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Abstract
This thesis presents original research carried out in the topic of electronic
dance music (EDM) drum sequencing, a fundamental and yet
underdeveloped subject in the music production literature. The work
undertaken is focused in two main areas: similarity between drum patterns
and modeling of drumming style. The study of pattern similarity is rooted
in current knowledge on human processing of monophonic rhythms, and
is expanded until a model capable of predicting similarity sensations of
polyphonic drum rhythms is reached. With this model, RhythmSpace, a
graphical system for the continuous real-time exploration of drum pattern
collections, is developed. The second area of research, drumming style
modeling, is approached from a statistical perspective, developing a
generative model capable of learning styles from examples and creating
original drum patterns in the learned styles. This  model allows high-level
musical flexibility, letting a musician combine and transform styles in
real-time during the generative process. Taking advantage of this model, a
style-based drum machine application, DrDrums, is implemented and
evaluated in subject-based experiments. 
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Resumen
Esta tesis presenta una investigación original llevada a cabo en el área de
la secuenciación de baterías de música electrónica de baile (EDM), un
tema fundamental y al mismo tiempo poco desarrollado en la literatura de
producción musical. El trabajo realizado se enfoca en dos áreas: la
similitud entre patrones de batería y los estilos en la composición de
patrones percusivos. El estudio de la similitud entre patrones se
fundamenta en el conocimiento actual del procesamiento humano de
patrones monofónicos, y es expandido hasta alcanzar un modelo capaz de
predecir sensaciones de similitud en ritmos polifónicos. Con este modelo
se ha creado RhythmSpace, un sistema gráfico para la exploración en
tiempo real de colecciones de patrones de batería. La segunda área de
investigación, el estilo de composición de baterías, es abordada desde una
perspectiva estadística, desarrollando un modelo generativo capaz de
aprender estilos desde ejemplos y luego crear patrones originales en los
estilos aprendidos. Este modelo estadístico permite una flexibilidad
musical de alto nivel, haciendo posible que un músico combine y
transforme estilos en tiempo real durante el proceso generativo. Usando
este modelo se implementa DrDrums, una máquina de ritmos con
inteligencia de estilo,  que es evaluada experimentalmente con sujetos.
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1. INTRODUCTION 

“To go out into space today means to go further into 
rhythm. Far from abandoning rhythm, the Futurist 
producer is the scientist who goes deeper into the break, 
who crosses the threshold of the human drummer in order
to investigate the hyperdimensions of the dematerialized 
Breakbeat.”

Kodwo Eshun - More Brilliant Than The Sun

1.1 Motivation
As a musician and an engineer I have always been seduced by the
interconnections between music and technology. I have been inspired by
the endless ways in which they feedback one another, especially when it
favors aesthetic creations or scientific discoveries. Some of these
interconnections are clearly manifested in electronic dance music (EDM),
especially in the way this music has been inspired by technology at many
different aesthetic levels, also how it is dependent on technology for its
existence and evolution, or in the way EDM has been incorporated as a
cultural technology used to incite human desire to move and dance. These
different relations present EDM as a scenario in which musical and
technological practices coalesce extensively, a vast setting which can be
analyzed from musical, technological or cultural perspectives suggesting a
fertile ground for research.
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As a music lover myself, I have always been inspired by some powerful
experiences when music reveals itself as much more than just an
interleaved collection of sound events, acquiring a meaning way beyond
its components and triggering sensations and ideas otherwise unreachable.
In such occasions, I have envisioned music as being produced by beautiful
dynamic systems having a life on their own, capable of creating rhythms
and textures that expand the limits of our cognition. These moments have
deeply impacted my creative practice, as I have been self-driven to seek
ways to materialize such imagined music systems, to design artificial
musicians that form a sort of automated organizations capable of
generating beautiful music.

Pursuing these ideas, I joined a team of people from different  institutions
as the Music Technology Group, Johannes Kepler University, Red Bull
Music Academy, Steim, ReacTable and Native Instruments which had
started the European Community funded Giant Steps research project1,
where EDM was the central topic of research. Within this group I found a
fertile ground to reflect and work on musical meta control and music
intelligence, as means to amplify EDM creation and performance. This
situation seemed ideal for working and learning with this new team, as its
members had developed experience in materializing musical questions
into useful machines and software applications. Once in this context, I
confirmed rhythm and drumming as main transversal topics within EDM.
Therefore, I directed my interest towards the human cognition of rhythm
with the aim to learn from it and, once with that knowledge, use it to
create new smart agents for the production and performance of EDM
drum rhythms.

1.2 Context
Progressively, since its early days, a global and diverse community has
flourished around EDM converting it into a cultural, aesthetic and

1 http://giantsteps-project.eu
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technological phenomena that mobilizes millions of people around the
world. It is a hot cauldron bringing together a variety of actors: Scientists
and engineers who design software, musical instruments and interfaces
which are used by sound technicians, musicians, music producers and
sound designers, for a variety of audiences, that go from big open air
festivals to the intimacy of rehearsal rooms or porTable electronic
devices. EDM is also disseminated in many different formats that range,
for example, from the soundtrack of a video-game to a live transmission
via the internet or a vinyl pressing. Specialized magazines, scientific
journals, reporters and book authors provide news and critiques of the
aesthetic, technological and cultural transformations of EDM to a captive
crowd of music lovers, practitioners and dancers. The EDM industry, in
all of its many dimensions, represents a huge and global economic cluster
creating employment driven by technological and artistic advances
(International Music summit report, 2017)2. 

One of the many reasons behind the consolidation of EDM as a global
phenomenon is the evolution of the digital environments to create,
transform and produce music. Nowadays, with a computer and an off-the-
shelf digital audio workstation (DAW) software, anyone can get access to
high quality tools sufficient to work in the creative side of the EDM
industry. This possibility has opened the door of music production to
individuals of diverse musical backgrounds thriving to get involved in
EDM production, and aspiring to develop professional artistic careers.
The accessibility of digital musical technology, has introduced a very low
entrance fee to music production, in much cases favoring the success of
individuals, despite their lack of formal musical training, in developing
fruitful careers. Many established producers have not studied in a music
conservatory, and some of these artists have concluded that the skills
needed to become a successful EDM producer are not necessarily learned
through formal musical training or at least not as it is currently
institutionalized. This idea has been manifested in different ways by some

2 http://www.internationalmusicsummit.com/business-report/
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of EDM’s early pioneers:

“There are people who've been to college to study music and they
can't make a simple rhythm track, let alone a hit record. It's weird
[...] because now a little kid can pick up a computer, get lucky
with it, and write a hit.” 
Farley ‘Jackmaster’ Funk cited by Brewster & Broughton, (1999)

A similar idea is also noted by Marshall Jefferson when presenting the
song ‘On and on’ by Jesse Saunders, as one of the most inspirational
music pieces in EDM:

“That was the single most important record to me of the 20th
century because it let the non musician know that he could make
music.” 
Marshall Jefferson, in Pump up the volume (Bidder,2001).

It is taken to an extreme by Stephen Morris, of the band New Order, when
discussing the importance of learning an instrument as a prerequisite for
succeeding with a career in EDM:

“The ones who will succeed are the ones who understand
technology. You don’t need to be musical; musicality is actually a
disadvantage.” 
Stephen Morris, interviewed by Mills & Menagh (1990, p-80)

Without necessarily going to the extreme of Morris, it is a fact that
contemporary musical tools have allowed gifted and dedicated
individuals, as Marshall Jefferson himself, to be self-taught in the art of
creating EDM at a professional level, producing tracks that transcend the
home studio, having unimaginable impact in dance clubs all over the
world. 
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The opinions of Funk, Morris and Jefferson convey a certain notion of
distance from traditional music and academia to EDM, as a genre and also
from its compositional practices. This notion is perhaps due to the
functional prerequisite, the dance dimension, of EDM which implies its
main focus is to make people move and it is achieved by the appropriate
use of percussive rhythms (Witek et al., 2014a). Although some classical
music forms owe their origin to medieval dances such as the Allemande,
the Gigue or the Gavotte, we have to wait until the 20 th century to witness
rhythm and percussion become a central feature, in pieces as Ionisation
(Varèse, 1931) or the Rítmicas (Roldán, 1930). However, these pieces
were not intended be danced but to be listened to in the stillness of a
concert hall. On the contrary, EDM is completely focused on rhythm and
percussion, and is explicitly made for dancing, so it lays in a territory
unexplored in classical music.

In fact, a proper EDM dance track is characterized by its finely crafted
sounds and timbres and a powerful drum section designed for inducing
body movement (Collins, 2008). Other musical dimensions such as the
harmonic, melodic or even the structural ones, are many times non-
existent in many EDM tracks or, in other cases, reduced to extreme
simplicity. Chord progressions, melodic elaborations or counterpoint are
definitely the least developed musical characteristic in EDM if compared
to jazz, pop or classical music (Faraldo et al., 2016). This is why the main
activities of a professional EDM producer are operating musical gear such
as synthesizers, audio effects, sequencers and drum machines;
transforming timbres and textures using that gear; and mainly, creating
thriving drum tracks. As a consequence, the use of technological musical
devices dedicated to drum synthesis and arrangement, such as drum
machines, is essential as these instruments bear most of the weight of the
structure and the dance functionality of EDM. This is clearly noted by
Man Parrish referring to the use of drum machines by early EDM
composers:
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“They’re using this drum machine and it is actually a viable piece
of equipment that you can actually make records out of it,
because people hit the floor and dance to it.” 
Man Parrish, in 808 documentary (Baker & Dunn, 2015). 

This central role of machine-based drumming technology is
acknowledged across different styles of EDM, from acid house music to
hip-hop. Two of their foundational producers, Irwin Larry Eberhart II (the
acid house artist known as Chip E) and Hank Shocklee, the producer of
the hip-hop band Public Enemy, note in relation to the importance of
drum machines in EDM:

[To compose an acid house song] “The first thing you have to do
is to start with a strong kick drum and then you got to have a
bassline. And from there you build on it with snare drums, you
build on it with the hi-hat, you build on it with the rimshot, with
the claps.” 
Chip E, in Pump up the volume (Bidder,2001). 

“In New York at the time man, every record had to have an 8083

in it in order for it to have any sort of success in the dance floor.”
Hank Shocklee, in 808 documentary (Baker & Dunn, 2015). 

There is no doubt that rhythm and drums incite body movement and
people’s urge to dance (Witek et al., 2014a), and as such, detailed care of
percussion in EDM productions is microscopical. As will be discussed
below, producing a drum track is a fine craft that goes beyond the  use of
technology, as very specific musical skills are required (contradicting the
radical technology-above-musicality position of Morris), specially the

3 The TR-808 drum machine was released by the Japanese company Roland in 
1980. It was a foundational instrument for EDM production and performance.
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skills related to the concepts of musical style and percussive variation. 
EDM is a very specialized music, meaning that within it, there are many
different styles which are directly linked to the drum patterns used in the
track (Collins, 2013; Butler, 2006). Each style (i.e. house, techno,
breakbeat or trance, among many others) has in itself many subdivisions
and ramifications, all of them with defined musical attributes. It is not
surprising that, being the drums one of the most prominent feature of
EDM, they have a big responsibility of conveying style information
(Adamo, 2010; Brown and Griese, 2000; Emmerson, 2013; Hewitt, 2009;
Snoman, 2012). Therefore, one definitive skill of EDM producers is to
develop a deep knowledge of the boundaries between styles and the rules
that define how drum patterns in a specific style are composed. 

However, despite their importance, it is not easy to find structured
guidelines to learn how a specific drumming style works, or even more,
why a rhythm of a given style works. There is a lack of clear and simple
music theory frameworks to explain and learn rhythm composition for
EDM; tools that musicians could use when addressing drums, as it occurs
for example with the circle of fifths when creating chord progressions.
Instead, EDM drumming styles are learned by imitating the drum patterns
in the records and in the production literature. In fact, the way an EDM
drumming style is presented in production books (Adamo, 2010; Brown
and Griese, 2000; Emmerson, 1988; Hewitt, 2009; Snoman, 2012), is by
offering a single monolithic drum pattern as a means to introduce a
musician into the comprehension of a given style. So it takes a great effort
and, given the lack of musical tools, it is many times done as a trial-and-
error procedure, to learn the features of a given style and then to imitate it
making sure that a drum track is not only musically correct but also that it
sounds as expected and makes people want to dance.

Taking a closer look, the work of creating drum arrangements in a DAW
is called drum sequencing, which implies fixating single drum events,
which are called drum onsets, in time. Drum sequencing is most
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commonly done through an interface with the metaphor of a piano roll, a
multilayered time grid swept by a “playhead” at an isochronous rate,
where layers (rows) symbolize instruments and steps (columns) symbolize
time divisions. In this grid, a dot in a certain position represents a specific
drum onset at a given time (see Figure 1.1). 

Figure 1.1 The scheme of a piano roll interface. On the left there are the
disposition of the notes of a piano. On the right the space to place the notes of the

musical arrangement where durations are depicted as rectangles of different
length and dynamics as different shades in the rectangle.. 

Superficially, this representation suggests drum sequencing can be
approached as placing beads (onsets) in graph paper4. But, in reality, the
repetition of the sequence, the time resolution of the grid and the type of
sounds being sequenced define how the position of the onsets affects our
sensation and appraisal of a sequenced rhythm. In fact, as it will be
presented in detail in Chapters 2 and 3 of this thesis, the effect of a drum
rhythm goes beyond the graphic representation of events in time and is
mediated by our cognition of rhythm. That is, a rhythm-processing
mechanism is triggered in our brain, as a response to hearing a sequence
of patterned sound events, determining the way this rhythm affects us, a
mechanism which is invisible in the piano roll. This is the reason why a
simple transformation as displacing a drum event a single step in a

4 In fact it is very interesting to see how this piano roll sequencing metaphor has 
been repeatedly amplified to the physical domain in different interactive projects, 
proving both the conceptual success of the metaphor but also the difficulty to 
create rhythm sequences by trial-and-error “bead scattering”.
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sequencing grid can dramatically affect the sensation of a drum pattern or
why, on the contrary, several onsets can be changed while still retaining
the essence of a pattern. The way in which onsets affect the sensation of
rhythm is not evident in the graphic representation of a drum pattern in a
piano roll, as it takes higher level interpretations. So, paradoxically, the
functionality of onsets in a rhythm pattern is sometimes unknown by
musicians practicing EDM drum production, specially those which have
not developed clear notions of rhythm. This problem is clearly addressed
by DeSantis (2015) when describing the sometimes cumbersome process
of drum sequencing:

"Your programmed drum beats tend to use the available
instruments in “expected” ways: Hi-hats keep time, kick drums
emphasize the beats, snares/claps are placed on or around the
backbeats (beats 2 and 4). But in the music you admire, you
sometimes hear other, more creative ways of working with drums.
Sometimes it almost sounds like the drums are playing a
“melody” of their own. But when you try to create patterns like
this, it just sounds random and chaotic." (DeSantis, 2015)

As mentioned, along with sequencing and understanding styles, the
concept of variation is also fundamental in EDM and it comes in right
after a promising drum pattern is created. When a short compelling
rhythmic idea is defined, the next step is to construct a number of
variations from it which are later assembled together, forming a drum
track, in order to recreate a sensation of progress and evolution while
strictly maintaining a central idea (DeSantis, 2015). An idea clearly
exemplified by renowned EDM producer Jori Julkkonen: 

“House music and Techno music, it’s all about having this one
bar looping endlessly and doing variations on that. For me that’s
the definition of House.” Jori Julkkonen, in 808 documentary
(Baker & Dunn, 2015).

9



As suggested, an appropriate drum track in an EDM dance track is then a
concatenation of patterns, carefully crafted and connected to maintain a
emotive contour, offering diverse expressive cues to dancers. It is a
delicately crafted sound structure directed straight to the sensorimotor
systems of dance-avid crowds.

In practice, both essential concepts of drum style and pattern variation
pose tremendous challenges for an EDM producer: It is hard to evolve a
drum pattern template into a new one, trying both to infuse the identity of
the author while maintaining its dance induction functionality. It is even
more challenging when the intention is of a higher scale and the pattern
must derive into a series of meaningful transformations in order to create
the flowing musical structure of a dance track. 

Some specific needs for EDM drum production are thus identified, which
will be revisited throughout this thesis. EDM composers need to be skilled
in the:

• Creation of drum patterns which comply to EDM styles, as that is
the best way to ensure that a pattern is well-formed in a specific
tradition and works for the purpose of inciting dance.

• Transformation of existing drum patterns and their concatenation
in a higher order structure to create fluid Drum Tracks which are
the support for a Dance Track.

• Performance of the above activities, imparting to them the
producer’s own character and style.

10



1.3 Existing Technologies for EDM Drum 
Production
Given the complexity of producing a drum track, different commercial
products have been developed to help producers in this task. Some of
these products come in the form of pre-recorded drum patterns to be
loaded into a DAW, as a symbolic sequence or as audio recordings. Other
software-based products allow the transformation of existing sequences.
Pre-recorded musical material often comes in packages offering not only
drum sequences, but also chord progressions and bass and lead melodies
bundled by musical style. These packages are distributed royalty-free so
they can be used straight to a commercial composition, with the obvious
downside of potentially appearing in a lot of other musicians’ productions
and resigning some portion of the creative process. Although these
products blur the line between musical creation and assembly, they serve
the purpose of giving an uninspired, untrained or hasty musician, the
opportunity to get some music done in a short time, with the advantage of
being able to create music in a style without really having to understand it,
and the disadvantage of musical fragments coming in finite numbers.

This way of composing music is based on coupling sequences of musical
building blocks in different instrumental layers, without the need to
understand their rhythmic or any other musical aspect. Composition
becomes an exercise of free-form matching; again, as in sequencing,
possibly undertaken as a trial-and-error activity which, this time, is limited
by the number of building blocks available in the hard drive. Thus, as a
consequence, there is a tendency to overpopulation of musical building
blocks in a musicians’ production toolkit, ranging from thousands of drum
sound snippets to super-sized collections of drum, bass, chords and
melodic sequences. Much as this compositional methodology serves the
purpose of bypassing musical and stylistic knowledge, it still imposes
huge constraints in archiving systems. Specifically, search mechanisms of
musical material in a computer (i.e. the file finders) have no musical
knowledge embedded in them, thus forcing the search of, for example, a
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drum pattern collection, to be alphabetical, ignoring the rhythmic or
timbral properties in which a proper musical search should be based on.
An activity as frustrating and senseless as searching a huge color palette
by the color name5.

Growing on top of those building block systems, other types of products
are based on transforming this building blocks in real time. Software as
Stylus RMX6, offer a limited number of variations of a loop, meter change
of a loop, changing the density of a pattern by eliminating or adding drum
onsets, and transforming the micro timing variations of the onsets. All
operations are however style agnostic so they are dependent only on the
sequence itself without any explicit relation to a meta-structure as a style.
Other tools for music composition are based on learning from the
performer as the Continuator (Pachet, 2003), or modeling styles as the
Drummer in Garage Band7.

Drums are also being explored from different scientific perspectives
which can potentially impact music production by expanding current
knowledge on drum manipulation and therefore be implemented in new
software applications. There are independent scientific communities
devoted to the study of drums and rhythm, as automatic drum
transcription from an engineering perspective; stylistic drum generation
from the perspective of artificial intelligence; mental and aural processing
of polyphonic drumming from a psychological and cognitive perspective.
All this different scientific knowledge can eventually be implemented in
current tools for EDM drum production leading to industrial
improvements and the expansion of the features of percussive musical
instruments. 

5 https://en.wikipedia.org/wiki/List_of_colors:_A–F
6https://www.spectrasonics.net/products/stylusrmx.php
7https://www.apple.com/lae/mac/garageband/
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1.4 Opportunities and Challenges
As has been presented, EDM production offers a complex and rich
scenario with needs from its practitioners, which are not solved in
traditional music academies nor can be studied from manuals. This whole
scenario is ready to be approached by new creative methodologies and
specialized systems with knowledge on how an EDM rhythm is
constructed in different styles, systems that can transform rhythms based
on meaningful rhythmic frameworks and, that in general, can stimulate the
creative process of composing an EDM track.

There is also an opportunity to improve computer based search
mechanisms for musical building blocks, such as drum samples or drum
sequences focused on musical qualities. Musically informed browsers,
offering representations of drum sequence collections where musicians
can explore the elements by their rhythmic qualities, could improve the
accuracy, extent and depth by which a music collection is examined. This,
in turn, would have a positive impact in the time spent exploring a
collection, the depth of musical associations within a musical collection,
and could thus improve the production process.

For achieving these potential tools, cognitive and perceptual perspectives
on how rhythm, in the context of EDM, is processed by musicians,
constitutes the main framework around which this thesis develops. This
framework may inform new systems on how rhythmic material is
selected, concatenated, contrasted, and later, used in musical
compositions. As it will be presented in the next chapter, cognitive
research on rhythm is still in expansion, so questions as the existence of
metrics for assessing the similarity in monophonic and polyphonic
percussion arrangements are still to be researched and clarified. Although
the basic cognitive principles of how rhythm is processed are well known,
there are still open questions on what influences two rhythms to feel alike
and how much impact this has on the construction of EDM dance tracks.
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There are aesthetic and technical advantages in researching EDM drum
production as it allows for new creative possibilities to emerge which can
support the amateur starting musician as well as the seasoned producer.
Such systems could allow to focus on the flow of the creative process by
exploring rhythmic alternatives faster and in new ways. Also, the idea of
instruments that make use of the concept of style and have the flexibility
of managing it as any other constitutive element (i.e. as it already happens
with tempo or timbre), allows for flexible and novel music production
strategies, which in turn can amplify the practice of EDM.

This thesis presents an attempt to improve the current tools used for EDM
production, loading them with specialized knowledge on rhythm, so that
this knowledge is available for musicians to use in their production
workflow. In order to achieve this, current results in the fields of
generative systems, rhythm cognition and music representation are used to
carry out some original research. 

1.5 Thesis Outline
In the following chapters I will present the work carried out to investigate
how EDM composition systems, loaded with EDM rhythm knowledge,
can be designed and constructed based on the scientific state of the art of
rhythm cognition and generative algorithms. 

Chapter 2 will present the research context in which this thesis is
developed. Different aspects of rhythm will be reviewed, exposing how
rhythm processing in humans is modeled from different perspectives, with
a special interest in theories which study musical and percussive rhythm.
The main aspects of human rhythm processing, as pulse meter and
syncopation will be discussed, focusing on quantitative models used to
describe them. One of the advantages of studying these models is the
possibility to quantify properties that describe the way in which they are
processed by our cognitive system. Later, that information can be used as
a means to compare among different drum patterns’ properties. This
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possibility leads to the study of rhythm similarity based on monophonic
and polyphonic stimuli. Some unsolved questions on rhythm similarity
will be identified and discussed, suggesting a research path that will be
undertaken in Chapters 3 and 4. Starting from existing theories on
conceptual similarity, we will advance the way they can help to formalize
rhythm similarity in small dimensional spaces. With the tools and
framework to measure similarity in rhythm, we will head our way to
automatically generating meaningful and style-coherent rhythm
sequences. The relation of generative tools and the concept of style will be
discussed, exploring different engineering approaches to rhythm
generation along with currently existing musical tools that implement
such approaches. 

A roadmap will be extracted, in chapter 2, that will trace a route for the
development of this thesis. Experiments on monophonic and polyphonic
rhythmic similarity will be evidenced as crucial to round up a theory that
could link human similarity sensations with objective features extracted
from drum patterns. These experiments and their results will be presented
and discussed in chapter 3. Next, in chapter 4, the use of statistical
modeling for the generation of short musical building blocks as drum
sequences, will be explored. In this chapter, the implementation of style-
based drum generative systems will be explained in detail, especially
evidencing the ways in which the results from the experiments presented
in chapter 3 affect the conception of these generative systems. 

A final chapter will sum up the main outcomes and the contributions
resulting from this research. These contributions will be considered in
relation to the scientific context of chapter 2 and with the results presented
in chapters 3 and 4. The research paths that I have not undertaken because
they demanded a departure from the main topic will also be
acknowledged. 
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2. STATE OF THE ART

2.1 Introduction
This chapter presents the scientific context in which this thesis is
grounded. The ideas that establish the foundations for the development of
this thesis are discussed, as well as the challenges they pose for advancing
towards the construction of expert rhythmic musical agents. The chapter
concludes featuring research activities that will be developed and
discussed in depth in chapters 3 and 4. 

The notion of rhythm will be the starting point, denoting the necessary
components for a rhythm to be identified as such. The idea of rhythm is
modeled by its relation to the human mind and body, as motion, time
awareness and musicality. Although there are many modalities in which
rhythm is manifested (as visual, tactile or auditory), this thesis is only
concerned with auditory rhythm, activated by an acoustical signal,
processed by the hearing system and passed on as electrical stimuli to the
brain. A section dedicated to human rhythm cognition will present how
rhythms are processed after being transduced from acoustical signals by
our hearing system. The concepts of pulse, meter and syncopation will be
discussed from different perspectives to define a common ground, to
round up a unifying cross-disciplinary view. The review of these concepts
will be presented in section 2.2 describing how they allow the emergence
of quantitative relations between rhythmic patterns and other phenomena
of rhythm cognition. 
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The possibility of extracting quantitative information from audio
containing rhythmic patterns, opens the door to compare them, an activity
belonging to the realm of rhythm similarity, which will be discussed in
section 2.3. In this section, the notion of cognitive spaces and their role in
similarity will be reviewed and main rhythm similarity studies will be
discussed, reflecting on different experimental results that can lead to the
construction of similarity metrics. It will be noted how explicit areas need
to be expanded to achieve comprehensive metrics that can link human
similarity sensations with objective information measured directly from
rhythmic patterns.

In section 2.4 a general notion of musical style will be introduced and
with it, the special case of style in EDM will be reviewed describing how
the idea of style can be adapted to the distinctive characteristics of EDM.
The special case of style in EDM drum sequencing will be reviewed in
section 2.5 and generative approaches to drum sequencing will be
reviewed in section 2.6. In this last section the main characteristics of
diverse musical generative systems will be commented, presenting the
type of algorithms used, their advances and limitations. 

The last section of this chapter draws conclusions from each of the topics
introduced. The conclusions section outlines specific knowledge that can
be used for the design and construction of expert drumming agents. It also
presents areas of knowledge and open questions that will be addressed
during the course of this thesis. Explicitly, the conclusions section
delineates the different activities that compose this thesis and which are
presented and developed throughout the rest of the chapters.

2.1.1 What is Rhythm?

To start, the genealogy of the word rhythm is traced to the latin rhythmus
that comes from the greek ῥυθμός. Different meanings are “a regular
pattern of change, especially one that happens in nature” (Cambridge
dictionary), “a strong, regular repeated pattern of movement or sound”
(Oxford dictionary). Other interpretations of the word ῥυθμός specially
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derived from philosophy are “the particular manner of flowing” (Adkins,
1962). A more precise interpretation regarding how a musical pattern
becomes evident by repetition is given by Schuback (2003): “Rhythm is
discontinuity in continuity. What in music is called rhythm is properly an
unrhythm, that is, a ‘break,’ an interruption, a rift, a breathing or caesura
of and in continuity”. For this thesis musical rhythm is going to signify the
articulation between sounds and silences which, by their structure, allow
to elicit regularity, repetition and thus a sense of musical flow.

2.2 Human Rhythm Processing
Different disciplines study the way in which humans process rhythm. On
one side there is auditory cognition which seeks to understand the
mechanisms involved in recognition and processing of acoustic stimuli;
there is also neuroscience, which explores brain activation patterns; and
from a musical point of view, there are explorations from music cognition
on how the specific case of musical rhythm is structured on listeners. All
these views try to come up with an explanation of the processes involved
in triggering and representing a “rhythmic sensation” derived from an
acoustic stimulus that contains strong traces of repetition, with the special
cases of music and speech.  There is a general agreement among these
disciplines on the basic elements involved in rhythm processing which
are: the emergence of a periodic pulse sensation based on a
synchronization with the different rhythmic levels of an acoustic event,
along with expectancies and anticipations of the future development of the
acoustic signal; the emergence of a meter in the form of perceptual
accentuations of certain events in the signal; and finally, a general
emergent sensation of balance/predictability or imbalance/surprise based
on how the incoming auditory events comply (or not) with the the
predictions and expectancies at different levels. There is also concurrence
on modeling rhythmic processing as a feedback loop where the current
acoustic events are used to predict the next cycle of the rhythm and then
testing what is predicted against the incoming acoustic signal and
adjusting the prediction if necessary. Even more, some suggest these
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rhythmic mechanisms are innate but refinable through experience and
musical training (London, 2012). Once this iterative process of pulse
acquisition, metric entrainment, anticipation and testing is set in motion,
its outcome can be used in other high level processes such as dancing,
playing an instrument, attending a concert or discerning a spoken dialect.

2.2.1 Pulse and meter

Representations of temporal aspects of music can be derived after some
"regularity" in the flow of events is detected. Such regularity sensation is
an emergent perceptual phenomenon called the pulse, which is evidenced
when we, voluntarily or not, end up tapping the foot or nodding the head
to a music piece. Even when an acoustic stimulus is unaccented, as the
tics of a clock where all events are identical, our mind imposes some sort
of organization, arranging the potentially infinite indistinguishable pulses
into structured groups and thus transforming a “tick, tick, tick, tick”
sequence into a more structured “tick, tock, tick, tock” and imposing a
grouping sensation which is not explicitly present in the signal (Bolton
1894; Meuman, 1894; Cohen, 1957, page 136; Cooper et al, 1963). It has
been shown that this capacity of entraining to a pulse is present since
childhood (Drake et al., 2000), even in babies which synchronize sucking
to auditory stimulus (Pouthas, 1995), and also on animal species as sea
lions (Cook et al., 2013) or cockatoos (Fitch, 2013; Patel et al., 2009).
There is neural evidence of entrainment, as neurons in the auditory cortex
have been observed to synchronize with periodical acoustic stimuli
(Nozaradan et al., 2011, 2012), and this entrainment may underlie
cognitive functions such as the perception of beat in music (Lehman et al.,
2016). However, entrainment is not entirely a bottom up process built
directly from the analysis of an acoustic signal by our brain’s time
keeping mechanisms. There might be an alternative mechanism based on
long term memory, in which a repertoire of entrainment responses is
stored and recalled when subjects are exposed to a rhythm. It is suggested
that this memory mechanism is the first one triggered, when adapting to a
rhythmic acoustic signal and decoding the periodicities of a signal. Then,
if the metric repertoire fails, the mechanism for deducing the pulse form
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periodicities is activated (London, 2012). There are also experiments on
preference for double or triple metrics in babies, depending on the
metrical dominance in their mother tongues, suggesting language
modulates a cognitive bias to select the firsthand hypothesis to entrain to a
pulse (Patel & Daniele, 2003).

As mentioned, music is a special case of an auditory event, as it most
frequently comes in the form of sound sequences where pitch, timbre,
amplitude and time dimensions are organized in such a way that it is
capable of eliciting a pulse sensation. This works as in the ticks of the
clock, but has additional perceptual and cognitive effects as the definition
of a melody, the sensation of a structure or even tonality. There are
different models that intend to explain the processes that are triggered in
the presence of a periodic sound source as music. Some of those models
address note duration (Longuet-Higgins and Lee, 1984), pulse saliency
(Parncutt, 1994) or dynamic attending (Jones and Boltz 1989), using
techniques as neural networks (Gasser et al., 1999) or explicit rules
(Desain and Honing, 1999; Eck, 2001). None of these models is bound to
specific neural processes, although there have been found neural
responses in the auditory cortex synchronizing with periodicities of an
acoustic signal and maintaining the periodicities, even in the absence of a
stimulus. That is, acoustic periodicities trigger a timekeeping mechanism
that, once set in motion, is constantly looking ahead, inducing neural
activity in parallel, thus not completely dependent, with the music. It is a
cognitive mechanism that goes beyond the surface of the sound, creating
new information derived from the acoustic stimulus but not necessarily
present in it. The neural activation signal is not a single pulse, but rather
peaks at different frequencies related metrically to the acoustic stimulus,
but all having a frequency relation with the pulse sensation (Lehman et al
2016).

This neurological confirmation of neural peaks present at frequencies
related to an auditory event is very akin with the Dynamic Attending
conceptual model (Jones, 1976, 1987, 1990), that describes the effect of
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auditory stimuli on time perception, based on musical examples. From a
neurological perspective there is evidence of a synchronicity of neural
activity with musical rhythm, which is phase locked to the pulse and
interconnects the auditory cortex with motor areas of the brain as the basal
ganglia (Grahn and Brett, 2007), even without movement being involved
(Merchant et al., 2015). This neural activation is believed to function as an
anticipation mechanism which could help predictive movement planning
in time-sensitive scenarios (Fujioka et al 2012). Other marks of rhythm-
related neural activity have also been found in subjects evaluated in non-
attentitve scenarios independently from their degree of musical expertise.
This activity suggests these neural responses to be general and
autonomous, irrespective of any musical practice (Bouwer et al, 2014)
(Fischer et al., 2010). It seems then, that, provided a short exposition to
musical input, from 5 to 10 notes according to Desain and Honing (1999),
musicians and non-musicians generate a neural predictive model, even
when ignoring auditory information by being inattentive to music
(Honing, 2012).

The Dynamic Attending model, developed by Jones (1976, 1987, 1990;
Jones & Boltz, 1989) and further refined with some collaborators (Large
and Jones 1999; Drake, Jones and Baruch, 2000), proposes that rhythm
processing is based on an array of available oscillators which synchronize
at different frequencies, equal, above and below a reference level (usually
the pulse), when a periodic stimulus is present. The synchronization is
based on the attunement of the listener, who becomes phase-locked to
different time spans explicitly marked (or not) in the periodic stimulus,
one of them being the pulse. In short, one of the oscillations activated with
a periodic acoustic event, as a musical piece, is synchronized in phase and
period with it and is the carrier of the pulse sensation. Above this period
(i.e. with a lower frequency) other oscillations can be activated and, by
shifting the attention to them, higher structural properties of the acoustic
event, grouping various pulses such as the end of a musical phrase, can be
anticipated. Attention can also be shifted below this period and a so-called
analytical attunement occurs which is related to events at the sub-pulse
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level as timbral variations in a conga pattern or syllables in spoken word.
 
The dynamic attending model is based on the possibility to shift the focus
of attention between the different referent levels. This implies a cognitive
limitation encountered in the complexity of the sound that is being
attended: when the auditory events become more complex to process,
attunement becomes harder, thus affecting the capacity to perform
attentive shifts, where only one or two levels remain constant and the
others become blurred. This capacity to attune to different focal levels
shifts with age can also be the consequence of a training process as an
individual can learn the periodicities of a complex rhythm and identify
acoustic markings that signal phase-locking (Jones, 1976). Pulse
entrainment can be seen as a process of dynamic attending, which is by
definition the focalization to most salient temporal locations for events,
accenting some of the most relevant acoustic activity at a given time.
However, the unaccented events are not ignored, they are “reorganized”
generating a sensation that is called meter: the superimposition of
periodic accents to the sounds in an acoustic signal and the consequent
groupings (London, 2012). 

From a perceptual perspective, meter elicits only two metrical levels,
accented and unaccented events, which affect the perception of an
acoustical signal. This implies meter is nothing but a binary measure
which differentiates between strong and weak sound events, as when one
counts a ternary division of a pulse as “ONE, two, three, ONE, two,
three”, where the ONEs are strong while two and three are weak (London,
2012) (see Figure 2.1). This metric entrainment seems to be universal,
however the quality of the entrainment is modeled by the user itself by its
own “ability to generate metric patterns (an ability that may vary with age,
talent, training, and enculturation), and the lack of interference from
subsequent musical stimuli (interference here meaning the emergence of a
pattern of alternate metric cues)” (London 2012). 
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Figure 2.1. A repetitive acoustic signal (top) and the hypothetical induced pulse
(center) and meter (bottom).

From a theoretical musicological point of view, Lerdahl and Jackendoff
(1985) propose a more nuanced metric structure composed of more than
two (strong and weak) types of accents. In their General Theory of Tonal
Music (GTTM) they present a hypothetical multileveled model of metrical
hierarchies that is based on the same nesting principles as the dynamic
attending model (a reference level can be concatenated or subdivided in
predefined proportions, see Figure 2.2 left). In their model, consecutive
pulses are grouped while also preserving the metrical subdivisions of the
pulse (i.e. binary or ternary), creating an evenly distributed time grid that
spans for several pulses, in which the duration of the smallest period is the
same as the time elapsed between lowest metrical events. In this structure,
metrical accentuation depends on the relation of each accent with the
highest metrical grouping. Although completely theoretical, this nested
metric presents an amplified version of the strong-weak psychological
differentiation of meter, where the inter-pulse activity is weighted
depending on their position within the pulse, and the weight of the pulses
are also dependent on their position within the above-pulse structure. 

Figure 2.2. Metrical weights as proposed by LHL (left) and as found by Palmer
and Krumhansl (right).
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In order to clarify the existing ambiguity between the binary and the
multileveled views of meter, evidence has been gathered from
experimentation with musicians and non-musicians, confirming how
“listeners, like composers, have abstract knowledge of multileveled
metrical hierarchies in musical composition” (Palmer and Krumhansl,
1990). Based on the results of three systematic experiments, Palmer and
Krumhansl provide experimental support for the existence of a metrical
structure similar to the one proposed by Lerdahl & Jackendoff (Figure 2.2
left). Their analyses evidence different levels of metrical hierarchies in
between strong and weak accentuations, specially in the context of
western classical music. It still remains a question if these structures exist
beyond western tonal music, or if music from other cultures is grounded
on different metrical principles, and as such imposes different perceptual
structures to listeners and practitioners.

2.2.2 Syncopation 
Once the mechanisms of pulse and meter entrainment superimpose
sensations of regularity and hierarchy, as a natural and predictive behavior
when stimulated with a periodic musical acoustic event, a rich interaction
between the temporal elements of the music and our hierarchical temporal
expectations takes place. The most relevant interactions related to rhythm
are caused by a complex and ongoing interplay of confirming and
challenging the elicited expectations or hierarchies. As the sensory
activations of rhythm seem to be a natural human phenomenon,
confirmation-and-challenge interplay is a cross cultural phenomenon also
experienced in other musical dimensions different from rhythm. In the
rhythmic realm, the concept of syncopation is related with the challenge
or reinforcement by the music of our inner pulse and meter predictions.
This concept is important as syncopated rhythms are said to elicit higher
level musical responses as pleasure, motor activation and even dance
(Witek et al., 2014a). Syncopation is based on the idea that metric
hierarchies within a rhythmic event are an expression of the expectancy to
perceive a sound; that is, once we are metrically entrained we have higher
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expectations of incoming sounds to be temporally aligned with higher
metrical positions. When the opposite occurs and a sound is aligned with a
low metrical position and a silence is aligned with the next high metrical
position, a syncopation is said to occur (Longuet-Higgins and Lee, 1982)
(See Figure 2.3). 

Figure 2.3. Pulse expectation and syncopations. Positions of expected pulses in
grey, notes in black. A syncopated note on the left and a pulse reinforcing note on

the right.

2.2.2.1 Monophonic syncopation 
One of the first systematic studies on syncopation (Longuet-Higgins and
Lee, 1984), proposes a formula to measure the syncopation of a
monophonic musical phrase based on weights which are assigned to each
note in a musical phrase. These weights are analogous to the metrical
hierarchy of Lerdahl and Jackendoff, which is defined as a nested
structure: “the weight of a given note or rest is the level of the highest
metrical unit that it initiates. (The level of the topmost metrical unit is
arbitrarily set equal to 0, and the level of any other unit is assigned the
value n-1, where n is the level of its “parent” unit in the rhythm)” (Figure
2.4 top). 

Syncopation is then defined with a formula: “If R is a rest or a tied note,
and N is the next sounded note before R, and the weight of N is no greater
that the weight of R, then the pair (N,R) is said to constitute a syncopation
(Figure 2.4). The “strength” of the syncopation is the weight of R minus
the weight of N” (Longuet-Higgins and Lee, 1984). Given that a metrical
hierarchy is established, weights can be assigned to each note and rest
within a musical phrase based on its position: if a note is followed by a
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rest in a position of a higher metrical weight then a syncopation occurs
(Figure 2.4). Syncopation is a violation of the expectancy to find a note at
a high weight position, which is replaced by a silence.

Figure 2.4. A syncopated pattern composed of three notes a, b and c. Note a is not
syncopated as it is reinforcing the pulse. Note b is syncopated with a strength of 3

and note c is syncopated with a strength of 2.

Syncopation also goes beyond the realm of music theory and has been
proven to elicit, in the auditory cortex, specific neural patterns that
influence motor and synchronization functions. Fitch and Rosenfeld
(2007) found psychological relevance of Longuet-Higgins and Lee’s
model (LHL) of measuring syncopation. They experimented with
subjects, having them perform different rhythm tasks of pulse tracking,
rhythm reproduction and delayed recognition, and found that LHL’s
metric was a strong predictor of the participant’s performance. In their
experiments, as the syncopation index increased, the average performance
of the subjects in the different tasks decreased in accuracy. They conclude
that syncopated rhythms in general, were more difficult to perceive and
produce by musicians, and that measures of “complexity” increased with
increasingly syncopated rhythms. On the same path, brain activation
peaks have been measured when a prediction of an upcoming rhythmic
event is generated but is violated by the actual acoustical event, with the
magnitude of the peak being proportional to the magnitude of the
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violation (Näätänen et al., 2007; Polich, 2007). The musical concept of
syncopation as proposed and measured by LHL is found to influence
sensorimotor performance and to be a cause of arousal in the timekeeping

mechanisms of the brain. 

2.2.2.2 Polyphonic syncopation

The research mentioned so far has a remarkable particularity: it deals with
monophonic syncopation only. This condition is a very straightforward
way to present an acoustic signal to subjects in an experiment, but it is
also a reduced version of how real music is experienced. It is completely
fair to use such material for achieving a great deal of experimental control
of the stimuli, but, from a musical point of view, it leaves few clues on
how different layers of instruments reproducing different rhythms, which
in turn induce and challenge a beat, are processed. Such is the case of real
life polyphonic drum ensembles, either acoustic or synthetic, as they are
more likely to be present in EDM in the aforementioned drum tracks and
drum breaks. 

Although there is still much room for the comprehension of polyphonic
rhythm phenomena, there are some studies that have focused on
syncopation using polyphonic real-life musical rhythms. Bouwer et al.
(2014) used a polyphonic music-like drum-kit stimuli, omitting the kick
drum and hi-hat at different metrical levels, and evaluating the
relationship between neural activity and omissions. Their results report an
excitation of neural activity when rhythmic expectancies were violated,
with a magnitude relative to the metrical weight of the violation, and
related to the type of sound that was omitted causing the violation. In their
study, violations on the beat elicited higher activity than violations on less
metrically salient positions related to the beat. They also report a less
prominent activity when the violations were produced by hi-hats alone,
than the combination of hi-hat and kick drum. This finding is revealing, as
it is aligned with the results of other monophonic studies which report
excitation as a function of the position in the metrical hierarchy (Fitch and
Rosenfeld, 2007) but adds another Issue which is the possible effect of the
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type of instrument that is omitted. Interestingly, the study introduced the
effect of the omitted instrument in the overall picture of polyphonic
syncopation. These findings suggest that the omission of a hi-hat
generates a peak of a lesser magnitude than that of a kick and a hi-hat,
thus introducing the frequency dimension, specially the frequency range
of the instruments, to a conceptual system so far explained exclusively by
means of pulse, meter and confirmation-violation of the acoustic signal.
However, their findings cannot be extrapolated to other instruments or
combinations of them, as their respective displacements were not
evaluated. 

In the same context, but starting with a metric for polyphonic syncopation
derived from drum arrangements, Witek et al. (2014a) evaluate the
relation of polyphonic drum syncopation and motor activities, specifically
dance. They conclude that a “medium” dose of syncopation in real-life
polyphonic drum patterns (specifically drum breaks as mentioned in
Chapter 1) magnifies the desire to move and dance to the music. In their
study, they use a special computation of syncopation which is based in
Longuet-Higgins and Lee’s formulation, expanded to fit polyphonic
scenarios. Their original formulation of polyphonic syncopation is
supported by laboratory observations which are similar to those of
Bouwer et al. (2014).  According to Bouwer et al., the frequency range of
the instruments present on a drum pattern influence how their
syncopations are processed in a polyphonic context, specifically
attributing more importance to instruments with a predominance of low
frequency components (i.e. the kick drum) (Witek et al., 2014b). Their
view comes from an ecological perspective in which instruments
composed of low spectral components are more disruptive rhythmically:
“darker (low frequency) sounds are cross-modally associated with larger
and heavier sound sources that are more likely to be close to, or on, the
ground (e.g., a bear), while brighter (high frequency) sounds are
associated with smaller and lighter sources that may spend more time off
the ground (e.g., a bird) (Maurer & Mondloch, 2004).” Aligned with this
view, Hove (2014) presents evidence of the higher influence of low
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frequency instruments in terms of expectancy violation and thus
syncopation, observing larger responses to time deviations of the lower
pitched stream of two different parallel rhythms. Hove also found stronger
auditory-motor synchronization for low-pitch sounds than for high-pitch
sounds, an idea also backed experimentally by Burger et al. (2017). These
findings suggest that a syncopation sensation induced by a high-pitched
sound should cause less disruption to metrical stability than a low-pitch
syncopation. Thus syncopation in a polyphonic scenario is influenced by
the type of sound that challenges the induced pulse, adding a second
dimension to its quantification: one is the place of the metrical disruption
and the second is the frequency range of the sound producing it. 

It is very significant that polyphonic syncopation has been related to
higher level musical concepts as pleasure and desire to move (Witek
2014a). This gives a clue on how complex musical concepts can be
broken down into simpler, measurable and straightforward factors which
can be observed in a polyphonic drum sequence: pattern, pulse, meter,
frequency range, syncopation and desire to move.

2.3 Similarity in Percussive Rhythms
In the previous section it was presented how a drum break can be
analyzed in order to extract high level rhythmic information from it,
which is associated with human sensations such as the degree of
syncopation or the desire to move. This rhythmic information can be used
to study the connections between different drum patterns. Specially, how
the human sensation of two patterns feeling similar could be related to the
objective rhythmic information that can be extracted from their musical,
musicological or acoustic analysis. To extract objective attributes from
stimuli (whatever their modality) and explain with them the similarity
sensations between these entities, is an activity in which different
processes converge. On one hand, there are cognitive and perceptual
studies which seek to define the most important attributes of a stimuli
from a human point of view. On the other hand, there are many different
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formal approaches to similarity between entities, for example, measuring
the common and uncommon features, or defining geometric relations
among them (Tversky, 2004). This section, therefore, presents the ideas of
similarity used in this thesis as well as different approaches taken by
researchers to measure rhythmic similarity, both in monophonic and
polyphonic scenarios. In general, humans take advantage from
establishing connections between entities, which are interpreted as
similarity. These connections play a major role in our daily life as they
allow us to generate new ideas or discover new relations between
concepts, sometimes beyond their superficial appearances.

2.3.1 Notions of similarity

As described by Gärdenfors’ (2004) theory of conceptual knowledge,
similarity allows humans to compare concepts among them. Similarity
serves the purpose of structuring concepts as mental representations based
on their descriptive dimensions. Under this model, similarity is the thread
that holds together the conceptual structures that we use constantly to
process the world we sense and imagine. It has been proposed that
similarity is not static but that it is instead malleable and dynamic, as it
responds to the perspective by which a mental representation is considered
(Ramscar & Hahn, 2001). For example, under certain considerations the
concepts bicycle and car can be similar among them, and completely
dissimilar to chair if we reflect on them as means of transportation, but
instead a bicycle and a chair can be very similar and both very dissimilar
from a car if we are weighting them on a Kilogram scale. Concepts have
attributes which can be used to classify them in specific categories (i.e. as
means of transportation) or to compare them given specific measures (i.e.
as in a Kilogram scale).

Hampton (2001) proposes two different types of concepts, one being
cultural constructions (i.e. science and history) and other being personal
mental representations. Alternatively, Gärdenfors (following Gallistel)
classifies concepts as being either scientific or psychophysical
(Gädenfors, 2004, page 8). Psychophysical representations imply that
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“each individual may be using a somewhat different schema for
representing the concept, and may defend his or her right to consider it to
be correct. The psychological question therefore becomes that
determining what are the mental representations of concepts that people
use in everyday life” (Hampton, 2001). On the other hand, scientific
representations are formed from “the basis of people’s concepts most of
the time, and that some individuals, with a lot of training and with the
advantage of the cultural transmission of ideas from great thinkers of the
past, are able to develop more advanced thinking skills in particular
domains.” (Hampton, 2001). In the context of this study it is to be proved
how much of the compositional process of a musician is influenced by
cultural characteristics, or by acquired taste and experience, and how
much is determined by the music rhythm processing of her brain. It is
plausible to think that there is an interaction between these two types of
concepts (and most likely some others), when a compositional process is
at play. Modeling these concepts is determinant for a robust artificial
EDM listener and composer, as the one that is being proposed here.

Under certain circumstances, elements defined by specific measurable
attributes or dimensional characteristics (as weight, speed, frequency or
syncopation strength) can be located in a conceptual space that has as
many dimensions as measurable attributes. Each element becomes a point
in a common space, a conceptual space, forming relations based on the
similarity of their characteristics that allow to elaborate higher level
abstractions about that conceptual space. For example, in a fruit space,
one could say “a lemon is as similar (or as different) to a tangerine, as an
apple is to a pear”. Such statement, whether we agree on it or not, implies
quite a number of higher level abstractions that can be traced down to the
idiosyncratic use of similarity among fruits, and its intrinsic evolution into
a geometrical construction. It means that the similarity between the lemon
and the tangerine is comparable with that of the apple and the pear, which
means that the magnitude of both distances in a conceptual space is alike.
This in turn, can be interpreted as that the characteristics of each fruit, in
this common fruit space (as the color, the shape, the sweetness, the
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acidness, the size, the ruggedness of the skin, etc), determine that the
measurable distance between lemon and tangerine is similar as the one
between apple and pear. This however does not imply that in every
dimension of the fruit space both pairs of fruits are separated by the same
values, (i.e. same sweetness distance, same color distance, etc), it just
implies that after considering all the available dimensions, their final
distances are somehow similar. It is important to emphasize that if such
comparison was part of a conversation where someone was commenting
on how fruits are alike, such statement would have emerged
automatically, without having to consider dimension per dimension in an
exhaustive way, and it would be an automatic expression of the geometry
of an inner fruit space.

Adopting this framework for reflecting on concepts, adds the possibility to
group them and define geometrical boundaries around them, which lead to
the construction of categories. Following the example above, one could
define that a lemon and tangerine are alike and that they both coincide
within the region of the citrus, as the pear and the apple are bounded
inside the region of the pomes. In this example, there would be an overlap
between the two types of spaces defined by Hampton (2001): a
psychophysical space (where one’s similarity is originated) and a
scientific space where concepts have been studied, measured and
classified in an organized way, defining regions as citrus or pomes.
Conceptual spaces, as the ones presented above, have been successfully
used in different musical domains (e.g. timbre or pitch) to structure the
relations between elements.   

The way in which this framework replicates human cognitive aspects is to
be founded on the idea of similarity as being dynamic, thus allowing to
compare a group of concepts from different perspectives which, in its
more literal sense, implies a geometrical shift. To illustrate this point, let
us recall the fruit space. Under one perspective, if we think of flavor, one
can agree that pears and apples, which are sweet, are closer among them
than lemons and tangerines which are citric, which makes them closer
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among them and distant from sweet fruits. However, if we decide to give
a higher importance to the color dimension, then green pears and lemons
would be more similar among them and tangerines and apples, being
orange and red, would be more similar among them than to green fruits.
This simple example shows how similarity, and thus the conceptual
spaces based on it, are not of a sTable nature, but on the contrary, suppose
a dynamic structure rooted on how the descriptive dimensions of elements
in the structure are weighted. Similarity has a malleable nature which is
tuned by adjusting the importance of the dimensions as we did by shifting
from taste to color. “In order to obtain a cleaner and more generally useful
set of categories, we may adjust the weights of dimensions, and even
construct new dimensions from which to build concepts (Hampton,
2001).” The application of these concepts in music similarity research is
relatively recent, (Aucouturier & Pachet, 2002; Logan & Salomon, 2001;
Pampalk et al., 2005) but its impact in terms of active users in
contemporary digital music reproduction platforms is unprecedented8. 

A definition of similarity must leave space for the different characteristics
of two elements and also keep the flexibility to change given the
importance assigned to some of those characteristics. Two families of
similarity models are reviewed by Keane and Smyth (2001): the first one
is the contrast model derived from a model proposed by Tversky (1977),
where they argue that, to measure the similarity of two entities, one must
group on one hand the features that are common to both and on the other
their distinctive features, all weighted independently. This model is
characterized as:

Where A and B are the set of attributes of entities a and b. The term (A ↔
B) represents the set of attributes common to A and B, (A - B) represents
the distinctive features in A and (B - A) the distinctive features in B. θ, α,
and β are parameters that reflect the importance of the common and

8 See for example music streaming systems as Pandora or Spotify.
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distinctive attribute sets. The function ƒ is a measure of the salience of the
features or sets of features of both entities. Another type of similarity is
the alignment model, proposed by Keane and Smyth (2001) where they
emphasize on the dynamic aspect of similarity, especially on how the
cognitive processes used to apprehend each of the entities influences their
similarity, explicitly how similar those processes are. In this model, as in
Tversky’s, similarity is divided in three groups: the commonalities (the
characteristics that match between both concepts), the non-alignable
differences (the characteristics of one concept not present in the other) and
the alignable differences (both concepts share the same characteristic
values, but their values differ). In general there are many mathematical
models for computing cognitive similarity (Verguts et al., 2004).

Similarity forms then the basis of our system of concept relations. Thanks
to similarity, concepts can be kept entangled into geometrical constructs
that are dynamically updated with new experiences and by changing the
way we weight the dimensions that describe those concepts. Concepts
“play a central role in everyday behavior and action, they permit
predictive inference, they are a necessary building block for acquiring and
using knowledge of the world. Concepts evolve in order to maximize their
general utility value, according to some (as yet unknown) criterion of
utility” (Gärdenfors, 2004). 

In the context of understanding EDM drum rhythms (and creating smart
agents which are able to generate them), the concepts of similarity are
fundamental. They allow to establish quantitative relations between drum
patterns. They also make possible to understand and visualize the affinity
between drum patterns of different genres or among patterns generated by
a rhythm-expert agent, or even to compare the patterns generated in
different styles. Defining objective metrics to measure similarity relations
between rhythms, aligned with human similarity sensations, is crucial in
order to work in the domain of musical drum patterns.
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2.3.1.1 Dimensional reduction techniques

A typical way to grasp the relationships between concepts with many
attributes in an easy-to-visualize two or three-dimensional graph, is the
use of dimensional reduction techniques. These are a family of algorithms
specialized in converting high dimensional (multi-attribute) spaces into
small dimensional spaces, minimizing the difference between the multi-
dimensional distance and the low-dimensional distance between the
elements of the graph. Commonly, visualization of data is based on low-
dimensional structures (2D or 3D), while the information displayed can
convey more dimensions by resourceful use of color, form and symbols
(Keim, 2002). 

In cognitive science, a low dimensional cognitive space is obtained from
subjective similarity judgments generated by subjects who compare pairs
of instances of a specific domain or type (i.e. fruits, sounds or rhythms).
The data generated from such comparisons is processed by dimensional
reduction algorithms which output low-dimensional maps representing the
similarity relations between the compared instances. These cognitive
maps help researchers observe implicit characteristics of how a given
domain is processed by humans. The purpose of these maps is to make
observations of the relationships between the instances of a domain which
are not evident in the pair-wise similarity judgments. 

One of the most common dimensional reduction techniques is Principal
Component Analysis (PCA). This technique is used when all the elements
of a given set have multi dimensional attribute values. PCA consists on
finding the multi-dimensional axis (a weighted linear combination of the
attributes describing an instance), where the attributes are scattered the
most. That axis is called the principal component and is composed of
weight values for each of the attributes. Additional components can also
be added in order to achieve two-dimensional or higher dimensional
representations of the elements in the set. The only requisite for the
additional components is orthogonality with the other components. So, for
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example, the search for the secondary principal component is a search
around all possible axes which are orthogonal to the main principal
component. The secondary component is that in which the attributes are
maximally dispersed (Wold et al., 1987).

Other techniques have been developed for the same purpose, such as
multidimensional scaling (MDS) (Kruskal, 1964). This technique is based
on having all dissimilarity values between each pair of elements of a given
set, thus obtaining a dissimilarity matrix. Then, MDS is used on the
matrix, specifying the desired dimensionality of the expected resulting
space. Finally, the result is a set of coordinates for each element on the
set. Unlike PCA, MDS' main goal is to preserve the high dimensional
distance among the elements in the space. This methodology is
widespread in cognitive sciences and is the foundation of contemporary
understanding of many domains such as color (Shepard, 1962), timbre
(Grey, 1977), pitch (Krumhansl, 1979) or tactile textures (Hollins, 2000).

2.3.2 Monophonic rhythmic similarity

Having introduced similarity and conceptual spaces as a model in which
concepts, such as rhythm patterns, are structured given their
characteristics, the idea of rhythmic similarity can be considered.
Different authors have studied ways in which similarity sensations
between two rhythmic patterns relate to objective properties of the
patterns themselves (Paiement et.al., 2007; Cao et. al., 2014; Post &
Toussaint, 2011). Experiments are either focused on monophonic or
polyphonic rhythms. Some are based on extracting cues from audio
recordings, while others rely on the symbolic renditions of the patterns.
There are also two main frameworks in which similarity is conceived. One
is built upon the ideas revealed by psychoacoustics, cognition and
neuroscience, where the sensation of similarity is seen as a consequence
of rhythmic processing as exposed above: related with pulse, meter and
the violations and reinforcements of the emergent hierarchies. The other
framework is inspired by information theory measurements of similarity
in data sequences.
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An interesting body of work has been created exploring the use of
information-inspired metrics for predicting similarity sensations between
two rhythms, measuring differences in their inter-onset intervals (IOI), or
the time between the start of each note onset and the next. Different
metrics such as the edit distance (Post and Toussaint, 2011; Toussaint et
al., 2011), many-to-many, one-to-one distances (Toussaint and Man Oh,
2016) or the Hamming distance (Paiement et al., 2007), have been
considered to be useful candidates to measure similarity in rhythms.
However, no empirical data connects these metrics with theories of
rhythm processing in humans, from either a psychoacoustic or a
neurological perspective. The interesting properties of these agnostic
metrics are their common use in any type of application, disregarded of a
cognitive context. They are used for measuring the distances between
strings of symbols with no perceptual or musical relation, as they are
unaffected by meter, pulse or syncopation whatsoever. Several papers
have been devoted to the use of the edit distance in rhythmic similarity
contexts from a conceptual and also from a practical point of view,
suggesting it captures the similarity elicited when comparing two rhythms
(Post and Toussaint, 2011; Toussaint, 2004; Toussaint et al., 2011). But
other authors working on different rhythmic metrics, are at odds with the
use of the Edit distance for how the metric is defined (Paiement et al.,
2007; Cao et al., 2014). The edit distance is popular for measuring
distances between strings and it is widely used in linguistics and DNA
sequencing analysis (Kim et al., 2013). It is based on measuring the
amount of transformations that must be applied to one string to become
another, allowing three types of transformations: character substitution
(i.e. abc for adc), insertion (i.e. ab for abe) and deletion (i.e.abcd for acd).
What has been pointed out by the critics of the edit distance is the use of
insertions and deletions which, with a single transformation, can
dramatically alter the way a rhythm is perceived (e.g. a reinforcement
becoming a syncopation). 
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For example, a sequence composed of a series of onsets on the pulse on a
binary meter, can become  a highly syncopated rhythm by an insertion
operation (see Figure 2.5).  This has been clearly pointed out by Paiement
et al. (2007), arguing that rhythm perception heavily depends on the
position on which rhythmic events occur and, instead of the edit distance,
they opt for the use of a Hamming distance between rhythms. The
Hamming distance on its side, is also a rhythm-agnostic metric, but makes
no use of insertions or deletions at a low distance cost, as it is the case
with the Edit distance. Despite a lack of rhythmic theoretical foundation,
the logic behind these agnostic metrics is syntactical, as they are
concerned with the orders of the onsets and silences within a sequence. It
might be the case, however, that the claims of predictive power of these
agnostic metrics metrics apply in specific scenarios where memory
processing is more relevant than the presence of a pulse and meter, such
as in the absence of an induced pulse. 

Figure 2.5. Two monophonic patterns at an edit distance 1. The pattern on
the left is a pulse-reinforcing pattern while the pattern on the right is a

completely syncopated pattern. 

The idea that hierarchies and meter are a source of information for our
cognitive system, when evaluating the similarity of two percussive
patterns, is presented by Johnson-Laird (1991), as he proposes that
rhythms can be varied to some extent without perturbing their
resemblance if they belong to a certain rhythmic prototype (if they both
have similar rhythmic characteristics). He argues that rhythm prototypes
are built from families which are assumed to be only dependent on the
onsets of a rhythm, forming categories (or families) specific to the phrase
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between two pulses. Families between pulses can be of three different
types, being syncopations (S) the most important one,followed by beat
reinforcements (R), and finally phrases which bring nothing (N) to the
rhythmic sensation (a rest or a group of notes preceding an onset). A
monophonic rhythm can then be reduced into a sequence of families. All
possible monophonic rhythms belonging to the same family will,
according to Johnson-Laird, maintain a similarity resemblance. 

This compact form of devising rhythms and establishing their relationship,
was later used by Cao et al. (2014) performing four experiments in order
to evaluate what determines the similarity of rhythms, even when timbre,
tempo, meter and number of notes within two patterns is held constant. 

Cao et al. (2014) proposed a “family theory” whereby similarity between
two patterns, which are reproduced with the same monotonic sound, is
based on two main factors: one is the presence of an identical sequence of
inter-onset intervals (IOI) in both patterns, while the other factor is that
the relationships with the meter, the rhythm families, are held constant in
both. Their aim is to contrast the cognition-based family theory of rhythm
similarity, with the simpler approach of the edit distance rhythm
similarity. Their results show how a pattern of onsets is more important
than the same family for the closest similarity, and that family has a clear
influence on similarity ratings, thus corroborating the general family
theory (see Figure 2.6). Exact repetitions of regions (IOIs) and their
shiftings showed to be highly influential on the ratings, revealing an effect
of surface features over constructs derived from the metric. This might be
related to the fact that when the patterns were presented to the subjects in
both experiments, there was no explicit pulse (so neither meter) induction.
Therefore the effect of the families, which is dependent on metrical
weights, a construct of pulse and meter, is not sufficiently present when
the similarity assessment takes place.
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Figure 2.6. Different  similarity levels for the controlled pairs of patterns used by
Cao et al. (2014) (Figure extracted from that paper)..

As a conclusion, let’s summarize that two theories of rhythm similarity in
monophonic rhythm have been discussed, the one we refer to as syntactic
and that considered to be semantic. The syntactic one groups different
measures of similarity based on the transformations and displacements of
the musical surface, disregarded of the effect that a rhythm elicits in a
subject (i.e. the edit distance). These measures are agnostic so the high
perceptual cost of changing a pattern of notes from reinforcement to
syncopations can be regarded as a low-cost displacement of a set of notes.
A strong rhythmic change could be regarded by these metrics as a small
note displacement, thus assigning a high similarity between one rhythm
that is reinforcing the pulse and another that is totally syncopated. The
other theory, the semantic one, proposes how a similarity sensation is
based on the notes' position in a pattern in relation to the induced pulse
and meter, that is, their syncopation. In this way, different IOI
configurations can elicit the same syncopation or reinforcement sensations
and thus a sense of similarity. Both of these theories are grounded on well
known perceptual mechanisms: on one hand humans excel in counting
and finding general patterns from a surface of symbols, for example letters
in a word (Meyer & Schvaneveldt, 1971), and on the other, a rhythm
elicits a series of cognitive organizations, that define the way in which we
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process and understand a rhythm. However, empirical discerning among
both is still incomplete.

2.3.3 Polyphonic rhythmic similarity

One purpose of this thesis, as it has been presented at the beginning of this
chapter, is to understand the relationship between drum pattern variations
(typical of EDM compositions) and objective similarity measures. The big
picture here is grasping EDM drum production in terms of similarity so
that different compositional processes can be explained and recreated
using a cognitive perspective. However, as it is presented in the previous
section, there is still room for understanding the mechanisms involved in
the similarity sensations of two simple monophonic and monotonic
rhythmic patterns and, even more, of real polyphonic drum patterns.

One of the main studies carried out with the purpose of understanding the
factors involved in polyphonic drum pattern similarity is accomplished by
Alf Gabrielsson (1973a; 1973b). He explored how different rhythms of
different musical styles, reproduced with the same sounds of a drum
machine, were perceived by subjects in terms of similarity. His
methodology was to use the multidimensional scaling (MDS) technique to
visualize rhythms as points in a conceptual space, based on human ratings
of how alike several polyphonic rhythms are considered. Gabrielsson
performed different experiments each based on evaluating similarity
within different groups of patterns in which he controls parameters as IOI,
meter, tempo and instrumentation. 

His results offer relevant insights into the range of factors that influence
polyphonic rhythm similarity. Each experiment considers a carefully
selected set of patterns focusing on a specific aspect. He systematically
explores the influence of the instruments’ IOIs in similarity, by using a set
of patterns all of them sharing a binary meter and the same tempo. On
another experiment he focuses on the influence of meter in similarity, by
including binary and ternary patterns in the comparison set. A third
experiment explores the influence of tempo on similarity and his last
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experiment uses a set of real music samples to have an insight on the
effect of instrumentation on similarity ratings. 

His results do not formalize a polyphonic similarity model, but they give
thoughtful insight into different factors that are involved in listener's
similarity sensation of polyphonic drum patterns. The two main results
extracted from Gabrielsson’s research are the notion of rhythm spaces,
which emerge as useful structures for visualizing similarity relations
between drum patterns,  and a clear list of factors that have influenced
polyphonic rhythm similarity in his experiments (1973b). These factors
are according to himself: 

● The meter induced by the sequence.
● The onset density of the patterns.
● The simplicity-complexity of the patterns.
● The syncopations.
● The number of different instruments in a sequence.
● The “movement character” of the rhythms.

Research on monophonic and polyphonic similarity studies reviewed in
this section, evidence different advances in the comprehension of this
phenomenon. There is experimental research carried out which underlines
important factors influencing similarity judgements of rhythms, but in
general it still remains an open question for monophonic and, specially,
polyphonic scenarios. Monophonic rhythm similarity is more developed,
and the models based on syncopation families and identical regions
suggest a continuum from the more robust theories of human rhythm
processing. This connection of similarity with cognitive and neural
processing marks a starting point which could be transited in order to
advance towards meaningful metrics.  

The connection between the monophonic and polyphonic domains of
rhythm similarity is not that strong. It would be ideal that rhythm
processing knowledge could provide sufficient knowledge to trace a
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continuum between what it is known about monophonic similarity
sensations and what is known about the polyphonic situation. The
theoretical expansion of monophonic syncopation to polyphonic
syncopation successfully used in groove scenarios (Witek et al., 2014), is
one of the few attempts to close that gap. The acknowledgement of the
importance of the predominant frequencies of the different percussive
instruments found in a polyphonic drum arrangement, is an advance
towards the comprehension of polyphonic similarity. Gabrielsson’s
studies remain relevant and somehow unique in the polyphonic drum
similarity domain, but his results are so open ended that it becomes hard
to formalize from them. Connections between Gabrielsson’s spaces and
similarity factors are still to be developed in order to define polyphonic
similarity metrics.

2.3.4 Rhythm spaces

Alf Gabrielsson establishes the formal study of polyphonic rhythm
through subject-based dissimilarity studies and the subsequent bi-
dimensional visualizations of collections of rhythm patterns (see Figure
2.7). Other rhythm spaces emerged eventually as visualization techniques
were used to explore different relations between percussive rhythms.

Desain and Honing have an extensive body of work on modeling human
perception of rhythm from a cognitive perspective. In several papers they
use a three dimensional space for visualizing rhythms. Each axis of the
space represents one of the three inter-onset intervals (IOI) which exist
between the four notes of their rhythm. In this informative space, a
rhythmic structure is recognized by its position (Desain & Honing, 2003)
(Honing, 2002). 

Other authors have dealt with rhythm spaces and rhythm similarity in a
polyphonic music audio (retrieval) context. Rhythm spaces are implicit in
many MIR studies involving rhythm descriptors (Ellis & Arroyo, 2004;
Rocamora et al., 2014, Paulus and Klapuri, 2002). Here, spaces are rarely
explicitly depicted or used as such, probably because their multi-
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dimensionality and because the aims lean more towards automatic music
classification (Chen & Chen, 1998).

Figure 2.7. A rhythm space by Alf Gabrielsson (1973b). F: foxtrot, RR:
rocnk'roll, R: rhumba, B: beguine, H: habanera.

2.4 Style in EDM

2.4.1 Definitions of style

Being art regarded as one of the most sophisticated and complex human
activities, the possibility of constructing systems able to generate art
pieces is considered as a milestone for Artificial Intelligence and
engineering (Boden, 1998). One major concern, in artificial generative art,
has been capturing the character of the melodic phrasing of a specific
music composer or the essence of a pictoric movement (say Cubism or
Impressionism) (Argamon et al., 2010). The goal is to have systems
capable of extracting practical knowledge from examples of works of art
and then to use that knowledge in the creation of new original art pieces
following that same style. However, in order to create systems that can
detect the essences of a style, and use that for generative purposes, it must
be made clear what style is, and how it is manifested throughout a
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collection of art pieces. The concept of style is related to our mental
ability to deduce that some items, for example sounds, paintings, gestures,
or situations, have something that bounds them together and that makes
them different from others and alike among them. Something that makes
them belong to the style (Deliège, 2001).

A solid ground on musical style is given by Meyer (1967), one of the
main authors addressing this area from a quantitative point of view. His
notion of style is partially influenced by that of Information Theory
(Shannon, 1948), and his vision has proven fruitful in posterior studies of
musical style (Moore, 2001), and on the creation of generative music
systems based on style (Temperley, 2007; Conklin & Witten, 1995;
Pearce et al., 2005). He writes the following to introduce style:

“Style constitutes the universe of discourse within which musical 
meanings arise. There are many musical styles. They vary from 
culture to culture, from epoch to epoch within the same culture, 
and even within the same epoch and culture. This plurality of 
musical styles results because styles exist not as unchanging 
physical processes in the world of nature, but as psychological 
processes ingrained as habits in the perceptions, dispositions, 
and responses of those who have learned through practice and 
experience to understand a particular style. What remains 
constant from style to style are not scales, modes, harmonies, or 
manners of performance, but the psychology of human mental 
processes-the ways in which the mind, operating within the 
context of culturally established norms, selects and organizes the 
stimuli that are presented to it. For instance, the human mind, 
striving for stability and completeness, "expects" structural gaps 
to be filled in. But what constitutes a structural gap will vary 
from style to style.” (Meyer, 1967, page 19) 
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According to Meyer, musical style has a probabilistic nature, related to
statistical processes as Markov processes (more details in the next
section). He suggests that style does not exist in the work itself (the
musical pieces or the paintings), but resides in the minds of spectators and
artists who have abstracted, first unconsciously and sometimes also
consciously (by musical training), the defining or characteristic features of
a style. The norms of a style in a subject's mind can be modeled as
probabilities which influence the mental behavior involved in the
perception and comprehension of the style. One manifestation of these
norms in a musical style, is how one sound or a group of sounds, activate
expectations on trained listeners that indicate that another sound or group
of sounds will be coming at some point in the music continuum. The
product of these probability relations, are expectations which are the real
materialization of style in a human mind (Meyer, 1967). 

In this framework, cultural dynamics play an important role in the
establishment and dissemination of a style, as they promote the exposition
to certain styles of music, and thus the development of the rules of a style,
in the minds of the listeners.

“Once a musical style has become part of the habit responses of
composers, performers, and practiced listeners it may be regarded
as a complex system of probabilities. That musical styles are
internalized probability systems is demonstrated by the rules of
musical grammar and syntax found in textbooks on harmony,
counterpoint, and theory in general.”(Meyer, 1967)

Meyer’s work founded a line of study from which many different types of
musicological, psychological (Krumhansl, 2001) and generative music
research (Temperley, 2007) took off. From the second half of the 20th
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century on, these theories of style, aided by statistics and the advent of
computers, fueled artists, engineers and researchers from different
disciplines to investigate the possible uses of machines to replicate
musical style (Argamon et al., 2010). Most of that research has focused on
classical music with some papers on popular music and very few
dedicated to generative applications of EDM. 

It is important to point that musical style research is based in the study and
processing of symbolic representations of music. Typically, these studies
are approached through musical scores and, for the last decades, using
transcriptions in a common digital music format as MIDI (Musical
Instrument Digital Interface)9. The use of digital music formats is very
convenient as it allows to compile and process music as digital
information using computers. This allows for fast and reliable
computation of multiple statistics and analyses of music and as such it is
common practice in contemporary music research. Style studies in music
with generative purposes have been approached by different authors
(Pachet, 2002, 2003, 2006; Cont et al., 2006; Jacques et al., 2016).

2.4.2 How to study EDM styles

EDM seems to be deeply anchored in conventions that define the different
genres and subgenres, emerging from a complex network of factors that
include aspects as diverse as marketing trends and social stratification,
technological development and studio production techniques, not to
mention the different musical roots from diverse ethnicities and
geographical idiosyncrasies. EDM styles proliferate as they are developed
by the introduction of new musical rules and constraints, mostly in rhythm
and timbre. The genesis of new EDM styles is clearly exemplified in the
birth of Acid House as a consequence of the special use of the TB-303

9MIDI musical format has become a standard since the 1980s when most 
prominent musical instrument manufacturers joined forces to design a musical 
protocol that was common to all of them. MIDI allows music scores to be 
represented in formats that can be processed by machines.
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synthesizer in Chicago House music drum tracks10, or in the establishment
of dub techno style by introducing reverberation and delay techniques
from Jamaican Dub Music into techno production (Blánquez, 2002). In a
broad sense, a study of EDM musical styles should be primarily focused
on rhythms and timbre transformations, and secondarily in structural,
melodic and harmonic analyses. This perhaps explains why, given the
musicological methodologies available, EDM has not been the focus of
broad stylistic studies. Another plausible reason is the common idea that
some types of EDM music are so simple harmonically, melodically and
structurally that musicologists might think “there is not much to study”. In
general terms, EDM is founded in the musical dimensions less studied in
classical music analysis, namely timbre and rhythm.

However, some authors (Faraldo et al., 2016; Butler, 2006; Collins et al.,
2013; Anderson et al., 2013) have researched different aspects of EDM
style evidencing, according to Meyer, some of its rules, traits and
conditioned expectations. Faraldo (2016) has studied if the idea of key and
mode, from a classical music perspective, is still relevant in EDM.
Anderson et al. (2013) have proposed a methodology to research EDM
styles, using machine learning and directly analyzing the audio signals of
songs, focusing on four different styles, namely Breakbeat, Dubstep,
House and Drum and Bass. Butler (2006) and Collins et al. (2013) studies
of EDM have focused on rhythm and drums and their relation to the
formation of a style, providing rich and useful methodologies for further
studies. Collins describes EDM styles as ‘’blurred and not easily defined’’
but proposes a style map including commercial Hiphop/Rap (from 1979),
Electro (1982-3), Chicago House (1984-9), Detroit techno (1985-9), Acid
House (1987-9), Club Techno (from 1989), Jungle (1992-4), Drum and
Bass (from 1994) and Garage (both US and UK). Despite these efforts,

10A vivid example is acid house pioneer Chip-E talking about how they managed
to extract the wobbling sounds of the TB-303 without understanding quite well
what was happening, but guided mostly by tweaking the knobs with a “musical
sense”. In this case, this experimentation guided by their musical sense
materialized in the emergence of a powerful EDM style known as Acid House.
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there is still room for stylistic research in EDM, as the repertoire increases
constantly and new sub genres are created with the advancement of
technology and aesthetic innovations.

Perhaps the main factor influencing the obliteration of EDM in academic
research, is the fact that its dissemination and conservation format is audio
and not music scores. Audio to symbolic automatic transcription
technology (i.e. audio to MIDI) would be indispensable to study EDM
fully, as researchers could recover a score from an audio recording.
However, as these tools are not technically available yet, EDM style
studies have to undergo the complex activity of manual transcription. 

Based on the literature reviewed in this section, the idea of drumming
style to be developed in further chapters will be defined by the
probabilistic analysis of percussive information in symbolic format. As
proposed by Meyer (1967), and later embraced and developed by other
authors (as Conklin & Witten, 1995 or Temperley; 2007), musical styles
are rooted in human minds as habits, dispositions and responses which can
be modeled using probabilities. The probabilistic analysis of EDM drum
rhythms will be based on the study of drum sequences, specifically in
MIDI format.

2.5 EDM Production and Drum Sequencing
Composing music, playing musical instruments and producing audio
recordings, three different activities which traditionally have been done by
different specialized individuals, are increasingly being fused by the
immense potential brought to music production by computers and DAW
applications, which allows performing these three activities with a single
tool. The division of roles between the music composer, the performer and
the audio engineer is being blurred by the current state of technology so
that it is very typical to find nowadays a composer who is also an expert
in music production, or a performing musician who has taken over
composition and music production in a personal studio. To some authors,
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this can be a sign of an advancement towards a democratization of music
production (Goodwin, 2004), and even as a transformation of power
relations in studio work (Théberge, 1997). Beyond these interpretations, it
is evident how the possibility to do very specialized music work using
personal computers, and even porTable devices, has allowed a person
previously dedicated to a specific musical role to go beyond its traditional
boundaries, learning and taking over new complementary activities.

Most textbooks and tutorials dedicated to EDM production is developed
under this premise, as they focus in the introduction of novice or amateur
musicians into the multiple and diverse aspects of music composition and
production, presenting audio technical work, music composition and
interpretation as a continuous activity. Different authors have written
about EDM composition (Adamo, 2010, Brown & Griese, 2000;
Emmerson, 2013; Hewitt, 2009; Snoman, 2012), all of them covering
aspects from setting up an EDM studio, introductory musical theory
focused on chords and melodies, notions of timbre manipulation with
sound synthesizers, and drum programming according to different EDM
styles. It is very significant that drum sequencing sections are approached
by explaining how different EDM drumming styles are sequenced. In this
sense, rhythm construction is always approached by describing prototypic
patterns of an EDM style, and not by explaining the constitutive aspects of
rhythm and dance. Even more, there is no description of any aspect of
rhythm processing as pulse, or syncopation, to explain the patterns under
their framework. All drum sequencing knowledge that can be extracted
from these books is valid within the examples extracted, and leaves the
reader without theoretical tools to interpret why the rhythms in the
examples work for dancing, or how can they be transformed to enhance
the drum production process. An original approach on EDM production
literature can be found in DeSantis (2015) ,as he presents different
dynamics for un-blocking the creative process of producing electronic
dance music. As the previously mentioned authors, he also uses piano roll
screenshots for representing dum sequences and covers a similar range of
topics from technical to aesthetic or music theoretical. The treatment of
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drum sequencing is again presented without any context of rhythm
processing or any rhythm perception theory. The author is, nevertheless,
sharp in pointing out the extreme problems of sequencing drum rhythms
in creative ways, specifically when not copying a previously existing
rhythm. However, he fails to acknowledge any valid framework from
which to start overcoming rhythm sequencing creativity. It is important to
remark his very unique and useful strategies to make variations from
rhythms, which are not found in the other books, again clearly pointing
out to another fundamental activity of EDM drum production: the act of
making transformations of drum patterns.

Very similar information to the aforementioned literature, but less
condensed and perhaps more specialized, is found online in blogs, sites
and video channels dedicated to EDM production. These online
information presents text, images and videos, describing how to produce
electronic music, get started with DAWs, understand and use technologies
for audio processing and sound synthesis, make basslines and drum
patterns for specific styles and so forth. Specific resources for drum
production include transcriptions of famous drum breaks extracted from
funk and soul records presented in the piano-roll format11, periodic
publications on how to create EDM drum patterns in highly specialized
styles12, archives with examples of drum patterns in prototypic EDM
styles13,14,15,16, a Master’s thesis with drum transcriptions of Drum Breaks,
prototypic EDM and Afro-Cuban drum patterns and (Hein, 2013),
sequencing and sound design of EDM drum patterns17, or a complete book
with a guide on how to compose EDM with three chapters devoted to
drums and percussion18. The different EDM styles covered online and in

11http://funklet.com/
12https://www.attackmagazine.com/technique/beat-dissected/
13http://subaqueousmusic.com/drum-patterns-for-electronic-music/
14http://simonv.com/tutorials/drum_patterns.php
15https://mccormick.cx/news/entries/how-to-write-beats.news
16http://quadrophone.com/drums/midi-drum-patterns-for-edm/
17http://howtomakeelectronicmusic.com/category/tutorials
18http://users.skynet.be/shedo/DMR1/Index.htm
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printed literature tend to be House, Techno, Breakbeat, Garage, Drum and
Bass, Hip Hop, Trance, Chillout, Dubstep, Jungle and Trip hop. 

In all EDM production specialized literature, the topic of drum sequencing
is always present, as drums are the musical elements that set the rhythmic
environment that gets people to dance. Despite the fact that the main
dance-functional aspect of drums in EDM is clearly stated by all authors,
none of them have made any connections to specialized literature in order
to expand on this topic as it is presented in section 2.3.3, (i.e. to expand on
how dance is stimulated from drum sounds themselves). In general, this
literature lacks of comprehensive explanations on: 

• How to create original drum patterns.

• What makes a drum pattern incite people to dance, 

• How to transform a pattern maintaining its essential identity.

• How to concatenate drum patterns to keep a continuous flow. 

There is an evident disconnection between what is available in the
literature to guide EDM producers to carry out the production of dance
tracks, and the actual work that has to be done. A breach which is
amended by experimentation and trial-and-error by the producers
themselves who, at the expense of their time and effort, explore how to
deliver proper EDM drum tracks. A similar separation between EDM
records and the specialized EDM press is observed by Eshun (1999) as he
argues, it is incapable of describing rhythm, keeping it “as an unwriTable,
ineffable mystery”, an attitude guided by a “hostility towards analyzing
rhythm at all”. This gap, between shallow explanations of EDM rhythm
and the actual theory to work in EDM production, is an opportunity for
EDM schools, writers, musical media producers and musical software
designers. There is a need to address the distance between the rhythms
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that actually make people dance and the knowledge to understand them, to
talk about them and to use their essence as inspiration for programming
new rhythms in drum machines. 

Some companies have created products for bridging this gap, distributing
specialized EDM media building blocks that can be useful throughout the
production pipeline. These building blocks tend to be packed with
hundreds of MIDI and audio files of drums, basslines, chord progressions,
melodies and vocal samples belonging to a specific EDM style (e.g. a
Funky House composers’ bundle). These elements serve the purpose of
saving production time and structuring the foundation of a track with a
specific style sparing a composer for time, knowledge or inspiration for a
project. These building blocks can be seen as compositional presets, or
interchangeable musical units, which usually comprise hundreds of
bundled files that can be combined to achieve a sort of stylistic collage.
An example of this sort of product, the “Essential Minimal Techno Vol
2”19 contains 894 Mb of 539 Samples broken down as:

• 366 Rex220 Files

• 10 Construction Kits

• 113 Drum Loops

• 16 Bass Loops

• 53 Synth Loops

• 49 Percussion Loops

• 17 Vox Loops

• 46 Fx Top Loops

• 164 Hits and Fx

• A 30 Midi Files

These large quantities of files multiplied by many different styles, end up
19https://www.loopmasters.com/genres/40-Techno/products/543-Essential-
Minimal-Techno-Vol2
20A Rex file is a loop file format supported by different software and hardware 
samplers and DAWs.

54



stacked on a producer’s hard drive, easily occupying GBs of computer
disk. As the collection grows, it tends to be progressively obscured by
abundance, as it becomes more and more difficult to navigate a musical
collection by name, especially when trying to find patterns that combine,
resemble or contrast well with others. Picture a producer searching for an
adequate drum loop to layer on top of a percussion loop from the
“Essential Minimal Techno Vol 2” collection, and at the same time
looking for them to match rhythmically.  This would mean having to go
through the 49 loops one by one, alphabetically, loading them to the DAW
and listening to them evaluating the effect. This is a memory and time-
consuming intensive task. Even more if it expands to searching through
several style collections. As this media combination technology offers a
solution to rhythmic  and musical knowledge, it also imposes limits on the
production activity, as it implies making musical sense of large amounts
of material.

2.6 Generative Music Sequencing
Based on very different ideas from the pre-recorded musical building
blocks presented on the previous section, but perhaps with some common
intentions in their final goals, scientists and musicians have explored the
automatic generation of musical material. The common purpose of these
generative music systems is to automate, at least, some portion of the
music composition process, which can span from the generation of scores
and instrumentation instructions, up to the production of complete musical
pieces rendered as audio files. For the design of a generative music
system, the composition process is modeled by the creator using any
means possible, which can go from pencil and paper (Hedges, 1978) to the
use of digital processes. Despite the wide range of possibilities, generative
music systems have been mostly developed using computers (Collins,
2008b). For the rest of this thesis, the creation of generative music
systems will refer then to the design of computer programs which use
algorithms to produce musical material.
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Generative music systems can be classified in two groups, according to
the music representation they are based upon: symbolic or audio-based.
Audio-based representations are a transduction of the raw acoustic signal
unrelated to any musical notion, while, on a higher level, symbolic or
notation-based are abstract musical representations, as a musical score,
indicating the qualities and moments where the specific sounds should be
located. Given the current underdevelopment of automatic audio to
symbolic transcriptors, the detail and precision of audio based
representations cannot be approximated to the results given by symbolic
representations. In the end, both operate with symbols, but its creative
manipulation depends on the detail of their representations. The actual
technological context therefore suggests that using symbolic musical data
as the base for the development of a generative music system, is the most
straightforward approach. 

One of the earliest approaches for devising music systems is noted by
Meyer (1967) who, influenced by Shannon (1948) and Weaver’s (1953)
communication theories, suggest statistical analysis and a Markov process
as a model to deal with music as information, in order to extract the traits
and rules of a musical style (see section 2.4). 

“If music is a Markoff process, it would appear that as a musical
event (be it a phrase, a theme, or a whole work) unfolds and the
probability of a particular conclusion increases, uncertainty,
information, and meaning will necessarily decrease. And in a
closed physical system where the Markoff process operates this is
just what does occur- probability tends to increase.” Meyer,
(1967)

A Markov process is a stochastic method where the immediate probability
of a variable is determined entirely by the occurrence of most recent
variables (Gardiner, 2009). This means that the future state of a variable
x2 can be predicted by a conditional probability P(x2, t2| x1t1) given that t2 ≥
t1 , where t is the state of the variable. The next value of x depends on its
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previous state, and it is expressed in terms of a probability: how probable
it is for x to have a value of x2 given that the past state was x1. This
dependence opens the door for multiple future states (x2t2, x3t2, x4t2 ...) to

have different probabilities of occurring given a same previous step. In a
musical context this could translate to deciding which note to play
in a current state given the note played in the previous state. The
probabilities for the Markov process can be derived from the statistical
analysis of a corpus of sequences in order to assign probability values that
relate a recent condition with different possible variables. 

In a musical context, as proposed by Meyer (1956, 1967), these
probabilities that relate a context  (a recent condition) with the occurrence
of a musical event (a variable) are modeled by the probabilities inferred
from a particular musical style. Thus, following Meyer, the probabilities
extracted from a corpus are a manifestation of the compliance a given
musical event with a style. As such, the probabilities extracted from the
analysis of a musical corpus, do not inform the underlying musical
composition rules of the pieces, but rather a mental agreement (or
disagreement) of the occurrence of a musical event within an idea of style.
On the next decades new approaches to symbolic style-modeling have
emerged. Cope (2004) presented music generative work based in the
implementation of music-theoretical rules. Steedman (1984) used formal
grammars specifically for jazz harmony. Statistical modeling of style has
also been a fruitful approach toward generative music systems (Conklin &
Witten, 1995 ; Conklin, 2003; Pearce et al., 2005), especially suited for
the automatic generation of music in the styles we are dealing with, about
which there is no proper formalized musical theory yet. Some other
approaches are focused on the automatic generation of complete EDM
pieces (Collins, 2008b; Anderson et al., 2013)

Markov sequence generation has been used in many generative musical
applications (Ames, 1989; Brooks et al., 1957; Temperley, 2007;
Nierhaus, 2009). More specifically, Markov chains have also been applied
in real-time interactive music systems, such as ”M” (Zicarelly, 1989), the
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”Continuator” (Pachet, 2002) or ”Omax” (Cont et al., 2010). However,
Markov chains and interactive control are two concepts that do not go
well together, because a user may not be able to specify additional
musical properties wished in the generated material, while preserving
Markovian properties and therefore stylistic consistence (Pachet, 2006).
Pachet proposes the use of Elementary Markov Constraints (EMC) as a
computational solution for obtaining steerable or interactive Markovian
sequences. Another downside of a simple Markov processes is that of
structure, as the process is useful to grasp the prediction of future states at
the note level but it does not necessarily upscale to the motivic or section
or structural level of a musical composition (Pachet et al., 2011). Other
modeling tools that have been used are genetic algorithms (Johanson and
Poli, 1998), neural networks and, more recently, deep learning (Huang &
Wu, 2016). General purpose generative systems, devised to output
complete music pieces (controlling the rhythmic and also melodic, timbral
and structural aspects of a piece) are out of the scope of this thesis, as the
focus is the generation of drum pattern sequences. The next section
presents systems that deal exclusively with drum pattern generation.

2.6.1 Generative drum sequencing

Independently of the input format, the techniques used for the analysis and
synthesis of drum rhythms are diverse, being genetic algorithms (GA),
neural networks and stochastic processes the most commonplace.

Using symbolic representations, Burton (1998) system uses a GA to
recombine collections of polyphonic drum patterns extracted from drum
machines and transcribed manually. As a part of the GESMI project,
aimed at generating complete electronic music tracks, Eigenfeldt &
Pasquier (2013) uses 1st order Markov chains of 32 steps resulting from
the analysis of the drum tracks of 100 transcribed electronic music songs.
Tidemann et al. (2009) present a system based on Echo State Networks
(ESN), a particular approach of a neural network that is trained in real
time by a human MIDI drummer. Once their system is trained, it is set to
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imitate the sequence that had been used in training. Bernardes et al. (2010)
use a GA to create new polyphonic drum patterns, based on the study of a
set of MIDI drum loops. The main operations of a GA which provide a
variable population of rhythms are crossover and mutation. Crossover is
based on a first order Markov chain and mutation on the selection of a
step to transform controlled by their metrical weights. Once a population
is created, density and complexity are used as user inputs to filter out the
output drum patterns (Bernardes et al., 2010).

In audio-based drumming systems, Aucouturier and Pachet (2005)
describe a reactive system that adapts to the musical input of a performer
on a MIDI keyboard. The generative system is based on the extraction of
drum sounds from recordings, and then uses concatenative synthesis to
generate rhythms. In the reported example, the mappings between MIDI
and drum generation, as well as other generative controls and constraints
are defined offline, therefore letting the system to drum along with no
real-time control. Collins (2001, 2002) presents a collection of algorithms
and techniques for cutting drum loops and reshaping them for their use in
EDM composition. Wooler & Brown (2011) describe a fast adaptive
system used to create rhythm mosaics resulting from two audio sequences
to be cross-faded at the user’s will. Cross-fades are not applied to volume
but rather to the percussive elements extracted from one track or the other
and located in non-disruptive positions. The rules for locating the
fragments are based on the Markov analysis of the short rhythms to be
cross-faded. These two last examples are interesting due to the creative
approach to polyphonic rhythm generation. Most commercial drum
programs and plugins available are concerned with sound rendering
(synthesis and sampling) and basic sequencing, rather than with intelligent
pattern generation or algorithmic composition. We present below, a
summary of the most relevant programs we have found connected to our
research.
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Different Drummer (Technemedia, 2015) and Robotic Drums (Urtubia,
2015) use stochastic methods for generating drums. Both are drum
sequencers in which events on a given step are user-controlled by a
probability value. Another approach is Stylus RMX (Spectrasonics, 2005),
which aims to transform drum patterns rhythmically based on displacing
onsets to certain points in the grid. There are two variation parameters: a
”simplify” knob, which reduces the amount of onsets in the loop, and a
discrete selection menu called ”variation”, where a fixed amount of
variations from the original patterns can be selected. Although not a drum-
exclusive application, drum loops can be loaded in order to be
transformed. FXpansion’s BFD321 created one of the first virtual
drummers to be used inside DAWs to emulate acoustic sounding drums as
a replacement of a drummer in a recording studio (Figure 2.8).

Electronic artist Cristian Vogel has applied the Euclidean algorithm
(Toussaint, 2005) to automatic pattern generation in the Kyma
environment (Vogel, 2015), and has used the software to create all the
rhythmic elements for his 2014 album ”Polyphonic Beings”. WaveDNA
has recently released Liquid Music22 for Max for Live, which provides
building blocks of rhythmic patterns that can be varied and tweaked with
unique visual editing tools, such as the ”beatform tumbler” complexity
transformer, the ”beatform weaver” combination generator, or the
”groovemover” remixer. Artist James Holden has tackled the difficult
notion of groove and the challenges that need to be addressed when
interacting with human musicians. Based on Holger Hennig ideas, who
examined the effects of synchronization between musicians (Henning,
2014), he has released a free MIDI humanizer (Holden, 2015) which can
listen to and respond to musicians in real-time performances.

The generation of drum sequences is perhaps an under-researched topic in
the vast panorama of generative music, which has primarily focused in

21A review of  FXpansion https://www.soundonsound.com/reviews/fxpansion-bfd
22https://www.wavedna.com/liquid-rhythm/
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melodic and harmonic aspects of music. Even though there are several
generative music approaches, the concepts of drumming style in the
context of EDM have not been clearly approached. The techniques
reviewed for musical sequence generation offer a wide palette of options,
but the Markov process approach makes a perfect sense to the problem of
rhythm sequencing, given the short length of the sequences (i.e. one or
two bars), and their apparent detachment from the musical structure. The
straightforward way in which Meyer associates the mental operations of
musical style processing with the Markov process, suggests it can be an
adequate method for approaching rhythm generation. 
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Figure 2.8. Screenshot of the BFD3 drum machine.

2.8 Conclusions
As it was demonstrated by Witek et al. (2014a), syncopated arrangements
of polyphonic drums, with a crafted balance between reinforcement and
denial of the pulse in the low against mid-and-high frequency instruments
(Witek et al., 2014b; Hove et al., 2014), are pillars in which the desire to
dance is grounded. Years earlier, and without the need of scientific
confirmation, early EDM pioneers developed strong intuitions on these
same matters, which they mixed with appropriate technological tools that
paved the way for new musical genres to appear globally (such as House
Music, Techno or Electro). From that moment on, a completely new
culture emerged using low cost sound machinery and obsessed with how
low percussive frequencies encouraged body movement and with a special
openness to practitioners of any musical expertise. This culture manifested
itself musically with apparently simple pieces, from a melodic and
harmonic point of view, which offered vast richness and depth in the
percussive arrangements and timbres used for its composition. These
pieces, dance tracks, were designed with a special capacity for carefully
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mutating rhythmically, so that endless physically engaging musical
structures were its default outcome. 

In order to understand how an EDM dance track works, allowing to keep
the desire to dance active and staying away from boredom, despite its
emphasis on a specific pulse and meter, careful observation of the
variations occurring at its core has to be done. This is even more
necessary, if the objective, as it is in this work, is to design new music
machines capable of reproducing such drum variations. It is clear that an
evaluation tool is needed, some sort of measuring device that could give
answers on which changes occur and of which magnitude. The
assumption we make is that if we have a proper tool for understanding the
inner mutation of EDM dance tracks, we might be able to reverse-
engineer the tracks and be able to create new variations based on those
observations. The topic then becomes a combination of similarity and
polyphonic drum pattern processing principles. With such special
combination of knowledge, we aim at devising the rhythmic measuring
tape that will allow us to construct similarity analysis of EDM drum
patterns, and building generative systems around it. 

As far as we could find, polyphonic drum similarity was first addressed by
Gabrielsson (1973b), who combined a multidimensional analysis of
similarity judgements with well studied perceptual and cognitive
phenomena of pulse acquisition, meter entrainment and pulse
reinforcement and denial. As Gabrielsson’s early explorations point, the
sensation of similarity between drum patterns is influenced by different
factors that obviously include the instrumental IOI organization, but also
others that go beyond it, and which are constructed by the mediation of
the IOI surface of the pattern and our rhythm processing system. In this
sense, when the combination of the syntaxis (the order of onsets and
silences in time) and semantics (the rhythmic interpretaion we extract
from the musical surfaces) are said to be responsible for our similarity
sensations of rhythm, the monophonic similarity explorations of Cao et al.
(2014) and Johnson-Laird (1991) emerge as related theories that can point
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out the way to go when defining a polyphonic similarity metric.
Gabrielsson´s polyphonic experiments explore many aspects that
influence rhythm, but the patterns he uses as stimuli belong to a broad
diversity of dance rhythm cultures, perhaps a wider territory than EDM,
and his experiments include tempo and meter variations which are not at
the core of EDM. Perhaps an EDM context with similar methodology as
the the one used by Gabrielsson might pave the way to a higher
understanding of polyphonic rhythmic processing, specially focusing on
similarity when the tempo is not a variable factor, and pulse and meter
induction are always present (as it happens on an EDM dance track).
These same ideas can be projected onto the similarity studies carried out
by Cao et al. (2014) with their family theory of rhythm. In their similarity
experiments pulse induction for the subjects is not controlled, so it is
unclear how the factors related to rhythm families (dependent on pulse,
meter and syncopation) are really influencing similarity sensations.
Perhaps, rhythm families (rhythm semantics) are more relevant for
judging similarity in the presence of a pulse and thus more relevant for
our context. As such, these two scenarios related to monophonic and
polyphonic sensations of similarity are our departure points for
contextualized experimentation in EDM, specially focused in devising a
metric that will help us analyze musical information.

There is a general coincidence from different scientific points of view on
how rhythm is processed by humans but only few research efforts have
managed to extend knowledge of rhythm processing to that of similarity.
Namely Johnson-Laird (1991), Cao et al. (2014), Witek et al. (2014a) and
Gabrielsson (1973b) have planted the first seeds for a structured
comprehension of similarity sensations rooted in psychoacoustic rhythmic
knowledge and sharing the concepts of similarity as devised by cognitive
science. These first attempts show some routes which are open to debate
and experimentation.

A diversity of algorithmic techniques have been used for the generation of
musical sequences being the most recurrent Markov process, as genetic
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algorithms and neural networks. All these techniques imply different
technological approaches to the analysis and generation of music.
Although the rhythmic aspect of music and percussion in general are the
least explored dimensions and materials in generative music, there are
some examples to be considered for the development of an EDM
generative system. From the range of techniques in generative music
literature, the use of Markov models in different implementations as those
proposed by Pachet, or the multiple viewpoint systems, suggest a simple
yet solid starting point for the generation of EDM drum sequences.
Memory limitations, inherent in Markov process sequence modeling, are
perhaps not so relevant when targeting the generation of relatively short
drum patterns as opposed to the creation of complete musical
compositions as dance tracks or drum tracks.

The next two chapters present experiments and activities resulting from
the present state of the art. Chapter 3 presents monophonic and
polyphonic similarity experiments, which will be carried out in order to
gain an insight into rhythmic cognition. These experiments are derived
from the results discussed in sections 2.2 and 2.3. These results will be
used as guidelines towards the creation of predictive similarity models for
drum patterns. Chapter 4 is focused on the generative aspect of drum
rhythms, based on the notions of style, generative music sequencing and
conceptual spaces, reviewed in sections 2.3, 2.4 and 2.6. In Chapter 4, two
original technologies will be introduced. One dealing with automatic
generation of drum patterns in style and the other exploring the use of
low-dimensional spaces to control rhythm generation.
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3. TOWARDS METRICS OF 
RHYTHM SIMILARITY

3.1 Introduction
This chapter presents a series of experiments carried out to expand the
current comprehension of the mechanisms involved in assessing the
similarity between two drum rhythms. There are two transversal questions
to this whole process namely: what elements does a listener grasp from a
pair of rhythmic patterns to define how similar they feel? Can those
elements be formalized in an algorithm in order to create a similarity
metric that is simple to compute? It is assumed that, as it happens in other
domains as color (Shepard, 1964) or tonality (Krumhansl, 2001), there
must be objective measures that can be extracted from rhythms
themselves, which can be used as inputs to algorithms that can predict
subjective similarity ratings, and with them be able to construct
conceptual spaces (see section 2.3.1). The final objective is thus to be able
to determine how a group of drum rhythms, as the ones typically used in
EDM production, can be organized automatically by similarity.

As it has been presented in section 2.3.2 there are some advances in
models and algorithms for similarity prediction between monophonic
rhythms. The method proposed by Cao et al. (2014) is based on identical
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regions (IR) and syncopation families (SF). An IR is defined as a
sequence of onsets and silences that is repeated in both patterns being
compared, possibly shifted in location (see Figure 3.1). SF, on the other
side, are defined as different states of the inter-pulse fragments of a
pattern: they can be syncopated, pulse reinforcements or nothing. After
performing two similarity experiments, they conclude that the similarity
sensation reported by subjects judging monophonic patterns is correlated
with both IR and SF. From a cognitive perspective, the effect of IR and SF
trigger two different processing mechanisms referred here as syntactic and
semantic. IR are based on comparing what has been regarded as the
musical surface, the acoustic sequence of onsets and silences. The
syntactic analogy proposed to describe this cognitive mechanism is based
exclusively in the order of the elements in the sequence of the rhythm. On
the other hand, the SF theory relies on more elaborate cognitive
mechanisms, as the superimposition of a pulse and a meter over the
acoustic signal, and the arousal of syncopation or pulse reinforcement
sensations (see section 2.2 for an introduction). This mechanism is
referred to as semantic, based on the possible rhythmic significances of
the drum sequence.
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Figure 3.1. Graphic explanation of identical regions and syncopation families.
Grey squares are onsets and white squares are silences. Identical region in red.

Syncopation families are assigned to each intra-pulse sub-pattern, R:

reinforcement, S: syncopation, N: nothing. 

There are two questions regarding the results presented by Cao et al. that
will be expanded with new experiments in this chapter:

● It is remarkable that the IRs present in both patterns being
compared, do not need to occupy the same position in both
patterns. Their experiments show that IRs can be displaced in
time without affecting similarity. But there is no systematic
exploration of the effect of the time shifts in similarity judgments.

● The influence of pulse induction is not taken into account in their
experiments. The monophonic pattern stimuli are presented to the
subjects without any previous rhythmic context. As this thesis is
rooted in EDM, where the pulse is fundamental, it is crucial to
understand how a concurrently induced pulse affects similarity
ratings, and to interpret these ratings via IR and SF. 

New experiments similar to the ones Cao et al. will be carried out
entraining subjects to a pulse sensation before evaluating similarity, and
designing the stimuli by controlling the shift of the IRs. By designing and
carrying out a new experiment, the applicability of the IR and SF model
for measuring rhythm similarity, will be better understood.
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Expanding to a polyphonic perspective of rhythm, the experiments of Alf
Gabrielsson (1973a, 1973b) mark a solid precedent in the process of
understanding rhythm similarity in polyphonic drum rhythms (see section
2.3.3). His results present different low-dimensional rhythm spaces based
on subjects’ similarity ratings, using different sets of drum patterns
extracted from a drum machine, as stimuli. Some of his reported
experiments adjust the patterns with a constant meter and tempo before
exposing them to subjects. This condition recreates perfectly the context
of EDM studied in this thesis, where the pulse and the meter are generally
constant factors within a dance track or even in a session of several mixed
dance tracks. One outcome of Gabrielsson’s polyphonic similarity paper
(1973b) is a list of rhythmic factors, extracted as a summary from all his
experiments, which impact subject’s similarity sensations and thus the
resulting rhythm spaces. These factors are: 

● The meter induced by the sequence.
● The onset density of the patterns.
● The simplicity-complexity of the patterns.
● The syncopations.
● The number of different instruments in a sequence.
● The “movement character” of the rhythms.

Although these are qualitative factors not explicitly encoded as
compuTable data, they present a reasonable ground from where to start
building a model for polyphonic drum rhythm similarity. 

There are two specific ideas and conditions in Gabrielsson’s work which
are important for the development of this thesis and will be expanded
carefully in this chapter. First, the rhythms used in his Experiment 1,
where the meter and pulse are kept constant, are presets from the drum
machine he uses. Second, as mentioned above, the factors Gabrielsson
suggests influence similarity are qualitative, but for them to work on a
similarity algorithm, they must be formalized through different equations
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obtained as objective measures from the patterns. These factors are
formalized in this thesis as new rhythmic descriptors, adapting
contemporary knowledge on monophonic and polyphonic processing of
rhythm, as proposed by Witek (2014b), Hove (2014) and Buger et al.
(2017). 

A new experiment replicating Gabrielsson’s methodology was carried out
using contemporary EDM rhythms and obtaining a new rhythm space.
The correspondence between both experiments will be analyzed,
examining if the factors that influenced Gabrielsson’s results can also be
observed in the new EDM space. This correspondence will be evaluated
using the new rhythmic descriptors proposed.

The following sections of this chapter will present experiments carried out
with the aim to formalize and evaluate similarity metrics for EDM drum
rhythms. In section 3.2, one experiment using monophonic rhythms will
be presented. In this experiment the focus will be evaluating the effect of
inducing or not the beat before judging similarity. It will also shed light on
the size of the shift in the identical region (IR) in two patterns being
compared. The results of this experiment will be used in section 3.3 to
implement two monophonic similarity metrics and to expand them into
tentative polyphonic similarity metrics. 

In section 3.4 novel symbolic rhythmic descriptors, built upon
aforementioned theories of rhythm cognition and perception (reviewed in
sections 2.2.2.2 and 2.3.3), are presented. These descriptors are used in
section 3.5 as means to define objective methodologies to predict
polyphonic similarity, using Alf Gabrielsson’s rhythm spaces as a target.
Given that the previous experiments lead to the construction of
polyphonic similarity methodologies, a final experiment is presented in
section 3.6, which is carried out to evaluate the different polyphonic
similarity prediction methodologies. This final exercise will allow the
selection of the most robust procedure to measure rhythm similarity
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regarded as the one that has the best fit with Gabrielsson’s and the new
EDM rhythm spaces. 

Section 3.7 summarizes the results presented throughout this chapter. In
this section the contributions of the different experiments to the state of
the art of rhythm similarity will be considered. The end of this section
presents a discussion on possible follow up activities that could further
extend of the work presented here.

3.2 Experiment 1: Monophonic Similarity and 
Syncopation
This experiment is designed to expand on the experiment presented by
Cao et al. (2014) on rhythmic similarity, who report that similarity can be
explained by combining two different cognitive mechanisms: one based
on the inter onset interval (IOI) of the patterns, which is referred here as a
syntactic experience of the rhythm, and thus based solely on the sequence
of characters. The other mechanism is based on the “significance” of the
rhythm, which is based on the pulse, the meter and the syncopations or
pulse reinforcements. This later mechanism is referred to as semantic
because it relies on how a rhythm is interpreted by its relation to cognitive
constructs. In their paper it is proposed that both mechanisms are active
when assessing similarity: the syntactic is evidenced when similarity is
affected by the two patterns having identical regions (IR), even if they are
not placed on the same position. The semantic mechanism is based on a
segmentation of the patterns at each pulse, and the labeling of each intra-
pulse pattern into syncopation families (SF) as: syncopated (S), beat
reinforcing (R) or nothing (N) (Figure 3.1). 

Cao et al. report a first experiment where the participants’ task is to listen
to one pair of rhythms and then to another pair, and to judge which pair is
of a greater similarity. The pairs of patterns to be judged are designed to
have the same amount of onsets and to have IRs. Their results show that
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patterns are most similar if their IR contain the same pattern of onsets,
quite similar if they are in the same SF, and least similar if they do not
contain an IR of onsets and have different SF. These results suggest the
importance of both mechanisms in similarity judgements. 

In a second experiment they ask for the same pairwise comparison, using
same-length patterns. However, patterns are all resulting from controlling
the IOI pattern and the family. To construct the patterns they start from a
‘target’ pattern and make four variations on it, changing the rhythm family
and inserting an identical region (IR) in both patterns which is then shifted
in time. The target pattern is then compared to the four different
variations: one pattern with same SF and IR, another with same SF but no
IR, another with different SF same IR, and the last pattern with different
SF and no IR. Their results show how both cognitive mechanisms the
syntactic and the semantic are active when assessing similarity, as both
factors influence similarity sensations reported by subjects (Figure 3.2).
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Figure 3.2 Monophonic similarity factors and their relation to perceived similarity
by the subjects. Extracted from Cao et al. (2014) experiment 2.

There are two questions regarding the experiments presented by Cao et al.
(2014). One is that they do not make specific remarks on how the patterns
were reproduced to the subjects so it is assumed that the patterns were
presented without any previous pulse-inducing acoustic stimuli. Although
a pulse sensation is progressively acquired as a rhythmic pattern evolves
in time, the arousal of a pulse and a meter arrives (if the pattern is pulse
inducing) after five to ten onsets have passed (Honing, 2012). Given that
the patterns in their experiment are of one bar length it is then unclear
whether the pulse sensation is present during the similarity judgment
process. I suspect the absence of a clear pulse affects the significance of
the semantic mechanism when assessing the similarity between two
patterns, as the foundation of this mechanism is precisely the presence of
a pulse sensation. Therefore, hypothetically, if a pulse sensation is present
during the similarity comparison of two patterns, the semantic mechanism
can be active and can thus become more relevant than when the pulse is
not induced. This in turn might affect the way in which similarity is
processed, as both cognitive mechanisms at play could have different
relevance in the judgment. In short, it is possible that the pre-induction of
the pulse defines a stronger cognitive guide for the interpretation of a
pattern based on the semantic mechanism. The importance of considering
a pulse-induced context, is that it resembles the situation of music
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creation, specifically EDM, where rhythm patterns and musical variations
are produced within a strong pulse-inducing framework.

The second question arising from Cao et al. (2014) experiments is a lack
of detail on the anatomy of the IRs they use. Important matters such as the
length and the starting point of the IRs, and mainly the shift in metrical
position from pattern to pattern. Although they report an influence of the
IR in similarity judgements (using shifted IRs) the design of their patterns
is not systematic in regards of the shift. Therefore it is pertinent to
evaluate how the shift and the starting point of the IR might have any
impact on similarity. 

This experiment has then two main objectives:

1. To test the relation between the syntactic a n d semantic
mechanisms when evaluating similarity. This will be evaluated by
analyzing the effect of inducing or not the beat when comparing a
same pair of patterns, and then, using two different metrics to
explore the results. One metric is the Edit Distance (ED), a
distance disengaged from pulse, but specialized in comparing
displacements and transformations in patterns (see section 2.3.2).
The other metric is the Syncopation Distance (SD), a metric based
on Johnson-Laird’s rhythm family theory (1991) which is
supported on the presence of a pulse, a meter and the
reinforcement or challenges to the pulse as syncopations. The ED
metric is completely related with the syntactic mechanism while
the SD is rooted in the  semantic mechanism (see section 2.3.3).

2. To understand the importance of the shift and the origin of the IRs
when evaluating similarity between two patterns, both when the
pulse is induced and when it is not. 

The experiment is carried out in two stages, one where similarity ratings
are given to pairs of rhythms without any pulse induction, and a second

74



phase where the same pairs of rhythms are rated with a pulse induction. 

3.2.1 Methods

3.2.1.1 Participants

Twenty-one subjects (19 males, 2 females) were recruited among the
Music Technology Group (MTG) staff and UPF pool of Master students
to participate as subjects in this experiment. All of them reported musical
experience of more than 5 years at least as amateur music performers.
Two of the subjects had been educated in non western musical traditions.
The subjects were invited to participate freely in the experiment and no
reward was offered for their participation.

3.2.1.2 Material

Objective Distance Metrics

Two objective similarity metrics are used to measure the distances
between the patterns presented to subjects in the experiments. These
metrics are compared with the results of the similarity judgements to
observe possible correlations. 

The edit distance (ED) is a measure of the transformations one pattern of
characters must undertake to become another one. There are three
transformations allowed: swapping characters (changing abc for adc),
inserting a character (changing ac for abc), removing a character
(changing xyz for yz). The edit distance is the sum of these three different
transformations made to one sequence of characters in order to become
another sequence. As we are dealing here with monotimbral and
monophonic patterns composed only of onsets and silences, the patterns
are represented by sequences of ones and zeroes, where the character ‘1’
represents an onset and ‘0’ represents a silence. The edit distance between
two monophonic patterns is agnostic of any pulse and meter context.
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The syncopation distance (SD) is based on the acknowledgment of the
pulse and meter induced by a monophonic pattern, and the subsequent
syncopations or reinforcements found in the pattern. It is derived from the
syncopation family theory, formulated by Johnson-Laird (1991) and later
used by Cao et al. (2014) in their experiment. The procedure to compute
the SD starts by segmenting a pattern at each pulse. Then, each intra-pulse
sub-pattern is classified in different syncopation categories according to
its relation with the pulse, either a reinforcement, a challenge or none. The
classification presented here is a variation of Johnson-Laird’s method, in
which beats are clustered in three broad categories: syncopation,
reinforcement or nothing, depending if the elements of the beat are a
reinforcement, a challenge, or have no interaction with the pulse. 

Group Family Syncopation
Value

intra-pulse sub-patterns

1 R3 3 1010_ 1010x
2 R2 2 1000_1000x 1001x 1011x
3 R1 1 0010_ 0010x 0110_ 0110x 1110_ 1110x
4 N 0 0000_ 0000x 1111x 0011x 0001x 0111x
5 S1 -1 0100_ 0100x 1100_ 1100x 0101x 1101x
6 S2 -2 0001_ 0011_ 0111_ 1111_
7 S3 -3 0101_ 1101_
8 RS 0 1001_ 1011_

Table 3.1. Eight syncopation states for intra-pulse sub patterns used to compute
the Syncopation Distance (SD) Metric. The first column is the ID of the

syncopation. The third column is the syncopation value; column 4 presents the
patterns that belong to each group. Symbols '_' or 'x'  indicate a silence or an

onset at the beginning of the next beat.

Syncopations are expanded into three possible categories according to
their syncopation value (groups 5 to 7, Table 3.1). The reinforcement
category is also split in three groups  (groups 1 to 3, Table 3.1), according
to their syncopation value. Additionally, a new category, where a
syncopation and a reinforcement are both present (group 8, Table 3.1), is
created. In total there are 8 different categories in which every within-
pulse sub-pattern can be classified: three types of reinforcement, three
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types of syncopations, a ‘nothing’ category and a reinforcement-
syncopation category. Expanding the groups in which a beat can be
classified from the original three (only syncopations, reinforcements and
nothing), to eight in our model, offers more detail on the role of each
intra-pulse segment and helps differentiate between different syncopations
or different reinforcements (see Table 3.1).

The procedure to classify each intra-pulse sub-pattern is based in
computing its syncopation value using the metrical salience profile 2 0 1
0. This profile is derived from Lerdahl and Jackendoff’s GTTM (Lerdahl
and Jackendoff, 1984) in which weights are proportional to the duration of
the note each accent represents: an accent on a whole note has a higher
weight than an accent on a half note, which is higher than an accent on a
quarter note, and so forth (see section 2.2). In our beat profile, the first
onset that is coincident with the pulse, has a higher weight (2) than the
third 16th note (1).

It is important to note that an onset on the fourth step of a sub-pattern
generates a syncopation only if the first step of the next beat is a silence.
Therefore, to calculate the appropriate syncopation values for every sub
pattern, the first step of the following sub-pattern has to be considered.
The syncopation value for each sub pattern is the sum of each onset’s
metrical weight whenever it is preceding a silence.

Stimuli

Nine one-bar patterns were designed as bases creating variations from
them by shifting an identical region (IR). Four variations per base were
created, obtaining a total of 36 patterns used as stimuli. The variation
patterns were created so that a small fragment of the base pattern, the IR,
was displaced 1 to 4 1/16th note steps. When performing this shift, both
base and variation patterns contain the same IR but are located at a certain
distance from the original position.

Group pattern A / pattern B 
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A

1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 / 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 
1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 / 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 
1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 / 1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 
1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 / 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 

B

1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 / 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 
1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 / 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 
1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 / 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 
1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 / 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 

C

1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 / 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0 
1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 / 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 
1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 / 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 
1 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 / 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 0 

D
1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 / 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 
1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 / 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 
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1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 / 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 
1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 / 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0

E

1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 / 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 / 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 / 1 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 
1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 / 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 

F

1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 / 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 
1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 / 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 
1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 / 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 
1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 / 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0

G

1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 / 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 
1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 / 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 
1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 / 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 
1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 / 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 

H

1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 / 1 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 
1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 / 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 
1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 / 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 
1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 / 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 

I

1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 / 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 
1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 / 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 
1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 / 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 
1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 / 1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 

Control 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 / 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 
Table 3.2. The 37 patterns used in the experiment grouped by base pattern. The

identical region is highlighted in bold.

The original position of the IR was also controlled, so that each group had
an IR selected from steps 1, 2, 3, 4 and 6. The size of all the IR is 6 steps,
measured in 1/16th note lengths from the first onset to the last. There are 3
or 4 onsets present on each IR. A 37th pair, consisting of two identical
patterns, was added for controlling the consistency in the answers.
Rhythms are reproduced with a clave sound sampled from the Roland TR-
727 drum machine with no dynamic changes. The symbolic representation
of the patterns is binary, where a 1 indicates an onset and 0 indicates a
silence. Therefore the patterns used throughout this work are coded as 16
digit sequences of zeroes and ones (see Table 3.2) of one-bar length.
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3.2.1.3 Procedure

This experiment was carried out in two stages separated by a week. Both
stages had the same subjects and the same rhythmic stimuli. The only
difference is that on the second stage a pulse was induced before and
during the presentation of the rhythm stimuli. Besides this, every other
aspect of the experiment was kept. On the second stage of the experiment,
a kick drum was played four times on the start of every beat at a tempo of
120 beats per minute, then the kick drum and one of the patterns of the
pair were played simultaneously, then just the kick drum again four times
and finally the kick drum simultaneously with the remaining pattern, as
schematized in Figure 3.3 (bottom).

The system used to carry out the experiment was implemented in Pure
Data Extended. It consists of two play buttons to reproduce each rhythm
of the pair. After listening to a pair of patterns, subjects rate dissimilarity
on a 7-step Likert scale. Levels 0, 2, 4 and 6 of the scale were labeled as
``The same '', ``quite similar'', ``not very similar'', ``not similar at all''.
Levels 1,3 and 5 were not labeled.

In the first stage (patterns presented without metrical context), the 37
rhythm pairs were presented in a subject-specific randomized order and
without any possibility to listen to them more than once. The tempo was
set constant to 120 BPM. On the interface each pattern was played by
pressing its corresponding button (labeled as pattern A and pattern B)
which was disabled after clicked (see Figure 3.3 top). Once both rhythms
were played, the Likert scale was enabled for subjects rating. Once one
pair of rhythms was rated, a ‘next’ button to go to the following pair was
enabled. When the ‘next’ button was pushed, a 4-seconds pause started
and after it the next pair was loaded and the play buttons became active
again. This procedure was repeated until all the 37 pairs were ranked. 

In the second stage, the 37 rhythm pairs were presented again in a subject-
specific randomized order. Both stages of the experiment use the same
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interface, but on the beat induced stage the play button reproduced the
whole sequence of kick, kick + rhythm A, kick, kick + rhythm B (see
Figure 3.3 bottom). The tempo was set to 120 BPM and the kick drum
was played four times on-the-pulse before the first rhythm was presented.
In addition, the gap between the first and the second rhythm was filled
with four times on-the-pulse kick pattern.
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Figure 3.3. Representations of how two patterns A and B are presented in both
stages of the experiment. Without pulse induction (top) and with pulse induction

(bottom).

3.2.2 Results

Once all the subjects finished the experiment, the mode of the similarity
ratings of each pair is used as the representative subjective similarity
value in both stages. A general view of the data shows a clear difference
between the similarity results obtained for the same pairs of rhythms
depending whether they are presented within a rhythmic context or not
(Figure 3.4). The between-subject similarity obtained for all pairs in both
experimental stages is not convergent. In some cases it is the same (pairs
2, 12, 24, 25, 26 29, 30, 31, 36) in some cases highly contradictory (pairs
3, 4, 9, 13, 17, 18, 22, 23, 27, 35) but generally in disagreement (75% of
the pairs). This strongly suggests the same pairs of rhythms are rated
differently depending on the presence or absence of a rhythmic context.

To get a better picture of the results of stage 1, pairs with more than 50%
of the results scattered over 2 marks were discarded as inconsistent
between subjects (see Figure 3.4). Only 16% of the pairs were removed,
namely pairs 1, 3, 4, 19, 23 and 35. As with the similarity ratings of stage
1, the analysis of the similarity judgements on stage 2 (when the pulse is
induced) is based on the mode of the ratings for every stimuli pair. The
same was done for the results obtained in stage 2. The stimuli pairs are
analyzed in search for the most consistent inter-subject ratings. Ratings
with 50% of the results spread out three or more perceptual scale values
are removed, namely pairs 23, 24, 26, 27, 28, 35, being the 16% of the
original set. 
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Figure 3.4 Similarity ratings for all stimuli pairs. Results with rhythmic context
dark gray, without rhythmic context light gray.

Each pair of stimulus, plotted by its similarity ratings and the shift of the
IR, is organized by groups from ‘a’ to ‘i’ in Figure 3.5. There is a trend
that suggests that an increase in the shift reduces the similarity rating
when the pulse is not induced (Friedman chi-squared = 23.878, df = 4, p-
value = 8.45e-05) with significant Spearman rank order correlations of all
pattern groups (a: -0.97, b: -0.87, c: -0.95, d: -0.87, e: -0.87, f: -0.89, g:
-0.46, h: -0.82, i: -0.22. P-Values a: 0.0048, b: 0.0539, c: 0.0138, d:
0.0539, e: 0.0539, f: 0.0405, g: 0.4338, h: 0.0886, i: 0.7177) (Figure 3.5,
top). Low p-values and high negative Spearman rank order correlations,
suggest a negative correspondence between shift and similarity, so that the
farther the IR is shifted, the lower the similarity rating. These results
suggest a relation between the IR and similarity ratings when the rhythms
are presented to the subjects without pulse induction. It also expands the
features of the IRs such as the size and shift, complementing the results of
Cao et al. (2014).
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Figure 3.5 Similarity rating vs shift without the presence of a rhythmical context
discriminated by groups, from a to i.  6:the same, 0:not similar at all.

Every stimulus pair is compared with the shift of the IR from one pattern
to the other, and with the similarity rating obtained when a the pulse was
induced (Figure 3.5 bottom). These results show very high p-values (a:
-0.67 p-value 0.2152, b: -0.71 p-value = 0.1817,  c: -0.05 p-value =
0.9347, d: -0.32 p-value = 0.6042, e: -0.05 p-value = 0.9347, f: -0.67 p-
value = 0.2189, g: -0.50 p-value = 0.3910, h: -0.82 p-value = 0.0886, i:
-0.67 p-value = 0.2189), which strongly suggest that no aspect of the IR is
relevant to assess rhythmic similarity when a pulse is induced.

Possible relations between the two objective measures and the similarity
results obtained in both stages, are presented on Table 3.3. The ED is
correlated with the results only when the pulse is not induced (rho =
0.52343, p-value = 0.00136) but in the presence of a pulse it presents no
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significant correlation (rho = 0.25491, p-value = 0.133). This suggests that
the onset comparing mechanisms are active in the absence of a pulse, thus
influencing similarity sensations. On the other hand, the Syncopation
Distance (SD) presents a significant correlation (rho = 0.46, p-value =
0.0098) with the similarity ratings when the pulse is induced, but it shows
no significant correlation (rho = 0.0273, p-value = 0.256) with the
subjective ratings, when the pulse is not induced. This suggests that the
symbol counting of the edit distance, which is associated to the syntactic
cognitive mechanism, is predominant when the pulse is not induced, but
not when the pulse is induced. 

Metric
Without Pulse

Induction
With Pulse
Induction

Edit Distance
Rho 0.52343, 

p-value 0.00136
Rho 0.25491, 
p-value 0.133

Syncopation Distance
Rho 0.027372, 
p-value 0.256

Rho 0.46, 
p-value 0.0098

Table 3.3 Spearman Rank correlation values for each objective metric and the
similarity ratings without pulse induction

3.2.3 Discussion

The influence of shift in similarity ratings in both experimental stages
differs in tendency. While in stage 1 (no pulse induction) shift seems to
have an inverse correspondence with similarity, for most of the groups on
stage 2 (with pulse induction) no direct relation with the shift is
appreciated. Presumably, the emergence of IRs and their shift as a
relevant factor for rhythmic similarity, only in the case where there is no
pre-induced pulse, could be related to the syntactic perceptual mechanism
triggered when no metrical cues are offered to decipher a musical
sequence in terms of its rhythmical properties. The workings of this so-
cal led syntactic mechanism could be analogous to comparing the
similarity between two words by looking at the letters and their order and
not by the meaning of the words. It seems to be clear that a shallow
similarity computation may happen based on superficial features
(positions of onsets and silences) and in the absence of a rhythm context.
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On the other hand, a more abstract and layered mechanism, a semantic
one, operates when a metric context is at hand to process the patterns.

This previous observation is aligned with the fact that the amount of notes
needed for a beat to be induced is from 5 to 10 (Desain & Honing, 1999).
This could lead to conclude that in stage 1, a sense of beat was acquired
just as every phrase was ending, and therefore no metrical structure was
ever induced during this experiment. Nevertheless as 36 pairs of rhythms,
all at 120 BPM were listened during stage 1, a reminiscent notion of the
tempo could be accumulated after each exposition and influenced further
comparisons. This observation is out of the analysis and all results of
stage 1 are treated as non beat inducing. Another factor that is left out, is
the possible use of memory to recall a rhythm that just finished with the
late acquired meter, so the rhythm is evoked with a meter although such
meter was not originally present.

Groups that have lower correlation between the shift and the similarity
ratings are groups in which the IR had an origin closer to the start of the
rhythm. The farthest the origin, the least correlation between shift and
similarity ratings (see Figure 3.6). Spearman correlations for different
origins are origin 1: -1.0000, origin 2:  -0.8721, origin 3:  -0.9000, origin
4:  -0.6669. Their respective pairwise two-sided p-values are 0.0001,
0.0539, 0.0374, 0.2189. Although all Spearman correlations are high, their
significance decreases progressively as the origin of the IR increases.

The same analysis of the influence of the IR’s origin and shift with
similarity in stage 2, yields the following Spearman correlation values:
origin1: rho = -0.6708204 p-value = 0.2152, origin 2: rho = -0.3162278 p-
value = 0.6042,  origin 3: rho = 0.00000001 p-value = 1.0000, origin 4:
rho = -0.97467943 p-value = 0.0048. It is revealing that none of the p-
values accounts for significance, again showing  a disengagement between
inducing a meter and the relevance of having an IR in two patterns. This
can lead to the conclusion that a mechanism based on IRs is not relevant
when an induced pulse is present. 
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Figure 3.6 Relationship between origin and shift for stage 1.

As a summary, five observations regarding both stages can be presented.

● Similarity ratings of patterns change depending on the presence or
absence of a pulse which metrically coincides with the onsets of
the patterns being measured.

● In the absence of a pulse, a mechanism based on searching
identical regions (IR) of one pattern into the other one is
predominant, over coincidences and syncopation, for giving a
similarity rating. This mechanism is analogous to a syntactic
analysis of a sequence of characters.

● Similarity ratings without a rhythmical context are inversely
related with the shift in steps of the IR from one pattern to the
other.

● The power of an IR mechanism for predicting similarity decreases
as the IR moves away from the start of the rhythm.
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● In the presence of a pulse, a mechanism based on syncopation is
more relevant for predicting human similarity ratings. This
mechanism is analogous to a semantic analysis of a character
sequence given that a rhythmical “meaning”, related to the
presence of a pulse and a meter, is used to process the similarity
between two rhythms.

● The syncopation distance (SD) is a valid metric to predict
similarity in monophonic patterns when the pulse is induced.

3.3 Using Beat-Induced Similarity Ratings to 
Define Similarity Metrics 

3.3.1 Introduction

In section 3.2, Experiment 1 presented how similarity ratings between two
patterns differ when the pulse is induced and when it is not. It seems that
two different mechanisms are in charge of the judgements depending on
the the presence or absence of a strong rhythmical context inducing the
pulse. A syncopation-based metric, such as the Syncopation Distance
(SD), is significantly aligned with human similarity ratings when the pulse
is induced, whereas the presence of identical regions (IR) are more
important for similarity when the pulse is not induced. When the pulse is
not induced, the influence of the identical regions in similarity is higher
when the identical region is at the beginning of the pattern. This suggests
that there is an asymmetry in the mechanisms involved in judging
similarity, weighted towards the start of the patterns. That is, it seems that
the first portion of a pattern has higher influence on the subjective
similarity ratings.

All the previous conclusions are used in this section to try to create
metrics for describing subjective similarity ratings, focusing in the results
obtained in the presence of a pulse-inducing stimulus. As mentioned in the
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previous section, EDM music, and thus its composition and production, is
carried out in the presence of strong pulse-inducing rhythms, therefore the
metrics of interest for this thesis must be based on pulse-induction
scenarios. The SD metric is significantly correlated with the similarity
ratings given by subjects. As this metric is based on segmenting patterns
at each pulse, it seems that the intra-pulse segments are independent and
meaningful fragments of a rhythm capable of transporting important
cognitive information. This probable independence of each sub-pattern in
relation to subjective similarity judgments, is going to be explored in this
section. 

The concept of awareness is introduced, conceived as weight factors
applied to each intra-pulse pattern when computing a distance metric.
Conceptually, awareness weights emphasize or moderate the importance
of each sub section of the pattern on the final distance value. 

3.3.2 Expanded metrics for monophonic similarity

Here, two new metrics are proposed. One is the expansion of the SD
metric, presented in the previous section, with the additional weighting for
the similarity values of each sub pattern. The other metric, is based on
measuring the coincidences between each sub pattern of two monophonic
rhythms, while also using the awareness weighting for the different sub-
patterns. The weightings for each metric will be deduced from the
experimental results on the previous section:  a multiple linear regression
will be computed between the subjective similarity judgements (X) and
the similarity obtained between each intra-pulse sub pattern (Y1, Y2, Y3,
Y4).

3.3.2.1 Syncopation and awareness distance (SAD)

The Syncopation and Awareness Distance is based on splitting patterns
into sub patterns at every pulse (in this case each intra pulse pattern has
four steps or four digits), and assigning each sub pattern to a syncopation
category, depending on its relationship to the pulse (an expanded
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explanation is in section 3.2.1.2, see Figure 3.7). For computing the
distance between two patterns, first they are both converted to a sequence
of syncopation families, assigning a syncopation category to each intra
pulse pattern according to Table 3.1. Each sequence of onsets and silences
is thus converted to a sequence of families. Then,  the coincidence
between the family sequence of each pattern is evaluated.  Finally, each
coincidence value is weighted with a value which is deduced from the
similarity ratings of Experiment 1 (see equation in bottom left of Figure
3.7). This metric is expressing the relationship between the different
syncopations and reinforcements found in a pattern emphasized (or
deemphasized) according to the results of Experiment 1.

The SAD metric is based on comparing if syncopation groups are
coincidental between different patterns. This means that a change from
one family to any other family is penalized by our algorithm despite if the
change is between syncopations (groups 5 to 7 in Table 1) or between
reinforcements (groups 1 to 3 in Table 1), or if it is a change from a
syncopation to a reinforcement group, or if it is a syncopation of the
nothing group (or vice versa). 

Figure 3.7. How to compute SAD and PAD distances from two monophonic
patterns.
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3.3.2.2 Pattern coincidence and awareness metric (PAD)

This metric is based on comparing the inter onset sequences between two
patterns. As with the SAD metric, the first step consists on segmenting the
patterns at each pulse. But for the PAD metric, what is compared is the
actual sequence of onsets and silences in each position. The coincidences
for each sub pattern are computed as the percentage of onsets and silences
located in the same position. As in the SAD, the coincidence of each intra
beat sub pattern is weighted according to the results of Experiment 1 (see
equation in Figure 3.7 bottom right).  This metric expresses the
relationship of having identical patterns at different intra-pulse sections
taking into account the awareness as extracted from subject ratings of
Experiment 1.

3.3.2.3 Deducing the weights for PAD and SAD

Here we use the similarity judgements reported by the subjects in
Experiment 1, when the pulse was induced, to find the weights for our
newly introduced metrics PAD and SAD. To calculate the weights of
PAD, a linear regression between the coincidence result of each beat and
the similarity ratings is computed. The normalized weights obtained for
beats 1 to 4 are 1, 0.27, 0.22 and  0.16 respectively. To calculate SAD, a
multiple linear regression between each beats' coincidence and similarity
ratings was carried out. It generated the following normalized weights for
beats 1 to 4: 1, 0.075, 0.14 and 0.12 respectively. These values are used as
indications of the awareness for each beat. The resulting awareness
profiles of both PAD and SAD metrics have a similar behaviour (see
Figure 3.8). In both cases the importance of the first beat is almost 5 times
larger than that of the other beats. 
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Figure 3.8 Awareness profiles of the PAD and SAD distances that
generated best correlations with rhythm similarity ratings.

This awareness difference between the four intra-pulse sub patterns,
suggests that a difference in the first beat has a higher impact on the
similarity sensations than in the rest of the beats. It reflects the importance
of the first beats’ syncopation families (SAD) and pattern coincidence
(PAD), when assessing the similarity sensations between two monophonic
patterns. 

Using the obtained weight profiles, the PAD distance has a Spearman
Rank correlation value of 0.76 (p-value < 0.001) with the similarity
judgements while the SAD distance has a Spearman Rank correlation
value of 0.81 (p-value < 0.001) (Figure 3.9).
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Figure 3.9 PAD and SAD predictions correlated with similarity ratings. X axis:
similarity ratings, Y axis PAD and SAD predictions from left to right.

3.3.2.4 Example to compute the metrics

Here, an illustrative example to understand PAD and SAD is presented.
The two first beats of a given pattern A, have the following onset/silence
configuration 1001 0110, and another pattern B has 1100 0010. Their
respective syncopation groups are 8, 3 and 5, 3. Analyzing the
syncopation coincidence for the first beat of patterns A and B, we get that
1001 (when the next beats starts with a 0) belongs to family 8 and 1100
belongs to family 5 (see Table 3.1). Clearly 8 is different from 5. At the
second beat, 0110 and 0010 both belong to group 3, thus coincidence is 1.
The SAD metric consists on weighting each coincidence based on the
profiles presented above, so each coincidence will be multiplied by a
weight: (0 x 1), (1 x 0.075) and then summed, 0+0.0075= 0.0075.

On the other hand, the pattern coincidence for PAD is computed by
looking at the percentage of coincident onsets and silences on the same
beat of each pattern. Their coincidence values would be 2/4 = 0.5 because
there are 2 out of four notes coincident between  1001_ and 1100 for the
first beat. For the second beat, there are 3  coincidences between 0110 and
0010 so the coincidence value is 3/4 = 0.75. The coincidences for each
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sub pattern are then weighted with the PAD profile presented above: 0.5 x
1 = 0.5 and 0.75 x 0.27 = 0.2025. The PAD value is the sum of the
weighted similarity of both beats: 0.5 + 0.2025 = 0.7025. 

3.3.4 Discussion and conclusions

Both SAD and PAD have high correlation values with human similarity
ratings (ρ=0.81, p<0.001 and 0.76, p<0.001 respectively). This validates
the idea of each inter-pulse pattern having a different importance when
beat induced subjects try to evaluate the similarity of two monophonic
rhythms. These results also show how the first beat is the most important
for predicting similarity when using both metrics, followed by the third,
the fourth and the second in the case of SAD; and second, third and fourth
in the case of PAD. 

The linear regression between a syncopation-based metric and the subject-
based similarity ratings shows how different inter-pulse weights, as the
awareness, maximize the correlations between objective predictions and
ratings. This manifests how syncopation is a strong predictor for similarity
in a monophonic format and also suggests how inter-pulse patterns are
important units of analysis in rhythmic processing. 

3.4 Symbolic Descriptors for Polyphonic Drum 
Similarity
As this thesis aims to develop compositional tools for EDM, especially
dealing with drum rhythms, there is a clear need to understand how
polyphony affects the processing of musical rhythms and thus the notion
of similarity between two of them. What has been learned in the previous
experiment, in a monophonic context, will be expanded and combined
with other studies on polyphonic drum similarity. In order to understand
the mechanisms underlying human processing of polyphonic rhythm, and
to be able to elaborate models that simulate that processing automatically,
three different sources of knowledge are revised and integrated into one
main research methodology: the experiments of Gabrielsson (1973b),
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contemporary experiments on polyphonic processing of rhythms (Witek,
2014a, 2014b; Hove, 2014; Burger et al. 2017) and the results from the
two previous sections 3.2 and 3.3.

First, the experiments of Alf Gabrielsson (1973a, 1973b) are a strong
precedent in establishing experimental procedures and providing results in
the subject of polyphonic rhythm similarity (find a review in section
2.3.3). One of the main contributions is the presentation of his similarity
experiments as rhythm spaces and a list of factors that, he concludes,
influence similarity judgements. These factors are: 

● The meter induced by the sequence.
● The onset density of the patterns.
● The simplicity-complexity of the patterns.
● The syncopations.
● The number of different instruments in a sequence.
● The “movement character” of the rhythms.

A second source are the experimental results by Hove (2014), Bouwer et
al. (2014),  Witek et al. (2014a) and Burger et al. (2017), which present
advances in the comprehension of how humans process polyphonic
rhythms. In these studies, the importance of the main frequency of the
different instruments of a polyphonic drum pattern is reported to influence
listener’s rhythm processing. Depending on the predominant frequency of
a drum sound, it might have a stronger power for disturbing or for
confirming the meter of a polyphonic pattern. All these studies conclude
that the instruments with the lowest frequency (e.g. the kick drum) have a
higher impact in the establishment of a pulse or to disturb it (e.g. a
syncopation), than high-frequency instruments (i.e. the hi-hats). This view
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is backed experimentally by Witek et al. (2014b), who devise a
polyphonic syncopation metric based on three different instrument ranges:
low, mid and high, represented by the kick drum, the snare and the hi-hat
respectively. This metric is used to study the impact of syncopation in the
desire to dance.

The third source is the experiment presented in the previous section,
where two distance metrics are developed from the results of Experiment
1 (section 3.2). The relevance of these metrics is grounded in three ideas:

● The syncopations present in a monophonic rhythm are a source of
differentiation, which influences subjects when processing the
resemblance between two rhythmic  patterns. This applies when a
pulse is induced while listening to the patterns being compared.

● The coincidence of the onsets and silences between two patterns
is another source of differentiation related with the way subjects
process the similarity between two rhythmic patterns. 

● Different sections of a monophonic rhythmic pattern have
different importance in the process of establishing a subjective
similarity. Experimental results suggest that the first section of
two patterns being compared is the most important when
establishing a similarity sensation. This might reflect the so-called
"primacy" effect in tasks that involve short-term memory
retention of information in which first items are best remembered
(Tulving & Clark, 2000).
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Incorporating these sources of knowledge into a unified perspective on
polyphonic rhythm similarity, some conclusions are drawn to lead the
exploration of new methods for establishing relationships between EDM
drum patterns. There is a clear relevance of syncopation and meter in the
processing of monophonic and polyphonic patterns, that is transversal to
the three different sources presented above. A differentiation between
three different frequency ranges for percussive sounds (low, mid and
high) is fundamental, as the most energetic frequency bands of a sound
affect the way in which the rhythm it produces is processed. This seems
intuitively related to human perception as a mechanism to provide
distinction, while avoiding frequencial overlapping between instruments.
From Gabrielsson’s fundamental factors influencing the similarity of two
rhythms we can keep the density, or the amount of onsets in a pattern,
along with the number of different instruments in a pattern, and the
“character” of a rhythm. This wide combination of factors is used here to
define a new comprehensive set of descriptors which can be extracted
from symbolic rhythmic sequences. These descriptors are designed in
order to capture the different qualitative factors mentioned, in simple and
straightforward algorithms.

Our focus on symbolic patterns resides in the need to discard the effect of
timbre in subjective similarity measurements. As it has been presented in
section 3.2, and also coinciding with Gabrielsson’s methodology, the use
of consistent timbres when rendering percussive patterns allows for the
subjects to focus only on rhythm when undertaking experiments.
Otherwise, the effect of timbre affects the similarity sensation between a
couple of patterns distorting the way in which the resemblance is
measured. Thus, these descriptors differ from others used in automatic
rhythm classification research (for example Gouyon et al., 2004) as the
ones that will be  presented here are i) based on notions of human
rhythmic processing, and ii) not based on audio signal analysis.
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3.4.1 Symbolic drum pattern descriptors

Here we will adapt some ideas reviewed in section 2.3.3 where the factors
influencing polyphonic similarity sensations are related to metrical weight
and also to the frequency range of the instruments involved in the
polyphonic arrangement. Consequently, we will take advantage of the
typical acoustics of percussion sounds, a mapping from the General MIDI
Level 1 Percussion Key Map23 (GMPKM) to three instrument categories
(low, mid and high) is defined (see Table 3.4). It is based on the typical
spectral center of the sound (i.e. a low tom belongs to low frequency and a
snare to the mid frequency instruments). This mapping allows a drum
pattern compliant with the GMPKM to be converted from an arbitrary
number of parallel instrument patterns into three streams of monophonic
percussive patterns, namely low, mid and high. 

General MIDI note Name Category
35 Acoustic Bass Drum low
36 Bass Drum 1 low
37 Side Stick mid
38 Acoustic Snare mid
39 Hand Clap mid
40 Electric Snare mid
41 Low Floor Tom low
42 Closed Hi Hat high
43 High Floor Tom mid
44 Pedal Hi-Hat high
45 Low Tom low
46 Open Hi-Hat high
47 Low-Mid Tom low
48 Hi-Mid Tom high
49 Crash Cymbal 1 high
50 High Tom mid
51 Ride Cymbal 1 high
52 Chinese Cymbal high
53 Ride Bell high
54 Tambourine high
55 Splash Cymbal high
56 Cowbell high
57 Crash Cymbal 2 high
58 Vibraslap high
59 Ride Cymbal 2 high
60 Hi Bongo high

23The General MIDI standard has a list of 46 percussive instruments which are 
mapped one-to-one to a specific note. This is used to indicate what sort of sound 
will be heard when that note number is selected on a General MIDI synthesizer. 
https://www.midi.org/specifications/item/gm-level-1-sound-set.
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61 Low Bongo mid
62 Mute Hi Conga high
63 Open Hi Conga high
64 Low Conga low
65 High Timbale mid
66 Low Timbale low
67 High Agogo high
68 Low Agogo mid
69 Cabasa high
70 Maracas high
71 Short Whistle high
72 Long Whistle high
73 Short Guiro high
74 Long Guiro high
75 Claves high
76 Hi Wood Block high
77 Low Wood Block low
78 Mute Cuica mid
79 Open Cuica mid
80 Mute Triangle high
81 Open Triangle high

Table 3.4 General MIDI Level 1 Percussion Key Map instruments, note number,
name and category.

This procedure of using only three streams is an adaptation of the
methodology used by Witek et al. (2014-2) backed in experiments by
Hove (2014), Bouwer et al. (2014),  Witek et al. (2014-1) and Burger et
al. (2017). It also resonates with the Auditory Scene Analysis theory
(Bergman, 1990) in which the multiple and concurrent data generated
during the parallel analysis processes in the cochlea and the auditory
nerve are simplified into a small number of auditory streams.

Once a symbolic drum pattern is converted into a combination of three
band-wise patterns, they are analyzed according to the different factors
pointed out by Gabrielsson, to influence similarity at a polyphonic level:
syncopations, densities, number of instruments, the meter, the simplicity-
complexity of the patterns, and the movement character of the rhythms.
The crossover between the three instrumental levels and the sources of
information are presented in Table 3.5. The different equations for the
descriptors are presented below.

The computation of these descriptors, assumes a symbolic and polyphonic
drum pattern in which the percussive instruments are compliant with the
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GMPKM, and which has a minimum time resolution of 1/16th note. In
order to compute the descriptors, a polyphonic pattern is converted to a
triad of symbolic monophonic percussive streams (low, mid and high)
using the mapping presented in Table 3.4. The descriptors are quantified
as presented in the following subsections.

Frequency
range

syncopations densities
number of

instruments
complexity

high hisync

polysync

hiD hiness

StepD NOI

hisyness

mid midsync midD midness midsyness

low losync loD lowness losyness

Table 3.5. List of the different descriptors used, where the concepts of
syncopation, frequency range and density (the amount of onsets per time unit)

and complexity are combined to define quantifiable measures. 24

3.4.1.1 Number of instruments (NOI)

This is the simplest metric to compute as it is just the amount of different 
instruments present in the symbolic polyphonic pattern.

3.4.1.2 hisync, midsync, and losync

The syncopations are quantified following Longuet-Higgins and Lee
(1984) (section 2.2.2.1), a method based on a nested metric profile similar
to the one presented by Lerdahl and Jackendoff in the GTTM (1985). For
each stream, when an onset is followed by a silence its metrical value is
extracted. The sum of all the metrical values extracted is the total
syncopation value for each stream. These values are reported as the
hisync, midsync and losync respectively.

3.4.1.3 Polysync

Polyphonic syncopation is computed with the method proposed by Witek

24Code available here: https://github.com/danielgomezmarin/rhythmtoolbox.
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et al. (2014b). A single value from the complete polyphonic pattern is
extracted combining metrical weight (see section 2.2.2) and their newly
introduced instrumental weight. Their algorithm to compute polyphonic
syncopation assigns a weight inversely proportional to the instrumental
frequency range (low-frequency range has higher weight than mid-
frequency and high-frequency). The algorithm is fully documented in the
Supporting Information section of the paper.25

3.4.1.4 hiD, midD, loD

Sum of onsets for each different instrument group, divided by the total
number of steps in the pattern.

3.4.1.5 losyness, midsyness, hisyness

Quotient of the syncopation value and the sum of onsets for each
instrument group.

3.4.1.6 stepD

Sum of the steps in the pattern which contain at least  one onset, divided
by the total amount of steps.

3.4.1.7 lowness, midness, hiness

Share of the total density of patterns that belongs to each of the different
instrument categories. Computed as the quotient between the densities per
instrument category and the total density.

3.5 Experiment 2:
Objective Similarity in Alf Gabrielsson’s Rhythm 
Spaces
Having established a set of polyphonic drum descriptors, the next step is

25 Link to Witek et. al. Polyphonic syncopation algorithm: 
https://doi.org/10.1371/journal.pone.0094446.s012 
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to test their performance in different real-life musical scenarios. As has
been presented in the conclusions of chapter 2, Gabrielsson published a
study on polyphonic drum rhythms similarity which will be the starting
point for this experiment (Gabrielsson, 1973b). Specially, the results of
Gabrielsson’s Experiments 1 and 2 (GE1 and GE2) will be analyzed,
given the peculiarities of the rhythms selected for his experiment: they are
reproduced with the same synthetic timbres of a drum machine using the
same tempo. These factors dismiss the intrusion of tempo and timbre in
the listener's evaluation of similarity. They are also profitable as they
resemble the same natural conditions of compositional work in EDM,
where the tempo of a dance track or even a DJ session concatenating
several dance tracks are kept at a constant tempo (Collins et al., 2013). 

The patterns used by Gabrielsson are factory presets of the Ace Tone
Rhythm Ace FR-3 drum machine26 which were recorded to magnetic tape.
The patterns used in GE1 and GE2 were foxtrot, rockn’roll, rhumba,
beguine, habanera and waltz27. In the procedure reported for GE1 subjects
listened to triads of rhythms, and then selected which pair is the most
similar (see Table 3.6). The subjects were ten male and 6 female
musicians defined as subjects who had performed music for at least four
years, most of them as amateur musicians. The subjects had mixed
characteristics regarding their experience with different kinds of music
and musical instruments. The median value for the number of years
performing music was eight years.

Table 3.6 Similarity counts for each pair of rhythms in GE1 as reported in

26 https://www.gearogs.com/gear/8813-Ace-Tone-Rhythm-Ace-FR-3
27 Video of the FR-3: https://www.youtube.com/watch?v=BHiwVcQkKP4
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Gabrielsson’s original paper.

Converting Table 3.6 with the pair similarity counts into a dissimilarity
matrix, a Multi Dimensional Scaling (MDS) algorithm is used with it to
obtain a bidimensional space where all five patterns are located according
to their reported distance. A similar procedure is followed fro GE2, being
the only difference the additional use of waltz pattern in the rating
procedure. The spaces obtained by Gabrielsson are graphic
representations of the dissimilarity matrix (Figure 3.10). Gabrielsson’s
interpretations of the axes spanning the spaces are educated guesses
without strong grounding on empirical data, therefore in our experiment it
is sought to approach them with the help of our rhythm descriptors
presented above. 

In Gabrielsson’s paper the patterns from the FR-3 drum machine are
transcribed to symbolic musical notation. The proposed polyphonic
descriptors will be extracted from these transcribed patterns obtaining a
descriptor vector for each pattern. These vectors will be used to approach
the positions of each pattern in the rhythm space resulting from GE1
(Figure 3.10). A Lasso regression (Tibshirani, 1996) will be used to
discriminate which descriptors are sufficient (and how important they are)
to predict the position of each pattern in the 2D space. Lasso regression is
a method typically used for variable selection, to enhance the
predictability and interpretability of a model, by reducing the number of
variables needed to get accurate predictions. Thus, the resulting set of
descriptors should capture the essence of subjects' ratings revealed
through the structure of the spaces. The hypothesis is that such a set of
descriptors can be good predictors of Gabrielsson's spaces. If this is the
case, then we could further ask if they can be generalized to predict
different spaces with patterns from other drumming styles.
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Figure 3.10. Gabrielsson’s spaces from Experiments 1 and 2 (GE1 and GE2). F:
Foxtrot, RR: Rockn’roll, R: Rhumba, B: Beguine, H: Habanera, W: waltz.

3.5.1 Methods

3.5.1.1 Materials

The resulting spaces from Gabrielsson are used as a source from where
the coordinates of each pattern are extracted. These coordinates are
presented in Table 3.7.

Pattern GE1 coordinates GE2 coordinates
foxtrot -0.640, 0.55 -0.4, -0.58, -0.1 

rocknroll -0.270, 0.09 -0.3, -0.1, 0.1 
rhumba -0.060, -0.55 -0.09, 0.3, 0.55 
beguine 0.240, -0.49 0.0, 0.4, 0.41 
habanera 0.700, 0.45 -0.18, 0.41, -0.61 

waltz - 0.85,-0.51,-0.36 

Table 3.7 Patterns used in GE1 and GE2 and their coordinates.

3.5.1.2 Procedure

Each pattern used in GE1 and GE2 is transcribed to MIDI format and all
descriptors are extracted from them. Then a Multi Task Lasso regression
is used (alpha 0.03) using the positions of the patterns in each space as a
target (X) and the matrix of descriptors as variables (Y1, Y2, Y3… ). The
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Lasso regression returns a subset of variables and weights that maximize
correlation with the positions of the patterns in each space.

3.5.2 Results and discussion

The output of the Lasso analysis shows that using this set of descriptors
[midD, hiD, hiness, lowsync, hisyness] (see Table 3.5) the results of both
axes of GE1 are perfectly linearly correlated. For E1 and x axis the
weights -0.660, -0.86, -0.068, -0.266, 0.118 respectively present a
Spearman correlation of 0.999 (p-value < 0.005). For E1 and y axis the
weights  respectively present a  Spearman correlation of 0.999 (p-value <
0.005). For the space resulting from E2, Lasso analysis shows the
descriptor set [midD, hiness, lowsync, midsync, hisync, losyness,
hisyness] yields perfect correlations with its three axes. For E2 and x axis
the weights are 0.785, -0.073,0.242, 0.574, -0.709, 0.044, 0.506
respectively and present a Spearman correlation of 0.999 (p-value <
0.005). For E2 y axis the weights are 0.333, -0.07, 0.21, -0.031, 1.005
0.002, -1.411 and preents Spearman correlation of 0.942 (p-value <
0.005). For the z axis the weights are 0.313, -0.032, -1.12, 0.104, 0.81,

-0.052, -0.723 and presents a Spearman correlation of 0.999 (p-value <
0.005). 
The sets of descriptors and weights, perfectly describe the spaces reported
in GE1 and GE2 and thus might be related with the overall polyphonic
rhythm similarity sensations from which the space was created. It could be
fair to presume that, if the space captures a similarity sensation, these
descriptors play a role in our perception of polyphonic similarity that
could go beyond its particular application in GE1.

 
Syncopation Sync/Density Density Density%

High * * * * * *
Mid * * *
Low * * *

Table 3.8 Relevant descriptors for the prediction of both axes of GE1 space. The
rows are the three instrumental categories and the columns the types of

descriptors that were relevant. The asterisk represents its use in either of the axes.
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From the summary presented in Table 3.8,  Syncopation is clearly a main
factor for differentiating the patterns at the three different instrumental
levels. Syncopation on the low instrumental group is used to predict both
spaces. The quotient between the syncopation and the density is found
relevant in the high and low frequency instrumental group. For both
spaces the high density quotient is found relevant. The density of the high
and mid category of instruments is relevant, both spaces coinciding in the
importance of density in the mid instrumental level. The density
percentage (instrumental density divided by total density) is found
relevant for both spaces in the high instrumental category. Descriptors in
the three instrumental categories are used to predict GE1 suggesting that
they are useful for the human discrimination process of polyphonic
rhythms. This, validates the approach of mapping instruments to
categories in the symbolic domain as discussed in section 3.4.1. 

The highlighted importance of the low syncopation, given its usefulness to
predict both GE1 and GE2 spaces, is a confirmation of the argumentation
exposed at the introduction of this section. The importance of low
frequency instruments in the definition of a syncopation sensation in a
polyphonic context is discussed by different authors (Witek et.al. 2014b;
Hove, 2014; Burger et. al., 2017; Bouwer et. al., 2014) and has been
corroborated in this experiment. This fact is also aligned with
Gabrielsson’s results as he argues syncopations are one important driver
for discrimination of rhythms in polyphonic contexts. 

The density of the patterns, another of the factors described by
Gabrielsson to influence similarity, is definitive for predicting the
positions of the patterns in both axes. Density, discriminated by
instrumental groups in the form of midD and highD (density column in
Table 3.8) and hiness (density% column in Table 3.8) are relevant
discriminators of similarity. It is important to note that the low frequency
densities, lowD and lowness are not present in the set of relevant
descriptors. 
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Although the number of different instruments in a sequence is another
factor proposed by Gabrielsson to influence similarity and it is one of the
descriptors computed, it has no relevance for the prediction of space GE1. 

3.6 Experiment 3: Generalizing Polyphonic 
Descriptors for EDM
In the previous experiment (section 3.5) small sets of descriptors are
found to quantitatively describe and predict the results (similarity ratings,
perceptual space computed from them) of Gabrielsson's GE1 and GE2
(1973b). The question here is how general these features are. In other
words, are these features fitted to the particularities of the rhythms used
by Gabrielsson or would they work when other, quite different, rhythm
patterns are rated? From a computational point of view this means that, if
we have a new set of drum patterns and their location on a human-based
rhythm space, by extracting only the descriptors defined on the previous
experiment, and by using a dimensional reduction technique, the rhythm
space can be predicted with some accuracy. Two very well known
dimensional reduction algorithms are used, namely PCA and MDS. PCA
finds a principal vector in the descriptors space in which the values of all
descriptors are maximally dispersed and then additional orthogonal
vectors are found to conform the predicted rhythm space. The other
alternative, MDS, is based on a dissimilarity matrix of the patterns, which
is computed as the euclidean distance between the descriptor vectors of
each pattern (see section 2.3.1.1 for a comprehensive review).

For this experiment a new EDM rhythm space is created, based on subject
ratings following Gabrielsson’s methodology: selecting a collection of
EDM patterns and presenting pairwise combinations to subjects who
report their similarity, and then, with those answers, creating a new
rhythm space. An EDM drum rhythm collection is compiled specifically
for this experiment. 
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3.6.1 Methods

3.6.1.1 Participants

A total of 36 subjects participated in the survey, 5 females and 31 males,
all had experience in music production or musical training.

3.6.1.2 Material

In order to get a subject-based rhythm space, a set of rhythm patterns is
needed,  so we turned to the EDM production literature and collected
drum patterns explicitly associated to a certain EDM style (section 2.5.2 ).
All patterns are 16 steps long, each step lasting for a 16th note. A total of
75 different  patterns were collected, 70% of them belonged to the most
prominent styles, House Music (28%), Breakbeat (26%), and Techno
(16%) and the rest 30% belonged to Garage, Drum n’ Bass, Hip-Hop,
Trance, Chillout, Dubstep, Jungle and Trip-Hop.

With the whole 75 pattern collection we created a preliminary rhythm
space. First we extracted the complete list of aforementioned descriptors
and then using PCA they were visualized in a bi-dimensional space. This
preliminary space was divided in nine equal-size rectangular areas and
then one pattern from each area was selected. In this way, the list of 75
patterns is reduced to 9 patterns (see Table 3.9), each one intended to be
representative enough of the variability of the included categories. The 9
patterns (from Techno, House and Breakbeat styles) selected for the
experiment are rendered to audio (in order to be played in the rating
experiment) using single shot samples from the Roland 707, 808 and 909
drum machines which are instruments typically used in the styles we are
focusing on. All selected patterns use instruments included in this set:
Low Conga, Bass Drum, Side Stick, Maracas, Hand Clap, Snare, Closed
Hi-Hat, Low Tom and Open Hi-Hat (Figure 3.11).

Left Center Right
Top Techno grinding analogue techno industrial techno hardcore

Center deep house dirty house deep tech house
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Bottom break synthetic subs funk break break funky drummer

Table 3.9 Patterns selected from the sub regions of the preliminary space. Left,
center, right and top, center bottom represent the subdivisions of the space as

explained in the text. 

Figure 3.11 Nine EDM patterns selected out of the 75 pattern list. Each pattern
was selected for being the farthest of its region. K:kick drum, RS: rimshot, SN:

snare, CP: clap, CH: closed hi-hat, OH: open hi-hat, LT: low tom, HT: high tom,
LC: low conga, MA: maracas.

3.6.1.3 Procedure

A computer program is prepared to carry out the experiment. Before the
subjects start the experiment, several patterns are presented to expose the
timbre range of the percussive sounds used, and also examples of
“identical”, “similar” and “completely different” pairs of patterns are
provided as reference. To evaluate all combinations between the 9
patterns, subjects rate the existing 36 possible pattern pairs in a triangular
9 element matrix (avoiding comparing a pattern with itself or repeating
any pair). Additionally, 4 randomly selected pairs are presented twice for
controlling the consistency of each subject's ratings, so, in total, subjects
rate 40 pairs of patterns. The pairs are presented in a random order
preventing the same pattern to be in consecutive pairs. Before a pair is
reproduced, the order of its two patterns is also randomized so the same
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pair is presented in the two possible arrangements (i.e., a-b or b-a) to
different subjects. Subjects listen to the same pair as many times as they
need and the similarity value is reported in a Likert scale with a range
from 1 to 10, where 1 means the pair is completely dissimilar and 10
means the pair has the topmost similarity (i.e., the pair contains equal
patterns). When the subjects complete the experiment, they answer some
questions about themselves: age, gender, years of musical training, years
of musical performance training, years of percussive musical performance
training, hours per week spent attentively listening to music, experience in
electronic music production, experience in electronic drum programming,
number times listened to the pairs before answering. Finally, the
possibility to leave a comment on the experiment is provided.

3.6.2 Results

In order to simplify the analysis, the 10 point scale is mapped to a 5 point
scale where each range of the new scale groups two values of the original
scale (1 groups the results of ratings 1 and 2, 2 groups ratings  3 and 4 and
so on). Three subjects rated different pairs as being “exactly the same”,
and therefore these subjects were discarded from the experiment, because
there were no identical pairs (i.e., we considered the subjects were not
properly attending to the task). The control pairs were used to perceive
distortion in the ratings of the same pairs, and the average of the
maximum difference of all subjects when rating the same pair is 1.8 units
which is a 36% of maximum variation. In order to approximate our
analysis to that of Gabrielsson, we create a subgroup of subjects compliant
with the musical background reported in his experiments, which is
“amateur musicians who had performed music for at least 4 years”.  A
subset of our General Group composed of 18 subjects with at least 4 years
of musical training was defined and we will refer to it as the Musicians
group. For the General group, the inter quartile range (a measure of
statistical dispersion) mean is 1.81 units and 1.48 units for the Musicians
group suggesting more agreement in the Musicians sub-group. Pair (1, 3)
presents a slight bimodal behaviour for the General Group which is
reduced in the Musicians Sub group.
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The observed means for each assessed pair present slight differences when
both groups are compared using the median rating values for each pair.
Only 9 pairs out of 36 differ in median value from one group to another: 6
pairs present changes in a degree of 2 units, and 3 pairs present changes in
a degree of 1.  Pairs that involve rhythm Deep House do not change
between groups and the pairs that involve rhythm 6 Deep Tech House
have 4 changes between groups. The difference between the spaces
generated by the Musicians group and the general group were not too big
to be considered diverted from the General group so we operate with all
results.

An MDS is applied to the obtained dissimilarity matrix generating a bi-
dimensional space (Figure 3.12). We can observe in the obtained space
that the three genres from where the rhythm patterns were extracted span
across three distinct regions of the space. Breakbeat patterns are located in
the positive region of the X axis, while Techno and House patterns are
located from the zero to the negative portion of the X axis. The X-
negative quadrants of the space contain, in the Y-positive region the
Techno patterns, and in the Y-negative region the House patterns. In
EDM, rhythm and timbre are the most salient musical characteristics to
define styles (Butler, 2001), so it is relevant for EDM drum patterns to
carry important stylistic/similarity information. This stylistic information
comes through, in the resulting subject-based EDM space, as patterns of
he same style end up located in specific and independent regions.

111



Figure 3.12. Bi dimensional space obtained by using MDS on the dissimilarity
matrix of subject ratings. 

We extract the two descriptor sets found in the previous experiment (by
adjusting E1 and E2) from the patterns in the EDM space. The descriptor
set for E1 is [midD, hiD, hiness, lowsync, hisyness] and for E2 is [midD,
hiness, lowsync, midsync, hisync, losyness, hisyness]. Using those
descriptor values we compute PCA and MDS to evaluate if the locations
of the EDM patterns can be predicted with any of the sets. Table 3.10
presents the correlations between the predicted space and the resulting
EDM space.

Using the E1 set of descriptors for analyzing the patterns of the EDM
experiment and then applying MDS to those results (E1 set MDS), we
observe correlations of ρ=0.67 (p-value < 0.05) and ρ=-0.78 (p-value <
0.05) for x and y axis respectively. The other two combinations of sets
and dimensional reduction techniques that are borderline correlated with
the EDM space are, E1 set PCA and E2 set MDS but none of them have
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statistical significant correlations for any of the axes. The method of using
the E1 set and then MDS captures the distance sensations reported by the
subjects both in Gabrielsson’s experiment 1 and  in our EDM experiment.

X Y

E1 set PCA ρ = 0.62 p=0.076 ρ = 0.68 p=0.042

E1 set MDS ρ = 0.67 p=0.049 ρ = 0.78 p=0.012

E2 set PCA ρ = 0.52 p=0.154 ρ = 0.45 p=0.224

E2 set MDS ρ = 0.63 p=0.067 ρ = 0.683 p=0.042

E1+E2 set PCA ρ = 0.466 p=0.205 ρ = 0.683 p=0.042

E1+E2 set MDS ρ = 0.383 p=0.308 ρ = 0.5 p=0.17

Table 3.10 Spearman Rank correlations between each EDM axis and the
prediction using the descriptor sets from GE1 rendered using PCA and MDS.

3.6.2.1 From EDM to GE1 

The inverse process, making a Multi-Output Lasso analysis to extract a set
of EDM well-correlated descriptors, and then finding how they can
predict the GE1 space was also explored. In this case, the resulting
descriptor set that better correlates (ρ = 1, p-value < 0.05) with the EDM
axes was different. However the predictions towards the GE1 space, either
by using PCA or MDS with the EDM set, were not statistically
significant. This is expected as Gabrielsson’s patterns are much different
among them, representing six different musical styles, and thus they cover
a large perceptual/musical space, while the patterns used in the EDM
experiment are variations of three styles which cover a small-scale rhythm
space. In this case, the macro-scale descriptors can predict the small-scale
space but not the opposite (Figure 3.13).
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Figure 3.13. Comparison between Gabrielsson's space and the EDM space.

3.6.2.2 Relevant set of descriptors

The descriptors derived from the Multitask Lasso analysis that has the
best fit with GE1 space and our EDM experiment using MDS are [midD,
hiD, hiness, lowsync, hisyness]. These descriptors cover all frequency
ranges in which the drum patterns are segmented (low, mid and high). The
only low frequency descriptor present is lowsync which is expected given
the crucial importance of the syncopation of the low frequencies in the
overall syncopation sensation of a drum pattern, as proposed by Hove et
al. (2014). The mid frequency range descriptor midD represents the
normalized onset density of the mid frequency. The high frequency
descriptors are hiD, hiness and hisyness, all related with the density and
the syncopation of the instruments mapped to the high frequency
category.

3.6.3 Discussion
By defining a broad set of descriptors and using them to fit symbolic
rhythms as defined in Gabrielsson’s spaces (1973b), we discovered
descriptors that allow to construct very general rhythm spaces that were
reported long ago, but without such descriptors-based analysis. Then, we
have seen that these descriptors, based on main concepts of rhythm
cognition, allow to construct spaces constrained to EDM, which even have
a stylistic significance. Consequently, we could use those descriptors in
systems that present, visualize and manipulate pattern collections. This
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way, users could have 2D representations close to their mental
representations, which could be exploited for search, selection and
invention tasks.

Although the reported experiments were not designed for classification, it
is revealing that the concept of EDM style comes through in the space
resulting from our second experiment. It can be seen as a demonstration of
how musical concepts as House, Techno and Breakbeat emerge based on
listening to a handful of instances, each occupying a specific region of a
conceptual space. As 61% of the Musicians group reported having
experience in EDM production, the distribution by styles can also
represent the effect of a pre-existing knowledge about EDM, affecting
how patterns are perceived and their similarity judged.

The drum patterns used in Gabrielsson’s experiment 1 come from different
dance music cultures, namely Western, Afro Cuban and South American.
The patterns in the EDM set belong to three EDM subgenres: Techno,
House and Breakbeat. Patterns in E1 contain more cultural and rhythmic
diversity than the EDM drum patterns used in experiment 4. This suggests
that, conceptually, the space denoted by Gabrielsson’s patterns spans over
a wider region than the EDM patterns of our EDM experiment (see Figure
3.13). A further interesting experiment, beyond the scope of this thesis,
would consist of adding some EDM patterns to those used in Gabrielsson’s
experiment in order to see how far EDM ones are from the rest, and how
close between themself they appear, in such a big picture

Our results show how using a reduced set of descriptors, namely [midD,
hiD, hiness, lowsync, hisyness], computing Euclidean distance between
the descriptor vectors and then using MDS, a perceptual rhythm space
composed of EDM patterns is reproduced with significant correlation
values. Although this is a significant advancement towards a system
capable of automatic drum pattern organization, further experiments must
be carried out to evaluate its robustness in larger datasets.
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3.7 Conclusions

Our studies on rhythm similarity offer new evidences on the workings of
rhythm-related cognitive musical processes, related to rhythm in which
pulse, meter syncopation and frequency range play a major role both in
monophonic and polyphonic scenarios. The results obtained in the
experiments strongly suggest how, in the event of evaluating the similarity
between two different monophonic patterns, two different mechanisms are
at play. The syntactic one, which is focused in comparing the order of the
onsets and silences of both monophonic patterns being assessed, and
which is used when the patterns are listened to in the absence of pulse
induction. A second mechanism, a semantic one, is found to be triggered
when two monophonic patterns are assessed by similarity in the presence
of a pulse context. This finding is backed by experimental results that
present how the similarity between two monophonic patterns is judged
differently in the presence and absence of a pulse-inducing sequence.
Without pulse induction the similarity results correlate with the Edit
Distance, an infomation-based string similarity metric based in counting
how many characters are needed to transform one sequence of onsets and
silences into another. The results obtained in a pulse-induced scenario, on
the contrary, show no significant correlation with the Edit Distance, but
they do correlate significantly with a metric based on measuring the
syncopation in the different patterns. These two opposed correlations
suggest an explanation to the influence of the pulse in the judgments:
when there is no pulse to be used as a reference to understand the onsets
of the patterns, then comparing the onset and silent events of two patterns
is a useful mechanism to assess their similarity. However, when a pulse
sensation is induced, a layer of cognitive mechanisms is triggered to make
sense of a monophonic pattern: the pattern and the pulse are fed back onto
each other to deduce a meter and, with it, hierarchies are aroused in the
listener’s minds which are finally used to weight the expectancy of each
note in the pattern measured as syncopation (Longuet-Higgins and Lee,
1984; Palmer and Krumhansl, 1990). This triggered process builds up a
cognitive framework which is used in a similarity comparison in pulse-
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induced scenarios. The ultimate layer in that cognitive framework is
syncopation, which appears as a crucial factor for assessing similarity in
pulse-induced scenarios. This semantic mechanism, whereby monophonic
patterns are processed and compared by their rhythmic “meaning”, is
highly relevant for this thesis as it is concerned with EDM music creation
which is rooted in eliciting a pulse sensation.

The importance of note hierarchies in the semantic mechanism, which are
the source for syncopation sensations, can perhaps be extrapolated to a
higher structural level in a pattern. When the subjective similarity
judgements in a pulse-entrained scenario were correlated independently
for each intra-pulse sub pattern, the first portion of the pattern showed the
highest importance towards the reported similarity sensation. That is, the
similarity of the first beat of two monophonic patterns is the most
important fragment to define the overall similarity in a pattern. This
effect, named awareness in the sections above, can be an extrapolation of
the metrical hierarchies evidenced theoretically by Lerdahl and Jackendoff
(1985) and experimentally by Palmer and Krumhansl (1990) in which the
expectancy of a note at the beginning of a one-bar musical phrase is
higher than the presence of any other note within the one-bar sequence.
The awareness, could then be interpreted as the level of attention imposed
over the different intra-pulse sections of a monophonic sequence.
Although the concept of awareness proved to be useful for predicting
similarity sensations, further research, which is outside the scope of this
thesis, is needed to understand this phenomenon.

As in the assessment of the similarity between monophonic patterns in
pulse-entrained scenarios, the concept of syncopation, along with note
density and frequency range of the onsets found in a polyphonic rhythm
pattern, are fundamental to rhythm similarity prediction. The experiments
presented in this chapter show how five descriptors, rooted in the
aforementioned concepts, are recurrent for accurately predicting similarity
sensations among polyphonic patterns. When predicting classic drum
rhythm spaces as those created by Gabrielsson (1973b) and when
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predicting a contemporary EDM drum rhythm space, created for this
thesis, five descriptors [lowsync, midD, hiD, hiness, hisyness] are
recurrently found to be responsible for the accuracy of such predictions.
These descriptors happen to be in tune with scientific knowledge in the
area of polyphonic drum rhythm processing. The five descriptors
correspond to three different frequency regions (low, mid and high),
representing three different streams of audio, in which drum patterns can
be processed by humans auditory scene analysis. The lowsync descriptor
measures the amount syncopation found in the low frequency region of
instruments. The midD descriptor measures the amount of onsets
performed with sounds belonging to the mid frequency range in a
polyphonic drum pattern. The hiD measures the amount of onsets
belonging to the high frequency range, the hiness descriptor measures the
amount of onsets belonging to the high frequency range and the hisyness
informs about the normalized syncopation in the high frequency range.
These effective descriptors are based on simple yet strong principles of
rhythm cognition, which makes them straightforward to compute and
useful for  similarity prediction.

The approach we have found to accurately predict drum rhythm spaces
devised by human ratings is based on these use of the five symbolic
descriptors, along with the Multidimensional Scaling (MDS) technique.
The simplicity of this method from both a conceptual and a computational
point of view, suggests an elegant algorithm for automating the creation of
polyphonic drum rhythm spaces. With this methodology, which
experimentally presents the best fits with human rhythm spaces, drum
pattern collections can be processed in order to create 2D maps suited for
the exploration and retrieval of drum patterns, which will be addressed in
Chapter 4. 
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4. GENERATIVE TOOLS FOR 
EDM RHYTHM

4.1 Introduction 

This chapter presents original work focused in three main activities of
EDM drum production discussed in chapters 1 and 2, namely the compre-
hension of EDM styles, the generation of variations of EDM drum pat-
terns and the organization of symbolic drum patterns. These three activi-
ties are approached with novel tools designed to expand what is currently
offered to EDM producers in actual DAWs and plug-in musical software,
upgrading these tools with intelligent behavior aiming at a better practice
of EDM production. 

One fundamental concept for the development of these applications is the
fact that acoustic and even virtual (i.e. drum pad based performances)
drumming are very physical activities, while sequencing drums is a non-
real-time activity that lacks of demanding synchronic motor involvement.
The passivity in the analytical process of sequencing drum patterns, which
precisely are the musical elements intended to induce movement in music
and, most of all, physical motion in listeners, suggests a contradiction be-
tween the stillness of the musician, and the traditional physicality of
drumming, and the motor sensation induced in the dancers. From this per-
spective, the use of continuous and gestural control in the process of real-
time rhythm sequencing is set as a goal for the software tools researched
during this thesis.
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We have developed two software applications, which are presented
throughout this chapter: DrDrums, an intelligent drum machine based
around the concept of drumming style and variation, and RhythmSpace a
drum rhythm space automatic arranger with generative capabilities. Both
applications are presented with a detailed description of their inner work-
ings, focusing on the ideas and algorithms that enable their smart func-
tionality and continuous interaction. These two applications are a logical
evolution from the ideas presented on chapter 2 and the experimental re-
sults discussed on chapter 3.  

4.1.1 Fundamentals of DrDrums

DrDrums is a smart drum machine with generative and variation capabili-
ties, aimed at stylistic EDM drum production. DrDrums addresses some of
the issues discussed on chapters 1 and 2, which EDM producers face
when composing drum rhythms that are then expanded to a dance track: 

● EDM is very stylistic, in the sense that rhythmic patterns of differ-
ent styles have very distinct features which support much of the
musical personality of a style. Thus, a producer must be very
knowledgeable of the EDM style being produced, specially the in-
ner workings of drum arrangements and the reasons why the ele-
ments induce movement. However, production guides and litera-
ture are reduced to monolithic examples of drum patterns without
explanation of why they work rhythmically in relation to dance.
Comprehension and reproducibility of a drumming style is thus a
must for an EDM producer.

● Starting up an EDM drum track project with an empty page can
lead to a scary situation, unless the producer has prefigured a very
clear idea of the music she wants to create, or unless she is a high-
ly skilled composer. Having explicit machine-aided musical intu-
itions about the work to be accomplished, might be an elegant
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way to avoid the distress of the empty page, or to get a lead on a
possible direction to evolve a drum pattern. 

● Performing variations on a drum pattern once it has been estab-
lished as a working seed for a drum track is a fundamental activi-
ty for an EDM producer. Typically it is performed note-by-note,
adding one onset at a time, and some times even as a trial-and-er-
ror activity. Here, again, music literature and tutorials fail to ad-
dress techniques and methodologies useful for transforming poly-
phonic percussive patterns while preserving the deep identity of
the pattern being transformed. 

These three issues, which are mostly EDM theory voids, as well as the
mentioned need for a dynamic sequencing gestures, are addressed in the
design of the DrDrums application. In the following sections of this chap-
ter, the processes used to devise this application are thoroughly explained.
Finally, two different subject-based evaluations, one qualitative and an-
other quantitative, are carried out to assess the features of DrDrums, spe-
cially the ones related to style replication.

4.1.2 Fundamentals of RhythmSpace

The second application presented in this chapter is RhythmSpace, a graph-
ical tool for  organizing, visualizing and retrieving drum patterns based on
rhythmic similarity. RhythmSpace is grounded on the research presented
on chapter 3 which explores objective metrics for predicting polyphonic
rhythm similarity. A major feature of RhythmSpace is its generative func-
tionality, that goes beyond retrieving existing patterns in the collection as
it can also generate new ones based on drum interpolation. RhythmSpace
addresses directly the need for a file browser with music cognition capa-
bilities that takes care of organizing a large amount of drum files in an in-
tuitive and musical way that musicians can relate to, as it was exposed in
section 2.5.
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4.1.3 Technologies of DrDrums and Rhythm Space

In order to design and build the DrDrums and RhythmSpace applications,
discrete bits of technology had to be developed to solve diverse aspects of
drum generation, transformation and organization. The approach taken to
address all of these aspects was quite similar, and based on applying re-
search results on rhythm perception and cognition previously presented in
Chapters 2 and 3. The specific technological developments discussed
throughout this chapter and which constitute the basic elements for Dr-
Drums and RhythmSpace are namely: an algorithm to increase or decrease
the onsets of a rhythm pattern maintaining the main onsets, called agnostic
density transformer (ADT); a drumming style extractor based on analyz-
ing MIDI drum patterns; a drum pattern generator based on using the ex-
tracted drumming styles; a system for automatically organizing polyphon-
ic drum patterns in a 2D space by similarity; and finally, several algo-
rithms for drum pattern interpolation.

In the following sections the concepts behind the agnostic density trans-
former (ADT) (section 4.2), and those of style (section 4.3) and variation
in EDM drum pattens (section 4.4) will be presented. Their implementa-
tions will be presented and evaluated within the DrDrums and
RhythmSpace applications (sections 4.5, 4.6 and 4.7).

4.2 Agnostic Density Transformer

Making variations of a drum pattern while preserving its identity is an
EDM producer key activity, that has been discussed throughout this thesis,
specially on Chapters 1 and 2. Given its importance, researching how to
progressively transform a pattern in a musically meaningful and con-
trolled manner, is one of the main goals of this work. As discussed on pre-
vious chapters, syncopations are a key factor influencing similarity judg-
ments in percussive patterns (for a review see sections 2.6, 3.2 and 3.3), as
also are the amount of onsets in a pattern, also known as the density (see
Gabrielsson, 1973 discussed in section 3.7). Following the definition of
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syncopation given by Longuet-Higgins and Lee (1984), presented in
Chapter 3, it can be seen that syncopation is independent of the amount of
onsets on a pattern. That is, they are two independent variables affecting
different properties of a rhythm pattern: syncopation (defining the salience
of the notes in a pattern against a pulse) and density (defining the total
amount of notes present).

Syncopated notes in a pattern are least metrically expected and, as such,
they are the ones that define the salient points of a rhythm. They are defin-
itive for determining its character, in the sense that syncopations are the
ones that deviate from the more expected, reinforcing notes. As such, al-
tering the types of syncopations in a percussive pattern is a major change,
an idea thoroughly discussed in sections 3.2 and 3.3, where the influence
of syncopation in similarity sensations is evaluated. Changing the synco-
pations between two patterns, makes up for high perceptual differences,
altering the character of a pattern; but density can be affected without dis-
turbing the main syncopated, thus salient, notes in a pattern. For an EDM
producer, this type of rhythm variation, which affects the fullness of the
pattern while maintaining the essential notes of a drum pattern, is a useful
composition tool.

We design, then, an agnostic density transformer, which is by definition
independent of any idea of style or any external reference besides the in-
duced pulse and meter of a rhythm, thus ‘agnostic’, is designed. The ag-
nostic density transformer (ADT) is based on the principle of acknowledg-
ing the syncopated notes as the most salient events in a percussive pattern.
The main concept is to conceive an algorithm that minimizes the cognitive
impact of adding or subtracting onsets of a given input pattern.

Based on metrical weight profiles, as the ones proposed by Lerdahl and
Jackendoff (1985) or Palmer and Krumhansl (1990) (see Figure 4.1), the
salience of notes and silences in a drum pattern can be established. With
these salience profiles, syncopation values can be measured for each of
the notes present in a pattern, defining a degree in which each note defies
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the pulse and, as such, is more salient. Additionally, from the experimen-
tal results presented in section 3.2, regarding monophonic rhythm similar-
ity, it is concluded that some of the inter-pulse sections within a percus-
sive pattern are more important than others. Namely, in a monophonic
one-bar pattern with minimum resolution of 1/16th note, the changes ex-
cerpted at the first quarter of a pattern are much more  similarity disturb-
ing than changes after the other pulses. That is, if two percussive mono-
phonic patterns differ only in the region within the 1st and 2nd pulse, they
can be considered more different than if the dissimilarity was between any
of the other pulses. In general, transformations in different regions within
a pattern have a different impact in similarity, being the region compre-
hended between the 1st and 2nd pulse the most important, then the 3rd
and 4th, then the region after the 4th pulse, and finally the region between
the 2nd and 3rd pulse (see Figure 4.2).

Figure 4.1. Theoretical metrical weights as defined by Lerdahl & Jackendoff (top)
and  importance of intra-pulse regions as presented in Section 3.3 (bottom).

Combining both the metrical salience levels of the pattern, onsets with the
region in which they are located within the pulses, an importance value
can be assigned to each of the notes of a pattern. This importance value
can be used to decide which of the notes can be affected, while minimiz-
ing the impact of the transformation; to decide, in other words, where to
add or remove a note, where it is less noticeable for a listener. 
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The idea of the ADT algorithm is to number each of the steps of a pattern
with an importance value based, on analyzing the notes and their metrical
salience. After the analysis, the density of the pattern can be controlled by
assigning onsets to steps which are equal or lower than the user-controlled
density value. Therefore, when the desired density is equal to the density
of the original pattern, the same pattern will be retrieved; when the desired
density is equal to 1, the single most important note of the original pattern
will remain (that is the note with the highest syncopation in the most
salient region); and when density is set to just one value below the total
steps (when all steps but one are filled with onsets) that silence is going to
be the one that generates the most important syncopation of the original
notes of the pattern. The current implementation of the algorithm is based
on one-bar length drum patterns in 4/4 measure, with a minimum time res-
olution of 1/16th note. The description of the algorithm is as follows:

1. Adjust a drum pattern to the 1/16th note minimum step resolution, one
bar length and the type of meter. Use the metrical weight profile by
Lerdahl and Jackendoff (1985)  to assign the salience to each note and
calculate its syncopation value.

2. Segment the events of the monophonic drum pattern between relevant
and irrelevant onsets and relevant and irrelevant silences. Relevant
onsets are those that are preceding a silence. Irrelevant notes are those
1/16th notes which precede another note. Relevant silences are those
preceded by a note and irrelevant silences are those preceded by an-
other silence.

3. Assign importance values to the steps, where each of the relevant
notes are located, based on their syncopation values and the region
awareness profiles (see Figure 4.1). Starting with the note with the
highest syncopation value located in the most salient region, and de-
scend by syncopation value and region value.
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4. Continue assigning importance values to the steps where the irrelevant
notes are located, given the salience of their region.

5. Now continue assigning importance values to the steps where irrele-
vant silences are located, given the salience of their region.

6. Finish assigning importance values to the steps where the relevant si-
lences are located based on the importance value of the notes preced-
ing them. The relevant silence with the lowest importance value must
be the one located right after the relevant note with the lowest impor-
tance value.

7. Now that all the steps have been numbered, control the density of the
pattern by placing notes in steps which have equal or lower impor-
tance value than the desired density.

4.2.1 Agnostic density transformation example

Figure 4.2. Evolution of a Rhumba clave pattern (black) when the ADT algorithm
adds and removes onsets28.

28 See a demo of the ADT here: http://bit.ly/2EuWJSB
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An example of the ADT in action is presented in Figure 4.2. Here we can
see how the Rhumba clave pattern, with an original density of 5 onsets, is
transformed by adding and subtracting onsets using the ADT algorithm.
The onsets with the lowest syncopation value and in the least important
pulse are subtracted. Onsets at steps 13, 11, 8, 1 and 4 are removed, leav-
ing the onset with the highest syncopation value in the most important in-
tra-pulse region (region I) . To increase the density, onsets are added to
the irrelevant silence steps, which are those silent steps that are right be-
fore an onset. The first irrelevant silences are filled following an inverse
intra-pulse importance order, that is, the least important silences in the
least important intra-pulse regions are filled. Onsets are added progres-
sively at steps 7, 16, 10, 3, 6, 15. When density 11 is reached, the only
silent steps are relevant-silence steps, that is, silences located after any of
the notes of the original pattern. When density is increased after this point,
the sensation of the original pattern will be progressively lost. The steps
progressively filled are those on the least important intra-pulse region and
with the least important syncopation value. The final steps that are filled
are 14, 12, 2, 9 and 5.

4.2.2 Considerations of real-time interaction with density

The ADT by itself can be seen as a proof of concept application to con-
firm seminal ideas such as syncopations being the most important notes of
a pattern, and also that some regions of a pattern are more important than
others when excerpting changes. Also, the fact that an input pattern can be
transformed in real time adds an interactive appeal to its use, specially
when used, in polyphonic drum patterns, to change the density of different
instruments in real time. In DrDrums this ADT is used as a post process-
ing tool for transforming the densities of the different instruments in the
generated rhythms.

One important feature of the ADT is  the dynamic real-time addition and
subtraction of notes from a monophonic pattern, which opens the door to a
new gestural control of rhythm sequencing. The possibility of tweaking a
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knob and listen to a progressive real time rhythm density transformation,
expands the motility involved in drum sequencing, historically reduced to
discrete clicks, towards a dynamic and action-based activity. In this sense
it closes the gap between the traditional quietness of sequencing and the
movement induced by drumming. The ADT offers the possibility for
EDM rhythm performers and producers to amplify a gesture into the per-
ceptible dynamics of drumming, as a transducer of the continuous move-
ment of a slider towards the multiple hits of a drum.

Figure 4.3. Snapshot of the introductory video of the Snap drum machine. The
lower panel features vertical sliders used to input the density value of the drum

machine's different percussive instruments. 
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This ADT algorithm has already been successfully29 implemented com-
mercially in the Snap drum machine developed by the ReacTable compa-
ny30, one of the partners in the Giant Steps project that framed the devel-
opment of this thesis. Snap features a classic Piano Roll Interface as dis-
cussed in Chapters 1 and 2 (sections 1.2 and 2.5). In the Snap drum ma-
chine the density control is the main feature which makes the difference
from any other piano-roll-based drum machine (see Figure 4.3).

4.3 Drumming style extractor

As it was presented in section 2.4, one of the particular aspects of EDM
drum sequencing is that it heavily relies on style as the focus of its activi-
ty, meaning that producers recreate specific features of an established
style, as the foundation of an original dance track. Inspired by the defini-
tions of style presented by Meyer (1967), suggesting that a style is an im-
pression of the mind after being exposed to a particular set of examples
which have common features, a line of original work was devoted here to
understanding how to deal with EDM drumming styles, specially aiming
at reproducing a drumming style with a generative tool. The material to
have as reference in order to define a drumming style is a collection of
drum patterns in symbolic format which are expected to have some com-
mon features. These reference patterns can either belong to a same EDM
style, a single track or be produced by a specific musician.

After reviewing the work by Ames (1989), Eigenfeldt & Pasquier (2013),
Conklin and Witten (1995), Pearce & Wiggins (2004), Pearce, Conklin
Wiggins (2004) and Pachet (2002, 2003, 2006) in which probability distri-
butions and stochastic processes (such as the Markov process) are used in
musical generative imitation tasks, and contrasting these works with the
genetic algorithm methods presented by Burton (1998) and Bernardes et

29 Reviews of the Snap drum machine can be found here:
http://www.thethreeofive.com/reacTables-snap-is-a-Tablet-drum-machine-for-
quick-pattern-improvisation/
30 http://www.reacTable.com/snap
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al. (2010), Chapter 2 concludes with a decision to explore statistical-anal-
ysis-based systems, for studying EDM drumming with generative aims.
The general goal is to extract a formal entity, the style, from a set of sym-
bolic drum pattern examples. This entity must allow to apply the features
present in studied patterns into new generated patterns. In simple terms, to
extract a stylistic structure from a collection of patterns which can be used
to endlessly generate new similar patterns.

Given the nature of the analysis used for extracting the styles, the result-
ing style entity is a probabilistic space. This type of stylistic representation
is ideal, as it can be processed mathematically in profitable ways, for gen-
erative purposes. In the following sections the extraction of styles from
symbolic patterns will be presented and, once a style is extracted, some
transformations are going to be explored. Specially, we will focus in the
possibility to combine two different styles to obtain a hybrid one, and also
in the transformation of a style obtaining its most common features.

4.3.1 Pre-processing the patterns

The first stage for extracting a style from a group of symbolic drum pat-
terns consists of a homogenization phase, where all patterns are cut to a
defined length, quantised to a common minimum time resolution, and all
its elements are mapped to a specific set of instruments. This preprocess-
ing stage is done for narrowing down the features of the patterns used, as
it is simpler to work with them for research purposes. However, the
methodology presented throughout this chapter can be expanded and mod-
ified to work with different pattern lengths, time resolutions, meters (for
example ternary) and number of instruments, without affecting the appli-
cability of the concepts here presented.

This first stage consists of selecting the patterns in symbolic format, MIDI
for simplicity and universality purposes, and to cut them making sure they
have a fixed size of one bar. Then, the time resolution is adjusted to 1/16th
note duration (a semiquaver) with a meter of 4/4, obtaining 4 1/16th notes
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in between each pulse and getting a total of 4 beats in each pattern.  If any
of the patterns analyzed are longer than one bar, or even if they are a com-
plete drum track of an EDM song, they are adjusted to this format. Hence,
it is ensured that all patterns can be described as a matrix  with 16 col-
umns, each column representing the minimum time resolution of 1/16th
notes. The rows of the matrix are the different instruments present in the
patterns, and the onset of a given instrument at a given step is represented
by a 1 whereas a silence at a given step is represented by a 0. 

After the patterns and its notes are  time-formated to fit the 16 columns of
a matrix, the rows are to be processed. Each MIDI note (row) present in
the file being preprocessed, represents a percussive instrument following
the General MIDI Level 1 Percussion Key Map31 (GMPM). This map is a
standard for assigning a certain type of sound to a MIDI note so that when
the MIDI pattern is reproduced, an audio engine can render each note with
an appropriate sound. Again, for the simplicity of the research in this the-
sis, the number of MIDI instruments/rows is reduced to eight using a spe-
cific customized mapping which allows to convert from the 46 percussive
instruments available GMPM to 8 instruments, but this principle could be
extended to more instruments. The eight instruments used in the style ex-
tractor are kick drum, snare, closed hi-hat, open hi-hat, rim shot, clap, low
and high congas. These instruments represent a consensus between the
main elements of an acoustic drum kit (kick, snare and hi-hat), with some
elements constantly present in EDM such as as claps, rimshot and congas.
The final representation of a drum pattern is a matrix of 8 rows and 16
columns filled with ones and zeroes (see Figure 4.4). 

Figure 4.4. A piano roll representation of a typical House pattern.

31https://www.midi.org/specifications/item/gm-level-1-sound-set 
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4.3.2 Analyzing the patterns

Once the patterns have been preprocessed, they are ready for analysis. The
first stage for analyzing the patterns is to determine the vertical coinci-
dence of events at every step and assign a single value to it (see Table
4.1). This step is taken in order to obtain a condensed representation of a
polyphonic pattern rather than having scattered monophonic sequences.
Given that there are 8 instruments which can have an onset or a silence at
every step, there are 28 = 256 possible combinations of instruments at ev-
ery step. These combinations go from silence (all instruments are zero) to
a full hit of the eight instruments (all instruments are 1). Now, any possi-
ble combination of patterns at a given step is turned into a number, repre-
senting a vertical combination of events. With this process, every pattern
is converted to a sequence of 16 events. In order to assign the numeric
representation to the vertical combinations of instruments’ onsets and si-
lences, a binary to decimal conversion is applied (see Table 4.1). It is im-
portant to note that the value that represents the vertical coincidence of
onsets has nothing to do with any property of the onsets and it is only used
for nomenclature purposes.

instrument Onset Combination
k 0 1 0 1 0

...

1
s 0 0 1 1 0 1

ch 0 0 0 0 1 1
oh 0 0 0 0 0 1
cp 0 0 0 0 0 1
rs 0 0 0 0 0 1
lc 0 0 0 0 0 1
hc 0 0 0 0 0 1

code 0 1 2 3 4 ... 255
Event silence k s k, sn ch all

Table 4.1. Example of vertical pattern combinations and the numerical represen-
tation used.

Having a set of patterns of a given style converted to single-event se-
quences, these are batch processed by step, defining the chains of events
of different orders (or lengths) that precede an event at every step. For ex-
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ample, if an order O = 2 analysis is being done for a given pattern P1 at
step S, where there is an occurring event ep1s , then the previous O events
are grouped and assigned as precedents saying that ep1s-2, ep1s-1 precede ep1s.
This is performed for every pattern collection at each of its steps accumu-
lating all events epNs with their precedents epNs-2, epNs-1. Same precedents are
grouped and their following events counted. If at step S the precedent (ep1s-

2, ep1s-1) is common in patterns p1, p2 and p3, all three following steps ep1s ,
ep2s and ep3s are grouped and their repetitions counted. For example, if fol-
lowing steps for precedent (ep1s-2, ep1s-1) in patterns p1 and p2 are the same
(ep1s = ep2s), then the count of precedents for (ep1s-2, ep1s-1) is [ 2 ep1s ,1(ep3s) ].
The counts for each of the events are finally normalized, ending with a
general result for a given step S and a precedent (ep1s-2, ep1s-1) to be [ 0.66
ep1s , 0.33(ep3s) ]. This means that given a precedent (ep1s-2, ep1s-1) there is a
probability of 0.66 that the next events are ep1s, and a probability of 0.33
that the next events are (ep3s) (see Figure 4.5).
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Figure 4.5. Example of generating a matrix [2, 4] (order, step) based on five dif-
ferent patterns A to E.

As every pattern in a collection is step-analyzed with a given order O, the
result is a matrix with the possible states present at every step grouped
with the probability of each precedent events. The matrix for step S and
order O is in the form:

precedent events event e1 event e2 … event en
e1S-1, e1S-2, …, e1S-O p(e1S 

| e1S-1, e1S-2, …, e1S-O)  p(e2S 
| e1S-1, e1S-2, …, e1S-O) … p(enS 

| e1S-1, e1S-2, …, e1S-O)

e1S-1, e1S-2, …, e2S-O p(e1S 
| e1S-1, e1S-2, …, e2S-O)  p(e2S 

| e1S-1, e1S-2, …, e2S-O) … p(enS 
| e1S-1, e1S-2, …, e2S-O)

… … … … …
enS-1, enS-2, …, enS-O p(e1S 

| eS-1, eS-2, …, eS-O)  p(e2S 
| e1S-1, e1S-2, …, e2S-O) … p(enS 

| e1S-1, e1S-2, …, e2S-O)

Where all possible combinations of precedent list of events [(e1S-1, e1S-2,…,

e1S-O), (enS-1, enS-2, …, enS-O)] are used as rows, and all possible future
events (e1,e2,…, en) are considered as columns. The cells carry probabili-
ty values of event en happening after a given list of precedent events.

Each order has a different size of matrix for all its steps, as order 1 has
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256 possible events preceded by 256 possible events at each step, config-
uring a probability space composed of sixteen (one per step) 256 x 256
matrices. But for order 2 there are 256 possible events with 2562 = 65.536
possible preceding states, which dramatically increases the size of the ma-
trix for each step. In general, the sizes of the i dimension of the matrix
(the possible preceding sates) increases exponentially with the order, fol-
lowing the rule (possible states)order. As the possible states are fixed for the
analysis at 256 possible combinations, then the size of the j dimension of
the matrix is (number of instruments)2. Generalizing, for any collection of
patterns, the precedence analysis generates a number of matrices equal to
the maximum used order, times the number of steps in the analysis. The
size of the matrix generated at each order and step is (((Number of instru-
ments)2)order, (Number of instruments)2). This complete set of matrices then
becomes the representation of a drumming style, which can be used in a
further step to generate new patterns in that specific style, and also to
make adjustments in real time to the style (such as emphasizing certain
probabilities or combining it with other styles). All these processes are
presented in Section 4.4.

The purpose of each matrix is thus to provide a set of probabilities to se-
lect a candidate event at a specific step, given an order and certain prece-
dent events, just as in a Markov Process. The complete set of step matri-
ces can be used to generate a sequence of events at every step that when
concatenated, constructs a new drumming pattern. 

For the purpose of this thesis, a python script was developed to process
collections of MIDI patterns and generate every [O S] matrices needed.
This script is included in the more general tool called RhythmToolBox,
which is a python library of scripts to process drum patterns in every way
that is presented throughout this thesis32. In the case of style generation, a
single function called makestyle is used to generate new patterns based on
those in a collection.

32 www.github.com/danielgomezmarin/rhythmtoolbox
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4.3.3 Generalizing stylistic music knowledge extraction

In the previous section, the concept of a “style structure” is introduced,
based on analyzing sets of MIDI files. Here, a more general view, which
can be used as the basis for generating the style knowledge for any type of
symbolic musical information, is presented. This section developes one of
the outcomes of supervising a Master’s student in his attempt to create an
intelligent bass line generator for EDM (Calopa, 2016). The melodic anal-
ysis required in this Master’s project led to the construction of a general
methodology, such that it could be used in the analysis process of general
symbolic musical pieces.

An addition to the methodology presented in the previous section, is the
possibility to extract different parallel information in order to achieve a
more detailed insight into the characteristics of a musical sequence. Di-
verse musical descriptors, for example the coincident instruments played,
the notes, their duration, or the vertical density of simultaneous polyphon-
ic events, can be taken into account in this general model. In this model,
every new possible value for each descriptor at a precise moment in time
can be stored. This allows, in a further generative stage, to come up with
new musical events resulting from the combination of different descrip-
tors. This multi layer system allows the generation of new material based
on the inner relations of different aspects of a musical piece (i.e. combin-
ing previous information of rhythm, pitch and chord to select the pitch and
duration new note).

In general (see Figure 4.6), the layers of different descriptors (D1, D2 …
Dn), are composed of a timeframe TF (which is the period of time in
which these descriptors are to be measured), a step S of that timeframe, an
algorithm on how to compute each descriptor D (e.g. “density = sum the
amount of instruments in this timeframe”), the order O (which determines
the length of the influence of past events, in the selection of a new event),
and finally a series of matrices where all that data is stored.

Each MIDI file is decomposed into a large set of matrices of different or-
ders, which are computed at a given step for each descriptor. The impor-
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tant feature about this method for extracting and storing data is the possi-
bility to aggregate several corresponding matrices of different files (i.e.
same order, step, timeframe and descriptor, coming  from different files),
thus creating matrices with more complex and dense data, while keeping
them normalized and ready to be used by the generative algorithms. 

Our concept of style could thus be further defined as “a collection of ma-
trices, appropriately indexed by order, step, timeframe and descriptor,
which have been created by adding information at every timeframe, for all
files in a collection”. So far, this definition of style is very inclusive and
makes no distinction of the musical symbolic files which are analyzed.
Therefore, what stylistically defines a style is not questioned or filtered by
the system, but is more the result of the mashup of every matrix generated
by the input data. This flexible and useful definition of style allows to cre-
ate combinations of very different information sources (albeit all MIDI for
the moment), which can be useful for further generative stages.

This method generalizes to process parallel sequences of a different num-
ber of descriptors. It can also be used to process music sequences with dif-
ferent timeframes in order to achieve different temporal resolutions. One
aspect that has to be considered when using this method of analysis is the
fact that Markov sequences are not a strong method for processing struc-
tural aspects of musical sequences in the long run (Pachet,  2011). 
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Figure 4.6. Schematic representation of how a MIDI file is analysed with differ-
ent descriptors (D1, D2, DN) at each given time-frame TF. Then at a step S of TF

a MTM is computed for each descriptor and for each Markov order MO.

4.4 Drum Pattern Generator
This section presents how to take advantage of a style representation, ex-
tracted using the methodologies presented above, to generate new drum
patterns in specific styles. This abstract entity of drumming style will be
processed and manipulated to allow EDM drum production overcome the
reduced style definitions found in literature (Brown and Griese, 2000;
Emmerson, 1988; Hewitt, 2009; Snoman, 2012; Adamo, 2010) and also to
relieve the lack of compositional tools available for EDM drum track
composers (see sections 2.4 and 3.5).

4.4.1 Using style information to generate a Pattern

Once we are able to transform a collection of drum patterns into statistical
knowledge using the style extractor, the possibility to generate new pat-
terns based on that knowledge becomes feasible. When traveling through
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the probabilistic space of the style, new patterns emerge as possible statis-
tical combinations existing in the space. The surface of the probabilistic
space determines the path that any pattern of the learned style can take, as
well as regions the patterns never cross. This translates in the probability
that some combinations of drum hits (events) can be played at a given step
and finally be used in the generation of a new pattern. 

In order to generate a new pattern based on the drumming style extracted,
some specific steps are followed:

1. Define an order O in which the generation is going to be carried out and
the length L of the patterns to be generated. The length L must be equal
or smaller than the length used in the drumming style extraction phase.

2. Create a random value list RV, containing L+1 random numbers in the
range from 0 to 1.

3. Select the matrix [S1 O] for order O and step 1, using the matrix struc-
ture of the style.

4. Create a list with every row (list of precedent drum events) which has
at least one nonzero probability of preceding any drum event, using the
selected matrix [S1 O]. This list represents all the possible preceding
lists of events that anticipate a drum event at step 1.

5. Select one element from the list of possible precedent drum events cre-
ated in the previous step, using the last element of the list of random
numbers RVL+1. This means to select one row which has at least one
nonzero probability. 

6. Use the row selected on the previous step and normalize all probability
values to obtain a probability distribution. Use the first element of the
random value list RV1 and the normalized probability distribution to se-
lect one event en1 that will be the first event of the new drum pattern.
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7. Create a new list of precedent events, once en1 and its list of precedent
events is obtained. Remove from the list of precedent events the oldest
event e(S-O) and add at the beginning the event en1 (the generated  for
step 1) to obtain a new precedent list of events.

8. Use this new list as precedent in the matrix for order O in step 2 to se-
lect a row which contains future events and their probabilities.

9. Normalize the probabilities of all the nonzero events in the selected row
to obtain a probability distribution. Use the second element of the list of
random values RV2 and the normalized probability distribution to select
one event en2 that will be the second event of the new drum pattern, us-
ing the discrete probability density function (DPDF) (see Appendix B).

10. Once the event for step 2 is selected, repeat steps 7, 8 and 9 to select
events for the subsequent steps.

11. Output the  list of events e1, e2, e3, … eL as a new drum pattern.

Following these previous steps, given an order O and a pattern length L,
any extracted style knowledge can be used to generate new patterns fol-
lowing the rules of precedence embedded in the analyzed patterns in a
very straightforward way. The next sub-sections present some additional
refinements, applied to this process in order to develop some stylistic con-
cepts for the generation.

4.4.2 Style interaction concepts

At the heart of this generative system lays a process of selecting possible
drumming events mediated by the past events, a probability distribution,
and a random value. As will be presented below, high-level musical con-
cepts as stylistic combinations of learned styles, commonness/oddness of
the drum patterns generated, and pattern variations, are implemented and
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controlled by modifying this stochastic event selection process. The first
concept, style combination, comprises a series of manipulations to extract-
ed styles that lead to the generation of new hybrid patterns, based on pre-
viously nonexistent styles which can be created in real time. The second
concept, commonness is based on the studies by Andersen & Knees
(2016) who suggest the idea of steering a generative musical process into
familiar or unfamiliar results, favoring the convergence towards the most
prototypical patterns of a style or, on the contrary, the emergence of sur-
prising results. The last concept, patten variation, takes advantage from
the manipulation of the random values used to select an event from a
probability distribution.

4.4.2.1 Style combinations

As presented on section 4.4.1, once a style is extracted and a generation
process is carried out, following the procedures described, the probability
of any event enSO to occur (at a given step S and using an order O and a
given a list of precedent events) is represented by a probability distribu-
tion. This probability distribution is equivalent to a row in the step-order
[S O] matrix. If two different drum pattern collections are previously ana-
lyzed and a style knowledge is derived from each of them, at every step S
and at a given order O, each style has its own probability distributions that
determine the probability of every possible event enSO to occur after a list
of precedent events. In a given step S, the two probability distributions can
be interpolated to obtain a resulting one that combines both styles. The in-
terpolation is a weighted sum:

P(interpolation)= [P(style A) x i] + [P(style B) x (1 - i)]

Where i is the interpolation value between 0 and 1. P(style A) and
P(styleB) are normalized probability distributions where each possible
event is associated with a probability. Each probability in P(style A) is
multiplied by the interpolation value i and added with the corresponding
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probability of P(styleB) multiplied by 1-i. This effect can be seen in Fig-
ure 4.7. Where, at a given step, the two styles are mixed 50% each.

Figure 4.7. Example of an interpolation between style A and style B, at 50% each.
The bars represent the probability of each event occurring at a given step.

The practical use of this system is to combine styles dynamically at every
step, so that the pattern generation process is based on a precise mix of
probability distributions. If the interpolation value i is kept constant
throughout the generation of a whole pattern, the probability distributions
at every step will be conformed of constant proportions of style A and
style B. This, in turn, ensures that the whole generated pattern responds to
a specific combination of styles A and B. The generation of patterns that
resemble two styles in a specific amount opens the door to new and excit-
ing possibilities in drum production practice. One practical example can
be that a producer loads his own style and combines it with an extrinsic
style creating new patterns by fusing both styles interactively.
Conceptually, this process can be seen as amplifying the creative possibil-
ities of an EDM composer. The system allows to extend a musicians’
compositional practice, evidenced in his own style, through the addition of
another style. 

4.4.2.2 Commonness
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Commonness is a concept based on the idea of style, as the repeated ap-
pearance of similar features within a collection of objects defined by
many different features (Gärdenfors, 2004; Meyer, 1956). Based on this
idea, if a feature at a certain value is consistent throughout a collection of
patterns of the same style, it can be said to be relevant for the appraisal of
such a style. This behavior was observed experimentally in Chapter 3 sec-
tion 6.2, where drum patterns of different musical styles have very similar
values in both axes of the EDM space, delimiting a particular region for
Techno, House and Breakbeat. In that example, the values of the two axes
are within certain boundaries for each style present in the collection. In
this sense, if a list of objects in a collection is analyzed computing differ-
ent meaningful features, the values that are most repeatedly observed in
each feature are regarded as the most common. Following this idea, the
most common feature value of a collection is the one that is present in
most of the objects. Commonness is then related to the number of appear-
ances of a feature value in a collection of objects. 

Extrapolating this idea to the process of selecting drum events at a given
step (see section 4.4), once the preceding events are defined (thus a row
from the probability matrix is selected), the probability of each possible
event enSO to occur is directly related to the number of times event enSO

occurred after the preceding events in the analyzed patterns. That means
that the higher the probability of event enSO, the more common it is within
the style. This idea opens the door to shaping the probability distributions
of a given list of preceding events (a row in a probability matrix) in order
to strengthen (or weaken) the probabilities of the most probable values
and to weaken (or strengthen) the least ones. If the most common events
are strengthened at the expense of the least common, it favors common-
ness. On the contrary, to weaken the most common events at the expense
of increasing the least common in order favors uncommonness. 

Stylistically, commonness could be translated as reproducing the most re-
current elements of the drumming found in the collection of patterns. On
the other hand, uncommonness is the opposite: searching for the least re-
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current drumming events found in the style, somehow as exploring the
event combinations that were rarely seen in the style. In practical terms,
these operations enable interesting explorations of style for pattern gener-
ation, either by sharpening a style or by blurring it.

Two algorithms of "commonness" are implemented. Sigmoid common-
ness is based on a sigmoid transfer function, where probability distribu-
tions are ordered by their probability values and multiplied by a sigmoid
transfer function. The second  algorithm, Power commonness, is based on
a power function applied to all probability values of a distribution.

Figure 4.8. Algorithm for sigmoid commonness. The original probability distribu-
tion is input (below) processed by the sigmoid function which generates a new
probability distribution (right). The sigmoid function is transformed by an input

commonness value (top).

Sigmoid commonness

The Sigmoid ”commonness/uncommonness” control is implemented us-
ing a sigmoid transfer function to alter the strengths of the probability val-
ues at a given step (see Figure 4.8). First, the probability distribution of a
given step is decreasingly sorted according to their probability values.
Subsequently the reordered Table is multiplied by the sigmoid function,
whose skewness and slope are controlled by the user. This algorithm al-
lows to sharpen or flatten these probabilities (via the skewness control),
but also to invert them (with the slope control).

Power commonness
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Power commonness is based on a power increase algorithm where all
probability values are raised to the power of commonness (see Figure
4.9). When commonness is positive the highest probabilities have a bigger
increase than he lowest (see Figure 4.9, right). When commonness is neg-
ative, the probability distribution is inverted thus making the least proba-
ble events to gradually become more probable (see Figure 4.9 left). The
uncommonness region has a particular behavior as the probabilities de-
crease progressively until commonness is 0 (see Figure 4.9 left), where all
probabilities are equalized, making all events that had nonzero probabili-
ties to be of the same magnitude. When commonness is 0 the tendency of
the generation system to steer towards any specific region is lost, as all
probable paths are equally probable. When the commonness reaches a
point below 0, inverted commonness starts to occur as probability values
are inverted, thus making less probable values higher and high probable
values smaller.

Figure 4.9. Effect of Power Commonness (x axis) in the probability value (y axis)
for different original probability values.

4.4.2.3 Inducing variation

The idea of rhythm pattern variation has been presented throughout this
thesis as one of the fundamental needs of an EDM producer yet it is one
of the most complicated from a musical point of view. Concepts or in-
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structions to create EDM rhythm variations, based on applied music theo-
ry, are scarce and insufficient (as discussed in sections 1.2 and  2.5), leav-
ing a lot of room for idiosyncrasy and trial-and-error experimentation. 

The analysis and generation system presented in this chapter is based on
an event-selection process mediated by a discrete probability density func-
tion (DPDF). This function takes as input a probability distribution and a
random number, and outputs a single event. When this process is repeated
at every step of a sequence, the concatenation of selected events composes
a new drum pattern. In this process there are only three elements at play,
the probability distribution, the random number and the pattern generated.
Each of these elements can be manipulated to introduce variation to the
drum patterns: 

● Post-processing the polyphonic pattern generated. This idea has
been described in section 4.2 where an Agnostic Density Trans-
former (ADT) is presented as a tool that can add or subtract onsets
from the monophonic patterns. If an ADT is added to each of the
monophonic patterns that compose a polyphonic pattern, then a
powerful transformation system can be achieved.

● Transforming the probability distributions. As it was presented in
sections (4.4.2.1 and 4.4.2.2), by modifying the matrices resulting
from the analysis of a collection of patterns, the generation
process might be steered to specific probabilistic regions, empha-
sizing diverse aspects of the style, as commonness/oddness and
stylistic combinations.

● Transforming the random number input to the DPDF. If the prob-
ability distribution is fixed and the DPDF is used to select an
event from it, the change in the used random value affects the out-
put event. This process will be explored throughout this section as
a source of variation.
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First, lets recount how a change in a given RVSS  value (the random value at
step S) affects the selection of the event enS if there is more than one
nonzero value in the probability distribution, that is, if there is more than
one event en to be selected at a given step. As an example, using the
DPDF with the probability distribution presented above, and different ran-
dom values, the output is as follows:

event e1 e2 e3 e4 … eN-1 eN
probability 0.2 0 0.1 0.5 0.2 0     Σ=1

e1 is output if the random value is between 0 and 0.2
e3 is output if the random value is between 0.2 and 0.3 (0.2+0.1)
e4 is output if the random value is between 0.3 and 0.8 (0.2+0.2+0.5)
eN-1 is output if the random value is between 0.8 and 1
From this example two conclusions can be drawn, given that the probabili-
ty distribution has more than one nonzero value. First, all the different
events en in a probability distribution can be output from the DPDF as the
random value RVS changes progressively from 0 to 1. Second, although a
progressive change in RVS implies a change in event enS,the magnitude of
the change in RVS  is not related to the change in en. So changing RVS can
be a source of variation at the step level but it does not have a linear rela-
tion with ΔRVS. 

Zooming out, from a pattern generation perspective, if the RV list is al-
tered, then a change in the output pattern can be expected. The only condi-
tion needed being that the probability distributions should have more than
one nonzero value. This perspective makes possible pattern variations as a
consequence for inducing variation to a pattern as a consequence of alter-
ing the complete RV list but, as mentioned above, this mechanism has a
side-effect,  a degree of unpredictability.

Lets use an example. In Figure 4.10 four  probability distributions are pre-
sented, each of them containing three different events e1, e2 and e3. 
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Figure 4.10. Example of matrices, RV list and output pattern.

In the leftmost matrix, corresponding to step 1, the nonzero rows are those
preceded by e2 and e3. Following the methodology presented in 4.3, the
last value of the RV  list (RVN) is used to select the past of the first step. As
RVN  is 0.7, which is equal or greater than 0.5, the past is e3 and the proba-
bility distribution is [e1 0.6, e3 0.4]. RV1 is 0.2 so the step selected from
matrix [1 1] is e1 (highlighted in blue). As RV'1 is 1 then the output event
in step 1 by the DPDF is e3 (highlighted in pink). 

In matrix [1 2] (order 1 step 2) as the previous state given by RV1 is e2,
the probability distribution is [e1 1]. Being e1 the only possible output de-
spite the value of RV2. In the case of using RV'2 the probability distribution
is also [e1 1], being e1 the only possible output despite the value of RV2.
In step 2, despite the change from RV to RV', the output event is the same
for both random lists.

In matrix [1 3] the previous event given RV and RV' is e1, so the proba-
bility distribution is [e2 0.1, e3 0.9]. RV3 is 0.3 and RV'3 is 0.0 so the out-
puts are e3 and e2 respectively. 
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From this example, two conclusions can be drawn. First, the propagation
of variation along a generated sequence of events is not completely de-
fined by a change in the RV lists.  In the previous example, although RV
and RV' are different, there is a convergence to the same event in step 2.
Second, the magnitude of the change is not linearly related with the varia-
tion of the pattern. As seen in step 2, a big change of value from RV2 = 0.1
to RV'2 = 0.9 does not imply a change in the output. In step e3, on the oth-
er side, although the change between RV3 and RV'3 is small (from 0.2 to 0
in a unitary scale), the output step is variated. 

In order to predict the effect of changing the RV list in the output se-
quence, the relation between the RVS value and the probability distribution
must be analyzed. There is an interaction between the change in the RVS

value, and the probability distribution mediated by the number of probable
events to occur. That is, the higher the amount of events, the higher the
probability to induce change given a variation in the RVS value; and also,
as the DPDF is a cumulative probability function, the higher the probabili-
ty value of certain event, the least probable it is to induce variations given
a change in RVS. Finally, the size of the change in the RVS value and the
number of events is also inversely related. The more events in the proba-
bility distribution the smaller the change in the RVS value needed to in-
duce a variation. A proposed equation to predict the probability of change
at a given step can then be written in terms of the probability distribution,
the change in RVs, and the number of events in the distribution.

P(change) =   flatness (PD)* ΔRVs/E

Where the flatness of the probability distribution is the ratio between the
geometric mean to the arithmetic mean of the probability distribution, also
known as the Wiener entropy. E is the sum of the probable events within
the probability distribution and ΔRVs is the change in the random value.
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Interpreting the flatness value is intuitive, as it represents the evenness of
the probability values of all the events. The more even the probabilities,
the more probable it is to move to another event given a change in RVS.
The probability of inducing a variation given a change in the RVS value
can be step by step-by-step measured on the probability distributions. 

The variation-induction system presented in this section relies only on the
possible drum events occurring within the style at a each step. The system
works by transforming the RV list progressively so that the RVS value at
each step is transformed in a magnitude relative to the amount of transfor-
mation. This, eventually, causes the event selected by the RVS value and
the DPDF function (see Appendix B) to change as explained above.

To implement this algorithm, a simple approach is taken. The RV list is
treated as a vector and is progressively shifted in magnitude using a value
proportional to a variation  amount, and then wrapped between 0 and 1. A
continuous wrapped sweep of the R V outputs all possible values of the
random value at every step S, forcing the DPDF function to output each of
its probable values at every step. This algorithm is implemented and used
as part of the DrDrums system as it will be presented later.

4.4.2.4 Inducing variation by timbre grouping

Another method for inducing variation in a drum sequence, based on the
system presented in this Chapter is explained theoretically, although it is
not implemented. As presented in section 4.3.2, there are 8 possible single
drum events used in this model (kick drum, snare, clap, rimshot, closed hi-
hat, open hi-hat, low conga, hi-conga), plus all the combinations among
them for a total of 256 possible event combinations (including silence).
These 256 events are indexed with a number which doesn't follow any
perceptual order or represent any magnitude. The number is just a binary
to decimal conversion where the binary numbers indicate which of the 8
instruments are played. Given this agnostic order, replacing event en for
en+1 does not imply a smaller change (in any perceptual dimension) than
changing from en to en+10. In this sub-section new possible ways for induc-
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ing variation are theoretically developed, but not implemented.

From an acoustic perspective, and regardless of the style, each of the 256
possible events en are made up from drum onset combinations which can
be analyzed given their acoustic properties, specially timbre and frequen-
cy range. An analysis using these perceptual dimensions can establish
similarity relations between the 265 different events which could be ex-
ploited in a variation algorithm. For example, the combo event [kick,
closed hi-hat] could be related in similarity to a single kick or a single
closed hi-hat, as both instruments are present in the combo. Even more,
the kick drum (a typical low frequency instrument) could be replaced by a
low conga (another low frequency instrument) creating a similarity rela-
tion with the kick drum and closed hi-hat combo. In this way, similarity
relations between the 256 different events could be established, defining
the closeness of one acoustic event with the remaining 255 events, at least
at an instrument-label-based level . 

Once established, these label-based similarities could be used to replace
events of a pattern in a controlled manner, for example replacing one
event, or a group of them, with the most (or least) similar ones.

4.4.3 The order effect

One fundamental characteristic of using probabilistic spaces with genera-
tive aims is that the diversity of events that can occur at a any step is in-
versely proportional to the order used to generate the sequence. So, as the
order goes higher, the generation becomes more deterministic, up to a
point in which generated patterns become just an exact reproduction of the
ones that have been learned. 

All the concepts and transformations described so far in this chapter are
applicable regardless the Markov order used to analyze the dataset. Theo-
retically, with any sequence of events that exist within the Markov analy-
sis, at least one event is followed. However, as the size of the Markov
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analysis increases, the restrictions for the next event to occur become
more strict, leaving fewer choices of events to select in every step. This
means that the higher the Markov order, the least number of different
events for the next event are, thus eliminating the possible branches that
could be the source for variation. At high Markov orders, the complete
rhythms of the database start to be recalled, thus reducing the originality
of the rhythms generated by the system.

4.4.4 Zero frequency states

A typical problem with orders higher than zero, and when the probabilities
are manipulated as explained above, is the breakdown of the generative
system due to the unavailability of candidates. This is called a Zero Fre-
quency State (ZFS) which means that, at a given step, given a list of pre-
ceding events (of either length or order equal or higher than one) there are
no possible events to follow. The generative system encounters a state that
does not exist in the database and it loses the ability to guess “what events
can comes next”. 

A solution to this problem of ZFS is to temporarily reduce the Markov or-
der, changing the matrices used for the generation from [S O] to [S O-1] to
check if, with a smaller list of past events (which makes the finding of
candidates for the future event less strict), the system can find available
candidates. If no candidates are found at [S O-1] the reduction process can
be repeated progressively until order 0 is reached. At this point any of the
probable events on a given step with probability higher than zero can be
played regardless of the past list of events. This technique solves the ZFS
problem, given that, if the previous events are not important then the sys-
tem can always find candidate events in a style and, once restored, catch
up with the established order for the generation process. However, after a
ZFS is reached and resolved by this methodology, the higher order can not
be restored immediately but must be progressively increased. 
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In order to implement this variable-order methodology, the analysis must
be performed for different orders (from order zero to the highest desired
order). In this way, when the system is reproducing a sequence it can shift
from one order to another if a ZFS is found at any time.

4.5 DrDrums

Throughout sections 4.3 to 4.4 a complete generative system based on an-
alyzing drumming styles in symbolic format is presented in detail. Differ-
ent steps of a generative system are covered. Extracting a style from a set
of drum pattern examples and turning them into probability matrices, us-
ing the matrices to generate patterns, controlling the generation process by
using style-based transformation techniques, and finally generating pattern
variations. All these techniques, added to the monophonic transformation
tool described in section 4.2, comprise a powerful toolkit  which can be
assembled into a complete generative music system. 
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Figure 4.11. Block diagram of DrDrums based on the concepts and algorithms
presented above.

In this section, the DrDrums application is presented as a tool which uni-
fies the techniques and algorithms for style analysis, generation and trans-
formation presented in this chapter33. DrDrums responds directly to the
needs of EDM producers (as discussed in section 2.6) specially concern-
ing dynamic stylistic generation and transformation of drum patterns. The
inner workings of DrDrums are presented as a flow diagram in Figure
4.11. Style extraction allows to create a symbolic representation of a style
based on processing a collection of patterns. The generated styles can be
combined using a crossfade pattern, thus obtaining a new hybrid style.
Such hybrid style can be processed using the commonness algorithms, and
then using an RV a new drum pattern can be generated. Such RV list can
be manipulated using the variation algorithms until, finally, the generated
pattern can be post-processed using using the density transformation algo-
rithm.

DrDrums is implemented in Pure Data (Puckette, 1996) as a fully func-
tional app to work as a standalone tool with autonomous BPM and sound

33A video demo of DrDrums can be found here: http://bit.ly/2EuWJSB
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reproduction engine; it can also be used as a DAW tool that can be syn-
chronized with incoming MIDI clock and sending out MIDI note-on mes-
sages to be introduced in a DAW pipeline (Figure 4.12).

Figure 4.12. Screenshot of DrDrums interface.

4.5.1 DrDrums’ new style creation

The first step to create a drumming style suiTable for DrDrums is to select
the appropriate drum patterns in MIDI format. To test the capabilities of
DrDrums, proper styles are created using the RhythmToolBox, a set of
Python scripts developed during this thesis. The patterns collected for the
styles are based on the exploration of EDM drumming styles throughout
the literature presented in section 2.5.2. A total of 75 one bar patterns are
collected, with a minimum resolution of 1/16th note. The authors have la-
beled these patterns in different styles, 70% of them belong to the House
(28%), Breakbeat (26%), and Techno (16%) styles and the rest 30% be-
long to Garage, Drum n’ Bass, Hip-Hop, Trance, Chillout, Dubstep, Jun-
gle and Trip-Hop styles. By using the MakeStyle function of the rhythm
toolbox, House, Breakbeat and Techno styles were generated using the
following python script:

import rhythmtoolbox as rtb
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house = rtb.midifolder2list('house')
rtb.makestyle(house,16,’styles’,'allhouse')

This script reads the folder /house to extract all MIDI files and then cre-
ates all the corresponding matrices of the style with the prefix ‘allhouse’
and the suffix ‘-O-S’ (order and step) following the methodology present-
ed in section 4.3. These matrices are then inserted in the DrDrums/styles
folder so they can be used in the generation.

4.5.2 Main controls

The main controls of DrDrums are those included in a typical grid-based
drum machine, the Beats per Minute (BPM) controller to set the tempo, a
volume control, a start/stop button, a grid to visualize the pattern generat-
ed and a playhead to visualize the current event being reproduced (see
Figure 4.13).

Figure 4.13. Main controls of the DrDrums application. Start/stop, BPM and vol-
ume controls (top), piano roll grid (mid), playhead (bottom).
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4.5.3 Generation of patterns in style

Stylistic generation of drum patterns starts with the selection of an appro-
priate style and the generation of patterns. A drop-down menu presents
different styles available which can be selected. Once a style is selected, a
‘new’ button is used to generate patterns in that style. This ‘new’ button
can be selected on demand, obtaining a different and original pattern ev-
ery time. The function of the ‘new’ button is to generate a new RV list so
that under the same style a new pattern can emerge (see Figure 4.14).

Figure 4.14. Style selection menu in DrDrums.

4.5.4 Style combination

The style combination feature of DrDrums is presented as two drop down
menus, which contain a list of the different styles available, connected by
a continuous slider. Once both styles have been set, the combination of
styles is operated via the slider, in order to achieve a proper balance of
each style for the generation. As the slider is manipulated, new patterns
emerge in real time in the pattern grid, as the style progressively mutates
from one point to another. As mentioned above, as long as the ‘new’ but-
ton is not pressed, all the changes in the resulting pattern are reversible,
allowing to fully recover a certain pattern found at a specific style combi-
nation (see Figure 4.15).
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Figure 4.15. Style crossfade tool of DrDrums. Note the slider position quite close
to techno and very far from HipHop

4.5.5 Inducing variation

Figure 4.16. Variation control of DrDrums. Note the red slider at a position de-
noting a low amount of change.

All the parameters that control variation are located in the region below
the playhead. There are four regions below the playhead which represent
each of the four beats within one bar pattern. Each of these regions can be
activated, indicating the beat which is going to be affected by the varia-
tion. The amount of variation is controlled by the ‘Variation’ slider indi-
cating how drastic is the transformation that will occur. On the right side
of the ‘Variation’ slider there is a time grid with a selector to control the
number of bars that take place before each transformation (Figure 4.16).

4.5.6 Density Post Processing

The Agnostic Density Transformer (ADT), presented in section 4.2 as a
post-processing tool for increasing or decreasing the number of onsets in a
monophonic pattern, is used in DrDrums for each instrument. Using the
ADT after all the stylistic generation process has taken place, adds the
possibility to transform in real-time a new pattern, controlling the densi-
ties dynamically thus creating variations on the fly. A reset button that
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sets all densities to zero, to reset all densities to its original values, is lo-
cated on top of all the sliders. The manipulation of these parameters adds
a dynamic action to drum sequencing which enables musicians to convert
a dynamic gesture to an immediate percussive result (Figure 4.17). 

Figure 4.17. Density post processing sliders of DrDrums.

4.6 Quantitative evaluation of DrDrums

There is a tradition in the methodologies used for evaluating systems that
have smart or intelligent features, all of them derived from the idea of the
Turing test (Turing, 1950). The original conception of this test is to de-
duce if a machine can exhibit intelligence behavior which is indistinguish-
able from that of a human. Machines and their systems have diversified to
solve a very wide array of specific problems, displaying intelligent behav-
iors in specialized and delimited areas. Therefore, tests for assessing intel-
ligence in artificial systems have also specialized, focusing in specific ar-
eas rather than in a general idea of human intelligence. 

Specifically, in the case of  musical systems, there has been an emerging
concern on how to evaluate intelligent musical systems (Ariza, 2009;
Agres et al., 2016). The main ideas derived from the literature devoted to
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music intelligence evaluation are that evaluations must be performed at
different levels of the system and that a certain subjectivity is hardly un-
avoidable in some of these levels of evaluation. In this section two differ-
ent methodologies are presented intended to test the capability of Dr-
Drums to pose as a human EDM drum composer.

Two procedures for evaluating the generative capabilities of DrDrums
were carried out, both aimed at understanding the stylistic properties of
the patterns generated and thus the effectiveness of the system in replicat-
ing a drumming style. Two EDM producers were selected given their in-
ternational role in professional level music production and their special re-
lation with percussion. The two musicians are Sebastian Hoyos, who uses
the stage name Sano34, and John-Erik Boska, who uses the stage name
Boska35. Both of these producers are musically trained, Sano in Afro-
Cuban piano and Boska in Latin and African percussion. Both producers
were asked to create 10 drum patterns in their own style, as the ones they
could use in their regular productions. They were asked to limit the MIDI
velocity to a constant value and to use only the eight instruments available
in DrDrums (kick, snare, closed hi-hat, open hi-hat, clap, rim shot, low
conga and hi-conga). They were allowed to use their own kit of samples
for reproducing each of the percussive instruments when creating their
patterns.

The first experiment is a multi-subject activity, where the objective is to
evaluate if listeners can establish a difference between the patterns created
by the producers and the patterns generated by DrDrums in each produc-
er’s style. This experiment explores the generative properties of DrDrums
from a listener's perspective, as the subjects learn the style of the produc-
ers by listening, and then compare new stimulus with the style.

34 Sano's discography: http://futura-artists.com/sano/
35 Boska's discography: https://www.beatport.com/artist/boska/139462
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4.6.1 Method

4.6.1.1 Participants

The participants are 20 subjects, most of them Master students from the
Music technology Group at the Pompeu Fabra University, with very di-
verse cultural and geographic backgrounds. All subjects report having at
least 1 year of formal music training.

4.6.1.2 Material

Dr.Drums is trained with each producer’s MIDI patterns, creating a drum-
ming style model after each of them. This is done by using the rhythm-
toolbox.py set of functions and by running the following python script:

import rhythmtoolbox as rtb
sano = rtb.midifolder2list('sano')
rtb.makestyle(sano,16,'styles','allsano')

This script uses the midifolder2list function to look for a local folder
named /midi and, inside, it will look for a subfolder named as indicated in
the function, in this case ‘sano’. Then, the makestyle function creates the
style representation based on those MIDI files in the folder, which are 16
steps length, and then save them in a folder called ‘styles’ and naming all
output files ‘allsano’.

Once both styles are extracted, they are loaded into DrDrums, and then
they are used to generate new patterns in each producer’s style. With these
new generated patterns the quantitative evaluations are carried out. This
evaluation stage is based on the idea of style as a consequence of the exis-
tence of common, possibly preattentive, features in a group of musical
pieces which can emerge in a listener’s mind by exposition (Meyer,
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1957).

4.6.1.3 Procedure

The procedure of the quantitative evaluation consists of selecting random-
ly five of the original patterns from each producer and reproducing them
with a neutral drum kit (the original sounds of the Roland TR-808 drum
machine), to create a context of the producer’s style in the listener. Then,
after the context is presented, subjects listen to 17 new evaluation patterns
and determine how they fit the original drumming style. To select the
evaluation patterns, a random set of 5 patterns originally created by the
producer (not used in the context stage) are selected. Additionally, ten pat-
terns generated using Dr.Drums within this style, and finally two patterns
of the other producer’s style are also included. 

The task of the listener was to value the degree by which the evaluation
patterns belonged to the same context that was presented in the beginning
of the experiment. To do this, each pattern was judged using a continuous
scale ranging from 0 to 5. Where 0 meant ‘no relation with the context’,
and 5 ‘complete relation with the context’. The evaluation patterns, as
well as the patterns in the context, were reproduced with the same neutral
drum kit and at 120 BPM, so the timbre and the tempo were kept constant
during the experiment.

4.6.2 Results 
Every pattern in the original style, generated by DrDrums and belonging
to a different style has a subjective rating of its relationship to the present-
ed context. The median of each rating is extracted as the representative
value of the relationship of a pattern with the  training context.

Results show how the original patterns, and the ones generated by Dr-
Drums have higher relation with the context than the patterns that be-
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longed to the other producer (Figure 4.18). This strongly suggests the
style was grasped by the listeners, as the original patterns, the ones created
by the producer, are ranked as more related with the original ones than
patterns  by a different producer. This effect is evident for both producers.
For both producers the patterns created by DrDrums are also regarded as
more related with the context than the patterns created by a different pro-
ducer. This means that the patterns that DrDrums is capable of generating
have also a distinctive quality from the patterns of the other producer.
That is, the subjects can differentiate the patterns generated form Dr-
Drums in a specific style as being different form the patterns of another
style, with more than one point of difference.

Figure 4.18. Subjective ratings  of the relation of drum patterns with the context.

The magnitude in which the original patterns created by each producer,
and the patterns generated by DrDrums differ from the patterns of another
producer is very similar. This implies that for the subjects there is no per-
ceivable difference between DrDrums’ generated patterns and the original
patterns created by the producer of the style. The patterns generated by
DrDrums are no less stylish than the original patterns of the producer giv-
en the magnitude of the relation of the patterns with the context. 
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4.7 Qualitative Evaluation of DrDrums

The second method to evaluate DrDrums is a qualitative and subjective one,

based on conversations with the two involved producers who listen to new
patterns generated by DrDrums in their own style. This procedure seeks to
evidence the stylistic generative properties of DrDrums reviewed from an
author perspective. DrDrums is trained with an author’s style and the gen-
erated patterns are judged by the authors who are (obviously) experts in
their own styles. This is a different, perhaps more strict evaluation of the
generative capabilities of the system, as the relation between an author’s
style and generated patterns goes deeper than acknowledging a relation
between a pattern and a context: in this case a question of self replication
and  the quality of that self replication is at play.

4.7.1 Method

4.7.1.1 Participants

The participants are the same two producers who created the patterns in
their own styles, Sano and Boska.

4.7.1.2 Material

The material for this quantitative procedure is the same material used on
the qualitative experiment. That is, the ten original drum patterns created
by each of the producers Sano and Boska.

4.7.1.3 Procedure

This evaluation is based on presenting the expert producers with their
original drum patterns and then with ten patterns generated by DrDrums
in their style. This evaluation is carried out several weeks after the ten
original drum patterns were composed. After carefully listening to their
ten patterns and the ten generated patterns, specific questions are asked,
along with some contextual questions. These are the questions and the or-
der in which they were asked: 
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• Do you acknowledge your ten original patterns as your own style?

• What do you think of the ten generated patterns? 

• Do you feel your style is represented in those generated patterns? 

• Can you envision a context in which you would use DrDrums? 

• What do you think about the possibility of mixing styles?  

• Do you see DrDrums useful for preserving your style? 

The answers of each producer to these questions are transcribed in the fol-
lowing sections and the topics that emerge form the conversations are ana-
lyzed and commented in the discussion section.

4.7.2 Results

The following answers are edited transcriptions of the interviews carried
out with Boska and Sano. Each of them was interviewed individually but
for simplicity their answers to the same question are interleaved.

Daniel: Do you acknowledge your ten original patterns as your own
style?
Sano: “Yes. But wow, they are very good (laughs) i could write a hit with
each of them”.
Boska: “Yes”.

D: What do you think of the ten generated patterns in your style? 
S: In general it replicates me. I can listen to myself there, in some inten-
tions where I make the syncopations and the cadences that I use but, I can
also recognize easily where it does not because I can feel where it is not
working. For example patterns 3, 8 and 9, I would have not taken those
decisions to make those rhythms. Two of them yes definitely I could have
done them, patterns 0 and 4. And the rest, I could not have done them,
there is a certain surprise factor that I like, and those I would have been
interested in doing them. I like them a lot and would have liked to be able
to come up with them.
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B: Its amazing! Some of the patterns are very similar to the ones I made,
3 or 4 instruments are the same to my original patterns. But other pat-
terns are not. I am really surprised by the sensitivity the drum machine is
showing. In some patterns I wouldn’t put so many notes because what I
tried to do was to not put all instruments in all parts of the measures. I
like to reserve some instruments at some positions of the measure. So then
I notice that after some patterns the style gets very minimalistic and way
more similar to the style I programmed and really, really sensitive. It
would be so easy for a computer to program all of the 8 instruments in ev-
ery beat of the bar. But the sensitivity here is amazing like its really musi-
cal sensitivity, because the rhythms are focused on one or two instruments
and the rest of the instruments are only appearing in very specific spots.
yeah I am really impressed by this.

D: would you use a system like DrDrums for replicating your style?
S: Many times the ideas that I have start with the rhythm. When I listen to
something or try to replicate something that makes me curious. In that
sense, to receive something automatic, I do not feel it inspiring. However,
if i see it from the perspective of not being inspired and have to start cre-
ating music I see it as an interesting option but I would not be conformed
with its output. I would always leave the door open to edit it and trans-
form it afterwards. To use it as a seed in MIDI format. I miss the appro-
priation, as my way of working is always to disrupt, invert, transform and
mute until I get this "aha!" feeling. 

Potentially, someone who has to make many tracks would love to use this
like "I have a certain amount of time to do a track and then I have to
make another one." If you are against the clock this is a great tool. In that
scenario it would be a great tool, a proper tool. Someone who loves auto-
matic music creation and that his music has some of it, would make a lot
of profit form this tool. For me it is difficult to assimilate to my music be-
cause of the way that I make my music. But there are some other expres-
sions where DrDrums fits very well.  
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B: Im thinking. Maybe in one scenario this might be useful for me. I work
with Clavia on the Nord Drum36, and making patterns that are actually
good, like this, would be very useful for me for making demos of the
sounds and the instruments. Because there is a difference when I make
music for myself and when I make that stuff for production. And there is
one specific challenge that occurs: when you make ten sound demos in
two days, keeping the creativity up is really difficult, because what I al-
ways do there is that I always clear the pattern and start over to try to
think fresh, to try to start over and make something new. If I had some-
thing like this I could randomize a beat and it would be a good starting
point and I would be able to work from there. As what I do for Clavia is to
generate sounds for presets. so my work is sound demo production and
preset generation, so if I could take off the weight of creating patterns it
would be great.

For musicians who are not so adept with rhythm it is fantastic too. be-
cause for me it's very easy to come up with rhythms but the challenge with
Clavia is to synthesize sound designs as well so it is an overload to my
brain. to think of a musical idea and a complete sonic landscape. It would
be good to have that kind of tool. For someone who is no so adept with
rhythm it would be good to start with these rhythms. 

D: What do you think about the idea of mixing styles. Lets say I can
mix my style with someone's style or with the style of a great track
you love. Would you be interested in such a tool?

S: When I make music my first intention is very clear but it is very difficult
for me to go to a B part of the track: how to break the pattern and how to
transform it and make it change? That is very difficult for me. This system
would be useful for generating B parts of my patterns for a song without
having to break my head around the variations. An automatic system that
can suggest material to me without going away from the original idea A.

36Clavia is a Sweedish company that manufactures synthesizers and drum 
machines. More information: http://www.nordkeyboards.com/
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Like a wizard, a one click tool that makes a variation. I see it analogous
to the “swing” or “quantize” commands in a DAW, a very straight for-
ward command, where I don't feel that the algorithm is doing anything
creative for me.

However, it is a complex scenario. It would be great to test ideas. But, as
I imagine it, it would not be a default tool to use in my production pipe-
line. It would be more as a curiosity. As I am currently trying to take my
work away from the computer screen and if I see that the machine makes
something that I can not make or that I can not think about… it would be
frustrating in a way, as “How can the computer make this and I can not”
or in the worst case scenario the new idea could take my concentration
away. For another type of production scenario this could be a great start-
ing point, for the genres that are more extreme (as breakcore or IDM)
this tool could be perhaps more interesting. 

B: Yes. Its super interesting. I think for example it changes the concept of
collaboration in electronic music. And it brings a conceptuality, opens the
door to think about the interaction between two musicians in a an almost
conceptual way. Lets say I contribute my style to DrDrums and then other
producer makes some music with it afterwards, music that I did not make
but is made with traces of me. So, if he can make music with the patterns
generated by the software, then I did not make it but I am still there. I love
the intersection between the AI and the human. It's somewhat attractive.
Its quite a very attractive prospect. Im not sure how many times I will be
interested to do it, or if I would use it on a regular basis. It depends on
the kind of work I have or how it turns out to be in the long run, but for
sure form a purely conceptual standpoint is very interesting. 

But I know how musicians would use it all the time. I have a friend who
has problems with creating source material for her music. She is a good
producer but she does not have many means for creating musical ideas so
she mostly curates other musical elements that she samples or finds or
records and this is very comfy for musicians. I mean this is why sampling
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exists. If with this tool you can create patterns in MIDI and import them
and edit them in Ableton Live and apply anything you want to them it,
would be vey useful.

D: If you were working on a record. But you wanted to evoke some-
how what had happened rhythmically on a previous record. And you
trained a system with that record to be recalled, do you think that this
tool could be attractive for having some dynamic memory of what
was done and to be useful as a new starting point? Would you like to
preserve your style?

S: I would not use it. I can not project myself to such abstraction. I would
rather use a loop or a track not the idea of a memory.

B: Gaining perspective of your ideas or your past or from the present.
For me personally, no. I try to artistically focus not on the past or tradi-
tion or history or anything. So this is something I'd rather forget. I would
not want to keep around ideas from my previous releases. I always try to
come out with at least a new idea when I am making a song. So not for
me, but I know for other artists this could be interesting. I have some
friends who have drum programming as the main focus of what they do
and who contribute to other production with rappers or other songs only
with drums. Their full production was only drums because they are fan-
tastic drum programers. So, one of this guys told me that when I make a
new song I should make it in the file of the project of the song I produced
before. So instead of starting from zero to try to make a song it would be
good to start from where I left off the other idea and keep working from
there. So I respect this perspective and I see that a lot of people have it, to
start working where they left off. For someone like that, very analytical or
design oriented, yes, it could be an interesting tool. But the tool should be
capable of analyzing on its own the recordings. I do not know if an artist
would convert all his patterns back to MIDI, it would have to be all auto-
matic.
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So i probably would not use it to analyze previous releases but maybe
other people would. But for example the collaboration you mentioned be-
fore I find it very interesting, you already put my style and Sano's style to-
gether so now me and Sano can start having a musical exchange without
having a musical exchange. The idea of making a collaboration with Der-
rick May without him knowing, thats something I would be interested in. 

4.7.3 Summary and discussion

The main idea that comes up after both producers are exposed to patterns
generated by DrDrums in their own styles, is the acknowledgement of the
style imitation power of the system. Both music producers are positively
surprised with the quality of the generated patterns, and they both argue
that it replicates well their own styles. They also point out that some pat-
terns are better than others, Sano claiming that 7 out of the 10 generated
patterns are really good replicas of his style as well as Boska, who con-
firms the system has “musical sensitivity” although some of the patterns
were too similar to the original patterns he created. In general the output is
regarded as surprisingly good and accurate stylistically. 
The idea of using the software on a daily basis in their artistic practice is
somehow not appealing. For Sano, the idea of the machine improving
over some work he can’t do, as making variations on the fly, is not com-
pletely attractive, although he acknowledges that it is one of his main dif-
ficulties for music production. For Boska, the machine can be a source of
creativity but he, as a musician, feels that he must be in charge of the pro-
duction process as he studied specially how to do so. Both of them offer
possible scenarios where the use of DrDrums might have a proper impact:

• When a producer has to make a certain amount of compositions in a giv-
en amount of time. Boska explicitly says how, in his drum-sound design
job, he would appreciate a tool that could at least solve one of the di-
mensions in which he has to be creative at, so he can focus on the other
ones. He would use DrDrums for the patterns and focus in designing
timbres.
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• When you are a producer not very adept with rhythm or have a hard
time being creative with drum sequencing and production; perhaps
artists who use samples of other music as their composition technique.
This scenario is particularly important, as these are the precise users the
GiantSteps project was targeting. Artists that are still developing their
skills but yet they have the desire to “sound like someone” who is in-
spiring, or perhaps as a referential artist in the EDM sub-genres they are
interested in.

For Boska, more than Sano, the idea of mixing drumming styles is very
appealing. The possibility to have virtual collaborations between them and
other musicians, by loading the style of another drum programmer into
DrDrums, triggers the curiosity and the imagination. However, the use of
this system as some sort of abstract memory of a long gone past style,
even if it is their own, does not appeal. They both agree that if they want-
ed to recall the style of a given period in their careers they would not
record it in DrDrums but rather listen to the music they were doing at the
time. 

The results of this evaluation confirm the capabilities of DrDrums to repli-
cate the style of a drum producer, validated by the responses of two EDM
producers in which the system is trained on. The results of the listening
tests carried out by both producers confirm that the methodology proposed
in this thesis, for extracting knowledge from a group of symbolic drum
patterns, is valid, useful, and can be profited in real life EDM production
scenarios.

From a conceptual perspective, the success of the generative system im-
plemented in DrDrums is the analysis of musical recurrences at specific
moments in time. The results of this qualitative experiment confirm how
the style, defined by the musical strategies and rules used by a drum pat-
tern composer, must not necessarily be encoded explicitly in the set of
rules to be used in a generative system. On the contrary, it is rather the ef-
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fect of these rules and strategies, which are evidenced in the generated
musical material, what is sufficient to encode a style into a replication ma-
chine as DrDrums. This confirms how the common recurrences found in a
set of patterns form a mental representation of style in a listener’s mind, in
the form of expectations of certain events to occur at a given time, which
are continuations of certain previous events (Meyer, 1967). In practical
terms, it was not necessary an analysis, in explicit musical terms, of each
producer’s own material in order to recreate their styles; but only with the
use of the manifestations of these rules in the form of sequences of drum
events, the styles could be replicated. In this case, rules can be bypassed,
as we are interested in the mental representation which is directly related
with repetition and recurrence in drum sequences. 

So far in sections 4.2 to 4.7 an algorithm-based system for generating
drum patterns supported in the concept of style has been presented and
evaluated. Every algorithm involved in this system was discussed inde-
pendently, as well as its integration in a working prototype called Dr-
Drums. This prototype was also evaluated in subject-based experiments
where the stylistic properties are acknowledged, being regarded as capable
to generate original patterns in the style of a human musician. The rest of
the chapter is devoted to the automatic organization of drum pattern col-
lections, based on the theoretical aspects discussed in Chapter 2 and fur-
ther developed in Chapter 3.

4.8 Rhythm Spaces

For this thesis, EDM drum production has been studied in order to under-
stand specific technological needs which help improve its current practice.
One of such necessary improvements is to organize and explore a collec-
tion of drum patterns by their rhythm properties. Both activities expand
the current state of browsing music files in a computer system, which is
currently done in alphabetical order without taking into account rhythm or
any other musical properties. Alphabetical  browsing, although universally
used, has proven to result in under-exploring collections of musical mate-
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rial (Turquois et al., 2016). Ideally, when organizing a collection of drum
files by some of their meaningful properties, similar patterns should be
close together so they can easily be browsed and retrieved. One structure
that can deal with this type of arrangement is a low dimensional coordi-
nate system, as it allows for the visualization of many elements located
according to their values in the different dimensions. Such spaces favor an
observer making sense of a collection, as she can both grasp the local rela-
tions of their elements as well as inspect the complete set. If, in addition,
such rhythm space is made interactive, the observer can also point to a
specific position and retrieve the chosen drum pattern directly to a drum
machine, enabling its reproduction in real-time. In this sense the rhythm
space becomes a percussive instrument which allows the sequencing of
complete drum patterns by gesturing over an interface. The idea is then to
create an interactive rhythm space that can be used for organizing, visual-
izing and retrieving drum pattern files.

Perceptual spaces of this sort, in which elements are arranged by similari-
ty, have been commonly used in many different domains some of them
being timbre (Gray, 1977) or color (Sheppard, 1962). These spaces  pro-
pose frameworks for the organization of item collections based on percep-
tual properties, to make domains as colors or timbre browsable under spe-
cific interactive configurations. The property allowing elements in these
perceptual spaces to occupy a proper location in relation to the other ele-
ments is perceptual similarity, as it becomes the attraction force to make
some elements stick together and to stay away from others, while this or-
ganization makes sense to a human user. The backbone of a rhythm space
for EDM drums is an adequate similarity distance, measurable from the
patterns themselves and aligned with closeness sensations of human sub-
jects. Given this perspective, it makes sense to use the results presented in
Chapter 3, regarding polyphonic drum pattern similarity based on rhyth-
mic descriptors, and use it as the bond supporting drum rhythm spaces. 

In the process of studying rhythm spaces it was evidenced that using the
appropriate metrics, any collection of drum patterns can properly be ar-
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ranged into a low dimensional map where points represent patterns that
can be retrieved. However, such space is discrete, limited to jumping from
one pattern of the collection to another, restricting the possibility of a
more continuous and nuanced exploration of rhythm. Expanding on this
idea, and connecting with the previous experience of combining two dif-
ferent drumming styles (presented in section 4.4), new algorithms for
drum pattern interpolation are developed (see Figure 4.19) as an expan-
sion to a drum rhythm space. By implementing these algorithms, as a lay-
er on top of the rhythm space, the space becomes continuous, where any
blank point (a point where no pattern from the collection is located) can
retrieve a new pattern not contained in the collection of the rhythm space,
but created in real-time based on its neighbors. With these algorithms, a
rhythm space is enhanced with generative capabilities, becoming a visual-
ization tool that auto generates new elements on the fly, expanding its
original components.

Figure 4.19. A progressive interpolation between two patterns based on one of
our algorithms. Patterns A and B have three onsets in common: a kick on step 1 a

snare on step 5 and 13. Snapshots of the resulting interpolated rhythm are pre-
sented at three equidistant values of the interpolation between A and B.
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4.8.1 Requirements of a rhythm space

With a musical tool as the rhythm space, a musician can make sense of a
collection of patterns, browsing through them in a perceptually meaning-
ful way and generating new patterns in real time. The main features of this
interactive rhythm space as it was described are:

● Low dimensionality for ease of navigation.
● Closeness of similar patterns and separation from different pat-

terns.
● Spatial continuity.
● Real-time retrievability of patterns.
● Generativity (in the sense of producing new patterns, different

from the ones in the collection, when navigating through an emp-
ty region)

● Editability (openness to the addition of new patterns, and to the
removal of existing ones, so the pattern collection can be updat-
ed).

The exploration of polyphonic rhythm similarity measures presented in
sections  3.5 and  3.6 advance some of the main features of the rhythm
spaces presented here. By making human-based pairwise similarity com-
parisons between each drum pattern in a collection, a matrix of distances
between the patterns can be established. Using the multidimensional scal-
ing (MDS) technique such a dissimilarity matrix can be converted into a
low dimensional space, a map, where the reported distances are respected
so the drum patterns are located according to their (di)similarity. By tak-
ing this approach, an amorphous collection of patterns is converted to a
coherent space where patterns that share common features, relevant to hu-
man perception, are close together. One of the contributions presented in
Chapter 3 is an algorithm that can model the features which are relevant to
human perception, so that distances among patterns, and thus rhythm spa-
ces, can be predicted automatically. By using this method, subject-based
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similarity ratings are replaced by automated similarity computation, so
rhythm spaces can be generated without the need of additional human
similarity ratings. By using this system, symbolic drum patterns are input
and the coordinates to locate the patterns in the space are output.

Once the exact coordinates of each pattern are established, an interactive
system for navigating the space can be implemented. By comparing the
coordinates of a pointer with the coordinates of each pattern, a proximity
radius can be established so that when the pointer is very close to one pat-
tern it is output by the system.  Searches throughout the rhythm space can
then be carried out by scrolling the pointer along the space, retrieving the
drum patterns from the collection to a drum reproduction system as a
drum machine or a sampler. 

4.8.2 Rhythm Interpolation

As a means to add continuity to a rhythm space built up from a discrete
collection of patterns, three different algorithms for drum interpolation are
proposed. Based on a Delaunay triangulation (Lee and Schachter, 1980) of
a 2D rhythm space, these algorithms weight the three surrounding patterns
of any point in the rhythm space, in order to achieve smooth transitioning
along the space. A transition within three different rhythms suggests a
new hybrid pattern is created, with features that resemble the patterns sur-
rounding. Our algorithms take care of smoothly introducing and removing
onsets in the pattern, based on the interpolation values. 

By using the triangulation, the position of a user-controlled pointer is al-
ways inscribed inside the area of a triangle, while it navigates through the
rhythm space. Based on the drum patterns located on each vertex of the
triangle and the distance from the pointer to each pattern, our algorithms
generate a new pattern as an output.

To compute the weights of each pattern at the vertex of the Delaunay tri-
angle, the distance from each vertex (A,B,C) to the user pointer (P) is
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measured. Each distance (AP, BP, CP) is normalized by dividing its mag-
nitude by the distance of the line that starts in each vertex, ends in the op-
posite edge, and passes through P (AD, BE, CF). The normalized value of
each vertex to the pointer is subtracted from 1 in order to convert a nor-
malized distance value into a closeness value (αA, αB, αC). The closer the
pointer is to each vertex, the closer α to 1. This value is used as weight for
the interpolation of each pattern associated with the vertex of a triangle in
the rhythm space (see Figure 4.20). Having the three weights (αA, αB,
αC) associated to each pattern in  the triangle, the interpolation algorithms
can be applied to generate a fourth resulting pattern located at point P.

Figure 4.20. The weights for each pattern derived from the distance of point P to
the three vertices of the triangle ABC.

The three different algorithms presented here, have the same basic ap-
proach which is simplifying pattern interpolation to a step-by-step interpo-
lation. The problem is then reduced to process interpolation at the step
level based on the three weights (αA, αB, αC), and then concatenate all
output steps to reconstruct a complete interpolated pattern. Each algorithm
is progressively more complex than the other regarding the representation
of the steps input to the process. The first algorithm, Step by Step Naive
Algorithm (STENA), uses only the event representation at each step.
Events are used as the entity to be interpolated regardless of the instru-
mental onsets it represents (remember that each event represents combina-
tions of different instruments at a single step). The other two algorithms,
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Step by Step Event to Onset (STEVO) and Step by Step Event to Onset
and Density (STEVO-D) are based on the decomposition of each event in
its onsets (see Figure 4.21). Additionally, the STEVO-D algorithm uses an
additional density value to process the interpolation at each step.

Figure 4.21. Scheme of the representations used by the different algorithms. Pat-
terns are decomposed in events at each step Aen, Ben, Cen (top) and  each pattern

has a different weight αA, αB, αC (top right). The STENA algorithm is based on
the event representation and the weights processed at each step. 

Events can be decomposed into its respective instrumental onsets 
(Aen=AenO1+ AenO2+AenO3 ... AenOn) 

and the STEVO and STEVO-D algorithms are based on that representation.

4.8.2.1 Step-by-step Naive Algorithm (STENA)

This algorithm processes each step independently, extracting a resulting
interpolated event at each step. The final interpolated pattern is the con-
catenation of every interpolated event. To extract an event at step Sn, the
STENA algorithm sums the weights of the common events found at each
step (if any) and then selects the event at each step which has the highest
weight. This operation is repeated for each of the steps in the pattern until
a complete list of interpolated steps is output.
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For example, if three given patterns A, B and C have respective interpola-
tion weights of 0.4, 0.4 and 0.2, and if at a given step Sn the event for each
respective pattern is 1, 3, 3, then the interpolation procedure is a factoriza-
tion of the common events:

0.4 (e1) + 0.4 (e3) + 0.2 (e3) = 0.4 (e1) + 0.6 (e3)

The algorithm selects the event at each step with the highest weight, in
this case the event (3) which has a weight of 0.6.

This algorithm is easy to implement and works in the event representation
without any further information of the onsets that compose the event.
With this algorithm the event of the pattern that is closest to the pointer
will always have a higher weight than the other two, and can only be over-
thrown in the factorization stage, if the other two have the same event
with a weight sum higher than 0.5. This condition limits the area of effec-
tivity of the algorithm to a triangular region inscribed within the interpola-
tion triangle (see Figure 4.22). The triangle A'B'C' is defined by the mid-
points of each edge of the triangle (AC'=C'B, BA'=A'C, AB'=B'C) and in-
side it the weights αA, αB and αC of each pattern are less than 0.5. This
means that inside the triangle A'B'C' the STENA algorithm is effective. 

Figure 4.22. The ABC triangle is  generated inside the Delaunay triangulation and
the point P marks the interpolation point. The lines B'C', A'C' and A'B' delimit the

areas where αA, αB and αC, respectively are greater than 0.5.
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In the outer areas of the inscribed triangle, delimited by triangles AC'B',
BA'C' and CB'A', the weights αA, αB and αC respectively, are ≥ than 0.5
thus resulting in the inoperability of the STENA algorithm. These weight
values cancel any possibility of the complementary patterns influencing
the result of the interpolation, i.e. in region AC'B' the only possible out-
come of the STENA interpolation is pattern A. This geometric constraint
limits the operation of the STENA algorithm within the boundaries of the
A'B'C' triangle.

4.8.2.2 Step-by-step Event to Onsets (STEVO) algorithm

As its name suggests, the Step by Step Event to Onsets (STEVO) algo-
rithm is based on decomposing the events into onsets and using the
weights (αA, αB and αC) derived from the position of point P and each
vertex of the triangle ABC (see Figure 4.22). In every pattern at a given
step n in the three different events namely Aen, Ben and Cen are decom-
posed in its onsets, i.e. Aen is converted into its onsets AenO1, AenO2, …
AenOn. The resulting onsets and the weights of their corresponding pat-
terns (αA, αB and αC) are grouped by instruments, and the weights of the
common instruments are added. The result of the addition is a list of
unique instrument onsets with their respective weights, from which a sub-
list is extracted and then the sublist converted into an event. This proce-
dure is repeated for every step in the pattern until a new sequence of
events conforming a pattern is obtained. In the STEVO algorithm the
main decision is how to convert the complete list of onsets and weights
into a sublist, in other words, how to filter the onsets that will make it to
the output to the algorithm.

After processing the weights of each pattern and the events in a given
step, the result is a collection of unique onsets and weights. The unique
list of onsets ordered by weight can then be filtered by weight or by num-
ber of onsets. The STEVO algorithm is based on using the maximum val-
ue of the three weights (αA, αB and αC) as a filter to eliminate the onsets
which have a lower weight value and thus do not make it to the output.
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For example, lets say we have three patterns A, B and C and at a given
step Sn they have the following decomposed events and weights:

Aen=[snare, closed hi-hat, high conga], αA=0.4
Ben=[kick, closed hi-hat],  αB=0.3
Cen=[kick, high conga, clap, rimshot], αC=0.3 

The resulting factorization of the onsets is:

snare (0.4)
closed hi-hat (0.4+0.3= 0.7)
high conga (0.4+0.3 = 0.7)  
kick (0.3 + 0.3 = 0.6)
clap (0.3)
rimshot (0.3)

As the maximum weight value is 0.4 the onsets that are output at this step
are those equal or above that value which are: snare, closed hi-hat, high
conga and kick. This list of events is converted back to event representa-
tion. This procedure is repeated for every step in the pattern to achieve a
complete list of events that finally conform an interpolated pattern.

4.8.2.3 STEVO-D with fixed density profile

The decisive factor of the STEVO and STEVO-D algorithms is the thresh-
old used to control which onsets are output. STEVO-D proposes a thresh-
old, related with the vertical density (the number of simultaneous instru-
ment onsets at each step) of the interpolated patterns. Thus, an ideal densi-
ty value to filter the onsets is obtained by interpolating the densities of the
three events with the corresponding weight.

To extract the onsets at a given step Sn, the weighted density is computed
by extracting the vertical density of each event, multiplying it by the re-
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spective weights and then summing all the components. To decide the out-
put of step Sn, each event is decomposed to instrument onsets, each in-
strument onset is multiplied by the weight of the pattern it comes from
and, finally, the common instrument onsets and their weights are factor-
ized. The resulting list of instrument onsets and weights is filtered out by
the interpolated density profile at step N. Only the instrument onsets
which have a weight equal or above the weighted density are output. The
output onsets are converted back to a single event.

This algorithm favors the mixture of elements at each step, allowing on-
sets that do not exist in the pattern with highest weight to make it to the
output pattern.

4.8.3 Interpolation algorithm discussion

The three interpolation algorithms presented above use different tech-
niques for selecting the onsets that will compose the resulting interpolated
pattern. A comparative example of the way these algorithms work is pre-
sented in Figure 4.23 where three different events at a given step Sn with
different weights αA, αB and αC generate distinct results.

The STEVO and STEVO-D algorithms offer an interpolation with more
combination capabilities than STENA, as they decompose events into
their most basic elements (i.e. drum onsets). With the example presented
in Figure 4.23 the STENA algorithm outputs the same event as the high-
est-weight pattern, which is pattern A. As mentioned above, STENA al-
lows a different output from the event with the highest weight only if the
sum of the weights of the other two events is greater than the highest
weight, and the two events are the same. On the other hand, the STEVO
algorithms use information from a lower level, as events are decomposed
into onsets, allowing lower-level mixtures of sounds, and thus better suit-
ed for the purpose of mixing.

The filters proposed for each of the STEVO algorithms differ conceptual-
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ly and have different implications in the final result. The use of the maxi-
mum weight as the filter for deciding which onsets are output, as used in
the STEVO algorithm, suggests the maximum value for every step in the
interpolation process, but has no concern for the weights whatsoever. This
density value will always be in tune with the pattern of the maximum den-
sity in the Delaunay triangle, regardless of its closeness to the interpola-
tion point P. In the case where one of the interpolated patterns has a very
high density compared to the other two patterns, it will force the output of
the algorithm  to include more onsets than the average. In general terms,
this is an algorithm that leans towards the highest density at every step, in-
ducing interpolated patterns to have more instruments. The STEVO-D al-
gorithm, on the other hand, is more responsive to the interpolation values
regarding the filtering of the number of onsets. Instead of having a con-
stant value  throughout the triangle (as the STEVO does), STEVO-D ad-
justs to the density of the highest-weight interpolated pattern.

One example of how the three different interpolation algorithms behave at
the step level is presented in Figure 4.23, where, at a given step n, three
events and their weights are used as input. Patterns A, B, and C have inter-
polation weights of 0.4, 0.3 and 0.3 respectively. The event n from pattern
A, Aen,  has onsets of instruments snare, closed hi-hat and hi-conga. Ben
has onsets of instruments kick and closed hi-hat. Cen has onsets high con-
ga, clap and rimshot. 

The interpolation results for the step are presented in the lower portion of
Figure 4.23. Where each algorithm outputs a different group of onsets for
the same conditions. The STENA algorithm outputs the event with the
highest weight, which in this case is event Aen composed of snare, closed
hi-hat and high conga. The STEVO algorithm outputs the onsets with the
highest weights after the factorization up to the highest density value (max
density = 4). The output onsets by the STEVO algorithm are snare, closed
hi-hat, high conga and kick drum. Mainly the same onsets as the STENA
algorithm plus the kick drum. The STEVO-D algorithm limits the output
of instrument onsets to the sum of the weighted density which in this case
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is 3. The onsets output by this algorithm are the closed hi-hat, the high
conga and the kick drum.

Figure 4.23. Example of the output of the three different  interpolation algo-
rithms. Three events Aen, Ben and Cen are presented on top, with respective

weights 0.4, 0.3 and 0.3. The events have different instruments k: kick drum, sn:
snare, ch: closed hi-hat, hc: high conga, cp: clap, rs: rimshot. The process of the

different algorithms is presented below, each with a different output.

4.9 RhythmSpace Application

Up to this point all the constitutive elements for the automatic creation of
a rhythm space have been presented. The descriptors to compute a dis-
tance metric and the appropriate dimensional reduction technique (pre-
sented in Chapter 3), the method to define triangles for the patterns in the
space generated using a Delaunay triangulation, and different interpola-
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tion algorithms (Sections 4.7 and 4.8). With these elements an application
is created in PureData which starts from a collection of patterns and re-
sults in an interactive rhythm space (see Figure 4.24).

Figure 4.24. Screenshot of the EDM rhythm space.37

The pipeline (Figure 4.25) for creating a rhythm space starts with the se-
lection of a folder which contains MIDI drum patterns. These patterns are
all analyzed, extracting the descriptors found in Chapter 3 to be the best
predictors of polyphonic similarity. Following the methodology from
chapter 3, the Euclidean distance is measured between the five-dimension-
al vectors extracted from each pattern in the collection. With this informa-

37 Video available: http://bit.ly/2EuWJSB
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tion, a diagonal dissimilarity matrix is created where distances between
each pair are reported. This matrix is finally processed by a multi dimen-
sional scaling algorithm (MDS) which is set to retrieve a bi-dimensional
solution for the dissimilarity matrix. In this final stage, the two coordi-
nates to locate the different patterns in a space are obtained, representing a
similarity-based organization. The coordinates are then input to a Delau-
nay triangulation algorithm which defines which sets of three patterns
conform the triangles found in the bi-dimensional space. 

With this architecture setup, the space is ready for interaction. A pointer
input by a musician indicating a region in the rhythm space, represented
by a bi-dimensional coordinate, is used to find a bounding triangle from
the ones in the Delaunay list. Having the bounding triangle, the three pat-
terns for the interpolation and the coordinate of the pointer are fed to one
of the interpolation algorithms to obtain a resulting new pattern.

Figure 4.25. Block diagram of the process of converting a collection of patterns
into a rhythm space.

The implementation of the RhythmSpace application is done in the Pure-
Data programming language, using the py object to recall different python
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classes which are executed inside the PureData environment. The Python
classes used in this application are all part of the RhythmToolbox collec-
tion as well as the RhythmSpace application which are available as open
source download38.

4.10 Conclusions

In this Chapter we have introduced several systems, aimed at processing,
organizing or generating symbolic drum patterns. The first system is the
agnostic density transformer (ADT) aimed at adding or reducing the on-
sets of a monophonic drum pattern, exploiting current knowledge of hu-
man rhythm cognition. The second system is DrDrums, a drum sequencer
with style knowledge. Each constituent algorithm of DrDrums, related to
style extraction or processing, was also presented in detail, along with its
functional motivation. The last system, RhythmSpace, a tool for organiz-
ing, visualizing retrieving and interpolating drum patterns is introduced.
RhythmSpace is derived from the original research results presented in
sections 3.4 to 3.6.

The conceptual assumptions related to note salience and beat salience
which inspired the Agnostic density Transformer (ADT) are currently be-
ing tested in real life products. Although the ADT has not yet been tested
in experiments involving human subjects, its simplicity and straightfor-
ward application and use make it a practical tool for transforming the
monophonic components of a polyphonic drum pattern. The implementa-
tion of the ADT in a real life drum machine product serves the complete
purpose of the Giant Steps project, as it was designed to develop and
transfer knowledge between academic and private partners. 

The results of the two experiments carried out to evaluate the stylistic
properties of DrDrums, suggest the system can successfully imitate drum-
ming styles. The qualitative evaluation offers a first-person view on the

38 Online repository: https://github.com/danielgomezmarin/rhythmspace-demo
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generative system, as the reviewers are the same authors of the patterns of
the style in which DrDrums is trained. According to the comments of the
reviewers, more than a half of the patterns generated in their styles have
distinctive features which they relate with their own way of composing
drum sequences. The quantitative experiment offers a third person view
on the system, as the style is learned by the subjects when they begin the
experiment and then used to compare and assess new patterns. This exper-
iment reveals how, for the listeners, there can be no difference between
the patterns generated by DrDrums and the patterns generated by the sub-
jects, in terms of their relation to the style. This behavior is observed in
both styles used as source for the stimuli, evidencing a constant appraisal
of the generated patterns although the style is changed. This experiment
also reveals how the patterns that belong to a different style from the one
used to train the subjects, are judged as less related than the ones generat-
ed by DrDrums. This last finding shows how subjects can discriminate
patterns from the training style (both original and generated) apart from
patterns generated in a different style, thus validating the judgment of the
subjects involved in the experiment.

As mentioned by Boska, one of the producers involved in the qualitative
evaluation of DrDrums, generative systems as the one developed in this
thesis can offer new perspectives in musical collaboration. The act of two
musicians collaborating in a musical piece, each of them contributing cre-
atively, can reach new meanings via style-based tools as DrDrums. With
the current capabilities, the style of a musician can be extracted from a
collection of his patterns and be available for interaction by means of the
style crossfade capabilities. This procedure is indeed disruptive for the
creative process, as one musician, or all of them, can be absent from the
production process itself while still contributing with their style to the mu-
sical piece being created. 

The RhythmSpace application offers a solution for the arrangement of
drum patterns based on similarity. The system is based on knowledge
about polyphonic similarity, derived from experimental results presented
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on Chapter 3. This application serves the purpose of automatically orga-
nizing a drum pattern collection by creating a bi-dimensional map where
patterns are located by similarity. This rhythm space solves the problem of
browsing through collections of symbolic drum patterns using non-musi-
cal dimensions, as the typical alphabetical order used in computer
browsers. The functionality of these RhythmSpaces involves the visual-
ization of every pattern in the collection and the capability of browsing the
patterns by signaling a point in the space, making the system retrieve the
sequence of the pattern so it can be reproduced. To expand this browsing
functionality, three interpolation algorithms are created which allow the
retrieval of patterns from an empty section of the space by creating, in re-
al-time, a new pattern based on the surrounding patterns from the collec-
tion. With these interpolation algorithms, the discrete space initially de-
fined only by the patterns inside the collection, becomes continuous, of-
fering a user uninterrupted browsing and the retrieval of additional pat-
terns that do not exist (yet) in the current collection. 

Dynamic gesture sequencing of drums, one of the milestones for drum
production proposed in this thesis, is achieved both by the use of the ADT
and the rhythm interpolation algorithms. Thanks to DrDrums and
RhythmSpaace's implementation in the production pipeline, sequencing
becomes a dynamic act again, enabling the process of drum creation to be-
come fluid and produced by means of continuous human gestures, as it
had been since the early stages of mankind. 
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5 CONCLUSIONS AND 
FUTURE WORK
Throughout this thesis, specific problems found in drum composition and
manipulation of electronic dance music (EDM) have been discussed and
approached scientifically. In the process of researching these problems,
some basic questions regarding human assessment of rhythm similarity in
music creation scenarios have been advanced. These advances were pro-
cessed and used as a foundation to create novel tools which help EDM
producers undertake their work. Particularly, the problems approached
are:

● The complexity of composing drum patterns in specific EDM
styles without explicit musical definitions of what an EDM style
is.

● The transformation and variation of EDM drum patterns in real-
time, during the process of creating dance tracks.

● The organization and efficient search of symbolic EDM drum pat-
tern libraries.

These problems led to carry out new experiments aimed at understanding
human processing of drum patterns in terms of similarity sensations, and
also inspired the creation of novel techniques for visualizing,  generating
and transforming EDM drum patterns. The outcome of this work is mate-
rialized in a series of algorithms that are articulated in two software appli-
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cations, DrDrums and RhythmSpace. The agnostic density transformer
(ADT) and RhythmSpace contribute with new gestural and continuous
manipulation of drum pattern sequencing, which is a transversal topic ex-
plored in this thesis. 

The original experiments presented here reveal how the similarity percep-
tion between two different monophonic patterns is affected by inducing or
not a pulse sensation during the exposition of the acoustic stimuli. When
the pulse is absent, a syntactic mechanism operates in the listener's mind
evaluating similarity based on comparing the notes-and-silences pattern of
onsets among both patterns being judged. On the contrary, when the pulse
is induced before and during the exposition of the patterns, a semantic
mechanism guides the similarity comparison, based on higher level
rhythm concepts as pulse meter and syncopation. These experimental re-
sults also illustrate how, in  pulse-induced scenarios, metrics based on
syncopation are profitable for predicting the similarity between two
monophonic patterns.

The experiments on human processing of polyphonic drum similarity led
to the design of new symbolic rhythm descriptors, and to find how a few
set of those descriptors (lowsync, midD, hiD, hiness, hisyness) is capable
of predicting human polyphonic similarity sensations. These useful de-
scriptors are based on syncopation, pattern density and rhythm complexity
measured over low, mid and high frequency ranges. Using this set of de-
scriptors and multidimensional scaling (MDS) a collection of symbolic
drum patterns can be analyzed and processed to obtain a low dimensional
map where all patterns are organized by similarity. These maps, called
rhythm spaces, were created and evaluated in two different subject-based
experiments. From these experiments it can be concluded that rhythm spa-
ces created with this methodology align with subject-based rhythm spaces.
Specifically, the arrangement of two subject-based spaces, one using
EDM drum patterns and another using global dance rhythms, were suc-
cessfully predicted using the methodology proposed. These results vali-
date the whole approach taken to create rhythm spaces, comprising select-

197



ed symbolic descriptors and a given multidimensional scaling technique.

Considering the accuracy for predicting human-based rhythm spaces,
this method for analyzing and organizing rhythm patterns was converted
into a novel tool for the visualization, retrieval and generation of drum
patterns. An application called RhythmSpace uses the same descriptors
and MDS technique discussed above, to convert a collection of symbolic
drum patterns into a bi-dimensional space which organizes patterns auto-
matically, given their rhythmic properties. The rhythm spaces created de-
pict the collection of patterns analyzed as points in a space, located ac-
cording to their similarity, with patterns perceived as being alike close to-
gether, and separated from different ones. This map-like structure is ex-
ploited in RhythmSpace to visualize a complete collection of patterns and
explore it, retrieving patterns by pointing at them. This whole procedure
targets the actual need for browsers specialized in music content, as drum
patterns, allowing for complete collections to be visualized and explored,
expanding the actual (limited) possibilities of music content browsing.
The process of designing the RhythmSpace application was naturally com-
plemented with the development of different algorithms for pattern-inter-
polation. These algorithms broaden the capabilities of a rhythm space as
they allow to explore regions where no patterns are located, and to gener-
ate new patterns based on the surrounding ones. This feature turns a dis-
crete rhythm space, capable of retrieving only the patterns in the collec-
tion, into a continuous space that generates new patterns, beyond the con-
tents of the collection as it is browsed. RhythmSpace becomes then a tool
that goes beyond organizing and visualizing a drum pattern collection,
making possible the generation of new patterns in positions where the col-
lection falls short of items.

The development of tools addressing stylistic EDM drum creation and
variation can be successfully tackled, as we hope to have illustrated, by
devising style-informed generative methods and variation processes.
These tools extract drumming styles from examples and are then able to
combine and transform style information in real-time in order to obtain
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new drum patterns. This style-based process offers a real-time, flexible
and informed approach to drum generation, expanding the current compo-
sitional possibilities and shortening the gap between a simple rhythmic
idea and the construction of a complete drum track.

The stylistic properties of the generative system devised were evaluated in
two different subject-based experiments. The results of both experiments
evidence how the system is capable of generating drum patterns, in a spe-
cific style, which can can be perceived as "integrated in" or "homoge-
neous with" those patterns in which the style is based. This quality is even
appreciated when subjects, specialized in drum pattern composition, listen
to patterns cerated in their own style, and confirm how the system is capa-
ble of “copying” it while being original. It can be concluded from these
results that the system has  capabilities for extracting a style from a collec-
tion of patterns and to use the the detected stylistic features to generate
new patterns resembling those in the style.

5.1 Original Contributions
During this thesis, different original contributions were accomplished. A
summary of the main contributions is presented below.

5.1.1 Algorithms

Several algorithms were designed and implemented in the course of this
thesis:

• Symbolic rhythm descriptors analyzing 15 different features of
polyphonic drum patterns.

• Agnostic density transformer (ADT) (section 4.2).

• Style extractor (section 4.3).

• Pattern generator in style (section 4.4.1).

• Style crossfader (section 4.4.2.1).
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• Style commonness (section 4.4.2.2).

• Pattern variation algorithm (section 4.4.2.3).

• Pattern crossfader STENA (section 4.8.2.1).

• Pattern crossfader STEVO (section 4.8.2.2).

• Pattern crossfader STEVO-D (section 4.8.2.3).

• Rhythm space organizer (section 4.9).

5.1.2 Corpora

• Alf Gabrielsson's Experiment 1. 5 Ace Tone FR-3 drum patterns
in symbolic format and their 2D coordinates after MDS from sub-
ject ratings (section 3.5.1.1).

• Alf Gabrielsson's Experiment 2. 6 Ace Tone FR-3 drum patterns
and their 3D coordinates after MDS (section 3.5.1.1).

• EDM patterns. 75 techno, house and breakbeat patterns in sym-
bolic format (section 3.6.1.2).

• EDM experiment. 9 EDM Patterns with their 2D coordinates from
subject ratings after MDS. 36 different subject similarity ratings
(section 3.6.2).

• Monophonic rhythm similarity experiment. 36 patterns in symbol-
ic format plus 21 subjective distance ratings when the beat is in-
duced and when it is not (section 3.2)

• DrDrums experimental data. 10 original drum patterns from EDM
producers Boska and Sano. 10 generated patterns by DrDrums in
Boska and Sano style. 20 subject ratings of how much original
and generated patterns belong to each producer's style (section
4.6).

5.1.3  Applications

• DrDrums (section 4.5).

• RhythmSpace (section 4.8).
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5.1.4 Experimental methods 

• Monophonic rhythm experiment stage 1 (beat not induced) (sec-
tion 3.2).

• Monophonic rhythm experiment stage 2 (beat induced) (section
3.2).

• Alf Gabrielsson's symbolic descriptors experiment (section 3.5).

• EDM polyphonic similarity experiment (section 3.6).

• Dr Drums quantitative experiment (section 4.6).

• Dr Drums qualitative experiment (section 4.7).

5.1.5 Software Libraries

The RhythmToolbox library was created in Python to process rhythmic
patterns in symbolic format. 

5.2 Further Research
Further research is needed in different complementary aspects of the ones
presented in this thesis. From the rhythm experiments presented in Chap-
ter 3, there are two principal results which can be followed further in order
to gain deeper comprehension of rhythm processing. The first line of re-
search, susceptible of being expanded, is that of awareness or the distinc-
tive importance of the intra-pulse patterns when evaluating their similari-
ty. This idea is explored in section 3.3 where the importance of the first
intra-pulse patterns is observed to be of a higher magnitude than that of
the rest of the intra-pulse patterns when predicting subject-rated similarity.
This effect might reflect the well documented (in short-term memory re-
search) “primacy” effect where the first items are best remembered and
thus they could be primarily used in the similarity comparison. Despite
this plausible explanation, this effect can be further researched in order to
establish its role in human similarity sensations and thus help improve
current algorithms used for similarity prediction. 

The second line of future could be to expand the current research on poly-

201



phonic drum similarity to new human-based rhythm spaces. The small im-
precisions found between the forecasted rhythm spaces and those derived
from human ratings suggest the current method can be improved, special-
ly if new similarity relations between the patterns in the stimuli collection
are considered. The two human-based rhythm spaces used during this re-
search are considered to be spanning over a different similarity range (see
section 3.6.3), Gabrielsson's patterns are a very diverse collection, while
the patterns used in our EDM space are less diverse as they all belong to
the same musical genre. Further research could be addressed towards ex-
ploring the predictability of rhythm spaces of even smaller diversity, such
as the drum patterns involved in an EDM song. Such results, combined
with the ones presented in this thesis, could help increase the use-range
and robustness of algorithms used to predict polyphonic rhythm similarity.

There is also additional research that can be undertaken to gain compre-
hension of the generative system presented in Chapter 4. Although the
generative properties in a single style have been confirmed experimental-
ly, the style crossfading capabilities are still susceptible of being im-
proved. Questions regarding the effectiveness of a crossfade between two
styles at different proportions can be approached experimentally in order
to understand the aesthetic implications of using a system such as Dr-
Drums. Also, evaluating stylistic generation based on different types of
collections, as complete EDM songs or even albums can be researched to
gain additional insight on the capabilities and limits of a system as Dr-
Drums. Finally, the practical limitations of the system implemented in this
thesis, as the absence of velocity or dynamics, and the reduced set of per-
cussive instruments used, can be narrowed and explored much further.

5.3 Closing Remarks
Despite the tremendous amount of effort needed to complete this thesis,
there is a general sensation of achievement and completion. This is due to
the logical and progressive process of researching a topic, finding its main
issues, designing and carrying out experiments, interpreting the results
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and, based on those interpretations, building useful systems that finally
solve these issues. The topic of EDM has proven to be a fertile ground for
research. The facts that EDM has a continuously-growing amount of glob-
al adepts, and that it is still evolving aesthetically and technologically,
manifesting its own ways and idiosyncrasies, surely make this thesis one
of many more studies to come focused in electronic dance music. As it
was revealed during this research, the topic of rhythm is a very strong
node, around which many different scientific and artistic disciplines artic-
ulate. I, optimistically, hope that the work presented throughout this thesis
can serve as basis for further research in EDM and a small step towards
the comprehension of musical rhythm.

203



APPENDIX A: 
LIST OF PUBLICATIONS
These are the papers published during the PhD thesis process.

Gómez-Marín, D., Jordà, S., Herrera, P. (2017) Drum rhythm spaces:
from global models to style-specifc maps. 13th International Symposium
on Computer Music Multidisciplinary Research (CMMR) Porto 25-28th
September 2017.

Gómez-Marín, D., Jordà, S., Herrera, P. (2016) Strictly Rhythm:
Exploring the Effects of Identical Regions and Meter Induction in
Rhythmic Similarity Perception. In Music, Mind, and Embodiment.

Gómez-Marín, D., Herrera, P., Jordà, S. (2016) Drumming with style:
From user needs to a working prototype. International Conference on
New Interfaces for Musical Expression (NIME) Griffith, 11-15th July
2016

Gómez-Marín, D., Jordà, S., Herrera, P. (2016) Rhythm Spaces. 4th
International Workshop on Musical Metacreation (MUME 2016) June
2 7 t h , 2 0 1 6

Gómez-Marín, D., Jordà, S., Herrera, P. (2015) PAD and SAD: Two
Awareness-weighted Rhythmic Similarity Distances. 16th International
Society for Music Information Retrieval Conference. Málaga 26th-30th
October 2015.

Gómez-Marín, D., Jordà, S., Herrera, P. (2015) Evaluating rhythm
similarity distances: The effect of inducing the beat. Rhythm production
and perception workshop. Amsterdam 6-8 July 2015

Gómez-Marín, D., Jordà, S., Herrera, P. (2015) Strictly Rhythm:
Exploring the effects of identical regions and meter induction in rhythmic
similarity perception. 11th International Symposium on Computer Music
Multidisciplinary Research (CMMR) Music, Mind, and Embodiment.
Plymouth, 16-19 June 2015.
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APPENDIX B: 
GLOSSARY

There are specific terms adopted for this thesis that refer to particular
elements of symbolic percussive rhythms (see Figure B.1) and
mathematical functions. These terms are defined below in order to
improve the reading experience. 

Figure B.1. Terms adopted to describe drum patterns. A polyphonic pattern of 16
steps  is composed of three monophonic patterns A, B and C.  Each of them hav-

ing densities 7, 6 and 6 respectively.  

Step: A discrete time position in a sequence.

Onset: The single hit of  a drum instrument at a given step.

Silence: The absence of an onset at a given step.

Monophonic Pattern: A sequence of onsets and silences of a specific
length in steps.

Polyphonic pattern: A stacked arrangement of monophonic patterns of
equal length in which the first step is aligned for all the patterns.

Event: A vertical combination of onsets at a given step in a polyphonic
pattern.
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Density: The sum of onsets in a monophonic pattern.

Discrete Probability Distribution Function (DPDF): Is a function used to
select a value i from a probability distribution, using a random number as
input. The DPDF is based on a cumulative distribution function, used to
find the upper and lower boundaries of each element in a probability dis-
tribution.

i = f(i, r) = ∑i P(xi) < r ≤ ∑i+1 P(xi+1)

Where r is a random number and i is the index of the element in the prob-
ability distribution that is larger than the value of the cumulative distribu-
tion ∑i P(xi) and smaller than the value of the cumulative distribution ∑i+1

P(xi+1).

As an example, given the probability distribution pd = (x1=0.1, x2=0.3,
x3=0.4, x4=0.2), and a random value r = 0.6. The ith value that satisfies ∑i

P(xi) < 0.6 ≤ ∑i+1 P(xi+1) is i=2, as ∑2 P(x2) = 0.1+0.3 = 0.4 and ∑3

P(x3)= 0.1+0.3+0.4 = 0.8 and 0.4 < 0.6 ≤ 0.8.
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