
Escola d’Enginyeria

Departament d’Arquitectura de

Computadors i Sistemes Operatius

Multipath Fault-tolerant Routing Policies to
deal with Dynamic Link Failures in High

Speed Interconnection Networks

Thesis submitted by Gonzalo Alberto
Zarza for the degree of Philosophiae
Doctor by the Universitat Autònoma de
Barcelona, under the supervision of Dr.
Daniel Franco Puntes

Barcelona, July 2011

Gonzalo Zarza. PhD Thesis 2011.

Multipath Fault-tolerant Routing Policies to deal
with Dynamic Link Failures in High Speed

Interconnection Networks

Thesis submitted by Gonzalo Alberto Zarza for the degree of Philosophiae Doctor by

the Universitat Autònoma de Barcelona, under the supervision of Dr. Daniel Franco

Puntes, at the Computer Architecture and Operating Systems Department.

Barcelona, July 2011

Supervisor

Dr. Daniel Franco Puntes

Gonzalo Zarza. PhD Thesis 2011.

Abstract

English

Interconnection networks communicate and link together the processing units of modern

high-performance computing systems. In this context, network faults have an extremely

high impact since most routing algorithms have not been designed to tolerate faults.

Because of this, as few as one single link failure may stall messages in the network, leading

to deadlock configurations or, even worse, prevent the finalization of applications running

on computing systems.

In this thesis we present fault-tolerant routing policies based on concepts of adaptability

and deadlock freedom, capable of serving interconnection networks affected by a large

number of link failures. Two contributions are presented throughout this thesis, namely:

a multipath fault-tolerant routing method, and a novel and scalable deadlock avoidance

technique.

The first contribution of this thesis is the adaptive multipath routing method Fault-

tolerant Distributed Routing Balancing (FT-DRB). This method has been designed to

exploit the communication path redundancy available in many network topologies, allowing

interconnection networks to perform in the presence of a large number of faults. The

second contribution is the scalable deadlock avoidance technique Non-blocking Adaptive

Cycles (NAC), specifically designed for interconnection networks suffering from a large

number of failures. This technique has been designed and implemented with the aim of

ensuring freedom from deadlocks in the proposed fault-tolerant routing method FT-DRB.

Keywords: Interconnection networks, network fault tolerance, adaptive routing, dead-

lock avoidance.

iv

Castellano

Las redes de interconexión tienen como uno de sus objetivos principales comunicar y

enlazar los nodos de procesamiento de los sistemas de cómputo de altas prestaciones.

En este contexto, los fallos de red tienen un impacto considerablemente alto, ya que la

mayoŕıa de los algoritmos de encaminamiento no fueron diseñados para tolerar dichas

anomaĺıas. Debido a esto, incluso un único fallo de en un enlace tiene la capacidad de

atascar mensajes en la red, provocando situaciones de bloqueo o, peor aún, es capaz de

impedir la correcta finalización de las aplicaciones que se encuentren en ejecución en el

sistema de cómputo.

En esta tesis presentamos poĺıticas de encaminamiento tolerantes a fallos basadas en los

conceptos de adaptabilidad y evitación de bloqueos, diseñadas para redes de comunicación

afectadas por un gran número de fallos de enlaces. Se presentan dos contribuciones a lo

largo de la tesis, a saber: un método de encaminamiento tolerante a fallos multicamino, y

una novedosa y escalable técnica de evitación de bloqueos.

La primera de las contribuciones de la tesis es un algoritmo de encaminamiento

adaptativo multicamino, denominado Fault-tolerant Distributed Routing Balancing (FT-

DRB), que permite explotar la redundancia de caminos de comunicación de las topoloǵıas

de red actuales, a fin de proveer tolerancia a fallos a las redes de interconexión. La segunda

contribución de la tesis es la técnica escalable de evitación de bloqueos Non-blocking

Adaptive Cycles (NAC). Dicha técnica fue espećıficamente diseñada para funcionar en

redes de interconexión que presenten un gran número de fallos de enlaces. Esta técnica fue

diseñada e implementada con la finalidad de servir al método de encaminamiento descrito

anteriormente, FT-DRB.

Palabras clave: Redes de interconexión, tolerancia a fallos, encaminamiento adaptativo,

evitación de bloqueos.

v

Català

Les xarxes d’interconnexió tenen com un dels seus objectius principals comunicar i enllaçar

els nodes de processament dels sistemes de còmput d’altes prestacions. En aquest context,

les fallades de xarxa tenen un impacte considerablement alt, ja que la majoria dels

algorismes d’encaminament no van ser dissenyats per tolerar aquestes anomalies. A causa

d’això, fins i tot una única fallada d’enllaç té la capacitat d’embussar missatges a la xarxa,

provocant situacions de bloqueig o, encara pitjor, és capaç d’impedir la correcta finalització

de les aplicacions que es trobin en execució en el sistema de còmput.

En aquesta tesi presentem poĺıtiques d’encaminament tolerants a fallades basades en

els conceptes d’adaptabilitat i evitació de bloquejos, dissenyades per a xarxes afectades

per un gran nombre de fallades d’enllaços. Es presenten dues contribucions al llarg de la

tesi, a saber: un mètode d’encaminament tolerant a fallades multicamı́, i una tècnica nova

i escalable d’evitació de bloquejos.

La primera de les contribucions de la tesi és un algorisme d’encaminament adaptatiu

multicamı́, anomenat Fault-tolerant Distributed Routing Balancing (FT-DRB), que permet

explotar la redundància de camins de comunicació de les topologies de xarxa actuals, a fi

de proveir tolerància a fallades a les xarxes d’interconnexió. La segona contribució de la

tesi és la tècnica escalable d’evitació de bloquejos Non-blocking Adaptive Cycles (NAC).

Aquesta tècnica va ser espećıficament dissenyada per funcionar en xarxes d’interconnexió

que presentin un gran nombre de fallades d’enllaços. Aquesta tècnica va ser dissenyada i

implementada amb la finalitat de servir al mètode d’encaminament descrit anteriorment,

FT-DRB.

Paraules clau: Xarxes d’interconexió, tolerància a fallades, encaminament adaptatiu,

evitació de bloquejos.

vi

Gonzalo Zarza. PhD Thesis 2011.

Acknowledgements

Many people have been with me on this journey of four years, where we have shared some

endless nights of hard work but also lots of good times.

First and foremost I would like to thank my supervisor Dani Franco for his valuable

guidance, patience and peace of mind throughout this four years. I also want to give

thanks to Diego Lugones, who has invested a significant amount of time and effort in my

projects. My thanks also go to Emilio Luque for trusting me four years ago, and especially

for teaching me to walk in this world of science. Special thanks also go to Dolores Rexachs,

for her constant and selfless help, and for being always there. I would also like to thank

Juan Carlos Moure because he has always encouraged healthy discussions.

I wish to thank all the people in the Simula Research Laboratory for their hospitality

during my stay in Oslo, especially to Frank Olaf Sem-Jacobsen, Tor Skeie and Olav Lysne.

Furthermore, I want to thank all the people that have influenced my undergraduate

studies at the Universidad Nacional del Litoral in Argentina. I would like to thank those

professors who were devote to our education even beyond the call of duty. Now I can see

the purpose of that hard work, and I wish to thank professors of the Sinc center for the

healthy suffering.

I also want to thank Claudia for her love and support, which has truly meant a lot to

me. She, together with my dear friends, Alvaro and Zeynep, Moni and Maru, and Hayden

and Andrea, have been some of the best gifts I’ve found in the Old World.

Finally, I thank my parents Alberto and Teresita, and my sisters Andre and Valen, for

all their support, understanding and love even though thousands of kilometers separate us.

viii

Gonzalo Zarza. PhD Thesis 2011.

ix

Contents

1 Introduction 1

1.1 Parallel Computing . 1

1.1.1 Interconnection Networks . 2

1.1.2 Network Fault Tolerance . 3

1.2 Motivation . 3

1.3 Objectives . 4

1.4 Contributions . 5

1.5 Research Method . 6

1.6 Thesis Outline . 7

2 Thesis Background 9

2.1 Interconnection Networks . 9

2.1.1 Topologies . 10

2.1.2 Routing . 14

2.1.3 Switching Techniques . 15

2.1.4 Flow Control . 16

2.2 Fault Tolerance . 16

2.2.1 Network Fault Tolerance . 18

2.2.2 Fault-tolerant Routing . 21

2.2.3 Deadlock Resolution . 23

3 Fault-tolerant Distributed Routing Balancing 27

3.1 Monitoring, Detection and Notification . 29

3.2 Selection of Escape Paths . 32

3.3 Configuration of Alternative Paths . 34

3.4 Permanent and Transient Faults . 39

3.5 Architecture of Network Components . 43

3.5.1 Packets Format . 43

3.5.2 FT-DRB Router . 45

x

3.5.3 Required Resources . 47

3.6 Design Alternatives . 48

3.6.1 Link Failure Notification . 48

3.6.2 Permanent and Transient Faults . 48

3.7 Discussion . 51

4 Scalable Deadlock Avoidance for Fault-tolerant Routing 53

4.1 Deadlock Avoidance in Faulty Networks 54

4.2 Non-Blocking Adaptive Cycles . 55

4.2.1 Detection of Deadlock Prone Situations 57

4.2.2 Identification of Routing Cycles . 60

4.2.3 Gradual Recovery of Packet Forwarding 62

4.2.4 Applicability Proof . 64

4.3 Discussion . 66

5 Evaluation of Proposals 67

5.1 Workloads . 68

5.1.1 Synthetic Traffic Patterns . 68

5.1.2 Availability Traces of Real Systems 69

5.2 Network Models . 70

5.2.1 Processing Nodes . 71

5.2.2 Network Nodes . 74

5.3 Evaluation Metrics . 77

5.4 Evaluation Method . 77

5.4.1 NAC Evaluation . 78

5.4.2 FT-DRB Evaluation . 80

5.5 NAC Evaluation Results . 81

5.5.1 Tornado Pattern . 82

5.5.2 Tornado Pattern with Variable Load 87

5.5.3 Tornado Pattern with Additional Traffic 89

5.6 FT-DRB Evaluation Results . 92

5.6.1 Permanent Failures with Synthetic Traffic 92

5.6.2 Permanent Failures with Spatial Fault Patterns 97

5.6.3 Permanent Failures with Collective Communication 99

5.6.4 Transient Failures . 99

5.6.5 Real-based Failures . 101

5.6.6 Evaluation of Alternative Paths . 105

xi

5.6.7 Discussion . 110

6 Conclusions 113

6.1 Final Conclusions . 114

6.2 Further Work and Open Lines . 115

6.3 List of Publications . 116

Bibliography 119

Appendices

A Complementary Results 133

A.1 NAC Evaluation . 133

A.1.1 Tornado with Variable Load . 133

A.1.2 Tornado with Additional Traffic . 137

A.2 FT-DRB Evaluation . 150

A.2.1 Permanent Failures with Synthetic Traffic 150

xii

Gonzalo Zarza. PhD Thesis 2011.

xiii

List of Figures

2.1 Classification of shared-medium network topologies. 11

2.2 Examples of shared-medium network topologies. 12

2.3 Classification of direct network topologies. 12

2.4 Examples of direct network topologies (orthogonal). 12

2.5 Classification of indirect network topologies. 13

2.6 Examples of indirect network topologies. 13

2.7 Classification of routing algorithms. 15

2.8 Classification of adaptive routing algorithms. 15

2.9 Relation between Fault, Error and Failure. 17

2.10 Network failures nomenclature. 17

2.11 Classification of techniques for handling deadlock situations. 24

3.1 Examples of monitoring, detection and notification processes. 30

3.2 Monitoring, detection and notification. 31

3.3 Example of an alternative escape path. 32

3.4 Example of a supernode with 1-hop and 2-hop intermediate nodes. 33

3.5 Selection of escape paths. 34

3.6 Example of a metapath composed by 5 multistep paths. 36

3.7 Example of a two MSPs metapath configuration. 37

3.8 Metapath configuration. 39

3.9 Permanent and transient faults. 40

3.10 Reception of ACK packets. 41

3.11 Injection of application messages. 42

3.12 FT-DRB Data packet format. 44

3.13 FT-DRB ACK packet format (failure information). 45

3.14 FT-DRB ACK packet format (path latency value). 45

3.15 FT-DRB Router architecture. 46

3.16 FT-DRB Network interface. 47

3.17 Destination-based notification of link failures. 49

3.18 Methods for identifying changes in the state of a failed link. 50

xiv

4.1 Example of direction changes in routing functions. 54

4.2 Example of a deadlocked configuration. 55

4.3 Example of the deadlock avoidance technique. 56

4.4 NAC Router. 58

4.5 NAC + FT-DRB Router. 58

4.6 NAC Notation. 59

4.7 NAC Triggering conditions. 60

4.8 NAC Recovery conditions. 63

4.9 Example of identification and recovery processes. 64

4.10 Equivalent graph representation of network nodes. 65

4.11 Graph representation of a deadlock prone routing cycle. 65

5.1 Processing node model implementation. 71

5.2 Processing node Source module FSM. 72

5.3 Processing node Sink module FSM. 72

5.4 Processing node Input Buffer module FSM. 73

5.5 Processing node Flow Control module FSM. 73

5.6 Processing node CCA module FSM. 74

5.7 Network node model implementation. 75

5.8 Network node Subnet Manager module FSM. 76

5.9 Network node Routing module FSM. 76

5.10 Surface-map for tornado traffic in a 8x8 torus (row y = 5). 79

5.11 Packets received in the time slot 0.01-0.02 82

5.12 Throughput throughout simulation time in a deadlock configuration. . . . 83

5.13 Average latency throughout simulation time applying NAC. 84

5.14 Throughput throughout simulation time applying NAC. 84

5.15 Detailed view of throughput throughout simulation time. 85

5.16 Packets received in the time slot 1.18-1.19 85

5.17 Packets received in four time slots ranging from 1.17 to 1.21 86

5.18 Absolute latency degradation for different generation rates. 87

5.19 Percentages of latency degradation for different generation rates. 88

5.20 Throughput degradation for different generation rates 88

5.21 Absolute latency degradation with additional traffic patterns. 89

5.22 Percentages of latency degradation with additional traffic patterns 90

5.23 Throughput degradation with additional traffic patterns 90

5.24 Packets received in four time slots with tornado and bit reversal traffic . . 91

5.25 Evaluation results for 3 topologies with 10% of links failed (permanent). . . 93

xv

5.26 Evaluation results of permanent link failures in Torus 8x8. 94

5.27 Evaluation results of permanent link failures in Torus 16x16. 95

5.28 Evaluation results of permanent link failures in Fat-tree 4-ary 3-tree. . . . 96

5.29 Examples of spatial fault patterns. 98

5.30 Evaluation results of spatial faults patterns. 98

5.31 Evaluation results of collective communication patterns. 101

5.32 Evaluation results of transient link failures in Torus 8x8. 102

5.33 Evaluation results of transient link failures in Torus 16x16. 103

5.34 Evaluation results of transient link failures in Fat-tree 4-ary 3-tree. 104

5.35 Evaluation results of real-based link failures for system LANL 12. 106

5.36 Evaluation results of real-based link failures for system LANL 18. 107

5.37 Evaluation results of real-based link failures for system LANL 19. 108

5.38 Evaluation results of real-based link failures for system PNNL MPP2. . . . 109

5.39 Evaluation results for different number of alternative paths. 110

A.1 Average latency for different generation rates. 133

A.2 Packets received in four time slots with generation rate 400 (pk/node/sec) 134

A.3 Packets received in four time slots with generation rate 500 (pk/node/sec) 135

A.4 Packets received in four time slots with generation rate 600 (pk/node/sec) 136

A.5 Average latency with additional traffic patterns. 137

A.6 Packets received in four time slots with tornado and bit reversal. Traffic

load 400 (pk/node/sec) . 138

A.7 Packets received in four time slots with tornado and bit reversal. Traffic

load 500 (pk/node/sec) . 139

A.8 Packets received in four time slots with tornado and bit reversal. Traffic

load 600 (pk/node/sec) . 140

A.9 Packets received in four time slots with tornado and butterfly. Traffic load

400 (pk/node/sec) . 141

A.10 Packets received in four time slots with tornado and butterfly. Traffic load

500 (pk/node/sec) . 142

A.11 Packets received in four time slots with tornado and butterfly. Traffic load

600 (pk/node/sec) . 143

A.12 Packets received in four time slots with tornado and matrix transpose.

Traffic load 400 (pk/node/sec) . 144

A.13 Packets received in four time slots with tornado and matrix transpose.

Traffic load 500 (pk/node/sec) . 145

xvi

A.14 Packets received in four time slots with tornado and matrix transpose.

Traffic load 600 (pk/node/sec) . 146

A.15 Packets received in four time slots with tornado and perfect shuffle. Traffic

load 400 (pk/node/sec) . 147

A.16 Packets received in four time slots with tornado and perfect shuffle. Traffic

load 500 (pk/node/sec) . 148

A.17 Packets received in four time slots with tornado and perfect shuffle. Traffic

load 600 (pk/node/sec) . 149

A.18 Evaluation results of random permanent link failures in Torus 8x8. 150

A.19 Evaluation results of random permanent link failures in Torus 16x16. . . . 151

A.20 Evaluation results of random permanent link failures in Fat-tree. 152

xvii

List of Tables

3.1 Parameters used in source-based probes. 50

3.2 Procedures for changing the state of link failures. 51

4.1 Summary of notation and operators used in NAC. 59

5.1 Mathematical description of synthetic traffic patterns. 68

5.2 Characteristics of the systems of the availability traces. 69

5.3 Attributes of availability traces used in the evaluation of FT-DRB. 69

5.4 Simulation parameters used in the evaluation of NAC. 78

5.5 Simulation parameters used in the evaluation of FT-DRB (I) 81

5.6 Simulation parameters used in the evaluation of FT-DRB (II) 81

5.7 Simulation parameters for permanent failures and synthetic patterns (I) . . 93

5.8 Simulation parameters for permanent failures and synthetic patterns (II) . 93

5.9 Simulation parameters for permanent failures and spatial faults (I) 97

5.10 Simulation parameters for permanent failures and spatial faults (II) 97

5.11 Simulation parameters for permanent failures and collective comm. (I) . . 100

5.12 Simulation parameters for permanent failures and collective comm. (II) . . 100

5.13 Simulation parameters for transient failures and synthetic patterns (I) . . . 100

5.14 Simulation parameters for transient failures and synthetic patterns (II) . . 100

5.15 Simulation parameters for the evaluation of alternative paths (I) 105

5.16 Simulation parameters for the evaluation of alternative paths (II) 105

xviii

Gonzalo Zarza. PhD Thesis 2011.

xix

List of Algorithms

3.1 Link status monitoring. 29

3.2 Path latency monitoring. 35

3.3 Metapath configuration. 37

3.4 Multistep path selection. 38

xx

Gonzalo Zarza. PhD Thesis 2011.

xxi

List of Equations

3.1 Multistep Path definition . 33

3.2 Multistep Path length . 34

3.3 Path latency . 35

3.4 Metapath definition . 36

3.5 Metapath latency . 36

3.6 Multistep Path bandwidth . 38

3.7 Metapath bandwidth . 38

3.8 Probability Density Function . 38

4.1 NAC Triggering condition 1 . 57

4.2 NAC Triggering condition 2 . 57

4.3 NAC Triggering condition 3 . 60

4.4 NAC Recovery condition 1 . 62

4.5 NAC Recovery condition 2 . 62

4.6 NAC Recovery condition 3 . 62

4.7 NAC Recovery condition 4 . 62

4.8 NAC Average time . 63

4.9 NAC Worst case time . 63

5.1 Average latency . 77

5.2 Global average latency . 77

xxii

Gonzalo Zarza. PhD Thesis 2011.

xxiii

Chapter 1

Introduction

“We choose to go to he moon in this decade and do the other things, not

because they are easy, but because they are hard.”

John F. Kennedy

1.1 Parallel Computing

Computer science has become an indispensable tool and a valuable source of knowledge

for modern societies, especially in the last few decades. Along these years, computing

systems have opened a trend in daily behavior and lifestyle of many people by becoming

the engine of an increasing number of essential applications and services. Since then,

relations between human societies and computing systems have become remarkably strong

and the demand for even more computing power has never stopped.

The steady and undeniable increase in computing power demand highlighted the need

for massive parallelization approaches and high-performance computing (HPC) systems. At

first, computing power was dedicated almost exclusively to complex and computationally

intensive scientific applications. Some well-known examples of these applications are

the study and prediction of natural disasters, including earthquakes and tsunami, fire

forecasting, etc. Despite this scientific origin, HPC systems have undergone a major

expansion in recent years, primarily to serve emerging application areas requiring greater

amounts of computing power. These new applications include DNA sequencing, molecular

dynamics simulations, weather forecasting, and world-wide banking transactions, among

others. Even the simplest Google search is currently based on HPC systems [5].

Clusters of computers, together with massively parallel processing (MPP) systems,

have become the two prevailing approaches for achieving parallelism in current high-

performance computing systems. Regardless of the approach being used, HPC systems

1

consists of thousands of components, including processing nodes, memory banks, disks,

and other peripherals [22]. In this context, the interconnection network emerges as one of

the most important components of parallel computers due to its critical role as linking and

communication element. Indeed, interconnection networks allow parallel systems operate

as large coherent entities.

Nowadays, interconnection networks are expected to provide uninterrupted services

but the steady increase in complexity and number of components that make them up leads

to significantly higher failure rates. Because of this, and due to the long execution times of

computationally intensive applications, many interconnection networks may show a Mean

Time Between Failures smaller than the execution time of some applications. This implies

the existence of safety threats for sensitive systems involving mission-critical operations,

banking, and computation-intensive applications, among others [1]. Consequently, it is

extremely important to avoid service interrupts and guarantee the correct finalization of

applications, even in the presence of multiple failures.

Clearly, the performance of current systems is closely related to the dependability

and robustness of the fault tolerance mechanisms on which they rely. Unfortunately,

as explained above, the steady increase in complexity and number of components of

interconnection networks significantly increases failure rates. Questions arise from the

analysis of this situation such as: how do failures affect communication systems? What

kinds of failures appear on real systems? Are those systems able to maintain their operation

and performance standards in spite of failure occurrences? If they are not, what should

the solution be? What are the best options to achieve fault tolerance and system service

continuity? The mere posing of these questions highlights the importance of fault tolerance,

and the need to address this problem in current high-performance computing systems.

This thesis is focused on answering these questions with the aim of providing fault-

tolerance to interconnection networks, even in the presence of multiple failures.

In order to provide completeness to the scope of the thesis presented along this chapter,

we will give now a short introduction into interconnection networks and network fault

tolerance.

1.1.1 Interconnection Networks

Interconnection networks, together with the processing units, I/O devices, and memory

banks, constitute basic blocks of current computing systems. In general terms, intercon-

nection networks connect the individual components (processing units and memories) of

computing systems through a collection of links and switches, where a switch allows a given

component to communicate with several other components without having a separate link

2

to each of them. Consequently, the performance of most computing systems is currently

limited by their communication or interconnection network (not by their logic or memory).

This makes interconnection networks the key factor in the success of current and future

computing systems [14].

There is no single criterion for the definition of interconnection networks, as they

are currently being used for many different applications. In this thesis, we will consider

interconnection networks as high-speed and low-latency networks, used to communicate

and link together the components of computer systems through a collection of bidirectional

links and switches.

1.1.2 Network Fault Tolerance

The need for network fault tolerance becomes evident when taking into account that

some specific features of the network (such as routing) may provide only a single path

between a given source and a given destination, in which case any fault of a link or switch

along the path will disconnect the source-destination pair. Fault tolerance in networks is

often achieved by having multiple paths connecting sources and destinations [48, Ch. 4].

Network fault tolerance may be further divided into two categories: static fault tolerance,

for methods that require a network shutdown to perform some sort of static reconfiguration

process; and dynamic fault tolerance, grouping methods that do not require information

about network faults in advance.

In this thesis, we focus on the design of adaptive fault-tolerant routing algorithms. We

have chosen this approach with the aim of providing graceful and wide-range solutions

to the problem of network fault tolerance, by taking advantage of the intrinsic path

redundancy of some network topologies such as tori and k-ary n-trees. It is worth noting

that these topologies are currently among the most extended topologies in HPC systems,

according to the TOP500 supercomputer list of November 2010 [95].

1.2 Motivation

The wide range of applications of high-performance computing systems provide great

benefits to modern societies, highlighting the need of keeping some of these systems

up and running as long as possible. These systems are commonly used for running

applications requiring a large volume of data communication. Under these circumstances,

communications are based on large and complex high-speed interconnection networks, a

situation that leads to considerable increases in network failure rates.

3

Since interconnection networks are critical components of high-performance computing

systems, failures in network devices have terrible impacts on the system. As few as

a single link failure has the deadly potential of halting the entire computing system,

blocking any running application. Several solutions have been proposed in recent decades,

with varying success, but most of them have become obsolete due to advances of the

networking technology. Nevertheless, most solutions based on static fault tolerance, such

as components redundancy and static reconfigurations are still valid but at the expense of

high extra cost in terms of economic resources and time, respectively.

Mechanisms based on the concept of dynamic fault tolerance often achieve far better

performance results, since do not require the system to be shut down. As counterpart,

implementing these mechanisms in real systems is often difficult because adaptability

poses a new an important problem, deadlock occurrences. Notwithstanding, given the

performance improvements achievable by dynamic fault tolerance approaches, any proposal

capable of providing fault tolerance and also solving the deadlock problem will have

incredibly beneficial implications for both users and owners of high-performance computing

systems. This is the motivation of this thesis.

1.3 Objectives

The ultimate goal of this thesis is to design, implement and evaluate fault-tolerant routing

policies capable of serving interconnection networks, even in the presence of a large number

of dynamic link failures. We address this problem by designing adaptive multipath routing

policies for exploiting benefits of path redundancy in commonly used network topologies,

including tori and k-ary n-trees. We can enumerate the objectives of this thesis as follows:

1. Conduct a study on the fault tolerance theory, in order to analyze the potential

application of these concepts to the field of interconnection networks.

2. Conduct a study on the dynamic characteristics of interconnection networks

taking into account results obtained in the previous point, in order to identify

possible solutions to the problem fault tolerance in interconnection networks.

3. Design and implement adaptive multipath fault-tolerant routing policies capable

to tolerate a large number of link failures.

4. Conduct an analysis of problems caused by the occurrence of failures; and evaluate

the effectiveness of proposed solutions to the aforementioned problems.

4

5. Evaluate problems encountered in the previous point in order to avoid possible

deadlock situations and propose solutions (if necessary).

6. Analyze the behavior of solutions proposed in points 3 and 5 by means of a

simulation-based experimental study, designed to confirm the proper functioning

of the proposals.

1.4 Contributions

The contributions of the thesis is directly related to the achievement of the objectives

we have outlined in previous sections. To this end, we have designed and implemented

fault-tolerant routing policies based on concepts of adaptability and deadlock freedom. In

this thesis, we present the following contributions:

• An adaptive multipath routing method for treating a large number of network

link failures in HPC systems. The method allows applications to successfully

complete their executions by exploiting the redundancy of communication paths

available in most network topologies. At the same time, the method treats the

congestion problems caused by the occurrences of such failures. This work is based

on source-destination path information and consists of three phases. The first

phase is responsible for on-line fault diagnosis and uses physical level monitoring

at network nodes along the source-destination path. If a message encounters a

faulty link along the path, the second phase immediately reroutes that message

to the destination through an alternative path. In the third and last phase, the

source node is notified about the link failure in order to disable the faulty path,

and to establish new alternative paths for the following messages to be sent to

that destination.

This work has followed an incremental development approach based on several

extensions and enhancements of the original method. The original method has

been published in [102], [106] and [104]. An extension intended maximize the use

of system resources by means of detecting and applying differential treatments to

permanent and transient faults, has been published in [107], [103] and [109]. In

addition, the work present in [107] includes an supplementary evaluation based

on the availability traces of parallel and distributed systems obtained from the

public failure data repositories CFDR [98] and FTA [29].

• A complete and scalable deadlock avoidance technique specifically designed to

deal with large interconnection networks suffering from a large number of dynamic

5

faults. This technique has been designed to ensure deadlock freedom in faulty

networks without using virtual channels. The aim of this proposal is to deny the

hold-and-wait and circular wait conditions in order to avoid deadlock occurrences

by means of adding an one-slot deadlock avoidance buffer to each input buffer,

and applying a simple set of actions when accessing output buffers with no free

space.

The first version of this work, including an intuitive functional proof, has been

published in [105]. Finally, the fully-enhanced three-stages version of the work

has been published in [108]. In addition, a draft containing some of the proposals

of this work has been presented to the Spanish Patent and Trademark Office

(Oficina Española de Patentes y Marcas).

1.5 Research Method

The research in this thesis is oriented to the design, implementation and evaluation of

fault-tolerant routing policies; and is framed in the academic program of applied research

of the Universitat Autònoma de Barcelona.

Throughout this thesis, we have followed the (iterative) hypothetico-deductive method

as the methodological scheme for performing the scientific research [16]. The method is

based on five major stages:

1. Existing theories and observations. Pose the question in the context of

existing knowledge, theory and observations.

2. Hypothesis. Formulate a hypothesis as a tentative answer.

3. Predictions. Deduce consequences and make predictions.

4. Test and new observations. Test the hypothesis in a specific experiment/the-

ory field.

5. Old theory confirmed within a new context or new theory proposed.

When consistency is obtained the hypothesis becomes a theory and provides

a coherent set of propositions that define a new class of phenomena or a new

theoretical concept.

As a rule, the loop 2-3-4 is repeated with modifications of the hypothesis until the

agreement is obtained, which leads to 5. If major discrepancies are found the process must

6

start from the beginning. The results of stage 5 have to be published. Theory at that stage

is subject of process of natural selection among competing theories. The process can start

from the beginning, but the state 1 has changed to include the new theory/improvements

of old theory [16].

This thesis share theoretical basis with the method developed and discussed in depth

by Franco et al. [25] [27], [28], Distributed Routing Balancing (DRB); and subsequently

improved by Lugones et al. [55], [56], [57]. These methods, together with the theory of

fault tolerance and interconnection networks, constitute the first stage of the scientific

research method of this thesis. Throughout this stage, we have conducted the first study

on fault-tolerance and interconnection networks. Books on fault-tolerance by Jalote

[41], Abd-El-Barr [1], Koren and Krishna [48], and Kanoun and Spainhower [42], and

interconnection networks by Duato et al. [22], Dally and Towles [14], and Hsu and Lin [37]

have been particularly useful. Since DRB and its related methods have been discussed

in depth in two previous theses, we focus on the design, implementation, and evaluation

of novel and complete fault-tolerant mechanisms. In fact, Stages 2 and 3 comprise the

proposal of the fault-tolerant routing policies based on DRB. Then, in Stages 4 and 5,

we have evaluated and analyzed the effectiveness of the proposed fault-tolerant routing

method through simulation, using a standard discrete event simulator. To this end, we

have enhanced existing models of network components [54], [58] by including the proposed

fault tolerance mechanisms and policies. This has allowed us to develop the simulation

models used in the experimentation of our proposals.

1.6 Thesis Outline

According to the objectives and the research method described above, the outline of the

remaining chapters of the thesis is as follows.

Chapter 2: Thesis Background.

This chapter introduces some basic concepts about interconnection networks and

fault tolerance. Then, presents the related work and exposes some specific concepts

about network fault tolerance, fault-tolerant routing and deadlock avoidance.

Chapter 3: Fault-tolerant Distributed Routing Balancing.

This chapter explains in detail the adaptive fault-tolerant routing method Fault-

tolerant Distributed Routing Balancing (FT-DRB), designed for treating a large

number of dynamic failures in interconnection networks.

7

Chapter 4: Scalable Deadlock Avoidance for Fault-tolerant Routing.

In this chapter, we present the proposed scalable deadlock avoidance technique

Non-blocking Adaptive Cycles (NAC), specifically designed for interconnection

networks affected by a large number of link failures.

Chapter 5: Evaluation of Proposals.

This chapter describes the test scenarios and provides the explanation of experi-

mental results for both proposals, the fault-tolerant routing method (FT-DRB)

and the deadlock avoidance technique (NAC).

Chapter 6: Conclusions.

Concludes the thesis and presents the further work and open lines for both the

fault-tolerant routing method and the deadlock avoidance technique.

The list of references and one appendix complete the document of this thesis. The

Appendix A includes the complementary results of the evaluation presented in Chapter 5.

8

Chapter 2

Thesis Background

In this chapter, we present some basic concepts about interconnection networks and

fault tolerance needed to frame the thesis. First, we introduce a general description of

interconnection networks in section 2.1. Then, in section 2.2, we present some concepts of

fault tolerance and focus on specific aspects of network fault tolerance (subection 2.2.1),

fault-tolerant routing (subsection 2.2.2), and deadlock resolution (subection 2.2.3).

2.1 Interconnection Networks

Interconnection networks can be defined as programmable physical systems consisting

of a series of elements (links and switches) that behave and interact with each other for

communicating numerous components of computing systems [27]. In computer systems,

interconnection networks connect processors to memories and input/output (I/O) devices

to controllers; in communication switches, they connect input ports to output ports [14].

Currently, interconnection networks are essential for systems where efficient commu-

nication technologies have a direct influence in the overall performance of the system.

These systems can be classified into two main groups [96], [97]: computer clusters, and

massively parallel processing (MPP) systems. Computer clusters have become the largest

of these groups, representing 82.8% of the systems in the TOP500 list of November 2010

[96]. These systems were originally conceived as a platform for implementing parallel

applications, even though they have been subsequently used in other application fields such

as storage networks and internet services. The other group comprises the MPP systems,

such as the IBM BlueGene/P supercomputer [38], and represents 16.8% of the TOP500

systems [96]. These systems were the first using high-speed interconnection networks.

Although cost constraints and reliability and repairability are always important aspects,

there are four functional requirements (mostly related to routing algorithms) affecting

9

the design and applicability of interconnection networks: connectivity, deadlock freedom,

livelock freedom, starvation. Since the problem of deadlock resolution plays an important

role in network fault tolerance, we discuss these concepts in detail in subsection 2.2.3.

We will now give an introduction to important features of interconnection networks

design related to the thesis, including topologies (subsection 2.1.1), routing (subsection

2.1.2), flow control (subsection 2.1.4), and switching techniques (subsection 2.1.3).

2.1.1 Topologies

The topology of the network refers to how nodes and channels are arranged in the

interconnection network. This is probably the most commonly used criterion for the

classification of interconnection networks since it defines how nodes and channels are

interconnected. Network topologies can be classified in three main groups, as defined by

Duato et al. [22, Ch. 1] and Dally and Towles [14, Ch. 3]: shared-medium networks, direct

networks, and indirect networks.

Shared-medium Networks. In this kind of networks, the transmission medium is

shared by all communicating devices. These networks were used in the first parallel

computers but falling in disuse soon due to performance and scalability issues. Local area

networks and backplane buses are commonly adopted within the context of shared-medium

networks. A local area network is basically a bus or ring network topology that uses copper

wires or fiber optics as the transmission medium for interconnecting computers into an

integrated parallel and distributed environment. On the other hand, a backplane bus is

the simplest interconnection structure for bus-based parallel computers. The classification

and some examples of these networks are shown in Figs. 2.1 and 2.2, respectively.

Direct Networks. Consist of a set of nodes, each one being directly connected to a

(usually small) subset of other nodes in the network. Each node is a programmable

computer with its own processor, local memory, and other supporting devices. A common

component of these nodes is a router, which handles message communication among nodes.

For this reason, direct networks are also known as router-based networks where each router

has direct connections to its neighboring routers. Direct networks have been a popular

interconnection architecture for constructing large-scale parallel computers. As stated

by Duato et al. [22, Ch. 1], direct networks have been traditionally modeled by a graph

G(N,C), where the vertices of the graph N represent the set of precessing nodes and

the edges of the graph C represent the communication channels. Most direct networks

have orthogonal topologies where nodes are arranged in an orthogonal n−dimensional

10

space, and every link is arranged in such a way that it produces a displacement in a single

dimension. There is an additional division within orthogonal network topologies; one of

the subdivision corresponds to the strictly orthogonal topologies, where every node as at

least one link crossing each dimension, as in a n-dimensional mesh or a k-ary n-cube; the

other subdivision comprises the weakly orthogonal topologies, where some nodes may not

have any link in some dimensions, such as a binary tree. The corresponding classification

and examples are shown in Figs. 2.3 and 2.4.

Indirect Networks. In these networks, the communication between any two nodes has

to be carried through some switches. Each node has a network adapter that connects to

a network switch. Each switch can have a set of ports. Each port consists of one input

and one output link. A (possibly empty) set of ports in each switch is either left open

or connected to processors, whereas the remaining ports are connected to ports of other

switches to provide connectivity between the processors. The interconnection of those

switches defines various network topologies, ranging from regular topologies used in array

of processors to irregular topologies currently used in network of workstations. Regular

topologies have regular connection patterns between switches as in the case of crossbars1

and MINs2; while irregular topologies do not follow any predefined pattern. As in the

case of direct networks, indirect networks can also be modeled by a graph G(N,C), where

N is the set of switches and C is the set of unidirectional or bidirectional links between

the switches [22, Ch. 1]. The classification and some examples of this kind of networks are

shown in Figs. 2.5 and 2.6, respectively.

Shared-medium networks

Local Area Networks

Contention bus Token bus Token ring

Backplane bus

Figure 2.1: Classification of shared-medium network topologies.

1Crossbar networks allow any processor in the system to connect to any other processor simultaneously
without contention.

2Multistage Interconnection Networks (MINs) connect input devices to output devices through a
number of switch stages, where each switch is a crossbar network.

11

(a) Local Area Network (b) Bus-based Network

Figure 2.2: Examples of shared-medium network topologies.

Direct networks

Strictly orthogonal topologies

Mesh Torus

(k -ary n-cube)

Hypercube

Other topologies

Figure 2.3: Classification of direct network topologies.

(a) Mesh 2D (b) Torus 2D (c) Cube 3D

(d) Ring (e) Torus 3D (f) Cube 4D

Figure 2.4: Examples of direct network topologies (orthogonal).

12

Indirect networks

Regular topologies

Crossbar Multistage Interconnection

Networks (MIN)

Non-blocking

Clos Networks

Blocking

Unidirectional

MIN

Bidirectional

MIN

Irregular topologies

Figure 2.5: Classification of indirect network topologies.

Switch

Nodes

(a) Crossbar (b) MIN Butterfly (c) Fat-tree

Figure 2.6: Examples of indirect network topologies.

13

2.1.2 Routing

Routing methods determine the path taken by a packet from a source terminal node to a

destination terminal node. Indeed, routing algorithms are responsible of assigning one or

more paths to each source-destination pair; a path is basically composed by a determined

group of switches and links. Although the number of existing options is quite large, routing

algorithms can be classified into four main groups using the taxonomy proposed by Duato

et al. [22, Ch. 4]. The resulting classification is based on number of destinations, routing

decisions, implementation and adaptivity. The classification is summarized in Figs. 2.7

and 2.8.

Number of destinations. Routing algorithms where packets have a single destination

are known as unicast routing algorithms, while those having multiple destinations are

called multicast routing algorithms.

Routing decisions. This criterion is based on determining who and where are taken

the routing decisions. Decisions can be either taken by a centralized controller (centralized

routing), or in a non-centralized manner. In the latter case, decisions can be taken at the

source node prior to packet injection (source-based routing) or in a distributed manner

while packets traverse the network (distributed routing). Multiphase routing is an hybrid

scheme where the source node selects some destination nodes and the path between them

is established based on distributed approaches.

Adaptivity. This is probably the most important classification criterion in the context

of this thesis. Adaptivity refers to how routing algorithms select a path between the set of

possible paths for each source-destination pair. Deterministic routing algorithms always

chose the same path between a source-destination pair, even if there are multiple possible

paths. Oblivious routing algorithms choose a route without considering any information

about the network’s present state (note that oblivious routing includes deterministic

routing). Finally, adaptive routing algorithms adapt to the state of the network, using

this state information for making decisions.

Implementation. Basically, routing algorithms can be based on routing tables storing

paths information; or also on routing functions (logic or arithmetic) determining the path

for each source-destination pair. The routing algorithm can be either deterministic or

adaptive in both cases.

14

Routing algorithms

Number of destinations

Unicast Multicast

Routing decisions

Centralized Not centralized

Implementation

Table-based Function-based

Adaptivity

Deterministic Adaptive

Figure 2.7: Classification of routing algorithms.

Adaptive Routing algorithms

Network info

Isolated Local

Progressiveness

Progressive Backtracking

Minimality

Profitable Misrouting

Number of paths

Complete Partial

Figure 2.8: Classification of adaptive routing algorithms.

2.1.3 Switching Techniques

Switching techniques are responsible of moving packets within each switch along source-

destination paths. Actually, switching is the mechanism that removes data from an input

channel and places it on an output channel [64]. At this moment, the most widely accepted

techniques are Store-And-Forward, Virtual Cut-Through [43], and Wormhole [13].

Store-And-Forward (SAF). With this technique, each node along the path waits

until a packet has been entirely stored (received) before forwarding the packet to the next

node. Consequently, each packet is completely buffered at each intermediate node before

it is forwarded to the next node. The header information is extracted by the intermediate

node and used to determine the output link over which the packet is to be forwarded.

Virtual Cut-Through (VCT). When using this technique, packets can be forwarded

as soon as the header (containing routing information) is received and resources (buffers

and channels) are acquired, without waiting for the entire packet to be received. However,

if the header is blocked on a busy output channel, the complete message is buffered at the

node and this technique behaves like SAF.

Wormhole. In wormhole switching, a packet is broken up into flits (the smallest unit

of resource allocation in a router) and input and output buffers are typically large enough

to store a few flits. A packet is pipelined through the network at the flit level since

15

each packet is typically too large to be completely buffered within a router. In terms of

operation wormhole is similar to VCT but with channel and buffers allocated to flits rather

than packets, therefore, small buffers can be used. Just a few flits need to be buffered at

a router. Consequently, the small buffer requirement and packet pipelining enable the

construction of routers that are small, compact and fast [22, Ch. 2].

2.1.4 Flow Control

Flow control is a point-to-point synchronization protocol that determines how network’s

resources are allocated to packets traversing the network. This protocol is used for

transmitting and receiving data employing request/acknowledgment signaling to ensure

successful transfer and the availability of buffer space at the receiver [22, Ch. 2], [14,

Ch. 13]. The most commonly used schemes are Credit-based and On/Off.

Credit-based Flow Control. In this scheme, the sender (upstream switch) keeps a

count of the number of free flits3 buffers, or credits, in the receiver (downstream switch).

Then, each time the sender forwards a flit, the credit count is reduced. If the count reaches

zero because there are no more free flit buffers, no further flits can be forwarded until a

buffer becomes available.

On/Off Flow Control. In this scheme, the sender state is based on a single control bit

that represents whether the sender is permitted to send (on state) or not (off state). This

scheme can greatly reduce the amount of sender signaling in certain cases. Stop-and-go is

a different scheme also based on this concept.

2.2 Fault Tolerance

In the previous section, we have presented some concepts about interconnection networks,

let us now introduce some concepts borrowed from the fault tolerance theory.

In simple words, a system is fault tolerant if it can mask the presence of faults in the

system by using redundancy. As stated by Koren and Krishna [48, Ch. 1], redundancy

is the property of having more of a resource than is minimally necessary to do the job

at hand. As failures happen, redundancy is exploited to mask or otherwise work around

these failures, thus maintaining the desired level of functionality.

3The flit size can be less than a packet size when wormhole switching is used; it is equal to the packet
size when virtual cu-through switching is used.

16

An important topic in fault tolerance is the difference between the concepts of fault,

error and failure. A fault is often related to the notion of defect or bug, while errors

constitute manifestations of faults. It is worth noting that the presence of faults does not

ensure the occurrence of errors. A failure occurs when the system cannot provide the

desired service or when the behavior of the system first deviates from that required by its

specifications [50]. The relation between these concepts is shown in Fig. 2.9.

Fault

Error

Failure

Figure 2.9: Relation between Fault, Error and Failure.

Regarding their duration, faults can be permanent, when the component simply

goes down; transient, when after a malfunctioning time the normal functionality of the

component is fully restored; or intermittent, when the component oscillates between

malfunctioning and normality. Another classification of hardware faults is into benign and

malicious. A fault that just causes a component to go dead is called benign or fail-stop,

while a fault that causes incorrect results that resemble real ones is called malicious or

byzantine [48, Ch. 1]. In the field of interconnection networks, failures are divided into

failures of communication channels (link failures) and failures of the entire processing

element or the its associated router (node failures). On a node failure, all physical links

incident on the failed node are also marked faulty at adjacent nodes [22, Ch. 6]. Concepts

of link and node failures are graphically exemplified in Fig. 2.10.

Nodes

Links

Failures

Node failure

Link failure

Figure 2.10: Network failures nomenclature.

17

Four major phases can be identified in providing fault tolerance [41, Ch. 1]:

1. Error Detection. It is the starting point of any fault tolerance activity since

faults and failures cannot be directly observed but have to be deduced from the

presence of errors, commonly by performing checks to see if there is an error or

not. After detecting an error in the system state, it is certain that faults are

present and failures have occurred somewhere in the system.

2. Damage Confinement. This phase is aimed to determine which parts of the

system state are corrupted, since there could be a time delay between the failure

and the event of error detection, and errors may propagate and spread other parts

of the systems.

3. Error Recovery. Once the error has been detected and its extent identified,

the error recovery phase is responsible for achieving the error-free state of the

system. Unless the error is removed, the erroneous state may cause the failure of

the system in the future.

4. Fault Treatment and Continued System Service. If the system error was

caused by a permanent fault, the fault treatment and continued system service

phase is responsible for identifying and isolating the faulty component after the

recovery phase.

Having introduced the theory of fault tolerance, we will describe the concepts of network

fault tolerance in subsection 2.2.1; fault-tolerant routing in subsection 2.2.2; and deadlock

avoidance in subsection 2.2.3.

2.2.1 Network Fault Tolerance

Network fault tolerance borrows concepts from two different fields, interconnection networks

and fault tolerance. Within this context, network fault tolerance can be classified according

to many aspects. A widely accepted classification scheme is the one that propose the

division into static and dynamic network fault tolerance. Static fault tolerance comprises

methods that require a network shutdown to perform a static reconfiguration process after

the failure detection, either using new routing algorithms or by adding new hardware.

Dynamic fault tolerance groups methods capable of treating dynamic failures on-the-fly

without requiring network shutdowns, such as dynamic reconfiguration methods and

adaptive routing (also called dynamic re-routing). Moreover, there is another valid and

commonly used classification scheme that divide network fault tolerance in three main

18

categories depending on the fault tolerance approach being used: resources redundancy,

network reconfiguration, and adaptive routing algorithms. The latter classification scheme

is the one adopted in this thesis thus we detail its composing categories below.

Resources Redundancy

This approach is used in some systems where spare units are switched in the system to

replace the failed units. As a counterpart, this approach usually implies high extra costs

in terms of economic resources.

Most of the work published in recent years in the field of fault tolerance for inter-

connection networks have been focused on network reconfiguration and adaptive routing

algorithms. Consequently, the resources redundancy approach has been somehow relegated

to a second place, although there are several interesting works within this approach. For

instance, Sem-Jacobsen et al. [85] introduce a novel fat-tree variant which is able to tolerate

single link and switch faults dynamically by adding additional links between every two

switches at the same position in two parallel fat-trees. Another approach for solving this

problem is based on adding some hardware to the network to increase the number of

available paths for the purpose of fault tolerance, as proposed by both Valerio et al. [99]

and Skeie [88].

Network Reconfiguration

Reconfiguration methods, either static or dynamic, are commonly used for adapting

routing functions or routing tables to resulting network topologies after the occurrence of

one or more failures. This approach is very flexible and powerful but at the expense of

significant reductions in the performance of the network. When using static reconfiguration

methods, the network should be shutdown in order to adapt the routing mechanism to the

new topology, and use some sort of rollback-recovery technique to start over from a safe

state. On the other hand, dynamic reconfiguration methods do not require networks to

be shutdown but these methods usually divide the network in order to reconfigure some

part of the system, allowing the rest of the network to remain in operation during the

reconfiguration process.

A lot of work has been done in the field of network reconfiguration. For instance, Gómez

et al. [33] present a deterministic routing algorithm for achieving fault tolerance in direct

networks based on the use of some predefined intermediate nodes; further extensions to

k-ary n-tree topologies have been presented in [31]. Mejia et al. [62] propose a deterministic

routing methodology, referred to as Segment-based Routing, that partitions a topology

19

into subnets and subnets into segments to gain some degree of freedom (compared to

other routing strategies). Morover, some research based on the concepts of multiple paths

and regressive deadlock recovery has been published by Montañana et al. [63]. On the

other hand, Ho and Stockmeyer [36] introduce a fault-tolerant routing methodology that

sacrifices a certain number of healthy nodes in order to use no more than two virtual

channels, and reduce the routing time. Puente et al. [77] present a fault-tolerant routing

technique based on the permanent existence of a safe path for communicating any pair

of fault-free nodes. On the basis of [77], Puente et al. [78] have developed a mechanism

for tolerating multiple failures applying a novel dynamic reconfiguration process. Their

mechanism, known as Immunet, is able to manage failures in parallel systems without

shutting down or restarting the system, however, the injection of new packets is required

to be stopped during the global reconfiguration phase. A specific application of Immunet

to regular networks, called Immucube, has been also proposed by Puente and Gregorio [74]

with the aim of solving the scalability problem of Immunet (for a large number of nodes).

A different approach, developed for simplifying the reconfiguration process, has been

adopted by Lysne and Duato [59]. They identify a restricted part of the network, the

Skyline, as the only part where a full reconfiguration is necessary thus avoiding the need

of reconfiguring the entire network. Similarly, Theiss and Lysne [93] have developed an

approach to handle single dynamic faults locally in irregular networks affecting only a

limited number of nodes during the reconfiguration process. The same authors have also

presented a routing method aimed to handle single dynamic faults combining dynamic

reconfiguration with the calculation and use of redundant paths in arbitrary networks [94].

Furthermore, Lysne et al. [60] present a protocol that overlaps various phases of static

reconfiguration to provide efficient deadlock-free network reconfigurations in the event of

faults (or other circumstances) without requiring multiple sets of data virtual channels.

Alternatively, Pinkston et al. [72] propose a simple and general approach for achieving

deadlock-free dynamic reconfiguration through the division of the network into two virtual

networks (implementing two sets of data virtual channels).

Adaptive Routing Algorithms

Routing algorithms designed for fault tolerance look for alternative paths whether a fault

disables the path used to communicate a pair of source-destination nodes. This approach

could be outlined as one of the most interesting and suitable options for achieving network

fault tolerance because it allows systems to reach better performance results at lower

costs. However, designing fault-tolerant routing algorithms poses a challenging problem,

specially when dealing with performance degradations and abnormal behaviors caused by

20

fault occurrences. The vast majority of proposed fault-tolerant routing methods assume

the existence of diagnostic techniques, and focus on the use of this failure information for

providing fault-tolerant solutions. Consequently, diagnoses problems are not addressed by

those methods; information about faults need to be known in advance; and the existence

of mechanisms capable of distributing this information to corresponding network nodes is

commonly assumed. Since fault-tolerant routing methods comprise an important part of

the thesis, a more detailed discussion on this topic is presented in subsection 2.2.2.

Several works have achieved good performance results based on the methodology for

designing deadlock-free fault-tolerant routing algorithms proposed by Duato [20], [17],

[18], [19]. Unfortunately, only a few can be included in the category of adaptive routing

since most of them are based on network reconfiguration methods, as explained above. For

instance, Gómez et al. [32] provide an adaptive fault-tolerant routing methodology based

on the use of intermediate nodes to circumvent faults. The proposed method assumes

that fault detection, information distribution, and checkpoint mechanisms are provided

by interconnection networks. It is worth mentioning that the use of intermediate nodes

was first proposed by Valiant and Brebner [100] for the purpose of traffic load balancing.

Furthermore, one of the only proposals capable of dealing with dynamic failures has

been presented by Nordbotten and Skeie [66], [65] as the evolution of [87]. They propose

a fault-tolerant routing methodology [66] that tolerates concave fault-regions without

stopping network traffic but at expense of allowing specific packet drops and some routing

restrictions inherited from the use of a variation of the turn-model [30]. Sem-Jacobsen

et al. [86] have recently presented a dynamic local rerouting methodology for fat-trees for

tolerating up to and including k-1 benign link faults, where k is the number of ports in one

direction of a switch in the fat tree. Their proposal cannot be directly applied in current

network devices but it can be easily implemented after updating the firmware of switches.

2.2.2 Fault-tolerant Routing

Fault-tolerant routing methods fall into two of the three categories of network fault toler-

ance: adaptive routing algorithms and network reconfiguration in the case of deterministic

routing algorithms. Nearly all deterministic or static routing algorithms are not directly

able to avoid dynamic network failures because they cannot choose and use alternative

or adaptive paths on-the-fly without halting the system. A well-known example of a

deterministic routing algorithm is the Dimension Order Routing (DOR) [22, Ch. 4]. By

contrast, most adaptive routing algorithms are able to dynamically use alternative paths

to avoid faults, thus appearing as a natural solution to the problem of fault tolerance in

interconnection networks. However, adaptability poses a new problem deadlock occurrences.

21

Most of the current fault-tolerant routing methods are heavily influenced by the fault

tolerance model assumed by each method, particularly by two model attributes: the failure

type (link, node, etc) and the failure mode (static or dynamic) [22, Ch. 6]. The structure,

complexity and even the power of fault-tolerant routing methods are closely tied to the

failure mode adopted. For this reason, it is one of the most important attributes to be

considered when designing fault-tolerant routing algorithms. In a few words, if a static

failure mode is assumed, all failures are permanent and static and they are present in

the network when the system is started (or restarted). In contrast, if a dynamic failure

mode is used, failures may appear at random time and location during system operation,

presenting variable time durations.

When assuming a static failure mode, the design of routing algorithms could be

simplified because the distribution and number of faults is known in advance, therefore,

the number of direction changes required to circumvent faulty areas can be reduced. By

means of this reduction, deadlock avoidance techniques can be simplified. However, this

failure mode still presents a major drawback because to avoid package drops, each time a

fault is detected, the system needs to be stopped, the information about faults updated,

and the system restarted from a safe state using some kind of rollback-recovery technique.

All these actions have an extra cost and can affect performance seriously. In turn, routing

algorithms based on the dynamic failure mode do not need to know the location of faults

in advance, thus avoiding packet drops, and stopping and restarting the system. However,

as stated above, deadlock occurrences emerges as an extremely important problem because

the presence of faults renders existing solutions to deadlock-free routing ineffective [22,

Ch. 6]. The problem of deadlock resolution is discussed in detail in subsection 2.2.3.

Another important aspect to be considered in designing fault-tolerant routing algorithms

is the likelihood of facing different -and complex- distributions and combinations of network

failures. According to their topological shape, fault regions can be divided into convex

(line-shape and square-shape) and concave (L-shape, U-shape, etc). Many studies have

addressed this problem through fault-tolerant routing methods for fault rings [6], [35] and

other fault regions [7], [71], [8]. Furthermore, Safaei et al. [81], [80] provide some analytical

expressions to compute the probability of messages facing fault rings in torus; while

Farahabady et al. [23], [24] propose a solution to calculate the probability of occurrences

of common fault patterns in torus and mesh interconnection networks.

Unfortunately, the randomness of network failures increase the complexity of dynamic

fault tolerance mechanisms since routing algorithms must be able to circumvent faults

on-the-fly, without knowing the temporal and spatial distribution of faults. Each time the

routing algorithm adds a direction or dimension change to avoid failures, routing functions

22

are redefined and new routing cycles can appear. As those new cycles may be of any shape,

deadlocks are prone to occur. Under these circumstances, the number of resources needed

to avoid deadlocks is directly proportional to the number of faults to be tolerated. This is

the source of complexity and the biggest scalability constraint of most current deadlock

avoidance techniques.

2.2.3 Deadlock Resolution

In the context of interconnection networks, a deadlock occurs when some packets cannot

advance toward its destinations because the buffers requested by them are full. In this

situation, every packet is requesting resources held by other packets while holding resources

requested by other packets; therefore, a set of packets is blocked forever [22, Ch.3]. This

situation has been previously defined by Coffman et al. [10] by means of the hold-and-wait

and circular wait conditions; and can be represented by a resources dependence graph

where the vertices of the graph represent the set of resources and the edges between vertices

denote dependencies [14, Ch. 14]. If no cycles are present, there can be no deadlock as

cycles are a necessary (but not sufficient) condition for deadlock to occur [111, Ch. 13].

Efficiently handling deadlock anomalies is one of the more critical problems to be

addressed in order to achieve network reliability, robustness and high performance. Along

the last decades, several techniques have been proposed for handling deadlock situations,

including injection limitation, [79], [76]; virtual escape channels [17], [19], [21]; chaotic

routing [47]; and progressive recovery [3]. Unfortunately, almost all these techniques have

been designed for deadlock resolution in fault-free networks and most of them are not even

applicable in the event of network failures [22, Ch. 6]. For instance, the vast majority of

current high-performance computing systems –including BlueGene/L and BlueGene/P

[38]– rely on deadlock avoidance methods based on the use of virtual channels for breaking

cycle dependencies. However, the biggest limitation of such methods is their scalability

since the quantity and type of resources needed to avoid faults is often proportional to the

number of faults to be tolerated, thus increasing cost and complexity of interconnection

networks. Consequently, most of current deadlock handling techniques turn into non-viable

options when dealing with a medium or large number of failures.

In handling deadlock situations, three approaches can be adopted4: prevention, avoid-

ance, and recovery. The complete classification of techniques for deadlock handling is

shown in Fig. 2.11. The approach of deadlock prevention is based on reserving all needed

resources before starting the packet transmission; this strategy is very conservative and may

4For the remainder of this section we will use a pseudo-standardized terminology based on concepts
and works previously given by Pinkston [111, Ch. 13] and Dally and Towles [14, Ch. 14].

23

lead to a low utilization of resources. The deadlock avoidance approach is less conservative

since resources are requested as packets advance through the network but at the same

time, a resource is granted to a packet only if the resulting global state is free of deadlock.

Deadlock can be avoided by eliminating cycles in the resources dependence graph, imposing

a partial order on the resources allocation process. However, achieving this is not an easy

task, specially in distributed systems. Techniques for accomplishing deadlock avoidance

can be classified as being queue-based (including channel-based and buffer-based schemes),

path-based, or some hybrid combination.

On the other hand, deadlock recovery strategies usually provide some sort of detection

mechanism because in these strategies resources are granted to packets without any check

and deadlocks may occur. If a deadlock is detected, some resources are deallocated (usually

by dropping packets) and granted to other packets. These strategies are based on the

assumption that deadlocks are rare and the recovery process can be tolerated by the

system. Deadlock recovery can be resolved by removing one or more packets from the

network (regressive recovery); or by ensuring that at least one packet no longer waits for

resources occupied by other packets (deflective recovery and progressive recovery) [101].

Deadlock Handling

Avoidance

Path-based Queue-based

Channel-based Buffer-based

Hybrid

Prevention Recovery

Regressive Deflective Progressive

Figure 2.11: Classification of techniques for handling deadlock situations.

Let us now describe some proposed techniques for deadlock avoidance and deadlock

recovery. The approach of deadlock prevention will not be discussed further in this thesis

since it is typically used only in legacy circuit switched networks [111, Ch. 13].

Deadlock Avoidance

As explained above, cyclic situations can be avoided through different approaches. Path-

based schemes have the advantage of not requiring virtual channels to strictly avoid

deadlocks but at the expense of reduction in flexibility and applicability [111, Ch. 13].

24

Routing algorithms such as Dimension-Order Routing [84], Turn Model Routing [30], and

Up*/Down* Routing [83] are some of the most popular and widely adopted path-based

avoidance schemes.

Queue-based schemes usually decouple the use of physical links from the allocation

of virtual channels or buffers (queue resources). Within this group, buffer-based schemes

were those traditionally used in legacy packet switched networks, associating packets to

some sort of buffer classes. In contrast, channel-based schemes usually rely on imposing

ordering conditions to the use of virtual channels, as in [12] and [51].

The hybrid approach is a combination of both schemes path-based and queue-based

(mostly of channel-based). It is usually applied to avoid deadlocks when performing

network reconfigurations. Some well-known examples of hybrid avoidance schemes are:

the Chaotic Routing [45], [46], [47]; Planar Adaptive Routing [9]; Deflection Routing [34];

the MIT Reliable Router [15]; and the Adaptive Bubble Router [75], [76].

The BlueGene/L and BlueGene/P supercomputers use an hybrid path/channel-based

avoidance scheme, similar to the solution proposed by Puente et al. [75], [76]. These

supercomputers have two dynamic virtual channels (VC); one is a bubble escape VC that

can be used both for deadlock handling and deterministic routing; and the other is a

high-priority bubble VC with dimension-order routing [2].

Deadlock Recovery

Deadlock recovery approaches aim to improve the utilization of routing resources (improving

performance) in the absence of deadlock. By killing at least one packet, regressive recovery

schemes create bubbles in potential deadlock cycles, as in Compressionless Routing [44].

In deflective recovery schemes, bubbles are not guaranteed to be always available since

they are allocated randomly when multiple packets compete to consume them at each

router [111, Ch. 13]. Some examples of deflective schemes are the Software-based recovery

[61], and Hole-based Routing [11].

Progressive deadlock recovery is based on the concept of resolve deadlock by providing

access to a deadlock-free path for progressively routing some packets out of the dependencies

cycle. Some examples of progressive recovery techniques are the works based on the Disha

scheme, including Disha Sequential [3] and Disha Concurrent [4]. A more recent progressive

recovery technique have been proposed by Song and Pinkston [89], [90]. This technique,

called Ping and Bubble, is based on the idea of tracing all cyclic dependencies in real time

and to dynamically supply a bubble to those resources and force it to traverse the entire

cycle.

25

Gonzalo Zarza. PhD Thesis 2011.

26

Chapter 3

Fault-tolerant Distributed Routing

Balancing

In this chapter, we present an adaptive fault-tolerant routing method for treating a large

number of dynamic network link failures. The proposed method, called Fault-tolerant

Distributed Routing Balancing (FT-DRB), exploits the communication path redundancy

available in many network topologies by means of a distributed multipath routing approach.

Apart from treating link failures, the method is also able to deal with congestion problems

and performance degradations caused by the occurrence of failures. This method shares

theoretical basis with two previous theses; it is based on the method developed by Franco

et al. [25] [27], [28], Distributed Routing Balancing (DRB); subsequently improved by

Lugones et al. [55], [56], [57].

Conceptually, the proposed fault-tolerant routing method is based on the state informa-

tion of source-destination paths. This information includes latency values of the path and

the links state information of the communication path. If there are no link failures along

the path, each application message records latency information about the path it traverses.

Once the message reaches the destination, this terminal node sends the latency information

of the path back to the source terminal node, using an ACK message. If there is at least

one link failure along the source-destination path, it is discovered when a packet tries to

use the faulty link. In the fault tolerance theory, this first action would correspond to the

error detection phase. After this phase has been completed, damage confinement and error

recovery must be provided. To this end, the network node which discovers the failure sends

back a special ACK packet, in order to alert the source node about the failure in the path.

The latter action corresponds to the phase of damage confinement. Almost simultaneously,

those messages that have been already sent through the path where the link failure has

been discovered are rerouted towards the destination node. This corresponds to the error

27

recovery phase of the fault tolerance theory. As this rerouting action is intended to be

a fast and temporary response to link failures, it may not be the optimal solution. For

this reason, the proposed method includes a third and last action, which represents the

phase of fault treatment and service continuity. At this point, the source node disables

the faulty path and reconfigures new paths for the following messages, in order to avoid

faults, ease routing paths, and improve performance. Once those new paths have been

configured, their latency values are recorded and then sent back from the destination to

the source node. Counting on this information, the source node is able to calculate the

number of alternative paths that must be used and can distribute messages among them,

according to the network traffic burden. Using one or more alternative paths, the method

is able to avoid and/or circumvent link failures, while improving the system performance

by means of distributing and balancing communications among the alternative paths. The

routing method uses a simple and scalable technique for avoiding deadlock occurrences

caused by the treatment of failures (explained in detail in chapter 4).

The rest of the chapter is organized as follows. The procedures for error detection and

damage confinement are explained in section 3.1. Then, the selection of alternative escape

paths (error recovery) is defined in section 3.2. The configuration of multipaths for fault

treatment and continued system service is explained in section 3.3. Procedures to properly

treat both permanent and transient failures are detailed in section 3.4. The architecture

of network components is exposed in section 3.5. Additionally, some design alternatives

are disclosed in section 3.6. Finally, the method is summarized and discussed in section

3.7. Before describing FT-DRB, it is necessary to introduce the following assumptions.

Initial Assumptions

In the context of this thesis, we use the term router to reference network nodes (devices)

capable of receiving packets on inputs, determining their destination based on the routing

algorithm, and then forwarding packets to the appropriate output [14, Ch. 2]. Consequently,

the term node will be used when referencing terminal and processing nodes.

The proposed fault-tolerant routing method has been designed to treat fail-stop benign

link failures; it is not intended to treat byzantine link failures since we assume the existence

of error detection and correction techniques in lower layers (to treat bit changes and errors).

Likewise, we do not take into account: situations where network nodes are completely

disconnected due to multiple link failures; data losses caused by network node failures;

and dead-end labyrinth-like fault regions. It is worth nothing that these are common

assumptions in the context of dynamic network fault tolerance. Remaining assumptions

and some specific implementation issues are detailed in section 3.5.

28

3.1 Monitoring, Detection and Notification

Under normal circumstances, in the absence of failures, the proposed fault-tolerant routing

method divides each application message into network packets to route them from the source

to the destination, through the path defined by the routing function. While traversing

routing paths, each packet monitors two parameters: the state of the corresponding output

link for error detection; and the path latency for improving performance. We will come

back to the latter monitoring action in detail in section 3.3.

Packets monitor the state of the output link at each router, taking advantage of link

level information available in network devices1. For instance, the InfiniBand architecture

specification [39] defines four link states, namely: LinkDown, LinkInitialize, LinkArm and

LinkActive. Although implementing FT-DRB on InfiniBand is beyond the scope of this

thesis, the viability and benefits of implementing DRB-based methods have been previously

studied by Lugones et al. [57], [52].

Upon detecting a link failure, a special ACK packet carrying information about the

failure (router ID + port ID) is sent back to the source node. The purpose of this

notification is alert source nodes about the existence of failures along communication

paths allowing them to disable affected paths, thus confining and reducing the damage

caused by the occurrence of link failures. In FT-DRB, notification ACK packets carrying

information about failures are considerably smaller than the rest of data packets and they

have a higher priority in the routing unit. A simple pseudocode outlining the link status

monitoring process is shown in Algorithm 3.1. The actions involved in normal forwarding

of messages (including the path latency notification) are graphically shown in Fig. 3.1(a).

Similarly, the link failures detection and notification processes are shown in Fig. 3.1(b).

1 MonitorLinkStatus (Packet P)
2 /∗ At each FT−DRB Router ∗/
3 for each step o f P do
4 Check the l i n k s t a t u s
5 i f (l i n k s t a u t s == a c t i v e) then
6 Continue to next route r or to f i n a l d e s t i n a t i o n
7 else
8 Send f a i l u r e n o t i f i c a t i o n (ACK packet) back to source
9 Configure an escape path [explained in section 3.2]

10 end for
11 end MonitorLinkStatus

Algorithm 3.1: Link status monitoring.

1Modern routers check the state of links by measuring electric impedance and power.

29

S D

Message

ACK

(a) Normal forwarding of messages

S D

Message

ACK (faulty link)

(b) Link failure notification

Figure 3.1: Examples of monitoring, detection and notification processes.

The entire set of actions explained above is detailed in the two functionality diagrams

shown in Fig. 3.2, where the diagram of Fig. 3.2(a) details the normal forwarding of

messages, and the diagram of Fig. 3.2(b) adds the functionalities for detecting link

failures. Both diagrams consist of four main blocks: Source node; Packet routing ; ACK

routing ; and Destination node. The source and destination node blocks contain the actions

implemented at the source and destination nodes, respectively; while the packet routing

block together with the ACK routing block represent actions carried out by routers along

source-destination paths. Each block is composed by several elements (stage boxes and

decision elements) representing the actions performed by routers and source and destination

nodes. Colorless elements represent the set of actions performed in the absence of failures,

and the colored ones correspond to the additional features included for the purpose of

fault tolerance.

In providing network fault tolerance, monitoring and failure detection processes consti-

tute the phase of error detection. Similarly, the injection and forwarding of link failure

notifications correspond to the phase of damage confinement.

30

Interconnection Network

... ...

Packet routing

Source node Destination nodeACK routing

Node level

Channel level

Link level

Routing

Decision

Packet

Forward

Destination

Packet

Delivery

User

Message

Source

Build

Message

Packet

Injection

(a) Normal forwarding of messages

Interconnection Network

... ...

Packet routing

Source node Destination nodeACK routing

Node level

Channel level

Link level

Routing

Decision

Packet

Forward

Link

up?

Yes

No

ACK Injection

(faulty link)

Routing

Decision
...

Packet

Forward

Destination

Packet

Delivery

User

Message

Source

Build

Message

Packet

Injection

(b) Link failure notification

Figure 3.2: Monitoring, detection and notification.

31

3.2 Selection of Escape Paths

This process is started immediately after the detection of link failures. This step is intended

to provide solutions for rerouting packets still in transit through faulty paths, as those

packets that have been sent before the source node has received the notification.

The error recovery solution consists on configuring and selecting escape paths to

circumvent dynamic link failures on-the-fly. In the process of selecting alternative paths,

the router that has detected the link failure first checks the status of the remaining output

links. Counting on this information, the router selects a set of intermediate network

nodes to configure a non-faulty alternative path to the destination. Alternative paths

are basically multistep paths composed by three or more path segments grouped in three

main stages. The first stage corresponds to the segment between the source and the first

intermediate node; the second stage comprise the set of segments between the first and

the last intermediate nodes2; finally, the third stage corresponds to the segment ranging

from the last intermediate node to the final destination. An example of an alternative

escape path based on the use of two intermediate network nodes is shown in Fig. 3.3.

S D

Message

Figure 3.3: Example of an alternative escape path.

The set of intermediate network nodes that can be used in alternative paths is called

supernode [25]. Intermediate nodes are chosen according to their distance to the router

that have detected the link failure in order to maximize the number of possible paths that

can be used. For instance, nodes of 1-hop distance are considered first, then nodes of 2-hop

distance and so on. An example of the distance-based selection of intermediates nodes is

shown in Fig. 3.4. The number of intermediate nodes that can be used in the method

is not limited, so that the path could be segmented several times in order to avoid link

failures. Segmented paths are called multistep paths and each segment relies on the use of

2The number of segments in this stage is equal to i − 1, where i is the number of non-overlaying
intermediate nodes of the alternative path.

32

the minimal static routing provided by the network topology3. For example, FT-DRB uses

Dimension-Order Routing in tori and meshes. It is important to note that our routing

method relies on the use of a novel deadlock avoidance technique presented in [105] and

[108] and explained in detail in chapter 4.

C

1

1 1

1

22

2 2

2

2

22

Figure 3.4: Example of a supernode with 1-hop and 2-hop intermediate nodes.

In our method, multistep paths have two different purposes: providing escape paths

to avoid link failures on-the-fly (at any router along the path); and configuring source-

based alternative paths. We will explain the latter option in detail in section 3.3. The

mathematical definition of a multistep path (MSP) is given in Eq. 3.1, where S corresponds

to the router that has detected the link failure and configures the alternative path4;

D represents the final destination node; and intermediate routers are denoted as Ini.

Furthermore, each Pj is a simple segment between any two nodes (terminal or intermediate);

and the symbol • represents concatenation.

MSP =
∏

(S, In1, In2, . . . , Ini−1, Ini, D)

= P1(S, In1) • P2(In1, In2) • . . . • Pj−1(Ini−1, Ini) • Pj(Ini, D) (3.1)

It is possible to infer from the definition of Eq. 3.1 that a MSP may not be minimal in

some situations, although each of their composing segments are based on minimal routing.

The length of a MSP is defined in Eq. 3.2 as the sum of the length of each individual

3Routing through intermediate nodes and multiple headers are further explained in section 3.5.
4In source-based alternative paths (explained in section 3.3), S is used to denote source nodes.

33

segment, Length(P). In case of minimal static routing, Length(P) equals the minimum

number of links that must be crossed to go from the source node to the destination node.

Length(MSP) = Length(P1(S, In1)) + Length(P2(In1, In2)) + . . .+

Length(Pj−1(Ini−1, Ini)) + Length(Pj(Ini, D)) (3.2)

A new and updated message forwarding diagram, including the Escape Path Selection

element (Packet routing block), is shown in Fig. 3.5. Notice that the functionality of error

detection and escape paths selection has been also added to the ACK routing block.

Interconnection Network

... ...

Packet routing

Source node Destination nodeACK routing

Node level

Channel level

Link level

Routing

Decision

Packet

Forward

Link

up?

Yes

No

ACK Injection

(faulty link)

Routing

Decision
...

Packet

Forward

Escape Path

Selection

Link

up?

Escape Path

Selection

Yes

No

Destination

Packet

Delivery

User

Message

Source

Build

Message

Packet

Injection

Figure 3.5: Selection of escape paths.

3.3 Configuration of Alternative Paths

The objective of this phase is to configure appropriate source-based routing paths between

sources and destinations affected by network link failures, taking into account the network

condition after the event of failures. This is particularly important since escape paths

were designed to provide fast responses to link failures, but not to be long-term solutions.

The first step for fulfilling this objective is the selection of appropriate communication

paths for source-destination pairs affected by one or more link failures. Upon receiving a

link failure notification, the source node configures one or more alternative routing paths

to the corresponding destination. The process for configuring these new source-based

34

alternative paths is similar to the one explained in the previous section, but starting

from the source node instead of the router that detects the link failure. In source-based

alternative paths, intermediate nodes are chosen taking into account the link failure

information received in the notification ACK packet. Consequently, intermediate nodes

serve as scattering and gathering areas for the new alternative fault-free paths.

Once the alternative paths have been configured, sources nodes are able to monitor the

traffic load and latency of each path, as briefly mentioned in section 3.1. Latency monitoring

is carried out by packets as they traverse the new configured alternative paths. Each

packet records and carries the information about the latency it experiences while blocked

at routers along the path. The latency of the multistep path is determined according to

the expression given in Eq. 3.3. When the packet finally reaches the destination node, the

accumulated latency value is obtained from the packet. If the packet has arrived through

a fault-free path, the source node is notified about the network traffic burden by means of

an ACK packet carrying the overall path latency value5. This situation corresponds to the

example of Fig. 3.1(a). The complete process is outlined in the pseudocode presented in

Algorithm 3.2. As in the case of link failures notification, ACK packets carrying latency

values have higher priority in the routing unit and count on the same fault tolerance

mechanism than the rest of packets.

Latency(MSP) = Transmission time+
∑

QueuingDelay(router) (3.3)

1 MonitorPathLatency (Packet P)
2

3 /∗ At each FT−DBR Router ∗/
4 for each step o f P do
5 Accumulate l a t ency (queue time)
6 Continue to next route r or to f i n a l d e s t i n a t i o n
7 end for
8

9 /∗ At the d e s t i n a t i o n node ∗/
10 i f (pa th s ta tu s == f a u l t f r e e) then
11 Send the path la t ency ACK to the source
12

13 end MonitorPathLatency

Algorithm 3.2: Path latency monitoring.

5Latency values of faulty paths are not sent back to source nodes because those values also include the
latency of the alternative escape path.

35

The set of alternative paths between each source-destination pair is called multipath

or metapath [25]. A mathematical definition of the metapath P∗ is given in Eq. 3.4. In

addition, an example of a metapath formed by five different MSPs is shown in Fig. 3.6.

P∗ =
⋃
∀j

MSPj(S, In1, In2, . . . , Ini−1, Ini, D) (3.4)

 Source/Destination Paths Multipath nodes Intermediate nodes Source/Destination nodes

S D

Figure 3.6: Example of a metapath composed by 5 multistep paths.

Upon receiving the latency information of a MSP, the source node calculates the new

latency of the metapath using the function defined in Eq. 3.5. Then, the source node

decides to increase or reduce the number of MSPs, depending on whether the latency

values is off an interval defined by [Thl−Tol, Thl+Tol], where Thl is a predefined latency

threshold value and Tol defines the tolerated deviation.

Latency(P∗) = (
∑
∀j

Latency(MSPj)
−1)−1 (3.5)

According to the latency value Latency(P∗), the source node would:

• Increase the number of MSPs if (Latency(P∗) > Thl + Tol).

• Maintain the same number of MSPs if ((Thl+Tol) > Latency(P∗) > (Thl−Tol)).

• Decrease the number of MSPs if (Latency(P∗) < Thl − Tol).

Counting on the links status and path latency information, source nodes are able to

calculate the number of alternative paths that must be used and to distribute packets

among them, according to the network traffic burden and the spatial distribution of link

failures. These actions correspond to the Metapath Configuration and Multistep Path

Selection processes, respectively. A graphical example of two MSP is shown in Fig. 3.7.

36

S D

Message

ACK (path latency)

Message

ACK (path latency)

Figure 3.7: Example of a two MSPs metapath configuration.

The metapath configuration process is aimed to determine the appropriate number of

alternative paths (the size of the metapath) needed for each source-destination pair, taking

into account the information obtained from both link status and path latency monitoring.

Therefore, the metapath configuration process is applied on the basis of topological and

functional conditions of the network. The purpose of this process is to ensure the operation

of alternative fault-free paths within the latency interval defined by [Thl− Tol, Thl+ Tol].

If the latency increases, the size of the metapath must be also increased in order to obtain

a higher bandwidth to meet the new traffic demand. Notice that network traffic conditions

may vary (for worse) after the occurrence of link failures owing to changes in the network

topology. However, if the latency decreases below Thl − Tol, the size of the metapath is

too large and it is using resources that should be released to benefit the communication

of other source-destination pairs. The metapath configuration process is outlined in the

pseudocode of Alg. 3.3.

1 MetapathConfig (MultiStepPath MSP, Threshold Thl , Tolerance Tol)
2 /∗At the source node (upon r e c e i v i n g a new ACK no t i f i c a t i o n) ∗/
3

4 i f (ACK == path la t ency) then
5 Calcu la te the Latency (P∗) accord ing to Eq . 3.5
6 i f (Latency (P∗) > Thl+Tol) then
7 I n c r e a s e the number o f a l t e r n a t i v e MSPs
8 else i f (Latency (P∗) < Thl−Tol) then
9 Decrease the number o f a l t e r n a t i v e MSPs

10 else i f (ACK == f a i l u r e n o t i f i c a t i o n) then
11 Conf igure a l t e r n a t i v e source−based MSPs
12

13 end MetapathConfig

Algorithm 3.3: Metapath configuration.

37

The multistep path selection process is invoked before any new application message

is injected into the network. This process has two major goals: avoid the use of faulty

paths; and distribute the communication load among the MSPs composing the metapath.

Consequently, application messages are proportionally distributed among the fault-free

alternative MSPs, based on the probability density function of MSPs bandwidths; the most

available bandwidth the most frequent use. For instance, suppose a metapath composed

by s alternative paths for a given source-destination pair, and its associated bandwidth,

Bandwidth(P∗), calculated according to Eqs. 3.6 and 3.7. The selection process consist

on choosing a specific MSPj, according to the discrete value of the probability given by

the probability density function of Eq. 3.8, where s is the size of the metapath. The

process of building the probability density function is explained in detail in [25] and [26].

For clarity, the multistep path selection process is briefly outlined in the pseudocode of

Alg. 3.4.

Bandwidth(MSP) = (Latency(MSP))−1 (3.6)

Bandwidth(P∗) = Latency(P∗)−1 =
∑
∀j

Bandwidth(MSPj) (3.7)

ρ(MSPj) =

∑j
i=1 Bandwidth(MSPj)∑s
i=1 Bandwidth(MSPj)

(3.8)

1 MultiStepPathSelection ()
2 /∗ At the source node (b e f o r e i n j e c t i n g an app . message) ∗/
3 Build the p r o b a b i l i t y dens i ty func t i on (PDF) o f MSPs bandwidths
4 S e l e c t the MSP us ing the PDF
5 I n j e c t the a p p l i c a t i o n message in to the network
6 end selection

Algorithm 3.4: Multistep path selection.

The diagram of Fig. 3.8 summarizes the entire set of actions of the proposed Fault-

tolerant Distributed Routing Balancing method. The path latency monitoring process is

represented by three new elements: the Latency Accumulation in the Packet routing block;

and the Latency information and ACK Injection (path latency) in the Destination node

block. Similarly, the Metapath Configuration and Multistep Path Selection processes are

represented by their homonyms elements in the Source node block.

38

Interconnection Network

... ...

Packet routing

Source node Destination nodeACK routing

Node level

Channel level

Link level

Routing

Decision

Packet

Forward

Link

up?

Yes

No

ACK Injection

(faulty link)

Routing

Decision
...

Packet

Forward

Escape Path

Selection

Link

up?

Escape Path

Selection

Yes

No

Empty

output?

Yes

No

Latency

Accumulation

...

Destination

Packet

Delivery

User

Message

ACK Injection

(path latency)

Yes

Latency

Information

Fault

free?

Source

Build

Message

Packet

Injection

ACK

Delivery

Multipath

Configuration

Multistep Path

Selection

Figure 3.8: Metapath configuration.

3.4 Permanent and Transient Faults

Using the procedures explained in the previous sections, FT-DRB is able to treat a large

number of dynamic link failures. These procedures are suitable for the treatment of

permanent failures because they provide alternative paths based on network conditions

(avoiding the use of faulty paths). However, these alternative paths are not entirely

optimal –in terms of resource utilization– when dealing with transient link failures. For

example, it may happen that a pair of source-destination nodes need to configure and use

non-minimal or congested paths for providing fault tolerance. This situation is acceptable

provided that a link failure prevents the use of best suited paths. However, the overall

system performance can be improved whether the routing method is able to switch back

to minimal or low-latency paths when available.

In order to maximize the use of network resources, FT-DRB detects and applies

differential treatments to permanent and transient link failures. At a first stage, link

failures are always considered and treated as transient failures. If a failure persists over

time, its state is changed from transient to permanent. Intermittent failures would be

treated by FT-DRB as permanent or as chronic transient failures, depending on the error

intervals of the failure. The detection and correct treatment of permanent and transient

link failures is based on properly handling ACK packets. Each notification packet carries

either a link failure notification or a path latency value. Link failure notifications alert

the source node about the existence of at least one link failure along the communication

path and the need for configuring a new fault-free source-destination path. By contrast,

39

as explained in the previous section, the reception of a path latency value implies the

absence of failures along the path since destination nodes only send back latency values of

fault-free paths.

As explained in section 3.1, when a link failure is detected by a router along the

source-destination path, that network node sends back the link failure information to the

corresponding source node by means of an ACK packet. At first, source nodes consider link

failures as transient but if the source node receives multiple failure notifications regarding

the same link, that node will treat such failure as permanent. In other words, a failure on

a link will be marked as permanent only after receiving a predefined number of failure

notifications regarding that specific link. Notice that the number of failure notifications is

a parameter of the method, a modifiable threshold set by default to 5 notifications.

Upon receiving an ACK packet, each source node processes the information contained

in the notification. If the packet carries information about a link failure, the information

is stored or updated in the Link Faults Information List of the source node, shown in the

diagram of Fig. 3.9. If the number of failure notifications of that specific link has reached

the threshold value (5 notifications), its state is changed from transient to permanent. On

the other hand, the reception of an ACK packet carrying path latency information indicates

that failures have disappeared since at least one message has reached the destination node

through that path, therefore, the state of every link along the path is changed to fault-free

(their entries are removed from the Link Faults Information List). For clarity, the entire

set of actions related to the reception of both kinds of ACK packets has been included in

the flow diagram shown in Fig. 3.10.

Interconnection Network

... ...

Packet routing

Source node Destination nodeACK routing

Node level

Channel level

Link level

Routing

Decision

Packet

Forward

Link

up?

Yes

No

ACK Injection

(faulty link)

Routing

Decision
...

Packet

Forward

Escape Path

Selection

Link

up?

Escape Path

Selection

Yes

No

Empty

output?

Yes

No

Latency

Accumulation

...

Destination

Packet

Delivery

User

Message

ACK Injection

(path latency)

Yes

Latency

Information

Fault

free?

Source

Build

Message

Packet

Injection

ACK

Delivery

Multipath

Configuration

Multistep Path

Selection

Link Faults

Information

Figure 3.9: Permanent and transient faults.

40

Then, counting on the information stored on the Link Faults Information List, source

nodes are able to get the overall state of their source-destination paths. Therefore, source

nodes tries to send messages through a communication path until one or more links of

that path shows a permanent failure. If there are permanent link failures along the path,

each source node sets one or more alternative paths and sends the rest of the messages

through them. All these actions are detailed in the message injection flow diagram shown

in Fig. 3.11.

Fault

notification

Latency

value

Receive

ACK packet

END

There is

info about the

link failure?

Yes

No

Add link failure entry

Increase failure

notifications counter

Failure counter

>= threshold?

ACK packet

information?

Yes

No

Set link failure as

permanent

There is

failure info about

path links?

Yes

No

Remove path links

failure entries

Update the

path latency info

Figure 3.10: Reception of ACK packets.

41

There are several design parameters involved in the treatment of transient link failures,

that are explained in detail in section 3.6. Among these parameters, the most important

are: the method for identifying changes in the state of a failed link; and the method for

marking a link failure as permanent. By default, FT-DRB uses:

• An ACK-based marking method where link failures are set as permanent only

after receiving five consecutive ACK notifications regarding the same failure.

• Source-based probes for identifying changes in the state of failed links, using real

application messages as probes. Probes are sent according to the request-based

approach, where for every 100 messages sent, 99 are sent through alternative

paths and 1 (the probe) through the faulty path.

No

Yes

No

Yes

Build

message

END

send_message()

select_new_path()

faulty_link?

fault_status ==

permanent?

Figure 3.11: Injection of application messages.

42

3.5 Architecture of Network Components

This section addresses the physical design and implementation of network components for

the proposed Fault-tolerant Distributed Routing Balancing method. Since the proposed

method relies on adaptive routing, the following aspects may affect its normal functioning:

• Deadlock. Our method relies on a deadlock avoidance technique designed for

interconnection networks suffering from a large number of failures. This technique,

called Non-blocking Adaptive Cycles is explained in detail in chapter 4.

• Livelock. This is probably one of the most difficult problems to solve in fault-

tolerant routing algorithms. By definition, FT-DRB does not configure paths

of infinite length, therefore, packets always reach their destinations in a finite

number of steps6.

• Starvation. This situation is not a problem because FT-DRB does not prevent

the injection of packets for indefinite time periods. Moreover, packets cannot

be indefinitely blocked at intermediate routers because all packets have equal

opportunities to access output links.

As mentioned in previous sections, FT-DRB is based on three major stages: monitoring

and notification (section 3.1); selection of escape paths (section 3.2); and configuration

of source-based alternative paths (section 3.3). In the following subsections, we discuss

implementation issues of each phase in both routers and terminal nodes, together with

the structure of FT-DRB packets. Finally, we include a brief discussion about required

resources of the method at the end of this section.

3.5.1 Packets Format

In FT-DRB, packets include mechanisms for identifying alternative paths (either escape

or source-based) and also for carrying a path latency value or link failure information.

Data packets include a multiple header for storing the additional information about the

intermediate nodes used in the multistep path (MSP), as shown in Fig. 3.12. In order to

simplify the packet format, FT-DRB configures both escape and source-based alternative

paths using only two intermediate nodes. If a router detects a link failure along the path,

that router locally configures an escape path replacing the information of intermediate

nodes in the header, if required; this process is repeated as necessary along the path. In

6Note that dead-end labyrinth-like fault-regions are not considered by the method, as explained at the
beginning of this chapter.

43

the case of source-based alternative paths, FT-DRB is able to configure three-segment

MSPs using two intermediate nodes (in direct networks) for every valid source-destination

pair. This approach has been previously adopted in other DRB-based routing methods

such as [25], [55] and [56].

Source Interm. node 1 Interm. node 2 Destination Header_id Path Latency Escape Path Info Data...

Routing path information Monitoring information App. data

Header_id: 00 Header_id: 01 Header_id: 11

Figure 3.12: FT-DRB Data packet format.

In order to route packets correctly, each router along the source-destination path must

be able to identify which of the multiple headers of the packet should be used for routing

at each segment of the MSP. For this purpose, the proposed packet format includes two

bits, the Header id field in Fig. 3.12, for identifying which header corresponds to each

segment. Thus, FT-DRB routers are able to forward packets as any other conventional

router, using minimal static routing at each segment of the MSP. When a packet reaches

a router identified as one of the intermediate nodes in the packet header, the bits of

the Header id are modified to point the new header; then, the packet is routed to the

next intermediate node or to the final destination, as appropriate. This situation implies

the existence of a Header Detection and Processing (HDP) mechanism the in Routing

and Arbitration (R+A) module of the router, capable of detecting and eliminating the

intermediate headers whenever packets reach their final destinations. Therefore, the

structure of conventional routers must be modified for implementing FT-DRB; this topic

will be covered in subsection 3.5.2. Additionally, data packets include the Path latency and

the Escape path info monitoring fields. The first is an integer-size field used for recording

the path latency value; while the Escape path info is a bit-size field for marking which

data packets have been rerouted through alternative escape paths (to avoid link failures).

As explained in previous sections, FT-DRB uses ACK packets for two different purposes:

the notification of link failures (Fig. 3.13); and reporting path latency values (Fig. 3.14).

Despite being generated at different stages, both ACKs are virtually identical. Actually,

they have only two differences: the value of the source field; and the information carried

by the first field of the payload. For failure notifications, the source is the router that

has detected the link failure; and the payload is the ID of the failed port. On the other

hand, the source of a path latency report is the destination node of that specific path; the

payload of a latency report is, in fact, the latency value.

44

Interm. node 1’ Interm. node 2’ Destination’ Header_id Failure info.

ACK packet

Int. node 2

Source of the

data packet

Failed

Port ID

ACK packet

Int. node 1

Data In. node 1

Interm. node 1 of

the data pack. path

Data In. node 2

Interm. node 2 of

the data pack. path

Source’

Intermediate

router

ACK Routing path information ACK Data

Figure 3.13: FT-DRB ACK packet format (failure information).

Interm. node 1’ Interm. node 2’ Destination’ Header_id Latency

ACK packet

Int. node 2

Source of the

data packet

Data packet

path latency

ACK packet

Int. node 1

Data In. node 1

Interm. node 1 of

the data pack. path

Data In. node 2

Interm. node 2 of

the data pack. path

Source’

Destination of

the data packet

ACK Routing path information ACK Data

Figure 3.14: FT-DRB ACK packet format (path latency value).

3.5.2 FT-DRB Router

The architecture of the FT-DRB router shares some design characteristics with the

Multipath Distributed Dynamic Routing Balancing (MD-DRB) [55]. More specifically,

both methods include mechanisms for selecting alternative escape paths and injecting

notification ACK packets. However, there is a major difference between both proposals:

FT-DRB uses these mechanisms for providing fault tolerance; while MD-DRB is not able

to route packets in the presence of failures7. The FT-DRB Router architecture, shown in

Fig. 3.15, includes the following additional modules:

• Latency Update (LU). For updating the latency value of enqueued data

packets. The waiting time is measured by means of the router clock, without

requiring any kind of external synchronization.

• Header Detection and Processing (HDP). This mechanism is part of the

Routing and Arbitration (R+A) unit. At intermediate routers, it is responsible

for modifying the Header id bits of both data and ACK packets. Furthermore, at

destination nodes, this unit detects and eliminates the intermediate headers.

• Link Failures Detection and Generation of ACK packets (FDGA). This

module has been designed with two purposes: detect the existence of link failures,

and generate the corresponding notification, as explained in section 3.1. In the

7MD-DRB uses escape paths and ACK notifications only for treating congestion problems, relying on
the use of virtual escape channels for deadlock avoidance [55].

45

event of a link failure, this module generates the notification packet and sends it

back to the corresponding source node.

• Escape Path Selection (EPS). This module implements the configuration of

alternative escape paths explained in section 3.2; these alternative paths are used

for avoiding link failures at intermediate routers.

ILC OLCInput Link Controller Output Link Controller

Input

Buffers

Output

Buffers

Switch

R+A

Control

ILC

ILC

ILC

ILC

OLC

OLC

OLC

OLC

LU Clock
FDGA

EPSHDP

R+A

HDP

LU

FDGA

EPS

Routing and Arbitration

Header Det. and Processing

Latency Update

Link Failures Detection and Generation of ACK packets

Escape Path Selection

Figure 3.15: FT-DRB Router architecture.

Upon receiving a data packet, each destination node first checks the value of the

bit contained in the Escape path info field, as could be seen in Fig. 3.16. If the data

packet has arrived through a fault-free path, i.e. the Escape path info bit is not set, the

destination node injects the corresponding ACK packet carrying the latency value of the

path, as explained in section 3.3. The selection of MSPs and the metapath configuration

are performed in the network interface. In FT-DRB, the information obtained from ACK

packets (either a failure notification or a latency value) is always used during the metapath

configuration process, as shown in Fig. 3.16.

46

FT-DRB Router

Local node

Injection Reception

Msg (send) Msg (recv)

Latency or

link failure

information

Metapath

Configuration
Multistep Path

Selection
IN Headers

concatenation
Packet build

ACK build

Fault

free?

Yes

Input

buffer

Output

buffer

ACK

Packet

Data

Packet

Figure 3.16: FT-DRB Network interface.

3.5.3 Required Resources

Special efforts have been put in the design of FT-DRB for avoiding increases in the critical

path and cost of routers. For instance, some of the proposed features are not implemented

in routers but in network interfaces, as explained above.

The set of actions applied by FT-DRB at node level have low overheads because

they are simple comparisons and accumulations (locally performed) and do not delay

send/receive primitives. As explained in previous sections, packets are forwarded with no

overheads when output link are fault-free. Moreover, the escape path selection mechanism

is invoked only when faults are detected. Similarly latency updates are performed while

messages are waiting in router queues. Consequently, these operations are performed

concurrently with packet delivery. Furthermore, interconnection networks usually are not

designed to continuously operate at their saturation point, thus small overheads could

be tolerated to avoid faults (if necessary). Regarding the memory requirements of the

metapath configuration and multistep selection processes, FT-DRB only needs to store

the latency values of MSPs and their intermediate nodes (in source nodes). The size of

these three data values is known in advance and it is a parameter that can be configured

by the designer.

47

3.6 Design Alternatives

In this section, we present some design alternatives for two specific aspects of FT-DRB:

the notification of link failures to source nodes; and the treatment of transient faults. We

first present the alternatives for the notification of link failures in subsection 3.6.1. Then

we address the treatment of transient link failures in subsection 3.6.2.

3.6.1 Link Failure Notification

As explained in section 3.1, the notification approach adopted by default in FT-DRB

is based on sending ACK packets from routers affected by link failures back to source

nodes. We have proposed an alternative notification approach designed for situations

where intermediate routers are not able to inject ACK packets for notifying source nodes

about link failures. In this alternative approach, destination nodes are responsible of

injecting both notifications about path latency and also about link failures, as appropriate.

Consequently, intermediate routers are only responsible for setting up a link error flag in

the packet header to mark the path as faulty, before rerouting affected packets through

alternative escape paths, as explained in section 3.2. This alternative approach is shown

in the diagram of Fig 3.17.

The overall performance of both notification approaches can be further improved by:

• Taking advantage of existing failure notifications. This improvement is based

on storing the information about link failures at each intermediate router along

the backward path (between affected routers and source nodes). Counting on

this information, each “intermediate” source node may be notified about the

existence of failures, thus reducing reaction times skipping the procedures for

error detection, failures notification and selection of escape paths.

• Generating additional failure notifications. The idea behind this improvement

is to send more than one failure notification at the same time. In short, after

discovering a link failure, the affected router can check which of the buffered

packets needs to access the failed link. Counting on this information, the router is

able to send failure notifications to source nodes that have injected those packets.

3.6.2 Permanent and Transient Faults

As explained in section 3.4, there are many design parameters involved in the detection

and correct treatment of permanent and transient link failures. These parameters are

48

Interconnection Network

... ...

Packet routing

Source node Destination nodeACK routing

Node level

Channel level

Link level

Routing

Decision

Packet

Forward

Link

up?

Yes

No

Routing

Decision
...

Packet

Forward

Escape Path

Selection

Link

up?

Escape Path

Selection

Yes

No

Empty

output?

Yes

No

Latency

Accumulation

...

Destination

Packet

Delivery

User

Message

ACK Injection

Yes

Latency

Information

Fault

free?

No

Faulty link

Information

Source

Build

Message

Packet

Injection

ACK

Delivery

Multipath

Configuration

Multistep Path

Selection

Figure 3.17: Destination-based notification of link failures.

related to the methods for identifying changes in the state of failed links; and also to the

procedures for changing the state of a link failure from transient to permanent.

Methods for identifying changes in the state of failed links

When talking about changes in the state of failed links, we refer to the disappearance

of transient failures8, in other works, when after a malfunctioning time the normal

functionality of the link is fully restored. There are two main options for identifying

changes in the state of links suffering from transient failures:

• Router-based notifications. When adopting this method, intermediate routers are

responsible for sending link-up notifications to the corresponding source nodes.

This approach allows lower identification times based on the assumption that

routers are able to identify link-up events. However, as a counterpart, routers

should keep a record of which source nodes have to be informed about the

availability of the link. To this end, each router need to count on extra memory

space together with a sort of replacement algorithm for handling the entries of

several source nodes [92], [91].

• Source-based probes. This approach –adopted by default in FT-DRB– is based

on sending some probe messages from source nodes to identify changes in the

state of failed links. If the failure persists, a probe would be rerouted to the

8Note that the state of links affected by permanent failures cannot be further modified. Moreover,
changes from active to failed states in links are locally identified by routers along the routing path.

49

destination through an escape path, and the source node would receive a new

link failure notification. In contrast, if the failure has disappeared, the probe

would be able to reach the destination node trough the non-faulty path, therefore,

the source node would receive an ACK packet carrying the path latency value.

Therefore, it does not require any additional hardware in routers.

There are two points to be considered when using source-based probes: what kind of

probes to be used; and the timing approach adopted for sending probes. A probe can be

either a synthetic or a real application message. The timing approach defines the tempo

used for forwarding probes. Three different approaches can be adopted:

• A clock-based approach, where probes are sent according to real time intervals

defined by the source node clock. The time interval is a modifiable parameter.

• A request-based approach, where for every n messages sent, n−1 are sent through

alternative source-based paths, and 1 (the probe) through the faulty path. In

this approach, n is a modifiable threshold, defined by default to 100 in FT-DRB.

• An hybrid scheme based on the combination of the two previous approaches,

where probes are sent according to the time interval or to the request threshold,

whichever occurs first. The time interval and request threshold can be modified.

The classification of identifying methods is shown in Fig. 3.18. Furthermore, the

timing approaches of the source-based probes approach are summarized in Table 3.1.

Identifying method

Router-based notifications Source-based probes

Application
messages

Synthetic
messages

Figure 3.18: Methods for identifying changes in the state of a failed link.

Timing approach Input parameters

Clock-based Time intervals

Request-based Request threshold

Hybrid scheme Time intervals and Request threshold

Table 3.1: Parameters used in source-based probes.

50

Procedures for changing the link failure state

This procedure is always applied in source nodes and may be based on the following three

approaches:

• Clock-based. This approach is based on the use of a predefined time value.

If the source node does not receive new ACK packets carrying path latency

information during a predefined time period, the source node marks the link

failure as permanent. In this approach, the time value is a modifiable parameter.

• ACK-based. This approach has been previously explained in section 3.4 because

it is used by default in FT-DRB. It is based on counting the number of received

failure notifications for a specific link. If the number of notifications is equal or

greater than a predefined (but modifiable) threshold value, the state of the link

failure is changed from transient to permanent.

• Hybrid scheme. A combination of the two previous approaches is also possible,

where link failures are marked as permanent elapsed a predefined time period,

or after when the number of failure notifications received reaches the threshold

value, whichever occurs first.

The procedures for changing the state of link failures are summarized in Table 3.2.

Identifying approach Input parameters

Clock-based Time threshold

ACK-based Notifications threshold

Hybrid scheme Time and Notifications thresholds

Table 3.2: Procedures for changing the state of link failures.

3.7 Discussion

Throughout this chapter, we have described the proposed fault-tolerant adaptive routing

method Fault-tolerant Distributed Routing Balancing (FT-DRB). Let us now provide a

brief comparison with the most relevant related works in literature.

Although FT-DRB can be compared with any other method, we limit the comparison

only to the most relevant to our method. Given the purpose of comparing our proposal,

the most relevant works can be classified into three major groups: the Immunet family [78],

51

[74]; the Routing Methodology Based on Intermediate Nodes [67], [33]; and the Routing

Methodology for Dynamic Fault Tolerance [66].

Immunet [78] and Immucube [74] rely on dynamic reconfiguration processes to manage

failures in parallel systems without shutting down or restarting the system. Additionally,

both Immunet and Immucube require table-based routing and employ virtual channels

and Bubble Flow Control [76] for deadlock avoidance. FT-DRB is based on a multipath

adaptive routing approach and needs no virtual channels for deadlock avoidance. These

are the biggest differences between these methods and our proposal.

On the side of the routing methodology proposed by Nordbotten et al. [67] and Gómez

et al. [33], the major difference lies on the adoption of the static fault mode. In these

methods, the machine must be rebooted, new routes calculated and the machine restarted

from the last safe state with checkpointing schemes. This problem is not present in our

proposal because FT-DRB has been designed to deal with both static and dynamic link

failures. However, the counterpart of this adaptability is the need of using a scalable

deadlock avoidance technique.

One of the only proposals dealing with dynamic failures is the Routing Methodology for

Dynamic Fault Tolerance presented by Nordbotten and Skeie [66]. This method is based

on positive-first routing, a variation of the turn-model routing [30], and virtual channels.

It achieves good average latency values (about 82%) but packets may be dropped to avoid

deadlocks during the dynamic transition from the old to the new routing function. The

use of positive-first routing and packet drops are the major difference with our method.

Real high-performance computing systems usually rely on very simple solutions. For

instance, BlueGene/L and BlueGene/P supercomputers may route packets either dynami-

cally or deterministically using dimension-ordered routing (xyz), but the hardware does

not have the capability to round around dead nodes or links [2].

52

Chapter 4

Scalable Deadlock Avoidance for

Fault-tolerant Routing

In this chapter we explain in detail the proposed scalable deadlock avoidance technique Non-

blocking Adaptive Cycles (NAC), specifically designed for interconnection networks suffering

from a large number of failures. This technique has been designed and implemented with

the aim of ensuring freedom from deadlocks in the fault-tolerant adaptive routing method

presented in the previous chapter.

Non-blocking Adaptive Cycles is a three-stage approach that covers the key aspects

of deadlock avoidance. These aspects include the detection of deadlock prone situations,

the identification of the routing cycles involved in these situations, and the application

of predefined protocols to ensure the normal functioning of the system under these

circumstances. Conceptually, the proposal is based on preventing the hold-and-wait and

circular wait conditions [10]. The aim is to deny these two conditions to avoid deadlock

occurrences by means of adding an one-slot deadlock avoidance buffer to each input buffer,

and applying a simple set of actions when accessing output buffers with no free space.

In the following section, we introduce the problem of deadlock avoidance in intercon-

nection networks affected by link failures. Then, we describe in detail the three-stages

approach adopted in Non-blocking Adaptive Cycles in section 4.2; detection of deadlock

prone situations is explained in subsection 4.2.1; identification or routing cycles in subsec-

tion 4.2.2; and gradual recovery of movement in subsection 4.2.3. In addition, a semi-formal

applicability proof is outlined in subsection 4.2.4. Finally, the proposal is summarized and

discussed in section 4.3.

53

4.1 Deadlock Avoidance in Faulty Networks

One of the main impediments in the design of routing algorithms for treating dynamic

failures is the probability of reaching deadlock configurations. This probability increases

every time the routing function is redefined to avoid failures, since new cyclic resources

dependencies can be formed. In fact, a routing algorithm may need several direction/di-

mension changes for avoiding a few link failures. This situation is exemplified in Fig. 4.1,

for the source-destination pair S-D. In the example, a packet needs to change routing

direction five times before reaching the destination node (because of link failures), while

in a fault-free scenario the same packet can reach the destination node using a simple and

minimal routing algorithm such as DOR [22, Ch. 4].

S

D

Figure 4.1: Example of direction changes in routing functions.

Unfortunately, deadlocks are far from rare when dealing with faulty networks because

a few faults may generate cyclic dependencies, even under low traffic conditions. In the

context of interconnection networks, deadlock occurs when some packets cannot advance

because the buffers requested by them are full. In this situation, every packet is requesting

resources held by other packets while holding resources requested by other packets (in a

circular wait configuration). Therefore, a set of packets is blocked forever [22, Ch. 3].

An example of a deadlocked configuration is presented in Fig. 4.2. In this example,

the communication between the two pairs of source-destination nodes S1-D1 and S2-D2 is

interrupted by two link failures. In order to ease the visualization, Figs. 4.2(a) and 4.2(b)

only show the portions of the network needed for understanding the possible deadlock

situation. Consider such network as a bidimentional torus, where dots represents the set

of omitted network nodes and links. Routing paths are represented as solid lines between

the source-destination pairs in Fig. 4.2(a); the dark line corresponds to the S2-D2 pair

54

S1 D1D2 S2

(a) (b)

Figure 4.2: Example of a deadlocked configuration.

and the light one to the S1-D1 pair. A similar color scheme is assumed for packets in the

buffers of Fig. 4.2(b).

In the example presented in Fig. 4.2(a), packets traversing the S1-D1 path change

routing direction to avoid the failure in the original path. Later on, the same group of

packets return to the original routing direction to reach the destination node D1. This

behavior may lead to a cyclic dependency when interacting with other pairs of source-

destination nodes. From this cyclic dependency, a deadlock configuration would arise when

all the buffers involved in the communication cycle have exhausted their available buffer

space, as shown in Fig. 4.2(b). It is possible to infer from the example of Fig. 4.2 that

deadlock occurrences are not rare and constitute a serious problem since a single fault

may render inoperative the whole computing system.

4.2 Non-Blocking Adaptive Cycles

Since deadlock occurs when a set of packets cannot advance because the buffers requested

by them are full, it can be avoided by preventing the saturation of such buffers. This is

equivalent to ensure that the hold-and-wait and circular wait conditions are not satisfied

[10]. A hold-and-wait condition is a situation where a packet requests resources held by

other packets while holds resources requested by other packets. On the other hand, in

a circular wait condition, circular chains are formed along the network where packets

hold resources that are being requested by the next packet in the chain. The aim of our

proposal is to deny these two conditions to avoid deadlock occurrences.

In order to clarify the ideas we are proposing, an intuitive approach will be employed

to exemplify the ideas used in the deadlock avoidance technique. First of all, consider an

arbitrary cycle of dependencies with no free slots in any buffer along the cycle, except

at the local router. Furthermore, consider buffers as one-slot FIFOs. This situation is

55

outlined in Fig. 4.3, where the central router of each sub-figure represents the local router,

and circles represent buffers (input at the left, output at the right and a simplified deadlock

avoidance buffer at the bottom). A white circle represents an empty buffer, while colored

circles represent buffers storing packets from different source-destination pairs. We will

take the situation of Fig. 4.3(a) as the initial configuration before applying the set of

actions proposed in our technique. Notice that the situation of Fig. 4.3(a) may lead to a

deadlocked configuration since there is only one free slot along the cycle. As a first step in

the process of providing a solution, the packet stored in the input buffer of the local node

is moved to the deadlock avoidance buffer (Fig. 4.3(b)) and the injection into the full

output buffer is temporally stopped. After applying the previous actions, the input buffer

of the local router is free to store a new packet of the cycle, thus allowing packets in the

cycle to move towards their destination. As shown in Fig. 4.3(c), a new incoming packet

is stored in the input buffer. This action is intended to guarantee that at least one packet

is able to progress along the cycle, therefore the output buffer of the local router will

eventually be released, as in Fig. 4.3(d). At that point, the deadlock avoidance buffer can

be also freed (Fig. 4.3(e)), thus returning to the normal system functioning (Fig. 4.3(f)).

Local Router

(a)

Local Router

(b)

Local Router

(c)

Local Router

(d)

Local Router

(e)

Local Router

(f)

Figure 4.3: Example of the deadlock avoidance technique.

56

The Non-blocking Adaptive Cycles (NAC) technique exploits this idea by means of

adding an one-slot deadlock avoidance buffer to each input buffer, and applying a simple

set of actions when accessing output buffers with no free space. These actions are only

applied under specific circumstances directly related to the free space left in the buffers of

the local router as well as in the next router in the path along source-destination pairs.

It is worth noting that each router already knows its buffer space availability as well as

the available space at the input buffer of all its neighbors by means of the flow control

mechanism (i.e. credit-based systems). This is part of the information that our technique

needs for avoiding deadlock occurrences. A simplified router architecture diagram of our

proposal is shown in Fig. 4.4. In addition, the combine router architecture of FT-DRB

and NAC proposals is shown in Fig. 4.5. The summary of the specific notation used in

the rest of the chapter is given in both Table 4.1 and Fig. 4.6. In the context of this

thesis, we assume Virtual Cut-Through (VCT) as the switching technique of the system

and a credit-based flow control. Furthermore, we consider that every network node (i.e.

every router) is able to inject point-to-point flow control packets at anytime, and also that

such action is independent and asynchronous with respect to the routing of application

messages.

NAC is composed by three main stages: the detection of deadlock prone situations;

the identification of the routing cycles involved in these situations; and the application

of predefined protocols to ensure the normal functioning of the system under these

circumstances. These three stages are explained in subsections 4.2.1, 4.2.2 and 4.2.3,

respectively.

4.2.1 Detection of Deadlock Prone Situations

A set of triggering conditions has been defined in order to detect situations where the

network is in a state prior to a deadlocked configuration. These conditions occur when a

full input buffer in one node tries to choose a routing direction of which both the output

and the input buffers it connects to are full, as defined in Eqs. 4.1, 4.2, and 4.3; and is

graphically shown in Fig. 4.7.

size(ci,mk,j) = cap(ci,mk,j) (4.1)

output(aij) = bik (4.2)

size(aij) = cap(aij) (4.3)

57

ILC OLCInput Link Controller Output Link Controller

Input

Buffers

Output

Buffers

Deadlock Av.

Buffers

Switch

Routing and

Arbitration
Control

ILC

ILC

ILC

ILC

OLC

OLC

OLC

OLC

Figure 4.4: NAC Router.

Input

Buffers

Output

Buffers

Switch

R+A

Control

ILC

ILC

ILC

ILC

OLC

OLC

OLC

OLC

LU Clock
FDGA

EPSHDP

Deadlock Av.

Buffers

ILC OLCInput Link Controller Output Link Controller

R+A

HDP

LU

FDGA

EPS

Routing and Arbitration

Header Det. and Processing

Latency Update

Link Failures Detection and Generation of ACK packets

Escape Path Selection

Figure 4.5: NAC + FT-DRB Router.

58

Notation

ri a network node (router),

aij an input buffer of router ri,

bik an output buffer of router ri,

dij a deadlock avoidance buffer of router ri,

cap(arg) the capacity of the buffer arg,

size(arg) the number of packets in the buffer arg,

output(arg) the output buffer bik assigned to the first

packet in the buffer arg.

ci,mk,j a logic buffer composed by the output buffer bik
and the input buffer amj linked to it.

Operators

move(arg1, arg2) Removes the first packet in the buffer arg1

and enqueues it in the buffer arg2.

stop st(arg) Stops injection of packets in the buffer arg.

start st(arg) Allows injection of packets in the buffer arg.

stop fw(arg) Stops packet forwarding from the buffer arg

start fw(arg) Allows packet forwarding from the buffer arg.

Table 4.1: Summary of notation and operators used in NAC.

Switch

Routing and

Arbitration

ILC

ILC

ILC

ILC

OLC

OLC

OLC

OLC

Switch

Routing and

Arbitration

ILC

ILC

ILC

ILC

OLC

OLC

OLC

OLC

Network node Network node

c
i,m

k,j

a
i

j
a

m

j
b

i

k
d

i

j
d

m

j
b

m

k

Figure 4.6: NAC Notation.

59

Conditions (4.1), (4.2) and (4.3) are evaluated locally at each router ri before forwarding

packets in each routing turn. If all three conditions are met, the router is in a state prior

to a deadlocked configuration. Notice that such state does not represent a deadlocked

configuration because there are still available resources –free slots in deadlock avoidance

buffers– that may be used [14, Ch. 14]. Under these circumstances, the following set of

actions is applied locally at router ri as the first step to avoid deadlock occurrences:

1. Stop the injection of packets in the logic buffer ci,mk,j .

Action: stop st(bik) / b
i
k ∈ c

i,m
k,j

2. Stop packets forwarding from the input buffer connected to local processing nodes

(when applicable).

Action: stop fw(aij) ∀ aij linked to a local processing node

At this point, the router ri must identify which routing cycles are involved in the

deadlock prone situation to avoid real deadlocked configurations. The identification process

is explained in detail in the following subsection.

Switch

Routing and

Arbitration

ILC

ILC

ILC

ILC

OLC

OLC

OLC

OLC

Switch

Routing and

Arbitration

ILC

ILC

ILC

ILC

OLC

OLC

OLC

OLC

Network node Network node

Figure 4.7: NAC Triggering conditions.

4.2.2 Identification of Routing Cycles

The goal of this process is to provide a reliable identification of the input and output

buffers (aij, b
i
k) involved in routing cycles that may lead to deadlock configurations. This

process takes advantage of point-to-point flow control packets to identify the beginning

and the end of cycles in a specific router.

Conceptually, a router ri may need to identify the correct cycle for two different reasons.

One of these reasons is the detection of triggering conditions (4.1), (4.2) and (4.3). In this

60

case, the identification process is intended to ensure the access to the deadlock avoidance

buffer dij by the appropriate input buffer aij (to deny the circular-wait condition). The

second reason is to enter the gradual recovery protocol, presented in subsection 4.2.3, where

the identification process is applied to avoid false-positive situations during the recovery

protocol. In these case, the recovery conditions (4.4), (4.5), (4.6) and (4.7) are evaluated

instead of the triggering conditions (4.1), (4.2) and (4.3).

In order to identify a routing cycle, a router ri composes and sends back a new

identification flow control packet to the output buffers bhk ∈ c
h,i
k,j of routers rh linked to the

input buffers aij where the triggering or recovery conditions are met, as appropriate. Each

one of these new flow control packets carries the ID of the router ri which has created the

packet, the ID of the input buffer aij of the router ri where the conditions are met, and

the ID of the output buffer bik of the router ri where the packet has to be received if part

of the cycle (i.e. the bik involved in the triggering or recovery conditions).

Upon receiving one of these special flow control packets, each router rh locally verifies

the triggering or recovery conditions. If at least one input buffer ahj meets these conditions,

the router rh replicates the incoming flow control packet to the appropriate buffers.

Otherwise, the router drops the packet.

While identification takes place, the remaining application packets are routed normally.

If the flow control packet arrives to the router ri through the correct output buffer bik, the

pair of input and output buffers (aij,b
i
k) identified by this packet are part of the routing

cycle prone to generate a deadlock configuration. Then, a move(aij, d
i
j) operation is

performed in order to free a one-slot position in the input buffer aij. This action will

introduce a new free space in the routing cycle, allowing packets to move along the cycle

towards their destinations (according to the protocol described in subsection 4.2.3). By

contrast, if the correct flow control packet has not been received, this may be caused by

two situations:

• The packet has been sent through the correct input buffer aij but there is at least

one router rh where the triggering or recovery conditions are not met (so the

packet has been dropped). Therefore, the routing cycle is not full and there are

no deadlock configurations (but congestion) along the cycle.

• The packet has been sent through an input buffer aij that is not involved in the

routing cycle. No actions must be taken.

In summary, the entire set of actions presented at this subsection constitute a sort of

enlightenment process intended to facilitate the identification of routing cycles.

61

4.2.3 Gradual Recovery of Packet Forwarding

After a deadlock prone cycle has been identified, a set of actions must be taken to ensure the

gradual recovery of packet forwarding along the routing cycle (until the normal functioning

conditions are met).

Once the corresponding move(aij, d
i
j) action has been applied at the router ri, a new

flow control packet has to be sent from that router in order to cause the router rh to enter

into the gradual recovery protocol. This new flow control packet carries a single signal

used to notify the router rh that the new space in the output buffer bhk correspond to the

“deadlock avoidance space” generated by the router ri. Based on this notification, the

router rh is able to distinguish between these two situations:

• The space availability was caused by the disappearance of a deadlock prone

situation. The router ri−1 may continue under normal functioning.

• The space availability was caused by the move(aij, d
i
j) action applied at router

ri. The router ri−1 must start the gradual recovery protocol.

After receiving the flow control packet with the signal to enter the gradual recovery

protocol, the router rh has to locally identify which input buffer ahj is involved in the

routing cycle. This action is critical because each router along the cycle has to apply

the move(ahj , d
h
j) action to the correct input buffer. Otherwise the cycle may reach a

deadlocked configuration. In order to identify the correct cycle, each rh applies the set of

actions presented in subsection 4.2.2 provided that all the four recovery conditions defined

in Eqs. 4.4, 4.5, 4.6, and 4.7 are met. The set of recovery conditions is graphically shown

in Fig. 4.8.

size(ch,ik,j) ≥ (cap(ch,ik,j)− 1) (4.4)

output(ahj) = bhk (4.5)

size(ahj) = cap(ahj) (4.6)

Gradual Recovery Signal = true (4.7)

When at least one of these four conditions is not met, the normal functioning conditions

of the router rh may be restored. First of all, injections to the logic buffer ch,ik,j are re-allowed

by means of the start st(bhk) action. Packets buffered at deadlock avoidance buffers dhj

62

Switch

Routing and

Arbitration

ILC

ILC

ILC

ILC

OLC

OLC

OLC

OLC

Switch

Routing and

Arbitration

ILC

ILC

ILC

ILC

OLC

OLC

OLC

OLC

Network node Network node

Figure 4.8: NAC Recovery conditions.

are firstly forwarded to their destinations. After that, injections from the local processing

node are allowed again applying start fw(ahj).

In most situations the initial identification process creates a sort of chain reaction leading

to an overlap and reduction of the overall identification time. Under these circumstances

the time for treating the deadlock prone situation is given by Eq. 4.8, where n is the

number of network nodes involved in the cycle and and tf represents the clock cycles

required to replicate a flow control packet (replication 6= injection). In this situation,

there are two runs around the identified routing cycles, that corresponds to the value 2 in

Eq. 4.8. The first run around the cycle corresponds to the identification of the routing

cycle; and the second run corresponds to the recovery of packets forwarding. The worst

case scenario (in terms of timing) occurs when each router along the cycle starts the

identification of the routing cycle just after receiving the Gradual Recovery Signal of Eq.

4.7. In this case, considering a pessimistic approach, the upper bound is given by Eq. 4.9.

NAC Av. T ime = 2 ∗ n ∗ tf (4.8)

NAC Worst T ime =
n∑

i=1

n ∗ tf (4.9)

A simplified graphical example of the two runs around a 5 nodes routing cycle is shown

in Fig. 4.9, where the right-to-left arrows represents the point-to-point flow control packets.

The numbers corresponds to the ID of the router that has generated the packet, and the

Rn to the recovery signal. The first run –upper part of the graphic– corresponds to the

identification process that ends when a node receives its own identification packet (in

the example the node 1). The second run –lower part of the graphic– corresponds to the

recovery process, where each node sets the recovery signal downwards to its neighbor node.

63

This last run ends when the first node in the cycle (i.e. node 1) receives the recovery signal

from the last node in the cycle (i.e. node 5).

5 4 3 2 1

11111

2222

333

44

5

Cycle Broken

Routing cycle found

2

3

4

5

3

4

5

4

55

R1

R2

R3

R4

R5

Figure 4.9: Example of identification and recovery processes.

4.2.4 Applicability Proof

The Non-blocking Adaptive Cycles technique depends mainly on the process of routing

cycles identification (explained in subsection 4.2.2) for detecting deadlock prone situations.

From the mathematical point of view, the architecture of a network can be represented

as a graph1 where the vertices represent the network devices or processing nodes, as

appropriate, and the edges represent the links that connect them. If considering logic

buffers ci,mk,j as nodes, and the internal connections of the router (commonly implemented

by means of switches or crossbars) as the edges, it is possible to obtain an equivalent

graph representation of the network, as shown in Figs. 4.10 and 4.11. Given this last

representation, it is possible to consider the process of routing cycles identification of NAC

as a breadth-first search (BFS). Then, taking into account that BFS are commonly used

for computing a cycle in graph or reporting that no such cycle exists, it is possible to

infer the applicability of the routing cycles identification process and, consequently, the

applicability of the Non-blocking Adaptive Cycles approach.

1Abstract representation of a set of vertices or nodes, and edges [37]

64

Switch

Routing and

Arbitration

ILC

ILC

ILC

ILC

OLC

OLC

OLC

OLC

Switch

Routing and

Arbitration

ILC

ILC

ILC

ILC

OLC

OLC

OLC

OLC

Network node r
i

Network node r
m

c
i,m

k,j

b
i

k
a

i

j

a
i

j
b

i

k

c
i,m

k,j

Figure 4.10: Equivalent graph representation of network nodes.

Figure 4.11: Graph representation of a deadlock prone routing cycle.

65

4.3 Discussion

In this chapter we have presented a complete deadlock avoidance technique designed

with the aim of solving the problem of deadlock avoidance for interconnection networks

suffering a large number of failures. This problem arises from the scalability limitations

of current deadlock avoidance techniques, particularly those based on the use of virtual

escape channels.

The proposed technique does not require the use of virtual escape channels thus

avoiding their scalability problems. This is one of the advantages of NAC because the

resources needed to avoid faults is independent from the number of faults to be tolerated.

Additionally, the reduction of the number of virtual channels may increase routers speed.

When networks are operated near saturation points, NAC can introduce some internal

overhead in network devices since some congestion conditions may force one or more routers

to begin the identification process explained in section 4.2.2. Under these circumstances,

unnecessary identification flow control packets are injected into the network. However, it

is important to notice that those identification processes do not worsen the congestion

problems of the networks because NAC is based on point-to-point flow control packets

that do not compete for buffering resources.

Some possible solutions to these performance problems are:

• Including a reduced number of virtual channels, in order to improve performance,

avoiding situations such as Head-Of-Line (HOL) blocking [14, Ch. 19].

• Implementing deeper buffers to reduce the probability of deadlock prone situations

(and also congestion).

• Redefining the condition (4.1) as (size(ci,mk,j) ≥ (cap(ci,mk,j)− (j− 1))) where j is an

upper bound given by the number of input buffers. This action would guarantee

at least one free slot for each input buffer not linked to the local processing node

thus reducing the number of routing cycles identifications.

As closure, we can conclude that the Non-blocking Adaptive Cycles technique allows the

design of fault-tolerant routing algorithms capable of treating a large number of dynamic

failures. This poses NAC as a feasible solution to the problem of deadlock avoidance for

current HPC systems.

66

Chapter 5

Evaluation of Proposals

In this chapter, we present the evaluation of the Fault-tolerant Distributed Routing Bal-

ancing (FT-DRB) method and the Non-blocking Adaptive Cycles (NAC) technique we

have explained along the previous chapters. This evaluation aims to corroborate that

our proposals allow interconnection networks to perform in the presence of link failures,

using network models as the main testing tool. It is worth noting that the most significant

information about a network’s fault tolerance is whether it can function at all in the

presence of faults.

There are three aspects to be addressed to carry out the evaluation, namely: the

simulation models that represent the system under study, e.g. the interconnection networks;

the workloads used as inputs of the simulation models; and the metrics used to assess

the benefits of the proposal. The purpose of the evaluation process is to confirm the

operation of FT-DRB and NAC as they were described in previous chapters. To this

end, we have defined a set of metrics to observe both functional and performance features

of both proposals. These metrics have been chosen with the aim of measuring several

aspects related to the capability of interconnection networks to perform in the presence

of links failures. The most representative metrics are the average network latency and

throughput. In addition, some significant workloads have been included in the evaluation

of the proposals, enabling a reliable analysis of interconnection networks. Both proposals

have been implemented using accurate InfiniBand-based simulations models.

In the following sections, we describe the three main aspects of the evaluation process;

workloads in section 5.1; simulation models in section 5.2; and metrics in section 5.3.

Finally, we present the evaluation method and results of each proposal separately. The

evaluation method used in NAC and FT-DRB are explained within section 5.4, most

precisely in subsections 5.4.1 and 5.4.2, respectively. Test scenarios and results of each

proposal are presented and discussed in sections 5.5 (NAC) and 5.6 (FT-DRB).

67

5.1 Workloads

The evaluation methodology, and the thesis itself, is influenced by both the theory of

interconnection networks and fault tolerance. Consequently, we have included two different

kinds of synthetic workloads with the aim of evaluating both aspects of the proposed

routing method and deadlock avoidance technique.

We have used a collection of application-inspired performance benchmarks that describe

conditions frequently found in scientific applications. These benchmarks have been applied

as inputs during the evaluation of both NAC and FT-DRB. The set of synthetic traffic

patterns used in these benchmarks is explained in subsection 5.1.1. In addition, an

approach based on dependability benchmarks [42] have been included in the evaluation of

FT-DRB to characterize the system behavior in the presence of faults, as explained in

subsection 5.1.2.

5.1.1 Synthetic Traffic Patterns

Synthetic traffic patterns have been used because they are commonly applied in compu-

tational intensive scientific applications. These patterns take into account permutations

that are usually performed in parallel numerical algorithms [22, Ch. 9], [14, Ch. 3]. The

destination nodes for messages generated by a given node are always the same. Concretely,

the traffic patterns used are: Bit reversal, Perfect shuffle, Butterfly, Matrix transpose,

Complement, and Tornado. Their mathematical descriptions are shown in Table 5.1, where

source and destination nodes are denoted as s and d, respectively; and n is the number of

bits used to represent the nodes. The Uniform traffic pattern has been also included in

the evaluation. In this pattern, each node randomly selects its destinations.

Pattern Destination

Bit reversal di = sn−i−1 ∀i : 0 ≤ i ≤ n− 1

Perfect shuffle di = s(i−1) mod n ∀i : 0 ≤ i ≤ n− 1

Butterfly dn−1 = s0, d0 = sn−1 ∀i : 0 ≤ i ≤ n− 1

Matrix Transpose di = s(i+ 1
2

) mod b ∀i : 0 ≤ i ≤ n− 1

Complement di = si ∀i : 0 ≤ i ≤ n− 1

Tornado di = si+([k
2

]−1) mod k ∀i : 0 ≤ i ≤ n− 1

Table 5.1: Mathematical description of synthetic traffic patterns.

In addition, two collective communication patterns have been also included: One-

to-All (Scatter) and All-to-One (Gather). In the One-to-All pattern, one source si

68

delivers different packets to different destinations dj ∀j 6= i. This is also referred to as

personalized broadcast. In the All-to-One pattern, different packets from different sources

are concatenated together for a sole destination.

5.1.2 Availability Traces of Real Systems

Dependability benchmarks are based on the availability traces of real parallel and dis-

tributed systems, downloaded from the public Computer Failure Data Repositories (CFDR)

[98] and Failure Trace Archive (FTA) [29].

These availability traces have been obtained from real systems belonging to the Los

Alamos National Laboratory (LANL) [49] and the Pacific Northwest National Laboratory

(PNNL) [73]. These traces are composed by hundreds of failure records that contain the

time when the failure started, the time when it was resolved, the system and node affected,

the type of workload running on the node and the root cause [82]. Some examples of root

causes are: Human error; Environment, including power outages or A/C failures; Network

failure; Software failure; and Hardware failure.

Four computing systems have been chosen to be simulated, taking into account their

number of nodes and network failures, as detailed in Table 5.2. The entire set of availability

traces of these systems has been parsed to obtain the relevant data for performing the

evaluation of FT-DRB. The set of processed attributes is summarized in Table 5.3.

Machine Nodes Procs. Net Faults Trace duration

LANL 12 512 1024 52 09/2003-11/2005

LANL 18 1024 4096 62 05/2002-11/2005

LANL 19 1024 4096 58 10/2002-11/2005

PNNL MPP2 980 1960 89 11/2003-09/2007

Table 5.2: Characteristics of the systems of the availability traces.

Attribute Description

resolution Resolution of the traces in seconds

node id Unique ID for the node

event type Type of event (0: unavailability, 1: availability)

event start time Start of the event (UNIX epoch time)

event end time End of the event (UNIX epoch time)

event end reason Reason the event type or state changed at the end of this trace

(Network code range: 3000-3999)

Table 5.3: Attributes of availability traces used in the evaluation of FT-DRB.

69

5.2 Network Models

The simulation environment is provided by the commercial modeling and simulation tool

OPNET Modeler [70]. This standard tool gives support for modeling communication

networks, and allows faults injection in model components. It is suitable to design

and analyze communication equipment and network protocols, also improving product

performance and reliability. OPNET Modeler is endowed with a three level hierarchy for

modeling purposes, namely: network, node, and process levels. Network level includes

nodes, links, and subnets interconnected between them, and composing topologies. At

this level, models attributes are set and parametric simulations are configured.

At node level, network components are represented by using modules with such

features as: Messages processing (creation, transmission, reception, and storage); and

internal routing, content analysis, queuing, multiplexing, etc. Modules typically represent

applications, protocol layers, and physical resources, such as buffers, ports, and buses.

Finally, the behavior of modules is programmable via their process models. They consist of

finite state machines (FSM) containing blocks of enhanced C/C++ user code and OPNET

Kernel Procedures (OKP). Finite state machines respond to interrupts generated by the

simulation kernel and support detailed specification of protocols, resources, applications,

algorithms, and queuing policies. Users can specify link parameters such as bandwidth,

bit error rate, propagation delay, packets supported, as well as other attributes. The

simulation environment provides a Discrete Event Simulator (DES) engine. The simulation

kernel handles a single global event list and a shared simulation time clock. Events are

attended from the list in the appropriate time order. The whole actions and functionalities

of FT-DRB and NAC have been implemented using this tool, taking as starting point

some previous InfiniBand-based models for adaptive routing [53], [54]. Processing nodes

are explained in subsection 5.2.1, and network nodes (routers) in subsection 5.2.2.

Simulation Management tool

In order to reduce the overall time of the hundreds of simulations conducted during the

evaluation of our proposals, we have designed and implemented a simulation management

tool [110], [68] acting as an interface between OPNET Modeler and non-dedicated computer

clusters. This tools has allowed us to increase the simulation capacity of the modeling

tool exponentially by taking full advantage of available computing systems, including an

efficient use of multicore processing nodes.

70

5.2.1 Processing Nodes

The implemented processing node, shown in Fig. 5.1, includes a processor node that

simulates the communication pattern of an application or a synthetic workload, and a

network interface to connect the processing node to a network node. The processor consists

of a packet source (src) and a packet consumer (sink). The source module (src) generates

link layer data packets according to a specific synthetic traffic pattern, a probability

density function, or an application trace. This module is shown in Fig. 5.2. Additionally,

processing nodes are provided with several attributes related to packet generation such as:

injection rate, start and stop time, packet format and length, workload characterization,

etc. The consumer module (sink), shown in Fig. 5.3, analyzes received packets in order

to update traffic statistics and performance metrics (packet latency, network throughput,

etc.). The FSM of the input buffer is shown in Fig. 5.4. This module is responsible for

receiving incoming packets from network nodes and buffering them while waiting to be

processed by endnodes. The flow control unit, shown in Fig. 5.5, is responsible for sending

and receiving flow control packets, including NAC-based identification control packets. On

the other hand, the CCA module shown in Fig. 5.6 includes functionalities for processing

the FT-DRB ACK packets in order to increase or reduce the number of alternative paths.

Figure 5.1: Processing node model implementation.

71

Figure 5.2: Processing node Source module FSM.

Figure 5.3: Processing node Sink module FSM.

72

Figure 5.4: Processing node Input Buffer module FSM.

Figure 5.5: Processing node Flow Control module FSM.

73

Figure 5.6: Processing node CCA module FSM.

5.2.2 Network Nodes

The internal structure of the implementation of the 8-ports network node is shown in Fig.

5.7. This model is based on the InfiniBand Architecture specification [39] and provides a set

of modules that allow to experiment with several routing policies. The logical behavior of

the router is given by four main modules: the subnet manager, the crossbar, the arbitration

unit, and the routing unit.

The FSM of the Subnet Manager module is shown in Fig. 5.8. This module is

responsible for the initialization and configuration of the entire network topology. The

routing unit, shown in Fig. 5.9, assigns an output port to each incoming packet, and

handles possible routing errors. The routing unit processes simultaneous requests applying

a round-robin policy and can use both forwarding tables or algorithmic routing. Packets

contending for a given output channel are stored in a structure and are attended in a

sequential way. Basically, FT-DRB is implemented within this module. Once the routing

process has assigned an out port to a packet, the arbitration unit sends a signal to the

crossbar in order to set up the corresponding connection between input and output ports.

Similarly to processing nodes, network nodes also includes input and output buffers and

the corresponding flow control unit. The functionality of these modules is almost identical

to previously explained FSM of Figs. 5.4 and 5.5.

74

Figure 5.7: Network node model implementation.

75

Figure 5.8: Network node Subnet Manager module FSM.

Figure 5.9: Network node Routing module FSM.

76

5.3 Evaluation Metrics

In order to observe the performance degradation of the network in the presence of link

failures, we have measured the average latency of communications in the interconnection

network. Latency is the time required for a packet to traverse the network, from the time

the head of a packet arrives at the input port to the time the tail of the packet departs

the output port [14, Ch. 3]. The average latency for each packet x reaching a destination

node i is given in Eq. 5.1, where li[x] is the latency value of the packet x at the node i.

Li[x] =
1

x
(li[x] + (x− 1) ∗ Li[x− 1]), ∀x 6= 0 (5.1)

The global average latency is calculated by averaging the latencies of every packet, and

is measured in seconds as defined in Eq. 5.2, where n is the number of destination nodes.

L =
1

n

n∑
i=1

Li (5.2)

We have measured throughput as the data rate in bits per seconds that the network

accepts per input port. To this end, we have taken into account the ratio between the

number of packets received at destination nodes (accepted load) and the number of packets

injected at source nodes (offered load).

Additionally, we have performed measurements on the number of sent and received

packets after each simulation run. This extra control is intended to confirm the correct

operation of both proposals, ensuring that there are no packet drops during the simulation

process and the network has been able to function in the presence of faults.

5.4 Evaluation Method

The evaluation of proposals is aimed to confirm the correct operation of both FT-DRB

and NAC as they were described in previous chapters. To this end, we have first evalu-

ated the Non-blocking Adaptive Cycles without including –disabling– the fault-tolerant

functionalities of FT-DRB. This first step is intended to prevent that the multipath

distribution characteristics of FT-DRB affect the measurement of the identification and

recovery times of NAC. The NAC evaluation method is further described in subsection

5.4.1. The second part of the evaluation is focused on testing the functionalities of the

Fault-tolerant Distributed Routing Balancing method. Unlike the first step, the evaluation

of FT-DRB includes the functionalities of both proposals, FT-DRB and NAC (for deadlock

77

avoidance). The FT-DRB evaluation method is further described in subsection 5.4.2.

To ensure the statistical validity of discrete event simulations, it was necessary to

execute multiple instances of the simulation with varying random number seeds. As a

rule of thumb, two to three tens runs of a simulation with different random number seeds

should provide enough data to build a useful confidence interval around your simulation

results [40]. Therefore, to consider such statistical anomalies, the simulation model should

be evaluated several times using different seed sequences; and the results obtained in the

individual simulations should be combined in some way (e.g. through their average values)

in order to estimate a typical behavior of the system. This avoids erroneous and inaccurate

analysis of the results and allows a greater degree of confidence.

The experiments presented along this chapter have been conducted taking into account

the above mentioned aspects for statistical validity. More precisely, we have used the

methodology proposed in [69]. Evaluation results and test scenarios of both approaches

are explained in detail in sections 5.5 (NAC) and 5.6 (FT-DRB).

5.4.1 NAC Evaluation

The evaluation of the proposed deadlock avoidance technique has been conducted according

to an incremental three-steps approach. In this evaluation, we have configured several

test scenarios that lead to deadlocked configurations in the absence of deadlock avoidance

mechanisms. Basically, these scenarios consists of a 8x8 torus topology with limited buffer

size in networks nodes and a tornado synthetic communication pattern in some nodes.

The summary of the simulation parameters used for configuring these scenarios is given in

Table 5.4.

Network Parameters Value

Network topologies Torus 8x8

Link bandwidth 2 Gbps

Buffer size 4 KBytes

Packet payloads 2 KBytes

Packet generation rate 400 packets/sec/node

500 packets/sec/node

600 packets/sec/node

Length of routing cycle 8 nodes (one ring of the torus)

Traffic pattern in the cycle Tornado

Traffic patterns in other nodes Bit Reversal, Butterfly,

Perfect Shuffle, Matrix Transpose

Table 5.4: Simulation parameters used in the evaluation of NAC.

78

In the first step of the evaluation, we have studied and measured the response of NAC

in one of the deadlock-prone scenarios explained above. For this step, we have included

the tornado traffic in the nodes of the routing cycle and no traffic in the rest of network

nodes. An example of this kind of scenario is shown in Fig. 5.10. This kind of 3D figures

are known as surface-maps, where axis x and y represent the coordinate of a node, and

the z axis represents some specific values in that node, such as the number of received

packets in our example. We will use surface-maps with different values in the z axis to

ease the visualization of the evaluation results in section 5.5.

 0

 1

 2

 3

 4

 5

 6

 7 0

 1

 2

 3

 4

 5

 6

 7

 0
 1
 2
 3
 4
 5

Received Packets

NAC Evaluation (Torus 8x8)

Node-X coord. Node-Y coord.

Received Packets

Figure 5.10: Surface-map for tornado traffic in a 8x8 torus (row y = 5).

For the second step of the NAC evaluation, we have varied the packet generation rate

of the tornado pattern. This step is aimed on evaluating the differences in average latency

and throughput values during the operation of NAC. Finally, in the third step we have

included the four additional traffic patterns listed in Table 5.4 to the rest of network nodes.

Then, we have repeated the evaluation of latency and throughput differences.

79

5.4.2 FT-DRB Evaluation

The evaluation of FT-DRB was conducted in two steps. First, each scenario was simulated

thirty times with no link failures. Later, link failures were injected in the scenarios used in

the first step (for each approach). Finally, performance degradation was measured as the

difference between latency values obtained from the faulty and fault-free scenarios. As the

aim of these experiments is to evaluate the functionality of the method (and congestion

problems caused by the occurrence of failures), the simulations were conducted using

moderated traffic loads.

Experimentation is based on torus and fat-tree network topologies chosen mainly due to

their multiple alternative paths between nodes and their current popularity. The network

was modeled based on interconnection elements and endnodes previously described in

section 5.2, that provide the interface to connect processing nodes to the network through

links. Simulations were conducted for three different torus topologies and one fat-tree,

considering several standard packet sizes and a constant packet injection rate. Link

bandwidth was set to 2 Gbps, and the buffers of network nodes to 8 KB. A more

detailed description of simulation parameters used throughout the evaluation of FT-DRB

is presented in Tables 5.5 and 5.6. The specific simulations parameters used on each

evaluation are summarized within the corresponding results section.

In order to provide a complete evaluation of the fault-tolerant routing method, we have

defined an incremental evaluation approach comprising the following steps:

1. Performance evaluation for permanent link failures. Three different groups of

evaluations have been conducted:

(a) Performance when dealing with synthetic traffic patterns.

(b) Performance when facing spatial fault patterns.

(c) Performance when applying some collective communication libraries widely

used in HPC systems.

2. Performance evaluation for transient link failures using synthetic traffic patterns.

3. Performance evaluation for variable-duration link failures based on the information

of availability traces and using synthetic traffic patterns.

4. Brief evaluation of the number of alternative paths in the performance of perma-

nent link failures using synthetic traffic patterns.

80

The entire set of evaluation results is detailed in section 5.6; permanent failures in

subsections 5.6.1, 5.6.2, and 5.6.3; transient failures in subsection 5.6.4; variable duration

failures in subsection 5.6.5; and the evaluation of alternative paths in subsection 5.6.6.

Network Parameters Value

Network topologies Torus 8x8, Torus 16x16, Torus 32x32,

Fat-tree 4-ary 3-tree

Link bandwidth 2 Gbps

Buffer size 8 KBytes

Packet payloads 256 Bytes, 512 Bytes

Packet generation rate 400 packets/sec/node

Traffic patterns Uniform Permutation, Bit Reversal, Butterfly,

Perfect Shuffle, Matrix Transpose, Complement,

One-to-all (Scatter), All-to-One (Gather)

Table 5.5: Simulation parameters used in the evaluation of FT-DRB (part I).

FT-DRB Parameters Value

Number of link failures 0, 2, 4, 6, 8, 10,

20, 30, 40, 50, 60, 70, 80, 90, 100, 200,

10% of links in torus 8x8: 12

10% of links in torus 16x16: 51

10% of links in fat-tree 4-ary 3-tree: 12

Start time of link failures 0, 50%, Random

Duration of link failures Real-based, Permanent 100%, Permanent 50%,

Permanent random, Transient random

Number of alternative paths 1, 2, 3, 4, 5

Availability traces LANL 12, LANL 18, LANL 19, PNLL MPP2

Spatial fault regions Convex: line, square

Concave: L, U

Table 5.6: Simulation parameters used in the evaluation of FT-DRB (part II).

5.5 NAC Evaluation Results

This section summarizes the evaluation results of the Non-blocking Adaptive Cycles tech-

nique. Results of the evaluation of NAC in a deadlock-prone scenario with tornado traffic

is detailed in subsection 5.5.1. Then, results obtained applying different traffic loads to

the tornado traffic are presented in subsection 5.5.2. The evaluation including additional

traffic patterns in the rest of network nodes is then presented in subsection 5.5.3.

81

5.5.1 Tornado Pattern

In this section, we study the response of NAC to the deadlock-prone test scenario explained

previously in subsection 5.4.1. This scenario consists on a 8x8 torus topology with limited

buffer size (4 KB) in networks nodes and a tornado communication pattern in one row

of the torus topology. All the processing nodes of this row have been configured with a

generation rate of 500 [pk/node/sec]. In order to study temporal variations in the working

conditions of the network, we have collected several data values at different time slots

of 0.01 seconds throughout simulations. For each 2-seconds simulation scenario we have
2 [s]

0.01 [s]
= 200 time slots, where the first slot corresponds to the time interval ranging from

0.00 to 0.01 [s]. A surface-map showing the number of received packets in the second time

slot of the previously explained scenario is shown in Fig. 5.11.

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

R
ec

ei
ve

d
P

ac
ke

ts

Figure 5.11: Packets received in the time slot 0.01-0.02 [s].

In the absence of mechanisms for providing deadlock freedom to the network, the above

test scenario reaches a deadlock configuration and remains blocked until the end of the

simulation, as shown in Fig. 5.12. When applying NAC for providing deadlock avoidance,

the system does not reach a deadlock configuration and is able to continue operating

until the end of the simulation. This situation can be observed in the average latency

diagram of Fig. 5.5.1 where the deadlock-prone situation arises at around 1.18 [s]. The

most important aspect to be inferred from this figure is that NAC is able to successfully

82

avoid the deadlock occurrence thus allowing the system to remain in operation. In these

scenarios where the routing cycle is composed by 8 nodes, the total average NAC time for

treating deadlocks is about 6.36 [µs] and the difference –degradation– between the latency

values of the points before and immediately after the deadlock prone situation is about

10.22 [µs]. The same analysis can be done with the throughput values shown in Fig. 5.5.1,

where the degradation is about 0.25%. A detailed view of the throughput values during

the treatment of the deadlock-prone situation is shown in Fig. 5.15.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1.00

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
hr

ou
gh

pu
t

Time [s]

NAC Evaluation (Torus 8x8)

Figure 5.12: Throughput throughout simulation time in a deadlock configuration. Tornado
traffic pattern with generation rate = 500 [pk/node/sec].

The surface-map showing the number of received packets in the time slot where NAC

treats the deadlock-prone situation is shown in Fig. 5.16. Is is possible to observe in

these figures that the network node at (x: 3; y: 5) presents a lower number of received

packets, that is precisely the node that detects the NAC triggering conditions (explained

in subsection 4.2.1) and starts the detection of the routing cycle. A complete sequence

including four slots ranging from 1.17 to 1.21 [s] is shown in Fig. 5.17. This sequence

of time slots shows four key points: the time period before the deadlock-prone situation

(slot 1.17-1.18); the time period where NAC is applied (slot 1.18-1.19); the time period

following the treatment of the deadlock-prone situation where the firstly blocked node

received it’s blocked packets (slot 1.19-1.20); and the time period when the system has

recovered it’s normal functioning conditions (slot 1.20-1.21).

83

 1.2e-05

 1.4e-05

 1.6e-05

 1.8e-05

 2e-05

 2.2e-05

 2.4e-05

 2.6e-05

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 L
at

en
cy

 [s
]

Time [s]

NAC Evaluation (Torus 8x8)

Figure 5.13: Average latency throughout simulation time applying NAC. Tornado traffic
pattern with generation rate = 500 [pk/node/sec].

9.30

9.35

9.40

9.45

9.50

9.55

9.60

9.65

9.70

9.75

9.80

9.85

9.90

9.95

1.00

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
hr

ou
gh

pu
t

Time [s]

NAC Evaluation (Torus 8x8)

Figure 5.14: Throughput throughout simulation time applying NAC. Tornado traffic
pattern with generation rate = 500 [pk/node/sec].

84

9.8450

9.8500

9.8550

9.8600

9.8650

9.8700

9.8750

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

T
hr

ou
gh

pu
t

Time [s]

NAC Evaluation (Torus 8x8)

Figure 5.15: Detailed view of throughput values in the time interval 1.00-1.40 [s]. Tornado
traffic pattern with generation rate = 500 [pk/node/sec].

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

R
ec

ei
ve

d
P

ac
ke

ts

Figure 5.16: Packets received in the time slot 1.18-1.19 [s]. Tornado traffic pattern with
generation rate = 500 [pk/node/sec]. Within this time slot, NAC treats a deadlock
situation in the network node (x: 3, y: 5).

85

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

R
ec

ei
ve

d
P

ac
ke

ts

(a) Time slot 1.17 to 1.18

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

R
ec

ei
ve

d
P

ac
ke

ts

(b) Time slot 1.18 to 1.19

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7
 8

R
ec

ei
ve

d
P

ac
ke

ts

(c) Time slot 1.19 to 1.20

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

R
ec

ei
ve

d
P

ac
ke

ts

(d) Time slot 1.20 to 1.21

Figure 5.17: Packets received in four time slots ranging from 1.17 to 1.21 [s]. Tornado
traffic pattern with generation rate = 500 [pk/node/sec]. Slot 1.17-1.18 corresponds to the
time period before the deadlock situation. Slot 1.18-1.19 to the treatment of the deadlock
situation with NAC. Slot 1.19-1.20 to the time period after the treatment of the deadlock
situation (gradual recovery of normal functioning). And in the slot 1.20-1.21 the system
has recovered it’s normal functioning conditions.

86

5.5.2 Tornado Pattern with Variable Load

As a second step of the NAC evaluation, we have varied the packet generation rate of

the network nodes in the tornado pattern row of the 8x8 torus. The purpose of this

modification is to evaluate the differences in average latency and throughput values when

NAC is treating the deadlock-prone situation. For this evaluation, we have considered

three different generation rates: 400, 500 and 600 [pk/node/sec]. Some complementary set

of results of this section, including surface-maps of received packets per each generation

rate have been included in Appendix A, subsection A.1.1.

The absolute values and percentages of latency degradation1 are shown in Figs. 5.18

and 5.19, respectively. The degradation of applying a generation rate of 500 [pk/node/sec]

is about 12% higher than the degradation obtained whit 400 [pk/node/sec]. Similarly, the

generation rate of 600 [pk/node/sec] generates an increment of about 8% in latency. It

is worth noting that a 50% of increase in latency values is not a high cost when dealing

with potential deadlock situations. The absolute latency values are shown in Fig. A.1

(Appendix A). A similar analysis can be applied to the throughput degradation values

presented in Fig. 5.20, where the maximum degradation value of this evaluation is about

0.33%.

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

 1.3e-05

400 500 600

La
te

nc
y

de
gr

ad
at

io
n

[s
]

Generation rate [pk/node/sec]

NAC Evaluation (Torus 8x8)

Figure 5.18: Difference between absolute latency values before and after treating deadlocks.

1Measured as the difference between the latency values of the points before and immediately after the
deadlock prone-situation.

87

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

 48

400 500 600

La
te

nc
y

de
gr

ad
at

io
n

[%
]

Generation rate [pk/node/sec]

NAC Evaluation (Torus 8x8)

Figure 5.19: Difference between latency values [%] before and after treating deadlocks.

 0.0018

 0.002

 0.0022

 0.0024

 0.0026

 0.0028

 0.003

 0.0032

 0.0034

400 500 600

T
hr

ou
gh

pu
t d

eg
ra

da
tio

n

Generation rate [pk/node/sec]

NAC Evaluation (Torus 8x8)

Figure 5.20: Difference between throughput values before and after treating deadlocks.

88

5.5.3 Tornado Pattern with Additional Traffic

The final step of the NAC evaluation consists on extending the previous evaluation by

including additional synthetic communication patterns to the rest of nodes of the 8x8

torus. Four additional patterns have been applied separately with a generation rate of 200

[pk/node/sec]. These patterns are: Bit reversal, Butterfly, Matrix transpose, and Perfect

shuffle.

The absolute values and percentages of latency degradation for each test scenario are

presented in Figs. 5.21 and 5.22, respectively. It is possible to observe from these figures

that the presence of additional communication patterns have considerable impacts for low

generation rates, as could be inferred from the differences between the values when applying

Bit reversal and Matrix transpose patterns. This gap in latency values is considerably

smaller when increasing the generation rate, as in the case of 600 [pk/node/sec]. The

throughput values of Fig. 5.23 present a similar behavior. The absolute latency values for

each test scenario are shown in Fig. A.5 (Appendix A).

The sequence of surface-maps of received packets for the four key time slots is shown

in Fig. 5.24, namely: the time interval before the deadlock situation; the time interval

during the NAC treatment; the time interval after the NAC treatment; and finally the

time interval after the deadlock situation. The complete set of surface-maps of received

packets per each generation rate and traffic pattern has been included in Appendix A,

subsection A.1.2.

 2e-06

 2.5e-06

 3e-06

 3.5e-06

 4e-06

 4.5e-06

 5e-06

 5.5e-06

 6e-06

 6.5e-06

 7e-06

400 500 600

La
te

nc
y

de
gr

ad
at

io
n

[s
]

Generation rate [pk/node/sec]

NAC Evaluation (Torus 8x8)

Bit reversal
Butterfly

Matrix transpose
Shuffle

Figure 5.21: Difference between absolute latency values before and after treating deadlocks
with additional traffic patterns.

89

 10

 15

 20

 25

 30

 35

400 500 600

La
te

nc
y

de
gr

ad
at

io
n

[%
]

Generation rate [pk/node/sec]

NAC Evaluation (Torus 8x8)

Bit reversal
Butterfly

Matrix transpose
Shuffle

Figure 5.22: Difference between latency values [%] before and after treating deadlocks
with additional traffic patterns.

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

 0.0013

 0.0014

 0.0015

 0.0016

400 500 600

T
hr

ou
gh

pu
t d

eg
ra

da
tio

n

Generation rate [pk/node/sec]

NAC Evaluation (Torus 8x8)

Bit reversal
Butterfly

Matrix transpose
Shuffle

Figure 5.23: Difference between throughput values before and after treating deadlocks
with additional traffic patterns.

90

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 2

 4

 6

 8

 10

 12

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure 5.24: Packets received in four time slots. Tornado traffic pattern with generation
rate = 500 [pks/node/sec]. Additional bit reversal traffic pattern with generation rate
= 200 [pks/node/sec]. Slot 5.24(a) corresponds to the time period before the deadlock
situation. Slot 5.24(b) to the treatment of the deadlock situation with NAC. Slot 5.24(c) to
the time period after the treatment of the deadlock situation (gradual recovery of normal
functioning). And in the slot 5.24(d) the system has recovered it’s normal functioning
conditions.

91

5.6 FT-DRB Evaluation Results

This section summarizes the evaluation results of the four incremental steps proposed in

the previous section for FT-DRB. The performance evaluation of permanent link failures

comprises three major groups of test scenarios: evaluation when dealing with synthetic

traffic patterns (subsection 5.6.1); evaluation when facing spatial fault patterns (subsection

5.6.2); and finally the evaluation with two collective communication patterns (subsection

5.6.3). Then, the evaluation of transient link failures is presented in subsection 5.6.4.

Real-based evaluation is summarized in third place in subsection 5.6.5. The evaluation of

the number of alternative paths is briefly presented at subsection 5.6.6. Finally, a brief

discussion about the evaluation of FT-DRB is outlined at the end of the section.

5.6.1 Permanent Failures with Synthetic Traffic

This evaluation is aimed to study how permanent failures affect synthetic traffic patterns

commonly applied in computational intensive scientific applications [22, Ch. 9]. The

simulation parameters used in this evaluation is summarized in Tables 5.7 and 5.8.

The evaluation results of the aforementioned traffic patterns are grouped according to

the network topology used in the evaluation. Additional results for permanent failures

with random start times have been included in subsection A.2.1 of Appendix A.

There are two important points to emphasize about these results. First, the high

performance levels achieved by FT-DRB, where the lower performance value, failing 10%

of network links is about 80%, as shown in Fig. 5.25. Second, the fact that performance

losses are gradual, avoiding abrupt transitions in performance and thus in the average

latency values of high-speed interconnection networks. These high performance values

are based on the use of alternative paths and an effective and successful distribution of

communication load through those paths. There were no congestion problems in the

fault-free scenarios, therefore no additional paths were necessary between each source-

destination pair. However, the occurrence of faults reduces the bisection width of the

network while increasing the utilization of other links to circumvent faults, thus generating

congestion problems. For this reason, multipath were automatically established between

some source-destination pairs to treat the congestion problem in the faulty scenarios.

The results for 2, 4, 6, 8 and 10 link failures in the 8x8 torus topology are shown in

Fig. 5.26; results of the 16x16 torus topology in Fig. 5.27; and results of the Fat-tree 4-ary

3-tree in Fig. 5.28. The lower but still very promising performance value of these results

corresponds to the Uniform pattern in the Fat-tree 4-ary 3-tree topology (Fig. 5.28). For

the rest of traffic patterns, performance is above 95% in all three evaluated topologies.

92

Network Parameters Value

Network topologies Torus 8x8, Torus 16x16, Fat-tree 4-ary 3-tree

Link bandwidth 2 Gbps

Buffer size 8 KBytes

Packet payloads 256 Bytes, 512 Bytes

Packet generation rate 400 packets/sec/node

Traffic patterns Uniform Permutation, Bit Reversal, Butterfly,

Perfect Shuffle, Matrix Transpose, Complement

Table 5.7: Simulation parameters for permanent failures and synthetic patterns (part I).

FT-DRB Parameters Value

Number of link failures 0, 2, 4, 6, 8, 10, 10%

Start time of link failures 50%, Random

Duration of link failures 50%, Random

Number of alternative paths 4

Table 5.8: Simulation parameters for permanent failures and synthetic patterns (part II).

 0

 20

 40

 60

 80

 100

Torus-8x8
(12 failures)

Torus-16x16
(51 failures)

Fat-Tree-4a3t
(12 failures)

P
er

fo
rm

an
ce

 [%
]

 Topology

FT-DRB Evaluation

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

Figure 5.25: Evaluation results for 3 topologies with 10% of links failed (permanent).

93

 2.9e-06

 3e-06

 3.1e-06

 3.2e-06

 3.3e-06

 3.4e-06

 3.5e-06

 3.6e-06

 3.7e-06

0 2 4 6 8 10

A
ve

ra
ge

 L
at

en
cy

 [s
]

Number of link failures (permanent)

FT-DRB Evaluation (Torus 8x8)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Absolute values

 80

 85

 90

 95

 100

0 2 4 6 8 10

P
er

fo
rm

an
ce

 [%
]

Number of link failures (permanent)

FT-DRB Evaluation (Torus 8x8)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Percentages

Figure 5.26: Evaluation results of permanent link failures in Torus 8x8.

94

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

0 2 4 6 8 10

A
ve

ra
ge

 L
at

en
cy

 [s
]

Number of link failures (permanent)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Absolute values

 90

 92

 94

 96

 98

 100

0 2 4 6 8 10

P
er

fo
rm

an
ce

 [%
]

Number of link failures (permanent)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Percentages

Figure 5.27: Evaluation results of permanent link failures in Torus 16x16.

95

 5e-07

 1e-06

 1.5e-06

 2e-06

 2.5e-06

 3e-06

 3.5e-06

 4e-06

 4.5e-06

 5e-06

0 2 4 6 8 10

A
ve

ra
ge

 L
at

en
cy

 [s
]

Number of link failures (permanent)

FT-DRB Evaluation (Fat Tree 4-ary 3-tree)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Absolute values

 84

 86

 88

 90

 92

 94

 96

 98

 100

0 2 4 6 8 10

P
er

fo
rm

an
ce

 [%
]

Number of link failures (permanent)

FT-DRB Evaluation (Fat Tree 4-ary 3-tree)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Percentages

Figure 5.28: Evaluation results of permanent link failures in Fat-tree 4-ary 3-tree.

96

5.6.2 Permanent Failures with Spatial Fault Patterns

The evaluation of spatial fault patterns is intended to validate the behavior of the method

when dealing with some common and complex fault combinations, whose occurrence

probability was studied at [23]. This evaluations has been carried out using a 32x32 torus

topology, considering failures in links instead of network nodes. In multidimensional k -ary

n-cube networks, the groups of adjacent faults can be classified in two major categories:

convex and concave. Convex regions may be further constrained to be regions whose shape

is rectangular, i.e. line and square shapes. Moreover, concave regions present unique

difficulties for fault-tolerant routing algorithms [22, Ch. 6]. Some concave regions are:

L-shape, U-shape, etc. The set of simulation parameters used in this group of evaluation

is summarized in Tables 5.9 and 5.10.

The test scenarios used to evaluate the spatial fault patterns are: line and square shapes

(convex regions); L and U shapes (concave regions). Graphic examples of these spatial

fault patterns are presented in Figs. 5.29(a), 5.29(b), 5.29(c), and 5.29(d), respectively.

The average performance values and standard deviations for the communication patterns

can be seen in Fig. 5.30. All test scenarios show average performance values above 98%.

These are excellent results because spatial fault regions present complex and unique

difficulties for fault-tolerant methods. This is particularly important when dealing with

concave regions.

Network Parameters Value

Network topologies Torus 32x32

Link bandwidth 2 Gbps

Buffer size 8 KBytes

Packet payloads 256 Bytes, 512 Bytes

Packet generation rate 400 packets/sec/node

Traffic patterns Uniform Permutation

Table 5.9: Simulation parameters for permanent failures and spatial faults (part I).

FT-DRB Parameters Value

Number of link failures Variable (according to the fault pattern)

Start time of link failures 0

Duration of link failures 100%

Number of alternative paths 4

Availability traces -

Spatial fault regions Convex: line, square. Concave: L, U

Table 5.10: Simulation parameters for permanent failures and spatial faults (part II).

97

(a) Line (convex) (b) Square (convex)

(c) L-shape (concave) (d) U-shape (concave)

Figure 5.29: Examples of spatial fault patterns.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

Line Square L U

P
er

fo
rm

an
ce

 [%
]

Spatial Fault Patterns

FT-DRB Evaluation (Torus 32x32)

Average performance Standard deviation

Figure 5.30: Evaluation results of spatial faults patterns.

98

5.6.3 Permanent Failures with Collective Communication

The evaluation of collective communication patterns is intended to analyze performance

results from the viewpoint of communication libraries widely used in HPC systems, Message

Passing Interface. To this end, we have conducted some experiments to study two widely

used collective communications patterns: One-to-All (Scatter) and All-to-One (Gather).

A MPI-like master-worker framework approach was used to evaluate the performance of

the method. The One-to-All pattern is used in master-worker based frameworks when the

master process sends messages to its worker processes. In this pattern, only one processing

node sends different messages to the rest of the nodes in the network. While the All-to-One

pattern is related to the information sent from the workers to the master where all the

processing nodes, but the master, send messages to only one node. The set of simulation

parameters used in this group of evaluation is summarized in Tables 5.11 and 5.12.

As mentioned above, the One-to-All communication pattern is intended to represent the

master process sending messages to its workers, while the All-to-One pattern is intended

to represent communications in the opposite direction. The implemented One-to-All and

All-to-One communication patterns faithfully reproduce such behavior.

Collective communication results are shown in Fig. 5.31. As could be seen in the figure,

the performance degradation for these patterns is lower than 1% (in the worst case). This

means that FR-DRB is able to give support to these widely used collective communication

patterns, with almost no degradation, even with 10% of network links failed (due to the

multipath approach of the method).

5.6.4 Transient Failures

The evaluation approach used for transient link failures is similar to the one previously

applied to permanent failures in subsection 5.6.1. The only difference is the random value

assigned to the start time and duration of link failures. The set of simulation parameters

used in this group of evaluation is summarized in Tables 5.13 and 5.14.

The results for 2, 4, 6, 8 and 10 link failures in the 8x8 torus topology are shown in

Fig. 5.32; results of the 16x16 torus topology in Fig. 5.33; and results of the Fat-tree 4-ary

3-tree in Fig. 5.34. In all three topologies, the differential treatment of permanent and

transient link failures improves the overall performance of the system. These improvements

have been achieved through a better utilization of available resources over time. For the

8x8 torus topology, the lower performance value is above 99.5 %, an improvement of about

14% over the evaluation of permanent failures shown in Fig. 5.26. For the 16x16 torus

topology, the improvement is about 8%; while it reaches a 12% in the Fat-tree.

99

Network Parameters Value

Network topologies Torus 32x32

Link bandwidth 2 Gbps

Buffer size 8 KBytes

Packet payloads 256 Bytes, 512 Bytes

Packet generation rate 400 packets/sec/node

Traffic patterns One-to-all (Scatter), All-to-One (Gather)

Table 5.11: Simulation parameters for permanent failures and collective patterns (part I).

FT-DRB Parameters Value

Number of link failures 2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200

Start time of link failures 0

Duration of link failures 100%

Number of alternative paths 4

Table 5.12: Simulation parameters for permanent failures and collective patterns (part II).

Network Parameters Value

Network topologies Torus 8x8, Torus 16x16, Fat-tree 4-ary 3-tree

Link bandwidth 2 Gbps

Buffer size 8 KBytes

Packet payloads 256 Bytes, 512 Bytes

Packet generation rate 400 packets/sec/node

Traffic patterns Uniform Permutation, Bit Reversal, Butterfly,

Perfect Shuffle, Matrix Transpose, Complement

Table 5.13: Simulation parameters for transient failures and synthetic patterns (part I).

FT-DRB Parameters Value

Number of link failures 0, 2, 4, 6, 8, 10, 10%

Start time of link failures Random

Duration of link failures Random (0-10%)

Number of alternative paths 4

Table 5.14: Simulation parameters for transient failures and synthetic patterns (part II).

100

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P
er

fo
rm

an
ce

 [%
]

Number of link failures

FT-DRB Evaluation (Torus 32x32)

One-to-All (Scatter) All-to-One (Gather)

Figure 5.31: Evaluation results of collective communication patterns.

5.6.5 Real-based Failures

The evaluation of real scenarios is based on failure traces of real systems belonging to

the Los Alamos National Laboratory (LANL) [49] and the Pacific Northwest National

Laboratory (PNNL) [73]. These failure traces were obtained from the public failure data

repositories CFDR [98] and FTA [29]. Four HPC systems were chosen to be simulated,

taking into account their number of nodes and network failures (detailed in Table 5.2).

The number and duration of link failures varies according to the failures traces of such

systems (see Table 5.2). Notice that failures lengths have been normalized to the simulation

time. Since the PNNL MPP2 trace provides no information about the failures length,

they were all considered as permanent. However, as the information about the length of

the fault is available for LANL systems, their failures were considered as transient.

The performance results of test scenarios based on the four systems are shown in Figs.

5.35 (LANL 12), 5.36 (LANL 18), 5.37 (LANL 19) 5.38 (PNNL MPP2). The impact of

differences in the number and the duration of failures can be clearly seen the performance

values of all systems, particularly for the PNNL MPP2 machine. The degradation for

this system is higher because the PNNL MPP2 machine presents the highest number of

failures and, as explained above, those failures were considered as permanent (unlike the

other three scenarios).

101

 2.9e-06

 3e-06

 3.1e-06

 3.2e-06

 3.3e-06

 3.4e-06

 3.5e-06

 3.6e-06

0 2 4 6 8 10

A
ve

ra
ge

 L
at

en
cy

 [s
]

Number of link failures (transient)

FT-DRB Evaluation (Torus 8x8)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Absolute values

 99

 99.2

 99.4

 99.6

 99.8

 100

0 2 4 6 8 10

P
er

fo
rm

an
ce

 [%
]

Number of link failures (transient)

FT-DRB Evaluation (Torus 8x8)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Percentages

Figure 5.32: Evaluation results of transient link failures in Torus 8x8.

102

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

0 2 4 6 8 10

A
ve

ra
ge

 L
at

en
cy

 [s
]

Number of link failures (transient)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Absolute values

 99

 99.2

 99.4

 99.6

 99.8

 100

0 2 4 6 8 10

P
er

fo
rm

an
ce

 [%
]

Number of link failures (transient)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Percentages

Figure 5.33: Evaluation results of transient link failures in Torus 16x16.

103

 5e-07

 1e-06

 1.5e-06

 2e-06

 2.5e-06

 3e-06

 3.5e-06

 4e-06

 4.5e-06

 5e-06

0 2 4 6 8 10

A
ve

ra
ge

 L
at

en
cy

 [s
]

Number of link failures (transient)

FT-DRB Evaluation (Fat Tree 4-ary 3-tree)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Absolute values

 97

 97.5

 98

 98.5

 99

 99.5

 100

0 2 4 6 8 10

P
er

fo
rm

an
ce

 [%
]

Number of link failures (transient)

FT-DRB Evaluation (Fat Tree 4-ary 3-tree)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Percentages

Figure 5.34: Evaluation results of transient link failures in Fat-tree 4-ary 3-tree.

104

If considering the Uniform pattern, the average performance degradation for the entire

set of real-based scenarios is less than 2%. In the worst case, when considering all the

failures as permanent, the performance degradation is about 3%. In contrast, when failures

were considered as transient, the degradation were below 1% as for the LANL machines.

5.6.6 Evaluation of Alternative Paths

To conclude the performance evaluation of FT-DRB, we have conducted some experiments

varying the number of alternative paths but keeping the same number and duration of

link failures. The simulation parameters of are summarized in Tables 5.15 and 5.16.

The results of this evaluation are shown in Fig. 5.39. There are two important points

to highlight about these results. The first of these points is that for moderate traffic

generation rates and a fixed number of link failures, the number of simultaneous alternative

paths do not produce significant changes in the average latency. However, some patterns

such as the Bit reversal and Butterfly show downward trends in latency when increasing

the number of alternative paths. The second point to mark is the performance gap

between some communication patterns such as Matrix transpose and Complement, even

for situations where just one alternative path is used.

Network Parameters Value

Network topologies Torus 16x16

Link bandwidth 2 Gbps

Buffer size 8 KBytes

Packet payloads 256 Bytes, 512 Bytes

Packet generation rate 400 packets/sec/node

Traffic patterns Uniform Permutation, Bit Reversal, Butterfly,

Perfect Shuffle, Matrix Transpose, Complement

Table 5.15: Simulation parameters for the evaluation of alternative paths (part I).

FT-DRB Parameters Value

Number of link failures 10

Start time of link failures 0

Duration of link failures 100%

Number of alternative paths 1, 2, 3, 4, 5

Availability traces -

Spatial fault regions -

Table 5.16: Simulation parameters for the evaluation of alternative paths (part II).

105

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

Fault-free Real-based

A
ve

ra
ge

 L
at

en
cy

 [s
]

LANL 12 (52 failures)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Real duration

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

Fault-free Permanent

A
ve

ra
ge

 L
at

en
cy

 [s
]

LANL 12 (52 failures)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Permanent

Figure 5.35: Evaluation results of real-based link failures for system LANL 12.

106

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

 1.3e-05

Fault-free Real-based

A
ve

ra
ge

 L
at

en
cy

 [s
]

LANL 18 (62 failures)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Real duration

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

 1.3e-05

Fault-free Permanent

A
ve

ra
ge

 L
at

en
cy

 [s
]

LANL 18 (62 failures)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Permanent

Figure 5.36: Evaluation results of real-based link failures for system LANL 18.

107

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

Fault-free Real-based

A
ve

ra
ge

 L
at

en
cy

 [s
]

LANL 19 (58 failures)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Real duration

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

Fault-free Permanent

A
ve

ra
ge

 L
at

en
cy

 [s
]

LANL 19 (58 failures)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Permanent

Figure 5.37: Evaluation results of real-based link failures for system LANL 19.

108

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

Fault-free Real-based

A
ve

ra
ge

 L
at

en
cy

 [s
]

PNNL MPP2 (89 failures)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Real duration

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

Fault-free Permanent

A
ve

ra
ge

 L
at

en
cy

 [s
]

PNNL MPP2 (89 failures)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Permanent

Figure 5.38: Evaluation results of real-based link failures for system PNNL MPP2.

109

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

 1.3e-05

1 2 3 4 5

A
ve

ra
ge

 la
te

nc
y

[s
]

Number of alternative paths

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

Figure 5.39: Evaluation results for different number of alternative paths with 10 permanent
link failures.

5.6.7 Discussion

The strongest point of FT-DRB is that it provides a simple but sufficiently complete

and satisfactory solution to the problem of dynamic fault tolerance in interconnection

networks. This constitutes the major contribution of the method since the most significant

information about a network’s fault tolerance is whether it can function at all in the

presence of faults. It is also possible to infer from the evaluation results that FT-DRB do

not degrade the performance of the system in the absence of failures.

As most current routing approaches only treat static failures, it is not possible to

conduct realistic performance comparisons against them. One of the only proposals dealing

with dynamic failures was presented in [66] and [65]. According to their performance

evaluation graphs, their method achieves average latency values of about 82%. When

applying the same evaluation conditions (3 link failures in a 16x16 torus network with

90% of traffic load), the average latency value of our method is about 95%. Our method

obtains an improvement of about 70% because the method presented in [66] is based on a

variation of the turn-model routing, which uses non-faulty paths but lacks of a suitable

load balancing technique [14].

110

Acknowledgments

We would like to thank the Computing, Communications, and Networking Division at Los

Alamos National Laboratory (LANL) for providing us the real-systems failure data, and

specifically to Gary Grider, Laura Davey and James Nunez for their efforts and help; as well

as Evan Felix and David Brown from the Pacific Northwest National Laboratory (PNNL)

for collecting the data and sharing it. The data was collected and made available using

the MSC Facility in the William R. Wiley Environmental Molecular Sciences Laboratory

(sponsored by the U.S. Department of Energy’s Office of Biological and Environmental

Research).

Furthermore, we thank OPNET Technologies, Inc. for providing us the OPNET

Modeler licenses to perform the experimental evaluation of this thesis and the previous

work [102], [103], [104], [106], [107], [109].

111

Gonzalo Zarza. PhD Thesis 2011.

112

Chapter 6

Conclusions

In the previous chapters, we have presented the conception, design, implementation and

evaluation of the two contributions of this thesis. The first of these contributions is the

adaptive multipath routing method Fault-tolerant Distributed Routing Balancing (FT-

DRB). This method has been designed to exploit the communication path redundancy

available in many network topologies, allowing interconnection networks to perform

in the presence of a large number of faults. The second contribution is the scalable

deadlock avoidance technique Non-blocking Adaptive Cycles (NAC), specifically designed

for interconnection networks suffering from a large number of failures. This technique has

been designed and implemented with the aim of ensuring freedom from deadlocks in the

proposed fault-tolerant routing method FT-DRB.

Throughout this thesis, we have been following the steps of the scientific research

method; ranging from the planning and discussion of objectives and methods, up to the

testing and validation of proposals. In the first chapter, we have introduced the objectives,

motivation and challenges that have led the development of this work. Then, we have

defined the theoretical background of this thesis in chapter 2. Taking these definitions as

a starting point, we have been capable of performing the analysis of issues influencing the

development of the proposed fault-tolerant routing policies, putting special emphasis on the

fault tolerance theory. From this approach, we have been able to provide flexible solutions

to the problem of fault tolerance and deadlock avoidance for high-speed interconnection

networks in chapters 3 and 4, respectively. Both proposals have been implemented and

widely evaluated in different network topologies through modeling and simulation tools,

as described in chapter 5. Having completed all the stages that comprise our research, we

are now able to present the final conclusions and further work of this thesis.

113

6.1 Final Conclusions

The strongest point of this thesis is that it provides a simple but sufficiently complete and

satisfactory solution to the problem of dynamic fault tolerance in interconnection networks.

To this end, we have designed and implemented an adaptive multipath routing method for

treating a large number of network link failures in high-performance computing systems

(FT-DRB). In addition, we have also proposed and evaluated a complete and scalable

deadlock avoidance technique specifically designed to deal with large interconnection

networks suffering from a large number of dynamic faults (NAC).

Fault-tolerant Distributed Routing Balancing (FT-DRB)

We have developed a multipath fault-tolerant routing method capable of treating a large

number of dynamic link failures. The proposed method allows messages to reach their

destination even in the presence of a large number of link failures. This constitutes

the major contribution of the method since the most significant information about a

network’s fault tolerance is whether it can function at all in the presence of faults. Apart

from treating link failures, the method is also able to deal with congestion problems and

performance degradations caused by the occurrence of failures. It is worth noting that the

method do not degrade at all the system performance in the absence of failures.

The four phases of the fault tolerance theory have been successfully integrated into

the routing algorithm. These four phases are: error detection, damage confinement, error

recovery, and fault treatment and continued system service. In the proposed method,

monitoring and failure detection processes represent the phase of error detection. On

the other hand, the injection and forwarding of link failure notifications to source nodes

correspond to the phase of damage confinement. The error recovery solution consists on

configuring and selecting escape paths for rerouting packets still in transit through the

original faulty path. Alternative paths are configured using intermediate network nodes to

circumvent dynamic link failures on-the-fly. Finally, fault treatment has been provided by

means of configuring appropriate source-based routing paths between source-destination

pairs affected by network link failures, taking into account the network condition after the

occurrence of failures.

In order to maximize the use of network resources, FT-DRB detects and applies

differential treatments to permanent and transient link failures. At a first stage, link

failures are always considered and treated as transient failures. If a failure persists over

time, its state is changed from transient to permanent. Thus, FT-DRB differences between

permanent and transient failures.

114

Non-blocking Adaptive Cycles (NAC)

We have also proposed a scalable deadlock avoidance technique, Non-blocking Adaptive

Cycles, specifically designed for interconnection networks suffering from a large number

of link failures. This technique has been applied for ensuring deadlock freedom in the

proposed Fault-tolerant Distributed Routing Balancing method. In addition, the proposed

technique allows the design of fully adaptive routing methods in general terms.

This technique is based on the idea of denying the hold-and-wait and circular wait

conditions to avoid deadlock occurrences. Our proposal exploits this idea by means of

adding an one-slot deadlock avoidance buffer to each input buffer, and applying a simple set

of actions when accessing output buffers with no free space. To this end, NAC comprises

three main processes: detection of deadlock prone situations; identification of the routing

cycles involved in these situations; and the application of predefined protocols to ensure

the normal functioning of the system under these circumstances.

The proposed technique does not require the use of virtual escape channels thus

avoiding their scalability problems. This is one of the advantages of NAC because the

resources needed to avoid faults is not proportional to the number of faults to be tolerated.

Additionally, the reduction of the number of virtual channels may increase routers speed.

This makes it a feasible solution to the problem of deadlock avoidance for current HPC

systems.

6.2 Further Work and Open Lines

This thesis, as any work covering several aspects within a certain field of science, is intended

to be complete and entirely closed. However, this research also gives rise to a wide range

of affordable open lines and further work. These open lines are described below, grouped

according to the contribution from which they are originated.

Fault-tolerant Distributed Routing Balancing (FT-DRB)

One of the points that can be further improved in FT-DRB is the simultaneous use of

source-based paths for treating both link failures and congestion problems. To this end, it

is necessary to conduct a complete study of the relation between several parameters of

the problem, including: the network topology; the number of failures to be treated; the

maximum number of alternative paths and latency thresholds to be used; the communication

pattern and traffic load; etc. In addition, the results of this study could be used as inputs

for improving the values of thresholds applied in the treatment of transient and intermittent

115

failures. An additional point that must be considered and treated in the future is to

provide solutions to those packets already stored in output buffers affected by link failures.

This is an important problem in situations where packet drops cannot be tolerated. Among

others, the most important topics are:

• Contemplate non-common failure scenarios (i.e. labyrinths). This point would be

based on the inclusion of some sort of backtracking algorithm for avoiding livelock

situations that could arise under these circumstances.

• Design and implement a variant of the routing method that could be used for

disabling network components that present low (or null) traffic loads, to enable

the replacement of failed components (and also to reduce power consumption).

Non-blocking Adaptive Cycles (NAC)

For the proposed deadlock avoidance technique, further work comprises the inclusion of a

reduced number virtual channels to avoid situations such as Head-of-Line (HoL) blocking

and also to improve performance. Among others, the most important topics include:

• Evaluate the possibility of extending the technique to wormhole switching.

• Measure the time for identifying routing cycles under heavy traffic loads.

• Study the relation between deadlocks occurrences and size of network buffers.

• Study the effect of link failures in the process of routing cycle identification.

6.3 List of Publications

The work presented in this thesis has been published in the following papers.

1. G. Zarza, D. Lugones, D. Franco, and E. Luque. A Multipath Fault-

Tolerant Routing Method for High-Speed Interconnection Networks,

In Euro-Par 2009 Parallel Processing, pp. 1078-1088, Delft, The Ne-

therlands, August 2009. Springer Berlin/Heidelberg. [102]

This paper proposes a fault-tolerant routing method designed to deal with the

fault tolerance problem for High-Speed Interconnection Networks. This method

is able to support a dynamic fault model, while at the same time not requiring

network reconfigurations or stopping packet injection at any time, using a limited

number of virtual channels.

116

2. G. Zarza, D. Lugones, D. Franco, and E. Luque. Multipath Fault-

Tolerant Routing Policies for High-Speed Interconnection Networks,

In Proceedings of the XX Spanish Conference on Parallelism, pp. 487-

492, A Coruña, Spain, September 2009. [104]

This work focuses on the problem of fault tolerance for high-speed interconnection

networks by designing fault-tolerant routing policies to solve a certain number

of dynamic failures, without sacrificing system scalability. To accomplish this

the method takes advantage of communication path redundancy, by means of

adaptive multipath routing approaches, fulfilling the four phases of fault tolerance.

3. G. Zarza, D. Lugones, D. Franco, and E. Luque. A Multipath Routing

Method for Tolerating Permanent and Non-Permanent Faults, In

15th Argentine Conference on Computer Science (CACIC), pp. 251-

261, Jujuy, Argentina, October 2009. [103]

This work focuses on the problem of fault tolerance for high-speed interconnection

networks by designing a fault-tolerant routing method to solve an unbounded

number of dynamic faults (permanent and non-permanent), by means of a

multipath routing approach.

4. G. Zarza, D. Lugones, D. Franco, and E. Luque. FT-DRB: A Method

for Tolerating Dynamic Faults in High-Speed Interconnection Net-

works, In 18th Euromicro International Conference on Parallel, Dis-

tributed and Network-Based Computing (PDP), pp. 77-84, Pisa, Italy,

February 2010. IEEE Computer Society. [106]

This paper introduces a fault-tolerant routing method, called FT-DRB. The

method is based on a multipath routing approach and is able to support a large

number of dynamic faults using few additional hardware resources. Moreover,

the method includes a deadlock avoidance technique that does not require the

use of virtual channels.

5. G. Zarza, D. Lugones, D. Franco, and E. Luque. Deadlock Avoid-

ance for Interconnection Networks with Multiple Dynamic Faults, In

18th Euromicro International Conference on Parallel, Distributed and

Network-Based Computing (PDP), pp. 276-280, Pisa, Italy, February

2010. IEEE Computer Society. [105]

This paper introduces a new deadlock avoidance mechanism for routing algorithms

designed to deal with multiple dynamic faults. The mechanism is based on adding

117

a small-sized buffer and applying a simple set of actions when accessing output

buffers with limited free space.

6. G. Zarza, D. Lugones, D. Franco, and E. Luque. Fault-tolerant Rout-

ing for Multiple Permanent and Non-permanent Faults in HPC Sys-

tems, In XVI International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA), pp. 144-150, Las

Vegas, USA, July 2010. CSREA Press. [107]

This paper introduces a fault-tolerant routing method designed to solve a large

number of dynamic permanent and non-permanent link faults. As failures appear

randomly during system operation, the method provides escape paths for the

stalled messages and, at the same time, avoids deadlock occurrences.

7. G. Zarza, D. Lugones, D. Franco, and E. Luque. Non-blocking Adap-

tive Cycles: Deadlock Avoidance for Fault-tolerant Interconnection

Networks, In IEEE International Conference on Cluster Computing

2010 (Cluster Workshops), pp. 1-4, Heraklion, Crete, Greece, Septem-

ber 2010. IEEE Computer Society. [108]

This work presents a complete deadlock avoidance technique called Non-blocking

Adaptive Cycles (NAC), specifically designed to ensure deadlock freedom in faulty

networks without requiring any virtual channels. This work is a fully-enhanced

three-stages version of the preliminary work presented in [105].

8. G. Zarza, D. Lugones, D. Franco, and E. Luque. A Multipath Routing

Method for Tolerating Permanent and Non-Permanent Faults, In XV

Argentine Congress of Computer Science Selected Papers, Journal of

Computer Science & Technology (JCS&T), pp. 97-107, ISBN 978-950-

34-0684-7, October 2010. Pearson. [109].

Idem [103].

In addition, a draft of the deadlock avoidance method presented in chapter 4 has been

submited to the Spanish Patent and Trademark Office:

1. G. Zarza, D. Lugones, D. Franco, and E. Luque. Parallel and Scalable

Method for Identifying and Tracking Resource Dependency Cycles

in High-speed Interconnection Networks. (Método paralelo y escalable de

identificación y seguimiento de ciclos de dependencias de recursos en redes de

interconexión de alta velocidad).

118

Bibliography

[1] M. Abd-El-Barr. Design and Analysis of Reliable and Fault-tolerant Computer

Systems. Imperial College Press, London, UK, 2007. ISBN 9781860946684.

[2] N. Adiga, M. Blumrich, D. Chen, P. Coteus, A. Gara, et al. Blue Gene/L Torus

Interconnection Network. IBM Journal of Research and Development, 49(2/3):

265–276, April 2005. doi:10.1147/rd.492.0265.

[3] K. Anjan. and T. Pinkston. An Efficient, Fully Adaptive Deadlock Recovery Scheme:

DISHA. ACM SIGARCH Computer Architecture News, 23(2):201–210, 1995. ISSN

0163-5964. doi:10.1145/225830.224431.

[4] K. Anjan, T. Pinkston, and J. Duato. Generalized Theory for Deadlock-free Adaptive

Wormhole Routing and its Application to Disha Concurrent. In Proceedings of the

10th International Parallel Processing Symposium (IPPS), pages 815–821, apr 1996.

doi:10.1109/IPPS.1996.508153.

[5] L. Barroso, J. Dean, and U. Holzle. Web Search for a Planet: The Google Clus-

ter Architecture. IEEE Micro, 23(2):22–28, March-April 2003. ISSN 0272-1732.

doi:10.1109/MM.2003.1196112.

[6] S. Chalasani and R. Boppana. Adaptive wormhole routing in tori with faults. IEE

Proceedings on Computers and Digital Techniques, 142(6):386–394, nov 1995. ISSN

1350-2387. doi:10.1049/ip-cdt:19952079.

[7] S. Chalasani and R. Boppana. Communication in multicomputers with nonconvex

faults. IEEE Transactions on Computers, 46(5):616–622, may 1997. ISSN 0018-9340.

doi:10.1109/12.589238.

[8] C.-L. Chen and G.-M. Chiu. A fault-tolerant routing scheme for meshes with

nonconvex faults. Parallel and Distributed Systems, IEEE Transactions on, 12(5):

467–475, may 2001. ISSN 1045-9219. doi:10.1109/71.926168.

119

http://dx.doi.org/10.1147/rd.492.0265
http://dx.doi.org/10.1145/225830.224431
http://dx.doi.org/10.1109/IPPS.1996.508153
http://dx.doi.org/10.1109/MM.2003.1196112
http://dx.doi.org/10.1049/ip-cdt:19952079
http://dx.doi.org/10.1109/12.589238
http://dx.doi.org/10.1109/71.926168

[9] A. Chien and J. H. Kim. Planar-Adaptive Routing: Low-cost Adaptive Networks

for Multiprocessors. In Proceedings of the 19th Annual International Symposium on

Computer Architecture (1992), pages 268–277, 1992. doi:10.1109/ISCA.1992.753323.

[10] E. G. Coffman, M. Elphick, and A. Shoshani. System Deadlocks. ACM Computing

Survey (CSUR), 3(2):67–78, 1971. ISSN 0360-0300. doi:10.1145/356586.356588.

[11] M. Coli and P. Palazzari. An adaptive deadlock and livelock free routing algorithm.

In Proceedings of the Euromicro Workshop on Parallel and Distributed Processing

(PDP), pages 288–295, jan 1995. doi:10.1109/EMPDP.1995.389126.

[12] W. Dally and C. Seitz. Deadlock-free message routing in multiprocessor interconnec-

tion networks. IEEE Transactions on Computers, C-36(5):547–553, may 1987. ISSN

0018-9340. doi:10.1109/TC.1987.1676939.

[13] W. J. Dally and C. Seitz. The torus routing chip. Distributed Computing, 1:187–196,

1986. ISSN 0178-2770. doi:10.1007/BF01660031.

[14] W. J. Dally and B. Towles. Principles and Practices of Interconnection Networks.

Morgan Kaufmann Publishers, 2004. ISBN 0122007514 9780122007514.

[15] W. J. Dally., L. Dennison, D. Harris, K. Kan, and T. Xanthopoulos. The reli-

able router: A reliable and high-performance communication substrate for parallel

computers. In PCRCW ’94: Proceedings of the First International Workshop on

Parallel Computer Routing and Communication, pages 241–255, London, UK, 1994.

Springer-Verlag. ISBN 3-540-58429-3. doi:10.1007/3-540-58429-3 41.

[16] G. Dodig-Crnkovic. Scientific methods in computer science. In Conference for the

Promotion of Research in IT at New Universities and at University Colleges in Swe-

den, April 2002. URL http://www.mrtc.mdh.se/index.php?choice=publications&id=

0446.

[17] J. Duato. A Theory of Deadlock-Free Adaptive Multicast Routing in Wormhole

Networks. IEEE Transactions on Parallel and Distributed Systems, 6(9):976–987,

Sep 1995. ISSN 1045-9219. doi:10.1109/71.466634.

[18] J. Duato. A necessary and sufficient condition for deadlock-free adaptive routing in

wormhole networks. IEEE Transactions on Parallel and Distributed Systems, 6(10):

1055–1067, oct 1995. ISSN 1045-9219. doi:10.1109/71.473515.

120

http://dx.doi.org/10.1109/ISCA.1992.753323
http://dx.doi.org/10.1145/356586.356588
http://dx.doi.org/10.1109/EMPDP.1995.389126
http://dx.doi.org/10.1109/TC.1987.1676939
http://dx.doi.org/10.1007/BF01660031
http://dx.doi.org/10.1007/3-540-58429-3_41
http://www.mrtc.mdh.se/index.php?choice=publications&id=0446
http://www.mrtc.mdh.se/index.php?choice=publications&id=0446
http://dx.doi.org/10.1109/71.466634
http://dx.doi.org/10.1109/71.473515

[19] J. Duato. A Necessary and Sufficient Condition for Deadlock-Free Routing in

Cut-Through and Store-and-Forward Networks. IEEE Transatcion on Parallel and

Distributed Systems, 7(8):841–854, 1996. ISSN 1045-9219. doi:10.1109/71.532115.

[20] J. Duato. A Theory of Fault-Tolerant Routing in Wormhole Networks. IEEE

Transactions on Parallel and Distributed Systems, 8(8):790–802, 1997. ISSN 1045-

9219. doi:10.1109/71.605766.

[21] J. Duato and T. M. Pinkston. A General Theory for Deadlock-Free Adaptive Routing

Using a Mixed Set of Resources. IEEE Transactions on Parallel and Distributed

Systems, 12(12):1219–1235, 2001. ISSN 1045-9219. doi:10.1109/71.970556.

[22] J. Duato, S. Yalamanchili, and L. M. Ni. Interconnection networks. An Engineering

Approach. Morgan Kaufmann, San Francisco, CA, 2003. ISBN 9780585457451.

[23] M. H. Farahabady, F. Safaei, A. Khonsari, and M. Fathy. Characterization of Spatial

Fault Patterns in Interconnection Networks. Parallel Computing, 32(11-12):886–901,

2006. doi:10.1016/j.parco.2006.09.004.

[24] M. H. Farahabady, F. Safaei, A. Khonsari, and M. Fathy. On the fault patterns

properties in the torus networks. In IEEE International Conference on Computer

Systems and Applications, pages 215–220, 8 2006. doi:10.1109/AICCSA.2006.205092.

[25] D. Franco, I. Garcés, and E. Luque. Distributed Routing Balancing for Interconnec-

tion Network Communication. In HiPC ’98: Proceedings of the 5th International

Conference On High Performance Computing, pages 253–261, Madras, India, 1998.

doi:10.1145/508791.508951.

[26] D. Franco, I. Garcés, and E. Luque. Dynamic Routing Balancing in Parallel Computer

Interconnection Networks. In VECPAR ’98: Selected Papers and Invited Talks from

the Third International Conference on Vector and Parallel Processing, pages 494–507,

London, UK, 1999. Springer-Verlag. ISBN 3-540-66228-6. doi:10.1007/10703040 37.

[27] D. Franco, I. Garcés, and E. Luque. A New Method to Make Communication

Latency Uniform: Distributed Routing Balancing. In ICS ’99: Proceedings of the

13th international conference on Supercomputing, pages 210–219, New York, NY,

USA, 1999. ACM. ISBN 1-58113-164-X. doi:10.1145/305138.305195.

[28] D. Franco, I. Garcés, and E. Luque. Avoiding Communication Hot-Spots in In-

terconnection Networks. In HICSS-32: Proceedings of the 32nd Annual Hawaii

121

http://dx.doi.org/10.1109/71.532115
http://dx.doi.org/10.1109/71.605766
http://dx.doi.org/10.1109/71.970556
http://dx.doi.org/10.1016/j.parco.2006.09.004
http://dx.doi.org/10.1109/AICCSA.2006.205092
http://dx.doi.org/10.1145/508791.508951
http://dx.doi.org/10.1007/10703040_37
http://dx.doi.org/10.1145/305138.305195

International Conference on System Sciences, page 10 pp., Maui, HI , USA, 1999.

doi:10.1109/HICSS.1999.773072.

[29] FTA. Failure Trace Archive, April 2011 . URL http://fta.inria.fr/.

[30] C. Glass and L. Ni. The Turn Model for Adaptive Routing. In Proceedings of the

19th Annual International Symposium on Computer Architecture, pages 278–287,

1992. doi:10.1109/ISCA.1992.753324.

[31] C. Gómez, M. E. Gómez, P. López, and J. Duato. An Efficient Fault-Tolerant

Routing Methodology for Fat-Tree Interconnection Networks. In Parallel and Dis-

tributed Processing and Applications, volume 4742 of Lecture Notes in Computer

Science, pages 509–522. Springer Berlin / Heidelberg, 2007. ISBN 978-3-540-74741-3.

doi:10.1007/978-3-540-74742-0 46.

[32] M. E. Gómez, J. Duato, J. Flich, P. López, A. Robles, N. Nordbotten, T. Skeie,

and O. Lysne. A New Adaptive Fault-Tolerant Routing Methodology for Direct

Networks. In Proceedings of the International Conference on High Performance

Computing, number 3296 in Lecture Notes in Computer Science, pages 462–473.

Springer-Verlag, 2004. doi:10.1007/978-3-540-30474-6 49.

[33] M. E. Gómez, N. A. Nordbotten, J. Flich, P. Lopez, A. Robles, J. Duato, T. Skeie, and

O. Lysne. A Routing Methodology for Achieving Fault Tolerance in Direct Networks.

IEEE Transactions on Computers, 55(4):400–415, 2006. doi:10.1109/TC.2006.46.

[34] A. Greenberg and B. Hajek. Deflection routing in hypercube networks. IEEE

Transactions on Communications, 40(6):1070–1081, jun 1992. ISSN 0090-6778.

doi:10.1109/26.142797.

[35] H. Gu, J. Zhang, K. Wang, Z. Liu, and G. Kang. Enhanced fault tolerant routing

algorithms using a concept of ”balanced ring”. Journal of Systems Architecture, 53

(12):902–912, 2007. ISSN 1383-7621. doi:10.1016/j.sysarc.2007.03.002.

[36] C.-T. Ho and L. Stockmeyer. A new approach to fault-tolerant wormhole routing

for mesh-connected parallel computers. IEEE Transactions on Computers, 53(4):

427–438, April 2004. doi:10.1109/TC.2004.1268400.

[37] L.-H. Hsu and C.-K. Lin. Graph Threory and Interconnetion Networks. CRC Press,

2008. ISBN 9781420044812.

122

http://dx.doi.org/10.1109/HICSS.1999.773072
http://fta.inria.fr/
http://dx.doi.org/10.1109/ISCA.1992.753324
http://dx.doi.org/10.1007/978-3-540-74742-0_46
http://dx.doi.org/10.1007/978-3-540-30474-6_49
http://dx.doi.org/10.1109/TC.2006.46
http://dx.doi.org/10.1109/26.142797
http://dx.doi.org/10.1016/j.sysarc.2007.03.002
http://dx.doi.org/10.1109/TC.2004.1268400

[38] IBM Blue Gene Team. Overview of the IBM Blue Gene/P project. IBM Journal

of Research and Development, 52(1.2):199–220, January 2008. ISSN 0018-8646.

doi:10.1147/rd.521.0199.

[39] InfiniBand Trade Association. InfiniBand architecture specification: release 1.2,

volume 1. InfiniBand Trade Association, Portland, OR, 2004. URL http://www.

infinibandta.org/.

[40] R. Jain. Congestion control in computer networks: issues and trends. IEEE Network,

4(3):24–30, may 1990. ISSN 0890-8044. doi:10.1109/65.56532.

[41] P. Jalote. Fault Tolerance in Distributed Systems. PTR Prentice Hall, Englewood

Cliffs, N.J., USA, 1994. ISBN 9780133013672.

[42] K. Kanoun and L. Spainhower. Dependability Benchmarking for Computer Systems.

Wiley-IEEE Computer Society Press, 2008. ISBN 9780470230558.

[43] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer communication

switching technique. Computer Networks, 3(4):267–286, 1979. ISSN 0376-5075.

doi:10.1016/0376-5075(79)90032-1.

[44] J. Kim, Z. Liu, and A. Chien. Compressionless routing: a framework for adaptive

and fault-tolerant routing. IEEE Transactions on Parallel and Distributed Systems,

8(3):229–244, mar 1997. ISSN 1045-9219. doi:10.1109/71.584089.

[45] S. Konstantinidou and L. Snyder. The chaos router: a practical application of

randomization in network routing. In SPAA ’90: Proc. of the 2nd Annual ACM

Symposium on Parallel Algorithms and Architectures, pages 21–30, New York, USA,

1990. ISBN 0-89791-370-1. doi:10.1145/97444.97452.

[46] S. Konstantinidou and L. Snyder. Chaos router: architecture and performance. ACM

SIGARCH Computer Architecture News - Special Issue, 19(3):212–221, 1991. ISSN

0163-5964. doi:10.1145/115953.115974.

[47] S. Konstantinidou and L. Snyder. The Chaos Router. IEEE Transactions on Com-

puters, 43(12):1386–1397, December 1994. ISSN 0018-9340. doi:10.1109/12.338098.

[48] I. Koren and C. M. Krishna. Fault-Tolerant Systems. Elsevier/Morgan Kaufmann,

Amsterdam, 2007. ISBN 9780120885251.

[49] LANL. Los Alamos National Laboratory, April 2011. URL http://www.lanl.gov/.

123

http://dx.doi.org/10.1147/rd.521.0199
http://www.infinibandta.org/
http://www.infinibandta.org/
http://dx.doi.org/10.1109/65.56532
http://dx.doi.org/10.1016/0376-5075(79)90032-1
http://dx.doi.org/10.1109/71.584089
http://dx.doi.org/10.1145/97444.97452
http://dx.doi.org/10.1145/115953.115974
http://dx.doi.org/10.1109/12.338098
http://www.lanl.gov/

[50] J.-C. Laprie. Dependable Computing and Fault Tolerance: Concepts and Terminol-

ogy. In Twenty-Fifth International Symposium on Fault-Tolerant Computing, pages

2–11, June 1995. doi:10.1109/FTCSH.1995.532603.

[51] D. Linder and J. Harden. An adaptive and fault tolerant wormhole routing strategy

for k -ary n-cubes. IEEE Transactions on Computers, 40(1):2–12, jan 1991. ISSN

0018-9340. doi:10.1109/12.67315.

[52] D. Lugones, D. Franco, and E. Luque. Dynamic Routing Balancing On InfiniBand

Networks. Journal of Computer Science and Technology, 8(2):104–110, July 2008.

[53] D. Lugones, D. Franco, and E. Luque. Modeling Adaptive Routing Protocols In

High Speed Interconnection Networks. In OPNETWORK Conference, pages 1–7,

2008. URL http://www.opnet.com/opnetwork2008/.

[54] D. Lugones, D. Franco, E. Argollo, and E. Luque. Models for High-Speed Inter-

connection Networks Performance Analysis. In IEEE International Symposium

on Modeling, Analysis Simulation of Computer and Telecommunication Systems

(MASCOTS ’09), pages 1–4, September 2009. doi:10.1109/MASCOT.2009.5366358.

[55] D. Lugones, D. Franco, and E. Luque. Dynamic and Distributed Multipath Routing

Policy for High-Speed Cluster Networks. In 9th IEEE/ACM International Symposium

on Cluster Computing and the Grid, pages 396–403, Shanghai, China, May 2009.

doi:10.1109/CCGRID.2009.13.

[56] D. Lugones, D. Franco, and E. Luque. Fast-Response Dynamic Routing Balancing for

High-speed Interconnection Networks. In IEEE International Conference on Cluster

Computing and Workshops (CLUSTER WORKSHOPS), pages 1–9, September 2009.

doi:10.1109/CLUSTR.2009.5289142.

[57] D. Lugones, D. Franco, and E. Luque. Adaptive Multipath Routing for Congestion

Control in InfiniBand Networks. In International Conference on Parallel Processing

Workshops (ICPPW), pages 222–227, Sep. 2009. doi:10.1109/ICPPW.2009.38.

[58] D. Lugones, D. Franco, D. Rexachs, J. Moure, E. Luque, E. Argollo, A. Falcon,

D. Ortega, and P. Faraboschi. High-speed Network Modeling for Full System Simu-

lation. In IEEE International Symposium on Workload Characterization (IISWC),

pages 24–33, October 2009. doi:10.1109/IISWC.2009.5306799.

124

http://dx.doi.org/10.1109/FTCSH.1995.532603
http://dx.doi.org/10.1109/12.67315
http://www.opnet.com/opnetwork2008/
http://dx.doi.org/10.1109/MASCOT.2009.5366358
http://dx.doi.org/10.1109/CCGRID.2009.13
http://dx.doi.org/10.1109/CLUSTR.2009.5289142
http://dx.doi.org/10.1109/ICPPW.2009.38
http://dx.doi.org/10.1109/IISWC.2009.5306799

[59] O. Lysne and J. Duato. Fast Dynamic Reconfiguration in Irregular Networks. In

Proceedings of the International Conference on Parallel Processing, pages 449–458,

2000. doi:10.1109/ICPP.2000.876161.

[60] O. Lysne, J. M. nana, J. Flich, J. Duato, T. Pinkston, and T. Skeie. An efficient and

deadlock-free network reconfiguration protocol. IEEE Transactions on Computers,

57(6):762 –779, june 2008. ISSN 0018-9340. doi:10.1109/TC.2008.31.

[61] J. Martinez, P. Lopez, J. Duato, and T. Pinkston. Software-based deadlock recovery

technique for true fully adaptive routing in wormhole networks. In Proceedings of

the International Conference on Parallel Processing (ICPP), pages 182–189, aug

1997. doi:10.1109/ICPP.1997.622586.

[62] A. Mejia, J. Flich, J. Duato, S. Reinemo, and T. Skeie. Segment-Based Routing: An

Efficient Fault-Tolerant Routing Algorithm For Meshes and Tori. In International

Parallel and Distributed Processing Symposium (IPDPS), pages 1–10, April 2006.

doi:10.1109/IPDPS.2006.1639341.

[63] J. Montañana, J. Flich, and J. Duato. Epoch-based reconfiguration: Fast, simple, and

effective dynamic network reconfiguration. In International Parallel and Distributed

Processing Symposium (IPDPS 2008), pages 1–12. IEEE Computer Society, April

2008. doi:10.1109/IPDPS.2008.4536298.

[64] L. Ni and P. McKinley. A Survey of Wormhole Routing Techniques in Direct Networks.

IEEE Computer, 26(2):62–76, February 1993. ISSN 0018-9162. doi:10.1109/2.191995.

[65] N. A. Nordbotten. Fault-Tolerant Routing in Interconnection Networks. PhD thesis,

University of Oslo, 2008.

[66] N. A. Nordbotten and T. Skeie. A Routing Methodology for Dynamic Fault Tolerance

in Meshes and Tori. In International Conference on High Performance Computing

(HiPC), LNCS 4873, pages 514–527, 2007. ISBN 978-3-540-77219-4. doi:10.1007/978-

3-540-77220-0 47.

[67] N. A. Nordbotten, M. E. Gómez, J. Flich, P. López, A. Robles, T. Skeie, O. Lysne, and

J. Duato. A fully adaptive fault-tolerant routing methodology based on intermediate

nodes. In H. Jin, G. R. Gao, Z. Xu, and H. Chen, editors, NPC, volume 3222 of

Lecture Notes in Computer Science, pages 341–356. Springer, 2004. ISBN 3-540-

23388-1. doi:10.1007/b100357.

125

http://dx.doi.org/10.1109/ICPP.2000.876161
http://dx.doi.org/10.1109/TC.2008.31
http://dx.doi.org/10.1109/ICPP.1997.622586
http://dx.doi.org/10.1109/IPDPS.2006.1639341
http://dx.doi.org/10.1109/IPDPS.2008.4536298
http://dx.doi.org/10.1109/2.191995
http://dx.doi.org/10.1007/978-3-540-77220-0_47
http://dx.doi.org/10.1007/978-3-540-77220-0_47
http://dx.doi.org/10.1007/b100357

[68] C. Nunez, G. Zarza, D. Lugones, J. Navarro, D. Franco, and E. Luque. ClusterGUI, an

Application to Launch OPNET Simulations within Resource Managed Environments.

In OPNETWORK Conference, pages 1–7, 2011.

[69] OPNET Technologies. Veriying Statistical Validity of Discrete Event Simulations.

WhitePaper, 2008. URL http://www.opnet.com/whitepapers/abstracts/vsvodes.

html.

[70] OPNET Technologies. OPNET Modeler Accelerating Network R&D, April 2011.

URL http://www.opnet.com/.

[71] S. Park, J.-H. Youn, and B. Bose. Fault-tolerant wormhole routing algorithms

in meshes in the presence of concave faults. In Proceeding of the International

Parallel and Distributed Processing Symposium (IPDPS), pages 633–638, 2000.

doi:10.1109/IPDPS.2000.846045.

[72] T. Pinkston, R. Pang, and J. Duato. Deadlock-free dynamic reconfiguration schemes

for increased network dependability. IEEE Transactions on Parallel and Distributed

Systems, 14(8):780–794, aug. 2003. doi:10.1109/TPDS.2003.1225057.

[73] PNNL. Pacific Northwest National Laboratory, April 2011. URL http://www.pnnl.

gov/.

[74] V. Puente and J. A. Gregorio. Immucube: Scalable Fault-Tolerant Routing for k-ary

n-cube Networks. IEEE Transactions on Parallel and Distributed Systems, 18(6):

776–788, 2007. doi:10.1109/TPDS.2007.1047.

[75] V. Puente, R. Beivide, J. Gregorio, J. Prellezo, J. Duato, and C. Izu. Adaptive

bubble router: a design to improve performance in torus networks. In Proceedings

of the International Conference on Parallel Processing (ICPP), pages 58–67, 1999.

doi:10.1109/ICPP.1999.797388.

[76] V. Puente, C. Izu, R. Beivide, J. Gregorio, F. Vallejo, and J. Prellezo. The adaptive

bubble router. Journal of Parallel and Distributed Computing, 61(9):1180–1208,

2001. ISSN 0743-7315. doi:10.1006/jpdc.2001.1746.

[77] V. Puente, J. A. Gregorio, R. Beivide, and F. Vallejo. A Low Cost Fault

Tolerant Packet Routing for Parallel Computers. In Proceeding of the Inter-

national Parallel and Distributed Processing Symposium, pages 1–8, April 2003.

doi:10.1109/IPDPS.2003.1213132.

126

http://www.opnet.com/whitepapers/abstracts/vsvodes.html
http://www.opnet.com/whitepapers/abstracts/vsvodes.html
http://www.opnet.com/
http://dx.doi.org/10.1109/IPDPS.2000.846045
http://dx.doi.org/10.1109/TPDS.2003.1225057
http://www.pnnl.gov/
http://www.pnnl.gov/
http://dx.doi.org/10.1109/TPDS.2007.1047
http://dx.doi.org/10.1109/ICPP.1999.797388
http://dx.doi.org/10.1006/jpdc.2001.1746
http://dx.doi.org/10.1109/IPDPS.2003.1213132

[78] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide. Immunet: Dependable

Routing for Interconnection Networks with Arbitrary Topology. IEEE Transactions

on Computers, 57(12):1676–1689, 2008. ISSN 0018-9340. doi:10.1109/TC.2008.95.

[79] A. W. Roscoe. Routing Messages Through Networks: An Exercise in Dead-

lock Avoidance. In Proceedings of 7th OCCAM User Group Technical Meet-

ing: Programming of Transputer Based Machines, pages 1–22, 1987. URL

http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/21.ps.

[80] F. Safaei, A. Khonsari, A. Dadlani, and M. Ould-Khaoua. A Probabilistic Char-

acterization of Fault Rings in Adaptively-Routed Mesh Interconnection Networks.

In International Symposium on Parallel Architectures, Algorithms, and Networks

(I-SPAN), pages 233–238, may 2008. doi:10.1109/I-SPAN.2008.17.

[81] F. Safaei, A. Khonsari, and M. Gilak. A new performance measure for characterizing

fault rings in interconnection networks. Information Sciences, 180(5):664–678, 2010.

ISSN 0020-0255. doi:10.1016/j.ins.2009.10.017.

[82] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-performance

computing systems. In Proceedings of the International Conference on Dependable

Systems and Networks, pages 249–258, Washington, DC, USA, 2006. IEEE Computer

Society. ISBN 0-7695-2607-1. doi:10.1109/DSN.2006.5.

[83] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Needham, T. Rodeheffer,

E. Satterthwaite, and C. Thacker. Autonet: a high-speed, self-configuring local area

network using point-to-point links. IEEE Journal on Selected Areas in Communica-

tions, 9(8):1318–1335, oct 1991. ISSN 0733-8716. doi:10.1109/49.105178.

[84] S. Scott and G. Thorson. Optimized routing in the Cray T3D. In K. Bolding and

L. Snyder, editors, Parallel Computer Routing and Communication, volume 853 of

Lecture Notes in Computer Science, pages 281–294. Springer Berlin / Heidelberg,

1994. doi:10.1007/3-540-58429-3 44.

[85] F. Sem-Jacobsen, T. Skeie, O. Lysne, et al. Siamese-Twin: A Dynamically Fault-

Tolerant Fat-Tree. In International Parallel and Distributed Processing Symposium

(IPDPS 2005), pages 100b–100b, April 2005. doi:10.1109/IPDPS.2005.401.

[86] F. Sem-Jacobsen, T. Skeie, O. Lysne, and J. Duato. Dynamic fault tolerance in fat-

trees. IEEE Transactions on Computers, 60(4):508–525, April 2010. ISSN 0018-9340.

doi:10.1109/TC.2010.97.

127

http://dx.doi.org/10.1109/TC.2008.95
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/21.ps
http://dx.doi.org/10.1109/I-SPAN.2008.17
http://dx.doi.org/10.1016/j.ins.2009.10.017
http://dx.doi.org/10.1109/DSN.2006.5
http://dx.doi.org/10.1109/49.105178
http://dx.doi.org/10.1007/3-540-58429-3_44
http://dx.doi.org/10.1109/IPDPS.2005.401
http://dx.doi.org/10.1109/TC.2010.97

[87] T. Skeie. Handling Multiple Faults in Wormhole Mesh Networks. In Euro-Par ’98:

Proceedings of the 4th International Euro-Par Conference on Parallel Processing,

pages 1076–1088. Springer-Verlag, 1998. doi:10.1007/BFb0057969.

[88] T. Skeie. A Fault-tolerant Method for Wormhole Multistage Networks. In Proceedings

of the International Conference on Parallel and Distributed Processing Techniques

and Applications (PDPTA), pages 637–644. CSREA Press, 1998.

[89] Y. H. Song and T. Pinkston. A new mechanism for congestion and deadlock resolution.

In Proceeding of the International Conference on Parallel Processing (ICPP), pages

81–90, 2002. doi:10.1109/ICPP.2002.1040862.

[90] Y. H. Song and T. Pinkston. Distributed resolution of network congestion and

potential deadlock using reservation-based scheduling. IEEE Transactions on

Parallel and Distributed Systems, 16(8):686–701, aug. 2005. ISSN 1045-9219.

doi:10.1109/TPDS.2005.93.

[91] A. Tanenbaum. Modern Operating Systems. Pearson College Div, 2008. ISBN

9780135013014.

[92] A. S. Tanenbaum. Page Replacement Algorithm. Betascript Publishing, 2002. ISBN

6132107444.

[93] I. Theiss and O. Lysne. LORE - Local Reconfiguration for Fault Management

in Irregular Interconnects. In International Parallel and Distributed Processing

Symposium (IPDPS), pages 1–12, April 2004. doi:10.1109/IPDPS.2004.1302916.

[94] I. Theiss and O. Lysne. FRoots: A Fault Tolerant and Topology-Flexible Routing

Technique. IEEE Transactions on Parallel and Distributed Systems, 17(10):1136–

1150, October 2006. ISSN 1045-9219. doi:10.1109/TPDS.2006.140.

[95] TOP500 Supercomputing Sites. TOP500 List, November 2010. URL http://www.

top500.org.

[96] TOP500 Supercomputing Sites. Architecture share for 11/2010, November 2010.

URL http://www.top500.org.

[97] TOP500 Supercomputing Sites. Interconnect family share for 11/2010, November

2010. URL http://www.top500.org.

[98] USENIX. The computer failure data repository (CFDR), April 2011. URL http:

//cfdr.usenix.org/.

128

http://dx.doi.org/10.1007/BFb0057969
http://dx.doi.org/10.1109/ICPP.2002.1040862
http://dx.doi.org/10.1109/TPDS.2005.93
http://dx.doi.org/10.1109/IPDPS.2004.1302916
http://dx.doi.org/10.1109/TPDS.2006.140
http://www.top500.org
http://www.top500.org
http://www.top500.org
http://www.top500.org
http://cfdr.usenix.org/
http://cfdr.usenix.org/

[99] M. Valerio, L. Moser, and P. Melliar-Smith. Fault-tolerant Orthogonal Fat-trees as

Interconnection Networks. In IEEE First International Conference on Algorithms

and Architectures for Parallel Processing (ICAPP 95), volume 2, pages 749–754,

April 1995. doi:10.1109/ICAPP.1995.472263.

[100] L. G. Valiant and G. J. Brebner. Universal Schemes for Parallel Communication. In

STOC ’81: Proceeding of the 13th Annual ACM Symposium on Theory of Computing,

pages 263–277, NY, USA, 1981. doi:10.1145/800076.802479.

[101] S. Wamakulasuriya and T. Pinkston. A formal model of message blocking

and deadlock resolution in interconnection networks. IEEE Transactions on

Parallel and Distributed Systems, 11(3):212–229, March 2000. ISSN 1045-9219.

doi:10.1109/71.841739.

[102] G. Zarza, D. Lugones, D. Franco, and E. Luque. A Multipath Fault-Tolerant Routing

Method for High-Speed Interconnection Networks. In Euro-Par 2009: Proceeding of

the 4th International Euro-Par Conference on Parallel Processing, volume 5704 of

LNCS, pages 1078–1088, August 2009. doi:10.1007/978-3-642-03869-3 99.

[103] G. Zarza, D. Lugones, D. Franco, and E. Luque. A Multipath Routing Method for

Tolerating Permanent and Non-Permanent Faults. In 15th Argentine Conference on

Computer Science (CACIC), pages 251–261, October 2009.

[104] G. Zarza, D. Lugones, D. Franco, and E. Luque. Multipath Fault-Tolerant Routing

Policies for High-Speed Interconnection Networks. In R. Doallo, M. Arenaz, and

P. Gonzalez, editors, Proceedings of the XX Spanish Conference on Parallelism,

pages 487–492, Sep 2009.

[105] G. Zarza, D. Lugones, D. Franco, and E. Luque. Deadlock Avoidance for Intercon-

nection Networks with Multiple Dynamic Faults. In 18th Euromicro International

Conference on Parallel, Distributed and Network-Based Computing (PDP), pages

276–280, Feb 2010. doi:10.1109/PDP.2010.82.

[106] G. Zarza, D. Lugones, D. Franco, and E. Luque. FT-DRB: A Method for Tolerating

Dynamic Faults in High-Speed Interconnection Networks. In 18th Euromicro Inter-

national Conference on Parallel, Distributed and Network-Based Computing (PDP),

pages 77–84, Feb 2010. doi:10.1109/PDP.2010.65.

[107] G. Zarza, D. Lugones, D. Franco, and E. Luque. Fault-tolerant Routing for Multiple

Permanent and Non-permanent Faults in HPC Systems. In Proceedings of the

129

http://dx.doi.org/10.1109/ICAPP.1995.472263
http://dx.doi.org/10.1145/800076.802479
http://dx.doi.org/10.1109/71.841739
http://dx.doi.org/10.1007/978-3-642-03869-3_99
http://dx.doi.org/10.1109/PDP.2010.82
http://dx.doi.org/10.1109/PDP.2010.65

International Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA), pages 144–150, Las Vegas, NV, USA, July 2010.

[108] G. Zarza, D. Lugones, D. Franco, and E. Luque. Non-blocking Adaptive Cycles:

Deadlock Avoidance for Fault-tolerant Interconnection Networks. In IEEE Inter-

national Conference on Cluster Computing Workshops and Posters (CLUSTER

WORKSHOPS), pages 1–4, Sep 2010. doi:10.1109/CLUSTERWKSP.2010.5613085.

[109] G. Zarza, D. Lugones, D. Franco, and E. Luque. A Multipath Routing Method for

Tolerating Permanent and Non-Permanent Faults. Journal of Computer Science &

Technology (JCS&T), 10:97–107, 2010.

[110] G. Zarza, D. Lugones, D. Franco, and E. Luque. A practical methodology for

addressing the problem of resources utilization in modeling and simulation processes.

Submitted to the journal Simulation Modelling Practice and Theory, July 2011.

[111] M. Zhou and M. P. Fanti, editors. Deadlock Resolution in Computer-Integrated

Systems. CRC Press, Inc., Boca Raton, FL, USA, 2004. ISBN 0824753682.

130

http://dx.doi.org/10.1109/CLUSTERWKSP.2010.5613085

Appendices

131

Gonzalo Zarza. PhD Thesis 2011.

132

Appendix A

Complementary Results

In this appendix, we include additional results of the evaluation presented in chapter 5.

A.1 NAC Evaluation

A.1.1 Tornado with Variable Load

Average latency

 2.4e-05

 2.45e-05

 2.5e-05

 2.55e-05

 2.6e-05

 2.65e-05

 2.7e-05

 2.75e-05

 2.8e-05

400 500 600

A
ve

ra
ge

 L
at

en
cy

 [s
]

Generation rate [pk/node/sec]

NAC Evaluation (Torus 8x8)

Figure A.1: Average latency for different generation rates.

133

Surface-maps for generation rate 400 [pks/node/sec]

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.2: Packets received in four time slots. Tornado traffic generation rate = 400
[pks/node/sec].

134

Surface-maps for generation rate 500 [pks/node/sec]

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7
 8

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.3: Packets received in four time slots. Tornado traffic generation rate = 500
[pks/node/sec].

135

Surface-maps for generation rate 600 [pks/node/sec]

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.4: Packets received in four time slots. Tornado traffic generation rate = 600
[pks/node/sec].

136

A.1.2 Tornado with Additional Traffic

Average latency

 1.6e-05

 1.65e-05

 1.7e-05

 1.75e-05

 1.8e-05

 1.85e-05

 1.9e-05

 1.95e-05

 2e-05

 2.05e-05

 2.1e-05

 2.15e-05

400 500 600

A
ve

ra
ge

 L
at

en
cy

 [s
]

Generation rate [pk/node/sec]

NAC Evaluation (Torus 8x8)

Bit reversal
Butterfly

Matrix transpose
Shuffle

Figure A.5: Average latency with additional traffic patterns.

137

Surface-maps for generation rate 400 [pks/node/sec] with Bit reversal

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 2

 4

 6

 8

 10

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.6: Packets received in four time slots. Tornado traffic generation rate = 400
[pks/node/sec]. Additional bit reversal traffic generation rate = 200 [pks/node/sec].

138

Surface-maps for generation rate 500 [pks/node/sec] with Bit reversal

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 2

 4

 6

 8

 10

 12

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.7: Packets received in four time slots. Tornado traffic generation rate = 500
[pks/node/sec]. Additional bit reversal traffic generation rate = 200 [pks/node/sec].

139

Surface-maps for generation rate 600 [pks/node/sec] with Bit reversal

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7
 8

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 2

 4

 6

 8

 10

 12

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7
 8

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.8: Packets received in four time slots. Tornado traffic generation rate = 600
[pks/node/sec]. Additional bit reversal traffic generation rate = 200 [pks/node/sec].

140

Surface-maps for generation rate 400 [pks/node/sec] with Butterfly

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.9: Packets received in four time slots. Tornado traffic generation rate = 400
[pks/node/sec]. Additional butterfly traffic generation rate = 200 [pks/node/sec].

141

Surface-maps for generation rate 500 [pks/node/sec] with Butterfly

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.10: Packets received in four time slots. Tornado traffic generation rate = 500
[pks/node/sec]. Additional butterfly traffic generation rate = 200 [pks/node/sec].

142

Surface-maps for generation rate 600 [pks/node/sec] with Butterfly

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7
 8

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 2

 4

 6

 8

 10

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7
 8

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.11: Packets received in four time slots. Tornado traffic generation rate = 600
[pks/node/sec]. Additional butterfly traffic generation rate = 200 [pks/node/sec].

143

Surface-maps for generation rate 400 [pks/node/sec] with Matrix Transpose

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 2

 4

 6

 8

 10

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.12: Packets received in four time slots. Tornado traffic generation rate = 400
[pks/node/sec]. Additional matrix transpose traffic generation rate = 200 [pks/node/sec].

144

Surface-maps for generation rate 500 [pks/node/sec] with Matrix Transpose

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 2

 4

 6

 8

 10

 12

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.13: Packets received in four time slots. Tornado traffic generation rate = 500
[pks/node/sec]. Additional matrix transpose traffic generation rate = 200 [pks/node/sec].

145

Surface-maps for generation rate 600 [pks/node/sec] with Matrix Transpose

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7
 8

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 2

 4

 6

 8

 10

 12

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7
 8

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.14: Packets received in four time slots. Tornado traffic generation rate = 600
[pks/node/sec]. Additional matrix transpose traffic generation rate = 200 [pks/node/sec].

146

Surface-maps for generation rate 400 [pks/node/sec] with Perfect Shuffle

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 2

 4

 6

 8

 10

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.15: Packets received in four time slots. Tornado traffic generation rate = 400
[pks/node/sec]. Additional perfect shuffle traffic generation rate = 200 [pks/node/sec].

147

Surface-maps for generation rate 500 [pks/node/sec] with Perfect Shuffle

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 2

 4

 6

 8

 10

 12

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.16: Packets received in four time slots. Tornado traffic generation rate = 500
[pks/node/sec]. Additional perfect shuffle traffic generation rate = 200 [pks/node/sec].

148

Surface-maps for generation rate 600 [pks/node/sec] with Perfect Shuffle

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7
 8

R
ec

ei
ve

d
P

ac
ke

ts

(a) Before deadlock

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 1

 2

 3

 4

 5

 6

R
ec

ei
ve

d
P

ac
ke

ts

(b) During NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0

 2

 4

 6

 8

 10

 12

R
ec

ei
ve

d
P

ac
ke

ts

(c) After NAC treatment

NAC Evaluation (Torus 8x8)

 0
 1

 2
 3

 4
 5

 6
 7

Node-X coord.

 0
 1

 2
 3

 4
 5

 6
 7

Node-Y coord.

 0
 1
 2
 3
 4
 5
 6
 7
 8

R
ec

ei
ve

d
P

ac
ke

ts

(d) After deadlock

Figure A.17: Packets received in four time slots. Tornado traffic generation rate = 600
[pks/node/sec]. Additional perfect shuffle traffic generation rate = 200 [pks/node/sec].

149

A.2 FT-DRB Evaluation

A.2.1 Permanent Failures with Synthetic Traffic

Torus 8x8. Random start time and duration.

 2.9e-06

 3e-06

 3.1e-06

 3.2e-06

 3.3e-06

 3.4e-06

 3.5e-06

 3.6e-06

 3.7e-06

 3.8e-06

0 2 4 6 8 10

A
ve

ra
ge

 L
at

en
cy

 [s
]

Number of link failures (permanent random)

FT-DRB Evaluation (Torus 8x8)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Absolute values

 75

 80

 85

 90

 95

 100

0 2 4 6 8 10

P
er

fo
rm

an
ce

 [%
]

Number of link failures (permanent random)

FT-DRB Evaluation (Torus 8x8)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Percentages

Figure A.18: Evaluation results of random permanent link failures in Torus 8x8.

150

Torus 16x16. Random start time and duration.

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 1e-05

 1.1e-05

 1.2e-05

0 2 4 6 8 10

A
ve

ra
ge

 L
at

en
cy

 [s
]

Number of link failures (permanent random)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Absolute values

 90

 92

 94

 96

 98

 100

0 2 4 6 8 10

P
er

fo
rm

an
ce

 [%
]

Number of link failures (permanent random)

FT-DRB Evaluation (Torus 16x16)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Percentages

Figure A.19: Evaluation results of random permanent link failures in Torus 16x16.

151

Fat-tree 4-are 3-tree. Random start time and duration.

 5e-07

 1e-06

 1.5e-06

 2e-06

 2.5e-06

 3e-06

 3.5e-06

 4e-06

 4.5e-06

 5e-06

0 2 4 6 8 10

A
ve

ra
ge

 L
at

en
cy

 [s
]

Number of link failures (permanent random)

FT-DRB Evaluation (Fat Tree 4-ary 3-tree)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(a) Absolute values

 88

 90

 92

 94

 96

 98

 100

0 2 4 6 8 10

P
er

fo
rm

an
ce

 [%
]

Number of link failures (permanent random)

FT-DRB Evaluation (Fat Tree 4-ary 3-tree)

Uniform
Bit Reversal

Shuffle
Butterfly

Matrix Transpose
Complement

(b) Percentages

Figure A.20: Evaluation results of random permanent link failures in Fat-tree.

152

Gonzalo Zarza. PhD Thesis 2011.

	Introduction
	Parallel Computing
	Interconnection Networks
	Network Fault Tolerance

	Motivation
	Objectives
	Contributions
	Research Method
	Thesis Outline

	Thesis Background
	Interconnection Networks
	Topologies
	Routing
	Switching Techniques
	Flow Control

	Fault Tolerance
	Network Fault Tolerance
	Fault-tolerant Routing
	Deadlock Resolution

	Fault-tolerant Distributed Routing Balancing
	Monitoring, Detection and Notification
	Selection of Escape Paths
	Configuration of Alternative Paths
	Permanent and Transient Faults
	Architecture of Network Components
	Packets Format
	FT-DRB Router
	Required Resources

	Design Alternatives
	Link Failure Notification
	Permanent and Transient Faults

	Discussion

	Scalable Deadlock Avoidance for Fault-tolerant Routing
	Deadlock Avoidance in Faulty Networks
	Non-Blocking Adaptive Cycles
	Detection of Deadlock Prone Situations
	Identification of Routing Cycles
	Gradual Recovery of Packet Forwarding
	Applicability Proof

	Discussion

	Evaluation of Proposals
	Workloads
	Synthetic Traffic Patterns
	Availability Traces of Real Systems

	Network Models
	Processing Nodes
	Network Nodes

	Evaluation Metrics
	Evaluation Method
	NAC Evaluation
	FT-DRB Evaluation

	NAC Evaluation Results
	Tornado Pattern
	Tornado Pattern with Variable Load
	Tornado Pattern with Additional Traffic

	FT-DRB Evaluation Results
	Permanent Failures with Synthetic Traffic
	Permanent Failures with Spatial Fault Patterns
	Permanent Failures with Collective Communication
	Transient Failures
	Real-based Failures
	Evaluation of Alternative Paths
	Discussion

	Conclusions
	Final Conclusions
	Further Work and Open Lines
	List of Publications

	Bibliography
	Complementary Results
	NAC Evaluation
	Tornado with Variable Load
	Tornado with Additional Traffic

	FT-DRB Evaluation
	Permanent Failures with Synthetic Traffic

