

UNIVERSITAT AUTÒNOMA DE BARCELONA

Escola de Postgrau Departament de Química

Nanopartícules metàl·liques de Pd(0), Au(0) i Rh(0) amb estabilitzants polioxietilenats. Síntesi i aplicacions en catàlisi.

NEREIDA MEJIAS RUIZ

Tesi Doctoral

Maig 2011

5. RESUM I CONCLUSIONS

- S'ha reproduït la preparació dels macrocicles polioxietilenats 1 i 16H a partir de l'intermedi de síntesi força avançat, 19, preparat prèviament en el grup de recerca. Amb aquests macrocicles, **1** i $\mathbf{1}_{6H}$ s'ha preparat i caracteritzat nanopartícules d'or(0), Rh(0) i Pd(0). Les nanopartícules d'Au(0) s'han obtingut per reducció química d'HAuCl₄, emprant diferents agents reductors com metanol en medi bàsic (materials M1-M2) i trietilamina (materials M3-M7). No s'ha trobat, de moment, un bon mètode de síntesi, ja que els rendiments han estat baixos i s'ha observat una manca de reproductibilitat en la preparació d'aquestes nanopartícules. Les nanopartícules de Rh(0) s'han obtingut per reducció de RhCl₃·H₂O amb hidrur de bor i sodi com agent reductor (materials M8-M12), s'ha observat que aquestes nanopartícules formaven agregats de diferents mides en forma de coliflor, segons les micrografies TEM. Finalment, s'ha preparat i caracteritzat nanopartícules de Pd(0), de 2-3 nm de diàmetre, estabilitzades pels macrocicles 1 i 16H i l'arilsulfonamida polioxietilenada 25 (materials M13-M17), mitjançant el mètode de l'aproximació organometàl·lica, per hidrogenació de Pd(dba)₂ a 3 atm de pressió i a temperatura ambient. Els resultats ens permeten concloure que la unitat macrocíclica no és imprescindible per a l'estabilització de les nanopartícules metàl·liques.

- El material nanoparticulat **M13** ($\mathbf{1}_{6H}$ com a estabilitzant) ha resultat ser un bon catalitzador reciclable en la reacció de Suzuki en fase aquosa, amb iodurs d'aril com a substrats.

- Degut a que la preparació d'**1** i **1**_{6H} comporta una ruta sintètica relativament llarga, es va plantejar la síntesi de la triazina polioxietilenada **2**, a partir del clorur de cianuril, **26** i el monometil èter de polietilenglicol **21b**, emprant diferents condicions de temperatura, dissolvent i base mitjançant la reacció de S_NAr. En cap cas s'ha observat per espectrometria de masses de MALDI-TOF l'obtenció del producte desitjat. Com a alternativa, ens proposàrem la idea de sintetitzar els compostos triazòlics polioxietilenats **3a** i **3b** utilitzant la metodologia *Click* (Esquema 66), objectiu que s'ha assolit amb èxit.

Esquema 66. Esquema de la preparació dels estabilitzants 3a i 3b via *Click Chemistry*, i de les nanopartícules metàl·liques estabilitzades per 3b.

- S'ha assajat la preparació de nanopartícules de pal·ladi(0) estabilitzades per **3a** i **3b**, mitjançant el mètode de l'aproximació organometàl·lica. Amb el compost **3b**, que presenta cadenes polioxietilenades llargues, s'ha obtingut diferents lots de **3b-Pd_{NP}** (materials **M18-M22**) i el mètode ha resultat eficient i reproduïble. En canvi, en utilitzar **3a** com a estabilitzant, el qual té les cadenes polioxietilenades curtes, no s'ha obtingut nanopartícules de Pd(0). Per tant, la llargada de les cadenes introduïdes en els lligands és un factor important perquè aquests actuïn com a estabilitzants de nanopartícules metàl·liques. També s'ha assajat la preparació de nanopartícules d'or(0) estabilitzades pels compostos triazòlics polioxietilenats **3a** i **3b**, emprant el mètode de la reducció d'un precursor metàl·lic (Et₃PAuCl i HAuCl₄,) amb diferents agents reductors (metanol en medi bàsic, NaBH₄ i 9-BBN). S'han format nanopartícules d'or(0) amb **3b** (**3b-Au**_{NP}), però no amb **3a**. Malgrat que s'ha obtingut diversos materials nanoparticulats (**M23**, **M24-M32** i **M33-M35**), es van observar problemes de reproductibilitat en les síntesis.

- S'ha avaluat l'activitat catalítica i la reciclabilitat de **3b-Pd_{NP}** en reaccions d'acoblament creuat de Suzuki-Miyaura, en reaccions de Heck i en la reacció de Sonogashira, en medis aquosos en tots els casos. La reacció d'acoblament creuat de Suzuki-Miyaura, s'ha dut a terme amb un gran ventall de iodurs i bromurs d'aril amb diferents àcids borònics. S'ha observat una elevada activitat i reciclabilitat pels iodurs i bromurs d'aril, mentre que l'activitat ha estat molt inferior pel clorur d'aril activat 4-cloroacetofenona. El mateix catalitzador ha resultat ser eficient i reciclable en la reacció de Heck entre l'àcid acrílic i l'àcid 4-iodobenzoic i en la reacció de Sonogashira entre iodurs d'aril i fenilacetilè. En canvi, no s'ha trobat condicions i mètode adient pel reciclatge del catalitzador en la reacció de Sonogashira entre bromurs d'aril i fenilacetilè.

 En provar 3b-Au_{NP} com a catalitzador en reaccions d'oxidació aeròbica d'alcohols, no s'ha trobat evidències significatives de que l'addició d'or millorés els resultats obtinguts en el blanc.

- La preparació dels lligands bipiridínics **8a**, **8b** i **9** s'ha dut a terme satisfactòriament mitjançant la introducció de les cadenes polioxietilenades via *Click Chemistry*, mentre que no s'ha pogut assolir amb èxit la síntesi dels lligands **4**, **5**, **6** i **7** per introducció de les cadenes polioxietilenades via S_NAr . S'ha preparat nanopartícules de Pd(0) estabilitzades per **8b** pel mètode de l'aproximació organometàl·lica, però aquestes no foren estables i no es va poder assajar la seva activitat catalítica. També s'ha sintetitzat i caracteritzat els complexos de pal·ladi(II) **51a** i **51b**, a partir dels lligands bipiridínics polioxietilenats **8a** i **8b**, respectivament i el material nanoparticulat **M37** a partir del lligand **9**, pel mètode de l'aproximació organometàl·lica.

- S'ha assajat el complex de Pd(II) **51b** i el material nanoparticulat **M37** en reaccions d'acoblament creuat de Suzuki-Miyaura, en reaccions de Heck i en reaccions de Sonogashira, en medi aquós en tots els casos. En la reacció d'acoblament de Suzuki entre 4-bromoacetofenona i l'àcid fenilborònic, s'ha dut a terme el reciclatge dels catalitzadors **51b** i **M37** fins a cinc cicles consecutius amb excel·lents rendiments. En la reacció de Heck entre l'àcid acrílic i l'àcid 4-iodobenzoic els catalitzadors **51b** i **M37** han pogut ser reciclats fins a 4 i 3 cicles consecutius, respectivament. Aquests sistemes catalítics s'han mostrat menys eficients en la reacció de Sonogashira amb bromurs d'aril com a substrats. El material nanoparticulat **M37** ha estat efectiu en la reacció entre 4-iodoanisole i fenilacetilè, el complex **51b** va mostrar millor activitat que **M37**, però es va requerir l'addició de bromur de tetrabutilamoni per tal de poder reciclar el catalitzador. En general s'ha observat que l'activitat catalítica del complex de pal·ladi(II) **51b** és lleugerament superior a la del material nanoparticulat **M37**.

- Cal esmentar que en les reaccions catalítiques assajades s'ha observat habitualment una lleugera pèrdua d'activitat catalítica en el reciclatge, que es manifestava en un augment dels temps de reacció requerits, i que totes les nanopartícules metàl·liques preparades en aquest treball, amb els diversos estabilitzants polioxietilenats, són solubles en medi aquós i insolubles en èter dietílic.

181

6. DESCRIPCIÓ EXPERIMENTAL

Consideracions generals

Espectroscòpia de ressonància magnètica nuclear (RMN): Els espectres de Ressonància Magnètica Nuclear (RMN) s'han enregistrat al Servei de Ressonància Magnètica Nuclear de la Universitat Autònoma de Barcelona. Els espectres d'¹H-RMN,¹³C-RMN i ¹⁹F-RMN, així com els espectres bidimensionals COSY, DOSY, HSQC ¹H-¹³C, HMBC ¹H-¹³C, han estat enregistrats en els aparells DPX-360MHz, AVANCE-III 400MHz i en alguns casos, en un aparell Bruker AVANCE500. Els desplaçaments es donen en δ (ppm), usant com a referència interna el propi dissolvent residual no deuterat a excepció dels espectres de ¹⁹F-RMN.

Espectroscòpia d'infraroig (IR): Els espectres d'infraroig han estat enregistrats en un espectrofotòmetre model Bruker Tensor 27 amb ATR *(Atenuated Total Reflectance)* Golden Gate i finestra de diamant.

Espectrometria de masses (MS): Els espectres de masses MALDI-TOF-MS (*Matrix Assisted Laser Desorption Ionization-Time Of Flight Mass Spectroscopy*) han estat enregistrats a l'Institut de Biotecnologia i Biomedicina de la Universitat Autònoma de Barcelona en un espectròmetre de masses Bruker model Ultraflex amb Modus Reflecton. La ionització ha estat realitzada amb font làser de 337 nm amb un voltatge de 25 KV, emprant DHB (2,5-dihidroxibenzoic) o ditranol com a matrius. Els espectres de masses dels productes de la reacció de Suzuki es van dur a terme utilitzant un sistema Agilent 6850 CG equipat amb un detector de masses 5975C Triple Axis El. La resta dels espectres de masses s'han enregistrat al Servei d'Anàlisi Química de la Universitat Autònoma de Barcelona en un espectròmetre Hewlett-Packard 5989A, emprant com a tècnica habitual la ionització per *Electrospray*. Els espectres de masses d'alta resolució s'han realitzat també al Servei d'Anàlisi Química de la Universitat Autònoma de Barcelona emprant com a tècnica d'ionització l'*electrospray* i per infusió directa de la mostra.

Anàlisis Elementals (AE): Les anàlisis elementals de C, N, S, H han estat realitzades pel Servei d'Anàlisi Química de la UAB i pel Servei de Microanàlisi del CSIC de Barcelona. Les anàlisis dels metalls Au, Rh i Pd s'han efectuat als serveis Cientificotècnics de la Universitat de Barcelona o al Servei d'Anàlisi Química de la UAB.

Agitació mecànica: Els muntatges d'agitació mecànica han estat realitzats amb un agitador IKA RW-20n amb una pala d'acer en forma de mitja lluna de 90 mm a 300 rpm i proveït d'un refrigerant.

Cromatografia de gasos (CG): Les anàlisis per cromatografia de gasos s'han realitzat en un cromatògraf Agilent Technologies 7890A equipat amb una columna Agilent HP-5 (30 m x 0.320 mm x 0.25 μ m). També s'ha utilitzat un cromatògraf de gasos Agilent 6850 equipat amb un detector de masses 5975C Triple Axis, per obtenir espectres de masses dels productes resultants de les catàlisis.

Cromatografia en columna: S'ha realitzat sota pressió amb gel de sílice de mida de partícula 35-70 μ m i mida de porus 60 Å. **Cromatografia en capa fina:** S'ha realitzat en cromatofolis Alugram Sil G/UV₂₅₄ de 0.25 mm de gruix.

Punts de fusió: S'han determinat en un bloc Kofler de la marca Reichert.

Microscòpia electrònica de transmissió d'alta resolució (HR-TEM) i **difracció d'electrons (ED):** Les imatges de TEM i HR-TEM i les difraccions d'electrons s'han enregistrat al Servei de Microscòpia de la Universitat Autònoma de Barcelona amb un microscopi electrònic de transmissió de 200 kV JEOL JEM-2011. Les mostres han estat preparades submergint una reixeta de microscòpia en una dissolució de les nanopartícules en THF, i deixant-la evaporar lentament. Les reixetes de microscòpia utilitzades són de coure recobertes d'un film de carbó de 4-6 nm amb forats.

Per mesurar el diàmetre de les nanopartícules s'utilitza el programa *Gatan DigitaMicrograph* per Windows. Les dades obtingudes s'expressen en forma d'histograma utilitzant el programa estadístic *OriginPro 8* per Windows.

Microones: Les catàlisis assistides per microones s'han realitzat en un microones *CEM Discover*® que opera entre 0 i 300 W. Les reaccions es duen a terme en un reactor (capacitat 10 mL) tancat amb un sèptum. La temperatura es mesura emprant un sensor d'infraroig ubicat sota el reactor. Alguns experiments s'han portat a terme escalfant per irradiació de microones alhora que es refreda el reactor mitjançant el pas de nitrogen comprimit (opció PowerMax activada)

Altres:

- Dels productes ja descrits s'aporten exclusivament les dades físiques o espectroscòpiques necessàries per a la seva identificació.

- Les reaccions que requerien atmosfera de N₂ o Ar s'han realitzat utilitzant tècniques de Schlenk convencionals. Als experiments on es requereixen dissolvents anhidres, el CH_2CI_2 es va destil·lar sobre CaH_2 , el THF sobre Na/benzofenona i la DMF s'utilitza després de passar almenys 1 nit en tamisos moleculars de 4Å. En algunes reaccions s'ha utilitzat el CH_2CI_2 i THF provinents d'un anhidritzador automàtic *Innovative Technology* i model *PureSolv-MD-2*.

- Els reactius comercials s'han usat directament sense més purificació, excepte el bromur de propargil que s'ha destil·lat just abans d'utilitzar.

- La trifenilfosfina polimèrica (poliestirè entrecreuat amb divinilbenzè funcionalitzat amb trifenilfosfina) utilitzada és de *200-400 mesh*, de càrrega aproximada de 3 mmol de fosfina/ g de polímer i amb un contingut del 2% de divinilbenzè.

- En la representació dels compostos amb cadenes polioxietilenades en la seva estructura s'indica el valor de n promig.

- L'aigua utilitzada ha estat aigua de qualitat Milli-Q, destil·lada i desionitzada.

- El complex de Pd(0) expressat formalment com a Pd(dba)₂ ha estat preparat al nostre grup de recerca segons una descripció que es troba a la bibliografia²⁶² i el seu contingut de Pd s'ha determinat mitjançant anàlisi per ICP. S'ha emprat dos lots, un amb un 15.5 % Pd i un altre amb un 17.5 % Pd.

- La preparació de nanopartícules a través del mètode d'aproximació organometàl·lica (hidrogenació) s'ha realitzat en una ampolla Fischer-Porter de vidre amb cap metàl·lic capaç d'aguantar pressions fins a 6 atm.

- Els valors d_{hkl} teòrics de l'Au, Pd i Rh s'han obtingut de la base de dades JCPDS del *International Centre for Diffraction Data* utilitzant el programa PCpwin v.2.00.

- Per tal d'eliminar l'òxid superficial, el Zn es va activar prèviament. Zn en pols s'agita amb una solució aquosa de HCl 10% durant 2 minuts, es filtra i es renta amb aigua i acetona.

- Les catàlisis realitzades amb agitació orbital s'han dut a terme en un sistema Heidolph Synthesis equipat amb 12 tubs tancats de 60 mL.

- La membrana de diàlisi s'ha obtingut d'Spectrum Laboratories (Spectra Por 3 ® de cel·lulosa regenerada (RC)) amb un *Molecular Weight Cut-Off* (MWCO) de 3500.

²⁶² Rettig, M. F.; Maltlis, P. M. Inorg. Synth. **1990**, 28, 110.

Consideracions per a la caracterització de les nanopartícules

- La determinació del % de metall (Pd, Au, Rh) s'ha realitzat per ICP (Inductively Coupled Plasma).

- El rendiment en metall (rdt. %), on metall és Pd, Au o Rh, es calcula de la següent manera:

% rdt = (metall mostra / metall inicial) x 100%

- El número d'àtoms per partícula:

núm =
$$F_{emp} \times r_{np}^3 / r_{atomic}^3$$

on

 F_{emp} = factor d'empaquetament d'una estructura cristal·lina. Per a un empaquetament cúbic centrat a les cares (fcc) el F_{emp} = 0.74, r_{np} = radi mitjà de la nanopartícula i $r_{atòmic}$ = radi de l'àtom metàl·lic.

r Pd(0) = 1.38 Å; r Au(0) = 1.44 Å, r Rh(0) = 1.35 Å.

6.1. Síntesi de l'(*E,E,E*)-1,6,11-*tris*[(4-fluorofenil)sulfonil]-1,6,11triazaciclopentadeca-3,8,13-triè, 20.

A un baló de tres boques d'1 L de capacitat proveït d'agitació mecànica s'hi acobla un embut d'addició de 500 mL i un refrigerant. Al baló s'hi posa carbonat potàssic (2.2 g, 16.0 mmol) i acetonitril (250 mL), i la mescla s'escalfa a reflux. En l'embut d'addició de 500 mL de capacitat es posa la solució formada per **19** (2.0 g, 3.2 mmol), (*E*)-1,4-dibromo-2-butè, **14** (0.71 g, 3.2 mmol) i acetonitril (300 mL). Aquesta solució s'afegeix gota a gota al baló durant 7 hores i la mescla es deixa a reflux durant 15 hores. La mescla es refreda a temperatura ambient i es filtra. S'evapora el dissolvent del filtrat obtenint-se un oli de color groguenc. S'afegeix cloroform i es filtra. El filtrat s'evapora a pressió reduïda i el sòlid format es renta amb èter de petroli. S'obté un sòlid blanc corresponent al producte **20** pur s'obté per recristal·litzacions successives en acetat d'etil (1.76 g, 82% rdt.). ¹**H-RMN (CDCI₃, 250 MHz) δ (ppm):** 3.70-3.71 (m, 12H, C*H*₂), 5.61-5.62 (m, 6H, C*H*), 7.18-7.22 (m, 6H, *H_{Ar3}*), 7.77-7.80 (m, 6H, *H_{Ar2}*). **IR v (cm⁻¹) (ATR):** 3110, 2904, 1589, 1492, 1337, 1154. **Pf:** 146-148 °C. **Pf(lit):**²⁶³ 146-148 °C.

²⁶³ Moreno-Mañas, M.; Spengler, J. *Tetrahedron* **2002**, *58*, 7769.

6.2. Síntesi del macrocicle polioxietilenat, 1.

En un baló de 50 mL proveït d'agitació magnètica i sota atmosfera d'argó s'afegeix NaH (60% en pes, 65 mg, 1.63 mmol) en THF anhidre (1 mL). La mescla s'agita 10 minuts a temperatura ambient. S'hi addiciona una solució d'èter monometílic de polietilenglicol de pes molecular 2000 g/mol (1.819 g, 0.91 mmol), 21b, en THF anhidre (5 mL), i passats 10 minuts a temperatura ambient, s'hi addiciona, gota a gota, una solució de 20 (200 mg, 0.29 mmol) en THF anhidre (10 mL). Es deixa la solució agitant a temperatura ambient durant 6 hores. S'afegeix NaH 60% (10.9 mg, 0.27 mmol) addicional i es deixa en agitació a temperatura ambient durant unes 15 hores. S'addiciona més NaH 60% (11 mg, 0.275 mmol) i es deixa la reacció evolucionant durant 24 hores més. La mescla de reacció es filtra i s'evapora el filtrat a pressió reduïda, obtenint-se un sòlid marró. Aquest es dissol en diclorometà, la solució es transvasa a un embut de separació i es renta amb aigua. La fase orgànica s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda, obtenint-se un sòlid de color blanc corresponent a 1 (1.4 g, 72% rdt.). ¹H-RMN (CDCI₃, 250 MHz) δ (ppm): 3.38 (s, 9H, OMe), 3.64-3.71 (m, corresponent a la resta de CH2 de la cadena de PEG), 3.88-3.95 (m, 12H, CH₂), 4.21 (t, 6H, J= 4.3 Hz, CH₂), 5.60 (s ample, 6H, CH), 7.00 (d, 6H, J=9 Hz, <u> H_{Ar3} </u>), 7.70 (d, 6H, J=9 Hz, <u> H_{Ar2} </u>). IR v (cm⁻¹) (ATR): 2880, 1595, 1466, 1341, 1099. MALDI-TOF (m/z): pics corresponents a [M + Na⁺] entre 6076 (n_{mitia}= 40 + Na⁺) i 7092 (n_{mitia}= 48 Na⁺) separats entre ells per 44 unitats de massa. Pic més intens a 6517 (n_{mitia=} 45 + Na⁺). També s'observa la distribució del macrocicle disubstituït entre 3790 (n_{mitia}= 35 + K⁺) i 5025 (n_{mitia}= 49 + K⁺) separats entre ells per 44 unitats de massa. El pic més intens a 4362 (n_{mitia}=41 + K⁺).

6.3. Síntesi d'1,6,11-tris[(4-fluorofenil)sulfonil]-1,6,11-triazaciclopentadecà, 22.

En un baló de dues boques de 25 mL de capacitat proveït d'agitació magnètica s'afegeix **20** (400 mg, 0.59 mmol), Pd-C 10% (18.4 mg, 0.017 mmol de Pd), PtO₂·H₂O (32.8 mg, 0.134 mmol de Pt) i THF (11 mL). Es fa passar un corrent d'hidrogen a pressió atmosfèrica durant 3 hores. La mescla de reacció es filtra amb un filtre Milli-Pore. El filtrat s'evapora a pressió reduïda, obtenint-se un sòlid blanc corresponent a **22** (369 mg, 92% rdt.). ¹H-RMN (CDCI₃, **250 MHz) 5** (ppm): 1.72 (s ap., 12H, NCH₂(<u>CH₂)₂</u>CH₂N), 3.07 (s ap., 12H, NC<u>H₂), 7.21 (t ap., 6H, J_{HF} = J_{HH} = 9 Hz, <u>H_{Ar3})</u>, 7.78 (dd, 6H, J_{HH} = 9 Hz, J_{HF} = 5Hz, <u>H_{Ar2}). Pf: 191-193 °C. Pf (lit.):²⁶⁴ 191-193 °C.</u></u>

6.4. Síntesi del macrocicle polioxietilenat, 16H.

En un baló de 100 mL de capacitat proveït d'agitació magnètica i sota atmosfera d'argó s'afegeix NaH 60% (90.2 mg, 2.26 mmol) en THF anhidre (1.6 mL). Passats 10 minuts s'hi afegeix una dissolució de **21b** (2.80 g, 1.398 mmol) en THF anhidre (8 mL). Passats 10 minuts s'hi addiciona una solució de **22** (310 mg, 0.46 mmol) en THF

²⁶⁴ Serra-Muns, A.; Soler, R.; Badetti, E.; De Mendoza, P.; Moreno-Mañas, M.; Pleixats, R.; Sebastián, R. M.; Vallribera, A. New J.Chem. **2006**, *30*,1584.

anhidre (16 mL). Al cap de 6 hores s'hi afegeix NaH 60% addicional (19.4 mg, 0.485 mmol). Es deixa la reacció a temperatura ambient durant 15 hores. S'hi addiciona més NaH 60% (37.5 mg, 0.94 mmol) i es deixa agitant durant 24 hores. S'afegeix més NaH 60% (19.3 mg, 0.483 mmol) i es deixa un dia addicional. La mescla de reacció es filtra i el filtrat s'evapora a pressió reduïda, donant un sòlid rosat. Aquest es dissol en diclorometà i es fan rentats amb aigua. La fase orgànica s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent, obtenint-se un sòlid rosat corresponent a 1_{6H} (2.3 g, 76% rdt.). ¹H-RMN (CDCI₃, 250 MHz) δ (ppm): 1.64 (s, 12H, N-CH₂(C<u>H₂)₂CH₂-N), 3.0 (s ap,</u> 12H, NCH2), 3.38 (s, 9H, OMe), 3.55-3.72 (m, corresponent a la resta de CH2 de la cadena de PEG), 3.86-3.92 (m, 12H, CH2CH2OAr + CH2), 4.17 (m, 6H, CH2CH2OAr), 7.00 (d, 6H, J = 9.5 Hz, <u>H</u>_{Ar3}), 7.71 (d, 6H, J = 9 Hz, <u>H</u>_{Ar2}). **IR** v (cm⁻¹) (ATR): 2880, 1593, 1465, 1341, 1103. MALDI-TOF (m/z): pics corresponents a [M + Na⁺] entre 6033 $(n_{mitia=} 40 + Na^{\dagger})$ i 7184 $(n_{mitia=} 48.7 + Na^{\dagger})$ separats entre ells per 44 unitats de massa. Pic més intens a 6655 (n_{mitia=} 45 + Na⁺). També s'observa la distribució atribuïda al macrocicle disubstituït entre 3796 (n_{mitja}= 35 + Na⁺) i 4897 (n_{mitja}= 47.5 + Na⁺) separats entre ells per 44 unitats de massa. El pic més intens a 4412 (n_{mitja}= 42 + Na⁺).

6.5. Preparació de nanopartícules d'or(0) estabilitzades pels macrocicles polioxietilenats 1 i 1_{6H}.

6.5.1. Preparació de nanopartícules d'or(0) utilitzant metanol en medi bàsic com a reductor (materials M1 i M2).

Procediment general

En un baló de 25 mL proveït d'agitació magnètica i protegit de la llum, embolcallat de paper d'alumini, es posa l'estabilitzant, HAuCl₄·3H₂O dissolts en metanol. S'hi addiciona la solució metanòlica de NaOH en 6 fraccions durant trenta minuts, es a dir, una fracció cada cinc minuts. Es deixa sota agitació a temperatura ambient durant 7 h. La mescla de reacció es filtra a través d'un filtre Milli-Pore i es deixa la solució a temperatura ambient una nit. S'evapora el dissolvent a pressió reduïda, es dissol el residu en CH₂Cl₂, es renta amb aigua i s'asseca la fase orgànica amb Na₂SO₄. S'evapora el dissolvent per obtenir el material corresponent.

Preparació del material M1 (Taula 1, Ent. 1).

Seguint el procediment general descrit a l'apartat 6.5.1.

Reactius: **1** (0.100 g, 0.015 mmol), $HAuCl_4 \cdot 3H_2O$ (0.0120 g, 0.030 mmol), metanol (5 mL) i NaOH (0.108 M en metanol, 1.12 ml, 0.121 mmol). S'obté un sòlid de color negre que correspon a **M1** (84.2 mg). Les dades espectroscòpiques són idèntiques a les de **1**. **AE experimental (%):** C, 55.14; H, 9.60; N, 0.67; S, 1.39. **AE** (**ICP):** 0.18% Au. **TEM:** \emptyset = 9.5 ± 2.3 nm. **Rdt. :** 2.6%.

Preparació del material M2 (Taula 1, Ent. 2).

Seguint el procediment general descrit a l'apartat 6.5.1.

Reactius: $\mathbf{2}_{6H}$ (0.18 mg, 0.027 mmol), HAuCl₄·3H₂O (22.3 mg, 0.057 mmol), metanol (5 mL) i NaOH (0.1079 M en metanol, 2.1 mL, 0.225 mmol). S'obté un sòlid de color vermell fosc que correspon a **M2** (137 mg). Les dades espectroscòpiques són idèntiques a les de $\mathbf{1}_{6H}$. **AE experimental (%):** C, 55.13; H, 9.37; N, 0.72; S, 0.45. **AE** (ICP): 0.05 % Au. TEM: \emptyset = 2.3 ± 0.5 nm. Rdt. : 0.6%.

6.5.2. Preparació de nanopartícules d'or(0) amb trietilamina com a reductor (materials M3-M4 i M6-M7).

 $\begin{array}{c} +ALCL + 3NR_3 \xrightarrow{} AL + 3NR_3^{++} + + 4Cl^{-} \\ \hline 23 \end{array}$

Procediment general

En un baló de 50 mL de capacitat proveït d'agitació magnètica es posa l'estabilitzant, l'HAuCl₄· $3H_2O$ i acetonitril i s'hi afegeix trietilamina. Es deixa sota agitació a temperatura ambient durant 16 hores. La dissolució es torna de color lila al cap de pocs minuts de l'addició de l'amina. La mescla de reacció es filtra amb un filtre Milli-Pore i s'evapora el dissolvent a pressió reduïda, obtenint-se el material corresponent.

Preparació del material M3 (Taula 2, Ent. 1).

Seguint el procediment general descrit a l'apartat 6.5.2.

Reactius: **1** (0.075 g, 0.011 mmol), HAuCl₄·3H₂O (0.0040 g, 0.011 mmol), acetonitril (22.5 mL) i trietilamina (155 μ l, 228 mg, 1.12 mmol). S'obté un sòlid de color marronós que correspon a **M3** (75 mg). Les dades espectroscòpiques són idèntiques a les de **1**. **AE (ICP):** 0.34 % Au. **TEM:** \emptyset = 49 ± 11 nm. **Rdt. :** 13%.

Preparació del material M4 (Taula 2, Ent. 2).

Seguint el procediment general descrit a l'apartat 6.5.2.

Reactius: **1** (0.075 g, 0.011 mmol), HAuCl₄·3H₂O (0.010 g, 0.026 mmol), acetonitril (22.5 mL) i trietilamina (312 μ l, 228 mg, 2.25 mmol). S'obté un sòlid de color negre que correspon a **M4** (62 mg). Les dades espectroscòpiques són idèntiques a les de **1**. **AE (ICP):** 0.48 % Au. **TEM:** \emptyset = 2.7 ± 0.7 nm. També s'observa una petita quantitat de partícules d'Au(0) d'un diàmetre de 62 nm aproximadament. **Rdt.** : 5.8%.

Preparació del material M6 (Taula 2, Ent. 4).

Seguint el procediment general descrit a l'apartat 6.5.2.

Reactius: 1_{6H} (0.075 g, 0.011 mmol), HAuCl₄·3H₂O (0.009 g, 0.022 mmol), acetonitril (22.5 mL) i trietilamina (312 µl, 228 mg, 2.25 mmol). S'obté un sòlid de color negre que correspon a **M6** (66.5 mg). Les dades espectroscòpiques són idèntiques a les de **1**. **AE experimental (%):** C, 54.58; H, 9.72; N, 0.73; S, 0.64. **AE (ICP):** 0.12 % Au. **TEM:** \emptyset = 3.8 ± 1.02 nm i també hi ha una distribució de 66.7 ± 19.6 nm. **Rdt. :** 1.6%.

Preparació del material M7 (Taula 3, Ent. 1).

Seguint el procediment general descrit a l'apartat 6.5.2.

Reactius: **1** (0.075 g, 0.011 mmol), HAuCl₄·3H₂O (0.009 g, 0.023 mmol), acetonitril (22.5 mL) i trietilamina (312 μ l, 228 mg, 2.25 mmol). S'obté un sòlid de color negre que correspon a **M7** (70 mg). Les dades espectroscòpiques són idèntiques a les de **1**. **AE experimental (%):** C, 55.38; H, 9.85; N, 0.67; S, 1.45. **AE (ICP):** 0.1 % Au. **TEM:** \emptyset = 62 ± 24 nm. **Rdt. :** 1.55%.

6.6. Preparació de nanopartícules de Rh(0) estabilitzades pels macrocicles polioxietilenats 1 i 1_{6H} (materials M8-M12).

```
8 RhCh<sub>3</sub> + 3 NaBH<sub>4</sub> + 9 H<sub>2</sub>O → 8 Rh + 3 B(OH)<sub>5</sub> + 21 HCl + 3 NaCl
24
```

Procediment general

En un tub Schlenk de 250 mL de capacitat proveït d'agitació magnètica s'afegeix l'estabilitzant **1** o **1**_{6H} i es fan cicles buit/argó. S'afegeix aigua Milli-Q prèviament desgasada i NaBH₄. Aquesta dissolució es transfereix via cànula a un altre tub Schlenk de 250 mL de capacitat on prèviament s'hi havia dissolt RhCl₃·3H₂O en aigua també sota atmosfera d'argó. La dissolució passa de color vermell a negre instantàniament. Es deixa a temperatura ambient i en agitació durant una nit. L'aigua s'evapora a sequedat a pressió reduïda. Al residu s'hi afegeix THF i es filtra a través d'un filtre Milli-Pore. El dissolvent s'evapora a pressió reduïda, obtenint-se un sòlid de color negre. Aquest es dissol en CH₂Cl₂ i es renta amb aigua. La fase orgànica s'asseca amb Na₂SO₄ i s'evapora el dissolvent a sequedat, obtenint-se el material sòlid corresponent.

Preparació del material M8 (Taula 4, Ent. 1).

Seguint el procediment general descrit a l'apartat 6.6.

Reactius: **1** (100 mg, 0.015 mmol), NaBH₄ (3.6 mg, 0.094 mmol), aigua Milli-Q (95 mL), RhCl₃·3H₂O (8.8 mg, 0.033 mmol) en aigua Milli-Q (5 mL). S'obté un sòlid de color negre que correspon a **M8** (104 mg). Les dades espectroscòpiques són idèntiques a les de **1**. **AE experimental (%):** C, 52.36; H, 8.85; N, 0.59. **AE (ICP):** 0.12 % Rh. **TEM:** \emptyset = 2.6 ± 0.6 nm. **Rdt. :** 2.9%.

Preparació del material M9 (Taula 4, Ent. 2).

Seguint el procediment general descrit a l'apartat 6.6.

Reactius: **1** (100 mg, 0.015 mmol), NaBH₄ (8.5 mg, 0.222 mmol), aigua Milli-Q (45 mL), RhCl₃·3H₂O (20.2 mg, 0.075 mmol) en aigua Milli-Q (5 mL). S'obté un sòlid de color negre que correspon a **M9** (99 mg). Les dades espectroscòpiques són idèntiques a les de **1**. **AE experimental (%):** C, 53.61; H, 8.71; N, 0.45; **AE (ICP):** 1.9 % Rh. **TEM:** \emptyset = 2.2 ± 0.4 nm. **Rdt. :** 24.4%.

Preparació del material M10 (Taula 4, Ent. 3).

Seguint el procediment general descrit a l'apartat 6.6.

Reactius: 1_{6H} (200 mg, 0.03 mmol), NaBH₄ (8.1 mg, 0.209 mmol), aigua Milli-Q (95 mL), RhCl₃·3H₂O (8.5 mg, 0.032 mmol) en aigua Milli-Q (5 mL). S'obté un sòlid de color gris que correspon a M10 (95 mg). Les dades espectroscòpiques són idèntiques a les de 1_{6H} . AE experimental (%): C, 53.20; H, 8.59; N, 0.53. AE (ICP): 0.26 % Rh. TEM: \emptyset = 2.2 ± 0.5 nm. Rdt. : 7.6%.

Preparació del material M11 (Taula 4, Ent. 4).

Seguint el procediment general descrit a l'apartat 6.6.

Reactius: $\mathbf{1}_{6H}$ (100 mg, 0.015 mmol), NaBH₄ (7.7 mg, 0.201 mmol), aigua Milli-Q (45 mL), RhCl₃·3H₂O (8.1 mg, 0.03 mmol) en aigua Milli-Q (5 mL). S'obté un sòlid de color negre que correspon a **M11** (93 mg). Les dades espectroscòpiques són idèntiques a les de $\mathbf{1}_{6H}$. **AE experimental (%):** C, 54.6; H, 9,47; N, 0.67; S, 0.30. **AE (ICP):** 0.07 % Rh. **TEM:** \emptyset = 2.4 ± 0.5 nm. **Rdt. :** 2%.

Preparació del material M12 (Taula 4, Ent. 5).

Seguint el procediment general descrit a l'apartat 6.6.

Reactius: $\mathbf{1}_{6H}$ (150 mg, 0.023 mmol), NaBH₄ (21.8 mg, 0.56 mmol), aigua Milli-Q (95 mL), RhCl₃·3H₂O (61.6 mg, 0.23 mmol) en aigua Milli-Q (5 mL). S'obté un sòlid de color negre que correspon a **M12** (131 mg). Les dades espectroscòpiques són idèntiques a les de $\mathbf{1}_{6H}$. **AE experimental (%):** C, 54.0; H, 8.58; N, 0.50. **AE (ICP):** 0.96 % Rh. **TEM:** \emptyset = 2.4 ± 0.5 nm. **Rdt. :** 4.1%.

6.7. Preparació de nanopartícules de pal·ladi(0) estabilitzades per compostos polioxietilenats pel mètode de l'aproximació organometàl·lica (materials M16-M17).

Procediment general

En l'ampolla Fischer-Porter proveïda d'agitació magnètica s'afegeix l'estabilitzant (E) i Pd(dba)₂, es fan cicles buit /argó i s'hi afegeix THF anhidre prèviament desgasat. Es purga el sistema tres vegades amb H₂ (g) i es carrega amb H₂ a 3 atmosferes de pressió. Es deixa la mescla a temperatura ambient durant una nit. S'afegeix més THF a la mescla de reacció i es filtra a través d'un filtre Milli-Pore. S'evapora el THF a pressió reduïda, el sòlid resultant es renta amb Et₂O per eliminar-ne el producte resultant de la hidrogenació de la dibenzilidenacetona. El sòlid negre insoluble en èter s'asseca i correspon al material que conté les nanopartícules de Pd(0).

Preparació del material M16 (Taula 5, Ent. 4).

Seguint el procediment general descrit a l'apartat 6.7. *Reactius:* **1** (100.8 mg, 0.015 mmol), Pd(dba)₂ (10.2 mg, 0.015 mmol), THF_{anh} (10 mL). S'obté un sòlid de color negre que correspon a **M16** (70 mg). Les dades espectroscòpiques són idèntiques a les de **1**_{6H}. **AE experimental (%):** C, 52.8; H, 8.47; N, 0.48. **AE (ICP):** 1.44% Pd. **TEM:** $\emptyset = 3.2 \pm 0.5$ nm. **Rdt. :** 68%.

Preparació del material M17 (Taula 5, Ent. 6).

Seguint el procediment general descrit a l'apartat 6.7.

Reactius: **25** (150.2 mg, 0.068 mmol), Pd(dba)₂ (23.4 mg, 0.034 mmol), THF_{anh} (10 mL). S'obté un sòlid de color negre que correspon a **M17** (29.1 mg). Les dades espectroscòpiques són idèntiques a **1725**. ¹H-RMN (CDCl₃, **250 MHz**) **5** (ppm): 1.11 (t, *J*= 7 Hz, 6H, C<u>H₃</u>), 3.21 (q, *J*= 7.3 Hz, 4H, C<u>H₂</u>CH₃), 3.36 (s, 3H, O<u>Me</u>), 3.63-3.64 (m, corresponent a la <u>resta de CH₂</u> de la cadena de PEG), 3.85-3.92 (m, 4H, C<u>H₂</u>), 4.17 (t, 2H, *J*= 4.5 Hz, C<u>H₂OAr</u>), 6.97 (d, *J*= 9 Hz, 2H, <u>H_{Ar3}</u>), 7.72 (d, *J*= 9 Hz, 2H, <u>H_{Ar2}</u>). **IR v** (cm⁻¹) (ATR): 2882, 1594, 1466, 1340, 1103. **AE experimental (%):** C, 53.9; H, 8.83; N, 0.43. **AE (ICP):** 0.28 % Pd. **.TEM:** \emptyset = 2.8 ± 0.6 nm. **Rdt. :** 2.2%.

L'1,3,5-tribromobenzè, **33**, (0.973 g, 3.03 mmol) es dissol en dietilamina (25 mL) sota agitació magnètica i atmosfera d'argó. A la solució s'hi afegeix iodur de coure(I) (7.5 mg, 0.041 mmol) i diclorobis(trifenilfosfina)pal·ladi(II) (60.6 mg, 0.091 mmol). S'addiciona, gota a gota, el trimetilsililacetilè (1.48 ml, 10.47 mmol) a la solució i aquesta s'escalfa a 70 °C durant 7 hores. Es forma un sòlid de color marró corresponent al bromur de dietilamina. La solució es refreda a temperatura ambient, es filtra i el sòlid es renta amb Et₂O. Els filtrats s'evaporen a pressió reduïda i el residu obtingut es purifica mitjançant una columna de Al_2O_3 utilitzant pentà com a eluent. Finalment s'obté el producte **34** com un sòlid blanc (0.9901 g, 89.2% rdt.). ¹H-RMN (**C**₆**H**₆, **250 MHz**) δ (**ppm**): 0.19 (s, 27H, C<u>H₃</u>), 7.57 (s, 3H, <u>H_Ar</u>).

6.9. Síntesi d'1,3,5- trietinilbenzè, 30.266

El compost **34** (2.76 g, 7.55 mmol) es dissol en MeOH (11 mL) i s'hidrolitza afegint-hi una solució de NaOH en metanol (7.5 mL, 1M) i es deixa agitant a temperatura ambient. La reacció es controla per capa prima utilitzant com a eluent hexà: acetat d'etil (50:1). En dues hores la reacció ha finalitzat. S'evapora el metanol i el residu obtingut es purifica per cromatografia en gel de sílice utilitzant com a eluent hexà: AcOEt (50:1), obtenint-se **30** com a sòlid marró (0.95 g, 84% rdt.). ¹H-RMN (CDCI₃, **250 MHz**) δ (ppm): 3.11 (s, 3H, =-C*H*), 7.57 (s, 3H, *H*_{Ar}). ¹³C-RMN (CDCI₃,

²⁶⁵ Uhl, W.; Bock, H. R.; Breher, F.; Claesener, M.; Haddadpour, S.; Jasper, B.; Hepp, A. Organometallics **2007**, *26*, 2363.

²⁶⁶ Weber, E.; Hecker, M.; Koepp, E.; Orlia, W.; Czugler, M.; Csoregh, I. J. Chem. Soc., Perkin Trans.2 1988, 1251.

62.5 MHz) δ (ppm): 135.75, 123.01, 81.71, 78.81. **IR(ATR)** ν (cm⁻¹): 3277 (CC-H), 2109 (C≡C), 1578, 1412. **Pf:** 101-103 °C. **Pf(lit):**²⁶⁷ 101-103 °C

6.10. Síntesi del mesilat polioxietilenat (n = 7), 32a.

S'anhidritza l'èter monometílic de polietilenglicol de pes molecular 350 comercial, 21a, (n_{mitia}= 7, 5.0 g, 14.2 mmol) escalfant-lo a 80 °C sota buit i agitació magnètica durant una nit en un tub Schlenk de 250 mL. Es refreda a temperatura ambient, el producte es dissol en CH₂Cl₂ anhidre (100 mL) i s'hi addiciona trietilamina (6 mL, 4.37 g, 43.2 mmol). La solució es refreda a 0 °C i durant 15 minuts s'hi addiciona, gota a gota, amb xeringa, el clorur de metanosulfonil (2.2 mL, 1.49 g, 28.04 mmol). Es deixa 15 minuts més sota agitació a 0 °C i després a temperatura ambient durant 4 hores. La mescla de reacció es filtra a través de gel de sílice utilitzant CH₂Cl₂ com a eluent. El dissolvent i la NEt₃ s'evapora a pressió reduïda, obtenint-se un oli de color taronja, que es dissol en CH₂Cl₂. Es fan rentats de la solució orgànica amb H₂O, s'asseca amb Na₂SO₄ anhidre i el dissolvent s'evapora a pressió reduïda, obtenint-se un oli groc corresponent al producte 32a (5.8 g, 95% rdt.). ¹H-RMN (CDCI₃, 360 MHz) δ (ppm): 3.05 (s, 3H, SO₂Me), 3.34 (s, 3H, OMe), 3.51-3.52 (m, 2H, CH2), 3.61-3.62 (m, 26H, la resta de CH₂ de la cadena de PEG), 3.72-3.76 (m, 2H, CH₂CH₂OMes), 4.33-4.36 (m, 2H, CH₂CH₂OMes). IR(ATR) v (cm⁻¹): 2869, 1454, 1348, 1095, 917, 800. MALDI-TOF (m/z): pics corresponents a [M + Na⁺] des de 353 (5 unitats de CH₂CH₂O) fins a 705 (13 unitats de CH_2CH_2O) separats entre ells per 44 Da (CH_2CH_2O). El pic més intens és a 485 (producte amb 8 unitats de CH₂CH₂O).

²⁶⁷ Wright, A. T.; Zhong, Z.; Anslyn, E. V. Angew. Chem. Int. Ed. **2005,** 44 , 5679.

6.11. Síntesi del mesilat polioxietilenat (n = 44), 32b.

S'anhidritza l'èter monometílic de polietilenglicol de pes molecular 2000 comercial, 21b, (n_{mitia} = 44, 10.0 g, 5 mmol) escalfant-lo a 80 °C a la línea de buit i sota agitació durant una nit en un tub Schlenk de 250 mL. Es refreda a temperatura ambient, el producte es dissol en CH₂Cl_{2anh}(140 mL) i s'hi addiciona trietilamina (2.1 mL, 1.53 g, 15.1 mmol). La solució es refreda a 0 °C i durant 15 minuts s'hi addiciona, gota a gota, el clorur de metanosulfonil (0.8 mL, 1.184 g, 10.2 mmol). Es deixa 15 minuts més sota agitació a 0 °C i després a temperatura ambient durant 3.5 hores. La mescla de reacció es filtra a través de gel de sílice utilitzant CH₂Cl₂ com a eluent. El dissolvent i la NEt₃ s'evapora a pressió reduïda, obtenint-se un residu oliós, en el qual es forma un sòlid blanc en afegir-hi Et₂O. El producte **32b** és separa per filtració, rentat amb Et₂O i assecat. (6.29 g, 61% rdt.). ¹H-RMN (CDCI₃, 250 MHz) δ (ppm): 3.06 (s, 3H, SO₂Me), 3.36 (s, 3H, OMe), 3.51-3.53 (m, 2H, CH2), 3.62 (m, 174H, corresponen a la resta de CH2 de la cadena de PEG), 3.73-3.76 (m, 2H, CH2CH2OMes), 4.35-4.37 (m, 2H, CH₂CH₂OMes). **IR (ATR)** v (cm⁻¹): 2884, 1468, 1342, 1102, 959, 843. MALDI-TOF (m/z): pics corresponents a [M + Na⁺] des de 1806 (38 unitats de CH₂CH₂O) fins a 2511 (54 unitats de CH₂CH₂O) separats entre ells per 44 Da (CH₂CH₂O). El pic més intens és a 2114 (45 unitats de CH₂CH₂O).

6.12. Síntesi de l'azida polioxietilenada (n = 7), 31a.

S'addiciona NaN₃ (2.781 g, 42.34 mmol) a una solució de **32a** (1.806 g, 4.22 mmol) en DMF (400 mL). S'agita la mescla a 60 °C durant 24 hores. El dissolvent s'evapora a pressió reduïda, obtenint-se un sòlid de color blanc. S'hi afegeix CH₂Cl₂ i es renta la fase orgànica amb aigua, s'asseca amb Na₂SO₄ anhidre i el dissolvent s'evapora a pressió reduïda, obtenint-se un oli de color groc que correspon a **31a** (1.574 g, 100% rdt.). ¹H-RMN (CDCI₃, **250** MHz) δ (ppm): 3.38-3.40 (m, 5H, O<u>Me</u> i C<u>H₂</u>), 3.52-3.56 (m, 2H, C<u>H₂</u>), 3.64-3.69 (m, 28H, corresponen a la <u>resta de CH₂</u> de la cadena de PEG). **IR (ATR) v (cm⁻¹):** 2865, 2099 (-N₃), 1452, 1286, 1098, 850. **MALDI**-

TOF (m/z): pics corresponents a $[M + Na^{\dagger}]$ des de 215 (2 unitats de CH₂CH₂O + CH₂CH₂N₃ + OMe) fins a 655 (12 unitats de CH₂CH₂O + CH₂CH₂N₃ + OMe) separats entre ells per 44 Da (CH₂CH₂O). El pic més intens és a 346 (5 unitats de CH₂CH₂O + CH₂CH₂N₃ + OMe).

6.13. Síntesi de l'azida polioxietilenada (n = 44), 31b.

S'addiciona NaN₃ (1.034 g, 15.75 mmol) a una solució de **32b** (3.275 g, 1.57 mmol) en DMF (200 mL). S'agita la mescla a 60 °C durant 24 hores. El dissolvent s'evapora a pressió reduïda, obtenint-se un sòlid de color blanc. S'hi afegeix CH_2CI_2 i es renta la fase orgànica amb aigua, s'asseca amb Na_2SO_4 anhidre i el dissolvent s'evapora a pressió reduïda. S'addiciona Et_2O al residu, obtenint-se un sòlid de color blanc que correspon a **31b** (2.78 g, 87% rdt.). ¹H-RMN (CDCI₃, **250** MHz) δ (ppm): 3.36-3.39 (m, 5H, O<u>Me</u> i C<u>H</u>₂), 3.41-3.81 (m, 178H, corresponen a la <u>resta de CH</u>₂ de la cadena de PEG). IR (ATR) v (cm⁻¹): 2881, 2103 (-N₃), 1963, 1466, 1454, 1341, 103, 958, 842. MALDI-TOF (m/z): pics corresponents a [M + Na⁺] des de 1534 (32 unitats de CH₂CH₂O + CH₂CH₂N₃ + OMe) fins a 2440 (48 unitats de CH₂CH₂O + CH₂CH₂N₃ + OMe) separats entre ells per 44 Da (CH₂CH₂O). El pic més intens és a 1666 (35 unitats de CH₂CH₂O + CH₂CH₂N₃ + OMe).

6.14. Síntesi del compost polioxietilenat (n = 7), 3a.²⁶⁸

En un baló de 25 mL, proveït d'agitació magnètica, protegit de la llum i sota atmosfera d'argó, es posa una solució de l'azida polioxietilenada, **31a** (0.576 g, 1.41 mmol) i **30** (0.065 g, 0.43 mmol) en una mescla de *tert*-butanol (5.4 mL) i aigua (1 mL). S'hi addiciona una solució aquosa de CuSO₄·5H₂O (38.2 mg, 0.15 mmol, 12 %; 2 mL

²⁶⁸ Devic, T.; David, O.; Valls, M.; Marrot, J.; Couty, F.; Ferey, G. *J.Am.Chem.Soc.* **2007**, *129*, 12614.

d'aigua) i després una solució aquosa d'ascorbat sòdic (57 mg, 0.29 mmol, 22 %; 3 mL d'aigua). La solució s'agita a temperatura ambient i en absència de llum durant 24h, el *tert*-butanol s'evapora a pressió reduïda i la fase aquosa resultant s'extreu amb CH₂Cl₂. La fase orgànica s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda, obtenint-se un oli de color groc. Per eliminar el lleuger excés d'azida **31a** es fa seguint la metodologia explicada a continuació.

En un tub Schlenk es posa trifenilfosfina polimèrica comercial (125 mg) en THF_{anh} (3.5 mL). La mescla s'escalfa a 50 °C durant una hora i el dissolvent es transvasa amb una cànula cap a un altre recipient. El mateix procediment es repeteix dos cops més i serveix per eliminar partícules no suportades del polímer. La solució de la mescla a purificar (que conté 3a i l'excés de 31a) en THF_{anh.} (4 mL) s'addiciona al tub Schlenk que conté la trifenilfosfina polimèrica prèviament rentada. La mescla s'agita a 50 °C fins que no s'observa la banda de l'azida (2100 cm⁻¹) per espectroscòpia d'IR. La mescla es centrifuga per eliminar el polímer insoluble, i el dissolvent s'evapora per donar el producte 3a pur com un oli groc clar (0.589 g, 99.7 % rdt.). ¹H-RMN (CDCI₃, 400 MHz) δ (ppm): 3.33-3.35 (m, 15H, O<u>Me</u> i <u>CH</u>₂OMe), 3.53-3.65 (m, corresponent a la resta de CH₂ de la cadena de PEG), 3.92-3.94 (m, 6H, CH2CH2-triazole), 4.60-4.64 (m, 6H, CH2CH2-triazole), 8.18 (s, 3H, H-triazole), 8.32 (s, 3H, <u>H</u>_{Ar}). ¹³C-RMN (CDCl₃, 100 MHz) δ (ppm): 50.5, 59.06, 61.7, 69.6, 70.3, 70.6 (ample), 71.9, 72.6, 121.7, 122.3, 132.0, 147.1. IR (ATR) v (cm⁻¹): 2867, 1457, 1258, 1096, 798. MALDI-TOF (m/z): pics corresponents a [M + H⁺] des de 850 (9 unitats de $CH_2CH_2O + 3 CH_2CH_2 + 3 OMe +$ unitat de benzenetriazole) fins a 1554 (25 unitats de CH₂CH₂O + 3 CH₂CH₂ + 3 OMe + unitat de benzenetriazole) separats entre ells per 44 Da (CH₂CH₂O). El pic més intens és a 1202 (17 unitats de CH₂CH₂O + 3 CH₂CH₂ + 3 OMe + unitat de benzenetriazole).

En un baló de 25 mL, proveït d'agitació magnètica, protegit de la llum i sota atmosfera d'argó, es posa una solució de l'azida polioxietilenada, **31b** (4.037 g, 1.98 mmol) i **30** (0.0905 g, 0.63 mmol) en una mescla de *tert*-butanol (7.2 mL) i aigua (1.1 mL). S'hi addiciona una solució aquosa de $CuSO_4 \cdot 5H_2O$ (167.7 mg, 0.672 mmol, 36 %; 3 mL d'aigua) i després una solució aquosa d'ascorbat sòdic (262 mg, 1.13 mmol, 60%; 7.2 mL d'aigua). La solució s'agita a temperatura ambient i en absència de llum durant 2 h, el *tert*-BuOH s'evapora a pressió reduïda i la fase aquosa resultant s'extreu amb CH_2Cl_2 . La fase orgànica s'asseca amb Na_2SO_4 anhidre i s'evapora el dissolvent a pressió reduïda, obtenint-se un sòlid de color groc pàl·lid. Per eliminar l'excés d'azida **31b** es fa seguint la metodologia explicada a continuació.

Al cru de la reacció s'hi addiciona aigua, i el que resta insoluble s'elimina per centrifugació. La solució aquosa s'introdueix en un sac d'una membrana de diàlisi (MWCO 3500), la qual es posa en un vas de precipitats amb aigua i proveït d'agitació magnètica. Cada hora la solució del vas de precipitats es va canviant per aigua nova. Després de 5 h, l'azida 31b no s'observa a la solució aquosa introduïda a la membrana de diàlisis (monitorització per espectroscòpia d'IR). El dissolvent dins del sac de la membrana de diàlisi s'evapora a pressió reduïda, obtenint-se 3b com un sòlid groc pàl·lid (3.609 g, 96 % rdt.). ¹H-RMN (CDCl₃, 360 MHz) δ (ppm): 3.37-3.40 (m, 15H, OMe i CH2OMe), 3.42-3.45 (m, 6H, CH2), 3.53-3.63 (m, corresponent a la resta de CH2 de la cadena de PEG), 3.81-3.84 (m, 6H, CH₂), 3.92-3.96 (m, 6H, CH₂CH₂-triazole) 4.61-4.63 (m, 6H, CH₂C<u>H₂-triazole)</u>, 8.19 (s, 3H, <u>H</u>-triazole), 8.32 (s, 3H, <u>H</u>_{Ar}). **IR (ATR)** v (cm⁻¹): 2882, 1466, 1341, 1101, 959, 842. MALDI-TOF (m/z): pics corresponents a $[M + Na^{+}]$ des de 5413 (112 unitats de CH₂CH₂O + 3 CH₂CH₂ + 3 OMe + unitat de benzenetriazole) fins a 6865 (145 unitats de CH₂CH₂O + 3 CH₂CH₂ + 3 OMe + unitat de benzenetriazole) separats entre ells per 44 Da (CH₂CH₂O). El pic més intens és a 6116 (128 unitats de $CH_2CH_2O + 3 CH_2CH_2 + 3 OMe +$ unitat de benzenetriazole).

6.16. Preparació de nanopartícules de pal·ladi(0) estabilitzades per 3b pel mètode de l'aproximació organometàl·lica (materials M18-M22).

Procediment general

En l'ampolla Fischer-Porter, proveïda d'agitació magnètica, es posa **3b** (l'estabilitzant) i $Pd(dba)_2$, es fan cicles buit /argó i es dissol en THF anhidre prèviament desgasat. Es purga el sistema tres vegades amb H₂ (g) i es carrega amb H₂ a 3 atmosferes de pressió. Es deixa a temperatura ambient durant una nit. S'afegeix més THF a la mescla de reacció i es filtra a través d'un filtre Milli-Pore. S'evapora el THF a pressió reduïda, i el sòlid resultant es renta amb Et₂O per eliminar-ne el producte d'hidrogenació de la dibenzilidenacetona. El sòlid negre insoluble en èter s'asseca i correspon al material que conté les nanopartícules de Pd(0).

Preparació del material M18 (Taula 8, Ent. 1).

Seguint el procediment general descrit a l'apartat 6.16.

Reactius: **3b** (100 mg, 0.016 mmol), $Pd(dba)_2$ (19.5 mg, 0.032 mmol), THF_{anh} (20 mL). S'obté un sòlid de color negre que correspon a **M18** (73 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE (ICP):** 2.13% Pd. **TEM:** \emptyset = 3.22 ± 0.7 nm. **Rdt. :** 45.6%.

Preparació del material M19 (Taula 8, Ent. 2).

Seguint el procediment general descrit a l'apartat 6.16.

Reactius: **3b** (800 mg, 0.128 mmol), Pd(dba)₂ (156 mg, 0.257 mmol), THF_{anh} (160 mL). S'obté un sòlid de color gris que correspon a **M19** (686.5 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE** (**ICP**): 0.38% Pd.. **TEM:** \emptyset = 3.58 ± 1.2 nm. **Rdt. :** 9.6%. La reacció no va donar els resultats esperats, potser perquè es va utilitzar un volum de solució molt gran, per la capacitat de l'ampolla Fischer-Porter, la qual cosa va impedir que el producte s'hidrogenés correctament.

Preparació del material M20 (Taula 8, Ent. 3).

Seguint el procediment general descrit a l'apartat 6.16.

Reactius: **3b** (100 mg, 0.016 mmol), $Pd(dba)_2$ (9.8 mg, 0.016 mmol), THF_{anh} (10 mL). S'obté un sòlid de color negre que correspon a **M20** (65 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE (ICP):** 1.57% Pd. **TEM:** \emptyset = 2.26 ± 0.4 nm. **Rdt. :** 59.5%.

Preparació del material M21 (Taula 8, Ent. 4).

Seguint el procediment general descrit a l'apartat 6.16.

Reactius: **3b** (400 mg, 0.064 mmol), $Pd(dba)_2$ (39 mg, 0.064 mmol), THF_{anh} (40 mL). S'obté un sòlid de color negre que correspon a **M21** (304.1 mg). Les dades espectroscòpiques corresponen al compost polioxietilenat **3b**. **AE (ICP):** 1.58% Pd. **TEM:** \emptyset = 2.7 ± 0.7 nm. **Rdt.:** 70.4%.

Preparació del material M22 (Taula 8, Ent. 5).

Seguint el procediment general descrit a l'apartat 6.16.

Reactius: **3b** (400 mg, 0.064 mmol), $Pd(dba)_2$ (39 mg, 0.064 mmol), THF_{anh} (40 mL). S'obté un sòlid de color negre que correspon a **M21** (282 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE (ICP):** 1.7% Pd. **TEM:** \emptyset = 2.7 ± 0.5 nm. **Rdt. :** 70%.

6.17. Preparació de nanopartícules d'or(0) estabilitzades pels compostos polioxietilenats 3a i 3b (materials M23-M32).

6.17.1. Preparació de nanopartícules d'or(0) utilitzant metanol en medi bàsic com a reductor, M23 (Esquema 25).

En un baló de 25 mL proveït d'agitació magnètica i protegit de la llum es posa **3b** (93.6 mg, 0.015 mmol), HAuCl₄·3H₂O (11.8 mg, 0.030 mmol) i metanol (5 mL). S'hi addiciona la solució metanòlica de NaOH (0.1079 M en metanol, 1.1 mL, 0.119 mmol) en 6 fraccions durant trenta minuts, es a dir, una fracció cada cinc minuts. Es deixa sota agitació a temperatura ambient durant 7 h. La mescla de reacció es filtra a través

d'un filtre Milli-Pore i es deixa la solució de color vi a temperatura ambient una nit. S'evapora el dissolvent a pressió reduïda, al residu s'hi afegeix CH_2Cl_2 , es renta amb aigua la fase orgànica, i s'asseca amb Na_2SO_4 anhidre S'evapora el dissolvent i s'obté un sòlid de color lila corresponent a **M23** (80 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE (ICP):** n.d. **TEM:** \emptyset = 7 ± 3.2 nm i 35.2 ± 10.5 nm. **Rdt. :** n.d.%.

6.17.2. Preparació de nanopartícules d'or(0) amb hidrur de bor i sodi com a reductor (materials M24-M32).

Procediment general (A)

En un baló de 25 mL de capacitat, proveït d'agitació magnètica i en absència de llum, s'introdueix l'estabilitzant (**3a** o **3b**) dissolt en THF anhidre S'hi afegeix una solució aquosa de NaBH₄. Sobre aquesta dissolució, s'afegeix lentament, amb micropipeta, una solució aquosa d'HAuCl₄ en porcions cada 10 minuts durant 3 hores i es deixa agitant durant una nit. La solució lila-vermellosa es filtra a través d'un filtre Milli-Pore per tal d'eliminar l'or metàl·lic *bulk* precipitat. El dissolvent orgànic s'evapora a pressió reduïda i s'obté un residu sòlid. S'hi afegeix CH₂Cl₂ i es fan rentats de la fase orgànica amb H₂O, s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. El residu obtingut es renta amb Et₂O. El sòlid insoluble en èter s'asseca i correspon al material que conté nanopartícules d'or(0).

Preparació del material M24 (Taula 9, Ent. 1).

Seguint el procediment general (A) descrit a l'apartat 6.17.2.

Reactius: **3b** (100 mg, 0.016 mmol), NaBH₄ (4 mg, 0.105 mmol en 0.4 mL aigua), HAuCl₄ (14 mg, 0.036 mmol en 0.2 mL H₂O), THF_{anh} (4 mL). S'obté un sòlid de color lila que correspon a **M24** (87.5 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE (ICP):** n.d.% Au. **TEM:** \emptyset = 7.7 ± 3.6 nm. També s'han observat cristalls d'or(0) més grans. **Rdt. :** n.d.%.

Preparació del material M25 (Taula 9, Ent. 2).

Seguint el procediment general (A) descrit a l'apartat 6.17.2.

Reactius: **3b** (100 mg, 0.016 mmol), NaBH₄ (3.7 mg, 0.098 mmol en 4 mL H₂O), HAuCl₄ (6.2 mg, 0.016 mmol en 0.1 mL H₂O), THF_{anh} (4 mL). S'obté un sòlid de color lila-vermell que correspon a **M25** (87.5 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE (ICP):** 1.6 % Au. **TEM:** \emptyset = 4.8 ± 1.2 nm. **Rdt. :** 51%.

Preparació del material M26 (Taula 9, Ent. 3).

Seguint el procediment general descrit (A) a l'apartat 6.17.2.

Reactius: **3b** (100 mg, 0.016 mmol), NaBH₄ (3.6 mg, 0.095 mmol en 4 mL H₂O), HAuCl₄ (3.2 mg, 0.008 mmol en 0.05 mL H₂O), THF_{anh} (4 mL). S'obté un sòlid de color lila que correspon a **M26** (80.5 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE (ICP):** n.d. % Au. . **TEM:** \emptyset = 4.0 ± 1.2 nm. **Rdt. :** n.d.%.

Preparació del material M27 (Taula 9, Ent. 4).

Seguint el procediment general (A) descrit a l'apartat 6.17.2.

Reactius: En un baló de 100 mL de capacitat, **3b** (400 mg, 0.064 mmol), NaBH₄ (14.6 mg, 0.386 mmol en 16 mL H₂O), HAuCl₄ (25.3 mg, 0.064 mmol en 0.4 mL H₂O), THF_{anh} (16 mL). S'obté un sòlid de color lila que correspon a **M27** (263.4 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE** (ICP): 0.50 % Au. **TEM:** \emptyset = 7.0 ± 2.1 nm. **Rdt.** : 10.5%.

Preparació del material M28 (Taula 9, Ent. 5).

Seguint el procediment general (A) descrit a l'apartat 6.17.2.

Reactius: En un baló de 50 mL de capacitat, **3a** (200 mg, 0.145 mmol), NaBH₄ (33.3 mg, 0.88 mmol en 8 mL H₂O), HAuCl₄ (57.7 mg, 0.146 mmol en 0.2 mL H₂O), THF_{anh} (8 mL). S'obté un sòlid de color marró que correspon a **M28** (172.4 mg, 0.23 % rdt). Les dades espectroscòpiques són idèntiques a **3a**. **AE (ICP):** 0.038 % Au. **TEM:** \emptyset = 9.2 ± 1.6 nm. **Rdt.** : 0.23%.

Procediment general (B)

En un baló de 25 mL de capacitat, proveït d'agitació magnètica i en absència de llum, s'introdueix l'estabilitzant (**3a** o **3b**) dissolt en THF_{anh}. S'hi afegeix una solució

aquosa d'HAuCl₄. Sobre aquesta dissolució, s'afegeix lentament, amb micropipeta, solució aquosa de NaBH₄ en porcions cada 10 minuts durant 3 hores i es deixa agitant durant una nit. La solució lila-vermellosa es filtra a través d'un filtre Milli-Pore per tal d'eliminar l'or metàl·lic *bulk* precipitat. El dissolvent orgànic s'evapora a pressió reduïda i s'obté un residu sòlid. S'hi afegeix CH₂Cl₂ i es fan rentats de la fase orgànica amb H₂O, s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. El residu que s'obté es renta amb Et₂O. El sòlid insoluble en èter s'asseca i correspon al material que conté nanopartícules d'or(0).

Preparació del material M29 (Taula 9, Ent. 7).

Seguint el procediment general (B) descrit a l'apartat 6.17.2.

Reactius: **3b** (100 mg, 0.016 mmol), NaBH₄ (3.7 mg, 0.098 mmol en 4 mL H₂O), HAuCl₄ (6.3 mg, 0.016 mmol en 0.1 mL de H₂O), THF_{anh} (4 mL). S'obté un sòlid de color lila fosc que correspon a **M29** (83.2 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE (ICP):** n.d. **TEM:** \emptyset = 10.6 ± 3.2 nm. **Rdt. :** n.d.%.

Preparació del material M30 (Taula 10, Ent. 2).

Seguint el procediment general (B) descrit a l'apartat 6.17.2.

Reactius: **3b** (100 mg, 0.016 mmol), NaBH₄ (3.7 mg, 0.098 mmol en 4 mL H₂O), HAuCl₄ (6.2 mg, 0.016 mmol en 0.1 mL H₂O), THF_{anh} (4 mL). S'obté un sòlid de color lila fosc que correspon a **M30** (84.1 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE (ICP):** 1.8 % Au. **TEM:** \emptyset = 6.5 ± 1.9 nm. **Rdt. :** 48%.

Preparació del material M31 (Taula 10, Ent. 3).

Seguint el procediment general (B) descrit a l'apartat 6.17.2.

Reactius: **3b** (100 mg, 0.016 mmol), NaBH₄ (3.7 mg, 0.098 mmol en 4 mL H₂O), HAuCl₄ (6.2 mg, 0.016 mmol en 0.1 mL H₂O), THF_{anh} (4 mL). S'obté un sòlid de color verd fosc que correspon a **M31** (75.4 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE (ICP):** 1.8 % Au. **TEM:** \emptyset = 10.8 ± 4.3 nm. **Rdt. :** 41%.

Preparació del material M32 (Taula 10, Ent. 4).

Seguint el procediment general (B) descrit a l'apartat 6.17.2.

Reactius: **3b** (100 mg, 0.016 mmol), NaBH₄ (3.7 mg, 0.098 mmol en 4 mL H₂O), HAuCl₄ (6.2 mg, 0.016 mmol en 0.1 mL H₂O), THF_{anh} (4 mL). S'obté un sòlid de color vermell que correspon a M32 (86.4 mg). Les dades espectroscòpiques són idèntiques a 3b. AE (ICP): 2.0 % Au. TEM: \emptyset = 15.8 ± 4.7 nm. Rdt. : 57%.

6.17.3. Preparació de nanopartícules d'or(0) amb 9-BBN com a reductor (materials M33-M35).

Procediment general

En un baló de 50 mL de capacitat, proveït d'agitació magnètica i protegit de la llum, es posa **3b**, (Et₃P)AuCl, **36**, i 16 mL d'una mescla acetonitril-toluè 1:4. Es deixa agitant la solució a temperatura ambient durant 30 minuts. S'hi addiciona una solució de 9-BBN 0.5 M en THF. La solució s'agita durant tota la nit, a temperatura ambient i en absència de llum, tornant-se de color lila fosc. El dissolvent s'evapora a sequedat. Al residu s'hi afegeix Et_2O , es centrifuga i es decanta el dissolvent. Al residu sòlid insoluble en èter s'hi afegeix CH_2Cl_2 i la mescla es centrifuga per tal d'eliminar-ne les impureses insolubles en el dissolvent orgànic. Finalment, s'evapora a pressió reduïda el CH_2Cl_2 , s'asseca i s'obté un sòlid que correspon al material que conté nanopartícules d'Au(0).

Preparació del material M33 (Esquema 27).

Seguint el procediment general descrit a l'apartat 6.17.3.

Reactius: **3b** (200 mg, 0.032 mmol), Et₃PAuCl (11.6 mg, 0.032 mmol), 9-BBN (256 μ L, 0.5 M en THF, 0.128 mmol). S'obté un sòlid de color negre que correspon a **M33** (122 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE (ICP):** n.d. % Au. **TEM:** \emptyset = 27 ± 0.5 nm. **Rdt. :** n.d.%.

Preparació del material M34 (Esquema 28, Ent. 1).

Seguint el procediment general descrit a l'apartat 6.17.3, amb la modificació de que el dissolvent emprat és 16 mL de THF_{anh} .

Reactius: **3b** (200 mg, 0.032 mmol), Et₃PAuCl (11.6 mg, 0.032 mmol), 9-BBN (256 μ L, 0.5 M en THF, 0.128 mmol). S'obté un sòlid de color negre que correspon a **M34** (134 mg). Les dades espectroscòpiques són idèntiques a **3b**. **AE (ICP):** n.d. % Au. **TEM:** \emptyset = 3.5 ± 0.8 nm. **Rdt. :** n.d.%.

Preparació del material M35 (Taula 28, Ent. 2).

Seguint el procediment general descrit a l'apartat 6.17.3, amb la modificació de que el dissolvent emprat és 16 mL de THF_{anh} .

Reactius: **3b** (200 mg, 0.032 mmol), Et₃PAuCl (11.6 mg, 0.032), 9-BBN (256 μ L, 0.5M THF, 0.128 mmol). S'obté un sòlid de color gris clar que correspon a **M35** (107.8 mg). Les dades espectroscòpiques corresponen al compost polioxietilenat **3b**. **AE** (ICP): 0.1 % Au. **TEM:** \emptyset = 3.3 ± 1.0 nm. **Rdt.** : 1.7%.

6.18. Síntesi de l'oxima de di-(2-piridil)metanona, 42.269

Di-(2-piridil)metanona, (1.006 g, 5.46 mmol) i l'hidroclorur d'hidroxilamina (0.598 g, 8.73 mmol) es dissolen en etanol (1.5 mL). S'hi addiciona lentament 3 mL d'una solució aquosa d'hidròxid sòdic (1.057 g, 26.4 mmol) durant un període de 90 minuts. Durant aquest temps la solució s'enfosqueix i apareix un precipitat blanc que finalment es redissol. La reacció s'escalfa a reflux durant 10 minuts i es deixa refredar a temperatura ambient. Al cru de la reacció s'afegeix aigua (4 mL) i HCl_{conc.} (2 mL), s'evapora l'etanol a pressió reduïda i s'obté una solució de color vermell fosc. El producte precipita per addició d'una solució saturada de carbonat sòdic (4 mL). El precipitat es filtra, es renta amb aigua i s'asseca al dessecador al buit, obtenint-se **42** com un sòlid blanc (1.007 g , 92.6 % rdt.). ¹H-RMN (CDCl₃, **250 MHz)** δ (ppm): 7.35 (ddd, 1H, *J*= 6.5, 5.0 i 2.5 Hz, <u>H₅</u>-Pir), 7.45 (ddd, 1H, *J*= 7.75, 5.0 i 1 Hz, <u>H₃</u>-Pir), 7.66 (d, 1H, *J*= 8.25 Hz, <u>H₃-Pir), 7.84 (m, 3H, <u>H₄-Pir i H_{3'}-Pir), 8.63 (d, 1H, *J*= 5.75 Hz, <u>H₅-</u></u></u>

²⁶⁹ Chang, J.; Plummer, S.; Berman, E. S. F.; Striplin, D.; Blauch, D. *Inorg. Chem.*, **2004**, *43*, 1735.

Pir), 8.65 (d, 1H, *J*= 5.75 Hz, <u>*H*_{6'}-</u>Pir), 16.35 (s, 1H, O<u>*H*</u>). **IR** v (cm⁻¹) (ATR): 3146, 2997, 2803, 1593, 1566, 1472, 1427, 1000, 945, 789. **Pf:** 143.5-144.5 °C. **Pf(lit):**²⁷⁰ 143-144.5 °C (AcOEt).

6.19. Síntesi de di-(2-piridil)metanamina, 43.²⁷⁰

Es porta a reflux una mescla de l'oxima 42 (0.300 g, 1.51 mmol), acetat amònic (0.239 g, 3.10 mmol), amoníac concentrat (4.5 mL, 4.05 g, 69 mmol), etanol (3 mL) i aigua (3 mL). Durant un període de 2 hores s'hi addiciona zinc en pols prèviament activat (0.425 g, 6.65 mmol). Durant l'addició la mescla passa de color groc pàl·lid a taronja marronós, però abans d'acabar l'addició esdevé incolora. Es continua escalfant la mescla de reacció a reflux durant 3 hores més. Es filtra la mescla de reacció a través de celite (el Zn en excés queda retingut), i s'evapora l'etanol del filtrat a pressió reduïda. S'afegeix hidròxid sòdic (1.13 g, 28.25 mmol) a la solució i s'observa la formació d'un sòlid blanc que es redissol abans d'acabar l'addició. Aquesta solució s'extreu amb diclorometà (3x10 mL), la fase orgànica es renta amb aigua i NaCl_(aq), s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda, obtenint-se l'amina 43 en forma d'un oli groc (0.23 g, 82% rdt). El producte s'utilitza immediatament per a la següent reacció, ja que no és massa estable. ¹H-RMN (CDCI₃, 250 MHz) δ (ppm): 2.32 (s, 2H, NH2), 5.30 (s, 1H, CH), 7.14 (ddd, 2H, J= 7.4, 4.9 i 1.1 Hz, <u>H</u>₅-Pir), 7.39 (d, 2H, J= 7.7 Hz, <u>H</u>₃-Pir), 7.63 (td, 2H, J= 7.7 i 1.8 Hz, <u>H</u>₄-Pir), 8.56 (d, 2H, *J*= 4.7 Hz, <u>*H*</u>₆-Pir).

6.20. Síntesi d'N-(di-(2-piridil)metil)-N'-(4-fluoro-3-nitrofenil)urea, 45.

²⁷⁰ Niemers, E.; Hiltmann, *R. Synthesis* **1976**, 593.

Es dissol l'amina **43** (0.17 g, 0.9 mmol) en CH₂Cl₂ anhidre (2 mL) i s'hi afegeix (4fluoro-3-nitrofenil)isocianat, **44** (115 µL, 1.46 g/mL, 0.9 mmol). S'agita a temperatura ambient i sota atmosfera d'Ar durant tota la nit. S'evapora el dissolvent, obtenint-se un residu ataronjat que es renta amb pentà diverses vegades, s'asseca al buit i que correspon a **45** (0.23 g, 68% rdt.). ¹**H-RMN (CDCl₃, 250 MHz) δ (ppm):** 6.25 (d, 1H, *J* = 6.25 Hz, C<u>H</u>), 6.99 (t ap., 1H, J_{HF} = 9 Hz, J_{HH} = 10 Hz, $\underline{H_{Ar5}}$), 7.10 (ddd, 1H, *J* = 5 i 2 Hz, $\underline{H_{3}}$ -Pir), 7.35-7.39 (m, 1H, $\underline{H_{Ar6}}$), 7.47 (d, 1H, *J* = 4.75 Hz, $\underline{H_{3}}$ -Pir), 7.48-7.52 (m. 1H, $\underline{H_{Ar2}}$), 7.7 (ddd, 2H, *J* = 7.75 i *J* = 2Hz, $\underline{H_{4}}$ -Pir), 7.78-7.80 (m., 1H, CHN<u>H</u>), 8.33 (d, *J*= 4.75 Hz, 2H, $\underline{H_{6}}$ -Pir), 8.85 (s, 1H, N<u>H</u>Ar). ¹³C-RMN (CDCl₃, 62.5 MHz) δ (ppm): 59.5, 114.5 (d, J_{CF} = 3.12 Hz), 117.9 (d, J_{CF} = 21.4 Hz), 122.9, 123, 124.8 (d, J_{CF} = 7.5 Hz), 136.4 (d, J_{CF} = 3.7 Hz), 136.8 (d, J_{CF} = 8.8 Hz), 137.5, 148.8, 150.2 (d, J_{CF} = 259 Hz), 154.8, 158.9. IR(ATR) v (cm⁻¹): 3314, 1646, 1588, 1531, 1342, 1150, 748. EM d'alta resolució (ESI): Calculat: 390.0978 (M + Na⁺). Trobat: 390.0973 (M + Na⁺). Pf: 167-170°C.

6.21. Síntesi d'N-(di-(2-piridil)metil)-4-fluorofenilsulfonamida, 46.

En un tub Schlenk de 50 mL de capacitat proveït d'agitació magnètica es dissol di-(2-piridil)metanamina, **43** (0.752 g, 4.06 mmol) amb NEt₃ (2.3 mL, 16.2 mmol) en CH₂Cl₂ anhidre (23 mL) i s'hi afegeix clorur de 4-fluorofenilsulfonil, **11** (0.830 g, 4.26 mmol). S'agita a temperatura ambient i sota atmosfera d'argó durant tota la nit. S'evapora el dissolvent, i el sòlid obtingut es reparteix entre CH₂Cl₂ i H₂O. La fase orgànica s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda, obtenint-se un sòlid groguenc corresponent a **46** (1.180 g, 85 % rdt.). ¹**H-RMN (CDCl**₃, **360 MHz) δ (ppm):** 5.64 (d, 1H, *J* = 6.4 Hz, *CH*), 6.96 (t aparent, 2H, *J* = 9.6 Hz, *H_{Ar(D-E)}), 7.10-7.13 (m, 2H, <u>H_a</u>-Pir o <u>H₅-Pir), 7.30 (d, 2H, <i>J* = 8.8 Hz, <u>H₃-Pir), 7.35 (d, 1H, *J* = 6.4 Hz, N<u>H</u>), 7.54 (dt, 2H, *J* = 8.4 i 2.0 Hz, <u>H_a-Pir o <u>H₅-Pir</u>), 7.71-7.75 (m, 2H, H_{Ar(m-E)}), 8.44-8.45 (m, 2H, <u>H₆-Pir). ¹³C-RMN (CDCl₃, **100.6 MHz) δ (ppm):** 62.08, 115.94 (d, *J_{C-F}* = 22.7 Hz), 122.28, 122.89, 129.94 (d, *J_{C-F}* = 9.6 Hz), 136.15 (d, *J_{C-F}* = 3.43 Hz), 137.11, 148.94, 157.56, 164.82 (d, *J_{C-F}* = 254.32 Hz). ¹⁹F-RMN (CDCl₃, 232.2 MHz) δ (**ppm):** -106.40. **IR v (cm⁻¹) (ATR):** 1584, 1431, 1337, 1168, 1143, 1090, 1069, 932,</u></u></u></u>

835, 763, 753, 679. Per ¹H-RMN es va observar com el compost **46** descomponia amb el temps, i es formava la di-(2-piridil)metanona, **41**.

En un reactor tancat proveït d'agitació magnètica es posa **46** (0.150 g, 0.437 mmol), iodopentà (74.6 µL, 0.569 mmol), Cs₂CO₃ (0.190 g, 0.577 mmol) i 9 mL de CH₃CN anhidre. La mescla de reacció s'escalfa a 100°C, sota agitació, durant una nit. S'evapora el dissolvent i el cru de reacció es purifica per cromatografia en columna a través de gel de sílice, utilitzant AcOEt-hexà (4:1) com a eluent (R_f = 0.48) (0.128 g, 71 % rdt.). ¹H-RMN (CDCI₃, 250 MHz) δ (ppm): 0.69 (t, 3H, *J* = 6.97 Hz, *CH₃*), 0.91-1.06 (m, 6H, CH₃(*CH₂)₃*-), 3.45-3.51 (m, 2H, *CH₂*N), 6.47 (s, 1H, *CH*), 6.99-7.05 (m, 2H, *H_d*-Pir o *H_g*-Pir), 7.14-7.19 (m, 2H, *H₃*-Pir), 7.26-7.29 (m, 2H, *H_d*-Pir o *H_g*-Pir), 7.59-7.67 (m, 2H, *H_{Ar(m-E)}*), 7.73-7.78 (m, 2H, *H_{Ar(m-E)}*), 8.43-8,45 (m, 2H, *H_d*-Pir). ¹³C-RMN (CDCI₃, 100.6 MHz) δ (ppm): 13.87, 22.00, 28.79, 30.00, 47.18, 67.08, 115.61 (d, *J_{C-F}* = 22.5 Hz), 122.51, 123.87, 129.92 (d, *J_{C-F}* = 9.4 Hz), 136.50, 136.59 (d, *J_{C-F}* = 4.0 Hz), 149.17, 157.87, 164.62 (d, *J_{C-F}* = 252.5 Hz).¹⁹F-RMN (CDCI₃, 232.2 MHz) δ (ppm): -106.94. IR v (cm⁻¹) (ATR): 3066, 2955, 2929, 2870, 1588, 1492, 1466, 1337, 1226, 1152, 1088, 837, 820, 748. Per ¹H-RMN es va observar com el compost **47** descomponia amb el temps, i es formava la di-(2-piridil)metanona, **41**.

6.23. Síntesi de di-(2-piridil)metanol, 48.²⁷¹

En un baló de 50 mL de capacitat proveït d'agitació magnètica es dissol di-(2piridil)metanona, **41** (3.01 g, 16.3 mmol) en 30 mL de MeOH. La solució es refreda a 0 °C i es va addicionant NaBH₄ (0.63 g, 16.3 mmol) a poc a poc, la solució passa de

²⁷¹ Roelfes, G.; Vrajmasu, V.; Chen, K.; Ho, R. Y. N.; Rohde, J. U.; Zondervan, C.; la Crois, R. M.; Schudde, E. P.; Lutz, M.; Spek, A. L.; Hage, R.; Feringa, B. L.; Muenck, E.; Que, L., Jr. *Inorg. Chem.* **2003**, *42*, 2639.

color groc a color taronja. Es deixa agitant la mescla de reacció a temperatura ambient durant tota la nit. El dissolvent s'evapora a pressió reduïda. S'addicionen 12 mL d'aigua i la solució s'acidifica amb HCl 2M. La solució àcida s'agita durant 10 minuts a temperatura ambient. La solució es fa alcalina amb una solució aquosa diluïda de NH₃, i el producte s'extreu amb CH₂Cl₂. La fase orgànica s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda, obtenint-se un oli groc corresponent a **48** (2.993 g, 98.5 % rdt.). ¹**H-RMN (CDCl₃, 360 MHz) δ (ppm):** 5.83 (d, 1H, *J* = 4.3 Hz, <u>OH</u> o <u>CH</u>), 5.89 (d, 1H, *J* = 3.96 Hz, <u>OH</u> o <u>CH</u>), 7.15-7.19 (m, 2H, <u>H₆-Pir), 7.52 (d, 2H, *J* = 7.9 Hz, <u>H₄-Pir), 7.64 (dt, 2H, *J* = 7.7 i 1.7 Hz, <u>H₃-Pir), 8.54 (d, 2H, *J* = 4.7 Hz, <u>H₆-Pir)</u>.</u></u></u>

6.24. Síntesi de di-(2-piridil)metil propargil èter, 50.

En un tub Schlenk proveït d'agitació magnètica es dissol l'alcohol **48** (2.02 g, 11.92 mmol) en 21 mL de DMF anhidre. La solució es refreda a 0 °C i s'hi addiciona lentament NaH 60% (0.700 g, 17.5 mmol) sota atmosfera de N₂. La solució es deixa agitant durant 1h a 0 °C. Durant un interval de 10 minuts es va addicionant el bromur de propargil **49** (1.94 ml, 13.1 mmol) a 0 °C. La solució es deixa agitant sota atmosfera inert durant tota la nit. El *quenching* de la reacció es fa addicionant 20 mL de MeOH. S'evapora el dissolvent a pressió reduïda,i l'oli de color vermell-marronós resultant es purifica mitjançant cromatografia en columna de gel de sílice, amb hexà:AcOEt (4:1) com a eluent, obtenint-se un oli de color marronós corresponent a **50** (1.53 mg, 63 % rdt.).²⁷² ¹H-RMN (CDCI₃, **400 MHz**) **5** (ppm): 2.45 (t, 1H, J = 2.4 Hz, $\equiv CH$ -), 4.28 (d, 2H, J = 2.4 Hz, \underline{CH}_2), 5.91 (s, 1H, CHO), 7.18 (ddd, 2H, J = 7.4, 4.8 i 1.2 Hz, \underline{H}_5 -Pir), 7.59-7.61 (m, 2H, \underline{H}_3 -Pir), 7.70 (td, 2H J = 7.7, 1.8 Hz, \underline{H}_4 Pir), 8.56-8.57 (m, 2H, \underline{H}_6 -Pir). ¹³C-RMN (CDCI₃, **100.6 MHz**) **5** (ppm): 56.5, 75.07, 79.1, 83.7, 121.9, 122.7, 136.8, 149.2, 159.3. IR v (cm⁻¹) (ATR): 3266 (C≡C-H), 3048, 2859, 1586, 1571, 1468, 1438, 1075, 993, 773, 756.

²⁷² Guanghua, Lv.; Wenpeng, M.; Rizhe, J.; Lianxun, G. Synlett **2008**, *9*, 1418.

6.25. Síntesi de la bipiridina polioxietilenada, 8a, via reacció click.

En un baló de 50 mL de capacitat proveït d'agitació magnètica es dissol l'azida polioxietilenada, 31a (1.9 g, 4.64 mmol) i 50 (1.002 g, 4.47 mmol) en una mescla de tert-BuOH (17.5 mL) i aigua (3.2 mL), i la dissolució es manté sota atmosfera d'argó i protegida de la llum. S'hi addiciona una solució aquosa (3.9 mL d'aigua) de CuSO₄·5H₂O (67 mg, 0.268 mmol, 6%) i després una solució aquosa (5 mL d'aigua) d'ascorbat sòdic (89 mg, 0.449 mmol, 10%). La mescla s'agita en absència de llum i a temperatura ambient durant una nit. El tert-BuOH s'evapora i la solució aquosa resultant s'extreu amb CH₂Cl₂. La fase orgànica s'asseca amb Na₂SO₄ anhidre i el dissolvent s'evapora a pressió reduïda, obtenint-se un sòlid de color marró, que es purifica per cromatografia en columna a través de gel de sílice. Utilitzant com a eluent un gradient des de 95:5 AcOEt:MeOH fins a 100% MeOH, s'obté finalment un oli groc corresponent a 8a. Es fa un espectre IR d'aquest oli per comprovar si queda excés d'azida **31a**, però el producte **8a** està pur (2.1 g, 75% rdt.). ¹H-RMN (CDCI₃, 400 MHz) δ (ppm): 3.35-3.36 (m, 3H, <u>CH₃</u>), 3.52-3.64 (m, 38H, corresponen a la <u>resta de CH₂</u> de la cadena de PEG), 3.85 (t, 2H, J = 5.1 Hz, triazole-CH₂CH₂), 4.51 (t, 2H, J = 5.1 Hz, triazole-<u>CH</u>₂CH₂), 4.75 (s, 2H, O<u>CH</u>₂-triazole), 5.74 (s, 1H, <u>CH</u>), 7.16 (ddd, 2H, J = 7.3, 4.8 i 1.1 Hz, <u>H</u>₅-Pir), 7.59 (d, 2H, J = 7.7 Hz, <u>H</u>₃-Pir), 7.68 (td, 2H, J = 7.7, 1.8 Hz, <u>H</u>₄-Pir), 7.76 (s, 1H, *H*-triazole), 8.54-8.55 (m, 2H, *H*₆-Pir). ¹³C-RMN (CDCI₃, 100.6 MHz) δ (ppm): 50.39, 59.16, 63.02, 65.5, 69.6, 10.61-10.65 (senyal ampla), 72.07, 85.1, 121.8, 122.7, 124.2, 136.9, 144.7, 149.5, 160.09. IR v (cm⁻¹) (ATR): 2868, 1588, 1468, 1435, 1349, 1291, 1247, 1101, 947, 949, 755, 631. MALDI-TOF (m/z): distribució per [M + Na^{+}_{1} des de 480.2 (3 x CH₂CH₂O unitats) fins a 876.6 (12 x CH₂CH₂O unitats) amb pics separats per 44 Da [unitat OCH₂CH₂]. El pic més intens és 612 (6 x CH₂CH₂O unitats). També s'observa la distribució de $[M + K]^{\dagger}$, des de 496 (3 x CH₂CH₂O unitats) fins a 893 (12 x CH₂CH₂O unitats) amb el pic més intens a 672 (7 x CH₂CH₂O unitats).

6.26. Síntesi de la bipiridina polioxietilenada, 8b, via reacció click.

31b, n= 44

En un baló de 10 mL de capacitat proveït d'agitació magnètica es dissol l'azida polioxietilenada, **31b** (1.20 g, 0.59 mmol) i **43** (88 mg, 0.392 mmol) en una mescla de tert-BuOH (4 mL) i aigua (730 µL), i la dissolució es manté sota atmosfera d'argó i protegida de la llum. S'hi addiciona una solució aguosa (500 µL d'aigua) de CuSO₄.5H₂O (8.8 mg, 0.035 mmol, 6 %) i després una solució aquosa (620 µL d'aigua) d'ascorbat sòdic (27 mg, 0.14 mmol, 23 %). La mescla de reacció s'agita en absència de llum i a temperatura ambient durant una nit. El tert-BuOH s'evapora i la solució aquosa resultant s'extreu amb CH₂Cl₂. La fase orgànica s'asseca amb Na₂SO₄ anhidre i el dissolvent s'evapora a pressió reduïda, obtenint-se un sòlid de color marró, que es purifica per cromatografia en columna a través de gel de sílice. Utilitzant com a eluent un gradient des de AcOEt:MeOH (95:5) fins a MeOH, s'obté un sòlid blanc. Es fa un espectre IR d'aquest sòlid i encara hi queda excés d'azida 31b, observant-se la banda a 2100 cm⁻¹. Per eliminar l'excés d'azida **31b** es segueix la metodologia descrita a l'apartat 6.14. D'aquesta manera s'obté 8b pur com un sòlid groc pàl·lid (0.594 g, 67% rdt.). ¹H-RMN (CDCI₃, 360 MHz) δ (ppm): 3.36-3.38 (m, 9H, CH₃ i CH₂) 3.42 (t, 2H, J= 5.1 Hz, <u>CH₂</u>), 3.51-3.67 (m, corresponent a la resta de CH₂ de la cadena de PEG), 3.81-3.86 (m, 4H, triazole-CH₂CH₂ i CH₂), 4.51 (t, 2H, J = 5.0 Hz, triazole-CH₂CH₂), 4.74 (s, 2H, O<u>CH</u>2-triazole), 5.73 (s, 1H, <u>CH</u>), 7.13-7.17 (m, 2H, <u>H</u>5-Pir), 7.58 (d, 2H, J = 7.88 Hz, <u>H</u>₃-Pir), 7.67 (td, 2H, J = 7.7 i 1.80 Hz, <u>H</u>₄-Pir), 7.77 (s, 1H, <u>H</u>-triazole), 8.53-8.54 (m, 2H, <u>H</u>₆-Pir). IR v (cm⁻¹) (ATR): 2882, 1588, 1466, 1340, 1279, 1240, 1101, 957, 841. MALDI-TOF (m/z): distribució per $[M + Na]^+$ des de 1802 (33 x CH₂CH₂O unitats) fins a 2814 (56 x CH₂CH₂O unitats) amb pics separats per 44 Da [unitat OCH₂CH₂]. El pic més intens és 2198 (42 x CH₂CH₂O unitats). També s'observa la distribució de [M + K]⁺, des de 1772 (32 x CH₂CH₂O unitats) fins a 2742 (54 x CH₂CH₂O unitats) amb el pic més intens a 2170 (41 x CH₂CH₂O unitats).

6.27. Preparació de nanopartícules de pal·ladi(0) estabilitzades per 8b pel mètode de l'aproximació organometàl·lica (material M36).

A una ampolla de Fischer-Porter, proveïda d'agitació magnètica, s'afegeix **8b** (0.20 g, 0.09 mmol) i Pd(dba)₂ (53.7 mg, 0.09 mmol) i es fan tres cicles de buit /argó. S'hi addiciona THF anhidre i desgasat (55 mL). El sistema es purga tres vegades amb H₂ (g) i es carrega a 3 atm de pressió d'hidrogen. La reacció es deixa agitant durant una nit a temperatura ambient. La mescla de la reacció es filtra a través d'un filtre Milli-Pore per eliminar el Pd *bulk* precipitat. El dissolvent del filtrat s'evapora a pressió reduïda, obtenint-se un sòlid de color negre. Aquest es renta amb Et₂O per eliminar el producte resultant de la hidrogenació de la dibenzilidenacetona, i s'asseca, obtenint-se un sòlid de color negre a **M36** (0.17 g). **AE (ICP):** 3.9% Pd. **TEM:** \emptyset = 3.0 ± 0.5 nm. **Rdt.:** 69%.

En l'espectre d'¹H-RMN s'observa com les nanopartícules estabilitzades per **8b** descomponen amb el temps, per donar di-(2-piridil)metanona, **41**.

6.28. Síntesi del complex de pal·ladi(II) 51a, que conté un lligand bipiridínic polioxietilenat).

En un baló de 50 mL de capacitat proveït d'agitació magnètica es posa PdCl₂ (0.20 g, 1.13 mmol) i 6.1 mL de HCl al 37%, i es va addicionant una solució aquosa de NaOH al 15%, gota a gota, fins que s'observa l'inici de la precipitació d'un sòlid blanc. En un altre baló de 25 mL es dissol 8a (0.717 g, 1.13 mmol) en 13 mL de MeOH. La solució metanòlica s'addiciona a la solució de Na₂PdCl₄ preparada in situ i es deixa la mescla sota agitació a temperatura ambient durant 3h. S'evapora el metanol a pressió reduïda, i la solució resultant s'extreu amb CH₂Cl₂. La fase orgànica s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. El producte resultant es renta amb Et₂O, obtenint-se un oli de color groc corresponent a **51a** (0.769 g, 84%) rdt.). ¹H-RMN (DMSO-d₆, 400 MHz, 110 °C) δ (ppm): 3.27 (s, 3H, <u>CH₃</u>), 3.46-3.54 (m, corresponent a la resta de CH2 de la cadena de PEG), 3.88 (t, 2H, J= 5.3 Hz, triazole-CH₂CH₂), 4.53 (s ample, 2H, triazole-<u>CH₂CH₂</u>), 5.16 (s ample, 2H, triazole-<u>CH₂O), 6.80</u> (s ample, 1H, <u>CH</u>), 7.54 (d, 2H, J= 6.2 Hz, <u>H</u>5-Pir), 7.83 (d, 2H, J= 7.1 Hz, <u>H</u>3-Pir), 8.10 (t, 2H, J= 7.4 Hz, <u>H</u>₄-Pir), 8.25 (s, 1H, <u>H</u>-triazole), 8.94 (s ample, 2H, <u>H</u>₆-Pir). ¹³C- RMN (DMSO-d₆, 100.6 MHz, 25 °C) δ (ppm): 50.7, 59.3, 63.7, 65.4, 69.7, 69.9, 70.8, 70.9 (ample), 72.5, 82.3, 83.2, 122,7, 126.2, 126.3, 127.09, 127.9, 141.9, 142.3, 143.9, 144.4, 153.4, 154.4, 155.4, 156.4. IR v (cm⁻¹) (ATR): 2870, 1606, 1467, 1350, 1295, 1247, 1090, 947, 950, 772. MS-ESI trobat: distribució de masses per [M-CI]⁺ separades per 44 Da (unitat OCH₂CH₂) amb pic de màxima intensitat a 730.3 que correspon a $C_{29}H_{43}CIN_5O_8Pd$ (n = 7). **MS-ESI calculat:** 730.2 [M-CI]⁺ per C₂₉H₄₃ClN₅O₈Pd (n = 7). **AE teòric:** 16.5 % Pd. **AE experimental:** 14.7 % Pd.

6.29. Síntesi del complex de pal·ladi(II) 51b, que conté un lligand bipiridínic polioxietilenat.

En un baló de 5 mL de capacitat proveït d'agitació magnètica es posa PdCl₂ (11.7 mg, 0.07 mmol) i 0.4 mL de HCl al 37 %, i s'hi addiciona una solució aquosa de NaOH al 15%, gota a gota, fins que s'observa l'inici de la precipitació d'un sòlid blanc. En un altre baló de 2 mL de capacitat es dissol **8b** (0.150 g, 0.07 mmol) en 0.8 mL de

MeOH. La solució metanòlica s'addiciona a la solució que conté Na₂PdCl₄ i es deixa la mescla sota agitació a temperatura ambient durant 2h. S'evapora el metanol, i la solució resultant s'extreu amb CH₂Cl₂. La fase orgànica s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. El producte es renta amb Et₂O, obtenint-se un sòlid de color groc que correspon a **51b** (103.1 mg, 60.3% rdt.). ¹H-RMN (DMSO, **400 MHz, 90 °C) 5** (ppm): 3.23-3.27 (m, 5H, <u>CH₃ i CH₂)</u>, 3.38-3.72 (m, corresponent a la <u>resta de CH₂</u> de la cadena de PEG), 3.87 (s ample, 2H, triazole-CH₂CH₂), 4.55 (s ample, 2H, triazole-<u>CH₂CH₂), 5.21 (s ample, 2H, triazole-CH₂O), 6.84 (s ample, 1H, <u>CH</u>), 7.55 (s ample, 2H, <u>H₈-Pir), 7.82 (d, 2H, J = 8 Hz, <u>H₃-Pir), 8.11 (t, 2H, J = 8 Hz, <u>H₄-Pir)</u>, 8.26 (s, 1H, <u>H</u>-triazole), 8.93 (s ample, 2H, <u>H₆-Pir). IR v (cm⁻¹) (ATR): 2882, 1468, 1343, 1281, 1242, 1101, 1062, 962, 843. AE teòric: 4.4 % Pd. AE experimental: 3.7 % Pd.</u></u></u></u>

6.30. Síntesi del clorur de 5-hexinoïl, 54.273

En un tub Schlenck de 10 mL proveït d'agitació magnètica s'escalfa a reflux una mescla d'àcid 5-hexinoïc **53** (1.4 mL, 1.06 g/mL, 11.92 mmol) i clorur de tionil (1.1 mL, 1.63 g/mL, 15.16 mmol) sota atmosfera de nitrogen durant una hora. El final de la reacció es produeix quan s'observa que la mescla deixa de desprendre més gas. La solució vermella es transfereix amb cànula a un baló de 5 mL i es destil·la sota atmosfera de nitrogen, obtenint-se un oli incolor corresponent a **54**. **P.eb.:** 104-106 °C. **P.eb. (lit):**²⁷² 104-110 °C.

No es fa cap control del producte obtingut. Es continua amb la següent reacció partint del producte destil·lat obtingut en aquesta i considerant el rendiment com si fos quantitatiu.

6.31. Síntesi de 5-pentinilisocianat, 55.272

²⁷³ Luxenhofer, R.; Jordan, R. *Macromolecules* **2006**, *39*, 3509.

En un tub Schlenk de 50 mL es dissol el clorur de 5-hexinoïl de l'apartat anterior 6.30 en acetonitril anhidre (11.8 mL). Sota atmosfera de nitrogen, s'hi addiciona NaN₃ (889 mg, 13.5 mmol) i immediatament s'hi acobla un refrigerant de reflux. La reacció desprèn nitrogen i comença a bullir poc després. La reacció s'escalfa a 70°C durant 45 minuts i s'atura quan s'observa que ja no es desprèn N₂. La solució es refreda a temperatura ambient. El producte es destil·la a pressió reduïda, obtenint-se un oli incolor corresponent a **55** (378.6 mg, 27% rdt. global dels dos passos consecutius). ¹H-**RMN (CDCI₃, 250 MHz) δ (ppm):** 1.81 (quint., 2H, *J* = 6.6 Hz, CH₂CH₂CH₂NCO), 2.00 (d, 1H, *J* = 2.4 Hz, \equiv CH), 2.33 (td, 2H, *J* = 6.7 i 2.5 Hz, <u>CH₂CH₂CH₂NCO), 3.47 (t, 2H, *J* = 4.5 Hz, CH₂CH₂CH₂NCO). **IR v (cm⁻¹) (ATR):** 3297 (C≡C-H), 2960, 2262 (NCO), 1434, 1350, 1005, 860. **P.eb.:** 53 °C (15 mmHg). **P.eb. (lit):**²⁷⁴ 85°C (70 mmHg).</u>

6.32. Síntesi d'N-(di-(2-piridil)metil)-N'-(5-pentinil)urea, 52.

En un tub Schlenk de 25 mL de capacitat i proveït d'agitació magnètica es dissol di-(2-piridil)metanamina, **43** (183 mg, 1.68 mmol) en CH₂Cl₂ anhidre (3.7 mL) i s'hi afegeix l'isocianat **55** (201 mg, 1.85 mmol). S'agita la mescla a temperatura ambient i sota atmosfera d'argó durant 15 hores. S'evapora el dissolvent i el residu oliós es renta amb pentà, obtenint-se un sòlid blanc corresponent a **52** (438 mg, 98 % rdt.). ¹**H-RMN** (CDCI₃, **250 MHz**) δ (ppm): 1.66 (quint., 2H, *J*= 6.9 Hz, NHCH₂CH₂CH₂), 1.93 (t, 1H, *J*= 2.7 Hz, \equiv -<u>CH</u>), 2.16 (dt, 2H, *J*= 7.2, 2.6 Hz, NHCH₂CH₂CH₂), 3.27 (q, 2H, *J*= 6.8 Hz, NH<u>CH₂C</u>₂CH₂), 5.13 (t, 1H, *J*= 5.6 Hz, <u>NH</u>CH₂CH₂CH₂), 6.06 (d, 1H, *J*= 6.3 Hz, <u>CH</u>NHCO), 6.95 (d, 1H, *J*= 6.54 Hz, CH<u>NH</u>CO), 7.11-7,16 (m, 2H, <u>H_δ</u>-Pir), 7.39 (d, 2H, *J*= 7.7 Hz, <u>H₃-Pir</u>), 7.61 (dt, 2H, *J*=7.7, 1.8 Hz, <u>H₄-</u>Pir), 8.48-8.50 (m, 2H, <u>H₆-Pir). ¹³C-RMN (CDCI₃, 62.5 MHz) δ (ppm): 16.00, 28.9, 39.5, 60.4, 68.97, 83.8, 122.4, 122.5, 137.00, 149.08, 157.7, 159.9. IR v (cm⁻¹) (ATR): 3327 (NH), 3283 (C≡C-H), 2112 (C≡C), 1626(C=O), 1588, 1549, 1433, 1230, 994, 752. HR-MS (ESI): calculada per [M + Na⁺]: 317.1373; trobada: 317.1375. P.fus.: 104-105°C</u>

²⁷⁴ Earl, R. A.; Vollhardt, K. P. *J.Org.Chem.* **1984**, *4*9 , 4786.

En un baló de 25 mL de capacitat proveït d'agitació magnètica es dissol l'azida polioxietilenada, 31b (1.0 g, 0.49 mmol) i 52 (124 mg, 0.47 mmol) en una mescla de tert-BuOH (3.2 mL) i aigua (586 µL), i la dissolució es manté sota atmosfera d'argó i protegida de la llum. S'hi addiciona una solució aquosa (401 µL d'aigua) de CuSO₄·5H₂O (14.14 mg, 0.057 mmol, 12%) i després una solució aguosa (425 µL d'aigua) d'ascorbat sòdic (37 mg, 0.187 mmol, 40%). La mescla de reacció s'agita en absència de llum i a temperatura ambient durant una nit. El tert-BuOH s'evapora i la solució aquosa resultant s'extreu amb CH₂Cl₂. La fase orgànica s'asseca amb Na₂SO₄ anhidre i el dissolvent s'evapora a pressió reduïda, obtenint-se un sòlid de color blanc. Per eliminar l'excés d'azida polioxietilenada, 31b, es segueix la metodologia descrita a l'apartat 6.14. Finalment s'obté el producte 9 pur com un sòlid blanc (1.05 g, 90% rdt.). ¹H-RMN (CDCI₃, 400 MHz) δ (ppm): 1.81-1.85 (m, 2H, NHCH₂CH₂CH₂), 2.70 (t, 2H, J = 2.40 Hz, NHCH₂CH₂CH₂), 3.22 (q aparent, 2H, J = 6.2 Hz, NHCH₂CH₂CH₂CH₂), 3.34 (banda ampla, 5H, CH_3 i CH_2), 3.43-3.69 (m, correspondent a la resta de CH_2 de la cadena de PEG), 3.78-3.81(m, 4H, CH₂CH₂-PEG i un CH₂ de la cadena de PEG), 4.45 (t, 2H, J = 4.9 Hz, triazole-CH₂CH₂-PEG), 5.17 (s ampla, 1H, <u>NH</u>CH₂CH₂CH₂), 6.04 (d, 1H, J = 6.20 Hz, CHNHCO), 6.78 (d, 1H, J = 6.4 Hz, CHNHCO), 7.10-7.13 (m, 2H, H₅-Pir), 7.38 (d, 2H, J = 7.76 Hz, <u>H</u>₃-Pir), 7.48 (s, 1H, <u>H</u>- triazole), 7.59 (t, 2H, J = 7.7 Hz, <u>*H*</u>₄-Pir), 8.48 (d, 2H, J = 4.0 Hz, <u>*H*</u>₆-Pir). ¹³C-RMN (CDCI₃, 100.6 MHz) δ (ppm): 22.9, 29.9, 39.7, 50.1, 10.7, 59.08, 60.7, 69.61, 70.08 (banda ampla), 70.2, 72.00, 122.3, 122.4, 136.9, 147.2, 149.02, 157.6, 160.00. IR v (cm⁻¹) (ATR): 3362 (NH), 2882, 1655 (C=O), 1466,1341, 1279, 1240, 1100, 960, 842. MALDI-TOF (m/z): distribució per [M + K^{\dagger}] des de 1800 (35 x CH₂CH₂O unitats) fins a 2636 (54 x CH₂CH₂O unitats) amb pics separats per 44 Da (unitat OCH₂CH₂). El pic més intens és 2196 (44 x C2₃CH₂O unitats). També s'observa la distribució per [M + Na⁺], des de 1916 (38 x CH₂CH₂O

unitats) fins a 2620 (54 x CH_2CH_2O unitats) amb el pic més intens a 2180 (44 x CH_2CH_2O unitats).

6.34. Preparació de nanopartícules de pal·ladi(0) estabilitzades per 9 pel mètode de l'aproximació organometàl·lica (material M37).

En una ampolla Fischer-Porter proveïda d'agitació magnètica es posa **9** (100 mg, 0.043 mmol) i Pd(dba)₂ (26.4 mg, 0.043 mmol) i es fan tres cicles de buit/argó. S'hi addiciona THF anhidre i desgasat (27 mL). El sistema es purga tres vegades amb H₂(g) i es carrega a 3 atmosferes de pressió d'H₂. La mescla de reacció es deixa agitant durant una nit a temperatura ambient. En aquest temps, la solució passa de color vermell a color negre. La mescla de la reacció es filtra a través d'un filtre Milli-Pore. El dissolvent del filtrat s'evapora a pressió reduïda, obtenint-se un sòlid de color negre. Es renta amb Et₂O per eliminar el producte d'hidrogenació de la dibenzilidenacetona, i s'asseca, obtenint-se un sòlid de color negre corresponent al material **M37** (61 mg). **AE experimental:** 4.4% Pd. **TEM:** \emptyset = 2.0 ± 0.3 nm. **Rdt.:** 74%. ¹**H-RMN (CDCI₃, 360 MHz) δ (ppm):** Només s'observen de manera clara els senyals de la cadena polioxietilenada (3.38 (banda ampla, 5H, <u>CH₂ i CH₂)</u>, 3.43-3.84 (m, corresponent a *la <u>resta de CH₂</u> de la cadena de PEG). Els altres senyals s'insinuen però no es poden integrar degut a la seva baixa intensitat. IR v (cm⁻¹) (ATR): 3362 (NH), 2883, 1658 (C=O), 1468,1342, 1281, 1242, 1102, 962, 843.*

6.35. Reacció de Suzuki.

6.35.1. Assaig de 1_{6H} -Pd_{NP} com a catalitzador en la reacció de Suzuki (apartat 4.2.3.1.).

- Preparació de 4-metoxibifenil, 59, amb 1_{6H}-Pd_{NP} (M13) com a catalitzador.²⁷⁵

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix iodobenzè **62** (161 mg, 0.3 mmol), àcid 4-metoxifenilborònic **63** (70 mg, 0.45 mmol, 1.5 equiv), K₂CO₃ (105 mg, 0.75 mmol, 2.5 equiv) i **M13** (8.2 mg, $7.5 \cdot 10^{-4}$ mmol Pd, 0.25 mol% Pd). A continuació s'hi afegeix aigua purificada (Milli-Q, 4.5 mL). El tub es tanca i s'escalfa a 100°C durant 4 hores. Després el tub es refreda a temperatura ambient, i el producte s'extreu amb Et₂O, reservant la fase aquosa que conté el catalitzador per als següents cicles. La fase orgànica resultant es separa i es renta amb aigua addicional, s'asseca amb Na₂SO₄ anhidre. S'evapora el dissolvent a pressió reduïda i s'obté un sòlid blanc que correspon a **59**^{276, 277} (53 mg, 98% rdt). ¹H NMR (**360 MHz, CDCI₃**) δ (**ppm):** 3.86 (s, 3H, <u>Me</u>), 6.99 (d, 2H, *J*= 8.6 Hz, <u>H</u>_{Ar}), 7.30-7.34 (m, 1H, <u>H</u>_{Ar}), 7.41-7.45 (m, 2H, <u>H</u>_{Ar}), 7.53-7.58 (m, 4H, <u>H</u>_{Ar}). **Pf:** 88-90 °C.

La fase aquosa es reutilitza en dos cicles addicionals, afegint cada vegada iodobenzè **62** (61 mg, 0.3 mmol), àcid 4-metoxifenilborònic **63** (70 mg, 0.45 mmol) i, K_2CO_3 (61 mg, 0.3 mmol). Després de cada cicle, la mescla de reacció es tracta de manera anàloga a l'explicada pel primer cicle.

²⁷⁵ Mejias, N.; Serra-Muns, A.; Pleixats, R.; Shafir, A.; Tristany, M. Dalton Trans. **2009**, 7748.

²⁷⁶ Klapars, A.; Buchwald, S. L. *J. Am. Chem. Soc.* **2002**, *124*, 14844.

²⁷⁷ Wei, F.; Jiao, J.; Feng, J.; Lv, J.; Zhang, X-I-N.; Shi, X-Y.; Chen, Z-G. *J. Org. Chem.* **2009**, *74*, 6238.

6.35.2. Assaig de 3b-Pd_{NP} com a catalitzador en la reacció de Suzuki²⁷⁸ (apartat 4.2.3.2.).

- Preparació de 4-fenilacetofenona, 64, a partir de 4-bromoacetofenona i àcid fenilborònic, amb 3b-Pd_{NP} com a catalitzador (esquema 42, apartat 4.2.3.2).

En un tub de 10 mL, proveït d'agitació magnètica, es posa 4-bromoacetofenona (58.5 mg, 0.3 mmol), àcid fenilborònic (55.9 mg, 0.45 mmol), K₂CO₃ (103.7 mg, 0.75 mmol) i **3b-Pd_{NP}** (lot de 1.7 % Pd: 4.7 mg, 7.5·10⁻⁴ mmol, 0.25 mol% Pd). S'hi afegeix una mescla d'acetona:aigua (3:2, 4.5 mL) com a dissolvent, el tub es tanca i s'escalfa a 60°C. La reacció es segueix per CG fins a la desaparició del senyal de **61**. El tub es refreda a temperatura ambient. L'acetona s'evapora a pressió reduïda i la fase aquosa resultant s'extreu amb Et₂O, guardant la fase aquosa, la qual conté el catalitzador, per als següents cicles catalítics. La fracció etèria es renta amb aigua, s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. S'obté 4- fenilacetofenona, **64**,²⁷⁷ pura com a un sòlid blanc (56 mg, 99 % rdt. pel primer cicle). ¹H NMR (**360 MHz**, **CDCI**₃) δ (**ppm**): 2.64 (s, 3H, <u>Me</u>), 7.40 (t, 1H, *J*= 7.15 Hz, <u>H_A</u>, 7.49 (t, 2H, *J*= 7.15 Hz, <u>H_A</u>, 7.64 (d, 2H, *J*= 8.34 Hz, <u>H_A</u>, 7.69 (d, 2H, *J*= 8.34 Hz, <u>H_A</u>, 8.04 (d, 2H, *J*= 8.34 Hz, <u>H_A</u>, 1.1677 (C=O), 1261, 959, 834, 763. **MS (m/z):** 196 (M⁺), 181 (M⁺-Me), 152 (M⁺- COMe). **Pf:** 117-119°C. **Pf(lit):**²⁷⁷ 114-115 °C.

La fase aquosa es reutilitza en quatre cicles més, addicionant cada vegada 4bromoacetofenona (58.5 mg, 0.3 mmol), àcid fenilborònic (55.9 mg, 0.45 mmol), acetona (2.7 mL) i K₂CO₃ (41.8 mg, 0.3 mmol) i escalfant novament a 60 °C. Després de cada cicle, la reacció es tracta de manera anàloga al primer.

Procediment General per a l'acoblament de *Suzuki* amb $3b-Pd_{NP}$ com a catalitzador (taula 18, apartat 4.2.3.2.):

En un tub de 10 mL, proveït d'agitació magnètica, es posa l'halur d'aril (1 equiv), l'àcid borònic (1.5 equiv), K_2CO_3 (2.5 equiv) (excepte en els casos indicats) i **3b-Pd_{NP}** (0.25 mol% Pd). S'utilitza una mescla d'acetona:aigua (3:2, 4.5 mL) com a dissolvent

²⁷⁸ Mejias, N.; Serra-Muns, A.; Pleixats, R.; Shafir, A.; Medio-Simon, M.; Asensio, G. *Eur. J. Org. Chem.* **2010**, 5090.

(excepte en els casos indicats), el tub es tanca i s'escalfa a 60°C (excepte en els casos indicats). La reacció es segueix per CG fins al consum total de l'halur d'aril o fins que la reacció no evoluciona més. El tub es refreda a temperatura ambient. L'acetona s'evapora a pressió reduïda i la fase aquosa resultant s'extreu amb CH₂Cl₂. La fracció orgànica es renta amb aigua, s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. El residu obtingut es purifica per cromatografia en columna utilitzant gel de sílice, i eluint amb hexà o mescles d'hexà:acetat d'etil.

- Preparació de 4-metoxi-1,1'-bifenil, 59, a partir de iodobenzè i l'àcid (4metoxifenil)borònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 1).

Seguint el procediment general, el iodobenzè, **62** (33 µL, 0.3 mmol) es fa reaccionar amb l'àcid (4-metoxifenil)borònic, **63** (68.4 mg, 0.45 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà (R_f = 0.08). S'obté un sòlid blanc corresponent a **59**^{276, 277} (52.9 mg, 96 % rdt).

- Preparació de 4-metoxi-1,1'-bifenil, 59, a partir de 4-bromoanisole i l'àcid fenilborònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 19).

El procediment general es modifica duent a terme la reacció en H₂O (4.5 mL) i a 100 °C. En aquestes condicions, 4-bromoanisole, **93** (38 μ L, 0.3 mmol) reacciona amb l'àcid fenilborònic, **58** (55.9 mg, 0.45 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà (R_f= 0.08). S'obté un sòlid blanc corresponent a **59**^{276, 277} (48 mg, 81 % rdt).

Preparació de 4-(trifluorometil)bifenil, 67, a partir de 4-bromoanisole i l'àcid (4-trifluorometil)benzenborònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 2).

223

Seguint el procediment general, el iodobenzè, **62** (33 µL, 0.3 mmol) reacciona amb l'àcid (4-trifluorometil)benzenborònic, **66** (83 mg, 0.45 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà (R_f = 0.33). S'obté un sòlid blanc corresponent a **67**²⁷⁷ (56 mg, 84 % rdt). ¹H NMR (400 MHz, CDCI₃) δ (ppm): 7.39-7.43 (m, 1H, \underline{H}_{Ar}), 7.46-7.50 (m, 2H, \underline{H}_{Ar}), 7.59-7.63 (m, 2H, \underline{H}_{Ar}), 7.70 (s ap., 4H, \underline{H}_{Ar}). Pf: 70-71°C. Pf(lit):²⁷⁷ 67-68 °C.

Preparació de 3-feniltiofè, 69, a partir de 3-iodotiofè i l'àcid fenilborònic, amb
3b-Pd_{NP} com a catalitzador (taula 18, entrada 3).

Seguint el procediment general, el 3-iodotiofè, **68** (31 µL, 1.05 g/mL, 0.3 mmol) reacciona amb l'àcid fenilborònic, **58** (55.9 mg, 0.45 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà (R_f = 0.25). S'obté un sòlid blanc corresponent a **69**²⁷⁹ (45.3 mg, 96 % rdt). ¹H NMR (400 MHz, CDCI₃) δ (ppm): 7.31-7.35 (m, 1H, Tiof<u>H</u>), 7.63-7.65 (m, 2H, Tiof<u>H</u>), 7.82-7.84 (m, 5H, <u>H</u>_{Ar}). **Pf:** 89-92°C. **Pf(lit):**²⁷⁹ 89-90 °C.

- Preparació de 3-(4-metoxifenil)tiofè, 70, a partir de 3-iodotiofè i l'àcid (4-metoxifenil)borònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 4).

Seguint el procediment general, el 3-iodotiofè, **68** (31 µL, 0.3 mmol) reacciona amb l'àcid (4-metoxifenil)borònic, **63** (68.4 mg, 0.45 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà: acetat d'etil (18:1) (R_f = 0.52). S'obté un sòlid blanc corresponent a **70**²⁸⁰ (38.5 mg, 70 % rdt). ¹H NMR (360 MHz, CDCI₃) δ (**ppm):** 3.84 (s, 3H, *C*<u>H₃</u>), 6.93 (d, 2H, *J* = 8.7 Hz, <u>H_{Ar}</u>), 7.33-7.37 (m, 3H, *TiofH*), 7.53 (d, 2H, *J* = 8.7 Hz, <u>H_{Ar}</u>). Pf: 127-128°C. Pf(lit):²⁸⁰ 127 °C. MS (m/z): 190 (M⁺), 175 (M⁺-Me).

²⁷⁹ Desmarets, C.; Omar-Amrani, R.; Walcarius, A.; Lambert, J.; Chamagne, B.; Fort, Y.; Schneider, R. *Tetrahedron*, **2008**, *64*, 372.

²⁸⁰ Tsai, F-Y.; Lin, B-N.; Chen, M-J.; Mou, C-Y.; Liu, S-T. *Tetrahedron*, **2007**, 63, 4304.

- Preparació de 3-(*p*-(trifluorometil)fenil)tiofè, 71, a partir de 3-iodotiofè i l'àcid (*p*-(trifluorometil)fenil)borònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 5).

Seguint el procediment general, el 3-iodotiofè, **68** (31 µL, 0.3 mmol) reacciona amb l'àcid (*p*-(trifluorometil)fenil)borònic, **66** (57.6 mg, 0.45 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà (R_f = 0.30). S'obté un sòlid blanc corresponent a **71**²⁸¹ (62 mg, 92 % rdt). ¹H NMR (400 MHz, CDCI₃) δ (ppm): 7.40-7.44 (m, 2H, Tiof<u>H</u>), 7.54-7.55 (m, 1H, Tiof<u>H</u>), 7.64-7.71 (m, 4H, <u>H</u>_{Ar}). Pf: 114-116 °C. Pf(lit):²⁸¹ 112-112.5 °C.

- Preparació de 3,3'-ditiofè, 73, a partir de 3-iodotiofè i l'àcid (tiofen-3-il)borònic, amb $3b-Pd_{NP}$ com a catalitzador (taula 18, entrada 6)

Seguint el procediment general, el 3-iodotiofè, **68** (31 µL, 0.3 mmol) reacciona amb l'àcid (tiofen-3-il)borònic, **72** (57.6 mg, 0.45 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà (R_f = 0.23). S'obté un sòlid blanc corresponent a **73**²⁸² (41 mg, 93 % rdt). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.33-7.35 (m, 4H Tiof<u>H</u>), 7.38-7.39 (m, 2H, Tiof<u>H</u>). **Pf:** 119-120 °C. **Pf(lit):**²⁸² 119-121 °C.

- Preparació de 5-acetil-2,3'-ditiofè, 75, a partir de 3-iodotiofè i l'àcid (5acetiltiofen-2-il)borònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 7).

Seguint el procediment general, el 3-iodotiofè, **68** (31 μ L, 0.3 mmol) reacciona amb l'àcid (5-acetiltiofen-2-il)borònic, **74** (57.6 mg, 0.45 mmol) durant 48 hores. Cromatografia en columna: gel de sílice, hexà:acetat d'etil (18:1) (R_f= 0.20). S'obté un

²⁸¹ Guerrero, D. J.; Ren, X.; Ferraris, J. P. *Chem. Mater.*, **1994**, 6, 1437.

²⁸² Billingsley, K.L.; Barder, T. E.; Buchwald, S. L. Angew. Chem. Int. Ed., **2007**, 46, 5359.

sòlid blanc corresponent a **75**²⁸³ (10 mg, 16 % rdt). ¹H NMR (250 MHz, CDCl₃) δ (ppm): 2.56 (s, 3H, *CH*₃), 7.21 (d, 1H, *J*= 3.9 Hz, Tiof<u>*H*</u>), 7.34 (dd, 1H, *J*= 5 Hz, *J* = 1.3 Hz, Tiof<u>*H*</u>), 7.40 (dd, 1H, *J*= 5 Hz, *J*= 2.9 Hz, Tiof<u>*H*</u>), 7.55 (dd, 1H, *J*= 2.9 Hz, *J*= 1.3 Hz, Tiof<u>*H*</u>), 7.63 (d, 1H, *J*= 3.9 Hz, Tiof<u>*H*</u>). **IR** v (cm⁻¹): 3110, 3094, 2918, 1650 (C=O), 1450, 1275, 782. **Pf:** 119-120°C. **Pf(lit):**²⁸³ 119-121 °C. **MS (m/z):** 208 (M⁺), 193 (M⁺-Me).

- Preparació de 3-amino-1,1'-bifenil, 77, a partir de 3-iodoanilina i l'àcid fenilborònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 8).

Seguint el procediment general, la 3-iodoanilina, **76** (37 µL, 0.3 mmol) reacciona amb l'àcid fenilborònic, **58**, (55.9 mg, 0.45 mmol) durant 7 hores. Cromatografia en columna: gel de sílice, hexà:acetat d'etil (1:1) (R_f = 0.38). S'obté un oli groc corresponent a **77**²⁸⁴ (47.6 mg, 87 % rdt). ¹H NMR (360 MHz, CDCl₃) δ (ppm): 3.74 (s ample, 2H, *NH*₂), 6.67-6.70 (m, 1H, *H*_{Ar}), 6.90 (t ap., 1H, *H*_{Ar}), 6.99-7.01 (m, 1H, *H*_{Ar}, 7.24 (d, 1H, *J*= 7.2 Hz, *H*_{Ar}), 7.34 (t, 1H, *J*= 7.6 Hz, *H*_{Ar}), 7.41 (t, 2H, *J*= 7.2 Hz, *H*_{Ar}), 7.55-7.59 (m, 2H, *H*_{Ar}).

- Preparació de (1,1'-bifenil)-2-ilmetanol, 79, a partir de (2-iodofenil)metanol i l'àcid fenilborònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 9).

Seguint el procediment general, (2-iodofenil)metanol, **78** (69.5 µL, 0.3 mmol) reacciona amb l'àcid fenilborònic, **58** (55.9 mg, 0.45 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà:acetat d'etil (9:1) (R_f = 0.56). S'obté un oli groc corresponent a **79**²⁸⁵ (45.1mg, 82 % rdt). ¹H NMR (360 MHz, CDCI₃) δ (ppm): 4.63 (d, 2H, *J*= 4.95 Hz, *CH*₂), 7.28-7.57 (m, 9H, *ArH*), el grup OH no s'observa. IR v (cm⁻¹): 3324 (OH), 1478, 1008, 745, 700.

²⁸³ Molander, G. A.; Biolatto, B. J. Org. Chem., **2003**, 68, 4302.

 ²⁸⁴ (a) Tao, B.; Boykin, D. J. Org. Chem., 2004, 69, 4330. (b) Trabanco, A. A.; Vega, J. A.; Fernández, M. A. J. Org. Chem., 2007, 72, 8146.

 ²⁸⁵ (a) Blagg, J.; Davies, S.G.; Goodfellow, C. L.; Sutton, K. H. J. Chem. Soc. Perkin Trans 1, **1990**, 1133; (b) Geissman, T. A.; Tess, R. W. J. Am. Chem. Soc., **1940**, 62, 514.

- Preparació de (1,1'-bifenil)-2-carbaldehid, 81, a partir de 2-iodobenzaldehid i l'àcid fenilborònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 10).

El procediment general es modifica duent a terme la reacció amb H₂O (4.5 mL) com a dissolvent. En aquestes condicions, el 2-iodobenzaldehid, **80** (70 mg, 0.3 mmol) reacciona amb l'àcid fenilborònic, **58** (55.9 mg, 0.45 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà (R_f= 0.517). S'obté un oli incolor corresponent a **81**^{285a, 286} (36.5 mg, 67 % rdt). ¹H NMR (250 MHz, CDCI₃) δ (ppm): 7.37-7.52 (m, 7H, \underline{H}_{Ar}), 7.65 (dt, 1H, *J*= 7.6 Hz, *J*= 1.44 Hz, \underline{H}_{Ar}), 8.04 (d, 1H, *J*= 7.9 Hz, \underline{H}_{Ar}), 9.97 (s, 1H, C<u>H</u>O). IR v (cm⁻¹): 1687 (C=O), 1596, 1253, 1196, 746.

- Preparació de 4-iodo-2,3-dihidro-1*H*-inden-1-ol, 82.

Aquest producte es va preparar a partir del corresponent bromur (4-bromo-2,3dihidro-1H-inden-1-ol)²⁸⁷ seguint el protocol d'intercanvi d'halur catalitzada per coure.²⁸⁸ En un tub Schlenk de 50 mL de capacitat proveït d'agitació magnètica, s'afegeix 4-bromo-2,3-dihidro-1*H*-inden-1-ol (4.26 g, 20 mmol), Nal (9.00 g, 60 mmol, 3 equiv.) i Cul (190 mg, 1 mmol, 5 mol%). Es fan tres cicles buit/nitrogen, deixant el contingut al buit durant 15 minuts en l'últim cicle. S'addiciona dioxà anhidre (20 mL) i *N*, *N'*-dimetil-1,2-diaminoetà (176 mg, 213 µL, 2 mmol, 10 mol%). El tub es va tancar i escalfar a 110 °C durant 70 hores (*a les 24 hores s'aconsegueix un 95 %, i es continua escalfant fins a les 70 hores per assegurar la desaparició completa de ArBr, a causa de les dificultats en separar aquest de* **82**). La suspensió resultant es refreda a temperatura ambient, es dilueix amb CH₂Cl₂ i es filtra. Els dissolvents s'evaporen i el residu es purifica per cromatografia en columna; gel de sílice, gradient 4:1 -> 1:1 hexà:acetat d'etil (R_f = 0.17 en 4:1 hexà:acetat d'etil). El producte **82** es va obtenir com a un oli de color groc clar, el qual va solidificar lentament en un sòlid de color blanc

²⁸⁶ Sawoo, S.; Srimani, D.; Dutta, P.; Lahiri, R.; Sarkar, A. *Tetrahedron*, **2009**, *65*, 4367.

²⁸⁷ Adamczyk, M.; Watt, S. i D. S. *J. Org. Chem.*, **1984**, *49*, 4226.

²⁸⁸ Klapars, A.; Buchwald, S. L. *J. Am. Chem. Soc.*, **2002**, *124*, 14844.

(4.88 g, 94% rdt.). ¹H NMR (360 MHz, CDCI₃) δ (ppm): 1.88 (d, 1H, J = 6.2 Hz, $O\underline{H}$), 2.02 – 1.90 (m, 1H, CH \underline{H}), 2.59 – 2.37 (m, 1H, C \underline{H} H), 2.86 – 2.66 (m, 1H, CH \underline{H}), 3.00 (ddd, 1H, J= 16.5, 8.7 i 4.6 Hz, C \underline{H} H), 5.34 (m, 1H, C \underline{H} OH), 6.97 (pseudo t, 1H), 7.37 (d, 1H, J= 7.4 Hz), 7.66 (d, 1H, J= 7.8 Hz). ¹³C-RMN (CDCI₃, 90 MHz) δ (ppm): 34.7 (\underline{C} H₂), 35.1 (\underline{C} H₂), 77.7 (\underline{C} -OH), 94.4 ($\underline{C}_{\underline{Ar}}$ -I), 124.0, 128.7, 137.6, 145.9, 147.7. Pf: 87-88 °C.

- Preparació de 4-fenil-2,3-dihidro-1*H*-inden-1-ol, 83, a partir de 4-iodo-2,3dihidro-1*H*-inden-1-ol i l'àcid fenilborònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 11).

Seguint el procediment general, el 4-iodo-2,3-dihidro-1*H*-inden-1-ol, **82** (77.7 mg, 0.3 mmol) reacciona amb l'àcid fenilborònic, **58** (55.9 mg, 0.45 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà:acetat d'etil (1:1) (R_f = 0.25). S'obté un sòlid blanc corresponent a **83**²⁸⁹ (54 mg, 86 % rdt). ¹H NMR (360 MHz, CDCl₃) δ (ppm): 1.76 (s ample, 1H, *O<u>H</u>*), 1.88-1.98 (ddd, 1H, CH<u>*H*</u>, *J*= 13.6, 8.3 i 6.7 Hz), 2.25-2.43 (m, 1H, CH<u>*H*</u>), 2.84-2.93 (m, 1H, CH<u>*H*</u>), 3.07-3.15 (ddd, 1H, CH<u>*H*</u>, *J*= 16.2, 8.3 i 4.6 Hz), 5.31 (s ample, 1H, *C<u>H</u>*) 7.33-7.44 (m, 8H, <u>*H*</u>_{Ar}). **IR** v (cm⁻¹): 3369 (OH), 3052, 2934, 2859, 1467, 1424, 1326, 1052, 760, 703. **Pf:** 79-80 °C. **Pf(lit):**²⁸⁹ 80-81.5 °C.

- Preparació de 1,1':4',1''-terfenil, 86, a partir de 4-bromoiodobenzè i l'àcid fenilborònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 12).

Seguint el procediment general, el 4-bromoiodobenzè, **84** (86.6 mg, 0.3 mmol) reacciona amb l'àcid fenilborònic, **58** (55.9 mg, 0.45 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà (R_f = 0.15). S'obté un sòlid blanc corresponent a **86**²⁹⁰ (45 mg, 79 % rdt) El rendiment s'ha calculat utilitzant l'àcid fenilborònic com a reactiu limitant. ¹H NMR (360 MHz, CDCI₃) δ (ppm): 7.35-7.39 (m,

²⁸⁹ Engel, J. F. 4-Substituted-2-indanol Insecticidal Ester Derivates. US Patent 927198, **1981**.

²⁹⁰ Wei, F.; Jiao, J.; Feng, J.; Lv, J.; Zhang, X-R.; Shi, X-Y.; Chen, Z-G. *J. Org. Chem.*, **2009**, *74*, 6238.

2H, \underline{H}_{Ar}), 7.45-7.49 (m, 4H, \underline{H}_{Ar}), 7.65-7.69 (m, 8H, \underline{H}_{Ar}). **Pf:** 207-208 °C. **Pf(lit):**²⁹¹ 209-210 °C.En el mateix experiment el producte **85**²⁹¹ també s'obté com a un sòlid blanc (Rf=0.33) (12 mg, 17 %). El rendiment s'ha calculat utilitzant el 4-bromoiodobenzè com a reactiu limitant. Per al producte de monoarilació **85**: ¹H **NMR (360 MHz, CDCl₃)** δ (**ppm):** 7.35-7.38 (m, 1H, \underline{H}_{Ar}), 7.42-7.47 (m, 4H, \underline{H}_{Ar}), 7.55-7.58 (m, 4H, \underline{H}_{Ar}). **Pf:** 89-90 °C. **Pf(lit):**²⁹¹ 89-90 °C.

1,1':4',1''-terfenil, 86 (taula 18, entrada 13): Seguint el procediment general, el 4- bromoiodobenzè, **84** (86.6 mg, 0.3 mmol) reacciona amb l'àcid fenilborònic **58** (41 mg, 0.3 mmol) durant una setmana a temperatura ambient. Cromatografia en columna: gel de sílice, hexà (R_f = 0.15). S'obté un sòlid blanc corresponent a **85**²⁹⁰ (34.8 mg, 34 % rdt). En el mateix experiment s'obté **86**²⁹¹ com a un sòlid blanc (15 mg, 20 %).

1,1':4',1''-terfenil, 86 (taula 18, entrada 14): Seguint el procediment general, el 4-bromoiodobenzè, **85** (8 6.6 mg, 0.3 mmol) reacciona amb l'àcid fenilborònic, **58** (93 mg, 0.75 mmol) durant 7 hores. Cromatografia en columna: gel de sílice, hexà (R_f = 0.15). S'obté un sòlid blanc corresponent a **86**²⁹⁰ (67 mg, 97 % rdt).

- Preparació de 4,4"-dimetoxi-1,1':4',1"-terfenil, 87, a partir de 4-bromoiodobenzè i l'àcid 4-metoxifenilborònic, amb $3b-Pd_{NP}$ com a catalitzador (taula 18, entrada 15).

Seguint el procediment general, el 4-bromoiodobenzè, **84** (86.6 mg, 0.3 mmol) reacciona amb l'àcid 4-metoxifenilborònic, **63** (114 mg, 0.75 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà (R_f = 0.16). S'obté un sòlid blanc corresponent a **87**²⁹² (77 mg, 89 % rdt). ¹H NMR (360 MHz, CDCI₃) δ (ppm): 3.86 (s, 6H, <u>Me</u>), 6.99 (d, 4H, J= 8.82 Hz, <u>H</u>_{Ar}), 7.57 (d, 4H, J= 8.82 Hz, <u>H</u>_{Ar}), 7.61 (s, 4H, <u>H</u>_{Ar}). Pf: 270-271°C. Pf(lit):²⁹² 273-274.5 °C. MS (m/z): 290 (M⁺), 275 (M⁺- Me), 247 (M⁺- Me - OMe).

²⁹¹ Milanesi, S.; Fagnoni, M.; Albini, A. *J. Org. Chem.*, **2005**, *70*, 603.

²⁹² Hart, H.; Harada, K.; Du, C-J. F. *J. Org. Chem.*, **1985**, *50*, 3104.

- Preparació de 4,4"-trifluorometil-1,1':4',1"-terfenil, 88, a partir de 4bromoiodobenzè i l'àcid 4-trifluorometilifenilborònic, amb $3b-Pd_{NP}$ com a catalitzador (taula 20, entrada 16).

Seguint el procediment general, el 4-bromoiodobenzè, **84** (86.6 mg, 0.3 mmol) reacciona amb l'àcid 4-trifluorometilfenilborònic, **66** (144.6 mg, 0.75 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà (R_f = 0.18). S'obté un sòlid blanc corresponent a **88**²⁹³ (100 mg, 91 % rdt). ¹H NMR (360 MHz, CDCl₃) δ (ppm): 7.72-7.77 (m, 12H, *ArH*). **Pf:** 209-210 °C.

- Preparació de 1,1':3',1''-terfenil, 90, a partir de 3-bromoiodobenzè i l'àcid fenilborònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 17).

Seguint el procediment general, el 3-bromoiodobenzè, **89** (39 µL, 2.219 g/mL, 0.3 mmol) reacciona amb l'àcid fenilborònic, **58** (93.2 mg, 0.75 mmol) durant 24 hores. Cromatografia en columna: gel de sílice, hexà (R_f = 0.13). S'obté un sòlid blanc corresponent a **90**²⁹⁴ (67.5 mg, 98 % rdt). ¹H NMR (360 MHz, CDCl₃) δ (ppm): 7.37 (t, 2 H, *J*= 7.7 Hz, <u>*H*</u>_{Ar}), 7.48 (t, 4H, *J*= 7.7 Hz, <u>*H*</u>_{Ar}), 7.54 (m, 1H, <u>*H*</u>_{Ar}), 7.6 (d, 2H, *J*= 7.7 Hz, <u>*H*</u>_{Ar}), 7.67 (d, 4H, *J*= 7.7 Hz, <u>*H*</u>_{Ar}), 7.83 (s, 1H, <u>*H*</u>_{Ar}). **Pf:** 89-90°C. **Pf(lit):**²⁹⁴ 86-87 °C.

- Preparació de (1,1'-bifenil)-4-carbaldehid, 92, a partir de 4-bromobenzaldehid i l'àcid fenilborònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 18).

²⁹³ Liu, L.; Zhang, Y.; Xin, B. *J. Org. Chem.*, **2009**, *71*, 3994.

²⁹⁴ Dong, C-D.; Hu, Q-S. J. Am. Chem. Soc., **2005**, 127, 10006.

El procediment general es modifica duent a terme la reacció en H₂O a 100 °C (4.5 mL). En aquestes condicions, el 4-bromobenzaldehid, **91** (56.1 mg, 0.3 mmol) reacciona amb l'àcid fenilborònic, **58** (55.9 mg, 0.45 mmol) durant 4 hores. Cromatografia en columna: gel de sílice, hexà:acetat d'etil (18:1) (R_f= 0.33). S'obté un sòlid blanc corresponent a **92**²⁹⁵ (49 mg, 90 % rdt). ¹H NMR (250 MHz, CDCl₃) δ (ppm): 7.40-7.51 (m, 3H, \underline{H}_{Ar}), 7.62-7.65 (m, 2H, \underline{H}_{Ar}), 7.76 (d, *J*= 8.24 Hz, 2H, \underline{H}_{Ar}), 7.95 (d, *J*= 8.24 Hz, 2H, \underline{H}_{Ar}), 10.06 (s, 1H, C<u>H</u>O). IR v (cm⁻¹): 1693 (C=O),1601, 1215, 832, 762, 700. **Pf:** 59-60°C. **Pf(lit):**²⁹⁵ 59-60 °C.

- Preparació de 3-metoxi-1,1'bifenil, 95, a partir de 3-bromoanisole, 94, i l'àcid fenilborònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 20).

El procediment general es modifica duent a terme la reacció en H₂O a 100 °C (4.5 mL). En aquestes condicions, 3-bromoanisole, **94** (39 µL, 0.3 mmol) reacciona amb l'àcid fenilborònic, **58** (55.9 mg, 0.45 mmol) durant 5 hores. Cromatografia en columna: gel de sílice, hexà (R_f = 0.10). S'obté un oli incolor corresponent a **95**²⁹⁶ (42 mg, 77 % rdt). ¹H NMR (360 MHz, CDCI₃) δ (ppm): 3.89 (s, 3H, *CH*₃), 6.93 (ddd, 1H, *J*= 8.38 Hz, 2.52 Hz, 0.84 Hz, *ArH*), 7.17-7.23 (m, 2H, *ArH*), 7.60-7.63 (m, 2H, *ArH*), 7.44-7.48 (m, 2H, *ArH*), 7.35-7.40 (m, 2H, *ArH*).

- Preparació de 4-acetil-1,1'-bifenil, 64, a partir de 4-cloroacetofenona i l'àcid fenilborònic, amb 3b-Pd_{NP} com a catalitzador (taula 18, entrada 21).

El procediment general es modifica duent a terme la reacció en H₂O (4.5 mL) a 130°C i utilitzant KOH (2.5 equiv.) com a base. En aquestes condicions, la 4cloroacetofenona, **96** (24 μ L, 1.192 g /mL, 0.3 mmol) reacciona amb l'àcid fenilborònic, **58** (55.9 mg, 0.45 mmol) durant 48 hores. S'obté un sòlid blanc corresponent a **64**²⁹⁷

²⁹⁵ Tao, B.; Boykin, D. J. Org. Chem., **2004**, 69, 4330.

²⁹⁶ Dichiarante, V.; Dondi, D.; Protti, S.; Fagnoni, M.; Albini, A. *J. Am. Chem. Soc.*, **2007**, *129*, 5605.

²⁹⁷ Wei, F.; Jiao, J.; Feng, J.; Lv, J.; Zhang, X-R.; Shi, X-Y.; Chen, Z-G. *J. Org. Chem.*, **2009**, 74, 6238.

(10 mg, 17 % rdt). El rendiment es calcula per les integracions de l'espectre de ¹H, ja que el producte es troba contaminat amb 4-cloroacetofenona, **96**.

6.35.3. Assaig del complex de Pd(II) 51b i del material nanoparticulat M37 com a catalitzadors en la reacció de Suzuki (apartat 4.2.3.3.).

- Preparació de 4-fenilacetofenona, 64, a partir de 4-bromoacetofenona i l'àcid fenilborònic, amb 51b i M37 com a catalitzadors (taula 19).

Assaig de 51b

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix 4-bromoacetofenona **61** (203 mg, 1 mmol), àcid fenilborònic **58** (186 mg, 1.5 mmol), K₂CO₃ (138 mg, 2 mmol), **51b** (lot de 4.7 % Pd: 4.5 mg, $2 \cdot 10^{-3}$ mmol, 0.2 mol% Pd) i aigua Milli-Q (2 mL) com a dissolvent, es tanca el tub i s'escalfa a 100 °C. La reacció es segueix per CG fins que aquesta es completa. El tub es refreda a temperatura ambient. La fase aquosa resultant s'extreu amb Et₂O, i la primera, la qual conté el catalitzador, es guarda per als següents cicles catalítics. La fracció etèria es renta amb aigua, s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. S'obté 4-fenilacetofenona **64**²⁹⁵ com a un sòlid blanc (168 mg, 89 % rdt. pel primer cicle).

La fase aquosa es reutilitza en quatre cicles més, addicionant cada vegada 4bromoacetofenona **61** (203 mg, 1 mmol), àcid fenilborònic **59** (186 mg, 1.5 mmol), K_2CO_3 (69.1.mg, 1 mmol) i escalfant novament a 100 °C en el tub tancat. En observar per CG que la conversió de **61** es completa, es deixa refredar a temperatura ambient. S'addiciona un equivalent d'undecà per tal de donar el rendiment de **64** per CG. Després la mescla de reacció es tracta de manera anàloga a la del primer cicle.

Assaig de M37

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix 4-bromoacetofenona **61** (203 mg, 1 mmol), àcid fenilborònic **59** (186 mg, 1.5 mmol), K₂CO₃ (138 mg, 2 mmol), **M37** (lot de 4.85 % Pd: 4.4 mg, $2 \cdot 10^{-3}$ mmol, 0.2 mol% Pd) i aigua Milli-Q (2 mL) com a dissolvent, es tanca el tub i s'escalfa a 100 °C. La reacció es segueix per CG fins que aquesta es completa. El tub es refreda a temperatura ambient. La fase aquosa resultant s'extreu amb Et₂O, i la primera, la qual conté el catalitzador, es guarda per als següents cicles catalítics. La fracció etèria es renta amb aigua, s'asseca amb Na_2SO_4 anhidre i s'evapora el dissolvent a pressió reduïda. S'obté 4-fenilacetofenona **64**²⁹⁷ com a un sòlid blanc (183 mg, 93 % rdt. pel primer cicle).

La fase aquosa es reutilitza en quatre cicles més, addicionant cada vegada 4bromoacetofenona **61** (203 mg, 1 mmol), àcid fenilborònic **59** (186 mg, 1.5 mmol), K_2CO_3 (69.1.mg, 1 mmol) i escalfant novament a 100 °C en el tub tancat. En observar per CG que la conversió de **61** es completa, es deixa refredar a temperatura ambient. S'addiciona un equivalent d'undecà per tal de donar el rendiment de **64** per CG. Després, la mescla de reacció es tracta de manera anàloga a la del primer cicle.

6.36. Reacció de Mizoroki-Heck

6.36.1. Assaig de 3b-Pd_{NP} com a catalitzador en la reacció de Mizoroki-Heck (apartat 4.2.6.2.).

- Preparació de l'àcid 4-carboxicinàmic 101, a partir de l'àcid 4-iodobenzòic i l'àcid acrílic, amb 3b-Pd_{NP} com a catalitzador (taula 20).

En un tub tancat de 10 mL, proveït d'agitació magnètica, s'afegeix l'àcid 4iodobenzòic, **99** (127 mg, 0.5 mmol), àcid acrílic, **100** (51.4 µL, 0.75 mmol), diisopropilamina (281 µL, 0.722 g/ mL, 2 mmol), **3b-Pd_{NP}** (lot de 1.8 % Pd: 14.8 mg, 2.·10⁻³ mmol, 0.5 mol% Pd) i aigua Milli-Q (2 mL) com a dissolvent, i s'escalfa la mescla a 100 °C. La reacció es segueix per CCF fins a la consumició total de **99**. El tub es refreda a temperatura ambient. La fase aquosa primer s'extreu amb Et₂O i després amb CH₂Cl₂ per tal d'extreure'n el catalitzador. La fase aquosa s'acidifica i precipita **101** com a un sòlid blanc-lilós, el qual es filtra i es renta successivament amb aigua i amb acetona (84 mg, 88 % rdt.).²⁹⁸ **1H-RMN (CDCl₃, 250 MHz) δ (ppm):** 6.64 (d, 1H, *J*= 16.1 Hz, <u>*H*C=C</u>), 7.64 (d, 1H, *J*=16.1 Hz, <u>C=CH</u>), 7.80 (d, 2H, *J*= 8.3 Hz, <u>*H*Ar</sub>), 7.95 (d, 2H, *J*= 8.3 Hz, <u>*H*Ar</u>) **IR(ATR) v** (**cm**⁻¹): absorció ample de 3100 a 2500 (OH de COOH) 1677 (C=O), 1631, 1424, 1285, 925, 849, 775. **Pf:** descompon a 250 °C.</u>

²⁹⁸ Anson, M. S.; Mirza, A. R.; Tonks, L.; Williams, J. M. J. Tetr. Lett. **1999**, 40, 7147.

Per recuperar el catalitzador, la fase orgànica de CH₂Cl₂ s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. El sòlid obtingut, que correspon al catalitzador, és el que s'utilitza en els posteriors cicles.

6.36.2. Assaigs de 51b i M37 com a catalitzadors en la reacció de Mizoroki-Heck (apartat 4.2.6.3.).

Preparació de 4-acetil-cinamat d'*n*-butil, 102, amb 51b com a catalitzador (Taula 22).

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix 4-bromoacetofenona, **61** (102 mg, 0.5 mmol), acrilat d'*n*-butil, **97** (108 μL, 0.890 g/mL, 0.75 mmol), diisopropilamina (212 μL, 0.722 g/mL, 1.5 mmol), **51b** (lot de 3.7 % Pd: 7.2 mg, $3.\cdot 10^{-3}$ mmol, 0.5 mol% Pd) i aigua Milli-Q (1 mL) com a dissolvent, es tanca el tub i s'escalfa la mescla a 100 °C. La reacció es segueix per CG fins a conversió completa (4 dies). El tub es refreda a temperatura ambient. La fase aquosa s'extreu amb Et₂O, guardant la fase aquosa, la qual conté el catalitzador, per als següents cicles catalítics. La fracció etèria es renta amb aigua, s'asseca amb Na₂SO₄ anhidre, s'evapora el dissolvent a pressió reduïda i s'obté 4-acetil-*trans*-cinamat d'*n*-butil, **102**²⁹⁹ (oli, 0.106 g, 86% rdt.). ¹H-RMN (CDCI₃, **360 MHz**) **δ** (ppm): 0.95 (t, 3H, *J*= 7.38 Hz,(CH₂)₃*M*e), 1.39- 1.48 (m, 2H, CH₂CH₂CH₂Me), 1.64-1.72 (m, 2H, CH₂C<u>H</u>₂CH₂Me), 2.60 (s, 3H, *M*e), 4.21 (t, 2H, *J*= 6.7 Hz, C<u>H</u>₂CH₂CH₂Me), 6.51 (d, 1H, *J*= 16.0 Hz, <u>H</u>olefina), 7.59 (d, 2H, *J*= 8.2 Hz, <u>H_A</u>, 7.66 (d, 1H, *J*= 16.0 Hz, <u>H</u>olefina), 7.59 (d, 2H, *J*= 8.2 Hz, <u>H_A</u>, 7.66 (ppm): 13.8, 19.2, 26.7, 30.8, 64.7, 120.9, 128.2, 128.9, 138.0, 138.9, 143.0, 166.6, 197.3. **IR(ATR) v (cm⁻¹):** 2959, 2873, 1714 (C=O), 1685, 1638, 1265, 1174, 828, 632.

La fase aquosa es reutilitza en el segon cicle addicionant 4-bromoacetofenona, **61** (102 mg, 0.5 mmol), acrilat d'*n*-butil **97** (108 μ L, 0.75 mmol), diisopropilamina (212 μ L, 1.5 mmol) i escalfant a 100 °C novament en tub tancat. En aïllar el producte, de manera anàloga a la descrita pel primer cicle catalític, es va obtenir únicament l'àcid 4-acetil-*trans*-cinàmic, **103** com a un sòlid blanc (61 mg, 94 % rdt.).³⁰⁰ ¹H-RMN (CDCI₃, 360 MHz) δ

²⁹⁹ Liu, L-J.; Wang, F.; Shi, M. *Eur. J. Inorg. Chem.* **2009**, 1723.

³⁰⁰ Nejjar, A.; Pinel, C.; Djakovitch, L. Adv. Synth. Cat. 2003, 345, 612.

(ppm): 2.59 (s, 3H, <u>Me</u>), 6.67 (d, 1H, J= 16.02 Hz, <u>H</u>olefina), 7.59 (d, 1H, J=16.02 Hz, <u>H</u>olefina), 7.81 (d, 2H, J= 8.32 Hz, <u>H</u>_{Ar}), 7.96 (d, 2H, J= 8.32 Hz, <u>H</u>_{Ar}). **IR(ATR) v (cm⁻¹):** 3407 (ample, COOH), 1677 (C=O), 1629, 1602, 1205, 990, 930, 833, 676. Pf:.219-220 °C Pf (lit):³⁰¹ 224-226 °C.

- Preparació de l'àcid (*E*)-4-carboxicinàmic, 101, a partir de l'àcid 4-iodobenzòic i de l'àcid acrílic, amb 51b o M37 com a catalitzador (taula 23).

Assaig de 51b (taula 23)

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix l'àcid 4-iodobenzòic **99** (127 mg, 0.5 mmol), àcid acrílic **100** (51.4 μ L, 1.05 g/mL, 0.75 mmol), diisopropilamina (281 μ L, 0.722 g/mL, 2 mmol), **51b** (lot de 3.7 % Pd: 7.2 mg de **51b**, 2.5 \cdot 10⁻³ mmol, 0.5 mol% Pd) i aigua Milli-Q (1 mL) com a dissolvent, es tanca el tub i s'escalfa a 100 °C. La reacció es segueix per CCF fins a la consumició total de **99**. El tub es refreda a temperatura ambient. La fase aquosa primer s'extreu amb Et₂O, i després amb CH₂Cl₂ per tal d'extreure'n el catalitzador. La fase aquosa s'acidifica i precipita **101** com a un sòlid blanc-rosat, el qual es filtra i es renta successivament amb aigua i acetona (73 mg, 81 % rdt.).²⁹⁸

Per recuperar el catalitzador, la fase orgànica de CH₂Cl₂ s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. El sòlid obtingut, que correspon al catalitzador, és el que s'utilitza en els posteriors cicles.

Assaig de M37 (taula 23)

Es segueix el mateix procediment, per dur a terme la reacció i la recuperació del catalitzador, que el descrit anteriorment per **51b**. En aquest cas es va utilitzar **M37** com a catalitzador (lot de 4.2 % Pd: 6.3 mg, $2.5 \cdot 10^{-3}$ mmol, 0.5 mol% Pd) per obtenir **101** (74.4 mg, 78 % rdt.).

³⁰¹ Cleland, George H. J. Org. Chem. **1969**, *34*, 744.

6.37. Reacció de Sonogashira

6.37.1. Assaig de 3b-Pd_{NP} com a catalitzador en la reacció de Sonogashira (apartat 4.2.10.1.).

- Preparació d'1-(4-(feniletinil)fenil)etanona, 111, amb 3b-Pd_{NP} com a catalitzador.

Assaig de 3b-Pd_{NP} sota condicions convencionals (esquema 54)

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix **3b-Pd**_{NP} (lot de 1.8 % Pd: 11.6 mg, $2 \cdot 10^{-3}$ mmol, 0.2 mol% Pd), 4-bromoacetofenona (98 %), **61** (203.1 mg, 1 mmol), Bu₄NOAc (443 mg, 1.43 mmol) i DMF (2 mL), es tanca el tub. S'afegeix el fenilacetilè **110** (169 µL, ρ =0.930 g/mL, 1.5 mmol) i s'agita a 90°C. La reacció es segueix per CG i passades 4 hores el senyal de **61** no s'observa. S'evapora la DMF i es fan extraccions del residu entre Et₂O i H₂O, guardant la fase aquosa, la qual conté el catalitzador dissolt. Per recuperar-lo, s'evapora el dissolvent a pressió reduïda. El residu es cromatografia en gel de sílice (hexà/AcOEt 6:1) i s'obté **111**³⁰² com a un sòlid de color marró clar (196.3 mg, 89 % rdt.). ¹**H-RMN (CDCI₃, 400 MHz) δ (ppm):** 2.61 (s, 3H, <u>*Me*</u>), 7.36-7.38 (m, 3H, *H*_{Ar}), 7.54-7.57 (m, 2H, *H*_{Ar}), 7.60-7.62 (m, 2H, *H*_{Ar}), 7.93-7.95 (m, 2H, *H*_{Ar}). ¹³**C-RMN (CDCI₃, 100.6 MHz) δ (ppm):** 26.74, 88.73, 92.84, 122.77, 128.32, 128.40, 128.57, 128.94, 131.82, 131.87, 136.31, 197.44. **IR(ATR) v (cm⁻¹):** 2998, 2218, 1677 (C=O), 1601, 1404, 1359, 1261, 1177, 958, 834, 759, 691, 640. **Pf:** 94-96°C. **Pf (lit):**^{302, 303} 94-96 °C.

Assaig de 3b-Pd_{NP} sota assistència per microones (taula 26)

En un tub de microones s'hi afegeix el catalitzador **3b-Pd_{NP}** (lot de 1.7 % Pd: 12.5 mg, $2 \cdot 10^{-3}$ mmol, 0.2 mol% Pd), 4-bromoacetofenona 98 % **61** (203.1 mg, 1 mmol), pirrolidina (169 µL, 0.852 g/mL, 2 mmol), fenilacetilè **110** (169 µL, 0.930 g/mL, 1.5 mmol) i H₂O (2 mL). S'escalfa a 100 °C sota calefacció per microones (mode powerMax activat). Es segueix l'evolució de la reacció per cromatografia de gasos. Després d'una hora de reacció la conversió no és completa i s'escalfa a 130 °C sota calefacció per microones

³⁰² Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Pace, P. *Eur. J. Org. Chem.* **1999**, 3305.

durant dues hores més. S'addiciona un equivalent d'undecà com a patró intern per calcular la conversió per CG de **61** (64 % conversió).

- Preparació de 2-fenil-1-(4-nitrofenil)acetilè, 113, amb 3b-Pd_{NP} com a catalitzador (esquema 55).

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix **3b-Pd_{NP}** (lot de 1.7 % Pd: 12.5 mg, 2·10⁻³ mmol, 0.2 mol% Pd), *p*-iodonitrobenzè 98 % **57** (254 mg, 1 mmol), pirrolidina (169 µL, 0.852 g/mL, 2 mmol) i H₂O Milli-Q (2 mL). S'hi afegeix el fenilacetilè **110** (169 µL, 0.930 g/mL, 1.5 mmol). El tub es tanca i s'agita a 100 °C. La reacció es segueix per CG i passades 4 hores ha acabat. Es fan extraccions amb èter dietílic, guardant la fase aquosa que conté el catalitzador per als següents cicles. La fase orgànica s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. El residu es cromatografia en gel de sílice (hexà /AcOEt 8:2) i s'obté **113** com a un sòlid de color groc (195.4 mg, 88 % rdt.).³⁰³ ¹H-RMN (CDCl₃, **400** MHz) **5** (ppm): 7.40 (banda ampla, 3H, \underline{H}_{Ar}), 7.56-7.57 (m, 2H, \underline{H}_{Ar}), 7.67 (d, 2H, J= 8.76 Hz, \underline{H}_{Ar}), 8.22 (d, 2H, J= 8.76 Hz, \underline{H}_{Ar}), 13C-RMN (CDCl₃, 100.6 MHz) **5** (ppm): 87.67, 94.86, 122.25, 123.79, 128.69, 129.43, 130.47, 131.99, 132.42, 147.14. IR(ATR) v (cm⁻¹): 3103, 2213 (C=C), 1589, 1509, 1345, 1103, 856, 763, 688. **Pf:1**19-120°C. **Pf (lit):**³⁰³ 119-121 °C.

La fase aquosa es reutilitza en dos cicles més, addicionant cada vegada *p*iodonitrobenzè 98 % (254 mg, 1 mmol), pirrolidina (169 μ L, 0.852 g/mL, 2 mmol) i fenilacetilè (169 μ L, 0.930 g/mL, 1.5 mmol) i escalfant novament a 100 °C. Després de cada cicle la reacció es tracta de manera anàloga a l'explicada pel primer cicle.

Preparació de 2-fenil-1-(4-metoxifenil)acetilè, 114, amb 3b-Pd_{NP} com a catalitzador (esquema 56).

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix **3b-Pd_{NP}** (lot de 1.7 % Pd: 12.5 mg, $2 \cdot 10^{-3}$ mmol, 0.2 mol% Pd), *p*-iodoanisole 99 % **56** (236 mg, 1 mmol), pirrolidina (169 µL, 0.852 g/mL, 2 mmol) i H₂O Milli-Q (2 mL). S'hi afegeix el fenilacetilè

³⁰³ Finke, A. D.; Elleby, E. C.; Boyd, M. J.; Weissman, H.; Moore, J.S. *J. Org. Chem.* **2009**, *74*, 8897.

110 (169 μL, 0.930 g/mL, 1.5 mmol) es tanca el tub i s'agita a 100 °C. La reacció es segueix per CG i passades 7 hores ha acabat. Es fan extraccions amb èter dietílic, guardant la fase aquosa que conté el catalitzador per als següents cicles. La fase orgànica s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. El residu es cromatografia en gel de sílice (hexà /AcOEt 9:1) i s'obté **114** com a un sòlid blanc (182.1 mg, 89 % rdt.).³⁰⁴ **1H-RMN (CDCI₃, 400 MHz) δ (ppm):** 3.83 (s, 3H. <u>Me)</u>, 7.88 (d, 2H, *J*= 8.72 Hz, <u>H</u>_{Ar}), 7.32-7.33 (m, 3H, <u>H</u>_{Ar}), 7.50-7.52 (m, 4H, <u>H</u>_{Ar}). ¹³C-RMN (CDCI₃, **100.6 MHz) δ (ppm):** 55.42, 89.47, 88.17, 114.11, 115.52, 123.71, 128.04, 128.42, 131.56, 133.17, 159.73. **IR(ATR) v (cm⁻¹):** 1507, 1592, 1246, 1025, 836, 752, 688. **Pf:** 54-55 °C. **Pf (lit):**³⁰⁴ 54-56 °C.

La fase aquosa es reutilitza en un segon cicle, addicionant *p*-iodoanisole 99 % (236 mg, 1 mmol), pirrolidina (169 μ L, 0.852 g/mL, 2 mmol) i fenilacetilè (169 μ L, 0.930 g/mL, 1.5 mmol) i escalfant novament a 100 °C. La reacció després de 24 hores no ha acabat (64% rdt.).

6.37.2. Assaigs de 51b i M37 com a catalitzadors en la reacció de Sonogashira (apartat 4.2.10.2.).

- Preparació d'1-(4-(feniletinil)fenil)etanona, 111, amb 51b com a catalitzador (Condicions A, taula 27).

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix el complex de pal·ladi(II) **51b** (lot de 4.7 % Pd: 4.5 mg, $2 \cdot 10^{-3}$ mmol, 0.2 mol% Pd), 4-bromoacetofenona 98 % **61** (203 mg, 1 mmol), pirrolidina (169 µL, 0.852 g/mL, 2 mmol) i H₂O (2 mL). S'hi afegeix el fenilacetilè **110** (135 µL, 0.930 g/mL, 1.2 mmol), es tanca el tub i s'agita a 100 °C. La reacció es segueix per CG i passades 3.5 hores la reacció s'atura, ja que no evoluciona més, deixant refredar a temperatura ambient. El producte s'extreu amb èter dietílic, guardant la fase aquosa, la qual conté el catalitzador dissolt. La fase orgànica s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. El residu es cromatografia en gel de sílice (hexà /AcOEt 7:1) i s'obté **111** com a un sòlid de color marró clar (154.1 mg, 70 % rdt).

³⁰⁴Hill, L. H.; Smith, J. M.; Brown, W. S.; Moore, L. R.; Guevera, P.; Pair, E. S.; Porter, J.; Chou, J.; Wolterman, C. J.; Craciun, R.; Dixon, D. A.; Shaughnessy, K. H. *Tetrahedron* **2008**, *64*, 6920.

- Preparació d'1-(4-(feniletinil)fenil)etanona, 111, amb 51b com a catalitzador (Condicions B, taula 27).

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix el complex de PdCl₂ **51b** (lot de 4.7 % Pd: 4.5 mg, $2 \cdot 10^{-3}$ mmol, 0.2 mol% Pd), 4-bromoacetofenona 98 % **61** (203 mg, 1 mmol), pirrolidina (169 µL, 0.852 g/mL, 2 mmol), TBAB (163 mg, 0.5 mmol) i H₂O (2.5 mL). S'hi afegeix el fenilacetilè **110** (169 µL, 0.930 g/mL, 1.5 mmol), es tanca el tub i s'agita a 100 °C. La reacció es segueix per CG i passades 3.5 hores s'atura, ja que no evoluciona més, deixant refredar a temperatura ambient. El producte s'extreu amb èter dietílic, guardant la fase aquosa, la qual conté el catalitzador dissolt. La fase orgànica s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. El residu obtingut s'analitza per espectroscòpia d'¹H-RMN (50 % rdt. de **111** per ¹H-RMN).

La fase aquosa es reutilitza en un altre cicle utilitzant les condicions B (apartat 4.2.10.2, taula 27), addicionant 4-bromoacetofenona 98 % (203 mg, 1 mmol), pirrolidina (169 μ L, 0.852 g/mL, 2 mmol), TBAB (163 mg, 0.5 mmol), fenilacetilè (135 μ L, 0.930 g/mL, 1.2 mmol) i escalfant novament a 100 °C. La reacció després de 24 hores no ha acabat. S'addiciona undecà com a patró intern per determinar el rendiment per CG (57 % rdt.)

- Preparació d'1-(4-(feniletinil)fenil)etanona, 111, amb M37 com a catalitzador.

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix **M37** (lot de 4.9 % Pd: 4.4 mg, $2 \cdot 10^{-3}$ mmol, 0.2 mol% Pd), 4-bromoacetofenona 98 % **61** (203 mg, 1 mmol), pirrolidina (169 µL, 0.852 g/mL, 2 mmol) i H₂O (2 mL). Es tanca el tub i s'agita a 100 °C. S'hi afegeix el fenilacetilè **110** (169 µL, 0.930 g/mL, 1.5 mmol) i es deixa la mescla a 100 °C. La reacció es segueix per CG i passades 24 hores s'atura, ja que no evoluciona més, deixant refredar a temperatura ambient. S'addiciona undecà com a patró intern per determinar el rendiment per CG (25 % rdt.).

- Preparació de 2-fenil-1-(4-metoxifenil)acetilè, 114, amb M37 com a catalitzador (esquema 58).

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix el catalitzador **M37** (lot de 4.4 % Pd: 4.4 mg, $2 \cdot 10^{-3}$ mmol, 0.2 mol% Pd), *p*-iodoanisole 99 % **56** (236 mg, 1 mmol), pirrolidina (169 µL, 0.852 g/mL, 2 mmol) i H₂O Milli-Q (2 mL). Es tanca el tub i s'agita a 100 °C. S'hi afegeix el fenilacetilè **110** (169 µL, 0.930 g/mL, 1.5 mmol) i es deixa la mescla a 100 °C. La reacció es segueix per CG i passades 2 hores ha acabat. La mescla de reacció es refreda a temperatura ambient i s'extreu amb èter dietílic, guardant la fase aquosa que conté el catalitzador per als següents cicles. La fase orgànica s'asseca amb Na₂SO₄ anhidre i s'evapora el dissolvent a pressió reduïda. El residu es cromatografia en gel de sílice (hexà /AcOEt 9:1) i s'obté **114** com a un sòlid blanc (164 mg, 80 % rdt.).

La fase aquosa es reutilitza en un segon cicle, addicionant *p*-iodoanisole 99 % (236 mg, 1 mmol), pirrolidina (169 μ L, 0.852 g/mL, 2 mmol) i fenilacetilè (169 μ L, 0.930 g/mL, 1.5 mmol) i escalfant novament a 100 °C. La reacció acaba després de 24 hores i es tracta de manera anàloga al primer cicle (160 mg, 77 % rdt.).

6.38. Reaccions d'oxidació catalitzades per nanopartícules d'or(0) (apartat 4.3.1.).

- Oxidació d'(1*R*)-1-(2-naftil)etanol, 122, a 1-(2-naftil)etanona, 123, catalitzada per 3b-Au_{NP} (taula 30).

En un tub de 10 mL, proveït d'agitació magnètica, s'afegeix **3b-Au_{NP}** (lot de 1.6 % Pd: 10 mg, $1.5 \cdot 10^{-3}$ mmol, 0.5 %mol Au), (1*R*)-1-(2-naftil)etanol, **122** (50 mg, 0.3 mmol), KO^tBu (97 mg, 0.9 mmol) i toluè (0.3 mL). Es tanca el tub i s'agita a 100 °C. La mescla de reacció es refreda a temperatura ambient després d'una hora de reacció. S'addiciona bifenil com a patró intern per determinar el rendiment de **123** per CG (93.5 % rdt.).

7. ÍNDEX DE FÓRMULES

ANNEX:

Col·lecció d'espectres

(*E,E,E*)-1,6,11-*tris*[(4-fluorofenil)sulfonil]-1,6,11-triazaciclopentadeca-3,8,13-triè, 20.

1

IR (ATR) v (cm⁻¹)

¹H- DOSY (CDCI₃, 500 MHz)

Macrocicle polioxietilenat, 1_{6H}.

¹H- DOSY (CDCI₃, 500 MHz)

IR (ATR) v (cm⁻¹)

MALDI- TOF- MS (m/z)

IR (ATR) v (cm⁻¹)

Mesilat polioxietilenat (n=7), 32a

¹H-RMN (CDCI₃, 360 MHz)

MALDI-TOF (m/z)

Mesilat polioxietilenat (n=44), 32b

¹H-RMN (CDCI₃, 250MHz)

MALDI-TOF (m/z)

Azida polioxietilenada (n=7), 31a

¹H-DOSY(CDCI₃, 500 MHz)

Azida polioxietilenada (n=44), 31b

¹H-RMN (CDCI₃, 250 MHz)

IR (ATR) v (cm⁻¹)

¹H-DOSY(CDCI₃, 500 MHz)

MALDI-TOF (m/z)

Compost polioxietilenat (n=7), 3a

¹H-RMN (CDCI₃, 400 MHz)

IR (ATR) v (cm⁻¹)

MALDI-TOF (m/z)

¹H-RMN (CDCI₃, 360 MHz).Ampliació.

¹H-DOSY(CDCl₃, 500 MHz)

IR (ATR) v (cm⁻¹)

MALDI-TOF (m/z)

¹H-DOSY(CDCI₃, 500 MHz) 3b-Pd_{NP}

.CH:

42

Oxima de di-(2-piridil)metanona, 42.

IR (ATR) v (cm⁻¹)

Di-(2-piridil)metanamina, 43

¹H- RMN (CDCI₃, 250 MHz)

43

¹³C-RMN (CDCI₃, 62.5 MHz)

IR (ATR) v (cm⁻¹)

¹H-¹H COSY (CDCI₃, 250 MHz)

N-(di-2-piridilmetil)-4-fluorofenilsulfonamida, 46

IR (ATR) v (cm⁻¹)

N-(di-2-piridilmetil)- *N*-pentil- 4-fluorofenilsulfonamida, 47.

IR (ATR) v (cm⁻¹)

Di-(2-piridil)metanol, 48

¹H- RMN (CDCI₃, 360 MHz)

Di-(2-piridil)metil propargil èter, 50.

Bipiridina polioxietilenada, 8a.

Bipiridina polioxietilenada, 8b.

49

Complex de pal·ladi(II) que conté un lligand bipiridínic polioxietilenat, 51a.

IR (ATR) v (cm⁻¹)

¹H-DOSY (CDCI_{3,} 500 MHz)

54

¹H- RMN (DMSO-d₆, 400 MHz, 90°C)

¹H- RMN (DMSO-d₆, 400 MHz, 90°C). Ampliació.

5-pentinilisocianat, 55.

NCC

55

N-(di-2-piridilmetil)-N'-(5-pentinil)urea, 52

HR-MS

N-(di-(2-piridil)metil)-*N*^{*}-(3-(1-(2-(metoxi(polioxietilen)etil)-1*H*-1,2,3-triazol-4il)propil)urea, 9.

63

¹H-DOSY (CDCI₃, 500 MHz ¹H)

MALDI-TOF (m/z)

Nanopartícules de pal·ladi(0) estabilitzades per 9 pel mètode de l'aproximació organometàl·lica (material M37).

4-Metoxibifenil, 59.

IR(ATR) v (cm⁻¹)

4-(Trifluorometil)bifenil, 67.

¹H NMR (400 MHz, CDCI₃)

3-Feniltiofè, 69.

¹H NMR (400 MHz, CDCl₃)

3-(4-Metoxifenil)tiofè, 70.

3-(p-(trifluorometil)fenil)tiofè, 71.

3, 3'-Ditiofè, 73.

¹H NMR (400 MHz, CDCl₃)

73

¹H NMR (250 MHz, CDCI₃)

IR(ATR) v (cm⁻¹):

3-Amino-1,1'-bifenil, 77.

[1,1'-Bifenil]-2-ilmetanol, 79.

¹H NMR (360 MHz, CDCl₃)

[1,1'-Bifenil]-2-carbaldehid, 81.

^1H NMR (250 MHz, CDCl_3) δ (ppm):

IR(ATR) v (cm⁻¹):

4-fenil-2,3-dihidro-1*H*-inden-1-ol, 83.


```
IR(ATR) v (cm<sup>-1</sup>):
```


4-Bromobifenil, 85.

¹H NMR (360 MHz, CDCl₃)

1,1':4',1"-Terfenil, 86.

^1H NMR (360 MHz, CDCl₃) δ (ppm):

4,4"-Dimetoxi-1,1':4',1"-terfenil, 87.

4,4"-Trifluorometil-1,1':4',1"-terfenil, 88.

¹H NMR (360 MHz, CDCI₃)

1,1':3',1"-Terfenil, 90.

¹H NMR (360 MHz, CDCl₃)

[1,1'-Bifenil]-2-carbaldehid, 92.

92

3-Metoxi-1,1'bifenil, 95.

Àcid 4-carboxicinàmic, 101.

¹H-RMN (CDCI₃, 250 MHz)

IR(ATR) v (cm⁻¹):

Àcid 4-acetil-trans- cinàmic,103.

2-(4-Acetilfenil)-1-fenilacetilè, 111.

IR(ATR) v (cm⁻¹)

¹³C-RMN (CDCl₃, 100.6 MHz)

(Z)-1-(4-estirilfenil)etanona, 112.

¹H-RMN (CDCI₃, 360 MHz)

Me

112

2-(4-Nitrofenil)-1-fenilacetilè, 113.

¹H-RMN (CDCl₃, 400 MHz)

2-(4-Metoxifenil)-1-fenilacetilè, 114.

IR(ATR) v (cm⁻¹)

¹³C-RMN (CDCI₃, 100.6 MHz)

