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Abstract  
 
 
Behavioral measurements have long been considered a potential means to uncover 
underlying neural and molecular processes. However, limitations in the classical 
methods to study behavior have impeded progress in this field and have put the 
reproducibility and translational power of the results in question. A main problem is that 
stand-alone tests, due their reliance on pre-selected variables, reduce the complexity of 
the behavioral responses and do not capture their temporal dimension. Recently, 
technological improvements have made it possible to develop novel automated methods 
for the high-throughput screening of behavior. These methods make it possible to record 
fine-grained longitudinal behaviors in a systematic manner. Although this wealth of data 
presents a great opportunity to uncover the connections between behavior and the 
nervous system both in health and disease, the huge amount of data generated confronts 
biologists with a ‘Big Data’ problem that requires a new generation of data mining tools 
to be developed and deployed. Such tools involve integration of very diverse data 
sources, complex correlation analyses and multidimensional visualizations. In this 
thesis, I have developed novel tools for the exploration, integration and comprehensive 
analysis of high-throughput behavioral data. These tools, combined in a new software 
suite, “Pergola”, take advantage of existing genomic data standards developed to store 
and manipulate continuous data and their associated meta-data. I also explored 
multidimensional analysis techniques to help reducing the huge spatio-temporal 
dimensionality derived from behavioral recordings, and the high variability associated 
to all behavioral paradigms. Classical single-variate measures are insufficient in 
detecting the variance that explains the behavioral domain we wish to understand. This 
problem is addressed adapting Principal Component Analysis (PCA) for statistical 
inference on complex behaviors such as the recognition of learning strategies. 
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Resum  
 
La mesura del comportament s'ha considerat una eina per a descobrir els processos 
neuronal i moleculars subjacents. Malgrat això, les limitacions dels mètodes clàssics per 
a estudiar el comportament han impedit el progrés en aquest camp, i han posat en dubte 
la reproductibilitat dels resultats. Els principals problemes són que els test simples 
redueixen la complexitat de les respostes de comportament i no capten la dimensió 
temporal de la conducta perquè es basen en variables preseleccionades. Recentment, les 
millores tecnològiques han fet que esdevingui possible desenvolupar nous mètodes per a 
l’enregistrament d'alt rendiment i automatitzat del comportament. Aquests mètodes fan 
possible l’enregistrement de comportaments longitudinals detallats d'una manera 
sistemàtica. Tot i que la aquesta riquesa de dades presenta una gran oportunitat per a 
descobrir les connexions entre el comportament i el sistema nerviós tant en individus 
sans com malalts, l'enorme quantitat de dades que generen aquests sistemes confronta 
als biòlegs amb el problema del 'Big Data', que requereix el desenvolupament d’una 
nova generació d'eines de mineria de dades. Aquestes eines han d’involucrar la 
integració de dades de divers origen, l’anàlisi de correlacions complexes i 
la visualització multidimensional. En aquesta tesi, he desenvolupat noves eines per a 
l'exploració, la integració i l'anàlisi exhaustiva de les dades de comportament procedents 
de sistemes d'alt rendiment. Aquestes eines, combinades en un nou conjunt de 
programari, "Pergola", s'aprofiten de formats estandards per a dades genòmiques pre-
existents i que van ser desenvolupats per emmagatzemar i manipular dades continues 
acompanyades de les seves meta-dades. També he explorat tècniques d'anàlisi 
multidimensionals per ajudar a reduir l'enorme dimensió espai-temporal derivada dels 
enregistraments de comportament, i l'alta variabilitat associada a tots els paradigmes de 
comportament. Les mesures clàssiques d'una sola variable no són suficients per a 
detectar la variància que pot explicar un domini conductual d’interés. He adreçat aquest 
problema mitjançant l'Anàlisi de Components Principals (PCA) per la inferéncia 
estadística de comportaments complexos com per exemple, el reconeixement de les 
estratègies d'aprenentatge. 
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Preface 
 
The study of behavior has been a longstanding question in neuroscience, since to 
understand brain function, it is not enough to uncover the molecular and physiological 
mechanisms taking place in the brain but we also need to contextualize and elucidate 
their relationship with the behavioral responses they encode. Moreover, from the 
clinical point of view, behavioral change is the only relevant outcome for diagnosing, 
treating and monitoring mental or neurological disorders. 
 

The study of behavior, however, is not trivial. If we analyze its structure, it immediately 
becomes clear that behavior is a very complex, multidimensional process unfolding in 
multiple spatiotemporal scales, which cannot be accounted for using traditional stand-
alone tests. Over the last ten years, a new generation of devices has made it feasible to 
acquire continuous recordings of behavior, following several animals during long time 
series. This revolution in technology allows for the high-throughput screening of 
behavior, which will lead to many opportunities for brain research, but will also pose 
challenges for the effective computational modeling of these data.  
 

It is this precise problem what I have addressed in this thesis, by developing new 
methods for the visualization, integration and analysis of longitudinal behavioral 
recordings. The work presented here explores some new methods to visualize, handle 
and analyze critical aspects of behavior. This is well aligned with the interests of the 
Cellular and Systems Neurobiology Group at the Center for Genomic Regulation led by 
Mara Dierssen, who have been long interested in unraveling the dynamics of the 
development of disorders related to altered brain function. A main line of research of 
the group has been to understand disease as a complex phenotype with multiple 
behavioral manifestations. In this respect, classical behavioral studies are limited in 
terms of their temporal resolution and their oversimplified approach to tackling a 
multidimensional biological question. 
  
The Comparative Bioinformatics Group, also at the Center for Genomic Regulation and 
headed by Cedric Notredame, has developed widely used bioinformatics tools mainly in 
the framework of multiple sequence analysis. However, we have also been interested in 
other types of sequences: temporal sequences analysis of different processes. In this 
regard, Cedric has collaborated with groups from the field of sociology to apply 
methods commonly used for the analysis of biological sequences in the modeling of life 
trajectories.  
 

My work has taken an original approach: Capitalizing on the strong similarities between 
biological genomic sequences and longitudinal recordings, in which a given system can 
evolve across a discrete number of states over time, we decided to take advantage of 
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already existing genomic tools. The hypothesis was that longitudinal behavioral 
recordings can be expressed as sequences and can be dealt with accordingly. In the 
work associated with this thesis, we went one step further and decided to tap into the 
wealth of genome analysis tools developed for large-scale sequencing. Taking 
advantage of the strong conceptual analogy between high throughput sequences and 
automatically recorded behaviors, we have shown that existing genomic tools provide a 
natural standard for the storage, the visualization and the analysis of behavioral data. 
Moreover, in a multidisciplinary framework, my thesis aimed to provide the tools for 
studying neural disorders in an integrative manner taking into account all the possible 
factors influencing its development along time. Readouts resulting from the study of 
such complex processes as behavior are largely accompanied by noisy signals. 
Therefore, we have tried also to solve this question by using multidimensional 
approaches and in this way prioritize which parts of a complex, multidimensional signal 
could explain the behavioral phenotypes observed. The tools developed in this thesis 
should also help to provide new ideas to the field of behavioral neuroscience by offering 
a framework to adopt good practices in terms of computational reproducibility and 
replicability and improving data comparison and sharing between studies. 
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1. INTRODUCTION 

1.1 Behavior as a way to understand the nervous system 
and brain function 

1.1.1. Why do we study behavior? 
 
Behavior has been defined as the “observable activity of an organism; anything an 
organism does that involves action and/or response to stimulation" (Wallace, Sanders, 
and Ferl 1991). Behavioral responses involve a coordinated pattern of sensory-motor 
and associative neural activity (Beck et al. 1981), functions that are under the direct 
control of the nervous system and especially the brain (Anderson and Perona 2014). 
Behavior refers to all the actions that organisms perform innately, but also those shaped 
to adapt to a changing environment in the broadest sense of the word (Mery and Burns 
2009). Some of them can be genetically hardwired and thus constitute evolutionary 
species-dependent traits that are already observed in the neonate (Roubertoux et al. 
1996; Suh et al. 2004). However, organisms have also the ability to vary their 
behavioral patterns in response to environmental changes, a property called behavioral 
plasticity (Sugi, Nishida, and Mori 2011). Adaptation, learning, or memory leading to 
changes in adult behavior, are among experience-dependent behavioral plasticity 
changes. As an example of behavioral modifications induced by environmental factors 
through integration of sensory input we can take the case of Drosophila larvae 
chemotaxis (Davies, Louis, and Webb 2015). This behavioral plasticity involves a large 
spectrum of behavioral mechanisms and properties that are dependent on many 
physiological patterns, and is usually associated with neuronal plasticity, although it 
may also include other changes.  
 
We can discriminate two types of behavioral responses: innate behavioral responses and 
learned behaviors (Mazur 2015). The former consists of all the behavioral responses 
that have been selected through evolution to respond to environmental challenges and 
are selected at a population level over many generations. Hence, a behavior is innate, 
genetically determined when an animal can display it without learning due to the “hard-
wiring” of the nervous system (Breed and Sanchez 2010). Genetic determinants 
constitute an important basis for innate behavior, but ontogenetic and, sometimes 
lifelong shaping by learning is required in addition, to fine tune this innate 
behavior.  Learning would thus relate to the capacity of individuals to change behavioral 
responses using the previous experience (Mery and Burns 2009). However, we cannot 
consider innate behavioral responses and learning as isolated behavioral phenomena. 
These behavioral responses are intrinsically related, since the innate capacity of 
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individuals to perform a behavior and the individual experience received during their 
lifetime interact to shape the final behavioral response. However, this differentiation 
provides us with a useful conceptualization for the study of behavior. 
 
Given that behavior is under the direct control of the brain, its study gives us an 
excellent way of understanding complex brain functions (Anderson and Perona 2014; 
Gomez-Marin et al. 2014). By studying behavioral responses strongly related to these 
brain functions, and how they emerge and evolve in order to overcome environmental 
challenges (Breed and Sanchez 2010), we can obtain valuable information on how these 
neuronal functions are shaped (Chiel and Beer 1997). This is because neural systems 
adapt to detect, process and respond to environmental cues by modifying behavior. 
Behavior can also change as a consequence of altered brain function, as occurs in 
genetic or environmental brain disorders (Mega et al. 1996; Silverman et al. 2010; 
Dierssen 2012). These disorders disrupt the ability to express environmentally 
appropriate behavior. Thus, the study of behavior could also provide important hints on 
brain dysfunction and could also establish pre-symptomatic behavioral deviations as 
robust biomarkers of brain disorders. As an example, diagnostic tools for mental 
disorders benefit from the increasing knowledge of fundamental programs of behavior, 
boosting initiatives such as the research domain criteria (RDoC) project, a new 
framework for classifying mental disorders based on observable behaviours and 
neurological measures (S. E. Morris and Cuthbert 2012). 
 
However, the study of behavior is an onerous task given its complexity, high 
dimensionality and dynamicity. Besides, its nature is multiscale and displays multiple 
dependencies. Under this conceptual framework, one part of the work on my thesis has 
been devoted to the development of new tools for the study of innate behavioral 
responses such as behavioral eating patterns. Another important part of the work of this 
thesis was dedicated to the creation of a multidimensional framework for the study of 
learning-related behavioral responses. 

1.1.2. Classical approaches to the study of behavior 
 
Historically, two main approaches have been followed to study animal behavior. On one 
hand, ethologists have tried to understand innate behavior of free animals in their 
natural environment (K. Lorenz 1937; Tinbergen 1951; Von Frisch 1955). The ultimate 
aim of ethology is to understand how innate behaviors are organized and those evolve 
over time, under the premise that behavior is under natural selection as any other 
adaptative trait (K. Z. Lorenz 1958). On the other hand, psychology-influenced schools 
designed behavioral assays in controlled environmental settings to understand parts of 
complex behavioral phenotypes with a more reductionist approach. The concept behind 
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this is that those behaviors expressed in a controlled environment are representative of 
physiologically relevant processes or of their disruption. This field focused on learned 
behaviors, which could be predicted, controlled, trained and measured in a systematic 
manner. Examples of such paradigms include the classical conditioning (Pavlov 1927) 
and the operant conditioning (Skinner 1937)1. These paradigms propose that the 
environment can be described by its effect on behavior. In this manner, neutral stimuli 
would have no predictable effects whether presented or withdrawn, reinforcing stimuli 
are associated with an increase in behavior when presented following that behavior, 
aversive stimuli are associated with decrease in behavior  when presented following this 
given  behavior, and finally discriminative stimuli  are a special type of antecedent 
stimuli  that set the occasion for behavior to occur.  This field established the basis to 
explain learning and motivation-developing principles.  
 
These early schools, psychology and ethology, laid the foundations for the development 
of disciplines such as neuroethology and behavioral neuroscience. The former tries to 
understand the neural mechanisms behind natural behaviors following Krogh’s 
principle. Krogh proposed “for a large number of problems there will be some animal of 
choice, or a few such animals, on which it can be most conveniently studied”. Under 
these conceptual frameworks, neuroethologist studied innate behaviors of specialist 
animals in natural environments. Therefore, they did not focus only on common model 
organisms and regular experimental procedures, but instead, their approach consisted in 
characterizing behaviors as a complex sequence of smaller components that are 
organized and evolve over time in natural environments and in trying to find the neural 
basis of the behavioral patterns they observed (Hoyle 1984).  
 
Instead, psychology-based approaches address the same question of how the nervous 
system orchestrates specific behaviors in a controlled but usually stand-alone manner, 
and with special emphasis on processes such as learning, memory, motivation, 
perception or disease (Donaldson 2010). This discipline uses a hypothesis-driven 
approach, in many instances with a more translational-oriented focus. To do so, in most 
cases model organisms are generated, often genetically modified with a gene or genes of 
interest, to create suitable paradigms for the study of specific disease-related behaviors, 

                                                
1 Classical conditioning experiments rely on associative learning processes by which a 
natural response to a stimulus in the environment (unlearned) is paired to a neutral 
stimulus, becoming then the neutral stimulus also associated (learned) to the natural 
response the former produced. On the other hand, operant conditioning experiments 
study associative learning by reinforcement processes. This means that a given behavior 
can be strengthened or weakened in function of its consequences. In this manner, if a 
given behavior produces a reward, the individual will repeat it, conversely, if it 
produces a punishment, the individual will avoid its repetition. 
 



 

 4 

behavioral expression of internal states, or behavioral problems. Species, such as rats 
(Rattus norvegicus), mice (Mus musculus), zebra fish (Danio rerio), the fruit fly 
(Drosophila melanogaster) and the round worm (Caenorhabditis elegans) have been 
the common choice for this type of studies.  
 
Obviously, both approaches present clear limitations that often lead to irreproducible or 
irrelevant results (J. C. Crabbe, Wahlsten, and Dudek 1999; Berry M. Spruijt et al. 
2014). First, the use of stand-alone behavioral strategies does not allow the reproduction 
of real situations. Second, until recently, it was only possible to track a reduced number 
of dimensions that do not capture the full complexity of behavioral response. This rather 
reductionist approach has lead to an isolated view based on a single or limited number 
of parameters. In the last years, reproducibility issues and the failure of many preclinical 
studies to be demonstrated in clinical trials have made clear that the study of a complex 
behavior cannot rely on a limited number of isolated parameters usually based on the 
experimenter's opinion of appropriate measures since relevant pieces of behavioral 
information could be undetected or get discarded. 

1.2. The challenges of studying behavior 

1.2.1. Behavior is a multidimensional, complex process 

Behavior is multidimensional both in terms of the different biological aspects that are 
involved in a behavioral response (behavioral domains) and in terms of the quantifiable 
parameters that can be used to measure behavior (Hersen 2005).  
 
From a biological perspective, psychologists designed experimental setups that 
constrained the possible behavioral outcomes, based on the hypothesis to be validated. 
The idea is that a specific task will be informative of a given behavioral dimension 
(Stepanichev et al. 2014). In this way, this approach tries to avoid tackling at the same 
time all the spectrum of possible behavioral domains of a behavioral response that 
unfolds in a natural environment. However, a prerequisite for measuring behavior in 
such way is to be able to operationally define the target behavior. This is not trivial, 
because behavior is a high-dimensional problem with distinct but related dimensions 
that introduce incremental degrees of freedom. To reduce the possible outcomes, 
neuroscientists have created well-controlled situations, in which animals are forced to 
choose among a small discrete set of behaviors. Widely used paradigms of this type are 
the open-field test for the study of locomotor activity and anxiety (Hall 1934) or the 
Morris water maze (MWM) (R. Morris 1984; Vorhees and Williams 2006) and the 
Barnes maze (Barnes 1979; Fiona E. Harrison et al. 2006) for the study of spatial 
learning and memory. The behavioral output of these tests is still evaluated today by 



 

 5 

single-variate measures. However, behavioral domains establish complicated 
dependencies that are not always easy to disentangle (Gallagher and Burwell 1989). In 
addition, this oversimplified approach assumes that a single behavioral domain can be 
grasped by a single test (John C. Crabbe and Morris 2004) or that to avoid false positive 
results it is sufficient to perform a battery of tests evaluating the same behavioral 
domain (Crawley 2008).   
 
From a more quantitative perspective, a very simple behavior, such as moving from a 
point A to a point B can be measured by multiple variables, including the distance 
travelled by the individual, the time spent to travel the distance, the speed, the tortuosity 
of the path, etc. In this way, a behavior that seems rather simple can be described in 
multiple ways, and could include factors influencing the behavioral response, such as 
environmental changes or cues. Each of these measures could inform about distinct 
behavioral domains to a different degree. For example, the time spent to travel the 
distance, or the speed, can help us understand the motor component of the behavior. 
However, a shorter execution time can also be informative of the cognitive capabilities 
of the animal, and more precisely of spatial learning, if the path has been previously 
learnt. Hence, these measures display clear interdependencies that can hinder the 
comparison between different individuals. 
 
As we have just discussed, these classical single-variate measures are an oversimplified, 
subjective approach to the problem of understanding different behavioral domains 
(Graziano, Petrosini, and Bartoletti 2003).  As such, although a simplistic approach can 
be sometimes helpful in terms of the tractability of the problem, univariate measures do 
not address the problem of understanding behavioral multidimensionality in its whole 
complexity.  

1.2.2. Temporal dimension of behavior 

The brain orchestrates behavior as a set of actions to appropriately respond to a fast 
changing environment (Hong et al. 2015) while evaluating the individual state, which 
also evolves along time. In this sense, behavior is an adaptative process that acts on 
different temporal scales depending on the environmental cues to which it responds. For 
this reason, the nature of behavior is intrinsically dynamic (Marr 1992; Benjamini et al. 
2011; Gomez-Marin et al. 2014). Behavioral processes often involve transitions 
between different states, single events and cyclic episodes whose duration varies over 
time (Goulding et al. 2008). These rhythmic episodes affect most behavioral categories 
including eating, drinking, cage exploration, self-grooming, or social interaction. But 
the time scale of this variation can be different across lifetime. For instance, rodents 
maintain a stable rank order of time engaged in different behaviors through 
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development, and the time animals are engaged in these behaviors changes with age, 
displaying a clear ontogenetic pattern (Castro and Andrade 2005). To identify all these 
discrete behavioral episodes along a time course, behaviors are segmented or parsed. 
Segmentation of behavior poses a conceptual challenge since the temporal scale at 
which different behaviors unfold differs, exhibiting also a hierarchical organization 
(Gomez-Marin et al. 2014). For instance we can segment the behavioral trajectory of a 
rodent into circadian active and inactive periods. However, active periods at the same 
time can be further annotated into feeding, drinking and resting events that are 
organized on a shorter time scale (Goulding et al. 2008). Figure 1 illustrates this point 
by representing several behaviors that unfold on different time scales and with 
hierarchical relationships (Egnor and Branson 2016). Taking as example motion, we can 
see how steps are short-duration, less variable behaviors (bottom left) with a low 
position in the hierarchy (behavioral primitives or sub-behavior). These sub-behaviors 
can be shared by several high-level behaviors. For instance, running or foraging share 
steps as a ‘sub-behavioral’ annotation. High-level behaviors tend to be more variable 
and unfold over longer periods of time (top right). Therefore, behavior is multi-scale 
both in terms of time and variability.  

 
Figure 1 | Behaviors have to be measured on different time and variability scales. Behavioral primitives 
unfold in a short time scale and display low variability. Conversely, high-level behaviors unfold on longer 
time periods and display higher variability. There is a hierarchical relationship between high-level 
behaviors and behavioral primitives that allow the segmentation of the former into repeated elements of 
the latter (adapted from Egnor and Branson 2016). 
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Once a temporal sequence of behaviors is characterized, it is possible to infer the causal 
associations between environmental changes, behaviors and the physiological 
mechanisms behind the behavioral response. It can also help to understand whether 
specific properties, such as for example irregularity in neonate behavior, are intrinsic to 
the dynamics of motor activation or the result of random perturbations. Furthermore, the 
comparative analysis of how altered behaviors diverge from normality along time in a 
neural disorder can provide very relevant hints on the neural basis of behavior both in 
health and disease (Tecott and Nestler 2004). All these aspects reinforce the concept 
that to grasp the whole significance of behavioral repertoires, we need thorough time 
series analyses that would reveal more details about the behavioral trajectories. Each 
behavioral feature also has a rich dynamical profile with differential properties and 
patterns of oscillations. Thus, the temporal dimension emerges as indispensable to 
correctly grasp the complexity of the behavioral response. 
 

1.2.3. Behavior is highly variable 

Individual differences in behavior and their underlying mechanisms are an increasingly 
relevant research field. Behavioral readouts present a high degree of intraindividual and 
interindividual variability (Baker 2011). Individual behavioral tendencies can be 
temporally consistent, meaning that the individual’s traits stay similar across time. 
However, they can also present variability even on short temporal scales due to specific 
processes such as habituation, or sensitization. Behavioral tendencies can be heritable to 
some extent, may have significant fitness consequences, and may be organized 
hierarchically, so that multiple traits correlate to form a higher organizational level. This 
variation in traits is added to the variation in behavioral responses measured during an 
experiment, i.e. “task performance”. In fact, these variations are highly adaptive, since a 
strong consistency in behavior would limit individual capability to adjust behavior to 
deal with a new situation in an optimal way (Niemelä et al. 2013). 
 
The sources of this intra- and inter-individual variability are diverse. Interindividual 
differences and similarities in patterns of intraindividual changes can be due to variation 
in individual lives, i.e. variability in developmental trajectories. Besides, they can be 
molded by the diverse biological and social conditions the individual is subjected to. All 
these differences that occur over the lifetime give rise to unique patterns of behavioral 
responses. Environment is an important factor accounting for experimental variability in 
behavioral studies that can interact not only with intrinsic genetic factors, but also with 
external perturbations, whether imposed or not, and hence affect experimental results 
(Richter, Garner, and Würbel 2009; Reardon 2016). For these reasons, a huge effort has 
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been devoted to standardizing laboratory practices by homogenizing environmental 
conditions. Remarkably, those efforts to reduce variability resulting from the 
environment have been unfruitful (J. C. Crabbe, Wahlsten, and Dudek 1999) and 
therefore, some authors argued that the solution is just the opposite: not trying to 
standardize environmental conditions among laboratories, under the assumption that if a 
result is robust enough it would be replicated even in heterogeneous experimental 
conditions regardless of the variability caused by the environment (Crawley 2008). This 
approach will avoid that results from a given laboratory are not just explanatory for this 
rather artificial and isolated environment (Richter, Garner, and Würbel 2009).  
 
In this context, we could consider experimental variability just as the noise of a 
multidimensional, dynamic readout such as behavior. However, when we perform an 
experiment we are indeed interested in grasping the part of the variability that can 
explain the differences among animals grouped by categories of interest such as 
genotype, treatment, time, or combinations of these, or other factors. Therefore, the 
problem that we face is how to distinguish the part of the variability that explains the 
behavioral process from the noise inherent to a complex readout such as behavior. To 
address this problem, some authors proposed mathematical approaches for the modeling 
of complex behaviors (Wolfer and Lipp 2000; Graziano, Petrosini, and Bartoletti 2003; 
Stephens et al. 2008; Kumar et al. 2011). These approaches rely on multidimensional 
techniques to reduce the noise of the multiple variables automatically recorded when 
studying complex behaviors. To this aim, they take advantage of automated behavioral 
recordings systems that allow the extraction of a richer variable space. One of the 
challenges is to extract the relevant information from these multidimensional processes. 
Traditional behavioral evaluation methods have focused on observer-defined categories 
to reduce behavioral dimensionality. More complete records of an animal’s behavior, 
such as those obtained from automated imaging and data analysis tools require new 
approaches to extract the relevant information, and one possibility is to extract lower-
dimensional representations 

1.3. Automated recordings of behavior 

1.3.1. Towards high-throughput behavioral analysis 

Sometimes technological advances are the force unleashing revolutions in a scientific 
field. As examples, the development of microbiology would have been impossible 
without the invention of the microscope, X-ray crystallography allowed the discovery of 
DNA structure (Watson and Crick 1953) opening the era of molecular biology and, 
more recently, next-generation sequencing produced a paradigm shift in genomics by 
allowing us to pose questions at a genome-wide scale and across large population 
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samples (Koboldt et al. 2013). New behavioral phenotyping technologies represent a 
breakthrough in the field of neuroscience and blur traditional borders between 
disciplines such as psychology, ethology and physiology (Schaefer and Claridge-Chang 
2012).  In parallel, the emerging field of computational behavioral analysis has been 
defined as “the use of modern methods from computer science and engineering to 
quantitatively measure animal behavior” (Egnor and Branson 2016).  
 
Indeed, these two breakthroughs of biological technology (next-generation sequencing 
and high-throughput behavioral phenotyping) are closely related. The expansion of 
genetics and genomics, thanks to next-generation sequencing, highlighted the lack of 
high-quality phenotypic data that could help to uncover the genotype-phenotype 
relationship (Robert Gerlai 2002).  
 
Automation defines a major shift in the way behavior can be studied, bringing 
substantial improvements to behavioral science. In short, some of the main benefits that 
automation offers is the possibility to observe behaviors that are otherwise undetectable 
for the naked eye, in different temporal resolutions, and during short or long periods of 
time. Besides, it allows to record single or multiple variables, on one or several 
individuals, and to reduce confounding factors derived from the handling of the animals 
or from subjective researcher criteria. Another benefit is that it enables to use more 
natural experimental setups and to use less time and human power, hence increasing 
experimental throughput. In this section, we will introduce how these systems can help 
to tackle the two different types of behavioral problems we have studied in this thesis. 
For an extended review of the current state-of-the-art of automated recording systems 
see Appendix A. 
 

1.3.2. Main benefits of automated behavioral recordings 

Systems for the automated recording of behavior provide neuroscience with 
unprecedented detailed data for the investigation of behavior. These new automated 
systems thus provide some obvious advantages. For instance, they allow for long-term 
continuous observations. Besides, automated systems limit the handling and 
transportation of the animals, reducing stress levels and hence avoiding biased results. 
They also allow for experiments consisting of multiple protocols optimizing the use of 
animals. Another important advantage is the possibility of recording for extended 
periods of time, which is especially relevant for non-invasively measuring disease 
progression. On the whole, the main feature that summarizes all the benefits of these 
automated systems is that they enable the observation of the temporal dynamics of 
behavior, i.e. how behavior evolves along time. This overcomes the limitations of the 
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common strategy of performing behavioral assays that can only grasp the behavioral 
state at a given moment. The resulting longitudinal, fine-grained recordings can be 
annotated generating organized temporal sequences of behaviors that resemble 
exhaustive classical ethological descriptions in the form of ethograms (Branson et al. 
2009; Schaefer and Claridge-Chang 2012). Figure 2 displays an example of these 
annotated behavioral trajectories together with two of the continuous measures tracked 
by the automatic computer vision system (speed and angle), CTRAX (Branson et al. 
2009). Interestingly, we can observe how speed and angle correlate or anti-correlate 
with the annotated behavioral bouts. 
 

 
 
Figure 2 | On top a typical ethogram resulting from computer vision algorithmic tools (CTRAX in this 
case) to classify behaviors based on the measures obtained by the video tracking of multiple animals. 
Colored bars represent the duration of several classified behaviors. On the bottom classified behaviors 
with two of the motion variables obtained from the video tracking. Remarkably, the variations displayed 
by the variables can be explanatory of the annotated behaviors (adapted from Branson et al. 2009).  
 
In contrast with experiments that are performed only at a given time point or during a 
reduced period of time, longer behavioral recordings can provide useful insights into 
changes of behavior that otherwise might remain undetected. To illustrate this point, we 
can use the work of Fonio et al. (Fonio, Golani, and Benjamini 2012; Fonio, Benjamini, 
and Golani 2012). One of the measures used to quantify anxiety-like behavior is the 
percentage of time the animal spent in the center of the arena within a certain period of 
time2. Interestingly, Fonio et al. found opposite results when comparing BALB/c mice, 

                                                
2 Rodents have a natural aversion to open spaces to avoid the possible hazards, however, 
they also show a strong tendency towards the exploration of novel environments. The 
open-field and related paradigms take advantage of these ethological behaviors to assess 
anxiety-like behaviors. Decreased anxiety will thus be characterized by an a increased 
exploratory behavior, while on the contrary, increased anxiety will result in a preference 
to stay close to the walls of the field (thigmotactic behavior) (Ramos 2008). 
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an inbred mouse strain which displays elevated levels of anxiety (Belzung and Berton 
1997) versus its wild progenitor, Mus musculus domesticus, during short and long time 
periods (Figure 3). During the first 30 minutes of the experiment, BALB/c mice 
displayed higher levels of anxiety-like behavior as measured by reduced percentage of 
time spent in the center of the arena in comparison with wild mice. Nonetheless, during 
the rest of the following 45 hours period the situation is reversed. Besides advocating 
for the importance of habituation phases to minimize the possible confounding effect of 
the so-called habituation to novelty process (Fonio, Benjamini, and Golani 2012), this 
work highlights how taking into account the temporal dimension of behavior could lead 
to distinguish transient from stable behavioral states.  
 

 
 
Figure 3 | Comparison of levels of anxiety-like behavior between BALB/c and wild mice. (a) Percentage 
of time spent in the center of an open field recorded during 45 hours as mean of the group (curve) +/- 
s.e.m. (gray shadow). The dotted line represents the quantified habituation period that should be used in 
order to avoid the detection of transient anxiety-like behavior. (b) Boxplots representing the comparison 
of anxiety-like behavior during the first 30 minutes in the open field, common duration of the habituation 
phase and the rest of the 45 hours of recording. Box edges represent lower and upper quartile and the 
black bar horizontal line depicts the median of the groups. Minimum and maximum values within a 
maximum of 1.5 times the interquartile distance from the box are represented by the whiskers. Extreme 
values are represented as single dots. (c) Percentage of time spent in the center of an open field during the 
first 5 hours of the recording comparing BALB/c vs. wild mice. Lines represent the same time periods 
that in a. BALB/c n=12; wild mice=9.  (Fonio, Golani, and Benjamini 2012) 
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Automated systems for the recording of behavior also provide an unprecedented level of 
resolution (Steele et al. 2007). As shown in Figure 2, video-based system can track 
behaviors with time resolutions beyond seconds. Even though sensor-based system 
provide a slightly coarser signal  (Schaefer and Claridge-Chang 2012), usually in the 
range of seconds, both types of systems provide a fine-grained signal that can be used to 
detect subtle changes of behavior on very short time scales (Goulding et al. 2008; 
Heyne et al. 2009; Wiltschko et al. 2015). In a nice example, Heyne et al. used these 
high-dense behavioral readouts to model the fine structure of feeding events in rodents 
(Heyne et al. 2009). 
 
Another advantage of automated trackings is that they allow the recording of 
spontaneous behaviors closer to the natural behavior exhibited by animals since they are 
measured in “semi-natural” setups (Tecott and Nestler 2004; Schaefer and Claridge-
Chang 2012). In fact, classical stand-alone behavioral paradigms exploit behaviors that 
animals exhibit in ecologically relevant conditions to obtain reliable results (R. Gerlai 
and Clayton 1999). In the open-field test, which exploits the natural tendency of rodents 
to avoid open spaces, anxiety-like behaviors are reported by assessing the balance 
between two opposed natural behaviors: the motivation to explore new environments 
and the necessity to avoid predators. Conversely, automation enables a more ethological 
perspective of behavioral studies (Tecott and Nestler 2004; Schaefer and Claridge-
Chang 2012). Although it can be argued that experiments are still performed in 
controlled laboratory setups and with widely used model organisms (John C. Crabbe 
and Morris 2004), it is nevertheless also true that progressively, neuroscientists have 
developed more natural environments (Galsworthy et al. 2005; Lewejohann et al. 2009; 
Rudenko et al. 2009).  
  
Automation of behavioral recordings also increased the number of possible readouts 
from behavioral experiments. In fact, the indexes derived from behavioral paradigms in 
the past were very coarse and prone to subjective scoring (Wahlsten et al. 2003; Patel et 
al. 2014). However, video-based monitoring systems together with algorithmic tools for 
the analysis of the data provide richer readouts (see Appendix A) that provide a more 
global and objective assessment of an animal’s performance on a behavioral test. 
 
In addition, the combination of both semi-natural and experimentally constrained 
automated recordings can be very enlightening with respect to different aspects of the 
behavior by providing complementary views of a single question. Thus, combined 
approaches offer nice frameworks to work out different aspects of the behavioral 
response (see Appendix A for detailed examples). Two additional benefits of these 
systems are that first, they allow the social housing of animals and second, they 
minimize the handling of animals, hence reducing two of the most common 



 

 13 

confounding factors found in many behavioral studies: social deprivation (Würbel 2001) 
and handling stress (Sorge et al. 2014). 
 
Behavioral experiments have been historically a very time-consuming and expensive 
task, due to their manual nature both in terms of conducting experiments and annotating 
the readouts (Schaefer and Claridge-Chang 2012). Researchers were forced to reduce 
the sample size of the experiments at the expenses of statistical power. Therefore, the 
fact that automatic systems make the recording of multiple animals easier can help to 
increase the number of animals recorded at the same time. Besides, automatic recording 
systems allow for the tracking of specific behaviors in smaller animals that could not be 
detected before, allowing for the simultaneous recording of multiple individuals (Ramot 
et al. 2008; Swierczek et al. 2011a).  
 
All in all, automated systems for the tracking of behavior provide the neuroscience 
community with very powerful systems that can record behavior during long periods of 
time, under semi-naturalistic conditions and from multiple animals. In addition, they 
allow obtaining multidimensional readouts, reducing experimental variability and 
increasing throughput. Nonetheless, the huge amount of data produced by high-
throughput behavioral systems, the so-called big behavioral data (BBD) (Gomez-Marin 
et al. 2014), poses a challenge to how to achieve the highest amount of useful 
information. To this end, behavioral neuroscience needs to develop tools that enable the 
visualization and the analysis of those BBD. Furthermore, neuroscientists should apply 
approaches to modeling BBD that regardless of facing the huge complexity of the data 
still enable to obtain relevant biological results.  

1.4. Analysis of big behavioral data 

1.4.1. Visualization of big behavioral data 

A good data analysis starts with a good visualization of the data. Quoting John Tukey 
“The simple graph has brought more information to the data analyst’s mind than any 
other device.” By failing to adequately visualize the data, fundamental aspects of the 
data structure might be missed. Furthermore, graphical representation is as important as 
numerical calculations for understanding the data, as Francis Ascombe nicely discussed 
using his well-known quartet (Anscombe 1973). Ascombe presented four datasets 
(Figure 4) that have identical numerical properties (mean, variance, correlation and 
regression line). Therefore, we can conclude that these datasets are pretty similar in 
terms of their basic statistical properties. However, their visualization revealed that, 
indeed, the four datasets were completely different, and that the fact that they share 
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numerical properties does not tell us anything about specific properties such as the 
presence of noise, outliers, or a non-linear relationship between the variables involved. 
This illustrates that visualization is a key aspect when analyzing data and not simply an 
additional step that we can ignore.  

Figure 4 | Ascombe’s quartet. These four datasets have exactly the same statistical properties (mean, 
variance, correlation and regression line), however their visualization clearly shows that these datasets in 
fact are very different. Ascombe wanted to illustrate that graphs constitute a prime tool for the analysis of 
the data contradicting the common assumption that “numerical calculations are exact but graphs are 
rough” (Creative Commons). 
 
This is especially relevant when dealing with multidimensional behavioral data since 
simple measures of tendency or dispersion do not capture important aspects of these 
data (Pastizzo, Erbacher, and Feldman 2002). Hence, comprehensive data visualizations 
become indispensable for their exploration since otherwise it is impossible to 
understand their complexity. In many cases, we are especially interested in how 
variables change along the temporal dimension. Temporal data are structured as a 
unidirectional ordered sequence of events and usually manifest repetitive patterns (Streit 
and Gehlenborg 2015). As we have seen, longitudinal behavioral data perfectly fit this 
definition, showing ordered sequences that can be represented in ethograms (Branson et 
al. 2009) as we already discussed in section 1.3.2 (Figure 2). However, longitudinal 
behavioral data also exhibit repetitive patterns. Possibly the best known example of a 
repetitive pattern in biology are circadian rhythms. Circadian rhythms consist in 
biological processes that exhibit a stereotyped oscillation of about 24 hours, among 
which we find behavior (Vitaterna, King, and Chang 1994). We can find other repetitive 
behavioral patterns unfolding in shorter or longer (ultradian) periodicities (from minutes 
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to ultradian), some as obvious as locomotion patterns (Delcomyn 1980). Uncovering 
such repetitive structures from the data highly relies on powerful tools for the 
visualization of the data. One such representation is the raster-plot or actogram, which 
vertically stacks several periods of the same duration and thus provides a powerful 
representation to observe circadian or ultradian periodicities of the data (Strogatz 2013), 
as we will discuss further on section 1.3.2. Sometimes, however, we are not so 
interested in the temporal aspect of the data and therefore, we may want to identify 
globally representative data patterns. A collection of techniques that allow to combining 
the original variables to obtain linear combinations of them that account for the greatest 
variance in the data has become very popular. Most of these techniques rely on singular 
value decomposition approaches in order to factorize a data matrix (with observations 
encoded in the rows and variables in the columns) and obtain relationships of the 
original variables (in form of composite measures) that are more explicative of the data 
(Greenacre 2010). We can then represent the direction of the original variables in this 
new reduced space of composite measures and see for example if some of them are 
correlated. In a similar way, by plotting the observations in this new space we can 
obtain clusters informative of observations that share commonalities in terms of the new 
composite variables. Other possibilities that have been proposed is to organize the 
dimensions according to their similarity by rearranging data dimensions that display 
similar behaviors side by side, namely similarity clustering. These approaches use 
heuristic algorithms such as k-means to perform the clustering and give very interesting 
hints about group patterns in the data. They have been used, for example, to characterize 
population-wise patterns of behavior that constitute lifestyle-risk factors (Hofstetter et 
al. 2014). 
 

1.4.2. Analysis and visualization of longitudinal big behavioral 

data 

A key aspect when dealing with longitudinal behavioral data is how to aggregate data in 
meaningful discrete behavioral events along time. These behavioral events, as seen in 
section 1.1.4, expand on multiple time scales. For instance, to understand the structure 
of feeding and drinking we need to annotate feeding bouts (meals) and drinking bouts 
(Zorrilla et al. 2005). However, these feeding bouts at the same time can be composed 
of several smaller discrete events or feeding acts (Goulding et al. 2008; Heyne et al. 
2009). This way, indeed a meal is formed by several of these smaller subunits or 
feeding acts that are separated by small pauses without feeding. Hence, failing to 
understand this microstructure of the feeding bouts can lead to miss-annotate a feeding 
act belonging to a single meal as a complete meal. Eating and drinking bouts are 
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discrete behaviors that unfold in relatively short periods of time. Similar to these bouts 
it is also possible to annotate activity bouts, grooming bouts or social engagement 
episodes, among others. Once these short duration behaviors are annotated, it is possible 
to analyze them at a lower temporal resolution, to detect whether short behavioral 
events form coordinated sequences during given periods. For instance, combined 
analysis of feeding, drinking and locomotor activity has yielded very informative clues 
about how these behaviors distribute along the circadian cycle in different mouse 
models of obesity or overeating (Goulding et al. 2008; Edelsbrunner, Herzog, and 
Holzer 2009). Remarkably, Goulding et al. demonstrate how detailed data analysis 
allowed to identify behavioral organization on different time scales (for instance global 
active and inactive behavioral states unfold in longer times than feeding and drinking or 
locomotor behaviors). Besides, the aggregation of behavioral events on different time 
scales can yield very interesting hints about how this behavioral organization is 
modified in genetic models. In another interesting work, Steele et al. show how the 
annotation of behavioral bouts in longitudinal behavioral readouts can help to detect the 
progression of several altered behavioral phenotypes in two models of brain 
degenerative disorders such as Huntington’s and prion diseases. 
 
Behavioral annotations have then to be contextualized and integrated with behavior-
related variables (environmental, experimental stages, etc.) and treated with analytical 
measures such as the evolution of the median values across time, or other data-derived 
measures on specific time intervals of interest. As discussed above, visualizations play a 
main role in this process. To illustrate this point, we can take an adaptation of the 
classical raster-plotted actograms used by Jud et al. (Jud et al. 2005) to visually inspect 
possible disruptions of the circadian locomotor activity. Figure 5 represents daily 
activity of a group of lynx living in a given region of the world as horizontally stacked 
lines  (Heurich et al. 2014). Each pixel corresponds to an interval of 5 minutes with 
averaged activity of the group ranging from high (red) to low (blue).  At the same time, 
the graph depicts the 24 hours of a day on the x-axis and the days of the year on the y-
axis. On top, we find lines representing daily season-dependent periods of light. By 
integrating the behavioral and the environmental information in the same graph, this 
visualization allowed Huerich et al. to detect how lynx circadian rhythms are season-
dependent when they compare two regions of Europe that differ in the number of hours 
with light during the year.  
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Figure 5 | Data visualizations of behavioral data can give very interesting insights into time-dependent or 
environment-dependent patterns. Activity was measured as the average activity of a group of lynx along 
time windows of five minutes. Each pixel corresponds to one of these windows and is colored blue when 
there was a lack of activity and red when activity was high. The x-axes represent the hours of the day 
while the y-axis corresponds to months of the year. Black lines on top of the plot represent the beginning 
of nautical twilight, sunrise, sunset, and end of nautical twilight. The left actogram shows the activity of a 
Central European lynx population and the one on the right of a Scandinavian population. This updated 
version of the classical actogram is a powerful way of visualizing the data to observe how behavioral 
patterns of activity are intrinsically related with environmental cues. We observe how the activity pattern 
of these two lynx populations differ between them depending on the hours of light in their respective 
regions (adapted from Heurich et al. 2014). 

1.4.3. Analysis and visualization of multidimensional big 
behavioral data 

Most of the biologically relevant behaviors cannot be reduced to a single behavioral 
variable. This is due to the huge spatio-temporal and behavioral dimensionality of the 
recordings derived from behavioral paradigms and their high variability. However, 
classical single-variate measures select specific variables in the hope that those may 
suffice to explain the behavioral domain we want to understand.  Many authors have 
already detected this pitfall and have tried to apply suitable methods to avoid it. 
Multidimensional analysis techniques have been a good approach to address these 
concerns since they enable to reduce the number of dimensions by creating composite 
measures, principal components, of the original variables that capture the biggest 
amount of the experimental variance. The assumption behind this approach is that 
variables that vary greatly are important for the problem under consideration while 
those remaining almost unchanged can be considered noise. Usually, the main direction 



 

 18 

of the variance will not be captured by a single of the original variables, but by a 
combination of them.  
 
On the other hand, one or a few linear combinations of the original variables are often 
enough to explain a significant portion of the variance and thus, the new composite 
variables could be accurate descriptors of the system we are studying. In this manner, 
we can obtain a reduced set of quantitative descriptors powered enough to explain a 
complex behavior (Kumar et al. 2011), which is known as dimensionality reduction. 
Among these multidimensional techniques, Principal Component Analysis (PCA) is the 
most widely used (Hotelling 1933; see also Abdi and Williams 2010). PCA and derived 
approaches have been already used for analyzing several complex behaviors. For 
instance, PCA has been applied to the forward genetic screenings of thousands of mice 
by analyzing the data from an open field paradigm and a pharmacological intervention 
(Kumar et al. 2011). In this study Kumar et al. nicely showed how they can identify 
three independent principal components that account for different behavioral domains 
and how combinations of these components characterize the families of mutants that 
show subtle behavioral differences when compared to controls. In another study, 
authors applied PCA to the analysis of around 3000 mice trajectories in the MWM 
(Wolfer and Lipp 2000). These authors conclude that a large part of the variance from 
the MWM was explained by behavioral domains unrelated to spatial learning, and thus 
warned the community against univariate approaches to interpret the behavioral results 
of such paradigms. Another technique that relies on linear combinations of variables to 
analyze data is the Linear Discriminant Analysis (LDA) (Fisher 1936), see also (Bishop 
2007). The main difference with PCA is that LDA is a supervised technique. Its 
approach consists essentially in finding those linear combinations of the original 
variables that best explain the separation of a number of predefined groups. LDA has 
been used for the recognition of swimming strategies on the MWM (Graziano, 
Petrosini, and Bartoletti 2003). LDA uses a specific distance measure that takes within-
group variances into account, which further improves group separation. However, a 
discriminant analysis can be performed by simply determining the principal axes of 
group-wise aggregated variables (Greenacre 2010). This is the approach we have taken 
in the two last papers presented in the Results section (3.3 and 3.4).  
 
Learning in the MWM is the consequence of an accumulated experience by being 
challenged with the same problem at consecutive times. Therefore we should emphasise 
this temporal aspect for its analysis and visualization. In univariate analysis, progression 
of learning is assessed by learning curves, which are obtained when plotting the variable 
of interest along time (see Figure 8d). One of the main benefits of the multidimensional 
techniques is that they allow to obtain informative representations of complex datasets 
that otherwise are difficult to visualize (Greenacre 2010). However, these 
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methodologies treat time as just another variable present in the dataset and hence it is 
difficult to separate its contribution from the rest of variables. To maintain a 
representation of the temporal aspect within this kind of display, our approach was to 
connect observations obtained at different time points in form of a trajectory (see results 
3.3 and 3.4).    

1.5. Case studies 
To validate our visualization and analysis framework and our multidimensional 
approaches, we selected two common problems in biology: the development of a 
behavioral change upon introducing a perturbation, as occurs in wild type animals when 
introducing a diet change, and the learning process, studied in a well-established  test, 
namely the MWM.  
 

1.5.1. Obesity as a case study of automated longitudinal 

behavioral data 

One of the fundamental problems in Clinical Neuroscience and in Psychopharmacology 
is that alterations of the nervous system that lead to a myriad of complex disorders lead 
to progressive behavioral changes that in the symptomatic phase develop into 
characteristic behavioral manifestations. However, the unfolding of these behavioral 
biomarkers is not abrupt, and many disorders display subtle changes in otherwise 
normal behavioral patterns preluding their onset. The progression of all the preclinical 
and clinical symptoms of such disorders, including patterns of behavior, is what is 
commonly known as the natural history of a disease. Examples of these disorders 
include neuropsychological disorders such as schizophrenia (Davidson et al. 1999a), 
neurodevelopmental disorders such as autism (Zwaigenbaum et al. 2005), inherited 
brain disorders such as Huntington's disease (Nguyen et al. 2006), some types of eating 
disorders (Polivy and Herman 2002), addiction to substance of abuse (Koob, Sanna, and 
Bloom 1998) and neurodegenerative diseases such as Alzheimer’s disease (Dubois et al. 
2016), among others. Two well-known examples are Alzheimer’s disease (Sperling, 
Aisen, Beckett, Bennett, Suzanne, et al. 2011) and schizophrenia (Davidson et al. 
1999a), both showing a long preclinical phase within which behavioral biomarkers that 
precede the actual onset of the disease are already detectable (as depicted in Figure 6). It 
is noteworthy that an early detection of prodromal behavioral patterns offers an 
opportunity for an early intervention that can improve disease prognosis (Dawson 2008; 
Petersen 2010; Sommer et al. 2016).  
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Figure 6 | Natural history of schizophrenia, a neural disorder with a long prodromal phase within which 
several abnormal behavioral patterns can be detected in a subtle manner. These behavioral patterns 
worsen with time until they become diagnosable with current medical procedures (adapted from Sommer 
et al. 2016). 
 
Even being aware of its limitations, the common strategy followed by behavioral 
neuroscience to study chronic disorders with a long progression along time has been to 
study constrained time windows that are especially relevant for the biological question 
under study. Under this framework, the easiest approach consists in carrying out the 
experiments that detect differential patterns of behavior once the physiological 
mechanisms of the disorder are established. Another way to tackle the question has been 
to perform repeated assays along time. However, both strategies suffer from an obvious 
pitfall: these readouts are just snapshots of a longer behavioral trajectory. Therefore, it 
can be the case that we are not capturing the precise time when relevant behaviors are 
taking place. In addition, more subtle behaviors may unfold at time points not 
considered by the experimental design, and thus results can be dramatically affected by 
studying the wrong time window (Fonio, Benjamini, and Golani 2012). New systems to 
track spontaneous behaviors during long periods of time (see Appendix A) provide a 
more natural way of studying disorders that unfold during these long time periods.  
 
In this thesis we have used the development of diet-induced obesity to validate our 
longitudinal behavioral analysis framework, Pergola. Obesity is an important health 
problem with a strong environmental component. Our current environments with high 
availability of caloric dense foods promote overeating potentially leading to obesity 
(Hill 1998). In agreement with these findings, it has been shown that the availability and 
palatability of food potentially leads to eating disorders (Heyne et al. 2009), which are 
characterized by a lack of control that is common with other addictive-like behaviors 
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like drug addiction (Kenny 2011; Latagliata et al. 2010). Abnormal eating behaviors 
such as binge eating (Curtis and Davis 2014; Colles, Dixon, and O’Brien 2007) or 
snacking are among the commonly observed behavioral alterations in obese individuals. 
Thus, this is an ideal model for the characterization of the time course of the appearance 
of abnormal eating patterns3.  

1.5.2. The MWM as a model for the study of a 

multidimensional behavioral cognitive process 

A behavioral process is usually composed of a range of variables spanning many 
behavioral domains. Therefore, the approach we take to select the relevant variables for 
the behavior under study is of great importance. The MWM is an example of a widely 
used assay trying to understand a brain function as complex as spatial learning or 
memory. In brief, as shown in Figure 7, the water maze consists of a circular pool with a 
hidden platform that a rodent has to find by swimming, using spatial cues that are 
around the pool in order to escape from the water (again this assay exploits a natural 
behavior). The MWM is run in several consecutive sessions. In the first one, the 
platform is visible and therefore the animal can learn to escape from water using the 
cues (procedural learning). In successive sessions (visuo-spatial learning sessions), the 
platform remains hidden, and in this way we can assess the learning process by 
measuring how efficiently the mice swim to the platform using the available extra-maze 
cues. In additional sessions it is possible to assess reference memory by removing the 
platform from the pool or to reveal how flexible are animals in terms of learning by 
placing the platform in a new position (Vorhees and Williams 2006). Using this 
paradigm, we can measure multiple variables ranging from variables that are identical 
or similar to the recordings themselves, to indexes that have been created as a more 
conceptual way to characterize the performance of the animal in terms of the learning 
strategy. Both types of variables have been used classically to assess the phenotypes or 
the effects of a treatment on animal models of disorders with affected cognitive 
capabilities. For instance, among the variables closer to recorded measures, we find the 
latency to escape from the water. When an individual learns to orient itself inside the 
pool, it will find the target more quickly and thus, it will reduce the time to achieve the 
platform along the sessions by presenting a better swim strategy (Figure 7). An example 
of a more conceptual variable is the Wishaw index, which measures the percentage of 
time that an animal spent in an ideal corridor connecting the platform and the place of 
release into the pool (Whishaw and Jarrard 1996). In this case good learners will reduce 
the value of the Wishaw index along sessions, since their swim strategy will be close to 
                                                
3 Details of the system we used for the recording of animal behavior are provided in 
Appendix A, see PheCOMP cage. 
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optimal and they will tend to be in this ideal corridor. However, these two variables are 
just proxies to quantify relevant learning-related behaviors. In this thesis we have tried 
to grasp the behavioral domain of cognition in a more global manner using all the 
commonly measured variables at the same time. To achieve this goal we used a 
multidimensional approach since it enables to reduce the dimensionality of the MWM 
readout combining the information of several of these variables.  

 
 
Figure 7 | Some aspects of the widely-used behavioral paradigm of the MWM. (a) Typical 
configuration of the assay consisting of a pool with a hidden platform, not visible by the animal, 
surrounded by visual cues. (b) The rodent is introduced in consecutive trials from four starting 
positions. (c) Animals exhibit different strategies to reach the platform depicted by their swim 
path (trajectory). Blue trajectories on the top correspond to a control animal and red trajectories 
on the bottom to individuals with a lesion (hippocampal damage) that impairs its spatial learning 
capability. (d) Example of learning curves. The common way to assess the performance of the 
animals in the MWM is to measure the latency to reach the platform of the animal. As shown in 
the plot of the groups of animals, in this case WT (blue) has spatial learning intact, so they will 
keep improving along the sessions and reducing the latency to find the platform. However, 
impaired animals (red) will not decrease their latency to reach the platform (adapted from 
(Eichenbaum 2000) 



 

 23 

2. OBJECTIVES 
 
The big data problem in life sciences is the consequence of a paradigm shift. High-
throughput technologies, which classically included genomics, transcriptomics, 
proteomics or metabolomics, now also involve phenomics, enabling the complete 
mapping of behavioral components in any organism. This involves enormous quantities 
of data whose visualization and analysis can only be addressed creating new 
frameworks. My thesis has aimed to provide a useful tool for the visualization and 
analysis of big behavioral data, to overcome the limitations of handling big behavioral 
data, which require processing of different data sets and formats. I also explored 
multidimensional analysis techniques to help reducing the huge spatio-temporal 
dimensionality derived from behavioral recordings. The specific objectives have been: 
 
1- The design of a computational combing a new generation of tools allowing the 
effective manipulation and representation of long high-throughput behavioral data 
(BBD). This framework should standardize file formats and provide access to 
bioinformatics tools making it possible to programmatically filter, analyze, display and 
compare the readouts from any of the apparatus currently available for automated 
behavioral capture.  
 
2- Proof of concept of our computational BBD tool for the study of the dynamics of 
appearance of disease behavioral signatures using longitudinal behavioral data. 
 
3- Implementation of a PCA-based methodological framework for the study of 
multidimensional behaviors. 
 
4- Proof of concept of the PCA-based methodological framework for the study of 
learning. 
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3. RESULTS 

3.1. Pergola: a new paradigm for longitudinal data 
visualization and analysis 

 
Preface 
 
One milestone in this thesis was to develop a framework for the exploration and 
analysis of automated longitudinal recordings of behavior and associated metadata. In 
this publication we present Pergola (Python bEhavioRal GenOmetools LibrAry), a 
python library that enables the visualization, manipulation, modeling and integration of 
longitudinal behavioral data. Pergola offers a set of own tools to analyze and explore the 
data and capitalizes on a myriad of efficient, widely used genomic tools. In this manner 
we provide the community with a bioinformatics framework that unifies and boosts the 
analysis of big behavioral data contextualized with all its rich metadata including 
environmental information, statistical modeling and physiological information. The 
integrative analysis of high-throughput behavioral recordings along with the relevant 
information that shape behavioral responses could enable the understanding of how 
brain function orchestrates complex behavior. Therefore, our free tool represents a 
relevant resource for the neuroscience community.  
 
Espinosa-Carrasco J., Erb I., Dierssen M., Notredame C. Pergola: a new paradigm for 
longitudinal data visualization and analysis. In preparation. 
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Abstract 
 
Exploratory data analysis is key to understanding longitudinal behavioral data. Pergola 
(http://cbcrg.github.io/pergola) processes longitudinal recordings by representing them 
in data structures originally developed for genome analysis. The equivalence of data 
formats allows for the visualization, analysis, and advanced modeling of longitudinal 
data using state-of-the-art genome analysis tools. We show how Pergola simplifies and 
accelerates explorative analysis of behavioral data analysing recordings of two major 
model organisms (C. Elegans and Drosophila) and can potentially be applied to any 
analysis involving longitudinal recordings. 
 
Fine-grained longitudinal data is one of the fastest growing corpus of biological data 
(Rose 2016). Behaviors are a prime target for longitudinal studies, as they constitute one 
of the most complex available phenotypes, linking genetics, development, 
neurobiology, evolution and environmental interaction such as drugs and stress 
responses. Furthermore, the dynamic nature of behavior makes its study particularly 
reliant on temporal structure exploration. Behavioral studies have long been hampered 
by data acquisition limitations, an issue recently alleviated by the emergence of high-
throughput behavior monitoring methods (Hong et al. 2015; Ohyama et al. 2015). Of 
course, as in other fields, the data burst induced by such a technological shift requires a 
new generation of tools for handling, analysing and visualizing data. New data also 
poses new challenges, the most pressing one being reproducibility. In that respect, a 
major difficulty stems from the lack of uniform standards that would allow the seamless 
comparison of data gathered on different platforms. Current systems look very much 
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like the so-called data silos, a commonly used concept in biological databases referring 
to fragmented non-interoperable data. Data silos are very common in rapidly evolving 
fields. The problem is usually addressed through a lengthy community effort on 
normalization and standardization. We demonstrate here that solutions are available to 
dramatically accelerate this process in the field of behavioral analysis. Indeed, we show 
the many solutions and standards developed for over a decade in genomic analysis 
perfectly fit the current needs of behavioral analysis. We have illustrated this 
demonstration by reproducing with standard genomic tools, three distinct high-impact 
behavioral analyses, originally carried out on three different platforms.  
 
High-throughput screenings of live behaviors are very diverse. They may be broadly 
separated in two classes: systems that physically monitor physiological intakes such as 
feeding, general activity or oxygen consumption in mice (PHECOMP, 
PHENOMASTER, CLAMS) and systems that, using videos of behaving animals and 
computer-vision techniques, annotate complex behavioral trajectories. These are 
available for most animal models, including C. elegans (Ramot et al. 2008; Yemini et al. 
2013; Swierczek et al. 2011), mice (de Chaumont et al. 2012; Hong et al. 2015), D. 
melanogaster adults (Branson et al. 2009), larvae (Ohyama et al. 2015), zebrafish 
(Rihel et al. 2010) or multipurpose (Gomez-Marin et al. 2012).  These techniques all 
deliver longitudinal data, along with more or less elaborate annotation. While most of 
these platforms provide good ad-hoc analysis capacities and visualization tools, they all 
stop short of allowing the seamless comparison of data gathered across different 
platforms. The range of data handling tools effectively implemented by the authors also 
limits the range of data handling tools. We argue here that barriers between these 
platforms must be broken and we have addressed this issue by developing Pergola 
(Python bEhavioRal GenOmetools LibrAry). 
 
Pergola is open-source software designed for the visualization, manipulation, modeling 
and integration of (high-throughput) longitudinal behavioral data including its 
associated metadata. It does so using a repurposed combination of state of the art 
genome analysis software (Quinlan and Hall 2010; Dale et al. 2011; Robinson and 
Thorvaldsdóttir 2011; Pohl and Beato 2014)(Quinlan and Hall 2010; Dale, Pedersen, 
and Quinlan 2011; Robinson and Thorvaldsdóttir 2011). Longitudinal data recordings 
share a strong conceptual similarity with genomic sequence recordings. While they 
differ in their observation units - time vs. nucleotide positions - both data types are 
nonetheless sequential by definition, and are usually associated with highly 
heterogeneous metadata - behaviors vs gene annotation. Theses data types also require 
analogous processing such as quality based filtering, binning, averaging discretization 
or differential annotation with either quantitative or categorical variables. In both 
systems, final modelling often involves combining direct observations with higher level 
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measurements or contextual information. The natural correspondence between 
longitudinal and genomic data would be merely anecdotal if genomics had not 
developed powerful standard formats for data representations (Kent et al. 2002), 
sophisticated visualization tools (Robinson and Thorvaldsdóttir 2011; W. James Kent et 
al. 2002) and efficient data analysis tools (Quinlan and Hall 2010), to cite only a few. 
The genomic framework has been in production for over a decade and is regularly 
updated to scale up with the incoming data. As such, its repurposing towards behavioral 
data constitutes a major opportunity. 
 
Pergola makes data interoperable by transforming any temporal records into standard 
genomics file formats. This process relies on a customizable mapping between the 
behavioral and the genomic ontologies. This reference mapping, invisible to the user, 
associates terms referring to analogous features of the records, such as StartTime in the 
behavioral file with start in the genome-like representation (see Online methods and 
Supplementary Table 1, 2 and 3). Besides supporting comma-separated files (CSV) as 
input, Pergola is also ISA-tab compliant (Rocca-Serra et al. 2010; Sansone et al. 2012) 
thus insuring compatibility of data acquired under this novel data-sharing standard to 
annotate experimental meta-information. 
 
Genomic formats provide a perfect scaffold for storing longitudinal behavioral data 
(Online Methods).  Formats such as BED (the Browser Extensible Data format) (Kent et 
al. 2002) or GFF (the General Feature Format)(http://gmod.org/wiki/GGF3) make it 
possible to record sequence features along with any kind of quantified annotation. 
Pergola adapts any longitudinal data consisting of time intervals, such as behavioral 
events, to these files. Similarly, continuous-valued data is perfectly suited for the 
bedGraph format or BigWig (W. J. Kent et al. 2010), two formats originally designed 
for storing quantitative information associated with sequence features. These data 
formats can therefore store any continuous behavioral measure derived from animal 
locomotion or statistical scores of a model applied to data.  
 
Once formatted, data is also ready to be processed by powerful analysis algorithms, like 
BEDtools (Quinlan and Hall 2010), Pybedtools (Dale, Pedersen, and Quinlan 2011) or 
bwtool (Pohl and Beato 2014). These tools allow a wide operational diversity including 
joining, subtracting, intersecting across several channels containing longitudinal 
information or the aggregation, smoothing or summarizing within the same channel. It 
must be stressed that the repurposing of these tools does not require any modification: it 
is a mere consequence of the reformatting. Likewise, reformatted data makes it possible 
to use any genomic browser (Robinson and Thorvaldsdóttir 2011; W. James Kent et al. 
2002) and repurpose it into a behavioral data visualizer thus taking advantage of 
sophisticated features allowing the simultaneous display of data and metadata as well as 
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multi-scale navigation. This combination between BED, GFF, BEDtools and genome 
browsers defines a mature and versatile framework for the uptake of any data for which 
sequences constitute the underlying structure. This makes it an ideal fit for so-called big 
behavioral data (Gomez-Marin et al. 2014).  
 
As a proof of principle we have used Pergola to reprocess data gathered on three distinct 
platforms using worms, drosophila and mice models. The first source of data (Yemini et 
al. 2013) is a set of worm trajectories recorded using Worm Tracker 2.0, a video 
tracking system allowing trajectory typing. We extracted locomotion-related behaviors 
from the source database, mapped the associated control vocabulary on pergola 
ontology and visualized the resulting data with an adapted version of the Integrative 
Genomics Viewer (IGV) (Robinson and Thorvaldsdóttir 2011). For a single control 
individual, converted tracks display the direction of the worm at each point of the 
trajectory (Fig. 1a) aligned with several locomotion phenotypes measured frame by 
frame (Fig. 1b).  This display clearly shows the correlation between the speed of the 
different worm body parts, as reported in the original study. In that same original 
analysis, the authors carried out mid-body speed comparison. We replicated these 
results by using bwtool (Pohl and Beato 2014)) to smooth data across a specific number 
of frames. Pybedtools (Dale, Pedersen, and Quinlan 2011) (Fig. 1d) was then used to 
intersect speed tracks with the direction of the worm trajectory (Fig 1e) thus 
recapitulating the original report on the distribution of mid body speed by the motion 
state for a mutant strain (unc-16) and its difference from the controls (Fig. 1f). The 
second source of data (Kabra et al. 2013) is a set of drosophila trajectories gathered 
using the JAABA software suite, another image tracking software. It is focused on the 
analysis of chasing behaviors in flies. Following a similar procedure as shown for 
worm, the original data descriptors were mapped onto pergola ontology, thus allowing a 
smooth translation into the BED format that was used to display the original data with 
the IGV browser. The result is a rendering of the original data of chase social behaviors 
along with their confidence scores in which one can simultaneously browse several 
individual trajectories. The third application involved mice data obtained using 
PHECOMP cages. These cages provide fine-grained longitudinal monitoring of mice 
intake behaviors (solid and liquid) and can follow a single individual for several weeks. 
Using the pergola ontology remapping, we were able to re-map the original data into 
BED format, and could use this data to reproduce the main findings of the original 
analysis (see Supplementary Section).  
 
These three examples illustrate how very heterogeneous datasets could be rapidly re-
processed so as to become suitable for high quality standard tools. Doing so has several 
major advantages. The most obvious is reproducibility and stability. By using popular 
tools, one is much less likely to be affected by the effect of poor software development. 
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The analyses become easier to replicate and compare across labs and groups. 
Furthermore, the high usage level of these tools ensures higher quality of 
documentation, stricter quality monitoring by the community, not to mention the 
obvious advantage of using the same programmatic tools to process divers types of data 
in the lab. Yet, from a broader perspective, Pergola does much more than merely 
providing access to new tools. In the high throughput era science is going through, 
definition of novel standards is a common process. It usually involves complex 
negotiations between stakeholders. These are followed by lengthy periods of tool 
developments whose reliability often depends on usage levels. We show here that 
behavioral analysis may skip all this and immediately move into production mode 
thanks to the strong analogy between behavioral and genomics data. Pergola 
dramatically broadens the scope and effectiveness of longitudinal analysis. It does so 
with very limited overhead. Genomics is an extremely active field of investigation and 
the capacity to tap into its rapidly expanding spectrum of statistical analysis may rapidly 
generate key synergies. Genome analysis software are very modular, and the bridge we 
are opening will doubtlessly result in new modules for data visualization and analysis to 
be made available at a minimum cost for the community. The stakes are high, especially 
at a time when novel types of longitudinal data are being recorded at a massive scale in 
hospitals (Jensen et al. 2014), or even societal contexts (de Montjoye et al. 2013; de 
Montjoye et al. 2015).  
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Figures 
 
 

 
 
Figure 1. C. elegans motor behavior visualisation and analysis using Pergola and 
genomic software. (a) Each blue track displays the intervals corresponding to each 
motion state (paused, backward or forward) of a single N2 individual. (b) Several 
locomotion measures of the same individual namely:  crawling amplitude (0, 50), 
foraging speed (0, 730), tail tip, tail, head, and mid body speed (-700, 700) and finally 
head tip speed  (-1050, 810), numbers in parenthesis indicate the displayed variable 
range. All speed measures are expressed in microns/second except crawling amplitude 
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expressed in degrees/second and foraging speed in degrees. (c) Head and midbody 
speed signal (blue) smoothed (S.) using a sliding window (Online Methods). Correlation 
track represent the intensity of the correlation between smoothed head and mid body 
speed within each of the windows, color depicts high correlation (orange) or high 
anticorrelation (reddish purple). (d) Mid body speed measures intersected with forward 
motion periods. Below, each track segment corresponds to a forward motion period and 
the intensity of the color to the mean value of mid body speed during the period. (e) 
Individual tracks represent mid body speed of an individual during the tracking period 
of approximately 15 minutes. Red values indicate positive speeds and blue values 
negative speeds. Tracks of N2 control group are shown on the top (n=40) and unc-16 
individuals on the bottom (n=20). (f) Distribution of speed intersected with forward, 
backward and paused motion state for N2 control strain (black) and unc-16 strain 
(yellow). 
 

 
 
Figure 2. Drosophila chasing behavior displayed with the adapted IGV Genome 
Browser. Each track in the figure corresponds to the behavioral trajectory of a single 
fly. Each bar in the trajectory depicts a chasing bout and the color intensity reflects the 
score of the annotation, i.e. the confidence JAABA classifier provides for its annotation. 
We use the sample data of fly trajectories provided by JAABA to train a chase classifier 
and using it we annotate the bouts of chasing behavior.  
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Supplementary Section - Methods 
 
Implementation and availability. The package is implemented in Python and released 
under GNU general public license version 3. Latest version, source code, documentation 
and issue tracking are available at https://github.com/cbcrg/pergola. All the scripts and 
configuration files used in the analysis are available from Github: 
(https://github.com/cbcrg/pergola/blob/master/examples/).  
Pergola releases are provided as Docker containers in a public dockerhub account 
(https://hub.docker.com/). The version used for the analysis on this paper is accessible 
under  cbcrg/pergola:celegans 
 
Pergola functioning overview. Pergola uses genomic files formats widely used in 
genomics to encode sequential data. To achieve this task, our software needs: a file 
encoding the sequential data to be converted, a file to set the equivalence between the 
sequential and the genomic space (mapping file), and user selected options. 
 
Input data. Pergola currently accepts three input data formats: (i) character-separated 
values (CSV) format, a common export format for tabular data available from most 
commercial and noncommercial tools. The minimum input is a two column file 
containing the timestamps and the variable measured (ii) ISA-Tab format, a wrapper 
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format for data generated in high-throughput studies that provides a general framework 
to annotate experimental metadata. (iii) JAABA output format when saved in scores.mat 
MATLAB format (MathWork). 
 
Mapping file. The mapping file is a text file used to declare the equivalences between 
the Pergola internal controlled terms and those used in the input data (i.e. the column 
names). In practice this file contains two terms per line, on the left the user-defined term 
and on the right the Pergola equivalent, as selected among Pergola ontology (Supp 
Table 1). The mapping file follows the Gene Ontology Consortium community 
standards as defined in (“External Mapping File Format | Gene Ontology Consortium” 
2015) from the Gene Ontology Consortium (Ashburner et al. 2000). An example of a 
generic mapping file is shown on Supplementary Table.2. The example below shows 
how timestamps in input data are to be mapped onto start interval position in the pergola 
ontology. 
 

behavioral_file:event_start > pergola:start 
 

Where behavioral_file corresponds to the tag designating the input file, event_start is 
the column name from the original file*, pergola is the tag used for pergola ontology and 
start is the item in the pergola ontology.  
*It is possible to use files with unnamed columns using pergola flag -nh and giving the 
list of field names as a Pergola parameter after -s flag. 
 
BED and GFF output format for discrete-valued data. One of the most common 
types of behavioral data consists in a sequence of a few behavioral states along a 
temporal trajectory. A simple example is the alternation between animal forward, 
backward and paused motions states (Fig. 1). Formats used to encode genomic 
annotations or describe sequence features provide a perfect scaffold to define such 
behavioral trajectories. Pergola supports two of these genomic formats: the Browser 
Extensible Data (BED)(Kent et al. 2002) or the General Feature Format 
(http://gmod.org/wiki/GGF3). 
 
BedGraph ouput format for continuous-valued data. A sequence annotation may be 
continuous rather than discrete, in which case every time point will receive a value from 
some interval of the real numbers. Such representations are typical of modelling efforts 
in which given time intervals get associated with a probability rather than a discrete 
state. Likewise, these formats can be easily adapted to describe statistical parameters or 
scores resulting from a behavioral trajectory. To this end, Pergola supports the 
BedGraph format, a genomic standard for the storage of continuous-valued data. 
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Reference sequence The repurposing of genome analysis tools requires the presence of 
a sequence used as a reference for the mapping of the rest of the data. In practice, 
Pergola generates a dummy string stored in FASTA format whose length is set to the 
number of time units in the recorded experiment. Reference sequences come along with 
the description of the chromosomal cytogenic bands declared with the cytoband file 
format. Pergola adapts these higher level annotations to complement the records with 
extra signals such as the alternation between days and nights (Fig. X/supp figure Y) or 
any environmental or metadata mapped onto the records.  

C. elegans data set. We obtained worm motor behaviors from the “C.elegans
behavioural database” (Yemini et al. 2013) available in (http://wormbehavior.mrc-
lmb.cam.ac.uk/). Specifically we used data from unc-16 (n=16) a mutation affecting
locomotion and N2 control strain (n=40). Each individual recording was available in a
MAT, HDF5-formatted file (Hierarchical Data Format Version 5). Files consisted in a
time series of raw phenotypic features frame by frame besides all the experimental
metadata (see Yemini et al for a detailed description). As a result of parsing MAT raw
files by means of python scripts, we produced CSV Pergola compatible files containing
the information of a single recording. All scripts are available in our public repository.

C.elegans motor behavioral data analysis. After extracting individual phenotypic
features into CSV files, we followed a standard Pergola analysis. A mapping file w2p.txt

(Supp Table 3) was defined and used to process the worm behavioral time series
celegans_behavioral_features.csv into BedGraph files using the following command:

pergola_rules.py -i celegans_behavioral_features.csv -m w2p.txt -f bedGraph -w 1 

Here, -f bed sets the output format to bedGraph and -w sets a time window within which 
data is aggregated (among other possible operations). In this case   a window of 1 
maintains the original input time series. In a similar way, worm motion states can be 
converted into BED files. The resulting tracks can then be directly loaded into IGV for 
visualization (Fig. 1a, b and e). Moreover, BEDtools enables the calculation of statistics 
and/or summary operations on the overlapping intervals of two bed files. The following 
command determines the mean value of a given behavioral feature for each forward 
motion period (Fig. 1 d): 

mapBed -a motion_state.bed -b celegans_behavioral_feature.bed -c 5 -o mean -null 0 | awk 
'BEGIN{OFS="\\t";} {print \$1,\$2,\$3,\$10}' > mean_behavioral_feature_motion_state.bed 

(Note that the actual BEDtool command is piped into the awk command-line tool to 
enable the extraction of the required columns.) Here -a motion_state.bed specifies 
motion state intervals, -b celegans_behavioral_feature.bed the file containing the values 
to be overlapped (map) with motion state intervals, -c sets the file column of “b” that 
contains values, -o mean indicates the operation to be performed on -c, -null 0 outputs 
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zero when no overlapping intervals are found for a motion state interval, and finally 
awk is used to format the output as a bedGraph file since native mapBed output format 
is bed. To obtain the phenotypic features specifically occurring during forward, 
backward and paused states, locomotion features bedGraph files were intersected with 
BED files containing motion using the following BEDtools command: 

intersectBed -i celegans_behavioral_feature.bedGraph -b motion_state.bed > 
behavioral_feature_i_motion_state.bed 

The direct rendering of tracks can be very helpful to visually detect disparity for a 
certain measurable behavior between two groups of animals. For instance in Fig. 1e 
midbody speed tracks of N2 strain worms clearly differ from those of the unc-16 strain. 
These observations can be confirmed and further analyzed using the above-mentioned 
intersected data, which can then be easily fed to R (R Core Team 2015), or a similar 
statistical software, to compare for example the distribution of mid body speed at a 
certain motion state (forward, backward and paused) as shown on Fig 1f.  

From the visualization it became evident that speed of different body parts was 
correlated. We transformed bedGraph files obtained using Pergola into bigWig format 
using the following command: 

bedGraphToBigWig celegans_behavioral_feature.bedGraph chrom.sizes 

celegans_behavioral_feature.bw 

BigWig is a compressed, binary format and allows the analysis of the data using tools 
available from the UCSC browser (Kent et al. 2010) (bigWigSummary, 
bigWigCorrelate, among others) or the bwtool command-line utility. These utilities can 
be used to calculate the overall correlation between two bigWig tracks, for instance 
speeds of different body parts of the same individual: 

bigWigCorrelate celegans_behavioral_feature_1.bw 

celegans_behavioral_feature_2.bw 

Users can access other functionalities available on bwtool such as smoothing the data by 
applying a sliding window: 

bwtool window 127 celegans_behavioral_feature.bw -fill=0 -center | awk -

f window_avg.awk > celegans_behavioral_feature.windows.bedGraph

Here, window 127 sets the length of the window, -fill tag sets values that are not 
available to 0 and -centers avoids the creation of overlapping intervals since they are not 
valid for bedGraph format.   The result is piped into a simple awk script that averages 
the values of each window. 

We used the bwtool window command to obtain the correlation between each window 
of two body parts of a worm: 
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bwtool window 127 celegans_behavioral_feature_body_p1.bw -fill=0 -center 

> celegans_behavioral_feature_body_p1.windows

bwtool window 127 celegans_behavioral_feature_body_p2.bw -fill=0 -center >

celegans_behavioral_feature_body_p2.windows

win_cor.R w1=celegans_behavioral_feature_body_p1.windows

w2=celegans_behavioral_feature_body_p1.windows > cor_head_midbody.bedGraph

In this case, two files corresponding to two different body parts of the same individual 
are processed using bwtool and the resulting files are given as an input to a small R 
script that just takes all the values of a windows of each file and calculates the 
correlation between them. In Figure 1c we represented the smoothed speeds of head and 
midbody of an N2 control worm and the results of the correlation between the smoothed 
windows. 

JAABA data visualization. GAL4 flies lines data used in (Kabra et al. 2013) was 
obtained from 
(http://sourceforge.net/projects/jaaba/files/Sample%20Data/sampledata_v0.5.zip/downl
oad). These tracking data relate to a line of Drosophila Melanogaster showing an 
increased propensity towards chasing. Chasing bouts were identified using JAABA, a 
machine learning-based software that annotates behaviors assigning them a confidence 
score. Resulting files were fed to Pergola. 

IGV adapted version. We adapted IGV (Thorvaldsdóttir, Robinson, and Mesirov 
2013), a popular desktop genome browser, to display temporal measurements instead of 
genomic features. We forked the IGV repository from github 
https://github.com/igvteam/igv and the modified version is available for download at 
https://github.com/JoseEspinosa/IBB.git. While this modified version has been used to 
produce the rendering shown on Fig 1a to e, the native application could generate the 
same visualization as our modifications involved only cosmetic improvements. 
Descriptions of how to visualize data are available at the Pergola documentation site 
(http://cbcrg.github.io/pergola/). 

Analysis reproducibility. Reproducibility is one of the main concerns of science 
nowadays (Goodman 2016), particularly in the neuroscience community (Button et al. 
2013; Otchy et al. 2015). Contributing to the reproducibility crisis is an inability to 
recompute results (replicability). In the effort to ensure reproducibility, beside the 
adoption of standard formats and tools, we provide the users with all the resources to 
reproduce the Pergola paper results on our Github repository. By using Nextflow 
(www.nextflow.io), a workflow framework that supports Docker, we guarantee the 
stability of the code, environment and third-party software through the version control 
and the containerization provided by the integration of both technologies. In short, 
Nextflow provides a way to code the analysis as independent tasks of a more complex 
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pipeline. Each of these tasks can be run in a single or several containers available on 
public repositories that sandbox all the software and environment needed for performing 
a reproducible analysis. The version of a whole analysis pipeline likewise can be 
controlled using the native integration of nextflow with Github, provided that a tag or 
revision has been previously specified. In this way to reproduce the analysis performed 
in Yemini et al., we just have to run this command: 

nextflow run cbcrg/pergola/examples/N2_vs_case_strain_distros.nf 

-r v0.1 --path_files="path2case_mat_files/" --

ctrl_path_files="path2ctrl_mat_files/" —tag_results="tag_output_folder" 

Supplementary Data - Table S1. Pergola Controlled Vocabulary 

Term name Mandatory Definition 

chrom_start yes Refers to start time points of each interval of the original data. If 
“chrom_end” is not set all “chrom_start” should be equidistant and 
intervals will be set to the delta between time points. 

data_values yes Refers to associated values consider for the representation of data. 

chrom_end no Refers to the end of each time interval. 

track no Refers to each of the experimental entities present in the file. 

data_types no Refers to each of the different features annotated in the file. 

chrom no Refers to different phases of the experiment. 

dummy no All additional fields in the original input data not used by pergola 

Supplementary Data - Table 2. Generic conversion file 

! Mapping of behavioral fields into pergola ontology terms

! comments

behavioral_file:phase_exp > pergola:chrom 

behavioral_file:individual_id > pergola:track 

behavioral_file:event_start > pergola:start 

behavioral_file:event_end > pergola:end 

behavioral_file:type_of_event > pergola:data_types 

behavioral_file:value > pergola:data_value 
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Supplementary Data - Table S3. C.elegans conversion file 

! Mapping of c.elegans behavioral fields into pergola ontology terms

! 

behavioral_file:frame_start > pergola:start

behavioral_file:frame_end > pergola:end

behavioral_file:direction > pergola:data_types

behavioral_file:value > pergola:data_value

Supplementary Data - Table S4. JAABA conversion File 

! Mapping of behavioral JAABA fields into pergola ontology terms

! 

behavioral_file:animal > pergola:track

behavioral_file:startTime > pergola:start

behavioral_file:endTime > pergola:end

behavioural_file:dataType > pergola:data_types

behavioral_file:value > pergola:data_value
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3.2. Time-course and dynamics of the development of 
obesity-related behavioral changes induced by two 
types of energy-dense foods in mice 

Preface 

The analysis of long behavioral trajectories can provide very interesting hints on how 
disorders with a long natural history and a strong behavioral component, such as 
obesity, develop and progress. In this paper, we identified how altered behavioral 
patterns appear upon the exposure to two types of widely-craved foods, chocolate and 
high-fat content food. To this end, we used Pergola, our computational framework for 
the analysis and visualization of longitudinal behavioral data. We show how this 
analysis framework is a very powerful way of characterizing the disruption of subtle 
behavioral patterns and how it allows obtaining interesting hints on different temporal 
scales. We also perform classical end point characterization of obesity and show how 
our approach provides a powerful tool to describe, analyze and interpret the emergence 
of behavioral patterns along time. Remarkably, we demonstrate how the analysis of the 
time course of complex disorder can led to the identification of early disruptions of 
behavior that can be a very interesting biomarker for the early therapeutical 
intervention.  

Espinosa-Carrasco J, Burokas A, Fructuoso M, Erb I, Martín-García E, Gutiérrez-
Martos M, et al. Time-course and dynamics of obesity-related behavioral changes 
induced by energy-dense foods in mice. Addict Biol. 2018 Mar;23(2):531–43. DOI: 
10.1111/adb.12595

https://onlinelibrary.wiley.com/doi/10.1111/adb.12595
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3.3. Principal Component Analysis of the Effects of 
Environmental Enrichment and (-)-Epigallocatechin-
3-Gallate on Age-Associated Learning Deficits in a
Mouse Model of Down Syndrome

Preface 

The MWM test has become one of the most widely used behavioral paradigms for the 
assessment of cognitive capabilities. The common practice to infer the cognitive 
performance of individuals on the MWM is the use of univariate indexes. Nonetheless, 
this is usually an underpowered and rather subjective approach to grasp the complexity 
of a behavioral dimension such as cognition.  Therefore, my contribution to this paper 
was the development of a multidimensional analysis based on principal component 
analysis (PCA). We applied this methodology to an experiment aiming to assess the 
effects of a therapeutical intervention on cognition in the Ts65Dn mouse model of down 
syndrome at the age of onset of cognitive decline. We demonstrate that a supervised 
PCA is able to capture the main contribution of several behavioral variables to a 
composite measure of learning. On top of this, we developed a nonparametric 
(permutation) test to assess the differences of this composite measure of learning among 
the different combinations of genotype and treatment. Our results provide a proof of 
concept of how this approach leads to a better, global assessment of behavioral 
multidimensionality and how we can use this methodology to unravel differences 
between treatment groups that otherwise are difficult to detect with classical univariate 
analysis.  

Catuara-Solarz S, Espinosa-Carrasco J, Erb I, Langohr K, Notredame C, Gonzalez JR, 
et al. Principal Component Analysis of the Effects of Environmental Enrichment and 
(-)-epigallocatechin-3-gallate on Age-Associated Learning Deficits in a Mouse Model 
of Down Syndrome. Front Behav Neurosci. 2015 Dec 11;9:330. DOI: 10.3389/
fnbeh.2015.00330

https://www.frontiersin.org/articles/10.3389/fnbeh.2015.00330/full
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3.4. Combined treatment with environmental 
enrichment and (-)-epigallocatechin-3-gallate 
ameliorates learning deficits and hippocampal 
alterations in a mouse model of Down syndrome 

Preface
In this work we applied the same multidimensional approach to a second experiment 
assessing the effects in cognition of a therapeutical intervention on the same mouse 
model of Down Syndrome (Ts65Dn), but this time on an early age developmental stage. 
In this paper, we demonstrate that our approach is robust enough to be systematically 
used for the assessment of different behavioral domains on behavioral paradigms aimed 
to understand precise behavioral domains. 

Catuara-Solarz S, Espinosa-Carrasco J, Erb I, Langohr K, Gonzalez JR, Notredame C, 
et al. Combined Treatment With Environmental Enrichment and (-)-
Epigallocatechin-3-Gallate Ameliorates Learning Deficits and Hippocampal 
Alterations in a Mouse Model of Down Syndrome. eNeuro. 2016 Nov 10;3(5).  DOI: 
10.1523/ENEURO.0103-16.2016

http://www.eneuro.org/content/3/5/ENEURO.0103-16.2016
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4. DISCUSSION

Behavioral neuroscience has undergone a paradigm shift with the advent of 
technologies for the high-throughput recording of behavioral data (Gomez-Marin et al. 
2014). Hence, the era of big data has arrived to behavioral neuroscience. These big 
behavioral data offer the opportunity of studying brain function with an unprecedented 
amount of quantitative behavioral recordings. However, the exploration, analysis and 
modelling of such data represents a great challenge (Hidalgo-Mazzei et al. 2016).   

A comprehensive analysis of long-term longitudinal behavioral recordings by 
computational methods has to deal with heterogeneous data types. These data include 
the long-term behavioral recordings of multiple individuals and the associated-
behavioral data. To date, there is a lack of tools that are flexible enough to integrate all 
these large volumes of heterogeneous behavioral data on multiple individuals for an 
explorative analysis. Beside the commercial systems (Phecomp, Phenomaster, 
Ethovision), some open-source tools allow to visualize variables derived from video 
trackings of posture and movements together with locomotion or social behaviors and to 
browse the data along their timeline (Kabra et al. 2013; de Chaumont et al. 2012).  None 
of these tools provide, however, a framework for the unified analysis of longitudinal 
recordings of behavior. Moreover, in most instances, we want to combine those data 
with physiological or molecular readouts and results of the annotation or the modelling 
of the data. Each of these data types are generated by different systems and comes along 
with its own tools for its analysis and visualization, if available, making the analysis 
even more difficult. Therefore a key aspect when analyzing behavior is how to cope 
with this diversity. To overcome all these limitations of handling big behavioral data, 
my thesis has aimed to provide a bioinformatics tool for the visualization and analysis 
of longitudinal big behavioral data. This led to the development of Pergola (Results 
4.1), an open-source software that unifies the visualization of the raw variables resulting 
from behavioral tracking systems, the behavioral events produced by annotation 
software, derived of the experiment and any other relevant temporal information for the 
contextualization of behavior. Therefore, Pergola enables to capture the subtle 
behavioral variations in response to specific environmental signals. 

The originality of Pergola is that it converts these third-party temporal datasets into 
widely used standard genomic file formats (Sims et al. 2014). The advantage of the 
adoption of genomic file formats is that they provides an entry point to genomic 
bioinformatics tools. This is a great opportunity, because the genomics community has 
developed a myriad of efficient computational tools for the visualization and explorative 
analysis of genomic data (Hinrichs et al. 2006; Quinlan and Hall 2010; J. T. Robinson 
and Thorvaldsdóttir 2011; Dale, Pedersen, and Quinlan 2011; Pohl and Beato 2014). 



 

 130 

We reasoned that since both genomic and behavioral data share a sequential structure, 
these tools could be used for the analysis of behavioral data. Genome browsers (Kent et 
al. 2002; J. T. Robinson and Thorvaldsdóttir 2011), for instance, allow the visualization 
of behavioral longitudinal data, while processing tools such as BEDTools (Quinlan and 
Hall 2010) or bwtool (Pohl and Beato 2014) enable the unified analysis of behavioral 
data and its annotations. Furthermore, I also developed in Pergola  a set of own utilities 
for the manipulation of the data and the annotation of periodic environmental cues.  
 
The next step was to validate the Pergola framework in a real experimental situation. To 
this aim we decided to use it on a quite challenging question, with a strong translational 
relevance: the study of a disorder with a long natural history. This aim was inspired by 
the observation that some relevant brain disorders progress during a long time without 
clinical symptoms. Schizophrenia (Davidson et al. 1999b), Alzheimer Disease 
(Sperling, Aisen, Beckett, Bennett, Craft, et al. 2011) or some types of eating disorders 
(Polivy and Herman 2002) are among the most widely known examples. We chose diet-
induced obesity as a model, and hypothesized that altered behavioral patterns could 
emerge during the long presymptomatic phase, i.e., before significant weight increases 
are established. This is especially relevant, since some authors have proposed that the 
intervention during early disease stages is the strategy to follow to ameliorate the 
prognosis of patients affected by these long-term disorders (Dawson 2008; Sommer et 
al. 2016). However, the temporal progression of the eating behaviors altered during 
obesity development has not been previously reported.  
 
In our study we used Pergola for the characterization of the time course of behavioral 
disruptions provoked by exposure to two of the most widely craved foods. The aim was 
to identify behavioral patterns that can be used as biomarkers of diet-induced obesity 
during its preclinical phase, since this could pave the way to early intervention in diet-
induced obesity. An intervention driven by the early detection of behavioral biomarkers 
could represent an opportunity to restrict the long-term irreversible consequence of 
obesity (Wabitsch 2000; Kopelman 2000). We demonstrated that behavioral disruption 
occurs very early after the exposure to high-caloric foods (Results 4.2), much earlier 
than the common phenotypic trait used for its diagnostic, namely weight, becomes 
visible. Moreover, we established common and differential behavioral changes that 
discriminate the different types of diets. These experiments showed that Pergola was 
extremely useful for data visualization, but also to establish short- and long-phase 
oscillations in eating behavior. Moreover, we were able to combine this description with 
the different analytical tools, extracting relevant information about the fine-grained 
characteristics of feeding behavior. Therefore, we have demonstrated that high-
resolution temporal studies of spontaneous behavior are a powerful tool to unravel the 
dynamics of disease progression in disorders with a long preclinical history, and that 
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Pergola is very efficient and overcomes some limitations of big behavioral data 
visualization and analysis.  
 
Pergola is easy-to-use and freely available to the scientific community on GitHub 
(https://github.com/cbcrg/pergola/), and licensed under the General Public License 
version 3.0 (GPLv3). Overall, Pergola offers a unified computational framework for a 
comprehensive computational analysis of longitudinal recordings of behavior in its rich 
context of associated data sets. In addition, the Pergola website 
(http://cbcrg.github.io/pergola/) hosts several hands-on tutorials where users can learn 
how to use Pergola for the analysis of longitudinal behavioral recordings of feeding 
(Results 4.2). Future efforts will be devoted to release a new version of Pergola that 
incorporates the option of interactively visualizing the data using Shiny 
(http://shiny.rstudio.com/), utilizing a similar approach as Sleuth, a tool for the 
differential analysis of RNA-Seq data (Pimentel et al. 2016). This feature will allow 
users to render and browse the temporal visualizations together with insightful charts in 
a web application. Finally, Pergola can be a useful tool for other fields of research that 
are rapidly accumulating big corpora of sequential data, examples include societal and 
health system contexts (de Montjoye et al. 2013; Jensen et al. 2014; de Montjoye et al. 
2015).   
 
The final work of my thesis was aimed at the study of complex, multidimensional 
behaviors. Classically, the spatial learning capacity of an animal on a multidimensional 
behavioral task such as the MWM (D’Hooge and De Deyn 2001) is assessed by 
univariate indexes. However, these approaches rely on the rather simplistic, subjective 
assumption that a complex behavioral response such as cognition can be grasped by a 
unique index. Therefore the cognitive concepts derived from these indexes should be 
interpreted with caution (Wolfer and Lipp 2000; Graziano, Petrosini, and Bartoletti 
2003). This pitfall led some authors to propose the use of multidimensional techniques 
to tackle the study of processes made up of multiple behavioral domains (Wolfer and 
Lipp 2000; Graziano, Petrosini, and Bartoletti 2003; Kumar et al. 2011). We reported in 
this thesis a PCA-based supervised multidimensional approach for the study of a 
complex behavioral process (Results 4.3).  
 
These results provide a way of understanding different learning-related cognitive 
domains considering the different dimensions affecting behavioral response as opposed 
to classical single-variate measures. Therefore, this method constitutes a better 
approximation to obtain reliable behavioral measures.  Another remarkable feature of 
our approach is that it allows to reduce a confounding factor that commonly masks 
results derived from univariate measures, namely the experimental variance that is 
unrelated to the behavioral domain of interest. Finally, we show how our approach 
enables the statistical comparison among different genotypes and experimental 
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conditions (treatments) using a nonparametric permutation test. Our results, thus, 
provide the first example, to the best of our knowledge, of a PCA-based methodology 
that also assesses the statistical significance of behavioral differences found by the 
multidimensional approach. Interestingly enough, we applied the same methodology to 
a second experiment reporting similar comparable results (results 4.4) and thus, we can 
conclude that our methodology is robust enough to be used on the complex behavioral 
readouts of similar behavioral paradigms. 
 
All in all, in this thesis we have advanced in the understanding of behavior by the 
analysis of automated behavioral recordings. As we have discussed here, classical 
behavioral studies suffer from several shortcomings. Among the most important ones 
we can mention lack of good quantitative measures, limited temporal resolution, 
subjective scoring and poor reproducibility. Big behavioral data offers the opportunity 
to ameliorate some of these problems. Nonetheless, in order to achieve this rather 
ambitious goal, behavioral neuroscience needs to develop tools capable of dealing with 
an overwhelming amount of behavioral data. We strongly believe that a new generation 
of computational methods that incorporate the wisdom acquired by the different schools 
studying behavior, would enable to shed light on one of the most intriguing biological 
questions: how the brain works.   
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5. CONCLUSIONS 
 
1. The characterization of longitudinal high-throughput behavioral recordings and its 
complete spectrum of behavioral-relevant data requires a comprehensive study of its 
time course. Therefore, we have developed a visualization and analytical framework for 
the explorative analysis of the time-dependent changes of longitudinal behavioral data.  
 
2. Previous tools do not allow the unified study of longitudinal behavioral data on a 
flexible interface. We have wrapped up our methodological framework in one open-
source tool, Pergola, which we have made available to the behavioral neuroscience 
community providing access to a myriad of ready-to-use genomic analysis tools. 
 
3. Using Pergola we were able to identify the dynamics of development of altered 
behavioral patterns upon the exposure to two types of widely craved foods, chocolate 
and high-fat content food. 
  
4. The common approach to tackle complex multidimensional behaviors is based on 
univariate measures. In this thesis, we have adapted PCA to grasp the different 
components of a complex behavioral domain in a composite variable. To assess 
significance among different experimental conditions we implemented a nonparametric 
permutation test.   
 
5. We have validated the relevance of our multidimensional approach on two 
independent experiments using a common behavioral test for the assessment of different 
aspects of the cognitive domain. Thus, we have demonstrated the robustness of our 
approach.  
 
6. Our results in a preclinical therapeutic trial on a Down syndrome mouse model 
provide a proof of concept of how this approach leads to a better, global assessment of 
behavioral multidimensionality and how we can use this methodology to unravel 
difference between treatment groups that otherwise are difficult to detect with classical 
univariate analysis. 
 
7. We have also demonstrated that our approach is robust enough to be systematically 
used for the assessment of different behavioral domains on behavioral paradigms aimed 
to understand precise behavioral domains. 
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7. APPENDIX  
 
Methods for the automated recording of behavior. 

Automation of behavioral assays  

Behavioral assays have been extensively used to systematically understand the functions 
of genes expressed in the nervous system by using transgenic, knockout or other newer 
genetically engineered mice (Crawley 2008). The goal of these assays is to evaluate 
capacities such as sensory discrimination (Cybulska-Klosowicz and Kossut 2001), 
cognitive performance (D’Hooge and De Deyn 2001; F. E. Harrison, Hosseini, and 
McDonald 2009; Deacon and Rawlins 2006; Leger et al. 2013), motor function (Brooks 
and Dunnett 2009), feeding (Heyne et al. 2009), or assess responses such as fear (Davis 
2006), pain (Cavanaugh et al. 2009), anxiety (Holmes 2001) and drug addiction 
(Maldonado et al. 2011). The characterization of these behavioral phenotypes has been 
successfully applied to define or validate gene functions, characterize the role of 
receptor isoforms, to study disease phenotypes using translational animal models (Chen 
et al. 2000; Reeves et al. 1995; Yamamoto, Lucas, and Hen 2000) and evaluate possible 
treatments (Pons-Espinal, Martinez de Lagran, and Dierssen 2013; Yamamoto, Lucas, 
and Hen 2000; D’Amico et al. 2016; Brunner, Nestler, and Leahy 2002). Behavioral 
assays aim to characterize behavioral domains in a systematic and reproducible manner, 
and to achieve this goal, these tests minimize the space of possible behavioral outputs 
by reducing the uncertainties in the outcomes by constraining the experimental setup at 
expense of a greater experimental rigidity. For example, operant conditioning paradigms 
evaluate responses as simple as lever presses to obtain a reward and their associated 
measures (latencies, escalation, extinction), or T-maze tests measure the tendency of 
animals to either explore a new environment or to obtain a reward by choosing between 
the left and right arms of a maze shaped as the letter T. Strategies such as combining 
several tests are commonly employed as a means to discard possible confounding 
factors (an animal is not performing correctly a test because it is blind or motor 
impaired) or as a way to evaluate several behavioral processes occurring in human 
disorders (Bućan and Abel 2002; Seong, Seasholtz, and Burmeister 2002).  
 
As even a reader without behavioral testing expertise may suspect, these paradigms can 
be very tedious, time-consuming, expensive and also error prone when manually 
conducted. Hence, since the initial attempts to apply them, researchers have tried to 
automatize these behavioral paradigms as much as possible (Skinner 1932; Winter and 
Schaefers 2011). However, it was not until relatively recently that automation and 
monitoring software solutions became a game-changer of the field. Data acquisition was 
one of the first important improvements information technologies provided. Scores 



 

 136 

annotated by direct observations can lead to unreliable behavioral indexes even when 
dealing with measures as simple as the time spent eating during a deprivation test in 
spite of using the same criteria (Wahlsten et al. 2003). Because of this, many of the 
behavioral readouts such as the number of lever presses in operant conditioning  boxes, 
food or liquid consumption, activity or time spent in a given zone of a maze are 
automatically annotated in almost all current devices using equipments such as 
photoelectric sensors, lickometers or weight transducers. A further advantage of 
automated systems over hand-scored versions of the paradigms is that they enable to 
characterize behaviors that otherwise remain undetectable or unquantifiable, for 
instance, reaction time on the scale of milliseconds (Abraham et al. 2004; Uchida and 
Mainen 2003). However, although automated versions of behavioral tests reduce 
experimental time, the animals have to still be transferred in and out of the home cage 
with the notorious risk of increasing experimental variability due to the animal handling 
(Andrews and File 1993; Sorge et al. 2014; Tecott and Nestler 2004). This pitfall has 
led to the proliferation of systems that integrate mouse housing and experiments to 
avoid the physical manipulation of the animals. The operating principle of these devices 
relies on the use of Radio Frequency IDentification (RFID) transponders that uniquely 
identify animals. Animals can be then housed together in a single cage, and the systems 
control the access of each animal to the operant compartment or to conditioning boxes 
where animals perform the programmed behavioral tasks. Since some model organism 
such as mice or rats are among social animals (Ferhat et al. 2015; Latham and Mason 
2004/6; Vanderschuren, Niesink, and Van Pee 1997), these devices have the added 
benefit of not socially depriving the animals under study, a factor that can affect the 
results of behavioral tests (Olsson and Westlund 2007; Wilkinson et al. 1994). Equally 
important, these systems enable the continuous observation of the animals, an issue 
which we will come back to below.  

Sensor-based systems for the continuous monitoring of single animal behaviors 

In recent years many different commercial and non-commercial systems have been 
developed for the tracking of single animals using different types of sensors. Sensors 
used for the detection of behavior include photobeams for recording of general and 
vertical activity (Sakkou et al. 2007; Goulding et al. 2008; Bura et al. 2010) or actions 
such as nosepoking (Abraham et al. 2004) or feeding (Goulding et al. 2008), infrared 
(IR) sensors (Dell’Omo et al. 2002; Pendergast et al. 2013) mechanical vibrations 
sensors (Van de Weerd et al. 2001; Megens et al. 1987) for the monitoring of general 
activity, weighing transducers (Bura et al. 2010) for the monitoring of food and liquid 
consumption, or gas sensors for the monitoring of oxygen requirements. One of the 
most extensively used animal models in behavior is mouse because of the ease of its 
genetic manipulation, the abundance of techniques to obtain relevant physiological 
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readouts and the translational relevance of its study (Bućan and Abel 2002; Nestler and 
Hyman 2010). Consequently, the number of devices for the recording of rodent 
behavior has grown significantly in recent years. Many of these systems consist in a 
regular rodent home cage equipped with different types of the above-mentioned sensors 
assembled by the researchers in a modular manner (Goulding et al. 2008) or arranged on 
a ready-to-use commercial setup (Van de Weerd et al. 2001; Tang, Orchard, and 
Sanford 2002; Bura et al. 2010). Some popular sensor-based commercial systems 
include the PheCOMP System (http://www.panlab.com/en/products/phecomp-system-
panlab) that enables the monitoring of eating, drinking, vertical and horizontal activity 
(shown in Figure 8 as it has been the system that we used for recording mice feeding 
behavior), the Phenomater systems (http://www.tse-
systems.com/products/metabolism/home-cage/phenomaster/index.htm) a modular 
platform that allows for the combination of several components for the recording of 
readouts such as eating, drinking, vertical/horizontal activity and calorimetry among 
other possibilities and LABORAS (http://www.metris.nl/laboras/laboras.htm), which 
monitors the vibrations produced by the animals to distinguish between behaviors such 
as drinking, eating, grooming and differen types of activities. Moreover, several 
companies offer IR frames that can be situated around the cage to track spontaneous 
activity of rodents inside their regular cages. IR actimeter  
(http://www.panlab.com/es/productos/actimetro-ir-actimeter-panlab) or Actimot2 
(http://www.tse-systems.com/products/metabolism/home-
cage/phenomaster/activity/actimot2.htm) are just two examples. Sensor-based 
approaches record a coarse-grained signal when  compared with video-based 
approaches (Hueihan Jhuang et al. 2010) (see below). However, some of the sensors 
described, as for instance weighing transducers or mechanical vibrations sensors, offer 
the advantage of not relying on the quality of the images and the presence of light and 
do not suffer from an interruption of the tracking of the animals by objects masking the 
signal (Bailoo, Bohlen, and Wahlsten 2010), hence they allow for instance the 
placement of objects in the home cage for environmental enrichment.  All in all, the use 
of sensor-based home cages has proved to be an effective strategy to identify 
phenotypic activity differences on disease mouse models (Dell’Omo et al. 2002; Tang, 
Orchard, and Sanford 2002; L. Robinson et al. 2013) or to identify differential feeding 
patterns in animal models of obesity (Goulding et al. 2008; Heyne et al. 2009; 
Edelsbrunner, Herzog, and Holzer 2009).  
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Figure 8 | The PheCOMP multi-take metabolism and activity cage (Panlab-Harvard Instruments, 
Barcelona, Spain). The PheCOMP cage is a  high-resolution monitoring system that allow for the 
longitudinal monitoring of eating and drinking acts. Cages are equipped with two feeders and two 
drinking dispensers. The system records food/water intake by means of weight transducer. Besides, the 
PheCOMP cage incorporates an IR frame to continuously record horizontal (locomotor) and vertical 
(rearing) activity during the whole recording time. 

Video-based monitoring systems 

Sensor-based monitoring methodologies can yield relevant insights into the temporal 
organization of behavior and the possible implications for the underlying biological 
processes that might lead to different behavioral phenotypes, both in health and disease. 
However, the range of commercially available detectors restricts the possible behavioral 
readouts captured by these systems and only can provide a relatively coarse signal 
(Hueihan Jhuang et al. 2010; Schaefer and Claridge-Chang 2012). Recent advances in 
computer vision systems (Dollar et al. 2005; H. Jhuang et al. 2007; Moeslund, Hilton, 
and Krüger 2006) have fostered the development of a myriad of methodologies for the 
continuous video-monitoring of animal behavior. Video-based systems offer advantages 
such as the fine-grained nature of the signal, the potential capability of recording any 
macroscopic behavior and the low cost of its implementation, among other aspects that 
we will discuss. Obviously, sensor and video-based approaches can be combined to 
obtain very powerful methodologies and reveal all the spatio-temporal dynamics of 
behavior. 
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The study of behavior has for a long time aimed at the video monitoring of relevant 
behavioral readouts. First attempts to achieve this goal can be considered nowadays 
rather elemental and manual implementations (Buelthoff, Poggio, and Wehrhahn 1980; 
Moran, Fentress, and Golani 1981; Crawley et al. 1982; B. M. Spruijt and Gispen 
1983). Nonetheless, these pioneers foresaw the potential of the usage of automatic direct 
observations of behavior. Since then, video recording systems, thanks in part to the 
ubiquitous presence of consumer electronics in our society, have become relatively 
cheap and widely accessible, making the acquisition, storage and processing of 
enormous amounts of fine-grained video recordings affordable for researchers (Gomez-
Marin et al. 2014). This technological development has led to a parallel progress of 
computational solutions for the problems behavioral science has to face. 

Video-based monitoring systems for the monitoring of individual animals 

First video tracking systems enabled only the extraction of features of single animals 
due to technical limitations. Indeed, animal-background segmentation is not a trivial 
algorithmic problem and the segmentation of several individuals increases the difficulty 
of the task (Egnor and Branson 2016). Nonetheless, even a coarse monitoring of animal 
behavioral features capable of yielding space-locomotion measures such as speed or 
distance travelled can provide very informative quantitative data for some behavioral 
paradigms such as the MWM, fear conditioning or the open-field test. As in the case of 
sensor-based monitoring systems, we can also find commercial or open-source systems. 
Commercial software provides ready-to-use solutions for a specific paradigm at the 
expense of a poor adaptability to particular requirements. Some interesting solutions are 
FreezeFrame of Actimetrics (http://actimetrics.com/products/freezeframe/) for fear 
conditioning, SMART (http://www.panlab.com/en/products/smart-video-tracking-
software-panlab), VideoMot (http://www.tse-
systems.com/products/behavior/videotracking/videomot2.htm) or EthoVision (Noldus, 
Spink, and Tegelenbosch 2001) (http://www.noldus.com/animal-behavior-
research/products/ethovision-xt)  three software tracking solutions that can be adapted 
for serveral behavioral tasks relying on mazes and several model organisms and finally, 
Phenotyper (http://www.noldus.com/animal-behavior-research/products/phenotyper) or 
HomeCageScan (http://cleversysinc.com/csi_products/homecagescan/) two video-based 
system to monitor spontaneous activity of mice in their home cage. Many of these 
solutions are subject to constant evolution to incorporate additional features and 
although first they were only able to track one individual or monitor a very precise 
behavior they have been extended to other model organisms (Martin 2004). However, 
many researchers prefered their own, taylor-made solutions which they openly 
distributed to the community. In this manner, users with some programming skills enjoy 
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the additional benefit of being able to adapt the code to particular needs  (Aguiar, 
Mendonça, and Galhardo 2007; Gomez-Marin et al. 2012). OpenControl or Autotyping 
for instance, are open source softwares designed for addressing the tracking of rodents 
in several behavioral mazes (Aguiar, Mendonça, and Galhardo 2007; Patel et al. 2014). 
The Worm Tracker allows the extraction of motor and morphological features of C. 
elegans (Yemini et al. 2013). Similar solutions are available for the tracking of body 
posture and motion of Drosophila adults (Martin 2004; Valente, Golani, and Mitra 
2007) and larvae  (Aleman-Meza, Jung, and Zhong 2015). Interestingly, SOS software 
is able to track several model organisms (Gomez-Marin et al. 2012). 
 
Video-based monitoring systems for the monitoring of multiple animals 
 
As already mentioned, social deprivation can affect behavior and furthermore some 
behaviors (courtship, mating, aggression, etc.) are only observable in a social context. 
However, the identification of individual animals in video recordings is a hard 
algorithmic problem. Consequently, development of systems capable of simultaneously 
tracking multiple animals has been in the focus of intense research efforts. To simplify 
the segmentation problem, some systems make use of color dyes (Noldus, Spink, and 
Tegelenbosch 2001) or bleach patterns on the back of the animal (Ohayon et al. 2013) 
for the unambiguous tracking of animals. Since this approach is unfeasible when 
dealing with small animals like flies, some authors created tools to automatically detect 
complex social behaviors such as courtship and aggression tracking only two flies 
(Nilsen et al. 2004; Hoyer et al. 2008; Dankert et al. 2009). Shortly after, MiceProfiler 
allowed the study of social interaction of mice in a dual setup (de Chaumont et al. 
2012). However, these systems were not able to track large populations of untagged 
animals. To overcome this limitation, a new generation of methods was developed 
enabling to keep the identity of numerous animals  (Gilestro and Cirelli 2009; Branson 
et al. 2009; Kohlhoff et al. 2011; Swierczek et al. 2011b; Straw et al. 2011; Pérez-
Escudero et al. 2014). Noteworthy, Pysolo allows for the high-throughput screenings of 
Drosophila locomotion and sleep in a low-cost setup based on webcams (Gilestro and 
Cirelli 2009). In the case of C. elegans, the Multi-Worm tracker provides the 
community with a very nice real-time method capable of extracting multiple round 
worm behaviors with a screening system. Another interesting tool, CTRAX, enables to 
track the position and orientation of walking flies and based on these parameters, it uses 
machine-learning techniques to automatically annotate behaviors (Branson et al. 2009) 
as shown in Figure 2. Finally, idTracker uses animal “fingerprints” to robustly follow 
the trajectories of several animals (Pérez-Escudero et al. 2014). Interestingly, it exploits 
the “fingerprints” of the animals to avoid the propagation of possible errors and in this 
manner it can keep track of especially difficult cases such as mice. Although some of 
these computational methods have been originally designed for a given model organism, 
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it is often the case that they work well for other model organisms. This is the case of 
CTRAX and idTracker, to mention just two examples. 

Combined approaches 

Direct observations of behavior can be very enlightening with respect to underlying 
disorders or phenotypic differences. On the other hand, behavioral paradigms often help 
us to understand precise behavioral domains. Thus, sometimes approaches that combine 
both can be very efficient for grasping different aspects of the behavioral response. As 
an example, the social housing of animals whose access to the operant modules is 
controlled by RFID transponders allows to combine operant experiments, classically 
used in psychology, with longitudinal observations of spontaneous behaviors, 
classically studied in ethology  (The Intellicage from Newbehavior 
(www.newbehavior.com) is an outstanding example of this type of systems). 
Spontaneous behaviors comprise raw signals such as the number and duration of entries 
in operant compartments, licking events, nosepokes or behavioral bouts derived from 
video tracking. These longitudinal readouts can be interpreted in terms of relevant 
behavioral signals such as total activity, exploration or place preference. The 
combination of both strategies during prolonged periods of time can be fruitful to reveal 
insights about the progression of neurodegenerative diseases (Rudenko et al. 2009; 
Codita et al. 2010; Oakeshott et al. 2011; Lewejohann et al. 2009) or the impact of 
treatments on mental disorders (Branchi et al. 2013). To obtain more ecologically 
relevant results, Lewejohann et al. built a semi-naturalistic experimental setup with 
RFID readers placed in strategic positions (Figure 9). The experiment allowed to 
understand long-term patterns of dominance, movement and place preference of a 
mouse model of Alzheimer’s disease. Furthermore, just the data recorded during periods 
with free access to all cage compartments can already be turned into informative 
behavioral profiles that discriminate between different mouse models (Vannoni et al. 
2014). Video-based monitoring systems have also been successfully combined with 
experimentation. Remarkably, a recent study reported how video-based monitoring of a 
social home cage where animals were challenged with different tests can effectively 
uncover behavioral signatures for a Huntington’s disease genotype (Alexandrov et al. 
2016).   
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Figure 9 | Picture from a self-made, semi-naturalistic social housing that used RFID transducers to obtain 
the movement patterns, place preference and social interactions of a mouse model of Alzheimer’s disease 
for behavioral phenotyping (adapted from Lewejohann et al. 2009). 
 

Beside behavior and environment, another main ingredient for understanding brain 
functioning is neurophysiology. To gain insights into the role of a given protein (or any 
product of a gene) in normal brain function, researchers develop approaches relying on 
the knocking-out of genes and the subsequent screening for the phenotypes that  may be 
modified when compared with genetically unaltered animals, which is known as reverse 
genetics (Bućan and Abel 2002). Behavior is one of the possible phenotypes that can be 
characterized in order to hypothesize which possible molecular mechanism leads to the 
behavioral alteration (John C. Crabbe and Morris 2004; Bućan and Abel 2002). The 
current state-of-the-art in the field of electrophysiology allows for the obtention of 
longitudinal electrophysiological recordings (Buzsáki 2004; Warby et al. 2014). As an 
example, it has been possible to monitor the flying behavior of fixed-head Drosophila 
and contextualize it with the underlying neural activity (Maimon, Straw, and Dickinson 
2010). Furthermore, it is now possible to use optogenetics to modulate neural 



 

 143 

populations and trigger certain behaviors (Deisseroth 2015). Therefore, the integration 
of dense behavioral recordings, long high-quality electrophysiological monitoring and 
interventions in the system become an important approach for understanding brain 
function in its broad context (Maimon, Straw, and Dickinson 2010; Anikeeva et al. 
2012; Chiappe et al. 2010).   

Tools for the automatic annotation of high-throughput  behavioral recordings 

All these high-throughput methodologies for the screening of behavior are resulting in 
collections of big chunks of longitudinal data or BBD (Gomez-Marin et al. 2014). The 
analysis of these longitudinal data may reveal the connection between complex 
phenotypic traits like behavior and the neural systems behind. However, the first step to 
accomplish this goal relies on a correct annotation of the sequence of behavioral bouts. 
The high throughput of these systems makes it unfeasible, in practical terms, to 
manually annotate these data.  Hence, the explosion of methodologies for the high-
throughput screening of behavior has given rise to a subsequent explosion of tools for 
the automatic annotation of behavior (Egnor and Branson 2016). Indeed, many of the 
presented software applications for the monitoring of longitudinal behaviors already 
incorporate more or less sophisticated algorithmic solutions for the computational 
behavioral annotation of the gathered recordings (Branson et al. 2009; de Chaumont et 
al. 2012). Remarkably, JAABA, an interactive tool for the automatic annotation of 
complex sequences (Kabra et al. 2013), allows users to use as input the longitudinal 
posture and motion readouts extracted from video-based recordings of different trackers 
(Branson et al. 2009; Dankert et al. 2009; Swierczek et al. 2011b). Most of these 
computational solutions use either supervised or unsupervised machine-learning 
methods or rule-based classifiers to automatically annotate behavioral bouts from 
quantitative measurement of animal behavior (Egnor and Branson 2016).  Given the 
strong lateral dependency of behavioral series, Hidden Markov Models (HMM) 
approaches are a popular method to model the transition probabilities between 
contiguous behavioral annotations (Hueihan Jhuang et al. 2010; Wiltschko et al. 2015). 
Regardless of how behavioral events are characterized, a paramount aspect for the 
successful annotation of behavior is to contextualize as much as possible the readouts 
provided by the model. This will help to detect possible data artifacts and hence will 
avoid data misinterpretations. Indeed, this concerns other types of readouts, and 
explorative data analysis has a paramount importance in the correct modelling of the 
data. 
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