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Introduction

The subject of this thesis lies at the junction of mainly three topics: construction
of large families of Arithmetically Cohen-Macaulay indecomposable vector bun-
dles on a given projective varietyX , the shape (i.e, the graded Betti numbers) of
theminimal free resolution of a general set of points onX and the (ir)reducibility
of theHilbert schemeHilbs(X) of zero-dimensional subschemesZ ⊆ X of length
s. Let us explain how these topics are intertwined.

Given a projective variety X ⊆ Pn with coordinate ring RX , it is usual to try
to understand the complexity of X in terms of the associated category of vec-
tor bundles that it supports. Since, in general, this category is unwieldy, one
usually restricts oneself to the category of (semi)-stable vector bundles, which
is known to behave well and, in particular, there exists a nice moduli space pa-
rameterizing them. Whereas this approach has been largely and fruitfully ex-
ploited, it is also possible to pay attention to another property of a vector bundle
E : the fact of having cohomology as simple as possible, i.e., Hi(X , E(l)) = 0 for
all l ∈ Z and i = 1, . . . , dim(X)− 1. The vector bundles holding this property are
called Arithmetically Cohen-Macaulay (ACM) vector bundles. When X is ACM,
in terms of the associated RX -module E = H0

∗(E) := ⊕l H0(X , E(l)), they corre-
spond to Maximally Cohen-Macaulay (MCM) modules, i.e., modules that verify
depth(E) = dim(RX ). This correspondence allows us to study the problem al-
ternatively from the algebraic or the geometric point of view. The study of such
vector bundles (or modules) has a long and interesting history behind. A semi-
nal result is due to Horrocks which asserts that, on the projective space Pn, any
ACM vector bundle splits as a direct sum of line bundles (cf. [Hor64]). Or, in
other words, the unique indecomposable ACM vector bundle on Pn, up to twist
and isomorphism, is OPn . This would correspond with the general philosophy
that a "simple" variety should have associated a "simple" category of ACM vec-
tor bundles. Following these lines, a cornerstone result was the classification of
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ii Introduction

ACM varieties of finite representation type, namely, those varieties that have only a
finite number of indecomposable ACM vector bundles (cf. [BGS87] and [EH88]).
It turned out to be that they fall into a very short list: three or less reduced points
on P2, a projective space, a smooth quadric hypersurface X ⊂ Pn, a cubic scroll
in P4, the Veronese surface in P5 or a rational normal curve.

For the rest of ACM varieties, it became an interesting problem to give a cri-
terium to split them in a finer classification. An inspiring approach was offered
by representation theory, where it was proven that finite-dimensional algebras of
infinite type (i.e., having infinitely many indecomposable representations) split
into two classes: they are either tame, for which indecomposable representations
of any fixed dimension form a finite set of at most one-dimensional families; or
they are wild, for which there exist arbitrarily large families of non-isomorphic
indecomposable representations (cf. [Dro86]). An analogous result was also ob-
tained for the category of quivers, where Gabriel obtained a striking classifica-
tion result: a quiver is of finite representation type exactly when its underlying
undirected graph is a union of Dynkin diagrams of type A, D, E (cf. [Gab72]).
Also the study of the category of indecomposable Cohen-Macaulay modules
over Cohen-Macaulay rings has been a branch of intensive research in the re-
cent years. Therefore, motivated by these results, in [DG01], such a trichotomy
(i.e., finite, tame andwild representation type) was proposed for ACMprojective
varieties (see Definitions 4.2.7 and 4.2.10). For the one-dimensional case, it was
proved that such a trichotomy is exhaustive: a smooth projective curve is of finite
(resp. tame, wild) if and only if it has genus 0 (resp. 1, ≥ 2). However, it became
clear that, for projective varieties, such trichotomy could not be exhaustive. In
[CH04], it was shown that the quadric cone X ⊆ P3 has an infinite discrete set
of indecomposable ACM sheaves. Ever since these early results, it has become a
challenging problem to decide the representation type of a given ACMvariety. It
was proved in [CHb] that smooth cubic surfaces are of wild representation type.
In [PLT09], it was shown that del Pezzo surfaces of degree ≤ 6 are of wild rep-
resentation type. In fact, no examples of wild representation type of dimension
> 2 were known. Therefore we addressed the following question:

Question. Given an ACM projective varietyX ⊆ Pn, construct large families of inde-
composable ACM vector bundles on it in order to prove that it is of wild representation
type.

In chapter 4, wemake a contribution to this problem by showing that the two
following families ofACMvarieties are ofwild representation type, namely, Fano
varieties (i.e., varieties for which the anticanonical divisor is ample) obtained as
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the blow-up of points on Pn, n ≥ 2; and general surfaces X ⊆ P3 of degree
3 ≤ d ≤ 9 (see Theorems 4.3.13 and 4.5.8). In general, one of the main difficulties
one faces in order to prove wildness is to assure indecomposability of the vector
bundles that one constructs. The strategywe followed to overcome this difficulty
was to try to prove some stronger property of a vector bundle that would imply
indecomposability. In fact, we managed to prove that the vector bundles E were
either simple (i.e.,End(E) = k) or, in the best of the cases, stable.

Among other features of a given vector bundle, a very rich one is the fact
of being generated by its global sections or, at least, to have a large number of
them. The algebraic counterpart had already arisen a lot of interest. In fact, Ul-
rich proved (cf. [Ulr84]) that for a local (or *local graded) ring R there exists
an upper bound for the minimal number of generators of a Maximally Cohen-
Macaulay (MCM) R-module M of positive rank. Precisely, if µ(M ) denotes the
minimal number of generators ofM and e(R) denotes the multiplicity ofR, then
it always holds that µ(M ) ≤ e(R) rk(M ). MCM modules attaining this bound
have been called (fortunately) Ulrich modules. Once again, the existence of such
an R-module sheds some light over the structure of R. For instance, if a Cohen-
Macaulay ring R supports an Ulrich module M verifying ExtiR(M ,R) = 0 for
1 ≤ i ≤ dim(R), then R is Gorenstein (cf. [Ulr84]). Therefore, it became an
interesting question to find out which Cohen-Macaulay rings support Ulrich
modules. A positive answer to this question is provided, for instance, when
dim(R) = 1, whenR hasminimalmultiplicity orwhenR is a strict complete inter-
section (i.e., R is local complete intersection such that its associated graded ring
is a homogeneous complete intersection ring). These algebraic considerations
prompted to define, for a projective varietyX ⊆ Pn, a vector bundle E onX to be
Ulrich if it is ACM and the associated gradedRX -module H0

∗(E) is Ulrich. Notice
that, when E is initialized (i.e., H0(X , E(−1)) = 0 but H0(X , E) 6= 0) then the last
condition is equivalent to dimk H0(E) = deg(X) rk(E). For an initialized vector
bundle E , the fact of being Ulrich has an interesting interpretation in cohomolog-
ical terms (it should hold that Hi(X , E(−i)) = 0 for i > 0 and Hi(X , E(−i−1)) = 0
for i < dim(X)) and in terms of its minimal free OPn -resolution, since it has to
be linear of length n− dim(X).

Question. Given an ACM projective variety X ⊆ Pn and an integer r ∈ Z, construct
Ulrich vector bundles of rank r with support on X .

Concerning existence results, it is known that an arbitrary curve supports
rank one and two Ulrich vector bundles (cf. [ESW03]). In the case of a planar
curve, there is a beautiful relation between the existence of such vector bundles
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and the possibility of writing the equation of the curve as the determinant (resp.
the pfaffian) of a matrix (resp. a skew-symmetric matrix) with linear entrances
(cf. [Bea00]). As for a general hypersurface X ⊆ Pn+1 of degree d, it is known
that for n = 2, X supports a rank 2 Ulrich vector bundle if and only if d ≤ 15
and for n = 3, it happens if and only if d ≤ 5 (cf. [Bea00]). For n ≥ 4 and
d ≥ 3, the general n-dimensional hypersurface does not support a rank 2 Ulrich
(cf. [CM05]). On smooth cubic surfaces and threefolds, the existence of Ulrich
vector bundles of arbitrary rank has been proved by Casanellas and Hartshorne
in [CHb]. In chapter 4we face these problems and contribute to them as follows:
we construct large families of simple Ulrich vector bundles of arbitrary rank on
any del Pezzo surface (see Theorems 4.4.11 and 4.4.19). We also construct large
families of simple even rank Ulrich vector bundles on a general surface X ⊆ P3

of degree 3 ≤ d ≤ 9 (see Theorem 4.5.8).
A possible approach to the construction of ACM and Ulrich vector bundles

on a given projective varietyX ⊆ Pn is offered by thewell-known Serre correspon-
dence. For instance in the particular case of a surfaceX , this correspondence pro-
vides a dictionary between rank two vector bundles E on X with Chern classes
c1(E) and c2(E) and zero-dimensional locally complete intersection subscheme
Z ⊆ X of length c2(E) such that the couple (OX (KX + c1(E)),Z) has the Cayley-
Bacharach property (cf. [HL97, Theorem 5.1.1]). They are related by the short
exact sequence

0 −→ OX −→ E −→ IZ|X (c1(E)) −→ 0.

Moreover, it is possible to translate further information about E in terms of Z
and vice versa. For instance, in the previous setting, the vector bundle E will be
ACM if and only if Z is an arithmetically Gorenstein scheme. Since this property
can be read out of the minimal free resolution of Z, it is a meaningful problem to
find out the shape of the minimal free resolution of the coordinate ring RZ of a
general set of points Z lying on a given variety X . For X = Pn, this is a classical
problem that has attired a lot of attention. We know that if Z is a general set of
distinct points in Pn its minimal free resolution has to be of the form:

0 −→ Fn −→ . . . −→ F1 −→ F0 −→ RZ −→ 0

with F0 = R := k[x0, . . . ,xn] and

Fi ∼= R(−r − i)bi,r ⊕R(−r − i + 1)bi,r−1

for i = 1, . . . ,n, where r is the unique nonnegative integer such that(
r + n− 1

n

)
≤ s <

(
r + n
n

)
.
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Moreover we have:

bi+1,r−1 − bi,r =
(
r + i− 1

i

)(
r + n
n− i

)
− s
(
n

i

)
.

TheMinimal Resolution Conjecture (MRC) proposed by Lorenzini (cf. [Lor93])
says that there exist no ghost terms in the minimal free resolution of RZ , i.e.,
bi+1,r−1bi,r = 0 for all i. A lot of work has been devoted to contribute to this
conjecture. In particular, the MRC is known to hold for any number of points s
in Pn for n = 2 (see [Gae51, p. 912]), n = 3 ([BG86]) and n = 4 ([Wal95, Theorem
1]). The MRC is known also to hold for large values of s for any n (see [HS96, p.
468]). On the other hand, MRC fails in general for any n ≥ 6, n 6= 9 (see [EPSW02,
Theorem 1.1]).

It was also possible to pay attention just to the initial and ending terms of the
minimal free resolution of RZ and therefore two weaker conjectures were pro-
posed: the Ideal Generation Conjecture (IGC)which says that the minimal number
of generators of the ideal of a general set of points will be as small as possible. In
terms of the Betti numbers, it simply says that b1,r(Z)b2,r−1(Z) = 0. On the other
hand, the Cohen-Macaulay type Conjecture (CMC) affirms that the canonical mod-
uleKZ = Extn(R/IZ ,R(−n−1)) has as few generators as possible. Since the dual
of the minimal resolution of RZ provides a (twisted) resolution of KZ this con-
jecture can also been translated in terms of Betti numbers: bn−1,r(Z)bn,r−1(Z) = 0.
Regarding these two conjectures, CMC has been proved in full generality in the
case of the projective space X = Pn, for any n (see [Tru89, p. 112]). It is also
known that the IGC holds for large set of points on curves of degree d ≥ 2g (see
[FMP03, Theorem 2.2].

More recentlyMustaţă extended the previous results about the shape of min-
imal free resolutions of general set of points Z ⊆ X for the case X = Pn to an
arbitrary projective variety X ⊆ Pn (cf. [Mus98]). He proved that the first rows
of the Betti diagram of a general set of distinct points Z in a projective varietyX
coincide with the Betti diagram ofX and that there are two extra nontrivial rows
at the bottom. He also gave lower bounds for the Betti numbers in these last two
rows. In other words, if we let

0→ Fn → Fn−1 → · · · → F2 → F1 → R→ RX → 0

be aminimal freeR-resolution ofRX , then for a general set of pointsZ ⊆ X such
that PX (r − 1) ≤ |Z| < PX (r) for some r ≥ reg(X) + 1 (where PX denotes the
Hilbert polynomial of X), RZ has a minimal free R-resolution of the following
type
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0 −→ Fn ⊕R(−r − n + 1)bn,r−1(Z) ⊕R(−r − n)bn,r(Z) −→ · · ·

−→ F2 ⊕R(−r − 1)b2,r−1(Z) ⊕R(−r − 2)b2,r(Z) −→

−→ F1 ⊕R(−r)b1,r−1(Z) ⊕R(−r − 1)b1,r(Z) −→ R −→ RZ −→ 0.

Like for the general case, he stated the Minimal Resolution Conjecture in
this setting asserting that the graded Betti numbers are as small as possible:
bi+1,r−1(Z)bi,r(Z) = 0 for all i. This version of the conjecture has already been
studied in some interesting cases. For instance, MRC holds for any number of
general points on a smooth quadric surface in P3 (cf. [GMR96]) and for some spe-
cial cardinalities of sets of general points on a smooth cubic surface. The study of
the MRC for curves was pursued in [FMP03], where it was shown that the con-
jecture holds for large cardinalities of general points on canonical curves C ⊆ Pn

(i.e., curves embedded in Pn by its canonical divisor). Nevertheless, oppositely
to the case of the projective space, the MRC fails for sets of points of arbitrarily
large length on curves of high degree.

In chapter 2 we focus on the three aforementioned conjectures in the case
of general set of points on (non necessarily smooth) ACM quasi-minimal surfaces,
which are defined as nondegenerates ACM varietiesX ⊆ Pd such that deg(X) =
codim(X) + 2. Recall that given a nondegenerate projective variety X ⊆ Pd it
always holds that deg(X) ≥ codim(X) + 1. Minimal varieties, i.e., varieties for
which there is equality in the previous expression have been classically classified.
The next best case, that of quasi-minimal varieties, has been the center of intense
research recently. A good classification of such varieties has been obtained by
Fujita (cf. [Fuj90]), related to his theory of ∆-genus. In the two dimensional
case, the family of strong del Pezzo surfaces is a particular meaningful case of
ACM quasi-minimal surfaces. In [Hoa93], an important contribution was made
to the understanding of quasi-minimal varieties, in particular to the structure of
the singularities that they can support. Among other things, the minimal free
resolution of the coordinate ring of an ACM quasi-minimal surface X ⊆ Pd was
found:

0 −→ R(−d) −→ R(−d + 2)αd−3 −→ . . . −→ R(−2)α1 −→ R −→ RX −→ 0

where

αi = i

(
d− 1
i + 1

)
−
(
d− 2
i− 1

)
for 1 ≤ i ≤ d− 3.
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The knowledge of this resolution will be a cornerstone for obtaining our results.
We are going to prove that the IGC and CMC hold for general sets of any car-
dinality of points on ACM quasi-minimal surfaces X , up to two sporadic cases
(see Theorem 2.2.16). As for the full MRC, we are going to see that it holds for a
very wide range of cardinalities of general points on X (see Theorem 2.2.15).

Notice that in terms of the Hilbert scheme Hilbs(X) of zero-dimensional sub-
schemes of X , the Minimal Resolution Conjecture for X could be stated saying
that there exists a non-empty open subset Us0 ⊂ Hs

0 ⊂ Hilbs(X), where Hs
0 de-

notes the irreducible component whose general points correspond to a set Z of
s distinct points on X , such that for any [Z] ∈ Us0 we have

bi+1,r−1(Z) · bi,r(Z) = 0 for i = 1, · · · ,n− 1.

If we do not want to restrict ourselves to set of distinct points, we can wonder
how should be the shape of the minimal free resolution of the homogeneous
ideal of the 0-dimensional scheme associated to a general point [Z] of any other
irreducible component ofHilbs(X) and ask if the graded Betti numbers bij(Z) are
as small as possible, i.e. there are no ghost terms in the minimal free resolution
ofRZ . Therefore, in chapter 2we propose amodified conjecture and say that the
Weak Minimal Resolution Conjecture (WMRC) holds for s if there is an irreducible
component Hs ⊂ Hilbs(X) and a non-empty open subset Us ⊂ Hs ⊂ Hilbs(X)
such that for any [Z] ∈ Us we have

bi+1,r−1(Z) · bi,r(Z) = 0 for i = 1, · · · ,n− 1.

Regarding theWMRC, we manage to prove that for any integer d ≥ 2 and for
any s ≥

(
d+3

3

)
− 1, there exists a

(
d+2

2

)
-dimensional family of irreducible generi-

cally smooth surfacesX ⊂ P3 of degree d satisfying this conjecture (see Theorem
2.3.18).

Of course, in the case of Hilbs(X) being irreducible, both conjectures, MRC
as proposed byMustaţă and our modified one should agree. So it turns out to be
a crucial question to know when irreducibility of the Hilbert scheme Hilbs(X)
holds. In general, ever since the existence of the Hilbert scheme Hilbp(t)(X) pa-
rameterizing projective subschemes of a projective variety X with Hilbert poly-
nomial p(t) was shown by Grothendieck in [Gro], the study of the geometrical
properties of this moduli space became an area of intense research in Algebraic
Geometry. An early result by Hartshorne (cf. [Har66]) affirms that it is always
connected. When we specialize to subschemes of constant Hilbert polynomial
p(t) = s, i.e, when we are dealing with zero-dimensional subschemes of length s,
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Fogarty proved that, ifX is a smooth irreducible surface, then the Hilbert scheme
Hilbs(X) is a smooth irreducible variety of dimension 2s (cf. [Fog68]). In larger
dimension, Iarrobino in [Iar72] found that irreducibility is no longer true: the
Hilbert scheme can be reducible for varieties of dimension ≥ 3. In the short
chapter 3 we focus our attention on singular varieties and ask about the irre-
ducibility of the Hilbert scheme of their 0-dimensional subschemes. The most
interesting case, due to Fogarty’s result, is that of singular surfaces:

Question. Is the Hilbert scheme Hilbs(X) of 0-dimensional schemes of length s on a
singular surface X irreducible?

We are going to give a negative answer to this question, by constructing sin-
gular surfaces whose Hilbert scheme of points is reducible. In fact, our method
also works for varieties of larger dimension. We are going to construct gener-
ically smooth projective varieties X ⊂ PN of dimension n and degree d with
n > 2 and d > 1 or n = 2 and d > 4 for which Hilbs(X) is reducible for all s� 0
(see Theorem 3.1.5).

Let us outline now the structure of this thesis and the main results obtained.

Chapter 1 is devoted to recall the notions that will be the subject of the rest of
the present work as well as well-known results that will be used throughout it.
We also give some examples of the concepts that are involved. We do not claim
any originality on this chapter.

We start in section 1.1 introducing the basic notions ofminimal free resolution
and Betti diagram associated to a graded moduleM , as well as those of Hilbert
function and polynomial. We also introduce the notion of Arithmetically Cohen-
Macaulay (ACM) and Arithmetically Gorenstein (AG) scheme.

In section 1.2 we give the rudiments of Liaison Theory which will be a key-
stone in the proof of the results from chapter 2. Liaison Theory is a very power-
ful tool to carry over information from a given scheme to a second one which is
linked with. We are going to illustrate this feature of Liaison with several impor-
tant results (as it is Gaeta’s theorem). Then we are going to see how the minimal
free resolutions of two linked subschemes are related.

Finally, in section 1.3, we focus on moduli spaces. We give an introduction to
the Hilbert scheme Hilbp(t)(X) parameterizing subschemes of a given schemeX
with Hilbert polynomial p(t) and to the moduli spaceMs

X ,H (r; c1, . . . , cmin(r,n)) of
µ-stable vector bundles E on X with fixed rank r and Chern classes ci.
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Chapter 2 provides our contribution to the Minimal Resolution Conjecture,
which is basically divided in two parts. First of all, we are going to show that it
holds for a wide range of cardinalities of general set of points on a large family
of varieties, namely, that of ACM quasi-minimal varieties (up to two sporadic
cases). On the other hand, we are also going to deal with the special case of non-
reduced zero-dimensional schemes. For these schemes, we are going to state
an adapted MRC (namely, the Weak Minimal Resolution Conjecture (WMRC)) and
prove that it holds in some interesting cases.

In section 2.1, we recall the Minimal Resolution Conjecture (MRC) and give
a brief account of the known results around it. In particular, we recall Mustaţă’s
version of MRC:

Conjecture 2.1.10. Let X ⊂ Pn be a projective variety with d = dim(X) ≥ 1,
reg(X) = m and with Hilbert polynomial PX . Let s ∈ Z be an integer such that
PX (r − 1) ≤ s < PX (r) for some r ≥ m + 1. The Minimal Resolution Conjecture
(MRC for short) holds for the value s if for every set Z of s general distinct points
we have

bi+1,r−1(Z)bi,r(Z) = 0 for i = 1, · · · ,n− 1.

In section 2.2, we pay attention to ACM quasi-minimal surfaces, i.e., surfaces
X ⊆ Pd of degree d. They include the family of strong del Pezzo surfaces. For
this kind of surfaces, we establish first the MRC for two specific cardinalities of
points:

Theorem 2.2.13. LetX ⊆ Pd be an ACM quasi-minimal surface. Assume thatX
is not the anticanonicalmodel of F2 := P(OP1⊕OP1 (−2)) or a complete intersection
of two quadrics on P4 with a double line. Let us define:

m(r) :=
d

2
r2 + r

2− d
2

, n(r) :=
d

2
r2 + r

d− 2
2

.

Then we have:

(1) Let Zn(r) ⊂ X be a general set of n(r) points, r ≥ 2. Then the minimal
graded free resolution of IZn(r)|X has the following form:

0 −→ R(−r−d)(d−1)r−1 −→ R(−r−d+1)βd−1,r −→ R(−r−d+2)βd−2,r −→ . . .

−→ R(−r − 2)β2,r −→ R(−r)r+1 −→ IZn(r)|X −→ 0.

where

βi,r =
1∑
l=0

(−1)l+1
(
n− l − 1
i− l

)
∆l+1HX (r + l) +

(
n

i

)
(n(r)−HX (r − 1)).
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(2) Let Zm(r) ⊂ X be a general set of m(r) points, r ≥ 2. Then its minimal
graded free resolution has the following form:

0 −→ R(−r − d)r−1 −→ R(−r − d + 2)γd−1,r−1 −→ . . .

−→ R(−r − 1)γ2,r−1 −→ R(−r)(d−1)r+1 −→ IZm(r)|X −→ 0

with

γi,r−1 =
1∑
l=0

(−1)l
(
n− l − 1
i− l

)
∆l+1PX (r + l)−

(
n

i

)
(m(r)− PX (r − 1)).

In particular, Mustaţă’s conjecture works for n(r) and m(r), r ≥ 4, general
distinct points on an ACM quasi-minimal surface X ⊂ Pd (except for the two
aforementioned cases).

The previous Theorem will allow us to deduce the following results: first we
are going to be able to prove that the two weaker conjectures, the Ideal Genera-
tion Conjecture and the Cohen-Macaulay type conjecture, hold for any general
set of points on ACM quasi-minimal surfaces (except for two sporadic cases):

Theorem 2.2.16. LetX ⊆ Pd be an ACM quasi-minimal surface. Assume thatX
is not the anticanonicalmodel of F2 := P(OP1⊕OP1 (−2)) or a complete intersection
of two quadrics on P4 with a double line. Then for any general set of distinct
points Z on X such that |Z| ≥ PX (3) the Cohen-Macaulay type Conjecture and
the Ideal Generation Conjecture are true.

Moreover, for general set of distinct points whose cardinalities fall into de-
terminate strips we are able to prove that the whole MRC holds (except for the
same two sporadic cases):

Theorem 2.2.15. LetX ⊆ Pd be an ACM quasi-minimal surface. Assume thatX
is not the anticanonicalmodel of F2 := P(OP1⊕OP1 (−2)) or a complete intersection
of two quadrics on P4 with a double line. Let r be an integer such that r ≥
reg(X) + 1 = 4. Then for any general set of distinct points Z on X such that
PX (r−1) ≤ |Z| ≤ m(r) or n(r) ≤ |Z| ≤ PX (r) theMinimal Resolution Conjecture
is true.

For the particular case of integral cubic surfaces, we see that MRC holds for
any general set of distinct points.

Theorem 2.2.17. Let X ⊆ P3 be a integral cubic surface (i.e., an ACM quasi-
minimal surface of degree three). Then theMinimal Resolution Conjecture holds
for any set of general distinct points on X of cardinality ≥ PX (3) = 19.
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In section 2.3, we focus our attention on a slightly modified conjecture. Since,
in general, Hilbs(X) is not irreducible (see [Iar72] for the case of varieties of di-
mension higher or equal than 3 and chapter 3 for surfaces), we can also search the
minimal graded free resolution of the homogeneous ideal of the 0-dimensional
scheme associated to a general point of any other irreducible component of the
Hilbert scheme Hilbs(X) and ask if the graded Betti numbers are as small as pos-
sible, i.e. there are no ghost terms in the minimal free resolution. Therefore we
state the following Conjecture:

Conjecture 2.3.2. Let X ⊂ Pn be a projective variety, let PX (t) be its Hilbert
polynomial andm = reg(X). Let s be an integer such that PX (r−1) ≤ s < PX (r)
for some r ≥ m+ 1. Then, theWeak Minimal Resolution Conjecture (WMRC) holds
for s if there is an irreducible componentHs ⊂ Hilbs(X) and a non-empty open
subset Us ⊂ Hs ⊂ Hilbs(X) such that for any [Z] ∈ Us we have

bi+1,r−1(Z) · bi,r(Z) = 0 for i = 1, · · · ,n− 1.

In particular, we are able to prove the following contribution to this Conjec-
ture:

Theorem 2.3.18. Let s be an integer such that s ≥ Pd(d), d ≥ 2. Then there exists
a family of dimension

(
d+2

2

)
of irreducible generically smooth surfaces X ⊂ P3

of degree d for which WMRC holds, i.e. there exist a non-empty open subset
Us ⊂ Hilbs(X) such that for any [Z] ∈ Us we have

b3,r−1(IZ) · b2,r(IZ) = b2,r−1(IZ) · b1,r(IZ) = 0.

In chapter 3 we turn our attention to the reducibility of Hilbert scheme of
points. Namely, as it was mentioned, Fogarty proved that, if X is a smooth irre-
ducible surface, then the Hilbert scheme Hilbs(X) parameterizing subschemes
of length s is a smooth irreducible variety of dimension 2s. A natural question
that arises in this setting is the behavior of the Hilbert scheme of 0-dimensional
schemes when the smoothness condition is removed. In this short chapter we
are going to construct large families of singular surfaces whose Hilbert scheme
of points is reducible. In fact, our method also works for varieties of larger di-
mension. More concretely, we manage to prove:

Theorem 3.1.5. LetX = 〈Y , p〉 ⊆ PN be an n-dimensional cone with vertex p and
base Y ⊆ PN−1. Let us suppose that either n > 2 and degX > 1 or n = 2 and
degX > 4. Then there exists s0 ∈ N such that Hilbs(X) is reducible for all s ≥ s0.
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Finally, chapter 4 is dedicated to the study of ACM vector bundles and in
particular to the representation type of some families of varieties. As it has been
mentioned, it is an intriguing question to find out the representation type of a
given ACM variety since this is a good measure of its complexity. The main goal
of this chapter is to provide the first examples of n-dimensional ACM varieties
of wild representation type, for arbitrary n ≥ 2 (cf. Theorems 4.3.13 and 4.4.11).
Our source of examples will be Fano blow-ups X = BlZPn of Pn at a finite set
of points Z. In the 2-dimensional case, i.e., for del Pezzo surfaces, much more
information is obtained. In fact, the vector bundles that we construct share an-
other particular feature: the associated module ⊕t H0(X , E(t)) has the maximal
possible number of generators (see Theorem 4.4.11). This property was isolated
byUlrich in [Ulr84, p. 26] for Cohen-Macaulaymodules, and since thenmodules
with this property have been called Ulrich modules and correspondingly Ulrich
vector bundles in the geometric case. For the case of a general surfaceX ⊆ P3 we
have been able to provewildness for d ≤ 9, relying on a previous result about the
existence of rank 2 Ulrich vector bundles on the surface (see [Bea00, Proposition
7.6]). For arbitrary degree d we can at least provide large families of rank 2 and
rank 3 ACM vector bundles on a general surface of degree d showing that they
are neither of finite nor tame representation type.

This chapter is divided as follows: in section 4.1 we recall the definition and
main features of the varieties we are going to be interested in, namely Fano blow-
up varieties of Pn, n ≥ 2, and del Pezzo surfaces. In section 4.2, we give an account
of ACM vector bundles, Ulrich vector bundles, as well it is also discussed the
problem of studying the complexity of anACMvariety according the complexity
of families of ACM vector bundles that it supports.

In section 4.3, we perform the construction of large families of simple (hence
indecomposable)ACMvector bundles on all Fano blow-ups of points inPn. These
families are constructed as the pullback of the kernel of surjective morphisms

OPn (1)b −→ OPn (2)a

with the property that they are also surjective at the level of global sections.
Therefore we are able to prove that Fano blow-ups are varieties of wild repre-
sentation type. In particular, we prove:

Theorem 4.3.13. LetX = BlZPn be a Fano blow-up of points in Pn, n ≥ 3 and let
r ≥ n.

(i) If n is even, fix c ∈ {0, . . . ,n/2 − 1} such that c ≡ r mod n/2 and set the
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number u := 2(r−c)
n . Then there exists a family of rank r simple (hence,

indecomposable) ACMvector bundles of dimension (n+2)n−4
4 u2−cu−c2 +1.

(ii) If n is odd, fix c ∈ {0, . . . ,n − 1} such that c ≡ r mod n and set u := (r−c)
n .

Then there exists a family of rank r simple (hence, indecomposable) ACM
vector bundles of dimension ((n + 2)n− 4)u2 − 2cu− c2 + 1.

In particular, Fano blow-ups are varieties of wild representation type.

In section 4.4, we focus our attention on the 2-dimensional case, namely ondel
Pezzo surfaces, wheremuchmore information is obtained. In the first subsection
we deal with any del Pezzo surface excluding the case of a quadric surface and
we see that the ACM vector bundles that we obtained in the previous section by
pullback are simple, Ulrich, and µ-stable with respect to a certain ample divisor
Hn:

Theorem 4.4.11. LetX ⊆ Pd be a del Pezzo surface of degree d. Assume thatX is
not the smooth quadric embedded inP8 via the anticanonical divisor−KX . Then
for any r ≥ 2 there exists a family of dimension r2 + 1 of simple initialized Ulrich
vector bundles of rank r with Chern classes c1 = rH and c2 = dr2+(2−d)r

2 . More-
over, they are µ-semistable with respect to the polarization H = 3e0 −

∑9−d
i=1 ei

and µ-stable with respect to Hn := (n − 3)e0 + H for n � 0. In particular, del
Pezzo surfaces are of wild representation type.

In the intermediate subsection we focus our attention on the quadric surface
and we show by an ad hocmethod that it is a variety of wild representation type:

Theorem 4.4.19. Let X ⊆ P8 be the smooth quadric surface embedded in P8

through the very ample anticanonical divisor H := −KX . Then, for any r ≥
2, there exists a family of rank r simple (hence indecomposable) Ulrich vector
bundles of dimension r2 + 1. In particular, X is a variety of wild representation
type.

Finally, in the last subsection, we establish, for a del Pezzo surface X with
very ample anticanonical divisor, a version of the well-known Serre correspon-
dence (cf. Theorem 4.4.21). This correspondence will allow us, on one hand, to
show, whenX is distinct of the quadric surface, that the families of rank r vector
bundles constructed in the first subsection could also be obtained from a gen-
eral set of m(r) := d

2 r
2 + r 2−d

2 distinct points on the surface with minimal free
resolution as in Theorem 2.2.13.

Corollary 4.4.22. Let X ⊆ Pd be a strong del Pezzo surface of degree d, distinct
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of the quadric surface. Then the rank r initialized Ulrich vector bundles E(H)
given in Theorem 4.4.11 can be recovered as an extension of IZ,X (rH) by Or−1

X

for general sets Z ofm(r) = 1/2(dr2 + (2− d)r) distinct points on X , r ≥ 2.

On the other hand, for the quadric surface, we will apply Serre correspon-
dence in the reverse sense to obtain the minimal free resolution of a general set
ofm(r)distinct points from theUlrich vector bundles constructed in the previous
subsection.

Finally, section 4.5 is devoted to the case of a general surface X of arbitrary
degree d in P3. By constructing simple Ulrich bundles of arbitrary even rank as
extensions of rank 2 Ulrich bundles, we are able to show that, for 4 ≤ d ≤ 9, a
general surface X ⊆ P3 of degree d is of wild representation type:

Theorem 4.5.8. Let X ⊆ P3 be a general surface of degree 4 ≤ d ≤ 9. Then, for
any r = 2s, s ≥ 2, there exists a family of rank r simple (hence indecomposable)
Ulrich vector bundle of dimension 11(s− 1). In particular, a general surfaceX ⊆
P3 of degree 4 ≤ d ≤ 9 is of wild representation type.

In the case of arbitrary degree d, we will be able at least to construct large
families of rank 2 and 3 simple ACM vector bundles on a general surfaceX ⊆ P3

of degree d, showing that they are not of tame representation type:

Proposition 4.5.10. Let X ⊆ P3 be a general surface of degree d ≥ 3. Then there
exists a 4-dimensional family of rank 2 initialized µ-stable ACM vector bundles
E with c1(E) = 1 and c2(E) = d− 1.

Proposition 4.5.11. Let X ⊆ P3 be a general surface of degree d ≥ 3. Then there
exists an infinite family of rank 3 initialized µ-stable ACM vector bundlesF with
c1(F) = 1 and c2(F) = 2d− 3.

We are going to conclude the chapter giving a general strategy that could be
useful to prove that a general surface of arbitrary degree is of wild representation
type (see Theorem 4.5.14).



Notation and conventions

Throughout this thesiswe are going towork over an algebraically closed field k of
characteristic zero; we set R = k[x0, · · · ,xn], m = (x0, · · · ,xn) and Pn = Proj(R).
All the schemes will be over k. By an algebraic varietywemean an integral proper
scheme of finite type over k. A polarized scheme (resp. a polarized variety)will be a
couple (X ,OX (1)), where X is a scheme (resp. an algebraic variety) and OX (1)
is an ample line bundle on it. When OX (1) is very ample, we are going to write
X ⊆ Pn where the embedding is given by OX (1).

A scheme X ⊆ Pn will be nondegenerate if it is not contained in any hyper-
plane. The sheaf of regular functions of X is denoted by OX . If Y ⊆ X is a
closed subscheme, we denote the ideal sheaf of Y in X by IY |X and the satu-
rated ideal by IY |X = H0

∗(X , IY |X ) := ⊕t H0(X , IY |X ⊗ OX (t)) (or simply IY
whenX = Pn). RX stands for the homogeneous coordinate ring ofX defined as
k[x0, . . . ,xn]/IX . We denote by mX := (x0, · · · ,xn) the irrelevant maximal ideal
of k[x0, . . . ,xn]/IX .

For any coherent sheaf E onX ⊆ Pn we are going to denote the twisted sheaf
E ⊗ OX (l) by E(l). E∨ will stand forHomOX (E ,OX ) and End(E) := HomOX (E , E)
denotes the sheaf of endomorphisms of E while End(E) := Hom(E , E) denotes
the group of endomorphisms. Analogously, for a moduleM over a ring R,M∨
stands for HomR(M ,R). If moreoverM has the structure of k-vector space, then
M∨k := Homk(M , k).

As usual, Hi(X , E) stands for the cohomology groups and hi(X , E) for their
dimension. We also set exti(E ,F) := dimk Exti(E ,F). We will use the notation
Hi
∗(E) for the graded R-module

⊕
l∈Z Hi(Pn, E(l)) and ωX will stand for the du-

alizing sheaf. The i-th Chern class of a coherent sheaf E on a smooth projective
scheme X will be written ci(E). We write Pic(X) for the Picard group of X , i.e.,
the group of line bundles modulo isomorphism. We do not distinguish between
a vector bundle and its associated locally free sheaf of sections.

xv



xvi Notation and conventions

By a general homogeneous polynomial of degree d, we mean a polynomial in
a suitable Zariski open and dense subset of Rd. Recall that dimk Rd =

(
n+d
n

)
and

for integers a, b ∈ Z, we define
(
a
b

)
:= 0 whenever a < b.



Chapter 1

Preliminaries

This preliminary chapter is devoted to introduce the notions that will be the sub-
ject of the rest of the present work as well as well-known results that will be used
throughout it. We do not claim any originality on this chapter which has been
divided as follows: we start in section 1.1 recalling the basic notions of minimal
free resolutions and Betti diagrams associated to a graded moduleM . We also
introduce the notion of ACM scheme. In section 1.2 we give the rudiments of
the Theory of Liaison which will be a keystone in the proof of the results from
chapter 2. Finally, in section 1.3, we present an introduction to the two kind of
parameter spaces that we are going to be concerned with throughout this thesis:
for a given schemeX , theHilbert schemeHilbp(t)(X)parameterizing subschemes
ofX withHilbert polynomial p(t); and themoduli spaceMs

X ,H (r; c1, . . . , cmin(r,n))
of µ-stable vector bundles E on X with fixed rank r and Chern classes ci.

1.1 Minimal free resolutions, Betti numbers and
Hilbert functions

LetR = k[x0, . . . ,xn] be the homogeneous polynomial ring in n+ 1 variables and
letM be a graded R-module. M is said to be of finite projective dimension if there
exists a graded exact sequence:

F• : 0→ Fs
ds−→ Fs−1 → · · · → F1

d1−→ F0
d0−→M → 0 (1.1.1)

where all Fi are free R-modules. The minimum of the length s of such free res-
olutions is called the projective dimension ofM and its denoted by pd(M ).

1
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A cornerstone in this context is the following classical result:

Theorem 1.1.1. LetM be a finitely generated graded R-module and let

0→ E
dn+1−→ Fn → · · · → F1

d1−→ F0
d0−→M → 0

be an exact sequence. Then E is a free R-module. In other words, pd(M ) ≤ n + 1.

Definition 1.1.2. A morphism φ : F −→ M of R-modules with F free is said
minimal if φ ⊗ idR/m : F/mF −→ M/mM is the zero map in caseM is free and
an isomorphism in case φ surjective. A free resolution ofM is minimal if all the
morphisms di are minimal.

Since from any exact sequence it is possible to extract a minimal one, any
finitely generated graded module M has a minimal free resolution of length
pd(M ). Moreover, Nakayama’s lemma implies that the minimal free resolution
ofM is unique up to isomorphism of complexes.

Remark 1.1.3. The free resolution F• of M given in (1.1.1) is minimal if, after
choosing basis ofFi, thematrices representing di donot have any non-zero scalar.

Definition 1.1.4. LetM be a graded finitely generated R-module and let

F• : 0→ Fp
dp−→ Fp−1 → · · · → F1

d1−→ F0
d0−→M → 0

be its minimal free resolution. The graded Betti numbers bij(M ) are defined as

Fi = ⊕j∈ZR(−i− j)bij (M ), i.e. bij(M ) = dimk Tori(M , k)i+j (1.1.2)

and the Betti diagram ofM has in the (j, i)− th position the Betti number bij(M ).
The Castelnuovo- Mumford regularity ofM is the number:

reg(M ) := maxi,j{j|bi,j(M ) 6= 0},

i.e, the index of the last nontrivial row in the Betti diagram ofM .

For a finitely generated graded R-moduleM = ⊕tMt the piecesMt are finite
k-vector spaces. The Hilbert function HM ofM computes these dimensions:

HM : Z −→ N
t 7→ HM (t) := dimkMt.
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Moreover, we define the Hilbert series ΨM of M as the generating series of HM ,
i.e.,

ΨM (t) :=
∑
i

HM (i)ti.

Since the Hilbert function is additive on graded exact sequences and

dimk(Fi)t =
∑
j

dimk R(−i− j + t) =
∑
j

(
−i− j + t + n

n

)
,

it is immediate to see that there exists a polynomial PM (t) ∈ Q[t] and t0 ∈ Z such
that PM (t) = HM (t) for all t ≥ t0. PM (t) is called the Hilbert polynomial ofM . It
can be shown that it has degree dim(M )− 1.

Example 1.1.5. Let us give a toy example produced with the computer program
Macaulay2 ([GS]). Let us consider the polynomial ring R = k[x, y, z, t] in four
variables. Let

φ : R(−3)2 ⊕R(−2)2 ⊕R(−1)3 −→ R4

be the graded morphism represented by the matrix


x x + y z + t x2 xy x3 z3 + xt2

y x + z x + y + z y2 xz y2t x2y + t3

z x + t x + y + t z2 xt z2t yzt

t y + t y + z + t t2 yt xyz 2y3 + xzt

 .

and let us consider the graded R-moduleM := Cokerφ. ThenM has the follow-
ing free resolution:

0 −→ R(−13)⊕R(−12)14 −→ R(−11)30 ⊕R(−10)7 −→

R(−10)14⊕R(−9)5⊕R(−8)5⊕R(−7) −→ R(−3)2⊕R(−2)2⊕R(−1)3 φ−→ R4 −→M −→ 0.

The Betti diagram is
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0 1 2 3 4
0 4 3 − − −
1 − 2 − − −
2 − 2 − − −
3 − − − − −
4 − − − − −
5 − − 1 − −
6 − − 5 − −
7 − − 5 7 −
8 − − 14 30 14
9 − − − − 1

from which is straightforward to recover the regularity reg(M ) = 9. The Hilbert
series can be expressed as

ΨM (t) =
4 + 9t + 13t2 + 14t3 + 12t4 + 7t5 − t6 − 11t7 − 18t8 − 17t9 − t10

1− t
.

Moreover, dim(M ) = 1 and PM (t) = 11.

Now, letX ⊆ Pn be a subscheme, IX its saturated homogenous ideal andRX
its coordinate ring. We define the Betti numbers ofX as bi,j(X) := bi,j(RX ). Anal-
ogously, we define its Hilbert function HX := HRX and the Hilbert polynomial
PX := PRX . On the other hand, the regularity of X is defined as the regularity
of IX (i.e, reg(X) := reg(IX )) if X 6= Pn and 1 otherwise. Notice that with these
definitions, reg(RX ) = reg(X)− 1.

Example 1.1.6. Let us supply a concrete example. Let us consider the curve C ⊆
P4 given by the homogeneous ideal

IC := (x0x2 − x2
1,x0x3 − x1x2,x0x4 − x3x1,x1x3 − x2

2,x1x4 − x2x3).

The minimal free resolution of RC is

0 −→ R(−5) −→ R(−3)5 −→ R(−2)5 −→ R −→ RC −→ 0,

from which is immediate to obtain the Betti diagram:

0 1 2 3
0 1 − − −
1 − 5 5 −
2 − − − 1
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Moreover, reg(C) = 3 and the Hilbert polynomial is PC(t) = 5t which coincides
with the Hilbert functionHC(t) for t ≥ 1. Therefore, C is an elliptic quintic curve
in P4.

Observe that there are natural dependencies among the objects we have just
defined. Namely, given a closed schemeX ⊆ Pn, its Betti numbers bi,j(X) deter-
mine the Hilbert function HX of X which in turn determines the Hilbert poly-
nomial PX . As one might expect, the finer the information the more involved is
to find out it. As an example, let us consider a finite set of s points on Pn. Then
the Hilbert polynomial of X is trivially equal to s. It is possible to determine
the Hilbert functionHX for s general points but very difficult for a particular set
of points. Finally, we do not even know the Betti numbers of a set of general s
points for all s and n. For a more complete account on these issues we address
the reader to chapter 2.

Remark 1.1.7. The regularity of X can be translated in terms of the classical
definition given byMumford, i.e., reg(X) ≤ m if and only if Hi(Pn, IX (m−i)) = 0
for 1 ≤ i ≤ dim(X).

Remark 1.1.8. It is possible to give a lower bound to the set of integers for which
the Hilbert function coincides with the Hilbert polynomial (see [Eis02, Chapter
IV,Theorem 4.2]):

PX (t) = HX (t) for all t ≥ reg(X) + pd(RX )− n− 1.

However, it is an open problem in general to bound, for a nondegenerate pro-
jective variety X ⊆ Pn, reg(X) in terms of the other invariants of X . A famous
Conjecture by Eisenbud and Goto claims that

reg(X) ≤ degX − codimX + 1

for a projective variety connected in codimension one. This conjecture has been
proven, for instance, in the case of integral curves by Gruson, Lazarsfeld and
Peskine (cf. [GLP83, Theorem 1.1]). The analogous result for smooth curves had
already been proved by Castelnuovo (cf. [Cas93]). See [Eis02, Chapter 5] for a
survey of this results.

Given a closed scheme X ⊆ Pn, recall that by a regular sequence of RX is
understood a sequence of elements F1, · · · ,FR in mX such that Fi is not a zero
divisor of RX/(F1, · · · ,Fi−1) for all i = 1, · · · , r. The maximum of the lengths of
regular sequences onRX is called the depth ofRX and it is denoted by depth RX .
It always holds that depth RX ≤ dim RX .
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Definition 1.1.9. A closed subschemeX ⊆ Pn of dimension r is said to be Arith-
metically Cohen-Macaulay (briefly, ACM) if its homogeneous coordinate ringRX is
a Cohen-Macaulay ring or, equivalently, dimRX = depth RX .

We can provide an equivalent definition of ACM variety. For this, recall that
the graded version of theAuslander-Buchsbaum formula asserts that for any finitely
generated R-moduleM :

pd(M ) = n + 1− depth(M ).

From this formula is immediate to see that a subscheme X ⊆ Pn is ACM if and
only if the projective dimension of RX is equal to the codimension of X ; i.e.

pd(RX ) = codimX. (1.1.3)

Hence, if X ⊆ Pn is a codimension c ACM subscheme, a graded minimal free
R-resolution of IX is of the form:

0 −→ Fc −→ Fc−1 −→ · · · −→ F1 −→ IX −→ 0

where Fi = ⊕j∈ZR(−i− j)bi,j (X), i = 1, . . . , c.

Example 1.1.10. (i) Complete intersections. Let G1, · · · ,Gc, c ≤ n, be a regular
sequence of elements of R. Then the variety X ⊆ Pn associated to the
(saturated) ideal I = (G1, · · · ,Gc) is called a complete intersection. Since
any regular sequence of R can be extended to a maximal one, we see that
depthRX = dimRX and therefore complete intersections are examples of
ACM varieties.

(ii) As an example of ACM curve that it is not a complete intersection, let us
consider the twisted cubic curve C ⊆ P3. It is defined as the image of P1 by
the map associated to the complete linear system |OP1 (3)|. Its minimal free
resolution has the following shape:

0 −→ R(−3)2 −→ R(−2)3 −→ R −→ RC −→ 0.

Therefore, since pd(RC) = 2 = codimC, C is an ACM curve, but it is not a
complete intersection since IX is minimally generated by three quadrics.

(iii) Finally, the smooth rational quartic curve C ⊆ P3 given as the image of the
map



1.1. Minimal free resolutions and Betti numbers 7

P1 −→ P3

(u, t) 7→ (u4,u3t,ut3, t4),

is not ACM. In fact, C has minimal free resolution

0 −→ R(−5) −→ R(−4)4 −→ R(−3)3 ⊕R(−2) −→ R −→ RC −→ 0

from where it is seen that pd(RC) = 3 > codimC = 2.

Now let X ⊆ Pn be an ACM scheme of dimension d. Then we can find a
regular sequence L1, . . . ,Ld+1 ∈ R of elements of degree one such that A :=
R/(IX + (L1, . . . ,Ld+1)) has dimension zero. A is called an artinian reduction of
RX . It is possible to show that we have the following relation between their
Hilbert functions:

HA(t) = ∆d+1HX (t),

for all t. Since A has finite dimension as a k-vector space, the Hilbert function
HA(t) ofA has finite support and it is codified in a finite sequence of nonzero in-
tegers, (1,HA(1), . . . ,HA(e)). This sequence is called the h-vector ofX . Of course,
HX can be recover from the h-vector by integrating it d + 1 times.

The socle of a graded artinian k-algebra A = R/I is defined as the annihilator
of the homogeneous maximal ideal m = (x1, · · · ,xn) ⊆ A, namely

soc(A) = {a ∈ A | am = 0}.

Definition 1.1.11. We say that an artinian k-algebraA has socle degrees (s1, . . . , st)
if the minimal generators of its socle (as R-module) have degrees s1 ≤ . . . ≤ st.
Thus, the number of sj ’s that equal i is the dimension of the component of the
socle of A in degree i. We say that A is level of type ρ if the socle soc(A) of A is
of dimension ρ and is concentrated in one degree e = st (which usually is called
the socle degree).

On the other hand, ifX ⊂ Pn is an ACM subscheme then, the rank of the last
free R-module in a minimal free R-resolution of IX is called the Cohen-Macaulay
type of X . It coincides with the minimal number of generators of KX . Observe
that if X ⊆ Pn is an ACM scheme and A is the artinian reduction of RX , then
A is level of type ρ if and only if the last free R-module Fc in the minimal free
resolution ofRX is of the form Fc ∼= R(−e−c)ρ and hence all minimal generators
of KX have the same degree. With some abuse of terminology we are going to
say that an ACM schemeX ⊆ Pn is level of type ρ if its artinian reduction has this
property.
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Example 1.1.12. Let us give some examples:

(i) The twisted cubic curve C ⊆ P3 from item (i) of Example 1.1.10 is level of
type 2 and socle degree 1.

(ii) The graded artinian ringA := k[x, y]/(x2,xy2, y3) is level of type 2 and socle
degree 2 with soc(A) = 〈xy, y2〉.

(iii) On the other hand, the graded artinian ring B := k[x, y]/(x2,xy, y3) is not
level. In fact, soc(B) = 〈x, y2〉.

1.2 Liaison Theory
Liaison Theory rouse in the nineteenth century as a tool to study curves in the
projective space. It has roots in the works of M. Noether, Severi and Macaulay.
It turns out that a lot of information is carried over from a curve to its residual
and vice versa, so the strategy was to pass from a given curve through a sequence
of links to a "simpler curve" (basically a complete intersection) and to obtain in-
formation about the original curve from its residual simpler curve. Later on, Pe-
skine and Szpiro (cf. [PS74]) set the modern base of Liaison Theory to work for
arbitrary varieties. Roughly speaking, liaison is an equivalence relation among
subschemes of a fixed dimension in some Pn and it deals with the study of the
properties that are shared by two schemes whose union is well understood. In
this section we are just going to recall the basics of this theory that are going to
be need in chapter 2 andwe refer to the monographies [Mig98], [KMMR+01] and
[Mir08] for more details.

One of the properties that is carried over through linkage is the fact of being
ACM. In order to prove it, it is necessary to introduce an equivalent characteriza-
tion of a variety being ACM.Notice that any zero-dimensional schemeX ⊆ Pn is
ACM since depth RX = 1. For schemes of higher dimension, there exists an use-
ful criterion. In order to introduce it, we define the deficiency modules of X ⊆ Pn

as Hi
∗(IX ) for i = 1, · · · , d := dimX (when X is a curve, H1

∗(IX ) is also called
the Hartshorne-Horrocks-Rao module of X). These R-modules can also be written
in terms of Ext:

Hi
∗(IX ) ∼= Extn−i+1

R (RX ,R(−n− 1))∨k,

for i = 1, · · · , dimX . From this characterization of the deficiency modules it is
not difficult to obtain the following result:
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Proposition 1.2.1. If X ⊆ Pn is a subscheme of dimension d ≥ 1 then X is ACM if
and only if Hi

∗(IX ) = 0 for all 1 ≤ i ≤ d.

Example 1.2.2. From this new point of view it is now very easy to see that the
smooth rational quartic curve C ⊆ P3 from item (iii) of Example 1.1.10 is not
ACM. In fact,C is the isomorphic projection from P4 of the rational normal quar-
tic curve and therefore H1(IC(1)) 6= 0.

The deficiencymodules contain a lot of interesting information. For instance,
we have the following result (recall that an scheme X ⊆ Pn is equidimensional if
all the primary components of the homogenous ideal IX of X have the same
dimension):

Lemma 1.2.3. A scheme X ⊆ Pn is locally Cohen-Macaulay and equidimensional if
and only if all of its deficiency modules are of finite length.

Therefore, ACM schemes are locally Cohen-Macaulay and equidimensional.

Remark 1.2.4. LetX ⊆ Pn be anACMscheme of codimension c. Then the dual of
theminimal free resolution ofRX provides a resolution of a twist of the canonical
module

KX := ExtcR(RX ,R)(−n− 1).

of RX . In fact,

0 −→ Fc −→ Fc−1 −→ · · · −→ F1 −→ R −→ RX −→ 0,

yields a resolution

0 −→ R −→ F∨1 −→ · · · −→ F∨c −→ KX (n + 1) −→ 0.

Let us mention here the following important property of ACM schemes that
will be used without further mention throughout chapter 2:

Remark 1.2.5. Let X ⊆ Pn be an ACM scheme of dimension ≥ 1 and let Y ⊆ X

be any subscheme. Then the saturated ideal IY |X = IY |Pn/IX|Pn .

Definition 1.2.6. A codimension c subscheme X of Pn is arithmetically Goren-
stein (briefly AG) if its homogeneous coordinate ring RX is a Gorenstein ring or,
equivalently, its saturated homogeneous ideal, IX , has a minimal free graded
R-resolution of the following type:

0 −→ R(−t) −→ Fc−1 −→ ... −→ F1 −→ IX −→ 0.

In other words, an AG scheme is an ACM scheme with Cohen-Macaulay type 1.
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We have the following equivalent definitions of AG schemes:

Proposition 1.2.7. LetX ⊆ Pn be an ACM scheme of codimension c. Then the follow-
ing conditions are equivalent:

(i) X is AG.

(ii) RX ∼= KX (t) for some t ∈ Z.

(iii) The minimal free resolution of RX is self-dual, up to twist by n + 1.

From the above proposition it is easy to see that the h-vector of an AG scheme
is symmetric. Moreover, we have the following relations:

Corollary 1.2.8. Let X ⊆ Pn be an AG scheme of codimension c with minimal free
resolution

0 −→ R(−t) −→ Fc−1 −→ ...... −→ F1 −→ IX −→ 0.

Let OX ∼= ωX (l). Assume that the (symmetric) h-vector of X has e + 1 entries (i.e., its
socle degree is e):

(1, c, ∆n−c+1HX (2), · · · , ∆n−c+1HX (e− 2), c, 1).

Then:
t− c + 1 = reg(IX ) = e + 1,

and l = n + 1− t.

Example 1.2.9. (i) Complete intersections. Let G1, · · · ,Gc, c ≤ n, be a regular
sequence of elements ofR of degrees di = degGi and consider the complete
intersection IX = (G1, · · · ,Gc). Its minimal free resolution is given by the
Koszul resolution:

0 −→ R(−Σci=1di) ∼=
c∧
F1 −→

c−1∧
F1 −→ · · ·

2∧
F1 −→ F1 −→ IX −→ 0,

where F1 = ⊕ci=1R(−di). Therefore complete intersections are examples of
AG varieties (note that the socle degree is e = Σdi − c).

(ii) Any AG codimension 2 variety X ⊆ Pn is a complete intersection. In fact,
from the additivity of the rank for exact sequences, we have that in the
minimal free resolution of X :

0 −→ R(−t) −→ F1 −→ R −→ RX −→ 0,

F1 should have rank 2 and therefore X is a complete intersection.



1.2. Liaison Theory 11

(iii) On the other hand, it is not true in higher codimensions that any AG is a
complete intersection. For instance, a set Z of n + 2 points in Pn, n ≥ 3, in
linear general position (i.e., such that any subset of n + 1 points spans Pn)
is AG but it is not a complete intersection. Its minimal graded resolution is
(cf. [Hoa93, Theorem 1])

0 −→ R(−n− 2) −→ R(−n)ρn−1 −→ R(−n + 1)ρn−2

−→ · · · −→ R(−3)ρ2 −→ R(−2)ρ1 −→ IZ|Pn −→ 0,

where ρi = i
(
n+1
i+1

)
−
(
n
i−1

)
for 1 ≤ i ≤ n− 1. Therefore, Z is AG but it is not

a complete intersection since ρ1 > n.

(iv) As an example of ACM curve that it is not AG, let us consider the twisted
cubic curve C ⊆ P3. We saw that it has minimal free resolution:

0 −→ R(−3)2 −→ R(−2)3 −→ R −→ RC −→ 0.

ThereforeC is a ACM curve of Cohen-Macaulay type 2, and therefore is not
AG. Of course, by item (ii), we already knew it since we saw in Example
1.1.10 that the twisted cubic curve is not a complete intersection.

Definition 1.2.10. Two closed subschemesX1 andX2 of Pn are directly Gorenstein
linked (directly G-linked for short) by an AG scheme G ⊆ Pn if IG ⊆ IX1 ∩ IX2 and
[IG : IX1 ] = IX2 , [IG : IX2 ] = IX1 . We say that X2 is residual to X1 in G. When G
is a complete intersection we talk about a CI-link.

G-liaison (resp. CI-liaison) is the equivalence relation generated by G-links
(resp. CI-links):

Definition 1.2.11. Let X1,X2 ⊆ Pn be two equidimensional closed subschemes
without embedded components. We say that X1 and X2 are in the same CI-
liaison class (resp. G-liaison class) if there exist closed schemes Y1, · · · ,Yr ⊆ Pn for
some r such that X1 = Y1, X2 = Yr and Yi is directly CI-linked (resp. directly
G-linked) to Yi+1 for i = 1, . . . , r − 1.

Remark 1.2.12. WhenX1 andX2 do not share any component, linkage has a clear
geometric meaning. Indeed, being directly linked by a schemeG is equivalent to
G = X1 ∪X2 as schemes (i.e., IG = IX1 ∩ IX2 ).

Remark 1.2.13. Since any complete intersection scheme X ⊆ Pn is AG (see item
(i) of Example 1.2.9), we see that if two subschemes are CI-linked then they are
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also G-linked. Even more, since in codimension 2 AG schemes and CI schemes
coincide (see item (ii) of Example 1.2.9), we get that in codimension 2 CI-liaison
and G-liaison agree. This is no longer true in higher codimension: for instance,
the rational normal quartic curve C ⊆ P4 is in the G-liaison class (but it is not in
the CI-class) of a complete intersection (see [KMMR+01]).

Aswas explained at the start of this section, a lot of properties are carried over
from an scheme to its residual on aG-link. One of themain tools in order to show
this feature is the mapping cone procedure. This procedure can be stated in the
setting of free resolutions of finite generated R-modules as well as in the setting
of locally free resolutions of coherent sheaves on a projective scheme X ⊆ Pn.
Let us recall how it works in the first setting, noticing that an analogous result
holds for coherent sheaves (see [Mac63, chapter II, Section 4]):

Lemma 1.2.14 (Mapping cone procedure). Let

0 −→M
α−→ N −→ P −→ 0

be a short exact sequence of finitely generated R-modules and let us consider free resolu-
tions ofM ,

e• : 0 −→ Gn+1
en+1−→ Gn −→ . . .

e1−→ G0
e0−→M −→ 0

and N ,

d• : 0 −→ Fn+1
dn+1−→ Fn −→ . . .

d1−→ F0
d0−→ N −→ 0.

Then the morphism α : M → N lifts to a morphism between the resolutions α• :
e• −→ d• and a (non necessarily minimal) free resolution for P is

0 −→ Gn+1
cn+2−→ Gn ⊕ Fn+1

cn+1−→ . . .
c3−→ G1 ⊕ F2

c2−→ G0 ⊕ F1
c1−→ F0

c0−→ P −→ 0

where
ci+1 =

(
−ei 0
αi di+1

)
, 1 ≤ i ≤ n.

As a first application of the mapping cone procedure (for coherent sheaves)
we have:

Lemma 1.2.15. Let X1,X2 ⊆ Pn be two closed schemes of codimension c directly G-
linked by an AG schemeW . Let the sheafified minimal free resolution of IW be

0 −→ OPn (−t) ec−→ Gc−1
ec−1−→ . . .G1

e1−→ IW −→ 0.
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Assume thatX1 is locally Cohen Macaulay and that there exists a locally free resolution
of IX1 of the form

0 −→ Fc
dc−→ Fc−1

dc−1−→ . . .F1
d1−→ IX1 −→ 0.

Then there is a locally free resolution for IX2 of the form:

0 −→ F∨1 (−t) −→ F∨2 (−t)⊕G∨1 (−t) −→ . . . −→ F∨c (−t)⊕G∨c−1(−t) −→ IX2 −→ 0.

From the previous Lemma it is possible to deduce the following result:

Theorem 1.2.16. Let X1,X2 ⊆ Pn be two equidimensional locally Cohen-Macaulay
subschemes of the same dimension d ≥ 1 directlyG-linked by an AG subschemeW ⊆ Pn

with a minimal free resolution:

0 −→ R(−t) −→ Gn−d−1 −→ . . . G1 −→ IW −→ 0.

Then
Hd−i+1
∗ (IX2 ) ∼= (Hi

∗(IX1 ))∨(n + 1− t)

for all 1 ≤ i ≤ d.

As a corollary, we see that the property of being ACM is preserved under
G-liaison:

Corollary 1.2.17. Let X1,X2 ⊆ Pn be two equidimensional locally Cohen-Macaulay
subschemes of the same dimension d ≥ 1. Assume thatX1 andX2 are directly G-linked
by an AG subschemeW ⊆ Pn. Then X1 is ACM if and only if X2 is ACM.

Therefore, we see that if a subscheme X ⊆ Pn is in the G-liaison class of a
complete intersection, then X is ACM. In codimension two we have that being
ACM is a sufficient condition to be in the liaison class of a complete intersection.
This famous result was first proved by Apéry and Gaeta in the case of smooth
curves in P3 and extended to arbitrary codimension two subschemes of the pro-
jective space by Peskine and Szpiro:

Theorem 1.2.18. Let X ⊆ Pn be a codimension two subscheme. Then X is in the
CI-liaison class of a complete intersection if and only if X is ACM.

The main feature of G-liaison that is going to be exploited in chapter 2 is
that through the mapping cone procedure it is possible to pass from the free
resolution of an ACM scheme X1 to a (non necessarily minimal) free resolution
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of its residual (necessarily ACM, as we have just seen) X2 on an arithmetically
Gorenstein scheme. To see how it works we have the following Lemma which it
is analogous to Lemma 1.2.15 but for the case of graded free resolutions instead
of the sheafified version. Notice that in the following Lemmawe assume that the
schemes are ACM:

Lemma 1.2.19. Let V1,V2 ⊆ Pn be two ACM schemes of codimension c directly G-
linked by an AG schemeW . Let the minimal free resolutions of IV1 and IW be

0 −→ Fc
dc−→ Fc−1

dc−1−→ . . . F1
d1−→ IV1 −→ 0

and
0 −→ R(−t) ec−→ Gc−1

ec−1−→ . . . G1
e1−→ IW −→ 0

respectively. Then the functor Hom(−,R(−t)) applied to a free resolution of IV1/IW
gives a (non necessarily minimal) resolution of IV2 :

0 −→ F∨1 (−t) −→ F∨2 (−t)⊕G∨1 (−t) −→ . . . −→ F∨c (−t)⊕G∨c−1(−t) −→ IV2 −→ 0.

Example 1.2.20. (i) On a smooth quadric Q2 ⊆ P3, any curve of type (a, a) is
a complete intersection (of the quadric and a surface of P3 of degree a).
This remark supplies a lot of examples of linkage in P3; for instance, any
twisted cubic curve is directly CI-linked to any of its secant lines. In gen-
eral, any two curves of respective types (a, b) and (c, d) on a smooth quadric
are directly CI-linked if and only if a + c = b + d.

(ii) As an example of G-linkage that it is not CI-linkage, consider four points
Z ⊆ P3 in linear general position and a general point P . ThenX = Z ∪{P}
is an AG scheme and therefore Z and P are directly G-linked.

(iii) As an example of algebraic linkage between schemes with shared compo-
nents, let IX = (x0x1,x0 + x1) ⊆ k[x0,x1,x2,x3] and IC = (x0,x1). Then
[IX : IC] = IC and therefore IC is self-CI-linked by IX .

Usually is not easy to find out AG schemes to work with. The following the-
orem gives a useful way to construct them and it will play an important role in
chapter 2. Notice that, since we will want to work with varieties that may be
singular, we will have to work in the framework of generalized divisors as in-
troduced in [Har94] and [Har07]. The only general requirements to be fulfilled
in order to work in this context are that the schemes we deal with are ACM and
satisfy condition G1. Let us recall this definition here:
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Definition 1.2.21. A subscheme X ⊆ Pn satisfies the condition Gr if for any
point p ∈ X of height ≤ r the local ring OX ,p is a Gorenstein ring. Usually
this property is quoted as "Gorenstein in codimension ≤ r", i.e., the nonlocally
Gorenstein locus has codimension≥ r+ 1. In particular,G0 is generically Goren-
stein. When X satisfies the condition Gr for r = dim(X) we just say that X is a
(locally) Gorenstein scheme.

Theorem 1.2.22. (cf. [KMMR+01, Lemma 5.4]) Let S ⊆ Pn be an ACM scheme sat-
isfying condition G1. Then any effective divisor in the linear system |mHS − KS | is
arithmetically Gorenstein.

1.3 Moduli spaces
Roughly speaking, moduli spaces are schemes whose closed points are in bijec-
tion with sets of equivalence classes of certain objects. In this dissertation, given
a schemeX ⊆ Pn, there are two sort of objects that we are interested in parame-
terizing:

(i) Closed subschemes of X with given Hilbert polynomial, and

(ii) µ-stable vector bundles on X with given rank and Chern classes.

The aim of this section will be to recall the main results on this subject.
Let us focus our attention first on Hilbert spaces. So let us fix a projective va-

riety X ⊆ Pn and a polynomial p(t) ∈ Q[t]. We define the contravariant functor:

HilbX ,p : (Sch/k) −→ (Sets),

from the category of scheme over k to the category of sets defined by:

HilbX ,p(S) :={ flat families X ⊆ X × S −→ S whose fibers over points of S
are closed subschemes of X with Hilbert polynomial p(t) }.

Such functor is called the Hilbert functor. Grothendieck proved that there ex-
ists a unique projective scheme Hilbp(t)(X) called the Hilbert scheme parameter-
izing a flat family

π : W ⊆ X ×Hilbp(t)(X) −→ Hilbp(t)(X),

of closed subschemes of X with Hilbert polynomial p(t) which has the follow-
ing universal property: for every flat family φ : X ⊆ X × S −→ S of closed
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subschemes of X with Hilbert polynomial p(t) there exists a unique morphism
ψ : S −→ Hilbp(t)(X) (the classification map for the map φ) such that π induces
φ by base change: X = S ×Hilbp(t)(X) W.

In categorical language, it means that (Hilbp(t)(X),π) represents the moduli
functor HilbX ,p, and π is the universal family. Once the existence of the Hilbert
scheme has been proved it becomes a central question in Algebraic Geometry
to find out its properties (irreducibility, rationality, smoothness...). Hartshorne
proved that Hilbp(t)(X) is connected (cf. [Har66, Corollary 5.9]). It is also well
known that the Zariski tangent space at any point [Y ] ∈ Hilbp(t)(X) correspond-
ing to a closed subscheme Y ⊆ X is isomorphic to H0(X ,NY |X ), where NY |X
is the normal sheaf of Y in X . Moreover, we have the following bounds for the
dimension of the Hilbert scheme at Y :

h0(X ,NY |X ) ≥ dimY Hilbp(t)(X) ≥ h0(X ,NY |X )− h1(X ,NY |X ).

In particular, ifH1(X ,NY |X ) = 0, thenHilbp(t)(X) is smooth atY of dimension
h0(X ,NY |X ).

Example 1.3.1. Let us consider the numerical polynomial p(t) :=
(
n+t
n

)
−
(
n+t−d
n

)
.

Then Hilbp(t)(Pn) parameterizes hypersurfaces of Pn of degree d. It is a classical
fact that Hilbp(t)(Pn) ∼= P(k[x0, · · · ,xn]d) = Proj(k[y0, · · · , y(n+d

n )]).

Remark 1.3.2. When the polynomial p(t) = s ∈ Z is constant, Hilbs(X) parame-
terizes zero-dimensional schemes of length s. These schemes will be the subject
of chapter 3 of this thesis.

Let us turn our attention to moduli spaces of µ-stable vector bundles. Let
X ⊆ Pd be a smooth projective n-dimensional variety and let H be an ample
divisor onX . Given a coherent sheaf E onX , theEuler characteristic of E is defined
as

χ(E) :=
n∑
i=0

(−1)i hi(E).

It is possible to prove that there exists a polynomial pE (t) ∈ Q[t] such that pE (t) =
χ(E(tH)) for t � 0. It is called the Hilbert polynomial of E . Following [HL97], we
recall that a vector bundle E onX ⊆ Pd is semistablewith respect toH if for every
nonzero coherent subsheaf F of E we have the inequality

pF/ rk(F) ≤ pE/ rk(E),
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where the order is with respect to their asymptotic behavior. If one has the strict
inequality for any proper subsheaf the vector bundle is called stablewith respect
toH . There is another notion of stability involving the slope, which is defined as

µH (E) := deg(E)/ rk(E),

with deg(E) := c1(E)Hn−1. We say that the vector bundle E is µ-(semi)stable with
respect to H if for every subsheaf F of E with 0 < rkF < rk E ,

µH (F) < µH (E) (resp. µH (F) ≤ µH (E)).

Remark 1.3.3. (i) The four notions are related as follows:

µ− stable⇒ stable⇒ semistable⇒ µ− semistable.

(ii) Notice that for a fixed smooth projective variety X ⊆ Pd, stability can de-
pend strongly on the choice of the ample divisor H .

Once fixed a Hilbert polynomial p(t) ∈ Q[t], we consider the contravariant
moduli functor

Ms,H
X ,p(t) : (Sch/k) −→ (Sets),

defined for a scheme S as

Ms,H
X ,p(t)(S) :={ S-flat families F of vector bundles onX ×S such that for all point
s ∈ S,F|X×{s} is µ-stable with respect to H with Hilbert polynomial p(t) }/∼,

where F ∼ F ′ if there exists a line bundle L on S such that F ∼= F ′ ⊗ p∗Lwhere
p : X×S −→ S is the second projection. In 1977, Maruyama proved (cf. [Mar77,
Theorem 5.6]):

Theorem 1.3.4. The contravariant moduli functor Ms,H
X ,p(t) has a coarse moduli scheme

Ms;H
X ,p(t) which is separated and of finite type over k, i.e.:

(i) There exists a natural transformation

Φ : Ms,H
X ,p(t)(−) −→ Hom(−,Ms,H

X ,p(t))

which is bijective on any reduced point x.
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(ii) For every scheme N and any natural transformation

Ψ : Ms,H
X ,p(t)(−) −→ Hom(−,N ),

there exists a uniquemorphismα : Ms,H
X ,p(t) −→ N such that the following diagram

commutes:

Ms,H
X ,p(t)(−) Φ //

Ψ

&&NNNNNNNNNNN
Hom(−,Ms,H

X ,p(t))

α∗
vvnnnnnnnnnnnn

Hom(−,N )

.

Moreover, Ms,H
X ,p(t) decomposes as a disjoint union Ms

X ,H (r; c1, . . . , cmin(r,n)) of moduli
spaces of rank r µ-stable vector bundles with Chern classes (c1, . . . , cmin(r,n)) up to nu-
merical equivalence.

Remark 1.3.5. It is worthwhile to point out that in general Ms,H
X ,p(t) is not repre-

sentable. In fact, there is not a reason for which

Φ(S) : Ms,H
X ,p(t)(S) −→ Hom(S,Ms,H

X ,p(t))

should be bijective for a general scheme S.

As in the case of Hilbert schemes, one of the main problems in Algebraic Ge-
ometry is to determine the local and global structure ofMs

X ,H (r; c1, . . . , cmin(r,n)).
At least we have the following bounds for the local dimension:

Proposition 1.3.6. Let X be an n-dimensional smooth irreducible projective variety,
let H be an ample divisor and let E be a µ-stable vector bundle of rank r with Chern
classes ci ∈ H2i(X , Z) represented in Ms

X ,H (r; c1, . . . , cmin(r,n)) by a point [E]. Then,
the Zariski tangent space of Ms

X ,H (r; c1, . . . , cmin(r,n)) at [E] is canonically isomorphic
to

T[E]M
s
X ,H (r; c1, . . . , cmin(r,n)) ∼= Ext1(E , E).

Moreover, we have the following bounds:

ext1(E , E) ≥ dim[E] M
s
X ,H (r; c1, . . . , cmin(r,n)) ≥ ext1(E , E)− ext2(E , E).

In particular, if Ext2(E , E) = 0 thenMs(r; c1, . . . , cmin(r,n)) is smooth at [E] and

dim[E] M
s
X ,H (r; c1, . . . , cmin(r,n)) = ext1(E , E).
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One of the characteristics that we are going to exploit in chapter 4 is that
µ-stable vector bundles are simple and hence indecomposable. Let us recall the
definitions here:

Definition 1.3.7. LetX be a projective variety and let E be a vector bundle onX .
E is called simple if the only endomorphisms are the homotheties, i.e., End(E) = k.
E is called indecomposable if it can not be written as E ∼= F ⊕ G where F and G
non-zero vector bundles.

As it has just been mentioned, these notions are related as follows:

Lemma 1.3.8. Let X ⊆ Pn be a projective variety and let E be a vector bundle on X .
Then we have the following implications:

E is µ− stable⇒ E is simple⇒ E is indecomposable.

Proof. It is immediate to see that simple vector bundles are indecomposable. On
the other hand, the fact that µ-stability implies simplicity is proven in [OSS80,
Theorem 1.2.9].

Definition 1.3.9. LetX ⊆ Pn be a projective variety and let E be a coherent sheaf
onX . We are going to say that a sheaf E onX is initialized (with respect toOX (1))
if

H0(X , E(−1)) = 0 but H0(X , E) 6= 0.

We are going to define the initializing shift as the integer (if it exists) kinit such
that Einit := E(kinit) is initialized. Notice that if E is a locally free sheaf, it can
always be initialized.

Remark 1.3.10. Given a rank r vector bundle F on a projective variety X with
an ample divisorH , the first two Chern classes of F are modified by twisting as
follows:

• c1(F(lH)) = c1(F) + rlH .

• c2(F(lH)) = c2(F) + (r − 1)lc1(F)H +
(
r
2

)
l2H2.

We are going to finish this chapter recalling the Riemann-Roch theorem for
surfaces:

Theorem 1.3.11 (Riemann-Roch formula). Let E be a rank r vector bundle on the
smooth projective surface X ⊆ Pd. Then

χ(E) =
c1(E)(c1(E)−KX )

2
− c2(E) + rχ(OX ).





Chapter 2

The Minimal Resolution
Conjecture

It is a long-standing problem in Algebraic Geometry to determine the Hilbert
function of any set Z of distinct points in Pn. It is well-known that

HZ(t) ≤ min{
(
n + t
n

)
, |Z|}

for any t, and that equality holds if the points are general. A much more subtle
question is to find out the exact shape of the minimal free resolution of its coor-
dinate ring RZ . We know that if Z is a general set of s distinct points in Pn it has
to be of the form (cf. [Lor89, Theorem 2.2]):

0 −→ Fn −→ . . . −→ F1 −→ F0 −→ RZ −→ 0

with F0 = R and

Fi ∼= R(−r − i)bi,r ⊕R(−r − i + 1)bi,r−1

for i = 1, . . . ,n, where r is the unique nonnegative integer such that(
r + n− 1

n

)
≤ s <

(
r + n
n

)
.

Moreover we have:

bi+1,r−1 − bi,r =
(
r + i− 1

i

)(
r + n
n− i

)
− s
(
n

i

)
.
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The Minimal Resolution Conjecture proposed by Lorenzini in [Lor93, p. 10]
says that there exist no ghost terms in the minimal free resolution of RZ , i.e.,
bi+1,r−1bi,r = 0 for all i. Ever since this conjecture was stated, it has attired a
lot of attention and positive or negative answers have been obtained in a lot of
cases. In section 2.1, we summarize the state of this conjecture. Later on, in
[Mus98], Mustaţă proposed a generalized version of this conjecture for general
distinct points lying on any projective variety, in particular he conjectured that,
as in the case of the projective space, the graded Betti numbers had to be as small
as possible.

In this chapter we are interested in tackle Mustaţă’s conjecture for points on
ACM quasi-minimal surfaces. These are ACM surfacesX embedded in the projec-
tive space Pd with degree d. Therefore, they have quasi-minimal degree (since
it is well-known that for a nondegenerate variety X ⊆ Pn it holds deg(X) ≥
codim(X) + 1). This kind of varieties have received a lot of attention recently
related to the theory of ∆-genus as developed in [Fuj90], where a satisfactory
classification of the quasi-minimal varieties (i.e., varieties of ∆-genus one) was
stated. In particular, smooth ACM quasi-minimal surfaces correspond with del
Pezzo strong surfaces, which are going to be one of the main topics in chapter 4.
We are going to prove that Mustaţă’s conjecture holds for a wide range of cardi-
nalities of general distinct points on ACM quasi-minimal surfaces.

The structure of this chapter is as follows: in section 2.1, we recall the Mini-
mal Resolution Conjecture (MRC) and give a brief account of the known results
around it.

In section 2.2, we pay attention to ACM quasi-minimal surfaces. We prove
that the twoweaker conjectures, the Ideal Generation Conjecture and the Cohen-
Macaulay type conjecture, hold for any general set of points on ACM quasi-
minimal surfaces (except for two sporadic cases, see Theorem 2.2.16). Moreover,
for general set of distinct points whose cardinalities fall into determinate strips
(see Theorem 2.2.15 for a precise definition) we are able to prove that the whole
MRC holds (except for the same two sporadic cases, see Theorem 2.2.15). For the
particular case of integral cubic surfaces, we see that MRC holds for any general
set of distinct points (see Theorem 2.2.17).

In section 2.3, we focus our attention on a slightly modified conjecture. Since,
in general, Hilbs(X) is not irreducible (see [Iar72] for the case of varieties of di-
mension higher or equal than 3 and chapter 3 for surfaces), we can also search the
minimal graded free resolution of the homogeneous ideal of the 0-dimensional
scheme associated to a general point of any other irreducible component of the
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Hilbert scheme Hilbs(X) and ask if the graded Betti numbers are as small as pos-
sible, i.e. there are no ghost terms in the minimal free resolution. We address
this conjecture and, in particular, we prove that for any integer d ≥ 2 and for any
s ≥

(
d+3

3

)
− 1, there exists a

(
d+2

2

)
-dimensional family of irreducible generically

smooth surfaces X ⊂ P3 of degree d satisfying it (see Theorem 2.3.18).

Part of the results of this chapter will be published in:
•Miró-Roig, R.M and Pons-Llopis, J., The Minimal free resolution for points on

del Pezzo surfaces, Algebra and Number Theory (to appear).
•Miró-Roig, R.M and Pons-Llopis, J., The Minimal free resolution for points on

surfaces, submitted.

2.1 Introduction to the Minimal Resolution Conjec-
ture

The goal of this section will be to introduce the background and known results
around the Minimal Resolution Conjecture. Let X ⊆ Pn be a projective variety
of dimX ≥ 1, let Z ⊆ X be a set of s distinct points and let IZ|X := H0

∗(IZ|X ). Let
RZ = R/IZ be its coordinate homogeneous ring. Then RZ is a Cohen-Macaulay
ring of Krull dimension one. Notice that, from the exact sequence

0 −→ IX −→ IZ −→ IZ|X −→ 0,

in case X is an ACM variety, we have IZ|X = IZ/IX and, in any case, if we write
the homogeneous ideal IZ/IX = ⊕t≥0(IZ/IX )t,

(IZ/IX )t = H0(IZ|X (t)) for t ≥ reg(X).

It is well-known that the Hilbert functionHZ of Z is eventually constant and
equal to s = H0(OZ). Let us define the initial degree

α := min{t ≥ 0 | (IZ/IX )t 6= 0},

i.e., the minimal degree of a generator of IZ/IX . Notice that from the definition
it follows that s ≥ HX (α− 1).

The next lemma gathers some well-known properties of the Hilbert function
HZ of Z:

Lemma 2.1.1. (cf. [GM84, Proposition 1.1]) Let Z ⊆ X ⊆ Pn be a set of s distinct
points.
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(i) HZ is an increasing function. Moreover, if HZ(t) = HZ(t + 1) for some t, then
HZ(t + 1) = HZ(t + 2).

(ii) If we define e := min{t | HZ(t) = HZ(t− 1)}, then

IZ/IX = 〈(IZ/IX )α, . . . , (IZ/IX )e〉.

(iii) For 0 ≤ t ≤ s− 1, we have

t + 1 ≤ HZ(t) ≤ min{
(
n + t
n

)
, s},

and for t ≥ s, HZ(t) = s.

From the previous Lemma we see which are the slowest and fastest possible
growth of the Hilbert function of a set of points in Pn. As for the slowest growth,
it has a nice geometric interpretation:

Lemma 2.1.2. (cf. [GM84, Proposition 1.3]) Let Z ⊆ Pn be a set of s distinct points.
Then the following are equivalent:

(i) The points of Z lie on a line.

(ii) HZ(1) = 2.

(iii) HZ(t) = t + 1 for t ≤ s− 1 and HZ(s) = s.

Example 2.1.3. According to the previous Lemma, 23 distinct points lying on a
line in Pn have Hilbert function:

t 0 1 2 3 . . . 21 22 23 . . .

HZ(t) 1 2 3 4 . . . 22 23 23 . . .

On the other extreme of growth we have:

Definition 2.1.4. We will say that a set of s distinct points Z ⊆ X is in general
position in X if for all t ≥ 0 its Hilbert function is given by the formula

HZ(t) = min{HX (t), s}. (2.1.1)

Therefore, if Z ⊆ X is a set of s points in general position inX , for the unique
integer r such that HX (r − 1) ≤ s < HX (r) it holds that HZ(r) = HZ(r + 1) and
so by Lemma 2.1.1, IZ/IX = 〈(IZ/IX )r, (IZ/IX )r+1〉.
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Example 2.1.5. Let X ⊆ P3 be an irreducible quadric surface. Let Z1 ⊆ X be
7 distinct points in general position and let Z2 ⊆ X be 7 general distinct points
lying on a unique hyperplane section. We have the following Hilbert functions:

t 0 1 2 3 4 . . .

HX (t) 1 4 9 16 25 . . .

HZ1 (t) 1 4 7 7 7 . . .

HZ2 (t) 1 3 5 7 7 . . .

Remark 2.1.6. Among those sets of points in general position, the ones with the
fastest growth correspond to s = HX (r − 1). In this case IZ/IX = 〈(IZ/IX )r〉.

Example 2.1.7. Let us consider the following two examples of the situationmen-
tioned in the previous remark:

(i) IfZ ⊆ P4 is a set of
(4+3

4

)
= 35 points in general position, its Hilbert function

is
t 0 1 2 3 4 . . .

HZ(t) 1 5 15 35 35 . . .

and IZ is generated by 35 quartics.

(ii) Now let us consider the twisted cubic curveX ⊆ P3. It has Hilbert polyno-
mial PX (t) = 3t + 1 and it is generated by three quadrics. Let Z ⊆ X be a
set ofHX (4) = 13 distinct points in general position inX . Then the Hilbert
functions of X and Z are:

t 0 1 2 3 4 5 . . .

HX (t) 1 4 7 10 13 16 . . .

HZ(t) 1 4 7 10 13 13 . . .

IZ/IX is generated by three quintics. Therefore, IZ is generated by three
quadrics and three quintics.

Geramita and Orecchia in the case of points in Pn and Mustaţă in the more
general case of points in a given projective variety showed that a set of general
distinct points is in general position:

Proposition 2.1.8. (cf. [GO81, Theorem 4] and [Mus98, Proposition 1.1]) Given an
integer s ≥ 0 and a variety X ⊆ Pn, the subschemes consisting of s distinct points in
X that are in general position form a non-empty open set of Hilbs(X).
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In [Mus98], Mustaţă extended previous results about the shape of minimal
free resolutions of general set of points Z ⊆ X by Lorenzini (cf. [Lor89]) for the
caseX = Pn to arbitrary projective varietyX ⊆ Pn. He proved that the first rows
of the Betti diagram of a general set of distinct points Z in a projective varietyX
coincide with the Betti diagram ofX and that there are two extra nontrivial rows
at the bottom. He also gave lower bounds for the Betti numbers in these last two
rows. Let us recall it:

Theorem 2.1.9. (cf. [Mus98, Propositions 1.5 and 1.6] and [Lor89, Theorem 2.2]). Let
X ⊂ Pn be a projective variety with d = dim(X) ≥ 1, reg(X) = m and with Hilbert
polynomial PX . Let s be an integer with PX (r − 1) ≤ s < PX (r) for some r ≥ m + 1
and let Z be a set of s general distinct points on X . Then:

(i) For every i and j ≤ r − 2, bi,j(Z) = bi,j(X).

(ii) bi,j(Z) = 0 for j ≥ r + 1 and there exists i such that bi,r−1(Z) 6= 0.

(iii) For every j ≥ m,
bi,j(Z) = bi−1,j+1(IZ/IX ).

In other words, if we let

0→ Fn → Fn−1 → · · · → F2 → F1 → R→ RX → 0

be a minimal free R-resolution of RX . Then RZ has a minimal free R-resolution of the
following type

0 −→ Fn ⊕R(−r − n + 1)bn,r−1(Z) ⊕R(−r − n)bn,r(Z) −→ · · ·

−→ F2 ⊕R(−r − 1)b2,r−1(Z) ⊕R(−r − 2)b2,r(Z) −→

−→ F1 ⊕R(−r)b1,r−1(Z) ⊕R(−r − 1)b1,r(Z) −→ R −→ RZ −→ 0.

Moreover, if we set Qi,r(s) = bi+1,r−1(Z)− bi,r(Z),

Qi,r(s) =
d−1∑
l=0

(−1)l
(
n− l − 1
i− l

)
∆l+1PX (r + l)−

(
n

i

)
(s− PX (r − 1)). (2.1.2)

Therefore, the equation (2.1.2) in Theorem 2.1.9 gives lower bounds for the
Betti numbers: bi+1,r−1(Z) ≥ max{Qi,r(s), 0} and bi,r(Z) ≥ max{−Qi,r(s), 0}.

TheMinimal Resolution Conjecture asserts that the graded Betti numbers are
as small as possible:
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Conjecture 2.1.10. With the notations from the previous Theorem, theMinimal Reso-
lution Conjecture (MRC for short) holds for the value s if for every set Z of s general
distinct points we have bi+1,r−1(Z) = max{Qi,r(s), 0} and bi,r(Z) = max{−Qi,r(s), 0}.
Equivalently,

bi+1,r−1(Z)bi,r(Z) = 0 for i = 1, · · · ,n− 1.

Example 2.1.11. Let X ⊆ P4 be a smooth complete intersection of two quadric
hypersurfaces and let Z ⊆ X be a general set of 28 distinct points. We have
reg(X) = 4 and PX (3) = 25 < 28 < PX (4) = 41. We are going to prove in 2.3.18
that MRC holds in this case. Therefore, the Betti diagram of Z is as follows:

0 1 2 3 4
0 1 − − − −
1 − 2 − − −
2 − − 1 − −
3 − 13 32 22 −
4 − − − − 3

Notice that the first three rows coincidewith the Betti diagramofX . Theminimal
graded resolution of RZ is

0 −→ R(−8)3 −→ R(−6)22 −→ R(−4)⊕R(−5)32 −→

R(−2)2 ⊕R(−4)13 −→ R −→ RZ −→ 0.

Lorenzini’s original conjecture (cf. [Lor93, p. 10]) dealt with the particular
case when X = Pn.

Remark 2.1.12. Let us summarize here what it is known regarding Lorenzini’s
MRC:

• The MRC is known to hold for any number of points s in Pn for n = 2 (see
[Gae51, p. 912]), n = 3 ([BG86]) and n = 4 ([Wal95, Theorem 1]).

• The MRC is known also to hold for large values of s for any n (see [HS96,
p. 468]).

• On the other hand, MRC fails in general for any n ≥ 6, n 6= 9 (see [EPSW02,
Theorem 1.1]).

Concerning Mustaţă’s conjecture for arbitrary projective varieties, up to now
it was known:
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• As for the one-dimensional case, MRC holds for large cardinalities of gen-
eral points on canonical curves C ⊆ Pn (i.e., curves embedded in Pn by its
canonical divisor) (see [FMP03, Theorems 3.1]).

• Nevertheless, oppositely to the case of the projective space, the MRC fails
for sets of points of arbitrarily large length on curves of high degree (see
[FMP03, Theorem 2.2]).

• MRC holds for any number of general points on a smooth quadric surface
in P3 (see [GMR96, Theorem 4.3]).

• In [Cas09, Theorem 3.2], Casanellas proved that this conjecture holds for
some special cardinalities of sets of general points on a smooth cubic sur-
face.

• In [MP, Theorem 3.1], Migliore and Patnott, independently of our results,
have been able to prove it for sets of general distinct points of any cardinal-
ity on a cubic surface X ⊆ P3 with at most isolated double points.

Related to the MRC there exist two weaker conjectures that deal only with
a part of the minimal resolution of a general set of points: the Ideal Generation
Conjecture which says that the minimal number of generators of the ideal of a
general set of points will be as small as possible. From Theorem 2.1.9 it is clear
that this conjecture can be translated in terms of the Betti numbers:

Conjecture 2.1.13. Let X ⊂ Pn be a projective variety with d = dim(X) ≥ 1,
reg(X) = m and with Hilbert polynomial PX . Let s be an integer with PX (r−1) ≤ s <
PX (r) for some r ≥ m+ 1 and let Z be a set of s general distinct points onX . The Ideal
Generation Conjecture (IGC for short) holds for the value s if b1,r(Z)b2,r−1(Z) = 0.

On the other hand, the Cohen-Macaulay type Conjecture affirms that the canon-
ical moduleKZ = Extn(R/IZ ,R(−n−1)) has as few generators as possible. Since
we saw that the dual of the minimal resolution of RZ provides a (twisted) reso-
lution ofKZ this conjecture can also been translated in terms of Betti numbers:

Conjecture 2.1.14. Let X ⊂ Pn be a projective variety with d = dim(X) ≥ 1,
reg(X) = m and with Hilbert polynomial PX . Let s be an integer with PX (r − 1) ≤
s < PX (r) for some r ≥ m + 1 and let Z be a set of s general distinct points on
X . The Cohen-Macaulay type Conjecture (CMC for short) holds for the value s if
bn−1,r(Z)bn,r−1(Z) = 0.
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Regarding these two conjectures, CMC has been proved in full generality in
the case of the projective space X = Pn, for any n (see [Tru89, p. 112]). It is also
known that the IGC holds for large set of points on curves of degree d ≥ 2g (see
[FMP03, Theorem 2.2]. In Theorem 2.2.16 we are going to prove that IGC and
CMC hold for general set of points on ACM quasi-minimal surfaces (up to two
sporadic cases).

2.2 MRC for points on ACM quasi-minimal surfaces

The goal of this sectionwill be to prove theMRC for points onACMquasi-minimal
surfaces. Recall that given a nondegenerate projective variety X ⊆ Pd it always
holds that deg(X) ≥ codim(X)+1. It is a classical result the classification ofmin-
imal varieties, i.e., varieties for which there is equality in the previous expression
(see, for instance, [Dol, Theorem 8.1.1]). We are going to deal with the next case:

Definition 2.2.1. A quasi-minimal variety is a nondegenerate variety X ⊆ Pd

such that deg(X) = codim(X) + 2.

Example 2.2.2. (i) As examples of quasi-minimal varieties, consider any cubic
hypersurface or any complete intersection of two hyperquadrics. They are
ACM varieties.

(ii) Any cone over a quasi-minimal variety turns out to be a quasi-minimal
variety. Then, for instance, a cone over any nondegenerate curve C ⊆ Pd−1

of degree d is a quasi-minimal-surface.

(iii) As for an example of quasi-minimal surface which is not ACM,we have the
isomorphic projection to Pd of the rational normal scroll Y ⊆ Pd+1.

Fujita (see [Fuj90]) has a satisfactory classification of such varieties. In this
section we are going to restrict our attention to ACM quasi-minimal surfaces.
According to [Hoa93, Theorem 1], the minimal free resolution of the coordinate
ring of an ACM quasi-minimal surface X ⊆ Pd has the form:

0 −→ R(−d) −→ R(−d + 2)αd−3 −→ . . . −→ R(−2)α1 −→ R −→ RX −→ 0
(2.2.1)

where
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αi = i

(
d− 1
i + 1

)
−
(
d− 2
i− 1

)
for 1 ≤ i ≤ d− 3.

In particular, the homogenous ideal of an ACM quasi-minimal surface of degree
≥ 4 is generated by quadrics (the case degX = 3 corresponds to cubic surfaces
X ⊆ P3). Notice that X turns out to be AG and, hence, αi = αd−2−i for all
i = 1, . . . , d − 2. Moreover, the canonical bundle is ωX ∼= OX (−1). Therefore,
whenX is a smooth surface, we recover the class of strong del Pezzo surfaces as
they will be defined in Definition 4.1.4 of chapter 4.

The main technique used in this section is the theory of Gorenstein liaison.
Roughly speaking, knowing that two sets of points are G-linked will allow us to
pass from the minimal resolution of the ideal of one of them to the resolution
(not necessarily minimal) of the other one through mapping cone procedure as
it was explained in section 2 of chapter 2. Then once the MRC is known to hold
for a general set of d+2 distinct points on an ACMquasi-minimal surfaceX ⊆ Pd

an induction process will provide us with our main Theorems 2.2.15, 2.2.16 and
2.2.17.

In order to deal with ACM quasi-minimal varieties, the structure of the proof
will be as follows. In the next subsection, we establish the MRC for two critical
values,

m(r) :=
d

2
r2 + r

2− d
2

and
n(r) :=

d

2
r2 + r

d− 2
2

,

for r ≥ 2, of set of general distinct points on an ACM quasi-minimal surface X
(up to two sporadic cases) . Firstly, we will establish the result for m(2) = d + 2
general distinct points on any ACM quasi-minimal surface X ⊂ Pd which gives
the initial step for our induction (Lemma 2.2.9). Then, using G-liaison, we prove
that if m(r) general distinct points on any ACM quasi-minimal surface satisfy
MRC then so do n(r) general distinct points (Proposition 2.2.10). An easy remark
gives us that if n(r) general distinct points on X have the expected resolution
then n(r) + 1 general distinct points do as well. Finally, using again G-liaison,
we show that if n(r)+1 general distinct points on an ACM quasi-minimal surface
satisfyMRC then so dom(r+1) (up to four sporadic cases, see Proposition 2.2.12).
The final subsection contains the main results of this section: namely that MRC
holds on an ACM quasi-minimal surface (up to two of the four aforementioned
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sporadic cases) for a general set of distinct points whose cardinality falls into the
strips [PX (r− 1),m(r)] and [n(r),PX (r)] for any r ≥ 4 = regX + 1 with PX (r) the
Hilbert polynomial of X (see Theorem 2.2.15). As a corollary, we will get that
Mustaţă’s conjecture holds for any general set of t ≥ 19 points on an integral
cubic surface in P3 (Theorem 2.2.17) and the Ideal Generation Conjecture as well
as the Cohen-Macaulay type Conjecture holds for any general set of t ≥ 6d + 1
points on an ACM quasi-minimal surface in Pd (except the two excluded cases,
see Theorem 2.2.16).

2.2.1 MRC conjecture for sets of n(r) and m(r) general distinct
points on ACM quasi-minimal surfaces

For the rest of the section,X ⊆ Pd will stand for an ACM quasi-minimal surface
as was defined in Definition 2.2.1. The Hilbert polynomial and the regularity of
X can be easily computed using the exact sequence (2.2.1) and we have

PX (r) =
d

2
(r2 + r) + 1 and reg(X) = 3. (2.2.2)

Let us consider the following critical values:

m(r) :=
d

2
r2 + r

2− d
2

, n(r) :=
d

2
r2 + r

d− 2
2

.

Notice that

PX (r − 1) < m(r) < n(r) < PX (r).

We also set the following notation.

(i) L is any line on X .

(ii) H denotes a general hyperplane section of X .

(iii) If C is a curve onX ,HC will be a general hyperplane section of C andKC

the canonical divisor on C.

We are going to find out the minimal free resolution for general set of points
of the two specific cardinalities m(r) and n(r), for r ≥ 2. The strategy of the
proof is as follows: firstly, we will establish the result for m(2) = d + 2 general
distinct pointswhich gives the starting point for our induction process. Secondly,
using G-liaison, we prove that ifm(r) general distinct points on any ACM quasi-
minimal surface satisfy MRC then so do n(r) general distinct points. Next we
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observe that if n(r) general distinct points on X have the expected minimal free
resolution then n(r) + 1 general distinct points do as well. And, finally, we show
that if n(r) + 1 general distinct points on an ACM quasi-minimal surface (up to
four sporadic cases) satisfy MRC thenm(r + 1) general distinct points do satisfy
the MRC.

First of all, since we are going to heavily rely on Theorem 1.2.22 in order to
use G-liaison, we need to ensure that all the curves we are going to work with
verify the condition G1 (see Definition 1.2.21). We need the following result:

Proposition 2.2.3. ([BH93, Prop. 3.1.19]) Let R be a local Gorenstein ring and let
a1, . . . an be a R-regular sequence. Then R/(a1, . . . an) is also a Gorenstein ring.

Proposition 2.2.4. Let X ⊆ Pd be an ACM quasi-minimal surface. Assume that X
is not one of the following four particular cases: X ∼= P2, X ∼= P1 × P1, X is the
anticanonical model of F2 := P(OP1 ⊕ OP1 (−2)) or X is a complete intersection of two
quadrics on P4 with a double line. Then there exists a line L ⊆ X ⊆ Pd such that for
any r ≥ 1 the linear system |L + rH| contains a subsystem V ⊆ |L + rH| of dimension
≥ h0(OX (rH)) and an open subset U ⊆ V such that any curve C ∈ U is locally
Gorenstein (i.e., it verifies condition G1).

Proof. We are going to divide the proof in several cases, covering the classifica-
tion of ACM quasi-minimal surfaces as it is presented in [Dol, Section 8.4] (for
the normal case) and [Rei94, Theorem 1.1] (for the nonnormal one).

(i) In case X ⊆ Pd being smooth we are in the case of a strong del Pezzo
surface. Any such a surface contains lines L except when X ∼= P2 or X ∼=
P1 × P1. For any curve C ∈ |L + rH|, let us consider the exact sequence

0 −→ IC|X −→ OX −→ OC −→ 0. (2.2.3)

Then, for any point p ∈ C, OX ,p is regular and therefore (IC|X )p is gener-
ated by a single element. Therefore we can apply Proposition 2.2.3 to the
exact sequence

0 −→ (IC|X )p −→ OX ,p −→ OC,p −→ 0

to conclude that OC,p is Gorenstein (recall that a regular ring is always
Gorenstein).

(ii) When X is singular but normal, [Dol, Section8.4] shows that X contains a
line L. Moreover, a general element C of the linear system |rH|, does not
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pass through any of the singular points of X . Let us consider the curve
C ′ := L ∪ C. For a point p ∈ C ′, if p ∈ X\ Sing(X) the same proof as
in the previous case shows that OC′,p is Gorenstein. On the other hand,
if p ∈ Sing(X), since p /∈ C, then OC′,p ∼= OL,p is regular and therefore
Gorenstein.

(iii) When X is nonnormal, X not isomorphic to a complete intersection of
two quadrics on P4 with a double line, [Rei94, Theorem 1.1] shows that
(Sing(X))red is a line and moreover X is covered by lines. For any such
a line L 6= Sing(X) and for any curve C ∈ |rH| such that C does not pass
throughL∩Sing(X), we are going to see thatC ′ := L∪C is a locally Goren-
stein curve. So take p ∈ C ′. If p ∈ X\ Sing(X) or p ∈ Sing(X)∩L, the same
arguments as in item (ii) show that C ′ is locally Gorenstein. On the other
hand, if p ∈ Sing(X)∩C, we haveOC′,p ∼= OC,p. ButC was a Cartier divisor
and in particular the ideal (IC,X )p ofOX ,p is generated by a single element.
Therefore, Proposition 2.2.3 applied to the exact sequence

0 −→ (IC|X )p −→ OX ,p −→ OC,p −→ 0

shows thatOC′,p is Gorenstein (notice thatX beingAG implies in particular
that X is Gl for any l).

We will prove the main result of this subsection via a series of Lemmas and
Propositions. Since the shape of theminimal free resolution of the homogeneous
ideal IX|P3 of an ACM quasi-minimal surface of degree 3 (i.e, a cubic surface) is
slightly different from that of an ACM quasi-minimal surface of degree d ≥ 4 we
need to consider apart the two cases for some arguments. We will give complete
proofs in the case of degree d ≥ 4. The concrete arguments on the case of degree
3 are analogous but much easier to write down and therefore they will be left to
the reader.

Lemma 2.2.5. Let X ⊆ Pd be any ACM quasi-minimal surface of degree d ≥ 4 and
take C ∈ |(r + ε)H|, r ≥ 2, ε ∈ {0, 1}. Then, any effective divisorG in the linear system
|rHC | is AG (as a subscheme of Pd) and it has a minimal free resolution of the following
form:
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0 −→ R(−2r−d−ε) −→ R(−2r−d+2−ε)αd−3⊕R(−r−d)2−ε⊕R(−r−d−1)ε −→

. . . −→Mi −→ . . . −→ R(−2r − ε)⊕R(−r − 2)(2−ε)α1 ⊕R(−r − 3)εα1 −→

−→M1 := R(−r)2−ε ⊕R(−r − 1)ε −→ IG|X −→ 0,

where Mi = R(−2r − i + 1 − ε)αi−2 ⊕ R(−r − i)(2−ε)αi−1 ⊕ R(−r − i − 1)εαi−1 for
i = 3, . . . , d− 2 and αi = i

(
d−1
i+1

)
−
(
d−2
i−1

)
for 1 ≤ i ≤ d− 3.

Proof. A curve C ∈ |(r + ε)H| has saturated ideal IC|X = H0
∗(OX (−r − ε)). From

the exact sequence (2.2.1) we have:

0 −→ OPd (−d) −→ OPd (−d + 2)αd−3 −→ . . .

. . . −→ OPd (−2)α1 −→ OPd −→ OX −→ 0 (2.2.4)

withαi = i
(
d−1
i+1

)
−
(
d−2
i−1

)
for 1 ≤ i ≤ d−3. Twisting the exact sequence (4.5.1) with

OPd (−r−ε) and taking global sections we get theminimal graded free resolution
of IC|X :

0 −→ R(−r − d− ε) −→ . . . −→ R(−r − (i + ε))αi−1 −→ . . .

−→ R(−r − 2− ε)α1 −→ R(−r − ε) −→ IC|X −→ 0.

Now we can apply the horseshoe lemma to the following exact sequence

0 −→ IX|Pd −→ IC|Pd −→ IC|X −→ 0

to obtain the minimal free resolution of IC|Pd :

0 −→ R(−r − d− ε) −→ R(−r − d + 2− ε)αd−3 ⊕R(−d) −→ . . .

−→ Ti := R(−r − i− ε)αi−1 ⊕R(−(i + 1))αi −→ . . .

−→ R(−r − ε)⊕R(−2)α1 −→ IC|Pd −→ 0.

This sequence shows that C ⊆ Pd is an arithmetically Gorenstein variety with
canonical module

KC := Extd−1(R/IC ,R(−d− 1)) = RC(r − 1 + ε).

Therefore IG|C = H0
∗(OC(−r)) = KC(−2r + 1− ε). We apply Hom(−,R(−d− 1))

to the previous sequence and we get a graded minimal free resolution ofKC :
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0 −→ R(−d− 1) −→ R(r − d− 1 + ε)⊕R(−d + 1)αd−3 −→ . . .

−→ T ′i −→ . . . −→ R(−1)⊕R(r − 3 + ε)α1 −→ R(r − 1 + ε) −→ KC −→ 0

where T ′i := T∨d−i(−d − 1) = R(r − i − ε)αi−1 ⊕ R(−i)αi−2 for i = 3, . . . , d − 2. If
we twist the previous sequence by −2r + 1− ε we get the minimal resolution of
IG|C :

0 −→ R(−2r−d−ε) −→ R(−r−d)⊕R(−2r−d+2−ε)αd−3 −→ . . . −→ T ′i (−2r+1−ε)

−→ . . . −→ R(−2r − ε)⊕R(−r − 2)α1 −→ R(−r) −→ IG|C −→ 0.

Finally, we can apply the horseshoe lemma to the short exact sequence

0 −→ IC|X −→ IG|X −→ IG|C −→ 0

to recover the resolution of IG|X :

0 −→ R(−2r − d− ε) −→ R(−2r − d + 2− ε)α1 ⊕R(−r − d)2−ε ⊕R(−r − d− 1)ε

−→ . . . −→Mi −→ . . . −→ R(−2r − ε)⊕R(−r − 2)(2−ε)α1 ⊕R(−r − 3)εα1

−→ R(−r)2−ε ⊕R(−r − 1)ε −→ IG|X −→ 0

whereMi = R(−2r − i + 1 − ε)αi−2 ⊕ R(−r − i)(2−ε)αi−1 ⊕ R(−r − i − 1)εαi−1 for
i = 3, . . . , d− 2.

Lemma 2.2.6. Let X ⊆ P3 be an ACM quasi-minimal surface of degree 3 and take
C ∈ |(r + ε)H|, r ≥ 2, ε ∈ {0, 1}. Then, any effective divisor G in the linear system
|rHC | is AG and it has a minimal free resolution of the following form:

0 −→ R(−2r − 3− ε) −→ R(−2r − ε)⊕R(−r − 3)2−ε ⊕R(−r − 4)ε −→

−→ R(−r)2−ε ⊕R(−r − 1)ε −→ IG|X −→ 0.

Proof. It is completely analogous to Lemma 2.2.5. See also [Cas09, Proposition
3.5].

Lemma 2.2.7. Let X ⊆ Pd be an ACM quasi-minimal surface distinct to one of the
four sporadic cases of Lemma 2.2.4 and let L ⊆ X be a line on it. Take C ∈ |L + rH|
a locally Gorenstein curve, r ≥ 2, and let G be any effective divisor in the linear system
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|2rHC −KC |. Then, G is arithmetically Gorenstein and the minimal free resolution of
IG|C has the following form:

0 −→ R(−2r − d− 1) −→ R(−2r − d + 1)α1 ⊕R(−r − d)d−1 −→ . . .

−→ R(−2r − i)αd−i ⊕R(−r − i− 1)(
d−1
d−i)+αd−i−1 −→ . . .

−→ R(−2r− 1)⊕R(−r− 3)(
d−1
d−2)+αd−3 −→ R(−r− 1)⊕R(−r− 2) −→ IG|C −→ 0

with αi = i
(
d−1
i+1

)
−
(
d−2
i−1

)
for 1 ≤ i ≤ d− 3.

Proof. First of all, notice that we are assuming that C ∈ |L+ rH| is locally Goren-
stein (i.e., it isG1) only in order to be able to work with generalized divisors. Let
L ⊆ X be any line. Its ideal as a subvariety of Pd has a resolution:

0 −→ R(−d + 1) −→ . . . −→ R(−i)(
d−1
i ) −→ . . . −→ R(−1)d−1 −→ IL|Pd −→ 0.

Using the mapping cone procedure for the exact sequence 0→ IX|Pd → IL|Pd →
IL|X → 0 we get

0 −→ R(−d)⊕R(−d + 1) −→ . . . −→ R(−i)(
d−1
i )+αi−1 −→

−→ . . . −→ R(−1)d−1 −→ IL|X −→ 0

with αi = i
(
d−1
i+1

)
−
(
d−2
i−1

)
for 1 ≤ i ≤ d − 3. Therefore, C ∈ |L + rH| has the

following minimal graded free resolution

0 −→ R(−r − d)⊕R(−r − d + 1) −→ . . . −→ R(−r − i)(
d−1
i )+αi−1 −→ . . .

−→ R(−r − 1)d−1 −→ IC|X −→ 0. (2.2.5)

Now the horseshoe lemma applied to 0→ IX|Pd → IC|Pd → IC|X → 0 gives us

0 −→ R(−r − d)⊕R(−r − d + 1) −→ R(−r − d + 2)(
d−1
d−2)+αd−3 ⊕R(−d) −→ . . .

−→ R(−r − i)(
d−1
i )+αi−1 ⊕R(−(i + 1))αi −→ . . .

−→ R(−r − 1)d−1 ⊕R(−2)α1 −→ IC|Pd −→ 0.

Since C is ACM we can apply Hom(−,R(−d− 1)) to get a resolution ofKC :
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0 −→ R(−d− 1) −→ R(−d + 1)α1 ⊕R(r − d)d−1 −→ . . .

−→ R(r − i− 1)(
d−1
d−i)+αd−i−1 ⊕R(−i)αd−i −→ . . .

−→ R(r − 3)(
d−1
d−2)+αd−3 ⊕R(−1) −→ R(r − 1)⊕R(r − 2) −→ KC −→ 0.

Now, since G ∈ |2rHC −KC |we have:

0 −→ R(−2r − d− 1) −→ R(−2r − d + 1)α1 ⊕R(−r − d)d−1 −→ . . .

−→ R(−r − i− 1)(
d−1
d−i)+αd−i−1 ⊕R(−2r − i)αd−i −→ . . .

−→ R(−r− 3)(
d−1
d−2)+αd−3 ⊕R(−2r− 1) −→ R(−r− 1)⊕R(−r− 2) −→ IG|C −→ 0.

Lemma 2.2.8. Let X ⊆ P3 be an integral cubic surface and let L ⊆ X be a line on it.
TakeC ∈ |L+rH| a locally Gorenstein curve, r ≥ 2, and letG be any effective divisor in
the linear system |2rHC −KC |. Then, G is arithmetically Gorenstein and the minimal
free resolution of IG|C has the following form:

0 −→ R(−2r−4) −→ R(−2r−1)⊕R(−r−3)2 −→ R(−r−1)⊕R(−r−2) −→ IG|C −→ 0.

Proof. It is completely analogous to Lemma 2.2.7.

Lemma 2.2.9. A general set Z of m(2) = d + 2 distinct points on any ACM quasi-
minimal surface X ⊂ Pd has a minimal free resolution of the following type:

0 −→ R(−d− 2) −→ R(−d)γd−1 −→ . . . −→ R(−3)γ2 −→ R(−2)2d−1 −→ IZ|X −→ 0

with

γi =
1∑
l=0

(−1)l
(
d− l − 1
i− l

)
∆l+1HX (2 + l)−

(
d

i

)
(m(2)−HX (1)).

Proof. A general set Z of d + 2 distinct points onX is in linearly general position
(i.e., any subset of Z of d + 1 points spans Pd). It is well-known that such a Z is
AG with minimal free resolution

0 −→ R(−d− 2) −→ R(−d)ρd−1 −→ R(−d + 1)ρd−2 −→ · · ·

−→ R(−3)ρ2 −→ R(−2)ρ1 −→ IZ|Pd −→ 0.
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where ρi = i
(
d+1
i+1

)
−
(
d
i−1

)
for 1 ≤ i ≤ d − 1. We now use the mapping cone

procedure applied to 0 → IX → IZ → IZ|X → 0 to obtain a free resolution of
the ideal IZ|X :

0 −→ R(−d−2) −→ R(−d)ρd−1+1 −→ R(−d+1)ρd−2 −→ R(−d+2)ρd−3−αd−3 −→ . . .

−→ R(−3)ρ2−α2 −→ R(−2)ρ1−α1 −→ IZ|X −→ 0

with αi = i
(
d−1
i+1

)
−
(
d−2
i−1

)
for 1 ≤ i ≤ d− 3. Since there are no ghost terms on the

previous exact sequence, it is minimal and the coefficients are forced to be given
by the formula from the statement.

Once we have fixed the starting point of the induction we can deal with the
different steps of the procedure.

Fix an integer r ≥ 2 and let Zm(r) and Zn(r) be general sets of distinct points
on X of cardinalitym(r) and n(r) respectively. We are going to see that they are
directlyG-linked by an effective divisorG linearly equivalent to rHC where C is
an AG curve in the linear system |rHX |. Recall that we have:

PX (r − 1) < m(r) < n(r) < PX (r).

Let us start with a general set Zm(r) ofm(r) distinct points. There are two issues
to be checked in order to be sure that the G-liaison is possible. Firstly, we need to
check that h0(OX (r)) > m(r) to guarantee the existence of a curve C in the linear
system |rHX | such thatZm(r) lies onC. On the other hand, we need to verify that
n(r) > pa(C) to be able to apply Riemann-Roch Theorem for (singular) curves
which assures that there exists an effective divisor Zn(r) of degree n(r) such that
Zm(r) + Zn(r) is linearly equivalent to a divisor rHC . Notice that, thanks to 1.1.8,
PX (r) = HX (r) = h0(OX (r)) for any r ≥ 1. Regarding the first issue, we have
h0(OX (r)) = PX (r) > m(r) by construction.

Regarding the second issue, let us consider the exact sequence:

0 −→ OX (−r) −→ OX −→ OC −→ 0.

Applying the functor of global sections we have

0 = H1(X ,OX ) −→ H1(C,OC) −→ H2(X ,OX (−r)) −→ H2(X ,OX ) = 0

and therefore pa(C) = h1(OC) = h2(OX (−r)) = h0(OX (r − 1)) where the last
equality holds by Serre’s duality and taking into account that ωX ∼= OX (−1).
Then since n(r) = dr2 −m(r) > PX (r − 1) = h0(OX (r − 1)) = pa(C) we are done.
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Since this construction can also be performed starting from a general setZn(r)

of n(r) points on the quasi-minimal surface X , we see that a general set of m(r)
points is G-linked to a general set of n(r) points and vice versa. This allows to
state the following Proposition.

Proposition 2.2.10. Fix r ≥ 2 and assume that the ideal IZm(r)|X of m(r) general dis-
tinct points on an ACM quasi-minimal surface X ⊆ Pd has the minimal free resolution

0 −→ R(−r − d)r−1 −→ R(−r − d + 2)γd−1,r−1 −→ . . .

−→ R(−r − 1)γ2,r−1 −→ R(−r)(d−1)r+1 −→ IZm(r)|X −→ 0

with γi,r−1 =
∑1
l=0(−1)l

(
d−l−1
i−l

)
∆l+1PX (r+ l)−

(
d
i

)
(m(r)−PX (r−1)). Then the ideal

IZn(r)|X of n(r) general distinct points has the minimal free resolution

0 −→ R(−r − d)(d−1)r−1 −→ R(−r − d + 1)βd−1,r −→ . . .

−→ R(−r − 2)β2,r −→ R(−r)r+1 −→ IZn(r)|X −→ 0

with βi,r =
∑1
l=0(−1)l+1

(
d−l−1
i−l

)
∆l+1PX (r + l) +

(
d
i

)
(n(r)− PX (r − 1)).

Vice versa, if n(r) general distinct points on an ACM quasi-minimal surfaceX ⊂ Pd

have the expected resolution thenm(r) general distinct points do as well.

Proof. As mentioned before, we are going to give the complete proof in the case
d ≥ 4. The case d = 3 is completely analogous using Lemma 2.2.6 instead of
Lemma 2.2.5. So let us suppose that d ≥ 4. We will check that if m(r) general
distinct points have the expected resolution then so do n(r) and we leave to the
reader the converse (which is proved analogously). By the above discussionm(r)
andn(r) general distinct points onX areG-linked byG ∈ |rHC |whereC is anAG
curve in the linear system |rH|. Thanks to Lemma 2.2.5 we know the resolution
of IG|X and hencewe can apply themapping cone procedure to the commutative
diagram
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0 0
↓ ↓

R(−2r − d) −→ R(−r − d)r−1

↓ ↓
R(−2r − d + 2)α1

⊕
R(−r − d)2

−→ R(−r − d + 2)γd−1

↓ ↓
...

...
↓ ↓

R(−2r − i + 1)αd−i

⊕
R(−r − i)2αi−1

−→ R(−r − i + 1)γi

↓ ↓
...

...
↓ ↓

R(−2r)
⊕

R(−r − 2)2α1

−→ R(−r − 1)γ2

↓ ↓
R(−r)2 −→ R(−r)(d−1)r+1

↓ ↓
0 −→ IG|X −→ IZm(r)|X −→ IZm(r)|G −→ 0.

↓ ↓
0 0

Since IG|X ⊆ IZm(r)|X , we can take as part of the generators of IZm(r)|X the
generators of IG|X and therefore thematrix defining the first horizontalmap con-
tains non-zero scalar entries. So the repeated elements can be split off. Therefore
we get:

0 −→ R(−r − d)(d−1)r−1 −→ R(−r − d + 1)βd−1,r −→ . . .

−→ R(−2)α1 ⊕R(−r)r+1 −→ IZn(r)|Pd −→ 0.

The mapping cone procedure applied now to the exact sequence

0→ IX → IZn(r) → IZn(r)|X → 0
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gives the desired minimal resolution for IZn(r)|X .

Lemma 2.2.11. LetX ⊂ Pd be any ACM quasi-minimal surface. Fix r ≥ 2 and assume
that the ideal IZn(r)|X of a set Zn(r) of n(r) general distinct points on X ⊆ Pd has the
expected minimal free graded resolution then a set of n(r) + 1 general distinct points does
as well.

Proof. Since IZn(r)|X has the expected minimal free resolution, we know that the
ideal IZn(r)|X is generated by r + 1 forms of degree r. Moreover, we know that
there are no linear relations among them. We take a general point p ∈ X and
set Z := Zn(r) ∪ {p}. Since IZ|X ⊂ IZn(r)|X , we can take the r generators of IZ|X
in degree r to be a subset of the generators of IZn(r)|X in degree r; in particular,
they do not have linear syzygies. We must add d generators of degree r + 1 in
order to get a minimal system of generators of IZ|X . Hence the first module in
the minimal free resolution of IZ|X is R(−r)r ⊕ R(−r − 1)d which completely
forces the remaining part of the resolution.

Proposition 2.2.12. Let X ⊆ Pd be an ACM quasi-minimal surface distinct to any of
the four sporadic cases of Lemma 2.2.4. Fix r ≥ 2 and assume that the ideal IZp(r)|X of
p(r) := n(r) + 1 general distinct points on X has the minimal free resolution

0 −→ R(−r − d)(d−1)r −→ R(−r − d + 1)δd−1,r −→ . . .

−→ R(−r − 2)δ2,r −→ R(−r)r ⊕R(−r − 1)d −→ IZp(r)|X −→ 0

with

δi,r =
1∑
l=0

(−1)l+1
(
d− l − 1
i− l

)
∆l+1HX (r + l) +

(
d

i

)
(p(r)−HX (r − 1)).

Then the ideal IZm(r+1)|X ofm(r+1) general distinct points has theminimal free resolution

0 −→ R(−r − d− 1)r −→ R(−r − d + 1)γd−1,r −→ . . .

−→ R(−r − 2)γ2,r −→ R(−r − 1)(d−1)r+d −→ IZm(r+1)|X −→ 0

with

γi,r =
1∑
l=0

(−1)l
(
d− l − 1
i− l

)
∆l+1HX (r + 1 + l)−

(
d

i

)
(m(r + 1)−HX (r)).
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Proof. Let Zp(r) be a set of p(r) general distinct points with resolution as in the
statement. Let us consider the linear system |L + rH|. By Lemma 2.2.4 we can
find a locally Gorenstein curve C ∈ |L + rH| passing through these p(r) points.
Notice that deg(C) = 1 + rd and pa(C) = d

(
r
2

)
+ r. Since pa(C) < m(r + 1) we can

find an effective divisor Zm(r+1) of degreem(r + 1) such that Zp(r) and Zm(r+1) are
G-linked by a divisor of degree p(r) +m(r + 1) = dr2 + dr + 2 = deg(2rHC −KC).
This will allowed us to find the resolution of IZm(r+1)|X . First of all, let us find the
minimal free resolution of the ideal IZp(r)|C from the exact sequence

0→ IC|X → IZp(r)|X → IZp(r)|C → 0

through themapping cone procedure, with the resolution of IC|X as it was found
in (2.2.5). It turns out to be:

0 −→ R(−r − d)(d−1)r+1 −→ R(−r − d + 1)cd−1,r −→ . . .

−→ R(−r − 2)c2,r −→ R(−r)r ⊕R(−r − 1) −→ IZp(r)|C −→ 0.

Since we have already found out the minimal free resolution of IG|C (see Lemma
2.2.7) we can use the mapping cone procedure applied to the exact sequence
0 −→ IG|C −→ IZp(r)|C −→ IZp(r)|G −→ 0 to get

0 −→ R(−2r − d− 1) −→ R(−r − d)(d−1)r+d ⊕R(−2r − d + 1)α1 −→ . . .

−→ R(−r − i)di,r ⊕R(−2r − i + 1)αd−i+1 −→ . . .

−→ R(−r − 2)d2,r −→ R(−r)r −→ IZp(r)|G −→ 0.

(0 → R(−2r − 4) → R(−r − 3)2r+3 ⊕ R(−2r − 1) → R(−r − 2)d2,r → R(−r)r →
IZp(r)|G → 0 if d = 3).
Finally we obtain the minimal free resolution of IZm(r+1)|Pd :

0 −→ R(−r− d− 1)r −→ R(−r− d+ 1)γd−1,r −→ R(−r− d+ 2)γd−2,r ⊕R(−d) −→

. . . −→ R(−r − i)γi,r ⊕R(−i)αi −→ . . .

−→ R(−r − 1)(d−1)r+d ⊕R(−2)α1 −→ IZm(r+1)|Pd −→ 0

(0 → R(−r − 4)r → R(−r − 2)γ2,r → R(−r − 1)2r+3 ⊕ R(−3) → IZm(r+1)|P3 → 0
if d = 3) from which it is straightforward to recover the predicted resolution of
IZm(r+1)|X .

We are now ready to prove the main theorem of this subsection:
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Theorem 2.2.13. Let X ⊆ Pd be an ACM quasi-minimal surface. Assume that X is
not the anticanonical model of F2 := P(OP1 ⊕OP1 (−2)) or a complete intersection of two
quadrics on P4 with a double line. We have:

(1) Let Zn(r) ⊂ X be a general set of n(r) points, r ≥ 2. Then the minimal graded
free resolution of IZn(r)|X has the following form:

0 −→ R(−r−d)(d−1)r−1 −→ R(−r−d+1)βd−1,r −→ R(−r−d+2)βd−2,r −→ . . .

−→ R(−r − 2)β2,r −→ R(−r)r+1 −→ IZn(r)|X −→ 0.

where

βi,r =
1∑
l=0

(−1)l+1
(
n− l − 1
i− l

)
∆l+1HX (r + l) +

(
n

i

)
(n(r)−HX (r − 1)).

(2) Let Zm(r) ⊂ X be a general set of m(r) points, r ≥ 2. Then its minimal graded
free resolution has the following form:

0 −→ R(−r − d)r−1 −→ R(−r − d + 2)γd−1,r−1 −→ . . .

−→ R(−r − 1)γ2,r−1 −→ R(−r)(d−1)r+1 −→ IZm(r)|X −→ 0

with

γi,r−1 =
1∑
l=0

(−1)l
(
n− l − 1
i− l

)
∆l+1PX (r + l)−

(
n

i

)
(m(r)− PX (r − 1)).

In particular, Mustaţă’s conjecture works for n(r) and m(r), r ≥ 4, general distinct
points on an ACM quasi-minimal surface X ⊂ Pd (except for the two aforementioned
cases).

Proof. Let us first deal with two of the four sporadic cases that had been excluded
in the previous Lemma 2.2.12, namely,X ⊆ P9 being isomorphic to P2 orX ⊆ P8

being isomorphic to the smooth quadric. For these two ACMquasi-minimal sur-
faces, Theorem 4.4.11 and Theorem 4.4.19 of chapter 4 show that there exist Ul-
rich vector bundles on them with Chern classes c1 = rH and c2 = m(r) for any
r ≥ 2. Since we know the minimal free resolution of such vector bundles by The-
orem 4.2.16, applying Serre correspondence to these vector bundles (see 4.4.21)
we see that m(r), r ≥ 2, general distinct points have the expected resolution as
in the statement. An application of Proposition 2.2.10 gives the analogous result
for n(r) distinct points.
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For the remaining ACM quasi-minimal surfaces, Lemma 2.2.9 establishes the
result for a set ofm(2) general distinct points, the starting point of our induction
process. Therefore, the result about the resolution of IZn(r)|X and IZm(r)|X follows
using Lemma 2.2.11, Propositions 2.2.10 and 2.2.12 and applying induction.

2.2.2 Main Theorems

In this subsection, we are going to prove that the MRC holds for a general set of
points Z on any ACM quasi-minimal surface (except for X being the anticanon-
ical model of F2 := P(OP1 ⊕ OP1 (−2)) or a complete intersection of two quadrics
on P4 with a double line) when the cardinality of Z falls in the strips of the form
[PX (r − 1),m(r)] or [n(r),PX (r)], r ≥ 4. We will use the fact that we already
know that n(r) and m(r) general distinct points on an ACM quasi-minimal sur-
face satisfy the MRC together with the following lemma which controls how the
bottom lines of the Betti diagram of a set of general distinct points on a projective
variety change when we add another general point. This lemma will turn out to
be a cornerstone in our proof of the MRC for ACM quasi-minimal surfaces:

Lemma 2.2.14. Let X ⊂ Pn be a projective variety with dim(X) ≥ 2, reg(X) = m

and with Hilbert polynomial PX . Let s be an integer with PX (r − 1) ≤ s < PX (r) for
some r ≥ m + 1, let Z be a set of s general points on X and let P ∈ X \ Z be a general
point. We have:

(i) bi,r−1(Z) ≥ bi,r−1(Z ∪ P ) for every i.

(ii) bi,r(Z) ≤ bi,r(Z ∪ P ) for every i.

Proof. See [Mus98, Proposition 1.7].

We are now ready to state the main result of this section:

Theorem 2.2.15. Let X ⊆ Pd be an ACM quasi-minimal surface. Assume that X is
not the anticanonical model of F2 := P(OP1 ⊕OP1 (−2)) or a complete intersection of two
quadrics on P4 with a double line. Let r be an integer such that r ≥ reg(X) + 1 = 4.
Then for any general set of distinct points Z on X such that PX (r − 1) ≤ |Z| ≤ m(r)
or n(r) ≤ |Z| ≤ PX (r) the Minimal Resolution Conjecture is true.

Proof. First of all we want to point out that the result was already known in the
cases |Z| = PX (r − 1) and |Z| = PX (r) (see [Mus98, Examples 1 and 2]).
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Let Z ′ be a general set of points of cardinality |Z ′| = n(r) and add general
points to Z ′ in order to get a set of points Z of cardinality n(r) ≤ |Z| ≤ PX (r). By
Theorem 2.2.13 we have that

bi,r−1(Z ′) = 0 for all i = 2, . . . , d.

Therefore we can apply Lemma 2.2.14 to deduce that

bi,r−1(Z) = 0 for all i = 2, . . . , d.

Thus, by semicontinuity, MRC holds for a general set of |Z| points. Now if |Z| ≤
m(r), we can add general distinct points to Z in order to have a general set Z ′
including Z and such that |Z ′| = m(r). Again from the previous Theorem we
have that

bi,r(Z ′) = 0 for all i = 1, . . . , d− 1.

So we can use again Lemma 2.2.14 to deduce that

bi,r(Z) = 0 for all i = 1, . . . , d− 1,

and therefore MRC holds for Z.

As a consequence of the aforementioned Theorem 2.2.13 we will prove that
the number of generators of the ideal of a general set of points on an ACM quasi-
minimal surface is as small as possible and so it is the number of generators of
its canonical module as well. In fact, we have:

Theorem 2.2.16. Let X ⊆ Pd be an ACM quasi-minimal surface. Assume that X is
not the anticanonical model of F2 := P(OP1 ⊕OP1 (−2)) or a complete intersection of two
quadrics on P4 with a double line. Then for any general set of distinct points Z on X
such that |Z| ≥ PX (3) the Cohen-Macaulay type Conjecture and the Ideal Generation
Conjecture are true.

Proof. Let Z be a general set of points on our ACM quasi-minimal surface X .
If it is the case that n(r) ≤ |Z| ≤ m(r + 1) the result has been proved on the
previous theorem. So we can assume that m(r) < |Z| < n(r) for some r. We
know that the MRC holds for a general set |Z ′| of n(r) points on X with Z ⊆ Z ′

and in particular b1,r(Z ′) = 0. Applying Lemma 2.2.14 inductively we see that
b1,r(Z) = 0. Analogously, since MRC holds for a general set Z ′′ of m(r) points,
bd,r−1(Z ′′) = 0 with Z ′′ ⊆ Z. Applying once again the same Lemma we see that
bd,r−1(Z) = 0.
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In the particular case of the cubic surface, since the minimal free resolution
of its points has length three, we recover one of the main results of [MPLb] (see
also [MP] and [Cas09]):

Theorem 2.2.17. Let X ⊆ P3 be a integral cubic surface (i.e., an ACM quasi-minimal
surface of degree three). Then the Minimal Resolution Conjecture holds for any set of
general distinct points on X of cardinality ≥ PX (3) = 19.

Proof. By Theorem 2.2.16 we know that any set Z of general distinct points onX
verifies the Cohen-Macaulay type Conjecture and the Ideal Generation Conjec-
ture. But since the codimension is three there is no further term on the resolution
left to consider so the general MRC also holds.

2.3 MRC for points on surfaces X ⊆ P3

In this last section of chapter 2 we focus our attention on a slightly modified
version of the Minimal Resolution Conjecture stated by Mustaţă. In terms of the
Hilbert scheme Hilbs(X) parameterizing zero-dimensional subschemes Z of X
of length s, Mustaţă’s conjecture could be stated as follows:

Conjecture 2.3.1. Let X ⊂ Pn be a projective variety, let PX (t) be its Hilbert poly-
nomial and m = reg(X). Let s be an integer such that PX (r − 1) ≤ s < PX (r)
for some r ≥ m + 1. Let Hs

0 be the irreducible component whose general points cor-
respond to a set Z of s distinct points on X . Then, there is a non-empty open subset
Us0 ⊂ Hs

0 ⊂ Hilbs(X) such that for any [Z] ∈ Us0 we have

bi+1,r−1(Z) · bi,r(Z) = 0 for i = 1, · · · ,n− 1.

Since, in general, Hilbs(X) is not irreducible (see [Iar72] for the case of va-
rieties of dimension ≥ 3 and chapter 3 for the case of surfaces), we can also
search the minimal graded free resolution of the homogeneous ideal of the 0-
dimensional scheme associated to a general point [Z] of any other irreducible
component of Hilbs(X) and ask if the graded Betti numbers bij(Z) are as small
as possible, i.e. there are no ghost terms in the minimal free resolution of RZ .
More precisely, we propose the following modification:

Conjecture 2.3.2. Let X ⊂ Pn be a projective variety, let PX (t) be its Hilbert poly-
nomial and m = reg(X). Let s be an integer such that PX (r − 1) ≤ s < PX (r) for
some r ≥ m + 1. Then, the Weak Minimal Resolution Conjecture (WMRC) holds
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for s if there is an irreducible component Hs ⊂ Hilbs(X) and a non-empty open subset
Us ⊂ Hs ⊂ Hilbs(X) such that for any [Z] ∈ Us we have

bi+1,r−1(Z) · bi,r(Z) = 0 for i = 1, · · · ,n− 1.

In the cases where Hilbs(X) is irreducible both conjectures agree. However,
we can not expect the irreducibility in general. In fact, in [Har66], Hartshorne
proved that Hilbs(X) is always connected, but in [Iar72], Iarrobino proved that
if X is a nonsingular variety of dimension n > 2 then there exists an integer s0

such that Hilbs(X) is reducible for all s ≥ s0; and in [Fog68], Fogarty proved
that if X is a nonsingular surface then Hilbs(X) is irreducible. They left open
the case of singular surfaces. In the next chapter, we will prove that for any pair
of positive integers (d,n) with n > 2 and d > 1 or n = 2 and d > 4 there always
exists a generically smooth projective variety of dimension n and degree d and
an integer s0 such that Hilbs(X) is reducible for all s ≥ s0.

In this section, we address Conjecture 2.3.2 for surfaces in P3. In particular
we prove that for any integer d ≥ 2 and for any s ≥

(
d+3

3

)
− 1, there exists a

(
d+2

2

)
-

dimensional family of irreducible generically smooth surfacesX ⊂ P3 of degree
d satisfying Conjecture 2.3.2.

The idea of the proof is to tackle independently the Ideal Generation Conjecture
(IGC for short) and theCohen-Macaulay type conjecture (CMCconjecture for short),
as they have been stated in section 2.1 (see Conjectures 2.1.13 and 2.1.14). Since
the length of the Minimal Resolution of points in P3 is three, the truth of both
conjectures implies the MRC.

First of all notice that for any [Z] ∈ Hilbs(X) the Hilbert function of RZ veri-
fies

HZ(t) ≤ min{HX (t), s} for all t .

As in the case of distinct points, we will say that a 0-dimensional scheme [Z] ∈
Hilbs(X) is in general position onX if its Hilbert function is given by the formula

HZ(t) = min{HX (t), s} for all t . (2.3.1)

Remark 2.3.3. It is easy to check that Theorem 2.1.9 works if we replace "Z a set
of s general distinct points on X" by "Z a 0-dimensional subscheme of X with
Hilbert function given by the formula (2.3.1)". Namely, we have the following
result:

Theorem 2.3.4. (cf. [Mus98, Propositions 1.5 and 1.6]) Let X ⊂ Pn be a projective
variety with d = dim(X) ≥ 1, reg(X) = m and with Hilbert polynomial PX . Let s be
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an integer with PX (r − 1) ≤ s < PX (r) for some r ≥ m + 1 and let Z ⊆ X be a zero-
dimensional subscheme of length s with Hilbert function given by the formula (2.3.1).
Then:

(i) For every i and j ≤ r − 2, bi,j(Z) = bi,j(X).

(ii) bi,j(Z) = 0 for j ≥ r + 1 and there exists i such that bi,r−1(Z) 6= 0.

(iii) For every j ≥ m,
bi,j(Z) = bi−1,j+1(IZ/IX ).

Aproblem that comes up surprisingly often inAlgebraicGeometry andwhich
will play an important role on the proof of the IGC and on the computation of
a minimal system of generators of the ideal IZ of a 0-dimensional scheme Z of
length s on a surface X ⊂ P3, is to determine the Hilbert series of the graded
quotient A = R/I where I = (F1, . . . ,Fr) ⊂ R is an ideal generated by general
forms, that is the formal power series

HA(Z) :=
∑
t≥0

HA(t)Zt =
∑
t≥0

dimk AtZ
t.

If r ≤ n then I is a complete intersection and the result is well known. So,
assume r > n, which in particular means that A is Artinian. Set di := deg(Fi),
1 ≤ i ≤ r. In 1985, Fröberg conjectured (see [Fro85])

HR/I (Z) =
∣∣∣∣∏r

i=1(1− Zdi )
(1− Z)n

∣∣∣∣
where ∣∣∣∣∣∣

∑
t≥0

atZ
t

∣∣∣∣∣∣ :=
∑
t≥0

btZ
t

with
bt :=

{
at if ai ≥ 0 for all i ≤ t
0 otherwise.

Note that it is easy to see that

HR/I (Z) ≥
∣∣∣∣∏r

i=1(1− Zdi )
(1− Z)n

∣∣∣∣ .
Moreover, several contributions to this apparently simple problem have been
made and there are at least three possible approaches to this conjecture. First,
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one could bound the number of variables. The conjecture was proved to be true
for n = 1 in Fröberg [Fro85] and for n = 2 in Anick [Ani86, Corollary 4.14]. Sec-
ondly, one could bound the number of generators for the ideal I . The conjecture
is easily seen to be true for r ≤ n + 1 and it was proved to be true for r = n + 2
by Stanley [Sta80]. It is also true if all the generators have the same degree d
and r ≥ 1

n+1

(
d+n+1
n

)
([Fro85] Example 4, p. 128). Thirdly, one could prove that

the conjecture is true for the first terms in the Hilbert series. The first non-trivial
statement comes for degree d + 1 with d = min{di} and was proved by Hochster
and Laksov in [HL87, Theorem 1].

Another idea that has been around in Commutative Algebra and Algebraic
Geometry and which will be crucial for solving the Cohen-Macaulay type Con-
jecture is the idea of compressed algebra and relatively compressed algebra. The
notion of compressed algebra was introduced in 1978 in [EI95]. A graded Ar-
tinian algebra R/I is said to be compressed if it has maximal Hilbert function
among all graded Artinian algebras with fixed socle degrees. In [MMRN05],
the notion of compressed algebra was generalized and the following definition
was introduced: A graded Artinian algebraR/I is said to be relatively compressed
with respect to J if it is a quotient ofR/J having maximal Hilbert function among
all graded Artinian algebras with fixed socle degrees. It is an open problem,
also related to Fröberg’s conjecture, to find the Hilbert function of a relatively
compressed (level) Artinian algebra and beyond finding the Hilbert function, a
much more subtle question is to understand all of the syzygies of a relatively
compressed (level) Artinian algebra. Fortunately, for us it will be enough to have
the Hilbert function of Artinian graded level algebrasR/I relatively compressed
with respect to J = (f ), f ∈ Rd. To state our result we will use the theory of in-
verse systems as it is introduced in [Iar84] and [IK99] and refer to these sources
for the necessary background.

Let us recall some basic facts on Macaulay-Matlis duality which will allow us
to relate the above mentioned problems. Set

R := k[x0,x1, · · · ,xn] and R := k[y0, y1, · · · , yn].

We consider the action of R onR by partial differentiation

Rj ×Ri −→ Ri−j
(u,F ) 7→ u · F

makingR into a graded R-module, where for any u(x0,x1, · · · ,xn) ∈ R and any
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F (y0, y1, · · · , yn) ∈ R, we define

u · F = u(∂/∂y0, ∂/∂y1, · · · , ∂/∂yn)F.

If I ⊂ R is a homogeneous ideal, we define the Macaulay’s inverse system I−1 for
I as

I−1 := {F ∈ R | u · F = 0 for all u ∈ I}.

I−1 is anR-submodule ofRwhich inherits a grading ofR. Conversely, ifM ⊂ R
is a graded submodule, then Ann(M ) := {u ∈ R | u · F = 0 for all F ∈ M} is a
homogeneous ideal in R. The pairing

Ri ×Ri −→ k (u, f ) 7→ u · F

is exact; it is called the Macaulay-Matlis duality action of R on R. Moreover,
for any integer i, we have hR/I (i) = dimk(R/I)i = dimk(I−1)i. The following
Theorem is fundamental.

Theorem 2.3.5. We have a bijective correspondence

{ Homogeneous ideals I ⊂ R} 
 { Graded R− submodules ofR}
I → I−1

Ann(M ) ← M

.

Moreover, I−1 is a finitely generated R-module if and only if R/I is an Artinian ring.

Note that a type s Artinian level algebra A = R/I of socle degree d corre-
sponds via the Macaulay-Matlis duality to a unique s-dimensional vector space
inRd which is nothing but I−1. We have

Proposition 2.3.6. LetR := k[y0, y1, · · · , yn] be theR-module defined above, and con-
sider µ general forms F1, · · · ,Fµ ∈ R of degree d1, · · · , dµ, respectively. For any integer
c ≥ 0, the subspace ofRc generated by Rd1−cF1, · · · ,Rdµ−cFµ has dimension equal to

min{dimkRc, dimkRd1−c + · · · + dimkRdµ−c}. (2.3.2)

Proof. See [Iar84, Proposition 3.4].

The above proposition tells us that generic forms have derivatives as inde-
pendent as they can be. Hence, they give rise to compressed Artinian algebras.
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Example 2.3.7. (1) TakeM = 〈y3
0y1 + y2

0y
2
1 + y1y

3
2 , y3

0y2 + y2
0y

2
1 + y2

0y1y2 + y3
1y2〉 ⊂ R.

Then I = Ann(M ) = (x3
0x1 − x3

2x1,x3
0x2 − x3

1x2) and A = R/I is a Artinian level
graded algebra with socle degree 4 and type 2. Its h-vector is 1 3 6 6 2.

(2) Let G = y2
0y

2
1y

2
2 ∈ R6. Then I = Ann((G)) = (x3

0,x3
1,x3

2) and A = R/I is an
Artinian complete intersection with h-vector 1 3 6 7 6 3 1.

(3) TakeM = 〈y5
0+y5

1 , y2
0y

3
2〉 ⊂ R. Then I = Ann(M ) = (x0x1,x1x2,x3

0x3,x4
3,x5

0−
x5

1) andA = R/I is an Artinian level graded algebra with socle degree 5 and type
2. The h-vector of A is 1 3 4 5 4 2.

Note that only the first example corresponds to a compressedArtinian graded.
In fact, a compressedArtinian level graded algebraAwith socle degree s and socle
dimension c has Hilbert function (cf. [IK99])

HA(t) = min{dimRt, c · dimRs−t}.

For the Hilbert function of a graded level Artinian algebra A that is relatively
compressedwith respect to a complete intersection J ⊂ R, we have

Lemma 2.3.8. Let A = R/I be a graded level Artinian algebra of socle degree s, type c
and relatively compressed with respect to a complete intersection J ⊂ R. Then

HA(t) ≤ min{dim(R/J)t, c · dim(R/J)s−t}.

Proof. See [MMRN05, Lemma 2.13].

Example 2.3.9. We consider 30 general distinct points Z ⊂ P3 on a smooth
quadric Q ⊂ P3. According to Proposition 2.1.8 the h-vector of X is 1 3 5 7 9
5 and IZ has a minimal free R-resolution of the following type (see [GMR96,
Theorem 4.3]):

0→ R(−8)5 → R(−6)5 ⊕R(−7)6 → R(−2)⊕R(−5)6 → R→ RZ → 0.

Hence, the Artinian reduction ofRZ is an Artinian level algebrawith embedding
dimension 3, socle degree 5, type 5 and relatively compressedwith respect to the
ideal generated by a form of degree 2.

Remark 2.3.10. It is easy to check that Lemma 2.2.14 works if we replace "Z a set
of s general distinct points on X" by "Z a 0-dimensional subscheme of X with
Hilbert function given by the formula (2.3.1)". Namely, we have the following
result:
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Lemma 2.3.11. Let X ⊂ Pn be a projective variety with dim(X) ≥ 2, reg(X) = m

and with Hilbert polynomial PX . Let s be an integer with PX (r − 1) ≤ s < PX (r) for
some r ≥ m + 1, let Z ⊆ X be a zero-dimensional subscheme of length s with Hilbert
function given by the formula (2.3.1) on X and let P ∈ X \ Z be a general point. It
holds that:

(i) bi,r−1(Z) ≥ bi,r−1(Z ∪ P ) for every i.

(ii) bi,r(Z) ≤ bi,r(Z ∪ P ) for every i.

2.3.1 Main Results
In this subsection, we set

Pd(t) :=
(
t + 3

3

)
−
(
t + 3− d

3

)
,

the Hilbert polynomial of a surface X ⊂ P3 defined by a homogeneous polyno-
mial f of degree d, reg(X) := d and RX = R/(f ). We are going to prove that for
any s ≥ Pd(d) there exists a

(
d+2

2

)
-dimensional family of irreducible generically

smooth surfaces of degree d in P3 satisfying the WMRC for s.

Remark 2.3.12. Notice that we bounded ourselves to consider zero dimensional
schemes Z ⊆ X of length s ≥ Pd(d) in order to fit with the conditions un-
der which the MRC was stated by Mustaţǎ in [Mus98] and hence also with our
WMRC in Conjecture 2.3.2.

Let s be an integer such that Pd(r − 1) ≤ s < Pd(r) for some r ≥ reg(X) + 1 =
d + 1 and let Z ⊂ X be a 0-dimensional scheme with Hilbert function given by
the formula

HZ(t) = min{HX (t), s} for all t .

First, we are going to address the Ideal Generation Conjecture (IGC) which
essentially says that the minimal number of generators of IZ should be as small
as possible, i.e. the conjecture predicts that the morphism

(IZ/(f ))r ⊗ (RX )1 −→ (IZ/(f ))r+1

should have maximal rank. In particular, when

dim(IZ/(f ))r ⊗ (RX )1 ≤ dim(IZ/(f ))r+1
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then there should be no linear syzygies among the generators, and when

dim(IZ/(f ))r ⊗ (RX )1 ≥ dim(IZ/(f ))r+1

then IZ/(f ) should have no generators in degree r + 1.
To be more precise, we define

νr(s) := Pd(r)− s

and we denote by g1, · · · , gνr(s) the νr(s) generators of IZ of degree r. The IGC
says that if

3νr(s) ≥ Pd(r + 1)− Pd(r) =
(
r + 3

2

)
−
(
r + 3− d

2

)
,

then IZ is generated by f and g1, · · · , gνr(s); if

3νr(s) < Pd(r + 1)− Pd(r)

and we define
νr+1(s) = Pd(r + 1)− Pd(r)− 3νr(s)

then we must add νr+1(s) generators of degree r + 1 to f and g1, · · · , gνr (s) in
order to get a minimal set of generators of IZ . Therefore, we have the following
formula for the conjectured value of the minimal number of generators of Z:

ν(Z) = max{1 + Pd(r)− s, 1 + Pd(r + 1)− 3νr(s)− s}.

Proposition 2.3.13. For any s ≥
(
d+3

3

)
− 1, there exists a

(
d+2

2

)
-dimensional family of

irreducible generically smooth surfacesX ⊂ P3 of degree d and a non-empty open subset
Us ⊂ Hilbs(X) such that any [Z] ∈ Us satisfies the IGC.

Proof. Set S = k[x0,x1,x2] and R = k[x0,x1,x2,x3]. By semicontinuity, to prove
the result, it suffices to explicitly construct, for any irreducible normal surface
X ⊆ P3 defined by a general form f ∈ Sd, a 0-dimensional subscheme [Z] ∈
Hilbs(X) satisfying the IGC. To this end, we choose an integer r such that

Pd(r − 1) =
(
r + 2

3

)
−
(
r + 2− d

3

)
≤ s < Pd(r) =

(
r + 3

3

)
−
(
r + 3− d

3

)
and as before we denote by νr(s) = Pd(r)− s. If s = Pd(r)− 1, the result is known
by [Mus98, Example 2]. So, we assume νr(s) ≥ 2 and we distinguish two cases:
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Case 1: 3νr(s) ≤ Pd(r + 1) − Pd(r). First, we choose νr(s) general homogeneous
polynomials g1, · · · , gνr(s) ∈ Sr such that dimS1〈g1, · · · , gνr(s)〉 = 3νr(s). They
exist by [HL87, Theorem 1]. Now, we choose a general form f ∈ Sd. By [Ani86,
Corollary 4.14], the natural map

(S/(g1, · · · , gνr(s)))t
×f−→ (S/(g1, · · · , gνr(s)))t+d

has maximal rank for all t ≥ 0 (i.e., it is either injective or surjective). Therefore,
the starting values of the Hilbert function of the Artinian ideal

J0 := (f , g1, · · · , gνr(s)) ⊂ S

are (note that µ(J0) ≥ 3)

HS/J0 (t) =



(
t+2

2

)
if t < d(

t+2
2

)
−
(
t+2−d

2

)
if d ≤ t < r(

r+2
2

)
−
(
r+2−d

2

)
− νr(s) if t = r(

r+3
2

)
−
(
r+3−d

2

)
− 3νr(s) if t = r + 1.

Set νr+1(s) := HS/J0 (r + 1) and choose νr+1(s) forms h1, · · · ,hνr+1(s) ∈ Sr+1 such
that h1, · · · ,hνr+1(s) is a k-basis of (S/J0)r+1. Consider the Artinian ideal J :=
J0 + (h1, · · · ,hνr+1(s)) ⊂ S. We have

HS/J (t) =

{
HS/J0 (t) if t ≤ r
0 if t ≥ r + 1.

(2.3.3)

Therefore, I := JR ⊂ R defines a 0-dimensional scheme Z of length swhich lies
on the surface of degree d defined by f and

IZ = I = (f , g1, · · · , gνr(s),h1, · · · ,hνr+1(s))

which proves what we want. (Note that ∆HR/I (t) = HS/J (t) for all t.)

Case 2: 3νr(s) > Pd(r + 1) − Pd(r). In this case, we choose a general form f ∈
Sd and νr(s) general forms g1, · · · , gνr(s) ∈ Sr. By [Ani86, Corollary 4.14], J =
(f , g1, · · · , gνr(s)) ⊂ S is an Artinian ideal with Hilbert function

HS/J (t) =


∆HX (t) if t < r

∆HX (t)− νr(s) if t = r

0 if t > r.
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Therefore, I := JR ⊂ R defines a 0-dimensional scheme Z of length swhich lies
on the surface X of degree d defined by f and IZ = I = (f , g1, · · · , gνr(s)). (Note
that ∆HR/I (t) = HR/J (t) for all t.)

Remark 2.3.14. It is important to point out that the ideal J ⊂ S = k[x0,x1,x2]
constructed in Proposition 2.3.13, Case 1, has the following minimal graded free
resolution:

0→ S(−r−3)b3,r → S(−r−2)b2,r → S(−d)⊕S(−r)νr(s)⊕S(−r−1)νr+1(s) → J → 0
(2.3.4)

where b3,r = HS/J (r) and b2,r = b3,r + νr(s) + νr+1(s). In particular it has the shape
predicted by the MRC.

We are now going to address the Cohen-Macaulay type Conjecture, i.e., the
expected graded Betti numbers do appear at the end of the resolution.

Proposition 2.3.15. For any s ≥
(
d+3

3

)
− 1, there exists a

(
d+2

2

)
-dimensional family of

irreducible generically smooth surfacesX ⊂ P3 of degree d and a non-empty open subset
Us ⊂ Hilbs(X) such that any [Z] ∈ Us satisfies the CMC conjecture.

Proof. Set S = k[x0,x1,x2], R = k[x0,x1,x2,x3] and S = k[y0, y1, y2]. Again, by
semicontinuity, it suffices to explicitly construct, for any irreducible normal sur-
face X ⊂ P3 defined by a general form f ∈ Sd, a 0-dimensional subscheme
[Z] ∈ Hilbs(X) satisfying the CMC conjecture. First, we choose an integer r
such that

Pd(r − 1) =
(
r + 2

3

)
−
(
r + 2− d

3

)
≤ s < Pd(r) =

(
r + 3

3

)
−
(
r + 3− d

3

)
and we define ρr(s) = s− Pd(r − 1). We distinguish two cases:

Case 1: 3ρr(s) ≥ Pd(r − 1)− Pd(r − 2). Set

ρ0 := min{ρr(s) | 3ρr(s) ≥ Pd(r − 1)− Pd(r − 2)}

and s0 := Pd(r − 1) + ρ0. We will first construct a 0-dimensional scheme Z0 ⊂ X

of length s0 satisfying the CMC conjecture. To this end, we take f ∈ Sd a general
form of degree d defining a smooth plane curve C. The Hilbert function of S/(f )
is given by

HS/(f )(t) =

{(
t+2

2

)
if 0 ≤ t ≤ d− 1(

t+2
2

)
−
(
t+2−d

2

)
if t ≥ d.



56 Chapter 2. The Minimal Resolution Conjecture

Set
α := HS/(f )(r − 1) = Pd(r − 1)− Pd(r − 2)

and write α = 3λ + µ with 0 ≤ µ ≤ 2 (note that ρ0 − 1 ≤ λ ≤ ρ0). We choose on
C a set T of α general points. So, the Hilbert function of T is

HS/IT (t) =

{
HS/(f )(t) if 0 ≤ t ≤ r − 1

α if t ≥ r − 1.

If µ = 0, we choose λ disjoint sets T1, · · · ,Tλ ⊂ T such that T = ∪λi=1Ti and
|Ti| = 3 for 1 ≤ i ≤ λ. If µ > 0, we choose λ + 1 disjoint sets T1, · · · ,Tλ,Tλ+1 ⊂ T

such that T = ∪λ+1
i=1 Ti, |Ti| = 3 for 1 ≤ i ≤ λ and |Tλ+1| = µ. If the points are

general enough the points in Ti, 1 ≤ i ≤ λ, are not collinear and we have

HS/ITi
(t) =

{
1 if t = 0

3 if t ≥ 1
for 1 ≤ i ≤ λ;

and

HS/ITλ+1
(t) =

{
1 if t = 0

µ if t ≥ 1.

Now let Ji ⊂ S, 1 ≤ i ≤ λ + 1, be general Gorenstein ideals containing ITi ,
1 ≤ i ≤ λ+1, respectively, whose quotients S/Ji each are Artinian of socle degree
r. We construct Ji with S/Ji Artinian of socle degree r (and type 1) by choosing
a general enough element gi ∈ (I(Ti)r)⊥ ∩ Sr and defining Ji := Ann(gi). By
[IK99, Lemma 1.17], we have that the Hilbert function of S/Ji is given by

HS/Ji (t) := min(dimSt, |Ti|, dimSr−t).

The intersection J := ∩λi=1Ji, with IC = (f ) ⊂ J ⊂ S, (resp. IC ⊂ J := ∩λ+1
i=1 Ji ⊂ S)

if µ = 0 (resp. µ > 0) gives an Artinian level algebra S/J with Hilbert function

HS/J (t) =


∆HX (t) if t < r

ρ0 if t = r

0 if t > r.

Therefore, I := JR ⊂ R defines a 0-dimensional scheme Z0 of length s0 which
lies on the surface of degree d defined by f and satisfies the CMC conjecture. In
fact, b3,r(Z0) = ρ0 and b3,r−1(Z0) = 0. (Note that ∆HR/I (t) = HS/J (t) for all t.)
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The case s > s0 easily follows from the case s0. In fact, let Kj , 1 ≤ j ≤
ρr(s) − ρ0, be a general Gorenstein ideal of socle degree r and containing IC
(we construct Kj by choosing a general enough element hj ∈ (I(C)r)⊥ ∩ Sr and
defining Kj := Ann(hj)). Then IC ⊂ K := J

⋂
∩s−s0
j=1 Kj ⊂ S gives an Artinian

level algebra S/K with Hilbert function

HS/K(t) =


∆HX (t) if t < r

ρr(s) if t = r

0 if t > r,

and I := KR ⊂ R defines a 0-dimensional scheme Zs of length s which lies on
the surface of degree d defined by f and satisfies the CMC conjecture. In fact,
b3,r(Zs) = ρr(s) and b3,r−1(Zs) = 0.

Case 2: 3ρr(s) < Pd(r− 1)−Pd(r− 2). In this case, we take f ∈ Sd a general form
of degree d defining a smooth plane curve C and a set T of α general points on
C being α := HS/(f )(r− 1) = Pd(r− 1)−Pd(r− 2). So, the Hilbert function of T is

HS/I(T )(t) =

{
HS/(f )(t) if 0 ≤ t ≤ r − 1

α if t ≥ r − 1.

Define ρr−1(s) := α−3ρr(s) > 0. We choose ρr(s)disjoint sets of three no collinear
points T1, · · · ,Tρr(s) ⊂ T and set {p1, · · · , pρr−1(s)} := T \ ∪ρr(s)

i=1 Ti. We have

HS/ITi
(t) =

{
1 if t = 0

3 if t ≥ 1
for 1 ≤ i ≤ ρr(s);

and
HS/Ipi

(t) = 1 for all t ≥ 1 and 1 ≤ i ≤ ρr−1(s).

Now let Ji ⊂ S, for 1 ≤ i ≤ ρr(s), be general Gorenstein ideals contain-
ing ITi , 1 ≤ i ≤ ρr(s), respectively, whose quotients S/Ji each are Artinian of
socle degree r. We construct Ji, as in the previous case, as follows: for any in-
teger 1 ≤ i ≤ ρr(s), we choose a general enough element gi ∈ ((ITi )r)⊥ ∩ Sr
and we define Ji := Ann(gi) ⊂ S. Ji are general Gorenstein ideals contain-
ing ITi and the quotients S/Ji are Artinian of socle degree r. For any integer
1 ≤ j ≤ ρr−1(s), we choose a general enough element hj ∈ ((Ipj )r−1)⊥ ∩ Sr−1

and we define Kj := Ann(hj) ⊂ S. Kj are general Gorenstein ideals contain-
ing Ipj and the quotients S/Kj are Artinian of socle degree r − 1. By [IK99,
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Lemma 1.17], we have that the Hilbert function of S/Ji is given by HS/Ji (t) :=
min(dimSt, 3, dimSr−t) for all t and the Hilbert function of S/Kj is given by
HS/Kj (t) := min(dimSt, 1, dimSr−1−t) for all t. The intersection

J :=
ρr(s)⋂
i=1

Ji ∩
ρr−1(s)⋂
j=1

Kj ⊂ S

gives an Artinian algebra S/J with socle degree (

ρr−1(s)︷ ︸︸ ︷
r − 1, · · · , r − 1,

ρr(s)︷ ︸︸ ︷
r, · · · , r) and

Hilbert function

HS/J (t) =


∆HX (t) if t < r

ρr(s) if t = r

0 if t > r.

Therefore, I := JR ⊂ R defines a 0-dimensional scheme Z of length swhich lies
on the surface of degree d defined by f and Z satisfies the CMC conjecture. In
fact, b3,r(Z) = ρr(s) and b3,r−1(Z) = ρr−1(s) which are the expected graded Betti
numbers at the end of the minimal resolution of IZ .

Recall that (see Definition 1.1.11) a 0-dimensional scheme Z on a surface
X ⊂ P3 is said to be level of type ρ if the last module in its minimal graded free
resolution has rank ρ and is concentrated in only one degree.

Remark 2.3.16. (i) It is important to point out that the ideal J ⊂ S = k[x0,x1,x2]
(resp. K ⊂ S = k[x0,x1,x2]) constructed in Proposition 2.3.15, Case 1, is level of
type ρ0 (resp. ρr(s)) and has the following minimal graded free resolution:

0 −→ S(−r − 3)ρ0 −→ S(−r − 1)b2,r−1 ⊕ S(−r − 2)b2,r −→ (2.3.5)

S(−d)⊕ S(−r)b1,r−1 ⊕ S(−r − 1)b1,r −→ J −→ 0

(resp. 0 −→ S(−r − 3)ρr(s) −→ S(−r − 1)b2,r−1 ⊕ S(−r − 2)b2,r −→ (2.3.6)

S(−d)⊕ S(−r)b1,r−1 ⊕ S(−r − 1)b1,r −→ K −→ 0 ).

(ii) The ideal J ⊂ S = k[x0,x1,x2] constructed in Proposition 2.3.15, Case 2,
is not level since it has the following minimal graded free resolution:

0 −→ S(−r − 3)ρr(s) ⊕ S(−r − 2)ρr−1(s) −→ S(−r − 1)b2,r−1 −→ (2.3.7)

S(−d)⊕ S(−r)b1,r−1 ⊕ S(−r − 1)b1,r −→ J −→ 0.
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Remark 2.3.17. Fix swith Pd(r − 1) ≤ s < Pd(r) and r ≥ d + 1, and set

νr(s) := Pd(r)− s.

As it was pointed out in Remark 2.3.14 for the Case 1 of Proposition 2.3.13, we
already know that the shape of the full minimal free resolution of J and hence
of I = JR is the one predicted by Mustaţǎ’s conjecture. On the other hand,
notice that in Proposition 2.3.13, Case 2 and in Proposition 2.3.15we can consider
the same general form f ∈ k[x0,x1,x2] of degree d producing an irreducible
generically smooth surfaceX ⊆ P3. X is a conewith vertex p = (0, 0, 0, 1) over the
plane curve f (x, y, z) = 0. Moreover, the 0-dimensional schemesZ ⊂ X of length
s and support p constructed in Proposition 2.3.13, Case 2 (and, hence, satisfying
IGC) as well as the 0-dimensional schemes Z ⊂ X of length s and support p
constructed in Proposition 2.3.15 (and, hence, satisfying Cohen-Macaulay type
conjecture) are parameterized by a non-empty open subset of the Grassmannian
Grass(νr(s), (S/(f ))r). Since Grass(νr(s), (S/(f ))r) is an irreducible variety, the
open sets of Hilbs(X) obtained by semicontinuity from both of the propositions
should meet and we are able to conclude the following theorem.

Theorem 2.3.18. Let s be an integer such that s ≥ Pd(d), d ≥ 2. Then there exists a
family of dimension

(
d+2

2

)
of irreducible generically smooth surfaces X ⊂ P3 of degree d

for which WMRC holds, i.e. there exist a non-empty open subset Us ⊂ Hilbs(X) such
that for any [Z] ∈ Us we have

b3,r−1(Z) · b2,r(Z) = b2,r−1(Z) · b1,r(Z) = 0.

Proof. First, we choose an integer r such that

Pd(r − 1) =
(
r + 2

3

)
−
(
r + 2− d

3

)
≤ s < Pd(r) =

(
r + 3

3

)
−
(
r + 3− d

3

)
and as before we define

νr(s) := Pd(r)− s ρr(s) := s− Pd(r − 1).

Since the case 3νr(s) < Pd(r + 1)−Pd(r) and 3ρr(s) < Pd(r− 1)−Pd(r− 2) never
holds simultaneously we distinguish 3 cases:
Case 1: 3νr(s) ≤ Pd(r + 1) − Pd(r) and 3ρr(s) ≥ Pd(r − 1) − Pd(r − 2). We de-
fine νr+1(s) :=

(
r+3

2

)
−
(
r+3−d

2

)
− 3νr(s). It follows from Proposition 2.3.13 and Re-

mark 2.3.14 that there exists a family of dimension
(
d+2

2

)
of irreducible generically

smooth surfacesX ⊂ P3 of degree d and a non-empty open subsetUs ⊂ Hilbs(X)
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such that for any [Z] ∈ Us we have a minimal free graded resolution of the fol-
lowing type:

0→ R(−r − 3)ρr (s) → R(−r − 2)b2,r → R(−d)⊕R(−r)νr (s) ⊕R(−r − 1)νr+1(s) → IZ → 0

where b2,r = b3,r + νr(s) + νr+1(s). We clearly have

b3,r−1(Z) · b2,r(Z) = b2,r−1(Z) · b1,r(Z) = 0

and Z satisfies WMRC.

Case 2: 3νr(s) > Pd(r+1)−Pd(r) and 3ρr(s) ≥ Pd(r−1)−Pd(r−2). By Propositions
2.3.13 and 2.3.15 and by Remark 2.3.17 there exists a family of dimension

(
d+2

2

)
of irreducible generically smooth surfaces X ⊂ P3 of degree d and a non-empty
open subset Us ⊂ Hilbs(X) such that any [Z] ∈ Us satisfies the IGC and the
CMC conjecture. Since it satisfies the IGC and 3νr(s) > Pd(r + 1) − Pd(r), we
have b1,r−1(Z) = νr(s) and b1,r(Z) = 0. Since it satisfies the CMC conjecture and
3ρr(s) ≥ Pd(r−1)−Pd(r−2), we have b3,r−1(Z) = 0 and b3,r(Z) = ρr(s). Therefore,
IZ has the following graded minimal free resolution

0→ R(−r − 3)ρr (s) → R(−r − 2)b2,r ⊕R(−r − 1)b2,r−1 → R(−d)⊕R(−r)νr (s) → IZ → 0

where b2,r, b2,r−1 are determined by the equations:

b2,r + b2,r−1 = νr(s) + ρr(s) and d + 3ρr(s) = 2b2,r + b2,r−1.

Again we have
b3,r−1(Z) · b2,r(Z) = b2,r−1(Z) · b1,r(Z) = 0

and Z satisfies WMRC.

Case 3: 3νr(s) > Pd(r + 1) − Pd(r) and 3ρr(s) < Pd(r − 1) − Pd(r − 2). Again
there exists a family of dimension

(
d+2

2

)
of irreducible generically smooth surfaces

X ⊂ P3 of degree d and a non-empty open subset Us ⊂ Hilbs(X) such that any
[Z] ∈ Us satisfies the IGC and the CMC conjecture. Since it satisfies the IGC
and 3νr(s) > Pd(r + 1)− Pd(r), we have b1,r−1(Z) = νr(s) and b1,r(Z) = 0. Since it
satisfies theCMCconjecture and 3ρr(s) < Pd(r−1)−Pd(r−2), we have b2,r(Z) = 0,
b3,r−1(Z) = ρr−1(s) and b3,r(Z) = ρr(s). Therefore, IZ has the following graded
minimal free resolution

0→ R(−r−3)ρr (s)⊕R(−r−2)ρr−1(s) → R(−r−1)b2,r−1 → R(−d)⊕R(−r)νr (s) → IZ → 0

where b2,r−1 = νr(s) + ρr(s) + ρr−1(s). Therefore, we have

b3,r−1(Z) · b2,r(Z) = b2,r−1(Z) · b1,r(Z) = 0

and Z satisfies WMRC.
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Remark 2.3.19. Notice that, thanks to Theorem 2.3.18, for every s ≥ Pd(d) we
managed to find an open subset Vs of the projective space Y := P(d+2

2 )−1 = Proj(Sd)
in bijectionwith irreducible normal surfacesX ⊂ P3 and for each [X] ∈ Vs a non-
empty open subset Us ⊂ Hilbs(X) such that any [Z] ∈ Us satisfies

b3,r−1(Z) · b2,r(Z) = b2,r−1(Z) · b1,r(Z) = 0.

Since ∪s(Y \Vs) does not cover the whole of Y we can conclude that there exists
an infinite number of surfaces for which WMRC holds for any s ≥ Pd(d).

Let us finish this section with some comments which naturally come up from
our work. First, we would like to extend Proposition 2.2.17 (and henceMustaţǎ’s
Conjecture) to any general set Z of s, s ≥ PX (d), distinct points on any smooth
surfaceX ⊂ P3 of degree d ≥ 4 or on any smooth hypersurfaceX ⊂ Pn of degree
d ≥ 2. Second, we would like to extend Theorem 2.3.18 and prove that WMRC
holds for infinitely many hypersurfaces (and even more complete intersection
varieties) in Pn. Proposition 2.3.15 nicely generalizes and we have

Proposition 2.3.20. For any s ≥
(
d+n
n

)
− 1, there exists a

(
d+n−1
n−1

)
-dimensional family

of irreducible generically smooth hypersurfaces X ⊂ Pn of degree d and a non-empty
open subset Us ⊂ Hilbs(X) such that any [Z] ∈ Us satisfies the CMC conjecture.

Nevertheless, in order to generalize Proposition 2.3.13 from a surface in P3

to a hypersurface in Pn, we need first to face up Fröberg Conjecture for ideals
I ⊂ k[x0,x1, · · · ,xn], n ≥ 3, generated by general forms f1, · · · , fr of degree
d1, . . . , dr, which as far as we know is still an open problem.

Moreover a generalization of Propositions 2.3.13 and 2.3.15 will determine
the beginning and the end of the minimal graded free resolution but not the full
resolution because the projective dimension of the coordinate ring RZ increases
and we do not have control on the intermediate graded Betti numbers.





Chapter 3

Reducibility of the Hilbert
scheme of points for singular
surfaces

Given a quasi-projective variety X over a field k and a polynomial p ∈ Q[t],
the Hilbert scheme Hilbp(t)(X) parameterizes projective subschemes of X with
Hilbert polynomial p. Its existence was shown by Grothendieck in [Gro], where
he also showed that ifX is projective then Hilbp(t)(X) turns out also to be a pro-
jective scheme. Once its existence is known, a natural problem is the under-
standing of their geometrical properties: irreducibility, smoothness, dimension,
and so on. The first result in this direction was achieved when it was shown
that Hilbp(t)(X) is always connected (cf. [Har66, Corollary 5.9]). In this short
chapter, we discuss the irreducibility in the particular interesting case when the
Hilbert polynomial is equal to a constant s. In this case, Hilbs(X) parameterizes
0-dimensional subschemes of X of length s. In [Fog68], Fogarty proved that, if
X is a smooth irreducible surface, then the Hilbert scheme Hilbs(X) is a smooth
irreducible variety of dimension 2s. In larger dimension, Iarrobino in [Iar72]
found that irreducibility is no longer true: the Hilbert scheme can be reducible
for varieties of dimension ≥ 3. More precisely, Iarrobino proved that if X is a
smooth projective variety of dimension n > 2, the Hilbert scheme Hilbs(X) is
reducible for all s > c0(n) and we may take c0(3) = 102, c0(4) = 25, c0(5) = 35 and
c0(n) = (1 +n)(1 + n

4 ) if n ≥ 6. They left open the case of singular surfaces. There-
fore, a natural question that arises in this setting is the behavior of the Hilbert
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scheme of 0-dimensional schemeswhen the smoothness condition is removed: is
the Hilbert scheme of 0-dimensional schemes on a singular surface irreducible?

In this short chapter we are going to give a negative answer to this question,
by constructing singular surfaces whoseHilbert scheme of points is reducible. In
fact, our method also works for varieties of larger dimension. More concretely,
we are going to show that for any pair of positive integers (d,n) with n > 2 and
d > 1 orn = 2 and d > 4 there always exist generically smooth projective varieties
X ⊂ PN of dimension n and degree d and an integer s0 such that Hilbs(X) is
reducible for all s ≥ s0. X ⊂ PN is going to be a projective cone over a projective
variety Y ⊂ PN−1.

Part of the results of this chapter will be published in:
• Miró-Roig, R.M and Pons-Llopis, J., Reducibility of punctual Hilbert schemes

of cone varieties, submitted.

3.1 Reducibility of some punctual Hilbert schemes
We are first going to show that for any n-dimensional coneX ⊂ PN over a projec-
tive variety Y ⊂ PN−1 with vertex the single point [0, · · · , 0, 1] ∈ PN with n > 2
and degX > 1 or n = 2 and degX > 4 there exists an integer s0 ∈ N such that
the Hilbert scheme of points Hilbs0 (X) parameterizing zero-dimensional sub-
schemes ofX of length s0 is reducible. We will then deduce that the same is true
for all s ≥ s0.

Notation 3.1.1. Let us fix some notation: X = 〈Y , p〉 ⊆ PN is a projective cone
with vertex p ∈ PN and base any n − 1- dimensional projective variety Y ⊆
PN−1. We can always suppose that p = [0 : · · · : 0 : 1] and Y ⊆ {xN = 0}. If
IX ⊂ k[x0, . . . ,xN ] is the homogeneous ideal of X and IY ⊂ k[x0, . . . ,xN−1] is
the homogeneous ideal of Y , then we have IX = IY k[x0, . . . ,xN ]. Analogously,
if we denote by PX (r) (resp. HX (r)) the Hilbert polynomial (resp. the Hilbert
function) of X , then the Hilbert polynomial (resp. the Hilbert function) of Y
is given by PY (r) = ∆PX (r) := PX (r) − PX (r − 1) (resp. HY (r) = ∆HX (r) :=
HX (r)−HX (r − 1)).

Remark 3.1.2. There always exists an irreducible component of Hilbs(X) param-
eterizing sets of s distinct points on X . Its dimension is ns. Therefore it will be
enough to find an irreducible variety of dimension > ns parameterizing zero-
dimensional subschemes of length s on X . The way to obtain it will be through
the following construction.
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Let us take an integer r > reg(X) = reg(Y ). In particular, we know that IX
and IY are generated by homogeneous forms of degree < r. Let t be an integer
such that

PX (r) < s := PX (r) + t < PX (r + 1)

and µr+1 := PY (r + 1)− t > n. Since dim(RY )r+1 = PY (r + 1) > twe can consider
the Grassmannian Grass(PY (r + 1) − t,PY (r + 1)) which parameterizes vector
subspaces Vr+1 ⊂ (RY )r+1 of dimension PY (r + 1)− t. Let F1, · · · ,Fµr+1 ∈ Vr+1 be
a basis of Vr+1 and define the ideal

J0 := IY + 〈F1, · · · ,Fµr+1〉 ⊂ k[x0, . . . ,xN−1].

Set µr+2 := dim(k[x0, . . . ,xN−1]/J0)r+2 (notice that it may be equal to zero).
Take G1, · · · ,Gµr+2 a basis of (k[x0, . . . ,xN−1]/J0)r+2 and define

J := J0 + 〈G1, · · · ,Gµr+2〉 ⊂ k[x0, . . . ,xN−1].

By our choices J is an Artinian ideal which contains IY and it has Hilbert
function

HR/J (`) =


HY (`) if ` < r + 1

t if ` = r + 1

0 if ` > r.

Therefore, I := Jk[x0, . . . ,xN ] ⊂ k[x0, . . . ,xN ] is a saturated ideal which defines
a 0-dimensional scheme Z of length s, supported on the vertex p and contained
in X .

Since the dimension of Grass(PY (r+1)−t,PY (r+1)) is t(PY (r+1)−t), we have
constructed an irreducible family of dimension t(PY (r + 1)− t) of 0-dimensional
schemes of X of length s parameterized by Grass(PY (r + 1)− t,PY (r + 1)).

Proposition 3.1.3. With the above notation, if dimX > 2 and degX > 1 or dimX =
2 and degX > 4, then there exists s0 such that Hilbs0 (X) is reducible.

Proof. As was remarked above, since for any integer s there always exists a com-
ponent of the Hilbert scheme Hilbs(X) of dimension ns it will suffice to find an
irreducible family parameterizing zero dimensional schemes of length s0 of di-
mension larger than ns0. In order to do that, following the previous notation, we
are going to show that for r large enough there exists t ∈ (0,PY (r + 1)− n) such
that

sn = (t + PX (r))n < t(PY (r + 1)− t),
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or, equivalently, that the quadratic polynomialQ(t) := t2+(n−PY (r+1))t+nPX (r)
has a negative integer solution.

The minimum of Q is reached at t0 = (PY (r + 1) − n)/2 ∈ (0,PY (r + 1) − n).
So it will suffice to show that the discriminant

∆(Q) = n2 + PY (r + 1)2 − 2nPY (r + 1)− 4nPX (r)

is an increasing function of r. If dimX > 2 then degPY (r+1)2 = 2(n−1) is larger
than degPX (r) = n and therefore asymptotically ∆(Q) gets positive.

On the other hand, if dimX = 2, ∆(Q) can be written as follows:

∆(Q) = 4 + PY (r + 1)2 − 4PY (r + 1)− 8PX (r)
= 4 + (PX (r + 1)− PX (r))2 − 4(PX (r + 1)− PX (r))− 8PX (r)
= 4 + PX (r + 1)2 + PX (r)2 − 2PX (r + 1)PX (r)− 4(PX (r + 1) + PX (r))
= degX(degX − 4)r2 + (degX2 + 2bdegX − 4 degX − 8b)r+

(4 + degX2

4 + b2 + bdegX − 2 degX − 4b− 8c)

where we have written PX (r) := degX
2 r2 + br + c. Therefore if degX > 4 asymp-

totically we get the result.

Remark 3.1.4. Notice that in the case of n = 2 and degX = 4, the previous result
would depend on the Hilbert polynomial of X , since we would have ∆(Q) =
b2 − 8c.

Now we can state the main result of this chapter:

Theorem 3.1.5. LetX = 〈Y , p〉 ⊆ PN be an n-dimensional cone with vertex p and base
Y ⊆ PN−1. Let us suppose that either n > 2 and degX > 1 or n = 2 and degX > 4.
Then there exists s0 ∈ N such that Hilbs(X) is reducible for all s ≥ s0.

Proof. It is immediate from the previous result once one notices that for any pro-
jective varietyX of dimension n and for any integer s ∈ N the following inequal-
ity holds:

Hilbs+1(X) ≥ Hilbs(X) + n.



Chapter 4

Ulrich bundles and varieties
of wild representation type

Apossibleway to classifyACMvarieties is according to the complexity of the cat-
egory of ACM sheaves that they support. Much attention has attired this point
of view recently and it has even been related to analogous problems in Commu-
tative Algebra and Representation Theory. One of the main achievements in this
field has been the classification of the simplest varieties, namely, those that only
support a finite number of ACM sheaves (cf. [BGS87] and [EH88]). It turns out
that they fall into a very short list (cf. Theorem 4.2.9).

On the other extreme of complexity lie those varieties that have "very large"
families of ACM sheaves. In [CHa], a definition, based in analogous definitions
coming from Representation Theory, of the meaning of "large" has been pro-
posed. It would correspond to varieties of wild representation type, meaning that
there exist r-dimensional families of non-isomorphic indecomposable ACM vec-
tor bundles for arbitrary large r. Ever since this classification has been proposed,
it becomes a problem to find out varieties that fall into this category. In dimen-
sion one, where any sheaf is trivially ACM, it has been proved that anACM curve
has wild representation type if and only if its genus is larger or equal than two.
For larger dimension, it was proved in [CHb, Theorem 1.1] that smooth cubic
surfaces are of wild representation type. In [PLT09, Theorem 5.5], it was shown
that del Pezzo surfaces of degree ≤ 6 are of wild representation type. Neverthe-
less, up to now no example of variety of wild representation type and dimension
n > 2 was known.

67
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Themain goal of this chapter is to provide the first examples ofn-dimensional
varieties of wild representation type, for arbitrary n ≥ 2 (cf. Theorems 4.3.13
and 4.4.11) . Our source of examples will be Fano blow-ups X = BlZPn of Pn at
a finite set of points Z.

In the 2-dimensional case, i.e., for del Pezzo surfaces, much more informa-
tion is obtained. In fact, the vector bundles that we construct share another par-
ticular feature: the associated module ⊕t H0(X ,F(t)) has the maximal possible
number of generators (see Theorem 4.4.11). This property was isolated by Ulrich
in [Ulr84, p. 26] for Cohen-Macaulay modules, and since thenmodules with this
property have been called Ulrich modules and correspondingly Ulrich vector
bundles in the geometric case.

This chapter is divided as follows: in section 4.1 we recall the definition and
main features of the varieties we are going to be interested in, namely Fano blow-
up varieties of Pn, n ≥ 2, and del Pezzo surfaces. In section 4.2, we give an account
of ACM vector bundles, Ulrich vector bundles, as well it is also discussed the
problem of studying the complexity of anACMvariety according the complexity
of families of ACM vector bundles that it supports.

In section 4.3, we perform the construction of large families of simple (hence
indecomposable) ACM vector bundles on all Fano blow ups of points in Pn.
These families are constructed as the pullback of the kernel of surjective mor-
phisms

OPn (1)b −→ OPn (2)a

with the property that they are also surjective at the level of global sections.
Therefore we are able to prove that Fano blow-ups are varieties of wild repre-
sentation type (cf. Theorem 4.3.13).

In section 4.4, we focus our attention on the 2-dimensional case, namely ondel
Pezzo surfaces, wheremuchmore information is obtained. In the first subsection
we deal with any del Pezzo surface excluding the case of a quadric surface and
we see that the ACM vector bundles that we obtained in the previous section by
pullback are simple, Ulrich, and µ-stable with respect to a certain ample divisor
Hn (cf. Theorem 4.4.11). In the intermediate subsection we focus our attention
on the quadric surface and we show by an ad hoc method that it is a variety of
wild representation type. Finally, in the last subsection, we establish, for a del
Pezzo surface X with very ample anticanonical divisor, a version of the well-
known Serre correspondence (cf. Theorem 4.4.21). This correspondence will
allow us, on one hand, to show, when X is distinct of the quadric surface, that
the families of rank r vector bundles constructed in the first subsection could
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also be obtained from a general set of m(r) := d
2 r

2 + r 2−d
2 distinct points on the

surface with minimal free resolution as in Theorem 2.2.13. On the other hand,
for the quadric surface, we will apply Serre correspondence in the reverse sense
to obtain the minimal free resolution of a general set ofm(r) distinct points from
the Ulrich vector bundles constructed in the previous subsection.

Finally, section 4.5 is devoted to the case of a general surface X of arbitrary
degree d in P3. We manage to show that, for 4 ≤ d ≤ 9, a general surfaceX ⊆ P3

of degree d is of wild representation type (see Theorem 4.5.8). In the case of
arbitrary degree d, we will be able at least to construct large families of rank
2 and 3 simple ACM vector bundles on a general surface X ⊆ P3 of degree d,
showing that they are not of tame representation type (see Propositions 4.5.10
and 4.5.11). We are going to conclude giving a general strategy that could be
useful to prove that a general surface of arbitrary degree is of wild representation
type (see Theorem 4.5.14).

Part of the results of this chapter will be published in:
•Miró-Roig, R.M and Pons-Llopis, J., N-dimensional fano varieties of wild rep-

resentation type, submitted.

4.1 Fano varieties and del Pezzo surfaces
The first section of this chapter will be devoted to introduce the kind of varieties
that will be the subject of our research.

Definition 4.1.1. (cf. [Kol04, Chapter III, Definition 3.1]). A Fano variety is de-
fined to be a smooth n-varietyX whose anticanonical divisor−KX is ample. Its
degree is defined as Kn

X . If −KX is very ample, X will be called a strong Fano
variety.

Remark 4.1.2 (Serre’s duality for Fano varieties). LetX be ann-dimensional Fano
variety with ample anticanonical divisor HX := −KX . Given a vector bundle E
on X , Serre’s duality states:

Hi(X , E) ∼= Hn−i(X , E∨(−HX ))∨,

for i = 0, · · · ,n.

In the following theorem we summarize the well-known results about the
Picard group of the blow-up of Pn at s points and the intersection product of
blow-ups needed in the sequel.
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Theorem 4.1.3. (cf. [Har77, Chapter V, Proposition 4.8]). Let {p1, . . . , ps} be a set of
s distinct points in Pn and let π : X → Pn be the blow-up of Pn at these points. Let
e0 ∈ Pic(X) be the pull-back of a hyperplane in Pn, let ei be the exceptional divisors (i.e.,
π(ei) = pi). Then:

(i) Pic(X) ∼= Zs+1, generated by e0, e1, . . . , es.

(ii) The canonical class isKX = −(n + 1)e0 + (n− 1)
∑s
i=1 ei.

(iii) If D ∼ ae0 −
∑s
i=1 biei, then χ(OX (D)) =

(
a+n
n

)
−
∑s
i=1

(
bi+n−1
n

)
.

(iv) When n = 2, the intersection pairing on the surfaceX is given by e2
0 = 1, e2

i = −1,
e0.ei = 0 and ei.ej = 0 for i 6= j.

In the particular two-dimensional case, Fano surfaces are called del Pezzo sur-
faces. Indeed, we have:

Definition 4.1.4. (cf. [Kol04, Chapter III, Definition 3.1]). A del Pezzo surface is
defined to be a smooth surfaceX whose anticanonical divisor −KX is ample. If
−KX is very ample, X will be called a strong del Pezzo variety.

The classification of del Pezzo surfaces is classical. Let us recall it here:

Definition 4.1.5. (cf. [Dem80]) A set of s different points {p1, . . . , ps} on P2 with
s ≤ 8 is in general position if no three of them lie on a line, no six of them lie on a
conic and no eight of them lie on a cubic with a singularity at one of these points.

Theorem 4.1.6. (cf. [Man86, Chapter IV, Theorems 24.3 and 24.4] and [Dol, Prop.
8.1.9.]). Let X be a del Pezzo surface of degree d. Then 1 ≤ d ≤ 9 and

(i) If d = 9, then X is isomorphic to P2 (and −KP2 = 3HP2 gives the usual Veronese
embedding in P9).

(ii) If d = 8, thenX is isomorphic to either P1×P1 or to a blow-up of P2 at one point.

(iii) If 7 ≥ d ≥ 1, thenX is isomorphic to a blow-up of 9−d points in general position.

Conversely, any surface described under (i), (ii), (iii) is a del Pezzo surface of the corre-
sponding degree.

Lemma 4.1.7. (cf. [Kol04, Prop. 3.4]) LetX be the blow-up of P2 on 0 ≤ s ≤ 8 points
in general position and letKX be the canonical divisor. Then:
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(i) If s ≤ 6,−KX is very ample and its global sections yield a closed embedding ofX
in a projective space of dimension

dim H0(X ,OX (−KX ))− 1 = K2
X = 9− s.

(ii) If s = 7, −KX is ample and generated by its global sections.

(iii) if s = 8, −KX is ample and −2KX is generated by its global sections.

In the case of dimension n ≥ 3 we are not allowed to blow up more than one
point in Pn in order to obtain a Fano variety. Indeed, we have:

Theorem 4.1.8. Let Z be a set of s distinct points in Pn, n ≥ 3, and let

X := BlZPn −→ Pn

be its blow-up. ThenX is Fano if and only if s ≤ 1. Moreover, in this case−KX is very
ample.

Proof. The fact that the blow-up of Pn at more than one point is not Fano is an
immediate consequence of [Bon02, Theorem 1]. On the other hand, it is obvious
thatOPn (n+1) is very ample. So letX = BlpPn be the blow-up of Pn at one single
point p. Its anticanonical divisor is (n + 1)e0 − (n− 1)e1, which can be written as
(n − 2)(e0 − e1) + (3e0 − e1). Since e0 − e1 is clearly base-point free and 3e0 − e1

is very ample (which can be proven directly or appealing to the stronger result
[Cop02, Theorem 1]) we are done.

4.2 ACM and Ulrich sheaves
The aim of this section is to provide an account of known results on ACM and
Ulrich sheaves (resp. vector bundles) and on the classification of ACM varieties
according to the complexity of the families of ACMvector bundles that they sup-
port.

Definition 4.2.1. Let (X ,OX (1)) be a polarized scheme. A coherent sheaf E onX
is Arithmetically Cohen-Macaulay (ACM for short) if it is locally Cohen-Macaulay
(i.e., depth Ex = dimOX ,x for every point x ∈ X) and has no intermediate coho-
mology:

Hi
∗(X , E) := ⊕t∈Z Hi(X , E(t)) = 0 for all i = 1, . . . , dimX − 1.
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When X is smooth, locally Cohen-Macaulay sheaves are locally free:

Lemma 4.2.2. Let (X ,OX (1)) be a smooth polarized variety. Then any ACM sheaf E is
locally free.

Proof. Let x ∈ X . Then by hypothesis, depth Ex = dimOX ,x. But now, sinceOX ,x

is a regular local ring, the projective dimension of Ex is finite and we can apply
the Auslander-Buchsbaum formula (see [BH93, Theorem 1.3.3])

pd Ex = depthOX ,x − depth Ex

to see that pd Ex = 0, i.e, Ex is free.

From the algebraic point of view there also exist analogous definitions:

Definition 4.2.3. A graded RX -module E is a maximal Cohen-Macaulay module
(MCM for short) if depthE = dimE = dimRX .

On an ACM scheme, both definitions are closely related:

Proposition 4.2.4. (cf. [CH04, Proposition 2.1]) Let X ⊆ Pn be an ACM scheme.
There exists a bijection between ACM sheaves E onX and MCM RX -modules E given
by the functors E → Ẽ and E → H0

∗(X , E).

Proof. First of all, recall that, given a graded finitely generated RX -module M
there exist an exact sequence

0 −→ H0
mX (M ) −→M −→ H0

∗(X , M̃ ) −→ H1
mX (M ) −→ 0,

and isomorphisms Hi
∗(X , M̃ ) ∼= Hi+1

mX (M ) for i ≥ 1, where mX denotes the irrel-
evant ideal of RX .

So let E be an ACM sheaf on X . Then E := H0
∗(X , E) will be a finitely gen-

erated RX -module that verifies E ∼= H0
∗(X , Ẽ) and therefore Hi

mX (E) = 0 for
i ≤ dimX = dimRX − 1. This allows us to conclude that E is MCM by the local
cohomological criterion of depth.

On the other hand, let E be a MCM RX -module. Then E := Ẽ will be a
locally Cohen-Macaulay sheaf and again by the previous isomorphisms we will
have Hi

∗(X , E) = 0 for i = 1, . . . , dimX − 1.

This dictionary between modules and sheaves have been deeply exploited to
translate results from the algebraic to the geometric side and vice versa.
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Example 4.2.5. Let us consider the particular case of ACM line bundles. When
Pic(X) ∼= Z there is not too much to say, so as an interesting example let us
consider del Pezzo surfaces (cf. [PLT09, Theorems 4.1.5 and 4.2.2]). Let X ⊆ Pd

be a strong del Pezzo surface of degree d embedded through the very ample
divisor −KX . Then a line bundle L on X is initialized and ACM if and only if
either L ∼= OX or L ∼= OX (D) for a rational normal curveD ⊆ X ⊆ Pd of degree
less or equal than d. This allows us to give an explicit list of them.

(i) Let X = P1 × P1 be a quadric surface and denote by l1, l2 the standard
basis of Pic(X). Then there exist exactly (up to twist and isomorphism) 8
initialized ACM line bundles. The initialized ones are given byOP1×P1 and,
in terms of their associated class of divisors,

D = l1 + bl2 or D = bl1 + l2 with 0 ≤ b ≤ 3 (degD = 2 + 2b).

(ii) Let X be a blow-up of r general points on P2, with 0 ≤ r ≤ 6. Then, with
respect to the very ample−KX , the initializedACMdivisors ofX are 0, the
exceptional divisors and, up to permutation of the exceptional divisors, the
ones listed below:

degD D
3−m e0 − e1 − · · · − em 0 ≤ m ≤ min{2, r}
6−m 2e0 − e1 − · · · − em max{r − 3, 0} ≤ m ≤ min{5, r}
8−m 3e0 − 2e1 − e2 · · · − em max{1, r − 1} ≤ m ≤ r
9− r 4e0 − 2e1 − 2e2 − 2e3 − e4 · · · − er r ≥ 3
3 5e0 − 2e1 − 2e2 − 2e3 − 2e4 − 2e5 − 2e6 r = 6

Apossible way to classify ACMvarieties is according to the complexity of the
families of ACM indecomposable vector bundles that they support. The first result
on that direction was Horrocks theorem, that tells us that projective spaces Pn

are, in this sense, as simple as possible:

Theorem 4.2.6. (cf. [OSS80, Theorem 2.3.1]) A vector bundle E on Pn, n ≥ 1, splits
into a sum of line bundles if and only if E is ACM. In other words, the only ACM inde-
composable vector bundle (up to isomorphism and twist) on Pn is OPn .

In the case of a smooth quadric hypersurface Qn ⊆ Pn+1 an analogous result
also holds; namely, by [Knö87, Corollary 2.8] and [Buc87, Proposition 3.1], be-
sides OQn there is just one indecomposable ACM vector bundle if n is odd, or
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two if n is even. The rank of these vector bundles is 2m wherem = bn−1
2 c. They

are the so-called Spinor bundles.
This result led to the following definition:

Definition 4.2.7. An ACM scheme X ⊆ Pn is of finite representation type if it
has, up to twist and isomorphism, only a finite number of indecomposable ACM
sheaves.

Remark 4.2.8. Auslander proved that if a graded Cohen-Macaulay R supports
only a finite number of MCMmodules up to isomorphism and degree shift then
R is an isolated singularity (cf. [Yos90, Theorem 4.22]). This means, from the
geometric point of view, that anACMvarietywith finite number of ACM sheaves
is smooth. Therefore, by Lemma 4.2.2, the family of ACM vector bundles would
coincide with the family of ACM sheaves.

Varieties of finite representation type have been classified. In fact, they fall
into a very short list:

Theorem 4.2.9. (cf. [BGS87, Theorem C] and [EH88, p. 348]) Let X ⊆ Pn be an
ACM variety of finite representation type. Then X is either three or less reduced points
on P2, a projective space, a smooth quadric hypersurface X ⊂ Pn, a cubic scroll in P4,
the Veronese surface in P5 or a rational normal curve.

In order to study the complexity of ACMvarieties in terms of the ACMvector
bundles that they support, the following definitions were proposed (cf. [DG01]
for the case of curves and [CHa] for the higher dimensional case):

Definition 4.2.10. An ACM scheme X ⊆ Pn is of tame representation type if for
each rank r, the indecomposable ACM sheaves of rank r form a finite number of
families of dimension atmost one. On the other hand,X will be ofwild representa-
tion type if there exist l-dimensional families of non-isomorphic indecomposable
ACM sheaves for arbitrary large l.

Remark 4.2.11. We can not expect that the trichotomy finite, tame and wild will
be exhaustive in general. For instance, in [CH04, Proposition 6.1], it was proved
that a quadric cone supports a countable number of ACM sheaves of rank 2.

Example 4.2.12. Let C ⊆ Pn be a smooth ACM curve of genus g. In this case,
the definition of ACM is trivially satisfied for any vector bundle on C. Then, we
have the following:

(i) If g = 0, we saw in Theorem 4.2.9 that a rational normal curve is of finite
representation type.
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(ii) If g = 1, the classification of vector bundles on elliptic curves by Atiyah,
see [Ati57, Theorems 7 and 10], shows that they are of tame representation
type.

(iii) Finally, if g ≥ 2, by the results proved in [DG01, Theorem 1.6], C turns out
to be of wild representation type.

Example 4.2.13. As for the case of hypersurfaces X ⊆ Pn of degree ≥ 3, n > 1,
Buchweitz, Greuel and Schreyer proved in [BGS87, Theorem C] that they are
not of finite representation type by constructing a surjective map from the set of
isomorphism classes of MCMmodules over RX either to Pn ( if degX = 3) or to
a cubic hypersurface in Pn (if degX > 3). Nevertheless, it remains open to prove
in general that they are of wild representation type. In sections 4.4 and 4.5 we
are going to prove that a general surface X ⊆ P3 of degree 3 ≤ d ≤ 9 is of wild
representation type.

In the particular case of del Pezzo surfaces, the ACM vector bundles that we
construct on them will share a very strong property: they will have the maxi-
mum possible number of global sections. The algebraic counterpart was studied
by Ulrich in [Ulr84], where he showed that there is a bound on the number of
generators of MCM modules depending on the multiplicity and the rank. Ever
since, modules (and sheaves) achieving this bound have been called Ulrich after
him.

Definition 4.2.14. Given a polarized n-dimensional integral scheme (X ,OX (1)),
an ACM sheaf E of positive rank will be called an Ulrich sheaf if h0(Einit) =
deg(X) rk(E).

When OX (1) is very ample, we have the following result that justifies this
definition:

Theorem 4.2.15. Let X ⊆ Pn be an integral subscheme and E be an ACM sheaf on X
of positive rank. Then the minimal number of generatorsm(E) of the RX -module H0

∗(E)
is bounded by

m(E) ≤ deg(X) rk(E).

Proof. See [CHa, Theorem 3.1].

Therefore, since it is obvious that for an initialized sheaf E , h0(E) ≤ m(E), the
minimal number of generators of Ulrich sheaves is as large as possible. Mod-
ules attaining this upper bound were studied by Ulrich in [Ulr84]. A complete
account is provided in [ESW03]. In particular, we have:
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Theorem 4.2.16. (cf. [ESW03, Proposition 2.1.]) Let X ⊆ PN be an n-dimensional
ACMvariety and E be an initialized ACM coherent sheaf onX . The following conditions
are equivalent:

(i) E is Ulrich.

(ii) E admits a linear OPN -resolution of the form:

0 −→ OPN (−N + n)aN−n −→ . . . −→ OPN (−1)a1 −→ Oa0
PN −→ E −→ 0.

where a0 = deg(X) rk(E) and ai =
(
N−n
i

)
a0 for all i.

(iii) Hi(E(−i)) = 0 for i > 0 and Hi(E(−i− 1)) = 0 for i < n.

(iv) For some (resp. all) finite linear projections π : X −→ Pn, the sheaf π∗E is the
trivial sheaf OtPn for some t.

In particular, initialized Ulrich sheaves are 0-regular and therefore they are globally gen-
erated.

Remark 4.2.17. From the previous theorem is immediate to see that an initialized
Ulrich sheaf E has Euler characteristic of the form

χ(E(t)) = h0(E)
(
t + n
n

)
.

The existence of Ulrich vector bundles on a given variety is a nontrivial prob-
lem in general. Let us give some examples:

Example 4.2.18. (i) For a del Pezzo surface X ⊆ Pd, among the ACM initial-
ized line bundles listed on Example 4.2.5, the Ulrich ones correspond to
those of the form OX (D) forD a rational normal curve of maximal degree
d.

(ii) In [ESW03, Corollary 6.5] the existence of rank 2 Ulrich vector bundles on
arbitrary del Pezzo surfaces was established by Eisenbud, Schreyer and
Weyman using elementary transformations.

(iii) On smooth cubic surfaces and threefolds, the existence of Ulrich vector
bundles of arbitrary rank has been proved by Casanellas and Hartshorne
in [CHb].

(iv) The existence of Ulrich vector bundles on any algebraic curve was settled
in [ESW03, Corollary 4.5].
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4.3 n-dimensional case
The aim of this section will be to exhibit (as far as we know) the first examples
of n-dimensional varieties of wild representation type for arbitrary n ≥ 3 (for
surfaces, some examples were already known. See, for instance, [CHb, Theorem
1.1] and [PLT09, Theorem 5.1.5]). More precisely, in this sectionwewill construct
large families of ACM vector bundles on Fano varieties of the form X = BlZPn

for Z a finite set of s distinct points on Pn. Recall from section 4.1 that in order to
X being Fano, we should assume that either n = 2 and Z is a set of up to 8 points
in general position or n ≥ 3 and s = 0, 1.

In the following section we are going to provide a proof of the fact that strong
del Pezzo surfaces are ACM (cf. Theorem 4.4.1). We are going to prove now that
the analogous result turns out to be true for Fano blow-ups of Pn, n ≥ 3. In fact,
we have

Proposition 4.3.1. LetX = BlZPn be the blow-up of Pn, n ≥ 3, at s ≤ 1 points and let
us consider its embedding in PNk through the very ample divisor −KX . Then X ⊆ PNk
is an ACM variety.

Proof. Since it is well-known that Veronese embeddings are ACM, we can sup-
pose that X is the blow-up of Pn at one single point. First of all, we are go-
ing to see that Hi

∗(X ,OX ) = 0 for i = 1, . . . ,n − 1. To start with, notice that
Hi(X ,OX ) = Hi(Pn,π∗(OX )) = Hi(Pn,OPn ) = 0 for i = 1, . . . ,n − 1. On the
other hand, by Lemmas 4.3.8 and 4.3.9, we have Hi(X ,OX (t)) = 0 for t > 0 and
i = 1, . . . ,n − 1. Finally, the vanishing of Hi(X ,OX (t)) = 0 for t < 0 is obtained
by Serre’s duality. So it would only remain to prove that H1

∗(IX|Pd ) = 0, but this
is immediate from the fact that H1(X , IX|Pd ) = 0 and that IX|Pd is 1-regular.

The notion of regularity with respect to a very ample line bundle is very clas-
sical. For our purposes, we will need to work in a slightly wider setting:

Definition 4.3.2. (cf. [Laz04, Definition 1.8.4]) Let X be a projective variety and
B an ample line bundle generated by its global sections. A coherent sheaf F on
X is m-regular with respect to B if

Hi(X ,F ⊗B(m−i)) = 0 for i > 0.

Theorem 4.3.3. (cf. [Laz04, Theorem 1.8.5]) Let X be a projective variety and B an
ample line bundle generated by its global sections. Let F be an m-regular sheaf on X
with respect to B. Then for every k ≥ 0:
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(i) F ⊗B(m+k) is generated by its global sections.

(ii) F is (m + k)-regular with respect to B.

The ACM vector bundles E on X will be obtained as the kernel of certain
surjective morphisms between OX (e0)b and OX (2e0)a. Following notation from
[EH92], let us consider k-vector spaces A and B of respective dimension a and
b. Set V = H0(Pn,OPn (1)) and let M = Hom(B,A ⊗ V ) be the space of (a × b)-
matrices of linear forms. It is well-known that there exists a bijection between
the elements m ∈ M and the morphisms m : B ⊗ OPn −→ A ⊗ OPn (1). Tak-
ing the tensor with OPn (1) and considering global sections, we have morphisms
H0(m(1)) : H0(OPn (1)b) −→ H0(OPn (2)a). The following result tells us under
which conditions the aforementionedmorphismsm and H0(m(1)) are surjective:

Proposition 4.3.4. ([EH92, Proposition 4.1]) For a ≥ 1, b ≥ a + n and 2b ≥ (n + 2)a,
the set of elementsm ∈M such thatm and H0(m(1)) are surjective forms a non-empty
open dense subset.

For a given r ≥ n, let us fix now the possible ranks a and b, depending on the
parity of n ≥ 2, that we are going to deal with. If n is even, fix c ∈ {0, . . . ,n/2−1}
such that c ≡ r mod n/2, set u := 2(r−c)

n and also define:

a := u and b :=
n + 2

2
u + c. (4.3.1)

If n is odd, fix c ∈ {0, . . . ,n− 1} such that c ≡ rmod n, set u := (r−c)
n and also

define:
a := 2u and b := (n + 2)u + c. (4.3.2)

Notice that these values verify the conditions of Proposition 4.3.4. So take
an element m of the non-empty open and dense subset U ⊆ M provided by
Proposition 4.3.4 and consider the exact sequence

0 −→ F −→ OPn (1)b
m(1)−→ OPn (2)a −→ 0. (4.3.3)

It is immediate to see that F , as a kernel of a surjective morphism of vector
bundles, is a vector bundle of rank r = b − a. Let us consider now a finite set of
s distinct points Z ⊆ Pn and the blow-up associated to these points

X := BlZ(Pn) π−→ Pn.
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Pulling-back the exact sequence (4.3.3) we obtain the exact sequence:

0 −→ π∗F −→ OX (e0)b
m(1)−→ OX (2e0)a −→ 0. (4.3.4)

The first goal will be to show that G := π∗F is simple and therefore indecom-
posable. In order to do that, we are going to argue with the dual exact sequence

0 −→ OX (−2e0)a
m(1)∨−→ OX (−e0)b −→ G∨ −→ 0. (4.3.5)

Notice that the morphism f := m(1)∨ : OX (−2e0)a −→ OX (−e0)b appearing
in the exact sequence (4.3.5) is a general element of the k-vector space

M := Hom(OX (−2e0)a,OX (−e0)b) ∼= kn+1 ⊗ ka ⊗ kb

because

Hom(OX (−2e0),OX (−e0)) ∼= H0(OX (e0)) ∼= H0(OPn (1)) ∼= kn+1.

In other words, f can be represented by a b × a matrix A whose entries are
elements of H0(OPn (1)), i.e., linear forms. Since Aut(OX (−e0)b) ∼= GL(b) and
Aut(OX (−2e0)a) ∼= GL(a), the group GL(b)×GL(a) acts naturally onM by

GL(b)×GL(a)×M −→ M

(g1, g2,A) 7→ g−1
1 Ag2.

Moreover, for all A ∈ M and λ ∈ k∗, (λ idb,λ ida) belongs to the stabilizer of
A. Hence dimk Stab(A) ≥ 1. By [Kac80, Theorem 4], we have:

Proposition 4.3.5. Let M = kn+1 ⊗ ka ⊗ kb be endowed with the natural action of
GL(b)×GL(a). If a2 + b2 − (n + 1)ab ≤ 1 then, for a general element A ∈M ,

dimk Stab(A) = 1.

The previous Proposition will allow us to conclude that the general vector
bundle given by the exact sequence (4.3.5)

0 −→ OX (−2e0)a
f−→ OX (−e0)b

g−→ E := G∨ −→ 0 (4.3.6)

is simple and, hence, indecomposable. More precisely, we have the following
proposition which will be the key result for proving that all Fano blow ups of Pn

at a finite number of points are of wild representation type.
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Proposition 4.3.6. LetX = BlZPn be the blow-up of Pn at a finite set of points, n ≥ 2
and let r ≥ n. If n is even, fix c ∈ {0, . . . ,n/2 − 1} such that c ≡ r mod n/2, set
u := 2(r−c)

n and define:

a := u and b :=
n + 2

2
u + c. (4.3.7)

If n is odd, fix c ∈ {0, . . . ,n− 1} such that c ≡ r mod n, set u := (r−c)
n and define:

a := 2u and b := (n + 2)u + c. (4.3.8)

Let F be the vector bundle obtained as the kernel of a general surjective morphism
between OPn (1)b and OPn (2)a:

0 −→ F −→ OPn (1)b
m(1)−→ OPn (2)a −→ 0. (4.3.9)

Then, the vector bundles E from pulling-back and dualizing F

0 −→ OX (−2e0)a
f−→ OX (−e0)b

g−→ E := (π∗F)∨ −→ 0 (4.3.10)

are simple.

Proof. First of all, notice that the values of a and b appearing in the statement of
this Proposition verify the inequality of Proposition 4.3.5. Let A be the element
fromM associated to the morphism f . We will now check that E is simple. Oth-
erwise, there exists a non-trivial morphism φ : E −→ E . Thenwe get amorphism
φ = φ ◦ g : OX (−e0)b −→ E . Applying Hom(OX (−e0)b,−) to the exact sequence
(4.3.10) and taking into account that

Hom(OX (−e0)b,OX (−2e0)a) = Ext1(OX (−e0)b,OX (−2e0)a) = 0

we get
Hom(OX (−e0)b,OX (−e0)b) ∼= Hom(OX (−e0)b, E).

Hence there is a non-trivial morphism φ̃ ∈ Hom(OX (−e0)b,OX (−e0)b) in-
duced by φ and represented by a matrix B 6= µ id ∈ Matb×b(k) such that the
following diagram commutes:

0 // OX (−2e0)a
f //

C

��

OX (−e0)b

B

��

φ

##GG
GG

GG
GG

GG
g // E //

φ

��

0

0 // OX (−2e0)a
f // OX (−e0)b

g // E // 0
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where C ∈ Mata×a(k) is the matrix associated to φ̃|OX (−2e0)a . Then the pair
(C,B) 6= (µ id,µ id) verifiesAC = BA. Let us consider an element α ∈ k that does
not belong to the set of eigenvalues ofB andC. Then the pair (B−α id,C−α id) ∈
GL(b)×GL(a) belongs toStab(f ) and thereforedimk Stab(f ) > 1which produces
the desired contradiction with Proposition 4.3.5.

At this point we want to show that the isomorphism class of a vector bundle
E associated to an element m ∈ U ⊆ M depends only on the orbit of m under
the action of GL(b)×GL(a):

Lemma 4.3.7. Given two matrices m and m′ from the open set U ⊆ M provided by
Proposition 4.3.4, the associated vector bundles E and E ′ are isomorphic if and only ifm
andm′ belong to the same orbit under GL(b)×GL(a).

Proof. Let us suppose that there exists an isomorphism φ : E −→ E ′. This iso-
morphism lifts to a morphism of resolutions:

0 // OX (−2e0)a m //

C

��

OX (−e0)b

B

��

g // E //

φ

��

0

0 // OX (−2e0)a m′ // OX (−e0)b
g′ // E ′ // 0.

with B ∈ Matb×b(k) and C ∈ Mata×a(k). Now, in order to show that B belongs
to GL(b) (and therefore C belongs to GL(a)) we only need to compose this mor-
phism of the resolutionswith amorphism of resolutions lifting φ(−1) and observe
that any two morphisms between resolutions are homotopically equivalent and
that there is no nonzero morphism between OX (−e0) and OX (−2e0).

Once the simplicity has been proved, the next goal will be to show that the
vector bundles E given by the exact sequence (4.3.6) are ACM. Since the proof in
the surface case is slightly different and moreover one obtains a much stronger
result, we postpone the discussion of this case until the next section and for the
rest of the current one we only deal with varieties of dimension n ≥ 3. So, let
Z = {p1, . . . , ps} ⊆ Pn be a set of s distinct points on Pn and let X = BlZPn be
the blow-up at this set. It is a well-known fact that for any integers d1, · · · , ds ≥ 0
there is an isomorphism of cohomology groups Hi(X ,OX (ce0 −

∑s
t=1 dtet)) ∼=

Hi(Pn, IW (c)) where IW is the ideal sheaf of the fat point schemeW =
∑s
t=1 dtpt

(which is defined locally at pi by the ideal Idipi where Ipi is the maximal ideal of
the local ring OPn,pi ). This equivalence supplies us with the following standard
result:
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Lemma 4.3.8. Let X = BlZPn be a blow-up at a set Z of s points in Pn. Assume that
one of the following conditions holds:

(i) 2 ≤ i ≤ n− 1, c ∈ Z and dt ≥ 0 for all t;

(ii) i = 0 and c < 0; or

(iii) i = n, c ≥ −n.

Then, we have Hi(X ,OX (ce0 −
∑s
t=1 dtet)) = 0.

Proof. (i) It is straightforward from the previous remark and the long exact co-
homology sequence associated to

0 −→ IW (c) −→ OPn (c) −→ OW (c) −→ 0.

(ii) If c < 0, the divisor ce0 −
∑s
t=1 dtet is not effective.

(iii) It follows from (ii) and Serre’s duality.

When we blow-up just one point we get easily the vanishing of some H1

groups needed later:

Lemma 4.3.9. Let X = BlZPn be a blow-up at s = 0, 1 points in Pn. If either d = 0 or
c ≥ d > 0 then H1(X ,OX (ce0 − de1)) = 0.

Proof. If d = 0, then H1(X ,OX (ce0)) = H1(Pn,OPn (c)) = 0. On the other hand, if
c ≥ d > 0, then a single point p of multiplicity d imposes

(
d+n−1
n

)
independent

conditions on hypersurfaces of degree c and therefore from the exact sequence

0 −→ Idp(c) −→ OPn (c) −→ Odp(c) −→ 0

follows immediately the vanishing of H1(X ,OX (ce0 − de1)) = 0.

Lemma 4.3.10. Let X = BlZPn be a blow-up at a set Z of s ≤ 1 points in Pn and let

OX (e0)b
f−→ OX (2e0)a

be a morphism. Suppose that f is surjective on global sections. Then for any t ≥ 1,
the induced morphism OX (e0 + tH)b

ft−→ OX (2e0 + tH)a is also surjective on global
sections.
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Proof. If s = 0 the result is obvious. Assume s = 1, i.e. Z = {p}. Let us assume
that the morphism

H0(X ,OX (e0)b)
H0(f )−→ H0(X ,OX (2e0)a)

is surjective. Then, after taking the tensor productwithH0(OX (tH)), the induced
morphism

H0(f )⊗ id : (H0(OX (e0))⊗H0(OX (tH)))b ∼= H0(OX (e0)b)⊗H0(OX (tH)) −→

−→ H0(OX (2e0)a)⊗H0(OX (tH)) ∼= (H0(OX (2e0))⊗H0(OX (tH)))a

is still surjective. For t ≥ 1, let us consider the following commutative diagram:

(H0(X ,OX (e0))⊗H0(OX (tH)))b // //

��

(H0(X ,OX (2e0))⊗H0(OX (tH)))a

��
(H0(X ,OX (e0 + tH)))b

H0(ft) // (H0(X ,OX (2e0 + tH)))a.

So, in order to conclude the result, itwill be enough to prove that the right vertical
arrow on the previous diagram is surjective. From the above discussion, the
previous diagram is equivalent to the following one:

(H0(OPn (1))⊗H0(Pn, IW (t(n + 1))))b // //

��

(H0(OPn (2))⊗H0(Pn, IW (t(n + 1))))a

��
(H0(Pn, IW (t(n + 1) + 1)))b

H0(ft) // (H0(Pn, IW (t(n + 1) + 2)))a.

where IW is the ideal sheaf of the fat pointW = t(n− 1)p. But, since by Lemmas
4.3.8 and 4.3.9, we have Hi(IW (t(n + 1)− 2i)) = 0 for 1 ≤ i ≤ n, IW (t(n + 1)) is 0-
regularwith respect toOPn (2) and therefore the standard properties of regularity
assure us that the right vertical arrow is surjective.

Now we are ready to prove that the vector bundles that come out from the
exact sequence (4.3.10) are ACM in the case of dimension n ≥ 3.

Proposition 4.3.11. LetX = BlZPn be a blow-up of Pn, n ≥ 3, on s = 0, 1 points. Let
H := −KX be the ample anticanonical divisor. Then the vector bundle E given by the
exact sequence (4.3.10) is ACM with respect to H .
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Proof. Let us consider the following pieces of the long exact cohomology se-
quence associated to the exact sequence (4.3.10):

. . . −→ Hi(OX (tH − e0)b) −→ Hi(E(tH)) −→ Hi+1(OX (tH − 2e0)a) −→ . . .

for 1 ≤ i ≤ n− 1, and

. . . −→ Hn(OX (tH − e0)b) −→ Hn(E(tH)) −→ 0.

Applying Lemma 4.3.8 we have that Hi(E(tH)) = 0 for all i ≥ 2 and t ≥ 0. On
the other hand, for t ≥ 0, by Lemma 4.3.9 we also get H1(E(tH)) = 0 for all t ≥ 0.
To see the remaining vanishings, let us consider the dual exact sequence (4.3.4)

0 −→ E∨ −→ OX (e0)b
m(1)−→ OX (2e0)a −→ 0. (4.3.11)

Once again let us consider the following pieces of the long exact cohomology
sequence

. . . −→ Hi−1(OX (tH + 2e0)a) −→ Hi(E∨(tH)) −→ Hi(OX (tH + e0)b) −→ . . .

for i ≥ 2 and t ≥ 0. A new application of Lemmas 4.3.8 and 4.3.9 proves that
Hj(E(sH)) = Hn−j(E∨((−s − 1)H)) = 0 for 0 ≤ j ≤ n − 2 and s ≤ −1. It only
remains to show that Hn−1(E(tH)) = H1(E∨((−t−1)H)) = 0 for t < 0. Notice that
by Lemma 4.3.9 H1(e0 + tH) = 0 for all t ≥ 0. Since we were in the case in which
H0(m(1)) were surjective, by Lemma 4.3.10, we have that, in the exact sequence

0 −→ H0(E∨(tH)) −→ H0(OX (e0 + tH)b)
ft−→

−→ H0(OX (2e0 + tH)a) −→ H1(E∨(tH)) −→ 0,

ft is surjective for all t ≥ 0 and therefore we can conclude that H1 E∨(tH) = 0 for
all t ≥ 0 which proves what we want.

Remark 4.3.12. Notice that the vector bundle E of Proposition 4.3.11 is notUlrich,
since Einit = E(H) does not have the maximal number of global sections. For
instance, when r = n > 2 and s = 0, following notation from Proposition 4.3.6,
we have a = 2 and b = n + 2. Then:

h0(E(H)) = (n+2)

(
2n

n

)
−2

(
2n− 1

n

)
= (2n+2)

(
2n− 1

n

)
< n(n+1)n = rk(E(H)) deg(X).

On the other hand, it will be the case for the vector bundles that we are going to
construct on del Pezzo surfaces, as it will be shown in the next section.
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We conclude the section gathering the previous results:

Theorem 4.3.13. Let X = BlZPn be a Fano blow-up of points in Pn, n ≥ 3 and let
r ≥ n.

(i) If n is even, fix c ∈ {0, . . . ,n/2−1} such that c ≡ r mod n/2 and set u := 2(r−c)
n .

Then there exists a family of rank r simple (hence, indecomposable) ACM vector
bundles of dimension (n+2)n−4

4 u2 − cu− c2 + 1.

(ii) If n is odd, fix c ∈ {0, . . . ,n− 1} such that c ≡ r mod n and set u := (r−c)
n . Then

there exists a family of rank r simple (hence, indecomposable) ACM vector bundles
of dimension ((n + 2)n− 4)u2 − 2cu− c2 + 1.

In particular, Fano blow-ups are varieties of wild representation type.

Proof. Let X = BlZPn be a Fano blow-up of Pn, n ≥ 3. For r ≥ n, let a and b be
natural numbers defined as in (4.3.7) and (4.3.8) (depending on the parity of n)
and let A and B k-vector spaces of dimension respectively a and b. We saw in
Propositions 4.3.6 and 4.3.11 that there exists a non-empty open and dense subset
U of the vector space M = Hom(B,A ⊗ H0(OPn (1))) such that m ∈ U provides
with a simpleACMvector bundle E onX of rank r. Since itwas proved in Lemma
4.3.7 that these vector bundles are in bijection with the orbits of U under the
action of GL(b)×GL(a) the dimension of the family can be computed as

dimM − dim Aut(OPn (1)b)− dim Aut(OPn (2)a) + 1 = ab(n + 1)− a2 − b2 + 1,

which gives the announced result. Notice that this dimension depends quadrat-
ically on u and hence on r.

Remember that for dimension n ≥ 3, we are allowed to blow-up a set Z of
s = 0, 1 points on Pn in order to get a Fano variety X = BlZPn. Notice that the
meaning of a blow-up of s = 0 points is just a change of polarization of Pn, i.e.
now we are considering Pn with the very ample anticanonical divisor (n + 1)H .
Therefore, in this setting the question about the representation type could be
stated in the following terms:

Question 4.3.14. Given a couple of integers (n, r), determine the representation type of
the Veronese variety

νn,r : Pn −→ P(n+r
n )−1

defined as the image of Pn by the very ample divisor rHPn .
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FromTheorem4.3.13 it follows that theVeronese varieties νn,n+1(Pn) ⊆ P(2n+1
n )−1

are of wild representation type for n ≥ 2. On the other hand, we saw in Theorem
4.2.9 that the only Veronese varieties of finite representation type are given for
the couples (n, r) = (2, 2) and (n, r) = (1, r) for arbitrary r ≥ 1. Moreover, it is
proved in [ESW03, Corollary 5.7] that any Veronese variety is the support of at
least an Ulrich sheaf.

4.4 Del Pezzo surfaces

In this section we focus our attention on 2-dimensional Fano varietiesX , i.e., on
del Pezzo surfaces. In this case much more information will be obtained. Recall
that del Pezzo surfaces are either blow-ups of P2 on s ≤ 8 points in general po-
sition or the quadric surface P1 × P1. H will stand for the ample anticanonical
divisor −KX on X . The aim is twofold: firstly, we are going to give an alterna-
tive construction of the family of ACM vector bundles onX that will come with
some extra information about the stability of the vector bundles. Secondly, we are
going to show that these ACM vector bundles share a much stronger property:
they are Ulrich vector bundles. The quadric casewill have to be treated apart and
therefore a separated subsection will be devoted to it. In the final subsection, we
are going to establish a version of the well-known Serre correspondence, which
in particular will allow us to prove that the Ulrich vector bundles that have just
been constructed on strong del Pezzo surfaces (except in the quadric case) could
be obtained from finite general set of points onX verifying the Minimal Resolu-
tion Conjecture.

As in the previous section, let us start showing thewell-known fact that strong
del Pezzo surfaces are ACM:

Theorem 4.4.1. (cf. [Dem80, Exposé V, Théorème 1]) Let X be a strong del Pezzo
surface of degree d and let us consider its embedding in Pd through the very ample divisor
−KX . Then X ⊆ Pd is an ACM variety.

Proof. We are going to prove that H1
∗(OX ) = 0 and H1

∗(IX ) = 0. Let us define
H := −KX . SinceH2 = d andH is very ample, by the adjunction formula and by
[Har77, Chapter II, Theorem 8.18] we obtain thatH is a smooth elliptic curve. In
particular, sinceKH ∼ 0, from duality we obtain

h1(OH (m)) = h0(OH (−m)) = 0 form > 0.
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Since X is rational, we can apply Castelnuovo’s criterion to conclude that
H1(OX ) = 0. Next, from the exact sequence

0 −→ OX (−1) −→ OX −→ OH −→ 0

twisting bym ≥ 1 and taking cohomology

H1(OX (m− 1)) −→ H1(OX (m)) −→ H1(OH (m)) = 0,

we obtain that H1(OX (m)) = 0 for anym ≥ 0. Since

H1(OX (m)) ∼= H1(OX (−m− 1)),

the vanishing holds for allm.
It remains to prove that H1

∗(IX ) = 0. Let us consider the exact sequence

0 −→ IX −→ OPd −→ OX −→ 0.

Since H2(OX (2−2)) ∼= H0(OX (−1)) = 0,OX is 2-regular. BeingOPd 3-regular, we
have that IX is 3-regular and so H1(IX (m)) = 0 form ≥ 2. Clearly this also holds
for m ≤ 0. Finally H1(IX (1)) = 0 since X is embedded through the complete
linear system | −KX |.

4.4.1 Construction of Ulrich vector bundles
The aim of this subsection is to recover, for any r ≥ 2, the r2 +1-dimensional fam-
ily of rank r ACM vector bundles E on del Pezzo surfaces X starting from rank
r, µ-stable vector bundles H on P2 with Chern classes c1(H) = 0 and c2(H) = r.
The method used in this subsection will not allow us to treat the quadric sur-
face, which will be the subject of the next subsection. Therefore, for the rest of
this subsection when we speak of a del Pezzo surface we will be excluding the
quadric case.

As was mentioned in Theorem 1.3.4 of chapter 1, given an n-dimensional
projective variety X and an ample line bundle H , there exists a coarse moduli
space Ms

X ,H (r; c1, . . . , cmin(r,n)) parameterizing isomorphism classes of µ-stable
rank r vector bundles on X with Chern classes c1, . . . , cmin(r,n). However, it is in
general a very deep problem to show thatMs

X ,H (r; c1, . . . , cmin(r,n)) is non-empty.
Nevertheless, for the case of the projective plane, we can prove the existence of
rank r, µ-stable vector bundlesH on P2 with Chern classes c1(H) = 0 and c2(H) =
r. In order to show that the moduli spaceMs

P2,OP2 (1)(r; 0, r) is non-empty we will
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use the following adapted result from [DL85]. Recall that the discriminant of a
vector bundle E on P2 of rank r and Chern classes c1, c2 is defined as:

∆(r, c1, c2) =
1
r

(c2 −
(r − 1)

2r
c2

1).

Theorem 4.4.2. (cf. [DL85, Théorème B]) A sufficient and necessary condition for the
existence of a µ-stable vector bundle of rank r and Chern classes c1 ∈ rZ and c2 ∈ Z on
P2 is that ∆(r, c1, c2) ≥ 1.

Corollary 4.4.3. The moduli spaceMs
P2,OP2 (1)(r; 0, r) is non-empty.

Proof. Since in our case ∆(r; 0, r) = 1, we are done by the previous Theorem.

Once we have checked the non-emptiness of Ms
P2,OP2 (1)(r; 0, r) we can apply

[DM03, Proposition 4.3] to assert that a generic elementH fromMP2,OP2 (1)(r; 0, r)
will have a resolution of the form

0 −→
r⊕
OP2 (−2) −→

2r⊕
OP2 (−1) −→ H −→ 0. (4.4.1)

Since this exact sequence is just the dual of the exact sequence constructed
in (4.3.3), we see that we are recovering the family of vector bundles we were
dealing with in section 3.

The dimension of this family can be easily computed:

Proposition 4.4.4. The family of µ-stable vector bundles H of Ms
P2,OP2 (1)(r; 0, r) with

locally free resolution (4.4.1) has dimension r2 + 1.

Proof. By [DM03, Theorem 4.4],Ms
P2,OP2 (1)(r; 0, r) is a smooth irreducible variety

of dimension r2 + 1. Since our family forms a non-empty open dense subset of it,
we are done.

Let us take now a set of 0 ≤ s ≤ 8 points Z = {p1, . . . , ps} in general position
and let us consider the surface obtained by blowing up these points jointly with
the canonical morphism to P2,

π : X = BlZ(P2) −→ P2.

We are following the notation introduced in Theorem 4.1.3. Pulling back the
vector bundles given by the exact sequence (4.4.1), we obtain the family of vector
bundles from (4.3.11)

0 −→
r⊕
OX (−2e0)

f−→
2r⊕
OX (−e0) −→ E := π∗H −→ 0. (4.4.2)
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If we twist it by the line bundle OX (H) we obtain the following family of rank r
vector bundles:

0 −→
r⊕
OX (−2e0 +H) −→

2r⊕
OX (−e0 +H) −→ E(H) −→ 0. (4.4.3)

Their Chern classes can easily computed with the formulas given in Remark
1.3.10:

c1(E(H)) = rH and c2(E(H)) =
H2r2 + (2−H2)r

2
.

We saw in Proposition 4.3.6 that these vector bundles were simple. Let us,
however, provide an alternative proof that gives a stronger result. We will see
that they are µ-stable with respect a certain ample divisor and, therefore, simple.
We are going to use the following result:

Theorem 4.4.5. (cf. [Nak93, Theorem 1]) Let X be a surface, let H be an ample line
bundle onX and let π : X ′ −→ X be the blow up ofX at l distinct points pi and denote
the exceptional divisors by ei. Let us define the divisor Hn := nπ∗H −

∑l
i=1 ei. Then

for n� 0 there exists an open immersion

φ : Ms
X ,H (r, c1, c2) ↪→Ms

X′,Hn (r,π∗c1, c2)

defined by φ(F) := π∗(F) on closed points.

Corollary 4.4.6. The family of vector bundles on the blow up π : X = BlZ(P2) −→ P2

defined by the exact sequence

0 −→
r⊕
OX (−2e0 +H) −→

2r⊕
OX (−e0 +H) −→ E(H) −→ 0

is µ-stable with respect the ample divisor ne0 −
∑
ei for n � 0. In particular, they are

simple, i.e., Hom(E(H), E(H)) = k.

The last stepwill be to show, as in the higher dimensional case, that the vector
bundles E are ACM. In fact, muchmore will be provided in this case: the twisted
E(H) vector bundles are initialized Ulrich vector bundles. For this, we need the
following computations.

Remark 4.4.7 (Riemann-Roch for vector bundles on a del Pezzo surface). Let X
be a del Pezzo surface. SinceX is a rational connected surfacewe haveχ(OX ) = 1.
In particular, Riemann-Roch formula for a vector bundle E onX of rank r has the
form

χ(E) =
c1(E)(c1(E)−KX )

2
+ r − c2(E).
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Remark 4.4.8. The Euler characteristic of the involved vector bundles can be
computed thanks to the Riemann-Roch formula:

χ(OX (−2e0)(lH)) = 9−s
2 l2 − 3+s

2 l,

χ(OX (−e0)(lH)) = 9−s
2 l2 + 3−s

2 l,
(4.4.4)

and
χ(E(lH)) = 2rχ(OX (−e0)(lH))− rχ(OX (−2e0)(lH))

= 9r−sr
2 l2 + 9r−sr

2 l.

(4.4.5)

Proposition 4.4.9. LetX be a del Pezzo surface. The vector bundles E(H) given by the
exact sequence (4.4.3) are initialized simple Ulrich vector bundles. Moreover, in the case
of a blow-up of ≤ 7 points, they are globally generated.

Proof. First of all, notice that, since µ-stability is preserved under duality, E∨ is a
µ-stable (with respect toHn) vector bundle with c1(E∨) = 0, and therefore it does
not have global sections: H0(E∨) = H2(E(−H)) = 0. In particular, H2(E(tH)) = 0,
for all t ≥ −1. On the other hand, since H2(OX (−2e0)) = H0(OX (2e0 − H)) = 0
and h1(OX (−e0)) = −χ(OX (−e0)) = 0 we obtain from the long exact sequence of
cohomology associated to (4.4.2) that H1(E) = 0. Since χ(E) = 0, we also conclude
that H0(E) = 0 and therefore H0(E(tH)) = 0 for all t ≤ 0. Moreover, since we also
have that χ(E(−H)) = 0, we obtain that H1(E(−H)) = 0.

Now, it is well-known that h0(OX (H)) = H2 + 1 > 0 (see for instance [Kol04,
Corollary 3.2.5]) and therefore there exists an exact sequence:

0 −→ OX (−H) −→ OX −→ OH −→ 0.

If we tensor it by E and we consider the long exact cohomology sequence
associated to it we see that

0 = H0(E) −→ H0(E|H ) −→ H1(E(−H)) = 0.

This shows that H0(E|H (−tH)) = 0 for all t ≥ 0. Then we can use this last fact
jointly with the long exact cohomology sequence associated to

0 −→ E(−(t + 1)H) −→ E(−tH) −→ E|H (−tH) −→ 0

to show inductively that H1(E(−tH)) = 0 for all t ≥ 0.
In order to complete the proof we need to consider now two different cases:
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• X is the blow-up of s ≤ 7 points on P2 in general position. In this case, by
Lemma 4.1.7, H is ample and generated by its global sections. Since we
have just seen that E(H) is 0-regular with respect to H we can conclude
by Theorem 4.3.3 that E(H) is ACM and globally generated. Moreover,
h0(E(H)) = χ(E(H)) = (9 − s)r = H2r, i.e., E(H) is an Ulrich vector bun-
dle.

• X is the blow-up of 8 points on P2 in general position. In this case, the argument
is slightly more involved, since we can use Theorem 4.3.3 only with respect
to 2H , which is ample and globally generated. First of all, since the points
are in general position, H0(OX (−e0 +H)) = 0 and from the exact sequence
(4.4.3) we get the following exact sequence:

0 −→ H0(E(H)) −→ ⊕r H1(OX (−2e0 +H)) −→

−→ ⊕2r H1(OX (−e0 +H)) −→ H1(E(H)) −→ 0.

From this sequence and the fact that

h1(OX (−2e0 +H)) = −χ(OX (−2e0 +H)) = 5

and
h1(OX (−e0 +H)) = −χ(OX (−e0 +H)) = 2

we are forced to conclude that h0(E(H)) = r and H1(E(H)) = 0. Now, from
whatwe have gathered up to now, we can affirm that E(H) is 1-regular with
respect to 2H and therefore, by Theorem 4.3.3, H1(E(H + 2tH)) = 0 for all
t ≥ 0. In order to deal with the cancelation of the remaining groups of co-
homology, it will be enough to show that E(2H) is 1-regular with respect to
2H , i.e., it remains to show that H1(E(2H)) = 0. In order to do this consider
the exact sequence (the cancelation of H0(OX (−e0 + 2H)) is due to the fact
that the points are in general position):

0 −→ H0(E(2H)) −→ ⊕r H1(OX (−2e0 + 2H)) −→

−→ ⊕2r H1(OX (−e0 + 2H)) −→ H1(E(2H)) −→ 0.

Once again, we control the dimension of these vector spaces:

h1(⊕rOX (−2e0 + 2H)) = −rχ(OX (−2e0 + 2H)) = 9r

and
h1(⊕2rOX (−e0 + 2H)) = −2rχ(OX (−e0 + 2H)) = 6r.
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Therefore we are forced to have h0(E(2H)) = 3r and H1(E(2H)) = 0. Notice
that in this case E(3H) is globally generated.

Given a del Pezzo surfaceX , we have just seen that the vector bundles given
by the exact sequence (4.4.3) were µ-stable with respect to the ample divisor
Hn := ne0 −

∑
ei for n � 0. Unfortunately, the proof did not provide an effec-

tive value of n. However we are going to prove at least that they are µ-semistable
with respect to the anticanonical divisorH = H3 = 3e0−

∑
ei. Themain tool will

be the classification of vector bundles on elliptic curves performed in [Ati57]:

Proposition 4.4.10. Let X be a del Pezzo surface of degree d. Then a general vector
bundle E(H) given by the exact sequence (4.4.3) is µ-semistable.

Proof. We follow the structure of the proof given by the case of the cubic surface
in [CHa, Proposition 5.2]. We saw in Proposition 4.4.9 that these vector bundles
E(H) were initialized and Ulrich. Moreover, we know that we can take a smooth
elliptic curve H as a representative of the anticanonical divisor class (see for in-
stance [Dem80, III,Theorem 1]). From the exact sequence

0 −→ E(−H) −→ E −→ E|H −→ 0

is deduced that E|H (H) is also initialized of degree dr and h0(E|H (H)) = dr. By
[Ati57, Theorem 7], E|H (H) = ⊕Eri,di with Eri,di a vector bundle of rank ri and de-
gree di. Since h0(Eri,di (−H)) = 0, Atiyah’s classification forces that di ≤ dri. It fol-
lows that we have equality and E|H (H) decomposes as direct sum of µ-semistable
vector bundles of the same slope. Thus, E|H (H) is also µ-semistable of slope d.
Therefore it is straightforward to conclude that E(H) is also µ-semistable.

Summing up, we get the following result:

Theorem 4.4.11. Let X be a del Pezzo surface of degree d. Then for any r ≥ 2 there
exists a family of dimension r2+1 of simple initializedUlrich vector bundles of rank rwith
Chern classes c1 = rH and c2 = dr2+(2−d)r

2 . Moreover, they are µ-semistable with respect
to the polarizationH = 3e0−

∑9−d
i=1 ei and µ-stable with respect toHn := (n−3)e0 +H

for n� 0. In particular, del Pezzo surfaces are of wild representation type.

Remark 4.4.12. Notice that the existence of Ulrich vector bundles on a cubic sur-
face X ⊆ P3 gives a full answer to question (6.3) raised in [BHU87].
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In the following lemma we are going to see that, as in the case of surfaces on
P3, explained to us by Mustopa in private communication, it is possible to give
bounds for the second Chern class of an Ulrich vector bundle on a strong del
Pezzo surface. In fact, following their argument we have:

Lemma 4.4.13. LetX be a strong del Pezzo surface of degree d and let E be an initialized
Ulrich vector bundle of rank r. Then c1(E)H = dr, c2(E) = c2

1+(2−d)r
2 and

(d− 2)r2 + (2− d)r
2

≤ c2(E) ≤ dr2 + (2− d)r
2

.

Proof. We saw in Remark 4.2.17 that an initialized Ulrich vector bundle E has
Hilbert polynomial dr

(
t+2

2

)
. Since this polynomial can be computed, thanks to

the Riemann-Roch theorem, in terms of its Chern classes, an easy computation
gives us the values of deg E = c1(E)H and of c2(E). Next, recall that E was a
µ-semistable vector bundle (see Proposition 4.4.10) and therefore we can apply
Bogomolov inequality (cf. [HL97, Theorem 3.4.1])

2rc2(E) ≥ (r − 1)c1(E)2,

to obtain the lower bound for c2. Finally, by theHodge IndexTheorem (cf. [Har77,
Theorem 1.9,Chapter V]), it holds that c1(E)2H2 ≤ (c1(E)H)2, and an easy com-
putation provides the upper bound.

Remark 4.4.14. Therefore, by the previous Lemma, the Ulrich vector bundles
constructed in Theorem 4.4.11 are extremal with respect to the second Chern
class.

4.4.2 The quadric case
This subsection will be devoted to prove the wildness of the unique strong del
Pezzo surface that was not treated in the last subsection, namely, the smooth
quadric surface P1 × P1 ∼= X ⊆ P8 embedded in P8 through the very ample
anticanonical divisorHX := −KX . We are going to develop an ad hoc argument,
following the lines of the general case, to construct large families of simple Ulrich
vector bundles onX . Let us start recalling the basic facts about the Picard group
of X :

Lemma 4.4.15. Let X ∼= P1 × P1 be a smooth quadric surface. Then

(i) Pic(X) ∼= Z2 ∼=< l1, l2 >with li being the pull-back π∗iOP1 (1) through the canon-
ical projections πi : P1 × P1 −→ P1, i = 1, 2.
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(ii) The canonical divisor of X isKX = −2l1 − 2l2.

(iii) The intersection product is defined as follows: l2i = 0 for i = 1, 2, and l1.l2 = 1.

We are going to denote a line bundle of the formOX (al1 +bl2) byOX (a, b). As
in the case of the rest of del Pezzo surfaces, our rank r Ulrich vector bundles on
the quadric X will be constructed as the kernel of certain surjective morphisms
betweenOX (1, 0)r⊕OX (0, 1)r andOX (1, 1)r. We need the following Proposition,
which is analogous to Proposition 4.3.4.

Proposition 4.4.16. Let X be a smooth quadric surface. Then, for r ≥ 2, the set of
elements m ∈ M := Hom(OX (1, 0)r ⊕ OX (0, 1)r,OX (1, 1)r) such that m and the
associated morphism of global sections

H0(m) : H0(OX (1, 0))r ⊕H0(OX (0, 1))r −→ H0(OX (1, 1))r

are surjective forms a non-empty open dense subset.

Proof. Recall that for any a, b ≥ 0 we can identify the global sections H0(OX (a, b))
with bihomogeneous polynomials f (x, y;u, v) ∈ k[x, y;u, v] of bidegree (a, b).
Therefore, a morphism as in the statement will be represented by a r×2rmatrix

C =
(
A(x, y) B(u, v)

)
whereA(x, y) (resp. B(u, v)) is a r×r-matrix of linear forms in variables x, y (resp.
u, v). By semicontinuity, it will be enough to prove that the set of morphism
with the required properties is nonempty. We are going to supply a particular
morphism for the cases r = 2, r = 3 and r > 4 separately.

(i) For r = 2, we can consider the matrix

C2 =
(
x y u v

0 x v u

)
for which is straightforward to check the required properties.

(ii) For r = 3, we can consider the matrix

C3 =

 x 0 y u 0 0
0 x 0 u 0 v

0 0 x 0 v u


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(iii) Finally, for r ≥ 4 we can build up the morphism from the rank 2 and 3
examples. Namely, we consider (up to a column permutation) for r = 2s
even,

Cr = diag (C2| s. . . |C2) ,

and for r = 2s + 1 odd,

Cr = diag
(
C2| s−1. . . |C2|C3

)
.

Let us take an element m of the non-empty open and dense subset U ⊆ M

provided by Proposition 4.4.16 and consider the exact sequence

0 −→ F −→ OX (1, 0)r ⊕OX (0, 1)r m−→ OX (1, 1)r −→ 0, (4.4.6)

from which it is seen that F , as a kernel of a surjective morphism of vector bun-
dles, is a vector bundle of rank r. Now let us consider the vector bundle E ob-
tained dualizing the exact sequence (4.4.6):

0 −→ OX (−1,−1)r m∨−→ OX (−1, 0)r ⊕OX (0,−1)r −→ E := F∨ −→ 0. (4.4.7)

Proposition 4.4.17. LetX ⊆ P8 be the smooth quadric surface embedded in P8 through
the very ample anticanonical divisorH := −KX . Then the vector bundle E(H) from the
short exact sequence (4.4.7) twisted by H is an initialized Ulrich vector bundle of rank
r.

Proof. Let us start showing that E is ACM, namely, that H1
∗(E) = 0. In order to

do this, notice that, since m were surjective at the level of global sections and
h0(OX (1, 0)r ⊕OX (0, 1)r) = 4r = h0(OX (1, 1)r), we have that

h0(F) = h2(F∨(−H)) = h2(E(−H)) = 0 and h1(F) = 0.

On the other hand, from the long exact cohomology sequence associated to the
exact sequence (4.4.7), h0(E) = h1(E) = 0, from which we see that E is initialized
and 1-regular. Now we can apply Theorem 4.3.3 to obtain h1(E(tH)) = 0 for all
t ≥ 0. Finally, h2(F(−H)) = h0(E) = 0 shows that F is also 1-regular and then
a new application of Theorem 4.3.3 gives that h1(E(tH)) = h1(F((−t− 1)H)) = 0
for all t < 0, completing the proof.

Once it has been prove that E is ACM, an easy computation from the exact
sequence (4.4.6) gives that h0(Einit) = h0(E(H)) = 8r = deg(X) rk(E) and therefore
E is an Ulrich vector bundle. Notice that, moreover, we can compute its Chern
classes: c1(E(H)) = rH and c2(E(H)) = 4r2 − 3r.
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The last step in the proof of wildness of the quadric surface will be to ensure
that the vector bundle E(H) (or, equivalently E) is indecomposable and to com-
pute the dimension of the family of Ulrich vector bundles constructed via the
exact sequence (4.4.7). As in the rest of del Pezzo surfaces, we are going to pro-
duce a somehow stronger result, namely, simplicity. We are going to rely again
on the Proposition 4.3.5.

Proposition 4.4.18. LetX ⊆ P8 be the smooth quadric surface embedded in P8 through
the very ample anticanonical divisor H := −KX . Then the vector bundle E from the
exact sequence (4.4.7):

0 −→ OX (−1,−1)r m∨−→ OX (−1, 0)r ⊕OX (0,−1)r
g−→ E −→ 0 (4.4.8)

is simple and, hence, indecomposable.

Proof. Let the morphism f := m∨ be represented by a 2r× rmatrix A = (A1|A2)t

where A1 (resp. A2) is a matrix of linear forms in variables x, y (resp. u, v). Take
a morphism φ : E −→ E . Then we get a morphism

φ = φ ◦ g : OX (−1, 0)r ⊕OX (0,−1)r −→ E .

We can apply the functor Hom(OX (−1, 0)r ⊕OX (0,−1)r,−) (as in Proposition
4.3.6 from the last subsection) to the exact sequence (4.4.8) and take into account
that

Hom(OX (−1, 0)⊕OX (0,−1),OX (−1,−1)) = Ext1(OX (−1, 0)⊕OX (0,−1),OX (−1,−1)) = 0

to get

End(OX (−1, 0)r ⊕OX (0,−1)r) ∼= Hom(OX (−1, 0)r ⊕OX (0,−1)r , E).

Hence there exist matrices B1,B2,C from Matr×r(k) such that the following di-
agram commutes:

0 // OX (−1,−1)r //

C

��

OX (−1, 0)r ⊕OX (0,−1)r

B

��

φ

((QQQQQQQQQQQQQQQ
// E //

φ

��

0

0 // OX (−1,−1)r // OX (−1, 0)r ⊕OX (0,−1)r // E // 0

where

B :=

(
B1 0
0 B2

)
.
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As in Proposition 4.3.6, we can suppose thatB andC are invertible and therefore
we have the equalities:

A1 = B1A1C
−1

and
A2 = B2A2C

−1.

Therefore we can apply Proposition 4.3.5 to the two previous matrix equalities
(taking into account that, if we write a = b = r, the required inequality a2 + b2 −
2ab = 0 ≤ 1 is satisfied) to conclude that (B1,C) = (λ1 idr,λ1 idr) and (B2,C) =
(λ2 idr,λ2 idr). Hence λ := λ1 = λ2 and B = λ id2r so, a fortiori, φ = λ id2r and we
can conclude that E is simple.

It is time to harvest the main result of this subsection:

Theorem 4.4.19. LetX ⊆ P8 be the smooth quadric surface embedded in P8 through the
very ample anticanonical divisor H := −KX . Then, for any r ≥ 2, there exists a family
of rank r simple (hence indecomposable) Ulrich vector bundles of dimension r2 + 1. In
particular, X is a variety of wild representation type.

Proof. We have seen in Propositions 4.4.17 and 4.4.18 that, for any r ≥ 2, there
exists a bijection between rank r simple Ulrich vector bundles and orbits under
GL(r)×GL(r)×GL(r) of a non-empty open subset U of

M := Hom(OX (1, 0)r ⊕OX (0, 1)r,OX (1, 1)r).

The dimension of this family can be computed as follows:

dimM − 3 dimGL(r) + 1 = 4r2 − 3r2 + 1 = r2 + 1.

We have mentioned (see Theorem 4.2.9) that the quadric surface P1 × P1 ∼=
X ⊆ P3 was a variety of finite representation type with respect to the very ample
divisor l1 + l2. Therefore, the representation type of a variety strongly depends
on the chosen polarization. This leads to the following question:

Question 4.4.20. Given a projective variety X ⊆ Pn, find the minimum N such that
X can be embedded in PN as a variety of wild representation type.

For instance, in the case of the quadric P1×P1, it follows from Theorems 4.2.9
and 4.4.19 that N should be either 5, 7 or 8.
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4.4.3 Serre correspondence
In this last subsection we are going to pay attention to the case of strong del
Pezzo surfaces X . In this case, the very ample divisor −KX provides an em-
bedding X ⊆ Pd, with d = K2

X . For this kind of surfaces we are going to
establish a version of the well-known Serre correspondence between coherent
sheaves on X and codimension 2 locally complete intersections subschemes Z
of X . This correspondence will be used in both directions. In one direction, we
are going to show that the (r2 + 1)-dimensional family of rank r Ulrich vector
bundles given in Theorem 4.4.11 on a strong del Pezzo surface (excluding the
quadric) could also be obtained through Serre correspondence from a general
set ofm(r) := c2(E(H)) = dr2+(2−d)r

2 points onX . On the other direction, the exis-
tence of Ulrich vector bundles on the quadric P1×P1 ∼= X ⊆ P8, as it is proven in
Proposition 4.4.17, allows to prove the Minimal Resolution Conjecture for m(r)
general distinct points (see Theorem 2.2.13).

Theorem 4.4.21 (Serre correspondence). Let X ⊆ Pd be a strong del Pezzo surface
of degree d. Then it holds:
(i) Given a rank r ≥ 2 initialized Ulrich vector bundle E on X with Chern classes
c1(E) = rH and c2(E) = dr2+(2−d)r

2 and a general element of theGrassmannianGrass(r−
1, H0(E)) represented by r − 1 global sections s1, . . . , sr−1, there exists a short exact
sequence

0 −→ Or−1
X −→ E −→ IZ|X (rH) −→ 0, (4.4.9)

whereZ ⊆ X is a set ofm(r) := c2(E) distinct points. Moreover, h0(IZ|X ((r−1)H)) = 0
and the scheme Z is level of type r− 1 and socle degree e := c1 + d− 3. The minimal free
resolution of IZ|X is:

0 −→ R(−r − d)r−1 −→ R(−r − d + 2)γd−1,r−1 −→ . . . (4.4.10)

−→ R(−r − 1)γ2,r−1 −→ R(−r)(d−1)r+1 −→ IZ|X −→ 0

with

γi,r−1 =
1∑
l=0

(−1)l
(
d− l − 1
i− l

)
∆l+1PX (r + l)−

(
d

i

)
(m(r)− PX (r − 1)).

(ii) Reciprocally, given a subset Z ⊆ X of |Z| = dr2+(2−d)r
2 , r ≥ 2, points such that

IZ|X has the minimal free resolution (4.4.10), there exists a rank r Ulrich vector bundle
F with Chern classes c1(F) = rH and c2(F) = |Z| that fits in the short exact sequence
(4.4.9).
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Proof. (i) As E is globally generated, r− 1 general global sections define an exact
sequence of the form

0 −→ Or−1
X −→ E −→ IZ|X (D) −→ 0

where D = c1(E) = rH is a divisor on X and Z is a zero-dimensional scheme of
length

c2(E) =
dr2 + (2− d)r

2
.

Moreover, since E(H) is initialized, h0(IZ|X (r − 1)) = 0.
(ii) This is a classical argument sowe are going to be brief. We follow the lines

of the argument given for the cubic case in [CHa, Theorem4.4]. LetZ be a general
set of points of cardinalitym(r) with the minimal free resolution of (4.4.10). Let
us denote byRX andRZ the homogeneous coordinate ring ofX andZ. It is well-
known that for Arithmetically Cohen-Macaulay varieties, there exists a bijection
between ACM vector bundles onX and Maximal Cohen-Macaulay (MCM from
now on) graded RX -modules sending E to H0

∗(E) (see Proposition 4.2.4). From
the exact sequence

0 −→ IZ|X −→ RX −→ RZ −→ 0

we get Ext1(IZ|X ,RX (−1)) ∼= Ext2(RZ ,RX (−1)) ∼= KZ where KZ denotes the
canonical module of RZ (the last isomorphism is due to the fact that RX (−1) is
the canonical module of X and the codimension of Z in X is 2). Dualizing the
exact sequence (4.4.10), we obtain a minimal resolution ofKZ :

. . . −→ R(r − 3)γd−1,r−1 −→ R(r − 1)r−1 −→ KZ −→ 0.

This shows thatKZ is generated in degree 1− r by r− 1 elements. These gener-
ators provide an extension

0 −→ Rr−1
X −→ F −→ IZ|X (r) −→ 0 (4.4.11)

via the isomorphism KZ
∼= Ext1(IZ|X ,RX (−1)). F turns out to be a MCM mod-

ule because Ext1(F ,KX ) = 0 (this last cancelation follows by applying the functor
HomRX (−,KX ) to the exact sequence (4.4.11)). If we sheafify the exact sequence
(4.4.11) we obtain the sequence

0 −→ Or−1
X −→ F̃ −→ IZ|X (r) −→ 0
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where F̃ is an ACM vector bundle on X . From the exact sequence (4.4.10) it can
be seen that

H0(IZ|X (r − 1)) = 0

and
h0(IZ|X (r)) = (d− 1)r + 1

and therefore F̃ will be a Ulrich vector bundle (i.e., h0(F̃ ) = dr) and initialized.
By Theorem 4.2.16, F̃ will be globally generated.

Corollary 4.4.22. Let X ⊆ Pd be a strong del Pezzo surface of degree d, distinct of the
quadric surface. Then the rank r initialized Ulrich vector bundles E(H) given by the
exact sequence (4.4.3) can be recovered as an extension of IZ,X (rH) byOr−1

X for general
sets Z ofm(r) = 1/2(dr2 + (2− d)r) distinct points on X , r ≥ 2.

Proof. We are going to rely on the fact thatm(r) := dr2+(2−d)r
2 general points Zm(r)

contained in a strongdel Pezzo surfaceX ⊆ Pd distinct of the quadric satisfies the
Minimal Resolution Conjecture. Indeed, by Theorem 2.2.13 from chapter 2, the
minimal free resolution of the saturated ideal of Zm(r) inX has the form (4.4.10).
Hence, by the previous version of Serre correspondence, we can associate toZm(r)

a rank r initialized Ulrich vector bundle F with Chern classes c1(F) = rH and
c2(F) = m(r).

It only remains to show that for a general choice of Zm(r) ⊂ X , the associated
vector bundle F := F̃ just constructed belongs to the family (4.4.3). Since F is
an initialized Ulrich vector bundle of rank r with the expected Chern classes,
the problem boils down to a dimension counting. We need to show that the
dimension of the family of vector bundles obtained through this construction
from a general set Zm(r) is r2 + 1. Since this dimension is given by the formula

dim Hilbm(r)(X)− dim Grass(r − 1, H0(F)),

an easy computation taking into account that

dim Hilbm(r)(X) = 2m(r),

and
dim Grass(r − 1, H0(F)) = (r − 1)(dr − r + 1),

gives the desired result.
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4.5 ACM vector bundles on surfaces X ⊆ P3

We showed in the previous section that the cubic surfaceX ⊆ P3, as a case of del
Pezzo surface, is of wild representation type. In this last section we address this
question for a general surface X of arbitrary degree d in P3. We manage to show
that, for 4 ≤ d ≤ 9, a general surfaceX ⊆ P3 of degree d is of wild representation
type. In the case of arbitrary degree d, we will be able at least to construct large
families of rank 2 and 3 simple ACM vector bundles on a general surfaceX ⊆ P3

of degree d, showing that they are not of tame representation type (notice that,
as it was mentioned in Example 4.2.13, in [BGS87, Theorem C] it was shown
that surfaces X ⊆ P3 of degree > 2 are not of finite representation type). It
is worthwhile to remark here that in [HS88] it was proven that there exists no
upper bound for the rank of an indecomposable ACM sheaf on a surfaceX ⊆ P3

of arbitrary degree.
Let us start with a general surface X ⊆ P3 of degree 4 ≤ d ≤ 15. For such

a surface X we are going to construct a positive dimensional family of rank 2
Ulrich vector bundles. Notice that the existence of such a family had already been
proved in [Bea00, Proposition 7.6]. However, for sake of completeness we are
going to provide such a family through a construction that stresses the relation
between Ulrich vector bundles on X and zero-dimensional Gorenstein schemes
Z ⊆ X by means of Serre correspondence. We will use the following remark.

Remark 4.5.1. As in the case of strong del Pezzo surfaces (see Lemma 4.4.13) it is
possible to show that the degree and the secondChern class of a rank r initialized
Ulrich vector bundle E on a smooth surface X ⊆ P3 of degree d are given by

c1(E)H =
(
d

2

)
r, (4.5.1)

and

c2(E) =
c1(E)2 −

(
d
3

)
r

2
. (4.5.2)

Therefore through Serre correspondence, a rank 2 initialized Ulrich vector
bundle E on a general surface X ⊆ P3 and a global section s ∈ H0(E) are asso-
ciated to an AG zero-dimensional scheme Z ⊆ X with a short exact sequence

0 −→ OX −→ E −→ IZ|X (d− 1) −→ 0, (4.5.3)

where |Z| = c2(E) = d(d−1)(2d−1)
6 ,

h0(IZ|X (d− 1)) = 2d− 1 andh0(IZ|X (d− 2)) = 0.
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The socle degree of Z is e := 2d−4 (as it was defined in Definition 1.1.11). Notice
that h1(IZ|X (e− 1)) = 1. Hence Serre duality,

H1(IZ|X (e− 1))∨ ∼= Ext1(IZ|X (d− 1),OX ),

implies that Z will be univocally associated to the pair (E ,s) with s ∈ P(H0(E)). It
is straightforward to see that such a zero-dimensional scheme Z ⊆ X ⊆ P3 has
a minimal free resolution of the form

0 −→ R(−2d + 1) −→ R(−d)2d−1 −→ R(−(d− 1))2d−1 −→ R −→ RZ −→ 0,
(4.5.4)

I(Z) is generated by the 2d− 1 pfaffians of a (2d− 1)× (2d− 1) skew-symmetric
matrix with linear entries and the h-vector of Z is

t 0 1 2 . . . d− 3 d− 2 d− 1 . . . 2d− 4
∆HZ(t) 1 3 6 . . .

(
d−1

2

) (
d
2

) (
d−1

2

)
. . . 1

(4.5.5)

So our goalwill be to show that a general surfaceX ⊆ P3 of degree 3 ≤ d ≤ 15
contains a Gorenstein zero-dimensional subscheme Z ⊆ X with minimal free
resolution as given in (4.5.4).

Proposition 4.5.2. Let X ⊆ P3 be a general surface of degree 3 ≤ d ≤ 15. Then there
exists a family of dimension α := 2d(2d− 1)−

(
d+3

3

)
of Gorenstein subschemes Z ⊆ X

with minimal free resolution as in (4.5.4). In particular, they have length l := |Z| =
d(d−1)(2d−1)

6 .

Proof. Let us fix the values 3 ≤ d ≤ 15, l := d(d−1)(2d−1)
6 and e := 2d− 4 and let us

consider the incidence diagram

Σ := {([Z], [X]) | Z ⊆ X} ⊆

φ

vvllllllllllllll
ψ

**UUUUUUUUUUUUUUUUU Gh(l, e)× P(H0(OP3 (d)))

Gh(l, e) P(H0(OP3 (d)))

where Gh(l, e) denotes the locally closed subscheme of Hilbl(P3) parameterizing
length l AG subschemes of P3 with socle degree e and h-vector as given in (4.5.5)
and P(H0(OP3 (d))) parameterizes surfaces of degree d in P3. First of all, by an
instance of [KMR98, Theorem 2.6], it is possible to compute the dimension of
Gh(l, e):

dimGh(l, e) = (2d− 1)(2d− 3).
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On the other hand, for a general [Z] ∈ Gh(l, e), the dimension of the fibre φ−1([Z])
can also be computed from the minimal free resolution (4.5.4):

dimφ−1([Z]) = h0(IZ(d))− 1 = 4(2d− 1)− (2d− 1)− 1 = 3(2d− 1)− 1.

Therefore the dimension of Σ is as follows:

dim Σ = (2d− 1)(2d− 3) + 3(2d− 1)− 1 = 2d(2d− 1)− 1.

Moreover, by [Bea00, Propositions 7.2 and 7.6], ψ is a dominant morphism for
3 ≤ d ≤ 15 and hence we can conclude that a generic surface X ⊆ P3 of degree
3 ≤ d ≤ 15 contains a family of AG zero-dimensional schemes Z with minimal
free resolution (4.5.4) of dimension

α := 2d(2d− 1)− 1− (
(
d + 3

3

)
− 1) = 2d(2d− 1)−

(
d + 3

3

)
,

which proves what we wanted.

Proposition 4.5.3. Let X ⊆ P3 be a general surface of degree 3 ≤ d ≤ 15. Then there
exists a family of dimension β := −d

3+18d2−35d
6 of initialized rank 2 Ulrich vector bundles

with c1(E) = d− 1 and c2(E) = d(d−1)(2d−1)
6 .

Proof. Since we have just mentioned that there exists a bijection between AG
schemes Z ⊆ X with minimal free resolution (4.5.4) and pairs (E ,s), where E
is an initialized Ulrich rank 2 vector bundle with c1(E) = d− 1 and c2(E) = |Z| =
d(d−1)(2d−1)

6 , and sZ ∈ P(H0(E)), Proposition 4.5.2 guarantees the existence of such
a family of dimension:

β = α− (h0(E)− 1) = α− 2d + 1 =
−d3 + 18d2 − 35d

6
,

as we wanted to prove.

Once it has been shown the existence of rank 2 Ulrich vector bundles on the
general surface X of degree 3 ≤ d ≤ 15, the higher rank Ulrich vector bundles
will be obtained as their extensions. In order to perform our constructions a key-
stonewill be the following result proven in [PLT09]. Recall that given a projective
varietyX , and coherent sheaves F ,G on it, an extension of G by F is a sheaf E that
appears on an exact sequence of the form

0 −→ F −→ E −→ G −→ 0.
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Given another extension

0 −→ F −→ E ′ −→ G −→ 0

we are going to say that they are equivalent if there exists an isomorphism

ψ : E
∼=−→ E ′

such that the following diagram commutes:

0 // F // E //

ψ

��

G // 0

0 // F // E ′ // G // 0.

A weak equivalence of extensions is similarly defined, except that we do not
require the morphisms F −→ F and G −→ G to be the identity but only isomor-
phisms.

It is a well-known result that equivalent classes of extensions of G by F cor-
respond bijectively to the elements of Ext1(G,F). If

0 −→ F −→ E −→ G −→ 0

is such an extension, the corresponding element [E] ∈ Ext1(G,F) is the image of
idF under the morphism

Hom(F ,F) δ−→ Ext1(G,F)

obtained applying Hom(−,F) to the exact sequence above. Wewill use the sym-
bol δ for thismorphism. The trivial extensionF⊕G corresponds to 0 ∈ Ext1(G,F).
Inside Ext1(G,F) weak equivalence defines an equivalent relation that will be de-
noted by ∼w.

Proposition 4.5.4. (cf. [PLT09, Proposition 5.1.3]) Let X be a projective variety over
k and F1, . . . ,Fr+1, with r ≥ 1, be simple coherent sheaves on X such that

Hom(Fi,Fj) = 0 for i 6= j.

Denote also

U = Ext1(Fr+1,F1)− {0} × · · · × Ext1(Fr+1,Fr)− {0} ⊆ Ext1(Fr+1,
r⊕
i=1
Fi).
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Then a sheaf E that comes up from an extension of Fr+1 by
⊕r

i=1 Fi is simple if and only
if [E] ∈ U and given two extensions [E], [E ′] ∈ U we have that

Hom(E , E ′) 6= 0 ⇐⇒ [E] ∼w [E ′].

To be more precise, the simple coherent sheaves E coming up from an extension of Fr+1

by
⊕r

i=1 Fi
0 −→

r⊕
i=1
Fi −→ E −→ Fr+1 −→ 0

are parameterized, up to isomorphisms (of coherent sheaves), by

(U/ ∼w) ∼= P(Ext1(Fr+1,F1))× · · · × P(Ext1(Fr+1,Fr)).

Given a varietyX ⊆ Pn, when Pic(X) ∼= Z ∼= 〈OX (1)〉 (as it is the case for our
general surface X ⊆ P3 of degree d ≥ 4) there exists a useful criterion for a rank
2 or 3 vector bundle onX being µ-stable. To state it, we need to recall that in this
situation given a rank r vector bundle E on X there exists a unique kE ∈ Z such
that c1(E(kE )) ∈ {0, . . . ,−(r − 1)H}. We set Enorm := E(kE ). Then we have:

Lemma 4.5.5. (cf. [OSS80, Lemma 1.2.5 and Remark 1.2.6, Chapter II]) Let X ⊆ Pn

be a variety such that Pic(X) ∼= Z ∼= 〈OX (1)〉. Then:

(i) A rank 2 vector bundle E on X is µ-stable if and only if H0(Enorm) = 0.

(ii) A rank 3 vector bundle F on X is µ-stable if and only if H0(Fnorm) = 0 and
H0((F∨)norm) = 0.

Lemma 4.5.6. LetX ⊆ P3 be a general surface of degree 4 ≤ d ≤ 15. The rank 2 Ulrich
vector bundles E obtained in Proposition 4.5.3 are µ-stable, and therefore, simple.

Proof. We are going to apply the previous criterion to show µ-stability. SinceX is
a general surface of degree≥ 4, by Remark 4.5.1we have that c1(E) = (d−1)H and
therefore Enorm = E(−bd/2cH). Therefore, twisting the exact sequence (4.5.3) by
OX (−bd/2cH) we have

0 −→ OX (−bd/2cH) −→ Enorm −→ IZ|X (dd/2− 1e) −→ 0.

Taking global sections and taking into account that h0(OX (−bd/2cH)) = 0 and
that h0(IZ|X (dd/2− 1e)) ≤ h0(IZ|X (d− 2))) = 0 we obtain that h0(Enorm) = 0 and
therefore, by Lemma 4.5.5, E is µ-stable.

Lemma 4.5.7. Let X ⊆ P3 be a general surface of degree 4 ≤ d ≤ 15. Given two
non-isomorphic rank 2 Ulrich vector bundles E , E ′ on X , it holds that Hom(E ′, E) = 0.
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Proof. If we tensor the exact sequence (4.5.3) by E ′∨ we obtain

0 −→ E ′∨ −→ E ⊗ E ′∨ −→ E ′∨ ⊗ IZ|X (d− 1) −→ 0.

But, by [Har77, Exercise 5.16, chapter II], E ′∨ ∼= E ′(−c1(E ′)) = E ′(−d + 1). There-
fore H0(E ′∨) = H0(E ′(−d+1)) = 0. On the other hand, since we saw that to a finite
set of points Z ⊆ X corresponds uniquely a rank 2 vector bundle E we have that

H0(E ′∨ ⊗ IZ|X (d− 1)) = H0(E ′ ⊗ IZ|X ) = 0.

Therefore Hom(E ′, E ′) = H0(E ⊗ E ′∨) = 0.

Theorem 4.5.8. Let X ⊆ P3 be a general surface of degree 4 ≤ d ≤ 9. Then, for
any r = 2s, s ≥ 2, there exists a family of rank r simple (hence indecomposable) Ulrich
vector bundle of dimension 11(s− 1). In particular, a general surface X ⊆ P3 of degree
4 ≤ d ≤ 9 is of wild representation type.

Proof. Let r = 2s be an integer and let us consider s non-isomorphic rank 2 Ul-
rich vector bundles E1, . . . , Es from the infinite family constructed in Proposition
4.5.3. By Lemmas 4.5.6 and 4.5.7 these vector bundles satisfy the hypothesis of
Proposition 4.5.4 and therefore, since any extension of Ulrich vector bundles is an
Ulrich vector bundle, there exists a family of rank r simple Ulrich vector bundles
E parameterized by

(U/ ∼w) := P(Ext1(Es, E1))× · · · × P(Ext1(Es, Es−1))

and given as extensions of the form

0 −→ ⊕s−1
i=1 Ei −→ E −→ Es −→ 0.

It only remains to give an explicit lower bound to the dimension of (U/ ∼w). We
have

ext1(Ei, Ej) ≥ ext1(Ei, Ej)− ext2(Ei, Ej) = −χ(E∨i ⊗ Ej) = −χ(E∨i ⊗ Ei)

where the last equality holds since the Euler characteristic of a vector bundle
only depends on its Chern classes. On the other hand, χ(E∨i ⊗ Ei) can be com-
puted using theHirzebruch-Riemann-Roch formula as in [HL97, Corollary 4.5.5]
to obtain

ext1(Ei, Ej) ≥ −χ(E∨i ⊗ Ej) = −4− d− 1
3

(d2 − 11d + 12) ≥ 12
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for 4 ≤ d ≤ 9. Therefore, we obtain a family of simple (hence irreducible) rank
2s Ulrich vector bundles of dimension 11(s − 1). Notice that for d = 10, . . . , 15
the value of −χ(E∨i ⊗ Ej) = −4 − d−1

3 (d2 − 11d + 12) is negative and hence this
method does not allow us to produce higher rank Ulrich vector bundles on these
degrees.

Remark 4.5.9. Notice that, by Remark 4.5.1, a general surface X ⊆ P3 of even
degree can not be the support of an odd rank Ulrich vector bundle. Therefore,
in Theorem 4.5.8 we have constructed Ulrich vector bundles on general surfaces
of degrees d = 4, 6, 8 for all the admissible ranks. It remains open, however, to
construct odd rank Ulrich vector bundles on surfaces of odd degree ≥ 5.

To end this section we are going to see that for general surfaces of arbitrary
degree, we are able to construct at least rank 2 and rank 3 indecomposable ACM
vector bundles. Unfortunately, these vector bundles will not be Ulrich vector
bundles.

Proposition 4.5.10. Let X ⊆ P3 be a general surface of degree d ≥ 3. Then there
exists a 4-dimensional family of rank 2 initialized µ-stable ACM vector bundles E with
c1(E) = 1 and c2(E) = d− 1.

Proof. Let X ⊆ P3 be a general surface of degree d ≥ 3. The construction of
the announced vector bundles onX will be performed through Serre correspon-
dence. So let us consider a subset Z ⊆ X of d− 1 aligned points from the inter-
section of a general line on P3 withX . Z is a complete intersection (in P3) of type
(1, 1, d− 1) and therefore it has minimal free resolution

0 −→ R(−d−1) −→ R(−d)2⊕R(−2) −→ R(−d+1)⊕R(−1)2 −→ R −→ RZ −→ 0.

In particular, Z is AG subscheme ofX of socle degree e := d−2. By Serre duality

H1(IZ|X (e− 1))∨ ∼= Ext1(IZ|X (1),OX ),

since h1(IZ|X (e − 1) = 1, we see that there exists an unique coherent sheaf that
fits in the short exact sequence

0 −→ OX −→ E −→ IZ|X (1) −→ 0.

Notice that c1(E) = 1 and c2(E) = d− 1. Moreover, since Z was AG, we can assure
that E is an ACM vector bundle. In order to see µ-stability, we just need to realize
that h0(Enorm) = h0(E(−1)) = 0 and apply Lemma 4.5.5. Finally, since we can
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make this construction from any d − 1 aligned points on X and since a general
line in P3 cuts outX in d points, we obtained a family of ACM vector bundles of
dimension dim Grass(2, 4) = 4.

Proposition 4.5.11. LetX ⊆ P3 be a general surface of degree d ≥ 3. Then there exists
an infinite family of rank 3 initialized µ-stable ACM vector bundles F with c1(F) = 1
and c2(F) = 2d− 3.

Proof. Let X ⊆ P3 be a general surface of degree d ≥ 3. In this case, the vector
bundles will be obtained from subsets Z ⊆ X of 2d− 3 points. So let U ⊆ X be
a finite subset complete intersection of type (1, 2, d) and let V ⊆ U be any subset
of cardinality 3 which does not lie on a line. Since it is immediate to obtain the
minimal free resolution of IU and IV , we can apply the mapping cone procedure
to

0 −→ IU −→ IV −→ IV /IU −→ 0

to obtain the minimal free resolution of the residual subset Z := U \ V , G-linked
to V by the AG scheme U . It turns out to be:

0 −→ R(−d−1)2 −→ R(−d)⊕R(−3)4 −→ R(−d+1)⊕R(−2)⊕R(−1) −→ R −→ RZ −→ 0.

In particular, Z is a level zero-dimensional scheme of type 2 and socle degree
e = d − 2. Again, by Serre correspondence (see the proof of 4.4.21), we obtain a
unique ACM vector bundle F that fits in the short exact sequence

0 −→ O2
X −→ F −→ IZ|X (1) −→ 0. (4.5.6)

Notice that c1(F) = 1 and c2(F) = 2d−3. In order to prove µ-stability of F we are
going to apply Lemma 4.5.5. Therefore we need to show (since Fnorm = F(−1)
and (F∨)norm = F∨) that H0(F(−1)) = 0 and H0(F∨) = 0. But the first equal-
ity is obvious from the previous exact sequence (4.5.6). Concerning the second
equality, notice that we have F∨ ∼= ∧2F(−1) (see [Har77, Exercise 5.16, chapter
II]). Then, if we consider the Eagon-Northcott complex associated to (4.5.6),

0 −→ S2OX ∼= O3
X −→ O2

X ⊗F −→ ∧2F −→ ∧2IZ|X (1) = 0,

and we twist it by OX (−1) we get

0 −→ OX (−1)3 −→ F(−1)2 −→ ∧2F(−1) −→ 0,

from which it is immediate to conclude that H0(F∨) = H(∧2F(−1)) = 0.
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Remark 4.5.12. Once the existence of rank 2 and 3 simple ACM vector bundles
on a general surface X of arbitrary degree has been proven, we would like to
use Proposition 4.5.4 to construct large families of arbitrary rank of simple ACM
vector bundles on X . It is easy to check that the rank 2 vector bundles E (resp.
rank 3 vector bundles F) constructed in Proposition 4.5.10 (resp. in Proposition
4.5.11) verify the hypothesis of Proposition 4.5.4 but, unfortunately, we were not
able to prove that ext1(E ,F) > 1 (or ext1(F , E) > 1) to conclude.

Remark 4.5.13. A more ambitious goal would be the construction of indecom-
posable Ulrich vector bundles of arbitrary rank r supported on a general surface
X ⊆ P3 of arbitrary degree d (with the necessary restriction that (d− 1)r is even,
see Remark 4.5.9). As in the previous cases, a natural strategy to tackle this prob-
lem would be through Serre correspondence from a finite set Z ⊆ X of points
with some specific properties. We are going to finish the chapter introducing
here the precise statement. Notice, however, that in this case, the problem is not
related to the Minimal Resolution Conjecture (see Conjecture 2.1.10), since the
set of points we are considering are not in general position (except when d = 3).

Theorem 4.5.14 (Serre correspondence for Ulrich vector bundles on surfaces).
Let X ⊆ P3 be a general surface. Then it holds:
(i) Given a rank rUlrich vector bundle E onX and a general element of theGrassmannian
Grass(r−1, H0(E)) represented by r−1 global sections s1, . . . , sr−1, there exists a short
exact sequence

0 −→ Or−1
X −→ E −→ IZ|X (c1(E)) −→ 0, (4.5.7)

where Z is a set of c2(E) distinct points. Moreover, the scheme Z is level of type r − 1
and socle degree e := c1 + d− 3. The minimal free resolution of IZ|X is:

0 −→ R(−c1−d)r−1 −→ R(−c1−1)dr −→ R(−c1)(d−1)r+1 −→ IZ|X −→ 0. (4.5.8)

From the minimal free resolution is immediate to recover the h-vector of Z:

t 0 1 2 . . . c1 − 2 c1 − 1
∆HZ(t) 1 3 6 . . . ∆HX (c1 − 2) ∆HX (c1 − 1) = (r − 1)∆HX (d− 2)

t c1 . . . e := c1 + d− 3
∆HZ(t) (r − 1)∆HX (d− 3) . . . r − 1

(ii) Reciprocally, given a subsetZ ⊆ X of |Z| = c1(E)2−(d3)r
2 points such that IZ|X has the

minimal free resolution (4.5.8), there exists a rank r Ulrich vector bundle E with Chern
classes c1(E) = (d− 1)r/2 and c2 = |Z| that fits in the short exact sequence (4.5.7).
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Summarizing, the first open case is the existence of a rank 3 Ulrich vector
bundle on a general surfaceX of degree 5 which, according to Theorem 4.5.14, is
equivalent to the existence of a level set of 75 distinct pointsZ onX with h-vector
(1, 3, 6, 10, 15, 20, 12, 6, 2).



Resum en català

L’objecte d’aquesta tesi es situa a la cruïlla de tres temes: la construcció de famílies
de feixos indescomposablesAritmèticament Cohen-Macaulay a una varietat pro-
jectiva donadaX , la forma (i.e, els nombres de Betti) de la resolució lliure de con-
junts generals de punts aX i la (i)rreductibilitat de l’esquemadeHilbertHilbs(X)
que parametritza els subesquemes zero-dimensionals Z ⊆ X de longitud s. Ex-
pliquem amb més detall com aquests tres temes estan interrelacionats.

Donada una varietat projectivaX ⊆ Pn amb anell de coordenadesRX , és nor-
mal intentar entendre la complexitat deX en funció de la categoria associadadels
fibrats vectorials sobreX . Donat que, en general, aquesta categoria és pocmanip-
ulable, es restringeix l’estudi a la categoria de fibrats vectorials (semi)-estables,
la qual té un bon comportament i per la qual, en particular, existeix un espai de
moduli que els parametritza. Mentre que aquest punt de vista ha sigut exitosa-
ment explotat, també és possible fixar-se en una altra propietat d’un fibrat vecto-
rial E : el fet de tenir cohomologia el més simple possible, és a dir, Hi(X , E(l)) = 0
per a tot l ∈ Z i i = 1, . . . , dim(X)−1. Els fibrats vectorials amb aquesta propietat
s’anomenen fibrat vectorials Aritmeticament Cohen-Macaulay (ACM). Quan X és
al seu torn ACM, en termes del RX -mòdul associat E = H0

∗(E) := ⊕l H0(X , E(l)),
corresponen als mòduls Màximament Cohen-Macaulay (MCM), és a dir, mòduls
que verifiquen depth(E) = dim(RX ). Aquesta correspondència ens permet es-
tudiar el problema alternativament des del punt de vista algebraic o geomètric.
L’estudi d’aquests fibrats vectorials (o mòduls) té una llarga i interessant història
al seu darrere. Un resultat fonamental és degut a Horrocks, el qual afirma que,
a l’espai projectiu Pn, qualsevol fibrat vectorial ACM descomposa com a suma
directe de fibrats de línia (cf. [Hor64]) o, equivalentment, l’únic fibrat vectorial
ACM indescomposable a Pn, mòdul torsió i isomorfisme, és OPn . Això corres-
pondria a la idea intuitiva que una varietat "simple"ha de tenir associada una
categoria "simple"de fibrats vectorials ACM. Seguint aquestes línies, un resultat

111
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fonamental fou la classificació de les varietats ACM de tipus de representació finit,
és a dir, aquelles varietats que tenen només un nombre finit de fibrats vectorials
ACM indescomposables (cf. [BGS87] i [EH88]). Va resultar que formen una llista
ben curta: tres o menys punts reduïts a P2, un espai projectiu, una hipersuperfí-
cie quàdrica llisa X ⊂ Pn, un scroll cúbic a P4, la superfície de Veronese a P5 o
una corba normal racional.

Per a la resta de varietats ACM, va esdevenir un problema interessant el donar
un criteri per a poder dividir-les en una classificació més fina. Un punt de vista
prometedor ve donat per la teoria de representació, a on es va demostrar que
les àlgebres de dimensió finita i tipus infinit (i.e., aquelles que tenen infinites
representacions indescomposables) descomposen en dues classes: o bé són tame
(moderades), per les quals les representacions indescomposables d’una dimensió
fixada formen un conjunt finit de famílies de dimensió com a màxim u; o bé
són salvatges, per les quals existeixen famílies de dimensió arbitràriament gran
de representacions indescomposables no isomórfiques (cf. [Dro86]). Un resul-
tat anàleg també fou obtingut per la categoria de quivers, per la qual Gabriel
va demostrar el següent sorprenent resultat de classificació: un quiver és de ti-
pus de representació finit exactament quan el seu graf no dirigit subjacent és la
unió de diagrames de Dynkin de tipus A, D, E (cf. [Gab72]). També l’estudi de
la categoria de mòduls Cohen-Macaulay indescomposables sobre anells Cohen-
Macaulay ha sigut una branca d’intensiva recerca recentment. Per tot això, mo-
tivats per aquests resultats, a [DG01], una tricotomia anàloga (és a dir, tipus de
representació finita, moderada i salvatge) va ser proposada per a varietats pro-
jectives (veure Definicions 4.2.7 i 4.2.10). En el cas de dimensió u, es va provar
que una tal tricotomia és exhaustiva: una corba projectiva llisa és de tipus finit
(resp. moderat, salvatge) si i només si té génere 0 (resp. 1, ≥ 2). No obstant,
és clar que, per a varietats projectives, aquesta tricotomia no pot ser exhaustiva.
A [CH04], es va demostrar que el con quadràtic X ⊆ P3 té un conjunt infinit
però discret de feixos ACM indescomposables. Des d’aquests resultats inicials,
ha sigut un problema decidir el tipus de representació d’una varietat ACM don-
ada. Es va demostrar a [CHb] que la superfície cúbica llisa de P3 és de tipus de
representació salvatge. A [PLT09], es va veure que les superfícies del Pezzo de
grau≤ 6 també són de tipus de representació salvatge. Però, de fet, cap exemple
de varietat de tipus de representació salvatge de dimensió > 2 era conegut. Per
tant es proposa la següent questió:

Questió. Donada una varietat projectivaX ⊆ Pn, construir famílies de dimensió arbi-
trària de fibrats vectorials ACM indescomposables per tal de provar queX és de tipus de
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representació salvatge.

Al capítol 4, fem una contribució a aquest problema mostrant que les dues
famílies següents de varietats ACM són de tipus de representació salvatge: vari-
etats Fano (i.e., varietats ambdivisor anticanònic ample) obtingudes coma explo-
sions de punts de Pn, amb n ≥ 2; i superfícies generalsX ⊆ P3 de grau 3 ≤ d ≤ 9
(veure Teoremes 4.3.13 i 4.5.8). En general, una de les dificultats principals que es
troben per provar el fet de ser de tipus salvatge és assegurar la indescomposabil-
itat dels fibrats vectorials construïts. La estratègia que hem seguit per superar
aquesta dificultat ha sigut intentar provar una propietat més forta de un fibrat
vectorial que implicaria la indescomposabilitat. De fet, hem aconseguit provar
que els fibrats vectorials E eran o bé simples (i.e., End(E) = k) o bé, en el millor
dels casos, estables.

Entre d’altres característiques d’un fibrat vectorial donat, una especialment
rica és el fet d’estar generatat per les seves seccions globals o, al menys, tenir-ne
un gran nombre. La contrapartida algebraica havia aconseguit aixecar un gran
interés. De fet, Ulrich va provar (cf. [Ulr84]) que per a un anell local (o *lo-
cal graduat) R hi ha una fita superior pel mínim nombre de generadors d’un
Màximament Cohen-Macaulay (MCM) R-mòdul M de rang positiu. Més pre-
cisament, si µ(M ) denota el mínim nombre de generadors de M i e(R) denota
la multiplicitat de R, llavors es verifica sempre que µ(M ) ≤ e(R) rk(M ). Els
mòduls MCM que assoleixen aquesta fita han sigut anomenats Ulrich mòduls.
També en aquest cas l’existència d’aquests tipus de R-mòduls ajuda a entendre
l’estructura deR. Per exemple, si un anell Cohen-MacaulayR suporta unmòdul
Ulrich M verificant ExtiR(M ,R) = 0 per a 1 ≤ i ≤ dim(R), llavor R és Goren-
stein (cf. [Ulr84]). Per tant, és una questió interessant trobar quins anells Cohen-
Macaulay suporten mòduls Ulrich. Una resposta positiva a aquesta questió és
obtinguda, per exemple, quan dim(R) = 1, quan R té multiplicitat minima o
quan R és una intersecció completa estricte (i.e., R és una intersecció completa
local tal que el seu anell graduat associat també és intersecció completa). Aque-
stes consideracions algebraiques impulsen a definir, per a una varietat projectiva
X ⊆ Pn, que un fibrat vectorial E a X sigui Ulrich si és ACM i el seu RX -mòdul
graduat associat H0

∗(E) és Ulrich. Cal observar que, quan E és inicialitzat (i.e.,
H0(X , E(−1)) = 0 però H0(X , E) 6= 0) llavors l’última condició és equivalent a que
dimk H0(E) = deg(X) rk(E). Per a un fibrat vectorial E inicialitzat, el fet de ser
Ulrich tè una interessant interpretació en termes cohomològics (s’ha de verificar
que Hi(X , E(−i)) = 0 per a i > 0 i Hi(X , E(−i − 1)) = 0 per a i < dim(X)) i en
termes de la sevaOPn -resolució lliure minimal, ja que aquesta ha de ser linial de
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longitud n− dim(X).

Questió. Donada una varietat projectiva ACM X ⊆ Pn i un enter r ∈ Z, construir
fibrats vectorials Ulrich de rang r amb suport a X .

Sobre aquests resultats d’existència, és conegut que una corba arbitrària su-
porta fibrats vectorials Ulrich de rang u i dos (cf. [ESW03]). En el cas d’una corba
plana, existeix una pregona relació entre l’existència d’aquests tipus de fibrats
vectorials i la possibilitat d’escriure l’equació de la corba com el determinant (re-
sp. el pfaffià) d’unamatriu (resp. unamatriu antisimètrica ) amb entrades linials
(cf. [Bea00]). Pel que respecta la hipersuperfície general X ⊆ Pn+1 de grau d, és
conegut que per a n = 2, X suporta fibrat vectorial Ulrich de rang 2 si i només
si d ≤ 15 i per a n = 3, això passa si i només si d ≤ 5 (cf. [Bea00]). Per a n ≥ 4
i d ≥ 3, la hipersuperfície general n-dimensional no suporta un fibrat Ulrich
de rang 2 (cf. [CM05]). A les superfícies i sòlids cúbics, l’existència de fibrats
vectorials Ulrich de rang arbitrari ha sigut provat per Casanellas i Hartshorne
a [CHb]. Al capítol 4 ens enfrontem a aquests problemes i hi contribuim con-
struint famílies de dimensió gran de fibrats vectorials simples i Ulrich de rang
arbitrari sobre qualsevol superfície del Pezzo (veure Teoremes 4.4.11 i 4.4.19).
També construim famílies de dimensió gran de fibrats vectorials simples i Ulrich
de rang parell arbitrari a una superfície generalX ⊆ P3 de grau 3 ≤ d ≤ 9 (veure
Teorema 4.5.8).

Una possible aproximació a la construcció de fibrats vectorials ACM i Ulrich
sobre una varietat projectiva X ⊆ Pn ve donada per la coneguda correspondèn-
cia de Serre. Per exemple, en el cas particular d’una superfície X , aquesta cor-
respondència ofereix un diccionari entre fibrats vectorials E de rang 2 a X amb
classes de Chern c1(E) i c2(E) i subsquemes zero-dimensionals localment inter-
secció completa Z ⊆ X de longitud c2(E) tal que la parella (OX (KX + c1(E)),Z)
tenen la propietat de Cayley-Bacharach (cf. [HL97, Teorema 5.1.1]). Estan rela-
cionats per la successió següent:

0 −→ OX −→ E −→ IZ|X (c1(E)) −→ 0.

A més, és possible traduir altra informació sobre E en termes de Z i vice versa.
Per exemple, amb la notació prèvia, el fibrat vectorial E serà ACM si i només si
Z és un esquema aritmèticament Gorenstein. Donat que aquesta propietat pot
ser identificada a la resolució lliure minimal de Z, és un problema significatiu
esbrinar la forma d’una resolució lliure minimal de l’anell de coordenades RZ
d’un conjunt general de puntsZ visquent a una varietat donadaX . Per aX = Pn,
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aquest és un problema clàssic que ha reclamat molta atenció. Sabem que si Z és
un conjunt general de punts diferents a Pn la seva resolució lliure minimal ha de
ser de la forma:

0 −→ Fn −→ . . . −→ F1 −→ F0 −→ RZ −→ 0

amb F0 = R := k[x0, . . . ,xn] i

Fi ∼= R(−r − i)bi,r ⊕R(−r − i + 1)bi,r−1

per a i = 1, . . . ,n, on r és l’únic enter no negatiu tal que(
r + n− 1

n

)
≤ s <

(
r + n
n

)
.

A més es dóna:

bi+1,r−1 − bi,r =
(
r + i− 1

i

)(
r + n
n− i

)
− s
(
n

i

)
.

LaConjectura de la ResolucióMinimal (MRC)proposadaper Lorenzini (cf. [Lor93])
afirma que no existeixen termes "ghost" a la resolució lliure minimal de RZ , i.e.,
bi+1,r−1bi,r = 0 per a tot i. Una gran quantitat de treball ha estat consagrat a aque-
sta conjectura. En particular, la MRC es verifica per a qualsevol nombre de punts
s de Pn per a n = 2 (veure [Gae51]), n = 3 ([BG86]) i n = 4 ([Wal95]). MRC és
també certa per a valors grans de s per a qualsevol n (veure [HS96]). En canvi, la
MRC falla en general per a n ≥ 6, n 6= 9 (veure [EPSW02]).

És també possible fixar-se només en la part inicial i final de la resolució lli-
ure minimal de RZ i llavors dues conjectures més febles han sigut proposades:
la "Ideal Generation Conjecture (IGC)", la qual afirma que el nombre mínim de
generadors de l’ideal d’un conjunt general de punts serà al més petit possible.
En termes dels nombres de Betti, simplement afirma que b1,r(Z)b2,r−1(Z) = 0.
Per altra banda, la "Cohen-Macaulay type Conjecture (CMC)"afirma que el mòdul
canònic KZ = Extn(R/IZ ,R(−n − 1)) té el menor nombre de generadors. Do-
nat que el dual de la resolució minimal de RZ dóna una resolució (torçada) de
KZ aquesta conjectura també es pot traduir en funció dels nombres de Betti:
bn−1,r(Z)bn,r−1(Z) = 0. Respecte aquestes dues conjectures, CMC ha estat prova-
da amb tota generalitat en el cas de l’espai projectiu X = Pn, per a tot n (veure
[Tru89, p. 112]). És també sabut que la IGC es verifica per a conjunts grans de
punts a corbes de grau d ≥ 2g (veure [FMP03]).

Més recentment Mustaţă ha estès els resultats anteriors sobre la forma de la
resolució lliure minimal de conjunts generals de punts Z ⊆ X per al cas X = Pn
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a una varietat projectiva arbitrària X ⊆ Pn (cf. [Mus98]). Ha provat que les
primeres files del diagrama de Betti d’un conjunt general de punts diferents Z
en una varietat projectiva X coincideixen amb les del diagrama de Betti de X i
que hi ha dues files afegides al final del diagrama. També ha donat fites inferiors
pels nombres de Betti d’aquestes dues últimes files. En altres paraules, si

0→ Fn → Fn−1 → · · · → F2 → F1 → R→ RX → 0

és una R-resolució lliure minimal de RX , llavors per a un conjunt general de
punts Z ⊆ X tal que PX (r − 1) ≤ |Z| < PX (r) per a algun r ≥ reg(X) + 1 (on
PX denota el polinomi de Hilbert de X), RZ té R-resolució lliure minimal de la
forma

0 −→ Fn ⊕R(−r − n + 1)bn,r−1(Z) ⊕R(−r − n)bn,r(Z) −→ · · ·

−→ F2 ⊕R(−r − 1)b2,r−1(Z) ⊕R(−r − 2)b2,r(Z) −→

−→ F1 ⊕R(−r)b1,r−1(Z) ⊕R(−r − 1)b1,r(Z) −→ R −→ RZ −→ 0.

Com en el cas general, Mustaţă va proposar la Conjectura de la Resolució
Minimal en aquest context afirmant que els nombres de Betti graduats seran el
més petits possibles: bi+1,r−1(Z)bi,r(Z) = 0 per a tot i. Aquesta versió de la conjec-
tura ha estat ja estudiada en alguns casos interessants. Per exemple, la MRC és
certa per a tot nombre de punts generals en la quàdrica llisa de P3 (cf. [GMR96])
i per a algunes cardinalitats especials de conjunts de punts generals a la super-
fície cúbica llisa. L’estudi de la MRC per a corbes va ser realitzat a [FMP03], on
es va demostrar que la conjectura es verifica per a grans cardinalitats de punts
generals sobre corbes canòniques C ⊆ Pn (i.e., corbes submergides a Pn pel seu
divisor canònic). Malgrat tot, contràriament al cas de l’espai projectiu, la MRC
és falsa per a conjunts de punts de cardinalitat arbitràriament gran sobre corbes
de grau elevat.

Al capítol 2 ens centrem en les tres conjectures que acabem de mencionar en
el cas de conjunts generals de punts a superfícies ACMquasi-minimals (no necessàri-
ament llises), les quals estan definides com a varietats ACM no degenerades
X ⊆ Pd tal que deg(X) = codim(X) + 2. Cal recordar que donada una vari-
etat no degenerada X ⊆ Pd sempre es verifica que deg(X) ≥ codim(X) + 1.
Les varietats minimals, i.e., varietats per a les quals es té la igualtat en l’expres-
sió prèvia han sigut classificades clàssicament. El següent cas, el de varietats
quasi-minimals, ha sigut el centre d’intensa recerca recentment. Una bona clas-
sificació de tals varietats ha estat obtinguda per Fujita (cf. [Fuj90]), relacionada
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amb la seva teoria de ∆-gènere. En el cas de dimensió dos, la família de superfí-
cies fortes de del Pezzo és un cas particularment significatiu de superfícies ACM
quasi-minimals. A [Hoa93], una important contribució es va fer a la comprensió
de les varietats quasi-minimals, i en particular a la estructura de les singularitats
que poden tenir. Entre altres resultats, la resolució lliure minimal de l’anell de
coordenades d’una superfície ACM quasi-minimal X ⊆ Pd va ser donada:

0 −→ R(−d) −→ R(−d + 2)αd−3 −→ . . . −→ R(−2)α1 −→ R −→ RX −→ 0

on
αi = i

(
d− 1
i + 1

)
−
(
d− 2
i− 1

)
per a 1 ≤ i ≤ d− 3.

El coneixement d’aquesta resolució és clau per als resultats que hem obtingut.
Provarem que la IGC i la CMC es verifiquen per a conjunts generals de punts de
qualsevol cardinalitat a una superfície ACM quasi-minimal X , tret de dos casos
esporàdics (veure Teorema 2.2.16). Pel que fa la MRC, provarem que és certa per
a un ample ventall de cardinalitats de punts generals aX (veure Teorema 2.2.15).

Cal observar que en termes de l’esquemadeHilbertHilbs(X)de subesquemes
zero-dimensionals de X , la Conjectura de la Resolució Minimal per a X pot
ser plantejada diguent que existeix un subconjunt obert i no buit Us0 ⊂ Hs

0 ⊂
Hilbs(X), onHs

0 denota la component irreductible el punt general de la qual cor-
respon a conjunts Z de s punts distints a X , tal que per a tot [Z] ∈ Us0 es verifica

bi+1,r−1(Z) · bi,r(Z) = 0 per a i = 1, · · · ,n− 1.

Si no ens volem restringir a conjunt de punts diferents, ens podem pregun-
tar cóm ha de ser la forma de la resolució lliure minimal de l’ideal homogeni de
l’esquema 0-dimensional associat a un punt general [Z] de qualsevol altra com-
ponent irreductible deHilbs(X) i preguntar-nos si els nombres de Betti bij(Z) són
els més petits possibles, i.e., no hi ha termes "ghost"en la resolució lliure minimal
deRZ . Al capítol 2 proposemuna conjecturamodificada i diemque laConjectura
Feble de la Resolució Minimal(WMRC) es verifica per a s si existeix una component
irreductibleHs ⊂ Hilbs(X) i un subconjunt obert i no buit Us ⊂ Hs ⊂ Hilbs(X)
tal que per a tot [Z] ∈ Us es té

bi+1,r−1(Z) · bi,r(Z) = 0 per a i = 1, · · · ,n− 1.

Respecte la WMRC, provem que per a tot enter d ≥ 2 i per a tot s ≥
(
d+3

3

)
− 1,

existeix una família
(
d+2

2

)
-dimensional de superfícies irreductibles i genèricament

llises X ⊂ P3 de grau d satisfent aquesta conjectura (veure Teorema 2.3.18).
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Per descomptat, en el cas que Hilbs(X) sigui irreductible, ambdues conjec-
tures, la MRC tal com va ser proposada per Mustaţă i la nostra conjectura modi-
ficada han de coincidir. Per tant esdevé una questió crucial el saber quan l’esque-
ma de Hilbert Hilbs(X) és irreductible. En general, des de que l’existència de
l’esquema de Hilbert Hilbp(t)(X) parametritzant subesquemes projectius d’una
varietat projectivaX amb polinomi de Hilbert p(t) va ser demostrada a [Gro] per
Grothendieck, l’estudi de les propietats geomètriques d’aquest espai de moduli
va esdevenir una àrea d’intensa recerca en Geometria Algebraica. Un resultat
primerenc de Hartshorne (cf. [Har66]) afirma que sempre és connex. Quan ens
centrem en subesquemes de polinomi de Hilbert constant p(t) = s, i.e, quan es
tracta de subesquemes zero-dimensionals de longitud s, Fogarty va provar que,
siX és una superfície irreductible llisa, llavors l’esquema de Hilbert Hilbs(X) és
una varietat irreductible i llisa de dimensió 2s (cf. [Fog68]). En dimensions més
grans, Iarrobino a [Iar72] va trobar que la irreductibilitat no té per què donar-se:
l’esquema de Hilbert pot ser irreductible per a varietats de dimensió ≥ 3. En el
curt capítol 3 ens centrem en varietats singulars i ens preguntem sobre la irre-
ductibilitat de l’esquema de Hilbert dels seus subsequemes 0-dimensionals. El
cas més interessant, degut al resultat de Fogarty, és el de superfícies singulars:

Questió. És l’esquema deHilbertHilbs(X) de subesquemes 0-dimensionals de longitud
s en una superfície singular X irreductible?

Donarem una resposta negativa a aquesta questió construint superfícies sin-
gulars per les quals els esquemes de Hilbert de punts són reductibles. De fet, el
nostre mètode també funciona per a varietats de dimensió més gran. Constru-
irem varietats projectives genèricament llises X ⊂ PN de dimensió n i grau d
amb n > 2 i d > 1 o n = 2 i d > 4 per a les que Hilbs(X) és reductible per a tot
s� 0 (veure Teorema 3.1.5).

Donem ara l’estructura d’aquesta tesi i els principals resultats obtinguts.

El capítol 1 és dedicat a recordar les nocions que seran l’objecte de la resta
del present treball així com resultats ben coneguts que ens seran útils. També
donem alguns exemples dels conceptes que hi són involucrats. Aquest capítol
no conté cap idea original.

Comencem a la secció 1.1 introduint les nocions bàsiques de resolució lliure
minimal i de diagrama de Betti associat a un mòdul graduatM , a més de les de
funció i polinomi de Hilbert. També introduim la noció d’esquema Aritmètica-
ment Cohen-Macaulay (ACM) i Aritmèticament Gorenstein (AG).
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A la secció 1.2 donem els rudiments de la Teoria de Liaison que es revelarà
clau en la prova dels resultats del capítol 2. La Teoria de Liaison és una eina molt
potent a l’hora de transportar informació des de un esquema donat a un segon
esquema amb el que està lligat. Ilustrarem aquesta propietat de la Liaison amb
diversos resultats importants (com és el cas del Teorema de Gaeta). Veurem cóm
les resolucions lliures minimals de dos subesquemes lligats estan relacionades.

Finalment, a la secció 1.3, ens fixem en els espais de moduli. Donem una
introducció a l’esquema de Hilbert Hilbp(t)(X) que parametritza subesquemes
d’un esquemadonatX ambpolinomi deHilbert p(t) i també de l’espai demoduli
Ms
X ,H (r; c1, . . . , cmin(r,n)) de fibrats vectorials µ-estables E a X amb rang fixat r i

classes de Chern ci.

Al capítol 2 s’ofereix la nostra contribució a la Conjectura de la ResolucióMin-
imal, que està bàsicament dividida en dues parts. Primer de tot, demostrarem
que es verifica per a un ample ventall de cardinalitats de conjunts generals de
punts sobre una gran família de varietats, a saber, la de varietats ACM quasi-
minimals (tret de dos casos esporàdics). Per altra banda, treballarem amb el
cas especial d’esquemes zero-dimensionals no reduïts. Per aquests esquemes,
plantejarem una versió adaptada de la MRC (la Conjectura Feble de la Resolució
Minimal(WMRC)) i provarem que és satisfeta en alguns casos interessants.

A la secció 2.1, recordem laConjectura de laResolucióMinimal(MRC) i donem
un breu resum dels resultats coneguts entorn d’ella. En particular, recordem la
versió de Mustaţă de la MRC:

Conjectura 2.1.10. Sigui X ⊂ Pn una varietat projectiva amb d = dim(X) ≥ 1,
reg(X) = m i polinomi de Hilbert PX . Sigui s ∈ Z un enter tal que PX (r − 1) ≤
s < PX (r) per a algun r ≥ m + 1. La Conjectura de la Resolució Minimal(MRC) es
satisfà pel valor s si per a un conjunt Z de s punts generals diferents es té

bi+1,r−1(Z)bi,r(Z) = 0 per a i = 1, · · · ,n− 1.

A la secció 2.2, ens fixem en les superfícies ACM quasi-minimals, i.e, super-
fícies X ⊆ Pd de grau d. Per a aquesta classe de superfícies, establim primer la
MRC per a dues cardinalitats específiques de punts:

Teorema 2.2.13. Sigui X ⊆ Pd una superfície ACM quasi-minimal. Assumim
queX no és el model anticanònic de F2 := P(OP1 ⊕OP1 (−2)) o una intersecció de
dues quàdriques de P4 amb una recta doble. Definim:

m(r) :=
d

2
r2 + r

2− d
2

, n(r) :=
d

2
r2 + r

d− 2
2

.



120 Resum en català

Llavors es té:

(1) Sigui Zn(r) ⊂ X un conjunt general de n(r) punts, r ≥ 2. Llavors la resolu-
ció minimal graduada de IZn(r)|X té la forma:

0 −→ R(−r−d)(d−1)r−1 −→ R(−r−d+1)βd−1,r −→ R(−r−d+2)βd−2,r −→ . . .

−→ R(−r − 2)β2,r −→ R(−r)r+1 −→ IZn(r)|X −→ 0.

on

βi,r =
1∑
l=0

(−1)l+1
(
n− l − 1
i− l

)
∆l+1HX (r + l) +

(
n

i

)
(n(r)−HX (r − 1)).

(2) Sigui Zm(r) ⊂ X un conjunt general de m(r) punts, r ≥ 2. Llavors la res-
olució minimal graduada de IZm(r)|X té la forma:

0 −→ R(−r − d)r−1 −→ R(−r − d + 2)γd−1,r−1 −→ . . .

−→ R(−r − 1)γ2,r−1 −→ R(−r)(d−1)r+1 −→ IZm(r)|X −→ 0

amb

γi,r−1 =
1∑
l=0

(−1)l
(
n− l − 1
i− l

)
∆l+1PX (r + l)−

(
n

i

)
(m(r)− PX (r − 1)).

En particular, la conjectura de Mustaţă es verifica per n(r) i m(r), r ≥ 4, punts
generals diferents sobre una superfície ACM quasi-minimal X ⊂ Pd (excepte en
els dos casos que hem mencionat).

El Teoremaprevi ens permetrà deduir els resultats següents: primer provarem
que les dues conjectures més febles, la IGC i la CMC són certes per a tot conjunt
general de punts a superfícies ACM quasi-minimals (excepte per a dos casos es-
poràdics):

Teorema 2.2.16. Sigui X ⊆ Pd una superfície ACM quasi-minimal. Assumim
queX no és el model anticanònic de F2 := P(OP1 ⊕OP1 (−2)) o una intersecció de
dues quàdriques de P4 amb una recta doble. Llavors per a tot conjunt general de
punts diferents Z a X tal que |Z| ≥ PX (3) la CMC i la IGC són certes.

A més, provarem que un conjunt general de punts diferents amb cardinali-
tat compresa dins de determinades franges verifica la MRC (excepte per als dos
mateixos casos esporàdics):
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Teorema 2.2.15. Sigui X ⊆ Pd una superfície ACM quasi-minimal. Assumim
que X no és el model anticanònic de F2 := P(OP1 ⊕ OP1 (−2)) o una intersecció
de dues quàdriques de P4 amb una recta doble. Sigui r un enter tal que r ≥
reg(X) + 1 = 4. Llavors per a tot conjunt general de punts diferents Z a X tal
que PX (r − 1) ≤ |Z| ≤ m(r) o n(r) ≤ |Z| ≤ PX (r) la Conjectura de la Resolució
Minimal és verdadera.

Pel cas particular de la superfície cúbica integral, veurem que la MRC es ver-
ifica per a tot conjunt general de punts diferents.

Teorema 2.2.17. Sigui X ⊆ P3 una superfície cúbica integral (i.e., una superfície
ACM quasi-minimal de grau tres). Llavors la Conjectura de la Resolució Mini-
mal es verifica per a tot conjunt general de punts diferents a X de cardinalitat
≥ PX (3) = 19.

A la secció 2.3, dediquem la nostra atenció a una conjectura lleugerement
modificada. Donat que, en general, Hilbs(X) no és irreductible (veure [Iar72]
pel cas de varietats de dimensió més gran o igual que 3 i el capítol 3 per a su-
perfícies), podem també preguntar-nos per la resolució minimal graduada de
l’ideal de l’esquema 0-dimensional associat a un punt general de qualsevol altra
component irreductible de l’esquema de Hilbert Hilbs(X) i per si els nombres
de Betti graduats són el més petits possibles, i.e. si no hi ha termes "ghost"a la
resolució lliure minimal. Per tant plantejem la següent conjectura:

Conjectura 2.3.2. Sigui X ⊂ Pn una varietat projectiva, sigui PX (t) el seu poli-
nomi de Hilbert i m = reg(X). Sigui s un enter tal que PX (r − 1) ≤ s < PX (r)
per a algun r ≥ m+ 1. Llavors, la Conjectura Feble de la Resolució Minimal(WMRC)
es satisfà si per a s si existeix una component irreductible Hs ⊂ Hilbs(X) i un
subconjunt obert no buit Us ⊂ Hs ⊂ Hilbs(X) tal que per a tot [Z] ∈ Us es té

bi+1,r−1(Z) · bi,r(Z) = 0 per a i = 1, · · · ,n− 1.

En particular, podem contribuir de la manera següent a aquesta conjectura:

Teorema 2.3.18. Sigui s un enter tal que s ≥ Pd(d), d ≥ 2. Llavors existeix una
família de dimensió

(
d+2

2

)
de superfícies irreductibles genèricament llisesX ⊂ P3

de grau d per la qual laWMRC es satisfà, i.e., existeix un subconjunt obert no buit
Us ⊂ Hilbs(X) tal que per a tot [Z] ∈ Us es té

b3,r−1(Z) · b2,r(Z) = b2,r−1(Z) · b1,r(Z) = 0.

En el capítol 3 ens centrem en la reductibilitat de l’esquema de Hilbert de
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punts. Com ha estat mencionat, Fogarty va provar que, si X és una superfície
llisa i irreductible, llavors l’esquema de Hilbert Hilbs(X) és una varietat llisa i
irreductible de dimensió 2s. Una pregunta natural que per tant esdevé en aquest
context és el comportament de l’esquema de Hilbert quan la condició de ser llisa
és eliminada. En aquest capítol construirem famílies de superfícies singulars per
a les quals l’esquema de Hilbert de punts és reductible. De fet, el nostre mètode
també funciona per a varietats de dimensió superior. Més concretament, tenim:

Teorema 3.1.5. SiguiX = 〈Y , p〉 ⊆ PN un con n-dimensional amb vèrtex p i base
Y ⊆ PN−1. Supposem que o bé n > 2 i degX > 1 o bé n = 2 i degX > 4. llavors
existeix s0 ∈ N tal que Hilbs(X) és reductible per a tot s ≥ s0.

Finalment, el capítol 4 es dedicat a l’estudi de fibrats vectorials ACM i en
particular al tipus de representació d’algunes famílies de varietats. Com ha es-
tat mencionat, és una questió interessant trobar el tipus de representació d’u-
na varietat ACM donada ja que és una bona mesura de la seva complexitat.
L’objectiu principal d’aquest capítol és donar els primers exemples de varietats
n-dimensional ACM de tipus de representació salvatge, per a arbitrari n ≥ 2
(cf. Teoremas 4.3.13 i 4.4.11). La nostra font d’exemples serà les varietats Fano
X = BlZPn resultat d’explotar Pn a un conjunt finit de punts Z. En el cas 2-
dimensional , i.e., per a superfícies de del Pezzo, molta més informació serà
obtinguda, ja que els fibrats vectorials que construirem comparteixen una car-
acterística particular: el mòdul associat ⊕t H0(X , E(t)) té el nombre màxim pos-
sible de generadors (veure Teorema 4.4.11). Aquesta propietat va ser aïllada per
Ulrich a [Ulr84, p. 26] per a mòduls Cohen-Macaulay, i des de llavors els mòduls
amb aquesta propietat s’anomenen mòduls de Ulrich i, respectivament, fibrats
vectorials de Ulrich en el cas geomètric. A continuació, pel cas d’una superfície
generalX ⊆ P3 hem pogut provar que són de tipus salvatge per a d ≤ 9, basant-
nos en resultats previs sobre l’existència de fibrats vectorials Ulrich de rang 2 en
la superfície (veure [Bea00, Proposition 7.6]). Per a grau arbitrari d podem al-
menys donar famílies grans de fibrat vectorials ACM de rang 2 i 3 a la superfície
general de grau d demostrant amb això que no són de tipus finit o moderat.

Aquest capítol es divideix de la manera següent: a la secció 4.1 recordem la
definició i característiques principals de les varietats amb les que treballarem,
Fano blow-ups de Pn, n ≥ 2, i superfícies de del Pezzo. A la secció 4.2, donem
un resum dels fibrats vectorials ACM i Ulrich, a més de discutir el problema de
estudiar la complexitat d’una varietat ACM en funció de la complexitat de les
famílies de fibrats vectorials ACM que suporta.
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A la secció 4.3, realitzem la construcció de familíes d’elevada dimensió de
fibrats vectorials simples (i per tant indescomposables) i ACM als Fano blow-ups
de punts a Pn. Aquestes famílies seran construïdes com el pullback del nucli de
morfismes exhaustius

OPn (1)b −→ OPn (2)a

amb la propietat que també són exhaustius al nivell de seccions globals. Per tant
podem demostrar que els Fano blow-ups de punts de Pn són varietats de tipus
de representació salvatge. En particular, provem:

Teorema 4.3.13. Sigui X = BlZPn una varietat Fano definida com el blow-up de
punts a Pn, n ≥ 3 i sigui r ≥ n.

i Si n és parell, fixem c ∈ {0, . . . ,n/2 − 1} tal que c ≡ r mod n/2 i definim
u := 2(r−c)

n . Llavors existeix una família de fibrats vectorials simples i ACM
de rang r de dimensió (n+2)n−4

4 u2 − cu− c2 + 1.

ii Sin és senar, fixem c ∈ {0, . . . ,n−1} tal que c ≡ rmodn i definim u := (r−c)
n .

Llavors existeix una família de fibrats vectorials simples i ACM de rang r
de dimensió ((n + 2)n− 4)u2 − 2cu− c2 + 1.

En particular, les varietats Fano obtingudes com a blow-ups de punts de Pn són
de tipus de representació salvatge.

A la secció 4.4, ens centrem en el cas 2-dimensional, és a dir, en el cas de
superfícies de del Pezzo, on molta més informació és obtinguda. A la primera
subsecció treballem amb qualsevol superfície de del Pezzo excloent el cas de la
quàdrica i veiem que els fibrats vectorials ACM obtinguts a la secció anterior per
pullback són simples, Ulrich, i µ-estables respecte a cert divisor ample Hn:

Teorema 4.4.11. Sigui X ⊆ Pd una superfície de del Pezzo de grau d. Assumim
que X no és la quàdrica llisa submergida a P8 mitjançant el divisor anticanònic
−KX . Llavors per a tot r ≥ 2 exiteix una família de dimensió r2 + 1 de fibrats
vectorials simples, inicialitzats i Ulrich de rang r amb classes de Chern c1 = rH

i c2 = dr2+(2−d)r
2 . A més, són µ-semiestables respecte de la polaritzacióH = 3e0 −∑9−d

i=1 ei i µ-estables respecte de Hn := (n − 3)e0 + H per a n � 0. En particular,
les superfícies de del Pezzo són de tipus de representació salvatge.

A la subsecció intermitja ens centrarem en el cas de la quàdrica i demostrarem
per un argument ad hoc que és una varietat de tipus de representació salvatge:
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Teorema 4.4.19. Sigui X ⊆ P8 una quàdrica llisa submergida a P8 mitjançant
el divisor anticanònic molt ample H := −KX . Llavors, per a qualsevol r ≥ 2,
existeix una família de fibrats vectorials simples (i per tant indescomposables) i
Ulrich de rang r de dimensió r2 + 1. En particular, X és una varietat de tipus de
representació salvatge.

Finalment, a l’última subsecció, establim, per a una superfície de del PezzoX
amb divisor anticanònic molt ample, una versió de la coneguda correspondència
de Serre (cf. Teorema 4.4.21). Aquesta correspondència ens permetrà, per una
banda, demostrar, quanX no és la quàdrica, que les famílies de fibrats vectorials
de rang r construïdes a la primera subsecció podien ser obtingudes també a partir
d’un conjunt general dem(r) := d

2 r
2 + r 2−d

2 punts diferents de la superfície amb
resolució lliure minimal com en el Teorema 2.2.13.

Corollary 4.4.22. Sigui X ⊆ Pd superfície de del Pezzo amb divisor anticanònic
molt ample de grau d, diferent de la quàdrica. Llavors els fibrats vectorials E(H)
inicialitzats Ulrich de rang r donats al Teorema 4.4.11 es poden recuperar com a
una extensió de IZ,X (rH) perOr−1

X per a conjunts generalsZ dem(r) = 1/2(dr2 +
(2− d)r) punts diferents de X , r ≥ 2.

Per altra banda, per a la quàdrica, aplicarem la correspondència de Serre en
sentit contrari per obtenir la resolució lliure minimal d’un conjunt dem(r) punts
generals a partir dels fibrats vectorials Ulrich construïts a la secció prèvia.

Finalment, la secció 4.5 està dedicada al cas d’una superfície general X de
grau arbitrari d a P3. Construint fibrats vectorials simples i Ulrich de rang parell
arbitrari com extensions de fibrats Ulrich de rang 2, sarem capaços de demostrar
que, per a 4 ≤ d ≤ 9, una superfície general X ⊆ P3 de grau d és de tipus de
representació salvatge:

Teorema 4.5.8. Sigui X ⊆ P3 una superfície general de grau 4 ≤ d ≤ 9. Llavors,
per a tot r = 2s, s ≥ 2, existeix una família de fibrats vectorials de rang r, sim-
ples (i per tant indescomposables) i Ulrich de dimensió 11(s− 1). En particular,
una superfície general X ⊆ P3 de grau 4 ≤ d ≤ 9 és de tipus de representació
salvatge.

En el cas de grau arbitrari d, sarem capaços de construir almenys famílies
infinites de fibrats vectorials de rang 2 i 3, simples i ACM sobre una superfície
general X ⊆ P3 de grau d, demostrant que no són de tipus de representació
moderat:

Proposició 4.5.10. Sigui X ⊆ P3 una superfície general de grau d ≥ 3. Llavors
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existeix una família 4-dimensional de fibrats vectorials E de rang 2, inicialitzats,
µ-estables i ACM amb c1(E) = 1 i c2(E) = d− 1.

Proposició 4.5.11. SiguiX ⊆ P3 una superfície general de grau d ≥ 3. Llavors ex-
isteix una família infinita de fibrats vectorialsF de rang 3, inicialitzats, µ-estables
i ACM amb c1(F) = 1 i c2(F) = 2d− 3.

Acabarem el capítol donant una estretègia general que podria ser útil per
provar que una superfície general de grau arbitrari és de tipus de representació
salvatge (veure Teorema 4.5.14).
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