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List of Symbols

A list of symbols used in this work is given.

C parameter of conformal mapping
Cox oxide capacitance
D absolute term for integration
E electric field
~E vector of an electric field
E0 electric field at Silicon-SiliconOxide interface
Ec critical electric field (saturation voltage)
Ep electric field when entering high field saturation region
Ex, Ey components electric field
E⊥ normal component of the electric field
~ex unit vector in x-direction
~ey unit vector in y-direction
f conformal mapping function
F inverse conformal mapping function, also

standard (Lagrange) elliptic integral
Ids source-drain current
Idsat saturated source-drain current
i imaginary unit

√
−1

K complete elliptic integral of the first kind
L, Lch channel length
ld channel length shortening
N number of edges of a polygon
NA acceptor doping concentration
NB donor doping concentration
ND doping concentration
n mobile charge density
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iv

ni intrinsic charge density
P complex potential function
Qdep depletion charge
Qinv inversion charge
q elementary charge
qi inversion charge per unit volume
r gradient
t coordinate in complex plane
tox oxide thickness
t∼ox transformed oxide thickness
Tch, Wch channel thickness
u coordinate in complex plane
V voltage
Vbi build-in voltage
Vd′ virtual defined voltage
Vds drain-source voltage
Vdsat saturated drain-source voltage
Vfb flat band voltage
Vge equals (Vgs − Vth) /αi
Vgs gate-source voltage
Vgs−bottom gate-source voltage applied to bottom gate
Vgs−top gate-source voltage applied to top gate
Vgs+ virtual gate-source voltage
Vgs− virtual gate-source voltage
Vox voltage along the oxide
Vt thermal voltage
Vth threshold voltage
v coordinate in complex plane
w coordinate in complex plane
Wch, Tch channel thickness
x coordinate in complex plane
xm position of the potential minimum along the center line
y coordinate in complex plane
z coordinate in complex plane
∆ Laplace operator
∇ Del operator
ε0 dielectric permittivity
εSi dielectric permittivity of Silicon
εox dielectric permittivity of Silicon Oxide
θ fitting parameter for the mobility
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v

µ0 maximum mobility of charge carriers
µeff effective mobility of charge carriers
ρ charge density
Φ electric potential
Φ2D 2 dimensionally electric potential
Φ1′2 · · ·Φ71′′ electric potential caused by the corresponding boundary piece
Φdg electric potential within DG FET
φ1D 1 dimensionally solution of Poisson’s equation
φ2D 1 dimensionally Laplace equation
φi inversion potential
φf it fit parameter for the inversion potential
φs surface potential
ϕ2D 2 dimensionally solution of Poisson’s equation
Ξ imaginary part of the solution of the complex potential
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Chapter 1

Introduction

”The complexity for minimum component costs has increased at a rate of

roughly a factor of two per year ... Certainly over the short term this rate

can be expected to continue, if not to increase. Over the longer term, the

rate of increase is a bit more uncertain, although there is no reason to believe

it will not remain nearly constant for at least 10 years. That means by 1975,

the number of components per integrated circuit for minimum cost will be

65,000. I believe that such a large circuit can be built on a single wafer.”

– Gordon Moore, 1965

1.1 History

In 1958 the first integrated circuit (IC) was invented. Only 5 years later

Fairchild introduced CMOS circuits [1] and ”Silicon Valley” was born. Ever

since researchers try to increase performance, energy efficiency and size.

Fulfilling Moores law [2] is the official goal of semiconductor industry. Defined

are those goals in the International Technology Roadmap for Semiconductors

(ITRS) [3]. Fundamentally is the Metal-Oxide-Semiconductor-Field-Effect-

Transistor (MOSFET), which is shrunken down to allow a exponentially
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2 Introduction

Figure 1.1: Ideal schematic device structures of a DoubleGate FET,
TripleGate FET and a QuadrapuleGate FET.

grown number of devices on a chip.

As scaling is expected to reach the 20nm barrier in a few years, MultiGate

FETS become more and more important. A few of the most promising

and popular are the DoubleGate FET (DG FET), the TripleGate FET

and the QuadrupleGate FET, shown in Fig. 1.1 from left to right. They

idea was published by [4]. Since then, other multiple-gate SOI MOSFETs

have been introduced [5], [6] such as Triple-Gate (TG), FinFET, Pi-Gate

(PG), Quadruple-Gate (QG), Surrounding-Gate (SGT), also called Gate-

All-Around (GAA), Omega-Gate (Ω-G), etc. Those structure ideas are still

challenging to manufacture so studies of them base mainly on numerical

device simulations. Scaling SingleGate MOSFET below 100nm (the current

record is 3nm gate length [7]) requires high doping and steep doping gradients,

which is detrimental for the charge carrier mobility. With MultiGate devices

a fully depleted body can be used with low doping [8]. On the other hand

it makes the understanding and modeling of the devices more difficult. Due

to more gates, field lines are influenced more dimensionally compared to the

single gate transistor. Even though there is a lot of research around these

different types of multiple-gate MOSFETs, until now, only the DG MOSFET

is predicted to be introduced in 2011 due to its advantages [3].
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1.2 Circuit Design and Modeling 3

1.2 Circuit Design and Modeling

Increasing number of transistors require increasing performance of design tools.

Designing new integrated circuits involves the use of several electronic design

automation (EDA) tools for high-level digital design, mask level synthesis, and

simulation and modeling of discrete devices. Digital as well as analog systems

are simulated uncountable times to ensure their function in any possible case.

Those cases can be variation of the environment like temperature changing,

hydration variation or power supply variation.

1.2.1 Device Simulations

Discrete devices simulators, such as ATLAS [9], TCAD (Technology Computed

Aided Design) Sentaurus [10] or Minimos-NT [11], use a grid on 2D surface or

3D volume and solve each point with the help of a partial differential equation

solver on a iterative way. Depending on the number of point a simulation can

take several hours.

Beside a wide variation of materials, such as Silicon, Metal, etc. a device

simulator offers to vary a wide variety of parameter to change, such as

temperature, pressure and so forth. Also the variability of models such as

carrier statistics, and current continuity seems endless.

Nevertheless, in addition to the wealth of details necessary for an accurate

treatment of complex processes, numerical simulations often offer unparalleled

insight into the understanding of physics problems. They can analyze and pre-

dict the behavior of novel devices and reduce development costs. Nevertheless,

for circuit simulations this is this not applicable.
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4 Introduction

Figure 1.2: Model types for circuit simulator

1.2.2 Circuit Simulations

The circuit simulators SPICE [12] and Eldo [13] are two of the most famous

circuit simulators. For that a wide kind of models for devices exist, older

models such as BSIM 3v3 [14],PCIM [15], Motorola Model [16] and EKV [17]

and models for more advanced devices like the BSIM 4 [18], BSIM 5 [19, 20],

PSP [21, 22] or HiSim [23, 24, 25, 26]. Choosing the most effective or most

exact model for the circuit simulation is a difficult task and often leaves the

circuit designer with a dilemma, whether to choose a time-consuming precise

model or a more simplified and quick model for simulation and parameter

extraction.

1.2.3 Models for Circuit Simulators

In general such models for circuit simulators can be divided in three types of

models [27], [28]:

• physical based models

• empirical models

• numerical models
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1.2 Circuit Design and Modeling 5

Figure 1.2 shows a diagram of how they are related to each other. Physical-

based models try only to use the physics-based equation to describe the

behavior of the transistor. These models have the advantage that they can

describe the behavior of scaled devices. However the equations are often not

continuous for all transistor states and several equations are used. Their

accuracy is not that good described to other model-types [29], [30].

Physical-based models without introduction of empirical fitting paramet-

ers. Those models are often introduced in literature to describe the

behavior of transistors with relative long channel length or single electric

device characteristics like threshold voltage [31].

Empirical models are the model type in-between physical-based and numerical-

fit model. Those models use the physical-based equation and introducing

some fitting parameters to simplify and improve the models. Unfortu-

nately these fitting parameters reduce the ability to predict behavior of

transistors with changed physical characteristics.

Numerical-fit models use expressions without any relation to the basic

principals of the device. Equations for a numerical fit models have an

uncountable number of fitting parameters and every change of physical

device parameters requires a complete new set of fitting parameters.

For all models count the same requirements [31], [32]:

• The model must describe the behavior of the device as exact as possible.

The difference between model and real device depends on the application;

analogue systems needs higher accuracy compared to digital systems

[33].

• Circuit simulators work with iterative methods to solve electrical con-

nections within a design. This needs a lot of time and according to save

calculation power and time the model should consist of analytical closed

form equation or similar equation like look-up tables. These models
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6 Introduction

are called compact models. However a good compact model is always a

compromise between accuracy and efficiency.

• Convergence reasons require models which are constantly differentiable

in first derivative.

• Modern circuit designs consist of a wide variation of devices. It is

desirable to use one set of parameters [34].

1.3 State of the Art

This chapter gives an introduction about current modeling ideas for the

DoubleGate MOSFET. For all MOSFETs Poisson gives the basic equation

∆Φ(x, y) = −ρ
ε

= − q

εSi
(NS + n) , (1.1)

rewritten to fit an n-channel device. q the electron charge, εSi the permittivity

of silicon, NS and n are the acceptor doping and mobile charge density,

respectively.

For compact modeling of the drain current there are three main strategies

• drift-diffusion, carriers experience a considerable amount of collisions

in the conducting channel [35]

• ballistic, carriers have enough energy to cross the barrier before being

subjected to significant scattering [36]

• quasi-ballistic, which is a ballistic transport with a statistical ballistic

carrier scattering quotient included as a model parameter [37]
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1.3 State of the Art 7

1.3.1 Long Channel DG MOSFET

Most models presented for DG MOSFETs so far are for undoped devices with

a long enough channel to assume that the transport is due to the drift-diffusion

transport mechanism [38, 39, 40, 41]. A lot of approaches are for long-channel

modeling. Hereby electric field associated with charge carriers terminate

mainly underneath the gate oxide. The device has a long channel behavior

and the Poisson equation needs only to be solved 1D in transversal direction

to the channel to capture the main body effects. Short channel effects are

taken into account by suitable approximations. In the case of a long-channel

symmetrical undoped device, an analytical solution of 1D Poisson’s equation

is obtained [39], [40]. Making some approximations, a charge control model

based on this solution can be derived [42].

A 1D transversal approach of Poisson’s equation is not suitable, when the

device is heavily doped. Assuming that the light doping represents relatively

few carriers in a thin device, the electrostatic effect from the dopants can be

regarded as negligible in strong inversion. Some approximations have been

made to find an analytical solution in moderate or weak inversion [43]. It

is assumed that in sub-threshold when the mobile charge density is much

less than the body doping concentration, it is found that φS − φ0 is constant.

Poisson can be reduced to its depletion form, taking only into account the

fixed charges. Another approach is the modeling presented in [44], a model

which is valid from weak to moderate inversion. Modeling of doped devices

can be thought of by having two single gate transistors, with two inversion

channels close to the gates. This implicitly assumes that the current flowing

through the device center is negligible compared to the inversion carrier

current found at the body/insulator interfaces.
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8 Introduction

1.3.2 Short Channel DG MOSFET

In so-called short-channel devices, the length/height aspect ratio is so small

that the 2D effects contribute so much to the device behavior that they

become non-negligible when modeling. This manifests itself through various

short-channel effects (SCEs), such, for example drain-induced barrier lowering

(DIBL) [45]. If the transport mechanism is drift-diffusion, a compact analytical

solution seems difficult to obtain, since it has to be determined self-consistently

with the current continuity equation, which includes the quasi-Fermi potential.

An exception is the subthreshold regime where the quasi-Fermi potential is

constant in most of the channel [46]. A threshold based short-channel model

was be found by solving Poisson’s equation with only the mobile charge term.

Nevertheless, to take into account short-channel effects in those devices a 2D

approach is needed, where both the capacitive coupling between the electrodes

(source, drain and gates) and the electrostatic effects of the space charge are

self-consistently included.

To calculate a 2D Poisson approach different mathematical methods are

used. In lightly doped DoubleGate devices the potential follows in principal

Vgs − Vfb, whereby Vgs is the gate-source voltage and Vfb is the flatband

voltage. By disregarding doping dependent and free carriers Frank [47] and

Liang [48] managed to use a infinite series of sinh and sin functions. For an

aspect ratio (length/height) larger than 2, the modeling yields good results

retaining only a couple of terms of the series. With a higher Vds (drain-source

voltage) free carriers need to be taken into account.

Munteanu [49] uses an empirical function to model the electrostatic po-

tential. The electrostatic potential is divided into separate transversal and

lateral solutions,

φ(x, y) = φSxA(x, y). (1.2)

φS is the surface potential on the body/insulator interface, and A(x, y) =
B(x,y)
B(x,y=0)

is an envelope function, modulating the surface potential. Empirical

approaches uses often an parabolically shaped profile in sub-threshold.
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1.3 State of the Art 9

Francois publishes an empirical approach with a power law for above

threshold regime in [41], whereby the profile is

φ(x, y) = a+ b(x)y + c(x)yn. (1.3)

With this approach it is possible to calculate a channel length modulation

of a DG FET. In general empirical functions are suitable candidates a few

adjustable parameters to account for some intricate modeling details. Never-

theless, those approaches are rather quasi-2D than fully 2D and due to the

complexity in the terms often simplified.

A new idea for solving 2D Poisson is to split it up in a Laplace equation,

which represents the capacitance part

∆φ2D(x, y) = 0 (1.4)

and a 1D Poisson part, which represents the mobile charges

∆Φ(x, y) = ∆φ(2D)(x, y) + ∆φ(1D)(x). (1.5)

This has the advantage that both parts are self-consistent and it results in

a more flexible way to solve Poisson’s equation. With the re-introduction

of conformal mapping technique it was possible to solve 2D Poisson more

physics related. The approach was successfully applied to bulk MOSFETs

[50], [51] and [52], as well as DG FETs [53], [38].

In further work the Schottky-Barrier in DG MOSFET was calculated by

Schwarz, [54, 55, 56].

1.3.3 Asymmetrially biased Double Gate MOSFET

In a DG MOSFET structure a asymmetrically biased structure is possible.

DG MOSFETs have in addition to the inherent suppression of short-channel

effects and naturally steep subthreshold slope, a high drive current (Ion)
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10 Introduction

and transconductance, generally attributed to the two channel property of

the symmetrical device [57]. Nevertheless, a electrical coupling is assumed

between both gates. This charge coupling of the two gate structures underlies

the noted features of the device, which translates into a high Ion/Ioff ratio

when threshold voltage is proberly controlled [58].

To gain such a control, it has been shown that asymmetric gates of n+

and p+ polysilicon are a first approach [59] and [60]. Nevertheless, with such

an approach, the device has only one predominate channel, which might

undermines the current drive.

For independently biased DG MOSFETs only few models exists. The

first model was developed by Taur in 2001 [61]. A one-dimensional (1-D)

analytic solution is derived for an undoped (or lightly doped) double-gate

(DG) MOSFET by incorporating only the mobile charge term in Poisson’s

equation. The solution is applied to both symmetric and asymmetric DG

MOSFETs to obtain closed forms of band bending and inversion charge as a

function of gate voltage and silicon thickness.

In [62] a model for asymmetrically biased DG MOFETs with long channels

was published. Unfortunately this model offers no numerical solution and was

derived from a Bulk MOSFET approach. Also, in [63] Nakagawa published

an improved almost closed-form version to his previous model in [64], this

model covers short-channel effects with a rather weak description.

M. Chan [65] ignores in his approach the vertical carrier distribution,

which maybe valid in bulk MOSFETs. According to him, it cannot fully

account for the behaviors observed in DG MOSFETs such as volume inversion

and quantum confinement by the dielectric barriers. This requiers a fully

2D approach, here a quasi-2D approach is used. Nevertheless, Chan offers a

quasi-2D model for the saturation characteristics of the DG MOSFET. The

channel of the device is divided into gradual channel approximation (GCA)

region and velocity saturation region (VSR).
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1.4 Outline of the Thesis 11

1.3.4 Multi-Gate MOSFET

With more gates, the modeling approaches become more and more challen-

ging. The model in [66] by Chevillon accounts for all major small geometry

effects and allows accurate simulations of both n- and p-type FinFETs. The

model core is physics-based (long-channel model) and has some semiempirical

corrections.

So far, mostly sub-threshold or near-threshold models for FinFETs are

published. As in [67] for subthreshold conditions, the electrostatics is assumed

to be dominated by capacitive coupling between the body electrodes, thus

the potential is obtained as a solution of the 2D Laplace equation with

the help of conformal mapping techniques. In the near-threshold regime,

Poisson’s equation is solved using quantum-mechanical charge density, in the

gate-to-gate direction to model the total potential.

Recently with an idea how to introduce of third dimension to the conformal

mapping technique it was possible to adapt a more physics-based approach to

FinFETs [68, 69, 70], which resulted in a closed-form current equation [71],

[72].

More often approaches to solve Gate-All-Around (GAA) MOSFET can

be found. In [38] the approach to solve a DG MOSFET with the help of

conformal mapping technique is extended to meet the requierments of GAA

MOSFETs. A lot of approaches use conformal mapping technique to come to

more physics-related models, [73, 74]

1.4 Outline of the Thesis

In this thesis a new way to find a saturation point in a DoubleGate MOSFET

is presented. This saturation point is identified when the electric potential

maximum, which is at the beginning of the channel located underneath the

UNIVERSITAT ROVIRA I VIRGILI 
ANALYTICAL PREDICTIVE 2D MODELING OF PINCH-OFF BEHAVIOR IN NANOSCALE MULTI-GATE MOSFETS 
Michaela Weidemann 
DL:T-1801-2011 



12 Introduction

Silicon-SiliconOxide interface, moves into the middle of the channel. Based

on this definition a fully 2D model is created to calculate the position of

the saturation point. Throughout this thesis all results are compared to a

numerical device simulator TCAD Sentaurus [10].

After the introduction in chapter one, chapter two primarily deals with the

mathematical basics that are used in here. The conformal mapping technique

is explained, which is used to solve a 2D integration system in analytical

closed form. With the help of the Schwarz-Christoffel [75], [76] approach a

z-plane is transformed into the upper half of w-plane and the equations can

be determined.

Chapter three presents a channel length model for a Single Gate MOSFET.

Chapter four explains the device physics of a symmetrical biased DoubleG-

ate FET in saturation. Whereby a new method, used in this thesis, to identify

the saturation point is presented. Afterwards the model is explained with all

necessary approaches.

Introducing an extension of the DG model in chapter five, the saturation

points of an asymmetrically biased DG FET can be calculated. Whereby at

the beginning of chapter four first the physical characteristics of the pinch-off

point are explained.

In chapter six the saturation-point in a FinFET is analyzed. Also it gives

an idea about a model approach for a FinFET.

Chapter seven draws a conclusion.

In the appendix the closed form solution to solve the integration system

for the 2D Laplacian is described.

UNIVERSITAT ROVIRA I VIRGILI 
ANALYTICAL PREDICTIVE 2D MODELING OF PINCH-OFF BEHAVIOR IN NANOSCALE MULTI-GATE MOSFETS 
Michaela Weidemann 
DL:T-1801-2011 



Chapter 2

Mathematical Basics

In general in MOSFETs with very small geometries, the potential distribution

and therefore the electrical field lines are more-dimensional. In order to take

as many effect into account as possible and to come to a closed solution for

the equations later, the complex potential theory was used to solve the partial

differential equations. In this work a so called conformal mapping technique

was applied to solve a 2D Laplace integration system. This idea comes from

[75], [77], and [78].

2.1 Harmonic Functions

The general definition of the Poisson equation is

∇ · E (r) =
ρ (r)

ε
. (2.1)

This partial differential equation, based on Maxwell, is valid for electrostatic

and mechanical engineering as well as theoretical physics problems. In a

partial differential equation the charge density ρ along a gradient r results

in the electric field E . Since the permittivity ε depends on the material, the
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14 Mathematical Basics

equation for silicon is

−∇ · E (r) = ∆Φ (r) = − ρ (r)

ε0 · εSi
. (2.2)

Written in a 3-dimensionally Cartesian:

∆Φ (x, y, z) = −ρ (x, y, z)

ε
=

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φ (x, y, z) . (2.3)

With no space charge it results in a special case of the Poisson equation,

∆Φ (x, y, z) = 0 (2.4)

a so called Laplace’s equation. Using proper boundary conditions this equation

can be solved. Solution of Laplace’s equation are called harmonic functions

with some specific properties [75], [77], [79], [80].

• Principle of superposition holds

• A function Φ that satisfies Laplace’s equation in a closed volume and

satisfies one of th following type of boundary conditions on the enclosing

boundary is unique.

– the value of the function is specified on the whole boundary (Di-

richlet condition)

– the value of the normal derivative, n ·∇Φ, is specified on the

whole boundary (Neumann condition), whereby n is the (outward-

pointing) unit normal vector

– the function Φ is specified on part of the boundary and n ·∇Φ on

the rest.

• If Φ satisfies Laplace’s equation in a region, bounded by the surface,

Φ can attain neither a maximum nor a minimum within the region.

Extreme values occur only on the surface.
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2.2 Complex Potential Theory 15

2.2 Complex Potential Theory

A Laplace’s equation is adaptive to several different coordinate systems like

the rectangular or Cartesian, the spherical and the cylindrical. Conformal

mapping is one method to transform a 2D system from one geometry to

another. Usually the way to solve Laplacian is to choose a coordinates system

wherein the boundary surface coincides with the surface and one of the

coordinates is constant. For using conformal mapping the problem has to be

2D and boundary conditions have to contain only two variables (x and y).

Giving every complex number of the variable z the value of a variable w,

using w = u (x, y) + iv (x, y), then it w a complex function of the complex

variable. A complex function eventually maps all points within a volume of

an area z into points in an area w.

Assuming an equation z = x+ iy and a function f (z) [80], [81]

f (z) = u (z) + iv (z) = u (x, y) + iv (x, y) (2.5)

The variables x and y are real valued and u and v are real valued functions

of these variable. As derivation results

f ′ (z) = lim
∆z→0

f (z0 −∆z)− f (z0)

∆z
. (2.6)

To fulfill the Cauchy-Riemann-Condition it is necessary that the derivatives of

f (z) exist in a point z. The partial derivatives of u and v obey the following

condition
∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (2.7)

On the other hand, if the continuous, partial derivatives of u and v fulfill

the Cauchy- Riemann condition, f ′ (z) at that point exists. With a second

derivation of u and v the result is

∂2u

∂x2
+
∂2u

∂y2
= 0 and

∂2v2

∂x2
+

∂v

∂y2
= 0. (2.8)
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16 Mathematical Basics

Figure 2.1: In electrostatics the real part of P = Φ (x, y) + iΞ (x, y) is
defined as electric field, the imaginary part is called the stream
function. Here both functions are exemplary plotted and cross
each other in a right angle.

Until those derivations exist and are continuous, they are harmonic functions;

Because they are solutions of the Laplacian. In electrostatics the real part

u of the complex harmonic solution of Laplace’s equation f(z) is defined as

electric potential. The imaginary part v is called the stream function. Its

level curves are called stream lines. The name comes from the analogy in

fluid flow. This equation is called complex potential function. [75], [77]

P = Φ (x, y) + iΞ (x, y) = u (x, y) + iv (x, y) (2.9)

Assume, then, in the complex harmonic function w = u+ jv, the real part

u(x, y) = Φ as the potential function; the field strength vector E follows as

greadient in the real x, y-plane,

~E = Ex~ex + Ey~ey (2.10)

with

Ex =
∂Φ

∂x
and Ey =

∂Φ

∂y
. (2.11)

By using Eqn. (2.7) and Eqn. (2.11) and the Cauchy-Riemann condition
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2.3 Conformal Mapping 17

it results in

E = Ex + iEy = −∂Φ

∂x
− i∂Φ

∂y
= −∂u

∂x
+ i

∂v

∂x
= −

¯(
df (z)

dz

)
, (2.12)

the absolut value of the complex derivative as a direct measure of the field

strength

|E| =
∣∣∣∣df (z)

dz

∣∣∣∣ (2.13)

and the the conjungate complex derivative is the equivalent of the two-

dimensional gradient of the vector analysis.

The so called potential function

P = Φ (x, y) + iΞ (x, y) (2.14)

can be used to calculate either the characteristics of the equipotential lines

(Φ (x, y) = constant) or the characteristics of the field lines (Ξ (x, y) =

constant) as shown in Fig. 2.1.

2.3 Conformal Mapping

Two complex planes are given

z = x+ iy and w = u+ iv. (2.15)

Assumed the function is analytic at the point z = z0, where f ′(z0) 6= 0, there

exists a neighbourhood of the point w0 in the w-plane in which the function

w = f(z) has a unique inverse

z = F (w). (2.16)

The functions f and F defines a change of variables from (x, y) to (u, v)

and from (u, v) to (x, y), respectively. When this change of basis is defined
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18 Mathematical Basics

through an analytic function all curves in the z-plane that cross each other

at an angle are mapped into curves in the w-plane that cross each other at

exactly the same angle. This is why the mapping is called conform. The

curves can be the boundaries or equipotential curves, electric field lines or

any curves.

In particular since the set of curves that are horizontal in the z-plane

are perpendicular to the set of curves that are vertical the two sets will be

mapped into perpendicular sets in the w-plane. Of course the opposite is also

true. To be noted is that in points where f or its inverse is not analytical the

transformation is not conform.

2.3.1 Transformation of a Potential

With the proper transformation of function Eqn. (2.9) to a w-plane [75]:

P̃ (u, v) = Φ̃ (u, v) + iΞ̃ (u, v) (2.17)

the partial solutions of P̃ (Φ̃ and Ξ̃) are harmonic functions and therefore

solutions of a scalar potential problem. They also give the value of the electric

field with respect to the geometry

|E| (z) = |E| (w) ·
∣∣∣∣dwdz

∣∣∣∣ . (2.18)

This means an integration along a line in the z-plane has the same result

as an integration along the transformed function in w-plane. From that the

charge for Poisson’s equation ρ (z) 6= 0 needs a scaling as well

ρ (w) =
ρ (z)∣∣dw
dz

∣∣2 (2.19)
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2.3 Conformal Mapping 19

(a) (b)

Figure 2.2: Area wherein 2D Laplacian is solved in z-plane. b.) Area
transformed with Schwarz-Christoffel upon w-plane. All points
are now located on the real axis.

2.3.2 Mapping the Insides of Closed Polygons

Transforming an area with polygon shaped boundaries it is possible to use

Schwarz-Christoffel for this [75], [76]. After mapping the function z = f(w)

in the w-plane the function is placed in upper region of the w-plane as shown

in Fig. 2.2. The polygon shaped boundary conditions lay then flat on the

real axis. The differential dz
dw

is calculated by

dz

dw
= C (w − w1)γ1 (w − w2)γ2 . . . (w − wn)γn = C

∏
n

(w − wn)γn (2.20)

The vertexes of the polygon are represented by zn = f(wn). Whereby each

angle change is given by πγn. The angle change is measured with the enclosed

region on the left hand. Points which change during transformation to

w = ±∞ are not considered. The transformed function is Eqn. (2.21) with

the integration constant D. This constant gives the origin of the coordinate

system z-plane.

f (w) = C

∫ ∏
n

(w − wn)γn dw +D (2.21)

To find all parameters for the conformal mapping still some relations with

the z-plane are necessary. The distance of two parallel polygon components
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is given with γn = +1 and the point zn =∞

z′n − z′′n = −iπC
∏
a6=n

(wn − wa)−γa (2.22)

Additionally with wn = ±1 Eqn. (2.22) can be simplified

z′n − z′′n = −iπC (2.23)

A polygon with N vertexes has wa points. Together with the integration

constants C and D we have N +2 unknown parameter. Just three parameters

can be chosen, so N − 1 parameters have to be solved with Eqn. (2.22) and

Eqn. (2.23).

2.4 Decomposition Strategy

Depending on the complexity of the structure, in where the Laplace Equation

will be calculated, a closed-form solution might not be found. The Poisson

Equation needs an additional scaling of the space charge ρ with Eqn. (2.19).

Also, for some models it might be necessary to include the inversion charge,

which needs a scaling as well. That can result in an iterative process to find

a solution for the potential.

Throughout this work the idea is to divide the Poisson Equation into

an one-dimensional, particular part Φ1D(x) and and a two-dimensional part

Φ2D(x, y). Whereby the two-dimensional part represents the solution of the

Laplacian,

∆Φ(x, y) = −ρ
ε

= ∆Φ1D(x) + ∆Φ2D(x, y). (2.24)

The one-dimensional part Φ1D(x) might contains the space charge or the

inversion charge. This makes it possible to add these charges without a

complex scaling process. Unfortunately, the effects, which can be included

can only depend on x or y direction.
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2.5 Potential Solution of Boundary Conditions 21

2.5 Potential Solution of Boundary

Conditions

The strategies to solve 2D boundary conditions here presented are for Laplace

Euqations. With the before explained decomposition idea only potential

solutions for Laplace Equations are necessary, because this strategy makes it

possible apply those to Poisson’s Equations.

The, in this thesis, used structures only require Dirichlet boundary con-

ditions and since the law of superpositioning holds, all types of boundary

conditions can be solved.

2.5.1 Discontinuous Points

A region is conformally mapped with Eqn. (2.20) together with the enclosing

polygon [78], [82]. However the vertexes zn are not. These points are isolated

singularities or F (wa) = 0. For that it is possible to converge very close to

those points. Whenever the potential solution within w-plane is continuous

the points can be handled as conformally mapped [75]. Figure 2.3 shows in a.)

two points on the u-axis with potential ϕ with an infinitesimal small distance

u. This infinitesimal distance at w = u leads to

P = Φ + iΞ = dϕ+ i
dϕ

π
· ln (w − ū) . (2.25)
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(a) (b)

Figure 2.3: The solution for two electrodes along the real u-axis is well
known. a.) Two electrodes having a potential difference dϕ and
an infinitesimal gap between them at position u. The potential
solution of this problem will be used to calculate the solution
of a problem with boundary conditions as shown in b.). This is
done by superposition of two electrode formations with different
u and dϕ.

2.5.2 Boundary Integral

The normal component of the electric field of two electrodes, which shows a

difference of dϕ in potential (Figure 2.3 a.)), can be calculated by [82], [50]:

dE⊥ (w) = −∂Φ

∂v
=
∂Ξ

∂u
=

∂

∂u

dϕ

π
· ln (u− ū) =

dϕ

π

1

u− ū
(2.26)

because of the Cauchy-Riemann condition. Additional with the scaling,

necessary because the electric field is within the closed polygon, it comes to

dE⊥ = dE⊥ (z) =

∣∣∣∣dwdz
∣∣∣∣ dϕπ ·

1

u− ū
. (2.27)

If more than one boundary condition is present in a way shown in Fig.

2.3 a.) and the infinitesimal small gap ū is on different positions, it will

result in a cascaded alignment of potential difference dϕ, Fig. 2.3 b.). For

the infinitesimal small distance at the vertex point ū, the potential can be

calculated with

dϕ =
dϕ (u)

∂u

∣∣∣∣
ū

dū. (2.28)
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2.5 Potential Solution of Boundary Conditions 23

Finally the normal component of the electric field along the boundaries can

be calculated with [78], [82]

E⊥ (u) = E⊥(z) (w) =

∫ +∞

−∞
dE⊥(z) =

1

π

∣∣∣∣dwdz
∣∣∣∣ ∫ +∞

−∞

1

u− ū
dϕ

du

∣∣∣∣
ū

dū (2.29)

2.5.3 General Laplacian Potential Problems and

Conformal Mapping

Since Riemann states [83] that any simply connected region bounded by

rectangular curves can be mapped into the interior of a unit circle in a one-

to-one manner, the general potential problem should be solved for a unit

circle [75]. The function z = re(jφ) is assumed to have boundary problems of

the first kind or Dirichlet. So, the Poisson integral can be used to solve the

complex potential function as shown in Figure 2.4:

P =
1

2π

∫ 2π

0

ejφ
′
+ z

ejφ′ − z
Φ (φ′) dφ′ ≡ Φ + jΞ. (2.30)

The real part has the form

Φ =
1

2π

∫ 2π

0

1− r2

−2r cos (φ− φ′) + r2
Φ (φ′) dφ′. (2.31)

Coordinate (r, φ) defines a point A within the unit circle and φ′ a point on

the unit circle. However, most mapping problems are mathematically easier

when mapped into the upper half of a w-plane instead of mapped into the

unit circle, see Figure 2.5. With the mapping function

w = j
1− z
1 + z

(2.32)

a unit circle can be mapped into the upper half of w-plane by Schwarz-

Christoffel. The corresponding parameters for this are represented by

z = j
w − j
w + j

, ejφ
′
= j

u′ − j
u′ + j

, dφ′ = j
2du′

1 + u′2
. (2.33)
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Figure 2.4: Solution of first boundary value along the unit circle.

When placed into

P =
j

π

∫ +∞

−∞

1 + u′w

(1 + u′2) (w − u′)
Φ (u′) du′ = Φ + jΞ (2.34)

it results in the general solution of the first boundary value problem. In (2.34)

u′ is the integration variable along the real u-axis and w is the arbitrary point

where the potential P exists. Taking only the real part of the equation, it

leads to the equivalent of Poisson’s integral on the unit circle,

Φ =
1

π

∫ +∞

−∞

v

(u− u′)2 + v2
Φ (u′) du′. (2.35)

UNIVERSITAT ROVIRA I VIRGILI 
ANALYTICAL PREDICTIVE 2D MODELING OF PINCH-OFF BEHAVIOR IN NANOSCALE MULTI-GATE MOSFETS 
Michaela Weidemann 
DL:T-1801-2011 
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Figure 2.5: Solution of first boundary value problem of the unit circle
transformed into upper half of w-plane.

2.6 Transforming the Structure

In this work a 2-corner structure is used in where 2D Poisson is solved. The

2-corner structure has the advantage, that it is relatively simple to solve in

terms of mathematical effort compared to for instance a 4-corner structure.

This structure includes the SiliconOxide in order define simple boundary

conditions. In this section, the transformation of the oxide as well as the

transformation of the structure from z into w-plane and back, is explained.

2.6.1 Transformation of the Oxide

In order to keep the approach for the conformal mapping technique as simple

as possible the discontinuity of the electric field caused by the different

permittivities of the gate oxide and the Silicon must be neglected. This can

be done by scaling the oxide according to the relationship of the permeability

of SiO2 and Si. Because of the small thickness of the oxide the electric field
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in the oxide is assumed to be homogeneous and can be written as

Dox = ε0 · εSi · E0 = ε0 · εox · Eox = ε0 · εox ·
Vox
tox

(2.36)

Whereby Dox is the dielectric displacement and Vox the voltage drop across

the oxide and E0 is the electric field right underneath the Silicon-SiliconOxide

interface in the Silicon. With

t∼ox =
εSi
εox

· tox (2.37)

as thickness for the oxide, the electric field E0 is continuous at the interface

Dox = ε0 · εSi · E0 = ε0 · εSi
Vox
t∼ox

, (2.38)

because the voltage drop along the oxide stays unchanged.

2.6.2 Conformal Mapping of the Structure

Before defining the boundary conditions, the equations for transforming a

2-corner structure from z- plane to w-plane and backwards must be defined.

For this just a plane 2-corner structure is used. This rectangular shaped basic

element has three pieces, A, B and C as shown in Figure 2.6. Transferring it

from z-plane into w-plane Poisson’s equation can be solved in there.

With Schwarz-Christoffel this simple structure, can be converted easily.

Table 2.1 shows the relation between points in z-plane and w-plane as well as

the relevant angle change [78].

Together with Eqn. (2.20) the simple defined structure leads to

dz

dw
=

C√
w − 1

√
w + 1

(2.39)
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2.6 Transforming the Structure 27

Figure 2.6: Basic element as transformed from z-plane to w-plane to
solve Poisson’s equation.

Table 2.1: Definition of the points of the basic element transformed by
Schwarz-Christoffel

n wn zn πγn γn

1 ±∞ +∞ +π +1
2 -1 z2 +π

2
1
2

3 +1 z3 +π
2

1
2

and after integration

z = f(w) = 2C · ln
(√

w − 1 +
√
w + 1

)
+D (2.40)

For D is chosen 0, because the absolute coordinates are not relevant. Constant

C can be calculated by Eqn. (2.23):

z′1 − z′′2 = i∆y = iπC ⇐⇒ C =
∆y

x
(2.41)

Now all parameters for the conformal mapping are solved.

To transform a boundary condition of a potential problem from the z-plane

into the w-plane and for the transformation of the solution calculated in the

w-plane back into the z-plane it is important to know the transformation

function for a point on the boundary. Eqn. (2.40) gives the conformal
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28 Mathematical Basics

mapping function from z into w-plane

w = F (z) = cosh

(
πz

∆y

)
(2.42)

and the inverse function give the re-transformation. So, for the electrodes the

solutions are:

Electrode A: u (x) = w (x, 0) = cosh
(
πx
∆y

)
Electrode B: u (y) = w (0, y) = cos

(
πy
∆y

)
Electrode C: u (x) = w (x,∆y) = − cosh

(
πx
∆y

) (2.43)
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Chapter 3

Single Gate Bulk MOSFET

In this chapter a modelling approach for a Single Gate bulk MOSFET is

presented.

The basic idea of the model is to define a rectangular area from the

pinch-off to the drain region wherein Poisson’s equation is solved in 2D. The

area includes the oxide as shown as gray rectangle in Figure 3.1. The oxide is

drawn in brown and the inversion charge in blue.

For this approach the Poisson equation is solved in 2 dimensions. After that

the equation is decomposed in an 1D Poisson and a homogeneous 2D Laplacian

part. From here the 2D Laplacian is transformed with conformal mapping

Figure 3.1: Structure of the bulk single gate MOSFET as used in this
approach. The oxide is drawn in brown and the inversion charge
in blue. Area wherein Poisson is solved in gray.
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30 Single Gate Bulk MOSFET

Figure 3.2: Cut-out of the region wherein Poisson is solved with the
space charge region and charge sheets.

Figure 3.3: Rectangle area wherein Poisson is solved in the z-plane with
numbered points for the charge sheets and corners.

technique in w-plane. Now the 2D Laplacian can be solved and retransformed

in z-plane. As a last step this solution must be re-superpositioned with the

1D Poisson particular solution to receive the final solution as shown in Figure

3.5.

Figure 3.1 to Figure 3.4 show the chosen area wherein Poisson equation

is solved. Figure 3.1 shows where the structure is located in the MOSFET.

Figure 3.4: Rectangle area wherein Poisson is solved transformed into
upper w-plane. All point lay on the u-axis.
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Figure 3.2 shows the cut-out with the charge sheets and the space charge.

The charge sheets are explained in section 3.3. In Figure 3.3 is shown the

cut-out in z-plane with all important points. Finally in Figure 3.4 is the same

region shown conformally mapped in w-plane. All point lay on the u-axis.
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32 Single Gate Bulk MOSFET

Figure 3.5: Strategy to Solve 2D Poisson
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3.1 Decomposition of Poisson’s Equation 33

3.1 Decomposition of Poisson’s Equation

As mentioned before the conformal mapping technique is limited to two

dimensional systems and the Laplace equation. In this case the problem is

2D; nevertheless the Poisson includes the space charge density, see section 2.1.

By decomposing the equation the space charge can be neglected. However

the effect of the space charge has to be added later on again [84, 85, 86].

∆Φ(x, y) = −ρ
ε

= ∆Φp(x) + ∆ϕ(x, y) (3.1)

Whereby the decomposed parts are

∆Φp(x) = −ρ(x)

ε
and ∆ϕ(x, y) = 0 (3.2)

which leads to

ϕ(x, y) = Φ(x, y)− Φp(x) (3.3)

3.2 Simplification of Drain Region

In order to get an analytical closed-form of the solution the drain region needs

to be modified to simplify the geometry with a rectangular approximation.

For that the pn junction in drain region is considered as elliptic:(
γxj
αxj

)2

+

(
βxj
xj

)2

= 1 (3.4)

Whereby α is a technological factor, which describes the relation between

overlap or diffusion and channel region. While fitting an rectangle into the

elliptical pn-junction the connection point I appears as shown in Fig. 3.6.
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34 Single Gate Bulk MOSFET

Figure 3.6: Simplification of the drain region

Following that condition is

γ = α
√

1− β2. (3.5)

Assuming parameter β has a range between 0 and 1, the connection point of

the rectangle follows the border of the ellipse. Is β > 1 the channel length is

longer

L′ = L+ 2xj (α− γ) , (3.6)

3.3 Charge Sheets

In Fig. 3.7 a charge sheet is introduced underneath the drain region. With

the before introduced decomposition strategy, a one-dimensionally distributed

depletion region is necessary. At drain end this is not the case, because of the

different depth of the depletion region. By extending the depletion charge into

the entire substrate, the depletion charge would be one-dimensional. In order

to capture the 2-dimensionally effect of the depletion charge, it is necessary

to introduce a charge sheet.

The charge sheet represents part of the depletion charge and is at the

position when the 1D partial solution and the 2D Poisson’s solution have the

same value. As a result the 2D Laplacian is 0, see Fig. 3.8. The distance

between charge sheet and drain region is wide enough to avoid interference.
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3.4 Boundary Conditions of the Basic Element 35

The advantage is, that the 2-dimensionally influence of the depletion region

can be covered [78], [82], [50], [87] and [88], [89].

3.4 Boundary Conditions of the Basic

Element

The applied boundary conditions along the electrodes A, B and C (indicated

by blue letters) are shown in Fig. 3.7. The 2D Poisson solution Φk and Φd

and 1D particular solution Φp (both sides the same). Electrode B is zero.

These conditions were chosen with respect to the already introduced strategy

[90], [91].

Figure 3.7: Boundary conditions of the basic element; 2D Poisson solu-
tion Φk (electrode A) and Φd (electrode C) and 1D particular
solution Φp (both sides the same). Electrode B is zero.
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36 Single Gate Bulk MOSFET

3.4.1 Solution of Parabolically Shaped Boundaries

The basic boundary conditions along the electrodes A and C are parabolically

shaped in Fig. 3.7 or as special case linear functions

ϕ = B1x
2 +B2x+B3 (3.7)

From that the differential in the z-plane is

dϕ

dx
= 2 ·B1x+B2. (3.8)

Transformed into w-plane:

dϕ

du

∣∣∣∣
ū

= (2 ·B1x̄(ū) +B2)
∂x

∂u

∣∣∣∣
ū

(3.9)

For the electric field between the point a and b this equation must be put

into Eqn. (2.29):

E⊥a,b(u) =
1

π

∣∣∣∣dwdz
∣∣∣∣ ∫ ub

ua

(2 ·B1x̄(ū) +B2)
∂x

∂u

∣∣∣∣
ū

dū

u− ū
. (3.10)

To come to a closed-form solution the equation (2.43)

x̄(ū) =
∆y

π
arccosh(ū) (3.11)

must be replaced by an series expression exp(x) =
∑∞

k=0
xk

x!
. The correspond-

ing function is

ū cosh

(
πx̄

∆y

)
=

1

2

(
exp

(
πx̄

∆y

)
+ exp

(
− πx̄

∆y

))
=

1

2

∞∑
k=0

(
1 + (−1)k

) 1

k!

πx̄

∆y
.

(3.12)
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3.4 Boundary Conditions of the Basic Element 37

3.4.1.1 1. Approximation

For a first good approximation three elements of (3.12) are necessary

ū ≈ 1

2

(
2 +

(
πx̄

∆y

)2
)

= 1 +
1

2

(
πx̄

∆y

)
=⇒ x̄(ū) ≈ ∆y

π

√
2 (ū− 1)

(3.13)

3.4.1.2 2. Approximation

A better approximation are four elements

ū ≈ 1

2

(
2 +

(
πx̄

∆y

)2

+
1

12

(
πx̄

∆y

)4
)

=⇒
√

24 (ū− 1) ≈ πx̄

∆y

√
12 +

(
πx̄

∆y

)2

(3.14)

Now replacing
(
πx̄
∆y

)
≈ 2 (ū− 1) from Eqn. (3.13)

√
24 (ū− 1) ≈ πx̄

∆y

√
12 + 2ū− 2 (3.15)

That equation leads later on to some important simplifications.

In [78] is done an error estimation about this approximation. For realistic

devices with a the potential solution x̄
∆y
≤ 1 the second approximation of

Eqn. (3.13) leads to an error of maximum 12%.

Assemble Eqn. (3.10) with Eqn. (3.15):

E⊥a,b(u) =
1

π

√
1− u2

∫ ub

ua

(
2
√

3B1
∆y

π

√
ū− 1

ū+ 5
+B2

)
dū

(u− ū)
√
ū− 1

√
ū+ 1

(3.16)

The result can be split up in two parts

E⊥a,b(u) = g(u, ua, ub, B1) + h(u, ua, ub, B2). (3.17)
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38 Single Gate Bulk MOSFET

This equation gives the possibility to solve 2D Poisson by put in the Laplacian

conditions. The two part are

g(u, ua, ub, B1) = 2
√

3B1
∆y

π

√
ū− 1

ū+ 5
·

ln

(
uub + 3(u+ ub) + 5 +

√
(u2 + 6u+ 5)(u2

b + 6ub + 5)

uua + 3(u+ ua) + 5 +
√

(u2 + 6u+ 5)(u2
a + 6ua + 5)

ua − u
ub − u

) (3.18)

and

h(u, ua, ub, B2) =
B2

π

(
arcsin

(
ubu− 1

u− ub

)
− uau− 1

u− ua

)
(3.19)

3.4.2 Boundary Condition Along A

The basic approach for the boundary conditions along electrode A is

ϕk = Φk − Φp. (3.20)

For the particular 1D solution Φp it is necessary to define a a boundary

condition through the oxide (0 ≤ x < t∼ox) and through the channel region

(t∼ox ≤ x),

Φp =

Vgs − Vfb −
Vgs−Vfb−Vdsat−φi

t∼ox
·x for 0 ≤ x < t∼ox,

Vdsat + φi + Vsb + qNB
2ε0εSi

(x− t∼ox)
2 − E0k (x− t∼ox) for t∼ox ≤ x.

(3.21)

The gate-source voltage is Vgs, Vfb is the flatband voltage, Vdsat is the satura-

tion voltage. The inversion potential is represented by φi and the transformed

oxide thickness by t∼ox. q is the elementary charge and the (in this case) donor

acceptor concentration is NB.

The electric field E0k comes from the first derivation at beginning of

each part. The first part through the oxide of the particular solution is a

linear function, so there is no need to add this field. The second part is a
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3.4 Boundary Conditions of the Basic Element 39

parabolically shaped function with

E0k =
1
Cox

√
2ε0εSiqNB

ε0εSi
·Cox

√
Vdsat + φi (3.22)

Along electrode A, the particular solution and the 2D Poisson solution

are equal, Φp = Φp,

Φk = Φp =

Vgs − Vfb −
Vgs−Vfb−Vdsat−φi

t∼ox
·x for 0 ≤ x < t∼ox,

Vdsat + φi + Vsb + qNB
2ε0εSi

(x− t∼ox)
2 − E0k (x− t∼ox) for t∼ox ≤ x.

(3.23)

Therefore,

ϕk = Φk − Φp = 0. (3.24)

3.4.3 Boundary condition along B

The boundary condition on top of the oxide at the gate material - gate oxide

interface is

Φg = Vgs − Vfb. (3.25)

When subtracting the particular solution at position x = 0,

Φk|x=0 = Vgs − Vfb (3.26)

the resulting boundary condition is

ϕg = Φk − Φg = 0. (3.27)

3.4.4 Boundary condition along C

The same basic approach as for electrode A is used for electrode C,

ϕd = Φd − Φp. (3.28)
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40 Single Gate Bulk MOSFET

The particular 1D solution Φp has to be always the same,

Φp =

Vgs − Vfb −
Vgs−Vfb−Vdsat−φi

t∼ox
·x for 0 ≤ x < t∼ox,

Vdsat + φi + Vsb + qNB
2ε0εSi

(x− t∼ox)
2 − E0k (x− t∼ox) for t∼ox ≤ x.

(3.29)

On the drain end, the 2D Poisson solution has to take the drain region into

account (t∼ox ≤ x < βxj + t∼ox) and the charge sheet, located at depth xd:

Φd =



Vgs − Vfb − Vgs−Vfb−Vds−Vbi
t∼ox

·x for 0 ≤ x < t∼ox,

Vds + Vbi + Vsb for t∼ox ≤ x < βxj + t∼ox,

Vds + Vbi + Vsb + qNB
2ε0εSi

(x− βxj − t∼ox)
2 · · ·

· · · − E0d (x− βxj − t∼ox) for βxj + t∼ox ≤ x < xd,

Φp(x) for xd ≤ x.

(3.30)

The build-in voltage is given by Vbi, the drain source voltage by Vds. Again an

electric field is introduced when leaving the drain junction into the channel

with

E0d =
1
Cox

√
2ε0εSiqNB

ε0εSi
·Cox

√
Vds + Vbi + Vsb. (3.31)

To define the position xd of the charge sheet

xd =

qNB
2ε0εSi

βxj + E0d + Vds + Vbi + Vsb − Vdsat − φi
qNB

2ε0εSi
βxj + E0d − E0k

(3.32)

is used.

Since electrode A and B are defined to be 0, only electrode C needs to be

solved. The estimated solution is drawn in Fig. 3.8.

As first the important points needs to be transformed. The upper right

corner of the structure is defined as 0 point in z-plane, which is the point 1
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3.4 Boundary Conditions of the Basic Element 41

Figure 3.8: Resulting Laplacian ϕd boundary conditions for electrode
C.

in w-plane. The end of the oxide, marked as point 4○ in Fig. 3.7 is

a = cosh

(
πt∼ox
ld

)
. (3.33)

The end of the drain region, marked with 3○ is

b = cosh

(
π (βxj + t∼ox)

ld

)
. (3.34)

And the position of the charge sheet 2○ is

c = cosh

(
π (xd + t∼ox)

ld

)
. (3.35)

As last the point at the position where the electric field should be calculated

must be chosen. In this case it is the point 5○ at the Si-SiO2 interface at the

pinch-off point side

u = − cosh

(
πt∼ox
ld

)
. (3.36)

In a next step the parameters need to be placed in equation (3.18) and

(3.19).

The first part goes from 0 in z-plane to the Si-SiO2 interface and is linearly
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42 Single Gate Bulk MOSFET

shaped as shown in Fig. 3.8 on the previous page. Therefore:

E1 = h

(
u, 1, a,

Vds + Vbi − Vdsat − φi
t∼ox

)
(3.37)

The second part goes from the Si-SiO2 interface to the end of the drain

junction and is parabolically shaped

E2 = g

(
u, a, b,− qNB

ε0εSi

)
+ h

(
u, a, b, Ep +

qNB

ε0εSi
t∼ox

)
(3.38)

The third part goes from the end of the drain junction to the charge sheet

and is linearly shaped

E3 = h

(
u, b, c, Ep − Ed −

qNB

ε0εSi
βxj

)
(3.39)

From all parts the electric field with a real and an imaginary part is given.

In the pinch-off point is only the lateral electric field of interest. Therefore

the imaginary part of all three solutions are re-superpositioned.

Ek = E1 + E2 + E3 (3.40)

It is not necessary to calculate an electric field from the 1D particular solution,

because it has only a vertical component [91].

3.5 Calculation of the Channel Length

Shortening

As described before it is possible to calculate the electric field at the pinch-off

point in a analytical closed-form. To come from the electric field to the actual

channel length shorting it necessary to know the electric field at that point

and vary the length until this value is reached [90].

With the fit parameter Ep, the electric field at the pinch-off point, the
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3.5 Calculation of the Channel Length Shortening 43

model gets a start condition to calculate the saturation voltage at pinch-off

point [31], [92]

Vdsat =
Vge + LEp
Ep
Ec − 1


√√√√

1 +
2VgeLEp

(
Ep
Ec − 1

)
(Vge + LEp)2 − 1

 (3.41)

with

Vge =
Vgs − Vth

αi
. (3.42)

The channel length is given by L and the critical electric field by Ec. Vgs is

the gate-source voltage. As threshold model for Vth is used a 2D closed-form

model with conformal mapping technique from [78]. The body factor αi can

be calculated by

αi = 1 +
1

Cox
√

2ε0εSiqNB2
√
φi + Vsb

·
(

1− 1

1.744 + 08634 (φi + Vsb)

)
.

(3.43)

For the model must Vdsat ≤ Vds, which can be done by a smoothing function

with Ats = 10:

Vdsat−model = Vdsat − Vdsat
log
(

1 + exp
(
Ats ·

(
1− Vds

Vdsat

)))
log (1 + exp (Ats))

(3.44)

While applying an constant electric field at pinch-off point, the model

always over predicted the channel length shortening ld. Using Eqn. (3.41) the

saturation voltage is calculated independently of the applied Vds. With in-

creasing drain-source voltage the pinch-off point moves source-wards. Keeping

Vdsat at pinch-off point still constant the electric field Ep has to increase. To

include this effect in the model, the electric field is recalculated and receives

a Vdsat and Vds dependency. With increasing Vdsat and Vds the electric field

at pinch-off point increases in this approach. The 2D model for the channel

length shortening became with Ep(Vdsat, Vds) more accurate [91].

With the initial electric field Ep is calculated a Vdsat. From that an Ids
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44 Single Gate Bulk MOSFET

model is used which avoids the explicit calculation of the channel length

shortening ld and need no special mobility model in GCA [78], [87]. Because

it is a first order approximation, this model does not predict the output

conductance precisely. For that it is no substitute for a current equation

taking into account a channel length shortening.

Idsat =
µ0CoxW

L+ µ0
vsat

Vds

((
Vgs − Vth −

1

αi
Vdsat

)
Vdsat

+ (Vgs − Vth − αiVdsat) (Vds − Vdsat)
) (3.45)

While setting the current obtained by (3.45) equal to the current at pinch-off

point

Idsat = µ0CoxW
Ep

1 + Ep
Ec

(Vgs − Vth − αiVdsat) (3.46)

a closed-form equation results to recalculate the electric field Ep as function

of Vdsat and Vds:

Ep−model =
−vsatEc(αiV 2

dsat + 2VgsVds−model(1− Vth)− 2αiVdsatVds−model)

2Ec(Lvsat(Vth − Vgs) + µeffVds−model(Vth − Vgs))
1

+2EcαiVdsat(Lvsat + µeffVds−model)

1

+vsatαiV 2
dsat + 2vsatVds−model(Vgs − Vth − αiVdsat)

(3.47)

3.6 Results

In this chapter the results of the model are compared to simulation results of

TCAD Sentaurus [10]. In that simulations a drift-diffusion model with high

field saturation is used. To compare the simulation results with the model,
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3.6 Results 45

Table 3.1: Parameters of the simulated MOSET.

Parameter Value

channel width 100nm
oxide thickness 7nm
substrate doping concentration 1016cm−3

source drain doping profile Gauss
max. source/drain doping concentration 1020cm−3

the model for ld is put into a simple current equation

Ids =
µCoxW

L− ld+ µ
vsat

Vdss

(
Vgs − Vth −

α

2
Vdss

)
Vdss (3.48)

In order to make that model continuous from sub to above threshold Vdss is a

smooth value between Vds and Vdsat

Vdss = Vdsat − Vdsat
log
(

1 + exp
(
Ats ·

(
1− Vds

Vdsat

)))
log (1 + exp (Ats))

(3.49)

with Ats = 10.

3.6.1 Channel Length Modulation for Long Channel

Devices

With a modern fabrication process bulk MOSFETs with a channel length of

700nm down to 500nm can be easily produced. Here the model is compared

to simulation results of devices with this channel length, whereby the junction

depth xj is varied. The size of the MOSFET is described in Table 3.1

3.6.1.1 Channel Length 500nm and Junction Depth 200nm

Figures 3.9 and 3.10 on the next page show the output characteristics and

the output resistance for a channel length of 500nm and a junction depth of
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46 Single Gate Bulk MOSFET

Figure 3.9: Output characteristics with a channel length of 500nm and
an junction depth xj of 200nm; Ep = 105V/cm; Model - lines;
Simulation - symbols.

200nm. The total value of the output resistance is not that good predicted,

however the relative variation of Vds with respect to Vgs is accurately described.

Fitting parameter Ep for the model is 105V/cm. The lines represent the model

and the symbols the simulation results.

3.6.1.2 Channel Length 500nm and Junction Depth 100nm

In Figures 3.11 and 3.12 are shown the output characteristics and the output

resistance for a channel length of 500nm and a junction depth of 100nm. Lines

stand for the model and the symbols for the simulation results. The fitting

parameter for the electric field in the pinch-off point Ep stayed unchanged.

Compared to the results in Figures 3.9 and 3.10 the model gives better results.

3.6.1.3 Channel Length 700nm and Junction Depth 100nm

Output characteristics and the output resistance for a channel length of 700nm

and a junction depth of 100nm are shown in Figures 3.13 and 3.14. The lines
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Figure 3.10: Output conductance with a channel length of 500nm and
an junction depth xj of 200nm; Ep = 105V/cm; Model - lines;
Simulation - symbols.

Figure 3.11: Output characteristics with a channel length of 500nm
and an junction depth xj of 100nm; Ep = 105V/cm; Model -
lines; Simulation - symbols.
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48 Single Gate Bulk MOSFET

Figure 3.12: Output conductance with a channel length of 500nm and
an junction depth xj of 100nm; Ep = 105V/cm; Model - lines;
Simulation - symbols.

represent the model and the symbols the simulation results. The predicted

drain-source current looks very good. Also the total value for the output

characteristics fit very well. Again the fitting parameter for the electric field

in the pinch-off point stayed unchanged, which shows the good scalability of

the model.

3.6.2 Channel Length Modulation for Short Channel

Devices

In this section smaller device geometries are chosen. The effective channel

length is here between 50nm and 100nm. Compared to the results in section

3.6.1 here the fitting parameter Ep changed to 2 · 105V/cm. Even so the field

stays unchanged for 100nm and 50nm. This profs the second order influence

of this fitting parameter and the very good scalability of the model.
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3.6 Results 49

Figure 3.13: Output characteristics with a channel length of 700nm
and an junction depth xj of 100nm; Ep = 105V/cm; Model -
lines; Simulation - symbols.

Figure 3.14: Output conductance with a channel length of 700nm and
an junction depth xj of 100nm; Ep = 105V/cm; Model - lines;
Simulation - symbols.
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50 Single Gate Bulk MOSFET

Figure 3.15: Output characteristics with a channel length of 100nm;
Ep = 2 · 105V/cm; Model - lines; Simulation - symbols.

3.6.2.1 Channel Length 100nm

Figure 3.15 and 3.16 show the output characteristics and the output conduct-

ance of the model and the simulator [10]. Even the in Figure 3.16 described

output conductance shows a very good behavior considered it is the first

derivation of the output characteristics. For these results the drain-source

resistance are taken into account by using

Vds = Vds −Rds · Ids, (3.50)

whereby Rds was used as a fitting parameter.

3.6.2.2 Channel Length 50nm

In Figure 3.19 the by the model predicted channel length shortening of a

bulk MOSFET with 50nm are given. As expected the model shows a fast

increase while entering the saturation region. The output characteristics

and the output conductance are shown in Figure 3.17 and 3.18. The model

prognosticates the output conductance very precisely. Fitting parameter
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Figure 3.16: Output conductance with a channel length of 100nm;
Ep = 105V/cm; Model - lines; Simulation - symbols.

Ep = 2 · 105V/cm is the same as for 100nm channel length. Source-drain

resistance are taken into account by

Vds = Vds −Rds · Ids, (3.51)

whereby Rds was used as a fitting parameter.
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52 Single Gate Bulk MOSFET

Figure 3.17: Output characteristics with a channel length of 50nm;
Ep = 2 · 105V/cm; Model - lines; Simulation - symbols.

Figure 3.18: Output conductance with a channel length of 50nm; Ep =
2 · 105V/cm; Model - lines; Simulation - symbols.
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Figure 3.19: Predicted channel length shortening of the model with
a channel length of 50nm of the Bulk MOSFET; Ep =
2 · 105V/cm.
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Chapter 4

Symmetrically Biased Double

Gate MOSFET

In this chapter the model for a symmetrically biased DoubleGate (DG)

MOSFET is presented. For this a simple DG structure as shown in Fig. 4.1

was used. It has source and drain region attached an either side as well as

two gates. The oxide, drawn in gray, has the thickness tox and the channel

has the length Lch and the width Tch.

Both gates are biased with the same voltage in this chapter.

Figure 4.1: Simplified structure of a DG MOSFET as used in this
approach. The oxide, drawn in gray, has the thickness tox and
the channel has the length Lch and the width Tch.
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56 Symmetrically Biased Double Gate MOSFET

4.1 Device Physics

As described in [39] and [93] for long channel devices or a low source-drain

voltage in accumulation the electric field created by the electrons underneath

the gate oxide dominates the device electrostatics. The influence of source-

drain voltage is reduced with increasing gate voltage. With downscaling the

device or increasing source-drain voltage this voltage begin to effect the device

in accumulation. Like in standard single MOSFETs short channel effects take

place as shown in Fig. 4.2.

Comparing the potential contour plot of a DG in strong inversion with

no applied drain-source voltage (Vds) to a device with applied drain-source

voltage, the influence can be seen on the contour lines. For all plots source

and drain region as well as the gate material are omitted. In Fig. 4.3 with

no applied Vds the contour lines are all symmetrical and straight for a short

channel device with a channel thickness of 30nm and a channel length of

30nm. A long channel device can be assumed and a model for such can be

applied. In Fig. 4.4, Lch = 50nm and Tch = 10nm, the contour lines are

parabolically shaped due to the applied Vds = 1.4V and a Vgs = 1V . Also

at the source side of the channel the contour lines are much more bended,

whereby at the drain end the contour lines of the potential become straight

again [94, 95]

Looking at the E-current density distribution within channel region, Fig.

4.5 of the same device, it shows underneath the gate oxide the channel as

expected. Additionally the channel becomes smaller towards the drain end

and suddenly there is no longer charge directly located underneath the gate

oxide. Instead the charge is spread equally over the whole channel. This

behavior is very similar to the pinch-off behavior of standard single gate

MOSFETs.

Searching for the path of the electric potential maximum, the maximum

is located at source end at both Si− SiO2 interfaces. In Fig. 4.6 the path of
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4.1 Device Physics 57

Figure 4.2: Drain-Source voltage vs. drain current for a DG MOSFET
with Lch = 50nm and Tch = 10nm. After reaching saturation
voltage, short channel effects take place.

Figure 4.3: Potential contour plot showing strong inversion conditions
for the double-gate device whereby (Vds) = 0; Channel thickness
of 30nm and a channel length of 30nm. The flat region close
to the gates (red) indicates that long-channel modeling can be
applied. The source and drain contacts in purple. [93]
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58 Symmetrically Biased Double Gate MOSFET

Figure 4.4: Electric potential distribution within channel region and
gate oxide of DG MOSFET with an applied Vds = 1.4V and
Vgs = 1V, Lch = 50nm and Tch = 10nm. Drain and source
region are cut out as well as the gate material.

Figure 4.5: E-current density distribution within channel region and
gate oxide of DG MOSFET with an applied Vds = 1.4V and
Vgs = 1V, Lch = 50nm and Tch = 10nm. Drain and source
region are cut out as well as the gate material.
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4.2 Model 59

Figure 4.6: Path of the electric potential maximum along the channel
drawn in red. Vds = 1.4V and Vgs = 1V, Lch = 50nm and
Tch = 10nm. Drain and source region are cut out as well as the
gate material and oxide.

the electric potential maximum is drawn along the channel in red. Source

and drain region, as well as the gate and gate oxides are omitted. Going in

drain direction along the channel the maximum changes location from the

gate oxide interface into the middle of the channel with a sudden move.

That point is defined as pinch-off point. After hitting this point the whole

channel appears to be in saturation.

4.2 Model

The position of the saturation point is influenced by the gate voltage Vgs

and the applied drain voltage Vds. Of course manufacturing parameters,

such as doping, influence the saturation point as well. However, during

operation mostly Vgs and Vds change and have a 2-dimensionally influence

on the saturation point. Therefore a 2D approach to calculate the channel

length shortening is necessary [96, 97].

The approach of solving an Poisson’s equation system with conformal

mapping technique is the same as in Fig. 3.5 in the previous section. For this
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60 Symmetrically Biased Double Gate MOSFET

Figure 4.7: Definition of the area wherein 2D Poisson is solved in red
lines. Th area has length ld and includes both oxides.

approach the 2D Poisson solution is decomposed in a 1D Poisson solution and

a 2D solution of a Laplacian part. In a next step conformal mapping technique

was applied to the 2D Lapace equation. This equation is transformed into

w-plane to find a solution easier. Afterwards a re-transform of everything

back into z-plane was done and re-superpositioning with the 1D Poisson part.

This results in a 2D Poisson solution.

The definition of the area, wherein 2D Poisson’s equation is solved, is

a 2-corner structure with a rectangular shape. It is drawn in Fig. 4.7 in

red lines. This structure goes from the pinch-off point to the drain end and

includes both silicon oxides. The length of the rectangle was defined as length

ld, what represents the channel length shortening. The 2-corner structure was

chosen to simplify the mathematical effort to solve it.

Fig. 4.8 shows the cut out of the region wherein 2D Poisson is solved. The

electric field goes simplified from the drain end in direction of the pinch-off

point end. The E-field lines are drawn in a simplified way in straight lines.

Initially the introduction of a 4-corner problem is necessary to define the

saturation point boundary. Instead the 2-corner structure was mirrored to

force an electrical field of 0 in the saturation point even if some E-field lines

go into the direction of the gate, see Fig. 4.9. The electric field Ep 6= 0 at

pinch off point will later be achieved by superposition with the 1D solution,

which will be defined below. So, a quasi 4-corner structure was created. Since

the structure is symmetrical only half of the problem needs to be solved,
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4.2 Model 61

Figure 4.8: Cut-out of the rectangular shaped are in where 2D Poisson
is solved. The E-field is drawn in simplified straight lines.

Figure 4.9: Mirroring of the area wherein 2D Poisson’s equation is
solved to create a quasi 4-corner structure. On both ends Vds,
therefore the electric field in the saturation point is 0.

which allows it to use conformal mapping technique with a 2-corner structure

approach.

Along this structure several important points are marked, which are shown

in Fig. 4.10. Then the structure was placed in a coordinate system and a

practical origin for the structure was set, refer to Fig. 4.11. For that the

structure was turned, to define the origin in the left lower corner. Nevertheless,

actually a quasi 4-corner structure is solved as shown in Fig. 4.9. Finally the

absolute coordinates for each point are defined.

• 1’○ lays in infinity.

• 2○ gives the upper right end of the structure with the coordinates(
ld|(Tch + 2 · t∼ox)

)
.
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62 Symmetrically Biased Double Gate MOSFET

Figure 4.10: Several important points along the boundary of the area
are marked.

• 3○ is the left upper corner with the coordinates
(
0|(Tch + 2 · t∼ox)

)
.

• 4○ represents the end of the upper oxide or the upper left end of the

channel with
(
0|(Tch + t∼ox)

)
.

• 5○ represents the end of the lower oxide or the begin of the channel

area with
(
0|(t∼ox)

)
.

• 6○ is the origin of the structure with
(
0|0)

)
.

• 7○ gives the lower right end of the structure with the coordinates(
ld|0)

)
.

• 1”○ lays in infinity.

4.2.1 Decomposition of Poisson’s Equation

Considering a lightly doped device, no depletion charge Qdep ≈ 0 is assumed.

So far a solution for Poisson’s equation is needed in the high field saturation
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4.2 Model 63

Figure 4.11: The area wherein 2D Poisson is solved is turned around
and set into a (x, iy)-coordinate system to assign the points
along the boundary with absolute coordinates.

region of the device. From the analyses of the device, the channel charge is

neglected in this region and the inversion charge is assumed to be Qinv ≈ 0.

∆Φ2D = −ρ
ε

= −Qdep +Qinv

ε
. (4.1)

With the above mentioned assumptions

∆Φ2D ≈ 0. (4.2)

is received.

So a 2D Laplacian problem is formed. Schwarz-Christoffel [75] can be used

to solve the 2D problem in an analytical closed form by using a nonlinear

conformal mapping technique.

When assuming in a standard single MOSFET, some formulation often

overestimate the output conductance, which is mainly given by the channel

length shortening effect. This is because the approaches often ignore the

presence of the gate electrode and treat the field problem along the channel

the same as that of an pn junction between the substrate and the drain regions
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64 Symmetrically Biased Double Gate MOSFET

Figure 4.12: Electric field along the channel in a standard single gate
MOSFET. Assuming field at a point P is infinite (very large)
(dotted line) and finite value Ep(continuous line) [101]

[98]. Further, simple approaches to calculate the output conductance result in

a discontinuity of the field at saturation point y = L−ld, [99], [100]. Assuming

the electrical field at saturation point Ey = 0 at the position y = L − ld, a

discontinuity of the field at that point is discovered [31]. That means also,

that Qi = 0 in the pinch-off region which means that at y = L− ld, the field

Ey becomes infinite, as shown in Fig. 4.12. According to Baum-Beneking

[101] the discontinuity in the field at y = L− ld (or y′ = 0) can be removed

by removed by assuming that at the pinch-off point the saturation voltage is

V = Vdsat and the field is Ey = Ep [101].

In the DG MOSFET the inversion charge in the space region is neglected

when solving 2D Poisson’s equation. Nevertheless for the basic idea of the

model it is necessary to keep the inversion charge in mind.

In order to imprint the electrical field into the boundary conditions of the

approach for solving the 2D Laplacian from Eqn. (4.2) is split up:

∆Φ2D = ∆ϕ2D + ∆φ1D. (4.3)

With that a possibility is given to include the electrical field Ep in the 1D

Poisson solution, φ1D. The electric field in the high field saturation region is

constant, which results in a linearly shaped voltage as assumed in Fig. 4.12.
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4.2 Model 65

As basic approach a voltage is defined, that is depending on ld and Ep,

Vd′ = ld · Ep + Vgs − Vfb. (4.4)

The flatband voltage is Vfb and Vgs is the gate source voltage.

With this the 1D solution of Poisson equation is defined:

φ1D =

Vd′ − Ep · ld for x > ld,

Vd′ − Ep ·x for x ≤ ld.
(4.5)

Following that idea straight forward it is necessary to apply for Fig. 4.9 the

below written boundary conditions

• 1’○ to 2○ Coming from infinity and approach the structure (x > ld),

here having

ϕ2D(x) = Vgs − Vfb − φ1D(x) = 0. (4.6)

• 2○ to 3○ Going from point z = (Tch + 2 · tox∼)+j · ld to z = (Tch + 2 · t∼ox)+
j0 over the distance ld in x direction of the geometry (x ≤ ld) in Fig.

4.9,

ϕ2D(x) = Vgs − Vfb − φ1D(x). (4.7)

• 3○ to 4○ Since this is the boundary condition through the oxide, the

equation

ϕ2D(y) = Vgs − Vfb −
Vgs − Vfb − Vds − Vbi

t∼ox
· y − φ1D(x = 0). (4.8)

is necessary. As drain-source voltage was defined Vds and Vbi is the built

in potential. The thickness of the transformed oxide is t∼ox.

• 4○ to 5○ Along the drain junction is defined

ϕ2D(y) = Vds − Vbi − φ1D(x = 0). (4.9)
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66 Symmetrically Biased Double Gate MOSFET

Figure 4.13: Estimated characteristics of boundary conditions in z-
plane.

• 5○ to 6○ The second oxide need the equation

ϕ2D(y) = Vgs − Vfb −
Vgs − Vfb − Vds − Vbi

t∼ox
· y − φ1D(x = 0). (4.10)

• 6○ to 7○ Going along the x-axis back to the point z = 0 + jld with

ϕ2D(x) = Vgs − Vfb − φ1D(x). (4.11)

• 7○ to 1”○ And finally following the boundary conditions again away

from the 2-corner structure back into infinity, (x > ld), with

ϕ2D(x) = Vgs − Vfb − φ1D(x) = 0. (4.12)

In Fig. 4.13 the estimated characteristics resulting from equations (4.6) to

(4.12) are drawn. Again it is necessary consider the quasi 4-corner structure
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4.3 Solving 2D Poisson 67

as shown in Fig. 4.7. That means that the potential Φ2D calculated with the

above boundary conditions needs to be multiplied by 2.

In here the length ld is not given, but the saturation voltage Vdsat can

be determined. To come to ld the length ld is varied until the calculated 2D

potential Φ2D matches a given saturation voltage Vdsat. As next Vdsat and Ep
needs to be defined.

4.3 Solving 2D Poisson

With the definition of the boundary conditions the potential can be determined

with Eqn. (2.35). To transform the boundary conditions from z-plane to

w-plane Eqn. (2.43) is used.

• 1’○ to 2○
ϕ2D(x) = Vgs − Vfb − φ1D(x) = 0 (4.13)

=⇒
Φ1′2(u, v) = 0 (4.14)

• 2○ to 3○

ϕ2D(x) = Vgs − Vfb − φ1D(x) = Ep · (x− ld) (4.15)

=⇒

Φ23(u, v) =
1

π

∫ x=0

x=ld

v

v2 + (u− u)2
· Ep · (arccosh(u)

M y

π
− ld)du (4.16)
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68 Symmetrically Biased Double Gate MOSFET

• 3○ to 4○

ϕ2D(x = 0, y) = Vgs − Vfb −
Vgs − Vfb − Vds − Vbi

t∼ox
· y − φ1D(x = 0)

= Vgs − Vfb −
Vgs − Vfb − Vds − Vbi

t∼ox
· y − Ep · ld

(4.17)

=⇒

Φ34(u, v) =
1

π

∫ y=t∼ox

y=0

v

v2 + (u− u)2

·
(
Vgs − Vfb − Vds − Vbi

t∼ox
· arccosh(u)

M y

π
− Ep · ld

)
du.

(4.18)

• 4○ to 5○

ϕ2D(x = 0, y) = Vds + Vbi − φ1D(x = 0)

= Vds + Vbi − Ep · ld
(4.19)

=⇒

Φ45(u, v) =
1

π

∫ y=Tch+t∼ox

y=t∼ox

v

v2 + (u− u)2
· (Vds + Vbi − Ep · ld) du (4.20)

• 5○ to 6○ This solution is similar to Φ45(u, v) in Eqn. (4.20), whereby

Φ56(u, v) = Φ45(−u, v).

• 6○ to 7○ This solution is similar to Φ23(u, v) in Eqn. (4.16), whereby

Φ67(u, v) = Φ23(−u, v).

• 7○ to 1”○ This solution is similar to Φ1′2(u, v) in Eqn. (4.14), whereby

Φ71′′(u, v) = Φ1′2(−u, v).

As next all potential solutions need to be added up and due to the

mirroring of the structure to create a quasi 4-corner structure the result is
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4.4 Definition of the Saturation Point 69

multiplied by 2

Φ(u, v) =
(
Φ1′2(u, v) + Φ23(u, v) + Φ34(u, v) + Φ45(u, v)

+ Φ56(u, v) + Φ67(u, v) + Φ71′′(u, v)
)
· 2

(4.21)

This integration system (4.21) can be solved in analytical closed form solution,

which is done in the appendix A.

4.4 Definition of the Saturation Point

As described before it is possible to calculate the electric potential at the pinch-

off point in an analytical closed-form. To come from the electric potential to

the actual channel length shorting it necessary to know the electric field Ep
at that point and vary the length until this value is reached.

For the calculation of the electric field at saturation point Ep and the

voltage at saturation point Vdsat, have a look at Fig. 4.4. It shows that the

channel is right underneath the oxide and vanishes when saturation point is

reached. With the assumption that up to saturation point each gate controls

half of the channel and the influence of the gate is one-dimensional. So at

saturation point is

Vgs − Vfb = Vox + φi + Vdsat, (4.22)

whereby Vox is the voltage across the oxide and Vfb is the flatband voltage.

The inversion potential at saturation point is given by φi. Since in saturation

region the inversion charge is approximately 0, the voltage drop across the

oxide is assumed to be Vox ≈ 0. So the expression

Vdsat = Vgs − Vfb − φi. (4.23)

for Vdsat can be used. To calculate Ep the current can be described at the
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70 Symmetrically Biased Double Gate MOSFET

saturation point as [31]

Idsat = qi ·Tch ·Wch ·µ0
Ep

1 + Ep
Ec

. (4.24)

qi is the inversion charge per unit volume while assuming that the charge

in pinch-off region is uniformly distributed along the film thickness, µ0 the

mobility of the electrons and Ec the critical electric field. This equation only

calculates the current in the saturation point. In this point Vox = 0, so

mobility µ0 is independent from the gate bias is used. The inversion charge

density is

qi = q ·
n2
i

NB

· exp
(
φi
Vt

)
. (4.25)

The elementary charge is given by q and Vt is the thermal voltage.

Furthermore defining the current in the saturation point with [31]

Idsat =
µeff ·Cox · 2 ·Tch
L
(

1 + Vdsat
L · Ec

) ·
(
Vgs − Vth −

Vdsat
2

)
·Vdsat. (4.26)

Cox represents the gate oxide capacitance per unit area, L is the gate length

and the effective mobility µeff is given by [31]

µeff =
µ0

1 + θ · (Vgs − Vth)
(4.27)

With Eqn. (4.24) = Eqn. (4.26),

Ep =
1

1
µeff ·Cox

qi · Tch2 ·µ0 ·L
(
1+

Vdsat
L · Ec

) ·
(
Vgs−Vth−

Vdsat
2

)
·Vdsat

− 1
Ec

(4.28)

the electric field Ep depending on Vds and Vgs can be calculated. This is

necessary because the saturation voltage is calculated independently of Vds.

With increasing drain-source voltage the saturation point moves source-wards.

Keeping Vdsat at saturation point still constant the electric field Ep has to

increase, which is shown in 4.14. For various Vgs and Vds the electric field at
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4.4 Definition of the Saturation Point 71

Figure 4.14: Electric field at the pinch off point extracted from TCAD
Sentaurus [10] simulations for various Vgs and Vds. The E-field
slightly increases with Vds.

pinch-off point extracted from TCAD Sentaurus [10]. The electric field slightly

increases with Vds, which actually has an influence on ld. To include this

effect in the model, it is necessary to calculate the electric field at described

above. After the definition of Vdsat and Ep it is possible to calculate ld. For

this the geometry is varied with the boundary conditions from section 4.2.1,

with the here calculated Ep included in the boundary conditions. When the

potential Φ2D matches the defined Vdsat + φi the length ld of the geometry is

the length of the high field saturation region.

4.4.1 Threshold Voltage Model

In order to make the model as good as possible as threshold voltage Vth

model the approach published by [102] and [103]. It uses conformal mapping

technique as well from that an expression for the potential barrier in undoped

channels of DG MOSFETs including the DIBL effect has been derived. This

model was also used to calculate the threshold voltage in a FinFET by [104].

In a DoubleGate MOSFET the most leaky path in cross-section below

threshold is on a center line in the middle of the device, see Fig. 4.15. The
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72 Symmetrically Biased Double Gate MOSFET

potential barrier minimum is located on that part.

For multigate devices often a certain electron concentration, i.e. an

inversion potential φ in the most leaking path, resulting from a specific gate

biased is defined. The corresponding gate bias is stated as threshold voltage.

An increasing gate voltage, before strong inversion at the Silicon-SiliconOxide

interface takes place, results in an increasing electron concentration on the

most leaking path.

The analytic expression to map a 4-corner structure of a DoubleGate cross

section to w-plane is

φ(u, v) =
1

π

[
(Vgs − Vfb)

[
π − arctan

(
1− ku
kv

)
− arctan

(
1 + ku

kv

)]
+ (Vgs − Vfb)

[
arctan

(
1− u
v

)
+ arctan

(
1 + u

v

)]
+ Vbi

[
arctan

(
1− ku
kv

)
− arctan

(
1− u
v

)]
+ (Vbi + Vds)

[
arctan

(
1 + ku

kv

)
− arctan

(
1 + u

v

)]]
.

(4.29)

The 4-corner structure is drawn in Fig. 4.15. The middle of the device in

y-direction is 0. Drawing a center line from source to drain and map this

upon a circle of radius 1√
k

in upper w-plane as shown in Fig. 4.16. The

parameters to calculate the position w = u+ iv are

u =
1√
k

cos θangle (4.30)

and

v =
1√
k

sin θangle. (4.31)

Whereby θangle is the angle along a half circle of radius 1√
k

in w-plane.
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4.4 Definition of the Saturation Point 73

Figure 4.15: DG MOSFET with marked 4-corner area which will be
mapped with Schwarz-Christoffel into w-plane. Here the min-
imum of the potential of center line is searched.

Figure 4.16: A 4-corner structure mapped with Schwarz-Christoffel
[75] on a circle with radius 1√

k
into upper half of w-plane. All

boundaries lay flat on the real axis.
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74 Symmetrically Biased Double Gate MOSFET

At the position of the potential minimum the conditions

∂φdg(x, y)

∂x

∣∣∣∣
xm

= 0 and
∂φdg(x, y)

∂y

∣∣∣∣
y=0

= 0 (4.32)

have to be fulfilled. xm is a position in x-direction on the center line. Con-

formal mapping scales the electric field by the derivatives of the mapping

function [75]: ∣∣∣∣∂φdg(x, y)

∂z

∣∣∣∣ =

∣∣∣∣∂φdg(u, v)

∂w

∣∣∣∣ · ∣∣∣∣∂w∂z
∣∣∣∣ (4.33)

To obtain the position of the potential barrier along the center line of the

channel Eqn. (4.30) and (4.31) are inserted in (4.29). Solving everything for

the root of the derivatives with respect to θangle

∂φdg(θangle)

∂θ

∣∣∣∣
θm

= 0 (4.34)

Written in a closed form solution,

θm = π − arccos

[
1
2

(k + 1)Vds√
k (2Vgs − 2Vfb − 2Vbi − Vds)

]
(4.35)

Finally mapping it back into z-plane to obtain the coordinates of the potential

minimum

xm =

L
2
F
(

2
√
k

1+k
, cos (θ)

)
K
(

2
√
k

1+k

) (4.36)

where F is the standard (Lagrange) elliptic integral of the first kind and K is

the complete elliptic integral of the first kind [75], [93]. These integrals can

be approximated by generalized power series or iteration methods and have

been tabulated.

The actual potential of the minimum can be calculated by putting Eqn.

(4.36) into (4.29). To calculate the threshold voltage Vth two different gate

voltages below threshold are placed in the equation system. The mobile charge

in cross-section is neglected while solving 2D Poisson’s equation. With an
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4.5 Model Results 75

extrapolation using a linear function the point when the potential minimum

reaches a specific electron concentration, means φi, is calculated in a closed

form solution. For details about this procedure refer to [104].

For the modeling of the channel length shortening in a DG MOSFET the

threshold voltage model was set to a fixed electron concentration of 5 · 1018cm,

which corresponds to φi = 0.793V and never changed. The model fitted and

described the DIBL effect perfectly well for the channel length shortening

presented in this thesis.

4.5 Model Results

It is interesting to see, how the model predicts the pinch-off point boundary.

In Fig. 4.17 is the structure shown in which Poisson’s equation is solved. The

red line shows the boundary where we extracted the results for the Laplacian

ϕ2D(x, y) from the model. We varied ld and received various results, shown

in Fig. 4.18. To come to the 2D potential at pinch-off point, it is necessary

to add the inversion charge, with φ1D|x=ld = V gs − V fb. The transformed

oxide t∼ox has a thickness of 3.37nm. The channel width is 10nm and applied

voltages are Vds = 1.4V and Vds = 1V. We varied ld from the pinch off point

at 7.6nm in 10 steps to 8.6nm.

In the channel a parabolically shaped voltage is predicted. Since we

transformed the oxide, at the Si − SiO2 interface we have a continuous

electric field. Through the oxide the voltage increases again and reaches 0.

According to Eqn. (4.7), we assume at the pinch-off position an applied oxide

voltage of 0V for the Laplace solution.
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76 Symmetrically Biased Double Gate MOSFET

Figure 4.17: Structure in where 2D Poisson is solved. In red: The
boundary where the model results were extracted.

Figure 4.18: Results of the model for the 2D Laplacian ϕ(x, y) along
the pinch-off point boundary. Transformed oxide t∼ox thickness
ix 3.37nm, channel width is 10nm and applied voltages are
Vds = 1.4V and Vds = 1V. We varied ld from the pinch off
point at 7.6nm in 10 steps to 8.6nm.
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4.6 Closed Form Solution 77

4.6 Closed Form Solution

In the appendix the closed-form solution for the integrals of the 2D Poisson’s

equation are introduced. With this it is possible to calculate the voltage

along ld as shown in Fig. 4.19 in a closed-form condition. In Fig. 4.20

the characteristics of Vdsat with increasing ld are calculated by the model

for various Vds. However, we need to find our defined Vdsat along those

characteristics, which is done so far by approximation procedure. This takes

to long and is not suitable for a model.

In Eqn. (4.22) on page 69 saturation voltage is defined, whereby Vox ≈ 0.

The voltage at the saturation point calculated by 2D Poisson’s equation is

Φ2D|pinchoffpoint = Vdsat − φi (4.37)

On page 64 we describe the splitting of the 2D Poisson’s equation. The

splitting has to be done for every point within the region wherein Poisson’s

equation is solved. At position x = ld the 1D poisson solution is

φ1D|x=ld = Vgs − Vfb (4.38)

The 2D Laplace solution in Eqn. (4.21) is by

ϕ2D = Φ2D − φ1D = 0 (4.39)

Figure 4.19: Path where the voltage can be calculated in a closed-form
condition by solving 2D Poison.
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78 Symmetrically Biased Double Gate MOSFET

Even with this simplification it is not possible to solve Eqn. (4.21) in a

closed-form, because of all the tangent terms in it.

Of course the characteristics extracted along ld in Fig. 4.20 look like they

can be described as a exp-function with a linear boundary. Nevertheless a

exp-function does not really fit and the complexity of the function is limited

due to the goal of a closed-form solution. Furthermore no begin or end point

of the characteristics can be determined. A not well fitting function will result

in a different slope at each point and might gives very different results with

different devices structures.

A polynomial function of 4 grade was used instead

N = x4 + ax3 + bx2 + cx+ d. (4.40)

For the fitting it was assumed that a channel length shortening over 20nm is

not possible. 5 points on the curve were extracted with Eqn. (4.21) and with

linear algebra the components a, b, c and d were solved.

Fig. 4.21 shows the comparison between the fitted function (symbols) and

the actual results (lines). Both curves are in very good agreement. Assuming

only one reasonable result for the channel length shortening coming from the

four results given by a quartic expression, the fitting polynomial function

Eqn. (4.40) can be solved in a closed form solution.

To calculate the zero point of a polynomial function of 4 grade, we

substitute

x = z − a

4
(4.41)

we have

0 = z4 +

(
b− 3

8
· a2

)
· z2 +

(
− 3

256
· a4 +

1

16
· a2b− 1

4
· ac+ d

)
. (4.42)
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4.6 Closed Form Solution 79

Introducing the symbols p, q, r the equation is easier to read

0 = z4 + pz2 + qz + r. (4.43)

With elimination of the term of 3rd grade, we can use the idea of Ferrari

[105],

0 =
(
z2 + P

)2 − (Qz +R)2 . (4.44)

The coefficients can be calculated by

I. p = 2P −Q2

II. q = −2QR

III. r = P 2 −R2

(4.45)

and the corresponding equations to find the positions where N = 0 are,

z1,2 = +
Q

2
±

√(
Q

2

)2

− P +R

z3,4 = −Q
2
±

√(
Q

2

)2

− P −R.

(4.46)

A value for the channel length shortening can neither be an imaginary value

nor longer than the channel is. Therefore only

z2 = +
Q

2
−

√(
Q

2

)2

− P +R (4.47)

gives a reasonable value. The final equation is very long, however it is in

closed form.

Fig. 4.22 shows the channel length shortening of the closed form solution

(lines) and the exact calculated value by the model (symbols) for a DG

MOSFET with L = 50nm and a channel thickness of Tch = 10nm. Even with

variation of Vgs and Vds no difference is shown. In the following section the

results of the closed-form solution are compared to TCAD Sentaurus [10]
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80 Symmetrically Biased Double Gate MOSFET

Figure 4.20: Characteristics of Vdsat in the pinch-off point with in-
creasing ld as calculated by the model. The pinch-off point is
reached when Vdsat = 0.

simulation results.
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4.6 Closed Form Solution 81

Figure 4.21: Characteristics of Vdsat in the pinch-off point with increas-
ing ld as calculated by the model in lines and with a polynomial
function of 4th grade in symbols. With this it is possible to
calculate the pinch-off point in closed form solution.

Figure 4.22: Comparison between the channel length shortening of the
closed-form solution (lines) and the exact calculated value by
the model (symbols) for a DG MOSFET with L = 50nm and
a channel thickness of Tch = 10nm for various Vgs and Vds.
Practically no difference is shown.

UNIVERSITAT ROVIRA I VIRGILI 
ANALYTICAL PREDICTIVE 2D MODELING OF PINCH-OFF BEHAVIOR IN NANOSCALE MULTI-GATE MOSFETS 
Michaela Weidemann 
DL:T-1801-2011 



82 Symmetrically Biased Double Gate MOSFET

4.7 Results

In Fig. 4.23, 4.24 and 4.25 are shown ld as function of Vds for various Vgs for

different devices. The device in Fig. 4.23 has a channel length of L = 50nm

and a channel thickness of Tch = 10nm, Fig. 4.24 has a channel length

of L = 20nm. As third device for Fig. 4.25 a channel channel length of

L = 50nm and a channel thickness of Tch = 20nm was simulated. Comparing

the model to TCAD Sentaurus software and ld has been measured from the

drain end to the point when the electric potential maximum moves from the

underneath the gate oxide into the middle of the channel. The model is drawn

in black lines and the TCAD Sentaurus in symbols.

A critical electric field Ec = 106 V
cm

has been used for all plots. With Ec the

curves can be shifted in y-direction of the graphs in Fig. 4.23 to Fig. 4.25.

It has no influence on the slope of the curves. So it was set to a reasonable

value. The inversion potential is with

φi = 2 ·Vt ln

(
NB

ni

)
+ M φfit (4.48)

a good starting point for the fitting. It still needs some adjustment with

φfit = −0.141V for L = 50nm; φfit = −0.125V for L = 20nm and φfit =

−0.11V for L = 50nm and Tch = 20nm. This value has the same influence

as Ec, a shift of the curves in y-direction. Again, it has no influence on the

shape of the curve.

With the mobility model in Eqn. (4.27) the distance or gap between all

curves can be influenced. The mobility µ0 itself has no influence, since it

cancels in the calculation of Ep due to equating Eqn. (4.24) = Eqn. (4.26).

Nevertheless, θ for the influence of Vgs is set to 0.01 for L = 50nm and 0.5

for L = 20nm. The third device in Fig. 4.25 with L = 50nm and Tch = 20nm

needed θ = 0.5 as well for a reasonable fit.

The model is in good agreement with the simulation results. Also with
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4.7 Results 83

Figure 4.23: Results for ld vs. Vds for various Vgs calculated with a
geometry with L = 50nm and Tch = 10nm. The lines represent
model and the symbols the results from TCAD Sentaurus.

Vgs = 1V to 1.5V with a Vth ≈ 0.45V the results cover up to almost 15nm

channel length modulation. All three plots show quite similar values for

channel length shortening. Indeed channel length shortening depends mainly

on drain site of the device, that is why Fig. 4.23 and 4.24 show very similar

results. For plot 4.25 the channel was twice as thick, which results in a

longer channel length shortening. Only with very short devices the source

end starts to affect the channel length shortening and the distance between

drain junction and saturation point becomes shorter.

UNIVERSITAT ROVIRA I VIRGILI 
ANALYTICAL PREDICTIVE 2D MODELING OF PINCH-OFF BEHAVIOR IN NANOSCALE MULTI-GATE MOSFETS 
Michaela Weidemann 
DL:T-1801-2011 



84 Symmetrically Biased Double Gate MOSFET

Figure 4.24: Results for ld vs. Vds for various Vgs calculated with a
geometry with L = 20nm and Tch = 10nm. The lines represent
model and the symbols the results from TCAD Sentaurus.

Figure 4.25: Results for ld vs. Vds for various Vgs calculated with a
geometry with L = 50nm and Tch = 20nm. The lines represent
model and the symbols the results from TCAD Sentaurus.
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4.8 Quantum Mechanics 85

4.8 Quantum Mechanics

In a device with a length of 20nm and a channel thickness of 10nm quantum

mechanics effects take place. it is expected that for channel thicknesses below

10nm a model has to take quantum mechanics into account. In this chapter

is shown if this approach is extendable so that it covers quantum mechanics.

4.8.1 Device Physics including Quantum Mechanics

Fig. 4.26 shows the electric potential distribution of a device with Vds = 1V

and Vgs = 1V and a channel length of 20nm and a channel width of 10nm. In

the eletric potential distribution is between quantum and no quantum effect

no difference, see Fig. 4.4. Nevertheless in the E-current distribution for the

same device, shown in Fig. 4.27 the channels are not longer located directly

at the Silicon-SiliconOxide interface when comparing the figure to Fig. 4.5.

Instead a so called quantum well is formed between gate oxide and channel.

However going along the channel, the behavior of the current changes.

At source end two strings of current were formed. At drain end those two

strings are widening and come together. The current is equally spread over

almost the whole channel. The path of the electric potential maximum is

drawn in Fig. 4.28 for Vds = 1V and Vgs = 1V. Drain and source region are

cut out as well as the gate material and oxide are in this figure omitted. The

electric potential maximum is at source end still at the Silicon-SiliconOxide

interface. When hitting saturation point the maximum moves into the middle

of the channel. So it is with quantum mechanic effects possible to define a

saturation points.
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86 Symmetrically Biased Double Gate MOSFET

Figure 4.26: Electric potential distribution within channel region and
gate oxide of DG MOSFET with an applied Vds = 1V and
Vgs = 1V. Drain and source region are cut out as well as
the gate material. Quantum mechanics effects have almost no
influence on the electric potential distribution.

Figure 4.27: E-current density distribution within channel region and
gate oxide of DG MOSFET with an applied Vds = 1V and
Vgs = 1V. Drain and source region are cut out as well as the
gate material. Quantum mechanics effects take place.
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4.8 Quantum Mechanics 87

Figure 4.28: Path of the electric potential maximum along the channel
drawn in red with an applied Vds = 1V and Vgs = 1V. Drain
and source region are cut out as well as the gate material
and oxide are omitted. The maximum is even with included
quantum mechanic effects at the beginning of the channel still
at the silicon-siliconoxide interface.

4.8.2 Results including Quantum Mechanics

For a channel length of Lch = 20nm and a channel thickness Tch = 10nm

some simulations with TCAD Sentaurus [10] including a quantum mechanics

model were done. The results are plotted in Fig. 4.29, the channel length

modulation ld versus the drain source voltage Vds for various gate source

voltage Vgs. The lines represent model and the symbols the results from

TCAD Sentaurus.

As model was used the model presented for the symmetrical DoubleGate

MOSFET in chapter 4 without further adjustments. The fitting parameters

are φfit = −0.1145V, Ec = 4 · 105 V
cm

and θ = 0.99. The results are in very

good agreement for a higher Vds. It can not be denied that for lower Vds,

close to the saturation voltage the model gives a rather weak description of

the pinch-off point position. It can be assumed that the definition of the

saturation voltage, given in section 4.4 is not accurate enough for a quantum

mechanics case. It would be a good approach for future work.
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88 Symmetrically Biased Double Gate MOSFET

Figure 4.29: Results for ld vs. Vds for various Vgs calculated with a
geometry with L = 20nm and Tch = 10nm including quantum
mechanic effects. The lines represent model and the symbols
the results from TCAD Sentaurus.
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Chapter 5

Asymmetrically Biased Double

Gate MOSFET

Additionally to symmetrically biased DG FET the idea came up to independ-

ently bias both gates. In a Double Gate structure is it easily doable. The

advantage would be for instance to gain more control about the threshold

voltage. Due to the fluctuation in factory this parameter can vary. In theory

it would also be possible to reduce the drain induced barrier lowering effect

or temperature variation.

In this chapter is shown that the channel length modulation of both gates

in strong inversion is not independent of each other. In theory it would be

possible to control for instance a driver output very accurate.

As basic we use the same simplified structure as used for the symmetrically

biased DG as shown in Fig. 5.1. Also the model of the channel length

modulation for symmetrically biased DG FETs referees as reference.
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90 Asymmetrically Biased Double Gate MOSFET

Figure 5.1: Simplified structure of a DG FET as used in this ap-
proach.The two gates can be biased independently of each other.

5.1 Device Physics

In chapter 4 was explained that an increasing source-drain voltage begins to

effect the electrostatic behavior of symmetrically biased DG in accumulation.

Truly this must count for an independently biased DG FET, too.

Having a look on the E-current density distribution of a DG MOSFET in

Fig 5.2 with applied Vgs−top = 1V, Vgs−bottom = 0.7V and Vds = 1.6V we see

again two channels at the Silicon-SiliconOxide interface. The dimensions of

the DG MOSFET are channel thickness Tch = 10nm and length Lch = 50nm.

Going along the channel both channels vanish when reaching saturation.

However the lower biased bottom gate hits saturation point earlier. Compared

to previous results this behavior is expected. With the E-potential distribution

in Fig. 5.3 for the same device we see that the potential contour is parabolically

shaped at the beginning of the channel. Hitting the first saturation point at

the bottom of the DG MOSFET, the parable of the contour of the plot looks

deformed and with reaching the second saturation point of the higher biased

top gate, the contour looks even s-shaped.

The next question would be, if and how are the two saturation points

related. For this a constant top gate voltage of 1V was applied and the

voltage of the bottom gate was varied from 0.7 · · · 1.4V. The channel length

shortening for both gates was extracted.

With no influence between both gates the channel length shortening for

the top gate would be constant. Additionally the gap between the curves in
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5.1 Device Physics 91

Figure 5.2: E-current density distribution within channel region and
gate oxide of DG MOSFET with an applied Vgs−top = 1V,
Vgs−bottom = 0.7V and Vds = 1.6V. Drain and source region are
omitted.

Figure 5.3: Electric potential distribution within channel region and
gate oxide of DG MOSFET with an applied Vgs−top = 1V,
Vgs−bottom = 0.7V and Vds = 1.6V. Drain and source region are
omitted as well as the gate material.
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92 Asymmetrically Biased Double Gate MOSFET

Figure 5.4: Channel length shortening extracted from TCAD Sentaurus
simulation for the bottom gate, where Vgs−bottom = 0.7 · · · 1.4V
and constant Vgs−top = 1V. With increasing Vgs−bottom ld
decreases.

Fig. 5.4 for each gate voltage step would be relatively even. Since the channel

length shortening of the top gate varies with each voltage variation of the

bottom gate (refer to Fig. 5.5) the bottom gate affects the top gate. On the

other hand the curve gap in Fig. 5.4 of the channel length modulation of the

bottom gate is very uneven. That means the top gate influences the bottom

gate somehow too.

The idea is that the electric field issued by the drain region vectors partly

into the direction of the top gate and the bottom gate, exaggerated version

drawn in Fig. 5.6 and 5.7. Both figures show the drain end, with the gate

oxide in gray. The inversion charge is drawn in blue. This partitioning of

the E-field is influenced by the potential of the gates and by the inversion

charge underneath the gates. It shields the gate from the drain issued E-field.

Considering that at the bottom gate with increasing Vgs−bottom ld decreases,

more and more electric field lines effect the top gate. On the opposite at

the top gate with increasing Vgs−bottom ld increases (Fig. 5.5 and 5.4). That

means more and more electric field lines influence the saturation behavior of

this gate. In Fig. 5.6 less E-field lines of the drain end go into the direction of

the bottom gate, because it has a higher voltage than the top gate. Therefore
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5.1 Device Physics 93

Figure 5.5: Channel length shortening extracted from TCAD Sentaurus
simulation for the top gate, where Vgs−top = 1V constant and
Vgs−bottom = 0.7 · · · 1.4V. With increasing Vgs−bottom ld in-
creases.

the saturation point of the top gate is located a little but further away from

the drain. With a lower bottom gate voltage (Fig. 5.7) more field lines into

the direction of the bottom gate. Which results in a saturation point at the

top gate located closer to the drain end. We assume an imaginary border,

which separates the electric field lines going into the direction of the top gate

and the bottom gate.
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94 Asymmetrically Biased Double Gate MOSFET

Figure 5.6: Drawing of the drain end, whereby the inversion charge
is drawn in blue. Because the top-gate has a lower voltage
more E-field lines influence the saturation behavior of the that
channel.

Figure 5.7: Drawing of the drain end, whereby the inversion charge is
drawn in blue. Because the top-gate has a higher voltage more
E-field lines influence the saturation behavior of the bottom-gate
channel.
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5.2 Model

The outline of our approach how we calculate the channel length modulation

is shown in Fig. 5.11. We split the DG MOSFET in an even and odd mode

[106].

even Vds = Vds

Vgs−even =
Vgs−bottom + Vgs−top

2
. (5.1)

odd Vds = 0

V +
gs−odd = Vgs−bottom −

Vgs−bottom + Vgs−top
2

V −gs−odd = Vgs−top −
Vgs−bottom + Vgs−top

2

(5.2)

Whereby Vds is the drain-source voltage, Vgs−bottom and Vgs−top are the gate-

source voltages of bottom and top gate, respectively. Vgs−even is the average

gate voltage of bottom and top and V +
gs−odd and V −gs−odd are two virtual

parameters to calculate the odd mode.

With the even mode we calculate an initial ldguess by using the approach

described in section 4 for the symmetrically biased DG MOSFET. Here we

assume a parabolically shaped electric potential at this saturation point (refer

to Fig. 5.8). For this we simply take two points slightly beside the middle of

the channel of the device and calculate the potential Φ with Eqn. (4.21)

Φeven = y2 + ay + b (5.3)

With the odd mode we assume a linearly shaped function for the electric

potential as shown in Fig. 5.9

Φodd =
V −gs−odd − V

+
gs−odd

2 · t∼ox + Tch
· y + V +

gs−odd. (5.4)
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96 Asymmetrically Biased Double Gate MOSFET

Figure 5.8: For an asymmetrically biased DG MOSFET we split up in
an even and odd mode. With the even mode one pinch-off point
between the two real pinch-off points is calculated as first guess.

In the odd mode is Vds = 0, therefore no influence of the drain end needs to

be calculated.

After re-superpositioning of even and odd mode we can calculate the

minimum of this deformed parabolically shaped function. The position of

the minimum of the potential along the channel gives a theoretically existing

drain effect border as drawn in Fig. 5.10

d (Φeven + Φodd)

dy
= 0. (5.5)

With this border we can determine what part of the drain region effects which

gate. To come to the channel length shortening the device is split up at this

border and two virtual DG MOSFETs are created, each with a new channel

thickness. Now we apply the initial two gate voltages and can calculate two

different pinch-off points from two virtual devices having different channel

thickness Tch.
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Figure 5.9: With the odd mode a linear function for the electric poten-
tial is calculated.

Figure 5.10: The superposed electric potentials calculated by even and
odd mode create a shifted parabolic function, whereby the
lowest point creates a virtual border for the impact area of
the drain onto each gate. With this border the device is split
up into two devices with individual channel width so the two
pinch-off points can be calculated.
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98 Asymmetrically Biased Double Gate MOSFET

Figure 5.11: Outline of the calculation of channel length modulation
of a asymmetrical biased DG MOSFET. The device is parted
in an even and odd mode. With that a virtual drain effect
border can be determined to create two new devices, each with
a different channel length modulation.
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5.3 Results

To compare our model results from TCAD Sentaurus [10] were extracted.

The simulated DG MOSFET has a channel thickness Tch = 10nm and length

Lch = 50nm. In Fig. 5.12 the results of TCAD Sentaurus for the bottom gate

are drawn in symbols, Vgs−bottom = 0.8 · · · 1.3V and constant Vgs−top = 1V.

Our model is drawn in lines. Fig. 5.13 represents the same conditions for the

top gate.

Considering that the model is fitted with a fixed critical electrical field of

Ec = 106 V
cm

, a θ = 0.057 for influence of Vgs on the mobility and a inversion

potential φi − 0.123V for all plots, which are the fitting parameters already

introduced for the symmetrically biased DG MOSFET, our model describes

the channel length shortening very well. The disagreement between model

and TCAD Sentaurus is in maximum about 0.1nm, which is a good result.

Fig. 5.14 and 5.15 show the virtual channel width of the corresponding

DG for the bottom and top gate, respectively. The virtual DG with the wider

channel relates to the gate with the lower applied voltage. Interesting to see,

that the model predicts, that the with increasing drain-source voltage this

effect is stronger.

This proofs the strong physical relation of our model. Also our theory that

the pinch-off point of an asymmetrically biased DG FET can be calculated

with two individual devices was proven.
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100 Asymmetrically Biased Double Gate MOSFET

Figure 5.12: Channel length shortening extracted from TCAD Sen-
taurus simulation for the bottom gate, where Vgs−bottom =
0.8 · · · 1.3V and constant Vgs−top = 1V in symbols. Our model
is drawn in lines. The model describes the behavior very well.

Figure 5.13: Channel length shortening extracted from TCAD Sen-
taurus simulation for the top gate, where Vgs−top = 1V con-
stant and Vgs−bottom = 0.8 · · · 1.3V in symbols with dotted
lines. Our model is drawn in solid lines. The disagreement
between model and TCAD Sentaurus is in maximum about
0.1nm, which is a good result.
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5.3 Results 101

Figure 5.14: Calculated virtual channel width of the DG correspond-
ing to the bottom gate, where Vgs−bottom = 0.8 · · · 1.3V and
constant Vgs−top = 1V. The wider channel relates to the gate
with the lower applied voltage and this effect increases with
higher Vds.

Figure 5.15: Calculated virtual channel width of the DG corresponding
to the top gate, where Vgs−bottom = 0.8 · · · 1.3V and constant
Vgs−top = 1V. The wider channel relates to the gate with the
lower applied voltage and this effect increases with higher Vds.
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Chapter 6

FinFET

In this chapter simulation results for a FinFET will be given. These simu-

lations are done in three dimensions in order to take the effect of the gate

corner correctly into account. Nevertheless the device is symmetric along the

z-axis as shown in Fig. 6.1(a), out of it the FinFET is cut into half in order

to save simulation time. The cut position is shown in Fig. 6.1(b). For the

results the FinFET is mirrored again to receive the full device. In Table 6.1

the parameters are listed. Again the simulations are done with Sentaurus

[10], whereby a drift-diffusion model with high field saturation is used. The

here presented results are obtained by analyzing the complete 3D data set.

Table 6.1: Parameters for the simulated FinFET

Parameter Value

channel width 10nm
channel length 50nm
channel height 20nm
oxide thickness 2nm
εox 7
substrate doping concentration 1015cm−3

source drain doping profile constant
source/drain doping concentration 1020cm−3
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104 FinFET

(a) (b)

Figure 6.1: In (a) is shown the structure which is used for the FinFET
simulation. The gate surrounds the fin at three sides. In (b)
the front view of the FinFET is drawn. The line indicates the
cut-position at which the device is halved [104], [107].

6.1 Point of Saturation

Figure 6.2 shows the path of the maximum electron current density. Here

a cut-out of the channel is presented with a width of 10nm in z-direction, a

length of 50nm in x-direction and a height of 20nm. The electron current

density maximum is located first in the corners underneath the gate oxide.

While going along the channel the electron current density maximum suddenly

moves into the middle of the channel.

With a look on Fig. 6.3 it turns out that at this point the maximum

electric potential moves from the top of the channel to the bottom. It can be

assumed that here the whole channel is in saturation and therefore the current

flow expands through the whole channel. At this point the pinch-off point is

considered to be. The slow movement of the electric potential minimum from

the bottom of the device to the top let assume that saturation starts at the

bottom region of the channel. With less distance to the drain side more and

more of the channel region comes to saturation. A reason might be that a

surrounding gate in the upper region of the channel has a stronger control

and the lower region has just a gate at the two sides. The device might be
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6.1 Point of Saturation 105

Figure 6.2: Path of the electron current density maximum. At source
side above threshold the maximum is within the corners under-
neath the gate oxide. Going in drain direction the maximum
moves to the middle of the channel[108, 109, 110]. Bias condi-
tions: Vgs = 0.05V; Vds = 1.4V.

treated as DoubleGate MOSFET in saturation on the bottom with a FinFET

on top.
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106 FinFET

Figure 6.3: Maximum and minimum electric potential along the x-y
coordinates [29]. Bias conditions: Vgs = 0.05V; Vds = 1.4V

6.2 Saturation Voltage and Channel Length

Shortening

As mentioned before the point when the electric field maximum moves sud-

denly from the top of the channel to the bottom of the channel is considered

as pinch-off point. In the following results for the channel length shortening

and the saturation voltage at pinch-off point are presented. Figure 6.4 and

6.5 show the channel length shortening ld and the saturation voltage Vdsat at

the bottom of the device, when the electric potential maximum moves from

the top gate to the bottom of the device, for several gate-source voltages Vgs.

As already known from the Bulk MOSFET geometry the channel length

shortening increases with higher drain-source voltage Vds. Also a higher Vgs

reduces ld, because the higher gate voltage has a higher control on the current

flow. The corresponding Vdsat is static for one Vgs.
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6.2 Saturation Voltage and Channel Length Shortening 107

Figure 6.4: Channel length shortening ld for various Vgs and Vds is
shown extracted with [10].

Figure 6.5: Saturation voltage for the channel length shortening in Fig.
6.4 for various Vgs and Vds is shown extracted with [10].
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6.3 Ideas for Modeling Approaches

In [69], [104] and [107] the modeling approach for the threshold voltage is a

DoubleGate device in the bottom, which defines the most leaky path. For the

saturation point, the saturation start at the bottom area (it can be defined

as DG MOSFET with no applied source-bulk voltage) and goes up until it

reaches top gate. The question is now, is such a preceise calculation necessary

or is it just fine to use a saturation point inbetween to have a reasonable

value for the channel length shorting?

The Schwarz-Christoffel conformal mapping technique [75] is limited to

2 dimensional problems. It will not be possible to include all three gates

and the drain side into one approach. The idea so far is to place a 2-corner

structure as shown in Fig. 6.6. The 2 corner structure includes the top oxide,

goes a long the drain interface and then along the bottom of the device at

the buried oxide interface as shown in Fig. 6.7.

The big advantage is, the bulk-source voltage Vsb is included. On the

drain side, the already known boundary conditions from chapter 4 are used,

except one oxide is missing. The issue might be the definition of the upper

boundary condition with

Vupper−boundary = Vgs−top + V d′. (6.1)

The virtual voltage V d′ has to include the effects the side gates have on the

saturation point. Assuming all three gates have the same voltage applied,

V d′ can not be 0, because the electric field in the upper corners of the device

is much higher compared to everywhere else. The advantage of the approach

is, it includes the influence of the source-bulk voltage Vsb. Furthermore, the

exact location of the saturation point will be given by the minimum of the

calculated boundary at the saturation point side. An approximation of the

characteristics are given in Fig. 6.7. If Vgs−top + V d′ 6= Vsb the minimum of

the boundary will not be in the middle of the channel. Therefore, probably, a
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(a) (b)

Figure 6.6: In (a) is shown the structure which is used for the FinFET
simulation. The gate surrounds the fin at three sides. In (b) the
cut of the FinFET in the middle of the channel is drawn. The
line indicates the cut-position at which the device is halved [30],
[31]

Figure 6.7: The cut out of the channel length shortening in the middle
of the channel is drawn, as indicated in red lines in Fig. 6.6b.
With Vgs−top + V d′ 6= Vsb the saturation point will not occur in
the middle of the channel first. The voltage along the saturation
point border on the left side will not be symmetrically shaped,
instead a quadratic function with a minimum will occur. This
minimum indicates the position of the saturation point along
the z-direction of the FinFET.
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reasonable value inbetween saturation point for the bottom of the device and

the top of the device can be obtained.

The saturation point can either be defined by a voltage, what might

be difficult to define or if a certain slope of the calculated saturation point

boundary conditions is reached.

UNIVERSITAT ROVIRA I VIRGILI 
ANALYTICAL PREDICTIVE 2D MODELING OF PINCH-OFF BEHAVIOR IN NANOSCALE MULTI-GATE MOSFETS 
Michaela Weidemann 
DL:T-1801-2011 



Chapter 7

Conclusion

7.1 Single Gate Bulk MOSFET Channel

Length Shortening

The presented model calculates the electric field in a closed-form at the pinch-

off point by solving 2D Poisson. To come to the channel length shortening

the saturation voltage V dsat is calculated with a given electric field in the

pinch-off point Ep. By recalculating the electric field at the pinch-off point by

taking into account the drain source voltage Vds and the saturation voltage,

the model varies the channel length shortening until the solution of the 2D

Poisson equation agrees with the recalculated electric field in the pinch-off

point. To receive a fully closed-form analytical model a few values of the

channel length modulation can be calculated and connected by a polyfit

function. The only fitting parameter in this model is the given electric field

at the pinch-off point Ep from that the saturation voltage Vdsat is calculated.

This fitting parameter has a second order influence on the model results, as

shown in chapter 3.6. Todays channel length shortening models so far have

fitting parameter with a huge influence on the model.
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With this model a new way of calculating the channel length is shown. in

general the simulation results simulated with TCAD Sentaurus [10] fit with

the model results. For 700nm down to 500nm the total value of the output

conductance is in a not that good agreement, but the the relative variation of

Vds with respect to Vgs is accurately described, particular if considered that

the fitting parameter Ep is not changed. Applying the model to smaller device

geometries with 50nm up to 100nm the total value of the output conductance

is very well predicted. Considering the fitting parameter Ep is changed from

Ep = 105V/cm for 700nm down to 500nm to Ep = 2 · 105V/cm for 100nm

down to 50nm the model proofs its excellent scalability.

7.2 DG MOSFET Channel Length

Shortening

To calculate the channel length shortening in the DG MOSFET a fully 2D

model was created. This model calculates the saturation voltage at pinch-off

point with Schwarz-Christoffel conformal mapping technique [75]. This point

is compared to a defined saturation voltage. The model is in closed form and

contains only two fitting parameters with minor influence to adjust the critical

electric field in high field saturation region and the inversion charge. Those

parameters move the entire curve set of the model in a x− y-graph up and

down and have no influence on the slope of the curve. In order to compare

the channel length shortening to TCAD Sentaurus [10] simulation results,

a new method to define the saturation point was developed. Hereby the

saturation point is determined, when the electric potential maximum moved

from the Silicon-SiliconOxide interface into the middle of the channel. Also

some simulations including quantum mechanics were done. It showed, that

with quantum mechanics the same effect occurs and therefore a saturation

point exists.

The model fits very well to simulation results for a channel length of 50nm
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and a channel width of 10nm. The fitting parameter for the critical electric

field Ec = 106V/cm stayed unchanged for all devices. The results fit very well.

Also for a smaller device channel length of 20nm and a channel width of 10nm

the model described the channel length shortening very well. For the shorter

device, the inversion charge needed to be adjusted. With a wider channel of

20nm and a channel length of 50nm the model shows equally good results.

In a next step a asymmetrically biased DG MOSFET was simulated

with a channel length of 50nm and a channel width of 10nm. It turned

out, that two channels with different saturation points occur at the Silicon-

SiliconOxide interface. After evaluating the position of the saturation point,

it was found, both gates influence each other. To include the effect in the

model, the asymmetrically biased DG MOSFET has to be split into two

separate symmetrically biased DG MOSFET with two different channel

widths according to the applied voltages. An even and odd mode was created,

which enabled the possibility to define the two virtual DG MOSFETs.

The model describes the asymmetrically biased DG MOSFET very well.

Considering one gate as constantly biased with 1V and the other one with

0.7V · · · 1.3V, the model describes the small influence the variation of the

gate voltage has on the channel length shortening at the constantly biased

gate. Also the model creates a very good description for the huge changes of

the saturation point position for the gate applied with 0.7V · · · 1.3V.

7.3 FinFET Channel Length Shortening

As shown in the 3D analysis of the pinch-off point in FinFET in chapter 6

the pinch-off point in this geometry moves from the bottom of the device to

the top until the whole channel is in saturation, if no source-bulk voltage is

applied. This makes a more dimensionally modeling approach necessary.

Since the conformal mapping technique is limited to 2 dimensions, it will
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not be possible to include a FinFET as entire device. Having in mind, that it

might be unnecessary to calculate the exact way the saturation point has from

the bottom to the top of the device, an idea for an modeling approach was

presented. With that, a pinch-off point location can be determined, whereby

the location not only depends on the drain-source/gate-source voltage, but

also depends on the applied source-bulk voltage and gate voltage in terms of

vertical position.

Overall it can be said, that 2D models created by nonlinear mapping

technique are very difficult to develop and the mathematical effort is huge.

Nevertheless, because of their close relation to the semiconductor physics

they often have very few fitting parameters and those fitting parameter have

minor influence.
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Appendix A

Closed Form Solution of 2D

Poisson’s Equation

In here is shown that the integration system to calculated 2D Poisson equation

presented in section 4.2.1 can be solved in analytical closed form solution.

Basically three integrals need to be solved, since the boundary conditions

are symmetrically and therefore the equations are similar. Those integrations

are

• 2○ to 3○

Φ23(u, v) =
1

π

∫ x=0

x=ld

v

v2 + (u− u)2
· Ep · (arccosh(u)

M y

π
− ld)du (A.1)

• 3○ to 4○

Φ34(u, v) =
1

π

∫ y=t∼ox

y=0

v

v2 + (u− u)2

·
(
Vgs − Vfb − Vds − Vbi

t∼ox
· arccosh(u)

M y

π
− Ep · ld

)
du.

(A.2)
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116 Closed Form Solution of 2D Poisson’s Equation

Figure A.1: Boundary conditions in z-plane.

• 4○ to 5○

Φ45(u, v) =
1

π

∫ y=Tch+t∼ox

y=t∼ox

v

v2 + (u− u)2
· (Vds + Vbi − Ep · ld) du (A.3)

In Fig. A.1 the estimated characteristics of the boundary conditions in z-

plane are printed. After transforming those into w-plane constant boundary

conditions stay constant by, whereby linearly shaped functions in z-plane

become a cosine hyperbolic function, see Fig. A.2.

Essentially this hyperbolic cosine term can be replaced by a Taylor series.

Fig. A.2 shows that hyperbolic cosine terms occur when going along ld and

through the oxide. Looking at other results in Fig. 4.23 for a channel length

of 50nm and a channel width of 10nm a maximum ld of 9nm is given. In

a small range like this an arc hyperbolic cosine function can be replaced

by a square-root approximation. The advantage here, beginning and end

point of the interesting part of the square-root approximation are defined by

the corners of the structure. The inaccuracy increases with a higher ld and

t∼ox. With ld = 9nm difference between integral along the function and the

approximation of less than 1% is reached.
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Figure A.2: Estimated characteristics of the transformed boundary
potential Φ(u). It is shown that constant boundary conditions
stay constant by transforming those from z-plane to w-plane,
whereby linearly shaped functions in z-plane become a cosine
hyperbolic function, which can be substituted by a parabolically
shaped function.

Figure A.3: Comparison between real value of Φ(u) of the arc hyper-
bolic cosine function and a square root approximation along
the boundary u over a length of transformed 10nm.

UNIVERSITAT ROVIRA I VIRGILI 
ANALYTICAL PREDICTIVE 2D MODELING OF PINCH-OFF BEHAVIOR IN NANOSCALE MULTI-GATE MOSFETS 
Michaela Weidemann 
DL:T-1801-2011 



118 Closed Form Solution of 2D Poisson’s Equation

Fig. A.3 shows the comparison between real value of Φ(u) of the arc hy-

perbolic cosine function and a square root approximation along the boundary

u over a length of transformed 10nm. Since the oxide even when transformed

into t∼ox is less than 5nm the results have no noticeable difference.

2○ to 3○ To solve the potential coming from Φ23 (u, v) in Eqn. (A.1),

the Eqn. Is split into an constant

Φ23−const(u, v) =
1

π

∫ x=0

x=ld

v

v2 + (u− u)2
· (−Ep · ld) du (A.4)

and the arc hyperbolic cosine term

Φ23−square(u, v) =
1

π

∫ x=0

x=ld

v

v2 + (u− u)2
· Ep · arccosh(u)

M y

π
du. (A.5)

For the constant part the result is simply

Φ23−const(u, v) = − 1

π
· Ep · ld · (arctan (−a+ u)/v)− arctan ((u+ 1)/v)) .

(A.6)

The first arc tangent term arctan (−a+ u)/v) defines the upper boundary

with

a = cosh

(
π ·

ld+ j · (2 · t∼ox + Tch)

2 · t∼ox + Tch

)
. (A.7)

The lower boundary is defined by the other arc tangent term arctan ((u+ 1)/v),

whereby here the lower boundary transformed into w plane is -1, as explained

in section 2.6.2.

The arc hyperbolic cosine term Ep · arccosh(u) · My
π

needs to be replaced

with a square root approximation. First the beginning point of this part

z = (Tch + 2 · t∼ox) + j · (ld) (A.8)

and the end point

z = (Tch + 2 · t∼ox) + j · (0) (A.9)
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needs to be defined. As well as the corresponding transformation into w-plane

w = cosh

(
(ld+ j · M y) · π

M y

)
(A.10)

and

w = cosh

(
j · M y · π

M y

)
, (A.11)

with M y = Tch + 2 · t∼ox. As square-root approximation function is used,√√√√x− cosh
(
j ·My ·π

My

)
p

(A.12)

with the slope of

p =
cosh

(
(ld+j ·My) ·π

My

)
− cosh

(
j ·My ·π

My

)
(Ep · ld)2

. (A.13)

Putting this in Eqn. (A.5) we have

Φ23(u, v) =
1

π

∫ x=0

x=ld

v

v2 + (u− u)2
·


√√√√x− cosh

(
j ·My ·π

My

)
p

− Ep · ld

 du

(A.14)

The result for the square root part of the integration system is more complic-

ated,

Φ23−square(u, v) =
1

(4 · π)
· (1/p)(1/2) · (

4 · arctan((2 · (a+ 1)(1/2) +K+(u, v))/K−(u, v)) · v2

− 4 · arctan((−2 · (a+ 1)(1/2) +K+(u, v))/+K−(u, v)) · v2)/v/K−(u, v))

(A.15)

with

K ± (u, v) =
(

2 ·
(
u2 + 2 ·u+ v2 + 1

)(1/2) ± 2 ·u± 2
)(1/2)

. (A.16)
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120 Closed Form Solution of 2D Poisson’s Equation

The constant a in Eqn. (A.15) is the same as in Eqn. (A.6), because the points

where the boundaries are located do not change, a = cosh
(
π · ld+j · (2 · t∼ox+Tch)

2 · t∼ox+Tch

)
.

3○ to 4○ This equation is very similar to the problem in the previous

section. It contains an Ep · arccosh(u) · My
π

term, that is replaced by a square

root approximation

Φ34(u, v) =
1

π

∫ x=0

x=ld

v

v2 + (u− u)2
·


√√√√y − cosh

(
j ·My ·π

My

)
q

− Ep · ld

 du

(A.17)

with

q = −
cosh

(
(0+j ·My) ·π

My

)
− cosh

(
j · (Tch+t∼ox) ·π

My

)
(Vgs − Vfb − Vds − Vbi)2

. (A.18)

Again the equation can be split up in an constant part with

Φ34−const(u, v) = − 1

π
· Ep · ld · (arctan (−b+ u)/v)− arctan ((u+ 1)/v))

(A.19)

and b defined as

b = cosh

(
π ·

ld+ j · (t∼ox + Tch)

2 · t∼ox + Tch

)
. (A.20)

And the expression for the square root part of the integration system,

Φ34−square(u, v) =
1

(4 · π)
· (1/q)(1/2) · (4 · arctan((2 · (b+ 1)(1/2)

+K+(u, v))/K−(u, v)) · v2 − 4 · arctan((−2 · (a+ 1)(1/2)

+K+(u, v))/+K−(u, v)) · v2)/v/K−(u, v)

(A.21)

with

K ± (u, v) =
(

2 ·
(
u2 + 2 ·u+ v2 + 1

)(1/2) ± 2 ·u± 2
)(1/2)

. (A.22)

4○ to 5○ This part only contains constant parts. So the result is without
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any approximation:

Φ3 = − 1

π
· (Vds + Vbi − Ep · ld) · (arctan (−c+ u)/v)− arctan ((−d+ u)/v)) .

(A.23)

For c and d the upper and lower boundary of the integration system are used,

c = cosh

(
π ·

ld+ j · (2 · t∼ox + Tch)

2 · t∼ox + Tch

)
(A.24)

and

d = cosh

(
π ·

ld+ j · (t∼ox)

2 · t∼ox + Tch

)
. (A.25)
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