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A B S T R A C T

Data analysis is a very challenging task in LC-MS metabolomic studies. The use of powerful analytical

techniques (e.g., high-resolution mass spectrometry) provides high-dimensional data, often with noisy

and collinear structures. Such amount of information-rich mass spectrometry data requires extensive

processing in order to handle metabolomic data sets appropriately and to further assess sample

classification/discrimination and biomarker discovery.

This review shows the steps involved in the data analysis workflow for both targeted and untargeted

metabolomic studies. Especial attention is focused on the distinct methodologies that have been devel-

oped in the last decade for the untargeted case. Furthermore, some powerful and recent alternatives based

on the use of chemometric tools will also be discussed. In general terms, this review helps researchers

to critically explore the distinct alternatives for LC-MS metabolomic data analysis to better choose the

most appropriate for their case study.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Metabolomics [1–3] is one of the categorical platforms that con-

stitute omics [4] (see Fig. 1). Omics is a field that aims at the study

of the abundance and (or) structural characterization of a broad range

of molecules in organisms under distinct scenarios. In the clinical

field, high-throughput omic technologies are used for the charac-

terization of diseases to better predict the clinical course of organisms

and to evaluate the efficacy of existing or under-development thera-

pies [5]. In food science, omics plays a significant role in the light

of an improvement of human nutrition [6]. In the environmental

field, omic studies aim at the evaluation of the alterations that or-

ganismsmight suffer after exposure to environmental stressors [7,8].

In all cases, the expressed molecules are involved in most crucial

biological processes, and principally comprehend deoxyribonucle-

ic acid (DNA) (genomics [9], epigenomics [10]), ribonucleic acid (RNA)

(transcriptomics [11]), proteins (proteomics [12]), and other small

molecules (metabolomics [1–3]). In more recent years, another cat-

egorical omic platform named fluxomics [13,14], which aims at

the study of the fluxome, or the total set of fluxes in the metabolic

network of the biological specimen, has gained relevance. Apart from

these categorical omic platforms, a variety of omic subdisciplines

Fig. 1. Overview of OMIC platforms: target molecules, analytical methodologies used and structure of the generated data (GE N°: number of genes, δ: chemical shift, m/z:

mass-to-charge ratio, rt: retention time, I: intensity). *Data structure shown when considering only one sample.
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have also emerged (e.g., lipidomics [15], glycomics [16], foodomics

[6,17], interactomics [18], andmetallomics [19]), showing that omics

is a constantly evolving discipline. Among all these omic plat-

forms, metabolomics is becoming increasingly popular and is used

to detect the perturbations that disease, drugs or toxins might cause

on concentrations and fluxes of metabolites involved in key bio-

chemical pathways [20]. Due to its importance and relevance, the

current study concentrates on metabolomic data.

Several analytical techniques have been developed for each of

the omic platforms (see Fig. 1), including DNA microarray-based

and RNA-sequencing techniques [21], nuclear magnetic resonance

(NMR) spectroscopy [22,23] and mass spectrometry (MS) methods

[24,25]. In the field of metabolomics, both NMR and MS tech-

niques are the most popular. High-resolution proton NMR

spectroscopy (1H-NMR) has proved to be one of the most power-

ful technologies for examining biofluids and studying intact tissues,

producing a comprehensive profile of metabolite signals without

separation, derivatization, and preselected measurement param-

eters [26,27]. On the other hand,MSmethods, both by direct injection

[28] or coupled to chromatographic techniques [29], have also

evolved into a powerful technology for metabolomics due to their

ability in the analysis of low molecular weight compounds in bi-

ological systems. These two approaches (i.e., NMR and MS) are

complementary, and the integration of both technologies to

provide more comprehensive information is now pursued in the

metabolomics field. Nevertheless, this study concentrates on MS-

based metabolomic data.

Concerning MS instrumentation, high-resolution mass spec-

trometers are the most powerful analysers due to their ability to

improve accurate mass determination. In fact, spectrometers such

as time-of-flight (TOF) [30], quadrupole time-of-flight (Q-TOF) [31],

and Fourier transform ion cyclotron resonance (FT-ICR) [32] spec-

trometers and orbital ion traps [33], have substituted in many

cases the conventional low-resolution quadrupoles and linear

ion traps (IT), due to their ability to resolve isomeric and isobaric

species and elucidate elemental composition [34]. Regarding chro-

matographic techniques, early metabolomic studies were commonly

based on gas chromatography (GC), since it is a highly efficient,

sensitive and reproducible technique [35]. However, GC has the

drawback that only volatile compounds or compounds that are

made volatile after derivatisation can be analysed, and extensive

sample preparation is often required. In contrast, high-performance

liquid chromatography (HPLC) and ultra high-performance liquid

chromatography (UHPLC) are considered to be more comprehen-

sive than GC since they allow the analysis of a wider range of

metabolites without the requirement of derivatisation [36–39].

Hence, liquid chromatography coupled to mass spectrometry (LC-

MS) has lately gained popularity in the metabolomics field in

detriment of gas chromatography coupled to mass spectrometry

(GC-MS), this being the reason why this study is focused on the

former technique.

The improvement of analytical techniques has gradually caused

metabolomic data sets to become larger with more intricate inner

structures [40]. Mass spectrometric based techniques generate

highly complex data, due to the vast number of measurements

(i.e., MS spectrum at each retention time) related to the number

of observations (i.e., samples). In the case of LC-MS analysis (see

Fig. 1), data generated from each chromatogram are arranged in

data sets containing information of mass-to-charge (m/z), reten-

tion times and intensities. Hence, massive amounts of information-

rich MS data are generated in the analysis of every sample, thus

requiring specific standard approaches for its study and interpre-

tation [41].

In general terms, data analysis strategies are classified in two

groups: data analysis strategies for targeted (Fig. 2) and untargeted

(Fig. 3) metabolomic studies. The reason for such differentiation is

due to the different types of data generated in these two ap-

proaches, which require being handled accordingly. Targeted studies

[42] focus the research on a set of known metabolites whereas

untargeted studies [43] allow a more comprehensive evaluation of

metabolomic profiles. Most of the methodologies used in early tar-

geted studies just allowed the identification of a few number of

metabolites [44]. Nevertheless, recent targetedmethodologies enable

large-scale metabolic profiling, including hundreds of compounds

[45–47]. However, the number of compounds analysed in untargeted

studies is even larger. This is so because one must process entire

data sets including thousands of metabolite signals, and among these,

few are finally identified as candidate biomarkers [48]. Therefore,

data analysis strategies for untargeted studies require highly-

extensive processing of LC-MS chromatograms. A large number of

data analysis strategies are found in the literature but none of them

can be singled out as the optimal choice in all cases, which makes

data analysis an open task in the bioinformatics research. In fact,

the field of MS-based metabolomics is rather young, and new

methods, software and platforms are being regularly published or

updated [49,50].

A recent review of Yi et al. [51] summarizes recent and poten-

tial advances in chemometric methods in relation to data processing

in untargeted metabolomic studies. Various aspects, including raw

data pre-processing, metabolite identification, and variable selec-

tion and modeling are accurately discussed and presented there.

The present review complements the previous one with some

data analysis steps not covered or partially covered by the former

(e.g., data acquisition, data storage and conversion, data import,

data compression and feature detection or peak resolution), pres-

ents novel and little known chemometric tools for data analysis

and includes an overview of the data analysis strategies for tar-

geted studies. Moreover, it is intended to contribute to the state-

of-art by providing comprehensive information on bioanalytical

and data processing tools rather than describing the principles of

the chemometric methods that can be used in LC-MS metabolomic

data analysis.

2. General overview of the data analysis approaches

LC-MS metabolomic data analysis strategies are primarily de-

signed for targeted and untargeted studies. However, future advances

in LC-MS metabolomics may lead to a merging of targeted and

untargeted analyses; with the targeted approach providing more

sensitive and accurate detection of predetermined metabolites,

and the untargeted approach being able to detect and identify

unknown metabolites [52]. Indeed, first steps in this direction

were made by Savolainen et al. [53], who collected for the first

time targeted and untargetedmetabolomic data from human plasma

using gas chromatography coupled to tandem mass spectrometry

(GC-MS/MS). Next, a brief introduction to both approaches is

presented.

Data analysis in targeted metabolomics [42] aims to process data

sets coming from a subset of the metabolome: a predefined group

of chemically characterized and biochemically annotated metabo-

lites contained in referential databases. The advantages of performing

a targeted search are mainly attributed to two factors: first, ana-

lytical artifacts are not carried through to downstream analysis, and

second, just a selected group of metabolites is studied. Even though

this fact facilitates data analysis, the process becomes quite time-

consuming and tedious if one wishes to study a large number of

metabolites. In those cases, in order to reduce the effort and time

required for the data analysis, some alternative automated meth-

odologies have been developed [54–59] (see Section 3.1.5.).

The untargeted approach [43] attempts the comprehensive anal-

ysis of all measurable analytes in a sample, including uncharacterized

metabolites. No previous knowledge of the sample is required, and
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no referential database is necessary. However, its comprehensive

nature requires the analysis of whole data sets, which include gi-

gabytes of information. This is not possible without a previous

reduction of their dimensions into more computationally manage-

able formats, but this compression must be carried out without

significantly compromising the experimental information con-

tained within. Moreover, the compressed data need further and

extended analysis in order to finally detect most discriminant me-

tabolites (i.e., potential biomarkers).

In Figs. 2 and 3 is shown a detailed scheme of the steps in-

volved in data analysis strategies for targeted and untargeted studies,

respectively. As shown in the former, the targeted approach can be

broken down into five different parts (grey shaded areas): raw data

acquisition, generation of a referential database, isolation and iden-

tification of metabolites, normalization and quantification, and

biochemical interpretation. These parts can be grouped in three

major areas: data acquisition (light-grey), data processing and feature

detection (medium-grey) and interpretation (dark-grey). On the other

hand, in Fig. 3 the untargeted approach is divided in nine parts, re-

grouped using the same criterion as in Fig. 2: raw data acquisition

(light-grey area), data storage and conversion, import, compres-

sion, normalization, scaling and transformation, feature detection

or peak resolution, biomarker screening and identification (medium-

grey area) and biochemical interpretation (dark-grey area). Note that

some steps are common in the targeted and the untargeted schemes.

See Section 3 for a detailed explanation of both approaches.

3. The data analysis workflow for targeted and untargeted

metabolomic studies

This section provides details of the steps involved in data anal-

ysis workflows for targeted and untargeted studies (highlighting

common aspects), and finishes with a common explanation of the

biochemical interpretation for both approaches.

3.1. Data processing steps for targeted studies

3.1.1. Raw data acquisition

Targeted analyses require collecting metabolite specific infor-

mation typically using low-resolution tandem mass spectrometry

(LRMS/MS) instrumentation such as triple quadrupole (QqQ) and

quadrupole/linear ion trap (QLIT), which allow proper quantifica-

tion. Both QqQ and QLIT are routinely operated via selected ion

monitoring (SIM) and selected reaction monitoring (SRM). In ad-

dition, QLIT permits advanced MS3 functionality together with QqQ

fragmentation patterns, thus, providing more useful information

needed for structural knowledge [52]. Although the use of LRMS/

MS instrumentation is the most popular practice in targeted

metabolomics, high-resolution mass spectrometry (HRMS) [60,61]

can also be used in targeted analyses, operating in full-scan.

Acquisition mode of LC-MS data (i.e., centroid or profile, Figs. 2

and 3) is influential on the final identification of metabolites. Ac-

quisition in centroid mode was introduced in the early days of MS

Fig. 2. Overview flowchart listing the five steps (grey shaded areas) involved in the

data analysis approach for targeted studies: raw data acquisition, generation of a

referential database, isolation and identification of metabolites, normalization and

quantification, and biochemical interpretation. These steps are grouped in threemajor

areas: data aquisition (light-grey), data processing and feature detection (medium-

grey) and interpretation (dark-grey). In this figure rectangles indicate processing steps,

diamonds indicate key contributional choices and in rounded rectangles are in-

cluded illustrative representations of MS data and LC-MS chromatograms. Note that

this flowchart does not consider the possibility of using automated data analysis tools

such as MRMPROBS, MMSAT or OpenChrom, which have their own specific work-

flow (see Section 3.1.5.). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of the article.).
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instrument development, when the amount of data and the data

collection rate overwhelmed the state-of-art data system and data

storage [62]. Consequently, early mass spectrometers (e.g., low-

resolution quadrupoles and IT) were designed to reduce the acquired

raw MS data to a stick spectrum, or centroid data, in a process

known as centroiding. Centroiding processes each mass spectrum

and combines multiple data points representing the same peak into

a single data point with one m/z and intensity value. Nowadays, ac-

quisition in centroid mode is no longer mandatory since data

communication rate and storage capacity are not obstacles in most

data systems anymore. In fact, acquisition in profile mode occurs

by default in many HRMS instrumentation.

Centroiding has the obvious advantage of generating lighter data

files (up to 100-fold smaller). However, centroid data are obtained

at the expense of significant information loss, including noise char-

acteristics, linearity of the ion signal, mass spectrally interfering ions

and isotope fine features that can be obtained with HRMS when ac-

quiring in profile or continuum mode. Such information is highly

desirable since it facilitates the differentiation of formula candi-

dates hard to distinguish [62].

For instance, a feature identification software named MassWorks

(Cerno Bioscience, http://www.cernobioscience.com) takes advan-

tage of the information gained under profile mode to reduce the

number of possible formula candidates and achieve better results

in the identification step [63,64].

3.1.2. Generation of a referential database

As previously stated, targeted metabolomics aims to search for

a specified list of metabolites, typically focusing on one or more

related pathways of interest [65]. In order to search for the me-

tabolites of interest, the first step required is the elaboration of a

referential database containing information of their nominal and

exact mass, chemical formula, retention time and precursor and

product m/z values. As observed in Fig. 2, such referential data-

base can be constructed in two ways. One would be to take benefit

from previous biochemical knowledge or from previous studies per-

formed on the same type of organisms or groups of compounds,

with the help of standard compounds (home-made database). The

other approach consists of consulting retrospectively online

metabolomic databases [e.g., humanmetabolome database (HMDB),

METLIN, MassBank, LipidMaps & LipidBlast, NIST andmzCloud]. The

readers interested inmass spectral databases for LC-MSmetabolomic

data sets are advised to consult the recent work of Vinaixa et al.

[66].

3.1.3. Isolation and identification of metabolites

Following the generation of a referential database, next step is

the isolation and identification of the target metabolites. Most tar-

getedmetabolomic studies use LC-MS vendor software [e.g., Masslynx

(Waters), Xcalibur (Thermo Fischer), Analyst (AB Sciex), Compass

(Bruker), MassHunter and Chemstation (Agilent)] for both isolation

and identification of compounds, with the support of the referen-

tial database. Only in few cases, data are analysed out of the vendor

software (see Section 3.1.5.).

Identification of metabolites is still evolving within the

metabolomics community, with active discussion on how to define

which features constitute valid metabolite identification [67]. Dis-

cussing all the identification strategies is out of the scope of this

review, and only basic guidance is given. According to the criteria

proposed by the Chemical Analysis Working Group (CAWG) of the

Metabolomics Standards Initiative (MSI: http://msi-workgroups

.sourceforge.net), four levels of identification can be defined [68].

Level 1 refers to definitive identification, possible when having, at

least, two orthogonal molecular properties of the putative metabo-

lite confirmed with an authentic chemical standard analysed under

identical analytical methodology (not necessarily in the researcher’s

laboratory). Levels 2 and 3 refer to putative or tentative identifi-

cation so that comparison against literature and data sets is sufficient.

Putative identification can provide metabolite-specific (level 2) or

class-specific (level 3) identification. Level 4 refers to unknown com-

pounds. Moreover, in the European Directive 2002/657/EC, the

criteria for unequivocal identification of compounds according to

the analytical platform used are presented [69].

As explained in Section 3.1.1., in targeted studies, two plat-

forms can be used to enable proper identification of metabolites:

LRMS/MS, which is the most common approach, and HRMS. When

working with LRMS/MS, the standard procedures are SIM and SRM

[70], as they enable high sensitivity, reproducibility and a broad

dynamic range. Significant advances have been made to perform

SRM experiments, and routine methods are now available for

analysing most of the metabolites in central carbon metabolism, as

well as amino acids and nucleotides at their naturally occurring phys-

iological concentrations [71–73]. Moreover, most of the currently

existing LRMS/MS targeted methods have been developed to enable

large-scale metabolic profiling, including hundreds of compounds.

Sawada et al. [45], optimized the SRM conditions of 497 plant me-

tabolites and finally quantified 100 of them in each of 14 plant

accessions from Brassicaceae, Gramineae and Fabaceae. Also, Gu et al.

[47], optimized 595 precursor ions and 1890 SRM transitions for

the analysis of serum metabolites. In most cases, the utilmate ob-

jective of these LRMS/MS methods is the screening of targeted lists

of metabolites as potential metabolic signatures for diseases. Indeed,

targeted screening on human plasma was used to reveal citric acid

metabolites and a small group of essential amino acids as meta-

bolic signatures of myocardial ischaemia and diabetes, respectively

[74,75]. The little percentage of studies that use HRMS instrumen-

tation operating in full-scan mode for targeted metabolomics utilize

the mass deviation as the principal criteria for formula identifica-

tion. In those cases, a deviation of 5 ppm is generally established

as the admissible mass error [76–78]. Garanto et al. [60] charac-

terized the mouse retinal sphingolipidome by ultra performance

liquid chromatography coupled to time-of-flight mass spectrom-

etry (UPLC-TOF), operating in full-scanmode, in a targeted lipidomic

study. In that study, quantificationwas carried out using the ion chro-

matogram obtained for each compound using 50mDawindows and

positive identification of compoundswas based on the accuratemass

measurement with an error <5 ppm and its LC retention time, com-

pared to that of standards.

Regardless the instrumentation used for targeted metabolomics

(i.e., LRMS/MS or HRMS), identification of metabolites can be en-

hanced when acquiring data in profile mode, as explained in Section

3.1.1. For instance, Erve et al. [63] and Amorisco et al. [64] used the

advantages of acquiring in profile mode to ensure precise identi-

fication of compounds.

3.1.4. Data normalization and quantification

The aim of normalization is to remove confounding variations

attributed to experimental sources (e.g. analytical noise or exper-

imental bias) in ion intensities among measurements while

preserving the relevant variation (due to biological source). Chem-

ical heterogeneity of metabolites, leading, for example, to distinct

recoveries during extraction or responses during ionization in the

mass spectrometer, makes separation between interesting biolog-

ical variation and unwanted systematic bias a necessary labor [79].

In order tominimize undesired variations, some considerationsmust

be taken, which are discussed below.

First, sample analysis for a particular study should be con-

ducted in a randomized sample order, and the data should be

acquired in the same batch on the same day, minimizing internal

variation within a particular study set. Second, single or multiple

surrogates (added to sample prior to extraction), internal stan-

dards (IS) (added to sample after extraction), and quality control
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samples (QCs) (i.e., pools of several individuals having compara-

ble characteristics that are injected all along the analytical run) [80]

should be used to normalize concentrations of metabolites among

sample sets and batches.

Quantitative analytical methods have generally relied on the uti-

lization of isotope-labeled internal standards, which can be obtained

following the method of Mashego et al. [81], for each metabolite

analysed. This normalization strategy has been used to investigate

metabolites including glycolytic and tricarboxylic acid cycle inter-

mediates, amino acids, nucleotides and folates from cells including

Escherichia coli, Salmonella enterica, yeast and human fibroblasts

[81–86]. Recently, Arrivault et al. [87] have presented the criteria

for the selection of most suitable isotope-labeled internal stan-

dards according to the case of study.

Using a set of selected surrogates and internal standards is a good

alternative when a full set of isotope-labeled standards is not avail-

able and a single calibration curve for each metabolite cannot be

applied. Actually, these methods fall in the middle between tar-

geted and untargeted approaches and are classified as semi-

targeted methods. For instance, Bijlsma and colleagues [88] utilized

three internal standard references for lipid profiling representing

most abundant lipid classes in their respective region of retention

time. Also, Sysi-Aho et al. [89], developed the NOMIS (normaliza-

tion using optimal selection of multiple internal standards) method

using the variability information frommultiple IS compounds to find

the optimal normalization factor for each individual molecular

species. On the other hand, the use of QCs enables the evaluation

of the analytical platform stability and allows the correction of the

intensity deviation.

Next step following normalization is metabolite quantification,

performed by integrating the signals (i.e., peak height or area)

of the target metabolites and building analytical calibration

curves (different analytical strategies such as external calibration

curves with standards, standard addition and internal standard are

possible depending on the case, sample matrix effects, and detec-

tor reproducibility). As occurred in the previous step, most of targeted

studies use LC-MS vendor software for metabolite quantification,

whereas few of them utilize external tools for automated process-

ing (Section 3.1.5.). Following quantification, some statistical tests

may be applied in order to evaluate the significance of variations

in peak areas/heights among controls and stressed samples and find

most discriminant metabolites (i.e., potential biomarkers). In general,

for targeted metabolomics, basic statistical tests such as Student’s

t-test, analysis of variance, and non-parametric tests like Kruskal-

Wallis test may provide adequate statistical means to assess the

presence of a signal and its association with a trait of interest.

However, many metabolomic signals are highly correlated and thus

violate fundamental assumptions of independence for these tests.

In those cases, multivariate methods provide an attractive choice

and also allow for other purposes such as sample classification or

discrimination (see Section 3.2.9. where some of these methods are

described). For instance, Bajoub et al. [90] used principal compo-

nent analysis (PCA) combinedwith partial least squares-discriminant

analysis (PLS-DA) to classify 25 olive oil samples belonging to five

different varieties and to build predictive models for varietal clas-

sification. In this targeted metabolomic study Bajoub and colleagues

could identify the varietal markers for extra-virgin olive oil obtained

from Arbequina, Picual, Cornicabra, Hojiblanca and Frantoio cv. After

quantification and assessment of statistical relevance, it is possi-

ble to make a biological interpretation of the data. This final step

is described together for both targeted and untargeted approaches

in Section 3.3.

3.1.5. Data analysis steps all-in-one: tools for automated processing

Some software tools for the analysis of metabolomic data ob-

tained in targeted studies have been developed. Some of the most

recent are MRMPROBS [55,56], metabolite mass spectrometry anal-

ysis tool (MMSAT) [57] and OpenChrom [59]. MRMPROBS allows

metabolome analysis of large-scale SRM experiments. This program

provides a process pipeline from the raw-format import to high-

dimensional statistical analysis. To convert SRM raw data files to

ABF (analysis services backup file) format, MRMPROBS uses an in-

dependent and freely available converter at http://www.reifycs

.com/english/AbfConverter/, which supports four vendor formats:

Agilent Technologies (.d), Shimadzu (.LCD), AB Sciex (.WIFF) and

Thermo Fisher Scientific (.raw). In addition, this software also sup-

ports themzML data format, provided by open-source file translators

such as ProteoWizard (described in more detail in Section 3.2.2.),

which also allowsWaters (.raw) files to be imported. In order to iden-

tify themetabolites, an SRM standard library of 301metabolites with

775 transitions is available. Such library containing SRM transi-

tions with information of precursor and product m/z values can also

be prepared by users and imported as a txt file. The output files of

this software (e.g., data tables, statistical analyses such as PCA) can

be exported in tab-separated text and image formats (JPEG, PNG,

BMP, TIFF and GIF) for PCA. On the other hand, MMSAT is a soft-

ware platform for automated quantification of metabolites from SRM

experiments. This software can be used independent of any MS in-

strument and is compatible with mzXML converted data (obtained

using open source-file translators such as Proteowizard) frommajor

mass spectrometer vendors. It allows automatically detection and

quantification of metabolites present across all SRM transitions, such

that no prior knowledge of metabolites is required. The output quan-

titative data can be exported in tab delimited format to facilitate

downstream statistical analysis and visualization using packages such

as Excel or R. Finally, OpenChrom is an extensible cross-platform open

source software for the analysis of LC-MS data, available free of

charge at http://www.openchrom.net. This approach supports Agilent

data formats as well as XML, mzXML and netCDF open formats and

provides tools to correct baselines, to detect, integrate and identi-

fy peaks and to compare mass spectra.

The three automated platforms hereby described, together with

other existing tools such as MRMer [58], appear as an alternative

procedure for researchers who want to analyse LC-MS data out of

vendor software. The readers interested on these types of tools are

advised to consult OMICtools (http://omictools.com) and ms-utils

(www.ms-utils.org) platforms. OMICtools is an online platform for

genomic, transcriptomic, proteomic, and metabolomic data analy-

sis that contains 11130 tools classified by omic technologies,

applications and analytical steps. The other platform, ms-utils, pro-

vides comprehensive lists of tools, some of them designed for data

visualization and analysis, format conversion, peak picking and

deconvolution, calibration and alignment and retention time

prediction.

Fig. 3. Overview flowchart listing the nine steps (grey shaded areas) involved in the data analysis approach for untargeted studies grouped in three areas: raw data acqui-

sition (light-grey area), data processing and feature detection (medium-grey area) and biochemical interpretation (dark-grey area). In this figure parallelograms indicate

data matrices or vectors, rectangles indicate processing steps, diamonds indicate key contributional choices, corner bend figures indicate file extension formats, in rounded

rectangles are LC-MS vendors and their corresponding software as well as illustrative representations of MS data and LC-MS chromatograms and other explicative infor-

mation is contained in hexagons. For data conversion, other external software (Sashimi Project and ProteoWizard) can be used (see Section 3.2.2. for more information). Note

that in this flowchart only MCR-ALS is presented as the peak resolution method, but other chemometric methods such as PARAFAC, PARAFAC2, ICA, can also be used (see

Section 3.2.8.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.).
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3.2. Data processing steps for untargeted studies

3.2.1. Raw data acquisition

Untargeted analysis of LC-MS data is performed using high-

resolution mass spectrometers such as TOF and orbital ion trap and

hybrid instruments such as quadrupole/Q-TOF and quadrupole/

orbital ion trap [52], operating in full-scan. Only when using GC-

MS, low-resolution single quadrupoles also permit identification of

metabolites in untargeted studies due to the specific fragmenta-

tion pattern of the compounds analysed [91].

Moreover, as previously stated, the acquisition mode of LC-MS

data (i.e., centroid or profile, Figs. 2 and 3) is influential on the final

identification of metabolites, which is enhanced with profile data,

since profile acquisition allows the determination of fine isotopic

distributions. See Section 3.1.1. for a detailed explanation.

3.2.2. Data storage and conversion

Once the full-scan LC-MS chromatograms are acquired, the first

step required previous to their analysis involves the conversion of

their original proprietary formats, which are difficult to analyse

outside the vendor software, into open data formats that are read-

able in most standard statistical environments (e.g., MATLAB or R).

Among the existing open data formats, the most popular are XML-

based formats (mzXML, mzData [92] and mzML [93]), netCDF [94]

(also known as ANDI-MS) and classical text files (e.g., JCAMP-DX [95]

or txt). Most software packages of LC-MS manufacturers have tools

that enable the conversion of proprietary data formats into open

data formats (see Fig. 3). Waters and Thermo Fisher provide vendor

software (Masslynx and Xcalibur, respectively) with specific tools for

data conversion (Databridge and File converter, respectively).

Databridge tool allows conversion of Waters raw data into netCDF

or ASCII (txt) files whereas File converter enables the conversion of

Thermo Fischer raw data into ANDI Files (netCDF format) or txt files

(please refer to a detailed LC-MS data conversion protocol [96]). Also,

Bruker and AB Sciex vendors have developed freely available ex-

ternal software (CompassXport and MS Data Converter, respectively),

which allow the conversion of raw files (.d and .WIFF format, re-

spectively) into mzXML for Bruker Corporation and into MGF peak

lists or mzML files for AB Sciex. Finally, data acquired using Agilent

instruments (.d files) can be directly converted using Chemstation

but MassHunter files need the use of the ExportMHDatafile tool, which

allows the conversion to mzXML format.

In all those cases, some external software (or projects) for data

conversion can be used. On the one hand, the Sashimi Project, in-

cluded in the trans-proteomic pipeline (TPP) [97] and, founded by

the proteomics group of the Institute for Systems Biology in Seattle,

contains converters that read different vendor-specific data and

convert them into mzXML format. Another popular software,

ProteoWizard, contains a set of open-source, cross-platform tools and

libraries for proteomics data analysis, specifically suitable for reading

and conversion of a large variety of vendor-specific formats into open

data formats [98]. In particular, ProteoWizard uses a command line

tool named msconvert (available with a graphical user interface as

well), also included in the Sashimi Project, which allows the con-

version of vendor formats into several open data formats, including

mzML, mzXML and txt. In Fig. 3, raw data extension formats and

final data extension formats of most important LC-MS manufac-

turers are shown, together with the software options that enable

such conversions. Only when using feature detection packages that

can read proprietary formats [e.g., various forms (X) of chromatog-

raphy mass spectrometry (XCMS) [99]], data conversion is no

necessary (dashed line in steps 2–3 of Fig. 3).

3.2.3. Data import

Once files have been converted into open data formats, next step

is their import into the data analysis platforms. As observed in Fig. 3,

when using feature detection packages [e.g., XCMS [99], MetAlign

[100], Markerlynx, MZmine [101,102]], such import is direct since

they contain specific tools for that purpose. Several feature detec-

tion packages have been developed for untargeted MS-based

metabolomic data analysis. The readers interested in these tools are

advised to consult OMICtools (http://omictools.com) and ms-utils

(www.ms-utils.org) platforms. For data analysis performed by re-

searchers, either in MATLAB or R environments, such import is

possible using distinct strategies.

Whenworking inMATLAB environment, the quickest and easiest

method for LC-MS data import is the use of the routines included in

theBioinformatics ToolboxTM.Astep-by-step exampleprovidingdetails

of these routines is shownbyGorrochategui et al. [96].Whenworking

in R environment, LC-MS data are usually imported bymeans of the

mzR package available at Bioconductor [103,104]. mzR provides a

unified interface for most of the open data formats described above

such asmzXML,mzML,mzData and netCDF. The key function of this

package is openMSfile which allows exporting the information from

theMS open formats to a format-specificmzR object with all theMS

raw data and metadata contained in the original files. Afterwards,

peaks function canbeused to extract allMS spectral data into amatrix

to be further analysed. In addition to this possibility for accessing to

MS rawdata for the experienced researchers, themzRpackage is also

used in themostpopularR-based featuredetectionpackages (i.e.XCMS

[99] and MSnbase [104]) for data import.

3.2.4. Data compression and matrix construction

Handling LC-MS data in its raw form is difficult because of their

large size. Thus, data compression is usually necessary to reduce

themintomore computationallymanageable formats andavoid issues

associatedwith the limitedmemory capacity of the computers, but

preventing a loss of experimental information during the process.

In addition to compression, the initial LC-MS data sets containing

scans of unequally spaced masses must be mapped onto matrices

with rows representing each of the scans (i.e., retention times) and

columns representing the same mass values in all samples.

Different methodologies enable data compression as well as their

processing or visualization in its native two-dimensional form.

Among them, the procedures of “binning” and the “search of regions

of interest (ROI)” are the most adequate to the nature of LC-MS data

sets. Apart from these methodologies, in this section we also shortly

describe another strategy that is commonly used together with the

binning compression in order to further reduce data dimensions:

time windowing.

Binning. Binning is one of the most used procedures for raw

LC-MS data compression. The application of binning involves the

transformation of raw data into a matrix representation (x,y),

with retention times in the x-dimension and m/z values in the

y-dimension. Conversion of high-resolution raw mass spectra

into a matrix representation requires the division of the m/z axis

into equidistant sections with a specific bin size. Thus, the com-

pression of the data and their mapping to a matrix are carried out

at the same time. However, as a consequence, a relevant draw-

back of the binning procedure is the difficulty associated with the

proper selection of the bin size for a particular data set, being

this parameter strongly related to the chromatographic profile. If

the bin size selected is too small, chromatographic peaks might

alternate among bins and thus not be detected due to the loss of

the chromatographic peak shape. On the contrary, if the bin size

is too large, multiple coelutions between peaks can exist, and

small peaks may disappear by the increased noise level. Another

disadvantage of the binning procedure is the loss of spectral

resolution derived from the data compression performed in the

m/z-mode dimension [37].

Fig. 4 shows an example of the binning procedure applied to a

region of an LC-HRMS chromatogram,with a bin size of 0.1 ppm. The
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intensities corresponding to all m/z values comprised between the

lower limit (m/z1) and the upper limit (m/z1 + 0.1 ppm) are added up

and attributed tom/z1, thus decreasing file size but also the spectral

resolution.

Regions of interest (ROI). Data compression based on the search

of ROI is an alternative technique to the binning procedure. This

method, first presented by Stolt et al. [105], is based on the concept

of considering analytes as a region of data points with a high density

ranked by a specific “data void”. These ROI contain data from in-

terestingmass traces, whichmeans values with a significant intensity

higher than a fixed signal-to-noise ratio threshold (SNRThr). More-

over, ROI must contain a minimum number of consecutive data

points (ρmin) compressed within a particular mass deviation (μ), typ-

ically set to a generous multiple of the mass accuracy of the mass

spectrometer. This condition prevents ionic signals or noise to be

considered as an ROI. In Fig. 5a an example of a mass trace for a

particular region of the chromatogram obeying these criteria and

thus, considered as an ROI (ROIi), is represented. As shown in this

figure, ROIi can be clearly distinguished from low-intensity signals

that are subsequently filtered out. As shown in Fig. 5b, ROI are

searched among all the chromatogram and vectors of distinct length

(depending on the number of ROI found at each retention time) are

obtained. Finally, these vectors are reorganized into a matrix. To do

that, common ROI among all the retention times are grouped and

final m/z of each ROI (mzmean) is calculated as the mean of all the

m/z values from the series of data points grouped within the same

ROI. The obtained matrix contains the retention times in the

x-dimension and the final mzmean values of ROI in the y-dimension

(Fig. 5c).

With the ROI compression, no loss of spectral accuracy occurs,

as opposed to the binning strategy. ROI strategy was introduced in

the centWave algorithm of XCMS software [99] and it is increas-

ingly used in feature detection packages as a substitute to the

classical binning [37].

Time windowing. This strategy is based on the partition of the

LC-MS chromatograms into distinct regions of time (i.e., time

windows) to be analysed separately [106–108]. It is an additional

step used to further reduce sample size if data compression using

binning is not sufficient. The level of compression achieved with

the ROI strategy is generally high enough so that entire chromato-

grams can be analysed at a time.

3.2.5. Data intensity normalization, scaling and transformation

In untargeted approaches, three strategies can be used for re-

moving the unwanted systematic bias in the measurements: sample

normalization, data scaling and data transformation. Sample nor-

malization is necessary to adjust the differences among samples

whereas data scaling and transformation allow the comparison

among metabolites of distinct samples. Thus, normalization refers

to row-wise corrections (i.e., within chromatograms) whereas scaling

and transformation refer to column-wise corrections (i.e., between

chromatograms).

Sample normalization strategies can be chemical or mathemat-

ical. The first ones, which are based on the use of a single or multiple

surrogates, internal standards, and quality controls, have been already

described in the targeted approach (see Section 3.1.4). On the other

hand, mathematical normalization strategies use computation

models to achieve the same purpose. A numerical normalization

method based on the use of QCs proposed by Dunn et al. [109] is

the locally estimated scatterplot smoothing (LOESS). In this method,

each variable in each sample is individually corrected according to

the evolution of its value in the neighbouring QCs. Also, van der Kloet

et al. [110] proposed in 2009 a correction based on the average or

on the median of the QC replicates analysed in different batches.

A novel and alternative method for correction of analytical bias is

common components and specific weights analysis (CCSWA), orig-

inally developed by Qannari et al. [111] and recently used by Dubin

et al. [112] for correction of analytical bias. This method is re-

ported as a good alternative to LOESS signal correctionwhen samples

and QCs do not behave in the same way. Other mathematical nor-

malization strategies are based on the assumption that the signal

of the majority of metabolites is stable. Under this assumption, nor-

malization can be efficiently achieved by calculating the relative ratio

of abundance of metabolites respect to all other peaks (e.g., unit

norm [113] and median intensities normalization [114]). However,

these strategies fail when changes in concentration of metabolites

occur due to laboratory system errors and (or) differences among

large scale biological experiments. In these cases, normalization

based on the total chromatogram is not appropriate and can cause

serious data distortions. Another normalizationmethod widely used

is the probabilistic quotient normalization (PQN) [115]. This method

scales all the intensities in a spectrum using the most probable mul-

tiplicative factor calculated as the median of the quotients of the

Fig. 4. Scheme of the steps involved in the compression of data when using binning. Example shown for a particular region of an LC-HRMS chromatogram, using a bin size

of 0.1 ppm.
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amplitudes of each point in a spectrum and a reference spectrum.

PQN normalization is highly recommendable for cases were size

effects are noticeable, and internal normalization is not suitable since

it destroys relative peak information within the chromatogram.

Scaling methods are data pretreatment approaches that divide

each variable by a factor, the scaling factor, which is different for

each variable. They aim to adjust for the fold differences between

the distinct metabolites by converting the data into differences in

concentration relative to the scaling factor [116]. Depending on the

scaling factor used, scaling methods are divided in two sub-

classes. The first class uses a measure of the data dispersion (e.g.,

standard deviation) as a scaling factor, while the second class uses

a size measure (e.g., the mean). Scaling methods that use a disper-

sion measure for scaling include autoscaling [117], Pareto scaling

[118], range scaling [119], and variable stability (VAST) scaling [120].

Autoscaling [117], also called unit or unit variance scaling, is the

most used in metabolomics and it provides equal variance to each

variable (i.e., all metabolites have a standard deviation of one). Pareto

scaling [118] is very similar to autoscaling, but instead of the stan-

dard deviation, the square root of the standard deviation is used

as the scaling factor. Range scaling [119] uses the range (i.e., dif-

ference between minimal and maximal value or concentration of

a metabolite in a set of experiments) as the scaling factor. VAST

scaling [120] is an acronym of variable stability scaling and it is an

extension of autoscaling. Scaling methods based on average value

include level scaling, which converts the changes in metabolite con-

centrations into changes relative to the average concentration of the

metabolite and Poisson scaling or “square root mean scale”, which

scales each variable by the square root of the mean of the vari-

able. Examples of Poisson scaling to correct MS data effectively are

found in the literature [121,122].

Finally, transformations are nonlinear conversions of the data such

as the log and the power transformation [116]. These methods are

commonly used to correct for data heteroscedasticity [123], which

in the case of metabolomic data refers to non-equal variance un-

certainty variations related to some or all metabolites under analysis.

Some of the existing LC-MS feature detection frameworks allow

normalization based on the use of internal standards and scaling.

For instance, the algorithm of MZmine 2 [102], called linear nor-

malizer, divides the height or area of each peak by a normalization

factor, such as the average of peak height, the average of the squared

peak height, themaximum peak height or the total raw signal within

the chromatogram. In contrast, MetaboAnalyst [124,125] per-

forms normalization (to allow comparisons among samples) and

scaling (to allow comparisons of magnitude of features) sequen-

tially. Wu et al. [126] have recently provided a summary of the

reported sample normalization methods used over the past several

years together with their pros and cons. They conclude that for the

appropriate selection of a normalization methodology, the biolog-

ical system of study must be thoroughly evaluated. In this study,

Wu and colleagues propose two distinct normalization method-

ologies, one for urine samples and another for cellular extracts.

3.2.6. Feature detection or peak resolution

Feature detection and peak resolution are two closely-related con-

cepts. Feature detection aims to search for features, using the term

Fig. 5. Scheme of the steps involved in the compression of data by the search of

ROI: a] original data with non-equidistant m/z intervals where a significant mass

trace is represented as ROIi (green) and distinguished from low-intensity signals

(orange, pink and violet), b] vectors containing the distinct ROI (represented by se-

quences of squares of the same colour) obtained at different regions of the

chromatogram, including the previous ROIi (green) and c] matrix constructed from

the reorganization of ROI vectors, again containing the same ROIi (in green). (SNRThr:

signal-to-noise ratio threshold, mzmean: mean of all the m/z values from the series

of data points grouped within the same ROI). (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of the article.).
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“feature” for a bounded, two-dimensional (m/z and retention time)

LC-MS signal [37]. On the other hand, peak resolution1 aims to iden-

tify the pure components responsible for these features, associated

with a pure spectrum or elution profile, after solving some chro-

matographic problems (e.g. coelutions). Generally, feature detection

is carried out by different algorithms featured in available soft-

ware. On the other hand, some chemometric methods have also been

developed to resolve second order data such as LC-MS data. Among

them, multivariate curve resolution-alternating least squares (MCR-

ALS) [127] has proved to be powerful when dealing with LC-MS

metabolomic data sets [96,106,107,128–133]. The ultimate goal of

feature detection and peak resolution is to distinguish real chem-

ical compounds from false positives (e.g., background noise).

Most of the existing feature detection packages [e.g., XCMS [99],

MetAlign [100] and MZmine [101,102]] require preliminary peak

alignment and usually peak shaping previous to feature detection.

On the other hand, some chemometric methods such as MCR-ALS

allow peak resolution without previous peak correction. A de-

tailed explanation of both methodologies is shown below.

3.2.7. Feature detection (and alignment)

In most of feature detection software, peak alignment is neces-

sary in order to search for corresponding peaks across distinct

chromatographic runs and compare them between samples. To-

gether with peak alignment, peak shaping is generally applied so

that peaks finally have a defined and more symmetrical shape,

usually fitting a Gaussian curve to the experimental features.

The search for corresponding peaks is a cumbersome task since

matching peaks usually have differences in m/z and retention time

values [134]. In fact, when searching for matching peaks, some

remarks should be made. First, the differences in the retention time

across samples may be non-linear. Second, a feature in a samplemay

have multiple possible matching features based on m/z and reten-

tion time values, potentially leading to false matching. Finally, some

peaks may not appear in some samples [49].

Because of the issues mentioned above, different alignment al-

gorithms have been proposed to correct retention time differences

among samples. Considering the most popular feature detection

packages, some of these algorithms can be highlighted. First, the

OBI-warp [135] (ordered bijective interpolated warping) method,

used in the XCMS software, which allows aligning matrices along

a single axis using dynamic time warping (DTW) together with a

bijective (one-to-one) interpolated warp function. Thus, OBI-warp

(first used in the proteomics field) produces a smooth warping func-

tion able to align multiple chromatographic runs. Alternatively, an

alignmentmethod based on the random sample consensus (RANSAC)

[136] algorithm is used in the MZmine 2 [102] software. RANSAC

is an iterative method that allows the estimation of parameters of

a mathematical model by random sampling of the observed data

that could contain outliers. Finally, the combination of RANSAC and

LOESS regression allows the determination of optimal parameters

of the mathematical model for peak alignment. More options for

peak alignment can be found in the reviewworks of Katajamaa [79]

and Bloemberg [137]. Concerning peak shaping, some feature de-

tection algorithms initially used models of specific peak width to

fit features (e.g. Matched Filter algorithm of XCMS software [99]).

However, those models failed when the selected peak width did not

fit all features properly.

In order to overcome this issue, some feature detection packages

(e.g., centWave algorithm of XCMS) use continuous wavelet trans-

form (CWT) to perform peak shaping. The CWT reliably detects

chromatographic peaks of differingwidth and iswidely used in signal

processing and pattern recognition [138], and furthermore is able to

resolve an additional problem concerning feature detection, as it

is the presence of close-by or coeluted peaks. With the CWT anal-

ysis, the intensity of every peak is estimated by themaximum value

of the centroid peak in the calculated peak boundaries. The same ap-

proachcanbeusedtoeliminatenoisecontributionsknownas“shoulder

peaks” (small peaks from residues of the Fourier transform calcu-

latedby theMS instrument). These contributions can also be removed

by fitting a theoretical model (e.g., Gaussian or Lorentzian).

3.2.8. Peak resolution (without alignment)

Recently, some little exploredbut highly useful chemometric tools

have proved to be powerful methods for LC-MS metabolomic data

analysis. Among them, MCR-ALS has emerged as a powerful tool to

resolve theprofilingproblems inLC-MSmetabolomicdata setswithout

previous peak correction [127]. MCR-ALS is based on Equation (1):

D CS E
T

= + (1)

It is seenthatMCR-ALSmethodsshare theunderlyingbilinearmath-

ematicalmodel of PCAbut under completely different constraints and

with a different goal. In the case of LC–MS data, D matrix (I × J) con-

tains theMS spectra at all retention times (i = 1, . . . I) in its rows, and

thechromatogramsatall spectram/zchannels (j =1, . . . J) in its columns.

This data matrix is decomposed in the product of two factor matri-

ces, C and ST. The C (I × N) matrix contains column vectors which

correspond to the elution profiles of the N (n = 1, . . . N) pure compo-

nents of matrix D. In ST (N × J) matrix, row vectors correspond to the

spectra of the N pure components. The part of D that is not ex-

plained by the model forms the residual matrix, E (I × J). MCR-ALS

methods assume that the variation measured in all samples in the

original data set canbedescribedby a combinationof a small number

of chemicallymeaningful profiles. In the case of LC–MS data sets, in-

formation of the data table can be reproduced by the combination of

a small number of pure mass spectra (row profiles in the ST matrix)

weighted by the concentration of each of them along the elution di-

rection (the related chromatographic elution peaks, column profiles

in C). As a result from theMCR-ALS analysis, we obtain a set of com-

ponents, with their corresponding elution and spectra profiles. The

equivalence between an MCR-ALS component and a feature is high

since both of them correspond to a chemically meaningful profile.

However, they differ in the fact that one feature is associated with a

unique m/z value whereas one MCR-ALS component can be associ-

ated with various m/z values (i.e., distinct m/z values can describe

the same elution profile).

As previously stated MCR-ALS analysis allows powerful LC-MS

data resolution without previous peak alignment or shaping. The

reason why peak alignment is not required is attributed to the fact

that alignment is produced in the spectral dimension (m/z values),

which is common among all samples, and not in the time dimen-

sion, which can vary among samples. This is useful with LC-MS data

sets, but even more with capillary electrophoresis-mass spectrom-

etry (CE-MS) data sets, which contain analytes showing important

retention time peak shifts among samples that in some cases cannot

be properly corrected when using feature detection (and align-

ment) algorithms. The number of MCR-ALS models required to

resolve peak signals of one sample depends on the size of the data

matrix. Generally, for data compressed using binning strategy, com-

pression is not sufficient, andMCR-ALS has to be applied individually

to distinct time windows of the chromatogram (see Section 3.2.4.).

On the contrary, when using ROI strategy, the obtained data ma-

trices are small enough so that one MCR-ALS model is generally

sufficient to resolve peak signals of the entire chromatographic

profile. The readers interested in MCR-ALS analysis are advised to

consult http://www.mcrals.info/.

1 The term “deconvolution” is analogue to “resolution” but is preferred to be used

for univariate signals [i.e., first order data (data vector)], whereas resolution is pre-

ferred for multivariate signals [i.e., second order data (data matrix)].

435E. Gorrochategui et al. / Trends in Analytical Chemistry 82 (2016) 425–442



There are significant differences between the approaches used

by MCR-ALS respect to other feature detection packages, such as

XCMS, concerning peak resolution and feature detection strate-

gies. However, a study based on the evaluation of changes induced

in rice metabolome by Cd and Cu using LC-MS [132] concluded that

both methodologies provided similar results, which suggests that

despite the existing differences among these approaches, they are

equally valid to analyse LC-MS metabolomic data sets.

Apart fromMCR-ALS, othermethods for the processing of second-

order data are available. Among them, PARAFAC (parallel factor

analysis) [139,140], TLD (trilinear decomposition), PARAFAC2 (par-

allel factor analysis2) [141,142] and independent component analysis

(ICA) are some methods proposed for the same goal. PARAFAC and

TLD methods require the data to follow the so-called trilinearity

model (i.e., all chemical components are defined by a unique elution

and spectral profile in all samples, apart from a scale factor).

However, LC data do not obey the trilinear model in general, since

analyte peaks usually show retention time shifts and peak shape

changes from sample to sample, causing trilinearity deviations. In

order to restore the trilinearity, PARAFAC and TLD methods should

mathematically pre-process each data matrix, so that analyte peaks

are properly aligned. Even in this case however, possible run to run

peak shape differences compel the fulfillment of the trilinear model

in many circumstances. On the other hand, PARAFAC2 employs a

more flexible algorithm, which permits a given component to have

different time profiles. A study of Khakimov et al. [143] demon-

strated the efficiency of PARAFAC2 for exploring complex plant

metabolomics LC-MS data. In that study, PARAFAC2 enabled

automated resolution and quantification of several elusive chro-

matographic peaks (e.g., overlapped, elution time shifted and low

s/n ratio). However, Bortolato and Olivieri [144] compared the per-

formance of PARAFAC2 andMCR-ALS, arriving at the conclusion that

PARAFAC2 produces artificial outputs when elution profile changes

are severe, and interferents are present in test samples and there-

fore, confirmed the higher power and range of applicability of MCR-

ALS. Another alternative to PARAFAC, PARAFAC2, TLD methods and

MCR-ALS is ICA. The main idea of ICA [145] is to find a mathemat-

ical transformation of the data into a linear combination of

statistically independent components. However, the condition of in-

dependence is generally not fulfilled when using ICA with

chromatographic data [146,147]. Among ICA methods, mean-field

ICA (MFICA) [148] is the best for multivariate resolution, due to the

application of non-negativity constraints in both data modes (i.e.,

concentration and spectra profiles), and is the only one that can be

strictly compared to MCR-ALS. However, the advantage of MCR-

ALS is that it is more flexible since it allows the implementation

of other constraints (e.g., unimodality, closure, local rank, selectiv-

ity or the multi-linear type of constraint) [146]. Recently, Liu et al.

[149] have developed a newmethod named MetICA, inspired from

the original Icasso algorithm, for the application and validation of

ICA on untargeted metabolomic data sets. In that study, the effi-

cacy of MetICA routine was tested on simulated and real MS-

based yeast exo-metabolome data.

3.2.9. Biomarker screening or variable selection

Biomarker screening (variable selection) plays an essential role

in metabolomics [150,151]. Biomarkers are defined as biological en-

tities that can be used to indicate the status of healthy or diseased

cells, tissues, or individuals. Thus, they correspond to molecular

markers (i.e., metabolites in the case of metabolomics) that can better

discriminate among control and stressed samples, in terms of their

concentrations.

However, it is unfortunately quite easy to find markers that,

despite being apparently relevant, are in fact spurious. The main

sources of error in this aspect, which are not entirely independent

of each other, include bias, inadequate sample size (especially relative

to the number of metabolite variables and to the required statis-

tical power to prove that a biomarker is discriminant), excessive false

discovery rate due to multiple hypothesis testing, inappropriate

choice of particular numerical methods, and overfitting (generally

caused by the failure to perform adequate validation and cross-

validation). Many studies fail to take these problems into account,

and thereby fail to find anything significantly true [152]. For in-

stance, classical p-values such as “p < 0.05” that are commonly used

in biomedicine are far too optimistic when multiple tests are done

simultaneously (as occurs in metabolomics) [150]. Indeed, one type

of bias, known as “p-hacking”, occurs when researchers collect or

select data or statistical analyses until nonsignificant results become

significant. Head et al. [153], studied the extent and consequences

of p-hacking in science arriving at the conclusion that this type of

bias probably does not drastically alter scientific consensuses draw

from data analyses. However, methods to measure such error and

to correct them are highly recommendable.

The classical methods used for biomarker selection were pro-

posed by statisticians andwere based on the application of statistical

hypothesis testing (e.g., t-tests, Mann-Whitney U test, ANOVA).

However, other methods envisaged for biomarker screening have

been proposed lately by numerous chemometricians. Some of these

methods include PCA [154], ICA [145], PLS-DA [155], linear logis-

tic regression (LLR) [156], classification and regression trees (CART)

[157], selectivity ratio (SR) [158,159] and variables importance on

projection (VIP) [160]. Another method valid for variable selec-

tion is ANOVA-simultaneous component analysis (ASCA) [161,162].

This method can be understood as a direct generalization of ANOVA

analysis of variance for univariate data to themultivariate case. ASCA

method incorporates the information of the structure of data sets

(i.e., underlying factors such as time, dose or combinations thereof),

enabling a better understanding of their biological information.

To date, the most popular variable selection method in

metabolomics is the VIP [160] method. However, the main draw-

back of this approach is related to the proper selection of the

threshold value. Despite some studies select variables with VIP scores

greater than 1 [163,164], such criterion is not always used and the

results found in the literature are not always comparable. A study

by Gorrochategui et al. [108] compared the number of biomarkers

found when using an ANOVA test (p < 0.05) followed by a multi-

ple comparison’s test and those obtainedwhen using the VIPmethod

fixing distinct threshold values. As it was observed, the number of

encountered biomarkers was different in each case, although some

of themwere common among the strategies. Another method facing

the challenge of a proper threshold value selection is SR. Actually,

the use of the threshold suggested by the authors Rajalahti et al.

[158,159] based on an F-test to define the boundary between vari-

ables with high discriminating ability and less interesting regions,

is unusually valid for raw large chromatographic data sets, such as

LC-MS metabolomic data sets [165]. In those cases, SR can lead to

a selection of a reduced number of variables, sometimes not in-

cluding relevant biomarkers. An alternative strategy to increment

the number of selected variables using SR method is the use of ad

hoc limits (e.g., average SR over the training set).

Despite the VIP method being the most used in metabolomic

studies, there is still some disagreement about which is the best ap-

proach for variable selection and a critical evaluation needs to be

performed before any of them is selected and, also, once the results

have been obtained. Checa et al. [166] concluded that the most

crucial step when performing lipidomic data analysis is the proper

choice of the chemometric variable selection method according to

the crude data. Studies comparing the performance of several of

these methods exist in the literature. For instance, Farrés et al. [165]

compared SR and VIP variable selection methods observing that in

general terms, the VIP method selected a higher number of vari-

ables than the SR method. However, they arrived at the conclusion
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that final decision about which is the best approach should be per-

formed according to the aim of the study. Also, Andersen et al. [167]

concluded that in essence, variable selection should rather be con-

sidered as variable elimination where the clearly irrelevant parts

are removed and the remaining parts containing potentially useful

information are kept for further data analysis.

In order to ensure good performance of the selected discrimi-

nation model, further statistical validation of the model is required.

Such validation becomes particularly necessary in the case of

“undersampling” (i.e., when having a low number of samples com-

pared to the number of variables), since the reduced number of

samples becomes insufficient to properly describe the groups and

find significant biomarkers. Some of the statistical validation tools

that can deal with this problem consist of permutation tests [168],

single and double cross-validation [169,170], and the combina-

tion of the latter with a new variable selectionmethod, called ranked

products [171]. Permutation tests give information about the dis-

crimination performance of the model, which should at the same

time be able to properly classify new samples as “stressed” or

“control”. However, testing the classification ability of the model

is impossible when having low number of samples and for this

reason, permutation tests are mostly used to evaluate the signifi-

cance of the discrimination. Double cross-validation takes a better

advantage of the data and is the chosenmethod to estimate the error

of the model in classifying unknown samples. Cross-validation pro-

cedures generate several models. However, those procedures only

give a reliable error rate when the complete modelling step is cross-

validated. Cross-validation methods together with bootstrap [172]

and jack-knifingmethods are classified as resamplingmethods [173],

and are used to determine the optimal number of components in

a partial least squares (PLS) regression model [174,175]. More-

over, these methods allow the estimation of the uncertainty of

individual variables, in order to find the relevant ones (e.g., rele-

vant VIPs to determine candidate biomarkers). Afanador et al. [176]

demonstrated how the use of bootstrapping, in conjunction with

permutation tests and the use of 95% lower-bound on the jack-

knife confidence interval provide avenues for improvement of the

important variable selection process. Finally, the rank products pro-

cedure can be described as a natural partner for cross-validation

to evaluate the overall importance of a variable. Overall, a combi-

nation of these tools for statistical validation of discriminant models

is frequently the best option. Smit et al. [171] presented a strategy

for the discovery and rigorous statistical validation of candidate

biomarkers for proteomics based on the combination of principal

component discriminant analysis (PCDA), permutation tests, double

cross-validation and variable selection with rank products. A tuto-

rial of validation tools for chemometric models shows how the

selection of the level of validation and themethod for analyzing data

may impact the conclusions and chemical insight gained [173].

3.2.10. Biomarker identification

As stated in Section 3.1.3., the identification of metabolites is a

complex task, and it becomes even more complicated in untargeted

metabolomic studies. In 2013, Dunn et al. [177] reviewed all the

available experimental and computational tools to identify me-

tabolites in untargeted metabolomic studies. In this review, they

concluded that the number of identified metabolite features has in-

creased in the last decades due to enhanced mass spectrometry and

increased mass resolution, but the proportion of identified me-

tabolites remains still low (ca. 50%). The criteria [68] and directives

[69] for the identification of MS data previously presented in the

targeted approach are also valid for the untargeted approach. In con-

trast to targeted studies which can use either LRMS/MS or HRMS

instrumentation, untargeted studies are possible with HRMS or high-

resolution tandem mass spectrometry (HRMS/MS). Li et al. [178]

have recently reported that liquid chromatography coupled to

quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to in-

vestigate natural products provides efficient separation and good

sensitivity. Also, it allows for the identification of the fragmenta-

tion pathways of metabolites [179] and [180], by employing newer

mass spectrometryElevated energy (MSE) methods to acquire MS/MS

(without specific precursor ion selection) data at both low and high

energy from a single injection [181]. Moreover, LC-QTOF-MSE is

proved to be a very versatile technique in metabolomics and it has

been shown to be increasingly powerful [182].

However, the high mass accuracy provided by HRMS instrumen-

tation can be partially lost when using binning in the compression

step (see Section 3.2.4.). In those cases, HRMS data can be recov-

ered using two approaches.

First, HRMS data can be obtained by looking back in the raw

spectra: after the peak resolution step (for instance using MCR-

ALS) has been performed on data compressed by binning, those

peaks tagged as potential biomarkers are identified by direct com-

parison with the HRMS spectra. For instance, Bedia et al. [133]

identified the lipid species (including phospholipids, sphingolipids,

glycosphingolipids and cardiolipin species) altered after long-

term exposure of prostate cancer cells to endocrine disruptors using

this approach, even though original data were binned with an m/z

resolution of 0.05 ppm. The second method consists in a least-

squares step which allows HRMS spectra to be obtained from the

MCR-ALS elution profiles of binned data and the original HRMS data

for a set of LC-MS chromatograms (or the same region of the chro-

matogram in the case of time windowing). See Appendix A for a

detailed explanation of the latter procedure. It should be noted that

since the ROI method, used in many of the LC-MS feature detec-

tion packages, does not decrease the resolution of theMS data, there

is no need for applying these strategies when this compression tech-

nique is used. Finally, as stated in Section 3.1.3., another aspect can

contribute to an enhanced identification: acquisition in profilemode.

3.3. Final common step: biochemical interpretation

The overall process of LC-MS data analysis ends with the ulti-

mate biological interpretation of the results through the elucidation

of the metabolic pathways linked to the identified biomarkers. In

targeted metabolomic studies that are driven by an initial biolog-

ical hypothesis, final interpretation is usually reduced to a

confirmation of the predicted alterations. Only in those cases where

initial predictions are not fulfilled the unknown altered pathways

have to be deciphered. In untargeted metabolomics elucidation is

always necessary.

Altered metabolic pathways can be deciphered by consulting

online databases such as KEGG (kyoto encyclopedia of genes and

genomes) (http://www.genome.jp/kegg/kegg2.html) [183], Biocyc

(http://biocyc.org) [184], MetaCyc (http://MetaCyc.org/) [185] or

WikiPathways (http://www.wikipathways.org) [186,187]. The rep-

resentation of these altered pathways in global maps showing an

overall picture of metabolism helps to obtain a reliable biological

interpretation of the studied system. For instance, Farrés et al. [107]

and Ortiz-Villanueva et al. [131] studied the metabolic changes oc-

curring in stressed baker’s yeast (Saccharomyces cerevisiae) samples.

With the help of KEGG database both studies characterized most

discriminantmetabolites and identified themetabolic pathwayswith

the highest participation in the acclimatization of baker’s yeast cells

to grow at distinct temperatures (i.e., 42 and 37°C, respectively). Also,

Chu et al. [188], studied the therapeutic mechanism of Rhizoma

Alismatis, a crude herb component in traditional Chinese medi-

cine, on spontaneous hypertensive rats using ingenuity pathway

analysis (IPA). With the help of KEGG, HMDB and METLIN data-

bases the authors found the potential biomarkers and potential target

pathways of Rhizoma Alismatis species. Moreover, Perl et al. [189]

studied the mechanism of impact of the amino acid precursor,
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N-acetylcysteine (NAC), on the metabolome of systemic lupus ery-

thematosus (SLE) patients by quantitative metabolome profiling of

peripheral blood lymphocytes (PBL) using mass spectrometry. The

results of this study showed that metabolome changes in lupus PBL

affected 27 of 80 KEGG pathways with most prominent impact on

the pentose phosphate pathway (PPP), which reflected greater

demand for nucleotides and oxidative stress. Overall, their find-

ings contributed to the identification of novel metabolic checkpoints

in lupus pathogenesis.

4. LC-MS metabolomic data analysis: an active area in

bioinformatics research

The development of tools for data analysis is an active area of

bioinformatics research. Recent years have witnessed the develop-

ment of many software tools for data analysis, but still there is a

need for further improvement of the data analysis pipeline. Such

improvement should concentrate on two aspects: combination of

data analysis strategies and fusion of distinct omic fields.

The combination of various data analysis strategies is neces-

sary to allow a more comprehensive detection of chemical

components in LC-MS data for signature discovery. In the last years,

some studies have demonstrated the advantages of combining

various data analysis strategies. For instance, Coble and Fraga [190]

compared the performance of four data analysis tools [i.e., XCMS

[99], MetAlign [100], MZmine [101,102], and SpectConnect (this one

for GC-MS data)] in terms of their ability to detect components in

the chromatography-mass spectrometry data sets, arriving at the

conclusion that each of them has its pros and cons. The same study

also pointed out that the most pressing improvement needed for

all the tested data analysis tools was to reduce the percentage of

false peaks, i.e., reported features that are not true peaks, while still

detecting the low-intensity peaks. Moreover, some of the existing

data analysis methodologies still require a significant level of manual

input, which difficults the process and can even make it prohibi-

tive in the case of very large data sets.

The fusion of distinct omic platforms (e.g., transcriptomics,

proteomics andmetabolomics) is one of the latest objectives pursued

by the omics community. Data fusion is a challenging task, in par-

ticular, when the goal is to capture underlying factors and use them

for interpretation. Numerous strategies have been proposed for in-

tegrating data from parallel sources. Among them, some of the most

used include GSVD (generalized singular value decomposition) [191],

O2PLS (two-way orthogonal projections to latent structures) [192],

OnPLS (multiblock orthogonal projections to latent structures) [193],

DISCO-SCA (distinctive and common componentswith simultaneous-

component analysis) [194], JIVE (joint and individual variation

explained) [195], and CMTF (coupled matrix and tensor factoriza-

tion) [196]. GSVD provides a comparative mathematical framework

for two data sets (e.g., two genome-scale data sets). O2PLS method

is build on the basis of orthogonal projections to latent structures

(OPLS) [197], which is a supervised multivariate regression method.

O2PLS can be used for combining “omics” types of data, separat-

ing systematic variation that overlaps across analytical platforms

from platform-specific systematic variation. Bouhaddani et al. [198],

evaluated the efficacy of O2PLS in the integration of metabolomic

and transcriptomic data from a large Finnish cohort (DIGLOM). The

results of the simultaneous analysis with O2PLS onmetabolome and

transcriptome data were in agreement with an earlier study and

showed that the lipo-leukocyte module, together with two lipo-

proteins, were important for the metabolomic and transcriptomic

relation. An extension of O2PLS to the multiblock case (involving

more than two matrices) was later developed and called OnPLS.

OnPLS method is fully symmetric (i.e., it does not depend on the

order of analysis when more than two blocks are analysed) and has

been used in several multi-omic studies [193,199,200]. DISCO-SCA

allows distinguishing common and distinctive information in dif-

ferent data blocks; information that is mixed up when using

simultaneous-component and multigroup factor analysis methods.

JIVE [195] was created for the integrated unsupervised analysis of

metabolomic profiles frommultiple data sources. This method sepa-

rates the shared patterns among data sources (i.e., joint structure)

from the individual structure of each data source that is unrelated

to the joint structure. CMTF successfully captures the underlying

factors by exploiting the low-rank structure of higher order data

sets and is particularly useful for joint analysis of heterogeneous

data. Apart from these methods, Blanchet and Smolinska [201] have

recently proposed a framework which allows the combination of

multiple data sets, provided by different analytical platforms. This

framework extracts relevant information for each platform in the

first step. Then, the obtained latent variables are fused, analysed,

and the influence of the original variables is finally calculated back

and interpreted. Therefore, new advances in data processing tools

should point to opening fields such as data fusion. For instance, in

the case of MCR-ALS, data fusion can be easily performed by aug-

menting data matrices in the row-wise dimension, and some work

is now being pursued in this direction.

5. Concluding remarks

From a general point of view, we can conclude that the complex-

ity of LC-MS metabolomic data and the diversity of strategies that

are used for their processingmakes data analysis an open field in the

bioinformatics research. Inglobal terms, targetedstrategiesallowhighly

sensitiveandaccuratedetectionof predeterminedmetaboliteswhereas

untargeted strategies are valuable for the detection of unknownme-

tabolites and biochemical pathways. However, both approaches are

complementary and can be used simultaneously. Despite recent tar-

getedmethodologies enable large-scalemetabolic profiling, including

hundreds of analytes, the number of compounds to be analysed in

untargeted studies is still larger. This is so because entire data sets

including thousands of metabolite signals have to be processed in

the latter approach. For this reason, later advances in data analysis

tools have been focused on the untargeted approach.

In the last years, multiple feature detection software tools for

LC-MS data have been developed for untargeted metabolomics.

Generally, all of them cover the same steps of data conversion, com-

pression, normalization, feature detection, variable selection and

identification. Among them, data compression is one of the most

crucial steps, since it must reduce the original dimensions of the

data (gigabytes of storage) while avoiding any loss of spectral ac-

curacy. Nowadays, the search of ROI has been reported as a better

alternative to the classical binning and it is used in most of these

feature detection software during the compression step.

Novel chemometric tools such as MCR-ALS have demonstrated

to be powerful tools to analyse LC-MS metabolomic data sets and

they are presented in this review as a complement to the existent

feature detection packages the use of which can also provide some

benefits. The principal advantages of MCR-ALS methodology com-

pared to other feature detection algorithms can bemainly attributed

to two aspects. First, MCR-ALS can resolve the coelution chromato-

graphic problems and directly obtain the pure spectra and elution

profiles of most of themeaningful metabolites present in the sample.

Second, neither peak alignment nor shaping corrections are nec-

essary for this approach, since LC-MS chromatograms are only

matched in the mass spectral direction, which is reproducible. Thus,

MCR-ALS is considered and proposed as a novel and effective meth-

odology for LC-MS metabolomic data analysis.

Although all data analysis approaches presented in this

review have contributed to increasing knowledge in the LC-MS

metabolomics field, more recent advances in new areas such as data

fusion are still necessary.

438 E. Gorrochategui et al. / Trends in Analytical Chemistry 82 (2016) 425–442



Acknowledgements

The research leading to these results has received funding from

the European Research Council under the European Union’s Seventh

Framework Programme (FP/2007–2013) / ERC Grant Agreement n.

320737. First author acknowledges the Spanish Government

(Ministerio de Educación, Cultura y Deporte) for a predoctoral FPU

scholarship (FPU13/04384).

Appendix: Supplementary material

Supplementary data to this article can be found online at

doi:10.1016/j.trac.2016.07.004.

References

[1] O. Fiehn, J. Kopka, P. Dörmann, T. Altmann, R.N. Trethewey, L. Willmitzer,
Metabolite profiling for plant functional genomics, Nat. Biotechnol. 18 (2000)
1157–1161, doi:10.1038/81137.

[2] O. Fiehn, Metabolomics – the link between genotypes and phenotypes, Plant
Mol. Biol. 48 (2002) 155–171, doi:10.1023/A:1013713905833.

[3] G.J. Patti, O. Yanes, G. Siuzdak, Innovation: metabolomics: the apogee of
the omics trilogy, Nat. Rev. Mol. Cell Biol. 13 (2012) 263–269, doi:10.1038/
nrm3314.

[4] M. Chadeau-Hyam, G. Campanella, T. Jombart, L. Bottolo, L. Portengen, P. Vineis,
et al., Deciphering the complex: methodological overview of statistical models
to derive OMICS-based biomarkers, Environ. Mol. Mutagen. 54 (2013) 542–557,
doi:10.1002/em.21797.

[5] L.M. McShane, M.M. Cavenagh, T.G. Lively, D.A. Eberhard, W.L. Bigbee, P.M.
Williams, et al., Criteria for the use of omics-based predictors in clinical trials:
explanation and elaboration, BMC Med. 11 (2013) 220, doi:10.1186/1741-
7015-11-220.

[6] F. Capozzi, A. Bordoni, Foodomics: a new comprehensive approach to food
and nutrition, Genes Nutr. 8 (2013) 1–4, doi:10.1007/s12263-012-0310-x.

[7] J.G. Bundy, M.P. Davey, M.R. Viant, Environmental metabolomics: a critical
review and future perspectives, Metabolomics 5 (2008) 3–21, doi:10.1007/
s11306-008-0152-0.

[8] M.R. Viant, U. Sommer, Mass spectrometry based environmental
metabolomics: a primer and review, Metabolomics 9 (2012) 144–158,
doi:10.1007/s11306-012-0412-x.

[9] M. Adams, J. Kelley, J. Gocayne, M. Dubnick, M. Polymeropoulos, H. Xiao, et al.,
Complementary DNA sequencing: expressed sequence tags and human
genome project, Science 252 (1991) 1651–1656, doi:10.1126/science.2047873.

[10] M.J. Fazzari, J.M. Greally, Epigenomics: beyond CpG islands, Nat. Rev. Genet.
5 (2004) 446–455, doi:10.1038/nrg1349.

[11] A. Abbott, Proteomics, transcriptomics: what’s in a name?, Nature 402 (1999)
715–720, doi:10.1038/45354.

[12] N.L. Anderson, N.G. Anderson, Proteome and proteomics: new technologies,
new concepts, and new words, Electrophoresis 19 (1998) 1853–1861,
doi:10.1002/elps.1150191103.

[13] G.Winter, J.O. Krömer, Fluxomics – connecting ‘omics analysis and phenotypes,
Environ. Microbiol. 15 (2013) 1901–1916, doi:10.1111/1462-2920.12064.

[14] M. Cascante, S. Marin, Metabolomics and fluxomics approaches, Essays
Biochem. 45 (2008) 67–81, doi:10.1042/BSE0450067.

[15] X. Han, R.W. Gross, Global analyses of cellular lipidomes directly from crude
extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics,
J. Lipid Res. 44 (2003) 1071–1079, doi:10.1194/jlr.R300004-JLR200.

[16] J.E. Turnbull, R.A. Field, Emerging glycomics technologies, Nat. Chem. Biol. 3
(2007) 74–77, doi:10.1038/nchembio0207-74.

[17] M. Herrero, C. Simó, V. García-Cañas, E. Ibáñez, A. Cifuentes, Foodomics:
MS-based strategies in modern food science and nutrition, Mass Spectrom.
Rev. 31 (2012) 49–69, doi:10.1002/mas.20335.

[18] W. Zhang, F. Li, L. Nie, Integrating multiple “omics” analysis for microbial
biology: application and methodologies, Microbiology 156 (2010) 287–301,
doi:10.1099/mic.0.034793-0.

[19] A.K. Shanker, M. Djanaguiraman, B. Venkateswarlu, Chromium interactions
in plants: current status and future strategies, Metallomics 1 (2009) 375–383,
doi:10.1039/b904571f.

[20] J.K. Nicholson, J. Connelly, J.C. Lindon, E. Holmes, Metabonomics: a platform
for studying drug toxicity and gene function, Nat. Rev. Drug Discov. 1 (2002)
153–161, doi:10.1038/nrd728.

[21] B. Campos, N. Garcia-Reyero, C. Rivetti, L. Escalon, T. Habib, R. Tauler, et al.,
Identification of metabolic pathways in Daphnia magna explaining hormetic
effects of selective serotonin reuptake inhibitors and 4-nonylphenol using
transcriptomic and phenotypic responses, Environ. Sci. Technol. 47 (2013)
9434–9443, doi:10.1021/es4012299.

[22] H.K. Kim, Y.H. Choi, R. Verpoorte, NMR-based plant metabolomics: where
do we stand, where do we go?, Trends Biotechnol. 29 (2011) 267–275,
doi:10.1016/j.tibtech.2011.02.001.

[23] F. Puig-Castellví, I. Alfonso, B. Piña, R. Tauler, A quantitative 1H NMR approach
for evaluating the metabolic response of Saccharomyces cerevisiae to mild

heat stress, Metabolomics 11 (2015) 1612–1625, doi:10.1007/s11306-015-
0812-9.

[24] J.M. Halket, Chemical derivatization and mass spectral libraries in metabolic
profiling by GC/MS and LC/MS/MS, J. Exp. Bot. 56 (2004) 219–243,
doi:10.1093/jxb/eri069.

[25] K. Dettmer, P.A. Aronov, B.D. Hammock, Mass spectrometry-based
metabolomics, Mass Spectrom. Rev. 26 (2007) 51–78, doi:10.1002/mas.20108.

[26] J.K. Nicholson, I.D. Wilson, High resolution proton magnetic resonance
spectroscopy of biological fluids, Prog. Nucl. Magn. Reson. Spectrosc. 21 (1989)
449–501, doi:10.1016/0079-6565(89)80008-1.

[27] J.C. Lindon, E. Holmes, J.K. Nicholson, Peer reviewed: so what’s the deal with
metabonomics?, Anal. Chem. 75 (2003) 384 A–391 A, doi:10.1021/ac031386.

[28] R.J.M.Weber, A.D. Southam, U. Sommer, M.R. Viant, Characterization of isotopic
abundance measurements in high resolution FT-ICR and Orbitrap mass spectra
for improved confidence of metabolite identification, Anal. Chem. 83 (2011)
3737–3743, doi:10.1021/ac2001803.

[29] I.D. Wilson, R. Plumb, J. Granger, H. Major, R. Williams, E.M. Lenz, HPLC-MS-
basedmethods for the study of metabonomics, J. Chromatogr. B. Analyt Technol
Biomed Life Sci. 817 (2005) 67–76, doi:10.1016/j.jchromb.2004.07.045.

[30] I.D. Wilson, J.K. Nicholson, J. Castro-Perez, J.H. Granger, K.A. Johnson, B.W.
Smith, et al., High resolution “ultra performance” liquid chromatography
coupled to oa-TOF mass spectrometry as a tool for differential metabolic
pathway profiling in functional genomic studies, J. Proteome Res. 4 (2005)
591–598, doi:10.1021/pr049769r.

[31] P.J. Weaver, A.M.-F. Laures, J.-C. Wolff, Investigation of the advanced
functionalities of a hybrid quadrupole orthogonal acceleration time-of-flight
mass spectrometer, Rapid Commun. Mass Spectrom. 21 (2007) 2415–2421,
doi:10.1002/rcm.3052.

[32] S.C. Brown, G. Kruppa, J.-L. Dasseux, Metabolomics applications of FT-ICRmass
spectrometry, Mass Spectrom. Rev. 24 (2005) 223–231, doi:10.1002/mas.20011.

[33] A. Koulman, G. Woffendin, V.K. Narayana, H. Welchman, C. Crone, D.A. Volmer,
High-resolution extracted ion chromatography, a new tool for metabolomics
and lipidomics using a second-generation orbitrap mass spectrometer, Rapid
Commun. Mass Spectrom. 23 (2009) 1411–1418, doi:10.1002/rcm.4015.

[34] E. Rathahao-Paris, S. Alves, C. Junot, J.-C. Tabet, High resolution mass
spectrometry for structural identification of metabolites in metabolomics,
Metabolomics 12 (2015) 10, doi:10.1007/s11306-015-0882-8.

[35] A. Jiye, J. Trygg, J. Gullberg, A.I. Johansson, P. Jonsson, H. Antti, et al., Extraction
and GC/MS analysis of the human blood plasma metabolome, Anal. Chem. 77
(2005) 8086–8094, doi:10.1021/ac051211v.

[36] S.G. Villas-Bôas, S. Mas, M. Akesson, J. Smedsgaard, J. Nielsen, Mass
spectrometry inmetabolome analysis, Mass Spectrom. Rev. 24 (2005) 613–646,
doi:10.1002/mas.20032.

[37] R. Tautenhahn, C. Böttcher, S. Neumann, Highly sensitive feature detection for
high resolution LC/MS, BMC Bioinformatics 9 (2008) 504, doi:10.1186/1471-
2105-9-504.

[38] H.K. Kim, R. Verpoorte, Sample preparation for plant metabolomics,
Phytochem. Anal. 21 (2010) 4–13, doi:10.1002/pca.1188.

[39] A.H. Wu, R. Gerona, P. Armenian, D. French, M. Petrie, K.L. Lynch, Role of
liquid chromatography–high-resolution mass spectrometry (LC-HR/MS)
in clinical toxicology, Clin. Toxicol. 50 (2012) 733–742, doi:10.3109/
15563650.2012.713108.

[40] J. Boccard, S. Rudaz, Harnessing the complexity of metabolomic data with
chemometrics, J. Chemometrics 28 (2014) 1–9, doi:10.1002/cem.2567.
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• Atom constraints: C,H,O≥ 1,
≤ P ≤ ≤ ≤ 

• 0.5 ≤ DBE ≤ 
•
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candidate (with errors ≤ 0.8 ppm). Moreover, it was found that both software performed 





 

 

 

 

 



 

 

 

 



 

 

 

 

 



 






