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Abstract  
 
 

An interval observer has been illustrated to be a suitable approach to detect and isolate faults affecting complex 

dynamical industrial systems. Concerning fault detection, interval observation is an appropriate passive robust 

strategy to generate an adaptive threshold to be used in residual evaluation when model uncertainty is located in 

parameters (interval model). In such approach, the observer gain is a key parameter since it determines the time 

evolution of the residual sensitivity to a fault and the minimum detectable fault. This thesis illustrates that the whole 

fault detection process is ruled by the dynamics of the fault residual sensitivity functions and by the time evolution of 

the adaptive threshold related to the interval observer. Besides, it must be taken into account that these two observer 

fault detection properties depend on the used observer gain. As a consequence, the observer gain becomes a tuning 

parameter which allows enhancing the observer fault detection performance while avoiding some drawbacks related 

to the analytical models, as the wrapping effect. In this thesis, the effect of the observer gain on fault detection and 

how this parameter can avoid some observer drawbacks (i.e. wrapping effect) are deeply analyzed. One of the results 

of this analysis is the determination of the minimum detectable fault function related to a given fault type. This 

function allows introducing a fault classification according to the fault detectability time evolution: permanently 

(strongly) detected, non-permanently (weakly) detected or just non-detected. In this fault detection part of this 

thesis, two examples have been used to illustrate the derived results: a mineral grinding-classification process and an 

industrial servo actuator. 

Concerning the interface between fault detection and fault isolation, this thesis shows that both modules can not be 

considered separately since the fault detection process has an important influence on the fault isolation result. This 

influence is not only due to the time evolution of the fault signals generated by the fault detection module but also to 

the fact that the fault residual sensitivity functions determines the faults which are affecting a given fault signal and 

the dynamics of this fault signal for each fault. This thesis illustrates this point suggesting that the interface between 

fault detection and fault isolation must consider a set of fault signals properties: binary property, sign property, fault 

residual sensitivity property, occurrence order property and occurrence time instant property. Moreover, as a result of 

the influence of the observer gain on the fault detection stage and on the fault residual sensitivity functions, this 

thesis demonstrates that the observer gain has also a key role in the fault isolation module which might allow 

enhancing its performance when this parameter is tuned properly (i.e. fault distinguishability may be increased). As a 

last point, this thesis analyzes the timed discrete-event nature of the fault signals generated by the fault detection 

module. As a consequence, it suggests using timed discrete-event models to model the fault isolation module. This 

thesis illustrates that this kind of models allow enhancing the fault isolation result. Moreover, as the monitored 

system is modelled using an interval observer, this thesis shows as this qualitative fault isolation model can be built 

up on the grounds of this system analytical model. Finally, the proposed fault isolation method is applied to detect 

and isolate faults of the Barcelona’s urban sewer system limnimeters. 

Keywords: Fault Detection, Fault Diagnosis, Robustness, Observers, Intervals, Discrete-event Systems. 
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Resumen 
 
 

En la presente tesis se demuestra que el uso de observadores intervalares para detectar y aislar fallos en sistemas 

dinámicos complejos constituye una estrategia apropiada. En la etapa de detección del fallo, dicha estrategia permite 

determinar el umbral adaptativo usado en la evaluación del residuo (robustez pasiva). Dicha metodología, responde a 

la consideración de modelos con parámetros inciertos (modelos intervalares). En dicho enfoque, la ganancia del 

observador es un parámetro clave que permite determinar la evolución temporal de la sensibilidad del residuo a un 

fallo y el mínimo fallo detectable para un tipo de fallo determinado. Esta tesis establece que todo el proceso de 

detección de fallos viene determinado por la dinámica de las funciones sensibilidad del residuo a los diferentes fallos 

considerados y por la evolución temporal del umbral adaptativo asociado al observador intervalar. Además, se debe 

tener en cuenta que estas dos propiedades del observador respecto la detección de fallos dependen de la ganancia del 

observador. En consecuencia, la ganancia del observador se convierte en el parámetro de diseño que permite mejorar 

las prestaciones de dicho modelo respecto la detección de fallos mientras que permite evitar algunos defectos 

asociados al uso de modelos intervalares, como el efecto wrapping. Uno de los resultados obtenidos es la 

determinación de la función fallo mínimo detectable para un tipo de fallo dado. Esta función permite introducir una 

clasificación de los fallos en función de la evolución temporal de su detectabilidad: fallos permanentemente 

detectados, fallos no permanentemente detectados y fallos no detectados. En la primera parte de la tesis centrada en 

la detección de fallos se utilizan dos ejemplos para ilustrar los resultados obtenidos: un proceso de trituración y 

separación de minerales y un servoactuador industrial. 

Respecto a la interfaz entre la etapa de detección de fallos y el proceso de aislamiento, esta tesis muestra que ambos 

módulos no pueden considerarse separadamente dado que el proceso de detección tiene una importante influencia en 

el resultado de la etapa de aislamiento. Esta influencia no es debida sólo a la evolución temporal de las señales de 

fallo generados por el módulo de detección sino también porque las funciones sensibilidad del residuo a los 

diferentes posibles fallos determinan los fallos que afectan a un determinado señal de fallo y la dinámica de éste para 

cada uno de los fallos.  Esta tesis ilustra este punto sugiriendo que el interfaz entre detección y aislamiento del fallo 

debe considerar un conjunto de propiedades de dichos señales: propiedad binaria, propiedad del signo, propiedad de 

la sensibilidad del residuo a un fallo dado, propiedad del orden de aparición de las señales causados por los fallos y la 

propiedad del tiempo de aparición de estos. Además, como resultado de la influencia de la ganancia del observador 

en la etapa de detección y en las funciones sensibilidad asociadas a los residuos, esta tesis ilustra que la ganancia del 

observador tiene también un papel crucial en el módulo de aislamiento, el cual podría permitir mejorar el 

comportamiento de dicho módulo diseñando éste parámetro del observador de forma adecuada (Ej. Incrementar la 

distinción de los fallos para su mejor aislamiento). Como último punto, esta tesis analiza la naturaleza temporal de 

eventos discretos asociada a las señales de fallo generados por el módulo de detección. A consecuencia, se sugiere 

usar modelos de eventos discretos temporales para modelizar el módulo de aislamiento del fallo. Esta tesis muestra 

que este tipo de modelos permite mejorar el resultado de aislamiento del fallo. Además, dado que el sistema 

monitorizado es modelado usando un observador intervalar, esta tesis muestra como este modelo cualitativo de 

aislamiento puede ser construido usando dicho modelo analítico del sistema. Finalmente, el método propuesto de 

aislamiento del fallo es aplicado para detectar y aislar fallos en los limnimetros del sistema de alcantarillado de 

Barcelona. 
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Notation  
 
 
 
Concerning the notation used in this PhD thesis, as a general rule, scalars are annotated with cursive lower case 

letters (e.g. a, b, …), vectors with cursive bold lower case letters (e.g., y, x, . . .) and, matrices with cursive bold 

upper case letters (e.g., A, B, . . .). Regarding vectors, if not otherwise noted, they are column vectors. Besides, 

throughout this thesis document, the relation between vectors or matrices must be understood component by 

component. 

 

φ  set of fault signal 

x  system state vector 

u  measured system input vector 

y  measured system output vector 

u0  system input vector 

y0 system output vector 

fy output sensor fault vector 

fu input sensor fault vector 

fa  actuator fault vector 

f  set of faults 

����  mapping 

ŷ
 predicted system output vector 

x̂   predicted system state vector 

r  residual vector 

r0 value of the residual vector when just the model uncertainty is considered neglecting the existence 

 of faults, unknown inputs and noises. This value determines the adaptive threshold used to indicate 

 or not the existence of a fault  

o
ir  nomimal value of the ith-component of the residual r  

k   discrete time instant 

q
-1
  shift operator 

V  transfer function matrix related to the residual computational form 

O  transfer function matrix related to the residual computational form 

M  system transfer function matrix 

δ   vector indicating the difference between the measured system output and the system output 

A  model state matrix 

A+ matrix built up using those positive elements of matrix A 

A- matrix built up using those negative elements of matrix A 

B  model input matrix 
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C  model output matrix 

D system direct transmission matrix 

L  observer gain matrix 

L- matrix whose elements determine the observation gain values needed to force the isotonicity of 

 matrix A0 

L+ matrix whose elements can be chosen freely to enhance the observer fault detection performance 

 and to guarantee the observer stability 

( )ijL  component of matrix L placed in the ith-row and the jth-column 

Fy matrix related to the output sensor fault vector 

Fu matrix related to the input sensor fault vector 

Fa matrix related to the actuator fault vector 

I identity matrix 

ℜny  system output vector space 

ℜnu system input vector space 

ℜnx system state vector space 

Lp  observer gain matrix value which places all the observer eigenvalues at the origin 

G transfer function matrix that determines the influence of the measured system input vector on the 

 predicted system output 

H transfer function matrix that determines the influence of the measured system output vector on the 

 predicted system output 

fy
G  transfer function matrix that determines the influence of the output sensor fault vector on the 

 measured system output vector 

fa
G   transfer function matrix that determines the influence of the actuator fault vector on the measured 

 system output vector 

fu
G   transfer function matrix that determines the influence of the input actuator fault vector on the 

 predicted system output 

  absolute value operator. When applied to a vector or a matrix, it must be understood element by 

 element 

<, ≤, > and ≥ comparative operator. When applied to a vector or a matrix, it must be understood element by 

 element 

ˆ ( k )L=0y  value of predicted system output vector at time instant k when L=0 

rH  transfer function matrix which determines the influence of the residual vector on the predicted 

 system output vector 

( k )L=0r  value of the residual vector at time instant k when L=0 

[ ]ˆ( )ky  interval at time instant k associated with the predicted system output vector due to the model 

 uncertainty. It must be understood component by component 

[ ]( )kr  interval at time instant k  related to the residual as a consequence of the model uncertainty 
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[ ]ˆ( ) ( )k k∈y y  relation showing that the value of the measured system output vector at time instant k belongs to 

 the interval related to the predicted system output vector at this time instant. This relation must be 

 understood component by component 

θɶ  system vector parameter 

θ  time-invariant model interval parameter vector 

iθ  model interval parameter vector component placed in the ith-row 

( )A θ  interval system state matrix whose components depend on the interval parameter vector θ  

X  set of all the system states 

x0 intial value of the system state vector 

Ao observer state matrix whose expression is ( ) ( ) ( )o = −A θ A θ LC θ  

κ condition number of Ao whose value is determined by the result of the following matrix product: 

||Ao||.|| Ao
-1|| 

Bo observer input matrix whose expression is [ ]( ) ( )
o

=B θ B θ L  

u* observer input vector given by [ ]* ( ) ( ) ( )
T

k k k=u u y  

Θ  interval set bounding the interval parameter vector, ∈θ Θ  

nθℜ  model parameter vector space 

□ ˆ ( )kX  interval hull of the predicted system state set 

∞   infinte norm of a vector or a matrix 

( )ρ A   spectral radius of matrix A given by maximum absolute value of all the eigenvalues associated with 

 this matrix 

( )c
ˆ kx  mid-point of the interval  related to the predicted system state vector [ ]( )ˆ kx  

θ̂  mid-point of the interval model parameter vector [ ]θ  

max operator that allows to obtaing the maximum value of a given interval 

min operator that allows to obtaing the minimum value of a given interval 

ˆ ( k )x  upper bound of the interval related to the predicted system state vector at time instant k 

ˆ ( k )x  lower bound of the interval related to the predicted system state vector at time instant k 

λ length of the sliding time window measured in number of samples used to compute a certain 

 trajectory of the predicted system output vector / state vector or order of a predictor equivalent to a 

 given observer 

FSM theoretical fault signature matrix 

nf dimension of the fault set f 

nφ dimension of the fault signal set φ 

FIS fault information system 

DGN set of fault hypothesis fj which are consistent with the observed fault signals 

Sf residual sensitivity matrix to a fault f 

Sfy residual sensitivity matrix to an output sensor fault fy 

Sfu residual sensitivity matrix to an output sensor fault fu 
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Sfa residual sensitivity matrix to an output sensor fault fa 

df residual disturbance vector caused by a fault f  

min
fd  minimum residual disturbance caused by a fault f so that this fault can be indicated by the system 

 model 

min
ff  minimum detectable fault of the type f required by the system model so that this fault can be 

 detected 

Sf
+ left pseudo-inverse matrix of Sf 

min
fy
f  minimum detectable output sensor fault vector 

min
fu
f  minimum detectable input sensor fault vector 

min
fa
f  minimum detectable actuator fault vector 

t0 time instant at which the fault occurs 

Tw waiting time calculated from the largest transient time response from non-faulty situation to any 

 faulty situation 

 FSM01 theoretical fault signature matrix related to the fault signal binary property 

FSMsign theoretical fault signature matrix related to the fault signal sign property 

FSMsensit theoretical fault signature matrix related to the fault residual sensitivity property of a fault signal 

FSMorder theoretical fault signature matrix related to the fault signal occurrence order property 

FSMtime theoretical fault signature matrix related to the fault signal  occurrence time instant property 

factor01j occurrence probability of the fault hypothesis fj regarding the binary property of the observed fault 

 signals 

factorsignj occurrence probability of the fault hypothesis fj regarding the sign property of the observed fault 

 signals 

factorsensitj occurrence probability of the fault hypothesis fj regarding the fault residual sensitivity property of 

 the observed fault signals 

factororderj occurrence probability of the fault hypothesis fj regarding the occurrence order property of the 

 observed fault signals 

factortimej occurrence probability of the fault hypothesis fj regarding the occurrence time instant property of 

 the observed fault signals 

dj occurrence probability of the  fault hypothesis fj 

DES discrete event system 

TDES timed discrete event system 

TLTS timed labelled transition system 
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CHAPTER 1  

PhD thesis introduction 

 
 

1.1 Introduction 
 

This chapter corresponds to the introduction of this PhD thesis document in which all the work carried out to achieve 

the planned objectives is detailed. Thereby, the aim of this chapter is to describe the main motivations (Section 1.2) 

which have inspired this PhD thesis. As a consequence, the general thesis objectives (Section 1.3) will be introduced, 

although they will be more detailed in Chapter 2 as a result of an analysis of the state of art. Finally, in Section 1.4, 

an outline of the structure of the document is depicted providing an abstract of every chapter.  

 

1.2 Motivation  
 

Modern control systems are becoming more and more complex and control algorithms more and more sophisticated. 

Consequently, the issues of availability, cost efficiency, reliability, operating safety and environmental protection are 

of major importance. These issues are important to, not only normally accepted safety-critical systems such as 

nuclear reactors, chemical plants and aircrafts, but also other advanced systems employed in cars, rapid transits 

trains, etc. For safety-critical systems, the consequences of faults can be extremely serious in terms of human 

mortality, environmental impact and economic loss. Therefore, there is a growing need for on-line supervision and 

fault diagnosis to increase the reliability of such safety-critical systems. For systems which are not safety-critical, on-

line fault diagnosis techniques can be used to improve plant efficiency, maintainability, availability and reliability. In 

short, nowadays it is very important to detect and isolate faults in the shorter possible time for avoiding the faults 

propagation in the whole process, or in order to adapt the control system so that the process can satisfy its purpose 

even in the presence of faults. 

Being conscious of the importance of fault detection and fault isolation in complex industrial systems, the Advanced 

Control Systems (SAC) Group at the Automatic Control Department (ESAII) of the Technical University of 

Catalonia (UPC) is carrying out a research line in this field which has already provided successful and significant 

results in previous PhD theses, conference and journal papers. In this sense, this PhD thesis is performed into the 

trend established by this research line contributing in some planned aspects. The starting point of these contributions 

is determined by some drawbacks of the present methods and by some non-considered aspects, as it will be 

illustrated in detail in Chapter 2. As a consequence, the obtained results can be considered as a novelty into the field 

of the fault detection and isolation. 

Thus, the scope of this thesis is focused on fault detection and isolation based on interval observers applied to 

dynamical industrial systems (Chapter 2). In these days, the most of the existent contributions in fault detection and 

isolation field using analytical interval models are based either on the simulation approach or on the prediction 

approach (Chapter 2). On the other hand, as it will be pointed out in the next chapter, it is demonstrated that 
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analytical models are affected by some problems which can seriously worsen the performance of the fault detection 

and isolation module leading to wrong fault diagnosis results. In general, these drawbacks related to analytical 

models are tackled using a complementary strategy since these analytical models do not have any tuning freedom 

degrees. Nonetheless, the accurateness of this complementary strategy, in general, is only valid for a certain 

particular cases. 

On the other hand, what, in general, is not taken into account is that the simulation and prediction approaches are just 

two specific cases of the observer approach for two concrete values of the observer gain (Chapter 2). Concerning 

the observer approach, this analytical model has a set of tuning freedom degrees which may be used to tackle the 

mentioned problems and to enhance the whole fault diagnosis performance. These aspects will be analysed in this 

PhD thesis resulting in its main general objective. 

Concerning those residual properties that determine the performance regarding fault detection and isolation, in 

general, the existing methods do not consider their dynamics (i.e. fault residual sensitivity property (see Gertler, 

1998)). Conversely, they just consider the steady-state value of these properties. This fact may lead to inaccurate 

fault detection and fault isolation predictions resulting in a poor fault diagnosis performance of the considered 

approach. This PhD thesis demonstrates that this residual fault diagnosis properties (mainly, residual sensitivity to a 

fault, minimum detectable fault and adaptive threshold (Chapter 2)) have a time evolution and when it is considered, 

it will be possible to predict exactly when a fault will be detected or not by the observer model according to its tuning 

configuration: this is the time evolution of the fault signals generated by the fault detection module. Concerning fault 

isolation, when the dynamics of these properties are considered, it is illustrated that the fault isolation module 

performance is enhanced increasing its related fault distinguishability. 

As a last aspect, this PhD thesis analyses the kind of model that should be applied to model the fault isolation 

module. In general, the present approaches model this module according to the nature of the monitored system 

model: when an analytical model is used, then, the fault isolation module is modelled using analytical techniques 

while when the nature is qualitative, then, fault isolation uses a qualitative approach. This thesis analyse the nature of 

the fault signals generated by the fault detection module concluding its timed discrete-event character. As a 

consequence, it is proposed to model this module using a timed discrete-event approach, in spite the monitored 

system has been modelled analytically. This fact allows enhancing the fault isolation performance reducing the 

probability of giving wrong fault diagnosis results. 

Although it is not the main objective of this thesis, it will be proposed a new fault detection and isolation approach 

which takes into account all the results provided by the previous mentioned analyses. 

 

1.3 General objectives 
 

As a result of the previous section, the general objectives of this PhD Thesis are enumerated in the following. It must 

be noticed that it is in Chapter 2 where they are explained in detail as a result of the analysis of the state of the art. 

Thus, the main objectives are to analyse: 

(a) The influence of the observer gain on the fault detection module performance. 

(b) The influence of the observer gain on the fault isolation module performance. 

(c) The influence of the observer gain on the interface between the fault detection and isolation modules. 

(d) The influence of the dynamics of the model fault diagnosis properties on the fault diagnosis process. 

(e) The most suitable fault isolation model type according to the nature of the fault signals generated by the fault 

detection module.  
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1.4 Thesis structure 
 

In this section, the structure of this PhD thesis document is described detailing its different parts and chapters. 

Thereby, for each chapter, a brief abstract and its related published papers are provided.  

Apart from the Chapter 2 where a state of the art in fault detection and isolation is described, this PhD thesis 

document is formed by one part related to all the planned objectives associated with the fault detection module and 

by another one related to the interface between fault detection and fault isolation, and to the fault isolation module 

itself.  Thus, the Part I whose title is “Robust fault detection using linear interval observers and predictors” is 

formed by the following chapters: 

• Chapter 3: Observer gain effect in linear interval observer-based fault detection. 

• Chapter 4: Designing fault detection linear interval observers to avoid the wrapping effect. 

• Chapter 5: Approximating fault detection linear interval observers using λ-order interval predictors. 

Concerning the Part II whose title is “Fault diagnosis using interval observers”, its associated chapters are: 

• Chapter 6: On the integration of fault detection and isolation in model based fault diagnosis. 

• Chapter 7: Towards a better integration of passive robust interval-based FDI algorithms. 

• Chapter 8: Fault isolation using linear interval observers: influence of the observer gain. 

• Chapter 9: Fault diagnosis using linear interval observers: obtaining FSM matrices. 

• Chapter 10: Fault diagnosis using a timed discrete event approach based on interval observers. 

In the following subsections, for every chapter, a brief abstract and the related published papers are provided. 
 

1.4.1 Chapter 3: Observer gain effect in linear interval 
observer-based fault detection 

 

In this chapter, an interval observer is illustrated to be a suitable passive robust strategy to generate an adaptive 

threshold to be used in residual evaluation when model uncertainty is located in parameters (interval model). In such 

approach, the observer gain plays an important role since it determines the minimum detectable fault for a given type 

of fault and allows enhancing the observer fault detection properties. The aim of this chapter is to analyze the 

influence of the observer gain on the time evolution of the residual sensitivity to a fault. Thereby, as a result of this 

sensitivity study, the minimum detectable fault time evolution for a given type of fault and the interval observer fault 

detection performance could be determined. In particular, three types of faults according their detectability time 

evolution are introduced: permanently (strongly) detected, non-permanently (weakly) detected or just non-detected. 

An example based on a mineral grinding-classification process is used to illustrate the results derived. 

This chapter is based on the following published papers: 

• Meseguer, J., Puig, V., Escobet, T. (2006a) “Observer gain effect in linear observer-based fault detection”  

IFAC SAFEPROCESS’06. 

• Meseguer, J., Puig, V., Escobet, T. (2007b). “Observer Gain Effect in Linear Interval Observer-based Fault 

Detection” CDC’07 . New Orleans. USA. 

• Meseguer, J., Puig, V., Escobet, T. (2008c). “Observer Gain Effect in Linear Interval Observer-based Fault 

Detection” Journal of Process Control (JPROCONT-D-07-00232). 
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1.4.2 Chapter 4: Designing fault detection linear interval 
observers to avoid the wrapping effect 

 

As illustrated in Chapter 3, in model based fault detection is very important to analyze how the effect of model 

uncertainty is considered when determining the optimal threshold to be used in residual evaluation. In case of model 

uncertainty is located in parameters (interval model), an interval observer is shown in that chapter to be a suitable 

strategy to generate this adaptive threshold. However, interval observers can be affected by the wrapping effect when 

low computational algorithms, such as region-based approaches coming from the interval community, are used to 

determine the predicted output interval. Chapter 4 shows that the wrapping effect might be avoided forcing the 

observer gain to satisfy the isotonicity condition. Then, the effect of this observer condition on the time evolution of 

the residual sensitivity to a fault and the minimum detectable fault, which were introduced in Chaper 3, is analyzed 

in order to see whether the fault detection performance is enhanced or not. Finally, an example based on an industrial 

servo actuator will be used to illustrate the derived results. 

Regarding the related published papers, they are: 

• Meseguer, J., Puig, V., Escobet, T. (2006b) “Observer gain effect in linear interval observer-based fault 

detection”  IFAC SAFEPROCESS’06. 

• Meseguer, J., Puig, V., Escobet, T. (2008a) “Robust Fault Detection Linear Interval Observers Avoiding the 

Wrapping Effect”. IFAC World Congress 2008, Seul, Korea. 

 

1.4.3 Chapter 5: Approximating fault detection linear interval 

observers using λ-order interval predictors 
 

Interval observers can be described by an ARMA model while λ-order interval predictors by a MA model. Since an 

ARMA model can be approximated by a MA model, this allows establishing the equivalence between interval 

observers and interval predictors. Chapter 5 deals with the fault detection application and focuses on the equivalence 

between the λ-order predictor and the interval observer with the same fault detection performance. The predictor 

approach is developed to obviate the wrapping effect commonly encountered with interval observer approaches. 

Given a particular linear interval observer, a λ-order interval predictor can be found such that its behaviour is 

equivalent regarding fault detection and besides, it does not suffer from the wrapping effect.  Thus, if the interval 

observer fulfils the isotonicity property, this λ-order interval predictor can be computed using two point-wise 

trajectories corresponding to the upper and lower bound of each uncertain parameter. Finally, an example based on 

an industrial servo actuator will be used to illustrate the derived results.  

This paper is based on the following published paper: 

• Meseguer, J., Puig, V., Escobet, T., Tornil, S. (2007c) “Approximating Fault Detection Linear Interval 

Observers Using  l-Order Interval Predictors” Proceedings of  European Control Conference 2007 (ECC’07). 

Kos, Greece. 

 

1.4.4 Chapter 6: On the integration of fault detection and 
isolation in model based fault diagnosis 

 



 27

This chapter based on (Puig et al, 2004c) motivates the work which is carried out in the following chapters regarding 

the interface between fault detection and fault isolation. Thereby, in this chapter it is pointed out that model-based 

fault diagnosis can be divided in two subtasks: fault detection and fault isolation. Fault detection is based on 

checking the consistency between the modelled and observed behaviours while fault isolation tries to isolate the 

component that is affected by the fault. Since these two tasks can be executed in parallel, an interface between them 

should be considered. Typically, the result of the fault detection tests represented as a binary vector is used as the 

input to be analysed by the fault isolation module. However, when the result of each of these tests is codified 

applying a binary approach, some information is lost. In this chapter, the drawbacks of this classical approach are 

pinpointed suggesting some possible improvements. 
 

1.4.5 Chapter 7: Towards a better integration of passive robust 
interval-based FDI algorithms 

 

In this chapter, a new interval model-based fault diagnosis method which improves the integration between fault 

detection and fault isolation modules is proposed. This method is based on the proposed one in (Puig et al, 2005b) 

and applies a new interface between both stages taking into account the information about the degree of fault signal 

activation and the dynamics associated with each fault signal. The fault isolation process uses a combination of four 

theoretical fault signature matrices. They store the knowledge about the faulty system behaviour which is determined 

by the properties of the fault signals caused by the considered fault set: binary property, sign property, fault residual 

sensitivity property and occurrence order property. Finally, the proposed method is applied to detect and isolate 

faults of the Barcelona’s urban sewer system limnimeters. 

This paper is based on the following published paper: 

• Puig, V., Quevedo, J., Escobet, T., Meseguer, J. (2006b). “Toward a better integration of passive robust 

interval-based FDI algorithms”. IFAC SAFEPROCESS’06. Beijing. China. 
 

1.4.6 Chapter 8: Fault isolation using linear interval observers: 
influence of the observer gain 

 

In fault diagnosis, the integration between model-based fault detection and fault isolation plays a significant role in 

the final result given by the fault diagnoser. The reason for this importance is because model-based fault detection 

methods have inherent problems as lack of fault indication persistence, noise sensitivity or model errors and as a 

result, fault detection performance is not as good as it might be required in order to give a reliable fault diagnosis 

result. In addition, this fact might also confuse the fault isolation module when a set of fault signals must be observed 

so that the right fault diagnosis result can be derived.  

As demonstrated in Chapter 3, when using interval observers in fault detection, the observer gain has a key influence 

on the quality of the fault indication. As a consequence, this chapter shows the observer gain has also an important 

influence on the fault isolation result since it does depend on the time evolution of the fault signals which can only be 

observed (detected) by the fault detection module. 

This paper is based on the following published paper: 

• Meseguer, J., Puig, V., Escobet, T., Quevedo (2006c)“Observer gain effect in linear interval observer-based 

fault isolation”. International Workshop on Principles of Diagnosis (DX 06). 
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1.4.7 Chapter 9: Fault diagnosis using linear interval 
observers: obtaining FSM matrices 

 

This chapter is based on the interval model-based fault diagnosis method described in Chapter 8 which improves the 

integration between fault detection and fault isolation considering the degree of fault signal activation and using a 

combination of several theoretical fault signature matrices which store the theoretical properties of fault signals 

caused by the occurrence of a certain fault. This chapter focuses on how to obtain those matrices, when an interval 

observer is considered in the fault detection stage, using a procedure based on the fault residual sensitivity concept.  

This issue allows studying the influence of the fault detection module on the fault isolation stage. Regarding the fault 

isolation method proposed in Chapter 8, a new fault signal property is considered: the fault signal occurrence time 

instant which let derive a new theoretical fault signature matrix: FSMtime. Moreover, this chapter considers the time 

evolution of the fault signal dynamical properties. Finally, the proposed fault diagnosis approach is applied to detect 

and isolate faults of the Barcelona’s urban sewer system limnimeters (level meter sensors). 

This paper is based on the following published paper: 

• Meseguer, J., Puig, V., Escobet, T., Quevedo, J. (2007a) “Sensor Fault Diagnosis using Linear Interval 

Observers” Workshop on Principles of Diagnosis DX’07. Nashville, TN, USA. 

 

1.4.8 Chapter 10: Fault diagnosis using a timed discrete event 
approach based on interval observers 

 

This chapter proposes a fault diagnosis method using a timed discrete-event approach based on interval observers 

which improves the integration of fault detection and isolation modules. The interface between fault detection and 

fault isolation considers the degree of fault signal activation and the occurrence time instants of the fault signals 

using a combination of several theoretical fault signature matrices which store the knowledge of the relationship 

between fault signals and faults. This chapter proposes to implement the fault isolation module using a timed discrete 

event approach. In this way, the diagnosis result will be enhanced since the occurrence of a fault generates a unique 

sequence of observable events (fault signals) that will be recognized by the isolation module implemented as a timed 

discrete event system. The states and transitions that characterize such a system can be inferred directly from the 

relation between fault signals and faults. The proposed fault diagnosis approach is applied to detect and isolate faults 

of the Barcelona’s urban sewer system limnimeters (level meter sensors). 

This paper is based on the following published paper: 

• Meseguer, J., Puig, V., Escobet, T. (2008b) “Fault Diagnosis using a Timed Discrete Event Approach based on 

Interval Observers”. IFAC World Congress 2008, Seul, Korea. 

• Meseguer, J., Puig, V., Escobet, T. (2008d) “Fault Diagnosis using a Timed Discrete-Event Approach based on 

Interval Observers”. Submitted to IEEE SMC Transactions - Part A. 

• Meseguer, J., Puig, V., Escobet, T. (2009) “Fault Isolation Module Implementation using a Timed Discrete-

Event Approach”. IFAC SAFEPROCESS 2009, Barcelona, Spain. 
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CHAPTER 2  

State of the Art and Objectives 

 

 

2.1 Introduction 
 
Since the beginning of 1970s, research in fault diagnosis has been gaining increasing consideration world-wide in 

both theory and application (Reiter, 1987; Patton et al., 1998; Frank et al., 1997; Gertler, 1998; Blanke et al., 2003; 

Kościelny et al., 2004; Cordier et al., 2004; Rinner et al., 2004; Isermann, 2006). This development is still mainly 

stimulated by the trend of automation towards more complexity and the growing demand for higher availability and 

safety of control systems. However, a strong impetus also comes from the side of modern control theory that has 

brought forth powerful techniques of mathematical modelling, state estimation and parameter identification that have 

been made feasible by the spectacular progresses of computer technology. 

A ‘fault’ is to be understood as an unexpected change of the system function although it may not represent physical 

failure or breakdown. Such a fault disturbs the normal operation of an automatic system, thus causing an 

unacceptable deterioration of the performance of the system or even leading to dangerous situations. A monitoring 

system which is used to detect faults and diagnose their location and significance in a system is called a ‘fault 

diagnosis system’. Such a system normally consists of the following tasks: 

• Fault detection: to make a binary decision – either that something has gone wrong or that everything is fine. It is 

the identification of the fault appearance and the determination of the moment of its detection 

• Fault isolation: to determine the location of the fault, e.g., which sensor or actuator has become faulty? It 

consists in determining the kind, place and time of the appearance of the fault; it follows the detection of that 

fault. 

• Fault identification: to estimate the size and type or nature of the fault. It determines the fault size and its 

changeability in time; it follows the isolation of that fault. 

Fault detection is an absolute must for any practical system and isolation is almost equally important while fault 

identification, on the other hand, may not be essential if no reconfiguration action is involved. Hence, fault diagnosis 

is very often considered as fault detection and isolation, abbreviated FDI, in the literature. 

In practice, the most frequently used diagnosis method is to monitor the level, or trend, of a particular signal, and 

taking action when the signal reaches a given threshold. A traditional approach to fault diagnosis in the wider 

application context is based on ‘hardware redundancy’ methods which use multiple lanes of sensors, actuators, 

computers and software to measure and/or control a particular variable. Typically, a voting scheme is applied to the 

hardware redundant system to decide if and when a fault has occurred and its likely location amongst redundant 

system components (Favre, 1994). The major problems of this approach are the extra equipment and maintenance 

cost and, furthermore, the additional space required accommodating the equipment. 

In view of the conflict between the reliability and the cost of adding more hardware, it is sensible to attempt to use 

the dissimilar measured values together to cross check each other, rather than replicating each hardware individually; 

this is the concept of ‘analytical redundancy’. 
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In analytical redundancy schemes, the resulting difference generated from the consistency checking of different 

variables is called as a ‘residual signal’. The residual should be zero-valued when the system is normal, and should 

diverge from zero when a fault occurs in the system. Analytical redundancy makes use of a mathematical model of 

the monitored process and is therefore often referred to as the ‘model-based approach’ to fault diagnosis. This 

consistency checking in analytical redundancy is normally achieved through a comparison between a measured 

signal and its estimation. The estimation is generated by the mathematical model of the system being considered. 

Consequently, the residual becomes a fault indicator which reflects the faulty situation of the monitored system. 

In general, model-based diagnosis methods has been developed for many model domains, e.g. models from the AI-

field which are often logic based (Hamscher et al., 1992), or from Discrete Event Dynamic Systems for which 

automata descriptions are common (Larsson, 1999; Sampath et al., 1995, 1996). A third model domain that is 

commonly considered are models typically found in the field of signals and systems, e.g. models involving 

continuous variables in continuous or discrete time whose typical model formulations are differential / difference 

equations, transfer functions, and/or static relations. This last model domain based on analytical models is typically 

used in Model-based FDI methods applying the already mentioned concept of ‘analytical redundancy’. 

The major advantage of the model-based approach is that no additional hardware components are needed in order to 

realize a fault diagnosis algorithm. This algorithm can be implemented in software on the process control computer.  

 
Fig. 2.1 Comparison between hardware and analytical redundancy schemes 

 

As pointed out previously, Model-based FDI methods makes used of the mathematical model of the monitored 

system. However, a perfectly accurate and complete model of a physical system is never available because the 

presence of model uncertainty, unknown disturbances and noises. Hence, there is always a mismatch between the 

actual process and its mathematical model even if there are no process faults. These discrepancies constitute a source 

of false and missed alarms which can corrupt the FDI system performance. The effect of modelling uncertainties is 

therefore the most crucial point in the model-based FDI concept, and the solution of this problem is the key for its 

practical applicability (Frank, 1991; Patton et al., 1996; Patton et al., 1997). An FDI scheme designed to provide 

satisfactory sensitivity to faults, associated with the necessary robustness with respect to modelling uncertainty, is 

called a ‘robust FDI’ scheme. A number of methods have been proposed to tackle this problem, for example, the 

unknown input observer, eigenstructure assignment, optimally robust parity relation methods (Chen et al., 1999). 

However, the research is still under the way to develop the practically applicable methods. 

Regarding the structure of the Chapter 2 remainder, a scope of fault detection and fault isolation is given in Section 

2.2. Then, Section 2.3 focuses on the state of art of fault detection using system models while Section 2.4 does on the 

state of art of model-based fault isolation. Both Section 2.3 and Section 2.4 point out the weaknesses and drawbacks 

of the current approaches describing briefly how they will be tackled by this thesis. Thereby, the goals of this thesis 

are established in these sections through the analysis of the current methods. Finally, in Section 2.5, all the objectives 
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will be enumerated introducing the fault diagnosis method proposed by this thesis which will be developed in the 

following chapters. 

 

2.2 Scope of fault detection and fault isolation  
 

As it was mentioned in the introduction, fault detection is the process of generating fault signals (φ) on the grounds 

of the process variables (x) in order to detect faults . Thereby, detection algorithms should generate fault signals 

which ought to contain information about faults. The mapping of the space of process variables into the space of fault 

signals as well as the evaluation of these signals in order to detect and indicate the fault takes place during the 

detection stage. Besides, it should be taken into account that in the diagnostics of processes, fault detection is 

automatically performed by a diagnosing computer. 

On the other hand, fault isolation is carried out on the basis of fault signals generated by the detection module. The 

result of isolation is a diagnosis showing the faults or states of the system. The knowledge of the relationship that 

exists between the fault signals and the faults or the technical states of the system is necessary in order to perform the 

fault isolation. Thus, a completely reliable and unequivocal presentation of the existing faults or the definition of the 

diagnosed system state is not always possible due to incomplete and uncertain knowledge of the system, limited 

distinguishability  of faults or states, uncertainty of fault signals, etc. 

In general, fault detection and isolation methods may be classified into two major groups (Venkatasubrarnanian et 

al., 2003a): those which do not utilize the model of the plant or the process to express the knowledge about its 

physics and those which do . Regarding the last group, there are two mainly approaches: the analytical one where the 

process or plant understanding is expressed in terms of mathematical functional relationships between the inputs and 

outputs of the system and the qualitative one where these relationships are expressed in terms of qualitative 

functions. The analytical approach is mainly used by the known FDI methodology which is based on engineering 

disciplines as control theory and statistics. Conversely, another important methodology is the known as DX which is 

based on the fields of computer science and artificial intelligence applying, typically, qualitative models. 

Nonetheless, this thesis is not focused on comparing the FDI and DX methodologies. The techniques analyzed in this 

thesis are just classified according to  its application (fault detection or fault isolation). 

Although this thesis is devoted to the model-based methods, the model-free techniques will be briefly reviewed in the 

following. 
 

2.2.1 Model-free methods 
 

In this approach, the fault detection and isolation methods do not use a model of the plant and they range from 

physical redundancy and special sensors through limit-checking and spectrum analysis to logical reasoning. 

• Physical redundancy. In this approach, multiple sensors are installed to measure the same physical quantity. 

Any serious discrepancy between the measurements indicates a sensor fault. With only two parallel sensors, 

fault isolation is not possible. With three sensors, a voting scheme can be built which allows to isolating the 

faulty sensor. Physical redundancy involves extra hardware cost and extra weight, the latter representing a 

serious concern, for example, in aerospace applications. 

• Special sensors may be installed explicitly for detection and isolation. A sort of these sensors are the known as 

limit sensors (measuring e.g., temperature or pressure), which perform limit checking using additional hardware. 
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Other special sensors may measure some fault-indicating physical quantity, such as sound, vibration, elongation, 

etc. 

• Limit checking. In this approach, plant measurements are compared by computer to preset limits. Exceeding the 

threshold indicates a fault situation. 

• Spectrum analysis of plant measurements may also be used for detection and isolation. Most plant variables 

exhibit a typical frequency spectrum under normal operating conditions; any deviation from this is an indication 

of abnormality. Certain types of faults may even have their characteristic signature in the spectrum, facilitating 

fault isolation. 

• Logic reasoning techniques form a broad class which is complementary to the methods outlined above, in that 

they are aimed at evaluating the fault signals obtained by the detection hardware or software. The simplest 

techniques consist of trees of logical rules of the “IF - fault signal φi - AND - fault signal φj - THEN – 

conclusion” type. Each conclusion can, in turn, serve as a fault signal in the next rule, until the final conclusion 

is reached. 
 

2.2.2 Model-based methods 
 

Fig. 2.2 shows the general fault diagnosis scheme using systems models. The general idea of fault diagnosis model-

based methods is to compare the available measurements of the monitored system with their corresponding 

predictions obtained using a system model, either analytical or qualitative (Venkatasubrarnanian et al., 2003a). If 

they differ significantly, then it may be concluded that a fault has occurred. Nonetheless, the problem with this 

approach is that a precise description of a system that takes the effects of faults into account is usually impossible, 

and even if such a description exists, the dependence that characterises particular faults cannot be defined on the 

grounds of it. Therefore, different kinds of simplified models are used in fault detection and isolation. 

When classifying models applied to the diagnostics of processes (systems), it is possible to distinguish models of 

systems applied to fault detection and models used for fault isolation. Models used for fault detection describe 

relationships existing within the system between the input (u) and output (y) signals, and allow detecting changes 

(fault signals φ) caused by faults. Models used for fault isolation define the existing relationship between fault 

signals φ  and faults f, which will be represented by (φ � f).  

Analytical models as well as fuzzy and neural ones are applied to fault detection. These models usually describe the 

system in the normal state what allow to calculate residuals reflecting divergences that may exist between the 

observed operation of the system and the normal operation defined by the model through the computed system 

predictions ( ŷ ). These residuals are most often calculated as differences between the measured and the modelled 

output signals. In a non-faulty state, residual values should oscillate around zero. In consequence, residual values 

different than zero denote fault signals which should allow to detect and isolate the fault.  

Conversely, residual values are rarely used for fault isolation. The binary or multi-value evaluation of residual values 

is usually applied, and an inference about faults is carried out on the basis of fault signals which were converted in 

such a way. Consequently, a classifier is needed for the conversion of residual continuous signals (r) into quality 

fault signals (φ) (r � φ). 
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Models applied to fault isolation should map the space of fault signals into the space of faults (f) (φ � f).Thereby, 

and such as it was for the fault detection case, these relationships can be defined on the basis of analytical/qualitative 

modelling, taking into account the effect of faults, training or using an expert’s knowledge. 

As it was pointed out previously, there are two mainly approaches in model-based fault detection and isolation: the 

analytical model-based approach which just uses analytical models and the qualitative model-based approach which 

just applies qualitative models of the system plant. 
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Fig. 2.2 Fault diagnosis diagram using system models 

 
2.2.2.1 Analytical model-based methods 

  

The analytical redundancy (Isermann, 2005) of the monitored system measurements exists when an additional value 

of a process variable is calculated on the grounds of a mathematical model that connects the estimated variable with 

other measured signals. Mathematical models are applied to the calculation of process variable values instead of the 

application of redundant measuring devices in the system structure. Thereby, analytical redundancy is used both for 

fault detection and for fault isolation. The analytical model of the diagnosed system contains all relationships 

existing among process variables what allow to obtain all physical redundant relationships needed to detect and 

isolate faults. 
 

2.2.2.2 Qualitative model-based methods 
 

These methods can be applied both for fault detection and for fault isolation and mainly they are used because it may 

often be difficult and time consuming to develop a good mathematical model. As a consequence of this issue, there 

have been many attempts to use cruder descriptions (Reiter, 1987; Lunze, 1994; Frank 1996; Cordier et al., 2004) as 

pointed out in (Venkatasubrarnanian et al., 2003b). The model is usually developed based on some fundamental 

understanding of the physics of the process. In quantitative models this understanding is expressed in terms of 

mathematical functional relationships between the inputs and outputs of the system. In contrast, in qualitative models 
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these relationships are expressed in terms of qualitative functions centered around different units in a process. The 

qualitative approach to fault diagnosis can be motivated by the following circumstances: 

• Faults can not be reasonably described by analytical models. 

• The on-line information available is not given by quantitative measurements of the system output but by 

qualitative assessments of the current operation conditions. 

• If the system structure or parameters are not precisely known and diagnosis has to be based primarily on 

heuristic information no quantitative model can be set up. 
 

2.2.3 Type of faults and disturbances 
 

In this section, what is meant by faults will be described and the tasks of fault detection and isolation will be 

mentioned. According to (Gertler, 1998),  faults are performance deteriorations, malfunctions or breakdowns in the 

monitored plant or in its instrumentations which may be represented as unknown extra inputs acting on the system 

(additive faults) or as changes of some plant parameters (multiplicative faults). While in many cases the 

classification of a particular fault as additive or multiplicative follows naturally from its nature, sometimes it may 

also be arbitrary. In general, the faults of interest belong to one of the following categories: 

• Additive process faults. These are unknown inputs acting on the plant, which are normally zero and which cause 

a change in the plant outputs independent of the known inputs. Such faults best describe plant leaks, loads, etc. 

• Multiplicative process faults. These are changes (abrupt or gradual) in some plant parameters. They cause 

changes in the plant outputs, which depend also on the magnitude of the known inputs. 

• Sensor faults. These are discrepancies between the measured and actual values of individual plant variables. 

These faults are usually considered additive (independent of the measured magnitude). 

• Actuator faults. These are discrepancies between the input command of an actuator and its actual output. 

Actuator faults are usually handled as additive. 

A disturbance is also an unknown extra input acting on the plant. Thus, physically there is no difference between a 

disturbance and certain faults. The distinctions is, indeed, subjective; we consider as faults those extra inputs the 

presence of which we wish to detect while we consider as disturbances those which we want to ignore and be 

unaffected by (Gertler, 1998). Some authors refer to the disturbances as ‘nuisance variables’. 

Faults and disturbances will be handled as unspecified deterministic functions of time while noises are unknown 

extra inputs, just like the additive disturbances, but they are assumed to exhibit random behaviour. They are also 

assumed to have zero mean; any nonzero mean can be handled as a separate disturbance. The noises are also 

nuisance variables the effect of which needs to be suppressed.  

Modelling errors are errors or uncertainties in the parameters of the monitored system. Just like the multiplicative 

faults, they are discrepancies between the true system and the model but they represent an undesirable interference 

with fault diagnosis. Thus modelling errors can be considered as multiplicative disturbances. Note that in general it is 

difficult to distinguish parametric faults from certain modelling errors though their long-term behaviour may provide 

some clue: parametric faults develop in the course of system operation while some model errors may have been there 

from the beginning. 

Usually, the fault detection and isolation activity takes place on-line, in real time. The two tasks, detection and 

isolation, may be performed in parallel or sequentially. In some diagnostic systems, a single decision conveys not 

only the fact that a fault is present but also its location. In other systems, the detection task is running permanently 

while the isolation task is triggered only upon the detection of the presence of a fault. Particularly, in fault detection 

and isolation, the following conventions are usually adopted: 
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• It is assumed that faults are not present initially in the systems but arrive at some later time instant.  The faults 

are generally described by deterministic time-functions which are unknown. 

• Faults are those unknown inputs which we wish to detect and isolate while disturbances are nuisances which we 

wish to ignore. 

• Any noise, originating from the plant or from the sensors and actuators, is considered random with zero mean 

(any nonzero mean is handled as a fault or disturbance). 

• Modelling errors are discrepancies between the model (model parameters) and the true system. They may be 

present ever since the origins of the system or may arise due to operating-point changes. Model errors are 

nuisances the effect of which we want to suppress. They may be considered as multiplicative disturbances, in 

contrast to multiplicative faults which are also discrepancies between the model and the true system, but which 

we wish to detect. 

On the other hand, the detection performance of the diagnostic technique is characterized by a number of important 

and quantifiable benchmarks, namely: 

• Fault sensitivity, that is, the ability of the technique to detect faults of reasonably small size; 

• Reaction speed, that is, the ability of the technique to detect faults with reasonably small delay after their 

arrival; 

• Robustness, that is, the ability of the technique to operate in the presence of noise, disturbances and modelling 

errors, with few false alarms. 

Those benchmarks arise from the interaction between faults on the one hand and noise, disturbances and model 

errors on the other hand, and are affected by the detection algorithm.  

Regarding the isolation performance, its ability to distinguish faults depends on the physical properties of the plant, 

on the size of faults, noise, disturbances and model errors and on the design of the algorithm. Multiple simultaneous 

faults are, in general, more difficult to isolate than single faults. Also, the interplay between faults and disturbances, 

noise and model errors may lead to uncertain or incorrect isolation decisions. Further, some faults may be non-

isolable from one another because they act on the physical plant in an undistinguishable way. 

 

2.3 Fault detection using system models 
 

2.3.1 Model-based fault detection using residuals 
 

In general, model-based fault detection methods use system (process) models in order to generate residuals 

(Himmelblau, 1978; Gertler, 1998). Thus, Fig. 2.3 illustrates the general and conceptual structure of a model-based 

fault detection module which consists in two main parts: the residual generation stage and the residual value stage. 

This two-stage structure was first suggested by (Chow and Willsky, 1980) and now is widely accepted by the fault 

diagnosis community. The main purposes of these two main stages are described as follows:  

• Residual Generation: Its purpose is to generate a fault-indicating signal-residual, using available input and 

output information from the monitored system. This auxiliary signal is designed to reflect the onset of a possible 

fault in the analyzed system. The residual should be normally zero or close to zero when no fault is present, but 

should be distinguishably different from zero when a fault occurs. This means that the residual is 

characteristically independent of system inputs and outputs, in ideal conditions. The algorithm used to generate 

residuals is called a residual generator. Residual generation is thus a procedure for extracting fault signals (φ) 

from the system, with the fault signal represented by the residual signal (r). The residual should ideally carry 
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only fault information and to ensure reliable fault detection, the loss of fault information in residual generation 

should be as small as possible. 

•  Residual value evaluation: Every fault detection algorithm that makes use of an analytical, fuzzy or neural 

model contains the decision-making part, in which the evaluation of the residual value takes place. In this stage, 

the decision about the existence of a fault is made together with a possible indication of this event generating the 

corresponding fault signal. This signal should carry information about the effect of the fault on the residual set 

so that the fault isolation module can isolate this fault. A decision process may consist in a simple threshold test 

on the instantaneous values or moving averages of the residuals (Puig et al., 1999; Ploix et al., 2000), or it may 

consist of methods of statistical decision theory, e.g., generalized likelihood ratio (GLR) testing or sequential 

probability ratio testing (SPRT) (Willsky et al, 1976; Basseville et al, 1988; Tzafestas and Watanabe, 1990; 

Basseville and Nikiforov, 1993). On the other hand, this residual evaluation can also be carried out with the use 

of fuzzy or neural logic (Korbicz et al., 1999) or qualitative methods (Kuipers, 1994; Leicht et al., 1994). The 

residual evaluation related to these approaches allow taking into account the uncertainty of fault signal values 

caused by disturbances in the system, measurement noise, modelling errors, and difficulties with the definition 

of threshold values. 
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Fig. 2.3 Conceptual structure of model-based fault detection using residuals 

 
Model-based fault detection is concerned mainly with two important properties: 

• On-line fault diagnosis in which the diagnosis is carried out during system operation. This is because the system 

input-output information required by model-based fault detection module is only available when the system is in 

operation. 

• Robustness against disturbances, noise and modelling uncertainty that arises from incomplete knowledge and 

understanding of the monitored processes. Consequently, the residual generated to indicate faults may also react 

to the presence of noise, disturbances and model errors. Desensitizing the residuals to these sources is a most 

important aspect in the design of the detection and diagnosis algorithm. In particular: 

� To deal with the effects of noise, the residuals may be filtered and statistical techniques may be applied to 

their evaluation. 

� Disturbance decoupling may be built into the design of the residual generator, but it competes with isolation 

enhancement for the available design freedom. 
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� Robustness in the face of modelling errors is the most fundamental problem in model-based fault detection 

and isolation. Several methods are available which usually rely on some sort of optimization: the known 

techniques are effective only under limited circumstances. 

In model-based fault detection, the generation of residuals needs to be followed by residual evaluation, in order to 

arrive at detection and isolation decisions. Because of the presence of noise and model errors, the residuals are never 

zero, even if there is no fault. Therefore, the residual evaluation requires testing the residuals against thresholds, 

obtained empirically or by theoretical considerations. As it was already mentioned, another approach to achieve 

residual evaluation robustness would be the use of a fuzzy or neural logic. 

On the other hand, to facilitate fault isolation, the residual generators are usually designed (enhanced residuals) 

exhibiting structural or directional properties. The isolation decisions then can be obtained in a structural (Boolean) 

or directional (geometric) framework, with or without the inclusion of statistical elements.  

Concerning residual generation methods in model-based fault detection and isolation, four main approaches can be 

considered within the group of analytical methods applied to fault detection. In the next lines, few ideas about those 

methods are given: 

• Diagnostic Observers. The basic idea behind the diagnostic observer approaches is to estimate the outputs of 

the system from the measurements (or a subset of measurements)  by using either Luenberger observers in a 

deterministic setting (Beard, 1971; Jones, 1973) or Kalman filters in a stochastic setting (Mehra and Peschon, 

1971; Willsky, 1976 and 1986; Basseville, 1986). Then, the weighted output estimation error is used as a 

residual. Thereby, while the flexibility in selecting the observer gains is used to minimize the noise effect on the 

fault detection result in the Kalman approach, this freedom is applied to enhance the residual fault detection and 

isolation properties in the Luenberger approach. As a result, the dynamics of the fault response can be 

controlled, within certain limits, by placing the poles of the observer.  This trend was followed by a long line of 

researchers, including (Frank and Keller, 1980), (Frank and Wünnenberg, 1989), (Viswanadham and Srichander, 

1987), (Patton and Kangethe, 1989), (Chen et al., 1999), (Puig et al., 2003a), etc. 

• Parity (consistency) relations. Parity relations are rearranged direct input-output model equations, subjected to 

a linear dynamic transformation. The transformed residuals serve for detection and isolation. The residual 

sequence is coloured, just like in the case of observers. The design freedom provided by the transformation can 

be used for disturbance decoupling and fault isolation enhancement. Also, the dynamics of the response can be 

assigned, within the limits posed by the requirements of casualty and stability. The parity relation approach to 

generate the residual, based upon consistency checking on system input and output data over a time window, 

was originally proposed by (Mironovski, 1979 and 1980). The approach was later proposed by (Chow and 

Willsky, 1984), and has been expressed in several different versions: (Gertler, 1988), (Chen and Zhang, 1990). 

The latest development regarding parity relation approaches can be found in (Gertler, 1997), (Gertler, 1998), 

(Chen et al., 1999), (Ploix et al., 2006), etc. 

• Parameter estimation. Another FDI approach is the use of parameter estimation which is based directly on 

system identification techniques.  In 1984, Isermann illustrated that process fault detection and isolation can be 

achieved using the estimation of non-measurable process parameters and/or state variables in his survey paper 

(Isermann, 1984). Parameter estimation is a natural approach to the detection and isolation of parametric 

(multiplicative) faults. A reference model is obtained by first identifying the plant in fault-free situation. Then, 

the parameters are repeatedly re-identified on-line. Deviations from the reference model serve as a basis for 

detection and isolation. Parameter estimation may be more reliable than the analytical redundancy methods, but 

it is also more demanding in terms of on-line computation and input excitation requirements and consequently, 
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this approach will not be considered in the thesis. The latest development and applications can be found in 

(Isermann, 1997), (Isermann, 2005), (Puig et al., 2005d), (Ingimundarson et al, 2005) . 

As it has been realized recently, there is a fundamental equivalence between parity relation and observer based 

designs (Gertler, 1997). In consequence, the two techniques produce identical residuals if the generators have been 

designed for the same specification. A relationship, though weaker, has been found between parity relations and 

parameter estimation. 

Within the group of qualitative methods applied to fault detection, the main residual generation approach is based on 

the use of neural and fuzzy models (Korbicz et al., 1999; Ayoubi, 1994). Neural and fuzzy models allow estimating 

the values of system variable. Then, residual is generated as a difference between the measurement of the system 

output and its estimation given by the neural or fuzzy model. A vital advantage of fuzzy and neural techniques is the 

possibility of non-linear system modelling. Models of systems in the state of complete efficiency are obtained on the 

grounds of experimental data with the use of different training techniques. This is especially important when 

analytical models of the system are not known. Such models reflect well system operation within the signal changes 

range on the grounds of which they are trained. 

The advantage of fuzzy and neural networks is the possibility to connect expert’s knowledge with the available 

measurement data. The expert’s knowledge is used to define the structure and initial values of the model parameters. 

The model is a set of rules that can be interpreted and verified by the expert. The number of rules in fuzzy models 

grows rapidly with the growth of the number of inputs and the number of fuzzy sets for particular inputs. This limits 

their application to relatively simple systems. 
 

2.3.2 Analytical model-based fault detection techniques 
 

In this thesis, only the analytical model-based fault detection approach will be considered. As pointed out in Section 

2.2.2, this approach uses a mathematical model of the monitored system in order to estimate the system outputs. 

Comparing these estimations ˆ ( )ky  with the real system outputs y(k) (Residual generation stage), a set of residuals 

r(k) is obtained. Then, analyzing this residual set, a decision about the existence of a fault f(k) is made (Residual 

value evaluation stage) generating the corresponding fault signals φ(k) in case the residual evaluation determines a 

fault is affecting the monitored system. 
 

2.3.2.1 Residual generation and evaluation 
 

As mentioned above, analytical model-based fault detection is based on generating a residual comparing the 

measurements of physical variables ( )ky  of the process with their estimation ˆ ( )ky  provided by the associated 

system model:  

ˆ( k ) ( k ) ( k )= −r y y               (2.1) 

Thereby, residuals r(k) will be generated at every time instant k by the residual generator. According to (Gertler, 

1998), a residual generator is a linear discrete dynamic algorithm (a computational “system”) operating on the plant 

observables, that is, on the command values of the controlled inputs and on the measured values of the measured 

inputs and outputs. Its generic form is 

1 1( ) ( ) ( ) ( ) ( )k q k q k− −= +r V u O y            (2.2)  

where: r(k) is the vector of residuals, V(q-1) and O(q-1) are transfer function matrices. However, this equation is not 

necessarily a residual generator; it has to return zero-valued residuals when there are no faults, no nuisance inputs 
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and no modelling errors. Thereby, considering a linear discrete dynamic system, its nominal input-output relationship 

(without faults, disturbances and noise) is set by 

1( ) ( ) ( )k q k−=y M u              (2.3)  

Then, when there are no faults, no nuisance inputs and no modelling errors, the Eq. (2.3) must be satisfied and a 

proper residual generator must return zero-valued residuals. In consequence,  

1 1 1( ) ( ) ( ) ( ) ( )q k q q k− − −+ =V u O M u 0           (2.4) 

has to be fulfilled for all u(k),  requiring 

1 1 1( ) ( ) ( )q q q− − −= −V O M             (2.5) 

As a result, the generic residual generator (Eq. (2.2)) can be also written as 

1 1( ) ( ) ( ) ( ) ( )k q k q k− − = − r O y M u           (2.6) 

Both Eq. (2.2) ) and Eq. (2.6) are known as the computational form of the generic residual generator (Gertler, 1998). 
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Fig. 2.4 Generic residual generator:  computational form 

 

Conversely, it should be noticed that the term  

1( ) ( ) ( ) ( )k k q k−= −δ y M u             (2.7) 

of Eq. (2.6) is due to the effect of faults and nuisance inputs. In consequence, the generic form of the residual 

generator can be also written in terms of these effects resulting in its internal or unknown-input-effect form (Gertler, 

1998): 

1( ) ( ) ( )k q k−=r O δ              (2.8) 

In an ideal situation, where the monitored system may only be affected by known faults and the estimations of the 

model have no errors regarding the behaviour of the system in a non-faulty scenario, the residual value evaluation 

stage will be able to indicate a fault affecting to the monitored system while the residual generator computes non-

zero-valued residuals at every time instant. In short, while 

( )k =r 0 ,               (2.9) 

a fault will not be indicated. Otherwise, the residual value evaluation stage will generate the corresponding fault 

signals (φ(k)) so that the fault isolation module can diagnose the detected fault. 

Being more realistic, the residual r(k) will never be zero-valued since the monitored system is affected by nuisance 

inputs which can not be either controlled or avoided and furthermore, the system model does have errors regarding 

the system performance. Consequently, if condition (2.9) were used to determine the existence of a fault, the fault 

detection module could indicate faults which do not actually exist. 

In fault detection and isolation, robust residual generators must be used which do only react in presence of faults and 

do not in presence of nuisance inputs or because of modelling errors affecting to the considered model. At the 
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moment, residual generator robustness is the most important aspect when designing a fault detection and isolation 

algorithm and it is still an open investigation field. This issue will be introduced in Section 2.3.2.3. 

As it can be inferred from Eq. (2.1), the residual generation stage does depend on the model type used to estimate the 

system output since this stage requires this estimation so that the residual can be generated. In general, different 

model types will provide different estimations at every time instant k. In consequence, the residual value evaluation 

stage is also affected by the model type. The reason is that this stage is based on checking if Eq. (2.9) holds or not, 

assuming an ideal situation. As a result of the two previous statements, it is concluded that the whole fault detection 

performance of the fault diagnostic system does depend on the type of analytical model used to estimate the system 

output. 

Conversely, as indicated by the residual computational form given by Eq. (2.6), the time evolution of the computed 

residual does strongly depend on the transfer function O(q-1) and consequently, if this function were properly 

designed, the fault detection performance could be improved in order to achieve a better fault indication and to 

generate a sequence of fault signals φ(k) which allow to isolate the fault easily. Moreover, it must be taken into 

account that O(q-1) has an influence on the residual generator structure and therefore, on the fault signals which can 

be observed when a given fault occurs. In this way, a proper design of this function can add more fault 

distinguishability in order to improve the reliability of the result given by the diagnostic system. In the following, it 

will be shown that this function is determined by the used system model. 
 

2.3.2.2 Residual generation using observers 
 

In general, in model-based fault detection, the system model can be used in three different approaches, in simulation, 

in prediction and in observation:  

• Simulation approach. This is an open loop approach and the real measurements are not used to correct the 

estimation given by the model. 

• Prediction approach. This is a closed loop approach and the system output measurement y(k) will be used to 

correct the estimation given by the model. 

• Observation approach. This is a semi-closed loop where the system output y(k) will be partially used in order to 

correct the estimation given by the model in simulation. 

According to (Gertler, 1997), the simulation and prediction approaches (parity equation approach) can be seen as 

two particular cases of the observation approach for two specific values of the observer gain. Thus, in this thesis, the 

observer approach will be considered. Moreover, concerning the residual generation stage, (Gertler, 1998) shows the 

equivalence between the observer approach and the parity equations (simulation and prediction approach) in relation 

to the structure of the obtained residual generator and consequently, a fault detection analysis of the observer 

performance will also allow to obtain information about the performance of predictors and simulators when 

particularizing the observation gain matrix for the two values used for these two approaches. 

Assuming that the system is completely observable, the general expression of a linear discrete-time observer in its 

state-space form is given by 

ˆ ˆ ˆ( k 1) ( k ) ( k ) ( ( k ) ( k ))

ˆ ˆ( k ) ( k )

+ = + + −
=

x Ax Bu L y y

y Cx
         (2.10) 

where y(k)∈ℜny, u(k)∈ℜnu, x(k)∈ℜnx  are the system output, input and the state-space vectors respectively; 

ˆ ( k )y ∈ℜny and ˆ ( k )x ∈ℜnx are the estimated system output and state-space vectors respectively; A, B and C are the 
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state, the input and the output  matrices respectively; L is the observer gain matrix designed to stabilise the observer 

and to guarantee a desired performance regarding fault detection. It must be noticed that two extreme cases can be 

considered in the observer definition. First, the observer becomes a simulator using L=0 and as a consequence, its 

eigenvalues are equal to the ones of the considered system (L=0) (Chow et al, 1984) , but it can only be used when 

the system is stable. Second, the observer becomes a predictor (Chow et al, 1984) when the observer gain  ( p=L L ) 

is selected such that all the observer eigenvalues are at the origin (“deadbeat observer” ) (Patton et al, 1991). 

Moreover, the observer model has the capability of  placing its eigenvalues between these two extreme cases using a 

set of observation gains (L=Lo) which are different from the ones mentioned previously. Regarding the simulation 

and prediction cases, (Gertler, 1997) sets that they correspond to the well-known parity equations and they are 

embedded in the observer equation (2.10). 

In the following, the goal is to obtain the expression of the residual computational form (Eq. (2.6)) when an observer 

model is used in order to obtain the transfer function O(q-1) since, as mentioned above, this function rules the most of 

the fault detection and isolation properties of the considered fault diagnosis model. Thereby, in order to obtain this 

result some transformations of the interval observer state-space form must be done. 

Thus, considering the residual expression given by Eq. (2.1) and taking into account that the residual r(k) can be seen 

as an extra model input, the observer state-space form can be rearranged as 

[ ] ( )
ˆ ˆ( 1) ( )

( )

ˆ ˆ( ) ( )

k
k k

k

k k

 
+ = +  

 

=

u
x Ax B L

r

y Cx

           (2.11) 

Then, assuming zero initial conditions, the input-output form of the observer using the q-transform is 

( ) ( )1 1
ˆ ( k ) q ( k ) q ( k )

− −= − + −y C I A Bu C I A Lr          (2.12) 

Thus, defining ˆ ( k )L=0y  as the value of ˆ ( k )y  when L=0 (simulation value) and 1
r ( q , )−H θ  as 

1 1
r ( q ) ( q )− −= −H C I A L             (2.13) 

the interval observer input-output form can be written as the sum of the estimation given by the simulation approach 

(L=0) and a term which depends on the residual r(k): 

1
r

ˆ ˆ( k ) ( k ) ( q ) ( k )−= +L=0y y H r             (2.14) 

Thus, it must be noticed that the norm of the steady-sate value of 1
r ( q )−H  is proportional to the norm of the 

observation gain L. 

Conversely, taking into account that the general expression of the residual is given by Eq. (2.1) and using the observer 

output estimation given by Eq. (2.14), the residual can be re-written as 

1
r

ˆ( k ) (q ) ( k )ˆ( k ) (k ) (k ) (k ) −−= − = − L=0y H rr y y y         (2.15) 

Then, grouping the terms associated with the residual to the left side of the equation, 

( )1
r

ˆ(q ) ( k ) ( k )( k )−+ = − L=0H r yI y           (2.16) 

Examining the right-sided term of this equation and considering the definition of the residual (Eq. (2.1)), it must be 

seen that this term corresponds to the residual generated by the simulation approach which can be written down as  

( k )L=0r . Thus, taking into account that 1
r ( q )−H  is a square matrix and considering ( )1

r ( q , )−+ H θI  has a inverse 

matrix, this equation can be expressed as 

( ) 1
1

r( k ) ( q ) ( k )
−−= + L=0r H rI            (2.17) 
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This equation sets the relation between the residual related to the simulation approach and the residual generated by 

an observer. As seen, this relation is ruled by a transfer function which depends on the observer gain L. As a 

consequence, it can be said that the fault detection and isolation properties of the considered analytical model are 

determined by L. Conversely, this equation such as shown above and all the derived conclusions regarding the 

influence of the observer gain on the observer fault detection performance can be considered as a novelty presented 

in this thesis and they will be analyzed in Chapter 3. 

Comparing the residual computational form given by Eq. (2.6) with the residual form Eq.(2.17), the expression of the 

transfer function O(q-1) for the general case of an observer can be derived: 

( ) ( )1 11 1 1( ) ( ) ( )rq q q
− −− − −= = −+ +O H C I A LI I         (2.18) 

taking into account the next equality 

( ) 11 ˆ( ) ( ) ( ) ( ) ( ) ( )( ) ( )k q k k k q kk k
−−− = = = −− −L=0 L=0y M u r y C I A Buy y     (2.19) 

Then, considering the simulation approach (L=0), the computational form of the residual is 

( ) 1
( k ) q (k )( k )

−−= −L=0r C I A Buy           (2.20) 

If the prediction approach (L=Lp) is used, 

( )( ) 1
1 1( k ) q (q ) ( k )( k )

−− −
=  − − = + −

pL L pr C I A L C I A BuI y        (2.21) 

Lastly, for the observer case (L=Lo) approach,  

( )( ) ( )
1

1 1
( k ) q q ( k )( k )

−− −
=

 − −
 

= + −
oL L or C I A L C I A BuI y        (2.22) 

Such as it can be seen in equations (2.20) and (2.21), when considering the simulation or prediction approach, the 

structure of the residual generator is fully established and as a result, so does its fault detection and isolation 

performance. Thus, using these methods there is nothing it can be done to try to enhance this performance and to 

avoid some fault diagnosis problems (lack of fault indication, wrapping effect, noise effect, etc ) which will be 

pointed out in the following section. On the other hand, when using the observer approach, the structure of its 

residual generator is not determined since it depends on the value of the observer gain matrix Lo which can be chosen 

to place the observer eigenvalues between the origin (L=Lp) and the ones related to the monitored system (L=0). In 

consequence, this matrix could be designed to try to improve the observer fault detection and isolation performance 

and to try to avoid some of the fault diagnosis problems. In this line, the Kalman filter approach designs the 

observation gain to minimize the noise effect. In consequence, thinking about designing L to minimize the effect of 

some fault diagnosis drawbacks does not seem to be an unreality. At the same time, a proper design of L could 

improve some fault diagnosis properties like adding more fault distinguishability or more fault indication persistence. 

In this way, one of the goals of this thesis is analyzing the effect of the observation gain on the observer fault 

detection and isolation performance. 
 

2.3.2.3 Robustness issues 
 

As it was mentioned in Section 2.3.2.1, when building a model of a complex system to monitor its behaviour, there is 

always a mismatch between the modelled and real behaviour since some effects are neglected, some parameters have 

tolerance, some errors in parameters or in the structure of the model are introduced in the calibration process, etc. 

Many times, these modelling errors could be bounded and included in the fault detection model. There are several 

ways of modelling the uncertainty associated with the model. For instance, an approach providing a nominal model 

plus the uncertainty on every parameter bounded by intervals determines what is known as interval model approach 
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(or worst case model approach). In the FDI and automatic control community, this type of uncertainty is called 

structured because it is assumed that the structure of the model is known but not the model parameters, in opposition 

to a more general type of uncertainty which considers the structure of the model is not completely known but only 

bounded. This type of uncertainty is known as unstructured. In FDI community a fault detection algorithm able to 

handle uncertainty is called robust. The robustness of fault detection algorithm is the degree of sensitivity to faults 

compared to the degree of sensitivity to uncertainty (Patton et al, 1994).  

Research on robust fault detection methods has been very active in the FDI community these last years (Chen et al, 

1999). One family of approaches, called active, is based on generating residuals which are insensitive to uncertainty, 

while at the same time sensitive to faults. This approach has been extensively developed these last years for several 

researchers using different techniques: unknown input observers, robust parity equations, H∞, etc. In (Chen and 

Patton ,1999) there is an excellent survey of the active approach. 

On the other hand, there is a second family of approaches, called passive, which enhances the robustness of the fault 

detection system at the residual value evaluation stage. This approach is still under research. Several techniques have 

been used, but most of them are based on using an adaptive threshold at the residual value evaluation stage. 

According to (Gertler, 1998), there is no algorithm which is robust under arbitrary model error conditions. To design 

an algorithm for robustness, rather detailed information is necessary about the nature of errors and uncertainties, and 

such information is seldom available. But even if it is, what can be achieved is rather limited. Generally perfect 

decoupling of the residuals from uncertainties it is only possible in a limited number of model parameters. 

Adaptive thresholding techniques were first proposed by (Clark,1989), who suggests an empirical relation between 

the operation point and the corresponding detection threshold. Further approaches are due to (Emami-Naemi et al, 

1988), who develops a theoretical relation between the operation point, the model uncertainty and the detection 

threshold. This approach is based on H∞ techniques and it was further explored by (Frank et al, 1991) and (Ding et al, 

1991). Another approach for adaptive threshold generation was proposed by (Horak et al, 1988) and it is based on a 

dynamical optimisation assuming parametric uncertainty.  

The passive approach has the advantage over the corresponding active approach that it can achieve robustness in the 

detection procedure in spite of the number of uncertain parameters in the model, and without using any 

approximation based on the simplification of the underlying parameter representation. 

The passive approach based on adaptive thresholds is based not in avoiding the effect of uncertainty in the residual 

through perfect decoupling, but in propagating the parameter uncertainty to the residual, and then bounding the 

residual uncertainty using an interval. 
 

2.3.2.4 Passive robust approach 
 

This thesis focuses on the adaptive thresholding passive robustness approach using interval models. The use of this 

type of models has received several names depending on the field of research: in circuit analysis is known as worst-

case or tolerance analysis, in automatic control as set-membership, bounding approach or robust. Nowadays, 

several research groups actually are following this approach. To the best of our knowledge these groups are: 

• the group of University of Girona (UdG) (Armengol et al, 2000)  

• the group of LAAS-Toulouse  (Travé et al, 1997) 

• the group of Technical University of Catalonia (UPC) (Puig et al, 1999), (Puig et al, 2000), (Puig et al, 2002a), 

(Puig et al, 2003a), (Puig et al, 2003b), (Puig et al, 2004a), (Puig et al, 2004b), (Puig et al, 2005a) 

• and two groups of CRAN-Nancy (Adrot et al, 2000), (Ploix et al, 2000), (Hamelin et al, 2000), (Ploix et al., 

2006) 
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The problem of adaptive threshold generation in discrete time-domain using interval models can be formulated 

mathematically as the need of computing at every time instant a system output estimation using an interval [ ]ˆ( )ky . 

This interval does only have to wrap the system output when this system is not affected by any fault. Therefore, 

while the system output interval estimation contains the system output, none fault will be indicated.  

[ ]ˆ( ) ( )k k∈y y              (2.23) 

In general, this approach compares the system output y(k) with its interval estimation [ ]ˆ( )ky , provided by the 

interval model, computing at every time instant the interval residual [r(k)] as 

[ ] [ ]ˆ( ) ( ) ( )k k k= −r y y             (2.24) 

.Then, derived from Eq. (2.23) and Eq. (2.24), the residual value evaluation stage does not indicate any fault while 

[ ]( )k∈0 r             (2.25) 

holds. Thereby, it can be said that the fault detection test is based on propagating the model uncertainty to the 

residual set (Puig et al 2002) and checking the value of the resultant interval residual according to Eq. (2.25). While 

the interval residual satisfies Eq. (2.25), no fault can be indicated since the residual value can be due to the model 

uncertainty. Of course, this approach has the drawback that those faults producing a residual deviation smaller than 

the residual uncertainty will be missed (“non-detectable faults”).  

When considering a discrete linear time-invariant interval model, there are two main approaches to calculate the 

system output estimation interval at every time instant: the set-based approach and the trajectory-based approach. 

In the next section, these two methodologies are described describing different algorithms for each family and 

pointing out their drawbacks and strengths. 
  

2.3.2.5 Interval observation using set and trajectory-based approaches 
 

As mentioned in the previous section, passive robust fault detection based on intervals observers needs to compute at 

every time instant a system output estimation interval [ ]ˆ( )ky  which is used to obtain the residual interval [r(k)] (Eq. 

(2.24)) required by the residual value evaluation stage in order to indicate or not the presence of a fault (Eq. (2.25)) and 

to generate the corresponding fault signals. Thereby, when considering a discrete linear time-invariant interval model 

like the interval observer given by Eq. (2.10), there are two main approaches to calculate the system output interval 

estimation at every time instant: the set-based (or region-based) approach and the trajectory-based approach. In this 

section, these two methodologies are described showing different algorithms for each family and pointing out the 

drawbacks and strengths of both approaches. 

In general, the exact set produced by an interval observer (Eq. (2.10)) of the characteristics mentioned previously will 

require a big effort in order to be calculated using a computer (Adrot et al, 2003) and normally, it is approximated by, 

for example, a box, a polytope or an ellipsoid. Then, this type of simulation or state observation is known as set-

membership but when the calculated set is the interval hull of the exact set, then, it is called interval simulation or 

state observation (Puig et al, 2005c). In the literature, algorithms can be classified according to if they compute the 

approximate set of estimated states using one step-ahead iteration based on previous approximate sets (set-based 

approaches)(Adrot et al, 2003; El Ghaoui et al, 1999; Puig et al, 2001), or a set of point-wise trajectories generated 

by selecting particular values of the observer interval parameter vector  θ  using heuristics or optimisation 

(trajectory-based approaches) (Puig et al, 2002b; Puig et al, 2003b; Tibken et al, 1993). In the first case, the set of 

states ( )kX  is approximated at each iteration and some propagation algorithm is used to produce the approximate 

set of states ( 1)k +X . This approach is affected by several problems (specially, in case that the approximate set is 
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the interval hull): wrapping effect, range evaluation of an interval function (in this case, the state-space function) 

and the uncertain parameter time dependency. However, in the second case, the interval hull of ( )kX  is built 

following real trajectories generated by selecting particular values of  θ . Consequently, this approach overcomes the 

wrapping effect and preserves the uncertain parameter time dependency, but the problem of the interval function (in 

this case the trajectory function ( , , , , )k ox u y x θ ) range evaluation still remains. On the other hand, set-based 

approaches present a lower computationally complexity than trajectory-based approaches do and consequently, they 

seems to be more suitable for real-time applications. 
 

2.3.2.5.1 Interval observation 
 

According to (Puig et al, 2005a), the interval observation problem regarding the computation of the system output 

estimation interval can be established in the same way than the interval simulation problem presented in (Puig et al 

2003b).  This can be done since an interval observer can be seen as an interval simulator with two inputs: u(k) and 

y(k).  Thus, considering this point of view and the observer Eq. (2.10), the interval observer can be reorganised as: 

( ) [ ] *

( )
ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

ˆ ˆ( ) ( ) ( )

o o

k
k k k k

k

k k

 
+ = − + = + 

 

=

u
x A θ LC θ x B θ L A θ x B θ u

y

y C θ x

     (2.26) 

where ( ) ( ) ( )o = −A θ A θ LC θ  is the state-space observer matrix, [ ]( ) ( )o =B θ B θ L  is the resultant input matrix,  

[ ]* ( ) ( ) ( )
T

k k k=u u y , the resultant input and ∈θ Θ   is a set of time-invariant model parameters bounded by an 

interval set { }, 1, ,n
i ii i nθ θ θ θ θ= ∈ℜ ≤ ≤ = ⋯Θ θ  which represents the uncertainty about the exact knowledge of real 

system parameters. In consequence, derived from the interval observer structure shown by Eq. (2.26), the observer 

gain matrix L must be designed to stabilise matrix Ao instead of matrix A and to guarantee a desired performance 

regarding fault detection for all ∈θ Θ , as mentioned previously. 

In line with (Puig et al, 2005a), the solution set of a system which can be described by the interval observer  (2.26) for 

the time interval [0,N] consists of [ ]{ }ˆ ˆˆ ˆ ˆ0, ) ( , , , , ) : 0, , ,o o o( N k k N= ∈ ∈ ∈X x u y x θ θ Θ x X , where ˆ ˆ( , , , , )okx u y θ x  

denotes the solution of (2.26) at time k for some parameter vector Θθ∈  and some initial condition ˆˆ
o o∈x X  at time 

k=0. The set of values for a certain time instant k will be referred as the reachability set and denoted by 

{ }ˆ ˆˆ ˆ ˆ( ) ( , , , , ) : ,o o ok k= ∈ ∈X x u y x θ θ Θ x X         (2.27) 

Thus, given the observer gain matrix L guaranties the model stability for all Θθ∈ , the reachability set ˆ ( )kX  will be 

bounded by region for each [0, )k ∈ ∞ . 

Then, the interval observation problem consists in computing the interval hull of the reachability set ˆ ( )kX , i.e., the 

smallest interval vector containing it: ˆ ˆ( k ) ( k )⊆X X▱▱▱▱ , where □ is used to denote the interval hull of ˆ ( )kX , for all 

k∈ [0,N].  The sequence of interval vectors □ ˆ ( )kX  with k∈ [0,N] will be called the interval solution (or envelopes) 

of the interval observer. 
 

2.3.2.5.2 Interval observation drawbacks 
 

When the interval observation approach is used in fault detection and isolation, several drawbacks must be taken into 

account. In general, they a related to the type of algorithm applied to compute at every time instant the system output 
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estimation interval and the corresponding residual. In the following, these drawbacks are described analysing how 

they can be avoided tuning properly the interval observer model. 
 

(a) Wrapping effect 

 

The wrapping problem is related to the use of a crude approximation of the interval observer solution set and its 

iteration using one-step ahead recursion of the state-space observer function, i.e, a region based approach. This 

problem does not appear when the estimated trajectory function ˆ( , , , )kx u y θ , i.e., a trajectory based approach, is 

used. On the other hand, when using the one-step ahead recursion approach, at each iteration, the true solution set 

)k(X̂  is wrapped into a superset feasible to construct and to represent the real region on a computer (in this paper, 

its interval hull □ ˆ ( )kX ).  Since the overestimation of the wrapped set is proportional to its radius, a spurious growth 

of the enclosures can result if the composition of wrapping and mapping is iterated (Kühn, 1998). This wrapping 

effect can be completely unrelated to the stability characteristics of the observer, and even stable observers could 

exhibit exponentially fast growing envelopes which are useless for practical purposes. Not all the interval observers 

are affected by this problem. It has been shown that those that are monotone with respect to states do not present this 

problem. These kinds of observers (systems) are known as isotonic (Cugueró et al, 2002) or cooperative (Gouzé et 

al, 2000). In case of observers whose state function is a contractive mapping (see definition 2), the overestimation of 

the wrapped set does not increase along the time (Puig et al, 2003a). 

Definition 1 (“isotonicity property”): A discrete-time system satisfies the isotonicity property if the variation of the 

state function respects all the states and parameters is positive (Cugueró et al, 2002). 

Definition 2 (“contractivity property”): A function : n nℜ ℜ→f  is a contraction mapping if there is a number s, 

with 0<s<1, so that for any vectors x and y it is satisfied that ( ( ), ( )) ( , )d f f sd≤x y x y  where d(x,y) is the diameter 

function and s is the contractivity. When linear functions of the type f=Ax are considered, s∞ =A
 

According to the isotonicity and contractivity characteristics defined previously, a stable ( ( ) 1ρ <A , where  ( )ρ A  is 

the spectral radius1) interval discrete-time system can be classified in 3 categories regarding the wrapping behavior: 

• Isotonic systems: When the isotonicity property is achieved or in other words, all ( )A θ  matrix elements are 

positive. In this case, region and trajectory based algorithms obtain the same estimation of states. 

• Non-isotonic but contractive systems: Although isotonicity is not achieved, the state matrix is a contractive 

mapping  

1
∞

<A                 (2.28) 

and consequently, the state estimation suffers from wrapping effect when the region based approach is used but 

because of the contractivity property, the state overestimation does not increase in time: stable wrapping effect. 

• Non-isotonic and non-contractive systems: In spite of the system stability, the state estimation when using 

region based approach is unstable and consequently, a fast growing of the enclosures appears. In this case, 

trajectory based approach must be used, in spite of its high complexity.  

Comparing the enclosures produced by previous systems when using the region-based approach, the next 

relation is set: 

Isotonicity (without wrapping) ⊂  Contractivity (with stable wrapping) ⊂  Stability (with instable wrapping). 

 

                                                 
1 The spectral radius of a given matrix is the maximum absolute value of all the eigenvalues of this matrix. 
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(b) Temporal variance on uncertain parameters 

 

An additional issue should be taken into account when an interval observer is used: uncertain parameter time-

invariance is not naturally preserved using one-step ahead recursion algorithms. If one-step recursion scheme is used 

(ElGhaoui et al, 1999), the system state set X(k+1) is approximated by a set computed using a previous set which is 

an approximation of the system state region X(k) and using the uncertain parameter set ΘΘΘΘ. Then, the relation between 

parameters and states is not preserved since every parameter contained in the parameter uncertainty region ΘΘΘΘ is 

combined with every state of the X(k) approximation set when determining the approximation set of X(k+1).  Thus, 

recursive schemes based on one-step are intrinsically time varying. Parameter time-invariance can only be 

guaranteed if the relation between parameters and states is preserved at every time instant. One possibility to 

preserve this dependence is to derive a functional relation between states and parameters at every time instant that 

will transport the system from the initial state to the present state. Then, two approaches about the assumption of the 

time-variance of the uncertain parameters are possible: 

•  the time-varying approach which assumes that uncertain parameters are unknown but bounded in their 

uncertainty intervals and can vary at each time step since one-step ahead recursion algorithms are used. This is 

the approach followed by (ElGhaoui et al, 1999) and (Puig et al, 2001), among others. 

•  the time-invariant approach which assumes that uncertain parameters are unknown but bounded in their 

uncertainty intervals and guarantee that they can not vary at each time step since a functional relation between 

parameters and states is used instead of a one-step ahead recursion. This is the approach followed by (Tibken, 

1993), (Horak et al, 1988) and (Puig et al, 1999), among others. 

Although the set-based (region-based) algorithms belong to the time-varying approach, the parameter and state 

relation is preserved at every time instant when monitoring an isotonic system. This statement is guaranteed by the 

interval arithmetic. Then, if a system is not isotonic, an isotonic observer might be used in order to avoid this 

problem and thereby, the system output interval estimation could be computed using a set-based approach which has 

a low computational complexity. 
 

(c) Range evaluation of an interval function 

 

When predicting the behaviour of a dynamic system with an interval observer, the need to evaluate the interval hull 

of the system state interval estimation at each time step implies the computation of the range of an interval function.  

Many approaches to interval observation need to evaluate the range of an interval function at every time instant in 

order to determine the system state interval estimation. One possibility for evaluating this range is to apply directly 

interval arithmetic substituting operations between real numbers by operations between intervals (Moore, 1966). 

But, although the ranges of basic interval arithmetic operations are exactly the ranges of the corresponding real 

operations, this is not the case if the operations are composed since multi instances of the same variable are not taken 

into account. For instance: allow to us consider [ ]1,1x −∈ , then the interval for xxz −=  should be 0, but when 

applying interval arithmetic it is [ ]2,2− . This phenomenon is termed as interval dependence or multi-incidence 

problem (Moore,1966). One possibility to avoid this problem is to combine the use of interval arithmetic with a 

branch and bound algorithm (Hansen, 1992). Another possibility to evaluate the range of an interval function is to 

solve two optimisation problems (a minimisation and a maximisation) using numerical methods. But, classical 

numerical optimisation algorithms can only guarantee local optimums since they are gradient based. Global 
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optimums can only be obtained if the optimisation problems associated with the range evaluation are convex 

(Bazaraa, 1993). However, in general, to guarantee global optimums in non-convex optimisation problems, global 

optimisation algorithms based on branch and bound should be used (Puig et al., 1999). 

Lastly, derived from the interval arithmetic properties, this problem only has an effect on those non-isotonic models 

which are computed using a set-based algorithm. As analyzed above, when computing isotonic models using a set-

based approach, the relation between parameters and states is preserved and consequently, this interval function 

range evaluation problem also vanishes. Then, when the monitored system is not isotonic, the use of an isotonic 

observer allows avoiding the range evaluation problem in spite of using the set-based approach. 
 

2.3.2.5.3 Set-based approaches to interval observation 
 

One of the first approaches to compute a estimation of the system state region X(k+1) using a set-based method was 

set by (Moore, 1966). This algorithm, when applied to a linear discrete-time interval model as (2.26), computes the 

system state interval estimation [ ]( 1)ˆ k +x  at time instant k+1 using as initial condition the system state interval 

estimation [ ]( )ˆ kx  at time instant k. It is based on computing the natural interval extension of the state-space function 

by replacing each occurrence of ( )ˆ kx  and θ  by its corresponding interval and each standard function by its interval 

evaluation (absolute algorithm) (Moore, 1966): 

[ ] [ ] [ ] [ ]( 1) ( ) ( ) ( ) ( )o o *
ˆ ˆk k k+ = +x A θ x B θ u          (2.29) 

However, as explained in Section 2.3.2.5.2, replacing real numbers in a function by intervals often leads to large 

overestimations that derive in a system state interval estimation [ ]( 1)ˆ k +x  which always increases its value, even if 

the true solution contracts. A better approach is to apply the interval mean-value theorem (Moore, 1966) to equation 

(2.29) (relative algorithm): 

[ ] [ ] [ ]( )( 1) ( 1) ( ) ( ) ( )c o c
ˆ ˆ ˆ ˆk k k k+ = + + −x x A θ x x               (2.30) 

where  

( 1) ( ) ( ) ( ) ( )c o c o *
ˆ ˆˆ ˆk k k+ = +x A θ x B θ u            (2.31) 

with ( 1)c
ˆ k +x , ( )c

ˆ kx  and θ̂  being the mid-points of the intervals [ ]( 1)ˆ k +x ,  [ ]( )ˆ kx  and [ ]θ , respectively. 

However, this method suffers from the wrapping effect when the observer matrix Ao is not isotonic or this matrix is 

ill-conditioned, as for example, those ones with eigenvalues with very different magnitudes (Nedialkov et al, 2001).  

Otherwise, when the observer matrix Ao is isotonic, the Moore’s absolute algorithm can be used to calculate the 

system state interval estimation avoiding the mentioned overestimations what results in a very low demanding 

computational method. 

In those cases where Moore’s algorithm is ill-conditioned, the set-based approach given by (Lohner, 1987) can be 

used.. Lohner’s algorithm can avoid the wrapping effect in many systems but (Kühn, 1998) has discovered some 

cases where this approach fails. 
 

2.3.2.5.4 Trajectory-based approaches to interval observation 
 

Concerning the trajectory-based approach used to compute a estimation of the system state region X(k+1), a suitable 

method is given by (Puig et al, 2002b). This method sets that the observer state region ˆ ( k )X  will be bounded at any 

time instant k by its interval hull ˆ ˆ ˆ( k ) ( k ), ( k ) =  X x x□  where: 
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subject to Θθ∈ and o 0
ˆˆ ∈x X  and assuming time-invariant uncertain parameters: this method is known as a time-

invariant approach.  At the same time that time invariance is preserved, the wrapping effect is avoided due to the 

fact that uncertainty is not propagated from step to step but from the initial state. This approach yields the accurate 

time-invariant worst-case observation without any conservatism, assuming that the previous optimisation problems 

could be solved with infinite precision and the global optimum could be determined. However, in practice it only 

could be solved with a given precision. On the other hand, one of the main drawbacks of this approach, besides its 

high computational complexity, is that the objective function is a polynomial with degree increasing by one at each 

iteration. As a result, the amount of needed computation increases with time being impossible to operate over a large 

time interval. Consequently, some kind of approximation should be introduced to make the approach more tractable. 

If the observer given by Eq. (2.26) is asymptotically stable, any transients settle to negligible values in a finite-time, 

more precisely in ts/Ts samples, being ts the observer settling time and Ts the sampling time. This assumption implies 

that the outputs of the observer at time k depend only on the inputs that occurred during the last ts/Ts samples. 

Therefore, for any time k, it is possible to approximate algorithm given by Eq. (2.32) and Eq. (2.33) using a sliding 

window of length λ determined by the order of the settling time measured in number of samples (Puig et al, 2003b): 
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k 1
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subject to: Θθ∈ and  ˆˆ ( k ) ( k )λ λ− ∈ −x X□ .  

Of course, with this approximation parameter time-invariance is only guaranteed inside the sliding window. This is 

why this approach is called almost time-invariant (Puig et al, 2002b). 

Another trajectory-based approach is the proposed by (Kolev et al, 1993). This method suggests an algorithm that 

provides an inner solution for the interval observation problem by solving the optimisation problems given by Eq. 

(2.34) and Eq. (2.35) involved in the previous algorithm but subject to: )(V Θθ∈ and o o
ˆˆ V( )∈x X  where: 

)(V Θ and o
ˆV( )X denotes the set of vertices of the uncertain parameters and initial states sets, respectively.  Thus, 

this algorithm is also known as a vertices algorithm. According to Nickel (Nickel, 1985), the inner solution coincides 

with the interval hull of the solution set for some systems: those unaffected by the wrapping effect that verify their 

state function is isotonic with respect to all state variables (Cuguero et al, 2002).  For such systems, set and 

trajectory-based approaches will provide the same results. 
 

2.3.2.5.5 Avoiding the wrapping effect using interval observation 
 

According to (Cugueró et al, 2002) and as mentioned in Section 2.3.2.5.2, the wrapping effect affects to those 

interval models which are not isotonic since there are some elements of their model state-space matrix which are 

negative. Thus, when modelling a non-isotonic interval system using the interval observation approach, an isotonic 

interval observer (Eq. (2.26)) could be obtained designing the observer gain matrix L so that its state-space matrix Ao 

becomes isotonic in spite of the non-isotonicity of system state-space matrix A.  
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As a consequence of using an isotonic interval observer, a simple iterative scheme as Moore’s algorithm will work 

providing the same results than Puig’s algorithm starting from the initial state (i.e, infinite window length). That 

means, the optimisation problem given by Eq. (2.32) and Eq. (2.33) can be simplified since computations do not have 

to be referred to the initial state but only to the previous iteration (i.e, window length λ=1).  Such equivalence 

establishes that in case isotonicity condition is fulfilled, set and trajectory-based approaches to interval observation 

produce the same results, as mentioned above. 

Additionally, as stated in Section 2.3.2.5.2, considering either a trajectory or set-based approach to interval 

observation, parameter time-invariance is or is not, respectively, preserved. In (Cugueró et al, 2001), the relation 

between the observations produced preserving or not preserving the uncertain parameter time-invariance for the same 

interval observer is presented. In particular, it is established that invariant varyingIO IO⊆  where: IO means interval 

observation. This means that an interval observer modelling an uncertain time-invariant system using the parameter 

time-varying approach can be very conservative. However, in case an isotonic discrete-time observer, a set-based 

(therefore time-varying) interval observation, based on one-step recursion, and a trajectory based (therefore time-

invariant) interval observation, based on the recursion given by  Eq. (2.32) and Eq. (2.33) or on a Kolev’s algorithm, 

will provide the same system state interval estimation (Cugueró et al, 2002). Consequently, in this case, not 

preserving the relation between parameters and states is not important at all. 

This thesis will focus on the conditions the observer gain matrix L must fulfil so that the interval observer becomes 

isotonic and the wrapping effect can be avoided when using a set-based approach (Moore’s algorithm) whose 

computational cost is lower than the corresponding one to the trajectory-based approaches. Moreover, in this thesis, 

the effect of those observer gains conditions on the interval observer fault detection performance will also be 

analyzed.    
 

2.3.2.6 Fault detection problems using interval observers 
 

As mentioned in Section 2.3.2.3, the residual generator (Eq. (2.6)) obtained using an interval observer approach can 

have appealing fault detection properties if the observer matrix L is designed properly. This fact is due to the 

influence of L on the transfer function O(q-1), such as it is seen in Eq. (2.18), which sets the model fault detection and 

fault isolation properties, according to (Gertler, 1998). Conversely, when an interval observer is used to detect and 

isolate faults, it is known that there are some problems which can affect negatively its performance. Those problems 

related to the computation at every time instant k of the system state estimation interval were already exposed in 

Section 2.3.2.5: wrapping effect, temporal variance on uncertain parameters and Range evaluation of an interval 

function, where the last two problems can be referred as a computational complexity problem. In that section, it was 

said that designing the observer gain matrix L so that the interval observer becomes isotonic, those problems can be 

obviated. 

Moreover, interval observation, understood as a general approach which contains both prediction and simulation, 

also suffers from other kind of problems whose nature affects directly to the quality of fault indication given by the 

observer: 

• Modelling error and initial condition sensitivity. The simulation approach is very sensitive to the non-

modelled dynamics and the unknown initial conditions. As a result, it tends to diverge very easily, especially if 

the monitored system contains integrators. Nevertheless, observers and predictors avoid this problem using the 

system output measurement to correct their estimations. 
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• Following fault effect. This problem appears when the model can not persistently indicate a fault and it is due to 

the use of the system output measurement to correct the model system output estimation. In this case, the model 

system output estimation tends to follow the system output and consequently, the expressions (2.23) and (2.25) can 

be satisfied in spite of the fault existence and as a result, the residual value evaluation stage can no longer 

indicate the fault. This problem is only avoided when using the simulation approach. However, observers can 

partially control this effect using a proper observer gain matrix L. Conversely, predictors are deeply affected 

because they use the whole system output measurement and its fault indication can only last a number of time 

instants equal to its order.   

• Noise sensitivity. The prediction approach is very sensitive to noise because it substitutes the estimation of the 

system state by its measurement. Conversely, the observation approach is less noise sensitive because its system 

state estimation is partially corrected using the system output measurement and this correction is controlled by 

the value of  the observer gain matrix L. Finally, the simulation approach is the most insensitive of the three 

approaches to the noise effect because no correction of the estimated state is introduced. To deal with noise, 

approaches based on statistical tests can be used, as in the case of the classical fault detection methodologies 

based on numbers instead of intervals. (Basseville, 1993). Another approach to deal with noise can be designing 

properly the observer gain matrix such as suggested by the Kalman filter method. 

One of the goals of this thesis is to analyze the influence of the observer gain matrix on the observer fault detection 

performance in order to find out if the influence of these negative problems can be avoided designing properly this 

matrix or if their influence on the observer fault detection and isolation performance can partially be filtered out. 

Table 2.1 shows the effect of those problems on the different fault detection approaches without taking into account 

the benefits of a proper observer gain matrix design. 

 

Problem Simulation Observation Prediction 

Wrapping Effect Yes Yes No 

Computational Complexity High High Low 

Model Error Sensitivity High Medium Low 

Initial Condition Sensitivity High Medium Low 

Following Faults No Yes Yes 

Noise Sensitivity Low Medium High 

 

Table 2.1 Interval-based fault detection problems and their influence on simulation, observation and prediction 

 

In practice, concerning passive robustness fault detection, the interval observer method is the most used approach 

since observers are less model error sensitive than simulators and less noise sensitive than predictors. Regarding the 

fault following effect, observers show a rather better behaviour than predictors.  Moreover, observers can avoid 

partially this effect when using a proper observation gain. In relation to the wrapping effect and the complexity 

associated with the computation of the system output interval estimation, last years the research of adaptive 

thresholding algorithms which use interval models for fault detection and isolation has been a very active research 

area (Puig et al, 2002a). In (Puig et al, 2003a), interval observation applied to robust fault detection was introduced 

while an interval simulation algorithm based on a optimization approach was proposed in (Puig et al, 2003b) to 

compute the system output interval estimation. Nevertheless, this algorithm uses a trajectory-based approach 

resulting in a high computational complexity. A goal of this thesis is to determine those conditions that the observer 
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gain matrix must fulfil so that the wrapping effect can be avoided and as a result, less computational cost (set-based) 

approaches as the Moore’s algorithm could be used. Moreover, the effect of these conditions on the observer fault 

detection performance will also be analyzed in order to see how it is affected. 

 

2.4 Fault isolation using system models 
 

According to (Venkatasubrarnanian et al., 2003a), model-based fault isolation has been approached over the last two 

decades from two different scientific communities: Artificial Intelligence, also known as the DX approach 

(Hamscher et al, 1992) (Reiter, 1987), and Automatic Control, also known as FDI approach (Blanke et al, 

2003)(Gertler, 1998)(Patton et al, 2000). The DX approach relies upon a well-founded and logically based theory for 

diagnosis of static systems. From a logical point of view, fault detection is performed through a consistency-check 

and organized around the conflict concept (fault signal). In this approach, fault localization or isolation is 

automatically derived from the conflict detection stage, which usually relies upon some kind of dependency-

recording. On the other hand, the FDI approach considers fault diagnosis as two separate tasks: fault detection and 

fault isolation based on generating and evaluating a set of analytical redundancy relations obtained off-line from 

elementary component models of the physical systems.   

Fault detection has traditionally been more deeply investigated in the FDI community using a broad set of techniques 

(parity equations, observers and  parameter estimation) and looking at the nuisance effects of noise, perturbations 

and model uncertainty (robust fault detection) (Chen et al, 1999). Conversely, fault isolation has been more deeply 

investigated in the DX community thanks to the logical diagnosis theory developed by Reiter (Reiter, 1987). 

However, when this theory has been applied to dynamical systems, some problems have appeared which prevent to 

use it directly. In fact, the theoretical formalization for fault diagnosis applied to dynamic systems is nowadays an 

open issue (Kleer et al, 2003). These problems have motivated further research on analysing off-line the set of 

dependencies which could become conflicts (fault signals) as in the FDI approach (Pulido et al, 2002), based on the 

common framework provided by (Cordier et al, 2000). 

According to (Kościelny et al., 2004), fault isolation is carried out on the basis of fault signals, φ, generated by the 

detection module. Thus, the result of fault isolation consists in showing the faults affecting to the system, what 

requires knowing the relationship that exists between the fault signals, φ, and the faults, f. A completely reliable and 

unequivocal presentation of the existing faults or the definition of the diagnosed system state is not always possible 

due to incomplete and uncertain knowledge of the system, limited distinguishability of faults or states, uncertainty of 

fault signals, etc. 

In general, the following kinds of fault signals are applied as input signals of the fault isolation module or the system 

state recognition process (Kościelny et al., 2004): 

• residuals generated using the system models, 

• binary or multi-value signals created as a result of residual value evaluation, 

• binary or multi-value signals (features) generated with the use of classical and heuristic fault detection methods, 

• statistic parameters that describe random signal properties, 

• process variables, i.e., measured or calculated values of physical quantities. 
 

2.4.1 Models applied to fault isolation 
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Models applied to fault isolation or system state recognition should therefore map the space of fault signals φ into 

the discrete space of faults f (φ � f) 
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Fig. 2.5 Fault isolation model mapping fault signals and faults 

 

In fault isolation, it is possible to point out the following kind of models (Kościelny et al., 2004): 

• models that map the space of binary fault signals into the space of faults, 

• models that map the space of multi-value fault signals into the space of faults, 

• models that map the space of continuous fault signals into space of faults. 

The above models can be defined using different techniques: training, knowledge about the hardware redundant 

structure, modelling the influence of faults on residual values or the expert’s knowledge. 

Training data for the state of complete efficiency and for all of the states with faults, or at least a definition of the 

fault states are necessary in the case of applying the training procedure. However, such data are difficult and often 

impossible to obtain in the case of the industrial process diagnostics. 

Conversely, it is relatively easy to define the relationship that exists between fault signal values when using a 

hardware redundant structure in the diagnosed system. Nevertheless, such a solution is very rarely applied due to its 

high costs. 

If equations for the generation of residuals that contain the effect of faults are known, then it is possible to define 

residual value ranges as well as fault signal values that correspond to residuals for the state without faults and for the 

states with faults. Thereby, sets of fault signal values are obtained for particular faults and for the state of complete 

efficiency. These sets define specific regions in the space of fault signals. This method requires a mathematical 

description of the system which must allow deriving the effect of faults on the residuals or fault signals. 

Another method consists in using an expert’s knowledge. The expert should define fault signal values that 

correspond to particular faults. As a result, fault signal space regions that correspond to states with single faults and 

to the non-faulty state are arbitrarily defined. 
 

2.4.1.1 Models mapping the space of binary fault signals into the space of faults 
 

Binary fault signals φi ∈{0,1} are obtained as a result of a two-value evaluation of residuals or process variable 

value features. They are also generated as a result of implementing tests which consist in controlling limits or 

examining the heuristic relationships existing among process variables.  In this model group, it is possible to single 

out the following models: 

 

 
 



 54

(a) Binary diagnostic matrix 

 

 The model most often applied is a relation defined on the Cartesian product of the sets of faults  f  = {fj : j = 1,2,…., 

nf} and fault signals φ = {φi : i = 1,2,….nφ }: 

x⊂FSM fφ  φ  φ  φ               (2.36) 

where FSM is the binary diagnostic matrix (Gertler, 1998; Kościelny, 2001; Cordier et al., 2000) which is also 

known in the FDI community as the theoretical fault signature matrix (Gertler, 1998). This matrix stores the binary 

influence of a given fault fj (column of FSM) on a given fault signal φi ( row of FSM ). Thereby, if the element 

FSMij of this matrix is equal to ‘1’, it means the fault fj causes the occurrence of the fault signal φi. Otherwise, when 

the fault fj  has no effect on the fault signal φi, the element FSMij is equal to ‘0’. Such as the FSM matrix is defined, 

its jth –column contains the binary effect of fault fj on the fault signal set φ. In consequence, this column is known as 

the theoretical fault signature of fj . 

This binary diagnostic matrix can be defined on the grounds of the residual equations which take into account the 

effect of faults. 
 

(b) Diagnostic trees and graphs 

 

The relationship that exists between faults and fault signals can be presented in the form of a binary tree that defines 

the method of diagnostic inference (Ulerich et al., 1988). The tree vertices correspond to fault signals (tests). Out of 

each of the vertices come out two branches corresponding to two values of the fault signal: the true and the false 

result of the test. A fault signal having a value that is analysed as the first one is the root of the tree. 

Such a tree can be defined using the theoretical fault signature matrix FSM (Blanke et al, 2003), or directly on the 

basis of an expert’s knowledge.  

φ1

φ2 φ3

OKf3f2f1 U f2

1 0

1 001

φ1

φ2 φ3

OKf3f2f1 U f2

1 0

1 001

 

Fig. 2.6 Example of a diagnostic tree 

 

(c) Rules and logic functions 

 

According to (Kościelny et al., 2004), the relationship existing between faults and binary fault signals can be defined 

in the form of the following types: 

1( 0) and and ( 1) and ( 1) faultj n kfφφ φ φ= = =⋯ ⋯           if then        (2.37) 

( 1) fault or or or orj k nff f fαφ = ⋯ ⋯             if then          (2.38) 
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Every column of the theoretical fault signature matrix FSM allow obtaining a rule of the type given by Eq. (2.37): this 

kind of rules is known as parallel reasoning and in general, they are used in the FDI approaches. Conversely, the 

rows of FSM allow defining rules of the type given by Eq. (2.38) which are known as series reasoning and usually 

they are used in DX approaches.  

The logic function is the simplest possible relationship that exists between fault signals and faults. Binary fault 

signals act as input, and the result of this function shows the state of a particular fault, i.e., its existence or absence. In 

a general case, such a function takes the following form: 

[ ]fk a b i j m nz φφ φ φ φ φ φ   = ∨ ∨ ∧ ∨ ∨ ∧ ∧ ∨ ∨  ⋯ ⋯ ⋯ ⋯        (2.39)  

where zfk is a the system binary state which indicates the occurrence of fault fk: its value is ‘1’ when fk is isolated and 

‘0’ when it is not.  
 

2.4.1.2 Models mapping the space of multi-value fault signals into the space of faults 
 

Multi-value fault signals appear as a result of residual value or signal feature quantisation. They can also result from 

process variable limit control with the application of several limiting values. It is assumed that a different set of 

values wi can correspond to each one of the fault signals φi. Thereby, models necessary for fault isolation using 

multi-value fault signals realise the following mapping (Kościelny et al., 2004): 

{ }x x x x 0,1i n nfφ∈ ⇒ ∈1w w w f⋯ ⋯φ         φ         φ         φ                  (2.40) 

It is possible to single out the following models belonging to this group: fault information systems, diagnostic trees 

and graphs, and if-then rules. 
 

(a) Fault information system: FIS 

 

This type of models derives from the information system models used in the set theory developed by (Pawlak, 1983) 

in the early 1980s. The fault information system models (FIS) were first introduced by (Kościelny, 2001) and they 

can be seen as an extension of binary theoretical fault signature matrix (FSM) where the values of its non-null 

elements are not a binary ones but they belong to the set of values wij for the fault signal φi and the fault fj. This fact 

allows adding fault distinguishability when using these models in fault isolation. 

According to (Kościelny, 2001), a fault information system FIS is defined as follows: 

, , ,φ µ=FIS f wφφφφ               (2.41) 

where wφ is the set of values that contains all the values of the set wij associated with every couple ,i jfφ : 

1 1

fnn

ij

i j

φ

φ
= =

=w w∪∪              (2.42) 

Regarding µ, this is a function defined as 

: x φµ →f wφ  φ  φ  φ                  (2.43) 

that determines for every couple ,i jfφ , the corresponding set of values related to φi: 

( , )i j ijfµ φ = w               (2.44) 

Therefore, FIS is a table that defines fault signal pattern values for particular faults which has the following 

characteristics regarding the binary FSM: 

• an individual set of fault signal values can exist for each one of the fault signals: 
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• the set of the ith-fault signal values can be a multi-value one; 

• any element of the FIS can contain either one fault signal value or a subset of values. 
 

(b) Other models 

 

Mapping the space of multi-value fault signals into the space of faults or system states can also be represented in the 

form of a tree or if-then-type rules (Venkatasubrarnanian et al., 2003b). These diagnostic trees are a generalisation of 

the binary ones presented previously where the number of branches coming out of each node that corresponds to a 

fault signal equals the number of values that each one of the signals can have. 

The relation existing between faults and fault signals values can be defined using expressions that normally have the 

following form: 

1 1( ) and and ( ) and ( ) faultk j jk n n k kfφ φφ φ φ∈ ∈ ∈w w w⋯ ⋯           if then        (2.45) 

( ) fault or or or orj jk k nff f fαφ ∈w ⋯ ⋯             if then          (2.46) 

Thereby, rules of the form given by Eq, (2.45) can be derived from the columns of the FIS table, while rules of the 

form given by Eq. (2.46) correspond to the rows of this table. 
 

2.4.1.3 Models mapping the space of continuous fault signals into the space of faults  
 

Residuals obtained using system models generate continuous fault signals. In this case, models applied to fault 

isolation consider the following mapping: 

{ }0,1n

nf

φ∈ℜ ⇒ ∈fφφφφ              (2.47) 

Thereby, considering the space of continuous fault signals, the effect of a fault fj on the fault signal set φ is defined 

by a region which should be characteristic of each fault so that a fault can be isolated. 

Some methods used to model the mapping defined by Eq. (2.47) are: classic methods of pattern recognition, neural 

networks, and neural fuzzy networks. 
 

(a) Pattern pictures 

 

The construction of a model for fault isolation consists therefore in defining regions in the space of fault signals 

which constitute pattern pictures of faults. These regions can be defined in different ways. Thus, it is possible to 

single out geometrical, polynomial and statistical classifiers (Tadeusiewicz et al, 1991). 

Pattern recognition can be obtained during the process of training. In order to achieve this, it is necessary to possess 

training data for all of faults. However, this is extremely difficult, and for many industrial systems even impossible. 

The data can be obtained by fault simulation with the use of the system analytical model that takes the effect of faults 

into account. 
 

(b) Neural networks 

 

Pattern recognition for particular faults can be mapped by a neural network. In early papers (Hoskins et al, 1988; 

Kramer et al, 1990; Sorsa et al, 1993), neural networks were applied to fault isolation. In this kind of model, 

residuals generated on the grounds of system models act as network inputs.  
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(c) Fuzzy neural networks 

 

Fuzzy neural networks applied to fault isolation realise the fuzzy evaluation of residual values as well as diagnostic 

inference (Syfert et al, 2001). The structure of a fuzzy neural network applied to fault isolation differs from the 

structures used for system modelling. It contains no layer in which defuzzyfication is carried out. The number of 

network outputs equals the number of distinguished faults or system states. 
 

2.4.2 Model-based fault isolation techniques 
 

There are a high variety of isolation methods. (Isermann et al, 1996) distinguishes two basic groups: classification 

methods and automatic concluding methods. According to (Kościelny et al, 2004b), the fault isolation methods can 

be classified depending on how the knowledge about the relation between fault signals and faults is obtained. In line 

with this last criterion, (Kościelny et al, 2004b) signals out the following methods: 

• Methods in which the diagnostic relation results from the structure of mathematical or qualitative models used 

for detecting faults. This approach can be divided into those methods that do not model the fault effect and those 

ones that do model it.. 

• Methods that require defining the relation between fault signals and faults during the training phase. 

• Methods based on an expert’s knowledge. 

• Methods in which the relation between fault signals and faults results from a redundant hardware structure. 

Concerning the relation between fault signals and faults, the following model-based fault isolation methods can be 

highlighted:  

• Methods using different type of graphs (Thoma et at., 2000; Mosterman et al., 1995; Blanke et al, 2003). 

• Methods using the binary diagnostic matrix (Gertler, 1998). 

• Methods using the fault information system (Kościelny, 2001). 

• Methods using fault-attributed regions in the space of fault signals (Gertler, 1998; Patton and Chen, 1991). 

• Methods using neural networks (Hoskins et al, 1988; Kramer et al, 1990; Sorsa et al, 1993). 

• Methods using fuzzy neural networks (Syfert et al, 2001). 

The problems of choosing an adequate set of detection algorithms in order to ensure, among other things, the 

required distinguishability of faults will be dealt in the successive subsections. 
 

2.4.2.1 General approaches to fault isolation 
 
In this section, general fault isolation methods using the fault isolation models introduced in Section 2.4.1 will be 

described. 
 

2.4.2.1.1 Fault isolation based on the binary diagnostic matrix 
 

As mentioned in Section 2.4.1.1, the binary diagnostic matrix FSM presents the relation existing between the values 

of binary fault signals φ and faults f. It can be designed using system equations and taking the effect of faults into 

account or on the basis of an expert’s knowledge. Fault isolation inference carried out by means of the binary 

diagnostic matrix can be realised with the use of classical (Gertler, 1998) or fuzzy logic (Kościelny et al, 2001). The 

latter approach allows taking fault signal uncertainty into consideration. 

The binary diagnostic matrix is used for fault isolation together with different fault detection methods under the 

specification that the fault signals being the outputs of the fault detection algorithms have to be binary ones.  
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Such as it was Section 2.4.1.1, fault isolation methods using the binary fault isolation matrix can isolate faults 

comparing the value of the observed fault signals with the information stored in that matrix FSM. Thereby, there are 

two main groups of fault isolation methods using a binary FSM matrix depending on how they carry out this 

comparison:  parallel inference approach and series inference approach. 
 

(a) Rules of parallel diagnostic inference on the assumption about single faults 

 

Parallel diagnostic inference based on the binary diagnostic matrix consists in formulating a fault isolation result 

comparing the observed binary fault signals φ = {φi : i = 1,2,….nφ } where φi ∈ {0,1} with the theoretical fault 

signature associated with all considered fault hypotheses determined by the set f  = {fj : j = 1,2,….nf} (Kościelny et 

al, 1995) (Gertler, 1998). Thereby, as mentioned in Section 2.4.1.1, it must be taken into account that the theoretical 

fault signature of the fault hypothesis fj is stored in the j
th
-column of matrix FSM where each element of this matrix 

FSMij ∈ {0,1}. 

Assuming that only a single fault exists, fault isolation is carried out using the set of observed fault signals φ. 

Thereby, the inference procedure consists in comparing the binary fault signals φi(k) computed at every time instant 

by the fault detection module with the theoretical binary fault signature related to every fault hypothesis fj of the set f 

which is stored in the jth-column of the binary matrix FSM. If all fault signals are zero-valued, the fault isolation 

module shows a lack of faults: 

i i: 0φ φ∀ ∈ = ⇒ =DGN 0φφφφ               (2.48) 

where DGN is the set of fault hypothesis fj which are consistent with the observed fault signals. 

When some fault signal values equal one according to the residual evaluation carried out by the fault detection 

module, the fault isolation algorithm gives as diagnosis result a subset of the fault hypothesis set f  whose signatures 

are consistent with the observations: 

{ }j i ij if : ,φ φ= ∈ = ∀ ∈DGN f FSM φφφφ           (2.49)  

In case, using a robust fault detection approach based on interval models and according to Section 2.3.2.3, the binary 

value of every fault signal is computed as it follows: 

[ ]

[ ]
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y k y k

φ
 ∈
= 
 ∉

            (2.50) 

Then, a general approach of carrying out the comparison between the observed fault signature φ(k) and the 

theoretical one related to every fault hypotheses is calculating the distance between both vectors: φ(k) and the jth-

column of matrix FSM for the hypothesis fj, e.g. using the Hamming distance measurement. As a result of this 

comparison, a distance measurement dj(k) is obtained for every fault hypothesis fj, being d(k) the vector of all the 

computed distances at time instant k: 1 j nf( k ) d ( k ), ,d ( k ), ,d ( k ) =  d ⋯ ⋯ . If the Hamming distance approach is 

applied, then 

n

j ij i

i 1

d ( k ) ( ( k ))
φ

φ
=

= ⊕∑ FSM            (2.51) 
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where ⊕ is the XOR logic operator. Then, the fault hypotheses with the shortest distance regarding the current 

observed fault signature φ are considered as the fault isolation result:  

{ }
[ ]wherej j

1 nf
f j d k d kνν∀ ∈

 = ∈ ∀  = 
 

min
⋯, ,

DGN f : ( ) ( )         (2.52) 

This approach gives a simple idea of the fault isolation problem but it has many drawbacks which can lead towards a 

wrong diagnosis result: e.g., this algorithm always provides a diagnosis result, even when no fault hypothesis exactly 

matches the current observed fault signature vector. Consequently, this can cause the diagnosis to jump from a fault 

hypothesis to another fault hypothesis, every time instant when a new symptom appears. Mostly, this fault isolation 

methods using the binary theoretical fault signature matrix and based on a parallel inference are used by the FDI 

community which uses analytical models to monitor the system. In this community, this method is known as the fault 

isolation column view approach. 

In general, the single fault assumption is not always justified. In that case, the states of multiple faults should be 

taken into account in the diagnostic inference. It is usually sufficient to widen the set of the analyzed states of the 

system with the states with multiple faults. This can be done by increasing the number of columns of the theoretical 

fault signature matrix FSM or equally, increasing the fault set f grouping single faults. Thereby, there will be a new 

column for each of the new considered multiple fault states where each of these columns shows the theoretical effect 

of the related multiple fault state on the residuals, such as it was done for the case of single fault assumption. 
 

(b) Rules of series diagnostic inference on the assumption about single faults 

 

Series diagnostic inference consists in analysing subsequent fault signal values φi(k) and formulating the diagnosis 

step by step, each time narrowing the set f of possible faults  (Kościelny et al, 1995) (Gertler, 1998). Unlike the 

parallel diagnostic inference method, this approach is mostly applied by the DX community. The fault isolation 

process begins after the first fault signal has been observed (φi1(k)=0�φi1 (k+1)=1 where subindex ‘i1’ stands for 

the first observed component of the fault signal vector). Thus, the appearance of this fault signal implies the 

existence of a fault of the set f which φi1 (k) is sensitive to. The subset of fault hypotheses satisfying this condition is 

shown in the first given fault diagnosis: 

{ }
j1 j j: f i1 jf : 1∈   = ∀ = fDGN FSM            (2.53) 

Thereby, this subset DGN1 of f  is the set of possible fault hypotheses which must be considered when the next fault 

signal will be observed. In consequence, the performance of this method allows narrowing the set of possible fault 

hypotheses every time a new fault signal occurs. In general, once the series diagnostic inference has been applied p-1 

times and a new fault signal φip (k) has been observed, the result of the new series diagnostic inference can be written 

as it follows: 

{ }
jp p 1 j j: f ip jf : 1− ∈   = ∩ ∀ = fDGN DGN FSM         (2.54) 

In general, the series diagnostic inference only considers those fault hypotheses which can explain all the observed 

fault signals. If the theoretical fault signature related to a given fault hypothesis fj contains a null value (FSMij=0) 

where a fault signal has been observed (φi(k)=1), this fault hypothesis will be automatically rejected by this method. 

Regarding the parallel diagnostic inference method presented previously, this series reasoning avoids the flickering 
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of the fault diagnosis result mentioned in the parallel diagnostic approach since this series inference method is based 

on an incremental reasoning and not on an absolute reasoning such as it is used by the column view approach. 

Therefore, this method is more suitable for those dynamic systems with time delays. On the other hand, the drawback 

of this incremental reasoning is that every inference process leads to a set of possible faults requiring the observation 

of all affected fault signals in order to give the final fault isolation result but conversely, the time it requires is 

unknown by this method because temporal or dynamics aspects of the fault signals are not considered. 

As mentioned in the fault parallel diagnostic inference method, this method assumes the single fault hypothesis. 

However, this method can deals with multiple faults if the number of columns of the FSM is increased considering 

an extra column (theoretical fault signature) for each considered multiple fault hypotheses, such as mentioned in the 

column view approach. 
 

2.4.2.1.2 Diagnosing based on the information system 
 

The information system is a generalisation of the binary diagnostic matrix FSM as mentioned in Section 2.4.1.2. It 

allows applying a multi-value evaluation of residuals, carried out individually for each fault signal. Thereby, a 

generalisation of the binary parallel and series inference methods can be distinguished in this approach. Moreover, 

although this approach is defined in the single fault assumption, it can also deal with multiple fault hypotheses 

increasing the set f of fault hypotheses considering the multiple fault case, such as it was described in the fault in the 

binary diagnostic matrix method explained previously. 
 

(a) Parallel diagnostic inference based on the fault information system 

 

The general shape of a diagnosis based on the fault information system FIS presented in Section 2.4.1.2 can be 

described by the following formula: 

{ }j i i j if : ( , f ),φ µ φ φ= ∈ ∈ ∀ ∈DGN f φφφφ            (2.55) 

The diagnosis shows those faults whose theoretical signatures, which are predetermined by the FIS function 

( , )
i j
fµ φ ,  are consistent with the obtained values of the observed fault signals φi(k). This consistency means that the 

value of each fault signal belongs to the subset of pattern values ( , )
i j
fµ φ  defined in the FIS.  

Comparing this approach with the binary parallel inference method based on the binary fault diagnostic matrix 

(Section 2.4.2.1.1), the fact of considering the fault information system instead of the binary matrix FSM adds more 

fault distinguishability. However, it does not avoid the fault isolation flickering problem which affects the binary 

approach since this is due to the absolute reasoning process of this method and the fact that the temporal aspects of 

the fault signals are not taken into account. 
 

(b) Series diagnostic inference based on the fault information system 

 

Series diagnostic inference based on the fault system information is carried out similarly as in the case of the binary 

diagnostic matrix presented in Section 2.4.2.1.1. Thus, fault isolation process begins after the first fault signal has 

been observed (φi1(k)=0�φi1 (k+1)=1). Then, the first diagnosis contains all faults detected by this fault signal: 

{ }
j1 j j: f i1 i1 jf : ( , f )φ µ φ∈  = ∀ ∈ fDGN            (2.56) 
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As mentioned in the binary case, the performance of this method allows narrowing the set of possible fault 

hypotheses every time a new fault signal occurs. Then, after applying this inference p-1 times and observing a new 

fault signal φip(k), the result of the new series diagnostic inference can be written as it follows: 

{ }
jp p 1 j j: f ip ip jf : ( , f )φ µ φ− ∈  = ∩ ∀ ∈ fDGN DGN         (2.57) 

The basic advantage of serial inference is the possibility of giving the current diagnosis at every moment of the 

diagnosis. In order to obtain the final diagnosis, the interpretation of all diagnostic signals usually is not necessary. In 

consequence, it is possible to obtain a fault diagnosis in a shorter period of time than in the case of parallel inference. 

That is only possible when all the fault hypotheses are clearly distinguishable from the isolation point of view. 

Otherwise, all fault signals must be observed in order to give the resultant fault diagnosis being unknown the 

required time. However, the fact of considering a fault information system (FIS) instead of a binary diagnostic 

matrix (FSM) allows adding more fault distinguishability to the fault isolation reasoning being this point the 

advantage regarding the binary fault diagnostic matrix approach. 
 

2.4.2.1.3 Diagnosing based on the residual space 
 

In the case of fault detection carried out with the use of system models, a set of residuals is generated. The space 

whose all elements are residuals is called residual space, or parity space (Patton and Chen, 1991). Thus, the residual 

set needs to have distinctive properties regarding each considered particular fault so that the fault can be isolated. 

Residual sets designed with this objective in mind are referred to as enhanced residuals. There are two fundamental 

residual enhancement approaches:  

• Directional residuals. In order to ensure the possibility of isolating faults, the set of residuals is designed in such 

a way that the occurrence of particular faults characterises the specific (unique for each fault) place of residuals 

in the parity space. One can therefore assign to each of the faults an individually designed directional vector 

(Gertler, 1998) (Patton and Chen, 1991). 

• Structured residuals. They are designed so that each residual responds to a different subset of faults and is 

insensitive to the others. When a particular fault occurs, some of the residuals do respond and others do not.  

Then, the pattern of the response set, the fault signature, must be characteristic of that fault so that it can be 

isolated. 

In general, those fault isolation methods using these enhanced residuals are based on the binary fault diagnostic 

matrix approaches explained previously (Gertler, 1998) being affected by the same drawbacks. 
 

2.4.2.1.4 Other methods 
 

Many other fault isolation methods are applied beside the ones presented above. It is possible to distinguish: 

• Pattern recognition methods. The possibility of applying pattern recognition methods in diagnostics results 

from the assumption that a certain class of system patterns being in a defined technical state are closer to each 

other than system patterns in other states despite measurement errors, different random factors, etc. 

(Himmelblau, 1978) (Pau, 1981). 

• Diagnostic graphs. Fault isolation in these methods consists in defining graph paths, which can explain an 

incorrect operation of the system. Bond graphs form a method of physical system modelling (Thoma et at., 

2000) which describe transformation, storage and dissipation of energy within the system, and present these 

processes in the form of a graph which connects process variables. Thereby, this graph form is built on the 
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grounds of the physical equations that describe the system. Diagnostics with the application of bond graphs was 

used by (Mosterman et al., 1995). 

• Diagnostic inference on the basis of inconsistency. This group of methods was initiated by (Reiter at el., 1987). 

In this approach, diagnosis is formulated on the basis of the analysis of inconsistencies detected in the operation 

of the system. Inconsistencies are detected as a result of the comparison of the system operation and the model 

on the basis of measurement data. The detected inconsistencies are the basis for generating the set of conflicts 

understood as system element sets that contain a faulty element. 

• Application of stochastic automatons to the diagnostics of dynamical systems (Lunze, 2000). 
 

2.4.2.2 Analytical model-based fault isolation techniques 
 

Such as it was mentioned in Section 2.3.2, in this thesis the monitored system is modelled using an analytical model 

given by an interval observer (FDI approach). Traditionally, applying this analytical approach to fault isolation, the 

relationship between fault signals φ and faults f is inferred using the analytical model of the system. In general, this 

relationship is obtained using the residual equations r (Eq. (2.2)) or the analytical redundant relations (ARR’s) built on 

the grounds of the considered system model. Although using accurate system models, the most of the FDI fault 

isolation approaches just consider a binary interface between fault detection and fault isolation modules. These 

approaches are based, in general, on the binary diagnostic matrix FSM explained in Section 2.4.2.2.1 whose 

architecture can be described by Figure 2.7. 

 

Fig. 2.7 Binary fault detection and fault isolation interface 

 

As a result of this poor interface, these methods are affected by certain drawbacks which can lead to a wrong fault 

diagnosis result: 

• The presence of noise produces chattering using the binary evaluation of the residual. 

• All fault signals φi(k) affected by a certain fault fj(k) according to the structure of the matrix FSM should be 

activated at the same time instant and they should be persistently observed during the whole fault isolation 

process. Otherwise, a wrong fault diagnosis result could be given. Nonetheless, because fault signals have their 

own dynamics, neither they necessarily have to be activated at the same time nor they are persistently observed.  

• Restricting the relation between faults and fault signals to a binary one causes a loss of useful information that 

can add fault distinguishability and accurateness to the fault isolation algorithm preventing possible wrong fault 

diagnosis results. The occurrence of a fault causes the apparition of a certain subset of fault signals such that 
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each of them have characteristic dynamical properties for this fault which can improve the performance of the 

fault isolation algorithm if they are taken into account. 

In general, these drawbacks are caused because the dynamics and the discrete event nature of the fault signals are not 

considered. Thereby, restricting the interface between fault detection and fault isolation to a binary one causes the 

loss of crucial information which can enhance the whole fault diagnosis process. A significant fault signal properties 

that should be considered are: 

• The sign of the fault signal.  

• The sensitivity of the fault signal regarding to each fault hypothesis.  

• The order of the fault signal occurrence. 

• The time required for a fault signal to be observed once the fault occurs.  

Some of the most important non-binary fault isolation methods that try to tackle some of the drawbacks mentioned 

previously are: 

• DMP – Diagnostic Model Processor (Petti et al., 1990). In this method, the binary fault indication test (2.50) is 

replaced by a fuzzy one based on the Kramer function preventing the chattering of the test result. Besides, 

instead of using a binary diagnostic matrix, FSM, a matrix with the same structure is applied but each element is 

related to the steady-state value of the fault residual sensitivity property (Gertler, 1998) associated with this 

element.  Regarding the fault isolation, this is still based on a kind of parallel diagnostic inference method, in 

spite of its mentioned weaknesses: e.g., DMP-method is blind for unexpected fault signals and thus, a wrong 

fault diagnosis can be obtained. 

• DMA – Deep Model Algorithm (Chang et al., 1994). This method improves some weaknesses of the DMP 

method. 

• Finite State Automatons (Lunze, 1994). This is the first method to deal with time aspects. In this automaton, 

every state represents a partial or complete diagnosis. During the reasoning process, the automaton switches 

from an initial state to partial-diagnosis states and in the end to a final diagnosis. Every transition is connected to 

a condition that depends on time and the upcoming fault signals. Thus, time windows can be defined for every 

transition and the time dependent fault pattern can be codified. Although this method considers time aspects 

related to the fault signals, it is still a pure binary method being affected by the already mentioned drawbacks of 

the binary approaches.  

• DTS – Dynamic Table of States (Kościelny et al., 1995). Its major benefit is that it establishes a fault signal 

detection time, which describes the maximum time between the occurrence of a certain fault and the observation 

of a certain fault signal. Those times can be derived from the monitored system model or they are known from 

the system expert knowledge. Regarding the used fault isolation algorithm, it is based on a parallel diagnostic 

inference approach and therefore, it suffers from the drawbacks mentioned previously. 

• BM – Behavioural Modes (Nyberg, 1999). In the BM method, the monitored system is divided in several 

components, each of them having different behavioural modes: fault-free mode and different faulty ones. In 

contrast to many other methods, the BM method uses explicit models of every behavioural mode of the 

components. Thus, this approach compares the real system to those system models. An advantage of this 

approach is that it is possible to isolate multiple faults thanks to the ’negative’ reasoning. Additionally, any fault 

type can be modelled and many different ones for every component. Besides, the whole dynamic behaviour of a 

fault is modelled. On the other hand, the size of the fault has to be known in order to get model-based 

estimations of the faulty system behaviour that exactly correspond to the behaviour of the real system. Thereby, 
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this method requires a big effort in order to model all the behavioural modes of the system components and to 

identify the fault is affecting the system. 

Considering the drawbacks of all the approaches presented previously, the second part of this thesis is focused on the 

interface between fault detection and fault isolation proposed by (Puig et al, 2005b). This method can be viewed as 

an extension of the binary diagnostic matrix proposed by (Gertler, 1998) in the sense that considers one diagnostic 

matrix FSM for each fault signal property: binary, sign, fault residual sensitivity, fault signal occurrence order and 

fault signal occurrence time. Thereby, this method, once the fault signal appears, registers all these properties in 

order to compare their values with the theoretical ones stored in several diagnostic matrices. Moreover, instead of 

using the binary fault detection test given by Eq. (2.50), this method uses a fuzzy test based on the one proposed by 

the DMP-method. As illustrated in (Puig et al, 2005b) and such as it will be described in Chapter 7, this interface has 

an appealing performance when used in dynamical systems. Nonetheless, it is affected by some weaknesses which 

are derived from some simplifications: 

• Although every fault signal has its own dynamics and consequently, its properties evolve with the time, this 

method just considers the steady-state value of them. 

• This method does not consider interval models and as a result, it uses a fixed fault detection threshold instead of 

an adaptive one. 

• This method just considers a simulation model of the monitored system. 

Regarding the fault isolation interface, one of the goals of this thesis will be to tackle the previous weaknesses of this 

interface using an interval observer model of the system. On the other hand, concerning the fault isolation algorithm, 

this thesis deals with the fact that a fault affecting the monitored system will generate a unique temporal sequence of 

fault signals (events) where every fault signal evolves according to its own dynamics. Thereby, observing this 

sequence and registering its dynamical properties, the fault can be isolated. This fault isolation discrete-event 

approach built on the grounds of the analytical model of the system can be considered neither as a pure quantitative 

approach nor as a pure qualitative one but as a hybrid approach.  
 

2.4.2.2.1 Fault isolation based on interval observers 
 

The main idea of using an extension of the fault detection and fault isolation interface proposed by (Puig et al, 

2005b) is that these two modules can not be considered separately when a fault diagnosis process is carried out. The 

reason is that the result of the fault detection module, a temporal sequence of fault signals, has a crucial influence of 

the whole fault isolation process since: 

• When a permanent fault occurs, a fault signal might not be observed permanently as a result of the fault 

following effect (Table 2.1) of the used system model. 

•  Certain expected fault signals can not be observed because the size of the fault is not big enough so that the 

related fault detection test (Eq. (2.50)) can indicate the fault according to the corresponding adaptive threshold. 

• In general, fault isolation requires the observation of a subset of fault signals in order to determine a result. In 

consequence, the fact that every fault signal has its own dynamics and some of them can not be observed 

persistently o simply, they are not observed, can lead to a wrong fault isolation result if the whole fault diagnosis 

process does not take into account these circumstances. 

In general, this influence between fault detection and fault isolation modules is obviated assuming an ideal fault 

detection result. This approach can lead to inconsistent results which might determine wrong decisions. These 

negative aspects can be prevented if dynamical properties of fault signals are taken into account by the fault isolation 
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module such as it is the case of the mentioned extension of the approach proposed by (Puig et al, 2005b) which will 

be considered in this thesis.  

On the other hand, according to (Puig et al., 2005b), the value of a fault signal at a certain time instant is set by the 

value of its associated residual (Eq. (2.2)) at this time instant, such as it will be illustrated in Section 7.2.2 of Chapter 

7. Then, taking into account that the residual dynamics are deeply affected by the observer gain matrix L (Eq. (2.22)), 

the time evolution of the fault signals will also be affected by this matrix. As a result, it can be said that the influence 

of the fault detection stage on the result of the fault isolation module may depend on the observer gain L. In this 

thesis, the influence of fault detection on the fault isolation result will be illustrated analyzing the effect of the 

observer gain. Regarding fault detection, it was mentioned in Section 2.3.2.5 that an appealing design of the observer 

gain matrix L might help to prevent those negative drawbacks (Table 2.1) (e.g. the following fault effect and the 

wrapping effect) related to the analytical system model what may also help to improve the fault isolation 

performance. Conversely, as derived from Eq. (2.22), the dynamical properties of fault signals will be affected by the 

observer gain and as a result, it may also be possible to design L in order to add more fault distinguishability and to 

enhance the performance of the fault isolation module. 

As viewed in Section 2.3.2.5, the structure of the diagnostic matrix FSM determines the fault signals which must be 

observed when a certain fault occurs and consequently, this aspect has also an important influence on the obtained 

fault isolation result. Thereby, according to definition of this matrix, FSM, its structure derives from the structure of 

the residual generator (Eq. (2.2)) which depends on the observer gain matrix L as shown in Eq. (2.22). In consequence, 

a suitable design of L might allow obtaining suitable structures of the matrices FSM which enhance the result of 

fault isolation. In this thesis, these aspects will also be illustrated. 

 

2.5 Thesis Objectives 
 

In Section 2.3 and Section 2.4, the state of art of the current methods applied to fault detection and fault isolation was 

described pointing out their weaknesses and drawbacks. As a result of this analysis, in this sections it is briefly 

described how this thesis tackles this present problems establishing its main objectives. Thus, in Section 2.5, these 

objectives are enumerated grouping them according to the fault diagnosis module which they belong to: fault 

detection module, fault detection/isolation interface module and fault isolation module. Finally, in this section, the 

proposed fault diagnosis is also briefly described. 
 

2.5.1 Fault detection objectives 
 

The main aim of this group is to analyze the influence of the observer gain matrix L on the robust fault detection 

performance for the purpose of: 

(a) Obtaining fault detection quality considering the following observer properties: 

1. Observer gain influence on the residual sensitivity to a fault. 

2. Observer gain influence on the minimum detectable fault function. 

3. Observer gain influence on the fault detection persistency. 

(b) Avoiding the problems associated with the computation of the system output estimation interval when a set-

based approach is used.  

1. Wrapping effect. 

2. Range evaluation of an interval function. 

3. Temporal variance on uncertain parameters. 
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(c) Illustrating the equivalence between interval observers and interval predictors since: 

1. This equivalence can be used to tackle the problems mentioned in point (b) 

2. Interval predictors are not affected by the problems related to the initial state estimation. 
 

2.5.2 Fault isolation objectives 
 

The main objective of this group is to analyze the influence of the observation gain matrix L on the fault isolation 

module focusing on: 

(d) The influence of the fault detection module on the fault isolation result. 

(e) The influence of the observer gain L on the structure of the fault residual generator. 

(f) The event nature of the generated fault signals which allows modelling the fault isolation module using a timed 

discrete event approach. 

The purpose of this analysis is to illustrate that a proper design of matrix L can enhance the fault isolations 

performance. 
  

2.5.3 Fault detection/isolation interface objectives 
 

As mentioned in Section 2.4.2.2, the objectives of this thesis regarding the interface between fault detection and fault 

isolation are focused on tackling the weaknesses of the interface presented in (Puig et al, 2005b). Thereby, the 

interface proposed in this thesis must consider: 

• Model uncertainty derived from the proposed passive robust fault detection approach based on interval 

observers. 

• The dynamics related to fault signals and the time evolution of their properties. 

• Lack of fault indication because of the fault following effect. 

• Fault indication delays once the fault has occurred. 

• Influence of the observer gain matrix L on the fault detection and fault isolation modules. 

As a result, a new interface will be proposed which will be described in the following section. 
 

2.5.4 Fault diagnosis proposed approach 
 

This thesis proposes a new fault diagnosis approach that tries to take into account the summarized aspects mentioned 

in Section 2.5.1, Section 2.5.2 and Section 2.5.3. Thereby, this approach applies the architecture presented in Figure 

2.8 whose modules are described briefly in the following: 

• Fault detection module generates a fault signal measuring the system inputs and outputs taking into account 

model uncertainty. This is carried out using a fault detection interval observer which allows generating an 

adaptive threshold that evolves along time. Thus, this computed adaptive threshold allows evaluating robustly 

the consistency between the available measurements and the set of considered residual relations. Regarding the 

chattering effect produced by noise, it is tackled using a fuzzy evaluation.  

• Fault detection/isolation interface module evaluates fault signals generated by the fault detection module in 

order to register their dynamical properties which will allow the fault isolation module to isolate the fault among 

the considered fault hypotheses. These properties are summarized using several indicators which take into 

account not only the activation value of the fault signal but also its fault sensitivity/sign and its activation 

time/order.  



 67

• Fault isolation module reasons with the information used to build all the indicators provided by the improved 

fault detection and isolation interface using a discrete-event fault diagnosis model that can be automatically built 

from the analytical redundancy relations obtained from the monitored system model equations and the system 

available measurements. 
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Fig. 2.8 Block diagram of the fault diagnosis system 
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CHAPTER 3 

Observer gain effect in linear interval 

observer-based fault detection  

 
 

3.1 Introduction 
 

Model-based fault detection of dynamic processes relies on the use of models to check the consistency of observed 

behaviors. This consistency check is based on computing the difference between the predicted value from the model 

and the real value measured by the sensors. Then, this difference, known as residual, will be compared with a 

threshold value (zero in the ideal case). When the residual is bigger than the threshold, it is determined that there is a 

fault in the system. Otherwise, it is considered that the system is working properly. However, when building a model 

of a dynamic process to monitor its behavior, there is always a mismatch between the modeled and the real behavior. 

This is because some effects are neglected in the model, some non-linearities are linearised in order to simplify the 

model, some parameters have tolerance when they are compared between several units of the same component, some 

errors in parameters or in the structure of the model are introduced in the model estimation process, etc. These 

modeling errors introduce uncertainty in the model and interfere with the fault detection. A fault detection algorithm 

able to handle uncertainty is called robust. Thus, in case of model parameter uncertainty, a model whose parameter 

values are bounded by intervals, known as an interval model, is usually considered. The robustness of a fault 

detection system means that it must be only sensitive to faults, even in the presence of model-reality differences 

(Chen et al, 1999).  

Robustness can be achieved at residual generation (active) or evaluation phase (passive).  Most of the passive robust 

residual evaluation methods are based on an adaptive threshold changing in time according to the plant input signal 

and taking into account model uncertainty either in the time domain (Horak, 1988) or in the frequency domain 

(Frank et al, 1994) (Hamelin et al, 2000). Recently, several researchers have used interval models in fault detection 

(Fagarasan et al, 2004) (Ploix et al, 2006) (Sainz et al, 2002). Conversely, interval observers applied to robust fault 

detection were already introduced in (Puig et al, 2003b) for linear interval systems using an optimization based 

algorithm.  Whereas in (Puig et al, 2006a), the extension to non-linear interval systems was presented. Furthermore, 

in (Johansson et al, 2006), interval observation is solved using an inequality involving the convolution operator. 

In observer-based fault detection methods, the observer gain plays an important role because it determines the time 

evolution of the residual sensitivity to a fault and therefore the minimum detectable fault at any time instant (Chen at 

al, 1999). In (Gertler, 1998), for example, the importance of residual sensitivity to a fault is noticed. Based on this 

concept, the notion of “triggering limit”, which corresponds with the minimum detectable fault because it is a fault 

that brings a residual to its threshold, is introduced. Therefore, a fault which is slightly smaller than the triggering 

limit is never detected (“non-detectable fault”), while a slightly bigger fault is always detected (“detectable fault”). 

In (Gertler, 1998), the residual sensitivity to a fault is analyzed in steady state, but according to (Gertler, 1988), it is 

not certain that the maximum fault effect (sensitivity) on the residual occurs in steady state. In fact, this is not, in 

general, the case.  
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The aim of this chapter is to generalize the residual fault sensitivity presented in  (Gertler, 1988) to the case of 

interval observers, showing it is a time function and determines the minimum detectable fault at any time instant. 

This will allow establishing three types of faults according to their detectability time evolution: permanently 

(strongly) detected, non-permanently (weakly) detected or just non-detected. As a consequence, the problem of how 

fault detectability evolves with time is opened. In addition, another problem appears when faults are not permanently 

detected. Thus, the lack of fault indication persistency can confuse the fault isolation module in case that the residual 

would  have to be evaluated jointly with a set of residuals, being necessary that a subset of them are active at the 

same time instant to isolate a given fault. This problem has been already noticed by (Combastel et al, 2003) who 

suggests registering the maximum residual value once reached. However, this strategy introduces an additional 

problem, since then, once the fault is detected, its indication is still active in spite the fault has already vanished. 

Finally, the effect of the observer gain on the time evolution of the residual sensitivity to a fault and the minimum 

detectable fault at any time instant will be analyzed.  

Regarding the structure of the Chapter 3 remainder, fault detection concepts using interval observers are introduced 

in Section 3.2. Then, the time evolution of the fault residual sensitivity depending on the observer gain is analyzed 

(Section 3.3). In Section 3.4, using the sensitivity studies, the time evolution of the minimum detectable fault and its 

observer gain dependence is presented using interval observer-based methods. Finally (Section 3.5), an example 

based on a mineral grinding-classification process will be used to illustrate the derived. 

 

3.2 Fault detection using linear interval observers 
 

3.2.1 Interval observer expression 
 

Considering that the system to be monitored can be described by a MIMO linear uncertain dynamic model in 

discrete-time, its state-space form considering faults is2  

0 a a

0 y y

( k 1) ( ) ( k ) ( ) ( k ) ( ) ( k )

( k ) ( ) ( k ) ( ) ( k ) ( ) ( k )

+ = + +

= + +

x A θ x B θ u F θ f

y C θ x D θ u F θ f

ɶ ɶ ɶ

ɶ ɶ ɶ
       (3.1) 

where y(k)∈ℜny, u0(k)
3∈ℜnu, x(k)∈ℜnx  are the system output, input and the state-space vectors respectively; 

A( θɶ )∈ℜnx×nx
, B( θɶ )∈ℜnx×nu

, C( θɶ )∈ℜny×nx and D( θɶ )∈ℜny×nu are the state, the input, the output and the direct 

transmission matrices respectively; nθ∈ℜɶθ  is the system parameter vector; fy(k)∈ℜny and fa(k)∈ℜnu represent faults 

in the system output sensors and actuators respectively being Fy( θɶ )∈ℜny×ny and Fa( θɶ )∈ℜnx×nu their associated 

matrices. 

The system in Eq. (3.1) can be expressed in its input-output form using the shift operator q-1 and assuming zero initial 

conditions:  

1 1
0( ) ( ) ( , ) ( ) ( , ) ( )

fa a fy y
k k q k q kθ− −= + +y y G θ f G fɶ ɶ         (3.2) 

where  

1
0 0( ) ( , ) ( )k q k−=y M θ uɶ              (3.3) 

                                                 
2 It is assumed that the system is in open-loop. The study of the effect of the loop is let a further research. Some preliminary results of effect of 
loop in the fault sensitivity analysis can be found in (Jaques et al., 2003). Concerning the effect caused by disturbances and noises, it is not 
considered in the scope of this PhD, in spite of its importance, being left as a further work. 
3
 It should be noticed that u0(k) is the real system input and does not have to be equal to the measured system input since the input sensor might be 
faulty or affected by noise. 
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corresponds to the system output without faults. 1( , )q−M θɶ  is the transfer function matrix regarding the system input 

vector which can be expressed in terms of the system matrices as: 

1 1( , ) ( )( ( )) ( ) ( )q q− −= − +M θ C θ I A θ B θ D θɶ ɶ ɶ ɶ ɶ          (3.4) 

Gfa and Gfy are the system transfer functions regarding the system faults (fa , fy ) and can be expressed as follows: 

1 1( , ) ( )( ( )) ( )
fa a
q q− −= −G θ C θ I A θ F θɶ ɶ ɶ ɶ           (3.5) 

1( , ) ( )
fy y
q− =G θ F θɶ ɶ             (3.6) 

In line with Section 2.3.2.5, the system described by Eq. (3.1) is monitored using a linear observer with Luenberger 

structure based on an interval model. This type of model considers that model parameters θ are bounded by an 

interval set { }, 1, ,n
i ii i nθ θ θ θ θ= ∈ℜ ≤ ≤ = ⋯Θ θ . This set represents the uncertainty about the exact knowledge of real 

system parameters ɶθ . The interval for uncertain parameters can be inferred from real data using set-membership 

parameter estimation algorithms (Milanese et al., 1996) (Ploix et al., 1999). The resulting interval observer assuming 

the observability of the system (Eq. (3.1)) for all ∈θ Θɶ  can be written as:   

ˆ ˆ ˆ( 1, ) ( ( ) ( )) ( ) ( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( , ) ( ) ( ) ( ) ( )
o o

k k k k k k k

k k k

+ = − + − + = + +
= +

x θ A θ LC θ x B θ LD θ u Ly A θ x B θ u Ly

y θ C θ x D θ u
    (3.7) 

where u(k) is the measured system input vector, ˆ ( , )kx θ  is the estimated system space-state vector and ˆ ( , )ky θ  is the 

estimated system output vector for a given value of ∈θ Θ . Noticing that the relation between the measured system, 

u(k), and the real system input,  u0(k),  includes the effect of faults in the input sensors and as result, the expression 

of u(k) can be written as: 

0( ) ( ) ( ) ( )
u u

k k k= +u u F θ f              (3.8) 

where ( ) nuk ∈ℜuf  is the input sensor fault while Fu(θ)∈ℜnu×nu is its associated matrix. 

The observer gain matrix nx ny×∈ℜL  is designed to stabilise the matrix ( )oA θ  and to guarantee a desired 

performance regarding fault detection for all ∈θ Θ  (Chilali et al., 1996). Thereby, as mentioned in Section 2.3.2.2, 

three cases are embedded in the observer structure according to the chosen observation gain value L. In the first case, 

the observer eigenvalues are equal to the ones of the monitored systems since L=0 (simulation approach). Then, the 

case in which all the observer eigenvalues are placed at the origin using L=Lp (prediction approach) and finally, the 

case in which the observer eigenvalues range between the ones associated with the simulation and prediction 

approaches using L=Lo (observation approach).  

The effect of the uncertain parameters θ on the observer temporal response ˆ ( , )ky θ  will be bounded using an interval 

satisfying: 

ˆ ˆ( , ) [ ( ), ( ) ]i ii
y k y k y k∈θɶ            (3.9) 

in a non-faulty case. Such interval is computed independently for each output (neglecting couplings among outputs): 

ˆ ˆ( ) min( ( , ))i iy k y k
∈

=
θ Θ

θ  and ˆ ˆ( ) max( ( , ))i iy k y k
∈

=
θ Θ

θ          (3.10). 

subject to the observer equations given by (3.7).  Such interval can be computed using the algorithm based on 

numerical optimisation presented in (Puig and et al., 2003a). 

For simplicity, in the following the uncertain parameter dependency will only be made explicit in the system 

matrices/transfer functions but not in the signals. 
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Alternatively, the observer given by Eq. (3.7) can be expressed in input-output form using the q-transform and 

considering zero initial conditions as follows:  

1 1

1 1 1
0 fu u

ˆ ( k ) ( q , ) ( k ) ( q , ) ( k )

( q , ) ( k ) ( q , ) ( k ) ( q , ) ( k )

− −

− − −

= +

= + +

y G θ u H θ y

G θ u H θ y G θ f        
      (3.11) 

where 

1 1
o o( q , ) ( )( q ( )) ( ) ( )− −= − +G θ C θ I A θ B θ D θ        (3.12) 

1 1
o( q , ) ( )( q ( ))− −= −H θ C θ I A θ L          (3.13) 

1 1
fu u( q , ) ( q , ) ( )

− −=G θ G θ F θ           (3.14) 

 

3.2.2 Fault detection using interval observers 
 

Fault detection is based on generating a residual comparing the measurements of physical variables ( )ky  of the 

process with their estimation ˆ ( )ky  provided by the associated system model: 

ˆ( k ) ( k ) (k )= −r y y             (3.15) 

where r(k)∈ℜny is the residual set. According to (Gertler, 1998), a generic form of a residual generator can be 

obtained using Eq. (3.11) and written as:   

1 1( , ) ( , ) ( ) ( , ) ( )k q k q k− −= +r θ V θ u O θ y           (3.16) 

where: V(q-1,θ) and O(q-1,θ) are transfer functions. This residual expression is known as its computational form. The 

transfer functions V(q-1,θ) and O(q-1,θ) can be obtained using Eq. (3.15) and Eq. (3.11). Then, it results: 

1 1( , ) ( , )q q− −= −V θ G θ             (3.17) 

1 1( , ) ( , )q q− −= −O θ I H θ            (3.18) 

As a result, using Eq. (3.17) and Eq. (3.18), the computational form of the residual could be written as follows: 

( )1 1( , ) ( , ) ( ) ( , ) ( )k q k q k
− −= − + −r θ G θ u I H θ y         (3.19) 

In addition, the residual given by Eq. (3.19) can be also expressed in terms of the effects caused by faults using its 

internal or unknown-input-effect form (Gertler, 1998). This form, obtained combining Eq. (3.15), Eq. (3.11) and Eq. 

(3.2), is expressed as 

( )( )1 1 1 1
0( , ) ( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , ) ( )fa a fy y fu uk k q q k q k q k− − − −= + − + −r θ r θ I H θ G θ f G θ f G θ fɶ ɶ    (3.20) 

where 

( )1 1
0 0 0( , ) ( , ) ( ) ( , ) ( )k q k q k

− −= − + −r θ G θ u I H θ y         (3.21) 

would be the expression of the non-faulty residual. Comparing Eq. (3.21) and Eq. (3.16), it should be noticed both r0(k) 

and r(k) are affected in the same way by the observation gain L. 

When considering model uncertainty located in parameters, the residual generated by Eq. (3.15) will not be zero even 

in a non-faulty scenario. Thus, it must be considered that the propagation of the parameter uncertainty to the residual 

will allow computing a residual interval at every time instant: 

[ ] [ ]( ) ( ), ( )k k k=r r r              (3.22)  
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where for the residual ri(k) related to the system output yi(k)
4
 (neglecting couplings among outputs):  

( ) min( ( ))i ir k r k
∈

=
θ Θ

   and ( ) max( ( ))i ir k r k
∈

=
θ Θ

         (3.23)  

Notice that according to Eq. (3.9) and Eq. (3.15), ( )ir k 0<  and   ( )ir k 0>  when the monitored system is not affected 

by any fault.. 

Then, the fault detection test is based on propagating the parameter uncertainty to the residual (Puig et al, 2002a) and 

checking if 

[ ] [ ]ˆ( ) ( ) ( )k k k∈ = −0 r y y  or [ ]ˆ( ) ( )k k∈y y           (3.24) 

holds or not. In case it does not hold a fault can be indicated. 
 

3.2.3 Effect of the observer gain on the residual interval 
 

Before analyzing the effect of the different types of faults on the residual, it is important to determine the influence 

of the observer gain L on the residual interval (Eq. (3.22)) since, such as it is derived from Eq. (3.24), it has a decisive 

influence on the observer fault detection performance. In order to illustrate this influence, the interval observer state-

space form is expressed as 

[ ] ( )
ˆ ˆ( 1) ( ) ( ) ( )

( )

ˆ ˆ( ) ( ) ( ) ( ) ( )

k
k k

k

k k k

 
+ = +  

 

= +

u
x A θ x B θ L

r

y C θ x D θ u

         (3.25) 

using  Eq. (3.7) and Eq.(3.15). 

Then, assuming zero initial conditions, the input-output form of the observer using the q-transform is 

( )( ) ( )1 1
ˆ ( k ) ( ) q ( ) ( ) ( ) ( k ) ( ) q ( ) ( k )

− −= − + + −y C θ I A θ B θ D θ u C θ I A θ Lr      (3.26) 

Thus, defining ˆ ( k )L=0y  as the value of ˆ ( k )y  when L=0 (simulation value) and 1
r ( q , )−H θ  as 

( ) 11
r ( q , ) ( ) q ( )

−− = −H θ C θ I A θ L           (3.27) 

the interval observer input-output form can be written as: 

1
r

ˆ ˆ( k ) ( k ) ( q , ) ( k )−= +L=0y y H θ r            (3.28) 

Conversely, taking into account that the general expression of the residual is given by Eq. (3.15) and using the 

observer output estimation given by Eq. (3.28), the residual can be re-written as 

1
r

ˆ ˆ( k ) ( k ) ( k ) (k ) (k ) (q , ) ( k )−= − = − −L=0r y y y y H θ r         (3.29) 

Then, taking into account that the transfer function 1
r ( q , )−H θ (Eq. (3.27)) is a square matrix and considering that 

( )1
r ( q , )−+ H θI has an inverse matrix, this equation can be expressed as 

( ) ( )( ) 11 11
r( k ) (q , ) ( k ) ( ) q ( ) ( k )

−− −− = −= + +L=0 L=0r H θ r C θ I A θ L rI I       (3.30) 

for every value of ∈θ Θ  and where ˆ( k , ) ( k )( k )= −L=0 L=0r θ yy  is the residual generated by the simulation 

approach (Eq. (3.15)). This equation shows that the residual generated by the observer approach for a certain value of 

∈θ Θ depends on the observer gain L. 

                                                 
4 As indicated for the system output estimation interval, the residual interval can be calculated using the algorithm presented in (Puig et al., 
2003b). 
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In the remainder of this chapter it will be assumed that all elements of the matrices A and L are positive5 (A≥0 and 

L≥0) . Thus, taking into account this assumption and the observer model definition, it follows: ≤ ≤0 LC A
6. Note 

that the extreme case LC=A is just reached by the predictor approach (L=Lp) when C has an inverse matrix7. 

Nonetheless, the applied observer gain is assumed to satisfy the following relation: ≤ ≤o p0 L L , understood also 

element by element. Under these conditions, the next relation can be established for whatever time instant k>0  

( ) ( ) ( ) 1, ,
i i i
r k r k r k i ny     ⊆ ⊆ =   p oL=L L=L L=0

⋯        (3.31) 

See the proof in the Appendix A.  

Concerning the steady-state values of the residuals, relation given by Eq. (3.31) is satisfied when 

( ) ( ) 11
r

q 1
lim ( q , ) ( ) ( ) 1

−−

→
= + − ≥+ H θ I C θ I A θ LI         (3.32) 

as it will be demonstrated in Appendix B. It must be noticed that this relation (Eq. (3.32)) does not need A and L to be 

positive matrices, although this case is out of the scope of this chapter. 

Under the same conditions in which Eq. (3.31) is satisfied and taking into account Eq. (3.16) and Eq. (3.21), it must be 

noticed that this inclusion relation is also satisfied by r0(k).  

( ) ( ) ( )0 0 0 1, ,
i i i

r k r k r k i ny
=

     ⊆ ⊆ =   p oL L L=L L=0
⋯        (3.33) 

Conversely, according to the residual definition given by Eq. (3.15), the residual interval could be written as 

[ ] [ ]ˆ( ) ( ) ( )k k k= −r y y             (3.34) 

and consequently, considering the influence of the observer gain L on the residual interval shown by Eq. (3.31), the 

next relation regarding the influence of the observer gain on the system output estimation interval can be set 

( ) ( ) ( )ˆ ˆ ˆ 1, ,
i i i
y k y k y k i ny

= =
     ⊆ ⊆ =   p oL L L=L L 0

⋯        (3.35) 

 

3.3 Fault sensitivity 
 

3.3.1 Fault sensitivity concept  
 

The sensitivity of the residual (Gertler, 1998) to a fault is given by 

∂=
∂f

r
S

f
               (3.36) 

which is a transfer function that describes the effect on the residual, r, of a given fault f. In this section, the effect of 

the observation gain matrix L on the fault residual sensitivity time evolution is analyzed considering output sensor 

faults fy, input sensor faults fu and actuator faults fa. The expressions of these fault residual sensitivity functions are 

obtained using Eq. (3.36) and the residual internal form given by Eq. (3.20). Thus, it will be shown these functions 

have a time evolution which is determined by the observation gain matrix L. 

                                                 
5 The case where this condition is not fulfilled has been analysed in Chapter 4 which is based on (Meseguer et al., 2008a) adapting the results 

presented in this paper. The mentioned condition A≥0 is a typical assumption when dealing with interval observers since in this case the wrapping 

effect is avoided (Puig et al, 2002a) and the interval related to the system output estimation trajectories are generated by the vertices of the interval 
parameters. See for example (Gouzé et al, 2000) (Rapaport et al, 2003). 
6 0 ≤ ≤LC A  should be understood element by element, that is: ( )ij ij0 a≤ ≤LC , where , ,...,i j 1 nx= . 
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3.3.2 Sensitivity of the residual to an output sensor fault 
 

Analyzing the residual internal form given by Eq. (3.20), and considering the fault residual sensitivity definition 

given by Eq. (3.36), the sensitivity for the case of an output sensor fault fy is given by a matrix Sfy  of dimension 

ny ny× whose expression is: 

( ) ( )( )( )
1,1 1,

,1 ,

11 1 1

1 1

1 1

( , ) ( , ) ( , ) ( ) ( ) ( ) ( )

( , ) ( , )

( , ) ( , )

ny

ny ny ny

fy fy y

fy fy

fy fy

q q q q

S q S q

S q S q

−− − −

− −

− −

= − = − − − =

 
 

=  
 
 
 

ɶ ɶ

…

⋮ ⋱ ⋮

⋯

S θ I H θ G θ I C θ I A θ LC θ L F θ

θ θ

θ θ

   (3.37) 

where the element of this matrix located at the ith-row and in the jth-column, noted as 
,i jfyS , describes the sensitivity 

of the residual ri(k) related to the output system yi(k) regarding the fault ( )
jy

f k  affecting the sensor related to the 

output system yj(k). 

This expression shows the residual sensitivity to an output sensor fault is a time function and how its dynamics and 

steady-state gain is influenced by the observer gain. Thus, in order to point out this influence, this residual sensitivity 

can be re-written using the matrix inversion lemma8: 

( ) ( )
( )( )

11 1 1 1

11

( , ) ( , ) ( , ) ( , ) ( )

( ) ( ) ( )

fy fy r y

y

q q q q

q

−− − − −

−−

= − = =

= + −

+S θ I H θ G θ H θ F θ

I C θ I A θ L F θ

Iɶ ɶ

ɶ
    (3.38) 

Then, its value at time instant k=0, i.e. when an abrupt fault (modelled as a unit-step function) occurs, is  

1(0) lim ( , ) ( )fy fy y
q

q−

→∞
= =s S θ F θɶ            (3.39) 

independently of the observer gain matrix L. When ( )
y
F θɶ  is a diagonal matrix (i.e. additive output sensor fault 

case), 

1,1 1, 1

1, ,

(0) (0)

(0)

(0) (0)

0

0

ny

ny ny ny
ny

fy fy y

fy

fy fy y

s s F

s s F

  
  
 = = 
  
    

…

⋮ ⋱ ⋮ ⋱

⋯

s         (3.40) 

where 
iy

F  (i=1,…,ny) are the diagonal elements of matrix ( )
y
F θɶ .  It must be taken into account that the expression 

given by Eq. (3.40) has a meaningful importance regarding fault isolation since it illustrates that when an output 

sensor fault ( )
jy

f k  occurs at a certain time instant, the only residual ri(k) that reacts to this faulty situation at this 

time instant is the one related to the faulty sensor  while the other fault signals require more time in order to be 

observed. This property allows rejecting the rest of possible output sensor fault hypothesis from the fault occurrence 

time instant. 

On the other hand, the steady-state value of Eq. (3.38) for an abrupt fault modelled as a unit-step function (Gertler, 

1998) is given by  

                                                                                                                                                              
7
 When C has an inverse matrix, ≤ ≤0 LC A  and LpC=A force the observer gain to satisfy the relation ≤ ≤o p0 L L  understood element by 

element. 
8 Matrix inversion lemma: 1 1 1 1 1 1 1( ) ( )x x x x x x x x x x x x x

− − − − − − −+ = − +A B D C A A B D C A B C A , being 

x
=A I , ( )

x
=B C θ ,

1( ( ))
x

q −= −D I A θ  and 
x

=C L . 
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( )
( )

11 1

1 1

11

( ) lim ( , ) lim ( , ) ( )

( )( ( )) ( )

fy fy r y
q q

y

q q
−− −

→ →

−−

 ∞ = =   

= + −

+s S θ H θ F θ

I C θ I A θ L F θ

I ɶ

ɶ
       (3.41) 

In general, Eq. (3.38) demonstrates clearly that the time evolution of residual sensitivity to an output sensor fault is 

affected by the observer gain matrix L and that this residual property can be tuned adjusting L in order to enhance the 

fault detection and isolation results. 

When the simulation approach is considered (L=0), Eq (3.41) is equal to Eq. (3.39) . 

( ) ( )fy y=∞ =L 0s F θɶ             (3.42) 

That means the simulator capability to detect a fault is a constant characteristic along the time. Moreover, it can be 

noticed that in the case showed in Eq. (3.40), the sensitivity value of the residual ri(k) to a fault 
jy

f  is zero-valued for 

all j: j≠i and is not null when the fault is affecting the output sensor related to yi(k).  

On the other hand, comparing Eq. (3.41) and Eq. (3.42) and taking into account that the considered interval observer 

satisfies the Eq. (3.32), the following relation is derived regarding the diagonal elements of 1( , )fy q
−

S θ  for every 

value of ∈θ Θ  

, ,
( ) (0) 1, ,

i i i ify fys s i ny∞ ≤ = ⋯             (3.43) 

while the other elements satisfy  

, ,
( ) (0) 1, , 1, ,

i j i jfy fys s i ny j ny i j∞ ≥ = = ≠⋯ ⋯        (3.44) 

since their initial value is null (Eq.(3.40)). As mentioned, stability is assumed in any case. 

That means the observer and predictor capability to detect a fault ( )
iy

f k  affecting the sensor output yi(k) using the 

residual ri(k)(Eq. (3.24)) is worsened regarding the initial time instant when the fault occurs while the simulator keeps 

constant this capability. On the other hand, except in the simulation case, the capability to detect a fault ( )
jy

f k (j≠i) 

using the residual ri(k) is improved along the time. 

Evaluating the influence of L on diagonal elements of Eq. (3.41) and taking into account that the considered interval 

observer satisfies the Eq. (3.32), it can be noticed that the steady-state value of the observer fault residual sensitivity is 

bigger than the corresponding to the predictor resulting  

, , ,
( , ) ( , ) ( , ) 1, ,

i i i i i ify fy fys s s i ny= =∞ ≤ ∞ ≤ ∞ =
p oL L L=L L 0

θ θ θ ⋯        (3.45) 

for every value of ∈θ Θ . Otherwise, for the non-diagonal elements (j≠i) the following relation holds 

, ,
( , ) ( , ) 0 1, , 1, ,

i j i jfy fys s i ny j ny i j=∞ ≥ ∞ = = = ≠
oL=L L 0

θ θ ⋯ ⋯      (3.46) 

 

3.3.3 Sensitivity of the residual to an input sensor fault 
 

In this case, considering the residual internal form given by Eq. (3.20), and the fault residual sensitivity definition 

given by Eq. (3.36), the residual sensitivity to an input sensor fault fu is given by a matrix Sfu of dimension ny nu×  

whose expression is: 
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( )( ) ( )( )
1,1 1,

,1 ,

11 1

1 1

1 1

( , ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( , ) ( , )

( , ) ( , )

nu

ny ny nu

fu u u

fu fu

fu fu

q q q

S q S q

S q S q

−− −

− −

− −

= − = − − − − + =

 
 

=  
  
 

…

⋮ ⋱ ⋮

⋯

S θ G θ F θ C θ I A θ LC θ B θ LD θ D θ F θ

θ θ

θ θ

 (3.47) 

 

where each row of this matrix is related to one component of the residual vector r = {ri(k): i = 1,2,….ny } (Eq. (3.15) 

while each column is related to one component of the input sensor fault vector fu = {
ju

f : j = 1,2,...,nu }. This 

expression shows the residual sensitivity to an input sensor fault is also a time function whose dynamics and steady-

state gain are influenced by the observer gain. Then, its value at time instant k=0, i.e. when an abrupt fault (modelled 

as a unit-step function) occurs, is 

 

1(0) lim ( , ) ( )fu fu u
q

q
−

→∞
= = −s S θ DF θ          (3.48) 

independently of the observer gain matrix L9. When D≈0, Eq. (3.48) means that none input fault can be detected at its 

occurrence time instant. 

On the other hand, the steady-state value for an abrupt fault modelled as a unit-step function (Gertler, 1998) is given 

by  

 

1 1

1
( ) lim ( , ) ( ( )( ( )) ( ) ) ( )fu fu o o u

q
q

− −

→
∞ = = − − +s S θ C θ I A θ B θ D F θ       (3.49) 

Eq. (3.49) shows the steady-state value of this sensitivity depends on the observation gain matrix L. Besides, 

comparing this equation with Eq. (3.48), assuming D≈0,the next relation between them is derived for every value of 

∈θ Θ : 

, ,
( ) (0) 1, , 1, ,

i j i jfu fus s i ny j nu∞ ≥ = =⋯ ⋯         (3.50) 

Unlike the output fault case, an input sensor fault is likelier to be detected after its occurrence time instant than when 

the fault just appears. When the simulation approach is considered (L=0), Eq. (3.49) can be re-written as follows: 

( )( )1
( ) ( ) ( ) ( ) ( ) ( )fu u

−
=∞ = − − +L 0s C θ I A θ B θ D θ F θ         (3.51)  

Then, considering the predictor case (L=Lp), the Eq. (3.49) becomes:  

( )( ) ( )( )1

=( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )fu u

−
∞ = − − − − +

pL L p ps C θ I A θ L C θ B θ L D θ D θ F θ        (3.52) 

According to the influence of matrix L on Eq. (3.49) and neglecting the value of matrix D, the following relation is 

fulfilled both by Sfu: 

, , ,
( , ) ( , ) ( , ) 1, , 1, ,

i j i j i jfu fu fu
s s s i ny j nu= =∞ ≤ ∞ ≤ ∞ = =

p oL L L=L L 0
θ θ θ ⋯ ⋯     (3.53) 

for every value of ∈θ Θ  and assuming stability. 

As demonstrated in Appendix C, matrix Sfu satisfies relation (3.53) because the considered observer fulfils the 

relations: ≤ ≤0 LC A  and ≤ ≤o p0 L L  . 

                                                 
9 Mostly, the direct transmission matrix D is considered zero-valued and thus, the residual sensitivity to an input sensor fault is null at its 
occurrence time instant according to Eq. (3.48). 
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Thus, in general, the absolute value of 
,i jfus  associated with the simulation approach is bigger than the corresponding 

one to the observation approach while this is also bigger than the corresponding to the prediction approach. 
 

3.3.4 Sensitivity of the residual to an actuator fault 
 

In this case, considering the residual internal form given by Eq. (3.20), and the fault residual sensitivity definition 

given by Eq. (3.36), the  residual sensitivity to an actuator fault fa is given by a matrix Sfa of dimension ny nu×  whose 

expression is: 

( )
( )( )( ) ( )

1,1 1,

,1 ,

1 1 1

11

1 1

1 1

( , ) ( , ) ( , )

( ) ( ) ( ) ( ) ( ) ( )

( , ) ( , )

( , ) ( , )

nu

ny ny nu

fa fa

a

fa fa

fa fa

q q q

q q

S q S q

S q S q

− − −

−−

− −

− −

= − =

= − − − − =

 
 

=  
  
 

S θ I H θ G θ

I C θ I A θ LC θ L C θ I A θ F θ

θ θ

θ θ

ɶ

ɶ ɶ ɶ

…

⋮ ⋱ ⋮

⋯

      (3.54) 

where each row of this matrix is related to one component of the residual vector r = {ri(k): i = 1,2,….ny } (Eq. (3.15)) 

while each column is related to one component of the actuator fault vector fa = {
ja

f  : j = 1,2,….nu }.This expression 

shows the residual sensitivity to an actuator fault is also a time function whose dynamics and steady-state gain are 

influenced by the observer gain. Furthermore, such as it was done for the output sensor fault residual sensitivity case, 

in order to point out this influence, Eq. (3.54) is re-written using the matrix inversion lemma: 

( ) ( )
( )( ) ( )

11 1 1 1 1

1 11

( , ) ( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( ) ( )

fa fa r fa

a

q q q q q

q q

−− − − − −

− −−

= − = =

= + − −

+S θ I H θ G θ H θ G θ

I C θ I A θ L C θ I A θ F θ

Iɶ ɶ

ɶ ɶ ɶ
     (3.55) 

Analyzing this equation and the associated with the output sensor fault residual sensitivity given by Eq. (3.38), it is 

seen the effect of the observer gain matrix L on both residual sensitivity equations is the same. Then, its value at time 

instant k=0, i.e. when an abrupt fault (modelled as a unit-step function) occurs, is 

1(0) lim ( , )fa fa
q

q
−

→∞
= =s S θ 0             (3.56) 

independently of the observer gain matrix L.  The residual sensitivity matrix at this time instant is null, such as it is 

for the input sensor fault assuming the direct transmission matrix D is zero-valued. That means none actuator fault 

can be detected at this time instant. According to the effect of the observer gain matrix on this residual sensitivity, it 

might be expected that the residual sensitivity at fault time occurrence were not zero-valued. But, on the other hand, 

it should be taken into account that the effect of an actuator fault requires a period of time fixed by the system 

dynamics till it affects to the system output. 

 The steady-state value for an abrupt fault modelled as a unit-step function (Gertler, 1998) is given by 

( )
( )( ) ( )

11 1 1

1 1

1 11

( ) lim ( , ) lim ( , ) ( , )

( ) ( ) ( ) ( ) ( )

fa fa r fa
q q

a

q q q
−− − −

→ →

− −−

 ∞ = =   

= + − −

+s S θ H θ G θ

I C θ I A θ L C θ I A θ F θ

I ɶ

ɶ ɶ ɶ
      (3.57) 

shows the steady-state value of this sensitivity is influenced by the observation gain matrix L such as it was 

mentioned for the output sensor fault case (Section 3.3.2). Comparing this equation with Eq. (3.56), the following 

relation between them is obtained for every value of ∈θ Θ : 

, ,
( ) (0) 1, , 1, ,

i j i jfa fa
s s i ny j nu∞ ≥ = =⋯ ⋯          (3.58) 
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Unlike the output fault case, an actuator fault is likelier to be detected after its occurrence time instant than when the 

fault just appears, such as it is for the input sensor fault case. When the simulation approach is considered (L=0), Eq. 

(3.57) can be re-written as follows: 

( ) 1
( ) ( ) ( ) ( )

fa a

−

=∞ = −
L 0

s C θ I A θ F θɶ ɶ ɶ            (3.59)  

Then, considering the predictor case (L=Lp), the Eq. (3.57) becomes:  

( )( ) ( )1 11
( ) ( ) ( ) ( ) ( ) ( )

fa a

− −−
=∞ = + − −

pL L p
s I C θ I A θ L C θ I A θ F θɶ ɶ ɶ        (3.60) 

According to the influence of matrix L on Eq. (3.57), the following relation is fulfilled  by Sfa:  

, , ,
( ) ( ) ( ) 1, , 1, ,

i j i j i jfa fa fa
s s s i ny j nu=∞ ≤ ∞ ≤ ∞ = =

p oL L L=L L=0
⋯ ⋯        (3.61) 

for every value of ∈θ Θ  and assuming stability. It must be noticed that relation (3.61) is satisfied because the interval 

observer fulfils the condition given by Eq.(3.32).  
 

3.3.5 Residual in terms of fault sensitivity  
 

Finally, it is also important to notice how the fault residual sensitivity concept (see Eq. (3.36)) determines the value of 

the residual at each time instant when the monitored system is affected by a fault. Thus, considering the residual 

internal form given by Eq. (3.20), the residual sensitivity to an output sensor fault, Sfy (Eq. (3.37)), to an input sensor 

fault, Sfu (Eq. (3.47)), and to an actuator, Sfa (Eq. (3.54)), the residual expression can be re-written as  follows: 

 

1 1 1
0( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , ) ( )fa a fy fy fu fuk k q k q k q k− − −= + + +r θ r θ S θ f S θ f S θ f      (3.62) 

As noticed by (Gertler, 1998) and (Chen et al, 1999), this equation let us understand the importance of the fault 

residual sensitivity to indicate the fault taking into account that a fault is detected while test (3.24) is not satisfied.  

 

3.4 Minimum detectable fault 
 

3.4.1 Minimum fault concept 
 

As it has been already mentioned in the introduction of this paper, the minimum detectable fault (”triggering limit”) 

corresponds to a fault that brings a residual to its threshold, provided no other faults and nuisance inputs are present. 

Nevertheless, as it was mentioned, this model property is obtained by (Gertler, 1998) considering the residual 

sensitivity to a fault in steady state. However, this is not right according to the results derived from Section 3.3. Then, 

in this section, the minimum detectable fault concept can be adapted to the interval based fault detection methods as 

the fault, min
f ( k )f , whose residual disturbance counteracts the interval observer adaptive threshold from its 

occurrence time instant, as it will be shown in the following. 

Considering the system is just affected by one fault f(k) (fy(k) or fa(k) or fu(k)) whose occurrence time instant is given 

by t0, the residual can be expressed in terms of the fault according to Eq.  (3.62) as it follows: 

0 0

0 0

( , ) ( , )
( , )

( , )

f
k k k t

k
k k t

+ ≥=  <

r θ d θ
r θ

r θ

   

              
                (3.63) 

for every value of ∈θ Θ  and where  

0t1
f f( k , ) ( q , ) ( k )q

−−=d θ S θ f                 (3.64) 
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is the residual disturbance caused by the fault f(k), Sf(k) is the residual sensitivity to that fault, and r0(k), (Eq. (3.21)), 

is a vector which contains the effect of the model parameter uncertainty on the residual. Thus, in line with the fault 

detection test given by Eq. (3.24), its limit condition is given when 

( k ) =r 0  or ( k ) =r 0             (3.65) 

considered componentwise. 

The residual disturbance df(k) which allow reaching one of the fault detection limit conditions for those values of 

∈θ Θ  such that  ( ) ( )k k=r r  or ( ) ( )k k=r r  will be noted as min ( )f kd : 

0min

0 0

( )
( )f

if k t
k

k if k t

<
= − ≥

0
d

r
            (3.66) 

where  min ( )f kd  is considered zero-valued when k< t0 because the fault has not occurred yet. Regarding the detection 

border condition given by Eq. (3.66), it can be considered it takes place when the residual disturbance, min ( )f kd , caused 

by the fault f(k) counteracts the effect of parameter uncertainty on the residual, r0(k). Therefore, r0(k) can be 

understood as an adaptive threshold associated to the interval observer.  

Then, according to the minimum detectable fault concept given at the beginning of this section and, considering Eq. 

(3.66) and the expression of the residual disturbance caused by the fault f(k) given by Eq. (3.64),  the minimum 

detectable fault function min
f ( k )f  can be written as it follows: 

min 1 1
f 0 f 0

0

( k t ) ( q ) ( k )

k t

− −− = −

≥

f S r
           (3.67) 

assuming Sf
-1exists and for those values of ∈θ Θ  such that  ( ) ( )k k=r r  or ( ) ( )k k=r r . Thus, a fault f(k) producing 

a residual disturbance ( f ( k )d ) bigger than the associated to min
f ( k )f   ( min

f ( k )d ) is always detected (strong fault 

detection) in concordance with Eq. (3.65) and fault detection test given by Eq. (3.24), while a fault producing a smaller 

residual disturbance is never detected.  

It must be noticed that the procedure given by Eq. (3.67) presents two drawbacks: the non-existence of Sf
-1 and the 

non-causalty of some elements of min
f ( k )f . The first one occurs when the matrix Sf of dimension ny x nf  is non-

square and can be tackled using the left pseudo-inverse10, Sf
+
, of Sf. Thus, Sf

+ will exist if and only if ny ≥ nf  

meaning that the number of residuals associated to the vector r(k) must be greater or equal than the number of faults 

associated with the vector f(k). Regarding the second drawback, when some elements of min
f ( k )f  are non-causal, 

(Peng et al., 1997) proposes multiplying every of these elements by the required number of delays so that each of 

them satisfies the causalty property.       

In the following, for the clearness of the derived results, it is assumed the existence and stability of Sf
-1  and the 

causalty of all the components of min
f ( k )f . 

 

3.4.2 Fault classification 
 

                                                 
10 The expression of Sf

+ is given by: ( ) 1
1 T 1 1 T 1

f f f f( q ) ( q ) ( q ) ( q )
−+ − − − −=S S S S         
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As follows from the previous section, the minimum detectable fault function evolves with time according to Eq. (3.67)

, presenting a maximum and a minimum value for a given observation gain. Hence, the next fault classification from 

detection point of view can be established: 

- Non-detectable faults are never detected for any period of time because its interval residual disturbance df(k) 

given by Eq. (3.64) is always contained in the corresponding one associated with the minimum detectable fault, 

min
f ( k )d , given by Eq. (3.66) and consequently, the fault is never detected. 

01 min
0( , ) ( ) ( , )t

f fq k q k k t
−−   ⊂ ∀ ≥  S θ f d θ             (3.68) 

- Permanently detected faults (strong fault detection) are always detected from its occurrence time instant. This 

group of faults satisfies: 

01 min
0( , ) ( ) ( , )t

f fq k q k k t
−−   ⊄ ∀ ≥  S θ f d θ             (3.69) 

- Non-permanently detected faults (weak fault detection) are only detected for a period of time but detection does 

not persist while fault does. These faults satisfy:  

01 min( , ) ( ) ( , )t

f fq k q k
−−   ⊄   S θ f d θ           (3.70) 

for some time instants, 
0k t≥ . 

In addition, because the residual disturbance caused by a fault and the system adaptive threshold can be adjusted 

through the observer gain, a non-detectable fault for the given observation gain can become non-permanently 

detected fault, if a suitable observation gain is set. Thereby, the fault detection time could also be adjusted using the 

observation gain. 
 

3.4.3 Fault detection time: detection persistence  
 

In order to determine the fault detection time, the detection test (3.24) and its derived limit condition (3.65) must be 

evaluated. Thus, it is concluded the fault is detected while its effect on the residual (residual disturbance) surpasses 

the effect of the model structured uncertainty on the residual (interval observer threshold). This condition can be 

expressed using the following equation: 

[ ]0 0( , ) ( , )f k k k t − ⊄ ≥ d θ r θ                (3.71) 

According to the expressions of the residual disturbance caused by the fault (Eq. (3.64)) and the observer threshold 

(Eq. (3.21)), the observer gain L has an important influence on the relation (3.71) and as a result, on the fault detection 

time. Thus, the observer gain dependence of df(k) is set by the function Sf  (Section 3.3) while the observer gain 

dependence of r0(k) is set by Eq. (3.33) (Section 3.2). 
 

3.4.4 Minimum detectable fault analysis 
 

In this section, the minimum detectable fault function min
f ( k )f  given by Eq. (3.67) is particularized considering output 

sensor faults fy, input sensor faults fu and actuator faults fa. The aim of this particularization is to analyze the effect of 

the observation gain L on the time evolution of this function. It must be noticed that both the minimum fault function 

min
f ( k )f  and the adaptive threshold r0(k) are theoretical concepts which are not required to be calculated on-line to 

indicate the fault according to the fault indication test (3.24). However, their analyses will be interesting because they 

provide a goodness index of the used fault diagnosis algorithm to detect faults. Thus, they help to tune it (i.e. using 
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the observer gain L) in order to achieve the fault diagnosis requirements of the monitored system. Moreover, it could 

be thought that both min
f ( k )f  and r0(k)  are computed in a initial configuration stage of the diagnosis algorithm. 

Moreover, it must be noticed that since this analysis is carried out using vectors and matrices (fy represents the set of 

all single faults related to the system output sensors, fu is the set of all single faults related to the system inputs 

sensors and  fa is the set of all single faults related to the system actuators), the minimum detectable fault vector 

min
f ( k )f  related to certain fault type (output sensor, input sensor or actuator) is obtained assuming a multiple fault 

scenario where all the single faults of this type must be detected. This approach can give valuable information about 

the goodness of the used method to detect faults but it can present a high complexity. Thereby, in order to prevent 

this complexity, this analysis can be carried out for every residual assuming a single fault scenario. As a result, for 

every residual and for every single fault, a minimum detectable fault function is obtained. Then, for a given single 

fault scenario, the minimum detectable fault which will be indicated by all the residuals is the one of this set whose 

absolute value is maximum at every time instant. This approach offers also helpful information about the goodness of 

the used fault diagnosis approach to diagnose faults. Moreover, it prevents some difficulties derived from the 

existence of the inverse matrix. 
 
3.4.4.1  Minimum detectable output sensor fault 

 

Considering that the output sensor fault residual sensitivity (Sfy) is given by Eq. (3.37), the minimum detectable fault 

function given by Eq. (3.67) can be particularized for the output sensor fault as: 

( )( )1min 1 1 1
fy 0 fy 0 y 0

0

( k t ) ( q , ) ( k ) ( ) ( ) q ( ) ( k )

k t

−− − −− = − = − + −

≥

ɶf S θ r F θ I C θ I A θ L r

 
   (3.72) 

At time instant k=t0 when the fault appears, the value of the minimum detectable output sensor fault is given by 

1min 1
0 0 0 0(0) (0) ( ) ( ) ( )

fy fy y
t t

− −= − = −f s r F θ rɶ            (3.73) 

where sfy(0) is given by Eq. (3.39).Considering matrix Fy is equal to the identity, Eq. (3.73) means the fault must be 

bigger than the absolute value of the observer threshold at time instant t0 in order to be detected at its occurrence time 

instant. As a consequence, given r0(k) depends on the observation gain L such as it is derived from Eq. (3.21), the fault 

detection at this time instant depends on the observation gain in spite the residual sensitivity to a fault at this time 

does not depend on L according to Eq. (3.39). In general, given r0(k) depends on the observation gain L such as it is 

derived from Eq.  (3.33), the next expression is fulfilled for every element of the vector min (0)
fy
f : 

( ) ( )min min(0) (0) 1, ,fy fy ii
i ny= =< =

pL L L 0f f ⋯           (3.74) 

where the subindex ‘i’ indicates a certain component of the vector min (0)
fy
f . Eq. (3.74) means that the minimum 

detectable output sensor fault at fault occurrence time instant is bigger when the simulation approach is considered 

than when the prediction approach is used. 

On the other hand, the steady-state value of Eq. (3.72) is given by 

( )( )1min 1 1
fy fy 0 y 0( ) ( ) ( ) ( ) ( ) ( ) ( )

−− −∞ = − ∞ ∞ = − + − ∞f s r F θ I C θ I A θ L rɶ       (3.75) 

where sfy(∞) is given by Eq. (3.41) and r0(∞) is the steady-state of the adaptive threshold given by Eq. (3.21): 

( ) ( )
( )

( ) lim ( , ) ( ) lim ( , ) ( )

( )( ( )) ( ) ( ) ( )( ( )) ( )

1 1
0 0 0

q 1 q 1

1 1
o 0 o 0

q q

q

− −

→ →

− −

∞ = − ∞ + − ∞

= − − ∞ + − − ∞

r G θ u I H θ y

C θ I A θ B θ u I C θ I A θ L y

     (3.76)  
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, assuming matrix D is zero-valued. Thus, using Eq. (3.76), the steady-state of the minimum detectable fault given by 

Eq. (3.75) can be expressed as follows: 

( )( )1min 1
fy y 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )

−−∞ = − − ∞ + ∞f F θ C θ I A θ B θ u yɶ -      (3.77) 

where a matrix product property11 is used.  

Thus, Eq. (3.77) shows the steady-state value of the minimum detectable output fault does not depend on the observer 

gains and its absolute value is given by the observer threshold steady-state value when all the observer gains are 

equal to zero. This is because the observer gain effects on the observer threshold and on the residual sensitivity to a 

fault counteract each other.   
 
3.4.4.2  Minimum detectable input sensor fault 

 

Considering that the input sensor fault residual sensitivity (Sfu) is given by Eq. (3.47), the minimum detectable fault 

function given by Eq. (3.67) can be particularized for the input sensor fault as: 

( ) 1
min 1 1 1 1
fu 0 fu 0 u o 0

0

( k t ) ( q , ) ( k ) ( ) ( )( q ( )) ( ) ( k )

k t

−− − − −− = − = −

≥

f S θ r F θ C θ I A θ B θ r      (3.78) 

where matrix D is considered zero-valued.  

At time instant k=t0 when the fault appears, the value of the minimum detectable input sensor fault is given by 

1min
0 0(0) (0) ( )fu fu t

−

= − =f s r ∞∞∞∞            (3.79) 

where sfu(0) is given by Eq. (3.48). This expression means that an input sensor fault can not be detected at its 

occurrence time instant t0 since the residual sensitivity to this type of fault at this time instant is null such as it was 

already noticed in Section 3.3.3. 

 On the other hand, the steady-state value of Eq. (3.78) is given by 

( )( ) 1
1min 1 1

fu fu 0 u 0 0( ) ( ) ( ) ( ) ( ) ( ) q ( ) ( ) ( )
−−− −  ∞ = − ∞ ∞ = ∞ + − − ∞ 

 
f s r F θ u C θ I A θ B θ y -    (3.80) 

using sfu(∞) given by Eq (3.49), the steady-state of the adaptive threshold, 0( )∞r , given by Eq. (3.76) and the matrix 

product property. 

Eq. (3.80) shows the steady-state value of the minimum detectable input sensor fault does not depend on the observer 

gains such as it was determined in Section 3.4.4.1 when the output sensor fault case was considered. This is also 

because the observer gain effects on the observer threshold and on the residual sensitivity to a fault counteract each 

other. 

Regarding the transient-state values of min
fuf , the influence of the observer gain matrix L is very similar to the 

minimum detectable output sensor fault case (Section 3.4.4.1). Thus, as a consequence of the dependence of the 

adaptive threshold r0(k) (Eq. (3.21)) on L described by Eq. (3.33), it can be set that, in general, the lower the norm of L, 

the bigger the instant value of min
fuf  is. Then, once this function reaches its steady-state, its value does not depend on 

L (Eq. (3.80)) such as mentioned above. 
 
3.4.4.3  Minimum detectable actuator fault 

 

                                                 
11 Matrix product property: ( ) ( )1 1

1 1 1 1
x x x x x x x x x x x x

− −− − − −− = −A B D C B D A B D C A B  being x =A I , x ( )=B C θ , ( q ( ))x o= −D I A θ  and 

x =C L . 
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Considering that the actuator fault residual sensitivity (Sfa) is given by Eq. (3.54), the minimum detectable fault 

function given by Eq. (3.67) can be particularized for the actuator fault as: 

( )( )1min 1 1 1 1
fa 0 fa 0 fa 0

0

( k t ) ( q , ) ( k ) ( q , ) ( ) q ( ) ( k )

k t

−− − − −− = − = − + −

≥

f S θ r G θ I C θ I A θ L rɶ
    (3.81) 

where Gfa is given by Eq. (3.5). 

 

At time instant k=t0 when the fault appears, the value of the minimum detectable actuator fault is given by 

1min
0 0(0) (0) ( )fa fa t

−

= − =f s r ∞∞∞∞              (3.82) 

where sfa(0) is given by Eq. (3.56). This expression means that an actuator fault can not be detected at its occurrence 

time instant t0 since the residual sensitivity to this type of fault at this time instant is null such as it was mentioned in 

Section 3.3.4 

 Conversely, the steady-state value of Eq. (3.81) is given by 

( ) ( )( )
min 1
fa fa 0

1 11
a 0 0

( ) ( ) ( )

( )( ( )) ( ) ( ) ( ) ( ) ( ) ( )

−

− −−

∞ = − ∞ ∞

= − − − ∞ + ∞

f s r

C θ I A θ F θ C θ I A θ B θ u yɶ ɶ ɶ-
    (3.83) 

using sfa(∞) given by Eq. (3.57), the steady-state of the adaptive threshold given by Eq.(3.76) and the matrix product 

property. 

Eq. (3.83) shows the steady-state value of the minimum detectable input sensor fault does not depend on the observer 

gains such as it was determined in Section 3.4.2 when the output sensor fault case was considered. This is also 

because the observer gain effects on the observer threshold and on the residual sensitivity to a fault counteract each 

other. 

Concerning the influence of the observer gain matrix L on the transient-state values of min
faf , the same behaviour can 

be stated in regard to min
fyf  (Section 3.4.4.1) and min

fuf  (Section 3.4.4.2). 

 

3.5 Application example 
 

3.5.1 Description 
 

The application example proposed to illustrate the obtained results deals with a mineral grinding-classification 

process used in (Maquin et al., 2000). This process, such as presented in this reference is composed by two grinding 

machines (B1 and B2) and three mineral separators (H1, H2 and H3). Each separator classifies the mineral particles in 

two types depending on their size. The only input of the process (u(t)) is the input mineral flow, while the only 

output (y(t)) is the output mineral flow whose mineral particles have the required size. On the other hand, this 

reference considers two non-measured states: the output mineral flow of B2 (x2(t)) and the output mineral flow of B1 

(x1(t)). Besides, the considered process parameters are the time constants of B1 and B2 (T1 = 300 s. and T2 = 60 s.) 

and the separation coefficients of H1, H2 and H3 (c1 = 0.5, c2 = 0.3 and c3 = 0.1). 
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Fig. 3.1 Scheme of the mechanical treatment unity to grind and classify a mineral flow 

 

Nonetheless, in order to show all derived conclusions showed in the previous sections, some adaptations of the 

application used in (Maquin et al., 2000) are considered in this paper. On one hand, parameter uncertainty is 

considered in order to illustrate the interval observer case and on the other hand, the system output will not be given 

by y(t) but by the states x1(t) and x2(t). As a result, the application used in this section is based on a SIMO system 

with two outputs instead of a SISO system with one output such as used initially in (Maquin et al., 2000). Thus, in 

order to build up the related interval observer, it is assumed that both states are measured. Then, the state-space form 

in discrete time of the linear dynamic process is given by 

1 11 12 1 11

2 21 22 2 21

1 1

2 2

11 12 2 21 3 22 11 1 21 1

1 1 2 2 1 2

( 1) ( )
( 1)

( 1) ( )

( ) ( )

( ) ( )

1 , , , 1 (1 ) ,

( )

,s s s s s s

x k a a x k b
u k

x k a a x k b

y k x k

y k x k

T T T T T T
a a c a c a b c b c

T T T T T T

k

+
= + −

+

= −   =   =   = −   = −   =

       
       
       

   = =   
   

y       (3.84) 

taking into account that y(k) is the output vector of the adapted application example and where Ts is the sample 

period, which must be chosen according to the eigenvalues of the state-space matrix (nominal value) in continuous 

time. According to (Maquin et al., 2000), these eigenvalues are: 3 1
1 3.216 10 sλ − −= − ×  and 1

2

21.678 10 sλ −−= − × . In this 

case, Ts=5.95 s. is used. The input mineral flow considered in this example is u(k)=1 Kg/s. Moreover, the time 

instant k=0 is considered as the system start-up time instant and therefore, before that time instant the system was not 

working. Thus, the monitored system initial conditions are assumed to be zero-valued. 

Thereby, the related interval observer expressed in its state-space form (Eq. (3.7)) is 

 

1 11 12 1 11 11 12 1 1

2 21 22 2 21 21 22 2 2

ˆ ˆ ˆ( 1) ( ) ( ) ( )
( )

ˆ ˆ ˆ( 1) ( ) ( ) ( )

y k a a y k b k k y k y k
u k

y k a a y k b k k y k y k

+
= + +

+
              −              

              
     (3.85) 

 

where a11∈[0.9752, 0.9850], a12∈[0.0059, 0.0060], a21∈[0.0099, 0.01] and a22∈ [0.8962, 0.9052] are the uncertain 

elements of observer state-space matrix whose nominal values are given by the expressions shown in Eq. (3.84); 

b11∈[0.0098, 0.01] and b21∈[0.0492, 0.0501] are the uncertain elements of the observer input matrix; k11, k12, k21 and 

k22 are the elements of the observer gain matrix. 

 

The input-output form of this interval observer can be written using Eq.  (3.11) and Eq. (3.85) can be written as: 
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where ao11=a11-k11, a
o
12=a12-k12, a

o
21=a21-k21 and a

o
22=a22-k22. 

 

In the following, the residual sensitivity to a fault, the interval adaptive threshold and the minimum detectable fault 

will be evaluated using the model parameters that allow computing ˆ ( )ky  which must be obtained applying Eq. (3.10)

and using a suitable algorithm as the one presented in (Puig et al., 2006). In the considered application example, 

according to (Cugueró et al., 2002), ˆ ( )ky  is obtained when =θ θ , while ˆ( )ky  is when =θ θ  since all the elements 

of the state-space matrix are positive. This fact is fully irrelevant for the results described in this chapter since it does 

not focus on the computation of the system output estimation interval but on the fault detection performace related to 

an interval observer model and on the influence of L on this performance. 

In the following, the residual sensitivity to a fault, the interval adaptive threshold and the minimum detectable fault 

will be evaluated using the model parameters that allow computing ˆ ( )y k . According to (Cugueró et al., 2002), ˆ ( )y k  is 

obtained when =θ θ , while ˆ( )y k  is when =θ θ  since all the elements of the state-space matrix are positive. 

Regarding the interval observer residual, its expression using the q-1 transform is 
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where r(k)=[r1(k) r2(k)]
T 

 

3.5.2 Sensitivity of the residual to an output sensor fault 
 

According to Section 3.3.2, the sensitivity of the residual to a sensor fault is given by Eq. (3.37). When particularizing 

this property for the application example case, this function becomes a square matrix of dimension 2×2 whose 

expression, considering Fy is equal to the identity I, is 
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where each function 
,i jfyS  is the sensitivity of the residual ri(k)( r1(k) or r2(k)) regarding a fault affecting the sensor 

related to the output yj(k) ( y1(k) or y2(k)).  

Considering the observer gain parameterization kij=laij (i=1,2 and j=1,2) and assuming an abrupt fault modelled as a 

unit-step function, the time evolution of 
1,1fyS  and 

2,1fyS  are drawn varying l from simulation (l=0) to prediction (l=1) 

, being the sweeping interval ∆l=0.04 and where the time unit is set by a sample period. 

Fig. 3.212 shows the residual sensitivity function 
1,1fyS  does not depend on the observation gain at fault occurrence 

time instant being equal to one according to Eq. (3.39) when Fy=I, while its steady-state value does: it is equal to the 

initial value for simulators while it is smaller than this value for predictors according to what is derived in Section 

3.3.2 (Eq. (3.45)). Besides, the greater the observation gain is, the faster the dynamics of the residual sensitivity is and 

consequently, the fault detection of a predictor approach could only last during few time steps unlike observer and 

simulator approach. 

Regarding the time evolution of the residual sensitivity function 
2,1fyS  plotted in Fig. 3.3, this function does not 

depend on the observation gain at fault occurrence time instant either being its value null such as derived from Eq. 

(3.39).  It must be taken into account that the existence of this function is because of the use of the observation gains 

meaning that 
2,1fyS  is zero-valued for every time instant when the simulation approach is used (Fig. 3.2)(Eq. (3.38)). 

Concerning the steady-state of this function, it presents a maximum for a given value between simulation and 

prediction which is obtained for l=0.04 in Fig. 3.3 (Eq. (3.46)). 
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Fig. 3.2 Time evolution of the sensitivity of residual r1(k) to an abrupt fault affecting the output sensor y1(k) regarding the observation gain when  

ˆ ˆ( ) ( )y k y k=  

 
                                                 
12 The arrow direction drawn in the figure sets the direction in which the observer gain increases its value. 
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Fig. 3.3 Time evolution of the sensitivity of residual r2(k) to an abrupt fault affecting the output sensor y1(k) regarding the observation gain when  

ˆ ˆ( ) ( )y k y k=  

3.5.3 Sensitivity of the residual to an input sensor fault 
The sensitivity of the residual to a sensor fault is given by Eq. (3.47) (see Section 3.3.3). Thereby, considering the 

application example, this function becomes a matrix of dimension 2×1 whose expression, considering Fu is equal to 

the identity I, is: 
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Considering the parameterization kij=laij (i=1,2 and j=1,2), the time evolution of the residual sensitivity function 

1,1fuS  without taking into account the sign of Eq. (3.89) is drawn varying l from simulation (l=0) to prediction (l=1), 

being the sweeping interval ∆l=0.04. 
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Fig. 3.4 Time evolution of the sensitivity of residual r1(k) to an abrupt fault affecting the input sensor regarding the observation gain when  

ˆ ˆ( ) ( )y k y k=  
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In Fig. 3.4, the residual sensitivity function 
1,1fuS  does not depend on the observation gain at initial time instant either 

and it is equal to zero according to Eq. (3.48) when matrix D≈0. On the other hand, its dynamics and steady-state 

value show a similar observation gain dependency to the output sensor fault case. As it can be seen, Fig. 3.4 is in 

concordance with results presented in Section 3.3.3, specially, the fulfillment of the relation given by Eq. (3.53).  
 

3.5.4 Sensitivity of the residual to an actuator fault 
 

Finally, the sensitivity of the residual to an actuator fault is given by Eq. (3.54)(see Section 3.3.4). In the application 

example case, this function becomes a matrix of dimension 2×1.  Regarding Gfa (Eq. (3.5)), it is assumed that satisfies 

the following expression: 
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where the value of the function G (Eq. (3.12)) is given by Eq. (3.86) in this application example case. Then, the 

expression of the residual sensitivity to actuator fault is given by 
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   (3.91) 

Then, the time evolution of 
1,1faS  considering the parameterization kij=laij (i=1,2 and j=1,2) can be drawn varying l 

from simulation (l=0) to prediction (l=1). In this case, the resulting figure looks like the one obtained in the input 

sensor fault case (Fig. 3.4). 

As it was discussed in Section 3.3.4, the residual sensitivity to an actuator fault does not depend on the observation 

gain at initial time instant either being zero-valued (Eq. (3.56)). On the other hand, its dynamics and its steady-state 

value show a similar observation gain dependency regarding the input sensor fault case. In short, these results are in 

line with what was presented in Section 3.3.4, highlighting the relation given by Eq. (3.61). 
 

3.5.5 Interval observer adaptive threshold 
 

According to Eq. (3.63), the interval observer adaptive threshold r0(k) might be obtained from Eq. (3.87)   assuming 

there are no faults and as a result, r0(k) is a vector of dimension 2×1 (r0(k)=[ r01(k) r02(k)]T). Thus, the time evolution 

of the lower bound of r01(k) related to 1 1ˆ ˆ( ) ( )y k y k=  is drawn varying l (kij=laij (i=1,2 and j=1,2)) from simulation 

(l=0) to prediction (l=1) without taking into account the sign of Eq. (3.87) and being the sweeping interval ∆l=0.04.  

Fig. 3.5 shows the influence of the observer gains on the threshold dynamics and its steady-state value. In the 

simulation approach (l=0), the parameter uncertainty has the maximum effect on the adaptive threshold and 

consequently, the maximum residual disturbance caused by the fault is required in order to be detected.  This figure 

illustrates the fulfillment of the interval threshold relation given by Eq. (3.33). 
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Fig. 3.5 Time evolution of the lower bound of the interval observer adaptive threshold r01(k) regarding the observation gain considering an abrupt 
step system input given by u(k)=1 Kg/s 

 

 

3.5.6 Minimum detectable output sensor fault function 
 

As mentioned previously, the minimum detectable output sensor fault is given by Eq. (3.67) using the residual 

sensitivity to an output sensor fault given by Eq. (3.37) and the interval observer adaptive threshold given by Eq. (3.21)

.Thereby, when particularizing this expression for the example application case, it becomes a vector of dimension 

2×1 which can be obtained using the residual sensitivity to an output sensor fault given by Eq. (3.88) and the interval 

adaptive threshold obtained using the residual equation (Eq. (3.87)) such as mentioned in the previous section. Thus, 

its expression is  
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    (3.92) 

 

where it must be noticed that both 
1

min
fyf  and 

1

min
fyf  are causal functions. In the following, the time evolution of 

1

min
fyf  

given by Eq. (3.92) when =θ θ  and t0= 200 is plotted varying l (kij=laij (i=1,2 and j=1,2)) from simulation (l=0) to 

prediction (l=1), being the sweeping interval ∆l=0.04. It must be taken into account that at this fault occurrence time 

instant (t0) the system is still at its transient state. 
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Fig. 3.6 Time evolution of the minimum detectable output sensor fault related to y1(k) regarding the observation gain when =θ θ  and  t0= 200. 

 

In Fig. 3.6 (t0=200), the observer gain dependence is such as described by Eq. (3.72). At time instant t0=200, when 

fault occurs, its initial value is just determined by the threshold value at this time instant. This is because the system 

has not reached its steady state yet. Then, the observer gains have an influence on the threshold dynamics and thus, 

on the minimum detectable fault transitory state. When that fault reaches its steady state, the observer gains influence 

disappears because its effect on the threshold and on the residual sensitivity counteracts each other.  

On the other hand, when just analyzing a fault affecting to the output sensor related to y1(k), 
1
( )yf k , assuming the 

other sensors and actuators are non-faulty, the method showed in Section 3.4.1 allows obtaining a minimum 

detectable fault function related to residual r1(k), 
1,1

min
fyf , and another one related to residual r2(k), 

2,1

min
fyf . Thereby, their 

expressions are 
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where according to the procedure given by (Peng et al., 1997), 
2,1

min
fyf  is delayed one time instant since the resultant 

function is not causal. Then, evaluating Eq. (3.93) for =θ θ  ( ˆ ˆ( ) ( )y k y k= ) or =θ θ  ( ˆ ˆ( ) ( )y k y k= ), this expression sets 

the minimum detectable output sensor fault related to y1(k) so that r1(k) can indicate the fault (Eq. (3.24)). Thus, 

regarding Eq. (3.94), this expression sets also the minimum detectable output sensor fault related to y1(k),but this time, 

so that r2(k) can indicate the fault (Eq. (3.24)). On the other hand, it must be taken into account that if fault isolation 

were required, all the residuals affected by the fault should violate the condition given by Eq. (3.24). In this case, the 

absolute value of the minimum detectable fault related to y1(k)( 
1,1

min
fyf  ), which guarantees that both r1(k) and r2(k) 

indicate this fault, is  

( ) ( ) ( )( )1 1,1 2,1

min min minmax ,
fy fy fy

abs f abs f abs f=           (3.95) 
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3.5.7 Minimum detectable input sensor fault function 
 

As pointed out in Section 3.4.4.2, the minimum detectable input sensor fault is given by Eq. (3.78) using the residual 

sensitivity to an input sensor fault given by Eq. (3.47) and the interval observer adaptive threshold given by Eq. (3.21). 

Then, evaluating this expression when using the application example, using the input sensor fault residual sensitivity 

(Eq. (3.89)) and the interval adaptive threshold (Eq. (3.87)), it must be noticed that the procedure determined by Eq. 

(3.67) can not be applied since matrix Sfu (Eq. (3.89)) is not a square matrix. In this case, as mentioned in Section 3.4.1, 

a modified procedure can be used where the left pseudo-inverse matrix of Sfu, Sfu
+, is considered instead of Sfu

-1. As a 

result, a minimum detectable input sensor fault vector whose dimension is just 1×1 is determined. This vector can be 

interpreted as the result of the equation system given by (3.65), formed by 2 equations when considering the 

application example, such that the quadratic error regarding the exact solution of every equation is minimum.  

Although this modified procedure allow us validating the goodness of the considered system model from the input 

sensor fault detection point of view, it seems to be more reasonable to analyze each residual independently in order 

to obtain the minimum detectable input sensor fault regarding the residual r1(k), 
1

min
fuf , and the minimum detectable 

input sensor fault regarding the residual r2(k), 
2

min
fuf , such as it was done in Section 3.5.6 to obtain the functions 

1,1

min
fyf  

(Eq. (3.93)) and 
2,1

min
fyf  (Eq. (3.94)). Thereby, the expressions of these functions are 
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where 
1,1fuS  and 

2,1fuS  are given by Eq. (3.89) and both 
1

min
fuf  and 

2

min
fuf  have been delayed one time instant according 

to the method given by (Peng et al., 1997) since they were not causal. When evaluating 
1

min
fuf  (Eq. (3.96)) for =θ θ  

( ˆ ˆ( ) ( )y k y k= ) or =θ θ  ( ˆ ˆ( ) ( )y k y k= ), this function establishes the minimum detectable input sensor fault related to 

u(k) so that r1(k) can indicate the fault (Eq. (3.24)). Conversely, 
2

min
fuf  (Eq. (3.97)), this expression sets also the 

minimum detectable input sensor fault related to u(k),but this time, so that r2(k) can indicate the fault (Eq. (3.24)). As 

a result, the minimum detectable input sensor fault, such that both r1(k) and r2(k) can indicate the fault according to 

the fault detection test Eq. (3.24), is given by  

( ) ( ) ( )( )1 2

min min minmax ,
fu fu fu

abs f abs f abs f=            (3.98) 

In the following, the time evolution of 
1

min
fuf  given by Eq. (3.96) when =θ θ  and t0= 200 is plotted varying l (kij=laij 

(i=1,2 and j=1,2)) from simulation (l=0) to prediction (l=1), being the sweeping interval ∆l=0.04.  
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Fig. 3.7 Time evolution of the minimum detectable input sensor fault related to r1(k) regarding the observation gain when =θ θ  and  t0= 200. 

Comparing the influence of the observer gain on the minimum detectable input sensor fault function described in 

Section 3.4.4.2 with the time evolution of  
1

min
fuf  (Eq. (3.96)) plotted in Fig. 3.7 (t0=200), some differences can be seen 

in  line with the initial value of the function at time instant k= t0 and its steady-state value. These discrepancies 

respond to the facts that 
1

min
fuf  has been delayed one time instant in order to achieve the causality property and 

1

min
fuf  

is the minimum detectable input sensor fault function related just to r1(k) since the exact procedure shown in Section 

3.4.4.2 could not be applied due to Sfu has no inverse matrix. Taking into account these particulars, the transient-state 

of function  
1

min
fuf  plotted Fig. 3.7 is in line with the results of Section 3.4.4.2. Concerning the steady-state value of 

1

min
fuf , Fig. 3.7 shows this value depends slightly on the observer gain, unlike Eq. (3.80). However, this influence 

could be assumed negligible in comparison with the dependence observed in the transient-state. 
 

3.5.8 Minimum detectable actuator fault function 
 

In Section 3.4.4.3, the influence of the observer gain matrix L on the time evolution of the minimum detectable 

actuator fault function was analysed. This function is set by Eq. (3.81) using the actuator fault residual sensitivity 

matrix, Sfa (Eq. (3.54)) and the interval observer adaptive threshold given by Eq. (3.21). When particularizing this 

expression for the application example, matrix Sfa is set by Eq. (3.91) while the interval adaptive threshold is set by 

Eq. (3.87). However, such as mentioned in the minimum detectable input sensor fault case (Section 3.5.7), the 

minimum detectable actuator fault procedure given by Eq. (3.81) can not be applied since Sfa has no inverse matrix 

when particularized for the application example. In this case, the left pseudo-inverse matrix of Sfa, Sfa
+, could be used 

allowing to obtain a minimum detectable actuator fault vector whose dimension is just 1×1, such as it was already 

described in Section 3.5.7 for the minimum detectable input sensor fault case. Nonetheless, such as pointed out in the 

previous section, another procedure to obtain the minimum detectable actuator fault consists in analyzing each 

residual independently in order to obtain the minimum detectable input sensor fault regarding the residual r1(k), 

1

min
faf , and the minimum detectable input sensor fault regarding the residual r2(k), 

2

min
faf . Then, the expressions of 

these functions are 

1 1,1

min 1 1 1
0 01

0

( ) ( , ) ( )fa faf k t S q r k q

k t

− − −− = −

≥

θ
            (3.99) 
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where 
1,1faS  and 

2,1faS  are given by Eq. (3.91) and both 
1

min
faf  and 

2

min
faf  have been delayed one time instant (Peng et 

al., 1997) since they were not causal. When evaluating 
1

min
faf  (Eq. (3.99)) for =θ θ  ( ˆ ˆ( ) ( )y k y k= ) or =θ θ  

( ˆ ˆ( ) ( )y k y k= ), this function establishes the minimum detectable actuator fault related to u(k) so that r1(k) can indicate 

the fault (Eq. (3.24)). Conversely, 
2

min
faf  (Eq. (3.100)), this expression sets also the minimum actuator fault related to 

u(k),but this time, so that r2(k) can indicate the fault (Eq. (3.24)). As a result, the minimum detectable actuator fault, 

such that both r1(k) and r2(k) can indicate the fault according to the fault detection test Eq. (3.24), is given by  

( ) ( ) ( )( )1 2

min min minmax ,
fa fa fa

abs f abs f abs f=            (3.101) 

Next, the time evolution of 
1

min
faf  given by Eq. (3.99) when =θ θ  and t0= 200 is plotted varying l (kij=laij (i=1,2 and 

j=1,2)) from simulation (l=0) to prediction (l=1), being the sweeping interval ∆l=0.04.  
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Fig. 3.8 Time evolution of the minimum detectable actuator fault related to r1(k) regarding the observation gain when =θ θ  and  t0= 200. 

Comparing the influence of the observer gain on the minimum detectable actuator fault function described in Section 

3.4.4.3 with the time evolution of  
1

min
faf  (Eq. (3.99)) plotted in Fig. 3.8 (t0=200), some discrepancies are stated 

regarding the initial value of the function at time instant k= t0 and its steady-state value, such as mentioned in Fig. 3.7 

where the time evolution of 
1

min
fuf  is plotted. These dissimilarities are due to the facts that 

1

min
faf  has been delayed one 

time instant and 
1

min
faf  is the minimum detectable actuator fault function related just to r1(k). Concerning the time 

evolution of function  
1

min
faf  plotted Fig. 3.8, this is in line with the results of Section 3.4.4.3 considering the 

mentioned particulars. Conversely, the steady-state value of 
1

min
faf  shows a slightly dependence on the observer gain, 

unlike Eq. (3.83), such as mentioned in the previous section for the input sensor fault case. However, this influence 

could also be neglected in comparison with the dependence observed in the transient-state.  
 

3.5.9 Fault classification: output sensor fault case 
 

In the following, assuming a fault scenario affecting the output sensor related to y1(k), different additive output 

sensor faults are applied to this sensor in order to illustrate the three fault types shown in Section 3.4.2. Thus, it is 

considered that the fault occurrence time instant is t0=200 and the observers gains are tuned as follows: k11=la11 and 
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k22=la22 being l=0.04 while k12=a12 and k21=a21. Firstly, a slightly bigger fault than the minimum detectable one 

obtained using Eq. (3.95) is applied. In Fig. 3.9, the time evolution of the output sensor measurements (y1(k) and y2(k)) 

and their interval estimations computed by the interval observer are plotted pointing out that the fault is indicated 

permanently by both residuals (r1(k) and r2(k)) (strong fault detection) according to detection test given by Eq. (3.24)

. Conversely, when a slightly smaller fault than the one established by Eq. (3.93) is applied (Fig. 3.10), the fault is not 

indicated by none residual since the detection test is always fulfilled (see Eq. (3.24)).  Finally, in Fig. 3.11 a constant 

fault whose value is 0.15 Kg/s (roughly, 20% of the system output nominal steady-state value) is considered. Then, 

the fault is indicated during a period of time by r1(k) since its occurrence time instant, but not by r2(k).  Later on, the 

fault is not longer indicated since it becomes smaller than the minimum detectable fault required for every residual 

and consequently, the fault is not persistently indicated (weak fault detection).  
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Fig. 3.9 Time evolution of  y1(k) and y2(k)) and their interval  estimations assuming a single fault scenario affecting the output sensor related to 
y1(k) at time instant t0=200  which is slightly bigger than the required one by both residuals (Eq. (3.95)).  
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Fig. 3.10 Time evolution of  y1(k) and y2(k)) and their interval  estimations assuming a single fault scenario affecting the output sensor related to 
y1(k) at time instant t0=200  which is slightly smaller than the required one by r1(k)  (Eq. (3.93)). 
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Fig. 3.11 Time evolution of  y1(k) and y2(k)) and their interval  estimations assuming a single fault scenario affecting the output sensor related to 
y1(k) at time instant t0=200  which has a constant value of 0.15 Kg/s 

 

3.5.10 Fault classification: input sensor fault case 
 

In this case, a fault scenario affecting the input sensor related to u(k) is assumed applying different additive input 

sensor faults to illustrate the three fault types shown in Section 3.4.2. Concerning the fault occurrence time instant, 

this is t0=200. On the other hand, the observer gains are tuned as follows: k11=la11 and k22=la22 being l=0.04 while 

k12=a12 and k21=a21. Firstly, a slightly bigger fault than the minimum detectable one obtained using Eq. (3.98) is 

applied. In Fig. 3.12, the time evolution of the output sensor measurements (y1(k) and y2(k)) and their interval 

estimations computed by the interval observer are plotted illustrating both residuals (r1(k) and r2(k)) are indicating 

permanently the fault (strong fault detection)(Eq. (3.24)). Then, when a slightly smaller fault than the one established 

by Eq. (3.97) is applied (Fig. 3.13), the fault is not indicated by none residual since the detection test is always 

fulfilled (see Eq. (3.24)).  Finally, in Fig. 3.14 a fault which is only indicated during a period of time by r2(k) since its 

occurrence time instant, but not by r1(k) is considered. Later on, the fault is not longer indicated by any residual (Eq. 

(3.24)) (weak fault detection).  
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Fig. 3.12 Time evolution of  y1(k) and y2(k)) and their interval  estimations assuming a single fault scenario affecting the input sensor related to 
u(k) at time instant t0=200  which is slightly bigger than the required one by both residuals (Eq. (3.98)).  
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Fig. 3.13 Time evolution of  y1(k) and y2(k)) and their interval  estimations assuming a single fault scenario affecting the input sensor related to 
u(k) at time instant t0=200  which is slightly smaller than the required one by r2(k)  (Eq. (3.97)). 

 



 100

100 150 200 250 300 350 400 450 500
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Time evolution: y1 interval estimation (Kg/s) / y1 measurement (Kg/s)

Time (-)

y1
 (

K
g/

s)

 

 

100 150 200 250 300 350 400 450 500
0.45

0.5

0.55

0.6

0.65
Time evolution: y2 interval estimation (Kg/s) / y2 measurement (Kg/s)

Time (-)

y2
 (

K
g/

s)

 

Fig. 3.14 Time evolution of  y1(k) and y2(k)) and their interval  estimations assuming a single fault scenario affecting the input sensor related to 
u(k) at time instant t0=200  which is only detected for few time instants by r2(k) 

 

 

3.5.11 Fault classification: actuator fault case 
 

In this section, a fault scenario affecting the actuator u(k) is assumed applying different additive actuator faults in 

order to illustrate the three fault types shown in Section 3.4.2. Concerning the fault occurrence time instant and the 

applied observer gains: t0=200, k11=la11 and k22=la22 being l=0.04 while k12=a12 and k21=a21. Firstly, a slightly bigger 

fault than the minimum detectable one obtained using Eq. (3.101) is applied. In Fig. 3.15, the time evolution of the 

output sensor measurements (y1(k) and y2(k)) and their interval estimations computed by the interval observer are 

plotted pointing out both residuals (r1(k) and r2(k)) are indicating permanently the fault (strong fault detection)(Eq. 

(3.24)). Then, when a smaller fault than the one established by Eq. (3.100) is applied (Fig. 3.16), the fault is not 

indicated by none residual since the detection test is always fulfilled (see Eq. (3.24)).  Finally, in Fig. 3.17 a fault 

which is only indicated during a period of time by r2(k) since its occurrence time instant, but not by r1(k) is 

considered. Later on, the fault is not longer indicated by any residual (Eq. (3.24)) (weak fault detection).  
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Fig. 3.15 Time evolution of  y1(k) and y2(k)) and their interval  estimations assuming a single fault scenario affecting the actuator u(k) at time 
instant t0=200  which is slightly bigger than the required one by both residuals (Eq. (3.101)).  
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Fig. 3.16 Time evolution of  y1(k) and y2(k)) and their interval  estimations assuming a single fault scenario affecting the actuator u(k) at time 
instant t0=200  which is smaller than the required one by r2(k)  (Eq. (3.100)). 
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Fig. 3.17 Time evolution of y1(k) and y2(k)) and their interval  estimations assuming a single fault scenario affecting the actuator u(k) at time 
instant t0=200  which is only detected for few time instants by r2(k) 

 

3.6 Conclusions 
 

This Chapter has presented a study that shows how the observer gain affects the fault detection performance of the 
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interval observer-based methods, according to the fault detection objectives enumerated in Section 2.5.1. This 

analysis, carried out following the seminal ideas proposed by (Gertler, 1998), points out the influence of the observer 

gain on the time evolution of the residual sensitivity to a fault, considering both sensor and actuator faults. As a 

novelty, this thesis considers the dynamical properties of the fault residual sensistivity pointing out their importance 

in the fault diagnosis process. The qualitative results of this analysis regarding the influence of the observation gain 

on fault residual sensitivy are briefly illustrated in Table 3.1. On the other hand, the effect of observer gain on the 

time evolution of the residual and its associated adaptive threshold is described. Thereby, the residual is expressed in 

terms of the fault residual sensitivity functions and its adaptive threshold allowing to obtain the minimum detectable 

fault. As a novelty, the time evolution of the minimum detectable fault for a given type of fault is determined using 

the residual adaptive threshold and the observer gain. This let us introduce three types of faults according to the time 

evolution of its residual disturbance: permanently detected (strong fault detection), non-permanently detected (weak 

fault detection) or just non-detected. Finally, an example based on a mineral grinding-classification process is used to 

illustrate the results derived. 

 

 Simulation 

L=0 

Observation 

L= Lo  

Prediction 

L= Lp 

fy
S  Constant Pulse Deadbeat 

fu
S  

Dynamic 

response 

Dynamic 

response 
Constant 

fa
S  

Dynamic 

response 

Dynamic 

response 
Constant 

 

Table 3.1 Qualitative influence of the observer gain on the time evolution of the fault residual sensitivity functions 
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CHAPTER 4 

Designing fault detection linear interval 

observers to avoid the wrapping effect 

 

 

4.1 Introduction 
 

Most of the robust residual evaluation methods are based on an adaptive threshold changing in time according to the 

plant input signal and taking into account the model uncertainty. These last years the research of adaptive 

thresholding algorithms that use interval models for FDI has been a very active research area since the seminal work 

(Horak, 1988): (Armengol et al, 2000), (Puig et al, 2002a), (Fagarasan el al, 2004) and (Ploix et al, 2006). In (Puig et 

al, 2003a) interval observers applied to robust fault detection have been introduced and in (Puig et al, 2003b), an 

interval simulation algorithm based on optimization through the set of possible real trajectories contained in the 

interval model is proposed. However, this trajectory based approach has a very high computational complexity. On 

the other hand, region (or set) based algorithms coming from the interval analysis (Kühn, 1998) are much less 

computational demanding but interval observers can suffer from several problems, such as the wrapping effect, if the 

model matrix does not fulfil the isotonicity property (Cugueró et al, 2002). The aim of this chapter is to show how 

those problems, mainly the wrapping effect, can be avoided when an interval observer model is considered in spite a 

low computational algorithm is used to estimate the output interval time evolution. This will only be possible if the 

observer gain matrix satisfies a key condition. On the other hand, the effect of this condition on the observer fault 

detection performance is also analyzed to see whether it is enhanced or not. This chapter continues the work 

developed in Chapter 3 based on the derived results of reference (Meseguer et al., 2007b) which is focused on fault 

detection based on intervals observers. It shows the influence of the observer gain on the residual sensitivity to a fault 

and on the minimum detectable fault (Gertler, 1998) since, such as it was noticed by (Chen et al 1999), the observer 

gain plays an important role in fault detection because it determines the time evolution of those fault detection 

properties.  

The structure of the Chapter 4 remainder is the following: in Section 4.2, fault detection concepts using interval 

observers are recalled and besides, the observer gain matrix design to avoid the wrapping effect is discussed. Then, 

(Section 4.3), the influence of avoiding the wrapping effect using the observer gain matrix on the observer fault 

detection performance is analyzed. In Section 4.4, the conclusions obtained in previous sections are exemplified 

using an application example based on an industrial smart actuator. Finally, Section 4.5 describes the main 

conclusions of this chapter. 
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4.2 Interval observation: adaptive thresholding 
 

The problem of adaptive threshold generation in discrete time-domain using interval observers can be formulated 

mathematically as the need of determining the predicted output interval  [ ˆ ( )ky , ˆ ( )ky ] at every time-instant using the 

interval observer given by Eq. (3.7) and according to the expressions given by Eq. (3.10). 

 In order to determine [ ˆ ( )ky , ˆ ( )ky ], the observer given by Eq. (3.7) is written as a model with one output and two 

inputs, assuming the observability of the system (Eq. (3.1)) for all ∈θ Θɶ : 

[ ] ( )
ˆ ˆ( 1) ( ) ( ) ( )

( )

ˆ ˆ( ) ( ) ( ) ( ) ( )

o o

k
k k

k

k k k

 + = +  
 

= +

u
x A θ x B θ L

y

y C θ x D θ u

           (4.1) 

where ( ) ( ) ( )o = −A θ A θ LC θ  and 
o ( ) ( ) ( )=B θ B θ - LD θ  and taking into account that the matrix and vector dimensions 

were given in Section 3.2.1. Then, interval observation can be formulated as an interval simulation and the existent 

algorithms for this methodology can be used (Puig et al, 2003b). As mentioned in Chapter 2, Section 2.3.2.5, a 

possible classification of those algorithms can be established according to if they compute the output interval using 

(Puig et al, 2005a): one step-ahead iteration based on previous approximations of the set of estimated states (region 

or set based approaches), or a set of point-wise trajectories generated by selecting particular values of Θθ ∈  using 

heuristics or optimisation (trajectory based approaches). But, when the undesired wrapping effect wants to be 

avoided, (Puig et al, 2005a) shows the trajectory based approach must be used in spite of its high computational cost. 

In this section, it is demonstrated that region based algorithms can also avoid wrapping effect and others pathologies 

when the interval observer is not formulated as a simulator but a proper observation gain matrix is used in order to 

counteract the model matrix elements that cause the appearance of the wrapping effect. Once the unsuitable elements 

of the model matrix ( )A θ , which cause the undesired effects, are identified, an suitable observation gain matrix L 

must be set in order to counteract them in the interval observer matrix 0 ( )A θ . Only if the observation gain matrix L 

satisfies that condition, the low computational cost algorithms can be used in order to evaluate the output interval at 

every time instant. In contrast to Chapter 3, it must be noticed that in this chapter the assumption A>0 and L>0 is not 

applied.  
 

4.2.1 Problems to be considered in interval observation 
 

These problems were already introduced in Chapter 2, Section 2.3.2.5.2, and consequently, in this section they are 

just briefly recalled in order to understand how the observation gain matrix can avoid their effects:  
 

4.2.1.1  Wrapping effect problem 

 

As mentioned in Chapter 2, the problem of wrapping is due to the use of a crude approximation of the interval 

observer solution set and its iteration using one-step ahead recursion of the state space observer function, i.e, a 

region based approach. This problem does not appear if instead the estimated trajectory function ˆ( , , , )kx u y θ , i.e., a 

trajectory based approach is used. The wrapping effect problem can be completely unrelated to the stability 

characteristics of the observer. Thereby, it must be noticed that not all the interval observers are affected by this 

drawback. According to (Cugueró et al, 2002), those that are monotone with respect to states do not present this 

problem: these kinds of observers (systems) are known as isotonic (Cugueró et al, 2002) or cooperative (Gouzé et al, 
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2000). In case of observers whose state function is contractive mapping (see Definition 2 of Section 2.3.2.5.2), the 

overestimation of the wrapped set does not increase along the time (Puig et al, 2003b). 
 

4.2.1.2  Temporal variance on uncertain parameters 

 

As mentioned in Chapter 2, an additional issue that should be taken into account is how uncertain parameter time-

invariance is assured since a step-ahead algorithm does not preserve it. In the literature two approaches can be found: 

• The time-varying approach which assumes that uncertain parameters are unknown but bounded in their 

confidence intervals and can vary at each time step (ElGhaoui et al, 1999)  (Puig et al ,2001). 

• The time-invariant approach which assumes that uncertain parameters are unknown but bounded in their 

confidence intervals and they can not vary at each time step (Horak, 1988), (Puig et al, 1999). 

Although the region based algorithms belong to the time-varying approach, in the case of isotonic systems, the 

parameter and state relation is preserved at every time instant because the interval arithmetic guarantees it. If a 

system is not isotonic, an isotonic observer must be used in order to avoid this problem when using low 

computational complexity algorithms. 
 

4.2.1.3  Range evaluation of an interval function 

 

Many approaches to interval observation need to evaluate the range of an interval function at every time instant in 

order to determine the interval for system states. One possibility for evaluating the range of the function is to use 

interval arithmetic (Moore, 1966). But, although the ranges of basic interval arithmetic operations are exactly the 

ranges of the corresponding real operations, this is not the case if the operations are composed. This phenomenon is 

termed as interval dependence or multi-incidence problem (Moore,1966). As mentioned in Section 2.3.2.5.2, one 

possibility to avoid this problem is to combine the use of interval arithmetic with a branch and bound algorithm 

(Hansen, 1992). Another possibility to evaluate the range of an interval function is to solve two optimization 

problems (a minimization and a maximization) using numerical methods. On the other way, it is not hard to show 

that isotonic systems do not suffer this problem and consequently, another way to avoid the multi-incidence problem 

is using an isotonic observer. At the same time, wrapping effect is also avoided when algorithms that propagate 

regions are used. 

In short, the previous problems appear because of the non-isotonicity property of the system model matrix ( )A θ  

when using the region-based approach. In order to avoid them, non-isotonic models must be turned into isotonic 

observers using a proper observation gain matrix L. That kind of observers allows to use low computational 

algorithms in fault detection applications. 
 

4.2.2 Designing the observer gain matrix L to avoid the 
wrapping effect 

 

When an observer is used instead of an interval simulator, the observer matrix, 
0 ( ) ( )= −A A θ LC θ , sets the dynamical 

properties of the observer instead of the system matrix, ( )A θ  including the appearance of the wrapping effect. If 

0 ( )A θ  is isotonic (Cugueró et al, 2002), the interval observer does not suffer from that pathology when using a 

region-based approach, in spite of the non-isotonicity of ( )A θ . Therefore, the clue to avoid this undesired problem is 

to design properly the observation gain matrix L so that 0 ( )A θ  becomes an isotonic matrix. 
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In this section, a stable interval observer whose matrix ( )A θ  is neither isotonic nor contractive (see Definition 2 of 

Section 2.3.2.5.2) is considered. Thus, the non-isotonicity property of matrix ( )A θ  establishes the existence of at 

least one state )(ˆ kxi  of the model state vector  ˆ( )kx  whose variation regarding another state )(ˆ kx j
 is negative or, in 

other words, at least one element of the considered system matrix, ( )A θ , is negative: 0
ij
a < . Then, the observer 

matrix ( )oA θ  achieves isotonicity only if the corresponding element aoij of this matrix is zero-valued. 

( ) 0 , where 0
oij ij ij ij
a a i j a= − = ∀ <LC         13          (4.2) 

where (LC)ij is the element of the resultant matrix LC∈ℜnx×nx placed in the ith-row and jth-column. Conversely, 

condition given by Eq. (4.2) can be also expressed as it follows: 

1

, where 0
ny

ij i j ij
a l c i j aα α

α =

= ∀ <∑                    (4.3) 

where liα are the i
th-row  elements of the observation gain matrix L and cαj are the j

th-column elements of the output 

matrix C(θ) related to the observer model. Thereby, while the elements cαj of matrix C(θ) are determined by the 

observer model structure and they can not be chosen freely in order to force condition (4.3), there are much more 

freedom degrees in order to force that condition choosing the elements liα associated with the observation gain matrix 

L.  

When forcing condition (4.3),  a prediction relation of the state )(ˆ kxi  regarding )(ˆ kx j
 is established in order to avoid 

the appearance of the wrapping effect when using the region-based approach. Nevertheless, the rest of the elements 

,
( )mn m i n j≠ ≠
LC  of the resultant matrix LC∈ℜnx×nx do not have any effect on the isotonicity property of the observer 

matrix ( )oA θ . And consequently, the elements lmα  (1≤α≤ny) associated with the observation gain matrix L∈ℜnx×ny 

might be chosen freely in order to achieve the desired fault detection performance but it must be taken into account 

that condition (4.3) can also have an influence on the observer stability and therefore, the values of those observer 

gains might verify additional restrictions in order to guarantee it. 

Condition (4.3) is not necessary to turn an unstable wrapping into a stable one. In this case, (LC)ij  must fulfil  

( ) 0,ij ija ⊂  LC              (4.4) 

and being 0 ( )A θ  a contractive matrix (see Definition 2 of Section 2.3.2.5.2). Derived from (4.4), the state 

overestimation using region-based algorithms decreases when the observation relation of )(ˆ kxi  regarding )(ˆ kx j
 

becomes closer to a prediction. Then, isotonicity is achieved and trajectory and region-based approaches obtain the 

same state estimations (Puig et al, 2005a). 

Regarding the observation gain L, this matrix can be partitioned in a matrix L- whose elements determine the 

observation gain values needed to force the isotonicity condition (4.3) and a matrix L+ whose elements can be chosen 

freely to enhance the observer fault detection performance and to guarantee the observer stability. Thereby, the 

observer matrix ( )A θ  can be seen as the sum of two matrices: ( )+A θ  built up using those positive elements of 

( )A θ  and ( )−A θ  determined by the negative ones. Then, in line with the definition of those matrices, the next 

expressions can be set: 

( ) ( ) ( )+ −= +A θ A θ A θ              (4.5) 

                                                 
13 Expressing the system (3.1) in its observable canonical form given its observability for all ∈θ Θɶ , condition (4.2) can be applied for all the 
negative elements of matrix A. This is also the case when C has a inverse matrix.  
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+ −= +L L L               (4.6) 

( ) ( )( ) ( ) ( ) ( ) ( )
o + + − −= − + −A θ A θ L C θ A θ L C θ          (4.7) 

( )
, where 0

( )
0 , where 0
mn mn

mn
ij

a m i n j a

m i n j a+

∀ ≠ ≠ >=  ∀ = = <
A θ

   

      
         (4.8) 

( )
0 , where 0

( )
, where 0

mn

mn
mn ij

m i n j a

a m i n j a−

∀ ≠ ≠ >=  ∀ = = <
A θ

     

  
         (4.9) 

( ) 1

, where 0
( )

0 , where 0

ny

m n mn

mn

ij

l c m i n j a

m i n j a

α α
α =+


∀ ≠ ≠ >= 

 ∀ = = <

∑
L C θ

   

               
        (4.10) 

( ) ( )( ) ( )
mn mn− −=L C θ A θ               (4.11) 

Thus, the elements of matrix L+C are positive or zero-valued while those elements of matrix L-C are negative or 

zero-valued. Then, comparing the norm of the observer gain matrix ( )oA θ  (Eq. (4.7)) when the isotonicity condition 

(4.3) (or equivalently, condition (4.11) ) is forced or not, the next relation is set 

( ) ( )o o −= =≥
- -L C 0 L C AA θ A θ             (4.12) 

In spite of the previous relation (Eq.(4.12)), it must be taken into account that condition (4.3) forces the negative 

elements of ( )oA θ  to be null what let also establish the next relation: 

( ) ( )o o −= =− ≥ −
- -L C 0 L C AI A θ I A θ           (4.13)  

Alternatively, analyzing the non-zero-valued elements of matrix L-, they must fulfil the relation given by condition 

(4.3). Thereby, when all non-zero-valued elements of C(θ) are positive, the non-zero-valued elements of  L- must be 

negative while the non-zero-valued elements of  L+ must be positive. In general, neither all elements of matrix L- 

have to be negative nor all elements of matrix L+ have to be positive when forcing condition (4.3). 

  

4.3 Influence of the isotonicity condition used to 
avoid the wrapping effect on the interval observer 
fault detection performance 

 

The aim of this section is to show the effect of condition (4.3) used to avoid the wrapping effect on the interval 

observer fault detection performance. As it was mentioned previously, that condition sets some element values of the 

resultant matrix LC and consequently, it may also affect to the interval observer fault detection performance as it will 

be illustrated in this section. First, the effect on the residual sensitivity to a fault studied in Section 4.3.1 is analyzed. 

Then, the effect of this condition on the time evolution of the computed interval observer residual and the associated 

adaptive threshold is illustrated (Section 4.3.2). Finally, using the done sensitivity analysis, the effect on the 

minimum detectable faults (Section 4.3.3) and the fault detection time (Section 4.3.4) is studied. 
 

4.3.1 Influence of the isotonicity condition on the residual 
sensitivity to a fault function 
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The residual sensitivity to a fault is given by Eq. (3.36) as it was presented in Section 3.3.1 of Chapter 3. In this 

section, the effect of condition (4.3) on the residual sensitivity to a fault is shown when it is particularized to an output 

sensor fault given by fy, to an input sensor fault given by fu and to an actuator fault given by fa . 
 

4.3.1.1  Residual sensitivity to an output sensor fault 
 

As it was mentioned in Section 3.3.2, the residual sensitivity to an output sensor fault is given by Eq. (3.37) and both 

its dynamics and its steady-state value are influenced by the observer gain matrix L. Then, when condition (4.3) (or 

equivalently, condition (4.11) ) is forced to turn 0 ( )A θ  into a isotonic matrix assigning prediction values to those 

elements (LC)mn of the resultant matrix LC where the associated element aij of matrix ( )A θ  is negative, the residual 

sensitivity time evolution is deeply affected. The residual sensitivity to a fault at time instant k=0, i.e. when an abrupt 

fault (modelled as a unit-step function) occurs, is 

1(0) lim ( , ) ( )
fy fy y

q
q−

→∞
= =s S θ F θɶ            (4.14) 

, independently of the observer gains such as it was shown in Eq. (3.39) and consequently, it is unaffected by 

condition (4.3) . On the other hand, the steady-state value for an abrupt fault modelled as a unit-step function is given 

by the Eq. (3.41) analyzed in Section 3.3.2. Thereby, taking into account the condition (4.3), this equation can be re-

written as it follows:        

( ) ( )( ) 111

1
( ) lim ( , ) ( ) ( ) ( )fy fy y

q
q

−−−
+ −→

∞ = = + − +s S θ I C θ I A θ L L F θɶ        (4.15) 

Analyzing the non-zero-valued elements of matrix L-, they must fulfil the relation given by the condition (4.11). In 

this way, assuming all non-zero-valued elements of C(θ) are positive, the non-zero-valued elements of  L- must be 

negative while the non-zero-valued elements of  L+ must be positive. Consequently, when forcing the isotonicity 

condition of ( )oA θ , the steady-state value of the elements of 1( , )
fy
q−

S θ  for every value of ∈θ Θ  (Eq.(4.15)) may 

increase its value regarding the case where that condition is not forced. 

, ,
( ) ( ) 1, , 1, ,

i j i jfy fy
i ny j ny= =∞ ≤ ∞ = =

- - -L C 0 L C A
s s ⋯ ⋯        (4.16) 

As derived from the structure of matrix Sfy (Eq.  (3.38)), relation (4.16) is satisfied when matrices A, L and C do not 

fulfil the condition given by Eq. (3.32). In Chapter 3, the assumption of A>0 and L>0 was made and consequently, 

according to the observer structure and the stability condition, this condition was always fulfilled. In this chapter, 

matrix A does not satisfy the isotonicity property and as a result, when avoiding the wrapping effect using condition 

(4.2), the elements of L may not be positive, as mentioned above, and consequently, condition (3.32) may not be 

satisfied resulting the relation given by Eq. (4.16). 

In this case, this effect caused by the isotonicity condition might be partially counteracted choosing properly values 

of matrix L+ since they have positive values. 

Summarizing in regard to the effect of the isotonicity condition (4.3) on the time evolution of the output sensor fault 

residual sensitivity function, it is concluded: 

1. The interval observer dynamics determined by matrix ( )oA θ  are affected because that condition set some 

elements of matrix LC to their prediction values and as a consequence of that, the eigenvalues of the interval 

observer matrix are closer to the null value. 

2. At time instant when the fault occurs, that condition has no effect on the residual sensitivity function since its 

value at this time instant does not depend on the observation gain matrix L such as it is indicated by Eq. (4.14). 
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3. The steady-state value and the gain of the residual sensitivity function is affected by the isotonicity condition 

such as it is seen in Eq. (4.15) but, because that condition force some elements of matrix LC to their prediction 

values, it was expected a decreasing of this values such as it was mentioned in Section 3.3.2 (Meseguer et al., 

2007b). Indeed, this is not the case when the isotonicity condition is forced since it sets the use of observation 

gains whose values are negative (i.e. the elements of the output matrix C are positive). Then, the relation (4.16) 

may be satisfied meaning that the steady-state value increases regarding the case where the isotonicity condition 

is not forced.  
 

4.3.1.2  Residual sensitivity to an input sensor fault 
 

In this case, the residual sensitivity function is given by Eq. (3.47) (Section 3.3.3) and according to its structure , this 

function is also deeply affected when the interval observer matrix 0 ( )A θ  is forced to satisfy the isotonicity property 

using the condition (4.3) such as it was mentioned in the output sensor fault case shown in the previous section. 

Thereby, following the analysis steps used in the previous section, the residual sensitivity to a fault at time instant 

k=0, i.e. when an abrupt fault (modelled as a unit-step function) occurs, is 

1(0) lim ( , ) ( )fu fu u
q

q−

→∞
= = −s S θ DF θ           (4.17) 

, independently of the observer gains such as it was shown in Eq. (3.48) and thus, it is not affected by condition (4.3) 

such as in the output sensor case. Regarding the steady-state value determined in Section 3.3.3, this is given by Eq. 

(3.49) where matrix 0 ( )A θ  can be expressed in terms of matrices L+C and L-C (Eq. (4.7)).  Thus, this equation can be 

re-written as it follows: 

( )( ) ( )( )11

1
( ) lim ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )fu fu u

q
q

−−
+ −→

∞ = = − − − − − +s S θ C θ I A θ L C θ L C θ B θ LD θ D F θ   (4.18) 

taking into account that mostly D≈0. As indicated by Eq. (4.13), when forcing the isotonicity condition (4.3), the norm 

of the matrix ( )o−I A θ  decreases regarding the case in which that condition is not forced. Therefore, according to 

the contractivity property (see Definition 2 in Section 2.3.2.5.2) of a linear system,,it is concluded that the steady-

state value of the elements of 1( , )
fu
q−

S θ  for every value of ∈θ Θ  (Eq. (4.18)) may also increase its value regarding 

the case where that condition is not forced such as it was shown in the previous section for the output sensor case. 

, ,
( ) ( ) 1, , 1, ,

i j i jfu fu
i ny j nu= =∞ ≤ ∞ = =

- - -L C 0 L C A
s s ⋯ ⋯        (4.19) 

In regard to the effect of the isotonicity condition on the dynamics of the residual sensitivity to an input sensor fault, 

the conclusions obtained for the output sensor case are also valid.  
 

4.3.1.3  Residual sensitivity to an actuator fault 
 

Comparing the actuator fault residual sensitivity function given by Eq.(3.54) regarding the residual sensitivity to an 

output sensor fault given by Eq. (3.37), it is seen both functions are affected by the observer gain matrix L throw the 

transfer function ( )1 1( , ) ( , )q q− −= −O θ I H θ  whose expression is given by Eq. (3.18). As a consequence of that, when 

forcing the isotonicity condition (4.3), the actuator fault residual sensitivity is affected such as it is the sensitivity to an 

output sensor fault. Thus, the residual sensitivity to a fault at time instant k=0, i.e., when it appears is 

1(0) lim ( , )fa fa
q

q−

→∞
= =s S θ 0              (4.20) 
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, independently of the observer gains such as it was shown in Eq. (3.56) and consequently, it is unaffected by 

condition (4.3) . Conversely, the steady-state value is given by Eq. (3.57) (Section 3.3.4) and it can be expressed in 

terms of matrices L+ and L- ,such as in Eq. (4.15) for the output sensor fault case, as it follows: 

( ) ( )( ) ( )1 111

1
( ) lim ( , ) ( ) ( ) ( ) ( ) ( )fa fa a

q
q

− −−−
+ −→

∞ = = + − + −s S θ I C θ I A θ L L C θ I A θ F θɶ ɶ ɶ     (4.21) 

Thus, comparing Eq. (4.21) with Eq. (4.15) and taking into account what was mentioned in the beginning of this 

section, it is concluded that the steady-state value of the elements of 1( , )
fa
q−

S θ  for every value of ∈θ Θ  (Eq. (4.21)) 

may also increase its value regarding the case where that condition is not forced: 

, ,
( ) ( ) 1, , 1, ,

i j i jfa fa
i ny j nu= =∞ ≤ ∞ = =

- - -L C 0 L C A
s s ⋯ ⋯        (4.22) 

assuming all non-zero-valued elements of C(θ) are positive. In a general case, the conclusions obtained for the output 

sensor case are also valid (Section 4.3.1.1). Thus, the relation given by Eq. (4.22) might be satisfied when the elements 

of the observation gain matrix L are required to be negative. 
 

4.3.2 Influence of the isotonicity condition on the residual 
 

In Section 3.2.3 of Chapter 3, the effect of the observer gain matrix L on the residual time evolution was analyzed. 

Mainly, this effect is described by Eq. (3.30) and its derived relation, (3.31), obtained assuming that all the elements of 

matrices A and L are positive. Thereby, when these hypotheses are satisfied, the residual time evolution fulfils the 

relation given by Eq. (3.31), as demonstrated in Appendix A. Nonetheless, the use of the isotonicity condition (4.3) 

implies that A has some negative elements and therefore, as seen in Section 4.2.2, some elements of L may also be 

required to be negative (L-). As a result, relation  (3.31) may not be satisfied. Recalling the expression of Eq. (3.30) in 

order to analyze it under the worst assumption that the isotonicity condition forces the non-zero-valued elements of 

L- to be negative (non-zero-valued elements of C(θ) are positive), this expression is re-written as: 

( ) ( ) ( )( ) 11 11( ) ( , ) ( ) ( ) ( ) ( )
r

k q k q k
−− −−

+ −= − += + +
L=0 L=0

r H θ r C θ I A θ L L rI I     (4.23) 

As it can be seen in Eq. (4.23), the influence of the observer gain on the time evolution of the residual is determine by 

the term ( ) 11( , )r q
−−+ H θI . If the expression of this term is compared with the expression of the function 1( , )

fy
q−

S θ  

(Eq. (3.38)), the following relation could be set 

( ) 11 1

( )
( , ) ( , )

y
r fy
q q

−− −
==+

F θ I
H θ S θI ɶ          (4.24) 

for every value of ∈θ Θ . Considering just the steady state, it was aready explained in Section 4.3.1.1 that when all 

the elements of matrices A and L are not positive, the relation given by Eq. (3.32) (Section 3.2.3) may not be satisfied 

and consequently, according to the contractivity property of a linear system (Appendix B) the relation (3.31), 

considered in steady state, may not be true when the condition (4.3) is forced. In this case, the residual may fulfil  

( ) ( ) 1, ,i ir r i ny∞ ≤ ∞ =
- - -L C=0 L C= A ⋯           (4.25) 

for every value of ∈θ Θ  and as a result, 

( ) ( ) 1, ,i ir r i ny
−

   ∞ ⊆ ∞ =   - -L C=0 L C=A ⋯          (4.26) 

what is an unexpected conclusion regarding the result mentioned in Section 3.2.3 (Eq. (3.31)). Moreover, concerning 

the similarity between the expression of the residual r(k) and its associated adaptive threshold r0(k) (Section 3.2.2), it 

must be taken into account that forcing the isotonicity condition may have a influence on the time evolution of the 

adaptive threshold very similar to the described one for the residual case (Eq. (4.25), Eq. (4.26)): 
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0 0( ) ( ) 1, ,
i i

r r i ny∞ ≤ ∞ =
- - -L C=0 L C= A ⋯           (4.27) 

for every value of ∈θ Θ  and  

0 0( ) ( ) 1, ,
i i

r r i ny
−

   ∞ ⊆ ∞ =   - -L C=0 L C=A ⋯           (4.28) 

Regarding the time evolution of the system output estimation interval, it may be also affected by the isotonicity 

condition according to the definition of the interval residual given by Eq. (3.34) (Section 3.2.2). In consequence, the 

interval associated with every component of the computed vector ˆ( )ky  may satisfy the next relation: 

ˆ ˆ( ) ( ) 1, ,i iy y i ny
−

   ∞ ⊆ ∞ =   - -L C=0 L C=A ⋯           (4.29) 

In Section 3.2.3, it was signalled out that the interval [ ]ˆ( )ky  generated using the simulation approach encloses the 

one generated by the observer and predictor approaches while the observer system output estimation interval 

encloses the one generated by the predictor approach (Eq. (3.35)). Thus, according to Eq. (4.29), this result may not be 

true since the output interval generated when the isotonicity condition is forced may enclose the one generated if that 

condition would not be forced. Thereby, the system output estimation interval generated by an observer approach 

might enclose the one generated by a simulator. 

In conclusion, when the isotonicity condition (4.3) is forced to avoid the wrapping effect, [ ]ˆ( )ky  may enclose the one 

generated if that condition would not be forced. Then, according to the fault detection condition given by Eq. (3.24) 

(Section 3.2.2), the interval observer will need a bigger fault in order to start indicating the fault. Then, it can be said 

that avoiding the wrapping effect using the observer gain matrix L worsens the fault detection performance of the 

interval observer model.   
 

4.3.3 Influence of the isotonicity condition on the minimum 
detectable fault function 

 

In Section 3.4, the minimum detectable concept was introduced (Eq. (3.67)) and particularized for the cases of output 

sensor fault (Eq. (3.72)), input sensor fault (Eq. (3.78)) and actuator fault (Eq. (3.81)). Moreover, the effect of the 

observer gain matrix L on the time evolution of these functions was also analyzed. Then, in this section, the effect of 

forcing the isotonicity condition (4.3) on the minimum detectable function is examined for each of the cases 

mentioned previously. 
 

4.3.3.1  Minimum detectable output sensor fault 
 

The minimum detectable output sensor fault function is given by Eq. (3.72) which can be expressed in terms of the 

matrices L+ and L- as it follows: 

( )( )1min 1 1 1
fy 0 fy 0 y 0

0

( k t ) ( q , ) ( k ) ( ) ( ) q ( ) ( ) ( k )

k t

−− − −
+ −− = − = − + − +

≥

f S θ r F θ I C θ I A θ L L rɶ
   (4.30) 

where it must be taken into account that the observer adaptive threshold r0(k) given by the Eq. (3.21) (Section 3.2.2) is 

affected by the isotonicity condition such as it was described in Section 4.3.2 (Eq. (4.28)). At time instant k=t0 when 

the fault appears, the value of Eq. (4.30) (Section 3.4.4.1) is given by 

min 1
0 0(0) ( ) ( )

fy y
t−= −f F θ rɶ             (4.31) 
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Thus, given that forcing the isotonicity condition may widen the interval adaptive threshold regarding the case this 

condition is not used (Eq. (4.28)), the initial value of every component of the vector min
fy
f  may increase its absolute 

value. 

( ) ( )min min(0) (0) 1, ,fy fy
i i

i ny
−= =≤ =

- -L C 0 L C Af f ⋯        (4.32) 

Regarding the steady-state value of this minimum fault function (Eq. (4.30)), it was demonstrated in Section 3.4.4.1 

(Eq. (3.77)) that this value does not depend on the observer gain matrix L (Meseguer et al, 2007b).  

In conclusion, when forcing the isotonicity condition, the minimum detectable output sensor fault vector is only 

affected during its transient-state and not once it reaches its steady-state value. The transient-state values of this 

function are bigger than the ones obtained when this condition is not used and consequently, this fact means that the 

interval observer requires a bigger output sensor fault during the residual transient state caused by the fault to start 

indicating the faulty situation.  
 

4.3.3.2  Minimum detectable input sensor fault 
 

The minimum detectable input sensor fault function is given by Eq. (3.78) which can be expressed in terms of the 

matrices L+C and L- C as it follows: 

( ) 1
min 1 1 1 1
fu 0 fu 0 u 0

0

( k t ) ( q , ) ( k ) ( ) ( )( q ( ) ( ) ( )) ( ) ( k )

k t

−− − − −
+ −− = − = − − −

≥

f S θ r F θ C θ I A θ L C θ L C θ B θ r  (4.33) 

 where matrix D is considered to be null.  

At time instant k=t0 when the fault appears, the value of Eq. (4.33) (Section 3.4.4.2) is given by 

min (0)fu =f ∞∞∞∞              (4.34) 

Regarding the steady-state value of this minimum fault function (Eq.(4.33)), it was demonstrated in Section 3.4.4.2 

(Eq. (3.80)) that this value does not depend on the observer gain matrix L.  

Although neither the initial value of this function (Eq. (4.34)) nor its steady-state value are affected by the isotonicity 

condition (4.3), its transient-state values may be influenced. Initially, they are basically affected by the threshold r0(k) 

which may already be influenced (Eq. (4.28)) by this condition since time instant k=0 (Section 4.3.2). Conversely, 

since time instant k=t0, the effect of that condition on the residual sensitivity function (Eq. (4.19)) starts counteracting 

the effect on the adaptive threshold r0(k) until the function reaches its steady-state where its values does not depend 

on the observer gain matrix L. Then, according to Eq. (4.28), the transient-state values of every component of the 

vector min
fu
f  may increase its absolute value satisfying the next relation:  

( ) ( )min min
0 0

0

( ) ( ) 1, ,fu fu
i i

k t k t i ny

t k

−= =− ≤ − =

< < ∞
- -L C 0 L C Af f ⋯

       (4.35)  

Thus, such as it was mentioned in the minimum detectable output sensor case, when forcing the isotonicity condition, 

the minimum detectable input sensor fault is also affected during its transient-state and not once it reaches its steady-

state value. The transient-state absolute values are also bigger than the ones obtained when this condition is not used 

and consequently, the fault detection performance associated to the interval observer is also worsened when forcing 

the isotonicity condition.   
 

4.3.3.3  Influence on the minimum detectable actuator fault 
The minimum detectable actuator fault function is given by Eq. (3.78) which can be expressed in terms of the matrices 

L+ and L- as it follows: 



 114

 
( )( )1min 1 1 1 1

fa 0 fa 0 fa 0

0

( k t ) ( q , ) ( k ) ( q , ) ( ) q ( ) ( ) ( k )

k t

−− − − −
+ −− = − = − + − +

≥

f S θ r G θ I C θ I A θ L L rɶ
 (4.36) 

where Gfa is the system transfer function regarding the actuator fault fa which does not depend on the observer gain 

matrix L according to Eq. (3.5) (Section 3.2.1). On the other hand, comparing Eq. (4.36) with the obtained one for the 

output sensor case (Eq. (4.30)), it is seen that both are affected by the observer gain matrix L in the same way and 

consequently, the isotonicity condition (4.3) will also have the same effect on them. At time instant k=t0 when the 

fault appears, the value of Eq. (4.36) (Section 3.4.4.3) is given by 

min (0)fa =f ∞∞∞∞               (4.37) 

Regarding the steady-state value of this minimum fault function (Eq.(4.36)), it was demonstrated in Section 3.4.4.3 

(Eq. (3.83) ) that this value does not depend on the observer gain matrix L.  

Then, such as it was explained for the input sensor case (Section 4.3.3.2), the effect of isotonicity condition on the 

transient-state values are basically established by the influence of that condition on the adaptive threshold r0(k). In 

consequence, the next relation may be satisfied 

( ) ( )min min
0 0

0

( ) ( ) 1, ,
fa fa

i i
k t k t i ny

t k

−= =− ≤ − =

< < ∞
- -L C 0 L C A

f f ⋯
       (4.38) 

As a result, such as it was mentioned for output sensor and input sensor cases, when forcing the isotonicity condition, 

the transient-state absolute values of the minimum actuator fault function are also bigger than the ones obtained 

when this condition is not used and consequently, the fault detection performance associated to the interval observer 

is also worsened when forcing that condition. 
 

4.3.4 Influence of the isotonicity condition on the fault 
detection persistency 

 

In Section 3.4.3, it was explained that a fault is detected while its effect on the residual (residual disturbance df(k) 

given by Eq. (3.64)) surpasses the interval observer threshold r0(k) which is originated by the effect of the model 

structured uncertainty on the residual. This fault indication condition is given by Eq. (3.71). On the other hand, when 

the isotonicity condition (4.3) is forced, both the interval observer threshold r0(k) (Section 4.3.2) and the residual 

disturbance df(k) (Section 4.3.1) may be affected increasing their absolute values regarding the case where that 

condition is not used. However, it must be taken into account that r0(k) is affected since k=0 while df(k) is since the 

fault occurrence time instant k=t0 and is not fully affected until it does not reach its steady-state. In consequence, the 

fault indication might be affected negatively during the transient-state caused by the fault requiring more time 

instants to start indicating the fault or/and indicating the fault during less time instants.  

 

4.4 Application example 
 

4.4.1 Description 
 

The application example proposed to illustrate the obtained results deals with an industrial smart actuator which has 

been proposed as an FDI benchmark in the context of the European research training network DAMADICS (Fig. 

4.1). This smart actuator is used in the evaporation station of a sugar factory in Poland and it consists in a control 

valve, a pneumatic servomotor and a smart positioner (Bartys, 2002) (Fig. 4.2). 
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Fig. 4.1 DAMADICS smart actuator.                                                         Fig. 4.2 DAMADICS smart actuator block diagram  

 

Using physical modeling (Bartys, 2002) linearising around the operating point and a mixed optimization-

identification algorithm as in (Ploix et al, 1999), the following linear interval model of the actuator valve position has 

been derived: 

ˆ ˆ( k 1) ( ) ( k ) ( ) ( k )

ˆ ˆ( k ) ( ) ( k )

+ = +
=

x A θ x B θ u

y C θ x
          (4.39) 

with: [ ]1 2 3
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

t

k x k x k x k=x   

3

2

1

0 0

( ) 1 0

0 1

θ
θ
θ

=
 
 
 
  

A θ , 

4

0

( ) 0

θ
=
 
 
 
  

B θ , [ ]( ) 0 0 1=C θ  and ( ) ( 2)k CVP k= −u  

where: 
3
ˆ ( )x k  is the valve position estimation, ˆ ( )ky  is the estimation of this position measured by the displacement 

transducer (in Volt), CVP(k) is the command pressure (in Pascal) measured by a given input sensor and the uncertain 

parameters are bounded by their confidence intervals according to: θ1∈ [1.1417 1.1471], θ2∈ [0.3995 0.4103], θ3∈ [-

0.5537   -0.5484], and θ4∈ [2.180e-4 2.183e-4] while their nominal values are given by θo1=1.1444, θ
o
2=0.4049, θ

o
3= 

-0.5510, and θo4=2.182e-4. In this application example, a constant command pressure whose value is u(k)= 1 Pa   

has been considered. According to (Cugueró et al, 2002), because some elements of ( )θA  are negative, this model 

suffers from the wrapping effect when the output interval ˆ ˆ( ), ( )k k 
 y y  is calculated using a region-based algorithm. 

Besides, this wrapping effect is not stable because the system matrix  ( )A θ  is non-contractive ( ( ) 1
∞

>A θ ). 

The aim of using this application example is to show the influence of the wrapping effect on the observer output 

interval generation when region-based algorithms are used. Then, when the isotonicity condition (4.3) is forced, the 

wrapping effect is avoided and consequently, both region and trajectory-based approaches estimate the same output 

interval at every time instant. 

 In order to obtain the system output estimation interval, ˆ ˆ( ), ( )k k 
 y y , the interval observer defined by Eq. (4.1) is 

used.  Thereby, its input-output form can be obtained from Eq. (4.39) considering L=[ k3, k2, k1]
T:  

1 2 34

1 1 2 2 3 3 1 1 2 2 3 3

1 1

1 2 31

1 2 3 1 2 3
( ) ( )

1 ( ) ( ) ( ) 1 ( ) ( ) ( )

ˆ( ) ( , ) ( ) ( , ) ( )

k q k q k qq
k k

k q k q k q k q k q k q

k q k q k

θ
θ θ θ θ θ θ

− −

− − −−

− − − − − −

=

+ +
+ − + − + + − + − +

= +

+
− −

u y

y G θ u H θ y

   (4.40) 
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where k1, k2 and k3 are the observer gains used to avoid the wrapping effect and to enhance the interval fault 

detection performance regarding the needed requirements. Conversely, in line with the actuator model (4.39), the 

isotonicity condition (4.3) is satisfied whether 

3 3k θ=               (4.41) 

Considering the parameterisation 
i i i
k lθ= , Eq. (4.41) implies l3 = 1. Concerning l1 and l2, these observer gains must 

guarantee the observer stability apart from enhancing fault detection performance. Thus, analyzing the observer 

stability, the next values are considered  

 

1 2
0.5l l= =               (4.42) 

 

It must be taken into account that when the observer matrix ( )oA θ  fulfils the isotonicity property, the region and 

trajectory-based approaches compute the same system output estimation interval. Moreover, in this case, the 

trajectory-based approach obtain this interval using two well-known values of the model parameter set: according to 

(Cugueró et al., 2002), these values are θ ∈ℜnθ for the upper envelope ˆ ( )ky  and θ∈ℜnθ for lower envelope ˆ( )ky . 

On the other hand, in this application example, in line with the done observer simulations and for the considered 

observation gains, it can also be accepted that those parameter values let obtain the output envelopes in spite the 

isotonicity condition is not fulfilled. 

Regarding the observer residual, its expression is given by  

 

( )
4 1 2 3

1 1 2 2 3 3 1 1 2 2 3 3

1 1

1 1 2 3

1 2 3 1 2 3

q 1 q q q

1 (k )q (k )q (k q 1 (k )q (k )q (k q

(k, ) (q , ) (k ) (q , ) (k)

(k ) (k )
) )

θ θ θ θ

θ θ θ θ θ θ

− −

− − − −

− − − − − −
− −

+ − + − + + − + − +

=− + − =

− +
−

− −

r θ G θ u I H θ y

u y 
    (4.43) 

 

In the following, the resulting system output estimation interval (4.40) is calculated using the region and trajectory-

based approaches in order to show the influence of the isotonicity condition (4.41). Assuming a small constant 

additive fault affecting the system output sensor occurring at time instant t0=200 and whose value is given by f= 0.01 

Volt (roughly, 10% of the system output nominal steady-state value), the time evolution of the system output 

estimation interval, its nominal value and the system output (green line) are plotted between the time instants t1=190 

and t2=220 using l1=l2=l3=0.5. In this case, while the trajectory-based approach produces an accurate output interval 

what let detect the fault (Fig. 4.3); the corresponding interval generated by the region-based algorithm is useless 

because it suffers from unstable wrapping effect (Fig. 4.4) because the observer gains do not fulfil the isotonicity 

condition (4.41).  

 

In Fig. 4.5, the isotonicity condition is applied (l3=1) without changing the value of the others observer gains what let 

avoid the wrapping effect when the region-based approach is used and besides, both approaches estimate the same 

output interval and consequently and as a result, both of them can detect the fault. 
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Fig. 4.3 Time evolution of the system output estimation interval, its nominal value and the output sensor measurement (green line) using a 
trajectory-based algorithm where l1=l2= l3=0.5. 
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Fig. 4.4 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using a region-based 
algorithm where l1=l2= l3=0.5. 
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Fig. 4.5 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using region and 
trajectory-based algorithms and being l1=l2=0.5 and l3=1. 

 

On the other hand, in Fig. 4.6 (l1=l2=0.5 and l3=0.97) it is shown the case the isotonicity condition is not satisfied but 

the region-based approach suffers from a stable wrapping effect because ( ) 1o ∞
<A θ  as a consequence of the value 
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of l3. In this case, the output interval generated by the region-based approach (red lines) is wider than the 

corresponding to the trajectory-based approach (blue lines) because of the output interval propagation error when a 

region algorithm is used. 

In the next sections, the goal of the application example is to show the influence of the isotonicity condition (4.41)  on 

the interval observer fault detection performance considering sensor and actuator faults. First, the effect on the 

residual sensitivity to a fault, on the residual and on the interval observer threshold is analyzed. Then, the effect on 

the minimum detectable fault function and on the residual disturbance caused by a fault is studied.  Finally, some 

sensor and actuator faults are applied in order to illustrate the influence of condition (4.41) on their detection. This 

study is done considering two sets of observer gains: one of them fulfils condition (4.41) (l1=l2=0.5 and l3=1) while the 

other does not (l1=l2=0.5 and l3=0). Besides, in this example, all the variables (residual sensitivity, threshold, 

minimum detectable fault, residual disturbance caused by a fault) will be evaluated using the parameter lower bounds 

θ∈ℜnθ instead of the corresponding interval parameters θ on behalf of the clearness of the plots shown in the 

following sections. 
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Trajectory/Region based approaches:
 Output interval estimation (Volt) / Output measurement (Volt)

Time(-)  

Fig. 4.6 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using region and 
trajectory-based algorithms and being l1=l2=0.5 and l3=0.97. 

 
 

4.4.2 Influence of the isotonicity condition on the residual 
sensitivity to a fault function 

 

The effect of forcing the isotonicity condition (4.3) on the time evolution of the residual sensitivity to a fault was 

described in Section 4.3.1 for output sensors faults (fy), input sensors faults (fu) and actuators faults (fa). Thus, in this 

section, the results obtained in Section 4.3.1 are particularized for the application example presented in Section 4.4.1.  
 

4.4.2.1  Residual sensitivity to an output sensor fault 
 

In the following, the application example is used to illustrate the effect of the isotonicity condition (4.3) on the 

residual sensitivity to an output sensor described in Section 4.3.1.1. Thereby, considering the general expression of 

this function given by Eq. (3.37) (Section 3.3.1) and particularizing for the example application (Eq. (4.39)) using its 

residual expression (Eq. (4.43)), the output sensor fault residual sensitivity associated to the application example is 

given by  
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= − =
−

−
S θ I H θ G θɶ     (4.44) 

where Fy is assumed to be the identity matrix I. 

Then, the time evolution of the residual sensitivity to an output sensor fault (Eq. (4.44)) is plotted in Fig. 4.7 assuming 

an abrupt fault modelled as a unit-step function and considering the observer gain sets mentioned previously: one 

that satisfies the isotonicity condition (l1=l2=0.5 and l3=1) and another that does not (l1=l2=0.5 and l3=0). Besides, as 

it was already mentioned, instead of using the interval parameters θi, their associated lower bounds 
i

θ  are used 

assuming the clearness of the plot, 
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Fig. 4.7 Time evolution of the residual sensitivity associated  to an additive abrupt output sensor fault considering  two sets of observer gains and 
using the parameter lower bounds. 

 

Thereby, Fig. 4.7 shows that when the isotonicity condition (l3=1) is forced, the absolute value of the residual 

sensitivity steady-state value increases (Eq.(4.16)). Regarding its dynamics, this is deeply affected but it is difficult to 

say anything in general since it also depends on the system model. 
 

4.4.2.2  Residual sensitivity to an input sensor fault 
 

Regarding the effect of the isotonicity condition (4.3) on the time evolution of the residual sensitivity to an input fault, 

it was described in Section 4.3.1.2. Thereby, when considering the application example, the residual sensitivity to an 

input sensor fault is obtained particularizing its general expression given by Eq. (3.47) using the residual expression 

associated to the application example (Eq. (4.43)): 
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where Fu is equal to the identity matrix I. 

 

Considering the two observer gain sets mentioned above, (l1=l2=0.5 and l3=1) and (l1=l2=0.5 and l3=0), and assuming 

an abrupt fault modelled as a unit-step function, the time evolution of the residual sensitivity (Eq. (4.45))is plotted in 

Fig. 4.8 using the parameter values given by 
i

θ  such as it was explained in the output sensor fault residual sensitivity 

case. 
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Fig. 4.8 shows the effect of forcing the isotonicity condition (4.3) on the residual sensitivity dynamics and steady-

state value. According to Eq. (4.19), when that condition (l3=1) is fulfilled, the absolute value of the input sensor fault 

residual sensitivity steady-state value increases. Regarding its dynamics, this is deeply affected but it is difficult to 

say anything in general since it also depends on the system model. 
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Fig. 4.8 Time evolution of the residual sensitivity associated  to an additive abrupt input sensor fault considering two sets of observer gains and 
using the parameter lower bounds. 

4.4.2.3  Residual sensitivity to an actuator fault 
 

Regarding the effect of the isotonicity condition (4.3) on the time evolution of the residual sensitivity to an actuator 

fault, it was described in Section Section 4.3.1.3. Thus, when considering the application example, the residual 

sensitivity to an actuator fault (Eq. (3.54)) can be particularized using the residual expression given by Eq. (4.43): 
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where Gfa is given by Eq. (3.5). Then, for this application example, it is assumed that this transfer function satisfies 

the following expression: 

 

1 1( , ) ( , )fa q q− −=
L=0

G θ G θɶ ɶ            (4.47) 

 

Considering the two observer gain sets mentioned previously, (l1=l2=0.5 and l3=1) and (l1=l2=0.5 and l3=0), and 

assuming an abrupt fault modelled as a unit-step function, the time evolution of the residual sensitivity (Eq. (4.46)) is 

drawn in Fig. 4.9 using the parameter values given by iθ . 

 

Fig. 4.9 shows the effect of forcing the isotonicity condition (4.3) on the residual sensitivity dynamics and steady-

state value. According to Eq.(4.22), when that condition (l3=1) is fulfilled, the absolute value of the actuator fault 

residual sensitivity steady-state value increases. Regarding its dynamics, this is deeply affected but it is difficult to 

say anything in general since it also depends on the system model. 
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Fig. 4.9 Time evolution of the residual sensitivity associated  to an additive abrupt actuator fault considering two sets of observer gains and using 
the parameter lower bounds. 

 
 

4.4.3 Influence of the isotonicity condition on the adaptive 
threshold 

 

In Section 4.3.2, the effect of the isotonicity condition (4.3) on time evolution of the residual and the adaptive 

threshold was analyzed. In this section, the obtained results are particularized for the application example case 

described in Section 4.4.1. Then, assuming a scenario free of faults and nuisance inputs, the observer adaptive 

threshold is given by Eq. (4.43) according to Eq. (3.62) (Section 3.3.5). Then, using the two observer gain sets 

mentioned above, (l1=l2=0.5 and l3=1) and (l1=l2=0.5 and l3=0), the time evolution of the observer threshold is plotted 

in Fig. 4.10 using the parameter values given by iθ . 
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Fig. 4.10 Time evolution of the observer adaptive threshold considering two sets of observer gains and using the parameter lower bounds.. 

 

Fig. 4.10 confirms the conclusions mentioned previously (Eq. (4.28)) when the isotonicity condition (4.3) (l3=1) is 

forced. In this case, the adaptive threshold generated by the interval observer increases its values worsening the fault 

detection as bigger faults will be required in order to detect them.  
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4.4.4 Influence of the isotonicity condition on the minimum 
detectable fault function 

 

In Section 4.3.3, the effect of the isotonicity condition (4.3) on the minimum detectable fault function was analyzed 

particularizing this function for output sensor faults (Section 4.3.3.1), input sensor faults (Section 4.3.3.2) and 

actuator faults (Section 4.3.3.3). Then, in this section, the main obtained conclusions are illustrated when the 

monitored system is given by the application example described in Section 4.4.1.  
 

4.4.4.1  Minimum detectable output sensor fault 
 

In the following, using the application example, the effect of forcing the isotonicity condition on the minimum 

detectable output sensor fault function can be illustrated. In this case, this function is given by Eq. (3.67) using the 

fault residual sensitivity to an output sensor fault given by Eq. (4.44) and the interval observer threshold given by Fig. 

4.10. Thus, the considered function can be expressed as it follows: 
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Considering the two observer gain sets, (l1=l2=0.5 and l3=1) and (l1=l2=0.5 and l3=0), and assuming the fault 

occurrence time instant (t0) is 400, the time evolution of the minimum detectable fault function is plotted in Fig. 4.11 

using the parameter values given by iθ . 
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Fig. 4.11 Time evolution of the minimum detectable output sensor fault function considering two sets of observer gains and using the parameter 
lower bounds. 

 

In Fig. 4.11, it is shown forcing the isotonicity condition (4.3) has no effect on the steady-state value of the minimum 

detectable output sensor fault function according to Eq. (3.77), since its effect on the residual sensitivity and on the 

interval observer threshold counteract each other. On the other hand, that function is affected during its transitory 

state because the influence of that condition on the interval observer threshold. It must be taken into account that the 

function value at fault occurrence time instant is basically determined by the threshold value at this time instant 

(Eq.(4.31)).  
 

4.4.4.2  Minimum detectable input sensor fault 
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For the case of the minimum detectable input sensor fault (Section 4.3.3.2), this function is determined by Eq. (3.67) 

using the residual sensitivity to an input sensor fault given by Eq. (4.45) and the interval observer threshold given by 

Fig. 4.10 when the application example system. Then, its expression is given by  
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In this case, it must be taken into account that this function is not causal (Section 3.4.1): it is not defined at its initial 

time instant (k=t0). At this time instant, the function values do not depend on the observer gain: it is later when the 

observation gain influence appears. Thereby, such as it was mentioned en Section 3.4.1, the procedure given by 

(Peng et al., 1997) must be applied in order to turn Eq. (4.49) into a causal function. In this case, this procedure 

consists in delaying this function one time instant:   

min min 1
fu* 0 fu 0( k t ) ( k t )q−− = −f f            (4.50) 

 

Considering the two observer gain sets, (l1=l2=0.5 and l3=1) and (l1=l2=0.5 and l3=0), and assuming the fault 

occurrence time instant (t0) is 400, the time evolution of the minimum detectable fault function is plotted in Fig. 4.12 

using the parameter values given by iθ . 
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Fig. 4.12 Time evolution of the minimum detectable input sensor fault function considering two sets of observer gains and using the parameter 
lower bounds. 

  

In this figure, it is seen that forcing the isotonicity condition has no effect on the steady-state value of this function, 

such as it was mentioned previously. In opposition, it is affected during its transitory-state as consequence of the 

influence of this condition on the interval observer threshold. In short, Fig. 4.12 shows the influence of the 

isotonicity condition on the time evolution of that function is the same than the output sensor case seen in Fig. 4.11.   
 

4.4.4.3  Influence on the minimum detectable actuator fault 
 

In this case, considering the application example, the minimum detectable actuator fault function is given by Eq. 

(3.67) using the residual sensitivity to an actuator fault given by Eq. (4.46) and the interval observer threshold given by 

Fig. 4.10. Thus, this function can be expressed as it follows: 
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    (4.51) 

 

In this case, it must be taken into account that this function is not causal either (Section 3.4.1) as the function 

associated to the minimum input sensor fault (Eq. (4.49)) analyzed in the previous section. Consequently, the 

procedure given by (Peng et al., 1997) must be considered to turn Eq. (4.51) into a causal function. Then, Eq. (4.51) is 

delayed one time instant resulting the following equation:   

min min 1
fa* 0 fa 0( k t ) ( k t )q−− = −f f           (4.52) 

Considering the two observer gain sets, (l1=l2=0.5 and l3=1) and (l1=l2=0.5 and l3=0), and assuming the fault 

occurrence time instant (t0) is 400, the time evolution of the minimum detectable fault function is plotted in Fig. 4.13 

using the parameter values given by iθ . 

 

Such as it was shown in the output and input sensor fault cases, Fig. 4.13 shows that the minimum detectable 

actuator fault function is also only affected by the isotonicity condition during its transitory-state. Once this function 

reaches its steady-state value, this condition has no longer influence on the values of this function. 
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Fig. 4.13 Time evolution of the minimum detectable actuator fault function considering two sets of observer gains and using the parameter lower 
bounds. 

 
 

4.4.5 Influence of the isotonicity condition on the fault 
detection persistency 

 

In Section 4.3.4, the effect of the isotonicity condition (4.3) on the fault indication test (Eq. (3.71)) was described. 

Then, this effect is illustrated in the following subsections when considering the example application system 

considering output sensor faults, input sensor faults and actuator faults. 
 

4.4.5.1  Influence on the residual disturbance caused by an output sensor fault and on 
the fault indication 

 

In this example, a fault occurring at t0=400 whose value is f=-0.02 Volt (roughly, 20% of the system output nominal 

steady-state value) is considered. Then, considering the two observer gain sets, (l1=l2=0.5 and l3=1) and (l1=l2=0.5 
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and l3=0), the time evolution of the interval adaptive threshold, [r0(k)] (dashed line),  and the interval residual 

disturbance originated by the fault, [-df(k)] (solid line), are plotted in Fig. 4.14. According to Eq. (3.71) (Section 

3.4.3), the fault can not be indicated while [r0(k)] contains [-df(k)] since the effect of the fault on the residual does 

not counteract the one caused by the model uncertainty. 

 

Fig. 4.14 shows that when the isotonicity condition is forced (l3=1) (upper plot), the interval adaptive threshold 

[r0(k)] widens regarding the case where that condition is not forced (lower plot) and consequently, the fault 

indication persistency worsens . As soon as the fault residual disturbance values decrease, as a consequence of the 

output sensor fault residual sensitivity time evolution (Eq. (4.44); Fig. 4.7), it is contained into the interval related to 

the adaptive threshold and as a result, the fault can no longer be indicated (Eq. (3.71)). 
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Fig. 4.14 Time evolution of the interval fault residual disturbance (solid line) and the interval observer threshold (dashed line) considering two sets 
of observer gains where the occurrence of a constant output sensor fault whose value is -0.02 Volt at time instant t0=400 is considered.  

 

4.4.5.2  Influence on the residual disturbance caused by an input sensor fault and on the 
fault indication 

 

In this case, an input sensor fault occurring at t0=400 whose value is f=-9 Pa (roughly, 9 times bigger than the input 

used in Section 4.3) is considered. Then, considering the two observer gain sets, (l1=l2=0.5 and l3=1) and (l1=l2=0.5 

and l3=0), the time evolution of the interval adaptive threshold [r0(k)]  and the interval residual disturbance originated 

by the fault [-df(k)] are plotted in Fig. 4.15. 

 

Such as it was mentioned in the output sensor fault case, when forcing the isotonicity condition (upper plot), the fault 

indication worsens regarding the case in which this condition was not forced (lower plot). In this case, as a 

consequence of the interval adaptive threshold widening, the input sensor fault residual disturbance requires more 

time to exceed the adaptive threshold than the case where the isotonicity condition is not forced. 
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Fig. 4.15 Time evolution of the interval fault residual disturbance (solid line) and the interval observer threshold (dashed line) considering two sets 
of observer gains where the occurrence of a constant input sensor fault whose value is -9 Pa at time instant t0=400 is considered.  

 
 

4.4.5.3  Influence on the residual disturbance caused by an actuator fault and on the 
fault indication 

 

In this case, an actuator fault occurring at t0=400 whose value is f=-9 Pa (roughly, 9 times bigger than the input used 

in Section 4.3) is considered. Then, considering the two observer gain sets, (l1=l2=0.5 and l3=1) and (l1=l2=0.5 and 

l3=0), the time evolution of the interval adaptive threshold [r0(k)]  and the interval residual disturbance originated by 

the fault [-df(k)] are plotted in Fig. 4.16. 

Such as it was mentioned in the input sensor fault case, when forcing the isotonicity condition (upper plot), the fault 

indication worsens regarding the case in which this condition is not forced (lower plot). In this case, when the 

isotonicity condition is forced, the actuator fault residual disturbance also requires more time to exceed the adaptive 

threshold as a consequence of the adaptive threshold interval widening. 
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Fig. 4.16 Time evolution of the interval fault residual disturbance (solid line) and the interval observer threshold (dashed line) considering the two 
sets of observer gains where the occurrence of a constant actuator fault whose value is -9 Pa at time instant t0=400 is considered. 

 
4.4.5.4  Output sensor fault detection 

 

In this case, an output sensor fault occurring at time instant t0=400 and whose value is given by f= -0.06 Volt 

(roughly, 60% of the system output nominal steady-state value) is considered. In Fig. 4.17, the time evolution of the 
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system output estimation interval, its nominal value and the system output measurement (green line) is plotted using 

a trajectory-based approach and an observer gain set which does not satisfy the isotonicity condition: (l1=l2=0.5 and 

l3=0). Besides, at the bottom of the figure, a fault indicator activated when the fault is detected (red line) is also 

plotted. On the other hand, in Fig. 4.18, the same functions are plotted but this time using an observer gain set which 

fulfils that isotonicity condition (l1=l2=0.5 and l3=1). 

Comparing Fig. 4.18 where the isotonicity condition is forced regarding Fig. 4.17 where it is not, it is seen clearly 

that this condition that allow avoiding the wrapping effect widens the system output estimation interval computed by 

the observer such as it was already mentioned in the relation (4.29) (Section 4.4.2). As a result, this comparison points 

out that the fault indication is worsened when the isotonicity condition is forced such as it was mentioned in Section 

4.4.2 and in Section 4.4.4. 
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Fig. 4.17 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line)  using an observer 
gain set which does not fulfil the isotonicity condition (l1=l2=0.5 and l3=0) and considering an output sensor fault whose value is -0.06 Volt at time 
instant t0=400.  
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Fig. 4.18 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using an observer gain 
set which fulfils the isotonicity condition (l1=l2=0.5 and l3=1) and considering an output sensor fault whose value is -0.06 Volt at time instant 
t0=400. 

 
4.4.5.5  Input sensor fault detection 

 

In this case, an input sensor fault occurring at time instant t0=400 whose value is given by f= -6 Pa (roughly, 6 times 

bigger than the input used in Section 4.3) is considered. In Fig. 4.19, the time evolution of the system output 
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estimation interval, its nominal value and the system output measurement (green line) is plotted using a trajectory-

based approach and an observer gain set which does not satisfy the isotonicity condition: (l1=l2=0.5 and l3=0) while 

in Fig. 4.20, the same scenario is plotted but using an observer gain set which fulfils the isotonicity condition 

(l1=l2=0.5 and l3=1). 

 

Comparing Fig. 4.20 (l1=l2=0.5 and l3=1) and  Fig. 4.19 (l1=l2=0.5 and l3=0), it is also seen clearly that the isotonicity 

condition widens the system output estimation interval (Section 4.4.2) and consequently, the observer fault detection 

performance is worsened such as it was shown in the previous section for the output sensor case. 
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Fig. 4.19 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using an observer gain 
set which does not fulfil the isotonicity condition (l1=l2=0.5 and l3=0) and considering an input sensor fault whose value is -6 Pa at time instant 
t0=400.  
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Fig. 4.20 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using an observer gain 
set which fulfils the isotonicity condition (l1=l2=0.5 and l3=1) and considering an input sensor fault whose value is -6 Pa at time instant t0=400.  

 
4.4.5.6  Actuator fault detection 

 

In this case, an actuator fault occurring at time instant t0=400 whose value is given by f= -1 Pa (roughly, 10 times 

bigger than the input used in Section 4.3) is considered. In Fig. 4.21, the time evolution of the system output 

estimation interval, its nominal value and the system output measurement (green line) is plotted using a trajectory-

based approach and an observer gain set which does not satisfy the isotonicity condition: (l1=l2=0.5 and l3=0) while 
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in Fig. 4.22, the same scenario is plotted but using an observer gain set which fulfils the isotonicity condition 

(l1=l2=0.5 and l3=1). 

 

Comparing Fig. 4.22 (l1=l2=0.5 and l3=1) and  Fig. 4.21 (l1=l2=0.5 and l3=0), it is also seen clearly that the isotonicity 

condition widens the system output estimation interval (Section 4.4.2) such as mentioned for the output and input 

sensor fault cases shown in the previous sections. Thus, in the actuator fault case, the observer fault detection 

performance is also influenced negatively. 
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Fig. 4.21 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using an observer gain 
set which does not fulfil the isotonicity condition (l1=l2=0.5 and l3=0) and considering an actuator fault whose value is -1 Pa at time instant t0=400.  
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Fig. 4.22 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using an observer gain 
set which fulfils the isotonicity condition (l1=l2=0.5 and l3=1) and considering an actuator fault whose value is -1 Pa at time instant t0=400.  

 

4.5 Conclusions 
 

According to the point (b) of fault detection objectives (Section 2.5.1), this chapter shows a method to avoid the 

wrapping effect which is affecting an interval model when it is computed using a low computational algorithm 

(“region-based approach”). It is demonstrated that it is not necessary to use a high computational algorithm 

(“trajectory-based approach”) to avoid this effect but it is enough to consider an interval observer model whose 

observer gain matrix L has been properly designed. In fact, this method is only based on turning the non-isotonic 
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model matrix into an isotonic one using the mentioned matrix L- (L= L++L-). This chapter also shows that designing 

L to avoid the wrapping effect may apparently worsen the observer fault detection performance. However, analyzing 

the main observer fault detection properties, it can be seen that a proper design of L+ might counteract the negative 

effect of L- regarding fault detection performance, although this task is out of the scope of this thesis. 
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CHAPTER 5 

Approximating fault detection linear interval 

observers using λ-order interval predictors 

 

 

5.1 Introduction 
 

Model based fault detection can use different types of model representation in order to generate the residual. In case 

of model parameter uncertainty, a model whose parameter values are bounded by intervals, known as an interval 

model, is usually considered such as it was described in Chapter 3 and Chapter 4. This chapter is focused on finding 

the equivalence between interval observers and λ-order interval predictors regarding fault detection since predictor 

models avoid those problems associated with the state estimation such as the wrapping effect (Section 2.3.2.5 of 

Chapter 2). In (Chow et al, 1984), a minimum order predictor (“dead-beat observer” (Patton et al, 1991)) was 

obtained from a state-space model but regarding fault detection, this model does not show appealing properties as its 

fault indication persistence is minimum and given by the system order (Meseguer et al, 2006a). This chapter mainly 

deals with a generalization of the “dead-beat observer” method since given an interval observer whose fault 

detection properties have been carefully designed using the observation gain (Meseguer et al, 2006b), an equivalent 

λ-order predictor is obtained which has the same fault detection behaviour but avoids those drawbacks related to the 

state estimation when region-based (set-based) algorithms (Section 2.3.2.5) are used. According to (Gertler, 1998), 

an observer can be described by an ARMA model, i.e, by an IIR filter. On the other hand, a λ-order predictor can be 

described by a MA model of order λ, i.e, by an FIR filter. It is known from the literature that an IIR filter (i.e. 

ARMA model) can be approximated by a FIR filter (i.e, MA model) of infinite order. This fact will be used in this 

chapter to approximate fault detection linear interval observers by λ-order interval predictors. This will allow that 

given a particular linear interval observer, a predictor of order λ with an equivalent a fault detection performance can 

be found.  

In the literature, the importance of the fault residual sensitivity regarding the quality of the fault indication is noticed 

by (Gertler, 1998). According to (Chen et al, 1999), when an interval observer is considered, the observer gain plays 

an important role because it determines the time evolution of the fault residual sensitivity and the associated adaptive 

threshold derived from the model structured uncertainty. As a result, and such as it was shown in Chapter 3 based on 

(Meseguer et al., 2007b), the observer gain determines the observer fault detection properties.  

However, as seen in Chapter 4, when the model matrix does not fulfil the isotonicity property (Cugueró et al, 2002), 

interval observers can suffer from wrapping effect if low computational algorithms, as the region-based approaches 

coming from the interval community, are used (Puig et al, 2005a). In this chapter based on (Meseguer et al., 2008a), 
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it was demonstrated that designing properly the observer gain matrix, the wrapping effect can be avoided. This 

design is based on forcing that the observer state-space matrix fulfils the isotonicity property. Nonetheless, if the 

equivalent λ-order predictor were used in this case, the wrapping effect would be also avoided as these models do 

not suffer from that effect since their estimations are only based on measurements. Besides, if the observer were 

isotonic using or not the conditions given by (Meseguer et al., 2008a), the equivalent predictor could be computed 

using two known point-wise trajectories given by the lower and upper bounds of the uncertain parameters (Cugueró 

et al, 2002) what has an appealing low computational cost. If the observer were not isotonic, the equivalent predictor 

would have to be computed using the general trajectory-based approach which has a high computational cost. 

The structure of the Chapter 5 remainder is the following: the way to obtain an λ-order predictor equivalent to an 

interval observer is presented in Section 5.2. In the following (Section 5.3), the behaviour of observers and their 

equivalent predictors is analyzed when applied to fault detection in order to show their equivalence. Finally (Section 

5.4), an example based on an industrial servo actuator will be used to illustrate the derived results. 
 

5.2 Equivalence between interval predictors and 
interval observers 

 

As illustrated in Chatper 3 (Section 3.2.1), the monitored system can be described by a MIMO linear uncertain 

dynamic model in discrete-time whose state-space form considering faults is 

0 a a

y y

( k 1) ( ) ( k ) ( ) ( k ) ( ) ( k )

( k ) ( ) ( k ) ( ) ( k )

+ = + +

= +

x A θ x B θ u F θ f

y C θ x F θ f

ɶ ɶ ɶ

ɶ ɶ
         (5.1) 

where y(k)∈ℜny, u0(k)∈ℜnu, x(k)∈ℜnx  are the system output, input and the state-space vectors respectively; 

A( θɶ )∈ℜnx×nx
, B( θɶ )∈ℜnx×nu

 and C( θɶ )∈ℜny×nx are the state, the input and the output matrices respectively; nθ∈ℜɶθ  

is the system parameter vector; fy(k)∈ℜny and fa(k)∈ℜnu are faults in the system output sensors and actuators 

respectively being Fy( θɶ ) and Fa( θɶ ) their associated matrices. Regarding the system model representation used in 

Section 3.2.1 (Eq. (3.1)), the system model considered in this section (Eq. (5.1)) neglects the effect of direct 

transmission matrix D( θɶ ) since it has no influence in the derived results and genrally, it is considered zero-valued.  

 

5.2.1 Observer 
 

As it was mentioned in Section 3.2.1, assuming the observability for all ∈θ Θɶ the system described by Eq. (5.1) can 

be monitored using a linear observer with Luenberger structure based on an interval model whose model parameters 

θ are bounded by an interval set { }nθ= ∈ℜ ≤ ≤Θ θ θ θ θθ θθ θθ θ  which represents the uncertainty about the exact knowledge 

of real system parameters ɶθ . Thus, this interval observer can be written as:   

ˆ ˆ ˆ( 1) ( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )
ok k k k k k k

k k

+ = − + + = + +
=

x A θ LC θ x B θ u Ly A θ x B θ u Ly

y C θ x
    (5.2) 

 

In Chapter 3 (Section 3.2.1), it was noticed that two particular cases could be distinguished in the observer model 

structure: the simulator (L=0 assuming system stability (Chow et al, 1984)) and the predictor (L= Lp (Chow et al, 

1984)). According to (Patton et al, 1991), the predictor obtained forcing L= Lp is the predictor of minimum order 
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(“dead-beat observer”) which can only indicate a fault for a minimum time instants given by the system order. In 

line with the main conclusions of Chapter 3 based on the results of (Meseguer et al, 2007b), when an observer is 

considered (L= Lo
14), the fault indication is more persistent for a certain value of Lo than the corresponding one to the 

dead-beat observer and consequently, the observer model structure seems to be more suitable in order to enhance the 

fault detection performance of a certain model. 

As it was shown in Section 3.2.1, the observer given by Eq. (5.2) can be expressed in transfer function form using the 

q-transform and considering zero initial conditions as it follows:     

1 1
o o

ˆ ( k ) ( q , ) ( k ) ( q , ) ( k )− −= +y G θ u H θ y          (5.3) 

where: 

1 1 1 1
o o( q , ) ( )( q ( )) ( )q− − − −= −G θ C θ I A θ B θ         (5.4)  

1 1 1 1
o o( q , ) ( )( q ( )) q

− − − −= −H θ C θ I A θ L          (5.5) 

The sub index ‘o’ indicates these transfer functions are associated to the observer model. Besides, comparing these 

functions with those obtained in Section 3.2.1 (Eq. (3.12) and Eq. (3.13)), it can be seen there is no difference 

neglecting the direct transmission matrix D( θɶ ). Regarding the system output measurement, y(k), and the system 

input measurement, u(k), it must be taken into account that their expressions are given by Eq. (3.2) and Eq. (3.8)

respectively shown in Section 3.2.1 
 

5.2.2 Predictor 
 

On the other hand, the system described by Eq. (5.1) could be also monitored using a linear interval predictor. This 

model can be written as it follows 

ˆ( 1) ( ) ( ) ( ) ( )p pk k k+ = +y A θ y B θ u            (5.6) 

where matrices Ap(θ)∈ℜny×ny and Bp(θ)∈ℜny×nu are obtained from the system model (5.1) and the predictor parameter 

vector is defined such it was in Section 3.2.1.  Using the method given by (Patton et al, 1991) or (Ploix et al, 2006), 

the predictor of minimum order is obtained which behaves like an observer when the condition L= Lp is satisfied. 

According to (Patton et al, 1991), the fault indication given by this predictor (“dead-beat observer”) has a minimum 

persistence when the fault is not persistently indicated (weak fault detection) (Section 3.4.2) what may origin a poor 

performance of the fault detection module causing a wrong fault diagnosis result. Considering this drawback, this 

chapter is focused on obtaining a λ-order predictor which behaves like an observer for a given value of L. This 

method can be viewed as a generalization of the approaches given by (Patton et al, 1991) and (Ploix et al, 2006). 

Equivalently, the predictor given by Eq. (5.6) can also be expressed in transfer function form using the shift operator 

q
-1 and assuming zero initial conditions as it follows: 

1 1
p p

ˆ ( k ) ( q , ) ( k ) ( q , ) ( k )− −= +y G θ u H θ y           (5.7) 

where: 

1 1
p p( q , ) ( )q− −=G θ B θ             (5.8) 

1 1
p p( q , ) ( )q− −=H θ A θ            (5.9) 

and the sub index ‘p’ indicates these transfer functions are associated with the predictor model. 
 

                                                 
14 Lo is a set of observer gains that places all the observer eigenvalues between the ones related to the monitored system (simulation approach) 
and the origin (prediction approach) 
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5.2.3 Equivalence between λ-order interval predictors and 

interval observers 
 

Propagating the observer equation (5.2) k times forward, starting from k=0, the predicted output at time k can be 

determined as 

k k
k v 1 v 1

o o o

v 1 v 1

ˆ ˆ( k ) ( ) ( ) (0 ) ( ) ( ) ( ) ( k v ) ( ) ( ) ( k v )− −

= =
= + − + −∑ ∑y C θ A θ x C θ A θ B θ u C θ A θ Ly     (5.10) 

for every value of ∈θ Θ . 

The current estimated output not only depends on the initial state, but also on the last k measurements of the system 

inputs and outputs. The contribution of the states depends on the dynamics of the observer and as a result, if k is large 

enough, the contribution of the initial state ˆ (0 )x  to the output estimation ˆ( )ky  can be dismissed. Thereby, this 

simplification can be assumed if the next relation is satisfied: 

k k
o ( ) ( ( ) ( )) 0 , k λ= − ≈ ∀ ∈ >A θ A θ LC θ θ Θ              (5.11) 

where λ is the time window which assures the fulfilment of the relation (5.11). Equivalently, it can be said that the 

dynamics of the observer has vanished some steps ago. Then, the predicted output can be approximated through  

v 1 ( v 1 ) v 1 ( v 1 )
o o

v 1 v 1

ˆ ( k ) ( ) ( ) ( )q ( k 1) ( ) ( ) q ( k 1)
λ λ

− − − − − −

= =

   
≈ − + −   
   
∑ ∑y C θ A θ B θ u C θ A θ L y    (5.12) 

which is exactly equal to the predictor expression given by Eq. (5.6) and therefore, this especial interval observer 

,where the contribution of the initial ˆ (0 )x  can be obviated if the relation (5.11) is satisfied, can be seen as a interval 

predictor of order λ which compute at every time instant, roughly, the same system output estimation interval. 

Comparing Eq. (5.6) with Eq. (5.12), the matrices of the predictor model related to those of the interval observer are 

obtained resulting  

1 v 1 ( v 1 )
p o

v 1

( q , ) ( ) ( ) q
λ

− − − −

=
=∑A θ C θ A θ L           (5.13) 

1 v 1 ( v 1 )
p o

v 1

( q , ) ( ) ( ) ( )q
λ

− − − −

=
=∑B θ C θ A θ B θ          (5.14) 

The inspection of these equations shows that the relationship between the interval observer and the interval predictor 

scheme is given in terms of the observer matrix Ao, which depends on the observer gain matrix L. This gain not only 

determines the observer behaviour but also the order λ of the equivalent predictor. The interval predictor given by Eq 

(5.12) is a closed-loop predictor since it uses measurements of past system inputs and outputs to predict the present 

system output.  

From Eq. (5.12), it follows that if the particular case of L=0 corresponding to a simulator were considered, predictor 

(5.12) would have been an open-loop predictor that only uses measurements of past system inputs to predict the 

present system output. 

In order to derive analytically the order λ of the equivalent interval predictor to a given interval observer, the 

following proposition can be used: 

Proposition 1 (Puig et al, 2003b). Let us consider that the interval observer given by Eq. (5.2) is asymptotic stable. 

Then, for a k>lε where 
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log log ( )
l max

log ( )
ε

ε κ
ρ∈

 −=  
 θ Θ

θ

θ
            (5.15) 

,the condition given by Eq. (5.16) is fulfilled with a desired degree of approximation ε: 

[ ]kk
o ( ) ( ) ( ) 0ε

∞ ∞
= − = ≈ ∀ ∈A θ A θ LC θ θ Θ          (5.16) 

, where ρ is the spectral radius of the interval observer matrix Ao determined by the maximum absolute value of all 

the eigenvalues of this matrix and κ is the condition number of Ao whose value is determined by the result of the 

following matrix product: ||Ao||.|| Ao
-1||. A matrix with a high κ  is said to be ill-conditioned, otherwise it is considered 

well-conditioned. 

Thus, Eq. (5.15) describes the equivalent predictor order dependence regarding the observer gain matrix L. The bigger 

is the norm of L, the observer poles tend to zero and consequently, so does the spectral radius. Then, according to Eq. 

(5.15), the lower is the order λ of the obtained equivalent predictor. When L= Lp, the observer is a “dead-beat 

observer” (Patton et al, 1991), and thus, ρ tends to zero what provokes lε to tend to its minimum value given by the 

system order. Otherwise, when L= 0, the observer is a simulator (Chow et al, 1984), and ρ tends to its maximum 

value given by one, and thus, lε tends to an infinite value.  
 

5.2.4 Computational complexity 
 

 (Puig et al, 2005a) shows the problem of interval observation can be translated to an interval simulation. As it is 

noticed by (Ploix et al, 2006), interval simulation requires lots of computations at each sample time, being generally 

incompatible with real-time constraint needed by the fault detection module when applied to complex dynamic 

system (trajectory-based algorithm). The reason is that, except for some particular cases, the recurrence leads to 

replace state-space value sets by simpler outer value sets, such as boxes or ellipsoids what yields some over-

estimations. The propagation of these approximations (using a region-based algorithm) induces an accumulation of 

errors leading to an explosion of the computed sets (wrapping effect) (Puig et al, 2005a) such as it was also analyzed 

along the Chapter 4. On the other hand, checking on a finite horizon, such as parity space approach does, avoids this 

drawback because the integration over a long time window is not required. However, as noticed in previous section, 

parity space approach produces a minimum order predictor that has a response equivalent to a “dead-beat observer”. 

Thus, as it is known (Puig et al, 2002a), when applied to fault detection, the minimum order predictor (or “dead-beat 

observer”) is highly sensitive to noise and, depending on the fault, only indicates the fault at its occurrence time 

instant. Conversely, observer models through the observer gain can filter noise and indicate the fault presence for 

longer time as illustrated in Chapter 3 derived from the results obtained in (Meseguer et al, 2007b). This motivates 

the use of higher order predictors with a fault detection performance equivalent to the behaviour of an observer but 

without the drawback of being affected by the wrapping effect, such as demonstrated in Chapter 4.  However, 

although the wrapping effect problem is avoided, computational complexity still remains since optimization 

problems related to compute a higher-order predictor equivalent to a given observer are non-linear regarding the 

parameters (trajectory-based algorithms). Then, in order to guarantee the tightest interval bounding output 

prediction, a global optimization algorithm should be used since the optimization problem is non-convex. The only 

case in which such computational complexity can be reduced is when higher order predictor comes from an observer 

whose matrix 
o( )A θ  has all elements positive (isotonic matrix). In this case, the estimation interval for each system 

output prediction can be obtained evaluating the model uncertain parameters using two point-wise sets determined by 

their lower and upper interval bound ( ˆ ˆ( ) ( , )
i i
y k y k= θ  and ˆ ˆ( ) ( , )i iy k y k= θ ) (Cugueró et al, 2002). Then, the equivalent 
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λ-order predictor interval output can be also computed using these two known point-wise trajectories as Eq. (5.15) 

forces each observer trajectory to be equivalent to the associated predictor trajectory. In this case, the output 

estimation generated by the equivalent interval observer would also be computationally cheap since a set propagation 

based approach (region-based algorithm) can be applied. This is because in this case the interval observer is 

unaffected by the wrapping effect (Puig et al, 2005a). Besides, it should be taken into account that the elements of  

o( )A θ  can be forced to be positive through the observer gain matrix L (Meseguer et al, 2008a) such as it was shown 

in Chapter 4 (Section 4.2.2). 

 

5.3 Application to fault detection 
 

5.3.1 Residual generation and evaluation 
 

As mentioned in Chapter 3 (Section 3.2.2), fault detection is based on calculating at every time instant a residual 

comparing the measurements of physical variables ( )ky  associated with the monitored system with their estimation 

ˆ( )ky  provided by the associated system model: 

ˆ( k ) ( k ) ( k )= −r y y              (5.17) 

According to (Gertler, 1998) and such as it was shown in Section 3.2.2, a general expression for the residual, known 

as its computational form, is given by  

1 1( , ) ( , ) ( ) ( , ) ( )k q k q k− −= +r θ V θ u O θ y            (5.18) 

where: r(k)∈ℜny is the residual set, V(q-1,θ) and O(q-1,θ) are transfer functions. 

When the interval observer model is considered, the transfer functions V(q-1,θ) and O(q-1,θ) can be obtained using 

Eq. (5.3) and Eq. (5.17) what results in: 

1 1 1 1 1( , ) ( , ) ( )( ( )) ( )o o oq q q q− − − − −= − = − −V θ G θ C θ I A θ B θ         (5.19) 

1 1 1 1 1( , ) ( , ) ( )( ( ))o o oq q q q− − − − −= − = − −O θ I H θ I C θ I A θ L        (5.20) 

Comparing these expressions with the calculated ones in Section 3.2.2 (Eq. (3.17) and Eq. (3.18)), it can be seen they 

are equal if D( θɶ ) is neglected.  

In the interval predictor case, those transfer functions can be obtained using Eq. (5.7) and Eq. (3.18) what results in: 

1 1 1( , ) ( , ) ( )
p p p
q q q− − −= − = −V θ G θ B θ             (5.21) 

1 1 1( , ) ( , ) ( ( ) )
p p p
q q q− − −= − = −O θ I H θ I A θ            (5.22) 

In the fault detection and fault isolation interface used in (Puig et al. 2005b), the residual (5.17) is computed regarding 

the nominal observer model ˆ ( )koy  obtained using the observer parameter set o= ∈θ θ Θ , 

ˆ( k ) ( k ) ( k )= −o or y y             (5.23) 

Such as it was mentioned in Chapter 3 (Section 3.2.2), when considering model uncertainty located in parameters, 

the residual generated by (5.23) will not be zero even in a non-faulty scenario. In this case, the possible values of each 

component of this residual vector, ro(k), can be bounded using the following  interval (neglecting couplings among 

outputs), such as illustrated by  (Puig et al, 2002a): 

[ ( ), ( )]
oo
iir k r k                    (5.24) 
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where:   

ˆ ˆ( ) ( ) ( )o o
i iir k y k y k= −  and ˆ ˆ( ) ( ) ( )o o

i i ir k y k y k= −         (5.25) 

being ˆ ( )
i
y k  and ˆ ( )iy k  the bounds of the ith-system output estimation computed using the interval observer (5.2) or 

its equivalent interval predictor (5.12) and obtained according to Eq. (3.10). 

In this case, this residual interval constitutes the adaptive threshold since the comparison of every component of the 

nominal residual vector, roi(k), with its corresponding bounding interval (Eq. (5.24)) allows the indication of the fault 

if the following relation is satisfied. 

( ) [ ( ), ( )]
ooo
ii ir k r k r k∉            (5.26) 

It should be noticed that this fault detection test is fully equivalent to the one given by Eq. (3.24) in Chapter 3 

(Section 3.2.2). 
 

5.3.2 Equivalence between the interval observer and its 
associated interval predictor regarding fault indication 

 

As it was mentioned in the previous section, the indication of a fault by the fault detection stage is just determined by 

the test given by the Eq. (5.26). Thus, two models (interval observer and its equivalent λ-order predictor) which 

generate at every time instant the same residual ( )o
ir k  having the same adaptive threshold [ ( ), ( )]

oo
iir k r k  will indicate 

the fault equivalently. 

According to Eq. (5.15)  which sets the order of the equivalent predictor to the given interval observer, the system 

output estimations given by both models fulfil the following condition: 

ˆ ˆ( , ) ( , ) 0
o p
k k− ≈ ∀ ∈y θ y θ θ Θ              (5.27) 

where the sub index ‘o’ is set for the observer model while sub index p for the equivalent predictor model. 

Therefore, according to the residual expression given by Eq. (5.17), the residuals generated by both models also fulfil 

an equivalent condition: 

( , ) ( , ) 0
o p
k k− ≈ ∀ ∈r θ r θ θ Θ               (5.28) 

Then, considering the conditions given by Eq. (5.27) and Eq. (5.28), the observer and its equivalent predictor are 

generating at every time instant the same residual ( )o
ir k  and the same adaptive threshold [ ( ), ( )]

oo
iir k r k  and 

consequently, both models have an equivalent performance regarding the fault indication. 
 

5.3.3 Sensitivity of the residual to a fault 
 

In Chapter 3 (Section 3.3), the concept of fault sensitivity of the residual (Gertler, 1998) was recalled extending this 

concept to interval models focusing on the dynamical aspects of this model property. In this section, a complete 

analysis regarding the influence of the observer gain L on the time evolution of this property was carried out. 

According to (Gertler, 1998) regarding non-interval models and (Meseguer et al, 2007b) regarding interval observer 

models and such as it was shown along Chapter 3, the fault residual sensitivity is a key property of the considered 

model concerning its fault detection behaviour as it determines the adaptive threshold, the minimum detectable fault 

and the time a fault is indicated.  
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In this section, it will be demonstrated that interval observers and their equivalent λ-order predictors must have the 

same residual sensitivity to whatever kind of fault affecting to the monitored system.   

The residual internal form given by Eq. (3.62) (Section 3.3.5) determines that the value of the residual at every time 

instant is given by the disturbance caused by different faults which can affect the monitored system (actuator fault, fa, 

output sensor fault, fy and input sensor fault, fu) and the disturbance caused by the model parameter uncertainty. This 

residual form shows that the residual disturbance caused by a fault vector is determined by the residual sensitivity to 

this kind of fault (residual sensitivity to an actuator fault, Sfa, given by Eq. (3.54), residual sensitivity to an output 

sensor fault, Sfy, given by Eq. (3.37), residual sensitivity to an input sensor fault, Sfu given by Eq. (3.47)) while the 

residual disturbance caused by the model parameter uncertainty is given by the adaptive threshold, r0 (Eq. (3.21)). 

Then, considering the monitored system is affected by a fault vector f whose occurrence time instant is t0, the 

expression of the residual according to Eq. (3.62)  will be given by 

01
0 0

0 0

( , ) ( , ) ( )
( , )

( , )

t

fk q k q k t
k

k k t

−− + ≥= 
<

r θ S θ f
r θ

r θ

   

              
          (5.29) 

where Sf  is the residual sensitivity to the fault vector f. Then, according to Eq. (5.28), at whatever time instant k, the 

interval observer and its equivalent predictor generate the same residual (Eq. (5.28)). As a result of this statement, it is 

concluded both models must have the same residual sensitivity to the fault vector f if condition (5.15) is fulfilled. This 

equivalence can be written as it follows: 

1 1( , ) ( , )of pfq q− −≈ ∀ ∈S θ S θ θ Θ               (5.30) 

where the sub index ‘o’ is set for the observer model while sub index p for the equivalent predictor model. 

This result shows that such as in Section 3.3 (Chapter 3) the fault residual sensitivity dynamics was described 

regarding the observation gain L, the same sensitivity dynamics can also be achieved with the equivalent predictor 

calculating its order using Eq. (5.15). In the following, Table 5.1 describes the sensitivity dynamics in terms of L and 

λ such as it was done in terms of L in Table 3.1  (Section 3.6). 

 

 Simulation 

L=0  or 

λ → ∞  

Observation 

L=Lo or  

n λ< < ∞  

Prediction 

L=Lp or 

nλ =  

fyS  Constant Pulse Deadbeat 

fuS  
Dynamic 

response 

Dynamic 

response 
Constant 

faS  
Dynamic 

response 

Dynamic 

response 
Constant 

 

Table 5.1 Fault residual sensitivity dinamics15 

 

5.4 Application example 
 

5.4.1 Description 
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The application example proposed to illustrate the obtained results is the industrial smart actuator FDI Benchmark 

used in Chapter 4 (Section 4.4) to demonstrate how an interval observer can avoid the wrapping effect forcing the 

observer gain to satisfy a especial condition (Section 4.2.2) and to illustrate the effect of this condition on its fault 

detection performance. Although the properties of the considered model of this smart actuator are equal to the ones 

presented in Chapter 4 (Section 4.4), in this section are recalled for the clarity of the given results.  Thereby, such as 

it was shown in Section 4.4, the following linear interval model of this smart actuator is considered: 

ˆ ˆ( k 1) ( ) ( k ) ( ) ( k )

ˆ ˆ( k ) ( ) ( k )

+ = +
=

x A θ x B θ u

y C θ x
           (5.31) 

with: [ ]1 2 3
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

t

k x k x k x k=x , 

3

2

1

0 0

( ) 1 0

0 1

θ
θ
θ

=
 
 
 
  

A θ , 

4

0

( ) 0

θ
=
 
 
 
  

B θ , [ ]( ) 0 0 1=C θ  and ( ) ( 2)k CVP k= −u  

where: 
3
ˆ ( )x k  is the valve position estimation, ˆ ( )ky  is the estimation of this position measured by the displacement 

transducer (in Volt), CVP(k) is the command pressure (in Pascal) measured by a given input sensor. Then, as used in 

Chapter 4 (Section 4.4), the model uncertain parameters are bounded by their confidence intervals: θ1∈ [1.1417 

1.1471], θ2∈ [0.3995 0.4103], θ3∈ [-0.5537   -0.5484], and θ4∈ [2.180e-4 2.183e-4] while their nominal values are 

given by θo1=1.1444, θ
o
2=0.4049, θ

o
3= -0.5510, and θ

o
4=2.182e-4. Regarding the command pressure, a constant value 

given by ( ) 1u k Pa=   has been considered.  
 

5.4.2 Output estimation and residual analysis 
 

As shown in Section 4.4.1 and according to Eq. (5.3),  the interval observer estimation of the system output can be 

obtained from Eq. (5.31) considering the following observer gain matrix L=[ k3, k2, k1]
T:   
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  (5.32) 

where k1, k2 and k3 are the observer gains. Regarding the residual expression, its form can be inferred from Eq. (5.18), 

Eq. (5.19) and Eq. (5.20) using Eq. (5.32): 
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   (5.33) 

As it was said in Chapter 4 (Section 4.4.1), the state-space matrix ( )A θ  of the application example model (Eq. (5.31)) 

does not fulfil the isotonicity property and consequently, the system output estimation using the interval observer 

given by Eq. (5.32) is affected by the wrapping effect when a region-based algorithm is used and the isotonicity 

condition given by Eq. (4.3) is not forced. As it was seen, this condition is satisfied when  

3 3k θ=               (5.34) 

which using the known observer gain parameterization 
i i i
k lθ=  implies l3=1. In case, condition given by Eq. (5.34) is 

not forced, the output estimation done by the interval observer should be obtained using a trajectory-based approach 

or, according to Section 5.2.2, using its equivalent λ-order interval predictor as both approaches estimate the same 

system output interval according to Eq. (5.27).  

                                                                                                                                                              
15
 n stands for the predictor minimum order. 
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Thereby, let us assume a constant additive fault affecting the system output sensor occurring at time instant t0=200 

and whose value is given by f= 0.01 Volt (roughly, 10% of the steady-state system output nominal value) and let us 

also consider an observation gain set determined by l1= l2=l3=0.5. Then, in Fig. 5.1, the time evolution of the system 

output estimation interval and its nominal estimation and the output sensor measurement (green line) are plotted 

between the time instants t1=190 and t2=220 using the interval observer input-output form given by Eq. (5.32) and 

considering a trajectory-based algorithm (upper plot) and a region-based algorithm (lower plot). Thereby, according 

to the mentioned above, while the trajectory based approach produces an accurate interval what allows to detect the 

fault; the corresponding interval produced using a region based approach is useless because of the wrapping effect 

which causes an unstable growing system output estimation interval.  
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Fig. 5.1 Time evolution of the system output estimation interval, its nominal value, and the system output sensor measurement (green line) using a 
trajectory and region-based algorithm and where the observers gains are given by l1=l2= l3=0.5  

 

5.4.3 Equivalence between observers and predictors 
 

Using the application example, in this section, the evolution of the equivalent predictor order, λ, regarding the 

observation gain of its associated interval observer is described.  Thus, for a given observer gain, using Eq. (5.15), the 

order λ of the equivalent predictor is obtained for a certain degree of approximation ε. Then, in Fig. 5.2, the 

evolution of the predictor order versus the observer gain is plotted considering the parameterization 
i i
k lθ=  varying 

the l from simulation (l=0) to prediction (l=1) and using an approximation degree given by ε=1e-5. It must be taken 

into account that for a certain value of l, Eq. (5.15) is evaluated considering all the possible trajectories related to the 

interval observer determined for the uncertainty related to the parameters. It can be noticed that when the observer 

works as a simulator ( 0l → ), the order of its equivalent predictor is affected by a fast growing, i.e., the memory of 

the predictor increases fastly. On the other hand, when the observer works as a predictor ( 1l → ) (predictor of order 

n=3, being n the system order), the equivalent predictor tends to the order of the system (“dead-beat observer” 

(Patton et al, 1991)), i.e., the memory of the predictor decreases until the system order. 
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Fig. 5.2 Evolution of the equivalent predictor order regarding the observation gain of its associated interval observer 

 

5.4.4 Time evolution of the residual sensitivity to a fault 
 

In Section 5.3.3, it was shown that the fault residual sensitivity functions of the interval observer and its equivalent 

λ-order predictor are equal when the degree of approximation ε can be underestimated since it is roughly zero-

valued. Thus, the goal of this section is to exemplify this statement using the application example and considering the 

residual sensitivity to an output sensor fault, Sfy , and the residual sensitivity to an input sensor fault, Sfu .    

Such as it was seen in Chapter 3 (Section 3.3), the functions Sfy and Sfu are given by Eq. (3.37) and Eq. (3.47), 

respectively. Concerning these expressions, it must be noticed that they are valid for the interval observer and also 

for its equivalent predictor. The fault residual sensitivity functions associated with the interval observer are obtained 

when the transfer function matrices 1( , )q−O θ  and 1( , )q−V θ  are calculated using Eq. (5.20) and Eq. (5.19), 

respectively. On the other hand, if Eq. (5.22) and Eq. (5.21) were used to calculate those transfer functions, the fault 

residual sensitivity functions associated with the equivalent predictor would be obtained.  

Focusing on the application example, when an interval observer is considered, according to Eq. (3.37) and Eq. (5.33), 

its residual sensitivity to an output sensor fault is given by 
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assuming matrix Fy is equal to the identity matrix I. Conversely, according to Eq. (3.47) and Eq. (5.33), the interval 

observer residual sensitivity to an input sensor fault can be written as it follows: 
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assuming matrix Fu = I.  

Concerning the equivalent predictor associated with the interval observer given by Eq. (5.32), its residual sensitivity to 

an output sensor fault can be obtained using Eq. (3.37), Eq. (5.22), Eq. (5.13) and considering the matrices A and C 

associated with the monitored system (Eq. (5.31)). 
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where Fy = I, λ is obtained using Eq. (5.15) and L=[ k3, k2, k1]
T. 
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Then, using Eq, (3.47), Eq. (5.21), Eq. (5.14) and the matrices A, B, C and L associated to the monitored system (Eq. 

(5.31)), the equivalent predictor residual sensitivity to an input sensor fault can be calculated computing the following 

equation 

 

( )
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1
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( ) ( ) ( )

pfu p u p p

v v
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= = − = − =

= − −∑
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C θ A θ LC B θ

  

      (5.38) 

assuming Fu = I. 

 

 In the following, considering an abrupt fault modelled as a unit-step function, the time evolution of those residual 

sensitivity functions are plotted using the observer gain set given by k1=k2=k3=0.5 and considering just the nominal 

value of the uncertain parameters ( o= ∈θ θ Θ ). In this case, the equivalent predictor order is given by l=36 (Fig. 

5.2) considering a predictor approximation degree ε=1e-5 (Eq. (5.15)).  
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Fig. 5.3 Time evolution of the residual sensitivity function to an output sensor fault (upper plot) and the residual sensitivity function to an input 
sensor fault (lower plot) using the nominal observer (green line) and its equivalent predictor (red line) 

 

In Fig. 5.3, the residual sensitivity functions to an output sensor fault (upper plot) and to an input sensor fault (lower 

plot ) are drawn using both the nominal observer (green line) and its associated equivalent predictor (red line). As it 

can be seen in this figure, comparing the time evolution of the residual sensitivity to an input/output fault related to 

the nominal observer with the one related to the equivalent predictor, they are almost undistinguishable when both 

schemes are really equivalent.  

 

On the other hand, in Fig. 5.4, the case in which both models are not equivalent is plotted. This is achieved 

considering l<36, for example l=3. In this case, such as it can be seen in Fig. 5.4, the time evolution of the residual 

sensitivity to an output/input sensor related to both models is different since they are not equivalent. 
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Fig. 5.4 Time evolution of the residual sensitivity function to an output sensor fault (upper plot) and the residual sensitivity function to an input 
sensor fault (lower plot) using the nominal observer (green line) and its equivalent predictor (red line) which does not satisfy condition (5.15) 

 

5.4.5 Predictor and observer behaviour in fault scenario 
 

The goal of this section is to compare the fault detection performance of an interval observer whose system output 

estimations are obtained using the trajectory based approach (Section 2.3.2.5.4) (Puig et al, 2003b) with the fault 

detection performance of its corresponding equivalent predictor considering the fault scenario used in Section 5.4.2 

and assuming a predictor approximation degree ε=1e-5 (Eq. (5.15)). In addition, this behaviour comparison is also 

used to confirm the equivalent predictor also avoids the wrapping effect such as the interval observer when it is 

computed using the trajectory based approach as it was mentioned along Chapter 4.  

Firstly, a case where both type of models are fully equivalent regarding fault detection is shown in Fig. 5.5. This is 

achieved when the order of the equivalent predictor ‘λ’ is equal to 36 according to Eq. (5.15) and the observer gains 

mentioned in Section 5.4.2 are used (l1= l2=l3=0.5). Then, in Fig. 5.5, the time evolutions of the nominal residual 

(green line) (Eq. (5.33), o= ∈θ θ Θ ) and its associated adaptive threshold (blue line) (Eq. (5.24)) are plotted between 

the time instants 190 and 220 using both models (interval observer: upper plot; equivalent predictor: lower plot) 

showing the full equivalence between them. As a result, the interval observer and its correspondent predictor are also 

equivalent regarding their fault detection properties according to the fault detection test given by Eq. (5.26). 
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Fig. 5.5 Time evolution of the nominal residual (green line) and its adaptive threshold (blue line) using the interval observer (upper plot) and its 
equivalent predictor (lower plot) 
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In the following, a case where the predictor is not equivalent to its associated interval observer is considered. This is 

achieved when the equivalent predictor order is smaller than the obtained by Eq. (5.15). In this case, an order given by 

λ=7 is used. Then, the nominal residual (green line) and its adaptive threshold (blue line) corresponding to both 

models (interval observer: upper plot; equivalent predictor: lower plot) are plotted in Fig. 5.6 between the time 

instants 190 and 220. Analyzing this figure, it can be noticed that while the interval observer nominal residual is null 

when the fault does not exist (k<200), the associated with the equivalent predictor is not due to its non-accurate 

system output approximation and according to the fault detection condition given by Eq. (5.26), this model would be 

indicating the fault existence although the fault does not appear till time instant t0=200.  
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Fig. 5.6 Time evolution of the nominal residual (green line) and its adaptive threshold (blue line) using the interval observer (upper plot) and its 
equivalent predictor (lower plot) 
 

5.4.6 Computing the equivalent predictor interval output using 
two known point-wise trajectories 

 

When the observation gain condition given by Eq. (5.34) (l3=1) is forced, the observer output interval can be 

computed using the region-based approach avoiding the wrapping effect (Meseguer et al, 2008a). That is because 

the interval observer matrix ( =
o
A A - LC ) fulfils the isotonicity property (all its elements are positive) and thus, 

according to (Cugueró et al, 2002), the trajectory of the output interval upper bound is obtained when the uncertain 

parameters are equal to their interval upper bound (
1 2 3 4ˆ ˆ( ) ( , , , , )y k y k θ θ θ θ= ) while the trajectory of the output 

interval lower bound is obtained when the parameters are equal to their interval lower bound ( 

1 2 3 4ˆ ˆ( ) ( , , , , )y k y k θ θ θ θ= ). Conversely, these two output interval trajectories could also be generated by the equivalent 

predictor using the uncertain parameter lower and upper bounds what means that the output interval can be also 

generated by the equivalent predictor using only two known point-wise trajectories and consequently, its 

computational cost is lower than the corresponding to the general trajectory-based approach.  

In the following, the next observations gains are considered: l1=l2=0.5 and l3=1. Then, assuming an equivalent 

predictor approximation degree ε=1e-5, the equivalent predictor order is given by l=112. Considering those observer 

and predictor parameters, the system output estimation interval and its nominal value are generated (blue lines) in 

Fig. 5.7 using the interval observer computed by the region-based approach (upper plot) and its equivalent predictor 

computed using only the two known point-wise trajectories (lower plot) such as it was mentioned above. Besides, the 

time evolution of the system output measurement is also plotted (green line) . Fig. 5.7 shows how both methods 
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generate exactly the same interval output and consequently, they are equivalent regarding their fault detection 

performance. 
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Fig. 5.7. Time evolution of the system output estimation interval and its nominal value (blue lines), and the output sensor measurement (green 
line) using the interval observer (upper plot) and its equivalent predictor (lower plot)  

 

5.4.7 Influence of the equivalent predictor order λ on the fault 

indication persistence 
 

(Meseguer et al., 2007b) shows that when interval observers are used, the observer gain has an important influence 

on the fault indication persistence. In general, the fault indication persistence depends on the observer gain, on the 

dynamics of the fault residual sensitivity and on the parameter uncertainty. Moreover, as indicated in  (Meseguer et 

al, 2007b), when the simulation approach can not detect the fault and the ‘dead-beat observer’ (Patton et al, 1991) 

can only detect during a number of time instants equal to its order, optimum observer gain values between 

Simulation and Prediction (‘dead-beat observer’) can be applied to such that the fault indication persistence can be 

enhanced. When instead of using the interval observer, its equivalent λ-order predictor is used; the order λ of this 

model plays the same role regarding the fault indication persistence than the observer gain, derived from the shown 

equivalence between both models.  

 

Next, assuming a constant additive fault affecting the system output sensor occurring at time instant t0=200 and 

whose value is given by f= 0.1 Volt (roughly, 1 time of the steady-state system output nominal value), the time 

evolutions of the system output estimation interval and its nominal value (blue lines) generated by the equivalent 

predictor are plotted. In addition, the time evolution of the system output measurement (green line) and the fault 

detection indicator (red line) are also plotted. In Fig. 5.8, a predictor whose order is l=117 is considered. This is 

equivalent to the observer given by Eq. (5.32) when l1=l2=l3=0.05 and ε=1e-5. On the other hand, in Fig. 5.9, the 

predictor of minimum order is used (λ=3) which is equivalent to the interval observer when l1=l2=l3=1 and ε=1e-5.  
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Fig. 5.8. Time evolution of the system output estimation interval and its nominal value (blue lines), and the output sensor measurement (green 

line) using a λ-order predictor (λ=117). The fault indicator is plotted in red line 
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Fig. 5.9 Time evolution of the system output estimation interval and its nominal value (blue lines), and the output sensor measurement (green line) 

using a λ-order predictor (λ=3). The fault indicator is plotted in red line 

 

5.5 Conclusions 
 

This chapter demonstrates that it is possible to determine an interval λ-order predictor which is fully equivalent to an 

interval observer with a certain observer gain L when applied to fault detection applications. The presented method is 

an extension of the approach presented by (Ploix et al, 1999) where the predictor of minimum order (“dead-beat 

observer” (Patton et al, 1991)) was obtained. In the presented approach, the order of the equivalent predictor is 

determined by the observer gain matrix  L and offers to the predictor model the same fault indication persistence than 

the corresponding to the interval observer. Such equivalence is based on the fact that an interval observer can be 

represented by an ARMA model, while a predictor by a MA model and it is known from the literature that an ARMA 

model can be approximated by a MA model of infinite order. On the other hand, this chapter shows that the use of 

the λ-order equivalent predictor is very interesting in fault detection applications because it avoids those problems 

associated with the state estimation as the initial state value problem or the wrapping effect. In addition, the 

equivalent predictor can be computed efficiently if the associated interval observer fulfils the isotonicity property 



 147

which can always be forced using the observer gains (Meseguer et al, 2008a). In this case, the interval output 

generated by the equivalent predictor is determined by two known point-wise trajectories obtained when the 

uncertain parameters are equal to their interval upper and lower bounds (Cugueró et al, 2002). 
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CHAPTER 6 

On the integration of fault detection and 

isolation in model based fault diagnosis  

 

 

6.1 Introduction 
 

As mentioned in Section 2.4, model-based diagnosis has been approached from two different scientific communities 

(Venkatasubrarnanian et al., 2003a): Artificial Intelligence, also known as the DX approach (Hamscher et al, 1992) 

(Reiter, 1987), and Automatic Control, also known as FDI approach (Blanke et al, 2003)(Gertler, 1998)(Patton et al, 

2000). Nonetheless, both approaches are considering separately the fault detection and the fault isolation tasks. 

Thereby, elements of comparison between both approaches have been included in (Cordier et al, 2000), which 

provides a common framework for research from both communities. In such trend, some recent works have tried to 

merge the best of each approach (Ploix et al, 2003) (BRIDGE project). In this merging process, the fault diagnosis 

task has been again separated in the task of fault detection and isolation.  

However, most of the research in both communities has been focused either in the detection task or in the isolation 

task but very few papers deal with the interface between these two modules. Only few researchers have pointed out 

the importance of this interface but only from one of the two approaches (Combastel et al, 2003). The aim of this 

chapter is to recall that the interface between fault detection and fault isolation modules should be carefully designed 

in order to avoid the loss of information which derives in decreasing the quality of final fault diagnosis result, 

specially when dynamic systems are diagnosed (Puig et al, 2004c). 

This remainder of Chapter 6 is organized as follows: Section 6.2 analyses the limitations of the binary interface 

between fault detection and fault isolation; Section 6.3 proposes a motivational example which illustrates the fault 

isolation problems when every fault signal has its own dynamics and consequently, every fault signal may appear at 

different time instants; Section 6.4 proposes some improvements on the existing FDI and DX fault isolation schemes 

in order to deal with the problems presented in Section 6.3. Finally, Section 6.5 presents the obtained main 

conclusions.  
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6.2 Limitations of FDI fault isolation and DX fault 
isolation 

 

As mentioned in Chapter 2, model-based fault detection tests are based on the evaluation of a certain set of n  

numerical fault indicators, residuals r(k), (also known as analytical redundancy relations (ARRs) in the FDI 

community or potential conflicts in the DX community) derived from the elementary models of system components 

and the available measurements coming from sensors (Ploix et al, 2003): 

( ) ( ( ), ( ))k k k=r Ψ y u               (6.1) 

 

where Ψ  is the residual generator function that allows computing the residual set at every time instant using the 

measurements of the system inputs and outputs (i.e. set by Eq. (3.16) in  FDI approach). 

Using either an approach coming from FDI (as for example, Staroswiecki’s structural analysis (Staroswiecki et al, 

1989)) or an approach coming from DX (as for example, Pulido’s GDE based algorithm (Pulido et al, 2001)),  the 

whole set of residuals r(k) (ARRs) for a certain system and a certain set of sensors can be generated. Each detection 

test (ri(k)) should be evaluated on-line in order to decide if it is or not violated at a given time instant (typically a 

binary codification is used: 0 indicated not violation and 1 violation): 

0 if ( )   (no fault)
( )

1 if ( )   (fault)

i i

i

i i

r k
k

r k

τ
φ

τ
 <= 

≥

    

    
          (6.2) 

 

where τi is the threshold associated to the detection test ri(k).  This residual test constitutes the detection phase of the 

fault diagnosis process. Finally, the evaluation of each detection test will let obtain the observed fault signature of 

the system: 1 2( ) ( ), ( ), , ( )
n

k k k k
φ

φ φ φ =  ⋯φφφφ  such as indicated in Chapter 2. This vector can be considered as a set of 

fault signals which will be used by the fault isolation module in order to isolate the fault. 

 
 

6.2.1 FDI fault isolation 
 

The observed fault signature is, then, supplied to the fault isolation module that will try to isolate the fault so that a 

fault diagnosis result can be given. This module is able to produce such a fault diagnosis since it has the knowledge 

about the binary relation between the considered fault hypothesis set { }1 2( ) ( ), ( ), , ( )
fn

k f k f k f k=f ⋯  and the fault 

signal set φ(k). This relation is stored in the called theoretical binary fault signature matrix (FSM). Thereby, an 

element FSMij of this matrix is equal to 1 if the fault hypothesis fj(k) is expected to affect the residual ri(k) such that 

the related fault signal φi(k) is equal to 1 when this fault is affecting to the monitored system. Otherwise, the element 

FSMij  is zero-valued. Then, fault isolation lies in looking for the theoretical fault signature of the fault signature 

matrix FSM which matches with the observed signature φ(k). For example, in case of having the following fault 

signature matrix 
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 f1 f2 f3 

φ1 1 1 1 

φ2 1 0 1 

φ3 1 1 0 
 

Table 6.1 Fault signature matrix 

then, the following logical tests allow isolating the different faults without considering that noise or perturbations 

may cause detection errors: 

1 1 2 3

2 1 2 3

3 1 2 3

f

f

f

φ φ φ
φ φ φ
φ φ φ

= ∧ ∧

= ∧ ∧

= ∧ ∧

             (6.3)  

 

Thereby, fault isolation FDI approach can be viewed as a parallel diagnostic inference (column view) approach 

(Gerter, 1998) (Section 2.4.2.1.1). 
 

6.2.2 DX fault isolation 
 

According to (Cordier et al, 2000), FDI fault detection approach using ARRs and DX fault detection approach using 

potential conflicts can be considered equivalent. However, fault isolation can be tackled in two different ways within 

the DX community: consistency-based, CBD, or abduction-based (Hamscher et al, 1992). Thereby, while 

consistency-based diagnosis tries to reject those behavioural modes which are not consistent with current 

observations, abduction-based diagnosis tries to explain current observation with a consistent behavioural mode 

assignment. In this line, the abduction-based diagnosis is closer to the FDI approach than the consistency-based 

approach. Nevertheless, for real complex dynamic systems there is no direct translation from the static consistency 

test to the dynamic one (Chantler et al, 1996). 

Based on the framework proposed by Cordier (Cordier et al, 2000), the fault signature matrix presented in Table 6.1 

is interpreted in fault isolation CBD approach considering separately each line associated with a violated ARR, 

isolating R-conflicts (i.e., a set of components which must be considered abnormal in order to be consistent with the 

observed fault signature) before a common explanation can be given (i.e, it follows a series diagnostic inference 

(row view) of the table (Gerter, 1998) (Section 2.4.2.1.1). 
 

6.2.3 Common limitations  
 

Given that every fault signal φi(k) may exhibit different dynamics, some information is lost between fault detection 

and fault isolation modules when fault diagnosis of dynamic systems is carried out applying the above mentioned 

DX and FDI approaches. This is a consequence of considering just a binary interface between both modules which is 

obtained using a binary codification of every fault detection test (Eq. (6.2)) related to a given set of residuals r(k) 

(ARR’s or potential conflicts). This loss of information might result in a wrong fault diagnosis or even though, faults 

might not be isolated since they are undistinguishable regarding the binary property of the fault signals. Among the 
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fault signal lost information when considering the mentioned binary interface, the following properties are 

highlighted:  

• The sensitivity of the fault signal regarding to each considered fault. 

• The sign of the fault signal. 

• The fault signal occurrence order of a given ARR regarding the others is not recorded.  

• Once the fault occurs, every fault signal φi(k) has its own persistency. 

• The time window required so that all fault signals caused by a fault can be observed is not considered although 

every fault signal has its own dynamics and consequently, they may have different apparition time instants. 

• The instability of the fault detection test indicator (chattering) as a consequence of the presence of noise and the 

used binary test is not considered.  

Thus, if this information were considered in the interface between fault detection and fault isolation modules, the 

fault diagnosis result could be improved remarkably. Following the analysis done in (Puig et al, 2004c), in the next 

section some clues of the importance of considering fault signal dynamical properties are given using the approaches 

coming from both communities. 

 

6.3 Motivational example 
 

In order to show the importance of considering the fault signal dynamics when diagnosing dynamical systems, an 

example is used. In this example, in spite of the system dynamical properties, once the effect of faults on the 

considered fault signals has been determined, the following binary theoretical fault signature matrix, FSM, is used: 

 

 fy1 fy2 fc1 fc2 

φ1 1 1 1 0 

φ2 1 1 0 1 
 

Table 6.2 Fault signature matrix 

 

Such as it can be seen in this matrix, faults fc1 and  fc2 are isolable since their binary fault signature is different from 

the signature of faults  fy1 and   fy2. However, faults fy1 and fy2 are not isolable when a binary fault isolation approach 

is applied since they have the same binary fault signature. 

The isolation approaches presented in Section 6.2 uses a set of binary fault detection tests (Eq. (6.2)) to compose the 

observed fault signature. Given the isolation decision at time instant k only depends on the results of these tests at 

this time instant, this scheme is purely static, independently of the followed approach and consequently, it may cause 

false fault isolation decisions, especially when some fault detection tests have a transient behaviour (especially in 

dynamic slow/delayed systems) in response to the faults.  

When using the previous static FDI or DX fault isolation approaches in dynamical systems where each fault signal 

φi(k) has its own dynamics, their behavior is very different during the transient time and as result, an erratic diagnosis 

may be provided.  

Fig. 6.1 describes the time evolution of fault signals when a fault fy1 occurs. As it can be seen, the fault signals φ1 and  

φ2 do not appears at the same time because of the dynamics of the system. Thereby, Table 6.3 illustrates the 
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corresponding FDI and DX CBD diagnostics at the time instants t1 and t2 in which each fault signal appears. Then, 

using the fault signature presented in Table 6.2, FDI approach, which follows the column view approach, provides 

the following diagnosis: between t1<k<t2, the observed fault signature correspond to the associated one with fault fc1, 

while at k>t2, the observed fault signature corresponds to fy1 or fy2. As a conclusion, while all fault signals associated 

with a given fault do not have been observed because of the different appearance times, an FDI isolation approach 

will provide erratic diagnosis during the transient-state (see Table 6.3).  

On the other hand, if a DX CBD isolation approach is used since it follows the row view approach, those 

components associated with activated fault signals will be considered as possible faulty candidates. Using the 

example used in the FDI case which deals with the occurrence of a fault fy1, the activation of fault signal φ1 will 

provide as possible faults fy1, fy2 and fc1, considering only single faults. Then, the activation of symptom φ2 will allow 

reducing the set of possible faults to fy1 and fy2. Thereby, DX approach allows refining incrementally the first 

diagnosis which already includes the fault which is affecting the considered system without providing erratic 

diagnosis in the transient-state (see Table 6.3).  

 

 

t 

t 

φ1 

φ2 

0 

0 

1 

1 
t1 

t2 
 

Fig. 6.1 Sequence of fault symptoms 

 

Time t1 t2 

Fault Signals φ1=1 φ2=0 φ1=1 φ2=1 

FDI  fc1 fy1 ∨∨∨∨  fy2 

DX CBD  fc1 ∨∨∨∨ fy1 ∨∨∨∨  fy2 fy1 ∨∨∨∨  fy2 
 

Table 6.3 Diagnosis with FDI and DX CBD approaches (in black the provided diagnostic ) 

 

6.4 Approaches to deal with fault isolation 
considering fault signals with different apparition 
time instants 

 

After a review of the existent approaches, a set of improvements was proposed in (Puig et al, 2004c) to deal with 

fault isolation applied to dynamical systems. As mentioned, the fault signals related to this kind of systems have their 

own dynamics and consequently, their apparition time instants may be different. Thereby, as illustrated in Section 

6.3, if the dynamics of every fault signal is not taken into account, wrong fault diagnosis results can be obtained. 

Such as demonstrated in (Puig et al, 2004c), these enhancements can be used in the existent fault isolation 

approaches (either FDI or DX) without increasing the complexity related to the fault isolation algorithm. 
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6.4.1 Introduction 
 
Delayed/slow systems are an important class of dynamic systems, which generally are composed by many 

subsystems with important delay times in their behaviour or with large transient responses. Some examples of 

delayed/slow systems are energy and water distribution networks, chemical processes, etc. In this class of systems, 

when a fault occurs, their associated fault signals never appear simultaneously. If the fault isolation decision 

procedure is static, as illustrated in Section 6.3, the fault propagation may produce a fault diagnosis result changing 

during the system transient-state caused by the fault. This problem has already been noticed by Kościelny 

(Kościelny, 1995) (Kościelny, 2000), Console (Console et al, 2001) and by Quevedo (Quevedo et al, 2001) among 

others. In both DX and FDI communities, there are recent works where the inclusion of  information associated with 

the model dynamics and the fault signal occurrence time instants allow improving the fault diagnosis results when 

applied to dynamical systems. 

Most DX methods take advantage of implicit temporal knowledge in the structure of the model, which can be 

represented as a set of QSIM/QDEs (Dvorak et al, 1992) (Ng, 1990), temporal causal graphs (Mostermann et al, 

1997) or causal influences (Travé-Massuyes et al, 1997). These pieces of knowledge allow enhancing the isolation 

process in the transient period caused by the fault. This model temporal information can also be used to predict later 

deviations or to estimate delayed consequences.  Moreover, this information can be used to favouring fault diagnosis 

candidates according to the dynamics of their observed fault signals (Mostermann et al, 1999) (Travé-Massuyes et al, 

1997) or to reject them if their effects are not present at a given time instant (Alonso et al, 2000). In general these 

techniques use rules which, given a fault signal at time k, compute the diagnosis result taking into account the 

observations in time instants earlier than time instant k. Thus, these approaches let obtain a final fault isolation result 

after a sequence of transient diagnostics. Console (Console et al, 2001) proposes temporal decision trees which take 

into account temporal information on the fault signals and temporal constraints on the recovery actions to be 

performed, increasing the fault discrimination.  

On the other hand, in the FDI community, the works of Kościelny (Kościelny, 1995)(Kościelny, 2000) propose a 

new fault signature matrix replacing binary 1’s by an interval of time [tmin,tmax],where tmin and tmax are the minimum 

and maximum time period between fault occurrence and the fault signal appearance. The conclusion of this approach 

is that the fault isolation performance can be improved taking into account the time of fault signal appearance. 

Moreover, this approach suggests that once the fault occurs, the final fault isolation result can be obtained in a certain 

number of time instants determined by the number of affected fault signals and their appearance time instants. 
 

6.4.2 Fault isolation considering fault signals with different 
appearance time instants 

 

According to (Puig et al., 2004), one possible approach to deal with fault signals with different appearance time 

instants, independently of the fault isolation approach, consists in not allowing an isolation decision until a prefixed 

waiting time (Tw) has elapsed from the first fault signal appearance. This reference proposes that Tw must be 

calculated from the largest transient time response (Tlt) from non-faulty situation to any faulty situation. Moreover, 

depending on the nature of the faults (abrupt or incipient), there is usually a detection time that should be added.  

In the example described in Section 6.3, Tw must be calculated from the largest transient time response from non-

faulty situation to any faulty situation, being, in this case, the transient time response from φ1=φ2=0 to φ1=φ2=1 

resulting in Tlt=max(t1 ,t2 ). Moreover, taking into account the uncertainty about the knowledge of the delays t1 and t2 
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and the detection time, a security time period should be added to Tw in order to enhance the fault diagnostic decision 

reliability. In this example, then Tw > Tlt = max(t1,t2 ) (see Table 6.4). 

In the case of some DX approaches, it is also possible to exonerate those components not involved in the violated 

detection tests once the waiting time Tw has elapsed. This will allow obtaining the same isolation results than FDI 

approach. 

 

Time t1 t2 Tw 

Fault Signals φ1=1 φ2=0 φ1=1 φ2=1 φ1=1 φ2=1 

FDI  fc1 fy1 ∨  fy2 fy1 ∨∨∨∨  fy2 

DX CBD  fc1 ∨ fy1 ∨  fy2 fy1 ∨  fy2 fy1 ∨∨∨∨  fy2 
 

Table 6.4 Diagnosis with FDI and DX CBD approaches (in black the provided diagnostic ) 

 

6.4.3 Fault isolation considering the appearance order of fault 
signals 

 

A second improvement described in (Puig et al, 2004c) is based on taking into account the appearance order of fault 

signals.   

The binary theoretical fault signature matrix, FSM, (Section 2.4.2.1.1) gives a static relation between faults f and 

fault signals φ. Thereby, when taking into account the order of fault signal appearance, the fault isolation algorithm 

increases its capacity to discriminate one fault from the rest since this fault signal property allow to distinguish those 

faults which have the same static theoretical fault signature but a different dynamic fault signature, i.e, different 

appearance order of their associated fault signals. 

As a result, the approach presented in (Puig et al, 2004c) proposes the use of a new fault signature matrix named 

dynamic fault signature matrix (DFSM) (ΣΣΣΣd)  (Quevedo et al, 2001). This matrix is composed using an analysis of 

the propagation of each fault. Each element of this matrix has two digits: the first digit (index) codifies the result of 

the detection test (0  means non-fired test while 1 means fired test) and the second digit (sub index)  codifies the 

logical sequential order of appearance of the fault signal for every fault hypothesis. This sub index describes in a 

simple way the propagation of the fault effect on the system and can be inferred from the analytical redundancy 

relations or by analysis of the fault effects on the model.  

Considering again the fault signature matrix presented in Table 6.2, the faults fy1 and fy2 have identical static fault 

signature and consequently, they are not isolable. However, considering the fault signal appearance order, these 

faults can be isolated if their associated fault signals have different appearance order, as assumed in the following. In 

this case, the dynamic fault signature matrix can be written as shown in Table 6.5 

 

 fy1 fy2 fc1 fc2 

φ1 11 12 11 0 

φ2 12 11 0 11 
 

Table 6.5 Dynamic fault signature matrix 
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Such as it can be seen in this dynamic (Table 6.5), when the fault signal appearance order is considered, all the 

theoretical fault signatures are different and as a result, this approach can isolate faults fy1 and fy2. (Puig et al., 2004) 

defines these two faults as sequentially isolable but not static isolable. In Table 6.6, considering the faulty scenario 

used in Section 6.3, the fault diagnosis result is given when the dynamic fault signature matrix is used. 

 

Time t1 t2 Tw 

Fault Signals φ1=1 φ2=0 φ1=1 φ2=1 φ1=1 φ2=1 

FDI  fc1 fy1 fy1 

DX CBD  fc1 ∨ fy1 fy1 fy1 

 

Table 6.6 Diagnosis with FDI and DX CBD approaches (in black the provided diagnostic ) 
 

6.4.4 Fault isolation considering the fault signal appearance 
time instant 

 

A third improvement shown in (Puig et al, 2004c) consists in considering not only the fault signal appearance order 

but also their appearance time instant which is bounded by the time interval ,j j jϕ ϕ ϕ   =     where jϕ  and 
j

ϕ  are 

the minimum and maximum appearance time instant of all fault signals related to the fault fj from the first fault signal 

appearance.  

 

Regarding Table 6.5, if the monitored system were affected by a new fault f5 with the same dynamic fault signature 

than fy1, it would not be possible to isolate both faults even considering their appearance order. Conversely, according 

to (Puig et al., 2004) when the interval jϕ    for each fault is known, these two faults could be isolated if their 

associated appearance time intervals do not have an intersection.  

 

Then, taking into account the interval jϕ    and considering the new fault f5, the matrix DFSM given by Table 6.5 

can be re-written as follows: 

 fy1 fy2 fc1 fc2 f5 

φ1 11 12 11 0 11 

φ2 12 11 0 11 12 

[ϕ ] [ 1yϕ ] [ 2yϕ ] [ 1cϕ ] [ 2cϕ ] [ 5ϕ ] 
 

Table 6.7 Modified dynamic fault signature matrix (assuming the case 1yϕ  < 5ϕ ) 

 
In order to check this modified dynamic fault signature matrix, three different single-fault scenarios corresponding to 

faults fy1, f5  and fc1 are considered and analysed in Table 6.8, Table 6.9 and Table 6.10, respectively. These tables 

present how this matrix allows isolating two faults that are not isolable using the fault signal occurrence order. In this 

case, the fault isolation is possible due to the knowledge of the time interval in which fault signals should appear. 
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Time t1 1yϕ <t2 < 1yϕ  

Fault Signals φ1=1 φ2=0 φ1=1 φ2=1 

FDI  fc1 fy1 

DX CBD  fc1 ∨ fy1 ∨  f5 fy1 

 

Table 6.8 Diagnosis with FDI and DX CBD approaches (in black the  provided diagnostic) 

 

Time t1 5ϕ <t2 < 5ϕ  

Fault Signals φ1=1 φ2=0 φ1=1 φ2=1 

FDI  fc1 f5 

DX CBD  fc1 ∨ fy1 ∨  f5 f5 

 

Table 6.9 Diagnosis with FDI and DX CBD approaches (in black the provided diagnostic) 

 

Time t1 
max([ 1yϕ ],[ 1cϕ ],[ 5ϕ ]) 

Fault Signals φ1=1 φ2=0 φ1=1 φ2=1 

FDI  fc1 f5 

DX CBD  fc1 ∨ fy1 ∨  f5 f5 

 

Table 6.10 Diagnosis with FDI and DX CBD approaches (in black the provided diagnostic) 

 

6.5 Conclusions 
 

Chapter 6 is based on the results obtained in (Puig et al., 2004) and presents a set of problems that appear when fault 

detection and isolation are handled by separated modules such as it is usual in the FDI methods. Regarding the DX 

community, there is also a current trend where these two tasks are considered separately: mostly, when integrating 

methods of both communities using for example detection tests based on FDI techniques and isolation methods based 

on DX techniques. Consequently, the fault diagnosis problems presented in this section should be interesting for both 

the FDI community and the DX community.  

This chapter identifies the fault diagnosis problems of dynamical systems which result of considering a binary 

codification of the fault detection tests when a static reasoning scheme is applied. The effect of these problems is 

remarkable when the monitored system has a large transient state once the fault occurs. The solutions proposed in 

(Puig et al., 2004) are based on some improvements of the basic FDI and DX CBD schemes considering temporal 

aspects related to the fault signal dynamics. 
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CHAPTER 7 

Towards a better integration of passive 

robust interval-based FDI algorithms  

 

 

7.1 Introduction 
 

As mentioned in Chapter 6, fault detection and fault isolation tasks are usually considered separately in model-based 

fault diagnosis. The typical interface between these two modules is based on a binary codification of the evaluation 

of each residual (fault signal) what allow obtaining a binary observed fault signature (Section 2.4.2.1.1). Then, the 

fault isolation process consists in matching the observed fault signature with some of the theoretical fault signatures 

which are obtained using a binary codification of the effect of every fault on every residual (fault signal) generating a 

theoretical signature for every fault hypothesis (Section 2.4.1.1). As a result, if the observed signature matches with 

one theoretical signature related to a certain fault hypothesis, this process let isolate the fault. Such as it was 

introduced in Chapter 6 and in Section 2.4.2.2 of Chapter 2, this binary approach has some important drawbacks 

which are due to the loss of information between the fault detection module and the fault isolation module. This 

weakness has been also noticed by (Combastel et al., 2003) which suggests that the whole fault diagnosis 

performance can be highly increased by improving this interface between fault detection and isolation modules. In 

particular, the interface can be improved taking into account the following information:  

• The effect of model uncertainty on the fault detection threshold what let generate an adaptive threshold as shown 

in Chapter 3 (Section 3.2.2). 

• The residual signs since faults can cause positive or negative residual values. 

• The size of the residual value (fault signal). Thus, the fault can cause a big violation of the threshold or only a 

small fault signal-activation. 

• The sensitivity of a residual with respect to a certain fault (Section 3.3). 

• The dynamics related to a fault signal which determines both its appearance time instant and its time evolution. 

• The appearance order of the fault signals which can be estimated when considering the dynamics of every fault 

signal. 

In addition, it should not be forgotten that when using a binary evaluation of the residual (Eq. (6.2)), the presence of 

noise affecting the sensor measurements may cause chattering effect on the result of this evaluation. 

In this chapter, a new interval-based FDI algorithm that improves the integration between the fault detection and 

fault isolation modules is presented which uses the information mentioned previously. The core of this fault-isolation 

method for the non-uncertainty systems was proposed in (Puig et al, 2005b). Thus, the approach presented in this 

chapter is an extension of the one proposed in (Puig et al, 2005b) for the uncertain system case and it is the first step 

of a set of improvements which will be introduced in the following chapters. Thereby, the following strengtheners of 

the method proposed in this chapter regarding the presented one in (Puig et al, 2005b) can be highlighted: 
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• Uncertain systems are considered which let obtain an adaptive threshold used in the residual evaluation stage in 

order to decide if the monitored system is affected or not by a fault. 

• The method is tested using real data of the Barcelona’s urban sewer system such as it will be explained below. 

Conversely, both this method and the one presented in (Puig et al., 2006) are affected by the following weaknesses: 

• The time evolution of the dynamical properties of the fault signals is not considered. 

• The theoretical occurrence time instant of every fault signal is not used. In (Puig et al, 2005b) a first definition of 

this pattern was given without showing how it can be estimated using the considered model. 

• These methods do not say anything about how to obtain the waiting time Tw required for the appearance of all 

fault signals once the fault occurs. Thus, although the drawback of a static fault diagnosis reasoning (Chatper 6) 

is known, this method still uses it. 

• The estimation of the system output is obtained using a predictor of minimum order in spite of the drawbacks 

mentioned in Chapter 3 and Chapter 5. 

In the following chapters of this II Part of the thesis, these weaknesses will be tackled in order to enhance the whole 

fault diagnosis process.  

The fault isolation method proposed in this section is applied to the limnimeters of Barcelona’s urban sewer system: 

a telemetry network containing more than 100 limnimeters and some quality sensors connected to a Supervisory 

Control and Data Acquisition system (SCADA) which has been in operation since 1994. This SCADA is carrying 

out a real-time global control in the whole Barcelona network with the objective of reducing flooding and the 

combined sewers overflow (CSO) (Cembrano et al., 2002). The achievement of these goals avoid realising untreated 

water to the environment and let take full advantage of the storage capacity of the urban drainage network and the 

treatment plants. On the other hand, it must be taken into account that the control of the urban sewer system depends 

on the reliability of the measurements given by the instruments, specially by the limnimeters used to measure the 

water level in the storage tanks. Thus, if a set of limnimeters were affected by a certain fault, the data obtained from 

the faulty instruments could confuse the control module and as a result, the control objective might not be achieved 

resulting in some disastrous consequences. These negative consequences justify the use of a fault diagnosis system in 

order to detect and isolate faulty instruments and to reconstruct faulty measurements using the measurements of the 

non-faulty instruments.  In this chapter, the fault diagnosis method has been applied to a real faulty scenarios 

collected from limnimeters of Barcelona’s network in order to test the goodness of its performance. 

Regarding the structure of the remainder of Chapter 7, passive robust fault detection using interval models is recalled 

in Section 7.2. In Section 7.3, the integration of robust interval based methods with a new fault isolation method is 

discussed. In Section 7.4, the introduced fault isolation approach is applied to diagnose faults affecting to the 

limnimeters of the Barcelona sewer network considering different real fault scenarios. Finally, in Section 7.5, the 

main conclusions are presented. 
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7.2 Fault detection using interval models based on a 
passive robustness approach 

 

7.2.1 Fault detection test based on a passive robustness 
approach 

 
In this section, the fault detection test which was already introduced in Chapter 5 (Section 5.3.1) is recalled since it 

will allow introducing the manner in which fault signals are computed at every time instant. Thus, such as it was 

already mentioned in Section 3.2.2, model-based fault detection tests let determine the existence of a fault affecting 

the monitored system comparing the measurements of physical variables ( )ky  of the process with their estimation 

ˆ( )ky  provided by the associated system model. However, since model uncertainty located in the parameters is 

considered ( nθ∈ ℜθ  is the vector of uncertain parameters with their values bounded by a compact set ∈θ Θ of box 

type, i.e., { }nθ= ∈ℜ ≤ ≤Θ θ θ θ θθ θθ θθ θ ),  the residual may be computed using the nominal model ˆ ( , )o oky θ  related to the 

interval model which is obtained when using o= ∈θ θ Θ . 

ˆ( ) ( ) ( )o ok k k= −r y y             (7.1) 

In a non-faulty scenario, ( )o kr should be zero-valued at every time instant k considering an ideal situation. 

Nevertheless, it will never be satisfied since the system can be affected by unknown inputs (i.e. noise, nuisance 

disturbances, etc) and the model might be affected by some error assumptions (model errors) apart from its 

considered parameter uncertainty. Thus, the residual generated by Eq. (7.1) can not be expected to be zero-valued in a 

non-faulty scenario. However, propagating the interval observer parameter uncertainty to the residual, the values of 

the nominal residual (Eq. (7.1)) will be bounded by the interval (neglecting couplings among outputs) (Puig et al., 

2002):  

[ ( ), ( )]
oo
iir k r k                (7.2) 

where as indicated in Section 5.3.1: 

ˆ ˆ( ) ( ) ( )o o

i i ir k y k y k= −  and ˆ ˆ( ) ( ) ( )o o

i i i
r k y k y k= −         (7.3) 

As a result, while the nominal residual ( )o

i
r k  satisfies the following relation, a fault can not be indicated since the 

measurements related to the system outputs satisfy the relation given by Eq. (3.9) (Section 3.2.1) 

( ) [ ( ), ( )]
ooo
iii

r k r k r k∈              (7.4) 

Thereby, according to the fault detection strategy given by relation (7.4), the interval given by Eq. (7.2) can be seen as 

an adaptive threshold. Such as presented by (Puig et al, 2002a), the main goal of the fault detection module consists 

in checking for every residual ( )o

i
r k  if the relation (7.4) holds or not what can be seen as a passive robust strategy 

based on generating an adaptive threshold. Conversely, it must be taken into account that this strategy is totally 

equivalent to the one presented in Section 3.2.2 of Chapter 3 (Eq. (3.24)). 
 

7.2.2 Fault signal generation 
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The fault detection test (7.4) relies on the comparison of the numerical value of the nominal residual ( )o

i
r k , which 

may be affected by noise, with its associated adaptive threshold. This binary procedure may lead to undesirable 

decision instability (chattering) because of the effect of noise on the sensor measurements and consequently, a 

persistency criterion should be introduced (Theillol et al., 1997). Such as indicated by the DMP-approach (Petti et 

al., 1990), a gradual reasoning involved by the use of fuzzy logic is an appealing alternative to bypass this chattering 

phenomenon. Then, as it was proposed in (Puig et al. 2005), the fault diagnostic signal (or fault signal) for each 

residual is calculated in the approach presented in this paper using the Kramer function (Petti et al., 1990): 
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        (7.5) 

 

The appealing performance of this function is due to its introduced grading when evaluating the residual in order to 

conclude the existence or not of a fault. When using the Kramer function given by Eq. (7.5), the residuals are 

normalized to a metric between -1 and 1, [ ]( ) 1,1
i
kφ ∈ − , which indicates the degree of satisfaction of Eq. (7.4) for 

every nominal residual ( )o

i
r k : 0 for perfectly satisfied, 1 for severely violated high and -1 for severely violated low. 

In the following, a fault signal will be notated as φi(k) and  it is considered that it exists while |φi(k)|≥0.5. Otherwise, 

|φi(k)|<0.5, the fault signal does not exist from fault detection and isolation point of view. Conversely, the set of all 

fault signals will be notated as φ = {φi : i = 1,2,….ny }. 

 

 

7.3 Architecture of the fault isolation approach 
 

7.3.1 Architecture components 
 

The passive robustness-based fault detection approach presented in previous section is integrated with a fault 

isolation algorithm in order to diagnose those faults affecting the monitored system. In Fig. 7.1, the fault isolation 

module architecture proposed in (Puig et al, 2005b) is presented which consists in three main components. The first 

one is called the memory component and determines the interface between the fault detection and fault isolation 

modules. It is based on a memory which stores information related to the time evolution of every fault signal and is 

updated cyclically by the fault detection module. The second element of this fault isolation architecture is the pattern 

comparison component which compares the fault signal information stored in the memory component with the 

theoretical one stored in different fault signature matrices: one for each considered fault signal pattern. The last 

element is the decision logic component which diagnoses the most probable fault according to the monitored 

properties of the observed fault signals. 
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Fig 7.1 Architecture of the fault isolation approach 

 

7.3.2 Memory component 
 

The memory component is built on the grounds of a table which stores some information related to the time 

evolution of every fault signal φi(k). Thereby, once the first fault signal is observed, for each fault signal φi(k) 

(|φi(k)|≥0.5) computed according to Eq. (7.5), the memory component stores the occurrence time instant (kφi), defined 

as the first time instant where |φi(kφi)|=0.5, and the fault signal value (φimax)
16 whose absolute value is maximum. 

Every time the fault detection module detects a new fault signal or an observed fault signal reaches a new value φimax, 

this memory is updated with the new information situation.  

Such as it was discussed in Chapter 6 (Section 6.4), fault signals associated with dynamical systems do not appear at 

the same time instant since each of them has its own dynamics. This fact, such as it was already discussed, can 

confuse the fault isolation module obtaining a wrong fault diagnosis result if a suitable strategy is not used. 

According to (Puig et al., 2004) and such as it was presented in Section 6.4, this problem can be solved if a fault 

diagnosis result is not given until all fault signals have appeared once the first one is observed. This waiting time 
w

T  

(Section 6.4.2) is calculated from the larger transient time response 
lt
T   from the non-faulty situation to any faulty 

situation. After this time has been elapsed, a fault diagnosis result is proposed and the memory component is reset 

being ready to start the diagnosis of a new fault. This reset consists in deleting the information related to all vanished  

                                                 
16 ( )max max max( ) max ( )

i

i i i i i
k k

k k
φ

φ φ φ φ
≥

= =  where   
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fault signals (|φi(k)|<0.5) and the value φimax of those fault signals which can still be observed at this time instant 

(|φi(k)|≥0.5). Following the method given by (Combastel et al., 2003), inside the diagnosis time window
w

T , the 

value φimax registered for every observed fault signal changes at time instant k if |φi(k)|> |φimax |. Then, φimax = φi(k). 

According to this strategy, the value |φimax | can only rise and not fall inside the time window
w

T , in spite the 

associated fault signal has already vanished. This behaviour provides two advantages to the fault isolation algorithm 

performance:  

• The effect of noise is partially filtered out. That leads to smoother diagnosis results without flickering.  

• The problem of non-persistence fault signals inside the diagnosis time window 
w

T  is filtered since just the peaks 

of activation are stored. However, this strategy does not solve the general problem of the non-persistence of the 

fault signals. In general, some observed fault signals φi(k) might vanish (|φi(k)|<0.5) once Tw has elapsed and 

this fact do not let conclude that the fault has also disappeared since the model estimations could be affected by 

the fault following effect analysed in Chapter 3 and introduced in Section 2.3.2.6 of Chapter 2. Consequently, 

the model might have lost its capacity to detect faults and therefore, wrong fault diagnosis results may be 

concluded. Conversely, if the value φimax were never deleted, the fault would always be diagnosed in spite it 

could already have vanished being the system affected by no fault. The influence of this problem on the fault 

diagnosis result will be analysed in Chapter 8.   

This memory component makes the information related to the fault signal time evolution accessible for later 

computation by explicitly storing that data. In this way, time aspects of fault isolation can be tackled in a very easy 

and straightforward way. 
 

7.3.3 Pattern comparison component 
 

Once the time window Tw has elapsed and while at least one fault signal is observed (|φi(k)|≥0.5), the pattern 

comparison component compares the fault signal information registered in the memory component with the 

theoretical one which describes the theoretical influence of a fault fj on the time evolution of the fault signal set φ 

regarding to some of their properties or patterns. The manner of storing the theoretical influence of faults on the fault 

signals is based on the concept of the theoretical fault signature matrix (FSM). As mentioned in Section 2.4.1.1 

(Chapter 2), an element FSMij of this matrix is ‘1’ when the sensitivity function of the residual ri(k) to fault fj is not 

null (Section 3.3), otherwise, this element is ‘0’. This interpretation assumes that the occurrence of fj is observable in 

ri(k) and therefore, the fault signal φi(k) (|φi(k)|≥0.5) will appear during at least few time instants. This hypothesis is 

known as fault exoneration or no compensation. In this proposed approach, the fault signature matrix concept is 

generalized since the binary interface is extended taking into account more fault signal properties. Thus, there will be 

as many FSM matrices as different properties are taken into account: binary property (FSM01), sign property 

(FSMsign), fault residual sensitivity property (FSMsensit) and occurrence order property (FSMorder). 

Finally, this process which is carried out by the comparison component allows computing one factor at the end of the 

time window Tw for every considered fault signal property and for each fault hypothesis fj. Every factor estimates the 

occurrence probability of a certain fault hypothesis fj comparing the fault signal observations related to a certain 

property (binary, sign, residual sensitivity and order) with the theoretical values for this fault hypothesis fj and for 
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this property stored in the corresponding FSM matrix.  In the following sections of this chapter, more detailed 

information about these factors will be given. 

It should be taken into account that in this first approach presented in Chapter 7, the time evolution of the fault signal 

properties is not considered yet but their steady-state values. It will be in the following chapters where this approach 

will be extended considering the dynamical aspects of the fault signals.  
 

7.3.3.1  FSM01: Evaluation of fault signal occurrence 
 

The FSM01-table contains the theoretical binary patterns that faults produce in the residual equations which can be 

codified using the values ‘0’ for no influence, ‘1’ otherwise. Thereby, this matrix can be obtained such as the 

theoretical fault signature matrix FSM introduced by (Gertler, 1998)( Section 2.4.1.1). Then, an element FSM01ij of 

this matrix is ‘1’ when the sensitivity function of the residual ri
0
(k) to fault fj  is not null, otherwise, this element is 

‘0’. This statement can be expressed by the following equation: 

,
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            (7.6) 

where 
,i jfS  is the sensitivity function of the nominal residual ri

o
(k) regarding the fault hypothesis fj  (Section 3.3). 

Such as it was mentioned previously, the occurrence probability of the fault hypothesis fj regarding the binary 

property of the observed fault signals can be obtained calculating factor01j according to the following equation: 
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and where zvfj is the zero-violation-factor whose expression is  
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Thus, computing factor01j such as it is indicated by Eq. (7.7), the following behaviour is obtained: those expected and 

observed fault signals φi(k) support the fault hypothesis fj while the observation of an unexpected fault signal let 

reject that fault hypothesis of the final diagnosis result. Moreover, those missing fault signals also affect indirectly 

the supportability of the fault hypothesis via the denominator of Eq. (7.7). 
 

7.3.3.2  FSMsign: Evaluation of fault signal signs 
 

The FSMsign-table contains the theoretical sign patterns that faults produce in the residual equations. Those patterns 

can be codified using the values ‘0’ for no influence, ‘+1’ or ‘-1’ for positive/negative deviation for every FSMsignij. 

In this approach, the element FSMsignij related to the fault signal φi(k) (nominal residual ri
o
(k)) and the fault 

hypothesis fj is obtained evaluating the sign of the steady-state value of the associated residual sensitivity function 

,i jfS  to a fault fj (Section 3.3) considering an unit step as an input. Thus, FSMsignij is calculated evaluating the 

following equation: 
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where 
,
( )

i jfs ∞  is the steady-state value of 
,i jfS  when an unit step input is considered (Section 3.3). The reason of 

using the fault residual sensitivity function 
,i jfS  is because according to the residual internal form expression (Eq. 

(3.62)) (Section 3.3.5) and to the fault residual sensitivity concept (Eq. (3.36)) (Section 3.3.1), the influence of a fault 

on the residual is just determined by this function once the fault signal is observed (|φi(k)|≥0.5). 

On the other hand, in this approach the observed signs associated with every observed fault signal φi(k) are 

determined by the sign of its corresponding value  φimax stored in the memory component such as it is illustrated in 

the following expression: 
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Thereby, with regard to the fault signal sign property, the probability of the occurrence of the fault hypothesis fj will 

be set by the factorsignj. This factor is computed comparing the theoretical fault signal signs for the hypothesis fj 

stored in the jth-column of matrix FSMsign with the fault signal observed signs stored in the memory component. 

This comparison requires counting the number of signs of the fault signal vector φ(k) which coincide with the ones 

related to every fault hypothesis fj, considering both the case in which all residuals have been violated positively and 

the case in which they are violated negatively. Thus, this number of signs can be counted using the following 

expression: 
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Then, the factorsignj is obtained as follows: 
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It should be taken into account that the approach presented in this section to calculate this factor is just an 

approximation since, such as it was shown in Section 3.3, the fault residual sensitivity 
,i jfS  is a function of time and 

consequently, the sign property of a fault signal can fluctuate along the time. In Chapter 9, the fault signal dynamics 

will be considered allowing to introduce more accurate approaches. On the other hand, an appealing approximation 

to calculate this factor is based on evaluating both the observed and the theoretical property of the fault signal at its 

occurrence time instant, kφi. This approach can be viewed as an evaluation of the theoretical and observed residual 

derivative regarding time at time instant kφi.  
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7.3.3.3  FSMsensit: Evaluation of fault sensitivities 
 

The value of an element of the table FSMsensit, FSMsensitij, describes how easily a fault fj will cause the ith-residual 

ri
o
(k) to violate its associated adaptive threshold given by the interval [ ( ), ( )]

oo
iir k r k  (Eq. (7.2)), such as it is described 

by Eq. (7.4), originating the occurrence of the fault signal φi(k) (|φi(k)|≥0.5). Thereby, according to the residual 

internal form (Eq. (3.62)) (Section 3.3.5) and the main results of Section 3.3, every element FSMsensitij must be 

directly proportional to the fault residual sensitivity function 
,i jfS  and inversely proportional to the associated 

threshold ( )o

i
r k or ( )o

i
r k   (Eq. (7.2)). In consequence, the expression of FSMsensitij can be written as it follows: 
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where 
,
( )

i jfs ∞  is the steady-state value of 
,i jfS  when an unit step input is considered (Section 3.3). 

Although the fault residual sensitivity 
,i jfS  is a function of time such as it was demonstrated in Section 3.3, its 

steady-state value is just considered in the approach presented in this chapter such as it was also suggested by 

(Gertler, 1998). This is just an initial approximation which will be discussed and improved in Chapter 9 where the 

time evolution of the function 
,i jfS  will be considered.  

Conversely, regarding the fault residual sensitivity property related to every fault signal, the comparison component 

computes at the end of the time window Tw for every fault signal φi(k) and for every fault hypothesis fj the factor 

factorsensitij. Thus, this factor uses the values φimax of every fault signal φi(k) weighted by the corresponding 

elements FSMsensitij related to the fault hypothesis fj in order to determine the occurrence probability of this fault 

hypothesis. Nevertheless, it should be noticed that those values φimax related to non-observed fault signals are 

considered zero-valued in the memory component. As a reference, the approach used to obtain factorsensitij can be 

also found in the DMP-method (Petti et al.,  1990). Then, the expression of this factor can be written as it follows: 
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7.3.3.4  FSMorder: Fault signal occurrence order evaluation 

 

Such as it was shown in Chapter 6, when a fault fj affects a dynamical system, the fault signals do not appear at the 

same time but each of them has its own dynamics and time evolution. As a result, the occurrence of a fault will 

originate the appearance of a set of fault signals φ in a characteristic order which will help to isolate the fault from 

the set f of possible faults. Thereby, for the fault hypothesis fj, the j
th-column of the table FSMorder contains the 

theoretical occurrence order of those affected fault signals which is codified using ordinal numbers, starting with ‘1’. 

Moreover, if two fault signals appear at the same time or if they explicitly may commute their order, then they should 
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share the same ordinal number. Regarding those fault signals which are theoretically not affected by that fault 

hypothesis, they get the code ‘0’ in the corresponding cells of matrix FSMorder. 

,
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where 
ij

η  is the ordinal number that determines the theoretical occurrence order of the fault signal φi(k) regarding the 

fault hypothesis fj . According to the residual internal form (Eq. (3.62)) (Section 3.3.5), it can be seen that the fault 

signal occurrence order for a given fault hypothesis is determined basically by the fault residual sensitivity function 

and by the adaptive threshold. In Chapter 9, an approximated method to determine the theoretical values of this fault 

signal property will be presented. 

Conversely, the occurrence order of all observed fault signals is indirectly stored in the memory component since for 

every observed fault signal φi(k), this element stores its appearance time instant (kφi). Thereby, for those non-

observed fault signals, the corresponding parameter kφi stored in the memory component will be zero-valued. 

Then, comparing the fault signal observed information with the theoretical one stored in the matrix FSMorder, the 

comparison component can compute factororderj for every fault hypothesis fj at the end of the time window Tw in 

order to estimate the occurrence probability of every fault hypothesis. Thus, the expression of factororderj is given 

by the following equation: 
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and ( ( ))
i

order kφ  is the occurrence order of the fault signal φi(k) which can be inferred from the information stored 

in the memory component such as it was already mentioned above.   
 

7.3.4 Decision logic component 
 

The last task of the considered diagnosis algorithm is the decision logic component. At the end of the time window 

Tw, this element determines the occurrence probability dj of every fault hypothesis fj using the associated factors: 

factor01j, factorsignj, factorsensitj and factororderj. Thereby, dj may be calculated using two possible alternatives: 

• the highest factor 

dj, = max (factor01j, factorsignj, factorsensitj, factororderj)         (7.20) 

• or weighting these factors according to its significance in the fault diagnosis process 

dj, = (α1 factor01j  + α2 factorsignj + α3 factorsensitj + α4 factororderj)     (7.21) 

where α1 , …., α4 ∈ [0,1] are the weighing parameters proposed by fault diagnosis designer. 

As an initial approximation, factorsensitj and factororderj are considered more important than the rest of the factors. 

However, this issue will be discussed in Chapter 9 and in Chapter 10. Finally, the diagnosed fault given by the 
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decision logic component will be the one whose occurrence probability dj is the highest of all possible fault 

hypotheses fj. 

 

7.4 Case of study 
 

 

7.4.1 Description 
 

To illustrate the fault diagnosis approach proposed in this paper, a real case of study based on the Barcelona urban 

drainage system is used.  The city of Barcelona, with a population of 3,000,000 inhabitants in an area of 98 square 

Km2, has a combined sewer system (waste and rainwater go into the same sewers) of approximately 1,500 Km. 

Additionally, the yearly rainfall is not very high (600 mm/year), but it includes heavy storms typical of the 

Mediterranean climate that cause a lot of flooding problems and combined sewer overflows to the sea that cause 

pollution (CSO). Such a complex system is conducted through the control centre in CLABSA (Barcelona Sewer 

Company) using a remote control system (in operation since 1994) that includes sensors, regulators, remote stations 

and communications (Fig. 7.2). The real-time control of the sewer network is based on model predictive control 

(MPC), as the global control law which sets the references for local controllers located on different actuator (gates 

and pumps) elements of the sewer network using measurements taken from sensors distributed along the network and 

rain sensors. These references are computed in real-time using an operational model to predict time ahead the 

network dynamics, the current state of the system, provided by sensors, the current rain intensity measures and 

appropriate rainfall predictions. The control objective is to minimize flooding and combined sewer overflow to the 

environment, and to maximize the utilization of wastewater treatment plants.  However, the global optimal control of 

the sewer network is vulnerable to faults. Faults in sensors (rain-gauges and limnimeters) and actuators (gates and 

pumps), especially in heavy rain scenarios are usual. If these faults are not detected and isolated, and if it is possible, 

also corrected introducing some mechanism that assures fault tolerance, the global optimal control should be 

stopped, moving the control to the local mode. Since in every rain scenario, several faults, especially in sensors, 

occur, it is highly probable that it will be stopped. This will make very difficult the success of the global control 

system. 

 

The application example of this chapter is based on a part of this network that covers 12 of the twenty catchments of 

the city and it contains 3 diversion gates and only one real detention tank, whose capacity is 35000 m3. It includes the 

main sewer which carries water to the treatment plant and the four main seafront sea pollution points. Moreover, 

there are five passive flow-diversion (overflow) devices and the network is metered by means of 4 rain-gauges and 

14 limnimeters (water level meters). The aim of the fault diagnosis algorithm proposed in this paper will be to detect 

and isolate faults in those limnimeters. 
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Fig. 7.2 Barcelona sewer network control system 

 

 
Fig. 7.3 Virtual reservoir model of Barcelona network prototype 

 

7.4.2 Modelling limnimeters 
 

Limnimeters can be monitored using a rainfall-runoff on-line model of the sewerage network. Complex non-linear 

rainfall-runoff models are very useful for off-line operations (calibration and simulation) of the sewerage network, 

but for on-line purposes, as the global optimal control and fault diagnosis, a much simpler structure of the model 

must be selected. One possible model methodology to derive a rainfall-runoff real-time model of a sewerage network 

is through a simplified graph relating the main sewers and a set of virtual and real reservoirs (Cembrano, 2002). A 

virtual reservoir is an aggregation of the sewer network catchment which approximates the hydraulics of the 

retention of rain, runoff and sewage water. The hydraulics of a virtual reservoir can be described by the following 

equation:  

( )
( ) ( ) ( )

up down

dV t
Q t Q t P t S

dt
= − +            (7.22) 
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where: V is the water volume accumulated in the catchment, Qup and Qdown are flows entering and exiting the 

catchment, P is the rain intensity falling in the catchment and S its surface. Input and output sewer levels are 

measured using limnimeters and they can be related with flows using a linearised Manning relation: 

( ) ( )
up up up

Q t M L t=  and ( ) ( )
down down down

Q t M L t= .   Moreover, it is assumed that: ( ) ( )
down v

Q t K V t= . Then, 

substituting these relations in Eq. (7.22) and considering that the measurement sample time is Ts=300 s, the following 

discrete-time model for every limnimeter can be derived: 

( 1) ( ) ( ) ( ))
down down up

L k aL k bL k cI k+ = + +         (7.23) 

where: (1 )
v s

a K T= − , /
up v s down

b M K T M=  and /
v down

c SK M= . Using this modelling methodology, a model of the 

selected part of the Barcelona’s sewer network is presented in Fig. 5.3.   
 

7.4.3 Interval models for limnimeter fault detection 
 

Thereby, this methodology applied to the selected sewer network allow diagnosing faults of a set fLm related to 14 

limnimeters (L03, L07, L08, L09, L16, L27, L39, L41, L45, L47, L53, L56, L80 and L54) modelling a set Lm of 12 limnimeters 

(L03, L07, L08, L09, L16, L27, L39, L41, L45, L56, L80 and L54) according to the procedure indicated in Section 7.4.2 (Eq. 

(7.23)). In this chapter, the fault detection model for every limnimeter of the set Lm is given by an interval predictor 

whose general structure is given by Eq. (7.23) and whose parameters must be estimated using real data from the 

sensors installed in the network.  In this case, the measurements provided by the limnimeters related to the set fLm 

and by a set G of 4 rain-gauges (G13, G14, G16 and G20). These rain-gauges measure the rain intensity which is falling 

to every virtual reservoir. Thus, according to the real topology of the sewer network, the rain-gauge G13 measures the 

rain intensity P11 falling into the virtual reservoir V11, G14 measures P7, G16 measures P1, P2, P9 and P10 and G20 

measures P4, P5, P6, P8 and P12. Moreover, in spite it can not be seen in Fig. 7.3, it must be taken into account that 

limnimeter L45 is installed into the real tank V3 what allows measuring its water level, L53 let measure the entering 

flow of the virtual reservoir V10 and L54 is installed close to the gate C2 measuring its related water flow. 

The interval predictor related to every limnimeter must be calibrated in order to guarantee that its estimated interval 

output includes all the limnimeter non-modelled effects.  Thus, an algorithm inspired by the one proposed in (Ploix et 

al., 1999) is used. It is based on the use of classical identification methods, such as the least-squares method, to 

provide the nominal values of the model parameters. Then, using optimization tools, the output intervals are adjusted 

until all the limnimeter measurements are covered by the estimated output interval. 

According to Eq. (7.1), the estimations given by the limnimeter models of the set Lm allow obtaining a set r of 12 

residuals (or ARR). Thus, according to Eq. (7.5), each residual of the set r determines a fault signal being φ the set of 

all possible fault signals caused by the faults of the set fLm. Such as mentioned along this chapter, the properties of 

the observed fault signals let the fault isolation algorithm introduced in Section 7.3 predict a diagnosis result. 

 

Concerning the influence of the limnimeter faults of the set fLm on the fault signal set φ, it is described by the four 

theoretical fault signature matrices (FSM01, FSMsign, FSMsensit and FSMorder)(Section 7.3.3) showed below 

which are derived from the sewer network topology (Figure 7.3) and from the presented limnimeter modelling 

approach (Eq. (7.23)). 
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f L03 f L07 f L08 f L09 f L16 f L27 f L39 f L41 f L45 f L47 f L53 f L56 f L80 f L54

φ L03 1 0 0 0 0 1 0 0 0 0 0 0 0 0

φ L07 0 1 0 0 0 0 0 0 0 0 1 0 0 0

φ L08 0 0 1 0 1 0 0 0 0 0 0 0 1 0

φ L09 0 0 0 1 0 0 0 0 0 0 0 0 0 0

φ L16 0 0 0 0 1 0 0 0 0 0 0 0 1 0

φ L27 0 0 0 0 0 1 0 0 0 0 0 0 0 0

φ L39 0 0 0 0 0 0 1 0 0 0 0 0 0 0

φ L41 0 0 0 0 0 0 1 1 0 0 0 0 0 0

φ L45 0 0 0 0 0 0 0 1 1 1 0 0 0 0

φ L54 0 0 0 0 0 0 0 0 0 0 1 1 0 1

φ L56 0 0 0 0 0 0 0 0 0 0 0 1 0 0

φ L80 0 0 0 0 0 0 0 0 0 1 0 0 1 0

FSM 01  Matrix

 

Table 7.1 Theoretical fault signature matrix related to the binary property 

 

f L03 f L07 f L08 f L09 f L16 f L27 f L39 f L41 f L45 f L47 f L53 f L56 f L80 f L54

φ L03 +1 0 0 0 0 -1 0 0 0 0 0 0 0 0

φ L07 0 +1 0 0 0 0 0 0 0 0 -1 0 0 0

φ L08 0 0 +1 0 -1 0 0 0 0 0 0 0 -1 0

φ L09 0 0 0 +1 0 0 0 0 0 0 0 0 0 0

φ L16 0 0 0 0 +1 0 0 0 0 0 0 0 -1 0

φ L27 0 0 0 0 0 +1 0 0 0 0 0 0 0 0

φ L39 0 0 0 0 0 0 +1 0 0 0 0 0 0 0

φ L41 0 0 0 0 0 0 -1 +1 0 0 0 0 0 0

φ L45 0 0 0 0 0 0 0 -1 +1 -1 0 0 0 0

φ L54 0 0 0 0 0 0 0 0 0 0 -1 -1 0 +1

φ L56 0 0 0 0 0 0 0 0 0 0 0 +1 0 0

φ L80 0 0 0 0 0 0 0 0 0 -1 0 0 +1 0

FSM sign  Matrix

 

Table 7.2 Theoretical fault signature matrix related to the sign property 

 

f L03 f L07 f L08 f L09 f L16 f L27 f L39 f L41 f L45 f L47 f L53 f L56 f L80 f L54

φ L03 0.241 0 0 0 0 -0.156 0 0 0 0 0 0 0 0

φ L07 0 0.115 0 0 0 0 0 0 0 0 -0.033 0 0 0

φ L08 0 0 0.360 0 -0.193 0 0 0 0 0 0 0 -0.294 0

φ L09 0 0 0 0.128 0 0 0 0 0 0 0 0 0 0

φ L16 0 0 0 0 0.383 0 0 0 0 0 0 0 -0.246 0

φ L27 0 0 0 0 0 0.082 0 0 0 0 0 0 0 0

φ L39 0 0 0 0 0 0 0.379 0 0 0 0 0 0 0

φ L41 0 0 0 0 0 0 -0.958 0.042 0 0 0 0 0 0

φ L45 0 0 0 0 0 0 0 -0.254 0.014 0.187 0 0 0 0

φ L54 0 0 0 0 0 0 0 0 0 0 -0.810 -0.393 0 1

φ L56 0 0 0 0 0 0 0 0 0 0 0 0.080 0 0

φ L80 0 0 0 0 0 0 0 0 0 -0.580 0 0 0.256 0

FSM sensit Matrix

 

Table 7.3 Theoretical fault signature matrix related to the fault residual sensitivity property 
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f L03 f L07 f L08 f L09 f L16 f L27 f L39 f L41 f L45 f L47 f L53 f L56 f L80 f L54

φ L03 1 0 0 0 0 2 0 0 0 0 0 0 0 0

φ L07 0 1 0 0 0 0 0 0 0 0 2 0 0 0

φ L08 0 0 1 0 2 0 0 0 0 0 0 2 0 0

φ L09 0 0 0 1 0 0 0 0 0 0 0 0 0 0

φ L16 0 0 0 0 1 0 0 0 0 0 0 0 2 0

φ L27 0 0 0 0 0 1 0 0 0 0 0 0 0 0

φ L39 0 0 0 0 0 0 1 0 0 0 0 0 0 0

φ L41 0 0 0 0 0 0 2 1 0 0 0 0 0 0

φ L45 0 0 0 0 0 0 0 2 1 2 0 0 0 0

φ L54 0 0 0 0 0 0 0 0 0 0 1 1 0 1

φ L56 0 0 0 0 0 0 0 0 0 0 0 1 0 0

φ L80 0 0 0 0 0 0 0 0 0 1 0 0 1 0

FSM order  Matrix

 

Table 7.4 Theoretical fault signature matrix related to the occurrence order property 

 

It must be taken into account that the elements of FSMsensit matrix showed in Table 7.13 are just the fault residual 

sensitivity steady-state values, 
,
( )

i jfs ∞ , instead of the ones derived from the use of Eq. (7.15). However, the presented 

fault isolation algorithm does use Eq. (7.15) to obtain the elements of FSMsensit. 

 

7.4.4 Fault scenario 
 
The fault diagnosis algorithm presented in Section 7.3 has been tested using several real fault scenarios in spite of its 

weaknesses mentioned in Section 7.1 in order to illustrate the goodness of this approach. In this section, a real 

scenario occurred the 28/09/2001 is presented in which the Barcelona sewer network operators registered a faulty 

behaviour of the limnimeter L47. The aim of this initial test is to show the general performance of the presented fault 

isolation algorithm without carrying out a deep analysis since it will be done from Chapter 8.  

Thereby, such as shown by the binary fault signature matrix FSM01 (Table 7.1), this faulty scenario has just an 

influence on the residuals (fault signals) associated with the models of limnimeters L45 and L80. Consequently, both 

must be activated in order to diagnose that fault.  

The nominal predictor model related to L45 is given by 

45 45 45 45 41 45 47
ˆ ( 1) ( ) ( ) ( )L k a L k b L k c L k+ = + +          (7.24) 

where a45=0.985, b45=0.254 and c45=-0.186.  

Regarding the nominal predictor that models the behaviour of L80, it is given by  

80 80 80 80 47
ˆ ( 1) ( ) ( )L k a L k b L k+ = +            (7.25) 

where a80=0.744 and b45=0.58.  

In the approach used in this section, the output intervals associated with the nominal predictor models are adjusted 

statistically until all the limnimeter measurements are covered by the estimated output intervals when there is none of 

the faults of the set fLm. Conversely, from Chapter 8 the output intervals will be computed using models with 

uncertain parameters since according to (Puig et al., 2002), this kind of models may show a better performance in 

applications where an on-line computation is required. 

As seen in Fig. 7.4, the occurrence of the fault in L47, fL47, provoked the nominal residuals associated with L45 and 

L80, r
o
L45 and r

o
L80, to violate their associated adaptive thresholds (Eq. (7.2)) and as a result, the associated fault 

signals, φL45 and φL80, could be observed for a period of time since their associated absolute values were greater or 

equal than 0.5 (Section 7.2.2), such as it can be viewed in Fig. 7.5; in other words, roL45 and r
o
L80 did not satisfy the 
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fault detection condition (7.4) for a certain period of time. Thus, according to these observations and to the 

information stored in the four theoretical fault signature matrices, the fault isolation algorithm could isolate the fault 

affecting to L47.  
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Fig. 7.4 Time evolution of the residuals and their corresponding adaptive thresholds 
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Fig. 7.5 Time evolution of the fault signals considering their absolute value 

 

Fig. 7.4 and Fig. 7.5 show clearly that the fault is not persistently indicated (weak-fault detection; Section 3.4.2) by 

the residuals (Eq. (7.4)) and therefore, the observation of the fault signals is only possible for a certain period of time. 

As it can be seen, this fact could affect the isolation of the fault if a suitable strategy were not use. This issue will be 

analyzed in Chapter 8 as an extension of the main conclusions derived from Chapter 3 where this model 

performance was already analyzed focusing only in fault detection. 

 

In Fig. 7.6, the time evolution of the fault isolation factors (factor01j, factorsignj, factorsensitj and factororderj) 

(Section 7.3) related to every fault hypothesis of the set fLm is plotted. Regarding the value of the waiting time 

window Tw, it is equal to the sampling time period Ts in spite of knowing that it is not its optimum value. Thus, the 

fault isolation factors are computed at every time instant and consequently, the influence of the fault indication 

persistence on the fault isolation result can be noticed. It will be in Chapter 9 where the optimum value of Tw will be 

discussed.  
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Fig 7.6 Time evolution of the fault isolation factors 

 

Such as it can be deduced from the theoretical fault signatures matrices (FSM01, FSMsign, FSMsensit and 

FSMorder) shown in Section 7.4.3 and according to the time evolution of the fault signals showed in Figure 7.5, the 

only two fault hypotheses whose factors have non-null values, at least for a certain period of time, are fL47 and fL80 

indicating L47 and L80 as the faulty limnimeters. Conversely, observing Fig. 7.6 and assuming that the fault does not 

disappears once it occurs (at least, it is quite unlikely), it would not be hardly to think that the decision logic 

component (Section 7.3.4) of the proposed fault isolation architecture would give fL47 as the best candidate since all 

its associated factors reaches bigger values than the ones corresponding to fL80. Moreover, it would not be hardly to 

think either, that using an incremental fault diagnosis approach, instead of an static one, and considering a suitable 

value of Tw, this fault isolation algorithm could avoid the confusion when just one fault signal is observed at the 

beginning, φL45, and the confusion once φL45 vanishes, since fL47 hypothesis is the only one that fulfils that all its 

associated fault signals were observed and besides, they appeared in the expected occurrence order. Nevertheless, 

once all fault signals vanish, it is even assumed that the fault still persists and consequently, the diagnosed result is 

still valid. If the fault would have vanished, something else should be done in order to detect this event.  In the 

following chapters, the effect of the non-persistence of the fault signals on the fault isolation result and suitable 

strategies to avoid this drawback are deeper analyzed.  

 

7.5 Conclusions 
 
In this chapter, an interval model-based fault diagnosis method that improves the integration between the fault 

detection and isolation modules has been proposed. This method is based on a new interface between both stages 

which takes into account the information about the degree of fault signal activation and the dynamics associated with 

each fault signal. The fault isolation process uses a combination of four theoretical fault signature matrices which 

store the knowledge about the faulty system behaviour determined by the properties of the observed fault signals 

(binary property, sign property, fault residual sensitivity property and occurrence order property). In this chapter, 

some weaknesses of this fault diagnosis method are remarked in order to introduce the analysis which will be 

presented in the following chapters. 
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CHAPTER 8 

Fault isolation using linear interval 

observers: influence of the observer gain  

 

  

8.1 Introduction 
 

These last years, the integration between fault detection and fault isolation tasks in model-based fault diagnosis has 

been a very active research area (see among others (Combastel et al., 2003), (Pulido et al., 2005) or (Puig et al, 

2005b)) since it plays an important role in the final result given by the fault diagnoser, as illustrated in Chapter 6 and 

Chapter 7. Consequently, the typical binary interface between these two modules has been improved using additional 

information what let improve the fault diagnoser performance as it was shown in Chapter 6. One example is the fault 

isolation architecture (Fig. 7.1) presented in Chapter 7 where different aspects associated with the time evolution of 

the fault signals are considered in order to give an accurate result: binary property, sign property, fault residual 

sensitivity property and occurrence order property.  

However, model-based fault detection methods still have some weaknesses as lack of fault indication persistence 

(Chapter 3), noise sensitivity and model errors. Therefore, as a result of these inherent problems, their fault detection 

performance can be worse than the one it might be required in order to give a reliable fault diagnosis result. 

Moreover, this fact might also confuse the fault isolation module when a subset of fault signals must be observed 

during the same period of time so that the right fault diagnosis result can be derived. This happens when the FSM 

matrices (theoretical fault signature matrices) are not diagonal with respect to the fault hypotheses what the most 

likely situation is.  

When using fault detection methods based on observers, the observer gain plays an important role in their fault 

detection performance as it determines the time evolution of the residuals, their  fault sensitivity functions and as a 

consequence, the minimum detectable fault function at any time instant (Chen et al., 1999). Therefore, such as it was 

demonstrated in Chapter 3, the fault indication persistence also depends on the observer gain (Meseguer et al., 

2006). On the other hand, as it was presented in that chapter, faults can be classified in three types depending on their 

detectability. Thus, there will be faults permanently detected (strong detection), non-permanently detected (weak 

detection) and non-detected. Regarding this issue, the reference (Meseguer et al, 2006) shows that the observer gain 

does also have an influence on how a fault will be detected: permanently, non-permanently or non-detected. 

The above mentioned fault detection problems and their influence on the fault isolation module have been already 

noticed by (Combastel et al., 2003) who suggests registering the maximum absolute value of the residual value once 

reached. However, this strategy introduces an additional problem, since then, it is not possible to know when the 

fault disappears.  Another approach would be using structured residuals in a diagonal form (Gertler, 1998) but it 

might be too complicated in this case because of the parameter uncertainty. When using an interval observer method, 

the effect of those fault detection problems might be partially avoided designing properly the observer gain matrix 

and therefore, the fault isolation result might be also improved. 
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The goal of this chapter is to illustrate how different fault isolation results are obtained depending on the observer 

gain for a given fault scenario in spite of using an accurate fault isolation algorithm: right persistent fault isolation, 

right non-persistent fault isolation, wrong fault isolation and lack of fault isolation. The applied fault isolation 

architecture is the one introduced in Chapter 7 (Fig. 7.1). Thereby, concerning the weaknesses of this approach 

mentioned in Section 7.1, just one is improved. This is the considered models will no be given by uncertain 

predictors but by interval observers with uncertain parameters such as the ones showed in Chapter 3. Thus, the effect 

of the fault detection stage and the observer gain on the fault isolation module can be analyzed. Nevertheless, this 

analysis is carried out considering a qualitative approach since it will be in Chapter 9 where a more quantitative 

approach will be considered.  

The interval observer-based fault diagnosis algorithm will be applied to real faulty scenarios affecting to limnimeters 

of Barcelona’s urban sewer system application described in Section 7.4.  

Regarding the structure of the remainder of Chapter 8, passive robust fault detection using interval observers is 

recalled in Section 8.2. In Section 8.3, the integration of robust fault detection interval observer methods with the 

considered fault isolation algorithm is discussed. In Section 8.4, for a given limnimeter fault scenario, several 

observer gain sets are applied in order to illustrate their influence on the resulting fault isolation. Finally, in Section 

8.5, the main conclusions are presented. 

 

8.2 Passive robust based fault detection using 
interval observers 

 

As assumed in Chapter 3, Chapter 4 and Chapter 5, from this chapter it is considered that the monitored system can 

be described analytically by a MIMO linear uncertain dynamic model in discrete-time and state-space form, 

including faults, as follows  

0( 1) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

a a

y y

k k k k

k k k

+ = + +

= +

x A θ x B θ u F θ f

y C θ x F θ f

ɶ ɶ ɶ

ɶ ɶ
         (8.1) 

noticing that this equation is equal to Eq. (3.1) assuming that the direct transmission matrix D is zero-valued. As 

mentioned in Section 3.2.1, y(k)∈ℜny, u0(k)∈ℜnu, x(k)∈ℜnx  are the system output, input and the state-space vectors 

respectively; A( θɶ ), B( θɶ ) and C( θɶ ) are the state, the input and the output matrices respectively; θɶ  is the system 

parameter vector; fy(k)∈ℜny and fa(k)∈ℜnu represent faults in the system output sensors and actuators respectively 

being Fy( θɶ ) and Fa( θɶ ) their associated matrices.  

 

8.2.1 Interval observer expression 
 

As done in Chapter 3 and Chapter 5, from this chapter it is assumed that the system described by Eq. (8.1) can be 

monitored using a linear observer with Luenberger structure based on an interval model whose model parameters θ 

are time-invariant but bounded by an interval set { }nθ= ∈ℜ ≤ ≤Θ θ θ θ θθ θθ θθ θ  which represents the uncertainty about the 

exact knowledge of real system parameters θɶ . Thus, the resulting interval observer assuming the observability of the 

system (Eq. (8.1)) for all ∈θ Θɶ  can be expressed using Eq. (3.7) (Section 3.2.1) but this time matrix D is considered to 

be zero-valued:    
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ˆ ˆ ˆ( 1) ( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )
o

k k k k k k k

k k

+ = − + + = + +
=

x A θ LC θ x B θ u Ly A θ x B θ u Ly

y C θ x
     (8.2) 

where u is the measured system input vector, x̂  is the estimated system space-state vector and ŷ  is the estimated 

system output vector. Besides, it must taken into account that as indicated in Section 3.2.1, the observer gain matrix 

L is designed to stabilise the matrix ( ) ( ) ( )
o

= −A θ A θ LC θ  and to guarantee a desired performance regarding fault 

detection for all ∈θ Θ . Conversely, the effect of the uncertain parameters θ on the observer temporal response will 

allow obtaining a system output estimation interval: [ ˆ ( )ky , ˆ ( )ky ],where for each output (neglecting couplings among 

outputs):  

ˆ ˆ( ) min( ( , ))
i i
y k y k

∈
=

θ Θ
θ  and ˆ ˆ( ) max( ( , ))

i i
y k y k

∈
=

θ Θ
θ          (8.3) 

Thereby, in case that there is no fault, each system output fulfils: 

ˆ ˆ ˆ( ) [ ( ), ( ) ]=[ ( )]i iii
y k y k y k y k∈            (8.4) 

Finally, the interval observer given by Eq. (8.2) can be expressed in transfer function form using the q-transform and 

considering zero initial conditions as it follows:     

1 1ˆ( ) ( , ) ( ) ( , ) ( )k q k q k− −= +y G θ u H θ y            (8.5) 

where: 

1 1 1 1( , ) ( )( ( )) ( )
o

q q q− − − −= −G θ C θ I A θ B θ           (8.6) 

1 1 1 1( , ) ( )( ( ))
o

q q q− − − −= −H θ C θ I A θ L            (8.7) 

 

Noticing that Eq. (8.5) is fully equivalent to Eq. (3.11) presented in Section 3.2.1.  
 

8.2.2 Fault detection using interval observers 
 

This section is an extension of Section 7.2 (Chapter 7) when using interval observers to model the monitored system 

and it is based on some conclusions of Section 3.2.2 (Chapter 3). Thus, as already exposed, fault detection is based 

on calculating at every time instant a residual comparing the measurements of physical variables ( )ky  with their 

estimation ˆ( )ky  provided by the interval observer: 

ˆ( ) ( ) ( )k k k= −r y y              (8.8) 

According to (Gertler, 1998), the computational form of the residual (Section 3.2.2) is given by  

1 1( , ) ( , ) ( ) ( , ) ( )k q k q k− −= +r θ V θ u O θ y            (8.9) 

where considering the observer input-output form (Eq. (8.5)), the transfer functions V(q-1,θ) and O(q-1,θ) can be 

written as it follows: 

1 1 1 1 1( , ) ( , ) ( )( ( )) ( )
o

q q q q− − − − −= − = − −V θ G θ C θ I A θ B θ         (8.10) 

1 1 1 1 1( , ) ( , ) ( )( ( ))
o

q q q q− − − − −= − = − −O θ I H θ I C θ I A θ L         (8.11) 

As illustrated in Section 7.2.1, residual (8.9) can be computed regarding the nominal observer model ˆ ( )koy  obtained 

using o= ∈θ θ Θ , 

ˆ( ) ( ) ( )o ok k k= −r y y             (8.12) 

where propagating the interval observer parameter uncertainty to the residual (8.8), the values of every component of 

the nominal residual (Eq. (8.12)) will be bounded by the interval (Puig et al., 2002): 
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[ ( ), ( )]
oo
iir k r k                    (8.13) 

where:   

ˆ ˆ( ) ( ) ( )o o

i i ir k y k y k= −  and ˆ ˆ( ) ( ) ( )o o

i i i
r k y k y k= −         (8.14) 

Then, taking into account the definition of the nominal (Eq. (8.12)) and its associated adaptive threshold (Eq. (8.13)), 

no fault will be indicated while the following fault detection condition is satisfied 

( ) [ ( ), ( )]
ooo
iii

r k r k r k∈             (8.15) 

noticing the equivalence of this condition and the one expressed in terms of system output measurements and their 

associated estimation (Eq. (8.4))   

On the other hand, instead of using the fault detection test (8.15), the fault diagnostic signal (fault signal) φi(k) for 

every residual ri(k) (Eq. (7.5)) is calculated as indicated in Section 7.2.2. Then, when there is no fault, the values of 

every fault signal satisfies the expression |φi(k)|<0.5 and consequently, they are not observable. Otherwise 

(|φi(k)|≥0.5), the fault signals are observable which indicates that a given fault is affecting the monitored system. 

 

8.2.3 Fault signal dynamics 
 

In general, the occurrence of a fault signal can be caused by different faults and therefore, what let distinguish one 

fault from another are the fault signal dynamic properties: they should be different for each different fault. According 

to (Gertler, 1998), these theoretical dynamic properties of a fault signal φi(k) caused by a given fault fj are set by the 

sensitivity of the associated residual ri(k) to this fault fj introduced in Section 3.3 of Chapter 3. As exposed in that 

section, the concept of the residual sensitivity to a fault (Eq. (3.36)) can be expressed analytically as  

∂=
∂f

r
S

f
              (8.16) 

Thus, the residual sensitivity to a fault is a dynamic time function which describes how a fault is affecting the 

residual and consequently, the dynamic properties of the fault signals caused by this fault. 

Concerning fault detection stage whose main task is the generation of fault signals, Chapter 3 based on the reference 

(Meseguer et al, 2007b) shows the importance of this concept both in the residual time evolution and in the quality of 

the fault detection.  

Particularizing Eq. (8.16) for a certain type of fault (fy, fu and  fa), Section 3.3.2 shows that the residual sensitivity for 

the case of an output sensor fault fy ={fyj : j = 1,2,….ny } is given by a matrix Sfy ∈ ℜnyxℜny  whose expression is 

( ) ( )( )( )
1,1 1,

,1 ,

11 1 1

1 1

1 1

( , ) ( , ) ( , ) ( ) ( ) ( ) ( )

( , ) ( , )

( , ) ( , )

ny

ny ny ny

fy fy y

fy fy

fy fy

q q q q

S q S q

S q S q

−− − −

− −

− −

= − = − − − =

 
 

=  
 
 
 

S θ I H θ G θ I C θ I A θ LC θ L F θ

θ θ

θ θ

ɶ ɶ

…

⋮ ⋱ ⋮

⋯

   (8.17) 

In the same way, the residual sensitivity to an input sensor fault fu={fuj : j = 1,2,….nu } (Section 3.3.3) is given by a 

matrix Sfu ∈ ℜnyxℜnu  whose expression is: 
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S θ G θ F θ C θ I A θ LC θ B θ LD θ D θ F θ

θ θ

θ θ

…
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⋯

  (8.18) 

 

Thereby, the residual sensitivity to an actuator fault fa = {faj : j = 1,2,….nu } (Section 3.3.4) is given by a matrix Sfa ∈ 

ℜnyxℜnu  whose expression is: 

 

( )
( )( )( ) ( )

1,1 1,

,1 ,

1 1 1
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1 1

1 1

( , ) ( , ) ( , )
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      (8.19) 

 

Then, as demonstrated in Section 3.3.5 of Chapter 3, the residual computational form (Eq. (8.9)) can be expressed in 

terms of the fault residual sensitivity matrices (Sfy, Sfu and Sfa) and the adaptive threshold r0(k)(Eq. (3.21)) as it 

follows: 

1 1 1
0( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , ) ( )

fa a fy fy fu fu
k k q k q k q k

− − −= + + +r θ r θ S θ f S θ f S θ f      (8.20) 

 

Thereby, taking into account that the fault signals φi(k) are generated evaluating residual given by Eq, (8.20) such as 

indicated by Eq. (8.12) and Eq. (8.13) and then, applying Eq. (7.5), the next conclusions can be obtained regarding the 

influence of the fault residual sensitivity functions on the fault signal set φ according to Eq. (8.20): 

• the fault residual sensitivity functions establish which residual ri(k) (fault signal φi(k)) is affected by which fault 

(fyj, fuj, faj), 

• the fault residual sensitivity functions establish the dynamics of a given fault signal regarding a given fault, 

• the knowledge of the dynamic properties of the fault residual sensitivity functions allow inferring the theoretical 

dynamic properties of the fault signals generated by the occurrence of a given fault and as a result, the set of the 

theoretical fault signature matrices FSM presented Section 7.3.3 can be inferred in order to be to be used by the 

fault isolation algorithm, as presented in Section 7.3 when using the fault isolation architecture given by Fig. 7.1.     

 

In Chapter 3, the importance of the fault residual sensitivity matrices (Sfy, Sfu and Sfa) (Section 3.3) in the whole fault 

detection process is demonstrated. This residual property determines both the persistence of the fault indication and 

the minimum detectable fault function, min ( )
f

kf , at every time instant. Moreover, Section 3.3 demonstrates that 

when using interval observers, the dynamics and the structure of matrices Sfy (Eq. (8.17)), Sfu (Eq. (8.18)) and Sfa (Eq. 

(8.19)) are set by the observer gain matrix L. The influence of L on the fault residual sensitivity matrices is analyzed 

in detail along Section 3.3 but briefly, as shown in Section 3.6, the influence of L on the dynamics of Sfy, Sfu and Sfa 

can be characterized by the following table: 
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 Simulation 

L=0 

Observation 

L= Lo 

Prediction 

L= Lp 

fy
S  Constant Pulse Deadbeat 

fu
S  

Dynamic 

response 

Dynamic 

response 
Constant 

fa
S  

Dynamic 

response 

Dynamic 

response 
Constant 

 

Table 8.1 Observer gain influence on the fault residual sensitivity dynamics 

One of the main conclusions of Chapter 3 is that the performance of the fault detection module may be varied using 

the observer gain matrix L what may allow enhancing the fault indication result if this matrix is designed properly. 

The goal of designing L properly is to achieve more reliable fault diagnosis results. 

Concerning the fault isolation process, the influence of the fault residual sensitivity matrices on this process was 

mentioned above derived from Eq. (8.20) but nothing was said regarding the influence of matrix L. Thus, taking into 

account the influence of L on Sfy, Sfu and Sfa, summarized in Table 8.1 but analyzed in detail in Section 3.3, the 

following conclusions can be derived from the influence of L on the fault signal set φ and therefore, on the fault 

isolation process: 

• Given that the structure of the matrices Sfy (Eq. (8.17)), Sfu (Eq. (8.18)) and Sfa (Eq. (8.19)) sets which residual ri(k) 

(fault signal φi(k)) is affected by which fault (fyj, fuj, faj) (Eq. (8.20)) and given that their structure depends on the 

observer gain matrix L, it can be concluded that L may determine the fault signals which are affected by a 

certain fault and consequently, the structure of the theoretical fault signature matrices FSM. As a result, a 

proper design of matrix L may obtain matrices FSM whose structure might enhance the fault diagnosis result 

adding more fault distinguishability. 

• Given that the dynamics of matrices Sfy (Eq. (8.17)), Sfu (Eq. (8.18)) and Sfa (Eq. (8.19)) depends on L and given 

that the dynamics of the fault signals φi(k) depends on these matrices, it can be concluded that the fault signals 

dynamics may be influenced by matrix L and consequently, a proper design of this matrix may also add more 

fault distinguishability what can improve the accurateness  of the fault isolation algorithm.  

All the dynamical aspects related to the fault signals will be analyzed more in detail in the following chapters 

illustrating how the matrices FSM can be obtained. 

 

8.3 Fault isolation algorithm 
 

In this section, the fault isolation algorithm presented in Section 7.3 (Fig. 7.1) is used taking into account two main 

changes: 

• This algorithm is integrated with the interval observer-based fault detection approach presented in Section 8.2.1 

and consequently, the four different theoretical fault signature matrices (FSM01, FSMsign, FSMsensit and 

FSMorder) are obtained using this fault detection approach. Although the theoretical fault signal properties 

regarding a certain fault hypothesis are still considered in steady-state. It will be in the following chapter where 

the procedure to obtain the set of matrices FSM will be illustrated considering all the fault signal dynamical 

aspects described in Section 8.2.1. 
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• The waiting time Tw is equal to the sample period Ts in order to show clearly the observer gain effect on the 

fault isolation result. 

•  

Recalling the general performance of this fault isolation algorithm (Section 7.3), the first component between the 

fault detection and fault isolation modules (memory component) is an interface based on a memory that stores along 

a time window given by Tw and for every residual (fault signal), the time instant (kφi) in which the fault signal 

appears (|φi(kφi)|≥0.5) and the fault signal value (φimax)
1 whose absolute value is maximum. Then, at the end of this 

time window, an isolation result is given based on the memory stored information and on a pattern comparison 

component. This component compares the observed properties of the observed fault signals φi(k) with the theoretical 

ones regarding to every fault hypothesis fj (binary property, sign property, fault residual sensitivity property and 

occurrence order property) which are stored in the four FSM matrices (FSM01, FSMsign, FSMsensit and 

FSMorder). Thus, for every fault hypothesis fj and for every fault property, a factor (factor01j, factorsignj, 

factorsensitj and factororderj ) is computed determining the occurrence probability of this fault hypothesis regarding 

the observations of this fault property. At the end, using these factors, the logic decision component chooses the best 

candidate.  

 

This fault isolation algorithm needs the time window Tw in order to avoid fault detection problems as the lack of fault 

indication persistence (Section 3.4.2) and the fact that all fault signals do not appear at the same time since they have 

different dynamics. This opens a new problem: which is the length of this time window and how can it be calculated? 

This fault isolation approach is known as relative fault isolation. However, in the algorithm version considered in 

this chapter, there is no memory component and consequently, a fault isolation result is given at every time instant 

(Tw=Ts): absolute fault isolation. As it was already mentioned above, this assumption is done in order to show the 

effect of the observer gain on the fault isolation result and how these gains might avoid the fault detection problems. 

The efficiency of the absolute approach relies basically on a proper design of the observer gain matrix in order to 

avoid the mentioned fault detection problems. On the other hand, the efficiency of the relative approach based on 

predictors relies on determining an optimal time window 
w

T  since in this case, residual activation lasts only few time 

instants as it was already illustrated in Chapter 3. Once observed the first fault signal, the length of this time window 

w
T  must be enough so that all the affected fault signals can be observed during at least one time instant, otherwise a 

wrong isolation result could be set. Conversely, taking into account that fault signal dynamics are ruled by the 

corresponding residual sensitivity function matrix (Section 8.2.3), the 
w

T  dependency regarding to this function can 

be stated. Besides, when using observers, the observer gain L will also have an influence on this time window since 

it determines the time evolution of the fault residual sensitivity function (Section 3.3). 

In fault isolation where normally a subset of fault signals φi(k) must be active at the same time in order to isolate the 

fault, the lack of fault indication persistence presented by a residual ri(k) (Section 3.4.2) or its associated fault signal 

φi(k) and the fact that fault signals have different dynamics (Section 8.2.3) may confuse the isolation module and 

consequently, different fault isolation results may appear: 
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• Right persistent fault isolation: the fault isolation module can isolate the fault and its result lasts while the fault 

is affecting the system. This is because the associated fault signals can always be observed once the fault 

appears. 

• Right non-persistent fault isolation: the fault isolation algorithm can precisely isolate the fault during just a 

certain period of time since either fault signals are not persistently observable or they require different periods of 

time in order to be observable. 

• Wrong fault isolation: the fault isolation algorithm can not give a right fault isolation result since there are some 

fault signals which are not observable. 

• Lack of fault isolation: this is the case when fault signals are not observable according to the adaptive threshold 

of the fault detection module. 

On the other hand, given that observer gain matrix L affects the dynamics of the fault signals φi(k) (Section 8.2.3), 

different types of fault isolation result could be obtained varying the observer gain. That means that the observer gain 

could be designed in order to enhance the fault isolation (Section 8.2.3). On the other hand, when using a predictor or 

simulator model, the observer gain is already fixed and consequently, the fault isolation result can not be enhanced.  

 

8.4 Application example 
 

8.4.1 Application description 
 

This section uses the application example based on 12 limnimeters of the Barcelona urban drainage system which 

was already explained in Section 7.4. However, in this case the limnimeters related to the set Lm (Section 7.4.3) are 

modelled using interval reduced observers with uncertain parameters instead of interval predictors. The structure of 

this interval observer model is derived from Eq. (7.23). 

As explained when using interval predictor models (Section 7.4.3), the interval observer related to every limnimeter 

must be calibrated in order to guarantee that its estimated interval output includes all the limnimeter non-modelled 

effects.  Thus, an algorithm inspired by the one proposed in (Ploix et al., 1999) can be used. It is based on the use of 

classical identification methods, such as the least-squares method, to provide the nominal values of the model 

parameters. Then, using optimization tools, the uncertain parameter intervals of the considered reduced observer are 

adjusted using a worst-case approach (Puig et al, 2003b) until all the measured data is covered by the interval of 

prediction for the considered observer gain. 

In this setion, a real limnimeter fault scenario is analyzed in order to illustrate that when varying the observer gain, 

different fault isolation results could be obtained. In particular, for the analyzed case, the fault isolation result will be: 

• right persistent fault isolation,  

• right non-persistent fault isolation, 

• wrong fault isolation, 

• and lack of fault isolation. 
 

8.4.2 Fault scenario 
 

The proposed interval observer-based fault diagnosis approach has been tested using a faulty scenario affecting the 

limnimeter L39. In this fault scenario, the limnimeter output was zero-valued from time instant k=150. According to 

the binary fault signature matrix FSM01 shown in Table 7.1, this faulty scenario has just an influence on the 
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residuals associated to limnimeters L39 and L41 and thus, both must be activated in order to isolate that fault or in 

other words, the fault signals φL39 and φL41 must be observed.  

The reduced observer associated with  L39  is given by 

39 39 39 39 39 1 39 39 39
ˆ ˆ( 1) (1 ) ( ) ( ) ( )L k a l L k c P k a l L k+ = − + +          (8.21) 

where l39 (l39 =0, simulation; l39 =1, prediction) is the associated observer gain using the parameterization k39=l39a39, 

P1 is the rain intensity measured by the rain gauge G16 and a39∈ [0.496, 0.744], c39∈ [0.601, 0.901]. These interval 

parameter values are valid for the observer gains tested in this section. 

Regarding L41, its associated reduced interval observer is 

41 41 41 41 41 39 41 2 41 41 41
ˆ ˆ( 1) (1 ) ( ) ( ) ( ) ( )L k a l L k b L k c P k a l L k+ = − + + +        (8.22) 

where l41 (k41=l41a41) is the associated observer gain, P2 is the rain intensity which is also measured by the rain gauge 

G16 and a41∈ [0.869, 1.063], b41∈ [-0.296, -0.245], c39∈ [0.734, 0.897]. These interval parameter values are valid for 

the observer gains tested in this section. 

First, the observer gains are set so that a right persistent fault isolation result can be diagnosed. Then, new observer 

gain values are given so that the fault almost becomes non-detectable (Section 3.4.2). Finally, new values are 

assigned so that the fault isolation result becomes non-permanent and partially wrong. 
 

8.4.3 Persistent fault isolation case 
 

In this case, the used observer gains are: l39 =0.35 and l41 =0.4, the fault isolation algorithm indicates L39 as the faulty 

sensor from the fault occurrence time instant. The observer gains have been chosen so that none of the fault signals 

φL can be observed in a non-faulty scenario and their values are as low as possible so that the fault does not fully 

contaminate the observer model estimation. Thus, once the fault has occurred, the fault signals φL39 and φL41 

associated with L39 and L41 are observed (|φL41|≥0.5 and |φL39|≥0.5) while the fault lasts. 

In Fig. 8.1, the time evolution of the nominal residuals (roL39 and r
o
L41) and their associated adaptive thresholds are 

plotted. This figure shows that both roL39 and r
o
L41 are out of their associated adaptive thresholds from fault time 

occurrence (k=150) and thus, both of them are indicating persistently that fault (Section 3.4.2).  

In Fig. 8.2, the time evolution of the absolute value of the fault signals φL39 and φL41 is plotted. Indeed, in order to 

avoid the noise effect, the diagnosis algorithm does not use the instant values of φL39 and φL41 but an average of the 

last values associated with a given time window and this is what is plotted in Fig. 8.2. These fault signals indicate the 

fault while their absolute value is bigger than 0.5 (|φL41|≥0.5 and |φL39|≥0.5) what happens from few time instants 

once the fault has appeared (k=150) till the end of the scenario. Consequently, derived from this figure, the fault is 

persistently detected by the interval observers related to both limnimeters. 

In Fig. 8.3, the fault isolation result time evolution is plotted: factor01 (Eq. (7.7)), factorsign (Eq. (7.14)), factorsensit 

(Eq. (7.16)) and factororder (Eq. (7.18)) related to every fault hypothesis of the set fLm (Section 7.4). In this fault 

scenario and for the used observer gains, only the fault indicators related to a fault affecting L39 are activated and they 

do persistently from fault occurrence time instant till the end of the scenario. Consequently, the fault is clearly 

isolated by the interval observers for the applied observer gains. 
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Fig. 8.1.Time evolution of the residuals (m) and their adaptive thresholds (m) 
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Fig. 8.2 Time evolution of the fault signal absolute values 
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Fig. 8.3 Time evolution of the fault isolation factors  

 

8.4.4 Almost non-fault isolation case 
 

In this case, using the same fault scenario, the isolation algorithm can just isolate the fault for very few time instants 

because the fault detection does not last longer. This is because the interval observers associated with both 

limnimeters are using high observer gain (l39=0.85 and l41=0.85 ) values and consequently, their performance is quite 

close to the one related to a predictor: the model predicted values are almost fully contaminated by the fault since 

few time instants once the fault has occurred (Section 3.3). 
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In Fig. 8.4, the time evolution of the nominal residuals (roL39 and r
o
L41) and their associated adaptive thresholds are 

plotted. This figure illustrates that, once the fault has occurred, both roL39 and r
o
L41 are into their associated adaptive 

thresholds for the most of the time instants. Consequently, the fault signals φL39 and φL41 (Fig. 8.5) are hardly 

observed for very few time instants. As a result, the fault isolation indicators (factor01 (Eq. (7.7)), factorsign (Eq. 

(7.14)), factorsensit (Eq. (7.16)) and factororder (Eq. (7.18))) of L39 fault hypothesis, fL39, are hardly activated 

(|φL41|≥0.5 and |φL39|≥0.5) and therefore, the fault can not be isolated. The time evolution of these indicators is 

plotted in Fig. 8.6. 
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Fig. 8.4 Time evolution of the residuals (m) and their adaptive thresholds (m) 
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Fig. 8.5 Time evolution of the fault signal absolute values 
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Fig. 8.6 Time evolution of the fault isolation factors 

 



 187

8.4.5 Non-persistent fault indication and partially wrong fault 
isolation 

 

In this case, using the same fault scenario, the fault is clearly isolated from its occurrence but it is just for a certain 

time window since φL39 is not persistently observed. Then, the isolation algorithm decreases the values of the factor 

indicators (factor01fL39, factorsign fL39, factorsensit fL39 and factororderfL39) associated with the fault hypothesis fL39 

and on the other hand, it activates the indicators associated with fL41. This fact could lead to a wrong fault isolation 

result from that time instant. The fault isolation behavior described previously is obtained when L39 model uses an 

observer gain quite similar to the one used in Section 8.4.4 while the corresponding one to L41 is quite similar to the 

one used in Section 8.4.4 (l39=0.7 and l41=0.5 ). 

In Fig. 8.7, the time evolution of the nominal residuals (roL39 and r
o
L41) and their associated adaptive thresholds are 

plotted, while Fig. 8.8 shows the time evolution of the fault signals φL39 and φL41 (absolute values). Both figures are 

in line with the behavior described previously. 

Conversely, the time evolution of the fault isolation indicators (factor01 (Eq. (7.7)), factorsign (Eq. (7.14)), 

factorsensit (Eq. (7.16)) and factororder (Eq. (7.18))) associated with fault hypotheses fL39 and fL41 is plotted. This 

figure describes how the fault isolation algorithm might be confused between the hypotheses fL39 and fL41 once fault 

signal φL39 becomes non-observable (|φL39|<0.5). In spite of this fact, the factor factorsensitfL39 continues having a 

bigger value than factorsensitfL41 and consequently, this fault hypothesis might still be the best candidate. 

0 50 100 150 200 250
-30

-20

-10

0

10

20

30
L39 residual & adaptive threshold time evolution

0 50 100 150 200 250
-30

-20

-10

0

10

20

30

Time

L41 residual & adaptive threshold time evolution

 

Fig. 8.7 Time evolution of the residuals (m) and their adaptive thresholds (m) 
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Fig. 8.8 Time evolution of the fault signal absolute values 
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Fig. 8.9 Time evolution of the fault isolation factors 

 

8.5 Conclusions 
 

In general, model-based fault detection methods have inherent problems as the lack of fault indication persistence, 

noise sensitivity or model errors and as a result, fault detection performance is not as good as it might be needed in 

order to give a reliable fault diagnosis result. This fact may confuse the fault isolation module and consequently, 

wrong faults may be diagnosed. According to the points (d) and (e) of the fault isolation objectives of this thesis 

(Section 2.5.2), Chapter 8 shows fault isolation results may be very sensitive to the fault indication persistence 

provided by the fault detection module. It also shows that this lack of persistence can deteriorate the integration 

between the fault model-based detection module and the fault isolation module and as a consequence, both modules 

should not be considered separately. Moreover, when using interval observers, the fault indication persistence might 

be improved designing properly the observer gain matrix. Therefore, the fault isolation results might be also 

enhanced. Thereby, this chapter describes qualitatively the influence of the observer gain on the fault isolation 

module. 

 



 189

 

CHAPTER 9 

Fault diagnosis using linear interval 

observers: obtaining FSM matrices 

 

 

9.1 Introduction 
 

This chapter is based on the interval model-based fault diagnosis method described in Chapter 8 which improves the 

integration of fault detection and isolation tasks considering the degree of fault signal activation and using a 

combination of several theoretical fault signature matrices which store the theoretical properties of fault signals 

when a fault occurs. As mentioned in Chapter 8, model-based fault detection methods still have some problems as 

lack of fault indication persistence, noise sensitivity and model errors (Meseguer et al. 2006a). As a result, fault 

detection performance can be worse than the required one in order to give a reliable fault diagnosis result. As a 

consequence, the fault isolation module might be confused when a subset of fault signals must be observed during 

the same period of time so that the right fault diagnosis result can be derived. However, there is another type of 

influence of fault detection on the fault isolation module. This influence is derived from the matter that the 

performance of the fault detection and fault isolation modules depends on the structure of the residual generator, as 

illustrated along the Chapter 3 for the fault detection case and in Section 8.2.3 for the fault isolation case. 

Consequently, when designing the residual generator to enhance the fault detection result, the fault isolation module 

is also affected. As a consequence of this integration between both modules, the design of the residual generator 

structure must be planned to enhance the whole fault diagnosis process and not just one of the both modules. 

Thereby, in fault diagnosis, fault detection and fault isolation can not be considered separately. Otherwise, the 

enhancement of the performance of one of the modules might worsen the performance of the other.  

On the other hand, as mentioned in Section 8.2.3, the structure of the residual generator sets the knowledge the fault 

isolation module has about faults regarding their influence on the fault signal set what allows obtaining the set of 

theoretical fault signature matrices (FSM). In this chapter, the obtaining process of these matrices is illustrated when 

using a passive robust fault detection approach based on interval observers.  

Finally, applying the obtained FSM matrices, the interval observer-based fault diagnosis algorithm used in Chapter 8 

will be applied to the limnimeters of Barcelona’s urban sewer system to assess the validity of the derived results. 

Thereby, regarding to the weaknesses of the fault isolation approach used in Chapter 8, all of them are improved: 

• The time evolution of the dynamical properties of the fault signals is considered. 

• The theoretical occurrence time instant of every fault signal is used.  

• The waiting time Tw required for the appearance of all fault signals once the fault occurs is obtained.  

• The estimation of the system output is obtained using an interval observer with uncertain parameters. 

Regarding the structure of the chapter remainder, in Section 9.2 the influence of fault detection on the fault isolation 

module is explained more in detail. Then, (Section 9.3) a method to obtain the theoretical fault signature matrices is 
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presented describing the influence of the observer gain L. Section 9.4 is focused on how the fault isolation result is 

obtained and the effect of the observer gain on this stage. Finally, (Section 9.5) the application example is used to 

illustrate the main points described along this chapter.  

 

9.2 Integration between fault detection and fault 
isolation when using interval observers 

 

One of the main conclusions obtained Chapter 3 is that the fault detection performance is established by the structure 

of the residual generator whose computational form (Eq. (3.19)) is described in Section 3.2.2. Thereby, assessing at 

every time instant the computed residual interval (Eq. (3.22)) against the fault detection condition (3.24), the fault is 

indicated or not. On the other hand, the fault residual sensitivity concept introduced in Section 3.3 and the internal 

form of the residual generator (Eq. (3.20)) presented in Section 3.2.2 let conclude that the residual generator can be 

written in terms of the residual sensitivity to an output sensor fault, Sfy (Eq. (3.37)), to an input sensor fault, Sfu (Eq. 

(3.47)), and to an actuator, Sfa (Eq. (3.54)), such as shown in Section 3.3.5 and Section 8.2.3: 

1 1 1
0( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , ) ( )

fa a fy fy fu fu
k k q k q k q k

− − −= + + +r θ r θ S θ f S θ f S θ f      (9.1) 

This expression shows that the structure of the residual generator is basically determined by the structure of the fault 

residual sensitivity matrices and consequently, as mentioned along the Chapter 3, the performance of the fault 

detection module depends basically on their structure and dynamics. On the other hand, as derived from the 

equations of matrices Sfy, Sfu and Sfa, both their structure and dynamics depends on the observation gain matrix L and 

this is the reason which let conclude that the whole performance of the fault detection module can be tuned using L 

(Chapter 3). 

Concerning fault isolation, Section 8.2.3 sets the importance of matrices Sfy, Sfu and Sfa on the fault isolation module 

derived also from the residual generator structure expressed in its internal form (Eq. (9.1)). Mainly, as described in 

that section, this importance is because the structure and dynamics of matrices Sfy, Sfu and Sfa determine the residuals 

ri(k) (fault signals φi(k)) affected by a certain fault (fyj, fuj, faj)  and the dynamics of the observed fault signals when 

the fault occurs. As a consequence, according to the definition of the theoretical fault signature matrix FSM (Section 

7.3.3), the knowledge of matrices Sfy, Sfu and Sfa will allow building up the set of matrices FSM used by the fault 

isolation algorithm. Moreover, as demonstrated in detail in Section 3.3 and summarized by Table 8.1, each fault 

residual sensitivity matrix (Sfy, Sfu and Sfa) related to a certain type of fault (fyj, fuj, faj) has its own dynamical 

properties what implies that the fault signal subset caused by this type of fault has also different dynamical properties 

regarding the fault signal subset caused by another fault type. Then, if matrices Sfy, Sfu and Sfa are known, more fault 

distinguishability is added to the fault isolation algorithm allowing to enhance its performance, as it will be seen in 

the following section. In conclusion, the fault residual sensitivity matrices (Sfy, Sfu and Sfa) play also a crucial role in 

the performance of the fault isolation module. In addition, because the dependence of this matrices regarding the 

observer gain L (Section 3.3), it can be concluded that the performance of the fault isolation module may also be 

tuned using the observer gain. 

Therefore, the fault residual sensitivity matrices (Sfy, Sfu and Sfa) play significant role both in fault detection and in 

fault isolation setting the performance of the whole fault diagnosis process. Conversely, when using interval 

observers, the observer gain L may allow tuning the behaviour of this process enhancing the final result. Derived 

from these statements, it can be affirmed that fault detection and fault isolation are closely integrated throw the 

matrices Sfy, Sfu and Sfa and consequently, these matrices should be designed taking into account the whole fault 
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diagnosis process and not just one of its modules (fault detection or fault isolation). Otherwise, when enhancing just 

one module, the other could be affected negatively.  

 

9.3 Fault detection and isolation interface: FSM 
matrices  

 

In Section 7.3 (Chapter 7) and in Section 8.3 (Chapter 8), the interface between fault detection and fault isolation 

was illustrated. On the one hand, this interface consist in a memory component (Section 7.3.2) which registers for 

every observed fault signal (|φi(k)|≥0.5) its occurrence time instant (kφi) and its value φimax
1 whose absolute value is 

maximum. Then, on the other hand, this interface considers also the theoretical influence on the fault signal set φ of 

every fault fj belonging to the set f of faults which wanted to be isolated. As mentioned in Section 7.3 and in Section 

8.3, this theoretical influence is stored in four different theoretical fault signature matrices, FSM, applying a method 

that is an extension of the proposed by (Gertler, 1998) in which just the fault signal binary property was considered. 

Thus, as described in these sections, the four matrices are: the binary fault signal activation matrix (FSM01), the 

fault signal sign matrix (FSMsign), the fault residual sensitivity matrix (FSMsensit), and the fault signal occurrence 

order matrix (FSMorder). As described, the structure of those matrices is set by the following: the element FSMij of 

one of these matrices contains the expected influence of fault fj on the nominal residual ri
0
(k)

 (Eq. (7.1)) related to the 

fault signal φi(k) (Eq.(7.5)). Then, the comparison component (Section 7.3.3) of the fault isolation algorithm 

determines for every fault signal property a occurrence probability (factor01j, factorsignj, factorsensitj and 

factororderj) for every fault hypothesis fj applying the fault signal observed and theoretical properties registered by 

the fault detection and isolation interface. 

In this section, a new important fault signal property will be introduced. This is the fault signal occurrence time 

instant is introduced. Its theoretical value related to a fault signal φi(k) and to a fault hypothesis fj will be stored in the 

element of the ith-file and jth-column of the matrix FSMtime. The following subsections illustrate how to obtain 

matrices FSMsensit and FSMtime and how they are affected by the observer gain matrix L taking into account that, 

as mentioned in Section 9.2, these matrices can be derived from the fault residual sensitivity matrices (Sfy, Sfu and 

Sfa). Moreover, it will be illustrated how the other matrices can be derived from them.  

Regarding the fault isolation algorithm used in Chapter 8, this approach is also used in this chapter but improving its 

weaknesses. Thereby, the time evolution of the dynamical properties of the fault signals is considered, the theoretical 

occurrence time instant of every fault signal is used and the waiting time Tw required for the appearance of all fault 

signals once the fault occurs will be obtained using FSMtime.  

Finally, it must be taken into account that the influence of a fault affecting the output sensor yi on its associated 

residual ri is registered in the diagonal element FSMii of the corresponding theoretical fault signature matrix. 
 

9.3.1 FSMsensit: fault sensitivity matrix 
 

The fault residual sensitivity matrix Sf sets the residual capacity to detect faults (Gertler, 1998) and as described in 

Section 9.2, its importance in the whole fault diagnosis process is crucial. In Section 7.3.3.3, matrix FSMsensit, was 

defined as a matrix whose element FSMsensitij establish how easily a fault fj will cause the ith-residual ri
o
(k) to 

violate its associated adaptive threshold. However, although Section 3.3 determines this property has a time evolution 
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and is influenced by the observer gain matrix L, the values of every element FSMsensitij were obtained considering 

the steady-state value of the residual sensitivity to a fault. Thus, in this section FSMsensit is obtained considering the 

time evolution of the property. Thereby, the following equation describes how to compute the entries FSMsensitij 
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where η(k) is an unitary abrupt step input,
,

1( )
i jfS q

−  is the sensitivity associated with the nominal residual ( )o

i
r k  

regarding the fault hypothesis fj (fyj, fuj, faj) and t0 is the fault occurrence time instant. When t0 is unknown, it must be 

estimated using the occurrence time instant kφi of the first observed fault signal φi(k). As consequence of the fault 

residual sensitivity time dependency, FSMsensitij evolves dynamically since the fault occurrence time instant t0. This 

function is corrected using the detection threshold as the bigger it is, the more difficult fault signals will be observed, 

according to Eq. (8.15).  
 

9.3.1.1 Influence of fault residual sensitivity matrix Sf on FSMsensit 
 

Focusing on the properties of fault residual sensitivity matrices (Sfy, Sfu and Sfa) described in detail Section 3.3 and 

on the structure of the matrix FSMsensit (Eq. (9.2)), in general, the next information may be derived concerning the 

fault isolation stage: 

• if an abrupt output sensor fault fyj is detected, it must be from time instant t0 since the residual sensitivity to this 

output sensor fault regarding its associated residual rj(k) ( j j jˆr ( k ) y ( k ) y ( k )= − ), (
,

1( )
j jfS q

− ) (Eq. (3.43)), is 

maximum at fault occurrence time instant (Section 3.3.2) causing the observation of the fault signal φj(k). 

Therefore, when an abrupt output sensor fault occurs, the fault occurrence time instant t0 is always known since 

it is equal to the occurrence time instant kφi of the first observed fault signal. Conversely, regarding the 

sensitivity of the other residuals ri(k) (
,

1( )
i jfS q

− ) to this fault fyj, it is zero-valued (Eq. (3.40)) at fault occurrence 

time instant, t0, and consequently, the corresponding fault signals φi(k) (i≠j) are not observed yet 

• the residual sensitivity to an input sensor fault fuj (Eq. (3.48)) (assuming D≈0) and to an actuator fault faj (Eq. 

(3.56)) are null at t0 (Section 3.3.3 and Section 3.3.4) and consequently, these faults can not be detected at this 

time instant and they associated fault signals will not be observed either.  
 

9.3.1.2 Deriving FSM01 and FSMsign from FSMsensit 
 

According to Section 7.3.3.1, the FSM01-table contains the theoretical binary influence that faults fj produce in the 

residual equations ri(k) which can be codified using the values 0 for no influence, 1 otherwise. This matrix can be 

obtained such as the theoretical fault signature matrix FSM introduced by (Gertler, 1998) (Section 7.3.3.1) but 

besides, it can be derived from the matrix FSMsensit (Eq. (9.2)) described in the previous section. Thereby, its 

expression is 
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ij

ij
ij

1, sensit 0
01

0, sensit =0

     ≠=      

FSM
FSM

FSM  
           (9.3) 

 

Concerning FSMsign-table, this matrix contains the theoretical sign patterns (Section 7.3.3.2) faults fj produce in the 

residual equations r0i(k). As described by Section 7.3.3.2, those patterns can be codified using the values 0 for no 

influence, +1/-1 for positive/negative deviation for every FSMsignij. Concerning the value of FSMsignij, according 

to the residual internal form (Eq. (8.20)) and the definition given in Section 7.3.3.2, the fault residual sensitivity sets 

the sign pattern a given fault fj produces in a given residual r
0
i(k). Thereby, the element FSMsignij related to the fault 

signal φi(k) (nominal residual ri
o
(k)) and the fault hypothesis fj (fyj, fuj, faj) can be derived from matrix FSMsensit 

(Eq.(9.2)) as it follows:  

ij

if  or = 0
sign

if  and 0

0 ij

ij 0 ij

0 k t sensit

sign( sensit ) k t sensit

<=  ≥ ≠

FSM
FSM

FSM FSM 
       (9.4) 

On the other hand, the observed signs associated with every observed fault signal φi(k) will be obtained as it follows: 

0   if ( ) < 0.5

( ( )) 1   if ( ) 0.5

1 if ( ) 0.5

i

i i

i

k

sign k k

k

φ
φ φ

φ




= ≥
− ≤ −

 

 

 

          (9.5) 

 

9.3.2 FSMtime: fault signal occurrence time matrix 
 

When a fault fj (fyj, fuj, faj) occurs, the affected residuals r
0
i(k) need different periods of time to start indicating that 

fault or equivalently, the fault signals φi(k) require different periods of time to appear. Each element of the jth -

column of the matrix FSMtime contains the time interval [ ijϕ ,
ij

ϕ ] in which the fault signal φi(k) is expected to 

appear. The value 
ij

ϕ  is associated to the minimum fj-type fault which is considered to be isolated, while ijϕ  is 

associated with the maximum fj-type fault the monitored system might suffer. Thus, the values ijϕ  for a given fault fj 

could be estimated carrying out a test for every residual which compares the residual disturbance (Eq. (3.64)) 

(Section 3.4.1) caused by a fault in the nominal residual ( )o

i
r k  with the adaptive threshold given by Eq. (8.13). 

Derived from fault detection test given by Eq. (8.15) and from the residual internal form (Eq. (8.20)), this test can be 

written as: 

0

,

1 *
0( ) ( ) [ ( ), ( )]

i j

oot
iif jS q f k q r k r k k t

−− ∉ ≥             (9.6) 

where * ( )
j
f k  is the worst case of a fj-type fault the monitored system might suffer. Then, the time the residual 

requires to start indicating the fault (
ij

δ ) is obtained using the minimum time instant kmin that satisfies Eq. (9.6). 

min 0ij
k tδ = −                (9.7) 

When monitoring a system, the fault occurrence time instant t0 is unknown in general. Hence, the values 
ij

δ  

associated with the fault hypothesis fj must be referred to the first observed fault signal. Then, 

min( )ij ij ij
i

ϕ δ δ
∀

= −              (9.8) 

The value 
ij

ϕ  might also be calculated using test (9.6) but in this case, * ( )
j
f k  must be the minimum fj-type fault 
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which is considered to be isolated. Thus, the values 
ij

δ  are obtained and then, 

min( )ij ij ij
i

ϕ δ δ
∀

= −             (9.9) 

Regarding the elements of matrix FSMtime,  

,

,

1

1

[ , ]   ( ) 0

[ 1, 1]  ( ) 0
i j

i j

ij ij f

ij

f

if S q
time

if S q

ϕ ϕ −

−

 ≠=  − − =

FSM           (9.10) 

it is remarkable the influence of the observer gain L on the interval [ ijϕ ,
ij

ϕ ] derived from its influence on the fault 

residual sensitivity matrices (Sfy, Sfu and Sfa) (Section 3.3) and consequently, a proper design of L might help so that 

all the fault signals were observed at the same time instant.  

Derived from FSMtime, one of the most important parameters of the fault isolation algorithm can be obtained. This 

is the time window Tw which determines the maximum period of time required once the first fault signal is observed 

so that all fault signals can appear. In other words, Tw is the period of time needed, once the first fault signal is 

detected, to give an accurate fault diagnosis result unless there were only one fault hypothesis left supporting the 

observed fault signal temporal sequence before Tw would have ended. Thereby, Tw can be obtained as it follows: 

,
max( )w ij

i j
T ϕ

∀
=              (9.11) 

On the other hand, in order to compare the occurrence time instant of the observed fault signal sequence with the 

stored one in matrix FSMtime, the factor factortimej is calculated for every fault hypothesis as it follows: 

( )( )
1

1

( )

)

ny

i ref ij

i

j jny

ij

i

ckecktime k k time

time k

boolean time

φ
=

=

=
∑

∑

, ,FSM

factor zvf

(FSM

       (9.12) 

where kφi is the apparition time instant of the fault signal φi(k), kref is the apparition time instant of the first observed 

fault signal,   

( )
0  or ( ) 0.5

1  and ( ) 0.5

i ref ij

i ref ij i

i ref ij i

ckecktime k k time

if k k time k

if k k time k

φ

φ

φ

φ

φ

=

 − ∉ <


− ∈ ≥

, ,FSM

FSM

FSM

        (9.13) 

0, if [ 1, 1]
)

1,     if [ 1, 1]       
ij

ij

ij

time
boolean time

time

= − −=  ≠ − −

FSM
(FSM

FSM
             (9.14) 

and where zvfj is the zero-violation-factor (Eq. (7.9)) (Section 7.3.3.1) whose expression is  

{ }0,      if   1,...,   with  01 0    

and  ( ) 0.5

1,      otherwise                                                                          

ij

j i

i n

kφ

∃ ∈ =


= ≥



FSM

zvf       (9.15) 

 
9.3.2.1 Influence of fault residual sensitivity matrix Sf on FSMtime 

 

When applying all the fault isolation particulars described in Section 9.3.1.1 regarding the influence of the properties 

of matrices (Sfy, Sfu and Sfa) (Section 3.3) on matrix FSMsensit, a simplification can be done concerning the 

expression of FSMtime. Mainly, these particulars are: 



 195

• Assumption of abrupt output sensor fault fyi. Then, at fault occurrence time instant t0, the residual related to 

sensor yi(k) ( i i i
ˆr ( k ) y ( k ) y ( k )= − ) is the only residual which has the capacity to indicate the fault causing the 

observation of the fault signal φi(k). 

• Input sensor faults fuj (assuming D≈0) and actuator faults faj are not indicated by none residual at fault 

occurrence time instant t0. 

• As already mentioned, regarding the structure of the theoretical fault signature matrices, FSM, it is assumed 

that the influence of a fault affecting the output sensor yi on its associated residual ri is registered in the diagonal 

element FSMii of the corresponding theoretical fault signature matrix. 

As a consequence of all these particulars, the elements of matrix FSMtime can be expressed as it follows: 

,

,

1

1

[0,0]  if  

[ , ]  if   and ( ) 0

[ 1, 1] if  ( ) 0
i j

i j

ij ij fij

f

i j

i j S qtime

S q

ϕ ϕ −

−

=
 ≠ ≠= 
 − − =

FSM         (9.16) 

 
9.3.2.2 Deriving FSMorder from FSMtime 

 

According to Section 7.3.3.4 where matrix FSMorder was introduced, this matrix contains the observation order of 

the fault signals caused for every fault hypothesis. Thereby, the elements of this matrix for a fj-type fault can be 

obtained from FSMtime as 

 where  ( )

and [ 1, 1]

0 if =[-1,-1]

j ij

ijij

ij

timeorder

time

σ σ ϕ=
 ≠ − −= 



δ

FSMFSM

FSM

 

       (9.17) 

where δj is a vector that contains the non-repeated elements ijϕ   of the jth -column of FSMtime  ordered ascendant  

and whose values are not equal to -1. 

When considering the fault isolation particulars described in Section 9.3.2.1, the elements of matrix FSMorder 

satisfies the following relation according to the expression of the elements FSMtime given by Eq. (9.16),: 

1 if

1  if  and [ 1, 1]

0 if  =[ 1, 1]

ijij

ij

i j

i j timeorder

time

σ
=

 > ≠ ≠ − −= 
 − −

FSMFSM

FSM

       (9.18) 

assuming the model associated to each system output is not static. Thus, when considering just abrupt output sensor 

faults, the first observed fault signal will allow isolating the faulty sensor according to Eq (9.18). 

 

9.4 Diagnosis result: Logic decision 
 

As shown in the proposed fault isolation architecture (Fig. 7.1), the last task of the considered diagnosis algorithm is 

the decision logic component (Section 7.3.4). At the end of the time window Tw, this component gives a fault 

diagnosis result based on the occurrence probability dj related to every fault hypothesis fj calculated using one of the 

proposals given in Section 7.3.4 and all the factors related to fj: factor01j, factorsignj, factorsensitj, factororderj, 

factortimej. This result indicates the most probable fault which is affecting to the considered system. 

As illustrated in Section 9.3, matrices FSM01, FSMsign and FSMorder may be derived from FSMtime and 

FSMsensit. Consequently, another proposal to obtain the occurrence probability dj related to every fault hypothesis fj 
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would be using just factorsensitj and factortimej. Concerning factororderj, it is not always accurate to consider that 

its significance can be obviated since the observation order property of a fault signal is related to a set of fault signals 

while the occurrence time instant property is just related to one fault signal, for a given fj. Thereby, dj may be 

calculated using these two new possible alternatives: 

• the highest factor 

dj, = max (factorsensitj, factororderj, factortimej)           (9.19) 

• or weighting these factors according to its significance in the fault diagnosis process 

dj, = (α1 factorsensitj + α2 factororderj + α3 factortimej)        (9.20) 

where α1 , α2, α3 ∈ [0,1] are the weighing parameters proposed by fault diagnosis designer. 

In these new proposals, factororderj and factortimej play a significant role on the final result as this factors are very 

robust regarding the non-persistence fault indication given by the fault detection module while factorsensitj is not so 

robust. On the other hand, if the fault diagnosis result might be very influenced by the model errors, all three factors 

should be used since factororderj and factortimej might be inaccurate. 

Finally, regarding the influence of the observation gain matrix L, Section 9.2 describes the key influence of the fault 

residual sensitivity matrices (Sfy, Sfu and Sfa) on the whole fault diagnosis process (fault detection and fault isolation 

module). As recalled in this section and demonstrated in detail in Section 3.3, the dynamics and structure of these 

matrices is set by L and consequently, so do the dynamics and structure of the theoretical fault signature matrices 

FSMtime and FSMsensit. As a consequence, the result given by the decision logic component may also be 

influenced by the applied design of matrix L 

 

9.5 Case of study: Barcelona urban drainage system  
 

9.5.1 Fault isolation scenario description 
 

This section uses the application example of 12 limnimeters of the Barcelona urban drainage system which was 

already described in Section 7.4 and in Section 8.4 where a set Lm of limnimeters are modelled using interval 

reduced observers with uncertain parameters. However, unlike Section 7.4 and Section 8.4, the measurements of the 

limnimeters and the rain-gauges will not be obtained from real data but from a simulator of the Barcelona urban 

drainage system. Thereby, some unknown effects of the measurements can be avoided in order to focus this analysis 

on the effect of the observer gain L on the fault isolation result.  

In this Chapter 9, only the fault signal set φL03 and φL27 associated with the limnimeters L03 and L27 will be considered 

to illustrate the results and conclusions described in previous sections of this chapter. According to the theoretical 

binary fault signature matrix FSM01 given by Table 7.1 (Chapter 7), this fault signal set allow diagnosing faults 

affecting to the limnimeters L03 and L27, fL03 and fL27 and is composed by two residuals, one for each limnimeter. 

Thus, the expressions of the interval reduced observers used to monitor L03 and L27 are given by 

03 03 03 03 03 27 03 07 03 03 03
ˆ ˆ( 1) (1 ) ( ) ( ) ( ) ( )L k a l L k b L k c P k a l L k+ = − + + +        (9.21) 

27 27 27 27 27 05 27 27 27
ˆ ˆ( 1) (1 ) ( ) ( ) ( )L k a l L k c P k a l L k+ = − + +          (9.22) 

where l03 and l27 are the associated observer gains using the parameterizations k03=l03a03 and k27=l27a27. P07 and P05 

are the rain intensities measured by the rain gauges G14 and G20, respectively. Conversely, the model parameters are 

obtained using parameter estimation from experimental data considering that the following intervals describes the 

possible values of each parameter: a03∈[0.8816, 0.9084], b03∈[0.0381, 0.0393], c03∈[1.4469e4, 1.4910e4], 
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a27∈[0.9544, 0.9737] and c27∈[6.2641e3, 6.3907e3]. These interval parameter values are valid for the observer gains 

tested in this section. 

The nominal residual associated to limnimeter L03 using the observer (9.21) is given by  

1 1 1
03 03 03

03 03 27 071 1 1
03 03 03 03 03 03

1
( ) ( ) ( ) ( )

1 ( 1) 1 ( 1) 1 ( 1)

o o o

o

o o o o o o

a q b q c q
r k L k L k P k

a l q a l q a l q

− − −

− − −

−
= − −

+ − + − + −
     (9.23) 

According to the fault residual sensitivity concept presented in Section 3.3 and in Section 8.2.3, the sensitivity of this 

residual to an additive fault in L03 (Fy(θ)=I) is  

1
1

03 1
03

03 03

1
( )

1 ( 1)
o

o

o o

a q
S q

a l q

−
−

−

−=
+ −

           (9.24) 

which satisfies that when an additive abrupt fault affecting L03 occurs, the fault signal φL03  is observed from the fault 

occurrence time instant t0 if the fault is detected (Section 9.3.1.1). On the other hand, in case of an additive fault 

affecting L27 (Fu(θ)=I), the sensitivity of the residual associated to the limnimeter L03 is  

1
1

03 27 1
03

03 03

( )
1 ( 1)

o

o

o o

c q
S q

a l q

−
−

− −= −
+ −

              (9.25) 

According to Section 9.3.1.1, fault signal φL27 is never observed at t0 as its fault residual sensitivity is null at this time 

instant. 

Analogously, in case of the limnimeter L27, its nominal residual is   

1 1

27 27 051 1
27 27

27 27 27 27

1
( ) ( ) ( )

1 ( 1) 1 ( 1)
o

o o

o o o o
L P

a q c q
r k k k

a l q a l q

− −

− −

−= −
+ − + −

        (9.26) 

Thus, the sensitivity of this residual to an additive fault affecting L27 is  

1
1

27 1
27

27 27

1
( )

1 ( 1)
o

o

o o

a q
S q

a l q

−
−

−

−=
+ −

            (9.27) 

while its sensitivity to an additive fault affecting L03  is  

1
27 03 0( )oS q−

− =               (9.28) 

Such as for the fault signal φL03 case, the residual sensitivity given by Eq. (9.27) shows that the fault signal φL27 is 

observed from the occurrence time instant t0 if the fault is detected and assuming a abrupt fault scenario. 
 

9.5.2 FSM matrices 
 

In this section, considering the fault isolation scenario described in Section 9.5.1, the value of the theoretical fault 

signature matrices (FSM01, FSMsign, FSMsensit, FSMorder and FSMtime) is obtained and analyzed. 

 

9.5.2.1 FSMsensit, FSM01 and FSMsign  
 

Considering the residual generator associated with limnimeters L03 and L27 (Eq. (9.21) and Eq.(9.22)), the 

corresponding matrices FSMsensit, FSM01 and FSMsign are analyzed in this section.  

In the proposed fault isolation algorithm, the fault residual sensitivity pattern FSMsensitij is calculated dynamically 

at every time instant once a fault is detected (Eq. (9.2)). The fact of considering the residual sensitivity as a time 

function instead of a steady-state value really matters in the fault diagnosis result as, for instance, the residual 

sensitivity to an abrupt output sensor fault may be maximum at t0 while it is null if the fault affects an input sensor 
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(Section 9.3.1.1). On the other hand, the observer gains have an influence on the elements of FSMsensit which might 

help to differentiate the effect a fault produces in the fault signal set (Section 9.3.1). Concerning the case of study and 

according to Eq. (9.2), the elements of this matrix are given by Table 9.1 when k ≥ t0 and r03
0, r27

0  are positive.  

 

 fL03 fL27 

φL03 
0 1
03 0

03

( ) ( )

( )o

S q k t

r k

η− −
 

0 1
03 27 0

03

( ) ( )

( )o

S q k t

r k

η−
− −

 

φL27 0 
0 1
27 0

27

( ) ( )

( )o

S q k t

r k

η− −
 

 

Table 9.1 FSMsensit Matrix 

 

Regarding matrices FSM01 and FSMsign, they are derived from FSMsensit according to Eq. (9.3) and Eq. (9.4), 

respectively. Then, in line with Table 9.1, their values in this study case are given by Table 9.2 and 9.3. 

 fL03 fL27 

φL03 1 1 

φL27 0 1 

 

Table 9.2 FSM01 Matrix 

 

 fL03 fL27 

φL03 1 -1 

φL27 0 1 

 

Table 9.3 FSMsign Matrix 

 
9.5.2.2 FSMtime and FSMorder 

 

In this section, considering residual generator associated with limnimeters L03 and L27 (Eq. (9.21) and Eq.(9.22)), the 

matrices corresponding FSMtime and FSMorder are analyzed. 

In this case, the expression (9.16) can be used to calculate the FSMtime matrix elements (Section 9.3.2.1). Thus, all 

elements of this matrix are determined except for the element FSMtime12 which is calculated dynamically when the 

first fault signal is observed. When test (9.6) is carried out, a simplification is done regarding the considered adaptive 

threshold ( [ ( ), ( )]
oo
iir k r k ): a constant adaptive threshold is used whose value is given by the worst-case regarding the 

detection of the fault. This is 

[ ],
i i

τ τ−                (9.29) 

where ( )( ) ( )( ){ }
0 0

max max ( ) ,max ( )
oo
iii

k t k t
abs r k abs r kτ

∀ ≥ ∀ ≥
=  

where abs is the absolute value function. 
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The worst sensor fault of type fj is assumed to be an abrupt step whose gain max
j
f  is equal to the maximum estimated 

value of all sensors affected by this type of fault. The minimum fault of type fj which is considered to be isolated is 

assumed to be an abrupt step whose gain min
j
f  is derived from the minimum detectable fault functions (Section 3.4) 

of type fj associated with each residual. This gain is calculated as it follows: 

{ }min min
,max ( )

j i j
i

f abs f
∀

=             (9.30) 

where min
,i j

f  is the steady-state value of the minimum detectable fault  of type fj regarding the i
th -residual considering 

its associated threshold is given by the Eq. (9.29). 

,

min
, ( )

i j

i

i j

f

f
s

τ
=

∞
             (9.31) 

where 
,
( )

i jfs ∞  is the steady-state value of the fault residual sensitivity functions shown in Section 9.5.1. 

In the following, the values in seconds of the FSMtime matrix associated with residuals (9.23) (φL03) and (9.26) (φL27) 

are shown for two specific scenarios: Scenario 1 (Table 9.4) where t0=4000 s (Sampling Time Ts=300 s), 03 0.01ol = , 

27 0.01ol =  and Scenario 2 (Table 9.5) where t0=4000 s , 03 0.01ol = , 27 0.5ol =  

 fL03 fL27 

φL03 [0,0] [900, 6300] 

φL27 [-1,-1] [0,0] 

 

Table 9.4 FSMtime Matrix 

 

 fL03 fL27 

φL03 [0,0] [900, 3900] 

φL27 [-1,-1] [0,0] 

 

Table 9.5 FSMtime Matrix 

 

These tables confirm the influence of the observer gain on matrix FSMtime. 

Concerning FSMorder, the expression (9.18) can be applied (Section 9.3.2.1) according to the considered fault 

scenario. Thus, the elements of the FSMorder matrix are fully determined independently of the observer gain. 

 fL03 fL27 

φL03 1 2 

φL27 0 1 

 

Table 9.6 FSMorder Matrix 

 

9.5.3 Fault scenarios 
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In this section, considering the residual generator associated with the limnimeters L03 and L27 (Eq. (9.21) and Eq.(9.22)), 

the time evolution of the residuals and the fault isolation factors (factorsensitj and factortimej) are plotted 

considering the two scenarios introduced in the last section when a constant additive fault appears at time instant 

t0=4000 s affecting L27. The value of this fault is equal to the minimum isolable fault according to the Scenario 1 

fL27=0.5566 m. The difference between these scenarios is only the values of the observer gains in order to show their 

influence and the importance of factortimej when the result given by factorsensitj is confusing. In those fault 

scenarios, the factors are calculated at every time instant k (Tw=300 s corresponding to one sample since Ts=300 s) 

since then, the effect of the observer gains on them can be seen more clearly. Besides, a third scenario is considered 

which is like Scenario 2 but where the right value of Tw is used according to Table 9.5 and Eq. (9.11). 
 
Scenario 1: t0=4000 s, Tw=300 s, 03 0.01ol =  and 27 0.01ol =  

 

In this fault scenario, the fault is clearly detected and isolated as illustrated by the time evolution of the residuals 

(Fig. 9.1) and by the time evolution of the fault isolation factors (Fig. 9.2).  
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 Fig. 9.1 Time evolution of the residuals and their adaptive thresholds in scenario 1. 
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 Fig. 9.2 Time evolution of the fault isolation factors in scenario 1. 
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It can be noticed from Fig. 9.1 that the fault is detected at its occurrence time instant by the residual associated with 

L27, as expected according to its fault sensitivity function (Eq. (9.27)) while the residual related to L03 does not detect 

it till later such as it was also  expected according to its fault sensitivity (Eq. (9.25)) and the values of matrix 

FSMtime (Table 9.4). Finally, it should be taken into account that while only one fault signal is observed (φL27), only 

factorsensitL27 reaches its maximum value as the residual sensitivity of L03 is nearly zero-valued when fault appears. 

This is because the dynamics of the residual sensitivity functions has been taken into account when computing 

matrix FSMsensit. 
 
Scenario 2: t0=4000 s, Tw=300 s, 03 0.01ol =  and 27 0.5ol =  

 

In this scenario once the fault occurs, it is only clearly indicated by the residual associated with L27 during few time 

instants (Fig. 9.3). Concerning the other residual, the fault is detected such as it was in the Scenario 1. This 

inaccurate behaviour of the fault detection module causes factorsensitj to be also inaccurate regarding the fault 

isolation result (Fig. 9.4). Conversely, because the observed fault signal occurrence time instants satisfy the 

theoretical values stored in matrix FSMtime, the factor factortimej is not affected by this lack of fault indication and 

it let clearly isolate the fault.   
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 Fig. 9.3 Time evolution of the residuals and their adaptive thresholds, scenarios 2 and 3. 
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 Fig. 9.4 Time evolution of the fault isolation factors in scenario 2. 

 
Scenario 3: t0=4000 s, Tw=3900 s, 03 0.01ol =  and 27 0.5ol =  
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Unlike Scenario 2, in this scenario the right value of the time window Tw, according to Eq. (9.11) is used: Tw=3900 s. 

This value assures that once the first fault signal is observed (φL27
  at t0=4000 s: see Fig. 9.3), the rest of the fault 

signals (φL03) will have been observed, at least, during few time instants, at the end of this time window 

(t=t0+Tw=7900s). Then, the first diagnosis result is given which already let isolate clearly the fault (Fig. 9.5). This 

result is kept constant till the end of the next time window. 
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Fig. 5.19. Time evolution of the fault isolation factors in scenario 3. 

 

9.6 Conclusions 
 

Fault isolation is influenced by fault detection as both of them use the residual generator as a key element. This 

element allows the fault isolation algorithm to know the expected properties of the fault signal set when a fault 

hypothesis occurs. In consequence, the theoretical fault signature matrices can be obtained analyzing the effect of 

faults on the residual generator and taking into account that this effect is set by the dynamics and structure of the 

fault residual sensitivity matrices. Moreover, because the residual generator depends on the observer gain L, the 

influence of this matrix on the fault isolation module is also concluded. This influence allow to add more fault 

distinguishability designing properly the theoretical fault signature matrices using the observation gain matrix. This 

fact is unrelated to the type of fault, in spite this chapter is focusing more in sensor faults due to the use application 

example. 

This chapter follows the trend in FDI to analyze the influence of the detection stage in the isolation results 

(Combastel et. al 2003). The main contribution is the method provided for on-line computation of the FSM including 

temporal information about the evolution of the fault signals –i.e. fault signal values -, which can be used to support 

or reject fault modes in the isolation stage. Moreover, related to recent works in BRIDGE, the interval model-based 

observer ,which is used to estimate the system behaviour for detection purposes, provides a different way to cope 

with uncertainty in model parameters: modal intervals (Armengol et al. 2001), or different techniques for envelope 

generation (Loiez et al. 1998;Rinner et al., 2004). Finally, from a pure DX perspective, this work can be seen as an 

initial step towards on-line calculation of temporal fault signal evolution as needed in diagnosis chronicles (Cordier 

et al. 2000). 
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CHAPTER 10 

Fault diagnosis using a timed discrete-event 

approach based on interval observers  

 

 

10.1 Introduction 
 

In model-based fault diagnosis applied to dynamic processes (systems), it is possible to distinguish between models 

applied to fault detection (Section 2.3) and models used for fault isolation (or system state recognition) (Section 2.4) 

(Kościelny et al. 2004a). Models used for fault detection (either, in the DX community or in the FDI community) 

describe relationships existing between the system inputs and outputs (using qualitative or quantitative approaches), 

and allow detecting inconsistencies caused by faults generating fault diagnostic signals (fault signals). Typically, 

inconsistencies are detected by computing a residual signal as the difference between the real and the modelled 

system behaviour. More precisely, a fault signal appears when the residual evaluation stage associated with the fault 

detection task concludes that the residual time evolution is caused by the effect of a fault (Chow et al., 1984). Thus, 

although the fault signal is characterized by a given dynamics, it can be considered as a discrete event caused by the 

fault effect on the monitored system. The goal of the fault detection model is to generate fault signals so that the fault 

can be isolated. The type of the model used in fault detection (qualitative or quantitative), in general, depends on the 

system knowledge and the effort required to obtain an accurate model. If an accurate analytical model can be 

obtained using a reasonable effort, this type of models seems to be a better choice than the qualitative models. 

Otherwise, qualitative models seem to be better in fault detection. 

On the other hand, models used for fault isolation (qualitative or analytical) define the relationship existing between 

observed fault signals and faults. The basic idea of a fault diagnosis system is that the occurrence of a fault will 

generate a unique sequence of observable fault signals (events) that will establish the presence of a given fault. In 

general, the model type (qualitative or quantitative) used in fault isolation depends on the type of the fault detection 

model.  However, since a fault signal can be seen as a discrete-time event with a given occurrence time instant, 

dynamics and duration, the use of those qualitative models known as timed discrete events models (Lunze et al. 

2005) follows naturally. In this sense, (Daigle et al, 2007) uses a temporal labelled transition system which is built 

on the grounds of a temporal causal graph that models the behaviour of the monitored systems. Conversely, 

temporal dynamic table of states (T-DTS) method (Kościelny et al., 2004c) models the relationship between fault 

signals and faults using the called Fault Information System (FIS). The fault isolation algorithm used by this 

method is based on series inference where the occurrence of a new fault signal let narrow the possible fault 

hypotheses checking its observed properties and the information stored in the FIS. However, this kind of models is 

not very common when fault detection stage is modeled using an analytical model (at least in the FDI community). 

In this chapter, the proposed fault diagnosis approach will combine a fault isolation qualitative timed discrete event 

model with the fault detection analytical model based on interval observers presented in Section 3.2 (Chapter 3) and 

recalled in Section 7.2 (Chapter 7). This chapter follows forward the work developed in Chapter 7, Chapter 8 and 
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Chapter 9. Recalling this line of research, Chapter 7 demonstrates that the typical binary interface proposed by 

(Gertler, 1998) between fault detection and fault isolation can lead to inaccurate fault isolation results and shows that 

fault isolation performance can be enhanced when other fault signal properties are considered: the fault signal sign, 

its static fault residual sensitivity, the fault signal occurrence order and the fault signal occurrence time instant. In 

Chapter 8, the interface presented in Chapter 7 is used and the monitored system is modelled using an interval 

observer model. This last section characterizes the influence of the fault detection stage on the fault isolation result. 

As a result, this chapter illustrates that observation gain matrix may be designed to enhance the fault detection and 

isolation results. Chapter 9 continues the work developed in both previous sections showing that the relationship 

between faults and the fault signal dynamical properties can be obtained analytically using the residual generator 

structure related to the monitored system interval observer. This chapter demonstrates the crucial importance of the 

fault residual sensitivity matrices in the whole fault diagnosis process and the importance of considering the fault 

signal dynamics.  

The aim of this chapter is to propose a fault diagnosis method using a timed discrete-event approach based on 

interval observers which improves the integration of fault detection and isolation tasks. The proposed method can be 

considered as a BRIDGE approach that tries to benefit from the best of the FDI and DX diagnosis communities.  

Thereby, in this approach, fault signals are represented as a temporal sequence of discrete events using a qualitative 

approach while fault detection is based on the analytical model represented by an interval observer described in 

Section 8.2. In this way, it will be shown that all available and useful information of the fault detection and isolation 

tasks is considered.  The interface between fault detection and fault isolation is based on the presented one in Section 

9.3. Thereby, the diagnosis result will be enhanced since the occurrence of a fault generates a unique sequence of 

observable events (fault signals) that will be recognized by the isolation module implemented as a timed discrete 

event system. The states and transitions that characterize such a system can be inferred directly from the relation 

between fault signals and faults. The proposed fault diagnosis approach is applied to detect and isolate faults of the 

Barcelona’s urban sewer system limnimeters (level meter sensors). 

Regarding the proposed fault diagnosis process, this chapter focuses just on the fault isolation module since both the 

fault detection module and the interface between fault detection and fault isolation were already illustrated in 

Chapter 8 and Chapter 9, respectively. In consequence, concerning the structure of the remainder, in the next 

section, an overview of the proposed approach is presented in order to point out its motivation. Then, in Section 10.3, 

the fault isolation algorithm based on a timed discrete event system is shown. Then, in Section 10.4, the interval 

observer-based fault diagnosis algorithm will be applied to the limnimeters of Barcelona’s urban sewer system to 

assess the validity of the derived results. 
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10.2 Overview of the proposed approach 
 

10.2.1 Motivation 
 

As described in Section 6.2, model-based fault diagnosis is based on a certain set of  n  numerical fault indicators, 

known as residuals ( )kr  which connect the measured inputs ( )ku  and the measured outputs ( )ky  of the monitored 

system:  

( ) ( ( ), ( ))k k k=r Ψ y u             (10.1) 

where Ψ  is the residual generator function that allows computing the residual set at every time instant using the 

measurements of the system inputs and outputs. Ideally, according to (Gertler, 1998), this function is a residual 

generator if the computational form of the residual set, which can also be expressed as a set of analytical redundancy 

relations (ARR),is null when no fault is affecting the system (Section 2.3.2.1). 

According to (Gertler, 1998), the fault detection task consists in deciding if there is a fault affecting the monitored 

system by checking each residual ( )
i
r k  of the residual set against a threshold τi that takes into account model 

uncertainty, noise and the unknown disturbances. The result of this test applied to every residual ( )
i
r k  produces an 

observed fault signature φ(k) (observed fault signal set): 1 2( ) ( ), ( ), , ( )
n

k k k k
φ

φ φ φ =  ⋯φφφφ . As mentioned in Section 

6.2 and Section 2.4.2.1, a basic way of obtaining these observed fault signals could be throw a binary evaluation of 

every residual ( )
i
r k  against a certain threshold τi (Gertler, 1998):  

0 if ( )
( )

1 if ( )
i i

i

i i

r k
k

r k

τ
φ

τ
 ≤=  >

           (10.2) 

The observed fault signature is, then, supplied to the fault isolation module that will try to isolate the fault so that a 

fault diagnosis result can be given. This module is able to produce such a fault diagnosis since it has the knowledge 

about the binary relation between the considered fault hypothesis set { }1 2( ) ( ) , ( ), , ( )
fn

k f k f k f k=f ⋯  and the fault 

signal set φ(k). This relation is stored in the called theoretical binary fault signature matrix (FSM) described in 

Section 2.4.1.1 and Section 6.2.1. In short, an element FSMij of this matrix is equal to 1 if the fault hypothesis fj(k) is 

expected to affect the residual ri(k) such that the related fault signal φi(k) is equal to 1 when this fault is affecting to 

the monitored system. Otherwise, the element FSMij  is zero-valued. 

However, as mentioned along Chapter 6 and Chapter 7, this basic fault detection an isolation scheme has the 

following drawbacks, among others: 

(a) The threshold 
i

τ should be determined and adapted on-line according to the system inputs and outputs taking 

into account the model uncertainty.  

(b) The presence of the noise produces chattering when using the binary evaluation of the residual. 

(c) All fault signals φi(k) affected by a certain fault fj(k) according to the structure of the matrix FSM should be 

activated at the same time instant and they should be persistently observed during the whole fault isolation 

process. Otherwise, a wrong fault diagnosis result could be given. Nonetheless, because fault signals have their 

own dynamics, neither they necessarily have to be activated at the same time nor they are persistently observed.  
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(d) Restricting the relation between faults and fault signals to a binary one causes a loss of useful information that 

can add fault distinguishability and accurateness to the fault isolation algorithm preventing possible wrong fault 

diagnosis results. The occurrence of a fault causes the apparition of a certain subset of fault signals such that 

each of them have characteristic dynamical properties for this fault which can improve the performance of the 

fault isolation algorithm if they are taken into account.  

Some of these problems should be considered by the fault detection module (for example, (a) and (b)), while the 

others by the fault isolation module (for example, (c) and (d)), or by the interface between both stages. 
 

10.2.2 Proposed approach 
 

As described briefly in Section 2.5.4 of Chapter 2, Chapter 10 proposes a new fault diagnosis approach which tries 

to take into account the problems indicated previously by using the architecture presented in Fig. 10.1.  

This architecture consists in the following modules: 

• Fault detection module which generates fault signals measuring the system inputs and outputs taking into 

account model uncertainty. This module is carried out using the passive robust fault detection method based on 

intervals observers as presented in Chapter 3 and Chapter 8. This approach allows computing an adaptive 

threshold that evolves along time (drawback (a)) which is applied to evaluate robustly the consistency between 

the available measurements and the set of considered residuals. Concerning the chattering effect produced by the 

presence of noise when evaluating the residual using a binary approach (drawback (b)), this problem has been 

faced using the fault signal generation method based on the Kramer function described in Section 7.2.2.  

• Fault detection/isolation interface module which evaluates fault signals generated by the fault detection module 

in order to register their dynamical properties. This will allow the fault isolation module to isolate the fault 

among the considered fault hypotheses. These properties are summarized using several indicators which take 

into account not only the activation value of the fault signal but also its fault sensitivity/sign and its occurrence 

time instant/order. This proposed interface module is described in Chapter 9 and tries to handle the problems 

(drawback (d)) associated with the fault signal persistence, the residual sensitivity to a fault, the fault signal 

occurrence order and the fault signal occurrence time instant. As a result, the interface between fault detection 

and fault isolation modules is improved enhancing the performance of the used fault diagnosis system, 

• Fault isolation module reasons with the information used to build all the indicators provided by the improved 

fault detection and isolation interface using a discrete-event fault diagnosis model that can be automatically built 

from the analytical redundancy relations obtained from the monitored system model equations and the system 

available measurements. This approach is based on the issue that the occurrence of a fault will generate a unique 

temporal sequence of fault signals whose dynamical properties allow isolating the fault. This method tries to 

tackle the drawback (c) and apart from new components which will be presented in this chapter, uses the 

memory component and some parts of the comparison component of the fault isolation architecture presented in 

Fig. 7.1 and described in Section 7.3. 
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Fig. 10.1 Block diagram of the fault diagnosis system 

 

10.3 Fault isolation module 
 

10.3.1 Fault isolation algorithm as a DES 
 
The fault isolation module and the interface between fault detection and fault isolation can be formalized as a 

discrete event system (DES)17 since a given fault affecting to the monitored system will cause a unique sequence of 

fault signals (events) whose dynamical properties should allow obtaining a fault diagnosis result. Taking into account 

temporal aspects in the sequence of fault signals (order and time instant of occurrence), a timed discrete event model 

(TDES) will allow modeling more accurately the fault isolation process from the occurrence of the first fault signal of 

the temporal sequence until a fault isolation result is given. A timed discrete event model of this type is known as a 

timed labeled transition model (TLTS) (Daigle et al., 2007). Using this modeling approach, the fault signals would be 

the events, the states would be given by all the fault hypotheses supporting the observed fault signal sequence and the 

transitions would be set by the comparison between the theoretical and the observed dynamical properties of the fault 

signals. 
 

10.3.2 Fault isolation and interface module components 
 

10.3.2.1 Description 
 
Figure 10.2 presents the components of the fault isolation and interface modules which are an evolution of the fault 

isolation architecture proposed in Fig. 7.1 (Chapter 7). As mentioned in Section 10.3.1, the main idea of this new 

fault isolation approach is based on the fact that a given fault affecting to the monitored system will cause a unique 

temporal sequence of fault signals what will allow obtaining a diagnosis result comparing the dynamical properties 

of the observed fault signals with the ones stored for each fault hypothesis in the theoretical fault signature matrices, 

FSM (Section 9.3).  

                                                 
17
 Fault isolation methods built using a DES consist in a set of states connected by transitions (Sampath et al, 1996). The transitions are related to 

events generated by the fault effect on the monitored system, while the states indicate a certain situation of the whole fault isolation process. 

Moreover, when these transitions are built taking into account some temporal aspects, the discrete event model (DES) is known as a timed discrete 

event model (TDES) (Chen et al, 1997). 
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Fig. 10.2 Components related to the interface and fault isolation modules 

 
The fault isolation algorithm starts with the occurrence of the first fault signal (|φi(k)|≥0.5) and ends when there is 

only one fault hypothesis supporting the observed temporal sequence of fault signals or when the diagnosis time 

window Tw (Eq. (9.11)) (Section 9.3.2) has ended. Thereby, the first element of this algorithm is a memory component 

which registers some information of the observed fault signals, such as described in Section 7.3.2. The second 

element is a timed series inference component which compares the stored information of a new observed fault signal 

with the information stored in matrices FSM01, FSMtime, and FSMorder for those non-rejected fault hypotheses. 

The result of this series inference component is the rejection of those fault hypotheses that do not support the 

observations. When there is only one fault hypothesis left, the algorithm ends giving that hypothesis as the fault 

diagnostic result. Otherwise, when the time window Tw has ended, the third element, the pattern comparison 

component, computes factorsensitj for those non-rejected fault hypotheses. Then, the last element, the logic decision 

component, gives as a diagnostic result the fault with the biggest absolute value of the factor factorsensitj. 

Concerning the timed series inference component, this is a new component regarding the architecture presented in 

Fig. 7.1 and tries to take benefit from the event nature of fault signals and from the fact that a fault affecting the 

system will generate a unique temporal sequence of fault signals. In the following section, more detailed explanation 

of the performance of this component will be given. Finally, regarding the pattern comparison and logic decision 

components, they work as described in Section 7.3 using the architecture shown in Fig. 7.1. However, in the new 

architecture described by Fig. 10.2, these components are restricted to the fault residual sensitivity property since the 

binary, the fault occurrence time instant and the occurrence order properties are checked by the timed series 
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inference component. This approach assumes that the fault signal sign property is already set by the fault residual 

sensitivity property, as mentioned in Section 9.3.1.2.  
 

10.3.2.2 Timed series inference component 
 
The timed series inference component is based on the fact that each new fault signal allows rejecting those 

hypotheses that do not support the observations and in consequence, a diagnosis result can be given before the time 

window Tw (Eq. (9.11)) (Section 9.3.2) ends. Thereby, the rejection of a certain fault hypothesis when a new fault 

signal is observed is based on the comparison between the information related to this fault signal which is stored in 

the memory component and the theoretical properties of this fault signal for this fault hypothesis, which are stored in 

the matrices FSM01, FSMtime, and FSMorder. In consequence, the observation of a new fault signal will allow 

narrowing the subset of fault hypotheses which are still supporting the observations and consequently, the ones 

which are still candidates to set the diagnosis result. When there is just one fault hypothesis left, the reasoning 

process ends giving this hypothesis as diagnosis result. Otherwise, the process ends once the period of time Tw has 

elapsed since the observation of the first fault signal.   

This component can be built using a timed labelled transition system (Daigle et al., 2007) where the initial state is the 

non-faulty state, then, each fault hypotheses (set f) have a TLTS representation which are connected to this initial 

state. The TLTS representation associated with a given fault hypothesis shows the fault signal temporal sequence 

caused by this fault.  In each state transition, the properties of the new observed fault signal are compared with those 

stored in FSM01, FSMorder and/or FSMtime for this fault hypothesis. The present state of a fault hypothesis TLTS 

representation just indicates that this fault hypothesis is still supporting the observed fault signal temporal sequence. 

When a new fault signal occurs, for each non-rejected fault hypotheses, the state transition starting in the present 

state is evaluated. If this evaluation fails, the fault hypothesis is rejected. At the end of the diagnosis time window Tw, 

those non-rejected fault hypotheses will establish the final fault diagnosis result. 

According to the definition given by (Daigle et al., 2007), a TLTS can be seen as the following tuple 

Tj=(Qj,q0,Σj,δj)               (10.3) 

where Qj is the set of states, q0 is the initial state, Σj is the set of labels and δj is the set of transitions. Thus, when 

applying this TLTS definition to model the presented timed series inference component, there will be a tuple Tj 

related to every fault hypothesis fj that belongs to the set f of all the considered fault hypotheses. All these set of 

elements Tj  will just have one element in common: the state q0 related to the non-faulty state. Regarding the states 

Qpj∈ Qj, its number nQj is set by the number of fault signals φi(k) affected by the fault hypothesis fj. This is 

1

01
ny

Qj ij

i

n
=

=∑FSM              (10.4) 

The present state Qpj of Tj  just have the meaning that the fault hypothesis fj is still supporting the observations.  

Regarding the transitions δpj of the set δj, they connect Q(p-1)j with Qpj being q0 , the first state. Thus, there will be for 

a certain Tj , a transition for every fault signal related to the fault hypothesis fj: this is  nQj. In this way, the transition 

δpj will be related to the fault signal φi(k) whose theoretical occurrence order for this fault hypothesis is given by ‘p’ 

(FSMorderij=p). Thereby, concerning the sequence of transitions and states in Tj, they have an ascendant order set 

by p = 1,…, nQj . 
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About the labels Σpj of the set Σj, there is one for each transition δpj and consequently, for each fault signal φi(k) 

related to the fault hypothesis fj. Thereby, the evaluation of all the labels Σpj is carried out when the pth -fault signal 

φi(k) is observed. If the evaluation of Σpj fails, the fault hypothesis fj is rejected. Otherwise, the state Qpj becomes the 

present state of Tj . Thereby, Σpj is carried out evaluating the following relation 

( )( ) ( )( )( ) and
pj i ij i ref ij

ckeckorder k order ckecktime k k timeφφ∑ = ,FSM , ,FSM      (10.5) 

where the functions checkorder and checktime are given by Eq.  (7.19) and Eq.(9.13), respectively. 

According to the mentioned previously, a diagram of the set of elements Tj which models the performance of this 

timed series inference component is presented in Fig.10 3. 
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Fig. 10.3 Timed series inference component modelled using a timed labelled transition system 

 

10.4 Case of study 
 

10.4.1 Description  
 

This section uses the application example of 12 limnimeters of the Barcelona urban drainage system which was 

already explained in previous sections (Section 9.3). As mentioned, the used methodology applied to the selected 

sewer network (Fig. 7.3) let diagnose faults of a set fLm composed by 14 limnimeters modelling a set Lm of 12 

limnimeters using interval reduced observers with uncertain parameters. Thereby, the estimations given by the 

limnimeter models of the set Lm allow obtaining a set r of 12 residuals. Thus, according to Eq. (7.5), every residual of 

the set r determines a fault signal being φ the set of all possible fault signals caused by the faults of the set fLm.  

Then, a fault affecting a limnimeter of the set fLm will cause a temporal sequence of fault signals (a subset of φ) 

whose properties will let detect and isolate the fault using the new fault isolation algorithm presented in Section 

10.3.2 (Fig. 10.2). 
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10.4.2 Fault Signature Matrices   
 

In this section, fault signature matrices FSMsensit and FSMtime related to the considered case of study are given. 

These matrices are computed as shown in Section 9.3 assuming the observer gains li (ki=liai)(Eq. (9.21)) of all interval 

observers associated with the limnimeter set Lm are equal to 0.01 and the occurrence of the first fault signal is 

detected at time instant t0=4000 s. Thereby, they show the relationship between the limnimeter fault set flm and the 

properties of the fault signal temporal sequence φ originated by these faults and consequently, they let isolate 

limnimeter faults using either the fault isolation algorithm described in Section 10.3. As mentioned in Section 9.3, the 

other three matrices (FSM01, FSMsign and FSMorder) of the interface can be easily obtained from FSMsensit and 

FSMtime.  

 

Regarding FSMsensit (see Section 9.3.1), it must be taken into account that each element of this matrix is a time 

function, mainly, based on the sensitivity of residual related to a certain fault signal to a given fault hypothesis (Eq. 

(9.2)). Thus, in the following, the elements of FSMsensit matrix showed in Table 10.1 are just the fault residual 

sensitivity steady-state values instead of the ones derived from the use of Eq. (9.2). However, the presented fault 

isolation algorithm does use this equation to obtain the elements of FSMsensit. In this table, fLmj is a fault affecting 

the limnimeter Lmj while φLmi is the fault signal associated with the residual rLi obtained using the interval observer 

model of Lmi.  

 

f L03 f L07 f L08 f L09 f L16 f L27 f L39 f L41 f L45 f L47 f L53 fL56 f L80 fL54

φ L03 0.921 0 0 0 0 -0.340 0 0 0 0 0 0 0 0

φ L07 0 0.933 0 0 0 0 0 0 0 0 -0.150 0 0 0

φ L08 0 0 0.951 0 -0.752 0 0 0 0 0 0 -0.406 0 -5.162

φ L09 0 0 0 0.946 0 0 0 0 0 0 0 0 0 0

φ L16 0 0 0 0 0.977 0 0 0 0 0 0 0 -0.255 0

φ L27 0 0 0 0 0 0.789 0 0 0 0 0 0 0 0

φ L39 0 0 0 0 0 0 0.964 0 0 0 0 0 0 0

φ L41 0 0 0 0 0 0 -0.908 0.955 0 0 0 0 0 0

φ L45 0 0 0 0 0 0 0 -57.243 0 97.484 0 0 0 0

φ L54 0 0 0 0 0 0 0 0 0 0 0.265 -0.183 0 1

φ L56 0 0 0 0 0 0 0 0 0 0 0 0.802 0 0

φ L80 0 0 0 0 0 0 0 0 0 -14.085 0 0 1 0

FSMsensit Matrix

 

Table 10.1 Theoretical fault signature matrix related to the fault residual sensitivity property 

 
 

Table 10.2 presents FSMtime  matrix (see Section 9.3.2),  where the fault occurrence time intervals are expressed in 

seconds. According to the value of the presented FSMtime and Eq. (9.11), the value of the diagnosis time window for 

this scenario is Tw = 30600 s. 
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f L03 fL07 f L08 f L09 f L16 f L27 f L39 f L41 f L45 f L47 f L53 f L56 f L80 f L54

φ L03 [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [900,6300] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]

φ L07 [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [2100,5400] [-1,-1] [-1,-1] [-1,-1]

φ L08 [-1,-1] [-1,-1] [0,0] [-1,-1] [600,4200] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [900,4200] [-1,-1] [300,4200]

φ L09 [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]

φ L16 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [300,2400] [-1,-1]

φ L27 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]

φ L39 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]

φ L41 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [300,3900] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]

φ L45 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [300,1800] [0,0] [300,30600] [-1,-1] [-1,-1] [-1,-1] [-1,-1]

φ L54 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [0,0] [-1,-1] [0,0]

φ L56 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1]

φ L80 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [0,0] [-1,-1]

FSM time Matrix

 

Table 10.2 Theoretical fault signature matrix related to the fault signal occurrence time instant property 

 

10.4.3 Fault isolation method using the timed discrete-event 
approach  

 

In this section and for the considered case of study, a fault isolation process will be designed following the fault 

isolation architecture presented in Section 10.3 focusing on the timed labelled transition system used to model the 

timed series inference component (see Fig. 10.2) (Section 10.3.2.1). In this case, this fault isolation model will be 

built just considering a subset of  6 fault hypotheses affecting to L16, L27, L39, L41, L03 and L54 of the fault set flm  (Fig. 

10.4). In this figure, the label of the transition related to the fault signal φLmi for the fault hypothesis fLmj (fault 

affecting limnimeter Lmj)  will be noted as ΣLmi- Lmj (Eq. (10.5)) while all the states related to a certain fault hypothesis 

will be notated as fLmj .    

Non-faulty state

fL16 fL27

fL39 fL41

fL03

fL54

fL16 fL27

fL39 fL41

fL54

ΣL16-L16

ΣL08-L16

ΣL27-L27

ΣL03-L27

ΣL39-L39

ΣL41-L39

ΣL41-L41

ΣL45-L41

ΣL03-L03

ΣL54-L54

ΣL08-L54

Non-faulty state

fL16 fL27

fL39 fL41

fL03

fL54

fL16 fL27

fL39 fL41

fL54

ΣL16-L16

ΣL08-L16

ΣL27-L27

ΣL03-L27

ΣL39-L39

ΣL41-L39

ΣL41-L41

ΣL45-L41

ΣL03-L03

ΣL54-L54

ΣL08-L54

 

Fig. 10.4 Limnimeter fault isolation based on a timed LTS model 

 

The associated representation of this timed labelled transition system can be seen as the integration of all the 

information stored in FSM01, FSMorder and FSMtime in the same structure, as has been described in Section 

10.3.2.  

Focusing on a fault scenario where a fault affecting limnimeter L27 occurs at t0= 4000s, the time evolution of the 

affected residuals and their associated adaptive thresholds (Eq. (8.15)) are plotted in Fig. 10.5. 
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Fig. 10.5 Time evolution of the residuals and their adaptive thresholds. 

 

Analyzing the time evolution of those residuals and according to Eq. (8.15) and Eq.(7.5), the first observed fault signal 

will be φL27 (fault signal related to limnimeter L27 observer model) since time instant t=t0.  The value of  factorsensitj 

(Eq.(7.16)) and factortimej (Eq. (9.12)) related to all fault hypotheses of the set fLm  is presented in Fig. 10.6. It can be 

seen that only those factors related to the fault hypothesis fL27 are activated from the fault occurrence time instant. 

Then, according to the fault isolation discrete-event model presented Fig. 10.4 and the information stored in FSM01, 

FSMorder and FSMtime, all fault hypotheses except fL27 (fault affecting L27) will be rejected. Afterwards, the fault 

signal φL03 is observed supporting the LTS representation associated with fL27. 
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Fig. 10.6 Time evolution of factorsensitj and factortimej related to all fault hypotheses of the set fLm. 
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Fig. 10.7 Isolation of a fault affecting L27 using a Timed LTS model  

 

10.5 Conclusions 
 
This chapter proposes a model-based fault diagnosis method using a timed discrete-event approach based on interval 

observers which improves the integration of fault detection and isolation tasks. The interface between fault detection 

and fault isolation module considers the degree of fault signal activation and the occurrence time instant of the fault 

signals using a combination of several fault signature matrices which store the knowledge of the relationship between 

diagnostic signals and faults. Such fault signatures matrices can be derived from the system model using a fault 

residual sensitivity analysis. Moreover, exploiting the discrete-time event nature of the fault signals generated by the 

fault detection module, a fault diagnoser based on a timed discrete-event model can automatically be implemented.  

Using such approach, faults can be diagnosed since their occurrence generates a unique sequence of observable 

events (fault signals) that can be recognized by the isolation module. The states and transitions that characterize such 

a model can be inferred directly from the relationship between fault signals and faults. To exemplify the use and 

illustrate the effectiveness of the proposed approach, a real case study consisting in diagnosing faults of the 

limnimeters used for the global control of the Barcelona sewer network is used. 
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Concluding remarks 
 
 
 

11.1 Introduction 
 

According to the PhD thesis objectives determined in Section 2.5 (Chapter 2) and the work carried out in the 

previous chapters, this chapter summarize the main contributions of this PhD thesis. It must be noticed that this 

contributions were already described in each corresponding chapter. Moreover, in this chapter it is also pointed out 

the further work derived from the main obtained results.  

Without taking into account the introduction chapter (Chapter 1) and the chapter of the state of the art (Chapter 2), 

the obtained contributions and conclusions will be described showing their relations regarding the planned objectives 

(Section 2.5).  

 

11.2 Contributions  
In the following subsections of this section, the contributions derived from every general group of objectives 

(Section 2.5) will be illustrated, as mentioned above. 
 

11.2.1 Fault detection objectives 
 

The contributions related to this group of objectives were obtained in Chapter 3, Chapter 4 and Chapter 5 of this 

PhD thesis document. Thereby, regarding the fault detection objectives set in point (a) of Section 2.5.1, the main 

contributions are: 

(a) Illustration of the influence of the observer gain on the time evolution of the fault residual sensitivity function. 

(b) Determination of the minimum detectable fault function when considering an interval observer-based approach 

pointing out its dynamical aspects and the influence of the observer gain. This point can be considered as an 

extension of the triggering limit concept introduced by (Gertler 1998). 

(c) Determination of a fault classification according to the time evolution of their detectability: permanently 

detected (strong fault detection), non-permanently detected (weak fault detection) or just non-detected. 

(d) Determination of the adaptive threshold related to the interval observer and the effect of the observer gain on it. 

(e) Determination of the influence of the observer gain on the envelopes associated with the system output 

estimation interval computed by the interval observer. 

(f) Illustration of the influence of the observer gain on the fault detectability. 

These contributions were mainly derived from Chapter 3 which illustrates that the performance of the fault detection 

module is established by the adaptive threshold related to the interval observer. Thereby, this adaptive threshold 

depends on the uncertainty, and by the different fault residual sensitivity functions related to the residual generator 

built up using the interval observer model. This chapter signals out that both observer fault detection properties have 
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an associated dynamics which depends basically on the observer gain. As a result, the observer gain can be seen as 

the tuning parameter of the interval observer which may allow obtaining the required fault detection performance. 

On the other hand, Chapter 4 tackles the set of fault detection goals enumerated in point (b) of Section 2.5.1 being its 

main contributions: 

(g) Observer gain design procedure to avoid the wrapping effect when using low computational algorithms 

(set/region-based approaches) to compute the system output estimation interval at every time instant. 

(h) Influence of this observer gain design procedure on the performance of the fault detection module. 

The main conclusion of this chapter is that designing properly certain elements of the observer gain matrix, the 

wrapping effect can be avoided when using low computational algorithms. A drawback of this procedure is that the 

interval observer fault detection performance might be affected negatively. Nonetheless, this effect might be 

counteracted setting properly the values of the other elements of the observer gain matrix. 

Concerning the last set of fault detection objectives (point (c) of Section 2.5.1), they are carried out in Chapter 5 

obtaining the following contributions:  

(i) Design procedure to obtain a λ-order interval predictor equivalent to a certain interval observer from their fault 

detection performance point view. 

(j) Illustration that when state-space matrix of the interval observer satisfies the isotonicity property (Chapter 4), 

the system output estimation interval can be obtained by the fault detection equivalent predictor using two 

known point-wise trajectories. 

The main conclusion of Chapter 4 is that a λ!!-order interval predictor equivalent to a certain interval observer 

regarding their fault detection performance can be obtained. It must be noticed that predictors do not suffer either 

from the wrapping effect or from the initial condition sensitivity problem (Table 2.1). Moreover, if the interval 

observer is isotonic, the system output estimation interval related to the equivalent interval predictor can be 

computed using two known point-wise trajectories. 
 

11.2.2 Fault detection/isolation interface objectives  
 

This group of objectives was tackled in Chapter 6, Chapter 7 and part of Chapter 9. However, Chapter 6 has only a 

motivational function regarding the non-accurateness associated with a binary interface between fault detection and 

fault isolation. Thereby, the main conclusion of this chapter is that the fault detection module and the fault isolation 

modules can not be considered separately such as it is proposed by those methods using a binary interface but the 

dynamical properties of the fault signals must be considered. This non-binary fault detection/isolation interface 

allows adding more fault distinguishability to the fault isolation algorithm and besides, takes into account the effect 

of the fault detection module on the fault isolation result. 

Concerning Chapter 7, this chapter is based on the fault isolation method proposed by (Puig et al, 2005b) focusing 

on the interface between fault detection and fault isolation. In (Puig et al, 2005b), the properties of a non-binary 

interface are described without giving a procedure for its construction. In this chapter, the different steps which must 

be followed to build up this interface according to a passive robust fault diagnosis approach based on interval 

observers are given. The most of these steps will be tackled in Chapter 8, Chapter 9 and Chapter 10. Thereby, the 

main contributions of this chapter are: 

(a) Adaptation of the method proposed by (Puig et al, 2005b) to a passive robustness approach based on interval 

models. 
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(b) Procedure to model the Barcelona sewer network in order to detect and isolate faults affecting the limnimeter 

sensors. 

The main conclusion of Chapter 7 is that the accurateness of the whole fault diagnosis process is notably enhanced 

when a set of properties related to fault signals is considered to isolate the fault instead of just considering the binary 

property. It is in the following where this interface is further tested using an interval observer-based fault diagnosis 

approach. 

As mentioned, the last contributions in this group of objectives related to the interface between fault detection and 

isolation were obtained in Chapter 9:  

(c) Illustration of the importance of the fault residual sensitivity functions on the fault isolation process since they 

determine the dynamics of the fault signals and the structure of the theoretical fault signature matrices (FSM). 

(d) Procedure to compute the theoretical fault signature matrices when using interval observers and when 

considering the time evolution of the fault signal properties. 

 The main conclusion of this chapter regarding this interface is that for those fault diagnosis approaches based on 

analytical models it is very important to know the expressions of the fault residual sensitivity functions since they 

rule not only the results of the fault detection stage but also the results of the fault isolation module. They determine 

the dynamics of the generated fault signals and the fault signals which will be affected by a given fault (structure of 

the FSM matrices).  
 

11.2.3 Fault isolation objectives  
 

As described in Section 2.5, the last group of objectives is related to the fault isolation module which was tackled in 

Chapter 8, part of Chapter 9 and Chapter 10 obtaining a set of new contributions. Thereby, Chapter 8 focuses on the 

fault isolation objectives shown in point (d) of Section 2.5.2 being its main contributions: 

(a) Adaptation of the method proposed by (Puig et al, 2005b) applying interval observers. 

(b) Illustration that the result obtained by the fault isolation module is influenced by the fault detections module 

and therefore, both modules can not be considered separately. This influence is due to problems affecting the 

fault detection module (Table 2.1) and to the fact that the isolation of a fault requires the activation of a subset 

the residuals in a certain period of time. This result justifies the use of the interface proposed by (Puig et al, 

2005b). 

(c) Illustration that the observer gain has a key influence on the result given by the observer gain. This influence 

derives from the effect of the fault detection module on the fault isolation process and from the fact that the 

detectability of a fault depends on the observer gain, such as depicted in Chapter 3. 

(d) Adaptation of the procedure to model the Barcelona sewer network in order to detect and isolate faults affecting 

the limnimeter sensors applying interval observers. 

The main conclusion of this chapter is that the fault detection and fault isolation modules can not be considered 

separately when designing a fault diagnosis process. This is due to the fact that the results given by the fault isolation 

module depend significantly on the time evolution of the fault signals generated by the fault detection stage. The 

importance of this aspect is remarkable since, as mentioned previously (Table 2.1), fault detection is affected by 

some inherent problems and fault isolation requires the activation of a subset of fault signals in order to isolate the 

fault without any error.  Moreover, this influence of the fault detection module on the fault isolation process stands 

out even more the fact of considering a set of fault signal properties in the interface between both modules instead of 

considering just the binary property. As a last conclusion of this chapter, the influence of the observer gain on the 
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fault isolation result is derived from since, as concluded in Chapter 3, the generation of fault signal by the fault 

isolation stage is ruled by the observer gain. 

Concerning the fault isolation goal described in point (e) of Section 2.5.2, Chapter 9 allow obtaining the following 

contribution: 

(e) Illustration of the importance of the observer gain matrix L on the fault isolation process since its influence on 

the dynamics of the fault residual sensitivity functions, such as demonstrated in Chapter 3. 

 The main conclusion of this chapter regarding this aspect is that the observer gain matrix L have also a key influence 

on the fault isolation module since, as demonstrated in Chapter 3, this matrix determines the dynamics of the fault 

residual sensitivity functions. In consequence, a proper design of this matrix might allow enhancing the fault 

isolation result according to a certain requirements. 

The last contributions are achieved in Chapter 10 which focuses on the fault isolation objectives shown in point (f) of 

Section 2.5.2: 

(f) Illustration that the fault isolation module should be modelled using a timed discrete-event models since the 

fault signals generated by the fault detection module can be considered as a discrete-event that occurs at a 

certain time instant. 

(g) Procedure to model the fault isolation module using a timed discrete-event approach when monitored system is 

modelled applying an interval observer approach. 

(h) Proposition of a new fault diagnosis method derived from the results obtained in the Part II of this PhD thesis. 

This method can be seen as an evolution of the proposed by  (Puig et al, 2005b). 

The main conclusion of this chapter is that modelling the fault isolation module using a timed discrete-event 

approach allows enhancing the performance of this module regarding its accurateness. This result derives from the 

timed discrete-event nature of the fault signals generated by the fault detection module. Besides, it must be noticed 

that this aspect does not depends whether the monitored system is modelled analytically or qualitatively.    

 

11.3 Further work  
 

When all the required tasks were carried out in order to achieve the planned objectives, some new important aspects 

regarding passive robust fault diagnosis based on intervals observers appeared which were kept out of the scope of 

this PhD thesis. However, they were listed as a further work since the analysis of these points may enhance the 

performance of the interval observer regarding the whole fault diagnosis process. This set of new tasks, which were 

kept as a further work, is:  

(a) Disturbance and noise influence on the performance of the fault detection module and the effect of the observer 

gain on it. 

(b) Observer gain design procedure to avoid some of the fault detection drawbacks related to the analytical model 

approaches (Table 2.1): i.e avoiding the wrapping effect minimizing the noise effect.  

(c) A proper extension of the concept minimum detectable fault in a multiple fault scenario. 

(d) Design procedure of the elements of the observer gain matrix which have not been set to avoid the wrapping 

effect in order to counteract the possible negative influence of obviating this effect. 

(e) A proper definition of the minimum isolable fault and its benefits when considered in the fault diagnosis stage. 

Design procedure to enhance the fault isolation result using the observer gain matrix as a tuning parameter in order to 

add more fault distinguishability. 
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Appendices 
 
 

Appendix A 
 

In this section, it is demonstrated that the residual relation given by Eq. (3.31) is satisfied when the interval observer 

(Eq.(3.7)) is stable and both its state-space matrix A and its observation gain matrix L are positive, assuming the 

observability of the system (Eq. (3.1)) for all ∈θ Θɶ . Besides, the observer gain is assumed to satisfy the following 

relation: ≤ ≤o p0 L L , understood element by element. According to these assumptions, it is satisfied: 

(a) ( )ij ij0 a≤ ≤LC  being aij and (LC)ij the elements placed in the ith-row and jth-column of matrices A and LC, 

respectively and where , ,...,i j 1 nx=  

(b) ( ) ( )ij ij0 ≤ ≤o pL L  being (L)ij and (Lp)ij the elements placed in the ith-row and jth-column of the observation gain 

matrix L and its value when a predictor model is used, respectively and where ,...,i 1 nx=  and ,...,j 1 ny=  

(c) 1− <A LC  

According to Eq. (3.29) of Section 3.2.3, 

1
r( k ) (q , ) ( k ) ( k )−+ = L=0r H θ r r           (12.1) 

where the transfer function 1
r ( q , )−H θ  is given by Eq.(3.27) and, as mentioned in Section 3.2.3, the term ( k )L=0r  

corresponds to the residual generated by the simulation approach. Then, Eq. (12.1) can be re-written as follows using 

the matrix inversion lemma  

( )( ) 1
1 1

0 0
0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
k

k j

j

k q k k j
−

− − −
= = =

=

= − − = − ∑L 0 L 0 L 0r I C θ I A θ L r r C θ A θ Lr     (12.2) 

Particularizing Eq. (12.2) for the residual interval upper bound (
1

1
0

0

( ) ( ) ( ) ( ) ( )
k

k j

j

k k j
−

− −
= =

=

= − ∑L 0 L 0r r C θ A θ Lr which 

satisfies the relation ( )k 0>r
18 in a non-faulty scenario and noticing that the term 

1
1

0
0

( ) ( ) ( )
k

k j

j

j
−

− −
=

=
∑ L 0C θ A θ Lr  is a 

function of the matrix L, every component related to the residual upper bound ( )kr  achieves its maximum value in 

the range ≤ ≤0 LC A  for =L 0  (that is, when the observer eigenvalues are equal to the ones related to the 

monitored system). On the other hand, in the predictor case ( p=L L ) this term can be approximated taking into 

account that ( )ko =A θ 0  for k nx>  since in this case all the observer eigenvalues are placed at the origin. In 

consequence, every component related to the residual ( )kr   achieves its minimum value. Finally, considering a 

                                                 
18 ( )k >r 0  should be understood component by component, that is: ( ) , ,ir k 0 i 1 ny> = ⋯  
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value of the observer gain ( o=L L ) which is between the two previous extreme cases, the expression 

≤ − ≤0 A LC A  allows establishing the following relation for whatever time instant k>0  

( ) ( ) ( ) 1, ,
p o

i i i
r k r k r k i ny≤ ≤ =

L L L=0
⋯                                         (12.3) 

Conversely, for the case of the residual interval lower bound which satisfies the relation ( )k 0<r  in a non-faulty 

scenario, a similar expression can be obtained using an analogous reasoning: 

( ) ( ) ( ) 1, ,
p o

i i i
r k r k r k i ny

=
≥ ≥ =

L=L L L L=0
⋯                                         (12.4) 

As a result of Eq. (12.3) and Eq. (12.4), the following relation is obtained 

                              ( ) ( ) ( ) 1, ,
i i i
r k r k r k i ny     ⊆ ⊆ =   p oL=L L=L L=0

⋯                  (12.5) 

 

completing the proof. 

 

Appendix B 
 

This section illustrates the required condition so that the residual relation given by Eq. (3.31) can be satisfied in 

steady-state. Although it is not strictly necessary, as hypothesis, it will be assumed all the elements of matrix A are 

positive and the observer gain matrix L satisfies the relation ≤ ≤o p0 L L , understood element by element. 

According to Eq. (3.29) of Section 3.2.3, the residual fullfils the following relation: 

( )( )1
( ) q ( ) (k ) ( k )

−+ − = L=0I C θ I A θ L r r          (12.6) 

where, the term ( k )L=0r  corresponds to the residual generated by the simulation approach. Then, Eq. (12.6) can be 

expressed in steady-state as 

( )( )1
( ) ( ) ( ) ( )

−+ − ∞ = ∞ L=0I C θ I A θ L r r         (12.7) 

Thus, applying the contractivity property (see Definition 2 in Section 2.3.2.5.2) of a linear system, the relation  

[ ] [ ]( ) ( )∞ ⊆ ∞ L=0r r            (12.8) 

is satisfied when 

( )( )1
( ) ( ) 1

−+ − ≥I C θ I A θ L          (12.9) 

Then, given that A and C are constant matrices and L satifies the relation ≤ ≤o p0 L L , the following residual 

relation can be written 

( ) ( ) ( ) 1, ,
p

i i i
r r r i ny     ∞ ⊆ ∞ ⊆ ∞ =    oL=L L=L L=0

⋯       (12.10) 

Eq. (12.9) confirms that the elements of matrices A, C and L do not have to be positive. 

 

Appendix C 
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In this section, it is demonstrated that the steady-state of the residual sensitivity to a input fault,Sfu, (Eq.(3.49)) 

satisfies the relation (3.53) when the interval observer fullfils 0 ≤ ≤LC A  and ≤ ≤o p0 L L , neglecting the direct-

input matrix D (D≈0). Thus, Eq. (3.49) can be written as: 

( )( )11

1
( ) lim ( , ) ( ) ( ) ( ) ( ) ( )fu fu u

q
q

−−

→
∞ = == − + −s S θ C θ I LC θ A θ B θ F θ     (12.11) 

According to procedure applied in Section 3.3.3, Eq. (12.11) can be seen as the steady-state value of  Sfu for an abrupt 

fault modelled as a unit-step function (Gertler, 1998). Then, considering that this fault occurs at time instant k=0 and 

propagating Sfu from this time instant until k=∞, Eq. (12.11) can be written as: 

( )
1

1

0

( ) ( ) ( ) ( ) ( ) ( )
k

k j

fu u

j k

−
− −

= →∞

 
∞ = − − 

 
∑s C θ A θ LC θ B θ F θ        (12.12) 

Since the estability of the interval observer is assumed and it satisfies  0 ≤ ≤LC A  and ≤ ≤o p0 L L , the following 

relation can be written: 

0 ( ) ( ) ( ) 1≤ − ≤ ≤A θ LC θ A θ          (12.13) 

In consequence, the steady-state of Sfu (Eq. (12.11)) will satisfy the relation given by Eq. (3.53). This is 

, , ,
( , ) ( , ) ( , ) 1, , 1, ,

i j i j i jf f f
s s s i ny j nu= = =∞ ≤ ∞ ≤ ∞ = =

p oL L L L L 0
θ θ θ ⋯ ⋯      (12.14)
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