Chapter 3 QUANTUM MONTE CARLO SIMULATION

SISOW. In this regard, the quantum system described by our model can be
written in the density matrix formalism as:

BBt

Pe®= | § S0P ey, ik, = | | f)-a=UNa™ e+ dt, -k, (39)

0 - —0 —o0

we have added an integral over all k.-SISOWs weighted by f(k.) with respect
to the density matrix of a single SISOW (see eq. 2.17). In this regard, this
density matrix represents a double incoherent superposition of wavepackets
(i.e. a t, and k, integrals). Since we know that Bohm trajectories perfectly
reproduce the dynamics of a single k,-SISOW (see section 2.2.3), we can
affirm that the result obtained by our Quantum MC simulations can be
reproduced by equation 3.9. This shows that our approach, in spite of being
based on intuitive physical ideas, is really a particular solution of the
Liouville equation.

Moreover, since we known that the Wigner distribution function is directly
obtained from the density matrix, we can compute also this function without
solving additional equations. Let us first center on the Wigner distribution
function of a single SISOW. In this case, since our density matrix is
expressed in the k-representation (equation 2.17), and the typical Wigner-
Weil transformation is on the x-representation, we have to compute the
Wigner distribution function as:

Sw(x, ke t) = zdrzdgzdg’ . gog(x + g) P (D) P (x - —%) (3.10)

The result obtained for a SISOW, introducing equation (2.17) into (3.10)
and using once more the delta function (2.18), will be written as:

fo (k) = Idg|a(g)| Idr e’ qog(x+ ) rpg(x— ) Idgla(g)l Skl G1D

Showing that the Wigner function of a SISOW can be computed as a simple
sum over the Wigner-Weil that

constitute the SISOW. Now, identically to equation (3. 9) the W1gner
distribution function of the whole quantum system can be written as:

fren = fdk.- f(k) [dgla® @F £, (k| (312)

This results explicitly manifest, once more, that we are really solving the
Liouville equation with a particular boundary condition for the QW ( just as
Frensley did [Frensley 1990] ). However, it is evident that our approach
contains more microscopic information than the others (i.e. one is really
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tempted to write that we know the exact position and velocities of all
electrons at any time). In this regard, we realize that when an integral over t,
is done, we ‘loose’ the dynamic information that the system contains. This is
the procedure we follow to compute the macroscopic steady-state results
such us the charge density (2.20) or the current density (2.21). Let us point
out, that even the Wigner distribution function (3.12) or the density matrix
(2.19) are computed in this way.

3.5.- Possible ways to introduce scattering mechanisms
within our quantum Monte Carlo simulation.

First of all, let us to point out that, if we were able to deal with all
interactions in a simple Hamiltonian, all the information would be contained
in the ‘coherent’ transport and no scattering model would be needed.
Obviously, that is not the case for electronic transport model of RTD. On the
other hand, regarding the huge complexity of dealing with scattering, in
order to include it in real devices, some level of approximation is always
required.

Let us discuss how scattering is introduced in the classical MC. The Fermi
Golden rule (a particular case of the first-order time dependent perturbation
theory) is used to know which is the probability that a ‘free’ electron will
change its momentum from p to p’ due to a particular scattering mechanism
(see eq. 3.3). For the calculation of the matrix elements [Mj|, plane waves are
assumed. In spite of this quite confusing mixture of classical and quantum
pictures, the obtained scattering rates work very well for classical MC
simulations (always having some adjustable phenomenological parameters).

On the other hand, in the Wigner formalism related with RTD, we basically
can distinguish between two possibilities for introducing scattering: the
simple relaxation time approximation operator C,. and the Boltzmann
collision operator C,; In the former case, according to Jensen [Jensen 1993],
the scattering term takes the following form:

1
C. £ k)= ;{%ﬂ?(x,k,t)—f(x,k,t)} (3.13)

where 7 is the momentum relaxation time and n(x) the electron density (n,(x)
and {°,(x.k,t) are the equilibrium functions in the absence of scattering). On
the other hand, the classical Boltzamnn collision operator:

ColB -fw(x,k,t)=-217; jz {Si(k;ak)'fw(xak:t)—Si(ksk')'fu’(x’kat)} (314)

—e
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has also been used with the same goal [Garcia 1996]. Let us notice that the
Si(k’,k) are, generally, the ones used for the classical MC. To be fair, we
have to point out that more rigorous scattering mechanisms are studied
within the Wigner framework, but their numerical complexity make its
application to real devices quite complicated [Brunetti 1996].

At this point, one realises that there are several possible ways to introduce
scattering into our model with the same level of approximation of the ones
previously discussed. Let us qualitatively present two possible
implementations of scattering.

Position independent scattering between SISOWs

Since each SISOW presents a stationary properties, it seems reasonable to
model scattering between them (i.e. at the same level as we model scattering
between stationary states). From a practical point of view, as a rough
approximation, the scattering rates Si(k.k;’) between SISOWs can be
considered to be those used in the classical MC. However, to be consistent, a
more rigorous calculation will be preferred. In particular, the matrix elements
of the Fermi golden rule M; (see equation 3.3) can be computed usmg
egenfunctions of the Hamiltonian (rather than plane waves).

Once the scattering rates are computed (at the desired level of rigor), in order
to provide a consistent scattering model, we have to assure that the stationary
distribution of Bohm particles inside a SISOW is not ‘disturbed’ by the
scattering event. In this regard, when a scattering event take place (and after
choosing the final k.’-SISOW) we have to compute two new parameters: tp
and xp in order to define the boundary condition of the new Bohm trajectory.
Both parameters have to be selected according to the stationary presence
probability distribution of the SISOW. In other words, we can use the same
algorithms described for the classical/quantum matching (already explained
in section 3.2.3) to model how tg and xp can be selected.

Let us notice that with this kind of scattering model, we think that our MC
simulator will behave quite similar to the one recently developed by Fischetti
[Fischetti 1998]. The only difference will be related with the parameter oy
(the spatial dispersion of the wavepacket, or in Fischetti’s word: the size of
the electron) which, however, has an important influence on the macroscopic
results.

Position dependent scattering between Bohm trajectories
First of all, let us remind the discussion about the contribution of the 2D-
states to the total current in real RTD (see the limitations of the Landauer-

Biittiker approach in section 1.3.1). There, we pointed out the transitions
from extended states to quasi-2D states due to scattering. With an identical
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example, Frensley claims that if a transition from an extended state to a one-
side bound state is considered, then the particle probability presence is not
conserved. [Frensley 1990]. In particular, he says that the Pauli master
equation violates the continuity equation. In this regard, he said: ”
Presumably, inelastic transitions are more localized processes, involving
superpositions of eigenstates which describes such localization.” On the
other hand, Fischetti refute Frensley’s opinion arguing that the probability-
current continuity is violated in any quantum jump or wavefunction collapse
[Fischetti 1998]. In particular, let us highlight the following sentence: “Since
the ‘orthodox’ (Copenhagen)interpretation allows, or even demands,
nonlocality, one may claim that the introduction of ad hoc local collision
operators is a very high price to pay in exchange for ‘realism’ . The
discussion about the locality of scattering goes far beyond the scope of this
simple work, but we want to stress that within our approach, local scattering
mechanism can also be ‘naturally’ implemented.

In any case, other authors have explicitly used local transition between
electrons to study RTDs [Zimmerman 1987]. In this regard, Let us only point
out that position-dependent scattering rates, Si(k.k.’,x), can be directly
computed from the matrix elements of the Hamiltonian eigenstates. (This
result, although not published yet, it is already developed by our group).
Once these position scattering rates would be computed, the whole algorithm
to consider the scattering transition between Bohm trajectories would be
similar to the one described before

Finally, after discussing two possibilities (among others) for introducing
scattering, let us make a brief reflection about the historical development of
the classical MC technique. Although, in section 3.1, we have formally
presented it as a mathematical solution of the Boltzman transport equation,
historically, it was used without clear evidences of that. During the last 60s,
the pioneers of the application of the MC method to electronic transport (i.e.
Kurosawa, Fawcett, Boardmann, etc.) did not show that their method was a
solution of the Boltzmann equation, but they only used intuitive arguments
about the motion of electrons inside the semiconductors to define their
approach. It was quite later that it was realized that their method was a direct
solution of the Boltzmann equation (Curiously, although the demonstration is
developed from Chambers equation [Chambers 1952], he did not applied it).
In this regard, we think that these approaches for scattering, although quite
heuristically explained, perhaps can be deduced more rigorously from a
complete kinetic treatment.
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CONCLUSIONS

Every time that you decide to climb a mountain, you know that you will
spend a long journey before arriving at the top. Perhaps, in spite of all your
effort, you will not arrive. At first, you take a wide pathway where you often
meet other people that gently explain their experience to you. As you are
approaching to the mountain, the path becomes less clear because few people
have stepped on it. Then, you have to start to decide, by yourself, which is
the better way to get there. In front of you, you only see a big mountain and
lots of different possibilities for going up. Sometimes, not always, you are
capable of arriving at the top of the mountain. This is a privileged place,
where you see an extraordinary beautiful landscape, and understand lots of
things. You can visualise, in a few seconds, the whole path you have
followed. You can easily understand where have you lost the correct path
and compare your mountain with the nearest ones....

Regarding this thesis, we know that we have not arrived at the top of the
mountain yet, but we are in quite privileged situation where we are able to
understand the whole path that we have followed to arrive here. We can
realise if there is any bypass that would have shorten our travel, and we can
sincerely compare our work with those of others.

Main conclusions

The original motivation for the present thesis was the development of a
simulation tool in order to study the electronic transport in semiconductor
devices where quantum effects are relevant. Previous simulation tools for
these devices were mainly based on mathematically robust quantum kinetic
formulations (i.e. Wigner functions, Wigner path, Green Functions...) that
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provide highly complex algorithms with a not always physically transparent
meaning. On the other hand, following the intuitive simplicity of the Monte
Carlo method for conventional electronic devices, we have been interested in
developing a physically simple simulation tool for mesoscopic devices. In
particular, following the path opened by Salvino and Buot, we have used
Bohm trajectories to simulate the self-consistent I-V characteristic of
resonant tunnelling diodes (RTD). We have focused on RTD that have much
practical interest and offers a rich phenomenology.

1.- We have shown that the information contained in stationary states (i.e
eigenfunctions of the Hamiltonian) do not allow them to correctly describe
dynamic situations. This result is quite important for several reasons.
Experimental I-V curves of RTD present dynamic bistability showing that
the microscopic dynamic information can not be always neglected when
macroscopic steady-state situations are considered. Moreover, mainly, most
of the simulation tools model steady state situations while these devices are
potential candidates for very high frequency applications.

These results are partially explained in [paper C] and are completed in
section 2.2.

2.- We have presented an new quantum entity that we call Stationary
Incoherent Superposition of Wavepackets (SISOW) that adequately
describes a quantum system where a constant flux of particles is considered.
A SISOW is composed as an infinite sum of identical time-dependent
wavepackets but with different initial time.

2.1.- We have shown that the stationary information contained in our
quantum entity is quite similar (although not identical) to stationary
states. In particular, the charge (and current) associated to this quantum
entity are computed as a sum over the charge (and the current) of each
eigenstate that compound the SISOW.

2.2.- We have also shown that the dynamic information contained in a
SISOW (for example the velocity distribution) perfectly reproduces our
dynamic picture of a constant flux of electrons (i.e. they contain the
dynamic information of the time dependent wavepacket.)

The central energy and the spatial (momentum) dispersion basically
define each SISOW. In particular all the macroscopic results depend on
the choice of spatial dispersion. This dependence has been used to
criticise our approach because of its arbitrariness. However, in our
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opinion, this parameter, directly related with the ‘coherent size’ of the
electron in the sense described by Fischetti, is an advantage rather than
a drawback. In other words, the limits of our approach are, on one side,
the classical particles and, on the other side, the stationary states.

Some of these results have been published in [paper H] and are explained in
section 2.2.2 and 2.2.3.

3.- We have shown that Bohm trajectories perfectly reproduce the static and
dynamic information contained in a SISOW. Here, Bohm trajectories can be
taken as mathemathical tools which reproduce standard Schrédinger equation
results (i.e. no discussion about the physical reality of Bohm trajectories is
needed).

These results, although repeatedly explained in several papers of this thesis,
are summarised in chapter 2.

4.- We have built up a Monte Carlo simulator for resonant tunnelling diodes
using Bohm trajectories associated to a SISOW. Scattering mechanisms are
not yet fully implemented in our simulator. We have obtained self-consistent
I-V curves for several devices that are perfectly comparable to other
approaches without scattering. Using the results pointed out in conclusion
2.2, we have been able to describe our approach in terms of the density
matrix and the Wigner function. This allows a direct comparison of our
approach with these formalisms showing that our proposal is a particular
solution of the Liouville equation (see section 3.4 or [paper H]).

On important property of our approach is its ability to provide either static or
dynamic information of the devices. As we have pointed out in the first
conclusion, this fact is of potential fundamental importance for the device we
are examining.

The obtained simulated results and the MC methodology are explained in
[paper E], [paper F], [paper G] and also in the third chapter.

5.- We have also presented complete proposals to include scattering into our
simulator at a level of rigour comparable with other approaches. Let us
mention that scattering is usually introduced using quite ‘artificial’ models in
the electronic transport (for example, the Fermi golden rule between plane
wave in classical Monte Carlo or the relaxation time approximation in
Wigner formalism,...).
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Moreover, taking profit of Bohm trajectories, we are also able to easily
define ‘local scattering’ in the sense suggested by others (Frensley,
Zimmerman, ...). This is partially discussed in section 3.5.

This point is partially explained in [paper H] and in section 3.5.

Other conclusions

During this work we also worked on other subjects not directly related with
the main goal of the present thesis, but that have also helped us to understand
our work.

6.- We have presented a new formulation for one-side bound states that are
capable of reproducing the current density and the probability presence of
quasi-bound states without the explicit consideration of scattering. This result
provides an elegant and simple way to overcome the difficulties of quasi-
bound states within the Landauer-Biittiker approach. This is explicitly
explained in [paper A].

7.- Several practical implications of the nonintersecting property of Bohm
trajectories associated to a single wavepacket in the space-time have been
examined. In particular, it has been shown that the position of a Bohm
particle and the probability distribution of tunneling times, can all be
obtained without actually calculating trajectories. See [paper D] for a
complete explanation.

8.- The intuitive interpretation of wave-packets dynamics in potential
barriers has been discussed within the framework of Bohm’s interpretation.
In particular, claims that Bohm’s approach leads to counterintuitive results
are shown to be subjective. See [paper D] and [paper C] and several parts of
the second chapter of this thesis.

Some final thoughts

Finally, although I am quite sure that my thesis advisor will make me erase
this paragraph, I want to express my opinion about the whole story. On one
side, there is a well-establish interpretation of QM (Copenhagen school) that
forces us to admit classically counterintuitive behaviour of particles. On the
other side, the common sense of many people who have worked during
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decades with electronic transport in conventional devices with a classical
electron picture in mind. In this regard, if Bohm trajectories are assumed as
physically meaningful (let us notice that is not a necessary condition to build
up our simulator), we would have a justification for these people who uses
the common picture of electrons as localised entities moving inside the
device. In particular, we have shown that a resonant tunnelling diode, in spite
of presenting a rich quantum phenomenology (such as resonances,
tunnelling,..), can be perfectly understood with deterministic trajectories. Let
us rewrite, once more, Bell’s opinion about the De Broglie-Bohm approach
for Quantum Mechanics referred to the double slit experiment: “7his idea
(electrons as particles moving influenced by a wave solution of the
Schrédinger equation), seems to me so natural and simple, to resolve the
wave-particle dilemma in such a clear and ordinary way, that is a great
mystery to me that it was so generally ignored”.

7!




List of Acronyms

LIST OF ACRONYMS:

Acronym meaning

BB De Broglie-Bohm

BTE Boltzmann transport equation

MC Monte Carlo

QM Quantum mechanics/Quantum mechanical

QW Quantum window

RTD Resonant tunnelling diodes

SISOW Stationary incoherent superposition of wavepackets.
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LIST OF SYMBOLS

Symbol meaning

@ density operator/density matrix

b 4 solution of the time independent Schrodinger equation
N solution of the time dependent Schrédinger equation
o, spatial dispersion of an inital gaussian wavepacket.
a(k) k-component associated to a wavepacket.

Cot Collision operator

C total charge density

E. central energy of an initial gaussian wavepacket.
E, Energy of the n state-'¥,

f classical distribution function

F Electric field

f Bohm distribution fucntion

f, Wigner distribution function

J total current density

k wavevector

L Liouville operator

m particle mass.

p momentum

Q quantum potential

R modulus of the time dependent wavefunction

S phase of the time dependent wavefunction

tp Initial time of a Bohm trajectory

t,: minimum uncertainty time

v classical potential

v particle velocity

X position

XB Initial position of a Bohm trajectory

X, central position of an inital gaussian wavepacket
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Stationary modeling of two-dimensional states in resonant tunneling

devices
X. Oriols,? J. SuRé, F. Martin, and X. Aymerich

Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
(Received 17 October 1994; accepted for publication 9 April 1995)

One-side bound states are very important in vertical resonant tunneling devices which contain either
lightly doped spacers or a small band-gap pseudomorphic layer adjacent to the barriers. By a proper
choice of the boundary conditions, these states are modeled by stationary wave functions which
contain the relevant information of the quasi-two-dimensional system under steady-state conditions.
In particular, the wave functions allow the calculation of their contributions to the self-consistent
charge density and the electrical current. In qualitative agreement with experimental results, it is
demonstrated that the main resonant features of the current—voltage characteristic of these devices
are due to resonant tunneling from an emitter two-dimensional electron gas. Finally, the proposed
model is compared with a previous picture of other authors. © 1995 American Institute of Physics.

Although the principles of operation of double-barrier
resonant tunneling diodes (DBRTDs) are qualitatively well
understood,! this is still a very active area of research, In
particular, to improve the peak-to-valley current ratio, which
is a key figure of merit,2 lightly doped spacer layers®> or
pseudomorphic layers of small band-gap materials®™® have
been placed adjacent to the barriers. However, these layers
have more far-reaching consequences for they cause the for-
.mation of a quasi-two-dimensional (2D) electron system in
the emitter. Thus the design of state-of-the-art devices re-
quires the accurate modeling of resonant tunneling from
quasi-2D states. In structures with spacer layers, the potential
bulges up, forming a barrier which separates the 3D emitter
from the 2D accumulation layer. For this reason, the 3D
picture has been applied to these structures by considering an
effective three-barrier/two-well system.” However, for spac-
ers thicker than about 20 nm, experimental results show that
the accumulation quantum well is a separate eigensystem,*>
just as in structures with layers of small band-gap materials.
In both cases we will make reference to the emitter quantum
well (EQW) to distinguish it from the quantum well (QW)
intrinsic to DBRTDs. To model these systems, Choi and Wie
considered a 3D electron distribution with a threshold energy
in the EQW.” Recently, a much better approach was used by
Burgnies ef al.,® who extended the model of Lassnig and
Boxleitner.”

For years, an independent particle 3D stationary coher-
ent approach has been assumed to model conventional
DBRTDs,!®! This stationary picture is an idealization of the
actual problem, which is intrinsically dynamic. So, one
should ideally consider the kinetic behavior of the system
including inelastic interactions (a quantum Monte Carlo
simulation'? or a quantum kinetic treatment based on the
Liouville equation,13 for instance) to describe the steady-
state balance reached under dc bias conditions. However, the
stationary picture is a convenient approximation because it is
simple and intuitive, it captures the main features of tunnel-
ing in actual devices, and it can be improved by perturba-

“Electronic mail:ifell @cc.uab.es
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tively including inelastic interactions via rate equations.!® It
is in this sense that the extension of the stationary approach
to structures which contain an emitter quasi-2D system is
important, This is done in this communication by proposing
a simple model which uses time independent wave functions
to describe what is actually a steady-state dynamic situation.

Quasi-2D states are bound in the emitter and extended in
the collector (one-side bound states), and should be treated
as unstable states with a finite lifetime because electrons can
tunnel out to the collector. However, electrons of the emitter
can reach these states via inelastic interactions so that a
steady-state occupation is reached. As a consequence, the
quasi-2D states make a stationary contribution to the elec-
tronic charge and electric current. To describe this dynamic
balance we propose to use approximate stationary wave
functions, and this requires a proper choice of boundary con-
ditions. Since in the collector asymptotic region (i.e., for
x=L, where the potential profile is flat) we want the current
to be uniform, the most obvious choice is a transmitted plane
wave for x=L, as in the case of 3D states.'® Moreover, being
bound at the emitter side, we should require |¢;(x)|*—0 for
x— —0 [if,(x) being the envelope wave function of the ith
sub-band]. These two boundary conditions are not compat-
ible for eigenstates of the Hamiltonian, which ensure current
continuity, but are convenient for an approximate model of
unstable states. The method of Vassell et al.!0 for the 3D
states consists in integrating twice the envelope equation
from x=L back to x— —oo with initial conditions at x=L to
match cos{k(x—L)] and sin[k(x—L)]. In this way, one ob-
tains two independent functions which are the real and
imaginary parts of the wave function, respectively. We pro-
pose maintaining the same procedure for the quasi-2D states
with the additional condition that the real, ¢;;(x), and the
imaginary, ¥;,(x), parts of ; should tend to zero for x—
—oo, Since, as discussed, this is not strictly possible for an
eigenstate, these conditions at x— —o are satisfied for two
slightly different values of energy, E;; and E;,. So, we pro-
pose describing the quasi-2D states by

i(x)y =ty (x) +j hia(x), 1)

ignoring their time dependence (this is actually a linear com-

© 1995 American Institute of Physics 2135
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FIG. 1. Self-consistent electrostatic potential (Thomas-Fermi approxima-
tion) and ground quasi-bound-state profile in a AsGa/Gayg;Aly33As double-
bamier structure with lightly doped electrodes (Np=2X10' cm™) at
T=300 K. (a) Vyu=0.494 V, ie., just beneath the main resonant peak of
the I-V characteristic (see Fig. 2). (b) V,,y=0.522 V, ie., just above the
resonarnce,

bination of two eigenstates with different eigenenergies) to
model the previously presented steady-state situation without
explicit consideration of inelastic interactions. For x— — o,
the boundary condition is fully accomplished. For x>L,
;(x) would only be a plane wave if E;, and E;; were ex-
actly equal. In actual structures, however, the differences be-
tween E;; and E;, have been found to be small enough to be
practically neglected (even at resonance) provided that the
barriers are not extremely thin (a maximum difference of
about 0.1% for a typical GaAs/Ga, ., Al,As structure with 5
nm barriers and a 5 nm well). So, both the wave-function
modulus and the associated probability current are found to
be position independent in the collector asymptotic region to
within a very good approximation. The tiny difference be-
tween E;; and E;, also guarantees that ;(x) is a reasonable
approximate solution of the stationary Hamiltonian, and can
be shown to be inversely proportional to the lifetime of the
state which exponentially decreases with the barrier height
and thickness. Hence, for extremely transparent barriers
(with no technological interest), the energy difference in-
creases and the model fails. In this case, however, even the
2D approximation for the density of states has no sense.

As an example, we have considered a structure of two 5
nm undoped barriers of Gagg;Aly33AS, an undoped GaAs
well of 5 nm, and two external lightly doped layers

(Np=2X10"® cm™%) which play the role of the spacers. In’
D

Fig. 1 we show the self-consistent potential and the ground
quasi-bound state for two values of applied voltage near to
the main resonant peak of its I-V characteristic (Fig. 2).
Prior to the resonance [Fig. 1(a)], the ground state has maxi-
mum presence probability in the EQW, while beyond it [Fig.
1(b)], the maximum occurs in the QW. Their diverse spatial
distributions determine a radically different occupation prob-
ability, and also demand different normalization procedures.
The wave function of EQW states spatially overlaps with 3D
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FIG. 2. Simulated current-voltage characteristic and quasi-bound eigenen-
ergies as a function of bias for the same structure of Fig. 1 (the open circles
indicate the two particular values of the voltage considered in the previous
figure). As for the eigenenergies, both E;y and E;, are shown for each state,
but this is only evident in the most vertical regions of these curves, which
correspond to states located in the QW. The current peaks perfectly correlate
with the anticrossing of two energy levels.

emitter states so that inelastic interactions are very probable.
Hence, we will consider them to be occupied according to an
emitter pseudo-Fermi level. On the contrary, QW states can
only become occupied by electrons being scattered in the
QW region, where the 3D wave-function moduli are several
orders of magnitude smaller. So, we will consider them oc-
cupied according to the collector pseudo-Fermi level, al-
though this could be used for the parametric modeling of
inelastic scattering effects in the valley region. The current
for a 3D or a quasi-2D state is then given by

P L ( L0 o

7 ox —6x_) ' @

As expected, the current associated with 2D states is not
position independent except in the collector asymptotic re-
gion, where ,(x) is roughly a plane wave. Consequently, J;
should be calculated at any point beyond x=L. Overall cur-
rent continuity should be preserved by introducing self-
consistent interaction between the 3D and 2D subsystems.
The contribution to the current of the whole 2D system is

given by
’2(Ei_Ecc)
T m* I'/’i(L)lz

g(mim
Jop=2 z
X

i 'n'fiz

Ey—E;

qf i
l+exp( X7 ”, 3)
where E_, is the position of the conduction band in the col-
lector asymptotic region, Eg; the quasi-Fermi level, and
E;=E; ~E;. A correct normalization of the quasi-2D states
is crucial because charge and current are proportional to the
wave-function modulus. Although the quasi-2D states are ex-

tended by construction, a local normalization is justified on
the basis of the finite coherence length of electrons. We pro-
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FIG. 3. Current from the four quasi-bound levels of the ideal potential
structure shown in the inset. The charge in the well is assumed to be main-
tained stationary (i.e., electrons are supplied to substitute those which escape
to the collector), and this models the effects of inelastic scattering in actual
structures as far as the occupation of quasi-2D states is concemed, The solid
lines correspond to the results obtained with our method. The marks have
been calculated following the method proposed by Lassnig and Boxleitner
for one-side bound systems (see Ref. 9).

pose normalizing the EQW states in the emitter (including
the first barrier) and the QW states in a box which contains
the QW and the two barriers. These normalization criteria
can be shown to be consistent with our simple model for the
occupation statistics and lead to an emitter charge which, as
for stationary 3D states, is roughly equal on and off reso-
nance. In Fig. 2, we show the self-consistent /- V character-
istic, together with the position of the eigenenergies as a
function of bias. The first and wider current peak is related to
the resonance from 3D states, and has the typical triangular
shape. The other three sharper peaks are resonances due to
the “‘anticrossing” of quasi-2D sub-bands, as shown in the
figure by the evolution of the first five eigenvalues. In the
most vertical (and noisier) segments of these curves the state
presence probability peaks in the QW, while in the flatter
regions it corresponds to the EQW. Both E;, and E;, are
depicted for each state and both curves almost perfectly su-
perpose even for QW states, whose lifetimes are certainly
much smaller. Our results qualitatively confirm the experi-
mental data obtained from structures with lightly doped
spacers.>™ Peak currents of the order of kA/cm?® simulated

J. Appl. Phys., Vol. 78, No. 3, 1 August 1985

with standard values of conduction-band discontinuities'* are
also compatible with that obtained in actual devices. It is also
important to notice that the experimental 2D resonant peaks
are not so sharp® because the valley current is.much larger
due to inelastic scattering assisted tunneling (not considered
in this work).

Finally, we compare the results of our model with those
of Lassnig and Boxleitner,” using their idealized potential
diagram. They define a local density of states to locate the
quasi-2D eigenenergies and to calculate the tunneling escape
lifetime (equivalent to the standard modeling of unstable
states through complex energy eigenvalues'®), After that they
also assume a local normalization and a 2D approximation
for the electron system. In Fig. 3 we show that the models
are fully equivalent because the current from each sub-band
and the position of the 2D eigenenergies are exactly coinci-
dent. However, our method is much simpler because we do
not have to obtain the local density of states to locate the
eigenenergies and to calculate the tunneling time. The main
advantage of our approach is that the stationary eigenfunc-
tions themselves contain all possible information about the
2D system: the self-consistent charge is directly obtained
from the wave-function moduli and their contribution to the
current by applying the standard current quantum operator.
Another strength of our approach is that 2D and 3D states are
treated on equal terms, being a natural and consistent gener-
alization of the widely used stationary scattering picture.
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Abstract

The tunnelling of electrons in resonant tunnelling diodes is studied within the framework of Bohm's interpretation of
quantum mechanics. Bohm trajectories are studied in detail to determine whether they can be used for the Monte Carlo
simulation of tunnelling devices. In agreement with the intuitive picture of the resonances, oscillatory Bohm trajectories are
found, but only in some cases. The oscillatory behaviour is related to the relation between the transmission time and the
local density of states in the quantum well of the device. Finally, we present the general guidelines for the implementation of
a Monte Carlo simulator which uses Bohm trajectories to model quantum-mechanical tunnelling.

1. Introduction

The simulation of resonant tunnelling diodes has
usually been based on the effective-mass Schrodi-
nger equation (SE) [1], or on the Liouville equation
which is used to obtain the Wigner distribution
function (WDF) [2]. The first approach assumes full
wave-coherence (extended scattering states), and has
the severe limitation of using the equilibrium distri-
butions of the contacts for the whole device. The
second approach is in principle free of this drawback
because it only uses the contact equilibrium distribu-
tions as boundary conditions for the WDF. However,
its computation requirements impose serious limita-
tions to the size of the simulation box, and the
equilibrium distributions cannot be adequate bound-
ary conditions in some cases. On the other hand,

* Corresponding author. Tel.; +34-3-5811829; fax: 34-3-
5811350; e-mail: ifell@cc.uab.es.

although resonant tunnelling devices are mainly based
on quantum-mechanical coherence effects, scattering
processes are also of extreme importance: (i) in the
active device region (the quantum window), because
of scattering-assisted tunnelling; and (ii) in the adja-
cent layers, because they determine the energy distri-
bution of the carriers injected into the quantum
window. As a consequence, a reliable simulation of
these devices should simultaneously consider quan-
tum-coherence effects and stochastic scattering inter-
actions. For this purpose, the extension of the Monte
Carlo (MC) simulation technique has already been
pointed out as a promising alternative [3,4], but this
requires the consideration of electron trajectories in
the quantum window of the device. While in the
standard interpretation of quantum mechanics (QM),
the concept of particle trajectory is meaningless,
there are alternative formulations (that give the same
results for all measurables) where trajectories are
fundamental. Associated to the Weyl-Wigner repre-
sentation of QM, for example, it is possible to

0169-4332 /96 /$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved.
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formally define Wigner phase-space trajectories,
which have been proposed for quantum MC simula-
tions [5]. However, it has been recently shown that
these trajectories only satisfy the Liouville’s theorem
locally (for restricted phase-space and time domains),
so that they can be created or destroyed at singulari-
ties of the ‘quantum force’ [6]. In our opinion, this
fact could limit their application to device simula-
tors, and it is worth considering other alternatives
such as Bohm trajectories [7]. In this paper, we
present a detailed analysis of Bohm trajectories in
resonant tunnelling structures, and a simple scheme
for their use in a quantum MC simulator.

2. Numerical procedure

According to Bohm’s representation, an electron
is a particle which is guided by the wavefunction
¥(x, t), so that at each instant of time it has a well
defined position x(x,, ) and velocity wv{x,, )
which depend on the initial position x,. This formu-
lation requires the use of an arbitrary initial wave-
function as a boundary condition. If one makes the
choice of a scattering energy eigenstate, as it is usual
in the SE approach, unphysical resuits are found [8).
The reason is not a failure of Bohm’s theory but
rather a consequence of the actual nature of these
states, which' are not square-integrable. Thus, the
Bohm'’s approach requires the selection of time-de-
pendent wavefunctions, and the most usual choice is
a minimum uncertainty Gaussian packet.

Since we are interested in time independent poten-
tial profiles (this is the situation between time steps
in a MC simulation), we proceed by numerically
integrating the stationary SE with scattering waves
as boundary conditions in the potential asymptotic
regions [1] (using Chow’s integration procedure [9]).
Then we project the initial Gaussian wavepacket
onto the calculated eigenstates, and we can readily
calculate the wavefunction at any grid point and
instant of time:

—iE.t

V(x,t) =an(k)exp( = )Wk(x)dk, (1)

where ¥,(x) represents an energy eigenstate and
a(k) the projection of ¥(x, 0) onto this state. The
main advantage of this method is that it avoids

unphysical reflections at the walls of the integration
box. Of course, the integral is discretized, and the
number of k-points is chosen to be equal to the
number of spatial grid points (this is similar to a fast
Fourier transform procedure). Since the imaginary
and real parts of the wavefunction are separately
obtained, the wavefunction phase, S(x, ¢), and the
velocity of the Bohm’s particles, v(x, )= VS(x,
t)/m, can be easily calculated. Finally, the ensemble
of trajectories is obtained by numerical integration of
the velocity with the different initial positions within
the wavepacket as boundary conditions. Although
the trajectories are determined by a potential which
is modified by the wavefunction, they are classical in
the sense that the position and momentum are con-
sidered to be both determined. This fact allows the
calculation of some quantities which are controver-
sial within the standard interpretation of QM, such as
the transmission and reflection dwell times [10].

3. Results and discussion

In this paper we are concerned with Bohm trajec-
tories in double barrier resonant tunnelling diodes
(DBRTD). Let us consider the tunnelling of electrons
through a double barrier structure with the following
parameters: barrier height of 0.3 eV, barrier thick-
ness of 2 nm, well width of 7 nm, and uniform
effective mass of 0.067m, (that of AsGa in the
lowest valley), m, being the free electron mass. We
consider that the electrons are prepared in a Gaussian
wavepacket of spatial standard deviation o, = 10
nm, located in the emitter, and centered around the
energy E,. In Fig. | we show the trajectories corre-
sponding to a transmission resonance (E, = 0.22 eV
coincides with the second resonance of the structure),
Consistently with previous results of other authors,
the trajectories of the front of the packet are trans-
mitted and those of the rear are reflected (most of
them without ever reaching the barrier). Due to the
fact that Bohm trajectories cannot intersect, one can
find a trajectory (which correspond to an initial
position x.) which separates the packet in two parts
at all times: that to be transmitted, and that to be
reflected. The trajectories which begin in positions in
the vicinity of x_ are those that remain at longest in
the well region before being finally transmitted or
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reflected (see Fig. 1). Notice, however, that no tra-
jectories are seen to bounce between the barriers as
in the usual intuitive picture of the transmission
resonances. From an analysis of stationary states
(supplemented by an example of a wavepacket as
such of Fig. 1), Leavens and Aers concluded that
resonant Bohm trajectories do mnot oscillate [10].
However, this is not exclusively related to the Bohm
trajectories, but to the evolution of the wavefunction
itself (Bohm trajectories perfectly reproduce the
probability presence distribution at any instant of
time). In other words, Bohm trajectories will only be
found to oscillate in the well of a double barrier
structure, if the corresponding wavepacket is seen to
bounce in the well. Since the time scale of evolution
of the wavefunction is related to its energy uncer-
tainty, we expect to find oscillations when the effec-
tive energy spectrum in the well is wide enough for
the oscillation period to be small as compared with
the transmission times. Since the local density of
states is quasi-2D in the double-barrier well, if the
wavepacket spectrum overlaps only one resonant
peak, oscillations are not found. However, if the
wavepacket overlaps two or more peaks, we expect
to find oscillations. To avoid wavepackets too wide
in k-space, we have considered a structure with a

Time ( fs)

0 10 20 30 40 50 6 70
Distance ( nm )

Fig. 1. Representative Bohm trajectories associated to an initial

Gaussian wave-packet (E, = 0.22 eV and o, = 10 nm) impinging

upon a typical AsGa/AsGa, .. Al DBRTD with 2 nm barriers of

0.3 eV separated by a 7 nm well. The position of the barriers and

the initial Gaussian wave-packet are also shown with dashed lines.

Time (fs)

Distance ( nm )

Fig. 2. Representative Bohm trajectories for an initial Gaussian
wave-packet (E,=0.16 eV and o,=10 nm) transversing a
DBRTD similar to Fig. 1, but with a well of 18 nm, The position
of the barriers and the initial Gaussian wave-packet are indicated
by dashed lines.

wider well (18 nm), and the results are shown in Fig,
2. As expected, well defined oscillations are found in
the Bohm trajectories starting in the vicinity of x_.
The period of oscillation 7= 50 fs is found to be in
good agreement with the value predicted by the
energy-time uncertainty relation: Ty = h/(E, — E,),
E, and E, being the resonant energies, which in this
case is Ty =57 fs. These results are supplemented
by the transmission time distributions corresponding
to the cases shown in Figs. 1 and 2. These distribu-
tions are shown together in Fig. 3. Notice that the
oscillations of the trajectories are also apparent in the
time distribution when they exist. In the case of Fig.
3(a), which corresponds to that of Fig. 1, oscillations
cannot be observed because the corresponding value
of Ty is larger than the transmission time of all
Bohm particles. In other words, no particles remain
long enough in the well to show oscillatory behavior.

All the results obtained from Bohm trajectories
have been found to be consistent with those obtained
directly from the solution of the Schridinger equa-
tion. In this regard, for example, the transmission
coefficient calculated by counting the
transmitted /reflected trajectories from a total ensem-
ble of 10* (or by searching x_ through a binary
procedure) coincides with the value calculated for
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Fig. 3. Transit time distributions: (a) for the wave-packet and
structure of Fig. 1, and (b) for the wave-packet and structure of
Fig. 2.

the corresponding wavepacket within an error smaller
than 1%. The obtained results indicate that Bohm
trajectories are adequate for the extension of the MC
technique to quantum-based devices. The guidelines
for the implementation of such a quantum MC simu-
lator, could be as follows. The device should be
considered as being divided in two regions: (i) the
quantum window, where electrons are quantum-
mechanical entities which follow Bohm trajectories;
and (ii) the classical region, where the standard MC
technique should be used. When an electron reaches
one boundary of the quantum window, it must be
described by a gaussian wavepacket whose temporal
evolution is needed to calculate the electron trajec-
tory. The previously described procedure for the
calculation of the evolution of the wavepacket is
very convenient because it only requires the solution
of the stationary SE in the quantum window after

J. Suiié et al. / Applied Surface Science 102 (1996) 255-258

each actualization of the potential profile. Only one
trajectory, randomly chosen according to the initial
probability distribution [¥(x,, 0)I, is calculated per
each electron. Scattering events would also be con-
sidered within the quantum window as sudden
changes of the wavepacket associated to the electron.
Work is in progress towards the implementation of
this procedure. To our knowledge, this is one of the
very first attempts to consistently consider a quan-
tum-mechanical effect as such of tunnelling within a
MC simulator. This can be of importance not only to
simulate quantum-based devices, but also to consider
the tunnelling of carriers in conventional devices
such as MOSFETs (hot-carrier effects) or EEP-
ROMs.
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Tunneling of electrons in double-barrier resonant tunneling diodes
(DBRTD:s) is studied within the Bohm’s formulation of quantum
mechanics. As previously done by other authors, stationary scattering
states and time-dependent wavepackets are considered. The scattering
eigenstates are shown to provide unphysical results, but this is attrib-
uted to their actual nature rather than to the failure of Bohm’s
interpretation. Using time-dependent wavepackets, the behavior of
Bohm trajectories at the resonances of DBRTD:s is thoroughly exam-
ined. The oscillating nature of the resonant trajectories is discussed in
terms of the wavefunction energy spectrum and the local density of
states in the barrier region. The energy—time uncertainty relationship is
shown to provide a necessary condition for the observation of the
oscillations which reproduce the intuitive picture of resonances. The
case of oscillating trajectories in single potential barriers is also
considered as a test of generality. Copyright © 1996 Published by
Elsevier Science Ltd.

Keywords: Bohm’s interpretation, resonant tunneling, quantum

devices.

THE DESCRIPTION of the dynamic evolution of

quantum-mechanical systems in terms of particle

trajectories provides an interesting visualization of
quantum phenomena, and is also a useful tool to
acquire a better intuitive understanding. In particular,
quantum trajectories are being considered with
renewed interest because they are expected to provide
a natural way for the coupling of semi-classical and
quantum-mechanical approaches to carrier transport
in nanometric electron devices, via the Monte Carlo
simulation technique [1, 2]. In this regard, Bohm
trajectories are particularly promising for they have
been demonstrated to exactly reproduce the results of
the standard interpretation of Quantum Mechanics
(QM) in many interesting situations (interaction of
wavepackets with potential profiles [3], two-slit
experiment [4], etc.), and also because they can
enlighten some aspects (such as tunneling times)
which are controversial within the standard formula-
tion. To our knowledge, Dewdney and Hiley were the
first to use the Bohm’s interpretation for the study of
the time-dependent scattering of wavepackets by
square potential barriers [3]. They reported Bohm

trajectories which spent much time inside the barrier,
and which occasionally exhibited oscillations between
its edges. This oscillating behavior inside single poten-
tial barriers was also reported by Leavens and Aers
[5-7], who also analyzed the phenomenology of Bohm
trajectories at the resonances of Double Barrier Reso-
nant Tunneling Diodes (DBRTDs), In this regard,
they analyzed the case of perfect transmission
[T(K) = 1]in terms of energy eigenstates and demon-
strated that the associated “‘stationary” trajectories do
not oscillate, also showing that superluminal veloci-
ties would otherwise be reached. They also considered
time-dependent wavepackets narrow enough around
the resonant energy to be-almost perfectly trans-
mitted, and they did not find oscillating trajectories
either. In this communication we present new results
regarding the oscillatory behavior of Bohm trajec-
tories in tunneling structures, We emphasize that these
trajectories exactly reproduce the dynamics of the
wavefunction, and we discuss which conditions are
required for them to oscillate in a limited spatial
region. We complete our results with the calculation
of the transmission time distribution, which is shown
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to reproduce the oscillations of the Bohm trajectories
when these occur. Our analysis is focused on
DBRTDs, but the case of single potential barriers is
also considered as a test of generality.

Let us begin by briefly reviewing the basics of
Bohm’s interpretation of QM for non-relativistic par-
ticles [8—10]. If the wavefunction is expressed as

T(x,t) = R(x, 1) exp(is—(;’—tz), (1)

R(x,t) and S(x,f) being real functions, the complex
Time-Dependent Schrédinger Equation (TDSE) is
found to be equivalent to two real equations: a con-
tinuity equation for the presence probability density
P(x,t) = R*(x,1); and another one which can be
interpreted as a modified classical Hamilton—Jacobi
equation. In this scheme, the particle velocity is given
by v(x,1) =1/m-(8S(x,t)/0x), and the classical
potential energy V(x,f) is augmented by a new
term, Q(x,?), which is interpreted as a quantum
potential [8]

K1 8R(x,)
2mR(x,t) Ox?

The quantum potential introduces non-local features
and modifies the trajectories so that the measurable
results of the standard interpretation of QM are
perfectly reproduced. The most convenient way to
calculate the trajectories is usually to solve TDSE for
the wavefunction, so that S(x,7) and R(x,t) are
obtained. From them, one can evaluate the velocity
and determine the trajectories by integration. For any
initial position x, within the initial wavepacket, the
particle trajectory is uniquely determined but, because
of the limitations imposed by the uncertainty princi-
ple, the physical quantities must be obtained by aver-
aging over all the possible trajectories weighted by
P(x,,0). Regarding to the initial wavefunction, two
alternatives have been considered in the literature:
(i) time-independent eigenfunctions of the hamil-
tonian (scattering states) [7, 11, 12]; and (ii) localized
time-dependent wavepackets [3, 5-7).

A particle with energy Ex and momentum hK can
be associated to a stationary scattering state ¥ (x). In
this case, since the particle energy is perfectly defined,
one can adopt the energy conservation law

Ex =V(x)+Q(x) +%m-v2(x, f) (3)

as the simplest procedure to calculate Bohm trajec-
tories. Since Ex and V(x) are known, and Q(x) can be
directly computed from ¥ (x) using equation (2), the
particle velocity, v(x, f), is determined. In this paper,
the eigenfunctions of the hamiltonian are calculated
following the procedure of Vasell et al. [13], but using

o(x,1) = 2
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Fig. 1. Bohm trajectories associated with stationary
scattering states impinging on a typical AsGa/
AsGa,_,Al, DBRTD with 2nm barriers of 0.3eV
separated by a 7nm well. The electron mass is con-
sidered to be the effective mass in the I' point of AsGa.
The classical potential (dashed line) and the total
potential (solid line) are also depicted. (a) Resonant
eigenstate, Ex = 0.05eV; (b) Non-resonant eigen-
state, Ex = 0.06¢eV.

the Numerov integration method [14] to improve the
numerical efficiency [15]. It can easily be proved that
v(x,?) is always positive and time-independent at
every point x of the Bohm trajectories associated with
scattering states [6]. This means that there is a unique
phase—space trajectory and that all the space—time
trajectories of the ensemble are identical, except for
the time delay derived from the difference in the initial
positions x, [11]. In Fig. 1(a), we have represented a
Bohm trajectory for a scattering state with energy
E, = 0.05eV, which corresponds to the first resonant
level of a AsGa/AsGa;_,Al, structure with 2nm
barriers of 0.3eV separated by a 7nm well. In this
particular case, the results obtained within the Bohm’s
formulation are compatible with those of the standard
interpretation of QM because T(K) = 1. However,
even if T(K) is smaller than unity, all Bohm “station-
ary” trajectories cross the barrier region because the
velocity is always positive, and this is unphysical and
inconsistent. In Fig. 1(b), we have represented a Bohm
trajectory associated to a non resonant scattering
state. The quantum potential tends to diverge at the
quasi-nodes of the wavefunction modulus, so that the
particle velocity becomes very large at these points.
These velocity divergences, which were considered
unphysical by Hagmann [12], are a direct consequence
of the quasi-nodes of the wavefunction, which are
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caused by the interference of the incident and reflected
beams. To be fair, if the velocity divergences are con-
sidered unphysical, the same should be said about the
behavior of the wavefunction. Although stationary
scattering states are useful in many instances, they can
not provide a fully satisfactory description of the
gquantum state of a particle because they are not
square-integrable. On the contrary, the Bohm’s form-
ulation works properly for all normalizable wavefunc-
tions (including bound stationary states). For this
reason, we conclude that the failure for stationary
states does not reveal weaknesses of the theory, but
rather intrinsic limitations of these states themselves.
In the unavoidable time-dependent approach, a
reasonable choice for the initial wavefunction is a
minimum-uncertainty gaussian wavepacket
1 (x _ xc)2 :
\Il(x, 0) = Wexp (—‘ —Q—— + lkcx) (4)
o, being the spatial dispersion, x, the spatial centroid
at ¢t =0, and k, the centroid of momentum distribu-
tion which is related to a central energy E.. To
calculate the evolution of the wavefunction without
discretizing the TDSE, the wavepacket has been
numerically projected onto the previously calculated
basis of stationary scattering states

¥(x,0) = J:’ a(E)U(x)dK (5)
with
a(E) = J:o i ()T (x, 0)dx, (6)

E being related to K via the dispersion relationship
considered in the effective-mass Schrodinger equa-
tion. In this way, ¥(x,t) can be obtained at any
instant of time as a linear combination of stationary
wavefunctions ¥ (x)

U(x, 1) = J:o a(E) exp (—i%) U (x)dK. )

Using this method, we have obtained the evolution of
a gaussian wavepacket with resonant energy and
o, = 10nm incident upon the potential profile of
Fig. 1. In accordance with Leavens and Aers results
[7], although some trajectories remain for quite a long
time in the potential well, they are not found to
oscillate at all, Nevertheless, this behaviour cannot
be taken as a general result, but rather as a particular
consequence of the considered structure and wave-
packet. At this point, it is convenient to remember
that Bohm trajectories perfectly reproduce all the
measurable information contained in the wavefunc-
tion. In particular, the probability of finding the
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particle located at a position x at time ¢ can be
calculated by weighting the trajectories x(xg, )

o0

Plx, 1) = [U(x, )2 = j 10 (o, 026 — x(xo, £)]dx,

—00

(8)
On the other hand, since Bohm trajectories do not
cross [7], they will oscillate if (and only if) there is a
portion of the wavepacket spatially oscillating
between the barriers. The temporal scale for the
evolution of the wavefunction within a limited
spatial region (x; < x < x3), such as the quantum
well (QW) of the DBRTD, can be determined by the
energy uncertainty relationship. In particular, a
rough estimation of the time required for the wave-
packet to evolve between the barriers (which is also
an estimation of the period of the eventual oscilla-
tions) is given by

N 9

AE being the width of the effective energy spectrum in
the quantum well, Dy(E):

Dy(E) = |a(E)|"D(E) (10)

which depends on the wavepacket energy spectrum,
la(E)?, and on the local density of states in the
considered region, defined as [16]

X2

D(E) = | [Wx(x)fdx.

Xy

(11)

An estimation of the energy uncertainty required in
equation (9) can be obtained from the Full Width at
Half Maximum (FWHM) of Dy(E). From this AE
we obtain a value of ¢z, which is interpreted as a
measure of the time required for a significative change
in the presence probability Py (¢) in the considered
region

X2

Pylt) = jm/(x, HPdx.

*1

(12)

If any kind of evolution is expected (oscillations, for
example), it is mandatory that a significative number
of particles (of the quantum ensemble) should remain
in the considered spatial region during a time interval
longer than ¢z. In other words, a necessary condition
for the observation of oscillations of the wavepacket
(and also of the Bohm trajectories) is that P,,(¢) must
be significant during a time interval longer than ¢.
In Fig. 2, we consider a wavepacket with o, = 10 nm
incident with resonant energy E, = 0.22¢V) upon a
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Fig. 2. Dynamic study of a gaussian wave-packet
with E, =0.22¢V and o, = 10nm impinging upon
the potential profile of Fig. 1. (a) Density of states
[D(E) in dashed line and D\I,(E) in solid line] and
wavepacket spectra (la(E)?). (b) Probability presence
in the well [Py (¢)] and transmission time distribu-
tion. The vertical line indicates the evolution time
tr = 8715 calculated from the FWHM of Dy(E).

AsGa/AsGa_,Al, DBRTD with 2nm barriers of
0.3 eV and a 7nm well, whose associated Bohm trajec-
tories have not been found to oscillate. In Fig, 2(a) we
show |a(E)|*, D(E) and the product of these two
magnitudes which gives Dg(E) with a AE = 0.047¢V
and, according to equation (9), tp ~ 87 fs. In Fig,
2(b), Py (t) is shown to be negligible at times of the
order of tg. This indicates that the transmission
(reflection) process is much faster than the possible
oscillations, so that these can not actually occur.
Although, it is generally difficult to reduce 75 without
simultaneously reducing the temporal width of Py (¢)
because the tunneling times are also dependent on the
energy spectrum, if this spectrum shows resonance
peaks, it is relatively easy to find situations in which
oscillatory Bohm trajectories are observed. As an
example, in Fig. 3 we show Bohm trajectories corres-
pondmg to a gaussian wavepacket (o, = 10nm,

=0.16¢eV) impinging upon a DBRTD with
0.3 eV barrier height, 2nm barrier thickness, and
18 nm well (the strategy is considering a wider well
to bring closer the resonances so that the wavepacket
spectrum overlaps two or more resonant peaks). The
behaviour of the trajectories is very similar to that
found in the previously analyzed examples and by
other authors [3—7]. What is new is the oscillation of
some trajectories in the QW. In Fig. 4(a) |a(E)|?, D(E)
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Fig. 3. Representative Bohm trajectories for an initial
gaussian wave-packet (E, — 0.16¢eV and o, = 10nm)
incident upon an AsGa/AsGa;_,Al, DBRTD with
2 nm barriers of 0.3 ¢V and a 18 nm well. The position
of the barriers and the initial gaussian wavepacket are
indicated by dashed lines.

and Dy (E) are shown, and we notice that the energy
spectrum Dy (E) has two peaks related to the reson-
ances of D(E). The 0.072¢V difference between these
two energy components can be taken as a measure of
AE which gives tg ~ 57fs. In Fig. 4(b), we show
Py (t) and compare it with fz. The fact that ¢z is
smaller than the width of Py (), allows the oscillatory
behavior observed in Fig. 3. The period of the trajec-
tory oscillations (see Fig. 3 again) is nearly constant
(r =~ 50fs) and, as expected, roughly equal to f.
Moreover, within Bohm’s interpretation, one can
evaluate the time that the transmitted particles take
to cross the well region and obtain a transmission
(transit) time probability distribution [7]. As shown in
Fig. 4(b), this distribution presents periodic bumps
related to the number of oscillations that the particles
experience before finally escaping from the well.
Notice that the temporal separation of successive
extrema is roughly equal to the oscillation period 7.
The oscillations are much better appreciated in the
transmission time distribution than in Py (¢) because
the time spent by the Bohm particles in the pre-barrier
region does not mask the information.

As a test of generality, we examine whether the
previous physical analysis can be applied to the case of
a single potential barrier. In this regard, Leavens [6]
considered a 1nm rectangular barrier of 10eV and
two impinging electron wavepackets both centered
around E, = 5eV, but with different dispersions in
K-space: (A) AK = 0.4nm~" and (B) AK = 0.8nm™!
(see [6] for the exact definition of AK). Oscillations
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Fig. 4. Dynamic study of the scattering process of Fig.
3. (a) Density of states [D(E) in dashed line and D‘I, (E)
in solid line] and wavepacket spectra (a(EYP). (b)
Probability presence in the well [Py,(¢)] and transmis-
sion time distribution. The vertical line corresponds to
ty = 57fs, which is calculated from the effective
energy spectrum width of Fig. 4(a), AE = 0.072,

were only observed in some trajectories corresponding
to wavepacket B, i.e. the widest in the energy domain.
In Fig. 5(a), we show the transit time distributions and
the values of ¢y calculated from the FWHM of the
corresponding Dy (E) spectra. First of all, notice that
the transit time distribution is strongly affected by the
width of the wavepacket’s energy spectrum. In this
regard, we find that the wider the energy spectrum, the
- shorter the average transmission time, so that ¢z and
the transmission time distribution move together
towards smaller values when AK changes from
0.4nm~! to 0.8nm~'. For both wavepackets, the
calculated ¢g are shorter than the transmission time
of most of the particles, so that one could expect
oscillations in both bases. However, as shown in [6],
oscillatory trajectories are only found in case B which
are also evident in the corresponding transmission
time distribution. In any case, there is not a contra-
diction with our phenomenological oscillation criter-
ium since, as discussed above, it provides a necessary
but not sufficient condition for the occurrence of
oscillations. In spite of this, a closer look to Dy (E)
can justify the differences between the two cases. In
Fig. 5(b), the Dy(E) spectra corresponding to both
wavepackets are represented together with D(E). In
case B, the effective density of states has two relative
maxima: one due to the wavepacket spectrum, and a
much smaller one which is related to the first above~

OSCILLATORY BOHM TRAJECTORIES

127
Transit time (fs)

30 2 4 6 8
3 T T T
5 gl & tg tg (a)
= .
=
E 6f \
H kN
g ‘
% 2t T )
do o3
3 o e 13
< ol /T AE /\:1 -
= @
2 4 lom
=] { y =%
S 6y / - W 5 17
C| OV S G L P
?go 1 2 3 4 5 6 7 8 9 10

Energy (eV)

Fig. 5. Dynamic study of two gaussian free electron
wavepackets impinging upon a single square potential
barrier of 10eV and lnm thickness. Wavepacket A
has AK =0. 04 nm~  and wavepacket B has
AK =0.08nm™". (a) Transmission time distribution
(dashed lines corresponds to wavepacket A and solid
lines to wavepacket B). The corresponding evolution
times t5(4) =4.7fs and ¢5(B) =2.3fs, calculated
from the FWHM of Dy(E) are also indicated. The
value tE = 0.79 fs [calculated from the AE = 5.2¢eV
shown in Fig. 5(b)] corresponds to wavepacket B. (b)
Effective energy spectrum, Dy (E), associated to wave-
packet A (dashed line) and wavepacket B (solid line).
The density of states, D(E), shows an overbarrier
resonant peak (the vertical line indicates the barrier
energy height).

barrier resonance. On the contrary, wavepacket A is
much narrower and does not have significant compo-
nents on the above-barrier resonant states. If the
energy uncertainty of wavepacket B is calculated
from the FWHM, we find AE =1.76eV and
tp ~ 2.3fs. If on the contrary, it is defined as the
difference between the two relative maxima, it gives
AE =52eV and 5’ ~0.79fs. This value of ¢’
roughly coincides with the period of the oscillations,
7/ 0.75fs. From this,. we conclude that a peaked
energy spectrum (a structure with transmission reso-
nances) is also required for oscillations to occur. This
is a plausible result, since only at transmission reso-
nances the stationary states are quasi-bound, i.e.
tend to maintain the electron partially confined in
the QW by “‘constructive multiple reflections”, How-
ever, the presence of a transmission resonance does
not guarantee the occurrence of oscillations since ¢y

must also be smaller than the time interval during



128

which a non-negligible percent of particles remain in
the considered spatial region. The picture of multiple
reflections and oscillations is not adequate for narrow
resonances. These situations are closer to a stationary
state, which is strongly confined in the barrier region,
and which hardly evolves with time.

In this paper, the tunneling of electrons in one
dimensional structures has been analyzed within the
Bohm’s interpretation of QM. Scattering energy
eigenstates have been shown to be inadequate for
this formulation because these wavefunctions are
non square-integrable. On the other hand, we have
considered this problem using time-dependent wave-
packets, and we have discussed the evolution of the
wavefunction in terms of the energy—time uncertainty
relationship. We have shown that the effective energy
spectrum of the wavefunction in a limited region helps
to understand the behavior of Bohm trajectories. In
particular, we have shown that oscillations can only
appear if the evolution time (inversely proportional to
the energy width) is shorter than the time required for
full transmission and reflection. This criterium has
been shown to be a necessary but non sufficient
condition for the observation of oscillations. The
analysis of tunneling through a single square barrier
has confirmed the validity of our oscillation criterium,
but has shown that the presence of transmission
resonances is also required. Our results have been
supplemented with the calculation of the transmission
time distribution, which also shows a periodic struc-
ture whenever oscillating Bohm trajectories appear.
Finally, we have emphasized that Bohm trajectories
are fully determined by the wavefunction, and that
their behavior reproduces its evolution, which is
given by the TDSE. Whether the intuitive picture
of the transmission resonances in DBRTDs (or of
other quantum effects) is correct or not, is uniquely
determined by the TDSE. In this regard, the Bohm’s
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approach can be considered as a useful tool to
enlighten quantum-mechanical phenomena.
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Several practical implications of the noncrossing property of one-dimensional Bohm trajectories are exami-
ined. It is shown that the position of a Bohm particle, the average transmission, reflection and dwell times, and
the probability distribution of these tunneling times, can all be obtained without actually calculating trajecto-
ries. On the other hand, the intuitive interpretation of the scattering of wave packets by potential barriers is
discussed within the framework of Bohm’s interpretation of quantum mechanics, In this regard, claims that
Bohm's approach leads to counterintuitive results are shown to be subjective. [S1050-2947(96)02209-3]
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I. INTRODUCTION

In the context of one-dimensional tunneling configura-
tions, the dwell time is defined as the average (ensemble)
time spent by the incoming particles in the potential barrier
region (a<x<b):

o= f:dtj:dxl‘lf(x,t)lz. 0]

This time was first postulated by Biittiker [1], and more re-
cently rigorous derivations have been obtained within Feyn-
man’s [2] and Bohm’s [3-5] formulations of quantum me-
chanics (QM). Although there are some divergences
regarding its physical interpretation [6,7], this is widely rec-
ognized as a meaningful concept [8,9]. On the other hand,

. much more controversy exists about the transmission (77)
and reflection (7) times, which are sometimes loosely de-
fined as the average times spent in the barrier region by the
particles that are ultimately transmitted or reflected, respec-
tively. In the same way, the relation

p=|T]*rp+|R|* g 2)

{|T|* and |R|? being the transmission and reflection prob-
abilities associated with the wave packet) is also controver-
sial. Some authors have claimed that this is a necessary re-
quirement for any meaningful 7 and 75, arguing that
transmission and reflection are mutually exclusive events
that exhaust all the possibilities [8]. However, it has also
been pointed out that the questions, ‘‘Will the particle be
transmitted’”’ and ‘‘Is the particle in the potential barrier
region?’’ correspond to noncommuting observables [9-11].
As a consequence, an additional interference term appears in
the right-hand side of Eq. (2) {11]. In our opinion, however,
if the definition of the tunneling times given just prior to Eq.
(2) is to be interpreted literally, there should be no doubt
about the validity of relation (2). Nevertheless, the problem
is that this definition is not meaningful within the conven-
tional interpretation of QM because the time spent in the
barrier region by one particle cannot actually be measured.
To determine this time, two successive measurements of po-
sition would be required, but this procedure leads to mean-
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ingless results due to the collapse of the wave function after
the first measurement. For this reason, there is no contradic-
tion if some of the diverse quantities proposed to represent
the tunneling times within conventional QM do not satisfy
Eq. (2). On the contrary, tunneling times are unambiguously
defined within Bohm’s interpretation of QM [12—14], which
is a causal theory of quantum-mechanical processes in space
and time, and not just a theory about experimental results
[15]. Since, on the other hand, the Bohm tunneling times
perfectly fit the previous general definition, they indeed sat-
isfy Eq. (2), as required [3-5].

According to Bohm’s interpretation, an electron is a par-
ticle that is guided by a pilot field related to the wave func-
tion ¥(x,?), and follows a well-defined trajectory x(x,,?),
which only depends on its starting position x, within the
initial wave packet W(x,0). A complete description of any
quantum-mechanical problem, however, requires the consid-
eration of a (classical) ensemble of trajectories. All measur-
able quantities, which are obtained by averaging the values
of the single trajectories weighted according to [W(x,,0),
exactly reproduce the results of the standard interpretation of
QM. Furthermore, since the particle trajectories are perfectly
defined, some quantities that are controversial within the
standard interpretation (such as tunneling times) are unam-
biguous within Bohm’s framework. Mainly for this reason,
the tunneling of electrons through potential barriers has been
recently analyzed by Leavens and Aers within Bohm'’s inter-
pretation [3—-5]. These authors presented the theory in detail,
worked out several examples of transmission of wave pack-
ets through one-dimensional barriers, obtained the distribu-
tions of transmission and reflection times (in addition to their
average values), and compared their results with those of
other conventional approaches to the tunneling time problem
[5]. They also emphasized that one-dimensional Bohm tra-
jectories mever intersect at any space-time point, and dis-
cussed one of its consequences. There is a bifurcation trajec-
tory (starting at x,,) that separates the wave packet in two
parts: that to be transmitted (x,>x), and that to be re-
flected (xq<x,0). This means that, within Bohm’s approach,
all the transmission comes from the spatial front of the wave
packet, and that all the rear part of it is reflected. This had
been previously observed by Dewdney and Hiley [16], and
motivated the somehow skeptical comments of Landauer and

2594 © 1996 The American Physical Society
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Martin [9], who stressed apparent contradictions between
these results and the common intuitive interpretation of the
scattering of wave packets by potential barriers. In a very
recent paper, the noncrossing property of Bohm trajectories
was also used by McKinnon and Leavens {17] to obtain the
distribution of transmission times without calculating trajec-
tories. Their method is very interesting and significantly re-
duces the time required to compute this distribution. How-
ever, further discussion is required because, as we will show,
their procedure cannot be applied to all possible cases.

It is the purpose of this paper to discuss several practical
implications of the noncrossing property of Bohm trajecto-
ries. In particular, it is shown that the average transmission
and reflection times can be obtained without actually calcu-
lating a single trajectory, and that the position of a Bohm
particle can be directly obtained from the wave function, i.e.,
without following its trajectory. On the other hand, the
method of McKinnon and Leavens [17] is reformulated so
that it can be used to obtain the distributions of transmission,
reflection, and dwell times corresponding to arbitrary wave
packets and potential barriers, without calculating trajecto-
ries. Finally, subjective implications of the fact that Bohm
trajectories never intersect are also discussed. In this regard,
we try to reconcile the results obtained within Bohm’s ap-
proach with the common sense interpretation of the scatter-
ing processes in one-dimensional tunneling configurations.
We center our discussions in double-barrier resonant tunnel-
ing structures (DBRTS) because the phenomenology is
richer than in the simpler case of single barriers. In all the
numerical examples, physical parameters (effective mass,
barrier heights and thicknesses, etc.) typical of the GaAs/
AlGaAs system are considered.

II. NONCROSSING PROPERTY OF BOHM
TRAJECTORIES

In Bohm’s interpretation of nonrelativistic QM [12—14],
an electron is a particle the motion of which is completely
determined by an objectively real field related to the wave
function ¥(x,t), so that it has a well-determined position
and velocity at each instant of time, i.e., a well-defined tra-
jectory. In this casual interpretation, W(x,¢) is a solution of
the time-dependent Schrodinger equation (TDSE), the veloc-
ity at any space-time point is uniquely given by v(x,t)
=38(x,t)/dx [S(x,) being the phase of the complex wave
function], and | ¥ (x,£)|2dx is the probability of the electron
being between x and x+dx at time ¢ even in the absence of
a position measurement. The description of any scattering
problem requires the choice of an initial wave function
W(x,0) adequate to the particular situation, and the analysis
of its subsequent time evolution. A description in terms of
scattering energy eigenstates is not convenient because these
are stationary states and time evolution is inherent to the
concept of trajectory. Moreover, if stationary states are used,
unphysical and inconsistent results come out within Bohm’s
framework [18,19]. In any case, this is not a limitation of
Bohm’s interpretation but rather a consequence of the nature
of these states themselves which, not being normalized, can-
not be a perfect description of the quantum system. For these
reasons, localized time-dependent wave packets have to be
used to analyze scattering processes within Bohm’s ap-
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proach. Assuming a particular W(x,0), and given the position
xp of an electron within the wave packet, its subsequent tra-
jectory x{(xg,¢) is uniquely determined by simultaneous inte-
gration of the TDSE and the guidance equation dx/dt
=yp(x,t). However, due to the uncertainty principle, the
position of the electron at t=0 cannot be precisely known
and, as a consequence, one must deal with an ensemble of
trajectories that can be labeled by x,. To determine the ex-
pectation value of any function (observable or not) one has
to average the results of all the possible trajectories accord-
ing to a weight given by |¥(x,0)|2dx.

The Bohm trajectories can also be viewed as the solutions
of a modified Hamilton-Jacobi equation [12] and, as such,
they cannot cross each other in the configuration space.
Moreover, since the velocity of the Bohm particles is
uniquely determined by dS(x,t)/dx, it immediately follows
that the trajectories do not cross in space-time either. In fact,
if two trajectories should cross at a point (x,t), the corre-
sponding velocities would also be identical, and the trajecto-
ries would cross in the configuration space. In one-
dimensional systems, the fact that Bohm trajectories do not
intersect each other means that any pair of particles starting
at initial points xp>xq; Will maintain their relative positions
all the time, i.e., x(xgp,¢) >x(xg;, ). Since, on the other hand,
the probability density |¥(x,6)[? is directly related to the
positions of the Bohm particles,

e Ce0= [ anl¥o0Paext . ©

it follows that the total probability presence at the right (or
left) of any trajectory is constant for all the times. Thus, if we
define Q(x,t) as the probability presence to the right of point
x at time ¢:

Q(x,t)ELml\I’(x',t)lzdx’=J(:J(x,t')dt’, @

we can also label each trajectory by Q(x)=0(x,,0) and the
probability presence to the right of x(xy,t) is always Q(x):

O(xg)= f:;dxl‘lf(x,o)l2= tho.‘)dd‘lf(x,t)lz. (5)

The first consequence of the noncrossing property of Bohm
trajectories, already pointed out by Leavens and Aers [5], is
that there is a bifurcation trajectory x.(¢) =x(x,t) implic-
itly given by

1= [ astunP ©

which divides the wave packet in two spatially separated
parts, [Ur(x,1)* and [Wx(x,)[?, which are to be transmitted
and reflected, respectively:

| (0, )2 =¥ (x,0) 2O x — x.(1)],
|® o(x,0))2 =W (x,0){20[x,(£) ~x], 6]

O[x] being the unit step Heaviside function. This is particle-
like decomposition [20], which allows the calculation of the
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average transmission and reflection times directly from the
wave function without weighting trajectories [5};

1 © b
TT:W fo dtJ‘a dxl‘l’r(x;t)lz’

1 o b
TR=T5TT f dff dx[\PR(x,t)lz. ®)
[RI* Jo ™ Ja

Notice that only the bifurcation trajectory x.(¢) is needed to
obtain [¥;(x,)? and [¥x(x,)[% and that this directly allows
the calculation of 7 and 7. However, the explicit calcula-
tion of x.(¢) is not required to obtained these tunneling
times, as it will be shown below.

The noncrossing property of Bohm trajectories has other
interesting practical consequences that were not discussed in
[5]: (1) the position of any Bohm particle can be obtained
at any arbitrary time without calculating the corresponding
trajectory; and (2) the causal distributions of transmission,
reflection, and dwell times can also be directly determined
from the time-evolved wave function. Section I is entirely
dedicated to show how these distributions can be obtained
without evaluating trajectories, and the rest of this section is
devoted to the discussion of how to assess the position of any
Bohm particle from ¥(x,¢), and to some practical implica-
tions of this property. From Eq. (5), it immediately follows
that we can determine the position of a Bohm particle at any
time by integrating the presence probability. In other words,
for a particle starting at x;, we can compute its position
x(xg,tp) at any arbitrary instant of time £, without wonder-
ing about its trajectory between =0 and t=t,. In fact, hav-
ing calculated Q(x,) from the initial wave packet, we can
determine x(xq,to) by spatial integration of the time-evolved
wave function W(x,ty). This is quite a trivial result, but it
may have very interesting practical consequences. If, for ex-
ample, Bohm trajectories were used for the extension of the
Monte Carlo (MC) simulation technique to quantum-based
electron devices such as resonant tunneling diodes [21], the
direct calculation of the position of the Bohm particles would
significantly reduce the computation times. In a MC scheme,
the time of flight is chosen through the generation of a ran-
dom number according to the total scattering rate. Using Eq.
(5), we would be able to obtain the position of the electrons
after their free flight without computing their entire trajec-
tory. This would largely improve the numerical efficiency
because of the huge number of trajectories that should oth-
erwise be calculated. Let us finally indicate that the conve-
nience of this procedure to assess the position of the Bohm
particles can be enhanced by the use of an appropriate
method to solve the TDSE. In this regard, instead of time-
discretizing this equation, as it is usvally done [22], it is
more convenient to begin by numerically solving the station-
ary Schrodinger equation (see, for example, [23,24]), and
then project the initial wave packet onto the basis of Hamil-
tonian scattering eigenstates W (x). In this way, the time-
dependent wave function can be directly obtained by super-
position, i.e., without calculating it at intermediate times:

W(x,tp)= jowa(E)e’i(E’U)’ﬁWE(x)dE '(9) ‘
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with a(E)= ¥ ¥(x)¥(x,0)dx. Thus, to obtain the position
of any Bohm particle at time 5, we do not need to evaluate
the associated wave function nor its trajectory at intermedi-
ate times between 1=0 and ¢=1,. This method, which is the
one used in this paper to integrate the TDSE is only valid for
time-independent potential profiles (this is the case between
successive actualizations of the potential in a MC simula-
tion), and has the additional advantage of avoiding spurious
reflections at the boundaries of the integration box [22].

I11, DISTRIBUTION OF TUNNELING TIMES

As we have advanced in Sec. II, another important con-
sequence of the noncrossing property of Bohm trajectories is
that the distributions of transmission, reflection, and dwell
times can also be be obtained without calculating trajecto-
ries. As for the transmission time distribution, McKinnon
and Leavens have recently discussed how to evaluate it by
connecting the arrival time distributions at the two bound-
aries of the barrier (r=a and x=5) with the help of Eq. (5)
[17]. Although we agree with their basic idea of connecting
arrival time distributions, we want to point out that their
method is not completely general. In particular, they implic-
itly assumed that different Bohm particles must have differ-
ent transmission times and, although this is the case in the
most common situations, this is not true in general. This is
discussed in detail below, and a reformulation of McKinnon
and Leavens’s method is presented to overcome its limita-
tions.

Recently, Muga, Brouard, and Macias have rigorously
justified the use of the current density as an arrival time
distribution within the conventional interpretation of QM
[25]. If J(x,t) is the probability current density at point x
and time ¢, the quantum-mechanical particles cross (arrive at)
this point distributed according to

x|

PAO= = entar

(10)

The absolute value is required to take into account that the
current density can take negative values, and the normaliza-
tion is needed because it is neither guaranteed that all the
particles arrive at point x, nor that they do not cross the x
interface several times from left to right and vice versa.
Equation (10) is quite intuitive, and had already been previ-
ously proposed by other authors [10,26,27]. Following
McKinnon and Leavens [17], we consider Q(x,t) [see Eq.
(4)] at the boundaries of the barrier, i.e., Q(a,t) and Q(b,f).
For the typical problem of a Gaussian wave packet imping-
ing upon a DBRTS (see diagram in Fig. 1) from left to right,
Q(a,t) and Q(b,t) appear as shown in Fig. 2. Notice that
Q(b,t) increases monotonously towards |7]? (though oscil-
lating for reasons that will be discussed below), and that this
means that J(b,t)>0 at all times. In this regard, we have to
point out that although the positivity of the current density
has been recently demonstrated for the asymptotic region
sufficiently far from the barrier [25], it can be shown that the
current density can eventually take negative values at x=0
in extreme situations (capricious wave packets). However, in
the rest of the paper we will assume that J(b,t,)>0 or, in
other words, we will neglect the possibility of reentrant
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FIG. 1. Schematic diagram of the considered symmetric double-
barrier heteroestructures. A hypothetical trajectory is used to define
t, (+\) and ¢, as the times the trajectory crosses the x=a and the
x=b interface, respectively.

Bohm trajectories at the x=5 interface. In this sense, our
numerical results of this and previous works have always
confirmed this assumption [19,28], in spite of the fact that in
QM the probability current can take negative values even for
states having only positive momentum components [29].
This is in agreement wiht Leavens and Aers’s results [5],
who never found Bohm trajectories crossing the x=>b bound-
ary from right to left. In Leavens’s words, ‘‘a flag in the

0.25 ¥ T - T T v T

0.00 L 1 L Il " 1 PSR I "
0 50 100 150 200 250

Time (fs)

FIG. 2. Probability presence at the right of the extreme double-
barrier points Q(a,t) and Q(b,t) as a function of time. These re-
sults correspond to the resonant transmission of a Gaussian electron
wave packet (with the effective mass of point I in GaAs, i.e., 0.067
times the free-electron mass) incident upon a double-barrier poten-
tial typical of the GaAs/AlGaAs system: barrier height of 0.3 eV,
barrier thickness 2 nm, and well width of 18 nm. The well is wide
50 as to observe the oscillations in the Bohm trajectories. The hori-
zontal line comesponds to 0()=|T}|%, or in other words, to the
x.(t) trajectory.
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author’s computer codes to monitor reentrant trajectories at
x=b has yet to be triggered”” [27]. This is not the case, of
course, at the x=a boundary. In particular, all the reflected
particles that'cross this interface from left to right cross it
again from right to left. For the case shown in Fig. 2, Q(a,H)
increases monotonously [though oscillating as Q(b,t)] be-
fore reaching its maximum and then it decreases towards
|T|* However, this behavior is not the most general one (as
it will be shown below) because, depending on the shape of
the initial wave packet, Q(a,?) can present several relative
maxima, which correspond to particles that cross the x=qa
boundary more than once before being finally reflected or
transmitted.

A. Average tunneling times

Before discussing the method to calculate the tunneling
time distributions, let us show how 75, 77, and 73 can all be
obtained from Q(a,t) and Q(b,t), i.e., without evaluating a
single trajectory. For the sake of simplicity, we begin by
considering cases as that of Fig. 2, i.e., with Q(a,t) showing
a single maximum. First of all, notice that the probability
presence in the barrier region, D(t)=f2|‘lf(x,t)|2dx, is
equal to Q(a,t)—Q(b,t). Thus, according to Eq. (1), the
dwell time is

= |, 100~ 0011 an

and this corresponds to the area enclosed by the two curves
of Fig. 2. It can also be shown that this area is divided by the
horizontal line @(t)=|T|* in two subareas that are propor-
tional to 7 and 73, respectively. Effectively, since Bohm
trajectories do not cross, all the particles that have entered
the barrier are to be finally transmitted if Q(a,t)<|T[2.
Thus, for ¢<¢; [with ¢, implicitly defined by Q(a,t,)=|T]|*],
the probability presence of to be transmitted particles in the
barmier region, Dy(t)=[5|¥(x,1)|2dx, is equal to Q(a,r)
—Q(b,t), and coincides with D(z). For r>¢,, only those
particles located at the right of x.(¢) (which for >t is
located within the barrier or at the right side of it) are to be
transmitted, and hence D,(1)=|T|>*—Q(b.t). As a conse-
quence, the average transmission time is given by

_ 1 [
= | Tt - e

1 ©
+ W.f, U7]*~Q(b,0)dt. (12)

This demonstrates that the area enclosed by the two curves of
Fig. 2, Q(a,t), Q(b,t), and by the horizontal line
Q(1)=|T}?, is equal to |[T|*77. On the other hand, from Eq.
(2) it follows that the rest of the area enclosed by Q(a,t) and
Q(b,1), ie., the area over Q(#)=|T|* and below Q(a,?), is
equal to |R|?7¢. This can also be formulated as

1 »
"R f [0(a,)~|7]dr. (13)

In the most general case when the wave packet is such that
the corresponding Q(a,t) has several maxima and crosses
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he @(1)=|T|* line several times before decreasing towards
T|%, the procedure to evaluate the average tunneling times is
inalogous. The case of the dwell time is trivial because 75, is
lways given by Eq. (11), independently of the shape of
)(a,t). The other two times can also be obtained from
2(a,t) and Q(b,1), but this requires a straightforward gen-
sralization of Egs. (12) and (13). In the most general case, it
an be easily demonstrated that the transmission time is
siven by

1 £
e fo {min[Q(a.0),|T*1-Q(b.1)}dt  (14)

ind the reflection time by

1 f=
TRTIR? fo {max[Q(a,0),|TP1-|T?}ds,  (15)

Ags. (12) and (13) being particular cases of Egs. (14) and
15), respectively. This demonstrates that the calculation of
rajectories is not needed to obtain the average tunneling
imes. In particular, the calculation of x.(t) is also not re-
juired, since the decomposition of the wave packet into to be
ransmitted and to be reflected components is implicitly done
vhen the area between Q(a,t) and Q(b,t) is divided by the
worizontal line Q(#)=|T|%. In this regard, notice that in a
0=Q(t) plot, the Bohm trajectories fall on horizontal lines
secause of their noncrossing property, and that Q(1)=|71{
ctually corresponds to the bifurcation trajectory x.(¢).

B. Transmission time distribution

As discussed by McKinnon and Leavens [17], the prob-
em of calculating the transmission time distribution can be
educed to matching points of the arrival distribution at x=a
with points of the arrival distribution at x=b. In the standard
nterpretation of QM, this matching is not possible because
he actual concept of a particle sequentially arriving at two
yoints is meaningless. On the contrary, within Bohm’s ap-
roach, there is a well-defined procedure that consists in
dentifying which particle arrives at these boundaries at each
nstant of time. In this regard, we have seen that a Bohm
article (trajectory) can be labeled by its starting position x,.
However, the noncrossing property of the trajectories pro-
vides an alternative identification method, which consists in
abeling the particles by their corresponding value of Q(xy),
s defined in Eq. (5). In this way, the particle that arrives at
he x=b boundary at t=r, is determined by Q[xy(75)]
=Q(b,t,), and one can readily calculate the instant of time
', at which the same particle crossed x=a by requiring
O(a,t;)=Q[xy(t,)]. This latter equation can have more
han one solution because the particles can cross the x=a
nterface several times, However, and for the sake of sim-
licity, we will first consider that (as in Fig. 2) the transmit-
ed particles only cross this boundary once. In this simplest
ase, the transmission time of the particle which starts at
voltp) is just t,=t,—1,.

Provided that there are no reentrant trajectories at x=4b,

he distribution of arrival times at this interface can be cal-
ulated from Q(b,t) as

I dQ(b,t)

Pt ==, 16)

,=[b

For this reason, McKinnon and Leavens [17] identified
Q(b,1,) as | T|* times the cumulative arrival time distribution
function associated with Py(t,). After that, they considered
that the cumulative transmission time distribution Qy(t,,)
could be calculated by inverting the relation

(@ (x0))=1,(Q(x0)) — 1,(Q(x)), (17

i.e., by determining the value of Q(x,) that corresponds to
each transmission time f,,, and assuming that Qn{(t,,)
=Q(xy). Finally, they evaluated the transmission time dis-
tribution Py(t,,) by differentiating Q,(t,,) with respect to
14 and normalizing by | T]% However, this procedure is cor-
rect only if all the transmitted particles have different trans-
mitted times, i.e., if the relation between ¢, and Q(x,) is
single valued. This condition is satisfied for all the cases
worked out in [17] but, in the most general case, several
particles can have the same transmission time and, as a con-
sequence, Eq. (17) cannot be inverted. This will be explicitly
shown by means of an example but, for the moment, let us
reformulate the method so that it can be applied to all pos-
sible cases.

To calculate the transmission time distribution, we pro-
pose to proceed as follows: first that the transmission time
t,p is calculated for each value of r,, i.e., for all the Bohm
particles that arrive at x=5. In this way, a function
ta=1tap(t,) is obtained. If the transmission time is different
for all the trajectories, i.e., if the function ¢,,(f;,) is mono-
tonic, the transmission time distribution Py(r,,) is directly
given by

dtab(tb)}_l 1

d -1
PT(tab)zpb(tb)[—‘d‘t'b‘_ tab(tb)} ‘

=]_ﬂ_7 J(b,tb)[ dr,
(18)

This expression is exactly equivalent to the inversion of Eq.
(17) proposed by McKinnon and Leavens [17], and it reveals
that the transmission distribution is obtained from a local
renormalization of the arrival time distribution. For the par-
ticular case of Fig. 2, which corresponds to a Gaussian wave
packet impinging upon a DBRTS, the function f,,(t,) is
shown in Fig. 3(a). After a certain time delay, the relation
between ¢, and ¢, becomes linear and with unity slope, and
this occurs when all the to be rransmitted particles have
crossed the x=a interface. Since f,, increases monotonously
with £, Eq. (18) can be used to calculate P(t,;), as it is
explicitly demonstrated in Fig. 3(b), where the obtained dis-
tribution is compared to that evaluated by integration of
2.5%10* Bohm trajectories. The periodic bumps of the ob-
tained distribution are due to the presence of Bohm trajecto-
ries that oscillate in the well of the DBRTS before being
finally transmitted, and which are also the cause for the os-
cillatory structure in Q(a,t) and Q(b,t) of Fig. 2. Equation
(18) is valid for a monotonic f,,(t,) but, as previously said,
this function can be nonmonotonic under some circum-
stances. In these situations, several discrete values N(f ;) of
arrival times, t§, [with | <i{<N(t,,)], give exactly the same

" transmission time ¢, . The dependence of N on ¢, is explic-
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FIG. 3. (a) Transmission time as a function of time of arrival at
the x=> interface for the scattering process of Fig. 2. (b) Transmis-
sion time distribution .obtained by calculating 2.5X 10* trajectories
(dotted line) compared with that obtained using the procedure pre-
sented in the text (continuous line),

itly indicated to emphasize that the number of Bohm par-
ticles that have identical transmission times can be different
for the different ¢, values. In any case, since #,4,(t;) is not
single valued, Eq. (17) cannot be inverted to obtain P1(z,,)
as proposed by McKinnon and Leavens [17]. However, the
generalization of Eq. (18) is straightforward, as it only re-
quires to sum up the contribution of all the N(¢,,) particles.
In this way, the transmission time distribution can be calcii-
lated as

Nltgy) ‘
4 1 dt ()
Pe(tap)= ‘:21 T J(b,t b)[ ‘:1t

-1
} . (19)
1=t

Before considering a particular example of this situation, let
us remove the assumption that the left boundary of the bar-
rier is only crossed once by each transmitted trajectory. Even
in this case, however, if the particle is to be transmitted, we
know that the x=ga boundary has to be crossed an odd num-
ber of times, N'(t,,). These multiple crossings affect the
calculation of t,, since the equation Q(a,t,)=Q[xy(#,)] has
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N'(t,,) solutions ¢, that correspond to the sequential arrival
of the xq(t,,) particle to the point x=a from left to right and
vice versa. When a particle crosses x=a from left to right, it
enters the barrier region, and when the crossing takes place
in the opposite sense, the particle abandons the barrier. Only
those time intervals with the particle within the barrier have
to be counted up to calculate the transmission time to be
consistent with the definition of 7y as the average time spent
by the transmitted particles in the barrier region. In other
words, we have to determine the time elapsed from the very
first crossing of x=a (ie., ¢ ) to the time when it ﬁnally
crosses x=b (i.e., ,), but we have to subtract the time in-
tervals between right-to-left and left-to-right crossings. Thus,
the transmission time is given by

[N"(tgp)-112

tap =ty ty— 2

2n+l 2n

Z t3) (20)
when the x=a boundary is crossed N'(t,,) times by the
same particle. The rest of the procedure to calculate the
transmission time distribution is identical to that correspond-
ing to a monotonic O(a,t). As an example of the need of
Eqgs. (20) and (19) to calculate the transmission time and the
transmission time distribution, respectively, we consider a
wave function composed of two spatially separated Gaussian
wave packets impinging upon a DBRTS. A similar example,
initially studied by Leavens and Aers [5], was subsequently
used by Landauer and Martin to comment on the counterin-
tuitive consequences of the noncrossing property of Bohm
trajectories [9]. Section IV is entirely devoted to the intuitive
interpretation of scattering events within Bohm’s approach,
and this example will be further examined. However, let us
now concentrate on how the transmission time distribution
can be calculated in this case. The electrons are considered to
be prepared at +=0 in the wave function:

1 ; (X—xl)2

‘I’(x,0)= W exp(zklx)exp — '—'i‘z;%—
+ 1 ik (X—xz)z

Q(roD)" exp(ik,x)exp 207

(21)

which is composed of two packets centered at the coordinate
points x; and x, (with x;<x,), and at wave numbers k, and
k, (with k,<k,), and which evolves towards a DBRTS that
has a transmission resonance at k;. The constant {} is for
normalization, and ¢y and o, are the standard deviations of
two successive packets. The actual parameters that define the
barrier and the wave function are those specified in the cap-
tion of Fig. 4. This figure shows the corresponding cumula-
tive arrival time distributions at x=a and x=1b, i.e., Q(a,t)
and Q(b,t), respectively. The asymptotic behavior at t—o is
identical to that shown in Fig. 2, i.e., both Q(a,t) and
Q(b,¢) converge towards |T|? because the probablhty pres-
ence at the right side of the barrier is equal to |7]? when the
scattering event is finished. As expected, Q(b,r) increases.
monotonously because of the positivity of J(b,£). On the
other hand, however, the behavior of Q(a,t) is different
from that shown in Fig. 2 in several respects. First of all,
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FIG. 4. Probability presence at the right of the extreme barrier
points Q(a,t) and Q(b,!) as a function of time. These resuits cor-
respond to the double Gaussian wave packet (m*=0.06Tmg) de-
scribed in the text [Eq. (21)] impinging upon a double-barrier po-
tential with 0.3-eV-barrier height, 3-nm-thick barriers, and 5-nm-
wide well, The horizontal corresponds to Q(f)=|T[?, ie., it
separates transmitted and reflected particles. The horizontal line
(whose crossing are marked with open circles) corresponds to one
of the Bohm particles that cross the x=a interface three times be-
fore being finally transmitted.

notice that Q(a,f) shows two relative maxima before finally
decreasing towards |T|%. These maxima are related to the
arrival and reflection of the two successive packets but, as
we will later show explicitly, only particles from the first one
enter into the barrier region in the two successive attempts to
cross it. When Q(a,t) decreases after the first relative maxi-
mum, some of the particles that have entered the barrier are
provisionally reflected (i.e., they cross the x=a interface
from right to left) before being thrown again towards the
barrier after a collision with the second wave packet. Since
the magnitude of the first maximum is smaller than |7]?, all
the particles contributing to it are to be finally transmitted.
As a consequence, some of the transmitted particles cross the
x=a interface three times (see the horizontal line and the
circles in Fig. 4). For these particles, Eq. (20) is required to
calculate their transmission time because during the interval
between the second and the third crossings they are outside
the barrier region. On the other hand, if we look in Fig. 5(a)
at the relation ¢#,,(¢,) obtained using this equation, we per-
ceive that it contains negative slope regions. These negative
slopes are related to the extrema of Q(a,¢) and, in particular,
to the first minimum and the first maximum, respectively, It
must be said that several crossings of the x=a interface are
a necessary (though not sufficient) condition for having a
nonmonotonic relation between f,, and t,. On the other
hand, this nonmonotonic behavior means that several Bohm
particles cross the barrier in exactly the same transmission
time. In particular, as shown in the inset of Fig. 5(a), in the
particular example that we are analyzing, there are groups of
three particles with identical transmission times. In cases as
this one, Eq. (17) cannot be inverted, and the calculation of

Py(t,;) requires the use of our reformulated procedure that -

is explicitly represented by Eq. (19). Using this procedure,
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FIG. 5. (a) Transmission time versus arrival time at the x=b
interface for the scattering process of Fig. 4. The inset highlights a
region with negative slope and the fact that some groups of three
Bohm particles (indicated by open circles) that arrive at x=b at
different times have exactly the same transmission time. (b) Trans-
mission time distribution associated with the scattering of the
double-packet wave function. The f.4(2) curve of (a) is repeated
here to explain the origin of the two sharp peaks of the transmission
distribution.

the transmission time distribution shown in Fig. 5(b) has
been obtained without calculating a single trajectory. The
curve t4,(t,) of Fig. 5(a) has also been repeated in Fig. 5(b)
to enlighten some relevant features of the transmission time
distribution. The first broad bump of this distribution is re-
lated to the particles that are transmitted during the first in-
teraction of the front wave packet with the barrier. This can
be appreciated in Fig. 4, where Q(b,t) is seen to increase
and saturate for 1, <100 fs, showing a flat terrace that ex-
tends up to £,>150 fs, and which corresponds to the time
interval elapsed between the two successive interactions of
the front wave packet with the barrier (these sequential in-
teractions and the fact that all the transmission comes from
the front packet will become more evident in Sec. IV). Re-
turning back to the description of the transmission distribu-
tion of Fig. 5(b), we appreciate a second broad peak that

.corresponds to the second interaction of the packet with the
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barrier. This second bump, however, is limited by two sharp
peaks that can be understood by looking at the superposed
t.(tp) function. In this regard, we must notice that eventual
flat regions in the t,,(t,) characteristic are an indication of
particles that arrive at different instants of time to x="¥ and
that spend exactly the same time in the barrier region, These
flat regions would consequently lead to & functions in the
transmission time distribution. In the same way, the extrema
of t,,(1,) are locally flat regions which lead to sharp peaks
[as those of Fig. 5(b)] in the transmission time distribution
because dt,,/dt,=0.

C. Distribution of dwell and reflection times

Although we have used the arrival time distribution at
x=b as the starting point to calculate P,{t,,), an analogous
procedure can be followed using the arrival distribution at
x=a. In this regard, it is straightforward to demonstrate that
the transmission time distribution can also be calculated as

o dtab(ta)

ﬂ

N(t,
Prltap)= 2

=1

1 -1
?z )[ ‘l , (22)

where ¢! represents the time of first crossing of the x=a
interface of the N(t,,) particles that have exactly the same
transmission time ¢,, . Moreover, this procedure can be eas-
ily extended to calculate the reflection and dwell time distri-
butions. Until now, we have only considered transmitted par-
ticles which, as discussed above, are those with Q(x) <|Ti2,
i.e., those that arrive at x=a before #;. Now, we can also
consider those particles which are reflected, i.e., those that
arrive at the x=q interface later than ¢. According to the
assumption that J(b,t,) is always positive, the reflected par-
ticles never cross the x=& interface, and they remain within
the barrier during time intervals enclosed by their first and
last crossings of the x=a interface. Contrary to the transmit-
ted particles, the reflected ones cross this interface an even
number of times, but the procedure to calculate their resi-
dence time in the barrier region ¢,, is analogous to that used
to evaluate ¢,, [see Eq. (20)]. As for the calculation of the
reflection time distribution, although the procedure is very
similar, a relevant difference arises from the fact that not all
the reflected particles enter into the barrier region, many of
them being reflected without ever reaching x=a. The frac-
tion of pamcles that enter the barrier and are ultimately re-
flected, |R,[% can be directly obtained from Q(a,t), since its
absolute maximum is precisely |T|*+|R,|2. The rest of the
reflected parucles, ie., a fraction of the total equal to
JR]*—|R,|*, never enter the barrier and, as a consequence,
have zero reflection time. Thus, the reflection time distribu-
tion must always include a term [|R|?—|R|?]8() to pre-
serve the normalization. The distribution of reflection times
of those particles that actually enter the barrier region is ob-
tained following a procedure analogous to that of Eq. (22)
for transmitted particles, but now for those particles arrive at
x=a later than ¢{. In this way, the reflection time distribu-
tion Pp(t,,) is obtained:

2601
|RI*-|R,]
Piltad)= =g )
N(tqg) -1
3 i dtaa(ta)
+|R’2 'Z: J(a’ta)[ d =t '
(23)

where the ¢, represent the first time of arrival to x=a of the
N(t,,) reflected particles that have exactly the same resi-
dence time in the barrier. Finally, consxstently weighting

P(ta) and Pr(t,,) by |T|? and |R|?, respectively, we can
directly obtain the dwell time dxstnbutxcm Pty

Na) w1
Pol)=IRP~ R 00+ 3 S ;>[ ]
N(’aa) —~1
) J(am["""’(’“) } , (4)
lﬂ=12

t being equal to ¢, or t,, for transmitted and reflected par-
ticles, respectively.

Notice that in all the considered cases, the distributions of
tunneling times have been obtained without calculating tra-
jectories. All that is needed is the time-evolved wave func-
tion, which is used to calculate the current probability den-
sity at the boundaries, and to link the corresponding times of
arrival. Again, this represents a very important improvement
in the efficiency of the numerical procedures because a very
large number (10*~10°%) of trajectories is usually needed to
obtain reliable distributions. Finally, it is worth remarking
again that although the arrival time distributions are perfectly
defined within the standard interpretation of QM, the distri-
butions of transmission and reflection times only make sense
in Bohm’s framework because a causal connection between
the crossings of the two boundaries of the barrier is needed
to calculate ¢,;, and z,, .

IV. INTUITIVE INTERPRETATION OF THE SCATTERING
OF WAVE PACKETS

Let us now consider the implications of the noncrossing
property of Bohm trajectories on the infuitive interpretation
of the scattering of wave packets by one-dimensional poten-
tial barriers. In this regard, Landauer and Martin [9] have
made skeptical comments concerning two limit cases: (i) a
wave function composed of two spatially separated packets
incident on an opaque barrier; and (ii) a very long wave
packet (a day in duration) incident on a very short but high
barrier. In the first case they wrote ‘‘wave packets in succes-
sion, separated by a long time interval . . . all the transmttted
paths still come from the very first tip of the first packet,”’
and in the second, ‘“‘all the transmitted packet will come from
about the first microsecond of the incident packet . .. a day
is long compared to any of the kinetic times associated with
such a short barrier.”’ The second example is difficult to
analyze numerically for obvious reasons, but we will use an
enriched version of the first one to show that Bohm’s results
are fully compatible with an intuitive interpretation of both
cases. In particular, we consider the double-packet wave
function, defined in Sec. III B [Eq. (21)], which evolves to-
wards a double-barrier structure that has a resonance around
k. Since k, is the center of the rear packet spectrum, this
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FIG. 6. Representative Bohm trajectories associated with
double-packet scattering of Fig. 4. The position of the barriers is
indicated by vertical dashed lines. The marks (squares for the rear
packet and circles for the front one) are a visual aid to relate the
trajectories with the evolution of the wave function shown in Fig. 7.
Notice that the five horizontal lines (constant time) defined by the
marks correspond to the five ‘‘snapshots’’ of the picture motion of
the wave function shown in Fig. 7.

second packet is expected to practically control the whole
transmission probability (this emphasizes the unexpected
features of the first case considered by Landauer and Martin).
Figure 6 shows selected Bohm trajectories and Fig. 7 is a
picture motion of the traveling wave packet as obtained by
numerical integration of the TDSE. At the beginning, the
front packet travels faster towards the barrier and arrives to it

Presence probability (arb. units)

=60 fs -
....... %
2013 — —
it o ° 1 L
0 50 100 150 200
Distance (nmn)

FIG. 7. Picture motion of the same double-packet wave function
considered in Pig. 6, calculated by numerical integration of the
time-dependent Schrodinger equation. Five representative ‘‘snap-
shots’* obtained at different times are shown with the vertical scale
arbitrarily changed in each case for clarity (although the norm of
the wave function is always unity, it does not seem so because of
the scale changes). The marks are visual aids that indicate the po-
sition of some related Bohm trajectories shown in Fig. 2. The
double-barrier position is indicated by the vertical dashed lines, and
the arrows indicate the sense of motion of the two packets.
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FIG. 8. Ensemble probability of finding the particles described
by the double-packet wave function of Figs. 6 and 7 as a function of
time during the scattering with the double-barrier potential. The
dotted line comresponds to D(t), which represents the probability of
finding the particles in the barrier region, independently of the scat-
tering channel (transmission or reflection). The continuous line cor-
responds to Dz(¢), which is the probability of finding ro be trans-
mitted particles in the barrier region. The vertical line indicates the
average transmission dwell time as defined in expression (8), which
in this case is 160 fs.

in first position. Only a small portion of this first packet is
transmitted, and the rest of it is reflected with roughly the
same momentum (k,). At times of the order of 120 fs strong
interference éffects take place between the two packets,
which in Fig. 6 appear as a collision between Bohm trajec-
tories. Momentum is interchanged, and the front packet trav-
els again towards the barrier, but now with roughly k,. This
change of momentum can be noticed in Fig. 6 by a change of
the slope of the trajectories, but could also be appreciated in
the spatial oscillations of the real (or the imaginary) part of
the wave function [30]. This second attempt to cross the
barrier is more successful because now the front packet
reaches the double barrier under resonance (accumulation of
particles in the well is also apparent in both figures). In the
Schrédinger picture, there is not an unambiguous criterion to
decide whether the observed self-interference effects corre-
spond to the scattering or to the crossing of wave packets.
However, although both interpretations are equally accept-
able, only the first one is compatible with Bohm’s picture.
The intuitive idea that the second wave packet, being reso-
nant, controls most of the transmission continues to be valid.
What Bohm’s formulation tells us.is that the second packet
does its job by pushing the first one with the appropriate
momentum towards the barrier, instead of being transmitted
itself. A similar point of view, and the same example ana-
lyzed in Figs. 6 and 7, is also suitable to enlighten the case of
the one-day-long wave packet impinging upon a very short
and opaque barrier.

To establish a clear distinction between the transmission
time [as defined in expression (8)] and the duration of the
whole scattering process, we have plotted in Fig. 8 the prob-
ability of finding a particle in the barrier region D(¢), and
that of finding a particle fo be transmitted in the same spatial
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interval, D(t). Two different peaks are perceived that cor-
respond to the sequential interaction of the first wave packet
with the barrier. In the first interaction event, D () coin-
cides with D(t), and this means that all the particles that
enter the barrier region are ultimately transmitted. The dura-
tion of the whole scattering process, which in this case is
longer than 400 fs, can be appreciated to be much different
from the average transmission time (77~160 fs). The period
of time between the successive interactions of the front
packet with the barrier (separation of peaks in the figure)
does not contribute to the transmission time, while it is cer-
tainly a relevant portion of the whole scattering process. This
indirectly explains why the scattering of the one-day-long
packet can be roughly interpreted as a steady-state situation
(the common sense view according to Ref. [9]). What
Bohm’s formulation tells us is that most of the packet is
reflected by self-interference effects and not by direct inter-
action with the barrier (it is reflected by the quantum poten-
tial in regions where the classical potential is zero). As a
consequence, although the average transmission time can be
of the order of picoseconds, the transmission of the small tip
of the front packet can take much more time, i.e., as much as
the interference time of the finally reflected packet (of the
order of a day).

To finish with the intuitive interpretation of the wave-
packet scattering, let us take another look at Fig. 6. In this
figure we see that Bohm trajectories can be reflected for two
different reasons: (i) interaction with the classical potential
(ie., the particles collide with the barrier) and (ii) collision
with other trajectories traveling in the opposite direction. The
second process is responsible for the reflection of those par-
ticles of the first packet, which never reach the barrier, and
for the reflection of the entire second packet. These colli-
sions between Bohm particles are related to the quantum
potential in regions where the classical potential is zero but,
for them to occur, there should be particles coming from
right to left. In this regard, if the initial wave packet is pre-
pared as a superposition of eigenstates incident from left to
right (as is always assumed in scattering thought experi-
ments), and the classical potential is zero for x> b, then find-
ing particles coming from the right-hand side in this region
will be at least very uncommon. This observation provides
further intuitive support to the assumption of a positive cur-
rent J(b,t,) or, equivalently, of the absence of reentrant tra-
jectories at the x=4 boundary. From the above discussion,
we conclude that the noncrossing property of Bohm trajec-
tories does indeed allow an intuitive interpretation of the
scattering of wave packets by potential barriers, and this
means that claims that Bohm's approach provides counterin-
tuitive results are only subjective appreciations.

V. CONCLUSIONS

Several aspects of the tunneling of electrons through po-
tential barriers have been examined within the framework of
Bohm's interpretation of quantum mechanics, In particular,
we have focused our attention on the noncrossing property of
the electron’s trajectories. Although this property is also
valid for three-dimensional problems, we have only consid-
ered the particular case of one-dimensional potentials and
wave functions.

It has been shown that, due to the noncrossing property,
the average tunneling times and the position of the Bohm
particles can both be calculated without integrating and
weighting trajectories. The consequences of this fact for the
possible use of these trajectories for the extension of the
Monte Carlo simulation technique to quantum-based devices
have also been emphasized. On the other hand, a method to
obtain the distributions of dwell, transmission, and reflection
times without calculating trajectories has been presented.
This method generalizes that of McKinnon and Leavens
[17], which has been shown to have some limitations, but
preserves the fundamental idea of connecting arrival time
distributions. The presented method (hundreds of times
faster than explicitly calculated 10* Bohm trajectories), not
only largely improves the numerical efficiency in the calcu-
lation of distribution of tunneling times, but also allows the
assessment of sharp features as those of Fig, 5(b), which
would be very difficult to appreciate by calculating trajecto-
ries.

Finally, the intuitive physical interpretation of the scatter-
ing of wave packets by potential barriers has been considered
within Bohm'’s picture. The obtained results show that not
only are the Bohm trajectories fully compatible with the
common interpretation of scattering processes, but that they
can enlighten some aspects that are less clear in the standard
interpretation of QM. In any case, it must be highlighted that
the Bohm trajectories exactly reproduce the time-dependent
behavior of the wave function so that all the dynamical in-
formation is contained in the solution of the time-dependent
Schrodinger equation. In other words, one cannot consider
that the behavior of W(x,¢) is intuitive, and that of the Bohm
trajectories counterintuitive because both lead to the same
observable results. Claims that Bohm trajectories lead to
counterintuitive results are subjective.
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It is shown that quantum phenomena in electron devices, such as tunneling of electrons, can be modeled using
Bohm trajectories. Fowler-Nordheim tunneling in thin-oxide MOS structures and resonant tunneling in double

barrier diodes are considered.
LINTRODUCTION

The tunneling of electrons is of increasing interest
in silicon devices. Leakage currents, oxide
degradation, dielectric breakdown, hot electron
effects, are examples of phenomena which are related
to tunneling in MOSFETs. This quantum-mechanical
(QM) phenomenon is basic to the operation of devices
such as floating gate EEPROMs. Also, new tunneling-
based silicon devices are being proposed as
alternatives to agressively scaled down MOS
transistors [1].

In conventional MOS devices, tunneling has
usually been modeled using the WKB approximation.
In very thin insulator structures numerical solution of
the stationary Schrddinger equation has also been
undertaken to reveal aspects which cannot be
considered within the former approximation. In
general, the results are in quantitative agreement with
experiments if one considers the limitations derived
from the exponential dependences of the tunneling
probability on barrier height and barrier thickness. In
the case of tunneling devices such as the resonant
tunneling diode (RTD) more accurate simulations
have been performed and two main approaches have
been considered: the solution of the effective-mass
(Schrddinger) equation [2], and the integration of the
Liouville equation to obtain the Wigner distribution
function [3]. In both cases, self-consistency with the
Poisson equation has been accounted for with
different degrees of approximation. The first approach
assumes full wave-coherence (extended scattering
states), and has the severe limitation of using the
equilibrium distributions of carriers at the contacts
when considering the occupation of these states, The

0167-9317/97/$17.00 © Elsevier Science B.V. All rights reserved,
PII: S0167-9317(97)00031-2

second approach is in principle free of this limitation
because scattering interactions can be introduced into
the Liouville equation, and the contact distributions
are only assumed as boundary conditions. However,
the extensive computation burden required by this
approach considerably limits the size of the simulation
box so that these boundary conditions can be far from
being realistic.

A reliable approach for the introduction of
tunneling into multidimensional device simulators is
still missing. In this regard, the coupling of a QM
treatment of tunneling with the semi-classical Monte
Carlo (MC) simulation technique would be very
convenient because it would allow the simultaneous
consideration of scattering and QM coherence effects.
For this purpose we are considering two alternatives,
i.e. Wigner trajectories [4] and Bohm QM trajectories
[S]. In this work we deal with Bohm trajectories in
two cases which are interesting for device
applications: (1) Fowler-Nordheim (FN) injection in
Si/SiO,/Si structure; and (2) resonant tunneling in
double-barrier diodes.

2. BOHM’S INTERPRETATION.
Let us briefly review the basics of Bohm’s
interpretation for non-relativistic particles [6]. The

wavefunction associated to a particle can always be
expressed as

w(x,t) = R(x,()exp(iL;")-) (M

with R(x,t)and S(x,t) being real functions. Thus
the complex time-dependent Schrodinger equation



126 J. Sufié et al. /Microelectronic Engineering 36 (1997) 125128

(TDSE) is found to be equivalent to two real
equations: the continuity equation for the presence
probability density P(x,t) = R*(x,t) ; and another
equation which can be interpreted as a modified

Hamilton-Jacobi equation. In this scheme, the particle
velocity is directly given by

v(x,t) = (1/ m)(A(x,t)/ &), and the classical
potential energy ¥ (x,t) is augmented by a new
term, ()(x,?), which is interpreted as a quantum
potential:

_ _zti 1 &R(x,0) @)
o=t = 2mR(x,t) &

This quantum potential introduces non-local features
and modifies the trajectories so that the measurable
results of the standard interpretation of Quantum
Mechanics are perfectly reproduced. Assuming an
initial wavepacket W' (x,0), the particle trajectory is
causally determined at all 'instants of time, provided
that the initial position x, is known. However, because
of the limitations of the uncertainty principle, the
initial position is not perfectly determined within the
initial wavepacket, and the physical quantities must be
obtained by averaging over all the possible trajectories
weighted by P(x,,0).

3. NUMERICAL PROCEDURE.

Regarding to the choice of the initial
wavefunction, two alternatives have been considered
in the literature: stationary scattering states, and
localized time-dependent wavepackets. However,
since Bohm trajectories associated to the scattering
eigenstates of the effective-mass hamiltonian give
non-consistent results (this failure is not due to
Bohm’s interpretation but to the nature of the
scattering  states  themselves), time-dependent
wavepackets are required. Our procedure is as
follows: (i) we define a gaussian wavepacket located
at t=0 in the emitter electrode, far enough from the
barriers so that the potential is flat and the probability
presence in the barrier region negligible; (i) we
integrate the hamiltonian eigenstates following the
method of Vasell et al. [2]; (iii) we project the initial
wavefunction onto the obtained basis to calculate

W(x,t)by superposition; and (iv) finally we
integrate Bohm trajectories. In step (iv), we first
calculate R(x,t) and S(x,t) from the wavefunction, we
calculate the velocity by dereivation of S(x,t), and we
spatially integrate it to obtain the trajectory.

4. RESULTS.

4.1 Fowler-Nordheim tunneling through a thin
MOS capacitor.

Consider first a silicon MOS structure with a 4
nm oxide and highly doped electrodes (no band
bending effects).
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Figure 1. Transmission coefficient for a typical MOS
structure with an applied bias of 9 V and oxide
thickness of 4 nm in a (100) interface.

In Fig. 1 we show the transmission coefficient as a
function of energy for the two sets of silicon valleys
(m"=0.19m,, and m'=0.91m,) in a (100) interface. We
show the results for energy eigenstates and gaussian
wavepackets with spatial standard deviation of s,=7
nm. The results justify this selection of s, because the
transmission coefficient is very similar to that of the
scattering  eigenstates ( spatially more localized
packets are too de-localized in energy so that the
relevant energy dependences are washed-out). The
oscillations are due to reflections at the oxide/anode
interface [7] and, as expected, are also apparent in the
simulated FN plot (Fig. 2). Since the injection is
controlled by the m'=0.19m, valley, the following
results correspond to this case.
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Figure 2. Simulated Fowler-Nordheim plot associated
to the structure of fig 1.
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Figure 3. Bohm trajectories for an initial gaussian
wave-packet with a central energy of 0.25 eV and a

saptial dispersion of 7 nm impinging on the MOS
structure (dashed lines) of fig 1.

Fig. 3 shows selected Bohm trajectories for one of the
transmission maxima. Most of the trajectories are
reflected (without ever reaching the barrier) and only
those of the very front of the packet (Bohm
trajectories do not cross) are transmitted [8]. No
qualitative differences are observed in the trajectories
of the transmission minima. The results are consistent
because the ensemble of Bohm trajectories perfectly
reproduce the evolution of the wavefunction obtained
by integration of the time-dependent Schrodinger
equation (TDSE). In particular, the transmission
coefficient has been calculated by averaging Bohm
trajectories with a precision better than 1% in both
cases.

4.2 Double barrier resonant tunneling diodes.

RTDs are most adequate to show the strengths
of the Bohm’s approach because the tunneling

phenomenoly is richer than in single barrier
structures. Fig. 4 shows Bohm trajectories
corresponding to the ground resonance of a double
barrier structure typical of AsGa/AsGaAl system, No
oscillations are observed and this seems to contradict
the usual intuitive interpretation of resonances.
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Figure 4. Bohm trajectories associated to an initial

gaussian wave-packet (central energy of 0.22 eV and

spatial dispersion of 10 nm) incident on a double

barrier (dashed lines).

However, the wavefunction solution of the TDSE
does not show any oscillation either. This is due to the
fact that the local density of states in the well is very
narrow. If the well width is increased, the peaks of the
density of states become more closely spaced, and the
wavefunction shows oscillations.
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Figure 5. Bohm trajectories associated to an initial
gaussian wave-packet (central energy of 0.16 eV and
spatial dispersion of 10 nm) impinging on a double
barrier (dashed lines) with a wider well.
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As expected, Bohm trajectories also bounce between
the barriers as shown in Fig. 5 for a 2nm/18nm/2nm
structure. The distribution of tunneling times (this
quantity is perfectly defined within Bohm's
interpretation) also shows periodic bumps according
to the sequential attemps to cross the second barrier
(Fig. 6) [91.

10

Transit time distribution (a.u.)
°C> -
-o i

05 1.0 15
Transit time ( 100 fs )
Figure 6. Transit time distribution obtained. from

25000 Bohm trajectories for the wave-paket an
potential profile of fig 5.

5. Discussion,

We have shown that the tunneling of
wavepackets can be described by Bohm trajectories
and that; as expected, the obtained results are fully
equivalent to those obtained from the wavefunction
solution of the TDSE. However, in our opinion, the
main interest of this approach is the possibility of
using Bohm trajectories for the extension of the MC
technique to tunneling devices.
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Figure 7. Simulated I-V characteristic of a RTD.

In this regard, we have already developed a
preliminary MC simulator (without scattering in the
QM region) based on the coupling of classical and
Bohm trajectories. The simulator cannot be described
here in detail, but we want to show the main results
obtained with this tool, i.e. the self-consistent -V
characteristic (Fig. 7); and the position-momentum
distribution function at the resonance which clearly
shows the tunneling ridge (Fig. 8).

3,9
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Figure 8. Particle position-distribution function at 0.29
V . Notice the tunneling ridge indicated by an arrow,

These results demonstrate that such simulations are
possible and show their great potentiality for the
accurate modeling of tunneling in electron devices.
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A generalization of the classical Monte Carlo (MC) device simulation technique is proposed to si-
multaneously deal with quantum-mechanical phase-coherence effects and scattering interactions in
tunneling devices. The proposed method restricts the quantum treatment of transport to the regions
of the device where the potential profile significantly changes in distances of the order of the de
Broglie wavelength of the carriers (the quantum window). Bohm trajectories associated to time-
dependent Gaussian wavepackets are used to simulate the electron transport in the quantum win-
dow. Outside this window, the classical ensemble simulation technique is used. Classical and quan-
tum trajectories are smoothly matched at the boundaries of the quantum window according to a
criterium of total energy conservation. A simple one-dimensional simulator for resonant tunneling
diodes is presented to demonstrate the feasibility of our proposal.

For a reliable simulation of devices which are based on quantum-mechanical (QM) phe-
nomena such as tunneling, the simultaneous consideration of phase coherence effects and
of scattering interactions is required. One approach to deal with this problem consists in
solving the Liouville equation to obtain the Wigner distribution function [1 to 3]. An-
other approach pursues the generalization of the semiclassical Monte Carlo (MC) device
simulation technique through the use of QM trajectories. This is the path followed by
Salvino and Buot [4], who used an ad-hoc model of quantum trajectories for double-
barrier resonant tunneling diodes (RTD) which was based on the phase tunneling time.
In this work we propose a quantum MC procedure based on Bohm trajectories, which
provides a consistent description of the QM dynamics [5 to 8]. As a proof, we have
developed a one-dimensional simulator and we have applied it successfully to describe
the behavior of an RTD.

Among the various causal formulations of quantum mechanics, the most widely
known is the one due to Bohm [5]. Within the Bohm’s interpretation, all the particles of
a quantum pure-state ensemble follow different and well-defined causal trajectories un-
der the combined influence of the classical potential, V(z, {), and a new term called the
quantum potential, Q(z, t), which is directly related to the wavefunction. The most im-
portant property of this approach is that the measurable results of standard quantum
mechanics (those which would be directly obtained from the wavefunction) are perfectly
reproduced by averaging the Bohm trajectories with adequate relative weights.
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Fig. 1. Bohm trajectories associated to an
initial Gaussian wavepacket with a central
energy of 0.16 eV and a spatial dispersion
of 10 nm, impinging upon a double barrier
structure with 2 nm barriers of 0.3 eV and
a 18 nm well. The barriers and the initial
Gaussian wavepacket are indicated by
dashed lines
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The procedure that we use for the calculation of the Bohm trajectories has been pub-
lished elsewhere {7,8]. Since stationary scattering eigenstates are not adequate for a dy-
namical description of transport, time-dependent wavefunctions are required. In Fig. 1
we show some representative trajectories in the particular case of a Gaussian wavepack-
et impinging upon a AlGaAs/GaAs double barrier structure. In particular, since Bohm
trajectories cannot cross each other, those which are transmitted through the barrier
come from the leading front of the wavepacket. Those from the rear are reflected, many
of them without ever reaching the barrier. Oscillations between the barriers are also
observed [7]. Since Bohm trajectories are causal, they naturally lead to magnitudes, such
as tunneling times [6,8], which are not well defined within the standard framework of
the quantum theory. Although these non-standard magnitudes can be regarded with
diffidence, we must emphasize that the charge and current densities associated to the
time-dependent wavefunction are perfectly reproduced by the Bohm trajectories. In this
regard, our proposal is a simulation tool which obtains standard QM results using a
methodology based on Bohm trajectories

Our simulator defines a QM window (QW) which includes the double-barrier of the
RTD, and restricts the QM treatment to this window. Outside the QW, where the
potential changes smoothly in the scale of the de Broglie wavelength of the carriers, the
classical MC technique is used to simulate the electron transport. This allows to consid-
er large integration boxes without excessive computational burden (this is the most im-
portant limitation found in the Wigner distribution approach). When an electron
reaches the boundary of the QW, a Gaussian wavepacket is associated to it and a Bohm
trajectory is randomly selected according to the appropriate distribution, given by the
QM probability presence. The choice of the wavepackets requires the selection of values
for two magnitudes, the central wavevector, and the spatial width. The former is se-
lected using a coupling criterium based on the conservation of the total electron energy
(the fact that part of the energy resides in the quantum potential is taken into account).
On the other hand, the width of the wavepacket is chosen to be larger than 25 nm
because the wavepacket transmission probability is almost width-independent above this
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Fig. 2. Simulated electron concentration (solid line) and potential profile (dashed line) of the RTD
at resonant bias (V = 0.39 V). The horizontal solid line above the electron density represents the
current density (in arb. units) which has been computed as the local product of the average charge
density per average velocity. The inset represents the simulated I-V curve

threshold and coincides (with negligible error) with that of the scattering eigenstate
associated to the central wavevector.

In Fig. 2 and 3, we show the simulation results obtained for a typical RTD, which
consists of an AlGaAs/GaAs/AlGaAs 3/5/3 nm double barrier structure at 77 K with
an ionized impurity density of 1.5 x 10'7 ecm™. The self-consistent potential does not
show spurious effects at the boundaries of the QW and current continuity is preserved
in the whole device (Fig. 2). The obtained I-V characteristic shows the main features
found in actual devices (inset of Fig. 2). A quantitative comparison with experiments in

i
[
i :"'llllﬂ;%‘\ )
2 ',, 41y, [h "l‘
R

Fig. 3. Phase space distribution function along the whole device just before resonance (V= 0.35 V).
Notice the tunneling ridge (indicated by an arrow), which is originated in the QW by resonant
Bohm trajectories and progressively thermalized in the collector by scattering mechanism
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important figures such as the peak-to-valley ratio is still premature because scattering in
the QW has not been considered in this first version of the program. In this regard, we
must stress that previous tools did not consider scattering either [4], and that they used
ad-hoc models for the QM dynamics. As shown in Fig. 3, the MC simulator provides a
positively defined phase-space distribution. The obtained results qualitatively resemble
those obtained within the Wigner function approach [9], showing QM oscillations of the
electron concentration in the pre-barrier region, accumulation of charge in the quantum
well at the resonance bias (Fig. 2), and a tunneling ridge (also at resonance, Fig. 3)
which progressively vanishes due to thermalization of carriers in the collector. Although
the information contained in the phase-space distribution might be certainly useful to
improve our understanding and design of QM devices, we must not forget that, in the
QW, this distribution corresponds to hidden variables [6,10]. In this sense, we can com-
pletely trust all measurable results (charge densities, self-consistent potential profiles,
current densities), but we must treat with caution all nonconventional results which
arise from the causal structure of the Bohm'’s interpretation, and which do not have a
counterpart within standard quantum mechanics (tunneling times, distribution of parti-
cle velocities, etc.).

In general, we can conclude that the obtained results demonstrate the feasibility of
using Bohm trajectories to extend the classical MC technique to tunneling devices, and
show once again the strengths of the MC particle technique in device simulation. Im-
mediate future developments will include the consideration of scattering between Bohm
trajectories in the QW, and the analysis of Bohm trajectories associated to one-side
bound states in the emitter accumulation layer.

Acknowledgements. The authors are grateful to the Direccién General de Investiga-
cién General y Técnica and to the Comnsejerfa de Educacién y Cultura de la Junta de
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A generalization of the classical ensemble Monte Carlo (MC) device simulation technique is
proposed to simultaneously deal with quantum-mechanical phase-coherence effects and scattering
interactions in quantum-based devices. The proposed method restricts the quantum treatment of
transport to the regions of the device where the potential profile significantly changes in distances
of the order of the de Broglie wavelength of the carriers (the quantum window), Bohm trajectories’
associated to time-dependent Gaussian wave packets are used to simulate the electron transport in
the quantum window. Outside this window, the classical ensemble MC simulation technique is used.
Classical and quantum trajectories are smoothly matched at the boundaries of the quantum window
according to a criterium of total-energy conservation. A self-consistent one-dimensional simulator
for resonant tunneling diodes has been developed to demonstrate the feasibility of our proposal.
© 1998 American Institute of Physics. [S0003-6951(98)01007-9]

The reliable simulation of devices based on quantum-
mechanical (QM) phenomena (such as tunneling) requires
the simultaneous consideration of phase-coherence effects
and of scattering interactions. Three main different ap-
proaches have been proposed to pursue this goal: (i) the so-
lution of the Liouville equation to obtain the Wigner distri-
bution function (WDF);!"* (ii) the nonequilibrium Green
function theory recently reformulated by Lake ef al.>* to in-
clude band-structure and scattering effects; and (jii) the so-
lution of the effective-mass Schrodinger equation combined
with a Monte Carlo (MC) based introduction of
scattering.”~'” In our opinion, the latter approach would be
very useful if an adequate description of tunneling in terms
of particle trajectories were found. This is the path followed
by Salvino and Buot,” who used an ad hoc model based on

the phase tunneling time, and it is also our choice. In this -

letter, we propose a quantum-MC method based on Bohm
trajectories, which provide a consistent description of the
QM dynamics.'"*? Although we have developed a one-
dimensional quantum-MC simulator for a resonant tunneling
diode (RTD), the proposed technique is appropriate for any
vertical-transport-based QM device.

The most widely known causal interpretation of quan-
tum mechanics is the one due to Bohm.'! Within the Bohm's
interpretation, all the particles of a quantum pure-state en-
semble follow deterministic trajectories under the combined
influence of the classical potential, V(x,1), and a quantum
potential, Q(x,t), which is directly related to the wave-
function ¥ (x,t):

h 1
2m* | (x,1)]

¥ (x,1)|

Q(x,t)=-— R — (1)

m* being the particle’s effective mass. From the point of

“Electronic mail: xoriols@cc.uab.es

0003-6951/98/72(7)/806/3/$15.00

view of device simulation, the most important property-of
the Bohm’s interpretation is that all the measurable results of
standard quantum mechanics are perfectly reproduced by av-
eraging over the Bohm trajectories with correct relative
weights."!

The tunneling of electrons through one-dimensional po-
tential barriers has been carefully studied within the Bohm's
framework.'>!? Scattering eigenstates have been shown to be
unsuitable and time-dependent wave packets are required. In
this case, the most convenient procedure to calculate the tra-
jectories is the following:'® (i) numerical solution of the sta-
tionary Schrodinger equation; (ii) choice of the initial wave-
packet ¥ (x,0) and projection onto the basis of eigenstates;
(iii) calculation of W (x,) by superposition to obtain the cur-
rent density J(x,r) and the velocity of the Bohm’s particles,
v(x,t), which is given by

)= ) )
g e Lnl

q being the absolute value of the electron charge; and (iv)
integration of w»(x,r) to calculate the trajectories x
=x(xp,t) which are uniquely defined for each position x,
within the initial wave packet. In Fig. 1 we show some rep-
resentative trajectories in the particular case of a Gaussian
wave packet impinging upon a double barrier structure.
Since »(x,t) is single valued, the trajectories do not cross
each other either in phase space or in configuration space,
and this has interesting consequences.' In particular, the tra-
jectories which are transmitted through the barrier come
from the leading front of the wave packet. Those from the
rear are reflected, many of them without ever reaching the
barrier. By weighting the transmitted trajectories according
to the initial probability density | ¥ (x,,0)|%dx,, the standard

transmission coefficient is obtained,'?

© 1998 American Institute of Physics
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FIG. 1. Bohm trajectories associated to an initial Gaussian wave packet with
a central energy of 0.16 eV and a spatial dispersion of 10 nm, impinging
upon a GaAs/AlGaAs double barrier structure with 2 nm wide barriers of
0.3 eV and a 18 nm wide well. The position of the barriers and the initial
Gayssian wave packet are also shown.

Since Bohm trajectories are causal, some magnitudes
such as the tunneling times,'*'* which are not well defined
within the standard QM theory, are natural within the
Bohm’s picture. Although these nonstandard magnitudes
should be regarded with diffidence, we must emphasize that
the charge and current densities are perfectly reproduced by
the Bohm trajectories:

o= ar oo, ©

I(x,t)=q J-:dxo[‘lf(xo‘,O)lzv(x,t) SGx—x(xg,1)). (4)

In this regard, our proposal is a simulation tool which
obtains standard QM results, though by means of Bohm tra-
jectories, i.e., the Bohm’s theory is used as an equivalent
mathematical reformulation of quantum mechanics, rather
than as an alternative physical interpretation.

Our simulator defines a QM window (QW) and restricts
the QM treatment to this window. Outside the QW, the clas-
sical MC technique is used taking into account impurity and
phonon-scattering mechanisms. When an electron reaches
the boundary of the QW, a Gaussian wave packet is associ-
ated to it:

(x=xp)?
20"3

) &)

|
Y(x,0)= W exp( - +ikx
xp being a fixed position centered in the emitter side of the
QW, k the central momentum, and o, the spatial standard
deviation. The selection of the wave-packet parameters is of
critical importance. The central position xp is chosen to be
far enough into the emitter side of the diode, where the po-
tential is flat enough to allow an analytical projection onto
the eigenstates,"* Since the transmission probability depends
on the width of the wave packet, the selection of o also
requires a physical criterion. The narrower is the wave
packet (small o), the smoother and wider are the found
transmission resonances and the smaller is the peak-to-valley
current. A reasonable criterion is the choice of wide enough
wave packets (o225 nm) so that the corresponding trans-
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mission coefficient is roughly that of the eigenstate associ-
ated to the central momentum k (i.e., narrow in k space as
compared with the features of the local density of states). In
our MC simulator we have considered bias-independent
wave-packet parameters and, in particular, o,=25 nm. In-
side the QW, each electron follows a randomly selected
Bohm trajectory and the charge and current densities inside
the QW are computed using the methods of the classical MC
technique. The coupling to classical trajectories and the se-
lection of k are based on the conservation of the total elec-
tron energy. To implement these matching criteria, we re-
quire the following condition at both interfaces of the QW:

Zkf

2m*-+-V(x)=%m*vz(x,t)*-V(x)~l~Q(x,t), (6)
where k. is the x component of the momentum of the clas-
sical particle. This equation requires the previous choice of
the trajectory, i.e, of the initial position x¢, which is selected
by generating a random number distributed according to
1¥ (x0,0)%dxy. Notice that this distribution does not de-
pend on k. For a Gaussian wave packet such as of Eq. (5),
the velocity and quantum potential at =0 are given by

fl«z (Xo“XB)?' hk
Q(X0,0)': zm*o_f - 0_2 : V(x010)=m—*"

Substitution into Eq. (6) after having generated xg, allows
the determination of k. Discontinuity of the particle position
is avoided by allowing the electron to travel classically from
the boundary of the QW to the corresponding x,. Electrons
incident from the collector are classically reflected before
entering in the QW (i.e., for the moment, only tunneling
from emitter to collector is considered). Scattering has not
been implemented in the QW and this is the main limitation
of our approach in the present stage of development. In par-
ticular, this has forced us to consider a Thomas—Fermi ap-
proximation for the calculation of the electronic charge in the
emitter accumulation layer to avoid unphysical depletion of
charge in this region and nonrealistic self-consistent potential
profiles.!>

To show the feasibility of our proposal, we have simu-
lated the current—voltage (/—V) characteristic of a typical
GaAs/AlGaAs RTD (barrier width of 3 nm, barrier height of
0.3 eV, and well width of 5.1 nm) at 77 K. The ionized
impurity density in the emitter and collector GaAs electrodes
is 1.51x107 em™ (ie, a realistic doping of 5
X 10'® cm™%). A one-valley model with a single effective
mass (that of GaAs I' point) has been considered for the
whole structure. Figure 2 shows the self-consistent potential
and the electron concentration profiles, together with the cur-
rent calculated at each position of the RTD, for an applied
bias of 0.39 V (near the resonant maximum of the /—-V char-
acteristic). The validity of our matching procedure is sup-
ported by the fact that the self-consistent potential does not
show spurious effects at the boundaries of the QW and be-
cause current continuity is preserved in the whole device.
The current is noisier in the collector because it is carried by
a reduced number of high-energy electrons, while in the
emitter the whole low-energy distribution is shifted towards
small values of positive momenta. The largest current spike
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FIG. 2. Results obtained with our QM Monte Carlo simulator for a 3.0/5.1/
3.0 nm GaAs/AlGaAs double barrier RTD (barrier height of 0.3 eV) at 77
K. Simulated electron concentration and self-consistent potential profile at a
resonant bias near the peak of the /- V curve (V,;=0.39 V). The horizon-
tal solid line represents the current density (in arbitrary units) along the
whole device computed as the product of the average electron charge den-
sity per average velocity (i.e., current continuity is demonstrated). The inset
represents the simulated /- V curve.

obtained at the boundary of the QW is not physically signifi-
cant, being a spurious effect caused by the numerical calcu-
lation of Q(x,#) as required by Eq. (6). The electron concen-
tration profile shows an oscillatory behavior before the
barriers and an accumulation in the quantum well. The ob-
tained /- V characteristic (inset of Fig. 2) shows the main
qualitative features of those of actual devices. However, as in
previous works,™ the current almost vanishes after the reso-
nant peak (it increases again at higher bias when electrons
are injected through or over the top of the barrier) as a con-
sequence of having ignored scattering in the QW (i.e., injec-
tion from the one-side bound states of the accumulation layer
is neglected). In this regard, we must stress that previous
tools did not consider scattering either and that they used ad
hoc models for the QM dynamics.7“9 As shown in Fig. 3, the
MC simulator provides the momentum distribution of par-
ticles as a function of position along the device. These results
qualitatively resemble those obtained within the WDF
approach,3 showing QM oscillations in the prebartier region,
accumulation of charge in the quantum well at the resonance
bias, and a tunneling ridge (also at resonance) which progres-
sively vanishes due to thermalization of carriers in the col-
lector. However, contrarily to the WDF, our particle distri-
bution is always positive by construction.

The presented results explicitly demonstrate the feasibil-
ity of using Bohm trajectories to extend the classical MC
technique to tunneling devices. In addition to the potential
profile and the current at the terminals of the device, the
proposed quantum-MC technique provides local information
of the momentum and energy distributions (the quantum po-
tential must be accounted for, if the standard QM results are

Oriols et al,

FIG. 3. Phase space distribution function along the device of Fig, 2 at the
applied bias of 0.39 V. Notice the nneling ridge (indicated by an arrow),
which is originated in the QW by resonant Bohm trajectories and which
becomes progressively thermalized in the collector by scattering mecha-
nisms.

to be reproduced”‘”’), which can eventually contribute to
improve the understanding and design of the devices. Our
approach has the additional advantage of reaching the nano-
electronic range without abandoning the intuitive picture of
carrier trajectories for the simulation of electron devices. Im-
mediate future developments will include the consideration
of scattering between Bohm trajectories inside the QW and
the analysis of Bohm trajectories associated with one-side
bound states in the emitter accumulation layer,
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Abstract

Following the path of a previous letter [Appl. Phys. Lett. 72, 806 (1998)], a
generalization of the classical Monte Carlo (MC) device simulation technique is
proposed with the final goal of simultaneously dealing with phase-coherence effects and
scattering interactions in quantum-based devices. The proposed method is based on
time-dependent wavepackets and Bohm trajectories, and restricts the quantum treatment
of transport to the device regions where the potential profile significantly changes in
distances of the order of the de Broglie wavelength of the carriers (the quantum
window). Outside this region, electron transport is described in terms of the
semiclassical Boltzmann equation, which is solved using the MC technique. In this
paper, our proposed description for the electron ensemble inside the quantum window is
rewritten in terms of the density matrix. It is shown that, neglecting scattering, the off-
diagonal terms of the density matrix remain identically zero even if time-dependent
wavepackets are used. Bohm trajectories in tunneling scenarios are reviewed to show
their feasibility to extent the MC technique to mesoscopic devices. A self-consistent one-
dimensional simulator for resonant tunneling diodes has been developed to technically
validate our proposal. The obtained simulation results are promising and encourage
further efforts to include Quantum effects into MC simulations.

1. Introduction

Extrapolations of the actual tendency of miniaturization of integrated circuits (IC)
predict that the minimum dimensions of conventional semiconductor devices will enter
into the sub-100 nm range by the beginning of the next century [1]. The wave character
of the charge carriers will certainly influence any further scaling of conventional
transistors, and novel devices based on quantum mechanical (QM) and/or single
electron effects are expected to open a new path toward faster, lower consumption, and
more compact semiconductor IC’s. Among other QM phenomena, tunneling is one of
the effects which are called to play an important role in future IC’s. The well-known
Resonant Tunneling Diode (RTD) is expected to play a relevant role in the improvement
of both analog (microwave source[2]) and digital (high speed electronics [3]) circuits.



Although RTDs have been thoroughly studied during the past 25 years, it is only
recently that a quantitative comparison with experiment has given reasonable results
[4,5]. In addition to the inherent limitations for reaching agreement between theory and
experiment whenever tunneling is involved (it depends exponentially on many
parameters such as barriers height and thickness), the main difficulties for the accurate
modelling of these devices are related to: (i) reasonable ‘open system’ boundary
conditions [6,7], and (ii) the simultaneous consideration of phase coherence effects and
of scattering interactions. Different approaches have been taken to face these difficult
problems. Full quantum-kinetic treatments of electron transport, based on obtaining the
Wigner distribution function [8-12] or using a Green function approach [4,5,13,14], are
generally considered as necessary. However, although a recent reformulation of the
nonequilibrium Green functions theory by Lake et al. [4] has given very good results,
they need extremely high computational requirements. In this regard, efforts devoted to
more phenomenological approaches can also enlighten our understanding of quantum-
based devices. Several works follow this direction [15-19]. Among them, the work of
Fischetti [17], which suggests the use of the Pauli master equation, is particularly
interesting because it starts a discussion about the actual need of fully off-diagonal
formulations of quantum transport to deal with the devices of interest. On the other
hand, Rossi et al. [18] have developed a density matrix formulation to include scattering
inside the dynamics of a single time-dependent wavepacket. In the present work, we
follow the path initiated by Salvino and Buot [16] who proposed a semiclassical Monte
Carlo (MC) simulator for RTD’s considering quantum trajectories in the double barrier
region. In this regard our main goal is to present a proposal to deal with electron
transport in quantum devices which is simultaneously reliable and intuitive. In a
previous letter [20], we have shown the technical viability of a quantum Monte Carlo
simulator based on Bohm trajectories associated to time-dependent wavepackets. In the
present paper, particular interest is devoted to give an alternative view of our model for
electron transport in terms of the density matrix, to briefly review the phenomenology
of tunneling with Bohm trajectories and to discuss several possibilities to include
scattering.

The paper is organised as follows: In section 2, an introduction to our model is
presented and it is reformulated in terms of the density matrix. Section 3 is devoted to
analyse the properties of Bohm trajectories in tunneling devices, with emphasis on
double-barrier structures. The general features of the quantum MC simulator for RTD
are discussed in section 4. Several considerations about scattering are presented. Finally,
section 5 presents the results obtained with this new technique and points out directions
for future work. ' '

2.- Time-dependent wavepackets

As previously indicated, the main goal of the present work is to explore the possibilities
of extending the semiclassical MC technique to mesoscopic devices by means of
wavepackets and Bohm trajectories. However, in order to consider large integration
boxes without unnecessary computational burden, quantum-transport models are
restricted to a small portion of the device that we call the quantum window (QW).
Actually, we deal with vertical transport devices which can be modelled using a one



dimensional picture and we distinguish three regions in the device: the emitter region,
the quantum window and the collector region.

The emitter and collector regions, close to the respective contacts, are treated as
semiclassical regions. From an ensemble MC simulation of particles at these
semiclassical regions one can deduce a semiclassical distribution function at the limits
of the QW. Each electron that enters into the QW is associated to an initial Gaussian
wavepacket whose energy is directly related to its classical counterpart. The dynamics
of this electron inside the QW is directly related to the wavepacket evolution.

Let us notice that the electron dynamics are determined by ordinary classical forces at
the semiclassical regions. However, these classical forces are rigorously deduced by
considering the quantum-mechanical evolution of a wavepacket when the externally
applied electric field varies slowly over the dimensions of such a wavepacket [21]. This
semiclassical model recuperates the classical picture of an electron as a particle and
forgets its original wavepacket description. However, within actual devices whose
dimensions can be comparable to the electron De Broglie wave length, the quantum
nature of electrons can not be longer neglected. In this regard, the electron description
inside the QW by wavepackets seems the most natural extension of the classical MC
technique to quantum devices.

In a previous work [20], we have explained our proposal for a quantum MC simulation
based on the time-dependent Schrédinger equation (TDSE) in the effective mass
framework. Now, a description in terms of the density matrix formalism will be
presented, which provides a new point of view of our proposal which is closer to those
most commonly used for the description of mesoscopic devices.

2.1.- Density operator representation for the wave-packet dynamies inside the QW
As we have already mentioned, we associate an initial Gaussian wavepacket to each

electron that enters into the QW. In particular, we consider minimum-uncertainty
Gaussian wavepackets:

1 x-x,)"
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oy being the spatial dispersion, x the spatial centre of the wavepacket at the initial time
r=ty, and k. the central wavevector which is related to a central energy E,. It is
important to notice that oy and x are identical for all electrons, but £, and k. depend on
each particular electron history. In order to avoid a time discretization of the TDSE
which would not be convenient for a MC simulation, we have chosen to calculate
y, . (x,1) by superposition. Hence, we begin by integrating the stationary Schrédinger

equation to obtain a basis of scattering eigenstates, { ¥j(x)t, and then we proceed to
numerically project the initial wavepacket onto this basis:

Vi, (5:1,) = [a, (0w, (x)dk @



with:
a, (k)= (v, @)y, (ot,)dx (3)

The Hamiltonian eigenfunctions ¥(x) are calculated following the procedure described
in [22]. The main advantage of this method is that y, , (x,#) can be computed by

superposition at any arbitrary instant of time t:

<l 5= Vo, () = [, (e 1 EEZ)y e @

0

without having to calculate it at intermediate times. E(k) is the energy associated to the

scattering eigenstate Pj(x), related to the wavevector k via a parabolic dispersion
relationship.

Moreover, since a single particle system can be equivalently described by the
Schrodinger or Liouville equation, the density operator for this single electron system
can be written as:

PO =y () ><y, (@) (5)

and the density matrix, represented in the Hamiltonian eigenstates basis { ¥(x)}, can be
ecasily expressed as: |

LEG-ER)~1,)

P (D) =<wl¥, . ><¥, v, >= akc(k')a*kc(k)e " (6)

However, as we have pointed out, our quantum system is not only composed of a single
wavepacket, but from an ensemble of them. In particular, it contains a constant flux of
wavepackets that corresponds to a constant flux of electrons entering inside the QW at
different initial times and with different energies. This picture can be summarised as
following: (i) each particle enters into the QW at a different initial time, ¢, and (ii) there
is a distribution of central wavevector f{k¢, ) which can be obtained from the number
of classical particles that arrive at the QW, from the emitter[23], at different times.
Since we are dealing with a pure coherent system (scattering is neglected in this
preliminary version), flk, ¢,) is position-independent.

The density matrix representing the whole electron ensemble can be written taking into
account the above two points. The first one implies sum over all possible entering times,
to, and the second point, a statistical average in accordance with f{k, ¢,). If we suppose
that the initial entering time is uniformly distributed from - to +oo, the density operator
can be written as:

p(t) = [die f(k..t,) [lw,, (O ><w, , (DI, Q)




Let us suppose that we are in a steady-state situation where flk., {o) is time-independent,
then expression (7) can be largely simplified. If we use the identity:
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then, we find that each element of the density matrix can be rewritten as:
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At this point, let us notice that, even working with time-dependent wavepackets (rather
than with Hamiltonian eigenstates), we have found a diagonal density matrix for our
coherent system under steady-state conditions. In the next section, we will use this
property to compute the probability presence and the current density.

2.2.- Time-dependent wave-packets versus hamiltonian eigenstates

Once an expression for the density matrix is obtained (equation 9), all observables can
be determined. In this regard, we will compare the results for the probability presence
and current densities obtained with our time-dependent wavepacket model and with a
description based on the Hamiltonian eigenstates.

The probability presence density operator neglecting the spin in one dimensional
scenarios for the position and for the momentum variables, can be represented in the
{ ¥i(x)} basis by:

W= W*k(x)Wk'(x) (10)

Hence, its related observable, Q(x, £), is computed as:

O(x,1) = qu (t)dlkdlk an
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After using the delta function of expression (9), one obtains:
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The charge computed at any position inside the QW is time-independent (a steady-state
sitvation is considered) and depends on the modulus of a, (k). In particular, if the
electron is described by a wavepacket with a, (k) = 6(k —k,) (i.e. a scattering state),

then the standard expression for the probability presence density in coherent models
based on stationary states is recovered:
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Now, let us proceed identically for the current density. The current density operator,
Jik’, in the { Wi(x)} basis is represented by [24]:
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The current carried by a Hamiltonian eigenstate is position-independent and related with
its transmission coefficient, 7(k). Thus, we obtain:
h o ol 2
J(x, ) =— [ [ £k, (0O T(k)dk,dk (16)
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Hence, as defined for a steady-state situation, the current density is constant and
uniform. Once again, by defining a, (k)= o(k—k,), one recovers the standard

expression for the current density in the scattering states picture:

J(x,t) = ;f—; 7 £k, ) T(k)dk (17)

Looking at expressions (16) and (17), the transmission coefficient for a time-dependent
wavepacket can be easily identified [25]:

T(k,) = [la, () T(k)dk (19)

As for the probability presence, the current density associated to a time-dependent
wavepacket can be quite different from that associated to an eigenstate. In figure 1, we
have represented the influence of the spatial dispersion, c,, in the I-V curve of a typical
RTD (calculated non-selfconsistenly). In particular, we consider a symmetric double
barrier structure with 3 nm barriers of Al,Ga, As, a 5 nm well of GaAs, and highly
doped (Np=10" cm®) GaAs electrodes. We remark that an important peak-to-valley
ratio is obtained for narrow wavepackets without the consideration of inelastic
scattering. This dispersion in the results obtained from equations (12) and (16) (related
to the arbitrary choice of o, ) has been used to criticise our proposal. However, in the
author’s opinion, this is an advantage rather than a drawback, since it introduces some
flexibility regarding the modelling of the “size of an electron”, in the sense described by
Fischetti [17]. In this way, regardless of technical or numerical difficulties, our proposal




can a priori simulate classical particles by defining 6,~0 (i.e. g, (k) ~cfe), and also
scattering states o~ (i.e. g, (k) = 6(k ~k,)). Obviously, these two limiting situations
drive to quite macroscopic different results, as we have seen in figure 1.

In conclusion, we have shown that, under steady-state conditions, the density matrix
associated to the described quantum system is diagonal in the basis of the Hamiltonian
eigenstates (equation 9). This result has to be compared with the density matrix
associated to a single time-dependent wave-packet (equation 6) which is non-diagonal
in the same representation. Moreover, the results obtained from expression (9) can be
qualitatively different from the ones obtained with Hamiltonian eigenstates. Finally, let
us notice that expressions (12) and (16) can be equivalently deduced without appealing
to the density matrix formalism, but this allows to look at our picture from a different
point of view and to compare it with other models. Moreover, and this is much more
important, it reveals a possible path [18] for the introduction of scattering interactions
within the QW.

3. Trajectories in the Bohm’s interpretation of quantum mechanics

Electron trajectories have been used to understand electron devices during decades. The
successful use of this trajectories in classical MC simulators, and the existence of
trajectory formulations of the QM suggest the idea to extent their use to the simulation
of quantum devices [16, 20]. Several advantages can be anticipated: (i) the matching
between the classical and quantum regions (the electrons getting in and out of the QW)
can be done in terms of individual trajectories, (ii) Bohm trajectories open the
possibility to consider scattering as a local event and, (iii) this would allow us to go on
studying quantum devices without losing our intuitive picture for electronic transport.

As mentioned, several attempts have been made to describe the quantum dynamics in
terms of causal trajectories of hidden variables.” Among them, Bohm trajectories
perfectly fit with our final goal since they have already been successfully applied to
analyse the problem of tunneling through potential barriers [26-28] and perfectly
reproduce the charge and current densities,

3.1.- Bohm’s interpretation

Classically, a particle is dynamically described as a point in phase space which evolves
according to Newton’s second law or, equivalently, to the corresponding Hamilton-
Jacobi equation. Standard QM in the Schrédinger picture substitutes this description by
the use of a wavefunction ¥(x.f), which evolves according to the TDSE, and the notion
of trajectory disappears. Bohm’s formulation of QM mixes both types of descriptions,
since it retains the concept of wavefunction and postulates the existence of well-defined
causal particle trajectories. The evolution of a particle initially located at a position x,, is
uniquely determined by a Hamilton-Jacobi-like equation directly derived from the
TDSE. A particle has (at each instant of time) a well-defined position and velocity
causally determined by an objectively .real (complex-valued) field directly related to
H(x,F) (see the original Bohm’s paper for a detailed formulation [26]).



Consistently with the Bohm’s interpretation, once the wavefunction is completely
determined by solving the TDSE, the velocity can be easily computed as:

1 J(x,0)

- 20
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v(x,t) =

where g is the absolute value of the electron charge. Then, for any initial position x,, the
trajectory x(x,, £) is uniquely defined by integration. The relevant point is that, in the
Bohm’s picture, a unique causal trajectory is found for each initial position x,.

At this point we will discuss how the standard QM results can be exactly reproduced in
terms of individual trajectories. Following the Bohm’s formulation, the initial position
is uncertain and only the presence probability density | ?’(x0,0)| % is considered to be
known at =0. According to this weak version of the Heisenberg uncertainty principle,
the physical observables must be computed by averaging the corresponding magnitude
A(xo,b) over all possible Bohm trajectories:

Jacx, .0l w(x, O dx,
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The observables obtained from Bohm trajectories using equation (21) are identical to
those calculated within the standard interpretation of QM. In particular, as a direct
consequence of the continuity equation, the presence probability density at an arbitrary
position x can be recovered by ‘counting’ all the particles:

WDl = [d, |y (x, 0P 8(x - x(x,.1) (22)
and the current density by weighting their velocities:
J(x,0) =g [dx, |y (e OF v(x,£)5(x - x(x,,1)) (23)

From the above two expressions, the Bohm’s approach can be considered as a
mathematical tool which is able to reproduce the presence probability and current
density associated to ¥(x.f) using well defined particle trajectories. Moreover, since the
main goal of any device simulator is to obtain charge densities (i.e. self-consistent
potential profiles) and current fluxes, the two previous equations demonstrate that we
can obtain reliable results using Bohm trajectories and treat the classical and quantum
regions equivalently.

3.2. Phenomenology of Bohm trajectories in double barrier structures.

Since Bohm trajectories are absolutely determined by the Schrédinger equation, the
initial wavefunction is the only degree of freedom available to model the particle’s
behavior in different experimental situations. Two alternatives have been considered in
the literature: time-independent eigenfunctions of the Hamiltonian (scattering states),
and localised time-dependent wavepackets.



In particular, since the current density associated to scattering states is positive and
position-independent, the Bohm’s velocity is positive everywhere according to equation
(20). This means that, although Bohm trajectories perfectly reproduce the presence
probability and the current density of scattering states, they are all transmitted through
the barrier. In this regard, these trajectories do not reproduce our particle-intuitive
understanding of the tunneling phenomenon and, as a consequence, their possible
application to time-dependent electron transport simulation is hindered. However, we
cannot conclude that the Bohm’s approach fails for scattering states, because it perfectly
reproduces the results of standard QM also in this case. In other words, the apparent
failure of the Bohm’s formulation applied to scattering states is due to undesired
features of these time-independent states themselves to describe particle time-dependent
phenomena [22].

The other alternative choice for the initial wavefunction is a time-dependent wavepacket
(as that of equation 1). Since these wavepackets are adequate to reproduce the electron
dynamics, the associated Bohm trajectories will also provide a reliable description, even
from the intuitive point of view. An example of trajectories associated to a time-
dependent wavepacket will be shown.

Since we are interested in the simulation of RTDs, we have chosen the double-barrier
structure to show the main features of Bohm trajectories in tunneling structures. Let us
study the tunneling of electrons (described as Gaussian wavepackets of spatial
dispersion 0x=10 nm) through a double barrier structure with the following parameters:
barrier height of 0.3 €V, bartier thickness of 2 nm, well width of 7 nm, and uniform
effective mass of 0.067m, (U point of GaAs). In fig. 2 we show the trajectories
corresponding to the second transmission resonance (E;=0.22 eV) of the structure. The
trajectories coming from the front of the wavepacket are transmitted, while those from
the rear are reflected (most of them without even reaching the barrier). This is caused by
the fact that Bohm trajectories do not cross each other in configuration space [29]. If the
barrier region is limited by x; <x<xz, we can calculate the wavepacket transmission
coefficient 7(k;) by computing the probability presence at the right of point x, for t—e0 .
Moreover, since we know that Bohm trajectories do not cross, T(k;) can also be
computed by counting all the transmitted particles:

T(k) = [ly, (et > o) di = far(x,) v, (x,.000 d, (24)
Xp -0
where a7(xp) is equal to unity if the particle is transmitted and zero otherwise. Let us
remind that it was not possible to reproduce the transmission and reflection coefficient
of stationary scattering states by counting transmitted Bohm trajectories (all stationary
Bohm particles are transmitted). It is in this sense that we have argued that the
stationary Bohm trajectories do not reproduce our intuitive picture of tunneling.

We have already discussed how the measurable results of standard QM can be obtained
by averaging the involved magnitude over all Bohm trajectories. However, Bohm’s
interpretation also provides other results which do not have a counterpart within the
standard framework. This is not surprisirig since the causal trajectories give a deeper
structure to the quantum theory. Within the Bohm’s interpretation, concepts such as the
momentum of particles at a given position, the arrival time or the transit time between



two points are defined for individual particles in a natural way. The distribution of these
magnitudes can also be obtained by taking into account all the trajectories with their
corresponding probabilities. All these results have not an analogue within the standard
interpretation of QM and should be regarded with caution until Bohm’s hidden theory is
confirmed or refuted by experiments. As an example of the nonconventional
information provided by the Bohm’s approach we can mention the controversial field of
tunneling times [30, 31]. References [22, 28] summarise several important aspects of the
tunneling times associated to Bohm trajectories.

4. A Quantum Monte Carlo simulator: preliminary results
4.1. General considerations

As previously indicated, in order to consider large integration boxes without
unnecessary computational burden, we have distinguished three regions in the device:
the emitter region, the quantum window and the collector region (see fig. 3). The emitter
and collector regions, close to the respective contacts and characterised by smooth
potential profiles, are treated as semiclassical regions. Here, the conventional MC
technique is used to simulate the particle dynamics. The scattering mechanisms
considered in these regions are: (i) Acoustic phonon scattering treated in the elastic
approximation, (ii) polar optical phonon scattering and (iii) ionised impurity scattering,
whose scattering rates are calculated using the usual parameters for GaAs. For
simplicity, only the lower valley with a constant effective mass has been taken into
account. On the other hand, we define the QW as the device region where the potential
changes abruptly over distances shorter than the de Broglie wavelength. In this
particular device, the QW includes the double barrier region and its surroundings. The
simulation of the electron transport in the QW is accomplished via Bohm trajectories
associated with initial Gaussian wavepackets with different central wavevectors, k¢. In
this particular simulation, 100 different initial Gaussian wavepackets (i.e. 100 different
values of k) and 400 different stationary eigenstates are considered. At each time step of
the MC procedure, A7, a table of (100x400) complex values has to be refreshed (which is
the most significant additional effort needed to incorporate Bohm trajectories in our
quantum MC simulator).

The selection of the main wavepacket parameters [x,, k¢, and oy as defined in equation
(1)] requires the determination of a matching procedure. The whole wavepacket is
included within the QW (i.e. the probability presence outside the QW is negligibly
small) and the position x. is chosen to be far enough from the first barrier (into the
emitter) so that the potential profile is practically flat and the projection onto the basis of
scattering eigenstates can be done analytically [32]. The selection of oy also requires a
physical criterion since, as has been discussed, its value is related with the electron
“size” [33]. Finally, the selection of k. is based on the conservation of the particle’s
total energy [20]. A criterion based on momentum conservation has been discarded
because the quantum potential introduces differences in the definition of the kinetic
energy inside the QW with respect to the semiclassical approach [34]. Finally, let us
notice the intrinsic difficulties associated to define such a matching criterion: we are
actually trying to make a classical and a quantum picture for electrons simultaneously
compatible.
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In fig. 3 we have represented three different trajectories to explain how the position
continuity is also guaranteed. The circles represent the positions where the classical to
quantum trajectory conversion takes place. The trajectory labelled by number 1
corresponds to one which is incident from the emitter and is finally transmitted. After
choosing the initial position, the electron travels classically inside the QW (without
scattering) until it arrives at x,. Then, it follows the corresponding Bohm trajectory x(xo,f)
until it exits the QW through the collector boundary. Similarly, trajectory number 2
corresponds to a particle incident from the emitter side which is finally reflected. We have
also depicted a trajectory incident from the collector (labelled by number 3) that it is
classically reflected at the collector boundary of the QW because, in order to save
computational time, we have only considered tunneling from emitter to collector in this
first version of the simulator.

At the present stage of the simulator, the effects of scattering in the device are only
considered in the emitter and collector regions. This is clearly the main limitation of our
simulator in its present implementation. Although in this paper we do not present our
final choice for the introduction of scattering in the QW, some discussion is certainly
required. Let us first discuss the evolution of an initial Gaussian wavepacket (equation
1) in a flat potential. In particular, the group velocity can be found as: ¥V, = 7k, /m* (a

parabolic dispersion relation is assumed) [24]. This result enables one to retrieve the
classical description of the free particle, if the momentum and spatial dispersions are
negligible (in others words, the centre of mass of the wavepacket moves like a particle
which obeys the laws of classical mechanics). On the other hand, it is already well-
known that, while the momentum dispersion is a constant of motion, the spatial
dispersion of the wavepacket varies with time and, for sufficiently long times, increases
without limit (spreading of a wave packet). This phenomenon is not limited to the
special initial Gaussian wavepacket studied here, but to any arbitrary free wavepacket
[35]. In this regard, it can be easily demonstrated that the velocity of Bohm trajectories
associated to an initial Gaussian wavepacket in a flat potential tends to zero as time
tends to infinity. Hence, Bohm particles, although they exactly reproduce the probability
presence and current densities at any time, can lead to inappropriate results because the
actual description of the system in terms of fully coherent time-dependent wavepackets
is unrealistic. This result points out that, apart from other physical reasons, the inclusion
of scattering inside the QW is an unavoidable task in order to correctly simulate
mesoscopic devices within our proposal. Nevertheless, as we will see in section 3,
reasonable results can be obtained, even without scattering, if the QW length is small
enough for the wavepacket spreading to remain within tolerable limits. Two quite
different possibilities can be suggested for the introduction of scattering mechanisms
inside the QW: (i) the definition of position-dependent scattering rates to model
microscopic scattering between Bohm trajectories as a local event, and (ii) the inclusion
of scattering in the time evolution of the density matrix of single wavepackets. Although
the actual evaluation of these possibilities is still being investigated, let us now discuss
some general ideas.

In classical MC simulators, the scattering events are local (i.e. the position of the

particle is continuous), but the scattering rates are calculated according to the Fermi
golden rule (i.e. considering the matrix elements between completely extended plane
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waves). Having proposed an extension of the simulation based on real classical-like
trajectories, it seems reasonable to look for a scattering model based on local transitions
between trajectories. In this regard, two main aspects have to be considered: (i) position-
dependent transition rates following the idea of Zimmerman ef al. [36]. and (ii) a
criterion for selecting the wavepacket (and the Bohm trajectory) after the collision
event. However, although this proposal is intuitively clear, it hits the fundamentals of
“orthodox” Copenhagen interpretation of QM. So, more conventional proposals can also
be considered. Among them, we remark the recent proposal of Rossi et al. [18] which
includes the scattering mechanisms in the evolution of the density matrix associated to
single wave-packets. The development done in section 2, describing our model in terms
of the density matrix, perfectly fits with this proposal.

4.2.- Charge, phase-space distribution and current density.

Provided that Bohm trajectories are calculated as explained in the previous sections (i.e.
correctly selecting x,, and taking the quantum potential into account), they can be
treated as classical trajectories for all purposes. Therefore, the same method can be used
to compute the charge and current densities in the QW and in the classical regions of the
device. At every time step, of duration A7, the contribution of the i-th particle to the
charge density of the n-th cell of width Axy, (x;<x<x;+Axy) is computed by evaluating
the fraction of the time step spent by the particle in this cell, #;(Ax;)/AT. In particular,
the charge contribution of the i-th particle can be equal to unity if the particle remains
inside the considered cell during the whole time step, or zero if the particle has not been
present at all. An overall sum over the total number of particles N gives the electronic

charge density associated to the specific cell at each time step:
N

o t;(Ax,)
Pr = Ax, ; AT

where o is the charge per unit area represented by each simulated particle. The obtained
profile of the electronic charge density is used to update the potential at each time step
by solving the Poisson’s equation (alternative methods for the assignment of the charge
to the device mesh can be found in [37]) . An identical procedure can be used to obtain
the momentum distribution of the particles at each cell by using an additional
momentum grid at each spatial cell. Since the exact position and momentum of each
particle (even in the QW) can be perfectly defined, we can compute the time spent by
the i-th particle in the phase-space cell (x<c<wxy,+Axy, and ky,<k<ky+Aky,) during the
simulated time 7T, tj(Ax,,Aky). In this way, a time-averaged phase-space distribution
P(n,m) can be computed as:

(25)

N
T, a2t (81, k) (26)

On the other hand, for a constant applied voltage, the instantaneous current density J(¥)
can be computed as the sum of the instantaneous velocities v;(f) of all the N(¢) particles
contained in the device:

P(n,m) =

N()
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where L is the total simulated length of the device [38]. By time averaging J(f) one
obtains the stationary current for a given applied voltage. The current density can also
be computed as the time derivative of the net charge collected at the collector or emitter
contacts, although in this way more noisy results are obtained. The ohmic model that we
use for the emitter and collector contacts in our simulation is described in detail in Ref.
[39]. Basically, if the cell adjacent to the contact is positively charged, carriers are
injected from a velocity-weighted hemi-Maxwellian distribution at equilibrium until the
cell is charge neutral. On the other hand, if the cell is neutral or negatively charged, then
the number of particles in the cell is left unchanged. Finally, let us emphasise that
although the charge and current densities are calculated from individual trajectories,
these reproduce the standard QM results. In other words, the self-consistent I-V
characteristic would be the same if we had calculated it directly from time-dependent
wavepackets, i.e. without using Bohm trajectories. These trajectories are just an
adequate tool that perfectly reproduces the dynamics of the wavepackets, providing a
natural way to extend the classical MC technique to the QW.

5. Results

In this section we discuss the results obtained with our quantum MC simulator in order
to demonstrate the feasibility of our proposal. The steady-state I-V characteristic of a
typical GaAs/AlGaAs double-barrier structure with 3 nm barriers of 0.3 eV and a 5.1
nm well has been simulated at 77 K. For simplicity, only one valley with an isotropic
effective mass of 0.067m,, has been taken into account to model the conduction band.
The ionised impurity density in the GaAs electrodes is 1.51:107 cm™, which
corresponds to a realistic doping of Ny;=5:10" cm™ at 77 K. The AlGaAs barriers and
the GaAs well have been considered to be undoped. The total simulation length is 0.25
pm divided in 366 cells. The classical emitter (68.5 nm) and collector (96.5 nm) regions
are divided into a non-uniform mesh. On the other hand, the QW (84,9 nm) is divided into
283 cells of 0.3 nm each. Let us emphasise that the integration box is much larger than
those typically used for solving the Liouville equation, since most of the device is
simulated with classical MC technique (Ref. [40] provides a larger box within the
Liouville equation). As shown in fig. 3, the QW extends asymmetrically at both sides of
the double barrier because the emitter region of the QW has to be large enough to define
the initial Gaussian wavepacket in a flat potential region.

Hereafter, in figs. 4, 5 and 6, we show several results obtained for the double barrier
structure and the simulation parameters described above. First of all, we show self-
consistent results obtained at a particular bias point of 0.39 V, corresponding to a position
close to the peak of the I-V curve. The results shown in figs. 4 and 5 were obtained by
averaging instantaneous results over 1000 iterations after reaching the steady-state particle
distribution (2000 iterations are usually required to reach it; the time step between
iterations being AT=5 15). In fig. 4(a) we represent (solid line) the electron density, which
exhibits pre-barrier oscillations and an accumulation in the well. No technical spurious
discontinuities are detected at the boundaries of the QW, this being an indication of the
smoothness of our classical-to-quantum’ matching model. In dashed line we represent the
average velocity, which is inversely proportional to the charge density, since their product
must be position-independent to assure current uniformity along the device. In this regard,
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the behavior in the collector depletion region is illustrative. It can be observed that the
electrons travel faster in the depletion region because of the high electric field and, as a
consequence, the electron density decreases in adequate proportion to maintain an uniform
current. As reported by other authors [41], a depletion is also obtained in the emitter pre-
barrier region as a consequence of the fact that electrons travel ballistically inside the QW.
In this regard, the fact that no scattering is considered inside the QW has important
consequences on the self-consistent results. To obtain an accumulation layer in the emitter
region adjacent to the first barrier, the charge associated to quasi-bound states should be
taken into account. However, since scattering in the QW is not considered yet, these states
are unreachable from Bohm trajectories. To avoid this unphysical result, a semi-classical
Thomas-Fermi approximation [42] has been used to compute this additional charge [see
fig. 4(b)]. This electron charge is added to the MC charge obtained from expression (22)
before solving the Poisson’s equation.

As we have previously discussed, in addition to results such as those obtained for charge
and current densities, the use of causal trajectories allows one to obtain more information
related to the hidden variables. In particular, the use of Bohm trajectories directly leads to
the existence of a classical-like phase-space distribution (just as in the classical MC
simulations). In fig. 5 we have represented the particle phase-space distribution at the
resonance voltage, obtained from expression (23) averaging over the last 1000 iterations.
This distribution is qualitatively quite similar to the Wigner Distribution Function (WDF)
solution of the Liouville equation [7, 8, 9, 40,41], but it must be stressed that, contrarily to
WDF, our phase space distribution is positive by construction. On the other hand, we
notice the presence of a tunneling ridge in the collector which was also reported within the
WDF framework [41]. Electrons in the collector depletion region mainly come from
Bohm trajectories associated with resonant wavepackets. Since these resonant trajectories
behave ballistically, a number of electrons with large momentum appear in the collector.
The presence of these resonant hot-electrons, which are thermalized along the collector, is
responsible for the net current density at the right boundary of the QW. On the contrary,
the whole wavevector distribution is shifted towards positive momenta in the emitter, so
as to give an uniform current density.

Finally, in fig. 6 we present the self-consistently simulated current-voltage characteristic
of the RTD described above. At the initial bias of 0.07 V, an arbitrary particle distribution
is defined, and it evolves during 3000 iterations until the steady-state is reached (lower
voltages are not considered since no electron transport from collector to emitter is
implemented). In order to reduce the transient time required to reach the steady-state, the
particle distribution obtained for one bias point is used as the seed for the next one. The
current density is determined by averaging expression (24) over the last 100 iterations. A
sharp resonant peak is obtained in the I-V curve at an applied bias of 0.39 Volts. The
whole I-V curve is very similar to that obtained from a fully coherent treatment based
on the solution of the stationary effective-mass Schrodinger equation. This is an
expected result since we are not considering scattering in the QW yet.
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6. Conclusions

An extension of the MC device simulation technique has been presented to
simultaneously deal with phase-coherence effects and inelastic scattering interactions in
QM devices. Our proposal is based on the description of the QM dynamics via Bohm
trajectories associated to time-dependent wavepackets.

The description of the constant flux of wavepackets, evolving coherently in the QW, is
developed in terms of the density matrix. It is shown that, under steady-state situations
and without considering scattering mechanisms, the non-diagonal terms of the density
matrix remain zero in the basis of Hamiltonian eigenstates. This new formalism
provides a new view for our proposal and allows to compare it with previous models.
Moreover, this new point of view suggest one way to implement the scattering
mechanisms based on recent works [18].

The basics of the Bohm’s interpretation of QM have been reviewed, and the application
of Bohm trajectories for the description of the tunneling effect has been considered. It
has been shown that stationary scattering eigenstates are not adequate for the description
of the tunneling dynamics and this has led us to the use of time-dependent wavepackets.
Although the Bohm'’s interpretation is a non conventional QM theory based on a hidden
causal structure, the results for charge and current densities are exactly the same that
would directly be obtained by applying the methods of standard QM to the
wavepackets. Since the final scope of a device simulator is the calculation of self-
consistent current-voltage relationships at the external contacts, we can conclude that
Bohm trajectories are an adequate tool for device simulation.

To illustrate the principles of our proposal, a self-consistent one-dimensional quantum
MC simulator has been developed for RTDs. The proposed method restricts the QM
treatment of electron transport to those regions of the device where the potential
significantly changes in distances of the order of the de Broglie wavelength of the
carriers (i.e. the quantum window). This has allowed us to consider large integration
boxes (which reach the asymptotic contact regions where the potential profile is flat)
without excessive computational burden. Inside the QW, Bohm trajectories associated
to Gaussian wavepackets have been considered. Outside this region, the standard
semiclassical MC technique has been implemented and, consequently, the electrons
follow classical trajectories which allows a smooth matching of the individual classical
and quantum trajectories. The use of a general and consistent QM description of
transport is a substantial improvement over previous quantum MC approaches which
considered ad-hoc models [16].

In conclusion, we have demonstrated the feasibility of using time-dependent
wavepackets and Bohm trajectories for the extension of MC simulators to deal with
quantum devices. This kind of generalization of the semiclassical MC technique has the
additional advantage of reaching the nanoelectronic range without abandoning the
intuitive picture of carrier trajectories for the simulation of electron devices. Work is in
progress towards the development of a complete quantum MC simulator for RTDs.
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Figure 1:
Non-selfconsistent -V curves for a typical RTD computed using scattering states or
Gaussian wavepackets with different values of its spatial dispersion, o,.
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Figure 2:

Bohm trajectories associated to an initial Gaussian wavepacket with a central energy of
0.22 eV and a spatial dispersion of 10 nm, impinging upon a double barrier structure
with 2 nm barriers of 0.3 eV and 7 nm well. The barriers and the initial Gaussian
wavepacket are indicated by dashed lines.
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Figure 3:

Schematic diagram of the simulated RTD showing the location of the QW and the
double barrier structure. Three different electron trajectories have been depicted to
illustrate the classical-to-quantum matching model.
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Figure 4:

Self-consistent results of 3.0/5.1/3.0 nm double barrier GaAs/AlGaAs RTD at 77 K with
an impurity density of 5-10'® em™ at a resonant bias of 0.39 eV: (a) Electron density
(solid line) and average velocity (dashed line). The upper horizontal solid line represents
the current density (in arbitrary units) computed as the product of the average charge
density per average velocity. (b) Self-consistent potential profile (dotted line) and
electron density: due to free electrons (solid line) and to quasi-bound electrons (dashed
line).

Figure 5:

Phase space distribution function along the whole device described in Fig. 4, just at the
I-V peak current. Notice the tunneling ridge (indicated by an arrow), which is originated
in the QW by resonant Bohm trajectories and progressively thermalized in the collector
by the scattering mechanisms.,

19



8

Qurert Density ( KiVan?)
8 & 8

" R

o
n

!
T

00 o1 0z @ 03 04 05 06
Applied Bias (V)

Figure 6:
1-V curve of the double barrier GaAs/AlGaAs RTD described in fig. 4(b).
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