
Reducing Redundancy of Real Time

Computer Graphics in Mobile Systems

Enrique de Lucas

Doctor of Philosophy

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Department of Computer Architecture

Barcelona, 2018

2

Reducing Redundancy of Real Time

Computer Graphics in Mobile Systems

Enrique de Lucas

Advisers

Dr. Joan-Manuel Parcerisa

Dr. Pedro Marcuello

ARCO Research Group
Department of Computer Architecture

UNIVERSITAT POLITÈCNICA DE CATALUNYA
Barcelona

Spain

Thesis submitted for the degree of Doctor of Philosophy at the
Universitat Politècnica de Catalunya

3

4

‘Gutta cavat lapidem,
[non vi, sed saepe cadendo]’

–Publius Ovidius Naso,

in Epistulae ex Ponto IV, 10, 5.
Expanded in the Middle Ages.

5

6

Keywords

Collision Detection, GPU, Android, Rasterization, Mobile GPU, Rendering, Image Based Colli-
sion Detection, Graphics Rendering Hardware, Object Interference Detection, Rasterizing Graphics
Hardware, Overdraw, Overshading, Rendering Order, Front-to-back, GPU microarchitecture, Visi-
bility, Hidden Surface Removal, Deferred Rendering, Deferred Shading, TBR, TBDR, Temporal
Coherence, Frame Coherence, Topological Order, Topological Sort, Energy-efficiency

7

Abstract

At each new generation the growing computing power of mobile devices has promoted the
adoption of more powerful support for graphics and real-time physics simulations with increasing
precision and realism. Given the battery-operated and handheld nature of these devices they must
use as little energy as possible, because it is crucial to enlarge battery life and to keep a comfortable
surface touch temperature. Hence, software and hardware improvements are crucial to deliver a
low-power yet rich user experience that satisfies the user demands on the functionality of mobile
devices.

The goal of this thesis is to propose novel and effective techniques to eliminate redundant
computations that waste energy and are performed in real-time computer graphics applications,
with special focus on mobile GPU micro-architecture. Improving the energy-efficiency of CPU/GPU
systems is not only key to enlarge their battery life, but also allows to increase their performance
because, to avoid overheating above thermal limits, SoCs tend to be throttled when the load is high
for a large period of time. Prior studies pointed out that the CPU and especially the GPU are the
principal energy consumers in the graphics subsystem, being the off-chip main memory accesses and
the processors inside the GPU the primary energy consumers of the graphics subsystem.

In the first place, we focus on reducing redundant fragment processing computations by means of
improving the culling of hidden surfaces. During real-time graphics rendering, objects are processed
by the GPU in the order they are submitted by the CPU, and occluded surfaces are often processed
even though they will end up not being part of the final image. When the GPU realizes that an
object or part of it is not going to be visible, all activity required to compute its color and store it
has already been performed. We propose a novel architectural technique for mobile GPUs, Visibility
Rendering Order (VRO), which reorders objects front-to-back entirely in hardware to maximize
the culling effectiveness of the GPU and minimize overshading, hence reducing execution time and
energy consumption. VRO exploits the fact that the objects in graphics animated applications
tend to keep its relative depth order across consecutive frames (temporal coherence) to provide the
feeling of smooth transition. VRO keeps visibility information of a frame, and uses it to reorder the
objects of the following frame. Since depth-order relationships among objects are already tested
in the GPU, VRO incurs minimal energy overheads. It just requires adding a small hardware to
capture the visibility information and use it later to guide the rendering of the following frame.
Moreover, VRO works in parallel with the graphics pipeline, so negligible performance overheads are
incurred. We illustrate the benefits of VRO using various unmodified commercial 3D applications
for which VRO achieves 27% speed-up and 14.8% energy reduction on average.

In the second place, we focus on avoiding redundant computations related to CPU Collision
Detection. Graphics animation applications such as 3D games represent a large percentage of

9

downloaded applications for mobile devices and the trend is towards more complex and realistic
scenes with accurate 3D physics simulations. Collision detection (CD) is one of the most important
algorithms in any physics kernel since it identifies the contact points between the objects of a scene,
and determines when they collide. However, real-time highly accurate CD is very expensive in
terms of energy consumption. We propose Render Based Collision Detection (RBCD), a novel
energy-efficient high-fidelity CD scheme that leverages some intermediate results of the rendering
pipeline to perform CD, so that redundant tasks are done just once. Comparing RBCD with a
conventional CD completely executed in the CPU, we show that its execution time is reduced
by almost three orders of magnitude (600x speedup), because most of the CD task of our model
comes for free by reusing the image rendering intermediate results. Although not necessarily, such a
dramatic time improvement may result in better frames per second if physics simulation stays in
the critical path. However, the most important advantage of our technique is the enormous energy
savings that result from eliminating a long and costly CPU computation and converting it into
a few simple operations executed by a specialized hardware within the GPU. Our results show
that the energy consumed by CD is reduced on average by a factor of 448x (i.e., by 99.8%). These
dramatic benefits are accompanied by a higher fidelity CD analysis (i.e., with finer granularity),
which improves the quality and realism of the application.

10

Acknowledgements

First of all I want to thank my advisers, Joan-Manuel Parcerisa and Pedro Marcuello, who
have taught me almost everything I know about Computer Architecture. They always offered me
valuable guidance and support as well as they were involved in my day-to-day work. I am truly
convinced I could not have had better advisers. I am also very grateful to Prof. Antonio González,
who offered me the opportunity to start in this research area, first at Intel Barcelona and then at
UPC1. Thanks for your sagacious feedback and your wise advise.

I wish to thank the members of ARCO I met these years. Especially to José Maŕıa Arnau,
whose outstanding and pioneering work encouraged me to work in the field of low-power GPUs.
I am grateful for all his support and help and for teaching me what an international conference
is about. Thanks to Mart́ı -the one- for continuing the research line in ARCO group. Thank you
Gem and Emilio for your feedback and friendship. I also wish to thank the “The D6ers”: Albert,
Franyell, Hamid, Josue, Marc, Mart́ı -the other one- and Reza. I wish you the best of luck. I am
lucky to have met all my friends from Campus Nord. Enric, Gemma, Javi, Manu, Marc, Niko and
Oscar, who welcomed me to Barcelona and shared with me seminars, meetings, coffees, dinners and
parties. However, they did not warn me about where I got when I started the doctorate.

I am really blessed to have so many great friends like Alex, Andrés, David, Guille, Javi, Manu,
Oscar and Rubén, who have shared with me many moments for more than 15 years. Thank you
for your moral support, motivation and friendship, which made this journey more comfortable and
drove me to give my best.

Finally, I would like to express my deepest gratitude to my family for their commitment, their
unconditional love, their support and their infinite patience. Especially Jenifer, who closely shared
with me joys and celebrations during this thesis, but also had to keep up with me during the endless
periods of stress that precede academic deadlines. Thank you for your patience, comprehension,
and support during these years of thesis.

1This work has been supported by the Spanish State Research Agency under grants TIN2013-44375-R, TIN2016-
75344-R (AEI/FEDER, EU), and BES-2014-068225.

11

Contents

1 Introduction 25

1.1 Current Trends . 25

1.1.1 Real Time Mobile Graphics Software . 26

1.1.2 Mobile Graphics Hardware . 28

1.2 Problem Statement . 30

1.2.1 Major Energy Consumers . 31

1.2.2 Major GPU Energy Consumers . 33

1.2.3 Occlusion Culling . 34

1.2.4 Collision Detection . 35

1.3 State of the art . 35

1.3.1 Reduction of Redundant Fragment Shading 35

1.3.2 Collision Detection . 39

1.4 Thesis Overview and Contributions . 42

1.4.1 Visibility Rendering Order . 42

1.4.2 Render Based Collision Detection . 44

1.4.3 Other contributions . 46

2 Background 49

2.1 Graphics Rendering Pipeline . 49

2.1.1 Application Stage . 49

2.1.2 Geometry Stage . 50

13

CONTENTS

2.1.3 Rasterization . 55

2.2 GPU Microarchitecture: . 59

2.2.1 Immediate Mode Rendering . 59

2.2.2 Tile Based Rendering . 60

3 Methodology 63

3.1 Simulators . 63

3.1.1 GPU Simulation . 63

3.1.2 Collision Detection CPU Simulation with Marss86 and Bullet 67

3.2 Benchmarks . 68

3.2.1 Benchmarks Set . 69

3.2.2 Benchmarks Characterization . 72

4 Visibility Rendering Order: Improving Energy Efficiency on Mobile GPUs through
Frame Coherence 77

4.1 Visibility Determination and Overshading . 79

4.2 Visibility Rendering Order . 81

4.2.1 Overview . 81

4.2.2 Graph Generation . 82

4.2.3 Sort Algorithm . 83

4.2.4 Heuristics to Sort the Objects in a Scene . 85

4.2.5 Partial Order of Objects . 87

4.2.6 Visibility Rendering Order Adjustments . 88

4.3 Microarchitecture . 88

4.3.1 Deferred Rendering TBR GPU . 88

4.3.2 Visibility Rendering Order TBR GPU . 90

4.4 Experimental Framework . 96

4.4.1 GPU Simulation . 98

4.5 Experimental Results . 98

14

CONTENTS

4.5.1 Effectiveness of VRO . 98

4.5.2 Overshading with Different Heuristics to Break Graph Cycles 103

4.6 Conclusion . 104

5 Render-Based Collision Detection for CPU/GPU Systems 105

5.1 Collision Detection . 105

5.1.1 Image Based Collision Detection . 106

5.1.2 Enabling RBCD in the GPU . 108

5.2 Microarchitecture . 109

5.2.1 RBCD Overview . 109

5.2.2 Identification of Collisionable Objects . 109

5.2.3 Deferred Face Culling . 111

5.2.4 Insertion into the Z-depth Extended Buffer 111

5.2.5 Z-Overlap Test . 112

5.2.6 Animation Loop . 113

5.2.7 Power model of the RBCD unit . 115

5.2.8 CPU Collision Detection Simulation . 115

5.3 Experimental Results . 115

5.3.1 Performance and Energy Consumption Benefits 116

5.3.2 GPU Overheads . 118

5.3.3 Sensitivity to ZEB List Length . 122

5.4 Conclusions . 123

6 Conclusions 125

6.1 Conclusions . 125

6.2 Future Work . 128

Appendices 131

15

CONTENTS

A Visibility Rendering Order on IMR GPUs 133

A.1 Immediate Visibility Rendering Order . 133

A.1.1 Visibility Rendering Order Adjustments . 135

A.1.2 Visibility Rendering Order IMR GPU . 136

A.2 Experimental Framework . 137

A.3 IMR-VRO Results . 137

A.3.1 Software Z-Prepass . 142

A.4 Conclusions . 146

16

List of Tables

3.1 CPU Simulation Parameters. 68

3.2 Benchmarks Set. 73

3.3 Geometry Stage Stats. 73

3.4 Rasterization Stage Stats. 74

4.1 VRO alternatives. 87

4.2 GPU Simulation Parameters. 97

5.1 CPU/GPU Simulation Parameters. 116

5.2 Benchmarks. 117

5.3 Percentage of fragment overflow for a ZEB with 4, 8 or 16 entries (each entry holds
data for one fragment). 122

A.1 Benchmarks. 137

A.2 GPU Simulation Parameters. 138

17

List of Figures

1.1 Millions of units of smartphones and PCs shipped. Source: Gartner [5, 7, 9, 14]. *
Projected data. 26

1.2 Monthly OS Market Share from June 2012 to June 2017. Data provided by Statcounter
Global Stats [19]. 27

1.3 Mobile Graphics Hardware Market Share. Data provided by Unity, March 2017 [11]. 29

1.4 Battery Capacity of Samsung Galaxy S smartphone series. 31

1.5 Total Power Consumption, GPU load and CPU load of a mobile device. Measurements
made with Trepn Power Profiler [35, 33], with special features for Snapdragon SoCs.
The phone employed in the two tests is a Samsung Galaxy J5, equipped with a
720x1280 (5”) Super AMOLED display (294 ppi) and powered by a 28nm Qualcomm
Snapdragon 410 MSM8916 SoC [34], which includes a 64 bit quad-core 1.2 GHz Cortex-
A53 CPU and an Adreno 306 GPU. Both tests were done with screen brightness set
to the minimum and WiFi disabled (cellular data enabled). 32

1.6 GPU energy breakdown and main memory BW breakdown of a mobile TBR GPU.
Numbers obtained with the set of benchmarks introduced in Section 3.2. 34

1.7 Simplified version of the Graphics Pipeline. 42

2.1 Conceptual stages of the Graphics Rendering Pipeline. 50

2.2 Vertex-level transformations in the Graphics Rendering Pipeline. (1) The vertices of
the 3d model are in Object Coordinates. (2) The vertices are scaled, rotated and
translated to World Coordinates. (3) The vertices are positioned in the camera scope
transforming them to Eye Coordinates (see detail of camera in orange outline). (4)
The vertices transformed to Clip Coordinates by projecting them onto the near clip
plane. (5) Perspective correction is applied to transform vertices to Normalized Device
Coordinates. (6) Viewport transform is applied to translate vertices to Viewport
Coordinates. Car 3D model courtesy of Alexander Bruckner [24]. 51

2.3 Perspective (left) and orthographic (right) viewing volumes. 52

2.4 OpenGL normalized viewing volume. 52

19

LIST OF FIGURES

2.5 Examples of common topologies used both by OpenGL and DirectX [167]. 53

2.6 View-frustum including viewport. 54

2.7 Clipping cases for triangles (top), lines (middle) and points (bottom). 54

2.8 Clock wise and counter-clock wise winding triangles. 55

2.9 3D model of a sphere (top-left), detail showing the effect of face culling (top-right),
wire-frame view of the sphere without face culling (bottom-left), wire-frame of the
sphere with face culling enabled (bottom-right). 56

2.10 Sub-stages of the Rasterization stage of the Graphics Pipeline. In this example, a red
triangle is rasterized over a blue background, and some fragments of the red triangle
are occluded by a green triangle. 56

2.11 Edge functions (E01, E12 and E20) of a primitive defined by vertices v0, v1 and v2. 57

2.12 Detail of scene where three objects A, B and C are rendered in C, A, B order. The
image depicts the fragments of every object that pass the Depth Test. 58

2.13 Detail of scene where two objects are blended. The image depicts how the fragments
of a translucent object are blended with the colors already stored in the Color buffer
providing a transparency effect. 59

2.14 Microarchitecture of an IMR GPU. 60

2.15 Microarchitecture of a TBR GPU. 61

2.16 Microarchitecture of a TBR GPU implementing Deferred Rendering. 62

3.1 Overview of Teapot simulation infrastructure. 64

3.2 NVIDIA Tegra like architecture (left), Mali 400 MP like architecture (right). Images
from teapot paper [111]. 66

3.3 Overview of Marss components. Source: www.marss86.org. 68

3.3 This figure shows a screenshot for each of the Android games included in our set of
benchmarks. 71

4.1 Simplified version of the Graphics Pipeline. 78

4.2 Shaded fragments per pixel in a GPU without Early-depth test, with Early-depth
test and with perfect front-to-back rendering order at object granularity. 78

4.3 Graphics pipeline: (a) Sequential DR. (b) Parallel DR. 81

4.4 Graphics pipeline including VRO. 82

20

LIST OF FIGURES

4.5 Visibility Graph generation for the given scene. 83

4.6 Sorting a Visibility Graph with the Kahn’s algorithm. 83

4.7 Two example cases where object B sits in front of A and C. The shaded region
highlights the overlap between A and C. 87

4.8 Raster Pipeline of a TBR GPU implementing Deferred Rendering. 89

4.9 Raster Pipeline of a TBR GPU implementing VRO. 90

4.10 Detail of Tile Engine structures involved in Geometry Fetching. 91

4.11 Detail of an entry of the Graph Buffer. Each entry is 512 bits (including 11 bits of
padding). 92

4.12 Size of the Graph Buffer for different number of children nodes (W) and different
number of maximum objects (from 8192 to 131072). 93

4.13 (Top) Nodes per frame, edges per frame and maximum number of nodes in an
adjacency list. (Bottom) 75th, 85th and 95th percentiles of the size of the adjacency-
lists of the scene graphs analyzed. 94

4.14 Edge Insertion Hardware. 95

4.15 Visibility Sort Hardware. (a) Initial search (b) Iterative procedure 95

4.16 Speed-up of DR and VRO normalized to the baseline TBR GPU. 99

4.17 Energy consumption of DR and VRO normalized to the baseline TBR GPU. 99

4.18 Overshading of DR and VRO normalized to the overshading of the baseline TBR GPU.100

4.19 Number of cycles to read a primitive with DR and VRO. 101

4.20 Normalized memory traffic of DR and VRO with respect to baseline GPU. 101

4.21 Increment of cycles reading geometry (first bar), increment of stall cycles caused by
the Fragment Processing stage (second bar), and increment of cycles of execution of
the Raster Pipeline (third bar) all using DR with respect to VRO. 102

4.22 Energy breakdown for the system Main-Memory/GPU with DR (left) and VRO
(right) both normalized to the baseline GPU. 103

4.23 Normalized Overshading with different Heuristics to break Graph Cycles. 104

5.1 Discretized representation of the entry and the exit points of the surfaces in a 3D
scene for pixels P1, P2 and P3. The Y-axis is a one-dimensional representation of
the projection plane and the Z-axis represents depth. 107

21

LIST OF FIGURES

5.2 (a) Front view of a 3D scene (b) AABBs as collisionable shapes (c) Convex hull for
GJK algorithm (d) RBCD. 108

5.3 GPU microarchitecture including an RBCD unit. 110

5.4 Sorted insertion hardware. 112

5.5 Interference cases between front-faces ([) and back-faces (]) of two objects, A and B. 113

5.6 Z-overlap Test hardware. 114

5.7 Example of game loop execution in the CPU/GPU system, (a)without RBCD, (b)with
RBCD. CR and GCI stand for Collision Response and GPU Command Issue respectively.114

5.8 (a) RBCD speedup regarding Broad-CD, (b) Normalized energy consumption of
RBCD regarding broad-CD, (c) RBCD speedup regarding GJK-CD, (d) Normalized
energy consumption of RBCD regarding GJK-CD . 117

5.9 (a) Normalized rendering time of the GPU with RBCD w.r.t. the baseline GPU. (b)
Normalized energy of the GPU and main memory with RBCD w.r.t. the baseline GPU.119

5.10 (a) Normalized energy consumption of the GPU with RBCD w.r.t the baseline GPU.
(b) Normalized main memory energy of RBCD w.r.t. the main memory energy of the
baseline GPU. 120

5.11 Energy GPU/Main memory breakdown. 120

5.12 GPU time breakdown including time of Geometry and Raster pipelines. 120

5.13 Tile Cache loads, primitives, fragments, and Raster Cycles with the GPU including
RBCD normalized to the GPU baseline. 121

6.1 Simplified version of the Graphics Pipeline. 125

A.1 Memory bandwidth usage on a mobile GPU for a set of commercial Android games.
On average 98.5% of the bandwidth to main memory is caused by operations performed
after rasterization. 134

A.2 Graphics pipeline including VRO. 134

A.3 Baseline IMR GPU architecture (left) and IMR GPU architecture including VRO
(right). 136

A.4 Speed-up of IMR-VRO normalized to the baseline IMR GPU. 139

A.5 Energy consumption of IMR-VRO normalized to the baseline IMR GPU. 139

A.6 Energy breakdown of IMR-VRO normalized to the baseline IMR GPU. 140

22

LIST OF FIGURES

A.7 Overshading and Instructions Executed in the Fragment Processors with IMR-VRO
normalized to those of the baseline IMR GPU. 140

A.8 Ratio between the time savings and the time overhead of VRO (higher is better). . . 141

A.9 Energy Delay Product of IMR-VRO normalized to the baseline IMR GPU (lower
than 1 is better). 141

A.10 Memory bandwidth usage of IMR-VRO normalized to baseline IMR GPU. 141

A.11 Activity factors with IMR VRO normalized with those of the baseline IMR GPU for
Color cache (top left), Depth cache (top right), Texture Caches (bottom left) and L2
cache (bottom right). 142

A.12 Simplified version of the Graphics Pipeline executing Z-Prepass. 143

A.13 Speed-up of Z pre-pass normalized to the baseline IMR GPU. 143

A.14 Energy consumption of Z pre-pass normalized to the baseline IMR GPU. 144

A.15 Energy Delay Product of Z pre-pass normalized to the baseline IMR GPU (lower
than 1 is better). 144

A.16 Memory bandwidth usage of Z pre-pass normalized to baseline IMR GPU. 144

A.17 Speed-up of VRO and Z pre-pass normalized to the baseline IMR GPU (one FP in
all cases). 145

A.18 Energy consumption of VRO and Z pre-pass normalized to the baseline IMR GPU
(one FP in all cases). 146

A.19 Energy Delay Product of VRO and Z pre-pass normalized to the baseline IMR GPU
(lower than 1 is better, one FP in all cases). 146

23

1
Introduction

This chapter introduces the main issues in the architectural design of mobile GPUs and how
they have evolved over the years. Then, we present the specific problems we approach in this thesis,
how these problems have been addressed by other authors and, finally, our proposals to solve them.

1.1 Current Trends

In recent years, mobile devices have become powerful and ubiquitous computational engines.
They have quickly incorporated graphics and animation capabilities that in the 1980s were only seen
in industrial flight simulators and a decade later became popular in desktop computers and game
consoles. At each new generation, the growing computing power of mobile devices has promoted
the adoption of more powerful support for graphics and real-time physics simulations in all mobile
devices, with increasing precision and realism, which does not seem to slow down in the near future.
Furthermore, with the rise of Mobile Augmented Reality and Mobile Virtual Reality applications it
is expected that the consumers will keep demanding an increasing degree of realism in interactive
rendering of images and at higher rendering resolution.

Nowadays, among other uses, we can surf the Internet at high speed, play 3D games, reproduce
and record HD video and take high resolution photographs. The evolution of the mobile device
from being just a device to make and receive voice calls to being a multimedia and multitasking
device, has led the phone to surpass computers for the leisure time we expend in multimedia. As
Figure 1.1 shows, sales of mobile devices have dramatically increased from being around 0.97 billion
units in 2013, to pass 1.2 billion units in 2014 and reach more than 1.9 billion units in 2015. In 2016
the number of unit shipped decreased, but it is expected to grow in following years. At the same
time, the number of downloaded applications was estimated to be above 100 billion in 2013 and it

25

CHAPTER 1. INTRODUCTION

is expected to reach around 268 billion in 2017 [3]. Furthermore, the rise of Internet-of-Things and
the introduction of Virtual and Augmented Reality may further increase this tremendous growth
rate in the near future.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017* 2018* 2019*

0

500

1000

1500

2000

2500

M
il
li
o
n
s

o
f
u
n
it

s
h
ip

p
e
d

PC

Smartphone

Figure 1.1: Millions of units of smartphones and PCs shipped. Source: Gartner
[5, 7, 9, 14]. * Projected data.

1.1.1 Real Time Mobile Graphics Software

In this section we briefly review the software stack of mobile devices including Operating Systems,
applications, Game Engines, Physics Simulation and graphics APIs. The Operating System (OS) is
the software that provides services to the applications in current mobile devices. The OS allows
to access the rich variety of hardware available in the system, like the screen, the microphone, the
speakers, the accelerometer, the GPS, the camera, or the GPU. Note that in current OSs, even
the user interface uses GPU acceleration. Android [10] and iOS [12] are the Mobile OSs that have
become prevalent with around 72% and 20% of the Mobile OS market share. Moreover, as Figure 1.2
shows, since April 2017 the OS market share of Android (39%) is even bigger than the market share
of Windows (37%).

Android is an open source software stack based on Linux, which is meant to work on a
great variety of devices (tablets, smart watches, televisions, even phones) from multiple vendors
(Samsung, Google, LG, Huaweii, Sony, BQ, etc). Android provides numerous layouts that allow the
programmer to add different pre-compiled objects in order to create an interface that provides a rich
user experience. However, the developer is responsible for adequately employing Android’s resources
to deliver applications that provide a flexible user interface to be compatible with different devices.

Regarding applications, there is a plethora of mobile applications available on on-line stores like
Google Play Store [44] and Apple App Store [51], being 3D and 2D graphics animation applications
the most popular ones [15, 13]. To develop such applications it is common to employ a game engine,

26

1.1. CURRENT TRENDS

2
0
1
2
-0
6

2
0
1
2
-0
8

2
0
1
2
-1
0

2
0
1
2
-1
2

2
0
1
3
-0
2

2
0
1
3
-0
4

2
0
1
3
-0
6

2
0
1
3
-0
8

2
0
1
3
-1
0

2
0
1
3
-1
2

2
0
1
4
-0
2

2
0
1
4
-0
4

2
0
1
4
-0
6

2
0
1
4
-0
8

2
0
1
4
-1
0

2
0
1
4
-1
2

2
0
1
5
-0
2

2
0
1
5
-0
4

2
0
1
5
-0
6

2
0
1
5
-0
8

2
0
1
5
-1
0

2
0
1
5
-1
2

2
0
1
6
-0
2

2
0
1
6
-0
4

2
0
1
6
-0
6

2
0
1
6
-0
8

2
0
1
6
-1
0

2
0
1
6
-1
2

2
0
1
7
-0
2

2
0
1
7
-0
4

2
0
1
7
-0
6

0

10

20

30

40

50

60

70

80

90

Windows

Android

iOS

OS X

Series 40

SymbianOS

Linux

OtherO
S

 M
a

rk
e

t
S

h
a

re
 (

%
)

Figure 1.2: Monthly OS Market Share from June 2012 to June 2017. Data provided
by Statcounter Global Stats [19].

a SDK that usually includes functionality for graphics rendering, physics simulation, animation,
artificial intelligence and sound, among others. Some of the most popular game engines are Unity [21]
and Unreal Engine [22], and both of them offer an optimized solution for mobile devices that allows
to create 2D and 3D mobile games for iOS and Android.

Regarding physics simulation, the physics engine is the software responsible for providing
realistic physical behavior to the objects in a scene, whose velocity and direction must be affected
by collisions with other objects and by gravity and other forces. Bullet [129] stands out as an
open source framework which simulates collision detection and collision response between objects.
Bullet can be used in the Unreal Engine, even though it includes its own physics simulation solution
(Physics Assets Tool). Likewise, Unity supplies its own 2D and 3D physics engine as well as a plugin
to use Bullet.

Regarding graphics rendering, the game engine offers a rendering method that handles the
rendering of a given scene, being an intermediary between the application and the graphics API.
The graphics API provides a low-level yet abstract way to access the specific graphics hardware
accelerator included in the device. On desktop, the most common real time 3D graphics APIs are
OpenGL and DirectX from the Khronos Group [52] and Microsoft respectively [42]. On the mobile
side, both iOS and Android include native support for embedded graphics acceleration through
OpenGL ES [57], which is a cross-language and multi-platform API that has gone through several
versions since its first specification was released in July 2003. Although OpenGL ES 1.0 (based on
OpenGL 1.3) is mostly meant to enable software renderers, it also enables basic hardware acceleration.
Following versions enable advanced hardware acceleration in order to increase performance and
reduce memory bandwidth to save energy. OpenGL ES 1.1 [16] (based on OpenGL 1.5), is meant
for fixed-function hardware renderers (configurable but not programmable), and versions 2.X and
3.X enable full programmable 3D graphics by replacing most fixed-function rendering pipeline stages
by programmable versions [58, 17].

27

CHAPTER 1. INTRODUCTION

1.1.2 Mobile Graphics Hardware

Current mobile devices employ SoCs, which are heterogeneous computing systems where the
key to enable a low-power yet rich experience is to utilize the right accelerator for every task. The
leading industry vendors of SoCs for mobile devices have already integrated new custom designed
accelerators such as: Digital Signal Processors; Display, Connectivity and Security controllers; Image
Signal Processors (camera support); Video Encoder/Decoders; and, of course, the GPU. In order to
further improve energy efficiency, some vendors have already included special cores even into the
GPU, like the 2D graphics composition cores [68, 23]. These special hardware accelerators either
replace a software implementation that was previously executed in the general purpose hardware
CPUs, or expand the capabilities of the SoC. In this section we briefly review the evolution of the
main components of the graphics system of a mobile device: the resolution of the display technology
and the graphics acceleration hardware.

Regarding the display technology, we have seen an impressive increment in the display resolution
as well as the color depth [8]. Back in 2004 the first licensed OpenGL ES 1.0 device, the Imageon
2300 of ATI Technologies, offered 320 x 240 display resolution and 16 bpp of color depth. Today,
resolutions of 1920 x 1080 (Full HD) and 32 bpp are quite common and available in devices like
iPhone 7 Plus and Samsung Galaxy S5. Other devices like Samsung Galaxy S7 increase the display
resolution to 2560 x 1440 (QHD) in 5.1 inches, while Samsung Galaxy S8 goes up to 2960 x 1440
(QHD+) native resolution in 5.8 inches. Regarding mid-end devices, the most common resolution is
1280 x 720 (HD Ready).

At the same time that the screen resolution has increased, the mobile graphics rendering
has significantly evolved from being responsible for creating simple text user interfaces mostly
implemented in software and executed in the CPU, to creating complex 2D/3D graphics animations
that employ a graphics hardware accelerator, the Graphics Processing Unit (GPU). In fact, in many
cases the early mobile devices had only hardware support for integer arithmetic [59]. However, with
the gradual adoption of higher screen resolutions and the necessity to render high-quality images
the graphics system was required to provide higher fill-rates, and subsequently GPUs became an
essential requirement.

The Khronos Group consortium maintains a list of products conformant with the different
OpenGL ES specifications [18]. According to this list, the first mobile GPUs to support OpenGL ES
1.1 were the Mali-110/Mali-55 [1] in 2005. They were fixed-function hardware pipelines (configurable
but non-programmable) for rasterization and Fragment Processing, offering fill rates in the order of
100 Mpix/sec [89]. Although the Geometry Processing might still be performed by software running
on the CPU, an optional MaliGP (Geometry Processor) processor could also be added to offload
the CPU of the Geometry Processing and enable 3D applications to run faster [190].

The first mobile GPUs to support OpenGL ES 2.0 arrived in 2008 and were PowerVR SGX530
and Mali200, offering fill rates in the order of 200 Mpix/sec [53, 60]. OpenGL ES 2.0 replaced some
fixed-function hardware stages of the pipeline by programmable stages with the ability to execute
vertex and fragment shader programs written in OpenGL ES Shading Language, to improve energy
efficiency. The first mobile GPU to officially support OpenGL ES 3.0 was the Adreno 320 [37]
presented in 2013 in the Snapdragon 600 SoC of Qualcomm [67], with a reported fill rate of 1.6
Gpix/sec and able to process 225 Mtri/sec. Following specifications of OpenGL made a big step

28

1.1. CURRENT TRENDS

towards programmability. Compute Shaders were added in OpenGL ES 3.1, while Geometry and
Tessellation Shaders were presented in OpenGL ES 3.2. The former allows to perform computation
not directly related to drawing triangles and fragments, while the latter allows to efficiently process
complex scenes on the GPU by means of giving the programmer the opportunity to create new
geometry not presented in the input stream of vertices. The first GPU to support OpenGL ES 3.1
is the Qualcomm Adreno 510 in 2016. The first GPU to comply with OpenGL ES 3.2 is the ARM
Mali-G71 also in 2016 with a fill rate around 1850 Mtri/sec and 27.2 Gpix/sec.

Regarding the current state of the market of Mobile Graphics Hardware (see Figure 1.3), it is
worth mentioning that it is not dominated by a single vendor. However, ARM and Qualcomm are
clearly ahead of the other ones hoarding 44% and 35% of the market share respectively, followed by
the duo formed by Apple and Imagination Technologies with more than 16% of the market (8.5%
and 7.8% respectively). The list is closed by Vivante (1.8%), Broadcomm (0.9%), NVIDIA(0.6%)
and Intel(0.5%).

2015/04 2015/07 2015/10 2016/01 2016/04 2016/07 2016/10 2017/01

0

10

20

30

40

50

60

70

80

90

100

Others Vivante ImgTec Apple Qualcomm ARM

M
o

b
il
e
 G

P
U

 M
a

rk
e
t

S
h

a
re

 (
%

)

Figure 1.3: Mobile Graphics Hardware Market Share. Data provided by Unity, March
2017 [11].

ARM licenses the Mali family of GPUs, with three main lines of GPUs: Ultra-low power (Mali
400 series), high area efficiency (Mali 720) and high performance (Mali G71, T860/880) [55]. The
Mali 400 MP [54] is the most deployed Mali GPU with around 19% of the market. It includes
OpenGL ES 1.1/2.0 support and is able to process 55 Mtri/sec and 2.0 Gpix/sec. The Mali400 MP
is a multi-core Tile Based Renderer, i.e., the rendering view-port (screen) is divided into tiles (bins),
which are independently rendered tile by tile using on-chip buffers that minimize main memory
bandwidth usage. This architecture is explained in more detail in chapter 2. A Mali G71 GPU
can be found in popular smartphones like Samsung Galaxy S8 and S8+, powered by the Samsung

29

CHAPTER 1. INTRODUCTION

Exynos SoC [65, 63].

Adreno is a series of mobile GPUs produced by Qualcomm included in the Snapdragon
SoC [38, 69]. Rather than implementing a Tile Based or an Immediate renderer, Adreno GPUs
implement both and are able to switch between the two modes at run-time using the FlexRender
technology [43]. Adreno GPUs can be found on commercial devices like Samgung Galaxy S5 [64] or
HTC One M9 [47].

PowerVR [61] is the solution provided by Imagination Technologies for embedded devices.
PowerVR implements a Tile Based Deferred architecture, which implements Hidden Surface Removal
at pixel granularity before computing the pixel colors, i.e., it defers the computation of the pixel
colors until the visibility for a pixel is determined. This approach decreases the Fragment Processor
computations and further reduces main memory bandwidth. PowerVR GPUs can be found in
several Mediatek SoCs, like the Helio x10/x30 [45, 46]. Furthermore, PowerVR designs are also
included in Apple SoCs like the Apple A8, Apple A9 and Apple A10 [40, 41, 39], which are employed
in popular mobile devices like iPhone 6/6 Plus, iPad Pro and iPhone 7/7 Plus [49, 48, 50]. The
Playstation Vita of Sony includes a PowerVR SGX543MP4+ GPU [62].

NVIDIA delivers the Tegra SoC [70], which includes an immediate-mode rendering GPU
architecture specially designed and tuned for high-performance and power efficiency. Tegra X1
implements a Maxwell GPU architecture with 256 cores, being the most advanced model that
NVIDIA provides for mobile devices [71]. It can be found on devices like the Nintendo Switch game
console [56] and the NVIDIA SHIELD TV streaming player [66].

Finally, it is worth to mention a vendor whose GPUs are not so widespread but, like the previous
companies, it offers high-quality products that achieve similar performance and power consumption.
Vivante develops the Vega GPU architecture included in the GC family of processors [23], which
counts with more than hundred successful mass market SoC designs. Samsung Galaxy Ace Plus,
Huaweii Ascend P6 and Samsung Galaxy Tab 4 are examples of mobile devices powered by Vega [72].

1.2 Problem Statement

In this section we first illustrate the importance of energy-efficient designs to improve battery
life per charge and performance in mobile devices. Then, in subsections 1.2.1 and 1.2.2 we point out
the main sources of energy drain in mobile SoCs for graphics workloads. Finally, in subsections 1.2.3
and 1.2.4 we introduce the two main aspects focused in this thesis.

Software and hardware improvements like the ones described in the previous section are crucial
to deliver a rich user experience that satisfies the user demands on the functionality of mobile
devices. For example, in graphics animation applications the trend is towards supporting more
realistic and complex 3D rendering. The direct consequence of supporting these higher computing
demands comes with a significant increase in energy consumption. However, the battery capacity
does not grow at the same pace as the computing demands, which produces an energy gap that is
incremented on each generation [168] and puts pressure on the battery life of mobile devices. It is
important to note that for the users of mobile devices the battery life per charge is the third most

30

1.2. PROBLEM STATEMENT

valued satisfaction factor [32], being critical in the overall satisfaction with the device [31]. Figure 1.4
shows the evolution of the battery capacity of the Samsung Galaxy S family of smartphones. As can
be seen, the battery capacity has only been doubled from 2010 to 2017 with an average increment of
11.7% per year. In particular, since 2014 -three generations ago-, the battery capacity of the flagship
device of Samsung has only grown slightly above 7%, remaining flat in the last two generations.

S (2010)

S2 (2011)

S3 (2012)

S4 (2013)

S5 (2014)

S6 (2015)

S7 (2016)

S8 (2017)

0

2

4

6

8

10

12

14

Mobile Device (Released Year)

E
n

e
rg

y
 C

a
p

a
c

it
y

 (
W

h
)

Figure 1.4: Battery Capacity of Samsung Galaxy S smartphone series.

Besides battery life per charge, there is another factor that limits energy consumption on current
mobile devices. Current mobile devices like smartphones and tablets are extremely thin in order to
reduce their weight, as well as make them more attractive and easier to slip into pockets of all sizes.
As a direct consequence, these devices cannot be equipped with active cooling mechanisms like fans
or conventional and big heat sinks to dissipate heat in order to keep the temperature below the
maximum temperature limit of internal components. Moreover, given the handheld nature of these
devices, it is critical to keep a comfortable surface touch temperature, otherwise the device may
become too hot to handle [195, 102]. In order to avoid overheating above thermal limits, mobile
SoCs tend to be throttled when the load is high for a large period of time [178, 85].

1.2.1 Major Energy Consumers

Among all the components of the mobile device the GPU and the CPU have been identified by
previous works to be the principal energy consumers for common applications [122]. In particular, for
graphics applications the GPU has been identified as the principal energy consumer [174]. Further
experimental data with the same SoC shows a peak consumption of the GPU 50% higher than the
peak consumption of the CPU [30]. We conduct a brief experiment in order to further motivate our
work.

Figure 1.5 shows the total power consumption of a smartphone (left axis) as well as the GPU
and the CPU load (right axis) for two different applications: AnTuTu [36]; and Netflix [81] for
Android. AnTuTu, with more than 100 M users, is the most popular benchmarking application for
mobile devices powered by Android. Netflix is a popular video streaming platform. Let us analyze
in detail the results for AnTuTu benchmark. Figure 1.5a shows the results for AnTuTu benchmark.

31

CHAPTER 1. INTRODUCTION

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

36
1

37
3

38
5

39
7

40
9

42
1

43
3

44
5

45
7

46
9

0

1

2

3

4

5

6

0

20

40

60

80

100

120

Battery Power (W)

GPU Load (%)

CPU Load (%)

Time (s)

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
)

C
P

U
/G

P
U

 L
o

a
d

 (
%

)

A1 A2 - GPU Workloads A3 - CPU Workloads A4 - Clossing App

(a) Full run of AnTuTu [36] benchmark V6.2.7.

1 74 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

11
2

0

1

2

3

4

5

6

0

20

40

60

80

100

120

Battery Power (W)

GPU Load (%)

CPU Load (%)

Time (s)

P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n
 (

W
)

C
P

U
/G

P
U

 l
o

a
d

 (
%

)

N1 N2 - Video Playback N3 - Clossing App

(b) Netflix HD video playback using Cellular Data.

Figure 1.5: Total Power Consumption, GPU load and CPU load of a mobile device.
Measurements made with Trepn Power Profiler [35, 33], with special features for
Snapdragon SoCs. The phone employed in the two tests is a Samsung Galaxy J5,
equipped with a 720x1280 (5”) Super AMOLED display (294 ppi) and powered by a
28nm Qualcomm Snapdragon 410 MSM8916 SoC [34], which includes a 64 bit quad-
core 1.2 GHz Cortex-A53 CPU and an Adreno 306 GPU. Both tests were done with
screen brightness set to the minimum and WiFi disabled (cellular data enabled).

The test has been divided into four phases: A1: application startup; A2: GPU workloads; A3:
CPU workloads; A4: application end. As can be seen, the peak power consumption (around 4.57
W) is reached when running the graphics workloads (A2 phase). Furthermore, the average power
consumption on this phase is around 3.7 W. Note that the power consumption correlates well with
the GPU load, which is around 96% on this phase. On GPU workloads phase the CPU load is
around 18.9%. Regarding the CPU workloads (A3 phase), the average power consumption is around
0.78 W with an average CPU load of 40%. The average GPU load is smaller than 1% in this
phase. Note that even when the CPU load is almost 100% the total power consumption is still
below 2 W. These results suggest that the GPU is the principal energy consumer in this mobile
device. However, the reader may argue that the figure not only shows the power of the GPU and
the CPU, but also the power of all the components of the smartphone such as the screen and the
modem, and therefore they could be the principal power consumers in the device. In order to

32

1.2. PROBLEM STATEMENT

elucidate the power consumption of the other parts of the device, like the modem and the screen,
we have run an additional test playing a streaming video with Netflix (see Figure 1.5b). The span
of this figure is split in three different phases: N1: application startup); N2: video playback; N3:
application end. When playing the video, the peak energy consumption is right below 1 W, while
the average is around 0.36 W. The GPU load is 0%, while the CPU load is around 26% on average,
with a maximum of 56%. Note that, like in the previous test, when the GPU is idle (N2) the power
consumption is much lower than when the GPU is busy (N3). The GPU load peaks that appear
both in A4 and N4 are caused by the activity of the OS, which employs GPU acceleration for
desktop transitions and animations. It is clear that the energy consumption of graphics workloads
is much greater than the energy consumption of other workloads.

Let us analyze the battery life of a device when running GPU and CPU phases shown above.
The Samsung J5 is equipped with a 2600 mAh battery at 3.8 V of nominal voltage, thus its battery
capacity is: 2600mAh∗3.8V

1000
= 9.88Wh. The amount of energy available is: 9.88Wh∗3600s/h = 35568J .

As the average power drain is 3.7 W, 0.78 W and 0.36 W for A2 (GPU workloads), A3 (CPU
workloads) and N2 (video playback) phases, the corresponding battery life is around 2 hours and 40
minutes, 12 hours and 40 minutes, and 27 hours and 26 minutes respectively. The battery life of the
device when running the graphics workloads is heavily reduced being less than three hours, while
for the non graphics workloads the battery life is more than ten hours.

Given the huge impact of the graphics workloads and the GPU in the power consumption of
mobile devices, the design of energy-efficient techniques for graphics workloads is crucial. Increasing
the energy efficiency of the mobile GPU is not only meant to reduce energy consumption but
also is an effective way to increase its performance, which makes mobile GPU designers focus on
energy-efficient solutions to improve performance per watt rather than raw performance, which is
key in making possible the increased computing demands of the users.

1.2.2 Major GPU Energy Consumers

Previous studies pointed out that the principal energy consumers in the graphics subsystem are
the off-chip main memory accesses and the processors inside the GPU, in particular the ones devoted
to Fragment Processing [102, 105, 165, 177]. The results obtained with our simulation infrastructure
are in line with the results of the previous studies. Figure 1.6a shows the power of different structures
of the GPU. The principal consumers are the accesses to main memory and the activity of the
Fragment Processors (FP) with 53% and 42% of the total energy consumption respectively. The
FPs are the main energy consumers mainly due to the fact that in common graphics workloads the
number of fragments is usually orders of magnitude higher than the number of vertices. For example,
for a rendering resolution of 1280 x 768 the number of instructions executed in the FPs is on average
around 94% of the total instructions (numbers obtained with the simulation infrastructure and
workloads described in the following chapter). Figure 1.6b shows the main memory BW breakdown
originated at different stages of the graphics pipeline. As can be seen, around 47% of the BW with
main memory is performed by the FP stage, so a large percentage of the energy consumption of the
main memory corresponds to the FP stage.

Given that in our experiments around 53% of the energy breakdown corresponds to main

33

CHAPTER 1. INTRODUCTION

memory, and due to the fact that around 47% of the traffic is caused by the FP stage, the FP stage
consumes around 53% ∗ 47% = 25% of the total energy performing accesses to the main memory.
This 25% along with the 42% of the energy devoted to the FPs (see Figure 1.6a), means that the
FP stage is responsible of around 67% of the total energy consumption of the main-memory/GPU
system.

0

20

40

60

80

100

53

42
Other

VP

FP

L2

Main
Memory

E
n

e
rg

y
 B

re
a

k
d

o
w

n
 (

%
)

(a) Total GPU Energy Breakdown.

0

10

20

30

40

50

60

70

80

90

100

47

46

Other

Tiling

FP Stage

B
W

 B
re

a
k
d

o
w

n
 (

%
)

(b) Main Memory BW Breakdown

Figure 1.6: GPU energy breakdown and main memory BW breakdown of a mobile
TBR GPU. Numbers obtained with the set of benchmarks introduced in Section 3.2.

1.2.3 Occlusion Culling

During real-time graphics rendering, objects are processed by the GPU in the order they are
submitted by the CPU, and occluded surfaces are often processed even though they will end up not
being part of the final image. Occlusion culling (aka visibility determination) is an essential process
of the graphics rendering pipeline that allows to decide which fragments of a scene are visible and
which are not. The most widespread method to resolve visibility at pixel granularity is the Depth
Test, which is typically placed at the end of the pipeline. The Depth test compares each fragment’s
depth against that already stored in the Depth Buffer to determine if the fragment is in front of all
previous fragments at the same pixel position. If not, the fragment is discarded. Otherwise, the
Depth Buffer is conveniently updated with the new depth, and the color of the fragment is sent to
the blending stage, which will accordingly update the Color Buffer (the buffer where the image is
stored).

The main advantage of the Depth test is that it ensures correct scene rendering regardless of
the order the opaque geometry is submitted by the CPU. The main drawback is that the color of a

34

1.3. STATE OF THE ART

given pixel may be written more times than necessary (a problem known as overdraw), which wastes
a considerable amount of main memory bandwidth and energy [172]. Moreover, when the GPU
realizes that an object or part of it is not going to be visible, all activity required to compute its
color has already been performed, with the consequent waste of time and energy. Hence, reducing
the overshading produced by non-visible fragments can significantly increase the energy-efficiency
of the GPU. As we will show, with some adaptations occlusion culling can be employed to reduce
redundant fragment shading and therefore increase the energy-efficiency of the GPU.

1.2.4 Collision Detection

Collision Detection (CD) is one of the most important algorithms that manage the dynamics
of the animations. It identifies the contact points between the objects of a scene and determines
when they collide. During the past decade, mobile devices have quickly incorporated graphics and
animation capabilities and the trend going forward is towards more powerful support for real-time
physics simulations with increasing precision and realism. However, despite high-accurate physics
algorithms increase the quality and the realism of the animations, their implementations may
be expensive for mobile devices. Furthermore, highly-accurate Collision Detection schemes are
control-intensive algorithms [2], known to cause branch divergence in GPGPUs [139] which produces
low utilization of the functional units and reduces the performance [147] of the GPU.

1.3 State of the art

In this section we introduce techniques that other authors proposed to deal with occlusion
culling and collision detection, the principal problems addressed in this thesis.

1.3.1 Reduction of Redundant Fragment Shading

Olson [172] studies the effect of overshading in mobile platforms for a set of commercial mobile
applications and identifies it as a significant source of wasted energy. Given that the FP stage is the
most energy-consuming stage of the graphics rendering pipeline, multiple works aim at reducing
the number of instructions executed in the Fragment Processors by means of reducing the number
of fragments whose color must be computed to render a frame. Some works make use of visibility
determination to achieve some sort of reordering either at geometry or at fragment level granularity.
There are other efforts that introduce changes in the GPU microarchitecture in order to reduce
the number of executions of the Fragment Processors. On the other hand, rather than reducing
the number of fragments executed in the processors, other studies have focused on improving the
energy-efficiency of the GPU in different aspects, like hiding the memory latency or reducing the
main memory BW of the GPU [109, 110].

Let us remark some concepts which will help us to better understand this section. When we
refer to geometry of a scene we mean vertices and primitives (points, lines, and triangles) formed by
those vertices. Such primitives are later discretized in fragments that correspond to pixel positions

35

CHAPTER 1. INTRODUCTION

and whose color is computed in the processors of the GPU. The fragments are usually grouped in 2x2
pixels regions called quad fragments, that represent the unit of execution of the Fragment Processors.
All the quad fragments of an object (draw command, drawcall) execute the same program/shader.

Geometry Level Sorting

Multiple works have analyzed how overshading can be reduced by culling the geometry at
primitive level granularity through the use of occlusion queries [118, 187]. When using occlusion
queries, the application usually sends a query with a Bounding Volume of the object to the GPU
where it is rasterized and depth tested for visibility. Eventually, the result of the query is sent to the
driver and if the Bounding Volume was occluded, the application will not send the object to the GPU.
Unfortunately, using any kind of feedback from the GPU limits the achievable frame rate unless the
scene complexity is above a large threshold [117], which is often not the case on mobile workloads.
Moreover, as mobile devices evolve to higher resolutions, testing for occlusion objects that are not
fill-rate bound (i.e. with simple fragment programs and textures) may require many more pixels
to fill and the GPU will likely spend more time rendering the object’s bounding volume than the
object itself. Given that at some point the application must know the result of the queries, they
may introduce CPU stalls and produce GPU starvation. Furthermore, GPU drivers let the GPU
render several frames behind the CPU by actually queuing the rendering commands [130, 92, 90],
which exacerbates these problems. One important limitation when using occlusion queries is that
it is required to sort the queries of the objects in a front-to-back manner to perform well. Many
software approaches require building costly spatial hierarchical data structures to render the scene
from any single viewpoint. They are quite effective on walkthrough applications where the entire
scene is static and only the viewer moves through it, because the overheads can be amortized along
a large number of frames [125].

Govindaraju et al. [141] sort the primitives of every object of a scene in a front-to-back order
from a given viewpoint. However, they assume that the objects do not overlap, so the scheme
only avoids overshading produced by geometry of the same object (intra-object overshading), and
not between different objects (inter-object overshading). Unfortunately, this scheme is not able to
handle cycles in the sorting process, which are highly common on dynamic 3D scenes.

Nehab et al. [171] and Sander et al. [185] also propose techniques to reduce intra-object
overshading. They propose a pre-processing scheme that sorts the geometry of every object in a
scene in a view-independent order that minimizes overshading. They focus on static meshes and
produce a single order per mesh. On the other hand, Han et al. [146] propose a technique that
is also focused on reducing intra-object overshading but they target animations. They propose a
pre-processing scheme that produces a number of view-dependent orders per every object of a scene
from different points of view, all of them minimizing the overshading. Then, the application selects
at runtime a view-dependent order that minimizes the overshading depending on the orientation of
the objects with respect to the camera.

36

1.3. STATE OF THE ART

Fragment Level Sorting

To reduce overshading, most graphics rendering pipelines perform an “early” visibility determi-
nation (Early-depth test) that tests the visibility of fragments before they are sent to the processors.
Although the Early-depth can only cull fragments which are hidden by those already tested, it may
reduce fragment shading and bring important performance and power benefits.

With Z-prepass, Haines et al. [145] address overshading by performing two separate rendering
passes with the GPU. First Z-prepass renders the geometry without computing the color of the
fragments, just using a null fragment shader in the processors, to determine the visibility of the
scene. On a second pass with the real shaders the Early-depth test will perform optimal culling,
so overshading will be minimum (just one opaque fragment per pixel will be shaded and written
into the Color buffer, the buffer where the rendered image is stored). Unfortunately, this approach
doubles several stages of the graphics pipeline like vertex processing, rasterization and visibility
determination, which may offset the benefits of the technique. It is only effective for workloads with
enough complexity where the overhead of the first rendering pass is compensated by large fragment
computation savings, which is not usually the case on mobile applications.

Like Z-prepass, Deferred Rendering (DR) is a hardware technique that avoids overshading
through computing the Depth Buffer before starting fragment shading. Imagination Technologies
implements a Deferred Rendering approach in its PowerVR [91] family of GPUs. PowerVR
implements a Tile Based Deferred Rendering (TBDR) architecture, a form of Tile Based Rendering
(TBR) architecture. TBR pipelines divide the screen space into tiles of pixels. In a first phase
before rasterization they perform all the geometry-related computations of the scene and sort the
resulting geometry into screen tiles of fixed size (16x16, 32x32, 64x64 are common tile sizes). When
all the geometry has been sorted and stored in the Parameter Buffer a second phase reads the
geometry from it and renders the scene tile by tile in an independent manner. This allows the GPU
to use small on-chip memories to contain the Depth and the Color buffers for the entire tile, which
dramatically reduces the accesses to main memory [106]. Note that the overshading still occurs,
but the accesses to Depth and Color buffers are performed over local and small on-chip memories,
instead to main memory. Additionally, DR performs a hidden surface removal (HSR) phase. During
the HSR phase, all the tile primitives are first rasterized only for position and depth, and the
resultant fragments are Early-depth tested to setup the Depth buffer. Once HSR is complete, the
second pass processes the tile primitives as usual along the raster pipeline (they are read, rasterized
and depth-tested again), except that this time the Early-depth test performs optimal occlusion
culling. Although the details of this technique in commercial systems are not fully disclosed, we
have modeled in our framework an efficient implementation of it at the microarchitecture level,
which is described in Subsection 4.3.1. In contrast to Z-prepass, DR does not perform the geometry
processing twice. However, DR still has a non negligible cost: either it introduces a barrier in the
graphics pipeline because the Fragment Processing stage is not started until HSR has completely
finished for a tile, or extra hardware is required to perform the HSR of a tile in parallel with the
rendering of other tile. Further details are given in Section 4.3.1.

Deering et al. [132] proposed a Deferred Shading architecture where the screen space is divided
into bins indexed by scan line. First, all the geometry of a given frame is processed, sorted into
bins, and stored in an intermediate buffer (Y-buffer). Then, when all the triangles of a given frame

37

CHAPTER 1. INTRODUCTION

have been processed, the following stages of the graphics pipeline are performed in two pipelines in
sequence, the Triangle Processor Pipe (that rasterizes triangles creating fragments) and the Normal
Vector Shader pipe (that computes the color of the fragments). The authors included multiple
Triangle Processor and Normal Vector Shader pipes, providing a highly parallel architecture that was
able to overcome the main memory access bottleneck. Later, Saito et al. [184] proposed a Deferred
Shading scheme that avoids to compute the color of hidden surfaces. This technique proposes a
two-pass scheme. In the first pass, the per-fragment data (depth, normals, texture coordinates, ...)
is computed and stored in intermediate buffers referred as G-buffers. Then, the second rendering
pass performs the fragment shading to compute the color of the visible fragments.

Ragan-Kelley et al. [179] propose a technique that decouples shading from visibility determination
and allows to shade at a lower rate but yet enabling super-sampling effects. Rather than performing
two rendering passes and determining the visibility in the first one, the authors propose a single
pass technique that employs a memoization scheme, which caches shading results. If a fragment
passes the visibility test, instead of computing a shading sample (color), the memoization buffer
is checked for previous cached values at the same fragment’s position. If the memoization buffer
contains the value, it is reused avoiding the shading. Otherwise, the shading sample is computed.
Based on the work of Ragan-Kelley et al. [179], Liktor et al. [164] propose to introduce Compact
G-buffers (CG-buffer), that reduce the memory footprint of the G-buffer by means of reusing data
of the G-buffer. Instead of storing data per every visible fragment that will be later processed
in the Fragment Shading stage, the CG-buffer includes a visibility reference buffer, which holds
references (per every visible fragment) that point to entries with shader inputs. Unlike the G-buffer,
the CG-buffer avoids to store redundant entries that correspond to the same results shader output.
Hence, this approach eliminates redundancy before fragments shading by reusing G-buffer results,
rather than reusing fragment shading results like the previous approach.

Clarberg et al. [124] propose a Deferred Rendering method that is executed in two phases.
The first one performs vertex processing (only position), rasterizes the geometry of the scene and
determines the visibility. The second phase sorts the geometry into tiles, and then for each tile it
repeats the vertex processing but only for the visible primitives, which allows to perform vertex
processing of attributes, as well as attribute interpolation and fragment processing just for visible
fragments. The authors only report bandwidth and fragment executions but no energy numbers.

Other Related Work

Arnau et al. [110] propose Parallel Frame Rendering (PFR), which exploits frame to frame
coherency and temporal locality to improve the energy-efficiency of the GPU. The authors take
advantage of the similarity between the texture data sets between consecutive frames, and propose a
scheme that splits the GPU resources to process multiple consecutive frames in parallel (synchronizing
the memory accesses of such frames), which increments the hit rate of the texture caches. Hence,
the main memory bandwidth related to textures is reduced providing significant bandwidth and
energy savings, as well as significant speed-up. In a later work, Arnau et al. [112] extend PFR
in order to reduce overshading. Like with PFR, they render several frames in parallel, but they
additionally introduce a memoization scheme that caches results of the Fragment Processors to
avoid redundant executions. Once a fragment passes the visibility test, the memoization scheme

38

1.3. STATE OF THE ART

produces a signature of the inputs of the Fragment Processor for that fragment, and checks if it
is present in the memoization buffer. If the signature is already present in the buffer, the scheme
reuses a previous fragment shading result, which reduces overshading. If the signature is not found,
the color of the fragment is computed in the Fragment Processors, and the corresponding result
along with the corresponding signature are cached in the memoization buffer.

The unit of execution of the Fragment Processing is usually the quad fragment, a group of 2x2
fragments located at a 2x2 pixel region of the viewport (screen). Given a primitive, it may happen
that not all the fragments in a group of 2x2 are covered by a primitive. Hence, when the processor
performs the fragment shading for not fully covered quad fragments its resources are underutilized.
This problem is exacerbated in the presence of micro-triangles. Fatahalian et al. [137] propose a
scheme to reduce overshading caused by micro-triangles by means of gathering and merging partially
covered quad fragments, that are generated from adjacent tessellated primitives, into a single quad
fragment before doing fragment shading.

Sathe et al. [186] propose a scheme that aims at reducing overshading for micro, medium, and
large sized triangles when using Multi-sample anti-aliasing (MSAA). MSAA is a technique that,
given a fragment, uses four sampling points for color and depth, while fragment shading is still
performed just once per fragment. MSAA improves the appearance of the frame in high frequency
zones (i.e. object boundaries). On the contrary, the quality of the frame in low-frequency zones
hardly improves in the presence of MSAA. The authors exploit that fact and propose a hardware
unit that for a group of connected primitives detects when a primitive does not cover the center
of a given pixel (but cover at least one of its four sampling points) and skips the shading for that
triangle. Instead, the scheme reuses the shading result of the connected primitive that indeed covers
the center of the pixel.

1.3.2 Collision Detection

There are many proposals to detect object interference through geometric computations, for
example by computing intersections between pairs of bounding volumes (spheres, capsules, boxes,
k-DOPS, ...), or by computing the distance between points in the space. CD algorithms are
intrinsically quadratic with respect to the number of objects and their surfaces. To alleviate this
cost CD is often split into two phases:

• Broad Phase: Fast and simple, and often coarse grain, tests applied to pairs of collisionable
objects in a scene. In this phase it is common to employ some kind of spatial partitioning
in order to reduce the number of pairs of objects to be tested. The pairs of objects whose
bounding volumes collide are added to the Potentially Colliding Set (PCS), whose elements
are tested in the narrow phase.

• Narrow Phase: Slow and complex test that employs more accurate shapes than the broad
phase to test the collision for the pairs of objects that were suspect to collide in the previous
phase.

There exists a large body of research on CD [154, 135, 158, 196]. Both broad and narrow phases

39

CHAPTER 1. INTRODUCTION

can be executed in a CPU or a GPGPU, depending on the characteristics of the specific platform.
Broad phase algorithms are simple to parallelize, whereas narrow phase algorithms are usually, for a
given pair of objects, control-intensive. In most cases, the narrow phase of CD is executed in the
CPU because of the non-regular nature of the computations, and in low-power systems the broad
phase is executed in the CPU as well.

There are versions of some CD algorithms written for GPGPU. Even though the innermost loops
of the narrow phase algorithms are difficult to parallelize because of its control-intensiveness, these
algorithms can exploit parallelism by evaluating the narrow phase for multiple colliding elements in
parallel. However, although they can perform the computation fast, GPGPU schemes must still
bring the geometry of the colliding elements from CPU memory to GPU. The cost of transferring
this geometry from memory is not negligible and in some cases it could represent more time than
the computational cost itself. Lee et al. [161] take into account these costs and report a 14x speedup
of a very accurate CD algorithm (GJK [140]) on a GPGPU compared to the CPU version.

Many proposals apply a spatial hierarchical partitioning of the objects in a scene. Ar et al. [107]
use BSP-trees, which subdivide the space in two sub-spaces that satisfy a given requirement. In
early computer graphics systems the BSP-trees were used along with the Painter’s algorithm to
render scenes in the absence of the Depth buffer algorithm. Fan et al. [136] employ octrees, a tree
where every node has exactly eight children nodes that represent one eighth of the space represented
by the parent node. Wang and Liu [198] employ AABB-trees, a tree composed of AABBs (Axis
Aligned Bounding Boxes) where the root of the tree is an AABB that contains all the geometry
of the scene and every child of a node is an AABB bounded by the AABB of the parent node.
Lawlor et al. [160] propose to subdivide the scene in an axis-aligned grid of voxels, where every
voxel contains a list with the objects that it overlaps. Then, any other CD scheme is used to detect
the collision points for every voxel’s list.

He et al. [149] propose a scheme that creates Bounding Volume Hierarchies (BVHs) based
on dynamic clustering of the objects in a scene. First of all, the objects are decomposed in non
self-colliding leaf-clusters. Then, an intermediate step merges such clusters and creates intermediate-
clusters that maintain the non self-colliding property. The merge step creates a binary tree where
the last-level nodes are leaf-clusters, and the other nodes are intermediate-clusters. For all the
intermediate-clusters the scheme computes appropriate bounding volumes. A BVH is created
starting from the parents of the leaf-clusters up to the root clusters of the binary tree. Then, the
scheme performs overlap tests between the nodes of the tree. If a given overlap test reaches the
leaf level of the binary tree, a BVH is computed for every leaf-cluster involved in the test. The
process of CD is then resolved by testing the collision of the corresponding BVHs of the leaf-clusters
involved in the possible collision. When testing the BVHs of two leaf-clusters, if the last level of the
hierarchy is reached, the scheme uses triangle tests to check the collisions.

Du et al. [134] present a parallel Continuous CD (CCD) algorithm that distributes the work
across a high-performance shared-memory system that includes both GPUs and CPUs. For every
object in a scene, the scheme creates a Sphere Bounding Volume (SBV) and computes the trajectories
of the SBVs performed between two time steps. Such trajectories are projected on to a Cartesian
coordinate system. Then, a classical Sweep and Prune [29] algorithm is performed in the GPU in
order to discard non overlapping trajectories and create the PCS. For a given pair of objects in the
PCS, the scheme creates a BVH for each object. Finally, the nodes of the BVH are tested to collide.

40

1.3. STATE OF THE ART

To detect the collisions at primitive level granularity the scheme uses an interval-iteration method.

Image-Based CD

There is a group of CD algorithms known as Image-Based CD (IBCD). IBCD consists in the
rasterization of the surfaces of the scene objects and the detection of their intersections based on the
pixel depths of the corresponding fragments [115]. These kind of techniques have been proposed to
exploit the computing power of graphics processors and their ability to rasterize polygons efficiently.
Shinya et al. [189] and Rossignac et al. [183] opened the path to IBCD with their pioneering work.

Myszkowsky et al. [170] propose a technique based on the Depth buffer and on checking the
changes in the Stencil buffer between a frame and the following one, and suggest including a hardware
assisted polygon sorting in order to dramatically increase the performance of the technique.

Baciu and Wong [113] propose a detection scheme based on reducing the region of the Stencil
buffer to be tested, which reduces the main memory traffic and thus minimizes the need for the
specific hardware pointed out in the previous work [170].

Baciu and Wong [114] and Heidelberger et al. [151] show hybrid techniques using both object
space and image-based CD. They sometimes use more than one rendering pass, since they rely on
a rasterization system with only one depth value per pixel in the Depth buffer at any given time.
The latter work performs the collision detection on the CPU. They expand this work to handle
auto-collisions with deformable geometry [152]; however, both works rely on reading back to the
CPU the results of the rasterization (Depth and Stencil buffers).

Knott and Pai [157] make use of the Color, Depth and Stencil buffer and several rendering
passes in order to detect collisions among all the objects to be tested. CULLIDE [142], proposed
by Govindaraju et al., can reduce the aforementioned buffer read-back overhead by making use
of occlusion queries. In a later work [143], the authors improve the accuracy of the method by
computing conservative overlap tests between the primitives and avoiding-to-miss collisions due to
viewport resolution. Faure et al. [138] propose to detect collisions between two 3D objects using
surface rasterization in three orthogonal directions to discard objects that do not overlap in one of
the axes. Then, they perform the narrow phase of the CD in the CPU.

Chen et al. [121] also employ a classic broad and narrow phase scheme. This scheme executes the
broad phase in the CPU, which uses AABBs to rapidly discard non-overlapping objects. Additionally,
in the broad phase they compute the region where the two AABBs overlap, commonly known as
Region of Interest (ROI). Then, the volume of the resultant pair of objects that is inside the ROI is
voxelized in real-time using the GPU. The voxels of each object are stored in an independent 2D
texture that describes the volume of the object. Finally, the collision test is performed in the GPU
by pair-wise comparing every voxel of the 2D textures. If at least there is one common voxel, the
pair of objects is reported to collide.

41

CHAPTER 1. INTRODUCTION

1.4 Thesis Overview and Contributions

The goal of this thesis is to propose novel and effective techniques to eliminate redundant com-
putations performed in real-time computer graphics applications with special focus on mobile GPU
micro-architecture. Improving the energy-efficiency of CPU/GPU systems, which are extensively
deployed in mobile devices, is key to enlarge their battery life. Our main contributions are Visibility
Rendering Order and Render-based Collision Detection. The former is a technique that reuses visi-
bility information of previous frames to eliminate redundant computations of hidden surfaces in the
Fragment Processors of the GPU for the current frame being rendered. The latter one is a technique
that avoids redundant computations related to CPU Collision Detection by reusing intermediate
rendering results employed to perform accurate CD in the GPU. These works are implemented
on top of a conventional mobile GPU being suitable for both Tile Based and Immediate-Mode
GPU architectures. Furthermore, we also propose a micro-architectural implementation of a Tile
Based Deferred Rendering GPU and we make a performance and energy evaluation of the Z-prepass
software technique. Below we present the problems we deal with and the approaches we take to
solve them, as well as providing a comparison with related work.

1.4.1 Visibility Rendering Order

Figure 1.7 introduces a simplified conventional graphics pipeline. The GPU receives vertices and
processes them in the Geometry Pipeline, which generates triangles. These are then discretized by
the Rasterizer, which generates fragments that correspond to pixel screen positions. Then, fragments
are sent to the Fragment Processing stage, which performs the required texturing, lighting and
other computations to determine their final color. Finally, the Depth test compares each fragment’s
depth against that already stored in the Depth Buffer to determine if the fragment is in front of all
previous fragments at the same pixel position.

Depth
Test

Depth
TestG.P.G.P. Rast.Rast. F.P.F.P.

G.P. = Geometry Processing Rast. = Rasterization
F.P = Fragment Processing

Depth
Buffer

Depth
Buffer

Vertex
Cache

Vertex
Cache BlendingBlending

Color
Buffer

Color
Buffer

Raster Pipeline
Geometry
Pipeline

Vertices Triangles Fragments Visible
Fragments

Figure 1.7: Simplified version of the Graphics Pipeline.

When the GPU realizes that an object or part of it is not going to be visible, all activity
required to compute its color has already been performed, with the consequent waste of time and
energy, especially in the Fragment Processing stage, which is the most power consuming stage of
the graphics pipeline [176]. To help discard occluded surfaces earlier in the pipeline, most current

42

1.4. THESIS OVERVIEW AND CONTRIBUTIONS

GPUs include an Early-Depth test before the fragment processing stage.

In first place, we evaluate the amount of overshading in mobile graphics workloads and the
effectiveness of Early-depth test to reduce it. Early-depth reduces an important part of the
overshading but there is significant room for improvement because, to be effective in avoiding the
rendering of hidden surfaces, it requires opaque geometry to be processed in a front-to-back order.
We also evaluate a Deferred Rendering scheme, which obtains perfect occlusion culling at fragment
level. However it includes an extra render pass to determine visibility, which has a non negligible
cost.

In second place, we propose a novel architectural technique for mobile GPUs, Visibility Rendering
Order (VRO), which reorders objects front-to-back entirely in hardware to maximize the culling
effectiveness of the Early-depth test and minimize overshading, hence reducing execution time and
energy consumption. VRO exploits the fact that the objects in graphics animated applications tend
to keep their relative depth order across consecutive frames (temporal coherence) to provide the
feeling of smooth transition. VRO keeps visibility information of a frame, and uses it to reorder the
objects of the following frame. Since depth-order relationships among objects are already tested by
the Depth Test, VRO incurs minimal energy overheads. It just requires adding a small hardware
to capture the visibility information and use it later to guide the rendering of the following frame.
Moreover, VRO works in parallel with the graphics pipeline, so negligible performance overheads are
incurred. We illustrate the benefits of VRO using various unmodified commercial 3D applications
for which VRO achieves 27% speed-up and 14.8% energy reduction on average over a state-of-the-art
mobile GPU. This work is included in a paper that is currently in reviewing process:

• “Visibility Rendering Order: Improving Energy Efficiency on Mobile GPUs through Frame Co-
herence”.
Enrique de Lucas, Pedro Marcuello, Joan-Manuel Parcerisa, and Antonio González.
To be published.

Multiple works have analyzed how overshading can be reduced by culling the geometry at
primitive level granularity through the use of occlusion queries [118, 187]. When using occlusion
queries, the application usually sends a query with a Bounding Volume of the object to the GPU to
be rasterized and depth-tested. Eventually, the result of the query is sent to the driver and if the
Bounding Volume was occluded, the application will not send the object to the GPU. Given that at
some point the application must know the result of the queries, they may introduce CPU stalls and
produce GPU starvation. Furthermore, some drivers let the GPU render several frames behind the
CPU by actually queuing the rendering commands [130, 92, 90], which exacerbates these problems.
Like the Early-depth, occlusion queries require to sort the queries (and the objects) front-to-back
to perform well. On the contrary, VRO does not suffer by these limitations. On the one hand
VRO is fully integrated into the GPU, so the application does not need to receive any feedback
from VRO. On the other hand, VRO reuses the results produced in the Depth test of the actual
rendering commands of the application, instead of introducing extra work (occlusion queries) to
reduce overshading.

Govindaraju et al. [141] sort the primitives of every object of a scene in a front-to-back order
from a given viewpoint. They assume that the objects do not overlap, so the scheme only avoids

43

CHAPTER 1. INTRODUCTION

intra-object overshading. Furthermore, they are not able to handle cycles in the sorting process
whereas VRO is able to produce a Visibility Rendering Order in the presence of cycles, which
are highly common on 3D scenes. There are other approaches focused on reducing intra-object
overshading. Nehab et al. [171] and Sander et al. [185], propose a pre-processing scheme that sorts
the triangles in a view-independent order to reduce overdraw. However, they focus on static meshes
and produce a single order per mesh. On the other hand, Han et al. [146] target animations and
produce different view-dependent orders per object, which are used by the application depending on
the orientation of the objects with respect to the camera. These techniques, focused on reducing
intra-object overshading are complementary to VRO, which reduces inter-object overshading.

Rendering the objects in a front-to-back order effectively reduces overshading but unfortunately
it is not the general case in commercial applications. Our proposal creates a view-dependent
front-to-back order that effectively reduces overshading in a transparent manner to the programmer.
VRO does not require neither extra Vertex Processing, Rasterization nor Early-depth executions.
Furthermore, VRO can handle both static and animated scenes and is able to create a rendering
order of a scene even in the presence of cycles between different objects.

1.4.2 Render Based Collision Detection

Graphics animation applications such as 3D games represent a large percentage of downloaded
applications for mobile devices and the trend is towards more complex and realistic scenes with
accurate 3D physics simulations, like those in laptops and desktops. Collision detection (CD) is one
of the main algorithms used in any physics kernel. CD is one of the most important algorithms
since it identifies the contact points between the objects of a scene, and determines when they
collide. However, real-time highly accurate CD is very expensive in terms of energy consumption
and this parameter is of paramount importance for mobile devices since it has a direct effect on the
autonomy of the system. This work proposes a novel energy-efficient high-fidelity CD scheme that
leverages some intermediate results of the rendering pipeline to perform CD.

In first place, we give a brief introduction to CD, in particular to a group of algorithms known
as Image-Based Collision CD (IBCD). These algorithms rely on the rasterization of the surfaces of
the scene objects and the detection of their intersections based on the pixel depths of the rasterized
fragments [115]. These kind of techniques have been proposed to exploit the computing power of
graphics processors and their ability to rasterize polygons efficiently.

In second place, we introduce our proposal: Render Based Collision Detection (RBCD), which
belongs to this family of techniques. RBCD is based on the observation that most of the tasks
required for IBCD (e.g., vertex processing, projection, rasterization, etc.) are also performed during
image rendering. Hence, we propose to integrate CD and image rendering within the GPU pipeline
hardware, so that redundant tasks are done just once. With minor hardware extensions and minor
software adaptations our technique reutilizes some intermediate results of the rendering pipeline to
perform the CD task. Some of these adaptations include allowing the software to pass collisionable
object identifiers to the GPU, selectively deferring face culling, and adding small, specific hardware
to detect face intersections based on per-fragment location and depth.

In third place, we show the benefits of RBCD in a CPU/GPU system. Comparing RBCD with

44

1.4. THESIS OVERVIEW AND CONTRIBUTIONS

a conventional CD completely executed in the CPU, we show that its execution time is reduced
by almost three orders of magnitude (600x speedup), because most of the CD task of our model
comes for free by reusing the image rendering intermediate results. Although not necessarily, such
a dramatic time improvement may result in better frames per second if physics simulation is in
the critical path. However, the most important advantage of our technique is the enormous energy
savings that result from eliminating a long and costly CPU computation and converting it into
a few simple operations executed by a specialized hardware within the GPU. Our results show
that the energy consumed by CD is reduced on average by a factor of 448x (i.e., by 99.8%). These
dramatic benefits are accompanied by a higher fidelity CD analysis (i.e., with finer granularity),
which improves the quality and realism of the application. This work has been published in the
proceedings of 48th International Symposium on Microarchitecture (MICRO):

• “Ultra-low Power Render-Based Collision Detection for CPU/GPU Systems”.
Enrique de Lucas, Pedro Marcuello, Joan-Manuel Parcerisa, and Antonio González.
International Symposium on Microarchitecture, 2015.

Myszkowsky et al. [170] propose a technique based on the Z-buffer and on checking the changes
in the Stencil buffer between a frame and the following one, and suggest including a hardware
assisted polygon sorting in order to dramatically increase the performance of the technique. Baciu
and Wong [113] propose a detection scheme based on reducing the region of the Stencil buffer to be
tested, which reduces the main memory traffic and thus minimizes the need for the specific hardware
pointed out in the previous work [170]. Baciu and Wong [114], and Heidelberger et al. [151] show
hybrid techniques using both object space and image-based CD. They sometimes use more than one
rendering pass, since they rely on a rasterization system with only one depth value per pixel in the
z-buffer at any given time. The latter work performs the collision detection on the CPU. This work
is expanded [152] to handle auto-collisions with deformable geometry; however, both works rely on
reading back to the CPU the results of the rasterization (Depth/Stencil buffer). Knott and Pai [157]
make use of the Depth/Stencil and Color buffer plus several rendering passes in order to detect
collisions among all the objects to be tested. CULLIDE [142], proposed by Govindaraju et al., can
reduce the aforementioned buffer read-back overhead by making use of occlusion queries. In a later
work [143], the authors improve the accuracy of the method by computing conservative overlap
tests between the primitives and avoiding-to-miss collisions due to viewport resolution. Faure et
al. [138] propose to detect collisions between two 3D objects using surface rasterization in three
orthogonal directions, and performing the CD in the CPU. Unlike previous works, RBCD requires
neither multiple rendering passes nor reading back the results of the rasterization. Furthermore, our
scheme is projection independent. RBCD performs the CD of the scene in the RBCD unit added to
the GPU and then reports the detected contact points between collisionable objects to the CPU.

Gilbert et al. [140] propose Gilbert-Johnson-Keerthi (GJK), an algorithm that computes the
minimum distance between two convex sets of vertices. Lee et al. [161] report a 14x speedup of GJK
on a GPGPU, whereas we are reporting a speedup of 3400x with our technique. Despite GPGPU
schemes can perform the computation fast, they must still bring the geometry of the colliding
elements from main memory to the GPU, whereas our proposal takes advantage of the information
that has already been generated in the GPU to render the image. The cost of transferring this
geometry from memory is not negligible and in some cases it could represent more time than the

45

CHAPTER 1. INTRODUCTION

computational cost itself. This transfer time as well as the corresponding energy is saved by our
scheme. Additionally, our scheme reuses most of the computations from the rendering performed in
the GPU, which provides further energy savings.

1.4.3 Other contributions

Micro-architectural evaluation of Deferred Rendering

Deferred Rendering (DR) is a hardware technique that avoids overshading through computing
the Depth Buffer before starting fragment shading. We perform a micro-architectural evaluation of
two different approaches to perform Deferred Rendering: sequential DR and parallel DR. Sequential
DR is a näıve implementation that stalls the rest of the Raster Pipeline while performing HSR. The
sequential implementation badly hurts both performance and energy compared with the baseline
GPU. For this scheme, the execution time increases for every one of the benchmarks tested, being
the slowdown 23% on average. Regarding energy consumption, it increases around 6% on average
when compared with the baseline GPU. These huge overheads are due to the fact that the total time
of the HSR stage (only depth rasterization plus depth test) greatly exceeds the savings provided
by the overshading reduction. Nevertheless, these huge overheads can be removed by performing
the HSR stage in parallel with the other stages of the Raster Pipeline. Thus, in this optimized
scheme (parallel DR), while the HSR is being executed for tile i+1, the rest of the Raster Pipeline is
executed in parallel to render the tile i. Even though this parallel implementation of DR introduces
a non negligible amount of extra hardware (6% area overhead w.r.t baseline GPU), it outperforms
sequential DR in both performance and energy.

Evaluation of software Z pre-pass

Z pre-pass is a common software approach aimed at reducing overshading that has gained
pace in the last years and it can be considered the standard on IMR and TBR GPUs to reduce
overshading in complex games with multiple dynamic objects and costly Fragment Shaders. Some
vendors like ARM recommend to use it when setting the rendering order of the objects is not
possible because of the complexity of the scene [4]. Z pre-pass exploits the Early-depth test by
means of two rendering passes. The first pass performs pipeline stages up to the Early-deph test,
which stores the depths of the visible fragments in the Depth Buffer. In the second pass, the full
pipeline is executed and only the visible fragments pass the Early-depth, so only visible fragments
are executed in the Fragment Processors. This technique doubles the cost of some stages of the
pipeline, which is unacceptable in many scenarios. Take into account that even if the benefits of
Z pre-pass are greater than its cost, the extra depth pass represents a large portion of the total
rendering time. For example, Z pre-pass can be found on The Blacksmith [6], which is a cutting
edge real-time demo of the last version of Unity [21] made to show the most advanced graphics
features that the game engine offers. We have studied three different frames of Blacksmith, where Z
pre-pass represents 41.4%, 29.3% and 26.1% of the total rendering time respectively.1 In common
mobile graphics workloads included in our set of benchmarks Z pre-pass produces a slowdown in

1Real hardware measures reported by Renderdoc [20] using an NVIDIA GTX 950 GPU .

46

1.4. THESIS OVERVIEW AND CONTRIBUTIONS

all the cases (0.82x on average). Z pre-pass also increases the total energy consumption, 1.28x on
average. The increase in the main memory traffic and the extra execution time greatly penalize the
energy consumption. According to these results, Z pre-pass would not be a suitable technique to
reduce neither execution time nor energy consumption on applications targeted for low power GPU
because the overhead incurred by the extra rendering pass more than offsets the time and energy
savings of the smaller fragment processing. Nevertheless, it makes sense to apply Z pre-pass in a
context with higher computational cost per fragment processed (more details in Section A.3.1).

Immediate Mode Rendering VRO

We have evaluated VRO over an IMR GPU architecture. Like VRO, IMR-VRO includes a
small hardware unit that stores the order relations among the objects of a scene of the current
frame in a buffer. This information is used in the next frame to create a Visibility Rendering
Order that this time guides the Command Processor of the GPU. IMR-VRO outperforms state-of-
the-art techniques in performance and energy consumption by reducing the overshading without
the need of an expensive extra rendering pass to determine visibility. IMR-VRO achieves up to
1.32x speed-up (1.16x on average) and down to 0.79x energy consumption (0.85x on average) with
respect to the baseline IMR GPU. IMR-VRO is much more efficient than Z-prepass because most
of the computations required to create the Visibility Rendering Order are reused from the normal
rendering, while Z-prepass requires an extra renderization pass that introduces significant overheads.

47

2
Background

2.1 Graphics Rendering Pipeline

This chapter presents an overview of different concepts relative to graphics rendering. It is
presented the classic scheme of the graphics rendering pipeline including its different stages. Then,
we present a description of the microarchitecture for mobile GPUs. The purpose of this chapter
is not only to focus the context of this thesis in its technical aspects, but also to introduce the
terminology we will use through the document. Rather than making an exhaustive review of
computer graphics, the intention of this section is to briefly introduce the graphics rendering pipeline.
For more detailed information the reader has available excellent books that cover multiple aspects
of computer graphics [104, 166].

The graphics rendering pipeline, also commonly referred to as the graphics pipeline or just
the rendering pipeline, is an abstract model whose duty is to render 2D images (frames) from
descriptions of geometric models and other information like the point of view, light sources and
more. It is usually divided in three conceptual stages (see Figure 2.1): Application, Geometry and
Rasterization.

2.1.1 Application Stage

The application stage is composed of the software operations required to prepare the geometric
models and all the associated information that is necessary to render them in the following stages
of the pipeline. This stage receives user inputs, computes the corresponding reactions, updates
the state of the application accordingly, and finally sends the geometry to the next stage of the
pipeline. This group of tasks may be referred to as a render step. Since the application stage is a

49

CHAPTER 2. BACKGROUND

ApplicationApplication GeometryGeometry RasterizationRasterization

3D models

AI

Physics

User I/O

Update state

...

Vertex Transforms

Vertex Shading

Perspective Projection

Clipping

Culling

Viewport Mapping

Triangle Traversal

Interpolation

Fragment Shading

Occlusion Culling

Blending

Figure 2.1: Conceptual stages of the Graphics Rendering Pipeline.

software stage, the developers have the freedom to implement the render step which they consider
appropriate. However, software APIs like game engines or GUI frameworks usually offer their own
implementation of the render step [181, 127], which is an intermediary between the application and
the graphics API.

A process commonly included in the application stage is the collision detection, which is part of
the physics simulation. It provides realistic physical behavior to the visual objects of the application,
whose velocity and direction must be affected by collisions with other objects.

2.1.2 Geometry Stage

The geometry stage performs all vertex-level (vertex transformations, vertex shading) and almost
all polygon-level (primitive assembly, clipping, face culling) operations of the graphics pipeline.

Vertex Transformations

Figure 2.2 shows the different vertex transformations applied in the graphics pipeline, which
consist on the conversion of vertex coordinates from one coordinate system to another by means of
multiplying a transformation matrix with the position of the vertices. Besides the transformation
between coordinate systems, operations like translation, rotation and scaling may also be applied to
the vertices. There are several coordinate systems in the graphics pipeline:

• Object Coordinates: Initially each object is created with its vertices relative to its own
coordinate system. This is the coordinate system defined by the creator of the object in order
to model the object by positioning every vertex in the right place regarding to the other
vertices of the model.

50

2.1. GRAPHICS RENDERING PIPELINE

ModelModel ViewView ProjectionProjection Perspective
Divide

Perspective
Divide

Viewport
Mapping

Viewport
Mapping

(1) Object
Coordinates

(2) World
Coordinates

(3) Eye
Coordinates

(4) Clip
Coordinates

(5) Normalized
Device

Coordinates

(6) Viewport
Coordinates

Object Coordinates Eye Coordinates
(Camera shown in orange)

Viewport Coordinates

Figure 2.2: Vertex-level transformations in the Graphics Rendering Pipeline. (1) The
vertices of the 3d model are in Object Coordinates. (2) The vertices are scaled, rotated
and translated to World Coordinates. (3) The vertices are positioned in the camera
scope transforming them to Eye Coordinates (see detail of camera in orange outline).
(4) The vertices transformed to Clip Coordinates by projecting them onto the near clip
plane. (5) Perspective correction is applied to transform vertices to Normalized Device
Coordinates. (6) Viewport transform is applied to translate vertices to Viewport
Coordinates. Car 3D model courtesy of Alexander Bruckner [24].

• World Coordinates: This is the coordinate system where all the objects are positioned
(translated, rotated, scaled) after the model transform.

• Eye Coordinates: Also called camera coordinates or viewpoint coordinates, this is the
coordinate system where the camera is statically located at the origin, looking down the z-axis.

• Clip Coordinates: Also called projection coordinate system, this coordinate system defines
how the vertices data are projected onto the screen. It also defines the volume of the world
where objects may be visible from the camera’s point of view: the view-frustum. A vertex
(X, Y, Z, W) is outside the view-frustum if any of its coordinates X, Y, or Z is outside the
range (-W, W). As Figure 2.3 shows, this volume may be a frustum (perspective projection)
or rectilinear (orthogonal projection).

• Normalized Device Coordinates (NDC): This coordinate system is used to measure
relative positions on the screen, but it has not been transformed to screen pixels yet. It is not
achieved by applying a matrix transform to the vertex (X, Y, Z, W), but by dividing the first
three vertex coordinates X, Y and Z by W -(X/W, Y/W, Z/W)-. Its values are normalized
and range from -1 to 1 in all three axes in OpenGL (see Figure 2.4), while for DirectX the
z-axis range is (0, 1).

• Viewport Coordinates: Also commonly referred to as window or screen coordinates. The
vertices in NDC coordinates are translated and scaled to be positioned in terms of a viewport
with rendering resolution Width x Height. This coordinate system covers the 2D plane that is
actually displayed on the screen, where (0, 0) is the bottom left and (Width - 1, Height - 1) is
the top right of the plane. For example, for rendering resolution 1280 x 720 the geometry that

51

CHAPTER 2. BACKGROUND

C
am

er
a

Perspective projection

C
am

era

Orthographic projection

Figure 2.3: Perspective (left) and orthographic (right) viewing volumes.

C
a
m

e
r
a

Unit Cube

(1, 1, -1)

(1, -1, -1)

(1, 1, 1)

(1, -1, 1)
(-1, 1, 1)

(-1, -1, 1)

(-1, -1, -1)

Figure 2.4: OpenGL normalized viewing volume.

was inside normalized viewing volume is placed between (0, 0) and (1279, 719) coordinates.
The geometry in viewport coordinates is passed to the rasterization stage to become fragments.

Vertex Shading

In order to render realistic scenes not only the position of the objects is transformed across
several coordinate systems, but also it is necessary to compute a set of attributes per every vertex
of the object. From simple colors for every vertex to complex elaborations that include texture
coordinates, normals, and light sources among others, the process of determining these vertex
attributes is commonly known as vertex shading. In the vast majority of current systems, these per
vertex computations, as well as the transformations applied to the vertex positions are included in
the vertex shading stage, which is executed in programmable hardware.

52

2.1. GRAPHICS RENDERING PIPELINE

Primitive Assembly

Given the input stream of vertices and the connectivity among them (topology), the primitive
assembly stage creates simple polygons named primitives, sometimes also referred to as base
primitives (points, lines and triangles). Figure 2.5 shows some examples of topology. As can be
seen, the selection of the topology is essential to optimally describe the geometry. For example, in
order to describe two adjacent triangles using GL TRIANGLES, we need six vertices. However, if
we use GL TRIANGLE STRIP four vertices are enough. Primitive Assembly is an essential task
that not only groups vertices into primitives, but also allows to apply optimizations at primitive
level like Clipping and Culling.

GL_POINTS

1
2

3

4

5

6

GL_LINES

1
2

3
4

5

6

GL_TRIANGLES

1

2

3

4

5

6

GL_TRIANGLE_STRIP

2

3 4

5

6
1

POINT LIST LINE LIST TRIANGLE LIST TRIANGLE_STRIP

Figure 2.5: Examples of common topologies used both by OpenGL and DirectX [167].

• Clipping: Once a primitive is in Clip Coordinates we know if it lies inside or outside the
view-frustum. Every vertex (X, Y, Z, W) of a primitive is clipped by comparing (X, Y, Z)
with W. If all three components X, Y and Z are in the range (-W, +W), the vertex is inside
the view-frustum. Otherwise the vertex is outside the view-frustum and must be clipped.
Given a primitive, there are three possible cases:

1. Trivial accept: All the area of a primitive lies inside the view-frustum.

2. Clip: The primitive is partially inside the view-frustum.

3. Trivial reject: All the area of the primitive lies outside the view-frustum.

Figure 2.6 shows the six planes that form the view-frustum (left, right, top, bottom, near and
far). For simplicity, Figure 2.7 shows the basic cases of primitive clipping for triangles, lines and
points against the top, left, right and bottom clipping planes that form the viewport. When a
primitive is partially outside the view-frustum there may be created new primitives. However
this is not necessary and the system may leave the primitive intact. In such case, the screen
mapping stage will discard the fragments outside the view-frustum. Common algorithms to
perform clipping are the Cohen-Sutherland [25] and the Sutherland-Hodgman [27] algorithms
for lines and polygons respectively.

• Culling: Once the triangle primitives are in Normalize Device Coordinates, they have a
particular orientation regarding the view-point (camera). For a given triangle with vertices 1,
2 and 3, the orientation is defined by how the vertices rotate: clock-wise or counter-clock-wise
(see Figure 2.8). One of the winding modes is selected as front face, and the other as back
face. Commonly, when the 3D model is created, the modeling program sets the rotation of

53

CHAPTER 2. BACKGROUND

C
am

er
a

Clipped

Clip Planes

Left Right

Top Bottom

Near Far

Figure 2.6: View-frustum including viewport.

Trivial Accept Trivial Reject Clip

Viewport Clip Point New Primitive

Figure 2.7: Clipping cases for triangles (top), lines (middle) and points (bottom).

the triangles that face to the camera (front-face) as counter-clock wise, and the triangles that
do not face to the camera (back-face) as clock wise. Furthermore, with face culling the user

54

2.1. GRAPHICS RENDERING PIPELINE

usually selects which triangles to cull: front-facing triangles, back-facing triangles (set by
default), or both. Whenever the face culling stage receives a triangle, it tests the windowing
mode of the triangle by performing a dot product that obtains the normal vector of the triangle.
If the sign of the normal z-component is positive, the triangle is a front-face, otherwise the
triangle is a back-face. Depending on the sign of the z-component of the triangle’s normal
and the selected culling mode the triangle is either culled or passes to the rasterization stage.
Figure 2.9 shows the 3D model of a sphere (top-left), and the detail showing the triangles
that pass the face culling test (top-right). Note the difference in the number of wires that are
shown in the bottom-left image (face culling disabled) and in the bottom-right image (face
culling enabled to cull back-faces).

Clock-wise

1

2

3

2

1

3

Counter-clock-wise

Figure 2.8: Clock wise and counter-clock wise winding triangles.

2.1.3 Rasterization

The rasterization stage is the third conceptual stage of the graphics pipeline. It receives the
primitives of the objects in viewport coordinates (screen coordinates) and produces the color for the
set of pixels covered by such primitives. As Figure shows 2.10, the rasterization stage performs five
main tasks:

• Triangle Traversal: For every pixel covered by a primitive (which is already projected
onto the screen plane) the rasterization stage creates a fragment, thus creating a discretized
representation of the primitive. Every fragment corresponds to a pixel of the viewport.
Scanline [83] and Edge Function [82] algorithms are common methods to perform triangle
traversal, being Edge Function algorithm generally used today. This algorithm employs the
following edge functions to determine the position of a point P with respect to the edges of a
primitive defined by vertices v0, v1 and v2 (see Figure 2.11):

1. E01(P) = (P.x− v0.x) ∗ (v1.y − v0.y)− (P.y − v0.y) ∗ (v1.x− v0.x)

2. E12(P) = (P.x− v1.x) ∗ (v2.y − v1.y)− (P.y − v1.y) ∗ (v2.x− v1.x)

3. E20(P) = (P.x− v2.x) ∗ (v0.y − v2.y)− (P.y − v2.y) ∗ (v0.x− v2.x)

55

CHAPTER 2. BACKGROUND

View-point

Figure 2.9: 3D model of a sphere (top-left), detail showing the effect of face culling
(top-right), wire-frame view of the sphere without face culling (bottom-left), wire-
frame of the sphere with face culling enabled (bottom-right).

Fragments Colored
Fragments

Visible
Fragments

Triangle
Traversal

Triangle
Traversal InterpolationInterpolation Fragment

Shading

Fragment
Shading

Occlusion
Culling

Occlusion
Culling BlendingBlending

Color
Buffer

Discarded Fragments Background color Visible Triangle

Primitive
Fragments

with attributes
interpolated

Figure 2.10: Sub-stages of the Rasterization stage of the Graphics Pipeline. In this
example, a red triangle is rasterized over a blue background, and some fragments of
the red triangle are occluded by a green triangle.

56

2.1. GRAPHICS RENDERING PIPELINE

The edge functions have the following properties:

– If E(P) is greater than 0, then P is in the right side of the vector.

– If E(P) is equal to 0, then P is on the line.

– If E(P) is smaller than 0, then P is in the left side of the vector.

Making use of these properties, if the sign of all three equations is positive for a point P , then
P is inside the triangle (see Figure 2.11).

V1

V0 V2

E12(P)>=0

E20(P)>=0

E01(P)>=0E
0
1 E

1
2

E20

Figure 2.11: Edge functions (E01, E12 and E20) of a primitive defined by vertices v0,
v1 and v2.

• Interpolation: For every fragment produced for a given primitive, the rasterization stage
interpolates the attributes associated to the vertices of the primitive, thus producing a value
that corresponds to the fragment. Linear interpolation and perspective corrected interpolation
are the most common interpolation modes used for orthogonal projection and perspective
projection respectively. For every fragment with position P , three barycentric coordinates -i,
j and k- are computed using the edge functions of the primitive:

1. i bary(P) = E01(P)/E01(V 2)

2. j bary(P) = E12(P)/E12(V 0)

3. k bary(P) = E20(P)/E20(V 1)

Then, the barycentric coordinates are used to interpolate the values of the attributes for the
given fragment. For example, when using linear interpolation, the interpolation of the Depth
values for a given fragment F inside the primitive defined by vertices v0, v1 and v2 is:

Depth(F) = i bary(F) ∗ V 0.z + j bary(F) ∗ V 1.z + k bary(F) ∗ V 2.z.

• Fragment Shading: The rasterization stage computes the color of every fragment produced
using the interpolated attributes and other associated data. This process is commonly known
as Fragment Shading, and in current systems it is fully programmable and executed in
programmable hardware. It is common to access textures in this stage as well as performing
lighting.

57

CHAPTER 2. BACKGROUND

• Occlusion Culling: Commonly known as Visibility Determination, this task consists of de-
termining which fragments are visible and which are not. Although there are other alternatives
like the painter’s algorithm [26], in most current graphics systems this task is performed by
the Z-buffer algorithm [28]. With this algorithm, there exists a buffer called Z-buffer with the
same size as the viewport. For every position, the Z-buffer stores the depth (Z-component) of
the nearest fragment to the camera. For each new fragment, its visibility is tested against
that already stored in the Z-buffer. If the new fragment is visible, the new Z is stored in the
buffer, and the fragment passes to the next stage. Otherwise, the fragment is discarded. In
Figure 2.12, some fragments of object C are occluded by object A. Likewise, some fragments
of object B occlude fragments of object C, while some fragments of B are occluded by A.

A

B

C

Rendering Order: C, A, B

X

Y
Z

Figure 2.12: Detail of scene where three objects A, B and C are rendered in C, A, B
order. The image depicts the fragments of every object that pass the Depth Test.

• Blending: The color of the fragments that pass the visibility test is stored in the Color buffer,
which has the same size as the viewport. However, rather than simply writing every fragment’s
color that arrives to this point, they are merged with the color already stored in the Color
buffer. Such color has been composed with the color of the fragments that previously passed
the test. This color composition is also known as alpha blending and it is meant to allow
transparency effects.

For a render step the application stage sends to the geometry stage all the 3D models and
other geometry data required to generate a frame. The geometry stage sends primitives to the
rasterization stage, which produces an image using the color of the fragments that are visible from
the point of view of the camera. Finally, when all the primitives and fragments have been processed,
the Color buffer holds a frame that will be read by a display device controller which shows it to a
screen.

58

2.2. GPU MICROARCHITECTURE:

Color already stored

in the Color buffer

New color

Figure 2.13: Detail of scene where two objects are blended. The image depicts how
the fragments of a translucent object are blended with the colors already stored in
the Color buffer providing a transparency effect.

This frame can be displayed directly on screen so the input lag is reduced. However, this may
cause flickering, tearing and other artifacts which are not acceptable in many scenarios. Generally a
double or triple buffering technique is employed to avoid displaying partially updated frames. In the
case of double buffering the frame is rendered off-screen in a back buffer, and once the whole frame
is rendered, the back buffer is swapped with a front buffer, which is the one displayed on the screen.

2.2 GPU Microarchitecture:

In this section we give a brief overview of the main mobile GPU architectures that we assume
as baseline in the experiments we show in following chapters.

2.2.1 Immediate Mode Rendering

Immediate Mode Rendering (IMR) is the preferred mode in desktop, laptop and game console
GPUs. In the mobile world, IMR is used, for instance, in NVIDIA Tegra 4 [93]. In IMR, graphics
commands are processed in the order they are submitted to the GPU and the corresponding
primitives are processed through the entire graphics pipeline stages as soon as they are generated.
Due to the fact that the geometry is not guaranteed to appear in front-to-back order, IMR may
cause pixel overdraw. This means that the same color-buffer location may be computed and written
more than once, which consumes precious off-chip memory bandwidth and wastes energy.

Figure 2.15 shows a block diagram of the IMR GPU pipeline. The Command Processor is
the unit in charge of processing the command stream that the GPU receives from the driver. The
Command Processor receives the commands from the CPU and it sets the appropriate control
signals so the input vertex stream is processed through the graphics pipeline. The Geometry Unit

59

CHAPTER 2. BACKGROUND

Raster Unit

GPU
command

GPU
commands

Command
Processor

Command
Processor

Memory
Controller

Memory
Controller

Vertex
Fetcher

Vertex
Fetcher

L2
Cache

L2
Cache

Vertex
Cache

Vertex
Cache

Primitive
Assembly

Primitive
Assembly

RasterizerRasterizerEarly
Depth Test

Early
Depth Test

Depth
Cache

Depth
CacheColor

Cache

Color
Cache

Geometry Unit

Blending

FragmentProcessorsFragmentProcessors

Texture
Cache

Texture
Cache

ALU
Load/
Store

Vertex
Processor

Vertex
Processor

Vertex
Processor

Vertex
Processor

Figure 2.14: Microarchitecture of an IMR GPU.

converts the input vertices into a set of transformed 2D + 1D (depth) primitives in Clip Coordinates
space. In the Primitive Assembly stage the stream of vertices is converted to a stream of input
primitives (points, lines and triangles). Other operations like clipping, perspective divide, face
culling and viewport mapping are also implemented in the Primitive Assembly stage. The assembled
primitives that pass Clipping and Face Culling stages are sent to the Rasterizer.

The Rasterizer receives the primitives and discretizes them creating fragments. Every fragment
contains interpolated values of every attribute associated to the vertices of the primitive it belongs
to. The fragments are tested in the Early-depth test (supported by a main memory Depth Buffer
accessed through the Depth Cache). If a fragment is visible (not occluded by a previously tested
fragment), it is sent to the following stages of the Raster Unit (otherwise it is discarded). Finally,
the fragment colors computed in the Fragment Processing stage are sent to the Blending stage,
which combines them with the colors already stored in the Color Buffer.

2.2.2 Tile Based Rendering

Tile Based Rendering (TBR) [106] is the preferred rendering mode in mobile GPUs [89, 38]. In
TBR the rendering process is divided into two decoupled pipelines, Geometry and Raster, which are
connected through the Tiling Engine. Figure 2.15 shows a block diagram of the GPU pipeline with
TBR mode.

The Geometry Pipeline receives vertices and performs geometry-related operations like the ones
explained in the previous subsection (transformations, rotations, projections, clipping, culling, etc.),
which produce output primitives that are sorted by the Polygon List Builder in tiles [106]. The tiles
are stored into the Parameter Buffer, a buffer in system memory that is accessed through the Tile
Cache.

60

2.2. GPU MICROARCHITECTURE:

Once all the primitives of the frame have been stored, the Tile Scheduler begins to work. For
every tile, the Tile Scheduler reads the primitives from the Parameter Buffer in program order and
sends them to the Raster Pipeline.

The Rasterizer receives the primitives and processes them creating fragments that are tested in
the Early-depth test (supported by an on-chip Depth Buffer). If a fragment is not visible (occluded
by a previously tested fragment), it is discarded. Otherwise, it is sent to the following stages of the
Raster Pipeline. Then, the Fragment Processors render the fragment’s colors, which are composed
(blended) with the ones already stored in the on-chip Color Buffer.

Once the tile rendering has been completed, the on-chip Color Buffer is flushed to the Color
Buffer in main memory. Note that for TBR pipelines, each pixel color is usually written only once
to main memory regardless of object ordering. Only an overflow in the Parameter Buffer causes the
GPU to render the already sorted geometry, thus writing main memory more than once, but it is
highly uncommon. With TBR, pixel overdraw still occurs but it happens in the local buffer, which
saves pixel-related off-chip memory bandwidth with respect to IMR [106]. On the other hand, in
TBR the geometry-related memory traffic is increased due to storing and retrieving the geometry of
the Parameter Buffer.

Raster Pipeline

Fragment ProcessorsFragment Processors

GPU
command

GPU
command

Command
Processor

Command
Processor

Memory
Controller

Memory
Controller

Vertex
Fetcher

Vertex
Fetcher

L2
Cache

L2
Cache

Vertex
Cache

Vertex
Cache

Vertex
Processor

Vertex
Processor

Primitive
Assembly

Primitive
Assembly

RasterizerRasterizer

Early
Depth Test

Early
Depth Test

Z-BufferZ-Buffer
Color
Buffer

Color
Buffer

Texture
Cache

Texture
Cache

ALU

Load/
Store

Geometry Pipeline

Tile
Cache

Tile
Cache

Polygon
List

Builder

Polygon
List

Builder

Tile
Scheduler

Tile
Scheduler

Tiling Engine

Blending

Figure 2.15: Microarchitecture of a TBR GPU.

Deferred Rendering TBR GPU

Deferred Rendering (DR) reduces overshading by first performing the Hidden Surface Removal
(HSR) stage, which computes the final state of the Depth Buffer for a given tile. Thereafter, it starts
an ordinary rendering of the tile where the Early-depth will discard all the occluded fragments
and achieve minimum overdraw. DR not only eliminates overdraw but also guarantees that the
Fragment Processor is used only for those fragments that are visible in scene.

61

CHAPTER 2. BACKGROUND

Raster Pipeline

HSR stageHSR stage

Fragment ProcessorsFragment Processors

GPU
command

GPU
command

Command
Processor

Command
Processor

Memory
Controller

Memory
Controller

Vertex
Fetcher

Vertex
Fetcher

L2
Cache

L2
Cache

Vertex
Cache

Vertex
Cache

Vertex
Processor

Vertex
Processor

Primitive
Assembly

Primitive
Assembly

RasterizerRasterizerPerfect
Early-Depth

Perfect
Early-Depth

Color
Buffer

Color
Buffer

Texture
Cache

Texture
Cache

ALU

Load/
Store

Geometry Pipeline

Tile
Cache

Tile
Cache

Polygon
List

Builder

Polygon
List

Builder

Tile
Scheduler

Tile
Scheduler

Tiling Engine

Blending

RasterizerRasterizer
Early

Depth Test

Early
Depth Test

Z-Buffer

Figure 2.16: Microarchitecture of a TBR GPU implementing Deferred Rendering.

A DR technique has been commercially implemented by Imagination Technologies in their
tile-based PowerVR GPU family [91], which they refer to as a TBDR. However, since only partial
information about this technique has been disclosed, our Deferred Rendering implementation models
what we believe is the most optimistic interpretation of this partial information, in order to be used
in the comparisons with our proposal.

A näıve implementation of DR would be to include HSR as a sequential stage in the Raster
Pipeline. We implement this näıve implementation and we observe that the execution time increases
for every one of the benchmarks tested, 23% on average, while the energy consumption increases
around 6% on average when compared with the baseline TBR GPU. In this näıve approach the rest
of the Raster Pipeline is stalled while performing the HSR, which badly hurts both performance
and energy compared with the baseline GPU. Therefore, it is clear that performing the HSR stage
in sequence with the rendering is not an adequate implementation. However, those huge overheads
can be removed by performing the HSR stage in parallel with the other stages of the Raster Pipeline
(see Figure 4.8). Thus, in this optimized scheme, while the HSR is being executed for tile i+1,
the rest of the Raster Pipeline is executed in parallel to render the tile i. Obviously, this parallel
implementation introduces a hardware cost and some hardware blocks, such as the Rasterizer, the
Early-depth test and the on-chip Depth Buffer, are replicated. Furthermore, the Tile Scheduler is
equipped to handle memory requests of two primitives in parallel: one primitive from the tile being
rendered and the other one from the tile in the HSR stage. This does not mean that the Tile Cache
has now two read ports, but the Tile Scheduler will arbiter between both request queues and only
one will be sent to the Tile Cache each cycle in a Round Robin fashion.

62

3
Methodology

This chapter presents the simulation infrastructure we use in this dissertation for estimating
performance and energy consumption of the GPU and the CPU. First, we introduce the simulators we
utilize to perform the experiments. Then, we present the workloads we employ in such experiments.

3.1 Simulators

In this section we first give a brief overview of the main existing simulators for GPU and we
introduce Teapot [111], the simulation framework that we employ to evaluate the proposals included
in this work. Then, we briefly describe Marss86 [173], a multicore simulation environment for the
x86-64 ISA that we employ to evaluate performance and energy of several CD algorithms run on a
multicore CPU.

3.1.1 GPU Simulation

There are several GPU simulators widely employed in the architecture community that model
different aspects of desktop-like GPUs. Some of them, like GPGPUSim [116] and Barra [126] are
targeted to simulate General Purpose-GPU (GP-GPU) architectures, so they support OpenCL [192]
and CUDA [128]. GPGPUSim is the most widely accepted GPGPU simulator in academia with an
overwhelming number of hardware designs evaluated using it. Despite the popularity of GPGPUSim,
it is not tailored to run graphics APIs like OpenGL [52]. GPUWattch [162] is an energy model
based on McPAT [163] developed for GPGPUSim. Attila [133], QSilver [188] and Multi2Sim [193]
provide support for OpenGL, but they do not provide support for OpenGL ES, so they cannot
run mobile graphics workloads. Attila includes a generic GPU microarchitecture that is claimed to

63

CHAPTER 3. METHODOLOGY

closely track the hardware features of GPUs around 2006. Adaptable and configurable, it can be
used to evaluate multiple hardware configurations for desktop- and embedded-like GPUs. However,
it focuses on IMR GPUs and does not include a Tile-Based Rendering mode architecture, much
more popular in embedded devices. GRAAL [155] models a Tile-Based Rendering architecture,
includes a power model and provides OpenGL support. Qsilver also provides OpenGL support and
includes a power model but it models Immediate-Mode Rendering GPUs. Despite OpenGL support
is given in some of the aforementioned simulators, OpenGL ES [57] is not available in any of them
so they cannot run the plethora of graphics workloads currently available for embedded devices like
smartphones and tablets.

Teapot

FramesFrames

FramesFrames
Mobile Applications

Android

Android Emulator

Virtual GPU

GPU Driver

OpenGL ES Trace
Generator

OpenGL ES Trace
(GLSL shaders, geometry,

textures...)

GPU Functional Simulator
Gallium3D softpipe driver

GPU Instruction and
Memory Trace

Frames

Frames

Check!

Cycle Accurate
Timing GPU Simulator

FramesFramesFrames

Check!

GPU Power Model
McPAT, CACTI

Image Quality
Assessment

Energy Statistics Timing Statistics Image Quality Statistics

Tools unmodified

Tools adapted

New tools

Generated files

Application level

Driver level

Hardware level

Figure 3.1: Overview of Teapot simulation infrastructure.

Our research group develops Teapot [111], a simulation framework that provides support for
OpenGL ES API. Teapot is a mobile GPU simulation infrastructure that supports full-system
GPU simulation and that is able to run Android unmodified commercial mobile graphics workloads
and evaluate performance, energy consumption and image quality. Furthermore, Teapot is able
to profile multiple applications that access the GPU concurrently. In short, Teapot includes an
OpenGL commands interceptor, a GPU trace generator and a cycle-accurate GPU simulator for
both IMR and TBR GPU architectures, as well as a power model based on McPAT [163]. As shown
in Figure 3.1, the simulation stack of Teapot is comprised of different tools that can be categorized
in three different architecture levels1:

• Application Level: Teapot employs the Android Emulator included in the Android SDK [87]
for running unmodified commercial applications on a desktop computer. Based on QEMU2 [74],

1A more detailed description is available in the dissertation of Arnau [108]

64

3.1. SIMULATORS

the Android Emulator supports GPU hardware acceleration, which allows to execute state-of-
the-art graphics workloads at real-time frame-rates. When enabling GPU hardware acceleration,
the OpenGL ES commands issued by the software running in the emulator are not processed
inside the emulator but are sent to the host GPU driver.

The OpenGL ES trace generator is a library that interposed between the Android emulator
and the host GPU driver is able to intercept all the OpenGL commands sent by the emulator,
stores them into an OpenGL ES trace file and finally redirects them to the host GPU driver.
The OpenGL ES trace file contains all the necessary data to reproduce the original OpenGL
ES command stream (GLSL shaders, textures, geometry and OpenGL state information).
To generate an OpenGL ES trace file the user simply runs an application on the Android
Emulator and while the application is being executed the trace of OpenGL commands is being
generated.

• Driver Level: Teapot is a trace driven simulator that employs a GPU functional simulator
to generate a trace that includes all necessary information to later perform a GPU timing
simulation. The GPU functional simulator of Teapot consists on an instrumented version of
softpipe, a software renderer included in Gallium3D [88]. Gallium3D is an infrastructure for
building 3D graphics drivers that allows portability to all major operating systems.

The modified software renderer in Teapot is fed with an OpenGL ES trace file generated
in the previous level. Every OpenGL ES command is executed as usual, but additionally
the instrumented version of softpipe gathers information about the rendering process and
generates the GPU Instruction and Memory Trace. The generated trace file includes vertices,
primitives, fragments, texels, samplers, vertex and pixel shader programs (translated to TGSI
assembly language [84]), as well as the memory addresses to read/write geometry, textures
and framebuffers (Color and Depth buffers).

• Hardware Level: The trace generated in the previous level is given to the cycle-accurate
GPU simulator, which gathers activity factors for all the components included in the timing
model of the GPU. Teapot provides two baseline GPU architectures: IMR and TBR (see
Figure 3.2). The mobile GPU model that is assumed in Teapot closely tracks the ultra-low
power GPU in the NVIDIA Tegra chipset [70] for IMR and Mali-400MP [89] for TBR, but
they are highly configurable and it can model GPUs with different number of processors, cache
sizes and associative schemes, among others.

– System memory: Teapot employs DRAMSim2 [182] to simulate system memory.
DRAMSim2 is a cycle accurate simulator that includes SDRAM, DDR SDRAM, DDR2
SDRAM and DDR3 SDRAM memory models including a DRAM memory controller,
DRAM ranks and banks, as well as the buses they use for communication purposes.

– Power model: Teapot uses McPAT [163] to compute the static and the dynamic energy
consumed by the main hardware structures of the GPU: processors, caches, queues,
register files and prefetching tables among others. However, the power model of the
functional units is based on the one used in the Qsilver simulator [188]. Furthermore,
based on the energy model proposed by Pool et al. [176], we have extended the power
model of Teapot by including the rasterizer.

The GPU timing simulator calls to McPAT, which employs all the micro-architectural
parameters (number of processors, type of processor, caches and caches size, etc) and

65

CHAPTER 3. METHODOLOGY

Figure 3.2: NVIDIA Tegra like architecture (left), Mali 400 MP like architecture
(right). Images from teapot paper [111].

builds an internal representation of the hardware. McPAT computes the leakage of every
hardware structure and the energy required to access such structures. As the GPU timing
simulator gathers activity factors of all the components included in the timing model of
the GPU, those activity factors of components also included in the power model are sent
to McPAT to compute the dynamic energy consumption. The total dynamic energy is
obtained by multiplying each activity factor by the energy cost estimated by McPAT for
the corresponding hardware structure. The static energy is computed by multiplying the
total GPU leakage by the execution time. Teapot produces per frame and global energy
consumption and timing reports.

– Image Quality Assessment: Teapot generates and stores the frames of the workloads
analyzed in three different components of the infrastructure. First, when the OpenGL
ES trace generator stores the OpenGL ES commands in a file, the frames generated
by the real hardware are also stored. Second, when the functional GPU simulator
(softpipe) is executed to generate a GPU trace, it also produces the corresponding frames
of the trace. Finally, when the cycle-accurate timing simulator executes the GPU trace
the corresponding frames are also generated. Among other uses, the Image Quality
Assessment module is employed to check correctness of the whole process.

Improvements made to Teapot

During the development of this thesis changes and improvements were made to Teapot in order
to carry out the studies presented in this document. The following ones are some of the changes
which we consider to be more relevant for the context of this document:

• OpenGL calls interceptor: We modified the OpenGL calls interceptor included in Teapot
to work with the driver of an NVIDIA GTX 970. This modification allowed us to increment
the frames per second obtained with Teapot for our set of benchmarks.

• Vertex positions: The GPU trace produced by Teapot did not include the vertex positions

66

3.1. SIMULATORS

of the input vertices. We modified the Gallium’s softpipe version of Teapot so it stores them
too in the GPU trace. With this addition we are able to obtain the geometry of the scenes
included in the GPU trace, which we use in Chapter 5 to study the Collision Detection on a
CPU.

• Face Culling Stage: The previous model of the Primitive Assembly Stage of Teapot did
not explicitly include Face Culling. Let us name as input primitives the primitives created in
the first step of Primitive Assembly and as output primitives the primitives that are tested
in the Face Culling stage. In the previous model of Teapot, only the “not culled” output
primitives were being stored in the GPU trace. Likewise, the cycle accurate GPU simulator
was only accounting the cost of Face Culling for “not culled” output primitives. Given that
the number of primitives that are culled by Face Culling is significant, sometimes greater than
the not culled primitives, we modified both the Gallium’s softpipe version of Teapot to store
all output primitives and the cycle accurate GPU simulator to include a new Face Culling
model that account the cost of culling primitives. Furthermore, with these modifications we
were able to model the Deferred Face Culling used in Chapter 5.

• First Level Caches and Buffers: We included the Vertex Cache, Tile Cache as well as
Color Buffer and Z Buffer in the power model of Teapot.

• New Simulation Models: We have included new simulation models into Teapot for Tile
Based Deferred Rendering, Unified Shader Architecture (for TBR GPUs), as well as a mode
to emulate software Z pre-pass.

• Functional simulator for TBR GPUs: We added a functional simulator for TBR GPUs
that allows rapid design and evaluation of new techniques.

• TeaTools: We created an heterogeneous set of tools that work with the GPU traces created
by Teapot and allows to visually quantify overshading/overdraw, order among objects, detect
collisions among objects and inspect frame creation drawcall by drawcall.

3.1.2 Collision Detection CPU Simulation with Marss86 and Bullet

In the work presented in Chapter 5 we study Collision Detection algorithms on a CPU. In order
to estimate the time and energy consumption of such algorithms executed on a CPU we employ
Marss86 [173]. Marss86 is a full-system simulation framework to simulate/emulate x86 multicore
systems with detailed pipeline model including unmodified operating systems, kernel interrupt
handlers and standard libraries (see Figure 3.3). Marss86 is highly configurable and allows to
simulate multiple out-of-order/in-order cores and memory models. Marss is based on PTLsim [199]
and runs on top of the QEMU [74] emulation environment. We employ Marss to model a processor
equivalent to a dual-core ARM Cortex-A9 processor [94] (see Table A.2).

In order to simulate the CD algorithms we employ Bullet [129], a 3D Real-Time Multiphysics
Library. Bullet provides state-of-the-art collision detection for soft and rigid body dynamics.
Furthermore, Bullet is widely used in industry [95] (e.g., Grand Theft Auto V and Red Dead
Redemption). For a given GPU trace we obtain the 3D meshes of vertices of every collisionable
object in the same world space coordinates as they are in the original benchmark. With this

67

CHAPTER 3. METHODOLOGY

Figure 3.3: Overview of Marss components. Source: www.marss86.org.

information a CD algorithm is able to the test overlaps in a given scene. Then, an application
loads the meshes of the collisionable objects in a scene and using Bullet it performs the CD for
every frame of the original benchmark included in the GPU trace. We implement two different CD
versions, the first one just performs a broad phase, and the second one performs both broad and
narrow phases. These two versions are simulated with Marss and the activity factors generated are
fed into McPAT to obtain the energy cost of performing the CD in the CPU. The time and the
energy of loading the 3D meshes are subtracted from the CPU results.

Table 3.1: CPU Simulation Parameters.

CPU

Tech Specs 1500 MHz, 1 V, 32 nm
2 Cores 1 MB L2

Core Parameters

Execution mode in-order
CPU Architecture Harvard
L1 Instruction Cache 32 KB/Core
L1 Data Cache 32 KB/Core

3.2 Benchmarks

Our set of benchmarks is composed of nine commercial Android applications with different
graphics characteristics. Although there exist splendid commercial benchmarks like GFXBench [96],
we prefer to rely on real games because the commercial benchmarks tend to exacerbate the number
of advanced 3D effects in order to stress the hardware features of mobile devices regardless the
energy consumption of the device. The main target of such benchmarks is to rank the performance

68

3.2. BENCHMARKS

of the hardware devices where they run, so energy consumption is not an issue. On the contrary,
mobile games tend to be simpler than those cutting edge benchmarks in order to enlarge battery life.
In fact, battery life is one of the most important satisfaction factors for users [32]. Furthermore, a
significant number of users uninstall [76, 80, 78, 79] and 36% of users stop using an application [77]
if it turns out to be a battery killer application.

The workloads included in our set of benchmarks are representative of the mobile graphics
application ecosystem as it includes popular Android games for smartphones and tablets. Further-
more, the applications included in our set of benchmarks employ most of the features available in
OpenGL ES1.1/2.0 graphic APIs [101, 100].

Despite Khronos released OpenGL ES 3.0/3.1/3.2 specifications in December 2013, March 2014
and August 2015 respectively [97, 98, 99], during most of the time of this thesis there were not
available representative Android games using OpenGL ES 3.XX API. Furthermore, by the time of
doing the research studies included in this dissertation Gallium (softpipe, llvmpipe, swr) did not
include support for a huge number of features included in OpenGL ES 3.XX. To the best of our
knowledge by the time of writing this dissertation the current state of softpipe is that it does not
support OpenGL ES 3.XX. However, we hope that forthcoming developments on Gallium support
for OpenGL ES 3.0/3.1 will allow us to include support for them in Teapot in the future (see
future work in Chapter 6.2). In following sections we present and briefly characterize our set of
benchmarks.

3.2.1 Benchmarks Set

As graphics animation applications are one of the most popular categories in the main application
markets, 3D games are the workloads that exploit the most advanced features of embedded GPUs.
We focus on them because they represent a significant and growing market in the mobile segment
and the trend is towards more complex and realistic scenes and effects. However, it is true that 2D
games also represent an important part of the market. Despite that, we did not include 2D games
because the nature of the techniques proposed in this work makes 3D games the applications with
greater potential. Take into account that 2D games are usually based on back-to-front rendering
and Alpha Test in order to provide nice borders to the objects in the scene (sprites), and one must
respect the rendering order in most of the cases. On the other hand, 2D games usually employ
uniform grids to perform the CD, where the memory complexity is proportonal to the dimensions of
the scene and the computational cost is usually constant. Nevertheless, we include the evaluation of
2D workloads as future work in Section 6.2. Regarding the selection of frames, it is worth to mention
that for both techniques we include sequences of frames that represent the most typical use-case
in those games. For example, when we study CD the trace includes frames before collisions occur,
frames while the collision is produced, and frames after the collision has occurred. Figure 3.3 shows
screenshots of our workloads. Below we give a brief description of every game in our benchmark set:

• 300: Seize Your Glory. Hack & slash game with dynamic camera movements where the
player must combat different enemies across several levels while moving around a 3D scene. The
game displays high definition 3D graphics and features advanced effects like water rendering,
smoke, fog, rain, fire, blood splatters, among others.

69

CHAPTER 3. METHODOLOGY

(a) 300: Seize Your Glory

(b) Captain America: Sentinel of Liberty

(c) Air Attack

(d) Crazy Snowboard (e) Forest 2

• Air attack. Winner of Unity Awards 2010, Air Attack is an scroll flight combat arcade that
features high definition 3D graphics including LightMaps, SpecularMaps and particle systems.
Air Attack employs real-time physics and destructible objects like bridges and buildings. The
player controls the plane top/bottom/left/right around the scene, which scrolls bottom-top
through the entire level.

• Captain America: Sentinel of Liberty. Beat’em up action game with dynamic camera
movements where the player controls Captain America while he runs, jumps, slides and

70

3.2. BENCHMARKS

(f) Gravity: Don’t Let Go

(g) Sleepy Jack

(h) Temple Run

(i) Shoot War: Professional Striker

Figure 3.3: This figure shows a screenshot for each of the Android games included in
our set of benchmarks.

fights different enemies with his shield. Captain America employs programmable shaders to
implement advanced visual effects like explosions and smoke among others.

• Crazy Snowboard. Snowboard action game where the player controls a rider that jumps
and makes tricks like flips, spins, grabs or grinds over different objects as he descends the
track. Crazy snowboard includes bump maps, lighting and basic terrain models.

71

CHAPTER 3. METHODOLOGY

• Forest 2. Haunting horror high definition game where the player controls a character that
moves around a forest and whose quest is to escape and banish a white ghost with long black
hair. The game includes improved AI and uses programmable shaders that feature basic
terrain models and a rich scenario with a great number of objects.

• Gravity: Don’t Let Go. Action game with dynamic camera movements that features high
definition 3D graphics. The player controls an astronaut in a space suit that must accomplish
different missions as struggles to survive in the zero-gravity environment of the vast space.
The game employs real-time physics and programmable shaders that implement visual effects
like the propulsion jets of the astronaut propulsion unit.

• Shoot War: Professional Striker. First person shooting game with different scenarios
where the player must fight with different firearms multiple enemies that exhibit simple AI.
The game employs programmable shaders to implement basic terrain models and visual effects
like fire and blood splatters.

• Sleepy Jack. Visually appealing action arcade game where the player controls Sleepy Jack
while he is dreaming as he flies around a tunnel, collects dream bubbles and interacts with
other multiple objects and enemies. This game includes destructible objects and employs high
definition 3D graphics and programmable shaders to implement advanced visual effects like
explosions, particle systems and lighting.

• Temple Run. One of the most popular mobile games, Temple Run is an adventure arcade
where the player controls an explorer that has just stolen a cursed idol from a temple and now
runs for his life escaping from Evil Demon Monkeys that chase him. The player has to jump,
turn, swipe and slide to avoid different obstacles, collect coins and buy items. Like all the
games included in our set of benchmarks, Temple Run has been developed with Unity3D and
includes water rendering and other visual effect like fire and fog.

3.2.2 Benchmarks Characterization

Our benchmarks set is composed of nine Android commercial 3D applications (see Table 3.2),
all of them using Unity3D [21]. Most of them are very popular and count with a high number of
downloads. In the case of Sleepy it is worth to mention that it is not a free application, which
greatly reduces the number of downloads. As can be seen the games have been developed and
updated in recent years, being Captain America the oldest benchmark (updated in 2011).

We now briefly analyze the key characteristics of our set of benchmarks for the Geometry and
the Rasterization stages. Table 3.3 shows information of the Geometry stage. The second column
reports the average number of instructions executed per processed vertex in the Vertex Shading (VS)
stage, expressed in terms of assembly instructions of the Tungsten Graphics Shader Infrastructure
(TGSI) ISA [84]. TGSI is the only intermediate assembly language that is employed in all the drivers
of Gallium. TGSI is based on the ARB assembly language (created by the OpenGL Architecture
Review Board), which is one of the first low-level shading languages for GPUs with the aim to
standardize the control of the hardware graphics pipeline. As can be seen the two benchmarks that
employ OpenGL ES 1.1 (Air Attack and Crazy Snowboard) are among the ones with smaller ratio

72

3.2. BENCHMARKS

Table 3.2: Benchmarks Set.

Benchmark Description Downloads (M) OpenGL ES Updated

300 hack & slash 10-50 2.0 Feb 2014
Air Attack flight arcade 10-50 1.1 Jan 2014
Captain America beat’em up 1-5 2.0 Jul 2011
Crazy Snowboard snowboard arcade 5-10 1.1 Dec 2015
Forest 2 horror 1-5 2.0 Oct 2016
Gravity action 1-5 2.0 Dec 2013
Professional Striker shooter 10-50 2.0 Feb 2017
Sleepy Jack action 0.5-1 2.0 Jun 2013
Temple Run adventure arcade 100-500 2.0 Oct 2016

of instructions executed. This is not unexpected as for these games the driver emulates with simple
shaders the configurable fixed function options of the OpenGL ES 1.1 VS stage. The third column
shows the average number of drawcalls per frame. A drawcall is a draw function call of the API
(glDrawArrays or glDrawElements in OpenGL ES 1.1/2.0) that renders a batch of vertices. The
fourth column reports the average number of primitives per drawcall, a parameter that when it is
too low causes the application to be CPU bound (the CPU is not able to feed the GPU fast enough
and the idle time of the GPU increases). The fifth column shows the average number of primitives
per frame and the sixth column shows the average number of output primitives per frame. The
input primitives are the assembled at the beginning of the Primitive Assembly stage and are sent to
the Clipping stage. The resulting primitives after clipping are referred to as output primitives. The
last column shows the percentage of output primitives per frame that are culled by the Face Culling
stage. As can be seen this stage removes up to 47% of the geometry before the Rasterization stage.
Games like 300, Crazy Snowboard, Gravity and Sleepy Jack, where the weight of sophisticated 3D
objects is high, exhibit the higher face culling rate. On the other hand, Air Attack and Forest 2
exhibit the lower culling rates. Both games contain a large amount of single-faced geometry like the
terrain and the trees in the case of Air Attack and the leaves of the trees in the case of Forest 2.

Table 3.3: Geometry Stage Stats.

Bench

VS insns
per

Vertex

Drawcalls
per

Frame

Primitives
per

Drawcall

Primitives
per

Frame

Out Prims
per

Frame

% Culled
Out Prims
per Frame

300 26.69 192.74 468.50 79445.37 48314.12 42
Air 7.59 21.16 141.16 5905.56 1924.63 23
Cap 15.35 22.35 321.73 11993.35 2007.51 33
Crazy 13.48 20.06 144.09 3486.29 1079.32 42
Forest2 45.23 257.19 170.45 52962.56 30773.78 17
Grav 50.67 40.01 1825.99 56019.44 22743.64 47
Sleepy 19.84 32.50 167.06 8325.70 4963.60 44
Striker 8.59 21.31 481.07 8576.55 6132.88 34
Temple 32.47 25.33 565.64 25177.24 4895.81 31

73

CHAPTER 3. METHODOLOGY

Table 3.4: Rasterization Stage Stats.

Bench

Fragments
per

Primitive

Attributes
per

Fragment

FS insns
per

Fragment

ALU insns
per

TEX insns

Texels
per

Fragment
Depth

Complexity

300 103.37 5.39 6.98 18.09 4.36 4.97
Air 324.99 3.50 5.23 3.20 8.98 1.64
Cap 166.69 2.81 5.60 5.24 5.89 1.97
Crazy 594.81 4.69 6.29 10.55 4.00 1.23
Forest2 231.88 8.11 17.63 15.21 13.57 4.85
Gravity 28.06 5.20 20.34 23.19 11.41 1.98
Sleepy 78.84 2.22 6.76 20.28 3.23 1.40
Striker 386.19 4.24 7.42 6.22 7.47 2.24
Temple 97.13 4.31 10.78 17.16 10.67 2.05

Once the geometry stage has finished the resulting primitives that have not been culled are
processed in the Rasterization stage. The primitives are first discretized into fragments that contain
interpolated values of the per-vertex attributes that the primitive includes. Then, the color of the
fragments is computed by the fragment shader. Table 3.4 shows information of our benchmarks in
the Rasterization stage. The second column presents the average number of fragments per primitive.
The third column contains the average number of attributes per fragment. This is a measure of the
amount of work to be done by the Rasterizer for the interpolation of the attributes of the vertices
of a triangle. The fourth column contains the average number of fragment shader instructions
per fragment produced by the Rasterizer. The fifth column shows the average number of ALU
instructions per texture fetching instruction. Take into account that in OpenGL ES 2.0 the texture
instructions are the only ones that allow the programmer to access memory within the fragment
shader, so the higher number of ALU instructions per texture fetching instruction the less memory
intensive the workload. The sixth column presents the average number of fetched texels (texture
pixels) per fragment. The number of texels fetched per fragment varies depending on the number
of textures employed in the shader and the texture filter selected. For one texture, the filters
nearest-neighbor, bilinear and trilinear fetch 1, 4 and 8 texels respectively. Anisotropic filtering with
2x, 4x, 8x and 16x filter modes fetch 16, 32, 64 and 128 texels respectively. The last column shows
the depth complexity of the scene, i.e., the average number of fragments per pixel executed in the
fragment shaders. This parameter provides a measure of the activity performed in the Fragment
Shading stage and it is also commonly referred to as overshading.

As can be seen in the second column of table 3.4, on average the number of fragments is
two orders of magnitude greater than the number of primitives, which indicates why typically the
fragment shading is known to be most consuming stage of the graphics pipeline. This parameter
widely ranges from around 28 up to 594 for Gravity and Crazy Snowboard respectively. It is
interesting to note the special case of Gravity, which counts with a detailed geometry and an
important part of the screen literally empty, i.e., no fragment has been produced to cover those
pixels. The third column indicates a significant variation in the number of attributes per fragment
that the Rasterizer must interpolate, which range from 2.22 up to 8.11 for Sleepy Jack and Forest
2 respectively. With respect to the number of fetched texels per fragment we also observe a wide

74

3.2. BENCHMARKS

range from 3.23 (Sleepy Jack) to 13.57 (Forest 2). Likewise, the fragment shaders employed by our
set of benchmarks are significantly different, being Sleepy Jack and Gravity the workloads with less
and more intensive fragment shading with 5.23 and 20.34 assembly instructions respectively. It is
interesting to note the smaller ratio of shader instructions in the Rasterization stage with respect
to the Geometry stage. The number of ALU instructions per texture fetching instruction is also
different for the different workloads of our set of benchmarks and it ranges from 3.20 to 23.19 for
Air Attack and Gravity respectively. Furthermore, our workloads employ different texture filters.
Games like Air Attack, Forest 2, Gravity and Temple Run employ several textures in the shader and
trilinear filtering, fetching around 9 texels in the case of Air Attack and more than 10 texels per
fragment on average in the other cases. Finally, the last column of Table 3.4 shows the overshading
of our set of benchmarks, which ranges from 1.23 (Crazy Snowboard) to 4.97 (300). As we previously
said, computing the color of a fragment and writing it in a given pixel of the Color buffer more times
than necessary wastes a considerable amount of main memory bandwidth, time and energy [172].
Thus, reducing this unnecessary activity significantly increases the energy-efficiency of the GPU.

75

4
Visibility Rendering Order: Improving Energy Efficiency

on Mobile GPUs through Frame Coherence

Identifying visible surfaces is a requirement in the graphics pipeline for correct image rendering.
The most widespread method to resolve visibility at pixel granularity is the Depth Test, which is
typically placed at the end of the pipeline. Figure 4.1 introduces a simplified conventional graphics
pipeline. The GPU receives vertices and processes them in the Geometry Pipeline, which generates
triangles. These are then discretized by the Rasterizer, which generates fragments that correspond
to pixel screen positions. Then, fragments are sent to the Fragment Processing stage, which performs
the required texturing, lighting and other computations to determine their final color. Finally, the
Depth test compares each fragment’s depth against that already stored in the Depth Buffer to
determine if the fragment is in front of all previous fragments at the same pixel position. If so, the
Depth Buffer is conveniently updated with the new depth, and the color of the fragment is sent to
the blending stage, which will accordingly update the Color Buffer (the buffer where the image is
stored). Otherwise the fragment is discarded.

One big advantage of the Depth test is that it ensures correct scene rendering regardless of the
order the opaque geometry is submitted by the CPU. The main drawback is that the color of a
given pixel may be written to the frame buffer in system memory more times than necessary (a
problem known as overdraw), which wastes a considerable amount of bandwidth and energy [172].
Moreover, when the GPU realizes that an object or part of it is not going to be visible, all activity
required to compute its color has already been performed, with the consequent waste of time and
energy (a problem known as overshading), especially in the Fragment Processor, which is the most
power consuming component of the graphics pipeline [176]. Reducing the overshading produced by
non-visible fragments can significantly increase the energy-efficiency of the GPU.

Figure 4.2 shows the overshading for several applications (details on the evaluation framework

77

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

Depth
Test

Depth
TestG.P.G.P. Rast.Rast. F.P.F.P.

G.P. = Geometry Processing Rast. = Rasterization
F.P = Fragment Processing

Depth
Buffer

Depth
Buffer

Vertex
Cache

Vertex
Cache BlendingBlending

Color
Buffer

Color
Buffer

Raster Pipeline
Geometry
Pipeline

Vertices Triangles Fragments Visible
Fragments

Figure 4.1: Simplified version of the Graphics Pipeline.

30
0

C
ap

For
es

t

G
ra

v

S
tri

ke
r

Te
m

pl
e

G
eo

.m
ea

n A
ir

C
ra

zy

G
eo

.m
ea

n

0

1

2

3

4

5
8,54 13,37

No Early-depth Early-depth Perfect Object Order

O
v
e
rs

h
a
d
in

g

OrderedUnordered

Figure 4.2: Shaded fragments per pixel in a GPU without Early-depth test, with
Early-depth test and with perfect front-to-back rendering order at object granularity.

are provided later). We define overshading as the average number of fragments processed per pixel.
First bar shows that overshading is extremely high in some applications with complex 3D geometry
such as 300 and Forest 2, for which each pixel is computed and written around 8.5 and 13 times on
average.

Commercial GPU pipelines include an Early-depth test stage that checks fragment visibility
before the Fragment Processing, and achieves substantial overshading reductions (see mid bar of
Figure 4.2). However, the effectiveness of the Early-depth relies on the software ability to send
opaque primitives in front-to-back order, which is not what the software does in most of the cases.
The third bar of Figure 4.2 shows the overshading with a perfect front-to-back rendering order at
object level granularity, which reduces inter-object overshading to the minimum. As can be seen,

78

4.1. VISIBILITY DETERMINATION AND OVERSHADING

there is significant headroom for improvement, and this is the target of this chapter.

It is well-known that improving the battery life of handheld and portable devices is a major
concern for hardware and software developers. Among all the components in smartphone SoCs, the
Graphic Processing Unit (GPU) has been identified as one of the top energy consumers [122]. In par-
ticular, for graphics applications the GPU has been identified as the principal energy consumer [174].
Further experimental data with the same SoC shows a peak consumption of the GPU 50% higher
than the peak consumption of the CPU [30]. The current trend towards more realistic graphics and
therefore, more power hungry applications [150] is just aggravating this issue, so, improving the en-
ergy efficiency of mobile GPUs is key for future designs [103, 109, 123, 148, 168, 169, 180, 131, 120].
The development of energy-efficient solutions is a requirement to make possible a richer user
experience in these platforms.

In this work, we propose a novel hardware technique for mobile GPUs, Visibility Rendering
Order (VRO), which tries to render objects in a front-to-back order to maximize the culling
effectiveness of the Early-depth test and minimize overshading, hence reducing execution time and
energy consumption. Our approach is based on the observation that consecutive frames do not differ
much in order to provide the feeling of smooth transition in animated applications. This suggests
that the relative order among the objects in frame N is usually the same as in frame N+1 (or very
close). Since depth-order relationships between objects are already checked by the Depth Test, VRO
incurs minimal energy overheads because it just requires adding a small hardware to capture that
information and use it later to guide the rendering of the following frame. This extra activity is
performed in parallel with other stages of the pipeline, so no performance overheads are incurred.

For the analysis in this work, we have classified our set of benchmarks into two different groups
according to the following. If the reduction in overshading between an ideal front-to-back rendering
order at object granularity (third bar of Figure 4.2) and the execution using Early-depth (second
bar of Figure 4.2) is smaller than 0.5%, then the benchmark is categorized as “ordered”, otherwise
the benchmark is categorized as “unordered”. Our technique achieves impressive results for the
“unordered” group of applications, i.e. those that do not submit objects in front-to-back order to the
GPU. For this group, VRO obtains 27% speed-up and 14.8% energy reduction on average when
compared with a state-of-the-art mobile GPU presented. For the “ordered” group of benchmarks,
VRO achieves minor reductions in overshading, but it neither produces any performance penalty
nor energy overhead. Take into account that for ordered benchmarks, VRO may provide benefits to
the CPU, because the application does not longer require to order objects front-to-back, which is
typically expensive in complex scenes.

4.1 Visibility Determination and Overshading

Current graphics processors implement the Depth Buffer technique to resolve the visibility of
opaque surfaces at fragment granularity. During the rendering process, the objects are discretized
into fragments that correspond to pixel positions. By testing each fragment’s depth against that
already stored in the Depth Buffer, the hardware determines if the fragment is in front of all previous
fragments at the same position. If so, the Color Buffer and the Depth Buffer are conveniently
updated. Otherwise the fragment is discarded. This is commonly known as Depth Test or Z-Test.

79

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

Note that the depth and the color of a given pixel may be written multiple times, also known
as overdraw, which wastes a considerable amount of main memory bandwidth and energy. This is
the case of the Immediate-Mode Renderers (IMR) which is the preferred rendering mode in desktop,
laptop and game console GPUs. In the mobile world, IMR is used, for instance, in NVIDIA Tegra
4 [93] and Tegra X1 [71]. With IMR, the graphics commands are fully processed in the order they
are submitted to the GPU and the corresponding primitives are processed through the graphics
pipeline stages as soon as they are generated, which may cause overdraw if the geometry is not
rendered in a perfect front-to-back order. Otherwise, occluded portions of the scene are discarded
by the Depth Test and so, the writes to Depth Buffer and the accesses to Color Buffer are reduced,
saving precious memory bandwidth. This has motivated some research to sort image objects in
the CPU before they are sent to the rendering pipeline. Nevertheless, this approach has important
computational costs that make it less appealing for real-time rendering, especially on low power
devices.

To further reduce power and latency, most pipelines perform an Early-depth test to fragments
before they are sent to the Fragment Processors. Discarding occluded fragments at this pipeline
stage saves useless shading and blending work and brings important performance and power benefits.
Note that a given pixel may still be shaded multiple times unless opaque surfaces are rendered in
front-to-back order, a problem known as overshading. Overdraw and overshading refer to similar
problems. Overshading refers to unnecessary executions of the Fragment Processor whereas overdraw
represents the unnecessary writes to the Color Buffer, and therefore, whenever there is overdraw
there is also overshading. Note that not all overshading is avoidable. Non-opaque or transparent
objects will compute the color of their pixels using the color values of the scene behind them, so
overdraw for those objects is unavoidable in these cases.

Overshading has also been addressed in other ways. Z-prepass [145] addresses overshading by
performing two separate rendering passes with the GPU. First it renders the geometry without
outputting to the Color Buffer, just using a null fragment shader, to setup the Depth buffer final
values. On a second pass with the real shaders the Early-depth test will perform optimal culling, so
overshading will be minimum (just one opaque fragment per pixel will be shaded and written to the
Color Buffer). Unfortunately, this approach doubles the amount of vertex processing, rasterization
and depth-test work required, which more than offset its benefits. It is only effective for workloads
with enough depth and/or fragment complexity where these overheads are compensated by large
fragment computation savings, which is not usually the case on mobile applications.

Deferred Rendering (DR) is a hardware technique that avoids overshading through computing
the Depth Buffer before starting fragment shading. Currently, DR has only been implemented
on Tile Based Rendering (TBR) GPUs [91]. TBR pipelines divide the screen space into tiles and,
before rasterization, they assign the geometry of the scene to the tiles, which are then independently
rendered. This allows the GPU to use small on-chip memories to contain the Depth and the Color
buffers for the entire tile, which dramatically reduces the accesses to main memory [106]. DR adds
a hidden surface removal (HSR) phase to the pipeline just before the Early-Depth test. During the
HSR phase, all the tile primitives are first rasterized only for position and depth, and the resultant
fragments are Early-depth tested to setup the Depth Buffer. Once HSR is complete, the second
pass processes the tile primitives as usual along the raster pipeline (they are read, rasterized and
depth-tested again), except that this time the Early-depth test performs optimal occlusion culling.

80

4.2. VISIBILITY RENDERING ORDER

Although the exact details of this technique in commercial systems are not fully disclosed, we have
modeled in our framework an efficient implementation of it at the microarchitecture level, which
is described in Subsection 4.3.1. In contrast to Z-prepass, DR does not perform the geometry
processing twice. However, as can be seen in Figure 4.3, DR still has a non negligible cost: either it
introduces a barrier in the graphics pipeline, because the Fragment Processing stage cannot start
until HSR has completely finished the tile (see (a) sequential DR), or significant extra hardware is
required to perform HSR of tile i+1 and rendering of tile i in parallel (see (b) parallel DR). Further
details are given in Section 4.3.1.

HSR tile i

Depth
Buffer

Depth
Buffer

Depth
Buffer

Depth
Buffer

Depth
Buffer

Depth
Buffer

G.P.G.P. Rast.Rast.
Early
Depth Rast.Rast.

Early
Depth

Depth
Test

Depth
TestF.P.F.P.

G.P. = Geometry Processing Rast. = Rasterization
F.P = Fragment Processing

Rendering tile i

Vertex
Cache

Vertex
Cache

Tile Engine Raster Pipeline
Geometry
Pipeline

BlendingBlending

Color
Buffer

Color
Buffer

(a)

Polygon
List Builder

Polygon
List Builder

Tile
Scheduler

Tile
Scheduler

Parameter
Buffer

Parameter
Buffer HSR tile i+1

Depth
Buffer1

Depth
Buffer1

Depth
Buffer0

Depth
Buffer0

Depth
Buffer0

Depth
Buffer0

G.P.G.P.

Early
Depth1

Rast.0Rast.0
Early

Depth0
Depth
Test

Depth
TestF.P.F.P.

Rendering tile i

Vertex
Cache

Vertex
Cache

Rast.1Rast.1

BlendingBlending

Color
Buffer

Color
Buffer

(b)

Raster Pipeline
Geometry
Pipeline Tile Engine

Polygon
List Builder

Polygon
List Builder

Tile
Scheduler

Tile
Scheduler

Parameter
Buffer

Parameter
Buffer

Figure 4.3: Graphics pipeline: (a) Sequential DR. (b) Parallel DR.

4.2 Visibility Rendering Order

To help maximize Early-depth test effectiveness, we propose to record the visibility order of
the objects in a frame, assume the same order for the next frame, and then use it to influence
the rendering order of the objects in the next frame. This is expected to work since images of
consecutive frames normally show a significant degree of similarity to result in a smooth transition
among frames, so the ordering of objects in consecutive frames tends to be the same. To produce a
quantitative evidence of this, we have evaluated sequences of 50 frames of our benchmarks, and
we have observed that the relative order of the objects in a frame closely matches the relative
order in the previous frame. Note that in the case that some object is in a different order, a small
overshading may occur, but correctness is ensured in any case.

Unlike other approaches, our technique works for all kind of scenes, either static or dynamic, it
does not cause CPU-GPU synchronization issues and it has no performance cost because it works
in parallel to other stages of the pipeline. This section outlines our technique, and the next section
will provide hardware implementation details.

4.2.1 Overview

Figure 4.4 shows the changes to the graphics pipeline introduced by VRO, which will be
explained below: the Edge Inserter, the Visibility Sort Unit and the Graph Buffer. Basically, VRO
has two stages that operate on consecutive frames:

81

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

Depth
Test

Depth
TestG.P.G.P. Rast.Rast.

Early
Depth F.P.F.P.

G.P. = Geometry Processing Rast. = Rasterization
F.P = Fragment Processing

Polygon
List Builder

Polygon
List Builder

Tile
Scheduler

Tile
Scheduler

Parameter
Buffer

Parameter
Buffer

Depth
Buffer

Depth
Buffer

Depth
Buffer

Depth
Buffer

Vertex
Cache

Vertex
Cache

BlendingBlending

Color
Buffer

Color
Buffer

Tile Engine

Raster PipelineGeometry
Pipeline

Visibility
Sort

Visibility
Sort

Graph
Buffer

Graph
Buffer

Visibility Order

Edge
Inserter

Edge
Inserter

Graph
Buffer

Graph
Buffer

Edges

Figure 4.4: Graphics pipeline including VRO.

1. Creation of a Visibility Graph: During the rendering of frame N the Early-depth test
reveals depth precedence relationships between pairs of fragments covering the same pixel
position, hence among the corresponding objects. These relationships (edges) are used by the
Edge Inserter unit to build a directed graph where objects are represented by nodes, and the
edges indicate which objects are in front of others. We will refer to this graph as the Visibility
Graph, which is stored in the Graph Buffer.

2. Creation of a rendering order: At the beginning of the rendering of frame N+1, in parallel
with the execution of the Geometry Pipeline, the Visibility Sort unit sorts the Visibility Graph
created during frame N to generate a depth-ordered list of nodes. We will refer to this list as
the Visibility Rendering Order, and it is used by the Tile Scheduler to guide the rendering of
the frame N+1.

4.2.2 Graph Generation

Figure 4.5 shows an example of the Visibility Graph that is generated for the given frame of
Gravity. Let us consider three different objects: the astronaut (object A), the jetpack (object B)
and the big solar panel (object C). Let us assume that these objects were submitted and rendered in
the order A, B, C. When the object A is rendered 1 , the Depth Test annotates in the corresponding
areas of the Depth Buffer the depth of A’s fragments as well as their identifier. Next, the object B
is rendered 2 and we know by the results of the Depth Test that, in some pixels, B is in front of A
(edge (B, A)). As we explain later, the Depth Test sends this information to the Edges Filter, which
filters lots of redundant edges. Finally, the object C is rendered 3 and the Depth Test reveals that
A occludes C in some pixels, and B also occludes C in some other pixels, so edges (A, C) and (B, C)
are sent to the Edge Inserter through the Edges Filter.

82

4.2. VISIBILITY RENDERING ORDER

A

B

BA C

Objects

in scene

Visibility Graph

A A

B

C

1 2 3

Figure 4.5: Visibility Graph generation for the given scene.

4.2.3 Sort Algorithm

Once the graph is generated, it is sorted to create the Visibility Rendering Order (a front-to-back
ordered list of object-ids). Our approach is based on the well known Topological Sort algorithm,
first proposed by Kahn [156], which guarantees for DAG graphs (acyclic) that an ordered list of
nodes exists and it is generated in linear time. Algorithm 1 outlines the basic algorithm, assuming
for convenience that every node is tagged with its number of incoming edges (the in-degree). Nodes
with no incoming edges are referred to as roots.

A

B

C

Visibility Graph Kahn’s Algorithm

Input Edges:
A B C
1 0 2

RQ: B

 L:

A

B

C

Input Edges:
A B C
1 0 2

B

1

2

RQ:

L :

A

B

C

Input Edges:
A B C
0 0 1

A

B

A

B

C

Input Edges:
A B C
0 0 1

B, A

3

4

A

B

C

Input Edges:
A B C
0 0 0

C

B, A

A

B

C

Input Edges:
A B C
0 0 0

B, A, C

5

6

RQ:

L:

RQ:

L :

RQ:

L :

RQ:

L :

RQ = Roots Queue L= Topological Order

Figure 4.6: Sorting a Visibility Graph with the Kahn’s algorithm.

Let us illustrate how a Visibility Graph is sorted with the Kahn’s algorithm (see Figure 4.6).
The Kahn’s algorithm maintains an array with the number of input edges of every node in the
graph. As we said, the roots are pushed into RQ and the topological order is stored into L. Initially
the graph contains one root, the object B 1 . Once the object B has been sorted 2 , the input edges

83

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

Algorithm 1 Kahn’s algorithm.

1: function Kahn(L,RQ) ⊲ L: empty list that will contain the sorted nodes
2: ⊲ RQ: queue with all initial root nodes of Graph
3: while RQ is non-empty do
4: remove head node n from RQ
5: insert node n into list L
6: for child m of n do
7: remove the edge from n to m
8: decrease the in-degree of m
9: if m is a root then

10: add m to tail of RQ
11: end if
12: end for
13: remove node n from Graph
14: end while
15: if Graph has nodes then
16: return error ⊲ Graph has at least one cycle
17: else
18: return L ⊲ a topologically sorted order
19: end if
20: end function

of its children nodes are updated 3 , which turns the object A to be a root. Therefore, it can be
sorted 4 and the input edges of its child C are conveniently updated. As soon as the object C
becomes a root 5 , it can be sorted 6 producing a topological order for the given directed graph.

However, if the graph contains a cycle, this algorithm finishes with an error condition because
at some point none of the graph nodes that remain to be sorted have zero in-degree. We found that
these cycles are quite common, and actually none of our benchmarks creates a DAG. To cope with
this situation, we distinguish three kinds of cycles and apply different solutions in each case:

1. Auto occlusions between parts of the same object (auto-cycles). They are removed
by discarding their corresponding edges in the process of creation of the graph in the phase
one of the sort algorithm. These edges can be ignored because VRO reorders at object level
and the auto-occlusions just contain intra-object precedence relations.

2. Pairs of interlaced objects occluding each other (parallel-cycles). VRO eliminates
the cycles created by pairs of interlaced objects by adding to the Visibility Graph only the
first precedence relation between two objects (A, B), i.e. A occludes B, found by the Depth
Test. If later on a (B, A) relation is found in the Depth Test, it is just ignored and not added
to the graph. This is also done in the phase one of the algorithm.

3. Three or more objects alternately occluding one another (indirect-cycles). Since
these cycles may be extremely costly to detect, we adopt a cost-effective approach which does
not attempt to eliminate them from the graph. We rather extend the Kahn’s algorithm to
side-step a cycle-induced wrong termination: whenever the RQ is empty and there are still

84

4.2. VISIBILITY RENDERING ORDER

nodes to be sorted but none of them is a root, we select from the remaining graph nodes the
first node in program rendering order among those nodes with minimum number of input
edges. Then the node is removed from the graph and added to the tail of RQ. This process is
done in the phase two of the sort algorithm. In our experiments, the heuristic that selects a
node to avoid cycle-induced wrong termination of the Kahn’s algorithm is executed around
13% of the times.

4.2.4 Heuristics to Sort the Objects in a Scene

In this section we present different heuristics to handle the cycles that appear in the Visibility
Graph of a given scene. One solution consists on simply create a directed and acyclic Visibility
Graph and sort it using the regular Kahn’s algorithm. Other solution is to create a Visibility Graph
with some cycles and break them appropriately when sorting the graph. We test different heuristics
that generate different approximations to the optimum rendering order for the given scene.

Eliminating all the Cycles before Sort Time

Eliminating all the cycles of the Visibility Graph before sorting it allows to employ the regular
Kahn’s algorithm to obtain a Visibility Rendering Order. The cycles are eliminated by removing
a set of edges from the directed graph. Such set of edges is often referred as feedback arc set.
Furthermore, a feedback arc set with minimum weight is known as the minimum feedback arc set,
whose computation is a problem known to be NP-hard for different kind of graphs [119, 175].

We implement a greedy algorithm that computes a feedback arc set that is an approximation
to the minimum feedback arc set, which allows us to eliminate all the cycles of the Visibility Graph
before sorting it through the Kahn’s algorithm. In this algorithm every edge (A, A) is discarded in
the Depth Test. Every edge (A, B) is annotated with the number of fragments that a given object
A occludes an object B. The algorithm computes the set E of annotated edges that form the graph
G(E), eliminates the cycles creating a DAG, and finally returns a Topological Order of the DAG.
This is the algorithm employed to obtain the perfect-object-order shown in the introduction of this
chapter. It works in two main phases:

1. The set E of annotated edges that form the graph G(E) is computed in the Depth Test.

2. The algorithm eliminates the edges of the set E that form cycles in the graph G(E):

(a) The greedy algorithm sorts the set of edges E in descending order of the number of
occlusions and creates a list L. A new empty set of edges E’ is created.

(b) For every edge e of L (in order):

i. If the graph formed by the edges of E’ plus the edge e remains acyclic, insert the
edge e in the set E’.

ii. Otherwise, the edge e is discarded.

85

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

(c) Once all the edges of the ordered list L have been processed, the resulting graph G’(E’)
is a DAG. This DAG is fed to the Kahn’s algorithm which produces a Topological Order,
that is, an ordered list of the objects of the scene.

Eliminating some Cycles at Sort Time

We have tested different schemes that create a Visibility Rendering Order. In all the schemes
tested, auto-cycles are eliminated by discarding the edges with same objects as source and target in
the Depth Test. Parallel-cycles are handled in two different ways:

1. One can attach a counter to the edges and count the number of times A occludes B, and vice
versa. Once the scene has been rendered, we are able to break the cycle by eliminating the
edge of each parallel cycle with minimum value, that is, we eliminate the edge that would
lead to a higher overshading. This scheme is referred to as C, where C means “counter”. We
tested two sizes of counters: 32 and 16 bits.

2. On the other hand, one can just add to the Visibility Graph the first edge that arrives to the
Edge Inserter. The schemes implementing this option are referred to as PO, where PO means
“program order”. Obviously, this approach is simpler than the former.

Regarding the rest of the cycles in the graph, they are not eliminated but handled appropriately
by an heuristic which selects the next node to visit when none of the remaining nodes is a root (i.e.
has no incoming edges). Two different heuristics have been studied:

1. H1: This heuristic selects the next node in program rendering order among the nodes with
minimum in-degree. We observe that H1 results in less overshading in general. Of course, the
effectiveness of this approach depends not only on the in-degree but also on the occluded area
which is the real source of the overshading.

2. H2: This heuristic selects the node with minimum average depth. We test different versions of
H2, selecting the node with minimum maximum-depth and minimum minimum-depth. Both
alternatives produce almost identical results.

We also test H1 and H2 alone without the “counter” or the “program order” mechanisms, so
the Visibility Graph is traversed as it is produced in the Depth Test. The different versions of VRO
are summarized in Table 4.1, and evaluated in subsection 4.5.2. Note that the combination PO H1
is the one described in subsection 4.2.3 and it is assumed for all our experiments unless stated
otherwise.

Our main goal is to improve performance while still reducing energy consumption on a mobile
GPU. VRO achieves both goals by improving the effectiveness of the Early-depth to cull hidden
surfaces before they reach the Fragment Processing stage, so that the number of shader instructions
executed is reduced. We have tested several heuristics to handle the cycles of the Visibility Graph
that approximate this goal with different performance/energy trade-offs. The suitability of one or

86

4.2. VISIBILITY RENDERING ORDER

Table 4.1: VRO alternatives.

Version Par. Cycles Heuristic

C H1 counter min in-degree
C H2 counter min average depth
PO H1 program order min in-degree
PO H2 program order min average depth
MinZ - min average depth

another heuristic on a given hardware platform will greatly depend on design issues. Bear in mind
that, regardless of the approximation image correctness is guaranteed in any case by the depth
test. Our choice here is a heuristic that implies a cost effective implementation of VRO and clearly
illustrates its feasibility and effectiveness.

4.2.5 Partial Order of Objects

The Depth Buffer only stores the depth of one fragment at every pixel position. Thus, when a
new fragment is tested the comparison is performed between the new fragment and the one visible
so far, so there may be objects whose fragments are never compared. Therefore, this comparisons
will provide just a partial order of the objects. Hence, one may wonder whether the missing node
relationships may lead to build a wrong Visibility Graph. To answer this question, note that the
relative render ordering of two objects is only relevant for visibility purposes if they overlap at some
region, and that region is visible at least in one pixel.

AB C

B

observer A C

AB C

B

A

C

(a)

(b)

observer

Scene Graph
Possible

Orders

AB C

AB C

AB C

Figure 4.7: Two example cases where object B sits in front of A and C. The shaded
region highlights the overlap between A and C.

It is easy to prove that if two nodes are not connected, then either they do not overlap at all,
or their overlapping region is not visible, i.e., the missing relationship is not relevant in terms of

87

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

overshading. Figure 4.7 illustrates this property with two examples. In both cases the rendering
order is A, B, C. In case (a), nodes A, C are not connected and therefore their overlapping area is
not visible, so the different possible rendering orders between A and C do not produce a different
amount of overshading. In case (b), the overlapping between A and C is partially visible and
therefore these nodes are connected in the graph. That is, the partial order represented in the
Visibility Graph contains all the precedence relations necessary to create an order where visible
objects are scheduled before the ones that they occlude.

4.2.6 Visibility Rendering Order Adjustments

The Visibility Rendering Order that the Tile Scheduler receives from the Visibility Sort unit
contains the object-ids of the objects rendered in the previous frame, and they may differ slightly
from the objects to be rendered in the current frame. On the one hand, objects rendered in the
previous frame are present in the Visibility Graph, but they are not present in the current frame
and therefore they must not be scheduled, so they are simply discarded by the Tile Scheduler in a
sequential pass. On the other hand, objects not present in the Visibility Graph but present in the
new frame must be scheduled, so they are put in the list after the objects in the graph.

Note that objects with Depth test disabled or with Blending enabled cannot be simply put
at the end of the order list because it could produce erroneous images. These objects must be
scheduled in the same relative order as they appear in the program rendering order. VRO respects
the OpenGL standard in the sense that the result is the same as if objects were processed in program
rendering order, so this constraints are taken into account when creating the final rendering order.
Fortunately, objects with Blending enabled or with Depth Test disabled are objects commonly part
of the GUI of the applications and tend to be the last objects to appear in the program rendering
order, so in the practice they introduce minor constraints to the Visibility Rendering Order.

4.3 Microarchitecture

This Section describes the implementation details of our technique on a contemporary GPU.
Next, we describe the extensions to the baseline architecture that are required to support Deferred
Rendering (DR) and our technique (VRO). DR and TBR will be used for comparison purposes in
our experiments.

4.3.1 Deferred Rendering TBR GPU

Deferred Rendering (DR) is the state-of-the-art regarding overshading reduction, so we decided
to model it for comparison purposes. As outlined in Section 4.1, DR reduces overshading by first
performing Hidden Surface Removal (HSR), which in first place computes the final state of the
Depth Buffer for a given tile. Thereafter, it starts an ordinary rendering of the tile. Hence, given
that the Depth Buffer contains the depth of the visible objects, the Early-depth is able to discard
all the occluded fragments and achieve minimum overshading.

88

4.3. MICROARCHITECTURE

Raster Pipeline

HSR stageHSR stage

Fragment ProcessorsFragment Processors

Memory
Controller

Memory
Controller

L2
Cache

L2
Cache

RasterizerRasterizerPerfect
Early-Depth

Perfect
Early-Depth

Color
Buffer

Color
Buffer

Texture
Cache

Texture
Cache

ALU

Load/
Store

Tile
Cache

Tile
Cache

Tile
Scheduler

Tile
Scheduler

Tiling Engine

Blending

RasterizerRasterizer
Early

Depth Test

Early
Depth Test

Z-Buffer

(a)

Z-Buffer

Figure 4.8: Raster Pipeline of a TBR GPU implementing Deferred Rendering.

A DR technique has been commercially implemented by Imagination Technologies in their
tile-based PowerVR GPU family [91], which they refer to as a TBDR. However, since only partial
information about this technique has been disclosed, our Deferred Rendering implementation models
what we believe is the most optimistic interpretation of this partial information, in order to be used
in the comparisons with our proposal.

As previously shown in Figure 4.3, we developed different implementations of DR: sequential DR
(a) and parallel DR (b). Sequential DR is a näıve implementation that stalls the rest of the Raster
Pipeline while performing HSR. The sequential implementation badly hurts both performance and
energy compared with the baseline GPU. For this scheme, the execution time increases for every one
of the benchmarks tested, by 23% on average. Regarding energy consumption, it increases around
6% on average when compared with the baseline GPU. These huge overheads are due to the fact
that the total time of the HSR stage (only depth rasterization plus depth test) greatly exceeds the
savings provided by the overshading reduction.

Nevertheless, these huge overheads can be removed by performing the HSR stage in parallel with
the other stages of the Raster Pipeline (see Figure 4.8). Thus, in this optimized scheme (parallel
DR), while the HSR is being executed for tile i+1, the rest of the Raster Pipeline is executed in
parallel to render the tile i. Obviously, this parallel implementation introduces a hardware cost and
some hardware blocks, such as the Rasterizer, the Early-depth test and the Depth Buffer, need
to be replicated. Furthermore, the Tile Scheduler is equipped to handle memory requests of two
primitives in parallel: one primitive from the tile being rendered and the other one from the tile
in the HSR stage. This does not mean that the Tile Cache has now two read ports, but the Tile
Scheduler will arbitrate between both request queues and only one will be sent to the Tile Cache
each cycle in a Round Robin fashion. Even though this parallel implementation of DR introduces a
non negligible amount of extra hardware (6% area overhead w.r.t baseline GPU), it outperforms
sequential DR in both performance and energy, so it is the one we use in the results section to be
compared against our technique, VRO.

89

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

4.3.2 Visibility Rendering Order TBR GPU

Raster Pipeline

Fragment ProcessorsFragment Processors

Memory
Controller

Memory
Controller

L2
Cache

L2
Cache

RasterizerRasterizerEarly
Depth Test

Early
Depth Test

Color
Buffer

Color
Buffer

Texture
Cache

Texture
Cache

ALU

Load/
Store

Tile
Cache

Tile
Cache

Tile
Scheduler

Tile
Scheduler

Tiling Engine

Blending

(b)

Z-BufferZ-Buffer

Graph CacheGraph Cache

Edge
Inserter

Edge
Inserter

Visibility
Sort

Visibility
Sort Visibility

Order

Edges

Edges
Filter

Edges
Filter

Figure 4.9: Raster Pipeline of a TBR GPU implementing VRO.

As Figure 4.9 shows, our technique includes several new pieces of hardware: the Edge Insertion
unit, the Edge Filter, the Graph Cache and the Visibility Sort unit. As usual, the control of the
new hardware has been implemented using FSMs.

On the one hand, the Early-depth unit sends the edges to the Edge Inserter unit, that stores
them in the Graph Buffer. The Graph Buffer contains the Visibility Graph of the currently rendered
frame. It is held in main memory and accessed through the Graph Cache. Edge insertions take place
at fragment granularity using the results of Early-Depth comparisons. However, since graph edges
represent object pairs there is a large amount of tests that actually produce the same edges. The
Edge Filter is a small and fast associative on-chip structure that caches the most recently inserted
edges and filters out 99.9% redundant insertions to the Graph Buffer, thus avoiding Graph Cache
accesses. Thanks to this structure, the Edge Insertion unit accesses the Graph Cache on average
much less than once every thousand fragments.

On the other hand, the Visibility Sort unit sorts the Visibility Graph and creates a preliminary
ordered list of nodes, which is sent to the Tile Scheduler. This process is performed in parallel with
the Geometry Pipeline execution of the following frame. We have measured that, for the worst case
(Forest 2), the total time required for this process is almost two orders of magnitude smaller than
the execution time of the Geometry Pipeline, so tiny overheads in execution time are introduced.

The Tile Engine traverses the list that contains the Visibility Rendering Order and updates it.
Objects present in the previous frame but not present in the current frame are simply discarded by
the Tile Scheduler. Objects not present in the previous frame but present in the current one must be

90

4.3. MICROARCHITECTURE

scheduled so they are added to the Visibility Rendering Order. After the adequate adjustments to
satisfy the restrictions presented in subsection 4.2.6, the Tile Scheduler produces the final Visibility
Rendering Order.

The mechanism of fetching the primitives from main memory is as follows. For a given tile, the
Tiling Engine maintains a list (Primitive List) of pointers to the memory positions in the Parameter
Buffer where the primitives of the tile are stored.

The Tile Scheduler reads the pointers of the Primitive List and then fetches the associated
primitive data through the Tile Cache. In VRO (see Figure 4.10), the Tiling Engine includes
another list (First Primitive List) that includes the position of Primitive List that points to the
first primitive of an object in the given tile, as well as the number of primitives of such object in
the tile. The mechanism of fetching the primitives in VRO is as follows. For every Object-ID in the
Visibility Rendering Order 1 (e.g. object D), VRO reads from First Primitive List 2 the position
of Primitive List 3 that corresponds to this object (e.g. position 6 for object D). This position
holds the pointer to the first primitive of the object. Then, VRO fetches the data of the primitive
from the Parameter Buffer 4 . Given that Primitive List is located in consecutive positions of main
memory, VRO reads subsequent pointers to primitives from Primitive List in the same manner as
the baseline does.

Visibility
Rendering

Order

1
BB AA CC

First
Primitive

List
(0, 3)(0, 3)

Primitive
List P1

A
*P1

A
* P2

A
*P2

A
* P3

A
*P3

A
* P1

B
*P1

B
* P2

B
*P2

B
* P1

C
*P1

C
* P1

D
*P1

D
* P2

D
*P2

D
* P3

D
*P3

D
* P4

D
*P4

D
*

0 1 2 3 4 5 6 7 86 9

(3, 2)(3, 2) (5, 1)(5, 1) (6, 4)(6, 4)

Parameter
Buffer

Object-ID

(PL index, # Prim.)

DCBA

P1
A

P1
A P2

A

P2
A P3

A

P3
A

DD

...... P1
B

P1
B P2

B

P2
B P1

C

P1
C P1

D

P1
D P2

D

P2
D P3

D

P3
D P4

D

P4
D

2

3

4

Figure 4.10: Detail of Tile Engine structures involved in Geometry Fetching.

Like in the baseline GPU, once the Geometry Pipeline has been executed, the Raster Pipeline
renders the frame tile by tile. However, instead of reading the primitives in program rendering order
the Tile Scheduler reads the primitives in Visibility Rendering Order. VRO increases the culling
effectiveness of the Early-depth test and reduces overshading, which decreases the total number
of instructions and texture accesses executed in the Fragment Processors. In order to do a fair
comparison between VRO and DR, the Tile Scheduler of VRO is equipped with the same hardware
that is included in DR to handle memory requests of two primitives in parallel.

Graph Buffer

The Graph Buffer is a small array in system memory where the Visibility Graph is stored. Due
to the fact that the Visibility Graph is very sparse, it is represented as a set of adjacency lists, one
per node. Each adjacency list is implemented as a linked list of one or more entries. Each entry
contains the object-id of up to W children nodes as well as other metadata shown in Figure 4.11.

91

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

Node
0

Node
1

... Node
35V InD Length Next

1 b 13 b 6 b 13 b 13 b 13 b 13 b

V = Valid bit InD = In-degree Length = Size of the sublist
Node

i
= Element i of sublist Next = Address of next entry

Figure 4.11: Detail of an entry of the Graph Buffer. Each entry is 512 bits (including
11 bits of padding).

VRO performs operations like membership and insertion in one step whenever the adjacency
list contains less than W children nodes. Furthermore, our scheme is not constrained to a maximum
of W outgoing edges per node. The adjacency lists are extended dynamically to any number of
edges by allocating one or more extra overflow entries of the Graph Buffer if required. Primary lists
are sequentially allocated from the lowest addresses of the buffer onwards and overflow lists are
allocated from the highest addresses backwards. A buffer with N entries can store up to N nodes if
none of their lists overflow, but most importantly, it can contain lists with theoretically unlimited
number of edges per node.

Of course, there is a limitation imposed by the size of the memory region devoted to the Graph
Buffer. However, we show that the size of the Graph Buffer represents a small region of main
memory. For example, with 8192 entries and 64 B per entry the Graph Buffer is 512 KB. Figure 4.12
plots the amount of main memory to be allocated to the Graph Buffer for different number of
maximum objects (nodes) and different number of children nodes per entry of the buffer (W). Note
that even for a number of objects three orders of magnitude higher than the average number of
objects observed in our set of benchmarks the memory region devoted to contain the Graph Buffer
would be smaller than 11 MB. Although all our benchmarks have less than 256 nodes (see Top part
of Figure 4.13) we provision for a much larger number of objects, so the graph has been sized to
8192 entries which is more than enough to support common mobile workloads. Note that an object
corresponds with a 3D model composed of different primitives and not a single one.

There exists a clear trade-off in the implementation of the structure of the Graph Buffer. The
smaller the number of children nodes in one entry of the buffer, the smaller the total size of the
Graph Buffer, but the higher the number of cycles to read the whole adjacency list of a node
if it contains more than W children nodes. Figure 4.13 (Bottom) plots the 75th, 85th and 95th
percentiles of the largest adjacency lists sizes, and it shows that most of them contain a small
number of nodes (objects). For example, in the case of 300, the values for P75, P85, and P95 mean
that the 75%, 85%, and 95% of the lists contain less than 12, 17, and 27 children nodes respectively.

In the worst case, around 95% of adjacency lists of the Visibility Graph of our benchmarks have
35 or less edges per node. Hence, we allocate 36 edges per entry (W = 36), and in this way, the size
of one entry is slightly smaller than 64 B and fits into a single cache block. Accounting for 8192
entries and 64 B per entry, the total size of the Graph Buffer in main memory is 512 KB. However,
nothing impedes reserving more main memory to provision for a larger number of objects. In any
case, in order to reduce main memory traffic and latency, the access to the Graph Buffer is done
through the Graph Cache, which is 4 KB 4-way associative (92.6% hit ratio on average).

92

4.3. MICROARCHITECTURE

8192 16384 32768 65536 131072

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

32 36 64

Maximum Number of Objects

S
iz

e
 o

f
G

ra
p

h
 B

u
ff

e
r

(K
B

)

Figure 4.12: Size of the Graph Buffer for different number of children nodes (W) and
different number of maximum objects (from 8192 to 131072).

Edge Inserter

The Edge Inserter is the unit responsible for creating the Visibility Graph. It works in parallel
with the other stages of the Raster Pipeline. It not only creates the Visibility Graph, but also
computes the in-degree of each node (see the field InD in Figure 4.11), which will be used by the
Visibility Sort unit. The Edge Inserter (see Figure 4.14) receives through a queue the edges from
the Early-depth test which were not filtered by the Edge Filter. The insertion of an edge (Nsrc,
Ndst) in the Visibility Graph is a three-step process (see Figure 4.14):

1. The primary entry of node Nsrc is read from the Graph Buffer to the AdjacencyList-Reg.

2. Then the AdjacencyList-Reg is searched to check if the edge was previously inserted in the
Visibility Graph. If the primary list of node Nsrc has no linked entries, this can be done in
a single clock cycle with an array of equality comparators. Otherwise, one or more overflow
entries may be subsequently read and copied to the AdjacencyList-Reg until the edge is found
or the last entry is read.

(a) If the edge already exists, then it is discarded.

(b) Otherwise, the Length field is increased and the edge is added to the adjacency list.
However, if the entry is full, a free overflow entry is first assigned to node Nsrc and its
address is stored into the Next field and written back to the Graph Buffer.

3. Finally, if a new edge has been added to the graph, the in-degree of the target node Ndst is
increased.

93

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

300 Air Cap Crazy Forest2 Grav Striker Temple
0

50

100

150

200

250
1189 1188

Nodes per Frame Edges per Frame Max. Nodes in an adjacency list

300 Air Cap Crazy Forest2 Grav Striker Temple
0

5

10

15

20

25

30

35

40

P75 P85 P95

 S
iz

e
 o

f
A

d
ja

c
e
n

c
y
 L

is
ts

Figure 4.13: (Top) Nodes per frame, edges per frame and maximum number of nodes
in an adjacency list. (Bottom) 75th, 85th and 95th percentiles of the size of the
adjacency-lists of the scene graphs analyzed.

Visibility Sort

The Visibility Sort unit is responsible for sorting the Visibility Graph. As outlined above, it
implements an extended version of Kahn’s algorithm able to handle cycles. The unit works in two
phases (see Figure 4.15):

1. Initial search. The primary entries of all the nodes in the Visibility Graph are read from the
Graph Buffer. If the node is a root (InD = 0), its object-id is pushed into the Roots Queue.

2. Iterative procedure. The object-ids stored in the Roots Queue are iteratively processed.
For each node in the queue:

(a) The adjacency list of the node is read from the Graph Buffer into the AdjacencyList-Reg.
At the same time, the object-id is sent to the Tile Scheduler through the Order Queue.

94

4.3. MICROARCHITECTURE

EQ-ComparatorsEQ-Comparators

Graph
Buffer

Graph
Buffer

N
src

Edges
Queue

InD-RegInD-Reg

Add1Add1

In-degree

M
U
X

AdjacencyList-RegAdjacencyList-Reg

MUX

@
N
dst

N
0
..N

M-1
N
dst

N
0
..N

M-1
N
dst

N
0
..N

M-1

Figure 4.14: Edge Insertion Hardware.

= 0 ?= 0 ?

(b)

Graph
Buffer

Graph
Buffer

N
root

Roots
Queue

InD-RegInD-Reg

N
child

Sub1Sub1

In-degree

M
U

X

Order
Queue

AdjacencyList-RegAdjacencyList-Reg

MUX

queue

Child
i

@

Node list

Objects-list = { N
1
, ..., N

i
, ...}

Roots
Queue

(a)

= 0 ?= 0 ?

Graph
Buffer

Graph
Buffer N

i

In-degree

InD-RegInD-Reg

queue

N
i

@

(a)

Figure 4.15: Visibility Sort Hardware. (a) Initial search (b) Iterative procedure

95

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

(b) For each child in the AdjacencyList-Reg, the in-degree is read from the Graph Buffer,
and if it is still a valid node, it is decremented and written back. If the in-degree of a
child becomes zero (becomes a root), it is pushed into the Roots Queue. In case of an
adjacency list with overflow entries they are read in turn and processed in the same way.

(c) The node is invalidated.

If the Roots Queue becomes empty and all the graph nodes have been sorted, the algorithm
finishes. Otherwise, a cycle has been found, so the unit traverses the nodes in program order
and selects the one with minimum in-degree (min-comparator not shown in Figure 4.15 for the
sake of clarity), pushes it into the Roots Queue, and then resumes the iterative procedure. Note
that the node has incoming edges remaining in the adjacency lists of its ancestors. However,
since the node is invalidated after being processed, its in-degree will never be decremented
again.

Identification of Objects

Object identifiers are required by the Visibility hardware unit to identify the objects across
different frames. We need, therefore, to maintain the object identifier for objects along the graphics
pipeline up to the Early-depth (that is extended with object ids) and the VRO unit.

A simple way to do this is to include an object identifier in every draw command of an object.
This could be done using the debug marker extension of OpenGL [191], implemented in OpenGL
ES 1.1 and 2.0. This extension allows the programmer of an application to annotate the OpenGL
command stream with a descriptive text marker. This extension relies on the driver and the
hardware to maintain the object notion through the rest of the graphics pipeline. Note that current
3D applications already uniquely identify the objects of the scene [144], so the requirement here is
to pass this information from the application layer to the GPU.

4.4 Experimental Framework

In our experiments, we use the Teapot simulation framework [111]. We model not only the
baseline GPU architecture, which closely resembles that of the Utgard microarchitecture of ARM
Mali [89], but also we model Deferred Rendering and Visibility Rendering Order techniques on a
TBR GPU architecture. ARM Mali Utgard microarchitecture is the most successful mobile GPU
till the date, with around 19.1% of the mobile GPU market share by March 2017 [11], while TBR
GPUs represent around 95% of the mobile GPU market. Although in this work we employ a TBR
GPU architecture, note that VRO is orthogonal to the TBR mode, and its implementation on top
of an IMR GPU would also increase the performance and reduce the energy consumption of the
GPU as we show in Appendix A.

96

4.4. EXPERIMENTAL FRAMEWORK

Table 4.2: GPU Simulation Parameters.

Baseline GPU Parameters

Tech Specs 400 MHz, 1 V, 32 nm
Screen Resolution 1200x768
Tile Size 16x16

Queues

Vertex (2x) 16 entries, 136 bytes/entry
Triangle, Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry

Caches

Vertex Cache 64 bytes/line, 2-way associative, 4 KB, 1 bank, 1 cycle
Texture Caches (4x) 64 bytes/line, 2-way associative, 8 KB, 1 bank, 1 cycle
Tile Cache 64 bytes/line, 8-way associative, 128 KB, 8 banks, 1 cycle
L2 Cache 64 bytes/line, 8-way associative, 256 KB, 8 banks, 2 cycles
Color Buffer 64 bytes/line, 1-way associative, 1 KB, 1 bank, 1 cycle
Depth Buffer 64 bytes/line, 1-way associative, 1 KB, 1 bank, 1 cycle

Non-programmable stages

Primitive assembly 1 triangle/cycle
Rasterizer 4 attributes/cycle
Early Z test 32 in-flight quad-fragments, 1 Depth Buffer

Programmable stages

Vertex Processor 1 vertex processor
Fragment Processor 4 fragment processors
Latency Main memory 50-100 cycles
Bandwidth 4 bytes/cycle (dual channel)

Extra Hardware VRO GPU

Edges Filter 32 elements, LRU, 1 cycle
Graph Cache 64 bytes/line, 4-way associative, 4 KB, 1 bank, 1 cycle
Edge Insertion 1 Edge Inserter unit
Graph Sort 1 Visibility Sort unit
Edges Queue 64 entries, 4 bytes/entry
Order Queue 64 entries, 2 bytes/entry

Extra Hardware DR HSR stage

Tile Queue 16 entries, 388 bytes/entry
Fragment Queue 64 entries, 233 bytes/entry
Rasterizer 4 attributes/cycle
Early Z test 32 in-flight quad-fragments, 1 Depth Buffer
Depth Buffer 64 bytes/line, 1-way associative, 1 KB, 1 bank, 1 cycle

97

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

4.4.1 GPU Simulation

Teapot [111] is a mobile GPU simulation infrastructure that can run unmodified commercial
Android applications. It includes an OpenGL commands interceptor, a GPU trace generator and a
cycle-accurate timing simulator. The parameters used in the simulations are shown in Table 4.2.

While a graphical application is executed in the Android emulator [87], a trace of OpenGL
commands is stored. This trace is later fed to the GPU trace generator, which creates the GPU
trace through the software renderer (Softpipe) included in Gallium3D [88]. The generated GPU
trace file includes the Vertex Processor and Fragment Processor instructions, the memory addresses
of the texture and vertex data, the primitives generated, and the corresponding fragments as well as
other pipeline data required to simulate the execution. The GPU trace is fed to the cycle-accurate
timing simulator, which accurately models the baseline GPU. This simulator has been extended to
implement both DR and VRO GPUs as described in Section 4.3.

The results reported include static and dynamic energy consumption of the whole GPU, including
RTL models of Edge-Insertion and Visibility-Sort, as well as the full memory hierarchy including
the main memory. Teapot models the power of the GPU with McPAT [163]. Likewise, the power of
the VRO unit has been modeled using McPAT’s components, shown between parenthesis in the
following list: Graph Cache (Cache); EQ Comparators (XOR); Muxes (MUX); Min-Comparator
(ALU); Adders (ALU); Subtractors (ALU); and registers. The area overhead of VRO is less than
1% whereas for DR it is around 6% (with respect to baseline TBR in both cases).

4.5 Experimental Results

In this section we present the performance and energy savings of VRO with respect to the
baseline TBR GPU. Furthermore, the benefits of VRO are compared with those of DR.

4.5.1 Effectiveness of VRO

Figure 4.16 shows the normalized speed-up achieved by our technique (VRO) and by DR relative
to the ARM Mali-like baseline TBR GPU. As it can be observed, VRO achieves up to 1.42x speed-up
(Forest 2), and 1.27x on average, being the lowest speed-up 1.14x (Captain America). DR achieves
up to 1.25x speed-up (Striker), and 1.17x on average, being the lowest speed-up 1.13x (Gravity).
Regarding system energy (see Figure 4.17), the consumption of VRO is reduced up to 0.76x (Forest
2) and 0.84x on average, being the lowest reduction 0.91x (Captain America). DR reduces it up
to 0.82x (Forest 2) and 0.88x on average, being the lowest reduction 0.96x (300). Recall that
for sequential DR (not included in the graph), the execution time increases for every one of the
benchmarks tested, 23% on average, while the energy consumption increases around 6% on average
when compared with the baseline GPU.

The performance advantage of VRO with respect to DR is the result of several factors. On
the one hand, DR may reduce more overshading than VRO because it works at pixel granularity
whereas VRO reorders the geometry at object granularity. The extra fragments processed by VRO

98

4.5. EXPERIMENTAL RESULTS

300 Cap Forest Grav Striker Geo.mean

1,0

1,1

1,2

1,3

1,4

1,5
DR VRO

S
p
e
e
d
-u

p

Temple

Figure 4.16: Speed-up of DR and VRO normalized to the baseline TBR GPU.

300 Cap Forest Grav Striker Geo.mean

0,6

0,7

0,8

0,9

1,0
DR VRO

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Temple

Figure 4.17: Energy consumption of DR and VRO normalized to the baseline TBR
GPU.

may induce pipeline stalls and hurt performance only in case that they fill the queue that feeds
the Fragment Processors. On the other hand, the Tile Scheduler of DR reads in parallel primitives
of tile i+1 for the HSR unit, and primitives of tile i for the conventional Raster Pipeline, which
may increase latency and starve the Fragment Processors. For an equally sized available Tile Cache
bandwidth, DR produces substantially more accesses to the cache (which may degrade throughput)
and has a larger working set (which may degrade miss rate and latency). To show the relative
importance of these factors, we have measured both the overshading and the average fetch time to
the Tile Cache.

Figure 4.18 plots the overshading for DR and VRO normalized to the overshading of the baseline
GPU. As expected, the overshading with DR (close to 0.7x) is smaller than the overshading with

99

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

30
0

C
ap

Fo
re
st

G
ra
v

S
tri
ke

r

Te
m
pl
e

G
eo

.m
ea

n

0,5

0,6

0,7

0,8

0,9

1,0
DR VRO

N
o

rm
a
li
z
e
d

 O
v
e
rs

h
a
d

in
g

Figure 4.18: Overshading of DR and VRO normalized to the overshading of the base-
line TBR GPU.

VRO (close to 0.81x). The smaller overshading reduction of VRO is mainly caused by the fact
that DR performs the HSR stage at pixel level granularity, while VRO performs the sorting at
object-level granularity.

Figure 4.19 plots the average fetch time per primitive in cycles for DR and VRO. It shows
substantial fetch time increases for DR with respect to VRO. On average, the fetch time for DR is
68 cycles while it is only 50 cycles for VRO (25% less). Furthermore, the number of primary misses
of the Tile Cache is 11% higher for DR than for VRO.

Figure 4.20, shows the normalized memory-traffic of VRO and DR with respect to baseline
GPU. As can be seen the bandwidth of VRO and DR is 0.98 and 0.96 respectively. On the one
hand, because of its lower overshading, DR saves more texture traffic than VRO. But on the other
hand, DR must read twice the number of primitives to execute the HSR phase, which increases
main memory traffic. Regarding the extra accesses of VRO to the Visibility-Graph, they add less
than a tiny 0.005% to the total memory traffic.

Figure 4.21 compares the relative importance of the above two factors and explains why VRO
outperforms DR. It plots the absolute time difference in cycles of DR with respect to VRO, for
different parameters: total number of cycles to fetch primitives (first bar), total number of pipeline
stall cycles caused by Fragment Processor input queue full (second bar), and total execution time
(third bar). The first bar shows that DR spends many more cycles than VRO to fetch primitives, more
than 27 Million cycles on average, which is caused by the higher latencies reported in Figure 4.19.
The second bar shows that DR experiences less stall cycles caused by busy Fragment Processors,
about 2.85 Million cycles less than VRO. This is related to the better overshading reduction of DR
reported in Figure 4.18. Note however that not all the extra fragments of VRO cause a pipeline

100

4.5. EXPERIMENTAL RESULTS

300 Cap Forest Grav Striker Geo.mean

0

20

40

60

80

100

120
DR VRO

C
y
c
le

s
 P

e
r

P
ri

m
it

iv
e

Temple

Figure 4.19: Number of cycles to read a primitive with DR and VRO.

300 Cap Forest2 Grav Striker Geomean
0

0,2

0,4

0,6

0,8

1

1,2
DR VRO

N
o

rm
a
li
z
e
d

 M
a
in

-m
e
m

o
ry

 B
W

Temple

Figure 4.20: Normalized memory traffic of DR and VRO with respect to baseline
GPU.

stall, only in case that they fill the queue that feeds the Fragment Processors.

The third bar is not just the sum of the other two factors. Not all the extra fetch cycles incurred
by DR are ultimately translated to net increases of the execution time, because the buffers in
between the Raster Pipeline stages partially smooth the effect of the initial fetching overheads. The
increment in fetching time is ultimately translated to an increment in execution time around 21.6
Million cycles on average, as expected from the large difference between the other two bars. It
explains the speed-ups reported in Figure 4.16.

In benchmarks such as 300, Forest 2 and Gravity the extra fetching cycles are largely translated
into extra execution time of the Raster Pipeline. This is because these benchmarks have around

101

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

300 Cap Forest Grav Striker Temple Average
-20

-10

0

10

20

30

40

50

60

70
Extra Fetching Extra FP stage Extra Raster

(M
il
li
o
n
s

o
f
c
y
c
le

s
)

T
im

e
D

iff
e
r
e
n

c
e
 o

f
D

R
 o

v
e
r
 V

R
O

Figure 4.21: Increment of cycles reading geometry (first bar), increment of stall cycles
caused by the Fragment Processing stage (second bar), and increment of cycles of
execution of the Raster Pipeline (third bar) all using DR with respect to VRO.

one order of magnitude more primitives than the other ones, which means that the overhead of
reading the geometry relative to the total time of the Raster Pipeline is greater than in the other
benchmarks. Furthermore, these benchmarks have less fragments per primitive than the others. The
smaller the number of fragments per primitive the faster the queue that feeds the Rasterizer gets
empty. In the case of Captain America, the initial increment of the fetching cycles is hardly reflected
as an overhead in the total processing time of the Raster Pipeline. Unlike other benchmarks (300,
Forest 2 and Gravity), Captain America has a much lower number of primitives and a greater
number of fragments per primitive.

Figure 4.22 shows the normalized energy breakdown for both DR and VRO. The energy
advantage of VRO with respect to DR is the result of two main factors. The most important one is
the greater speed-up of VRO (0.1x greater than DR’s speed-up on average), which is translated into
a smaller static energy for the Main-memory/GPU system. Although DR reduces more overshading
than VRO, and therefore reduces the dynamic energy of the fragment processors and the main
memory among others, VRO is able to compensate it with a significant reduction in static energy.
On the other hand, DR exhibits greater raster activity than VRO because it performs the HSR
stage to cull hidden fragments, which requires reading and rasterizing the primitives of the scene
two times (only position).

In conclusion, we have shown that even reducing less overshading than DR, VRO achieves
higher speed-up because the overhead in fetch cycles with DR is much higher than the overhead
caused by the extra fragment processing with VRO. Moreover, take into account that the area
overhead of VRO is less than 1% whereas the area overhead of DR is around 6%. Therefore, some
of this area could be used to implement more complex schemes of VRO in order to further reduce
overshading. The overshading can be differentiated in two types: intra-object and inter-object
overshading. The former is produced by auto-occlusions of an object. The latter is the overshading
caused by occlusions between different objects. Given that VRO sorts at object-level granularity, it
is only reducing inter-object overshading. However, as we show in Section 1.4.1, there are techniques

102

4.5. EXPERIMENTAL RESULTS

300 Cap Forest Grav Striker Temple Geo.mean
0

10

20

30

40

50

60

70

80

90

100

Rest of GPU Memory Controller L2 Vertex Processor

Rasterizer Fragment Processors Main memory

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 B
re

a
k

d
o

w
n

 (
D

R
)

300 Cap Forest Grav Striker Temple Geo.mean
0

10

20

30

40

50

60

70

80

90

100

Rest of GPU Memory Controller L2 Vertex Processor

Rasterizer Fragment Processors Main memory

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 B
re

a
k

d
o

w
n

 (
V

R
O

)

Figure 4.22: Energy breakdown for the system Main-Memory/GPU with DR (left)
and VRO (right) both normalized to the baseline GPU.

that are complementary to VRO and that effectively reduce the intra-object overshading. Hence,
we believe that VRO has still room for improving performance and energy savings by combining it
with one of those techniques. Likewise, in Section 6.2 we introduce a possible extension to VRO
that aims at reducing intra-object overshading.

4.5.2 Overshading with Different Heuristics to Break Graph Cycles

This subsection analyzes the overshading reduction effectiveness of the different heuristics to
break graph cycles that were previously introduced in subsection 4.2.4. The main goal of VRO is
to reduce the overshading by culling hidden surfaces before they reach the Fragment Processing
stage, so that the number of instructions executed in the Fragment Processors is reduced. As can be
seen in Figure 4.23, C H1 almost obtains the same overshading reduction of Perfect Object Order
(obtained with our greedy algorithm). If we compare both alternatives of H1 with both alternatives
of H2, when a graph cycle is found, H2 needs to find the object with minimum average depth,
thus H2 must compute the average depth of all objects. On the other hand, H1 only needs to find
the node with minimum in-degree. In short, H1 not only performs better than H2 but also has
a smaller implementation cost. Regarding the comparison between C H1 and PO H1, although
C H1 gets impressive results, its implementation cost is higher. C H1 needs extra memory space
to store the counters (as well as hardware to compute them). The value of these counters can be
very high because we are counting the number of times an object is occluding another object, which
may happen millions of times at fragment granularity. Furthermore, when creating the Visibility
Order, C H1 needs to compare these counters for each pair of parallel edges to know which object
goes first. We also test MinZ, an heuristic that selects the next node with minimum average depth
when a cycle is found when traversing the graph. As can be seen, this alternative achieves the worst
results among all the tested heuristics.

We decided to implement PO H1 despite it is the second scheme in overshading reduction
because we took into account not only the overshading reduction but also the complexity of the
implementation and its associated cost. Note that, regardless of the approximation applied in order

103

CHAPTER 4. VISIBILITY RENDERING ORDER: IMPROVING ENERGY EFFICIENCY ON
MOBILE GPUS THROUGH FRAME COHERENCE

300 Cap Forest Grav Striker Temple Geo.mean

50

55

60

65

70

75

80

85

90

95

100

Perfect Object Order C_H1 PO_H1 C_H2 PO_H2 MinZ

N
o

rm
a

li
z
e

d
 O

v
e

rs
h

a
d

in
g

 (
%

)

Figure 4.23: Normalized Overshading with different Heuristics to break Graph Cycles.

to achieve a cost effective heuristic correctness is guaranteed. Besides, as observed in Figure 4.23,
for all the different versions of VRO the overshading is reduced.

4.6 Conclusion

In this chapter we have presented VRO, a novel technique that effectively reduces overshading.
VRO is based on the observation that the relative order among the objects of a scene tends to be
very similar between one frame and the next. VRO includes a small hardware unit that stores the
order relations among the objects of a scene of the current frame in a buffer. This information is
used in the next frame, while the GPU is executing in parallel the Geometry Pipeline, to create
a Visibility Rendering Order that guides the Tile Scheduler. The overhead of this technique is
minimum, requiring less than 1% of the total area of the GPU while its latency is hidden by other
processes of the graphics pipeline.

For a set of unmodified commercial applications, VRO outperforms state-of-the-art techniques in
performance and energy consumption by reducing the overshading without the need of an expensive
HSR stage at fragment granularity. VRO is especially efficient for geometry-complex applications,
which are expected to be the most common applications in mobile devices as they already are in
desktops. VRO achieves a speed-up about 1.27x and an energy consumption around 0.85x compared
to an ARM Mali-like GPU. VRO outperforms DR because the Visibility Rendering Order is created
out of the critical path while DR introduces significant overheads to perform the HSR stage.

104

5
Render-Based Collision Detection for CPU/GPU

Systems

Graphics animation applications such as 3D games represent a large percentage of downloaded
applications for mobile devices and the trend is towards more complex and realistic scenes with
accurate 3D physics simulations, like those in laptops and desktops. Collision detection (CD) is
one of the main algorithms used in any physics kernel. However, real-time highly accurate CD is
very expensive in terms of energy consumption and this parameter is of paramount importance for
mobile devices since it has a direct effect on the autonomy of the system.

In this chapter, we present an energy-efficient, high-fidelity CD scheme that leverages some
intermediate results of the rendering pipeline. It also adds a new and simple hardware block to
the GPU pipeline that works in parallel with it and completes the remaining parts of the CD task
with extremely low power consumption and higher performance than traditional schemes. Using
commercial Android applications, we show that our scheme reduces the energy consumption of the
CD by 99.8% (i.e., 448x times smaller) on average. Furthermore, the execution time required for CD
in our scheme is almost three orders of magnitude smaller (600x speedup) than the time required
by a conventional technique executed in a CPU. These dramatic benefits are accompanied by a
higher fidelity CD analysis (i.e., with finer granularity), which improves the quality and realism of
the application.

5.1 Collision Detection

During the past decade, mobile devices have quickly incorporated graphics and animation
capabilities that in the 1980s were only seen in industrial flight simulators and a decade later became

105

CHAPTER 5. RENDER-BASED COLLISION DETECTION FOR CPU/GPU SYSTEMS

popular in desktop computers and game consoles. The trend going forward is towards more powerful
support for real-time physics simulations in all mobile devices, with increasing precision and realism.

Physics kernels contain several algorithms that manage the dynamics of the animations. CD is
one of the most important algorithms since it identifies the contact points between the objects of a
scene, and determines when they collide. It has been investigated for more than twenty years in
different areas like computer graphics, robotics, or virtual reality.

There are many proposals to detect object interference through geometric computations, either
by computing intersections between pairs of geometric primitives such as triangles or spheres, or by
computing the distance between points in the 3D space. CD techniques are intrinsically quadratic
with respect to the number of objects and their surfaces. To alleviate this cost, CD is often split
into two steps: broad phase and narrow phase.

1. Broad Phase: A fast, simple, and often coarse grain test applied to all collisionable objects in
a 3D Scene. It usually considers simple bounding boxes (often Axis Aligned Bounding Boxes,
AABBs) around the objects. The pairs of objects whose bounding boxes collide are included
in the Potentially Colliding Set (PCS).

2. Narrow Phase: Applied to all pairs of objects in the PCS. This test uses a more accurate
shape of the objects to test the collision, and therefore it is more complex than the broad
phase.

There exists a large body of research on CD [158, 196]. Both broad and narrow phases can be
executed in a CPU or a GPGPU, depending on the characteristics of the specific platform. In most
cases, the narrow phase of CD is executed in the CPU because of the non-regular nature of the
computations, and in low-power systems the broad phase is executed in the CPU as well. On the
other hand, there is a group of CD algorithms known as Image-Based CD (IBCD). They consist
of the rasterization of the surfaces of the scene objects and the detection of their intersections
based on the pixel depths of the corresponding fragments [115]. As shown by previous works (see
Section 1.3.2), these kind of techniques have been proposed to exploit the computing power of
graphics processors and their ability to rasterize polygons efficiently.

Broad phase algorithms are simple to parallelize, whereas narrow phase algorithms are usually,
for a given pair of objects, control-intensive. However, on scenerarios where the limited energy
consumption constrains the amount of computation (like in mobile devices), real-time CD is often
restricted to a simple bounding volume model analysis. Render-Based Collision Detection (RBCD)
addresses this problem by presenting a low-power yet detailed CD technique.

5.1.1 Image Based Collision Detection

The pioneering work of Shinya and Forgue [189] opened the path to perform CD in graphics
hardware. This proposal consists of four steps. In the first step, the scene objects are projected onto
a given plane in 3D space, for instance the screen plane, thus obtaining the coordinates (x,y) and
the depth (z-value) of each vertex with respect to that plane. The second step consists of rasterizing

106

5.1. COLLISION DETECTION

P2

Depth

Screen
Pixels

P1

P3

A
B

C

Figure 5.1: Discretized representation of the entry and the exit points of the surfaces
in a 3D scene for pixels P1, P2 and P3. The Y-axis is a one-dimensional representation
of the projection plane and the Z-axis represents depth.

all the surfaces of the collisionable objects, regardless of their visibility, both front and back faces.
This process results in a collection of per-pixel lists of z-values, each indicating the depth of some
point in one of the surfaces. Each list element also includes, along with the z-value, the object
identifier. In the third step, for each pixel, the elements of the list are sorted by depth. In the fourth
step, for each pixel, the algorithm detects possible overlaps between z-ranges of different objects.

Figure 5.1 illustrates an example with three objects A, B, C. Objects A and B are colliding,
because their z-ranges overlap at pixels P1 (z11-z12) and P2 (z23-z24). However, there is no collision
at pixel P3 because the z-ranges of the three objects are disjoint.

The main advantages of this algorithm are its simplicity, its time complexity proportional to
the number of faces per object, the possibility of being accelerated with a GPU, and its applicability
to any kind of renderizable surface. On the other hand, its resolution is finite (pixel resolution), but
it has more than enough accuracy for practical purposes of visual realism in real time computer
animation.

The scene shown in Figure 5.2 illustrates the accuracy of CD using AABBs (broad phase), the
Gilbert-Johnson-Keerthi algorithm [140] (GJK, narrow phase) implemented in Bullet and RBCD.
Due to the large false collisionable area that AABBs add to object A, false collisions are detected
for pairs (A,C) and (A,B). With GJK, a false collision is still detected for pair (A,C). GJK only
works with convex shapes, so if applied on a complex concave shape like A, one option is to use the
convex hull of the shape, which results in adding a false collisionable area. In contrast, RBCD takes
advantage of the discretized collision shape, which makes the false collisionable area much smaller
than the other schemes, and thus does not produce any false collision for the given example. Note
that the higher the rendering resolution, the smaller the false collisionable area that RBCD adds to
the shapes of the collisionable objects.

107

CHAPTER 5. RENDER-BASED COLLISION DETECTION FOR CPU/GPU SYSTEMS

A

C

X

Y

B

(a)

C

A

X

Y

B

(b)

A

C B

X

Y

(c)

C B

X

Y

A

(d)

Figure 5.2: (a) Front view of a 3D scene (b) AABBs as collisionable shapes (c) Convex
hull for GJK algorithm (d) RBCD.

5.1.2 Enabling RBCD in the GPU

The tasks involved in the first two IBCD steps, i.e. projection and rasterization, are already
done in the image rendering of a 3D scene. Effectively, in a typical GPU the projection of the
objects onto the screen is performed by the Geometry Pipeline and the rasterization occurs in the
Raster Pipeline. Therefore, it would be possible to send some rendering results (the fragment screen
coordinates and the per-pixel z-depth values) to the CPU, so that the remaining two IBCD steps
(z-depth sorting and z-overlap analysis) would be performed by the CPU. However, the required
communication to read-back the Z-depth values would produce an intensive memory traffic with the
subsequent energy cost, which makes this alternative less appealing.

Hence, we propose to integrate CD and image rendering within the GPU pipeline hardware.
With minor adaptations, our technique reutilizes some intermediate results of the rendering pipeline
to perform the CD task. These adaptations include allowing the software to pass collisionable
object identifiers to the GPU, adding small and specific hardware (RBCD unit) to store depth-data
and detect face intersections based on per-fragment location, and selectively deferring face culling.
The GPU works as usual and performs the first two IBCD steps: projection and rasterization.
Additionally, the special hardware we include in the GPU performs the last two IBCD steps:
depth-sort lists of fragments and z-range overlap detection. Finally, the GPU only communicates the
detected colliding pairs of points to the CPU. This way, the entire CD task gets seamless integrated
into the graphics rendering pipeline of the GPU, hence we call it Render-Based Collision Detection.
These adaptations are discussed below (implementation details are in Section 5.2):

1. Animation engines usually differentiate between collisionable and non-collisionable objects and,
in order to be efficient, do not apply CD to the entire scene but just to the objects susceptible to
collide. To identify collisionable geometry along the pipeline, each of the primitives that belong
to collisionable objects must be associated to its object identifier. Besides, the application
must send these identifiers to the GPU, embedded into the graphics commands. As will
be shown later, no changes are needed to the OpenGL ES standard, but obviously existing
software should be adapted to take advantage of the new GPU capability.

2. For each pixel, we need to store the z-depths of all fragments covering it, to make possible the
z-overlap analysis. The conventional Z-buffer does not serve for this purpose because, since

108

5.2. MICROARCHITECTURE

its goal is to eliminate occluded surfaces, it just stores the z-depth of the front-most opaque
fragment seen so far. Thus, we propose adding a new Z-depth Extended Buffer (ZEB), an
array containing one entry per pixel, each having a list of z-depths instead of a single z-depth.
For a Tile-Based Rendering (TBR) architecture such as our baseline (see Section 2.2.2) both
the Z-buffer and the ZEB hold entries for just one tile of pixels, so they are implemented
by means of fast, on-chip memory. Each ZEB entry is a fixed-size memory block containing
a list of elements, each corresponding to a fragment and including not only its z-depth but
also the object id and the front/back orientation tag. Moreover, to keep the lists always
depth-sorted we need a new hardware block that stores every element from the Rasterizer
into the corresponding ZEB list by following a simple insertion-sort algorithm.

3. Add a new specific hardware that analyzes the ZEB pixel by pixel (i.e., one list at a time),
detects z-ranges overlaps, and sends the pairs of colliding points to the CPU, through system
memory.

4. All the surfaces of collisionable objects must go through the Rasterizer stage, not only those
that are visible, because all their fragments are needed to analyze possible z-range overlaps.
The GPU includes a Face Culling (FC) stage where primitives that are identified as invisible
are culled. In traditional GPUs, FC occurs early in the pipeline, before the Rasterization.
Hence, culled primitives that belong either to front, back, or both faces, depending on the
application, would never reach the Rasterizer nor the RBCD unit. We propose to defer the FC
of collisionable objects after the Rasterization, when all fragment depths are already stored in
the ZEB. We show later in Section 5.3.2 that this introduces a very small overhead, which is
more than offset by the huge benefits of the proposed technique.

5.2 Microarchitecture

This Section introduces the extensions to the graphics pipeline of the baseline architecture that
are required to support RBCD.

5.2.1 RBCD Overview

Figure 5.3 shows the GPU including the RBCD unit. This unit mostly works in parallel with
other stages of the graphics pipeline, which introduces little peformance overhead in terms of GPU
execution time. The rasterizer sends the fragments of collisionable objects to the RBCD unit 1 .
The RBCD unit applies an insertion-sort to store those fragments into the ZEB 2 . Once all the
collisionable fragments of a tile are in the ZEB, the RBCD unit performs the Z-overlap Test 3 , and
forwards the collision points to the CPU through the system memory 4 .

5.2.2 Identification of Collisionable Objects

As stated above, identifiers are required by the RBCD hardware to determine whether two
z-ranges belong to different collisionable objects. We need, therefore, to maintain the object identifier

109

CHAPTER 5. RENDER-BASED COLLISION DETECTION FOR CPU/GPU SYSTEMS

Vertex
Processor

Vertex
Processor

Geometry Pipeline

Tiling
Engine

Raster Pipeline

Fragment ProcessorsFragment Processors

GPU
command

GPU
command

Command
Processor

Command
Processor

Memory
Controller

Memory
Controller

Vertex
Fetcher

Vertex
Fetcher

L2
Cache

L2
Cache

Vertex
Cache

Vertex
Cache

Primitive
Assembly

Primitive
Assembly

RasterizerRasterizerEarly
Depth Test

Early
Depth Test

Z-BufferZ-Buffer
Color
Buffer

Color
Buffer

Texture
Cache

Texture
Cache

ALU
Load/
Store

ALU

Tile
Cache

Tile
Cache

Polygon List
Builder

Polygon List
Builder

Tile
Scheduler

Tile
Scheduler

RBCD unit

Z-Overlap
Test

Z-Overlap
Test

Insertion
sort

Insertion
sort

ZEBZEBZEB

Deferred
Face Culling

Deferred
Face Culling

1

23

4

Figure 5.3: GPU microarchitecture including an RBCD unit.

for the collisionable objects along the graphics pipeline up to the Rasterizer and the RBCD unit.

A simple way to do this is to include an object identifier in every draw command of collisionable
objects. This could be done using an OpenGL extension based on the debug marker extension [191],
implemented in OpenGL ES 1.1 and 2.0. This extension allows the programmer of an application
to annotate the OpenGL command stream with a descriptive text marker. In our case, the marker
would be the object ID and only the draw commands of collisionable objects would use it. This
extension relies on the driver and the hardware to maintain the object notion through the rest of
the graphics pipeline. Note that most of current 3D games already tag objects as collisionable or
non-collisionable in order not to apply the CD algorithm to the whole universe of the scene but
only to the objects that can collide. So the requirement here is to pass this information from the
game and physics engine to the GPU.

Since the source code of the benchmarks studied is not available we could not automatically
include object IDs for the collisionable objects of the analyzed scenes. Our strategy to assign object
identifiers consisted on an off-line manual visual identification of the draw commands in every frame.
For this purpose, we created an application in order to produce an independent image with the
result of every draw command. Once identified, the GPU draw commands of every collisionable
object were tagged with a unique object ID.

110

5.2. MICROARCHITECTURE

5.2.3 Deferred Face Culling

The FC stage, usually implemented with fixed-function hardware, is included in the Primitive
Assembly stage of the Geometry Pipeline. FC may cull either the front, the back, or both faces of
the geometry [104]. Since a fundamental requirement for our RBCD unit is to consider the complete
geometric model of the objects, we propose to defer the culling of collisionable objects. During
the FC stage, collisionable objects that are to be culled are just tagged-to-be-culled, so they can
be later identified and handled appropriately after rasterization. The Tile Scheduler sends all the
primitives of a given tile to the Rasterizer, which scan-converts them, creating fragments. The
Rasterizer sends all collisionable fragments to the RBCD unit and it sends both collisionable and
non-collisionable fragments to the Early Z-Test, except those tagged-to-be-culled, which are filtered
out at this point, thus making the Deferred Face Culling take effect.

Obviously, this approach causes an increment in the number of primitives sent to the Rasterizer,
and therefore in the number of fragments it produces. In addition, it causes an increment in the
traffic (both writes and reads) from/to the Scene Buffer through the Tile Cache. However, this
overhead does not affect further parts of the pipeline because the tagged-to-be-culled fragments
never reach the Early Z-Test stage nor the Fragment Processors, which are identified as the most
consuming part of the graphics hardware pipeline [176]. We analyze these effects in Section 5.3.2.

5.2.4 Insertion into the Z-depth Extended Buffer

RBCD requires that all fragments for a given pixel are already inserted into the ZEB buffer
before the RBCD unit begins to perform the z-overlap analysis.

All the z-depths of collisionable fragments are sent to the RBCD unit, where they are first
stored into the Z-depth Extended Buffer (ZEB). The ZEB is basically an on-chip buffer containing
an array of lists, one list per pixel position. In our TBR architecture there are 16x16 pixels per
tile, so the ZEB contains 256 lists. Each list contains M elements, each describing one point in the
surface of a collisionable object. Each element in the list includes the z-depth, the object ID, and
the front/back orientation tag. For instance, for M=8 the size of the ZEB would be 8 KB. The size
M of the list is fixed for simplicity, which puts a limitation on the number of fragments per pixel
that can be analyzed. Beyond that limit, an overflow occurs and some object overlaps could be lost.
This is discussed in Section 5.3.3.

Since RBCD relies on z-ordered lists to detect object overlaps, the ZEB uses a simple sorted
insertion policy entirely implemented in hardware, as shown in the block-diagram in Figure 5.4.
The insertion of a new element Enew is a three-step process:

1. The list that corresponds to the currently processed pixel is read from the ZEB and stored
in the List-Register. It contains up to M front-to-back ordered elements E0 to EM-1 having
depth values Z0 to ZM-1.

2. The depth Znew of the element Enew is compared against all z-values of the list in the List-
Register, which is done in parallel with an array of less-than comparators. Each comparator

111

CHAPTER 5. RENDER-BASED COLLISION DETECTION FOR CPU/GPU SYSTEMS

Muxes

ZEB

List-Register

LT-Comparators

E'
0
..E'

M-1

E
0
..E

M-1

E
0
..E

M-1

Z
0
..Z

M-1 Z
New

 E
new

 (from Rasterizer)

E
0
..E

M-1

C
0
..C

M-1

Figure : S rted insertion hardware.

Once all the fragments of the tile are stored in the
ZEB, the Z-Overlap Test sequentially reads the lists
from the ZEB and for each list it analyzes possible
verlaps of z-ranges between different objects. The z-
depth along with the 2D coordinates of all the frag-
ments form 3D representation of the 3D scene, which
makes the RBCD be pr jection-independent. The in-
terference cases between tw objects are illustrated in
Figure 5. Each list illustrates one case, with points from

and B z-ordered front-to-back. The algorithm tra-
verses each list front-to-back (left-to-right), and takes
the corresponding actions. Colliding pairs are detected
in cases and 3.
The detection hardware is depicted in Figure 6. The

algorithm begins readin one ZEB entry and storin it
in the List-Register, then it tr verses that z-ordered list
front t back, analyzing each element in sequence by
comparing it with the content of the FF-Stack. The
FF-stack is small table containin up t T entries,
each havin the object-id of front-face fragment, and
matched bit Mi that indicates whether the element

has already been paired with back-face.
t the beginning, the FF-Stack is empty, then each el-

ement of the List-Register is read in turn and analyzed.
If the current element Ecur belongs t front-face, then
Idcur is pushed ont the FF-Stack and its M bit is ini-
tialized t 0. Otherwise, if Ecur belongs t back-face,
then the foll wing tw steps are done:

1. Idcur is compared against the object-ids of all ele-
ments in the FF-Stack with Mi=0, in search of its
correspondin front-face. The bottommost match-
ing id, Idm, of the FF-Stack delimits depth in-
terval, (Idm, Idcur). All the front-faces Idi that
st y ab ve Idm in the FF-Stack, regardless of the
bit Mi, belong t the verlapping interval, s their
output bits Hiti are set t t notify that there
are collisions between the objects Idi and the ob-
ject Idcur.

2. All the collidin pairs <Idi, Idcur> and their coor-
dinates are written t an output buffer which will
be sent t the memory controller. The matched bit
Mm of the front-face element Idm is set t before
the algorithm continues tr versing the list. Tag-
ging the elements as previously matched instead
of deletin them from the FF-stack n t only sim-
plifies the stack management, but also all ws the
detection of verlaps with foll win back-faces of
the list.

Figure : Interference cases between tw b-
jects, A and B. Open brackets ([) den te fr nt-
faces while closin brackets (]) den te back-
faces.

Figure : Z-overlap est hardware.

Note that one ZEB cannot contain fragments of dif-
ferent tiles at the same time, s whenever new tile is
going t be sent t the Rasterizer, if the ZEB is still
receivin fragments of the previous tile, or is bein an-
alyzed by the Z- verlap Test, then the Tile Scheduler

Figure 5.4: Sorted insertion hardware.

output Ci tells whether Znew is less than Zi, and bits C0 to CM-1 are forwarded to an array of
M Multiplexers that shifts some elements and places Enew in its corresponding order.

3. The ordered list, E’0 to E’M-1, is written back to the ZEB.

5.2.5 Z-Overlap Test

Once all the fragments of the tile are stored in the ZEB, the Z-Overlap Test sequentially reads
the lists from the ZEB and for each list it analyzes possible overlaps of z-ranges between different
objects. The z-depth along with the 2D coordinates of all the fragments form a 3D representation
of the 3D scene, which makes the RBCD be projection-independent. The interference cases between
two objects are illustrated in Figure 5.5. Each list illustrates one case, with points from A and B
z-ordered front-to-back. The algorithm traverses each list front-to-back (left-to-right), and takes the
corresponding actions. Colliding pairs are detected in cases 2 and 3.

The detection hardware is depicted in Figure 5.6. The algorithm begins reading one ZEB entry
and storing it in the List-Register, then it traverses that z-ordered list front to back, analyzing each
element in sequence by comparing it with the content of the FF-Stack. The FF-stack is a small
table containing up to T entries, each having the object-id of a front-face fragment, and a matched
bit Mi that indicates whether the element has already been paired with a back-face.

At the beginning, the FF-Stack is empty, then each element of the List-Register is read in
turn and analyzed. If the current element Ecur belongs to a front-face, then Idcur is pushed onto
the FF-Stack and its M bit is initialized to 0. Otherwise, if Ecur belongs to a back-face, then the
following two steps are done:

1. Idcur is compared against the object-ids of all elements in the FF-Stack with Mi=0, in search
of its corresponding front-face. The bottommost matching id, Idm, of the FF-Stack delimits

112

5.2. MICROARCHITECTURE

Figure : S rted insertion hardware.

Once all the fragments of the tile are stored in the
ZEB, the Z-Overlap Test sequentially reads the lists
from the ZEB and for each list it analyzes possible
verlaps of z-ranges between different objects. The z-
depth along with the 2D coordinates of all the frag-
ments form 3D representation of the 3D scene, which
makes the RBCD be pr jection-independent. The in-
terference cases between tw objects are illustrated in
Figure 5. Each list illustrates one case, with points from

and B z-ordered front-to-back. The algorithm tra-
verses each list front-to-back (left-to-right), and takes
the corresponding actions. Colliding pairs are detected
in cases and 3.
The detection hardware is depicted in Figure 6. The

algorithm begins readin one ZEB entry and storin it
in the List-Register, then it tr verses that z-ordered list
front t back, analyzing each element in sequence by
comparing it with the content of the FF-Stack. The
FF-stack is small table containin up t T entries,
each havin the object-id of front-face fragment, and
matched bit Mi that indicates whether the element

has already been paired with back-face.
t the beginning, the FF-Stack is empty, then each el-

ement of the List-Register is read in turn and analyzed.
If the current element Ecur belongs t front-face, then
Idcur is pushed ont the FF-Stack and its M bit is ini-
tialized t 0. Otherwise, if Ecur belongs t back-face,
then the foll wing tw steps are done:

1. Idcur is compared against the object-ids of all ele-
ments in the FF-Stack with Mi=0, in search of its
correspondin front-face. The bottommost match-
ing id, Idm, of the FF-Stack delimits depth in-
terval, (Idm, Idcur). All the front-faces Idi that
st y ab ve Idm in the FF-Stack, regardless of the
bit Mi, belong t the verlapping interval, s their
output bits Hiti are set t t notify that there
are collisions between the objects Idi and the ob-
ject Idcur.

2. All the collidin pairs <Idi, Idcur> and their coor-
dinates are written t an output buffer which will
be sent t the memory controller. The matched bit
Mm of the front-face element Idm is set t before
the algorithm continues tr versing the list. Tag-
ging the elements as previously matched instead
of deletin them from the FF-stack n t only sim-
plifies the stack management, but also all ws the
detection of verlaps with foll win back-faces of
the list.

Case List Ecur Action Stack Matched Notify

1.- [A]A [B]B [A push [A 0

]A match [A 1

[B push [A, [B 1, 0

]B match [A, [B 1 ,1

2.- [A [B]A]B [A push [A 0

[B push [A, [B 0, 0

]A match [A, [B 1, 0 <A,B>

]B match [A, [B 1, 1

3.- [A [B]B]A [A push [A 0

[B push [A, [B 0, 0

]B match [A, [B 0, 1

]A match [A, [B 1, 1 <A,B>

4.- [[]] Same as case 3, with A, B interchanged

Figure : Interference cases between tw b-
jects, A and B. Open brackets ([) den te fr nt-
faces while closin brackets (]) den te back-
faces.

Figure : Z-overlap est hardware.

Note that one ZEB cannot contain fragments of dif-
ferent tiles at the same time, s whenever new tile is
going t be sent t the Rasterizer, if the ZEB is still
receivin fragments of the previous tile, or is bein an-
alyzed by the Z- verlap Test, then the Tile Scheduler

Figure 5.5: Interference cases between front-faces ([) and back-faces (]) of two objects,
A and B.

a depth interval, (Idm, Idcur). All the front-faces Idi that stay above Idm in the FF-Stack,
regardless of the bit Mi, belong to the overlapping interval, so their output bits Hiti are set to
1 to notify that there are collisions between the objects Idi and the object Idcur.

2. All the colliding pairs <Idi, Idcur> and their coordinates are written to an output buffer which
will be sent to the memory controller. The matched bit Mm of the front-face element Idm is
set to 1 before the algorithm continues traversing the list. Tagging the elements as previously
matched instead of deleting them from the FF-stack not only simplifies the stack management,
but also allows the detection of overlaps with following back-faces of the list.

Note that one ZEB cannot contain fragments of different tiles at the same time, so whenever a
new tile is going to be sent to the Rasterizer, if the ZEB is still receiving fragments of the previous
tile, or is being analyzed by the Z-overlap Test, then the Tile Scheduler must wait until the CD
analysis completes, causing a pipeline stall that may hurt performance and therefore increase the
static energy cost for the entire Raster Pipeline. Fortunately, the hardware needed to implement a
ZEB is not expensive, so the RBCD unit is equipped with two ZEBs in order to store the information
from the current tile being rasterized while the Z-overlap test is still being run for the previous one.

5.2.6 Animation Loop

The application stage of the conventional graphics pipeline, usually executed in the CPU, is
responsible for receiving user inputs, detecting collisions, computing the corresponding reactions
based on physical rules and updating the scene accordingly. This set of tasks constitute a time step.

113

CHAPTER 5. RENDER-BASED COLLISION DETECTION FOR CPU/GPU SYSTEMS

Figure : S rted insertion hardware.

Once all the fragments of the tile are stored in the
ZEB, the Z-Overlap Test sequentially reads the lists
from the ZEB and for each list it analyzes possible
verlaps of z-ranges between different objects. The z-
depth along with the 2D coordinates of all the frag-
ments form 3D representation of the 3D scene, which
makes the RBCD be pr jection-independent. The in-
terference cases between tw objects are illustrated in
Figure 5. Each list illustrates one case, with points from

and B z-ordered front-to-back. The algorithm tra-
verses each list front-to-back (left-to-right), and takes
the corresponding actions. Colliding pairs are detected
in cases and 3.
The detection hardware is depicted in Figure 6. The

algorithm begins readin one ZEB entry and storin it
in the List-Register, then it tr verses that z-ordered list
front t back, analyzing each element in sequence by
comparing it with the content of the FF-Stack. The
FF-stack is small table containin up t T entries,
each havin the object-id of front-face fragment, and
matched bit Mi that indicates whether the element

has already been paired with back-face.
t the beginning, the FF-Stack is empty, then each el-

ement of the List-Register is read in turn and analyzed.
If the current element Ecur belongs t front-face, then
Idcur is pushed ont the FF-Stack and its M bit is ini-
tialized t 0. Otherwise, if Ecur belongs t back-face,
then the foll wing tw steps are done:

1. Idcur is compared against the object-ids of all ele-
ments in the FF-Stack with Mi=0, in search of its
correspondin front-face. The bottommost match-
ing id, Idm, of the FF-Stack delimits depth in-
terval, (Idm, Idcur). All the front-faces Idi that
st y ab ve Idm in the FF-Stack, regardless of the
bit Mi, belong t the verlapping interval, s their
output bits Hiti are set t t notify that there
are collisions between the objects Idi and the ob-
ject Idcur.

2. All the collidin pairs <Idi, Idcur> and their coor-
dinates are written t an output buffer which will
be sent t the memory controller. The matched bit
Mm of the front-face element Idm is set t before
the algorithm continues tr versing the list. Tag-
ging the elements as previously matched instead
of deletin them from the FF-stack n t only sim-
plifies the stack management, but also all ws the
detection of verlaps with foll win back-faces of
the list.

Figure : Interference cases between tw b-
jects, A and B. Open brackets ([) den te fr nt-
faces while closin brackets (]) den te back-
faces.

List-Register

E
0
..E

M-1

FF-Stack

EQ.Comparators

(from ZEB)

Id
cur

(front face)

Id
0
..Id

T-1

Hit
0
..Hit

T-1

<Id
i
, Id

cur
>

(to output buffer)

Pair Gen.

Id
cur

(back face)

Hit Logic

C
0
..C

T-1

Id
0
..Id

T-1

Id
0
..Id

T-1

Figure : Z-overlap est hardware.

Note that one ZEB cannot contain fragments of dif-
ferent tiles at the same time, s whenever new tile is
going t be sent t the Rasterizer, if the ZEB is still
receivin fragments of the previous tile, or is bein an-
alyzed by the Z- verlap Test, then the Tile Scheduler

Figure 5.6: Z-overlap Test hardware.

After one or multiple time steps, the resulting scene is finally rendered, usually with the support
of the GPU. After this, the whole process is repeated again, completing an animation or game
loop [181]. Figure 5.7 shows, for two consecutive frames, an example of game loop without and with
RBCD.

must wait until the CD analysis completes, causin
pipeline stall that may hurt performance and may h ve
static energy cost for the entire Raster Pipeline. For-
tunately, the hardware needed t implement ZEB is
not expensive, so the RBCD unit is equipped with tw
ZEBs in order t store the information from the cur-
rent tile bein rasterized while the Z-overlap test is still
being run for the previous one.

The application stage of the conventional graphics
pipeline, usually executed in the CPU, is responsible
for receivin user inputs, detectin collisions, comput-
ing the correspondin reactions based on physical rules
and updating the scene accordingly. This set of tasks
constitute time step. After one or multiple time steps,
the resulting scene is finally rendered, usually with the
support of the GPU. After this, the whole pr cess is re-
peated again, completin an animation or game l op [19].
Figure shows, for tw consecutive frames, an example
of game l op without and with RBCD.

 CDCPU

GPU

CR GCI

Render

 CR

Render

CPU

GPU

CR CR ...

...

GCI

GCI

GCI

...

... ...

time step i

CD

time step i+1

RBCD
Render Render

...

(a)

 CDCPU

GPU

CR GCI

Render

 CR

Render

CPU

GPU

CR CR ...

...

GCI

GCI

GCI

...

... ...

time step i

CD

time step i+1

RBCD
Render Render

...

(b)

Figure : Example f ame lo p execution in the
CPU/GPU system, (a)with ut RBCD, (b)with
RBCD. CR and GCI stand for C llision Re-
sp nse and GPU C mmand Issue respectively.
Our proposal enables moving the CD task from the

time step t the GP rendering. Hence, per every ren-
dered frame, RBCD detects collisions between all the
collisionable objects sent t the GPU, visible or not.
Should the application run additional time steps, it can
be done by rasterizin (not fragment pr cessing) ex-
tr commands just containing the collisionable objects
t be tested, or by calling conventional software-based
CD. Similarly, both approaches can be used t deal with
collisionable objects out of the view frustum if needed.
Executing multiple time steps per frame can help im-

prove the softness and realism of the animations, espe-
cially when rendering off-line or using high performance
graphics. wever, because of the p wer limitations of
real-time rendering in mobile devices, one time step per
frame is what actually ccurs in most current real-time
applications.

RBCD shifts computation from the CPU t the GPU.
Due to that, we use meth dology capable of quanti-
fyin the energy consumption and performance of the
collision detection, not only in the GPU but als in the

CPU, and we are able t measure the verall perfor-
mance and energy cost of the CPU/GP system with
and without our technique. On the GPU side we use
Teapot [20], simulation framework. On the CPU side
we use Marssx [21, 22] and McP T [23].
In our experiments, we model baseline GP archi-

tecture that closely resembles that of the Utgard mi-
croarchitecture of the ARMMali 400-MP [9]. Moreover,
our experimental framework assumes widely used com-
mercial l w-p wer SoC, the Exynos dual from Sam-
sun [24], which includes Mali 0MP GPU and an
dual-core ARM Cortex-A9 processor [25].

Our benchmarks set is composed of the four different
Android commercial 3D applications listed in Table 1,
all of them usin Unity3D.

able : Benchmarks.
Benchmark Alias Description

Captain Americ cap beat’em up
Crazy Snowboard crazy sn wboard arcade
Sleepy Jack sleepy action
Temple Run temple adventure arcade

Teapot [20] is mobile GP simulation infrastruc-
ture that is able t run and profile unm dified com-
mercial Android applications. It includes an OpenG
commands interceptor, GP trace generator and
cycle-accurate timin simulator. The parameters used
in the simulations are shown in Table 2.
While graphical application is executed in the An-

droid emulator [26], trace of OpenG commands is
being generated. This trace is fed t the GP trace
generator, which creates the GPU trace through soft-
ware renderer included in Gallium3D [27].
The generated GP trace file includes the vertex Pro-

cessor and pixel Pr cessor instructions, the memory ad-
dresses of the texture and vertex data, the primitives
generated, and the correspondin fragments. The GP
trace is supplied t the cycle-accurate timin simulator,
which accurately models the baseline GPU. This cycle-
accurate time simulator has been extended t integrate
the RBCD unit int the graphics pipeline, as described
in Section 3. The RBCD unit has been modeled usin
McP T’s components, shown between parenthesis in
the foll win list: the ZEBs (SRAM), T-Comparators
(ALU); EQ-Comparators (OR); List-Register, FF-Stack,
list and stack pointers (registers); hit logic (priority
encoder); and MUXes (MUX). The total are of the
RBCD unit is less than 1% of the are of the GPU.

As we have discussed, our technique includes the iden-
tification of collisionable objects by the progr mmer.
Since the source c de of our benchmarks is not vailable,
our strategy consisted on an off-line visual identification
of the draw commands of the collisionable objects. For

(a)

must wait until the CD analysis completes, causin
pipeline stall that may hurt performance and may h ve
static energy cost for the entire Raster Pipeline. For-
tunately, the hardware needed t implement ZEB is
not expensive, so the RBCD unit is equipped with tw
ZEBs in order t store the information from the cur-
rent tile bein rasterized while the Z-overlap test is still
being run for the previous one.

The application stage of the conventional graphics
pipeline, usually executed in the CPU, is responsible
for receivin user inputs, detectin collisions, comput-
ing the correspondin reactions based on physical rules
and updating the scene accordingly. This set of tasks
constitute time step. After one or multiple time steps,
the resulting scene is finally rendered, usually with the
support of the GPU. After this, the whole pr cess is re-
peated again, completin an animation or game l op [19].
Figure shows, for tw consecutive frames, an example
of game l op without and with RBCD.

 CDCPU

GPU

CR GCI

Render

 CR

Render

CPU

GPU

CR CR ...

...

GCI

GCI

GCI

...

... ...

time step i

CD

time step i+1

RBCD
Render Render

...

(a)

 CDCPU

GPU

CR GCI

Render

 CR

Render

CPU

GPU

CR CR ...

...

GCI

GCI

GCI

...

... ...

time step i

CD

time step i+1

RBCD
Render Render

...

(b)

Figure : Example f ame lo p execution in the
CPU/GPU system, (a)with ut RBCD, (b)with
RBCD. CR and GCI stand for C llision Re-
sp nse and GPU C mmand Issue respectively.
Our proposal enables moving the CD task from the

time step t the GP rendering. Hence, per every ren-
dered frame, RBCD detects collisions between all the
collisionable objects sent t the GPU, visible or not.
Should the application run additional time steps, it can
be done by rasterizin (not fragment pr cessing) ex-
tr commands just containing the collisionable objects
t be tested, or by calling conventional software-based
CD. Similarly, both approaches can be used t deal with
collisionable objects out of the view frustum if needed.
Executing multiple time steps per frame can help im-

prove the softness and realism of the animations, espe-
cially when rendering off-line or using high performance
graphics. wever, because of the p wer limitations of
real-time rendering in mobile devices, one time step per
frame is what actually ccurs in most current real-time
applications.

RBCD shifts computation from the CPU t the GPU.
Due to that, we use meth dology capable of quanti-
fyin the energy consumption and performance of the
collision detection, not only in the GPU but als in the

CPU, and we are able t measure the verall perfor-
mance and energy cost of the CPU/GP system with
and without our technique. On the GPU side we use
Teapot [20], simulation framework. On the CPU side
we use Marssx [21, 22] and McP T [23].
In our experiments, we model baseline GP archi-

tecture that closely resembles that of the Utgard mi-
croarchitecture of the ARMMali 400-MP [9]. Moreover,
our experimental framework assumes widely used com-
mercial l w-p wer SoC, the Exynos dual from Sam-
sun [24], which includes Mali 0MP GPU and an
dual-core ARM Cortex-A9 processor [25].

Our benchmarks set is composed of the four different
Android commercial 3D applications listed in Table 1,
all of them usin Unity3D.

able : Benchmarks.
Benchmark Alias Description

Captain Americ cap beat’em up
Crazy Snowboard crazy sn wboard arcade
Sleepy Jack sleepy action
Temple Run temple adventure arcade

Teapot [20] is mobile GP simulation infrastruc-
ture that is able t run and profile unm dified com-
mercial Android applications. It includes an OpenG
commands interceptor, GP trace generator and
cycle-accurate timin simulator. The parameters used
in the simulations are shown in Table 2.
While graphical application is executed in the An-

droid emulator [26], trace of OpenG commands is
being generated. This trace is fed t the GP trace
generator, which creates the GPU trace through soft-
ware renderer included in Gallium3D [27].
The generated GP trace file includes the vertex Pro-

cessor and pixel Pr cessor instructions, the memory ad-
dresses of the texture and vertex data, the primitives
generated, and the correspondin fragments. The GP
trace is supplied t the cycle-accurate timin simulator,
which accurately models the baseline GPU. This cycle-
accurate time simulator has been extended t integrate
the RBCD unit int the graphics pipeline, as described
in Section 3. The RBCD unit has been modeled usin
McP T’s components, shown between parenthesis in
the foll win list: the ZEBs (SRAM), T-Comparators
(ALU); EQ-Comparators (OR); List-Register, FF-Stack,
list and stack pointers (registers); hit logic (priority
encoder); and MUXes (MUX). The total are of the
RBCD unit is less than 1% of the are of the GPU.

As we have discussed, our technique includes the iden-
tification of collisionable objects by the progr mmer.
Since the source c de of our benchmarks is not vailable,
our strategy consisted on an off-line visual identification
of the draw commands of the collisionable objects. For

(b)

Figure 5.7: Example of game loop execution in the CPU/GPU system, (a)without
RBCD, (b)with RBCD. CR and GCI stand for Collision Response and GPU Command
Issue respectively.

Our proposal enables moving the CD task from the time step to the GPU rendering. Hence,
per every rendered frame, RBCD detects collisions between all the collisionable objects sent to the
GPU, visible or not. Should the application run additional time steps, it can be done by rasterizing
(not fragment processing) extra commands just containing the collisionable objects to be tested, or
by calling conventional software-based CD. Similarly, both approaches can be used to deal with

114

5.3. EXPERIMENTAL RESULTS

collisionable objects out of the view frustum if needed.

Executing multiple steps per frame can help improve realism of the animations, especially when
rendering off-line or using high performance graphics. However, because of the power limitations
of real-time rendering in mobile devices, one time step per frame is what actually occurs in most
current real-time applications.

5.2.7 Power model of the RBCD unit

The RBCD unit has been modeled using McPAT’s components, shown between parenthesis
in the following list: the ZEBs (SRAM), LT Comparators (ALU); EQ Comparators (XOR); List-
Register, FF Stack, list and stack pointers (registers); hit logic (priority encoder); and MUXes
(MUX). The total area of the RBCD unit is less than 1% of the area of the GPU.

5.2.8 CPU Collision Detection Simulation

Since we do not have the source code of the benchmarks, in order to simulate the CD on the
CPU for our benchmark set we extracted the geometry of all the collisionable objects for every
GPU trace fed into the cycle-accurate simulator of Teapot. That is, for a given trace we obtain the
3D meshes of vertices of every collisionable object in the same world space coordinates as they have
in the original benchmark, which is all the information that a CD algorithm needs in order to test
overlaps.

In order to simulate the CPU CD of our benchmarks set, we employed Bullet [129], a 3D
Real-Time Multiphysics Library. Bullet provides state-of-the-art collision detection and soft and
rigid body dynamics. Bullet is a good choice since it is widely used in industry [95] (e.g., Grand
Theft Auto V and Red Dead Redemption).

Using Bullet, we have created an application that loads the meshes of the collisionable objects
and then performs the CD for every frame of the original benchmark. We implement two different
CD versions, the first one just performs a broad phase, and the second one performs both broad and
narrow phases. These two versions are simulated with Marss86, which generates activity factors
that are fed into McPAT to obtain the energy cost of performing the CD in the CPU. The time and
the energy of loading the 3D meshes are subtracted from the CPU results.

5.3 Experimental Results

In this section, we first show the benefits of RBCD in a CPU/GPU system. Then we show the
small overheads introduced in the GPU. Finally, we perform a sensitivity analysis to the maximum
length of the ZEB lists. Table 5.1 lists the parameters used in our experiments.

115

CHAPTER 5. RENDER-BASED COLLISION DETECTION FOR CPU/GPU SYSTEMS

Table 5.1: CPU/GPU Simulation Parameters.

GPU Parameters

Tech Specs 400 MHz, 1 V, 32 nm
Screen Resolution 800x480 (WVGA)
Tile Size 16x16

Queues

Vertex (2x) 16 entries, 136 bytes/entry
Triangle, Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry

Caches

Vertex Cache 64 bytes/line, 2-way associative, 4 KB, 1 bank, 1 cycle
Texture Caches (4x) 64 bytes/line, 2-way associative, 8 KB, 1 bank, 1 cycle
L2 Cache 64 bytes/line, 8-way associative, 128 KB, 8 banks, 2 cycles
Color Buffers (4x) 64 bytes/line, 1-way associative, 1 KB, 1 bank, 1 cycle
Z Buffers (4x) 64 bytes/line, 1-way associative, 1 KB, 1 bank, 1 cycle

Non-programmable stages

Primitive assembly 1 triangle/cycle
Rasterizer 4 fragments/cycle
Early Z test 8 in-flight quad-fragments, 1 Z-buffer

Programmable stages

Vertex Processor 1 vertex processor
Fragment Processor 4 fragment processors
Latency Main memory 50-100 cycles
Bandwidth 4 bytes/cycle (dual channel)

RBCD Unit

ZEB buffers (2x) 32 bit/element, 8 element/entry, 256 entries, 8 KB

CPU Parameters

Tech Specs 1500 MHz, 1 V, 32 nm
2 Cores 1 MB L2

Core Parameters

CPU Architecture Harvard
L1 Instruction Cache 32 KB/Core
L1 Data Cache 32 KB/Core

5.3.1 Performance and Energy Consumption Benefits

This section demonstrates that RBCD provides huge benefits in terms of both performance
and energy at a very low cost in a low-power CPU/GPU system, using a set of commercial graphic
applications (see Table 5.2). The speedup (5.1) is obtained comparing the time that the CPU
employs performing the CD against the extra time that RBCD adds to the baseline GPU execution
time. The energy consumption is computed using equation (5.2). On the CPU side, the energy

116

5.3. EXPERIMENTAL RESULTS

Table 5.2: Benchmarks.

Benchmark Alias Description

Captain America Cap beat’em up
Crazy Snowboard Crazy snowboard arcade
Sleepy Jack Sleepy action
Temple Run Temple adventure arcade

numbers include the energy consumption of the CPU and the main memory. On the GPU side, the
energy numbers also include the consumption of the GPU and the main memory.

Speedup =
tCPUCD

tGPURBCD
− tGPUbaseline

(5.1)

Normalized Energy Consumption =
EGPURBCD

− EGPUbaseline

ECPUCD

(5.2)

cap crazy sleepy temple geo.mean
0

200

400

600

800

1000

1200

1400

1 ZEB 2 ZEB 4 ZEB

S
p
e
e
d
u
p

(a)

cap crazy sleepy temple geo.mean
0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

1 ZEB 2 ZEB 4 ZEB

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

(b)

cap crazy sleepy temple geo.mean
0

1000

2000

3000

4000

5000

6000

7000

1 ZEB 2 ZEB 4 ZEB

S
p
e
e
d
u
p

(c)

cap crazy sleepy temple geo.mean
0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

1 ZEB 2 ZEB 4 ZEB

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

(d)

Figure 5.8: (a) RBCD speedup regarding Broad-CD, (b) Normalized energy consump-
tion of RBCD regarding broad-CD, (c) RBCD speedup regarding GJK-CD, (d) Nor-
malized energy consumption of RBCD regarding GJK-CD

Figures 5.8a and 5.8b show the speedup and the normalized energy consumption of RBCD with
respect to a system that only performs a broad CD using AABBs in the CPU (Broad-CD). For
these experiments, the RBCD unit is equipped with different number of ZEBs (1, 2 and 4). As it

117

CHAPTER 5. RENDER-BASED COLLISION DETECTION FOR CPU/GPU SYSTEMS

can be observed, RBCD obtains a speedup of around 250x on average with just one ZEB buffer
in the RBCD unit. As it is explained in the following section, including more ZEBs in the RBCD
unit avoids some GPU stalls, which reduces the GPU time overhead caused by RBCD. With two
ZEBs the speedup of RBCD w.r.t Broad-CD is incremented to around 620x, while with four ZEBs
it is around 650x. Regarding energy, with one ZEB in the RBCD unit, RBCD consumes on average
0.6% of the energy consumed by Broad-CD in the CPU. Including a second ZEB further reduces
the energy consumption because the reduced pipeline stalls save much more energy to the whole
GPU than the tiny extra consumption of the additional ZEB. However, with 4 ZEBs the energy
consumption is similar to the energy consumption with 2 ZEBs, because most of the stalls are
already removed with 2 ZEBs, and the cost of including two more ZEBs is similar to the potential
remaining savings.

RBCD is also compared against a scheme executing both the broad and narrow phases. The broad
phase uses AABBs and the narrow phase is the Gilbert-Johnson-Keerthi algorithm (GJK [140, 194])
implemented in Bullet [129]. As shown in Figures 5.8c and 5.8d, the benefits in speedup and energy
consumption are even higher, with speedups on average around 1400x, 3500x, and 3650x for 1, 2
and 4 ZEBs respectively. The energy consumption is around 0.1% on average when including 1 ZEB,
and drops to 0.05% including 2 and 4 ZEBs respectively. Furthermore, the RBCD scheme provides
a pixel-level granularity for CD, whereas the baseline broad-CD implements the most simple broad
phase, an AABB overlap test. The benefits of RBCD are mainly due to:

1. Both the execution time and the energy of the CPU/GPU system are highly dominated by
the CD part that executes in the CPU. RBCD removes all CD CPU activity while it requires
minimal extra work in the GPU due to the reuse of data already computed during the image
rendering process.

2. The power of the RBCD unit is very small compared with the total power of the GPU.

5.3.2 GPU Overheads

This section analyzes the overhead, in terms of execution time and energy consumption, of
integrating RBCD into the rendering pipeline. Figures 5.9a and 5.9b show the execution time
overhead (equation 5.3) and energy consumption (equation 5.4) of the proposed approach normalized
to the baseline GPU.

Normalized T ime =
tGPURBCD

tGPUbaseline

(5.3)

Normalized Energy =
EGPURBCD

EGPUbaseline

(5.4)

As shown in Figure 5.9a, the time overhead introduced by RBCD is on average less than 5.4%
with 1 ZEB, it decreases to 3% with 2 ZEBs, and remains around 3% with 4 ZEBs. As stated before,
since the ZEB can only hold data from just one tile at a time, having a single ZEB may force the
Rasterizer to stall if it fills up the RBCD unit input queue with fragments from a new tile while the

118

5.3. EXPERIMENTAL RESULTS

cap crazy sleepy temple geo.mean
1

1,01

1,02

1,03

1,04

1,05

1,06

1,07

1,08

1 ZEB 2 ZEB 4 ZEB

N
o

r
m

a
li
z
e
d

 T
im

e

(a)

cap crazy sleepy temple geo.mean
1

1,01

1,02

1,03

1,04

1,05

1,06

1,07

1,08

1 ZEB 2 ZEB 4 ZEB

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

(b)

Figure 5.9: (a) Normalized rendering time of the GPU with RBCD w.r.t. the baseline
GPU. (b) Normalized energy of the GPU and main memory with RBCD w.r.t. the
baseline GPU.

Z-Overlap Test of the previous tile is not yet finished or even it has not started. Note, however,
that the Rasterizer stalls may not have a direct impact on the total pipeline time if the queue that
feeds the fragment processors contains enough work to keep them busy during the stall. On the
contrary, if this queue becomes empty then the fragment processors are left idle, which produces a
performance penalty. Therefore, having a second or more ZEB buffer(s) allows the Rasterizer to
send collisionable fragments to another ZEB of the RBCD unit while the other ZEB is being used
by the previous tile. The benchmark where this issue is most relevant is Crazy Snowboard, having
an overhead around of 7% (the biggest) with one ZEB , and less than 1% (the smallest) with two
ZEBs.

The energy overhead of both the GPU unit and the main memory is shown in Figure 5.9b. It
is on average 5.1% with 1 ZEB and decreases to 3.5% with 2 ZEBs and 4 ZEBs. Figures 5.10a
and 5.10b show in more detail the energy overhead induced by RBCD on the GPU and on main
memory. Compared to the 2 ZEBs unit, with 4 ZEBs the energy consumption of the main memory
slightly decreases in cap and crazy (see Figure 5.10b), because the execution time decreases too, i.e.,
the static energy consumption decreases. However, as can be seen in Figure 5.10a, with 4 ZEBs the
energy overhead increases for all the benchmarks (even in cap and crazy), because the static energy
cost of including 2 more ZEBs (4 in total) is greater than the reduction of static energy of the total
GPU. An energy breakdown of the baseline is shown in Figure 5.11a.

In summary, we can conclude that two ZEBs are enough to avoid practically all stalls, because
including 4 ZEBs or more (not shown in this graph) does not significantly improve time and slighly
increases the energy consumption.

The second source of overhead comes from the extra tagged-to-be-culled primitives that are
processed by the GPU pipeline, and which are necessary to perform CD in the RBCD unit. This
extra work, which we examine in more detail in the next paragraphs, affects both the Geometry
Pipeline and the Raster Pipeline but the main impact occurs in the latter one since its computing
requirements are much higher, as shown in Figure 5.12. For these experiments we have considered
two ZEBs in the RBCD unit.

119

CHAPTER 5. RENDER-BASED COLLISION DETECTION FOR CPU/GPU SYSTEMS

cap crazy sleepy temple geo.mean
0,98

0,99

1

1,01

1,02

1,03

1,04

1,05

1,06

1,07

1,08

1 ZEB 2 ZEB 4 ZEB

N
o

rm
a

li
z
e

d
 G

P
U

 E
n

e
rg

y

(a)

cap crazy sleepy temple geo.mean
0,98

0,99

1

1,01

1,02

1,03

1,04

1,05

1,06

1,07

1,08

1 ZEB 2 ZEB 4 ZEB

N
o

rm
a
li
z
e
d

 M
a
in

 M
e
m

.
E

n
e

rg
y

(b)

Figure 5.10: (a) Normalized energy consumption of the GPU with RBCD w.r.t the
baseline GPU. (b) Normalized main memory energy of RBCD w.r.t. the main memory
energy of the baseline GPU.

cap crazy sleepy temple geo.mean
0

10

20

30

40

50

60

70

80

90

100

Main Memory GPU

G
P

U
 E

n
e

rg
y

 B
re

a
k

d
o

w
n

 (
%

)

(a)

Figure 5.11: Energy GPU/Main memory breakdown.

cap crazy sleepy temple geo.mean
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Raster Geometry

G
P

U
T

im
e
 B

r
e
a
k
d

o
w

n

Figure 5.12: GPU time breakdown including time of Geometry and Raster pipelines.

Regarding the Geometry Pipeline, the Polygon List Builder has more work to do in order to
process the extra collisionable tagged-to-be-culled primitives, which translates to 32% more stores to
the Tile Cache and around 8.8% more write misses. However, the execution time of the Geometry
Pipeline increases on average less than 1%.

120

5.3. EXPERIMENTAL RESULTS

Regarding the Raster Pipeline, Figure 5.13 shows some activity factors to illustrate the main
sources of overhead, all normalized to the baseline GPU. The execution time of the Raster Pipeline
increases by 3.7%. This is due to the fact that the Tile Fetcher reads 18.4% more primitives from
the Tile Cache, which translates into 19.3% more loads and around 6.6% more read misses. The
extra primitives cause the Rasterizer to produce 6.3% more fragments. However, the increase in
the number of fragments is smaller than the increase of primitives because the average size of the
tagged-to-be-culled primitives, which are part of high detail 3D models, is smaller than the average
size of a primitive.

cap crazy sleepy temple geo.mean
1

1,05

1,1

1,15

1,2

1,25

1,3

1,35

TC loads Primitives Fragments Raster Cycles

N
o

rm
a

liz
e

d
 t
o

 B
a

s
e

lin
e

Figure 5.13: Tile Cache loads, primitives, fragments, and Raster Cycles with the GPU
including RBCD normalized to the GPU baseline.

On the other hand, these extra tagged-to-be-culled fragments are not sent to the input queue of
the Early-Z Test, which translates to an increment around 3.6% of the idle cycles of the fragment
processors. The increment of idle cycles is smaller than the increment in the number of fragments,
because the rasterization of the tagged-to-be-culled primitives partially overlaps with the execution
of the fragment processors, thus partially hiding its latency. In other words, the execution time
of the Raster Pipeline is increased if the fragment processors do not have enough work to do
because the input queue that feeds them has been emptied while the Rasterizer is producing the
tagged-to-be-culled fragments, which occurs in 3.6% more cycles. In summary, we can conclude
that RBCD adds a low overhead to the GPU because:

1. RBCD reuses all data transmission and geometry processing of collisionable objects already
done by the GPU to render the image of a given scene.

2. RBCD exploits the fact that the 84.4% of the primitives are already rasterized in the baseline,
producing the 94% of the fragments needed by the RBCD unit.

3. The extra cycles that RBCD adds to the GPU pipeline are partially hidden by the fragment
processing execution.

4. The static power of the RBCD unit is very small, being less than 1% of the total static power
of the GPU.

121

CHAPTER 5. RENDER-BASED COLLISION DETECTION FOR CPU/GPU SYSTEMS

Given that the time overhead in the GPU is greatly amortized by the time savings in the CPU
we do not consider to include a dedicated Rasterizer for processing collisionable backfaces. However,
additional resources could be devoted to the Rasterizer in order to smooth the time overhead in a
context with much more rasterization overhead.

5.3.3 Sensitivity to ZEB List Length

Table 5.3: Percentage of fragment overflow for a ZEB with 4, 8 or 16 entries (each
entry holds data for one fragment).

Benchmark 4 8 16

cap 1.57 0.01 0
crazy 1.20 0.03 0
sleepy 5.87 0.21 0
temple 16.61 0.96 0
average 3.68 0.08 0

The amount of collisionable geometry of a benchmark and its concentration in the scene may
stress the RBCD unit and increase the overheads in the GPU. For our set of benchmarks, we found
that one RBCD unit with one Insertion Sort unit, one Z-Overlap Test unit, and two ZEBs with lists
of a maximum size of 8 are adequate. The size of a ZEB with 256 lists, 8 entries per list, and 32
bits per entry is 8 KB. As described above, we implemented the ZEB as an array of fixed-length
lists for simplicity reasons. However, the downside is that overflows are possible if more than M
fragments from collisionable objects are found in the same pixel, being M the length of the lists. Of
course, having longer lists reduces the probability that overflows occur, but it comes at the cost of
more area and energy.

Table 5.3 shows the percentage of times a list of the ZEB overflows for lists with 4, 8, and 16
entries. With four entries the overflow rate is below 2% for Captain America and Crazy Snowboard,
but increases above 7% in Sleepy Jack and up to 16.6% in Temple Run. The reason is that the
first two benchmarks have less collisionable objects, and they are more spread across the projection
plane. In other words, they have less objects overlapping the same pixels than in the other two
benchmarks. On the other hand, Table 5.3 shows that just eight entries per list are enough to
keep the overflow rate below 1% in the worst case and 0.08% on average. Despite the overflows, we
verified that all the collisions are still detected. This is not surprising because there are multiple
pixels per object so there are also multiple opportunities to detect the collisions between objects.
Finally, with 16 entries, overflows do not happen at all for our set of benchmarks.

Nevertheless, there may be cases where a benchmark stresses the ZEB to the point that the
overflow rate is very high, decreasing the quality of the CD. A fallback procedure can be adopted in
these cases by notifying the event to the CPU, which would then perform the CD in the conventional
way. Another possibility is to design a ZEB with several spare entries that could be dynamically
allocated as extra space to create longer lists for these cases. In any case, the percentage of static
power consumed by the RBCD unit with two ZEBs relative to the total GPU static power is less
than 1% with lists of 8 entries, and less than 5% with lists of 64 entries. This means that the ZEB

122

5.4. CONCLUSIONS

has a low impact on the total GPU static power and, if needed, the size of the lists could be higher
in order to minimize the number of executions of the fallback procedure without causing a great
impact in the total power of the GPU.

5.4 Conclusions

In recent years, mobile platforms and smartphones have become ubiquitous, as well as powerful
computational engines. Among all the capabilities of these systems, battery life and graphics are
probably the most appreciated ones by consumers. Current tablets and smartphones contain a GPU
that is widely used by applications such as browsers, image processing, video viewers and games.
Graphics animation applications, and 3D games in particular, are one of the most downloaded
application types, and besides a good graphic quality, they usually require a physics kernel. Collision
Detection is often the most compute-intensive part of these physics kernels.

In this chapter we have presented a hardware scheme, RBCD (Render Based Collision Detection)
to perform low-energy, high-fidelity Collision Detection, which is based on the observation that most
of the computation required by an Image Based CD algorithm is also performed when the image is
rendered by the GPU. This technique introduces a small overhead in the GPU, both in time (below
3% on average) and energy (3.5% on average), but it frees the CPU of the detection of collisions,
resulting on average in a 448x reduction (i.e., by 99.8%) of the total energy consumed by the CD
on the CPU. Additionally, since this scheme detects collisions at a pixel level, it provides higher
accuracy than conventional CD algorithms for mobile platforms, which usually apply simplifications
to the objects in order to reduce the computation required. Furthermore, RBCD is almost three
orders of magnitude faster (a 600x speedup) than traditional, less-accurate approaches that run on
the CPU.

123

6
Conclusions

In this chapter we summarize the main conclusions of the works presented in this thesis, as well
as point out open-research areas for future work.

6.1 Conclusions

Let us give a brief review of the graphics pipeline. Figure 6.1 shows a simplified graphics pipeline.
The GPU receives vertices and processes them in the Geometry Pipeline, which generates triangles.
These are then discretized by the Rasterizer, which generates fragments that correspond to pixel
screen positions. Then, fragments are sent to the Fragment Processing stage, which performs the
required texturing, lighting and other computations to determine their final color. Finally, the
Depth test compares each fragment’s depth against that already stored in the Depth Buffer to
determine if the fragment is in front of all previous fragments at the same pixel position.

Depth
Test

Depth
TestG.P.G.P. Rast.Rast. F.P.F.P.

G.P. = Geometry Processing Rast. = Rasterization
F.P = Fragment Processing

Depth
Buffer

Depth
Buffer

Vertex
Cache

Vertex
Cache BlendingBlending

Color
Buffer

Color
Buffer

Raster Pipeline
Geometry
Pipeline

Vertices Triangles Fragments Visible
Fragments

Figure 6.1: Simplified version of the Graphics Pipeline.

125

CHAPTER 6. CONCLUSIONS

In first place, we evaluate the amount of overshading in mobile graphics workloads and the
effectiveness of Early-depth test to reduce it. Early-depth reduces and important part of the
overshading but there is significant room for improvement because, to be effective avoiding the
rendering of hidden surfaces, it requires opaque geometry to be processed in a front-to-back order.
Hence, when the GPU realizes that an object or part of it is not going to be visible, all activity
required to compute its color has already been performed, with the consequent waste of time and
energy, especially in the Fragment Processing stage, which as we already showed in Section 1.2.2 (in
line with previous works [172, 176]) is the most power consuming stage of the graphics pipeline.
Z-prepass addresses overshading by performing two separate rendering passes with the GPU. First
Z-prepass renders the geometry without computing the color of the fragments, just using a null
fragment shader in the processors, to determine the visibility of the scene. On a second pass with
the real shaders the Early-depth test will perform optimal culling, so overshading will be minimum.
Unfortunately, this approach doubles several stages of the graphics pipeline like vertex processing,
rasterization and visibility determination, which may offset the benefits of the technique. It is
only effective for workloads with enough complexity where the overhead of the first rendering
pass is compensated by large fragment computation savings, which is not usually the case on
mobile applications. Like Z-prepass, Deferred Rendering (DR) is a hardware technique that avoids
overshading by performing a hidden surface removal (HSR) phase. In contrast to Z-prepass, DR
does not perform the geometry processing twice. However, DR still has a non negligible cost: either
it introduces a barrier in the graphics pipeline because the Fragment Processing stage is not started
until HSR has completely finished for a tile, or extra hardware is required to perform the HSR of a
tile in parallel with the rendering of another tile.

We present VRO, a novel technique that effectively reduces overshading. VRO reorders objects
front-to-back entirely in hardware to maximize the culling effectiveness of the Early-depth test and
minimize overshading, hence reducing execution time and energy consumption. VRO exploits the
fact that the objects in graphics animated applications tend to keep their relative depth order across
consecutive frames (temporal coherence) to provide the feeling of smooth transition. VRO keeps
visibility information of a frame, and uses it to reorder the objects of the following frame. Since
depth-order relationships among objects are already tested by the Depth Test, VRO incurs minimal
energy overheads. It just requires adding a small hardware to capture the visibility information
and use it later to guide the rendering of the following frame. The overhead of this technique
is minimum, requiring less than 1% of the total area of the GPU while its latency is hidden by
other processes of the graphics pipeline. For a set of unmodified commercial applications, VRO
outperforms state-of-the-art techniques in performance and energy consumption by reducing the
overshading without the need of an expensive HSR stage at fragment granularity. VRO is especially
efficient for geometry-complex applications, which are expected to be the most common applications
in mobile devices as they already are in desktops. VRO achieves a speed-up about 27% and an
energy reduction around 14.8% compared to an ARM Mali-400 MP4-like GPU. VRO outperforms
DR because the Visibility Rendering Order is created out of the critical path while DR introduces
significant overheads to perform the HSR stage. Furthermore, we have evaluated VRO over an
IMR GPU architecture. Like VRO, IMR-VRO includes a small hardware unit that stores the order
relations among the objects of a scene of the current frame in a buffer. This information is used in
the next frame to create a Visibility Rendering Order that this time guides the Command Processor.
IMR-VRO outperforms state-of-the-art techniques in performance and energy consumption by
reducing the overshading without the need of an expensive extra rendering pass to determine

126

6.1. CONCLUSIONS

visibility. IMR-VRO achieves up to 1.32x speed-up (1.16x on average) and down to 0.79x energy
consumption (0.85x on average) with respect to the baseline IMR GPU. IMR-VRO is much more
efficient than Z-Prepass because most of the computations required to create the Visibility Rendering
Order are reused from the normal rendering, while Z-Prepass requires an extra renderization pass
that introduces significant overheads.

In second place, we introduce Collision Detection (CD), one of the main and most important
algorithms used in physics kernels and that identifies the contact points between the objects of a
scene to determine when they collide. Graphics animation applications such as 3D games represent
a large percentage of downloaded applications for mobile devices and the trend is towards more
complex and realistic scenes with accurate 3D physics simulations. However, real-time highly
accurate CD is very expensive in terms of energy consumption and this parameter is of paramount
importance for mobile devices since it has a direct effect on the autonomy of the system. We give a
brief introduction to a group of CD algorithms known as Image-Based CD (IBCD). These algorithms
rely on the rasterization of the surfaces of the scene objects and the detection of their intersections
based on the pixel depths of the rasterized fragments. We present our proposal: Render Based
Collision Detection (RBCD), which belongs to this kind of techniques, that have been proposed to
exploit the computing power of graphics processors and their ability to rasterize polygons efficiently.

RBCD is a novel energy-efficient high-fidelity CD scheme that leverages some intermediate
results of the rendering pipeline to perform CD. RBCD is based on the observation that most of the
tasks required for IBCD (e.g., vertex processing, projection, rasterization and depth test) are also
performed during image rendering. Hence, we propose to integrate CD and image rendering within
the GPU pipeline hardware, so that redundant tasks are done just once. With minor hardware
extensions and minor software adaptations our technique reutilizes some intermediate results of the
rendering pipeline to perform the CD task. Some of these adaptations include allowing the software
to pass collisionable object identifiers to the GPU, selectively deferring face culling, and adding
small, specific hardware to detect face intersections based on per-fragment location and depth. We
show the benefits of RBCD in a CPU/GPU system. Although this technique introduces a small
overhead in the rendering of a frame in the GPU, both in time (below 3% on average) and energy
(3.5% on average), RBCD frees the CPU of the detection of collisions. Comparing RBCD with a
conventional CD completely executed in the CPU, we show that its execution time is reduced by
almost three orders of magnitude (600x speedup) than traditional and less-accurate approaches
that run on the CPU. Most of the CD task of our model comes for free by reusing the image
rendering intermediate results. Although not necessarily, such a dramatic time improvement may
result in better frames per second if physics simulation stays in the critical path. However, the most
important advantage of our technique is the enormous energy savings that result from eliminating a
long and costly CPU computation and converting it into a few simple operations executed by a
specialized hardware within the GPU. Our results show that the energy consumed by CD is reduced
on average by a factor of 448x (i.e., by 99.8%). These dramatic benefits are accompanied by a
higher fidelity CD analysis (i.e., with finer granularity), which improves the quality and realism of
the application.

127

CHAPTER 6. CONCLUSIONS

6.2 Future Work

In this thesis we mainly focus on 3D graphics workloads which are the most compute and
power demanding graphics applications. However, given the popularity of 2D graphics applications,
an interesting extension to the study performed with respect to the RBCD scheme presented in
this thesis could be to evaluate it with 2D graphics workloads, which would require minimum
modifications. For example, given that Face Culling would not be present in 2D graphics workloads
we would not need to detect Z-ranges overlaps anymore, thus making substantially simpler the
object overlap detection. Take into account that the ZEB buffer is still needed to support different
depth layers in the scene, but given that the notion of front and back faces would not be necessary,
the number of objects that could be stored in every position of the ZEB buffer would be halved,
thus reducing the possibility of ZEB overflows.

Likewise, the VRO scheme presented in this thesis could also be evaluated with 2D graphics
workloads without significant modifications. On the other hand, our current evaluation of VRO only
reduces a specific kind of overshading. The overshading can be differentiated in two types: intra-
object and inter-object overshading. The former is produced by auto-occlusions of an object. The
latter is the overshading caused by occlusions between different objects. Our current evaluation of
VRO only labels geometry at object-level granularity, so it is only reducing inter-object overshading.
Although there are techniques that are complementary to VRO and that effectively reduce the
intra-object overshading, we believe that VRO has still room for improving performance and energy
savings not only by combining it with one of those techniques but also making use of a more
sophisticated labeling of geometry. A clustering method would be applied over the static 3D models
of the application. Then, every object would be labeled with a primary object-ID plus a secondary
cluster-ID. Such labeling process would only be performed once. Then, minor modifications to
take into account this two level labels would allow to not only reorder the geometry at inter-object
level but also to reorder geometry at intra-object (cluster) level and, hence, potentially reduce
intra-object overshading.

Despite Khronos releasing OpenGL ES 3.0/3.1/3.2 specifications in December 2013, March
2014 and August 2015 respectively [97, 98, 99], during most of the time of this thesis there were not
available representative Android games using OpenGL ES 3.XX API. Furthermore, by the time
of doing the research studies included in this dissertation Gallium (softpipe, llvmpipe, swr) did
not include support for a huge number of features included in OpenGL ES 3.XX. We hope that
forthcoming developments on Gallium support for OpenGL ES 3.XX will allow us to include support
for them in Teapot in the future. Furthermore, with the inclusion of support for OpenGL ES 3.2 in
Teapot we could be able to study tessellation, which increases the detail of the scene at geometry
level. Tessellation is a stage of the graphics pipeline that reads primitives and creates new ones by
subdividing the input primitive into new ones that are passed to following stage of the pipeline,
the Geometry Shading stage. This subdivision of primitives may greatly increment the number
of primitives to be processed in following stages of the pipeline. Given that this subdivision is
performed before the binning stage of TBR GPUs, the cost of handling an overwhelming increment
in the number of primitives to be stored in the Parameter Buffer may offset the benefits of TBR in
terms of main memory bandwidth savings if the binning does not include significant changes. It
would be rather interesting to study how tessellation impacts TBR GPUs, as well as propose new
tessellation schemes specifically designed for such GPUs.

128

6.2. FUTURE WORK

Frame-to-frame coherence denotes the fact that successive frames are likely to be very similar
if the difference in time is small. In other fields, such as video encoding, frame coherence allows
an efficient calculation and storage of video sequences [197]. The main goal of exploiting frame
coherence is to expose redundant computations across different frames and reuse them, thus avoiding
unnecessary re-computations. Besides, by making use of spatial and temporal coherence, one can use
knowledge about previous frames to influence scheduling in order to improve energy and performance
like we do with VRO. The trend is towards a higher frame rate which just would increase the frame
coherence. In such context it is expected to have a growing number of regions of screen with the
same colors in one frame and the next. We have studied if in a TBR GPU there are unmodified
tiles relative to the corresponding tile of the previous frame. If so, we could reuse the previous
rendered colors for that tile. We have performed a short study of potential for our set of commercial
benchmarks and the results show that a significant amount of the tiles do not change from one
frame to the next. Thus, all the fragments of these tiles that are sent to the Fragment Processors
could be culled away and the frame still would be complete, so the potential of this technique is
great both in terms of performance and energy. The idea is to avoid the rendering of equal tiles
in a TBR GPU. The technique would generate a signature utilizing information of the Geometry
Pipeline and the inputs of the Fragment Processing stage. Later, in the first stage of the Raster
Pipeline, the signature of the current tile being rendered would be compared with the signature of
the tile in the previous frame. If both signatures are the same the rendering is not performed, thus
avoiding the execution of the costly Raster Pipeline for this tile.

One of the main concerns when rendering a frame is the rendering resolution. If the resolution
is low the image quality may be compromised, especially in the high-frequency areas of the image
(object borders, sudden changes in color or lighting) where image artifacts are more likely to occur.
In order to avoid some artifacts there have been proposed techniques like super-sampling (SSAA),
which consists of rendering the whole frame at a higher resolution and later perform a down-sampling.
Despite this technique may greatly improve the quality of the image, it increments the amount of
fragment shading and wastes resources when rendering low-frequency areas of the frame. Multi
Sample Anti Aliasing (MSAA) is a technique that improves the quality image reducing the high
cost of SSAA. MSAA samples the color of a pixel at the rendering resolution, but the resolution of
the depth and the color buffers is incremented, so they can store several samples per pixel. MSAA
reduces the amount of fragment shading with respect to SSAA but it stills increments the rendering
costs for low-frequency areas of the image. In order to avoid wasting resources it would be interesting
to detect low- and high-frequency areas of a frame, and use that information so that the rendering
resolution of the following frame is adjusted (incremented or decremented) conveniently depending
on the image frequency of the previous frame, so that the final image would potentially have similar
image quality but at lower cost.

129

Appendices

131

A
Visibility Rendering Order on IMR GPUs

In the chapter 4 we introduce VRO, a technique that reorders the geometry of a frame at
draw-command/object granularity that effectively reduces the work executed in the processors
of a GPU. We evaluate VRO on top of a TBR architecture. In spite of that, our proposal is
orthogonal to the type of rendering architecture and, therefore, it can also be implemented on top
of an Immediate-Mode Rendering GPU (IMR GPU). In this chapter we evaluate VRO on top of
an IMR GPU and we illustrate the usefulness of VRO using various unmodified commercial 3D
applications for which VRO achieves up to 1.32x speed-up (1.16x on average) and down to 0.79x
energy consumption (0.85x on average) over the baseline IMR GPU. Furthermore, we also compare
VRO against Z pre-pass, a popular software technique to reduce overshading.

A.1 Immediate Visibility Rendering Order

In TBR GPUs the rendering of a frame is decoupled in two main pipelines: geometry and
rasterization. The geometry pipeline performs all the geometry-related operations and sorts the
geometry of the whole frame into fixed size tiles of screen pixels. Once the geometry pipeline has
processed all the frame, the raster pipeline performs the rasterization and the fragment-related
operations tile by tile, which allows to include local on-chip memories of the tile size. Hence, reads
and writes to Color and Depth/Stencil buffers caused by overdraw are performed in these local
on-chip memories. When the rendering of a tile finishes the local buffers are flushed to main memory.
On the contrary, with IMR GPUs the corresponding primitives of a draw command are processed
through the entire graphics pipeline stages as soon as they are generated. Given that with IMR the
fragments of a draw command are not sorted in tiles they can be located at any pixel of the screen.
In such a context the accesses to Depth/Stencil and Color buffers is done through caches, which

133

APPENDIX A. VISIBILITY RENDERING ORDER ON IMR GPUS

300 Cap Forest Grav Striker Temple Air Crazy Geo.mean

0

10

20

30

40

50

60

70

80

90

100

Instructions Textures Depth Buffer Color Buffer Input Geometry

M
e

m
o

ry
 T

ra
ff

ic
 (

%
)

Figure A.1: Memory bandwidth usage on a mobile GPU for a set of commercial
Android games. On average 98.5% of the bandwidth to main memory is caused by
operations performed after rasterization.

Primitive
Assembly

Primitive
Assembly

RasterizationRasterizationFragment
Processing

Fragment
Processing

Depth
Test

Depth
Test

Edge
Inserter

Edge
Inserter

Early
Depth

Early
Depth

Visibility
Sort

Visibility
Sort

Graph
Buffer

Graph
Buffer

Visibility
Order

(Frame i+1)

Command
Processor

Command
Processor

Vertex
Processing

Vertex
Processing

Vertex
Fetcher

Vertex
Fetcher

Object-Ids

Frame i+1

Color
Buffer

Color
Buffer

Depth
Buffer

Depth
Buffer

BlendingBlending

TexturesTexturesDepth
Buffer

Depth
Buffer

Visibility Graph (Frame i)

Edges (Frame i)1

2

4

New Hardware Memory New BufferHardware

3

5

Figure A.2: Graphics pipeline including VRO.

134

A.1. IMMEDIATE VISIBILITY RENDERING ORDER

increases the off-chip memory bandwidth and wastes energy. 1.

Figure A.1 shows, for a set of commercial Android games, the memory bandwidth usage in a
mobile GPU similar to the Ultra Low Power (ULP) GPU included in NVIDIA Tegra SoC [70]. As
can be seen, most of the traffic is caused by accesses to Color Buffer, Depth Buffer and Textures.
All those accesses have in common that are performed by stages of the Graphics Pipeline that work
with fragments. This is not surprising, because the number of elements (primitives) processed in
the Geometry Processing stage is around 91 times smaller than the number of elements (fragments)
processed in following stages of the Graphics Pipeline. For example, the instructions executed in
the FPs represent around 94% of the total number of instructions executed in the GPU. Note that
the Fragment Processing stage is the most power consuming stage of the graphics pipeline [176]. As
it has been previously appointed in the introduction of Chapter 4, despite different stages of the
Graphics Pipeline cull hidden surfaces, there is still room for improvement.

IMR-VRO can be divided in two conceptual stages that operate on consecutive frames: creation
of the Visibility Graph and creation of the Visibility Rendering Order. As Figure A.2 shows, during
the rendering of frame i, the Early-depth Test is used for visibility determination purposes as usual.
Note that the comparisons performed produce ordered pairs of fragments (edges) covering the same
pixel position. These edges, as precedence relationships that indicate which objects are in front of
others, are sent to the Edge Inserter 1 . The Edge Inserter uses the edges 2 to build a Directed
Graph (Visibility Graph), which represents the depth hierarchy of the objects in frame i. Once the
depth of the objects in frame i has been completely tested, the Visibility Sort Unit traverses the
graph 3 and creates a preliminary order which, along with the list of objects in frame i+1 4 , is
employed by the Command Processor to guide the rendering of the frame i+1 5 .

A.1.1 Visibility Rendering Order Adjustments

The Command Processor receives the Visibility Rendering Order computed for the previous
frame, which is sent by the Visibility Sort unit. At this point the Visibility Rendering Order only
contains the object-ids of objects in the previous frame, and they may differ slightly from the ids of
objects in the current frame. Note that the GPU driver usually buffers at least one frame before
flushing to GPU [130, 92, 86, 90]. When all the draw commands of the new frame have been issued
by the application and buffered by the GPU driver, the list of object-ids in the new frame is known
and it is sent to the Command Processor. Therefore, like we said in Chapter 4, between the previous
frame and the current one there may be two kind of disparities. On the one hand, objects present in
the Visibility Graph but not present in the current frame. On the other hand, objects not present
in the Visibility Graph but present in the new frame. The former ones are not scheduled by the
Command Processor because they do not appear in the current frame. The latter ones must be
scheduled by the Command Processor because they do appear in the current frame to be rendered.
Since we do not have order information about those objects, we decide to schedule them after the
objects in the graph.

Note that objects with Depth test disabled or with blending enabled cannot be put at the end
of the order list because it could produce erroneous images, so these objects are scheduled in the

1Prior works point that accesses to main memory represent a large fraction of GPU energy consumption [102, 153]

135

APPENDIX A. VISIBILITY RENDERING ORDER ON IMR GPUS

same relative order as they appear in the program rendering order. VRO respects the OpenGL
standard in the sense that the result is the same as if objects were processed in program rendering
order. Fortunately, objects with depth disabled or blending enabled are commonly used by the
GUI of applications and tend to be the last objects to appear in the program rendering order, so in
practice they introduce minor constraints to the Visibility Rendering Order.

A.1.2 Visibility Rendering Order IMR GPU

Raster Unit

GPU
command

GPU
commands

Command
Processor

Command
Processor

Memory
Controller

Memory
Controller

Vertex
Fetcher

Vertex
Fetcher

L2
Cache

L2
Cache

Vertex
Cache

Vertex
Cache

Primitive
Assembly

Primitive
Assembly

RasterizerRasterizerEarly
Depth Test

Early
Depth Test

Depth
Cache

Depth
CacheColor

Cache

Color
Cache

Geometry Unit

Blending

FragmentProcessorsFragmentProcessors

Texture
Cache

Texture
Cache

ALU
Load/
Store

Vertex
Processor

Vertex
Processor

Vertex
Processor

Vertex
Processor

Raster Unit

GPU
command

GPU
commands

Command
Processor

Command
Processor

Memory
Controller

Memory
Controller

Vertex
Fetcher

Vertex
Fetcher

L2
Cache

L2
Cache

Vertex
Cache

Vertex
Cache

Primitive
Assembly

Primitive
Assembly

Color
Cache

Color
Cache

Geometry Unit

Blending

FragmentProcessorsFragmentProcessors

Texture
Cache

Texture
Cache

ALU
Load/
Store

Vertex
Processor

Vertex
Processor

Vertex
Processor

Vertex
Processor

Early DepthEarly Depth

Depth
Cache

Depth
Cache

Graph CacheGraph Cache

Edge
Inserter

Edge
Inserter

Visibility
Sort

Visibility
Sort

Edges

Edges
Filter

Edges
Filter

RasterizerRasterizer

Visibility
Order

Figure A.3: Baseline IMR GPU architecture (left) and IMR GPU architecture includ-
ing VRO (right).

As Figure A.3 shows, our technique is fully integrated in the graphics pipeline and includes
several new pieces of hardware (see Section 4.3.2): the Edge Insertion unit, the Edge Filter, the
Graph Cache and the Visibility Sort unit. Despite the following paragraphs of this section are
similar to the ones employed to introduce VRO on a TBR architecture we believe that for the sake
of clarity is better to include them.

On the one hand, the Edge Insertion for an edge is done after the comparison in the Early-depth
Test of the two fragments, which determines the order relationship among them. This is done in
parallel with the Early-depth of other fragments.

The Early-depth unit sends the edges to the Edge Inserter unit, which is responsible for storing
them in the Graph Buffer, a buffer in main memory accessed through the Graph Cache, which
contains the Visibility Graph of the frame being rendered. The edge insertions take place at fragment
granularity using the results of Early-Depth comparisons. However, since graph edges represent
object pairs there is a large amount of tests that actually produce the same edges. The Edge Filter is
a small and fast associative on-chip structure that caches the most recently inserted edges and filters
out redundant insertions to the Graph Buffer, thus avoiding unnecessary Graph Cache accesses.
Thanks to this structure, the Edge Insertion unit accesses the Graph Cache much less than once
every thousand fragments on average.

On the other hand, the Visibility Sort unit sorts the Visibility Graph and creates a preliminary
ordered list of nodes, which is sent to the Command Processor. After the adequate adjustments to

136

A.2. EXPERIMENTAL FRAMEWORK

satisfy the restrictions presented in subsection A.1.1, the Command Processor produces the final
Visibility Rendering Order. Although other schemes could be adopted we perform these operations
at the beginning of the rendering of the next frame. We have measured that on average the total
time required for this process represents around 0.06% of the execution time of the graphics pipeline,
so minimal overheads are introduced.

The Graphics Pipeline, instead of reading the draw commands in program rendering order,
reads the primitives in Visibility Rendering Order, which increases the culling effectiveness of the
Early-depth test reducing the amount of fragments that are processed in following stages of the
Graphics Pipeline.

The IMR-VRO unit has been modeled using McPAT’s components, shown between parenthesis in
the following list: Graph Cache (Cache); EQ Comparators (XOR); Muxes (MUX); Min-Comparator
(ALU); Adders (ALU); Subtractors (ALU); and registers. The area overhead of VRO is less than
1% (w.r.t. baseline).

A.2 Experimental Framework

We model not only the baseline GPU architecture, which closely resembles that of the ULP
GeForce Tegra 3 architecture, but we also model IMR-VRO on top of the baseline GPU. In our
experiments, we employ a set of benchmarks that is composed of eight different Android commercial
3D applications (see Table A.1).

Table A.1: Benchmarks.

Benchmark Alias Description

300 300 hack & slash
Air Attack Air flight arcade
Captain America Cap beat’em up
Crazy Snowboard Crazy snowboard arcade
Forest 2 Forest horror
Gravity Grav action
Striker Striker first person shooter
Temple Run Temple adventure arcade

A.3 IMR-VRO Results

Figure A.4 shows the normalized speed-up achieved by our technique with respect to the
baseline IMR GPU. As it is shown, IMR-VRO achieves up to 1.32x speed-up (Striker), and 1.17x%
on average, being the lowest speed-up 1.015x (300). Figure A.5), shows the normalized energy
consumption of IMR-VRO with respect to the baseline. As it can be observed, in the best case
(Striker) IMR-VRO consumes up to 0.79x and 0.85x on average, being 0.96x in the worst case (300).

137

APPENDIX A. VISIBILITY RENDERING ORDER ON IMR GPUS

Table A.2: GPU Simulation Parameters.

Baseline GPU Parameters

Tech Specs 400 MHz, 1 V, 32 nm
Screen Resolution 1200x768

Queues

Vertex (2x) 16 entries, 136 bytes/entry
Triangle 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry

Caches

Vertex Cache 64 bytes/line, 2-way associative, 4 KB, 1 bank,
1 cycle

Texture Caches (8x) 64 bytes/line, 2-way associative, 8 KB, 1 bank,
1 cycle

Color Cache (8x) 64 bytes/line, 2-way associative, 8 KB, 1 bank,
1 cycle

Depth Cache 64 bytes/line, 2-way associative, 4 KB, 1 bank,
1 cycle

L2 Cache 64 bytes/line, 8-way associative, 256 KB, 8 banks,
2 cycles

Non-programmable stages

Primitive assembly 1 triangle/cycle
Rasterizer 4 attributes/cycle
Early Z test 32 in-flight quad-fragments, 1 Depth Buffer

Programmable stages

Vertex Processor 4 vertex processors
Fragment Processor 8 fragment processors
Latency Main memory 50-100 cycles
Bandwidth 4 bytes/cycle (dual channel)

Extra Hardware IMR-VRO GPU

Edges Filter 32 elements, LRU, 1 cycle
Graph Cache 64 bytes/line, 4-way associative, 4 KB, 1 bank,

1 cycle
Edge Insertion 1 Edge Inserter unit
Graph Sort 1 Visibility Sort unit
Edges Queue 64 entries, 4 bytes/entry
Order Queue 64 entries, 2 bytes/entry

The speed-up and the reduction in the energy consumption are directly caused by the fact that
IMR-VRO processes the GPU commands in Visibility Rendering Order, which increases the culling
rate of the Early-Depth stage avoiding further processing of non-visible fragments. Figure A.6 shows
the energy breakdown of IMR-VRO with respect to the baseline GPU. As can be seen, most of
the energy consumption is caused by the main memory and the Fragment Processors. Figure A.7

138

A.3. IMR-VRO RESULTS

300 Cap Forest Grav Striker TempleGeo.mean

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

S
p
e
e
d
u
p

Figure A.4: Speed-up of IMR-VRO normalized to the baseline IMR GPU.

300 Cap Forest Grav Striker TempleGeo.mean

0.7

0.75

0.8

0.85

0.9

0.95

1

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Figure A.5: Energy consumption of IMR-VRO normalized to the baseline IMR GPU.

shows both the overshading and the number of instructions executed in the Fragment Processors of
IMR-VRO normalized to those of the baseline. As it can be observed the first bar closely correlates
with the speed-up and the energy consumption shown in Figures A.4 and A.5. On average, the
number of fragments that pass the Early-Depth test decrease to 0.77x, being 0.943x in the worst
case (300) and 0.64x in the best case (Striker). Likewise, the number of instructions executed in
the Fragment Processors decreases to 0.71x on average, being 0.938x in the worst case (300) and
0.54x in the best case (Forest), which is translated into significant energy savings. Note that the
first and the second bar of Figure A.7 show different reductions because the objects in a scene may
execute a different Shader Program (with different number of instructions).

139

APPENDIX A. VISIBILITY RENDERING ORDER ON IMR GPUS

Figure A.6: Energy breakdown of IMR-VRO normalized to the baseline IMR GPU.

300 Cap Forest Grav Striker Temple Geo.mean

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Overshading Instructions Fragment Processors

N
o

r
m

a
li
z
e
d

 t
o

 B
a
s
e

li
n

e

Figure A.7: Overshading and Instructions Executed in the Fragment Processors with
IMR-VRO normalized to those of the baseline IMR GPU.

Figure A.8 shows the ratio between the time savings (produced by the overshading reduction)
and the time overhead (produced by the computation of the Visibility Rendering Order) with VRO.
As can been seen, the time and energy savings of IMR-VRO far exceed the cost of producing the
Visibility Graph and the Visibility Rendering Order.

Take into account that IMR-VRO not only reduces the execution time but also reduces the
energy consumption of the system. Energy Delay Product [159] is a metric that evaluates the energy
efficiency of a system. Figure A.9 shows the Energy Delay Product (EDP) of IMR-VRO normalized
to the EDP of the baseline GPU.

As it has been previously appointed, a huge part of the traffic with main memory is produced

140

A.3. IMR-VRO RESULTS

300 Cap Forest Grav Striker Temple Geo.mean

1

10

100

1000

10000

4.47

556.65

16.25

514.87

3184.05

1490.29

215.04

V
R

O
 E

ff
ic

ie
n

c
y
 (

lo
g

.
s
c
a
le

)

Figure A.8: Ratio between the time savings and the time overhead of VRO (higher is
better).

300 Cap Forest Grav Striker Temple Geo.mean

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
o

r
m

a
li
z
e
d

 E
D

P

Figure A.9: Energy Delay Product of IMR-VRO normalized to the baseline IMR GPU
(lower than 1 is better).

300 Cap Forest Grav Striker Temple Geo.mean

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

INSTRUCTIONS TEXELS PIXELS_Z EDGES PIXEL_COLORS INPUT_GEOMETRY

N
o

rm
a

li
z
e

d
 M

e
m

o
ry

 T
ra

ff
ic

Figure A.10: Memory bandwidth usage of IMR-VRO normalized to baseline IMR
GPU.

by operations related to fragments (98.5% on average). Recall that in our experiments the Graphics
Pipeline processes around 91x more fragments than primitives. Therefore, the decrease in the

141

APPENDIX A. VISIBILITY RENDERING ORDER ON IMR GPUS

number of fragments that pass the Early-Depth test also produces a significant reduction in the
main memory traffic up to 23.5% and 15% on average (see Figure A.10). This reduction is due
to the fact that IMR-VRO reduces overshading and, hence, it also reduces main memory accesses
performed in the Fragment Processing stage of the graphics pipeline: reads/writes to Color Buffer,
writes to Depth Buffer and reads of textures among others. Figure A.11 shows stats of the caches
related to those buffers as well as the L2 cache. As can be seen the number of misses of the Color,
Depth and Texture caches is reduced in all the cases. The number of writebacks of the Color and
Depth caches is reduced too. These decrements cause a reduction in the number of misses and
writebacks of the L2 cache, which ultimately reduces the traffic with main memory.

300 Cap Forest Grav Striker Temple Geo.mean

0.4

0.5

0.6

0.7

0.8

0.9

1
Accesses Hits Misses Writebacks

C
o

lo
r
 C

a
c

h
e

300 Cap Forest Grav Striker Temple Geo.mean

0.4

0.5

0.6

0.7

0.8

0.9

1
Accesses Hits Misses Writebacks

D
e

p
th

 C
a

c
h

e

300 Cap Forest Grav Striker Temple Geo.mean

0.4

0.5

0.6

0.7

0.8

0.9

1
Accesses Hits Misses

T
e

x
tu

r
e

 C
a

c
h

e

300 Cap Forest Grav Striker Temple Geo.mean

0.4

0.5

0.6

0.7

0.8

0.9

1
Accesses Hits Misses Writebacks

L
2

 C
a

c
h

e

Figure A.11: Activity factors with IMR VRO normalized with those of the baseline
IMR GPU for Color cache (top left), Depth cache (top right), Texture Caches (bottom
left) and L2 cache (bottom right).

A.3.1 Software Z-Prepass

Z pre-pass (a.k.a Depth pre-pass) is a common software approach aimed to reduce overshading
that has gained pace in the last years and it can be considered the standard on IMR and TBR
GPUs to reduce overshading in complex games with multiple dynamic objects and costly Fragment
Shaders. Some vendors like ARM recommend to use it when setting the rendering order of the
objects is not possible because the complexity of the scene:

“For example, if you have a set of objects with computationally expensive shaders and the camera
can rotate around them freely, some objects that were at the back can move to the front. In this
case, if there is a static rendering order set for these objects, some might be drawn last, even if they
are occluded. This can also happen if an object can cover parts of itself.” [4]

142

A.3. IMR-VRO RESULTS

Z pre-pass exploits the Early-depth test by means of two rendering passes. The first pass
performs pipeline stages up to the Early-deph test, which stores the depths of the visible fragments
in the Depth Buffer. In the second pass, the full pipeline is executed and only the visible fragments
pass the Early-depth, so only visible fragments are executed in the Fragment Processors. This
technique doubles the cost of some stages of the pipeline (see Figure A.12), which is unacceptable
in many scenarios. Taking into account that even if the benefits of Z pre-pass are greater than its
cost, the extra depth pass represents a large portion of the total rendering time. For example, Z
pre-pass can be found on The Blacksmith [6], which is a cutting edge real-time demo of the last
version of Unity [21] made to show the most advanced graphics features that the game engine offers.
We have studied three different frames of Blacksmith, where Z pre-pass represents 41.4%, 29.3%
and 26.1% of the total rendering time respectively.2

G.P.G.P. Rast.Rast.
Early
Depth

Depth
Test

Depth
TestG.P.G.P. Rast.Rast.

Early
Depth F.P.F.P.

First Rendering Pass Second Rendering Pass

G.P. = Geometry Processing Rast. = Rasterization
F.P = Fragment Processing

Figure A.12: Simplified version of the Graphics Pipeline executing Z-Prepass.

300 Cap Forest Grav Striker TempleGeo.mean

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

S
p
e
e
d
u
p

Figure A.13: Speed-up of Z pre-pass normalized to the baseline IMR GPU.

Given that Z pre-pass has the same target as VRO we have conducted an experiment to measure
its effectiveness in common mobile graphics workloads. Figures A.13 and A.14 show the speedup
and energy consumption of Z pre-pass. As can be seen, Z pre-pass introduces a slowdown in all the
cases (0.82x on average). Regarding energy, in Forest 2, Gravity and Temple Run Z pre-pass reduces
the energy consumption in the GPU less than 5%, but it increases the traffic with main memory
by almost 20% (see Figure A.16), which along with the extra exeuction time, also increases the
total energy consumption in all the cases (1.28x on average). Likewise, in the other benchmarks the
increase in the main memory traffic and the execution time greatly penalize the energy consumption.

2Real hardware measures reported by Renderdoc [20] using an NVIDIA GTX 950 GPU.

143

APPENDIX A. VISIBILITY RENDERING ORDER ON IMR GPUS

300 Cap Forest Grav Striker TempleGeo.mean

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Figure A.14: Energy consumption of Z pre-pass normalized to the baseline IMR GPU.

300 Cap Forest Grav Striker Temple Geo.mean

0,5

0,7

0,9

1,1

1,3

1,5

1,7

1,9

2,1

N
o

r
m

a
li
z
e
d

 E
D

P

Figure A.15: Energy Delay Product of Z pre-pass normalized to the baseline IMR
GPU (lower than 1 is better).

300 Cap Forest Grav Striker Temple Geo.mean

0

0.2

0.4

0.6

0.8

1

1.2

1.4

INSTRUCTIONS TEXELS PIXELS_Z PIXEL_COLORS INPUT_GEOMETRY

N
o

rm
a

li
z
e

d
 M

e
m

o
ry

 T
ra

ff
ic

Figure A.16: Memory bandwidth usage of Z pre-pass normalized to baseline IMR
GPU.

144

A.3. IMR-VRO RESULTS

The normalized EDP of Z pre-pass is much worse than in the baseline in all the cases, being 1.56x on
average. According to these results, Z pre-pass would not be a suitable technique to reduce neither
execution time nor energy consumption on applications targeted for low-power GPUs because the
overhead incurred by the extra rendering pass more than offsets the time and energy savings of the
smaller fragment processing. Nevertheless, it makes sense to apply Z pre-pass in a context where
the Fragment Processing represents higher computing demands, like in consoles and desktops. Note
that the higher rendering resolution or higher computational cost per fragment processed (more
complex shaders), the more expensive the rendering in terms of fragment processing.

We have done experiments to compare VRO and Z pre-pass in a scenario with stressed fragment
processors. Given that we do not count with the source code of the benchmarks, we exacerbate
the cost of the fragment processing by reducing the number of Fragment Processors in the GPU to
just one. Doing this, the number of fragments processed per Fragment Processor is incremented
eight times. Our goal is to approximate the effects of increasing the resolution from 0.91 Megapixels
(1200*768) to 7.4 Megapixels (1200*768*8), which is a rendering resolution that represents the
89% of the 8.3 Megapixels of 4K resolution. Current consoles like XBOX One [75] and PS4 [73]
commonly render at 1920x1080 resolution (or lower) and in desktops the rendering resolution can
be 3840x2160 (4K).

300 Cap Forest Grav Striker Temple Geo.mean
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

VRO Z-Prepass

S
p
e
e
d
-u
p

Figure A.17: Speed-up of VRO and Z pre-pass normalized to the baseline IMR GPU
(one FP in all cases).

Figure A.17 shows the speedup of both VRO and Z pre-pass when executed in a GPU with just
one Fragment Processor. In all the applications but one, the performance of VRO is better than
the performance of Z pre-pass. VRO achieves 1.31x speed-up on average while Z pre-pass achieves
1.18x on average. VRO has no slowdown, whereas Z pre-pass introduces slowdown in 300. Despite
Z pre-pass achieves a higher overshading reduction than VRO the extra rendering pass of Z pre-pass
greatly penalizes its execution time. Regarding energy, VRO consumes 0.81x and Z pre-pass 1.17x.
In Gravity, Z pre-pass performs slightly better than VRO in terms of speed-up but in terms of
energy Z pre-pass is significantly worse than VRO, because Z pre-pass significantly increases the
traffic with main memory. In terms of EDP, VRO is much more efficient than Z pre-pass in all the
cases (see Figure A.19), being 0.62x on average while the EDP of Z pre-pass is 0.99x, almost equal
to the EDP of the baseline GPU.

145

APPENDIX A. VISIBILITY RENDERING ORDER ON IMR GPUS

300 Cap Forest Grav Striker Temple Geo.mean
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

VRO Z-Prepass

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

Figure A.18: Energy consumption of VRO and Z pre-pass normalized to the baseline
IMR GPU (one FP in all cases).

300 Cap Forest Grav Striker Temple Geo.mean
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

VRO Z-Prepass

N
o

r
m

a
li
z
e

d
 E

D
P

Figure A.19: Energy Delay Product of VRO and Z pre-pass normalized to the baseline
IMR GPU (lower than 1 is better, one FP in all cases).

A.4 Conclusions

This subsection presents IMR-VRO, a technique that effectively reduces overshading by culling
hidden surfaces. IMR-VRO includes a small hardware unit that stores the order relations among
the objects of a scene of the current frame in a buffer. This information is used in the next frame to
create a Visibility Rendering Order that guides the Command Processor. The hardware overhead of
this technique is minimum, requiring less than 1% of the total area of the GPU, while its latency is
vastly offset by the reduction in the execution time of the Graphics Pipeline.

For a set of unmodified commercial applications for Android, IMR-VRO outperforms state-of-
the-art techniques in performance and energy consumption by reducing the overshading without the
need of an expensive extra rendering pass to determine visibility. IMR-VRO achieves up to 1.32x
speed-up (1.16x on average) and down to 0.79x energy consumption (0.85x on average) with respect
to the baseline IMR GPU. IMR-VRO is much more efficient than Z pre-pass because most of the

146

A.4. CONCLUSIONS

computations required to create the Visibility Rendering Order are reused from the rendering of the
previous frame, while Z pre-pass requires an extra render pass that introduces significant overheads.

147

Bibliography

[1] Falanx mali 110/55 ip cores first to support latest opengl es 1.1 standard.
http://www.prnewswire.com/news-releases/falanx-mali-11055-ip-cores-first-

to-support-latest-opengl-es-11-standard-54772052.html, 2005.

[2] Designing physics algorithms for gpu architecture. game developers conference. http://www.
gdcvault.com/play/1014278/Physics-for-Game, 2011.

[3] Mobile app store downloads worldwide (2010-2016). http://www.gartner.com/newsroom/
id/2592315, 2013.

[4] Arm guide to unity enhancing your mobile games: Use depth pre-pass. http:

//infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100140_0201_00_en/

nic1434707722257.html, 2014.

[5] Movile devides shipments 2013. http://www.gartner.com/newsroom/id/2875017, 2014.

[6] The blacksmith. https://unity3d.com/es/pages/the-blacksmith, 2015.

[7] Movile devides shipments 2014. http://www.gartner.com/newsroom/id/3088221, 2015.

[8] The most used smartphone screen resolutions in 2016. https://deviceatlas.com/blog/

most-used-smartphone-screen-resolutions-in-2016, 2016.

[9] Movile devides shipments 2015. http://www.gartner.com/newsroom/id/3468817, 2016.

[10] Android platform architecture. https://developer.android.com/guide/platform/index.
html, 2017.

[11] Hardware gpu market. http://hwstats.unity3d.com/mobile/gpu.html, 2017.

[12] ios developer webpage. https://developer.apple.com/develop/, 2017.

[13] Most popular apple app store categories in march 2017. https://www.statista.com/

statistics/270291/popular-categories-in-the-app-store/, 2017.

[14] Movile devides shipments 2016. http://www.gartner.com/newsroom/id/3560517, 2017.

[15] Number of apps available in leading app stores as of march 2017. https://www.statista.
com/statistics/276623/number-of-apps-available-in-leading-app-stores/, 2017.

[16] Opengl es 1.x. https://www.khronos.org/api/opengles/1_X, 2017.

149

http://www.prnewswire.com/news-releases/falanx-mali-11055-ip-cores-first-to-support-latest-opengl-es-11-standard-54772052.html
http://www.prnewswire.com/news-releases/falanx-mali-11055-ip-cores-first-to-support-latest-opengl-es-11-standard-54772052.html
http://www.gdcvault.com/play/1014278/Physics-for-Game
http://www.gdcvault.com/play/1014278/Physics-for-Game
http://www.gartner.com/newsroom/id/2592315
http://www.gartner.com/newsroom/id/2592315
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100140_0201_00_en/nic1434707722257.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100140_0201_00_en/nic1434707722257.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100140_0201_00_en/nic1434707722257.html
http://www.gartner.com/newsroom/id/2875017
https://unity3d.com/es/pages/the-blacksmith
http://www.gartner.com/newsroom/id/3088221
https://deviceatlas.com/blog/most-used-smartphone-screen-resolutions-in-2016
https://deviceatlas.com/blog/most-used-smartphone-screen-resolutions-in-2016
http://www.gartner.com/newsroom/id/3468817
https://developer.android.com/guide/platform/index.html
https://developer.android.com/guide/platform/index.html
http://hwstats.unity3d.com/mobile/gpu.html
https://developer.apple.com/develop/
https://www.statista.com/statistics/270291/popular-categories-in-the-app-store/
https://www.statista.com/statistics/270291/popular-categories-in-the-app-store/
http://www.gartner.com/newsroom/id/3560517
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.khronos.org/api/opengles/1_X

BIBLIOGRAPHY

[17] Opengl es 3.x. https://www.khronos.org/api/opengles/3_X, 2017.

[18] Opengl es conformant products. https://www.khronos.org/conformance/adopters/

conformant-products#opengles, 2017.

[19] Operating system market share worldwide (june 2012 to june 2017). http://gs.statcounter.
com/os-market-share#monthly-201206-201706, 2017.

[20] Renderdoc. https://renderdoc.org, 2017.

[21] Unity 3d game engine. https://en.wikipedia.org/wiki/Unity_(game_engine), 2017.

[22] Unreal engine. https://docs.unrealengine.com/latest/INT/Platforms/Mobile/index.

html, 2017.

[23] Vivante vega 3d technology. http://www.vivantecorp.com/index.php/en/technology/3d.
html, 2017.

[24] Cobra 3d model by alexander bruckner. https://free3d.com/3d-model/ac-cobra-269-

83668.html, accessed August 15, 2017.

[25] Line clipping. https://en.wikipedia.org/wiki/Cohen%E2%80%93Sutherland_algorithm,
accessed August 15, 2017.

[26] Painter’s algorithm. https://en.wikipedia.org/wiki/Painter%27s_algorithm, accessed
August 15, 2017.

[27] Polygon clipping. https://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_

algorithm, accessed August 15, 2017.

[28] Z-buffer algorithm’. https://en.wikipedia.org/wiki/Z-buffering#Z-Culling, accessed
August 15, 2017.

[29] Sweep and prune. https://en.wikipedia.org/wiki/Sweep_and_prune, accessed August
29, 2017.

[30] Qualcomm snapdragon s4 (krait) performance preview. http://www.anandtech.com/

show/5559/qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-

225-benchmarks/4, accessed July 10, 2017.

[31] J.d. power ratings. smartphone battery life has become a significant drain on customer
satisfaction and loyalty. http://www.jdpower.com/press-releases/2012-us-wireless-

smartphone-and-traditional-mobile-phone-satisfaction-studies-volume, accessed
July 15, 2017.

[32] J.d. power ratings. wireless charging and fingerprint scanner technology amp up smartphone
user satisfaction, says j.d. power study. http://www.jdpower.com/press-releases/2016-
us-wireless-smartphone-satisfaction-study-volume-1, accessed July 15, 2017.

[33] Qualcomm. power performance white paper. when mobile apps use too much power. https:
//developer.qualcomm.com/software/trepn-power-profiler, accessed July 15, 2017.

150

https://www.khronos.org/api/opengles/3_X
https://www.khronos.org/conformance/adopters/conformant-products#opengles
https://www.khronos.org/conformance/adopters/conformant-products#opengles
http://gs.statcounter.com/os-market-share#monthly-201206-201706
http://gs.statcounter.com/os-market-share#monthly-201206-201706
https://renderdoc.org
https://en.wikipedia.org/wiki/Unity_(game_engine)
https://docs.unrealengine.com/latest/INT/Platforms/Mobile/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Mobile/index.html
http://www.vivantecorp.com/index.php/en/technology/3d.html
http://www.vivantecorp.com/index.php/en/technology/3d.html
https://free3d.com/3d-model/ac-cobra-269-83668.html
https://free3d.com/3d-model/ac-cobra-269-83668.html
https://en.wikipedia.org/wiki/Cohen%E2%80%93Sutherland_algorithm
https://en.wikipedia.org/wiki/Painter%27s_algorithm
https://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm
https://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm
https://en.wikipedia.org/wiki/Z-buffering#Z-Culling
https://en.wikipedia.org/wiki/Sweep_and_prune
http://www.anandtech.com/show/5559/qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks/4
http://www.anandtech.com/show/5559/qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks/4
http://www.anandtech.com/show/5559/qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks/4
http://www.jdpower.com/press-releases/2012-us-wireless-smartphone-and-traditional-mobile-phone-satisfaction-studies-volume
http://www.jdpower.com/press-releases/2012-us-wireless-smartphone-and-traditional-mobile-phone-satisfaction-studies-volume
http://www.jdpower.com/press-releases/2016-us-wireless-smartphone-satisfaction-study-volume-1
http://www.jdpower.com/press-releases/2016-us-wireless-smartphone-satisfaction-study-volume-1
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler

BIBLIOGRAPHY

[34] Snapdragon 410 processor. https://www.qualcomm.com/products/snapdragon/

processors/410, accessed July 15, 2017.

[35] Trepn power profiler. https://developer.qualcomm.com/software/trepn-power-

profiler, accessed July 15, 2017.

[36] Antutu benchmark. http://www.antutu.com/en/index.htm, accessed July, 2017.

[37] Adreno gpus. https://en.wikipedia.org/wiki/Adreno, accessed June, 2017.

[38] Adreno gpus. https://developer.qualcomm.com/software/adreno-gpu-sdk/gpu, ac-
cessed June, 2017.

[39] Apple a10. https://en.wikipedia.org/wiki/Apple_A10, accessed June, 2017.

[40] Apple a8. https://en.wikipedia.org/wiki/Apple_A8, accessed June, 2017.

[41] Apple a9. https://en.wikipedia.org/wiki/Apple_A9, accessed June, 2017.

[42] Directx. https://en.wikipedia.org/wiki/DirectX, accessed June, 2017.

[43] Flexrender. https://www.qualcomm.com/videos/flexrender, accessed June, 2017.

[44] Google play store. https://play.google.com/store, accessed June, 2017.

[45] Helio x10. http://mediatek-helio.com/x10/, accessed June, 2017.

[46] Helio x30. https://www.mediatek.com/products/smartphones/mediatek-helio-x30, ac-
cessed June, 2017.

[47] Htc one m9. https://en.wikipedia.org/wiki/HTC_One_M9, accessed June, 2017.

[48] Ipad. https://en.wikipedia.org/wiki/IPad, accessed June, 2017.

[49] Iphone 6. https://en.wikipedia.org/wiki/IPhone_6, accessed June, 2017.

[50] Iphone 7. https://en.wikipedia.org/wiki/IPhone_7, accessed June, 2017.

[51] itunes. https://itunes.apple.com/us/genre/ios/id36?mt=8, accessed June, 2017.

[52] Khronos group. https://www.khronos.org/about, accessed June, 2017.

[53] Mali 200 gpu. https://www.arm.com/products/mali-200.php, accessed June, 2017.

[54] Mali 400 mp series gpu. https://developer.arm.com/products/graphics-and-

multimedia/mali-gpus/mali-400-mp-series-gpu, accessed June, 2017.

[55] Mali graphics processing from arm. http://www.arm.com/products/graphics-and-

multimedia/mali-gpu, accessed June, 2017.

[56] Nintendo switch. https://en.wikipedia.org/wiki/Nintendo_Switch, accessed June, 2017.

[57] Opengl es. https://www.khronos.org/opengles/, accessed June, 2017.

151

https://www.qualcomm.com/products/snapdragon/processors/410
https://www.qualcomm.com/products/snapdragon/processors/410
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
http://www.antutu.com/en/index.htm
https://en.wikipedia.org/wiki/Adreno
https://developer.qualcomm.com/software/adreno-gpu-sdk/gpu
https://en.wikipedia.org/wiki/Apple_A10
https://en.wikipedia.org/wiki/Apple_A8
https://en.wikipedia.org/wiki/Apple_A9
https://en.wikipedia.org/wiki/DirectX
https://www.qualcomm.com/videos/flexrender
https://play.google.com/store
http://mediatek-helio.com/x10/
https://www.mediatek.com/products/smartphones/mediatek-helio-x30
https://en.wikipedia.org/wiki/HTC_One_M9
https://en.wikipedia.org/wiki/IPad
https://en.wikipedia.org/wiki/IPhone_6
https://en.wikipedia.org/wiki/IPhone_7
https://itunes.apple.com/us/genre/ios/id36?mt=8
https://www.khronos.org/about
https://www.arm.com/products/mali-200.php
https://developer.arm.com/products/graphics-and-multimedia/mali-gpus/mali-400-mp-series-gpu
https://developer.arm.com/products/graphics-and-multimedia/mali-gpus/mali-400-mp-series-gpu
http://www.arm.com/products/graphics-and-multimedia/mali-gpu
http://www.arm.com/products/graphics-and-multimedia/mali-gpu
https://en.wikipedia.org/wiki/Nintendo_Switch
https://www.khronos.org/opengles/

BIBLIOGRAPHY

[58] Opengl es 2.x. https://www.khronos.org/opengles/2_X/, accessed June, 2017.

[59] Opengl es overview. http://en.wikipedia.org/wiki/OpenGL_ES, accessed June, 2017.

[60] Powervr gpus. https://en.wikipedia.org/wiki/PowerVR, accessed June, 2017.

[61] Powervr gpus. https://en.wikipedia.org/wiki/PowerVR, accessed June, 2017.

[62] Psvita. https://en.wikipedia.org/wiki/PlayStation_Vita, accessed June, 2017.

[63] Samsung exynos soc. http://www.samsung.com/semiconductor/minisite/Exynos/w/, ac-
cessed June, 2017.

[64] Samsung galaxy s5. https://en.wikipedia.org/wiki/Samsung_Galaxy_S5, accessed June,
2017.

[65] Samsung galaxy s8. https://en.wikipedia.org/wiki/Samsung_Galaxy_S8, accessed June,
2017.

[66] Shield tv. https://www.nvidia.es/shield/shield-tv/, accessed June, 2017.

[67] Snapdragon 600. https://www.qualcomm.com/products/snapdragon/processors/600, ac-
cessed June, 2017.

[68] Snapdragon msm8x55. https://www.qualcomm.com/media/documents/files/snapdragon-
msm8x55-apq8055-product-brief.pdf, accessed June, 2017.

[69] Snapdragon socs. https://www.qualcomm.com/products/snapdragon, accessed June, 2017.

[70] Tegra processors. http://www.nvidia.com/object/tegra.html, accessed June, 2017.

[71] Tegra x1 white paper. http://international.download.nvidia.com/pdf/tegra/Tegra-

X1-whitepaper-v1.0.pdf, accessed June, 2017.

[72] Vega powered products. http://www.vivantecorp.com/index.php/en/products/powered-
by-vivante.html, accessed June, 2017.

[73] Playstation 4 technical specifications. https://en.wikipedia.org/wiki/PlayStation_4_

technical_specifications, accessed November 9, 2017.

[74] Qemu: the fast! processor emulator. https://www.qemu.org, accessed November 9, 2017.

[75] Xbox one. https://en.wikipedia.org/wiki/Xbox_One, accessed November 9, 2017.

[76] Common reasons users uninstall mobile apps. http://www.gummicube.com/blog/2017/08/
common-reasons-users-uninstall-mobile-apps, accessed October 16, 2017.

[77] A comprehensive survey of 3,000+ mobile app users. https://techbeacon.com/resources/
survey-mobile-app-users-report-failing-meet-user-expectations, accessed October
16, 2017.

[78] Top 12 reasons why users frequently uninstall mobile apps. https://www.linkedin.com/

pulse/top-12-reasons-why-users-frequently-uninstall-mobile-apps-fakhruddin/,
accessed October 16, 2017.

152

https://www.khronos.org/opengles/2_X/
http://en.wikipedia.org/wiki/OpenGL_ES
https://en.wikipedia.org/wiki/PowerVR
https://en.wikipedia.org/wiki/PowerVR
https://en.wikipedia.org/wiki/PlayStation_Vita
http://www.samsung.com/semiconductor/minisite/Exynos/w/
https://en.wikipedia.org/wiki/Samsung_Galaxy_S5
https://en.wikipedia.org/wiki/Samsung_Galaxy_S8
https://www.nvidia.es/shield/shield-tv/
https://www.qualcomm.com/products/snapdragon/processors/600
https://www.qualcomm.com/media/documents/files/snapdragon-msm8x55-apq8055-product-brief.pdf
https://www.qualcomm.com/media/documents/files/snapdragon-msm8x55-apq8055-product-brief.pdf
https://www.qualcomm.com/products/snapdragon
http://www.nvidia.com/object/tegra.html
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://www.vivantecorp.com/index.php/en/products/powered-by-vivante.html
http://www.vivantecorp.com/index.php/en/products/powered-by-vivante.html
https://en.wikipedia.org/wiki/PlayStation_4_technical_specifications
https://en.wikipedia.org/wiki/PlayStation_4_technical_specifications
https://www.qemu.org
https://en.wikipedia.org/wiki/Xbox_One
http://www.gummicube.com/blog/2017/08/common-reasons-users-uninstall-mobile-apps
http://www.gummicube.com/blog/2017/08/common-reasons-users-uninstall-mobile-apps
https://techbeacon.com/resources/survey-mobile-app-users-report-failing-meet-user-expectations
https://techbeacon.com/resources/survey-mobile-app-users-report-failing-meet-user-expectations
https://www.linkedin.com/pulse/top-12-reasons-why-users-frequently-uninstall-mobile-apps-fakhruddin/
https://www.linkedin.com/pulse/top-12-reasons-why-users-frequently-uninstall-mobile-apps-fakhruddin/

BIBLIOGRAPHY

[79] Why do users install and delete apps? a survey study. http://www.gonzalez-huerta.net/wp-
content/uploads/2017/06/ICSOB17.pdf, accessed October 16, 2017.

[80] Why users uninstall apps. https://software.intel.com/en-us/blogs/2013/11/14/why-

users-uninstall-apps, accessed October 16, 2017.

[81] Netflix. https://www.netflix.com, accessed October, 2017.

[82] Rasterization: a practical implementation. https://www.scratchapixel.com/lessons/3d-
basic-rendering/rasterization-practical-implementation/rasterization-stage,
accessed October, 2017.

[83] Software rasterization algorithms for filling triangles. http://www.sunshine2k.de/coding/
java/TriangleRasterization/TriangleRasterization.html, accessed October, 2017.

[84] Tg shader infrastructure. https://www.freedesktop.org/wiki/Software/gallium/tgsi-
specification.pdf, accessed October, 2017.

[85] Thermal throttling. which soc’s are the worst offenders? https://www.mobiledroid.co.uk/

blog/thermal-throttling-which-socs-are-worst/, accessed October, 2017.

[86] Amd comments on gpu stuttering. http://www.anandtech.com/show/6857/amd-

stuttering-issues-driver-roadmap-fraps/2, accessed October 29, 2016.

[87] Android studio. https://developer.android.com/studio/intro/index.html, accessed
October 29, 2016.

[88] Gallium3d. https://www.freedesktop.org/wiki/Software/gallium/, accessed October
29, 2016.

[89] Mali-400 mp: A scalable gpu for mobile devices. http://www.highperformancegraphics.

org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf, accessed October 29,
2016.

[90] The mali gpu: An abstract machine, part 1 - frame pipelining. https://community.arm.

com/groups/arm-mali-graphics/blog/2014/02/03, accessed October 29, 2016.

[91] Powervr. http://www.imgtec.com/powervr/powervr-architecture.asp, accessed October
29, 2016.

[92] Stuttering in game graphics: Detection and solutions. https://developer.nvidia.com/

sites/default/files/akamai/gameworks/CN/Stuttering_Analysis_EN.pdf, accessed Oc-
tober 29, 2016.

[93] Tegra 4 white paper. http://www.nvidia.com/docs/IO/116757/Tegra_4_GPU_

Whitepaper_FINALv2.pdf, accessed October 29, 2016.

[94] Arm cortex a9. http://arm.com/products/processors/cortex-a/cortex-a9.php, ac-
cessed September 9, 2014.

[95] Bullet projects. http://en.wikipedia.org/wiki/Bullet_%28software%29, accessed
September 9, 2014.

153

http://www.gonzalez-huerta.net/wp-content/uploads/2017/06/ICSOB17.pdf
http://www.gonzalez-huerta.net/wp-content/uploads/2017/06/ICSOB17.pdf
https://software.intel.com/en-us/blogs/2013/11/14/why-users-uninstall-apps
https://software.intel.com/en-us/blogs/2013/11/14/why-users-uninstall-apps
https://www.netflix.com
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation/rasterization-stage
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation/rasterization-stage
http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html
http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html
https://www.freedesktop.org/wiki/Software/gallium/tgsi-specification.pdf
https://www.freedesktop.org/wiki/Software/gallium/tgsi-specification.pdf
https://www.mobiledroid.co.uk/blog/thermal-throttling-which-socs-are-worst/
https://www.mobiledroid.co.uk/blog/thermal-throttling-which-socs-are-worst/
http://www.anandtech.com/show/6857/amd-stuttering-issues-driver-roadmap-fraps/2
http://www.anandtech.com/show/6857/amd-stuttering-issues-driver-roadmap-fraps/2
https://developer.android.com/studio/intro/index.html
https://www.freedesktop.org/wiki/Software/gallium/
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf
https://community.arm.com/groups/arm-mali-graphics/blog/2014/02/03
https://community.arm.com/groups/arm-mali-graphics/blog/2014/02/03
http://www.imgtec.com/powervr/powervr-architecture.asp
https://developer.nvidia.com/sites/default/files/akamai/gameworks/CN/Stuttering_Analysis_EN.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/CN/Stuttering_Analysis_EN.pdf
http://www.nvidia.com/docs/IO/116757/Tegra_4_GPU_Whitepaper_FINALv2.pdf
http://www.nvidia.com/docs/IO/116757/Tegra_4_GPU_Whitepaper_FINALv2.pdf
http://arm.com/products/processors/cortex-a/cortex-a9.php
http://en.wikipedia.org/wiki/Bullet_%28software%29

BIBLIOGRAPHY

[96] Gfxbench. https://gfxbench.com/benchmark.jsp, accessed September 9, 2017.

[97] The khronos group inc. opengl es 3.0.5 specification. https://www.khronos.org/registry/
OpenGL/specs/es/3.0/es_spec_3.0.pdf, accessed September 9, 2017.

[98] The khronos group inc. opengl es 3.1 specification. https://www.khronos.org/registry/
OpenGL/specs/es/3.1/es_spec_3.1.pdf, accessed September 9, 2017.

[99] The khronos group inc. opengl es 3.2 specification. https://www.khronos.org/registry/
OpenGL/specs/es/3.2/es_spec_3.2.pdf, accessed September 9, 2017.

[100] The khronos group inc. opengl es common profile specification version 2.0.25. http://www.
khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf, accessed September
9, 2017.

[101] The khronos group inc. opengl es common/common-lite profile specification version
1.1.12. http://www.khronos.org/registry/gles/specs/1.1/es_full_spec_1.1.12.pdf,
accessed September 9, 2017.

[102] T. Akenine-Moller and J. Strom. Graphics processing units for handhelds. Proceedings of the
IEEE, 96(5):779–789, May 2008.

[103] T. Akenine-Moller and J. Strom. Graphics processing units for handhelds. Proc. of the IEEE,
96(5):779–789, May 2008.

[104] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time Rendering 3rd Edition.
A. K. Peters, Ltd., Natick, MA, USA, 2008.

[105] Tomas Akenine-Möller and Jacob Ström. Graphics for the masses: A hardware rasterization
architecture for mobile phones. ACM Trans. Graph., 22(3):801–808, July 2003.

[106] I. Antochi. Suitability of Tile-based Rendering for Low-power 3d Graphics Accelerators.
Universitatea Politehnica Bucureşti, 2007.

[107] Sigal Ar, Bernard Chazelle, and Ayellet Tal. Self-customized bsp trees for collision detection.
Comput. Geom. Theory Appl., 15(1-3):91–102, February 2000.

[108] J. Arnau. Energy-Efficient Mobile GPU Systems. PhD thesis, Universitat Politècnica de
Catalunya, Apr 2015.

[109] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis. Boosting mobile gpu performance with a
decoupled access/execute fragment processor. In Comp. Archit. (ISCA), 2012 39th Annual
Int. Symp. on, pages 84–93, June 2012.

[110] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. Parallel frame rendering:
Trading responsiveness for energy on a mobile gpu. In Proceedings of the 22Nd International
Conference on Parallel Architectures and Compilation Techniques, PACT ’13, pages 83–92,
Piscataway, NJ, USA, 2013. IEEE Press.

154

https://gfxbench.com/benchmark.jsp
https://www.khronos.org/registry/OpenGL/specs/es/3.0/es_spec_3.0.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.0/es_spec_3.0.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.1/es_spec_3.1.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.1/es_spec_3.1.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/1.1/es_full_spec_1.1.12.pdf

BIBLIOGRAPHY

[111] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. Teapot: A toolset for
evaluating performance, power and image quality on mobile graphics systems. In Proc. of the
27th Int. ACM Conf. on Int. Conf. on Supercomputing, ICS ’13, pages 37–46, New York, NY,
USA, 2013. ACM.

[112] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. Eliminating redundant
fragment shader executions on a mobile gpu via hardware memoization. In Proceeding of the
41st Annual International Symposium on Computer Architecuture, ISCA ’14, pages 529–540,
Piscataway, NJ, USA, 2014. IEEE Press.

[113] G. Baciu and Wingo Sai-Keung Wong. Rendering in object interference detection on con-
ventional graphics workstations. In Proc. of the 5th Pacific Conf. on Comp. Graphics and
Applications, PG ’97, pages 51–, Washington, DC, USA, 1997. IEEE Comp. Society.

[114] George Baciu and Wingo S. K. Wong. Image-based techniques in a hybrid collision detector.
IEEE Transactions on Visualization and Comp. Graphics, 9(2):254–271, April 2003.

[115] George Baciu and WingoSai-Keung Wong. Image-based collision detection. In DavidD. Zhang,
Mohamed Kamel, and George Baciu, editors, Integrated Image and Graphics Technologies,
volume 762 of The Int. Series in Engineering and Comp. Science, pages 75–94. Springer US,
2004.

[116] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. Analyzing cuda work-
loads using a detailed gpu simulator. In 2009 IEEE International Symposium on Performance
Analysis of Systems and Software, pages 163–174, April 2009.

[117] Dirk Bartz, Michael Meißner, and Tobias Hüttner. Opengl-assisted occlusion culling for large
polygonal models, 1999.

[118] Jiri Bittner, Michael Wimmer, Harald Piringer, and Werner Purgathofer. Coherent Hierarchical
Culling: Hardware Occlusion Queries Made Useful. Computer Graphics Forum, 2004.

[119] Pierre Charbit, Stéphan Thomassé, and Anders Yeo. The minimum feedback arc set problem
is np-hard for tournaments. Comb. Probab. Comput., 16(1):1–4, January 2007.

[120] Niladrish Chatterjee, Mike O’Connor, Donghyuk Lee, Daniel R. Johnson, Stephen W. Keckler,
Minsoo Rhu, and William J. Dally. Architecting an energy-efficient dram system for gpus. In
23rd International Symposium on Higher Performance Computer Architecture, HPCA, 2017.

[121] Wei Chen, Huagen Wan, Hongxin Zhang, Hujun Bao, and Qunsheng Peng. Interactive collision
detection for complex and deformable models using programmable graphics hardware. In
Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST ’04,
pages 10–15, New York, NY, USA, 2004. ACM.

[122] Xiang Chen, Yiran Chen, Zhan Ma, and Felix C. A. Fernandes. How is energy consumed in
smartphone display applications? In Proceedings of the 14th Workshop on Mobile Computing
Systems and Applications, HotMobile ’13, pages 3:1–3:6, New York, NY, USA, 2013. ACM.

[123] Slo-Li Chu, Chih-Chieh Hsiao, and Chiu-Cheng Hsieh. An energy-efficient unified register file
for mobile gpus. In Embedded and Ubiquitous Computing (EUC), 2011 IFIP 9th Int. Conf.
on, pages 166–173, Oct 2011.

155

BIBLIOGRAPHY

[124] Petrik Clarberg, Robert Toth, and Jacob Munkberg. A sort-based deferred shading architecture
for decoupled sampling. ACM Trans. Graph., 32(4):141:1–141:10, July 2013.

[125] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand. A survey of visibility for
walkthrough applications. IEEE Transactions on Visualization and Computer Graphics,
9(3):412–431, July 2003.

[126] S. Collange, M. Daumas, D. Defour, and D. Parello. Barra: A parallel functional simulator
for gpgpu. In 2010 IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, pages 351–360, Aug 2010.

[127] Qt Community. Threads Events QObjects. https://wiki.qt.io/Threads_Events_

QObjects, 2015. [Online; accessed 10-August-2017].

[128] Shane Cook. CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2013.

[129] E. Coumans. Bullet physics library. https://code.google.com/p/bullet/downloads/list,
2013.

[130] Patrick Cozzi and Christophe Riccio. OpenGL Insights pp. 396, 417, 494. CRC Press, July
2012. http://www.openglinsights.com/.

[131] Enrique de Lucas, Pedro Marcuello, Joan-Manuel Parcerisa, and Antonio González. Ultra-
low power render-based collision detection for cpu/gpu systems. In Proceedings of the 48th
International Symposium on Microarchitecture, MICRO-48, pages 445–456, New York, NY,
USA, 2015. ACM.

[132] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and Neil Hunt. The triangle
processor and normal vector shader: A vlsi system for high performance graphics. SIGGRAPH
Comput. Graph., 22(4):21–30, June 1988.

[133] V. M. del Barrio, C. Gonzalez, J. Roca, A. Fernandez, and Espasa E. Attila: a cycle-
level execution-driven simulator for modern gpu architectures. In 2006 IEEE International
Symposium on Performance Analysis of Systems and Software, pages 231–241, March 2006.

[134] Peng Du, Elvis S. Liu, and Toyotaro Suzumura. Parallel continuous collision detection for
high-performance gpu cluster. In Proceedings of the 21st ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, I3D ’17, pages 4:1–4:7, New York, NY, USA, 2017. ACM.

[135] Christer Ericson. Real-Time Collision Detection (The Morgan Kaufmann Series in Interactive
3-D Technology) (The Morgan Kaufmann Series in Interactive 3D Technology). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[136] WenShan Fan, Bin Wang, Jean-Claude Paul, and JiaGuang Sun. An octree-based proxy
for collision detection in large-scale particle systems. Science China Information Sciences,
56(1):1–10, Jan 2013.

[137] Kayvon Fatahalian, Solomon Boulos, James Hegarty, Kurt Akeley, William R. Mark, Henry
Moreton, and Pat Hanrahan. Reducing shading on gpus using quad-fragment merging. ACM
Trans. Graph., 29(4):67:1–67:8, July 2010.

156

https://wiki.qt.io/Threads_Events_QObjects
https://wiki.qt.io/Threads_Events_QObjects
https://code.google.com/p/bullet/downloads/list
http://www.openglinsights.com/

BIBLIOGRAPHY

[138] François Faure, Sébastien Barbier, Jérémie Allard, and Florent Falipou. Image-based collision
detection and response between arbitrary volume objects. In Proc. of the 2008 ACM SIG-
GRAPH/Eurographics Symp. on Comp. Animation, SCA ’08, pages 155–162, Aire-la-Ville,
Switzerland, Switzerland, 2008. Eurographics Association.

[139] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp formation and
scheduling for efficient gpu control flow. In 40th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 2007), pages 407–420, Dec 2007.

[140] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A fast procedure for computing the distance
between complex objects in three-dimensional space. Robotics and Automation, IEEE Journal
of, 4(2):193–203, Apr 1988.

[141] Naga K. Govindaraju, Michael Henson, Ming C. Lin, and Dinesh Manocha. Interactive
visibility ordering and transparency computations among geometric primitives in complex
environments. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games,
I3D ’05, pages 49–56, New York, NY, USA, 2005. ACM.

[142] Naga K. Govindaraju, Stephane Redon, Ming C. Lin, and Dinesh Manocha. Cullide: Interactive
collision detection between complex models in large environments using graphics hardware.
In ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, New York, NY, USA, 2005. ACM.

[143] N.K. Govindaraju, M.C. Lin, and D. Manocha. Fast and reliable collision culling using graphics
hardware. Visualization and Comp. Graphics, IEEE Transactions on, 12(2):143–154, March
2006.

[144] Jason Gregory. Game Engine Architecture, Second Edition. A. K. Peters, Ltd., Natick, MA,
USA, 2nd edition, 2014.

[145] Eric Haines and Steven Worley. Fast, low memory z-buffering when performing medium-quality
rendering. J. Graph. Tools, 1(3):1–6, February 1996.

[146] Songfang Han and Pedro V. Sander. Triangle reordering for reduced overdraw in animated
scenes. In Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, I3D ’16, pages 23–27, New York, NY, USA, 2016. ACM.

[147] Tianyi David Han and Tarek S. Abdelrahman. Reducing branch divergence in gpu programs.
In Proceedings of the Fourth Workshop on General Purpose Processing on Graphics Processing
Units, GPGPU-4, pages 3:1–3:8, New York, NY, USA, 2011. ACM.

[148] Jon Hasselgren and Tomas Akenine-Möller. Efficient depth buffer compression. In Proc. of
the 21st ACM SIGGRAPH/EUROGRAPHICS Symp. on Graphics Hardware, GH ’06, pages
103–110, New York, NY, USA, 2006. ACM.

[149] Liang He, Ricardo Ortiz, Andinet Enquobahrie, and Dinesh Manocha. Interactive continuous
collision detection for topology changing models using dynamic clustering. In Proceedings of
the 19th Symposium on Interactive 3D Graphics and Games, i3D ’15, pages 47–54, New York,
NY, USA, 2015. ACM.

157

BIBLIOGRAPHY

[150] Songtao He, Yunxin Liu, and Hucheng Zhou. Optimizing smartphone power consumption
through dynamic resolution scaling. In Proceedings of the 21st Annual International Conference
on Mobile Computing and Networking, MobiCom ’15, pages 27–39, New York, NY, USA, 2015.
ACM.

[151] Bruno Heidelberger, Matthias Teschner, and Markus H. Gross. Real-time volumetric intersec-
tions of deforming objects. In Proc. of the Vision, Modeling, and Visualization Conf. 2003
(VMV 2003), München, Germany, November 19-21, 2003, pages 461–468, 2003.

[152] Bruno Heidelberger, Matthias Teschner, and Markus H. Gross. Detection of collisions and
self-collisions using image-space techniques. In The 12-th Int. Conf. in Central Europe on
Comp. Graphics, Visualization and Comp. Vision’2004, pages 145–152, 2004.

[153] Sunpyo Hong and Hyesoon Kim. An integrated gpu power and performance model. In
Proceedings of the 37th Annual International Symposium on Computer Architecture, ISCA
’10, pages 280–289, New York, NY, USA, 2010. ACM.

[154] Pablo Jimenez, Federico Thomas, and Carme Torras. 3d collision detection: A survey.
25:269–285, 04 2001.

[155] B. Juurlink, I. Antochi, D. Crisu, S. Cotofana, and S. Vassiliadis. Graal: A framework for
low-power 3d graphics accelerators. IEEE Computer Graphics and Applications, 28(4):63–73,
July 2008.

[156] A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562, November
1962.

[157] Dave Knott and Dinesh K. Pai. Cinder: Collision and interference detection in real-time using
graphics hardware, 2003.

[158] S. Kockara, T. Halic, K. Iqbal, C. Bayrak, and R. Rowe. Collision detection: A survey. In
Systems, Man and Cybernetics, 2007. ISIC. IEEE Int. Conf. on, pages 4046–4051, Oct 2007.

[159] James H. Laros III, Kevin Pedretti, Suzanne M. Kelly, Wei Shu, Kurt Ferreira, John Vandyke,
and Courtenay Vaughan. Energy Delay Product, pages 51–55. Springer London, London, 2013.

[160] Orion Sky Lawlor and Laxmikant V. Kalée. A voxel-based parallel collision detection algorithm.
In Proceedings of the 16th International Conference on Supercomputing, ICS ’02, pages 285–293,
New York, NY, USA, 2002. ACM.

[161] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D.
Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund,
Ronak Singhal, and Pradeep Dubey. Debunking the 100x gpu vs. cpu myth: An evaluation of
throughput computing on cpu and gpu. In Proc. of the 37th Annual Int. Symp. on Comp.
Archit., ISCA ’10, pages 451–460, New York, NY, USA, 2010. ACM.

[162] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M.
Aamodt, and Vijay Janapa Reddi. Gpuwattch: Enabling energy optimizations in gpgpus.
SIGARCH Comput. Archit. News, 41(3):487–498, June 2013.

158

BIBLIOGRAPHY

[163] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P.
Jouppi. The mcpat framework for multicore and manycore archit.s: Simultaneously modeling
power, area, and timing. ACM Trans. Archit. Code Optim., 10(1):5:1–5:29, April 2013.

[164] Gábor Liktor and Carsten Dachsbacher. Decoupled deferred shading for hardware rasterization.
In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
I3D ’12, pages 143–150, New York, NY, USA, 2012. ACM.

[165] Jieun Lim, Nagesh B. Lakshminarayana, Hyesoon Kim, William Song, Sudhakar Yalamanchili,
and Wonyong Sung. Power modeling for gpu architectures using mcpat. ACM Trans. Des.
Autom. Electron. Syst., 19(3):26:1–26:24, June 2014.

[166] Steve Marschner and Peter Shirley. Fundamentals of Computer Graphics, Fourth Edition. A.
K. Peters, Ltd., Natick, MA, USA, 4th edition, 2016.

[167] Microsoft. Primitive Topologies. https://msdn.microsoft.com/en-us/library/windows/
desktop/bb205124(v=vs.85).aspx#Primitive_Types, 2017. [Online; accessed 11-August-
2017].

[168] Bren Mochocki, Kanishka Lahiri, and Srihari Cadambi. Power analysis of mobile 3d graphics.
In Proc. of the Conf. on Design, Automation and Test in Europe: Proc., DATE ’06, pages
502–507, 3001 Leuven, Belgium, Belgium, 2006. European Design and Automation Association.

[169] Victor Moya, Carlos Gonzalez, Jordi Roca, Agustin Fernandez, and Roger Espasa. Shader
performance analysis on a modern gpu architecture. In Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 38, pages 355–364,
Washington, DC, USA, 2005. IEEE Computer Society.

[170] Karol Myszkowski, OlegG. Okunev, and TosiyasuL. Kunii. Fast collision detection between
complex solids using rasterizing graphics hardware. The Visual Comp., 11(9):497–511, 1995.

[171] Diego Nehab, Joshua Barczak, and Pedro V. Sander. Triangle order optimization for graphics
hardware computation culling. In Proceedings of the 2006 Symposium on Interactive 3D
Graphics and Games, I3D ’06, pages 207–211, New York, NY, USA, 2006. ACM.

[172] Thomas J. Olson. Hardware 3d graphics acceleration for mobile devices. In 2008 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 5344–5347, March
2008.

[173] A. Patel, F. Afram, Shunfei Chen, and K. Ghose. Marss: A full system simulator for multicore
x86 cpus. In Design Automation Conf. (DAC), 2011 48th ACM/EDAC/IEEE, pages 1050–1055,
June 2011.

[174] Shruti Patil, Yeseong Kim, Kunal Korgaonkar, Ibrahim Awwal, and Tajana S. Rosing.
Characterization of User’s Behavior Variations for Design of Replayable Mobile Workloads,
pages 51–70. Springer International Publishing, Cham, 2015.

[175] Kévin Perrot and Trung Van Pham. Feedback arc set problem and np-hardness of minimum re-
current configuration problem of chip-firing game on directed graphs. Annals of Combinatorics,
19(2):373–396, 2015.

159

https://msdn.microsoft.com/en-us/library/windows/desktop/bb205124(v=vs.85).aspx#Primitive_Types
https://msdn.microsoft.com/en-us/library/windows/desktop/bb205124(v=vs.85).aspx#Primitive_Types

BIBLIOGRAPHY

[176] J. Pool. Energy-Precision Tradeoffs in the Graphics Pipeline. dissertation, The University of
North Caroline at Chapel Hill, 2012.

[177] J. Pool, A. Lastra, and M. Singh. An energy model for graphics processing units. In 2010
IEEE International Conference on Computer Design, pages 409–416, Oct 2010.

[178] Alok Prakash, Hussam Amrouch, Shafique Muhammad, Tulika Mitra, and JÃ¶rg Henkel.
Improving mobile gaming performance through cooperative cpu-gpu thermal management, 06
2016.

[179] Jonathan Ragan-Kelley, Jaakko Lehtinen, Jiawen Chen, Michael Doggett, and Frédo Durand.
Decoupled sampling for graphics pipelines. ACM Trans. Graph., 30(3):17:1–17:17, May 2011.

[180] Jim Rasmusson, Jon Hasselgren, and Tomas Akenine-Möller. Exact and error-bounded
approximate color buffer compression and decompression. In Proc. of the 22Nd ACM SIG-
GRAPH/EUROGRAPHICS Symp. on Graphics Hardware, GH ’07, pages 41–48, Aire-la-Ville,
Switzerland, Switzerland, 2007. Eurographics Association.

[181] R.Nystrom. Game programming patterns, sequencing patterns: Game loop. http:

//gameprogrammingpatterns.com/game-loop.html, 2014.

[182] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle accurate memory system
simulator. IEEE Computer Architecture Letters, 10(1):16–19, Jan 2011.

[183] Jarek Rossignac, Abe Megahed, and Bengt olaf Schneider. Interactive inspection of solids:
cross-sections and interferences. In In Proc. of ACM Siggraph, pages 353–360, 1992.

[184] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-d shapes. SIGGRAPH
Comput. Graph., 24(4):197–206, September 1990.

[185] Pedro V. Sander, Diego Nehab, and Joshua Barczak. Fast triangle reordering for vertex
locality and reduced overdraw. In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, New
York, NY, USA, 2007. ACM.

[186] Rahul Sathe and Tomas Akenine-MÃ¶ller. Pixel Merge Unit. In B. Bickel and T. Ritschel,
editors, EG 2015 - Short Papers. The Eurographics Association, 2015.

[187] Dean Sekulic. Efficient occlusion culling. In Nvidia, editor, GPU Gems, pages 487–503. 2004.

[188] J. W. Sheaffer, D. Luebke, and K. Skadron. A flexible simulation framework for graphics
architectures. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, HWWS ’04, pages 85–94, New York, NY, USA, 2004. ACM.

[189] Mikio Shinya and Marie-Claire Forgue. Interference detection through rasterization. The
Journal of Visualization and Comp. Animation, 2(4):132–134, 1991.

[190] Edvard SØrg̊ard. Graphics clusters. Graphics Hardware, 2004.

[191] S. Sowerby and B. Lipchak. Ext debug marker. https://www.khronos.org/registry/gles/
extensions/EXT/EXT_debug_marker.txt, 2013.

160

http://gameprogrammingpatterns.com/game-loop.html
http://gameprogrammingpatterns.com/game-loop.html
https://www.khronos.org/registry/gles/extensions/EXT/EXT_debug_marker.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_debug_marker.txt

BIBLIOGRAPHY

[192] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming standard
for heterogeneous computing systems. IEEE Des. Test, 12(3):66–73, May 2010.

[193] Rafael Ubal, Julio Sahuquillo, Salvador Petit, and Pedro López. Multi2sim: A simulation
framework to evaluate multicore-multithreaded processors. In 19th Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD 2007), pages 62–68, 2007.

[194] Gino van den Bergen, Gino Van, and Den Bergen. A fast and robust gjk implementation for
collision detection of convex objects, 1999.

[195] Guy R. Wagner and William Maltz. Too hot to hold: Determining the cooling limits for
handheld devices. In Advancements in Thermal Management 2013, 2013.

[196] Ren Weller. New Geometric Data Structures for Collision Detection and Haptics. Springer
Publishing Company, Incorporated, 2013.

[197] Andrew Wilson, Ketan Mayer-Patel, and Dinesh Manocha. Spatially-encoded far-field rep-
resentations for interactive walkthroughs. In Proc. of ACM Multimedia, pages 348–357,
2001.

[198] Huai Yu Wang and S Liu. A collision detection algorithm using aabb and octree space division.
989-994:2389–2392, 07 2014.

[199] Hui Zeng, Matt Yourst, Kanad Ghose, and Dmitry Ponomarev. Mptlsim: A cycle-accurate,
full-system simulator for x86-64 multicore architectures with coherent caches. SIGARCH
Comput. Archit. News, 37(2):2–9, July 2009.

161

	Introduction
	Current Trends
	Real Time Mobile Graphics Software
	Mobile Graphics Hardware

	Problem Statement
	Major Energy Consumers
	Major GPU Energy Consumers
	Occlusion Culling
	Collision Detection

	State of the art
	Reduction of Redundant Fragment Shading
	Collision Detection

	Thesis Overview and Contributions
	Visibility Rendering Order
	Render Based Collision Detection
	Other contributions

	Background
	Graphics Rendering Pipeline
	Application Stage
	Geometry Stage
	Rasterization

	GPU Microarchitecture:
	Immediate Mode Rendering
	Tile Based Rendering

	Methodology
	Simulators
	GPU Simulation
	Collision Detection CPU Simulation with Marss86 and Bullet

	Benchmarks
	Benchmarks Set
	Benchmarks Characterization

	Visibility Rendering Order: Improving Energy Efficiency on Mobile GPUs through Frame Coherence
	Visibility Determination and Overshading
	Visibility Rendering Order
	Overview
	Graph Generation
	Sort Algorithm
	Heuristics to Sort the Objects in a Scene
	Partial Order of Objects
	Visibility Rendering Order Adjustments

	Microarchitecture
	Deferred Rendering TBR GPU
	Visibility Rendering Order TBR GPU

	Experimental Framework
	GPU Simulation

	Experimental Results
	Effectiveness of VRO
	Overshading with Different Heuristics to Break Graph Cycles

	Conclusion

	Render-Based Collision Detection for CPU/GPU Systems
	Collision Detection
	Image Based Collision Detection
	Enabling RBCD in the GPU

	Microarchitecture
	RBCD Overview
	Identification of Collisionable Objects
	Deferred Face Culling
	Insertion into the Z-depth Extended Buffer
	Z-Overlap Test
	Animation Loop
	Power model of the RBCD unit
	CPU Collision Detection Simulation

	Experimental Results
	Performance and Energy Consumption Benefits
	GPU Overheads
	Sensitivity to ZEB List Length

	Conclusions

	Conclusions
	 Conclusions
	Future Work

	Appendices
	Visibility Rendering Order on IMR GPUs
	Immediate Visibility Rendering Order
	Visibility Rendering Order Adjustments
	Visibility Rendering Order IMR GPU

	Experimental Framework
	IMR-VRO Results
	Software Z-Prepass

	Conclusions

