c_ar i th . a l l ;
USE i e e e . s td_log ic_s igned . a l l ;

ENTITY f_tanh_approx_3_segments IS
PORT ( x : IN STD_LOGIC_VECTOR (16 DOWNTO 0 ) ; −− s1 . 15

f : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ; −− s0 . 15
END ENTITY f_tanh_approx_3_segments ;

ARCHITECTURE func t i on OF f_tanh_approx_3_segments IS
begin

f <= x "7FFF" when ( x > ’0 ’ & x "7FFF" ) e l s e
x "8000" when ( x < ’1 ’ & x "8000 " ) e l s e
x (16) & x(14 DOWNTO 0 ) ;

END func t i on ;

Amore accurate approximation was proposed by Alippi and Storti-Gajani in [ASG91].
It is based on the selection of semi-integer breakpoints (that is, ±1/2,±1,±3/2,±2,
...) and on setting the gradient of the linear segments as power of two numbers
(1/2, 1/4, 1/8, 1/16, ...) as expressed in 3.8. The resulting approximation along with
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Figure 3.9.: Simple piece-wise linear approximation to the hyperbolic tangent with
three segments.
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Figure 3.10.: Piece-wise linear approximation to the hyperbolic tangent function
proposed by Alippi and Storti-Gajani ([ASG91]).
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the exact function is illustrated in Fig. 3.10. It can be observed that this approach
allows obtaining low error values.

f(x) =



1
2x, |x| < 1/2
1
4x,

1/2 ≤ |x| < 1
1
8x, 1 ≤ |x| < 3/2
1
16x

3/2 ≤ |x| < 2
... ...

(3.8)

This approximation can be expressed according to 3.9 for negative values of x.

f(x) =
1 + 2̂x

2
2|d2xe| − 1, x < 0 (3.9)

Where d2xe stands for the integer part of 2x and 2̂x denotes the decimal part defined
as follows:

2̂x = 2x+ |d2xe| (3.10)

The function value for positive values of x can be calculated using the symmetry
property of the hyperbolic tangent function (tanh(−x) = − tanh(x)):

f(x) = −f(−x), x > 0 (3.11)

This piece-wise linear technique involves low computational complexity since the for-
mula 3.9 does not require multipliers but only bit shifts and additions. Furthermore,
it offers high computation speed as only one clock cycle is necessary for the output
assessment. Other piece-wise linear approximations, such as the one presented in
[BTdC02] based on recursive calculations, allow to improve the accuracy at the cost
of a slower computation speed (several clock cycles are required).

3.2.3.2. Combinational approximations

An efficient alternative for implementing a function when its input and output con-
tain few bits is the direct bit-level mapping by means of a purely combinational
system. It consists in expressing each output bit in canonical form as a sum of
products of the input bits. That is to say, the input bits are firstly multiplied using
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AND gates, and then the resulting products are summed by a multiple-input OR
gate. Tommiska analyzed such an implementation, named the SIG-sigmoid approx-
imation ([Tom03]), for different resolutions of the input and output quantities. He
followed a procedure to minimize the sum-of-products representation for the output
bits of the hyperbolic tangent function. Since no arithmetic operations are needed,
the area requirements remain low. The SIG-sigmoid implementation concept using
a direct bit-level mapping is illustrated in Fig. 3.11.
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p2
output[0]
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Figure 3.11.: Implementation scheme of the SIG-sigmoid function using direct bit-
level mapping proposed by Tommiska ([Tom03]).

The results reported in [Tom03] show that, compared to the previous approach of
Alippi and Storti-Gajani, the SIG-sigmoid approximation presents a significant im-
provement in terms of accuracy with a small increase in the use of hardware resources
(36 logic elements for the former approach and 45 for the latter). The computa-
tion time of the sigmoid function for the combinational approach is also a single
clock cycle. Experimental measurements of the SIG-sigmoid approximation with a
resolution of 7 bits for both input and output values are presented in Fig. 3.12(a).
The fixed-point formats used for this design are s.3.3 for the input and s0.6 for the
output. It can be noticed the approximated function exhibits discontinuities due
to the limited precision of the implementation. Interpolation can be used to over-
come this limitation. In particular, I propose to employ linear interpolation using
powers of two for the gradient of the interpolation segments as in the Alippi and
Storti-Gajani technique so that the area requirements are kept low. The function
with improved precision using interpolation is displayed in Fig. 3.12(b). In this case,
the input signal uses two additional fractional bits so that it is represented by the
format s3.5.

3.2.3.3. Other approaches

Other techniques include the implementation of the sigmoid function as a piece-wise
second order approximation ([ZVDF96]) according to 3.12. The main disadvantage
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Figure 3.12.: Experimental measurements of the SIG-sigmoid function (a) and of
the improved approximation with linear interpolation (b).
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of this approach is the requirement of multipliers, which considerably increases the
hardware resource utilization.

f(x) = c0 + c1x+ c2x
2 (3.12)

The sigmoid function can also be implemented as a lookup table. In this case, the
accuracy of the function depends on the number of approximated values stored in
the memory. Nevertheless, although the available internal memory of FPGA devices
has increased with the enhancement of FPGA technology, self-contained neurons are
more desirable since the limited memory of the devices is often necessary for other
purposes.

3.3. Implementation of the ESN architecture

The implementation of the complete set of individual neurons forming the echo
state network is carried out according to the simple cycle reservoir (SCR) topology
introduced in sec. 2.3.1.2. The SCR simplified topology is illustrated in Fig. 3.13.
The greatest benefit of this structure is the reduced number of connections (that is,
synapse multiplications) compared to the classical ESN architecture with random
connections, which makes it more appropriate for a hardware implementation. In
addition, the digital design of such an SCR network can be easily automated for any
number of units since all neurons have the same structure (one connection input from
a neighboring neuron and a second one from the input layer) and it is independent
on the size of the system.
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Figure 3.13.: Simple cycle reservoir (SCR) topology. Units are organized in a
cycle.

Fig. 3.14 shows how the individual neuron blocks are organized to form the ESN
with cyclic architecture of Fig. 3.13. The proposed conventional implementation of
the reservoir network has been realized in a medium-sized FPGA (Altera Cyclone
IV EP4CE115F297C7N) using 16-bit precision (n = 16) for the signals. The simple
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Figure 3.14.: Conventional implementation of the ESN with cyclic topology com-
posed of N two-input neurons. 79



Chapter 3 Conventional implementation of echo state networks

piece-wise linear approximation with three segments has been used for the sigmoid
activation function. The fixed-point format s0.15 has been used for the neuron
inputs, weights and outputs since their values are limited to the [−1, 1] range.
Note that the output of each of the reservoir neurons is computed as a nonlinear
transformation of the weighted addition of its inputs (according to Fig. 3.1 and
Fig. 3.2). An additional constant bias term could be included although it has been
observed to have little impact on the network’s performance. Similarly, a bias term
might also be added in the linear output neuron. On the other hand, a direct
connection from the input unit to the output layer could be included as expressed
in equation 2.12, which may increase the system’s accuracy in certain tasks.
A software program (using the MATLAB language) has been developed which allows
the SCR network to be automatically exported to a VHDL hardware description.
The program generates the VHDL code (as a text file) for the reservoir with any
desired number of neurons and weight configuration. Finally, the resulting VHDL
code can be synthesized to an actual hardware implementation. An example of the
VHDL code describing the SCR hardware realization for 50 neurons is shown in
sec.A.1 of Appendix A.
The process followed to implement the proposed reservoir network design in the
FPGA is illustrated in Fig. 3.15. Once the VHDL code of the ESN with the desired
configuration has been generated (as a text file) through the MATLAB script, the
Quartus II software ([web17c]) is employed to compile and synthesize the specified
circuit in the FPGA. Finally, the FPGA-based network may be tested capturing the
experimental results through the Quartus’ logic analyzer.

Figure 3.15.: Implementation process of the ESN design into the FPGA and even-
tual measuring of the experimental results.

The consumed hardware resources of the implementation for different values of the
number of neurons N are presented in Tab. 3.1. The unit usually employed to
compare the area requirements of FPGA-based designs is the logic element (LE),
although it may vary depending on the manufacturer. Contrary to ASICs, where
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the entire architectural structure is defined in the design process, FPGAs consist of
a regular structure of reprogrammable basic functional elements (the logic elements)
that are connected by hierarchical routing. A description of the internal structure
of a LE in a modern Altera FPGA device can be found in [Tom03].

N (neurons) 50 100 150 200
Logic elements 19147 (16.7%) 37631 (32.9%) 56073 (49%) 74544 (65.1%)

Registers 800 (0.7%) 1600 (1.4%) 2400 (2.1%) 3200 (2.8%)
Table 3.1.: Hardware resource utilization of the Altera Cyclone IV FPGA for the
proposed ESN conventional implementation.

3.4. Experimental results

The performance of the implementation has been tested for the Santa Fe time-series
prediction task, a widely used benchmark in the RC literature ([RT11]). As intro-
duced in sec. 2.3.4.2, it consists in the one-step ahead prediction of an experimental
recording of the output power of a far-infrared laser operating in a chaotic regime. A
total of 4000 samples of the original laser data set ([WG15]) are employed; the first
2000 for training, the next 1000 for validation, and the remaining 1000 for testing.
To perform the measurements of the proposed conventional ESN circuitry, an inter-
nal RAM memory supplies the input signal to the reservoir network every time step
(a single clock cycle). The resulting network outputs (individual neuron states) are
monitored using a logic analyzer.
A numerical model of the reservoir hardware (also programmed using MATLAB),
which truncates the resolution of the variables according to the digital design,
is employed for training the system (following the standard procedure for ESNs,
sec. 2.3.1.3). Such numerical model has been observed to exactly reproduce the
FPGA results. That is, a perfect agreement (with zero error) was found between
the experimental and the simulated neuron states. This software is also used to de-
termine the configuration parameters providing the best performance of the system
for the validation set. Finally, the hardware realization is set up with the optimum
weights and analyzed with the test set. Fig. 3.16 shows the network performance
(prediction error) for the validation set as a function of the configuration parameters
r and v.
The network’s output layer is computed by software as a linear combination of the
experimental neuron states, which are read with a 12-bit precision. The experi-
mental prediction when using 200 neurons is shown for a fragment of the test set
in Fig. 3.17. The test performance for several sizes of the reservoir is displayed in
Fig. 3.18. These results cannot be directly compared to those of previous conven-
tional software implementations (e.g., [RT11]) since the present hardware realization
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3.5 Discussion

employs a simplified activation function, which implies a lower system’s performance
than the hyperbolic tangent. Nevertheless, it has been observed that an equivalent
software implementation using the same three-segment sigmoid approximation em-
ployed in hardware (although with full-resolution) provides practically the same
results (with only a maximum difference of 10−4 in the NMSE values due to the
limited resolution of the hardware).
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Figure 3.18.: Performance (NMSE) in the time-series prediction task as a function
of the reservoir size for the proposed conventional hardware ESN.

3.5. Discussion

A conventional implementation of an echo state network (ESN) in digital hard-
ware has been described and analyzed. The presented design allows the parallel
computation of all neuron outputs in a single clock cycle (20ns for a typical clock
frequency of 50MHz) and provides results with the expected accuracy (NMSE val-
ues). More specifically, I have focused on the implementation of the ESN with a
simple cyclic topology (SCR), which represents a considerable improvement regard-
ing the number of connections compared to a standard random ESN. Nevertheless,
despite being completely functional, the conventional parallel design consumes many
hardware resources, even in the case of using a rough approximation for the sigmoid
activation function, mainly due to the large area requirement of the binary prod-
ucts. For instance, the ESN realization with 200 units employs about 74000 logic
elements, which represents most of the area in a medium-cost FPGA. Therefore,
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Chapter 3 Conventional implementation of echo state networks

this implementation is not appropriate for low-cost and low-power devices. Alter-
native implementation approaches are necessary to reduce the network’s chip area
requirements, especially those related to the multiplication operations. This would
enable fitting a greater number of concurrent neurons in a limited-size device, which
is crucial to better exploit the parallelism of neural networks.
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4. Stochastic echo state networks

4.1. Overview

Hardware implementations of artificial neural networks (ANNs) allow to exploit the
inherent parallelism of these systems. Nevertheless, they require a large amount of
resources in terms of area and power dissipation. The results presented in chapter 3
exemplify the necessity of investigating alternative ways of realizing reservoir com-
puting (RC) models (in particular, echo state networks, ESNs) in digital hardware
using few resources. Here, we show a new approach to implement ESNs with digital
gates. The proposed method is based on the use of probabilistic computing concepts
to reduce the hardware required to perform the arithmetic operations. The result
is the development of a highly functional system with low hardware resources. The
presented methodology is used to implement massive reservoir networks and applied
to chaotic time-series forecasting. The main aim of this chapter is to analyze the
practicality of the stochastic computing technique (SC) to build ESNs. I discuss the
advantages and limitations of the proposed approach compared to the binary logic
conventional implementation of chapter 3 examining the hardware resource saving.

4.2. Stochastic computing

4.2.1. Basic concept

Stochastic computing (SC) was introduced in the 1960s ([PAE67], [Gai67], [Rib67])
as a low-cost alternative to conventional binary computing. It enables very low-cost
implementations of arithmetic operations using standard logic elements. The basic
concept of SC is that information is represented by sequences of random bits. More
specifically, the information is carried by the frequency of ones in a sequence as
illustrated in Fig. 4.1. In this example, the bit-stream (stochastic signal) contains
25% of ones and 75% of zeros, which expresses a represented number p = 0.25.
Both the random bit-streams p(t) and the probability they represent p are usually
denoted with the same letter and referred to as stochastic numbers. It is worth
noting that the representation is not unique; for example, different sequences such
as {01000100} and {00100001}, represent the same information (a value related to
the probability of the pulsed signal being in the high level, in this case p = 1/4).

85



Chapter 4 Stochastic echo state networks

GLOBAL 

CLOCK

STOCHASTIC

SIGNAL

Tclk

Teval = #cycles = 8 Tclk

p= 
#cycles

#High values
= 

8

2

p*= 2p-1=
2

-1

Unipolar coding

p  →  [0, 1]

Bipolar coding

p* →  [-1, 1]

= 
4

1
à

à

p(t)

Figure 4.1.: Basic concept of the stochastic codification. Information is coded as
the probability p of the pulsed signal being in the high level.

The random bit sequences (stochastic bit-streams) follow probabilistic laws when
they are evaluated through logic gates. The probability-based coding of SC provides
a natural way of operating with analog quantities (since probabilities are defined
between 0 and 1) using digital circuitry. For instance, the AND gate provides an
output signal with a switching probability equal to the product of its inputs (that is,
the collision probability between signals). The product operation of two independent
stochastic signals using an AND gate is illustrated in Fig. 4.2. As can be seen, the
inputs to the AND gate represent the numbers 2/8 and 4/8 and we correctly get an
output corresponding to 2/8·4/8 = 1/8. However, a different possible SC representation
of the input numbers may not lead to the same exact result but to an approximation
to the product. In SC, a probabilistic error is always present and long bit sequences
need to be evaluated to obtain accurate results. In addition, the stochastic bit-
streams must be suitably uncorrelated or independent so that the operations are
performed correctly.
The major benefit of the SC technique is that it considerably reduces the hardware
area compared to the traditional digital implementations. In the case of the multi-
plication operation, for example, a high number of logic elements is required for a
conventional parallel multiplication (illustrated in Fig. 3.8 for input variables with a
precision of 4 bits) while a single logic gate is necessary when using the SC approach.
The resource saving of SC comes at the cost of the mentioned lower accuracy and
longer evaluation time. That is to say, SC needs a high number of clock cycles to
assess the result of an operation that can be performed in a single clock cycle using
conventional binary computing.
Another appealing feature of SC implementations is a high degree of error tolerance.
Stochastic circuits tolerate environmental errors that seriously affect the behavior of
conventional circuits. A single bit flip (especially of a high significance bit) causes
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Figure 4.2.: Product operation of two stochastic signals with switching activities
p = 0.25 and q = 0.5 performed by means of an AND gate.

a huge error on a binary circuit, but flipping a few bits in a long bit-stream has
little effect in the value of the stochastic number represented. Therefore, SC can be
interesting for applications like spacecraft electronics which operate under radiation-
induced error conditions.
Other benefits of SC over conventional computing are the capability to trade off
the computation time and accuracy without hardware changes and the simplicity of
communications, which only require one wire per signal.
Despite the minimal hardware resources required to implement mathematical oper-
ations using stochastic bit-streams, the computations in the SC framework require
additional circuitry to convert the binary numbers into stochastic signals and vice
versa. In particular, large numbers of stochastic number generators (SNGs) are usu-
ally necessary in order to operate with uncorrelated bit-streams. Since SNGs can
account for a significant portion of the circuit ([QLR+11]), the reduction of the SNG
count is an important challenge for SC.
Two different codifications are mainly used in SC to relate the frequency of ones
in a sequence of bits and the corresponding represented information (indicated in
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Fig. 4.1): the unipolar coding and the bipolar one. The unipolar mapping directly
assigns the probability of observing a ’1’ in a sequence of bits p(ti) (denoted as
Pp = Probability(p(ti) = ”1”)) to the represented value p, so that p = Pp, (0 ≤
p ≤ 1). The inconvenience of this codification is that negative numbers cannot be
represented directly since probabilities are positively defined. In bipolar coding, this
issue is overcome by defining the bipolar value p∗ as p∗ = (2 ·Pp−1), (−1 ≤ p∗ ≤ 1).
For the SC-based neural network implementation presented in this chapter, the
bipolar format is used.
SC can also deal with values out of the [−1, 1] range using the Extended Stochastic
Logic (ESL) codification ([CMO+16]). This encoding extends the representation
range to any real number using the ratio of two bipolar-encoded pulsed signals and
presents a particularly high tolerance to faults ([CAM+15]). Its major shortcoming
is a high conversion error when using high values of the represented data.

4.2.2. Basic circuitry

The SC approach represents variables by statistical averages of random pulse streams.
The data to be processed (binary values) need to be converted to pulsed signals be-
fore entering the probabilistic computing system, and the resulting pulsed signals
from the stochastic computations must be converted again to their equivalent binary
values. Therefore, any stochastic computing system consists of three basic stages as
illustrated in Fig. 4.3: binary to pulse conversion, SC-based operations and pulse to
binary conversion.

Figure 4.3.: Basic stages of a stochastic computing system.

The structure of the stochastic circuit to perform a particular mathematical opera-
tion depends on the codification used (unipolar or bipolar). Conversely, the blocks
to convert data from the binary to the stochastic domain and vice versa are common
to both codifications.

4.2.2.1. Stochastic computing operations

It has already been introduced that the product is performed by an AND gate when
the unipolar coding is used. This is due to the fact that the pulsed output of the
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AND gate (out(t)) will only have a high level when both input pulse streams p(t)
and q(t) have a high level, and therefore the output probability equals the product
of the input probabilities (out = p · q). The addition operation is less intuitive. It
cannot be directly implemented with an OR gate since this implements the operation
p+ q− p · q, which is only a good approximation to the addition for low probability
values. The scaled addition or mean value of two switching signals (out = 1/2(p+q))
is implemented using a multiplexer and a binary counter. The counter supplies
the selection signal to the multiplexer so that the output signal changes alternately
between p(t) and q(t). A NOT gate converts the probability p at the input to the
complementary 1− p at the output.
The stochastic circuits may implement very different operations when the bipo-
lar codification is used. For instance, when two switching signals representing the
bipolar values p∗and q∗operated by an AND gate result in a pulsed signal with an
encoded value out∗ = 1/2(p∗ + q∗ + p∗ · q∗ − 1). This is shown in 4.3, where the
variable change from the bipolar to the unipolar coding (4.2) is employed.

out(t) = p(t) AND q(t)→ out = p · q (4.1)


p∗ = 2p− 1
q∗ = 2q − 1
out∗ = 2out− 1

−→


p = p∗+1

2
q = q∗+1

2
out = out∗+1

2

(4.2)

out = p·q = p∗ + 1
2 · q

∗ + 1
2 = 1/4(p∗·q∗+p∗+q∗+1) =⇒ out∗ = 1/2(p∗+q∗+p∗·q∗−1)

(4.3)

Similarly, an OR gate performs the function out∗ = 1/2(p∗+ q∗− p∗ · q∗+ 1), and the
product can be simply implemented with a XNOR gate in the bipolar codification
(out∗ = p∗ · q∗). A NOT gate provides the negation of the encoded input value
so that out∗ = −p∗, and the scaled summation is implemented with a multiplexer
just as in the unipolar case. The basic arithmetic circuits for both codifications are
depicted in Fig. 4.4.
It is worth noting that the described circuits perform the desired operations provided
that the input bit-stream signals are uncorrelated. The use of correlated signals,
however, extends the range of possible operations ([AH13a], [MCO+15]). To cite
an example, the function performing the absolute value of the input subtraction
(out = |p− q|) can be implemented for the unipolar coding with a single XOR gate
where the inputs are correlated bit-streams as described in [MCO+15].
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Figure 4.4.: Stochastic arithmetic circuits. (a) Unipolar and bipolar multipliers.
(b) Unipolar complementary operation and bipolar negation. (c) Adder used for
both unipolar and bipolar notation. (d) Function performed by the OR gate
according to the unipolar and bipolar format.

More complex functions, such as the division, square root, exponentiation or the hy-
perbolic tangent function can also be implemented in the SC framework ([BC01b]).
An extensive description and deduction of SC-based operations using the different
codifications (including the extended ones) is given in ([CG12]).
The VHDL hardware description of a SC system performing the multiplication op-
eration of two 16-bit input numbers (in1 and in2 ) is presented in Algorithm 4.1.
The bipolar codification is used, and therefore the stochastic circuit consists of a
single XNOR gate. The representation format of numerical quantities as binary
numbers according to the desired codification is presented in sec. 4.2.2.2 along with
a description of the conversion blocks employed to convert binary magnitudes into
stochastic bit-streams and vice versa. Note that different seed values are used for
each binary-to-stochastic conversion to produce uncorrelated stochastic signals. An
evaluation time equal to Teval = 216 − 1 = 65535 clock cycles is employed so that
the resulting binary output (out_multiplication) is updated every Teval period.

4.2.2.2. Data conversion

A stochastic computing system requires converting any real number (either in the
unipolar [0, 1] or in the bipolar [−1, 1] range) represented by a binary magnitude
P to its equivalent stochastic bit-stream with probability p before the probabilis-
tic computations. Similarly, the resulting pulsed signals must be finally converted
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Algorithm 4.1 VHDL code for a SC system performing a multiplication using the
bipolar codification.

LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;
USE i e e e . s td_log i c_ar i th . a l l ;

ENTITY SC_system IS
PORT ( clk , r s t , en : IN STD_LOGIC;

in1 : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
in2 : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
out_mul t ip l i ca t i on : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ;

END SC_system ;

ARCHITECTURE arch OF SC_system IS
SIGNAL seed1 , seed2 : STD_LOGIC_VECTOR (25 DOWNTO 0 ) ;
SIGNAL eval_period , out_multip_bin : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
SIGNAL out_multip_stoch : STD_LOGIC;

COMPONENT b2p_16bits
PORT ( binary_in : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

c lk , r s t , en : IN STD_LOGIC;
seed : IN STD_LOGIC_VECTOR (25 DOWNTO 0 ) ;
stoch_out : OUT STD_LOGIC) ;

END COMPONENT;

COMPONENT p2b_16bits
PORT ( eva luat ion_per iod : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

stoch_in : IN STD_LOGIC;
c lk , r s t , en : IN STD_LOGIC;
binary_out : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ;

END COMPONENT;

BEGIN
seed1 (25 DOWNTO 0) <="00000100000000100101010010";
seed2 (25 DOWNTO 0) <="00110101000001010110110110";
eva l_per iod (15 DOWNTO 0) <= x "FFFF " ;

−− binary to s t o c h a s t i c conve r s i on s
b2p_1 : b2p_16bits

PORT MAP( in1 , c lk , r s t , en , seed1 , in1_stoch ) ;
b2p_2 : b2p_16bits

PORT MAP( in2 , c lk , r s t , en , seed2 , in2_stoch ) ;

−− s t o c h a s t i c computation
out_multip_stoch <= ( in1_stoch XNOR in2_stoch ) ;

−− s t o c h a s t i c to binary conver s i on
p2b_0 : p2b_16bits

PORT MAP( eval_period , out_multip_stoch , c lk , r s t , en , out_multip_bin ) ;

out_mul t ip l i ca t i on <= out_multip_bin ;

END arch ;
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into their equivalent binary values. The binary magnitude P representing the real
number preal is obtained by the simple formula 4.4:

P = bpreal · (2n − 1)e (4.4)

where n is the number of bits employed to represent the real value and b·e denotes
the nearest integer value. For example, the real value preal = 0.5 is represented by
the binary magnitude P = 32767 when using a 16-bit resolution (n = 16). In the
case of working with negative values (bipolar codification range), the numbers must
be first normalized to the unipolar range. For instance, the real number p∗real = −0.5
is represented by the value preal = (p∗real + 1)/2 = 0.25 in the unipolar range, which
corresponds to the 16-bit binary magnitude P = 16383.
Note that this notation to represent real values with binary numbers is slightly
different from the conventional binary one. Remind equation 3.5 (preal = P/2n) for
converting a binary number to its corresponding real value in the unsigned notation
(assuming a number of n bits to represent the fractional part of the value and no
integer bits), which employs the term 2n instead of (2n− 1) as used in equation 4.4.
The representation range for the unipolar binary notation in the SC framework is
[0, 1] whereas for the conventional unsigned notation , the range does not include the
value 1: [0, 1− 2−n] = [0, 1). Accordingly, the range for the bipolar binary notation
used in SC is [−1, 1] while for the conventional signed notation it is [−1, 1− 2−n] =
[−1, 1). Examples of the binary representation of real quantities in SC compared to
the conventional binary notation are shown in Fig. 4.5 and Fig. 4.6 for the unipolar
and bipolar codification respectively.
Although the stochastic and conventional binary codifications are not strictly equiv-
alent, in practice, a binary value resulting from stochastic computations can be di-
rectly used for further processing using conventional binary circuitry if it is necessary.
In the case of the bipolar codification, the first bit of the binary magnitude resulting
from stochastic computations must be flipped so that it is converted to the two’s
complement notation (see Fig. 4.6). The error made in this approximate conversion
(between the stochastic and conventional codifications) is negligible compared to
the probabilistic error of stochastic computations and considering the usually high
number of bits employed to represent a quantity in SC.

Stochastic to binary conversion. Since the probability value p carried by the
stochastic pulsed signal is related to the number of 1s contained in the bit-stream,
it suffices to count these 1s in order to extract p. The pulsed to binary conversion
block (P2B) is illustrated in Fig. 4.7(a). It consists of two n-bit counters and an n-
bit register. The first counter evaluates the number of high values (1s) provided by
the stochastic signal throughout NC clock cycles. The second counter is employed
to reset the first counter and to load the register with a new value every NC clock
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Figure 4.5.: Binary representation of 4-bit numbers according to the stochastic
unipolar codification (a) and to the conventional unsigned notation (b).

cycles. Therefore, the output of the P2B block is an n-bit number that changes every
NC cycles. Usually, the number of cycles to evaluate the stochastic signal is chosen
to be the maximum allowed by the counter size, that is, NC = 2n − 1, so that the
P2B output (P) directly provides an approximation to the probability p in binary
format. The evaluation time of the stochastic computing system is Teval = NC ·Tclk,
where Tclk denotes the system’s clock period.
Note that in SC, it is necessary to evaluate a bit-stream of length 2n−1 to represent
a binary number with a precision of n bits. Therefore, increasing the precision
in one bit requires doubling the bit-stream length, which implies an exponential
dependence of the evaluation time with precision.
The low accuracy issue in SC due to the fluctuations inherent in random numbers has
already been mentioned. More specifically, the P2B conversion involves a statistical
error. The probability of obtaining an output corresponding to X high-level values
(1s) in a sequence of the random variable p(t) evaluated throughout NC clock cycles
is given by the binomial distribution:

Prob(X) =
(
NC

X

)
pX (1− p)Nc−X (4.5)

The mean value of the P2B output X is the expected exact conversion (X̄ = pNC =
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Figure 4.6.: Binary representation of 4-bit numbers according to the stochastic
bipolar codification (a) and to the conventional signed two’s complement notation
(b). An approximate conversion from one notation to the other can be performed
by just flipping the first bit.

P ) while the standard deviation is

σ = [NC p (1− p)]1/2 (4.6)

This formula for the standard deviation implies that the accuracy of conversions
depends on the encoded probability values. Values of p near to 0 or 1 imply a low
conversion error whereas p = 0.5 presents the maximum error.
The relative error in a conversion is proportional to the standard deviation Error ∝
σ/NC ∝ N

−1/2
C , and therefore it can be reduced increasing the evaluation time

according to 4.7, which shows the trade-off in SC between accuracy and evaluation
time:

Error ∝ 1
T

1/2
eval

(4.7)

Apart from the statistical conversion errors, stochastic computations may present
additional inaccuracies as stochastic numbers go through a sequence of operations
due to correlations among the bit-streams. These correlations may arise, for ex-
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Figure 4.7.: Pulse to binary converter P2B(NC) (a) and binary to pulse converter
B2P.

ample, when feedback is present or when operating signals derived from a common
input. In these cases might be convenient to regenerate the stochastic bit-streams
by converting them to binary values and again to pulsed signals.

Binary to stochastic conversion. The conversion from binary magnitudes (P ) to
pulsed stochastic signals (p(t)) is carried out by the binary-to-pulsed (B2P) block
illustrated in Fig. 4.7(b). The conversion involves generating an m-bit random or
pseudo-random binary number in each clock cycle by means of a random number
generator (RNG), and comparing it to the n-bit input binary number P . The
comparator provides a “1” if P is greater than the random magnitude and a “0”
otherwise. Therefore, the output of the comparator provides a bit-stream with
probability p = P/2n (of getting a “1”) provided that the random numbers are
uniformly distributed.

Random number generation. The B2P circuit must produce random and un-
correlated bit-streams to avoid computation inaccuracies that may result from sim-
ilarities among the different signals. Linear feedback shift registers (LFSRs) are
commonly used as pseudo-random number generators in SC designs ([AH13b]). An
LFSR is an array of n interconnected flip-flops with feedback to its input from a
combination of the outputs of its various stages gated together in XNOR gates (an
example 8-bit LFSR circuit is shown in Fig. 4.8). This linear feedback structure pro-
vides deterministic sequences of n-bit binary numbers that are uniformly distributed
and behave as random numbers. These pseudo-random numbers have a finite period
of repetition that has an exponential dependence with the number of bits. The feed-
back configurations enabling maximal-length generators are given in [Kor66]. These
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Chapter 4 Stochastic echo state networks

optimum LFSRs generate number sequences with a repetition period equal to 2n−1
(the zero value is excluded). The VHDL code describing the configuration applied
in the present work for a 26-bit shift register, is shown in Algorithm 4.2 (note that
the most significant 16 output bits of the 26-bit LFSR are used as random number).

CLK

D Q D Q D Q D Q D Q D Q D Q D Q

0 1 2 3 4 5 6 7

LSB MSB

Figure 4.8.: Example of 8-bit linear feedback shift registers (LFSR) circuit that
can be used to generate pseudo-random sequences cycling through 255 values.

The initial values of the registers contained in the LFSR determine the first number
(known as seed) of the pseudo-random generated sequence. Changing the seed value
allows obtaining different number sequences. For operations that need uncorrelated
signals, it is necessary to define different seeds for each LFSR block. On the other
hand, for operations requiring correlated signals, the same LFSR output must be
employed for all stochastic variables.

4.2.3. Applications

SC allows to implement arithmetic operations and complex functions with relative
simplicity and high robustness. The implementation of massive parallel computing
systems using SC is of particular interest since it enables the possibility of having
many small-size processing elements working in parallel, which may compensate for
the long computation time of the SC approach.
Image processing applications are an example where SC can be used efficiently.
They usually require the transformation of large numbers of pixels, which can
be performed using low-cost SC-based circuits operating in parallel ([OKM+15],
[HNBO03], [NS16]). In addition, the high tolerance to bit-flip errors in noisy en-
vironments is another feature of SC that can be exploited in image processing as
shown in [QLR+11], [LL11], [MZD12] and [NS16].
Digital signal processing is another application for SC. For instance, SC can be used
to implement finite impulse response (FIR) filters ([WHCE15]) or the decoding of
low-density parity check (LDPC) codes ([AH13b]). LDPC codes consist of error-
correcting codes that enable sending data over noisy channels at very high rates and
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4.2 Stochastic computing

Algorithm 4.2 VHDL code describing the 26-bit LFSR employed to generate
pseudo-random sequences of 16-bit numbers.

LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;

ENTITY l f s r _ 2 6 b i t s IS
PORT ( clk , r e s e t , enable : IN STD_LOGIC;

seed : IN STD_LOGIC_VECTOR (25 DOWNTO 0 ) ;
pseudorandom_out : OUT STD_LOGIC_VECTOR (15 DOWNTO 0) ) ;

END l f s r _ 2 6 b i t s ;

ARCHITECTURE l f s r_26 OF l f s r _ 2 6 b i t s IS
SIGNAL tmp : STD_LOGIC_VECTOR(25 DOWNTO 0 ) ;
BEGIN
PROCESS ( clk , r e s e t )

BEGIN
IF r e s e t = ’1 ’ THEN

tmp<=seed ;
ELSIF ( enable = ’1 ’) THEN
IF ( clk ’EVENT AND c lk = ’1 ’) THEN

f o r i in 0 to 24 loop
tmp( i +1) <= tmp( i ) ;

end loop ;
tmp(0) <= tmp(25) XNOR tmp(5) XNOR tmp(1) XNOR tmp ( 0 ) ;

END IF ;
END IF ;

END PROCESS;

pseudorandom_out <= tmp(25 DOWNTO 1 0 ) ;

END l f s r_26 ;

are nowadays employed in communication standards such as WiFi. SC is appropriate
for this application due to its probabilistic nature. In addition, SC allows efficient
parallel processing of the involved operations, which results in fast implementations
([NMSG11]).
Recently, SC has also been used for data mining. The work presented in [MCO+15]
proposes an SC-based parallel implementation of a similarity search algorithm that
speeds up the screening process of huge databases by a factor of 7 when compared
to a conventional digital implementation using the same hardware area. The higher
speed of the SC-approach is achieved at the cost of a certain loss of accuracy that
is not critical for this particular application.
In general, SC has been recognized as potentially useful in specialized systems where
small size, low power, or soft error tolerance is required and limited precision or speed
is acceptable ([AH13b]).
ANNs are also massively parallel systems that can benefit from the SC technique
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Chapter 4 Stochastic echo state networks

allowing the implementation of large numbers of simple computational elements on
a single integrated circuit. Some examples of HNNs using stochastic computing
are found in [BH94], [BC01c], [BC01b], [PZD+03] and [SGMA15]. Even though SC-
based ANNs seem unlikely to achieve speed-up compared to the conventional binary
logic ones, they can be an interesting solution for those electronic systems imple-
menting computational intelligence techniques and requiring low power dissipation
but not demanding very high computational speed such as wireless sensor networks
([KFV11]), predictive controllers, or medical monitoring applications. In the latter
case, a software implementation of RC was found to achieve state-of-the-art per-
formance in the classification of electrocardiographic (ECG) signals ([EMSFM15]).
Since this medical application requires a sampling time of about 1 ms, in general
ECG classification would be compatible with an FPGA-based stochastic implemen-
tation of reservoir computing in real-time. An illustrative example of the use of a
SC-based ANN for the control unit of an induction motor is found in [ZL08], where
the stochastic implementation is shown to exhibit lower hardware cost than conven-
tional microprocessor-based designs for the same application. Another stochastic
HNN is proposed in [LZF06] for the control of a small wind turbine system. Re-
cently, a new encoding scheme for SC with extended noise-tolerance (the ESL cod-
ification) has been used to implement neural networks performing regression and
pattern recognition tasks ([CMO+16]).
Reviewing the scientific literature, we can state that although there were some pro-
posals and simulations of the RC technique using stochastic bit-stream neurons
[VSS05], the work presented in this chapter (previously published in [ACPM+16])
represents the first comprehensive design, implementation and examination of the
ESN structure based on SC.

4.3. Stochastic implementation of neural networks

4.3.1. Stochastic design of the neuron

The SC-based implementation of a two-input sigmoid neuron (Fig. 3.1) is illustrated
in Fig. 4.9. The bipolar codification is employed to perform the stochastic computa-
tions. In a first stage, the input and weight binary values are transformed to pulsed
signals (through B2P blocks) so that they can be processed by the stochastic circuit.
The first input signal (I1) is assumed to be externally supplied to the system as a
binary magnitude whereas the second one (i2) comes directly from another neuron
as a stochastic bit-stream. The multiplication and addition operations are imple-
mented in the stochastic computing framework by means of an XNOR gate and a
multiplexer, respectively, as described in sec. 4.2.2.1. The bit-stream resulting from
the input weighting and addition is transformed to a binary number (P2B block) and
evaluated classically (using conventional computing) by means of a sigmoid func-
tion. Finally, the binary outcome is converted again into a stochastic bit-stream so
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that it can be further processed by another neuron.
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Figure 4.9.: SC-based two-input sigmoid neuron (a) and block diagram (b). The
linear part of the neuron uses probabilistic logic whereas the nonlinear activation
function is implemented using conventional computing.

The VHDL code of the stochastic neuron design is presented in sec. A.2. The pre-
cision is set to n = 16 bits and the evaluation time to NC = 216 − 1 = 65535 clock
cycles. It is worth noting that the block performing the nonlinear function first
needs to convert the binary input signal from the bipolar stochastic representation
to the conventional two’s complement notation. This is done by just flipping the
most significant bit of the binary magnitude. In addition, the output of the neuron’s
linear part must be multiplied by 2 to compensate the scaled sum performed by the
multiplexer. This multiplication is internally performed by means of a simple shift
of the binary number one position to left. The output that results from applying
the hyperbolic tangent function is provided both in the bipolar stochastic format
(with n bits) and as a two’s complement magnitude (with a precision of m bits;
more specifically, I use m = 8). If the approximation used to calculate the output of
the sigmoid function employs a lower precision, only the most significant bits of the
input signal are utilized. For the present implementation (as described below), the
approximation used considers 9 bits for the input signal and produces the output
with a precision of 7 bits.
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4.3.1.1. The activation function

Although there are different pure stochastic approaches to reproduce the sigmoid
function ([BH94], [BC01b], [CMO+16]), for the present research I have adopted an
implementation of the hyperbolic tangent function based on conventional binary
logic. In particular, I use the SIG-sigmoid approximation presented in sec. 3.2.3.2.
As illustrated in Fig. 4.9, the stochastic signal resulting from the weighting and ad-
dition of the inputs needs to be converted (P2B block) to its corresponding binary
value before it can be processed by means of the hyperbolic tangent classical ap-
proach. Therefore, in this section I propose a design combining both stochastic and
conventional computing. Stochastic arithmetic allows reducing the computation
hardware area required to implement the arithmetic operations present in neural
networks while conventional binary logic is used to increase the accuracy of the
nonlinear activation function.
In a previous design ([CMO+16]), the hyperbolic tangent function is implemented
only using SC (see Fig. 4.10). This implementation makes use of the P2B output
(governed by a binomial distribution) evaluated throughout K clock cycles. The
resulting signal is compared (every clock cycle) to the binary value K/2 producing
a switching signal with a probability that approximates the sigmoid function. This
pulsed signal needs to be regenerated (by means of a pair of P2B and B2P blocks)
to result in a bit-stream with random distribution. The last B2P converter can be
omitted in case a stochastic output signal is not necessary but only the correspond-
ing binary magnitude. The gradient G of the resulting function tanh(Gx) can be
modified with the parameter K as tabulated in [CMO+16].
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 (bin)
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NC
n

n
IN (bin) OUT

 (stoch)

B2P
1

out=Tanh(Gx)
CLK

Figure 4.10.: Stochastic implementation of the hyperbolic tangent function pro-
posed in [CMO+16].

The proposed circuit of Fig. 4.9 for the two-input sigmoid neuron (utilizing the
classical SIG-sigmoid approximation) has been tested for a set of values of the input
signals. The results are compared with those of an equivalent circuit using the
design of Fig. 4.10 for the sigmoid function. In both cases the experimental results
were obtained employing an evaluation time corresponding to NC = 216−1 = 65535
clock cycles. The two input signals I1 and I2 have been given 32 different values
in the [−1, 1] range while the weights have been fixed to W1 = W2 = 1. The
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parameter K has been assigned the value K = 11, which corresponds to the function
tanh(2.09 · x). The results for both approaches are presented in Fig. 4.11. It can
be observed that the mixed stochastic-traditional method is more accurate than
the purely probabilistic design of [CMO+16]. The logic resources are similar in
both cases, and therefore the mixed approach is more convenient due to its higher
precision.
It can be appreciated in the results of both approaches that, as expected from the
probabilistic error associated to the P2B conversions (4.6), the output values near to
0 (that correspond to a probability 1/2 of the stochastic bit-stream being in the high
state) present a higher dispersion than those values near to -1 and 1 (corresponding
to probabilities 0 and 1, respectively).

4.3.2. Stochastic ESNs

The simple cycle reservoir (SCR) topology introduced in sec. 2.3.1.2 is employed to
implement the SC-based echo state network. Remind the particular benefits of this
structure for hardware implementation regarding the reduced number of connections
and the simplicity to automate the network’s design compared to the classical ESN
architecture with random connections. The neuron design of Fig. 4.9 can be used
as a block to build a SCR network of neurons where the first (external) input is
common to all neurons and the second input is utilized for internal connections
between neurons. Such a modular network design is illustrated in Fig. 4.12.
It is worth highlighting that the four sequences of pseudo-random numbers required
to convert the input and weight values to stochastic bit-streams do not need to be
different for each neuron but can be shared by all neurons. In the SCR structure,
each neuron presents only one connection from another neuron, and therefore the
correlation between the output bit-streams of different neurons does not affect the
result of the computations. However, the general ESN architecture with random
connections between neurons would require generating different random number
sequences to produce uncorrelated outputs for each neuron. In addition, the use of
only three different weight values for the network connections (r, v and −v) also
favors a resource-efficient implementation since only two B2P blocks are necessary
(the negative signal is obtained from the positive one with a NOT gate) whereas a
configuration with many different weight parameters would require a B2P converter
for each one of them. Since B2P conversions account for a significant portion of
the hardware resources in SC-based designs, the use of common random number
generators shared by all neuron units allows an important reduction of the number
of required logic elements per neuron.
The output layer (linear combination of the neuron outputs) is implemented using
conventional binary logic. More specifically, the final readout is computed sequen-
tially by means of a multiply-accumulate (MAC) circuit that performs the multi-
plication of the neuron state xi by the corresponding weight wi, and then adds the
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Figure 4.11.: Experimental measurements of the SC-based 2-input neuron using
the classical SIG-sigmoid approach for the hyperbolic tangent function (a) and
using the probabilistic approximation of [CMO+16] (b).
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Figure 4.12.: SC-based implementation of an ESN with cyclic architecture. A few
pseudo-random number generators are shared by all neurons.
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result (prodi) to the previously accumulated value. The operation is iterated for
all neurons (i = 1 ... N). The schematic representation of this circuit is shown in
Fig. 4.13. As can be observed, a precision of 8 bits is used for the neuron outputs
and weight values while 16 bits are employed for the final readout.

x +8

8

prodi 16

16

16

xi

in out

DFF
clk

wi 16 out

Figure 4.13.: Schematic representation of the multiply-and-accumulate circuit em-
ployed to implement the output layer.

The VHDL code of the complete SC-based ESN is presented in sec. A.2 for the case
of a network with N = 20 neurons. A software program has been developed which
allows exporting automatically the proposed stochastic ESN design to a VHDL
hardware description. The program generates the VHDL code for the reservoir with
any desired number of neurons and weight configuration. This VHDL code can
finally be synthesized to an actual hardware implementation.
The hardware resource consumed by the SC-based implementation of ESNs is pre-
sented in next section for different network sizes. A breakdown indicating the logic
elements used by each component of the neuron is also included.

4.4. Experimental results

4.4.1. Proof-of-concept example

As an example of functionality of the presented methodology, the proposed stochas-
tic ESN design with a small number of neurons (N = 20) has been synthesized
on an Altera Cyclone IV medium cost FPGA (EP4CE115F297C7N) and trained to
perform a simple nonlinear transformation task. More specifically, the function that
the network must learn is the next:

y(t)teach = 3/4 · u(t)3 (4.8)

where a sinusoidal input u(t) = sin(2π · t/T ) with 20 points per period (T = 20) is
used to drive the system.

104



4.4 Experimental results

To perform the measurements of the proposed SC-based ESN circuitry, an internal
RAM memory supplies the input signal to the reservoir network every time step
corresponding to a certain number of clock cycles given by Teval. The resulting
network outputs (final readout and individual neuron states) are measured at the end
of each evaluation period (by that time, the result of the stochastic computations is
already available). Their values are stored in memory, which can be finally displayed
using the signal logic analyzer.
A numerical model of the hardware SC-based ESN has been developed with MAT-
LAB for a more efficient training and debugging. This model emulates in software
the generation of the stochastic bit-streams and the operations among them. The
resolution of the binary variables is limited according to the hardware. The present
nonlinear transformation task is used to validate the MATLAB simulation model by
comparing the experimental results of the FPGA implementation with the numeri-
cal ones. Fig. 4.14 shows the comparison of the experimental results and numerical
simulations for the evolution of two selected neuron states in the 20-unit ESN. As
can be appreciated, a good agreement is obtained. Slight differences are mainly due
to the probabilistic nature of the approach.
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Figure 4.14.: Traces of two arbitrarily selected neurons from the reservoir when
driven by a sinusoidal input. Experimental values (symbols) are plotted along
with the numerical results (lines).

The MATLAB model of the stochastic hardware allows us to perform a comprehen-
sive evaluation to find the configuration of the stochastic reservoir network providing
optimum results. Fig. 4.15 shows how the network performance (measured through
the mean square error, MSE) is examined as a function of the configuration pa-
rameters r and v. Fig. 4.15(a) shows the performance results assessed according
to a conventional computing approach while Fig. 4.15(b) illustrates the results that
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correspond to the stochastic methodology. The approach based on conventional
computing is referred to as deterministic in Fig. 4.15 to indicate that it does not
use the probabilistic methodology. This deterministic approach corresponds to the
system described in chapter 3, but it employs a more accurate approximation to
the sigmoid function just as in the proposed stochastic ESN implementation. In
addition, the resolution of the variables has been limited according to that of the
stochastic ESN design (for example, the neuron outputs and output weights are
given with 8 bits) so that both systems (conventional and stochastic) employ an
equivalent precision and their results can be fairly compared. Fig. 4.15 shows that
the MSE values can be quite different in both scenarios, and therefore the conven-
tional ESN model cannot be used to determine the optimum configuration for the
stochastic hardware implementation (but the simulations of the stochastic hardware
are necessary).
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Figure 4.15.: Simulation results for the mean square error (MSE) in the nonlinear
transformation task according to the conventional (deterministic) (a) and stochas-
tic (b) approaches. The two scanned parameters are the weight values r and v.
The number of neurons is fixed to N = 20. A randomly generated distribution of
the input weights is used. The evaluation time is fixed to Teval = 216 · Tclk for the
stochastic approach.

Once the optimum parameters were determined, the hardware was configured, trained,
and experimentally tested. The training (assessment of the output layer optimal
weights) consists of a linear regression of the teacher output (yteach) on the reservoir
states (xi, i = 1 . . . N) as described in sec. 2.3.1. It was carried out using the exper-
imental outputs of the individual neurons. Although the software implementation
quite faithfully reproduces the hardware results, it was not used to train the sys-
tem since smaller error results were obtained when directly using the experimental
outputs.
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In the time-series experiment, I performed a total of 250 time steps. The first 20
time steps (the transient) were neglected, results from t = 21 to t = 125 were used
to train the network’s readout, and with data from t = 126 to tmax = 250 I tested
the network.
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Figure 4.16.: Experimental (symbols) and simulation (lines) performance results
(MSE) of the stochastic ESN implementation configured with the optimum weight
parameters. The simulation results correspond to the average value of ten trials
using different sequences of random numbers. Error bars indicate the standard
deviation of the multiple runs. The performance is represented for different evalu-
ation periods and for both the train and test sets. The performance corresponding
to a conventional (deterministic) implementation is also given as a reference.

An experimental training errorMSEtrain = 1.41 ·10−4 and a test error ofMSEtest =
2.39 · 10−4 were obtained when using a 16-bit precision (that is to say, an evaluation
time for the stochastic computations of Teval = 216 · Tclk). The performance results
for several evaluation periods are represented in Fig. 4.16 along with the performance
corresponding to a conventional (deterministic) implementation configured with the
same parameters than the stochastic reservoir. The results of the experimental mea-
surements are compared to those obtained from simulations. The minor differences
are most likely due to the inherent probabilistic fluctuations of the stochastic ap-
proach. It must be considered that stochastic computations provide the results with
a certain dispersion from the expected value according to 4.7. Therefore, the neu-
ron states (used to calculate the network’s readout) for the training set may differ
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Figure 4.17.: Experimental results of the FPGA-based stochastic ESN (symbols)
for the case of Teval = 216 Tclk along with the input (dashed line) and desired
output signal (solid line).

slightly from those of the test set even when using exactly the same input to drive
the system. Since the physical implementation and the simulation do not use the
same random numbers to generate the stochastic signals, the differences between the
neuron states in the test and training set can be (by chance) smaller or greater in
one of the systems (real hardware implementation or simulation) than in the other,
which results in a slightly higher or lower performance. This explains why the dis-
crepancies between the hardware and the numerical model tend to increase with
a lower evaluation time given that the dispersion of the measurements grows with
the inverse of the evaluation time (4.7). In addition, a part of the slight differences
between the simulation and the experiments may be due to the fact that the sig-
moid function employed in the model does not reproduce exactly the approximation
implemented in hardware.
The simulations of this experiment were carried out a number of ten times (using a
different sequence of random numbers for each run) in order to assess the dispersion
of the final results. The values presented in Fig. 4.16 correspond to the mean of the
multiple trials, which are shown along with the standard deviation as an indicator
of the probabilistic error. The agreement between simulations and experiments
(within the error range) validates the MATLAB model to estimate the hardware
performance.
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On the other hand, Fig. 4.16 shows that both stochastic reservoirs (MATLAB model
and experimental measurements) gradually approach the expected deterministic be-
havior when increasing the evaluation time.
Finally, Fig. 4.17 shows the measurements at the readout of the stochastic reservoir
along with the desired behavior (yteach). The evaluation time of the network is of
the order of 1.3 ms when using an evaluation time of 216 clock cycles and a 50
MHz clock signal. This computation time is reduced when using smaller evaluation
periods at the cost of a lower accuracy (as depicted in Fig. 4.16). Note that, for larger
reservoirs, the processing time is kept fixed since it only depends on the number of
clock cycles used in the P2B conversions.

4.4.2. Time-series prediction

A more complex task is implemented for a proper validation of the proposed method-
ology. This task consists in the one-step ahead prediction of the Santa Fe data set
([WG15]), which represents a benchmark in the RC literature. As in chapter 3, 4000
samples from the original data set are used; the first 2000 for training, the next 1000
for validation, and the remaining 1000 for testing.
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Figure 4.18.: Performance results (NMSE) of the stochastic ESN in the time-series
prediction task. The values are displayed for a 20-unit and for a 50-unit reservoir
using different evaluation periods. The corresponding results obtained with the
conventional (deterministic) approach are also represented for reference.

The analysis of the proposed stochastic ESN implementation for this task is con-
ducted using the MATLAB model of the stochastic hardware for two different reser-
voirs (with N = 20 and N = 50 neurons) and for different evaluation time periods.
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A procedure similar to the one used in the previous section is followed, first de-
termining the optimum configuration and subsequently testing the network. The
configuration parameters allowing the best performance error for the validation set
were applied to the network when processing the test set. The final optimum perfor-
mance results (NMSE values) are depicted in Fig. 4.18 as a function of the number of
neurons in the reservoir (N ) for different evaluation time periods (corresponding to
12, 14, 16 and 18 precision bits). The performance corresponding to a conventional
(deterministic) implementation (configured with the weight parameters r and v that
yield an optimum result) is also represented for reference. It can be observed that
the stochastic results gradually approach the deterministic ones when increasing the
evaluation time.
Fig. 4.19 shows a fragment of the predictions performed by the SC-based ESN when
using N = 50 and an evaluation time of 216 clock cycles along with the targeted
values in the Santa Fe prediction task.
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Figure 4.19.: Segment of the Santa Fe laser time-series (predicted and targeted
values). Predictions performed using the stochastic methodology with N = 50
and Teval = 216 Tclk.

4.4.3. Hardware resource usage

The hardware resources required to implement the proposed SC-based reservoir
networks are presented in Tab. 4.1 and in Fig. 4.20. The results are compared to
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those that correspond to the conventional implementation of chapter 3. A slight
difference in the number of logic elements presented here and those of chapter 3 is
due to the fact that the present measurements of the spent hardware resources have
been taken for a circuit that includes all the neuron states as output signals (the
same has been considered for the implementation based on the stochastic approach)
whereas the results presented in chapter 3 were obtained considering a circuit that
only has an output signal corresponding to one of the neuron states (the rest of
the states are assigned to intermediate signals, which involve less circuitry than
output signals). It can be observed that the stochastic architecture requires about
four times less area than the conventional hardware implementation. It is worth
noticing that the probabilistic methodology allows the massive implementation of
reservoir networks in medium and even low cost FPGAs. However, the conventional
implementation of the 50-neuron reservoir does not fit in low cost devices such as, for
example, the Cyclone III EP3C16 containing about 15000 logic elements ([web16d]).

Approach Stochastic Conventional
N (neurons) 20 50 20 50

Logic elements 2186 (1.9%) 5306 (4.6%) 9013 (7.9%) 19975 (17.4%)
Registers 858 (0.7%) 2054 (1.8%) 320 (0.3%) 800 (0.7%)

Table 4.1.: Hardware resource utilization of the Altera Cyclone IV FPGA for the
ESN implementation according to the stochastic and conventional approaches.
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Figure 4.20.: Comparison of the logic elements spent by the stochastic implemen-
tation of the ESN and the conventional one.
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The implemented reservoir did not require any memory bits except the ones used to
store the input data values. The values shown in Tab. 4.1 are referred only to the
reservoir network (the requirements to implement the final readout are not included).
A breakdown of the hardware requirements of each component of the SC-based
neuron is illustrated in Fig. 4.21. A typical stochastic neuron consumes 103 logic
elements (LEs) of which only 1 is required by the stochastic circuit performing the
additions and multiplications. The area cost of the architecture is dominated by
the P2B converter (46 LEs) and by the hyperbolic function (38 LEs). Finally, the
comparator uses 18 LEs.
The B2P converters, which are used as common elements by all the neurons, use
46 LEs each whereas the random number generator (based on a 26-bit LFSR) con-
sumes 26 LEs. Therefore, significant resource saving is achieved by sharing these
components.
The proposed SC-based neuron design seems to be optimum in terms of hardware
resources. Further reduction of the area requirements is only possible at the cost
of a loss in accuracy using, for example, a rougher approximation of the sigmoid
function or lower order P2B converters (the presented results are for neurons using
pulsed signal conversions to 16-bit binary magnitudes).
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Figure 4.21.: Breakdown of the hardware requirements of each component of the
SC-based neuron.
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4.5. Discussion

In this chapter, I have proposed and analyzed an alternative architecture that ex-
ploits stochastic computing for making time-series prediction with echo state net-
works. It has been found that the stochastic architecture requires less area than a
conventional hardware implementation. This characteristic makes possible the ESN
implementation using low cost FPGA devices. Moreover, it has the advantage of
being much more tolerant to soft errors (bit flips) than the deterministic implemen-
tation (see sec. 9.1.1), which makes it particularly useful for applications that need
to operate in harsh environments such as space.
However, it should be noted that the stochastic implementation requires relatively
many clock cycles to achieve a given precision compared to a binary logic conven-
tional implementation. For instance, to get a 16-bit resolution, a computation time
of 216 clock cycles is needed.
Therefore, in general, potential applications of the stochastic implementations are
specialized systems where small size, low cost, low power, or soft-error tolerance is re-
quired, and limited speed is acceptable. The presented SC-based ESN approach can
be an interesting solution, by way of example, for electronic systems implementing
computational intelligence techniques and requiring low power dissipation such as
wireless sensor networks, predictive controllers, or medical monitoring applications.
For the ESN, a ring topology has been selected since hardware resources are min-
imized with this configuration while the precision of the network is not decreased
with respect to a classical random one. In particular, the cyclic network structure
allows reducing the number of stochastic number generators (SNGs), which are ex-
pensive in terms of hardware resources, by sharing a few of these blocks among all
neurons. In addition, I have proposed an area-efficient design that employs prob-
abilistic logic for the arithmetic operations and conventional binary logic for the
nonlinear activation function (a mixed architecture). It has been observed that the
area cost of the proposed implementation is dominated by the P2B converters and
the sigmoid function.
A software program has also been developed that makes possible to automatically
generate the hardware description code of the proposed implementation for any
desired reservoir size and weight configuration. This reduces the long hardware
design process for a specific application.
The proposed methodology has been used to implement a massive reservoir network
and has exhibited considerable performance in a chaotic time-series prediction task.
Time-series prediction usually requires high precision results. This makes necessary
to employ long evaluation periods for the stochastic computations to achieve the
desired accuracy. It would be interesting to analyze the use of the present SC-based
implementation for a task where a lower accuracy is acceptable. For example, pat-
tern recognition applications using noisy input signals are likely to allow satisfactory
results with lower precision signals, which imply a shorter computation time. It is
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worth noting that a lower evaluation time also involves some additional area reduc-
tion (simpler counters can be used in the P2P block and smaller LFSR circuits can
be used to generate the random numbers). The application of the stochastic ESNs
to temporal pattern recognition tasks is presented in chapter 9.
Reservoir networks present some advantages compared to conventional recurrent
neural networks that enable a more efficient hardware implementation. A major
benefit of RC networks is their sparse connectivity. This characteristic allows a
simple wiring that matches the FPGA capabilities. Additionally, a simple training
process can be performed offline.
The use of the stochastic logic implies certain constraints. The shortcomings are the
evaluation time and the precision. Nevertheless, these drawbacks are compensated
by the lower hardware and by the stochastic logic’s inherent noise immunity which,
all in all, allow a massive, parallel, and reliable implementation.
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5. Stochastic echo state networks as
liquid state machines

5.1. Overview

In the previous chapter, I have presented the implementation of a discrete-time
(sigmoidal) neuron design using a mixed architecture with stochastic computing
(SC) and traditional binary logic. The proposed neural design has been used to
realize echo state networks (ESNs) in digital hardware. SC is based on the use of
random bit-streams that loosely resemble the neural spikes of biological neurons
([Hay15]). As illustrated in Fig. 5.1, neural signals consist of sequences of noisy
spikes that can be represented as bit-streams. The spike trains in real neural systems
appear to have a stochastic or random nature ([SMK+00]). This has been one of the
main reasons to assume that a significant amount of the information they convey is
in the firing rate ([CGRS09]). The apparent lack of reproducible spike patterns is
partly due to the probabilistic nature of the synaptic transmission mechanism (each
synaptic vesicle releases its “quantum” of transmitter from the neuron presynaptic
terminal with a given probability, which can be understood as a measurement of the
connection weight). The general similarities between signals in neural processing
and those in SC (in view of their probabilistic essence) suggest that SC can be
conveniently used to codify neural information.

Figure 5.1.: Neural spike train and its Boolean representation as the bit-stream
{01011010}. The probabilistic pulses generated in SC-based systems loosely re-
semble the spikes emitted by biological neurons.

In this chapter, I show how a variant of the stochastic neuron of chapter 4 can be
interpreted as an approximation to the spiking neuron. More specifically, I illustrate
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the equivalence of the proposed SC-based design and the stochastic spiking neuron
(SSN) model developed by Rosselló et al. ([RCOM14]). The SSN model roughly
retains the basic features of the spiking neuron using probabilistic rules, but its
major contribution is the possibility to correlate/decorrelate the spike emission of
different units, which allows to increase the network’s functionality.
The proposed stochastic neuron design is employed to implement a reservoir network
(that is, a liquid state machine, LSM, sec. 2.3.2, since the neurons can be regarded as
being spiking) in a FPGA. The implemented network is tested for several benchmark
time-series prediction tasks and the hardware resource requirements are analyzed.

5.2. The stochastic spiking neuron model

5.2.1. Introduction

Stochastic spiking neural networks (SSNN) are a recently proposed hardware solu-
tion ([RCMO12], [RCOM14]) based on a simple spiking neuron model capable to
reproduce the probabilistic nature of synaptic transmissions, thus replicating the
intrinsic stochastic behavior of real biological neurons. Instead of assuming a neural
coding based on the exact timing of action potentials at each neuron, the SSN model
assumes a probabilistic codification based on the apparent lack of reproducible spike
patterns in real neural signals. Apart from the frequency of spikes over a time win-
dow (considered in the conventional firing-rate coding), a probabilistic codification
of the neural spikes also takes into account the correlation between neural signals.
The combination of both parameters (firing-rate and signal correlation) has been
shown to make possible the implementation of high-speed pattern recognition sys-
tems unable to be reproduced if only considering a firing-rate coding ([RCOM14]).
The greatest benefit of such a probabilistic approach (combining firing rate and
correlation) is its simplicity compared to other timing codes such as rank order
coding ([SK10]) or spike-time coding ([BPK02]). In this approach, the functionality
realized by a neuron depends on the type of correlation between the different input
signals ([RCOM14]). Since the exact timing of neural spikes does not need to be
taken into account, the classical spike profile can be substituted by a binary sequence
with a characteristic time (tmin) that represents the maximum time interval in the
spike time-series in which a neuron can provide a maximum of one spike. The
parameter tmin can be understood as being the minimum time response of the fastest
neuron in the network and corresponds to the time base of the digital signal (that
is, tmin = Tclk). At time step ti, the Boolean value associated to the k-th neuron
output signal can be high (xk(ti) = 1) if a spike is present within the time interval
[ti, ti + tmin] , or low (xk(ti) = 0) if there is no spike (see Fig. 5.1). In this approach,
both time-series (spike train and bit-stream) provide the same information and the
temporal mean value of xk represents the switching activity (firing rate) of the k-th
neuron.
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5.2.2. The operation mechanism

More specifically, the SSN model is based on a variation of the binding neuron
(BN) model ([Vid07]). The BN model describes the neural functionality in terms
of discrete events (digital pulses emulating the action potentials of real neurons).
Each input impulse is stored for a fixed period of time after which it is completely
disregarded. As usual, the binding neuron fires if the number of stored impulses
(representing the membrane potential) reaches a definite threshold value vth. This
is a useful model for neural description that can be easily implemented using digital
circuitry. The digital circuit for the SSN is represented in Fig. 5.2. It is made up of
a few simple digital blocks: Boolean gates, a counter, a random number generator
(RNG), a register and a comparator. The simple mechanism of this neural model
can be described as follows. The incoming pulses are summed up (every clock
cycle Tclk) in the counter throughout an evaluation time period Teval (as in SC, the
evaluation period consists of a definite number of clock cycles: Teval = NC · Tclk).
The counter’s output provides an estimate of the mean membrane over-voltage sk
(defined as the difference between the membrane potential and the reference voltage:
sk = vs − vrest) at the end of each evaluation period. This value is stored in the
register for a whole evaluation period (while the new incoming spikes are being
integrated by the counter). Every clock cycle, the over-voltage sk (resulting from
the previous evaluation period) is compared with the threshold level vk = vth− vrest
(that varies chaotically from a clock cycle to another). The value of the variable
threshold vth − vrest is generated by means of a random number generator. The
neuron emits a spike (xk = 1) if sk exceeds vth − vrest and is kept at a low level
(xk = 0) otherwise.
The incoming excitatory signals (ej) contribute to increase the value of the digital
counter (mean membrane over-voltage sk) while the inhibitory ones (ij) constrain
the action of the excitatory pulses. Signals pkj (and qkj) represent the probability
of excitatory (and inhibitory) signal transmission from the j-th to the k-th neuron,
consisting of binary bits oscillating with a specific switching activity that is pro-
portional to the probability of synaptic transmission. That is, pkj and qkj measure
the strength of connection between the two neurons and its biophysical meaning is
related to the probability of vesicle release in the synaptic connection. The signals
ej and ij carry the neural activity (firing rate) in their mean (probabilistic) value,
and therefore can be operated with the probabilistic weights just as the variables in
the SC approach. AND gates are employed to obtain a pulsed signal with switch-
ing activity equal to the collision (product) of the incoming probabilities (ej · pkj)
and OR gates can be used to approximately perform the addition of different prob-
abilistic signals. This is how the stochastic transmissions (and thus the weights
of neural connections) are emulated in the digital circuitry used to reproduce the
neural model. Note that (before entering the counter) the result of joining the exci-
tatory contributions is multiplied by that of the inhibitory signals (through an AND
gate) so that inhibitory spikes may cancel the effect of excitatory ones (shunting
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(a)

(b)

Figure 5.2.: Digital implementation of the Stochastic Spiking Neuron (SSN) with
its characteristic blocks: the logic inputs, a digital counter, a register, a compara-
tor and a random number generator (RNG) to provide the variable threshold vk
(a). Schematic block diagram (b).

inhibition).
The probabilistic bit-streams corresponding to the synaptic weights pkj and qkj can
be generated using binary-to-pulsed (B2P) blocks (sec. 4.2.2.2). On the other hand,
the digital neuron design of Fig. 5.2 requires an external signal (Eval) in charge of
resetting the counter and enabling to load a new value in the register at the end of
each evaluation period. This signal can be provided by a counter and a comparator
as shown in Fig. 4.7(a).
The behavior of the SSN is illustrated in Fig. 5.3. It can be observed that the input
spikes entering the counter (ENABLE signal) contribute to increase the membrane
over-voltage sk (output of the binary counter referred to as ck in Fig. 5.2 and Fig. 5.3,
which is captured by the register at the end of the evaluation period). The value
of the estimated over-voltage corresponding to the previous evaluation period is
compared (each time step, Tclk) with the reference voltage vth − vrest (named vk
in Fig. 5.2 and Fig. 5.3). When sk is over vk, an action potential (high value of
the neuron output, xk) is generated. The reference signal vk oscillates randomly to
emulate the variation of vth with respect to vrest in real biological systems. Such
random oscillation is assumed to be much faster than the typical spiking activity
of neurons so that vk is given a new random value for each time step Tclk. A
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linear feedback shift register (LFSR) block (described in sec. 4.2.2.2) can be used to
digitally implement a random signal generator emulating such oscillations.

Figure 5.3.: Temporal evolution of the different signals in the SSN model.

Formally, the SSN output can be expressed according to 5.1:

xk(ti) = θ(sk(ti)− vk(ti)) (5.1)

where θ is the Heaviside function, xk(ti) is the neuron output (at the current time
step ti), vk(ti) is the variable threshold and sk(ti) is the neuron’s internal state,
which takes a constant value throughout the whole evaluation period ([ti, ti+Nc))
and is proportional to the activity (rate of high values) of the input signal (entering
the digital counter) evaluated during the previous step.
The SSN model essentially keeps the basic operation mechanism of the integrate-
and-fire model (Fig. 2.3) and retains the general bio-motivated properties of a spiking
neuron model (sec. 2.2.1). Namely, the neuron is able to convert the information of
many incoming spiking signals into a single spiking output, both excitatory and
inhibitory connections are allowed and an internal variable (representing the mem-
brane potential) controls the spike emission (the output spike is fired in case that
potential surpasses a certain threshold value). However, it must be noticed that in
the SSN model, the output spikes that correspond to a sequence of incoming spikes
are not generated at the current time step (as in real neurons), but on the next eval-
uation period (once the input sequence has been evaluated). In addition, it must
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be noticed that no leakage effect is considered in this model. That is to say, the
effect of the input spikes does not decay with time (contrary to real neurons where
newer spikes contribute more to the potential than older ones), but it is remembered
throughout the whole evaluation period after which the potential is reset. On the
other hand, the refractory period is not explicitly modeled, but it is assumed to be
equal to the minimum temporal step (tmin = Tclk).

5.2.3. Neural synchronization

A key point of the stochastic neural model is that the varying difference between
the threshold and the resting potential (vk = vth− vrest) can be used to synchronize
neurons. Synchronicity implies a correlated emission of spikes. Detailed computa-
tional simulations of the default-mode brain network model have shown that syn-
chronized oscillation may be present even in distant brain regions ([YLN12]). The
SSN model allows to synchronize different neurons by sharing the same sequence of
random values for vk (that is, using the same seed value to initialize the random
number generator of the different neurons, Fig. 5.2). When the neurons use different
sequences for vk they are de-synchronized (or chaotically related). Formally, the
correlation/de-correlation of two neurons (k and j) can be expressed as follows:

xk ⊥ xj if vk 6= vj

xk ‖ xj if vk = vj
(5.2)

where ⊥ indicates that the signals are uncorrelated and ‖ denotes correlation.
It has already been introduced in sec. 4.2.2.1 that stochastic circuits may perform dif-
ferent operations depending on whether the input bit-stream signals are correlated
or not. Therefore, the SSN design of Fig. 5.2 can implement a range of different
functions of the input signals (e1(t) . . . eL(t) and i1(t) . . . iL(t)) by synchronizing/de-
synchronizing some of these signals as observed in [RCOM14]. For example, accord-
ing to the SC approach (and assuming the use of the unipolar codification), the AND
gate placed just before the binary counter (Fig. 5.2) performs a multiplication of the
incoming bit-streams (named p(t) and q(t), for example) when these are uncorre-
lated (out = p ·q), but a drastically different function results if correlated signals are
used (out = min(p, q)). Similarly, the OR gates joining the different weighted input
signals perform the operation out = p+q−p ·q (considering a two-input case) if p(t)
and q(t) are not correlated whereas they implement the function out = max(p, q)
otherwise.
The functions resulting from the use of correlated signals (synchronous case) present
abrupt changes (related to the min and max functions, which select one of the in-
puts) while a smoother behavior takes place in the case of uncorrelated signals
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(de-synchronization). The work presented in [RCOM14] suggests that the transfor-
mations related to the chaotic case (uncorrelated signals) minimize the information
loss and are suited for tasks such as image convolution. On the other hand, the
functions resulting from the combination of both synchronized and de-synchronized
groups of neurons can be associated to more complex nonlinear processing tasks like
pattern discrimination, where the signal information is drastically reduced to the
useful one.

5.3. The proposed stochastic neuron design

The proposed variant of the SSN is illustrated in Fig. 5.4. This circuit is function-
ally equivalent to that of Fig. 5.2, but the operations are implemented assuming
the bipolar codification ([−1, 1] range for the probabilistic variables) instead of the
unipolar considered in Fig. 5.2 ([0, 1] range). Accordingly, the synaptic weighting
of the inputs is realized through XNOR gates. The weighted signals are then non-
linearly transformed by means of a simple OR gate. Just as in Fig. 5.2, a counter
integrates the resulting pulses (high binary values) throughout the evaluation pe-
riod (defined as Nc clock cycles), after which the result is stored in a n-bit register
and the counter is restarted (remind that the P2B block consists of a counter and
a storage register, Fig. 4.7). The P2B’s output magnitude (representing the mean
membrane potential) is compared (at each Tclk) with a variable threshold value gen-
erated by a LFSR to produce the pulsed neuron’s output. Note that, in this scheme,
the inhibitions present in the SSN are represented as negative weight values.

Figure 5.4.: Proposed variation of the SSN.

The same as in the SSN model, the proposed design can easily include correlations
between different neurons. Two neurons produce uncorrelated outputs if they employ
different seed values for the LFSR. On the other hand, two neurons are synchronized
(they present correlated signals) when their LFSRs are initialized with the same
value (in fact, the whole LFSR block can be shared by all synchronized units to
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reduce the resource utilization). For the work presented here, however, I will limit
to the case of functions resulting from uncorrelated signals.
As in previous chapters, I focus on the implementation of the reservoir network with
cyclic topology (SCR) introduced in sec. 2.3.1.2. Due to the particular configuration
of the connections in this structure, the neurons only require two input signals
(one for the external forcing function driving the system and another one for the
internal connection with other neurons). The reduced circuit for such a two-input
unit is shown in Fig. 5.5. A number of these neurons can be arranged in a cyclic
topology exactly as shown in Fig. 4.12. The B2P blocks used for the external input
and input weights, as well as the LFSR, can be shared by all neurons. For this
particular topology, the use of a common random number generator does not alter
the neuron’s function since each neuron only receives a single input from another
one. In other words, all the neurons are synchronized, but it does not affect the
result as their signals are never mixed together.

(a)

(b)

Figure 5.5.: Two-input stochastic “spiking” neuron design (a). Schematic block
diagram (b).

The neuron design of Fig. 5.5 performs exactly the same functionality as the ensemble
of seven bioinspired stochastic neurons (design of Fig. 5.2) with the configuration
shown in Fig. 5.6 used in our previous work [RAM+16] to implement each of the
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reservoir nodes.

Figure 5.6.: Ensemble of stochastic spiking neurons (SSNs) employed in [RAM+16]
to implement each one of the nodes of a cyclic reservoir. xk−1 corresponds to the
signal coming from the neighboring node and u to the external input; r and αk are
their corresponding probabilities of synapse transmission (the connection weights
are only indicated when they are different to 1). Such design can be replaced
(assuming fmax = 1) by the equivalent circuit of Fig. 5.5 (where the external
input and that coming from another neuron are noted as i1 and i2 while w1 and
w2 represent their respective weights).

It can be noticed that the proposed implementation of Fig. 5.5 is actually a version
of the SC-based sigmoid neuron design presented in the previous chapter (Fig. 4.9).
Here, an OR gate of the weighted inputs is used to perform the nonlinear activation
function instead of the specific circuitry implementing the addition and sigmoid
function. The VHDL code describing the neuron implementation is presented in
sec. A.3. For this design, a P2B block of 20 bits has been used, which allows a
higher precision of the stochastic computations. In particular, the evaluation period
has been set to Teval = (219 − 1) · Tclk (that is, Nc = 219 − 1). The neuron’s binary
output is given (in the two’s complement format) with a precision of 16 bits (the
less significant bits are disregarded).
As introduced in sec. 4.2.2.1, the function implemented by an OR gate of two switch-
ing input signals representing the bipolar values i1 and i2 is

f(i1, i2) = OR(i1, i2) = i1 + i2 + i1 · i2 − 1
2 (5.3)

while the function implemented by the sigmoid neuron design of Fig. 4.9 (assuming
an encoded value of the weight signals given by w1 = w2 = 1) can be expressed as

f(i1, i2) = tanh(i1 + i2) (5.4)
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Chapter 5 Stochastic echo state networks as liquid state machines

Both functions are represented in Fig. 5.7. The function implemented by the OR
gate (equation 5.3) is bound to the [−1, 1] range given that the inputs (i1 and i2) are
limited to the same range. Unlike other ANN learning algorithms (such as classical
gradient descent training methods) requiring the activation function to satisfy some
conditions (such as derivability), the RC training approach is not restrictive with the
function employed to non-linearly transform the inputs. Indeed, the RC principle
has been used as a strategy to implement useful computations by means of various
dynamical systems employed as nonlinear reservoirs that transform the input signal
into a high-dimensional state ([LJS12]).
It is worth noting that the simplified nonlinear function implemented through the
OR gate allows a significant saving of the hardware resources (see next section for
the network’s consumed logic elements).
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Figure 5.7.: Probabilistic function implemented by the circuit of Fig. 5.5 (contin-
uous line) compared to that of Fig. 4.9 (classical sigmoid, dashed line) assuming
w1 = w2 = 1.

Since the proposed SC-based discrete-time continuous-value neuron can be perceived
as a simplistic way to emulate a spiking node, a reservoir network of such stochastic
units can be regarded as a LSM.

5.4. Experimental results

A network of the proposed SC-based neurons (Fig. 5.5 and sec.A.3) has been imple-
mented in a medium cost FPGA (Altera Cyclone IV) following the reservoir cyclic
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architecture as illustrated in Fig. 4.12. The size of the network has been fixed to
20 units (N = 20) and the evaluation period to Teval = (219 − 1) · Tclk (that is,
Nc = 219 − 1) with a clock frequency of 50 MHz (Tclk = 20ns). The network’s
performance has been evaluated for three forecasting tasks with different degrees of
complexity.
For each of the studied examples, a simulation has been carried out to determine the
optimum configuration of the reservoir’s weight parameters r and v. The numerical
model (developed with MATLAB) that has been used to emulate the hardware im-
plementation consists of an ESN that employs the function of equation 5.3 instead
of the conventional sigmoid function. The results of the SC-based hardware imple-
mentation have been assumed to tend to those of this software realization given the
long evaluation period selected for the stochastic computations. The resolution of
the variables in the simulation model have also been limited according to the hard-
ware. The numerical simulations employ the training data set to train the network’s
output layer and the test set to analyze the network’s performance for a number of
different configurations (values of r and v).
After finding the optimum parameters by software, the hardware was configured,
trained, and experimentally tested. To perform the measurements of the proposed
SC-based LSM circuitry, an internal RAM memory supplies the input signal to the
reservoir network every evaluation period corresponding to Nc clock cycles. The
resulting reservoir states (mean firing rate of the individual spiking neurons, xk, k =
1 . . . N) are measured at the end of each evaluation period (by that time, the result
of the integrated stochastic computations is already available). Their values are
stored in memory, which can be finally displayed using the signal logic analyzer.
The training (assessment of the output layer optimal weights) consists of a linear
regression of the desired teacher output (to be predicted, yteach) on the reservoir
states (xk, k = 1 . . . N) as described in sec. 2.3.1.3. It has been carried out using di-
rectly the experimental data provided by the FPGA for the training set. Finally, the
output weights resulting from the training process were employed to calculate the
network’s final readout as a linear combination of the experimental neuron states,
which were read with a precision of 16 bits. The network’s output layer was com-
puted by software. The readout values obtained for the test set are used to evaluate
the system’s performance for each particular task as an error between the desired
and the network’s predicted output.
The required hardware resources to implement the proposed LSM employed for the
three examples are presented in Tab. 5.1. The measurements of the spent hardware
resources have been taken, as in chapter 4, for the reservoir network circuit that
includes all the neuron states as output signals. It can be observed that the present
implementation requires a 17% less silicon area than that of chapter 4. Therefore,
the simplified nonlinear function implemented through the OR gate allows a signifi-
cant hardware resource saving. It must be noticed that the P2B blocks in the present
implementation require more logic elements since they include 20-bit counters and
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Chapter 5 Stochastic echo state networks as liquid state machines

registers (n = 20) while those of previous chapter used n = 16. In addition, some
additional hardware is required for the circuit presented here due to the fact that
the network outputs have been given a precision of 16 bits but they were limited to
8 bits in the design of chapter 4.

Logic elements 1812 (1.6%)
Registers 824 (0.7%)

Table 5.1.: Hardware resource utilization of the Altera Cyclone IV FPGA for a
20-unit LSM implementation using the proposed stochastic neuron design.

It is worth highlighting that the proposed methodology can be used to implement
massive reservoir networks in medium and even low cost FPGA devices.

5.4.1. A simple forecasting example

As an example of functionality of the proposed methodology, a first simple forecast-
ing task was selected, which consists in the one-step ahead prediction of a periodic
function:

u(t) = sin(2πt
100) sin(8πt

100) (5.5)

where t represents the time step of the system so that every Teval a new value of u(t)
is provided to the neural reservoir. This input signal is represented in Fig. 5.8 along
with the associated dynamics of some of the nodes in the reservoir. The neuron
states, which oscillate according to the input stimuli, are used to calculate the final
network’s prediction output. Results are shown in Fig. 5.9, corresponding to the
one-step ahead values of the input signal. A good match can be observed.
For this time-series experiment, 500 time steps were employed. The first 50 steps
were neglected (initial transient response), the next 350 values were used for training
and the last 100 for testing. The experimental error for the test set was found to be
NMSE = 0.001.

5.4.2. Prediction of real-life sea clutter radar returns

For a further validation of the proposed methodology, I study the prediction of
a noisy real-life signal presenting an irregular behavior. The target signal is the
sea clutter data; that is, the radar back-scatter from an ocean surface, collected
by the McMaster University IPIX radar ([BC01a]). The IPIX radar was originally
developed for iceberg detection and its measured data can be used to test algorithms

126



5.4 Experimental results

0 20 40 60 80 100
−1

−0.5

0

0.5

1

time step

si
gn

al

 

 

input
x

5
x

6
x

7

Figure 5.8.: Traces of three selected neurons from the reservoir (symbols) along
with the input signal driving the system (continuous line).
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Figure 5.9.: Desired signal to forecast (continuous line) and reservoir’s predicted
values (circles).
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aimed at the intelligent detection of small objects in sea clutter. A precise prediction
of the sea clutter data can be used for this object-detection purpose. Therefore, the
goal of the present task is to predict this signal one (or several) time steps in the
future.
The same data set used in other studies ([XYH07], [RT11], [DSS+12]), has been
employed here. It is termed the low sea state and corresponds to an average wave
height of 0.8 meters. The output of the radar demodulator is two-dimensional
(outI and outQ, which correspond to the in-phase and in-quadrature components).
However, as in previous studies using this data ([XYH07], [RT11]), the radar signal
has been reduced to one dimension (out =

√
out2I + out2Q). The first 1000 samples of

the sea clutter data were used to train our 20-node reservoir (with a washout time
of 150 points), and the next 1000 samples as test set.
The prediction task has been performed for one and for five steps ahead. The
reservoir predictions are shown in Fig. 5.10 for both cases. The error was found
to be NMSE = 0.005 for the one-step experiment and NMSE = 0.075 for the
five-step case.
As a reference for comparison, a conventional software implementation of an ESN
with cyclic topology using conventional sigmoid neurons (tanh function) provided
the next results for the same data set: NMSE = 0.002 for the one-step experiment
and NMSE = 0.033 for the five-step case. A very simple approach that performs
the one-step ahead predictions directly using the current step values (i.e., u(t+1) =
u(t)), provides results with an error NMSE = 0.007.

5.4.3. Chaotic time-series prediction task

Finally, the proposed SC-based reservoir network has been tested through the more
complex Santa Fe laser time-series prediction task (already used in chapter 3 and
chapter 4). For the experiment, 3000 samples from the original data set ([WG15])
have been used, the first 2000 for training (disregarding an initial washout of 150
samples), and the remaining 1000 for testing.
Fig. 5.11 shows how the network performance (measured through the NMSE) is
examined as a function of the configuration parameters r and v through numerical
simulations (that approximately emulate the hardware implementation) to find the
configuration of the stochastic reservoir network providing optimum results prior to
configuring and experimentally testing the network in hardware.
The error of the hardware-based predictions was found to be NMSE = 0.116. Note
that this result is similar to that estimated for the SC-based ESN using sigmoid
neurons presented in chapter 4 (NMSE = 0.128 when using an evaluation period
Teval = 218 Tclk).
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Figure 5.10.: Targeted sea clutter data (continuous line) together with one-step
(a) and five-step (b) ahead experimental predictions (circles).
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Figure 5.11.: Simulation results for the NMSE in the Santa Fe time-series predic-
tion task to determine the optimum reservoir configuration (parameters r and
v).

5.5. Discussion

In this chapter, I have highlighted the similarity of the SC-based continuous-value
neuron designs (such as the one presented in chapter 4) with stochastic spiking
neuron models. This resemblance results particularly appealing since it allows a
compact hardware implementation of a neuron model capable of emulating the ba-
sic spiking behavior. More specifically, a variation of the stochastic spiking neuron
(SSN, [RCOM14]) has been proposed which allows to make use of the synchroniza-
tion (de-synchronization) between different units in the network to extend the range
of processing capabilities.
The proposed neuron design has been used to implement a reservoir network (LSM)
in a medium-cost FPGA. The limited use of hardware resources shows that the
present approach is suitable for hardware implementation with low-cost devices.
The implemented network has been shown to adequately perform several benchmark
time-series prediction tasks. Indeed, the simplified neuron design (with a nonlinear
function implemented through a single OR gate) allows considerable hardware re-
source saving (about 17%) while it provides similar accuracy to that of the SC-based
sigmoid unit (as observed for the Santa Fe laser task).
The automated software tool used in chapter 4 to export the stochastic ESN designs
to a VHDL hardware description (for any desired network size and weight configu-
ration) can also be conveniently used for the present LSM implementation just by
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replacing the sigmoid neuron design with that presented in sec. A.3.
The classical discrete-time (sigmoid) neuron represents an approximation to the
spiking neuron when assuming an information codification based on the firing rate.
Therefore, an implementation of the classical discrete-time neuron using the SC
approach (such as the one proposed in this chapter) can be employed to emulate
a spiking node carrying the information on its output signal probability. Despite
of being a simplified model, the proposed variant of the SSN retains some general
properties of the biological neuron and can be used to describe the transformation of
input spike trains into their corresponding output sequences of firing-times through
low-cost probabilistic circuitry. A particular benefit of this proposed pseudo-spiking
model is the possibility to implement a range of different functions by tuning the
correlation/de-correlation between different units, which might improve the net-
work’s performance for some particular tasks.
The cyclic architecture employed for the LSM implementations analyzed in this
chapter does not allow exploiting the correlation between different neurons (only
correlations between the external input and the output of some neurons could be
set). Nevertheless, the general reservoir structure with random connections (where
each neuron can be connected with any other) enables the possibility to correlate
a desired set of neurons and potentially modify the functionality of the network
([RCOM14]). It remains as future research work to analyze whether the use of
correlations between different neural units can improve the network’s performance
for some applications.
The potential applications of the presented LSM implementation are the same ones
of the SC-based ESN of chapter 4. Namely, specialized systems where small size, low
cost, low power, or soft-error tolerance is required, and limited speed is acceptable.
Although it is beyond the scope of this thesis (focused on the engineering application
of neural networks), it is worth mentioning that the implementation of biologically
plausible reservoir networks (LSMs) can be of high interest to model biological
phenomena in the field of neuroscience ([MNM02], [MLM02]).
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6. Hardware echo state networks
without multipliers

6.1. Overview

The development of efficient circuitry supporting artificial neural networks (ANNs)
is crucial to fully exploit the advantages of these systems. However, the hardware
realization of massive networks, such as echo state networks (ESNs), is costly mainly
due to the requirement of many synapse multipliers as observed in chapter 3. In this
chapter, I propose a compact digital hardware design of the ESN based on a very
simple concept: reducing the resolution of the synaptic weight values. The limitation
of the connection weights to a few discrete values allows simplifying the multiplier
design, which can be replaced by a few shift and add operations consuming minimal
area. This approach takes advantage of the fixed connectivity structure of the reser-
voir networks enabling the low cost implementation of large models with hundreds
of neurons. The performance of the proposed implementation without multipliers
is evaluated for a chaotic time series prediction task (the Santa Fe benchmark).
The results show that the hardware-reduced network using low resolution for the
weights exhibits practically the same accuracy than the conventional implementation
of chapter 3 with full resolution.

6.2. The proposed design without multipliers

Even though a great deal of attention has been directed to the development of
efficient designs of the nonlinear sigmoid activation function for digital implemen-
tations (as outlined in sec. 3.2.3; see, for example, [BTdC02] and [DCFEB13]), the
application of the internal weights present in ANNs sharply constrains the parallel
implementation of massive networks in a single chip. Given the large number of
products to be implemented between inputs and weights when considering a huge
number of synapses, multipliers expend a significant portion of the integrated circuit
resources.
In this work, I propose to avoid the use of multipliers by limiting the possible
weights to integer powers of two and sums of powers of two so that simple shift
registers and adders can be employed instead of multipliers. This technique has
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been widely used in other fields such as the digital filter design ([LL88]). In the case
of standard ANN implementations that use back-propagation as learning algorithm,
the constraint on the weights leads to lower network performance ([MOPU93]).
Nonetheless, I show that for reservoir networks with fixed connections, the proposed
approach only implies a minor accuracy loss. A similar idea, although not based on
the discretization of the connection weights but on the quantization of the neuron’s
activation function, was proposed for reservoir computing in [BSL10].
As in previous chapters, I focus on the implementation of the echo state network
according to the simple cycle reservoir (SCR) topology introduced in sec. 2.3.1.2.
Such a deterministic reservoir with cyclic architecture (Fig. 3.13) presents similar
performance to the classical random one while it minimizes the number of connec-
tions ([RT11]). In addition, the digital design of the SCR network can be easily
automated for any number of units since all neurons have the same structure (one
connection input from a neighboring neuron and a second one from the input layer)
and it is independent on the size of the system. Remind that in the cyclic reservoir,
all the connections between internal units have the same weight value r whereas the
inputs are connected to the reservoir with a weight that can be either positive or
negative (with a 50% probability), but with the same absolute value v. Parameters
r and v must be analyzed to find the optimum weight configuration.
The conventional circuit design of the two-input sigmoid neuron necessary to build
the cyclic reservoir is illustrated in Fig. 6.1(a). The first neuron’s input value (u(t))
refers to the external input signal (to be processed by the network) and the second
one (xi−1(t− 1)) to the output of a neighboring neuron (at the previous time step).
A resolution of n bits is given to the input values and of m bits to the weights
(with m not necessarily equal to n). The multiplier’s output is truncated to n bits
taking the most significant bits of the result, but a higher or lower resolution could
be employed depending on the desired accuracy. The two’s complement notation
s0.n− 1 (that is, one sign bit, no integer bits and n− 1 bits for the fractional part)
is assumed for the neuron inputs (and output) and s0.m− 1 for the weights so that
their values are limited to the [−1, 1) range.
The general implementation of Fig. 6.1(a) using full multipliers allows any weight
configuration with a precision of m bits. When the weight resolution is reduced
to a few bits, for example m = 4, the multipliers can be substituted by shift-
and-add blocks as shown in Fig. 6.1(b). The proposed multiplier-less realization
enables great hardware saving at the cost of a lower resolution. The shift-and-
add block is depicted in Fig. 6.1(c). Basically, it performs a multiplication of the
input signal (u(t)) by the corresponding weight (v) with a pair of shift registers
and an adder. Some additional circuitry is included to perform the negation of
the shifted values in case it is necessary. Remind that, in the two’s complement
notation (sec. 3.2.1), the opposite of a number is obtained by inverting all the bits
of that number (with NOT gates) and adding a ”1” to the result. A multiplexer is
employed to provide either the number that directly results from the shift register
or its corresponding opposite value depending on a selection signal. A decoder
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configures the shift registers (with the number of required shifts, sh1 and sh2 ) and
controls the activation of the negations (neg1 and neg2 ) as a function of the weight
value (v).

(a)

(b)

(c)

Figure 6.1.: General circuit design of the neuron (a). Reduced implementation
scheme when the weight resolution is limited to a few bits (m = 4): the multipliers
can be replaced by simple shift-and-add blocks (b). Description of the shift-and-
add block (c).
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By way of example, a single right shift of the input (sh1 = 1) performs a mul-
tiplication by 0.5 while two shifts (sh2 = 2) are equal to a factor of 0.25. The
direct addition (with neg1 = neg2 = 0, indicating that no negation of the shifted
values is necessary) of these two shifted magnitudes results in a weight v = 0.75.
The weight value v = 0.875 can be implemented by selecting no shifts and no
negation for the first shift register (sh1 = 0, neg1 = 0) and three shifts with a
negated output for the second one (sh2 = 3, neg2 = 1) so that the input sig-
nal u(t) is weighted by the factor v = 1 − 0.125 = 0.875. A negative factor, for
instance v = −0.5, may be obtained through the negation of both shifted mag-
nitudes (neg1 = neg2 = 1), where each one is obtained with two displacements
(sh1 = sh2 = 2) so that v = −0.25 + (−0.25) = −0.5. Note that, since we are
using two’s complement signed numbers, the shifting operation must fill the empty
positions that result after moving the binary number to the right with 0’s when the
signal to be shifted (u(t)) is positive and with 1’s in case it is negative.
The proposed shift-and-add scheme of Fig. 6.1(c) allows a multiplication using any
weight value in the range [−1, 1] with steps of 0.125. Therefore, the weight resolution
can be considered to be of four bits (m = 4). However, it is worth mentioning
that this structure with two shift registers can actually be used for many more
intermediate values. For example, the weight values 0.03125, 0.0625, 0.1875, 0.3125,
0.4375, 0.5625, 0.9375, etc (as well as their corresponding opposite values) can also
be implemented.
The proposed neuron design can be used to build an ESN with cyclic architecture
organizing the proposed blocks of Fig. 6.1(b) exactly as shown in Fig. 3.14. A soft-
ware program has been developed to automatically generate the VHDL hardware
description code of the SCR network for any desired number of neurons and weight
configuration. The resulting VHDL code can be finally synthesized to an actual
hardware implementation. Regarding the nonlinear activation function, the simple
piece-wise linear approximation with three segments (sec. 3.2.3) has been used to
ensure a compact implementation. More accurate designs of the sigmoid function,
such as that of Fig. 3.10, could be used to improve the network’s performance. The
neuron’s input and output resolution has been set to n = 16 bits.
The program generating the network’s VHDL code has been designed to directly
implement the configuration of the shift-and-add blocks that corresponds to the
weight values employed for the network. That is to say, the network is not im-
plemented using a generic shift-and-add structure capable of applying any weight
value, but the software provides a design that is already configured (with the num-
ber of required shifts and negations) according to the selected weights. An example
of neuron implementation (VHDL code) is shown for the case of r = v = 0.875 in
Algorithm 6.1. Note that, in this case, the weighted inputs are obtained summing
the result of applying no displacements to the input signal with that corresponding
to the negation of the three-position shifted value. The shift register arithmetic
operator (sra) performs the desired number of displacements of the input signal and
fills the empty positions with 0’s or 1’s depending on whether that signal is posi-

136



6.2 The proposed design without multipliers

Algorithm 6.1 VHDL code for the neuron design employing shift-and-add opera-
tions to perform the multiplications. The weights are set to the same value for both
inputs of the neuron: r = v = 0.875.
LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;
USE i e e e . s td_log i c_ar i th . a l l ;
USE i e e e . s td_log ic_s igned . a l l ;

ENTITY neuron_without_mult ip l iers IS
PORT ( input1 , input2 : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− s0 . 15

c lk , r e s e t : IN STD_LOGIC;
out_x1 , out_x1_previous : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ; −− s0 . 15

END ENTITY neuron_without_mult ip l iers ;

ARCHITECTURE behavior OF neuron_without_mult ip l iers IS
BEGIN

component ffD_16b IS −− 16−b i t r e g i s t e r
PORT ( input : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

c lk , r e s e t : IN STD_LOGIC;
output : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ;

END component ;

component f_tanh_aprox_3_segments IS −− the a c t i v a t i o n f u n c t i o n
PORT ( x : IN STD_LOGIC_VECTOR (16 DOWNTO 0 ) ; −− s1 . 15

f : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ; −− s0 . 15
END component ;

SIGNAL prod11 , prod12 , x1 , x1_previous : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− s0 . 15
SIGNAL prod11b , prod12b , sum1 : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ; −− s1 . 15

−− f i r s t product ( input1 ∗ v )
prod11 (15 DOWNTO 0) <= t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( input1 (15 DOWNTO 0)) s ra 0) +

NOT ( t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( input1 (15 DOWNTO 0)) s ra 3 ) ) + ’ 1 ’ ;

−− second product ( input2 ∗ r )
prod12 (15 DOWNTO 0) <= t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( input2 (15 DOWNTO 0)) s ra 0) +

NOT ( t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( input2 (15 DOWNTO 0)) s ra 3 ) ) + ’ 1 ’ ;

−− conver s i on o f prod11 and prod12 from s0 .15 to s1 .15 notat ion
prod11b (16) <= prod11 ( 1 5 ) ;
prod11b (15 DOWNTO 0) <= " 0 " & prod11 (14 DOWNTO 0) when ( prod11 (15)= ’0 ’ ) e l s e

" 1 " & prod11 (14 DOWNTO 0 ) ;

prod12b (16) <= prod12 ( 1 5 ) ;
prod12b (15 DOWNTO 0) <= " 0 " & prod12 (14 DOWNTO 0) when ( prod12 (15)= ’0 ’ ) e l s e

" 1 " & prod12 (14 DOWNTO 0 ) ;

−− ad d i t i on o f the two prev ious terms
sum1 <= prod11b + prod12b ;

−− assessment o f the a c t i v a t i o n f u n c t i o n
f_tanh1 : f_tanh_aprox_3_segments PORT MAP(sum1 , x1 ) ;

−− the 16−b i t r e g i s t e r ho lds the neuron output to be used in the next time step
f f 1 : ffD_16b PORT MAP( x1 , c lk , r e s e t , x1_previous ) ;

out_x1 <= x1 ;
out_x1_previous <= x1_previous ;

END behavior ;
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tive or negative, respectively. The components employed in the neuron design are a
16-bit register (ffD_16b, used to hold the value of the neuron state, x1, so that it
can be used by another neuron on the next time step), and the nonlinear function
block, f_tanh_aprox_3_segments described in Algorithm 3.2.
For the case of weight values corresponding to integer powers of two (0.5, 0.25,
0.125, ...) a single shift operation (instead of two) is sufficient. This is illustrated in
Algorithm 6.2, where the weight for the first input is set to v=-0.5 and the second
one to r=0.75.

Algorithm 6.2 VHDL code for the “multiplier-less” neuron design when the weights
are set to v = −0.5 and r = 0.75.
LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;
USE i e e e . s td_log i c_ar i th . a l l ;
USE i e e e . s td_log ic_s igned . a l l ;

ENTITY neuron_without_mult ip l iers IS
PORT ( input1 , input2 : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− s0 . 15

c lk , r e s e t : IN STD_LOGIC;
out_x1 , out_x1_previous : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ; −− s0 . 15

END ENTITY neuron_without_mult ip l iers ;

ARCHITECTURE behavior OF neuron_without_mult ip l iers IS
BEGIN

. . .

−− f i r s t product ( input1 ∗ v )
prod11 (15 DOWNTO 0) <=

NOT ( to_ s td l og i cv e c t o r ( to_bi tvec tor ( input1 (15 DOWNTO 0)) s ra 1 ) ) + ’ 1 ’ ;

−− second product ( input2 ∗ r )
prod12 (15 DOWNTO 0) <=

to _s td l og i cv e c t o r ( to_bi tvec tor ( input2 (15 DOWNTO 0)) s ra 1) +
to _s td l og i cv e c t o r ( to_bi tvec tor ( input2 (15 DOWNTO 0)) s ra 2 ) ;

. . .

END behavior ;

An example of the VHDL code describing the whole SCR hardware realization is
shown in sec. A.4 of Appendix A for the case of N = 50 neurons configured with
weight values v = ±0.875 and r = 0.875. A network implemented by means of the
present approach, based on the use of low-resolution weight parameters, consumes
a higher or lower number of hardware resources depending on the selected values
of the weights. For instance, a multiplication by a factor of 0.875 (using two shift
registers and a negation) requires more logic elements than that corresponding to
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a factor of 0.5 (which only needs a shift register). Therefore, the resources of the
worst possible configuration must be considered when evaluating the requirements
of the network implementation.

6.3. Experimental results

The VHDL-encoded reservoir network obtained according to the proposed method-
ology has been synthesized on the medium cost Altera Cyclone IV FPGA. The
performance of the system has been tested for the Santa Fe time-series prediction
benchmark (introduced in sec. 2.3.4.2). A total of 4000 samples of the original laser
data set [WG15] are employed; the first 2000 for training, the next 1000 for valida-
tion, and the remaining 1000 for testing.
As in chapter 3, a numerical model of the reservoir network hardware implementa-
tion, which truncates the resolution of the variables according to the digital design,
is employed for training the system (following the standard procedure for ESNs,
sec. 2.3.1.3; that is, a linear regression of the desired output on the reservoir states).
Such numerical model has been observed to exactly reproduce the FPGA results.
That is, a perfect agreement (with zero error) was found between the experimental
and the simulated neuron states. This software implementation is also used to de-
termine the configuration parameters that yield the best performance of the system
for the validation set. Finally, once the prediction error has been scanned for all the
possible weight configurations (values of r and v), the hardware realization is set up
with the optimum weights and evaluated with the test set.
Fig. 6.2 shows how the network performance (prediction error, NMSE) is examined
for the validation set as a function of the configuration parameters r and v. It
can be observed that the discrete weight values allowed by the proposed multiplier-
less approach ensure errors that are in close proximity to the best result using
conventional multipliers. The constrained values used for r and v are between 0 and
1 with steps of 0.125.
To perform the experimental measurements of the proposed “multiplier-less” ESN
implementation configured with the optimum weight parameters r and v, an FPGA’s
internal RAM memory supplies the input signal to the reservoir network every time
step (a single clock cycle). The resulting network outputs (individual neuron states)
are monitored using the signal logic analyzer.
Finally, the network’s output layer is computed by software as a linear combination
of the experimental neuron states, which are read with a precision of 12 bits. The re-
sulting experimental predictions are used to calculate the network’s performance as
the error between the estimated and targeted values. The hardware implementation
test performance results for several sizes of the reservoir are displayed in Fig. 6.3.
The results obtained for the present design based on the use of low-resolution weights
(multiplier-less approach) are compared to those for the conventional realization of
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Figure 6.2.: Performance (NMSE) of the ESN implementation with 200 neurons
in the Santa Fe time-series prediction task as a function of the weight parameters
r and v. The surface is taken from a general realization while the points represent
the possible discrete values to which the proposed approach is limited.
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Figure 6.3.: Performance (NMSE) in the time-series prediction task as a function
of the reservoir size for a general ESN hardware implementation (with high weight
resolution, m = 16) and for the proposed realization without multipliers (using
limited resolution, m = 4).
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chapter 3 using high-resolution parameters. Only a slight loss of accuracy is observed
in the case of the multiplier-less reservoir being 0.0038 the maximum measured dif-
ference in the NMSE. Indeed, in the case of the network with N = 150 neurons, the
approach without multipliers slightly outperforms the conventional one. This is due
to the fact that the network’s performance may differ to a small extent for the vali-
dation and test set, and therefore the configuration selected for the validation data
using low-resolution weights may result (by chance) better than that determined
with high-resolution parameters.
The hardware resource utilization for the multiplier-less approach is presented in
Tab. 6.1. These results correspond to the network configuration using the weight
parameters v = ±0.875 and r = 0.875, which has been observed to be the one
requiring the highest number of logic elements. As in chapter 3, the measurements
of the spent hardware resources have been taken considering a network circuit with
a single output signal corresponding to one of the neuron states (the rest of the
states are assigned to intermediate signals). Fig. 6.4 compares the logic elements
required by the proposed approach without multipliers with those of the conventional
implementation of chapter 3. The proposed design requires the order of 7 times less
chip area than the standard realization, thus allowing the massive implementation
of reservoir networks using low-cost FPGAs.
It is worth noting that the present implementation allows the parallel computation
of all neuron outputs in a single clock cycle (20 ns for a typical clock frequency of
50 MHz).

N (neurons) 50 100 150 200
Logic elements 2497 (2.2%) 4947 (4.3%) 7397 (6.5%) 9847 (8.6%)

Registers 800 (0.7%) 1600 (1.4%) 2400 (2.1%) 3200 (2.8%)
Table 6.1.: Hardware resource utilization of the Altera Cyclone IV FPGA for the
proposed “multiplier-less” ESN implementation.

6.4. Discussion

In this chapter, I have proposed a simple hardware design of the ESN based on
the use of low-resolution weight values. This allows performing the multiplications
with shift-and-add blocks that consume minimal area. As a result, this methodology
makes possible the implementation of fully parallel reservoir networks with hundreds
of neurons using few hardware resources. For instance, an ESN with 200 units
requires a approximate number of 10000 logic elements, which is suitable for a low
cost implementation (using FPGA devices such as the Cyclone III EP3C16 or the
EP3C25, [web16d]).
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50 100 150 200
0

2

4

6

8x 10
4

# neurons

H
W

 r
es

ou
rc

e 
(L

E
s)

 

 

Conventional
Proposed

Figure 6.4.: Spent hardware resources of the Cyclone IV FPGA for different sizes
of the reservoir using a reduced weight resolution (m = 4, implemented with
shift-and-add operations) compared to those of the full-resolution case (m = 16,
implemented with conventional multipliers).

As a demonstration of the validity of the present approach, large reservoir networks
(with sizes ranging from 50 to 200 units) have been implemented within a FPGA
and evaluated for the Santa Fe time series prediction task. The results show that
the hardware-reduced network using low resolution for the weights exhibits practi-
cally the same accuracy than the conventional implementation of chapter 3 with full
resolution.
To sum up, I have proposed to take advantage of the fixed connectivity structure
of the reservoir network (in particular, of the cyclic SCR architecture) by setting
the weights to discrete values that are favorable for the hardware implementation.
As expected, the limitation of the internal weights (those within the reservoir or
connecting the input layer to the reservoir) to powers of two and sums of powers of
two has been observed to have little impact on the system’s performance. There-
fore, the present approach enables the implementation of large reservoir networks
with minimal hardware at the cost of a minimum loss of accuracy. It must be no-
ticed, however, that the output layer weights (contrary to the internal ones) must
be applied with high resolution for the desired output function to be effectively
performed.
It is worth highlighting that a tool (software program) has been developed to au-
tomatically generate the hardware structures (such as the shift-and-add blocks, de-
scribed through a VHDL code) required for any desired configuration of the weights
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and size of the reservoir network. This may accelerate the usually long design process
of the hardware neural network for a specific application.
The proposed system is suited to supporting the fast processing of temporal infor-
mation (such as, for example, the processing of video camera pixels, [JWW15]) and
also to realize specialized systems implementing computational intelligence tech-
niques and requiring low cost and low power consumption (such as in robotics, wire-
less sensor networks, predictive controllers, or medical monitoring applications).
In addition, it is worth mentioning that the parallel processing capability of the
present design (all nodes are computed simultaneously) endows the system with
fault-tolerance (it can continue to function, though with reduced performance, in
the presence of faults in some components), which may be interesting for safety
critical applications.
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7. Hardware implementation of
delay-based echo state networks

7.1. Overview

In the preceding chapters, I have proposed the use of different approaches to ef-
ficiently implement concurrent echo state networks (ESNs) in digital hardware.
Stochastic computing (SC) has been viewed as an appealing technique that makes
possible the implementation of complex functions using simple circuitry. The re-
duction of the hardware requirements in SC comes at the cost of the need for long
evaluation periods, which leads to systems with limited processing speed. The con-
cept proposed in this chapter consists in sequentializing the operation of the network
so that a single neuron (evaluated at different temporal positions) is sufficient to em-
ulate the whole network design. Similarly to SC, this approach relaxes the hardware
requirements at the cost of a longer computation time. However, in this case, the
implementation cannot benefit from the network’s inherent parallelism.
The sequential implementation of reservoir networks with a cyclic structure is the
notion behind delay-based RC systems. In this paradigm, the current output of the
single neuron is given in terms of that value at previous times. This is usually com-
puted as the solution of a nonlinear delay differential equation (DDE) as described in
sec. 2.3.3. Here, I use the sigmoid function as non-linearity (that is, a “static” node
is employed instead of a dynamical one) so that the delay-based design replicates
an ESN. The proposed digital circuit for such a sequentially-operated network is de-
scribed and tested for the Santa Fe benchmark task. The resulting system requires
few hardware resources, which makes it suitable for a low-cost implementation. De-
spite the reduced computation speed compared to a parallel implementation scheme,
the system is still compatible with numerous real-life applications.

7.2. The proposed delay-based design

7.2.1. Introduction

The present design is based on the sequential implementation of the ESN with
cyclic topology (the SCR architecture). The SCR structure has been introduced in
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sec. 2.3.1.2 and used in the previous chapters for a parallel implementation of the
ESN. That is, in the previous network implementations, the design is composed of
a number of separate blocks representing the individual neurons that compute their
output simultaneously. A SCR network where all individual nodes simultaneously
process the incoming signal u(t) in a single time step is depicted in Fig. 7.1. The
distributed computing in ANNs offers advantages in terms of reliability and pro-
cessing speed that can be exploited in hardware. Here, however, I propose a scheme
where the neuron outputs are computed one after each other. In this approach, the
whole recurrent network is substituted by a single unit that calculates the network
outputs at different times. Such a serial network design highly relaxes the hardware
requirements.

Reservoir
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x2(t) y(t)

Input

u(t)

+v

-v

-v

+v

-v

Figure 7.1.: Simple cycle reservoir (SCR) network where all nodes are computed
in parallel.

The general concept of emulating the SCR network with a single node by serializing
the computation of each neuron in the network is illustrated in Fig. 7.2. We define
N equidistant points in the reservoir, separated in time by θ = τ/N within one delay
interval of length τ . We refer to these N equidistant points as “virtual nodes” since
they play an analogous role to the nodes in the traditional concurrent reservoir.
The values of the delayed variable x at each of the N points define the states of the
virtual nodes (x(θ), x(2θ) . . . x(Nθ)). That is, the neuron outputs that result from
the nonlinear transformation of the input signal at a given time.
The input signal to be processed is represented as a time-varying scalar variable,
but a vector of any dimension can be used to drive the system. The feeding to
the individual virtual nodes is achieved by time multiplexing the input signal. This
pre-processing is illustrated in Fig. 7.2. Firstly, the input stream (u(t)) undergoes
a sample and hold operation to define a stream that is constant during one delay
interval τ before it is updated with the next sample in the input signal. Then, a
random mask vector is applied over the resulting signal I(t). This mask emulates
the random weights from the input layer to the reservoir in the concurrent RC design
(that is, the vector of weights v = (v1, v2, . . . vN)T ). The multiplication of the mask
(M = v) with the sample of the input signal I(t) at a certain time t0 results in an
N -dimensional vector (M I(t0)) that represents the temporal input sequence, J(t),
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within the interval (t0, t0 + τ ] with time steps separated by θ. Each virtual node is
updated every time τ .
For the SCR architecture, all the quantities in the vector of input weights have
the same absolute value and a sign that varies randomly (with equal probabil-
ity). For example, as illustrated in Fig. 7.1, the “mask” may take the form M =
(+v, −v, −v, . . . + v, −v)T . In the case of a multidimensional input signal (u(t)),
the mask consists in a matrix of such randomly chosen values (instead of a sin-
gle vector) so that its application over the multidimensional input at a given time
(M I(t0)) again provides an N -dimensional vector representing the temporal input
sequence, J(t), within the interval (t0, t0 + τ ] with time steps separated by θ.
Note that the values of the delayed variable x at each time t0 +iθ (with i = 1, . . . N)
correspond to the outputs of the individual neurons expressed as x1(t0), . . . xN(t0)
in the general notation of the concurrent reservoir.

Figure 7.2.: Emulation of the SCR network by means of a single node. The mask-
ing process sequentializes the application of the input weights corresponding to
each one of the neurons in the network. The output of the single node at different
temporal positions (x(θ), x(2θ) . . . x(Nθ)) represents the “virtual” neurons of the
network (x1, x2 . . . xN).

The input sequence J(t) drives the single-node reservoir providing a new value to
the system each period θ. In addition, the value of the neuron state x at a previous
time step is also necessary to compute the current state. Therefore, the neuron state
values must be stored for future evaluations of the neuron output. The processing
scheme of this “delay-based” system is illustrated in Fig. 7.3 showing the necessary
connections between the virtual nodes to reproduce the cyclic structure of Fig. 7.1.
As can be appreciated, the neuron output at a given time t (x(t)) depends on the
value at the previous instant t − τ − θ (x(t − τ − θ)). This is true for all virtual
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neurons except the first one, whose result at time t is given in terms of that at time
t− θ (x(t− θ)).

Figure 7.3.: Computing process scheme of the proposed delay-based system.

This way, the connectivity of Fig. 7.1 is reproduced, where the output of a neuron
(xi(t)) is computed as a function of the current input sample (u(t)) and of the output
of the neighboring unit at the previous time step (for the previous input sample,
xi−1(t−1)). Note that the notation of the concurrent reservoir is employed in Fig. 7.3
(x1(t0), . . . xN(t0)) and the delayed period is assumed to be τ = 1. Consequently,
x1(t), x2(t), x3(t), . . . xN(t) correspond to x(t+θ), x(t+2θ), x(t+3θ), . . . x(t+Nθ)
while x1(t+ 1), x2(t+ 1), . . . xN(t+ 1) refer to x(t+ τ + θ), x(t+ τ + 2θ), . . . x(t+
τ + Nθ), respectively. The state of each of the virtual nodes (i = 1, . . . N) in the
emulated SCR network is calculated according to the following recurrent expression:

xi(t+ 1) = f [vi · u(t+ 1) + r · xi−1(t)] (7.1)

where f denotes the sigmoid transfer function, vi the weight connecting the input
stream [u(t)] with the i-th neuron, and r the constant inter-neuronal weight. Note
that, as indicated in Fig. 7.3, the value xN(t) is employed for the calculation of
x1(t+ 1) ; that is, x0(t) corresponds to xN(t) in equation 7.1.
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The output layer is given as a linear combination of the neuron states:

y(t+ 1) =
N∑
i=1

wi · xi(t+ 1) (7.2)

This final readout can also be computed sequentially. Once the output of each virtual
node [xi(t)] is obtained (every time θ), it is multiplied by the corresponding output
weight (wi). The result is added for all the nodes (i = 1, . . . N) and provided as
final readout output [y(t)] after the calculation of the last node xN(t) (every period
τ).
The sequential computing scheme of the ESN with cyclic connections (Fig. 7.3) is
notably similar to that of the single dynamical node RC introduced in sec. 2.3.3
(Fig. 2.14). Indeed, the dynamical-node based design can be viewed as a variation of
the present implementation where the nonlinear transformation of the node’s input
signals is realized through the numerical integration of a DDE (instead of directly
applying a sigmoid function, [GSMOP12]). In addition, the DDE implements the
dependence of the current state [x(t)] on the value at a previous time [x(t−τ)]. The
iterated solution of the differential equation (the value for the current integration
step is given in terms of the immediately previous one) forces a connection between
each virtual node [x(t)] and the immediately previous one [x(t − θ)] as can be
appreciated in Fig. 2.14.
An apparent difference can be observed in the connections present in both designs
(Fig. 7.3 and Fig. 2.14): the dynamical system links each node at a time t with that
at t − τ while the “static” design connects the neuron at t with that at t − τ − θ.
Nonetheless, both schemes can be considered equivalent due to the fact that the
nodes in the dynamical system (Fig. 2.14) at t indirectly depend on the states at
t−τ−θ through the connection of the immediately previous node x(t−θ). Therefore,
the information entering each node from previous states can be considered similar
in both cases. A formal description of the equivalence between the reservoir map
obtained from sampling the solutions of a DDE (equation 2.23, single dynamical
node RC) and that corresponding to a discrete-time dynamical system (equation
2.14) employed for ESNs is given in [GHLO15].
The main advantage of the design based on a “static” node (ESN) is that the nonlin-
ear function can be evaluated in one (or a few) clock cycles. On the other hand, the
dynamical-node design requires to calculate the evolution of the state variable x over
a period of time, which requires a sufficiently large number of intermediate integra-
tion steps. Consequently, the dynamical node RC involves a lower processing speed.
However, it allows the implementation of more complex non-linear transformations.
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7.2.2. Hardware implementation

The proposed circuit design sequentially implementing an ESN with cyclic topology
is depicted in Fig. 7.4. Basically, the hardware required to perform the operations
of a single neuron unit (7.1) along with a number of registers serving as memory for
the delayed variable emulate the whole network. The incoming signals of the single
neuron and their corresponding weights need to be properly modified each time
step for the outputs corresponding to a number of virtual neurons to be generated.
Therefore, a few additional control signals are also necessary.

Figure 7.4.: Schematic circuit design of the proposed delay-based ESN
implementation.

The simple three-segment piece-wise linear approximation to the sigmoid function
(sec. 3.2.3) is employed as transfer function. More accurate approximations could be
used to improve the network’s performance. A number of 2 clock cycles has been set
as necessary for each time step θ (the first cycle is used to assess the neuron output
and the second one to store the resulting value in a register). A higher number of
clock cycles may be necessary in case of using a more accurate approximation to the
sigmoid function. The neuron’s input and output resolution has been set to n = 16
bits.
A first counter (which is enabled every period θ, set as 2 clock cycles, θ = 2Tclk)
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provides the signal i indicating the node to be evaluated (ranging from i = 1, . . . N+
1). The last extra period (i = N + 1) is not employed to calculate any neuron’s
output but to store all the calculated states (x1(t), . . . xN(t)) on a group of registers.
A second counter is activated every τ period, defined as τ = (N + 1) θ, generating
the signal j, which denotes the sample number of the input stream (ranging from
j = 1, . . .M). A last counter, which is enabled every clock cycle, provides the signal
k (in the range k = 1, . . . 2N + 2) in charge of generating (through a decoder) a
number of enabling signals for the registers (enτ, enθ1, enθ2, . . . enθN).
The signal i is used to select (by means of a multiplexer) the weight vi that corre-
sponds to each node’s evaluation step. It is also employed to select the state value of
a previous time step (xi−1(t−1)) necessary for the computation of the current state
(xi(t)). Each time step iθ, the multiplexer supplies the state value corresponding to
the preceding neuron (i− 1) at the previous period τ (t− 1). For the case of i = 1,
the N -th neuron state xN(t− 1) is provided.
The signal j selects the input sample (stored in an internal RAM memory) that
must enter the system each period τ . Consequently, the input value is kept constant
throughout the whole sampling time τ . Every time period θ, the value xi(t) resulting
from the neuron block is stored in the corresponding register. There is a pair of
registers for each virtual node (i = 1, . . . N). The first stage of registers holds the
state values computed at the current step t while the second stage stores the values
corresponding to the previous step t − 1 (necessary for calculating the neuron’s
output at the present time). The temporal evolution of the control signals is shown
in Fig. 7.5 for the case of N = 3. The enabling signals (enθ1, . . . enθN) habilitate
holding the current neuron state at the output of the corresponding register of the
first group. When i = N + 1, the values of the second stage of registers are updated
(through signal enτ) for the calculations of the next time period τ (t+ 1).
As regards the output layer (expression 7.2), it is realized by means of a multiply-
accumulate circuit (MAC) as shown in Fig. 7.6. Every time θ, the neuron state value
[xi(t)] is multiplied by the corresponding weight (wi) and the result (zi) is added to
the previously accumulated value (yi−1). The resulting value (yi) is re-stored in a
register for future accumulations. When the operation has been performed for all
nodes (that is, when the index i reaches i = N + 1), the final result is stored in
a second register (yj) so that it can be visualized. Afterwards, the first register is
reset to an initial accumulation zero value before restarting the multiply-accumulate
operations for the next time step j. The evolution of the control signals enabling
the habilitating and resetting of the registers (enθ, enτ2, enτ) is depicted in Fig. 7.7.
The numerical quantities in the network design of Fig. 7.4 are represented according
to the two’s complement notation s0.15 for the input values (u(t)), internal reservoir
weights (vi, r) and neuron states (xi(t)) since their values are bound in the [−1, 1]
interval. For the output weights (wi) in the MAC of Fig. 7.6, the s5.14 notation is
employed so that values out of that range can be used. The notation employed for
the final readout (yj) is s6.13, which ensures that overflow does not occur even after
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Figure 7.5.: Evolution of the control signals of Fig. 7.4 for an exemplary system
using three neurons (N = 3). θ denotes the required time to process each virtual
node (set to two clock cycles). τ stands for the time needed to process all the
nodes in the network.

the accumulated addition of a high number of node states (N).
The hardware resource utilization for the present delay-based approach is presented
in Tab. 7.1 for different sizes of the system (N). These results correspond to a
network configuration using generic values for the weight parameters vi and r. That
is, the reservoir weights (v = |vi| and r) are defined as input parameters that may
take any desired value. As in chapter 3, the measurements of the spent hardware
resources do not include the output layer and have been taken considering a network
circuit with a single output signal corresponding to one of the neuron states (the
rest of the states are assigned to intermediate signals). The implementation makes
use of 12-bit counters to generate the signals i and k so that the circuit can emulate
a number of approximately 2000 neurons. Greater counters can be used in case of
requiring a higher number of nodes.

N (neurons) 50 100 150 200
Logic elements 3085 (2.7%) 5363 (4.7%) 7597 (6.6%) 9821 (8.6%)

Registers 1626 (1.4%) 3226 (2.8%) 4826 (4.2%) 6426 (5.6%)
Table 7.1.: Hardware resource utilization of the Altera Cyclone IV FPGA for the
proposed delay-based ESN implementation.

The use of registers holding the neuron states allows a fast access to the delay
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Figure 7.6.: Circuit design of the ESN’s output layer (linear combination of the
neuron states) realized by means of a multiply-accumulate circuit

line, which enables a system with high processing speed. In particular, the present
design, only requires two clock cycles to compute the output of each individual
neuron. However, it is worth mentioning that the replacement of the registers by
an internal RAM memory (which also ensures a high access speed) would be more
efficient significantly reducing the requirement of logic elements.
The time required for the network processing an input sample (τ) in terms of the
clock frequency (fclk) and number of nodes (N) is given by 7.3. Tab. 7.2 presents the
processing time (τ) and maximum frequency at which data can be processed (fmax)
for different values of the number of units considering a system’s clock frequency of
50 MHz.

τ = 2 · (N + 1) · 1
fclk

(7.3)

A software program has been developed to automatically generate the VHDL code
of the proposed delay-based implementation for a network of any desired size N .
Indeed, the core of the implementation is not affected by the number of nodes in
the system as it calculates the output of a single sigmoid neuron each time step θ,
but the block of registers employed as memory for the neuron states as well as the
control signals need to be adapted with the reservoir size. An example of the VHDL
code describing the SCR hardware realization for 200 neurons (including the output
layer) is shown in sec.A.5.
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Figure 7.7.: Evolution of the control signals of Fig. 7.6 for an exemplary system
using three neurons (N = 3).

N (neurons) τ (µs) fmax (kHz)
50 2.04 490.2

100 4.04 247.5
150 6.04 165.6
200 8.04 124.4

Table 7.2.: Processing speed of the proposed FPGA-based ESN implementation as
a function of the number of nodes.

7.3. Experimental results

The proposed hardware design has been synthesized on the medium cost FPGA
(Altera Cyclone IV). As in the preceding chapters, the system’s performance is
analyzed for the Santa Fe time-series prediction benchmark (sec. 2.3.4.2) employing
4000 samples of the original laser data set ([WG15], the first 2000 for training, the
next 1000 for validation, and the remaining 1000 for testing).
A software program emulating the behavior of the hardware implementation (by
truncating the resolution of the variables accordingly to the hardware) is employed
for training the system. The standard training procedure for RC (linear regression of
the desired output on the reservoir states) assigns an output weight to each virtual
node, such that the weighted sum of the states approximates the desired target
value as closely as possible. The numerical model employed for training the system
exactly reproduces the FPGA experiments. This is shown in Fig. 7.8, where the
evolution of some selected neuron states is depicted for both the experimental and
numerically simulated system (composed of 200 units).
As in chapter 3, a number of simulations have been carried out for each possible
configuration of the reservoir weights (r and v) using the training data to determine
the output weights and the validation set to assess the prediction error (NMSE). A
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Figure 7.8.: Evolution of some selected neuron states along with the input of the
system (Santa Fe laser intensity values). The neuron outputs are depicted for
both the software (lines) and experimental hardware realization (symbols). A
perfect match can be observed. The graph corresponds to a fragment of the test
data set using a network configuration with N = 200 neurons, r = 0.8906 and
v = 0.99997.

similar plot to that of Fig. 3.16 is obtained (for each value of the network’s size, N),
which allows to select the optimum values of r and v.
Finally, the hardware implementation is configured with the optimum weight pa-
rameters r and v and experimentally tested using previously unseen input data of
the same kind of those used for training (the test set). An FPGA’s internal RAM
memory supplies the input stream to the reservoir network (a new sample every
time period τ). The resulting network output (the final readout, yj) is monitored
using a logic analyzer.
The experimental predictions performed by the 200-unit network are depicted in
Fig. 7.9. The test prediction error (NMSE) is presented in Fig. 7.10 for different val-
ues of N . The error values obtained for the present serial implementation practically
coincide with those of the parallel design of chapter 3. A slight loss of accuracy is
due to the fact that the output layer operations have been implemented in hard-
ware with limited resolution for the present serial implementation, but they were
performed in software (using a higher resolution) in the case of the parallel design
of chapter 3.
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Figure 7.9.: Fragment of the Santa Fe laser time-series: original values and one-
step ahead predictions performed by the proposed delay-based ESN implementa-
tion with 200 neurons.
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Figure 7.10.: Performance (NMSE) in the time-series prediction task as a function
of the reservoir size N for the proposed delay-based hardware ESN.
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7.4. Discussion

The proposed digital hardware design of the ESN based on the serial processing
of the individual nodes leads to a significant reduction of the hardware resources
(number of logic elements) compared to the fully-parallel realization (chapter 3).
Approximately, the present implementation requires between six and seven times
less area than the conventional concurrent design. Obviously, the sequential design
involves a slower throughput. More specifically, the time needed to process all the
nodes in the network is increased by a factor equal to the number of neurons. For
example, a system with a few hundreds of nodes can process each input sample in
a period of the order of 10µs assuming a clock frequency of 50 MHz.
The organization of the neurons in a cycle (SCR chain structure) simplifies the
network implementation compared to the classical ESN with random connections.
In the SCR, every neuron is only connected to the preceding one. However, in the
classical ESN, the number of connections may vary from one neuron to another.
In addition, the neurons to which a unit is connected need to be stated for each
individual node. This would make more complex the implementation of the ESN
classical random design.
It is worth mentioning that the proposed design could be improved replacing the
block of registers implementing the delay line by an internal RAM memory. This
would reduce the number of required logic elements. On the other hand, the pro-
posed sequential scheme could be combined with the multiplier-less approach of
chapter 6 (selecting a few possible discrete values for the input weights), which
would further reduce the hardware requirements.
Regarding the system’s accuracy, it could be improved selecting a more accurate
approximation for the sigmoid function. As the physical implementation of a single
neuron is used to emulate the whole network, the higher number of resources required
for a more complex activation function is not as critical as in the case of a parallel
design.
The proposed design has been synthesized and tested on a FPGA device. The
processing speed of such an FPGA-based implementation (even with a low fre-
quency clock of 50 MHz) is compatible with a number of real-time applications
requiring sampling times no lower than 10 µs, such as medical monitoring applica-
tions ([EMSFM15]), control units ([LZF06], [ZL08]), or handwriting ([PS00]) and
speech ([SDVC07]) recognition systems. Nevertheless, it must be noted that an
FPGA-based implementation of the present design is unlikely to be faster than a
microprocessor-based implementation given the lower operation frequency and the
sequential nature of the proposed delay-based approach.
The design presented here seems particularly suitable for building a low-power low-
cost neuromorphic processor chip capable to implement a large neural processing
system. The implementation on a specific chip could present a similar processing
speed to that of a general-purpose processor and would probably be advantageous
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in terms of power consumption. A higher energy efficiency would be expected due
to the fact that the proposed design has been tailored for the particular purpose of
the ESN realization (using limited resolution for the variables) and the delay line
(memory) could be efficiently accessed on the same chip.
In general, the proposed implementation (either in a specific fabricated chip or in
a low-cost FPGA) can be of interest for applications requiring the implementation
of a machine learning technique and demanding low power consumption, such as
mobile/autonomous objects (robotics, wireless sensor networks, monitoring medical
devices, medical implants, etc). Such an implementation may also be used as a co-
processor supporting software-based computations. For instance, the ESN hardware
might be employed to perform handwriting recognition (sec. 9.2) in a PDA allowing
to release potential resources on the main processor for other applications.
Compared to the stochastic computing approach, the presented delay-based design
allows a faster system (about 100 times faster considering the case of a 16-bit pre-
cision for the SC-based operations), a more compact implementation (about three
times less logic elements are required) and does not involve any loss in the accuracy
of the results. The major shortcoming of the proposed serialized ANN processing
seems to be the lack of fault-tolerance in case of errors occurring in any of the
system’s components.
Finally, it is worth highlighting that the development of the present sequential
ESN design has given some insight into the origin of the time-delay RC structure
(sec. 2.3.3). Such delay-based dynamical systems essentially reproduce the connec-
tivity of the cyclic ESN through the use of a DDE. The digital implementation of
this type of dynamical-node systems is tackled in next chapter.
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8. The single dynamical node
reservoir computer

8.1. Overview

Previous chapters have been focused on the implementation of echo state networks
(ESNs) using digital circuits, which represent the classical reservoir computing (RC)
approach based on discrete-time dynamical systems. The present chapter describes
a hardware implementation (the first digital realization, to the best of my knowl-
edge) of a time-delay reservoir (TDR) system; that is, a reservoir computer that
employs a single nonlinear oscillator with delayed feedback as dynamical node. As
introduced in sec. 2.3.3, the TDR emulates the nodes of a recurrent network by sam-
pling the solutions of a delay differential equation (DDE). Consequently, it consists
in a serial computation scheme similar to the design of chapter 7 where the output
of each virtual node of an ESN is computed as a function of a previous node (i.e.,
the state of the system at a previous time step) and of the input at current time.
In the case of the TDR, however, the nonlinear output of each virtual node is not
computed through a direct discrete-time recursive formula, but by finding the solu-
tion of a differential equation after an appropriate number of integration steps. As
a serial design, the single-dynamical-node approach emulates a network structure
with multiple nodes using minimal hardware resources. Nonetheless, this comes at
the cost of a slow-down of the information processing compared to a parallel de-
sign. The proposed digital implementation is applied to perform a temporal pattern
classification task and a chaotic time-series prediction.

8.2. The proposed implementation

The proposed implementation of the single-dynamical-node reservoir computer con-
sists of a self-contained system realized in an Altera DE0 development board, which
makes use of the Cyclone III low-cost FPGA ([web16d]). The final solution is hosted
within the FPGA chip with the delay line implemented using a RAM memory, but
an external SDRAM memory is also employed to store the mask and output weights.
The system receives the external input signal and the desired configuration param-
eters from a PC through an RS-232 serial port. The implementation has been
conceived so that it can be operated using different configurations without the need
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of reprogramming the device. The values of the configuration parameters just need
to be modified in a text file and sent to the system that is adapted to operate ac-
cording to them. The design was originally aimed at classifying temporal signals,
but it can also be employed for time-series prediction or function approximation
tasks. For this particular implementation, the design of the different components
has been developed using schematic blocks available with the Quartus II software
instead of directly describing the system through a hardware description language
(VHDL) as proceeded for the digital designs presented in previous chapters.

Figure 8.1.: Diagram of the single-dynamical-node RC implementation.

Fig. 8.1 schematically shows the proposed digital implementation. The core of the
design is a differential equation solver that emulates the Mackey-Glass oscillator
(equations 2.23 and 2.25) as the nonlinear node. This oscillator along with the RAM
block represents the delay-based reservoir depicted in Fig. 2.13. The Mackey-Glass
node receives the external input (J(t)), after masking the signal (I(t)) in the input
layer. In the global implementation, a control block configures both the dynamical
system with the desired parameters as well as the external memory with the mask
(Mj) and weight values (wlj) for each node (j) and output class (l). In addition,
it states which memory value (address) should be provided at each time step. An
external C++ program specifies to the control block whether the system must enter
into a configuration mode (in which it is arranged with the proper parameters and
memory values) or into the operation mode to process the inputs. The configuration
parameters, mask, weights, and input values are all stored in external data files. The
orders to choose the system’s mode and all of the data are sent to the system by
the C++ program via the serial port.
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Once the system has been configured, it is provided with an input value every delay
interval τ , as described in sec. 2.3.3. The input signal is multiplexed in time within
each τ through the application of a mask (Mj) in time steps θ = τ

N
(where N denotes

the considered number of virtual nodes) before feeding the dynamical system. The
values of the delayed variable x at each time jθ (representing the output of the
individual virtual nodes with j = 1, ..., N) are stored in the internal memory of
the FPGA (so that they can be used for subsequent iterations of the differential
equation) and supplied to the output layer block. Finally, the output layer performs
every time θ a multiplication of the state xj by the corresponding weight wlj for
each one of the c output classes (l = 1, ..., c). Only one class needs to be considered
(c = 1) when the system performs a prediction task.
To perform temporal classification, the result of this product is sequentially added
for a given number (α) of intervals τ :

yl =
α·N∑
j=1

wlj xj (8.1)

The results of such weighted sum of the states yl for each category l are compared
after α delay intervals. The greatest of these values (yk) determines the output
category (l = k) that matches the input signal. That is, our system follows a
winner-take-all strategy. The length of the period that is necessary to classify the
input signal (α · τ) depends on the particular task, but it is usually set equal to the
whole duration of the input sample (e.g., the extent of a spoken digit recording in a
speech recognition task). After each classification period α · τ , the output signal yl
is reset so that a new input time trace can be processed. In the case of time-series
prediction, the weighted sum of equation 8.1 is computed with α = 1, providing a
predicted value at each interval τ .
As usual, the numerical quantities are represented in the digital format adopting the
fixed-point notation. In particular, for the present implementation, the unsigned
notation is used to represent all variables except the output weights, which require
an additional sign bit as I describe in sec. 8.2.5. A number of 8 fractional bits and
no integer bits are used for the input signal as well as for the mask values and
the delayed variable x. Consequently, their working range is limited to the [0, 1)
interval. Intermediate variables are given a greater resolution when necessary. The
output weights wlj and the final classification outputs yl are provided with a 16-bit
resolution.
In the next subsections, I describe in more detail the design and operation of the
different components in the implementation.
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8.2.1. The control block

This block determines the operation mode of the system and generates a number
of signals that are necessary to carry out each one of the possible functions. It is
externally controlled by a PC that sends the orders and required data through the
serial port. A finite-state machine (FSM) is employed to select the system’s desired
operation mode. A diagram of such FSM is illustrated in Fig. 8.2, which shows the
transitions between the different states and the true table for the output variables
as a function of the state. Three possible states are considered for the machine
(apart from the “idle” state of no activity): “values”, “weights” and “operation”.
The “values” mode corresponds to the function of configuring the system with the
desired parameters (i.e., the assignation of values for γ, η, p, τ , N , ...) while the
“weights” mode enables the loading of the mask and output weight values (for each
node and output class) in an external memory. Finally, in the “operation” mode,
the system processes the input signal through the Mackey-Glass oscillator and the
linear readout.

Figure 8.2.: Finite-state machine employed to select the system’s operation mode:
idle, operation, value configuration or weight loading.

The change from one state to another is determined by the sequence of input values
that are presented to the system. Such input signal (noted as in in the diagram)
is provided in a “byte” format, that is, as a series of 8-bit digital numbers. The
state changes from “idle” to “values” when the sequence of bytes x”5F” and x”5F”
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(where x”·” denotes the hexadecimal representation) arrives to the circuit. After
receiving 11 bytes, which correspond to the system’s configuration parameters, the
variable surtvalues is activated and the state moves back to “idle”. Similarly, a
transition from “idle” to “weights” occurs when the numbers x”55” and x”55” are
sequentially received through the serial port. Once in this state, sequences of five
bytes are used to indicate the weight and mask values as well as the memory address
where they must be stored (the first two bytes represent the address while the other
three codify the numerical quantity). To exit this state, the system must receive the
following sequence of five bytes: x”00”, x”00”, x”FF”, x”FF”, x”FA”, after which
the variable surtweights is automatically activated and the state goes back to “idle”.
The system enters the “operation” mode when it receives the input sequence x”AF”,
x”AF”. At this point, the quantities that are sent through the serial port correspond
to the input signal to be processed and the system will only change to the inactive
(idle) state if the reset is enabled. Each value of the input stream must be provided
every time interval τ given by the number of clock cycles that the circuit requires
to evaluate all the considered virtual nodes.
The output signals of the FSM (envalues, enopera, enweights) are used in the
control block (either directly or through other intermediate signals) to enable the
operation of the whole system in each different mode. For example, enweights is
employed as the “read/write” control signal of the memory indicating whether the
external memory must save the incoming quantities in a particular location (i.e.,
“write”, enabled when enweights = 1) or access the stored values (i.e., “read”,
enabled when enweights = 0).
When the system is in the “operation” mode, the control block generates a number
of signals that are necessary for the functioning of the system. For instance, the
signal enable activates the reading of the output of the differential equation solver
(Mackey-Glass block) for a clock cycle once every ∆t period, which is given by a
certain number (T0) of clock cycles and corresponds to the integration time step
(∆t = T0 Tclk). Such period of time within each time step (∆t) is employed to
calculate the result of each iteration of the differential equation. In addition, it
must be considered that a minimum waiting time of a few clock cycles (T0 ∼ 5)
before enabling each iteration is necessary to ensure that the external memory has
enough time to correctly provide the corresponding value of the mask to the Mackey-
Glass block. The parameter T0 can be conveniently used to adjust the processing
rate of the circuit so that it coincides with the rate at which the system receives
the external input stream through the serial port. On the other hand, the signal
dirt indicates the address of the internal RAM memory from which the Mackey-
Glass block must read the value of the delayed variable x(t − τ) (and where the
current state, x(t), must be stored for subsequent iterations). The circuit employed
to generate these signals is depicted in Fig. 8.3 along with an example of the signal
evolution considering an integration step equal to three clock cycles (T0 = 3). As
it can be appreciated, the circuit is based on binary counters (using 8 or 16 bits)
that count up to a predefined value after which they are restarted. The ripple-carry
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output (rco) of the first counter activates the enable signal every T0 clock cycles and
enables the second counter, which provides the memory address dirt[15..0]. The
system’s configuration parameter ri defines how many integration steps (∆t) are
considered in a delay period τ . Likewise, the control block generates the signals
enablei and enabletau that are enabled for a clock cycle once every time period
θ = τ/N and τ , respectively. The parameter ti indicates how many clock cycles
compose the θ period and n refers to the number of virtual nodes (N). The signal
enablei activates the capturing of the differential equation state x as a virtual node
and sending it to the output layer (classification block) while enabletau indicates to
the output layer when the computation of all virtual nodes is concluded (for each
incoming input value). Note that the counters only operate if enopera = 1 (that is,
when the system is in the operation mode).

Figure 8.3.: Circuits employed in the control block to generate some necessary
signals for the functioning of the system. The evolution of some of these signals
is illustrated for the case T0 = 3.

In a similar manner (using counters), a few more signals are generated by the control
block to indicate the address (address) that the external memory must access at
each proper time and to enable the use of the memory values as masks or output
weights. The system has been designed so that a new mask value is provided to the
input layer at the beginning of each θ period. Afterwards, the memory supplies a
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series of c values that correspond to the output weights for each one of the different
classification categories. A period of 25 clock cycles is waited before sending each
output weight so that the classification block can receive the correct memory value
and perform the required operations within this time.

8.2.2. The external C++ program and the configuration files

A C++ program is used to transfer the data from an external PC to the FPGA
board through the serial port. Such program reads the data from four different text
files as illustrated in Fig. 8.1 (one for the configuration parameters, one for the mask
values, another one for the weights and the last one for the input stream), converts
the values to a proper byte format, and finally sends them to the FPGA. Firstly,
the program drives the system (by sending an adequate value to the control block,
as described in sec. 8.2.1) into the configuration mode. Then, it provides a number
of parameters that set up the system. Subsequently, the same process is followed
to arrange the external memory with the desired masks and weights. Finally, the
system is led to the operation mode and the program sends a new value of the input
signal every time step.
An example showing the information included in the configuration file is provided
in Algorithm 8.1. The C++ program uses the values indicated in the file to extract
the parameters that are required for the operation of the system. The values of
gamma, eta, p, Number of nodes and Number of categories directly determine the
corresponding quantities for γ, η, p, n and c, respectively. γ and η are converted
into 8-bit binary numbers according to the unsigned fixed point notation using no
integer bits (thus, one byte is employed to represent each of them and their range
is the [0, 1) interval). On the other hand, the corresponding binary values of p, n
and c are represented as unsigned integer numbers with no fractional part. A single
byte (8 bits) is employed for p and c while two bytes are employed for n. However,
the range of n is limited by the memory capacity to [1, 1023]. The limitation of the
exponent p in the [2, 20] interval is due to the approximation employed to implement
the Mackey-Glass nonlinearity (sec. 8.2.3).

Algorithm 8.1 Text file defining the system’s desired configuration. A range of
allowed values is given for each parameter.

gamma=0.9 [ 0 . 0 , 0 . 9 9 6 ]
eta =0.9 [ 0 . 0 , 0 . 9 9 6 ]
p=7 [ 2 , 20 ]
T=86.7 us [ 51 us , 1305 .6 us )
tau=10T [ 0T, 128T]
Number o f nodes=50 [ 1 , 1023 ]
Number o f c a t e g o r i e s=3 [ 1 , 255 ]

The circuit parameters T0, ri and ti are determined by the system’s characteristic
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time scale T (expressed in µs) and the delay interval τ . The number of integration
time steps for solving the differential equation has been set to 255 within each
characteristic time T (equation 8.2). Such number of iterations is a fixed system
parameter, independent of the number of nodes and of the delay period.

T = 255 ∆t = 255T0 Tclk (8.2)

The C++ program determines the value of T0 from expression 8.2 assuming a clock
frequency fclk = 1

Tclk
= 50MHz.

The parameter ri defines the number of integration steps (∆t) considered in a delay
period τ . That is,

τ = ri∆t (8.3)

On the other hand, the delay period τ can be expressed as an integer number a of
characteristic time periods T :

τ = a T = a · 255 ∆t (8.4)

Consequently, ri can be determined by the following formula:

ri = a · 255 = τ · 255
T

(8.5)

The parameter ti is defined as the number of clock cycles that compose a θ = τ
N

period, and therefore it is given by

ti = ri T0

n
(8.6)

A precision of 16 bits (two bytes) is used to codify the integer numbers ri and ti
while a single byte is employed for T0.
Similarly, the C++ program reads the files containing the weight, mask and input
signal values [mask and input normalized to the [0, 1) interval and weights to the
(−1, 1) range], which are converted into binary numbers (with a precision of 2 bytes
for the weights and of a single byte for the mask and input values) before being sent
through the serial port.
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By simply editing the text file shown in Algorithm 8.1, the user can conveniently
configure the system with the desired setup. It is not necessary to modify the
implementation design, but it is enough to run the C++ program, which arranges
the circuit with the indicated parameters. Likewise, adequate weight and input data
files must be employed for the system to perform the desired task.

8.2.3. The Mackey-Glass block

This block is devoted to solve the Mackey-Glass differential equation ([MG77]),
which is given by

dx(t)
dt

= (−x(t) + η · [x(t− τ) + γ · J(t)]
1 + [x(t− τ) + γ · J(t)]p ) 1

T
(8.7)

The output of the block is provided every integration time step given by ∆t = T0 Tclk.
The circuit employed as differential equation solver is schematically illustrated in
Fig. 8.4. The enable signal activates (for a clock cycle every ∆t) reading out the
iterated solution of the state variable xi (at the output of the register) and initiates
the calculation of a new iteration (xi+1) using the obtained value xi. The period T0
indicates the number of clock cycles between a time step and the next one. It is
used to find the solution of the state variable (xi+1) as a function of the preceding
value (xi), of the state a delay period τ before (noted as xτ = x(t− τ)) and of the
current external input value multiplied by the corresponding mask (J). The value
of the parameters η and γ is specified by the control block. The value of the delayed
state xτ is provided by an internal RAM memory that stores the values of x for
every integration step throughout a whole τ period. The content of the memory
is updated every time step with the result of the differential equation solver. The
address (referred to as dirt in Fig. 8.1) that must be accessed each time step (for
reading the delayed solution, xτ , and writing the current one, xi) is supplied by the
control block. A clock signal with higher frequency (clkfast with fclkfast = 200
MHz) is employed within the Mackey-Glass block to perform some of the necessary
calculations.
Equation 8.7 can be rewritten as

dx

dt
= [f(xτ , J)− x] 1

T
(8.8)

where f takes the form

f(xτ , J) = η(xτ + γ · J)
1 + (xτ + γ · J)p (8.9)
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The differential equation 8.8 can be replaced by the following recurrent expression
assuming the first-order Euler numerical method (i.e.: the approximation dx

dt
'

xi+1−xi

∆t ):

xi+1 = xi + (f − xi)
∆t
T

(8.10)

Since the system employs an integration time step that is fixed to ∆t = T/255 (equa-
tion 8.2), expression 8.10 results in

xi+1 = xi + f − xi
255 (8.11)

Figure 8.4.: Schematic of the differential equation solver. First-order Euler method
is implemented by means of an adder, a multiplier, and a register. A precision of
16 bits (m = 16) is used within the solver.

This equation is implemented digitally by only using an adder, a multiplier, and D
flip-flops (DFF) as shown in Fig. 8.4. Although an amount of 16 bits (m = 16) is
used to codify the variable x within the differential equation solver (8 bits for the
integer part and 8 bits for the fractional part), the output (xi) is provided to the
classification block with 8-bit resolution (8 fractional bits and no integer ones). The
multiplication of the current state value xi by 255 is performed in order to obtain
the value of s, defined as s = 256xi − xi . Division by 256 is performed by shifting
the binary numbers eight positions to the right. The addition of f and s after being
shifted results in the following expression for xi+1, which is a good approximation
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to equation 8.11:

xi+1 = xi + f − xi
256 (8.12)

The output of the register in Fig. 8.4 is updated every ∆t (through the enable
signal) so that the resulting value of xi can be used as input for the next iteration,
xi+1. The period of time within each time step (∆t) is necessary to calculate the
result of each iteration of the differential equation, especially for the calculation
of f . Regarding this function, it is implemented by an appropriate block that
employs a 200-MHz clock to iteratively find an approximate solution. Such block
first computes the value of an intermediate variable z = xτ + γ · J by means of an
adder and a multiplier, and then estimates the function f(z) = η z

1+zp as I detail
below. The function f is represented in Fig. 8.5 for different values of p (assuming
η = 1). It can be observed that f is bound to the [0, 1] interval, it behaves linearly
(f(z) ' z) for small values of z while it asimptotically tends to zero for high values
of z. The circuit employed to estimate the value of f provides an initial guess of the
function (we name it ratio) that is recursively modified until it approximates the
desired function (i.e., ratio ' z

1+zp ). More specifically, the value of ratio is supplied
by an up-down counter (with 8-bit precision). This counter is gradually increased
or decreased (by a unity each clock cycle) depending on the result of the product
(1+zp)·ratio. In case (1+zp)·ratio > z, the value of ratio is decreased (by enabling
the counter’s down signal) while it is increased otherwise (by enabling the counter’s
up signal). This procedure allows to obtain an estimation of the desired function
after a sufficiently large number of iterations. The value of zp is evaluated through
a serial implementation of the product of z by itself a number of p times. Therefore,
the proposed implementation is limited to positive integers for p. In addition, large
values of p cannot be employed as they would require too long evaluation times.
Finally, the resulting value of ratio is multiplied by η to obtain the estimated f(z).

8.2.4. The external memory

The values for the masks and weights are stored in a SDRAM memory chip on the
Altera DE0 board (external to the FPGA, as illustrated in Fig. 8.1). The control
block provides the address signal to the memory, which indicates the location where
each value must be stored when the system is in the “weight loading” mode. When
the system is in “operation”, the address signal provides the memory location that
must be accessed each time to obtain the appropriate value. Each value has 16
memory bits available although the masks only make use of 8 bits. Fig. 8.6 shows
how the weight and mask values are organized in the memory; that is, the address
(address[17..0]) that corresponds to each weight (wlj) and mask value (Mj). The
addresses are encoded using 3 bytes (24 bits) of which 18 are actually employed (the
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Figure 8.5.: Representation of the nonlinear function f(z) = z
1+zp employed in the

Mackey-Glass differential equation.

Figure 8.6.: Organization of the weight and masks in the external memory. The ad-
dress for each value is obtained concatenating two binary numbers (address[17..10]
and address[9..0]). The most significant one corresponds to the weight category
number l (l = 0 indicates that the value corresponds to a mask) and the least
significant part to the virtual node number j.
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first 6 are set to 0). The 10 least significant bits indicate the virtual node number
j (with j = 0 . . . N − 1) while the other 8 bits represent the category number of the
weight l (with l = 1 . . . c). The case l = 0 indicates that the value corresponds to a
mask.

8.2.5. The classification block

The output layer block performs every time θ the multiplication of the virtual node
state xj (j = 1 . . . N) by the corresponding output weight wlj for each one of the c
output classes (l = 1, ..., c). The resulting product for each category is sequentially
added for a given number (α) of intervals τ as indicated in equation 8.1. That is,
the product is cumulatively added throughout αN θ periods after which the output
value is reset. In case of the system performing a prediction or function approxima-
tion task instead of pattern classification, α is set to 1 so that a new output value is
provided every interval τ . This block is implemented through a multiply-accumulate
circuit (MAC) equivalent to that of Fig. 7.6. In this case, however, a precision of 8
bits is employed for the node states (xj) and of 16 bits for the output weights (wlj).
The unsigned 0.8 notation is used for the reservoir states and a particular codifi-
cation (different from the two’s complement notation) is selected for the weights:
the first bit indicates the sign of the value (0 means positive and 1 negative) and
the rest of bits represent the absolute magnitude as in the unsigned 0.15 notation
(thus, the actual weight values must be normalized to the (−1, 1) range). This rep-
resentation allows to operate with negative quantities while still making use of the
unsigned notation. More specifically, the product xj · wlj is performed according to
the unsigned notation (the first bit of the weight that indicates the sign is excluded
to correctly carry out the multiplication) and the summation in the MAC circuit
(see Fig. 7.6) is chosen to perform either an addition or a subtraction depending on
the sign bit of the weights (addition for positive weights and subtraction for negative
ones). The output of the block providing the accumulated value (yl, chosen with
a 16-bit precision) is initialized to an intermediate preset value of 32768 to avoid
negative results. The use of an internal RAM memory is necessary to store (each
time θ) the cumulatively added values that correspond to the different categories
(l = 1, ..., c).
The classification block receives the virtual node values xj from the Mackey-Glass
block. The capturing of the differential equation state x as a virtual node is activated
with the enablei signal (that is, every time θ). On the other hand, the weight values
are provided by the external memory. During each inter-neuronal period θ, the
memory supplies a series of c values that correspond to the output weights for
each classification category. A period of 25 clock cycles is waited before sending
each output weight so that the classification block can receive the correct memory
value and perform the required operations within this time. The signal enabletau
indicates when the computation of all virtual nodes (for each incoming input value)
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is concluded. Another signal (resets) that is activated after every ατ interval states
when the MAC circuit must be reset.
To perform temporal classification, the output layer is trained using a target function
that is -1 if the signal does not correspond to the sought category, and +1 if it does.
In operation, the output of the classification block provides a time trace (yl) for
every target l, and a winner-take-all is applied to select the actual category. In
other words, the values of yl are compared for the different categories after every ατ
interval and the greatest of these values (yk) determines the output category (l = k)
that matches the input signal. Such classification process is illustrated in next
section (Fig. 8.9) for different types of temporal input signals. The normalization
factor of the output weights does not affect the classification result since the outputs
for the different classes (yl) are compared among them. Nonetheless, in the case
of the system performing a prediction or function approximation task (only one
class is considered, c = 1), the resulting output must be re-scaled according to the
normalization factor employed for the output weights.

8.2.6. System limitations

The processing rate of the system is determined by the parameter T0, which defines
the number of clock cycles within an integration time step (∆t = T0 Tclk). The
period of time within each time step (∆t) is employed to calculate the result of each
iteration of the differential equation in the Mackey-Glass block. It has been observed
that about 10 clock cycles (T0 ∼ 10) are usually enough to correctly determine
the solution of the differential equation. On the other hand, the value of T0 is
conveniently used to adjust the processing rate of the circuit so that it coincides
with the rate at which the system receives the external input stream through the
serial port. That is to say, it helps to couple the input sampling time and the
system’s τ period given by

τ = a T = a · 255 ∆t = a · 255 · T0 · Tclk (8.13)

where a defines the length of the delay interval τ . The required time to send each
data point of the input signal from the PC to the FPGA through the RS-232 serial
port has been observed to be tRS232 = 8678Tclk. The same data value can be sent a
number of times (lrepeat) to approximately couple the input-supply time with τ :

τ = lrepeat · tRS232 = lrepeat · 8678Tclk (8.14)

The values of T0 and lrepeat can be tuned so that equations 8.13 and 8.14 are made
equal. For example, for the case of a system with τ = 10T (a = 10, which is the
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Parameter Allowed range
γ = 0.9 [0, 0.996]
η = 0.9 [0, 0.996]
p = 7 [2, 20] only integers

τ = 10T [0T, 128T ]
T = 86.7µs T = 255T0 Tclk
T0 = 17 [10, 255]
N = 50 [1, 1023]
c = 3 [1, 255]
Input [0, 0.996]

Table 8.1.: Possible ranges of the different parameters in the proposed FPGA im-
plementation and specific values employed in the pattern recognition example
application.

configuration used for the tasks presented in next section), setting lrepeat = 5 makes
possible an approximate synchronization of the input-supply time with the system’s
delay period (τ) using the parameter T0 = 17. This value results in a necessary time
to process each input data point of τ = 0.867 ms (equation 8.13 assuming a clock
frequency of 50 MHz).
It is worth mentioning that the required time for sending data through the serial
port (tRS232) occasionally varies from the observed value, which may lead to isolated
errors in the received input signal.
The presented implementation has been designed to use a number of categories
up to c = 255, a maximum number of 1023 nodes and delay values up to τ =
128T . However, it must be noted that the the multiplications of the state xj by
the corresponding weight wlj for each one of the c output classes (l = 1 . . . c) are
performed sequentially in the classification block, and therefore the time θ between
nodes must be high enough to perform the multiplications for all the classes. Indeed,
the maximum possible number of classes (cmax) is given by the following formula:

cmax = b θ

25Tclk
c = b255 · a · T0

25 ·N c (8.15)

since 25 clock cycles have been set as necessary to wait for receiving the proper
weight value (from the external memory) and to perform each multiplication. For
instance, in case of using the parameters a = 10, T0 = 17 and N = 50, the allowed
number of classes is limited to cmax = 34. A greater number of categories would
require increasing the evaluation time (T0) accordingly.
In Tab. 8.1, I show the limiting ranges that can be used for the different parameters
in the presented FPGA implementation of the single dynamical node reservoir com-
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puter. As in previous implementations, the design has been developed to deal with
one-dimensional input signals.

8.3. Experimental results

After synthesizing the proposed digital circuitry on a low-cost FPGA (an Altera
Cyclone III), the system has been tested for a temporal pattern classification task
and for chaotic time-series prediction. Before showing the performance results and
the required hardware, I test the correct operation of the Mackey-Glass differential
equation solver.

8.3.1. Validation of the differential equation solver

The Mackey-Glass equation (8.7) in the absence of external input (i.e., γ = 0)
displays a range of periodic and chaotic dynamics depending on the values of the
parameters T , η, τ and p ([GM10]). In Fig. 8.7, the periodic solutions that result
for two different configurations are shown. The solutions obtained using the FPGA
implementation are compared with the expected numerical results acquired by soft-
ware (MATLAB). The fourth-order Runge-Kutta method (MATLAB code available
at [Coc09]) with a time step of 0.01 was used to find the software-based numerical
solutions. The Mackey-Glass solutions are represented in the phase space plotting
the value of xτ as a function of x. It can be observed that the experimental solutions
provided by the FPGA solver are qualitatively equal to the expected results obtained
by software. The small deviations are due to the approximated methods employed
in the hardware implementation (a simpler numerical integration approach, limited
resolution of the variables, approximations to estimate the nonlinear function of
equation 8.9, etc). Such discrepancies in the values of the differential equation state
do not have a major impact on the final performance of the system as long as it can
be trained using the experimental solutions.

8.3.2. Classification task

As a proof-of-concept and to illustrate the real-time classification capabilities of the
proposed FPGA implementation, we devised a simple benchmark task. The sys-
tem was trained to differentiate between three different noisy input signals, namely,
sawtooth, sine, and square input waveforms. A random noise with 2% relative am-
plitude is added to the input signals to test the robustness in the classification. The
input values are restricted to a resolution of 8 bits (that is, their binary range is
[0, 255]) and the noise is uniformly distributed (adding a random value in the [−5, 5]
range to the noise-free signal). Each cycle of the input signal contains 20 time steps.
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Figure 8.7.: FPGA experimental and theoretical solutions of the Mackey-Glass
differential equation using two different configurations: T = 1, η = 2, τ = 2,
γ = 0 and p = 7 (a) and T = 1, η = 2, τ = 2, γ = 0 and p = 20 (b). A value of
T0 = 10 has been employed in the hardware implementation.
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The behavior of the Mackey-Glass dynamical system (x(t)) with an external forcing
function (I(t), in particular, the sawtooth input signal) is illustrated in Fig. 8.8. The
bottom panel of Fig. 8.8 illustrates how each sample of the input signal is expanded
over the N virtual nodes through the multiplication by a random mask and the
transformation produced by the Mackey-Glass non-linearity.
As described in sec. 8.2.5, the system’s output layer is trained to provide a value of 1
for the classification output corresponding to one of the possible categories when the
input is of that particular type, and a -1 otherwise. To carry out the classification,
the network readout signals (y1, y2 and y3 referring to the classification outputs
of the square, sine and sawtooth, respectively) are cumulatively added throughout
a certain number of time steps (α) according to equation 8.1. For the present
example, α has been set equal to the number of points in the input cycle period
(i.e., α = 20). The output classifiers (yk, k = 1, . . . , 3) are computed for each input
step and updated (reset to a value of yk = 32768, k = 1, . . . , 3) at the end of each
cycle (after 20 intervals τ). The greatest value of the yk sums at the end of the cycle
determines the output category that matches the input signal. This classification
process performed by the experimental system (using the set of parameters p = 7,
γ = η = 0.9, τ = 10T , N = 50 and T = 1) is depicted in Fig. 8.9 for 2 cycles of
the input signal when it corresponds to a square (Fig. 8.9a), sinusoidal (Fig. 8.9b)
and sawtooth pattern (Fig. 8.9c). The represented results are for the case of input
signals without noise. Similar results are found when noise is added to the input
patterns. A value of T0 = 17 has been employed in the implementation so that the
delay period τ corresponds to an evaluation time of 0.867 ms. It can be observed
that the input signals can be clearly differentiated.
In order to select the optimum configuration parameters that yield a good experi-
mental classification performance, we carried out numerical simulations first. Using
the software implementation of the Mackey-Glass reservoir system, the performance
was evaluated in terms of the average error rate in the classification of the three
input waveforms and the confidence margin, defined as the distance between the
reservoir’s best guess of the target and the closest competitor. A similar analysis to
that performed in previous chapters for optimizing the parameters r and v of the
cyclic reservoir (see, for example, Fig. 6.2) was carried out to determine the opti-
mum values for γ and η in the Mackey-Glass node. The delay (τ = 10), number of
nodes (N = 50) and the exponent (p = 7) were kept fixed during iterations. Such
configuration (with θ = 0.2 and p = 7) is similar to that successfully employed in
[ASVDS+11] to perform a speech recognition task. It guarantees that the system
operates in a stable fixed point in the absence of external input (γ = 0). With input,
however, the system might exhibit complex dynamics. Both the error rate and the
margin in the classification task were examined for different combinations of γ and
η searching for a configuration yielding low error rates and high separation between
the three classes, which allow good classification results since these conditions are
the most robust to fluctuations. The optimum values for the configuration parame-
ters compatible with the digital realization (that is to say, within the allowed ranges
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Figure 8.8.: Sawtooth input signal and its corresponding states x(t) for the case of
the system configured with the following algorithmic parameters: p = 7, γ = η =
0.9, τ = 10T , N = 50, θ = 0.2T and T = 1. A value of T0 = 17 has been employed
in the implementation so that a delay period τ corresponds to an evaluation time
of 0.867 ms. The dynamical system nonlinearly maps each value of the sampled
input into an N-dimensional state that facilitates classification. The bottom panel
is an enlargement of x(t), as indicated by the closed black window above, and the
input expanded over a τ interval.
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Figure 8.9.: Pattern recognition system behavior when the input is a square (a),
sinusoidal (b) and sawtooth (c) signal. I show the input signal (right y-axis)
along with the output classifiers (left y-axis) for the three possible patterns to be
recognized. A clear recognition of the input type is obtained.
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as indicated in Tab. 8.1 and ensuring that the state x is also kept within the limits
given by the 8-bit resolution [0, 1)) are γ = 0.9 and η = 0.9 (for more details, see
the plots presented in [ASEM+15]). A random mask vector allowing two possible
values (0.1 and 0.9) with equal probability was employed.
Experimental results of the Mackey-Glass reservoir states x(t) when the different
types of signals (with 2% of noise) were entered into the system (using the optimum
configuration) were employed for training. In fact, a number of variations of the
experimental states were also generated (by software) adding small amounts of noise
over the original x(t) signals in order to obtain a more complete training data set.
As usual, a standard linear regression of the desired output on the reservoir states
was used to train the system assigning an output weight to each virtual node, such
that the weighted sum of the states approximates the desired target value as closely
as possible.
After configuring the hardware implementation with the obtained output weights,
the testing was carried out monitoring the experimental results of the classification
outputs (yk) when entering previously unseen input data of the same kind and with
the same noise level as those used in the training process. An error-free classification
(100% of accuracy) was found for a test set containing about 1000 cycles (including
the same amount of data points for each type of the input signals).

8.3.3. Time-series prediction task

The second task that was evaluated is the Santa Fe time-series prediction benchmark
already used in the previous chapters and described in sec. 2.3.4.2. It consists in the
one-step ahead prediction of the Santa Fe laser data set containing 10000 samples
([WG15]). In this case, the first 9000 points were used for training and the remaining
1000 for testing.
Similar simulations to the ones performed for the classification task were carried
out to determine the configuration that gives the best performance. In this case, a
numerical model emulating the behavior of the hardware implementation using the
same integration method (first-order Euler approach) and truncating the resolution
of the variables accordingly to the hardware (8 bits for the reservoir states and
16 bits for the output weights) was employed for training the system and to find
the best-performing configuration. Such numerical model approximately reproduces
the FPGA experimental results as illustrated in Fig. 8.10, where the time trace x(t)
is depicted for both the experimental and numerically simulated system when the
Santa Fe time series is used as driving input signal. As for the previous task, some
of the parameters were kept fixed (τ = 10, N = 50 and p = 7) while γ and η were
varied to find the values providing a minimum quantity of the normalized mean
square error (NMSE). The same binary mask vector used for the classification task
was employed here. An optimum error of the prediction NMSE = 0.1069 was
obtained for the parameters γ = 0.75 and η = 0.86.
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Figure 8.10.: Evolution of the reservoir state x(t) along with the input of the
system (Santa Fe laser intensity values). The reservoir states are depicted for
both the experimental hardware realization (xFPGA) and for the numerical model
used to train the system (xsimulation). A good match can be observed. The graph
corresponds to a fragment of the test data set using the configuration τ = 10,
p = 7, γ = 0.9 and η = 0.9.

Finally, after configuring the hardware implementation with the optimum config-
uration parameters and with the trained output weights, the system was tested
monitoring the experimental results of the prediction output. As in the previous
task, a value of T0 = 17 was used to run the system. A fragment of the FPGA
predicted and targeted laser intensity values is shown in Fig. 8.11. A prediction
error of NMSE = 0.1312 was obtained with the FPGA implementation, which is
comparable to the expected numerical result.
It must be noted that an error of NMSE = 0.0506 is found when the system is
simulated applying no restriction on the resolution of the variables, which indicates
that an implementation using higher resolution for the variables could present a sig-
nificantly better performance. On the other hand, it has been observed that a more
complex integration method (fourth-order Runge-Kutta approach) only represents
a minor increase in the accuracy with a prediction error of NMSE = 0.0504.
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Figure 8.11.: Segment of the Santa Fe laser time series (FPGA predictions and
targeted values).

8.3.4. Hardware resources

The hardware resource utilization of the proposed single dynamical node RC im-
plementation is presented in Tab. 8.2. The number of logic elements needed for the
implementation represents only a 10% of the available number in the Cyclone III
low-cost FPGA. A 14% of the total number of embedded multipliers (of 9-bit el-
ements) is also required. On the other hand, only sufficient memory is needed to
allocate the delayed signals. The formula for the required RAM bits in Tab. 8.2
results from the fact that a number of 256 values of x(t) (one for each integration
time step) with 11-bit resolution need to be stored within each delayed period τ .
In addition, 16 bits of RAM memory for each classification category are employed
in the classification block. The design can use delay values up to τ = 128T and a
number of categories up to c = 255 using 71% of the RAM capacity. The limited
use of resources highlights the advantages, from the hardware implementation point
of view, of using a single nonlinear node approach based on time multiplexing.
Regarding the use of the external memory, it depends on the number of 16-bit weight
and mask values (Fig. 8.6) as follows:

Memory bits (SDRAM) = 16 · (c+ 1) ·N (8.16)

where c denotes the number of categories and N the number of nodes. For the case
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Logic elements 1605 (10.4%)
Registers 882 (5.7%)

Memory bits 768 + 16 c+ 2816 τ/T
Embedded multipliers 16 (14.3%)

Table 8.2.: Hardware resource utilization of the Altera Cyclone III FPGA for the
proposed single dynamical node RC implementation.

of an implementation using the maximum allowed values of c and N (c = 255 and
N = 1023), 523.8 kbytes of the 8-Mbyte SDRAM are required.
The power consumption of the implementation was measured for the system in
operation (performing the prediction task). The measured power consumption of
the whole FPGA development board (including peripherals such as some LEDs, the
SDRAM module, the serial port communications, etc) was found to be 1197 mW, of
which 83 mW were estimated to be due to the configured circuit (simulation result
of the Quartus power analyzer software).

8.4. Discussion

In this chapter, I have presented the first digital implementation of the RC approach
using a single nonlinear oscillator with delayed feedback as dynamical node. A self-
contained system has been realized in a low-cost FPGA board with the delay line
implemented using a RAM memory. The utilization of an on-chip memory to store
the reservoir states enables a high throughput and implies lower power consumption
than using on-board memories. The idea of replacing a recurrent network with
a large number of nodes by a single node subject to delayed feedback relaxes the
hardware requirements for the FPGA as observed in Tab. 8.2. The properties of
this computationally low-cost method are particularly suited to process temporal
information. More specifically, I have shown that the proposed system is capable
of classifying different patterns and to perform time-series forecasting. Importantly,
the implementation can be used to differentiate a larger number of input classes.
A hardware implementation specifically designed for a particular purpose is expected
to be more energy-efficient than the standard general-purpose microprocessor-based
alternative. Therefore, the use of a compact implementation for the whole sys-
tem in a single integrated circuit is interesting from the energy efficiency point of
view. It can be a solution for those electronic systems implementing computational
intelligence techniques and requiring low power dissipation such as wireless sen-
sor networks ([KFV11]), predictive controllers or monitoring medical devices. In
the latter case, a delay-based software implementation of RC was found to achieve
state-of-the-art performance in the classification of electrocardiographic (ECG) sig-
nals of cardiac arrhythmia ([EMSFM15]). Since this medical application requires
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a sampling time of about 1 ms, ECG classification is fully compatible with our
FPGA-based implementation of RC in real time.
Although for the present design I have not developed an automatic VHDL code
generator to systematically produce the code for any desired configuration, the im-
plemented system is quite flexible as it allows a range of values for the different
configuration parameters as indicated in Tab. 8.1. It is worth noticing that once
the design is synthesized on the FPGA, it is possible to change the system’s con-
figuration without the need of reprogramming the device. It is enough to reset the
circuit and configure it again with the desired parameters (indicated on a text file
as illustrated in Algorithm 8.1).
Regarding the system’s performance, the presented implementation of the single dy-
namical node reservoir computer is not advantageous over the ESN realizations de-
scribed in previous chapters. For example, it has yielded an error NMSE = 0.13 in
the Santa Fe time-series prediction task while the ESN implementations of chapter 6
(multiplier-less approach) and chapter 7 (delay-based approach) provide error values
of about NMSE = 0.09 when using the same number of nodes (N = 50) and a very
simple approximation for the sigmoid function. In addition, the performance for the
preceding multiplier-less and delay-based ESN designs is improved when increasing
the number of nodes (e.g., NMSE ' 0.036 for N = 200) whereas no improvement
has been observed for higher values of N in the single-dynamical-node reservoir.
However, simulations of the present system have shown that the prediction error
might be decreased down to values of NMSE ' 0.05 employing a higher resolution
for the variables (remind that only 8 bits have been used for the network states,
x(t), in the current design). A similar error is expected for an ESN implementation
with N = 50 if using a more accurate nonlinear function (see the deterministic result
in Fig. 4.18). Nonetheless, it must be highlighted that some of the parameters in
the present implementation have been set to fixed values (for instance, τ = 10 and
p = 7). An exploration of different parameters might provide better results.
The single dynamical node reservoir approach (often referred to as the time-delay
reservoir, TDR) essentially follows a serial computation scheme similar to the delay-
based ESN design of chapter 7 where the output of each virtual node in the network
is computed as a function of a previous node (that is, the state of the system at a
previous time step) and of the input at current time. In the case of the former sys-
tem, however, the nonlinear output of each virtual node is not computed through a
direct discrete-time recursive formula, but it is obtained by finding the solution of a
differential equation after an appropriate number of integration steps. This implies
a slow-down of the information processing compared to the serial ESN implemen-
tation. For the case of the configuration employed in the experiments, the TDR
system requires a time of the order of 1 ms (0.867 ms) to process each data point of
the input signal while the evaluation time is three orders of magnitude smaller for
the delay-based ESN design (approximately 2 µs for the case of N = 50). On the
one hand, the system’s processing rate is limited by the communications through
the serial port as the input stream must be sent at a rate that is compatible with
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the FPGA implementation. For the system tested in the experiments, for example,
a value of the parameter T0 = 17 has been used to ensure a correct reception of the
input, but a value T0 = 10 would be enough to run the system. On the other hand,
it is worth noticing that the integration time step has been fixed to a small quantity
(∆t = T/255) to guarantee that the system can operate properly (with a sufficient
number of integration steps within each θ period) even for a configuration using a
small value of τ and a large number of nodes N . For the case of our implementation
with τ = 10 and N = 50, however, the time step could be reduced to ∆t = T/50,
which still ensures a correct functioning (with a number of 10 intermediate steps
within each θ) while increasing the processing rate by a factor of 5. Nevertheless,
it must also be reminded that a fast clock frequency (200 MHz) has been used to
perform the calculations in the differential equation solver of the TDR implementa-
tion but a plain clock frequency of 50 MHz was used in the ESN implementations
of previous chapters.
Among the different RC techniques, the TDR approach has attracted much at-
tention in recent years as a machine learning method that makes possible the use
of dynamical systems for computation on sequential data. The tolerant require-
ments for the reservoir have led to implementations on several hardware platforms
as described in sec. 2.3.3. Here, we have shown that a digital hardware implemen-
tation of the concept is possible. Despite the potential advantages of a digital
hardware realization compared to an equivalent software-based implementation us-
ing conventional general-purpose microprocessors, the particular TDR methodology
seems more adequate for physical implementations through optoelectronic systems,
where a relatively simple design of the optical reservoir is possible based on a fiber
and a single dynamical node ([ASVDS+11], [LSB+12], [DSS+12], [BSMF13]). This
seems particularly interesting when the information is already in the optical do-
main as in the case of many telecommunications and image processing applications
([VMVV+14]). Although the presented digital design might be improved in some
aspects (precision of the variables, employed approximations, search for a better
configuration), it seems unlikely to outperform the ESN implementations described
in preceding chapters. For example, the sequential design proposed in chapter 7
(delay-based approach using a “static” node instead of a dynamical one) exhibits a
higher accuracy in time-series prediction (Santa Fe task) with the advantage of a
much simpler design (a differential equation does not need to be implemented) and
a higher processing rate.
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In this chapter, I present some engineering problems where the hardware imple-
mentation of a reservoir computing (RC) system can be applicable. The first task
(sec. 9.1) is an academic example that has already been employed in chapter 8 to
show the capabilities of the single dynamical node reservoir implementation. Here,
it is used to test the stochastic echo state network (ESN) design (chapter 4) for
temporal pattern recognition, and specially to illustrate the high fault tolerance of
the implementation based on stochastic computing (SC). The following tasks are
two real-life applications of practical relevance: handwriting recognition (sec. 9.2)
and equalization of a nonlinear communication channel (sec. 9.3). These exemplary
tasks are analyzed for the stochastic approach although any other of the digital
hardware designs proposed throughout the thesis could also be used. The fault-
tolerant stochastic methodology seems of particular interest for the equalization of
a satellite communication channel, which requires to be performed in a severe envi-
ronment (space) likely to present soft errors induced by radiation. Finally, sec. 9.4
describes additional potential applications to different engineering fields.

9.1. Noisy signal classification

This section evaluates the SC-based ESN implementation presented in chapter 4
for a task consisting in the classification of temporal signals. Stochastic computing
might be of utility in specialized systems where small size, low power, or soft error
tolerance is required and limited precision or speed is acceptable. As observed in
chapter 4, the high precision required by time-series prediction tasks makes neces-
sary to employ long evaluation periods for the stochastic computations to achieve
the desired accuracy, which limits the system’s processing speed. In this section and
the next one (sec. 9.2), I focus on pattern recognition tasks since this type of appli-
cations seems to be more suitable for probabilistic computations using low precision
signals, and therefore may require a shorter computation time than in time-series
forecasting. On the other hand, I illustrate the high robustness to soft errors of the
stochastic computing approach. This characteristic can be of great interest for ap-
plications that need to be operated in severe environments such as the one presented
in sec. 9.3.
More specifically, the present task consists in differentiating between three different
noisy input signals, namely, saw-tooth, sine, and square input waveform. As in

185



Chapter 9 Applications

chapter 8, random noise with a 2% of relative amplitude is added to the input
signals to test the robustness in the classification. The input values are restricted to
a resolution of 8 bits (that is, their binary range is [0, 255]) and the noise is uniformly
distributed (adding a random value in the [−5, 5] range to the noise-free signal).
Each cycle of the input signal contains 20 time steps. A number of 300 cycles (100
for each input type; that is, totally, 6000 input values) are used to train the system.
The same amount of data is employed for testing. To evaluate the performance of
the stochastic ESN implementation, I employ a numerical model that conveniently
emulates the hardware as shown in sec. 4.4.1. The ESN’s output layer is trained to
provide a value of 1 for the classification output corresponding to one of the possible
categories when the input is of that particular type, and -1 otherwise. Remind that
to carry out the classification, the network readout signals (y1, y2 and y3 referring
to the classification outputs of the square, sine and saw-tooth, respectively) need to
be cumulatively added throughout a certain number of time steps; for example, the
input cycle period (see 9.1 where α denotes the number of time steps in the cycle,
and k indicates the classification category).

out(classification)k =
α∑
j=1

yk(tj) (9.1)

The greatest value of this sum at the end of the cycle determines the output category
that matches the input signal. In other words, the system follows a winner-take-all
strategy. The value of this addition is reset to zero at the beginning of each cycle
period. This classification process performed by an SC-based ESN (with N = 200
neurons and an evaluation period of Teval = 28 − 1 clock cycles) is depicted in
Fig. 9.1 for some cycles of the input signal. The input initially has a square form,
and then it changes to the sine shape. The time step in this graph corresponds
to 5.1µs (assuming a clock cycle frequency of 50 MHz). It can be observed that
the classification is correctly performed for the square and sine input signals. The
output classifiers exhibit a short undesired transitory behavior at the point in which
the input signal changes from the square to the sine shape. This is due to the
network “remembering” the states of the previous cycle. Similar results are found
for the saw-tooth waveform.
I have analyzed the performance of the SC-based ESN in this simple classification
task as a function of the system’s evaluation time. The classification results (accu-
racy, as defined in 9.2) are presented in Tab. 9.1 for a network of fixed size (N = 200).
The configuration parameters have been set to r = v = 0.95. The results show that
a number of 210−1 clock cycles is enough to achieve a classification accuracy equiva-
lent to that of a software implementation based on conventional computing (perfect
recognition of the input signal). A shorter evaluation time of 28 − 1 clock cycles
still allows a classification with high accuracy (97.7% of correct answers) for this
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Figure 9.1.: Pattern recognition system behavior for a SC-based ESN with N =
200 neurons and Teval = 255Tclk (time step = 5.1µs @ 50MHz). The input signal
is represented along with the output classifiers for the three possible patterns to
be recognized (square, sine and saw-tooth wave forms). A clear recognition of the
input type is obtained.

particular task.

accuracy (%) = # correct classifications

total # classifications
× 100 (9.2)

9.1.1. Fault-tolerance analysis

One of the most appealing features of SC implementations is their high degree of
error tolerance. Stochastic circuits tolerate environmental errors that seriously af-
fect the behavior of conventional circuits. A single bit flip (especially of a high
significance bit) causes a huge error on a binary circuit, but flipping a few bits in a
long random bit-stream has little effect in the value of the stochastic number repre-
sented. Therefore, SC can be interesting for applications that need to be operated
in error-prone environments. In this subsection, I briefly introduce the issue of cir-
cuit reliability (soft errors in digital circuits) and analyze the fault-tolerance of the
SC-based ESN implementation for the simple 3-pattern classification task.
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Teval (Tclk) accuracy (%)
24 − 1 45
26 − 1 67.3
28 − 1 97.7
210 − 1 100

Table 9.1.: Classification results of the SC-based ESN with N = 200 neurons in
the 3-pattern recognition task as a function of the evaluation time (number of
clock cycles).

9.1.1.1. Introduction

In general, digital systems are reliable when the internal circuits operate within
specifications. Nevertheless, they become vulnerable if something unforeseen occurs,
such as a deviation of the signals from the specified voltage range for a logic 1 or 0.
In fact, a single unexpected logic inversion can halt an entire system ([HH04]).
The increasing density of modern chips have resulted in the current technology
being much more sensitive to noise. Decreasing the CMOS feature sizes causes the
devices to be less reliable ([MF04]). Digital circuits are sensitive to noises due to soft
errors ([ZS06]), environmental noises, or process ([BMR07]), voltage, and thermal
variations ([San00]).
Soft errors refer to non-permanent errors that can severely limit the reliability of
CMOS circuits. They are produced by the charge injection due to a particle hit
([SKK+02]) from an alpha particle ([MW79]) (from impurities present on packaging
materials) or a neutron ([HS00], present in terrestrial cosmic radiation even at the
sea level). When the high energy particles penetrate the silicon substrate, they gen-
erate electron-hole pairs along their tracks that may be collected by p-n-junctions. If
enough critical charge is collected in a node within a combinational gate, a short cur-
rent pulse is performed that may invert the logic state at the gate output ([BB97]).
On the other hand, the charge collected in an internal node within a latch (memory
element) may cause to flip the value stored in the cell ([DS95]). Traditionally, soft
errors in memories have been a much greater concern than in combinational circuits
since the memories contain many more bits that are susceptible to particle strike (for
the same circuit area). However, the current technology down-scaling has caused
soft errors in combinational logic gates to become as frequent as those observed in
unprotected SRAM cells ([SKK+02], [Key01]).
To sum up, soft errors caused by ionizing radiation have become a major con-
cern (specially in severe environments, such as space) due to the continuous scaling
of semiconductor devices. Numerous design methodologies have been developed
throughout the last decades to overcome the loss of reliability ([MSZ+05]) as can
be the SRAM ([Nic05]) and combinational cells ([ZM06]) hardening, the on-chip
error checking and correction circuits ([OYSK04]), space redundancy and time re-

188



9.1 Noisy signal classification

dundancy. Space redundancy mainly includes dual modular redundancy (DMR)
and triple modular redundancy (TMR). The latter is the most common scheme to
perform single event upset (SEU) hardening ([HL09]).
Stochastic computing involves redundancy in the encoding of the signal values. As
a result, it represents an alternative technique capable to cope with errors. The
probabilistic architecture can easily adjust the level of desired immunity by means
of the evaluation time, thus allowing to easily manage the trade-off between the
probabilistic circuit performance (computation speed) and noise immunity. The
SC approach is a system-level hardening architecture and not a silicon-level one,
and therefore it operates with standard CMOS technologies. SC is compatible with
the different gate level hardening and noise improvement designs mentioned above,
being highly recommended their use. In fact, the SC-based designs contain some
parts that are operated through conventional Boolean logic, such as the B2P and
P2B converters. This makes necessary to combine SC with other methods that
mitigate bit-flips for the whole system’s reliability to be ensured.

9.1.1.2. Methodology

The noise has been emulated by introducing random changes into the temporal
signals. That is to say, generating random flips on the stochastic bit-streams. For
this purpose, I have used a B2P block together with an XOR gate as illustrated
in Fig. 9.2. The input to the B2P block is the desired fraction of noise injection
(rnoise) encoded according to the unipolar representation (sec. 4.2.2.2). The XOR
gate produces a flip on the input bit-stream every time the B2P provides a high
value. In other words, the bits of the input signal are flipped with a probability
equal to the noise fraction value.

Figure 9.2.: Noise injection setup.

Although the stochastic circuit may be affected by radiation at different locations, I
only analyze the case of errors (bit flips) being produced at a single point of the cir-
cuit. In particular, I have chosen to introduce noise in the signal that corresponds to
the network’s external input (which feeds all the neurons) as proposed in [CMO+16].
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I have analyzed the effect of different degrees of noise on the performance (classifica-
tion accuracy) of the system using the simulation model of the SC-based hardware
implementation.
As proposed in [CMO+16], I state that the maximum allowable noise (100% noise)
occurs when the probability of having a flip bit due to noise is 50%, that is rnoise =
0.5. Note that, in this situation, the information carried by the stochastic bit-stream
is completely lost since it has the same probability of obtaining a 0 or a 1, which
implies that after the noise injection the resulting signal provides a constant value
(x∗ = 0 in the bipolar codification). Therefore, the noise rate is given in the range
from 0% to 100%, which corresponds to a swap of the probability rnoise in the [0, 0.5]
range according to 9.3.

Noise rate [%] = 200× rnoise, ∀rnoise ∈ [0, 0.5] (9.3)

The weight values obtained from the previous training process (with 0% noise) are
employed for testing the network with the same test set used above, but injecting
different fractions of errors to the input signal.
It is worth noting that if a stochastic signal is affected by a noise of low intensity, it
will continue to operate correctly since a stochastic bit-stream is essentially a signal
generated by noise. This is the case of the SEU hit at sea level, which present a
frequency of the order 10−12 upset/(bit-hr) for memories ([Nor96]). I evaluate the
effect of higher noise rates (due to electromagnetic waves, SEUs at high altitudes or
in the space) on the network’s classification accuracy.

9.1.1.3. Results

The classification results are presented in Tab. 9.2 for different degrees of noise in-
jection. The chosen system employs N = 200 neurons and Teval = 28 − 1 clock
cycles. It can be observed that small fractions of injected soft errors practically do
not alter the classification accuracy. The system can tolerate up to a 15% of noise
injection keeping an accuracy greater than 90%. These results illustrate the inherent
robustness towards noise of the SC approach.

9.2. Handwriting recognition

9.2.1. Introduction

Even in the age of the digital computer, handwriting persists in many everyday
situations where it is more convenient than using a keyboard. The widespread use

190



9.2 Handwriting recognition

noise rate (%) accuracy (%)
0 97.7
5 97.3
10 95.7
15 90.3
20 82
30 72
40 59.7

Table 9.2.: Classification results of the SC-based ESN with N = 200 neurons and
Teval = 28 − 1 clock cycles in the 3-pattern recognition task as a function of the
noise injection.

of handwriting makes its automatic recognition a task of practical importance. It can
be employed, for example, for reading handwritten fields in forms or for interpreting
notes in a PDA (personal digital assistant) or tablet PC.
There are two approaches for converting handwriting to a digital form: offline and
online. The offline recognition is based on the scanned image of the writing while the
online case employs the trajectories of the pen tip, that is, the writing coordinates
as a function of time. The data requirements for an average written word are of the
order 100 bytes (typically sampled at 100 samples per second) in the online case
and of the order of 100 kilo-bytes in the offline handwriting (typically sampled at
300 dots per inch). The recognition rates, in general, are higher for the online case
([PS00]).
Other tasks associated with handwriting are the interpretation, identification and
signature authentication. Handwriting interpretation consists of determining the
meaning of a body of handwriting. Handwriting identification is a process to de-
termine the author of a sample from a set of writers. Signature authentication is
aimed at verifying if a signature is that of a given person.
Automatic recognition of handwriting has found commercial uses in hand-held com-
puters such as PDAs (using online systems) and for interpreting handwritten postal
addresses or amounts on bank checks (through offline systems). Nevertheless, the
recognition rates achieved until now still leave room for improvement ([GLF+09]),
specially in the case of mathematical symbols ([ASB13]) and of non-Latin characters
with specific features that hinder the symbol recognition ([SNJ14]).
In this section, I focus on the online classification of handwritten characters. Dif-
ferent methodologies have been used to tackle this problem such as Support Vector
Machines (SVM, [KW07]), Hidden Markov Models (HMM, [SNJ14]) and artificial
neural networks ([ASB13]). In particular, recurrent neural networks (RNNs) have
been shown to outperform classical HMM classifiers ([GLF+09]). Nonetheless, the
recognition performance numbers are dependent on the particular set employed to
test the system.
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In general, handwriting recognition is implemented in software using general-purpose
processors. However, custom hardware implementations can support more efficiently
the operations required by this type of systems. PDAs require to perform accurate
handwriting recognition using limited processor area, power and memory. The hard-
ware implementation of the character recognition system makes possible to release
potential resources on a PDA for other applications. Several digital hardware de-
signs have been proposed to support and speed up handwriting recognition ([MR99],
[SJM04], [MPR09], [IBA+10]). The work presented in [MR99], for example, pro-
poses a specific hardware architecture targeted at the pre-processing of the online
handwriting recognition signals.
Here, I propose the use of an ESN, in particular the hardware implementation based
on SC (chapter 4), as main processing core of the online handwriting recognition
task (the input data are pre-processed by software before entering the ESN-based
classifier). I show that this hardware realization is compatible with the recognition
task (the sampling rate of the input signals is 5 ms while the implementation requires
a maximum evaluation time of 1.3 ms to process each input value) and achieves
similar accuracy to that of a software implementation with full precision.

9.2.2. Methodology

The character trajectories data set has been obtained from the Machine Learn-
ing Repository ([Lic13]). These data were used in [WTS08] to model the biological
movements and produce reconstructions of handwriting in robotic applications. The
signals consist of a number of labeled samples of pen tip trajectories recorded whilst
writing individual characters. All samples are from the same writer and captured at
200Hz using a WACOM tablet. Three dimensions were kept: x, y, and pen tip force.
The data were numerically differentiated, smoothed and normalized. The handwrit-
ten characters corresponding to three sample letters are illustrated in Fig. 9.3. Some
example trajectories representing different temporal patterns that need to be learnt
for the character classification have been shown in Fig. 2.15 (sec. 2.3.4.1).
I have limited the task to the recognition of three classes corresponding to the first
three letters of the alphabet. However, it could be exported to discriminate a higher
number of categories. The proposed hardware design for the neuron, based on SC, is
depicted in Fig. 9.4. It is slightly different from that presented in chapter 4 since the
present task requires dealing with a three-dimensional input (handwriting velocities
vx and vy, and temporal variation of the pen tip pressure). Therefore, the neuron
includes four inputs (three for the external inputs and one for the internal connec-
tions with other neural units). The numerical quantity resulting from the 4-input
multiplexer needs to be multiplied by 4 (after being converted to a binary value) in
order to compensate the 1/4 scaling factor of the stochastic addition. This operation
is implemented within the activation function block by means of a simple shift (two
positions to the left) of the binary number. It is worth noting that the 4-input
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Figure 9.3.: Illustration of three handwritten characters corresponding to the let-
ters a (a), b (b) and c (c).

neuron only requires a few more logic elements than the 2-input design since the 4
additional B2P converters can be shared by all neurons in the network (as described
in chapter 4 for the ESN with cyclic topology). The online handwriting classification
task has been evaluated through simulations of the SC-based ESN implementation
employing a numerical model that limits the resolution of the variables according to
the hardware (8 bits for the neuron states and for the output weights, and 16 bits
for the final classification readouts).

9.2.3. Results

Fig. 9.5 illustrates the evolution of a neuron of the SC-based ESN implementation
(with N = 200) for an input signal corresponding to the handwriting trajectories
of the letter “a”. The neuron state is compared to that of an equivalent conven-
tional software implementation. The SC-based signal presents noisy fluctuations
around the deterministic (conventional, non-probabilistic) one. Since the handwrit-
ing trajectories present significant variations from one sample to another (of the
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Figure 9.4.: SC-based four-input sigmoid neuron.

same character class), the probabilistic deviations of the stochastic approach do not
severely hamper the classification task.
The classification behavior of the SC-based ESN (using N = 100 and Teval =
(212 − 1)Tclk) is illustrated in Fig. 9.6 for two input samples (corresponding to the
characters “a” and “b”). A clear recognition of the input category can be observed.
The training of the system and calculation of the classification outputs (9.1) has
been carried out as described in sec. 9.1. A set of 234 samples (containing the input
signals of the three different characters “a”, “b” and “c”) has been used for training
and a similar number, 220 samples, for testing. No validation set was considered
due to the relatively low number of samples. The internal weight parameters have
been fixed to r = |v| = 0.95 since the optimum weights in the SC-based ESN are
usually near to 1. Nonetheless, an optimization process using a validation set might
have improved the network’s classification results.
Tab. 9.3 shows the classification accuracy of the SC-based ESN implementation (with
100 neurons) for different evaluation periods. A conventional software implementa-
tion employing the same number of neurons and the same internal weight configura-
tion than the SC-based design performs the classification with a 96.8% of accuracy.
The stochastic implementation tends to this value as the system’s evaluation period
(precision) is increased.
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Figure 9.5.: Evolution of one of the neuron states (x1) in a 200-unit ESN driven
by the handwriting trajectories of the letter “a”. The signal is represented for
two input samples (178 time steps each) of the same character employing SC
(for an evaluation time Teval = (212 − 1)Tclk, solid line) and a conventional soft-
ware approach (deterministic, dashed line). The SC-based signal presents noisy
fluctuations around the deterministic one.

Teval (Tclk) accuracy (%)
210 − 1 82.3
212 − 1 87.3
214 − 1 93.6
216 − 1 95.4

Table 9.3.: Classification results of the SC-based ESN with N = 100 neurons in
the handwriting recognition task as a function of the evaluation time (number of
clock cycles).
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Figure 9.6.: Pattern recognition system behavior for a SC-based ESN with N =
100 neurons and Teval = (212 − 1)Tclk = 4095Tclk (time step ' 82µs @ 50MHz).
Two samples of the input signal (corresponding to the letters “a” and “b”) are
represented along with the output classifiers for the three possible patterns to be
recognized (characters “a”, “b” and “c”). A clear recognition of the input type is
obtained.

9.3. Equalization of a wireless communication
channel

9.3.1. Introduction

Communication systems are aimed at efficiently sending information from a trans-
mitter to a receiver using an available channel. This requires a processing of the
received data as the channel is always responsible for distorting to some degree the
transmitted signals ([BB99]). The nature of the modifications suffered by the sent
data depend on the particular features of the channel model, which can be either
linear or nonlinear. In the case of satellite and mobile-phone communications, the
sender’s power amplifier must work in the high-gain region, close to the saturation
point, in order to ensure a low use of energy. This adds important nonlinear dis-
tortions in the communication channel, which may be compensated either at the
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transmitter side with pre-distortion or at the receiver side with equalization. Here,
I focus on the digital compensation of the nonlinear channel at the receiver side.
To sum up, the problem of channel equalization consists of designing a device (the
equalizer) that is present in the receiver and is intended to cancel the distortions
introduced by the physical environment used for transmission, thus enabling the
correct recovery of the original information ([BLAZ11]).
The schematic of a communication system using a channel equalizer is illustrated
in Fig. 9.7. The transmitter communicates the symbol sequence d(t) as an analog
envelope signal modulated on a high-frequency carrier signal. Then, it is received
and demodulated into the analog signal s(t), which is a corrupted version of d(t).
The main sources of corruption are the linear superposition of adjacent symbols (q(t),
intersymbol interference), nonlinear distortion induced by operating the sender’s
power amplifier in the high-gain region, and noise (ν(t), thermal or due to interfering
signals). The corrupted signal s(t) is then passed through the equalizer with the
purpose of recovering the transmitted sequence (d(t)) or its delayed version d(t−τ),
where τ represents here the propagation delay associated with the physical channel.
Finally, the equalized signal y(t) is converted back into a symbol sequence.

Figure 9.7.: Schematic diagram of a wireless communication system with a channel
equalizer.

The function performed by the equalizer is adapted during the training stage so that
the output y(t) can restore s(t) to d(t− τ) as closely as possible. Using the training
data (s(t) as input and d(t−τ) as desired output), the equalizer parameters (weights)
are adjusted so as to minimize the error e(t), defined as the difference between the
target output d(t − τ) and the equalization output y(t): e(t) = d(t − τ) − y(t).
Once the training has been completed, the equalizer weights are fixed and used to
estimate the transmitted sequence.
Linear filters have been widely used as equalizers due to their simplicity and math-
ematical tractability ([Luc65], [GL81], [Shi82]). However, their performance is not
satisfactory for highly nonlinear and dispersive channels. Channel equalizers based
on more complex approaches, such as polynomial filters (using Volterra series expan-
sions, [KS89], [Mat91], [GR95], [MW11]) and artificial neural networks ([CGC90],
[MP93], [PPBP99], [PMC09]), were developed showing a higher performance than
the linear channel equalizers.
Among ANN models, echo state networks (ESNs) represent an attractive equaliza-
tion solution since they are both nonlinear and recurrent, which makes possible to
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meet the memory and mapping requirements of this particular task with the ad-
vantage of not posing complex optimization problems. The ESN approach has been
proposed and investigated for the nonlinear channel equalization task using channel
models of diverse complexity ([JH04], [SOP07], [BLAZ11], [RT11], [BSMH15]). The
results presented in [BSMH15] show that the ESN is able to reach the same perfor-
mance as a state-of-the-art Volterra equalizer and has similar complexity. Here, I
propose and analyze the use of a digital hardware implementation of the ESN algo-
rithm to perform the equalization of a wireless communication channel. More specif-
ically, I select the implementation design based on stochastic computing (stochastic
ESN, chapter 4). A low-power hardware implementation of the channel equalizer
seems of great interest in wireless communications given the limited available power
in mobile phone devices and aboard satellites. On the other hand, the high tolerance
to soft errors provided by the stochastic computing approach is also desirable for an
equalizer operating in harsh environments.

9.3.2. Methodology

To create the data set, I have taken the channel model of a nonlinear wireless
transmission system from [JH04]. This model only considers real inputs. A more
realistic extension making use of complex symbols can be found in [SOP07]. The
channel is represented as a linear system with memory length 10 followed by a
memory-less noisy nonlinearity. The input to the channel is an independent and
identically distributed random sequence d(t) with values from {−3,−1, 1, 3}. Then,
d(t) values are used to form a sequence q(t) through a linear filter as follows:

q(t) = 0.08 d(t+ 2)− 0.12 d(t+ 1) + d(t) + 0.18 d(t− 1)
−0.1 d(t− 2) + 0.09 d(t− 3)− 0.05 d(t− 4)

+0.04 d(t− 5) + 0.03 d(t− 6) + 0.01 d(t− 7) (9.4)

Finally, a noisy nonlinear transformation is applied to generate s(t):

s(t) = q(t) + 0.036 q(t)2 − 0.011 q(t)3 + ν(t) (9.5)

where ν(t) is an independent and identically distributed Gaussian noise with zero
mean. More specifically, the noise has been adjusted in power to yield a signal-to-
noise ratio (SNR) of 20 dB.
The equalization task consists in getting the output y(t) = d(t − 2) when the cor-
rupted signal s(t) is presented at the network input. A sequence example of symbols
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entering the channel [d(t)] along with the corresponding distorted signal [s(t)] is
shown in Fig. 9.8.
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Figure 9.8.: Sequence example of input (s(t)) and desired output values (d(t)) for
the channel equalization problem. The input signal corresponds to the corrupted
values received after passing through the channel and the target outputs are the
original values emitted by the source.

The equalized signal y(t) needs to be finally converted back into a 4-symbol se-
quence. This is done by equidistant thresholding. That is to say, the symbol "+3"
is chosen if y(t) > 2, "+1" if 2 ≥ y(t) > 0, etc (the limits employed for such symbol
classification are illustrated in Fig. 9.9). Therefore, the equalization task is actually
a classification problem where deviations of the estimated output with respect to
the target signal are acceptable as long as the values are kept within the correct
classification boundaries.
As in the two previous sections, the present task has been evaluated through the
simulation of the SC-based ESN implementation (chapter 4) employing a numerical
model that limits the resolution of the variables according to the hardware (8 bits for
the neuron states and for the output weights, and 16 bits for the final classification
readouts). The input signal s(t) was normalized to the [−1, 1] range before being
entered into the network.
The quality for the equalization process is usually measured as the fraction of in-
correct symbols finally obtained (symbol error rate, SER) although the error (e.g.,
the NMSE) between the desired and predicted signals can also be employed.
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9.3.3. Results

The equalized signal provided by the SC-based ESN (using N = 50 and Teval =
(210 − 1)Tclk) is illustrated in Fig. 9.9 for a fragment of the test sequence. It can
be observed that the estimated output allows a correct classification of the input
values in most cases. As usual, the system has been trained through conventional
linear regression minimizing the square error [y(t)–ytarget(t)]2 = [y(t)–d(t–2)]2. A
sequence of 5000 values has been used to perform the experiment, of which the first
2000 samples were employed for training (disregarding an initial washout period of
200 points) and the remaining 3000 for testing. The internal weight parameters of
the network have been fixed to r = |v| = 0.95 since the optimum weights in the SC-
based ESN are usually near to 1. However, a different configuration could provide
better results.
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Figure 9.9.: Network estimations along with the targeted values. These results
correspond to a fragment of the test set obtained with N = 50, v = r = 0.95 and
Teval = (210−1)Tclk. The red dashed lines indicate the limits employed to classify
the symbols (e.g., those values within the [0, 2] range correspond to the symbol
“+1” while the values that are greater than 2 are classified as a “+3”).

Tab. 9.4 shows the equalization error (NMSE) of the SC-based ESN implementation
(with 50 neurons) for different evaluation periods. A conventional software imple-
mentation of the SCR network employing the same number of neurons and the same
internal weight configuration than the SC-based design performs the task with an er-
ror NMSE = 0.052. It can be observed that the stochastic implementation reaches
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this value with a system’s evaluation period of 212 clock cycles and that a shorter
evaluation time of 210 clock cycles allows a comparable result.

Teval (Tclk) NMSE
28 − 1 0.091
210 − 1 0.061
212 − 1 0.052
214 − 1 0.051

Table 9.4.: Performance results of the SC-based ESN with N = 50 neurons in the
equalization task as a function of the evaluation time (number of clock cycles).

The results reported in [RT11] indicate that an optimization of the network internal
weights (v and r) can lead to a higher performance than the one found here (NMSE
of an order of magnitude smaller). Nonetheless, it must be mentioned that such
small errors are unlikely to be obtained with our hardware implementations. This is
due to the fact that the optimum network configurations correspond to very small
values of the parameter v, which requires a high resolution for the variables and is
not compatible with our limited-precision design.
Typical values of the symbol rate in satellite communications are about 20000-30000
symbols per second (usually noted as bauds, Bd, indicating the number of symbol
changes across the transmission medium per time unit using a modulated signal).
For example, the majority of TV channels of Astra ([web16a]) and Eutelsat Hot
Bird ([web16b]) satellites use a symbol rate of either 22 kBd or 27.5 kBd. It is
worth noting that the processing speed of our SC-based ESN hardware realization
is compatible with these rates using an evaluation period of 210 clock cycles, which
implies a required time of 20.5 µs to equalize each value of the input sequence
(assuming a clock frequency of 50 MHz) while the duration time of each symbol in
the communication process is of 36.4 µs (assuming the rate of 27.5 kBd). In case
of requiring a higher accuracy (longer evaluation times), it would be necessary to
increase the system’s clock frequency for the task to be performed on real-time.

9.4. Other applications

9.4.1. Control

Real-time control of nonlinear systems is often a complex and computationally in-
tensive task. ANNs are attractive for the field of intelligent control given their
parallelism, learning and adaptation capabilities, and fault tolerance. Usually, neu-
ral networks are combined with other approaches (e.g., finite-state automata, FSA)
for the control of physical plants, machines or industrial processes ([CR95]). In some
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cases, ANNs are trained to emulate existing controllers, and afterwards used to re-
place the conventional controller ([BL91], [KHB+98], [Bur05b]) with the advantage
of increased speed of execution and fault tolerance. The selected hardware imple-
mentation of the ANN depends on the particular requirements of each application.
Model predictive control (MPC) is based on the use of an internal nonlinear plant
model, which captures the main process characteristics, followed by a dynamic opti-
mization that provides the optimal manipulated variables. The process models may
be obtained from physical principles (e.g., [CdPdK05]) or be black-box data-driven
models, which are mostly based on ANNs ([CRBV07]). In particular, reservoir com-
puting, as a RNN approach, is appropriate for modeling dynamical systems. For
example, in [WSS08b], RC has been successfully employed to model the output
flow of a heating tank with variable dead-time. Details of such plant are given in
[CdPdK05]. On the other hand, the works presented in [PCK+14] and [PLK+16]
illustrate the use of ESNs for the position control of hydraulic excavators.
An example of neural-network digital chip implementation aimed at the real-time
control of nonlinear plants and appropriate for low-power embedded applications
requiring small size, low power consumption, and high reliability is presented in
[CR95]. An analog neural network chip employed as controller for the unstable
oscillations of a combustion engine is proposed in [LBH02]. An illustrative FPGA
realization of an ANN for the control unit of an induction motor is found in [ZL08],
where the hardware implementation (using the stochastic computing approach) is
reported to exhibit lower hardware cost than a conventional microprocessor-based
design for the same application.

9.4.1.1. Sensorless control of a wind turbine generator

ANNs are often used to implement a particular function required by the control unit.
A good example of this is presented in [Qia09], where an ESN is used to estimate the
wind speed from the measured electrical power in a wind turbine generator (WTG).
The estimated wind speed is then used for controlling the WTG system. That is,
the controller implements two functions: first, it estimates the wind speed (through
the neural network); secondly, based on the derived wind speed, it generates the op-
timum rotor speed profile for maximal energy utilization and aerodynamic efficiency.
Most controller designs employ anemometers to measure wind velocity in order to
derive the desired generator speed. However, these sensors increase the equipment
and maintenance costs of the WTG system. In addition, the potential failure of
the sensors reduces the reliability of the overall system. Given the importance of
high reliability, little maintenance and low cost (specially in the case of small wind
turbines), a number of solutions have been proposed for the sensorless control of
WTG systems through the real-time estimation of wind velocity from other avail-
able measurements, such as the turbine’s produced mechanical or electrical power
([BSE99], [TI04], [BS05], [LSM05], [LZF06], [QZAH08], [Qia09]).
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Among the different algorithms for wind speed calculation in WTG systems, ANNs
present the advantage of learning capability, fast parallel computation and fault tol-
erance. In particular, ESNs seem more adequate than feed-forward neural networks
to approximate the nonlinear dynamics of complex WTG systems ([Qia09]). On the
other hand, although the proposed methods are usually implemented in software us-
ing the same microprocessor or digital signal processor (DSP) employed as controller
([LSM05]), hardware realizations are crucial to exploit the parallelism and fault tol-
erance of ANNs. An example of FPGA-based neural network implementation for
this task is given in [LZF06]. Therefore, the RC hardware implementation designs
presented throughout this thesis could be extremely useful for the present applica-
tion. The possibility to implement the RC designs in low cost and low power devices
(either FPGAs or application-specified integrated circuits, ASICs) seems particu-
larly interesting for small wind turbines (less than 15 kW) given their requirements
of reduced cost and capability to operate autonomously in remote places without
power grid access.

9.4.2. Robotics

Reservoir Computing has been successfully applied in the field of robotics for mobile
robot control ([SP05], [Bur05b]), event detection and robot localization ([ASD+07],
[ASS08b]). In this context, several works have proposed the use of ESNs to learn
navigation behaviors for mobile robots in different environments ([ASS08a], [AS15])
so that the high-dimensional reservoir space allows to learn multiple dynamic robot
behaviors consisting of sensory-motor sequences based on examples of navigation
behaviors (generated, for instance, by a supervisor). In the road sign problem
([ASS07]), for example, an artificial agent (robot) which is driving along a corri-
dor receives a temporary sign at some specified time which must be remembered at
a later moment in order to take the correct decision (to turn right or left). The dif-
ficulty of this task relies on the time gap existing between the sign and the decision.
That is, the robot has to navigate holding the information (the sign) gathered in
the past. RC is well suited to handle such type of temporal problems. The work
presented in [ASVC07] shows how ESNs are used as an implicit model for robot
localization based on the robot’s sensory input history. In addition, the same reser-
voir setup is employed to model the robot controller. Liquid state machines (LSMs,
[WHS13], [dACA16]) and Physical RC ([PVCL06], [HIF+11], [SHP11], [ZNS+13],
[NHK+13]) have also been proposed for various robotic applications.
Small and energy efficient autonomous mobile robots are actively investigated for
their potential application as domestic service robots ([SNS11]). Such robots must
be easy to teach using training sequences and must perform their task (maintain a
sense of position and navigate without human intervention) with a restricted amount
of power. The RC hardware implementations proposed in this thesis seem adequate
for the control of autonomous mobile robots given their capability of learning by
example, their low cost and low power consumption.
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Another important application of mobile robots is their use in dangerous and in-
hospitable environments. For example, they might be used in a nuclear disaster
to access areas with high levels of radiation. A robot controller immune to non-
destructive radiation (SEUs or soft-errors) is necessary in that case. The use of the
LSM approach for this purpose has been proposed and investigated in [dAKS+16]. It
has been observed that the system can withstand different noise levels, which could
be seen as an example of the result from the non-destructive effects of radiation. In
this context, a hardware implementation of the RC approach based on stochastic
computing (SC, such as those described in chapter 4 and chapter 5) could be of
great interest improving the system’s reliability.

9.4.3. Wireless sensor networks

A wireless sensor network (WSN) consists in a network of distributed autonomous
devices that can sense or monitor physical or environmental conditions coopera-
tively ([ASSC02], [KFV11]). Example applications of WSNs include agricultural
monitoring ([LBV06]), habitat surveillance ([MHO04]), prediction and detection of
natural calamities ([DVT+15]), military operations, medical and structural health
([WDH15]) monitoring among others ([KFV11]). A sensor network is usually com-
posed of a large number of low-cost, low-power sensor nodes that are small in size
and communicate with its neighbors without cables. Such sensor nodes are often
grouped in clusters, and each cluster has a node that acts as the cluster head. All
nodes forward their sensor data to the cluster head, which in turn routes it to a
specialized node (the base station). Sensor nodes perform functions of sensing, data
processing, and communicating, but are severely constrained in terms of storage
resources and power supply, which also limits their computational capability. Actu-
ators such as alarms or automatic irrigation systems (in agricultural applications)
are often connected with WSNs.
Interpreting the information collectively gathered by sensor nodes in WSNs is a
challenging task, specially considering that some sensor nodes may fail and such
failure should not affect the overall task of the sensor network. Computational
intelligence (CI) techniques, such as ANNs, are often used in WSNs for processing
the sensory data and generating the desired responses while withstanding high fault
tolerance ([CSC13], [AMN14]). In [SK08], the ESN learning concept is proposed to
infer the spatio-temporal dynamics of the data collaboratively measured by sensors
in WSNs. Such data processing could be performed either at a fusion center or
distributively by sensors nodes.
An exemplary application using ESNs for processing the sensor data in a WSN is
presented in [MP08], where the design and implementation of an intelligent pedes-
trian counter system is described. A pedestrian counter is a device used to measure
the number of people traversing a certain passage or entrance per time unit. It can
be applied to effective resource utilization, planning of service activities and ensur-
ing safety and convenience. The proposed system employs low-cost passive infrared
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sensors to detect the pedestrian movements. The wireless sensor nodes handle the
sensor data acquisition and transmission, they all communicate (over a radio chan-
nel) to the base station computer, which processes the data. The ESN approach is
the machine learning technique used to learn the motion patterns from the noisy
sensors and predict the counts. In this case, the ESN algorithm is implemented in
software on the base station computer. However, a hardware realization like the
ones proposed throughout this thesis (using a low-cost FPGA or an specific chip)
might be interesting for further reducing the overall cost of the system. Any of the
different RC hardware designs of this thesis are, in principle, compatible with the
40-Hz sampling frequency of the sensors suggested for the pedestrian counter system
([web17b]), which corresponds to an available time of 25 ms to process each input
value.
ESNs have also been used in a WSN for structural health monitoring ([WDH15]).
The array of sensors was placed onto a test footbridge subjected to potentially dam-
aging interventions. The measurements from a number of temperature sensors were
employed as inputs to an ESN, which was tasked with estimating the expected out-
put signal from several tilt sensors that were also placed on the footbridge. After
training the ESN with the temperature and tilt sensor data (obtained before per-
forming any intervention), the ESNs’ prediction accuracy allowed inferences to be
made about when interventions occurred and also the level of damage caused. In
addition, the damaged regions could be determined using the error in signals and
the location of each of the tilt sensors. Such a system appears to be of great value
to industry.
The above-mentioned examples of sensor networks using the ESN approach were de-
signed to directly transmit data from the array of sensors to a server data repository.
Nevertheless, the gathering of the distributed data at a central station requires high
communication costs, and therefore collaborative information processing through
distributed algorithms is highly desirable. That is, an interesting alternative is to
implement more “intelligence” on the sensor nodes (rather than at the base station)
prior to sending messages since it can increase the efficiency of communication. For
instance, the elements of the network deciding what data to pass on, using local area
summaries and filtering may minimize the power use while maximizing the informa-
tion content. The RC hardware designs proposed in this thesis could be particularly
useful to implement data processing functionalities in the sensor nodes given their
powerful computational capabilities using limited resources (power and chip area).
For example, in the pedestrian counter system, each sensor node could implement
an ESN and count locally.

9.4.4. Medical applications

RC has been used in biomedical applications with great success. For example, ESNs
have been used for the analysis of biological signals to detect epileptic seizures
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on real-time with high accuracy ([BVvM+11], [BVN+13]). Epileptic seizures are
characterized by recurrent atypical brain activities with unusual excessive electri-
cal discharges ([SAC+10]). One of the commonly used methods for diagnosing
epilepsy is analyzing the brain electrical activity (electroencephalography, EEG,
signals) recorded over a prolonged period of time. An automated detection method
for epileptic seizure can perform such lengthy inspection process without human
intervention, thus saving a significant amount of doctors’ time. Furthermore, an
automated system can generate an alarm requesting for medical help in case a pos-
itive detection is made. Usually, sophisticated and computationally intensive sig-
nal processing tools (e.g., ANN-based classifiers, [AKS05] and [SE05]) are used for
software-based epileptic seizure detection, which is mainly aimed at obtaining high
accuracy without regard to detection latency, hardware cost, or power consumption.
On the other hand, hardware-based detectors (appropriate for wearable embedded
devices) must take into account the real hardware implementation constraints, and
therefore tend to focus on low power consumption to achieve extended battery life
often at the cost of using less complex algorithms with lower overall accuracy. See,
for example, [PCFB09], [RWRI09], [RGW+09] and [SAC+10], which present ASIC
and FPGA-based implementations for the EEG signal processing and automated
real-time detection of seizure events. Hardware embedded devices consuming low
power and allowing online processing of EEG signals are particularly interesting as
they enable treatments for epilepsy that are based on rapidly detecting the seizure
and actively counteracting it using medication or brain stimulation. The ESN dig-
ital hardware designs presented in this thesis could possibly be good candidates
for their use in portable epileptic seizure detectors given their high computational
capability (the ESN approach have already been shown to be adequate for EEG
signal classification in [BVvM+11] and [BVN+13]) and relatively low power con-
sumption. The sampling frequency in clinical scalp EEG is typically 256-512 Hz,
which is compatible with our RC hardware implementations.
Similarly, RC (in particular, the single dynamical node approach, sec. 2.3.3) has been
successfully used for the classification of electrocardiograms (ECGs, [EMSFM15]).
ECGs are widely used for the detection of cardiovascular diseases, such as arrhyth-
mia. They can be conveniently acquired with low-cost portable devices outside the
clinical environments. However, as for the case of EEG signals, the analysis of long-
term monitored heartbeat signals is very time-consuming. This motivates the devel-
opment of algorithms to automate the ECG classification. Several machine learning
techniques have been applied to the heartbeat classification problem ([JDP15]), such
as ANNs ([GTK+14]) and support vector machines (SVMs, [CLO+13]). Hardware
implementations of such algorithms are also desirable for the personalized real-time
classification of ECG signals through embedded systems aimed at the long-term
patient monitoring (see, e.g., [JC10] and [JC13], where FPGA-based realizations
are presented). Therefore, our power-efficient and low-cost FPGA-based implemen-
tations of RC seem well suited to real-time ECG classification. ECG signals are
usually sampled at frequencies equal to or under 1 kHz ([MJPV15]), which is, in
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general, compatible with the implementations proposed in this thesis.
ESNs have also provided good results in the monitoring, parameter estimation and
event detection of fetal ECG using noninvasive measurements, which are noisy and
contaminated by strong interferences, such as maternal ECG and fetal brain activity
([LM13]). Some more medical applications of the ESN technique related to the
processing of ECG signals are presented in [PML11], [PMSL12b] and [PMSL12a].

9.4.5. Image and video processing

Deep neural networks (DNNs) and convolutional neural networks (CNNs) have
been widely investigated for visual object recognition ([CMGS10], [CMS12], [CM15],
[OZW+16]) becoming state-of-the-art methods for solving classification or recogni-
tion tasks on many data sets of images or videos, such as the MNIST digits data
set ([LBBH98]). RC has also been proposed and analyzed as an alternative for
computer vision applications in [JWW15], [HSD+15] and [SSC16]. In particular,
these works have investigated the potential of RC networks for the task of offline
handwritten digit recognition. In [JWW15], for example, the authors employed a
network structure consisting of three stacked reservoirs, each of them composed of
16K neurons (forming a “deep” RC network), to solve the digit recognition problem
on the MNIST data set. They reported a digit error rate (DER) of 0.92%, which
is competitive with former state-of-the-art systems (presenting a minimum DER of
0.6%), but cannot outperform them. The main advantage of RC over CNNs and
DNNs is the simple and fast training, which allows learning large data sets in rea-
sonable time. In addition, RC presents high robustness generalizing well to noisy
conditions.
RC-based image processing systems could be applied to perform more elaborated
tasks such as face detection, medical image analysis or plate number identification.
It is worth mentioning that ESNs have been used for image restoration presenting
better results than other state-of-the-art-methods ([DW16]).
Hardware acceleration of neurocomputing has received much attention in recent
years for image recognition and classification. See, for instance, [AKK+16], which
presents an image sensor that integrates a CNN for intelligent vision processing. The
hardware implementation allows to harness the inherent parallelism of the neural
algorithm. A different hardware design is proposed in [UHS16] to reduce the power
consumption of CNN-based image recognition. [LGMARB+05] provides another
example of hardware implementation (using an FPGA) of a cellular neural network
to perform real-time image processing for mobile robot vision.
Among the hardware designs presented in this thesis, that of chapter 6 could be
particularly useful to accelerate the RC calculations (compared to a conventional
processor) given its highly parallel processing capabilities using minimum hardware
resource, which is specially desirable considering the high number of nodes (∼ 50000)
required in the reservoir to perform image classification tasks.
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RC can also be useful for the processing of video sequences. In [YM12], an RC
model consisting of multiple sub-reservoirs is proposed for multi-object behavior
recognition. Enabling computers to recognize human actions in a video stream
is critical in many areas, such as video surveillance, human-computer interaction
and clinical diagnosis. In computer vision, different classifiers have been used for
analyzing human behaviors from video sequences (e.g., SVMs, [HCL+09], and ANNs,
[PDS09]). The RC-based method proposed in [YM12] could be effectively applied
to the challenging task of classifying different activities performed simultaneously
by multiple objects/persons in the same video.
The work presented in [JWW15] has also investigated the application of RC networks
on video processing. The practicality of RC for real surveillance is illustrated with
the task of real-time door status (open, closed, half open) detection using very
low resolution camera sensors. The proposed RC-based door status detector was
shown successful on the real environment in which the surveillance camera was used
(e.g., passing people, masked frames, different camera angles and light intensities)
indicating the robustness of the system on the unseen conditions. The door state was
monitored using low-quality cheap visual sensors that can be built into light switches
and power outlets. The implemented function could be useful for the control of the
heating or lighting in a building. In addition, such RC-based event detection system
using inexpensive sensors could possibly be used for more complex tasks, such as
human mobility monitoring ([EBD+14]). A digital hardware design allowing to
cheaply integrate the RC algorithm together with the visual sensors might be of
great interest for automatically processing the raw pixel data and directly providing
the desired information of the environment. Given the low capturing rate of the
sensors (90 frames per second), any of the implementations proposed in this thesis
would be compatible with the real-time processing of the video sequences.

9.4.6. Speech recognition

In recent years, a great deal of research effort has been directed to the task of
automatic speech recognition through different ANN approaches. Convolutional
neural networks (CNNs, [YD15]) and long short-term memory (LSTM, [LW15]) re-
current networks are among the best performing techniques. The latter method
is used, for example, for voice searches, commands and dictation in smartphones
through the Google app ([SSR+15]). Nevertheless, significant improvements are
still needed before solutions will be available for voice driven applications with
strict specifications such as high accuracy and robustness against confounding factors
([JTDM15]). ESNs and LSMs have also been applied to the domain of speech recog-
nition ([VSSVC05], [VSDS07], [SH07], [web09], [TJSM10], [TDM14], [ZYCS15])
performing particularly well in noisy conditions ([JTVM11], [JTDM15]). Indeed,
a few digital hardware implementations (using FPGAs) of the LSM approach have
already been realized for real-time spoken digit recognition using limited hardware
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resources and presenting a considerable speedup compared to a conventional pro-
cessor ([SDVC07], [SDVC08], [WLL16]).

9.4.7. Others

The possibility of using RC systems as black-box models to estimate temporal func-
tions that depend on a number of inputs without the need of deriving an analytical
model makes them useful for very diverse applications. An illustrative example of
the use of RC for function approximation is found in [ACRMM16], where I have
employed ESNs for estimating daily global solar radiation from temperature data.
This can be interesting for locations where solar radiation measurements (requir-
ing expensive equipment) are not available. The proposed ESN approach has been
shown to outperform conventional techniques using explicit model equations.
RC-based black-box models can also be effectively used in forecasting tasks as
demonstrated in chapter 5, where the presented implementation has been applied
to predict the radar back-scatter from an ocean surface. The difference between
predicted values and real observations can be used for the detection of objects in
sea clutter. A similar approach based on observing the discrepancies between the
system’s expected behavior (according to the network predictions) and the real mon-
itored one can be of general utility for fault detection purposes. ANNs have been
proposed, for instance, for the detection (and classification) of faults in a photo-
voltaic (PV) electricity production plant ([JM15]). An alarm is activated when the
measured power from the real PV system considerably differs from the network pre-
dicted values. As for the case of control applications, hardware implementations
enabling the real-time automatic fault detection through low-power and low-cost
devices are desirable.
The application field of wireless sensor networks (WSNs) described in sec. 9.4.3 is
very related to the concept of the “Internet of Things” (IoT, [AIM10]), which refers
to the internetworking of “smart” devices that may be vehicles, buildings, mobile
phones or any other objects embedded with electronics, sensors, actuators and net-
work connectivity that enable such items to collect and exchange data. The IoT
allows objects to be sensed and/or controlled remotely across the network infras-
tructure improving efficiency, accuracy and economic benefit. Machine learning
(ML) techniques, such as ANNs, are generally employed in IoT ([MRC+16]). In
particular, ML hardware implementations (as the RC systems presented in this the-
sis) are of great interest since low power and low latency “smart” chips have the
potential to make a wider type of objects become intelligent things in IoT allowing
for a more distributed intelligence.
Financial forecasting is another potential application of ML algorithms, such as re-
current neural networks (RNNs, [ZB01]) and RC ([IJK+07]). For example, [MM15]
presents an investment support system based on an ensemble of RNNs. The system
processes historical data and makes predictions that can be eventually used to trade
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successfully on the currency markets. The information obtained from such sup-
port system gives investors an advantage over uninformed market players in making
investment decisions. A successful application of ESNs to financial time-series fore-
casting is presented in [IJK+07]. In this case, the predictions were obtained by com-
bining the outputs of ensembles of 500 independently created reservoirs with sizes
ranging around 100 units. Hardware implementations (e.g., using high-performance
FPGAs) could be extremely useful to support such massive neural computations
(with ∼ 50000 neurons) ensuring an efficient and timely data processing. Such
hardware-based co-processing might be particularly interesting for high-frequency
trading ([Ald09]), which consists in a completely automated execution of trading in-
structions (i.e., carried out by computers) using sophisticated algorithms and char-
acterized by high speed (operations are often performed in fractions of a second),
thus requiring a very fast decision making capacity based on big amounts of complex
data.
Finally, it is worth mentioning that the RC implementations developed in this the-
sis could also be of interest in the bio-metric security sector where authentication
algorithms based on the recognition of behavior, face, voice, signature or gait are
required.

9.5. Discussion

In this chapter, I have described a number of potential applications of the RC
hardware designs developed throughout this thesis, which highlights the usefulness
of the proposed systems.
The performance of the SC-based ESN hardware implementation presented in chapter 4
has been evaluated for two real-life engineering applications (handwriting recogni-
tion and equalization of a nonlinear communication channel) and satisfactory results
have been found. The hardware realization is compatible with the applications in
terms of processing speed (they could be performed on real-time) and presents po-
tential advantages over a conventional microprocessor-based implementation, such
as a reduced power consumption and a higher reliability thanks to the parallel imple-
mentation design. In addition, the particular SC-based system presents a graceful
degradation of the classification accuracy with the injection of soft errors (fault-
tolerance).
More specifically, the implementation of a handwriting recognition system on a spe-
cific integrated circuit can be of interest in order to perform the task more efficiently
and to release processor resources on a computer or PDA. The classification task
(here limited to the recognition of three characters) could be exported to a higher
number of classes. A similar system might be used for other purposes, such as sig-
nature authentication. On the other hand, a low-power hardware implementation of
the channel equalizer seems of great interest in wireless communications given the
limited available power in mobile phone devices and aboard satellites.
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In general, the SC-based ESN approach have been found adequate (even using rel-
atively short evaluation periods) for pattern recognition applications that present
inherent variations of the input signals and for the equalization of a noise-corrupted
signal. Classification tasks allow a considerable reduction of the required evaluation
time compared to time-series prediction, specially if a certain degree of inaccuracy is
acceptable. Nevertheless, the SC-based design is considerably more time-consuming
than its counterparts (for example, compared to the approaches of chapter 6 and
chapter 7), and therefore its practical use may be limited to particular applications
where reliability is paramount, such as a robot controller or a communication chan-
nel equalizer operating in harsh environments.
RC, as a RNN approach, allows to generalize time-dependent relationships between
the input data set and the outputs without requiring the explicit physics behind
the process. In other words, it can be employed as a black-box model for complex
dynamical systems, which enables to perform prediction, classification and control
tasks in very different fields, such as robotics, computer vision (image processing),
sensor networks, medicine or finances.
The digital hardware designs developed in this thesis allow to address a wide spec-
trum of applications from mobile/autonomous objects to high performance com-
puting co-processing. That is, on the one hand, the proposed RC designs can be
used to efficiently implement a powerful machine learning technique employing few
hardware resources and consuming low power (through fabricated ASICs or low-
cost FPGAs), which can be useful for wearable physiological monitoring systems,
wireless sensor networks or robotics and control applications. On the other hand,
the RC systems may be implemented on high-performance devices (e.g., FPGAs)
to support and accelerate massive computations required, for example, for image,
video or financial data processing.
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10. Conclusions and future work

10.1. Comparative results

Tab. 10.1 and Fig. 10.1 summarize the results obtained for the different machine
learning circuits developed and analyzed in this thesis. The area requirements
(evaluated in terms of the FPGA’s consumed logic elements), processing speed and
prediction accuracy in the Santa Fe benchmark task are presented for the different
reservoir schemes using a common number of 50 nodes. It must be noted that each
design has been elaborated independently and with different characteristics, such as
the nonlinear activation function approach, the precision employed for the variables,
or even the system’s clock frequency.

Implementation scheme Logic elements Teval NMSE
Conventional ESN 19,147 20 ns 0.090

Stochastic ESN 5,306 1.31 ms 0.077
ESN without multipliers 2,497 20 ns 0.092

Delay-based ESN 3,085 2.04 µs 0.090
Single dynamical node RC 1,605 0.87 ms 0.131

Table 10.1.: Comparative results of the implementations proposed throughout the
thesis. We show the hardware resource usage (number of logic elements), the time
required to process each input (Teval), and the accuracy (evaluated through the
NMSE) in the Santa Fe time-series prediction task. All the reservoir networks are
designed containing a total number of 50 nodes.

Firstly, it is worth remembering that a very simple design has been employed to
approximate the sigmoid function in the “conventional ESN”, the “ESN without
multipliers” and the “delay-based ESN” while a more accurate approach was used
in the “stochastic ESN”. Such more-elaborated implementation of the activation
function requires 23 logic elements more than the simpler design. Therefore, the use
of this function in the fully-parallel “conventional ESN” and “ESN without multi-
pliers” would require an additional number of 1,150 logic elements (for a network
with N = 50 nodes), but only 23 additional logic elements for the case of the se-
quential “delay-based ESN” scheme. On the other hand, the use of a more realistic
approximation for the sigmoid function implies a higher prediction accuracy. In
chapter 4 (see the “deterministic” results of Fig. 4.18), it has been shown that the
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use of an exact sigmoid function, even with a truncated 8-bit resolution, leads to
a reduced prediction error of NMSE = 0.044. Thus, a value close to this could
be expected for the deterministic (i.e., non stochastic) “conventional ESN”, “ESN
without multipliers” and “delay-based ESN” designs when using a faithful activation
function.
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Figure 10.1.: Comparison of the resource usage (logic elements; represented with
bars, left axis) and accuracy (NMSE; represented using points, right axis) of
the different implementations proposed throughout the thesis. All designs use a
number of 50 nodes and are evaluated for the Santa Fe time-series prediction task.

Regarding the “stochastic ESN” approach, it must be reminded that its accuracy to
perform a certain task depends on the selected evaluation time. In Tab. 10.1, the val-
ues of the prediction error and Teval have been provided for the case of Teval = 216 Tclk
and assuming a clock frequency of 50 MHz. The error is reduced to NMSE = 0.071
when the evaluation time is increased to Teval = 218 Tclk, which corresponds to 5.24
ms (for a clock frequency of 50 MHz). Likewise, shorter evaluation periods can be
used if a lower accuracy is acceptable, as illustrated in Fig. 4.18. It must also be
noted that the alternative design for the stochastic ESNs presented in chapter 5
(although only evaluated for a reservoir with 20 neurons) allows a significant hard-
ware resource saving (more than 17% of area reduction) while keeping a similar
performance.
As regards the “single dynamical node RC”, it is worth mentioning that a number
of 16 embedded multipliers of 9-bit elements was employed in addition to the in-
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dicated logic elements. The hardware resource of the 16 multipliers approximately
corresponds to 400 logic elements (assuming that one of the factors in the multi-
plications can be set as a constant value). Therefore, the number of logic elements
required by this design would be increased to approximately 2005 if no embedded
multipliers were used (as is the case of the other implementations). On the other
hand, a clock frequency of 200 MHz was used to perform the calculations in this
implementation whereas 50 MHz were used for the other designs. Consequently, the
time period required to process each input sample (0.87 ms) must be multiplied by 4
to be correctly compared with those corresponding to the other approaches. Finally,
it must be noted that most of the variables in this implementation have been limited
to a resolution of 8 bits, but 16-bit numbers were usually employed in the previous
designs. Simulations of the system applying no restriction on the precision of the
variables showed that the error could be decreased down to NMSE = 0.051 for a
high-resolution implementation. Obviously, this would also imply a larger resource
requirement.
Considering the previous remarks, we can state that the ESN without multipliers
is the best implementation in most aspects. Although it requires slightly larger re-
source than the “delay-based ESN” and the “single dynamical node RC”, it offers
the advantage of being a fully-parallel design. The concurrent implementation al-
lows a very high processing speed as the time required to process each input sample
is a single clock cycle (20 ns considering a 50-MHz clock) whereas the sequential
approaches present a much higher latency. Compared to the “conventional ESN”
approach, it offers an enormous resource reduction at the only cost of a very small
accuracy loss. Therefore, it seems to be the ideal design to support real-time ap-
plications requiring very large computational power. Potential examples include
high-volume image/video processing ([JWW15]), real-time time-series prediction
tasks requiring large reservoirs (e.g., financial forecasting, [IJK+07]) and, in gen-
eral, applications where specialized neural hardware can conveniently accelerate the
required computations. In such co-processing scheme, the reservoir network could
be efficiently implemented using a low-cost hardware device while the output layer
would be executed through software in the conventional processor.
The “delay-based ESN”, as a sequential emulation of the conventional parallel de-
sign, allows a significant reduction in the number of logic elements at the cost of a
slower throughput. Note that the evaluation time in Tab. 10.1 is given for a reservoir
with 50 neurons, but it increases linearly with the number of nodes (as indicated
in equation 7.3 and Tab. 7.2). It is worth mentioning that the hardware resources
employed for this system could be further decreased combining the serial process-
ing of the nodes with the “multipler-less” technique of chapter 6. In addition, as
observed in chapter 7, the implementation could be optimized replacing the block
of registers used for the delay line by an internal RAM memory. Therefore, the
“delay-based ESN” represents a highly compact design, which makes it particularly
well suited to autonomous applications requiring low power consumption. Despite
the limited processing speed compared to a concurrent design, this type of imple-
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mentation, even using a low 50-MHz clock frequency, is compatible with numerous
real-time applications, such as control tasks ([LZF06], [ZL08]), medical signal moni-
toring (e.g., for epilepsy, [SAC+10], or arrhythmia detection, [JC13]), wireless sensor
networks ([MP08]), and online handwriting ([PS00]) and speech ([SDVC08]) recog-
nition systems. All these applications usually require sample times no lower than 10
µs. Obviously, higher clock rates (available, e.g., in ASIC-based implementations)
would accordingly increase the system’s processing speed.
The “stochastic ESN” approach, based on stochastic computing, reduces consider-
ably the gate count if compared to the “conventional ESN” design at the cost of a
lower accuracy and longer evaluation time. Stochastic computing makes possible to
trade off the system’s computation time and accuracy without hardware changes.
That is, stochastic implementations can be relatively fast if a certain loss of accu-
racy can be tolerated and, on the other hand, they can be quite accurate by setting
long enough evaluation periods. Thus, the “stochastic ESN” is potentially useful
in specialized systems where low power is required and either limited precision or
speed is acceptable. For the case of time-series prediction tasks, where high pre-
cision is usually targeted, the required evaluation time is too high if compared to
the delay-based and multiplier-less ESN approaches (as shown in Tab. 10.1), and
therefore this approach is not appropriate for certain real-time applications. The
stochastic implementation seems to be more adequate for applications where accu-
racy is not critical. This could be the case of temporal pattern recognition or signal
equalization tasks where the input streams are often corrupted by noise or present
inherent variations. For example, the tasks presented in sec. 9.2 and sec. 9.3 (on-
line handwriting recognition and nonlinear channel equalization) can be performed
relatively well with evaluation times of 210 Tclk or even 28 Tclk. These time periods
correspond to 20.5 µs and 5.1 µs (assuming a 50-MHz clock frequency), which are
comparable to that of the “delay-based ESN” approach.
Nevertheless, the most appealing feature of the stochastic computing design is its
high degree of error tolerance. On the one hand, contrary to the delay-based ap-
proach, the stochastic ESN design performs a parallel execution of all the reservoir
neurons, which represents an advantage since the system (a redundant network
structure) can operate continuously (although with reduced accuracy) in case of
failures in one or some of the network units. On the other hand, stochastic circuits
tolerate environmental non-permanent errors that can seriously affect the behavior
of conventional circuits, where a single bit flip may cause a severe malfunction, but
flipping a few bits of the bit-streams employed for stochastic computing has little im-
pact. The high tolerance to soft errors of the “stochastic ESN” has been illustrated
for a time-series classification task in sec. 9.1. To sum up, the stochastic approach
can be particularly interesting for applications that need to operate in error-prone
environments. Examples of this include mobile robot controllers capable of with-
standing the non-destructive effects of radiation (e.g., for being used in a nuclear
disaster, [dAKS+16]) and spacecraft or satellite electronics (e.g, for equalization of
the communication channel, sec. 9.3).
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The “single dynamical node RC” is based on a serial processing scheme similar to
the “delay-based ESN” design, which makes possible an implementation consuming
very limited resources. In this case, however, the outputs of the virtual nodes are
obtained through the solution of a differential equation after an appropriate number
of integration steps. This not only increases the complexity of the design, but also
implies a slow-down of the information processing compared to the serial ESN im-
plementation. In general, the potential applications of this approach are the same as
for the delay-based ESN. That is to say, electronic systems requiring to implement a
powerful computational intelligence technique with power consumption constraints,
such as wireless sensor networks, predictive controllers and monitoring medical de-
vices. Nevertheless, it must be noted that despite being slower and more complex
to implement, the single dynamical node approach does not outperform (in terms
of accuracy) the simpler delay-based ESN methodology. In conclusion, the digital
hardware realization of this type of system does not appear to be particularly ben-
eficial compared to the other proposed implementations. Such computation scheme
seems to be more adequate for optoelectronic implementations, where a relatively
simple optical reservoir is possible based on the use of an optic fiber and a single op-
toelectronic device. This can be particularly useful when the information is already
in the optical domain as in the case of telecommunications and image processing
applications.

10.2. Conclusions

Today’s society requires smart methodologies for extracting useful information from
the increasingly large amounts of data it generates. Machine learning techniques,
such as artificial neural networks (ANNs) allow automating tasks that are complex
to be programmed with sequential computers and represent a powerful tool for
numerous engineering applications. More specifically, recurrent neural networks
(RNNs), characterized by feedback connections between neurons, are endowed with
the ability to process temporal information.
Since its appearance in the last decade, reservoir computing (RC) has attracted the
attention of many researchers as a practical approach to implement and train RNNs.
By fixing the connections in the recurrent part of the network (referred to as the
“reservoir”), the usually complex training process of RNNs is reduced to a simple
linear regression problem. More specifically, the reservoir represents a dynamical
system that is excited by the input signals. The states of such system are mea-
sured for a number of input samples and properly combined to produce the target
output. The desired task can be a regression (mapping the input sequences onto
real-valued output streams) or a classification of the input time-series. Several ver-
sions with subsequent ramifications have been proposed for the RC technique: echo
state networks (ESNs), liquid state machines (LSMs) and Physical RC approaches,
such as those based on a single dynamical node with delayed feedback. In general,
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RC methods represent a powerful tool for processing sequential data. They have
been successfully used for speech recognition, chaotic time-series series prediction,
robotics, medical, financial and many other applications.
Dedicated hardware realizations of RC can provide high speed gains and power
savings compared to software implementations executed on conventional processors.
However, methods for such hardware implementation still deserve to be extensively
explored. The majority of the previous physical realizations of the RC approach are
based on optoelectronic systems using the single dynamical node approach. Only a
few digital hardware implementations have been proposed, which are mainly focused
on LSMs. To the best of my knowledge, in this thesis I present the first digital
hardware realizations of ESNs and of the single dynamical node reservoir computer.
Six different methodologies have been developed aimed at the efficient implementa-
tion of RC systems in digital hardware: a conventional reference ESN design, two
approaches for ESNs based on stochastic computing, a multiplier-less ESN scheme,
a sequentially operated ESN, and the single dynamical node RC approach. The
different proposed designs have been implemented in reconfigurable devices showing
their functionality and evaluating their performance for time-series prediction and
classification tasks.
The results of the various implementations have been analyzed and compared for
a benchmark task discussing the advantages and shortcomings of each approach
and their suitability for particular applications. This comparison may be useful
for potential users of the presented designs to select the most adequate technique
according to their specific needs.
To facilitate the usually long development process of hardware implementations, a
detailed information of the proposed designs has been provided. In most cases, the
corresponding VHDL hardware description codes are given. Such presented codes
can be easily adapted to different network configurations with the desired number of
nodes and connection weights. Software programs (using the MATLAB language)
were employed to generate the VHDL codes of the designs tested throughout the
thesis. Such a tool is able to automatically generate a text file containing the VHDL
code of the desired reservoir. This way, the hardware design and implementation
cycle are accelerated, especially for networks with high number of nodes and when
different configurations must be realized. These programs may be easily elaborated
(by any potential user of the suggested implementations) by just reproducing the
structural codes provided in Appendix A for the desired network configuration.
Similarly, different programs (also using the MATLAB language) were developed for
conveniently emulating by software the various hardware implementations, which
is useful to adequately train the systems and to evaluate them prior to hardware
implementation.
The proposed hardware realizations represent an effective solution for applications
where software implementations are not satisfactory, such as those demanding real-
time processing capabilities and/or involving power restrictions. In addition, some of
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the hardware designs offer a higher reliability than single processor implementations,
which may be of interest for safety-critical applications or for those that need to be
operated in harsh environments. All in all, the dedicated hardware realizations
developed in this thesis broaden the scope of application of the RC approach.
The usefulness of the implementations has been highlighted applying a selected de-
sign to perform different tasks of practical relevance, such as online handwriting
recognition and the equalization of a communication channel. Furthermore, nu-
merous examples of potential application areas of the developed systems have been
described.

10.3. Future work

Throughout the present thesis, I have presented the first digital hardware realiza-
tions of the ESN model and of the single dynamical node RC system. For the ESN
implementations, I have selected a reservoir network with simple cyclic structure
(the SCR), which performs with comparable performance to the classical random
architecture while simplifying the design. Nevertheless, the several approaches pro-
posed for reservoir implementation could be extended to realize other architectures,
such as the cycle reservoir with jumps (CRJ, [RT12]) and the adjacent-feedback
loop reservoir (ALR, [SCL+12b]), which are variations of the SCR construction that
allow a superior performance at the cost of slightly higher complexity.
Another interesting variation of the classical ESN consists in a network of multiple
reservoirs sparsely interconnected, which has been shown to be more accurate than
conventional single-reservoir ESNs ([XYH07], [DZ07], [NR15]). A similar approach
(named “deep reservoir computing network” in analogy to deep neural networks,
[JWW15]) makes use of multiple layers of reservoirs, which also enables discovering
features on different time scales ([Jae07a]) and presents outstanding performance in
a variety of tasks ([PDW14], [JWW15]). Since both methods often require a huge
number of nodes (see, e.g., [IJK+07] and [JWW15], where approximately 50,000
neurons are employed), a hardware implementation could be particularly useful to
accelerate the computations. The multiplier-less ESN design seems a good can-
didate to efficiently realize this type of massive networks with multiple reservoirs.
Another feasible option could be the use of a delay-based ESN sequential structure
to implement each one of the multiple sub-reservoirs so that sequential and parallel
processing would be combined in the general network (sequential computations to
evaluate the nodes within each sub-reservoir and parallel assessment of the different
sub-reservoirs).
The developed implementations (or variations of them, such as the mentioned en-
sembles of reservoir networks) may be employed in a wide spectrum of applications
as described in chapter 9. Financial time-series forecasting and image classification
tasks (e.g., of handwritten digits) seem particularly interesting due to their appar-
ent suitability to be performed by massive reservoir networks as illustrated by the
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promising results reported in [IJK+07] and [JWW15]. Similarly, RC could be useful
in the field of renewable energies. For example, it is worth investigating RC systems
for the prediction of wind and solar power generation ([COA+16a]), which in turn
may be used to estimate the evolution of energy prices. On the other hand, the
presented designs could be applied to the field of brain activity monitoring for the
real-time detection of epileptic seizures using portable devices, which require low-
power hardware designs to ensure an extended battery lifetime. Although several
hardware implementations have already been developed for the EEG signal process-
ing and automated real-time detection of seizure events, the prediction of epileptic
seizures (even just a few minutes before occurring) is still an open problem, which
makes this application very appealing.
Another possible future line of work is the hardware implementation of the RC
training algorithm. All the FPGA-based RC systems presented in this thesis use
off-chip learning. That is to say, the training of the neural network is performed
externally in a PC, and then the FPGA is configured with the corresponding con-
nection weights. The resulting system can be used as a hardware accelerator or as
an alternative platform allowing power/cost reduction. Even though RC is charac-
terized by a simple training procedure that can be usually performed in a short time
by means of a conventional processor, an on-chip learning implementation including
both the training and execution phases of the algorithm may be of high interest so
that the system itself could be re-trained and adapted to the changing environment
if necessary. Several works have already presented FPGA implementations of the
training algorithms for different types of neural networks, such as the widely used
backpropagation approach ([OZJM+16]). In the case of RC systems, the training
consists in solving a least squares regression problem as described in sec. 2.3.1.3.
FPGA-based architectures implementing the least squares method to address linear
regression problems with massive data have already been proposed ([VMB15]), and
therefore the joined hardware realization of the training and execution of RC models
is feasible.
Finally, it is worth mentioning that although the proposed digital hardware designs
have been specifically conceived to realize RC systems, they could be adapted to im-
plement other neural network approaches. For example, extreme learning machines
(ELMs) follow a similar concept to RC representing a suite of machine and biological
learning techniques in which hidden neurons do not need to be tuned ([HWL11]).
In this case, though, the networks do not present recurrences. Such approach has
been shown powerful in numerous applications and is receiving much attention in
recent years (see, e.g., the journal special issues [CHK+13] and [MH16] dedicated to
this topic). Given the similarities between ELMs and RC, our RC hardware designs
could be easily adapted to execute ELM algorithms.
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A. VHDL codes of the digital
implementations

A.1. Conventional ESN implementation

VHDL code describing the proposed ESN conventional implementation with 50 neu-
rons. The components employed in the neuron design are a 16-bit register (ffD_16b,
used to hold the value of the neuron states so that they can be used by another neu-
ron on the next time step), and the nonlinear function block, f_tanh_aprox_3_segments,
described in Algorithm 3.2.
LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;
USE i e e e . s td_log i c_ar i th . a l l ;
USE i e e e . s td_log ic_s igned . a l l ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− c l a s s i c a l SCR implementation with 50 neurons
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ENTITY conventional_SCR_network_50n IS

PORT ( input : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− e x t e r n a l input ( s0 . 1 5 )
c lk , r e s e t : IN STD_LOGIC;
r_input , v1_input : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− weights r and v ( s0 . 1 5 )
out_x1 : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ; −− neuron outputs x1 . . . x50 ( s0 . 1 5 )
out_x2 : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
. . .
out_x50 : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ;

END ENTITY conventional_SCR_network_50n ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ARCHITECTURE net OF conventional_SCR_network_50n IS

component ffD_16b IS −− 16−b i t r e g i s t e r
PORT ( input : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

c lk , r e s e t : IN STD_LOGIC;
output : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ;

END component ;

component f_tanh_approx_3_segments IS −− the a c t i v a t i o n f u n c t i o n
PORT ( x : IN STD_LOGIC_VECTOR (16 DOWNTO 0 ) ; −− s1 . 15

f : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ; −− s0 . 15
END component ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SIGNAL r : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− i n t e r n e u r o n a l connect ion weight ( s0 . 1 5 )
SIGNAL v1 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− input connect ion weights v1 . . . v50 ( s0 . 1 5 )
SIGNAL v2 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −−
. . .

SIGNAL v50 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− input connect ion weights ( s0 . 1 5 )

SIGNAL prod11 , prod12 : STD_LOGIC_VECTOR (31 DOWNTO 0 ) ; −− product r e s u l t s ( s1 . 3 0 )
SIGNAL prod21 , prod22 : STD_LOGIC_VECTOR (31 DOWNTO 0 ) ; −−
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. . .
SIGNAL prod501 , prod502 : STD_LOGIC_VECTOR (31 DOWNTO 0 ) ; −− s1 . 30

SIGNAL prod11b , prod12b : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ; −− t runcated products ( s1 . 1 5 )
SIGNAL prod21b , prod22b : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ;
. . .

SIGNAL prod501b , prod502b : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ;

SIGNAL sum1 : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ; −− ad d i t i on r e s u l t s ( s1 . 1 5 )
SIGNAL sum2 : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ;
. . .

SIGNAL sum50 : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ;

−− neuron s t a t e s at cur rent and prev ious s tep ( s0 . 1 5 ) :
SIGNAL x1 , x1_anter ior : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
SIGNAL x2 , x2_anter ior : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
. . .

SIGNAL x50 , x50_anter ior : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

SIGNAL v2_input : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− s0 . 15
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

begin

v2_input <= NOT( v1_input ) + ’ 1 ’ ; −− negat ive va lue o f the input weight v

−− the input connect ion weights (+v or −v ) are a s s i gned randomly f o r each neuron
v1 (15 DOWNTO 0) <= v1_input ; −− v1=+v
v2 (15 DOWNTO 0) <= v1_input ; −− v1=+v
. . .
v50 (15 DOWNTO 0) <= v2_input ; −− v1=−v

−− the i n t e r n e u r o n a l connect ion i s the same f o r a l l neurons ( r )
r (15 DOWNTO 0) <= r_input ;

−− computation o f the neuron 1
−− f i r s t product :
prod11 (31 DOWNTO 0) <= input ∗ v1 ;
prod11b (16 DOWNTO 0) <= prod11 (31 DOWNTO 1 5 ) ; −− t runcated value
−− second product :
prod12 (31 DOWNTO 0) <= x50_anter ior ∗ r ;
prod12b (16 DOWNTO 0) <= prod12 (31 DOWNTO 1 5 ) ; −− t runcated value
−− ad d i t i on o f the two prev ious terms :
sum1 <= prod11b + prod12b ;
−− assessment o f the a c t i v a t i o n f u n c t i o n :
f_tanh1 : f_tanh_approx_3_segments PORT MAP(sum1 , x1 ) ;
−− the 16−b i t r e g i s t e r s ho lds the neuron output to be used in the next time step :
f f 1 : ffD_16b PORT MAP( x1 , c lk , r e s e t , x1_anter ior ) ;

−− computation o f the neuron 2
−− f i r s t product :
prod21 (31 DOWNTO 0) <= input ∗ v2 ;
prod21b (16 DOWNTO 0) <= prod21 (31 DOWNTO 1 5 ) ; −− t runcated value
−− second product :
prod22 (31 DOWNTO 0) <= x1_anter ior ∗ r ;
prod22b (16 DOWNTO 0) <= prod22 (31 DOWNTO 1 5 ) ; −− t runcated value
−− ad d i t i on o f the two prev ious terms :
sum2 <= prod21b + prod22b ;
−− assessment o f the a c t i v a t i o n f u n c t i o n :
f_tanh2 : f_tanh_approx_3_segments PORT MAP(sum2 , x2 ) ;
−− the 16−b i t r e g i s t e r s ho lds the neuron output to be used in the next time step :
f f 2 : ffD_16b PORT MAP( x2 , c lk , r e s e t , x2_anter ior ) ;

. . .

−− computation o f the neuron 50
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−− f i r s t product :
prod501 (31 DOWNTO 0) <= input ∗ v50 ;
prod501b (16 DOWNTO 0) <= prod501 (31 DOWNTO 1 5 ) ; −− t runcated value
−− second product :
prod502 (31 DOWNTO 0) <= x49_anter ior ∗ r ;
prod502b (16 DOWNTO 0) <= prod502 (31 DOWNTO 1 5 ) ; −− t runcated value
−− ad d i t i on o f the two prev ious terms :
sum50 <= prod501b + prod502b ;
−− assessment o f the a c t i v a t i o n f u n c t i o n :
f_tanh50 : f_tanh_approx_3_segments PORT MAP( sum50 , x50 ) ;
−− the 16−b i t r e g i s t e r s ho lds the neuron output to be used in the next time step :
f f 5 0 : ffD_16b PORT MAP( x50 , c lk , r e s e t , x50_anter ior ) ;

−− a s s i g n a t i o n o f the neuron s t a t e s as network outputs
out_x1 <= x1 ;
out_x2 <= x2 ;
. . .
out_x50 <= x50 ;

END net ;

A.2. Stochastic ESN implementation

A.2.1. 2-input sigmoid neuron

VHDL code describing the proposed SC-based 2-input sigmoid neuron implementa-
tion illustrated in Fig. 4.9. In this code, the scsl_2in_adder component performs
the stochastic addition operation by means of a multiplexer and a binary counter
as shown in Fig. 4.4(c). The P2B block, p2b_16bits, is described in sec. 4.2.2.2. The
b2p_16bits_intern component is just a comparator that provides a “1” when the first
input is greater than the second one, and a “0” otherwise. The Activation_function
component performs several actions over the binary input signal. Firstly, it converts
the binary magnitude to its corresponding two’s complement format, the resulting
value is then multiplied by 2 (this can be performed shifting the binary number one
position to the left) and the hyperbolic tangent function is applied. The output of
this block is given both as a binary value according to the two’s complement format
with 8-bit precision and according to the stochastic bipolar notation using 16-bit
precision.

LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;
USE i e e e . s td_log i c_ar i th . a l l ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− 2− input s t o c h a s t i c s igmoid neuron
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ENTITY stochast ic_sigmoid_neuron IS

PORT ( in_p : IN STD_LOGIC_VECTOR (1 DOWNTO 0 ) ;
w1 , w2 : IN STD_LOGIC;

rnd : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
c lk , r e s e t : IN STD_LOGIC;
out_neuron_8b_Ca2 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0 ) ;
out_p_neuron : OUT STD_LOGIC) ;
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END ENTITY stochast ic_sigmoid_neuron ;

ARCHITECTURE bipolar_2in_neuron OF stochast ic_sigmoid_neuron IS
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−− SIGNALS DEFINITION −−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SIGNAL in_p_add : STD_LOGIC_VECTOR (1 DOWNTO 0 ) ;
SIGNAL lin_p , enable_p2b : STD_LOGIC;
SIGNAL eval_period , l in_bin , out_neuron_bin : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−− COMPONENTS DEFINITION −−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMPONENT scsl_2in_adder

PORT ( in_p : IN STD_LOGIC_VECTOR (1 DOWNTO 0 ) ;
c lk , r e s e t : IN STD_LOGIC;
out_p : OUT STD_LOGIC) ;

END COMPONENT;

COMPONENT p2b_16bits
PORT ( eva luat ion_per iod : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

stoch_in : IN STD_LOGIC;
c lk , r e s e t , en : IN STD_LOGIC;
binary_out : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ;

END COMPONENT;

COMPONENT b2p_16bits_intern IS
PORT ( binary_in : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

rnd : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
stoch_out : OUT STD_LOGIC) ;

END COMPONENT;

COMPONENT Act ivat ion_funct ion i s
PORT ( input : in STD_LOGIC_VECTOR (15 downto 0 ) ;

out_Ca2 : out STD_LOGIC_VECTOR (7 downto 0 ) ;
out_bin : out STD_LOGIC_VECTOR (15 downto 0 ) ) ;

end COMPONENT;

BEGIN
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− LINEAR PART OF THE NEURON −−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
in_p_add (0) <= ( in_p (0) XNOR w1 ) ;
in_p_add (1) <= ( in_p (1) XNOR w2 ) ;

add_1 : scs l_2in_adder PORT MAP( in_p_add , c lk , r e s e t , l in_p ) ;

−−−−−−−−−−−−−−−−−−−−−−−−
−− P2B conver s i on −−−
−−−−−−−−−−−−−−−−−−−−−−−−
enable_p2b <= ’1 ’;
eva l_per iod (15 DOWNTO 0) <= x "FFFF " ;
p2b_0 : p2b_16bits PORT MAP( eval_period , lin_p , c lk , r e s e t , enable_p2b , l in_bin ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− ACTIVATION FUNCTION BLOCK −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a c t i v a t i o n 1 : Act ivat ion_funct ion PORT MAP( l in_bin , out_neuron_8b_Ca2 , out_neuron_bin ) ;

−−−−−−−−−−−−−−−−−−−−−−−−
−− B2P conver s i on −−−
−−−−−−−−−−−−−−−−−−−−−−−−
b2p_1 : b2p_16bits_intern PORT MAP( out_neuron_bin , rnd , out_p_neuron ) ;

END bipolar_2in_neuron ;
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A.2.2. Neural network

VHDL code describing the proposed SC-based ESN implementation (Fig. 4.12) with
20 neurons. The code for the stochastic_sigmoid_neuron component is presented
above. The B2P converter, b2p_16bits, is described in sec. 4.2.2.2, and the LFSR
(lfsr_26bits) in Algorithm 4.2.

LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;
USE i e e e . s td_log i c_ar i th . a l l ;
USE i e e e . s td_log ic_s igned . a l l ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− 20−neuron s t o c h a s t i c ESN with c y c l i c a r c h i t e c t u r e (SCR)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ENTITY stochastic_ESN_20_neurons IS

PORT ( input_p : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
v : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
r : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
c lk , r e s e t : IN STD_LOGIC;
out_p_1 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0 ) ;
out_p_2 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0 ) ;
. . .
out_p_20 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0 ) ;
readout : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ;

END ENTITY stochastic_ESN_20_neurons ;

ARCHITECTURE stoch_network OF stochastic_ESN_20_neurons IS
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−− SIGNALS DEFINITION −−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SIGNAL enable_b2p : STD_LOGIC;
SIGNAL seed0 , seed1 , seed2 , seed3 : STD_LOGIC_VECTOR (25 DOWNTO 0 ) ;
SIGNAL rand : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
SIGNAL input_p_stoch , v_stoch , r_stoch , v1_stoch , v2_stoch : STD_LOGIC;
SIGNAL w1_1 , w1_2 , . . . , w1_20 , w2 : STD_LOGIC;
SIGNAL pulsed_p_1 , pulsed_p_2 , . . . , pulsed_p_20 : STD_LOGIC_VECTOR (1 DOWNTO 0 ) ;
SIGNAL out11p , out22p , . . . , out2020p : STD_LOGIC;
SIGNAL out_p_1b , out_p_2b , . . . , out_p_20b : STD_LOGIC_VECTOR (7 DOWNTO 0 ) ;
SIGNAL w_out_1 , w_out_2 , . . . , w_out_20 : STD_LOGIC_VECTOR (7 DOWNTO 0 ) ;
SIGNAL readout0 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

TYPE weights IS ARRAY (1 TO 20) OF STD_LOGIC_VECTOR(7 DOWNTO 0 ) ;
TYPE inputs IS ARRAY (1 TO 20) OF STD_LOGIC_VECTOR(7 DOWNTO 0 ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−− COMPONENTS DEFINITION −−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMPONENT b2p_16bits

PORT ( binary_in : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
c lk , r s t , en : IN STD_LOGIC;
seed : IN STD_LOGIC_VECTOR (25 DOWNTO 0 ) ;
stoch_out : OUT STD_LOGIC) ;

END COMPONENT;

COMPONENT l f s r _ 2 6 b i t s IS
PORT ( clk , r e s e t , enable : IN STD_LOGIC;

seed : IN STD_LOGIC_VECTOR (25 DOWNTO 0 ) ;
pseudorandom_out : OUT STD_LOGIC_VECTOR (15 DOWNTO 0) ) ;

END COMPONENT;

COMPONENT stochast ic_sigmoid_neuron IS
PORT ( in_p : IN STD_LOGIC_VECTOR (1 DOWNTO 0 ) ;
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w1 , w2 : IN STD_LOGIC;
rnd : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
c lk , r e s e t : IN STD_LOGIC;
out_neuron_8b_Ca2 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0 ) ;
out_p_neuron : OUT STD_LOGIC) ;

END COMPONENT;

BEGIN
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− B2P conver s i on ( e x t e r n a l input and weights)−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
enable_b2p <= ’1 ’;

seed0 (25 DOWNTO 0) <="00101011101111011100110001";
seed1 (25 DOWNTO 0) <="00000000000000000000111110";
seed2 (25 DOWNTO 0) <="00000100000000100101010010";
seed3 (25 DOWNTO 0) <="00110101000001010110110110";

l f s r : l f s r _ 2 6 b i t s PORT MAP( clk , r e s e t , enable_b2p , seed0 , rand ) ;

b2p_1 : b2p_16bits PORT MAP( input_p , c lk , r e s e t , enable_b2p , seed1 , input_p_stoch ) ;
b2p_2 : b2p_16bits PORT MAP(v , c lk , r e s e t , enable_b2p , seed2 , v_stoch ) ;
b2p_3 : b2p_16bits PORT MAP( r , c lk , r e s e t , enable_b2p , seed3 , r_stoch ) ;

v1_stoch <= v_stoch ;
v2_stoch <= NOT( v_stoch ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− d i s t r i b u t i o n o f weight va lue s f o r each neuron −−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− random d i s t r i b u t i o n o f the f i r s t weight va lue s
w1_1 <= v1_stoch ;
w1_2 <= v2_stoch ;
w1_3 <= v2_stoch ;
. . .
w1_20 <= v1_stoch ;

−− constant value o f the second weight f o r a l l neurons
w2 <= r_stoch ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− d e f i n i t i o n o f neuron connect ion s i g n a l s −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
pulsed_p_1 (0) <= input_p_stoch ;
pulsed_p_1 (1) <= out2020p ;

pulsed_p_2 (0) <= input_p_stoch ;
pulsed_p_2 (1) <= out11p ;

pulsed_p_3 (0) <= input_p_stoch ;
pulsed_p_3 (1) <= out22p ;

. . .

pulsed_p_20 (0 ) <= input_p_stoch ;
pulsed_p_20 (1 ) <= out1919p ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− d e c l a r a t i o n o f neurons with t h e i r proper connect i ons −−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
neuron_1 : stochast ic_sigmoid_neuron

PORT MAP( pulsed_p_1 , w1_1 , w2 , rand , c lk , r e s e t , out_p_1b , out11p ) ;

neuron_2 : stochast ic_sigmoid_neuron
PORT MAP( pulsed_p_2 , w1_2 , w2 , rand , c lk , r e s e t , out_p_2b , out22p ) ;
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. . .

neuron_20 : stochast ic_sigmoid_neuron
PORT MAP( pulsed_p_20 , w1_20 , w2 , rand , c lk , r e s e t , out_p_20b , out2020p ) ;

out_p_1 <= out_p_1b ;
out_p_2 <= out_p_2b ;
. . .
out_p_20 <= out_p_20b ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−− OUTPUT LAYER −−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− output layer ’ s weight va lue s ( two ’ s complement format )
w_out_1(7 DOWNTO 0) <= x "C0 " ;
w_out_2(7 DOWNTO 0) <= x "0E " ;
. . .
w_out_20(7 DOWNTO 0) <= x "FC" ;

−− mult ip ly and accumulate c i r c u i t to c a l c u l a t e the f i n a l output as a weighted
−− ad d i t i on o f the i n d i v i d u a l neuron s t a t e s
p r o c e s s ( c l k )
VARIABLE prod , acc : STD_LOGIC_VECTOR(15 DOWNTO 0 ) ;
VARIABLE weight : weights ;
VARIABLE input : inputs ;

BEGIN

weight (1 ) := w_out_1 ;
weight (2 ) := w_out_2 ;
. . .
weight (20) := w_out_20 ;

input (1 ) := out_p_1b ;
input (2 ) := out_p_2b ;
. . .
input (20) := out_p_20b ;

i f ( r e s e t = ’1 ’) then
acc := x " 0 0 0 0 " ;

end i f ;

L1 : FOR j IN 1 TO 20 LOOP
prod := input ( j )∗ weight ( j ) ;
acc := acc + prod ;

END LOOP L1 ;

readout0 <= acc ;

end p r o c e s s ;

readout <= readout0 ;

END stoch_network ;

A.3. Proposed SSN implementation

VHDL code describing the proposed variant of the SSN model (Fig. 5.5), which
represents a version of the previous SC-based sigmoid neuron (Fig. 4.9) where the
nonlinear function is implemented by means of a simple OR gate of the weighted
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inputs. Note that here, a P2B block of 20 bits is used (p2b_20bits), which allows
a higher precision of the stochastic computations. In particular, the evaluation
period is set to Teval = (219 − 1) · Tclk. The neuron’s binary output is given (in the
two’s complement format) with a precision of 16 bits (the less significant bits are
disregarded).

LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;
USE i e e e . s td_log i c_ar i th . a l l ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− 2− input s t o c h a s t i c " s p i k i n g " neuron
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ENTITY stochast ic_or_neuron IS

PORT ( in_p : IN STD_LOGIC_VECTOR (1 DOWNTO 0 ) ;
w1 , w2 : IN STD_LOGIC;

rnd : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
c lk , r e s e t : IN STD_LOGIC;
out_neuron_16b_Ca2 : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
out_p_neuron : OUT STD_LOGIC) ;

END ENTITY stochast ic_or_neuron ;

ARCHITECTURE bipolar_2in_neuron OF stochast ic_or_neuron IS
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−− SIGNALS DEFINITION −−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SIGNAL in_p_or : STD_LOGIC_VECTOR (1 DOWNTO 0 ) ;
SIGNAL out_p_or , enable_p2b : STD_LOGIC;
SIGNAL eval_period , out_or_bin , out_neuron_bin : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−− COMPONENTS DEFINITION −−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
COMPONENT p2b_20bits

PORT ( eva luat ion_per iod : IN STD_LOGIC_VECTOR (19 DOWNTO 0 ) ;
stoch_in : IN STD_LOGIC;
c lk , r e s e t , en : IN STD_LOGIC;
binary_out : OUT STD_LOGIC_VECTOR (19 DOWNTO 0 ) ) ;

END COMPONENT;

COMPONENT b2p_16bits_intern IS
PORT ( binary_in : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

rnd : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
stoch_out : OUT STD_LOGIC) ;

END COMPONENT;

BEGIN
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− MULTIPLICATION OF THE INPUTS BY THEIR CORRESPONDING WEIGHTS −−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
in_p_or (0 ) <= ( in_p (0) XNOR w1 ) ;
in_p_or (1 ) <= ( in_p (1) XNOR w2 ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− NONLINEAR FUNCTION (OR GATE) −−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
out_p_or <= in_p_or (0 ) OR in_p_or ( 1 ) ;

−−−−−−−−−−−−−−−−−−−−−−−−
−− P2B conver s i on −−−
−−−−−−−−−−−−−−−−−−−−−−−−
enable_p2b <= ’ 1 ’ ;
eva l_per iod (19 DOWNTO 0) <= x "7FFFF " ;
p2b_0 : p2b_20bits PORT MAP( eval_period , out_p_or , c lk , r e s e t , enable_p2b , out_or_bin ) ;
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− CONVERSION FROM STOCHASTIC BIPOLAR CODING TO TWO’ S COMPLEMENT NOTATION −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− the v a r i a b l e ’ s p r e c i s i o n i s reduced to 16 b i t s d i s r e g a r d i n g the l e s s s i g n i f i c a n t b i t s :
out_neuron_bin <= out_or_bin (18 DOWNTO 3 ) ;

out_neuron_16b_Ca2 (15) <= NOT out_neuron_bin ( 1 5 ) ;
out_neuron_16b_Ca2 (14 DOWNTO 0) <= out_neuron_bin (14 DOWNTO 0 ) ;

−−−−−−−−−−−−−−−−−−−−−−−−
−− B2P conver s i on −−−
−−−−−−−−−−−−−−−−−−−−−−−−
b2p_1 : b2p_16bits_intern PORT MAP( out_neuron_bin , rnd , out_p_neuron ) ;

END bipolar_2in_neuron ;

A.4. ESN implementation without multipliers

VHDL code describing the proposed ESN hardware realization where the multipli-
cations can be simply performed through shift-and-add operations (by virtue of the
low resolution considered for the weights). The size of the system is fixed to N = 50
neurons and the network is configured with weight values v = ±0.875 and r = 0.875.
The components employed in the neuron design are a 16-bit register (ffD_16b, used
to hold the value of the neuron states so that they can be used by another neuron on
the next time step), and the nonlinear function block, f_tanh_aprox_3_segments,
described in Algorithm 3.2.

LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;
USE i e e e . s td_log i c_ar i th . a l l ;
USE i e e e . s td_log ic_s igned . a l l ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− c l a s s i c a l SCR implementation " without " m u l t i p l i e r s (50 neurons )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ENTITY multiplierless_SCR_network_50n IS

PORT ( input : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− e x t e r n a l input ( s0 . 1 5 )
c lk , r e s e t : IN STD_LOGIC;
out_x1 : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ; −− neuron outputs x1 . . . x50 ( s0 . 1 5 )
out_x2 : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
. . .
out_x50 : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ;

END ENTITY multiplierless_SCR_network_50n ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ARCHITECTURE net OF multiplierless_SCR_network_50n IS

component ffD_16b IS −− 16−b i t r e g i s t e r
PORT ( input : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

c lk , r e s e t : IN STD_LOGIC;
output : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ;

END component ;

component f_tanh_approx_3_segments IS −− the a c t i v a t i o n f u n c t i o n
PORT ( x : IN STD_LOGIC_VECTOR (16 DOWNTO 0 ) ; −− s1 . 15

f : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ; −− s0 . 15
END component ;
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SIGNAL prod11 , prod12 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− product r e s u l t s ( s0 . 1 5 )
SIGNAL prod21 , prod22 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −−
. . .

SIGNAL prod501 , prod502 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

SIGNAL prod11b , prod12b : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ; −− products with s1 .15 format
SIGNAL prod21b , prod22b : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ;
. . .

SIGNAL prod501b , prod502b : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ;

SIGNAL sum1 : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ; −− ad d i t i on r e s u l t s ( s1 . 1 5 )
SIGNAL sum2 : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ;
. . .

SIGNAL sum50 : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ;

−− neuron s t a t e s at cur rent and prev ious s tep ( s0 . 1 5 ) :
SIGNAL x1 , x1_anter ior : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
SIGNAL x2 , x2_anter ior : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
. . .

SIGNAL x50 , x50_anter ior : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

begin

−− COMPUTATION OF THE NEURON 1
−− f i r s t product ( input1 ∗ v ; with v=−0.875)
prod11 (15 DOWNTO 0) <= NOT ( t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( input (15 DOWNTO 0)) s ra 0) +

NOT ( t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( input (15 DOWNTO 0)) s ra 3 ) ) + ’ 1 ’ ) + ’ 1 ’ ;

−− second product ( input2 ∗ r ; with r =0.875)
prod12 (15 DOWNTO 0) <= t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( x50_anter ior (15 DOWNTO 0)) s ra 0)

+ NOT ( t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( x50_anter ior (15 DOWNTO 0)) s ra 3 ) ) + ’ 1 ’ ;

−− conver s i on o f products from s0 .15 to s1 . 15 notat ion
prod11b (16) <= prod11 ( 1 5 ) ;
prod11b (15 DOWNTO 0) <= " 0 " & prod11 (14 DOWNTO 0) when ( prod11 (15)= ’0 ’ ) e l s e

" 1 " & prod11 (14 DOWNTO 0 ) ;

prod12b (16) <= prod12 ( 1 5 ) ;
prod12b (15 DOWNTO 0) <= " 0 " & prod12 (14 DOWNTO 0) when ( prod12 (15)= ’0 ’ ) e l s e

" 1 " & prod12 (14 DOWNTO 0 ) ;

−− ad d i t i on o f the two prev ious terms
sum1 <= prod11b + prod12b ;

−− assessment o f the a c t i v a t i o n f u n c t i o n
f_tanh1 : f_tanh_approx_3_segments PORT MAP(sum1 , x1 ) ;

−− the 16−b i t r e g i s t e r ho lds the neuron output to be used in the next time step
f f 1 : ffD_16b PORT MAP( x1 , c lk , r e s e t , x1_anter ior ) ;

−− COMPUTATION OF THE NEURON 2
−− f i r s t product ( input1 ∗ v ; with v=+0.875)
prod21 (15 DOWNTO 0) <= t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( input (15 DOWNTO 0)) s ra 0) +

NOT ( t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( input (15 DOWNTO 0)) s ra 3 ) ) + ’ 1 ’ ;

−− second product ( input2 ∗ r ; with r =0.875)
prod22 (15 DOWNTO 0) <= t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( x1_anter ior (15 DOWNTO 0)) s ra 0)

+ NOT ( t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( x1_anter ior (15 DOWNTO 0)) s ra 3 ) ) + ’ 1 ’ ;

−− conver s i on o f products from s0 .15 to s1 . 15 notat ion
prod21b (16) <= prod21 ( 1 5 ) ;
prod21b (15 DOWNTO 0) <= " 0 " & prod21 (14 DOWNTO 0) when ( prod21 (15)= ’0 ’ ) e l s e

" 1 " & prod21 (14 DOWNTO 0 ) ;
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prod22b (16) <= prod22 ( 1 5 ) ;
prod22b (15 DOWNTO 0) <= " 0 " & prod22 (14 DOWNTO 0) when ( prod22 (15)= ’0 ’ ) e l s e

" 1 " & prod22 (14 DOWNTO 0 ) ;

−− ad d i t i on o f the two prev ious terms
sum2 <= prod21b + prod22b ;

−− assessment o f the a c t i v a t i o n f u n c t i o n
f_tanh2 : f_tanh_approx_3_segments PORT MAP(sum2 , x2 ) ;

−− the 16−b i t r e g i s t e r ho lds the neuron output to be used in the next time step
f f 2 : ffD_16b PORT MAP( x2 , c lk , r e s e t , x2_anter ior ) ;

. . .

−− COMPUTATION OF THE NEURON 50
−− f i r s t product ( input1 ∗ v ; with v=+0.875)
prod501 (15 DOWNTO 0) <= t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( input (15 DOWNTO 0)) s ra 0) +

NOT ( t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( input (15 DOWNTO 0)) s ra 3 ) ) + ’ 1 ’ ;

−− second product ( input2 ∗ r ; with r =0.875)
prod502 (15 DOWNTO 0) <= t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( x49_anter ior (15 DOWNTO 0)) s ra 0)

+ NOT ( t o _ s t d l o g i c v e c t o r ( to_bi tvec tor ( x49_anter ior (15 DOWNTO 0)) s ra 3 ) ) + ’ 1 ’ ;

−− conver s i on o f products from s0 .15 to s1 . 15 notat ion
prod501b (16) <= prod501 ( 1 5 ) ;
prod501b (15 DOWNTO 0) <= " 0 " & prod501 (14 DOWNTO 0) when ( prod501 (15)= ’0 ’ ) e l s e

" 1 " & prod501 (14 DOWNTO 0 ) ;

prod502b (16) <= prod502 ( 1 5 ) ;
prod502b (15 DOWNTO 0) <= " 0 " & prod502 (14 DOWNTO 0) when ( prod502 (15)= ’0 ’ ) e l s e

" 1 " & prod502 (14 DOWNTO 0 ) ;

−− ad d i t i on o f the two prev ious terms
sum50 <= prod501b + prod502b ;

−− assessment o f the a c t i v a t i o n f u n c t i o n
f_tanh50 : f_tanh_approx_3_segments PORT MAP( sum50 , x50 ) ;

−− the 16−b i t r e g i s t e r ho lds the neuron output to be used in the next time step
f f 5 0 : ffD_16b PORT MAP( x50 , c lk , r e s e t , x50_anter ior ) ;

−− a s s i g n a t i o n o f the neuron s t a t e s as network outputs
out_x1 <= x1 ;
out_x2 <= x2 ;
. . .
out_x50 <= x50 ;

END net ;

A.5. Delay-based ESN implementation

The following VHDL code describes the proposed ESN hardware realization where
the nodes are processed sequentially (each neuron is computed after another). The
size of the system is fixed to N = 200 neurons and the reservoir weights v and r
are given as generic values (input signals: v1_input and r_input, respectively).
The components employed in the neuron design are 16-bit and 20-bit registers
(ffD_16b_en and ffD_20b_en), the nonlinear function block f_tanh_aprox_3_segments
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(described in Algorithm 3.2), 2-bit and 12-bit counters (counter2b and counter12b).
Note that the registers (used to hold the value of the neuron states so that they
can be used for future evaluations) include an enable signal stating when the input
value must be stored. In addition, the network’s general signal rst_ff is employed
to set all the registers to an initial zero value before the first input sample is sent to
the system.
The code describes the circuit of Fig. 7.4 except for the RAM memory providing the
external input stream driving the network (u(t)) and the counter stating the sample
(j) that such memory must supply each time step (τ). These two components
have been implemented separately from the network. The output layer of Fig. 7.6
(configured with the specific weights obtained from the training process) is included
in the design.

LIBRARY i e e e ;
USE i e e e . std_logic_1164 . a l l ;
USE i e e e . s td_log i c_ar i th . a l l ;
USE i e e e . s td_log ic_s igned . a l l ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− c l a s s i c a l SCR s e q u e n t i a l implementation with 200 neurons
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ENTITY sequential_SCR_network_200n IS

PORT ( input : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− e x t e r n a l input ( s0 . 1 5 )
c lk , r e s e t , r s t _ f f , en : IN STD_LOGIC;
r_input , v1_input : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− weights r and v ( s0 . 1 5 )
out_x1 : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ; −− neuron outputs x1 . . . x200 ( s0 . 1 5 )
out_x2 : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
. . .
out_x200 : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

y j : OUT STD_LOGIC_VECTOR (19 DOWNTO 0 ) ) ; −− f i n a l network readout ( s6 . 1 3 )
END ENTITY sequential_SCR_network_200n ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ARCHITECTURE net OF sequential_SCR_network_200n IS

component ffD_16b_en IS −− 16−b i t r e g i s t e r
PORT ( input : IN STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

c lk , r e s e t , enable : IN STD_LOGIC;
output : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ;

END component ;

component ffD_20b_en IS −− 20−b i t r e g i s t e r
PORT ( input : IN STD_LOGIC_VECTOR (19 DOWNTO 0 ) ;

c lk , r e s e t , enable : IN STD_LOGIC;
output : OUT STD_LOGIC_VECTOR (19 DOWNTO 0 ) ) ;

END component ;

component f_tanh_approx_3_segments IS −− the a c t i v a t i o n f u n c t i o n
PORT ( x : IN STD_LOGIC_VECTOR (16 DOWNTO 0 ) ; −− s1 . 15

f : OUT STD_LOGIC_VECTOR (15 DOWNTO 0 ) ) ; −− s0 . 15
END component ;

component counter2b IS −− 2−b i t counter
PORT ( c l k : in s td_log i c ;

p r e s e t : in s td_log i c ;
preset_value : in i n t e g e r range 0 to 3 ;
enable : in s td_log i c ;
q in : in i n t e g e r range 0 to 3 ;
q : out i n t e g e r range 0 to 3 ;
rco : out s td_log i c ) ;
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END component ;

component counter12b IS −− 12−b i t counter
PORT ( c l k : in s td_log i c ;

p r e s e t : in s td_log i c ;
preset_value : in i n t e g e r range 0 to 4095 ;
enable : in s td_log i c ;
q in : in i n t e g e r range 0 to 4095 ;
q : out i n t e g e r range 0 to 4095 ;
rco : out s td_log i c ) ;

END component ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− r e s e r v o i r weights
SIGNAL r : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− s0 . 1 5 ; i n t e r n e u r o n a l connect ion weight
−− input connect ion weights ( s0 . 1 5 )
SIGNAL v i : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− s0 . 1 5 ; g e n e r a l input connect ion weight
SIGNAL v1 , v2 , v3 , v4 , v5 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
SIGNAL v6 , v7 , v8 , v9 , v10 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
. . .

SIGNAL v196 , v197 , v198 , v199 , v200 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

SIGNAL v2_input : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− s0 . 15

SIGNAL prod11 , prod12 : STD_LOGIC_VECTOR (31 DOWNTO 0 ) ; −− s1 . 30
SIGNAL prod11b , prod12b : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ; −− s1 . 15
SIGNAL sum1 : STD_LOGIC_VECTOR (16 DOWNTO 0 ) ; −− s1 . 15

−− neuron output f o r each node ( s0 . 1 5 )
SIGNAL x1 , x2 , x3 , x4 , x5 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
SIGNAL x6 , x7 , x8 , x9 , x10 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
. . .

SIGNAL x196 , x197 , x198 , x199 , x200 : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

−− neuron s t a t e s at prev ious s tep tau ( s0 . 1 5 )
SIGNAL x1_ant , x2_ant , x3_ant , x4_ant , x5_ant : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
SIGNAL x6_ant , x7_ant , x8_ant , x9_ant , x10_ant : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;
. . .

SIGNAL x196_ant , x197_ant , x198_ant , x199_ant , x200_ant : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ;

SIGNAL xi , x_i_minus1_anterior : STD_LOGIC_VECTOR (15 DOWNTO 0 ) ; −− s0 . 15

SIGNAL q1 : i n t e g e r range 0 to 3 ;
SIGNAL index_i , index_k , q2 , q3 : i n t e g e r range 0 to 4095 ;
SIGNAL rco , rco2 , rco3 : STD_LOGIC;

−− c o n t r o l s i g n a l s
SIGNAL enable_tau , enable_tau2 : STD_LOGIC;
SIGNAL enable_theta1 , enable_theta2 , enable_theta3 , enable_theta4 , enable_theta5 : STD_LOGIC;
SIGNAL enable_theta6 , enable_theta7 , enable_theta8 , enable_theta9 , enable_theta10 : STD_LOGIC;
. . .

SIGNAL enable_theta196 , enable_theta197 , . . . , enable_theta200 : STD_LOGIC;

−− output l a y e r s i g n a l s
SIGNAL z i : STD_LOGIC_VECTOR (35 DOWNTO 0 ) ; −− s5 . 30
SIGNAL wi : STD_LOGIC_VECTOR (19 DOWNTO 0 ) ; −− s5 . 14
SIGNAL zib , yi , yi_ant , y_j : STD_LOGIC_VECTOR (19 DOWNTO 0 ) ; −− s6 . 13
SIGNAL enable_theta i : STD_LOGIC;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

begin

v2_input <= NOT( v1_input ) + ’ 1 ’ ; −− negat ive va lue o f the input weight v

−− the input connect ion weights (+v or −v ) are a s s i gned randomly f o r each neuron
v1 (15 DOWNTO 0) <= v1_input ; −− v1=+v
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v2 (15 DOWNTO 0) <= v2_input ; −− v2=−v
v3 (15 DOWNTO 0) <= v1_input ; −− v3=+v
. . .
v200 (15 DOWNTO 0) <= v1_input ; −− v200=+v

−− the i n t e r n e u r o n a l connect ion i s the same f o r a l l neurons ( r )
r (15 DOWNTO 0) <= r_input ;

−− m u l t i p l e x e r choos ing the input weight that corre sponds to each neuron
WITH index_i SELECT
vi <=

v1 WHEN 1 ,
v2 WHEN 2 ,
v3 WHEN 3 ,
. . .
v200 WHEN 200 ,
x "0000" WHEN OTHERS;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Core o f the neuron
−− F i r s t product ( e x t e r n a l input x weight )
prod11 (31 DOWNTO 0) <= input ∗ v i ;
prod11b (16 DOWNTO 0) <= prod11 (31 DOWNTO 1 5 ) ; −− keeps the 17 most s i g n i f i c a n t b i t s

−− Second product ( prev ious neuron output x weight )
prod12 (31 DOWNTO 0) <= x_i_minus1_anterior ∗ r ;
prod12b (16 DOWNTO 0) <= prod12 (31 DOWNTO 1 5 ) ;

−− Addit ion o f both prev ious terms
sum1 <= prod11b + prod12b ;

−− Assessment o f the non−l i n e a r a c t i v a t i o n f u n c t i o n
f_tanh1 : f_tanh_approx_3_segments PORT MAP(sum1 , x i ) ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− R e g i s t e r s s t o r i n g the output o f the neurons
f f 1 : ffD_16b_en PORT MAP( xi , c lk , r s t _ f f , enable_theta1 , x1 ) ;
f f 1 b : ffD_16b_en PORT MAP( x1 , c lk , r s t _ f f , enable_tau , x1_ant ) ;

f f 2 : ffD_16b_en PORT MAP( xi , c lk , r s t _ f f , enable_theta2 , x2 ) ;
f f 2 b : ffD_16b_en PORT MAP( x2 , c lk , r s t _ f f , enable_tau , x2_ant ) ;

f f 3 : ffD_16b_en PORT MAP( xi , c lk , r s t _ f f , enable_theta3 , x3 ) ;
f f 3 b : ffD_16b_en PORT MAP( x3 , c lk , r s t _ f f , enable_tau , x3_ant ) ;

. . .

f f 2 0 0 : ffD_16b_en PORT MAP( xi , c lk , r s t _ f f , enable_theta200 , x200 ) ;
f f 2 0 0 b : ffD_16b_en PORT MAP( x200 , c lk , r s t _ f f , enable_tau , x200_ant ) ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Mult ip l exe r choos ing the proper neuron s t a t e ( to be used as input f o r the next neuron )
−− depending on the cur rent node i

WITH index_i SELECT
x_i_minus1_anterior <=

x200_ant WHEN 1 ,
x1_ant WHEN 2 ,
x2_ant WHEN 3 ,
x3_ant WHEN 4 ,
. . .
x199_ant WHEN 200 ,
x "0000" WHEN OTHERS;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− c o n t r o l s i g n a l s ( index_i , enable_theta1 , enable_theta2 , enable_theta3 , . . . , enable_tau )
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−− F i r s t counter to generate de slow c l o c k s i g n a l ; rco enab l e s the count ing o f the nodes
counter1 : counter2b PORT MAP( clk , r e s e t , 0 , en , 2 , q1 , rco ) ;

−− Second counter ; i n d i c a t e s the pre sent node index ( i ) ; i t counts up to N+1
−− ( a d d i t i o n a l s tep to pass the neuron va lue s )
counter2 : counter12b PORT MAP( clk , r e s e t , 0 , rco , 201 , q2 , rco2 ) ;
index_i <= q2 + 1 ;

−− Third counter running with the f a s t c l o c k to generate the enable ( c o n t r o l ) s i g n a l s ;
−− i t counts up to 2∗(N+1)
counter3 : counter12b PORT MAP( clk , r e s e t , 0 , en , 402 , q3 , rco3 ) ;
index_k <= q3 + 1 ;

−− decoder gene ra t ing the enable ( c o n t r o l ) s i g n a l s
enable_theta1 <= ’1 ’ WHEN index_k=2 ELSE ’ 0 ’ ;
enable_theta2 <= ’1 ’ WHEN index_k=4 ELSE ’ 0 ’ ;
enable_theta3 <= ’1 ’ WHEN index_k=6 ELSE ’ 0 ’ ;
. . .
enable_theta200 <= ’1 ’ WHEN index_k=400 ELSE ’ 0 ’ ;

enable_tau <= ’1 ’ WHEN index_k=402 ELSE ’ 0 ’ ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− output l a y e r
−− m u l t i p l e x e r choos ing the proper weight f o r each neuron output
−− weights c a l c u l a t e d by so f tware ( g iven with 20−b i t r e s o l u t i o n )
−− wi r e p r e s e n t i n g the numerica l quant i ty accord ing to s5 . 14

WITH index_i SELECT wi <=
"11111110111101011111" WHEN 1 , −−(−0.259807)
"11111110110000011110" WHEN 2 , −−(−0.310665)
"11111111101101101111" WHEN 3 , −−(−0.071355)
. . .
"00000000000000011000" WHEN 200 , −−(0.001464)
x "00000" WHEN OTHERS;

−− product o f each output neuron by the cor re spond ing output weight
z i (35 DOWNTO 0) <= xi ∗ wi ; −− s6 . 29
z ib (19 DOWNTO 0) <= z i (35 DOWNTO 1 6 ) ; −− s6 . 13 ( keep the 20 most s i g n i t i f i c a n t b i t s )

−− ad d i t i on with the accumulated products ( o f p rev ious nodes )
y i <= z ib + yi_ant ; −−(s6 . 1 3 )

−− f l i p −f l o p s t o r i n g the prev ious accumulated products
f f_out : ffD_20b_en PORT MAP( yi , c lk , enable_tau , enable_theta i , yi_ant ) ;
enab le_theta i <= rco ; −−h a b i l i t a t i o n f o r the prev ious f l i p −f l o p f o r each node time

−− f l i p −f l o p s t o r i n g the f i n a l accumulated product ( l a s t node )
−− ( f i n a l va lue s to r ed a c l o c k c y c l e b e f o r e enable_tau i s a c t i v a t e d )
f f_out2 : ffD_20b_en PORT MAP( yi_ant , c lk , r e s e t , enable_tau2 , y_j ) ;
enable_tau2 <= ’1 ’ WHEN index_k=401 ELSE ’ 0 ’ ;

−− a s s i g n a t i o n o f the neuron s t a t e s and f i n a l readout as network outputs
out_x1 <= x1 ;
out_x2 <= x2 ;
. . .
out_x200 <= x200 ;

y j <= y_j ;

END net ;
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Nomenclature

AI Artificial intelligence

ALR Adjacent-feedback loop reservoir

ANN Artificial neural network

ANS Artificial neural system

ASIC Application-specific integrated circuit

B2P Binary to pulsed

BN Binding neuron

BTT Backpropagation through time

CI Computational intelligence

CMOS Complementary metal-oxide-semiconductor

CNN Convolutional neural network

CPU Central processing unit

CRJ Cycle reservoir with jumps

DCR Delay-coupled reservoir

DDE Delay differential equation

DER Digit error rate

DLR Delay line reservoir

DLRB DLR with feedback connections

DMR Dual modular redundancy

DNN Deep neural network

DSP Digital signal processor
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Nomenclature

ECG Electrocardiogram

EEG Electroencephalography

ELM Extreme learning machine

EPSP Excitatory postsynaptic potential

ESL Extended stochastic logic

ESN Echo state network

ESP Echo state property

FFNN Feed-forward neural network

FIR Finite impulse response

FPGA Field programmable gate array

FSA Finite-state automata

FSM Finite-state machine

GPU Graphical processing unit

HDL Hardware description language

HMM Hidden Markov model

HNN Hardware neural network

IF Integrate-and-fire

IoT Internet of things

IPSP Inhibitory postsynaptic potential

LDPC Low density parity check

LE Logic element

LED Light-emitting diode

LFSR Linear feedback shift register

LIF Leaky-integrate-and-fire

LMS Least mean squares
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Nomenclature

LSM Liquid state machine

LSTM Long short-term memory

MAC Multiply-accumulate

ML Machine learning

MLP Multi-layer perceptron

MPC Model predictive control

MSE Mean square error

NARMA Nonlinear autoregressive moving average

NMSE Normalized mean square error

NRMSE Normalized root-mean-square error

P2B Pulsed to binary

PC Personal computer

PDA Personal digital assistant

PV Photovoltaic

RAM Random access memory

RBF Radial basis function

RC Reservoir computing

RLS Recursive least squares

RNG Random number generator

RNN Recurrent neural network

SC Stochastic computing

SCR Simple cycle reservoir

SDRAM Synchronous dynamic RAM

SER Symbol error rate

SEU Single event upset

277



Nomenclature

SNG Stochastic number generator

SNR Signal-to-noise ratio

SRAM Static random access memory

SSN Stochastic spiking neuron

SSNN Stochastic spiking neural network

SVM Support vector machine

TDR Time-delay reservoir

TMR Triple modular redundancy

VHDL VHSIC hardware description language

VHSIC Very high speed integrated circuit

VLSI Very large scale integration

WSN Wireless sensor network

WTG Wind turbine generator
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