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numerous people who have helped me in the elaboration of this thesis.
I also want to thank the Department of Mathematics of the Stockholm
University for their hospitality during my stay there during the winter
2010-2011.

Combinatorial Structures For Anonymous Database Search

UNIVERSITAT ROVIRA I VIRGILI 
COMBINATORIAL STRUCTURES FOR ANONYMOUS DATABASE SEARCH 
Klara Stokes 
DL:T-1799-2011 



vi

Combinatorial Structures For Anonymous Database Search

UNIVERSITAT ROVIRA I VIRGILI 
COMBINATORIAL STRUCTURES FOR ANONYMOUS DATABASE SEARCH 
Klara Stokes 
DL:T-1799-2011 



Contents

1 Introduction 1

1.1 Privacy protection in communications . . . . . . . . . . . 2
1.1.1 Private information retrieval . . . . . . . . . . . . 2
1.1.2 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Anonymous database search . . . . . . . . . . . . 4
1.1.4 Privacy Preserving Keyword Search . . . . . . . . 5
1.1.5 Goopir . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.6 TrackMeNot . . . . . . . . . . . . . . . . . . . . . . 5
1.1.7 User-private information retrieval or

user-controlled anonymous database search . . . 6
1.2 Configurations: a short background . . . . . . . . . . . . 8
1.3 Contents and contributions . . . . . . . . . . . . . . . . . 9

2 Preliminaries 15

2.1 Mathematical background . . . . . . . . . . . . . . . . . . 15
2.1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Elements of finite geometry . . . . . . . . . . . . . 19
2.1.3 Polygons in combinatorial configurations . . . . . 25
2.1.4 Latin squares . . . . . . . . . . . . . . . . . . . . . 26
2.1.5 Finite projective and affine planes . . . . . . . . . 28
2.1.6 Transversal designs . . . . . . . . . . . . . . . . . . 35
2.1.7 Necessary conditions for the existence of combi-

natorial configurations . . . . . . . . . . . . . . . . 40
2.1.8 Sufficient conditions for the existence of combina-

torial configurations . . . . . . . . . . . . . . . . . 41
2.1.9 Previous results on the existence of triangle-free

combinatorial configurations . . . . . . . . . . . . 45
2.1.10 Numerical semigroups . . . . . . . . . . . . . . . . 49

Combinatorial Structures For Anonymous Database Search

UNIVERSITAT ROVIRA I VIRGILI 
COMBINATORIAL STRUCTURES FOR ANONYMOUS DATABASE SEARCH 
Klara Stokes 
DL:T-1799-2011 



viii CONTENTS

2.2 Notions and definitions of privacy . . . . . . . . . . . . . 50

2.2.1 Reidentification . . . . . . . . . . . . . . . . . . . . 52

2.2.2 n-anonymity . . . . . . . . . . . . . . . . . . . . . 54

2.2.3 P2P UPIR: A peer-to-peer user-private
information retrieval protocol . . . . . . . . . . . . 55

3 Choosing configurations for P2P UPIR 59

3.1 Optimal combinatorial configurations for P2P UPIR and
the neighborhood problem . . . . . . . . . . . . . . . . . . 59

3.1.1 Optimal configurations for peer to peer private
information retrieval in terms of profile diffusion 60

3.1.2 A possible linkage between queries and users . . 64

3.1.3 Real examples of repeated queries . . . . . . . . . 70

3.1.4 Modifications to prevent linkages . . . . . . . . . 73

3.1.5 Optimal configurations for peer to peer private
information retrieval in terms of non-linkability . 79

3.2 Transversal designs and n-anonymous P2P UPIR . . . . . 80

3.2.1 Privacy notions for P2P UPIR: n-anonymity and
n-confusion . . . . . . . . . . . . . . . . . . . . . . 81

3.2.2 Combinatorial configurations providing
n-anonymous P2P UPIR (I) . . . . . . . . . . . . . 89

3.2.3 Completely private P2P UPIR . . . . . . . . . . . . 93

3.2.4 Combinatorial configurations providing
n-anonymous P2P UPIR (III) . . . . . . . . . . . . 96

3.3 Collusions of users and triangle-free configurations . . . 97

3.3.1 Two different strategies for constellations of col-
luding users . . . . . . . . . . . . . . . . . . . . . . 97

3.3.2 Colluding users that communicate only over
channels provided by the protocol . . . . . . . . . 98

3.3.3 Colluding users that use external channels of
communication . . . . . . . . . . . . . . . . . . . . 100

4 Constructing configurations 107

4.1 Constructions of finite projective planes . . . . . . . . . . 107

4.2 The numerical semigroup associated to the existence of
combinatorial configurations . . . . . . . . . . . . . . . . 113

4.2.1 The set of (r, k)−configurable tuples . . . . . . . . 113

4.2.2 The numerical semigroup D(x,2) = D(2,x) . . . . . 114

4.2.3 The numerical semigroup D(x,3) = D(3,x) . . . . . 116

Combinatorial Structures For Anonymous Database Search

UNIVERSITAT ROVIRA I VIRGILI 
COMBINATORIAL STRUCTURES FOR ANONYMOUS DATABASE SEARCH 
Klara Stokes 
DL:T-1799-2011 



CONTENTS ix

4.2.4 The set of integers associated to the combinatorial
(r,k)-configurations forms a numerical semigroup 117

4.2.5 Bounds on the existence of combinatorial configu-
rations in terms of bounds on the multiplicity and
conductor of the associated numerical semigroup 124

4.3 The numerical semigroup associated to the existence of
triangle-free combinatorial configurations . . . . . . . . . 129
4.3.1 Associating a set of integers to the existence of

triangle-free (r, k)-configurations . . . . . . . . . . 130
4.3.2 The set of integers associated to the triangle-free

(r, k)-configurations forms a numerical
semigroup . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.3 Bounds on the existence of triangle-free configu-
rations in terms of bounds on the multiplicity and
conductor of the associated numerical semigroup 139

5 More on the numerical semigroup associated to the existence
of combinatorial configurations 147
5.1 Another necessary condition for the existence of combi-

natorial configurations . . . . . . . . . . . . . . . . . . . . 147
5.2 Small configurations and their numerical semigroups . . 151

5.2.1 Numerical semigroups Dr,k with the integer 2 . . 157
5.2.2 Numerical semigroups Dr,k with the integer 3 . . 158
5.2.3 Numerical semigroups Dr,k with the integer 4 . . 160
5.2.4 Numerical semigroups Dr,k with the integer 5 . . 161
5.2.5 Numerical semigroups Dr,k with the integer 6 . . 162
5.2.6 Non-ordinary numerical semigroups associated

to (r, k)-configurable tuples . . . . . . . . . . . . . 162

6 Conclusions 165
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2 Open problems . . . . . . . . . . . . . . . . . . . . . . . . 170

Appendix 179

Combinatorial Structures For Anonymous Database Search

UNIVERSITAT ROVIRA I VIRGILI 
COMBINATORIAL STRUCTURES FOR ANONYMOUS DATABASE SEARCH 
Klara Stokes 
DL:T-1799-2011 



x CONTENTS

Combinatorial Structures For Anonymous Database Search

UNIVERSITAT ROVIRA I VIRGILI 
COMBINATORIAL STRUCTURES FOR ANONYMOUS DATABASE SEARCH 
Klara Stokes 
DL:T-1799-2011 



Chapter 1

Introduction

The society of today is sometimes classified as a society of informa-
tion. Indeed, many aspects of modern life are based on the easy access
to information. The quantity of information that is available from any
computer connected to the internet is increasing rapidly and without
much control. Although the quality of information does not seem to
increase with the same velocity, resources are for example invested in
order to make it possible to access the humanities whole collection of
information resources, “with only a click”. These projects include the
digitalization of vast quantities of printed material that form part of the
cultural heritage of humanity.

In the old days navigation was an art. In our days the navigation
on the internet is challenging because of the large quantities of avail-
able information. The web based search engines were invented as an
answer to this challenge. These search engines use advanced sorting
algorithms and crawling techniques combined with user profiling and
interest analysis in order to find the information that the user wants.
Originally, the contact between the search engine and the user was
based only on the queries posted by the user and the query answers
given by the search engine. However, nowadays most search engines
also provide other services to their users, like for example web-based
email and social network services. Of course, the use of all these ser-
vices reveals information about the user to the server. This information
is collected by the server in a user profile database that presumedly is
used mainly for commercial purposes, for example to send directed ad-
vertisements to the users on the webpages provided by the server. But
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2 Introduction

the same information can also be sold to other companies. Indeed the
user has no control at all of the information about himself that he gives
to the server. He can not know what the server will do with the infor-
mation and he is usually not even aware of the fact that he is revealing
sensitive information about himself to a powerful company.

1.1 Privacy protection in communications

There are several disciplines that study different aspects of privacy in
communications. Here we will describe some of these shortly with the
purpose to contrast them with the protocols that will be treated in this
thesis.

1.1.1 Private information retrieval

The discipline that studies how a user should retrieve an element from
a database or a search engine, without the system or the server being
able to deduce which element is the object of the user’s interest, is called
Private Information Retrieval (PIR). The name and the discipline were
introduced in the works of Chor, Goldreich, Kushilevitz and Sudan [20,
22].

A first result, found in these works, says that the only way to guar-
antee complete privacy, when using one single database, is by mak-
ing the user access all the information in the database. Because of this,
the first PIR protocols were initially designed for situations where there
exist several copies of the same database, without these copies being
intercommunicated. In this case, privacy refers to each of the servers
individually [20, 22].

Later, computational PIR (cPIR) was introduced, dealing with pri-
vacy against one single database [21, 51]. In this case, there is a unique
server with limited computational capacity and the privacy is relaxed
to computational privacy. This means that the computations the server
has to perform in order to gather enough information on the queries of
a user to vulnerate her privacy, exceeds the capacity of the server. To
distinguish the original PIR from the computational PIR, the former is
called information theoretic PIR.

A major issue with cPIR schemes is that they are computationally
expensive. The database needs to process all its entries for every query
sent by the users, since otherwise it would be able to deduce in what
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1.1 Privacy protection in communications 3

entries the user is not interested. New protocols have been presented
lately, based on noise over lattices instead of on number theoretical
problems. The computational cost is then lowered, but communication
performance obtained is worse [3]. One interesting example of this is
[38] where a higher efficiency is obtained accepting a minor probability
of error in the answer of the query.

Apart from cPIR, there are PIR protocols based on the assumption
that a trusted hardware is installed in the database, so-called trusted-
hardware based PIR (thPIR). This is a rather prosperous assumption,
and several ideas for thPIR protocols have been presented, see for ex-
ample [86]. However, the assumption of the existence of a trusted hard-
ware, restricts the applications of these protocols to particular situa-
tions.

The drawbacks we observe with existing PIR protocols are the fol-
lowing:

• PIR protocols usually model the database as a vector in which the
user knows the physical address of the item she is interested in.
This is a very unreal assumption, e.g. think of a user querying
a search engine. One exception is the protocol described in [23],
that provides PIR for keyword queries;

• Theoretical PIR protocols have complexity that is linear in the size
of the database. To avoid giving the server any clues of the inter-
ests of the user, the protocol must be such that the server processes
all entries in the database for every query;

• It is assumed that the database server cooperates in the PIR proto-
col. But it is the user who is interested in her own privacy, whereas
the motivation for the database server is dubious; actually, PIR
is likely to be unattractive to most companies running queryable
databases, as it limits their profiling ability.

1.1.2 Mixing

Digital mixes were invented by David Chaum in 1981, in order to pro-
vide anonymous email. A mix works at the network layer, and tries
to hide the meta-data associated to a communication, i.e. avoid traffic
analysis. One common approach for the construction of mixes is to use
a chain of multiple untrusted relays, e.g. MorphMix [63] and Tarzan
[36], but it is also possible to use a single trusted relay, as is the case
with the example of PIR applied to mixing that can be found in [4].
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4 Introduction

A well-known software, providing traffic analysis resistance for in-
teractive communication, is Tor [81]. It is an example of mixing using
repeated public key cryptography through a chain of untrusted relays,
called onion-routing. However, these are not intended to offer private
information retrieval. They protect the transport of data, but give no
end-to-end protection (at the application level). A server may link the
successive queries submitted by the same user (e.g by using cookies),
and in that way be able to profile and re-identify the user.

This last observation is generally true for all systems working on the
network layer, hence for all mixers. Although anonymity on network
level is achieved, so that the user’s IP is maintained in secret, the col-
lection of network traffic originating from her (secret) IP will reveal her
by its content, e.g. through user names, query contents, etc.

There exist other systems that provide privacy protection for com-
munications that do not classify under the disciplines described above.
Here we mention some of these.

1.1.3 Anonymous database search

Anonymous database search was introduced in order to provide a sys-
tem that makes it possible for a server (i.e. data owner) to publish data
in a controlled way that allows for an authorized client to anonymously
and securely query a server for documents containing a desired key-
word [62]. We choose to interpret the concept in a more general way,
and define anonymous database search as the discipline that studies
how a client can retrieve an element from a database server without the
server being able to tell who posted the query among all clients using
the server.

The protocol described in [62] claims to protect not only the identity
of the client from the server, but also the content of his query, and ensure
that the client does not learn more about the database than he asked for.
As pointed out in the same article, such high ambitions are impossible
to realize without involving more parties in the protocol than the pair
client-server only. The solution that they provide is based on the intro-
duction of two trusted third parties, one index server and one query
router. The introduction of trusted third parties in a protocol usually
implies a security risk.
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1.1 Privacy protection in communications 5

1.1.4 Privacy Preserving Keyword Search

In a paper by Chang et al. a protocol that provides Privacy Preserving
Keyword Search is described [19]. The protocol belongs to a class of
protocols that are thought to protect the privacy of the client of a dis-
tributed file system. It is assumed that the server does not own the data
it holds. Instead it is the client who uploads his encrypted data to the
server and afterwards wants to consult the data without revealing his
interests to the server. This scenario adapts well for example to clients
of a server for remotedly stored email, but can in general not be applied
in the case of a web-based search engine and its clients.

1.1.5 Goopir

In [31] a system named Goopir is proposed in which a user masks her
target query by ORing it with k − 1 fake queries and then submits the
resulting masked query to a search engine or large database which does
not need to cooperate (in fact, it does not even need to know that the
user is trying to protect her privacy). Strictly speaking, Goopir does not
achieve PIR as defined above; rather, it provides h(k)−private informa-
tion retrieval, in that it cloaks the target query within a set of k queries
of entropy at least h(k). This system works fine but it assumes that the
frequencies of keywords and phrases that can appear in a query are
known and available: for maximum privacy, the frequencies of the tar-
get and the fake queries should be similar, so that the uncertainty h(k)
of the search engine about the real target query is maximum.

1.1.6 TrackMeNot

TrackMeNot [47] is a software available as a plugin for Firefox. It peri-
odically issues randomized search-queries to popular search engines,
e.g., AOL, Yahoo!, Google, and MSN. In this way it hides the users
actual search trails in a cloud of ’ghost’ queries, significantly increas-
ing the difficulty of aggregating such data into accurate or identifying
user profiles. While practical at a small scale, if the use of TrackMeNot
became generalized, the overhead introduced by ghost queries would
significantly degrade the performance of search engines and communi-
cations networks. Also, the way the automatic ghost queries are sub-
mitted may be distinguishable from the way real queries are submitted,
which could provide clues on how to identify the latter type of queries.
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6 Introduction

1.1.7 User-private information retrieval or
user-controlled anonymous database search

In [28, 29] a protocol was presented for the protection of the query pro-
file of the web-based search engine user. This protocol was based on
the collaboration between several users who post each others queries
in order to cause confusion on the origin of the query. The users of
this protocol upload and download their queries to so-called “commu-
nication spaces”. A communication space is a memory sector together
with a cryptographic key that is used to encrypt and decrypt the con-
tent on the memory sector. The distribution of these communication
spaces among the users is defined by a mapping of the users to the
points of an incidence structure. An incidence structure is a set of so-
called points and a family of subsets of the point set called blocks, or
sometimes lines. The communication spaces are then represented by
the blocks so that two users share a communication space if and only if
their points are both incident with the same block.

The incidence structures used by the protocol are the combinato-
rial configurations. For references on combinatorial configurations, see
for example [39, 42], or below. A combinatorial (r, k)-configuration is
an incidence structure such that all blocks have the same number k of
points, all points are on the same number r of lines, and every pair of
points is contained in at most one block. These properties are useful,
the regularity ensures that the same privacy is given to everyone and
the last property ensure that the users only share the number of queries
that we have assigned them to share. Indeed if a communication space
was shared twice by the same pair of users, then these two users would
share twice the number of queries compared to what was planned when
the protocol was designed.

The protocol protecting the query profile of the users is called peer-
to-peer user-private information retrieval, or shorter, P2P UPIR [28, 29].
User-private information retrieval is different from private information
retrieval in that it does not protect the content of user queries from the
server, but the identity of the user, so that the server can not know who
posted the query. Regarding the P2P UPIR protocol, we consider that
the following should be stressed:

• P2P UPIR has none of the disadvantages of cPIR, e.g. it does not
need the cooperation of the server, it has sublinear complexity,
and the database does not have to be modeled as a vector. Of
course it is not a fair comparison, since the P2P UPIR protocol
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1.1 Privacy protection in communications 7

does something quite different from what usually is meant by PIR;

• Unlike mixers, P2P UPIR hides the profile of the user in front of
the database/server. The users send queries on behalf of others,
i.e. it is something like a mixer on application level;

• Unlike the Anonymous Database Search protocol in [62], the P2P
UPIR protocol does not assume the collaboration of the server.
Also, P2P UPIR does not use trusted third parties in order to in-
troduce anonymity, but it distributes the trust between the other
users (peers) of the protocol. The privacy risk in front of these
peers is managed;

• Unlike the Privacy Preserving Keyword Search from [19] and
other privacy preserving protocols for distributed file systems,
P2P UPIR assumes that the data is owned by the server and that
the server has no interest in preserving the privacy of the user;

• Unlike Goopir, no knowledge of the frequencies of all possible
keywords and phrases that can be queried is required;

• Unlike TrackMeNot, the overhead of ghost query submission is
avoided.

As we understand it, user-private information retrieval and anony-
mous database search denominate the same thing, except for the im-
portant difference that UPIR does not assume any collaboration from
the server, so that UPIR can be used in situations when the server is
not interested in preserving the privacy of the user. Some protocols for
anonymous database search, like the one described in [62], require the
collaboration of the server, and the user has to be authorized in order to
follow the protocol. We consider that this difference is important, but
we also think that there is no reason why the collaboration of the server
should be assumed for anonymous database search. Therefore we use
the concepts of anonymous database search and user-private informa-
tion retrieval without distinction, but we also recommend, for clarifying
purposes, the name user-controlled anonymous database search.

Using this notation, the peer-to-peer user-private information re-
trieval protocol is a peer-to-peer user-controlled anonymous database
search protocol.

This thesis is about this protocol and also about combinatorial con-
figurations, their construction and existence.
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8 Introduction

1.2 Configurations: a short background

In a combinatorial configuration no geometrical meaning is given to the
terms point and line. A geometrical configuration, on the other hand,
is a combinatorial configuration that can be embedded into the real eu-
clidean or the real projective plane.

Combinatorial and geometric configurations appear in many areas
of mathematics, classical geometry, combinatorics, topology, algebraic
geometry, etc. When configurations are studied for their own sake, usu-
ally the interest is focused on problems of existence. Given a set of pa-
rameters, can we tell if a configuration with these parameters exists?
And if there exists at least one, how many different configurations exist
with these parameters?

The history of the study of configurations is long. One early exam-
ple of a geometric configuration is the (3, 3)-configuration of 9 points
and 9 lines defined by the Pappus’ (hexagon) theorem. Other early re-
sults in the subject were provided by Desargues, Steiner, Möbius and
Cayley.

The name configuration was coined in Reyes’ book from 1876 [64].
In the subsequent 35 years many basic results on configurations were
published. Some authors from this era are Reye, Kantor, Martinetti,
Schröter, Schönflies, Brunel, Burnside, Daublebsky and Steinitz. For
example, Kantor counted the number of combinatorial and geomet-
ric (3, 3)-configurations with 8,9 and 10 points. Kantor was however
wrong about the number of geometric (3, 3)-configurations on 10 points,
as was discovered shortly afterwards. Also other results from this era
were erroneous, but the errors remained undiscovered for almost a cen-
tury, perhaps because nobody actually read their works during this
time. Indeed, no major publications on configurations were made be-
tween 1910 and 1990, with some important exceptions, like the book by
Levi [55], the book by Hilbert and Cohn-Vossen [46], and some publica-
tions by Coxeter.

After 1990, many results on combinatorial configurations were pub-
lished by Gropp, see for example [39, 41, 40], and also Grünbaum has
important contributions on geometric configurations. The new pro-
gresses induced a new interest for configurations, and recent publica-
tions on configurations have been made by Kaski, Östergård, Betten,
Brinkman, Pisanski and Boben, see for example [49, 8, 59, 13]. For fur-
ther background, the book [42] by Grünbaum, and the book chapter
[39] by Gropp serve as recent general references on configurations, and
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1.3 Contents and contributions 9

the former has a very useful bibliography.
As commented before, this thesis treats on one hand some ques-

tions on the existence and the construction of combinatorial configura-
tions, and on the other hand, an application of combinatorial configu-
rations to user-private information retrieval. Regarding other examples
of applications of combinatorial configurations in computer science, we
have for example the application to key distribution for distributed sen-
sor networks that can be found in [53, 54]. There are also applications
for combinatorial configurations in coding theory, for example in the
construction of LDPC codes, see [34, 35, 57, 82]. More applications in
cryptography and coding theory can be found in a book about finite
projective geometry by Beutelspacher and Rosenbaum [9]. The appli-
cations described there include message authentication codes (MAC) or
in particular Cartesian authentication schemes (see [27]), secret sharing
schemes (see for example [50]), and Reed-Muller codes.

1.3 Contents and contributions

The second chapter of this thesis contains the preliminaries. It is di-
vided into two sections; the first treats the mathematical background
and the second contains relevant notions from computer science about
privacy and anonymity.

The use of a combinatorial configuration for the design of the pro-
tocol implies that the geometric properties of these combinatorial ob-
jects may have influences on the performance of the protocol. The third
chapter is dedicated to the analysis of this phenomenon. The most im-
portant results of this analysis are the following.

1. The (v, k, 1)-BIBD, or with a different name, the S(2, k, v) Steiner
systems, are identified as optimal combinatorial configurations
for P2P UPIR with respect to the diffusion of the real profile of
the protocol user;

2. The finite projective planes are identified as the optimal combi-
natorial configurations for P2P UPIR, with respect to criteria as
privacy in front of the server and storage efficiency;

3. The neighborhood of a point in a combinatorial configuration is
recognized as a quasi-identifier of that point.

4. A modification of the P2P UPIR protocol is proposed in order to
avoid the neighborhood problem;
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10 Introduction

5. The (v, k, 1)-BIBD are identified as optimal combinatorial config-
urations for the modified P2P UPIR protocol;

6. The theory of n-anonymity is applied to the neighborhood prob-
lem;

7. The use of transversal designs for n-anonymous P2P UPIR is pro-
posed with respect to the neighbors of the points;

8. The use of (v, k, 1)-BIBD for v-anonymous modified P2P UPIR is
proposed with respect to the neighbors of the points;

9. Collusions of adversary protocol users communicating only over
the channels provided by the protocol are recognized as a privacy
risk;

10. Triangle-free combinatorial configurations are proposed in order
to
avoid the privacy risk caused by collusions of users communicat-
ing over channels provided by the protocol;

11. For collusions of users communicating also over external channels
the magnitude of this privacy risk is calculated.

The fourth chapter is dedicated to the existence and construction
of combinatorial configurations. The following results are presented
there.

1. An algorithm for the construction of projective planes is provided;

2. A subset of the natural numbers D(r,k) is associated to the pa-
rameter tuples of combinatorial (r, k)-configurations and then it
is proved that this subset is a numerical semigroup. This result
implies, for example, the following:

• For any pair of integers r, k ≥ 2 there exist infinitely many
combinatorial (r, k)-configurations;

• Given a pair of integers r, k ≥ 2 there exists a positive num-
ber N such that for all integers n ≥ N there exists at least one
combinatorial configuration with parameters

(

n
k

gcd(r, k)
, n

r

gcd (r, k)
, r, k

)

,
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1.3 Contents and contributions 11

that is, when the number of points (and lines) is big enough,
there is at least one configuration for any admissible param-
eter set;

• When gcd(r, k) = 1, then every prime power q ≥ max(r, k)
belongs to D(r,k);

• Two different constructions of combinatorial configurations
from other combinatorial configurations are provided.

3. A subset of the natural numbers D▽
(r,k) is associated to the triangle-

free (r, k)-configurations and it is proved that for every pair of

integers r, k ≥ 2, the set D▽
(r,k) is a numerical semigroup. This

implies for example the following:

• For any pair of integers r, k ≥ 2 and prime power

q ≥ (r − 1)(k − 1)

there exists a triangle-free (r, k)-configuration with

2(r − 1)(k − 1)kq2

points and
2(r − 1)(k − 1)rq2

lines. This is to be compared to a previous bound given
by the generalized Gray/LC(r) configuration with rr points
and rr lines. Our result is more general, since we also treat
non-balanced configurations.

• It is proved that there exist infinite families of triangle-free
(r, k)-configurations. These families are different from the
families which can be constructed from the results presented
in [42], and also in this case it should be noticed that we treat
both balanced and unbalanced configurations;

• Given a pair of integers r, k ≥ 2 it is proved that there exists
a positive number N such that for all integers n ≥ N there
exists at least one configuration with parameters

(

n
k

gcd(r, k)
, n

r

gcd (r, k)
, r, k

)

,

that is, when the number of points (and lines) is big enough,
there is at least one configuration for any admissible param-
eter set;
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12 Introduction

• The proofs are constructive and can be used to define an al-
gorithm for the construction of triangle-free configurations.

In the fifth and last chapter another view of the existence and con-
struction problem of combinatorial configurations is presented. The
chapter contains an analysis of the numerical semigroups D(r,k) with
small multiplicity.

Some results in this thesis can also be found in the following articles:

1. M. Bras-Amorós, J. Domingo-Ferrer and K. Stokes (2009) Con-
figuraciones combinatóricas y recuperación privada de información por
pares. In Congreso de la Real Sociedad Matemática Española-
RSME 2009, Oviedo, Spain.

2. M. Bras-Amorós and K. Stokes, The semigroup of combinatorial con-
figurations. Semigroup Forum, accepted (also available as preprint
arXiv: 0907.4230v3).

3. M. Bras-Amorós, K. Stokes and M. Greferath (2010) Using (0,1)-
geometries for collusion-free P2P user private information retrieval. In
Proceedings of The 19th International Symposium on Mathemat-
ical Theory of Networks and Systems, Budapest.

4. K. Stokes and M. Bras-Amorós (2010) Optimal configurations for
peer-to-peer user-private information retrieval. Computers & Mathe-
matics with Applications, 59:4, pp. 1568 – 1577.

5. M. Bras-Amorós and K. Stokes (2010) On the existence of com-
binatorial configurations. In Proceedings of the 3rd International
Workshop on Optimal Networks Topologies (IWONT), 9-11 June
2010, Barcelona, pp. 145–168.

6. K. Stokes and M. Bras-Amorós (2011) Associating a numerical semi-
group to the triangle-free configurations. Advances in Mathematics
of Communications, 5:2, pp. 351 – 371.

7. K. Stokes and M. Bras-Amorós (2011) On query self-submission in
peer-to-peer user-private information retrieval. In Proceedings of the
4th International Workshop on Privacy and Anonymity in the In-
formation Society (PAIS ’11), Uppsala, Sweden.

8. K. Stokes, Oriol Farràs and Maria Bras-Amorós (2011) Transver-
sal designs: n-anonymous combinatorial configurations for anonymous
database search. Manuscript.
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1.3 Contents and contributions 13

9. K. Stokes and V. Torra (2011) Reidentification and k-anonymity: a
model for disclosure risk in graphs. Submitted.

The content in the thesis is distributed in these articles as follows.
Section 3.1 can be found in articles 1, 4, 7, 8, Section 3.2 in articles 7, 8
and 9, Section 3.3 is unpublished, Section 4.1 in article 4, Section 4.2 in
articles 2 and 5, Section 4.3 in articles 3 and 6 and Section 5 is unpub-
lished. Section 2.2 and 3.2 has inspired article 9, although article 9 is not
contained in this thesis.
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Chapter 2

Preliminaries

2.1 Mathematical background

2.1.1 Graphs

Graphs are combinatorial objects with many applications. A graph can
represent something which we see in our daily life, like the urban trans-
port network in our city, or a social network, but it can also represent an
abstract mathematical object, like the isogeny classes of elliptic curves,
or as in this thesis, the incidences of an incidence structure. A graph is
also in itself an incidence structure.

There are directed and undirected graphs.

Definition 2.1.1. An undirected graph (V,E) is a set V and a set of 2-element
subsets E ⊆ 2V . The elements in V are called vertices and the elements in E
are called edges.

We write e = v1v2 when we mean e = {v1, v2}. Therefore we have
that v1v2 = v2v1.

Definition 2.1.2. A directed graph is a set V together with a set of ordered
pairs of vertices A ⊆ V × V . The elements in V are called vertices and the
elements in A are called arcs or directed edges. The left vertex and the right
vertex in an arc a are called the origin and the end of a and are denoted by o(a)
and f(a), respectively.

We write a = v1v2 when we mean that o(a) = v1 and f(a) = v2. We
say that o(a) and f(a) are the extremities of a.
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16 Preliminaries

An undirected graph (V,E) is isomorphic to a directed graph (V,A)
such that

a = o(a)f(a) ∈ A

implies that
ā = f(a)o(a) ∈ A.

The edge set of the undirected graph is then the set of pairs of arcs

E = {e = (a, ā), a ∈ A},

or if one prefers, the set of arcs A modulo the inversion v1v2 = v2v1. An
undirected edge has two extremities o(a) = f(ā) and f(a) = o(ā). Two
vertices v1 and v2 in a graph are said to be adjacent or neighbors if there
is an arc a such that v1 and v2 are the extremities of a. The outgoing
degree of a vertex v ∈ V is the number of arcs a ∈ A with o(a) = v.
The ingoing degree of a vertex v ∈ V is the number of arcs a ∈ A with
f(a) = v. The ingoing degree and the outgoing degree of a vertex in an
undirected graph coincide and define the degree of that vertex. Hence
the degree of a vertex v is the number of edges e ∈ E such that v ∈ e. An
undirected graph, such that all the vertices in V have the same degree r,
is said to be r-regular. If all vertices in a subset U ⊆ V of an undirected
graph have the same degree r, then we say that the graph is r-regular
over U .

Definition 2.1.3. A bipartite undirected graph is an undirected graph in
which the vertex set can be partitioned into two disjoint sets (or parts) V =
V1 ∪ V2, such that no two vertices in the same part are adjacent.

Hence, in a bipartite undirected graph (V1 ∪ V2, E), all edges in E
contain one vertex from V1 and one vertex from V2. We say that a bi-
partite graph is (n,m)-biregular if it is n-regular over V1 and m-regular
over V2.

The path graph on n vertices is the directed graph with vertex set

V = {1, . . . , n}

and arc set
A = {i(i+ 1) : i, i+ 1 ∈ V }.

For an example of a path graph, see Figure 2.1. A graph morphism
between two graphs G1 = (V1, E1) and G2 = (V2, E2) is a map φ :
V1 → V2, such that if two vertices v1, v2 ∈ V1 are connected by an edge
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2.1 Mathematical background 17

Figure 2.1: The path graph on 3 vertices

v1v2 ∈ E1, then the two vertices φ(v1), φ(v2) are either equal or there
is an edge φ(v1)φ(v2) ∈ E2. A path of length n in a graph G is an
injective morphism from the path graph on n vertices into G. A graph
G is connected if there is at least one path between any two vertices in
G.

The cycle graph on n vertices is the directed graph with vertex set

V = Z/nZ

and arc set
A = {i(i+ 1) : i ∈ V }.

For an example of a cycle graph, see Figure 2.2. A cycle of length n in
a graph G is an injective morphism from the cycle graph on n vertices
into G.

A cycle of length 1 is called a loop. We defined graphs so that they
have no loops. Also, we only consider graphs that have at most one
edge with the same origin and end. A more general definition of graph
would permit for several edges with the same origin and end. A family
of at least two edges with the same origin and end is called a multiedge.
A graph without loops and multiedges is called a simple graph. For
an example of an undirected graph with a loop and a multiedge, see
Figure 2.3.

In this document most graphs will be undirected and simple. If not
otherwise indicated, the word graph will always refer to an undirected,
simple graph.

Definition 2.1.4. A tree is a connected, non-empty graph without cycles.
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18 Preliminaries

Figure 2.2: The cycle graph on 5 vertices

Figure 2.3: A graph with a loop and a multiedge
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2.1 Mathematical background 19

It can be proved that any connected graph G contains a tree which
is maximal for the relation of inclusion. Such a tree is called a spanning
tree of G.

The manner in which an object is represented determines in what
ways we can analyze it. By representing a graph by a matrix, we can
for example apply linear algebra and operator theory to the theory of
graphs.

Definition 2.1.5. Let G = (V,A) be a directed graph and index the vertices
by I so that V = (vi)I . The matrix M = (xi,j)I×I where

xi,j = ♯{a ∈ A : o(a) = vi, f(a) = vj}

is called the adjacency matrix of G.

If the directed graph is isomorphic to an undirected graph (V,E),
then its matrix is symmetric. Since we have chosen to concentrate on
undirected graphs we also give the definition of adjacency matrix of an
undirected graph in terms of Definition 2.1.1.

Definition 2.1.6. Let G = (V,A) be an undirected graph and index the ver-
tices by I so that V = (vi)I . The matrix M = (xi,j)I×I where

xi,j = ♯{e ∈ E : vi, vj ∈ e}

is called the adjacency matrix of G.

The adjacency matrix of an undirected graph is symmetric. The co-
efficients on the diagonal represent loops. The adjacency matrix of a
graph without loops has only zeros in the diagonal. The adjacency ma-
trix of a graph without multiple edges has its coefficients in {0, 1}. The
adjacency matrix of a bipartite undirected graph (V1 ∪ V2, E) is of the
form

(

0 B
BT 0

)

where B is a |V2| × |V1| matrix with coefficients in {0, 1} and BT is the
transpose of B.

2.1.2 Elements of finite geometry

Definition 2.1.7. An incidence structure S = (P ,L, I) is

• a set of “points” P and
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20 Preliminaries

• a set of “blocks” L together with

• a symmetric incidence relation I ⊆ (P × L) ∪ (L × P).

Equivalently, an incidence structure is a set P and a family of subsets
L ⊆ 2P . This latter definition permits us to use the shorter notation
(P ,L), so that the incidence relation becomes implicit.

We say that a point p and a block l are incident if (p, l) ∈ I and we
denote this relation by p I l or l I p. If a point p and a block l are incident,
then, following the latter definition of incidence structure, we say that p
is in l or that l contains p. If two blocks l1 and l2 contain the same point
p then we say that l1 and l2 meet in p.

Sometimes the terminology block design is used instead of inci-
dence structure. However, the word block design is also used as a
synonym for 2-design (see Section 2.1.2). We will prefer the notation
incidence structure, but will use the words block design or design as
synonyms for incidence structure in contexts which by tradition belong
to design theory.

Initially, in an incidence structure there is no restriction on the cardi-
nality of the blocks, so that they do not need to contain the same number
of points. Also, a more general definition would allow for a block in L
to appear several times, in which case L would be a multiset. However,
we will always consider incidence structures in which P and L are dis-
joint, nonempty sets. We will also suppose that the incidence structures
are connected, so that for any two points p 6= q of an incidence struc-
ture, there are points p1, . . . , pn−1 and blocks l1, . . . , ln and a chain of
incidences

p I l1 I p1 I · · · I pn−1 I ln I q.

The rank of a block l is the number of points in l. If all the blocks in
S have the same rank k then we say that S is uniform of rank k. The
degree of a point p is the number of blocks incident with p. If all points
in S have the same degree, then we say that S is regular of degree r.

There exists a notion of duality. By interchanging the roles of the
points and the blocks in an indidence structure (P ,L, I) we obtain an-
other incidence structure (L,P , I).

To an incidence structure we associate a |P| × |L| matrix M = (aij)
with coefficients

aij =







1 if the point pi is on the block lj ;

0 otherwise.
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2.1 Mathematical background 21

We call this matrix the incidence matrix of the incidence structure.
We will also use a shorter representation of the incidence structure

in which the points are represented by integers P = {1, . . . , n} and the
blocks by either the rows or the rows of a table with entries in P . We
call this table the incidence table of the incidence structure.

To an incidence structure we also associate a graph G = (V,E) with
vertex set V := P∪L and edge set the incidence relation E := I . We call
this graph the incidence graph of the incidence structure. The incidence
graph is then a bipartite graph with the points P in one set and the
blocks L in the other. The edges between the two sets are defined by
the incidence relation, so that two vertices p and l are connected if and
only if the point p is incident with the block l.

The incidence graph has associated an adjacency matrix A(G). The
adjacency matrix of the incidence graph is a (|P| + |L|) × (|P| + |L|)
matrix. The properties of the adjacency matrix from Section 2.1.1 to-
gether with the fact that the incidence graph is bipartite implies that
the adjacency matrix of the incidence graph is symmetric and that only
the two |P| × |L| minors which represent the adjacencies between the
partition sets are different from 0. We also know that the symmetry
implies that these two minors are the transpose of each other, so that
only one of these two minors is necessary in order to represent all avail-
able data without redundancy. The non-redundant representation of
the adjacency matrix A of the incidence graph is nothing but the inci-
dence matrix M of the incidence structure. The relation between both
is indeed

A =

(

0 M
MT 0

)

.

By adding different restrictions to the definition of incidence struc-
ture, different combinatorial objects are obtained.

Graphs as incidence structures

Graphs are incidence structures. Indeed we can define an undirected
graph as a set of vertices V and a set of edges E, together with a sym-
metric incidence relation I ⊆ (V × E) ∪ (E × V ) such that for every
element e ∈ E there are exactly two elements v1, v2 ∈ V such that
(e, v1), (e, v2) ∈ I . Then the symmetry of I implies that also (v1, e) and
(v2, e) is in I . Hence, comparing with Definition 2.1.7, we see that an
incidence structure in which there are two points on every block is ex-
actly a graph. A graph has an associated adjacency matrix as defined in
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22 Preliminaries

Definition 2.1.6. Since a graph is also an incidence structure, it also has
associated an incidence matrix and an incidence graph. The incidence
matrix of a graph is the |V | × |E| matrix M = (aij) with coefficients

aij =







1 if the vertex vi is on the edge ej ;

0 otherwise.

The incidence graph of a graph is the bipartite graph with vertex
set V ∪ E and edge set I . This graph is bipartite with V in one set
and E in the other. The edges between the two sets are defined by
the incidence relation, so that two vertices v and e are connected if and
only if v is incident with e. In the original graph every edge is incident
with exactly two vertices, implying that the incidence graph is 2-regular
over the edge set E. The degrees of the vertex set V are the same as the
degrees of the vertex set V in the original graph.

In this thesis the role of the graphs is therefore twofold;

• as incidence structures, graphs will be analyzed for their own
sake, and

• as incidence graphs of incidence structures, graphs will be used
as a tool for the analysis of incidence structures.

Balanced incomplete block designs

A t− (v, k, λ) design, or simply a t-design, is a uniform incidence struc-
ture (or design) S = (P ,L) of rank k with |P| = v and such that every t
points occur in exactly λ blocks.

Definition 2.1.8. A (v, k, λ)- balanced incomplete block design, or, in short
notation form, a (v, k, λ)-BIBD is a 2− (v, k, λ) design.

A (v, k, 1)-BIBD is a 2−design with λ = 1. That is, for every pair
of points pi, pj there is exactly one block l with pi, pj ∈ l. The BIBD
with λ = 1 will play an important role in this thesis. More generally,
t-designs with λ = 1 are called Steiner systems.

Definition 2.1.9. A Steiner system S(t, k, v) is defined as a t − (v, k, 1) de-
sign.

Hence a Steiner system is a uniform incidence structure of rank k,
such that every tuple of t blocks meet in exactly one point. The most
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2.1 Mathematical background 23

well-known Steiner systems are the Steiner triple systems S(2, 3, v). The
(v, k, 1)-BIBD are Steiner systems S(2, k, v).

Necessary and sufficent conditions for the existence of a (v, k, 1)-
BIBD, or if the notation of Steiner systems is preferred, for the existence
of a Steiner system S(2, k, v), can be found for example in [2, 25].

Combinatorial configurations and partial linear spaces

A line in an incidence structure is a non-empty intersection of all blocks
that are incident with a fixed pair of points. In particular, there are
always at least two points on a line. Consider an incidence structure
such that every pair of points are incident with at most one block. In
this incidence structure there is a bijection between the blocks and the
lines and we say that the incidence structure has points and lines. Many
of the incidence structures that we will consider will be of this type.

Consider two points p and q in a line l. We say that p and q are on
l, that they span l, that they are collinear by l, or that l joins p and q.
We also use the notation l = pq. Consider two lines l and m that have
a point p in common. We say that l and m meet in p or that l and m
intersect in p and we use the notation l ∩m = p.

Definition 2.1.10. A partial linear space is an incidence structure in which

• each point is on at least two lines,

• each line has at least two points and

• any two different points are incident with at most one line, or equiva-
lently, any two different lines are incident with at most one point.

If there are natural numbers s and t such that the partial linear space
has r = t + 1 lines through every point and k = s + 1 points on every
line, then we say that it has order (s, t).

Definition 2.1.11. A combinatorial configuration is an incidence structure in
which

• there are r lines through every point,

• there are k points on every line and

• through any pair of points there is at most one line, or equivalently, any
pair of lines meet in at most one point.

Combinatorial Structures For Anonymous Database Search

UNIVERSITAT ROVIRA I VIRGILI 
COMBINATORIAL STRUCTURES FOR ANONYMOUS DATABASE SEARCH 
Klara Stokes 
DL:T-1799-2011 



24 Preliminaries

Figure 2.4: The Pappus configuration

We use the notation combinatorial (v, b, r, k)-configuration to say
that the combinatorial configuration has

• v points,

• b lines,

• r lines through every point and

• k points on every line.

When v and b is not known or is not important,then we use the shorter
notation (r, k)-configuration. We say that a combinatorial configuration
is balanced if r = k. This implies that v = b. Note that a combinatorial
(r, k)-configuration is a partial linear space of order (k, r). A combina-
torial (v, b, r, k)-configuration is also a 1 − (v, k, r) design such that for
every pair of points pi, pj there is at most one block l such that pi, pj ∈ l.
The parameter |L| = b of a configuration can be calculated from the
three parameters v, k and r of the design, see Theorem 2.1.55.

Example 2.1.12. The sets of points and lines in the classical Theorem of Pap-
pus, result in the balanced combinatorial (9, 9, 3, 3)-configuration in Figure
2.4.

Example 2.1.13. A (v, k, 1)-BIBD is a 2−design with λ = 1, that is, for every
pair of points pi, pj there is exactly one block l with pi, pj ∈ l. Therefore any
(v, k, 1)-BIBD is a combinatorial (v, b, r, k)-configuration with r(k − 1) = v.
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2.1 Mathematical background 25

Example 2.1.14. An r-regular undirected graph is a combinatorial (r, 2)-
configuration.

A geometric configuration is a combinatorial configuration which
can be embedded into the real euclidean or the real projective plane. In
this text, when we use the word configuration we mean combinatorial
configuration, and we do not attach any geometric significance to the
terms point and line. Also, we consider the empty configuration, that
is, a (v, b, r, k)-configuration with v = |P| = 0 and b = |L| = 0, to be a
(0, 0, r, k)-configuration for every r, k ∈ N, r, k ≥ 2.

2.1.3 Polygons in combinatorial configurations

Definition 2.1.15. In a configuration, by a triangle we mean a triplet of
points, pairwise connected by lines, such that there is no line incident with
all the three points.

More generally we have the following definition of n-gon in a com-
binatorial configuration.

Definition 2.1.16. In a combinatorial configuration, by an n-gon we mean a
set of n distinct points {p1, . . . , pn} and a set of n distinct lines {l1, . . . , ln}
such that in the incidence relation of the configuration there is the incidence
chain

p1 I l1 I p2 . . . pn I ln I p1.

In a combinatorial configuration, a triangle is an n-gon with n = 3.
We say that an n-gon with n = 4 is a quadrangle.

Definition 2.1.17. A triangle-free configuration is a configuration without
triangles.

Definition 2.1.18. An (α, β)-geometry is a connected partial linear space
such that if p is a point and l is a line not incident with p, then there are
exactly m points p1, . . . pm and m lines l1, . . . , lm such that there is a chain of
incidences p I li I pi I l, for i = 1, 2, . . . ,m and m can take the values α or β.

The triangle-free configurations are (α, β)-geometries with (α, β) =
(0, 1). An equivalent definition of triangle-free configuration is there-
fore that, given a line l and a point p not on l, there is at most one line
through p intersecting l, or equivalently, at most one point on l collinear
with p.

Definition 2.1.19. A partial geometry is an (α, β)-geometry with α = β.
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A partial geometry with α = 1 is a generalized quadrangle.

Definition 2.1.20. A (finite) generalized quadrangle is a combinatorial con-
figuration such that if p is a point and l is a line not incident with p, then
there is a unique pair (q,m) ∈ P ×L such that there is the chain of incidences
p I m I q I l.

Consider a generalized quadrangle C and let p1 be a point and l1 a
line not incident with p1 in C. Then there is a unique point p2 on l1 and
a unique line l2 that goes through both p1 and p2, such that we have the
chain of incidences p1 I l2 I p2 I l1. Consider a second point p3 on l1
and a line l3 6= l1 through p3. Then p1 and l3 are not incident, because
if they were, then p3 and l3 would be another pair of a point and a line
with incidence chain p1 I l3 I p3 l1, contradicting the assumption that C
is a generalized quadrangle. Therefore there exists a point p4 on l3 and
a line l4 and the incidence chain p1 I l4 I p4 I l3. Concluding, we have
the incidence chain p1 I l2 I p2 I l1 I p3 I l3 I p4 I l4 I p1. In other words,
we have a quadrangle through the point p1 and the line l1. Therefore, a
generalized quadrangle is a combinatorial configuration in which every
non-incident point-line pair (p, l) is on a quadrangle.

2.1.4 Latin squares

Latin squares are related to the construction of both projective planes
and transversal designs.

Definition 2.1.21. Let A = {α1, . . . , αn} be an alphabet with n symbols. A
Latin square of order n is an n × n matrix with coefficients in A, such that
every symbol from A appears exactly once in every row and exactly once in
every column.

For an example of a Latin square, see Figure 2.5

Definition 2.1.22. Let A and B be two Latin squares of order n over the
alphabets A1 and A2. We say that A and B are orthogonal, if, for every pair of
symbols (x, y) ∈ A1 ×A2, there is only one pair of indices 1 ≤ i, j ≤ n, such
that A(i, j) = x and B(i, j) = y.

For an example of two orthogonal Latin squares of order 3, see Fig-
ure 2.6. The existence of a pair of orthogonal Latin squares is equivalent
to the existence of a Graeco-Latin square. A Graeco-Latin square is an
n × n matrix M with coefficients in A1 × A2, such that every element
(x, y) ∈ A1 × A2 appears only once in M and such that the projection
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2.1 Mathematical background 27

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5

Figure 2.5: A Latin square of order 6

1 2 3
2 3 1
3 1 2

1 3 2
2 1 3
3 2 1

Figure 2.6: Two orthogonal Latin squares of order 3

on the first and the second coordenates gives a Latin square over A1

and A2, respectively. For an example of a Graeco-Latin square, see Fig-
ure 2.7. In 1782 Euler stated the conjecture that no Graeco-Latin squares
of order n = 2 (mod 4) exists. For n = 2 the conjecture is very easy
to check. It took 118 years until Tarry [79] proved that there are no
Graeco-Latin square for n = 6, the year 1900. It was not until 1959-1960
that Parker, Bose, and Shrikhande finally proved that the conjecture was
false for every n > 6.

Theorem 2.1.23. [12] There exists no Graeco-Latin square of order n when
n = 2 and n = 6. For all other n ≥ 3 there exists at least one Graeco-Latin
square.

The Graeco-Latin squares are sometimes also called Euler squares.
Because of the equivalence of the existence of Graeco-Latin squares and
pairwise orthogonal Latin squares, Theorem 2.1.23 says that there is no
pair of orthogonal Latin squares of order n ∈ {2, 6} and also that there

α1 γ2 β3
β2 α3 γ1
γ3 β1 α2

Figure 2.7: A Graeco-Latin square that represents the two orthogonal
Latin squares in Figure 2.6
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28 Preliminaries

is at least one pair of orthogonal Latin squares for all orders n ≥ 3,
n 6= 6. As a consequence of this, there is no Latin square of order 6 that
is orthogonal to the Latin square in Figure 2.5.

Definition 2.1.24. A set of mutually orthogonal Latin squares (MOLS) of
order n is a set of pairwise orthogonal Latin squares of order n.

We have the following sharp upper bound on the number of MOLS
of order n.

Theorem 2.1.25. [1] The number x of MOLS of order n satisfies x ≤ n− 1,
with equality if n is a prime power.

Therefore, the number x of MOLS of order n is known when n is a
prime power and when n ∈ {2, 6}. For any other value of n we know
that

2 ≤ x ≤ n− 2.

2.1.5 Finite projective and affine planes

This section is a short survey on projective and affine planes. For more
details, see for example [9, 44, 43, 45, 48, 75].

Definition 2.1.26. A finite projective plane is an incidence structure in which

• every two points span exactly one line,

• every two lines meet in exactly one point and

• there is a quadrilateral: a set of four points such that any line contains
at most two of them.

We say that two lines are parallel if they do not intersect. The second
condition in the definition of projective plane implies that a projective
plane has no parallel lines. In a projective plane every 3 distinct points
are either collinear or form a triangle.

Example 2.1.27. The projective plane over a finite field P2(Fq) is a finite pro-
jective plane of order q.

Examples 2.1.28. P2(F2) has 7 points, 7 lines, three points on every line
and three lines through every point. It is therefore a combinatorial (7, 7, 3, 3)-
configuration. See Figure 2.8. P2(F3) has 13 points, 13 lines, four points
on every line and four lines through every point, so it is a combinatorial
(13, 13, 4, 4)-configuration. See Figure 2.9.
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Figure 2.8: P2(F2)

Figure 2.9: P2(F3)
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30 Preliminaries

More generally, a d-dimensional projective geometry is an incidence
structure such that

• two distinct points span exactly one line,

• if a line meets two sides of a triangle, not at their intersection, then
it also meets the third side,

• every line contains at least 3 points,

• the set of all points is spanned by d + 1 points, and no fewer [87,
83].

Definition 2.1.29. A finite affine plane is an incidence structure in which

• every two points span exactly one line,

• for every point p and line l not incident with p, there is exactly one other
line m ∈ L such that p is incident with m and l ∩m = ∅,

• there is a quadrilateral: a set of four points such that any line contains
at most two of them.

The second condition in the definition of affine plane implies that
the lines will be partioned into classes of parallel lines.

Example 2.1.30. The affine plane over a finite field A2(Fq).

Example 2.1.31. A2(F2) has 4 points, 6 lines, two points on every line and
three lines through every point.

Actually, nothing in these axiomatic definitions requires the point
and line sets to be finite. Originally, these definitions were elaborated
to characterize the projective and affine planes over fields and skew
fields [48]. Historically, it is probably more correct to extend the infi-
nite definitions to also include finite planes, than to extend the finite
definitions to also include infinite planes. Indeed, the first planes to be
studied were the planes over the real numbers, followed by the planes
over the complex numbers. Therefore we should rather say: nothing in
the definitions of projective and affine planes requires the point and the
line sets to be infinite, they may as well be finite.
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2.1 Mathematical background 31

Desarguesian and Pappian planes

The axiomatic definitions for projective and affine geometries in higher
dimension than 2, nicely resulted exactly in the type of spaces which
were intended; projective and affine geometries over skew fields. How-
ever, in dimension 2 any intent to prove that all planes defined by the
axioms are planes over skew fields, failed. The first counter-examples
were found in the end of the nineteenth century.

The following two well-known theorems are crucial for the classifi-
cation of projective planes. Both are true for any projective plane over
a commutative field.

Theorem 2.1.32 (Pappus’ theorem). Let a1, b1, c1 be three points on a line l1
and a2, b2, c2 be three points on a line l2 6= l1. Consider the three intersection
points

a3 := b1c2 ∩ b2c1

b3 := a1c2 ∩ a2c1

c3 := a1b2 ∩ a2b1.

If no three of the points a1, b1, a2, b2 are collinear, then a3, b3, c3 are collinear.

Theorem 2.1.33 (Desargues’ theorem). Let abc and a
′

b
′

c
′

be two triangles.

If the three lines aa
′

, bb
′

and cc
′

intersect in a point, then the three points

ab ∩ a
′

b
′

, bc ∩ b
′

c
′

and ac ∩ a
′

c
′

are collinear.

As was noted by Hilbert [45], the Desargues’ theorem is valid in
any projective geometry of dimension at least three, and it is valid in
a projective plane exactly when the plane can be embedded into a pro-
jective geometry of dimension at least three. For projective planes, it
can be proved that the Desargues’ theorem is true exactly in the projec-
tive planes over skew fields, and that the Pappus’ theorem is true if and
only if the field is commutative [48]. As a consequence of this, the pro-
jective planes over skew fields and over fields are called Desarguesian
and Pappian projective planes, respectively.

For the finite case, the following famous algebraic theorem therefore
has interesting geometric consequences.

Theorem 2.1.34 (Wedderburn’s theorem). A finite skew field is commuta-
tive.

As a corollary we get that in a finite projective plane the Desargues’
theorem is true if and only if the Pappus’ theorem is true.
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Ternary rings

In [43, 44], ternary rings were introduced as the algebric structures that
exactly defines coordinates for axiomatic projective planes.

Any ternary ring will give us a projective plane and any projective
plane defines a ternary ring [87].

Observe that the concept of ternary ring has little to do with the
concept of a ring. A ternary ring has one ternary operation, while a
ring has two binary operations.

Definition 2.1.35. A ternary ring is a set R with two distinguished elements
0,1 and a ternary operation T : R3 → R satisfying the following conditions:

• (T1) T (1, a, 0) = T (a, 1, 0) = a for all a ∈ R;

• (T2) T (a, 0, c) = T (0, a, c) = c for all a, c ∈ R;

• (T3) If a, b, c ∈ R, the equation T (a, b, y) = c has a unique solution y;

• (T4) If a, a′, b, b′ ∈ R and a 6= a′, the equations T (x, a, b) = T (x, a′, b′)
have a unique solution x in R;

• (T5) If a, a′, b, b′ ∈ R and a 6= a′, the equations T (a, x, y) = b and
T (a′, x, y) = b′ have a unique solution x, y in R.

If we only are interested in finite projective planes, and therefore only in finite
ternary rings, we can forget about (T5). When R is finite, the condition (T5)
is redundant.

Example 2.1.36. Any field is a ternary ring with the ternary operation

T (x, y, z) = xy + z.

Example 2.1.37. Let J9 be a vector space over Z/3Z with basis {1, i}. Define
j = 1 + i and k = 1 − i and give J9 the multiplication defined by the quater-
nions {0,±1,±i,±j,±k}, so that {±1,±i,±j,±k} is the quaternion group
of order 8. Then J9 is not a skew field. Instead, J9 is what is called a near field.

A (right) near-field is an associative ring K with 1 whose non-zero ele-
ments K∗ = K \ 0 form a group under multiplication, such that:

1. multiplication is right distributive: (a+ b)c = ac+ bc;

2. If a, a′, b ∈ K and a 6= a′, then the equation xa−xa′ = b has a (unique)
solution x.

Combinatorial Structures For Anonymous Database Search

UNIVERSITAT ROVIRA I VIRGILI 
COMBINATORIAL STRUCTURES FOR ANONYMOUS DATABASE SEARCH 
Klara Stokes 
DL:T-1799-2011 
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If K is finite, then the axiom (2) is redundant [87].

The construction of a projective plane with coordinates in a ternary
ring is analogous to the construction of a projective plane over a field.

Using projective coordinates we represent points by (x : y : z) and
lines by [x : y : z], with x, y, z being elements of a ternary ring (R, T ).
Then a projective plane is a set of

• one point (1 : 0 : 0),

• q points (x : 1 : 0) with x ∈ R,

• q2 points (x : y : 1) with x, y ∈ R,

together with

• one line [0 : 0 : 1] containing (1 : 0 : 0) and (x : 1 : 0),

• q lines [0 : 1 : a] with a ∈ R, containing (1 : 0 : 0) and (x : −a : 1)
for x ∈ R,

• q2 lines [1 : b : c] with b, c ∈ R, containing (−b : 1 : 0) and (x : y : 1)
for any pair x, y ∈ R such that T (b, y, x) = −c.

Properties of finite projective and affine planes

Finite projective and affine planes are projective and affine planes with
a finite set of points. Every pair of points span one line, and therefore
also the set of lines is finite.

For the finite projective planes, the following well-known relations
are true.

Theorem 2.1.38. [75] Let S be an incidence relation consisting of a finite
number of points and a finite number of at least two blocks for which any two
distinct points are on exactly one block, and there is an integer n ≥ 2 such that
any block has exactly n+ 1 points. Then these assertions are equivalent:

1. S is a projective plane;

2. Any point of S is on at most n+ 1 blocks;

3. Any point of S is on exactly n+ 1 blocks;

4. There are exactly n2 + n+ 1 points in S;
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5. S is a 2− (n2 + n+ 1, n+ 1, 1) design, or in other words, a (n2 + n+
1, n+ 1, 1)-BIBD.

As a corollary to Theorem 2.1.38 we deduce that a finite projective
plane is always a combinatorial configuration. The number n is called
the order of the finite projective plane.

The analogous properties for finite affine planes are stated in the
following Theorem 2.1.39.

Theorem 2.1.39. [75] Let S be a set system consisting of points and at least
two blocks for which any two distinct points are on exactly one block, and
there is an integer n ≥ 2 such that any block has exactly n points. Then these
assertions are equivalent:

1. S is an affine plane;

2. Any point of S is in exactly n+ 1 blocks;

3. There are exactly n2 points in S;

4. S is a 2− (n2, n, 1) design, or in other words, an (n2, n, 1)-BIBD.

Therefore any finite affine plane is also always a combinatorial con-
figuration. The number n is called the order of the finite affine plane.

In [75], it is stated that determining which positive integers that are
orders of finite projective planes is one of the most difficult questions in
finite geometry. It is conjectured that the order of a finite projective or
affine plane must be a power of a prime.

Conjecture 2.1.40. The order of a finite projective plane is a power of a prime.

At the moment the smallest order for which Conjecture 2.1.40 has
not been checked is 12.

Finite projective and affine planes are not only combinatorial con-
figurations, they are also examples of (v, k, 1)-BIBD. As we saw in Sec-
tion 2.1.2 a (v, k, 1)-BIBD is a design in which every pair of points is
connected by exactly one line. A third example of (v, k, 1)-BIBD are the
unitals.

Definition 2.1.41. A unital design is a (n3 + 1, n+ 1, 1)-BIBD.

Unital designs exist as sub-designs of projective planes of square
order. A unital in a projective plane of order n = q2 is a set of q3 + 1
points that meets every line in either one or q +1 points [75]. However,
any 2− (n3 + 1, n+ 1, 1) design is called a unital.
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2.1 Mathematical background 35

Example 2.1.42. Consider the projective plane constructed using coordinates
from a finite field of square order Fq2 , as described above. Then the points
(x : y : z) for which xxq + yyq + zzq = 0 form a unital. This unital is a
hermitian curve [75].

Theorem 2.1.43. [25] The following examples of infinite families of (v, k, 1)-
BIBD (also called Steiner systems S(2, k, v)) are known.

• A finite projective geometry of order q and dimension n is a

(qn + . . .+ q + 1, q + 1, 1)-BIBD

for q a prime power and n ≥ 2 (and it is also a S(2, q+1, qn+. . .+q+1)
Steiner system);

• A finite affine plane of order q and dimension n is a (qn, q, 1)-BIBD, for
q a prime power and n ≥ 2 (and also a S(2, q, qn) Steiner system);

• A unital design is a (q3 + 1, q + 1, 1)-BIBD for q a prime power (and
also a S(2, q + 1, q3 + 1) Steiner system);

• A Denniston design is a (2r+s + 2r − 2s, 2r, 1)-BIBD for 2 ≤ r < s
(and also a S(2, 2r, 2r+s + 2r − 2s) Steiner system).

The finite projective planes and the finite affine planes are finite pro-
jective and affine geometries of dimension 2, respectively.

2.1.6 Transversal designs

Transversal designs are block designs which are extremely “well orga-
nized”. This implies that they are very easy to represent and to con-
struct, so they are well-suited for applications.

Definition 2.1.44. Let S = (P ,L, I) be an incidence structure. A parallel
class (or a spread) in S is a subset L of the block set L, such that for all p ∈ P
there is a unique block l ∈ L such that p ∈ l. Hence L is a partition of the set
of points P .

Two lines are parallel if they do not intersect and a line is parallel
to itself. Parallelism is an equivalence relation and the set of lines that
are parallel with l forms a class of parallel lines. If this class contains
all points in the point set of the incidence structure, then it is a parallel
class. Of course, not all incidence structures contain a parallel class, nor
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do all combinatorial configurations. For example, in a finite projective
plane there are no pairs of parallel lines, since every pair of lines meet in
one point. Consequently a finite projective plane has no parallel class.

Definition 2.1.45. An incidence structure S = (P ,L, I) is a resolvable de-
sign if there exists a partition of L

L = L1 ∪ . . . ∪ Ls

such that Li is a parallel class.

In a resolvable design every line is in a parallel class. Example of
resolvable designs are the finite affine planes.

Definition 2.1.46. A group divisible design (P ,L, G) is an incidence struc-
ture (P ,L, I) such that

• G is a partition of the point set P ,

• every pair of points is contained either in a unique group or in a unique
block, but not both.

The parts in G are usually called groups, thereof the name group divisible
design.

In a group divisible design the groups may be of different cardinal-
ity and the design is not necessarily uniform. A transversal design is a
uniform group divisible design in which the group size |G| equals the
length of the blocks k. As a consequence, in a transversal design every
block intersects every group in exactly one point.

Definition 2.1.47. A transversal design TDλ(k, n) = (P ,L, G) is a block
design (X,B) such that

• |X | = nk,

• (X,B) is uniform of rank k,

• G is a partition of X in k parts (or groups) of size n,

• any group and any block contain exactly one common point, and

• every pair of points from distinct groups is contained in exactly λ blocks.

In a transversal design (X,G,B) the set of groups G forms a parti-
tion of X , but it is not a parallel class since the elements of G do not
pertain to B. On the other hand, if the block set B can be partitioned in
parallel classes, then we get a resolvable transversal design.
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Definition 2.1.48. A resolvable transversal design RTD(k, n) is a transver-
sal design in which the block set B can be partitioned into k parallel classes.

Definition 2.1.49. We denote by TD(k, n) a transversal design TDλ(k, n)
with λ = 1.

We have the following well-known relation between transversal de-
signs and combinatorial configurations. For a better understanding we
supply the short proof.

Proposition 2.1.50.

1. A transversal design TD(k, n) is always a combinatorial (kn, n2, n, k)-
configuration.

2. A transversal design TDλ(k, n) with λ > 1 is never a combinatorial
configuration.

Proof.

1. By definition, a TD(k, n) has v = kn points and the linesize is k.
Any pair of points from distinct groups is contained in exactly one
block and points from the same groups are not collinear. Since the
group size is n, this gives r = n lines through every point and we
count b = n2 lines. Finally, again, since any pair of points from
distinc groups is on exactly one line and pairs of points from the
same group are not collinear, the condition that any pair of points
is on at most one line is satisfied.

2. In a TDλ(k, n) with λ > 1, every pair of points in distinct groups
are in exactly λ blocks, so the condition that any pair of points is
on at most one line is not satisfied in a TDλ(k, n).

Example 2.1.51. The Pappus configuration in Figure 2.4 is a TD(3, 3). The
partition G consists of

g1 :=

{

the leftmost points on the red and the black lines
together with the rightmost point on the lila line

}

;

g2 := {the three points in the middle} ;

g3 :=

{

the rightmost points on the red and the black lines
together with the leftmost point on the lila line

}

.
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38 Preliminaries

Removing, for example, the three middle points from the configuration gives a
TD(2, 3).

As is well-known, affine planes can be used to construct transversal
designs as described in the following Lemma 2.1.52.

Lemma 2.1.52. Whenever there exists a finite affine plane of order n, then for
every 2 ≤ k ≤ n there exists a transversal design T (k, n).

Proof. As X , take k lines from one of the parallel classes of an affine
plane of order n. As G, take the partition of the point set that is defined
by these lines. As B, take the lines in the rest of the parallel classes of
the affine plane, restricted to X .

More generally, it is well-known that the existence of transversal
designs TD(k, n) is equivalent to the existence of a set of mutually or-
thogonal Latin squares (MOLS). Because of its importance for us, we
here supply a proof of this result in the following Lemma 2.1.53.

Lemma 2.1.53. [1] The existence of a set of k − 2 MOLS of order n is equiv-
alent to the existence of a TD(k, n).

Proof. Suppose that we have k − 2 MOLS of order n

{Ai := (xi
ab)}

k−2
i=1 ,

over the k− 2 distinct alphabets Ai of empty intersection. The cardinal-
ity of Ai then equals the order of Ai, that is, it is n. We define the groups
G = {gi}ki=1 to be

• one group gk−1 containing the row indices {a1, . . . , an},

• one group gk containing the column indices {b1, . . . , bn} and

• k−2 groups gi containing the n symbols of Ai for i ∈ [1, . . . , k−2].

Hence the point set X is defined as

X :=

k−2
⋃

i=1

Ai ∪ {a1, . . . , an} ∪ {b1, . . . , bn}.

Now define the blocks as

{a, b, x1
ab, . . . , x

k−2
ab }

for a ∈ [a1, . . . , an] and b ∈ [b1, . . . , bn]. We can now simply affirm four
of the five conditions in the definition of TD(k, n):
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2.1 Mathematical background 39

• |X | = kn;

• (X,B) is a uniform block design of rank k;

• G is a partition of X in k groups of size n;

• Any group and any block contain exactly one common point.

Finally, the orthogonality of the MOLS and the two squares

1 1 · · · 1
2 2 · · · 2
...

...
...

n n · · · n

and
1 2 · · · n
1 2 · · · n
...

...
...

1 2 · · · n

implies that the constructed design satisfies the fifth condition, that ev-
ery pair of points from distinct groups should be contained in exactly
one block.

The other implication is obtained by reversing the process. Repre-
sent the transversal design TD(k, n) in an incidence table with the lines
in the rows and take two of the columns of the incidence table to be the
row and column indices, respectively. Then every other column of the
incidence table is a Latin square, and the set of Latin squares obtained
from the k − 2 columns that are not used as indices, together form a set
of k − 2 mutually orthogonal Latin squares (MOLS).

Observe that, since they come from an affine plane, the transversal
designs constructed in Lemma 2.1.52 are resolvable, while the transver-
sal designs constructed in Lemma 2.1.53 are not necessarily resolvable.
Lemma 2.1.52 can be used for the construction of at least one combina-
torial (r, k)-configuration for any natural number r, k ≥ 2.

Theorem 2.1.54. For any pair of natural numbers r, k ≥ 2, there always
exists a combinatorial (r, k)-configuration.
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Proof. Take a transversal design T (k, n) from a finite affine plane of or-
der n as in Lemma 2.1.52, with

n ≥ max(r, k),

but as B take only r of the parallel classes. Then every line will have k
points, there will be r lines through every point and through every pair
of points there will go at most one line.

The combinatorial configuration constructed in Theorem 2.1.54 has
v = nk points and b = nr lines, and is therefore a combinatorial
(nk, nr, r, k)-configuration.

2.1.7 Necessary conditions for the existence of combina-
torial configurations

We have the following well-known necessary conditions for the exis-
tence of combinatorial (v, b, r, k)-configurations [39, 42].

Theorem 2.1.55. In a combinatorial (v, b, r, k)-configuration we always have

1. v ≥ r(k − 1) + 1 and b ≥ k(r − 1) + 1;

2. vr = bk.

Proof.

1. Take a point p. There are r lines through p with k− 1 more points,
hence at least r(k − 1) + 1 points. The other inequality is proved
analogously.

2. There are v points in r incidence relations. And b lines in k inci-
dence relations. Since the incidence relation is symmetric we get
vr = bk.

Notation 2.1.56. We call a quadruple satisfying the necessary conditions of
Theorem 2.1.55 admissible.

Observe that in the symmetric case (v = b and r = k) a quadruple is
admissible iff

v ≥ r(r − 1) + 1 = r2 − r + 1.
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2.1 Mathematical background 41

2.1.8 Sufficient conditions for the existence of combina-
torial configurations

We saw in Theorem 2.1.54 that for any pair of integers r, k ≥ 2 there ex-
ists at least one combinatorial configuration. In this section we will see
many other examples of theorems of existence of combinatorial config-
urations.

Balanced combinatorial configurations

This section will discuss some known results on the existence of bal-
anced combinatorial configurations.

Theorem 2.1.57. [40] Balanced combinatorial (v, v, 3, 3)-configurations exist
if and only if the parameters are admissible, that is, if v ≥ 7.

Proof. Consider the incidence structure in which the point set is the set
{1, . . . , v} and the lines are the columns of the following table. This table
is called the incidence table of the incidence structure, see Section 2.1.2.

1 2 3 . . . v − 2 v − 1 v
2 3 4 . . . v − 1 v 1
4 5 6 . . . 1 2 3

This incidence structure is a combinatorial (v, v, 3, 3)-configuration,
whenever v ≥ 7.

Example 2.1.58. We can represent the same combinatorial configuration in
several ways. The projective plane over F2 is the unique combinatorial
(7, 7, 3, 3)-configuration. Below we have an incidence table of F2. The points
are the numbers {1, . . . , v} and the lines are the columns of the table.

1 1 1 2 2 3 3
2 4 6 4 5 4 5
3 5 7 6 7 7 6

Below we see the same F2 again, in what is called a cyclic representation.

1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

In a cyclic representation the points are the elements in Z/(v) and the lines
can be obtained from each other by applying a cyclic translation f(x) = x+ a
(mod v) to all points in the line.
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Theorem 2.1.59. Balanced combinatorial (v, v, 4, 4)-configurations exist if
and only if the parameters are admissible, that is, if v ≥ 13.

Proof. Consider the combinatorial configuration with point set

P = {1, . . . , n}

and with line set the cyclic translations of the line (1, 2, 5, 7).

Example 2.1.60. The following incidence table represents a combinatorial
(13, 13, 4, 4)-configuration.

1 2 3 4 5 6 7 8 9 10 11 12 13
2 3 4 5 6 7 8 9 10 11 12 13 1
5 6 7 8 9 10 11 12 13 1 2 3 4
7 8 9 10 11 12 13 1 2 3 4 5 6.

Cyclic representations are useful, because they are resource saving.
Much less memory is needed to save one of the lines of a cyclic repre-
sentation of a configuration than what is needed to save all the lines of
the configuration. Also, the computational effort to calculate the rest of
the lines is very small.

Definition 2.1.61. The deficiency graph of a (v, b, r, k)-configuration is de-
fined as the graph with the v points of the configuration as vertex set and an
edge between two vertices when the corresponding points are not collinear.

The following well-known lemma is very easy to prove. Just observe
that a point in a combinatorial (r, k)-configuration is collinear with r(k−
1) other points, so that there are v − (r(k − 1) + 1) points to which the
point is not collinear.

Lemma 2.1.62. Let d := v−(r(k−1)+1). The deficiency graph is d-regular.

The integer d is called the deficiency of the configuration. The defi-
ciency graph can help to determine isomorphisms between combinato-
rial configurations, and also to prove the nonexistence of combinatorial
configurations for some parameters.

Theorem 2.1.63. Suppose that there exist a combinatorial (v, v, k, k)-config-
uration C, balanced and with deficiency d, and suppose that C is also a group
divisible design, with m = 1+ k(k− 1)/(d+1) groups of common group size
n = d+ 1. Define P and Q so that
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2.1 Mathematical background 43

• P = k2 − v > 0,

• Q = k.

Then

• if m is even then P must be a square and if further m = 4t+2 for some
t ∈ Z and n is even, then k is a sum of two squares,

• if m is odd and n is even, then Q = k is a square and the equation

Px2 + (−1)(m−1)/2ny2 = z2

has a non-trivial solution in integers x, y, z, and

• if both n and m are odd, then the two equations

(−1)(m−1)/2nx2 + Py2 = z2

and
(−1)(n−1)/2nx2 +Qy2 = z2

both have or both have not a non-trivial solution in integers x, y, z.

As a consequence of Theorem 2.1.63 the following corollary can be
obtained [41].

Corollary 2.1.64. Each balanced combinatorial (v, v, r, r)-configuration with
deficiency d = 1 has a 1-regular deficiency graph. This implies that it is a
group divisible design and that k or k − 2 is a square.

Proof. In a balanced combinatorial configuration that has parameter set
(v, v, k, k) and deficiency v − k(k − 1) + 1 = 1, given a point p there
is exactly one point q such that p and q are not collinear. Hence the
configuration is a group divisible design with group size n = 2 and
number of groups m = 1 + k(k − 1)/2, so that Theorem 2.1.63 applies.
Suppose that n is even, then either m is odd so that Q = k is a square, or
m is even so that P = k2−v = k2−(2+k(k−1)) = k−2 is a square.

Cyclic translations of the line (1, 4, 5, 10, 12) yields a combinatorial
(21, 21, 5, 5)-configuration. It is obvious that it works also for all v ≥ 23.
The (21, 21, 5, 5)-configuration is the projective plane over F4. There is
no (22, 22, 5, 5)-configuration. This is because of Corollary 2.1.64. Since
a (22, 22, 5, 5)-configuration would have deficiency 1 it can not exist, be-
cause neither k = 5 nor k− 2 = 3 is a square. Of course, this could have
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been deduced directly from Theorem 2.1.63, by inserting m = 11 and
n = 2 and concluding that k = 5 should have been a square. We com-
bine these results on the existence of combinatorial (5, 5)-configurations
in the following Theorem 2.1.65.

Theorem 2.1.65. Balanced combinatorial (v, v, 5, 5)-configurations exist if
and only if the parameters are admissible and v 6= 22, that is, if v = 21 or
v ≥ 23.

The unique (31, 31, 6, 6)-configuration is the projective plane over
F5. The proof of the non-existence of a (32, 32, 6, 6)-configuration is the
smallest which is not a consequence of the theorem by Bose and Con-
nor. It is due to Schellenberg (1975). The proof of the non-existence
of a (33, 33, 6, 6)-configuration is due to Kaski and Östergard (2006)
who made an exhaustive computer search for such a configuration,
with negative result. Therefore the existence of combinatorial (6, 6)-
configurations is described by the following Theorem 2.1.66.

Theorem 2.1.66. Balanced combinatorial (v, v, 6, 6)-configurations exist if
and only if the parameters are admissible and v 6∈ {32, 33}, that is, if v = 31
or v ≥ 34.

Non-balanced combinatorial configurations

This section will discuss some existence results on non-balanced combi-
natorial configurations. Many of these results are due to Gropp [39, 40].

Theorem 2.1.67. There exists a combinatorial (v, b, r, 3)-configuration if and
only if the parameters are admissible, that is, whenever v ≥ 2r + 1 and vr =
3b [40].

Theorem 2.1.68. There exists a combinatorial (v, b, r, 4)-configuration for
v ≡ 4 (mod 12), v ≥ 3r + 1 and vr = 4b [40].

As the parameters increase, the knowledge of the existence of com-
binatorial configurations is more sparse.

There is also an asymptotic result, ensuring the existence of large
configurations with what Gropp calls natural index (t = r

k ∈ N).

Theorem 2.1.69. For given k and r with r = tk, so that t ∈ Z, there is
a v0(k, t) such that there is a combinatorial (v, b, r, k)-configuration for all
admissible parameters with v > v0 [40].
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2.1 Mathematical background 45

In particular the theorem can be applied for t = 1, that is, when
the configuration is balanced. We have seen that it is true for r = k ∈
{3, 4, 5, 6}, but the theorem affirms that it is true for all r = k. Theo-
rem 2.1.69 can not be applied when t = r

k 6∈ N.
This short section does not in any way pretend to be a survey on pre-

vious results on the existence of combinatorial configurations. Plenty of
other partial results that are not listed here can be found for example in
[39, 40, 41, 42], or in their bibliography.

2.1.9 Previous results on the existence of triangle-free
combinatorial configurations

Below the state of the art of the research on the existence of triangle-free
configurations is explained, as far as it is known to the author.

The smallest polygon that can be contained in a triangle-free con-
figuration is a quadrangle. As we saw in Section 2.1.3, a quadrangle
in a combinatorial configuration (P ,L, I) is a set of four different lines
l1, l2, l3, l4 and four different points p1, p2, p3, p4 such that the incidence
relation of the configuration defines a sequence

l1 I p1 I l2 I p2 I l3 Ip3 I l4 I p4 I l1,

that is, a cycle of length 8 in the incidence graph. A triangle-free config-
uration in which every non-incident point-line pair is on a quadrangle
is called a generalized quadrangle. The incidence graph of a general-
ized quadrangle of order (r − 1, k − 1) is a bipartite, (r, k)-biregular
graph with girth 8 and diameter 4. The following is a well-known nec-
essary condition for a generalized quadrangle to exist.

Proposition 2.1.70. [58] If a generalized quadrangle of order (r − 1, k − 1)
exists, then it has number of points

v = |P| = k((r − 1)(k − 1) + 1)

and number of lines

b = |L| = r((r − 1)(k − 1) + 1).

There are several known families of generalized quadrangles [58].
All these families, except one, have order (r − 1, k− 1) where r− 1 and
k − 1 are powers of the same prime number. The exception is a family
of generalized quadrangles of order (r− 1, k− 1) = (q− 1, q+1) where
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q is a power of a prime number. The results on the orders of known
generalized quadrangles as appearing in the book ’Finite generalized
quadrangles’ by Payne and Thas [58] is concluded in Proposition 2.1.71.

Proposition 2.1.71. Let q be a power of a prime number. Then there exists a
generalized quadrangle of order (r − 1, k − 1) if

(r − 1, k − 1) ∈ {(q, 1), (q, q), (q, q2), (q2, q3), (q − 1, q + 1)}.

The first question on the existence of triangle-free configurations, is
answered by the following Theorem 2.1.72, but only in the balanced
case. We have not found previous general results in the non-balanced
case, that is, when r 6= k.

Theorem 2.1.72. [42] For every integer r ≥ 2 there exist (geometric) (r, r)-
configurations that are triangle-free.

The (r, r)-configuration used in the proof is what Pisanski calls a
generalized Grey configuration [59] and Grunbaum a LC(r) configura-
tion [42]. It has rr points and rr lines.

The book by Grünbaum [42], which mostly treats configurations
that are geometrically realizable, contains the following theorem that
collects the available knowledge on the existence of triangle-free geo-
metric (3, 3)-configurations.

Theorem 2.1.73. For every v ≥ 15 except v = 16 and possibly v = 23 and
v = 27, there are triangle-free geometric (v, v, 3, 3)-configurations.

Theorem 2.1.73 contains the results by Betten et al. [8], who counted
all triangle-free combinatorial configurations with v ≤ 21 for r = k = 3.
Their calculations show us that there exist triangle-free combinatorial
(3, 3)-configurations with

v ∈ {15, 17, 18, 19, 20, 21}.

The unique triangle-free (3, 3)-configuration with v = 15 is the famous
Cremona-Richmond configuration, which is a generalized quadrangle.
In the tables of [8] it can be observed how the number of triangle-free
combinatorial configurations grows very quickly with v.

Theorem 2.1.73 also contains results by Visconti [85]. Finally, the
proof of Theorem 2.1.73 constructs larger configurations joining smaller
ones in two different ways. This is interesting, and it is worth pointing
out that both these constructions are different from the ’addition’ of con-
figurations used in this thesis. Using these constructions, starting with
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two triangle-free (r, r)-configurations with p and q points and p and q
lines, respectively, the result is either a triangle-free (r, r)-configuration
with p + q − 1 points and p + q − 1 lines, or one with p + q + 1 points
and p+ q + 1 lines.

Any geometric configuration is also a combinatorial configuration,
and there is no triangle-free (3, 3)-configuration with v = 16 [56], so
that the available knowledge on the existence of combinatorial (3, 3)-
configurations at this moment coincides with the knowledge on the ex-
istence of geometric (3, 3)-configurations in Theorem 2.1.73. Observe
that Theorem 2.1.73 does not count the number of triangle-free (3, 3)-
configurations. It is not known how many of the triangle-free (3, 3)-
configurations counted by Betten et al. are geometrically realizable [42].

Considering larger parameters, there is much less known already for
triangle-free combinatorial (4, 4)-configurations. Recently, van Maldeg-
hem constructed a triangle-free (4, 4)-configuration with v = 40 [11].
Since it satisfies the bound from Proposition 2.1.70, Proposition 4.3.9
says that it is a generalized quadrangle. There are also triangle-free
(4, 4)-configurations with v = 60 (found by Boben), v = 120 and v =
256 [42], plus infinite families of triangle-free (4, 4)-configurations con-
structed from these using the two constructions from the proof of The-
orem 2.1.73.

For triangle-free (k, k)-configurations the generalized Gray / LC(r)
configuration can be used to construct infinite families of triangle-free
(k, k)-configurations in the same way.

Sinha constructs a family of triangle-free (3, k)-configurations with
special parameters [69]. The Cremona-Richmond configuration appears
as the smallest example of the members of this family.

Graphs and configurations are not the same thing, but some results
in graph theory can be interpreted as if they treated configurations.
Many proofs in this article are also expressed in the language of graphs.
In particular, the following result on the existence of regular graphs,
due to Sachs [66], is important and will be used later.

Theorem 2.1.74. Let r ≥ 3 and g ≥ 2 be two integers. Then there always
exists an r-regular graph of girth g.

Because of Sachs’ Theorem 2.1.74, there is always an r-regular graph
of girth g, so it makes sense to ask for the smallest one. In graph theory
an (r, g)-cage is an r-regular graph of girth g with the smallest possible
number of vertices. It is conjectured that all cages of even girth are
bipartite [60, 89]. We can identify a triangle-free (r, k)-configuration
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with its incidence graph, a connected, bipartite, (r, k)-biregular graph of
girth at least 8. If we suppose the conjecture true, we therefore have that
a triangle-free (r, r)-configuration with the smallest possible number of
points and lines is exactly an (r, 8)-cage.

There is a well-known lower bound for the number of vertices in an
(r, g)-cage [10] giving us the lower bound for the number of vertices in
an (r, 8)-cage

n0(r) = 2(1 + (r − 1) + (r − 1)2 + (r − 1)3) =
2(r − 1)4 − 2

r − 2
.

A regular cage of even girth that reaches this bound, is the incidence
structure of a (balanced) generalized quadrangle [10].

In [52], Lazebnik, Ustimenko and Woldar constructed small and r-
regular graphs of girth g for any r ≥ 2 and g ≥ 3.

Proposition 2.1.75. [52] Let r ≥ 2 and g ≥ 5 be integers, and let q denote
the smallest odd prime power for which q ≥ r. Then there exists an r-regular
graph of girth g and number of vertices

2rq3g/4−a,

with a = 4, 11/4, 7/2, 13/4, for g = 0, 1, 2, 3 (mod 4) respectively.

The smallest known r-regular graphs of girth 8, when r is not a
power of a prime, are at the moment the ones constructed by Balbuena.

Proposition 2.1.76. [7] Let r be an integer and q a power of a prime such
that 3 ≤ r ≤ q. Then there exists an r-regular bipartite graph of girth 8 with
rq2 − q vertices in each bipartite set.

The smallest known q-regular graphs when q is a power of a prime,
were constructed by Gács and Héger.

Proposition 2.1.77. [37] Let q be a power of a prime. If q is even then there
exists a q-regular graph of girth 8 and with 2(q3− 3q− 2) vertices. If q is odd,
then there exists a q-regular graph of girth 8 and with 2q(q2 − 2) vertices.

As recently was proved by Araujo-Pardo in [6], small odd girth g
graphs can be obtained from small even girth g + 1 graphs. In partic-
ular, upper bounds on the number of vertices of an (r, 7)-cage can be
obtained from the upper bound on the number of vertices of an (r, 8)-
cage.
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Proposition 2.1.78. [6] Let r ≥ 3 be an odd integer. If f(r) is an upper
bound for the number of vertices of an (r, 8)-cage, then an upper bound for the
number of vertices of an (r, 7)-cage is

f(r) −
2(r − 1)2 − 2

r − 2
.

2.1.10 Numerical semigroups

Definition 2.1.79. A numerical semigroup is a subset S ⊆ N∪{0}, such that

• S is closed under addition,

• 0 ∈ S and

• the complement (N ∪ {0}) \ S is finite.

We write 〈a1, . . . , an〉 to denote the numerical semigroup generated
by the natural numbers a1, . . . , an through addition. We also write
{0, x1, x2, x3,→} to denote that the numerical semigroup contains all
natural numbers n ≥ x3.

Definition 2.1.80. The multiplicity of a numerical semigroup is its smallest
non-zero element.

Definition 2.1.81. The conductor of a numerical semigroup is the smallest el-
ement such that all subsequent natural numbers belong to the numerical semi-
group.

Definition 2.1.82. Let S be a numerical semigroup. The largest element in
N ∪ {0} \ S is called the Fröbenius number.

The conductor is then the Fröbenius number plus one.

Definition 2.1.83. The gaps of a numerical semigroup S are the natural num-
bers that do not belong to S. The number of gaps is called the genus of the
numerical semigroup.

Example 2.1.84.

〈3, 7〉 = {0, 3, 6, 7, 9, 10, 12, 13, 14, 15, 16, . . .}

is the numerical semigroup generated by 3 and 7. In this numerical semigroup

• the multiplicity is 3,
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• the Fröbenius number is 11,

• the conductor is 12 and

• the gaps are {1, 2, 4, 5, 8, 11}.

A numerical semigroup of the form

{0, a,→}

is called an ordinary numerical semigroup. Hence, in an ordinary nu-
merical semigroup, all gaps are smaller than the multiplicity.

We say that a set of integers are coprime if the ideal they generate is
Z.

Lemma 2.1.85. A set of integers generate a numerical semigroup if and only
if they are coprime.

The proof of this lemma can be found in the book [65], which serves
as a general reference on numerical semigroups.

When the number of coprime generators is two, then it is easy to
calculate the conductor of the generated numerical semigroup, with the
help of the following Theorem 2.1.86

Theorem 2.1.86. Two coprime positive integers a, b generate a numerical
semigroup whose conductor is (a− 1)(b− 1).

When more than two generators of the numerical semigroup are in-
volved, then the calculation of the conductor of a numerical semigroup
generated by n elements is difficult [61]. However, the conductor can be
bounded as a function of other properties of the numerical semigroup.
For example, we have the following upper bound in terms of the genus
(see Lemma 2.14 in [65].

Theorem 2.1.87. The genus g and the conductor c of a numerical semigroup
always satisfy

2g ≥ c.

2.2 Notions and definitions of privacy

As individuals in modern society we are all very well-documented. We
are of course in public records like the census records, the tax records,
the educational records, and perhaps also in the marriage records, the
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hospital records, the police records and the records of the national em-
ployment agency. There are also records which are generated from
daily actions like for example the use of mobile phones, credit cards
and automatic toll payment systems. These records are usually owned
by companies. Indeed any company that provides a service to its cus-
tomers is likely to record the preferences and habits of these customers.
The access to such records is usually an important source for prosper-
ous business.

The information collected by companies can also be important to
researches and to society. For example, the collection of the location
records of the mobile phones of the citizens in a geographical area pro-
vides a database of daily travelling habits that is a source of information
of great importance when new infrastructure are planned. To get access
to this information the politics must get (or buy) it from the phone com-
panies.

Usually the customers are not completely aware of the fact that the
company registers their actions. A clear example of this is the anger
shown by customers who have bought an operative system to run on
a computer or a portable device, and later discover that inside the op-
erative system there are programs which report to the creator of the
operative system the actions performed by the customer on this device.

Another way to collect information about citizens is to ask them.
Most countries have a national statistics department, which collects in-
formation through surveys directed to the citizens. Usually, to the sur-
vey there is attached some information on how the citizens’ private data
is protected against intents of reidentification. The naive solution is to
protect the database by simply removing the identifiers, like name, ID
and social security number, from the tables. This solution has however
shown to be far from satisfactory. In many cases it is rather easy to
recover the identifier of the anonymized record [78].

Other more sofisticated solutions for protecting databases have been
proposed. Examples of such solutions are methods for obtaining n-
anonymity (usually called k-anonymity), rank-swapping, methods that
use aggregation operators, clustering and noise addition. All these so-
lutions are designed to be executed by the data owner, that is, by the
organism or company that wants to publish the database. The data
owner is then the only one responsible for the anonymization of the
database. Indeed, the customers usually have no other option than to
rely on the good-will of the data owner, even when the data owner is a
private company without interest in preserving the privacy of their cus-
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tomers. As Google Sweden expressed it: “...you always have the choice
not to use our services” [76].

The anonymization method treated in this document, the P2P UPIR
protocol, is different in that it allows the customers, or clients, of a
search engine, to anonymize the database produced by the collection
of their queries even before it reaches the hands of the data owner, that
is, the company behind the search engine.

The process of linking records or parts of records in a protected
database to a record in the original database is called record linkage
or reidentification. The model of reidentification that we present here is
commonly used in research, when the researchers want to test a protec-
tion method by attacking it. The protected database is then compared
to the original database, in order to deduce the quality of the protec-
tion. One could argue that a real world adversary most likely does not
have access to the original database. Instead he may have access to aux-
iliary information, which we can suppose to be in table form, just like
the original database; other databases, public census registers, etc. In
this case a record linkage or reidentification process is done by combin-
ing the information in order to link a record or a part of a record in the
protected database to a real individual. Observe that in order to link
a protected record to a real individual the real individual must have
a record in the original database. Therefore the model of a real world
adversary can be representated according to the researchers’ model pre-
sented here.

In data privacy, the assessment of risk is one of the elements of ma-
jor importance. At present, several approaches have been studied in the
literature. The major approaches are k-anonymity [67, 68, 77, 78], rei-
dentification [32, 88] and differential privacy [33]. We will concentrate
on two of these approaches: reidentification and k-anonymity, although
we will denote the latter by n-anonymity, for notation reasons.

2.2.1 Reidentification

A database is a collection of records of data. We will suppose that all
records correspond to distinct individuals or objects. Every record has
a unique identifier and is divided into attributes. The attributes can be
very specific, as the attributes “height” or “gender”, or more general,
as the attributes “text” or “sequence of binary numbers”.

Suppose that the database can be represented as a single table. Let
the records be the rows of the table and let the attributes be the columns.
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The intersection of a row and an attribute is a cell in the table, and we
call the data in the cells the entries of the database. Also other data
structures, like for example graphs, are representable in table form. In
the example of a graph the adjacency matrix is a table representation of
the graph.

Let T be a table with n records and m attributes. Consider the un-
derlying set of entries of T , E =

⋃

{T [i, j] : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. We
define the partition set P(T ) of T to be the set of subsets of E.

Definition 2.2.1. A method for anonymization of databases is any transfor-
mation or operator

ρ : D → D

X 7→ Y,

where D is a space of databases.

Then ρ, given a database X , returns a database Y . Since Y is a
database, all entries in Y will correspond to a unique individual or ob-
ject, which we will suppose to be the same individuals as the ones be-
hind the records in X . Usually it is assumed that there is, in some sense,
less sensible information about the individuals behind the records in X
in the transformed database Y than there was in the original database
X .

We propose the following formal definition of reidentification [74].

Definition 2.2.2. Let ρ be a method for anonymization of databases, X a
table with n records indexed by I in the space of tables D and Y = ρ(X) the
anonymization of X using ρ. Then a reidentification method is a function that
given a collection of entries y in P(Y ) and some additional information from
a space of auxiliary informations A, returns the probability that y are entries
from the record with index i ∈ I ,

r : P(Y )×A → [0, 1]n

(y, a) 7→ (P (y ∈ X [i]) : i ∈ I) .

Researchers typically use parts of the original database X as auxil-
iary information. A common assumption is to consider that a reidenti-
fication occurs when the probability function returned by the reidenti-
fication method takes the value 1 at one index, say at i0, and the value 0
at all the other indices. That is, given the auxiliary information a there
is probability 1 that y belongs to the record with index i0 in X .
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We say that the entries s ∈ P(Y ) are linked to a collection of indices
J ⊆ I if the probability returned by the reidentification method takes
non-zero values over the indices J and is zero on the complement I \J .
Typically, a possible non-zero value for the reidentification method over
J is then 1/|J |.

2.2.2 n-anonymity

As in Section 2.2.1 we represent a database as a table and we say that
the rows are the records and the columns are the attributes. We sup-
pose that every record contains information about a unique individual.
We use the notation T (A) to say that T is a table with the set of at-
tributes A. Let B ⊆ A be a set of attributes of the table. We denote
the projection of the table on the attributes B by T [B]. We suppose
that every record contains information about a unique individual. An
identifier I in a database is an attribute such that it uniquely identi-
fies the individuals behind the records. In particular, any entry in T [I]
is unique. A quasi-identifier QI in the database is a collection of at-
tributes {A1, . . . , An} that belongs to the public domain (i.e. are known
to an adversary), such that they in combination can uniquely, or almost
uniquely, identify a record [26]. That is, the structure of the table allows
for the possibility that an entry in T [QI] is unique, or that there is only
a small number of equal entries. In the former case the entry in T [QI]
uniquely identifies the individual behind the record and in the latter,
the few other individuals with the same entries in T [QI] may form a
collusion and use secret information about themselves in order to make
this identification possible.

The former case may be formalized as follows. Consider the table T̃
obtained by permuting randomly the records of T . Let s be an element

in P(T ) such that the entries of s all belong to the same record in T̃
(and therefore also in T ). Then, if there is a method of reidentification
r : T̃ ×A → [0, 1]n such that r(s, a)[i] = 1 for some a ∈ A and one index
i, then s belongs to T [QI].

In the latter case, an s such that r(s, a) is large for a small subset J of
indices and 0 for the others (so that s is linked to J) would also belong
to T [QI].

Example 2.2.3. If a table contains information on students in a school class,
the attributes birth data and gender could be sufficient to determine to which
individual a record of the table corresponds, although it is possible that not all
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records will be uniquely identified in this way. Hence for this table, birth date
and gender are an example of a quasi-identifier.

The following definition of k-anonymity appeared for the first time
in [68] (see also the articles by Samarati [67] and Sweeney [78]).

Definition 2.2.4. A table T , that represents a database and has associated
quasi-identifier QI , is k-anonymous if every sequence in T [QI] appears with
at least k occurrences in T [QI].

2.2.3 P2P UPIR: A peer-to-peer user-private
information retrieval protocol

User-private information retrieval (UPIR) is defined as the discipline
that studies how a user should retrieve an element from a database or
a search engine without the system or the server being able to deduce
who the retrieving user is [28, 29]. Since UPIR does not hide the content
of the query for the database, but instead obstructs the possibilities for
the database of profiling users, formally a UPIR protocol does not have
to be a Private information retrieval (PIR) protocol (see the introduc-
tion). UPIR is also called anonymous keyword search or anonymous
database search.

UPIR and mixers both deal with anonymity, but the concepts are dif-
ferent. As was explained in the introduction, mixers provide anonymity
on the network layer, but the user can still be profiled through e.g. cook-
ies. UPIR deals with anonymity on the application layer. In this section
we will describe the UPIR protocol that will be analyzed in this thesis.

In [28, 29], a UPIR protocol was presented which was based on a
peer-to-peer network, P2P UPIR. The idea behind the P2P UPIR proto-
col is that the clients who want to retrieve information collaborate in
posting each others queries. The clients use a P2P network to inter-
change queries and the answers to these queries. P2P UPIR preserves
the privacy of a user’s query profile in front of the database and external
intruders. In addition the protocol also offers privacy versus peer users.
Other users see only a small part of the other user’s queries. Peers can
be made anonymous to each other also on the network layer by using
mixers.

The communication over the P2P network should be encrypted. We
will assume that the encryption is done using a symmetric encryption
scheme. If the encryption is made with the same key over the entire
network, then there is a high risk that the key is compromised. On
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the other hand, if the encryption uses different keys for every pair of
clients, then this risk is low. But if the protocol prescribes one key for
every pair of clients and the number of clients is large then the number
of needed keys is very large, which is a problem. There are however
more sophisticated ways to distribute cryptographic keys than the two
trivial examples just described. The articles [28, 29] treat a version of
the P2P UPIR protocol which uses combinatorial configurations (de-
fined below) to manage the keys. The idea to use combinatorial config-
urations for key distributions can also be found in [53, 54]. The main
problem when dealing with configurations is that they are very easy to
define but not so easy to find.

The idea behind the key distribution used in [28, 29] is to repre-
sent the collaborating clients by the points of a combinatorial configu-
ration and to use the lines to represent “communication spaces”, that
is, a memory sector together with a belonging cryptographic key. A
client that is represented by the point p has access to the communica-
tion spaces that are represented by the lines through p and he stores the
keys corresponding to these communication spaces. When the client
wants to submit a query to the server, then he uploads the query to one
of the communication spaces to which he has access, after encrypting it
with the corresponding cryptographic key. Another client represented
by the point q can read p’s query on the communication space iff he
has access to the corresponding cryptographic key. In other words, the
client q can read p’s query iff the communication space is represented
by a line passing through both p and q.

Next, the client q posts the query to the server. When q receives the
answer to the query he uploads it to the same communication space
from where he previously read the query, after encrypting it with the
corresponding cryptographic key. Subsequently p can read the answer
to his query from the communication space, after decrypting it.

Below we present the configuration based P2P UPIR protocol de-
scribed in [28, 29]. The precondition of the protocol is that the client or
user pertains to a community of users that are mapped to the points of
a combinatorial configuration and that the client or user wants to post
a query to the server. The postcondition of the protocol is that the client
or user obtains the answer to his query. We will abuse notation and not
distinguish the points and the lines of the configuration from the clients
and the communication spaces that they represent.

Protocol 1 (P2P UPIR (I)).
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1. A client or user represented by the point u selects randomly a communi-
cation space represented by a line c passing through u.

2. u decrypts the content on the memory sector of c using the corresponding
cryptographic key of a symmetric cipher. Now the protocol ramifies into
five cases depending on the outcome of the decryption.

(a) The outcome is garbage. Then u encrypts his query and records it
in c;

(b) The outcome is a query posted by another user. Then u forwards
the query to the server and awaits the answer. When u receives the
answer, he encrypts it and records it in c. He then restarts the
protocol with the intention to post his query;

(c) The outcome is a query posted by the user himself. Then u does
not forward the query to the server. Instead u restarts the protocol
with the intention to post his query;

(d) The outcome is an answer to a query posted by another user.
Then u restarts the protocol with the intention to post his query;

(e) The outcome is an answer to a query posted by the user him-
self. Then u reads the query and erases it from the communication
space. Subsequently u encrypts his new query and records it in c.

Remark 2.2.5. We permit the users to start the protocol with a garbage query.
We say that a user who starts the protocol with a query, which is either garbage
or not, checks the communication spaces. We say that a user who uses his
cryptographic keys to read the content on the communication spaces, without
performing any other action, reads the communication spaces.

The P2P UPIR (I) protocol is called by an initializing protocol which
we call P2P UPIR INIT, which is implemented by all the community
of users together. This protocol takes as parameters the combinatorial
configuration to use for the distribution of communication spaces and
the P2P UPIR protocol to use (later we will define P2P UPIR protocols
that will differ from the P2P UPIR (I) protocol).

The precondition is here that a community of n users wants to im-
plement a P2P UPIR protocol. The postcondition is that some user has
dropped out of the protocol.

Protocol 2 (P2P UPIR INIT).

1. The points of the combinatorial configuration are mapped to the users of
the community.
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2. Then the users will repeat only one of the following steps until some user
drops out of the protocol:

(a) Whenever the user has a query to post, the user executes the P2P
UPIR protocol.

(b) After a short fixed time interval t, the user executes the P2P UPIR
protocol. If the user has a real query to post, he will use this query
when he executes the P2P UPIR, otherwise, he will use a garbage
query.

Steps 2.a and 2.b define two different strategies in the execution of
the P2P UPIR protocol and it will show later, in Section 3.1, that these
strategies have different consequences.
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Chapter 3

Choosing configurations
for P2P UPIR

3.1 Optimal combinatorial configurations for

P2P UPIR and the neighborhood problem

This section is dedicated to a discussion on optimal configurations for
P2P UPIR. First we will see two examples of executions of the P2P UPIR
protocol that are extreme in the sense that the two types of combinato-
rial configurations that assign the communication spaces to the users
are degenerate.

Suppose that a community of users share a communication space
formed by one memory sector and one cryptographic key. The commu-
nity users use the communication space to write their query requests,
to read the query requests of other users and then commit these, and
finally to write the answers to the queries. In that way all users col-
laborate for the good of the group and the server can not know who is
asking what, nor elaborate any profiles, at least not more specific pro-
files than one describing the entire community. This system is really
good if we consider the privacy against the server, but it is not so good
when it comes to privacy between users. Although it is not known who
made a particular query request, all requests from a certain user pass
through the shared communication space.

We can think of another system where each user shares a different
communication space with every other user. In that way he can spread
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his query requests between them. The privacy against the server is
maintained. Every user reads only a portion of the query requests of
a user with whom he collaborates, but on the other hand he can be cer-
tain of who of the users requested the query.

The use of combinatorial configurations to represent the distribu-
tion of the communication spaces gives us a way to parametrize inter-
mediate solutions to the problem defined above. That is, we have a
set of b communication spaces, all of them consisting of a memory sec-
tor and a cryptographic key and a set of v users, all of them having
access to a subset of r communication spaces so that every communi-
cation space is shared by k users and every pair of users share at most
one communication space. Then the combinatorial object that exactly
represents this situation is a combinatorial (v, b, r, k)-configuration. In
fact, the two extreme implementations just explained correspond to a
(degenerate) combinatorial (v, 1, 1, k)-configuration and to a combina-
torial (v, v(v − 1)/2, v − 1, 2)-configuration respectively. Given some
criteria for privacy, we can ask for the optimal combinatorial configura-
tions with respect to these criteria.

3.1.1 Optimal configurations for peer to peer private in-
formation retrieval in terms of profile diffusion

In the following discussion criteria like storage and time efficiency will
be considered, alongside with the arguments on how to optimize the
privacy preserving properties of the protocol.

Suppose that a community of users implement the P2P UPIR pro-
tocol with a combinatorial (v, b, r, k)−configuration as parameter. We
next analyze its performance by means of the parameters

• v := number of users;

• b := number of communication spaces;

• r := number of communication spaces assigned to each user;

• k := number of users who share each communication space.

The following is a list of some aspects to consider in the process of
choosing optimal combinatorial configurations for P2P UPIR.

1. We know from Theorem 2.1.55 that in a combinatorial configura-
tion, with parameters (v, b, r, k), we always have

vr = bk. (3.1)
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This implies that the number of required keys and memory sec-
tors is b = vr/k. Therefore, for a fixed v, as k/r grows, there is
a reduction in the number of required keys and memory sectors
(storage efficiency).

2. In addition to storage, another performance metric is how long it
takes for a user to get his query submitted and answered. Clearly,
the greater the number k with whom the user shares a selected
communication space, the shorter the expected waiting time (time
efficiency). Also, if the number of communication spaces r to
which the users has access is small, then the frequency with which
a user return to a particular communication space is higher. To-
gether, this implies that the expected waiting time is shorter when
k/r is large. However, if we impose on all users to check their
communication spaces with a fixed frequence, as described in Pro-
tocol 2 (the P2P UPIR INIT protocol), step 2.2 and Section 3.1.4,
then the expected waiting time is fixed, so that the value of k/r is
no longer important;

3. The risk that a user can profile and thereby re-identify another
user decreases as r increases, since the user then distributes his
queries to a wider subset of communication spaces (privacy in
front of other users);

4. The query profile of a particular user is diffused among the r(k −
1) users with whom the user shares a key and confused among the
other queries submitted by those users (privacy in front of server).
We deduce that the privacy of the users in front of the server is an
increasing function of r(k − 1).

From Theorem 2.1.55 we know that

r(k − 1) ≤ v − 1

and combining this with the fact that the privacy of the users facing the
server is an increasing function of r(k − 1), we deduce that the param-
eters for an optimal configuration for the P2P UPIR, considering the
privacy against the server, should satisfy the following relation:

r(k − 1) = v − 1. (3.2)

In a combinatorial configuration satisfying Equation 3.2 a point p
is collinear with all other points. In other words, any two points are
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connected by exactly one line. Such a combinatorial configuration is a
(v, k, 1)-BIBD. Indeed, this property is what characterizes the (v, k, 1)-
BIBD, and we see that the combinatorial configurations that we are
looking for are exactly the (v, k, 1)-BIBD.

A finite affine plane of order q is a (q2, q, 1)-BIBD. The following
example shows the affine plane of order 3 as a combinatorial configura-
tion for the P2P UPIR.

Example 3.1.1. Let v = 9, b = 12, r = 4 and k = 3. Consider the following
adjacency list of users and communication spaces:

u1 : c1 c2 c3 c4
u2 : c1 c5 c6 c7
u3 : c1 c8 c9 c10
u4 : c2 c5 c8 c11
u5 : c2 c6 c9 c12
u6 : c3 c5 c10 c12
u7 : c3 c7 c9 c11
u8 : c4 c6 c10 c11
u9 : c4 c7 c8 c12

c1 : u1 u2 u3

c2 : u1 u4 u5

c3 : u1 u6 u7

c4 : u1 u8 u9

c5 : u2 u4 u6

c6 : u2 u5 u8

c7 : u2 u7 u9

c8 : u3 u4 u9

c9 : u3 u5 u7

c10 : u3 u6 u8

c11 : u4 u7 u8

c12 : u5 u6 u9

The users u and the communication spaces c are then the points and the lines
of the finite affine plane of order 3, respectively.

In the following lemma we see what relation r and k should keep
for these combinatorial configurations.

Lemma 3.1.2. Given a combinatorial configuration with r(k − 1) = v − 1,
we always have k ≤ r.

Proof. Suppose that the point p1 is incident with the lines l1, . . . , lr. We
get from the condition r(k − 1) = v − 1 that p2, . . . , pv are incident with
one and only one of the lines l1, . . . , lr. We also suppose, without loss
of generality, that p2 is incident with the lines l1 and lj with j > r.
Then each of the other k − 1 users on the line lj , must be incident with
a distinct line in {l2, . . . , lr}. Therefore k − 1 ≤ r − 1 and the result
follows.

By the arguments at the beginning of the section, larger values of
k/r give better performance as for storage, and, if considered, shorter
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expected waiting time per query. On the other hand, larger r’s give
more privacy against peers. If we do not consider the privacy against
other peers, then we are interested in configurations with the largest
possible k/r. By Lemma 3.1.2 this means that

k = r. (3.3)

Now by Equation 3.1 we also have that v = b and therefore we are
dealing with symmetric configurations. Define x := b = v and n :=
k − 1 = r − 1. From the condition in Equation 3.2 we deduce that x =
n2 +n+1. This implies also that every pair of users share one and only
one communication space and that every pair of communication spaces
is assigned simultaneously to one and only one user. By Theorem 2.1.38,
this corresponds to a projective plane of order n.

One can also argue that once observed that the condition r(k − 1) =
v− 1 gives a (v, k, 1)-BIBD, it is a question of choosing optimal (v, k, 1)-
BIBD for the P2P UPIR protocol. We have seen in Theorem 2.1.43 that
examples of (v, k, 1)-BIBD are

• the finite projective planes, which are combinatorial configura-
tions with parameters (q2 + q + 1, q2 + q + 1, q + 1, q + 1),

• the finite affine planes, with parameters (q2, q2 + q, q + 1, q), and

• the unitals with parameters (q3 + 1, q4 − q3 + q2, q2, q + 1).

In any (v, k, 1)-BIBD, as in every combinatorial configuration, we
have that

k(r − 1) ≤ b− 1.

Resource efficiency would therefore imply

k(r − 1) = b − 1

and then it is enough to observe that a (v, k, 1)-BIBD that satisfies this
condition is a finite projective plane. We conclude that the optimal con-
figurations for the peer to peer user private information retrieval, with
respect to the privacy of the users in front of the server and also with
respect to some aspects of efficiency, are, indeed, the projective planes.
As described in Section 2.1.5, it is known that finite projective planes
of order n exist whenever n is a power of a prime number, but when n
is an integer in general the existence is not guaranteed. Actually there
is not a single known example of a projective plane where n is not a
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power of a prime. In [75] it is specified that the existence of projective
planes of arbitrary orders is one of the most difficult questions within
finite geometry. These restrictions in the parameters for the existence
of finite projective planes, make also other (v, k, 1)-BIBD interesting as
combinatorial configurations for P2P UPIR.

In this discussion we did not take into account the privacy against
other peers. Alternative solutions for avoiding collusions of peers are
analyzed in Section 3.3.

3.1.2 A possible linkage between queries and users

The purpose with the P2P UPIR protocol is to protect the privacy of the
user when retrieving information from a server. Therefore the natural
starting point for the analysis is the privacy of the user in front of the
server.

We will first introduce some notation.

Definition 3.1.3. Let U be a community of users implementing an instance
of the P2P UPIR protocol. The real query profile RP (u) of a user u ⊆ U is the
temporal sequence of queries which u posts to the communication spaces.

Definition 3.1.4. Let U be a community of users implementing an instance of
the P2P UPIR protocol. The real query profile RP (V ) of a set of users V ⊆ U
is the temporal sequence of queries which V posts to the communication spaces.

Definition 3.1.5. Let U be a community of users implementing an instance
of the P2P UPIR protocol. The apparent query profile AP (u) of a user u ∈ U
is the temporal sequence of queries which the user posts to the server.

Definition 3.1.6. Let U be a community of users implementing an instance
of the P2P UPIR protocol. The apparent query profile AP (V ) of a set of users
V ⊆ U is the temporal sequence of queries which V posts to the server.

The following definition is of a more combinatorial nature.

Definition 3.1.7. We call the collection of users which are collinear with a
user u but different from u the neighbors of u and denote these by N(u).

In the P2P UPIR (I) protocol the user forwards to the server only
queries from collinear users different from himself. This strategy is con-
trolled by steps 2.(b) and 2.(c) in the protocol. We will now see that this
is not the perfect strategy to follow. Rather it causes the user to put his
privacy at risk.
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Figure 3.1: The neighborhood of a point in P(F2) painted in yellow

Figure 3.2: The neighborhood of a point in P(F3) painted in yellow
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66 Choosing configurations for P2P UPIR

Figure 3.3: The neighborhood of a point in the Pappus configuration
painted in yellow

Consider a community of users implementing the P2P UPIR (I) pro-
tocol and suppose that the initialization protocol is given a (v, k, 1)-
BIBD as parameter. The users are mapped to the points in the BIBD, and
a user u will share communication spaces with the set of users N(u), so
that the users who post the queries in RP (u) are the users in N(u). In
a (v, k, 1)-BIBD every pair of points span a line. This implies that, for
all points p, the neighborhood N(p) is the whole set of point P , except
for the point itself. In particular, given a point p, the neighborhood
N(p) = P \ {p} is always trivially known,

As already commented, in the P2P UPIR (I) protocol the user u is
the only member of {u}∪N(u) who does not post the queries in RP (u)
to the server. We deduce that if the user community implements the
P2P UPIR (I) with a (v, k, 1)-BIBD, then the user u is the only user in
the community who does not post the queries in RP (u) to the server.
Therefore, if a user u posts repeatedly a unique query, then the server
can deduce that u is posting the query, since u is the only user not posting
the query.

What this argumentation tells us is that if the server

• knows that a community of users is implementing the P2P UPIR
(I) protocol with a combinatorial configuration of a known type,

• is interested in the real profiles of the users, but
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• remains ignorant of any details on the mapping between the users
and the points in the configuration,

then the (v, k, 1)-BIBD are indeed a bad choice of combinatorial con-
figuration for the P2P UPIR (I). A finite projective plane is an (n2 +
n+1, n+1, 1)-BIBD. From this perspective, it is therefore reasonable to
claim that a finite projective plane is a bad choice of configuration for
the P2P UPIR (I). The use of a finite projective plane, or any (v, k, 1)-
BIBD, implies that any repeated query which is odd enough to identify
u can be traced back to him.

For an illustration of the relation between a point and its neighbor-
hood in two finite projective planes and a transversal design, see Figure
3.1, Figure 3.2 and Figure 3.3. The finite projective planes are (v, k, 1)-
BIBD, while the transversal designs are not. However, the transversal
designs have an interesting property which will be used in Section 3.2.
Fixed a point p, all points which are not in N(p) have the same neigh-
borhood N(p).

The P2P UPIR (I) protocol is designed to protect, for example, the
privacy of the users of web-based search engines. The notations re-
garding queries and the terms of queries are taken from [70].

Definition 3.1.8. A term is any unbroken string of alphanumeric characters
entered by a user. Terms included words, abbreviations, numbers, and logical
operators (AND, OR, NOT). An URL or an e-mail address is considered to be
a single term.

Definition 3.1.9. A query is a set of one or more search terms. It may include
advanced search features, such as logical operators and modifiers.

Definition 3.1.10. A repeated query is a query which occurs more than once
in the real profile of a user.

The next definition is vague and ambiguous, but still useful.

Definition 3.1.11. A repeated variation of a query is a query posted by a user
which is a slight modification of a previous query posted by the same user.

We say that a profile is rare if it contains many unique queries or
unique combinations of queries and we say that it has repetition if it
contains many repeated queries or repeated variations of queries. The
following discussion will try to investigate if reidentification is possible
considering the worst case scenario, that is, when the profile of a user
is rare and has repetition. We have seen above that a user with a worst
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68 Choosing configurations for P2P UPIR

case scenario profile is vulnerable for reidentification attacks when the
configuration used is a (v, k, 1)-BIBD. This contradicts the recommenda-
tion in the previous section to use finite projective planes for P2P UPIR
(I). However, one should notice that in this analysis we assume that the
mapping between the points in the combinatorial configuration and the
users in the community is secret. This can of course not be assumed. In-
deed one should always assume that everything in the protocol except
for the cryptographic keys is public knowledge. Also, it would surely
be very inefficient to construct a new configuration (the topology of the
P2P network) for every collection of users that wants to implement the
protocol. Finally, if it is decided that the configurations to use should be
finite projective planes, then it must be taken into account that there are
very few such planes for a given number of users, so in this case there
is no secret at all or hardly any secret at all.

We will now assume the Kerckhoffs’ principle and so we assume
that both the topology of the combinatorial configuration and the map-
ping between the points and the users are public. Then N(u) is known
for all u. Two types of combinatorial configurations which are consid-
ered in this document for their otherwise good properties as combi-
natorial configurations for the P2P UPIR are the (v, k, 1)-BIBD and the
triangle-free combinatorial configurations. We have seen in the previ-
ous discussion that the (v, k, 1)-BIBD have a property which hardly is
desired in a context of privacy and anonymity. The next Theorem 3.1.12
shows that the triangle-free combinatorial configurations also have this
property.

Theorem 3.1.12. Let C = (P ,L, I) be a combinatorial (r, k)-configuration
without triangles with k > 2 or a (v, k, 1)-BIBD. Then there is a bijection
between the sets P and {N(p) : p ∈ P}.

Proof. A (v, k, 1)-BIBD is a 2−(v, k, 1) design, hence every pair of points
is collinear. Therefore, for any point p, the neigborhood N(p) is all the
point set P except for {p}. This defines a function

P → {N(p) : p ∈ P}

p 7→ P \ {p} = N(p),

which is obviously injective and exhaustive.
Now suppose that C is triangle-free. Fix a point p0 ∈ P and let

p1, p2 ∈ N(p0) be two points which are collinear with p0. Let p3 ∈ P
be a point such that N(p0) = N(p3). This implies that p3 is collinear
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with p1 and p2, but not with p0. so that there is no line through all the
four points p0, p1, p2 and p3. Indeed it implies that p1 and p2 can not
be collinear, because if they were, then at least one of the triples p0, p1,
p2 or p1, p2, p3 would form a triangle. In other words, no pair of points
in N(p0) = N(p3) is collinear. Therefore the number of points on every
line in C is k = 2, because if k > 2, then there would be at least a pair
of collinear points p, q ∈ N(p0) = N(p3). We deduce that, whenever
k > 2, given a point p0 ∈ P there is no point p3 ∈ P distinct from p0
such that N(p0) = N(p3). Hence, for k > 2 the function

P → {N(p) : p ∈ P}

p 7→ P \ {p} = N(p)

is injective. The function is obviously exhaustive and therefore a bijec-
tion.

Theorem 3.1.12 implies that when both the combinatorial configu-
ration and the mapping between the points and the users are known
to a curious server, then both the (v, k, 1)-BIBD and the triangle-free
combinatorial configuration have a property which implies the possi-
bility to link parts of a diffused real profile RP (u) to its owner u. In
general, whenever both the combinatorial configuration and the map-
ping between the points and the users are known to the curious server,
the P2P UPIR (I) permits an adversary to reidentify a small list of users
as the possible origin of a collection of queries in the apparent profiles
AP (U), so that the real owner of the queries is on this list, regardless of
the combinatorial configuration used for the protocol. In this context,
the (v, k, 1)-BIBD and the triangle-free combinatorial configurations are
examples of combinatorial configurations for which the length of this
list of users is one, so that a reidentification is produced. In Section 3.2,
we will discuss how to find combinatorial (r, k)-configurations which
maximize the length of the list of possible neighbors to a given collec-
tion of users X of cardinality |X | = r(k − 1).

Among the combinatorial configurations for which there is a bijec-
tive mapping between the points p and their neighborhoods N(p), the
finite projective planes, and in general the (v, k, 1)-BIBD, are however
still optimal combinatorial configurations for P2P UPIR (I). The reason
for this is that in the (v, k, 1)-BIBD, the real profiles of the users are max-
imally dispersed by P2P UPIR (I), that is, distributed into the apparent
profiles of all the users in the community, except for the apparent pro-
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70 Choosing configurations for P2P UPIR

file of the user himself. Therefore, given a community of users of car-
dinality v, among all combinatorial configurations with v points, the
number of repetitions of a query the user has to do until there is a risk
for reidentification is largest exactly for the (v, k, 1)-BIBD. However, as
we just saw, exactly because the only apparent profile of the users in
which queries from the real profile of the user is missing is the apparent
profile of the user himself, the dispersion of the real profile of the user
performed by the P2P UPIR (I) can never be complete. Concluding, a
worst case scenario real profile can be mapped to the user behind this
profile, also when the configuration that is used is of a type which we
previously argumented to be optimal!

One can argue that in the description of the P2P UPIR (I) in [28, 29]
the protocol lets the user post his own queries if the waiting time for
another user to post it is too long. Therefore it is of course possible
that the user by accident is lucky enough to post the same proportion
of his queries as do his neighbors, meaning that in this case the attack
described above would not work. One can however not rely on such
arbitrary circumstances for the protection of the privacy of the user.

3.1.3 Real examples of repeated queries

One can also ask if it is a common behavior of real users to repeatedly
post a query. An interesting question is also how a typical real profile
of a user looks like. In 2006 AOL released search logs that contains 20
million web queries from 658,000 AOL users posted in a period of 3
months. The released data was anonymized by replacing the identity
of the users by a random index, but this quickly showed insufficient as
several sequences of queries were mapped to real persons. AOL with-
drew the query logs from internet, but the files were of course already
downloaded by many people. The AOL search data release caused a
privacy scandal which is the reason why the query logs published by
AOL are practically the only material available for non-corporative re-
search on the subject.

A quick look at the AOL query logs [5] makes it reasonable to as-
sume that posting the same query (or a slight modification of a query)
several times is a common behavior of users of web-based search en-
gines. There seems to be at least three scenarios which can result in this
behavior.

The first scenario is explained by to the way people normally use
their browsers. In the common internet browsers, when the user queries
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a search engine the result will be presented to him as a list of links in
the browser window. The user’s next step is to choose a promising link
from the list and to follow it. Later he may want to return to the list
of search results. Although he may still have the page with the list of
search results open in the browser, this page will not be on top of the
windows the user has opened. The user, being lazy, does not change
to the previous window with the search results, nor does he press the
return button of the browser in order to return to the previous window,
but simply posts the query again. This behavior leads to many repeated
queries without much or any variation.

In the released AOL query log files there are many query sequences
with repeated queries which can be explained by this scenario. For ex-
ample, user 1783081 has one query for ’digital camoflasges’ at 2006-03-
15 12:49:29 and then 9 identical queries for ’digital camouflages’, the last
one posted at 2006-03-15 13:00:09. AOL registered 7 different clicked
url as a result from this sequence of queries, giving an example of a
user which probably has followed a behavior similar to the one just
described. Between 2006-04-18 15:14:03 and 2006-04-18 15:14:03 user
672368 posts 7 queries on ’abortion clinic charlotte’ and later between
2006-04-18 21:45:39 and 2006-04-18 21:45:49 5 queries on ’abortion clinic
charlotte nc’ We observe that some users have sequences with up to 25
equal queries in very short time.

The second scenario is when the user posts a set of very similar
queries in order to adjust and limit the search result so that it resem-
bles more what the user aimed at. Misspellings are a similar scenario,
but misspellings do not tend to result in multiple repetitions of a query.
For example, between 2006-03-19 19:24:09 and 2006-03-19 19:30:02 the
user 1783081 from the previous examples posted 3 queries concerning
’the long ranger’, 1 query on ’the legend of the long ranger’, 5 queries
on ’the legend of the lone ranger’, 6 queries on ’the lone ranger theme
song’ 3 queries on ’lone ranger theme’. User 1783081 generally shows a
general interest for fantasy, movies and as more particular interests fig-
ures lolita porn, occult rituals, incest and young teen girls. User 672368
has a sequence of queries starting at 2006-04-18 06:50:07 with a query
’effects oon on fibriods’, then three queries on ’effects of abortion on
fibroids’ and four queries on ’abortion fibroids’, with the last query at
2006-04-18 06:59:32. After this the user continues to post queries for
example on the subject ’abortion’. At 2006-04-20 17:55:18 the user con-
tinues posting 11 queries on ’abortion fibroids’. Totally on this subject
the user posts 19 queries on the subject ’abortion fibroids’. The user
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72 Choosing configurations for P2P UPIR

started the query sequence with ’curb morning sickness’, ’get fit while
pregnant’, continued with ’you’re pregnant he doesn’t want the baby’
and many queries on abortion, abortion clinics and later misscarriage.
It seems likely that this user would have preferred a better privacy than
AOL could offer.

The third scenario occurs when the user posts queries on something
that appears in his daily life. For example, it seems to be rather com-
mon that users post a query to a search engine in order to search for the
webpage of the school of their kids, or their own workplace, instead of
browsing to the webpage directly. The user’s workplace and the school
of his kids are highly interesting information for reidentification. Con-
sidering that this kind of queries can be repeated several times a month,
the risk of reidentification can not be neglected.

The AOL query logs are not well suited for finding repeated ex-
amples of the third scenario, since they only cover a time period of 3
months. However, AOL themselves and other search engine providers
have of course access to query logs from much longer time periods.

A study of the query logs from the Excite search engine was pub-
lished in 2000, which included 211063 users who had posted a total of
1025910 queries on 16 September 1997 [70]. Of these queries, 395461
were repeated queries, in the sense that the user had posted another
query with exactly the same terms, and 531416 were unique queries
which differed from the rest of the user’s queries with at least one term.

In 2005 Yahoo released a study of query logs which was focused on
the repetition of queries caused by the desire to return to a webpage vis-
ited before, a behaviour called re-finding [80]. The study was based on
the queries posted by 114 users during one year, posting a total of 13060
queries and with a total of 21942 subsequent clicks. The researchers
were not interested in short-term query repetitions, and considered all
instances of the same query string that occurred within thirty minutes
to be a single query. It was observed in the study that re-finding be-
havior is common, and it was shown that repeat clicks can often be
predicted based on a users previous queries and clicks.

We conclude that repeated queries and repeated variations of queries
is a frequent and common phenonemon.

It should be observed that although when the P2P UPIR (I) protocol
fails to provide complete protection of the privacy of the user in front of
the server in the case of many repeated queries, single queries can still
not be traced back to the emitter.

The level of privacy provided by the P2P UPIR (I) protocol can be
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specified more exactly. The user diffuses his real profile into the ap-
parent profiles of his r(k − 1) neighbors. However since he chooses
communication space randomly and has no control over who will for-
ward the query of the other k−1 users sharing the same communication
space, it is not possible to say exactly how many repetitions of a query a
user must post until his privacy is broken. Also, in general it is possible
that a user may be the unique common neighbor also to sets of users of
cardinality smaller than r(k − 1). This also affects the efficiency of the
attack.

Finally it should be noticed that we below will provide a fix of the
problem encountered in the P2P UPIR (I) protocol, as will be seen in the
following Section 3.1.4.

3.1.4 Modifications to prevent linkages

The previous section was dedicated to a privacy analysis of the P2P
UPIR (I) protocol, which is the version of the P2P UPIR protocol that
appears in [28, 29]. In the P2P UPIR (I) protocol the user forwards to
the server only queries from collinear users different from himself.

In this section we will discuss two variations of the P2P UPIR (I)
protocol. The discussion will provide a modification of the protocol
which solves the privacy flaw discussed in the previous section.

We define the P2P UPIR (II) protocol as obtained from the P2P UPIR
(I) protocol by replacing step 2.(b) and 2.(c) by the single step:

2.(b) The outcome is a query posted either by the user himself or by an-
other user. Then u forwards the query to the server and awaits the answer.
When u receives the answer, he encrypts it and records it in c. He then restarts
the protocol with the intention to post his query;

Hence, the only difference from the P2P UPIR (I) protocol is that in the
latter the user does not forward his own queries to the server, but in the
P2P UPIR (II) he does.

The following lemma implies that the users in a community that fol-
low the P2P UPIR (II) protocol will forward more of their own queries
to the server than queries of the other users. As a consequence of this,
the users’ real profiles can be inferred from the apparent profiles of the
users.

Lemma 3.1.13. Consider a community of users U = {ui}I implementing the
P2P UPIR (II) protocol. Suppose that in a fixed time interval t a user ui posts
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qi queries. Denote by pij the proportion of queries from the real profile of ui

on the communication space cj . Let {cijn} be the set of communication spaces
incident with ui, indexed by n ∈ [1, . . . , r]. Then the proportion of queries
from the real profile of ui in the apparent profile of ui is

r
∑

n=0

pijn
r

qi.

The proportion of queries from the real profile of ui in the apparent profile of
um 6= ui is







pmj

r qi if um is collinear with ui by the line/communication space cj ;

0 otherwise.

Proof. During time t a user ui posts a set of qi queries to the r commu-
nication spaces to which he is connected. This set of queries is the real
profile of ui. Any communication space incident with ui receives qi/r
queries from ui. Let pij denote the proportion of queries from ui on the
communication space cj , so that for all j

∑

i

pij = 1.

The P2P UPIR (II) protocol is originally designed so that a user reads
the content on the communication space only when he wants to post
a query (step 2.1 in Protocol 2), so that the proportion of his queries
on the communication space equals the proportion of queries on the
communication space that he reads. The amount of queries from the
real profile of ui which are sent to cj and return to ui to be forwarded
by ui to the server is therefore

pij
qi
r

=
pij
r
qi.

Adding over the r communication spaces incident with ui the number
of queries in the apparent profile of ui coming from the real profile of
ui is

r
∑

n=0

pijn
r

qi =

(

r
∑

n=0

pijn
r

)

qi.

Since pijn depends on n, this expression cannot be simplified.
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Consider another user um 6= ui. Suppose that um and ui share the
line/communication space cj . Then there are

pmj

r
qi

queries from the real profile of ui in the apparent profile of um. This is
so, because the user ui and the user um share only one communication
space: cj .

Finally, if the users um and ui are not collinear, then the apparent
profile of um will not contain any query from the real profile of ui.

Under particular circumstances Lemma 3.1.13 has the simpler ex-
pression given in Corollary 3.1.14.

Corollary 3.1.14. Under the same assumptions as in Lemma 3.1.13, suppose
that all users post queries with the same frequency, so that qi = qj for all i, j.
Then the proportion of queries from the real profile of ui in the apparent profile
of ui is

1

k
.

The proportion of queries from the real profile of ui in the apparent profile of
another user um 6= ui is







1
rk if um is collinear with ui;

0 otherwise.

Proof. If we suppose that all users post queries with the same frequency
q of queries, then pij = 1

k , so that the amount of queries from the real
profile of ui which is sent to cj and returns to ui to be forwarded by
ui to the server is 1

rkqi. In this case, adding over the r communication
spaces incident with ui, the number of queries in the apparent profile
of ui coming from the real profile of ui is

r
∑

n=0

pijn
r

qi =

r
∑

n=0

1

rk
q =

1

k
q,

so the proportion of the real profile of ui in the apparent profile of ui is

1

k
.
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However, we see that the proportion of the real profile of ui in the
apparent profile of another user um 6= ui, that is collinear with ui, is
only

1

rk
.

A user um that is not collinear with ui will not have any query from
the real profile of ui in his apparent profile.

Lemma 3.1.13 has the following interpretation.

Corollary 3.1.15. The users in a community who follow the P2P UPIR (II)
protocol will forward to the server more of the queries posted by themselves
than they will forward queries posted by other users.

This corollary implies that the server can infer the real profile of a
user from his apparent profile. The P2P UPIR (II) provides a partial pro-
tection of the privacy of the user in front of the server, valid for sparse
use. But if we let the protocol run for a while in order to let the user
post enough queries, then the users real profile will get inferable from
his apparent profile.

We have seen two different strategies for how the user should treat
his own queries when implementing P2P UPIR. In the first the user
does not forward his own queries to the server and in the second he
does. Both provide insufficient privacy protection. Now we will look
at a third variation of the P2P UPIR protocol where the user adjusts the
number of his own queries he should forward to the server so that his
real profile results uniformly distributed over the apparent profiles of
his neighbors and himself.

The protocol which we call P2P UPIR (III) differs from the P2P UPIR
(I) protocol only in the steps the user follows when the decrypted con-
tent of the communication space is a query originally posted by himself
which is waiting for a user to post it to the server. The P2P UPIR (III)
protocol is obtained from the P2P UPIR (I) protocol by replacing step
2.(c) by:

2.(c) If the outcome is a query posted by the user himself, then u forwards
the query to the server with a probability to decide. If u forwards the query
to the server, then u also awaits the answer. When u receives the answer, he
encrypts it and records it in c. In any case then u restarts the protocol with the
intention to post his query;
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The idea behind the modification of the protocol is to adjust the num-
ber of his own queries the user forwards to the server in order to obtain
a smooth diffusion of his real profile over the apparent profiles of the
collection of his neighbors and his own apparent profile.

We have seen before that a (v, k, 1)-BIBD is an optimal solution to the
problem of preserving the privacy of the user in front of the server, in
the sense that it maximizes the number of apparent profiles into which
the real profile of a user is diffused, under the restriction to keep the
size of the user community fixed. More important, it is the only type
of combinatorial configuration where N(u), the set of users collinear
with the user u and different from u, are all the users in the configu-
ration different from u. As already commented, the user who adopts
the strategy to not forward any of his own queries (the P2P UPIR (I)
protocol) as well as the user who adopts the opposite strategy to for-
ward his own queries (the P2P UPIR (II) protocol) are both hazarding
the privacy of their real profiles in front of the server, even when the
used configuration is a finite projective plane. The P2P UPIR (III) is
an intention to avoid these flaws in privacy by adjusting the number of
own queries a user should forward to the server. The idea is to adjust so
that a user forwards the correct proportion of his own queries in order
for the proportion of his real profile to be constant, or at least asymptot-
ically constant, over the apparent profiles of {u} ∪ N(u). Adjusting in
this way, a (v, k, 1)-BIBD indeed does provide privacy for the user, since
u’s queries are uniformly diffused into the apparent profiles of the users
{u} ∪N(u), which in a (v, k, 1)-BIBD is the whole set of users.

Such an adjustment is possible if the frequencies with which the
users post queries is the same for all users, as will be required for Propo-
sition 3.1.16. What is perhaps surprising is that the adjustment is still
possible when the frequency with which they post queries is not the
same for all users, under the assumption that the users check the com-
munication spaces with equal frequency. Following Remark 2.2.5, a
user who checks a communication space is a user who starts the pro-
tocol with a query which may be garbage or not.

Proposition 3.1.16. Consider a community of users implementing a P2P
UPIR protocol with a combinatorial (v, b, r, k)-configuration and impose on
the users to check their communication spaces with a fixed frequency higher or
equal to the frequency with which they post queries. Then the user u’s real pro-
file is optimally diffused into the apparent profiles of {u} ∪N(u) if u forwards
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a proportion of
1

r(k − 1) + 1

of his own queries to the server.

Proof. The number of users that are collinear with u is N(u) = r(k −
1). The set of users who forward queries from u’s real profile is {u} ∪
N(u). A homogeneous diffusion of u’s real profile into the apparent
profiles of {u}∪N(u) means that every one of the users should forward
a proportion of

1

r(k − 1) + 1

of u’s queries. Indeed this clearly implies that u should forward a pro-
portion of

1

r(k − 1) + 1

of his own queries. What is perhaps not as obvious is that in order to get
a homogeneous diffusion of u’s real profile into the apparent profiles of
{u} ∪N(u) it is sufficient that all the users adopt this strategy.

Denote the collection of queries posted by u during the time interval
t by q. Let c be one of the r communication spaces used by u. Then u
sends q

r queries to c during t. But u forwards

q

r(k − 1) + 1

of his own queries to the server. A proportion of 1
r of these comes from

c and the rest from the other communication spaces used by u, so there
are

q

r
−

1

r
·

q

r(k − 1) + 1

of u’s queries on c which are left to be forwarded to the server by the
other k − 1 users using c. Therefore each of these users forward

q
r
− q

r(r(k−1)+1)

k−1 = q

(

1− 1
r(k−1)+1

r(k−1)

)

= q

(

r(k−1)
r(k−1)+1

r(k−1)

)

= q
(

1
r(k−1)+1

)
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of u’s queries to the server during t, just as u does.
The frequency with which u posts queries is q

t , but it is interesting to
observe that the frequency with which the other users post queries only
matters for the proof because it determines the frequency with which
the users check the communication spaces. If the frequency of check-
ing the communication spaces differs among the users, then we can no
longer ensure that all users forward a proportion of 1

k−1 of the queries
on the communication spaces to which they are connected.

Proposition 3.1.16 therefore suggests a change in the protocol so that
the users check their communication spaces with a fixed frequency. One
should probably choose this frequency to be higher than or equal to the
highest frequency with which any user posts queries. In this way, when
a user has a query to post, he can post it to the first communication
space that he checks. When the user has no query, then he checks the
communication space anyway.

3.1.5 Optimal configurations for peer to peer private in-
formation retrieval in terms of non-linkability

Consider a community of users implementing an instance of the P2P
UPIR (III) protocol in which the proportion of selfsubmission of queries
is set to

1

r(k − 1) + 1

as recommended by Proposition 3.1.16 and suppose that the users check
their communication spaces with a fixed frequency that is higher than
or equal to the highest frequency with which any user posts queries.
Then Proposition 3.1.16 says that the real profile of a user u is optimally
diffused into the apparent profiles of {u} ∪ N(u). In the following we
will always assume that the P2P UPIR (III) is implemented under these
circumstances.

We observe that examples of combinatorial configurations in which
the points {p} ∪N(p) is the whole set of points are the finite projective
planes, but also the finite affine planes satisfy this criteria. Indeed, as we
have already seen, this property is characteristic for the (v, k, 1)-BIBD.
This observation has two consequences.

1. The P2P UPIR (III) protocol diffuses the real profile of the user u
into the apparent profiles of {u}∪N(u). The larger {u}∪N(u), the
larger is the protection of the real profile of u in front of the server.
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Given a set of v users such that there exists a (v, k, 1)-BIBD, the
BIBD is a combinatorial configuration which for all users u the set
{u} ∪N(u) is the whole set of points, that is, as large as possible.

2. In many combinatorial configurations there is a bijection between
the sets P and {{p}∪N(p) : p ∈ P} defined by p 7→ {p}∪N(p). In
a (v, k, 1)-BIBD there is no such bijection, because {p}∪N(p) is the
whole pointset P for all points p ∈ P , hence equal for all points
p ∈ P . This property will be further studied in Section 3.2.3.

These two facts together provide an affirmation of the optimality of the
finite projective planes as combinatorial configurations for P2P UPIR
(III), whenever the number of users v is such that there exists a finite
projective plane with v points.

There are two important differences between the arguments used in
Section 3.1.1 and the arguments used in this section.

1. In this section we are considering the P2P UPIR (III) protocol, in-
stead of the P2P UPIR (I) protocol;

2. In Section 3.1.1, arguments of efficiency were used, while the anal-
ysis in this section focused only on the privacy in front of the
server.

We observe that the focus on the privacy in front of the server is logical,
since the users privacy in front of the server is exactly the purpose of
the protocol.

3.2 Transversal designs and n-anonymous

P2P UPIR

One of the more important notions in the theory for the anonymization
of databases is n-anonymity. For a short introduction to methods for
the anonymization of databases and relevant formal definitions, see the
preliminary Section 2.2. The aim of the following discussion is to see if
the notion of n-anonymity can be useful for an analysis of the disclosure
control provided by the P2P UPIR protocol. For this the rather ad-hoc
context from Section 3.1 will be replaced by the more standard context
of anonymization of databases.
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3.2 n-anonymous P2P UPIR 81

3.2.1 Privacy notions for P2P UPIR: n-anonymity and n-
confusion

Consider a community of users U who are executing an instance of
the P2P UPIR protocol in order to protect their query profiles from the
server, during a time t. A query profile of a user who is not implement-
ing the P2P UPIR protocol, is a temporal sequence of queries posted by
the user to the server. As we saw in Definition 3.1.9, a query is a set
of one or more search terms. For users who are implementing the P2P
UPIR protocol, we will follow the notation introduced in Section 3.1.2,
with the addition of the temporal restriction t. Consequently, we will
say that the temporal sequence of queries posted by the user u to the
communication spaces during t is the real profile RPt(u) of u and that
the temporal sequence of queries posted by the user u to the server dur-
ing t is the apparent profile APt(u) of u. Also, RPt(V ) and APt(V ) will
denote the real and the apparent profiles during t of a collection V ⊆ U
of users, respectively. In all this section, the word adversary will always
refer to a curious server.

The P2P UPIR as a method for anonymization of databases

Because of the time constraint, the collection of real profiles of the users
RPt(U) is a finite set of finite sequences of queries. The set is indexed
by the users, and the sequences are ordered temporally. The set RPt(U)
therefore allows an interpretation as a database, that is, a table of rows
(records) and columns (attributes), in which every row is occupied by
the identifier or index of a user u and the real query profile RPt(u). The
attributes in this table can be defined in different ways. For example,
the table may be regarded to have

1. two attributes, one for the user id and the other for the real query
profile sequence, or

2. one attribute for the user id and one attribute for every query in
the real query profile in temporal order: query 1, query 2, etc.

In the following discussion, the second viewpoint will be more common
than the first. The collection of the apparent profiles of the community
of users APt(U) allows an analogous interpretation as a database.

In this context, the P2P UPIR protocol may be considered to be a
method for anonymization of databases, see Definition 2.2.1. Then the
database to protect is RPt(U), the real profiles of the community of
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82 Choosing configurations for P2P UPIR

users, collected during t. The result from applying the method for
anonymization of databases to the database RPt(U) is the database
APt(U), the collection of the apparent profiles of the users during t. In
this context, the P2P UPIR protocol is a transformation of the database
which we will denote by

ρ : D → D

RP (U) 7→ AP (U),

where D is the space of all possible query databases.
Observe that there are three major differences between the P2P UPIR

protocol and most methods for anonymization of databases.

• The responsible for the execution of a method for anonymization
of databases is usually the data owner, that is, the entity that has
collected the data. In an analysis of privacy protection provided
by the P2P UPIR to the users in front of the server, the data owner
is the curious server. However it is the users who are responsible
for the execution of the protocol;

• The P2P UPIR protocol is executed in real-time as the users post
queries to the server, that is, as the information is introduced into
the database;

• A method of anonymization of databases is normally designed to
preserve the utility of the anonymized database. In this case, a
good method of anonymization of databases is a method which
provides an anonymized database with a low risk of reidentifi-
cation and a low information loss. However, for the aim of the
P2P UPIR there is no need to control the utility of the transformed
database. Indeed, we assume that the users of the server have no interest
in providing a useful statistical database.

Difficulties in determining the quasi-identifiers

Methods of anonymization of databases usually assume that the en-
tity who executes the method, normally the data owner, has complete
knowledge of the content of the database. This is for example true for
methods which transform a database into an n-anonymous database. If
not all records or attributes of the original database are known when
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3.2 n-anonymous P2P UPIR 83

the method is executed, then there is always a risk that the transformed
database will not be n-anonymous.

In the case of the P2P UPIR, the entities who execute the protocol
are the users, and every user executes the protocol independently of the
others. Keeping track of all the queries posted by all the other users in
the community is costly and difficult. Also, a user can not see queries
posted by users to whom he is not a neighbor. The fact that the P2P
UPIR is executed in real-time implies that the users intend to protect
the database RPt+1(U), only with (a partial) knowledge of RPt(U). Be-
cause of all these difficulties, we may assume that the knowledge the
individual users have of the content of the database RPt+1(U) at the
time t is restricted. This also restricts the knowledge the users may have
of the quasi-identifiers of RPt+1(U) and implies that an application of
the notion of n-anonymity to the P2P UPIR protocol is hard to justify, at
least in this context.

Now assume that the users have complete knowledge of the con-
tent of RPt+1(U) before executing the protocol at time t + 1. It is still
hard for the users to foresee the auxiliary information available to the
curious server, and hence also to predict how the database APt(U) may
be reorganized in order to create quasi-identifiers and perhaps reiden-
tify one of the users. Indeed the curious server is likely to define other
attributes (like for example age, dog owner, geographic names), than
the attributes that we work with (query 1, query 2, etc.). This last com-
ment is indeed valid for every method for anonymization of databases;
without prior assumptions on the auxiliary information available to the
adversary, it is very hard to predict how the adversary will behave.
Concluding, not much can be said in advance about the nature of the
quasi-identifiers of RPt(U).

The determination of the correct quasi-identifiers is crucial for a cor-
rect application of n-anonymity. The observations of the difficulties for
the determination of the quasi-identifiers therefore suggests that, in the
discussed context, n-anonymity is perhaps not the most adequate no-
tion for the P2P UPIR.

Sensitive sequences and n-confusion

Regarding the P2P UPIR we observe the following. As before, the word
adversary will always refer to a curious server.

• An adversary (a curious server) is given only the protected data-
base APt(U) and so his knowledge about RPt(U) is limited. This
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84 Choosing configurations for P2P UPIR

is indeed the purpose of the anonymization of the database. How-
ever, as stated in previous arguments, it is very hard to foresee
the knowledge an adversary may have on RPt(U), considering
that he may have access to important auxiliary information. Be-
cause of this, it is difficult for the user, who is the one executing
the protocol, to make prior judgements about which of the queries
in his real profile may cause a reidentification of him in the pro-
tected database APt(U). The most prudent approach is therefore
to assume that any collection of his queries carries a high risk of
reidentification.

• Not everyone has the same requirements of privacy. What one
user considers highly sensitive information, the other user may
not consider sensitive at all. It is possible to design a protocol
in which every user decides what to protect, but the protocol be-
comes more complicated and experience shows that even when
similar advanced individualized features are available in software,
most people do not use them. It is therefore better to assume that
all subsets of queries in the real profile of the user require the same
protection.

• The entries of the database RPt(U) are web search queries. Ac-
cording to Definition 3.1.9 a query is a set of one or more search
terms. In particular, a single query may cause a reidentification
and contain sensitive information, simultaneously. For example,
consider the query

{Anna Svensson AND stripshow}.

More generally, a collection of queries may cause a reidentifica-
tion and contain sensitive information simultaneously. Usually
when a database is anonymized using the notion of n-anonymity,
it is assumed that the quasi-identifier and the sensitive informa-
tion are separable. As just observed, in a database of web search
queries, this is not always possible.

In the following we will therefore not distinguish between quasi-
identifiers and sequences of sensitive information and we will let both
go under the name sensitive sequence. This approach is perhaps not stan-
dard, but suites well the analysis of the P2P UPIR protocol. Indeed, al-
lowing for sensitive information to also be quasi-identifying, or a quasi-
identifier to contain sensitive information, is stronger than assuming
that the two types of information are independent.
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Consequently, one approach for the formalization of the analysis
of the P2P UPIR protocol is to assume that any sequence of queries
which form part of a record of RPt(U) is a sensitive sequence to be pro-
tected. The result after applying the protocol is the database APt(U).
Consider a subset {s1, . . . , sm} of queries si with m ≤ t which forms
part of a record RPt(u) of RPt(U), ordered temporally in the sequence
s = (s1, . . . , sm). The P2P UPIR transformation ρ distributes the queries
si over the records in APt(N(u)), that is, the records in APt(U) which
correspond to the neighbors N(u) of u in the combinatorial configura-
tion used by the protocol. For a combinatorial configuration with pa-
rameters (r, k), the number of neighbors of u is r(k − 1).

Suppose that s is a sensitive sequence of minimal length, so that any
proper subsequence of s is not a sensitive sequence. In particular, this
assumption implies that s does not contain a repetition of a sensitive
subsequence.

Suppose that s is a sensitive sequence of length larger than one. Al-
though the queries si are distributed uniformly over APt(N(u)), there
is of course a non-zero probability that a large proportion or even all of
the queries si will end up in the apparent profile of the user u. How-
ever, if the server is aware of the fact that the users are implementing
the P2P UPIR protocol, it will not be able to tell if s pertains to RPt(u)
or if s pertains to the real profile of some other user. Indeed, the cu-
rious server can not even tell if s was a sensitive sequence in RPt(U).
This is due to the fact that the si’s, which isolated do not contain any
sensitive information, were distributed uniformly into APt(N(u)). Any
quasi-identifying property and sensitive information in s can therefore
not be traced back further than to N(u).

A curious server could have interest also in analyzing the real pro-
file of, say, a group of users who are friends or who work in the same
company. It is reasonable to assume that a group of users with the same
affiliation have somehow similar real query profiles. Assume that the
curious server analyzes APt(U) only with respect to the content of in-
dividual records, and that it has no interest in analyzing the real profile
RPt(V ) of a set of several users V ⊂ U . Also assume that the adver-
sary does not have access to auxiliary information (see Definition 2.2.2
of reidentification) that has potential enough to link all the queries si to
the user u. Then, since s is minimal, we may regard the sensitive infor-
mation in s as destroyed. Under these circumstances we may reduce
the risk analysis to the case in which s has length one.
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Now assume that the length of s is one, so that the sensitive se-
quence is a single query. Then the information in s can not be hidden
by the protocol, since the protocol does not split single queries. In this
case the situation is different depending on the content of the sensitive
sequence s.

• If s only contains sensitive information, then this sensitive infor-
mation will be available to the server, but the server will only be
able to say that the sensitive information belongs to someone in
N(u′), where u′ is the user who emits the query to the server;

• If s only contains identifying information, then the server will be
able to use the information to deduce that u belongs to N(u′);

• If s contains both identifying information and sensitive informa-
tion, as in the example with Anna Svensson and the stripshow,
then the server will indeed be able to deduce that the sensitive
information belongs to u.

Using this approach, what is obtained is not n-anonymity in the sense
of Definition 2.2.4. Rather, in all cases but the last, what is obtained is n-
confusion, with n = r(k − 1), that is, the P2P UPIR protocol introduces
a confusion of magnitude n = r(k − 1) on who is the real owner of the
sensitive subsequences of length one. In order to stress the distinction
between the two concepts, we provide the following definition of n-
confusion.

Definition 3.2.1. Let U be a community of users implementing a P2P UPIR
protocol with a combinatorial configurationC as parameter. Let s be a sensitive
sequence in AP (U). We say that the P2P UPIR protocol providesn-confusion,
if a curious server that is given AP (U), C and the mapping between the users
U and the points in C, can only determine the real owner of s, that is, the user
u such that s ∈ RP (u) with a precision of n, in the sense that there are at least
n users in U who could be the real owner of s.

Observe that n-anonymity may imply n-confusion, while the oppo-
site in general is not true.

Repetition and n-anonymous P2P UPIR

Consider a user who is still convinced that n-anonymity is the key to
protect his real query profile from the curious server. An intent to
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make the protected database APt(U) n-anonymous in the sense of Def-
inition 2.2.4 would imply imposing n occurrences of the sensitive se-
quence s in n different records of APt(U). Because of the structure of
the protocol, the user can not assume that another user will post s. The
responsability of repeating s at least n times is therefore laid on the in-
dividual user u with s ∈ RPt(u). All these copies of s will be located
in the records of APt(N(u)), that is, the records of APt(U) indexed by
N(u), with s ∈ RP (u).

As seen in Section 3.1.2, in a quite different context it can be ob-
served that repetition of sensible sequences of queries to web-based
search engines is a common phenomenon, which appears as a natural
behaviour of the users.

Whatever the reason may be for the repetition of s, the result of
the P2P UPIR (I) protocol will be that several copies of s will be lo-
cated in the records of APt(N(u)). If the users instead execute the P2P
UPIR (III) protocol then the copies of s will be located in the records
of AP (N(u) ∪ {u}). The analysis in Section 3.1.2 showed that there are
problems associated with the repetition of queries and the neighbor-
hoods of the users.

The presence of a quasi-identifier

Indeed, the results from Theorem 3.1.12 suggest that the use of the pro-
tocol P2P UPIR (I) implies that there is another type of quasi-identifier
present in APt(U), namely the neighborhoods of the users N(U).

With the notation from the previous discussion, let the number of
copies of s in RP (u) be x. Suppose that x is large enough for s to occur
in all or almost all records of N(u) in APt(U) and suppose that the num-
ber of copies of s in RP (u′) is small for all u′ 6= u. Also suppose that
the combinatorial configuration C used by the P2P UPIR (I) protocol is
triangle-free or a (v, k, 1)-BIBD. Then Theorem 3.1.12 implies that s can
be linked to u, since the occurrences of s are linked to N(u).

Therefore Theorem 3.1.12 suggests that if a community of users U
implement the P2P UPIR (I) protocol with parameter the combinatorial
configuration C, then the neighborhood N(u) of u in C = (U,L) is a
quasi-identifier of the user u ∈ U . More formally, before transforming
the database with the real profiles using the P2P UPIR (I) protocol trans-
formation ρ, we first add the neighborhoods of the users as an attribute
to the original database. That is, consider the database RPt(U) and the
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P2P UPIR transformation

ρ : D → D

RPt(U) 7→ APt(U).

The combinatorial configuration C used by the P2P UPIR protocol is
a parameter given to ρ, and the properties of the points in C are as-
signed to the users of the P2P UPIR protocol by the mapping between
the points and the users. Every point p in C has associated a neigh-
borhood N(p), and so every user u of the P2P UPIR protocol also has
associated a neighborhood N(u). Associated to the user is of course also
his real profile RPt(u), which is his record in RPt(U). It makes sense to
add the new attribute N(u) to the database RPt(U), so that a record in
the resulting database contains one identifier u, the attribute/ attributes
of the real profile RPt(u) and the attribute N(u). A record in the new
database will have the following aspect:

[u,RPt(u), N(u)].

The attribute N(u) is invariant for the action of ρ, which in particu-
lar means that ρ preserves the quasi-identifying properties of N(u). Ac-
cording to Definition 2.2.4, ensuring that APt(U) is n-anonymous with
respect to this quasi-identifier, means ensuring that every element of
the family of neighborhoods {N(u) : u ∈ U} occurs at least n times in
APt(U). That is, the combinatorial configuration C should be chosen so
that every point shares its neighborhood with at least n−1 other points.
Such a combinatorial configuration provides P2P UPIR (I) which is n-
anonymous with respect to the quasi-identifier N(U).

Definition 3.2.2. A combinatorial configuration provides n-anonymous P2P
UPIR (I) when every set of points which is a neighborhood of one point, is the
neighborhood of at least n distinct points.

The following Example 3.2.3 presents a small combinatorial config-
uration satisfying the condition in Definition 3.2.2.

Example 3.2.3. An example of a combinatorial configuration which provides
3-anonymous P2P UPIR (I) is the Pappus’ configuration. Figure 3.4 shows
three points in the Pappus’ configuration with the same neighborhood. The
neighborhood is indicated in yellow and the three points with large dots.
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Figure 3.4: Three points in the Pappus’ configuration with the same
neighborhood

Section 3.2.2 will characterize and give constructions for the com-
binatorial configurations in Definition 3.2.2. Indeed the Pappus’ con-
figuration is only a small example of a large family of combinatorial
configurations providing n-anonymous P2P UPIR (I).

3.2.2 Combinatorial configurations providing
n-anonymous P2P UPIR (I)

We saw in Section 2.1.5 that a finite affine plane of order n is a combi-
natorial configuration An with parameters (n2, n2 + n, n + 1, n). The
line set L of a finite affine plane An is partioned into n+ 1 equivalence
classes of parallel lines. Every such parallel class contains n lines. It is
conjectured that a finite affine plane An exists if and only if n is a power
of a prime. For every power of a prime q the affine plane over the finite
field with q elements is a finite affine plane of order q, so at least one
finite affine plane of order n exists whenever n is a power of a prime.

Theorem 3.2.4. Consider the configuration C = (P ,L, I) obtained by taking
L as q of the q + 1 parallel classes of lines in a finite affine plane Aq of order
q and P as the point set of Aq . The users of the P2P UPIR (I) protocol taking
C as parameter are q-anonymous, in the sense that for every user ui there are
exactly q − 1 other users {ui}

q
i=2 such that N(ui) = N(uj) for all i, j ∈

{1, . . . , q}.
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Proof. The remaining parallel class of lines in Aq gives a partition P =
P1 ∪ · · · ∪ Pq of the point set of C such that the points in any Pn are not
collinear in C. Indeed the lines which make these points collinear in Aq

are exactly the lines which we removed in order to construct C. In Aq

every two points are collinear, implying that for any point u in C with
u ∈ Pn we have that N(u) = L \ Pn. Therefore all the q points in Pn

have the same neighborhood N(u).

The configuration in Theorem 3.2.4 has parameters (q2, q2, q, q). The
use of the affine plane of order 2 gives an ordinary square with 4 points
and 4 lines with 2 points on every line. The use of the affine plane of or-
der 3 gives the Pappus configuration. We can generalize Theorem 3.2.4
by reducing the point set of C so that it contains only the points in k
of the n parts of the partition of th point set of the affine plane, for
2 ≤ k ≤ n. Generalizing further we see that the combinatorial configu-
rations which we are looking for are exactly the transversal 1-designs.

Theorem 3.2.5. The users of an instance of the P2P UPIR protocol that takes
a transversal design TD(k, n) as parameter are n-anonymous, in the sense
that for every user ui there are exactly n − 1 other users {ui}

n
i=2 such that

N(ui) = N(uj) for all i, j ∈ {1, . . . , n}.

Proof. The groups G = {gi}ki=1 are a partition of the point set P , such
that the points in the same group are not collinear. Any pair of points
not pertaining to the same group is contained in exactly one line. This
implies that the n points inside the same group gi all have the same
neighborhood. Since G is a partition of the point set, any point p ∈ P
pertains to a unique group gi and p will share its neighborhood N(p)
with the n points in gi.

The transversal design TD(k, n) in this construction is a combina-
torial (nk, n2, n, k)-configuration. Hence the construction provides an
n-anonymous combinatorial configuration suitable for nk users and im-
plies the use of n2 communication spaces.

We have seen in Lemma 2.1.53 that the existence of a TD(k, n) is
equivalent to the existence of a set of k − 2 MOLS of order n. In The-
orem 2.1.25 we saw that the number x of MOLS of order n satisfies
x ≤ n− 1, with equality if and only if n is a prime power.

We will now characterize the n-anonymous combinatorial configu-
rations exactly.

Theorem 3.2.6. An n-anonymous combinatorial (v, b, r, k)-configuration is
a combinatorial configuration that satisfies the following conditions:
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• There exists a partition G = {gi}mi=1 of the point set such that the
points in the same part are not collinear. We have |gi| ≥ n for all
i ∈ [1, . . . ,m];

• We have that r ≥ n and k ≤ m;

Proof. • Let C = (P ,L, I) be an n-anonymous combinatorial con-
figuration for P2P UPIR (I). Then every point p ∈ P shares its
neighborhood N(p) with n − 1 other points. “Having the same
neighborhood” is a binary relation which is obviously

– reflexive (p has the same neighborhood as p);

– symmetric (if N(p) = N(q) then N(q) = N(p));

– transitive (if N(p1) = N(p2) and N(p2) = N(p3), then
N(p1) = N(p3)).

Hence it is an equivalence relation and defines a partition

G = {g1, . . . , gm}

of the point set, in which |gi| ≥ n for all gi ∈ G. We will call
the parts gi ∈ G groups. The neighborhood N(p) of the point
p is defined as the set of points which are collinear with p and
different from p. In particular, if two points p and q have the same
neighborhood N(p) = N(q), then they can not be collinear, since if
they were, then p ∈ N(q) which would imply p ∈ N(p). Therefore
points in the same group g ∈ G are not collinear.

• For the bound on r, consider a point pi ∈ g = {p1, . . . , pn} that is
collinear with another point q ∈ g′, with q 6= pi (and therefore also
g′ 6= g). Then q ∈ N(pi), but N(pi) = N(pj) for all i, j ∈ [1, . . . , n],
so we have q ∈ N(pi) for all i ∈ [1, . . . , n]. Since no line contains
two points in g, we deduce that there are at least |g| ≥ n lines
through q, so that r ≥ n.

Regarding the number of points on every line k, we see that, since
points in the same part of G are not collinear, it is clear that any
line contains k distinct points from k distinct parts of G, so that
k ≤ m.

If we add a restriction on regularity and maximize k when we search
for n-anonymous combinatorial configurations for P2P UPIR (I), what
we obtain are exactly the transversal designs.
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Theorem 3.2.7. In an n-anonymous combinatorial (v, b, r, k)-configuration
C with partition G = {gi}mi=1 and |gi| = n for all i ∈ [1, . . . ,m], we have
that

r = n if and only if m = k.

In this case C is a transversal design TD(k, n) and v = kn, b = n2.

Proof. We see that if r = n, then necessarily k = m since otherwise the
configuration would not be connected. On the other hand, if k = m,
then necessarily r = n, since if we fix one part g ∈ G and a point p ∈ g,
then a line through g has k points through k = m distinct parts g ∈ G, so
the line have one point in every part in G. For any part g′ ∈ G different
from g there are also a total of n lines through p. Since these lines have
one point in every part of G, we get that r = n.

A transversal design is a uniform group divisible design in which
the group size |G| equals the length of the blocks k. We have seen that an
n-anonymous combinatorial (v, b, n,m)-configuration such that |gi| = n
and m = k satisfy exactly these conditions, so it is a transversal design
TD(k, n). In particular, we have that

• v = kn,

• the line size is k,

• there is a partition G of P in k parts (or groups) of size n,

• any group and any block contain exactly one common point, and

• every pair of points from distinct groups is contained in exactly
one block.

This is indeed exactly the definition of a transversal design TD(k, n).

There are indeed, n-anonymous combinatorial configuration which
are not transversal designs.

Example 3.2.8. Consider the combinatorial (36, 72, 6, 3)-configuration with
point set P = {1, . . . , 36} and line set
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{{1, 4, 7},
{1, 5, 8},
{1, 6, 9},
{2, 4, 8},
{2, 5, 9},
{2, 6, 7},
{3, 4, 9},
{3, 5, 7},
{3, 6, 8},

{1, 10, 13},
{1, 11, 14},
{1, 12, 15},
{2, 10, 14},
{2, 11, 15},
{2, 12, 13},
{3, 10, 15},
{3, 11, 13},
{3, 12, 14},

{4, 16, 19},
{4, 17, 20},
{4, 18, 21},
{5, 16, 20},
{5, 17, 21},
{5, 18, 19},
{6, 16, 21},
{6, 17, 19},
{6, 18, 20},
{7, 22, 25},
{7, 23, 26},
{7, 24, 27},
{8, 22, 26},
{8, 23, 27},
{8, 24, 25},
{9, 22, 27},
{9, 23, 25},
{9, 24, 26},

{10, 28, 31},
{10, 29, 32},
{10, 30, 33},
{11, 28, 32},
{11, 29, 33},
{11, 30, 31},
{12, 28, 33},
{12, 29, 31},
{12, 30, 32},
{13, 16, 34},
{13, 17, 35},
{13, 18, 36},
{14, 16, 35},
{14, 17, 36},
{14, 18, 34},
{15, 16, 36},
{15, 17, 34},
{15, 18, 35},

{19, 22, 31},
{19, 23, 32},
{19, 24, 33},
{20, 22, 32},
{20, 23, 33},
{20, 24, 31},
{21, 22, 33},
{21, 23, 31},
{21, 24, 32},
{25, 28, 34},
{25, 29, 35},
{25, 30, 36},
{26, 28, 35},
{26, 29, 36},
{26, 30, 34},
{27, 28, 36},
{27, 29, 34},
{27, 30, 35}}

It is clear that this combinatorial (36, 72, 6, 3)-configuration is 3-anonymous,
but k = 3 < 12 = m and r = 6 > 3 = n. We also observe that

G = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12},
{13, 14, 15}, {16, 17, 18}, {19, 20, 21}, {22, 23, 24},
{25, 26, 27}, {28, 29, 30}, {31, 32, 33}, {34, 35, 36}}

and that rk = 18 divides v = 36 and b = 72.

3.2.3 Completely private P2P UPIR

In Section 3.1 some modifications were proposed to the P2P UPIR (I)
protocol. The modified protocol was called P2P UPIR (III). Applying
the modification of the protocol implies modifying the definition of n-
anonymous P2P UPIR.

Definition 3.2.9. Let C = (P ,L, I) be a combinatorial (r, k)-configuration.
We say that C provides n-anonymous P2P UPIR (III) when for every point
p ∈ P there are at least n distinct points pi ∈ P for i ∈ [1, . . . , n] with

N(pi) ∪ {pi} = N(p) ∪ {p}.

Then we have the following result.
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Theorem 3.2.10. A (v, k, 1)-BIBD provides n-anonymous P2P UPIR (III)
with n := v. Since v is the total number of users implementing the P2P UPIR
(III) protocol this is optimal.

Proof. In a (v, k, 1)-BIBD any two points are connected by a line, so that
the neighborhood N(p) of a point p is the set of all the points in the
point set except for the point p. Therefore N(p) ∪ {p} is the point set
of the BIBD. From the definition of n-anonymous P2P UPIR (III) we get
that the BIBD provides n-anonymous P2P UPIR with n = v.

More generally, in a (v, k, λ)-BIBD any two points are connected by
λ ≥ 1 lines, so also in this case the observation is true. However in this
case the BIBD is not a combinatorial configuration. Since we want two
users to share only one communication space, we are only interested in
the case when λ = 1.

The n-anonymity implies better protection from reidentification for
large n. The definition of combinatorial configuration that provides
n-anonymous P2P UPIR says that the number of points p, for which
N(p) ∪ {p} is the same, should be at least n. Therefore n can not be
larger than the number of points in the configuration, so that it is opti-
mal for n = v.

Corollary 3.2.11. [73] A finite projective plane of order m provides
n-anonymous P2P UPIR (III) with n := m2 +m + 1 and this is optimal for
a community of m2 +m+ 1 users.

In Section 3.1.2, the analysis of the P2P UPIR (I) protocol showed
that it is vulnerable to attacks based on the users’ repeated queries com-
bined with knowledge of the neigborhood of the user. Combinatorial
configurations which provide n-anonymity with respect to the neigh-
borhood of the users, give risk assessment and protection. The pro-
tection coming from using n-anonymous combinatorial configurations
consists in that any reidentifications process based on the users neigh-
borhood will identify the owner of some queries only up to n other
users, where n is smaller than the total number of protocol users. It
should be clear to the reader that although this type of privacy protec-
tion is a result from the use of an n-anonymous combinatorial configu-
ration, it differs from the concept of n-anonymity. We have called this
notion n-confusion, see Definition 3.2.1.
The type of privacy protection provided by the P2P UPIR (III) protocol,
with a (v, k, 1)-BIBD as parameter, is also n-confusion. In this case n
equals the total number of users of the protocol. This fact justifies the
use of the name complete privacy for P2P UPIR.
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3.2 n-anonymous P2P UPIR 95

Definition 3.2.12. Let U be a community of users implementing a P2P UPIR
protocol with a combinatorial configuration as parameter. Let s be a sensitive
sequence in AP (U). We say that the P2P UPIR protocol provides complete
privacy if a curious server that is given AP (U), C and the mapping between
the users U and the points in C, can not say to which of the real profilesRP (U)
of all users in U , s belongs.

Observe that the definition of complete privacy is equivalent to the
definition of n-confusion with n = |U |. Also observe that complete pri-
vacy is impossible for the P2P UPIR (I) protocol. Our previous results
can now be restated as in the following Corollary 3.2.13.

Corollary 3.2.13. The combinatorial configurations that offer complete pri-
vacy for P2P UPIR (III) are exactly the (v, k, 1)-BIBD.

In Section 3.2.4 we will give constructions of other combinatorial
configurations that provide n-anonymous P2P UPIR (III) with n smaller
than v. Because of Corollary 3.2.13, we could say that the (v, k, 1)-BIBD
offer optimal n-anonymous P2P UPIR (III) and that the question of n-
anonymous combinatorial configurations for P2P UPIR (I) treated in
Section 3.2.2 less interesting. However, although the modification pro-
posed in [73] is small and easy to implement, the P2P UPIR (I) protocol
is still simpler than the P2P UPIR (III) protocol. Also, giving a finite
projective plane of order m as a parameter to P2P UPIR (III), implies
that for a community of m2+m+1 users the protocol needs m2+m+1
communication spaces, that is, it will need m2 + m + 1 memory sec-
tions and the same amount of cryptographic keys. The individual user
has to store only m + 1 keys. If we use a finite affine plane of order
m for a community of m2 users the protocol needs m2 + m communi-
cation spaces. It is interesting to explore if there are solutions which
require less communication spaces. Finally, finite projective and affine
planes of orderm are only known to exist when m is a power of a prime.
There are therefore restrictions in the choice of parameters, which can
be seen as a challenge to break. It is therefore interesting to search for
combinatorial configurations providing n-anonymous P2P UPIR (I). It
is also interesting to search for non-optimal combinatorial configura-
tions providing n-anonymous P2P UPIR (III) which either requires less
communication spaces or with more flexible parameters, or both.
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3.2.4 Combinatorial configurations providing
n-anonymous P2P UPIR (III)

As we saw in Theorem 3.2.10 the (v, k, 1)-BIBD offer n-anonymous P2P
UPIR (III) with n = v. The (v, k, 1)-BIBD are therefore optimal among
the n-anonymous combinatorial configurations for P2P UPIR (III) for a
community of v users. In this section we will show that there are other
combinatorial configurations that provide n-anonymous P2P UPIR (III),
however not optimal.

In a combinatorial configuration that provides n-anonymous P2P
UPIR (I) any point p shares its neighborhood N(p) with at least n − 1
other points. On the other hand, in a combinatorial configuration that
provides n-anonymous P2P UPIR (III) for any point p, there are at least
n− 1 other points (pi)

n−1
i=1 for which the set N(p) ∪ {p} = N(pi) ∪ {pi}.

The resemblance of these definitions suggests that it should be possible
to construct combinatorial configurations for n-anonymous P2P UPIR
(III) from combinatorial configurations for n-anonymous P2P UPIR (I).
Indeed this is the case, as we will see in the next Theorem 3.2.14.

Theorem 3.2.14. Let C be a combinatorial (v, b, r, k)-configuration with k|n
that provides n-anonymous P2P UPIR (I) so that every point shares neighbors
with exactly n more points. Then there also exists a combinatorial (v, b+n, r+
1, k)-configuration C′ that provides k-anonymous P2P UPIR (III).

Proof. Let C be a combinatorial (v, b, r, k)-configuration with k|n that
provides n-anonymous P2P UPIR (I) so that every point shares neigh-
bors with exactly n more points. Theorem 3.2.6 implies that in C there
is a partition G of the point set so that points in the same partition are
the points with the same neighborhood. This implies that points in the
same partition are not collinear. Define C′ by adding

k
n

k
= n

new lines, so that every new line contains only points from the same
part of G. Let

P = {p1, . . . , pn}

be points with N(pi) = N(pj) in C. For any of these points pi, in C′

there will be the k − 1 other points (pij )
k−1
j=1 in P , collinear with pi by

one of the new lines, such that

N(pi) ∪ {pi} = N(pij ) ∪ {pij}.

This concludes the proof.
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As a corollary of Theorem 3.2.14 we get that an affine plane of order
k is a k-anonymous combinatorial configuration for P2P UPIR (III). Just
apply the construction in the proof of Theorem 3.2.14 to a transversal
design TD(k, k). Of course, an affine plane of order k is a (v, k, 1)-BIBD
with v = k2, so we already know from Theorem 3.2.10 that it is a k2-
anonymous combinatorial configuration for P2P UPIR (III). Indeed, n-
anonymity implies m-anonymity for all m ≤ n. However, in general
the combinatorial (r, k)-configuration constructed in Theorem 3.2.14 is
k-anonymous but not m-anonymous for m > k.

Observe that not all combinatorial configurations that provide n-
anonymous P2P UPIR (III) can be obtained using the construction in
Theorem 3.2.14.

3.3 Collusions of users and triangle-free con-

figurations

Consider a community of users that are implementing an instance of
a P2P UPIR protocol that takes as parameter a combinatorial (r, k)-
configuration C. The community of users are mapped to the points in
C and they are assigned communication spaces that correpond to the
lines of C. A user u0 shares his queries with the users who are assigned
the neighbor points to u0 in C. As in Section 3.1, we call these users the
neighborhood N(u0) of u0. For u0, to share his queries implies a privacy
risk. In this section we will try to estimate how large this risk is.

3.3.1 Two different strategies for constellations of col-
luding users

First we observe that a user u1 ∈ N(u0) who is interested in u0’s queries
can choose not to follow the protocol and read all queries on the com-
munication space c1 that he shares with u0, without being obliged to
forward the query to the server or upload another query to the com-
munication space. We may therefore assume that u1 has access to all
queries that u0 uploads to c1. These queries form a proportion of 1/r
of the whole set of u0’s queries, that is, to the real profile RP (u0) of
the user u0. However, on the communication space c there are queries
from k different users and the queries from u0 are mixed with the other
queries. Therefore u1 does not know to whom of the k − 1 users dif-
ferent from himself the queries on c belong. An adversary who owns
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all users on c except for u0 will however know which of the queries be-
long to u0. This observation suggests a strategy for an adversary who
wants to access the real profile of u0. This strategy consists in introduc-
ing users in the protocol such that they are collinear with u0 and such
that they are all on the same line. In order to completely control one of
u0’s communication spaces, the adversary has to introduce k − 1 users
on one line which goes through u0. In order to completely control m
of u0’s communication spaces, the adversary must introduce m(k − 1)
users on m lines which all go through u0.

Concluding, we see that an adversary who controls k−1 users on the
same line through u0 has complete control over a proportion of 1/r of
the real profile of u0. If he controls m(k−1) users on m lines through u0,
then he has complete control over a proportion of m/r of the real pro-
file of u0. Indeed, if the adversary controls all other users who signed
up to implement the protocol, then the adversary will know the entire
real profile of u0. We will assume that it is difficult for the adversary
to introduce large quantities of colluding users. If the adversary wants
to have access to the largest possible proportion of the queries in the
real profile of u0, but cares less if this profile is mixed with queries from
other users, then he will be more interested in introducing the collud-
ing users such that they are collinear with u0 by different lines. In this
way the adversary will only need m users in order to have access to a
proportion of m/r of the queries in the real profile of u0, although these
queries will be mixed with the queries of other users.

3.3.2 Colluding users that communicate only over chan-
nels provided by the protocol

We will first assume that the users are only able to communicate over
the channels given by the protocol. In this case, any set of colluding
users are forced to communicate only over the communication spaces
to which they have access.

Let U be a set of users implementing an instance of a P2P UPIR
protocol with a combinatorial configuration C. Consider the users u0,
u1 and u2 in U . Suppose that u1 and u2 want to form a collusion with
the aim to obtain an advantage over the protocol and get access to a
larger proportion of the real profile of u0 than the protocol normally
permits. If u1 and u2 share two different communication spaces with
u0, then the quantity of queries from the real profile of u0 accessible to
u1 and u2 together, is twice the quantity accessible to u1 and u2 on their

Combinatorial Structures For Anonymous Database Search

UNIVERSITAT ROVIRA I VIRGILI 
COMBINATORIAL STRUCTURES FOR ANONYMOUS DATABASE SEARCH 
Klara Stokes 
DL:T-1799-2011 



3.3 Collusions of users 99

own. In the geometric language we used before, we say that u1 and
u2 are collinear to u0 by two different lines, say l1 and l2, the lines that
correspond to the two different communication spaces they share with
u0.

Since we have assumed that all communication between the users
must be done over the communication channels provided by the pro-
tocol, in order for u1 and u2 to share their information on u0 they must
have access to a common communication space. That is, u1 and u2 must
be collinear, say by the line l3. We see that u0 can not be on the line l3.
Indeed if u0 was on l3, then the pair of points u0 and u1 would be both
on l1 and l3, so that l1 = l3. Also the pair of points u0 and u2 would be
both on l2 and l3, so that l2 = l3. But we have supposed l1 6= l2, so this
is absurd. We deduce that l1, l2 and l3 form a triangle in C, according to
Definition 2.1.15. We see therefore that in order to avoid collusions of
two users communicating over the channels provided by the P2P UPIR
protocol, the configuration given as parameter to the protocol should
be triangle-free.

The previous argumentation can be generalized to a set of n collud-
ing users. Suppose that a set of n users want to form a collusion to spy
on u0 and that they only have access to the communication channels
provided by the P2P UPIR, that is, to the communication spaces. From
the previous discussion it is clear that the n users should all be collinear
to u0. We also previously saw that the users can be either

1. collinear with u0 on the same line,

2. collinear with u0 by different lines and finally, for n > 2 users,

3. both of the previous situations can occur.

Suppose that the adversary introduces n colluding users in the protocol.
Then he obtains access to the largest proportion of the real profile if
the colluding users are introduced so that they are collinear with u0 by
different lines. On the other hand if the colluding users are introduced
on the same line, then the adversary obtains better control of which
queries on the communication space that pertain to the real profile of
u0. Suppose that the former type of control is more interesting to the
adversary than the latter. That is, suppose that the adversary wants
to introduce the colluding users so that they are collinear with u0 by
different lines.

In order for these users to communicate they need to share commu-
nication spaces, that is, they need to be collinear. The best communi-
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cation is obtained if they are pairwise collinear, that is, if every pair of
users in the set of colluding users shares a communication space. Fol-
lowing the same arguments as in the case of two colluding users, it is
easy to see that this requires the existence of a triangle through every
triple of points u0, ui, uj where ui and uj are colluding users. A sim-
ple counting argument then shows that the number of required trian-
gles through u0 is n2/2. The highest proportion of the real profile of u0

which can be read in this way requires a set of r colluding users, one
sitting on every line through u0. The number of triangles through u0

required in this case is r2/2. In this constellation the r colluding users
can indeed read the entire real profile of u0, although it will be mixed
with queries from other users. One type of combinatorial configuration
which permits this attack are the finite projective planes, in which every
three points are on a triangle.

One can imagine a more sparse constellation of colluding users that
may require less triangles. For example, n colluding users {ui}ni=1 may
be located so that they are all collinear with u0 and connected in be-
tween the collusion only by, say, one path of lines {li}

n−1
i=1 , so that the

line li is spanned by the points assigned to the users ui and ui+1. In any
case, all these constellations of colluding users are avoided if the com-
binatorial configuration used in the P2P UPIR protocol is triangle-free.
In Section 4.3, we will treat results regarding existence and construction
of triangle-free combinatorial configurations.

3.3.3 Colluding users that use external channels of com-
munication

In the previous discussion we assumed that the colluding users only
had access to the channels of communication provided by the protocol.
However, for colluding users who are controlled centrally by an adver-
sary, it is reasonable to assume that they can communicate also over
channels which are not controlled by the protocol.

In a combinatorial configuration any pair of lines meet in at most
one point. Therefore, if two lines are not parallel, then they identify
their point of intersection. Indeed this is a property which is famil-
iar from any linear space. For example, everyone knows that in the
Euclidean plane, two intersecting lines determine a point. What this
simple geometric observation suggests is that whoever controls the in-
tersecting lines that determine the point, also controls the point. This
argument was used also in the previous section, but it is important to
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3.3 Collusions of users 101

stress that if communication between colluding users is permitted also
on channels not controlled by the protocol, then the argument is inde-
pendent of the existence of triangles. That is, if two users u1 and u2

colluding on u0 can share their information on a channel external to the
protocol, then it does not matter whether they are on a triangle or not.
The only important requirement is for u1 and u2 to be collinear with u0,
on two different lines.

In general, for n users colluding on u0 to obtain access to n times the
information on u0 as permitted by the protocol, they must be collinear
with u0 by n different lines.

As we already know, the assignment of communication spaces to
the users follows the structure of a combinatorial configuration. We
will assume that this assignment is done in the following way.

The users sign up as interested in participating in the protocol. The
initialization algorithm P2P UPIR INIT (Protocol 2) is then executed
by a dealer. The dealer chooses a combinatorial configuration C and
a set of users with cardinality equal to the number of points in C. Then
the dealer assigns the points of C (randomly) to the users, and subse-
quently distributes the communication spaces among the users accord-
ing to the geometry of the combinatorial configuration.

Say that we want to estimate how hard it is for an adversary to in-
troduce n colluding users so that m ≤ n of these are neighbors to u0

and span m different lines with u0. The total number of lines through
u0 is r, so we have m ≤ r. Since we have supposed that the adversary
has no control of the assignment of points to the users, the estimation
should be expressed as the probability that n users owned by the ad-
versary will be assigned points on m different lines intersecting in the
same point u0.

Proposition 3.3.1. Consider a combinatorial (v, b, r, k)-configuration C and
fix a point p0 in C. Let an adversary A choose randomly a set {pi}

n
i=1 of

n other points from C. The probability that exactly m of the points pi are
collinear with p0 and that the m lines pip0 are all different in C, for m ≤ r
and m ≤ n ≤ v is

n!

v!

n-m-1
∑

s = 0

n-m-1
∑

is = s

m-1
∏

j = 0

((r − j)(k − 1))

n-m-1
∏

t = 0

(v − r(k − 1) + it(k − 2)− t− 1).

Proof. The number of points on a line through p0 different from p0 is
k − 1, the number of points which are collinear with p0 but different
from p0 is r(k− 1) and the total number of points in C is v. For the sake
of simplicity, define a = r(k − 1). Define
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102 Choosing configurations for P2P UPIR

• the event ⊕i as the event that the adversary A introduces a point
pi so that pi is collinear with p0 but not on any of the lines p0pj for
1 ≤ j ≤ i− 1;

• the event ⊖i as the event that A introduces the point pi so that pi is
not collinear with p0 or on some of the lines p0pj for 1 ≤ j ≤ i− 1.

Observe that the events ⊕i and ⊖i are complementary for the introduc-
tion of pi. We will see now that the probability of ⊕i or ⊖i depends on
how A has chosen the points p1, . . . , pi−1. That is, the probability for the
events ⊕i and ⊖i depends on the sequence of previous events (xj)

i−1
j=1 in

which the elements xj take values in {⊕j,⊖j}. Using the complemen-
tary property, the probabilities P (⊕i|(xj)

i−1
j=1) and P (⊖i|(xj)

i−1
j=1) can be

represented in a binary directed tree of height i, so that the vertices are
assigned these probabilities as weights.

The weights on level 1 in this tree are the probabilities P (⊕1) and
P (⊖1). For the first point p1 introduced by A, these probabilities are

• P (⊕1) =
a

v−1 : the probability that p1 will be collinear with p0;

• P (⊖1) = 1 − a
v−1 = v−a−1

v−1 : the probability that p1 will not be
collinear with p0.

The weights on level 2 in the tree are the probabilities P (⊕2|x1) and
P (⊖2|x1), with x1 ∈ {⊕1,⊖1}. Suppose that p1 was chosen collinear
with p0 (x1 = ⊕1). For the second point p2 introduced by A, these
probabilities are then

• P (⊕2|⊕1) =
a−(k−1)

v−2 : the probability that p2 will be collinear with
p0 but not on the line p0p1;

• P (⊖2|⊕1) =
v−a−1+(k−2)

v−2 : the probability that p2 will not be col-
linear with p0 or that p2 will be on the line p0p1.

Now suppose that p1 was not chosen collinear with p0 (x1 = ⊖1). Then,
the probabilities are

• P (⊕2|⊖1) =
a

v−2 : the probabilities that p2 will be collinear with p0
but not on the lines p0p1;

• P (⊖2|⊖1) = v−a−2
v−2 : the probabilities that p2 will not be collinear

with p0 or that p2 will be on the line p0p1.
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3.3 Collusions of users 103

Observe that the fact that p1 is chosen collinear with p0 (⊕1) implies that
the possible points for the event ⊕2 to occur is lowered by all the k − 1
points on the line p0p1 different from p0, while the possible points for
the event ⊖2 to occur is augmented by the k − 2 points on the line p0p1
different from p0 and p1 (a point can only be chosen once).

On the other hand, if p1 is chosen not collinear with p0 (⊖1) then the
possible points for the event ⊕2 to occur is not lowered at all (since the
number of non-assigned collinear points stay the same) and the number
of possible points for the event ⊖2 is lowered by one (corresponding to
the assigned non-collinear point p1).

In general, the weights on level i in the tree are the probabilities
P (⊕i) and P (⊖i). For the ith point pi introduced by A, assuming that
the sequence of previous events is (xj)

i−1
j=1 and the number of xj = ⊕j is

t and the number of xj = ⊖j is s (we have i− 1 = s+ t), the probability
is

• P (⊕i|(xj)
i−1
j=1) =

a−t(k−1)
v−i that p2 will be collinear with p0 but not

on any of the lines p0pj for 1 ≤ j ≤ i− 1;

• P (⊖i|(xj)
i−1
j=1) =

v−a−1+t(k−2)−s
v−i that pi will not be collinear with

p0 or that pi will be on some of the lines p0pj for 1 ≤ j ≤ i− 1.

The probability that A introduces n different points (pi)
n
i=1 in C so

that m of these are collinear with p0 and so that they span m different
lines with p0, for m ≤ r and m ≤ n ≤ v is

∑

x ∈ X(n, m)

P ((xi)
n
i=1) =

∑

x ∈ X(n,m)

n
∏

i=1

P
(

xi|(xj)
i−1
j=1

)

, (3.4)

where X(n,m) is the set of sequences

X(n,m) = {x := (xi)
n
i=1 : ♯{xi = ⊕i} = m} .

That is, it is the sum of the probabilites obtained by multiplying the
weights on the vertices of the paths that contain m events ⊕j and n−m
events ⊖j . When m > r then the correponding probability is 0, since
there are only r lines through p0.

In any of the terms of the sum in Equation 3.4 the m probabilities

P (⊕i|(xj)
i−1
j=1)

will take the values
a− t(k − 1)

v − i
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104 Choosing configurations for P2P UPIR

for 0 ≤ t ≤ m− 1, but the probabilites

P (⊖i|(xj)
i−1
j=1)

depend on for which of the n − m different values of i the event ⊖i

occurs. The order of the events ⊕i and ⊖i is therefore important only
for the value of the probability P (⊖i|(xj)

i−1
j=1). In particular, the number

of terms in the sum is
(

n
m

)

=

(

n
n−m

)

.

The denominator is always the same in all terms of the sum in Equa-
tion 3.4:

n−1
∏

i=0

(v − i) =
v!

n!
.

We deduce that the probability that A introduces n different points
(pi)

n
i=1 in C so that m of these are collinear with p0 and so that they span

m different lines with p0, for m ≤ r and m ≤ n ≤ v is

n-m-1
∑

s = 0

n-m-1
∑

is = s

m-1
∏

j = 0

((r(k − 1)− j(k − 1))

n-m-1
∏

t = 0

(v − r(k − 1) + it(k − 2)− t− 1),

divided by
v!

n!
.

Proposition 3.3.2. Consider a combinatorial (v, b, r, k)-configuration C and
fix a point p in C. Let a dealer choose a set {pi}ni=1 of n other points from C.
The probability that exactly m of the points pi are collinear with p, for m ≤ r
and m ≤ n is

(

n
m

)

r(k − 1)!

(r(k − 1)−m)!

(v − r(k − 1))!

(v − r(k − 1)− (n−m))!

(v − n)!

v!
.

Proof. The proof is as in Proposition 3.3.1 but simpler, since in this case
when pi is chosen collinear with p0 (⊕i) the possible points for the event
⊕i+1 to occur is lowered only by the point pi, and that the number of
possible points for the event ⊖i+1 to occur stays the same.

As before, the weights on level 1 in the tree are the probabilities
P (⊕1) and P (⊖1). Also this time, for the first point p1 introduced by A,
these probability are
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3.3 Collusions of users 105

• P (⊕1) =
a

v−1 : the probability that p1 will be collinear with p0;

• P (⊖1) = 1 − a
v−1 = v−a−1

v−1 : the probability that p1 will not be
collinear with p0.

The weights on level 2 in the tree are the probabilities P (⊕2 : x1))
and P (⊖2 : x1), with x1 ∈ {⊕1,⊖1}. Suppose that p1 was chosen
collinear with p0 (x1 = ⊕1). For the second point p2 introduced by
A, in this case these probabilities are then

• P (⊕2|⊕1) =
a−1
v−2 : the probability that p2 will be collinear with p0;

• P (⊖2|⊕1) = v−a−1
v−2 : the probability that p2 will not be collinear

with p0.

Now suppose that p1 was not chosen collinear with p0 (x1 = ⊖1). Then,
the probabilities are

• P (⊕2|⊖1) = a
v−2 : the probabilities that p2 will be collinear with

p0;

• P (⊖2|⊖1) = v−a−2
v−2 : the probabilities that p2 will not be collinear

with p0.

If we draw this tree until level n, and investigate all paths containing m
events ⊕i, then we see that all the probabilities in these paths have the
same factors. The product of these factors is

(
∏m

i=1(a− i))(
∏n−m

i=1 (v − a− i))
∏n

i=1(v − i)

and there are
(

n
m

)

such paths so that the probability that exactly m of the points pi are
collinear with p, for m ≤ r and m ≤ n is

(

n
m

)

r(k − 1)!

(r(k − 1)−m)!

(v − r(k − 1))!

(v − r(k − 1)− (n−m))!

(v − n)!

v!
.
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Chapter 4

Constructing
configurations

4.1 Constructions of finite projective planes

A standard construction of a finite projective plane of order q uses ho-
mogeneous coordinates over the finite field of order q. This method
gives us one plane for every order q: P(Fq). Many more projective
planes can be constructed using algebraic structures with less postu-
lates than fields. M. Hall defined the concept of ternary ring (see be-
low) as the algebraic structure that exactly corresponds to the structure
needed in the construction of projective planes [43, 44].

Another very simple construction is given by the existence in some
projective planes of the so-called Singer cycles. The projective planes
that have Singer cycles can be constructed by defining the lines of the
plane as the successive translations of a difference set. Apart from being
a very simple construction (once given a difference set), it gives a com-
pact way of representing the projective plane, since defining one of the
lines is enough to have constructed the entire plane. However, not all
planes can be constructed in this way and, more important, construct-
ing a difference set is equivalent to constructing a projective plane.

When q is prime there is a rather straight forward algorithm for
constructing P(Fq). We will here give one variant of this straight for-
ward algorithm an efficient and explicit expression, at the same time
generalizing it in order to be able to efficiently construct any projective
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108 Constructing configurations

plane (whenever it exists). In particular we construct projective planes
of order a power of a prime number, using an algorithm that is efficient
and of easy implementation. The generalization uses the mathematical
structure ternary ring, which was first introduced by M. Hall as a tool
for his construction and classification of projective planes [43]. For the
definition and a short introduction on ternary rings, see Section 2.1.5.
Ternary rings make possible a general formulation of the algorithm, and
simplify the proof.

In the following we will represent a finite projective plane using an
adjacency list, i.e. a list of the subsets defining the lines of the plane,
using the set of integers {1, . . . , n} to represent the points.

The following defines a general and efficient algorithm for the con-
struction of finite projective planes.

Proposition 4.1.1. Let R be a ternary ring with q elements

R0 = {0, . . . , Rq−1}

and ternary operation T . Let ι(Ri) = i. Consider the matrix A = (ai,j)
defined by

ai,j = 2 + iq + j,

with i ∈ {0, . . . , q} and j ∈ {0, . . . , q − 1}, and the q matrices B0 =
(b0i,j), B

1 = (b1i,j), . . . , B
q−1 = (bq−1

i,j ) defined by

bki,j = 2 + (j + 1)q + ι(T (Rj , Rk, Ri)),

with i ∈ {0, . . . , q − 1} and j ∈ {0, . . . , q − 1}. The following matrix gives
us an adjacency list defining a projective plane of order q:
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4.1 Constructions of finite projective planes 109

Cq =















































































1
1
...
1

A

2
2
...
2

B0

3
3
...
3

B1

...
...

...
...

q + 1
q + 1

...
q + 1

Bq−1















































































Proof. First we observe that in the (q + 1) × q matrix A, all numbers in
{2, . . . , q2 + q + 1} appear once.

Now let A′ be the matrix A, dropping the first row, i.e. the row
containing the numbers {2, . . . , p+ 1}. We observe that by property T2
from Definition 2.1.35 the matrix B0 is A′ transposed, and therefore no
two numbers appearing in the same row in A′ (and hence in A) can
appear in the same row in B0.

Consider now the construction of the matrices Bk. In every column
bj of Bk, the elements

bki,j = 2 + (j + 1)q + ι(T (Rj , Rk, Ri))

by property T3 take all the values in

{2 + (j + 1)q, . . . , 1 + (j + 2)q}, (4.1)

as i goes through {0, . . . , q − 1}. We will call (4.1) the element sequence
of column bj .
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110 Constructing configurations

Each of these sequences corresponds to the elements in a row of A′,
so if two numbers appear in the same row in A they can not appear in
the same row in Bk for any k.

On the other hand, all the sequences are disjoint, so all numbers in
{q+2, . . . , q2+q+1} appear exactly once in each Bk. Consequently, the
only case in which two elements may still coincide in more than two
rows is when the two rows belong to two different minors









...
k + 2 Bk

...









and








...

k′ + 2 Bk′

...









with k 6= k′.
Suppose that these two rows are the ith row in (k + 2|Bk) and the

i′th row in (k′ + 2|Bk′

). Let the two repeated elements be bkij and bkij′ ,

with j 6= j′. Since the set of elements of the jth column in Bk is the
same as the set of elements of the jth column in Bk′

, and the analogous

case is true for the j′th column, we must have bkij = bk
′

i′j and bkij′ = bk
′

i′j′ ,
i.e. T (Rj, Rk, Ri) = T (Rj, R

′
k, R

′
i). By condition T4 it must be j = j′, a

contradiction.

Proposition 4.1.2. The computational cost of the algorithm given by Propo-
sition 4.1.1 is O(q3), provided that q is prime and that the ternary ring we
use corresponds to the arithmetic of Fq. In particular the number of operations
used in each case is

• Additions: q + q2 + 2q3;

• Multiplications: q + q2 + 2q3;

• Modulo operations: q3.

Proof. The matrix A needs q(q + 1) multiplications and 2q(q + 1) addi-
tions. If we do not count addition of the constant 2 we get q(q+1) addi-
tions. The matrix Bk needs 2q2 multiplications, q2 modulo operations
and 4q2 additions. If we continue not counting addition of the constants
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4.1 Constructions of finite projective planes 111

1 and 2 we get 2q2 additions. Considering that k ∈ {0, . . . , q− 1} we get
q(q + 1) + q(2q2) = q + q2 + 2q3 multiplications, q(q + 1) + q(2q2) =
q + q2 + 2q3 additions and q3 modulo operations.

In order to clarify how to implement the algorithm, we will now see
some examples. In the following, if nothing else is said, the operations
+ and · stand for ordinary integer sum and product.

Example 4.1.3. (Z/pZ,+, ·), the integers modulo a prime number p, give rise
to a ternary ring with ternary operation T (x, y, z) = xy+ z (mod p). With
the notation from Proposition 4.1.1 we calculate A = (ai,j) using

ai,j = 2 + ip+ j,

and for k ∈ {0, . . . , p− 1} we calculate Bk = (bki,j) using

bki,j = 2 + (j + 1)p+ [i+ jk (mod p)] ,

with i ∈ {0, . . . , p− 1} and j ∈ {0, . . . , p− 1}.
We now present the results from this construction for p = 2, p = 3.

C2 =





















1 2 3
1 4 5
1 6 7
2 4 6
2 5 7
3 4 7
3 5 6





















C3 =













































1 2 3 4
1 5 6 7
1 8 9 10
1 11 12 13
2 5 8 11
2 6 9 12
2 7 10 13
3 5 9 13
3 6 10 11
3 7 8 12
4 5 10 12
4 6 8 13
4 7 9 11













































Example 4.1.4. A finite field Fq defines a ternary ring with ternary operation
T (x, y, z) = xy+z, where the sum and the product follow the arithmetic rules
of Fq . With the notation from Proposition 4.1.1 we calculate A = (ai,j) using

ai,j = 2 + iq + j.
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We represent the elements of Fq with the integers in the array F = (0, . . . , q−
1). With the zero of the field represented as 0 and the unit represented as 1, the
elements of the matrices Bk, for k ∈ {0, . . . , q − 1}, can now be calculated as

bki,j = 2 + (j + 1)q + [Fi + Fk−1Fj ],

with i ∈ {0, . . . , q−1} and j ∈ {0, . . . , q−1}. The arithmetic of the elements
of the array F must follow the arithmetic rules of Fq .

Observe that Example 4.1.3 is a special case of this one.
We now present the result from this construction for q = 4.

C4 =









































































1 2 3 4 5
1 6 7 8 9
1 10 11 12 13
1 14 15 16 17
1 18 19 20 21
2 6 10 14 18
2 7 11 15 19
2 8 12 16 20
2 9 13 17 21
3 6 11 16 21
3 7 10 17 20
3 8 13 14 19
3 9 12 15 18
4 6 12 17 19
4 7 13 16 18
4 8 10 15 21
5 6 13 15 20
5 7 12 14 21
5 8 11 17 18
5 9 10 16 19









































































In this thesis the focus is on constructing optimal combinatorial con-
figurations for P2P UPIR, and it is probably enough with one combina-
torial configuration for a given d = q − 1. It is conjectured that all finite
projective planes have order a power of a prime number. Therefore it is
highly probable that all projective planes constructed by our algorithm
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will have this property. The finite projective planes constructed using
finite fields constitute a subset of all finite projective planes, with the
particularity that they satisfy the theorem of Desargues. Although the
existence of finite fields is restricted to q a power of a prime number,
since there always exists one finite field for every q, we will always get
at least one projective plane of order q, using Example 4.1.4. It is there-
fore of little interest to continue the examples further.

Observe though that some projective planes constructed using less
’regular’ (i.e. satisfying less axioms) ternary rings could be interesting
when some properties associated to the theorem of Desargues are to be
avoided.

4.2 The numerical semigroup associated to the

existence of combinatorial configurations

4.2.1 The set of (r, k)−configurable tuples

Definition 4.2.1. We say that the tuple of parameters (v, b, r, k) is config-
urable if there exists a (v, b, r, k)-configuration.

As we saw in Theorem 2.1.55, if (v, b, r, k) is configurable, then vr =
bk. Consequently there exists d such that

v =
bk

r
= d

k

gcd(r, k)

and symmetrically

b =
vr

k
= d′

r

gcd(r, k)
.

Since v and b are integers, so are d and d′. We also have

d = v gcd(r,k)
k

= bk gcd(r,k)
rk

= b gcd(r,k)
r = d′

.

Therefore, to each configurable tuple (v, b, r, k) we can associate an in-
teger d. On the other hand, given r and k, any d ∈ N determines two
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114 Constructing configurations

integers v and b, perhaps corresponding to the number of points and
lines of a combinatorial configuration.

In the following we will consider the set of integers such that they
may be associated to a combinatorial (r, k)-configuration, for r and k
fixed. That is, consider the set of natural numbers

D(r,k) =

{

d ∈ N ∪ {0} :

(

d
k

gcd(r, k)
, d

r

gcd(r, k)
, r, k

)

is configurable

}

.

The aim here is to study the set D(r,k). A first observation shows that
the duality of combinatorial configurations (see Section 2.1.2) implies
that D(r,k) = D(k,r).

By convention we will say that the tuple (0, 0, r, k) is configurable for
any pair r, k, although it represents the empty combinatorial configura-
tion, and we associate the integer 0 to the configurable tuple (0, 0, r, k).
As a consequence we get 0 ∈ D(r,k), for any pair of r, k.

4.2.2 The numerical semigroup D(x,2) = D(2,x)

As we saw previously, in Section 2.1.2 and Example 2.1.14, the com-
binatorial (v, b, r, 2)-configurations are r-regular undirected connected
graphs with v vertices and b edges. The vertices in the graph corre-
spond to the points of the configuration and the lines, which have only
k = 2 points, correspond to the edges.

Therefore the following Lemma 4.2.2 and Lemma 4.2.4 on the exis-
tence of regular graphs provide the key results for describing the set
D(2,k). Because of duality, if we determine D(r,2), then we also deter-
mine D(2,r).

Although the results in Lemma 4.2.2 and Lemma 4.2.4 are well-
known, for the sake of completeness we will provide the proofs.

Lemma 4.2.2. Let r be an even positive integer. A connected r-regular graph
with v vertices exists if and only if v ≥ r + 1.

Proof. By definition, any r-regular graph must have a number of ver-
tices at least r + 1.

Conversely, suppose v ≥ r + 1. Consider a set of vertices x1, . . . , xv.
Put an edge between xi and xj , with i ≤ j, if j−i ≤ r/2 or i+v−j ≤ r/2.
This gives a connected r-regular graph with v vertices.

The construction in this last proof is illustrated in Figure 4.1.
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x1

x2

x3x4

x5

x6

x7

x8 x9

x10

Figure 4.1: Construction of a connected 4-regular graph with 10 vertices

Since the (v, b, r, 2)-configurations are r-regular connected graphs
with v vertices and b edges, we get the following Corollary 4.2.3. Re-
member that we write 〈a1, . . . , an〉 to denote the numerical semigroup
generated by a1, . . . , an.

Corollary 4.2.3. If r is an even positive integer then

D(2,r) = D(r,2) = {0, r + 1,→}.

Lemma 4.2.4. Let r be an odd positive integer. A connected r-regular graph
with v vertices exists if and only if v is even and v ≥ r + 1.

Proof. By definition, any r-regular graph must have a number of ver-
tices at least r + 1. Now, since the number of edges is b = vr/2, then
vr must be even and since r is odd, then v must be even. Conversely,
suppose that v is even and that v ≥ r + 1. Consider a set of vertices
x1, . . . , xv . Put an edge between xi and xj , with i ≤ j, if j− i ≤ (r−1)/2
or i+ v− j ≤ (r− 1)/2. Put also edges between xi and xi+v/2 for i from
1 to v/2. This gives a connected r-regular graph with v vertices.

The construction in this last proof is illustrated in Figure 4.2.
Now, the fact that the (v, b, r, 2)-configurations are r-regular con-

nected graphs with v vertices and b edges, implies the following corol-
lary.
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x1

x2

x3x4

x5

x6

x7

x8 x9

x10

Figure 4.2: Construction of a connected 5-regular graph with 10 vertices

Corollary 4.2.5. If r is an odd positive integer then

D(2,r) = D(r,2) = {0,
r + 1

2
,→}.

4.2.3 The numerical semigroup D(x,3) = D(3,x)

We can use Theorem 2.1.67 to completely describe the numerical semi-
group D(3,x) = D(x,3) for all integers x ≥ 3. The case r = 3 is the dual
of k = 3.

Theorem 4.2.6. Suppose k > 1 then

D(3,k) =























{0, 2k + 1, 2k + 2, . . .} if k ≡ 0 (mod 3)

{0, 2k+1
3 , 2k+1

3 + 1, 2k+1
3 + 2, . . .} if k ≡ 1 (mod 3)

{0, 2k+2
3 , 2k+2

3 + 1, 2k+2
3 + 2, . . .} if k ≡ 2 (mod 3)

Proof. Dually, by Theorem 2.1.67 we know that any tuple (v, b, 3, k) with
b 6= 0 is configurable if and only if 3v = bk and b ≥ k(3−1)+1 = 2k+1.
In particular, the non-zero values b for which there exists a configurable
tuple (v, b, 3, k) are exactly those integers b ≥ 2k + 1 such that bk

3 is an
integer.
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If k ≡ 0 (mod 3) then the only condition is b ≥ 2k+1 which results
in

d =
b gcd(3, k)

3
=

3b

3
= b ≥ 2k + 1

and this proves the result in this case.
Otherwise, we need b ≥ 2k + 1 and b be a multiple of 3. If k ≡ 1

(mod 3) this is equivalent to b ∈ {2k + 1, 2k + 4, 2k + 7, . . .} and so

d = b gcd(3,k)
3 = b

3 is in
{

2k + 1

3
,
2k + 1

3
+ 1,

2k + 1

3
+ 2, . . .

}

.

If k ≡ 2 (mod 3) this is equivalent to b ∈ {2k+2, 2k+5, 2k+8, . . .}

and so d = b gcd(3,k)
3 = b

3 is in
{

2k + 2

3
,
2k + 2

3
+ 1,

2k + 2

3
+ 2, . . .

}

.

4.2.4 The set of integers associated to the combinatorial
(r,k)-configurations forms a numerical semigroup

We want to prove that D(r,k) ⊂ N∪{0} is a numerical semigroup. As we
saw in Section 2.1.10, a numerical semigroup is a subset S ⊂ N∪{0}, so
that S is closed under addition, 0 ∈ S and the complement (N∪{0})\S
is finite.

Lemma 2.1.85 says that in order to prove that a set is a numerical
semigroup it is enough to prove that the set is a submonoid of the natu-
ral numbers with coprime elements. In particular it is enough to prove
that

• 0 ∈ D(r,k),

• D(r,k) is closed under addition,

• at least two elements of D(r,k) are coprime.

The two first conditions ensure that the subset D(r,k) of the natural
numbers is a monoid. The operation of the monoid is addition. The
last condition ensures that the monoid contains the numerical semi-
group generated by the two coprime elements. The complement of
this numerical semigroup is finite, therefore also the complement of the
monoid, and we deduce that it is a numerical semigroup.
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118 Constructing configurations

The set of configurable tuples is a submonoid in the natural numbers

As already commented, by convention we consider the empty combi-
natorial configuration to be a combinatorial (0, 0, r, k)-configuration for
every pair of r, k, so that we have 0 ∈ D(r,k).

We will now prove that the set D(r,k) is closed under addition.

Lemma 4.2.7. If (v, b, r, k) and (v′, b′, r, k) are configurable tuples, so is the
tuple (v + v′, b+ b′, r, k).

Proof. Suppose that we have a (v, b, r, k)-configuration C = (P ,L, I)
with points

P = {x1, . . . , xv}

and lines
L = {y1, . . . , yb}

and another (v′, b′, r, k)-configuration C′ = (P ′,L′, I ′) with points

P ′ = {x′
1, . . . , x

′
v′}

and lines
L′ = {y′1, . . . , y

′
b′}.

Consider the incidence graphs G and G′ of C and C′ respectively. Then
the graph G is bipartite with partitioned vertex set P ∪L and the edges
are the elements in I . Analogously, the graph G′ is bipartite with parti-
tioned vertex set P ′ ∪ L′ and edge set I ′.

Define another graph G̃ with vertices P ∪ P ′ ∪ L ∪ L′ and the edges
I ∪ I ′. Then this graph is also bipartite. We can assume without loss of
generality that the edges x1y1, xvyb,x

′
1y

′
1, x′

v′y′b′ belong to the original
configurations.

Replace the edges xvyb and x′
1y

′
1 by the edges xvy

′
1 and x′

1yb. This is
then the incidence graph of a (v + v′, b+ b′, r, k) configuration [29]. An
example of this construction is illustrated in Figure 4.3.

Let

d = v gcd(r, k)/k = b gcd(r, k)/r

and

d′ = v′ gcd(r, k)/k = b′ gcd(r, k)/r

be the two integers associated to the two configurable tuples (v, b, r, k)
and (v′, b′, r, k). Then
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y1

y2

y3

y4

y5

y6

x1

x2

x3

x4

y′1

y′2

y′3

y′4

y′5

y′6

x′
1

x′
2

x′
3

x′
4

−→

y1

y2

y3

y4

y5

y6

x1

x2

x3

x4

y′1

y′2

y′3

y′4

y′5

y′6

x′
1

x′
2

x′
3

x′
4

Figure 4.3: Construction of a (v + v′, b + b′, r, k) configuration from a
(v, b, r, k) configuration and a (v′, b′, r, k) configuration.

d′′ = (v + v′) gcd(r, k)/k = (b+ b′) gcd(r, k)/r = d+ d′.

is the integer associated to the configurable tuple (v + v′, b + b′, r, k).
Hence if d, d′ ∈ D(r,k), then also d+ d′ ∈ D(r,k). In other words D(r,k) ⊂
N ∪ {0} is closed under addition. Together with the fact that 0 ∈ D(r,k)

we get the result we were looking for.

Proposition 4.2.8. D(r,k) is a submonoid of the natural numbers.

The submonoid contains two coprime elements

In Section 4.2.2 we determined exactly the sets D(r,2) and D(2,k). We
may therefore assume that r, k ≥ 3.
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From Theorem 2.1.54, we know that for any pair of natural number
r, k ≥ 3, there exists a combinatorial (r, k)-configuration.

We will now construct a second element of D(r,k), such that the ele-
ment we already have and the new one are coprime. In order to do so
we need the following lemma.

Lemma 4.2.9. Suppose we have a (v, b, r, k)-configuration with r ≥ 3 and
incidence graph G. There exist three edges in G such that the six ends are all
different.

Proof. It is easy to see, by the property that no cycle of length 4 exists,
that there exists a path with four edges with the five ends being differ-
ent. Three of these ends will be in one partition of the graph while the
other two will be in the other partition. Take the vertex at the end of the
path. It must be one of the three in the same partition. Since its degree
is at least 3, then it will have one neighbor not in the path. So, by adding
the edge from the end of the path to this additional vertex, we obtain
a new path with 5 edges with all its vertices being different. By taking
the first, third, and fifth edges of this new path we obtain the result.

Lemma 4.2.9 tells us that the vertices {x1, . . . , xv}, {y1, . . . , yb} in the
incidence graph of a combinatorial (v, b, r, k)-configuration with r ≥ 3
can be indexed so that the edges (x1, y1), (x2, y2) and (xv, yb) belong to
the edge set.

We are now ready to prove the existence of two coprime elements of
D(r,k).

Proposition 4.2.10. D(r,k) contains two elements m 6= 0 and sm + 1, with
s = rk/ gcd(r, k), so that the two are coprime.

Proof. Remember that we have assumed that r and k are larger than 3.
Because of Theorem 2.1.54 and since D(r,k) ⊆ N∪{0}, there is a minimal
non-zero element m in D(r,k). Let us call

v = mk/ gcd(r, k)

and

b = mr/ gcd(r, k).

Select a (v, b, r, k) configuration. Take

s = rk/ gcd(r, k)
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4.2 Semigroups and configurations 121

copies of this configuration. Let us call the vertices in the incidence
graph of the ith copy

x
(i)
1 , . . . , x

(i)
v , y

(i)
1 , . . . , y

(i)
b .

By Lemma 4.2.9 we can assume that

x
(i)
1 y

(i)
1 , x

(i)
2 y

(i)
2 and x

(i)
v y

(i)
b

belong to the ith copy. Consider α := k/ gcd(r, k) further vertices

x′
1, . . . , x

′
α

and β := r/ gcd(r, k) further vertices

y′1, . . . , y
′
β .

Now perform the following changes to the edge set of the graph
defined by the union of all parts previously mentioned. It may be clar-
ifying to contemplate Figure 4.4. In the figure the edges to be removed
are dashed, while the edges to add are thick lines.

• For all 2 ≤ i ≤ s replace the edges

x
(i)
v y

(i)
b and x

(i−1)
1 y

(i−1)
1

by

x
(i)
v y

(i−1)
1 and x

(i−1)
1 y

(i)
b .

• Also, remove the edges x
(i)
2 y

(i)
2 for all 2 ≤ i ≤ s.

• Add the edges

x′
1y

(1)
2 , x′

1y
(2)
2 , . . . , x′

1y
(r)
2 ,

x′
2y

(r+1)
2 , x′

2y
(r+2)
2 , . . . , x′

2y
(2r)
2 ,

...

x′
αy

(s−r+1)
2 , . . . , x′

αy
(s)
2
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and
x
(1)
2 y′1, x

(2)
2 y′1, . . . , x

(k)
2 y′1,

x
(k+1)
2 y′2, x

(k+2)
2 y′2, . . . , x

(2k)
2 y′2,

...

x
(s−k+1)
2 y′β , . . . , x

(s)
2 y′β.

As can be verified, the construction gives a new configuration with pa-
rameters

(v′, b′, r, k) = (sv + α, sb+ β, r, k)

= (sv + k
gcd(r,k) , sb+

r
gcd(r,k) , r, k)

=
(

smk
gcd(r,k) +

k
gcd(r,k) ,

smr
gcd(r,k) +

r
gcd(r,k) , r, k

)

= ( (sm+1)k
gcd(r,k) ,

(sm+1)r
gcd(r,k) , r, k)

and so sm+ 1 ∈ D(r,k).

From Proposition 4.2.10 we deduce that D(r,k) contains two coprime
elements, so that they generate a numerical semigroup and this semi-
group is contained in D(r,k). So the complement of D(r,k) in N0 is finite
and D(r,k) is a numerical semigroup.

We have seen in Section 4.2.2 that D(r,2) = D(2,r) is a set of the form

{0, r + 1,→}

if r is even, and of the form

{0,
r + 1

2
,→},

when r is odd. Therefore these sets consist of integers in N ∪ {0}
Sets of this form satisfy the conditions for being a numerical semi-

group and in Section 2.1.10 we saw that they are called ordinary numer-
ical semigroups. Concluding, we obtain the following Theorem 4.2.11.

Theorem 4.2.11. For every pair of integers r, k ≥ 2, D(r,k) is a numerical
semigroup.
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x
(1)
1

x
(1)
2

...

x
(1)
v

y
(1)
1

y
(1)
2

...

y
(1)
b

x
(2)
1

x
(2)
2

...

x
(2)
v

y
(2)
1

y
(2)
2

...

y
(2)
b

...

x
(s)
1

x
(s)
2

...

x
(s)
v

y
(s)
1

y
(s)
2

...

y
(s)
b

x
′

1

x
′

2

...

x
′

α

y
′

1

y
′

2

...

y
′

β

x
(s)
v y

(s)
b

x
(1)
1 y

(1)
1

Figure 4.4: The construction of a (sv+k/ gcd(r, k), sb+r/ gcd(r, k), r, k)-
configuration from the number of s (v, b, r, k)-configurations and α +
β = k/ gcd(r, k) + r/ gcd(r, k) extra vertices.
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So far, all examples that we have seen of numerical semigroups as-
sociated to configurable tuples of parameters for combinatorial (r, k)-
configurations, have been ordinary. However, there are pairs r, k for
which D(r,k) is not ordinary. For example the multiplicity of D(5,5) is
21, but as we saw in Theorem 2.1.65, 22 is a gap of D(5,5). Also, Theo-
rem 2.1.66 says that although the multiplicity of D(6,6) is 31, the integers
32 and 33 do not pertain to D(6,6), so in this case there are two gaps that
are larger than the multiplicity.

4.2.5 Bounds on the existence of combinatorial configu-
rations in terms of bounds on the multiplicity and
conductor of the associated numerical semigroup

Given the numerical semigroup structure of D(r,k) it is natural to for-
mulate the following questions.

• Which is the smallest non-zero element in D(r,k)?

• Since the complement N \D(r,k) is finite, which is the largest ele-
ment in the complement?

Remember from Definitions 2.1.81, 2.1.82 and 2.1.80 that the smallest
non-zero element of a numerical semigroup is its multiplicity, the small-
est element of the semigroup such that all subsequent natural numbers
belong to the semigroup is its conductor and the largest element in the
complement is called the Fröbenius number. Therefore the conductor is
the Fröbenius number plus one.

Lower bounds on the existence of combinatorial configurations

As we saw in Section 2.1.7, given parameters r, k ≥ 2, a combinatorial
(v, b, r, k)-configuration with the smallest possible numbers of points
and lines satisfies the necessary conditions

v ≥ r(k − 1) + 1

and

b ≥ k(r − 1) + 1

from Theorem 2.1.55. As a consequence we get a lower bound for the
multiplicity of the numerical semigroup D(r,k).
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Proposition 4.2.12. Given r, k ≥ 2, a lower bound for the multiplicity m of
the numerical semigroup D(r,k) is

m ≥ max

(

(r(k − 1) + 1) gcd(r, k)

k
,
(k(r − 1) + 1) gcd(r, k)

r

)

Proof. Just apply the definition of the integer associated to the parame-
ter tuple of a combinatorial configuration to the bounds for the number
of points and lines of a combinatorial (r, k)-configuration from Theo-
rem 2.1.55.

In the balanced case, that is, when r = k, the combinatorial (r, r)-
configuration with the smallest number of points and lines is necessar-
ily a finite projective plane, should it exist (see Section 2.1.5). Then we
have gcd(r, k) = r = k so we get the following corollary.

Corollary 4.2.13. Given r ≥ 2, a lower bound for the multiplicity m of the
numerical semigroup D(r,r) is

m ≥ r(r − 1) + 1.

If r − 1 is a power of a prime, then equality holds.

Upper bounds on the existence of combinatorial configurations

In this section we consider two different upper bounds on the existence
of combinatorial configurations. The first bound is an upper bound
on the multiplicity of the numerical semigroup D(r,k), hence an upper
bound on the size of the smallest existing combinatorial configuration
for fixed r and k. The second bound is an upper bound on the con-
ductor of the numerical semigroup D(r,k), hence an upper bound on
the parameters v and b such that there exists at least one combinatorial
(v, b, r, k)-configuration for all admissible v and b that are larger than
this bound. Remember that a tuple (v, b, r, k) is admissible if the neces-
sary conditions of Theorem 2.1.55 are satisfied.

Upper bounds on the existence of combinatorial configurations based
on the multiplicity of D(r,k)

The lower bound on the multiplicity was deduced from the definition
of combinatorial configurations, but upper bounds will rely on their
explicit constructions.
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126 Constructing configurations

The numerical semigroups D(r,2) = D(2,r), as well as the numerical
semigroups D(r,3) = D(3,r), were completely described for any r ≥ 2 in
Section 4.2.2 and Section 4.2.3). Therefore we may assume that r, k ≥ 3
(and even that r, k ≥ 4).

From Theorem 2.1.54, we know that for any pair of natural num-
bers r, k ≥ 3, there exists a combinatorial (r, k)-configuration. Theo-
rem 2.1.54 is constructive; the construction starts with an affine plane
of order n such that n ≥ max(r, k) and the result is a combinatorial
(v, b, r, k)-configuration with parameters v = nk and b = nr. The inte-
ger that we associate to such a combinatorial configuration is

d =
v gcd(r, k)

k
=

nk gcd(r, k)

k
= n gcd(r, k).

In Section 2.1.5 we saw that it is conjectured that the order n of an affine
plane is always a power of a prime. We deduce the following bound for
the multiplicity of the numerical semigroup.

Theorem 4.2.14. The multiplicity m of the numerical semigroup D(r,k) sat-
isfies

m ≤ q gcd(r, k),

where q is the smallest prime power such that q ≥ max(r, k).

Remember that in general there may be more than one affine plane
of order n. Therefore, for any pair of integers r, k ≥ 3 there are com-
binatorial (v, b, r, k)-configurations; at least one for every integer d :=
q gcd(r, k) with q ≥ max(r, k) and q a power of a prime. From this we
deduce the following Theorem 4.2.15.

Theorem 4.2.15. Let gcd(r, k) = 1. Then every prime power q ≥ max(r, k)
belongs to D(r,k).

Upper bounds on the existence of combinatorial configurations based
on the conductor of D(r,k)

Using our construction of a second element in D(r,k), coprime with
the first, it is easy to construct bounds on the conductor using Theo-
rem 2.1.86. As we saw in Theorem 2.1.86, the conductor of the numeri-
cal semigroup generated by a and b is (a− 1)(b − 1).

In Theorem 4.2.14 we saw that an upper bound for the multiplic-
ity of D(r,k) was m ≤ q gcd(r, k), for the smallest prime power q ≥

Combinatorial Structures For Anonymous Database Search

UNIVERSITAT ROVIRA I VIRGILI 
COMBINATORIAL STRUCTURES FOR ANONYMOUS DATABASE SEARCH 
Klara Stokes 
DL:T-1799-2011 



4.2 Semigroups and configurations 127

max(r, k), and in Proposition 4.2.10 we saw that the natural number
sm+ 1 for s = rk/ gcd(r, k) belongs to D(r,k).

The numerical semigroup generated by the elements m and sm + 1
has conductor

c = (m− 1)(sm+ 1− 1)

= (m− 1)sm

= (m− 1)mrk/ gcd(r, k),

and by replacing m by q gcd(r, k), we get that the conductor c(r,k) of
D(r,k) is bounded by

c(r,k) ≤ (q gcd(r, k)− 1)q gcd(r, k)rk/ gcd(r, k)

= (q gcd(r, k)− 1)rkq.

Observe that when r and k are coprime, so that gcd(r, k) = 1, then
Theorem 4.2.15 tells us that every prime power q ≥ max(r, k) belongs
to D(r,k). Since primes are always coprime, in this case Theorem 4.2.10
is not necessary in order to prove that there are at least two coprime
elements in D(r,k). Indeed, in this case Theorem 4.2.15 implies that all
prime powers larger than max(r, k) belong to D(r,k), so that the numer-
ical semigroup generated by these prime powers is contained in D(r,k).

When more than two generators of the numerical semigroup are in-
volved, then the calculation of the conductor of a numerical semigroup
generated by n elements is difficult [61]. Therefore it is not immedi-
ate how to determine the conductor of this numerical semigroup. It is
possible that the calculation of a conductor of a numerical semigroup
generated by a sequence of successive prime powers is more easy to
calculate than the conductor in the general case, but this is an open
question.

However, for us the numerical semigroup generated by the prime
powers is only a tool to prove that the set D(r,k) is a numerical semi-
group and to give an upper bound of its conductor. For this purpose
it is enough to use an upper bound of the conductor of the numerical
semigroup generated by a sequence of successive prime powers. We
provide the following upper bound for this conductor.

Theorem 4.2.16. Let c be the conductor of a numerical semigroup that con-
tains all prime powers larger than or equal to a given integer n. Then this

Combinatorial Structures For Anonymous Database Search

UNIVERSITAT ROVIRA I VIRGILI 
COMBINATORIAL STRUCTURES FOR ANONYMOUS DATABASE SEARCH 
Klara Stokes 
DL:T-1799-2011 



128 Constructing configurations

conductor satisfies

c ≤ 2
∏

p prime, p<n

(⌊logp(n− 1)⌋+ 1),

and also

c ≤
∏

p prime, p<n

p(⌊logp(n−1)⌋) + 1.

Proof. As we saw in Section 2.1.10, the genus of a numerical semigroup
is the number of gaps of the numerical semigroup. In Theorem 2.1.87
we saw that the conductor of a numerical semigroup is smaller or equal
to two times the genus.

Suppose that Λ is a numerical semigroup that contains all prime
powers larger than or equal to a given integer n. We want to estimate
the genus of Λ. Then any gap x can be expressed as a product

x = pn1
1 · · · pnk

k

with ni integers such that 1 ≤ ni ≤ logpi
(n − 1) for all i. In particular

p1, . . . , pk are prime numbers smaller than n.
Indeed, decompose x as a product of powers of different primes

x = pn1
1 · · · pnk

k . If ni > logpi
(n− 1) for some i then pni

i is a prime power
larger than or equal to n and so it belongs to Λ and so does any multiple
of it, like x.

Therefore the genus, that is, the number of gaps of Λ, is at most

∏

p prime, p<n

(⌊logpi
(n− 1)⌋+ 1),

so that the conductor of Λ is at most

2
∏

p prime, p<n

(⌊logpi
(n− 1)⌋+ 1).

The second inequality is deduced from the fact that the Frobenius
number (the largest gap) must be smaller than

∏

p prime, p<n

p(⌊logp(n−1)⌋),

and the fact that the conductor is the Frobenius number plus one.
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4.3 Semigroups and triangle-free configurations 129

In the particular case of the numerical semigroups D(r,k) associated
to the existence of combinatorial (r, k)-configurations with gcd(r, k) =
1, from Theorem 4.2.15 we know that every prime power q ≥ max(r, k)
belongs to D(r,k). We therefore deduce the following bound on the con-
ductor of the numerical semigroup D(r,k).

Corollary 4.2.17. If gcd(r, k) = 1, then the conductor c(r,k) of the numerical
semigroup D(r,k) satisfies

c(r,k) ≤ 2
∏

p prime, p<max(r,k)

(⌊logp(max(r, k)− 1)⌋+ 1),

and also

c(r,k) ≤
∏

p prime, p<max(r,k)

p(⌊logp(max(r,k)−1)⌋) + 1.

4.3 The numerical semigroup associated to the

existence of triangle-free combinatorial

configurations

As we saw in Section 3.3, one problem that the UPIR system could have
is that two adversary users connected to a third user through two dif-
ferent communication spaces, could communicate themselves through
a third communication space and infer some joint information. This can
be avoided by simply avoiding circuits of length 6 in the bipartite inci-
dence graph that represents the combinatorial configuration. Avoiding
circuits of length 6 in this graph means avoiding triangles in the config-
uration. In another context, triangle-free configurations are also called
(0,1)-geometries, see Definition 2.1.18 and [24, 75].

Using the existence of regular graphs of girth 8 and any degree
[66] we demonstrate in this section the existence of triangle-free (r, k)-
configurations for every pair r, k ≥ 2. Composing triangle-free configu-
rations we deduce that the subset of the natural numbers that is associ-
ated to the triangle-free (r, k)-configurations forms a submonoid of the
non-negative integers and through constructions of triangle-free com-
binatorial configurations, analogous to the constructions in Section 4.2,
we prove that this submonoid is in fact a numerical semigroup. This
will imply, for example, that there exist infinitely many triangle-free
(r, k)-configuration for any pair r, k ≥ 2.
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130 Constructing configurations

4.3.1 Associating a set of integers to the existence of
triangle-free (r, k)-configurations

We saw in Section 4.2.1 that to any tuple of parameters (v, b, r, k) that is
admissible for combinatorial configurations, we can associate an inte-
ger d.

To remind the reader, this was due to the fact that for any (v, b, r, k)-
configuration we have the following expressions for v and b:

v =
bk

r
= d

k

gcd(r, k)

and symmetrically

b =
vr

k
= d′

r

gcd(r, k)
.

Since v and b are integers, so are d and d′. We also have

d = v gcd(r,k)
k

= bk gcd(r,k)
rk

= b gcd(r,k)
r = d′

.

To any (r, k)-configuration, with or without triangles, we can therefore
associate the integer d. On the other hand, given r and k, any d ∈ N

determines two integers v and b, perhaps corresponding to the num-
ber of points and lines of a configuration. For some d ∈ N there is no
triangle-free combinatorial configuration with parameter set

(

d
k

gcd(r, k)
, d

r

gcd(r, k)
, r, k

)

.

Determining for which d there exist triangle-free combinatorial config-
urations is the problem of existence of triangle-free combinatorial con-
figurations.

In the following we will consider the set of integers such that they
may be associated to a triangle-free configuration. The aim is here to
prove that this set is a numerical semigroup.

Definition 4.3.1. For r, k ∈ N, r, k ≥ 2 we define

D▽
(r,k) := {d ∈ N : ∃ triangle-free (v, b, r, k)− configuration and

v = d k
gcd(r,k) , b = d r

gcd(r,k)}.
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4.3 Semigroups and triangle-free configurations 131

4.3.2 The set of integers associated to the triangle-free
(r, k)-configurations forms a numerical semigroup

In this section we will prove that D▽
(r,k) is a numerical semigroup. The

proof is similar to the proof we used in Section 4.2 to show that D(r,k) is
a numerical semigroup.

Just as in Section 4.2 we will use that it is enough to prove that

• 0 ∈ D▽
(r,k),

• D▽
(r,k) is closed under addition,

• at least two elements of D▽
(r,k) are coprime.

Again, the two first conditions ensure that the subset D▽
(r,k) of the natu-

ral numbers is a monoid. The operation of the monoid is addition. The
last condition ensures that the monoid contains the numerical semi-
group generated by the two coprime elements. The complement of
this numerical semigroup is finite, therefore also the complement of the
monoid, and we deduce that it is a numerical semigroup.

The set of integers associated to the triangle-free
(r, k)-configurations is a submonoid of the natural numbers

We first observe that since we consider that the empty set is a triangle-

free (r, k)-configuration, we have 0 ∈ D▽
(r,k).

We will now prove that the set D▽
(r,k) is closed under addition.

Lemma 4.3.2. If there exist two triangle-free (r, k)-configurations

S1 = (P1,L1, I1)

and

S2 = (P2,L2, I2)

with mutually disjoint point and line sets, then there also exists a triangle-free
(r, k)-configuration

S1 ⊕ S2 = (P1 ∪ P2,L1 ∪ L2, I).
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132 Constructing configurations

Proof. First observe that if we use ∅ to denote the empty triangle-free
(r, k)-configuration for any r and k, then, for any triangle-free (r, k)-
configuration S, we have, in a natural way,

S ⊕ ∅ = S

and
∅ ⊕ S = S.

Now suppose we have a nonempty triangle-free (r, k)-configuration
S1 with vertices P1 = {p11, . . . , p

1
v1} and L1 = {l11, . . . , l

1
b1
} and an-

other nonempty triangle-free (r, k)-configuration S2 with vertices P2 =
{p21, . . . , p

2
v2}, L2 = {l21, . . . , l

2
b2
}. Consider the graph with vertices

P1 ∪ L1 ∪ P2 ∪ L2

and edges
I1 ∪ I2.

Observe that by definition we have r, k ≥ 2, so we can assume without
loss of generality that

(p1v1 , l
1
b1
), (p21, l

2
1) ∈ I1 ∪ I2.

Replace the relations (p1v1 , l
1
b1
) and (p21, l

2
1) by (p1v1 , l

2
1) and (p21, l

1
b1
)

and consider the resulting incidence relation I . We want to prove that
the incidence graph of the incidence structure (P1 ∪ P2,L1 ∪ L2, I) is a
connected, bipartite, (r, k)−biregular graph of girth at least 8, hence an
incidence graph of a triangle-free combinatorial (r, k)-configuration.

But that this graph is connected, bipartite and (r, k)−biregular is ob-
vious, so we only need to prove that the girth is at least 8. Now almost
all incidence relations in I are the same as in I1 ∪ I2, so the only delicate
part of the graph is where the two original graphs were connected, that
is, we need to check that the vertices p1v1 , p

2
1, l

1
b1
, l21 are not on any cycle

of length less than 8.
Now S1 and S2 have girth at least 8, so the shortest path between

p1v1 and l1b1 inside S1 other than (p1v1 , l
1
b1
) (which we have removed) has

length at least 7, and the shortest path between p21 and l21 inside S2 other
than (p21, l

2
1) (which we have removed) also has length at least 7. There-

fore, in (P1∪P2,L1∪L2, I) the vertices p1v1 , p
2
1, l

1
b1
, l21 can not be on a cycle

of length less than 8. We get that (P1 ∪ P2,L1 ∪ L2, I) is a triangle-free
(r, k)-configuration.
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4.3 Semigroups and triangle-free configurations 133

−→

Figure 4.5: Two triangle-free (r, k)-configurations are combined so that
the integer associated to the resulting (r, k)-configuration is the sum of
the integers associated to the original configurations.
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134 Constructing configurations

Proposition 4.3.3. D▽
(r,k) is a submonoid of the natural numbers.

The proof of this proposition is completely analogous to the proof of
Proposition 4.2.8, although using Lemma 4.3.2 instead of Lemma 4.2.7
and will therefore not be repeated here.

The submonoid contains two coprime elements

We start by proving that given any pair of natural numbers r, k ≥ 2,

there exists at least one element in D▽
(r,k) different from 0. We do this

by constructing the incidence graph of a nonempty triangle-free (r, k)-
configuration.

For the construction we use a regular graph of girth at least 8.
Theorem 2.1.74 says that for any n ≥ 3 and g ≥ 2 there exists an

n−regular graph of girth g. In particular for any n ≥ 3 there exists an
n−regular graph of girth at least 8. We will use one of these graphs to
construct a connected, bipartite, (r, k)−biregular graph of girth at least
8, defining a triangle-free (r, k)-configuration.

Proposition 4.3.4. For any pair of integers r, k ≥ 2, there exists at least one

non-zero integer in D▽
(r,k).

Proof. Consider the complete bipartite graph Kr,k, with edge set E and
vertex set V . We consider one spanning tree Tr,k of Kr,k. Then Tr,k has
the same vertex set V as Kr,k, but its edge set E′ ⊂ E is smaller. We
have

|E′| = r + k − 1.

The number of edges in Kr,k outside Tr,k, that is, in E − E′, is

n = rk − r − k + 1 = (r − 1)(k − 1).

Suppose n ≥ 3. (This excludes the cases (r, k) ∈ {(2, 2), (2, 3), (3, 2)},
which must be treated separately and will be so, at the end of this
proof.)

From Theorem 2.1.74 we know that there exists at least one n-regular
graph of girth at least 8. Take one of these graphs and call it G. Associate
to each of the vertices of G a copy of the complete bipartite graph Kr,k.
For all edges ab in G, consider its end vertices a and b and let A and B
be the copies of Kr,k associated to these vertices. Also let TA and TB

be the corresponding spanning trees in A and B. Now choose one edge
xAyA in A, but not in TA and one edge xByB in B, but not in TB and
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4.3 Semigroups and triangle-free configurations 135

swap them so that we instead get two edges xAyB and xByA. Since G
is n−regular and n is the number of edges in Kr,k that are not in its
spanning tree, we can choose different edges xAyA and xByB for every
edge in G.

In this way we get a bipartite, (r, k)−biregular graph of girth at least
8, from a n−regular graph of girth at least 8, with n = (r − 1)(k − 1).

The resulting graph may not be connected. If this is the case, we can
proceed in two ways.

• We can choose any of the connected subgraphs, and consider that
graph to be the incidence graph of the triangle-free configuration
we want to construct. If we choose the smallest connected sub-
graph, then we minimize the size of the smallest known triangle-
free (r, k)-configuration proved to exist in this manner;

• We can use the ’addition’ law from Lemma 4.3.2 to connect all the
connected subgraphs.

In any case we get a connected, bipartite, (r, k)−biregular graph of
girth at least 8, that is, the incidence graph of a triangle-free (r, k)-
configuration.

We still must treat the cases (r, k) ∈ {(2, 2), (2, 3), (3, 2)}.

• When (r, k) = (2, 2), the connected graph with 8 vertices of degree
2 is a connected, bipartite, (2, 2)-biregular graph of girth 8, so it is
the incidence graph of the smallest nonempty triangle-free (2, 2)-
configuration. It has parameters d = v = b = 4;

• When (r, k) = (2, 3), the following is an incidence list of a triangle-
free (2, 3)-configuration. We have represented the points as P =
{1, . . . , 9} and the lines as L = {A, . . . , F}. Consequently v = 9,
b = 6 and d = 3.

A 1 2 9
B 2 3 8
C 3 4 7
D 4 5 1
E 5 6 8
F 6 7 9

• When (r, k) = (3, 2), we can consider the dual triangle-free con-
figuration of the previous example.

This concludes the proof.
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Remark 4.3.5. Observe that since a bipartite graph always has even girth,
even if we start with a n-regular graph of girth at least 7, the result will be a
graph with girth at least 8. This is interesting if we want the corresponding
triangle-free configuration to be as small as possible.

We will now construct a second element of D▽
(r,k), such that the ele-

ment of Proposition 4.3.4 and the new one are coprime. In order to do
so we need the following lemma.

Lemma 4.3.6. Suppose that r ≥ 3 and k ≥ 3. Consider a nonempty triangle-
free (r, k)-configuration (P ,L, I). Then there exist three different points p1,p2
and p3 and three different lines l1, l2 and l3, such that (p1, l1), (p2, l2) and
(p3, l3) are in I , but (pi, lj) is not in I if i 6= j.

Proof. Since the girth of the incidence graph is at least 8, no cycle of
length 7 exists. The graph is connected and has at least 8 edges. It
therefore exists a path of length 6 not passing through the same vertex
twice. Without loss of generality we may suppose that if r ≥ 3, then the
path starts with a vertex representing a point and ends with a vertex
representing a point, and if r < 3 but k ≥ 3, then the path starts with
a vertex representing a line and ends with a vertex representing a line.
(Remember that the graph is bipartite, with the points on one side and
the lines on the other.)

Take the first and the fourth edge of this path. The ends of these
edges are separated by paths of length at least two. Also take the sev-
enth (the last) vertex of the path. It is separated from the first and the
forth edge by paths of length at least two. If r ≥ 3, then we have chosen
the path so that the seventh vertex represents a point, so it has degree
at least 3. If r < 3 but k ≥ 3, then we have chosen the path so that the
seventh vertex represents a line, so also in this case it has degree at least
3. Therefore it will have at least two neighbors not in the path. Since
the girth of the graph is larger than 4, these two neighbors can not be si-
multaneously neighbors of the first vertex of the path. Moreover, since
the girth is larger than 7, if we choose a vertex, neighbor to the seventh
vertex, but not to the first vertex, it will be separated from all first six
vertices on the path by paths of at least length 2. We take the edge be-
tween the seventh vertex an this vertex. Together with the two edges
selected before, they constitute a set of three edges where the ends are
all different and ends of different edges are not neighbors.

Consequently we obtain three edges (p1, l1), (p2, l2) and (p3, l3), so
that the three points and the three lines are all different and such that
(pi, lj) 6∈ I if i 6= j.
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4.3 Semigroups and triangle-free configurations 137

We are now ready to prove the existence of two coprime elements of

D▽
(r,k).

Proposition 4.3.7. D▽
(r,k) contains two elements m 6= 0 and am + 1, with

a ∈ N, so that the two elements are coprime.

Proof. Consider first the case (r, k) = (2, 2). We saw in the proof of
Proposition 4.3.4 that the connected graph with 8 vertices of degree 2 is
a connected, bipartite, (2, 2)-biregular graph of girth 8, so it is the inci-
dence graph of the smallest nonempty triangle-free (2, 2)-configuration.
The parameters of this triangle-free configuration were v = b = d = 4.

Actually, for any integer d ≥ 4, the connected graph with 2d vertices
of degree 2 gives us a triangle-free (2, 2)-configuration with associated

integer d = v = b. Therefore we have D▽
2,2 = N ∪ {0} \ {1, 2, 3}. This

proves that D▽
2,2 is a numerical semigroup and also reveals completely

the structure of D▽
2,2.

Now we may suppose r ≥ 3 or k ≥ 3. By Proposition 4.3.4 and since

D▽
(r,k) ⊆ N ∪ {0}, there is a minimal non-zero element m in D▽

(r,k).

Select a triangle-free (r, k)-configuration S with

v = m k
gcd(r,k)

and

b = m r
gcd(r,k) .

Take

a = rk
gcd(r,k)

copies of S. Let us call the vertices of the ith copy

p
(i)
1 , . . . , p

(i)
v , l

(i)
1 , . . . , l

(i)
b .

By Lemma 4.3.6 we can assume that

(p
(i)
1 , l

(i)
1 ), (p

(i)
2 , l

(i)
2 ) and (p

(i)
v , l

(i)
b )

are edges of the ith copy and that all other combinations

(p(i)a , l
(i)
b )

with a ∈ {1, 2, v} and b ∈ {1, 2, b}, are not edges of the ith copy.
Consider α := k/ gcd(r, k) further vertices
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p′1, . . . , p
′
α

and β := r/ gcd(r, k) further vertices

l′1, . . . , l
′
β .

Now perform the following changes to the edge set of the graph
defined by the union of all parts previously mentioned. It may be clar-
ifying to contemplate Figure 4.6. In the figure the edges to be removed
are dashed, while the edges to add are thick lines.

• “Add” together the a copies of the original configurations. That
is, for all 1 ≤ i ≤ a− 1 replace the edges

(p
(i)
v , l

(i)
b ) and (p

(i+1)
1 , l

(i+1)
1 )

by

(p
(i)
v , l

(i+1)
1 ) and (p

(i+1)
1 , l

(i)
b ).

• Also, remove the edges (p
(i)
2 , l

(i)
2 ) for all 1 ≤ i ≤ a.

• Add the edges

(p′1, l
(1)
2 ), (p′1, l

(2)
2 ), . . . , (p′1, l

(r)
2 ),

(p′2, l
(r+1)
2 ), (p′2, l

(r+2)
2 ), . . . , (p′2, l

(2r)
2 ),

...

(p′α, l
(a−r+1)
2 ), (p′α, l

(a−r+2)
2 ), . . . , (p′α, l

(a)
2 )

and

(p
(1)
2 , l′1), (p

(2)
2 , l′1), . . . , (p

(k)
2 , l′1),

(p
(k+1)
2 , l′2), (p

(k+2)
2 , l′2), . . . , (p

(2k)
2 , l′2),

...

(p
(a−k+1)
2 , l′β), (p

(a−k+2)
2 , l′β), . . . , (p

(a)
2 , l′β).
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4.3 Semigroups and triangle-free configurations 139

The constructed graph is connected, bipartite, and (r, k)−biregular. The

edges (p
(i)
1 , l

(i)
1 ), (p

(i)
2 , l

(i)
2 ) and (p

(i)
v , l

(i)
b ) were chosen as permitted by

Lemma 4.3.6 and the copies of the original graph are bipartite. There-
fore we get that a cycle passing through two different copies has length
at least 8. Together with the fact that the girth of the a original copies
was at least 8, this implies that the girth of the resulting graph also must
be at least 8. So we constructed an incidence graph of a triangle-free
(r, k)-configuration, which we may call S′.

We have
v′ = |P ′| = a|P|+ α

= a|P|+ k
gcd(r,k)

= amk
gcd(r,k) +

k
gcd(r,k)

= (am+ 1) k
gcd(r,k)

and
b′ = |L′| = a|L|+ β

= a|L|+ r
gcd(r,k)

= amr
gcd(r,k) +

r
gcd(r,k)

= (am+ 1) r
gcd(r,k)

and so am+ 1 ∈ D▽
(r,k).

From Proposition 4.3.7 we deduce that D▽
(r,k) contains two coprime

elements, so that they generate a numerical semigroup and this semi-

group is contained in D▽
(r,k). So the complement of D▽

(r,k) in N0 is finite

and D▽
(r,k) is a numerical semigroup.

4.3.3 Bounds on the existence of triangle-free configura-
tions in terms of bounds on the multiplicity and
conductor of the associated numerical semigroup

As in the case with the numerical semigroup associated to the config-
urable tuples, we will now ask the following questions.

Combinatorial Structures For Anonymous Database Search

UNIVERSITAT ROVIRA I VIRGILI 
COMBINATORIAL STRUCTURES FOR ANONYMOUS DATABASE SEARCH 
Klara Stokes 
DL:T-1799-2011 



140 Constructing configurations
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Figure 4.6: Construction of a triangle-free (r, k)-configuration with as-
sociated integer am+ 1 from a smaller triangle-free (r, k)-configuration
with associated integer m using α+ β extra vertices.
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4.3 Semigroups and triangle-free configurations 141

• Which is the smallest non-zero element in D▽
(r,k)?

• Since the complement N \D▽
(r,k) is finite, which is the largest ele-

ment in the complement?

These smallest elements correspond to the multiplicity and the Fro-
benius element respectively. The conductor is one plus the Frobenius
element.

Lower bounds on the existence of triangle-free configurations

The smallest number of points and lines of a triangle-free (r, k)-config-
uration is necessarily the number of points and lines of a generalized
quadrangle of order (r − 1, k − 1), should it exist (see Section 2.1.9).

Proposition 4.3.8. A triangle-free (v, b, r, k)-configuration satisfies

v ≥ k((r − 1)(k − 1) + 1)

and

b ≥ r((r − 1)(k − 1) + 1).

Proof. Consider a line l ∈ L and the two sets

A = {x : x ∈ P and (x, l) /∈ I}

and

B = {x : x ∈ P and (x, l) /∈ I and ∃M ∈ L, y ∈ P such that x I M I y I l}.

The number of points not on l is |A| = |P| − k. The number of lines
concurrent with l is k(r − 1) and these lines have together |B| = k(r −
1)(k−1) points which are not their intersection points with l. Obviously
A ⊃ B, so

|P| − k = |A| ≥ |B| = k(r − 1)(k − 1),

that is,

v = |P| ≥ k((r − 1)(k − 1) + 1).

Dually

b = |L| ≥ r((r − 1)(k − 1) + 1).
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142 Constructing configurations

Proposition 4.3.9. If the bounds in Proposition 4.3.8 are attained, then the
triangle-free (v, b, r, k)-configuration is a generalized quadrangle.

Proof. If the bounds in Proposition 4.3.8 are attained, then the sets A and
B have the same cardinality, and since B ⊂ A, they are equal. There-
fore the points x not incident with l but connected to l through a pair
(M, y) ∈ L × P are all points of P except those incident with l. In other
words, for every point x not incident with l there is a pair (M, y) ∈ L×P
for which x I M I y I l.

On the other hand, a triangle-free combinatorial configuration is a
(0, 1)-geometry (see Section 2.1.3), so for any point x not incident with
l, there can be at most one pair (M, y) such that x I M I y I l. Since the
existence of a unique pair of such (M, y) is exactly the definition of a
generalized quadrangle [58], this proves the statement.

Remark 4.3.10. The proof of Proposition 4.3.8 is a simple generalization of
the proof of Proposition 2.1.70 as it appears in [58].

Remark 4.3.11. Proposition 4.3.8 gives a lower bound on the multiplicity of

the numerical semigroup D▽
(r,k).

Upper bounds on the existence of triangle-free configurations

In this section we consider two different upper bounds on the existence
of triangle-free configurations.

The first bound is an upper bound on the multiplicity of the numer-

ical semigroup D▽
(r,k), hence an upper bound on the size of the smallest

existing triangle-free configuration for fixed r and k.
The second bound is an upper bound on the conductor of the nu-

merical semigroup D▽
(r,k), hence an upper bound on the size of config-

uration from which there exists at least one configuration for all admis-
sible sizes which are larger than this bound.

Upper bounds on the existence of triangle-free configurations based

on the multiplicity of D▽
(r,k)

If the lower bound on the multiplicity is deduced from the definition of
triangle-free configurations, the upper bound on the other hand relies
on their explicit constructions. Expressed in terms of graphs, in order
to prove that there always exists a triangle-free (r, k)-configuration it is
necessary to prove that for every pair of natural numbers r, k ≥ 2 there
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4.3 Semigroups and triangle-free configurations 143

exists a connected, bipartite, (r, k)-biregular graph of girth at least 8.
This was proved in Proposition 4.3.4.

In the proof of Proposition 4.3.4 we needed the existence of an r-
regular graph of girth 8. For this we used Theorem 2.1.74 due to Sachs.
The graphs that Sachs used to prove Theorem 2.1.74 are constructed
recursively. As the parameters grow they get large quickly. In order to

obtain smaller, general, upper bounds on the multiplicity of D▽
(r,k), the

n-regular graphs from Propositions 2.1.76, 2.1.77 and 2.1.78 are better
suited. From Proposition 2.1.75 we get that there exists an n-regular
graph of girth 7 and 2nq2 vertices, for a prime power q ≥ n. Replacing
each vertex of this graph with the vertices of the complete, bipartite
(r, k)-regular graph on r+ k vertices, means multiplying the number of
vertices by r + k. So the resulting incidence graph has

2nq2(r + k) = 2(r − 1)(k − 1)(r + k)q2

vertices.
We get the following:

Proposition 4.3.12. For any integers r, k ≥ 2

1. there exists a triangle-free (r, k)-configuration with 2(r− 1)(k− 1)kq2

points and 2(r − 1)(k − 1)rq2 lines, for q ≥ (r − 1)(k − 1) a prime
power;

2. D▽
(r,k) has multiplicity at most 2(r − 1)(k − 1)q2 gcd(r, k), where q is

as before.

If n is odd, that is, if both r and k are even, then instead of Propo-
sition 2.1.75 we can use the graphs of girth 8 from Proposition 2.1.76
together with the result from Proposition 2.1.78 to deduce the existence
of an n-regular graph of girth 7 with

2(nq2 − q)−
2(n− 1)2 − 2

n− 2

vertices, so the resulting incidence graph will have

(r + k)
(

2(nq2 − q)− 2(n−1)2−2
n−2

)

= (r + k)
(

2((r − 1)(k − 1)q2 − q)− 2((r−1)(k−1)−1)2−2
(r−1)(k−1)−2

)

,
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144 Constructing configurations

for a prime power q ≥ n = (r − 1)(k − 1).
When n = (r−1)(k−1) is a power of a prime Proposition 2.1.77 can

be used together with Proposition 2.1.78 to improve further and then if
n is odd we get an incidence graph with

(r + k)

(

2q(q2 − 2)−
2((r − 1)(k − 1)− 1)2 − 2

(r − 1)(k − 1)− 2

)

vertices.
These results can now be combined with results on the distribution

of primes to express the number of points and lines of the constructed
configuration as a function of r and k.

Upper bounds on the existence of triangle-free configurations based

on the multiplicity of D▽
(r,k) for special parameters

When the configuration is balanced, so that r = k, and if we suppose
that the conjecture that all cages of even girth are bipartite is true [89],

then the upper bound on the multiplicity of D▽
(r,r) is given by an upper

bound on the existence of a (r, 8)-cage.
If r is a power of a prime, then Proposition 2.1.77 implies that there

exists a triangle-free (r, r)-configuration with

v ≤ r(r2 − 2)

b ≤ r(r2 − 2).

If r is not a power of a prime, then Proposition 2.1.76 implies that,
if q is a power of a prime such that 3 ≤ r ≤ q − 1, then there exists a
triangle-free (r, r)-configuration with

v ≤ rq2 − q

b ≤ rq2 − q.

Whenever a generalized quadrangle exists, it is the smallest triangle-
free (r, k)-configuration that exists. Then the bound in Proposition 4.3.8
is reached:

v = k((r − 1)(k − 1) + 1)

and

b = r((r − 1)(k − 1) + 1).
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4.3 Semigroups and triangle-free configurations 145

For example, when r = k and r−1 is a power of a prime, it is proved
that there is a generalized quadrangle of order (r − 1, r − 1), with

v = b = r((r − 1)2 + 1)

(see [58] or Proposition 2.1.71 and 2.1.70).

We also repeat the results stated in Proposition 2.1.71: Let q be a
power of a prime. Then there exists a generalized quadrangle of order
(r − 1, k − 1) if

(r − 1, k − 1) ∈ {(q, 1), (q, q), (q, q2), (q2, q3), (q − 1, q + 1)}.

The Cremona-Richmond configuration is a famous combinatorial
configurations, with parameters (153, 153) is an example of a smallest
triangle-free combinatorial configuration for its parameters, so the mul-

tiplicity of D▽
(3,3) is 15.

Upper bounds on the existence of triangle-free configurations based

on the conductor of D▽
(r,k)

Using our construction of a second element in D▽
(r,k), coprime with

the first, it is easy to construct bounds on the conductor using Theo-
rem 2.1.86, which tells us that the conductor of the numerical semigroup
generated by the a and b has conductor (a− 1)(b− 1).

When more than two generators of the numerical semigroup are in-
volved, then the calculation of the conductor of a numerical semigroup
generated by n elements is difficult [61].

Regarding the case r = k = 4, as we saw in Section 2.1.9, we have

that 40, 60, 120 ∈ D▽
(4,4) and applying the two constructions from the

proof of Theorem 2.1.73 together with the addition of the numerical
semigroup it can be calculated that the numerical semigroup generated
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146 Constructing configurations

by these elements has conductor 411. More specifically:

{ 40, 60, 79, 80, 81, 99, 100, 101, 118, 119, 120, 121, 122,

138, 139, 140, 141, 142, 157, 158, 159, 160, 161, 162, 163,

177, 178, 179, 180, 181, 182, 183, 196, 197, 198, 199, 200,

201, 202, 203, 204, 216, 217, 218, 219, 220, 221, 222, 223,

224, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245,

255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 274,

275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286,

294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305,

306, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323,

324, 325, 326, 327, 333, 334, 335, 336, 337, 338, 339, 340,

341, 342, 343, 344, 345, 346, 347, 352, 353, 354, 355, 356,

357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368,

372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383,

384, 385, 386, 387, 388, 391, 392, 393, 394, 395, 396, 397,

398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409,

411,→} ⊂ D▽
(4,4),

and all natural numbers larger than 411 are also contained in D▽
(4,4).
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Chapter 5

More on the numerical
semigroup associated to the
existence of combinatorial
configurations

This chapter collects various observations regarding the numerical semi-
group associated to the configurable tuples D(r,k).

5.1 Another necessary condition for the

existence of combinatorial configurations

Consider a (v, b, r, k)-configuration and choose two points p and q that
are on a line l. The number of points that are collinear with p but not on
l is (r − 1)(k − 1) and the number of points that are collinear with q but
not on l is (r − 1)(k − 1). We have then counted at most (r − 1)2 points
twice, one for every intersection of a line through p and a line through
q. Adding the k points on the line l we obtain that

v ≥ 2(r − 1)(k − 1)− (r − 1)2 + k.

Dually we obtain that

b ≥ 2(k − 1)(r − 1)− (k − 1)2 + r.
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148 More on semigroups and configurations

Rewriting these expressions we get the following result:

Proposition 5.1.1. In a (v, b, r, k)-configuration we always have that

v ≥ r(k − 1) + 1 + (k − r)(r − 1)

and
b ≥ k(r − 1) + 1 + (r − k)(k − 1).

However, as we will see in Proposition 5.1.3 the inequalities from
Theorem 2.1.55 are stronger than the inequalities in Proposition 5.1.1.

We have seen that in a combinatorial configuration necessarily vr =
bk and that the number of points v and the number of lines b therefore
are given by:

v =
bk

r
= d

k

gcd(r, k)

and symmetrically

b =
vr

k
= d′

r

gcd(r, k)
.

Since v and b are integers, so are d and d′. Also

d = v gcd(r,k)
k

= bk gcd(r,k)
rk

= b gcd(r,k)
r = d′

.

We have therefore associated the integer d to the configuration. If one
prefers, one can also express this integer as

d =
vr

lcm(r, k)
=

bk

lcm(r, k)
.

Observe that using v = dk
gcd(r,k) and b = dr

gcd(r,k) the inequalities from

Theorem 2.1.55 can be written as in the following Corollary.

Corollary 5.1.2. In a combinatorial (v, b, r, k)-configuration we always have

r ≤

dk
gcd(r,k) − 1

k − 1

and

k ≤

dr
gcd(r,k) − 1

r − 1
,
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5.1 Another necessary condition for existence 149

The same inequalities can be rewritten as

r(k − 1) + 1− k = (r − 1)(k − 1) ≤ k

(

d

gcd(r, k)
− 1

)

and

k(r − 1) + 1− r = (r − 1)(k − 1) ≤ r

(

d

gcd(r, k)
− 1

)

,

and combining these last two we get

(r − 1)(k − 1) ≤ min(r, k)

(

d

gcd(r, k)
− 1

)

. (5.1)

We can also rewrite the inequalities from Proposition 5.1.1 in an
analogous way. Add (r − 1)(k − 1) − k to both sides of the first in-
equality and
(k− r)(r − 1)− r to both sides of the second inequality. We then obtain

r(k − 1) + 1 + (k − r)(r − 1) + (r − k)(k − 1)− k

= (r − 1)(k − 1) + (k − r)((r − 1)− (k − 1))

= (r − 1)(k − 1) + (k − r)(r − k)

≤ dk
gcd(r,k) + (r − k)(k − 1)− k

= k
(

d
gcd(r,k) + (r − k)k−1

k − 1
)

≤ k
(

d
gcd(r,k) + (r − k)− 1

)

,

and dually

(r − 1)(k − 1) + (k − r)(r − k) ≤ r

(

d

gcd(r, k)
+ (k − r) − 1

)

in other words

(r − 1)(k − 1) + (k − r)(r − k) ≤

min
(

k
(

d
gcd(r,k) + (r − k)− 1

)

, r
(

d
gcd(r,k) + (k − r)− 1

))

.
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150 More on semigroups and configurations

We will now compare the two inequalities.

Proposition 5.1.3. The inequalities from Theorem 2.1.55:

r(k − 1) + 1 ≤ v (5.2)

and

k(r − 1) + 1 ≤ b (5.3)

are always sharper together than the inequalities from Proposition 5.1.1:

r(k − 1) + 1 + (k − r)(r − 1) ≤ v (5.4)

and

k(r − 1) + 1 + (r − k)(k − 1) ≤ b (5.5)

are together.

Proof. First we observe that when r = k, then the two pairs of inequal-
ities are equivalent. Because of the symmetry of the problem we may
therefore assume that k > r. The function f(x) = x

x−1 = 1
1−1/x satisfies

f(2) = 2 and as x grows the function decreases towards 1. Therefore
r

r−1 > k
k−1 or equivalently r(k − 1) > k(r − 1). Of the two inequalities

(5.2) and (5.3) it is therefore the first one which has the largest lefthand
expression. Proposition 5.1.1 bounds v by inequality 5.4. One could
think that since k > r inequality (5.4) would be sharper than inequality
(5.2). But vr = bk so that v = bk/r and using inequality (5.3) we get

(k(r − 1) + 1)
k

r
≤ v. (5.6)

Since k > r, k
r is larger than 1 and can indeed get very large. Write (5.4)

as

k(r − 1) + 1 + r(k − r) ≤ v.

Suppose that (5.4) is sharper than the inequalities (5.2) and (5.3) for
some r and k so that

(k(r − 1) + 1)
k

r
< k(r − 1) + 1 + r(k − r),

implying

(k(r − 1) + 1)(
k

r
− 1) < r(k − r).
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5.2 Small configurations and their semigroups 151

Since k
r > 1 we can divide by k

r − 1 and we get

k(r − 1) + 1 <
r(k − r)
k
r − 1

=
r2(k − r)

k − r
= r2. (5.7)

Again, we have that k > r, so that

k(r − 1) + 1 ≥ (r + 1)(r − 1) + 1 = r2. (5.8)

But there are no r and k such that both (5.7) and (5.8) are satisfied si-
multaneously. We have therefore proved that (5.2) and (5.3) combined
are always sharper than (5.4).

Finally, combining v = bk/r and (5.5) as we did with (5.3) obtaining
(5.6) gives

(k(r − 1) + 1 + (r − k)(k − 1))
k

r
≤ v.

But we have assumed k > r, so the term (r − k)(k − 1) is negative,
implying that

(k(r − 1) + 1 + (r − k)(k − 1))
k

r
< (k(r − 1) + 1)

k

r

so that it is always sharper to use the rightmost expression, that is, the
bound in (5.3).

5.2 Small configurations and their numerical

semigroups

In the previous Section 4.2 we proved that the set of integers associ-
ated to the (r, k)-configurable tuples form a numerical semigroup. We
have seen examples of these numerical semigroups for small param-
eters, that is, for r ≤ 3 or k ≤ 3. We do not know what numerical
semigroups appear as associated to (r, k)-configurations for some pair
of integers r, k ≥ 4. In general, given a pair of integers r, k ≥ 2 we
ask for the natural numbers d ∈ N that belong to the numerical semi-
group D(r,k). This question is equivalent to the existence problem for
combinatorial (r, k)-configurations.

Fixing r and k, the first necessary conditions from Theorem 2.1.55
restrict which integers d can appear as an integer attached to an (r, k)-
configuration. Since the set of these integers form the numerical semi-
group D(r,k), it is an infinite set, and the restrictions take the form of a
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152 More on semigroups and configurations

bound for the smallest non-zero element in this set, that is, the multi-
plicity of the numerical semigroup. If we instead fix the integer d, the
same inequalities give restrictions on the pairs of integers (r, k) such
that d ∈ D(r,k).

Definition 5.2.1. For d ∈ N we denote

Rd = {(r, k) ∈ N
2
≥2 : r(k−1)+1 ≤

dk

gcd(r, k)
and k(r−1)+1 ≤

dr

gcd(r, k)
}.

In the appendix the reader can find diagrams that show admissible
pairs of integers (r, k) for some small integers d. For example, for d = 2
we have

R2 = {(2, 3), (3, 2)}.

For d = 3 the admissible pairs of natural numbers (r, k) are

R3 = {(2, 2), (2, 3), (3, 2), (2, 5), (5, 2), (3, 4), (4, 3)}.

In general, the set Rd has the following properties.

Proposition 5.2.2. 1. The set Rd is finite.

2. The set Rd is symmetric, in the sense that if (r, k) ∈ Rd then (k, r) ∈
Rd.

3. If d < d′ then Rd ⊆ Rd′ .

4. The l1 norm of a point P = (r, k) ∈ Rd satisfies l1(P ) = |r|+ |k| = r+
k ≤ 2d+2 and when r 6= k we have l1(P ) = |r|+ |k| = r+k ≤ 2d+1.

Proof. 1. This can (for example) be deduced from point 4 of this same
proposition.

2. This follows from the symmetry of the definition of Rd.

3. We have that if d′ > d then

d′k

gcd(r, k)
>

dk

gcd(r, k)
≥ r(k − 1) + 1

and
d′r

gcd(r, k)
>

dr

gcd(r, k)
≥ k(r − 1) + 1

so that if the inequalities with d are satisfied, so are the inequalities
with d′. The statement follows.
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5.2 Small configurations and their semigroups 153

4. Fix d and g = gcd(r, k). Because of the symmetry of the problem
we may suppose that k ≥ r. From Theorem 2.1.55 we have

k(r − 1) + 1 ≤ b =
dr

g
,

or the equivalent expression from Corollary 5.1.2

k ≤
dr
g − 1

r − 1
.

Consider the upper bound of k expressed as a real function in r

K = K(r) =

dr
g − 1

r − 1
.

We have

∂K(r)

∂r
=

d
g

r − 1
−

dr
g − 1

(r − 1)2
=

d
g (r − 1)− (dg r − 1)

(r − 1)2
=

1− d
g

(r − 1)2
.

Using Theorem 2.1.55 again we get

d
g ≥ k(r−1)+1

r

= kr−k+1
r

= k − k−1
r

= 1 + (k − 1)− k−1
r

= 1 + r(k−1)−(k−1)
r

= 1 + (r−1)(k−1)
r > 1.

In the cases that we consider, ∂K
∂r is therefore negative and strictly

increasing so that K(r) is a convex function. Consider two points
on the graph of K : P1 = (2, K(2)) and P2 = (r2, K(r2)) with r2
such that r2 = K(r2). P1 is the intersection point of the graph of K
with the line r = 2 and P2 is the intersection point of the graph of
K with the line r = k. Note that l1(P1) = 2+K(2) = 2 d

g +1. Since

K is a convex function, its graph drawn over the interval [2, r2]
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154 More on semigroups and configurations

will be situated below the straight line P1P2 drawn between the
end points P1 and P2 of the graph over the interval, giving an
upper bound on K(r) and hence on r + K(r). We will now see
that we can bound the line P1P2 from above with the line

{

P = (r, k) ∈ R× R : l1(P ) = |r|+ |k| = 2
d

g
+ 2

}

, (5.9)

giving the upper bound

r +K(r) ≤ 2
d

g
+ 2.

Consider the points P3 = (2, 2 d
g ) and P4 = (dg +1, dg +1). We have

that both P1 and P3 are on the line r = 2, but P3 is farther away
from origo than P1. Both P2 and P4 are points on the line r = k.
We will see that either P2 = P4 or P4 is farther away from origo
than P2. We have

dr2
g

−1

r2−1 = K(r2) = r2,

r22 − (dg + 1)r2 + 1 = 0,

r2 = d
g + 1− 1

r2
,

so that

r2 ≤
d

g
+ 1, (5.10)

so that

|r2|+ |K(r2)| = 2r2 ≤ 2
d

g
+ 2. (5.11)

Therefore either P2 = P4 or P4 is farther away from origo than P2.
We deduce that the straight line drawn between the two points
P1 and P2 on the graph of K(r) is situated below the straight
line (5.9) drawn between the points P3 and P4. Since K(r) is the
bound for admissible parameters of combinatorial configurations,
we deduce that the parameters for any combinatorial configura-
tion with 2 ≤ r ≤ k satisfy

|r| + |k| ≤ 2
d

g
+ 2.
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5.2 Small configurations and their semigroups 155

By symmetry this is also true for any combinatorial configuration
with 2 ≤ k ≤ r, that is, for the parameters of any combinatorial
configuration.

Now consider the point P5 = (dg + 1
2 ,

d
g + 1

2 ). Then P2, P4 and P5

are points on the line r = k. In a combinatorial configuration we
always assume r ≥ 2 so that − 1

r ≥ − 1
2 and in particular − 1

r2
≥

− 1
2 . Therefore (5.10) gives

r2 ≥
d

g
+

1

2
,

implying that either P2 = P5 or that P5 is closer to origo than P2.
We have that P2 is a point on r = k between the points P4 and P5

and that

l2(P2) = |r2|+ |K(r2)| = 2r2 ≥ 2
d

g
+ 1,

so we can not use k ≤ K(r) to ensure that the parameters of any
combinatorial configuration satisfy

|r| + |k| ≤ 2
d

g
+ 1. (5.12)

However, as we will now see, (5.12) is valid whenever r 6= k. Let
P6 = (r6, K(r6)) be the intersection point of the graph of K(r)
with the line k = r + 1, so that r6 is such that K(r6) = r6 + 1. As
before, because of the convexity of K(r) we know that, if drawn
over any interval, the graph of K(r) will always be situated below
the straight line drawn between the two end points of the drawn
graph. Therefore, over the interval [2, r6] the graph of K(r) will
be situated below the straight line drawn between the points P1

and P6.

The point r6 is the solution to the equation

K(r6) =

dr6
g − 1

r6 − 1
= r6 + 1,

in other words

dr6
g

− 1 = (r6 − 1)(r6 + 1) = r26 − 1
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156 More on semigroups and configurations

so that
dr6
g

= r26

or, since r6 6= 0,
d

g
= r6.

The point P6 is therefore

P6 = (r6, K(r6)) = (r6, r6 + 1) =

(

d

g
,
d

g
+ 1

)

so that the l1-norm of P6 is

|r6|+ |K(r6)| = r6 +K(r6) = 2
d

g
+ 1.

Indeed the line between P1 and P6 is the line defined by

{

P = (r, k) ∈ R× R : l1(P ) = |r| + |k| = 2
d

g
+ 1

}

.

Since K(r) is the bound for admissible parameters of combinato-
rial configurations, we deduce that the parameters for any combi-
natorial configuration with 2 ≤ r ≤ k − 1 satisfy

|r| + |k| ≤ 2
d

g
+ 1.

By symmetry, this is also true for any combinatorial configuration
with 2 ≤ k ≤ r − 1, so that it is true for any combinatorial config-
uration with r 6= k.

Corollary 5.2.3. The parameters r and k of a combinatorial (r, k)-configur-
ation with associated integer d satisfy

r + k ≤ 2d+ 1.

Proof. This can be seen by observing that the only case in which the first
of the inequalities

r + k ≤ 2
d

gcd(r, k)
+ 1 ≤ 2d+ 1
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5.2 Small configurations and their semigroups 157

fails, is when r = k. But when r = k, then gcd(r, k) = r = k so we can
use the inequality

r + k ≤ 2
d

gcd(r, k)
+ 2,

which is valid for all parameters of combinatorial configurations, to see
that since d ≥ 2 and gcd(r, k) ≥ 2, we have that

r + k ≤ 2
d

gcd(r, k)
+ 2 ≤

2d

2
+ 2 = d+ 2 ≤ d+ d+ 1 = 2d+ 1.

Observe that the fact that (r, k) ∈ Rd does not imply that D(r,k) ac-
tually contains d. For example, define X = {x ∈ N : x ≥ 2}, then

R43 = {(r, k) ≥ N2 : r(k − 1) + 1 ≥ 43k
gcd(r,k) ,

k(r − 1) + 1 ≥ 43r
gcd(r,k) and r, k ≥ 2},

which means that (7, 7) ∈ R43, but if 43 was in D(7,7), then there would
be a (43, 43, 7, 7)-configuration and this configuration would be a finite
projective plane of order 6. But there is no finite projective plane of
order 6, so 43 can not be in D(7,7). This fact is a consequence of Theo-
rem 2.1.63.

Since the finite set Rd is small when d is small, it is a possible and in-
teresting task to list all numerical semigroups D(r,k) containing d. This
will be done in this section.

5.2.1 Numerical semigroups Dr,k with the integer 2

Since R2 = {(2, 3), (3, 2)} we only have to analyze D2,3 and D3,2. Be-
cause of duality, we always have D(r,k) = D(k,r), so it is enough if
we analyze one of these two. But we saw in Section 4.2.2 that (3, 2)-
configurations exist for all d ≥ 2. Indeed, k is the number of points
on the lines and if k = 2 then the configurations are graphs and the
lines are edges in the graph, see Section 2.1.2. As a consequence of
Lemma 4.2.4, there is a 3-regular graph on 2d vertices for every in-
teger d ≥ 2, that is, for every integer d ≥ 2 there is a (2d, 3d, 3, 2)-
configuration.

The smallest (3, 2)-configuration is the affine plane A(F2), which is
the complete graph on 4 vertices and it consequently has 6 edges. It
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158 More on semigroups and configurations

is the unique (4, 6, 3, 2)-configuration and d = v gcd(3,2)
k = 4

2 = 2 or

equivalently d = b gcd(r,k)
r = 6

3 = 2. One should note that the fact that
Rd = {(2, 3), (3, 2)} implies that the only configurations with associated
integer 2 are A(F2) and its dual configuration, which consists in the 6
points 1, 2, 3, 4, 5, 6 on the 4 lines a, b, c, d of linesize k = 3 listed here
below.

a b c d
1 1 2 3
2 4 4 5
3 5 6 6

There is therefore only one numerical semigroup D(r,k) containing
2, namely

D(2,3) = D(3,2) = 〈2, 3〉 = {0, 2, 3, 4, 5,→},

which is the numerical semigroup with multiplicity 2 and conductor 2.
Hence none of the numerical semigroups with multiplicity 2 and con-
ductor larger than 2 can appear as the numerical semigroup attached to
the existence of (r, k)-configurations.

5.2.2 Numerical semigroups Dr,k with the integer 3

We have

R3 = {(2, 2), (2, 3), (3, 2), (2, 5), (5, 2), (3, 4), (4, 3)}.

We know that D(r,k) = D(k,r), so we only have to analyze one of the
pairs (r, k) and (k, r). From Section 5.2.1 we know that

D(2,3) = D(3,2) = 〈2, 3〉 = {0, 2, 3, 4, 5→}.

Again, we know that whenever k = 2, then the configurations are
graphs, so that D(2,2) and D(2,5) = D(5,2) represent the existence of 2-
regular and 5-regular graphs, respectively. According to Corollary 4.2.3,

D(2,2) = 〈3, 4, 5〉 = {0, 3, 4, 5, 6,→},

and Corollary 4.2.5 gives

D(5,2) = D(2,5) = 〈3, 4, 5〉 = {0, 3, 4, 5, 6,→}.

Observe that we have D(5,2) = D(2,5) = D(2,2), which means that the
same numerical semigroup can appear as D(r,k) for distinct parameter
pairs (r, k).
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5.2 Small configurations and their semigroups 159

Now the only case left is D(3,4) = D(4,3). Since k > 2, neither
the (3, 4)-configurations nor the (4, 3)-configurations are graphs. (3, 4)-
configurations exists for 3d = v ≥ r(k − 1) + 1 = 9, that is, for d ≥ 3.
For d = 3 the (12, 9, 3, 4)-configuration is given by the following table,

a b c d e f g h i
1 1 1 11 11 11 12 12 12
2 7 10 2 7 10 2 7 10
3 6 9 9 3 6 6 9 3
4 5 8 5 8 4 8 4 5

.

This is the dual of the affine plane of order 3, A(F3), which has 9 points,
12 lines, 3 points on any line and 4 lines through any point. The dual
has 12 points, 9 lines, 4 points on any line and 3 lines through any point.
For d = 4 one can take the affine plane of order 4, A(F4), which has
42 = 16 points and 42 + 4 = 20 lines, then choose 3 of the 5 parallel
classes of lines. This gives a (16, 12, 3, 4)-configuration, with associated
integer d = 4. For d = 5 one can take the affine plane of order 5, A(F5),
which has 52 = 25 points and 52 + 5 = 30 lines, then choose a paral-
lel class of lines and take the 4 · 5 = 20 points on 4 of the lines in this
class. An affine plane of order n has n2 + n lines partitioned into n + 1
parallel classes. The affine plane of order 5 has its 30 lines partitioned
into 6 classes, of which we have already used one class. Take the lines
in r = 3 of the other 5 parallel classes and consider their restriction to
the set of 20 points which we chose before. Then this point set together
with these restricted lines form a (20, 15, 3, 4)-configuration, with asso-
ciated integer d = 5. To see this, just remember that the affine plane is a
configuration, which means that there can be at most one line through
every pair of points and observe that, by restricting the lines to the cho-
sen point set, any line will contain k = 4 points and, by taking r = 3
parallel classes of lines, any point will be on r = 3 different lines.

Theorem 4.2.11 says that D(3,4) is a numerical semigroup and now
we know that 3, 4, 5 ∈ D(3,4). But the numerical semigroup generated
by 3, 4, 5 contains every integer d ≥ 3, so there is a (3, 4)-configuration
for all integers d ≥ 3. Therefore,

D(3,4) = D(4,3) = 〈3, 4, 5〉 = {0, 3, 4, 5, 6,→}.

Observe that this means that all the numerical semigroups D(r,k) for
(r, k) ∈ R3 \ R2 are the same. These numerical semigroups is the set of
D(r,k) with multiplicity 3.
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160 More on semigroups and configurations

5.2.3 Numerical semigroups Dr,k with the integer 4

We have

R4 = {(2, 2), (2, 3), (3, 2), (2, 5), (5, 2), (3, 4),

(4, 3), (2, 7), (7, 2), (3, 5), (5, 3), (4, 5), (5, 4)}.

Of these, only the last six elements are in R4 \ R3. Therefore the rest
of the elements were treated already in the previous section. Also,
just as in the previous section, since D(r,k) = D(k,r), we only have to
analyze one of these two. The question is therefore: which numeri-
cal semigroups are attached to the (r, k)-configurations with (r, k) ∈
{(7, 2), (3, 5), (4, 5)}?

• Again, we know that whenever k = 2, then the configurations are
graphs, so that D(7,2) represents the existence of 7-regular graphs.
Since 7 is an odd integer, Corollary 4.2.5 gives

D(2,7) = D(7,2) = {0, 4,→}.

• According to Gropp [40], (v, b, r, 3)-configurations exists for all
admissible parameters. Therefore

D(3,5) = D(5,3) = {0, 4 →}.

• Only D(4,5) = D(5,4) remains. The affine plane of order 4 has 4
points on every line, 5 lines through every point, 42 = 16 points
and 42 + 4 = 20 lines, and is indeed a (16, 20, 5, 4)-configuration
with associated integer

d =
v gcd(r, k)

k
= 4 ∈ D(5,4).

The dual configuration, with parameters (20, 16, 4, 5) is a configu-
ration with associated integer

d =
v gcd(r, k)

k
= 4 ∈ D(4,5).

Following the examples from the previous section we can con-
struct more (4, 5)-configurations using parallel classes of affine
planes. Such configurations are called transversal designs. Indeed
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5.2 Small configurations and their semigroups 161

we have the following more general result in Theorem 4.2.15.
From Theorem 4.2.15 we deduce that (4, 5)-configurations with
associated integer q exist for all prime power q ≥ max(4, 5) = 5.
Indeed

5, 7, 8, 9, 11, 13, 16, . . . ∈ D(4,5).

The question is now if 6 ∈ D(4,5). There is the following result by
Gropp:

Proposition 5.2.4. [40] There exists a combinatorial (v, b, r, 4)-config-
uration for every v ≡ 0 (mod 12) whenever the parameters are admis-
sible and v is not in the set

E = { 84, 120, 132, 180, 216, 264, 312, 324,
372, 456, 552, 648, 660, 804, 852, 888 }.

Indeed the proposition implies that since v = 24 6∈ E we have
the existence of a (24, 30, 5, 4)-configuration and therefore also a
(30, 24, 4, 5)- configuration, so that 6 ∈ D(4,5). We have proved
that D(4,5) = D(5,4) = {0, 4,→}, and so all the numerical semi-
groups associated to (r, k)-configurations with (r, k) ∈ R4 \R3 are
the same, just as was the case for R3 \R2.

5.2.4 Numerical semigroups Dr,k with the integer 5

The region of N × N which contains the pairs (r, k) such that 5 is an
admissible associated integer is

R5 = R4 ∪ {(2, 4), (4, 2), (2, 9), (9, 2), (3, 7), (7, 3), (5, 6)(6, 5)}.

As before, because of the symmetry we only need to study

{(4, 2), (9, 2), (3, 7), (5, 6)}.

Of these the two pairs with k = 2 correspond to 4- and 9-regular graphs
respectively, which according to Corollary 4.2.3 and Corollary 4.2.5 exist
for all admissible integers d so that

D(2,4) = D(4,2) = D(2,9) = D(9,2) = {0, 5,→}.

For D(3,7) we can use the dual theorem of Gropp, [40], which says that
they exists for all admissible integers d, hence also

D(3,7) = {0, 5,→}.
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162 More on semigroups and configurations

For D(5,6), first observe that there exists an affine plane of order 5. The
affine plane of order 5 is a (25, 30, 6, 5)-configuration and it has a dual
(30, 25, 5, 6)-configuration. Both have associated integer d = 5 so that
5 ∈ D(5,6). As before, using transversal designs we can obtain many
more (5, 6)-configurations. Indeed using Theorem 4.2.15 we have that
there are (5, 6)-configurations with associated integer d for all prime
powers d that satisfy d ≥ max(5, 6) = 6, so that

7, 8, 9, 11, 13, 16, . . . ∈ D(5,6).

We have therefore that

〈5, 7, 8, 9, 11〉 ⊆ D(5,6).

This does however not resolve the question if 6 ∈ D(5,6).

5.2.5 Numerical semigroups Dr,k with the integer 6

The region of N × N which contains the pairs (r, k) such that 6 is an
admissible associated integer is

R6 = R5∪ {(2, 11), (11, 2), (3, 8), (8, 3), (4, 7),
(7, 4), (5, 7), (7, 5), (6, 7), (7, 6)}.

We observe that this set contains the interesting element (7, 6). A (7, 6)-
configuration with associated integer 6 would have the parameter set
(36, 42, 7, 6) and would therefore be an affine plane of order 6. Since
there is no affine plane of order 6 we know that 6 6∈ D(7,6) = D(6,7)

Again we can use transversal designs to construct more (7, 6)-configur-
ations. Indeed Theorem 4.2.15 implies that there exists a (7, 6)-configur-
ation with associated integer d for all prime powers d ≥ max(7, 6) = 7,
so that

7, 8, 9, 11, 13, . . . ∈ D(7,6).

5.2.6 Non-ordinary numerical semigroups associated to
(r,k)-configurable tuples

We have investigated the numerical semigroups associated to the (r, k)-
configurable tuples that contain small integers. These numerical semi-
groups all have small multiplicity, or more precisely, the numerical semi-
groups D(r,k) that contain an integer d all have multiplicity smaller than
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5.2 Small configurations and their semigroups 163

or equal to d. We have seen that such numerical semigroups are, mostly,
ordinary. In general this is however not true.

A major obstacle in the execution of the analysis is the sparse avail-
able knowledge when the parameters r and k are large. In this con-
text, large means larger than 5. There are more examples of balanced
combinatorial configurations than there are in the non-balanced case.
The reason for this is that more research has been made in the balanced
case. From what we saw in Section 2.1.8 we can deduce that the first
non-ordinary numerical semigroup associated to the (r, r)-configurable
tuples, when ordered by size of the multiplicity, is D(5,5). As we saw
there, the next example is D(6,6), which has two gaps that are larger
than the multiplicity

The numerical semigroups associated to balanced (r, r)-configurable
tuples have larger multiplicity than the numerical semigroups asso-
ciated to non-balanced (r, k)-configurable tuples, as can be observed
in the figures of the region Rd in the appendix. There it can be ob-
served that the smaller gcd(r, k) gets, the smaller is the multiplicity of
D(r,k), so that the smallest multiplicities are observed for pairs r, k with
gcd(r, k) = 1 and the largest multiplicities can be found in the balanced
case, when gcd(r, k) = r = k. The multiplicity of D(5,5) is 21, see Theo-
rem 2.1.65, and we do not have access to sufficient material for an anal-
ysis of all the numerical semigroups D(r,k) with multiplicity 21.

If there are non-ordinary numerical semigroups associated to (r, k)-
configurable tuples with multiplicity smaller than 5, then the tuples are
non-balanced (r 6= k). The largest number of parameters (r, k) with
numerical semigroups D(r,k) of small multiplicity are parameters with
gcd(r, k) = 1. However, it is still an open question whether there are
parameters (r, k) with gcd(r, k) = 1 such that the numerical semigroup
D(r,k) is non-ordinary.
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Chapter 6

Conclusions

6.1 Results

On one hand this thesis has treated some questions about the existence
and construction of combinatorial configurations, on the other, it has
treated an application of combinatorial configurations to user-private
information retrieval or anonymous database search. The results that
have been presented can therefore be divided into two categories, math-
ematical results on combinatorial configurations and applied results in
computer science on the P2P UPIR protocol. Some of the results may of
course belong to both categories.

P2P UPIR using combinatorial configurations

The content of Chapter 3 was mainly of applied nature and contained
analyses of different modalities and scenarios for the execution of P2P
UPIR using combinatorial configurations. Three types of combinatorial
configurations were recognized as useful for P2P UPIR, because of the
properties that define them.

The (v, k, 1)-BIBD, or with another name, the S(2, k, v) Steiner sys-
tems, were recognized as optimal combinatorial configurations for P2P
UPIR with respect to the diffusion of the real profile of the protocol
user. As a special case of (v, k, 1)-BIBD, the finite projective planes were
identified as the optimal combinatorial configurations for P2P UPIR,
with respect to criteria as privacy in front of the server and storage effi-
ciency.
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The neighborhood of a point in a combinatorial configuration was
recognized as a quasi-identifier of that point and it was explained that
users of the P2P UPIR protocol who combine repeated queries with a
unique neigborhood are not protected by the protocol. We analyzed the
query behaviour of some users in the AOL query log files, and with the
additional statistical information from other query logs we concluded
that repetition of queries is a common and frequent phenomenon. Since
repeated queries are hard to avoid, we therefore justified why it is im-
portant to avoid combinatorial configurations that give unique neigh-
borhoods to the users.

The theory of n-anonymity was applied to the neighborhood prob-
lem and the use of transversal designs for n-anonymous P2P UPIR was
proposed. In general, we characterized the combinatorial configura-
tions that provide n-anonymous P2P UPIR.

As an alternative solution to the neighborhood problem we pro-
posed a modification of the P2P UPIR protocol. The (v, k, 1)-BIBD were
recognized as optimal combinatorial configurations for this modified
P2P UPIR protocol. Indeed they were recognized as exactly the only
combinatorial configurations capable of providing complete privacy for
any P2P UPIR protocol. We explained how modified P2P UPIR with
a (v, k, 1)-BIBD can also be understood as v-anonymous modified P2P
UPIR. We also defined the concept of n-confusion for P2P UPIR.

We proved that when k divides n, then it is possible to construct
a combinatorial (r, k)-configuration that provides k-anonymous modi-
fied P2P UPIR from a combinatorial (r, k)-configuration that provides
n-anonymous P2P UPIR.

Collusions of adversary protocol users communicating only over
the channels provided by the protocol were recognized as a privacy
risk. Several users can collude in order to get advantage over the proto-
col and obtain more information on the query profiles of their neighbors
than expected. Analyses of different scenarios of colluding users were
provided. Triangle-free combinatorial configurations were proposed in
order to avoid the privacy risk caused by collusions of users communi-
cating over channels provided by the protocol. For collusions of users
that communicate also over external channels, a calculation of the mag-
nitude of the privacy risk was presented.
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Combinatorial configurations and numerical semigroups

In Section 4.2 we associated a subset of the natural numbers D(r,k) to
the combinatorial (r, k)-configurations and the following theorem was
proved.

Theorem 6.1.1. For every pair of integers r, k ≥ 2, D(r,k) is a numerical
semigroup.

Theorem 6.1.1 has several corollaries.

Corollary 6.1.2. For any pair of integers r, k ≥ 2 there exist infinitely many
combinatorial (r, k)-configurations.

A numerical semigroup has a conductor, a smallest number from
which all larger integers belong to the numerical semigroup. Using this
we get Corollary 6.1.3

Corollary 6.1.3. Given a pair of integers r, k ≥ 2 there exists a positive num-
ber N such that for all integers n ≥ N there exists at least one combinatorial
configuration with parameters

((

n
k

gcd(r, k)

)

,

(

n
r

gcd (r, k)

)

, r, k

)

,

that is, when the number of points (and lines) is big enough, then there is at
least one configuration for any admissible parameters.

The number N in Corollary 6.1.3 is the conductor of the numeri-
cal semigroup D(r,k). We have bounded this conductor with the upper
bound

(q gcd(r, k)− 1)rkq,

where q is the smallest prime power such that q ≥ max(r, k).
Using the construction and the combination of combinatorial con-

figurations in the proof of Theorem 6.1.1, it is possible to explicitly con-
struct combinatorial (r, k)-configurations with associated integers in the
numerical semigroup generated by the coprime integers m and am+1,
where m is the associated integer of an existing combinatorial (r, k)-
configuration and a = rk/ gcd(r, k). Theorem 2.1.54 gives the example
m = q gcd(r, k) where q ≥ max(r, k) is a prime power, but any other
integer m associated to a (r, k)-configuration can be used.

In the special case gcd(r, k) = 1 it was proved that all prime powers
q that satisfy q ≥ max(r, k) belong to the numerical semigroup D(r,k)
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and it was deduced that the conductor of D(r,k) in this case is bounded
by

2
∏

p prime, p<max(r,k)

(⌊logp(max(r, k)− 1)⌋+ 1).

Triangle-free combinatorial configurations

In Section 4.3 we associated a subset of the natural numbers D▽
(r,k) to

the triangle-free (r, k)-configurations and then we proved the following
theorem.

Theorem 6.1.4. For every pair of integers r, k ≥ 2, D▽
(r,k) is a numerical

semigroup.

In particular, we proved that for every pair of natural numbers r

and k, larger than 2, the set D▽
(r,k) contains at least one non-zero element

m. This integer m corresponds to a triangle-free (v, b, r, k)-configuration
with number of points v = |P| = m k

gcd(r,k) and number of lines b =

|L| = m r
gcd(r,k) . We get the following result (Proposition 4.3.12).

Corollary 6.1.5. For any pair of integers r, k ≥ 2 and a prime power q that
satisfies q ≥ (r − 1)(k − 1) there exists a triangle-free (r, k)-configuration
with

2(r − 1)(k − 1)kq2

points and
2(r − 1)(k − 1)rq2

lines.

As we saw in Section 4.3.3, for many cases there are much smaller
triangle-free configurations. These results should be compared with the
previous bound for the smallest balanced triangle-free (r, r)-configur-
ation that was given in Theorem 2.1.72, which uses the generalized
Gray / LC(r) configuration with rr points and rr lines. Beside the fact
that this bound was of exponential size, while our bound is polynomial,
our bound is more general, since we also treat unbalanced configura-
tions.

The proof of Corollary 6.1.5 is constructive and can be used as an al-
gorithm to construct a triangle-free (r, k)-configuration. The construc-
tion can be found in Proposition 4.3.4. Further constructions are given
in Lemma 4.3.2 and Proposition 4.3.7.
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From Theorem 6.1.4 we can also deduce the existence of infinite fam-
ilies of triangle-free (r, k)-configurations. These families are different
from the families which can be constructed from the results presented
in [42], and also in this case it should be noticed that we treat both bal-
anced and unbalanced configurations.

Corollary 6.1.6. For any pair of integers r, k ≥ 2 there exist infinitely many
triangle-free (r, k)-configurations.

A numerical semigroup has a conductor, a smallest number from
which all larger integers belong to the numerical semigroup. Using this
we get the following result.

Corollary 6.1.7. Given a pair of integers r, k ≥ 2 there exists a positive num-
ber N such that for all integers n ≥ N there exists at least one triangle-free
configuration with parameters

((

n
k

gcd(r, k)

)

,

(

n
r

gcd (r, k)

)

, r, k

)

,

that is, when the number of points (and lines) is big enough, there is at least
one triangle-free configuration for any admissible set of parameters.

Using the construction and the combination of triangle-free com-
binatorial configurations in the proof of Theorem 6.1.4, it is possible
to explicitly construct triangle-free combinatorial (r, k)-configurations
with associated integers in the numerical semigroup generated by the
coprime integers m and am + 1, where m is the associated integer of
an existing triangle-free combinatorial (r, k)-configuration (for example
the one from Corollary 6.1.5) and a = rk/ gcd(r, k).

We have described an application of configurations to P2P UPIR. In
Section 3.3 it is justified that in order to avoid collusions of two users
that are spying on a third, configurations without triangles should be
used.

This is of course not the only application of triangle-free configura-
tions. Configurations have been used in coding theory, for example in
the construction of LDPC codes [34, 35, 57, 82], where a large girth is
important. In this context a girth which is at least 8 may be considered
to be large. The results on the existence and the explicit constructions of
triangle-free configurations presented in this article have therefore ap-
plications to coding theory. One should also notice that the arguments
used in this thesis in general work for configurations with an incidence
graph of girth at least n ∈ N, for n ≥ 6.
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Another example of an application of configurations is the deter-
mistic key distribution scheme for distributed sensor networks that was
described in [53, 54].

For all applications it is obviously useful to know that there are
plenty of triangle-free configurations, so that it is possible to find one for
any specified parameters. Finding means explicit construction, which

we provide. Also, the addition in D▽
(r,k) comes from combining two

triangle-free configurations, so we can construct larger (r, k)-configur-
ations from smaller ones, which is very useful in many applications.
We do not call it addition of configurations, since it is not well-defined.
Indeed we can combine the same two configurations in many ways, by
choosing different vertices in the combination process.

6.2 Open problems

In the elaboration of this thesis open problems have been formulated.
Some of these have been solved, others are still without answering.
Some of the problems that are still open are listed below.

• In many combinatorial configurations there is a bijection between
the sets P and {{p} ∪ N(p) : p ∈ P} defined by p 7→ {p} ∪ N(p).
We have seen that this is the case for triangle-free combinatorial
configurations and for (v, k, 1)-BIBD. In general, we still do not
know exactly for which combinatorial configurations this is true.

• We propose as an open problem the calculation of the conductor
of a numerical semigroup generated by a sequence of consecutive
prime powers.

• The question if there are parameters (r, k) with r 6= k such that
the numerical semigroup D(r,k) is non-ordinary is also still open.

• This thesis has provided some contributions to our knowledge on
the existence of combinatorial configurations. However, in gen-
eral the existence problem for combinatorial configurations re-
mains unanswered.
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Figure 1: Admissible (r, k) for d = 2
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Figure 2: Admissible (r, k) for d = 3
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Figure 3: Admissible (r, k) for d = 4
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Figure 4: Admissible (r, k) for d = 5
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Figure 5: Admissible (r, k) for d = 6
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Figure 6: Admissible (r, k) for d = 7
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Figure 7: Admissible (r, k) for d = 30
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