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CHAPTER 2

As previously mentioned in the Introduction Section, the analysis of metabolomic (and
lipidomic) LC-MS data sets is one of the bottlenecks of omic studies due to the complexity of the
nature of the data sets to be analysed. Several data analysis packages and software have been
developed in the last years for that purpose. However, the automatic characteristics of these
data analysis tools are not always adequate for a proper understanding of the nature of the LC-
MS metabolomic (and lipidomic) data sets and of the procedure required to extract meaningful
information from them. Moreover, most of these approaches present some drawbacks (e.g.,
requirement of chromatographic alignment and peak shape modelling). Therefore, one of the
main objectives of this Thesis was the development of a data analysis strategy that allowed
researchers to analyse their own data without the requirement of any external data analysis
package, which also properly addressed the issues found in the already existing data analysis

packages.

This Chapter of the Thesis is structured in the following manner: an introduction section, a
scientific research section including the scientific articles related with omic data analysis

procedures, a discussion section and some specific conclusions.

PhD Thesis of
E. Gorrochategui 75



Chapter 2- Novel data analysis approaches for metabolomics/lipidomics

2.1. INTRODUCTION

2.1.1. SCIENTIFIC ARTICLE |

Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and
workflow

E. Gorrochategui, J. Jaumot, S. Lacorte, R. Tauler
Trends in Analytical Chemistry (2016) 82, 425-442

Supplementary liveslides at: http:/audioslides.elsevier.com/ViewerSmall.aspx?doi=10.1016/
j.trac.2016.07.004&Source=0&resumeTime=0&resumeSlidelndex=1&width=800&height=639
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Contents lists available at ScienceDirect
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Data analysis strategies for targeted and untargeted LC-MS @CwssMark
metabolomic studies: Overview and workflow

Eva Gorrochategui, Joaquim Jaumot, Silvia Lacorte *, Roma Tauler **

Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA),
Consejo Superior de Investigaciones Cientificas (CSIC), Barcelona, Catalonia 08034, Spain

ARTICLE INFO ABSTRACT

Keywords:
Metabolomics
Data analysis

Mass spectrometry

Data analysis is a very challenging task in LC-MS metabolomic studies. The use of powerful analytical
techniques (e.g., high-resolution mass spectrometry) provides high-dimensional data, often with noisy
and collinear structures. Such amount of information-rich mass spectrometry data requires extensive

Liquid chromatography processing in order to handle metabolomic data sets appropriately and to further assess sample
Target classification/discrimination and biomarker discovery.

Untarget This review shows the steps involved in the data analysis workflow for both targeted and untargeted
Chemometric tools metabolomic studies. Especial attention is focused on the distinct methodologies that have been devel-

oped in the last decade for the untargeted case. Furthermore, some powerful and recent alternatives based
on the use of chemometric tools will also be discussed. In general terms, this review helps researchers
to critically explore the distinct alternatives for LC-MS metabolomic data analysis to better choose the
most appropriate for their case study.

© 2016 Elsevier B.V. All rights reserved.

Contents
1. Introduction 426
2. General overview of the data analysis approaches 427
3. The data analysis workflow for targeted and untargeted metabolomic studies 428
3.1.  Data processing steps for targeted studies 428

3.1.1.  Raw data acquisition 428

Abbreviations: ABF, Analysis services backup file; ASCA, ANOVA-simultaneous component analysis; CART, Classification and regression trees; CAWG, Chemical analysis
working group; CCSWA, Common components and specific weights analysis; CE-MS, Capillary electrophoresis-mass spectrometry; CMTF, Coupled matrix and tensor fac-
torization; CWT, Continuous wavelet transform; DISCO-SCA, Distinctive and common components with simultaneous-component analysis; DNA, Deoxyribonucleic acid;
DTW, Dynamic time warping; FT-ICR, Fourier transform ion cyclotron resonance; GC, Gas chromatography; GC-MS, Gas chromatography coupled to mass spectrometry;
GC-MS/MS, Gas chromatography tandem mass spectrometry; GSVD, Generalized singular value decomposition; HMDB, Human metabolome database; 'H-NMR, Proton nuclear
magnetic resonance; HPLC, High-performance liquid chromatography; HRMS, High-resolution mass spectrometry; HRMS/MS, High-resolution tandem mass spectrometry;
ICA, Independent component analysis; IPA, Ingenuity pathway analysis; IS, Internal standard; IT, Ion trap; JIVE, Joint and individual variation explained; KEGG, Kyoto en-
cyclopedia of genes and genomes; LC-MS, Liquid chromatography coupled to mass spectrometry; LC-QTOF-MS, Liquid chromatography coupled to quadrupole time-of-
flight mass spectrometry; LLR, Linear logistic regression; LOESS, Locally estimated scatter plot smoothing; LRMS/MS, Low-resolution tandem mass spectrometry; MCR-ALS,
Multivariate curve resolution-alternating least squares; MFICA, Mean-field independent component analysis; MMSAT, Metabolite mass spectrometry analysis tool; MS, Mass
spectrometry; MSE, Mass spectrometryFlevated eneray: \S[ Mass standards initiative; m/z, Mass-to-charge; NAC, N-acetylcysteine; NMR, Nuclear magnetic resonance; NOMIS,
Normalization using optimal selection of multiple internal standards; OBI-warp, Ordered bijective interpolated warping; OPLS, Orthogonal projections to latent structures;
02PLS, Two-way orthogonal projections to latent structures; OnPLS, Multiblock orthogonal projections to latent structures; PARAFAC, Parallel factor analysis; PARAFAC2,
Parallel factor analysis2; PBL, Peripheral blood lymphocytes; PCA, Principal component analysis; PCDA, Principal component discriminant analysis; PLS, Partial least squares;
PLS-DA, Partial least squares-discriminant analysis; PPP, Pentose phosphate pathway; PQN, Probabilistic quotient normalization; QCs, Quality control sample; QLIT, Qua-
drupole linear ion trap; QqQ, Triple quadrupole; Q-TOF, Hybrid quadrupole orthogonal time-of-flight; RANSAC, Random sample consensus; RNA, Ribonucleic acid; ROI, Region
of interest; SIM, Selected ion monitoring; SLE, Systemic lupus erythematosus; SNRrn, Signal-to-noise ratio threshold; SR, Selectivity ratio; SRM, Selected reaction monitor-
ing; TLD, Trilinear decomposition; TOF, Time-of-flight; TPP, Trans-proteomic pipeline; UHPLC, Ultra high-performance liquid chromatography; UPLC-TOF, Ultra performance
liquid chromatography coupled to time-of-flight mass spectrometry; VAST, Variable stability scaling; VIP, Variable importance on projection; XCMS, Various forms (X) of
chromatography mass spectrometry.

* Corresponding author. Tel.: +34 934006133; fax: +34932045904.

E-mail address: slbqam@cid.csic.es (S. Lacorte).

** Corresponding author. Tel.: +34 934006140; fax: +34932045904.

E-mail address: roma.tauler@idaea.csic.es (R. Tauler).

http://dx.doi.org/10.1016/j.trac.2016.07.004
0165-9936/© 2016 Elsevier B.V. All rights reserved.

PhD Thesis of
E. Gorrochategui 77



Chapter 2- Novel data analysis approaches for metabolomics/lipidomics

426 E. Gorrochategui et al./Trends in Analytical Chemistry 82 (2016) 425-442

3.1.2.  Generation of a referential database 429

3.1.3. Isolation and identification of metabolites 429

3.1.4. Data normalization and quantification 429

3.1.5.  Data analysis steps all-in-one: tools for automated processing 431

3.2.  Data processing steps for untargeted studies 432
3.2.1.  Raw data acquisition 432

3.2.2.  Data storage and conversion 432

3.2.3. Data import 432

3.2.4. Data compression and matrix construction 432

3.2.5. Data intensity normalization, scaling and transformation 433

3.2.6.  Feature detection or peak resolution 434

3.2.7.  Feature detection (and alignment) 435

3.2.8.  Peak resolution (without alignment) 435

3.2.9. Biomarker screening or variable selection 436

3.2.10. Biomarker identification 437

3.3.  Final common step: biochemical interpretation 437

4.  LC-MS metabolomic data analysis: an active area in bioinformatics research 438
5.  Concluding remarks 438
Acknowledgements 439
Appendix: Supplementary material 439
References 439

1. Introduction

Metabolomics [1-3] is one of the categorical platforms that con-
stitute omics [4] (see Fig. 1). Omics is a field that aims at the study
of the abundance and (or) structural characterization of a broad range
of molecules in organisms under distinct scenarios. In the clinical
field, high-throughput omic technologies are used for the charac-
terization of diseases to better predict the clinical course of organisms
and to evaluate the efficacy of existing or under-development thera-
pies [5]. In food science, omics plays a significant role in the light
of an improvement of human nutrition [6]. In the environmental

field, omic studies aim at the evaluation of the alterations that or-
ganisms might suffer after exposure to environmental stressors [7,8].

In all cases, the expressed molecules are involved in most crucial
biological processes, and principally comprehend deoxyribonucle-
ic acid (DNA) (genomics [9], epigenomics [10]), ribonucleic acid (RNA)
(transcriptomics [11]), proteins (proteomics [12]), and other small
molecules (metabolomics [1-3]). In more recent years, another cat-
egorical omic platform named fluxomics [13,14], which aims at
the study of the fluxome, or the total set of fluxes in the metabolic
network of the biological specimen, has gained relevance. Apart from
these categorical omic platforms, a variety of omic subdisciplines

Fluxomics
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Fig. 1. Overview of OMIC platforms: target molecules, analytical methodologies used and structure of the generated data (GE N°: number of genes, §: chemical shift, m/z:
mass-to-charge ratio, rt: retention time, I: intensity). *Data structure shown when considering only one sample.
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have also emerged (e.g., lipidomics [15], glycomics [16], foodomics
[6,17], interactomics [ 18], and metallomics [19]), showing that omics
is a constantly evolving discipline. Among all these omic plat-
forms, metabolomics is becoming increasingly popular and is used
to detect the perturbations that disease, drugs or toxins might cause
on concentrations and fluxes of metabolites involved in key bio-
chemical pathways [20]. Due to its importance and relevance, the
current study concentrates on metabolomic data.

Several analytical techniques have been developed for each of
the omic platforms (see Fig. 1), including DNA microarray-based
and RNA-sequencing techniques [21], nuclear magnetic resonance
(NMR) spectroscopy [22,23] and mass spectrometry (MS) methods
[24,25]. In the field of metabolomics, both NMR and MS tech-
niques are the most popular. High-resolution proton NMR
spectroscopy ('"H-NMR) has proved to be one of the most power-
ful technologies for examining biofluids and studying intact tissues,
producing a comprehensive profile of metabolite signals without
separation, derivatization, and preselected measurement param-
eters [26,27]. On the other hand, MS methods, both by direct injection
[28] or coupled to chromatographic techniques [29], have also
evolved into a powerful technology for metabolomics due to their
ability in the analysis of low molecular weight compounds in bi-
ological systems. These two approaches (i.e., NMR and MS) are
complementary, and the integration of both technologies to
provide more comprehensive information is now pursued in the
metabolomics field. Nevertheless, this study concentrates on MS-
based metabolomic data.

Concerning MS instrumentation, high-resolution mass spec-
trometers are the most powerful analysers due to their ability to
improve accurate mass determination. In fact, spectrometers such
as time-of-flight (TOF) [30], quadrupole time-of-flight (Q-TOF) [31],
and Fourier transform ion cyclotron resonance (FT-ICR) [32] spec-
trometers and orbital ion traps [33], have substituted in many
cases the conventional low-resolution quadrupoles and linear
ion traps (IT), due to their ability to resolve isomeric and isobaric
species and elucidate elemental composition [34]. Regarding chro-
matographic techniques, early metabolomic studies were commonly
based on gas chromatography (GC), since it is a highly efficient,
sensitive and reproducible technique [35]. However, GC has the
drawback that only volatile compounds or compounds that are
made volatile after derivatisation can be analysed, and extensive
sample preparation is often required. In contrast, high-performance
liquid chromatography (HPLC) and ultra high-performance liquid
chromatography (UHPLC) are considered to be more comprehen-
sive than GC since they allow the analysis of a wider range of
metabolites without the requirement of derivatisation [36-39].
Hence, liquid chromatography coupled to mass spectrometry (LC-
MS) has lately gained popularity in the metabolomics field in
detriment of gas chromatography coupled to mass spectrometry
(GC-MS), this being the reason why this study is focused on the
former technique.

The improvement of analytical techniques has gradually caused
metabolomic data sets to become larger with more intricate inner
structures [40]. Mass spectrometric based techniques generate
highly complex data, due to the vast number of measurements
(i.e., MS spectrum at each retention time) related to the number
of observations (i.e., samples). In the case of LC-MS analysis (see
Fig. 1), data generated from each chromatogram are arranged in
data sets containing information of mass-to-charge (m/z), reten-
tion times and intensities. Hence, massive amounts of information-
rich MS data are generated in the analysis of every sample, thus
requiring specific standard approaches for its study and interpre-
tation [41].

In general terms, data analysis strategies are classified in two
groups: data analysis strategies for targeted (Fig. 2) and untargeted
(Fig. 3) metabolomic studies. The reason for such differentiation is

due to the different types of data generated in these two ap-
proaches, which require being handled accordingly. Targeted studies
[42] focus the research on a set of known metabolites whereas
untargeted studies [43] allow a more comprehensive evaluation of
metabolomic profiles. Most of the methodologies used in early tar-
geted studies just allowed the identification of a few number of
metabolites [44]. Nevertheless, recent targeted methodologies enable
large-scale metabolic profiling, including hundreds of compounds
[45-47]. However, the number of compounds analysed in untargeted
studies is even larger. This is so because one must process entire
data sets including thousands of metabolite signals, and among these,
few are finally identified as candidate biomarkers [48]. Therefore,
data analysis strategies for untargeted studies require highly-
extensive processing of LC-MS chromatograms. A large number of
data analysis strategies are found in the literature but none of them
can be singled out as the optimal choice in all cases, which makes
data analysis an open task in the bioinformatics research. In fact,
the field of MS-based metabolomics is rather young, and new
methods, software and platforms are being regularly published or
updated [49,50].

A recent review of Yi et al. [51] summarizes recent and poten-
tial advances in chemometric methods in relation to data processing
in untargeted metabolomic studies. Various aspects, including raw
data pre-processing, metabolite identification, and variable selec-
tion and modeling are accurately discussed and presented there.
The present review complements the previous one with some
data analysis steps not covered or partially covered by the former
(e.g., data acquisition, data storage and conversion, data import,
data compression and feature detection or peak resolution), pres-
ents novel and little known chemometric tools for data analysis
and includes an overview of the data analysis strategies for tar-
geted studies. Moreover, it is intended to contribute to the state-
of-art by providing comprehensive information on bioanalytical
and data processing tools rather than describing the principles of
the chemometric methods that can be used in LC-MS metabolomic
data analysis.

2. General overview of the data analysis approaches

LC-MS metabolomic data analysis strategies are primarily de-
signed for targeted and untargeted studies. However, future advances
in LC-MS metabolomics may lead to a merging of targeted and
untargeted analyses; with the targeted approach providing more
sensitive and accurate detection of predetermined metabolites,
and the untargeted approach being able to detect and identify
unknown metabolites [52]. Indeed, first steps in this direction
were made by Savolainen et al. [53], who collected for the first
time targeted and untargeted metabolomic data from human plasma
using gas chromatography coupled to tandem mass spectrometry
(GC-MS/MS). Next, a brief introduction to both approaches is
presented.

Data analysis in targeted metabolomics [42] aims to process data
sets coming from a subset of the metabolome: a predefined group
of chemically characterized and biochemically annotated metabo-
lites contained in referential databases. The advantages of performing
a targeted search are mainly attributed to two factors: first, ana-
lytical artifacts are not carried through to downstream analysis, and
second, just a selected group of metabolites is studied. Even though
this fact facilitates data analysis, the process becomes quite time-
consuming and tedious if one wishes to study a large number of
metabolites. In those cases, in order to reduce the effort and time
required for the data analysis, some alternative automated meth-
odologies have been developed [54-59] (see Section 3.1.5.).

The untargeted approach [43] attempts the comprehensive anal-
ysis of all measurable analytes in a sample, including uncharacterized
metabolites. No previous knowledge of the sample is required, and
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Fig. 2. Overview flowchart listing the five steps (grey shaded areas) involved in the
data analysis approach for targeted studies: raw data acquisition, generation of a
referential database, isolation and identification of metabolites, normalization and
quantification, and biochemical interpretation. These steps are grouped in three major
areas: data aquisition (light-grey), data processing and feature detection (medium-
grey) and interpretation (dark-grey). In this figure rectangles indicate processing steps,
diamonds indicate key contributional choices and in rounded rectangles are in-
cluded illustrative representations of MS data and LC-MS chromatograms. Note that
this flowchart does not consider the possibility of using automated data analysis tools
such as MRMPROBS, MMSAT or OpenChrom, which have their own specific work-
flow (see Section 3.1.5.). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the article.).

no referential database is necessary. However, its comprehensive
nature requires the analysis of whole data sets, which include gi-
gabytes of information. This is not possible without a previous
reduction of their dimensions into more computationally manage-
able formats, but this compression must be carried out without
significantly compromising the experimental information con-
tained within. Moreover, the compressed data need further and
extended analysis in order to finally detect most discriminant me-
tabolites (i.e., potential biomarkers).

In Figs. 2 and 3 is shown a detailed scheme of the steps in-
volved in data analysis strategies for targeted and untargeted studies,
respectively. As shown in the former, the targeted approach can be
broken down into five different parts (grey shaded areas): raw data
acquisition, generation of a referential database, isolation and iden-
tification of metabolites, normalization and quantification, and
biochemical interpretation. These parts can be grouped in three
major areas: data acquisition (light-grey), data processing and feature
detection (medium-grey) and interpretation (dark-grey). On the other
hand, in Fig. 3 the untargeted approach is divided in nine parts, re-
grouped using the same criterion as in Fig. 2: raw data acquisition
(light-grey area), data storage and conversion, import, compres-
sion, normalization, scaling and transformation, feature detection
or peak resolution, biomarker screening and identification (medium-
grey area) and biochemical interpretation (dark-grey area). Note that
some steps are common in the targeted and the untargeted schemes.
See Section 3 for a detailed explanation of both approaches.

3. The data analysis workflow for targeted and untargeted
metabolomic studies

This section provides details of the steps involved in data anal-
ysis workflows for targeted and untargeted studies (highlighting
common aspects), and finishes with a common explanation of the
biochemical interpretation for both approaches.

3.1. Data processing steps for targeted studies

3.1.1. Raw data acquisition

Targeted analyses require collecting metabolite specific infor-
mation typically using low-resolution tandem mass spectrometry
(LRMS/MS) instrumentation such as triple quadrupole (QqQ) and
quadrupole/linear ion trap (QLIT), which allow proper quantifica-
tion. Both QqQ and QLIT are routinely operated via selected ion
monitoring (SIM) and selected reaction monitoring (SRM). In ad-
dition, QLIT permits advanced MS? functionality together with QqQ
fragmentation patterns, thus, providing more useful information
needed for structural knowledge [52]. Although the use of LRMS/

| 5 Biochemical interpretation MS instrumentation is the most popular practice in targeted
J Contirmation of initial hypothesis or search metabolomics, high-resolution mass spectrometry (HRMS) [60,61]
Ot Snepecied Sherad beinweye can also be used in targeted analyses, operating in full-scan.

[ e, KEGO, BioCye, :enaCyc, WikiPaitways 1 Acquisition mode of LC-MS data (i.e., centroid or profile, Figs. 2
and 3) is influential on the final identification of metabolites. Ac-
quisition in centroid mode was introduced in the early days of MS
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instrument development, when the amount of data and the data
collection rate overwhelmed the state-of-art data system and data
storage [62]. Consequently, early mass spectrometers (e.g., low-
resolution quadrupoles and IT) were designed to reduce the acquired
raw MS data to a stick spectrum, or centroid data, in a process
known as centroiding. Centroiding processes each mass spectrum
and combines multiple data points representing the same peak into
a single data point with one m/z and intensity value. Nowadays, ac-
quisition in centroid mode is no longer mandatory since data
communication rate and storage capacity are not obstacles in most
data systems anymore. In fact, acquisition in profile mode occurs
by default in many HRMS instrumentation.

Centroiding has the obvious advantage of generating lighter data
files (up to 100-fold smaller). However, centroid data are obtained
at the expense of significant information loss, including noise char-
acteristics, linearity of the ion signal, mass spectrally interfering ions
and isotope fine features that can be obtained with HRMS when ac-
quiring in profile or continuum mode. Such information is highly
desirable since it facilitates the differentiation of formula candi-
dates hard to distinguish [62].

For instance, a feature identification software named MassWorks
(Cerno Bioscience, http://[www.cernobioscience.com) takes advan-
tage of the information gained under profile mode to reduce the
number of possible formula candidates and achieve better results
in the identification step [63,64].

3.1.2. Generation of a referential database

As previously stated, targeted metabolomics aims to search for
a specified list of metabolites, typically focusing on one or more
related pathways of interest [65]. In order to search for the me-
tabolites of interest, the first step required is the elaboration of a
referential database containing information of their nominal and
exact mass, chemical formula, retention time and precursor and
product m/z values. As observed in Fig. 2, such referential data-
base can be constructed in two ways. One would be to take benefit
from previous biochemical knowledge or from previous studies per-
formed on the same type of organisms or groups of compounds,
with the help of standard compounds (home-made database). The
other approach consists of consulting retrospectively online
metabolomic databases [e.g., human metabolome database (HMDB),
METLIN, MassBank, LipidMaps & LipidBlast, NIST and mzCloud]. The
readers interested in mass spectral databases for LC-MS metabolomic
data sets are advised to consult the recent work of Vinaixa et al.
[66].

3.1.3. Isolation and identification of metabolites

Following the generation of a referential database, next step is
the isolation and identification of the target metabolites. Most tar-
geted metabolomic studies use LC-MS vendor software [e.g., Masslynx
(Waters), Xcalibur (Thermo Fischer), Analyst (AB Sciex), Compass
(Bruker), MassHunter and Chemstation (Agilent)] for both isolation
and identification of compounds, with the support of the referen-
tial database. Only in few cases, data are analysed out of the vendor
software (see Section 3.1.5.).

Identification of metabolites is still evolving within the
metabolomics community, with active discussion on how to define
which features constitute valid metabolite identification [67]. Dis-
cussing all the identification strategies is out of the scope of this
review, and only basic guidance is given. According to the criteria
proposed by the Chemical Analysis Working Group (CAWG) of the
Metabolomics Standards Initiative (MSI: http://msi-workgroups
.sourceforge.net), four levels of identification can be defined [68].
Level 1 refers to definitive identification, possible when having, at
least, two orthogonal molecular properties of the putative metabo-
lite confirmed with an authentic chemical standard analysed under
identical analytical methodology (not necessarily in the researcher’s

laboratory). Levels 2 and 3 refer to putative or tentative identifi-
cation so that comparison against literature and data sets is sufficient.
Putative identification can provide metabolite-specific (level 2) or
class-specific (level 3) identification. Level 4 refers to unknown com-
pounds. Moreover, in the European Directive 2002/657/EC, the
criteria for unequivocal identification of compounds according to
the analytical platform used are presented [69].

As explained in Section 3.1.1., in targeted studies, two plat-
forms can be used to enable proper identification of metabolites:
LRMS/MS, which is the most common approach, and HRMS. When
working with LRMS/MS, the standard procedures are SIM and SRM
[70], as they enable high sensitivity, reproducibility and a broad
dynamic range. Significant advances have been made to perform
SRM experiments, and routine methods are now available for
analysing most of the metabolites in central carbon metabolism, as
well as amino acids and nucleotides at their naturally occurring phys-
iological concentrations [71-73]. Moreover, most of the currently
existing LRMS/MS targeted methods have been developed to enable
large-scale metabolic profiling, including hundreds of compounds.
Sawada et al. [45], optimized the SRM conditions of 497 plant me-
tabolites and finally quantified 100 of them in each of 14 plant
accessions from Brassicaceae, Gramineae and Fabaceae. Also, Gu et al.
[47], optimized 595 precursor ions and 1890 SRM transitions for
the analysis of serum metabolites. In most cases, the utilmate ob-
jective of these LRMS/MS methods is the screening of targeted lists
of metabolites as potential metabolic signatures for diseases. Indeed,
targeted screening on human plasma was used to reveal citric acid
metabolites and a small group of essential amino acids as meta-
bolic signatures of myocardial ischaemia and diabetes, respectively
[74,75]. The little percentage of studies that use HRMS instrumen-
tation operating in full-scan mode for targeted metabolomics utilize
the mass deviation as the principal criteria for formula identifica-
tion. In those cases, a deviation of 5 ppm is generally established
as the admissible mass error [76-78]. Garanto et al. [60] charac-
terized the mouse retinal sphingolipidome by ultra performance
liquid chromatography coupled to time-of-flight mass spectrom-
etry (UPLC-TOF), operating in full-scan mode, in a targeted lipidomic
study. In that study, quantification was carried out using the ion chro-
matogram obtained for each compound using 50 mDa windows and
positive identification of compounds was based on the accurate mass
measurement with an error <5 ppm and its LC retention time, com-
pared to that of standards.

Regardless the instrumentation used for targeted metabolomics
(i.e., LRMS/MS or HRMS), identification of metabolites can be en-
hanced when acquiring data in profile mode, as explained in Section
3.1.1. For instance, Erve et al. [63] and Amorisco et al. [64] used the
advantages of acquiring in profile mode to ensure precise identi-
fication of compounds.

3.1.4. Data normalization and quantification

The aim of normalization is to remove confounding variations
attributed to experimental sources (e.g. analytical noise or exper-
imental bias) in ion intensities among measurements while
preserving the relevant variation (due to biological source). Chem-
ical heterogeneity of metabolites, leading, for example, to distinct
recoveries during extraction or responses during ionization in the
mass spectrometer, makes separation between interesting biolog-
ical variation and unwanted systematic bias a necessary labor [79].
In order to minimize undesired variations, some considerations must
be taken, which are discussed below.

First, sample analysis for a particular study should be con-
ducted in a randomized sample order, and the data should be
acquired in the same batch on the same day, minimizing internal
variation within a particular study set. Second, single or multiple
surrogates (added to sample prior to extraction), internal stan-
dards (IS) (added to sample after extraction), and quality control
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Fig. 3. Overview flowchart listing the nine steps (grey shaded areas) involved in the data analysis approach for untargeted studies grouped in three areas: raw data acqui-
sition (light-grey area), data processing and feature detection (medium-grey area) and biochemical interpretation (dark-grey area). In this figure parallelograms indicate
data matrices or vectors, rectangles indicate processing steps, diamonds indicate key contributional choices, corner bend figures indicate file extension formats, in rounded
rectangles are LC-MS vendors and their corresponding software as well as illustrative representations of MS data and LC-MS chromatograms and other explicative infor-
mation is contained in hexagons. For data conversion, other external software (Sashimi Project and ProteoWizard) can be used (see Section 3.2.2. for more information). Note
that in this flowchart only MCR-ALS is presented as the peak resolution method, but other chemometric methods such as PARAFAC, PARAFAC2, ICA, can also be used (see
Section 3.2.8.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.).

samples (QCs) (i.e., pools of several individuals having compara-
ble characteristics that are injected all along the analytical run) [80]
should be used to normalize concentrations of metabolites among
sample sets and batches.

Quantitative analytical methods have generally relied on the uti-
lization of isotope-labeled internal standards, which can be obtained
following the method of Mashego et al. [81], for each metabolite
analysed. This normalization strategy has been used to investigate
metabolites including glycolytic and tricarboxylic acid cycle inter-
mediates, amino acids, nucleotides and folates from cells including
Escherichia coli, Salmonella enterica, yeast and human fibroblasts
[81-86]. Recently, Arrivault et al. [87] have presented the criteria
for the selection of most suitable isotope-labeled internal stan-
dards according to the case of study.

Using a set of selected surrogates and internal standards is a good
alternative when a full set of isotope-labeled standards is not avail-
able and a single calibration curve for each metabolite cannot be
applied. Actually, these methods fall in the middle between tar-
geted and untargeted approaches and are classified as semi-
targeted methods. For instance, Bijlsma and colleagues [88] utilized
three internal standard references for lipid profiling representing
most abundant lipid classes in their respective region of retention
time. Also, Sysi-Aho et al. [89], developed the NOMIS (normaliza-
tion using optimal selection of multiple internal standards) method
using the variability information from multiple IS compounds to find
the optimal normalization factor for each individual molecular
species. On the other hand, the use of QCs enables the evaluation
of the analytical platform stability and allows the correction of the
intensity deviation.

Next step following normalization is metabolite quantification,
performed by integrating the signals (i.e., peak height or area)
of the target metabolites and building analytical calibration
curves (different analytical strategies such as external calibration
curves with standards, standard addition and internal standard are
possible depending on the case, sample matrix effects, and detec-
tor reproducibility). As occurred in the previous step, most of targeted
studies use LC-MS vendor software for metabolite quantification,
whereas few of them utilize external tools for automated process-
ing (Section 3.1.5.). Following quantification, some statistical tests
may be applied in order to evaluate the significance of variations
in peak areas/heights among controls and stressed samples and find
most discriminant metabolites (i.e., potential biomarkers). In general,
for targeted metabolomics, basic statistical tests such as Student’s
t-test, analysis of variance, and non-parametric tests like Kruskal-
Wallis test may provide adequate statistical means to assess the
presence of a signal and its association with a trait of interest.
However, many metabolomic signals are highly correlated and thus
violate fundamental assumptions of independence for these tests.
In those cases, multivariate methods provide an attractive choice
and also allow for other purposes such as sample classification or
discrimination (see Section 3.2.9. where some of these methods are
described). For instance, Bajoub et al. [90] used principal compo-
nent analysis (PCA) combined with partial least squares-discriminant
analysis (PLS-DA) to classify 25 olive oil samples belonging to five
different varieties and to build predictive models for varietal clas-
sification. In this targeted metabolomic study Bajoub and colleagues
could identify the varietal markers for extra-virgin olive oil obtained

from Arbequina, Picual, Cornicabra, Hojiblanca and Frantoio cv. After
quantification and assessment of statistical relevance, it is possi-
ble to make a biological interpretation of the data. This final step
is described together for both targeted and untargeted approaches
in Section 3.3.

3.1.5. Data analysis steps all-in-one: tools for automated processing

Some software tools for the analysis of metabolomic data ob-
tained in targeted studies have been developed. Some of the most
recent are MRMPROBS [55,56], metabolite mass spectrometry anal-
ysis tool (MMSAT) [57] and OpenChrom [59]. MRMPROBS allows
metabolome analysis of large-scale SRM experiments. This program
provides a process pipeline from the raw-format import to high-
dimensional statistical analysis. To convert SRM raw data files to
ABF (analysis services backup file) format, MRMPROBS uses an in-
dependent and freely available converter at http://www.reifycs
.com/english/AbfConverter/, which supports four vendor formats:
Agilent Technologies (.d), Shimadzu (.LCD), AB Sciex (.WIFF) and
Thermo Fisher Scientific (.raw). In addition, this software also sup-
ports the mzML data format, provided by open-source file translators
such as ProteoWizard (described in more detail in Section 3.2.2.),
which also allows Waters (.raw) files to be imported. In order to iden-
tify the metabolites, an SRM standard library of 301 metabolites with
775 transitions is available. Such library containing SRM transi-
tions with information of precursor and product m/z values can also
be prepared by users and imported as a txt file. The output files of
this software (e.g., data tables, statistical analyses such as PCA) can
be exported in tab-separated text and image formats (JPEG, PNG,
BMP, TIFF and GIF) for PCA. On the other hand, MMSAT is a soft-
ware platform for automated quantification of metabolites from SRM
experiments. This software can be used independent of any MS in-
strument and is compatible with mzXML converted data (obtained
using open source-file translators such as Proteowizard) from major
mass spectrometer vendors. It allows automatically detection and
quantification of metabolites present across all SRM transitions, such
that no prior knowledge of metabolites is required. The output quan-
titative data can be exported in tab delimited format to facilitate
downstream statistical analysis and visualization using packages such
as Excel or R. Finally, OpenChrom is an extensible cross-platform open
source software for the analysis of LC-MS data, available free of
charge at http://www.openchrom.net. This approach supports Agilent
data formats as well as XML, mzXML and netCDF open formats and
provides tools to correct baselines, to detect, integrate and identi-
fy peaks and to compare mass spectra.

The three automated platforms hereby described, together with
other existing tools such as MRMer [58], appear as an alternative
procedure for researchers who want to analyse LC-MS data out of
vendor software. The readers interested on these types of tools are
advised to consult OMICtools (http://omictools.com) and ms-utils
(www.ms-utils.org) platforms. OMICtools is an online platform for
genomic, transcriptomic, proteomic, and metabolomic data analy-
sis that contains 11130 tools classified by omic technologies,
applications and analytical steps. The other platform, ms-utils, pro-
vides comprehensive lists of tools, some of them designed for data
visualization and analysis, format conversion, peak picking and
deconvolution, calibration and alignment and retention time
prediction.
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3.2. Data processing steps for untargeted studies

3.2.1. Raw data acquisition

Untargeted analysis of LC-MS data is performed using high-
resolution mass spectrometers such as TOF and orbital ion trap and
hybrid instruments such as quadrupole/Q-TOF and quadrupole/
orbital ion trap [52], operating in full-scan. Only when using GC-
MS, low-resolution single quadrupoles also permit identification of
metabolites in untargeted studies due to the specific fragmenta-
tion pattern of the compounds analysed [91].

Moreover, as previously stated, the acquisition mode of LC-MS
data (i.e., centroid or profile, Figs. 2 and 3) is influential on the final
identification of metabolites, which is enhanced with profile data,
since profile acquisition allows the determination of fine isotopic
distributions. See Section 3.1.1. for a detailed explanation.

3.2.2. Data storage and conversion

Once the full-scan LC-MS chromatograms are acquired, the first
step required previous to their analysis involves the conversion of
their original proprietary formats, which are difficult to analyse
outside the vendor software, into open data formats that are read-
able in most standard statistical environments (e.g., MATLAB or R).
Among the existing open data formats, the most popular are XML-
based formats (mzXML, mzData [92] and mzML [93]), netCDF [94]
(also known as ANDI-MS) and classical text files (e.g., JCAMP-DX [95]
or txt). Most software packages of LC-MS manufacturers have tools
that enable the conversion of proprietary data formats into open
data formats (see Fig. 3). Waters and Thermo Fisher provide vendor
software (Masslynx and Xcalibur, respectively) with specific tools for
data conversion (Databridge and File converter, respectively).
Databridge tool allows conversion of Waters raw data into netCDF
or ASCII (txt) files whereas File converter enables the conversion of
Thermo Fischer raw data into ANDI Files (netCDF format) or txt files
(please refer to a detailed LC-MS data conversion protocol [96]). Also,
Bruker and AB Sciex vendors have developed freely available ex-
ternal software (CompassXport and MS Data Converter, respectively),
which allow the conversion of raw files (.d and .WIFF format, re-
spectively) into mzXML for Bruker Corporation and into MGF peak
lists or mzML files for AB Sciex. Finally, data acquired using Agilent
instruments (.d files) can be directly converted using Chemstation
but MassHunter files need the use of the ExportMHDatafile tool, which
allows the conversion to mzXML format.

In all those cases, some external software (or projects) for data
conversion can be used. On the one hand, the Sashimi Project, in-
cluded in the trans-proteomic pipeline (TPP) [97] and, founded by
the proteomics group of the Institute for Systems Biology in Seattle,
contains converters that read different vendor-specific data and
convert them into mzXML format. Another popular software,
ProteoWizard, contains a set of open-source, cross-platform tools and
libraries for proteomics data analysis, specifically suitable for reading
and conversion of a large variety of vendor-specific formats into open
data formats [98]. In particular, ProteoWizard uses a command line
tool named msconvert (available with a graphical user interface as
well), also included in the Sashimi Project, which allows the con-
version of vendor formats into several open data formats, including
mzML, mzXML and txt. In Fig. 3, raw data extension formats and
final data extension formats of most important LC-MS manufac-
turers are shown, together with the software options that enable
such conversions. Only when using feature detection packages that
can read proprietary formats [e.g., various forms (X) of chromatog-
raphy mass spectrometry (XCMS) [99]], data conversion is no
necessary (dashed line in steps 2-3 of Fig. 3).

3.2.3. Data import
Once files have been converted into open data formats, next step
is their import into the data analysis platforms. As observed in Fig. 3,

when using feature detection packages [e.g., XCMS [99], MetAlign
[100], Markerlynx, MZmine [101,102]], such import is direct since
they contain specific tools for that purpose. Several feature detec-
tion packages have been developed for untargeted MS-based
metabolomic data analysis. The readers interested in these tools are
advised to consult OMICtools (http://omictools.com) and ms-utils
(www.ms-utils.org) platforms. For data analysis performed by re-
searchers, either in MATLAB or R environments, such import is
possible using distinct strategies.

When working in MATLAB environment, the quickest and easiest
method for LC-MS data import is the use of the routines included in
the Bioinformatics Toolbox™. A step-by-step example providing details
of these routines is shown by Gorrochategui et al. [96]. When working
in R environment, LC-MS data are usually imported by means of the
mzR package available at Bioconductor [103,104]. mzR provides a
unified interface for most of the open data formats described above
such as mzXML, mzML, mzData and netCDF. The key function of this
package is openMSfile which allows exporting the information from
the MS open formats to a format-specific mzR object with all the MS
raw data and metadata contained in the original files. Afterwards,
peaks function can be used to extract all MS spectral data into a matrix
to be further analysed. In addition to this possibility for accessing to
MS raw data for the experienced researchers, the mzR package is also
used in the most popular R-based feature detection packages (i.e. XCMS
[99] and MSnbase [104]) for data import.

3.2.4. Data compression and matrix construction

Handling LC-MS data in its raw form is difficult because of their
large size. Thus, data compression is usually necessary to reduce
them into more computationally manageable formats and avoid issues
associated with the limited memory capacity of the computers, but
preventing a loss of experimental information during the process.
In addition to compression, the initial LC-MS data sets containing
scans of unequally spaced masses must be mapped onto matrices
with rows representing each of the scans (i.e., retention times) and
columns representing the same mass values in all samples.

Different methodologies enable data compression as well as their
processing or visualization in its native two-dimensional form.
Among them, the procedures of “binning” and the “search of regions
of interest (ROI)” are the most adequate to the nature of LC-MS data
sets. Apart from these methodologies, in this section we also shortly
describe another strategy that is commonly used together with the
binning compression in order to further reduce data dimensions:
time windowing.

Binning. Binning is one of the most used procedures for raw
LC-MS data compression. The application of binning involves the
transformation of raw data into a matrix representation (x.,y),
with retention times in the x-dimension and m/z values in the
y-dimension. Conversion of high-resolution raw mass spectra
into a matrix representation requires the division of the m/z axis
into equidistant sections with a specific bin size. Thus, the com-
pression of the data and their mapping to a matrix are carried out
at the same time. However, as a consequence, a relevant draw-
back of the binning procedure is the difficulty associated with the
proper selection of the bin size for a particular data set, being
this parameter strongly related to the chromatographic profile. If
the bin size selected is too small, chromatographic peaks might
alternate among bins and thus not be detected due to the loss of
the chromatographic peak shape. On the contrary, if the bin size
is too large, multiple coelutions between peaks can exist, and
small peaks may disappear by the increased noise level. Another
disadvantage of the binning procedure is the loss of spectral
resolution derived from the data compression performed in the
m/z-mode dimension [37].

Fig. 4 shows an example of the binning procedure applied to a
region of an LC-HRMS chromatogram, with a bin size of 0.1 ppm. The
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Fig. 4. Scheme of the steps involved in the compression of data when using binning. Example shown for a particular region of an LC-HRMS chromatogram, using a bin size

of 0.1 ppm.

intensities corresponding to all m/z values comprised between the
lower limit (m/z,) and the upper limit (m/z; + 0.1 ppm) are added up
and attributed to m/z;, thus decreasing file size but also the spectral
resolution.

Regions of interest (ROI). Data compression based on the search
of ROI is an alternative technique to the binning procedure. This
method, first presented by Stolt et al. [105], is based on the concept
of considering analytes as a region of data points with a high density
ranked by a specific “data void”. These ROI contain data from in-
teresting mass traces, which means values with a significant intensity
higher than a fixed signal-to-noise ratio threshold (SNRyy,,). More-
over, ROI must contain a minimum number of consecutive data
points (pmin) compressed within a particular mass deviation (), typ-
ically set to a generous multiple of the mass accuracy of the mass
spectrometer. This condition prevents ionic signals or noise to be
considered as an ROL In Fig. 5a an example of a mass trace for a
particular region of the chromatogram obeying these criteria and
thus, considered as an ROI (ROI), is represented. As shown in this
figure, ROI; can be clearly distinguished from low-intensity signals
that are subsequently filtered out. As shown in Fig. 5b, ROI are
searched among all the chromatogram and vectors of distinct length
(depending on the number of ROI found at each retention time) are
obtained. Finally, these vectors are reorganized into a matrix. To do
that, common ROI among all the retention times are grouped and
final m/z of each ROI (mzmean) is calculated as the mean of all the
m/z values from the series of data points grouped within the same
ROI. The obtained matrix contains the retention times in the
x-dimension and the final mzmean values of ROI in the y-dimension
(Fig. 5¢).

With the ROI compression, no loss of spectral accuracy occurs,
as opposed to the binning strategy. ROI strategy was introduced in
the centWave algorithm of XCMS software [99] and it is increas-
ingly used in feature detection packages as a substitute to the
classical binning [37].

Time windowing. This strategy is based on the partition of the
LC-MS chromatograms into distinct regions of time (i.e., time
windows) to be analysed separately [106-108]. It is an additional
step used to further reduce sample size if data compression using
binning is not sufficient. The level of compression achieved with
the ROI strategy is generally high enough so that entire chromato-
grams can be analysed at a time.

3.2.5. Data intensity normalization, scaling and transformation

In untargeted approaches, three strategies can be used for re-
moving the unwanted systematic bias in the measurements: sample
normalization, data scaling and data transformation. Sample nor-
malization is necessary to adjust the differences among samples
whereas data scaling and transformation allow the comparison
among metabolites of distinct samples. Thus, normalization refers
to row-wise corrections (i.e., within chromatograms) whereas scaling
and transformation refer to column-wise corrections (i.e., between
chromatograms).

Sample normalization strategies can be chemical or mathemat-
ical. The first ones, which are based on the use of a single or multiple
surrogates, internal standards, and quality controls, have been already
described in the targeted approach (see Section 3.1.4). On the other
hand, mathematical normalization strategies use computation
models to achieve the same purpose. A numerical normalization
method based on the use of QCs proposed by Dunn et al. [109] is
the locally estimated scatterplot smoothing (LOESS). In this method,
each variable in each sample is individually corrected according to
the evolution of its value in the neighbouring QCs. Also, van der Kloet
et al. [110] proposed in 2009 a correction based on the average or
on the median of the QC replicates analysed in different batches.
A novel and alternative method for correction of analytical bias is
common components and specific weights analysis (CCSWA), orig-
inally developed by Qannari et al. [111] and recently used by Dubin
et al. [112] for correction of analytical bias. This method is re-
ported as a good alternative to LOESS signal correction when samples
and QCs do not behave in the same way. Other mathematical nor-
malization strategies are based on the assumption that the signal
of the majority of metabolites is stable. Under this assumption, nor-
malization can be efficiently achieved by calculating the relative ratio
of abundance of metabolites respect to all other peaks (e.g., unit
norm [113] and median intensities normalization [114]). However,
these strategies fail when changes in concentration of metabolites
occur due to laboratory system errors and (or) differences among
large scale biological experiments. In these cases, normalization
based on the total chromatogram is not appropriate and can cause
serious data distortions. Another normalization method widely used
is the probabilistic quotient normalization (PQN) [115]. This method
scales all the intensities in a spectrum using the most probable mul-
tiplicative factor calculated as the median of the quotients of the
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Fig. 5. Scheme of the steps involved in the compression of data by the search of
ROI: a] original data with non-equidistant m/z intervals where a significant mass
trace is represented as ROI; (green) and distinguished from low-intensity signals
(orange, pink and violet), b] vectors containing the distinct ROI (represented by se-
quences of squares of the same colour) obtained at different regions of the
chromatogram, including the previous ROI; (green) and c] matrix constructed from
the reorganization of ROI vectors, again containing the same ROI; (in green). (SNRrhy:
signal-to-noise ratio threshold, mzmean: mean of all the m/z values from the series
of data points grouped within the same ROI). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of the article.).

amplitudes of each point in a spectrum and a reference spectrum.
PQN normalization is highly recommendable for cases were size
effects are noticeable, and internal normalization is not suitable since
it destroys relative peak information within the chromatogram.

Scaling methods are data pretreatment approaches that divide
each variable by a factor, the scaling factor, which is different for
each variable. They aim to adjust for the fold differences between
the distinct metabolites by converting the data into differences in
concentration relative to the scaling factor [116]. Depending on the
scaling factor used, scaling methods are divided in two sub-
classes. The first class uses a measure of the data dispersion (e.g.,
standard deviation) as a scaling factor, while the second class uses
a size measure (e.g., the mean). Scaling methods that use a disper-
sion measure for scaling include autoscaling [117], Pareto scaling
[118], range scaling [119], and variable stability (VAST) scaling [120].
Autoscaling [117], also called unit or unit variance scaling, is the
most used in metabolomics and it provides equal variance to each
variable (i.e., all metabolites have a standard deviation of one). Pareto
scaling [118] is very similar to autoscaling, but instead of the stan-
dard deviation, the square root of the standard deviation is used
as the scaling factor. Range scaling [119] uses the range (i.e., dif-
ference between minimal and maximal value or concentration of
a metabolite in a set of experiments) as the scaling factor. VAST
scaling [120] is an acronym of variable stability scaling and it is an
extension of autoscaling. Scaling methods based on average value
include level scaling, which converts the changes in metabolite con-
centrations into changes relative to the average concentration of the
metabolite and Poisson scaling or “square root mean scale”, which
scales each variable by the square root of the mean of the vari-
able. Examples of Poisson scaling to correct MS data effectively are
found in the literature [121,122].

Finally, transformations are nonlinear conversions of the data such
as the log and the power transformation [116]. These methods are
commonly used to correct for data heteroscedasticity [123], which
in the case of metabolomic data refers to non-equal variance un-
certainty variations related to some or all metabolites under analysis.

Some of the existing LC-MS feature detection frameworks allow
normalization based on the use of internal standards and scaling.
For instance, the algorithm of MZmine 2 [102], called linear nor-
malizer, divides the height or area of each peak by a normalization
factor, such as the average of peak height, the average of the squared
peak height, the maximum peak height or the total raw signal within
the chromatogram. In contrast, MetaboAnalyst [124,125] per-
forms normalization (to allow comparisons among samples) and
scaling (to allow comparisons of magnitude of features) sequen-
tially. Wu et al. [126] have recently provided a summary of the
reported sample normalization methods used over the past several
years together with their pros and cons. They conclude that for the
appropriate selection of a normalization methodology, the biolog-
ical system of study must be thoroughly evaluated. In this study,
Wau and colleagues propose two distinct normalization method-
ologies, one for urine samples and another for cellular extracts.

3.2.6. Feature detection or peak resolution
Feature detection and peak resolution are two closely-related con-
cepts. Feature detection aims to search for features, using the term
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“feature” for a bounded, two-dimensional (m/z and retention time)
LC-MS signal [37]. On the other hand, peak resolution' aims to iden-
tify the pure components responsible for these features, associated
with a pure spectrum or elution profile, after solving some chro-
matographic problems (e.g. coelutions). Generally, feature detection
is carried out by different algorithms featured in available soft-
ware. On the other hand, some chemometric methods have also been
developed to resolve second order data such as LC-MS data. Among
them, multivariate curve resolution-alternating least squares (MCR-
ALS) [127] has proved to be powerful when dealing with LC-MS
metabolomic data sets [96,106,107,128-133]. The ultimate goal of
feature detection and peak resolution is to distinguish real chem-
ical compounds from false positives (e.g., background noise).

Most of the existing feature detection packages [e.g., XCMS [99],
MetAlign [100] and MZmine [101,102]] require preliminary peak
alignment and usually peak shaping previous to feature detection.
On the other hand, some chemometric methods such as MCR-ALS
allow peak resolution without previous peak correction. A de-
tailed explanation of both methodologies is shown below.

3.2.7. Feature detection (and alignment)

In most of feature detection software, peak alignment is neces-
sary in order to search for corresponding peaks across distinct
chromatographic runs and compare them between samples. To-
gether with peak alignment, peak shaping is generally applied so
that peaks finally have a defined and more symmetrical shape,
usually fitting a Gaussian curve to the experimental features.

The search for corresponding peaks is a cumbersome task since
matching peaks usually have differences in m/z and retention time
values [134]. In fact, when searching for matching peaks, some
remarks should be made. First, the differences in the retention time
across samples may be non-linear. Second, a feature in a sample may
have multiple possible matching features based on m/z and reten-
tion time values, potentially leading to false matching. Finally, some
peaks may not appear in some samples [49].

Because of the issues mentioned above, different alignment al-
gorithms have been proposed to correct retention time differences
among samples. Considering the most popular feature detection
packages, some of these algorithms can be highlighted. First, the
OBI-warp [135] (ordered bijective interpolated warping) method,
used in the XCMS software, which allows aligning matrices along
a single axis using dynamic time warping (DTW) together with a
bijective (one-to-one) interpolated warp function. Thus, OBI-warp
(first used in the proteomics field) produces a smooth warping func-
tion able to align multiple chromatographic runs. Alternatively, an
alignment method based on the random sample consensus (RANSAC)
[136] algorithm is used in the MZmine 2 [102] software. RANSAC
is an iterative method that allows the estimation of parameters of
a mathematical model by random sampling of the observed data
that could contain outliers. Finally, the combination of RANSAC and
LOESS regression allows the determination of optimal parameters
of the mathematical model for peak alignment. More options for
peak alignment can be found in the review works of Katajamaa [79]
and Bloemberg [137]. Concerning peak shaping, some feature de-
tection algorithms initially used models of specific peak width to
fit features (e.g. Matched Filter algorithm of XCMS software [99]).
However, those models failed when the selected peak width did not
fit all features properly.

In order to overcome this issue, some feature detection packages
(e.g., centWave algorithm of XCMS) use continuous wavelet trans-
form (CWT) to perform peak shaping. The CWT reliably detects

! The term “deconvolution” is analogue to “resolution” but is preferred to be used
for univariate signals [i.e., first order data (data vector)], whereas resolution is pre-
ferred for multivariate signals [i.e., second order data (data matrix)].

chromatographic peaks of differing width and is widely used in signal
processing and pattern recognition [ 138], and furthermore is able to
resolve an additional problem concerning feature detection, as it
is the presence of close-by or coeluted peaks. With the CWT anal-
ysis, the intensity of every peak is estimated by the maximum value
of the centroid peak in the calculated peak boundaries. The same ap-
proach can be used to eliminate noise contributions known as “shoulder
peaks” (small peaks from residues of the Fourier transform calcu-
lated by the MS instrument). These contributions can also be removed
by fitting a theoretical model (e.g., Gaussian or Lorentzian).

3.2.8. Peak resolution (without alignment)

Recently, some little explored but highly useful chemometric tools
have proved to be powerful methods for LC-MS metabolomic data
analysis. Among them, MCR-ALS has emerged as a powerful tool to
resolve the profiling problems in LC-MS metabolomic data sets without
previous peak correction [127]. MCR-ALS is based on Equation (1):

D=CST+E (1)

It is seen that MCR-ALS methods share the underlying bilinear math-
ematical model of PCA but under completely different constraints and
with a different goal. In the case of LC-MS data, D matrix (I xJ) con-
tains the MS spectra at all retention times (i=1, ... ) in its rows, and
the chromatograms at all spectra m/z channels (j=1,...J) inits columns.
This data matrix is decomposed in the product of two factor matri-
ces, C and S™. The C (I xN) matrix contains column vectors which
correspond to the elution profiles of the N (n=1,... N) pure compo-
nents of matrix D. In ST (N xJ) matrix, row vectors correspond to the
spectra of the N pure components. The part of D that is not ex-
plained by the model forms the residual matrix, E (I xJ). MCR-ALS
methods assume that the variation measured in all samples in the
original data set can be described by a combination of a small number
of chemically meaningful profiles. In the case of LC-MS data sets, in-
formation of the data table can be reproduced by the combination of
a small number of pure mass spectra (row profiles in the ST matrix)
weighted by the concentration of each of them along the elution di-
rection (the related chromatographic elution peaks, column profiles
in C). As a result from the MCR-ALS analysis, we obtain a set of com-
ponents, with their corresponding elution and spectra profiles. The
equivalence between an MCR-ALS component and a feature is high
since both of them correspond to a chemically meaningful profile.
However, they differ in the fact that one feature is associated with a
unique m/z value whereas one MCR-ALS component can be associ-
ated with various m/z values (i.e., distinct m/z values can describe
the same elution profile).

As previously stated MCR-ALS analysis allows powerful LC-MS
data resolution without previous peak alignment or shaping. The
reason why peak alignment is not required is attributed to the fact
that alignment is produced in the spectral dimension (m/z values),
which is common among all samples, and not in the time dimen-
sion, which can vary among samples. This is useful with LC-MS data
sets, but even more with capillary electrophoresis-mass spectrom-
etry (CE-MS) data sets, which contain analytes showing important
retention time peak shifts among samples that in some cases cannot
be properly corrected when using feature detection (and align-
ment) algorithms. The number of MCR-ALS models required to
resolve peak signals of one sample depends on the size of the data
matrix. Generally, for data compressed using binning strategy, com-
pression is not sufficient, and MCR-ALS has to be applied individually
to distinct time windows of the chromatogram (see Section 3.2.4.).
On the contrary, when using ROI strategy, the obtained data ma-
trices are small enough so that one MCR-ALS model is generally
sufficient to resolve peak signals of the entire chromatographic
profile. The readers interested in MCR-ALS analysis are advised to
consult http://www.mcrals.info/.
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There are significant differences between the approaches used
by MCR-ALS respect to other feature detection packages, such as
XCMS, concerning peak resolution and feature detection strate-
gies. However, a study based on the evaluation of changes induced
in rice metabolome by Cd and Cu using LC-MS [132] concluded that
both methodologies provided similar results, which suggests that
despite the existing differences among these approaches, they are
equally valid to analyse LC-MS metabolomic data sets.

Apart from MCR-ALS, other methods for the processing of second-
order data are available. Among them, PARAFAC (parallel factor
analysis) [139,140], TLD (trilinear decomposition), PARAFAC2 (par-
allel factor analysis2) [141,142] and independent component analysis
(ICA) are some methods proposed for the same goal. PARAFAC and
TLD methods require the data to follow the so-called trilinearity
model (i.e., all chemical components are defined by a unique elution
and spectral profile in all samples, apart from a scale factor).
However, LC data do not obey the trilinear model in general, since
analyte peaks usually show retention time shifts and peak shape
changes from sample to sample, causing trilinearity deviations. In
order to restore the trilinearity, PARAFAC and TLD methods should
mathematically pre-process each data matrix, so that analyte peaks
are properly aligned. Even in this case however, possible run to run
peak shape differences compel the fulfillment of the trilinear model
in many circumstances. On the other hand, PARAFAC2 employs a
more flexible algorithm, which permits a given component to have
different time profiles. A study of Khakimov et al. [143] demon-
strated the efficiency of PARAFAC2 for exploring complex plant
metabolomics LC-MS data. In that study, PARAFAC2 enabled
automated resolution and quantification of several elusive chro-
matographic peaks (e.g., overlapped, elution time shifted and low
s/n ratio). However, Bortolato and Olivieri [144] compared the per-
formance of PARAFAC2 and MCR-ALS, arriving at the conclusion that
PARAFAC2 produces artificial outputs when elution profile changes
are severe, and interferents are present in test samples and there-
fore, confirmed the higher power and range of applicability of MCR-
ALS. Another alternative to PARAFAC, PARAFAC2, TLD methods and
MCR-ALS is ICA. The main idea of ICA [145] is to find a mathemat-
ical transformation of the data into a linear combination of
statistically independent components. However, the condition of in-
dependence is generally not fulfilled when using ICA with
chromatographic data [146,147]. Among ICA methods, mean-field
ICA (MFICA) [148] is the best for multivariate resolution, due to the
application of non-negativity constraints in both data modes (i.e.,
concentration and spectra profiles), and is the only one that can be
strictly compared to MCR-ALS. However, the advantage of MCR-
ALS is that it is more flexible since it allows the implementation
of other constraints (e.g., unimodality, closure, local rank, selectiv-
ity or the multi-linear type of constraint) [146]. Recently, Liu et al.
[149] have developed a new method named MetICA, inspired from
the original Icasso algorithm, for the application and validation of
ICA on untargeted metabolomic data sets. In that study, the effi-
cacy of MetICA routine was tested on simulated and real MS-
based yeast exo-metabolome data.

3.2.9. Biomarker screening or variable selection

Biomarker screening (variable selection) plays an essential role
in metabolomics [150,151]. Biomarkers are defined as biological en-
tities that can be used to indicate the status of healthy or diseased
cells, tissues, or individuals. Thus, they correspond to molecular
markers (i.e., metabolites in the case of metabolomics) that can better
discriminate among control and stressed samples, in terms of their
concentrations.

However, it is unfortunately quite easy to find markers that,
despite being apparently relevant, are in fact spurious. The main
sources of error in this aspect, which are not entirely independent
of each other, include bias, inadequate sample size (especially relative

to the number of metabolite variables and to the required statis-
tical power to prove that a biomarker is discriminant), excessive false
discovery rate due to multiple hypothesis testing, inappropriate
choice of particular numerical methods, and overfitting (generally
caused by the failure to perform adequate validation and cross-
validation). Many studies fail to take these problems into account,
and thereby fail to find anything significantly true [152]. For in-
stance, classical p-values such as “p <0.05” that are commonly used
in biomedicine are far too optimistic when multiple tests are done
simultaneously (as occurs in metabolomics) [150]. Indeed, one type
of bias, known as “p-hacking”, occurs when researchers collect or
select data or statistical analyses until nonsignificant results become
significant. Head et al. [153], studied the extent and consequences
of p-hacking in science arriving at the conclusion that this type of
bias probably does not drastically alter scientific consensuses draw
from data analyses. However, methods to measure such error and
to correct them are highly recommendable.

The classical methods used for biomarker selection were pro-
posed by statisticians and were based on the application of statistical
hypothesis testing (e.g., t-tests, Mann-Whitney U test, ANOVA).
However, other methods envisaged for biomarker screening have
been proposed lately by numerous chemometricians. Some of these
methods include PCA [154], ICA [145], PLS-DA [155], linear logis-
tic regression (LLR) [156], classification and regression trees (CART)
[157], selectivity ratio (SR) [158,159] and variables importance on
projection (VIP) [160]. Another method valid for variable selec-
tion is ANOVA-simultaneous component analysis (ASCA) [161,162].
This method can be understood as a direct generalization of ANOVA
analysis of variance for univariate data to the multivariate case. ASCA
method incorporates the information of the structure of data sets
(i.e., underlying factors such as time, dose or combinations thereof),
enabling a better understanding of their biological information.

To date, the most popular variable selection method in
metabolomics is the VIP [160] method. However, the main draw-
back of this approach is related to the proper selection of the
threshold value. Despite some studies select variables with VIP scores
greater than 1 [163,164], such criterion is not always used and the
results found in the literature are not always comparable. A study
by Gorrochategui et al. [108] compared the number of biomarkers
found when using an ANOVA test (p < 0.05) followed by a multi-
ple comparison’s test and those obtained when using the VIP method
fixing distinct threshold values. As it was observed, the number of
encountered biomarkers was different in each case, although some
of them were common among the strategies. Another method facing
the challenge of a proper threshold value selection is SR. Actually,
the use of the threshold suggested by the authors Rajalahti et al.
[158,159] based on an F-test to define the boundary between vari-
ables with high discriminating ability and less interesting regions,
is unusually valid for raw large chromatographic data sets, such as
LC-MS metabolomic data sets [165]. In those cases, SR can lead to
a selection of a reduced number of variables, sometimes not in-
cluding relevant biomarkers. An alternative strategy to increment
the number of selected variables using SR method is the use of ad
hoc limits (e.g., average SR over the training set).

Despite the VIP method being the most used in metabolomic
studies, there is still some disagreement about which is the best ap-
proach for variable selection and a critical evaluation needs to be
performed before any of them is selected and, also, once the results
have been obtained. Checa et al. [166] concluded that the most
crucial step when performing lipidomic data analysis is the proper
choice of the chemometric variable selection method according to
the crude data. Studies comparing the performance of several of
these methods exist in the literature. For instance, Farrés et al. [165]
compared SR and VIP variable selection methods observing that in
general terms, the VIP method selected a higher number of vari-
ables than the SR method. However, they arrived at the conclusion
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that final decision about which is the best approach should be per-
formed according to the aim of the study. Also, Andersen et al. [167]
concluded that in essence, variable selection should rather be con-
sidered as variable elimination where the clearly irrelevant parts
are removed and the remaining parts containing potentially useful
information are kept for further data analysis.

In order to ensure good performance of the selected discrimi-
nation model, further statistical validation of the model is required.
Such validation becomes particularly necessary in the case of
“undersampling” (i.e., when having a low number of samples com-
pared to the number of variables), since the reduced number of
samples becomes insufficient to properly describe the groups and
find significant biomarkers. Some of the statistical validation tools
that can deal with this problem consist of permutation tests [168],
single and double cross-validation [169,170], and the combina-
tion of the latter with a new variable selection method, called ranked
products [171]. Permutation tests give information about the dis-
crimination performance of the model, which should at the same
time be able to properly classify new samples as “stressed” or
“control”. However, testing the classification ability of the model
is impossible when having low number of samples and for this
reason, permutation tests are mostly used to evaluate the signifi-
cance of the discrimination. Double cross-validation takes a better
advantage of the data and is the chosen method to estimate the error
of the model in classifying unknown samples. Cross-validation pro-
cedures generate several models. However, those procedures only
give a reliable error rate when the complete modelling step is cross-
validated. Cross-validation methods together with bootstrap [172]
and jack-knifing methods are classified as resampling methods [173],
and are used to determine the optimal number of components in
a partial least squares (PLS) regression model [174,175]. More-
over, these methods allow the estimation of the uncertainty of
individual variables, in order to find the relevant ones (e.g., rele-
vant VIPs to determine candidate biomarkers). Afanador et al. [176]
demonstrated how the use of bootstrapping, in conjunction with
permutation tests and the use of 95% lower-bound on the jack-
knife confidence interval provide avenues for improvement of the
important variable selection process. Finally, the rank products pro-
cedure can be described as a natural partner for cross-validation
to evaluate the overall importance of a variable. Overall, a combi-
nation of these tools for statistical validation of discriminant models
is frequently the best option. Smit et al. [171] presented a strategy
for the discovery and rigorous statistical validation of candidate
biomarkers for proteomics based on the combination of principal
component discriminant analysis (PCDA), permutation tests, double
cross-validation and variable selection with rank products. A tuto-
rial of validation tools for chemometric models shows how the
selection of the level of validation and the method for analyzing data
may impact the conclusions and chemical insight gained [173].

3.2.10. Biomarker identification

As stated in Section 3.1.3., the identification of metabolites is a
complex task, and it becomes even more complicated in untargeted
metabolomic studies. In 2013, Dunn et al. [177] reviewed all the
available experimental and computational tools to identify me-
tabolites in untargeted metabolomic studies. In this review, they
concluded that the number of identified metabolite features has in-
creased in the last decades due to enhanced mass spectrometry and
increased mass resolution, but the proportion of identified me-
tabolites remains still low (ca. 50%). The criteria [68] and directives
[69] for the identification of MS data previously presented in the
targeted approach are also valid for the untargeted approach. In con-
trast to targeted studies which can use either LRMS/MS or HRMS
instrumentation, untargeted studies are possible with HRMS or high-
resolution tandem mass spectrometry (HRMS/MS). Li et al. [178]
have recently reported that liquid chromatography coupled to

quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to in-
vestigate natural products provides efficient separation and good
sensitivity. Also, it allows for the identification of the fragmenta-
tion pathways of metabolites [179] and [180], by employing newer
mass spectrometryFlevated enersy (M SE) methods to acquire MS/MS
(without specific precursor ion selection) data at both low and high
energy from a single injection [181]. Moreover, LC-QTOF-MSE is
proved to be a very versatile technique in metabolomics and it has
been shown to be increasingly powerful [182].

However, the high mass accuracy provided by HRMS instrumen-
tation can be partially lost when using binning in the compression
step (see Section 3.2.4.). In those cases, HRMS data can be recov-
ered using two approaches.

First, HRMS data can be obtained by looking back in the raw
spectra: after the peak resolution step (for instance using MCR-
ALS) has been performed on data compressed by binning, those
peaks tagged as potential biomarkers are identified by direct com-
parison with the HRMS spectra. For instance, Bedia et al. [133]
identified the lipid species (including phospholipids, sphingolipids,
glycosphingolipids and cardiolipin species) altered after long-
term exposure of prostate cancer cells to endocrine disruptors using
this approach, even though original data were binned with an m/z
resolution of 0.05 ppm. The second method consists in a least-
squares step which allows HRMS spectra to be obtained from the
MCR-ALS elution profiles of binned data and the original HRMS data
for a set of LC-MS chromatograms (or the same region of the chro-
matogram in the case of time windowing). See Appendix A for a
detailed explanation of the latter procedure. It should be noted that
since the ROI method, used in many of the LC-MS feature detec-
tion packages, does not decrease the resolution of the MS data, there
is no need for applying these strategies when this compression tech-
nique is used. Finally, as stated in Section 3.1.3., another aspect can
contribute to an enhanced identification: acquisition in profile mode.

3.3. Final common step: biochemical interpretation

The overall process of LC-MS data analysis ends with the ulti-
mate biological interpretation of the results through the elucidation
of the metabolic pathways linked to the identified biomarkers. In
targeted metabolomic studies that are driven by an initial biolog-
ical hypothesis, final interpretation is usually reduced to a
confirmation of the predicted alterations. Only in those cases where
initial predictions are not fulfilled the unknown altered pathways
have to be deciphered. In untargeted metabolomics elucidation is
always necessary.

Altered metabolic pathways can be deciphered by consulting
online databases such as KEGG (kyoto encyclopedia of genes and
genomes) (http://www.genome.jp/kegg/kegg2.html) [183], Biocyc
(http://biocyc.org) [184], MetaCyc (http://MetaCyc.org/) [185] or
WikiPathways (http://www.wikipathways.org) [186,187]. The rep-
resentation of these altered pathways in global maps showing an
overall picture of metabolism helps to obtain a reliable biological
interpretation of the studied system. For instance, Farrés et al. [107]
and Ortiz-Villanueva et al. [131] studied the metabolic changes oc-
curring in stressed baker’s yeast (Saccharomyces cerevisiae) samples.
With the help of KEGG database both studies characterized most
discriminant metabolites and identified the metabolic pathways with
the highest participation in the acclimatization of baker’s yeast cells
to grow at distinct temperatures (i.e., 42 and 37°C, respectively). Also,
Chu et al. [188], studied the therapeutic mechanism of Rhizoma
Alismatis, a crude herb component in traditional Chinese medi-
cine, on spontaneous hypertensive rats using ingenuity pathway
analysis (IPA). With the help of KEGG, HMDB and METLIN data-
bases the authors found the potential biomarkers and potential target
pathways of Rhizoma Alismatis species. Moreover, Perl et al. [189]
studied the mechanism of impact of the amino acid precursor,
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N-acetylcysteine (NAC), on the metabolome of systemic lupus ery-
thematosus (SLE) patients by quantitative metabolome profiling of
peripheral blood lymphocytes (PBL) using mass spectrometry. The
results of this study showed that metabolome changes in lupus PBL
affected 27 of 80 KEGG pathways with most prominent impact on
the pentose phosphate pathway (PPP), which reflected greater
demand for nucleotides and oxidative stress. Overall, their find-
ings contributed to the identification of novel metabolic checkpoints
in lupus pathogenesis.

4. LC-MS metabolomic data analysis: an active area in
bioinformatics research

The development of tools for data analysis is an active area of
bioinformatics research. Recent years have witnessed the develop-
ment of many software tools for data analysis, but still there is a
need for further improvement of the data analysis pipeline. Such
improvement should concentrate on two aspects: combination of
data analysis strategies and fusion of distinct omic fields.

The combination of various data analysis strategies is neces-
sary to allow a more comprehensive detection of chemical
components in LC-MS data for signature discovery. In the last years,
some studies have demonstrated the advantages of combining
various data analysis strategies. For instance, Coble and Fraga [190]
compared the performance of four data analysis tools [i.e., XCMS
[99], MetAlign [100], MZmine [101,102], and SpectConnect (this one
for GC-MS data)] in terms of their ability to detect components in
the chromatography-mass spectrometry data sets, arriving at the
conclusion that each of them has its pros and cons. The same study
also pointed out that the most pressing improvement needed for
all the tested data analysis tools was to reduce the percentage of
false peaks, i.e., reported features that are not true peaks, while still
detecting the low-intensity peaks. Moreover, some of the existing
data analysis methodologies still require a significant level of manual
input, which difficults the process and can even make it prohibi-
tive in the case of very large data sets.

The fusion of distinct omic platforms (e.g., transcriptomics,
proteomics and metabolomics) is one of the latest objectives pursued
by the omics community. Data fusion is a challenging task, in par-
ticular, when the goal is to capture underlying factors and use them
for interpretation. Numerous strategies have been proposed for in-
tegrating data from parallel sources. Among them, some of the most
used include GSVD (generalized singular value decomposition) [191],
02PLS (two-way orthogonal projections to latent structures) [192],
OnPLS (multiblock orthogonal projections to latent structures) [193],
DISCO-SCA (distinctive and common components with simultaneous-
component analysis) [194], JIVE (joint and individual variation
explained) [195], and CMTF (coupled matrix and tensor factoriza-
tion) [196]. GSVD provides a comparative mathematical framework
for two data sets (e.g., two genome-scale data sets). 02PLS method
is build on the basis of orthogonal projections to latent structures
(OPLS) [197], which is a supervised multivariate regression method.
O2PLS can be used for combining “omics” types of data, separat-
ing systematic variation that overlaps across analytical platforms
from platform-specific systematic variation. Bouhaddani et al. [198],
evaluated the efficacy of O2PLS in the integration of metabolomic
and transcriptomic data from a large Finnish cohort (DIGLOM). The
results of the simultaneous analysis with O2PLS on metabolome and
transcriptome data were in agreement with an earlier study and
showed that the lipo-leukocyte module, together with two lipo-
proteins, were important for the metabolomic and transcriptomic
relation. An extension of O2PLS to the multiblock case (involving
more than two matrices) was later developed and called OnPLS.
OnPLS method is fully symmetric (i.e., it does not depend on the
order of analysis when more than two blocks are analysed) and has
been used in several multi-omic studies [193,199,200]. DISCO-SCA

allows distinguishing common and distinctive information in dif-
ferent data blocks; information that is mixed up when using
simultaneous-component and multigroup factor analysis methods.
JIVE [195] was created for the integrated unsupervised analysis of
metabolomic profiles from multiple data sources. This method sepa-
rates the shared patterns among data sources (i.e., joint structure)
from the individual structure of each data source that is unrelated
to the joint structure. CMTF successfully captures the underlying
factors by exploiting the low-rank structure of higher order data
sets and is particularly useful for joint analysis of heterogeneous
data. Apart from these methods, Blanchet and Smolinska [201] have
recently proposed a framework which allows the combination of
multiple data sets, provided by different analytical platforms. This
framework extracts relevant information for each platform in the
first step. Then, the obtained latent variables are fused, analysed,
and the influence of the original variables is finally calculated back
and interpreted. Therefore, new advances in data processing tools
should point to opening fields such as data fusion. For instance, in
the case of MCR-ALS, data fusion can be easily performed by aug-
menting data matrices in the row-wise dimension, and some work
is now being pursued in this direction.

5. Concluding remarks

From a general point of view, we can conclude that the complex-
ity of LC-MS metabolomic data and the diversity of strategies that
are used for their processing makes data analysis an open field in the
bioinformatics research. In global terms, targeted strategies allow highly
sensitive and accurate detection of predetermined metabolites whereas
untargeted strategies are valuable for the detection of unknown me-
tabolites and biochemical pathways. However, both approaches are
complementary and can be used simultaneously. Despite recent tar-
geted methodologies enable large-scale metabolic profiling, including
hundreds of analytes, the number of compounds to be analysed in
untargeted studies is still larger. This is so because entire data sets
including thousands of metabolite signals have to be processed in
the latter approach. For this reason, later advances in data analysis
tools have been focused on the untargeted approach.

In the last years, multiple feature detection software tools for
LC-MS data have been developed for untargeted metabolomics.
Generally, all of them cover the same steps of data conversion, com-
pression, normalization, feature detection, variable selection and
identification. Among them, data compression is one of the most
crucial steps, since it must reduce the original dimensions of the
data (gigabytes of storage) while avoiding any loss of spectral ac-
curacy. Nowadays, the search of ROI has been reported as a better
alternative to the classical binning and it is used in most of these
feature detection software during the compression step.

Novel chemometric tools such as MCR-ALS have demonstrated
to be powerful tools to analyse LC-MS metabolomic data sets and
they are presented in this review as a complement to the existent
feature detection packages the use of which can also provide some
benefits. The principal advantages of MCR-ALS methodology com-
pared to other feature detection algorithms can be mainly attributed
to two aspects. First, MCR-ALS can resolve the coelution chromato-
graphic problems and directly obtain the pure spectra and elution
profiles of most of the meaningful metabolites present in the sample.
Second, neither peak alignment nor shaping corrections are nec-
essary for this approach, since LC-MS chromatograms are only
matched in the mass spectral direction, which is reproducible. Thus,
MCR-ALS is considered and proposed as a novel and effective meth-
odology for LC-MS metabolomic data analysis.

Although all data analysis approaches presented in this
review have contributed to increasing knowledge in the LC-MS
metabolomics field, more recent advances in new areas such as data
fusion are still necessary.
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2.2. SCIENTIFIC RESEARCH

In order to provide a data analysis methodology for metabolomic LC-MS data sets that can
be implemented and properly used by researchers, a detailed description of all the steps
involved in the process has been supplied in this Thesis. Such description has been included in
the scientific article I, elaborated as a protocol, entitled “A protocol for LC-MS metabolomics
data processing using chemometric tools” (Section 2.2.1). In this protocol, the functions to
perform data compression are provided together with an example data set used for the
illustration of the developed methodology. In a further step, the basics and fundamentals of the
previously developed methodology are for the first time presented and described in the scientific
article 1ll entitled “ROIMCR: a powerful data analysis strategy for LC-MS metabolomic data
sets” (Section 2.2.2).
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metabolomic data
processing using chemometric tools

Eva Gorrochategui, Joaquim Jaumot & Roma Tauler

CHEMAGEB -Chemometrics and Omics Group-, Institute of Environmental Assessment and
Water Research (IDAEA-CSIC), Spain

Abstract

Liquid chromatography- mass spectrometry (LC-MS) is a powerful methodology for metabolomics.
However, LC-MS data processing comes out as the “bottleneck” of omic sciences due to its
complexity. The present protocol, easy to execute in MATLAB environment, covers all data analysis
steps (conversion and import, compression and processing) of LC-MS data sets and it is specifically
designed for users with limited background in chemometric and data analysis tools. Data
conversion and import are described for most important LC-MS manufacturers (i.e., Waters, Thermo
Fischer, Agilent, AB Sciex and Bruker), data compression consists on the search of “regions of
interest’ (ROI) and data processing is based on the use of Multivariate Curve Resolution-Alternating
Least Squares (MCR-ALS), a powerful chemometric tool that allows chromatographic resolution.
Results are rapidly achieved (usually < 15 min per sample), and they are easy to interpret and
evaluate both in terms of chemistry and biology.

Subject terms: Computational biology Lipidomics Metabolomics

Keywords: metabolomics LC-MS data processing ROl chemometrics
MCR-ALS

Introduction

Metabolomics is a field that aims at the study of the abundance and/or structural characterization of
a large range of metabolites of organisms that have suffered unknown alterations due to exposure to
environmental stressors.

Several analytical methods have been developed to perform metabolomic studies. Among them,
mass spectrometry methods, coupled to chromatographic techniques have evolved into a novel and
powerful technology due to their ability for multiparallel analysis of low molecular weight compounds
in biological systems. Regarding chromatographic techniques, liquid chromatography (LC) is
nowadays preferred to gas chromatography (GC), since the latter is restricted to volatile compounds,
often requiring chemical derivatisation.

Data sets obtained with LC-MS technology contain large amount of information. Therefore, data
processing is hecessary to detect variations among omic profiles. However, one of the first steps
required previous to data processing is the reduction of the dimensions of the original data sets, i.e.,
data compression. Recently, a novel data compression method has been introduced in the centWave
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algorithm of XCMS software'. This method is based on the concept of considering analytes as a
region of data points with a high density ranked by a specific “data void”, first presented by Stolt et
al.2. These regions where analytes are found are called regions of interest (RO/). This data
compression method appears as a better alternative to the classical binning procedure1 since ho
loss of spectral accuracy is derived from a ROI search whereas a loss of resolution occurs after
binning, which performs a compression in the m/z-mode dimension.

Several feature detection packages for omic LC-MS data have been developed in the last years
(e.g., MarkerLynx (Waters), MetA/ign3, XCMS?* and Mzmine5). However, a powerful alternative to
these packages is the use of chemometric tools®7. In fact, Multivariate Curve Resolution-Alternating
Least Squares (MCR-ALS)8 methods can properly resolve the profiling problem in omic data sets
without the necessity of previous chromatographic alignment or shaping, which are required in most
of the existent feature detection packages and represent the highest source of error.

In the present study we provide a detailed protocol and MATLAB functions (see Supplementary
MATLAB functions) for LC-MS omic data analysis (including data conversion, import, pre-processing
(i.e., data compression) and processing steps). The distinct data analysis steps together with a brief
description of the functions hereby used are provided in the PROCEDURE section.

Target audience and level of expertise needed to implement the protocol

The present protocol targets scientists who are using LC-MS techniques in metabolomic studies and
want to analyze their own data but are not specialized in data analysis tools (including chemometric
tools). In addition, this protocol is also valid for scientists using other mass spectrometry techniques
such as CE-MS or mass spectrometry imaging. The required minimum skill level of users is low: only
a basic understanding of what kind of information an LC-MS chromatogram provides is necessary.
However, skilled chemometricians will also take advantage of the streamlined workflow.

Experimental Design

Biological samples

The selected samples for the illustration of the different steps of the protocol were the extracted lipids
of a human placental choriocarcinoma (JEG-3) cell line, obtained from American Type Culture
Collection (ATCC HTB-36), after exposure to tributyltin (TBT) or to the carrier solvent (DMSO) in the
case of vehicle controls. Data from lipids of exposed and non-exposed culture cells were acquired
using an Acquity UHPLC system (Waters, USA) connected to a Time of Flight (LCT Premier XE)
detector under positive electrospray ionization (ESI (+)).

However, the protocol described in the present study is versatile and well suited to different kinds of
chromatographic (e.g., UHPLC, HPLC) coupled to mass spectrometric (e.g., TOF, Orbitrap) data of
diverse target molecules (e.g., metabolites (including lipids)) coming from a big range of sample
types.

Equipment

Hardware

« Standard-equipped PC or Mac with minimum system requirements to run the software (see below)
and enough free disk space for saving the results. For optimal viewing of MCR-ALS interface, a
screen resolution of 1,920x1,200 is recommended. Low-resolution screens can result in cropping of
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text. MCR-ALS results as text are displayed in the MATLAB Command window, in case they are
cropped in low-resolution screens (Table 1).

Software

« For data analysis and visualization: MATLAB R2013b (The MathWorks Inc., Natick, MA, USA) or
newer versions are recommended. However, older versions are also valid.

« Statistics Toolbox™ for MATLAB and Bioinformatics Toolbox '™ are required.

« Vendor software: Specific vendor software (e.g., Waters/ Micromass MassLynxTM, Thermo Fischer
Scientific Xcalibur) are required for initial conversion of raw data formats into open data formats.
Otherwise, the external program ProteoWizard can also be employed. However, the data provided by
the authors for testing the protocol (see Supplementary Data) have already been converted and do
not require the use of any of these software.

« For the TIMING section in the protocol, the following MATLAB version has been used: version 8.2.0
(R2013b), Win (64 bit).

Data files and MATLAB functions

« Input data. The following input data files were used in the ANTICIPATED RESULTS section of the
present protocol (and are available as Supplementary Data): Control1.mat, Control2.mat,
Control3.mat, TBT1.mat, TBT2.mat and TBT3.mat. All of them are MATLAB files obtained after
conversion of their initial vendor formats (Waters) into open data formats (i.e., netCDF formats) using
Databridge interface and further import using Bioinformatics Toolbox™. Each file contains three
variables in MATLAB workspace: vector time, containing information of all retention times, variable
mzCDFStruct, containing information of the sample and the cell structure peaks, cell array providing
information of m/z values and corresponding MS intensities measured by the mass spectrometer at
each of the scans. Control samples including Control/1.mat, Control2.mat and Control3.mat (1, 2 and
3 indicate replicate number) correspond to LC-MS data of extracted lipids of human placental
choriocarcinoma cells (JEG-3) 24-h exposed to DMSO. TBT samples including TBT1.mat, TBT2.mat
and TBT3.mat (again 1, 2 and 3 are indicators of the number of replicates), correspond to LC-MS
data of extracted lipids of JEG-3 cells 24-h exposed to TBT. All these data can be used for testing
the protocol and as formatting guides for own data.

* MATLAB functions. The following MATLAB functions are provided as Supplementary MATLAB
functions to test the protocol whether with the provided data or with user’s own data: RO/peaks.mat,
ROlplot.mat, MSroiaug.mat and plotprofilestable.mat.

! CAUTION Folder and file hames must contain standard alphanumeric characters only (e.g.,
unaccented Latin letters, numbers and underscore). No special characters are allowed. Do not use
capitals; only use small letters for file extensions (e.g., jpg and not .JPG, .txt and not .TXT, .mat and
not .MAT and so on), as MATLAB is case-sensitive.

Procedure

PROCEDURE

A CRITICAL Many of the steps are prefaced by the term “optional’. This means that technically
future steps are not dependent on these having been performed. However, they can provide
additional information, or they can alter the outcome of the analysis.
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[Steps from 1 to 13 are necessary to import data into MATLAB environment. For data already
in MATLAB format including Supplementary Data move directly to Step 14]

* Data conversion steps

The following data conversion procedures are described for the distinct LC-MS vendors. |n all cases,
an external software called ProteoWizard can be used for data conversion (option A). On the other
hand, specific vendor softwares can also be used with the same purpose. In this protocol we show
two examples of data conversion using the specific vendor softwares of Waters and Thermo Fisher
Corporations (options B and C).

(A) Waters | Thermo Fisher/ Agilent / AB Sciex / Bruker vendors (using ProteoWizard
software)

1| Install Proteowizard software as described in the web (proteowizard.sourceforge.net).

2| Go to MSConvert options, as shown in Figure 1.

3| Click ‘Browse” and select the source folder of the raw data files (.d) to convert. Multiple files can
be selected at once, to be converted in batch mode.

4| Click the button "Add".

5| Select the output directory.

6] Select the output format (mzXML or ix{).

7| Click "Start” to begin file conversion.

(B) Waters Corporation (using MassLynx software)

1| Open the Databridge interface of the MassLynx file converter as shown in Figure 2.

2| Click "Select” and browse the raw data files (.raw) to convert by searching on the directory where i
is stored.

3| Click "Options” and specify the source of the raw files (MassLynx) and the target output format
which must be netCDF for cdf files or ASCII for txt files.

4] Indicate the output directory where the new file will be stored and indicate the filename. Although
the filename is already prefilled with the same name of the raw data file, it can be changed.

5| Click "Convert’ to begin file conversion. A new box will appear indicating the % of completeness of
the data conversion process.

? TROUBLESHOOTING

(C) Thermo Fisher vendor (using Xcalibur software)

1] Go to "Tools > File Converter'as shown in Figure 3.

2| Specify the source data type.

3| Click ‘Browse” and select the source folder of the raw data files (.raw) to convert.

4| Select the desired files to convert. Multiple files can be selected at once, and all files are selected
automatically by clicking on the button ‘Select All'.

5| Click the button "Add Job(s)".

6] Select the destination path and data type, ANDI/ Files for cdf format or Text Files for the txt format.
7| Click "Convert’ to begin file conversion.
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* Starting and Data import steps using Bioinformatics Toolbox™

8| Start MATLAB.

9] Navigate to the folder containing converted data files in cdf or mzXML formats, using the "Current
Folder” panel in MATLAB.

10| Run the function /nfoStruct= mzcdfinfo (File) or InfoStruct= mzxmlinfo (File) in the ‘Command
Window' panel in MATLAB. InfoStruct variable will appear in the workspace.

mzcdfinfo and mzxmlinfo functions extract the information of the netCDF or mz XML files,
respectively, returning a MATLAB structure, nhamed /nfoStruct.

11] (Optional) Before going forward with the remaining procedure, have a look at the /nfoStruct
variable generated.

InfoStruct variable contains the following fields: Filename (hame of the file), FileTimeStamp (date
time stamp of the file), FileSize (size of the file in bytes), NumberOfScans (number of scans in the
file), StartTime (run start time), EndTime (run end time), TimeUnits (units for time), GlobalMassMin
(minimum m/z value in all scans), GlobalMassMax (maximum m/z value in all scans),
GloballntensityMin (minimum intensity value in all scans), GloballntensityMax (maximum intensity
value in all scans) and ExperimentType (indicates if data is raw or centroided).

12| Run the function mzCDFStruct= mzcdfread (File) or mzXML Struct= mzxmiread (File) in the
‘Command Window’ panel in MATLAB. mzCDFStruct or mzXMLStruct variables will appear in the
workspace.

mzcdfread and mzxmiread functions read MS data from the netCDF or mzXML files and give as an
output argument a MATLAB structure (i.e., mzCDFStruct or mz XML Struct) containing information of
the LC-MS data.

13| Run the function [Peaks, Time]= mzcdf2peaks (mzCDFStruct) or [Peaks, Time]= mzxml2peaks
(mzXML Struct) in the ‘Command Window' panel in MATLAB. A cell array named peaks and a vector
named time will appear in MATLAB workspace.

These functions extract peak information from the MATLAB structures mzCDFStruct or mzXMLStruct
created by mzcdfread or mzxmiread functions, respectively. The cell array named peaks contains
mass/charge (m/z) and ion intensity values at each of the scans and the vector time gives
information of the retention times associated with the LC-MS data set.

A CRITICAL STEP LC-MS data must be in netCDF or mzXML formats for their import. No other
formats are accepted. Other file types need to be re-formatted (go back to Step 1) to match the input
file requirements of Bioinformatics Toolbox™ data import tools.

[ The following steps can be directly applied to the Supplementary Data provided with the
present study. If used with new data, it must be imported to MATLAB obeying the steps
previously explained (Steps 1 to 13). However, for a better understanding of the protocol the
authors recommend to perform a first trial of ROl functions on the prepared Supplementary
Data ]

* Data compression steps using ROl search
14| Download the ROI package provided as Supplementary MATLAB functions (containing
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ROlpeaks, ROIplot, MSroiaug and plotprofilestable functions) and save it in a folder.
15] Go to "Set path” panel and add this folder to MATLAB search path.
16] Run the ROlpeaks function [mzroi, MSroi, roicelll= ROlpeaks (peaks, snthresh, mzerror, minroi,
nrows, time) in the "Command Window" panel in MATLAB to search ROIs in the first sample.
ROlIpeaks function allows building an MS data matrix from variable peaks by selecting only the
regions of interest. The implementation of this function requires the input of two variables containing
information of the sample, peaks and time, together with the following parameters: snthresh
(chromatographic signal-to-noise threshold, commonly between 0.1-1% maximum MS intensity, used
to filter significative MS intensities), mzerror (admissible mass deviation, typically set to a generous
multiple of the mass accuracy of the mass spectrometer, e.g., 0.05 Da/e), minroi (minimum number
of retention times to be considered in a ROI, normally between 5 and 12 seconds in UHPLC systems
and between 20 and 50 seconds in HPLC systems) and nrows (number of cells/rows/spectra of the
variable peaks desired to be processed). The output parameters of RO/peaks function are MSroi
(newly arranged matrix of dimensions (num.of.scans (m) x nROI), containing the MS spectra of every
scan in its rows, and the chromatograms of every ROI in its columns), mzroi (vector containing final
m/z values of all ROls, calculated as the mean of all m/z classified within the same ROI), and roicell
(cell array {nROI x 5}, containing nROI x 5 cells, providing information of m/z values (1), retention
times (2), intensities (3), scan numbers (4) and mean m/z values of ROIs (5)).
When the process is finished a message indicating final number of ROIs and elapsed time will be
displayed on the ‘Command Window' screen. Variables MSroi, mzroi and roicell will appear in the
workspace and two plots, one displaying MSroi respect to time and the other displaying the sum of
MSroi respect to mzroivalues will be automatically generated (see Figure 4 and Supplementary
Results 1).
? TROUBLESHOOTING
17] Run the function ROIplot (roicell(n)) in the ‘Command Window'.
ROlIplot function allows the evaluation of the ROI previously obtained, to avoid having multiple or
halving peaks. The input variable of this function is the previously obtained roicell and the graphical
output representations correspond to the chromatographic shapes of the obtained ROIs as well as
the distribution of the distinct m/z values defining the same ROI (see Figure 5, where these plots are
shown for a particular ROI). In this function, n specifies the particular ROI for which the results are
shown. If no n is specified, results will be shown for all ROI values.
? TROUBLESHOOTING
A CRITICAL STEP Selecting the correct values for parameters snthresh, mzerror and minroi
determines the outcome of the ROI search. Different values of parameters should be tested to see
whether the elution profiles of the obtained ROI are meaningful or not. In the case of uncertainties,
consult a mass spectrometry expert to avoid misinterpretation of the results.
18| Modify the values of input parameters, if necessary, and repeat the ROl search described in Step
16 using the new values. Repeat this step the number of times required to obtain ROIs that fit
original MS data.
19| (Optional) Change the name of the output variables in the workspace by right-clicking on them
and selecting ‘rename” in the opening context-sensitive menu, to a name which makes reference to
the sample group and number of replicate (i.e., MSroiC1 indicating that this variable corresponds to
compressed data of the first replicate of a control sample).
20| (Optional) Save all the variables generated in the workspace, using ‘Save workspace’ button.
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Suggestions for filename and folder are prefilled in the opening save dialog boxes, but they can be
changed. It is highly recommendable to select a hame indicating the sample and the type of ROI
information that it contains (e.g., ROIC1, indicating that the .mat file provides information of individual
ROI search of Control 1 sample).
A CRITICAL STEP Only alphanumeric filenames (i.e., only unaccented Latin letters and numbers
and underscore are allowed; special characters are not accepted). It is also important to have
filenames that are representative for the sample.
21| (Optional) Save also the generated plots using their respective ‘File/Save as... " buttons, located
above of each plot. A save dialog opens, with prefilled values for filename, format and location,
which can be changed.
? TROUBLESHOOTING
22| Close figure windows individually.
I CAUTION Unsaved plots cannot be recovered after closing their respective windows.
23| Type ‘clear all’at the MATLAB Command Window prompt to clear the MATLAB workspace and
memory from all variables.
I CAUTION Unsaved data cannot be recovered after this step.
24| Type ‘clc” at the MATLAB Command Window prompt to clear the Command Window.
25| For data conversion and import of a new sample return to Step 1. For data compression of a new
sample return to Step 16.

* Steps to generate augmented data matrices

26| Navigate to the folder containing the .mat files generated in the ROI search of individual data
matrices (Step 16), using the "Current Folder” panel in MATLAB.

A CRITICAL STEP Search of ROl among samples and generation of augmented data matrices is
only possible when previous ROI search of individual data matrices has been performed.

27| Double-click on two .mat files of two distinct samples (e.g., ROIC1.mat and ROIC2.mat) to load
them into MATLAB workspace. The loaded .mat files contain the variables MSroiC1, MSroiC2,
mzroiC1, mzroiC2, Time1 and Time2 (see Supplementary Results 1) necessary for the ROl search
among the two samples.

? TROUBLESHOOTING

28| Run the command [Msroiaug, mzroiaug, timeaug)= Msroiaug (MsroiC1, MsroiC2, mzroiC1,
mzroiC2, mzerror, thresh, TimeC1, TimeC2) in the ‘Command Window" panel in MATLAB. A
pairwise search of ROl among samples Control 1 and Control 2 is being performed, evaluating
common and uncommon ROI values and finally considering both of them. At the end of this search,
three new variables are generated in the workspace: MSroiaug, mzroiaug and timeaug and the same
plots described in Step 16 are again generated (see Supplementary Results 2). In this search, the
parameter mzerror is used to define the admissible mass difference between two mzroi values to be
considered the same (+ mzerror/2).

? TROUBLESHOOTING

! CAUTION The two input MSroi matrices must have the same rt-mode dimensions to enable the
search.

29| (Optional) Change the name of the output variables in the workspace by right-clicking on them
and selecting ‘rename’ in the opening context-sensitive menu, to a name which makes reference to
the sample group and number of replicate (e.g., MSroiaugC1C2 indicating that the ROI search has
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been conducted among Control 1 and Control 2 samples).

30| (Optional) Save all the variables generated in the workspace, using ‘Save workspace' button.

Suggestions for filename and folder are prefilled in the opening save dialog boxes, but they can be

changed. It is highly recommendable to select a name indicating the sample and the type of ROI

information that it contains (e.g., RO/IC1C2.mat , indicating that the .mat file contains information of

ROI search among Control 1 and Control 2 samples).

31| (Optional) Save also the generated plots using their respective ‘File/Save as... " buttons, located

above of each plot. A save dialog opens, with prefilled values for filename, format and location,

which can be changed.

? TROUBLESHOOTING

32| Close figure windows individually.

! CAUTION Unsaved plots cannot be recovered after closing their respective windows.

33| (Optional) Remove all variables containing information of ROI search of individual data matrices

in the workspace (e.g., MsroiC1 , MsroiC2 and so on) by right-clicking on the file and selecting

‘delete” in the open context-sensitive menu.

34| Load the .mat file containing information of the individual ROI search of a third sample classified

as a control (e.g., ROIC3.mat) by double-clicking on it.

35| Run the command [Msroiaug, mzroiaug, timeaug]= MSroiaug ( MSroiaugC1C2, MSroiC3,

mzroiaugC1C2, mzroiC3, mzerror, thresh, timeaugC1C2, timeC3)" in the ‘Command Window" panel

in MATLAB. A pairwise search of ROl among the previous generated MSroiaugC1C2 matrix and the

new MSroiC3 matrix is being performed. At the end of this search, three new variables are generatec

in the workspace: MSroiaug , mzroiaug and timeaug and the same plots described in Step 16 are

again generated but for the augmented case (see Figure 6a).

? TROUBLESHOOTING

36| (Optional) Change the hame of the output variables in the workspace by right-clicking on them

and selecting ‘rename” in the opening context-sensitive menu, to a name which makes reference to

the sample group and number of replicate (e.g., MSroiaugC1C2C3 indicating ROI search has been

conducted among Control 1, Control 2 and Control 3 samples).

37| (Optional) Save all the variables generated in the workspace, using ‘Save workspace’ button.

Suggestions for filename and folder are prefilled in the opening save dialog boxes, but they can be

changed. It is highly recommendable to select a name indicating the sample and the type of ROI

information that it contains (e.g., RO/C1C2C3.mat, indicating that the .mat file contains information of

ROI search among Control 1, Control 2 and Control 3 samples).

38| (Optional) Save also the generated plots using their respective ‘File/Save as... " buttons, located

above of each plot. A save dialog opens, with prefilled values for flename, format and location,

which can be changed.

? TROUBLESHOOTING

39| Close figure windows individually.

! CAUTION Unsaved plots cannot be recovered after closing their respective windows.

40| Type ‘clear all’at the MATLAB Command Window prompt to clear the MATLAB workspace and

memory from all variables.

! CAUTION Unsaved data cannot be recovered after this step.

41| Type ‘clc” at the MATLAB Command Window prompt to clear the Command Window.

42| Repeat Steps 26 to 41 to find ROI values among other samples classified as another group
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(e.g., samples TBT1, TBT2 and TBT3) to obtain information of common and uncommon ROI of the
three stressed samples (e.g., ROIT1T2T3). The plots obtained will be analogue to the ones
represented in Figure 6 but for the TBT-exposed samples in this case.

43| Repeat Steps 33 to 39 with ROI values obtained independently for controls and stressed
samples (e.g., RO/IC1C2C3 and ROIT1T2T3) to find ROI values among the two groups of samples.
Final obtained MSroiaug matrix (MSroiaugC1C2C3T1T2T3) is the column-wise compressed data
matrix ready for the MCR-ALS analysis. The graphical outputs of the ROl search among the six
samples are represented in Figure 6b.

44| Clear all variables individually in the workspace, by right-clicking on the file and selecting "delete”
in the open context-sensitive menu, except final MSroiaugC1C2C3T1T2T3 matrix and vectors
timeaugC1C2C3T1T2T3 and mzroiaugC1C2C3T1T2T3, which should be saved.

* Data analysis steps for MCR-ALS method

45| Download the freely available MCR-ALS GUI 2.0 and save it in a folder. In this web page
information of MCR-ALS code, related tutorials and data sets for practicing can be found.

! CAUTION Although distinct programs can be downloaded from this webpage (MCR-ALS GUI 2.0,
MCR-ALS Toolbox 1.0, MCR-ALS command line, MCR-ALS GUI and MCR-Bands), the newest
version (MCR-ALS GUI 2.0) is the one used in this protocol.

! CAUTION For requirements regarding software description together with information of new
features and applications of the latest version, please refer to another studyg.

46| Go to "Set path” panel and add this folder to MATLAB search path.

47| Type ‘mcr_main” at the MATLAB Command Window prompt to call the necessary auxiliary
routines for the MCR-ALS analysis. The main window of MCR-ALS Toolbox is launched immediately
(see Figure 7).

48| Select the data for MCR-ALS analysis by clicking on the "Select a data matrix” drop-down button
(e.g., MSroiaugC1C2C3T1T2T3, provided in the Supplementary Results 2). A new variable hamed
‘mcer_str’ is generated in the workspace.

? TROUBLESHOOTING

49| Select the number of components of the initial estimation by clicking one of these buttons:
‘Manual” or ‘'SVD’. "Manual’ button is used when prior knowledge about the correct number of
components is available and "SVD" button is used when this estimate is performed considering the
number of largest singular values obtained by the Singular Value Decomposition algorithm. In this
case, the more appropriate option is the initial estimation through "SVD".

50| Click in "SVD" button and select the number of components following one of these two options.
The first is to use the drop-down menu of Eigenvalues, listed in ascending order of component
number (lower Eigenvalue for higher component number). The text box below automatically updates
to show the selected number of components in red. The second option is to type the number of
components into the text box with the same name and hit enter. The drop-down menu above
automatically updates to show the corresponding singular value.

! CAUTION When having data matrices with one of the dimensions large (> 10000 elements),
calculation of only few singular values is recommended to avoid computer memory problems.
(Optional) For a proper choice of the number of components you can zoom in the "EigenValues’
Representation and inspect when the rate of the decline between two consecutive values is much
lower than for the previous pair of smaller eigenvalues.
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After selecting the number of components, the "EigenValues” representation remains unchanged but
the "EigenVectors” representation automatically shows the selected number of components for each
of the individual matrices conforming the column-wise augmented data matrix (in this example case,
the number of matrices is 6).
A CRITICAL STEP Selecting the correct number of components finally determines the outcome of
the analysis. Distinct numbers of components should be tested and the results should be evaluated
to see which gives the best result in terms of data fitting and chemistry and biology.
! CAUTION In an MCR-ALS analysis, adding a new component is not an additive process. In other
words, it does not leave the original components intact, but it recalculates all components (see
INTRODUCTION).
51| (Optional) Copy the box showing the number of components selected in the initial estimation by
clicking the button "Copy".
52| Click "OK’ button to return to the main screen of MCR-ALS program.
53| Start the initial estimation of one of the two factor matrices (C for concentrations or sT for
spectra) by selecting one of these three options: "Manual’, if they are already available, "Pure” for
determining initial estimates either of C or sT by means of a purest variable detection method, or
“EFA” by means of Evolving Factor Analysis1°, only suitable for the case of analyzing evolving
processes. In this example, pure estimates will be used, which is calculated using a purest variable
selection method (like in the SIMPLISMA method“).
54| Click in "Pure” button and select the direction of the variable selection (either concentrations or
spectra) by using the drop-down menu of the "Pure variable detection method” box.
55| (Optional) Change the noise allowed (in percentage) for the calculation of initial estimates in the
text box labeled "Noise allowed (%) and hit enter. Although the default value of 1% is generally safe,
different values can be tested and their effect evaluated in the "Pure Spectra Estimation (Initial
Values)” plot. In this example, 10% of noise will be used to avoid selection of noisy variables.
56| Click ‘Do” button and examine the obtained "Purest variables” representation to see whether
chromatographic/spectra profiles are reasonable or not (e.g., whether they contain only noise or they
are very similar to each other (can indicate that too many components were selected), whether they
show every band in the spectra with equal weight (can indicate too few components selected), or
whether they contain artifacts (can indicate improper pre-processing)).
The list of purest variables is immediately shown in a box emplaced in the left.
A CRITICAL STEP It is important to see whether the pure spectral estimates are meaningful or not,
as this can help in selecting the correct number of components. If the addition of a hew component
(Step 50) does not result in a significantly different new spectral estimate, it is likely that the new
component is not required and will not be well resolved.
57| Click "OK" button to return to the main screen of MCR-ALS program.
58| Initiate the optimization process by clicking ‘Continue” button, at the bottom of the main interface
box. A summary screen in which the top plots represent the row and column profiles of the
experimental data, the middle plots show the initial estimate and the C and sT profiles obtained by a
least-squares step and the bottom plots represent the score and loading plots obtained by PCA of
the analyzed data matrix D with the previously selected humber of components will appear (see
Figure 8).
59| Modify the number of matrices simultaneously analyzed by writing the number in a text box
above the plots. In this example, this number is “6".
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! CAUTION The default value for the humber of matrices is “1” since default conditions are
established for a single data matrix analysis.
60| Click "Continue” button to proceed with the definition of the data set.
61| Inthe "Definition of the data set” window, define the type of multiset data structure by selecting
the correct option in the drop-down menu: column-wise augmented data matrix (C direction), row-
wise augmented data matrix (S direction) or column- and row-wise augmented data matrix (C & S
directions). In this example, the ‘column-wise augmented data matrix” is selected, with 6 submatrices
all having the same number of rows (see Figure 9).
62| Click "OK" button to proceed with the selection of constraints for ALS optimization.
In this new version of the interface, there are two differentiated screens for the choice of constraints,
one for the profiles linked to the row mode (i.e. concentration profiles, C matrix) and another for the
profiles related to the column mode (e.g.., spectral profiles, st matrix).
63| Inthe "Constraints: row mode (concentrations and multiple experiments)” window indicate
whether the same constraints will be applied to all C submatrices or not (see Figure 10a).
At the top of the screen, a panel regarding the multiset data structure is presented. It contains the
total number of C submatrices included in the augmented data set, an option to apply the same
constraints to all C submatrices, or the possibility to change the constraints according to the different
C submatrices. Finally, at the right corner, the possibility to apply the constraint of correspondence
among species by selecting which components are present in every considered C submatrix is
offered. In this case, the same constraints will be applied to all C submatrices.
! CAUTION In the selection of row constraints for augmented data matrices is not allowed the
possibility to deal with multiple and different constraints for every analyzed C submatrix.
64| Select the constraints among the four common options (hon-negativity, unimodality, closure and
equality constraints) and more advanced constraints (such as correlation or kinetic hard-modeling).
In the present example, only non-negativity constraints are applied when selecting the option ‘forced
to zero” in the drop-down menu.
A CRITICAL STEP The implementation of non-negativity constraints through the forced to zero”
option is recommended to speed up the calculation.
65| Click "Continue” button to proceed with the selection of constraints of sT matrix.
66| Inthe "Constraints: column mode (spectra and single technique)” window select the constraints
for ST matrix among the four common options: non-negativity, unimodality, closure and equality
constraints (see Figure 10b). In this example, non-negativity constraints through ‘forced to zero”
option are implemented.
67| Click "Continue” button.
! CAUTION When no closure is selected (e.g., ho mass balance in concentrations) constraints, a
new window appears to offer the possibility of normalizing the resolved spectra profiles (e.g.,
normalizing them to have equal height, total sum norm or Euclidean norm) prior to starting ALS
optimization. This is recommended to avoid scale instabilities during the evolution of the ALS
optimization and it fixes the possible intensity ambiguities. In this example, "spectra equal height
was selected.
68| Select general optimization parameters (e.g., the number of iterations or convergence criterion)
and the name of output variables in the "Parameters/Output of ALS optimization” screen (see Figure
11). In this case, a total of 50 iterations are selected (default value) and the convergence criterion is
set to 1%.
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69| Select the box to enable the graphical output of the results and click "Continue” button.
Suggestions for a variable hame for concentrations and spectra matrices resulting from MCR-ALS
analysis are copt and sopft, respectively.

70| Evaluate the results shown in "ALS optimization” screen including information about the
convergence, lack of fit and explained variance (see Figure 12).

71| (Optional) Click “Information” button to obtain more detailed information about the evolution of
the ALS optimization (e.g., plots of explained variance, lack of fit, logarithm of the sum of squares
residuals and evolution of concentration/spectra profiles).

72| (Optional) Save all the variables generated in the workspace (see Supplementary Results 3),
using ‘Save Workspace' button. Suggestions for filename and folder are prefilled in the opening save
dialog boxes, but they can be changed.

73| (Optional) Save also the generated plots using their respective ‘File/Save as... " buttons, located
above of each plot. A save dialog opens, with prefilled values for filename, format and location,
which can be changed.

? TROUBLESHOOTING

74| Close figure windows individually.

! CAUTION Unsaved plots cannot be recovered after closing their respective windows.

75| Clear all MATLAB variables in the workspace, by right-clicking on the file and selecting ‘delete” in
the open context-sensitive menu, except from variables MSroiaugC1C2C3T1T2T3 ,
timeaugC1C2C3T1T2T3 , copt, soptand vector mzroiaugC1C2C3T1T2T3 .

! CAUTION Unsaved data cannot be recovered after this step.

76| (Optional) Rename those variables using shorter names (e.g., x , time , ¢ , s and mz instead of
MSroiaugC1C2C3T1T2T3 , timeaugC1C2C3T1T2T3 , copt, sopt and vector
mzroiaugC1C2C3T1T2T3, respectively).

77| Type “clc” at the MATLAB Command Window prompt to clear the Command Window.

* Steps to evaluate concentration and spectral profiles of MCR-ALS components

78| Create two new variables in the workspace named as nexp and ncontrol containing information
about the number of experiments and the number of controls of the data sets (in this case, nexp=6
and ncontrol=3) by typing nexp=6 and ncontro=3 in the ‘Command Window" prompt.

79| Run the command [area, height, table, table2]= plotprofilestable (x, ¢, s, time, mz, nexp, ncontrol)
inthe ‘Command Window" panel in MATLAB. Two graphical outputs will be obtained for the first
component. In addition, the results of the corresponding statistical evaluation will appear in the
MATLAB Command Window followed by the message: “select forward backward plot 1/0”. In order to
proceed with the evaluation of next MCR-ALS component introduce “1” in the Command Window,
otherwise write “0".

! CAUTION If Step 76 was skipped, the input variable names of this function must be changed to
those used to define the corresponding MATLAB variables.

80| (Optional) Save the two generated figures, resulting from the analysis of the first component (see
Figures 13a and 13b), using their respective 'File/Save as..." buttons, located above of each plot. A
save dialog opens, with prefilled values for filename, format and location, which can be changed.

? TROUBLESHOOTING

81| Close figure windows individually.

! CAUTION Unsaved plots cannot be recovered after closing their respective windows.
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82| (Optional) Copy the information provided in the ‘Command Window" panel (/of, fit, Rsquare, etc)
and paste it in another document to further save it (see Figure 13c).

83| Click to any button to obtain the same plots and results for the next component.

84| Repeat Steps 80 to 83 until the last component.

85| Once obtained the results for all components click once more any key of the computer keyboard.
Statistic results when considering all components simultaneously will be presented in the ‘Command
Window’ panel (see Figure 13d).

86| (Optional) Copy the information provided in the "Command Window" panel (/of, fit, Rsquare) and
paste it in another document to further save it.

87| Click again any key to obtain in the workspace the two tables containing statistical information
(Table and Table?2).

88| Click "Save workspace” button of the upper panel of MATLAB to save all variables contained in
the Workspace. Suggestions for filename and folder are prefilled in the opening save dialog boxes,
but they can be changed. It is highly recommendable to select a name indicator of samples and type
analysis (e.g., MCR-ALS.mat, indicating that the .mat file contains information of the MCR-ALS
analysis.

89| Type ‘clear all’at the MATLAB Command Window prompt to clear the MATLAB workspace and
memory from all variables.

! CAUTION Unsaved data cannot be recovered after this step.

90| Type “clc” at the MATLAB Command Window prompt to clear the Command Window.

Timing

The timing required for the distinct steps of LC-MS data analysis described in the PROCEDURE
section is variable but is usually between 2 and 4 min per sample for data compression and import,
about 2 min for data compression following a ROI search and between 5 and 10 min per sample for
the MCR-ALS analysis.

Troubleshooting
Troubleshooting advice can be found in Table 1.

Anticipated Results

Although the data used as example in the present protocol was also used in a previous study by the
authors®, the results hereby presented were not included in the original publication and are
specifically selected now in order to demonstrate the key features of the present protocol. These
results include data compression through ROI search of individual data matrices (see Supplementary
Results 1), data matrix augmentation through ROI search among data matrices (see Supplementary
Results 2) and MCR-ALS analysis of the obtained MSroi augmented matrix (see Supplementary
Results 3).

The utilized data to obtain all these results are provided as Supplementary Data and the functions
used are supplied as Supplementary MATLAB functions.
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Figure 1: Data conversion interface of ProteoWizard software: MSConvert.

e e
\ ® LT P
3~ ™ [ EorT—
S
s i Lt wascnd 3 ol
; M -
v
proteowizard
A~ Famave
faw P
s Dreiny E
v r—— [
Cgmorn
[ R
By encodeg owcwor. 8 Bt Vet
Vs wdex 7] tow 20 compmn. [
TV compmtery ¥ Pachage n s
7
Ut s setirgn vt e | gt S amewn LS wen T
The input fields or icons of the software are numbered g to their P g PROCEDURE

steps. First, files to be converted should be selected (3 and 4). Then, output folder (5) and options related
to the conversion process such as the output format or the binary encoding should be selected (6)
previous to the beginning of the conversion (7).

Figure 2: Data conversion interface of Waters vendor: Databridge tool from MassLynx
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The input fields or icons of the software are numbered according to their corresponding PROCEDURE
steps. First, source files should be selected (2) and options related to the conversion process predefined
(3): source data type (usually MassLynx raw) and target output type (netCDF is recommended for further
work). Target folder and filenames (4) should be indicated prior to conversion.

hitps:/AMww.nature Ip lexch Iprotocols/4347

PhD Thesis of
E. Gorrochategui

111



Chapter 2- Novel data analysis approaches for metabolomics/lipidomics

protocol exchange

Share protocol Lab groups Contact

212/2018 A protocol for LC-MS metabolomic data pr ing using ch ic tools : Protocol Exchange

Figure 3: Data conversion interface of Thermo Fischer vendor: File converter tool from
Xcalibur software.
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The input fields or icons of the software are numbered according to their corresponding PROCEDURE
steps. First, source files should be selected from the available formats (usually, .raw) (2). Files selected
are added to the job queue by clicking the “Add Job(s)" button (5). Format and folder of output converted
files should be also indicated (6), and it is recommended to select the ANDI (.cdf) data type.

Figure 4: Graphical outputs obtained after a ROl search using ROIpeaks function in sample
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(I) plot of MSroi respect to time (new compressed chromatogram) and (ll) bar plot of the sum of MSroi
intensities respect to mzroi values (new MS spectra).
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Figure 5: Representation of a chromatographic elution profile and the corresponding mass
trace of a particular ROI
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In the mass trace representation, the continuous blue line represents the mean value of mzroi, green
dotted-lines represent the mass deviation intervals and red dotted-lines two times the mass deviation
interval.

Figure 6: Results of a ROl search among matrices when using MSroiaug function

"uo' PR

o

Ia| ¢ o

i i

i ;

.

i £ |

< 5§t e e
b 8

marol_stg_G162C3

sew“(‘:n x6) e ! m,mg,cicac‘a,ﬁ;ém

(a) ROI search among Control1 (C1), Control2 (C2) and Control3 (C3) and (b) ROI search among the six
samples. Note: The results presented in this figure were obtained for a ROl search among samples fixing
a threshold value of 750 a.u. and an mzerror of 0.05 Da/e. In addition the index mis used to represent the
number of scans of one sample.
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Figure 7: MCR-ALS GUI 2.0 main window (mcr_main) and other subwindows corresponding tc
SVD calculations and pure variable Initial ALS estimations
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Figure 8: Data set selection. MCR-ALS GUI window.
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MCR-ALS window plots representing row (top right) and column (top left) profiles of the experimental data
matrix D; plots showing sT spectra initial estimates (middle left), and C concentration profiles (middle
right) estimated by least-squares; and PCA scores (bottom left) and loadings (bottom right) plots of the
experimental data matrix D using the selected number of components. A critical issue in this screen is the
selection of the correct number of experiments analyzed simultaneously in the edit box (59). In this
example, six matrices are analyzed at the same time.
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Figure 9: Selection of the type (column- or row-wise) of augmented data matrix MCR-ALS
window.
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MCR-ALS window of the definition of the data set in the case of considering simultaneously more than one
matrix. In the omic case, column-wise augmented data set should be selected (61) as several experiments
monitored with the same technique (usually, MS) are considered. If all the considered experiments have
the same number of rows, it is recommended to click the checkbox “All matrices have the same Nr. of
rows?" that facilitate the input of the information related to the number of rows of each considered matrix.

Figure 10: MCR-ALS constraints selection windows.
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Selected constraints (a) for © matrix (concentration/rows profiles), and (b) for 87 matrix (speclra/columns
profiles). In the case of the omic studies, only non-negativity constraints should be applied to both C and
sT profiles g that the graphic elution and MS speclra are positive (64 and 66). If
multiple ices are analyzed si y, it is possible to apply the same constraints to all the
experiment by clicking the appropriate checkbox (63). If it is not checked, then each matrix could have
different constraints.
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Figure 11: MCR-ALS optimization parameters and outputs window.
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MCR-ALS window showing general parameters for ALS optimization (default parameters are 50 iterations
and a convergence criterion of 0.1% of percentage of change of the standard deviation of residuals
between consecutive iterations, however in the presented example the latter value has been changed to
1% to allow a faster iteration) and output variable names for MCR-ALS results (68).

Figure 12: MCR-ALS optimization results and other related information window.
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MCR-ALS window showing the results of ALS optimization (70). Final screen with information about the
optimation process: number of iterations, convergence/or divergence, standard deviation of residuals
respect experimental data, fitting error of the model considering both experimental and PCA reproduced
data, and the percent of variance explained (RZ) Additional information related to the optimization process
can also be obtained such as the evolution of the logarithm of the sum of squares or the lack of fit of the
model (71).
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Figure 13: Results of the statistical evaluation performed on MCR-ALS components to
determine whether they present significant differences among controls and stressed samples
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ABSTRACT

Background: The analysis of LC-MS metabolomic data sets appears as a challenging task in a wide range of disciplines since it
demands for highly-extensive processing of a vast amount of data. Different LC-MS data analysis packages (e.g., XCMS, MZmine
and MetAlign) have been developed in the last years in an attempt to facilitate this analysis. However, most of these strategies
involve chromatographic alignment and peak shaping and often associate each “feature” (i.e., chromatographic peak) to a unique m/z
measurement. Thus, the development of an alternative data analysis strategy applicable to most types of MS data sets, which
properly addresses these issues, is still a challenge in the metabolomics field.

Results: Here we present an alternative approach called ROIMCR to: i) compress massive LC-MS data while transforming their
original structure into a data matrix of reduced dimensions without missing relevant information through the search of regions of
interest (ROI) in the m/z domain and ii) resolve compressed data to find their contributing pure components without previous
alignment nor peak shaping by applying Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) analysis. For the first
time, the basics of the ROIMCR method are presented in detail. The functions for ROI compression have been already provided in a
protocol written by the authors available at https://www.nature.com/protocolexchange/protocols/4347 and the already existing MCR-
ALS interface is accessible at www.mcrals.info. Data analysis is performed under MATLAB (The MathWorks, Inc.,
www.mathworks.com) programming and computing environment. An example of the use of ROIMCR methodology is provided with
LC-MS data generated in a lipidomic study.

Conclusion: The methodology hereby presented combines the benefits of data compression based on the search of ROIs (i.e., no
loss of spectral accuracy) with the benefits of MCR-ALS analysis (i.e., powerful data resolution without the necessity of performing
neither peak alignment nor peak shaping). The presented method is a powerful alternative to other existing data analysis approaches
that do not use MCR-ALS analysis to resolve LC-MS data. Moreover, it is also an improved version of other MCR-ALS based
approaches that use less-powerful data compression strategies such as binning and windowing. Overall, the presented strategy
demonstrates the usefulness of chemometrics in data analysis and it is a valuable addition to the untargeted metabolomic research.

Keywords: LC-MS, Data analysis, Data compression, Data resolution, Regions of interest (ROI), MCR-ALS, Metabolomics,
Lipidomics, Chemometrics, Untarget.
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1. Background

The challenge of data analysis is one of the main
concerns of metabolomic liquid chromatography coupled to
mass spectrometry (LC-MS) studies!. Lots of software
packages exist for MS-based metabolomic data analysis,
including propriety commercial, open-source, and online
workflows2. Some commercial tools provided by major
vendors of MS and omics high throughput analytical
instruments and equipment include MassHunter (Agilent
technologies), SIEVE (Thermo Scientific) and Progenesis Ql
(Waters). Among open-source software some of the most
used include XCMS? (and XCMS-based Metabox4, metaXs),
CAMERAE, MAIT?, MetaboAnalyst?,
WorkflowdMetabolomics®,  MZmine®® and  MetAlign'".
However, none of these approaches can be singled out as
the best strategy and the methodological discrepancies
existing among them make LC-MS data analysis an
unresolved problem in the bioinformatics field.

Data analysis of high resoluton LC-MS based
metabolomic data sets usually begins with their compression,
required to reduce them into formats that are manageable
with computers (without compromising the original information
comprised within) and prevent errors linked to the restricted
memory capacity of the computers. The high-dimensional
nature of LC-MS based metabolomic data sets is attributed to
the superior number of measurements (m/z values) related to
the number of observations (samples). Apart from
compressing data, in this first step, the conversion of raw data
into a matrix representation is also required to obtain a well-
structured variable to work with. The generated data matrices
(x,y) are arranged with retention times in the rows (x-
direction) and m/z values in the columns (y-direction). A
classical procedure used for data compression and matrix
transformation is the one referred to as binning. With the
binning procedure, high-resolution raw mass spectra are
converted into a matrix representation by dividing the m/z axis
into parts with a specific bin size, generally set to a multiple of
the mass accuracy of the mass spectrometer. However, a
significant disadvantage of binning is the complication related
to the right choice of the bin size for a specific data set, being
the selection of the m/z bin size intensely associated with the
recovery of the proper elution profile shape. If the selected bin
size is excessively small, chromatographic peaks can
fluctuate between bins and therefore not be determined
because of the absence of the chromatographic shape of the
peak. If the bin size is excessively big, various peaks may
occur in the same bin, and tiny peaks might disappear by the
elevated noise level'2.

One more major drawback of binning is the reduction of
spectral accuracy originated from the compression of data
made in the m/z-mode dimension, which goes in detriment of
final identification of metabolites. Moreover, in most cases the
compression performed with binning is not sufficient and
further windowing (i.e., selecting continuous regions in the
rows (time) direction or the column (m/z) direction to be
analyzed independently) is necessary. Nevertheless, when
performing windowing, the whole process is more tedious and
prolonged in time, since one sample has to be analyzed by
parts.

A better alternative compression strategy to binning and
windowing is based on the idea of assuming analyte signals
as a domain of data points with a high density arranged by a
particular “data void”, first presented by Stolt et al.’® These
regions where analytes are found are called regions of
interest (ROI) and are searched according to specific criteria
(i.e., particular threshold intensity, admissible mass error and
minimum number of occurrences). Overall, ROl compression
strategy consists on considering data included in these
regions while rejecting the other. This strategy has already
been implemented in the centWave algorithm of XCMS
software2. The result of the search of ROIs in a sample is a
set of mass traces of distinct dimensions that have to be
finally reorganized into a data matrix. Differing from the
binning procedure, no reduction of spectral resolution occurs
as a result of an ROI compression since no bin size has to be
fixed. Thus, ROl compression strategy allows taking full
advantage of all the benefits offered by high resolution MS
techniques. At present, most of the current metabolomic data
analysis software tools use ROl compression, as a previous
step to peak detection and/or integration.

Following data compression, next crucial step in LC-MS
based metabolomic data analysis is data resolution. Most of
the existing LC-MS data analysis approaches require two
steps (i.e., chromatographic alignment and peak shaping)
before peak resolution. Alignment methods look for matching
peaks over various chromatographic runs and peak shaping
methods model peaks to have a delimited and more regular
shape, habitually through the application of continuous
wavelet transformations (CWT) and optionally Gauss-fitting'4.
Therefore, preliminary peak correction appears as an
indispensable step in most of the present data analysis
packages and often is linked to a high source of error. In
contrast, neither of the two corrections (i.e., peak alignment
and shaping) are required when using Multivariate Curve
Resolution-Alternating Least Squares (MCR-ALS)'S methods,
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since the alignment of distinct chromatographic runs is
produced in the spectral direction or mode. It is precisely in
the case of multirun chromatographic simultaneous analysis
where MCR methods are exceptional powerful tools for
mixture analysis and resolution. The main goal of MCR-ALS
methods is to resolve spectra arising from mixtures of the
chemical constituents present in a sample into contributions
from the individual components making up the mixtures. That
is, MCR-ALS seeks to model the underlying physical
processes that generate the data in terms of a sample’s
composition. MCR-ALS resolved MS spectra profiles can
immediately be used to identify the chemical identity of
metabolites by comparison with standards or by library
searching. In the last years, MCR-ALS methods have
emerged as highly effective tools to resolve the elution
problem in different application areas, and in particular in LC-
MS based metabolomic data sets.In this work, we provide a
new data analysis strategy, known as ROIMCR, to compress
and resolve LC-MS metabolomic data sets. Data compression
is performed without losing spectral accuracy by the search of
ROI, and chromatographic peaks are resolved through the
application of MCR-ALS analysis.

The main steps involved in data compression and data
resolution are represented in Fig. 1. As it can be observed in
the figure, after a first data compression through the search of
ROls, the obtained ROI profiles are evaluated to see whether
they properly agree with original data features or not. Such
compression can be performed in a single file or in multiple

Data compression

Data Matrix Data
m . compression m construction resolution
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Search again
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files, generating in the latter case column-wise augmented
ROl data matrices (i.e., matrices containing distinct
submatrices related to distinct samples attached one on top
of each other). The generated augmented ROI matrices are
further analyzed by MCR-ALS. Finally, the ultimate step
would be the statistical evaluation of the resolved MCR-ALS
components for the discovery of potential biomarkers. A
distinct feature of the proposed ROIMCR strategy is its
current implementation under the powerful MATLAB computer
and visualization environment, which is very much used
worldwide in the Chemometrics field and in scientific and
technological software development with all its advantages
and toolboxes already incorporated.

Moreover, in this study we provide an example of the
performance of ROIMCR strategy with a lipidomic LC-MS
data set. The illustrating lipidomic data set was generated in
an experiment performed in a previous study of the authors'®
in which a human placental chroriocarcinoma cell line (JEG-3)
was exposed to the endocrine disruptor chemical tributyltin
(TBT). Researchers interested on ROIMCR procedure, can
test this strategy using the example data and the MATLAB
functions for ROI compression both provided in a protocol
written by the authors'. That protocol, available at
https://www.nature.com/protocolexchange/protocols/4347,
provides step-by-step information of the implementation of
ROIMCR procedure. In the present work, the description of
the basics and fundamentals of the methodology are
presented in detail.

Fig. 1. Schematic representation of
data compression and resolution stages
Statistical of ROIMCR approach. Initially, raw data
ﬁ‘,"ff:;',"',:[':, are compressed through the search of

regions of interest (ROI) and the
obtained mass traces are reorganized
into a matrix representation. Then, ROI
profiles are evaluated: if they do not fit
original data, the ROl search is
repeated but changing initial criteria; on
the contrary, if they properly fit original
data the obtained ROl matrix is
resolved by MCR-ALS. When having
more than one sample, following

Discriminant

individual ROI searches, column-wise
augmented ROl data matrices can be
generated and finally analyzed by MCR-
ALS. Results of MCR-ALS analysis can
be subsequently evaluated by statistical
tests to find more significant
components in the differentiation among
sample groups (i.e., stressed groups vs.

Potential
Biomarker

Identification

control groups).
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2. Method

A description of the ROI methodology is provided here. In
this manuscript, only a brief description corresponding to the
MCR-ALS algorithm is presented, since it is a well-stablished
chemometric method and its principles and basis have been
already described in previous studies of the authors?8.1920and
they can be found on its official webpage www.mcrals.info.

2.1. ROI search in one sample

The aim of the ROl compression is to scan for regions
containing interesting mass traces, i.e., regions that include
data of a relevant MS intensity (bigger than a threshold value,
Fig. 2a), enclosed in a particular mass error range (Fig. 2b)
and constituted by a minimum number of occurrences (Fig.
2c).
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Fig. 2. Parameters necessary to define an ROI. a) Signal threshold, b)
Mass error tolerance and ¢) Minimum occurrences.

These three parameters are the input variables necessary in
one ROI search, together with a vector listing the retention
times at which the instrument makes the measurements
(variable “time” in Fig. 3a) and a cell array (i.e., array
containing data of varying types and sizes in the MATLAB
environment) containing the m/z values and MS intensities at

Interestingly, the m/z values (and their corresponding MS

intensities) measured by the mass spectrometer at each

retention time do not follow a regular pattern (i.e., the m/z

measurements are not equidistant and may differ among

samples) and, therefore, the generated vectors enclosed in the

cell array containing such information have distinct lengths.

In Fig. 3a a representation of the pairs of vectors (i.e., one

vector of the pair containing m/z values and the other containing

MS intensities) including information of one LC-MS sample is

shown. As it can be noticed, the length of these vectors varies

at the distinct retention times, indicating that the mass

spectrometer acquires distinct m/z values at each scan.

Once introduced the input parameters, the ROl algorithm

performs the ROI search according to the following steps:

1.Search in the first scan for m/z values associated with MS
intensities higher than a signal threshold value.

2.Search in the same scan clusters of m/z values enclosed
within a particular mass admissible error.

3. Calculate the mean mass of all the m/z values classified
inside the same cluster (mzroi).

4. Arrange mean mass values from the lowest to the highest
value.

5. Repeat steps 1-4 for the rest of scans, merge and update the
calculated mean mass values.

6. Select clusters having a minimum number of occurrences of
m/z values.

7.Eliminate empty spaces in the final MSROI matrix,
substituting them by random values with a threshold mean
value, like for instance 1% of the threshold intensity value
used in step 1.

The ROI search gives three outputs. A vector containing
final mean m/z values of ROIs (“mzroi” in Fig. 3b), a newly
arranged data matrix containing the MS spectra of every scan in
its rows and the chromatograms of every ROl in its columns
(“MSROI" in Fig. 3b) and a cell array (‘roicell” in Fig. 3b)
containing for each ROI, information of their constituting m/z
values, retention times, MS intensities, scan numbers and the
calculated mean m/z value.

2.2. ROI search in more than one sample

Since the main purpose of metabolomics is the study of the
differences between metabolic profiles across multiple sample
groups (e.g., controls vs. exposed), final data analysis must
consider all samples simultaneously. In fact, MCR-ALS analysis
of multiple samples requires the construction of column-wise
augmented data matrices, by organizing all samples one above
each other. Building such matrices is only possible when
dimensions in the m/z-mode of all individual data matrices are

each retention time (variable “peaks” in Fig. 3a). equal. However, data compression using
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Fig. 3. Schematic illustration of input (a) and output
variables (b) of an ROI search when using ROI
compression algorithm. Data of the LC-MS
chromatogram is described as a {m x 1} cell array
(named as peaks), with m cells (equal to the number
of retention times), each of them containing two
vectors (of variable length among cells),
corresponding to the m/z and intensity values
acquired by the instrument at each of the retention
times. Peaks and vector time (m x 1) are the input
variables of ROl function together with the
parameters required to define an ROI (thresh=750,
mzerror=0.05 and  minroi=10 are used in this
example), resulting in a matrix, a vector and a cell
array (MSROI, mzroi and roicell, respectively) after
ROl search. nROI is the total number of ROIls
obtained (in the example of the figure, nROI= 297).
MSROI is a (m x nROI) matrix, containing the MS

spectra of every retention time in its rows, and the

ROI (1

<

MS spectra

ROI (n)

< g
mzroi
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chromatograms of every ROl in its columns, mzroi is
a vector containing mean m/z values of ROIs and
roicell is a {nROI x 5} cell array, containing nROI x 5
cells (in the example of the figure it would be 297 x
5=1485). Cells comprised in roicell variable from
> column 1 to column 4 contain single vectors in their

—»

Elution profile

MSROI

(mx n)

structures (containing information of m/z, retention
times, intensities and scan number of the data
enclosed in the same ROI, respectively) whereas
cells comprised in the fifth column (roicell {nROI,5})
contain single values (corresponding to mean m/z
values of ROI).

ROl strategy produces data matrices of m/z-mode dimensions
equal to the number of ROIs, which can vary between
samples. Thus, a final unification of ROIs among samples,
considering both common and uncommon mzroi values must
be performed.

The following description of the ROI search among samples
allows the construction of column-wise augmented data
matrices ready for further MCR-ALS analysis. The search of
ROI between several files is based on the determination of
common and uncommon ROI values of the analyzed data
matrices. The steps of the algorithm for ROl search and
augmentation are presented here:

1. Check of the matching mzroi values among the several
data matrices within +/- mzerror. Consider the new mzroi
to be the average of them.

2. Build the corresponding column of the new augmented
data matrix with MS intensity values of the coincident
mzroi values (if more than one mzroi value is coincident,
then consider the average of the MS intensity values).

3. Check for non-matching mzroi values; they are accepted

if mzroi2 tresh. For the non-coincident part, fill up empty
values with random values 1% of the threshold intensity
value.

4. Eliminate mzroi values that are not coincident and that
neither have their MS intensity value higher than the
threshold.

5. Reorganize the columns of the new augmented data
matrix according to their new mzroi values, from lower to
higher mzroi value.

Thus, to perform ROl augmentation, the required input
information consists of the arrays of samples to be
augmented containing m/z values (mzroi matrices) and MS
intensities (MSROI matrices), the admissible mass deviation,
the threshold intensity value and the vector containing the
retention times that must be the same for all samples. The
output variables consist of a vector containing final mean m/z
values of common and uncommon ROls, the final augmented
ROI matrix containing compressed data of all the input files
and a vector containing the total number of scans (i.e., sum of
the number of retention times of individual samples).
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2.3. Multivariate curve
squares (MCR-ALS)

resolution-alternating least

MCR-ALS method performs a bilinear decomposition of raw

data sets, under specific constraints, according to Eq. (1):
D=CST+E (1

In the equation, matrix D (/ x J) exemplifies for instance the
spectral data set coming from the output of a second-order
instrument. Concerning LC-MS data, D matrix includes the
MS spectra measured at all chromatographic retention times
(=1,... ) in its rows, and the elution profiles at the complete
range of spectra m/z channels (j=1,... J) in its columns. This
matrix is decomposed in the product of two small factor
matrices, C and ST. The C (/ x N) matrix encloses column
vectors that agree with the concentration elution profiles of
the N (n=1,... N) pure chemical constituents or components of
matrix D. In 8T (N x J) matrix, row vectors correspond to the
MS spectra of these N pure components. The fraction of D
that is not described by the bilinear model constitutes the
residual matrix, E (/ x J). MCR-ALS methods suppose that the
measured variance in all samples in the raw data set can be
explained using a combination of a small number of
chemically significant profiles. Regarding LC-MS data sets,
the variance observed in the investigated data matrices is
explained by the combination of a number of pure mass
spectra (row profiles in the ST matrix) weighted by the amount
of each of them along the elution direction (the associated
chromatographic elution peaks, column profiles in C).

2.4. MCR-ALS in parallel analysis of multiple samples

MCR-ALS can be implemented across distinct data sets or
matrices at a time. For instance, in the case of the analysis of
the simultaneous analysis of multiple samples by LC-MS, this
is accomplished by generating column-wise data matrices
(Daug) including different matrices related to distinct
chromatographic runs appended one above each other.
Therefore, the MS spectral (column) direction is the same for
all them and the data matrix extent is augmented column-
wisely in the chromatographic (rows) direction. Resolved pure
mass spectra are comparable to all simultaneously analyzed
chromatographic runs or experiments (ST) while elution
profiles can vary from run to run (experiment to experiment),
conforming Caug, as represented in Eq. (2):

Daug= CaugST + Eaug (2)

In the MCR-ALS method, bilinear models described in Eq.
(1) (single data matrix illustration) or Eq. (2) (augmented data
matrix illustration) are resolved by means of an alternating
least squares optimization under constraints3. When

considering metabolomic LC-MS data, the minimum constrains
to apply consist on non-negativity for concentration (elution), C,
and spectra, ST, profiles, and normalization for the second. In
this work, due to the sparcity nature of the MCR resolved elution
profiles, and especially of MS spectra profiles, no additional
constraints were required to achieve reliable results.In the
proposed ROIMCR procedure, individual or augmented MSROI
data matrices (D or Daug) are submitted to MCR-ALS analysis.
The application of this method will give the
concentration/elution, C (or Caug), and MS spectra, ST, profiles
of the resolved components. Note that in the MCR-ALS
procedure, elution profiles in Caug are not required to be aligned
nor shape modelled and that spectra profiles are the MSROI
compressed spectra and have their full instrument mass
accuracy.

More details about MCR-ALS method and implementation of
different constraints can be found in previous publications?'.

3. Data set

The data set used for the illustration of the current
methodology correspond to LC-MS data of extracted lipids of
human placental choriocarcinoma cells (JEG-3) 24-h exposed to
DMSO (vehicle controls) and to the chemical endocrine
disruptor TBT (exposed samples) at a non-lethal dose. Both
groups (i.e., controls and exposed) contain three replicates.
These data are available at
http://cidtransfer.cid.csic.es/descarga.php?enlace1=d5e1de55b
1d9b83b1668fc81e151e2ea so that the reader can use them to
test the ROIMCR procedure presented here. For details
regarding the characteristics of the data, readers are advised to
consult
https://www.nature.com/protocolexchange/protocols/4347.

4. Implementation

The ROI compression presented in this study has been
implemented in the MATLAB command line using the functions
available at
http://cidtransfer.cid.csic.es/descarga.php?enlace1=3adcd456¢c
13cef5c017b66269651912¢. A user friendly graphical interface
for ROl compression is under development. The provided
MATLAB functions for ROl compression are related to: a) ROI
search in one sample; b) evaluation of ROI profiles and c)
generation of augmented ROI data matrices. In addition, the
statistical evaluation of the concentration profiles obtained after
MCR-ALS analysis _may be performed. Regarding the
implementation _of MCR-ALS, its interface available at
www.mcrals.info is utilized.
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5. Results and discussion

Although the data used as example in the present protocol
was also used in previous studies by the authors'6.17, the results
hereby presented were not presented in the previous
publications and are specifically selected now in order to
demonstrate the key features of ROIMCR methodology. These
results include data compression through ROl search in
individual data matrices, data matrix augmentation through ROI
search among data matrices and MCR-ALS analysis of the
obtained augmented ROI matrix. The readers interested in the
LC-MS data conversion and MATLAB import procedure, are
advised to consult
https://www.nature.com/protocolexchange/protocols/4347.

5.1. ROl search
5.1.1. Optimization of ROl parameters

As previously stated in the Methods section, some
parameters need to be optimized previously to the search of
ROls. In the example shown in Table 1, the results of the ROI
search are shown after fixing distinct values of one of the three
input parameters, while maintaining the other two unchanged. In
all cases, three distinct values are tested for parameter: 10
times higher the recommended value, the recommended value,
and 10 times lower the suggested value. In the first case, where
the influence of the threshold on ROI search is evaluated, the
three options tested corresponded to threshold values of 7500,
750 and 75 a.u. The recommended threshold value should be
adjusted between 0.1- 1% maximum MS measured intensity.
Since the maximum MS measured intensity of the evaluated
sample was 3.5118:105 a.u., the recommended threshold value
would be between 351.18 and 3511.8 a.u. In particular, we
selected an intermediate value of 750 as the optimum value.
The higher and the lower values tested (7500 and 75 a.u.,
respectively) were chosen to clearly demonstrate that a
decrease in the threshold value produces increasing numbers of
RO, together with a major computation time (in seconds), while
an increase in threshold results in the opposite effects. Hence,
the threshold value requires to be adjusted with prudence since
it can enhance data quality by eliminating noise, butimmoderate
threshold values may cause information loss. In fact, this
parameter should be better visually evaluated from the graphical
output, to make sure that it results in noise diminution without
signal deformation.

In the second case, the study of the admissible mass
deviation on an ROl search, the three options tested
corresponded to mzerror values of 0.5, 0.05 and 0.005 Dale.
The optimum mass deviation value should be halfway between
an excessive and an insufficient mass accuracy.

Table 1. Number of ROIs and computation time resulting
from ROI searches performed with three different values of
the input parameters (signal threshold, mass error tolerance
and minimum occurrences). In cursive are indicated the
optimum values of the parameters. The results shown are
obtained considering the variation of one parameter while
the other two remain fixed in their optimum value.

Parameters of the ROI Number  Computational
search of ROI timea (s)
Signal threshold 7500 55 0.8
(au) 750 | 300 18
75 1357 8.8
Mass error 05 267 1.8
tolerance (Da/e) 0.05 300 20
0.005 356 20
Minimum 100 23 1.7
occurrences 10 300 19
1 449 1.9

@ Computational time using a 64-bit Windows Intel(R) Core™ i5-
3470 CPU computer of 8GB and version 8.2.0 (R2013b) of
MATLAB.

In this example case it was observed that with an
mzerror value of 0.005 Da/e, peaks corresponding to the same
ion were divided into distinct parts, whereas for a value higher
than 0.5 Da/e, the opposite situation occurred, and peaks
corresponding to distinct ions were collapsed into the same
chromatographic signal. Thus, the optimum mzerror value was
set to 0.05 Da/e. The higher and lower values tested (0.5
and 0.005 Dare, respectively) were again selected to easily
visualize their effect on final ROl selection. As occurred
with the threshold parameter, a decrease in mzerror value
evolved in an increase in the number of ROIs. In this case,
however, the growth in ROl number was not as spectacular as
for the threshold parameter, and the elapsed computation time
remained almost constant for all calculations (see Table 1). In
the third case, evaluation of the minimum occurrences on an
ROI search, the three values tested corresponded to 100, 10
and 1. The minimum number of occurrences is directly related
to peak width range and detector speed, which  varies
among high performance liquid  chromatography
(HPLC) (20-50 seconds) and ultra-high performance
liquid chromatography (UHPLC) (5-12 seconds) systems.
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In the current showing case, the system used to
analyze the sample was an Acquity UHPLC system,
and thus, the optimum number of occurrences should
correspond to a peak with a range of 5-12 seconds. In
particular, we observed that with this instrumentation,
the interval between each occurrence was 0.63
seconds, and thus, we selected 10 occurrences (i.e.,
6.3 seconds) as the optimum value. When considering
results obtained for the three values tested, the same
tendency observed for the other parameters was again
evidenced, obtaining higher numbers of ROl when
decreasing values of the minimum number of
occurrences and lower numbers of ROl when increasing
it. As for mzerror parameter, an increase in ROl number
at lower minimum number of occurrences was less
considerable than for the threshold parameter, and
the elapsed computational time was practically the
same in the three calculations (see Table 1).

The hereby presented example clearly illustrates
the importance of proper optimization of ROl parameters
before the application of the method. It also highlights the
influence of the particular instrumental specifications
(e.9., mass accuracy) on these parameters.

5.1.2. Evaluation of ROI profiles

After the ROl search in individual matrices, their

profiles were evaluated in order to see whether
they fit the chromatographic shape of the original data or
not.
In Fig. 4 the two distinct graphical representations of
three ROIs obtained after an ROI compression in Control
1 sample are shown. The three selected ROI
correspond to the m/z values of 703.5740 Da/e (Fig.
4a), 271.1875 Da/e (Fig. 4b) and 391.2841 Da/e (Fig.
4c). The selected ROl demonstrate three completely
distinct elution profiles and related mass distributions.
In the first case (Fig. 4a), the elution profile of the ROI
with m/z 703.5740 Da/e describes a single-peak curve
and the corresponding mass distribution is appreciably
regular among time.

The second case (Fig. 4b) corresponding to ROI with
m/z 271.1875 Da/e is particularly interesting since it
describes a double-peak curve. As observed in the mass
spectrum of this ROI, three slightly distinguishable
regions of mass measurements are presented,
corresponding to the initial measurements of the profile
curve, first peak and second peak. This case would
correspond for instance to different isomeric chemical

compounds resolved by the chromatographic
column, but having equal m/z value at the considered
mass deviation.
Finally, in the third case (Fig. 4c), the elution profile of
ROI with m/z 391.2841 Da/e distinguishes two clusters of
MS points. The first cluster, located around 200 seconds
is associated with the chromatographic peak whereas
the second cluster, located between 600 and 1200
seconds is related to the background noise. The
representations of mass traces provide valuable
information of the nature of experimental MS
measurements. In general, such information is unknown
by MS users and can be crucial for a better analysis and
interpretation of LC-MS data. Once selected the optimum
parameters for the ROl search, the augmentation was
performed and a final augmented ROl matrix was
generated. The dimensions of that matrix were (11394 x
481), the x-dimension corresponding to six times the
number of retention times of one sample (i.e., 1899) and
the y-dimension corresponding to the total number of
common and uncommon ROIs among the six samples.

5.2. Data resolution through MCR-ALS analysis

Once the augmented data matrix of compressed data
of the six samples has been constructed the next required
step is the analysis by MCR-ALS.

In MCR-ALS analysis, the selection of the number of
pure components is the first crucial step. The optimum
number of MCR-ALS components should be high enough
to explain all the chromatographic peaks but also
background (e.g., solvent), noise and other unknown
signal contributions. Moreover, an increase in the
number of components should produce a diminution
of the lack of fit and the corresponding increase of the
explained variance. Otherwise, no more components
should be added to the calculation. In the presented
example, the selected number of components was
proposed to be 50 for the MCR-ALS analysis of the
augmented matrix, resulting in a percentage of lack of
fit lower than the 7% and an explained variance of
96.5%.

It is important to mention however, that due to the
sparse condition of MS spectra, their resolution has little
ambiguity?'22 and  the  underestimation of the
number of MCR-ALS components will not cause
misinterpretation of the results but only a loss of
information. In that case, final interpretation will only be
given for the finally resolved components.
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Fig. 4. Representation of the chromatographic
elution profiles and mass traces of three ROI
values: a) one ROI with a single-peak elution
profile, b) one ROI with a double-peak elution
profile and c) one ROI with an elution profile with
two clearly distinguished regions, corresponding
to a defined peak and the baseline/background
noise.
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3. Biomarker discovery

Information of concentration and spectra profiles of the
resolved MCR-ALS components is finally used for biomarker
assessment. However, in order to find most relevant MCR-
ALS components (i.e., the ones that significantly vary among
control and stressed samples), further statistical evaluation is
required. Distinct statistical tests can be used for this
evaluation, such as the classical Student’s t-test, used in this
study. This test, together with other statistical tests may be
performed using the functions and protocol'® available at
http://cidtransfer.cid.csic.es/descarga.php?enlace1=3adcd456
c13cef5c017b66269651912c.

In Fig. 5, a representation of the elution and spectra
profiles of three representative MCR-ALS resolved
components is shown. As it can be observed in the elution
profiles of these components (Fig. 5a), there is a noticeable
difference in the areas and heights of the chromatographic
peaks among control and exposed samples. Such difference
indicates an up-regulation of these lipids after the treatment
with TBT.

In order to evaluate the significance of such alteration a
classical statistical Student's t-test was performed component
by component, using as a criterion a p-value lower than 0.05.

showed significant changes in their heights among the two
groups (i.e., controls and exposed), which made them potential
biomarkers for TBT exposure. When needed, multiple
comparisons procedures (MCPs)2 can be applied to avoid the
assignation of false positives. These statistical procedures are
intended to consider and suitably manage the multiplicity effects
through some shared or joint measure of mistaken inferences.
Alternatively, ANOVA and its multivariate extensions for well-
designed data can be applied? to better ascertain the
reliability of the observed effects by TBT exposure. Also, the
fold-changes for the three components were calculated (Fig. 5a)
resulting in 3.5-fold, 4.5-fold and 4.0-fold for components A, B
and C, respectively. In order to identify the lipid species
corresponding to these MCR-ALS components, their MS
spectra profiles were evaluated. As shown in Fig. 5b, the exact
masses associated with components A, B and C were
872.7702, 874.7857 and 902.8171 Dafe, respectively. Further
identification using MS databases such as Lipid Maps
(http://www.lipidmaps.org) was possible. As shown in the same
figure, components A, B and C corresponded to triacylglycerol
species 52:4, 52:3 and 54:3, respectively. It is important to
stand out that such identification was possible, in a higher
extent, thanks to the fact that no loss of mass spectral

The results of the test reflect that the three components information occurred after ROI compression.
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6. Conclusions

The chemometric LC-MS data analysis strategy proposed
in this study based on the ROI compression followed by
MCR-ALS analysis has been shown to be a powerful
approach to analyze LC-MS metabolomic data sets. On the
one hand, the principal benefit of performing an ROI
compression is the capacity to minimize the primary
dimensions of the data (gigabytes of storage) whilst escaping
from any loss of spectral accuracy. On the other hand, the
main advantages attributed to MCR-ALS analysis include: i)
the possibility of immediate chemical identification of the
metabolites thanks to the MS information provided in the
analysis; ii) the high degree of interpretability of the results; iii)
the flexibility in the structure and nature of the data sets that
can be potentially analyzed and iv) the added value as a
preprocessing method, that does not require peak shaping
nor chromatographic alignment for the simultaneous analysis
of multiple samples.
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2.3. DISCUSSION OF RESULTS: Setting the basis for untargeted omic data analysis

This section of the manuscript does not respond to a conventional results’
discussion section since the research included in this Chapter is basically theoretical and
methodological and aims to provide the data analysis strategy necessary to generate omic
results (further discussed in Chapters Ill and V). For this reason, the main purposes of
this section of the manuscript are: first, to give extensive details of the fundamentals
of the developed methodology (e.g., crucial steps and some tips that can be useful for other
researchers in the field) and secondly, to put it into context with what is found in the

literature regarding chemometrics for untargeted omic data analysis.

Open-formats are required to analyse LC-MS data files outside vendor packages

As demonstrated in this Thesis, the analysis of LC-MS data sets outside the software of
the MS vendors demands the conversion of the original formats of the data into open-formats.
There is a variety of open-formats that can be used; some of the most accepted are shown in
TABLE 2.1.

TABLE 2.1. Mass Spectrometry most popular open data formats

» JCAMP-DX: standardized ASCII based file format for data exchange in mass spectrometry
initially developed for infrared spectroscopy. This format was found impractical for the large MS
data sets generated nowadays, but it is still used for exchanging moderate numbers of spectra#02.

> ANDI-MS or netCDF: Analytical Data Interchange for Mass Spectrometry (ANDI-MS) is a format
for exchanging data readable and writable for many MS software packages. ANDI files, initially
developed for chromatography-MS data, are based on netCDF which is a software tool library for
writing and reading data files#03,

» mzData: first attempt of standardized format for MS data now replaced by mzXML404,

» mzXML: eXtensible Markup Language based common file format for proteomics MS data
developed simultaneously to mzData format that is still in use by the proteomics community405.

» mzML: unified standard format borrowing best aspects of mzData and mzXML formats intended
to replace them46,

Apart from the variety of open-formats, a large diversity of vendor-formats exists. As it can
be observed in FIGURE 2.1, each LC-MS vendor generates its own particular data files (e.g.,

Waters generates Masslynx.raw files whereas AB SCIEX generates WIFF files), that need to
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be further transformed into open-formats. To do that, most of the commercial packages

provide specific tools for the conversion, some of them are also mentioned in FIGURE 2.1.
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(Vendor format)

Waters
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Compass
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Schematic representation of the data conversion process for the most popular LC-MS vendors:
Waters, Thermo Fisher, Agilent Technologies, AB SCIEX and Bruker Corporation.

In the protocol for LC-MS data analysis developed in this Thesis, the steps involved in the
conversion of data generated using Waters and Thermo Fisher instrumentation are provided
(Scientific article 1, Section 2.2.1). Waters Corporation provides a specific tool named
Databridge in the software Masslynx that allows for data conversion and Thermo Fisher
Scientific provides a tool named File converter, which is included in the software Xcalibur.
Furthermore, an alternative strategy that allows for data conversion, without the necessity of
using the packages provided by LC-MS vendors, consisting on the use of an external software
name ProteoWizard®?'322 is also presented. Few studies are found in the literature that
address the issue related with data conversion, because the vast majority of scientific
researchers that perform omic studies use external data analysis packages that already

include an option for data conversion. One of the few studies that explored data conversion of
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mass spectrometry data was the one of Holman, J.D. et al.*7 In that study the authors
provided three protocols showing the details of the use of ProteoWizard software for data
conversion, taking format features, coding options, and vendor particularities into account.
First protocol called “Transcoding MS data from raw format via MSCONVERT GUI" was
intended for first-time users of ProteoWizard who feel most comfortable with graphical user
interfaces. Second protocol called “Transcoding MS data from raw format via MSCONVERT’
was intended to assist researchers who are comfortable in a command-line environment.
Third protocol called “Converting mzML data to simple text formats for search engines” was
intended to assist researchers who need to convey their data to search engines requiring

simpler text formats.

R and MATLAB: most popular computing platforms for metabolomics

One of the most popular environments for computing omics data is R, due to the fact that it
is an open source software, free to all users*®. In fact, XCMS (various forms (X) of
chromatography mass spectrometry), which is one of the most popular data analysis platforms
for LC-MS metabolomic data sets, is an R-based software. XCMS, as with any R-based
package, it is command line driven and demands some basic knowledge of the R
programming language. Other open source tools that can be used to analyse omic data
include Java (MZmine 24 software uses Java platform), C/C++ and MATLAB, the latter
platform is worldwide used in the Chemometrics field and it is the one selected in this Thesis.
Although less extensively used in omic studies than R language, MATLAB platform has also
been used as the computer and visualization environment in some omic studies. For instance,
the authors Arakelyan, A. et al.#'° used MATLAB to develop an algorithm for assessment of
pathway activity changes and also created a KEGGParser tool for parsing, editing, and
visualizing KEGG pathway maps. In that study the authors demonstrated the powerful
computing environment and the huge variety of sophisticated toolboxes that MATLAB
provides for performing complex bioinformatic calculations, as opposed to other computing
languages such as C/C++ and Java, that are not flexible enough to allow for quick
development and testing of new algorithms for omics. In the same study, the authors used the
MATLAB Bioinformatics toolbox to develop their algorithms. Similarly, in this Thesis we utilized

MATLAB Bioinformatics toolbox and its package Mass Spectrometry and Bioanalytics to
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import LC-MS data (already in open-format). This package contains specific tools for data
import, pre-processing and spectrum and signal analysis. In the protocol developed in this
Thesis (Scientific article Il, Section 2.2.1) the data import tool, containing three functions
named mzcdinfo, mzcdfread and mzcdf2peaks was used. A description of these functions is
provided in TABLE 2.2. Overall, the data generated after the use of these functions contain a
cell array named peaks, that contains m/z and ion intensity values at each of the scans and a
vector named time, providing information of the retention times associated with the LC-MS

data set.

TABLE 2.2. MS data import functions of the MATLAB Bioinformatics Toolbox™

» mzcdfinfo or mzxmlinfo: this function extracts the information of the netCDF or mzXML files,
returning a MATLAB structure, named InfoStruct, containing the name of the file, the date time
stamp of the file, the size of the file in bytes, the number of scans, the run start and end times, the
units for time, the minimum and maximum m/z values in all scans, the minimum and maximum
intensity values in all scans, and the nature of the MS data (i.e., profile or centroid).

» mzcdfread or mzxmiread: this function reads MS data from the netCDF or mzXML files and
gives as an output argument a MATLAB structure containing the MS information. If a netCDF or
mzXML variable contains local attributes, an additional field is created, with the name of the field
being the variable name appended with the attributes string. The number and names of the fields
will vary, depending on the mass spectrometer software, but typically there are mass values and
intensity values fields.

» mzcdf2peaks or mzxml2peaks: this function extracts peak information from the MATLAB
structure mzCDFStruct or mzXMLStruct created by the mzcdfread or mzxmliread function. An
array of matrices containing m/z values and ion intensity values is created, named peaks, together

with a scalar or vector of retention times associated with a LC-MS data set, named time.

Regions of interest: best choice for LC-MS data compression

As extensively stated in this Thesis, next step that needs to be covered in the overall data
analysis strategy is data compression. Among the different data compression strategies that
can be used (e.g., binning, time windowing, wavelets) in this Thesis data compression based
on the search of regions of interest (ROI) was selected due to its capacity to reduce data size
without the loss of spectral accuracy. This type of compression was first used in a feature

detection algorithm named centWave*!" of the data analysis platform XCMS. In this Thesis,
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the fundamentals of ROI compression were taken from that algorithm and implemented into
MATLAB but with some modifications. In particular, in contrast to the centWave algorithm, no
continuous wavelet transformation (CWT) neither Gauss-fitting were applied for LC-MS peak
modelling steps. The developed function to perform ROl compression was named ROlpeaks
(Supplementary function provided in Scientific article Il, Section 2.2.1). Resulting from the ROI
compression using ROlpeaks function, three output variables were obtained in MATLAB
workspace: a vector containing final mean m/z values of ROIs (mzroi), a new data matrix
including the MS spectra of every scan in its rows and the chromatograms of every ROl in its
columns (MSROI), and a cell array (roicell), providing for each ROI, information of their
founding m/z values, retention times, MS intensities, scan numbers and the calculated m/z
value. In FIGURE 2.2, a schematic representation of the steps involved in the import of the data
and in their compression and data matrix construction is shown. In this figure, the
Bioinformatics functions used and the function developed in this Thesis for ROl compression

are mentioned, together with the corresponding input and output variables.
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Overview flowchart listing the steps involved in the import of data to MATLAB environment and
their further ROI compression. In this figure, rectangles indicate LC-MS files in open-format,
rounded rectangles indicate MATLAB functions and parallelograms indicate data matrices, cell
arrays or vectors. Grey-shaded area corresponds to the steps involved outside MATLAB platform,
whereas blue-shaded area involves MATLAB environment.
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ROI compression requires initial optimization of parameter settings

A crucial step regarding ROI search is the optimization of the parameter settings. In this
Thesis, the three parameters used to define a ROI included: i) threshold (chromatographic
signal-to-noise threshold, to filter out undesired background noise and other non-desired
contributions such as those of the solvent), ii) mzerror (admissible mass deviation) and iii)
minimum number of occurrences (i.e., retention times) to define a chromatographic peak.
These parameters were optimized (Scientific article IIl, Section 2.2.2) for an LC-TOF-MS data
set generated in a lipidomic study and the optimum parameters suggested a threshold
between 0.1-1% maximum MS intensity, an mzerror of 0.05 Da/e when working with a TOF
mass spectrometer (an instrument with a resolution of 11,500 FWHM at m/z 556) and a
minimum number of 10 consecutive measurements to define a chromatographic UHPLC
peak. In that optimization, it was observed that the number of ROIs increased with decreasing
values of threshold, mzerror and minimum number of occurrences. Resulting from the
optimization of the threshold, it was evidenced that the selection of a proper threshold value
resulted in enhanced quality of the data by the elimination of noise, whereas the selection of
excessively high threshold produced information loss (Scientific article Ill, Section 2.2.2).
These two situations are exemplified in FIGURE 2.3, in which a small window of an UHPLC-
TOF-MS chromatogram initially containing chromatographic peaks and background noise is
compressed, by selecting two different threshold values. Selection of the optimum threshold
improves the condition of LC-MS data. In fact, as shown in FIGURE 2.3b, some low-intensity
signals initially hidden behind the background noise, stand out after filtering out the solvent
and noise contributions. However, when an excessive threshold filter is applied (FIGURE 2.3c),
these low-intensity signals and other meaningful chromatographic peaks are lost. Such loss is
particularly evident in the dotted areas represented in FIGURES 2.3 b and c.Subsequently, the
optimization of the mzerror evidenced that this parameter needs to be optimized for a
particular mass spectrometer whereas the optimization of the minimum number of
occurrences was strongly related with the type of chromatography used (i.e., UHPLC vs.
HPLC) (Scientific article Ill, Section 2.2.2). The importance of optimizing the input parameters
to perform a ROI compression was evidenced in our study and it is also a matter of concern of
researchers that use automated data analysis platforms. This is because, as evidenced in this

Thesis, the suboptimal setting of the parameters in a ROl compression can easily lead to
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biased results. In fact, in order to deal with the difficulty of selecting optimum ROI parameters,
the inventors of XCMS software developed a tool for automated optimization of peak picking
parameters named |PO (Isotopologue Parameter Optimization)*'2, which allowed the
optimization of retention time correction and grouping parameters. Retention time correction
was optimized by minimizing the relative retention time variances within peak groups. Also,
grouping parameters were optimized by maximizing the number of combinations of peaks

(i.e., groups of peaks) from different samples showing similar masses and retention times.
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Chromatographic window containing information of a) non-compressed data, b) compressed ROI
data when using the optimum threshold value and c) compressed ROI data when using excessive
threshold value. Dotted squares indicate the regions of the chromatogram showing higher
differences between conditions b) and c).

Evaluation of ROI profiles is necessary to optimize parameter settings and to point out
potential outliers

In this Thesis, in order to evaluate the generated compressed data to see whether they
properly reproduce the patterns of the original data or not, a function named ROlplot was also
elaborated (Supplementary function provided in Scientific article I, Section 2.2.1). Incorrect
compression of original data may include halving peaks or signals not corresponding to a real
chromatographic peak, or including more than one distinct chromatographic peak in the same
ROI. In FIGURE 2.4 five distinct ROI profiles (and their mass traces) obtained when acquiring
data with a TOF mass spectrometer are represented. The first of them (FIGURE 2.4a)
corresponds to a chromatographic peak practically having a symmetrical shape. The second
ROI profile (FIGURE 2.4b) also corresponds to a chromatographic peak, but in this case with a

less symmetrical shape. This example of a ROl profile is particularly interesting due to the fact
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that the non-symmetrical shape of the peak would lead to “peak shaping” to adjust it to a
Gaussian curve when performing data analysis by most of data analysis software. Again, this
is the case of the centWave algorithm of XCMS#", that uses CWT to perform the modelling of
the peak shapes (shaping), by detecting chromatographic peaks of differing width and by
fitting a theoretical model (e.g., Gaussian or Lorentzian). A search in the literature shows that
a lot of empirical shape models have been developed for the correction of asymmetric
chromatographic peaks. Most of them are summarized by Di Marco and Bombi#'3 and among
them, the most important chromatographic correction functions include the Exponentially
Modified Gaussian, the Poisson, the Log-normal, the Edgeworth/Cramér series and the
Gram/Charlier series. The reason why most LC-MS data analysis software require peak
shaping is related to the fact that they do not perform resolution of the chromatographic
profile. Therefore, the calculation of the areas of the chromatographic peaks is achieved in a
univariate way (i.e., to each single m/z measurement), and peak shape modelling is
necessary to facilitate peak alignment among samples and further calculation of their areas.
Contrarily, when using the methodology developed in this Thesis, no shaping correction is
applied (since it is not needed, see below). The third ROI profile shown in FIGURE 2.4c
corresponds to a halving peak whereas the fourth ROI profile (FIGURE 2.4d) evidence an example of
two close peaks considered within the same ROI due to their close m/z values. Finally, the ROI profile
shown in FIGURE 2.4e evidences an example of a profiles not corresponding to real
chromatographic peak. When only a small minority of the total amount of generated ROIs has
a non-chromatographic shape, the ROls that not fit chromatographic peaks may be
considered as “outliers” and may not be contemplated (i.e., they are supressed) for further
steps of the analysis (i.e., peak resolution). If however they are included, they can be filtered
out afterwards during the ROIMCR procedure (see below). In case the number of ROls not
showing chromatographic shape is considerably high, the ROI search can be performed
again, changing the settings of the input parameters (i.e., snthreshold, mzerror and minimum
number of occurrences). Finally, another problem regarding the analysis of LC-MS
metabolomics (and lipidomic) data sets frequently encountered is the strong overlap in
retention time that may occur with those chromatographic peaks that share m/z values. Such
problem necessitates the development of multivariate resolution procedures (see below)

procedures.
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Augmented ROl matrices provide compressed information of more than one sample

useful to perform further comparative analyses

In this Thesis, however, previous to the resolution of LC-MS data, a function called
MSroiaug was elaborated in order to compress more than one data file at a time and to
generate compressed augmented data matrices (Supplementary function provided in
Scientific article Il, Section 2.2.1), which were later on resolved. The output variables of
MSroiaug function consist of a vector containing final mean m/z values of common and
uncommon ROls (mzroi_aug), the final augmented ROI matrix containing compressed data
of all the input files (MSroi_aug) and a vector containing the total number of the scans
(time_aug). In FIGURE 2.5, a schematic representation of the input and output variables

involved in a ROI search in two samples is shown.

ROIMCR: MCR-ALS applied to MSROI data, a chemometric tool that enables successful
peak and spectra resolution in LC-MS omics studies

In this Thesis, multivariate curve resolution with the MCR-ALS procedure** allowed
obtaining the purest elution and spectra profiles of the different constituents present in the LC-
MS analysed samples. One of the main advantages of performing peak resolution through
MCR-ALS analysis was related to the no need of peak alignment, since samples are aligned
in the spectral dimension, no matter if they have differential time dimensions. In fact, this is
one of the characteristics that mostly distinguish this data analysis strategy from the others
existing in the literature, since most of them require peak alignment. A large number of
metabolomic studies that require peak alignment methods to deal with within- and between-
experiment variation are found in the literature. Moreover, the existing alignment methods can
be classified in two major types: profile-based and feature-based alignment methods#!5-417,
Profile-based methods perform alignment before peak detection and use the raw eluting
chromatograms*'8. The feature-based methods perform alignment after peak detection.
XCMS includes these two types of alignment methods, OBI-warp (Ordered bijective
interpolated warping) and peakgroups, for alignment of profile matrix and features (peak
groups), respectively419420, Moreover, most of the existing feature-based alignment methods
use reference variables, such as exogeneous internal standards and endogeneous

metabolites#2'-423 as landmarks for further retention time correction.
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ROls (mzroi_aug).
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MCR-ALS spectra and elution profiles allow identification and relative quantification of

metabolites (or lipids)

Last step included in the LC-MS data analysis protocol developed in this Thesis included
the evaluation of both elution and spectra profiles of the MCR-ALS components. Evaluation of
the concentration/elution profiles allowed the determination of the sample constituents
showing significant alterations in exposed samples respect to controls (i.e., potential
biomarkers) together with their relative quantification (i.e., degree of change/fold change
respect to controls). In order to perform such statistical evaluation, a function named
plotprofilestable was developed (Supplementary function provided in Scientific article II,
Section 2.2.1), which allowed the performance of two types of t-test (paired and two sample t-
tests) and a non-parametric Wilcoxon rank-sum test. On the other hand, the information

provided in the spectra profiles allowed further identification of the metabolites/lipids.

Compressed MS data at low resolution can be transformed into high-resolution MS

data to allow proper identification of metabolites (and lipids)

In the developed ROIMCR strategy, enhanced identification of metabolites (and lipids) is
possible since the compressed data maintain the original spectral information at high
resolution. However, when performing data compression with other approaches, such as
binning, the loss of spectral information involved in the compression process difficult the final
identification of the metabolites. For those cases, an alternative procedure to recover
information of exact mass was developed in this Thesis, taking profit of the advantages of
MCR-ALS analysis. In this sense, it was found that the estimation of exact mass could go
through the determination of MCR-ALS resolved spectra (ST) at high resolution, in a two-step
process. To demonstrate that, a first MCR-ALS analysis of low resolution compressed data
(Drr) was performed, generating MCR-ALS concentration profiles (C) and spectra profiles at
low resolution (STigr, FIGURE 2.6). Then, it was assumed that concentration profiles (C*)
resulting from the MCR-ALS analysis of non-compressed high resolution data (Dur) (FIGURE
2.6) would be practically the same than the obtained in the previous case (C=C¥). Under that
assumption, the unknown spectra profiles at high resolution (STur) could be extracted by a
(least-squares) pseudo-inversion of the estimated concentration profiles matrix, C,
(STwr=C*\Dwr), as again shown in FIGURE 2.6.
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It is really important to stress out that the estimation of the new ST at high resolution through
the inversion of matrices is possible under the assumption that C=C* is true Thus, for the
correct fulfillment of the assumption, matrices D.r and Dur must contain data of the same LC-
MS chromatogram, or the same region of the chromatogram (in the case of time windowing).
In the example shown in FIGURE 2.6, the MCR-ALS analysis performed with low resolution
data (generated after a binning compression) lead to obtaining a MCR-ALS spectra profile at
a resolution of 1 amu, which corresponded to a m/z value of 877 Da/e for the first component.
On the other hand, resulting from the MCR-ALS analysis performed with Dy and C¥, the
generated Skr provided the exact mass of the same component, which was 876.7906 Da/e.
Moreover, as seen in FIGURE 2.6b, not only information of the monoisotopic peak was
provided but also information of the [M+H]* (i.e., 877.8087 Da/e) and [M+2H]* (i.e., 878.8293

Da/e) species at high resolution.

Data acquisition _mode (e.g., profile vs. centroid) and information of isotopic

distribution are key features in final identification of metabolites

Another alternative to recover high resolution MS information, after a compression that
has caused the loss of spectral accuracy (generally after binning compression) was tested in
this Thesis. In this case, the information of MCR-ALS spectra profiles obtained at low
resolution (1 amu) was used to find out the accurate mass (0.0001 amu resolution) when
searching in the raw chromatogram. To do that, retention time was used to confirm the
correspondence between the isolated chromatographic peak and the MCR-ALS resolved
component. Then, a list of formula candidates was generated using formula determination
tools. In this study, since the data were generated with an UHPLC system coupled to a
Waters/LCT Premier XE TOF analyzer, controlled with Waters/Micromass MassLynx 4.1
software, the formula determination tool of this software was used. In addition, in order to
evaluate the advantages and disadvantages of acquiring data in profile or centroid mode, two
differential searches were performed in raw LC-MS chromatograms acquired in these two
acquisition modes. Apart from this search using MassLynx software, another software for
identification of MS data acquired under profile mode was used, named MassWorks (Cerno
Bioscience). When using the latter software, a function named sCLIPS™ (self Calibrating

Line-shape Isotope Profile Search)** was employed. That function enables users of accurate
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mass instruments including TOF, high resolution quadrupoles, Orbitrap, magnetic sector, and
FT-ICR MS to dramatically enhance formula identification through spectral accuracy without
the requirement to run calibration standards. In FIGURE 2.7, a representation of the steps
required to extract exact mass when searching in the raw chromatogram is shown. As it can
be seen in this figure, the same information of the MCR-ALS spectra profile at low resolution
(STLr) used in the previous strategy of inversion of matrices was used (i.e., m/z= 877 Dale).
The search of mass 877 Da/e in the raw chromatogram (with an admissible mass error of 0.5
Da) resulted in an isolated chromatographic peak eluting at 16.27 minutes, a retention time
that coincided with that obtained in the MCR-ALS concentration profile (C). Moreover, the
exact mass associated to that isolated peak was searched separately for centroid and profile
MS data. The obtained exact masses for [M]*, [M+1H]* and [M+2H]* ions were 876.8015,
877.8041 and 878.8099 Da/e, respectively, for centroid data and 876.8022, 877.8207 and
878.8083 Dare, respectively, for profile data.
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obtained Mass lemental composition searc
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FIGURE 2.7

Representation of the steps involved in the recovery of the exact mass, when searching in the raw
UHPLC-TOF-MS chromatograms, acquired in centroid and profile modes. Not-published results.

Moreover, in TABLE 2.3, the results of the formula identification when using MassLynx
software (both for centroid and profile data) and MassWorks software (only for profile data)
are shown. As it can be seen, when performed with centroid data, the formula identification
tool of MassLynx was based on isotope information (i-FIT scores). In the case of
MassWorks software, information of isotope distribution was also used and the percentage
of coincidence between the measured mass and the theoretical mass of the formula

candidate was expressed as a percentage of fitting of spectral accuracy.
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TABLE 2.3. Formula identification parameters when using MassLynx and MassWorks

software under two distinct strategies. Not-published results.

Strategy Software Nature =~ Measured Calculated Elemental Mass i- Spectral
of the mass mass compositi  error FIT  accuracy (%)
data on (ppm)

Search in MassLynx  Centroid 876.8015 876.8015  CssH10sNOs 0.0 33

raw formula ID
Profile 876.8022  876.8015  CssH10sNOs 0.8

LC-MS

hromat

VTR Masswork  Profle 8768022 8768015 CsHuNOs 08 - 922

s (Sclips)

Inversion of MassWork  Profile 876.7906 876.7915 CssH106NOs 124 - 76.2

MCR-ALS s (Sclips)

matrices

Moreover, sCLIPS#* function of MassWorks software was also used to perform formula
identification of the exact mass generated in the strategy of the inversion of matrices (STug).
The results evidenced that in all cases, the first candidate was a lipid with an elemental
composition of CssH10sNOs. However, the strategy that lead to the lowest error was the search
in the raw chromatogram containing centroid data using MassLynx software (0.0 ppm of
error), followed by the search in the raw chromatogram containing profile data using
MassLynx software and the search in the raw chromatogram containing profile data using
MassWorks software (0.8 ppm of error both), and finally the search performed after the
inversion of matrices (15 ppm). In fact, the error associated to the latter search was by far the
largest error obtained among the four searches. Thus, it was evidenced that the two strategies
tested in this Thesis for the recovery of the exact mass lead to the same results, although a
higher error was associated when exact mass was obtained after an inversion of matrices and
not after searching in the raw chromatogram. Concerning the capacity of MassLynx versus
MassWorks software to perform elemental composition calculation, no significant differences
were found, since both formula identification tools allowed proper identification of the formula
candidate (with errors < 0.8 ppm). Moreover, it was found that both software performed
elemental composition determination in a similar way (i.e., by searching the adequacy
between the isotopic distribution of the measured ion and the one of a theoretical candidate).
In the case of the Waters elemental composition calculator, the isotopic fitting is expressed

with i-FIT parameter (the lower i-FIT, the higher isotopic adequacy). In fact, the use of i-FIT
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parameter (i.e., fit of the experimental data to the theoretical isotope distribution) was a
solution to perform elemental composition analysis with a wide range and number of
elements, because in these cases, the search generally leads to a list of hundreds or even
thousands of proposed combinations within the exact mass tolerance of the instrument*%, A
search in the literature shows that MassLynx i-FIT algorithm is used to allow enhanced
identification of metabolites in omic studies*?4%7. For instance, Zhao et al. used this algorithm
to identify seven endogeneous metabolites in a metabonomic study of adenine-induced
changes in metabolic profiles of rat faeces*®. Differently to MassLynx software, MassWorks
software expresses the isotopic fitting as a percentage of the spectral accuracy (using 100%
to indicate equal isotopic distribution between the theoretical and the measured ion). Some
omic studies have benefited from MassWorks software to perform metabolite identification in
omic studies. One example of them is an study of Ho H.P. et al., in which new minor
metabolites of penicillin G in human serum were identified by multiple-stage tandem MS and
the use of MassWorks calibration software2°.

Overall, in this Thesis it was evidenced that the best approach to perform LC-MS
metabolomic (and lipidomic) data analysis consists on data compression based on the search
of ROls, since there is no loss of spectral accuracy, and data resolution through MCR-ALS
analysis (ROIMCR procedure). Moreover, two alternative strategies to still dispose of MS
information at high resolution despite previous loss of it in the early step of compression
(when using binning strategy for instance) have been proved to lead to successful results
also. These two strategies are based on: i) the recovery of MCR-ALS spectra profiles at high
resolution (SThr) following a pseudo-inversion of matrices, and ii) the search in the raw LC-MS
chromatogram through the isolation of the ion of interest and further elemental composition
calculation.

Finally, an additional advantage of using the ROIMCR procedure is related to the fact that
it allows for a throughtout simultaneous resolution of most of the constituents of a set of
multiple correlated samples (control and stressed samples) in a single data analysis step. This
provides a very efficient and reliable tool for the investigation of the changes produced at a
molecular level of metabolite and lipid concentrations of the investigated biological samples in
exposure experiments, as the ones performed in this Thesis, for the purpose of environmental

risk assessment studies.
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2.4. CONCLUSIONS

From the scientific research included in this chapter, the following specific conclusions can be

extracted:

Concerning the adequacy of Chemometrics to analyse metabolomic (and lipidomic)

data generated by different analytical techniques,

The use of multivariate data analysis methods has proved to enable the comprehensive
analysis of the large complex megavariate data sets (often with incomplete, noisy and
non-linear and collinear data structures) generated in metabolomic (and lipidomic)
studies.

Chemometric tools have shown to facilitate the shift from the concept of studying one
chemical compound or process at a time to the more comprehensive concept of
characterizing the whole biological systems in a single experiment.

Chemometric tools have proved to be adequate to cover the distinct steps in data
analysis, mainly consisting on data pre-processing and pre-treatment, exploratory data
analysis by projection methods (e.g., PCA), feature/biomarker detection (e.g. PLS-DA),
data profiling and resolution by MCR-ALS methods and variance source exploration
through the combination of classical ANOVA with multivariate methodologies (i.e.,
ASCA).

Concerning targeted vs untargeted metabolomic (and lipidomic) LC-MS analytical

approaches,

Targeted metabolomic (and lipidomic) approaches only allow the study of a predefined
group of metabolites (and lipids) contained in a referential database, which needs to be
previously elaborated, whereas untargeted approaches enable extensive analysis of
entire metabolomic (and lipidomic) profiles.

Untargeted approaches involve complex data analysis (including data compression and
resolution) since entire data sets (containing massive amount of MS-rich information)

need to be processed. However, such analyses can be facilitated with the use of
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multivariate chemometric tools. Targeted approaches are generally performed using

classical statistical tools and they are usually more tedious and time-consuming.

Concerning the untargeted chemometric methodology for the analysis of LC-MS data

sets developed in this Thesis,

Data conversion of LC-MS files from vendor formats to open data formats (e.g., text or
mzXML formats) is required to analyse the data outside the software of the vendor.
Among the different ways that exist for data conversion, the external software
ProteoWizard has showed to enable the conversion of any type of vendor format.
Compression of LC-MS data sets is necessary to reduce the vast amount of information
into more computationally manageable formats and avoid problems related to the limited
memory capacity of the computers. Among the distinct data compression strategies
(e.g., binning, windowing and ROI), the search of ROIs is proved to be very suitable for
the compression (together with data matrix construction) of LC-MS data sets, due to the
fact that no loss of spectral accuracy is derived from a ROI compression.

Three parameters are required to perform a ROl search: signal-to-noise ratio threshold,
mass admissible error and minimum number of occurrences. It is proved that the
optimum threshold value should be adjusted between 0.1- 1% maximum MS measured
intensity. The optimum mass deviation value should be selected halfway between an
excessive and an insufficient mass accuracy and should be specifically adjusted for the
type of mass spectrometer used. The optimum minimum number of occurrences should
be adjusted according to the type of chromatography (i.e., HPLC vs. UHPLC) and the
corresponding width of the chromatographic peak.

The developed ROI compression strategy for more than one sample is adapted to
augmented data matrices containing relevant information of compressed data of more
than one sample (e.g., control and treated samples). In this way the comparison of the
peak areas of the resolved elution profiles of the same metabolite in different samples
can be performed. Moreover, the pure spectra resolved for the components are more

reliable.
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MCR-ALS has shown to be a powerful chemometric method to perform LC-MS data
resolution, mainly providing four advantages: i) the possibility of immediate chemical
identification of the metabolites thanks to the MS information provided in the analysis; ii)
the high degree of direct interpretability of the results; iii) the flexibility in the structure
and nature of the data sets that can be potentially analyzed and iv) the added value of
not requiring peak shaping nor chromatographic alignment for the simultaneous analysis
of multiple samples.

Among the different feature detection tools, in this Thesis it is demonstrated the
adequacy of one-way ANOVA followed by a multiple comparisons test and of PLS-DA
analysis through the determination of variables importance for projection (VIPs) for the

detection of potential biomarkers for metabolite (and lipid) disruption.

Concerning the identification of potential biomarkers,

In this Thesis it is demonstrated that proper identification of potential biomarkers
requires having precise information about m/z values at high resolution. Moreover, it is
evidenced that such information is achieved when performing data compression based
on the search of ROls, but it is lost when performing other types of compression, such
as binning.

Recovery of mass at high resolution from low-resolution compressed data can follow two
strategies. First strategy consists on extracting MCR-ALS spectra profiles at high
resolution (i.e., STwr) by a (least-squares) pseudo-inversion of estimated concentration
profiles at low resolution (C*) and LC-MS data at high resolution (STr=C*\Dxgr). Second
strategy consists on using information of MCR-ALS spectra profiles at low resolution to
find out the accurate mass when searching in the raw experimental chromatogram
(measured at the highest resolution of the instrument), obtaining the isolated ion of
interest and further calculating the elemental composition.

The mode of acquisition of MS data (i.e., profile versus centroid) has been proved to
have an influence on final identification of metabolites, providing the latter continuous
and extensive information of MS spectra profiles. More work is needed to take

advantage of this mode.
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o Distinct software exist to perform elemental composition determination. Among them, the
elemental composition tool provided in the Masslynx software of WATERS corporation,
and the software specifically developed for the identification of profile MS data, named
MassWorks, have proved to be adequate to perform metabolite (and lipid) identification.
Both software (i.e., Masslynx and MassWorks) tools perform the elemental composition
search based on the comparative isotopic distribution of the measured ion and that of a
theoretical candidate, using the parameters i-FIT and spectral accuracy, respectively.
This has been proven in this Thesis in the identification of some lipid species of human
placental choriocarcinoma JEG-3 cells, analysed with a Waters/LCT Premier XE TOF

analyser.
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