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The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic

acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA),

perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was

assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA,

PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The

observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells

(PFDoA N PFOS ≫ PFNA N PFOA N PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and

PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect

of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure

of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several

lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests

an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to

alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short

chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Perfluorinated chemicals (PFCs) represent a large group of com-

pounds characterized by a hydrophobic fluorinated carbon tail attached

to a polar hydrophilic head. PFCs are classified as perfluorinated sulfonic

acids (PFSAs), perfluorinated carboxylic acids (PFCAs), fluorotelomer

alcohols (PFTOHs), high-molecular weight fluoropolymers and low-

molecular weight perfluoroalkanamides. They are used in a variety of

consumer products and have emerged as global environmental pollut-

ants (Stahl et al., 2011). They are resistant to degradation and have a

high accumulation potential; thus, once released in the environment,

PFCs persist in aquatic organisms (Giesy and Kannan, 2002; Kannan

et al., 2002). PFSAs and PFCAs are the most ubiquitous compounds and

they have been detected in human blood (Ericson et al., 2007). Typical

serum levels of PFOS and PFOA are in the range of 1 to 50 ng/mL,

although concentrations up to 300 and 2000 ng/mL have been detected

in occupationally exposed workers (Olsen et al., 1998).

Concerns about PFC toxicity have risen due not only to its widespread

distribution and persistence in humans and the environment, but also to

its toxicity and ability to act as endocrine disrupters and obesogens (Du

et al., 2013; Hines et al., 2009). However, while the toxicity of PFOS and

PFOA has been deeply investigated in the last decades, other PFC homo-

logs have been rarely studied. PFCs of shorter chain length are expected

to have similar functions to PFOS and be less bioaccumulative and less

toxic. Thus, Buhrke et al. (2013) showed a positive correlation between

carbon chain length of PFCAs and its toxicity in the human hepato-

carcinoma cell line HepG2: the short chain length PFBA and PFHxA

were less toxic than PFOA. Nonetheless, both PFOS and PFBS promoted

expression of the estrogen and the androgen receptor at environmen-

tally relevant concentrations and caused adverse hepato-histological

effects in the amphibian Xenopus laevis at high concentrations

(100–1000 μg/L), which opens the question of whether short chain

PFCs are safe substitutes of PFOS (Lou et al., 2013).

Moreover, long chain PFCs canmodulate the biosynthesis of gender-

specific steroid hormones. Olsen et al. (1998) reported a 10% increase in

estradiol levels among occupationally exposed workers who had the

highest levels of serum PFOA (N30 ng/mL), although this association

was confounded by body mass index. Decreased gene expression of key

enzymes and transporters involved in steroidogenesis was observed in

male rats exposed to PFDoA and male mice exposed to PFOS (Shi et al.,

2007, 2009;Wan et al., 2011). Also, Zhao et al. (2010) showed a decrease

in testosterone levels in isolated rat Leydig cells exposed to PFOA. All

these studies seem to indicate that long chain PFCAs can act as endocrine

disruptors, but their mechanisms of action are still unknown. A recent
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work by Rosenmai et al. (2013) revealed that fluorochemicals present in

food packaging materials can affect steroidogenesis through decreased

Bzrp and increased CYP19 gene expression leading to lower androgen

andhigher estrogen levels. CYP19 aromatase plays a key role in catalyzing

the irreversible conversion of androgens to estrogens andmaintaining the

androgen/estrogen hormonal balance. Thus, any interaction of chemicals

with the expression of this enzyme or its catalytic activity is very likely to

disrupt the internal hormonal balance between androgens and estrogens.

In humans, aromatase activity has been reported in gonads, brain, ovaries,

testis, placenta, adipose tissue, fetal liver, intestine, skin and brain.

Numerous assays have been developed to evaluate the potential effects

of chemicals on CYP19 aromatase, among them, the human recombinant

microsomal aromatase assay that measures the direct effect of chemicals

on aromatase catalytic activity in vitro (Vinggaard et al., 2000). Currently,

the human placental choriocarcinoma JEG-3 cell line is also frequently

used to assess CYP19 aromatase, since it allows the detection of changes

in aromatase gene expression (Huang and Leung, 2009).

The structural resemblance of PFCs to fatty acids and the discovery

that they bind to peroxisome proliferator-activated receptors (PPARs),

nuclear receptors that play a key role in lipid metabolism and adipogen-

esis, have recently raised the concern that PFCs may disrupt lipid and

weight regulation. Indeed, several studies suggest that exposure to

PFOS and PFOA may be associated with increased cholesterol levels in

humans (Nelson et al., 2010). Also, developmental exposure to low-

doses of PFOA lead to increased weight in adult rats, with increased

serum insulin and leptin, an effect not seen in animals exposed to high

doses of PFOA (Hines et al., 2009). Interestingly, other environmental

chemicals, termed obesogens, have been shown to induce obesity in

adulthood after low-dose developmental exposure, while inducing

weight loss at higher doses (Grün et al., 2006). In addition, PFOS has

been shown to affect membrane properties (e.g. membrane fluidity,

mitochondrial membrane potential) at concentrations below those

associated with other adverse effects (Hu et al., 2003). Despite these evi-

dences, more in-depth studies on the effects of PFCs on cellular lipidome

and the physiological consequences for the cell, are still lacking.

Within this context, the aim of this study was to comparatively de-

termine the cytotoxicity and ability to disrupt CYP19 aromatase activity

of five perfluorinated carboxylic acids and three perfluorosulfonates of

different chain lengths in the human placental choriocarcinoma cell

line JEG-3. Special emphasis was placed on the analysis of cellular lipids

by ultra-high performance liquid chromatography/mass spectrometry

(UPLC/MS) in an attempt to roughly characterize major alterations of

cellular lipids following exposure to a mixture of PFCs. This was

designed as an exploratory analysis to be more fully investigated in fu-

ture experiments with individual PFCs. The PFCs selected for the study

were: perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA),

perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA),

perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS),

perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate

(PFOS).

Materials and methods

Chemicals and reagents. Minimum Essential Medium, fetal bovine

serum, L-glutamine, sodium pyruvate, nonessential amino acids,

penicillin G, streptomycin, PBS and trypsin–EDTA were from Gibco

BRL Life Technologies (Paisley, Scotland, UK). PFBA, PFHxA, PFOA,

PFNA, PFDoA and PFHxS were purchased from Sigma-Aldrich

(Steinheim, Germany), except PFBS and PFOS which were obtained

from Fluka (Austria). Stock standard solutions and serially diluted test

solutions were prepared in ethanol, except for PFOS which was prepared

in dimethyl sulfoxide (DMSO). These compounds were added to the

complete growth medium so that the final solvent concentration

never exceeded 0.4% (v/v), which was not cytotoxic. Perfluoro-n-

(1,2,3,4-13C4)octanoic acid (m-PFOA) and sodium perfluoro-1-

(1,2,3,4-13C4)octanesulfonate (m-PFOS) from Wellington Laboratories

(Ontario, Canada) were used as surrogate standards. HPLC grade water,

ethanol (N99.8%) and acetonitrile (N99.8%) were purchased fromMerck

(Darmstadt, Germany).

Cell culture. JEG-3 cells derived from human placental carcinoma were

obtained from American Type Culture Collection (ATCC HTB-36). They

were grown in Eagle's Minimum Essential Medium supplemented

with 5% fetal bovine serum, 2 mM L-glutamine, 1 mM sodium pyruvate,

0.1 mM nonessential amino acids, 1.5 g/L sodium bicarbonate and

50 U/mL penicillin G/50 μg/mL streptomycin in a humidified incubator

with 5% CO2 at 37 °C. Cells were routinely cultured in 75 cm2 polysty-

rene flasks. When 90% confluence was reached, cells were dissociated

with 0.25% (w/v) trypsin and 0.9 mM EDTA for subculturing and exper-

iments. Experiments were carried out on confluent cell monolayers.

Cell viability. Two fluorescent dyeswere used tomonitor cell viability on

JEG-3 cells (Schirmer et al., 1997). Metabolic activity was monitored

with Alamar Blue (AB™, resazurin) andmembrane integritywas evaluat-

ed with 5-carboxyfluorescein diacetate (CFDA-AM). Cells were seeded at

a rate of 25,000 cells per well (96-well plate) and allowed to attach over-

night at 37 °C, 5% CO2. After 24-hour exposure to PFCs, the medium was

replaced by 100 μL of a solution of AB™/CFDA-AM, incubated for 1 h,

and cell viability was measured using a fluorescence plate reader

(Varioskan, Thermo Electron Corporation) at the excitation/emission

wavelengths of 530/590 nm for AB™ and 485/530 nm for CFDA-AM.

Results were recorded as relative fluorescence units.

Three independent sets of experiments were performed for each

PFC. PFBA, PFBS, PFHxA and PFHxS were tested at 500 μM whereas

PFOA, PFNA, PFDoA and PFOS were also tested at lower concentrations

to obtain concentration–response curves. Within each experiment, ad-

dition of the test compound was done in septuplicate.

Uptake of PFCs. Cells were seeded at a rate of 100,000 cells per well

(24-well plate) and allowed to attach overnight in an incubator at

37 °C, 5% CO2. Cells were then dosed in triplicate with a mixture of

eight PFCs at a concentration of 6.0 μM for each compound, and control

cells were exposed to the carrier (0.4% ethanol). Given the intensive

analytical work required to test eight PFCs individually at different

concentrations, we decided to carry out an exploratory assay with a

mixture of PFCs at a single non-toxic concentration, high enough to

allow the detection of the fraction of PFCs absorbed by the cells. Right

after dosing (time zero), and after 1, 3, 5, 8 and 24 h of incubation, the

medium was aspirated, and the cells were rinsed with PBS, trypsinized

and centrifuged at 3600 rpm for 10min. The supernatant was aspirated

and the cells were stored at −80 °C until analysis. Two independent

sets of experiments were performed.

PFCs were extracted from JEG-3 cells following the method of

Fernández-Sanjuan et al. (2010), with some modifications. A surrogate

standard solution containing m-PFOA and m-PFOS was added to the

cell pellets followed by 1 mL of acetonitrile. Samples were shaken and

extracted in an ultrasonic bath for 10 min (×3); the supernatant was

transferred to a new vial and purified by adding 25 mg of activated

carbon and 50 μL of glacial acetic acid. The obtained supernatant was

evaporated to dryness and reconstituted in 15% methanol/acetonitrile

(60:40) and 85% water.

PFCs were analyzed using an Acquity Ultra Performance Liquid

Chromatography (UPLC) system (Waters, USA) connected to a Triple

Quadrupole Detector. An XBridge™ C18 column (3.5 μm particle size,

50 mm × 4.6 mm, Waters, Ireland) was used as mobile phase residue

trap to remove any PFC traces from the mobile phases and tubing. The

analysis was performed on an Acquity UPLC BEH C18 column (1.7 μm

particle size, 50 mm × 2.1 mm, Waters, Ireland) connected to an

Acquity UPLC BEH C18 (1.7 μm particle size, 5 mm × 2.1 mm, Waters,

Ireland) VanGuard™ pre-column at a flow rate of 0.4 mL/min at a

column temperature of 40 °C. The mobile phase was 20 mM NH4OAc/

125E. Gorrochategui et al. / Toxicology and Applied Pharmacology 277 (2014) 124–130



acetonitrile (90:10) (A)/methanol/acetonitrile (60:40) (B). Gradient

elution started at 15% of B and continued to 95% of B in 8 min. Initial

conditions were attained in 2 min and the system was stabilized for

3 min. PFCs were measured under negative electrospray ionization

(ESI) and acquisition was performed in Multiple Reaction Monitoring

(MRM) using one or two transitions fromparent to product ion to iden-

tify each compound. The elution times, transitions used as well as the

dwell times, cone voltages and collision energies are given in Table 1.

m-PFOA was used as an internal standard to quantify PFBA, PFHxA,

PFOA, PFNA and PFHxS, while m-PFOS was used to quantify PFDoA,

PFBS and PFOS. Sampleswere extracted and analyzed in batches together

with a procedural blank in order to control any external contamination

during the analytical process. Instrument detection limits (LODinst)

were calculated with a standard solution at a concentration of

0.001 ng/μL of each compound by using three times the signal-to-noise

ratio value. Method detection limits (LODmethod) were calculated in the

same way, using spiked cells at a concentration of 0.6 μM (Table 1). No

traces of PFCs were detected in procedural blanks.

Cellular P450 aromatase (CYP19) activity. The assay was adapted from

the method of Lephart and Simpson (1991) that measures the amount

of 3H2O formed during the aromatization of [1β-3H] androstenedione

(3H-AD) by JEG-3 cells. PFC test solutions ranged from 3 nM to 500 μM;

the most cytotoxic PFCs (PFOS, PFDoA, PFNA and PFOA) were tested at

an upper concentration of 100 μM, while PFBA, PFHxA, PFBS and PFHxS

were tested at 500 μM and below.

Cells were seeded at a rate of 100,000 cells per well (24-well plate)

and allowed to attach overnight in an incubator at 37 °C, 5% CO2. After

24-hour exposure to the different PFCs, the cells were washed with

PBS and incubated for 1 h in the presence of 39.5 nM of 3H-AD in

DPBS–Glucose. Under these conditions, titrated water production was

linear over time. The reaction was stopped by placing the plate on ice

and aspirating 1 mL of medium that was extracted with 3 mL of dichlo-

romethane (×3). The amount of titrated water formed was counted in

an aliquot of the aqueous phase (Tri-Carb 2100TR, Packard). Aromatase

activity was expressed in pmol/min/mg protein.

Analysis of lipids in JEG-3 cells. Cellswere seeded at a rate of 100,000 cells

per well (24-well plate) and allowed to attach overnight. The medium

was then replaced with a medium containing a mixture of the eight

PFCs at a concentrationof 0.6 and6 μMeach, or the solvent (0.4% ethanol).

After 24 h incubation, the medium was aspirated; the cells were rinsed

with PBS and trypsinized.

Lipids were extracted by a modification of the method of Christie

(1985). A solution of methanol: chloroform (1:2) containing 0.01% of

butylated hydroxytoluene (BHT) was added to the cell pellets, vortexed

and extracted in an ultrasonic bath for 5 min (×2). The extracts were

evaporated to dryness and stored at −20 °C in an argon atmosphere.

Lipids were measured using an Acquity UPLC system (Waters, USA)

connected to a Timeof Flight (LCT Premier XE) Detectorwith anAcquity

UPLC BEH C8 column (1.7 μm particle size, 100 mm × 2.1 mm, Waters,

Ireland) at a flow rate of 0.3 mL/min and column temperature of

30 °C. Themobile phasewasmethanol with 1mMammonium formiate

and 0.2% formic acid (A)/water with 2 mM ammonium formiate and

0.2% formic acid (B). Gradient elution started at 80% of A, increased to

90% A in 3 min, held for 3 min, increased to 99% A in 9 min and held

for 3 min. Initial conditions were attained in 2 min and the system

was stabilized for 3 min. Phosphatidylcholine (PC), plasmalogen PC,

lyso plasmalogen PC, diacylglycerol (DAG), triacylglycerol (TAG) and

cholesterol ester (CE) were analyzed under positive ESI. Positive identi-

fication of the lipidswas based on the accuratemassmeasurementwith

an error b 5 ppm and its LC relative retention time, compared to that

of the standard (±2%) (Garanto et al., 2013). Glycerophospholipids,

diacylglycerol, triacylglycerol and cholesteryl esters were annotated

as b lipid subclassN btotal fatty acyl chain lengthN:btotal number of

unsaturated bondsN.

Curve fitting and statistical analysis. Statistical significance was assessed

with non-parametric Mann–Whitney U and Kruskal–Wallis tests by

using Stata 12. P b 0.05 was considered statistically significant. The con-

centrations which caused a 50% decline on cell viability (EC50) and on

enzyme activity (IC50) were calculated using SigmaPlot 11.0.

Results

Cytotoxicity

No significant cytotoxicity was observed for the shortest chain

length PFCs (PFBA, PFHxA, PFBS and PFHxS) after 24 h incubation with

the human placental choriocarcinoma cell line JEG-3. In contrast, cell

viability decreased to 55–59% following exposure to 500 μM PFOA,

while PFOS, PFDoA and PFNA caused a decline in cell viability higher

than 90% (Fig. 1). Both, CFDA-AM and Alamar Blue gave a similar

response. PFOA, PFOS, PFDoA and PFNAwere tested at lower concentra-

tions to obtain the corresponding EC50-values (Table 2). PFOS was the

most cytotoxic compound for JEG-3 cells, with EC50 in the range of

Table 1

Elution times, MRM transitions monitored, optimized cone voltages, collision energies and quality parameters for the analyzed PFCs.

PFCs Elution time (min) Transition (m/z) Cone voltage (V) Collision energy (eV) LODinstr (pg) LODmet (pg) Recoveriesa (±SD)

PFBA 0.99 213 N 169 16 10 3.57 4.74 87 ± 8

PFBS 3.38 299 N 80

299 N 99

50 29

26

4.05 3.19 146 ± 15

PFHxA 3.77 313 N 119

313 N 269

15 8

22

3.33 3.84 98 ± 13

PFHxS 5.20 399 N 80

399 N 99

45 40

40

8.82 28.1 106 ± 7

PFOA 5.52 413 N 169

413 N 369

19 11

20

1.90 5.34 98 ± 1

m-PFOA 5.52 417 N 372 17 11 n.a. n.a. n.a.

PFNA 6.12 463 N 419 16 8 1.58 4.04 87 ± 7

PFOS 6.40 499 N 80

499 N 99

50 42

42

5.77 17.1 101 ± 11

m-PFOS 6.40 503 N 80

503 N 99

52 39

39

n.a. n.a. n.a.

PFDoA 7.53 613 N 169

613 N 569

20 10

28

5.73 9.21 70 ± 9

*In all cases the dwell time is 0.07 s.

n.d.: not determined.
a Values obtained in culture medium spiked with the mixture of PFCs at 6 μM.
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107–125 μM, followed by PFDoA and PFNA (181–220 μM) and PFOA

(594–647 μM) (Table 2).

Uptake of PFCs

The differential bioavailability of PFCs in the in-vitro system was

assessed bymeasuring the fraction retained in the cells right after expo-

sure (time 0) to the eight PFC mixture (6 μM), and 1, 3, 5, 8 and 24 h

later. Under the assay conditions, PFDoA and PFOS exhibited the highest

concentration in JEG-3 cells. Right after dosing, a concentration of

149 pmol/mg cell protein was detected for PFDoA, which reached the

maximum cellular concentration 5 h later (1000–1200 pmol/mg cell

protein); no significant increase was detected thereafter (Fig. 2A).

Similarly, a high concentration of PFOS was detected in the cells right

after exposure (127 pmol/mg cell protein), and the maximum cellular

concentration was reached after 5 h of exposure (340–470 pmol/mg

cell protein). Comparatively, lower concentrations were detected

for PFNA, PFOA and PFHxA at time 0 (3–10 pmol/mg cell protein) and

24 h later (10–39 pmol/mg cell protein) (Fig. 2B). Interestingly, maxi-

mal cellular concentration of PFHxA was reached after 1 h of exposure,

while PFOA reached equilibrium after 3 h of exposure, and the long

chain PFNA after 5 h. The concentration of PFBA, PFBS and PFHxS in

the cells was below detection limit under our assay conditions.

P450 aromatase (CYP19) activity

CYP19 activity in JEG-3 cells following 24 h exposure to awide range

of PFC concentrations (3 nM–500 μM) is presented in Figs. 3 & 4. Fig. 3

summarizes the data obtained for the shorter chain PFCs (PFBA,

PFBA PFBS PFHxA PFHxS PFOA PFOS PFNA PFDoA
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Fig. 1. Cytotoxicity of PFCs tested at a concentration of 500 μM in JEG-3 cells. Cell viability

expressed as percentage of viable cells referred to control cells (exposed to the solvent).

Values are mean ± SEM (n = 3). *Statistical significant differences with respect to the

control (P b 0.05).

Table 2

Estimated EC50 of PFCs in the Alamar Blue and CFDA-AM cytotoxicity assays, and estimat-

ed IC50 for CYP19 activity. Values are mean ± SD (n = 3).

Compound EC50 (μM) IC50 (μM) CYP19

Alamar Blue CFDA-AM

PFBA – – n.d.

PFBS – – 68 ± 11

PFHxA – – n.d.

PFHxS – – 298 ± 29

PFOA 594 ± 19 647 ± 22 80 ± 4

PFNA 213 ± 3 220 ± 3 132 ± 51

PFDoA 181 ± 10 219 ± 16 518 ± 562

PFOS 107 ± 9 125 ± 6 57 ± 4

–: No significant cytotoxicity at the highest concentration tested (500 μM).

n.d.: Not determined, low potential to inhibit CYP19 aromatase.

Incubation time (hours)
0 5 10 15 20 25

pm
ol

/ m
g 

pr
ot

.

0

200

400

600

800

1000

1200

1400

PFOS 
PFDoA 

Incubation time (hours)
0 5 10 15 20 25

pm
ol

/ m
g 

pr
ot

.

0

10

20

30

40

PFHxA 
PFOA 
PFNA 

A

B

Fig. 2. Time-dependent concentration of (A) PFOS and PFDoA, and (B) PFHxS, PFOA and

PFNA in JEG-3 cells exposed to a mixture of eight PFCs at a nominal concentration of 6 μM.
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Fig. 3. Aromatase activity after exposure to PFBA, PFHxA, PFBS and PFHxS in the range of

1 μM to 500 μM. Values are relative to control cells (set to 100%) as mean± SEM (n= 3).

CYP19 aromatase activity in control cells was 0.252 ± 0.02 pmol/min/mg protein.
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PFHxA, PFBS and PFHxS) which were not cytotoxic for the cells. The

sulfonates PFBS and PFHxSwere stronger inhibitors of aromatase activity

(97 and 84% inhibition when tested at 500 μM) than the corresponding

acidic compounds (PFBA and PFHxA: 13 and 26% inhibition). Exposure

of JEG-3 cells to the shorter chain PFCs resulted in a concentration depen-

dent inhibition of aromatase activity, with an IC50 of 298 ± 29 μM for

PFHxS and 68 ± 11 μM for PFBS (Table 2).

Conversely, the potential of longer chain PFCs (PFOA, PFOS, PFNA

and PFDoA) to act as CYP19 inhibitors was to some extent affected by

their toxicity, particularly for PFOS, as both toxicity and CYP19 inhibi-

tion curveswere closely related (Fig. 4). Thus, 48% cell death and 80% in-

hibition of aromatase activity were observed for 100 μM PFOS, and IC50
(57 ± 4 μM) and EC50 (107–125 μM) differed only by a factor of 2. In

contrast, PFOA was not cytotoxic but acted as a strong inhibitor of

CYP19 activity (62% inhibition) when tested at 100 μM, with an IC50 of

80 ± 4 μM, comparable to the ones obtained for PFOS and PFBS. PFNA

and PFDoA were weaker inhibitors of CYP19 aromatase: a 39% inhibi-

tion and a 31% inhibition were detected at 100 μM, when the toxicity

of these compounds was very low (Fig. 4).

Changes in cell lipidome

A total of 45 lipids belonging to the classes of PC (16), plasmalogen

PC (10), lyso-plasmalogen PC (1), DAG (6), TAG (10) and CE (2) were

detected by UPLC-TOF ESI positive mode. Relative changes in lipid

content of JEG-3 cells exposed for 24 h to the mixture of PFCs at 0.6

and 6 μM are indicated in Fig. 5. A statistically significant increase

(2- to 3-fold) of PC, plasmalogen PC and lyso plasmalogen PC was de-

tected together with a minor increase of TAG (30%), and no significant

changes in the relative abundance of DAG and CE. The effects were

more evident in cells exposed to 0.6 μM PFC mixture than in those ex-

posed to 6 μM PFC.

The identified compounds were the following: lyso plasmalogen

PC 18:1; plasmalogen PC (34:3, 34:2, 34:1, 34:0, 36:4, 36:3, 36:2, 36:1,

36:0, 38:4); PC (32:2, 32:0, 34:4, 34:3, 34:2, 34:1, 36:6, 36:3, 36:1,

%
 o

f 
co

nt
ro

l

PFOS

%
 o

f 
co

nt
ro

l

0

20

40

60

80

100

PFNA

%
 o

f 
co

nt
ro

l

0

20

40

60

80

100

120

Cell viability
P450 activity

PFDoA

%
 o

f 
co

nt
ro

l

0

20

40

60

80

100

120

Cell viability
P450 activity

A

C

B

D

Cell viability
CYP19 activity

Cell viability
CYP19 activity

Cell viability
CYP19 activity

PFOA

0

20

40

60

80

100

Cell viability
CYP19 activity

Concentration (μM)

Concentration (μM) Concentration (μM)

Concentration (μM)
0.001 0.01 0.1 1 10 100 1000

0.001 0.01 0.1 1 10 100 1000

0.001 0.01 0.1 1 10 100 1000

0.001 0.01 0.1 1 10 100 1000

Fig. 4. Aromatase activity and percentage of cell viability in JEG-3 cells following 24 h exposure to different concentrations of PFOA (A), PFOS (B), PFNA (C) and PFDoA (D). Values are

relative to control cells (set to 100%) as mean ± SEM (n = 3). CYP19 aromatase activity in control cells was 0.252 ± 0.02 pmol/min/mg protein.
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38:8, 38:7, 38:6, 38:4, 38:3, 38:2, 38:0); TAG (48:2, 48:1, 50:3, 50:1,

52:3, 52:2, 52:1, 54:3, 54:2, 54:1); CE (22:6, 18:1), and DAG (32:1,

32:0, 34:2, 34:0, 36:2, 36:1).

Discussion

PFCswith long fluorinated carbon chains, namely PFDoA, PFNA, PFOA

andPFOS,were cytotoxic to JEG-3 cells, while the short chain ones (PFBA,

PFBS, PFHxA and PFHxS) showed no cytotoxicity at the highest concen-

tration tested (500 μM). Similarly, Kleszczyński et al. (2007) measured

EC50-values of different PFCAs in human colon carcinoma HCT116 cells

showing that cytotoxicity increasedwith the elongation of the fluorocar-

bon chain; EC50-values ranged from 124 for perfluorotetradecanoic acid

(PFTeA) to 4154 μM for PFHxA. Also, Buhrke et al. (2013), by using the

human hepatocarcinoma cell line HepG2 as an in vitro model for

human hepatocytes, showed a positive correlation between the carbon

chain length of the respective PFCA and its cytotoxicity. The EC50-values

obtained in JEG-3 cells are in agreement with those reported by

Kleszczyński et al. (2007), but 9- to 25-fold higher than those reported

in HepG2, which suggests a higher sensitivity of the latter to PFCs expo-

sure in comparison to JEG-3 or HCT116 cells. Our work also evidenced a

comparatively higher toxicity of the perfluorosulfonates than PFCAs of

the same chain length, which is particularly evident for PFOS with an

EC50 5-fold lower than PFOA (Table 2).

Interestingly, length of the fluorocarbon chain was not the only factor

affecting PFC absorption by JEG-3 cells. Among the eight analytes, PFDoA

and PFOS showed the highest intracellular concentration (1190 and

470 pmol/mg protein after 24 h exposure), while the concentration

of the long chain PFNAwas 10- to 30-fold lower (Fig. 2). PFC residues

detected in JEG-3 cells after 24 h exposure were as follows:

PFDoA N PFOS ≫ PFNA N PFOA ~ PFHxA, being shorter chain PFCs

(PFBA, PFBS, PFHxS) belowdetection limit. The cytotoxic effect of PFCs, al-

though to some extent affected by the absorption of the compounds, did

not follow the same pattern: PFOS N PFDoA ~ PFNA N PFOA N PFHxA. In-

terestingly, the non cytotoxic compounds (PFBA, PFHxA, PFBS andPFHxS)

were the ones that were not detected in JEG-3 cells or that showed the

lowest cell residue after 24 h exposure (Figs. 1 & 2).

Moreover, this work evidences a high potential of PFOS, PFOA and

PFBS to act as aromatase inhibitors in placental cells. It is important to

stress that not only PFBS, but also PFHxS significantly inhibited CYP19

aromatase activity despite the fact that the measured uptake of the

compounds by cells was below detection limit. Therefore, both PFBS

and PFHxS may exert the inhibitory effect on CYP19 aromatase activity

at rather low endogenous cellular concentrations. These findings are of

particular relevance since at present, producers of fluorochemicals are

replacing long-chain for short-chain PFCs, which are expected to have

a lower impact on environment and human health.

Reproductive toxicity following exposure to long chain PFCs has

often been reported in animals and human cells. Thus, PFOA alters

female pubertal timing in multiple strains of mice (Yang et al., 2009),

and both PFOA and PFOS have been reported to delay pubertal timing

in girls, but not in boys (Lopez-Espinosa et al., 2011). Exposure to

PFOS (3 × 10−8
–3 × 10−7 M) increased estradiol concentration in

H295R cell medium and increased CYP19 expression; however, expo-

sure to 500 mg/L PFOS, decreased expression of CYP19a and CYP19b

and changed the expression pattern of estrogen receptor in zebrafish

embryos (Du et al., 2013). Similarly, Ankley et al. (2005) and Shi et al.

(2008) found that PFOS exposure reduced aromatase activity in fathead

minnow and gene expression zebrafish embryos, which is consistent

with our findings, although in the present study, the inhibitory effect

of PFOS is very closely related to its cytotoxic effect (Fig. 4B).

Concerning effects on JEG-3 cell lipidome, exposure to themixture of

PFCs produced a high increase in lyso plasmalogen PC, plasmalogen PC

and PC, the major components of cell membranes, and a relatively low

increase in TAG. The strongest alteration in cell lipids was registered at

the lowest concentration tested (0.6 μM). These results suggest the

ability of PFCs to interact with cellular membranes, possibly inducing

the synthesis of PCs and plasmenyl-PCs as a defense mechanism of

cells. Xie et al (2010a) reported that PFOS may cause adverse biological

effects by altering the fluidity of lipid assemblies. Also PFOA has a high

tendency to partition into phosphatidylcholine bilayers and to alter

their phase behavior (Xie et al., 2010b). Furthermore, PFOA and PFOS

exposures in PPARα knock-out mice have shown changes in gene ex-

pression indicative of lipotoxicity and altered fatty acid metabolism

(Rosen et al., 2008, 2010).

Levels of PFOS and PFOA in human serum are in the range of 1 to

50 ng/mL, which corresponds to concentrations of 2 and 100 nM, re-

spectively. However, the concentrations in occupationally exposed

workers rise to 0.6 and 4.8 μM, respectively (Olsen et al., 1998). Thus,

although we report significant alterations in JEG-3 cell lipidome at

concentrations about two orders of magnitude above the PFC levels re-

ported in human serum, the observed alterations are very likely to occur

in occupationally exposedworkers.Moreover, future studies are needed

to investigate the ability of individual components of the PFCmixture to

alter lipid profiles, as well as to determine the lowest concentration of

individual and combined PFCs that leads to a significant alteration of

cellular lipids.

Overall, this work contributes to the better knowledge of the effects

of PFCs in human cells indicating an interference with cellular lipids at

concentrations well below those associated with other adverse effects,

such as cytotoxicity or endocrine disruption. The work also highlights:

(a) the ability of PFOS and PFOA, particularly the shorter chain PFBS

and PFHxS, to inhibit CYP19 aromatase activity in human placental

cells, and (b) the importance of measuring the uptake of xenobiotics

by cells in further in-vitro studies in order to establish a more realistic

concentration–effect scenario.
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Abstract The aim of this study was to develop a method

based on ultra high performance liquid chromatography

coupled with mass spectrometry (UHPLC-MS) for lipid pro-

filing in human placental choriocarcinoma (JEG-3) cells.

Lipids were solid–liquid extracted from JEG-3 cells using a

solution of chloroform/methanol (2:1, v/v) in a simple proce-

dure requiring minimal sample alteration. Simultaneous sep-

aration of complex lipid mixtures in their major classes was

achieved with a reversed-phase (C8) UHPLC column and a

mobile phase containing methanol with 1 mM ammonium

formate and 0.2 % formic acid (A)/water with 2 mM ammo-

nium formate and 0.2 % formic acid (B). Lipids were charac-

terized using time-of-flight (TOF) and Orbitrap under full scan

and positive electrospray ionizationmodewith both analyzers.

A total of 178 species of lipids, including 37 phosphatidyl-

cholines (PC), 32 plasmalogen PC, 9 lyso PC, 4 lyso

plasmalogen PC, 30 triacylglycerols, 22 diacylglycerols, 7

cholesterol esters, 25 phosphatidylethanolamines, and 12

sphingomyelins, were identified using TOF and Orbitrap.

The identification of all lipid classes was based on exact mass

characterization with an error < 5 ppm. The developed meth-

odology was applied to study lipid alterations in human pla-

cental cells against the exposure to perfluorinated chemicals

(PFCs) and tributyltin (TBT).

Keywords Lipidomics . JEG-3 cells .Mass spectrometry .

Time-of-flight and orbitrap analyzers . Perfluorinated

chemicals (PFCs) . Tributyltin (TBT)

Introduction

Lipidomics, a ramification of metabolomics, is the end point of

omics cascade and can be described as the systemwide study of

lipids and their interaction with other biochemicals. In fact, the

term lipidome can be defined as the comprehensive and

nonexhaustive quantitative description of a group of lipid clas-

ses that may constitute a cell or bio-organism (Castro-Perez

et al. 2010). Lipids and their interaction with cells play a crucial

role in living organisms. Among the multiple biological func-

tions of lipids, they contribute in compartmentalization, energy

production and storage, cell-signaling processes, protein traf-

ficking, and membrane organizing tasks (Oresic et al. 2008;

Van Meer 2005). Moreover, several diseases, including obesity

(Shi and Burn 2004), cardiovascular dysfunctions, diabetes,

cancer, and neurodegenerative alterations, are associated with

abnormalities in lipid functions and physiological levels (Shui

et al. 2007). Lipid alterations have been attributed to the possi-

ble involvement of environmental obesogens, xenobiotics that

can disrupt the normal developmental and homeostatic control

over adipogenesis and energy balance (Grün and Blumberg

2006). Among others, tributyltin (TBT) has raised a lot of
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attention since it is an environmental endocrine disrupter with

the capacity to promote adipogenesis (Grün et al. 2006). In

addition to TBT, perfluorinated chemicals (PFCs) have been

reported to alter lipid levels in some animal species and humans

(Gilliland andMandel 1996; Nelson et al. 2010). Both TBTand

PFCs share bioaccumulative properties; they are widely distrib-

uted environmental pollutants and are the target analytes of the

present study.

According to all that, the importance of lipidomics lays not

only on its contribution toward the enhanced understanding of

the pathogenesis of multiple disease states related to lipids but

also on the study of the impact of some emerging chemicals

such as obesogen compounds in the environment and humans.

Lipids are exceptionally diverse in their structural, chemi-

cal, and physical properties. According to the latest version of

the Comprehensive Classification System for Lipids firstly

established on 2005 by the International Lipid Classification

and Nomenclature Committee (ILCNC), lipids are divided

into eight main distinctive classes: (1) fatty acids (FA), (2)

glycerolipids (GL), (3) glycerophospholipids (GP), (4)

sphingolipids (SP), (5) sterol lipids (ST), (6) prenol lipids

(PR), (7) saccharolipids (SL), and (8) polyketides (PK)

(Fahy et al. 2009). The characterized lipids in the present

study include some GL (diacylglycerols and triacylglycerols),

various GP (phosphatidylcholines and its lyso forms and

derivatives with plasmalogens and phosphatidylethanol-

amines), sphingomyelins in the group of SP, and cholesterol

esters as ST.

Lipid extraction is the first step toward lipidomic analysis.

Due to the water-insoluble nature of lipid molecules, most of

the described procedures in literature use organic solvents as

the preferred extractive agents. Among the organic solvents,

the most common for lipid extraction in biological tissues are

chloroform and methanol combined in a mixture (2:1, v/v;

Bligh and Dyer 1959; Folch et al. 1957). However, nontradi-

tional extractive methods have used other organic solvents,

such as isopropanol or hexane, in order to maximize the

selective collection of particular lipid classes of interest

(Hughes and Brash 1991).

Separation of the extracted lipid species in their major

classes is a complicated procedure due to the highly complex

biological matrices in which they are contained. One of the

earliest techniques developed was thin layer chromatography

(TLC) for routine analysis of lipids (Bennett and Heftmann

1962; Ruggieri 1962). However, in most recent applications,

this technique is only used as a fast and extensive screening

tool prior to the exhaustive analysis with more sensitive and

selective techniques such as liquid chromatography (LC;

Watson 2006).

Lipidomic analysis by LC can follow either normal-phase

or reverse-phase strategies. While fatty acids are commonly

separated on reverse-phase columns (Watson 2006), separa-

tion of phospholipids (PL) can be achieved by both

approaches. Normal-phase LC effectively separates PL ac-

cording to their different polar heads and not considering their

sn-1 and sn-2 fatty acid substituent. In contrast, reversed-

phase strategy separates PL on the basis of their fatty acid

residues (Castro-Perez et al. 2010). However, for a complete

separation of lipids, two-dimensional LC has reported to be

the ideal method since it allows the combination of normal-

and reversed-phase approaches (Pulfer and Murphy 2003,

Wang et al. 2013).

Various classic detection methods, such as spectrophoto-

metric analysis in the ultraviolet (UV) range and evaporative

light scattering, have reported to be adequate for detecting

lipids (Watson 2006). However, in recent years, mass spec-

trometry (MS) has evolved as a superior detection method for

identifying lipids in biological matrices due to its high sensi-

tivity and the additional information it provides (Sommer et al.

2006). Moreover, the recent ability of high-resolution mass

spectrometers to obtain accurate mass measurements has

emplaced them at the top of MS analyzers in lipidomic re-

search. In fact, analyzers, such as Orbitraps, Fourier transform

ion cyclotron resonance (FTICR), time-of-flight (TOF), and

hybrid quadrupole orthogonal TOF (Q-TOF), have replaced

the conventional low-resolution quadrupoles and linear ion

traps, as they can resolve isomeric and isobaric species and

elucidate elemental composition.

Thus, the aim of this study was to characterize the

lipidomic composition of JEG-3 cells using high-resolution

mass spectrometry (HRMS). Moreover, the effects of PFCs

and TBT on the lipidome of the human placental choriocarci-

noma cell line JEG-3 were investigated.

Materials and methods

Chemicals and reagents

Minimum essential medium, fetal bovine serum, L-glutamine,

sodium pyruvate, nonessential amino acids, penicillin G, strep-

tomycin, phosphate buffered saline (PBS), and trypsin-

ethylenediaminetetraacetic acid (EDTA) were supplied by

Gibco BRL Life Technologies (Paisley, Scotland, UK).

Tributyltin (TBT), perfluorobutanoic acid (PFBA),

perfluorohexanoic acid (PFHxA), perfluorooctanoic acid

(PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic

acid (PFDoA), and perfluorohexanesulfonate (PFHxS)were pur-

chased from Sigma-Aldrich (Steinheim, Germany), and

perfluorobutanesulfonate (PFBS) and perfluorooctanesulfonate

(PFOS) were obtained from Fluka (Austria). Stock standard

solutions containing themixture of the eight PFCswere prepared

in ethanol at concentrations of 0.1 and 1 mM, and the stock

solution of TBTwas prepared in dimethyl sulfoxide (DMSO) at a

concentration of 0.02 mM. These solutions were stored at

−20 °C. High-performance liquid chromatography (HPLC)-
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grade water, methanol (>99.8 %), and acetonitrile (>99.8 %)

were purchased from Merck (Darmstadt, Germany).

Chloroform was supplied by Carlo-Erba (Peypin, France) and

butylated hydroxytoluene (BHT) by Sigma-Aldrich (St. Louis,

MO, USA).

Cell culture

JEG-3 cells derived from a human placental carcinoma were

obtained from American Type Culture Collection (ATCC HTB-

36). They were grown in Eagle’s minimum essential medium

supplemented with 5 % fetal bovine serum, 2 mML-glutamine,

1mMsodium pyruvate, 0.1mMnonessential amino acids, 1.5 g/

l sodium bicarbonate, and 50 U/ml penicillin and 50 μg/ml

streptomycin in a humidified incubator with 5 % CO2 at 37 °C.

Cells were routinely cultured in 75 cm2 polystyrene flasks

(Corning; NY, USA). When 90 % confluence was reached, cells

were dissociated with 0.25 % (w/v) trypsin and 0.9 mM EDTA

(trypsin-EDTA) for subculturing and experiments. Experiments

were carried out on confluent cell monolayers.

Sample preparation

Cell exposure to PFCs and TBT

Cells were seeded at a rate of 0.67×106 cells per well (six-well

plate) and allowed to attach overnight in an incubator at 37 °C,

5 % CO2. Then, 6 μl of the 0.02 mM stock solution of TBTor

6 μl of the 0.1 and 1 mM stock solutions containing the eight

PFCs of study (PFBA, PFHxA, PFOA, PFNA, PFDoA,

PFBS, PFHxS, and PFOS) were directly added to the wells.

The final concentration of DMSO and ethanol in culture wells

was 0.4 % (v/v), and final concentrations of PFCs were 0.6

and 6.0 μM and 0.1 μM for TBT. After 24 h of exposure, the

medium was aspirated and cells were washed with PBS,

trypsinized, and centrifuged at 5,400×g for 10 min. The

supernatant was aspirated and cells were stored at −80 °C

until analysis. In all cases, addition of the tested compound

was done in triplicate, and controls were performed by adding

the corresponding solvent to cells.

Lipid extraction

Lipids were extracted from JEG-3 cells with similar extraction

conditions of a previous study (Christie 1985). To the cell

pellets, 540 μl of a methanol:chloroform (1:2, v/v) solution

containing 0.01 % of BHT, acting as an antioxidant, were

added. Samples were shaken with a vortex mixer (1 min),

were settled for 30 min, and extracted in an ultrasonic bath for

5 min at room temperature (two times). Between each period

of 5 min, samples were thoroughly mixed. Afterwards, sam-

ples were centrifuged at 13,000×g for 5 min. The supernatant

was transferred to a new micro vial, evaporated to dryness,

reconstituted with 160 μl of acetonitrile, and stored at −20 °C

in an argon atmosphere.

Instrumental analysis

UHPLC conditions

All analyses were performed with an ultra high performance

liquid chromatography (UHPLC) system using an octyl car-

bon chain (C8)-bonded silica column. Chromatographic pa-

rameters, such as column temperature, injection volume, flow

rate, mobile phases, and gradient elution programs, are sum-

marized in Table 1.

MS conditions

Analyses were performed with an UHPLC system coupled to

two distinct mass analyzers. The analytical instrumentation used

were an UHPLC system coupled to a Waters/LCT Premier XE

TOF analyzer controlled with Waters/Micromass MassLynx 4.1

software and an UHPLC system (Accela) coupled to a Thermo

Fischer Scientific LTQ Orbitrap Velos controlled with Thermo

Fischer Scientific/Xcalibur software. The MS parameters, such

as the ionization mode (positive electrospray), the mass acquisi-

tion range used in each mass analyzer along with other param-

eters, are summarized in Table 1.

Identification and relative quantification of lipids

Positive identification of lipids was based on the accurate

mass measurement with an error < 5 ppm using both high-

resolution TOF and Orbitrap. Relative retention times in

UHPLC, compared to that of some standards (±2) used in a

previous study, analyzed under the same chromatographic

conditions (Garanto et al. 2013), were also considered as

identification criteria. An inventory of a total of 225 lipids,

containing 45 phosphatidylcholines (PC), 36 plasmalogen PC,

18 lyso PC, 4 lyso plasmalogen PC, 39 triacylglycerols

(TAG), 26 diacylglycerols (DAG), 7 cholesterol esters (CE),

35 phosphatidylethanolamines (PE), and 15 sphingomyelins

(SM), based on reported identified species (Garanto et al.

2013), was first generated. Their theoretical exact masses were

determined using a spectrum simulation tool of Xcalibur

software, and the obtained list was further used as a home-

made referential database. Individual chromatographic peaks

of distinct lipid species were isolated from full-scan MS

spectra when selecting their theoretical exact masses, extract-

ed from the database. Then, a list of possible candidates fitting

the specific exact mass was generated using formula determi-

nation tools (elemental composition search) of both

Micromass MassLynx and Thermo Fischer Scientific

Xcalibur softwares. The elemental number was restricted to

include C, H, O, N, and P. The formula constraints were C, H,
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O≥1, P≥0, and N≥1, following the nitrogen rule. The number

of double-bond equivalents (DBEs) was set between −0.5 and

15.0. The search was based on single mass analysis and only

considered the m/z value of the monoisotopic peak.

Annotation of lipid species: GL, GP SP, and STare annotated

as < lipid subclass > <total fatty acyl chain length>:<total number

of unsaturated bonds > and SM < total fatty acyl chain

length>:<total number of unsaturated bonds in the acyl chain>.

Relative quantification was done by comparison of peak areas in

extracted ion chromatograms between exposed cells and controls.

Data processing and statistical analysis

Significant differences among controls and TBT/PFC-

exposure treatment mean values (n=3) were determined by

an ANOVA of one factor, considering statistical significance

of P<0.05. All graphics were computed in Excel 2007.

Results and discussion

Chromatographic separation

Successful UHPLC separation of lipids in their major classes

was achieved using a C8-bonded silica column of 100-mm

length. With TOF, 10 μl of the sample extract provided good

resolution and sensitivity. However, with the Orbitrap, im-

proved chromatographic peak shape was obtained when

injecting 5 μl instead of 10 μl into the system and optimum

column temperature was set to 30 °C. Concerning mobile

phases, the optimum conditions were the use of methanol with

1 mM ammonium formate and 0.2 % formic acid (A) com-

bined with water with 2 mM ammonium formate and 0.2 %

formic acid (B). The addition of ammonium formate to the

solvents has reported to be advantageous due to the formation

of adduct ions [M+NH4]
+ in positive mode, which are known

to be more stable than the [M+H]+ ions for some lipid classes.

In the present study, lipids corresponding to the families of

TAG, DAG, and CE were identified as ammonium adducts,

whereas the rest of lipid groups were identified in the

monoprotonated form. However, the use of ammonium for-

mate requires the addition of buffering acids, such as the

formic acid added in the present study, to avoid the formation

of double-peak chromatograms (Sommer et al. 2006).

Regarding elution program, the gradient conditions slightly

changed when using the TOF or the Orbitrap with the aim to

improve and adapt the chromatographic separation to each

instrument. Both gradients presented in conditions A and B of

Table 1 allowed good separation of main lipid classes. They

both started at high percentage of the organic phase A, 80 and

85 %, respectively, and increased up to 99 % to allow the

Table 1 UHPLC and MS conditions tested for the analysis of lipids in JEG-3 cells

Conditions A B

UHPLC

LC system Waters ACQUITY UHPLC system Thermo Fischer Scientific Accela UHPLC system

Column ACQUITY UPLC BEH (Waters, Ireland) Then a list of possible candidates fitting

C8 column (100×2.1 mm) 1.7 μm

Column T 30 °C 30 °C

Injection volumen 10 μl 5 μl

Flow rate 0.3 ml/min

Mobile phase A: Methanol with 1 mM ammonium

formiate and 0.2 % formic acid

B: Water with 2 mM ammonium formiate

and 0.2 % formic acid

Gradient elution 80–90 % of A/3 min, held for 3 min, increase to 99 % A/9 min,

held for 3 min, return to initial conditions in 2 min

and stabilization for 3 min

85 % of A/1 min, increase to 90 % A/9 min, held for

2 min, increase to 99 % A in 6 min, held for 2 min,

return to initial conditions in 2 min and stabilization

for 3 min

MS

MS system Waters/ LCT Premier XE time-of-flight (TOF) analyzer Thermo Fischer Scientific Orbitrap analyzer

Ionization mode ESI (+) ESI (+)

Acquisition range 50–1,800m/z 395–1,000m/z

Capillary voltage 3.0 kV Source voltage 3.5 kV

Desolvatation temperature 350 °C Capillary temperature 300 °C

Desolvatation gas flow 600 l/h Sheath gas flow 50 l/h

Auxiliar gas flow 20 l/h

Sweep gas flow 2 l/h
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desired elution of lipid species. With the Orbitrap, the

two gradients were tested, and enhanced separation of

lipid species was achieved when using the latter condi-

tions, despite having a longer chromatogram than the

one used with TOF. Figure 1 shows UHPLC chromato-

grams of TOF (Fig. 1a) and Orbitrap (Fig. 1b) when

working at their respective optimum conditions

(Table 1).

MS conditions

As observed in Table 1, the main difference among MS

parameters used with TOF and Orbitrap was the acqui-

sition range. The shorter range used in Orbitrap with

respect to the one used in TOF was necessary to sup-

press high contribution of background ions in the

system.

Lipid identification

Lipid species were successfully identified with both

high-resolution TOF and Orbitrap. As shown in the

UHPLC chromatograms of Fig. 1a and b, equivalent

chromatographic distribution profiles were obtained

when using both TOF and Orbitrap. Lyso PC and lyso

plasmalogen PC were the first groups of lipids to elute

and appeared in the early 5 min of the UHPLC-TOF

chromatogram and between 4 and 7 min of the UHPLC-

Orbitrap chromatogram. These groups of lipids were

totally resolved from PC, plasmalogen PC, PE, SM,

and DAG, which eluted together in the subsequent

10 min of the chromatogram. TAG and CE appeared

together in the final minutes of the chromatogram.

Individual lipid species unresolved in the total ion chro-

matogram were successfully isolated when their exact

masses were selected. Thus, despite the incomplete

chromatographic resolution of the complex lipid mix-

ture, identification of individual lipids was possible

using both the high-resolution TOF and Orbitrap. A

total of 178 species of lipids were identified by TOF

and Orbitrap and are shown in Table 2. In the group of

glycerophospholipids, 107 species were identified con-

taining 37 PC, 32 plasmalogen PC, 9 lyso PC, 4 lyso

plasmalogen PC, and 25 PE. In the group of
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Fig. 1 UHPLC-MS total ion

chromatograms of extracted lipids

from JEG-3 cells when using a

the TOF analyzer and b the

Orbitrap analyzer, under

conditions A and B of Table 1,

respectively
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glycerolipids, 52 species were identified containing 30

TAG and 22 DAG. As sterols, 7 CE were identified,

and in the group of sphingolipids, 12 SM were deter-

mined. The compounds identified with their accurate

mass measurement, elemental composition, calculated

mass, error, double-bond equivalents and retention times

are shown in the Table S1. Although not all lipids

present in the cells were analyzed, the reported classes

are quite representative since account for the 70 % of

cellular lipidome. Phosphatydilserine and phos-

phatidylinositol were not determined since they can only

be detected in negative electrospray ionization mode and

the sensitivity was too low. considering the amount of

extracted lipids from JEG-3 cells.

The distinct resolution of TOF and Orbitrap, 11,500

and 30,000 FWHM at m/z 556 and 400, respectively,

resulted in a high lipid identification power. The use of

30,000 resolution with the Orbitrap would allow the

resolution of isobaric species, although in our specific

case, such species were chromatographically resolved.

Figure 2 shows the identification ratio of the different

target lipids when using both mass spectrometers. Equal

results were obtained in families of lyso PC, TAG,

DAG, CE, and SM. In the rest of the lipid groups,

PC, plasmalogen PC, lyso plasmalogen PC and PE,

identification was slightly superior with Orbitrap but

with no significant differences. Of all the 178 lipids

identified in the present study, 88 % were found by

both analyzers, 4 % were only seen by TOF, and 8 %

were only found with Orbitrap. Thus, the two high-

performance platforms, TOF and Orbitrap analyzers,

showed equivalent capability for lipidomic analysis in

human placental choriocarcinoma JEG-3 cells.

Lipidome changes in PFC/TBT-exposed cells

The chromatographic profiles of PFC/TBT-exposed cells were

compared to controls. TBT effects were studied at the low

concentration of 0.1 μM, since it was the reported level at

Table 2 Lipid species identified using both TOF and Orbitrap analyzers

Glycerophospholipids

PC 30:0##, 32:0, 32:1, 32:2, 34:0, 34:1, 34:2, 34:3,

34:4, 34:5##, 34:6#, 36:0, 36:1, 36:2, 36:3,

36:4, 36:5, 36:6, 38:1, 38:2, 38:3, 38:4, 38:5,

38:6##, 38:8##, 40:0, 40:1, 40:2, 40:3, 40:4,

40:5, 40:6, 42:2, 42:3, 42:4, 42.5, 42:6

Plasmalogen PC 30:0, 30:1, 30:2##, 32:0, 32:1, 32:2, 34:0, 34:1,

34:2, 34:3, 34:4##, 36:0, 36:1, 36:2, 36:3, 36:4,

36:5, 38:1, 38:2, 38:3, 38:4, 38:5, 38:6, 38:7,

40:1, 40:2, 40:3, 40:4, 40:5, 40:6, 40:7, 40:8##

Lyso PC 16:0, 16:1, 18:0, 18:1, 18:2, 20:1, 20:2, 20:3,

20:4

Lyso plasmalogen PC 16:0, 16:1##, 18:0, 18:1

PE 32:0, 32:1, 34:0, 34:1, 34:2, 34:3#, 36:0##, 36:1,

36:2, 36:3, 36:4, 36:6##, 38:1, 38:2, 38:3, 38:4,

38:5, 38:6, 38:7#, 40:1, 40:2#, 40:3, 40:4##,

40:5##, 40:6##

Glycerolipids

TAG 48:0, 48:1, 48:2, 48:3, 48:4, 48:6##, 50:0, 50:1,

50:2, 50:3, 50:4, 50:5, 50:6, 52:0, 52:1, 52:2,

52:3, 52:4, 52:5, 52:6, 52:7, 54:1#, 54:2, 54:3,

54:4, 54:5, 54:6, 54:7, 54:8, 54:9

DAG 32:0, 32:1, 32:2, 32:3, 34:0, 34:1, 34:2, 34:3,

34:4, 36:0, 36:1, 36:2, 36:3, 36:4, 36:5, 36:6,

38:0##, 38:1#, 38:2, 38:3, 38:4, 38:5

Sterol lipids

CE 18:0, 18:1, 18:2, 18:3, 20:4, 20:5, 22:6

Sphingolipids

SM 14:0, 16:0, 16:1, 18:0, 18:1, 20:0, 20:1, 22:0,

24:0, 24:1, 24:2, 24:3

Symbols (#) indicate lipid species only identified using TOF and (##)

using Orbitrap. Lipid species GL, GP SP, and ST are annotated as < total

fatty acyl chain length>:<total number of unsaturated bonds > and SM as

< total fatty acyl chain length>:<total number of unsaturated bonds in the

acyl chain>
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which this compound promoted adipogenesis in verte-

brates (Grün et al. 2006). In contrast, PFC effects were

studied at two levels of concentration, 0.6 and 6 μM,

the first close to the TBT exposure level and the latter

about ten times higher. The selected doses of exposure

were nontoxic for JEG-3 cells, as shown in a previous

study (Gorrochategui et al. 2014).

Figure 3 represents differences in lipid amounts of exposed

cells and controls caused by the distinct treatments, expressed

as increasing rates, calculated as:
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Fig. 3 Increasing rates of a PC, plasmalogen PC, lyso PC and lyso

plasmalogen PC, b TAG, DAG and CE and c PE and SM in JEG-3 cells

exposed to a mixture of PFCs, at 0.6 μM ( ) and 6 μM (■) and TBT at

0.1 μM ( ). Values are relative to the cell control (set to 1) and are

means±SEM (n=3), analyzed by TOF. Symbols (#) indicate lipid species

only identified using TOF and (##) using Orbitrap. One-way ANOVA

was performed to indicate statistical significant differences against the

control (*P<0.05). Species of lipids are defined by their number of

carbon atoms and the unsaturations of their fatty acid chains
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Increasingrate ¼

Xn

i¼1
Ai; exposedcell

Xn

i¼1
Ai; control

where Ai represents the peak area of the lipid, and n the

number of replicates of the four groups of samples (con-

trols, cells exposed to PFCs at 0.6 μM, PFCs at 6 μM,

and TBT), which was three in our experiment conditions.

In each case, the variance associated to the increasing rate

was calculated as the quotient of the standard error of the

mean (SEM) of the corresponding cell treatment and SEM

of controls.

Despite most lipid species were identified using both

analyzers, the results shown correspond to the TOF analysis

with the exception of few lipid species only identified

with Orbitrap. Lipid species exclusively identified with

TOF and Orbitrap are highlighted with symbols # and ##,

respectively.

As shown in Fig. 3a, distinct effects were observed in

four groups of the GP analyzed, PC, plasmalogen PC,

lyso PC, and lyso plasmalogen PC, when exposed to

PFCs and TBT. While exposure to PFCs produced signif-

icant increase in some lipid species, there was no signif-

icant alteration resulting from TBT exposure in the major-

ity of cases. Even more, in groups of lyso PC and lyso

plasmalogen PC, levels of lipids of cells exposed to the
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organotin compound were lower than in control samples.

Surprisingly, effects of TBT were highly visible in families

of TAG and DAG, whose levels suffered a dramatic

increase after the exposure to the organotin compound.

The effect of PFCs was considerably minor, even in the

high concentration exposure of 6 μM, producing a low

increase in the amount of some TAG and no significant

effect on DAG. In the case of CE species, only two of

them, 18:0 and 18:1, suffered a significant increase when

exposed to TBT. Finally, effects on PE were practically

undetectable and were only noticed in lipid species 38:3,

whereas effects on SM resulted higher and were attributed

to the presence of PFCs.

The observed increase in the amount of lipids resulting

from the presence of TBT is in accordance to the findings of

several studies which report the obesogenic effects of the

organotin compound. According to our findings, Janer et al.

(2007) reported increased accumulation of lipids and fatty

acids in ramshorn snail Marisa cornuarietis. Moreover,

Grün et al. (2006) reported promoted adipogenesis in murine

3 T3-L1 cell model and elevated lipid accumulation in adipose

depots, liver and testis of neonate mice exposed to TBT. The

observed effects of PFCs suggested a major influence on

membrane lipids containing phosphorylcholine, such as PC,

plasmalogen PC, lyso PC, and lyso plasmalogen PC, and

sphingomyelins. In contrast, alterations of TBT where highly

noticeable in TAG, DAG, and CE species.

In conclusion, the presented UHPLC-TOF/Orbitrap ap-

proaches allowed successful lipid profiling of JEG-3 cells.

The proposed methodology was applied for the study of lipid

alterations in PFC/TBT-exposed cells observing significant

effects of both xenobiotics.
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� The lipidome of human placental

cells exposed to xenobiotics is stud-

ied.
� Multiple liquid chromatographic

coelutions are resolved by MCR-ALS.
� Two untargeted strategies are pro-

posed to discover lipid disruption

biomarkers.
� Biomarker identification allows in-

terpretation of lipid changes in

stressed cells.
� The proposed method is a powerful

alternative to targeted lipidomic

strategies.
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A B S T R A C T

A lipidomic study was developed in a human placental choriocarcinoma cell line (JEG-3) exposed to

tributyltin (TBT) and to a mixture of perfluorinated chemicals (PFCs). The method was based on the

application of multivariate curve resolution-alternating least squares (MCR-ALS) to data sets obtained by

ultra-high performance liquid chromatography coupled to time-of-flight mass spectrometry (UHPLC–

TOF-MS) using an untargeted approach. Lipids from exposed JEG-3 cells were solid–liquid extracted and

analyzed by UHPLC–TOF-MS in full scan mode, together with control samples. Raw UHPLC–TOF-MS data

of the different cell samples were subdivided into 20 distinct chromatographic windows and each

window was further organized in a column-wise augmented data matrix, where data from every sample

was in an individual data matrix. Then, the 20 new augmented data matrices were modeled by MCR-ALS.

A total number of 86 components were resolved and a statistical comparative study of their elution

profiles showed distinct responses for the lipids of exposed versus control cells, evidencing a lipidome

disruption attributed to the presence of the xenobiotics. Results from one-way ANOVA followed by a

multiple comparisons test and from discriminant partial least squares (PLS-DA) analysis were compared

as usual strategies for the determination of potential biomarkers. Identification of 24 out of the

33 proposed biomarkers contributed to the better understanding of the effects of PFCs and TBT in the

lipidome of human placental cells. Overall, this study proposes an innovative untargeted LC–MS MCR-ALS

approach valid for -omic sciences such as lipidomics.
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1. Introduction

Lipids play essential roles in energy production and storage,

structure and signaling in the human body [1,2]. Information about

lipids and their individual classes can aid in understanding the

pathogenesis of many disease states. Among others, obesity is

characterized by a series of lipid disturbances [3], producing far-

ranging effects on human health. Despite generally accepted

causes for obesity are the consumption of calorie-dense food and

diminished physical activity, the environmental obesogen hypoth-

esis is raising acceptance in recent years. This hypothesis proposes

that chemical exposure to molecules called “obesogens” during

critical developmental stages influences subsequent adipogenesis,

lipid balance and obesity [4]. Tributyltin (TBT) is a well-known

endocrine disruptor previously used as a biocide in anti-fouling

paints. TBT is a high-affinity agonist of the retinoic X receptor (RXR)

and peroxisome proliferator activated receptor gamma (PPARg),

which are key components in adipogenesis and the function of

adipocytes. TBT exposure has reported to promote inappropriate

activation of RXR–PPARg, causing a direct alteration of adipose

tissue homeostasis [4]. Perfluorinated chemicals (PFCs) are

potential obesogens used for many years in numerous industrial

products, such as Teflon and have emerged as global environmen-

tal pollutants [5]. Among the variety of PFCs, perfluorooctanesul-

fonate (PFOS) and perfluorooctanoic acid (PFOA) are the most

deeply investigated compounds in the last decades, whereas, other

PFC homologs have been rarely studied. Recently, shorter chain

length PFCs have been proposed as safe substitutes for the longer

chain length ones, since they are expected to be less bioaccumu-

lative and less toxic [6]. PFCs have been reported to alter lipid levels

in some animal species and humans [7,8], but their mechanism of

action is still unknown.

The study of lipids emerges as a complicated area of research

due to their structural diversity and the considerable technical

challenges associated with their identification within complex

samples [9]. “The large-scale analysis of lipid profiles in cells and

tissues” [10] was made possible by the dawn of lipidomics [11,12].

Lipidomics is a field that aims at the study of lipids and their

interaction with other biochemicals [13]. While lipid-, and

metabolome research in general, over past decades was over-

shadowed by the progress of genomics, recently revived and

burgeoning interest in lipids illustrates their critical biological

importance [14].

Mass spectrometry-based analytical methods come out as

powerful strategies for lipidomics, since, they offer high sensitivity

and resolution for the characterization of global lipid profiles in

cells or organisms. Moreover, recent advances in mass spectrome-

try techniques have allowed the screening of many lipid molecular

species in parallel [14]. These advances, however, pose a greater

challenge for researchers to handle massive amounts of informa-

tion-rich MS data from modern analytical instruments in order to

understand the complexity of lipid systems. The application of

modern chemometric methods to these complex megavariate data

systems is opening new ways in bio and environmental sciences,

facilitating a shift from the concept of studying one chemical

compound or process at a single experiment. Thus, there is an

urgent need to improve and automate all the steps involved in

analyzing the data generated in -omic studies such as lipidomics by

means of chemometric and multivariate data analysis methods.

Chemometrics is presently a well established field in chemical

data analysis and has recently been proven to be valuable in the

analysis of -omic data [15–17]. There is a considerable number of

techniques especially suited for the study of complex megavariate

-omic data sets, meant for exploratory or modelling purposes, such

as principal component analysis (PCA), partial least squares (PLS)

and its orthogonal variant (OPLS). Moreover, other less explored

chemometric methodologies in -omic studies, such as multivariate

curve resolution (MCR) methods evolve as powerful tools to

properly resolve the profiling problem in -omic data sets [17,18]. In

addition, chemometric methods can be used for biomarker

detection in the context of finding sample descriptors which

show systematic differences between normal and environmentally

injured organisms in an untargeted approach. However, in areas of

biology and toxicology, chemometric methodologies are still

largely overlooked in favor of traditional statistical methods,

which are generally focused on targeted evaluation of specific

classes of compounds.

The aim of this study was to elucidate the lipidomic disruption

produced in JEG-3 cells exposed to TBT and a mixture of PFCs, using

MCR-ALS resolved profiles. Determination of biomarkers was

based on the use of a traditional statistical approach, one-way

ANOVA followed by a multiple comparisons test, versus the

analysis by PLS-DA. The untargeted chemometric strategy

presented in this study was designed as a novel alternative to

the classical targeted approach generally used in lipidomics.

2. Theory

A brief description of the chemometric and statistical methods

used in this study is shown below.

2.1. Multivariate curve resolution-alternating least squares (MCR-ALS)

Multivariate curve resolution methods [19] are based on the

same bilinear decomposition of original data sets used by PCA, but

under completely different constraints and with a different goal.

The mathematical basis of the bilinear model used by MCR is

shown in Eq. (1):

D = CST + E (1)

In this equation, matrix D (I � J) represents the data output of a

second-order instrument. In the case of LC–MS data, D matrix

contains the MS spectra at all retention times (i = 1, . . . I) in its

rows, and the chromatograms at all spectra m/z channels

(j = 1, . . . J) in its columns. This matrix is decomposed in the

product of two small factor matrices, C and ST. The C (I � N) matrix

contains column vectors which correspond to the elution profiles

of the N (n = 1, . . . N) pure components of matrix D. In ST (N � J)

matrix, row vectors correspond to the spectra of the N pure

components. The part of D that is not explained by the model forms

the residual matrix, E (I � J).

MCR-ALS methods assume that the variation measured in all

samples in the original data set can be described by a combination

of a small number of chemically meaningful profiles. In the case of

LC–MS data sets, information of the data table can be reproduced

by the combination of a small number of pure mass spectra (row

profiles in the ST matrix) weighted by the concentration of each of

them along the elution direction (the related chromatographic

elution peaks, column profiles in C).

2.1.1. Column-wise augmented data matrices

In second order data, MCR-ALS can be implemented through

different sample types simultaneously, conforming column-wise

augmented data matrices (Daug) containing distinct matrices

correlated to different processes attached one at the top of each

other. Thus, spectral direction is equal for all of them and the data

matrix length is augmented in the process direction. Resolved pure

mass spectra are equivalent to all experiments (ST) whereas

concentration profiles can differ from experiment to experiment,

conforming Caug, as shown in Eq. (2):
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(2)

In the MCR-ALS method, bilinear models expressed by Eq. (1)

(single data matrix case) or Eq. (2) (augmented data matrix) are

solved by means of an alternating least squares optimization under

constraints (see [19]). In the cases under study in this work, the

constraints applied during the ALS optimization were non-

negativity for concentration (elution), C, and spectra, ST, profiles,

and normalization for the later. See below in Sections 3.5 and 4.2 a

more detailed description of the adaptation of the MCR-ALS to the

analysis of the lipidomic data of this work. One of the main

advantages of MCR-ALS analysis of several data matrices is that the

alignment of chromatograms is not necessary since single

spectrum dimensions coincide among matrices because are

invariant for all runs [20].In summary, MCR-ALS procedure was

applied in this work to acquire the resolved elution and mass

spectral profiles corresponding to the lipidic components

extracted from the distinct sample types related to the distinct

stress experiments.

The quality of MCR-ALS models was measured evaluating the

lack of fit, which is the difference among the input data Daug and

the data reproduced from the product obtained by MCR-ALS (Caug

ST) and the percent of explained variance (R2), defined in Eq. (3):

R2
ð%Þ ¼

P
d
�
2

ij
P

d
2
ij

� 100 (3)

where i = 1, . . . ,I and j = 1, . . . , J, dij is an element of the

experimental matrix D, d
�

ij is the element of the MCR-ALS

reproduced matrix D* and I � J is the total number of elements

in the data set.

2.2. Partial least squares-discriminant analysis (PLS-DA)

Partial least squares (PLS) was first designed as a tool for

statistical regression but later modified for classification purposes.

Barker and Rayens [21] showed that PLS-DA corresponds to the

inverse-least-squares approach to linear discriminant analysis and

produces essentially the same results but with noise reduction and

variable selection advantages of PLS [22]. In fact, PLS-DA is

oriented to discriminate among different groups of samples by

partitioning the hyperspace in a number of regions equal than the

number of groups. Thus, if a sample is represented in the region of

the space corresponding to a particular category, it is classified as

belonging to that category.

PLS-DA is essentially based on PLS1 and PLS2 algorithms which

search for latent variables with a maximum covariance with the Y-

variables. The main difference respect to these algorithms is

related to the dependent variables, since these represent qualita-

tive (and not quantitative) values, when dealing with classification.

For more details about PLS-DA analysis see [21].

2.3. Statistical tests

2.3.1. One-way ANOVA

One-way ANOVA is a statistical test oriented to determine

whether data from distinct groups have a common mean. This test

is a simple special case of a linear model where the input data is a

matrix of observations yij in which columns represent distinct

groups and rows the different samples. This matrix is decomposed

into matrix a.j, whose columns represent group means and are

equal for all rows, “dot j” notation, and a matrix of random

disturbances eij (Eq. (4)). The model assumes that the columns of y

are a constant plus a random disturbance and elucidates the

similarity among these constants.

yij= a.j + eij (4)

One-way ANOVA returns a table with information of sums of

squares, degrees of freedom, mean squares and an F statistic and its

P value. The F statistic is used as a hypothesis test to find out if

column means of matrix yij are the same and the P value from this

test is returned. The P value returned by one-way ANOVA depends

on assumptions about the random disturbances eij in the model

equation. For the P value to be correct, these disturbances need to

be independent, normally distributed, and have a constant

variance. A P value lower than 0.05 indicates that means of the

groups are significantly different at this significance level (i.e., only

in 5% of cases or lower such a difference could be caused

randomly).

The application of ANOVA analysis requires data to accomplish

some assumptions such as “normality of residuals” and “homoge-

neity of variance between groups”. In this study, a table of residuals

was constructed and studied to ensure they varied randomly so

that the “normality” assumption was fulfilled. In addition,

variances among groups were compared to ensure they were

homogeneous. Thus, in the present study no data transformation

was required to meet the underlying assumptions of ANOVA.

2.3.2. Multiple comparisons test

Comparative studies often require the contrast among various

groups of samples, such as pairwise comparisons among group

means. One possible strategy to perform such multiple compar-

isons is to assess each comparison separately by a suitable

procedure (a hypothesis test or confidence estimate) at a level

appropriate for that single interference. This is known as per-

comparison or separate inferences approach [23]. An example of

this approach is the detection of differences among the means of

k � 3 treatments, performing separating
k
2

� �
pairwise two-sided

t-tests, each at level a appropriate for a single test. Such multiple t-

tests (without a preliminary F-test of the overall homogeneity

hypothesis H0), despite used so frequently [24], do not cope with

the multiplicity or selection effect [25]. This effect is related to the

fact that in a multiple t-test any significant pairwise difference also

implies overall significance, i.e., rejection of H0. For instance, in the

example presented above of the
k
2

� �
pairwise t-tests applied

separately each at level a, the probability of concluding overall

significance, when in fact H0 is true, can be well in excess of a and

close to 1 for sufficiently large k. The probability of concluding any

false pairwise significance will equal a when exactly one pairwise

null hypothesis is true, and will exceed a when two or more

pairwise null hypothesis are true. Thus, with multiple t-tests,

spurious overall and detailed (pairwise) significant results are

obtained more frequently than is indicated by the per-comparison

level a. These are the negative consequences defined by the called

multiplicity or selection effect.
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In this way, multiple comparisons procedures (MCPs) are

statistical procedures designed to consider and properly control

the multiplicity effect through some combined or joint measure of

erroneous inferences [23]. In this study, a multiple comparisons

test from the Statistics Toolbox of MATLAB (The MathWorks, Inc.,

Natick, MA, USA) has been used to specifically determine which

pairs of means compared among the treatments are different.

This test uses as input, the stats output from ANOVA. The first

output from multcompare has one row for each pair of groups

compared, with an estimate of the difference in group means and a

confidence interval for that group which is 0.05 as default. The

second output contains the mean and its standard error for each

group. All this information can be computed in a graph which

allows a simple visualization of the differences encountered

among groups.

Distinct types of critical values can be used for the multiple

comparison procedures, and must be specified before computing

them. Among all the possibilities the most common are the Tukey–

Kramer, Bonferroni, Dunn–Sidak, lsd or Scheffe. The type of critical

value used as default in the MATLAB implementation is the Tukey–

Kramer and is the one used in the present study. Tukey–Kramer

test [26,27] is based on a formula very similar to that of the t-test

but using a studentized range distribution (q). The formula for

Tukey’s test is the one of Eq. (5).

qs ¼
Ya � Yb

SE
(5)

where Ya is the larger of the two means being compared, Yb is the

smaller of the two means being compared, and SE the standard

error of the data in question. This qs value can then be compared to

a q value from the studentized range distribution. If the qs value is

larger than the qcritical value obtained from the distribution, the two

means are said to be significantly different.

Since the null hypothesis for Tukey’s test states that all means

being compared are from the same population (i.e., m1 = m2 = m3 =

. . . = mn), the means should be normally distributed. This gives

rise to the normality assumption of Tukey’s test. The other

assumption of this test is that observations being tested must be

independent.

3. Experimental

3.1. Chemicals and reagents

Minimum essential medium, foetal bovine serum, L-glutamine,

sodium pyruvate, nonessential amino acids, penicillin G, strepto-

mycin, PBS and trypsin-EDTA were from Gibco BRL Life Technolo-

gies (Paisley, Scotland, UK). Tributyltin (TBT), perfluorobutanoic

acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic

acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic

acid (PFDoA) and perfluorohexanesulfonate (PFHxS) were pur-

chased from Sigma–Aldrich (Steinheim, Germany) and perfluor-

obutanesulfonate (PFBS) and perfluorooctanesulfonate (PFOS)

were obtained from Fluka (Austria). Stock standard solutions

containing the mixture of the eight PFCs were prepared in ethanol

and the stock solution of TBT was prepared in dimethyl sulfoxide

(DMSO). These solutions were stored at �20 �C. HPLC grade water,

methanol (>99.8%) and acetonitrile (>99.8%) were purchased from

Merck (Darmstadt, Germany). Chloroform was supplied by Carlo

Erba (Peypin, France) and butylated hydroxytoluene (BHT) by

Sigma–Aldrich (St. Louis, MO, USA).

3.2. Instrumentation

LC separation of lipids was carried out with an Acquity UHPLC

system (Waters, USA) coupled to a Waters/LCT Premier XE time-of-

flight (TOF) analyzer. The analytical separation was performed

with an Acquity UPLC BEH C8 column (1.7 mm particle size,

100 mm � 2.1 mm, Waters, Ireland). A positive ESI interface was

used to detect the compounds in the LC column effluent. The

chromatographic conditions and MS parameters used were the

ones reported in previous studies [28,29].

3.3. Sample preparation and experimental design

3.3.1. Cell culture

JEG-3 cells derived from a placental carcinoma in humans were

obtained from American Type Culture Collection (ATCC HTB-36,

passage 127). They were grown in Eagle’s minimum essential

medium supplemented with 5% foetal bovine serum, 2 mM L-

glutamine, 1 mM sodium pyruvate, 0.1 mM nonessential amino

acids, 1.5 g L�1 sodium bicarbonate, 50 U mL�1 penicillin G and

50 mg mL�1 streptomycin in a humidified incubator with 5% CO2 at

37 �C. Cells were routinely cultured in 75 cm2 polystyrene flasks.

When 90% confluence was reached, cells were dissociated with

0.25% (w/v) trypsin and 0.9 mM EDTA for subculturing and

experiments. Experiments were carried out on confluent cell

monolayers [28].

3.3.2. Cell exposure to PFCs and TBT

Three different cell stress treatments were designed in order to

study the effects of TBT and two distinct concentrations of a

mixture of PFCs, separately, in the lipidome of JEG-3 cells.

Treatment A consisted in the addition of a stock solution

containing the mixture of the eight PFCs (PFBA, PFHxA, PFOA,

PFNA, PFDoA, PFBS, PFHxS and PFOS) so that the final concentra-

tion of each PFC in cells was 0.6 mM. Treatment B consisted in the

addition of a stock solution containing the same mixture of the

eight PFCs at a final concentration of 6 mM each. Treatment C was

based on the addition of a stock solution of TBT at a final

concentration of 0.1 mM. The selected concentrations were

nontoxic for JEG-3 cells, as shown in a previous study [28] and

were similar to the ones reported in a study carried out in

occupationally exposed workers [30]. Control samples consisted of

cells exposed to 0.4% ethanol. In all cases, addition of xenobiotics

was done in triplicate so that a total of 12 samples were obtained,

grouped in 4 classes (treatments A, B, C and controls).

As shown in one of the images of Fig. 1, cells were seeded in 6-

well plates at a rate of 0.67 � 106 cells per well and allowed to

attach overnight in an incubator at 37 �C, 5% CO2. In the exposure to

the xenobiotics, 6 mL of a 0.02 mM stock solution of TBT or 6 mL of

0.1 and 1 mM stock solutions containing the eight PFCs of study.

After 24 h of exposure, the medium was aspirated and cells were

washed with PBS, trypsinized and centrifuged at 5400 � g for

10 min. The supernatant was aspirated and cells were stored at

�80 �C until analysis [28].

3.3.3. Extraction step and UHPLC–TOF-MS analysis

Lipids were extracted from JEG-3 cells with similar extraction

conditions of a previous study [31]. To the cell pellets, 540 mL of a

methanol:chloroform (1:2, v/v) solution containing 0.01% of

butylated hydroxytoluene (BHT) were added. Samples were

shaken with a vortex mixer (1 min) and after 30 min, extracted

in an ultrasonic bath for 5 min at room temperature (2 times).

Between each period of 5 min, samples were thoroughly mixed.

Afterwards, samples were centrifuged at 13,000 rpm for 5 min. The

supernatant was transferred to a new micro vial, evaporated to
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dryness, reconstituted with 160 mL of acetonitrile and stored in an

argon atmosphere.

The chromatographic separation was that of a previous study,

using the instrumentation previously described [29].

3.4. Peak assignment and identification of lipids

Positive identification of lipids was based on the accurate mass

measurement with an error < 5 ppm using high resolution TOF and

its relative LC retention times, compared to that of some standards

(�2) used in a previous study, analyzed under the same

chromatographic conditions [32]. In addition, a homemade

database generated in a previous study [29], working under the

Fig. 1. Scheme of the steps of the untargeted LC–MS MCR-ALS strategy proposed in this study for the analysis of lipid profiles in order to determine potential biomarkers for

lipid disruption.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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same LC–MS conditions, was also used to enable the identification

of lipid species.

3.5. Data sets arrangement and their multivariate analysis by MCR-

ALS

The workflow used in this study was similar to a previous work

[17] with some modifications, specially focused on biomarker

selection approach.

Once samples were analyzed by UHPLC–TOF-MS in positive ESI

and full scan mode, every sample was represented by a

1726 � 7,000,000 data matrix, being the first number, the acquired

retention times (20 min of chromatographic run with 1726 time

points) and the second number, the detected m/z values (300–

1000 amu with 0.0001 of resolution). These data files were stored

in raw formats by the MassLynx software and they were

transformed to ASCII by the Databridge function of MassLynxTM

V 4.1 software to be further processed with MATLAB. According to

this selected data arrangement, the simultaneous analysis of the

whole data set (augmented data matrix of Eq. (2)) from the

12 samples would require 1.16 (12 � 1726 � 7,000,000 � 8) ter-

abytes of storage, which is not currently feasible for standard

laboratory computers.

Therefore a proper data compression strategy was required, and

data matrices in ASCII format from every sample were undergone

to a reduction in its dimensionality in order to facilitate MCR-ALS

modeling. This reduction was carried out by using a homemade

routine which allowed m/z-mode dimension binning compression

(grouping mass values into a number of “bins” containing values

within a particular m/z range covering 1 amu) by ten thousand

times its size. Thus, the obtained matrices were reduced to a size of

1726 � 700, so that final mass information obtained from spectra

profiles (ST in Eqs. (1) and (2)) of MCR-ALS resolved components

was limited to 1 amu resolution. In addition to these matrices, a

vector of retention times (1726) and a vector of m/z values were

generated (700). Due to the complexity of the data sets (large

number of possible components to be resolved by MCR-ALS in the

simultaneous analysis of all cell samples) and to hardware

limitations, each data matrix was also further reduced in its

time-mode dimension by dividing the chromatogram in 20 differ-

ent time windows. For each time window, a new column-wise

augmented data matrix was generated, arranging all the 12 sam-

ples one at the top of each other (sample � elution time of the

corresponding time window, m/z values). Finally and previous to

the MCR-ALS analysis, the intensity scale of all chromatograms was

divided by 104 so that data values were scaled to more

computationally manageable sizes and facilitated their evaluation

and graphical representation and comparison.

MCR-ALS was applied to the 20 windowed augmented column-

wise matrices containing information of the 12 samples simulta-

neously. The elution profiles were compared against sample

classes in other to elucidate the possible effects of the different cell

stress treatments. Calculated areas of the MCR-ALS resolved

elution profiles of the different components were further used to

determine potential biomarkers for lipid disruption by the use of

two strategies: one-way ANOVA followed by a multiple compar-

isons test and a PLS-DA discrimination analysis by the use of VIP-

scores. Then, only for compounds determined as potential

biomarkers, information of their ST at low resolution from MCR-

ALS analysis was used for their tentative identification. Fig.1 shows

a scheme of the steps involved in this study.

3.6. Software

MATLAB 8.1.0 R2013a (The MathWorks, Inc., Natick, MA, USA)

was used as the development platform for data analysis and

visualization. A graphical interface was used to apply MCR-ALS,

which additionally provided detailed information about the

implementation of this algorithm [33]. Statistics ToolboxTM for

MATLAB, PLS Toolbox 7.3.1 (Eigenvector Research Inc., Wenatchee,

WA, USA) and homemade routines were used in this work. Waters/

Micromass MassLynxTM V 4.1 software was used for data set

conversion from raw into ASCII format and as the formula

identification platform through its elemental composition tool.
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Fig. 2. UHPLC–TOF-MS chromatogram of a control sample divided in 20 time windows for the MCR-ALS analysis, after the m/z compression to 1 amu resolution. Colored lines

are indicators of distinct m/z values.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4. Results and discussion

4.1. Reduction of the time-mode dimension

After applying the reduction of the m/z-mode dimensions of

original data matrices, time-mode dimensions were also reduced

by subdividing chromatograms in 20 different time windows, as

previously represented in Fig. 1.

The distinct time windows were established according to the

position and shape of chromatographic profiles in the chromato-

gram, considering regions of peak clusters and avoiding the

halving peaks, i.e., trying always to keep the full peak in the

window. When time windows are selected avoiding halving

peaks, the regions start one right after the end of its previous. For

that cases in which it is impossible to avoid the splitting of a peak

in two windows, the solution is overlapping these consecutive

regions. As shown in Fig. 2, most of them covered a time interval

between 0 and 1 min with the exception of three extensive zones

1, 14 and 20, which contained very little relevant chromatograph-

ic peaks. The dimensions of the resulting 20 submatrices are

shown in Table 1.

4.2. MCR-ALS results

MCR-ALS allowed the resolution of multiple coeluted chro-

matographic peaks generated during the LC–MS analysis of

complex lipid samples together with the evaluation of possible

xenobiotic effects in the lipidome of cells.

As previously stated in Section 3.5, MCR-ALS analysis was

performed simultaneously over the 12 samples (control and

stressed samples with treatments A, B and C), but considering

separately the 20 different chromatographic time windows (Fig.1).

Thus, a total number of 20 different column-wise augmented data

matrices (Dk,aug where k = 1–20; Eq. (2)) was generated, one for

each time window, containing in all cases the same number of

columns (700 m/z values) and 12 submatrices, with the time-

dimension of the individual time windows, which were different in

each case. The dimensions of the new 20 column-wise augmented

data matrices are also shown in Table 1.

Previous to the MCR-ALS analysis, the number of components

explaining a reasonable amount of the total variance of each

augmented data matrix at a particular time window was initially

estimated throughout SVD algorithm [34], choosing those with a

large size (larger than noisy ones). The number of selected

components for each augmented data matrix at the different time

windows was related to the number of identifiable chro-

matographic peaks but also considering extra components to

explain the background noise. In order to select the optimum

number of components, MCR-ALS was first undergone with an

initial estimation considering few components and was consecu-

tively repeated increasing this number. After each of these MCR-

ALS analyses, the incorporation of a new component was

considered appropriate only if a diminution in the lack of fit

and an increase in the explained variance were observed. Thus, the

addition of an extra component which caused a superior or equal

value of lack of fit and a lower variance explained was considered

incorrect and the corresponding component was automatically

rejected. The number of selected components for each time

window in the present study is shown in Table 1.

MCR-ALS was then directly applied to the 20 column-wise

augmented data matrices (without applying any background

correction) and matrices Ck,aug and Sk
T (where k = 1–20; Eq. (2))

were estimated. Initialization of MCR-ALS was performed using

estimates of spectra profiles, using those measured experimentally

at elution times giving the purest ones (like in the SIMPLISMA

algorithm, [35]), and setting the noise level at 10% to avoid the

selection of pure noise ones. Distinct constraints were considered

during ALS optimization to diminish rotational and intensity

ambiguities [24,36,37]. In the present study, non-negativity

constraints for both elution and mass spectra profiles and pure

mass spectra normalization (spectra equal length) were applied to

reduce rotational and intensity ambiguities, respectively. ALS

optimization resulted to be fast and reliable due to the high

selectivity of MS measurements. Once ALS optimization reached

its optimum, the resulting elution profiles were integrated and

areas of the resolved peaks were obtained. Thus, areas of all

resolved components present in control and exposed samples were

estimated for each time window.

Table 1

Dimensions of the k = 1–20 chromatographic windows for one sample (Dk) and for the 12 samples distributed one at the top of each other conforming augmented data

matrices (Dk,aug) (see Eq. (2)). MCR-ALS data fitting results are shown for the analysis of the augmented data matrices (Dk,aug).

Time window (k) Dimensions of

Dk

Dimensions of Dk,

aug

RT (min) Nr. estimated

components

Nr. resolved

components

Lack of fit (%) R2

a(%)

Resolved peak nr.

1 190 � 700 2280 � 700 0.0–2.2 – – – – –

2 85 � 700 1020 � 700 2.2–3.2 11 9 15.4 97.6 1–9

3 65 � 700 780 � 700 3.1–3.8 12 8 6.3 99.6 10–17

4 50 � 700 600 � 700 3.8–4.4 8 5 10.9 98.8 18–22

5 68 � 700 816 � 700 4.4–5.2 4 2 31.6 90.0 23–24

6 42 � 700 504 �700 5.2–5.7 5 3 5.1 99.7 25–27

7 95 � 700 1140 � 700 5.6–6.7 6 4 9.2 99.1 28–31

8 82 � 700 984 �700 6.6–7.5 4 2 18.2 96.7 32–33

9 77 � 700 924 � 700 7.5–8.4 4 3 15.1 97.7 34–36

10 80 � 700 960 � 700 8.3–9.2 4 3 13.2 98.2 37–39

11 80 � 700 960 � 700 9.1–10.0 10 8 11.2 98.7 40–47

12 67 � 700 804 �700 10.0–10.8 7 5 10.7 98.9 48–52

13 60 � 700 720 � 700 10.7–11.4 4 3 13.4 98.2 53–55

14 275 � 700 3300 � 700 11.4–14.6 – – – – –

15 75 � 700 900 � 700 14.6–15.5 9 6 8.5 99.3 56–61

16 55 � 700 660 � 700 15.4–16.0 8 5 5.1 99.7 62–66

17 67 � 700 804 �700 15.9–16.7 8 6 5.6 99.7 67–72

18 65 � 700 780 � 700 16.6–17.4 9 7 7.1 99.5 73–79

19 55 � 700 660 � 700 17.3–18.0 10 7 9.1 99.2 80–86

20 176 � 700 2112 � 700 18.0–20.0 – – – – –

–Regions of the chromatogram with background noise.
a R2 explained data variance according Eq. (3).
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The number of the estimated components, the number of

resolved peaks in each region, the percentage of the variance

explained in each case (see Eq. (3)) and the assigned numbers of

the resolved peaks are summarized in Table 1. As it can be noticed,

the number of estimated components was in all cases superior to

the number of well resolved components with reliable chro-

matographic peak shape features, due to other possible signal

contributions (such as background instrumental noise or solvent

contributions). However, this small additional number of estimat-

ed components was required to better build and fit an adequate

model where peaks corresponding to chemical compounds could

be more properly resolved. Moreover, most of MCR-ALS analysis

resulted in a percentage of lack of fit lower than 20% and in a

percentage of explained variances higher than 96% with the

exception of time window 5, with a lack of fit of 31.6% and an

explained variance of 90%, possibly due to the low signal-to-noise

ratio of that window, as observed in Fig. 2. Addition of extra

components did not improve the results in any case.

The total number of MCR-ALS resolved components considering

the 20 chromatographic time windows was 86.

4.3. First evaluation of raw LC–MS data and MCR-ALS results

Effects of treatments were first visible when raw UHPLC–TOF-

MS chromatograms of distinct sample classes were compared.

Fig. 3 is a mesh representation of four UHPLC–TOF-MS chromato-

grams corresponding to a control and 3 lipid samples exposed to

the cell stress treatments A, B and C. Chromatographic separation

of lipids was the same to the one achieved in a previous study [29],

carried out in the same LC and MS conditions, and is shown in

Fig. 3(I). The more significant change among control and stressed

samples was observed in lipids eluting at the final minutes of the

chromatogram, expected to correspond to families of diacylgly-

cerols (DAG), triacylglycerols (TAG) and cholesterol esters (CE).

Fig. 3. Mesh plot of raw UHPLC–TOF-MS chromatograms corresponding to (I)

control sample, (II) lipid sample from treatment A, (III) lipid sample from treatment

B and (IV) lipid sample from treatment C.

Fig. 4. Correlation map of sample type and components considering the calculated

areas of MCR-ALS analysis. (A) For all the 86 resolved components and (B) For

components 41–86.
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Fig. 5. (A) Example of results from one-way ANOVA followed by multiple comparisons test for component 40 of time window 11. (B) Elution/concentration profiles of 7 MCR-

ALS resolved components (one per time window) as a representation of the distinct patterns of disruption observed: (I) effects of PFCs, (II) effects of TBT, (III) effects of both

xenobiotics, (IV) no significant effects. Elution profiles are from mean areas of the three replicates from controls (_ _ _), cells exposed to PFCs at 0.6 mM (), cells exposed to PFCs

at 6 mM () and cells exposed to TBT (> ). Thicker lines represent significant changing elution profiles. Bar graphics inside the boxes represent the means � SEM (n = 3) of the

controls and the three cell stress treatments. *Statistical significant differences respect to controls (P < 0.05).
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Compared to the control (Fig. 3(I)), amount of these lipid species

was superior in lipid samples from treatments A and B (Fig. 3(II and

III)) and even higher in lipid sample from treatment C (Fig. 3(IV)).

Moreover, representation of the calculated areas of the 86 MCR-

ALS resolved components for the distinct cell stress treatments

allowed a detailed observation of the effects produced by the

xenobiotics. Area values were stored in one data table containing

the information of the 20 chromatographic time windows,

conformed by a number of rows equal to the number of studied

samples and a number of columns corresponding to all the MCR-

ALS resolved components.

Correlations between cell stress treatments (A, B and C) and

areas of the 86 MCR-ALS resolved components is shown in Fig. 4A

and B. In both representations, intense red colors represent high

correlations, so this means high amount of lipids produced by the

treatments, whereas intense blue colors symbolize low correla-

tions, so this means basal amount of lipids, as in controls. As shown

in Fig. 4A, when the totality of variables were represented, no

significant differentiation among control lipid samples and

exposed lipid samples was noticeable. Thus, most of the

correlation map was blue-colored, indicating a similar basal lipid

abundance among samples, except for an intense red region

between compounds 30 and 40. The high amount of those lipid

species impeded the observation of the effects produced by the

xenobiotics in the rest of compounds. Thus, when variables

starting from 41 to 86 were only considered (Fig. 4B), the contrast

in lipid abundance among different sample types became more

evident, specially in compound 49 and in a major extent in

compounds 63, 64, 68 and 69. Interestingly, the observed

differences in the latter four compounds were higher in cells

exposed to TBT (treatment C, up to 8-fold) whereas the exposure to

the mixture of PFCs produced minor increase in lipid content

(treatments A, B, approximately up to 5-fold). In contrast, no

significant effects were noticed in the representation of variables 1

to 29. Thus, the preliminary study of raw LC–MS data and MCR-ALS

results concluded that exposure to xenobiotics caused a change in

the lipidome of JEG-3 cells, producing an increase in some lipid

areas, mainly attributed to the presence of TBT (treatment C).

4.4. Comparison of elution profiles among treatments

Exhaustive study of the MCR-ALS results was necessary in order

to draw significant conclusions of the disruption caused by the

xenobiotics. Thus, effects of distinct cell stress treatments were

thoroughly studied by a statistical comparison of the calculated

areas of the 86 MCR-ALS resolved chromatographic peaks. One-

way ANOVA was applied to these data followed by a multiple

comparisons test (see Section 2.3). A rearrangement of the data

output of MCR-ALS calculated areas was necessary previous to the

ANOVA test. Thus, calculated areas of resolved MCR-ALS compo-

nents, which were disposed in a matrix of size number of

components � 12 samples, were further rearranged for every

component in a 3 � 4 table disposition (sample replicates � sample

classes). Fig. 5A represents an example of the one-way ANOVA and

multcompare evaluation of component 40 of chromatographic

window 11, in which it is shown that treatment C produces an

increment respect to controls whereas no significant effects are

derived from treatments A and B.

The one-way ANOVA and multcompare analysis of the 86 MCR-

ALS resolved components evidenced that 23 of them showed

significant differences (P < 0.05) respect to controls, indicating a

disruption caused by the xenobiotics.

Detailed evaluation of those 23 components evidenced three

distinct patterns of disruption. Fig. 5B (I–III) show elution profiles

of 6 components, grouped in three classes, as an example of the

three patterns of disruption observed within the 23 components.

In contrast, in Fig. 5B IV is represented one component as an

example of the 63 remaining components not showing significant

differences in the one-way ANOVA and multcompare analysis. In

each case, elution profiles represented with distinct colors

correspond to mean area values of the three replicates of the four

sample classes (treatment A, B and C and controls).

`First pattern of disruption explained significant effects produced

by the mixture of the eight PFCs at both levelsof concentration but no

significant consequences derived from TBT exposure (Fig. 5B I). As

observed in Fig. 5B (I a) and (I b), both doses of exposure of the

mixture of PFCs, 0.6 and 6 mM, respectively, produced significant

increments in lipid areas of exposed cells compared to controls.

However, significant effects of the mixture of PFCs at the lower dose

occurred in 3 components (8, 36 and 83) but only in compound 23 at

the higher dose. Second pattern of disruption explained changes

exclusively caused by the presence of TBT (Fig. 5B II). Exposure to the

organotin compound caused an increase or a decrease in some lipid

areas of exposed cells respect to controls. In 16 MCR-ALS resolved

components (10,11,12, 40, 44, 57, 59, 63, 64, 65, 66, 68, 69, 71, 72 and

79), effects of TBTresulted in an increase in lipid areasand in only one

case, compound 27, the effects endedin a decrease, Fig. 5B (II a and b),

respectively. The third pattern of disruption explained few cases in

which the effects produced in the lipidome of JEG-3 cells were

attributed to the presence of both xenobiotics, the mixture of PFCs

and TBT (Fig. 5B III). In compound 20, TBT produced and increase in

the lipid area whereas the mixture of PFCs at 6 mM caused a decrease

(Fig. 5B (III a)). In contrast, in compound 56, both TBTand the mixture

Table 2

Potential biomarkers for lipid disruption produced by three different treatments: (A) mixture of PFCs at 0.6 mM, (B) mixture of PFCs at 6 mM and (C) TBT at 0.1 mM. Results are

shown for the two distinct approaches used, one-way ANOVA followed by a multiple comparisons test and a PLS-DA analysis for the extraction of variables important in

projection (VIPs), fixing distinct VIP scores threshold values.

Biomarkers for lipidome disruption

ANOVA and multcompare test PLS-DA Combination of both strategies

Treatment (P < 0.05) VIP scores > 1.5 VIP scores > 1.8 VIP

scores > 2.0

(Considering VIP scores > 1.9)

A 8, 36, 56,83 8,10,13,15,16, 36, 56, 75, 76, 77, 82,

83, 84, 86

8, 10, 56, 76, 82,

83, 86

83, 86 8, 10, 36, 56, 76, 82, 83, 86

B 20a, 23 8, 12, 14, 21, 23, 25, 28, 36, 40a, 48,

49, 53

8, 12, 14, 21, 23,

25, 36, 49, 53

23, 36, 53 8, 12, 14, 20, 21, 23, 25, 36, 49, 53

C 10, 11, 12, 20, 27a, 40, 44, 56, 57, 59, 63,

64, 65, 66, 68, 69, 71, 72, 79

7, 8, 10, 11, 12, 17, 20, 21, 27a, 53, 56,

59, 64, 68, 69, 71, 72, 79

7, 10, 11, 17, 53,

56, 72, 79

10, 79 7, 10, 11, 12, 17, 20, 27, 40, 44, 53, 56, 57, 59,

63, 64, 65, 66, 68, 69, 71, 72, 79

Total(*) 23 39 21 7 33

*Total number of biomarkers count coincident components among treatments only one time.

Underlined components are common among the two preferred strategies.
a Diminution of peak areas respect to controls.

E. Gorrochategui et al. / Analytica Chimica Acta 854 (2015) 20–33 29



Fig. 6. Variables importance in projection (VIP scores) plot from PLS-DA analysis of the 86 MCR-ALS resolved peak areas, when selecting as groups: (A) controls and treatment

A, (B) controls and treatment B and (C) controls and treatment C. Horitzontal red lines show threshold values of 1 (dotted line) and 1.8 (thicker solid line) and numbers inside

the plot indicate most important variables according to the highest threshold value.(For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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of PFCs at 0.6mM produced an increase in the lipid area (Fig. 5B (III

b)).

Thus, among the distinct models of disruption, the more

common was the one attributed exclusively to the presence of TBT,

producing an increment in lipid areas, which occurred in 16 out of

the 23 components (Fig. 5B (II a)). The second model with a higher

contribution was the one linked to the effects of the mixture of

PFCs at the lower dose (0.6 mM), also causing an increase in lipid

areas, which was observed in 3 components (Fig. 5B (II a)). Finally,

in all other cases, PFC effects at the higher dose, TBT effects

producing a diminution in lipid areas and combined effects of both

xenobiotics (Fig. 5B (I b), (II b) and III (a and b), respectively),

disruption was only noticeable in one MCR-ALS resolved com-

pound each. These results highlighted the important effect of

treatment C in the increment of some lipid areas respect to controls

and were in accordance to the observed in the first interpretation

of raw LC–MS data and MCR-ALS results (see Section 4.3).

4.5. Determination of potential biomarkers for lipid disruption

Potential biomarkers for lipid disruption in JEG-3 cells were

determined using two distinct strategies.

First, the same statistical approach used to study the differences

produced in elution profiles was utilized. Thus, components

showing significant differences in the one-way ANOVA analysis

followed by multiple comparisons test were proposed as potential

biomarkers.

As a second approach, a PLS-DA analysis was performed in order

to obtain the variables importance in projection (VIP) scores

[27,38,39], which were used to reveal which variables (lipid

compounds) had a greatest influence on the discrimination among

controls and exposed samples. VIP scores, defined by Wold et al.

[38] as a weighted sum of squares of PLS weights described for

each variable which measure the contribution of each predictor

variable to the model, is frequently used as a parameter for variable

selection [40–42].

For the PLS-DA analysis, calculated areas from all the MCR-ALS

resolved components were compiled in a single data matrix which

size was 12 � 86 (samples � components). This data matrix was

used in three different approaches of classification, all of them

considering two group classes; (a) controls and treatment A, (b)

controls and treatment B and (c) controls and treatment C. Prior to

PLS-DA model calculation, peak areas were autoscaled to give

equal relevance to their possible change due to stressing

conditions in control and exposed samples. No outlier samples

were detected using leave-one-out cross-validation (small number

of samples). Therefore, PLS-DA analysis was applied three times,

considering one pair of classes each time, categorizing in class

0 control samples and in class 1 the different samples correspond-

ing to the distinct cell stress treatments. In the three analysis, two

components were selected to built the model, explaining a

cumulative Y-variance of 97.66, 99.28 and 96.21%, respectively.

Table 2 shows a summary of the results obtained from one-way

ANOVA followed by multiple comparisons test and the three PLS-

DA models. For both approaches, biomarkers are indicated

separately for the distinct cell stress treatments (A, B and C).

With the one-way ANOVA–multiple comparisons test strategy,

potential biomarkers where those within a statistical significance

level of 5% (P < 0.05). The total number of identified biomarkers

was 23. Comparison of these results with those of the PLS-DA

analysis required a pre-adjustment of the VIP scores threshold

value, despite the general criterion for variable selection has been

Table 3

Tentative identification of 24 out of the 33 potential biomarkers calculated by mass accuracy within an error of 5 ppm, with atom constraints C, H, O, N � 1, P � 0 and with

�0.5 	 DBE 	 15.0.

Peak

number

MCR-ALS resolved mass

(1 amu)

RT

(min)

Measured mass

(0.0001 amu)

Lipid

specie

Elemental

composition

Lipid class Adduct Calculated

mass (Da)

Error

(ppm)

DBE

14 511 3.5 510.3912 18:0 C26H57NO6P Lyso

plasmalogen-

PC

[M + H]+ 510.3918 �1.2 �0.5

23 674 5.0 673.5286 14:1 C37H74N2O6P SM [M + H]+ 673.5279 1.0 2.5

25 676 5.5 675.5435 14:0 C37H76N2O6P SM [M + H]+ 675.5436 �0.1 1.5

27 703 5.5 702.5069 30:2 C38H73NO8P PC [M + H]+ 702.5068 0.1 3.5

36 719 7.8 718.5750 32:1 C40H81NO7P Plasmalogen-

PC

[M + H]+ 718.5745 0.7 1.5

40 613 9.5 612.5588 34:1 C37H74NO5 DAG [M + NH4]
+ 612.5562 4.2 1.5

44 639 9.9 638.5723 36:2 C39H76NO5 DAG [M + NH4]
+ 638.5718 0.8 2.5

49 775 10.3 774.6365 36:1 C44H89NO7P Plasmalogen-

PC

[M + H]+ 774.6371 �0.8 1.5

56 881 15.2–

15.4

880.7170 44:4 C52H99NO7P Plasmalogen-

PC

[M + H]+ 880.7159 1.2 4.5

57 821 15.0 820.7393 48:2 C51H98NO6 TAG [M + NH4]
+ 820.7389 0.5 3.5

59 847 15.2–

15.4

846.7552 50:3 C53H100NO6 TAG [M + NH4]
+ 846.7545 0.8 4.5

63 849 15.6 848.7706 50:2 C53H102NO6 TAG [M + NH4]
+ 848.7702 0.5 3.5

64 875 15.8 874.7863 52:3 C55H104NO6 TAG [M + NH4]
+ 874.7858 0.6 4.5

65 923 15.6 922.7883 56:7 C59H104NO6 TAG [M + NH4]
+ 922.7858 2.7 8.5

66 949 15.7 948.8021 58:8 C61H106NO6 TAG [M + NH4]
+ 948.8015 0.6 9.5

68 877 16.2 876.8029 52:2 C55H106NO6 TAG [M + NH4]
+ 876.8015 1.6 3.5

69 903 16.4 902.8170 54:3 C57H108NO6 TAG [M + NH4]
+ 902.8171 �0.1 4.5

71 901 16.0–

16.1

900.8021 54:4 C57H106NO6 TAG [M + NH4]
+ 900.8015 0.7 5.5

72 927 16.2–

16.3

926.8185 56:5 C59H108NO6 TAG [M + NH4]
+ 926.8171 1.5 6.5

76 837 16.9 836.8062 50:1 C53H106NO5 DAG [M + NH4]
+ 836.8066 �0.5 1.5

79 955 16.8 954.8480 58:5 C61H112NO6 TAG [M + NH4]
+ 954.8484 �0.4 6.5

82 891 17.8 890.8508 54:2 C57H112NO5 DAG [M + NH4]
+ 890.8535 �3.0 2.5

83 915 17.4 914.8497 56:4 C59H112NO5 DAG [M + NH4]
+ 914.8535 �4.2 4.5

86 865 17.7 864.8375 52:1 C55H110NO5 DAG [M + NH4]
+ 864.8379 �0.5 1.5

DBE: double-bond equivalent.
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the “greater than one” rule [40]. As observed in Table 2, the number

of potential biomarkers proposed by PLS-DA analysis was higher

when reducing VIP scores threshold value. Total number of

biomarkers was 39, 21 and 7 for threshold values higher than 1.5,

1.8 and 2, respectively. Thus, conditions at which both approaches

resulted in similar number of biomarkers where the second ones,

with the VIP scores threshold value higher than 1.8 units. Fig. 6

shows VIPs of the three PLS-DA analysis (A, B and C) for the selected

threshold value of 1.8.

When comparing the results of one-way ANOVA–multiple

comparisons test and PLS-DA analysis with VIP scores threshold

value > 1.8, the number of coincident biomarkers was high

(highlighted with a line mark in Table 2). For treatment A,

3 biomarkers coincided, corresponding to compounds 8, 56 and 83.

For treatment B, compound 23 was coincident and for treatment C

other five biomarkers were common (10, 11, 56, 72 and 79). The

combination of the results of both approaches resulted in a total of

8, 10 and 22 biomarkers of lipid disruption for treatments A, B and

C, respectively. The sum of these compounds produced a total of

40 biomarkers but since 7 of them were coincident among

treatments, final number of biomarkers proposed by the combi-

nation of both strategies was 33 (Table 2).

Furthermore, the type of effects (upregulation or down-

regulation) explained by the biomarkers was separately studied

for both approaches. In the first statistical approach, the study of

the elution profiles revealed that in only 2 out of the 23 potential

biomarkers the xenobiotics caused a diminution in lipid areas. For

the rest of biomarkers, the disruption occurred in the inverse way,

producing an increase in the area. In the PLS-DA analysis, weight

loadings of the different components allowed the determination of

the sign of the contribution. All the 21 biomarkers were indicators

of an increase in lipid areas caused by the presence of xenobiotics.

Only in compounds 40 and 27, potential biomarkers if considering

VIP scores > 1.5, the effects were in the inverse way, i.e., decreasing

their peak areas.

Thus, within the 33 biomarkers proposed by the combination of

both strategies, only two were indicators of a diminution of lipid

areas produced by the xenobiotics, whereas all the rest explained

an increase. Interestingly, components 49, 63, 64, 68 and 69,

observed as altered in the correlation map presented in the first

evaluation of MCR-ALS results (see Section 4.3) were within the

33 proposed biomarkers.

These results reasserted that the predominant pattern pro-

duced by the presence of PFCs and TBT was an increment in the

amount of lipids. Moreover, the higher amount of biomarkers of

treatment C respect to treatments A and B highlighted the stronger

disruption effects of TBT in comparison to PFCs.

4.6. Tentative identification of potential biomarkers

Information of pure mass spectra (ST) at 1 amu resolution of the

33 biomarkers was used to find out their exact mass (0.0001 amu

resolution) when searching in the original raw full scan UHPLC–

TOF-MS chromatograms. Isolated chromatographic peaks corre-

sponding to the 33 unknown compounds were obtained when

selecting their mass at low resolution in the raw chromatogram,

with a permissible mass error of 0.5 Da. In each case, retention

times were used to ensure the correspondence between the

isolated chromatographic peaks in the raw chromatogram and

their concentration profiles in the MCR-ALS analysis. Exact mass

was finally obtained when looking at the spectra of the isolated

peaks.

Tentative identification of biomarkers was based on the criteria

of low mass error (difference among measurated and calculated

mass) using the formula identification tool of Micromass MassLynx

software called elemental composition search. The formula

constraints were C, H, O � 1, P � 0 and N � 1, following the nitrogen

rule. The number of double-bond equivalents (DBEs) was set

between �0.5 and 15.0. In addition, information of LC retention

times and of a homemade database from a previous study was also

used for positive identification (see Section 3.4).

A total number of 24 lipid species were tentatively identified

out of the 33 potential biomarkers (Table 3). Identified lipid species

included 2 sphingomyelin (SM), 1 phosphatidylcholine (PC),

3 plasmalogen PC, 1 lyso plasmalogen PC, 6 DAG and 11 TAG.

Annotation of lipid species in Table 3: PC and its derivatives

with plasmalogens, DAG and TAG are annotated as <lipid

subclass><total fatty acyl chain length>:<total number of

unsaturated bonds> and SM as <total fatty acyl chain length>:<

total number of unsaturated bonds in the acyl chain>.

4.7. Biological interpretation of the changing lipids

Tentative identification of 24 out of the 33 potential biomarkers

showed that about 70% of the identified species corresponded to

families of DAG and TAG. Moreover, as shown in Table 2, most of

them were indicators of the disruption caused by the presence of

TBT. These results were in accordance to a previous study [29], in

which the effects of the same xenobiotics (PFCs at 0.6 and 6 mM

and TBT at 0.1 mM) were evaluated in the same cellular line (JEG-3)

but in a classical targeted approach. In that study, effects of TBT

were also highly visible in families of TAG and DAG. Even more, 6 of

the 24 potential biomarkers tentatively identified here (DAG 34:1,

36:2 and TAG 48:2, 50:3, 50:2, 52:3) also showed significant

increments respect to controls in that study. These results confirm

the ability of TBT to induce the synthesis of DAG and TAG in the

placenta cell line, in agreement with the obesogenic effect

reported for TBT in other organisms and cell lines [43,44]. TBT

has been reported to induce differentiation of 3T3-L1 cells,

increasing the formation of intracellular lipid droplets, mainly

formed by TAG and DAG [45].

Apart from DAG and TAG species, other biomarkers tentatively

identified corresponded to lyso plasmalogen PC 18:0, PC 30:2, SM

14:0 and 14:1 and plasmalogen-PCs 32:1, 36:1 and 44:4. As shown

in Table 2, these biomarkers were indicators of lipid disruption

caused by the three treatments. However, special relevance is

posed in relation to the mixture of PFCs due to their previous

reported effects on membrane lipids [28,46,47] such as plasmal-

ogen-PC species, which has been confirmed in this work. Exposure

to TBT and PFCs may promote lipid peroxidation in JEG-3 cells,

which will damage cell membrane and stimulate lipid signaling

pathways [48]. Although the functions of plasmalogens have not

yet been fully elucidated, it has been demonstrated that they can

protect mammalian cells against the damaging effects of ROS

[49,50], facilitating signaling processes and protecting membrane

lipids from oxidation. Thus, the observed increase in lyso

plasmalogen and plasmalogen PC species may act as a defense

mechanism against PFC and TBT induced oxidative stress.

5. Conclusions

The chemometric strategy proposed in this study based on

MCR-ALS analysis of UHPLC–TOF-MS lipidomic data allowed the

resolution of a large number of coeluted chromatographic peaks,

the calculation of their respective peak areas and the resolution of

their corresponding pure mass spectra. Changes in MCR-ALS

chromatographic peak areas of the resolved lipid constituent

among control and stressed cells were evaluated in order to find

out potential biomarkers for lipid disruption. One-way ANOVA

followed by a multiple comparisons test and a PLS-DA analysis

were the selected strategies for biomarker selection. The

combination of the results of both strategies gave rise to a total
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of 33 lipids showing differences respect to controls. Identification

of 24 out of the 33 potential biomarkers was positively achieved,

using the resolved pure MS spectra from MCR-ALS analysis

together with the high mass accuracy of the TOF analyzer.

The untargeted methodology proposed in this study noticeably

simplifies the interpretation of the lipidome,exclusively focusing the

attention on lipids showing important differences among normal

and stressing conditions. Thus, the presented chemometric work-

flow appears as a powerful alternative to the time-demanding

extensive screening of LC–MS data required for targeted lipidomics.
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In humans there are three fatty acid desaturases, Δ9 or 
esaturase, Δ6 and Δ52
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